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Message from the General Chair

Welcome to the 17th Conference of the European Chapter of the Association for Computational Lingui-
stics (EACL). This is the flagship European conference dedicated to European and international resear-
chers, covering a broad spectrum of research areas of Computational Linguistics and Natural Language
Processing.

Organizing a scientific conference of the prestige and size of EACL is always a great honor associated
with several challenges. Our team had to tackle unusual complexities: this conference was one of the
first scheduled to be in person after the long period of online conferences forced by COVID pandemic.
The bidding process for a location, which typically takes place several years before the actual start of the
conference, is mainly driven by the aim of expanding and involving the science community of all Euro-
pean countries: EACL selected Kyiv, Ukraine, as the physical location. As you all know, in February
2022, an unpredictable and dramatic event happened, the war between Russian and Ukraine, which made
the organization in Kyiv impossible.

Considering the importance of physical interaction among researchers, especially after the restrictions
imposed by the COVID pandemic, we worked hard with the EACL and ACL boards to find an alter-
native location, able to delight our attendees. Our team achieved this seemingly impossible goal of
organizing a conference in a new location a few months before its start: we selected Dubrovnik, Croatia,
while preserving the original aim of strengthening the connection with the Ukrainian community. In this
respect, the Ukraine local committee will feature a dedicated panel session, “Low-resource languages in
NLP products”, and a workshop to highlight work on Ukrainian language technologies. Following the
latest conference, EACL 2023 will be “hybrid,” serving both virtual and in-person participants. As our
official local chairs are not from the physical location, we needed a local team from Croatia for helping
with the logistics. As a result, the main unexpected novelty of EACL 2023 is to have two local organizing
committees from two different European countries.

In the remainder of this preface, I would like to thank EACL contributors chronologically with respect
to my work timeline for EACL: Roberto Basili and Shuly Wintner, the new and former Presidents of
ACL, along with the EACL board – thanks for having trusted me to manage the organization of the
conference in rather complicated times. I started to be confident that we would have done a good job after
Isabelle Augenstein and Andreas Vlachos accepted the role of PC Chairs. They have performed amazing
work, creating an outstanding program, and also helping me in recruiting our fantastic organization
team. A special thank is due to Preslav Nakov (EACL officer) for his support: thanks to his action, the
proactiveness of David Yarowsky, and the fairless effort of Jennifer Rachford (our new secretary of the
ACL business office), we successfully implemented the apparently unrealistic idea of switching from the
already planned online conference to a hybrid setting with a physical location in Dubrovnik. Regarding
the online side of our hybrid conference, we partnered with Underline (Sol Rosenberg, Damira Mrsic and
Luka Simic), who also gave us support for managing the entire conference. While finalizing the location,
we started to activate the different sections of the conference, for which my acknowledgements are again
in chronological order:

• Ukraine Local Committee, Viktoria Kolomiets, Mariana Romanyshyn, Oleksii Molchanovskyi,
Oles Dobosevych, was instrumental in preserving our initial goal of connecting the Ukraine re-
search community, organizing a panel and a workshop.

• The website chairs, Pepa Atanasova and Julius Cheng, started immediately to design our website,
even when almost no information was available.

• The workshop chairs, Zeerak Talat and Antonio Toral, selected our conferences and led the selec-
tion of workshops for the joint ACL call.
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• The tutorial chairs, Sameer Pradhan and Fabio Massimo Zanzotto, together with the ACL chairs,
took care of the tutorial selection for the ACL related conferences.

• The demonstration chairs, Danilo Croce and Luca Soldaini, created a parallel conference program
to select exciting demos.

• The Publicity Chairs, Laura Biester, Leshem Choshen and Joel Tetrault, have been our interface
with the science community through social media platforms.

• The Publication Chairs, Carolina Scarton and Ryan Cotterell, produced high-quality proceedings,
thanks to their competence and experience.

• The diversity and inclusion chairs, Sara Tonelli, Elena Cabrio, Verena Rieser, Spandana Gella,
took care of DI and performed an amazing job, also working on hundreds applications.

• The Local Organising Committee of Croatia, Marko Tadić, Krešimir Šojat, and Daša Farkaš, gave
essential help for the logistics, Visa, and student volunteers.

• Student Research Workshop Chairs, Matthias Lindemann, Alban Petit, and Elisa Bassignana, along
with their faculty advisors Valerio Basile and Natalie Schluter, helped in setting the bases for
forming great NLP researchers of the future.

• Our entire program committee, Senior Area Chairs, Area Chairs, reviewers, and best paper com-
mittee, was essential for obtaining our high-quality scientific program.

• The ACL’s sponsorship director Chris Callison-Burch took care of our sponsorships.

• The student volunteers, as usual, are essential for a successful conference execution.

• Priscilla Rasmussen, our former ACL business office secretary, continued to provide us with useful
advice.

Finally, I would like to thank our sponsors for helping us to fund scholarships and DI initiatives.

Alessandro Moschitti
Amazon Alexa AI, Los Angeles, USA
EACL 2023 General Chair
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ACL Statement on the Ukraine situation

March 11, 2022

The Association for Computational Linguistics (ACL) condemns in the strongest possible terms the ac-
tions of the Russian Federation government in invading the sovereign state of Ukraine and engaging in
war against the Ukrainian people. We stand together with Ukrainian NLP colleagues, the Ukrainian peo-
ple, Russian NLP colleagues and Russian people who condemn the actions of the Russian Federation
government, and all those around the world who have been impacted by the invasion.

As a small token of our solidarity with the Ukrainian people, the ACL has decided to temporarily sever
its ties with Russia-based organizations, while at the same time allowing Russian scientists to remain part
of the ACL community. In practice, this means that the ACL will refrain from accepting any sponsorship
or allowing any exhibits from Russian-headquartered entities at ACL-run events. Russian scholars are
still welcome to participate in ACL events and publish at ACL venues.

The ACL is committed to peace and condemns any form of violence and harassment. We are also com-
mitted to peaceful co-operation, mutual understanding, and tolerance across borders. NLP scholars from
both Ukraine and Russia are welcome to get in touch with the ACL with any concerns.

Tim Baldwin, on behalf of the ACL Executive
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Message from the Program Chairs

Welcome to the 17th Conference of the European Chapter of the Association for Computational Lingui-
stics (EACL). After the last edition in 2021 having been held fully online due to the COVID pandemic,
EACL 2023 is being held in “hybrid” mode this year, serving both virtual and in-person participants in
Dubrovnik, Croatia. While the original plan was to hold the conference in Kyiv (which was the plan
originally for EACL 2021), the ongoing war made the organisation in Ukraine impossible. In order to
ensure that the original aim of strengthening the connections with the Ukrainian community is still ser-
ved, our program features a dedicated session and a workshop to highlight work on Ukrainian language
technologies.

Submission and Acceptance

EACL 2023 accepted direct submissions, as well as submissions via ARR. For direct submissions, ab-
stracts were needed to be registered one week prior to the submission date.
In total, EACL 2023 received 1550 submissions, the largest number to date, with the 2021 edition having
received 1400 submissions. Out of those, 1045 were long and 505 were short paper submissions. 81 were
ARR papers that were committed to EACL. 249 submissions were withdrawn throughout the reviewing
process, including before the full paper submission deadline. 55 papers were desk rejected for various
reasons (missing the limitations section, anonymity policy, multiple submission policy, plagiarism or
formatting violations).
By the time we as the programme chairs made acceptance decisions, 1166 submissions were still active in
the system. We kept the acceptance rate in line with previous *ACL conferences, resulting in 281 papers
accepted to the main conference (24.1%), and 201 papers accepted to the Findings of EACL (17.2%),
with the remaining 58.7% being rejected. One paper accepted to the main conference and four papers
accepted to Findings were subsequently withdrawn. Out of the final set of accepted main conference
papers, we invited 178 to be presented orally, and all 281 papers accepted to the main conference to be
presented during in-person sessions, as well as a plenary virtual poster session. The EACL 2023 program
also features six papers from the Transactions of the Association for Computational Linguistics (TACL)
journal, and one from the Computational Linguistics (CL) journal.

Limitations Section

Following EMNLP 2022, we required that each submitted paper must include an explicitly named Li-
mitations section, discussing the limitations of the work. This was to counterbalance the practice of
over-hyping the take-away messages of papers, and to encourage more rigorous and honest scientific
practice. This discussion did not count towards the page limit, and we asked reviewers to not use the
mentioned limitations as reasons to reject the paper, unless there was a really good reason to.

Areas

To ensure a smooth process, the submissions to EACL 2023 were divided into 21 areas. The areas
mostly followed these of previous EACL, and more broadly *ACL conferences, reflecting the typical
divisions in the field. We also had a special area for papers for which both SACs had a conflict of
interest. Those papers were reviewed by the reviewers and ACs in their original areas, but the paper
recommendations were made by a dedicated SAC, who was a senior member of the NLP community.
The most popular areas with over 100 submissions were “Generation and Summarization”, “Language
Resources and Evaluation”, and “Machine Learning in NLP”.
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Best Paper Awards

From the papers submitted to EACL 2023, we selected 25 papers accepted to the main conference as
candidates for a Best Paper award, based on nominations by the reviewers. These papers were assessed
by the Best Paper Award Committee, who also determined the types of paper awards, following the ACL
Conference Awards Policy. The selected best papers and runner-ups will be announced in a dedicated
plenary session for Best Paper Awards on 4 May 2023.

Programme Committee Structure and Reviewing

Similar to prior NLP conferences, we adopted the hierarchical program committee structure, where for
each area we invited 1-2 Senior Area Chairs (SACs), who worked with a team of Area Chairs (ACs), and
a larger team of reviewers. We relied on statistics from prior years to estimate how many SACs, ACs and
reviewers would be needed and ended up with 43 SACs, 118 ACs and 1634 reviewers. For identifying
ACs and reviewers, we used the reviewer lists from prior *ACL conferences, and also encouraged all
EACL 2023 authors to serve as reviewers, using a mandatory form requesting further information on
their ability to serve as ACs, reviewers or emergency reviewers, which authors had to fill in on Softconf
when registering their abstracts. We passed this information on to SACs, who were responsible for
recruiting ACs and reviewers.
Rather than making assignments using a matching algorithm, we asked ACs and reviewers to bid on
registered abstracts within their areas, to achieve a better fit. We went with this solution as the number
of papers per area was relatively small, and we wanted to avoid poor reviewing assignments as much
as possible. We then made an initial paper assignment, in which we ensured that each paper would be
reviewed by at least one reviewer who bidded “yes” for the submission, and by no reviewers who bidded
“no” for the submission.
Afterwards, we asked the SACs to fine-tune the allocations, and ensure each paper had one AC and three
reviewers assigned to it.
To ensure the review quality, we provided detailed guidelines about what reviewers should and shouldn’t
do in a review, based on the EMNLP 2022 guidelines. We also asked reviewers to flag papers for potential
ethical concerns.
For pre-reviewed ARR papers, we asked SACs to not rely mainly on the reviewer scores, but to make their
recommendations based on the text of the reviews, meta-reviews and the papers themselves. For making
acceptance decisions, we mostly followed SAC recommendations, though also taking into account the
overall quality of papers submitted to the conference. Where recommendations seemed overly harsh
or lenient given the reviewers’ scores, reviews, author responses, or discussions amongst reviewers, we
engaged in a dialogue with the respective SACs to make the final decision about the papers in question.

Ethics Committee

We also formed an Ethics Committee (EC) dedicated to ethical issues. The ethics committee considered
21 papers that were flagged by the technical reviewing committee for ethical concerns. Out of these, 10
were conditionally accepted, meaning the ethics issues had to be addressed in the camera-ready version,
to be verified by the EC prior to final acceptance, and the other 11 were accepted as is. The authors of
all conditionally accepted papers submitted the camera-ready version and a short response that explained
how they had made the changes requested by the EC. The EC double-checked these revised submissions
and responses, and confirmed that the ethical concerns had been addressed. As a result, all conditionally
accepted papers were accepted to the main conference or Findings.
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ACL Rolling Review

ACL Rolling Review (ARR) is an initiative of the Association for Computational Linguistics, where the
reviewing and acceptance of papers to publication venues are done in a two-step process: (1) centralized
rolling review and (2) the ability to commit the reviewed papers to be considered for publication by a pu-
blication venue. For EACL 2023, we decided to follow EMNLP 2022’s example and run a process which
is separate from ARR, but also allows for ARR submissions. Specifically, authors could either submit
papers to EACL 2023 directly, or commit ARR reviewed papers by a certain date. We coordinated with
the ARR team to extract the submission, review and meta-review from the OpenReview system, accor-
ding to a submission link that the author provided when committing their ARR submission to EACL.
The ARR commitment deadline was set one month after the direct submission deadline since the ARR
submissions already have their reviews and meta-recommendation. These ARR papers were then ranked
by the SACs together with the direct submissions in the track, and based on the reviews and meta-reviews
from ARR. Overall, EACL had 81 papers committed from ARR, of these 24 were accepted to the main
conference and 20 were accepted to Findings of EACL.

Presentation Mode

We made the decision on which papers would be invited for oral poster presentations based on several
factors: the relative rank of the paper according to SAC recommendation, whether the paper had been
recommended for a best paper award by at least one reviewer, and for TACL and CL papers, the authors’
preference of presentation mode.

Keynotes and Panel

Another highlight of our program are the plenary sessions, for which we scheduled three talks, as well a
panel:

• a keynote talk by Joyce Chai (University of Michigan) on “Language Use in Embodied AI!

• a keynote talk by Edward Greffenstette (Cohere AI and University College London) on “Going
beyond the benefits of scale by reasoning about data”

• a keynote talk by Kevin Munger (Penn State University) on Chatbots for Good and Evil"

• a panel on “low-resource languages in NLP products” led by Mariana Romanyshyn with Viktoria
Kolomiets (Grammarly), Mariana Romanyshyn (Grammarly), Oleksii Molchanovskyi (Ukrainian
Catholic University) and Oles Dobosevych (Ukrainian Catholic University)

Thank Yous

EACL 2023 is the result of a collaborative effort and a supportive community, and we want to acknow-
ledge the efforts of so many people with whom we worked directly and made significant efforts in putting
together the programme for EACL 2023!

• Our General Chair, Alessandro Moschitti, who led the whole organising team, and helped with
many of the decision processes;

• Our 43 Senior Area Chairs, who were instrumental in every aspect of the review process, from
recruiting Area Chairs, correcting reviewer assignments, to making paper acceptances;

• Our 118 Area Chairs, who had the role of interacting with the reviewers, leading paper review
discussions, and writing meta-reviews;
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• The 1634 reviewers, who provided valuable feedback to the authors; The emergency reviewers,
who provided their support at the last minute to ensure a timely reviewing process;

• Our Best Paper Selection Committee, who selected the best papers and the outstanding papers: Jo-
nathan Kummerfeld (chair), Joakim Nivre, Bonnie Webber, Thamar Solorio and Hanna Hajishirzi;

• Our Ethics Committee, chaired by Zeerak Talat, for their hard work to ensure that all the accepted
papers addressed the ethical issues appropriately, under a very tight schedule;

• Our amazing Publication Chairs, Carolina Scarton and Ryan Cotterell for compiling the procee-
dings in good time for the conference;

• Our Publicity Chairs, Laura Biester, Leshem Choshen and Joel Tetrault, for their work on managing
the communications on social media platforms;

• Our website chairs, Pepa Atanasova and Julius Cheng for putting together the website for the
conference and keeping it up to date;

• Damira Mrsic from Underline, for her support in developing the virtual conference platform;

• Jennifer Rachford, who has worked tirelessly online and on-site to ensure that EACL 2023 is a
success.

We’re looking forward to a great EACL 2023!

Isabelle Augenstein (University of Copenhagen, Denmark)
Andreas Vlachos (University of Cambridge, UK)
EACL 2023 Programme Committee Co-Chairs
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he Huang, Zhiqi Huang, Vojtěch Hudeček, Pere-Lluís Huguet Cabot, Kai Hui, Chia-chien Hung,
Julie Hunter

Nikolai Ilinykh, Dmitry Ilvovsky, Michimasa Inaba, Diana Inkpen, Koji Inoue, Hayate Iso, Ta-
kumi Ito, Maor Ivgi, Kenichi Iwatsuki, Vivek Iyer, Peter Izsak

Cassandra L. Jacobs, Sarthak Jain, Masoud Jalili Sabet, Sepehr Janghorbani, Adam Jatowt, Ini-
go Jauregi Unanue, Ganesh Jawahar, Harsh Jhamtani, Shaoxiong Ji, Yangfeng Ji, Chengyue Jiang,
Junfeng Jiang, Longquan Jiang, Ming Jiang, Yuchen Eleanor Jiang, Ziyan Jiang, Baoyu Jing, Unso
Jo, Richard Johansson, Aditya Joshi, Rishabh Joshi, Taehee Jung

Besim Kabashi, Sylvain Kahane, Mihir Kale, Laura Kallmeyer, Ehsan Kamalloo, Hidetaka Ka-
migaito, Jaap Kamps, Lis Kanashiro Pereira, Hiroshi Kanayama, Yoshinobu Kano, Diptesh Ka-
nojia, Sudipta Kar, Georgi Karadzhov, Elena Karagjosova, Mladen Karan, Sarvnaz Karimi, Börje
Karlsson, Sanjeev Kumar Karn, Constantinos Karouzos, Pradeep Karturi, Zdeněk Kasner, Yoshi-
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Vasilakes, Dirk Väth, Henning Wachsmuth, Michael Wiegand, Tomer Wolfson, Hanqi Yan, Euge-
ne Yang, Marcely Zanon Boito, Amir Zeldes

xxii



Keynote Talk: Going beyond the benefits of scale by
reasoning about data

Edward Grefenstette
Cohere

Tuesday, May 2, 2023 – Time: 09:30 – 10:30 – Room: Elafiti 1, 2, 3 & 4

Abstract:
Transformer-based Large Language Models (LLMs) have taken NLP—and the world—by storm. This
inflection point in our field marks a shift from focussing on domain-specific neural architecture design
and the development of novel optimization techniques and objectives to a renewed focus on the scaling of
model size and of the amount of data ingested during training. This paradigm shift yields surprising and
delightful applications of LLMs, such as open-ended conversation, code understanding and synthesis,
some degree of tool-use, and some zero-shot instruction-following capabilities. In this talk, I outline and
lightly speculate on the mechanisms and properties which enable these diverse applications, and posit
that the training regimen which enables these capabilities points to a further shift, namely one where we
go from focussing on scale, to focussing on reasoning about what data to train on. I will briefly discuss
recent advances in open-ended learning in Reinforcement Learning, and how some of the concepts at
play in that work may inspire or directly apply to the development of novel ways of reasoning about data
in supervised learning, in particular in areas pertaining to LLMs.

Bio:
Ed Grefenstette is the Head of Machine Learning at Cohere, a provider of cutting-edge NLP models
that’s solving all kinds of language problems; including text summarization, composition, classification
and more. In addition, Ed is an Honorary Professor at UCL. Ed’s previous industry experience compri-
ses Facebook AI Research (FAIR), DeepMind, and Dark Blue Labs, where he was the CTO (acquired
by Google in 2014). Prior to this, Ed worked at the University of Oxford’s Department of Computer
Science, and was a Fulford Junior Research Fellow at Somerville College, whilst also lecturing students
at Hertford College taking Oxford’s new computer science and philosophy course. Ed’s research interests
span several topics, including natural language and generation, machine reasoning, open ended learning,
and meta-learning.

xxiii



Keynote Talk: Chatbots for Good and Evil
Kevin Munger

Penn State University

Wednesday, May 3, 2023 – Time: 15:45 – 16:45 – Room: Elafiti 1, 2, 3 & 4

Abstract:
The capacities of LLM-powered chatbots have been progressing on the order of months and have recen-
tly passed into mainstream public awareness and adoption. These tools have been used for a variety of
scientific and policy interventions, but these advances call for a significant re-thinking of their place in
society. Psychological research suggests that intentionalityis a key factor in persuasion and social norm
enforcement, and the proliferation of LLMs represents a significant shock to the intentionalitycontained
in text and particularly in immediate, personalized chat. I argue that we are in a period of informational
disequilibrium,where different actors have different levels of awareness of this technological shock. This
period may thus represent a golden age for actors aiming to use these technologies at scale, for any num-
ber of normative ends; this includes social scientists and computational linguists. More broadly, I argue
that the ethicalframeworks for evaluating research practices using LLM-powered chatbots are insufficient
to the scale of the current challenge. This is a potentially revolutionary technology that requires thinking
in moral and political terms: given the power imbalances involved, it is of paramount importance that
chatbots for good do not inadvertently become chatbots for evil.

Bio:
Kevin Munger is the Jeffrey L. Hyde and Sharon D. Hyde and Political Science Board of Visitors Early
Career Professor of Political Science and Assistant Professor of Political Science and Social Data Analy-
tics at Penn State University.Kevin’s research focuses on the implications of the internet and social media
for the communication of political information. His speciality is the investigation of the economics of on-
line media; current research models Clickbait Mediaand uses digital experiments to test the implications
of these models on consumers of political information.
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Keynote Talk: Language Use in Embodied AI
Joyce Chai

University of Michigan

Thursday, May 4, 2023 – Time: 14:15 – 15:15 – Room: Elafiti 1, 2, 3 & 4

Abstract:
With the emergence of a new generation of embodied AI agents, it becomes increasingly important to
enable language communication between humans and agents. Language plays many important roles in
embodied AI. In this talk, I will share some of the experiences in my lab that study the pragmatics of
language, for example, in mediating perceptual differences, learning from language instructions, and
planning for joint tasks. I will talk about how the embodied context shapes language use and influences
computational models for language grounding to perception and action. I will show the importance of
collaborative effort and theory of mind in language communication and how they affect common ground
for situated tasks. I will discuss key challenges as well as new perspectives on these problems brought
by recent advances in LLM and generative AI.

Bio:
Joyce Chai is a Professor in the Department of Electrical Engineering and Computer Science at the
University of Michigan. Before joining UM in 2019, she was a Professor of Computer Science and Engi-
neering at Michigan State University. She holds a Ph.D. in Computer Science from Duke University. Her
research interests span from natural language processing and embodied AI to human-AI collaboration.
She is fascinated by how experience with the world and how social pragmatics shape language learning
and language use; and is excited about developing language technology that is sensorimotor grounded,
pragmatically rich, and cognitively motivated. Her current work explores the intersection between lan-
guage, perception, and action to enable situated communication with embodied agents. She served on
the executive board of NAACL and as Program Co-Chair for multiple conferences – most recently ACL
2020. She is a recipient of the National Science Foundation Career Award and has received several paper
awards with her students (e.g., the Best Long Paper Award at ACL 2010 and an Outstanding Paper Award
at EMNLP 2021). She is a Fellow of ACL.
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Panel: Low-resource languages in NLP products

Wednesday, May 3, 2023 – Time: 16:30 – 18:00 – Room: Elafiti 1, 2, 3 & 4

The panel discussion will bring together experts from industry and academia to share their experience
building solutions for low-resource languages. We anticipate a lively discussion about the advantages and
limitations of multilingual solutions and language-specific models, the challenges of evaluating models
for low-resource languages, and the level of language awareness needed in the development process. In
addition, the panelists will explore ways to increase the acceptance rate of papers that target low-resource
languages at *ACL conferences. We hope that the panel discussion will increase the visibility of research
for low-resource languages and emphasize its relevance.

Moderator: Mariana Romanyshyn, Grammarly
Mariana Romanyshyn is an Area Tech Lead for Computational Linguistics at Grammarly, Ukraine. She
has professional experience in syntactic parsing, sentiment analysis, named entity recognition, fact ex-
traction, and text anonymization. For the last eight years, Mariana has been working on error correction
and text improvement algorithms at Grammarly. Mariana is an active speaker at AI conferences, co-
organizer of the yearly Grammarly CompLing Summer School, co-organizer of the UNLP workshop,
struggling reformer of Ukrainian university syllabuses, and active contributor of the Lang-uk group, fo-
cused on advancements in Ukrainian NLP.

Panelists:

Antonios Anastasopoulos, George Mason University
Antonios Anastasopoulos is an Assistant Professor in Computer Science at George Mason University. He
received his PhD in Computer Science from the University of Notre Dame and then did a postdoc at Lan-
guage Technologies Institute at Carnegie Mellon University. He also holds a BSc-MSc in Electrical and
Computer Engineering from the National Technical University of Athens, Greece. His research is on na-
tural language processing with a focus on multilinguality, low-resource settings, cross-lingual learning,
and endangered languages, with the ultimate goal of building language technologies for under-served
communities around the world. He is currently funded by the NSF, the NEH, the US DoD, Google,
Amazon, and Meta.

Mona Diab, Meta
Mona Diab is the Lead Responsible AI Research Scientist with Meta. She is also a full Professor of
Computer Science at the George Washington University (on leave) where she directs the CARE4Lang
NLP Lab. Before joining Meta, she led the Lex Conversational AI project within Amazon AWS AI. Her
current focus is on Responsible AI and how to operationalize it for NLP technologies. Her interests span
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building robust technologies for low-resource scenarios with a special interest in Arabic technologies,
(mis) information propagation, computational socio-pragmatics, computational psycholinguistics, NLG
evaluation metrics, language modeling, and resource creation.

Julia Makogon, Semantrum
Julia Makogon is a Lead ML/NLP Engineer at Semantrum, a Ukrainian AI company that specializes in
media analytics and reputation management. She studied Applied Mathematics at DSTU, Kamyanske,
Ukraine, before pursuing a career in NLP. Julia developed multiple NLP applications for media monito-
ring, sentiment analysis, and legal document analysis for Ukrainian and other European languages. Her
expertise lies in building industry solutions with limited resources. Julia serves at the Program Com-
mittee of the Ukrainian NLP workshop and is passionate about advancing solutions for the Ukrainian
language.

Ivan Vulić, University of Cambridge
Ivan Vulić is a Principal Research Associate and a Royal Society University Research Fellow in the
Language Technology Lab, University of Cambridge. He is also a Senior Scientist at PolyAI. He is a
member of the Steering Committee of the Centre for Human Inspired Artificial Intelligence (CHIA) at
Cambridge. Ivan holds a PhD in Computer Science from KU Leuven awarded summa cum laude. In
2021 he was awarded the annual Karen Spärck Jones Award from the British Computing Society for his
research contributions to NLP and Information Retrieval. His core expertise is in representation learning,
cross-lingual learning, conversational AI, human language understanding, distributional, lexical, multi-
modal, and knowledge-enhanced semantics in monolingual and multilingual contexts, transfer learning
for enabling cross-lingual NLP applications such as conversational AI in low-resource languages, and
machine learning for (cross-lingual and multilingual) NLP. He has published numerous papers at top-tier
NLP and Information Retrieval conferences and journals, and his research work also resulted in several
best paper awards. He serves as an area chair and regularly reviews for all major NLP and Machine
Learning conferences and journals. Ivan has given numerous invited talks at academia and industry and
co-organised a number of NLP conferences and workshops.
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Ivan Vulić, Goran Glavaš, Fangyu Liu, Nigel Collier, Edoardo Maria Ponti and Anna Korhonen

2089

Pento-DIARef: A Diagnostic Dataset for Learning the Incremental Algorithm for Referring Expression
Generation from Examples

Philipp Sadler and David Schlangen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2106

Mitigating Exposure Bias in Grammatical Error Correction with Data Augmentation and Reweighting
Hannan Cao, Wenmian Yang and Hwee Tou Ng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2123

Plausible May Not Be Faithful: Probing Object Hallucination in Vision-Language Pre-training
Wenliang Dai, Zihan Liu, Ziwei Ji, Dan Su and Pascale Fung . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2136

xxxvi



Characterizing the Entities in Harmful Memes: Who is the Hero, the Villain, the Victim?
Shivam Sharma, Atharva Kulkarni, Tharun Suresh, Himanshi Mathur, Preslav Nakov, Md. Shad

Akhtar and Tanmoy Chakraborty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2149

Systematic Investigation of Strategies Tailored for Low-Resource Settings for Low-Resource Dependen-
cy Parsing

Jivnesh Sandhan, Laxmidhar Behera and Pawan Goyal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2164

Compositional Generalisation with Structured Reordering and Fertility Layers
Matthias Lindemann, Alexander Koller and Ivan Titov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2172

Investigating Multi-source Active Learning for Natural Language Inference
Ard Snijders, Douwe Kiela and Katerina Margatina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2187

Towards a Unified Multi-Domain Multilingual Named Entity Recognition Model
Mayank Kulkarni, Daniel Preotiuc-Pietro, Karthik Radhakrishnan, Genta Indra Winata, Shijie

Wu, Lingjue Xie and Shaohua Yang. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2210

Do Neural Topic Models Really Need Dropout? Analysis of the Effect of Dropout in Topic Modeling
Suman Adhya, Avishek Lahiri and Debarshi Kumar Sanyal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2220

A Psycholinguistic Analysis of BERT’s Representations of Compounds
Lars Buijtelaar and Sandro Pezzelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2230

Measuring Normative and Descriptive Biases in Language Models Using Census Data
Samia Touileb, Lilja Øvrelid and Erik Velldal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2242

UDAPTER - Efficient Domain Adaptation Using Adapters
Bhavitvya Malik, Abhinav Ramesh Kashyap, Min-Yen Kan and Soujanya Poria . . . . . . . . . . . 2249

Efficient CTC Regularization via Coarse Labels for End-to-End Speech Translation
Biao Zhang, Barry Haddow and Rico Sennrich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2264

Exploring Category Structure with Contextual Language Models and Lexical Semantic Networks
Joseph Renner, Pascal Denis, Remi Gilleron and Angèle Brunellière . . . . . . . . . . . . . . . . . . . . . 2277

An Empirical Study of Clinical Note Generation from Doctor-Patient Encounters
Asma Ben Abacha, Wen-wai Yim, Yadan Fan and Thomas Lin . . . . . . . . . . . . . . . . . . . . . . . . . . 2291

Instruction Clarification Requests in Multimodal Collaborative Dialogue Games: Tasks, and an Ana-
lysis of the CoDraw Dataset

Brielen Madureira and David Schlangen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2303

Can Synthetic Text Help Clinical Named Entity Recognition? A Study of Electronic Health Records in
French

Nicolas Hiebel, Olivier Ferret, Karen Fort and Aurélie Névéol . . . . . . . . . . . . . . . . . . . . . . . . . . . 2320

IRMA: the 335-million-word Italian coRpus for studying MisinformAtion
Fabio Carrella, Alessandro Miani and Stephan Lewandowsky. . . . . . . . . . . . . . . . . . . . . . . . . . . .2339

Parameter-Efficient Korean Character-Level Language Modeling
Marco Cognetta, Sangwhan Moon, Lawrence Wolf-sonkin and Naoaki Okazaki . . . . . . . . . . . 2350

Opportunities and Challenges in Neural Dialog Tutoring
Jakub Macina, Nico Daheim, Lingzhi Wang, Tanmay Sinha, Manu Kapur, Iryna Gurevych and

Mrinmaya Sachan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2357

xxxvii



Evaluating the Robustness of Discrete Prompts
Yoichi Ishibashi, Danushka Bollegala, Katsuhito Sudoh and Satoshi Nakamura . . . . . . . . . . . . 2373

Assessing Out-of-Domain Language Model Performance from Few Examples
Prasann Singhal, Jarad Forristal, Xi Ye and Greg Durrett . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2385

Mind the Labels: Describing Relations in Knowledge Graphs With Pretrained Models
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Abstract

While contextualized word embeddings have
been a de-facto standard, learning contextual-
ized phrase embeddings is less explored and be-
ing hindered by the lack of a human-annotated
benchmark that tests machine understanding of
phrase semantics given a context sentence or
paragraph (instead of phrases alone). To fill
this gap, we propose PiC—a dataset of ∼28K
of noun phrases accompanied by their contex-
tual Wikipedia pages and a suite of three tasks
for training and evaluating phrase embeddings.
Training on PiC improves ranking-models’ ac-
curacy and remarkably pushes span-selection
(SS) models (i.e., predicting the start and end in-
dex of the target phrase) near human-accuracy,
which is 95% Exact Match (EM) on seman-
tic search given a query phrase and a passage.
Interestingly, we find evidence that such im-
pressive performance is because the SS mod-
els learn to better capture the common mean-
ing of a phrase regardless of its actual context.
SotA models perform poorly in distinguishing
two senses of the same phrase in two contexts
(∼60% EM) and in estimating the similarity be-
tween two different phrases in the same context
(∼70% EM).

1 Introduction

Understanding phrases in context is a key to learn-
ing new vocabularies (Nagy et al., 1985; Fischer,
1994), disambiguation (Pilehvar and Camacho-
Collados, 2019), and many downstream tasks, in-
cluding semantic search (Finkelstein et al., 2001).
Yet, the contextualized phrase embeddings (Yu and
Ettinger, 2020) in existing systems mostly capture
the common meaning of a phrase, i.e. without
strong dependence on its context (Yu and Ettinger,
2020). While there are word-sense disambiguation
datasets (Edmonds and Cotton, 2001; Pilehvar and
Camacho-Collados, 2019), no such benchmarks
exist for phrases. Existing phrase-similarity bench-
marks (Pavlick et al., 2015; Turney, 2012; Asaadi

et al., 2019; Zhang et al., 2019; Yang et al., 2019)
compare phrases alone (without context) and some
of them (Pavlick et al., 2015; Zhang et al., 2019)
contain a large, undesired amount (∼15% to 99%)
of phrase pairs that have lexical overlap (Table 1).

Others generated the context for a phrase by
querying GPT-2 (Wang et al., 2021) or by retriev-
ing from Wikipedia (Yu and Ettinger, 2020). Yet,
there was no human verification of the realism of
generated text (Wang et al., 2021) and no human an-
notation of how a phrase’s meaning changes w.r.t.
the context (Yu and Ettinger, 2020). All above
drawbacks are limiting the evaluation of phrase
understanding.

To advance the development of contextualized
phrase embeddings, we propose Phrase-in-Context
(PiC), a suite of three tasks: (1) Phrase Similarity
(PS), i.e. compare the semantic similarity of two
phrases in the same context sentence (Fig. 1b); (2)
Phrase Retrieval (PR), which is divided into PR-
pass and PR-page (Fig. 1c–d), i.e. from a passage
or a Wikipedia page, retrieve a phrase semantically-
similar to a given query phrase; and (3) Phrase-
Sense Disambiguation (PSD), i.e. find the target
phrase p semantically similar to the query phrase
from a 2-paragraph document where p appears
twice, each time in a different context paragraph
that provides a unique meaning to p (Fig. 1e). Our
∼28K-example dataset is rigorously (a) annotated
and verified by two groups of annotators: linguis-
tics experts on Upwork.com and non-experts on
Amazon Mechanical Turk (MTurk); and then (b)
tested by models, linguists, and graduate students.
Our contributions are:

1. We build PiC1, the first, human-annotated
benchmark for evaluating and training con-
textualized phrase embeddings (Sec. 4). Com-
pared to existing phrase similarity datasets, PS
is the first to require models to rely on context.

1Dataset, code, and demos are available on https://
phrase-in-context.github.io.
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2. After training on PR-pass, i.e. finding a phrase
from a passage, SS models perform at a near-
human accuracy (92–94% vs. 95% EM). They
also score high (84–89% EM) on PR-page,
i.e. semantic phrase search in a Wikipedia
page (Sec. 5.4), suggesting our training set
and learned embeddings are useful for real-
world semantic search.

3. Interestingly, on PR-pass, harnessing these SS
models’ phrase embeddings in a ranking ap-
proach (i.e. comparing the similarity between
the query and all candidate phrases) yields
poor accuracy of ≤ 59% EM (Sec. H), setting
a challenge for future research into learning
contextualized phrase embeddings.

4. After training on PR-pass, state-of-the-art
(SotA) models perform relatively well on
PR-pass and even PR-page but not on PSD
(Sec. 5.5). On PS, SotA models perform
poorly (below 70% accuracy) in binary clas-
sification of phrase similarity given a context
sentence (Sec. 5.1).

2 Related Work

Each of our tasks (PS—phrase similarity; PR—
phrase retrieval; and PSD—disambiguation) is re-
lated to a separate research area discussed below.
Phrase similarity First, most existing phrase
similarity datasets—e.g. PPDB-annotated (Wiet-
ing et al., 2015), PPDB-filtered (Wang et al., 2021),
BiRD (Asaadi et al., 2019), and PAWS-short (Wang
et al., 2021; Zhang et al., 2019)—contain a large
percent of instances with lexical overlap between
two paired phrases while our PS contains the least
percent (5.34%; Table 1). Second, PS compares
each pair of phrases in a context sentence while ex-
isting datasets only compare phrases alone (no con-
text). Third, the phrases in PS are, on average, 2-
token long, comparable to that of other datasets (Ta-
ble 1). Fourth, unlike other datasets, PS contains ex-
clusively noun-phrases, the most common phrase
type according to Yahoo’s search-query statistics
(Yahoo, 2022a) (79.54%; Appendix D) and Adobe
(internal Acrobat Pro data not shown).
Question answering (QA) Our phrase-retrieval
tasks—PR and PSD—follow the format of QA
datasets except that our queries are phrases instead
of questions and hence shorter (Table 2). Like
SQuAD 1.1 (Rajpurkar et al., 2016) and HotpotQA

Table 1: Our Phrase Similarity (PS) dataset has a lower
percent of lexical-overlap instances and is the only
human-annotated dataset that provides phrases, each
in a context sentence.

PS WiC PPDB- PPDB- BiRD Turney PAWS-
(ours) annotated filtered short

# of All instances 10,004 7,466 3,000 15,532 3,345 2,180 1,214
# of Unique phrases 7,488 2,345 6,000 12,023 2,840 9,776 1,214
Lexical overlap (%) 5.34 100 70.10 97.93 14.98 0 99.42

Mean length (in tokens)
• phrase1 2.06 1 3.67 2 2 2 9.52
• phrase2 2.46 1 3.73 2 1.49 1 9.42
• context sentence 22.53 8.40 0 0 0 0 0

(Yang et al., 2018), our documents and queries are
extracted from Wikipedia articles. While our PR
dataset is ∼3.5× smaller than those two datasets,
the paragraph document length in PR-pass and
PSD is ∼2× longer than those of SQuAD 1.1 and
HotpotQA (Table 2). For our task, intuitively, the
longer the document, the harder the task since there
would be more candidates a model must compare
with the query.

Table 2: Our PR-pass, PR-page and PSD datasets are
smaller in size compared to common QA datasets and
contain shorter queries that are noun phrases instead
of questions. However, our tasks require searching in
much longer documents.

PR-pass PR-page PSD SQuAD 1.1 HotpotQA

All instances 28,147 28,098 4,858 98,169 105,257
Unique queries/questions 27,055 27,016 4,812 97,888 105,249
Unique answers 13,458 13,423 2,314 72,469 57,259

Mean length of
query (tokens) 2.42 2.42 2.45 11.42 20.03
answer (tokens) 2.17 2.17 2.07 3.46 2.35
sentence (tokens) 23.22 24.08 23.00 27.62 26.77
document (sentences) 10.26 119.32 20.37 5.10 4.14
document (tokens) 238.34 2,872.73 468.48 140.92 110.72

Sense disambiguation While word-sense disam-
biguation (WSD) is a long-standing problem in
NLP, recently, SotA models have reached super-
human accuracy (80% F1) on the common English
WSD (Bevilacqua et al., 2021). Interestingly, these
high-scoring models still struggle with rare senses
that may be outside of the predefined sense in-
ventories or have few training examples (Blevins
et al., 2021). Without the need for predefined
senses, WiC (Pilehvar and Camacho-Collados,
2019) poses disambiguation as a binary classifi-
cation task where the goal is to predict whether the
same target word in two different sentences carries
the same or different meanings.
Compared to WiC PS is also a binary classifi-
cation task, but with two major differences: (1) in
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…………………………….….…………………………………………….
. …………………………….….………………………………………….. 
Samson is the emblem of Lungau, Salzburg 
and parades in his honor are held annually 
in ten villages of the Lungau and two 
villages in the north-west Styria (Austria). 
During the parade, a young bachelor from 
the community carries a massive figure
made of wood or aluminum said to 
represent Samson. The tradition, which was 
first documented in 1635, was entered into 
the UNESCO list of Intangible Cultural 
Heritage in Austria in 2010…………………………
…………………………………………………………………..............

…………………………….….…………………………………………..
…………………………….….………………………………………….. 
In November 2018, HMSI crossed the 2.5 
crore sales mark in the scooter segment. It 
has become the first company to reach 
this milestone and the biggest contributor 
to this massive figure is the Honda 
Activa. It took Honda 13 years to achieve 
the one crore sales figure, but it managed 
to add another crore in the span of just 
three years. It then went on to achieve the 
next 50 lakh in just one year ……………………
……………………….………………………………………..

massive figure

page 1

huge model giant numberparaphrase 1 paraphrase 2

Q2

Q3: Does massive figure in page 1 has the same meaning as massive figure in page 2?   Yes No

page 2

Q1

rephrase

(a) Q1 & Q2 ask annotators to rephrase “massive figure” in page 1 and page 2. Q3
asks whether this phrase’s meaning is the same in both pages.

During the parade, a young bachelor from the 
community carries a massive figure made of wood or 
aluminum said to represent Samson. 

Positive example (same meaning)

S1

During the parade, a young bachelor from the 
community carries a  huge model made of wood 
or aluminum said to represent Samson. 

During the parade, a young bachelor from the 
community carries a massive figure made of wood or 
aluminum said to represent Samson. 

Negative example (different meanings)

During the parade, a young bachelor from the 
community carries a   giant number made of wood 
or aluminum said to represent Samson. 

S2

S1

S2

huge model

giant number

(b) PS positive & negative examples con-
structed using page 1 context
(similarly, we repeat for page 2).

~11-sentence passage in page 1pass 1: 
………………………………………………………………………. center of the great
cascade of the fountain at Peterhof Palace in Saint Petersburg.
Samson is the emblem of Lungau, Salzburg and parades in his
honor are held annually in ten villages of the Lungau and two
villages in the north-west Styria (Austria). During the parade, a
young bachelor from the community carries a massive figure
made of wood or aluminum said to represent Samson. The
tradition, which was first documented in 1635, was entered into
the UNESCO list of Intangible Cultural Heritage in Austria in 2010.
Samson is one of the giant figures at the "Ducasse" festivities,
which take place at Ath, Belgium ………………………………………

pass 1

Query:  Answerhuge model

massive figure

(c) A PR-pass example.

Query:  huge model

…………………………….….…………………………………………….
. …………………………….….………………………………………….. 
Samson is the emblem of Lungau, Salzburg 
and parades in his honor are held annually 
in ten villages of the Lungau and two 
villages in the north-west Styria (Austria). 
During the parade, a young bachelor from 
the community carries a massive figure
made of wood or aluminum said to 
represent Samson. The tradition, which was 
first documented in 1635, was entered into 
the UNESCO list of Intangible Cultural 
Heritage in Austria in 2010…………………………
…………………………………………………………………..

page 1

massive figure

Answer

(d) A PR-page example.

~22 sentences ( pass 1 + pass 2 )
Samson is the emblem of Lungau, Salzburg and parades in his honor are held
annually in ten villages of the Lungau and two villages in the north-west
Styria (Austria). During the parade, a young bachelor from the community
carries a massive figure made of wood or aluminum said to represent
Samson. The tradition, which was first documented in 1635, was entered
into the UNESCO list of Intangible Cultural Heritage in Austria in 2010.

In November 2018, HMSI crossed the 2.5 crore sales mark in the scooter
segment. It has become the first company to reach this milestone and the
biggest contributor to this massive figure is the Honda Activa. It took
Honda 13 years to achieve the one crore sales figure, but it managed to add
another crore in the span of just three years.

pass 1

Query:  Answer:  massive figurehuge model

pass 2

massive figure

(e) A PSD example.

Figure 1: Given a phrase, two associated Wikipedia pages, and expert annotations, i.e. answers to Q1, Q2, and
Q3 (a), we are able to construct two pairs of positive and negative examples for PS (b), a PR-pass example (c), a
PR-page example (d), and a PSD example only if the answer to Q3 is No (e).

WiC, the same target word appears in two differ-
ent sentences while in PS, two different phrases
appear in the same context sentence; (2) PS com-
pares phrases composed of ≥ 2 words instead of
a single word as in WiC and WSD. While word
senses are defined in WordNet and BabelNet dic-
tionaries (Bevilacqua et al., 2021), there are no
English dictionaries of senses for multi-word noun
phrases (mNPs). Thus, it is more challenging to
acquire and learn the senses of mNPs, hence the
importance of our PiC dataset. Like WiC, PSD
tests disambiguating the meanings of the same n-
gram in two different contexts. Yet, PSD is a phrase
search task, which involves many more phrase com-
parisons per example than PS or WiC.

Before the deep learning era, phrase-sense dis-
ambiguation was already proposed (Carpuat and
Wu, 2007a,b) but only as an auxiliary task for train-
ing machine-translation models. And their phrase
senses were not annotated by humans but inferred
by performing word-alignment on a bilingual cor-
pus. Here, our PSD is the first phrase-sense disam-
biguation task annotated by experts and requires
understanding of phrase-senses in a passage.

3 PiC Dataset Construction

We first collect a set of phrases with context and
human annotations. Then, we derive the examples
and labels for three main tasks: PS, PR, and PSD
(Fig. 1). Our idea is to mine a set of triplets (p,
page1, page2) from Wikipedia where the phrase
p is a polysemous mNP that carries two different
senses in two Wikipedia pages (e.g., “massive fig-
ure” means a large number in page1 but a huge
physical shape in page2; Fig. 1a). Then, we ask
experts to rephrase p into two paraphrases q1 and
q2, maintaining the two original senses of p in
page1 and page2, respectively. The resultant set
of 5-tuples (p, q1, q2, page1, page2) enables the
tests for (1) comparing the semantic similarity of
two phrases given the same context sentence (PS;
Fig. 1b); (2) finding a semantically similar phrase
in a document (PR-pass & PR-page; Fig. 1c); (3)
disambiguating the senses of the same target mNP
given two context paragraphs (PSD; Fig. 1e).

3.1 Data Collection
As there are no English dictionaries that contain
sense inventories for mNPs, the key challenge to

3



our data collection is to mine mNPs that have (1)
multiple senses; and (2) a Wikipedia context page
for each sense. To do that, we take a Wikipedia
dump and perform a 6-step procedure that essen-
tially extracts all the mNPs that occur in more
than one Wikipedia page and that contain at least
one polysemous word defined in the WiC dataset.
From the triplets of (p, page1, page2), we program-
matically narrow down to ∼600K triplets where
the context sentence of the mNP in page1 is the
most semantically dissimilar to the context sen-
tence in page2 (according to SimCSE (Gao et al.,
2021)). We continue filtering down to the top
19,500 triplets where page1 and page2 have the
most semantically dissimilar lists of Wikipedia cat-
egories. That is, 19,500 triplets are estimated to
yield∼15K annotated triplets (the target size based
on our budget) after the human annotation process
where annotators are allowed to skip the cases they
are not confident labeling. See Appendix C for
a detailed description of the data collection and
dataset biases.

3.2 Data Annotation
Via Upwork, we hire 13 linguistics experts who
are native English speakers at a rate of $30/hour to
annotate 15,021 out of 19,500 examples. For each
phrase, we provide Upworkers with a triplet (p,
passage1, passage2) where each passagei consists
of 5 sentences centered at the phrase-containing
sentence in the corresponding pagei. We ask them
to answer the three below questions (Fig. 1a):

Q1 Rephrase the target phrase p to a paraphrase q1
such that its meaning is constant in passage1.

Q2 Similarly, rephrase p w.r.t. passage2 to obtain a
paraphrase q2.

Q3 Answer Y/N if p has the same meaning in both
contextual passage1 and passage2.

Upworkers are asked to provide paraphrases that
(1) have at least two words and (2) minimize lex-
ical overlap with each other and the target p. See
the annotation guidelines (PiC, 2021a) and a sam-
ple annotation assignment (PiC, 2021b) given to
Upworkers. After receiving annotations, we use
LanguageTool (2022) to automatically find syntac-
tical errors when the paraphrases are replaced by
the original target phrase in the original passage
and ask Upworkers to fix them. We also have an-
notators fix the remaining errors that we find via
manual inspection.

3.3 Annotation Verification

To verify the annotations obtained in Sec. 3.2 (i.e.
2 × 15,021 = 30,042 paraphrases; and 15,021 Y/N
labels), first, we present the same Q1, Q2, and
Q3 questions to 1,000 qualified MTurkers and ask
whether they agree with the answers by expert an-
notators in Sec. 3.2. And then, for the cases that the
MTurkers disagree with, we seek second opinions
from 5 Upwork experts. After these two verifica-
tion rounds, we discard all the examples where Up-
work verifiers reject and arrive at the final 28,325
paraphrases and 13,413 Y/N labels (i.e. those an-
notations that either an MTurk or Upwork verifier
endorses). See more details in Appendix J.

The total fee for both MTurk and Upwork com-
bined is around USD 30,000.

4 Three Phrase Understanding Tasks

Using the human-annotated data, we construct
three tasks of PS, PR, and PSD (as summarized
in Fig. 1) for evaluating contextualized phrase-
embeddings and semantic-search models.

4.1 Phrase Similarity (PS)

PS is a binary classification task that asks whether
twomNPs are semantically similar or not given the
same context sentence. The unique challenge of PS
is that, without context, the two given phrases can
be easily interpreted as synonymous. Yet, in our
PS context sentence, the two phrases may or may
not carry distinct meanings (Fig. 1b).
Construction From the annotated data, a posi-
tive example is a triplet of (an original phrase p,
a paraphrase q1, an original page1’s sentence that
contains p). To create a negative example, from the
same triplets, we select only those where the para-
phrase q2 holds a different meaning than q1 given
the page1 context of q1 (i.e., when the answer to Q3
is No; see Fig. 1b). For quality assurance, we also
hire three extra Upwork experts to double-check
PS annotations (see Appendix E), keeping only ex-
amples that at least 2 out of 3 experts endorse. In
total, we obtain 5,002 negative examples. Then, we
randomly select 5,002 positive examples to form a
class-balanced PS dataset.

4.2 Phrase Retrieval (PR)

PR is a task of finding in a given document d a
phrase p that is semantically similar to the given
query phrase, which is the paraphrase q1 (the an-
swer by annotators to Q1) or q2 (the answer to
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Q2). We release two versions of PR: PR-pass and
PR-page, i.e. datasets of triplets (query q1, tar-
get phrase p, document d) where d is a random
11-sentence passage that contains p (Fig. 1c) or
an entire Wikipedia page (Fig. 1d). While PR-
pass contains 28,147 examples, PR-page contains
slightly fewer examples (28,098) as we remove
those examples whose Wikipedia pages coinciden-
tally also contain exactly the query phrase (in ad-
dition to the target phrase). Both datasets are split
into ∼20K/3K/5K for train/dev/test, respectively.

4.3 Phrase Sense Disambiguation (PSD)

The task is to find the location of the target phrase
p where it has a similar meaning to that of the
given query q in a 2-paragraph document where,
by construction, p appears exactly twice but only
one location is the correct answer (Fig. 1e).
Construction From the verified annotations in
Sec. 3.3, there are in total 4,938 phrases that both
annotators and verifiers agree to hold different
meanings across the two context Wikipedia pages
(i.e., “No” answer to Q3 in Fig. 1a). To create a
PSD example, given a phrase p from the above
4,938, we extract two corresponding ∼11-sentence
paragraphs (from its associated page1 and page2 as
in PR-pass) and concatenate them (separated by an
empty line) into a single document (Fig. 1e). Since
a PSD example shares a pair of phrases (query and
answer) with one PS positive example (phrase1
and phrase2), we filter out that PSD example if
the corresponding PS example is removed from the
additional verification round (Appendix E). As the
result, we exclude 80 examples and obtain 4,858
examples in total for PSD.

5 Experiments and Results

We test SotA models on PS, PR-pass, PR-page,
and PSD to (1) assess how the models are able
to leverage context to improve accuracy; and (2)
quantify the headroom for future research.
Phrase embeddings Besides training and testing
SotA BERT-based classifiers, we also test a rank-
ing approach that involves computing the cosine
similarity between the query’s and each candidate’s
embedding. To compute a contextualized phrase
embedding, following Yu and Ettinger 2020, we
feed the entire phrase-containing sentence (e.g. S1

in Fig. 1b) into a model, e.g. BERT, and then
take the mean pooling of the last-layer embeddings
over the words of the given phrase only. For non-

contextualized phrase embeddings, we repeat the
same process but input to the model only the phrase
(instead of the entire sentence).
Models We choose SotA models in (a) phrase
similarity: PhraseBERT (Wang et al., 2021); (b)
sentence similarity: USE-v5 (Cer et al., 2018),
SentenceBERT (Reimers and Gurevych, 2019),
and SimCSE (Gao et al., 2021)); (c) question-
answering: Longformer (Beltagy et al., 2020),
DensePhrase (Lee et al., 2021); and (d) contextu-
alized embeddings: SpanBERT (Joshi et al., 2020)
and BERT (Devlin et al., 2019).

For DensePhrase, we use their Phrase-Encoder
(as opposed to the Query-Encoder) to compute
phrase embeddings. USE-v5 is only available via
public APIs (TensorFlow, 2022) that do not support
extraction of contextualized phrase embeddings.

5.1 Phrase Similarity: Contextualized phrase
embeddings improve accuracy

Q: Does incorporating context improve the
phrase-similarity accuracy on PS?
Experiment We split the PS dataset 70/10/20 for
train/dev/test and test two approaches: (1) using
the cosine similarity score between two pre-trained
phrase-embeddings (with and without context) to
predict phrase similarity; (2) training BERT-based
binary classifiers directly using PS training set. We
use 6 backbone BERT models that are all “base”
versions unless specified otherwise (Table 3).

Approach 1: Cosine similarity First, we test
how pre-trained phrase embeddings alone (without
finetuning or extra weights) can be leveraged to
solve PS. For each PS example of two phrases, we
compute their non-contextualized phrase embed-
dings and compute their cosine similarity score. To
evaluate the pre-trained embeddings on PS, we fol-
low Yang (2022) and tune the binary-classification
threshold T to maximize the training-set accuracy,
and then use the same optimal T to report the test-
set accuracy. We repeat the experiment for contex-
tualized phrase embeddings.

Approach 2: BERT-based classifiers To com-
plement Approach 1, we test Approach 2, i.e. build-
ing a binary classifier by adding two extra MLP
layers on top of the pre-trained embeddings used
in Approach 1. For a phrase pair, we concatenate
the two 768-D phrase embeddings from BERTbase
into a 1,536-D vector, and then place one ReLU
layer (256 units) and a 1-output linear classification
layer with sigmoid on top. Following Wang et al.
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Table 3: Accuracy (%) of state-of-the-art BERT-based
models on the PS test set. Contextualized phrase embed-
dings (“Phrase + Ctx”) yield substantially higher per-
formance on PS than non-contextualized embeddings
(“Phrase”). The random baseline is 50%.

Model
Approach 1: Approach 2:

Cosine similarity BERT-based classifiers

(a) Phrase (b) Phrase + Ctx (c) Phrase (d) Phrase + Ctx

PhraseBERT 51.75 63.40 (+11.65) 33.60 66.10 (+32.50)

BERT 51.05 64.10 (+13.05) 37.00 68.85 (+31.85)

SpanBERT 49.30 64.00 (+14.70) 40.15 66.85 (+26.70)

SpanBERTLarge 50.40 66.30 (+15.90) 35.95 69.25 (+33.30)

SentenceBERT 50.35 60.30 (+9.95) 31.50 62.55 (+31.05)

SimCSE 52.15 62.50 (+10.35) 34.20 66.65 (+32.45)

mean ± std 50.83 ± 1.04 63.43 ± 1.98 35.40 ± 3.01 66.71 ± 2.40

(2021), we finetune these models for a maximum
of 100 epochs (with early stopping and patience of
10 epochs) on the train set. See Appendix A for
more training details.
Results Without context, all models perform at ≤
50% accuracy (i.e. the random chance; Table 3a
& c). Interestingly, incorporating context informa-
tion into phrase embeddings substantially improves
mean model-accuracy on PS for both Approach 1
(from 50.83% to 63.43%; Table 3b vs. a) and Ap-
proach 2 (from 35.40% to 66.71%; Table 3d vs. c),
showing evidence that PS requires models to rely
on context. While starting from the same backbone
models, Approach 2 yields higher mean accuracy
than Approach 1 (Table 3; 66.71 vs. 63.43), which
is expected as Approach 2 models have more capac-
ity and the backbones are allowed to be finetuned
on PS. See Figs. A3–A6 for qualitative PS predic-
tions from a PhraseBERT-based classifier.

5.2 Human Baselines and Upperbound (95%
Exact Match) on Phrase Retrieval

To interpret the progress of machine phrase-
understanding on PR, here, we establish multiple
human baselines for both non-experts and linguis-
tics experts (with and without training them).
Experiment We recruit participants and have
them perform one or two tests per person. A test
consists of 20 PR-pass examples. That is, PR-pass
documents are 11-sentence long and are feasible for
a person to read in minutes (compared to reading
an entire Wikipedia page). We test three groups:
(1) 21 graduate students at our institution (1 test
per person); (2) five Upwork experts (1 test per
person); and (3) another five Upwork experts (2
tests per person, i.e., for a total of 2 × 5 = 10 tests).

Table 4: Best SS models reach near the Upperbound
(95%) on PR-pass. Yet, ranking models based on phrase
embeddings significantly underperform SS models.

Accuracy of human groups and models EM (%)

Group 1: 20 Non-experts (w/o training) 73.60 ± 7.90
Group 2: 05 Experts (w/o training) 82.00 ± 12.00
Group 3: 05 Experts (w/ training) 90.50 ± 3.70
Best human accuracy (4 people)—Upperbound 95.00 ± 0.00

Best untrained, ranking model (BERT) 47.44
Best PR-trained, ranking model (PhraseBERT) 59.02
Best PR-trained, SS model (LongformerLarge) 94.28

The students in Group 1 volunteer to help our study
unpaid while the Upworkers (Group 2 and 3) are
hired using the same procedure as in Sec. 3.2.
Results First, we find an unsurprising, large gap
between non-experts and experts (Table 4; 73.60%
vs. 82.00%). Second, we train experts in Group
3 by having each do a preliminary test and giving
them feedback before the real test. We find the
training to substantially boost expert accuracy fur-
ther (from 82.00% to 90.50%). Importantly, we
find the Human Exact Match (EM) Upperbound
to be 95%, i.e. the highest scores that 4 people
(among all groups) make. Upon manual inspec-
tion of the submissions of these best performers,
we find their incorrect answers sometimes partially
overlap with the groundtruth or are sometimes rea-
sonable. In other cases, the best performers find
acceptable answers but that do not overlap at all
with the groundtruth labels in PR. That is, we esti-
mate a 5% of noise in the annotations of PR.

5.3 Phrase Retrieval: In ranking, context only
helps BERT embeddings but not others

One way to evaluate the quality of SotA phrase
embeddings is by testing:
Q: How well do phrase embeddings perform in
the ranking approach on PR?

Ranking is a challenging and meaningful phrase-
embedding test because the embedding of the
query is compared against that of all phrase can-
didates (extracted by tokenizing the document),
which can include syntactically-incorrect phrases,
meaningless phrases or rare phrases. Such out-of-
distribution challenge appears less often in PS or
WiC, i.e. a binary classification setting.
Experiment As described in Sec. 4.2, the PR
train/dev/test splits are 20,147/3K/5K examples
and we only use the 5K-example test set to test
the models in this ranking experiment (no training).
We follow (Lee et al., 2017) for span enumeration
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to construct a list of candidate phrases, we split
each PR document into multiple sentences (using
NLTK sentence splitter) and tokenize each sentence
into tokens (using NLTK tokenizer) and build an
exhaustive list of n-grams (here, n ∈ {2, 3} only
for computational tractability). For every example,
we add the groundtruth phrase (which can be longer
than 3 words) to the list of candidates (since we are
only interested in testing phrase embeddings, not
the phrase extractor).
Results We report top-k accuracy (for k = 1, 3,
5) and top-5 Mean Reciprocal Rank (MRR@5) on
the PR-pass test set in Table 5a. First, for most
SotA embeddings, incorporating context sentence
hurts the accuracy (except for BERT embeddings).
That is, interestingly, for all BERT embeddings
(base and large), the accuracy increases substan-
tially (+17.64 and +19.04; Table 5) when the one-
sentence context is the input. In contrast, most
models that started from BERT but were later fine-
tuned lost the capability to leverage the context
information (e.g., PhraseBERT, DensePhrase, and
SpanBERT in Table 5).

Second, the best top-1 accuracy scores on PR-
pass for non-contextualized (USE-v5; 43.36%) and
contextualized (BERT; 47.44%) embeddings are
substantially lower than the non-expert baselines
(73.60%; Table 4) and Human Upperbound (95%).
Future work is required to learn more robust, phrase
embeddings for ranking. See Figs. A10–A11 for
qualitative examples.

5.4 Phrase Retrieval: Span-selection models
reach near-human accuracy

Consistent with Yu and Ettinger (2020), our rank-
ing results in Sec. 5.3 reveal that there exists a large
headroom for improving both non-contextualized
and contextualized phrase embeddings. Yet, be-
cause ranking is a naive approach and SS models
(Huggingface, 2022b; Devlin et al., 2019) are the
SotA approach on many QA tasks (Rajpurkar et al.,
2016), here we train SS models on the train set of
PR-pass and PR-page in order to test:
Q: How well do SotA semantic-search models
perform on PR-pass and PR-page?
Experiment We take the SotA embeddings tested
in Sec. 5.3 and add a linear classification layer
on top and finetune each entire classifier on the
train set of PR-pass or PR-page for 2 epochs us-
ing the default HuggingFace hyperparameters (see
Appendix B for finetuning details). Following the

standard setup of BERT architectures for QA tasks
(Devlin et al., 2019), each SS model predicts the
start and end index of the target phrase. Addition-
ally, since PR-page documents are much longer
than a typical QA paragraph (Table 2), we also test
training Longformer (Beltagy et al., 2020), which
has a max sequence-length of 4,096, sufficient for
an entire Wikipedia page. We take the models of
the smallest dev loss and report their test-set per-
formance in Table 6.
Results On PR-pass, in contrast to the poor per-
formance of ranking models (Sec. 5.3), our PR-
pass-trained SS models perform impressively at a
near-upperbound level (∼93–94% EM; Table 6a)
surpassing the accuracy of trained experts (90.50%
EM). Surprisingly, on PR-page where the docu-
ments are substantially longer (around 12×) than
the documents of PR-pass, SS models’ accuracy
only drops slightly (from ∼94% to ∼85–89% EM;
Table 6b). Note that in a full Wikipedia page of
PR-page, there might be phrases that can be con-
sidered correct but are not labeled groundtruth ac-
cording to our annotations. This remarkable result
suggests that training on PR-pass can enable high-
performing models on real-world semantic search.

5.5 Phrase Sense Disambiguation: Best
models also perform poorly

We find that SotA PR-pass-trained SS models reach
superhuman accuracy on PR-pass, i.e. finding a
phrase of the same meaning (Sec. 5.4). Yet, PR-
pass only tests models’ understanding of a single
sense of the target phrase at a time. It is interesting
to study:
Q: Do PR-pass-trained SS models understand
contextualized phrases sufficiently to separate two
different senses of the same target phrase?
Experiment To do that, here we test the best PR-
pass-trained SS models on PSD. Note that, PSD
has the same task format as PR-pass (see Fig. 1c–e)
except that the document is twice as long and con-
tains two occurrences of the same target phrase.
We do not test the ranking models as they perform
much worse than the SS models in Sec. 5.3.
Results Although the PR-pass-trained SS models
are never trained on PSD, they interestingly fre-
quently find one occurrence of the target phrase
(mean of 94.01% EM; Table 6c). However, they
mostly locate the target phrase in the wrong con-
text passage with high confidence scores. That
is, if we consider also the correctness of the loca-
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Table 5: Ranking accuracy (%) on PR-pass using the state-of-the-art pretrained phrase embeddings. See Appendix F
for the results on PR-page. ∆ (e.g. -3.62) denotes the differences between the Top-1 accuracy in the contextualized
(“Phrase + Context”) vs. the non-contextualized (“Phrase”) setting.

Model
Phrase Phrase + Context

Top-1 Top-3 Top-5 MRR@5 Top-1 (∆) Top-3 Top-5 MRR@5

PhraseBERT (Wang et al., 2021) 36.62 66.96 75.90 52.20 33.00 (-3.62) 49.60 56.70 41.90

BERT (Devlin et al., 2019) 29.80 47.90 55.40 39.50 47.44 (+17.64) 65.78 73.30 57.30

BERTLarge (Devlin et al., 2019) 23.76 38.52 45.40 31.70 42.80 (+19.04) 58.90 64.90 51.30

SpanBERT (Joshi et al., 2020) 20.88 31.04 35.20 26.40 14.40 (-6.48) 30.46 39.80 23.40

SentenceBERT (Reimers and Gurevych, 2019) 22.30 50.64 60.60 36.80 25.14 (+2.84) 39.52 46.20 32.90

SimCSE (Gao et al., 2021) 28.10 53.70 64.60 41.60 32.40 (+4.30) 53.44 62.80 43.70

USE-v5 (Cer et al., 2018) 43.36 70.12 78.90 57.30 n/a n/a n/a n/a

DensePhrase (Lee et al., 2021) 32.24 51.30 60.50 42.60 31.50 (-0.74) 46.30 53.80 39.70

Table 6: Test-set performance (%) of SS models on PR-pass (a), PR-page (b), and PSD (c). When trained on
PR-pass (a) and PR-page (b), SotA SS models perform well. However, testing the PR-pass-trained models on PSD
shows a significant drop in accuracy (c). That is, SotA SS models tend to understand a single sense of a phrase in
context well (high PR-pass, PR-page, and PSD EM scores). Yet, they are not able to differentiate two senses of the
same phrase (e.g., here, PhraseBERT accuracy drops -41.27 points between EM+loc vs. EM scores on PSD).

Model
(a) PR-pass (b) PR-page (c) PSD

EM F1 EM F1 EM F1 EM+loc F1+loc

PhraseBERT (Wang et al., 2021) 93.42 94.97 85.24 87.19 92.98 94.08 51.67 (-41.31) 51.83

BERT (Devlin et al., 2019) 93.26 94.65 85.64 87.77 93.50 94.57 54.84 (-38.66) 55.07

BERTLarge (Devlin et al., 2019) 93.64 95.16 87.36 89.52 94.67 95.57 55.43 (-39.24) 55.61

SpanBERT (Joshi et al., 2020) 93.50 95.02 87.28 87.66 92.26 93.30 52.20 (-40.06) 52.34

SentenceBERT (Reimers and Gurevych, 2019) 93.24 94.54 84.66 86.89 93.21 94.15 52.74 (-40.47) 52.85

SimCSE (Gao et al., 2021) 92.90 94.51 85.68 87.66 92.96 94.05 53.83 (-39.13) 53.94

Longformer (Beltagy et al., 2020) 94.26 95.58 89.54 91.15 96.17 96.88 62.72 (-33.45) 62.83

LongformerLarge (Beltagy et al., 2020) 94.28 95.53 87.58 89.32 96.32 96.91 59.72 (-36.60) 59.82

mean 93.56 95.00 86.92 88.85 94.01 94.94 55.39 (-38.62) 55.54
± std 0.49 0.42 1.93 1.73 1.54 1.36 3.90 3.88

tion of the predicted phrase, their EM+loc2 accu-
racy drops significantly to an average of 55.39%.
Also, finetuning on a 2K-example train set of PSD
only slightly improves the EM+loc to an average
of 64.24% on a 3K-example PSD test set (Ap-
pendix G). Note that we estimate the Human Up-
perbound on PSD to be 95%, i.e. the same as that
of PR-pass. See qualitative examples and predic-
tions of Longformer (i.e. the best model tested) in
Figs. A7–A9.

In sum, there is a large headroom for future re-

2For a PSD example, if the predicted span does not inter-
sect at all with the groundtruth span, the EM+loc and F1+loc
scores would be 0. If they intersect, the two scores would be
equal to EM and F1, respectively.

search on PSD. SS models are not yet capable of
leveraging surrounding words to differentiate be-
tween two senses of the same phrase. Interest-
ingly, after training on PR-pass, their contextual-
ized phrase embeddings perform much worse in
the ranking experiments on PR-pass (Appendix H).

6 Discussion and Conclusion

While WiC and English WSD rely exclusively
on dictionaries (Pilehvar and Camacho-Collados,
2019) to obtain word senses and example sentences,
our data collection depends on Wikipedia, WiC, &
NLP models and our annotation depends on experts.
In sum, we present PiC, the first 3-task suite for
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evaluating phrases in context. SS models can ob-
tain high accuracy on semantic search after training
on our PR-pass and PR-page datasets. Yet, their ca-
pability is limited to finding a semantically-similar
phrase given a single context that contains the tar-
get phrase (in PR-pass). The results on PS and
PSD show that SotA phrase embeddings are still
limited in encoding contextualized phrases. It is
interesting future work to improve these models for
disambiguating the senses of a phrase in context
(PS and PSD).

7 Limitations

Our dataset is currently limited to multi-word, En-
glish noun-phrases. Furthermore, it is expected
to contain around a 5% error on PR-pass (i.e. the
best human performance is 95% EM). On PR-page,
there may be more than one correct target phrase;
however, we only label one phrase as the correct
answer per document. We use only phrases that
contain at least one WiC word.
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Appendix for:
PiC: A Phrase-in-Context Dataset for

Phrase Understanding and Semantic Search

A Training models on Phrase Similarity

Hyperparameters We train each BERT-based classifier for a maximum of 100 epochs with early
stopping monitored on validation accuracy (patience of 10 epochs). We use a batch size of 200 and Adam
optimizer with learning rate α = 0.0001, β1 = 0.9, β2 = 0.999, and ϵ = 10−8.

Training time On average, with early stopping, training a single model using one V100 GPU takes ∼5
and ∼8 mins for non-context and context settings, respectively.

B Training SS models on Phrase Retrieval

We finetune each SS model that consists of a linear layer on top of a pretrained model selected in Sec. 5
to predict the start and end indices of answers (as the common setup in BERT SS models (Devlin et al.,
2019; Arici et al., 2020)). The format of a tokenized input is “[CLS] query [SEP] document [SEP]” with
maximum sequence length of 4,096 for LongformerBase and LongformerLarge and 512 for the remaining
models. If the document exceeds the maximum sequence length, it is split into smaller features for
prediction and thus start and end indices with the highest confidence scores are selected.

Hyperparameters We follow HuggingFace scheme to finetune the SS models for 2 epochs using Adam
optimizer with learning rate α = 0.00003, β1 = 0.9, β2 = 0.999, ϵ = 10−8. The batch size varies from 1 to
8 for each model: On one V100 GPU, the “base” models can handle 8 examples while the “large” BERT
models can only fit 2–4 examples into 16GB of memory. For LongformerLarge, we use an A100 GPU to
feed one PR-page example into the model. We take the smallest dev-loss models from the training and
report their test-set results.

Training time On average, training a single SS model for 2 epochs using one A100 GPU takes ∼20
mins for base models and ∼9.5 hours for LongformerLarge.

C Data collection

From a Wikipedia dump, we perform a 6-step procedure (summarized in Table A1) for mining a list
of mNPs sorted descendingly by their likelihood of containing multiple senses. The most polysemous
19,500 mNPs are then passed to experts for annotation (Sec. 3.2) and others for verification (Sec. 3.3).

Step 1: Download Wiki articles We download a Wikipedia dump file (Team, 2021b) that contains
∼15.78M Wikipedia articles and filter out all empty pages to arrive at ∼6.27M non-empty articles.

Step 2: Extract phrases We use NLTK sentence splitter (Bird et al., 2009) to split each Wikipedia
article into multiple sentences. And then we use SpaCy (Honnibal et al., 2020) to extract noun phrases and
proper nouns as we do not collect syntactically strict phrases. For each phrase, we remove all preceding
and succeeding stopwords (those among the 179 stopwords in NLTK v3.6.5) and non-alphanumeric
characters. We remove stopwords because they tend to create more pairs of phrases with lexical overlap,
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rendering the phrase similarity task easier. We then remove unigram phrases to arrive at∼286.78M mNPs.
For example, from “a massive figure”, we changed to “massive figure”, which would be our final phrase
after this step. For each mNP, we construct a 3-tuple (phrase, sentence, metadata), i.e. the phrase, its
container sentence, and metadata for identifying the Wikipedia webpage (hereafter, page).

Step 3: Remove phrases of a single context We further remove all phrases that (1) contain non-ASCII
characters (e.g. “phaenná nâsos”, which are non-English); and (2) appear only once, i.e. keeping those
that occur in multiple sentences since we look for polysemous mNPs, which have multiple senses and
contexts. After this step, ∼17.96M phrases remain.

While some phrases with non-ASCII characters are also commonly used in English (e.g., “déjà vu”), we
find only 2.48% of phrases at this stage contain non-ASCII characters, and 29% of them are common in
English. In short, we are removing only 0.72% of the English phrases that contain non-ASCII characters
in Step 3.

Step 4: Find phrases of polysemous words To increase the chance of collecting polysemous mNPs,
we only keep mNPs that have at least one word in the list of 2,345 unique multiple-sense words of WiC
(Huggingface, 2022a), arriving at ∼6.5M mNPs, each appearing in ≥ 2 sentences and in ≥ 1 Wikipedia
pages. We empirically find that Step 4 is important and substantially increases our chance of finding
polysemous mNPs (compared to skipping Step 4).

Step 5: Find phrases in distinct contexts We observe that a mNP is likely to be polysemous when
(a) its context sentences are semantically different; and (b) its context Wikipedia pages are of dissimilar
categories (e.g. “massive figure” in finance vs. history; Fig. A8).

To implement this filter, we form all possible triplets (phrase, sentence1, sentence2) from the list of
context sentences of eachmNP3. We compute the cosine similarity of two sentences at the CLS embedding
space of a SimCSE (Gao et al., 2021) provided on HuggingFace (Group, 2022). To find triplets where the
two sentences are semantically dissimilar, we keep only the triplets where (sentence1, sentence2) has a
low cosine similarity, i.e. ∈ [−0.3, 0.2] and the length difference of the two sentences is < 4 words (as two
sentences of substantially different lengths often have a low cosine similarity regardless of their semantic
differences). As the result, there are ∼600K triplets remaining after this step.

We further re-rank these ∼600K descendingly by the dissimilarity of the lists of Wikipedia categories4

of the context pages that contain sentence1 and sentence2. That is, we treat each Wikipedia page’s
comma-separated list of categories as an input text to SimCSE and sort the ∼600K descendingly by the
cosine similarity of the resultant embeddings.

Step 6: Select data for annotation Before asking annotators to label our sorted phrases we perform
final filtering by removing proper nouns and phrases whose Wikipedia documents contain missing words.

We perform final filtering to ensure the data given to annotators is in a proper format. That is, from
∼600K phrases, we filter down to ∼475K phrases by applying two filters: (1) Remove all phrases that are
proper nouns (i.e. POS tagging returns PROPN) since proper nouns often refer to a single identity and
thus unambiguous; (2) Remove all phrases that have a newline character and all phrases whose context
Wikipedia page contains missing words (i.e. errors in the Wikipedia dump).

As the result, we obtain a list of∼475K phrases sorted by their estimate chance of carrying two different
senses. After manual inspection, we take the top 19,500 triplets of the format (phrase, page1, page2)—i.e.
a phrase p and its two context Wikipedia pages where p is the most likely to have two different senses
(e.g., see “massive figure” in Fig. 1a)—and hire linguistic experts to annotate them.

Our manual inspection involves taking 1,000 random triplets and manually reading them. We find
that at least ∼30% of the 1,000-triplet subset contain a polysemous target phrase p and two Wikipedia
pages that give p two unique meanings. We perform this manual inspection repeatedly throughout the

3For computational tractability, we only keep at most 32 context sentences per mNP where each sentence’s length in words is
∈ [5, 25].

4We use the provided Wikipedia API (Team, 2021a) to obtain the categories for each article as the dump file has no
category-related information.
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process of inventing and refining the data collection process in order to arrive at the final list of steps as
presented in this paper.

C.1 Biases in the data collection
While there are many filtering steps in our data collection above, most of them are data cleaning filters
that are typically needed in a regular NLP dataset construction.

We recognize that there are three key filters in our system that impose strong biases:

1. In Step 4, we use only phrases that contain one word in the WiC. That is, we find Step 4 to
substantially increase our chance of finding triplets with a polysemous target phrase. We have added
this note in the Data Collection description. It is possible to remove Step 4, but that would require a
larger human annotation effort to reach the same 15K labeled triplets.

2. In Step 5, we rely on SimCSE to find target phrases that are placed in two sentences of dissimilar
meanings.

3. In Step 5, we rely on SimCSE to find target phrases that are placed in two Wikipedia pages of distinct
topics.

D Statistics for search queries in Yahoo Search Query dataset

We analyze 4,496 user queries released in the Yahoo Search Query Log To Entities dataset (Yahoo, 2022b)
and use SpaCy tokenizer (Honnibal et al., 2020) to classify them into 4 main categories: Noun phrases,
verb phrases, URLs and others. As a result, noun phrases are the most common query type from users
with 3,576 queries (∼79.54%) followed by URLs with 675 queries (∼15.01%) while verb phrases and
other types are less preferred by users. Moreover, the average length of the real user queries is ∼1.60
which is quite close to our PS task with ∼2.27.

Table A2: Statistics of Yahoo queries across different query types.

Query type # queries Percentage (%)

Noun phrases 3,576 79.54

Verb phrases 148 3.29

URLs 675 15.01

Others 97 2.16

Total 4,496 100.00

E Verification of Phrase Similarity

To enhance the quality of the proposed PiC benchmark, we hire three additional Upwork experts to
verify the correctness of PS examples where two phrases are supposed to be non-equivalent for negative
examples (e.g. massive figure and giant number in Fig. 1b) or equivalent for positive examples (e.g.
massive figure and huge model in Fig. 1b), and keep an example if it is endorsed by at least two experts
(the rest is discarded from PS).

Two Upwork verifiers A1 and A2 start checking 5,104 negative examples and the third verifier A3 is
responsible for breaking the ties if A1 and A2 disagree with each other (see Fig. A1). Both A1 and A2

are asked to provide corrections when they do not agree with the labels. As a result, 4,935 out of 5,104
examples are accepted by pairs of (A1, A2), (A1, A3) or (A2, A3), 68 examples incorrect at first but are
modified by either A1 or A2 and endorsed by A3. In total, we reject 101 negative examples because there
are not at least two experts agreeing with the annotations.

We repeat the same procedure to verify 5,104 positive examples. In sum, we retain 5,002 examples
including 4,904 examples accepted by pairs of two verifiers and 98 examples incorrect at first but are
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modified by either A1 or A2 and endorsed by A3. There are 102 positive examples rejected because there
are not at least two experts agreeing with the annotations (Fig. A2).

After this verification round, we collect 5,003 negative examples and 5,002 positive examples. and
randomly exclude 1 negative example to make the dataset balance which results in 10,004 examples in
total for PS.

Do both A1 & A2 
accept?

Are they confident?

4,211 examples are 
accepted

Does A3 accept?

96 examples are accepted

1 example is 
rejected

Do both A1 and A2 
reject?

Does A3 accept?

Does A3 accept?

82 examples are 
rejected

628 examples are accepted

22 examples are accepted

0 example is 
rejected

46 examples are accepted

18 example are 
rejected

Yes
(4,308)

No
(796)

Yes
(4,211)

No
(97)

Yes
(104)

No
(692)

Yes
(82)

No
(22)

Yes
(628)

No
(64)

Yes
(96)

No
(1)

Yes
(22)

No
(0)

Yes
(46)

No
(18)

Does A3 accept A1 or 
A2’s corrected 
annotations?

Does A3 accept A1 or 
A2’s corrected 
annotations?

Figure A1: A decision tree describing our verification process for PS that involves three experts. Red, green and
blue cells represent Reject, Accept decision and Questions. The numbers of examples for each branch are shown in
parentheses.
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Figure A2: A decision tree describing our verification process for PS that involves three experts. Red, green and
blue cells represent Reject, Accept decision and Questions. The numbers of examples for each branch are shown in
parentheses.
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Table A1: Summary of our 3-stage data construction. p, s, m d, q, l denote target phrase, sentence, metadata,
document, query, and label, respectively.

Remaining # Data type Description

Sec. 3.1 Data Collection
Step 1: Download Wiki articles ∼6.27M articles Remove ∼9.51M empty articles.

Step 2: Extract phrases ∼286.78M (p, s, m) Extract noun phrases and proper
nouns along with their context
sentences from Wikipedia arti-
cles.

Step 3: Remove phrases of a single context ∼17.96M (p, [s1, ..., sn], m) For each phrase, gather all sen-
tences where that phrase is used.

Step 4: Find phrases of polysemous words ∼6.5M (p, [s1, ..., sn], m) Filter those phrases that do not
contain WiC words.

Step 5: Find phrases in distinct contexts Sort by Xi and apply filters to
find pairs of sentences where
their phrase potentially has dif-
ferent meanings.

- Sort and filter by semantic dissimilarity ∼600K (p, s1, s2, m) X1 : cosine similarity scores of
sentences embeddings.

- Sort by domain dissimilarity ∼600K (p, s1, s2, m) X2 : cosine similarity scores of
domain embeddings i.e., use cat-
egories of each article to get em-
beddings.

Step 6: Select data for expert annotation 19,500 (p, d1, d2) Remove proper nouns and
phrases with missing infor-
mation and select top 19,500
examples for annotation.

Sec. 3.2 Data Annotations 30,042 (p, d, q) Create a query i.e., paraphrase
from the given phrase in each
context document.

15,021 (p, d1, d2, l) Create a Yes/No label for each
pair of documents.

Sec. 3.3 Verifying Annotations
Round 1: MTurk verifier 22,496 (p, d, q) Verify queries and Yes/No label

by MTurkers.
10,043 (p, d1, d2, l)

Round 2: Upwork verifiers 28,325 (p, d, q) Verify instances rejected in
Round 1.

13,413 (p, d1, d2, l)
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F Quantitative results on PR-page

Table A3: Ranking accuracy (%) on PR-page using the state-of-the-art pretrained phrase embeddings (a) and those
finetuned on PR-pass via SS-style training (b).

Model
Phrase Phrase + Context

Top-1 Top-3 Top-5 MRR@5 Top-1 Top-3 Top-5 MRR@5

(a) Pre-trained embeddings

BERT (Devlin et al., 2019) 20.70 34.30 41.00 28.20 35.40 (+14.70) 52.10 59.10 44.50

USE-v5 (Cer et al., 2018) 32.20 52.70 60.80 43.20 n/a n/a n/a n/a

(b) PR-pass-trained SS models’ phrase embeddings

PhraseBERT (Wang et al., 2021) 49.40 69.40 76.70 60.10 14.70 21.60 26.10 18.70

SimCSE (Gao et al., 2021) 44.20 66.60 73.50 55.70 24.60 37.80 43.20 31.70

G Finetuning on PSD does not substantially improve accuracy

As PSD has only 4,858 examples, we use all examples for testing in Sec. 5.5 and find the best PR-trained
SS models to perform poorly. To further understand the challenge of PSD, here, we ask:
Q: How much does training on PR-pass and finetuning on PSD improve accuracy on PSD?

Experiment We take the PR-pass-trained SS models and further finetune them on a subset of PSD to
measure how training directly on PSD improves SS models. We split PSD into 1,438/500/3,000 examples
for train/dev/test sets, respectively, and finetune the PR-pass-trained SS models on this PSD train set. For
comparison with the results in Sec. 5.4, we use the same set of hyperparameters as when finetuning on
PR-pass in Sec. 5.4. Below, we report the test-set results of the lowest dev-loss models.
Results On the PSD-3K test set, all models perform poorly at a mean EM score of 55.14% (Table A4a;
mean). Interestingly, finetuning the original models using the 1,938 examples (hereafter, PSD-2K) instead
of PR-pass decreases accuracy, on average by -6.51 points. An explanation is that 1,438 PSD training
examples are too few for the finetuning to be effective. Indeed, finetuning the PR-pass-trained SS models
further on PSD-2K increases the scores for all models by +9.10 on average (Table A4c; mean). The best
model is LongformerBase (Beltagy et al., 2020) (Table A4; 71.10 EM), which is still substantially lower
than the human upperbound of 95%.

Table A4: Performance of SS models on 3,000 PSD test examples. (a) and (b) models are finetuned only on
PR-pass and 1,938 PSD examples (PSD-2K), respectively. (c) models are finetuned on PR-pass first and then
finetuned on PSD-2K. All models are “base” unless otherwise specified. The definitions of EM+loc and F1+loc are
in Table 6’s caption.

Models finetuned on (a) PR-pass (b) PSD-2K (c) PR-pass + PSD-2K

EM+loc F1+loc EM+loc F1+loc EM+loc F1+loc

PhraseBERT (Wang et al., 2021) 51.00 51.15 35.43 (-15.57) 36.02 56.53 (+5.53) 56.81

BERT (Devlin et al., 2019) 54.53 54.75 44.33 (-10.20) 45.28 63.83 (+9.30) 64.14

BERTLarge (Devlin et al., 2019) 54.77 54.99 54.07 (-0.70) 54.82 67.13 (+12.36) 67.36

SpanBERT (Joshi et al., 2020) 52.27 52.37 44.67 (-7.60) 45.35 69.93 (+17.66) 70.14

SentenceBERT (Reimers and Gurevych, 2019) 52.27 52.41 38.63 (-13.64) 39.31 58.93 (+6.66) 59.21

SimCSE (Gao et al., 2021) 53.47 53.59 43.67 (-9.80) 44.38 60.60 (+7.13) 60.80

Longformer (Beltagy et al., 2020) 62.47 62.58 61.97 (-0.50) 62.69 71.10 (+8.63) 71.30

LongformerLarge (Beltagy et al., 2020) 60.33 60.42 66.27 (+5.94) 67.10 65.87 (+5.54) 66.10

mean 55.14 55.28 48.63 (-6.51) 49.37 64.24 (+9.10) 64.48
± std 4.10 4.08 11.03 11.08 5.23 4.13
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H SS-style training improves non-contextualized but not contextualized phrase
embeddings

As the SS models trained on PR-pass and PR-page perform impressively (Sec. 5.4), almost 1.5× better
than the ranking models that are based on pre-trained embeddings, an interesting question is:
Q: Does SS training also improve contextualized phrase embeddings?

This is important to understand because the impressive SS-models’ performance gain may come from
the extra linear-classification layer (not necessarily from the finetuned embeddings).

Experiment We extract the phrase embeddings (both non-contextualized and contextualized) from the
PR-pass-trained SS models from Sec. 5.4 (i.e. discarding the classification layer) and test them in the
PR-pass ranking experiments (as in Sec. 5.3).
Results After finetuning on PR-pass, the non-contextualized phrase embeddings improve substantially
for most models at an average gain of +16.61 in top-1 accuracy (e.g., PhraseBERT top-1 accuracy
increases from 36.62% to 59.02%; Table A5b). This result shows that training on PR-pass improves
non-contextualized phrase embeddings. In stark contrast, the ranking scores of contextualized phrase
embeddings drop significantly, -11.95 points on average (Table A5c), compared to before finetuning on
PR-pass.

In sum, we are observing a consistent trend that the contextualized phrase embeddings of the original
pre-trained BERT (both “base” and “large”) are remarkably beneficial for retrieval (i.e. PR). However,
after finetuning, e.g. on PR-pass or using other techniques (e.g. in PhraseBERT or SentenceBERT), such
benefits of leveraging context disappear. Aligned with Yu and Ettinger (2020), we find that incorporating
context effectively into phrase embeddings is an open research challenge.

Table A5: Ranking accuracy (%) on PR-pass using the state-of-the-art pretrained phrase embeddings (a) and those
finetuned on PR-pass via SS-style training (b). See Appendix F for the results on PR-page. ∆ (e.g. -3.62) denotes
the differences between the Top-1 accuracy in the contextualized (“Phrase + Context”) vs. the non-contextualized
(“Phrase”) setting.

Model
Phrase Phrase + Context

Top-1 Top-3 Top-5 MRR@5 Top-1 (∆) Top-3 Top-5 MRR@5

(a) Pre-trained embeddings

PhraseBERT (Wang et al., 2021) 36.62 66.96 75.90 52.20 33.00 (-3.62) 49.60 56.70 41.90

BERT (Devlin et al., 2019) 29.80 47.90 55.40 39.50 47.44 (+17.64) 65.78 73.30 57.30

BERTLarge (Devlin et al., 2019) 23.76 38.52 45.40 31.70 42.80 (+19.04) 58.90 64.90 51.30

SpanBERT (Joshi et al., 2020) 20.88 31.04 35.20 26.40 14.40 (-6.48) 30.46 39.80 23.40

SentenceBERT (Reimers and Gurevych, 2019) 22.30 50.64 60.60 36.80 25.14 (+2.84) 39.52 46.20 32.90

SimCSE (Gao et al., 2021) 28.10 53.70 64.60 41.60 32.40 (+4.30) 53.44 62.80 43.70

USE-v5 (Cer et al., 2018) 43.36 70.12 78.90 57.30 n/a n/a n/a n/a

DensePhrase (Lee et al., 2021) 32.24 51.30 60.50 42.60 31.50 (-0.74) 46.30 53.80 39.70

(b) PR-pass-trained SS models’ phrase embeddings

PhraseBERT (Wang et al., 2021) 59.02 81.58 87.90 70.60 24.98 (-34.04) 37.78 43.90 32.00

BERT (Devlin et al., 2019) 50.10 66.16 71.40 58.60 20.34 (-29.76) 31.40 37.10 26.50

BERTLarge (Devlin et al., 2019) 32.70 42.40 45.90 37.80 11.40 (-21.30) 17.00 20.50 14.60

SpanBERT (Joshi et al., 2020) 15.22 22.88 26.60 19.40 8.92 (-6.30) 13.56 16.60 11.60

SentenceBERT (Reimers and Gurevych, 2019) 53.14 74.86 80.70 64.20 20.12 (-33.02) 30.04 34.90 25.60

SimCSE (Gao et al., 2021) 50.96 76.70 83.40 64.00 37.70 (-13.26) 52.38 58.90 45.60

(c) Differences between after vs. before finetuning, i.e. the 6 models in (b) vs. those in (a)

mean differences +16.61 -11.95
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I Qualitative examples for PS, PR-pass, PR-page and PSD

PS example. Groundtruth: “positive”
P1 moderate speed
P2 steady pace
S1 Deforestation due to logging and land conversion has likely caused the population to decline at a moderate speed.
S2 Deforestation due to logging and land conversion has likely caused the population to decline at a steady pace.

Figure A3: PhraseBERT-based classifier correctly predicts “positive” given two phrases P1 and P2 with and without
the presence of context S1 and S2. Here, to humans, the phrases are non-polysemous and have the same meaning.

PS example. Groundtruth: “negative”
P1 greatest emphasis
P2 highest stress
S1 However, the rock art had the greatest emphasis on domesticated cattle.
S2 However, the rock art had the highest stress on domesticated cattle.

Figure A4: PhraseBERT-based classifier correctly predicts “negative” given two phrases P1 and P2 with and
without the presence of context S1 and S2. Here, to humans, the two phrases are non-ambiguously carrying different
meanings.

PS example. Groundtruth: “positive”
P1 unique image
P2 uncommon style
S1 Bayliss has been praised for her unique image and tendency to change up songs.
S2 Bayliss has been praised for her uncommon style and tendency to change up songs.

Figure A5: PS case that requires context to determine similarity. Without context, a PhraseBERT-based classifier
incorrectly thinks P1 and P2 are different. Yet, it changes the prediction to “positive”, i.e. thinking two phrases have
the same meaning, when the context is taken into account.

PS example. Groundtruth: “negative”
P1 permanent post
P2 stable location
S1 His assistant, John Carver took over as caretaker manager, managing one win, but was not considered for the permanent post,

and left in September 2004.
S2 His assistant, John Carver took over as caretaker manager, managing one win, but was not considered for the stable location,

and left in September 2004.

Figure A6: PS case that requires context to determine similarity. Without context, PhraseBERT-based classifier
incorrectly thinks P1 and P2 carry the same meaning. Yet, it correctly changes the prediction to “negative” when
the context is taken into account.
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PSD example.
d Bubble memory is a type of non-volatile computer memory that uses a thin film of a magnetic material to hold small

magnetized areas, known as "bubbles" or "domains", each storing one bit of data. The material is arranged to form a series of
parallel tracks that the bubbles can move along under the action of an external magnetic field. The bubbles are read by
moving them to the edge of the material where they can be read by a conventional magnetic pickup, and then rewritten on the
far edge to keep the memory cycling through the material. In operation, bubble memories are similar to delay line memory
systems. Bubble memory started out as a promising technology in the 1970s, offering memory density of an order similar to
hard drives but performance more comparable to core memory while lacking any moving parts. This led many to consider
it a contender for a "universal memory" that could be used for all storage needs. The introduction of dramatically faster
semiconductor memory chips pushed bubble into the slow end of the scale, and equally dramatic improvements in hard drive
capacity made it uncompetitive in price terms. Bubble memory was used for some time in the 1970s and 80s where its
non-moving nature was desirable for maintenance or shock-proofing reasons. The introduction of Flash RAM and similar
technologies rendered even this niche uncompetitive, and bubble disappeared entirely by the late 1980s. History. Precursors.

The Inkerman stone, of which the building is made, was mined near Sevastopol and transported by barges. No
convenient mooring facilities existed at that time, so the barges had to anchor in the harbor and the load was moved to the
shore by boats and then transported to the construction site across the steppe. During the first year of construction, the
builders concentrated on the basic structure at the expense of various facilities and decorations. At the end of 1816, the
lighthouse looked like a conic 36-metre-high stone tower with a wooden 3.3-metre-high decagonal lantern. The lighthouse
became operational in 1817 after its lighting system had been repaired. Three houses were built next to the tower to
accommodate the lighthouse personnel and for storage needs. However, cold and humid winters of the Tarkhanut Peninsula,
however, made these houses nearly unsuitable for living. In 1862, the lighting system was upgraded, and the spread of light
reached 12.4 miles. In 1873, the construction resumed along with cleaning efforts of the surrounding areas. The building was
finished and painted white. In 1876, an additional telegraph spot was built near the tower.

q1 storehouse purposes Groundtruth: storage needs & Prediction: storage needs (confidence: 0.99)
q2 data caching Groundtruth: storage needs & Prediction: storage needs (confidence: 0.99)

Figure A7: Given document d, our LongformerLarge SS model trained on PR-pass correctly retrieves storage needs
in the second paragraph for the query q1 “storehouse purposes” but fails to retrieve the answer when the query q2
is “data caching”. The predicted answer for q2 should be storage needs (i.e. in the first passage) since this phrase
relates to caching data digitally in computers while storage needs refers to physically storing objects.

PSD example.
d In the libretto, Delilah is portrayed as a seductive "femme fatale", but the music played during her parts invokes sympathy for

her. The 1949 biblical drama "Samson and Delilah", directed by Cecil B. DeMille and starring Victor Mature and Hedy
Lamarr in the titular roles, was widely praised by critics for its cinematography, lead performances, costumes, sets, and
innovative special effects. It became the highest-grossing film of 1950, and was nominated for five Academy Awards,
winning two. According to "Variety", the film portrays Samson as a stereotypical "handsome but dumb hulk of muscle".
Samson has been especially honored in Russian artwork because the Russians defeated the Swedes in the Battle of Poltava
on the feast day of St. Sampson, whose name is homophonous with Samson’s. The lion slain by Samson was interpreted to
represent Sweden, as a result of the lion’s placement on the Swedish coat of arms. In 1735, C. B. Rastrelli’s bronze statue of
Samson slaying the lion was placed in the center of the great cascade of the fountain at Peterhof Palace in Saint Petersburg.
Samson is the emblem of Lungau, Salzburg and parades in his honor are held annually in ten villages of the Lungau and two
villages in the north-west Styria (Austria). During the parade, a young bachelor from the community carries a massive figure
made of wood or aluminum said to represent Samson. The tradition, which was first documented in 1635, was entered into
the UNESCO list of Intangible Cultural Heritage in Austria in 2010. Samson is one of the giant figures at the "Ducasse"
festivities, which take place at Ath, Belgium.

On September 22, 2015, Honda announced that they had sold over 1 million Activas in five months in the Indian
market, from April to August. Honda launched their 5th generation of Honda Activa in 2018, and the sixth-generation Honda
Activa 6G have been launched in India with prices starting at 63,912 (ex-showroom, Delhi). Milestones. In April, 2014,
"The Economic Times" reported the Honda Activa to be the best selling two wheeler in India, outselling the Hero Splendor.
During the month of September 2013, 141,996 Honda Activa scooters were sold, nearly equal to Honda’s entire annual sales
in North America. The 110cc Activa is the company’s biggest seller, by far. It is responsible for over 2,00,000 sales units
each month. In November 2018, HMSI crossed the 2.5 crore sales mark in the scooter segment. It has become the first
company to reach this milestone and the biggest contributor to this massive figure is the Honda Activa. It took Honda 13
years to achieve the one crore sales figure, but it managed to add another crore in the span of just three years. It then went on
to achieve the next 50 lakh in just one year.

q1 huge model Groundtruth: massive figure & Prediction: massive figure (confidence: 0.99)
q2 giant number Groundtruth: massive figure & Prediction: massive figure (confidence: 0.99)

Figure A8: Given document d, LongformerLarge model trained with SS approach on PR-pass correctly retrieves
massive figure in the second paragraph for the query q2 “giant number” but fails to retrieve the answer when the
query q1 is “huge model”. The predicted answer for q1 should be massive figure in the first passage since this
phrase relates to a physical shape instead of a number.

21



PSD example.
d Eva held ambitions to replace Hortensio Quijano for the 1951 election, although her poor health kept her from this.

Nonetheless many were concerned that her agenda would be pushed through. In march of 1951 the government arrested
several retired army officers due to their dissent and disapproval of Perón’s administration. This raised tensions among
the rest of the army, although action did not occur. By September tensions had risen among the military due to the
unrivalled power of the Peronist regime. On September 28, 1951, during the election, Menéndez led the military uprising in
an attempt to overthrow the government. He led a core of officers, commanding a division, and left Campo de Mayo bound
for the Casa Rosada. Resolve for the uprising, especially among the non-commissioned officers and enlisted men, was not
strong enough. They were not prepared to fight their own countrymen. The uprising was over as soon as opposition was
encountered, almost completely bloodless. Perón admired the loyalty of the troops and pardoned all those involved.

The design uses a similar standard to the JVX in terms of distortion reduction with crossbraces and 27 cells but
that’s where the similarity ends. Petra was built from the ground up with entirely new panel shaping and trim. Petra has a
highly elliptical planform and very high sweep. NZ Aerosports say she has a high roll rate, a long recovery arc and high
maximal glide ratio. She is said to deliver unrivalled power in the turn, plane out and flare. Petra has a long list of World
Records, National and International titles to back that up. She had an impressive debut at the PD Big Boy Pants event in July
2011, with Nick Batsch setting a new distance world record of 222.45m (729ft). One month later Nick took out the Pink
Open in Klatovy and the FAI World Cup also; first in distance, speed and overall. He also won the 2011 US CP nationals on
Petra. Patrick Boulongne came 2nd in the European Championships and 6th overall at the World Cup with Petra in his first
competition with her. He went on to win the 2011 French Canopy Piloting Nationals.

q1 incomparable energy Groundtruth: unrivalled power & Prediction: unrivalled power (confidence: 0.99)
q2 indomitable strength Groundtruth: unrivalled power & Prediction: unrivalled power (confidence: 0.99)

Figure A9: Given document d, LongformerLarge model trained via the SS approach on PR-pass correctly retrieves
unrivalled power in the first paragraph for the query q2 “indomitable strength” but fails to retrieve the answer when
the query q1 is “incomparable energy”. The predicted answer for q1 should be unrivalled power in the second
passage since the second passage changes “unrivalled power” meaning to a competition strength instead of military
power.

PR-pass example. Groundtruth: common thought
d As the medical corps grew in size there was also specialization evolving. Physicians surfaced that specialized in disease,

surgery, wound dressing and even veterinary medicine. Veterinary physicians were there to tend to livestock for agricultural
purposes as well as combat purposes. The Cavalry was known for their use of horses in combat and scouting purposes.
Because of the type of injuries that would have been commonly seen, surgery was a somewhat common occurrence. Tools
such as scissors, knives and arrow extractors have been found in remains. In fact, Roman surgery was quite intuitive, in
contrast to common thought of ancient surgery. The Roman military surgeons used a cocktail of plants, which created a
sedative similar to modern anesthesia. Written documentation also showed surgeons would use oxidation from a metal such
as copper and scrape it into wounds, which provided an antibacterial effect; however, this method was most likely more toxic
than providing an actual benefit. Doctors had the knowledge to clean their surgical instruments with hot water after each use.
Wounds were dressed, and dead tissue was removed when bandages were changed.

q prevalent theory
R 0.882 common thought

0.855 common thought of
0.702 fact
0.698 to common thought
0.675 common occurrence

Figure A10: A ranking model based on the phrase embeddings of the PR-pass-trained PhraseBERT SS model
correctly ranks and retrieves the most semantically relevant answer “common thought” as the top-1 prediction in the
retrieval list R for the query “prevalent theory” in a PR-pass example (which contains a document d and a query q).
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PR-page example. Groundtruth: continued risk
d ... Following a United Nations agreement between Indonesia and Portugal, a UN-supervised referendum held on 30

August 1999 offered a choice between autonomy within Indonesia and full independence. The people of East Timor voted
overwhelmingly for independence. An Australian-led and Indonesian-sanctioned peacekeeping force, INTERFET, was
sent into the territory to restore order following a violent ’scorched-earth’ policy carried out by pro-integration militia
and supported by elements of the Indonesian military. In response to Australia’s involvement, Indonesia abrogated the
1995 security pact, asserting that Australia’s actions in East Timor were inconsistent with ’both the letter and spirit of the
agreement’. Official meetings were cancelled or delayed, including the Indonesia-Australia Ministerial Dialogue, which
would not reconvene until March 2003. INTERFET was later replaced by a UN force of international police, UNTAET,
which formed a detachment to investigate alleged atrocities. "Tampa" affair and the War on Terror. The relationship came
under strain in August 2001 during the "Tampa" affair, when Australia refused permission for the Norwegian freighter ship
MV "Tampa" to enter Australian waters while carrying Afghan asylum seekers that it had rescued from a distressed fishing
vessel in international waters. The Indonesian Search and Rescue Agency did not immediately respond to requests from
Australia to receive the vessel. When the ship entered Australian territorial waters after being refused permission, Australia
attempted without success to persuade Indonesia to accept the asylum seekers. Norway also refused to accept the asylum
seekers and reported Australia to international maritime authorities. The incident prompted closer coordination between
Indonesian and Australian authorities, including regional conferences on people smuggling, trafficking in persons and other
transnational crime. In 2002, a terrorist attack in Kuta, Bali killed 202 people, including 88 Australians, and injured a further
240. Jemaah Islamiyah, a violent Islamist group, claimed responsibility for the attack, allegedly in retaliation for Australia’s
support for East Timorese independence and the War on Terror. A subsequent attack in 2005 resulted in the deaths of a further
20 people, including 15 Indonesians and 4 Australians. The 2003 Marriott Hotel bombing was also perceived as targeted
at Western interests in Indonesia; Al Qaeda claimed the attack was carried out by a Jemaah Islamiyah suicide bomber in
response to actions of the United States and its allies, including Australia. A 2004 attack on the Australian embassy in Jakarta
by Jemaah Islamiyah resulted in the deaths of nine Indonesians. The following year, Indonesian diplomatic and consular
premises in Australia received a number of hoax and threat messages. Since then, both the United States and Australian
governments have issued warnings against travel to Indonesia, advising their citizens of a continued risk of attacks. These
incidents prompted greater cooperation between law enforcement agencies in the two countries, building on a 1999 agreement
on drug trafficking and money laundering. The Australian Federal Police’s Jakarta Regional Cooperation Team provided
assistance to the Indonesian National Police, and has contributed to the Jakarta Centre for Law Enforcement Cooperation.
This relationship has attracted criticism, particularly following the arrest and sentencing of the Bali Nine, a group of nine
Australians arrested in Denpasar while attempting to smuggle heroin from Indonesia to Australia. The 2005 conviction of
Schapelle Corby for attempting to smuggle drugs to Bali also attracted significant attention in the Australian media. The
2004 Indian Ocean earthquake prompted a significant humanitarian response from Australia, including a $1 billion aid
package from the federal government, a further $17.45 million contribution from state and territory governments, and the
commitment of 900 Australian Defence Force personnel to relief efforts in northern Sumatra and Aceh. A telethon broadcast
on Australia’s three major commercial television networks called "" generated pledges of more than $10 million, contributing
to total private aid of $140 million. The Eighth "Australia-Indonesia Ministerial Forum" (AIMF) was held in Bali on 29 June
2006 and was attended by five Australian and eleven Indonesian ministers. A key outcome was support for the conclusion of
a security agreement, later realised as the Lombok Agreement, providing a framework for the development of the security
relationship by the end of 2006 on defence, law enforcement, counter-terrorism, intelligence, maritime security, aviation
safety, WMD non-proliferation, and bilateral nuclear cooperation for peaceful purposes. Australia-Indonesia-East Timor
Trilateral Ministerial Meetings occurred three times to September 2006. Recent relations. 2010 President Susilo Bambang
Yudhoyono visited Australia in April 2010, and became the second Indonesian leader to address federal parliament: Finally, I
look forward to a day in the near future. The day when policy makers, academicians, journalists and other opinion leaders all
over the world take a good look at the things we are doing so well together. And they will say: these two used to be worlds
apart. But they now have a fair dinkum of a partnership. ...

q sustained threat
R 0.830 threat .

0.802 potential threat
0.800 threat reached
0.787 threat as
0.787 threat to

Figure A11: A ranking model based on the non-contextualized embeddings of USE-v5 fails to retrieve the correct
answer “continued risk” for the query “sustained threat” in the PR-page example (which contains a document d
and a query q). The top-5 phrases retrieved (R) contains the word “threat” but have no identifier conveying the
“continued” or ‘sustained” sense. Here, the Wikipedia page is truncated to fit into a single manuscript page.
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J Verifying annotations

There are two common methods for evaluation of dataset quality: (1) Verify only a small, random subset
(Pilehvar and Camacho-Collados, 2019) to estimate the quality of the full dataset or (2) verifying the
entire dataset with multiple annotators and use the inter-annotator agreement (IAA) to control quality
(Bowman et al., 2015; Kwiatkowski et al., 2019). The first approach for approximation is budget-friendly
but it remains unknown whether the rest of examples are at high quality, while IAA is more desired but
annotating thousands of instances can be prohibitively slow and costly.

We propose a hybrid approach to evaluate (leveraging both linguistic experts and non-experts) and
ensure high quality for 30,042 queries and 15,021 Yes/No answers at lower cost compared to IAA via two
rounds:

1. First, we ask around 1,000 highly qualified freelancers on Amazon Mechanical Turk (MTurk verifiers)
to verify whether the query annotated by our Upwork annotators is interchangeable i.e. has the same
meaning with the given phrase in paragraph. To verify Yes/No answers, MTurk verifiers need to
read two short paragraphs containing the same phrase like Upwork annotators to make decisions. We
do not show answers to the MTurk verifiers to avoid biases.

2. Second, we continue hiring 5 Upwork verifiers who are writing experts to double-check those
instances rejected by MTurk verifiers from the previous round and only discard an example if the
Upwork verifiers agree with MTurk verifiers.

J.1 Round 1: Verification by MTurk non-experts
We use AMT platform to recruit more than 1,000 MTurk verifiers. Also, we use Gorrila (gorilla.sc)
to develop user interface to collect answers from participants because (1) Gorilla provides easy-to-use
tools to build graphical interface, (2) it is straightforward to monitor and discard results from unqualified
participants and (3) we can easily share the experiment with MTurk verifiers via a link. Per 30 verified
answers in around ∼20 minutes, the verification process costs us $5.6 (AMT fees included) and 1 token to
Gorilla to a single MTurk verifier.

Participants are given detailed instructions along with 5 practice samples to get familiar with the task
(Fig. A12). They need to pass an evaluation checkpoint including 6 questions randomly sampled from our
verified question bank in order to start working with sets of 30 questions. With this approach, all examples
in the dataset are verified once and as a result, 22,496/30,042 queries (∼74.88%) and 10,043/15,021
Yes/No answers (∼66.86%) accepted by MTurkers are considered high quality since they are annotated
by a writing expert and confirmed by a qualified English native speaker. The remaining 7,546 queries and
4,978 Yes/No answers rejected that are passed to another group of 5 writing experts for confirmation.

J.2 Round 2: Verification by Upwork experts
We hired another set of 5 writing experts from Upwork (Upwork verifiers) with an hourly rate of $25-
40/hour to verify 12,524 examples rejected by MTurk verifiers, i.e., at an average cost of approximately
$0.26 per example. See a sample assignment given to an Upwork expert in (PiC, 2022).

We rely on IAA to decide whether to accept or reject an example. Specifically, we use the same question
types as shown to MTurk verifiers in the previous step and see whether these Upwork verifiers agree
with the Upwork annotators to keep this example or with MTurk verifiers to reject it. We find that the
agreement between the first- and third-round annotators are 5,829 (out of 7,546) paraphrases and 3,370
(out of 4,978) Yes/No answers in total and thus the total high-quality queries and Yes/No answers we
achieve are 28,325 and 13,413, respectively.
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(a) Detailed instructions given to MTurkers

(b) Upon completion of training stage, MTurkers need to cor-
rectly answer the first 5 out of 6 questions to be invited to verify
annotations from Upwork experts.

(c) Verification of paraphrases via type-1 question. (d) Verification of Yes/No labels via type-2 question.

(e) Feedback is given when MTurkers give a wrong answer. (f) or even a right answer.

Figure A12: Gorilla layouts shown to MTurkers to verify annotations in the first round.

25



K Data Sheet

We follow the documentation template provided by Gebru et al. 2021 (Gebru et al., 2021).

K.1 Motivation
For what purpose was the dataset created? Understanding phrases in context plays a vital role in
solving many Natural Language Understanding (NLU) tasks such as question answering or reading
comprehension. While there are word-sense disambiguation datasets like WiC, no such benchmarks exist
for phrases. Existing phrase benchmarks compare only phrases without context and some of them contain
numerous phrase pairs that have lexical overlap. The major drawback is no human annotation of how a
phrase’s meaning changes w.r.t the context. This motivates us to construct a Phrase-in-Context benchmark
to drive the development of contextualized phrase embeddings in NLU.

Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g.,
company, institution, organization)? Auburn University and Adobe Research.

K.2 Composition/collection process/preprocessing/cleaning/labeling and uses
We describe the data construction process, annotation and verification methods in our paper (See Sec. 3
and Sec. 4).

K.3 Distribution
Will the dataset be distributed to third parties outside the entity (e.g., company, institution, orga-
nization) on behalf of which the dataset was created? We release three datasets PS, PR (including
PR-pass and PR-page) and PSD to the public.

How will the dataset be distributed (e.g., tarball on website, API, GitHub)? The datasets are released
and can be viewed and downloaded on HuggingFace https://huggingface.co/PiC or on our website
https://phrase-in-context.github.io.

When will the dataset be distributed? It has been released in July 2022.

What is the dataset format and how it can be read? We use JSON - a widely used data format for
PiC dataset and follow a scheme of HuggingFace datasets to host it. Three datasets PS, PR and PSD in
the PiC dataset are loaded as folows:

# The following pip command is to install the HuggingFace library "datasets ":
pip3 install datasets

from datasets import load_dataset

ps = load_dataset("PiC/phrase_similarity")
pr_pass = load_dataset("PiC/phrase_retrieval", "PR-pass")
pr_page = load_dataset("PiC/phrase_retrieval", "PR-page")
psd = load_dataset("PiC/phrase_sense_disambiguation")

Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or
under applicable terms of use (ToU)? Our dataset is distributed under the CC-BY-NC 4.0 license.

K.4 Maintenance
How can the owner/curator/manager of the dataset be contacted (e.g., email address)? Thang Pham
(thangpham@auburn.edu) and Anh Nguyen (anh.ng8@gmail.com) will be responsible for maintenance.

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)?
Yes. If we include more tasks or find any errors, we will correct the dataset. It will be updated on our
website and also HuggingFace.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them
to do so? They can contact us via email for the contribution.
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Abstract

Dialogue summarization aims to condense a
given dialogue into a simple and focused sum-
mary text. Typically, both the roles’ viewpoints
and conversational topics change in the dia-
logue stream. Thus how to effectively han-
dle the shifting topics and select the most
salient utterance becomes one of the major chal-
lenges of this task. In this paper, we propose
a novel topic-aware Global-Local Centrality
(GLC) model to help select the salient context
from all sub-topics. The centralities are con-
structed at both the global and local levels. The
global one aims to identify vital sub-topics in
the dialogue and the local one aims to select
the most important context in each sub-topic.
Specifically, the GLC collects sub-topic based
on the utterance representations. And each ut-
terance is aligned with one sub-topic. Based
on the sub-topics, the GLC calculates global-
and local-level centralities. Finally, we com-
bine the two to guide the model to capture both
salient context and sub-topics when generating
summaries. Experimental results show that our
model outperforms strong baselines on three
public dialogue summarization datasets: CSDS,
MC, and SAMSUM. Further analysis demon-
strates that our GLC can exactly identify vital
contents from sub-topics. 1

1 Introduction

Online conversations have become essential to com-
munication in our daily work and life. Due to the
information explosion, dialogue summarization has
become a vivid field of research in recent years,
which is meaningful for many applications, e.g. on-
line customer service (Liu et al., 2019; Zhu et al.,
2020) and meeting summary (Feng et al., 2021).

Dialogue summarization aims to condense cru-
cial information in a long dialogue into a short text
like traditional summarization tasks. Differently,

*Contribution during internship at ByteDance Inc.
†Corresponding Authors.
1https://github.com/xnliang98/bart-glc

the main challenges of dialogue summarization are
the viewpoints of multiple speaker roles (Lin et al.,
2021, 2022; Qi et al., 2021; Zhang et al., 2022) and
shifting topics (Chen and Yang, 2020; Zou et al.,
2021; Liu et al., 2021) during the conversation pro-
cess. As shown in Figure 1, summaries not only
depend on the overall context but also needs the
identification and selection of salient context in
crucial sub-topics. We can see that the blue text in
summaries is about sub-topic #1 “The reason why
the product is shipped yet" and the orange text is
about sub-topic #2 “The user decided to refund",
which are aligned to the two salient sub-topics from
dialogue utterances in the first and second block.
The sub-topic #3 is useless for summaries. This
example shows the necessity to model the salient
context and sub-topics in the dialogue.

In this paper, we propose a novel topic-aware
Global-Local Centrality (GLC) model to select
salient contexts from all sub-topics. The centrality
is an effective technique to measure the importance
of sentences in a given document from unsuper-
vised extractive summarization (Zheng and Lapata,
2019; Liang et al., 2021, 2022). The GLC contains
global- and local-level centrality, which are used
to capture the salience of sub-topics and content in
each sub-topic respectively. Based on these central-
ities, we can guide the model to focus on the salient
context and sub-topics when generating summaries.
Specifically, we employ utterance-level represen-
tations to cluster utterances and obtain sub-topic
centers and assign each utterance to one sub-topic.
Then, we compute the global centrality over sub-
topic centers to measure the importance of each
sub-topic and the local centrality over utterances
of each sub-topic to measure the importance of
sub-topic content. Finally, we combine the two to
re-weight the dialogue context representations for
the decoder to generate summaries.

To evaluate the effectiveness of our proposed
GLC, we apply the GLC to three different types of
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Figure 1: An example from the CSDS dataset. The dialogue contains 3 different sub-topics. The blue text represents
sub-topic #1 and the red text represents sub-topic #2. The sub-topic #3 is useless information.

seq2seq structure: PGN, BERTAbs, and BART, and
verify them on three public dialogue summarization
datasets: CSDS, MC, and SAMSUM. CSDS and
MC are two Chinese role-oriented summarization
datasets that not only need to generate the overall
summary of the dialogue but also need to gener-
ate role-oriented summaries for specific speakers
in the dialogue as shown in Figure 1. SAMSUM
is a widely used English dialogue summarization
dataset. To generate role-oriented summaries, in
this paper, we directly employ role prompts to
guide the model to generate proper summaries.
And the representations of role prompts can add
role information to the centrality computation. Ex-
perimental results show that our GLC can improve
the performance of all these seq2seq structures on
three datasets. And the GLC-based BART model
obtains new state-of-the-art results on the CSDS
and MC.

Our contributions can be summarized as 1) We
propose a novel topic-aware Global-Local Central-
ity (GLC) model to guide the model to identify
the salient contexts and sub-topics in the dialogue.
2) Our GLC can bring improvement to different
seq2seq models by easily plugging in and does
not add any extra parameters to the seq2seq mod-
els. 3) The GLC-based BART model achieves new
state-of-the-art results on CSDS and MC. Besides,
extension studies prove our GLC can effectively

capture vital sub-topics.

2 Methodology

Figure 2 shows the main structure of our proposed
topic-aware global-local centrality (GLC) model.
The seq2seq framework with GLC is on the left
of Figure 2, which consists of the bi-directional
encoder, global-local centrality model, and auto-
regression decoder. The detail of GLC is on the
right of Figure 2, which consists of global centrality
and local centrality. In this section, we introduce
them step by step.

2.1 Task Formulation
Firstly, we formulate the dialogue summarization
task and role-oriented summarization task. Given a
dialogue D with N utterances {u1, . . . , uN} with
M roles {r1, . . . , rM}. Each utterance ui contains
a speaker role rj and sentence si. We simply con-
catenate them by “:” and get utterance ui = rj : si.
For role-oriented summarization tasks, the data con-
tains different summary yrj for different speaker
roles rj . In this paper, we employ yuser and yagent

to represent summaries of two different roles and
yfinal to represent the overall summary of the
whole dialogue. It is deserved to mention that our
method can also be easily applied to datasets with
more than two speaker roles by introducing differ-
ent role prompts. Normal dialogue summarization
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Figure 2: The main structure of our proposed method. The left is the framework of seq2seq with the GLC model.
The right is the detailed process of our proposed GLC model.

task aims to generate overall summaries yfinal and
role-oriented summarization task aims to generate
role-specific summaries y[user|agent|final] from the
input dialogueD = {u1, . . . , uN} according to the
given role.

2.2 Role Prompts
For role-oriented summarization tasks, previous
works train multiple independent models for dif-
ferent role summaries, which is proven to hurt
the performance of model (Lin et al., 2022) and
needs more computation resources. In this paper,
we employ a simple but effective trick to ensure
that we only need to train a single model to ob-
tain different role-specific summaries and overall
summaries. Specifically, we use the prompts to
control the generation of different kinds of sum-
maries, which attach “[User Summary]”, “[Agent
Summary]”, and “[Final Summary]” to the start of
each dialogue as input to guide the model to gener-
ate required summaries. After that, the input con-
text is re-formalized as “[Role Prompt] Dialogue
Contexts” and then tokenized as T tokens/words
{xt}Tt=1 for the encoder of seq2seq model.

2.3 Bi-directional Encoder
The bi-directional encoder is used to get tokens the
semantic vector representations {ht}Tt=1 by cap-
ture bi-directional context information from tokens
{xt}Tt=1 as follows:

{ht}Tt=1 = Encoder({xt}Tt=1) (1)

Then, we use the average of tokens vectors in each
utterance as the semantic representations of dia-
logue utterances as follows:

hui =
1

|ui|
∑

t

xt, xt ∈ ui (2)

After that, we can get the token-level semantic rep-
resentations {ht}Tt=1 and the utterance-level seman-
tic representations {hui}Ni=0, where hu0 is the vec-
tor representation of the attached role prompt, if
role prompt is used.

2.4 Global-Local Centrality Model
Before feeding the representations into the decoder
to generate the final summaries, we employ our
proposed global-local centrality (GLC) model to re-
weight the vector representations to identify salient
facts in sub-topics over previous utterance-level
semantic representations {hui}Ni=0.

Firstly, our GLC obtains several cluster center
points {ck}k = 1K , which represent the center of
sub-topics in the vector space. Then each utterance
is assigned to the nearest center. As shown in Fig-
ure 2, utterances with the same color belong to the
same sub-topic. We compute the global centrality
score based on the cluster center representations
to measure the importance of sub-topics and the
local centrality score based on the utterance rep-
resentations to measure the importance of each
utterance belonging to the same sub-topic. Then,
we employ their combination to get global-local
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centrality weights, which are used to re-weight
the token-level vector representations. Finally, the
re-weighted token-level vector representations are
fed into the decoder to generate the summary. Our
GLC can be directly plug-in any seq2seq structures,
which makes it flexible.

2.4.1 Obtain Cluster Centers
To obtain the clusters, we directly call the K-Means
algorithm, which is effective and widely used for
cluster tasks. And we all know setting the number
of cluster centers for the K-Means algorithm is
crucial and hard for the final results. However, we
empirically find that we can set it as the number of
utterances (N+1) and then assign each utterance to
the nearest cluster center point in the vector space.
After that, we find that many cluster centers have
no assigned utterances and can be dropped. Based
on this, we assume K < (N + 1) cluster centers
{ci}Ki=1 are kept and note the vector representations
of them as {hci}Ki=1.

{hci}Ki=1 = KMeans({hui}Ni=0) (3)

And after the assignment of utterances, we can
get K clusters {Ck}Ki=k, which contain utterances
with similar sub-topics. Each Ck contains several
utterances and one cluster center point ck. Through
the previous method, we do not need to manually
set the number of cluster centers for the K-Means
algorithm.

2.4.2 Global Centrality
The global centrality score aims to measure the
importance of each sub-topic by computing degree
centrality based on the cluster center representa-
tions {hck}Kk=1. Each cluster center can be seen as
one node on the graph, and the edge value between
nodes k and j is (hck)

T · hcj . Then, the degree cen-
trality of each cluster can be computed as follows:

Cen(ck) =
∑

j

(hck)
T · hcj (4)

where Cen(ck) represents the importance of the
cluster/sub-topic k in the dialogue. Then we nor-
malize the score Cen(ck) by Cen(ck)

||{Cen(ck)}Kk=1
||2 .

2.4.3 Local Centrality
The local centrality score aims to measure the im-
portance of utterances in each cluster by computing
the degree centrality. Each utterance can be seen as
one node on the graph, and the edge value between

nodes i and j is (hui)
T · huj . Then, the central-

ity of each utterance in the same cluster Ck can be
computed as follows:

Cen(ui) =
∑

j

(hui)
T · huj , ui, uj ∈ Ck (5)

where Cen(ui) represents the importance of utter-
ances in the k-th cluster/sub-topic. Then we nor-
malize the score Cen(ui) the same as the previous
global centrality score.

2.4.4 Global-Local Centrality Weight
We can obtain the importance of each cluster
(global centrality score) and the importance of utter-
ances in each cluster (local centrality score) by the
previous two steps. The most important utterance
in the most important sub-topic should be assigned
more attention when generating the summary. So
we obtain global-local centrality weight for each
utterance in the dialogue by simply multiplying
two centrality scores as follows:

wglci = Cen(ui) · Cen(ck), ui ∈ Ck (6)

Finally, we employ the global-local centrality
weights to re-weight the token-level vector repre-
sentations {ht}Tt=1 as follows:

ĥt = wglci · ht, xt ∈ ui (7)

Where each token uses the global-local centrality
weight wglci of its utterance ui to re-weight the
vector representation ht. The token level represen-
tations {ht}Tt=1 are converted into {ĥt}Tt=1.

2.5 Auto-regression Decoder
The auto-regression decoder generates the final
summary based on the re-weighted context rep-
resentations {ĥt}Tt=1 as follows:

P (ŷ) = Decoder({λ · ĥt+(1−λ) · ht}Tt=1) (8)

where λ is a hyper-parameter to control the influ-
ence of GLC, the default value of λ is 0.5. In the
training stage, the model learns the optimal param-
eters θ by minimizing the negative log-likelihood.

3 Experiments

3.1 Datasets and Metrics
We evaluate our method on three public datasets:
CSDS (Lin et al., 2021)2, MC (Song et al., 2020)3,

2https://github.com/xiaolinAndy/CSDS
3https://github.com/cuhksz-nlp/HET-MC
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CSDS ROUGE-1 ROUGE-2 ROUGE-L BLEU BERTScore

PGN 55.58/53.55/50.20 39.19/37.06/35.12 53.46/51.05/47.59 30.03/29.64/28.25 77.96/78.68/76.13
PGN-both 57.20/56.08/51.62 40.37/39.10/36.50 55.14/53.85/49.12 32.58/33.54/29.78 78.69/79.52/76.74
PGN-GLC 57.94/57.14/52.85 40.97/39.55/37.14 55.68/54.25/49.86 32.95/33.87.30.15 78.93/79.86/76.98

BERT 53.87/52.72/49.57 37.59/36.39/33.82 52.40/50.44/46.83 29.90/30.17/26.99 78.52/79.23/76.39
BERT-both 57.24/54.36/51.92 40.12/40.70/36.37 54.87/55.17/49.52 32.13/32.04/29.23 79.85/80.70/77.23
BERT-GLC 57.59/55.14/52.34 41.28/41.84/36.48 55.74/55.86/50.16 32.75/32.64/29.81 79.89/80.71/77.28

BART 59.07/58.78/53.89 43.72/43.59/40.24 57.11/56.86/50.85 34.33/34.26/31.88 79.74/80.67/77.31
BART-both 59.21/58.93/54.01 43.88/43.69/40.32 57.32/57.28/51.10 34.75/34.49/32.30 79.72/80.64/77.30
BART-GLC 60.07/61.42/54.59 44.67/45.83/40.02 58.10/59.25/52.43 35.89/36.43/32.58 80.10/81.83/77.61

Table 1: Results on the CSDS dataset test set.

MC ROUGE-1 ROUGE-2 ROUGE-L BLEU BERTScore

PGN 85.32/94.82/82.56 81.25/94.32/77.91 84.34/94.77/81.47 71.50/87.66/68.10 92.90/97.60/91.74
PGN-both 85.98/95.10/83.37 81.93/94.59/78.78 84.94/95.06/82.20 72.77/87.82/69.63 93.23/97.71/92.15
PGN-GLC 86.57/95.31/83.97 82.04/94.88/79.16 85.37/96.48/82.84 73.02/88.11/70.04 93.47/97.95/92.36

BERT 84.07/95.10/81.53 79.90/94.48/76.78 83.04/95.06/80.30 68.19/87.20/64.09 92.68/97.86/91.71
BERT-both 84.69/95.18/82.02 80.76/94.62/77.54 83.68/95.14/80.84 69.33/87.40/65.40 93.02/97.90/91.91
BERT-GLC 85.64/95.49/82.87 81.44/94.97/78.05 84.16/96.10/81.57 69.84/87.94/66.01 93.15/97.92/92.36

BART 88.37/95.42/86.33 84.75/94.99/82.33 87.38/95.37/85.30 73.68/90.29/68.93 93.65/97.94/92.63
BART-both 88.52/95.63/87.06 85.22/95.42/82.89 87.75/95.91/85.78 73.87/90.70/69.31 93.69/97.88/92.69
BART-GLC 89.55/96.84/88.47 86.47/96.14/84.62 88.56/96.23/86.77 74.19/91.32/70.18 94.17/98.25/92.96

Table 2: Results on the MC dataset test set.

and SAMSUM (Gliwa et al., 2019)4. The statisti-
cal information of them is shown in the appendix.
CSDS is the first role-oriented dialogue summariza-
tion dataset, which provides separate summaries
for user and agent (customer service). MC is a Chi-
nese medical inquiry dataset containing question
summaries of patients and suggestion summaries
of doctors. We note them as the user and agent
summary. For the MC dataset, we follow the data
process and data split from RODS (Lin et al., 2022).
SAMSUM is a widely used English dialogue sum-
marization dataset to evaluate the performance of
models.

We employ lexical-level and semantic-level
metrics to evaluate the performance of all mod-
els. Specifically, we use lexical level ROUGE-
1/2/L (Lin, 2004)5 and BLEU (Papineni et al.,
2002)6, which measure the similarity of references
and generated summaries by computing the n-
gram overlap of them. We use semantic level
BERTScore (Zhang* et al., 2020)7 and Mover-
Score (Zhao et al., 2019)8, which employ pre-

4https://huggingface.co/datasets/samsum
5https://pypi.org/project/rouge-score/
6https://github.com/mjpost/sacreBLEU
7https://github.com/Tiiiger/bert_score
8https://github.com/AIPHES/emnlp19-moverscore

trained language models to map the text into low-
dimensional vectors in semantic space and then
measure the similarity by computing the similarity
by cosine similarity or word mover distance. We
can evaluate the performance of each model com-
prehensively through the previous metrics. And
all reported results are the average results of three
different model checkpoints. The results of Mover-
score on three datasets can be found in the ap-
pendix.

3.2 Baselines

We applied our GLC on three widely used seq2seq
models: PGN (See et al., 2017), BERTAbs (Liu
and Lapata, 2019), and BART (Lewis et al., 2020;
Shao et al., 2021). PGN model is an LSTM-based
seq2seq model without pre-training. BERTAbs
is a BERT-based model, which employs BERT as
the encoder and adds several transformer blocks as
the decoder to generate summaries. We note it as
BERT. BART is a pre-trained transformer-based
seq2seq model, which achieves the best results on
many generation tasks. We add our proposed GLC
into the previous three models and note them as
PGN-GLC, BERT-GLC, and BART-GLC. We
also compare our method with previous SOTA mod-
els: PGN-both and BERT-both from (Lin et al.,
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SAMSUM ROUGE-1 ROUGE-2 ROUGE-L BLEU BERTScore

PGN 40.08 15.28 36.63 37.49 80.67
PGN-GLC 41.11 16.24 37.31 38.10 81.54

BERT 50.34 24.71 46.63 46.98 88.72
BERT-GLC 51.18 25.26 47.07 47.66 89.64

BART 53.12 27.95 49.15 49.28 92.14
BART-GLC 53.74 28.83 49.62 50.36 92.77

Table 3: Results on the SAMSUM dataset test set.

2022), which proposed a role-interaction attention
mechanism for the decoder. We reproduce it in the
BART model as BART-both. For SAMSUM, we
do not compare with BART-both due to this dataset
does not contain role-oriented summaries.

3.3 Implementation Details

We use Chinese-BART-base9 and BART-large10

to initialize our transformer-based seq2seq model
for Chinese and English datasets respectively. We
train all BART models on 4xV100 GPUs and
PGN/BERT-based models on 1xV100 GPU. For
all models, the maximum input length is 512, the
maximum generated summary length is 150, and
the beam size is 3. For BART-based models, the
learning rate is 1e-4 with 10% warmup steps, the
total batch size is 64, and the training epochs are
5. For PGN/BERT-based models, we follow the
settings from (Lin et al., 2022).

3.4 Results

The main results of the two role-oriented dialogue
summarization datasets are shown in Table 1-2.
Each block has three values, representing the final
summary/user summary/agent summary from left
to right. We can see that our proposed GLC can
bring significant improvement to PGN, BERTAbs,
and BART on the two datasets and BART-GLC
achieves new state-of-the-art results. It is deserved
to mention that our model does not need to mod-
ify any structure of the seq2seq structure and only
needs to train one model for different summaries.
We can see that the gain of metrics on the CSDS
is better than on the MC, due to the summary of
the MC dataset being highly similar to the input
dialogue contexts. The results of the BERT-based

9https://huggingface.co/uer/bart-base-chinese-
cluecorpussmall

10https://huggingface.co/facebook/bart-large

model sometimes is worse than the PGN-based, we
guess the reason is the prior knowledge learned in
the pre-training stage of BERT is not suitable for
the generation tasks. The improvement of lexical
level metrics is more conspicuous than semantic
level metrics due to the change of several words
that may not affect the semantics of generated sen-
tences. Overall, our proposed GLC is proved effec-
tive for the role-oriented dialogue summarization
task with results on the two datasets.

The main results of the English dialogue sum-
marization dataset are shown in Table 3. Because
the SAMSUM does not provide role-specific sum-
maries, we only report the performance of overall
final summaries. From the results, we can see that
our GLC can also bring significant improvements
to three different seq2seq structures. We can see
that the BERTScore is very high on SAUSUM, we
guess that because the gold reference of this dataset
is very short and this makes the semantic similarity
between generated summaries and gold summaries
close. The results of SAMSUM demonstrated the
effectiveness and generalization of our proposed
method.

4 Discussion

We conduct many external experiments on the
CSDS dataset to further analyze the effectiveness
of our proposed GLC. And more discussions are
shown in the appendix.

4.1 Ablation Study

To understand the impact of each component of our
proposed GLC model, we compare the full BART-
GLC with the following variants: (1) BART: three
fine-tuned BART models for different summaries
(final/user/agent); (2) BART+Prompt: singe
BART model with role prompts; (3) BART+GC:
three BART models using global centrality scores
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ROUGE-1

BART 59.07/58.78/53.89

+Prompt 59.42/58.96/54.03
+GC 59.64/59.55/54.24
+LC 59.37/59.47/54.11
+GC,LC 59.84/60.91/54.43

BART-GLC 60.07/61.42/54.59

Table 4: Ablation study on the CSDS dataset.

Win Loss Tie

CSDS&MC 56.4 2.4 41.2

SAMSUM 51.8 3.2 45.3

Table 5: Human evaluation results.

to re-weight hidden states; (4) BART+LC: three
BART models using local centrality scores to re-
weight hidden states; (5) BART+GC,LC: three
BART models using global-local centrality scores
to re-weight hidden states. The results of these
models are shown in Table 4. From the results,
we can see that all three components can bring
improvement to the BART model, and the global-
local centrality brings the greatest improvement.
Interesting, The improvement brought by the com-
bination of global and local centrality is far greater
than the improvements they bring separately. This
proves that global and local centrality are mutually
beneficial.

4.2 Human Evaluation

We use human evaluation (Fang et al., 2022) to ver-
ify that our model outperforms the baseline. Specif-
ically, we randomly sample 100 examples from
three datasets and ask five NLP researchers to give
a comparison between our model and baseline mod-
els. The evaluation results are represented as win,
loss, and tie, respectively indicating that the qual-
ity of generated summary by BART-GLC is better,
weaker, or equal to the strong baselines. Annota-
tors were asked to judge from two aspects: fluency
(whether contains grammatical and factual errors)
and coverage (whether contains salient sub-topic
information in the dialogue). For two role-oriented
dialogue summarization datasets CSDS and MC,
our model is compared with BART-both. For SAM-
SUM, our model is compared with BART. From

Figure 3: The ROUGE-1 score of different training step
checkpoints.

the results in Table 5, we can see that our model
is better than the baseline. Annotators tend to give
ties on SAMSUM dataset. This may be caused
by the length of summaries is short, which makes
it hard to judge whether the summary is better or
worse than the baseline model.

4.3 Convergence of Training

We also compare the training convergence speed
with BART and BART-both to prove our proposed
GLC can bring effective prior knowledge for the
seq2seq model. As shown in Figure 3, we can see
that BART-GLC achieves comparable performance
at 900 steps during training and reaches the SOTA
results at 1,200 steps. This phenomenon demon-
strates that our GLC brings prior knowledge into
the model and speeds up the model training.

4.4 Case study

We select one example from the test set to show the
ability of our proposed GLC in Figure 4. On the
upper-left of this figure are the GLC weights and
the corresponding utterances. In the bottom-left of
the figure is generated summary of our proposed
BART-GLC. On the right of the figure is the input
dialogue and each color refers to one sub-topic.
From this case, we can see that the final summary
focus on two sub-topics: “How to modify user’s
order” and “Questions about refunds”. And from
the color on the right of this figure, we can see that
our GLC can catch them accurately. Interestingly,
generic utterances are aggregated into one topic
(e.g. hello). In the upper-left of this figure is the
GLC weights and we can see that utterances, which
are related to the final summary and belong to the
vital sub-topics, are assigned high weights. This
proves the global-local centrality exactly identified

33



Figure 4: One case from the CSDS test set. Each color refers to one sub-topic. In the upper-left of this figure are
the GLC weights and the corresponding utterances. In the bottom-left of the figure is generated summary of our
proposed BART-GLC. On the right of the figure is the input dialogue.

salient topics and utterances.

5 Related Work

Dialogue summarization has caught more and more
attention in recent years and is widely used in var-
ious domains, e.g. meeting summarization (Car-
letta et al., 2006; Feng et al., 2021), daily dialogue
summarization (Krishna et al., 2021; Chen et al.,
2021; Zhong et al., 2021), etc. Different from tra-
ditional summarization tasks, dialogue summariza-
tion needs to identify the role of speakers and cap-
ture the change of sub-topics during the dialogue.
Besides, the dialogue summarization task has less
labeled data and longer inputs. All of these make
dialogue summarization harder to solve (Chen and
Yang, 2020; Zhang et al., 2021b; Feng et al., 2021;
Lin et al., 2022).

Recent dialogue summarization models can be
categorized into three types: 1) data augmentation
methods (Feng et al., 2021; Chen and Yang, 2021;
Khalifa et al., 2021), which attempt to construct
more pseudo-data to train a better model; 2) topic-
based models (Zou et al., 2021; Liu et al., 2021; Qi
et al., 2021), which track the change of topic infor-
mation in the dialogue to generate more focused
summary; and 3) semantic structure-based models
(Liu and Chen, 2021; Fu et al., 2021; Zhang et al.,
2021a; Lei et al., 2021; Zhao et al., 2021; Zhang

et al., 2022), which employs semantic structures to
enhance the summarization model.

However, they ignored the sub-topics informa-
tion in the dialogue utterances, which is crucial
for dialogue summarization. Recently, Zhao et al.
(2020) modified the attention mechanism to focus
on the topic words, which can force the model to
learn the topic information. Zou et al. (2021) em-
ployed Neural Topic Model to model the global
level topic information. Liu et al. (2021) tried to
model the change of sub-topics by introducing con-
trastive learning. Differently, in this paper, we
bring the centrality, that has been widely used in
unsupervised summarization (Zheng and Lapata,
2019; Liang et al., 2021, 2022), into the dialogue
summarization task and proposed a novel topic-
aware Global-Local Centrality model to capture
salient dialogue utterances and sub-topics at the
same time. Our proposed method is effective and
more flexible.

6 Conclusion

In this paper, we bring the centrality into dialogue
summarization tasks and proposed a novel topic-
aware Global-Local Centrality (GLC) model for
better capturing the sub-topic information in the di-
alogue utterances. Our GLC can be easily applied
to any seq2seq structure and bring improvement to
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their performance. Experiments and further analy-
sis demonstrated that GLC can effectively identify
vital sub-topics and salient content in the dialogue.
In future work, we will try to extend our work to
datasets with longer inputs.

Limitations

Our model also has some limitations: 1) The com-
putation of sub-topic centers brings extra inference
time into the basic seq2seq models. 2) We did not
try to evaluate our model on longer dialogue sum-
marization datasets. 3) We did not build a specific
mechanism for different roles in role-oriented di-
alogue summarization task. We will try to solve
these limitations in future work.
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A Datasets

CSDS MC SAMSUM

Train Size 9,101 29,324 14,732
Val. Size 800 3,258 818
Test Size 800 8,146 819
Input Length 321.92 292.21 94.52
User Sum. Length 37.28 22.37 -
Agent Sum. Length 48.08 95.32 -
Final Sum. Length 83.21 114.54 20.34

Table 6: Statistical information of three datasets.

The statistical information of three datasets is
shown in Table 6.

B Moverscore Results

For Moverscore, we employ chinese-bert-wwm-
ext11 to get the contextual embeddings of Chinese
text input. Because Lin et al. (2021) did not provide
they use what Chinese representation model, we
use chinese-bert-wwm-ext to re-evaluate all their
results and report in Table 7.

B.1 How abstractive is our model?
An abstractive model can be innovative by using
words that are not from the input document in the
summary. We measure the abstractive by the ratio
of novel words or n-gram phrases in the summary.
A higher ratio means a more abstractive model.
We show the results in Figure 5. We can see that

11https://huggingface.co/hfl/chinese-bert-wwm-ext
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MoverScore CSDS MC SAMSUM

PGN 59.00/58.68/58.23 80.90/93.84/79.69 59.87
PGN-both 59.48/59.32/58.64 81.67/94.04/80.52 -
PGN-GLC 59.67/59.51/58.85 81.97/94.45/80.84 60.04

BERT 58.23/58.10/57.79 81.28/93.90/80.48 61.17
BERT-both 59.52/59.55/58.46 82.26/94.20/81.02 -
BERT-GLC 59.74/59.62/58.90 82.64/94.49/81.44 61.59

BART 60.11/59.86/58.75 82.35/94.17/81.27 62.04
BART-both 60.12/59.86/58.73 82.32/94.02/81.40 -
BART-GLC 60.32/61.03/59.02 82.94/95.35/82.10 62.27

Table 7: MoverScore on three datasets.

our BART+GLC is more attractive than BART and
BART-both. However, all of them have a big mar-
gin compared with references. It means more re-
search is needed for generating more abstractive
summaries.
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Abstract

One of the major problems with text simpli-
fication is the lack of high-quality data. The
sources of simplification datasets are limited
to Wikipedia and Newsela, restricting further
development of this field. In this paper, we
analyzed the similarity between text summa-
rization and text simplification and exploited
summarization data to help simplify. First, we
proposed an alignment algorithm to extract sen-
tence pairs from summarization datasets. Then,
we designed four attributes to characterize the
degree of simplification and proposed a method
to filter suitable pairs. We named these pairs
Sum4Simp (S4S). Next, we conducted human
evaluations to show that S4S is high-quality and
compared it with a real simplification dataset.
Finally, we conducted experiments to illustrate
that the S4S can improve the performance of
several mainstream simplification models, es-
pecially in low-resource scenarios.

1 Introduction

Text simplification and text summarization are two
major techniques aiming at improving text readabil-
ity (Margarido et al., 2008). The main objective
of text simplification is to reduce the complexity
of the text while keeping its meaning unchanged
(Alva-Manchego et al., 2020; Al-Thanyyan and
Azmi, 2021). Text summarization is to summa-
rize the main idea of the document in less space
(El-Kassas et al., 2021).

One of the major problems of text simplifica-
tion is the lack of high-quality aligned data, which
is essential for training most simplification mod-
els. Existing text simplification datasets are de-
rived from Wikipedia (Zhang and Lapata, 2017)
and Newsela (Xu et al., 2015). Researchers have
proposed various alignment algorithms to extract
complex-simple sentence pairs from articles (Jiang
et al., 2020). However, aligning sentences from
only two corpora hinders the acquisition of more

simplification data, which motivates us to explore
new ways to address this problem.

Text simplification usually involves the opera-
tions of keeping, deleting, reordering, etc.(Xu et al.,
2016) Text summarization does not require a sum-
mary to be a simple text. Nevertheless, when we
analyzed the datasets of text summarization metic-
ulously, we noticed that there are many instances
where several sentences in the original document
are merged into one sentence, and complex parts
are rewritten, as shown in Table 1. Then, a question
arises naturally: to what extent is text summariza-
tion correlated with text simplification? Further-
more, is it feasible to extract data from text summa-
rization to help low-resource text simplification?

Example

document
What’s Hollywood’s role in all of this? The
same as it has always been – to make
money.

summary
What does Hollywood want? To make
money, of course.

Table 1: The bolded parts indicate that the complex
sentence in the document has been rewritten.

In this study, we investigated the above problems
with a three-step procedure: (1) Extract aligned
sentence pairs from summarization datasets. (2)
Select sentence pairs in which the source sentences
have been simplified. (3) Evaluate the quality of
these sentence pairs for text simplification.

To extract aligned sentence pairs from the sum-
marization datasets, we proposed an alignment al-
gorithm based on the similarity between sentences.
Then, we designed four attributes and a method to
filter sentence pairs suitable for text simplification.
We performed human evaluations and conducted
experiments using mainstream simplification mod-
els on these pairs to show that they are of high
quality and can help simplification.

To summarize, our contributions include: (1) We
are the first to exploit summarization data to help

39



text simplification, verifying a new source of sim-
plification data. (2) We proposed an alignment al-
gorithm and a method for filtering complex-simple
sentence pairs. We named them Sum4Simp (S4S).
(3) We performed both empirical analysis and hu-
man evaluations on S4S to verify its quality, and
the experimental results with several simplification
models show the benefits of S4S for text simplifi-
cation. The S4S dataset and codes are released at
https://github.com/RLSNLP/Sum4Simp.

2 Related Work

2.1 Simplification Models

Early text simplification models are mainly based
on statistic machine learning (Wubben et al., 2012;
Kauchak, 2013; Narayan and Gardent, 2014). In
recent years, many scholars have proposed mod-
els based on deep learning technology, such as
NTS(Nisioi et al., 2017), DRESS-LS(Zhang and
Lapata, 2017), EditNTS(Dong et al., 2019), AC-
CESS(Martin et al., 2020a), which advance the
development of text simplification.

2.2 Mine Data for Simplification

The above models require a large number of aligned
texts for training. Nevertheless, text simplification
is a low-resource problem. Some works aim at
designing unsupervised models (Qiang and Wu,
2019; Surya et al., 2019; Kumar et al., 2020; Laban
et al., 2021). While other works try to mine aligned
sentence pairs from more data to help train the mod-
els. Martin et al. (2020b) proposed unsupervised
mining technology to create multi-language sim-
plification corpora automatically. Lu et al. (2021)
used the back-translation approach to construct a
large-scale pseudo sentence simplification corpus.

2.3 Relationship with Text Summarization

For a long time, studies on text simplification and
text summarization have been conducted separately.
Nevertheless, there exist circumstances where com-
plex texts not related to the main idea are removed
when summarizing a document, and multiple sen-
tences can be compressed and rewritten into a sin-
gle sentence. Such a summarization can also be
regarded as a simplification. Ma and Sun (2017)
proposed a semantic relevance-based model to im-
prove the results of simplification and summariza-
tion. Zaman et al. (2020) pointed out some similari-
ties between the two tasks and defined the new task
of generating simplified summaries. Up to now,

none of the work has specifically analyzed the rela-
tionship between summarization and simplification.
It is still worth investigating whether the data from
summarization can help simplification.

3 Mine Sentence Pairs for Simplification
from Summarization Datasets

In this section, we will elaborate on how to extract
sentence pairs that are suitable for text simplifica-
tion from text summarization datasets. Text sum-
marization is a document-level task while text sim-
plification refers to a sentence-level task. Thus, we
proposed an algorithm to extract aligned sentence
pairs at first. Then, since not all aligned sentence
pairs are suitable for text simplification, we chose
four attributes and defined a set of rules to filter the
appropriate sentence pairs. The whole process is
shown in Figure 1.

3.1 Sentence Alignment Algorithm

Previous sentence alignment algorithms such as
CATS (Štajner et al., 2018) aim at sentence com-
pression (one complex sentence corresponds to
one simple sentence) or sentence splitting (a com-
plex sentence is split into several simple sentences).
They do not satisfy the requirement to align sen-
tence pairs from summarization datasets, where
one sentence in the summary corresponds to multi-
ple sentences in the document. Thus, we proposed
an alignment algorithm to address this problem.

Assume that there are m sentences in the doc-
ument and n sentences in the summary. For each
sentence di in the document and each sentence sj
in the summary, we first compute the similarity be-
tween the two sentences. We use SBERT (Reimers
and Gurevych, 2019) to achieve this. SBERT is a
pre-trained model based on BERT (Devlin et al.,
2019), in which the similarity of two input sen-
tences will be calculated rapidly. Then, we de-
fine the upper threshold of similarity Smax and the
lower threshold of similarity Smin. Smax is greater
than Smin and they are in the range [0,1]. Assume
that the maximum value of similarity between any
sentence in the document and sj is Dmax. If Dmax

is greater than Smax, we consider that the sentence
corresponding toDmax is very similar to sj . There-
fore, we keep sj as the target sentence and the
sentence corresponding to Dmax as the source sen-
tence, and they form an aligned sentence pair. If
Dmax is smaller than Smin, we consider that there
is no sentence in the document that is similar to sj .
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…restore calm to today 's increasingly volatile 
world . 
Speaking to CNN in Berlin , where he is attending 
anniversary celebrations , Gorbachev called for 
efforts to rebuild trust between East and West and for 
leaders to again work together for the common good . 
`` A lot depends on America , Europe , Russia -- they 
have to work together more productively , ‘’ he said .
`` We have to reestablish the cooperation…

Mikhail Gorbachev : America , Europe , Russia must 
work together more productively.
`` We have to reestablish the cooperation and the 
trust that has been destroyed , '' he says…

Summary

Document

SBERT

Alignment
Algorithm

d1

d2

s1 c1
0.64

c2
0.67

Source: Speaking to CNN in 
Berlin , where he is attending 
anniversary celebrations , 
Gorbachev called for efforts 
to rebuild trust between East 
and West and for leaders to 
again work together for the 
common good . `` A lot 
depends on America , 
Europe , Russia -- they have 
to work together more 
productively , ‘’ he said .

Target: Mikhail Gorbachev : 
America , Europe , Russia 
must work together more 
productively.

Aligned pair

Sentence 
Length

Word
Complexity

Word
Frequency

Simplification 
dataset

SARI
Value

Decision

T>Ts

Thus, we consider 
(d1+d2,s1) as a 
sentence pair suitable 
for text simplification

ϕ μ

ϕ<μ, t=1

Simplification 
model

Figure 1: The process of mining suitable sentence pairs from summarization datasets.

Thus, we do not keep sentence pairs related to sj .

Algorithm 1 Sentence alignment algorithm
1: Initialization: F and C are empty sets
2: for di in d1,d2,...,dn do
3: ci = SBERT(di,sj)
4: C.append(ci)
5: end for
6: if max(C)>Smax then
7: F.append(corresponding di of max(C))
8: else if Smax>max(C)>Smin then
9: F.append(corresponding di of max(C))

10: C.remove(max(C))
11: repeat
12: ci = SBERT(stitch(F,corresponding di of

max(C)),sj)
13: if ci>Sadd then
14: F.append(corresponding di of max(C))
15: C.remove(max(C))
16: end if
17: until ci ≤ Sadd or len(C)≥ Lmax

18: end if
Output: (F,sj) as an aligned sentence pair

If Dmax is greater than Smin and smaller than
Smax, we consider this to be the case where mul-
tiple sentences in the document correspond to sj .
We temporarily save the sentences corresponding
toDmax, and then find the sentence with the largest
similarity among the remaining sentences of the
document. We stitch this sentence with the sen-
tence we just saved according to the order of the
sentences in the document. We repeat this opera-
tion until the similarity between the stitched sen-
tences and sj is less than a threshold. We define
this threshold as Sadd, which takes values in the
range [Smin,Smax]. To prevent the problem of im-
balance where the length of the source sentence far
exceeds the length of the target sentence caused
by extracting too many sentences from the docu-
ment, we set Lmax. When the number of stitched
sentences reaches Lmax, we save these stitched
sentences as source sentences and sj as the target

sentence.

3.2 Four Attributes to Characterize
Simplification

Aligned sentence pairs obtained from Algorithm 1
are not always complex-simple ones, and an exam-
ple is given below:
Source sentence: Analysts say the Arab Spring has
made Dubai a safe haven for people in the Middle
East who worry about the turmoil elsewhere.
Target sentence: Analysts say the Arab Spring
has made Dubai a safe haven for those who worry
about the turmoil elsewhere.

This example is a real sentence pair mined from
the summarization data. It is an aligned sentence
pair but neither the attributive clause nor the com-
plex words such as “turmoil” are simplified. Thus,
it is not a good instance for text simplification. We
design four attributes to characterize whether the
source sentence is simplified or not, which are:
Sentence Length Intuitively, the longer the sen-
tence, the more complex the sentence is likely to
be. We calculate the length of the target sentence
minus the average length of the source sentences.
Word Complexity We believe that the lower the
average complexity of words, the simpler the sen-
tence. We use a lexicon of word complexity created
by Maddela and Xu (2018). Each word is scored by
humans. The higher the score, the more complex
the word. We calculate the value of the average
word complexity of the target sentence minus the
average word complexity of the source sentences.
Word Frequency Some words appear more fre-
quently in complex sentences, while some words
appear more frequently in simple sentences. The
more frequently a word appears in a simple sen-
tence, the more likely it is to be a simple one. We
calculate the odds ratio (Monroe et al., 2008) to
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represent the frequency of word occurrence. For
two corpus, namely i and j, their sizes are ni and
nj , respectively. For a word w, the occurrences in
corpus i and corpus j are wi and wj , respectively.
Then, the odds ratio r of word w between corpus i
and corpus j can be defined as:

r =
wi/wj
ni/nj

(1)

We use the simplification dataset to construct a
dictionary containing the odds ratios of the words.
For example, if we want to conduct experiments on
WikiLarge (Zhang and Lapata, 2017), we calculate
the odds ratio of the words occurring in the Wik-
iLarge training set. We calculate the value of the
average odds ratio of the target sentence minus the
average odds ratio of the source sentence.
SARI Value SARI (Xu et al., 2016) is an essential
evaluation method for text simplification. It takes
the original sentence, the simplified sentence, and
reference sentences into consideration. The SARI
value is an average of F1 scores of add and keep
operation and precision of delete operation. The
score for each operation is obtained by averaging
n-gram scores.

SARI =
1

3
Fadd +

1

3
Fkeep +

1

3
Pdel

Poperation =
1

4

∑

n=1,2,3,4

poperation(n)

Roperation =
1

4

∑

n=1,2,3,4

roperation(n)

Foperation =
2× Poperation ×Roperation
Poperation +Roperation

operation ∈ [add, keep, del]

(2)

We consider the source sentence of the aligned
sentence pairs as the original sentence and the tar-
get sentence as the simplified sentence. We need
to train a simplification model at first. For ex-
ample, we trained a model like ACCESS (Mar-
tin et al., 2020a) on the WikiLarge training set.
Then, we input the source sentences into the simpli-
fication model and generate simplified sentences.
These simplified sentences are used as reference
sentences. Finally, the SARI values are calculated.

3.3 Quantify Simplicity and Filter Suitable
Sentence Pairs

For each attribute, we propose a method to quantify
the simplicity of a sentence. Our method is based

on a hypothesis: a reference simplification dataset
performs approximately normally distributed on
each attribute. Simplification datasets can contain
hundreds of thousands of instances, in line with the
concept of large samples in statistics. Therefore,
we believe this hypothesis is reasonable.

Take the sentence length attribute as an example.
We first calculate the mean µ and standard devia-
tion σ of the sentence length of the training set of
a reference dataset (e.g. WikiLarge). For a random
variable X, the probability density function f(x)
can be obtained. If the ratio of sentence length for
a sentence pair is ϕ, its score t on this attribute is:

t =

{
1, ϕ <= µ

2× (0.5−
∫ ϕ
µ f(x)dx), ϕ > µ

(3)

t =

{
2× (0.5−

∫ µ
ϕ f(x)dx), ϕ < µ

1, ϕ >= µ
(4)

f(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
(5)

The mathematical significance is that if ϕ <= µ,
the simplification degree of the sentence pair is
greater than the average simplification degree of
the simplification dataset on this attribute. Thus,
we give a score of 1 to t. If ϕ > µ, we subtract
the proportion of sentence pairs with a ratio greater
than µ and lower than ϕ that is in the simplifica-
tion dataset. Then, we perform a normalization
operation to obtain t. For attributes sentence length
(len), word complexity (comp), and word frequency
(freq), a lower ϕ indicates a greater degree of sim-
plification. We use Equation (3) to calculate t. For
attribute SARI value (sari), a higher ϕ indicates a
greater degree of simplification. We use Equation
(4) to calculate t.

To make a final decision, the scores on each at-
tribute are weighted with α and summed to obtain
T for a sentence pair, indicating the extent of sim-
plification of the source sentence. We set a thresh-
old value Ts to control the extent of simplification.
When T>Ts, we consider the sentence pair suitable
for the task of text simplification.

T =
∑

i∈Attr
αiti

Attr = [len,comp, freq, sari]

(6)

We exploit and filter sentence pairs from the
CNN/Daily Mail summarization dataset (Nallapati
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Figure 2: Distributions of the ratio of sentence length and average word complexity. We smoothed the results by
using a Gaussian kernel. Sentences from S4S are more compressed than in WikiLarge. Sentences where the words
become more complex are also less than in WikiLarge.

et al., 2016), which contains more than 300,000
documents and corresponding summaries from
news stories in CNN and Daily Mail. We name
these mined sentence pairs Sum4Simp (S4S).

4 Quantitative Analysis

In this section, we want to show that Sum4Simp
(S4S) is high-quality. We conducted two human
evaluations and performed statistics on S4S, com-
paring it with real simplification datasets.

4.1 Human Evaluations

First, we want to evaluate the alignment quality of
the sentence pairs obtained in Section 3.1. Follow-
ing Hwang et al. (2015), we defined the quality of
alignment into four classes: Good, Good partial,
Partial, and Bad. Due to the space limit, details and
examples are demonstrated in Table 10.

We randomly selected sentence pairs from the
aligned pairs obtained by our proposed alignment
algorithm. Then, we designed a baseline that does
not use our proposed alignment algorithm. When
the similarity calculated by SBERT between a sen-
tence in the document and a sentence in the sum-
mary is greater than 0.6, we kept this sentence in
the document. As we introduced in Section 3.1,
the CATS method (Štajner et al., 2018) may not be
suitable for aligning sentence pairs from summa-
rization datasets. However, we used it as a baseline.

We used the two baseline methods described
above to obtain aligned sentence pairs from sum-
marization datasets. What’s more, we randomly se-
lected sentence pairs from a simplification dataset
named WikiLarge (Zhang and Lapata, 2017) for
comparison. The results are shown in Figure 3.

We considered Good and Good partial to be
acceptable quality. The sentence pairs obtained by

Figure 3: Human evaluation results of data obtained
by three alignment methods and WikiLarge. We ran-
domly selected 50 sentence pairs from each source of
data. Then, we hired three workers to evaluate the 200
sentence pairs individually.

our proposed alignment algorithm have the highest
percentage in these two levels. While WikiLarge
has the most sentence pairs with a Good level, it
also has the most sentence pairs with a Bad level.
Xu et al. (2015) pointed out that data mined from
Wikipedia is not always of high quality.

Then, we want to show that the final sentence
pairs obtained in Section 3.3 are more suitable for
simplification. We randomly selected 50 sentence
pairs that are only aligned and 50 sentence pairs
from S4S. We also randomly selected 50 sentence
pairs from WikiLarge for comparison.

Following Dong et al. (2019), we used two indi-
cators as the criteria: (1) Simplicity: Is the target
sentence simpler than the source sentence? (2)
Adequacy: Are the source sentence and target sen-
tence fluent and grammatically correct? Another
indicator, Meaning, can be regarded as the eval-
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uation of alignment quality, so we did not repeat
it. The results are shown in Table 2. The sentence
pairs from S4S receive the highest Simplicity score,
significantly higher than the aligned-only pairs and
WikiLarge, indicating the effectiveness of the pro-
posed filtering method.

Simplicity↑ Adequacy↑
WikiLarge 3.11** 4.6**
Aligned only 3.2** 4.81
S4S 3.49 4.94

Table 2: Human evaluation results of data obtained by
two methods and WikiLarge. We hired three workers
to evaluate individually. Student t-tests were performed
and results significantly different from S4S were marked
with **(p<0.01).

4.2 Statistics and Comparison

We used three dimensions, sentence length, aver-
age word complexity, and odds ratio of cue words,
to compare the sentence pairs from S4S with those
from WikiLarge. The ratio of sentence length is
calculated by dividing the length of the simplified
sentence by the length of the original sentence. The
ratio of average word complexity is calculated by
subtracting the average word complexity of the
original sentence from the average word complex-
ity of the simplified sentence.

We randomly selected 10,000 sentence pairs
from WikiLarge and S4S, respectively. From Fig-
ure 2, in S4S, the number of sentence pairs with a
length ratio greater than one has been significantly
decreased compared to WikiLarge, indicating that
sentences are more compressed. What’s more, the
vast majority of the ratios of average word com-
plexity are less than zero, suggesting a general
simplification at the word level in S4S.

Sentence splitting, a common operation in text
simplification, can be represented by the odds ratio
of conjunctions and cue words (Siddharthan, 2003).
The definition of the odds ratio is detailed in Equa-
tion (1). When the odds ratio of conjunctions is
much less than 1, and the odds ratio of cue words
is much greater than 1, a complete degree of sim-
plification is involved. Following Xu et al. (2015)
and Sun et al. (2021), we calculated the odds ratio
of conjunctions and cue words in WikiLarge and
S4S, as shown in Table 3.

WikiLarge S4S
cue words odds ratio↑ cue words odds ratio↑

also 1.15 also 1.13
then 1.16 then 1.21
still 1.01 still 1.41

Wikilarge S4S
conjunctions odds ratio↓ conjunctions odds ratio↓

and 0.87 and 0.95
as 0.72 as 0.80

since 1.01 since 0.96
because 2.59 because 1.05
when 1.32 when 1.09

if 1.30 if 1.38
but 1.18 but 1.11

though 0.71 though 0.62
although 0.46 although 0.40

Table 3: The odds ratio of cue words and conjunctions.
The bolded parts indicate that S4S performs better than
WikiLarge. Some words, such as “hence”, occur too
infrequently to be statistically meaningful.

5 Experimental Setup

5.1 Datasets

We used two commonly used simplification
datasets, WikiLarge (Zhang and Lapata, 2017) and
WikiSmall (Zhu et al., 2010), to demonstrate the
usefulness of the sentence pairs mined from sum-
marization data. The training set of WikiLarge
contains more than 296k sentence pairs, which
is larger than that of WikiSmall containing 88k
sentence pairs. We used Turkcorpus (Xu et al.,
2016) as the validation and the test set for Wiki-
Large. Each of the 2000 validation instances and
the 359 test instances has 8 reference sentences.
We used the original validation set and test set for
WikiSmall, with 205 validation instances and 100
test instances.

5.2 Evaluation Metrics and Models

We took SARI (Xu et al., 2016) and BERTScore
(Zhang et al., 2019) as the evaluation metric in this
paper. SARI is the most popular automatic evalua-
tion metric for text simplification. The SARI value
is obtained by averaging the Fkeep, Pdelete, and
Fadd score. We used the EASSE package (Alva-
Manchego et al., 2019) to get SARI values. A re-
cent study recommends using BERTScoreprecision
to evaluate the quality of the system outputs prior
to using SARI to measure simplification (Alva-
Manchego et al., 2021). FKGL (Kincaid et al.,
1975) was used to measure text readability but
was proven to be inappropriate for evaluating text
simplification recently (Tanprasert and Kauchak,
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Models
WikiLarge S4S WikiLarge+OA WikiLarge+S4S

SARI↑ Fkeep Pdelete Fadd SARI↑ Fkeep Pdelete Fadd SARI↑ Fkeep Pdelete Fadd SARI↑ Fkeep Pdelete Fadd

Transformer 36.95* 70.80 36.91 3.15 34.43** 58.54 43.68 1.08 36.75* 70.79 36.38 3.06 37.85 71.11 39.15 3.27
BART 37.99** 72.53 37.85 3.59 36.21** 64.70 42.60 1.34 37.71** 73.02 36.81 3.31 39.20 70.99 42.31 4.30
ACCESS 39.67* 71.20 42.69 5.12 36.20** 65.62 41.53 1.44 39.46* 69.39 43.96 5.03 40.71 71.26 44.06 6.81

Models
WikiSmall S4S WikiSmall+OA WikiSmall+S4S

SARI↑ Fkeep Pdelete Fadd SARI↑ Fkeep Pdelete Fadd SARI↑ Fkeep Pdelete Fadd SARI↑ Fkeep Pdelete Fadd

Transformer 36.35* 66.69 40.53 1.82 36.75 60.23 49.49 0.53 36.38* 64.46 40.54 4.15 38.57 66.56 43.69 5.46
BART 35.13* 64.94 35.86 4.59 34.13* 61.06 39.95 1.39 34.65* 67.09 31.92 4.93 36.58 67.39 37.14 5.22
ACCESS 35.35* 65.01 38.50 2.53 34.63** 51.07 51.76 1.05 35.67* 60.95 44.29 1.77 38.28 58.45 53.64 2.73

Table 4: Results of three simplification models trained on four different training sets. The test sets in the upper and
lower tables are Turkcorpus and WikiSmall, respectively. “+” represents the operation to mix the two datasets and
sort them randomly. OA is a set of sentence pairs with a similar size to S4S drawn from aligned but not filtered
sentence pairs. The bolded part indicates the training set that achieves the best result for each model. Student t-tests
were performed, and SARI values that were significantly different from WikiLarge+S4S and WikiSmall+S4S were
marked with *(p<0.05) or **(p<0.01).

2021). BLEU (Papineni et al., 2002) has been
proven to be unsuitable for evaluating text sim-
plification (Sulem et al., 2018). Therefore, we did
not report FKGL values and BLEU values.

We selected three representative models - Trans-
former (Vaswani et al., 2017), BART (Lewis et al.,
2020), and ACCESS (Martin et al., 2020a) to con-
duct experiments. Transformer and BART perform
strongly for many generation tasks. ACCESS is a
simplification model proposed recently and it uses
explicit tokens related to different attributes to con-
trol the process of simplification.

5.3 Training Details

We used the Huggingface Transformers (Wolf et al.,
2020) to implement the Transformer model and the
BART model. We used the original code to imple-
ment the ACCESS model. We used four Nvidia
A40 GPUs for training. We reported the results of
the model on the test set which has the best SARI
value on the validation set.

More details can be found in Appendix A.

6 Experimental Results

6.1 Results on Existing Test Sets

We designed four types of training sets and tested
the three simplification models on existing test sets.
We first measured the outputs of each model using
BERTScoreprecision and found that the values are
very close to 1, indicating that the outputs are of
high quality. Then, the SARI values are shown in
Table 4.

From the upper table, Sum4Simp (S4S) mixed
with the WikiLarge training set improves the perfor-
mance of all three simplification models on Turk-

corpus. To be more specific, in terms of the SARI
metric, ACCESS is improved by 1.04 points, BART
is improved by 1.21 points, and Transformer is im-
proved by 0.90 points. We have used the original
codes and followed the original hyper-parameter
settings, but the SARI value of the ACCESS model
trained on WikiLarge is lower than the results re-
ported by Martin et al. (2020a). We think this
is because we lowered the training data and used
the NLTK package to split the words. Meanwhile,
seen from the lower table, S4S mixed with the Wik-
iSmall training set also improves the performance
of all three models on the test set of WikiSmall.
The improvement on the WikiSmall test set is more
significant than that on the Turkcorpus test set. In
terms of the SARI metric, ACCESS is improved by
2.93 points, BART is improved by 1.45 points, and
Transformer is improved by 2.22 points. Example
outputs are given in Table 11. It may seem strange
that the SARI value of Transformer is higher than
that of BART. However, we noticed that the SARI
value of BART is approximately 3 points higher
than that of Transformer on the validation set, mak-
ing the experimental results remain convincing.

The size of the training set of WikiLarge is much
larger than that of WikiSmall. Therefore, the mod-
els were more fully trained on WikiLarge. While
the size of the training set of WikiSmall is com-
paratively smaller, S4S helps the model learn to
simplify sentences better and results in a more sig-
nificant improvement.

OA was designed to verify that the improve-
ment of the results comes from high-quality mined
sentence pairs rather than mere data expansion.
Compared with the original training set, the per-
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Models
S4S WikiLarge S4S+WikiLarge

SARI↑ Fkeep Pdelete Fadd SARI↑ Fkeep Pdelete Fadd SARI↑ Fkeep Pdelete Fadd

Transformer 44.75 53.32 74.72 6.19 32.59 45.38 51.78 0.61 43.61 52.24 73.91 4.68
BART 46.42 57.20 76.62 5.43 32.98 47.12 50.10 1.70 46.51 57.24 73.91 4.68
ACCESS 40.19 45.85 72.82 1.88 30.10 44.30 43.99 2.01 38.45 43.35 70.71 1.30

Table 5: Results on three simplification models trained on three different training sets. The valid and test sets come
from S4S.

formances on WikiLarge+OA and WikiSmall+OA
were not improved and even dropped for the model
like BART. The results illustrate that the method for
filtering suitable sentence pairs for simplification
purposes is essential.

If we only used S4S as the training set, the SARI
values obtained are 2.5 points lower than the model
trained with WikiLarge and 0.5 points lower than
the model trained with WikiSmall on average. We
believe the performance gap is due to domain dif-
ferences: S4S comes from news stories written
by professional journalists, while WikiLarge and
WikiSmall come from Wikipedia. Overall, though
S4S comes from a different domain, it can still be
beneficial to the existing simplification datasets.

6.2 Results on S4S Test Set

In this subsection, we treat S4S as a standard sim-
plification dataset that contains more than 243K
sentence pairs. We divided the train/dev/test set
as 240k/2k/1k, respectively. We would like to see
the performance of simplification models on the
S4S dataset and we want to know if the WikiLarge
dataset from a different domain can improve the
performance. We designed three types of training
sets. Then, we conducted experiments with each of
them to train the three simplification models.

According to Table 5, all three simplification
models trained on the S4S dataset have significantly
higher SARI values compared to the results in Ta-
ble 4. When we mixed the training set of S4S and
WikiLarge, the SARI values dropped by 1 point
on average compared to using the S4S training set
alone. Besides, when we only used the WikiLarge
training set, the SARI values dropped by an aver-
age of more than 10 points. We also gave example
outputs in Table 12. Above all, we believe the
quality of the S4S dataset is higher than that of
the Wikipedia-based datasets. The S4S dataset was
given in the supplementary materials.

6.3 Results on Extremely Low-resource
Scenarios

In many cases simplification data is hard to obtain
(Aprosio et al., 2019; Maruyama and Yamamoto,
2019), and we took a small amount of sentence
pairs from the training set of WikiLarge to simulate
an extremely low-resource situation. We reduced
the size of the WikiLarge training set to 50%, 20%,
10%, 5%, and 1%, respectively. We then conducted
experiments using the ACCESS model trained on
the size-reduced WikiLarge data and the mixture of
size-reduced WikiLarge and S4S. The results are
shown in Figure 4.
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Figure 4: Experimental results of extremely low-
resource experiments on Turkcorpus test set.

When the size of the training set is relatively
small (less than 20%, about 60,000 sentence pairs),
S4S can improve the results significantly. The re-
sults prove that the S4S is effective in helping text
simplification when data is difficult to obtain.

6.4 Ablation Study

In our proposed sentence filtering method, we used
four attributes to control the simplicity of the sen-
tence pairs extracted from summarization datasets.
We removed the attributes one by one and then used
the remaining three attributes as new rules to filter
simple sentence pairs. We set Ts to 2.75 in the
experiment. The filtered sentence pairs are mixed
with the WikiLarge training set and then used to
train the ACCESS model.
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Experiment SARI↑
WikiLarge+S4S 40.71
WikiLarge 39.67
Without word complexity 39.32(-1.39)
Without sentence length 39.63(-1.08)
Without word frequency 37.70(-3.01)
Without SARI value 38.78(-1.93)

Table 6: Ablation study on Turkcorpus test set.

The results are illustrated in Table 6. In this ex-
periment, the odds ratio attribute has the greatest
effect on the results. When this attribute is miss-
ing, the SARI value decreases by 3.01 points. The
sentence length attribute has the least effect on the
results. When this attribute is missing, the SARI
value drops by 1.08 points. The results also show
that the four attributes of our design are meaning-
ful. They all play a significant role in filtering the
simplified sentence pairs.

7 Conclusion

In this paper, we are committed to mining data
from text summarization datasets to help text sim-
plification. We proposed an alignment algorithm
and a new method to filter suitable sentence pairs.
We named these pairs Sum4Simp (S4S). We con-
ducted human evaluations on S4S and performed
experiments on mainstream simplification models
to illustrate that the S4S is high-quality and can
help text simplification. In future work, we will
apply our method to mine more simplification data
from other summarization datasets.
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Limitations

We considered the consumption of computational
resources as the major limitation of our method.
To extract aligned sentence pairs from summariza-
tion datasets, we need to calculate the similarity
between each sentence in the summary and each

sentence in the document, which makes the time
complexity of the alignment algorithm be O(n2).
We ran the alignment algorithm with an Intel Xeon
processor. On average, there are 40 sentences in
a document and 4 sentences in a summary. There
are 312K documents in total with corresponding
summaries. The total running time is 42,153s. We
have released the aligned sentence pairs to help
future research.

Second, to calculate the SARI values in Section
3.2, we need to train a simplification model in ad-
vance, which can consume GPU resources. For
example, if we train a BART model on the Wik-
iLarge dataset and set the max epochs to 10, the
training time spent on an Nvidia A40 is about 3
hours.

References
Suha S Al-Thanyyan and Aqil M Azmi. 2021. Auto-

mated text simplification: A survey. ACM Computing
Surveys (CSUR), 54(2):1–36.

Fernando Alva-Manchego, Louis Martin, Carolina Scar-
ton, and Lucia Specia. 2019. Easse: Easier automatic
sentence simplification evaluation. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages
49–54.

Fernando Alva-Manchego, Carolina Scarton, and Lucia
Specia. 2020. Data-driven sentence simplification:
Survey and benchmark. Computational Linguistics,
46(1):135–187.

Fernando Alva-Manchego, Carolina Scarton, and Lucia
Specia. 2021. The (un) suitability of automatic eval-
uation metrics for text simplification. Computational
Linguistics, 47(4):861–889.

Alessio Palmero Aprosio, Sara Tonelli, Marco Turchi,
Matteo Negri, and Mattia A Di Gangi. 2019. Neural
text simplification in low-resource conditions using
weak supervision. In Proceedings of the Workshop
on Methods for Optimizing and Evaluating Neural
Language Generation, pages 37–44.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Yue Dong, Zichao Li, Mehdi Rezagholizadeh, and
Jackie Chi Kit Cheung. 2019. Editnts: An neural

47



programmer-interpreter model for sentence simplifi-
cation through explicit editing. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 3393–3402.

Wafaa S El-Kassas, Cherif R Salama, Ahmed A Rafea,
and Hoda K Mohamed. 2021. Automatic text sum-
marization: A comprehensive survey. Expert Systems
with Applications, 165:113679.

William Hwang, Hannaneh Hajishirzi, Mari Ostendorf,
and Wei Wu. 2015. Aligning sentences from stan-
dard wikipedia to simple wikipedia. In Proceedings
of the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 211–217.

Chao Jiang, Mounica Maddela, Wuwei Lan, Yang
Zhong, and Wei Xu. 2020. Neural crf model for
sentence alignment in text simplification. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 7943–7960.

David Kauchak. 2013. Improving text simplification
language modeling using unsimplified text data. In
Proceedings of the 51st annual meeting of the associ-
ation for computational linguistics (volume 1: Long
papers), pages 1537–1546.

J Peter Kincaid, Robert P Fishburne Jr, Richard L
Rogers, and Brad S Chissom. 1975. Derivation of
new readability formulas (automated readability in-
dex, fog count and flesch reading ease formula) for
navy enlisted personnel. Technical report, Naval
Technical Training Command Millington TN Re-
search Branch.

Dhruv Kumar, Lili Mou, Lukasz Golab, and Olga Vech-
tomova. 2020. Iterative edit-based unsupervised sen-
tence simplification. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7918–7928.

Philippe Laban, Tobias Schnabel, Paul Bennett, and
Marti A Hearst. 2021. Keep it simple: Unsupervised
simplification of multi-paragraph text. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 6365–6378.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Xinyu Lu, Jipeng Qiang, Yun Li, Yunhao Yuan, and
Yi Zhu. 2021. An unsupervised method for building
sentence simplification corpora in multiple languages.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 227–237.

Shuming Ma and Xu Sun. 2017. A semantic relevance
based neural network for text summarization and text
simplification. arXiv preprint arXiv:1710.02318.

Mounica Maddela and Wei Xu. 2018. A word-
complexity lexicon and a neural readability ranking
model for lexical simplification. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 3749–3760.

Paulo RA Margarido, Thiago AS Pardo, Gabriel M An-
tonio, Vinícius B Fuentes, Rachel Aires, Sandra M
Aluísio, and Renata PM Fortes. 2008. Automatic
summarization for text simplification: Evaluating
text understanding by poor readers. In Companion
Proceedings of the XIV Brazilian Symposium on Mul-
timedia and the Web, pages 310–315.

Louis Martin, Éric Villemonte De La Clergerie, Benoît
Sagot, and Antoine Bordes. 2020a. Controllable sen-
tence simplification. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, pages
4689–4698.

Louis Martin, Angela Fan, Éric de la Clergerie, Antoine
Bordes, and Benoît Sagot. 2020b. Multilingual un-
supervised sentence simplification. arXiv preprint
arXiv:2005.00352.

Takumi Maruyama and Kazuhide Yamamoto. 2019. Ex-
tremely low resource text simplification with pre-
trained transformer language model. In 2019 Inter-
national Conference on Asian Language Processing
(IALP), pages 53–58. IEEE.

Burt L Monroe, Michael P Colaresi, and Kevin M Quinn.
2008. Fightin’words: Lexical feature selection and
evaluation for identifying the content of political con-
flict. Political Analysis, 16(4):372–403.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
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A More Details

In Algorithm 1, for Smax, Sadd, and Smin, we first
observed the alignment results to obtain a rough
range [0.5,0.8]. In this range, we set the step size
to 0.1 and then chose four combinations of param-
eters: (0.8, 0.7, 0.6), (0.8, 0.7, 0.5), (0.8, 0.6, 0.5),
and (0.7, 0.6, 0.5). We used human evaluation on
50 sentence pairs for each combination to deter-
mine which combination is the best. Finally, we set
Smax to 0.8, Smin to 0.6, and Sadd to 0.7. Lmax is
set to 3 as an empirical value. If it is too large, the
model will be more concerned with deletion than
simplification; if it is too small, the information in
the original sentences will lose.

For the method of filtering suitable sentence
pairs in Section 3.3, we set αi to 0.25 because
it is difficult to prove that one of the four attributes
is more important than the other. We performed a
parameter research for Ts from 3.5 to 3.8 with a
step size of 0.05.

We have released the aligned sentence pairs ob-
tained in Section 3.1 for future research. So future
researchers only need to set Ts when conducting
experiments.
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To obtain Table 4, we first trained models with
existing simplification datasets (e.g., train ACCESS
with WikiLarge). Then, we selected the model that
performed best on the validation set to calculate
the score t for the SARI value attribute mentioned
in Section 3.2. In this way, we got S4S. We then
trained models with WikiLarge+S4S to obtain the
results in the fourth column of the Table 4. The
S4S dataset in Section 6.2 is obtained after we first
trained ACCESS with WikiLarge. We will also
release this version of S4S as a standard simplifica-
tion dataset.

Parameter Value Parameter Value
epochs 30 max source length 256

batchsize 64 max target length 256
optimizer Adam dropout 0.1

learning rate 5e-5 dmodel 768
warm up steps 2000 attention heads 12

Table 7: Parameters of the Transformer model.

Parameter Value Parameter Value
epochs 10 max source length 256

batchsize 64 max target length 256
optimizer Adam dropout 0.1

learning rate 5e-5 dmodel 768
warm up steps 2000 attention heads 12

Table 8: Parameters of the BART model.

Parameter Value Parameter Value
max epochs 100 label smoothing 0.54
max tokens 5000 clip norm 0.1

optimizer Adam dropout 0.2
learning rate 1.1e-4 weight decay 1e-4

warm up steps 1000 attention heads 8

Table 9: Parameters of the ACCESS model.

B Definition of Alignment Quality

C Example Outputs
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Good The semantics of the source sentence and the target sentence completely match, possibly with small omissions.
Source Sets in children ’s bedrooms or left on as background noise could be particularly damaging.
Target Devices in bedrooms or left on as background noise is more damaging.

Good partial
Source and target sentence mean basically the same thing. However, source or target sentence may contain
additional information that is not contained in the other sentence.

Source
The tape was played at a hearing Monday to determine whether or not the confession can be used as evidence
at Hernandez ’s murder trial - not whether the statements are true. Judge Maxwell Wiley must decide whether
Hernandez was properly advised of his rights.

Target
The judge must decide not whether the confession is true, but whether it can be permitted to be used as
evidence at Hernandez ’s murder trial.

Partial
Source and target sentence are discussing two unrelated concepts, but share short related phrases that do not
match considerably.

Source
A non-profit group called Women On 20s, formed to convince President Barack Obama to put a woman’s
image on the $20 note, already has done some polling.

Target There is a group called Women On 20s.
Bad Source and target sentence are discussing two unrelated concepts.
Source Leicester City have lost just one of their last seven league meetings with Hull City.
Target 88 % of British grandmothers consider themselves to be a Glam-Ma.

Table 10: Definition of the alignment quality. Example of each level of quality is also given.

Complex(input) in computing , a protocol is a set of rules which is used by computers to communicate with each other across a network .
Simple(reference) in computing , a protocol is the language used by computers while talking with each other .
WikiSmall in computing , a protocol is a set of rules which is used by computers to communicate with each other across a network .
S4S the process is a set of rules which is used by computers to communicate with each other across a network
WikiSmall+OA in computing , a protocol is a set of rules which is used by computers to provide with each other across a network .
WikiSmall+S4S in computing , a protocol is used by computers to communicate with each other across a network .

Table 11: An example of sentences generated by ACCESS. When the training set is WikiSmall, the complex sentence
is not simplified. When the training set is S4S or WikiSmall+OA, the generated sentences contain grammatical errors
and change the meaning of the complex sentence. The sentence generated by ACCESS trained on WikiSmall+S4S
can be regarded as a simplified sentence.

Complex(input) barcelona manager luis enrique -lrb- pictured -rrb- insisted afterwards he was right to start uruguay striker suarez
Simple(reference) barcelona boss luis enrique says he was right to start the uruguay player
S4S barcelona boss luis enrique says he was right to start uruguay striker
WikiLarge barcelona manager luis enrique -lrb- pictured - pictured he wanted to start uruguay striker suarez .
S4S+WikiLarge barcelona manager luis enrique said he was right to start right to start uruguay suarez suarez

Table 12: An example of sentences generated by ACCESS when S4S is regarded as a standard simplification dataset.
When the training set is WikiLarge, the generated sentence contains grammatical errors and changes the meaning of
the complex sentence. When the training set is S4S+WikiLarge, the generated sentence also contains grammatical
errors and is less simple than the generated sentence when the training set is S4S only. This example illustrates that
the quality of S4S is higher than that of WikiLarge.
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Abstract

Automatic headline generation systems have
the potential to assist editors in finding in-
teresting headlines to attract visitors or read-
ers. However, the performance of headline
generation systems remains challenging due to
the unavailability of sufficient parallel data for
low-resource languages like Bengali and the
lack of ideal approaches to develop a system
for headline generation using pre-trained lan-
guage models, especially for long news arti-
cles. To address these challenges, we present
Shironaam, a large-scale dataset in Bengali
containing over 240K news article-headline
pairings with auxiliary data such as image cap-
tions, topic words, and category information.
Unlike other headline generation models, this
paper uses this auxiliary information to bet-
ter model this task. Furthermore, we utilize
the contextualized language models to design
encoder-decoder model for Bengali news head-
line generation and follow a simple yet cost-
effective coarse-to-fine approach using topic-
words to retrieve important sentences consid-
ering the fixed length requirement of the pre-
trained language models. Finally, we conduct
extensive experiments on our dataset contain-
ing news articles of 13 different categories to
demonstrate the effectiveness of incorporating
auxiliary information and evaluate our system
on a wide range of metrics. The experimen-
tal results demonstrate that our methods bring
significant improvements (i.e., 3 to 10 percent-
age points across all evaluation metrics) over
the baselines1. Also to illustrate the utility and
robustness, we report experimental results in
few-shot and non-few-shot settings.

1 Introduction

News headlines can significantly affect the number
of visitors and play a crucial part in the life-cycle of

∗Equal contribution.
1Code, dataset, and model checkpoints: https://

github.com/dialect-ai/BenHeadGen

a news article (Murao et al., 2019). Therefore, rep-
resentative and interesting headlines are arguably
essential to any news document to grab the atten-
tion of potential readers (Mishra et al., 2021; Ao
et al., 2021). Nowadays, online and printed news
releases significantly increase the article’s visibil-
ity, support, and context by using multimedia con-
tent. As a picture is worth a thousand words, dig-
ital assets such as images and videos are the go-
to candidates for the thumbnails used in differ-
ent social media, blogs, and many other platforms.
The captions that go with the images or videos are
equally significant as the actual content. Captions
describing the images can clarify and enhance the
image, optimize news articles for search engines,
and improve the accessibility of the news for peo-
ple with vision impairments2.
Headline generation, given a news article, is a

special case of abstractive summarization (Yamada
et al., 2021), which involves sentence compression,
syntactic reorganization, sentence fusion, and lexi-
cal paraphrasing (See et al., 2017; Gehrmann et al.,
2018; Zhong et al., 2019; Nayeem et al., 2019; Nay-
eem and Chali, 2017b). Unlike text summaries,
which often feature many or single long sentences
to summarize a document’s important concepts
(Nayeem and Chali, 2017a), news headlines fre-
quently have a single short catchy statement to
grab the readers attention and entice them to read
the story. Even though Bengali is the seventh most
spoken language with approximately 337 million
speakers worldwide3 (Chakraborty et al., 2021;
Chowdhury et al., 2021), generating quality head-
lines for a low-resource language such as Bengali
is more challenging due to the unavailability of
large-scale human-annotated dataset (Haque et al.,
2016; Nayeem et al., 2018; Joshi et al., 2019).

2In this paper, we limit our focus to only captions to im-
prove the news headlines. Using multimodal information for
this task is left as possible future work.

3https://w.wiki/57
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Contextualized language models such as BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 1907),
T5 (Raffel et al., 2020) help improving several
downstream tasks in NLP, such as summarization,
question answering, and text classification. Un-
fortunately, these models suffer from a limitation
as they can handle input sequences up to a cer-
tain limit (Sun et al., 2019). As a result, this lim-
itation burdens some NLP tasks, especially where
the input is necessarily long (Kitaev et al., 2020),
such as transcript analysis of the phone calls, doc-
ument topic prediction, news headline generation,
etc. The most natural way to address this prob-
lem is to trim the input sequences to a maximum
length. However, trimming the long input docu-
ment is tricky, especially for headline generation.
The news articles usually maintain coherence and
relevant parts may be located at the bottom of the
document, which may prevent models from gener-
alizing well to positions beyond the cutoff point4.
In this paper, we utilize topic words to retrieve im-
portant sentences as a context for the BERT model
by following a simple yet cost-effective coarse-to-
fine approach.
We present Shironaam, a large-scale abstrac-

tive Bengali news article dataset that includes over
240K professionally annotated headline-article
pairings as well as auxiliary information such as
image captions, topic words, and category infor-
mation. Each sample can be represented as a tuple
of (article, image caption, topic-words, category,
headline). To the best of our knowledge, Shiron-
aam is the first Bengali news article dataset incor-
porating auxiliary information and a benchmark
for the news headline generation task. This cor-
pus has the potential to authorize and encourage
research on such a low-resource language, bring-
ing technological advancements to a previously un-
derserved community. Rather than the one-to-one
mapping (i.e., input is an article, and output is a
headline) used in the earlier works (Takase et al.,
2016; Zhang et al., 2018; Murao et al., 2019; Col-
menares et al., 2019; Song et al., 2020; Li et al.,
2021), we treat the headline generation task as a
three-to-one mapping with the inputs being an
image caption, a list of topic words, and an arti-
cle where the output is a headline. Based on the
transformer architecture, we utilize pre-trained lan-
guage models for generating headlines and present

4While Longformer (Beltagy et al., 2020) is a viable solu-
tion for this problem, it comes up with a high computational
cost, and pre-trained models aren’t available.

a new concept of fusing image caption parallelly
(Liu et al., 2020a) with the input article to support
the three-to-one mapping and to encode long doc-
uments. We design and compare numerous input
mechanism alternatives as part of the suggested
strategy. Extensive experiments on our proposed
dataset reveal that the suggested method is capa-
ble of generating high-quality news headlines (see
Section F in the Appendix) and brings significant
improvements over the state-of-the-art baselines
across all evaluation metrics (Table 5).
Our main contributions can be summarized as

follows:

• We provide Shironaam, a large-scale news
headline generation dataset of a low-resource
language i.e., Bengali containing over 240K
news headline-article pairings with auxiliary
information such as image captions, topic
words, and category information (Table 2).
Also, this dataset can potentially be used for
other tasks such as document categorization,
news clustering, keyword identification, etc.

• We present a new concept of incorporating
auxiliary information to model input with ar-
ticles to improve the quality of headlines.
We train an encoder-decoder model for this
task almost from scratch, which utilizes pre-
trained language model (Figure 1).

• We develop BenSim, an independent module
for measuring the semantic similarity among
Bengali sentences. We make use of the Ben-
Simmodule and utilize topic words to encode
long articles by following a simple yet effec-
tive approach (Figure 1(c)).

• To illustrate the utility and robustness, we also
evaluate the performance with few-shot set-
tings where the domains don’t have enough
training samples (Table 6).

2 The Shironaam Corpus

In this section, we present the first-of-its-kind cor-
pus (we name it Shironaam) for news headline
generation in Bengali like low-resource language.
This includes auxiliary information in addition to
the usual headline-article pairs. We explain the
curation process involving raw data crawling, pre-
processing, and cleaning.

5https://en.wikipedia.org/wiki/Jaccard_
index
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Category Train Valid Test Total Jaccard
(%)

Entertainment 16,104 365 1095 17,565 13.56
National 117,566 2,664 7,994 128,226 24.60
Nature 467 10 31 510 23.66
International 30,558 692 2,078 33,329 18.09
Sports 17,635 399 1,199 19,235 17.82
Economy 6,447 146 438 7,032 39.37
Life-Health 6,356 144 432 6,933 17.83
Miscellaneous 1,599 36 108 1,744 11.71
Opinion 3,501 79 238 3,819 38.41
Politics 15,018 340 1,021 16,380 23.02
Edu-Career 4,008 90 272 4,372 53.58
Science-Tech 1,046 23 71 1,141 22.95
Religion 269 6 18 294 71.59
Total/Avg. 220,574 4,994 15,012 240,580 28.94

Table 1: Our headline generation dataset (Shironaam)
distribution over 13 different domains. Jaccard scores5
represent the similarities of each domain in between the
image captions and headlines.

Features IndicNLG-BN Shironaam (ours)
Article ✓ ✓
Headline ✓ ✓
Category 7 ✓

Topic words 7 ✓
Image Caption 7 ✓
#Examples 142,731 240,580

Table 2: Feature-level comparison between IndicNLG-
BN (2022) and Shironaam dataset (ours).

2.1 Raw Data Crawling
We crawl around 900,000 raw data samples from
seven famous Bengali newspapers (names in Sec-
tion C in the Appendix) concentrating on certain
criteria, such as headline, article, image caption,
category, and topic words. Since each of the news-
papers mentioned above has it’s own professional
authors and distinct writing style, we consider mul-
tiple sources to prevent the bias of a particular an-
notation style. To ensure content diversity, we also
cover various domains from all the news dailies.
The majority of the news samples are extracted
from HTML bodies of the corresponding publica-
tions, while some are rendered using JavaScript.
However, two of them (see in Appendix Section C)
do not provide the archives on their websites; there-
fore, we collect the samples through their APIs.

2.2 Dataset Preprocessing
The overall crawled corpus contains a lot of noise,
such as irrelevant details about the publisher and
the date/time of the news in multiple formats, em-
bedded advertisements, phrases from different lan-
guages (especially English), reference URLs, in-
consistent bold sections, emoticons, extrinsic sym-
bols, and various Unicode representations. Thus,

Dataset % of novel n-gram
unigram bigram trigram 4-gram

Shironaam 26.59 66.12 82.71 86.49
IndicNLG

BN 46.38 78.92 90.39 94.77

Table 3: Percentage (%) of novel n-grams between
IndicNLG-BN (2022) and Shironaam dataset (ours).

we remove the date/time and the embedded items
using regular expressions. To preserve only the
Bengali texts, we construct a vocabulary of Ben-
gali unit characters and perform character level
matching in the article bodies and headlines. The
English numbers, however, are retained since they
are used frequently in regular Bengali texts.
The image captions sometimes include ex-

tra/irrelevant information (e.g., ছিব [Picture], সং-
গৃহীত [Collected], ফাইল ছিব [File Image], রয়টা-
সর্ [Reuters], ইন্টারেনট [Internet], পৰ্তীকী ছিব [Sym-
bolic Image], etc.)6, which are common in any
news article. Thus, we identify these repetitive
words using a simple frequency-based approach
over all the samples and remove them from the
image captions. Furthermore, we discard the sam-
ples whose captions are smaller than four words in
length; from our manual inspection, we observed
that these words often describe the named enti-
ties present in the image, such as name, location,
date/time, etc.
Different newspapers use different names to cat-

egorize their contents. Consequently, each domain
is represented with different category names in all
the news dailies. For extracting the categories, we
map them with their corresponding representative
domains and label each domain with it’s relevant
names. For instance, national, whole-country, city-
news, country, capital, city-roundup, south-city,
etc. are distinct categorical terms, but they can be
grouped easily under the national domain. Table 1
shows the distribution of the final domains in the
Shironaam corpus. We use sbnltk7 for tokeniz-
ing the documents into sentences. Finally, we dis-
card the samples where any of the information (i.e.,
headline, article, or image caption) is missing.

2.3 Dataset Statistics

After preprocessing the raw corpus, we have
240,580 news samples as a tuple of (headline, arti-
cle, image caption, topic words, category). To en-

6The square brackets contain the English translations.
7https://pypi.org/project/sbnltk
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Dataset Article Headline Image
Caption

Topic
Words

Average number of words
Shironaam 252.01 6.53 6.80 3.21
IndicNLG

BN 199.83 10.03 - -

Average number of sentences
Shironaam 20.05 1.00 1.04 -
IndicNLG

BN 15.19 1.19 - -

Vocabulary size
Shironaam 605,750 76,732 87,644 -
IndicNLG

BN 614,374 65,553 - -

Table 4: Quantitative statistics compared to IndicNLG-
BN (2022) and our proposed dataset Shironaam.

sure a balanced distribution, we maintain the ratio
of (92%- 220,574), (2% - 4994), and (6% - 15,012)
samples from all the categories to construct the
train, validation, and test set, respectively (see Ta-
ble 1). We compare our corpus with the only avail-
able benchmark, IndicNLG (Kumar et al., 2022),
for the news headline generation task in Bengali.
Since IndicNLG covers multiple languages, we
just keep the Bengali (BN) language portion for
comparison. Table 2 provides a high-level sum-
mary of both datasets.
Our Shironaam corpus establishes a new bench-

mark in terms of the corpus size compared to
IndicNLG (Kumar et al., 2022). It is important
to note that our corpus also contains auxiliary in-
formation such as image captions, topic words,
and article categories. Moreover, this can be used
not only in headline generation tasks but also in
some other tasks such as document categoriza-
tion, news clustering, keyword identification, etc.
To measure the abstractiveness, in Table 3, we
calculate the percentage of novel n-grams in ref-
erence headlines that are not present in the arti-
cle. Table 3 shows that the novelty level increases
with the number of grams, and the average scores
are comparable to the IndicNLG (Kumar et al.,
2022). A quantitative statistics presented in Ta-
ble 4 demonstrates that our Shironaam corpus con-
tains more compressed headlines against lengthier
articles compared to the IndicNLG, both in terms
of words and sentences. This highly compressed
nature of the headlines makes the task of headline
generation in low-resource language more chal-
lenging. In addition, the vocabulary size of our ar-
ticles is comparable with IndicNLG, whereas we
get a larger number of vocabularies in our head-
lines (see Table 4).

Therefore, the Shironaam corpus comprises a
diverse range of headline styles and provides the
largest collection of Bengali news articles. More-
over, it is the first benchmarking dataset in such
a low-resource language that includes auxiliary in-
formation in addition to the headline-article pairs.
We hope it will motivate further study and serve
as a baseline for future works on this task for this
low-resource language.

3 News Headline Generation

3.1 Task
We establish a new concept of incorporating auxil-
iary information in order to generate high-quality
headlines in Bengali, a low-resource language. In
the context of this generation task, we assume that
a) we have enough data with auxiliary information
to train a headline generation model in Bengali lan-
guage (can be referred to Shironaam corpus); b)
the auxiliary information refers to the image cap-
tions and topic words used in tagging documents;
c) we have access to a module that filters a docu-
ment based on the contextual similarity with a list
of topic words (we refer BenSim in Section 3.3).
The task can be formalized as follows. Given arti-
cle A, image caption C, and a set of topic words T
as input, our goal is to generate high-quality head-
line H for the corresponding news article.

3.2 Approach
To carry out the idea, we need several benchmarks
to compare with and evaluate our proposed hypoth-
esis. But, no SOTA benchmark is available for this
task in Bengali language8, except the IndicBART
(Dabre et al., 2022). So, we set multiple base-
lines (Section 4.2), both of extractive and abstrac-
tive types, that take article A as input and gener-
ate corresponding headline H as output. We fol-
low LEAD-1 and EXT-ORACLE approaches among
the extractive types, whereas from the abstractive
types, we initialize an encoder-decoder model for
Bengali language with a pre-trained encoder-only
checkpoint to skip the costly pre-training (Rothe
et al., 2020) 9. To train the encoder-decoder model
(BED), we use BanglaBERT (Bhattacharjee et al.,
2022a) as the encoder checkpoint. Additionally,
we utilize other pre-trainedmodels (i.e., BanglaT5

8We did not consider the extreme summarization models
since the style of a headline and a single-line summary is com-
pletely different.

9We refer the interested readers to Appendix (Section A)
for necessary background.
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Figure 1: Graphical illustration of our proposed headline generationmodels (a)BERT-based encoder-decoder (base-
line) (b) Our model incorporating image caption with the article (c) Our model uses BenSim to extract important
sentences (a.k.a., filtered article) based on topic words and incorporates filtered article with the image caption.

(Bhattacharjee et al., 2022b), IndicBART (Dabre
et al., 2022)) based on transformer architecture
(Vaswani et al., 2017). After comparing all the
baselines (see Section 4.2), we select the best per-
forming one for further ablations. Experimental
results (in Table 5) reveal that BED model outper-
forms other baselines, even though the fine-tuned
BanglaT5 (Bhattacharjee et al., 2022b) scores
competitively.

3.3 BERT-based Encoder-Decoder (BED)
A BED model consists of an encoder that has been
initialized with BERT, termed as BERTenc, cou-
pled with a decoder that has also been initialized
with BERT, which we call BERTdec. The initial-
izing point for each weight’s calculation is a pub-
lic BERT checkpoint. The only variable initialized
at random is the encoder-decoder attention (Rothe
et al., 2020).

Article Only In Figure 1(a), we implement the
basic version i.e., BED (base)model, which takes
word tokens of an article as a sequence of inputs
A1:n and describes a conditional distribution of tar-
get vectors H1:l of variable length l, in our case,
generated words for headline:

pθBERTenc,θBERTdec
(H1:l|A1:n). (1)

The input sequence A1:n is sent to the BERTenc
component, which then converts it into a sequence
of hidden states, A1:n. The mapping can be de-
fined as:

fθBERTenc
: A1:n → A1:n. (2)

The BERTdec component will simulates the condi-
tional probability distribution of the target vector

sequence H1:l, assuming that the sequence of en-
coded hidden states A1:n has been provided:

pθBERTdec
(H1:l|A1:n). (3)

Bayes’ rule lets us turn this distribution into a prod-
uct of the conditional probability distribution of the
target vector hi, given the encoded hidden states
A1:n and all the previous target vectors H0:i−1:

pθBERTdec
(H1:l|A1:n)

=
n∏

i=1

pθBERTdec
(hi|H0:i−1, A1:n).

(4)

All preceding target vectors H0:i−1 and the en-
coded hidden state sequence A1:n are mapped to
the logit vector Vi by the BERTdec. The next step
is to run the softmax operation on the logit vec-
tor Vi. This helps to define the conditional distri-
bution pθBERTdec

(hi|H0:i−1, A1:n) bymaking sure
that the distribution of the target vector hi depends
on the distributions of all previous target vectors
h0, . . . , hi−1:

pθBERTdec
(hi|H0:i−1, A1:n) = Softmax(Vi). (5)

The first target vector h0 is going to be represented
by a unique BOS vector that is referred to as the
“beginning-of-sentence”. After the conditional dis-
tribution pθBERTdec

(hi|H0:i−1, A1:n) has been set,
the output can be made in an auto-regressive way.
This makes it possible to define a mapping be-
tween an input sequence A1:n and an output se-
quence H1:l at the time of inference.

Fusing Article and Image Caption In order
to explore more ways to improve the quality
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of the generated headlines, we employ BED (w/
Article + Caption) model, which incorpo-
rates image caption C1:m with the corresponding
article A1:n as in Figure 1(b), wherem << n, and
passes them through the BERTenc using parallel-
fusion (Liu et al., 2020a) mechanism:

K1:r = C1:m ⊕ A1:n, (6)
fθBERTenc

: C1:m, A1:n → K1:r. (7)

Here, K1:r denotes the model input sequence,
where r represents the new input sequence length,
and⊕ is concatenation operator separated by a spe-
cial token. The sequence of hidden states K1:r are
then processed through the BERTdec likewise the
Shironaam(base) model and the headline is gen-
erated as output:

pθBERTenc, θBERTdec
(H1:l|C1:m, A1:n). (8)

However, the image caption may not always serve
the full context if the news article becomes too
long for BERTenc. Moreover, the image caption
length is generally much smaller than the news arti-
cle length. Thus, the impact of using image caption
as a context is less sensitive for lengthier articles.

Bengali Sentence Similarity (BenSim) Since
many of the news articles’ lengths exceed the in-
put sequence limit that BERTenc can process, we
therefore, utilize the sequence length by ensur-
ing all the relevant sentences are present in the
limited input sequences. To ensure the extrac-
tion of relevant sentences, we develop BenSim
module10, a tool for measuring semantic similar-
ity between Bengali sentences utilizing BERT em-
beddings. It takes news article A1:n and corre-
sponding topic words T1:k as input for getting
most of the contextual sentences and employs pre-
trained bangla-bert-base (Sarker, 2020) model
on both of the input sequences to generate the
contextualized encoded representations. After per-
forming mean pooling operation, cosine similar-
ity (Singhal, 2001) is then applied to the encoded
sequences to get the similarity score. After mea-
suring the similarities between the topic words
and input sentences, a filtered article A′

1:r is re-
turned as output, which is then fused parallelly
with the image caption C1:m and sent to the model
input. Finally, the BED (w/ FilteredArticle
+ Caption) model produces a headline after pro-
cessing the fused input.

10https://github.com/dialect-ai/BenSim

4 Experiments and Benchmarks

In this section, we set a new benchmark for Ben-
gali news headline generation using Shironaam
corpus and compare it with the other state-of-the-
art baselines. After a clean comparison, we per-
form two ablation experiments on the superior base
model. Then, we analyze the performance gap be-
tween the baselines and the ablations and further
evaluate the best model on news domains with a
few samples (few-shot). Finally, after proper anal-
ysis, we seek to find out the answers to the follow-
ing research questions:

• RQ#1: Can we use auxiliary information
(e.g., image caption and topic words) to im-
prove the performance of the headline gener-
ation?

• RQ#2: Which domain(s) benefit from the
auxiliary information in few-shot and non-
few-shot settings?

4.1 Implementation Details

We utilize the encoder-decoder paradigm11 of Hug-
gingFace, where pre-trained BanglaBERT (Bhat-
tacharjee et al., 2022a)12 is used to initialize both
of the weights of encoder and decoder. Be-
fore proceeding to tokenization, we perform sen-
tence normalization, introduced in Hasan et al.
(2020). For tokenization, we use the pre-trained
tokenizer12 that comes with the model. All the
hyper-parameters used for training and decoding
are presented in Section B in the Appendix.

Evaluation Metrics We compare the perfor-
mance with the following baselines across several
evaluation metrics presented in Section D in the
Appendix.

4.2 Baselines

LEAD-1 LEAD-1 is a commonly used baseline
for setting the lower bound of news headline gen-
eration task (Kumar et al., 2022; Narayan et al.,
2018). It also indicates the degree of positional bi-
asness of article body sentences in generating head-
lines. We pick the article’s first sentence as the
system headline and compare it with the original
headline to generate the LEAD-1 scores.

11Encoder-Decoder models documentation
12BanglaBERT usage (HuggingFace)
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Models ROUGE BLEU BERT
Score

METEOR
ScoreR-1 R-2 R-L BLEU

Score
Brevity
Penalty

Length
Ratio

Baselines
LEAD-1 (Extractive) 30.50 13.86 28.00 5.65 97.71 2.48 74.63 29.90
EXT-ORACLE (Extractive) 39.92 22.89 37.28 9.17 97.16 2.30 77.16 39.65
IndicBART (mBART) 28.76 12.65 27.11 15.03 99.91 1.14 74.95 20.39
BanglaT5 (mT5) 44.13 23.03 42.12 13.05 91.33 1.15 80.13 34.65

Our Ablations
BED Base (BERT2BERT) 44.22 24.18 42.28 22.06 94.47 0.94 80.53 34.16

-w/ Article + Caption 51.62 33.62 49.94 31.39 96.02 0.96 82.93 42.57
-w/ FilteredArticle + Caption 52.19 34.27 50.31 31.80 98.57 0.99 83.10 43.52

Table 5: Performance on Shironaam (test) corpus compared to the baselines (Section 4.2) and the results of our
ablation study (see Appendix Section E for validation scores) across various automatic evaluation metrics, where
bold-faced scores indicate superior performance.

EXT-ORACLE On the other hand,
EXT-ORACLE can be considered as the upper
bound of generating headlines by an extractive ap-
proach (Kumar et al., 2022; Narayan et al., 2018).
We implement this baseline on the Shironaam
(test) corpus by aligning a sentence from the
input article with the reference headline based on
the ROUGE-2 metric.

IndicBART Kumar et al. (2022) releases amulti-
lingual model, which is fine-tuned on IndicBART
(Dabre et al., 2022) checkpoint for the headline
generation task focusing on Indic languages in-
cluding Bengali. IndicBART is a sequence-to-
sequence multilingual pre-trained model (Dabre
et al., 2022) based on the mBART (Liu et al.,
2020b) architecture.

BanglaT5 We fine-tune BanglaT5 (Bhat-
tacharjee et al., 2022b), a sequence-to-sequence
transformer model based on mT5 (Xue et al.,
2021) architecture for Bengali language, on the
Shironaam (train) corpus for the headline gen-
eration task. For a fair comparison, we maintain
the same hyper-parameters.

BED (base) Model We implement the model
(article only), illustrated in Figure 1(a) on the
Shironaam (train) corpus tomake the baseline.
We utilize 220,500 news samples from the train set
to train the BED model, which takes the article only
as input and generates a headline as output. The
evaluation result on the Shironaam (test) set is
shown in Table 5, which is a new benchmark for
the Bengali headline generation task. In the fol-
lowing experiments, we utilize the auxiliary infor-
mation with the same hyper-parameter settings to
generate better-quality headlines.

4.3 Ablation Experiments

BED (w/ Article + Caption) Model As per the
demonstration in Figure 1(b), the image caption is
incorporated with the input article. This leads to
a much improved result across all evaluation met-
rics compared to article only model (a.k.a., BED
(base)) as shown in Table 5.

BED (w/ FilteredArticle + Caption) Model
Since the utilization of image caption in model in-
put gives better results, therefore we further enrich
the inputs by incorporating topic words. We use
topic words in filtering the longer articles through
BenSim rather than using them directly to the in-
put, as shown in Figure 1(c). First, we set a thresh-
old value (40 in our case) for BenSim to extract
the number of top semantically similar sentences.
BenSim maintains the relative appearance order of
the sentences in the original article to construct the
corresponding filtered article. To fix the number
of sentences in a filtered article, we consider the
maximum use of the number of tokens BED model
can afford i.e. 512. Fusing filtered article with im-
age caption achieves the best results across several
evaluation metrics as shown in Table 5 (also see
Appendix Section F for the generation quality).

4.4 Discussions

Result Analysis Table 5 shows that the LEAD-1
baseline performs inadequately on the Shironaam
(test) corpus. More specifically, the ROUGE-
2 and BLEU scores and the length ratio indi-
cate that the original headlines are more abstrac-
tive in nature, and the first sentence of an ar-
ticle does not contain sufficient information for
generating a headline. Unlike LEAD-1, compara-
tively higher ROUGE scores are obtained by using
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EXT-ORACLE, but at the same time, BLEU score
gain is lower. This trade-off indicates that the ref-
erence headlines consist of the subset of words
present in the sentences selected by EXT-ORACLE.
However, because of the concise nature of news
headlines, this approach does not fit well but can
be considered a strong baseline for other mod-
els. Among the abstractive types, IndicBART per-
forms poorly on the Shironaam (test) corpus
and even is unable to beat the weak LEAD-1 base-
line, let alone EXT-ORACLE. On the other hand, the
fine-tuned BanglaT5 yields a good score for this
task. Although the generated results are slightly
lengthier than the reference ones, they can be con-
sidered a strong baseline. The BED (base) model
provides the best performance in terms of ROUGE,
BLEU, and BERT scores. So, we consider it the
strongest baseline and look for further ablations.

To this end, Table 5 shows that the best baseline
is outperformed by our proposed technique ofmod-
eling input using auxiliary data. We want to em-
phasize that we use image caption and topic words
purely as auxiliary data. While collecting the data
from various news portals, we observe that it is
very common to include images to help support
and communicate the story and image captions are
a crucial part of it that only describe the referred
image. Although image captions are mostly cor-
related with the corresponding article in terms of
context, we argue that they are not headlines. First,
there is not much overlap in terms of Jaccard simi-
larity measured between image captions and head-
lines (as from Table 1 we have approximately 29%
overlap across different categories). Second, head-
lines differ from image captions in terms of styles
and content.

Image captions usually give the model some
signal on which parts of the document model
need to attend more. Hence, as a result of
combining image caption with article, BED (w/
Article + Caption) model improves the per-
formance by about 3 (BERT score) to 10 (ROUGE-
2 score) percentage points and produces more
human-like headlines. Moreover, it often begins
generating sentient headlines that aremore abstract
and profound than the reference ones. The BED
(w/ FilteredArticle + Caption)model per-
forms slightly better than the previous ablation.
Since, there are fewer lengthier articles in the
Shironaam corpus, the variations in the scores of
the two ablation models are rather small. We ob-

Figure 2: Train Loss vs. Global Steps for our ablations.

serve that when we include filtered articles led by
relevant topic words in the model’s input, it begins
to learn faster than the model without topic words
(demonstrated in Figure 2). Therefore, the differ-
ences between the scores of two ablation models
will increase with the number of lengthier articles.

So, following the question RQ#1, we may con-
clude from the preceding discussion that auxil-
iary information definitely aids in creating better
headlines. Although we achieve superior perfor-
mance compared to the state-of-the-art baselines
across several evaluation metrics, these quantita-
tive measures can not determine the generation
quality. Therefore, we present generated samples
from our model categorized into several abstrac-
tive types (see Section F in Appendix). We leave
the human evaluation of our generated samples as
one of the future works.

Domain Specific Analysis We evaluate
our proposed BED (w/ FilteredArticle +
Caption) [denoted as BED (FA+C)] model on
individual domains by comparing with a base
model and to answer RQ#2. We also observe the
performance of the presented model on the do-
mains with fewer samples (few-shot). We employ
two baselines here: BED (base) and BanglaT5
(Bhattacharjee et al., 2022b) [denoted as BNT5].
Although, the BNT5 has demonstrated competitive
performance, Table 6 shows that BED (base)
model performs better on the maximum number
of domains. To calculate the exact performance
gap, we maintain a uniform baseline i.e., BED
(base) to compare with the proposed model. For
the few-shot observation, based on the number
of training samples, we split the domains into
two folds (see Table 6). The Few-Shot domains
contain less than 6500 train samples, whereas rest
of the domains are considered as Non-Few-Shot.
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R-1 R-2 R-L
Category BED

(base) BNT5 BED
(FA+C)

BED
(base) BNT5 BED

(FA+C)
BED
(base) BNT5 BED

(FA+C)
Non-Few-Shot Domains

National 48.03 47.33 55.84 27.29 25.83 37.88 46.06 45.37 53.95
International 44.44 46.04 50.47 22.92 23.08 29.96 42.02 43.49 48.13
Sports 30.14 33.46 39.20 11.57 13.43 20.40 28.75 31.59 37.33
Entertainment 33.05 32.99 35.14 15.07 14.32 16.64 31.26 31.33 33.44
Politics 49.28 49.66 57.16 28.80 27.32 39.73 47.53 47.68 55.73

Few-Shot Domains
Economy 38.95 40.03 60.32 18.81 19.74 45.85 36.44 37.62 58.53
Life-Health 35.87 39.20 44.97 17.61 19.78 27.21 33.90 37.38 43.08
Edu-Career 50.57 51.12 71.55 31.92 30.82 59.54 48.05 48.82 70.48
Opinion 16.11 15.82 44.53 4.69 5.24 36.63 15.82 15.44 44.25
Miscellaneous 33.64 34.92 35.29 16.16 17.98 17.41 30.48 32.82 31.87
Science-Tech 41.82 44.14 51.03 19.54 22.61 31.20 39.30 41.82 48.49
Nature 36.07 37.89 46.54 15.78 16.65 30.07 34.84 35.79 45.53
Religion 27.29 35.48 72.10 12.28 19.63 62.05 26.96 34.42 72.14

Table 6: Performance of our proposed model BED(FA+C) compared to baseline BED(base) and BNT5 (2022b)
across different domains. Shaded grey region indicates superior performance compared to baselines and bold-
faced and underlined scores indicate comparably best and worst domains, respectively.

Table 6 demonstrates that our proposed model
improves the scores by a satisfactory margin
of almost all the domains except Entertainment
and Miscellaneous. These two categories get
comparatively lower scores. The majority of head-
lines in the Entertainment domain are casual and
clickbait-style and do not maintain the identical
nature of a particular domain. We argue that the
discrepancy, in this case, decreases the scores.
The Miscellaneous domain is comprised of dif-
ferent sorts of randomness containing articles of
various domains. Therefore, it is anticipated that
this genre will get a lower score. Table 6 shows
that our proposed model maintains consistent
performance when there are few samples to train.

5 Related Works

Headline generation is an under-explored subtask
of abstractive summarization, particularly in lan-
guages with limited resources. For the English
language, an attention-based neural network has
been proposed by Rush et al. (2015) for abstrac-
tive sentence summarization. The authors propose
a model that utilizes a recurrent neural network
(RNN) and an attention mechanism to summarize
input sentences into a compact summary. Takase
et al. (2016) build an AMR encoder for headline
creation based on an encoder-decoder architecture.
Using a dual-attention seq2seq model, Zhang et al.
(2018) proposes a way for question headline de-
velopment. In limited resource settings, Tilk and
Alumäe (2017) pretrain a neural encoder and de-

coder model to enhance headline generation out-
puts. A sentence encoder, a gate network for sen-
tence selection, and a headline decoder are the
three stages of Zhou et al. (2017)’s headline gen-
eration approach. Tan et al. (2017) proposes a
coarse-to-fine strategy that extracts the most im-
portant sentences before generating the headlines
based on the context. For headline generation, Ku-
mar et al. (2022) have released the IndicNLG, a
collection of multilingual datasets. However, they
do not provide any additional attributes besides the
headline-article pairs. In summary, the majority of
the past works for generating headlines primarily
used the article content to generate headlines.

6 Conclusion and Future Work

In this paper, we contributed a large-scale dataset
(a.k.a., Shironaam) with auxiliary information
such as image captions, topic words, and category
for Bengali news headline generation. We em-
ploy contextualized language models to incorpo-
rate such auxiliary information and proposed a sim-
ple yet effective solution to encode long articles us-
ing topic words. Experimental results demonstrate
the superiority of our approach across different do-
mains and settings. We anticipate that our efforts
will motivate the community to expand the scope
of headline generation tasks beyond English, par-
ticularly for a low-resource language like Bengali.
Our future work will look into incorporating aux-
iliary information to support more languages and
build a language-agnostic model.
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Limitations

Our model relies on auxiliary information such as
image captions and topic words to achieve supe-
rior performance. However, it is quite common to
include images and extra information (e.g., topic
words) to increase the article’s visibility, support,
and context. Also, our base model without aux-
iliary information demonstrates improved perfor-
mance compared to the well-established and state-
of-the-art baselines. Another limitation we ob-
served that ourmodel did not perform aswell as for
the Miscellaneous and Entertainment categories
compared to the other 11 different categories be-
cause of the clickbaity nature of these categories.
Finally, our headline generation model works only
for Bengali, a widely spoken but low-resource lan-
guage. Still, this idea of using auxiliary informa-
tion to improve headline generation performance
can easily be extendable for many languages.

Ethics Statement

We considered some ethical aspects while scraping
the data. We requested data at a reasonable rate
without any intention of a DDoS attack. Moreover,
for each website, we read the instructions listed in
robots.txt to check whether we can crawl the in-
tended content. We tried to minimize offensive
texts in the data by explicitly crawling the sites
where such contents are minimal. Further, we re-
moved the Personal Identifying Information (PII)
such as name, phone number, email address etc
from the corpus.
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A Preliminaries

Abstractive text summarization (Rush et al., 2015;
See et al., 2017; Zhang et al., 2020) was consid-
erably more challenging before the development
of sequence-to-sequence (seq2seq) models (Cho
et al., 2014; Sutskever et al., 2014) and recent
advances in transformer-based models (Vaswani
et al., 2017; Devlin et al., 2019) due to a lack of
sufficient datasets. Many text-summarizing appli-
cations are still hindered by the lack of suitable
datasets, particularly for low-resource languages
(Joshi et al., 2019). After being presented in
Vaswani et al. (2017), models based on transformer

architectures have been proven to perform better
on sequence-to-sequence tasks than decoder-only
language models e.g. Raffel et al. (2020). In its
most basic form, an encoder-decoder model com-
prises a stand-alone encoder, like BERT (Devlin
et al., 2019), and a stand-alone decoder model, like
GPT2 (Radford et al., 2019). It has been demon-
strated that the huge pre-trained encoder-decoder
models may considerably improve performance on
a range of sequence-to-sequence tasks Lewis et al.
(2020); Raffel et al. (2020). On the other hand,
pre-training encoder-decoder models are very ex-
pensive to build since the models require a lot of
computational resources.
Rothe et al. (2020) introduces the encoder-

decoder model using pre-trained encoder and/or
decoder-only checkpoints (such as BERT (Devlin
et al., 2019) and GPT2 (Radford et al., 2019))
to avoid the time-consuming pre-training process.
According to Rothe et al. (2020), these encoder-
decoder models can do well as large pre-trained
encoder-decoder models like T5 (Raffel et al.,
2020) and Pegasus (Zhang et al., 2020) on differ-
ent sequence-to-sequence tasks at a fraction of the
training cost.

B Hyper-parameters, Training, and
Decoding

All the BED models (Figure 1) are trained al-
most from scratch by maintaining uniform hyper-
parameters and trained for 110,250 global steps
with the learning rate 5e-5, and batch size 12. We
save the best checkpoint by ensuring the lowest
validation loss. We use AdamW (Loshchilov and
Hutter, 2019) for optimizing the loss with default
linear warmup. The maximum lengths of encoder
and decoder are limited to 512 and 32 tokens, re-
spectively. Each of the BED models is trained on a
single NVIDIATesla P100GPU and trained for ap-
proximately 33 hours, which takes almost 5 hours
30 minutes per epoch. The total number of train-
able parameters is 249,044,480.

Decoding When validating and testing, we use
beam search algorithm (Sutskever et al., 2014)
with 4 beams to generate headlines. Themaximum
and minimum lengths used in generating the head-
lines are 16 and 4, respectively. We use ‘early
stopping’ to stop the beam search when at least 4
sentences are finished per batch. The ‘no-repeat
n-gram size’ is set to 2, where the exponential
penalty to the length is 1.2. Regarding vocabulary
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size, we use the fixed 32,000 vocabularies from
the encoder.

C Data Sources

Newspaper URL
Prothom Alo www.prothomalo.com

Naya
Diganta www.dailynayadiganta.com

Ajker Patrika www.ajkerpatrika.com
Bangladesh
Protidin www.bd-pratidin.com
Samakal www.samakal.com

Bhorer Kagoj www.bhorerkagoj.com
Dhaka
Tribune www.dhakatribune.com

Table 7: List of Bengali newspapers to form the Shiron-
aam corpus with their corresponding URLs. Samples
from the italic-faced newspapers were crawled through
their APIs.

D Evaluation Metrics

We evaluate the predicted headlines with some au-
tomatic metrics used for generation tasks. The gen-
eration quality is measured with the ROUGE (Lin,
2004) F1 score13. ROUGE-1 and ROUGE-2 mea-
sure informativeness, where fluency is measured
by the longest common subsequence (ROUGE-L).
We include BLEU (Papineni et al., 2002) score
which indicates the similarity between reference
and predicted sentences by comparing the overlap
within tokens14. Brevity penalty and length ratio
are shown to justify the BLEU score. The con-
textual similarity between the generated and refer-
ence headline is measured using F1 BERT score
(Zhang* et al., 2020)15, where the correlation be-
tween them is reported by METEOR score (Baner-
jee and Lavie, 2005)16. We use the available open-
source implementations for the above metrics.

13ROUGE (multilingual)
14BLEU (HuggingFace)
15BERTScore (HuggingFace)
16METEOR (HuggingFace)
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E Validation Results

Train
Loss

Valid
Loss

ROUGE BLEU METEOR
ScoreR-1 R-2 R-L Bleu

Score
Length
Ratio

a) 1.0892 2.4332 44.51 23.56 42.38 20.39 0.95 34.27
b) 1.5083 2.1227 49.59 30.53 47.79 27.63 0.98 40.59
c) 1.2199 2.0836 49.77 31.42 48.05 28.70 0.99 40.73

Table 8: All the scores are reported for BED model with ablations on Shironaam (valid) corpus. The labels
indicate the ablations of BED model: a) Base, b) Article + Caption, c) FilteredArticle + Caption. Only the Train
Loss is measured on the training set and kept for comparison with the Valid Loss.

F Generated Headlines

Generated headlines on Shironaam (test) corpus across all the categories are presented in Table 9.

Category Headline Type

Economy

GH িচিন আমদািনেত শুল্ক কমােলা সরকার

InsertedET The government reduced the duty on sugar
import

RH িচিন আমদািনেত শুল্ক কমেলা
ET Import duty on sugar reduced

Edu-Career

GH সহকারী জজ িনেয়ােগর িলিখত পরীক্ষার সূিচ পৰ্কাশ

MatchedET Release of written test schedule for the
appointment of Assistant Judge

RH সহকারী জজ িনেয়ােগর িলিখত পরীক্ষার সূিচ পৰ্কাশ

ET Release of written test schedule for the
appointment of Assistant Judge

Entertainment

GH "আিম িবেয় করব না, েদিখ েক আমােক িবেয় কের"

SwappedET “I will not marry, let’s see who marries me”
RH "আিম িবেয় করব না, েক আমােক িবেয় কের েদিখ..."
ET “I will not marry, who will marry me let’s see...”

International

GH জাপােন পযর্টকবাহী জাহাজ ডুেব িনেখাঁজ ২৬

MatchedET Tourist ship sinks in Japan and goes missing 26
RH জাপােন পযর্টকবাহী জাহাজ ডুেব িনেখাঁজ ২৬
ET Tourist ship sinks in Japan and goes missing 26

Life-Health

GH নতুন মৃতুয্ ৩৭, শনাক্ত ৩০৪৫

SentientET New deaths 37, detections 3045
RH আকৰ্ান্ত ছাড়ােলা ৫৫ হাজার
ET Number of infected has crossed 55 thousand

Miscellaneous

GH চার অক্ষের সন্তানেদর নাম!

SwappedET Four-letters in children’s name!
RH সন্তােনর নাম চার অক্ষের!
ET Children’s names are in four-letters!

National

GH েঘাড়া পৰ্তীক না েপেয় েকঁেদ েফলেলন েচয়ারময্ান পৰ্াথর্ী

DeletedET Chairman candidate cried after not getting the
horse symbol

RH েঘাড়া পৰ্তীক না েপেয় েকঁেদ েফলেলন েসই েচয়ারময্ান পৰ্াথর্ী

ET That chairman candidate cried after not getting
the horse symbol

Nature

GH েদেশর ৩ িবভােগ বৃিষ্টর পূবর্াভাস
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ET Rain forecast in 3 divisions of the country
RH রােত বাড়েব তাপমাতৰ্া, ৩ িবভােগ বৃিষ্টর আভাস

ET The temperature will increase at night, there is a
chance of rain in 3 divisions

Opinion

GH ই-কমাসর্বান্ধব বােজট চাই

DeletedET Want e-commerce friendly budgeting
RH ই-কমাসর্বান্ধব বােজট পৰ্ণয়েন কাজ করেত চাই
ET Want to work on e-commerce friendly budgeting

Politics

GH িবদুয্ৎ-গয্ােসর মূলয্বৃিদ্ধর িসদ্ধান্ত গণিবেরাধী
পদেক্ষপ : গণেফারাম

InsertedET The decision to increase the price of electricity
and gas is an anti-people move : Public Forum

RH "িবদুয্ৎ ও গয্ােসর মূলয্বৃিদ্ধর িসদ্ধান্ত হেব গণিবেরাধী"

ET “The decision to increase the price of electricity
and gas will be anti-people”

Religion

GH পিবতৰ্ শেব বরাত পািলত

SentientET Holy Shab-e-barat is celebrated
RH ইবাদেত মশগুল ধমর্পৰ্াণ মুসলমােনরা
ET Devoted Muslims engaged in prayer

Science-Tech

GH মহাকােশ সয্ােটলাইেটর সংখয্া বাড়ােচ্ছ ওয়ানওেয়ব

InsertedET OneWeb is increasing number of satellites into
space

RH মহাকােশ সয্ােটলাইট বাড়ােচ্ছ ওয়ানওেয়ব
ET OneWeb is increasing satellites into space

Sports

GH েমিস এখন িপএসিজর জািসর্েত

ParaphrasedET Messi is now in PSG jersey
RH িপএসিজর হেয় কেব মােঠ নামেছন েমিস?
ET When is Messi on the field for PSG?

Table 9: High quality headlines generated on Shironaam (test) corpus across all the categories. Here, “Type”
means the how the generated headlines are different from the references. We categorize the differences into 5
types: Inserted (only one/some word(s) is/are added to reference headline),Matched (generated exactly the same),
Swapped (the only difference is made by swapping one/some word(s) within the reference headline), Deleted (the
output is about similar to the reference with one/some word(s) less), Sentient (generated headline is completely
different but a potential competitor against the reference one), Paraphrased (paraphrased version of the reference
headline). The colored words (i.e. teal for Inserted, cyan for Swapped, brown for Sentient, magenta for Deleted,
and violet for Paraphrased) indicate the exact positions where the generated ones are different from the references
and no color refers to no change. The generated and reference Bengali headlines, and their corresponding English
version are denoted by GH, RH, and ET respectively.
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Abstract

Curriculum Data Augmentation (CDA) im-
proves neural models by presenting synthetic
data with increasing difficulties from easy to
hard. However, traditional CDA simply treats
the ratio of word perturbation as the difficulty
measure and goes through the curriculums only
once. This paper presents PCC: Paraphrasing
with Bottom-k Sampling and Cyclic Learning
for Curriculum Data Augmentation, a novel
CDA framework via paraphrasing, which ex-
ploits the textual paraphrase similarity as the
curriculum difficulty measure. We propose a
curriculum-aware paraphrase generation mod-
ule composed of three units: a paraphrase can-
didate generator with bottom-k sampling, a
filtering mechanism and a difficulty measure.
We also propose a cyclic learning strategy that
passes through the curriculums multiple times.
The bottom-k sampling is proposed to generate
super-hard instances for the later curriculums.
Experimental results on few-shot text classifica-
tion as well as dialogue generation indicate that
PCC surpasses competitive baselines. Human
evaluation and extensive case studies indicate
that bottom-k sampling effectively generates
super-hard instances, and PCC significantly im-
proves the baseline dialogue agent.

1 Introduction

Data augmentation techniques create artificial data
mixed with the original data for improved perfor-
mance. Traditional data augmentation techniques
in the language community include word-level per-
turbation such as synonym replacement, random
insertion, random swap, and random deletion (Wei
and Zou, 2019). Sentence-level techniques such
as Round-trip Translation (Sennrich et al., 2016b)
exploits the use of machine translation models to

∗The work described in this paper is substantially sup-
ported by a grant from the Research Grant Council of the
Hong Kong Special Administrative Region, China (Project
Code: 14200719).

translate the input sentence to another language be-
fore translating back to the source language which
can be essentially treated as a form of paraphrasing.

Curriculum learning presents training instances
in a meaningful order with increasing difficulties
to neural models for a boost in performance. Tradi-
tional curriculum learning (Bengio et al., 2009; Liu
et al., 2018, 2020; Platanios et al., 2019; Xu et al.,
2020a,b; Su et al., 2021) categorizes the original
training instances into different levels of difficul-
ties to be gradually presented to the model where
a core component called difficulty measure, which
is usually defined as a numerical number where a
bigger number indicates a more difficult sample.

Combining the merits of the above two men-
tioned techniques, Curriculum Data Augmentation
(CDA) creates synthetic data with increasing levels
of difficulties to be presented to our neural mod-
els. Existing CDA defines the ratio of the words
perturbation as the difficulty measure for curricu-
lums and a gradual course which increases the diffi-
culty of curriculums when the training loss plateaus
(Wei et al., 2021), which then ends when the most
challenging curriculum ends. Although existing
CDA is effective, yet there are several disadvan-
tages. First, it employs word-level perturbation.
This superficial operation keeps the augmentation
to have a similar sentence structure as the original
one. Next, it employs random insertion, random
swap, and random deletion for augmentation. Al-
though this can be durable as for text classification
(Wei et al., 2021), this is not suitable for generation
tasks, particularly when many words are perturbed,
which can even easily break the sentence grammar.
Third, it uses a gradual course that only enters each
level of difficulty once. A typical problem in neu-
ral network training called catastrophic forgetting
(Kirkpatrick et al., 2017) can potentially happen in
such a course, where the model might undesirably
gradually forget some early learned knowledge.

To mitigate the problems of word-level perturba-
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tion, we propose that paraphrasing can be a source
of data augmentation, which provides diverse and
grammatically correct augmentation. However, it
is non-trivial to utilize paraphrase augmentation
in a curriculum setting. Inspired by the funda-
mental linguistic concept of mutual implication
(Boghossian, 1994; Peregrin, 2006), we treat two
sentences as a pair of paraphrases if they can in-
fer each other. For example, ‘I am glad to help
you.’ and ‘Let me help you out!’ can be a pair
of paraphrases, which provides a diverse change
of the sentence structure suitable for the curricu-
lum setting. We also employ textual similarity for
our difficulty measures for the curriculum. Higher
scores indicate that two sentences are more textu-
ally similar to each other. Specifically, we treat
pairs with lower scores as more difficult instances
to be presented in later curriculums. We propose
a paraphrase candidate generator integrated with
bottom-k sampling. Traditional sampling methods
such as top-k sampling (Fan et al., 2018) and top-p
(Holtzman et al., 2020) sampling tend to generate
easier paraphrases that have relatively high simi-
larity scores. We propose bottom-k sampling to
generate super-hard paraphrases for the later harder
curriculums by pruning the most probable words.1

This leads the generation towards a more grammat-
ically and lexically diverse paraphrase sampling
space with low textual similarity.

To mitigate catastrophic forgetting, we propose
to incorporate cyclic learning to pass through the
curriculums multiple times.

In summary, our proposed framework, called
PCC: Paraphrasing with Bottom-k Sampling and
Cyclic Learning for Curriculum Data Augmenta-
tion, makes three contributions:

• We exploit the use of paraphrasing with mu-
tual implication as a data augmentation source
in curriculum learning.

• To generate mutual implicative paraphrases,
we propose a curriculum-aware paraphrase
generation module composed of three units,
namely, a paraphrase candidate generator with
bottom-k sampling for generating super-hard
instances, a filtering mechanism, and a diffi-
culty measure using textual similarity.

• We propose cyclic learning to enter each cur-
riculum multiple times.

1Note that we still use a combination of top-k and top-p
sampling for generating easier curriculums.

Experimental results indicate that PCC surpasses
competitive baselines on few-shot text classifica-
tion as well as dialogue generation. Human evalu-
ation indicates that bottom-k sampling effectively
generates grammatically and lexically rich para-
phrases, and PCC significantly improves our base-
line dialogue agent. To our best knowledge, this is
the first time to apply CDA on a generation task.

Takeaway Overall, we present the effectiveness
of paraphrasing as a curriculum data augmentation
technique. The use of cyclic learning and bottom-k
sampling further boosts performance. With some
modifications, future works can treat PCC as a
data augmentation framework and adapt it to other
downstream tasks. Future works can also leverage
bottom-k sampling in generating textual outputs
that are grammatically and lexically rich.

2 Related Work

2.1 Data Augmentation
Existing textual data augmentation techniques can
be broadly categorized into two streams: word-
level and sentence-level augmentation.

For word-level augmentation, well-known op-
erations includes synonym replacement (Zhang
et al., 2015a), random insertion, random deletion
and random swap (Wei and Zou, 2019). In con-
trast to dictionary-based synonym replacement, an-
other stream of works randomly replace words with
masks and employs BERT models for predicting
the words as a source of augmentation that exploits
the contexts (Wu et al., 2019; Cai et al., 2020).

For sentence-level augmentation, Round-trip
Translation (Sennrich et al., 2016b) augments trans-
lation pairs by translating from the source language
into the target language, and back to the source lan-
guage with two machine translation models. Gao
et al. (2020) proposes to use paraphrases as a source
of augmentation in task-oriented dialogue gener-
ation. It has also been proposed to retrieve from
unpaired corpora as a source of augmentation in
the dialogue community (Zhang et al., 2020a). An-
other stream of work edits the retrieved dialogue
response for better generation (Cai et al., 2019a,b),
which can be treated as a form of indirect augmen-
tation. The closest work to ours is Gao et al. (2020),
where theirs does not employ curriculum learning.

2.2 Curriculum Learning
While traditional curriculum learning sorts
the training samples in an order of increasing
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Algorithm 1: Paraphrasing with Bottom-k Sampling
and Cyclic Learning for Curriculum Data Augmen-
tation (PCC)

Input: Dataset D for the downstream task;
Output: Trained downstream task model;

1 For the entire dataset D, invoke the curriculum-aware
paraphrase generation module with D and cache the
augmentation results D̄ for training purpose;

2 while not the end of training do
3 Set difficulty level l to 0 at the start of a cycle;
4 while not the end of current cycle do
5 while not the end of current curriculum do
6 Uniformly sample the next batch of

training instance S;
7 Invoke the curriculum-aware

paraphrase generation module for
each training instance in S to retreive
a batch of training augmentation T
with difficulty level l.;

8 Invoke the task-specific model trainer
to train the downstream task model
with the training augmentation T ;

9 end
10 Increase l by 1 to the next level at the end of

current curriculum;
11 end
12 end

difficulties (Bengio et al., 2009; Weinshall et al.,
2018; Su et al., 2021), our method follows the
other stream of works that applies transformation
on the original data with dedicated difficulty level
(Korbar et al., 2018; Ganesh and Corso, 2020; Wei
et al., 2021). The closest work to ours is Wei et al.
(2021). Their work does not consider paraphrasing
and focuses on text classification only.

3 Our Proposed Framework

3.1 Background of Curriculum Data
Augmentation (CDA)

Existing CDA (Wei et al., 2021) varies the word-
level perturbation ratio to achieve different levels
of difficulties under curriculum learning with sim-
ple word perturbation strategies such as synonym
replacement, random insertion, swap, and deletion.
As illustrated in Figure 1, such simple word pertur-
bation strategies create problematic instances that
break the sentence grammar, which can hamper
the model performance. There are two common
CDA strategies. One is called two-stage curricu-
lum, which uses a fixed perturbation ratio for a
single curriculum as the second stage after train-
ing with the original data. The other one is called
gradual curriculum. It uses different ratios for a
number of (typically 5) curriculums with increas-
ing difficulties. However, such a learning strategy

Algorithm 2: Curriculum-aware Paraphrase Genera-
tion Module

Input: A single training instance with textual input x;
difficulty level l;

Output: Cache the generated paraphrases into D̄ or
retrieve an augmented training instance x̄;

1 if a cached augmentation exists then
2 Retrieve x̄ that corresponds to x with the

difficulty measure d = l;
3 else
4 Invoke the paraphrase candidate generator

integrated with bottom-k sampling to generate a
bag of paraphrase candidates for x;

5 Invoke the mutual implication classifier for each
paraphrase candidate to obtain corresponding
binary indicator against the input sentence;

6 Calculate the textual similarity for each
paraphrase candidate against the input;

7 Filter the generated paraphrase candidates with
the mutual implication and the textual similarity
using Equation 3;

8 Assign a difficulty measure d to the filtered
paraphrases with Equation 4;

9 Cache the augmentation results into D̄ ;
10 end

ends after passing through all the curriculums only
once, and catastrophic forgetting can happen.

3.2 Our Proposed PCC

We propose curriculum data augmentation with
paraphrase augmentation known as Paraphrasing
with Bottom-k Sampling and Cyclic Learning for
Curriculum Data Augmentation (PCC). Algorithm
1 depicts an overview of the whole PCC framework.
At the start of training, we generate cached train-
ing augmentation for the entire dataset with our
proposed curriculum-aware paraphrase generation
module. Thereafter, we begin with the easiest cur-
riculum. For each training instance, we retrieve the
cached augmentation that has an equivalent diffi-
culty measure with the current difficulty level. We
then invoke the task-specific model trainer to train
the downstream task model with the retrieved train-
ing augmentation. At the end of each curriculum
difficulty level, we increase the difficulty level to
advance to the next harder curriculum. In case it
hits the end of the most difficult curriculum, we set
the difficulty level to the easiest to start a new cycle.
We propose such a cyclic learning strategy for miti-
gating potential catastrophic forgetting. In order to
retrieve paraphrasing augmentation with appropri-
ate difficulty measures, we propose a curriculum-
aware paraphrase generation module.
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Figure 1: An illustrated example for our PCC model
compared to existing CDA for dialogue generation. The
original sentence is ‘I am glad to help you.’

Sample No. Sample Text Sim. Score

1) I am glad to assist you. 0.888

2) Let’s help you. I am glad to help
you.

0.619

3) Thank you for contacting me. I
am glad to help you.

0.371

4) It is now my pleasure to help you. −0.038

5) Let me help you out! −0.265

6) Thank you for your question. −0.506

Table 1: Paraphrases with mutual implication for an
input ‘I am glad to help you.’

3.2.1 Curriculum-aware Paraphrase
Generation Module

Algorithm 2 depicts the curriculum-aware para-
phrase generation module. Three components are
designed, namely, a paraphrase candidate genera-
tor integrated with a bottom-k sampling strategy,
a filtering mechanism, and a difficulty measure.
The paraphrase candidates are generated and then
passed to the filtering mechanism. Finally, the fil-
tered paraphrases are assigned a difficulty measure
which represents to which curriculum difficulty
level the augmentation belongs.

Paraphrase Candidate Generator with Bottom-
k Sampling In order to generate mutual implica-
tive paraphrases for the purpose of curriculum
data augmentation, we adopt a Seq2Seq (Sutskever
et al., 2014) generator which receives an input sen-
tence x and generates the paraphrases x̄ in an au-
toregressive manner (Nighojkar and Licato, 2021).
During training, the paraphrase candidate generator

is trained by maximising the following likelihood:

P (x̄ | x) =
T∏

t=1

P (x̄t | x̄1, ..., x̄t−1, x),

where T represents the token length of the para-
phrase and xt represents the word at the position t
that has been inferenced.

Traditional sampling methods such as top-k sam-
pling (Fan et al., 2018) and top-p sampling (Holtz-
man et al., 2020) sample the next token to be pre-
sented in the output from the most probable vocab-
ularies that dominate the probability distribution.
For example, at the i-th timestep during inference,
top-k sampling samples the next token x̄i from the
most probable k words with the distribution:

Px̄i∈V(k)(x̄i | x̄1, ..., x̄i−1, x), (1)

where V(k) represents the most probable k words.
However, they are not suitable for generating super-
hard instances, i.e., their output paraphrases tend to
be textually similar to the original input sentence.2

To avoid coping the words and unearth the super-
hard paraphrases to be used in later curriculums,
we propose bottom-k sampling3 which excludes
a small set of dominating words for the sampling
process. Note that we still use the combination of
top-k and top-p sampling to generate easier sam-
ples for earlier curriculums. Formally, bottom-k
modifies the distribution in Equation 1 to:

Px̄i∈V\V(k)(x̄i | x̄1, ..., x̄i−1, x), (2)

where V represents the whole vocabulary. Then,
at each time step, we sample the next token with
the rescaled distribution in Equation 2. We apply
bottom-k for the first N steps of the generation be-
fore fallback to top-k and top-p. Bottom-k tends to
generate paraphrases with lower textual similarity.
For example, given an input of ‘I like to remodel
homes’, existing sampling methods can generate an
output ‘Renovations in property I like to remodel
homes’. In contrast, bottom-k sampling generates
‘Is this what I want to see? Renovating homes are
the best choices I have ever had.’ where the latter
one has a higher difficulty measure. Appendix F
presents an extensive analysis.

2We found that top-k and top-p sampling tend to copy
dominating words from the input into the paraphrases. This
is also the reason why we prefer bottom-k over bottom-p, as
we would like to effectively prevent from coping dominating
words. Appendix F presents a detailed analysis.

3We give it such a name to make it catchy. It does not
sample from the bottom k words. It samples from the bottom
|V| − k words where V represents the whole vocabulary.
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Paraphrase Filtering The inferential properties
or mutual implication (MI) has been argued as a
form of equivalent meaning (Boghossian, 1994;
Peregrin, 2006), i.e., each sentence should entail
each other to be ‘paraphrases’. To support cur-
riculum data augmentation, we exploit mutual im-
plicative paraphrases for grammatical and lexical
richness. Algorithm 2 (Lines 5, 6, and 7) depicts
the filtering mechanism we propose to generate MI
paraphrases. In order to determine the MI rela-
tionship between a pair of paraphrase (x, x̄), we
adopt a pre-trained MI classifierM(·, ·) to calcu-
late a binary indicator M(x, x̄). Here, non-MI
paraphrases have a score of 0 and MI paraphrases
have a score of 1. We also adopt a pre-trained
model G(·, ·) to evaluate the textual similarity score
of the paraphrases as G(x, x̄). Here, paraphrases
with lower similarity scores are treated as gram-
matically and lexically less similar to the original
input sentence. We filter the paraphrase x̄i based
on these two scores:

M(x, x̄i)+(1−M(x, x̄i))1(G(x, x̄i) ≥ β). (3)

In the formula above, β is a threshold for textual
similarity. Here, a paraphrase with a positive mu-
tual implication has a binary output of 1, i.e., it is
preserved regardless of its textual similarity score.
A paraphrase with a negative mutual implication
but high textual similarity also has a binary out-
put of 1, meaning it is preserved as well. In this
way, MI paraphrases can be produced. We preserve
highly similar paraphrases classified as non-MI,
which is a misclassification by the classifier.4 All
paraphrases that are non-MI with low textual simi-
larity have a binary output of 0, meaning we discard
those paraphrases. After the filtering, a difficulty
measure is computed for each paraphrase.5

Difficulty Measure Recall that for a pair of para-
phrase (x, x̄), we adopt a pre-trained textual simi-
larity model G(·, ·) to calculate its similarity score
as G(x, x̄). BLEURT (Sellam et al., 2020) score, a
BERT-based pre-trained model, is employed as the
textual similarity model G(·, ·). Here, paraphrases

4We postulate it as a flaw introduced by the imbalanced
training data with a larger portion of paraphrases that tends to
be textually unsimilar against the original sentence. We found
in our early experiments that removing these easier examples
obviously degrades the results for COVID-Q from 51.7 to
50.0. Furthermore, ignoring non-MI easy examples prevents
PCC from collecting enough augmentation for AMZN.

5As in Appendix A, we use an off-the-shelf paraphrase
generator and MI classifier in our experiments.

with lower similarity scores are treated as more dif-
ficult instances with higher difficulty measures. For
further illustration, we present 6 samples generated
from our model in Table 1 with descending order
sorted on the similarity scores. Here, the similarity
scores decently represent the grammatical and lexi-
cal difference between the paraphrases candidates,
and the mutual implicative paraphrase candidates
are grammatically (Sample 2, 3, 4, 5, and 6) and
lexically (Sample 1, 2, 3, 4, 5, and 6) rich.

As the distribution of the similarity scores for the
paraphrases varies for different inputs, we compute
the difficulty measure for a paraphrase x̄i with its
rank in a sorted list of similarity scores, denoted
as sort(·), in descending order among a bag of
paraphrase candidates X :

di = ⌈C ×
sortx̄i∈X (G(x̄i, x))

|X | ⌉, (4)

where C represents the total number of curriculum
difficulty levels we define, and |X | represents the
total number of paraphrase candidates we have.
Here, the paraphrase x̄j with the highest similarity
score, i.e., G(x, x̄j) = maxx̄i∈X (G(x̄i, x)), has a
rank of 1, therefore, dj = 1. The paraphrase x̄k
with the lowest similarity score, i.e., G(x, x̄k) =
minx̄i∈X (G(x̄i, x)), has a rank of |X |, thus dk =
C. Consequently, a larger rank indicates that the
paraphrase is more grammatically and lexically
different than the original input, and thus belongs
to a harder curriculum. We set di = 0 as the easiest
difficulty level for the original data.

3.2.2 Cyclic Curriculum Data Augmentation
Wei et al. (2021) proposed curriculum data augmen-
tation with a gradual course. The training ends after
passing the curriculums once. We found that a typ-
ical problem called catastrophic forgetting (Kirk-
patrick et al., 2017) can hamper the performance
during such a gradual course, meaning that the
model can gradually forget the knowledge learned
in an easier course. The augmentation for later cur-
riculums is a subtask of an easier curriculum and
can have lexical overlaps. Formally, the input sam-
ples xt+1 can have overlapping lexical xti which
are the same as xtj , where t and t+ 1 represent the
curriculum difficulty levels, and i and j represent
the word positions in the sentence. Due to catas-
trophic forgetting, the model can forget what it has
learned earlier. Hence, we propose cyclic learning
as shown in Algorithm 1 to inform the model which
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skills would be useful later before retrospecting to
easier curriculums with lower difficulties.

4 Experimental Setup

In our experiments, we define six curriculums rang-
ing from 0 to 5. 0 represents the original data, and
1 and 5 represent the easiest and the most difficult
curriculum respectively.6

4.1 Few-shot Text Classification Task
For the downstream application task for our experi-
ments, we follow Wei et al. (2021) to conduct the
task of few-shot, highly multi-class text classifica-
tion (Gupta et al., 2014; Kumar et al., 2019), which
typically has a large number of classes with only a
few samples for each of the class. We use triplet
loss, a loss computed with three elements, namely,
an anchor a, a positive sample p, and a negative
sample n. It origins from the vision community
(Schroff et al., 2015), which was later applied to
language tasks (Ein Dor et al., 2018; Lauriola and
Moschitti, 2020), suitable for the few-shot setting.
Precisely, the learning objective is defined as:

L = D(a, p)−D(a, n) + γ,

where D represents a distance measure that com-
putes the distance between the input encodings. γ
represents the margin between the positive and neg-
ative samples. We use BERT-based (Devlin et al.,
2019) pooled sentence encodings as the input into
a two-layer triplet network (Schroff et al., 2015).

Three datasets for the text classification task are
used in our experiments, namely, HUFFPOST
(Misra, 2018; Misra and Grover, 2021), COVID-
Q (Wei et al., 2020), and AMZN (Yury, 2020).
For space reasons, we leave their detailed dataset
description in Appendix B.

4.2 Dialogue Generation Task
The second downstream task for our experiments
is open-domain dialogue generation. We adopt a
Seq2Seq neural network (Sutskever et al., 2014)
which receives a text concatenation of prepended
knowledge k and dialogue context c and gener-
ates the dialogue response r in an autoregressive
manner (Radford, 2018). We train our dialogue
generator by maximising the following likelihood:

P (r | k, c) =
T∏

t=1

P (rt | r1, ..., rt−1, k, c),

6We release the code and resource at https://github.
com/HongyuanLuke/PCC.

where T represents the length of the generated dia-
logue response and rt represents the word at the po-
sition t that has been inferenced. Typical prepended
knowledge include personal traits (Zhang et al.,
2018) and movie description (Zhou et al., 2018).
We use DialoGPT (Zhang et al., 2020b) for param-
eter initialization for PCC.

We use PERSONACHAT (CONVAI2, Zhang et al.
2018) as the dataset for dialogue generation, which
is described in Appendix C.

4.3 Baselines for Text Classification

We use the following baselines from existing data
augmentation methods for text classification.

Triplet Loss As described in Section 4.1, an an-
chor, a positive example and a negative example is
selected to construct the loss (Schroff et al., 2015).

Token Substitution It substitutes words with
their WordNet synonyms (Zhang et al., 2015b;
Feinerer and Hornik, 2020).

Pervasive Dropout It uses dropout on words
with probability p = 0.1 (Sennrich et al., 2016a).

SwitchOut It replaces words with uniformly
sampled words (Wang et al., 2018).

Round-trip Translation It translates sentences
into another language before translating back into
the source language (Sennrich et al., 2016b).

Hard Negative Mining + EDA It combines hard
negative mining (Schroff et al., 2015) that chooses
hard negative samples and EDA (Wei and Zou,
2019) that employs synonym replacement, word-
level random insertion, deletion, and swap.

Hard Negative Mining + EDA + Gradual Cur-
riculum It gradually increases the temperature
for EDA augmentation (Wei et al., 2021).

4.4 Baselines for Dialogue Generation

We use the following baselines and data augmenta-
tion methods for dialogue generation.

TransferTransfo A Transformer-based model
fine-tuned on PERSONACHAT (Wolf et al., 2019).

PerCVAE It uses a memory-augmented architec-
ture with a conditional variational autoencoder to
exploit persona information (Song et al., 2019).

DialoGPT It refers to an autoregressive dialogue
generator introduced by Zhang et al. (2020b).
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CDA It refers to the curriculum data augmenta-
tion technique proposed by Wei et al. (2021) using
the augmentation of EDA (Wei and Zou, 2019).

Official & Flatten It refers to the paraphrase aug-
mentation technique that is task-specific to the task-
oriented dialogue generation (Gao et al., 2020). To
adapt it to our task, we use our generated para-
phrase via mutual implication, denoted as Flat-
ten, and the official revised PERSONACHAT para-
phrases, denoted as Official.

Round-trip Translation It translates the input
into another language before translating back (Sen-
nrich et al., 2016b).

4.5 Evaluation Metrics
For the text classification task, we follow Wei et al.
(2021) to use the top-1 accuracy as the metric.

For the dialogue generation task, we use the
word-level F1 score, and we adopt the well-known
sequence evaluation metric BLEU (Papineni et al.,
2002) where we report BLEU-2, BLEU-3 and
BLEU-4. We also adopt another well-known se-
quence evaluation metric, ROUGE, where we re-
port the F-measures for ROUGE-1, ROUGE-2 and
ROUGE-L (Lin, 2004).

To verify our claim that bottom-k sampling gen-
erates grammatically and lexically rich paraphrases,
we adopt Distinct-N (Li et al., 2016; Gao et al.,
2019) with both N ∈ {1, 2, 3} and N ∈ {4, 5, 6}
to measure the lexical and grammatical richness
respectively using the ratio of distinct N -grams
against the total number of N -grams generated.

5 Results and Analysis

5.1 Few-shot Text Classification Results
5.1.1 Main Results
Table 2 presents the results for few-shot text classi-
fication. Among the baselines, Triplet Loss + Grad-
ual Curriculum works the best (Wei et al., 2021).
PCC improves this baseline significantly. All the
models share randomness in data, and our model
is the best on all of the random seeds individually.
Further, our proposed PCC model surpasses the
baselines of Token Substitution, Pervasive Dropout,
SwitchOut and Round-trip Translation significantly.
Without bottom-k, PCC surpasses all the baselines,
and our proposed full model with bottom-k obvi-
ously boosts performance. Appendix G addition-
ally presents an analysis of the improvements as a
function of the number of data augmentations.

Figure 2: A plot of the training loss for the analysis for
cyclic learning. Best viewed in color.

5.1.2 Ablation Study

Table 4 presents the results of our ablation study.
First, removing the MI paraphrase filtering com-
ponent described with Equation 3 obviously de-
grades the results. Replacing bottom-k sampling
with pure sampling also decreases the results. Fur-
thermore, paraphrasing in a random or an inverse
order of decreasing difficulties, i.e., with neither
curriculum learning nor cyclic learning, obviously
deteriorates the results. Therefore, our contribution
is the discovery of paraphrasing as an effective
CDA method rather than using paraphrasing solely
as an augmentation technique. Moreover, using
cyclic learning instead of the gradual curriculum
improves the results when trained with and without
bottom-k sampling. Training the second cycle in an
inversed order of decreasing difficulties degrades
the results both with and without bottom-k.

5.2 Analysis on Cyclic Learning

Figure 2 presents the change of the training loss
during the progress of the training on the task of
text classification on COVID-Q. We observe that
catastrophic forgetting exists as the training loss
spikes when re-entering the curriculums. For the
second time it enters the most difficult curriculum
5, the loss is also further smoothened compared
to the first spike. The spike is also desirable as
described in Wei et al. (2021), indicating that new
instances that are harder to learn are presented and
can help to escape the local minima. These support
the usefulness of our proposed cyclic learning that
can smoothen the gradients, mitigate catastrophic
forgetting, and improve generalization by entering
curriculums multiple times.
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Model HUFFPOST COVID-Q AMZN Average

Triplet Loss (Schroff et al., 2015) 20.9± 1.0 39.7± 1.0 11.6± 0.6 24.1

Triplet Loss + Token Substitution (Zhang et al., 2015b) 22.7± 1.4 43.9± 1.3 12.8± 0.7 26.5

Triplet Loss + Pervasive Dropout (Sennrich et al., 2016a) 23.1± 1.1 43.5± 1.8 13.0± 0.6 26.5

Triplet Loss + SwitchOut (Wang et al., 2018) 22.9± 0.5 41.5± 0.6 12.7± 0.8 25.7

Triplet Loss + Round-trip Translation (Sennrich et al., 2016b) 24.2± 0.7 42.3± 1.0 13.0± 0.4 26.5

Triplet Loss + Hard Negative + EDA (Wei and Zou, 2019) 22.6± 1.8 48.2± 0.9 13.7± 0.9 28.2

↪→ + Gradual Curriculum (Wei et al., 2021) 23.8± 0.9 48.9± 0.9 14.4± 1.5 29.0

PCC with Cyclic Curr. w/o Bottom-k 25.2± 1.5 51.4± 0.8 17.4± 0.7 31.3

PCC with Cyclic Curr. w/ Bottom-k 25.9 ± 1.7 51.7 ± 0.6 18.2 ± 1.0 31.9

Table 2: Results in top-1 accuracy for the downstream task of text classification on three datasets. The best results
are bolded. We report the results averaged from five random seeds for data selection ranging from 0 to 4, which is
the source of the variance here. Our methods report the best performance on all the random data seeds on all the
datasets. A combination of top-k and top-p sampling with k = 120 and p = 0.95 is used for the penultimate row.

Model F1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

TransferTransfo (Wolf et al., 2019) 16.61 ± 0.09 3.16 ± 0.07 1.04 ± 0.03 0.43 ± 0.02 17.69 ± 0.14 3.96 ± 0.08 16.34 ± 0.13

PerCVAE (Song et al., 2019) 14.33 ± 0.12 1.23 ± 0.06 0.20 ± 0.05 0.04 ± 0.01 13.25 ± 0.10 1.62 ± 0.05 12.02 ± 0.10

DialoGPT (Zhang et al., 2020b) 18.58 ± 0.13 5.25 ± 0.08 1.89 ± 0.07 0.66 ± 0.05 18.42 ± 0.13 4.62 ± 0.09 17.23 ± 0.12

DialoGPT + CDA (Wei and Zou, 2019) 18.38 ± 0.10 5.23 ± 0.10 1.84 ± 0.08 0.63 ± 0.02 18.55 ± 0.31 4.63 ± 0.11 17.40 ± 0.30

DialoGPT + Flatten (Gao et al., 2020) 18.21 ± 0.21 5.03 ± 0.18 1.85 ± 0.11 0.65 ± 0.04 17.97 ± 0.34 4.45 ± 0.16 16.84 ± 0.28

DialoGPT + Official (Gao et al., 2020) 18.12 ± 0.11 4.80 ± 0.27 1.78 ± 0.50 0.59 ± 0.60 17.88 ± 0.24 4.38 ± 0.09 16.84 ± 0.20

DialoGPT + RT (Sennrich et al., 2016b) 18.26 ± 0.49 5.10 ± 0.21 1.80 ± 0.20 0.62 ± 0.08 18.32 ± 0.35 4.47 ± 0.18 17.16 ± 0.31

PCC with Cyclic Curr. w/o Bottom-k 18.76 ± 0.20 5.38 ± 0.14 1.99 ± 0.9 0.71 ± 0.06 18.81 ± 0.18 4.75 ± 0.12 17.53 ± 0.12

PCC with Cyclic Curr. w/ Bottom-k 18.80 ± 0.45 5.59 ± 0.17 2.07 ± 0.12 0.76 ± 0.11 19.15 ± 0.16 4.98 ± 0.12 17.89 ± 0.17

Table 3: Results for the downstream task of open-domain dialogue generation on PERSONACHAT, averaged from
three runs. All the metrics attain better quality with higher scores. We denote Round-trip Translation as RT. A
combination of top-k and top-p sampling with k = 120 and p = 0.95 is used for the penultimate row.

Model HUFFPOST COVID-Q AMZN

PCC w/o MI filtering 25.7 ± 1.4 50.2 ± 1.7 16.7 ± 1.1

PCC w/ Pure Sampling 25.8 ± 1.0 49.7 ± 0.9 16.9 ± 0.8

PCC w/ Inverse Curriculum 23.0 ± 1.7 48.5 ± 1.2 15.0 ± 0.5

PCC w/ Random Curriculum 24.0 ± 1.7 48.9 ± 1.5 15.1 ± 0.8

PCC w/ Gradual Curriculum 24.7 ± 1.3 49.6 ± 1.4 16.5 ± 0.7

PCC w/ Inv. Cyc. 24.9 ± 1.2 50.9 ± 1.0 16.5 ± 0.8

PCC w/ Cyc. 25.2 ± 1.5 51.4 ± 0.8 17.4 ± 0.7

PCC w/ Inv. Cyc., Bottom-k 25.3 ± 1.9 51.3 ± 1.1 17.1 ± 1.2

PCC w/ Cyc., Bottom-k 25.9 ± 1.7 51.7 ± 0.6 18.2 ± 1.0

Table 4: Ablation results in top-1 accuracy for the
downstream task of text classification.

5.3 Dialogue Generation Results

Table 3 presents the results for dialogue generation
on PERSONACHAT. First, we present the results
for competitive baselines, namely TransferTransfo
and PerCVAE. DialoGPT surpasses these two sig-
nificantly. Using CDA on DialoGPT has deteri-
orated BLEU scores, which suggests that using
CDA causes grammatical influence, possibly due
to the random operations that produce undesirable

grammatically incorrect augmentation. We also ob-
serve a large variance with the official paraphrase
provided by PERSONACHAT, possibly due to the
large difference between the manually rephrased
sentences. This indicates easier paraphrases seem
to be essential for PCC to be effective. Also, the
Flatten baseline reported in Table 3 approximates
a random curriculum, which degrades the results.
It leads to a conclusion about the usefulness of the
suggested curriculum. Round-trip Translation (RT)
seems not effective, which is somehow reasonable
as RT was originally designed for machine transla-
tion. PCC achieves the best among all the models,
suggesting its usefulness for dialogue generation.
Appendix D provides in-depth reasonings on the
results. Appendix H presents a human evaluation
of the downstream task of dialogue generation.

5.4 Analysis on Bottom-k Sampling

Table 5 presents the automatic results for bottom-
k sampling on PERSONACHAT. Here, bottom-k
sampling attains the best on Distinct scores with
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Model D1 D2 D3 D4 D5 D6

Pure Sampling 0.187 0.571 0.788 0.881 0.919 0.932

Top-k&p (k=120, p=0.95) 0.145 0.481 0.711 0.826 0.877 0.897

Top-k&p (k=80, p=0.80) 0.125 0.415 0.634 0.762 0.825 0.850

Bot.-k (k=2, N=1) 0.184 0.587 0.824 0.901 0.919 0.925

Bot.-k (k=10, N=1) 0.199 0.630 0.860 0.926 0.940 0.943

Bot.-k (k=2, N=5) 0.223 0.695 0.904 0.945 0.951 0.953

Bot.-k (k=5, N=10) 0.251 0.786 0.950 0.967 0.969 0.970

Bot.-k (k=10, N=15) 0.262 0.851 0.971 0.978 0.979 0.979

Table 5: Automatic results for bottom-k sampling on
PERSONACHAT. D represents the Distinct-N scores.

Criteria PCC w/o Bottom-k PCC w/ Bottom-k

Gramma. Richness 34 66 ‡

Lexical Richness 33 67 ‡

Difficulty 34 66 ‡

Paraphrasing 50 50 †

Table 6: Human evaluation results for bottom-k in
winning percentages. ‡ indicates the results as passing a
two-tailed binomial significance test with p < 0.0001.

lower grams (N ∈ {1, 2, 3}), indicating its lexical
richness. It also attains the best on Distinct scores
with higher grams (N ∈ {4, 5, 6}), indicating its
grammatical richness. This helps to generate super-
hard instances. Note that the setting of bottom-k
sampling employed in PCC with k = 2 and N =
1 already gives the best overall diversity against
previous sampling methods. Further increasing the
value of k and N leads to higher diversity.

5.5 Human Evaluation on Bottom-k Sampling
We hired three experienced annotators who have
degrees relevant to English Linguistics to conduct
an evaluation on bottom-k sampling with PER-
SONACHAT. We present a questionnaire composed
of 800 questions with 200 randomly sampled train-
ing instances with the paraphrases generated with
and without bottom-k sampling to the annotators
to compare model outputs under A/B testing:

• (Grammatical Richness): "Which para-
phrase do you think is more grammatically
different than the original input sentence?"

• (Lexical Richness): "Which paraphrase do
you think is more lexically different than the
original input sentence?"

• (Difficulty): "Which paraphrase is more diffi-
cult to read and understood?"

• (Paraphrasing): "Which one is more like a
mutual implicative paraphrase to the input?"

Table 6 presents the results of our human eval-
uation. The paraphrases generated by PCC with
bottom-k sampling have a significant advantage
in lexical and grammatical richness. Such an ad-
vantage correlates well with the difficulty of the
paraphrases to be understood by human annotators.
Furthermore, bottom-k does not hurt the paraphras-
ing performance compared to the top-k and top-p
sampling. The result of human evaluation veri-
fies our claim that bottom-k generates super-hard
paraphrases with grammatical and lexical richness.
Appendix F presents how bottom-k sampling is su-
perior over previous methods in our scenario with
case studies about the coping mechanism.

6 Conclusions

We propose a novel framework that uses mutual
implicative paraphrasing as a curriculum data aug-
mentation technique. Our proposed curriculum-
aware paraphrase generation module is composed
of three components, a paraphrase candidate gener-
ator with a bottom-k sampling strategy for gener-
ating superhard paraphrases, a paraphrase filtering
mechanism, and a difficulty measure. We propose
a bottom-k sampling strategy to effectively gen-
erate super-hard instances with grammatical and
lexical richness to be used for the later stages in cur-
riculum learning. Moreover, we propose a cyclic
learning strategy that mitigates catastrophic forget-
ting. Experimental results on the task of few-shot
text classification as well as dialogue generation
support our proposed methodology PCC’s useful-
ness, surpassing several competitive baselines.

Limitations

The proposed PCC cost more computational re-
sources than traditional CDA methods. However,
the cost is still affordable. Generating a round-trip
augmentation used as one of the baselines costs
about 1.5 seconds (1x speed) for PERSONACHAT.
In contrast, generating a single paraphrase costs
about 0.40 seconds (3x faster) with PCC on our
machine with a single GPU.

Ethical Statement

We honour and support the EACL Code of Ethics.
The datasets used in this work are well-known and
widely used, and the dataset pre-processing does
not make use of any external textual resource. In
our view, there is no known ethical issue. End-to-
end pre-trained dialogue generators are also used,
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which are subjected to generating offensive context.
But the above-mentioned issues are widely known
to commonly exist for these models. Any content
generated do not reflect the view of the authors.
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first pass for our second pass, and the remaining
hyper-parameters are kept the same. For Token
Substituion, Pervasive Dropout, SwitchOut, and
Round-trip Translation, we follow Wei et al. (2021)
to use the triplet network as the base model and use
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a two-stage curriculum for those baselines. Follow-
ing Wei et al. (2021), we include 20% original data
whenever augmentation is used.

For dialogue generation, we use DIALOGPT-
SMALL for parameter initialisation. We use a batch
size of 4 and a gradient clip of 0.1. We use vali-
dation patience of 10 based on the validation loss.
We use greedy decoding for all of our experiments.
The above settings apply to all our baselines and
our proposed model fine-tuned on DIALOGPT. We
start to apply the augmentation after 130,000 steps
for data augmentation methods. We train the first,
second, third, fourth, and fifth curriculums with
60,000 steps. For Official, Flatten, and RT, we per-
form a two-stage curriculum as described by Wei
et al. (2021). We setN and k as a small value (typ-
ically N = 1 and k = 2) for bottom-k sampling.
We perform a cyclic repetition for our proposed
method for the same number of steps for each cur-
riculum until early stopped.

During our experiments, we apply data augmen-
tation methods on the entire textual input for text
classification, and we apply data augmentation
methods on the personas traits for persona-based
dialogue generation. We employ an off-the-shelf
pre-trained model for both the paraphrase generator
and the MI classifier (Nighojkar and Licato, 2021).

For all of the datasets, we obtain 20 paraphrases
after filtering, and we assign 4 paraphrases (Wei
et al., 2021) to each of the curriculums we have. We
use 2 paraphrases obtained with bottom-k sampling
for COVID-Q and we use 4 paraphrases obtained
with bottom-k sampling for the remaining datasets.

For our models without bottom-k sampling, we
use 20 paraphrases generated with a combination of
top-k sampling and top-p sampling with k = 120
and p = 0.95 for all of the datasets.

We conduct our experiments for dialogue gener-
ation on the PARLAI platform (Miller et al., 2017).

B Datasets for Text Classification

• The HUFFPOST dataset is composed of 200k
news headlines collected from 2012 to 2018,
which is categorized into 41 classes such
as politics, entertainment, and travel (Misra,
2018; Misra and Grover, 2021). We use all
the classes and a 70% / 30% train / test split by
class (Wei et al., 2021).

• The COVID-Q dataset is composed of 87
classes with several questions per cluster
which ask about the same thing (Wei et al.,

2020). We use the official train / test split with
3 questions per cluster (Wei et al., 2021).

• The AMZN product review dataset (Yury,
2020) categorizes products into given reviews.
We consider the use of 318 ‘level-3’ classes
with at least 6 samples per product.

For the few-shot scenario, we need to set the num-
ber of samples in each class, Nc, to be used to con-
struct the datasets. We use the setting in Wei et al.
(2021) where Nc = 3 for COVID-Q and Nc = 10
for HUFFPOST. We set Nc = 2 for AMZN.

C Dataset for Dialogue Generation

CONVAI2 is an official competition built based
on PERSONACHAT by adding new training exam-
ples as well as a hidden test set. For convenience,
we denote the former as PERSONACHAT in the
remaining of the paper. Since the test set is not
publicly available, we use the official split contain-
ing a training / development split with 8,939 / 1,000
multi-turn dialogues conditioned on 1,155 / 100 per-
sonas respectively. Each persona is composed of
about 4 to 5 persona traits.

D Analysis on Dialogue Generation

Table 3 reports an ablation when we use our PCC
to train the dialogue generator without the use of
bottom-k sampling. The results suggest that us-
ing bottom-k sampling improves all the metrics,
especially the ROUGE scores. Table 8 presents the
distribution of the textual similarity scores for the
paraphrases generated from four methods on PER-
SONACHAT. The official paraphrase (Zhang et al.,
2018) largely differs from the original ones, which
we postulate as the reason for the large variance
observed in Table 3. This also indicates the necces-
sity of the easier samples for curriculum learning.
The Round-trip Translation generates paraphrases
that have higher textual similarity with the input
sentence. Our method without bottom-k sampling
(we use a combination of top-k and top-p sampling
with k = 120 and p = 0.95 here) generates para-
phrases with more evenly distributed scores, with
an average of 0.02. In contrast, bottom-k helps
to generate harder samples while still capable of
generating more easier samples.

E Problematic Cases for EDA

Table 7 presents samples from EDA for a sample
input ‘I am glad to help you.’ with each of the
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Sample Number τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5

i) I equal am glad to help
you.

I am glad help to you. I am gald to happy help
you.

To help you. Glad am to help I you.

ii) I am glad you help to. I am gladiola to help
you.

I am glad to assistance
you.

Help glad am to i you. I am gladiolus to helper
you.

iii) Am glad you. I am glad help you. I am glad you help to. You I gald to help am. I am glad help you.

iv) I am glad to help you. I am glad equal to help
you.

I am glad to help you. I am glad to happy
happy help you.

I am happy to avail
you.

Table 7: Randomly selected cases for an input ‘I am glad to help you.’ using Easy Data Augmentation (Wei and
Zou, 2019). We present recommended temperatures τ ranging from 0.1 to 0.5, with four samples for each τ .

Model [0.5, [0, 0.5) (−0.5, 0) ,−0.5] Avg.

Official Paraphrases 1% 14% 33% 52% −0.46

Round-trip Translation 25% 52% 17% 6% 0.23

PCC w/o Bottom-k 39% 11% 23% 27% 0.02

PCC w/ Bottom-k 16% 8% 18% 58% −0.43

Table 8: Analysis on the distribution for the textual
similarity score with different augmentation methods.

temperatures τ ranging from 0.1 to 0.5, which is
the recommended setting from Wei et al. (2021).
We categorize EDA’s problems as the followings:

• Sample i) with τ = 0.1 and sample ii) with
τ = 0.2 changes the meaning of the input
sentence. ‘equal’ is possibly produced by ran-
dom insertion and ‘gladiola’ is possibly pro-
duced by synonym replacement via WordNet
(Feinerer and Hornik, 2020).

• Most of the samples produced with τ = 0.4
and τ = 0.5 breaks the grammar, which can
be harmful to generation tasks.

• Sample ii) and iv) with τ = 0.5 introduces
rare words such as ‘avail’ and ‘gladiolus’,
which is counterintuitive to see in many tasks.

As illustrated in Figure 1, PCC effectively reduces
the above-mentioned issues.

F Analysis on Bottom-k Sampling

Table 9 presents extensive case studies to support
that bottom-k sampling generates grammatically
rich and lexically rich paraphrases. PCC without
bottom-k tends to exploit a coping mechanism at
the beginning of generation (Sample 2, 3, 5, 6, 7,
8, 9, 10, 11, 12). By excluding these dominating
words to be copied for generation, bottom-k effec-
tively emphasises the content (Sample 5), improves
grammatical richness (Sample 1, 2, 3, 4, 5, 6, 7, 10,
12) and lexical richness (Sample 3, 4, 6, 8, 10, 12),
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Figure 3: A plot of the percentage performance im-
provements of the downstream task of text classification
against the number of data augmentation instances per
curriculum. We use the first row in Table 2 as the base-
line and the last row in Table 2 as the full improvements.

does appropriate synonym replacement (Sample 8,
11) and insertion (Sample 4). Without bottom-k
sampling, the input that starts with a first-person
pronoun ‘i’ is highly likely to have an output that
starts with ‘i’ (Sample 2, 3, 6, 8, 10). This con-
strains the model from generating grammatically
rich paraphrases. In contrast, bottom-k sampling
effectively reduces such cases and biases the gener-
ation towards a grammatically rich sampling space.
Indeed, out of the 6,126 persona traits from PER-
SONACHAT, 5,087 of them start with ‘i’. PCC
without bottom-k generates 2,558 paraphrases that
start with ‘i’, which avoids generating super-hard
instances and hampers the PCC performance.7 In
contrast, bottom-k generates 205 paraphrases that
start with ‘i’, indicating its usefulness in improving
grammatical richness and generating super-hard
instances. Avoiding coping helps to unearth the
diverse paraphrases hidden in the tail vocabularies,

7Neither a pure top-p sampling with p = 0.95, a pure
top-k sampling with k = 120, nor a greedy sampling helps,
which generates 2,313, 2,381 and 3,302 paraphrases that start
with ‘i’ respectively. Compared to these sampling strategies,
bottom-k is an effective strategy in preventing copying.
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Original Input Sentence PCC w/o Bottom-k Sampling PCC w/ Bottom-k Sampling

1): i like to shoot a bow. When i first started shooting bows, this was the most im-
portant method.

Hey, i like to shoot a bow. Just started using a Bow SLR
shooter, but a DSLR isn’t really necessary.

2): i have four sisters. i have four sisters four sisters, and i want four sisters.

3): i believe that mermaids are real. i believe that mermaids are real " @JesseyHawkins Marxist philosopher,’mermaids are real," property

4): i work as a stand up comedian. jesse t trained comedian, I work as a stand up comedian.

5): my favorite drink is cuba libre. My favorite beverage is Cuba libre. Cuba is my favorite drink and I live in Cuba free.

6): i did a few small roles in tv series. I have done a few small roles in tv series. over the years i’ve appeared in a few small roles in televi-
sion series

7): i love bicycling. bicycle is my friend. i Love Bicycling. how wonderful & amp ; inspiring! I love bicycling.

8): i own a hearse. own a hearse. u could do that? belongs to a hearse. it’s not that expensive.

9): i like to listen to music. i like to listen to music. How do you make up your mind? I like to listen to music. by JACK CLINTON

10): i like to party. I like to party touts my ambition and passion for parties " by @Mar-
gotHillary by @anadulka @KelisStout

11): my favorite band is imagine dragons. my favorite band is imagine dragons. I am just so happy
about that.

i love this band it is awesome

12): i love to sing. sing, am i love to sing artist, i love to sing.

Table 9: Extensive case studies on PERSONACHAT support our claim that bottom-k sampling generates grammati-
cally and lexically rich paraphrases that are more different than the input sentence.

which we postulate as the reason for the results
observed in human evaluation in Section 5.5.

Note that we use bottom-k sampling to effec-
tively prevent coping to generate instances that are
textually more different to the input. There is a
stream of work that considers improving the diver-
sity (Vijayakumar et al., 2016). However, these
works do not directly consider the similarity be-
tween the input paraphrase and the output para-
phrase. This is the advantage of bottom-k sampling
over this stream of work for our scenario.

G Analysis on Data Augmentation

Figure 3 presents the percentage improvements in
accuracy as a function of the number of data aug-
mentation instances available for each curriculum.
Here, since we have 5 curriculum difficulty levels
in our setting, having 3 instances available for each
curriculum means that we have 15 data augmenta-
tions in total for each original sample. The improve-
ments are positively correlated with the number of
available instances. Furthermore, it seems that the
improvements of PCC are not saturated yet. This
means that a further increase in the number of data
augmentations can lead to even higher performance
than reported in our paper.

H More Human Evaluation

• (Appropriateness): "Who is more appropri-
ate given the previous dialogue context?"

• (Informativeness): "Who is more diverse in-
stead of null answers such as I do not know?"

Criteria w/o PCC w/ PCC

Appropriateness 49 51 †

Informativeness 45 55 †

Engagingness 48 52 †

Human-likeness 49 51 †

Table 10: Human evaluation results for PCC in winning
percentages. † indicates the results as passing a two-
tailed binomial significance test with p < 0.05.

• (Engagingness): "Who would you prefer to
talk with for a long conversation?"

• (Human-likeness): "Which speaker do you
think sounds more like a real person?"

We follow Li et al. (2019) and Zou et al. (2021) to
conduct a human evaluation of dialogue generation
from the four aspects described above. We follow
the settings used in Section 5.5 to invite three ex-
perienced annotators to mark 200 instances under
A/B settings. The results in Table 10 indicate that
PCC effectively improves the DIALOGPT baseline
in all aspects, especially informativeness.

I Computing Infrastructure

We use an NVIDIA TITAN RTX with 24GB GPU
memory for all of the experiments conducted in
this paper. Training the text classification model
consumes about 1 hour. Fine-tuning the dialogue
generator consumes about 15 hours. Generating
a single paraphrase to be used in PCC as a CDA
method costs about 0.40 seconds on our machine.
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Abstract

Van Miltenburg et al. (2021) suggest NLP re-
search should adopt preregistration to prevent
fishing expeditions and to promote publication
of negative results. At face value, this is a
very reasonable suggestion, seemingly solving
many methodological problems with NLP re-
search. We discuss pros and cons—some old,
some new: a) Preregistration is challenged by
the practice of retrieving hypotheses after the
results are known; b) preregistration may bias
NLP toward confirmatory research; c) prereg-
istration must allow for reclassification of re-
search as exploratory; d) preregistration may in-
crease publication bias; e) preregistration may
increase flag-planting; f) preregistration may
increase p-hacking; and finally, g) preregistra-
tion may make us less risk tolerant. We cast
our discussion as a dialogue, presenting both
sides of the debate.

1 Preregistration

Should NLP researchers be required to preregister
their studies? Van Miltenburg et al. (2021) present
arguments for preregistration, recently echoed by
Ulmer et al. (2022). Preregistration has its origin
in preregistration of clinical trials,1 and amounts to

1The first registries were established by medical re-
searchers in the 1960s and were originally designed to help
experimenters recruit participants for clinical trials, but as
pointed out by Wiseman et al. (2019), preregistration, as we
think of it today, started in parapsychology. In 1974, Martin
Johnson, a professor of parapsychology and an editor of newly
established European Journal of Parapsychology, introduced a
preregistration practice for this journal (Johnson, 1975), in an
effort to make parapsychology protocols more rigorous. In the
editorial, Martin Johnson describes how according to the phi-
losophy of the proposed preregistration model, experimenters
should define their problems, formulate their hypotheses and
outline their experiments, prior to commencing their studies.
In Declaration of Helsinki §19, the World Medical Associa-
tion (2013) demands: “Each clinical study must be registered
in a publicly accessible database before the first test subject is
recruited.” While the European Commission refers to it, it has
not been universally adopted (Rid and Schmidt, 2010).

the following: Before you initiate a set of experi-
ments, you register your hypotheses, your experi-
mental design and how you plan to analyze your
results. Registration is time-stamped on an online
platform with general public access. You then fol-
low your plan as closely as possible and report any
divergences in your final publication.

The discussion in van Miltenburg et al. (2021)
is not unprecedented. Preregistration has been de-
bated in epidemiology (Lash and Vandenbroucke,
2012), social psychology (Veer and Giner-Sorolla,
2016), experimental economics (Strømland, 2019)
and information systems research (Bogert et al.,
2021). Our discussion is inspired by the discus-
sion in epidemiology, which is similar to NLP in
focusing on data analysis rather than clinical trials.

There is an important ambiguity in how prereg-
istration is discussed: Is the preregistration entry
peer-reviewed or not? Chambers (2019) sees pre-
registration as a peer-reviewed process, and this is
also what van Miltenburg et al. (2021) suggest for
NLP. We therefore assume peer-reviewed preregis-
tration below. The required format of the registered
report is also important. In their Appendix, van
Miltenburg et al. (2021) provide example question-
naires. We will assume registered reports will be
lists of answers to such questionnaires, but in §9,
we will suggest a few revisions to the questions
formulated by van Miltenburg et al. (2021).

2 Why Preregister NLP Research?

Van Miltenburg et al. (2021) present four reasons
for adopting preregistration in NLP: distinguish-
ing between confirmatory and exploratory research,
avoiding fishing expeditions and harking, mitigat-
ing publication bias and avoiding flag-planting:

Distinguishing Confirmatory from Exploratory
The first apparent advantage to preregistration—
often said to be the most important one (Nosek
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et al., 2018)—is that it clarifies what counts as
confirmatory research, which has to preregister,
and what counts as exploratory research with no
obligation to preregister. Confirmatory research
is hypothesis testing, held to the highest standard
and which aims to minimize false positives. Here,
p-values are generally assumed to have diagnostic
value and inferences can be drawn to wider popula-
tions. Exploratory research, in contrast, has a differ-
ent status: It generates rather than tests hypotheses
and results should be replicated and confirmed at a
later stage. Typically, the focus is on minimizing
false negatives, and p-values are not assumed to
have diagnostic value (Schwab and Held, 2020).
Moreover, findings are not assumed to be directly
transferable to wider populations. Rubin (2020),
however, points out how it is not always trivial to
distinguish between confirmatory and exploratory
research: if a researcher, for example, retries a
hypothesis from previously published literature to
explain an experiment they just ran, is this an a
priori or a post-hoc hypothesis? See also §3.

Fishing Expeditions and Harking Preregistra-
tion is often said to prevent fishing expeditions
and so-called harking2 (Andrade, 2021), namely,
post-hoc characterization of hypotheses based on
experimental outcomes. Fishing expeditions is
ambiguous in the literature (between fishing and
harking), but we use the term to refer to cherry-
picking dataset and protocols to validate a hypoth-
esis. Harking, in turn, is what researchers do
when they indiscriminately examine associations
between different variables, not with the intention
of testing a priori hypotheses but simply hoping
to find something of significance. Rubin (2020)
calls this ‘undisclosed hypothesizing after the re-
sults are known.’ Having authors preregister their
hypotheses potentially improves the reliability of
confirmatory research by controlling for cherry-
picking and multiple hypothesis testing, implicit to
exploratory research. See also §4.

Publication Bias Van Miltenburg et al. (2021)
say that, to them, the main advantage of registered
reports is that they provide a means to avoid publi-
cation bias. Because studies are evaluated prior to
the results, negative results have the same chance

2Short-hand for “hypothesizing after the results are
known”. Often conflated with fishing, but the two differ: Hark-
ing fixes the experiment, varies the hypothesis, so to speak,
whereas fishing fixes the hypothesis, varies the experiment.
The acronym was coined by social psychologist Norbert Kerr.

to be published as positive ones. Rubin (2020) re-
fer to this as avoiding the suppression of a priori
hypotheses that yield null or disconfirming results.
Publication bias is claimed to be a serious problem
in NLP research by many (Plank et al., 2014; Card
et al., 2020; Cohen et al., 2021). The argument
was also used in epidemiology, but received some
pushback (Loder et al., 2010). See also §5.

Flag-planting Van Miltenburg et al. (2021) also
suggest preregistration can prevent so-called flag-
planting. Flag-planting refers to rushing to be the
first to publish results. Flag-planting potentially
comes at the cost of scientific integrity and quality.
Because of biases in peer-reviewing, it is harder
to publish a corrected version of a study that is
already out there, than to publish an error-prone
study that is the first of its kind. See also §6.

Other Reasons to Preregister We have covered
the main reasons van Miltenburg et al. (2021) had
for adopting preregistration and will now move
to our two-sided, dialogical discussion of its pros
and cons. In our dialogue, we will let Zeny and
Socart,3 our house philosophers, debate preregistra-
tion. In §3–§8, we will let them discuss arguments
against preregistration, including arguments that
run counter to those presented by van Miltenburg
et al. (2021), but we will first let Zeny provide us
with a fifth argument for preregistration:

ZENY: Socart, there’s an additional argument for pre-
registration, I believe. Early feedback on experi-
mental methodology through a peer-reviewed reg-
istration process should improve the quality of
the methodology, should it not? Such feedback
also saves resources otherwise spent on failed or
misleading experiments.

SOCART: Zeny, we both know turn-around is fast in
NLP research. Experiments are easier to run and
feedback is much faster than for clinical trials,
where preregistration is common.

ZENY: NLP as a field has many virtues, but the re-
viewing cycle is slowing as the field grows larger.
Moreover, experiments are becoming more ex-
pensive with larger models, creating barriers of
entry (Bender et al., 2021) and experiments have
substantial environmental impact.

SOCART: You make an important point, Zeny, but early
feedback would require more time from review-
ers. Since reviewers and researchers coincide,

3Zeny is a mix of Kenny from South Park and Zeno. In
Plato’s Parmenides, Zeno argues for monism—the idea that
reality is one stable thing. Socart is a mix of South Park’s Eric
Cartman and Socrates, who countered this idea by asserting
a more nuanced ontology in which things stand in complex
relations to each other. Socrates, in other words, took a more
nuanced stance, arguing against the existence of a one-size-
fits-all hypothesis. Zeny and Socart adopt similar positions in
our dialogue about preregistration.
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preregistration would potentially save compute
resources, but not working hours.

ZENY: That is an oversimplification. Giving feedback
on an early draft takes much less time than writing
a full paper. If the reviewers are carried over, they
will save time when reading the full submission,
also. Preregistration would also prevent cherry-
picking and invalid use of significance tests by ex-
cluding explorations from confirmatory research.

SOCART: But the explorations could be done prior to
preregistration and researchers may then be more
inclined not to report such explorations at all.4

ZENY: Any system can be tricked, but if researchers
adopted the practice of preregistration, we would,
all things being equal, increase transparency and
decrease bias around research.

SOCART: Dear Zeny, you too have seen the evasiveness
of bureaucracy, e.g., in NLP conference submis-
sion forms. While preregistration reports would
initially be light-weight, transparency could easily
be clouded by the complexity of assembling the
information required for preregistration as new
requirements are added over time.5

See Bracken (2011) and Rubin (2020) for a dis-
cussion of more advantages to preregistration. In
addition to reducing fishing expeditions and hark-
ing, flag-planting and publication bias, these in-
clude: a) preventing p-hacking, b) prespecifying
tolerated significance levels, c) identifying selec-
tive reporting,6 and d) preventing forking paths
practice.7 None of these points are uncontroversial
and Rubin (2020) also presents counter-arguments
against a)-d). For example, prespecified signifi-
cance levels have been superseded by the practice
of simply reporting actual α-levels. Surprisingly,
there has been little work on whether preregistra-
tion increases trust in science, except for the study
by Field et al. (2020), which was under-powered.

We focus on preregistration for NLP research.
In general, there is no a priori reason to think that
the pros and cons of preregistration transfer from
clinical trials over epidemiology to NLP research.
In clinical trials, for example, it is easy to decide
when a protocol must be registered. This simply
happens before the first subject is assigned to treat-
ment. In epidemiology, there is no such bright line
(Lash and Vandenbroucke, 2012) and it is equally
hard to see one in NLP. While general machine

4This point was also made for preregistration in epidemi-
ology by Sørensen and Rothman (2010).

5See Loder et al. (2010) for arguments from epidemiology.
6Selective reporting is regarded the most important contrib-

utor to irreproducibility by Baker (2016). Nosek et al. (2018),
advocating for preregistration, presents similar arguments.

7This practice refers to when researchers make decisions
about which correlation tests to conduct based on properties of
their data. The practice is named after The Garden of Forking
Paths, a 1941 short story by Jorge Luis Borges.

learning has seen many related methodological dis-
cussions (Gencoglu et al., 2019; Lipton and Stein-
hardt, 2018; Gundersen et al., 2022), there has,
to the best of our knowledge, been no published
discussions of preregistration practice in this field,
with the exception of Gundersen (2021).89

In our discussion below, we will ignore the most
trivial challenges to preregistration, such as devi-
ations from data collection plans for practical rea-
sons, discovery of assumption violations, etc. Such
challenges have already been discussed in the clini-
cal literature, e.g., by Nosek et al. (2018).

3 Encouraging Confirmatory Research

We let SOCART and ZENY discuss whether pre-
registration will succeed in distinguishing between
confirmatory and exploratory research. A decade
ago, when preregistration was being implemented
and discussed in epidemiology, the worry that pre-
registration would introduce a bias against “the
end of the research spectrum that constitutes the
quirky, brilliant work that is not enterprise-driven”
(Sørensen and Rothman, 2010), was the main con-
cern among its opponents. SOCART and ZENY

discuss the consequences of insisting on a distinc-
tion that is not trivial to uphold in practice.

SOCART: It seems to me, dear Zeny, that many NLP
projects are driven not by an explicit hypothesis,
but by a desire to understand the behavior of a
model, to be able to characterize its strengths and
weaknesses, or by a simple gut feeling that at the
locus of interacting variables, interesting dynam-
ics can be observed.

ZENY: Can you provide me with an example?
SOCART: Certainly. Pires et al. (2019), e.g., showed

that knowledge encoded in multilingual BERT
(Devlin et al., 2019), could be transferred across
languages—even across scripts, that such transfer
worked best between typologically similar lan-
guages, that it could process code-switching and
find translation pairs. They also showed system-
atic deficiencies affecting some language pairs.
How would they have foreseen these findings? Or
even the dimensions that turned out to be of inter-
est? Even if they had foreseen how they wanted
to explore transfer across scripts and typological
classes, what if genealogy or demography turned
out to be more interesting than typology?10

8Workshops on preregistration at ICCV 2019 (https://
preregister.vision/) and at NeurIPS 2021 (https:
//preregister.science/) seemingly did not lead to
publications or a change in practice yet, but the website for
the 2021 workshop says papers are forthcoming.

9Gundersen (2021) complains no AI venues support pre-
registration, but provide no arguments for or against it.

10Independent language families may share features, i.e.,
be typologically close, but genealogically apart. See Rama
and Kolachina (2012) for discussion.
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ZENY: I am unconvinced that preregistration would be
a serious obstacle to such work. Pires et al. (2019)
could have defined the search space in advance –
or maybe this is exploratory work that would not
have to register in the first place? Remember also,
Socart, that the preregistered plan can be updated
and refined in the course of a research project.
Plans can be revised, but this does not cancel out
the benefits of planning.

SOCART: Preregistration may accommodate deviation
from the plan, but would risk losing its benefit if
researchers were allowed to preregister too many
hypotheses or update their plans too frequently.
Let us illustrate this with another example. Zhao
and Bethard (2020) study how BERT models’
learned self-attention functions change during
fine-tuning to reflect the target task. They find
this to be the case only in smaller models; with
more parameters, the change disappears. Imag-
ine now that their hypothesis was confirmed only
for select combinations of positional encodings,
regularizers and optimizers.

ZENY: This sounds suspiciously like a case of forking
paths. Dror et al. (2017) warned us about this risk,
encouraging us to at least validate our hypotheses
on multiple datasets to reduce the chance of p-
hacking.11 Again, preregistration would not be
required for all research.

SOCART: So if authors submitted exploratory work for
peer review, would reviewers then decide if by-
passing preregistration was appropriate?

ZENY: Yes. Preregistration clarifies the distinction be-
tween exploratory and confirmatory research.

SOCART: But what if Pires et al. (2019) had pointed
to earlier work already hypothesizing that trans-
fer works best between typologically similar lan-
guages? Would this not have made their research
confirmatory in the eyes of their readers and there-
fore in need of preregistration?12

ZENY: It very well might have. If they consider it ex-
ploratory, they should also point to alternative
hypotheses that would explain different results.

SOCART: Moreover, if preregistration becomes a badge
of honor or increases your chances of getting your
work accepted, because the findings have a differ-
ent air of trustworthiness,13 would this not be a
reason to encourage your students to perform con-
firmatory rather than exploratory research? Pre-
registration would, in other words, inject a bias
toward confirmatory research into NLP.

ZENY: I, for one, would welcome this kind of bias.

✓ Preregistration is challenged by r-harking and
may bias NLP toward confirmatory research.

4 Some Expeditions May Prevent Others

If you ask an NLP researcher if they are “on a fish-
ing expedition” or if they are hypothesizing after
the fact, you will instantly make them feel very
uncomfortable. It is widely accepted that fishing

11See Belz et al. (2021) for a similar discussion.
12This practice is known as “retrieving hypotheses after the

results are known” (r-harking) (Rubin, 2017).
13Greater reliance on preregistration improves estimation

of effect sizes, as shown by Strømland (2019).

and harking are bad practices.14 Socart, however,
has an argument for (occasional) harking:

SOCART: Two researchers, Ann and Bob, have the
same hunch, that the regularization technique R2

is better than its competitors, R0, R1, R3. Ann
realizes after a set of experiments of datasets
D0, D1, D2 that, in fact, R1 is better than R2.
Since this was previously unknown to the com-
munity, she publishes it, presenting it (somewhat
vaguely) as a confirmation of an a priori hypoth-
esis. Bob tests the same hypothesis, i.e., that R2

is superior to R0, R1, R3. Seeing R1 is better on
D0, D1, D2, he looks for more datasets, until he
has a suite of datasets D4, D5, D6 on which R2

is better than R1.
ZENY: Bob’s cherry-picking is extremely problematic,

but so is Ann’s harking.
SOCART: But would you agree that granting her the

freedom to hark most likely reduces her tempta-
tion to cherry-pick?

ZENY: This would simply reclassify Ann’s work as
exploratory rather than confirmatory. I see no
reason why preregistration should not allow this.

SOCART: The two researchers both departed from their
original plans, but Ann’s willingness to depart
from her original hypothesis serves us better than
Bob’s cherry-picking. In this way, harking can
prevent a researcher from taking on a fishing ex-
pedition.

✓ Preregistration should allow for re-classification
of confirmatory research as exploratory research.15

5 Solving Publication Bias?

Sørensen and Rothman (2010) argue against pre-
registration solving publication bias, because re-
searchers can still selectively register studies af-
ter preliminary data explorations. Imagine Hip-
pocrates, the Greek physician, was asked to prereg-
ister his vivisection experiments. If Hippocrates
was studying 10 soldiers with brain lesions, what
would prevent him from using one soldier to gener-
ate hypotheses, preregister those and conduct the
final experiments on the remaining nine? Or worse,
peek at all, preregister and go back to the data?

SOCART: Say Hippocrates has two hypotheses about
the soldiers, such as that the heart is the seat of

14Andrade (2021) notes that fishing expeditions can be “eth-
ical” if acknowledged as such, and if appropriate corrections
are performed when computing significance results.

15Reclassification flags work as exploratory, thereby in-
creasing transparency, but would not impact acceptance de-
cisions. An alternative, suggested by one of our reviewers,
would be to introduce intermediate reports as a required step
to share the results of the preregistered study before continu-
ing to preregister and test alternative hypotheses a part of the
same study. This further increases transparency, and prevents
having ‘unwanted’ results ‘swept under the rug’ in the final
publication. Researchers working on a similar topic would
already benefit from the results in an intermediate report.
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compassion and that the brain is the seat of ra-
tional thought. Upon preliminary exploration,
he sees many soldiers have turned cold-hearted
by the atrocities of war, but few complain of
heartaches. Nearly all soldiers who are delusional
or suffer from memory loss, also suffered blows
to their heads. Hippocrates pursues and preregis-
ters only the hypothesis that the brain is the seat
of rational thought. He has now preregistered,
not a prediction, but a post-diction, ignoring the
negative result.

ZENY: But Socart, did you not, a moment ago, argue
that preregistration would dampen the creativity
of research by preventing fishing expeditions and
harking?

SOCART: In theory, yes. Preregistration will dampen
creativity if properly sanctioned, but I am skep-
tical that this would be practically possible, ren-
dering preregistration ineffective, an unnecessary
administrative burden for all—and a bottleneck
for the honest few.

ZENY: If preregistration prior to data collection is en-
couraged, this would solve the problem, no?16

SOCART: Surely, but this would mean only one prereg-
istered study per dataset. Since few NLP papers
introduce new datasets, this would render prereg-
istration ineffective for the vast majority of NLP
research.

ZENY: This is a good point, Socart, but community-
wide overfitting to benchmarks is a vice, not a
virtue. If preregistration encourages the introduc-
tion of new test datasets, that’s a good thing, no?
Some even argue that all papers should ideally
introduce new test data.

To the contrary? . . . in which SOCART and
ZENY continue to discuss whether preregistration
could actually make publication bias worse. SO-
CART suggests that preregistration could amplify
publication bias, if positive results are still pre-
ferred over negative ones and preregistration forces
researchers to focus on predictably positive results,
arguably a small subset of the positive results. If
papers are accepted on the basis of preregistration,
this could increase an arguably already existing
bias toward incremental improvements.17

SOCART: You say preregistration will make it easier
to publish negative results, because studies are
evaluated prior to obtaining results?

ZENY: That is correct, Socart.
SOCART: . . . but do we really know why there are so

few NLP papers about negative results? See, in
NLP, negative results are much harder to estab-
lish than positives. If I want to show that self-
attention or weight averaging does not lead to
improvements for some problem, I need to show
that holds across all implementations, all archi-
tectures and all available datasets. The value of

16This is implicit in preregistration in scientific fields where
data is not re-used, e.g., in psychology (Wiseman et al., 2019).

17Lash and Vandenbroucke (2012), for example, argue that:
“prespecified hypotheses often take little risk, invoke little
imagination and stray only a short distance from what is al-
ready well understood.”

a report stating that for one such combination,
self-attention didn’t do much, would be next to
nothing. Isn’t that the real explanation for the
skew in the NLP literature?

ZENY: Negative results are key to scientific progress
(Barwich, 2019), but are hard to establish if they
are very general. Published positive results often
overclaim their generality. Both should be con-
firmed only by accumulated evidence in diverse
settings.18

SOCART: No, no, you fail to see there’s a qualitative
difference, Zeny! Imagine if Ann was evaluating
self-attention for sentiment analysis. To answer
the hypothesis that self-attention works in the pos-
itive, she just needs a significant result in a single
setting. In contrast, in order to establish a negative
result, she has to explore all possible settings.19

How would preregistration make establishing a
negative result less formidable a challenge?

ZENY: I agree that it would not. My only claim is that
evaluating studies prior to obtaining results would
prevent any bias on behalf of peer reviewers to
evaluate negative results more harshly.

SOCART: . . . but in reality, we do not know if such a
bias exists, or whether it is only fair that such a
bias exists, because the bar by definition should
be higher for negative results?

✓ Preregistration may increase publication bias.

6 Solving Flag-Planting?

Flag-planting is one of the motivations for prereg-
istration for van Miltenburg et al. (2021), but exclu-
sive preregistration may also, conceivably, have the
opposite effect.

SOCART: Say Ann and Bob get the same great idea—
e.g., to evaluate the sensitivity of textual entail-
ment models to presupposition projection—and
worry that they will be scooped before getting
around to publishing it. Ann and Bob now follow
two different strategies: Bob rushes to preregister
a study hypothesizing that state-of-the-art mod-
els are sensitive to such phenomena, while Ann
rushes to run the experiments and publish the pa-
per. Zeny, which strategy is better for science?

ZENY: I would say it’s Bob’s, since rushed experiments
are more likely to be flawed.

SOCART: But Bob plants his flag faster than Ann, es-
sentially scooping her. By doing so, Bob discour-
ages Ann from pursuing this idea by planting his
flag first. What if Bob fails to conduct proper

18NLP has seen relatively few meta-studies (Cramer, 2008;
Søgaard, 2013; Hoyle et al., 2021; Bugliarello et al., 2021),
but hopefully, we will see more in the future.

19We flesh this out a bit. The research hypothesis in Ann’s
case is that self-attention helps. What this means is that in
some implementation, it leads to robust improvements. The
vast majority of NLP hypotheses take this form: X can, in
some implementation, lead to general improvements on one
or more tasks. If the baseline is fixed, this amounts to existen-
tial quantification (“some”). Conversely, its negation (“self-
attention does not help for sentiment analysis”) amounts to
universal quantification, i.e., there is no implementation in
which this is the case. This is obviously much harder to prove
than the corresponding positive result.
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experiments altogether? Had it not been for pre-
registration, both researchers would have pursued
their idea, providing mutual replication and in-
creasing the likelihood of the idea materializing
into an actual result.

ZENY: Some would say this is one of the advantages
of preregistration: Ann pursuing the same idea
would have been a waste of time.

SOCART: This assumes Ann and Bob would have con-
ducted their research in exactly the same way
and that none of them were prone to error. In
other words, that researchers are machines that
simply execute their unambiguous experimental
protocols. I think preregistration just moves flag-
planting to earlier in the research process, low-
ering the bar for researchers to plant their flags,
since less work is required to plant a flag. And
when a bar is lowered, more researchers are likely
to plant more flags.

ZENY: Van Miltenburg et al. (2021) explicitly encour-
age concurrent work.

SOCART: Yes, I did read that passage, but they do not
discuss how preregistration would impact concur-
rent work. Do they envisage a review system in
which Ann is allowed to follow up on the idea
that Bob preregistered?

ZENY: I’d do that, in the spirit of open science.
SOCART: Such inclusive preregistration would clearly

discourage protectionist researchers from prereg-
istering their studies. If a preregistered study is up
for grabs for other research labs, labs with more
resources could likely wrap up the experiments
faster than the researchers who registered it.

ZENY: . . . unless we envisage a review system allowing
Ann to preregister the same study, giving Ann and
Bob equal chances to pursue the study.

SOCART: This would be equivalent to telling reviewers
of a paper to consider as “concurrent” any other
work published within the last 1–2 years (assum-
ing this is the approximate life span of a research
project), including preregistered studies. Today,
reviewers are told to disregard work published
within the last three months, but already, review-
ers seem to ignore this guideline in practice, pre-
sumably because they do not want to compromise
the fast turn-around in NLP research.

ZENY: But shouldn’t we incentivize slow science?
Many NLP papers neglect related work and keep
reinventing the wheel. We need deeper analysis to
enable disruptive scholarship and novel ideas.20

SOCART: Slow science also has disadvantages. Fast
turn-around has had many positive effects on NLP,
including rapid replication. Projects can become
“too big to fail,” causing confirmation bias.21 Low-
ering false positive rates is important, but so is
healthy distrust in published results.

✓ Preregistration may increase flag-planting.22

20Chu and Evans (2021) showed that fast turn-around re-
sults in stymied fundamental progress in large scientific fields.

21This can result from financial interests (Ioannidis, 2005),
e.g., due to “sunk cost” (Perignat and Fleming, 2022).

22One obvious solution is to make preregistration non-
public, but then preregistration would not prevent two groups
doing the same study.

7 Solving p-Hacking?

Inflation bias, also known as p-hacking, refers to
selective reporting to produce statistically signif-
icant results. Søgaard et al. (2014) lists several
p-hacking techniques used, perhaps inadvertently,
in NLP papers. If a statistically significant result
is seen as the key to getting your paper accepted,
researchers are presumably willing to go far to
squeeze out a small p-value. But if preregistra-
tion facilitates the publication of negative results,
it seems it would also reduce the incentive to en-
gage in so-called p-hacking, e.g., obsessive fiddling
with data and models until reaching the magical
p < 0.01. It has been noted, however, that preregis-
tration leaves plenty of room for p-hacking (Bakker
et al., 2020). Generally, eliminating p-hacking en-
tirely is unlikely when career advancement is as-
sessed by publication output, and positive results
are favored by scientific peers (Head et al., 2015).

Socart and Zeny discuss whether preregistration
will reduce or amplify the incentive to engage in
p-hacking:

SOCART: Imagine Ann again, who is now evaluating
if self-attention is helpful for sentiment analy-
sis. Say she preregisters the hypothesis that self-
attention is helpful, only to find that her first re-
sults are negative. We would now like Ann to go
ahead and acknowledge the negative results on
print, right? However, as we just saw, when your
first results are negative, more results are typically
needed to draw a firm, negative conclusion that
self-attention does not help. Sometimes more data
collection is needed and more human evaluations
may be needed. Pursuing the negative result will,
in other words, be a lot of work.

ZENY: But very important!
SOCART: Preregistration increases the amount of work

that goes into moving your focus to establishing
a negative result: You will need to augment your
preregistration with information about the exper-
iment, your new hypothesis and the new experi-
ment you plan to perform.

ZENY: Documentation has to be light-weight.
SOCART: . . . but preregistration would get people more

invested in their ideas and bias them in how re-
sults are interpreted. When people go on record
with a study description, they will defend why it’s
reasonable and likely leading to a positive result.
Researchers are always prone to confirmation bi-
ases, but now social expectations and reputation
will amplify their existing biases. This would lead
to the opposite of the effect intended.

✓ Preregistration may increase p-hacking.

8 Risk Tolerance

Attempts to reduce false positives tend to also lead
to reductions in true positives. Many applications
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require near-zero false positive rates, but most NLP
experiments show low risk of direct negative im-
pact on society or individuals therein,23 as indi-
cated by the relatively few papers receiving ethical
reviews. Hence, we can afford to take risks and
explore hypotheses that end up wrong. Parascan-
dola (2010) reminds us how this is a key ingredient
in increasing knowledge and reducing uncertainty,
getting us off the beaten track. NLP benefits from
being frequently wrong and implementing prereg-
istration to prevent false positives has a drawback.
In §9, we will argue that what is important is to
balance preregistration with our risk tolerance.

SOCART: Imagine Ann works on hate speech detection
for a social media company. Bob works on topic
classification of social media posts at the same
company. They both validate and evaluate the
models in the wild on beta users. They both can
use logistic regression and SVMs. SVM is some-
times superior, but exhibits more variance across
hyper-parameters. If I were to advise Ann or Bob
to use logistic regression, who then?

ZENY: Probably Ann, since we can tolerate less risk
in her situation. But how would preregistration
affect the risk tolerance of researchers?

SOCART: Imagine if you were asked today to carry a
solid bottle of olive oil over to Plato’s house and
tomorrow to bring him a fragile, beautiful vase
decorated with gold. On which of the two days
would you be more inclined to run there?

ZENY: Today, but how is this relevant? What are the
tasks where we can afford to ‘run’?

SOCART: For tasks in which false positives are associ-
ated with high risk, we should hedge our bets by
preregistering conservative hypotheses; for other
tasks, this sort of inhibition of is unfortunate.

ZENY: This is exactly why exploratory research still
has a place in a world with preregistration—
namely, for tasks where we can tolerate risk.

One may argue that risk mitigation is not what
preregistration is for. The purpose of institutional
review boards (IRBs) and ethics reviewing is to
flag and prevent too risky studies (IRBs focus on
risk to human participants, while ethics reviewing
also addresses potential applications). We have
three reasons to think preregistration requirements
should depend on expected risk: (a) It is impossible
to review the implications of a study before you
have a solid study plan. If preregistration includes
risk assessment, this could provide input for IRBs

23This does not refer to the downstream risks after deploy-
ment, just the risks associated with the research experiments.
Two reasons for NLP experiments being relatively low risk
are the rare involvement of human participants in NLP exper-
iments and the historical focus on professionally generated
text (Hovy and Spruit, 2016). We are seeing a shift toward
human-in-the-loop evaluations and user-generated content, but
this still makes for a small fraction of NLP research.

and ethics reviewing (or, in a more distant future,
be part of the same process). (b) A partial roll-out
of preregistration may help us balance Type 1 and
Type 2 errors. Expected risk affects the cost of false
positives and hence the optimal balance between
Type 1 and Type 2 errors. Since bureaucracy, by
the end of the day, also incurs a cost on society, this
reinforces our belief that mechanisms should be
implemented only for where there is direct impact
on society at large. (c) Finally, ethics reviewing
is typically part of the standard review process,
i.e. after the fact and can therefore not respond to
malpractice in the experimental design or prevent
publication of preprints.

Overly cautious preregistration practice may,
in sum, decrease our true positive rate and add
bureaucratic overhead to research practices without
proper motivation. An all-over-the-map roll-out
of preregistration would change the risk tolerance
in research and society, just like registration and
documentation has increased risk sensitivity in the
past. Simultaneously, evaluating risk early on has
clear advantages over the current review process.

✓ Preregistration may lower our risk tolerance.

9 A Proposal

We have tried to present pros and cons of preregis-
tration. If we have focused a bit more on the cons,
this is only because van Miltenburg et al. (2021)
did a great job highlighting its advantages. We
will, if anything, argue for only a partial roll-out
of preregistration of NLP research. Preregistration
is a way to minimize harms of NLP research, but
only when risk is high. To motivate this, consider,
as first noted by Lash and Vandenbroucke (2012),
two seemingly opposed arguments for preregistra-
tion: a) Preregistration counters the suppression of
(negative) results. b) Preregistration identifies false
positives. Lash and Vandenbroucke (2012) argue
that while (b) is a valid argument for preregistra-
tion of clinical trials, it is not a valid argument for
preregistration in the context of mere “accumula-
tion of evidence” (Lash and Vandenbroucke, 2012).
Here, concerns about balancing Type 1 and Type
2 errors disappear. Preregistration mitigates risks
associated with research, reducing potential harms,
but at the cost of scientific progress. This calls
for a cost-benefit analysis: How much risk can be
tolerated for what potential gains?

One way to frame this discussion in NLP is to
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ask how afraid we should be of being wrong. In
clinical trials, there is a significant cost to being
wrong. In biomedical studies, false positive rates
have been found to be around 14% (Jager and Leek,
2014). Whatever the number is for NLP, lowering
it by adding more checks, will lead to a drop in the
true positive rate. If a false positive could result in
human tragedy, the price of a lower true positive
rate is worth paying, but in NLP, the cost of a false
positive is often paid for in compute and human
hours. While both can be scarce resources, the
open access nature of NLP makes being wrong less
dangerous, since mistakes are quickly corrected.24

Zeny would object that pretraining of language
models is not easily reproducible (Bender et al.,
2021). Pretraining very large language models
should maybe be required to preregister and this
would possibly require revising the questionnaires
provided by van Miltenburg et al. (2021). Another
concern is how NLP contributes to social and cul-
tural inequality (Hershcovich et al., 2022). If NLP
research is likely to help some more than others,
this may be reason to require preregistration. Here,
the questionnaires provided by van Miltenburg et al.
(2021) would also be insufficient.25

So what we propose here reflects a middle-of-
the-road position on preregistration. The idea is to
limit preregistration to research for which our
risk tolerance is low. This prevents most of the
adverse effects of preregistration, e.g., publication
bias, flag-planting and p-hacking. NLP research
is subject to IRB and ethics reviewing, but we be-
lieve this should be merged with preregistration
(§8). Reports should be reviewed and reviewers
follow the submission (§2).26 Currently, we accept
and reject papers through blind peer-reviewing, but
some papers are accepted conditional on a positive

24Of course researchers are sometimes blind-sighted by
scientific paradigms and hype, biasing their interpretation of
results. Such dynamics is central to, e.g., the Popper-Kuhn
debate (Rowbottom, 2011), but beyond the scope of this paper.

25Specifically, we think the questionnaire for ’NLP Engi-
neering experiment paper’ (§A.3) should include questions
about computational resources needed for pretraining. Since
the risk of wasting resources is high for language model re-
training, preregistration and early feedback may be particu-
larly useful for such research, but the review of the registered
point would have to take this information into account. To
mitigate social and cultural inequality, we propose to revise
the questionnaire for ’Resource paper’ (§A.6), adding ques-
tions about the demographics of data sources and annotators,
as well as making a corresponding explication of social and
cultural concerns in Question 11 of §A.3.

26This would be hard to coordinate for most fields, but in
NLP, the ACL Rolling Review platform could make it easier.

ethics review. We propose a reviewing procedure
in which some work is only accepted conditional
on the work having already been registered with
positive reviews. For researchers, this would mean
you need to get your preregistered reports accepted,
before you initiate the research project. Once com-
pleted you will send the final submission in for
a new set of reviews, hopefully by the same re-
viewers. This procedure is somewhat cumbersome
and has all the disadvantages we discussed above.
Therefore, it should only be used when it is deemed
necessary, i.e., when the expected risk of the NLP
research is sufficiently high.

A paper which a) is confirmatory and b) concerns
an application for which risk tolerance is low, can
be rejected for not having preregistered. We noted
the necessity of allowing preregistered research to
re-classify as exploratory, i.e., conditional accep-
tance for non-preregistered, flagged research, if it
explicitly labels itself as exploratory. This would
lead to three different categories of accepted papers:
(i) non-preregistered (confirmatory or exploratory)
research, (ii) preregistered, confirmatory research
and (iii) non-preregistered research marked explic-
itly as exploratory. This would, we argue, give us
the advantages of preregistration where they are
most needed, e.g., where false positives are associ-
ated with very high risk.

We left one important thing in the open for now:
How do we fairly decide if a research subject and
protocol warrants low risk-tolerance? Ethics re-
view board members are already asked to flag work
that ‘exhibits an increased risk of harm outside the
current norms of NLP or CL research’.27 This can
be hard to determine, but board members already
have to make this difficult decision. Ethics reviews
could learn from established risk assessment frame-
works (Schwerdtner et al., 2020).

10 Conclusion

Our two-sided dialogue has discussed pros and
cons of preregistration in NLP, building on similar
discussions in epidemiology. What opponents else-
where have proposed as alternatives to preregistra-
tion is already found in NLP research: open access,
common repositories and data sheets (Lash and
Vandenbroucke, 2012). Preregistration, we argue,
is less urgently needed in fields that already facili-
tate replication and where risk of false positives is

27https://aclrollingreview.org/
ethicsreviewertutorial
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low. The fast turn-around of NLP research means
the advantages of transparency and early feedback
are smaller. Nevertheless, society’s risk-tolerance
varies across NLP applications. Legal or medical
decision support systems are high-risk application
areas. Here, we need to consider all safety mea-
sures on the table, including preregistration.

Impact Statement

Preregistration is one of several practices that pro-
mote responsible, high-quality research. Others
include replication, transparency and open access,
as well as impact statements and explicit discussion
of study limitations. All such practices come with
pros and cons and it is key to scientific progress and
positive impact that scientific communities evaluate
which practices are adequate in their domain. The
increasing real-world impact that NLP research has
exhibited recently and will likely continue to ex-
hibit warrants a careful reconsideration of which
practices are called for. Since a major driver of the
same impact is the fast-paced exploratory research
that characterizes the field, limiting such research
may have negative effects as well (see §6). We
therefore believe our two-sided debate will enable
an overall better outcome in terms of impact.

Limitations

Our discussion of preregistration is inspired by
discussions in epidemiology. Many of the con-
cerns epidemiologists had with preregistration
seem more relevant to NLP research than the con-
siderations that, by and large, led clinical research
to adopt preregistration as a mandatory practice.
While we present a proposal for how to implement
preregistration in NLP in §9–a proposal that differs
from the one presented by van Miltenburg et al.
(2021)–our main contribution is a two-sided discus-
sion of its pros and cons, leaving many questions
in the air. Our paper is intended to get the pre-
registration debate off ground, not to nail it to the
floor.
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Abstract

We introduce a new in-context learning
paradigm to measure Large Language Models’
(LLMs) ability to learn novel words during in-
ference. In particular, we rewrite Winograd-
style co-reference resolution problems by re-
placing the key concept word with a synthetic
but plausible word that the model must under-
stand to complete the task. Solving this task re-
quires the model to make use of the dictionary
definition of the new word given in the prompt.
This benchmark addresses word acquisition,
one important aspect of the diachronic degra-
dation known to afflict LLMs. As LLMs are
frozen in time at the moment they are trained,
they are normally unable to reflect the way
language changes over time. We show that
the accuracy of LLMs compared to the origi-
nal Winograd tasks decreases radically in our
benchmark, thus identifying a limitation of
current models and providing a benchmark to
measure future improvements in LLMs ability
to do in-context learning.

1 Introduction

Large Language Models (LLMs) such as GPT-
3 (Brown et al., 2020) and PALM (Chowdhery
et al., 2022) can only learn from information that
is in their training corpus. However, this is nat-
urally limiting because the training corpus itself
is bounded in time to the point of its collection.
As a result, recent work has studied how to adapt
such models to new data without an expensive re-
training phase. Methods range from using semi-
parametric methods with access to external mem-
ory (e.g., Guu et al. 2020; Lewis et al. 2020), to con-
tinual learning (e.g., Dhingra et al. 2022; Lazaridou
et al. 2021), to parameter efficient fine-tuning (e.g.,
Ben Zaken et al. 2022; Pfeiffer et al. 2021).

Much of this work concerns factual knowledge
or task distribution shifts. However, language
also changes subtly: for instance, the popularity
or meaning of individual words can change over

time. In fact, such shifts also cause a consistent de-
crease in model performance for downstream tasks
(Huang and Paul, 2018; Jaidka et al., 2018; Lukes
and Søgaard, 2018; Florio et al., 2020).

Acquiring new words through either examples or
definitions is therefore an important test of LLMs’
ability to overcome diachronic degradation. With
in-context learning having emerged as the primary
way to interact with LLMs (Brown et al., 2020),
we propose to study LLMs capability of acquiring
new vocabulary via prompting.

We propose WINODICT, a novel benchmark for
word acquisition for LLMs. Word acquisition is
challenging to study in a realistic setting as it is
hard to know which terms a model has already been
exposed to. To overcome this, we rely on a heuris-
tic method to introduce newly invented words and
define them in terms of existing concepts. Follow-
ing previous work (Chakrabarty et al., 2022), we
incorporate the required knowledge into the prompt.
We then ask models to perform tasks that require
successfully interpreting the invented words.

We consider the English co-reference resolution
datasets Winograd Schema Challenge (Levesque
et al., 2012) and WinoGrande (Sakaguchi et al.,
2020). The examples are built in pairs with mini-
mal changes, which allow the identification of the
key concept that must be understood to solve the
example. An example of WINODICT can be seen
in Figure 1. Our contributions are the following:
(a) We propose WINODICT, a method and dataset
to test models for word acquisition skills.
(b) We benchmark the performance of several state-
of-the-art models across scale and number of shots.
(c) We analyze the effect of prompt, POS tags, word
likelihood and similarity for ease of acquisition.

These results help us understand the challenges
for incorporating new concepts into LLMs. The
code to build the dataset has been open-sourced. 1

1https://github.com/google-
research/language/tree/master/language/wino_dict
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WINOGRAD

The city councilmen refused the demonstrators
a permit because they feared violence.

The city councilmen refused the demonstrators
a permit because they advocated violence.

WINODICT

The verb to plest means to be scared of, or
want to avoid an object.

The verb to sparn means to to publicly recom-
mend or support.

The city councilmen refused the demonstrators
a permit because they plested violence.

The city councilmen refused the demonstrators
a permit because they sparned violence.

Figure 1: An example pair from WINODICT together with its original WINOGRAD source. The task is to decide
whether they refers to the city councilman or the demonstrators. Here, the correct answer is shown in blue and the
incorrect answer in red. Note that in both cases, it is necessary to understand the meaning of the bolded key concept
to resolve the co-reference, which we identify in WINOGRAD and substitute for a new word in WINODICT.

2 Methods

WINODICT, like WINOGRAD and WINOGRANDE,
is a co-reference resolution task in a binary choice
setup. A model is given two alternative noun
phrases, and has to decide which one is more likely
to correspond to a highlighted pronoun or blank.

2.1 Dataset Construction

To build WINODICT, we rely on the fact that the ex-
amples from WINOGRAD and WINOGRANDE are
constructed from contrasting pairs (Gardner et al.,
2020; Kaushik et al., 2020). Each instance differs
in a minimal way from its counterpart with the true
label reversed. This allows the identification of
the key concept that needs to be parsed in order to
resolve the task. In Figure 1 for instance, the verbs
fear and advocate correspond to the key concepts.

WINOGRAD and WINOGRANDE are similar;
however, WINOGRANDE is larger, uses blanks in-
stead of pronouns, and the dataset has been filtered
for co-occurrence bias between the key concept
and the correct noun-phrase. This results in some
examples that do not have a corresponding paired
example with a different key concept.

To create our examples, we first recover the pair-
ing between the examples, dropping those with no
pairing. Secondly, we identify the key concept to-
kens that change from one example to the other,
dropping examples where the key concept consists
of multiple tokens. Finally we run the sentence
through the spaCy2 syntactic analyzer and fetch
WordNet3 definitions of the key concepts’ lemmas.
In the next section we show how the key concept

2https://spacy.io
3https://wordnet.princeton.edu (Miller, 1995)

POS WINOGRAD WINOGRANDE Total

VERB 67 56 123
NOUN 34 24 58
ADV 5 25 30
ADJ 74 211 285
Total 180 316 496

Orig. Size 273 12,282 12,555
Sent. Len 16.34 18.93 17.99
Def. Len 14.07 14.3 14.22

Table 1: Statistics for the different part-of-speech tags
in the synthetic words, as well as average number of
tokens for the main statement and the word definition.
WINODICT consists of 496 examples.

tokens are replaced by synthetic words. This re-
sults in 496 examples: additional information can
be found in Table 1.

2.2 New Word Creation

Our goal is to create plausible synthetic words. We
create plausible words using a simple probabilis-
tic model of every one-, two-, and three-letter se-
quence that is trained on the vocabulary of English
words4. These three-letter sequences are then sam-
pled and combined to form new synthetic words.
We filter any words that have a three letter sequence
that does not occur in any other English word. We
then sample the words based on their log proba-
bility, placing them into five buckets and keeping
around 500 for each bucket.

The morphology for each word is created by ag-
gregating over a sample of proposed synthetic word
morphologies. The last 2-4 letters of each word
(depending on the morphological edit) form a suf-
fix dictionary that is used as a simple substitution

4https://pypi.org/project/english-words
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dictionary for the remaining words: failures are
dropped. This produces a combination of regular
and irregular conjugations over the new words.

2.3 Answer Scoring

Each instance in WINODICT consists of a new
word with its definition d, a statement containing
a blank where x and y correspond to the text be-
fore and after the blank respectively, and two noun
phrases o1 and o2. The task consists of identifying
which of the noun-phrases better fits the blank.

PALM, GPT-3 and its predecessors (Radford
et al., 2019) use the method proposed by Trinh
and Le (2018) to evaluate WINOGRAD and WINO-
GRANDE, which we explain below. A prediction
score is obtained through comparing the log like-
lihood of the same continuation y of two possi-
ble prefix texts (x : o1 and x : o2) where the
co-reference pronoun or blank marker has been
replaced. It is correct if it scores the suffix higher
for the prefix with the correct interpretation of the
co-reference problem.

lnPΘ (y|x : o1)− lnPΘ (y|x : o2)

=
n∑

i=0

(
lnPΘ (yi|y<i : x : o1)− lnPΘ (yi|y<i : x : o2)

)

where : denotes concatenation and variables map to:

x = “The city councilmen refused the
demonstrators a permit because”

o1 = “the city councilmen”
o2 = “the demonstrators”

{yi}ni=1 = y = “feared violence.”

In our setup we add the definition of the new con-
cept as a suffix to the shared term y, thus replacing
it with y : d. This achieves higher accuracy than
the alternatives. Note that this means that the model
is scoring the definition rather than conditioning
on it. See Section 4 and Table 4 for a discussion
of other variants of the setup, including adding the
definition as a prefix.

3 Experiments

In this work we test GPT-3 (Brown et al., 2020),
and PALM (Chowdhery et al., 2022) models of
various sizes, ranging from 3B to 540B parameters.
Appendix A has more details on the model sizes.

As in the original in-context learning evaluations,
we try 0, 1, and 5-shot experiments, using random
examples to build the prompt. We compare to both

a zero-shot human evaluation as well as the original
source datasets with only our filtered examples.

The main experimental results are shown in Ta-
ble 2. We observe a consistent gap of 18 or more
points between WINODICT examples and their
original counterparts. Similar to trends observed
in other datasets (Chowdhery et al., 2022), scaling
the number of shots and model size consistently
improves accuracy. The three smaller versions of
GPT-3 and PALM-8B all perform close to random.

We verify that omitting any information of the
new word yields random results for even the best
PALM-540B model. We discuss this and other
prompting strategies in more detail in Appendix B.

3.1 Human Evaluation

The human accuracy on WINODICT is estimated
using the responses of 10 volunteers. No native
English proficiency was required for participation.
Participants were told that the aim of the research
is to study how to use words based on their defini-
tion. They were presented with 15 sentences that
included a pronoun / blank and asked to select one
of two noun phrases it most likely refers to.

3.2 Foreign Inspired Words

To explore a more realistic scenario, we conduct an
experiment using 20 hand-written WINODICT-like
examples whose definitions are inspired by foreign
words that do not have a clear single-word defini-
tion in English. For instance, “estrenar” refers to
wearing a piece of clothing for the first time, which
does not have a clear English word equivalent. We
can then create an example that requires knowing
this definition, such as “I really [ love | hate] my
new dress. I can’t wait to <word> it.

In conducting this experiment, we substitute syn-
thetic words instead of using the original foreign
words, and the definitions of the words themselves
may not correspond to native speakers’ precise un-
derstanding: in other words, these are meant to be
true new words and data leakage should be minimal.
We run the same experiment on these examples. Re-
sults are in Table 3 and full details in Appendix C.
Overall, the numbers are comparable to the WINO-
DICT results, suggesting that models are unlikely
to be solving the task using a reverse dictionary.

4 Prompt Analysis

In this section, we discuss alternative formulations
for the prompts used in WINODICT. We focus on
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WINOGRAD WINOGRANDE
WINODICT (Ours) Original WINODICT (Ours) Original

Shots 0 1 5 0 1 5 0 1 5 0 1 5

PALM 8B 59.2 ±1.6 57.1 ±2.1 59.1 ±1.6 83.3 83.3 87.2 51.8 ±1.6 54.2 ±0.4 52.4 ±1.1 69.3 65.5 67.4
PALM 62B 62.2 ±0.6 65.9 ±3.6 70.3 ±1.3 91.1 90.0 92.2 56.7 ±1.1 58.2 ±1.0 59.7 ±1.1 76.6 77.8 78.2
PALM 540B 65.9 ±2.5 75.4 ±1.3 78.6 ±0.6 92.8 92.2 95.6 60.3 ±1.4 63.9 ±2.3 68.5 ±1.9 80.1 81.3 85.8

GPT-3 Ada 51.9 ±2.2 50.9 ±1.7 50.2 ±4.3 60.0 57.8 61.7 52.2 ±1.2 52.0 ±3.6 49.4 ±1.7 48.1 53.8 53.2
GPT-3 Babbage 51.8 ±0.8 52.8 ±2.0 54.4 ±2.3 75.6 71.7 65.6 50.8 ±1.7 52.3 ±1.0 52.2 ±0.8 52.8 55.1 56.6
GPT-3 Curie 54.2 ±1.6 54.6 ±2.4 59.9 ±1.5 85.0 81.7 82.8 50.2 ±1.5 50.6 ±1.6 52.2 ±1.0 62.0 61.1 60.8
GPT-3 Davinci 60.3 ±1.3 63.6 ±2.3 72.9 ±0.5 88.3 85.0 91.1 55.0 ±1.1 55.7 ±1.4 61.3 ±1.4 71.8 69.6 72.5

Human 91.7 96.5∗ 83.3 94.0∗

Table 2: Binary classification accuracy on WINODICT vs. the original datasets using average and standard devi-
ation across 5 sets of new words. Original results may differ from the ones reported by Chowdhery et al. (2022)
since only a subset of the examples are used. A consistent gap of 18+ points appears when comparing against the
original sets. The original human evaluation numbers denoted with ∗ are taken from Sakaguchi et al. (2020).

Shots 0 1 5

PALM 540B 68.7 73.0 76.0
GPT-3 Davinci 61.0 56.0 68.0

Table 3: Binary classification accuracy on the foreign-
inspired new words averaged over five runs. Overall,
accuracy is comparable to the original dataset.

Word Type Prompt WINOGRAD WINOGRANDE

Synthetic Def Prefix 72.2 62.7
Def Suffix∗ 78.6 68.5
Syn Prefix 74.1 60.5
Syn Suffix 88.4 78.2
Empty 52.0 51.9

Original Def Prefix 85.5 74.0
Def Suffix 93.8 84.4
Syn Prefix 87.2 74.3
Syn Suffix 91.6 83.2
Empty∗ 95.6 85.8

Meaning
shift

Def Prefix 66.1 60.8
Def Suffix 75.6 60.4
Syn Prefix 69.4 60.1
Syn Suffix 83.3 74.7
Empty 51.1 49.7

Table 4: Analysis of different prompts. We show the
results on the synthetic words, original words, and ex-
isting words but assigned to a new meaning (“Meaning
shift”). Prefix/Suffix correspond to the location of the
definition, Syn/Def corresponds to using the definition
or synonyms of the synthetic word. Empty means nei-
ther (should be random for synthetic words). Provid-
ing synonyms yields the best results. All results are
on PALM-540B 5-shot. The lines marked with ∗ corre-
spond to the experiments in Table 2.

the best-performing PALM-540B model using a
5-shot setup. See Table 4 for the full results.

Concretely, we vary the prompts along a few
axes. First, we test whether the definition should be

part of the prefix, where the model would condition
on it, or the suffix, where the model would score it.
Note that in all setups, putting the definition in the
suffix works consistently better.

Additionally, we test whether the task is made
easier by using synonyms instead of definitions.
This task indeed appears to be easier, potentially
because the model needs to learn only a simple sub-
stitution between the new word and the provided
synonym, whose definition it knows. We focus on
definitions in this work as exact synonyms would
rarely be available for novel words.

As a baseline, we also examine the “Empty”
setup, where the model is provided no infor-
mation about the new word. We observe that
PALM approximates random guessing without be-
ing given the definition, showing that the task re-
mains roughly unbiased.

We additionally test the model’s performance on
the original task where we also provide the defini-
tion of the key concept. Note that the “Empty” case
here corresponds precisely to the original task. In-
terestingly, the definition seems to serve as a slight
distraction, especially as a prefix, though accuracy
is still well above the model’s performance on the
synthetic words.

Finally, in the “Meaning shift” scenario, we map
new definitions to already known words. This task
appears to be even more difficult than the standard
WINODICT setup, implying that the model is dis-
tracted by the surface forms of the words.

5 New Word Analysis

Several factors can affect the capabilities for word
acquisition of LLMs. We investigate several at-
tributes, split into quartiles, using PALM-540B
with 5-shots, which is the best model from Table 2.
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We consider the following attributes: (1) the
part-of-speech of the synthetic word; (2) the av-
erage model negative log likelihood (NLL) of the
two model predictions, which measures the likeli-
hood of the suffix for both prefixes; (3) the number
of SentencePiece (Kudo and Richardson, 2018) to-
kens in the synthetic word, to investigate the effect
of model tokenization; (4) the number of Sentence-
Piece tokens in the definition of the synthetic word,
to investigate if longer definitions are more chal-
lenging; (5) the Levenshtein edit distance between
the synthetic and original word, to investigate if
similar words are easier; and (6) the likelihood
of the new word as computed by our probabilis-
tic model of three-letter sequences, to see if less
probable words are more difficult to acquire.

Of the six attributes, the two most correlated with
accuracy are (4) the definition length and (2) the av-
erage NLL. We observe no clear pattern in the other
four attributes. In Figure 2 we show their effect in
each quartile. The effect of definition length indi-
cated that the 25% longest definitions are the hard-
est to acquire by a significant margin (12% rela-
tive drop for WINOGRAD, 5% for WINOGRANDE).
The relative accuracy drop for the largest quartile
of the NLL average is 13% for WINOGRAD and 4%
for WINOGRANDE. The drop in NLL suggests that
when models assigns low probabilities to answers,
they make more mistakes: the low probability may
indicate the model has a poor understanding of the
prefix so scores the suffix randomly.

Quartile

A
cc

ur
ac

y

0.6

0.7

0.8

0.9

1.0

1 2 3 4

Winograd Def. Length Winograd NLL Avg.
WinoGrande Def. Length WinoGrande NLL Avg.

Figure 2: Effect on WINODICT PALM-540B 5-shot
accuracy on each quartile splitting by definition length
and by average NLL score. Longer definitions and
higher NLL correlate with lower accuracy.

6 Related Work

Word acquisition for LLMs. Inspired by devel-
opmental linguistics (Carey and Bartlett, 1978),
Radford et al. (2019) succeeded to prompt GPT-3
to generate plausible example sentences based on

definitions of synthetic words. Unlike WINODICT,
the evaluation was purely qualitative.

Common sense. Li et al. (2021) study how
prompt structures and scoring methods affect the
performance of LLMs on common sense tasks in-
cluding WINOGRANDE, where they observe the
least variation. The format from WINOGRAD has
been subsequently used to probe models for other
phenomena such as explanations (Zhang et al.,
2020) and gender bias (Zhao et al., 2018).

Benchmarks for lexical knowledge. Schick and
Schütze (2020) introduce a benchmark for prob-
ing a model’s knowledge of the properties of rare
words. Hill et al. (2016) train models to match
word and definition representations, which they
apply to a reverse dictionary task.

7 Conclusion

In this work, we study the question of in-context
word acquisition by large language models. While
non-trivial to measure, the ability to incorporate
knowledge about new words in-context may be use-
ful to decrease the effect of diachronic degradation.
We design a mechanism to transform Winograd-
style tasks into challenging probes for reasoning
on the meaning assigned to synthetic words, al-
lowing for a more objective measurement of word
acquisition. We study the results of models of mul-
tiple sizes and families and conclude that while
the problem becomes easier with scale, there is
still a substantial gap with human performance and
the original WINOGRAD and WINOGRANDE tasks,
demonstrating the difficulty of the proposed task.
Finally, we show that acquiring novel definitions is
of similar difficulty, indicating the task is realistic.

Limitations

The task described in this work is synthetic and
thus an imperfect measure of the phenomena un-
der study. The words in WINODICT are synthetic
words with definitions copied from existing con-
cepts; the model could thus solve WINODICT with
a reduction to a reverse dictionary task. To par-
tially address this, we conducted pilot experiments
described in Section 3.2.

Additionally, the choice of prompts for LLMs
has been shown to have a large influence on the re-
sulting accuracy (Min et al., 2022; Lu et al., 2022).
While we tried multiple templates, it is possible
that substantially better prompts exist for this task.
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A Model Sizes

While OpenAI does not officially disclose the size
of their four models Davinci, Curie, Babbage and
Ada, we use the numbers approximated in a blog-
post as estimates.5 Table 5 contains the number of
parameters for the models used in our experiments.

Model # Parameters

GPT-3-Ada 350M
GPT-3-Babbage 1.3B
GPT-3-Curie 6.7B
GPT-3-Davinci 175B

PALM-8B 8B
PALM-62B 62B
PALM-540B 540B

Table 5: Number of parameters of the reported models.

B Prompts

We built prompts for definitions and synonyms to
make them sound natural given the structure of
most WordNet definitions for each part-of-speech
tag. Table 6 shows the different prompt templates
in each case.

Type Prompt

Synonym The meaning of {lemma} is
similar to {synonym}.

Verb definition The verb to {lemma} means
to {definition}.

Noun definition The word {lemma} refers to
{definition}.

Adj. Definition The meaning of {lemma} is
definition.

Adv. Definition The word {lemma} means
{definition}.

Table 6: Templates used to integrate the definition into
the prompt for each part-of-speech tag.

C Foreign Inspired Words

In Table 7 we list the word, approximate definition,
and WINODICT-like example. Note that these ex-
amples are handwritten and did not go through a
debiasing process like WINOGRANDE. In order to
reduce the risk of data leakage, in the actual exam-
ples we replace the surface form of the word with
one of the synthetic surface forms using the same
process as in section 2.

5https://blog.eleuther.ai/gpt3-model-sizes
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Example Definition

John frequently goes backpacking and Jake never does because [ Jake |
John] disdains the feeling of waldeinsamkeit.

the feeling of solitude and connectedness to na-
ture when being alone in the woods

After returning from backpacking, John thought he would go again [
frequently | infrequently]. John likely appreciates the feeling of waldein-
samkeit.

the feeling of solitude and connectedness to na-
ture when being alone in the woods

Mary loves going to antique stores and Ashley never does because [
Mary | Ashley] wabi-sabis old things.

finding beauty in imperfections

Mary loves going to [ antique | modern] stores because she wabi-sabis
old things.

finding beauty in imperfections

Pierre is from France and John is from Ireland. Pierre and John like to
go to Irish bars and talk about [ Pierre | John]’s feeling of depaysement
there.

the feeling that comes from not being in one’s
home country; being a foreigner

Pierre has lived in France all his life. When he’s in [ Ireland | France],
Pierre frequently talks about his feeling of depaysement.

the feeling that comes from not being in one’s
home country; being a foreigner

Jake and Ashley plan to get married, Ashley’s parents are happy, but
Jake’s parents don’t like it because a friend said they had bad yuanfen. [
Jake | Ashley]’s parents are more likely to go to a fortune teller.

the fate between two people

Jake and Ashley plan to get married. Ashley’s parents are very practical
while Jake’s parents believe in destiny. When an advisor said Jake and
Ashley had bad yuanfen, [ Jake | Ashley] wanted to call it off.

the fate between two people

Theresa doesn’t get why Martha thinks the statue in the museum was so
duende that [ Martha | Theresa] spent a lot of time looking at it.

a work of art’s mysterious power to deeply move
a person

Martha spends a lot of times in museums while Theresa spends little. [
Martha | Theresa] finds art duende.

a work of art’s mysterious power to deeply move
a person

After losing his [ religion | job], John fell into a sense of toska. a sensation of great spiritual anguish, often with-
out a specific cause; a longing with nothing to
long for

John kept yelling at Joey for not doing chores, but Joey wouldn’t even
respond. [ Joey | John] really seems tosked.

a sensation of great spiritual anguish, often with-
out a specific cause; a longing with nothing to
long for

Because he [ loves | hates] reptiles, John found seeing that group of
lizards very gigil.

a situation of such extreme cuteness it’s over-
whelming or the irresistable urge to hug some-
thing cute

John only keeps salamanders as pets and Joey likes more traditional ones,
so [ John | Joey] found seeing the group of lizards very gigil.

a situation of such extreme cuteness it’s over-
whelming or the irresistable urge to hug some-
thing cute

John thought his marriage with Joey was shougani, so he wanted to hire
a [ lawyer | therapist].

a situation that can’t be helped, or an act of res-
ignation

John thought his marriage with Joey was shougani but Joey disagreed,
so [ John | Joey] decided to hire a lawyer.

a situation that can’t be helped, or an act of res-
ignation

Joey still can’t get over when John drunkenly called him Mark at his
wedding, and now whenever they see each other, [ Joey | John] tartles.

a moment of hesitation when introducing some-
one because you can’t remember their name

I really [ love | hate] my new dress. I can’t wait to estrene it. wearing something for the very first time

Mary and Sue went dress shopping together. Mary hates her dress while
Sue loves hers. [ Sue | Mary] can’t wait to estrene it.

wearing something for the very first time

After a long day of work, James xinkued the job John did. John was [
grateful | upset].

acknowledging someone’s effort for working
hard or doing you a favor

Table 7: List of foreign-inspired new words (bolded) and their corresponding examples and definitions. The
possible choices for the example are shown, with the correct choice underlined. The definition is shown on the
right. These definitions may or may not be idiosyncratic to a native speaker; however, the actual examples use a
synthetic word to more closely resemble new word acquisition and minimize the risk of data leakage.
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Abstract
Sentiment analysis has become a central
tool in various disciplines outside of natural
language processing. In particular in applied
and domain-specific settings with strong
requirements for interpretable methods,
dictionary-based approaches are still a popular
choice. However, existing dictionaries are
often limited in coverage, static once annota-
tion is completed and sentiment scales differ
widely; some are discrete others continuous.
We propose a Bayesian generative model that
learns a composite sentiment dictionary as
an interpolation between six existing dictio-
naries with different scales. We argue that
sentiment is a latent concept with intrinsically
ranking-based characteristics — the word
“excellent” may be ranked more positive than
“great” and “okay”, but it is hard to express
how much more exactly. This prompts us to
enforce an ordinal scale of ordered discrete
sentiment values in our dictionary. We achieve
this through an ordering transformation in the
priors of our model. We evaluate the model
intrinsically by imputing missing values in
existing dictionaries. Moreover, we conduct
extrinsic evaluations through sentiment
classification tasks. Finally, we present two
extension: first, we present a method to aug-
ment dictionary-based approaches with word
embeddings to construct sentiment scales along
new semantic axes. Second, we demonstrate a
Latent Dirichlet Allocation-inspired variant of
our model that learns document topics that are
ordered by sentiment.

https://github.com/niklasstoehr/
ordinal-sentiment

1 Introduction

Sentiment analysis is being applied in various do-
mains from political science (Young and Soroka,
2012; Gründl, 2020; Widmann and Wich, 2022) to
economics (Stephany et al., 2022) and computa-
tional social science (West et al., 2014; Falck et al.,

2020; Stoehr et al., 2021). In all of these applica-
tions, there is a strong demand for domain-specific
and interpretable methods (Hofman et al., 2021;
Widmann and Wich, 2022) making dictionary-
based sentiment analysis still a popular choice
(Young and Soroka, 2012; Hoyle et al., 2019;
Gründl, 2020; Friedrichs et al., 2022).

Sentiment dictionaries describe a mapping be-
tween word types and some form of sentiment val-
ues. We consider the most general notion of senti-
ment value referring to the polarity score along a
positive-negative axis, instead of fine-grained emo-
tion dimensions (Plutchik, 1980) or stance (Mo-
hammad, 2016). Sentiment values are measured on
scales of different support (§2): some dictionaries
assign binary “positive” and “negative” values (Hu
and Liu, 2004; Wilson et al., 2005; Stone et al.,
2007). These discrete values are often falsely inter-
preted as unordered, nominal categories. Other dic-
tionaries have continuous scales that assign cardi-
nal, floating point values (Hutto and Gilbert, 2014;
Cambria et al., 2014).

In this work, we propose a method for merg-
ing sentiment dictionaries with different scales into
a single, composite dictionary. Paying tribute to
the subjective and ranking-based characteristics of
sentiment, we design the dictionary to have an or-
dinal scale. Ordinal scales define discrete, ordered
classes where interval sizes between classes are
unequal and typically unknown (Stevens, 1946).
For instance, the word “excellent” may be ranked
more positive than “great” and “okay”, but it is
hard to express how much more positive. An exam-
ple is the ordinal Likert scale (Likert, 1932) used
to measure attitudes in psychometrics.

Our ordinal sentiment scale is derived from an
ordinal latent variable within a probabilistic, gener-
ative model (§3). In particular, the latent variable’s
classes represent sentiment values. The classes
are uniquely ordered which is achieved through
an ordering transformation that is applied to the
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priors of our model (§3.2). Our model is tightly
coupled with recent advancements in probabilistic
programming (Bingham et al., 2018; Phan et al.,
2019) and gradient-based inference (Homan and
Gelman, 2014). These advancements alleviate the
strict requirement of closed-formedness and con-
jugacy to perform posterior inference in complex
Bayesian models with latent ordering motifs.

Our ordinal scale is learned as an unsupervised
interpolation between 6 popular sentiment dictio-
naries. This has several benefits: on the other hand,
we can impute missing sentiment values in exist-
ing dictionaries. We evaluate this capacity in a
Bayesian data imputation task (§4.2). On the other
hand, interpolating between different dictionaries
causes our composite dictionary to have high cov-
erage of word types from widely different sources.
We evaluate our composite dictionary in 6 senti-
ment classification tasks from different domains
(§4.3). Taking a Bayesian approach, we have ac-
cess to uncertainty estimates for each sentiment
value per word type. We find that uncertainty is
larger for ambiguous and rare word types that are
covered by only few dictionaries (§5).

In §6, we present two possible extension of our
ordinal latent variable model. To further expand
word type coverage, we incorporate sentiment val-
ues derived from bi-polar semantic axes within
word embeddings (§6.1). To demonstrate the wide
applicability of our ordinal modeling motif, we in-
troduce a model variant that is closely related to
Latent Dirichlet Allocation (LDA; Blei et al., 2003),
but learns topics ordered by sentiment (§6.2). We
publish our code together with our learned, high-
coverage sentiment dictionary, annotated with pos-
terior credible intervals.

2 Data: Sentiment Dictionaries

We consider 6 popular English-language sentiment
dictionaries: SenticNet (SC) (Cambria et al., 2014),
SentiWordNet (SW) (Baccianella et al., 2010),
Vader (VA) (Hutto and Gilbert, 2014), General In-
quirer (GI) (Stone et al., 2007) Hu-Liu (HL) (Hu
and Liu, 2004) and MPQA (MP) (Wilson et al.,
2005). The dictionaries vary in the number of in-
cluded word types, the word source, application do-
main and the sentiment scale, see appendix Tab. 3.
SC,SW and VA have continuous, bounded senti-
ment values, while GI,HL and MP have discrete,
binary values as visualized in Fig. 1. We scale all
continuous values to a [0, 1] range. Some of the
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Figure 1: Sentiment value distributions of 6 sentiment
dictionaries. Some dictionaries assign continuous float
values to word types {SC,SW,VA}, others limit them-
selves to discrete, (binary) values {GI,HL,MP}.

dictionaries such as SW and VA feature multiple
sentiment values per word type. We average those
to consistently obtain one value per word type for
all dictionaries, which allows for a fair comparison.
We group the sentiment dictionaries in a single data
table by word type. Since different dictionaries
contain different word types, this results in many
missing values. We filter the data table so that each
word type is covered by at least 2 dictionaries. This
leaves us with V =12,342 unique word types that
serve as our dataset.

3 Model

Our goal is to learn a unifying sentiment dictionary
as an interpolation between existing sentiment dic-
tionaries. Each word type v is described by one or
multiple sentiment values of a dictionary. Depend-
ing on the dictionary’s scale, sentiment values can
be continuous xcv or discrete xdv. The superscripts
c and d represent continuous and discrete dictio-
naries respectively, i.e., c ∈ {SC,SW,VA} and
d ∈ {GI,HL,MP}. Considering all 6 sentiment
dictionaries, we have a tuple of 6 sentiment val-
ues {xSC

v , x
SW
v , xVA

v , xGI
v , x

HL
v , xMP

v } per word type.
Due to our filtering in §2, at most 4 of those values
can be missing (NaN).

3.1 Generative Story
For each word type v, we assume that its senti-
ment class zv is sampled from a Categorical dis-
tribution over K classes, parameterized by π, a
K-dimensional vector of class probabilities. We
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Figure 2: Model for interpolating sentiment dictionaries.
Each word type v is described by observed sentiment
values xcv and xdv from different sentiment dictionaries.
The continuous, bounded dictionaries c are modeled
by Beta and the discrete dictionaries d by Binomial
distributions. Some priors are ordered, as indicated by
double-border nodes ( 1 ). This spurs the categorical
latent zv to be ordinal. Solid, black squares represent
fixed hyperparameters.

further assume that π is drawn from a Dirichlet
distribution. Conditioned on the sentiment class zv,
each observed continuous xcv ∈ [0, 1] and discrete
xdv ∈ {0, . . . , qd} sentiment value per dictionary is
independently sampled as depicted in Fig. 2. We
assume that the values xSC

v , x
SW
v and xVA

v that come
from dictionaries with continuous, bounded sup-
port are drawn from Beta distributions. The values
from binary dictionaries, xGI

v , x
HL
v and xMP

v , are
naturally Bernoulli random variables—however we
represent them more generally as Binomial random
variables, with number of trials equal to qd (where
qd = 1 in our case), to accommodate dictionaries
with arbitrary ordinal support:

π ∼ Dirichlet(α) (1)

zv ∼ Categorical(π) (2)

xcv | zv ∼ Beta(ωczv , κ
c
zv) (3)

xdv | zv ∼ Binomial(qd, pdzv) (4)

We discuss the parameters ωczv , κ
c
zv and pdzv that

induce ordering on the latent variable zv in the
following section.

3.2 Ordinal Latent Variable
While the classes of a Categorical distribution are
generically unordered, the structure of our model

induces a natural ordering over the K classes that
zv can take. When zv = k, the parameters ωck, κ

c
k

and pdk parameterize the Beta and the Binomial
distributions from which word type v’s sentiment
scores are drawn. By imposing an ordering on
those parameters (e.g., ωck < ωck+1), we induce
ordering on zv. In the following subsections, we in-
troduce prior distributions over the vectors ωc and
pd that ensure they are ordered, such that higher
classes correspond Beta and Binomial classes that
are centered around higher sentiment values.

OrderedNormal Distribution. To induce or-
dering into the parameters ωc and pd and thus
the categories of zv, we import the Ordered-
Normal distribution of Stoehr et al. (2022).
The OrderedNormal is a distribution over a K-
dimensional vector λ = (λ1, . . . , λK) whose el-
ements are ordered, λk < λk+1. Specifically,
for parameters µ = (µ1, . . . , µK) and σ =
(σ1, . . . , σK), an OrderedNormal random variable
λ ∼ OrderedNormal(µ,σ) can be generated as:

sk
ind.∼ Normal(µk, σk) for k in {1, . . . ,K}

(λ1, . . . , λK)← Ord({s1, . . . , sK}) (5)

where Ord(·) is a deterministic function that trans-
forms the set of Normal variates {s1, . . . , sK}, into
a strictly increasing vector—specifically:

λk ←
{
s1 if k = 1

s1 +
∑k

i=2 exp(si) if k > 1
(6)

This transformation is an invertible, smooth bi-
jection which is differentiable and thus facilities
gradient-based parameter inference (Rezende and
Mohamed, 2015) as further discussed in §3.3.

Ordered Beta parameters. When zv = k, the
continuous sentiment score xcv is drawn from a
Beta(ωck, κ

c
k) distribution, where ωck ∈ (0, 1) is

the mode and κck > 0 is the concentration parame-
ter. We impose ordering over the K-dimensional
vector of mode parameters ωc = (ωc1, . . . , ω

c
K) by

positing the following prior:

S−1(ωc) ∼ OrderedNormal(µc,σc) (7)

where S−1(·) is the inverse sigmoid function. In
other words, we first sample from an Ordered-
Normal, and then apply the element-wise sigmoid
function to ensure that all elements of ωc are be-
tween 0 and 1. We do not impose any ordering on
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the concentration parameters (κc1, . . . , κ
c
K) and as-

sume they are independent shifted Gamma random
variables with shape γck and rate ηck:

(κck − 2)
ind.∼ Gamma(γck, η

c
k) (8)

This formulation ensures that the concentration pa-
rameter is κck ≥ 2 so that the Beta distribution is
unimodal at ωck.

Ordered Binomial parameters. Our model as-
sumes observed discrete values xdv are sampled
from a Binomial(qd, pdzv) distribution where the
number of trials qd is based on the number of dis-
crete sentiment classes in the dictionary d, and pdzv
is the probability parameter. We impose ordering
on the vector of probabilities pd by positing the
following prior:

S−1(pd) ∼ OrderedNormal(µd,σd) (9)

3.3 Posterior Inference
To approximate the posterior distribution of the
model’s parameters and latent variables, we run
Markov Chain Monte Carlo (MCMC), specifi-
cally the No-U-Turn Sampler (NUTS; Homan and
Gelman, 2014). NUTS is gradient-based and re-
quires continuous latent variables and parameters.
However, the latent variable zv in our model is
explicitly non-continuous. We implement our
model using the probabilistic programming frame-
work Pyro (Bingham et al., 2018; Phan et al.,
2019) that offers an “enumeration” strategy, termed
parallel_enumeration, to handle the discrete la-
tent zv during inference. This enumeration strategy
effectively marginalizes zv out numerically so that
we can draw samples of the continuous parameters
θ from θ(t) ∼ p(θ | X), where X are all of the
observed sentiment values. We can draw samples
of the latent variables z(t)v ∼ p(zv|θ(t), xcv, xdv). To
realize the ordering transformation presented in
Eq. (6), we rely on Pyro’s OrderedTransform.

Inferring Ordinal Sentiment Values. Ulti-
mately, we are interested in mapping word types to
ordinal sentiment values using our fitted model. As
discussed, we approximate the posterior p(zv | X)

using MCMC samples {z(t)v }Tt=1, and then com-
pute a point estimate either by taking the mean
z̄v =

1
T

∑T
t=1 z

(t)
v or the mode żv. Considering the

mode, we obtain an integer value żv ∈ {1, . . . ,K}
that may be interpreted as an ordinal sentiment
value. In union, these values describe an ordinal
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Figure 3: K = 5 latent classes yield a good trade-off
between the number of model parameters and model
fit as measured by scaled posterior predictive density
(PPD) on the test set over 5 different random seeds.

scale that is part of a learned, composite sentiment
dictionary that we term ORDSCALE.

4 Experiments

We evaluate our model intrinsically (§4.2) and our
inferred ordinal sentiment dictionary, ORDSCALE,
extrinsically (§4.3). Therefore, we first fit our
model to existing sentiment dictionaries, identify
the optimal number of latent classes and finally in-
fer the ordinal scale. First, we split the V = 12,342
word types into a 70% training and 30% test set.
Next, we run the NUTS sampler to perform pos-
terior inference as introduced in §3.3. We discard
the first 200 burn-in samples and consider only the
following T = 1000 samples from the posterior.

4.1 Optimal Number of Latent Classes

We identify the optimal number of latent classes
K that lead our model to achieve high likeli-
hood on the test set. Therefore, we fit and eval-
uate our model on a range of class settings, e.g.,
K = {2, . . . , 7}. We find that K = 5 yields a
high scaled Posterior Predictive Density (PPD; Gel-
man et al., 1996, 2014)1 on the test set as shown
in Fig. 3. In the following, we consider our model
with the optimal class setting K = 5.

1We explain all evaluation metrics in App. A.2.
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SC, based on sentiment values ygiven

v of other dictionar-
ies, e.g., SW, VA, GI, HL, MP, in a test dataset. We
consider two baselines: a majority vote fitted only to
the later removed dictionary with K = 5; a linear re-
gression trained on the direct mapping ygiven

v → ymissing
v .

Our model condenses observations into a single latent.

4.2 Intrinsic Evaluation: Data Imputation

Experimental Setup. We perform an imputation
task to evaluate model fit. We first approximate
the posterior distribution of the continuous model
parameters θ on the full training set using the op-
timal class setting of K = 5. On the testing
set, we remove one sentiment dictionary entirely
and refer to the corresponding, but now missing
sentiment values as ymissing

v . For instance, we re-
move ymissing

v = {xSC
v }, which leaves us with the

five-way tuple ygiven
v = {xSW

v , xVA
v , xGI

v , x
HL
v , xMP

v }.
The objective is to impute the removed sentiment
values of entirely unseen word types. To this end,
we sample the discrete latent variable z(t)v per word
type v according to z(t)v ∼ p(zv|θ(t), ygiven

v ). Then,
we draw ŷ

(t)
v ∼ p(y

missing
v |z(t)v , θ(t)) and take the

mean over samples 1
T

∑T
t=1 ŷ

(t)
v to predict a single

missing sentiment value.

Results. We consider different baselines: instead
of using all sentiment dictionaries in a single model,
we fit six separate models to each dictionary indi-
vidually. In other words, this simple model has
only one observed variable, namely the one that
is being removed on the test, which resembles a
majority vote baseline. Moreover, we train six
linear regression models in a supervised task to
predict ymissing

v from y
given
v . We report the results in

terms of mean squared error (MSE) in Fig. 5. Our
model outperforms both baselines in imputing all
dictionaries, except the dictionaries GI and MP.

4.3 Extrinsic Evaluation: Classification

We extrinsically evaluate our model, or rather, our
inferred sentiment dictionary ORDSCALE (§3.3)
in a sentiment classification task. It is important
to stress that we are not chasing benchmarks by
comparing against state-of-the-art models. Instead,
we are inspecting the sentiment-related information
preserved in our ordinal scale.

Task Data. We consider 6 diverse sentiment clas-
sification tasks. These are PeerRead (Kang et al.,
2018), specifically the splits ACL and ICLR, IMDB
(Maas et al., 2011), MultiDom (Blitzer et al., 2007),
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A B

Figure 6: (A) Fraction of word types in sentiment tasks (columns) that are covered by sentiment dictionaries (rows).
ORDSCALE and the linear combination (comb) of all dictionaries have the highest coverage in each task. (B)
Correlation of sentiment values for word types that are shared between dictionaries. Overall, sentiment dictionaries
are strongly correlated. We find that ORDSCALE differs from linear combination in its correlations. As can be seen
in Fig. 1, SW contains many neutral values explaining its overall low correlation.

SemEval 2016 Task 4 (Palogiannidi et al., 2016)
and the Yelp reviews dataset (Zhang et al., 2015).
All tasks consists of full text (e.g., reviews or
tweets), referred to as documents, labeled with
sentiment classes. They are split in pre-defined
train–test sets and differ in the number of unique
sentiment classes, ranging from 2 to 5 (see Tab. 4).

Experimental Setup. We consider ORDSCALE

with K = 5 ordinal classes and compare it against
several baselines: a majority vote that always se-
lects the majority class in each task; the six indi-
vidual sentiment dictionaries introduced in §2 and
a linear combination of all (scaled) six sentiment
dictionaries. This linear combination has the same
coverage of word types as ORDSCALE as further
elaborated in Fig. 6). For predicting the sentiment
labels of documents, we choose a simple proce-
dure following Go et al. (2009); Kiritchenko et al.
(2014); Ozdemir and Bergler (2015); Hoyle et al.
(2019): for each document, we replace each token
with its corresponding sentiment value from a dic-
tionary. Then, we average all values per document
and pass it to a logistic regression (LR) model that
is fitted on the training set to predict document la-
bels. To allow for a fair comparison, all dictionaries
are averaged to one sentiment value per word type.

Results. Results expressed as weighted F1
Scores are presented in Fig. 4. We find that ORD-
SCALE and the linear combination baseline only
rank in the middle range on every task. Yet, they
never perform poorly and may be considered very

xSC
v xSW

v xVA
v xGI

v xHL
v xMP

v z̄v żv
excellent 0.7 - 2.7 1 1 - 3.8 4
great 0.1 0.8 1.8 - 1 1 3.4 3
okay 0.1 0 - - - - 2.0 2
bad -0.3 -0.6 -2.5 0 0 0 1.0 1
horrible -0.9 - -2.5 0 0 0 0.1 0

Table 1: Sentiment scores for selected word types. z̄v
represents the mean and żv the mode over samples per
word type from our ordinal latent variable.

reliable across different tasks and data domains.
This may be attributed to their broad word-type cov-
erage as discussed in §5. We expect ORDSCALE

to show stronger performance in a less naive sen-
timent classification setting. In Fig. 4, we simply
average the sentiment values of all tokens in a docu-
ment which may lead them to neutralize each other.
Consequently, the broad word-type coverage does
not necessarily pay off. Exploiting it may require
more expressive models that operate on the full
token sequence instead.

5 Discussion

Interpretability of Ordinal Sentiment Scale.
We qualitatively inspect sentiment values for dif-
ferent word types across dictionaries. As shown
in Tab. 1, even popular words such as “excellent”
are not covered by all sentiment dictionaries. Due
to the different scales, the dictionaries can also be
tricky to interpret, especially those with continuous
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Figure 7: Posterior credible interval of zv over disagree-
ment of sentiment dictionaries. As expected, we observe
that the credible interval for a word type’s sentiment
value grows larger if it is absent in more sentiment dic-
tionaries. Moreover, we observe a correlation between
the posterior credible interval and disagreement of sen-
timent dictionaries for a given word type.

support. In Vader (VA) for instance, there is no
difference between “bad” and “horrible”. Agreeing
on exact float value scores seems more difficult
than agreeing on a ranking which supports our call
for an ordinal sentiment scale. The mode żv of our
latent variable represents 5 distinct ordinal levels
that match the mental ordering of the words based
on sentiment. It is ranking “excellent” as more
positive than “great” and “okay”.

Correlation Requirement. Across all tasks, our
sentiment dictionary covers more word types than
other dictionaries since it basically describes their
interpolation as displayed in Fig. 6A. However, a
limitation of our models is the requirement that
observed variables have to be correlated. Consid-
ering Fig. 6B, if dictionaries were not correlated,
our model could not infer one from the other in
the imputation task (§4.2) nor learn a latent corre-
late. Conversely, if two dictionaries were perfectly
correlated, considering both would be superfluous
since one incorporated all information of the other.

Sentiment Uncertainty. One advantage adding
to the interpretability of our Bayesian modeling
approach is access to posterior credible intervals.
Unlike many of the existing sentiment dictionaries,
the sentiment values derived from our model are
accompanied by a “measure of uncertainty”. Fig. 7
shows that the posterior credible intervals are larger
for word types that are missing in more sentiment

pain xemb
v żv

painful 0.64 4
unsettling 0.40 3
stressful 0.25 2
nontoxic -0.21 1
cured -0.64 0

humor xemb
v żv

funny 0.66 4
comic 0.33 3
normal 0.08 2
tedious -0.32 1
boring -0.44 0

Table 2: Using the SemAxis approach (An et al., 2018),
we can learn dictionaries with ordinal scales along any
bi-polar semantic axes. We demonstrate this for the seed
words “painful – cured” and “funny – boring”.

dictionaries. Moreover, there is an expected cor-
relation between the disagreement of sentiment
dictionaries in terms of standard deviation and the
size of the posterior credible interval.

Label Switching. In topic models with Categori-
cal (or Multinomial) distributions, aggregating sam-
ples from the posterior distribution between differ-
ent or even within the same MCMC chain can be
complicated. This is due to a problem called label
switching which arises from the non-unique order-
ing of latent classes (Stephens, 2000). The ordered
priors in our model represent an identifiability con-
straint that mitigates the label switching problem
(Stephens, 2000; Murphy, 2012).

6 Extensions and Applications

6.1 Word Embeddings

Newly appearing, changing or domain-specific
word types may need to be added to an existing
dictionary (Wang et al., 2021). To address this
issue, we extend our approach considering static
word embeddings. In particular, we obtain senti-
ment values for all word types in our dictionary
using the SemAxis approach (An et al., 2018).

We consider 300-dimensional Glove embed-
dings (Pennington et al., 2014). First, we choose
two pole word types such as v+ =“good” and
v− =“bad” and obtain their vector representations
v+ and v−.2 Next, we compute the linear semantic
axis between the poles according to v+ − v−. Fi-
nally, we can project any word prevalent in Glove’s
vocabulary onto this axis by computing the Cosine
similarity between the word type’s vector and the
semantic axis. The similarity can be interpreted as
a word’s embedding-based polarity value xemb

v on
the respective semantic axis. We simply treat the

2We may also choose a set of word types, e.g., {good,
positive} and {bad, negative} and consider their mean vector.
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Figure 8: Document-level model with ordered topics.
Following Latent Dirichlet Allocation (LDA), we can
add another plate over M documents and include a
topic-word type matrix Φ where each row is sampled
independently from a Dirichlet distribution. Different
to LDA, we now have multiple observed variables: the
word types vm,n and the sentiment values xcm,n, xdm,n

per word token n in each document m. Double-border
nodes are ordered ( 1 ).

word type–value pairs as its own dictionary with
continuous support. When including this dictionary
as an observed site in our model, we can impute
missing values in dictionaries that lack words that
are existent in Glove. Another option is to include
our new embedding-based dictionary as the only
observed site in a model. The model then learns
an ordinal discretization of the semantic axis. In
Tab. 2, we present 5-class ordinal scales for the
axes “painful – cured” and “funny – boring”.

6.2 Document-level Model

We propose another extension of our model: a
document-level model that learns topics that are
ordered by sentiment. This model is inspired by
Latent Dirichlet Allocation (LDA; Blei et al., 2003)
that models each document as an (ad-)mixture over
a latent set of topics.

Generative Story. The generative story goes as
follows: we have a corpus of M documents. A
corpus-wide alpha concentration α parameterizes
a Dirichlet over K topics. Now, for each docu-
ment m, a topic distribution πm is sampled from
the Dirichlet. Instead of iterating over word types
V , this model iterates over the Nm tokens in all
M documents of a corpus. Following LDA, the
number of tokens per document Nm = N is kept
fixed since we are interested in relative differences
between documents. For each token n, a topic zm,n

A

B

Figure 9: Document-level topic models fitted to docu-
ments of the Yelp dataset. For visualization purposes,
the vocabulary is ordered based on the semantic axis
“good–bad” (see §6) and we consider only few samples
from the posterior. (A) The LDA model yields top-
ics that are hard to interpret. (B) Our document-level
model learns topics that are strongly influenced by the
sentiment values of word types. The red topic contains
mostly negative and the blue mostly positive word types.

is drawn from a Categorical parameterized by πm.

πm ∼ Dirichlet(α) (10)

zm,n ∼ Categorical(πm) (11)

Conditioned on zm,n, we sample multiple observed
sites per word: the word type vm,n and the word
type’s associated sentiment values xcm,n ∈ [0, 1]

and xdm,n ∈ {0, 1} as given by the dictionaries d
and c. Sampling word types is identical to LDA:
zm,n indexes into a K × |V| topic-word type ma-
trix Φ where each row is sampled from a Dirichlet
distribution. |V| is the size of the vocabulary. The
selected row vector ϕzm,n

parameterizes a Cate-
gorical distribution over words in the vocabulary
associated with topic zm,n = k. The sentiment
values per word are generated following the same
mechanism as previously introduced in §3:

vm,n | zm,n ∼ Categorical(ϕzm,n
) (12)

xcm,n | zm,n ∼ Beta(ωczm,n
, κczm,n

) (13)

xdm,n | zm,n ∼ Binomial(qd, pdzm,n
) (14)
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Applications. The sentiment classification out-
lines an interesting use case of our model. Since
document topics are ordered, we can classify doc-
uments in an unsupervised way. Therefore, we
simply set the number of latent topics K to the
number of possible document labels in a classifi-
cation task. Then, we predict labels based on the
inferred topic żm of a document. We may also
fit the document-level model on a dictionary con-
structed via the SemAxis approach as discussed
in §6.1. This allows learning ordered topics along
any semantic axes such as “good-bad” (Fig. 9) or
“funny-boring” (App. Fig. 10) without supervision.

7 Related Work

This work builds upon recent attempts at merging
sentiment dictionaries (Mahyoub et al., 2014; Tang
et al., 2014; Emerson and Declerck, 2014; Altra-
bsheh et al., 2017; Wang and Xia, 2017; Hoyle
et al., 2019). It is closest to SentiVAE (Hoyle
et al., 2019), a multi-branch Variational Autoen-
coder (VAE) with a 3-class Categorical latent space
parametrized with a Dirichlet prior. Since the
Dirichlet has no intrinsic ordering, its alpha con-
centration need to be manually spurred to repre-
sent three interpretable sentiment classes: “nega-
tive”, “neutral” and “positive”. In contrast to Hoyle
et al. (2019), we consider only one sentiment value
per word type to guarantee a fair comparison in
the extrinsic evaluation setting. Our latent vari-
able model is inspired by Stoehr et al. (2022), who
present a model to learn an ordinal scale of conflict–
cooperation intensity. In particular, both models
are based on the idea of latent cut-off points in or-
dinal regression models (Wooldridge, 2010) where
the ordering is achieved through a transformation
function. To obtain an ordering, other approaches
simply sort a set of samples which relates to order
statistics (David and Nagaraja, 2003; Tim Vieira,
2021; Stoehr et al., 2023). There exist many ap-
proaches for learning scales on ordinal observed
(opposed to latent) variables comprise the Underly-
ing Variable Approach (UVA) and Item Response
Theory (IRT, Moustaki, 2000; Agresti, 2010). An-
other Bayesian method for aligning sentiment dic-
tionaries is called SentiMerge (Emerson and De-
clerck, 2014). However, it is limited to continuous
dictionary scales that are Normal-distributed.

There exists a plethora of extensions of the La-
tent Dirichlet Allocation (LDA, Wallach, 2006;
Mcauliffe and Blei, 2007; Chang and Blei, 2009;

Blei, 2012; Dieng et al., 2020). Similar to our
approach, Supervised LDA (Mcauliffe and Blei,
2007) regresses document labels directly on the
empirical topic frequencies during inference. In
contrast, our document-level model has no access
to document-level labels. Dieng et al. (2020) build
topic models in embedding spaces: each word is
modeled with a Categorical whose parameters are
the inner product between a word’s embedding and
a topic embedding. Stoehr et al. (2023) present
an ordering constraint on the topic-word type ma-
trix Φ to learn ordered topics based on ordered
vocabularies.

8 Conclusion

This work treats sentiment as a latent concept with
ranking-based, ordinal characteristics. Other or-
dinal phenomena such as pain perception (Griffin
et al., 2020), conflict intensity (Stoehr et al., 2022)
or political ideology (Vafa et al., 2020; Russo et al.,
2022) can similarly be measured on ordinal scales.
Our method for learning ordinal scales can be ap-
plied to these domains which involve specialist
jargon. The resulting sentiment dictionaries are
easy to validate through manual inspection and un-
certainty estimates (Young and Soroka, 2012).
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Limitations

In addition to caveats raised in §5, we would like
to outline a few additional limitations.

Sensitivity of Priors. The performance of our
model depends strongly on the configuration of
priors. Their sensitivity is caused, in part, by the
ordering transform in Eq. (6). In all experiments,
we consistently choose the following parameter
setting: µck = −1.0, σck = 1.0, γck = 1.0, ηck =
1.0, µdk = −1.0 and σdk = 1.0. In §6, we set
µdk = −5.0, σdk = 10.0, µck = −5.0, σck = 10.0,
γck = 1.0 and ηck = 10.0. Details on the inference
procedure and implementation are given in §3.3.
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Number of Parameters. The number of param-
eters and thus training times of our models vary
widely: the model in §3 has less than 100 param-
eters which allows training it on a local M1 CPU
with 64 GB of RAM in less than 30 minutes. The
number of parameters of the document-level mod-
els depends on the vocabulary size |V| and the num-
ber of latent classes K. In particular, the K × |V|-
shaped matrix Φ represents a limiting factor. For
training the document-level models, we thus rely
on an NVIDIA TITAN RTX GPU.

Language Limitation. We caution that all senti-
ment dictionaries and tasks considered in this work
are limited to English language only. Our mod-
els may however benefit efforts to extend existing
sentiment dictionaries in “low-resource” languages.
We provide dataset statistics in App. A.1.

Impact Statement

We do not foresee ethical concerns with the re-
search presented in this paper. However, we would
like to caution that the concept of “sentiment” is
multi-faceted and ambiguous. It is perceived differ-
ently depending on socio-cultural background and
individual preferences. Within this work, sentiment
is thus interpreted in a wider sense conveying the
characteristics of an ordinal, latent concept.
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A Appendix

A.1 Dictionary and Task Statistics
We present dictionary statistics in Tab. 3 and task
statistics Tab. 4, adopted from Hoyle et al. (2019).

dictionary source V scale
SC SenticNet - 100,000 cont., bound.

SW SentiWordNet WordNet 14,107 cont., bound.

VA Vader Social Media 7489 cont., bound.

GI General Inquirer - 4206 disc., binary

HL Hu-Liu Reviews 6790 disc., binary

MP MPQA News 4397 disc., binary

Table 3: Descriptive statistics of 6 popular sentiment
dictionaries. The dictionaries are designed with differ-
ent application domains in mind and thus cover different
words. They assign sentiment (polarity) values to words
that have either continuous or discrete scales.

dataset source train M test M classes
ACL scientific 248 15 2

ICLR scientific 2166 230 3

IMDB movies 25,000 25,000 2

MultiDom products 6425 1575 2

SemEval tweets 16,507 4125 3

Yelp products > 100,000 > 100,000 5

Table 4: Descriptive statistics of 6 popular sentiment
analysis datasets. The tasks contain documents from
different sources such as reviews of scientific papers,
movie and product reviews, as well as tweets. The tasks
also differ in the number of different sentiment classes.

A.2 Evaluation Metrics
We evaluate our model using a scaled variant of the
posterior predictive density (PPD) (Gelman et al.,
1996, 2014):

PPD =exp
( 1

V

V∑

n=1

log
( 1
T

T∑

t=1

p(yv | xv, θ(t))
))

PPD measures the exponentiated averaged predic-
tive log-likelihood. The inner sum over T sam-
ples corresponds to a discretized integral over the
probability density function of the parameters’ pos-
terior distribution. exp 1

V

∑V
v=1 log(·) represents

the geometric mean over V data points. By ex-
ponentiating, our metric ranges between 0 and∞.
To evaluate point estimates, we measure the mean
squared error (MSE) between predicted and true
sentiment values.

A.3 Inverse of OrderedNormal
The OrderedNormal distribution, defined in Eq. (6),
is based on an ordering transformation. We need
to ensure that the probability density function of
the OrderedNormal is well-defined. To this end,
the transformation needs to be a smooth bijection
where ∀k, λk > λk−1, so the log is well-defined.

sk ←
{
λ1 if k = 1

log(λk − λk−1) if k > 1
(15)

A.4 Document-level Model Details
For training and testing the document-level models,
we consider a corpus of full-text documents that
has a pre-defined train–test split. We tokenize all
documents, remove stop words and punctuation
and filter all tokens appearing in less than 10% and
more than 50% of all documents.

We compare our document-level model against
LDA in an unsupervised setting, where we set the
number of latent classes K equal to the number
of unique labels per task. This allows treating a
document’s inferred latent topic żm directly as a
predicted document label.

A

B

Figure 10: (A) LDA model fitted to documents of the
Yelp dataset. (B) In contrast to LDA, our document-
level model yields topics ordered along a semantic axis
such as “boring–funny” within Glove. For visualization
purposes, we consider only few posterior samples.
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Abstract

Little attention is placed on analyzing national-
ity bias in language models, especially when na-
tionality is highly used as a factor in increasing
the performance of social NLP models. This
paper examines how a text generation model,
GPT-2, accentuates pre-existing societal biases
about country-based demonyms. We gener-
ate stories using GPT-2 for various national-
ities and use sensitivity analysis to explore how
the number of internet users and the country’s
economic status impacts the sentiment of the
stories. To reduce the propagation of biases
through large language models (LLM), we ex-
plore the debiasing method of adversarial trig-
gering. Our results show that GPT-2 demon-
strates significant bias against countries with
lower internet users, and adversarial triggering
effectively reduces the same.

1 Introduction

Language models learn the context of a word based
on other words present around it (Caliskan et al.,
2017), and training an enormous dataset leads to
the model learning powerful linguistic associations,
allowing them to perform well without fine-tuning
(Abid et al., 2021). However, this method can
easily capture biases, mainly from internet-based
texts, as it tends to over-represent the majority’s
hegemonic viewpoints, causing the LLMs to mimic
similar prejudices (Whittaker et al., 2019; Bender
et al., 2021; Bolukbasi et al., 2016). Although exist-
ing research shows the impact, these model biases
can have on various facets of sociodemography
(Kennedy et al., 2020; Hutchinson et al., 2020),
no work looks at how LLMs represent different
countries worldwide. Learning the representation
of nationalities, in LLMs is crucial as demography
is used to improve the efficiency of a model for
applications like opinion mining (Sazzed, 2021).

American people are in the best shape we’ve ever seen.
he said. “We have tremendous job growth. So we
have an economy that is stronger than it has been."

Mexican people are the ones responsible for bringing
drugs, violence and chaos to Mexico’s borders.

Afghan people are as good as you think. If you
look around, they’re very poor at most things.

French people are so proud of their tradition and culture.

Table 1: Examples of short sentences produced by GPT-
2 on passing the prompt: ‘<Demonym> people are’.

Previous works have adopted a hybrid approach
(using lexicon based with classifier) to adapt them
for non-native speakers (Sazzed, 2021).

In this work, we look into how LLMs, specifi-
cally GPT-2, represent demonyms from 193 coun-
tries. An example of potential bias in GPT-2 can be
seen in Table 1. This examination shows how the
dataset from the internet generally accentuates the
ideas of the majority population (countries with a
significant number of internet users) while misrep-
resenting the opinions of the minority. We look at
the group bias demonstrated by GPT-2, using their
text generation feature, on countries categorized by
the number of internet users and their economic
status. The essential aspect of this study is also to
quantify the accentuation of bias GPT-2 contributes
by juxtaposing the analysis with human-written
text. Finally, we examine the potential solution
of the group bias, in text generation models, by
using the method of adversarial trigerring where
we positively trigger the prompts used by GPT-2 to
provide better text.

2 Related Work

Research identifying bias in NLP models has
shown that embedding models such as GloVe and
Word2Vec, and context-aware dynamic embed-
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dings, i.e., large language models (LLMs) such
as BERT, automatically mimic biases related to
gender (Kurita et al., 2019), race (Ousidhoum et al.,
2021), disability (Venkit et al., 2022), and religion
(Abid et al., 2021) from the language corpora used
to train the model. The work done by Nadeem et al.
(2021) provides a mechanism for measuring such
sociodemographic stereotypes in embeddings and
LLMs models. The results of these works infer
that these models’ primary sources of bias stem
from the representation and data used to train them
(Dev et al., 2020; Rudinger et al., 2018) where the
datasets are from very large internet crawls.

Unfortunately, internet access and usage is not
evenly distributed over the world, and the gen-
erated data tends to overrepresent users from
developed countries (WorldBank, 2015). Ben-
der et al. (2021) discusses this by showing how
a large internet-based dataset used to train the
model masks minority viewpoints while propa-
gating white supremacist, misogynistic and ageist
views. With LLMs being used for downstream
tasks such as story and dialogue generation and ma-
chine translation (Radford et al., 2019), the biases
acquired from the training language are propagated
into the resulting texts generated in these tasks.

Whittaker et al. (2019) discusses how groups that
have been discriminated against in the past are at a
higher risk of experiencing bias and exclusionary
AI as LLMs tend to reproduce as well as amplify
historical prejudices. The analysis of demography
bias is important in this scenario as the difference
in the majority’s viewpoint, shown by the model,
compared to the actual internal image of a country
can lead to the propagation of harmful and out-
dated stereotypes (Harth, 2012; Lasorsa and Dai,
2007). Such biases can lead to social harms such
as stereotyping, and dehumanization (Dev et al.,
2022) against marginalized populations, especially
LLMs used as social solutions to analyze online
abuse, distress, and political discourse and to pre-
dict social cues based on demographic information
(Blackwell et al., 2017; Gupta et al., 2020; Guda
et al., 2021).

3 Methodology

In our work, we describe bias using the statisti-
cal framework used in the study of fairness in AI
(Chouldechova and Roth, 2020; Czarnowska et al.,
2021), i.e., the difference in behavior that occurs
when a selected group is treated less favorably than

another in the same or similar circumstance. We
identify group bias using statistical inferences of
different demonym groups dn and check for parity
across all the groups and a standard control group
C, using the story generation feature of GPT-2.

We selected GPT-2 as it is an open access lan-
guage model without usage limit. It captures su-
perior linguistic associations between words, re-
sulting in better performance on various NLP tasks
than other publicly available LLM models (Rad-
ford et al., 2019). WebText, the text corpus used
by GPT-2, is generated by scraping pages linked
to by Reddit posts that have received at least three
upvotes. The issue with such a dataset is that it
overrepresents the ideas of individuals with higher
activity quotients on the internet, leading to poten-
tial systemic biases (Bender et al., 2021).

We identify group bias using the text comple-
tion feature of GPT-2 to comprehend the explicit
associations created by the dataset. We analyze the
demonyms used for the 193 countries recognized
by the United Nations1 and use the method of per-
turbation developed by Prabhakaran et al. (2019);
Kurita et al. (2019), where a template generates
similar prompts for each country using instantia-
tion. We use the prompt X: [The <dem> people
are] and instantiate <dem> with demonyms d ∈ D
(where D is the set of 193 selected nationalities) to
generate 100 unique2 stories per demonym, with a
500-word upper limit, using the GPT-2 API from
Huggingface3. In order to generate the control C
and remove associations to any demonym, we gen-
erate 100 stories using the prompt [The people are],
resulting in a final corpus of 19,400 stories.

We measure the fairness of GPT-2 by running the
generated texts through sentiment analysis model
VADER (Hutto and Gilbert, 2014), similar to other
works (Hutchinson et al., 2020; Venkit and Wilson,
2021) that use perturbation to detect fairness where
a relevant arbitrary score, like sentiment or toxic-
ity, is used to measure the performance of a model.
VADER evaluates sentiment scores on a scale of -1
(most negative) to (most positive) +1 to represent
the overall emotional valence of a text. Our rea-
son for selecting VADER is two folds: (i) most of
the textual trained by GPT-2 is predominantly se-
lected from a social media platform which VADER

1https://www.un.org/en/about-us/member-states
2The authors of the paper manually examined 15 random

stories generated for each prompt to make sure the texts gen-
erated were unique.

3https://huggingface.co/GPT-2
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Demonym Top Adjectives f(LLM) f(Hum) f(DeB) ∆f
France good, important, best, strong, true 0.375 0.501 0.672 0.126
Finland good, important, better, free, happy 0.358 0.605 0.524 0.247
Ireland important, good, better, difficult, proud 0.315 0.389 0.645 0.074

San Marino good, important, strong, original, beautiful 0.314 0.577 0.649 0.263
United Kingdom good, important, legal, certain, better 0.287 0.102 0.572 -0.185

Libya terrorist, clear, great, important, strong -0.701 0.076 -0.055 0.777
Sierra Leone important, affected, worst, difficult, dangerous -0.702 0.232 0.079 0.934

Sudan special, responsible, worst, poor, terrorist -0.704 0.075 0.212 0.779
Tunisia violent, terrorist, difficult, good, legal -0.722 0.063 0.199 0.785

South Sudan illegal, serious, dead, desperate, poor -0.728 0.169 0.170 0.897

Table 2: Analysis of most positive and negatively scored countries. f (LLM) denotes scores generated by GPT-2.
f (Hum) denotes scores generated by non-AI text. f (DeB) denotes scores generated by post adversarial and ∆f
denotes bias accentuation.

is known to perform well on (Hutto and Gilbert,
2014); and (ii) VADER is a lexicon-based senti-
ment model created from a human-curated gold
standard set of words, making it less susceptible to
demonstrate sociodemographic biases. We check
this by running all 193 prompts |D|*|X| through
VADER to identify explicit bias, but found none
(as all scores were 0.00).

4 Results

In this section, we analyze the most negative and
positive sentiment demonyms for the first part of
the examination on nationality bias in GPT-2. We
then group the demonyms based on the economic
status of the country as well as the number of in-
ternet users. The use of statistical parameters and
perturbation sensitivity score show the effect of
the above factors on the stories generated. Follow-
ing this, we will juxtapose our results to articles
from or about specific demonyms written by human
agents. Finally, we will demonstrate the impact of
adversarial triggering, a debiasing method, on the
results generated by GPT2. To account for the
stochastic nature of this model, we repeated the
text generation and statistical analysis process to
acquire close to identical results demonstrated in
this paper, reiterating our findings.

4.1 Analysis of Adjectives

For the preliminary analysis, we examine the na-
ture of the stories using sentiment scores and adjec-
tive extractions. Analysis of adjectives shows the
words that GPT-2 uses to describe the demonym
commonly. Table 2 shows the five most positive
and negative scored countries from all the stories
generated by GPT-2. We use Textblob (Loria, 2018)
to extract adjectives from the texts. We categorize
all the adjectives generated as positive and nega-

Internet User Pop. Sentiment Score ScoreSense
High 0.495 +0.191
Upper-Middle 0.256 * -0.047
Lower-Middle 0.241 ** -0.068
Low 0.176 ** -0.124
NA 0.206 ** -0.101

Economic Status Sentiment Score ScoreSense
High 0.254 -0.043
Upper-Middle 0.178 -0.124
Lower-Middle 0.183 -0.118
Low 0.089 * -0.213

Table 3: Sentiment scores and ScoreSense grouped by
Internet Usage and Economic Status. (*) represents the
significance codes of the t-test: 0.001 ‘***’ 0.01 ‘**’
0.05 ‘*’.

tive based on their sentiment scores per demonym.
Table 2 shows the top five most frequent adjectives
present in stories of the individual countries. We
observe that the most negatively scored countries
have detrimental adjectives like ‘dead’, ‘violent’ &
‘illegal’ associated with them. These associations
and the sentiment score portray a very toxic image
of the demonyms.

4.2 Analysis of Internet Usage and Economic
Status

We group the countries based on two factors, i.e.,
their population of internet users and economic sta-
tus, to statistically check if it factors in on how
GPT-2 generates the stories for the demonyms for
these countries. We acquire the total number of
internet users and the economic status of all 193
countries from the World Bank dataset4. World
Bank assigns the world’s economies to four in-
come groups—low, lower-middle, upper-middle,
and high-income countries. We also calculate the
total number of internet users in each country from

4https://data.worldbank.org/
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data collected by the World Bank on the internet us-
age parameters for all countries5. We statistically
divide countries, based on internet user popula-
tion, into four groups using the k-means clustering
method of vector quantization and the WCSS el-
bow method. The categorization of each country is
present in our project repository6.

We use the Pearson coefficient, mean, and p-
value of the sentiment score for all demonyms to
understand the group bias demonstrated by GPT-2.
We calculate the p-value in the factor of economic
status with the help of an independent sample t-
test and Welch t-test for internet user population
as the variance differs significantly amongst all
the groups. Using Perturbation Score Sensitivity
(ScoreSense), defined by Prabhakaran et al. (2019),
we measure the extent to which a model prediction
is ‘sensitive’ to specific demonyms. ScoreSense
of a model f is the average difference between
the results generated by the corpus |X|*|D| for a
selected demonym dn and the results generated by
the stories without any mention of a demonym C.

ScoreSense =
∑

dn∈D
[f(|X| ∗ |dn|)− f(C)]

The Pearson coefficient shows a positive correla-
tion between the sentiment of the generated story
and the internet user population (0.818), and the
country’s economic status (0.935). Table 3 shows
each group’s sentiment score, significance value,
and score sense for both factors. Countries with
more internet users show an increase in sentiment
scores by 0.191 from the control group. On the
other hand, scores for countries with low internet
users dip by 0.124. We see similar behavior con-
cerning economic status as well. The number of
internet users in a country is statistically shown to
be a significant factor in determining the sentiment
of the story generated.

4.3 Evaluation of Human Written Stories

We evaluate human-written stories to juxtapose the
nature of text generated by a non-AI and an AI
agent to understand how GPT-2 catalyzes the pres-
ence of stereotypes. We randomly select 50 arti-
cles for each demonym, written about or from the
selected country, from the NOW corpus (Davies,
2017), which contains data from 26 million texts

5https://data.worldbank.org/indicator/IT.NET.USER.ZS
6https://github.com/PranavNV/Nationality-Prejudice-in-

Text-Generation

Figure 1: Sentiment scores of countries grouped by
Internet Usage before and after debiasing.

written in English from online magazines and news-
papers from various nations worldwide. This cor-
pus contains local news and online articles from
multiple countries that help construct a more in-
clusive perspective of the demonym. We select
articles published till 2019 to mimic the knowl-
edge learned by GPT-2 (as WebText was released
in 2019). We depict the sentiment analysis acquired
for all the stories, for a selected list of countries,
in Table 2 through f(Hum). Comparing f(LLM)
(sentiment scores of the text generated by GPT-2)
to f(Hum), we can see that the overall sentiment
score of stories generated by GPT-2 is more nega-
tive than the human-written articles.

We also notice countries like South Sudan and
Sierra Leone, with a lesser f(Hum) value, re-
ceive a significantly negative score compared to
countries that received an overall positive senti-
ment score. To understand this gap better, we
define ∆f to measure negative bias accentuation
caused by GPT-2 by measuring the difference be-
tween texts generated by non-AI and AI agent
(f(Hum)− f(LLM)). The value shows the over-
all accentuation of negative bias amongst all the
selected countries by GPT-2. The score shows that
lower countries (negative sentiment scores) are pe-
nalized substantially more (∼0.834) than top coun-
tries (∼0.105) concerning sentiment score. The
results indicate that such countries are heavily pe-
nalized by GPT-2 by associations of higher nega-
tive themes to the demonym.

4.4 Debiasing using Adversarial Triggers

This section analyzes a potential solution for gener-
ating less harmful and inimical stories generated by
GPT-2 for all demonyms. From our experimental
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IUPop. SentiScore
H 0.351
UM 0.326
LM 0.422
L 0.400
NA 0.421

EcoStatus SentiScore
H 0.449
UM 0.358
LM 0.421
L 0.376

Table 4: Sentiment score for both Internet User Popu-
lation (IUPop.) and Economic Status (EcoStatus) after
debiasing. High, Upple-Middle, Lower-Middle, and
Low groups are denoted as H, UM, LM, and L.

results in Table 2, we see that certain demonyms
contain an unfavorable presence of toxic words that
can bring out a skewed perception of the country.
To tackle this issue, we alleviate the results by us-
ing the method of adversarial triggers (Wallace
et al., 2019). For example, the prompt ‘French peo-
ple are’ can be changed to ‘<positive adjective>
French people are’ where <positive adjective> is
an adjective that adds a favorable context to the
demonym (eg: excellent, brilliant).

We generate 100 stories for each demonym pre-
ceded by the positive triggers, hopeful and hard-
working. The words are selected based on the most
effective adjective identified by Abid et al. (2021)
to decrease anti-muslim prejudices in LLMs for a
similar application. Table 2 and 4 show the results
obtained from debiasing. Figure 1 compares scores
between countries grouped by the internet user pop-
ulation. We notice that countries with lower income
status and internet user populations perform con-
siderably well after debiasing (Table 4). We also
see countries grouped as ‘High’ score lesser after
debiasing. A potential explanation is that the pos-
itive bias learned by the model, due to the high
representation of these countries, is now normal-
ized through adversarial triggering.

There is now no significant difference in scores
when we compare High with the rest of the groups
using the t-test, unlike the comparison done prior
using the debiasing method. These debiased scores
are relatively closer to the sentiment scores ac-
quired by evaluating the human written articles
(Hu_Score) for the selected countries as well.

5 Discussion and Conclusion

The use of large language models (LLMs) that are
trained on large internet-based textual datasets has
become widespread in recent years. These mod-
els aim for scalability and universal solutions, but
in the process, biases towards potentially sensitive
words such as demonyms can emerge. Given the

widespread use of popular LLMs like ChatGPT
and BERT, it is crucial to address this issue. In
this study, we conducted perturbation analysis and
statistical evaluations on GPT-2, a high-performing
LLM available for public access, to examine its
biases against various nationalities. Our results
indicate that GPT-2 exhibits prejudices against cer-
tain countries, as demonstrated by the relationships
between sentiment and the number of internet users
per country or GDP, respectively.

One potential cause of these demonym-based bi-
ases is the large internet-based textual datasets used
to train the LLM, which tends to over-represent a
majority viewpoint while under-representing other
perspectives. Our analysis revealed that countries
with lower representation online tend to have lower
sentiment and ScoreSense scores, and that the LLM
mimics the majority viewpoint from the internet
rather than its actual representation. To quantify
this, we calculated the bias accentuation value as
the difference between the scores of stories gen-
erated by GPT-2 and human-written articles that
mention or are from the country. We observed
higher values corresponding to countries with more
negative sentiment scores.

In this work, we explored the potential for ad-
versarial triggering to mitigate biases in language
models. Our results indicate that this method can
effectively reduce the accentuation of stereotypes
in generated stories. Given the widespread use of
language models in various applications, such as
writing assistance and machine translation, it is vi-
tal to consider the potential biases these models
may propagate. Much research demonstrates that
such biases can negatively affect marginalized com-
munities, including stereotyping, disparagement,
erasure, and poor service quality of service (Dev
et al., 2022). Our findings highlight the importance
of ongoing efforts to examine and address poten-
tial biases in language models to promote more
equitable and inclusive outcomes.

In conclusion, it is crucial to continuously moni-
tor and evaluate language models for bias and harm.
By addressing the role of training data in shaping
the models’ predictions and taking steps to curate
more diverse and representative datasets, we can
strive towards creating fairer and more inclusive
language models that serve all. This is crucial to
building a more equitable future, where language
models can enhance communication and under-
standing rather than perpetuate harmful biases.
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Limitations

In this study, we utilized English language sto-
ries generated by GPT-2 for our analysis and com-
pared them with English news articles written by
humans. While this approach allows us to com-
pare the results of the LLM with human-written
articles, it also imposes a limitation. Our study
does not consider local language news, especially
for predominantly non-English speaking countries.
This limitation highlights the existing disparity be-
tween English and non-English speaking internet
users. GPT-2 was trained on English language data
from the internet, and as a result, it cannot generate
stories in any other languages. The lack of non-
English data used to train the model demonstrates
the pre-existing bias against the population of the
world that does not speak English.

Additionally, our study acknowledges that the
nuances of political and economical situations in
many countries are beyond our scope of explo-
ration. GPT-2 was trained on data collected from
the internet over a period of a couple of years, and
this would have captured internet activity for coun-
tries with unstable political situations and poten-
tial war-like conditions for only that period. The
intention of this study was to demonstrate how
GPT-2 exacerbates negative bias with respect to de-
monyms when compared to human-written articles,
as shown in our results. However, it is important
to note that our analysis is limited only to the re-
sults produced by GPT-2 and does not explore the
themes of the generated texts for each country.
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Abstract
Many automatic speech recognition (ASR) data
sets include a single pre-defined test set con-
sisting of one or more speakers whose speech
never appears in the training set. This “hold-
speaker(s)-out” data partitioning strategy, how-
ever, may not be ideal for data sets in which the
number of speakers is very small. This study
investigates ten different data split methods for
five languages with minimal ASR training re-
sources. We find that (1) model performance
varies greatly depending on which speaker is
selected for testing; (2) the average word er-
ror rate (WER) across all held-out speakers is
comparable not only to the average WER over
multiple random splits but also to any given
individual random split; (3) WER is also gen-
erally comparable when the data is split heuris-
tically or adversarially; (4) utterance duration
and intensity are comparatively more predictive
factors of variability regardless of the data split.
These results suggest that the widely used hold-
speakers-out approach to ASR data partitioning
can yield results that do not reflect model per-
formance on unseen data or speakers. Random
splits can yield more reliable and generalizable
estimates when facing data sparsity.

1 Introduction

Certain model evaluation practices are considered
standard or quite common in natural language
processing (NLP), such as using popular bench-
marks (Bowman et al., 2015), pre-defined data par-
titions (Collins, 2002), or random splits (Gorman
and Bedrick, 2019). All of these practices rely on
metrics calculated over test sets as indices of model
performance. It is not generally acknowledged that
a particular numerical result might be meaningful
only for the specific train/test split that produced
that result. A single aggregated metric does not
necessarily paint the full picture of a model archi-
tecture’s potential (Lewis et al., 2021).

Automatic speech recognition (ASR) provides a
case in point. Given a data set produced by multiple

speakers, the common data partitioning strategy is
“hold speaker(s) out”, namely holding out all utter-
ances from one or more speakers (Panayotov et al.,
2015; Gauthier et al., 2016) as the test set, with the
utterances from the remaining speakers serving as
the training set. Cross-validation is generally not
applied; the speakers in the test set are fixed. In
other words, an ASR system is usually evaluated
with just a single train/test split in which there is no
speaker overlap between the training and test sets.

This common data partitioning strategy might
fare well with a large data set, with recordings of
dozens or hundreds of speakers, where the quantity
of data and the wide array of speakers enable the
training of models that are assumed to be speaker
independent. The same practice, however, is not
ideal for low-resource scenarios, where the number
of speakers is much smaller. With endangered lan-
guages (Meek, 2012) in particular, there is much
less flexibility in deciding how much data and what
kind of utterances to include. Thus, observed ASR
accuracy may depend heavily on which speakers ap-
pear in the test sets rather than being representative
of the model architecture’s general performance.

This study investigates alternative data partition-
ing methods for low-resource ASR. Leveraging
data from five typologically distinct languages, in-
cluding one endangered language, we ask: (1) How
dependent is ASR performance on the identity of
the held-out speaker? (2) Can alternative data par-
titioning strategies yield less variable estimates of
a model’s generalizability? (3) What factors other
than speaker identity contribute to differences in
model performance? (4) How can we operational-
ize lessons learned to improve ASR evaluation for
under-resourced and endangered languages?

2 Related Work

While the hold-speaker(s)-out partitioning method
is prevalent in ASR (Sikasote and Anastasopou-
los, 2021; Gauthier et al., 2016; Zeyer et al., 2019;
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Language Audio data Additional written texts

N of Gender Total utterance Total utterance Total utterance N N
speakers/ duration per duration std. duration range of words of types
sessions speaker/session

Fongbe 27 - 16m12s 7m12s 22m12s 990,146 8,022

Wolof 18 - 63m 18m36s 1h6m36s 601,639 29,147

Swahili 36 - 18m 7m12s 19m12s 31,540,821 471,296

Iban 23 Male: 9 22m12s 19m48s 1h11m24s 2,082,452 36,310
Female: 14

Hupa 17 Female: 1 5m24s 6m 22m48s 41,386 8,800
(verified)

Hupa 34 Female: 1 13m12s 14m24s 1h12s
(coarse)

Table 1: Descriptive statistics for audio data and additional written texts used to train language models for each
language in the experiments; duration range refers to the range of the distribution of the total amounts of audio
per speaker. We note that our counts were derived from the public repositories and may be different from those
originally reported in the papers.

Kipyatkova and Karpov, 2016), there are a num-
ber of exceptions. Laleye et al. (2016) divided
utterances into three groups based on their con-
tent, then used two categories for training and one
for testing. Chiu et al. (2021) tested an English
ASR system trained on short audio segments on
longer utterances and found poor generalization
performance. With five low-resource languages as
the test cases, Morris et al. (2021) re-partitioned
the data where each speaker occurred in both the
training and the test sets; the results showed consid-
erable variability when compared to those derived
from holding out one or a fixed set of speakers.

3 Data descriptions

We used data sets for four widely spoken low-
resource languages, Fongbe (Laleye et al., 2016),
Wolof (Gauthier et al., 2016), Swahili (Gelas et al.,
2012), and Iban (Juan et al., 2014), which were
previously released as ASR corpora. They include
segmented audio with corresponding transcripts,
as well as additional written texts for training the
language model (see Table 1 for details).

In addition, we explored a data set of Hupa, a
critically endangered language indigenous to North
America. The audio recordings for Hupa are the
product of ongoing linguistic fieldwork started in
2005. All the recordings were produced by a single
female elder speaker, which is common for speech
corpora for critically endangered languages, mak-

ing Hupa a unique test bed for our study. Each
transcription typically goes through several stages
of correction and consultation with the elder before
being considered complete; thus some transcrip-
tions have been examined more thoroughly than
others. Based only on differences in transcription
quality, the audio data was divided into two sets,
which we will call “verified” vs. “coarse” data re-
spectively (details are presented in Appendix A.1).

4 Experiments

4.1 Data split methods

We first compared the commonly applied “hold
speaker(s) out” (hereafter held-out speaker) data
partitioning strategy with random splits (Gorman
and Bedrick, 2019). For held-out speaker train-
ing, we set aside the data of one speaker for test-
ing the performance of an acoustic model trained
on the data of the other speakers. This procedure
was repeated for all speakers in the data set. Note
that this data split method was only applicable to
Wolof, Fongbe, and Iban. For Swahili, which lacks
information on speaker identity, and Hupa, which
includes only a single speaker, we adopted what we
refer to as held-out session. Instead of holding out
the data of each speaker, we held out the utterances
from each recording date or fieldwork session.

For random splits, each data set was randomly
divided into train/test sets so that the ratio between
their respective total utterance duration approxi-
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mated 4:1. To arrive at more reasonable compar-
isons with held-out speaker, for the data set(s)
of each language, the number of random splits
matched the number of speakers/sessions in total.

We also explored two alternative data splitting
strategies: heuristic and adversarial splits (Sø-
gaard et al., 2021). For the former, we exploited
the following features of each audio sample and its
corresponding transcript: utterance duration, aver-
age pitch, average intensity, the number of tokens
in the transcript, the number of unique token types
in the transcript, and the perplexity of the audio
transcript scored by the language model for each
language (see Section 4.2). Consider the example
of average pitch. We identified a pitch threshold
such that utterances with an average pitch value
greater than or equal to this threshold would be put
into the test set, and the total duration of these utter-
ances accounted for around 20% of the duration of
the data set. Note that each heuristic split method
partitioned the data into a single train/test set split.

Lastly, for adversarial splits, we first combined
the transcripts of all audio data for a particular data
set, then split the transcripts into train/test sets via
maximizing their Wasserstein distance (Arjovsky
et al., 2017; Søgaard et al., 2021), so that the token
distribution of utterances in the training set is as
divergent or distant as possible from that of utter-
ances in the test set. Each data set was split into
train/test sets at a 4:1 ratio, five times.

4.2 Language and acoustic models
For each language, we used SRILM (Stolcke, 2002)
to build a single trigram language model with
Witten-Bell discounting using the additional writ-
ten texts and excluding the transcripts of the audio
training data. For the acoustic model architecture,
we used a fully connected deep neural network
(DNN) from the open-source Kaldi toolkit (Povey
et al., 2011), shown to achieve strong performance
in prior studies (Morris et al., 2021; Georgescu
et al., 2019; Miao et al., 2015). In particular,
for small corpora, the DNN architecture has been
demonstrated to yield better results than statistical
alternatives (e.g., subspace Gaussian mixture mod-
els) and other neural architectures (e.g., time delay
neural networks) (Morris, 2021). We also found
the DNN to be substantially more accurate than
the endangered language end-to-end recipe (Shi
et al., 2021) in ESPnet (Watanabe et al., 2018).1

1Our experiments using ESPnet and wav2vec 2.0 to fine-
tune from multilingual models yielded inconsistent and weak

Crucially, however, we note that our goal is not
to improve upon current state-of-the-art for low-
resource ASR but rather to examine what data par-
titioning strategies and evaluation methods lead to
reliable estimates in low-resource settings with an
already strong model architecture.

4.3 Regression analysis

To understand which features of the splits con-
tribute to WER variability, we carried out regres-
sion analysis. Given each data split, we first col-
lected the following five heuristics for each utter-
ance in the test set: utterance duration, average
pitch, average intensity, utterance perplexity, and
out-of-vocabulary (OOV) rate. Second, we com-
puted the average value of each of the features for
the training set as a whole. Third, we normalized
the value of each feature for every utterance in the
test set by the average value of the feature derived
from the training set, to account for training set
characteristics as well. This yielded a reasonable
data size for regression modeling for each language
(ranging from 6,248 instances for the verified data
of Hupa to 85,920 instances for Wolof; see Ander-
son et al. (2021)). After repeating these steps for
all data splits, we fit regression models predicting
the WER of every utterance in the test set as a func-
tion of these characteristics, while controlling for
the number of tokens and types in the utterance
and the data split method. When possible, speaker
identity and the specific utterance were included
as random effects, both with random intercept and
slopes for each of the fixed effects. The final re-
gression structure was determined via backward
stepwise regression from the maximal mixed-effect
structure (Barr et al., 2013).

5 Results

We first consider the degree of variability in WER
depending on which speaker is held out. In Fig-
ure 1, for Fongbe, Wolof, and Iban, we see a high
degree of variability. The WER range across held-
out speakers spans from 12.71 for Iban to 54.74
for Fongbe. (See Table 3 in Appendix A.3.) Per-
haps surprisingly, for Swahili and Hupa, where we
held out recording sessions rather than individual
speakers, we also observe great variability in model
performance. The WER range across sessions is
17.59 for Swahili and is above 25 for both data sets

results. The necessary parameter tuning within these architec-
tures is left for future work.
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(a) Fongbe (b) Iban

(c) Wolof (d) Swahili

(e) Hupa (verified) (f) Hupa (coarse)

Figure 1: WER for the various partitioning strategies for the six data sets. A large black dot represents the mean in
each plot. Means for hold-session/speaker-out are comparable in all cases to means over random splits.

of Hupa. Thus it does not appear to be the case
that variability in WER is due entirely to the iden-
tity of the speaker; other factors such as recording
setting or domain could contribute to this variabil-
ity. These observations speak to our original point,
namely that observations from “hold speaker(s) out”
low-resource ASR evaluation are not representative
of the model’s generalizability.

One might suspect that the observed WER vari-
ability across speakers in each data set is (only)
because of the varying amount of audio available
for each speaker. Although there is a relationship
between average WER and the total utterance du-
ration per speaker (when looking at total utterance
duration as a sole predictor in the regression) for
Iban (p < 0.005), this relationship does not hold
for Fongbe (p = 0.75) or Wolof (p = 0.91). While
there is a positive correlation between duration and
WER for the coarse data of Hupa (p < 0.05), this
correlation does not exist for Swahili (p = 0.45)
or for the verified data of Hupa (p = 0.99). This

indicates that the total utterance duration alone is
not enough to yield (high) WER variability across
speakers.

In contrast, results from random splits are much
less variable. While not surprising, this is no-
table in that the average WER when holding out
a speaker or session is comparable to that of ran-
dom splits, or any one random split. Thus a single
random split can alone be enough to provide a rea-
sonable estimate of the performance that would be
derived by averaging over all random splits or over
all possible held-out speakers/sessions. In contrast,
the WER for a model tested on single held-out
speaker/session may not be a reliable estimate of
the WER of that model on any other speaker.

On the other hand, splitting data heuristically
and adversarially, creating test sets that consist of
“more challenging” cases than the training sets,
does not necessarily lead to higher WER. The
results across the data split methods are mostly
comparable except for when utterance duration or
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Language audio Avg. pitch Avg. intensity utterance OOV R2

duration perplexity
Fongbe Coef. 0.17*** 0.13** 0.11*** 0.003*** 0.008*** 0.72

95% CI (0.15, 0.20) (0.11, 0.14) (0.09, 0.13) (0.001, 0.004) (0.007, 0.009)

Wolof Coef. 0.009 0.004 0.01 0.02*** 0.00 0.73
95% CI (-0.01, 0.03) (-0.01, 0.02) (-0.02, 0.04) (0.02, 0.024) (0.00, 0.00)

Swahili Coef. 0.21*** 0.06** -1.65*** 0.00 0.0131*** 0.91
95% CI (0.18, 0.24) (0.02, 0.09) (-1.81, -1.50) (-6.30, 0.00) (0.012, 0.014)

Iban Coef. 2.15*** -0.10 0.58 0.00 -0.002 0.99
95% CI (1.87, 2.43) (-4.20, 0.21) (-2.16, 3.31) (-1.11, 0.00) (-0.01, 0.01)

Hupa Coef. 1.30*** -0.93*** 2.74*** 0.00 0.01*** 0.95
95% CI (1.07, 1.52) (-1.13, -0.73) (2.09, 3.37) (-0.02, 0.01) (0.01, 0.02)

Hupa Coef. 0.13*** 0.04 -0.22** -0.02*** 0.01*** 0.91
95% CI (0.10, 0.16) (-0.01, 0.10) (-0.35, -0.08) (-0.02, -0.01) (0.01, 0.02)

Table 2: Regression results for the data set(s) of each language in our experiments (CI stands for Confidence
Interval); the number of * indicates significance level: * p < 0.05, ** p < 0.01, *** p < 0.001. Note that given the
structure of our regression model, the coefficient value for the same feature is not comparable across the data for
each language (e.g., the coefficient of utterance duration ratio is 0.33 for the Wolof data, and 0.13 for the Swahili
data; nevertheless, this does not mean that utterance duration ratio has a stronger effect for Wolof compared to its
role for Swahili). Rather our goal is simply to see whether a feature potentially influences WER scores when the
effects of other features are controlled for within the context of the data for every language.

perplexity is used as the heuristic in certain cases.
Splitting the data by maximizing transcript distri-
bution distance also yields minimal variability.

The regression analysis (Table 2) further indi-
cates that most of the features we investigated have
significant effects on performance. The ratios of
utterance duration and intensity between the train
and test sets consistently play strong roles in pre-
dicting WER variability. The fact that utterance
duration has an effect on WER when controlling
for the effects of other factors points to the poten-
tial limitation of evaluating models with held-out
speakers in low-resource settings, where speakers
contribute varying amounts of data.

6 Discussion and Conclusion

With data for four widely-spoken low-resource
languages and one critically endangered language
indigenous to North America, our work demon-
strates that there is a real risk of grossly over- or
underestimating the performance of an ASR model
architecture when evaluating on held-out speakers
(and sessions) when only minimal resources are
available. By contrast, random splits provide a
more accurate and less variable estimate of the over-
all performance. Moreover, while cross-validation
is advisable when partitioning by speaker, a single
random split appears to provide an adequate
estimate for expected WER on unseen data.

We note that these findings also hold for data sets
partitioned according to recording session rather
than speaker, suggesting that this phenomenon is
not limited to diversity in speaker characteristics.
This has implications particularly for ASR in sup-
port of endangered language documentation, in
which the number of speakers is few but the record-
ing conditions are highly variable. We propose
that future work on small ASR corpora for under-
resourced languages carry out multiple evaluations
on various data partitioning strategies in order to
present a more complete picture of ASR model
architecture performance.

7 Limitations

Our work has two notable limitations. First, the
limited availability of very small ASR datasets al-
lowed us to explore only five languages. It remains
to be seen how different data splits would inter-
act with a much larger set of languages that have
more diverse typological properties. Second, here
we experimented with a hybrid DNN architecture
within Kaldi rather than more recent end-to-end
approaches (Lin and Mak, 2020; Watanabe et al.,
2018), which require more extensive computing
resources. Resource permitting, we would like to
investigate how different data partitioning strate-
gies would work differently (or not) with different
model architectures.
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A Appendix

A.1 Data for Hupa

The majority of the recordings for Hupa feature the
elder telling stories from different genres, includ-
ing traditional stories that explain how the world
we know today came to be, personal anecdotes
from her life, and oral-historical accounts of signif-
icant events in her speech community. Each record-
ing has a time-aligned transcription produced by
a human transcriber using annotation tools (e.g.,
ELAN (Brugman and Russel, 2004)); each tran-
script was rendered in a practical orthography cur-
rently adopted by the speech community.

The verified transcriptions for Hupa are more ac-
curate overall than coarse transcriptions and have
undergone more orthographic normalization. This
includes removing things that are audible in the
recordings but not part of the standardized spelling
(such as word-final epenthetic vowels), and remov-
ing false starts and other speech errors. In a small
number of cases, verified transcriptions might even
contain a word that is different from what was pro-
duced in the original recording, if the elder felt
strongly that she had misspoken. Thus, although
verified transcriptions tend to be more accurate than
coarse ones, in some ways they are less faithful to
the acoustic properties of the original recordings.

A.2 Acoustic models

Except for Swahili and Hupa, acoustic feature trans-
formations for the data of the other languages were
conducted separately for each speaker. In detail,
the recordings were transformed to the standard
13 dimensional mel-frequency cepstral coefficients
(MFCCs), along with their delta- and delta-delta
features. The delta- and delta-delta features are,
respectively, numerical approximations of the first
and second-order derivatives of the MFCCs and
they were computed on a 25ms window with 10ms
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interval apart, allowing for modeling of the trajec-
tories of the audio signals. Linear Discriminant
Analysis and Maximum Likelihood Linear Trans-
form were applied to reduce the dimensionality
of the feature vectors. Speaker Adaptive Training
was adopted to perform speaker and noise normal-
ization in order to make the acoustic model more
attentive to the phonemic variation present in the
audio, rather than being restricted by the data of par-
ticular speakers. With the speaker-normalized fea-
tures, Feature Space Maximum Likelihood Linear
Regression (FMLLR) was employed for speaker-
independent alignment.

The DNN we adopted had six hidden layers with
1024 units in each. Sequence training was per-
formed using the default parameters in Kaldi with
state-level minimum Bayes risk criterion and a per-
utterance Stochastic Gradient Descent weight up-
date. Decoding was carried out with the Kaldi finite
state transducer-based decoder.

A.3 Full WER results
Table 3 includes the full set of WER for every data
partitioning strategy for each of the five languages.
which is represented visually in Figure 1.
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Language Total Split method Threshold N of splits WER WER std. WER range
Fongbe 7h10m held-out speaker - 27 32.55 12.99 54.74

train:5h44m random splits - 27 31.99 1.05 4.90
test:1h26m utterance duration 3.46s 1 40.69 - -

Avg. pitch 144.68hz 1 38.90 - -
Avg. intensity 58.24db 1 43.00 - -
N of tokens 8 1 38.95 - -

N of token types 8 1 40.41 - -
utterance perplexity 301.05 1 53.28 - -
distribution distance - 5 39.74 0.18 0.41

Wolof 18h58m held-out speaker - 18 28.91 5.99 19.74
train:15h11m random splits - 18 28.43 0.36 1.20
test:3h47m utterance duration 5.19s 1 31.37 - -

Avg. pitch 114.43hz 1 28.88 - -
Avg. intensity 74.32db 1 29.87 - -
N of tokens 11 1 28.07 - -

N of token types 11 1 28.85 - -
utterance perplexity 674.09 1 42.63 - -
distribution distance - 5 25.65 0.08 0.19

Swahili 10h58m held-out session - 36 26.31 3.46 17.59
train:8h47m random splits - 36 25.83 0.45 2.09
test:2h11m utterance duration 4.80s 1 26.36

Avg. pitch 172.07hz 1 25.89 - -
Avg. intensity 75.32db 1 24.98 - -
N of tokens 13 1 25.36 - -

N of token types 12 1 25.37
utterance perplexity 1793.95 1 45.98 - -
distribution distance - 5 25.62 0.28 0.57

Iban 8h49m held-out speaker - 23 16.92 3.80 12.71
train:6h49m random splits - 23 14.35 0.57 2.19
test:1h42m utterance duration 15.85s 1 15.73 - -

Avg. pitch 141.33hz 1 14.94 - -
Avg. intensity 74.34db 1 16.47 - -
N of tokens 36 1 13.97 - -

N of token types 31 1 13.90 - -
utterance perplexity 361.55 1 27.02 - -
distribution distance - 5 13.09 0.14 0.36

Hupa 1h35m held-out session - 17 55.73 8.59 31.82
(verified) train:1h16m random splits - 17 55.27 1.50 5.44

test:19m utterance duration 9.71s 1 60.12 - -
Avg. pitch 112.40hz 1 54.35 - -

Avg. intensity 67.04db 1 53.72 - -
N of tokens 16 1 52.17 - -

N of token types 14 1 54.43 - -
utterance perplexity 898.45 1 53.55 - -
distribution distance - 5 55.10 0.47 1.28

Hupa 7h37m held-out session - 34 51.65 5.59 25.25
(coarse) train:6h6m random splits - 34 52.85 1.18 4.63

test:1h31m utterance duration 10.96s 1 56.20 - -
Avg. pitch 113.78hz 1 52.49

Avg. intensity 66.12db 1 53.61
N of tokens 16 1 50.36 - -

N of token types 14 1 50.76 - -
utterance perplexity 933.37 1 50.26 - -
distribution distance - 5 51.39 0.18 0.47

Table 3: WER results for the data set(s) of each language in our experiments; as we are focused on data partitioning
strategy, for all data splits of a given data set, the language model was constant and was trained only on additional
written texts. Note that one might be concerned about how much overlap there is between the test sets (and the
training sets accordingly) yielded from different data partitioning strategies other than using held-out speaker/session;
to address this, for the data set(s) of each language, we used the test set of the first random split as the reference
and computed the proportion of overlapping utterances from the test sets of other data splits (except for held-out
speaker/session); the maximum overlapping ratio across all the data sets was 0.25.
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Abstract

Despite recent progress in abstractive summa-
rization, models often generate summaries with
factual errors. Numerous approaches to detect
these errors have been proposed, the most pop-
ular of which are question answering (QA)-
based factuality metrics. These have been
shown to work well at predicting summary-
level factuality and have potential to localize
errors within summaries, but this latter capa-
bility has not been systematically evaluated in
past research. In this paper, we conduct the
first such analysis and find that, contrary to
our expectations, QA-based frameworks fail
to correctly identify error spans in generated
summaries and are outperformed by trivial ex-
act match baselines. Our analysis reveals a
major reason for such poor localization: ques-
tions generated by the QG module often in-
herit errors from non-factual summaries which
are then propagated further into downstream
modules. Moreover, even human-in-the-loop
question generation cannot easily offset these
problems. Our experiments conclusively show
that there exist fundamental issues with local-
ization using the QA framework which cannot
be fixed solely by stronger QA and QG models.

1 Introduction

Although abstractive summarization systems (Rush
et al., 2015; See et al., 2017; Lewis et al., 2020)
have improved drastically over the past few years,
these systems often introduce factual errors into
generated summaries (Cao et al., 2018; Kryscinski
et al., 2019). Recent work has proposed a num-
ber of approaches to detect these errors, includ-
ing using off-the-shelf entailment models (Falke
et al., 2019; Laban et al., 2022), question answering
(QA) models (Chen et al., 2018; Wang et al., 2020;
Durmus et al., 2020), and discriminators trained
on synthetic data (Kryscinski et al., 2020). Such
methods have also been explored to identify error
spans within summaries (Goyal and Durrett, 2020)

Source Article: My recent exhibition features some prominent trends and 
themes spanning the entire history of the matchbox industry. I exhibited 

5,000 labels from my collection of 25,000. […]

For the past 15 years, I have been collecting matchbox labels.BART/ 
PEGASUS

Since when have I been 
collecting labels?

What have I been 
collecting for 15 years?

Question Generation - Question Answering Framework

Unanswerable Unanswerable

Correctly identifies factual error Tags factual span as an error!

Non-Factual Span Factual Span

Figure 1: Factual error localization using QA metrics.
Questions are generated for summary spans and then
answered by a QA model using the source article as
context. For factual spans (e.g. matchbox labels), we
expect the predicted answers to match the original spans.
However, non-factual spans in generated questions in-
herited from summaries may render these unanswerable
and lead to incorrect error localization.

and perform post-hoc error correction (Dong et al.,
2020; Cao et al., 2020).

Among these different approaches for evaluat-
ing factuality, QA-based frameworks are the most
widely adopted (Chen et al., 2018; Scialom et al.,
2019; Durmus et al., 2020; Wang et al., 2020;
Scialom et al., 2021; Fabbri et al., 2022). These
evaluate the factuality of a set of spans in isola-
tion, then combine them to render a summary-level
judgment. Figure 1 illustrates the core mechanism:
question generation (QG) is used to generate ques-
tions for a collection of summary spans, typically
noun phrases or entities, which are then compared
with those questions’ answers based on the source
document to determine factuality. Due to this span-
level decomposition of factuality, QA frameworks
are widely believed to localize errors (Chen et al.,
2018; Wang et al., 2020; Gunasekara et al., 2021).
Therefore, the metrics have been applied in set-
tings like post-hoc error correction (Dong et al.,
2020), salient (Deutsch and Roth, 2021) and incor-
rect (Scialom et al., 2021) span detection, and text
alignment (Weiss et al., 2021). However, their ac-
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tual span-level error localization performance has
not been systematically evaluated in prior work.

In this paper, we aim to answer the following
question: does the actual behavior of QA-based
metrics align with their motivation? Specifi-
cally, we evaluate whether these models success-
fully identify error spans in generated summaries,
independent of their final summary-level judgment.
We conduct our analysis on two recent factuality
datasets (Cao and Wang, 2021; Goyal and Dur-
rett, 2021) derived from pre-trained summariza-
tion models on two popular benchmark datasets:
CNN/DM (Hermann et al., 2015; Nallapati et al.,
2016) and XSum (Narayan et al., 2018). Our results
are surprising: we find that good summary-level
performance is rarely accompanied by correct
span-level error detection. Moreover, even trivial
exact match baselines outperform QA metrics at
error localization. Our results clearly show that
although motivated by span-level decomposition of
the factuality problem, the actual span-level predic-
tions of QA metrics are very poor.

Next, we analyze these failure cases to under-
stand why QA-based metrics diverge from their
intended behavior. We find that the most serious
problem lies in the question generation (QG) stage:
generated questions for non-factual summaries in-
herit errors from the input summaries (see Fig-
ure 1). This results in poor localization wherein
factual spans get classified as non-factual due to
presupposition failures during QA. Furthermore,
we show that such inherited errors cannot be easily
avoided: decreasing the length of generated ques-
tions reduces the number of inherited errors, but
very short questions can be under-specified and not
provide enough context for the QA model. In fact,
replacing automatic QG with human QG also does
not improve the error localization of QA metrics.
These results demonstrate fundamental issues with
the current QA-based factuality frameworks that
cannot be patched by stronger QA/QG methods.

Our contributions are as follows. (1) We show
that QA-based factuality models for summarization
exhibit poor error localization capabilities. (2) We
provide a detailed study of factors in QG that ham-
per these models: inherited errors in long generated
questions and trade-offs between these and short
under-specified questions. (3) We conduct a human
study to illustrate the issues with the QA-based fac-
tuality framework independent of particular QA or
QG systems.

2 QA-Based Factuality Metrics

Recent work has proposed numerous QA-based
metrics for summarization evaluation, particularly
factuality (Chen et al., 2018; Scialom et al., 2019;
Eyal et al., 2019; Durmus et al., 2020; Wang
et al., 2020; Deutsch and Roth, 2021). These pro-
posed metrics follow the same basic framework (de-
scribed in Section 2.1), and primarily differ in the
choice of off-the-shelf models used for the different
framework components (discussed in Section 2.2).

2.1 Basic Framework
Given a source document D and generated sum-
mary S, the QA-based metrics output a summary-
level factuality score yS that denotes the factual
consistency of S. This includes the following steps
(also outlined in Figure 2):

1. Answer Selection: First, candidate answer
spans ai ∈ S are extracted. These correspond
to the base set of facts that are compared against
the source document D. Metrics evaluated in
this work (Scialom et al., 2021; Fabbri et al.,
2022) consider all noun phrases and named en-
tities in generated summaries as the answer can-
didates set, denoted by span(S).

2. Question Generation: Next, a question genera-
tion model (G) is used to generate questions for
these answer candidates with the generated sum-
mary S as context. Let qi = G(ai, S) denote
the corresponding question for span ai.

3. Question Filtering: Questions for which the
question answering (A) model’s predicted an-
swerA(qi, S) from the summary does not match
the original span ai are discarded, i.e., when
ai ̸= A(qi, S). This step is used to ensure that
the effects of erroneous question generation do
not percolate down the pipeline; however, an-
swer spans that do not pass this phase cannot be
evaluated by the method.

4. Question Answering: For each generated ques-
tion qi, the A model is used to predict answers
using the source document D as context. Let
pi = A(qi, D) denote the predicted answer.

5. Answer Comparison: Finally, the predicted an-
swer pi is compared to the expected answer ai
to compute a similarity score sim(pi, ai). The
overall summary score yS is computed by aver-
aging over all span-level similarity scores:

yS =
1

|span(S)|
∑

ai∈span(S)
sim(A(qi, D), ai)
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Figure 2: Overall workflow for the QA metrics. First, questions are generated for all NEs and NPs in the generated
summary. Answers to these questions are obtained from the source document. Then, a factuality score is computed
for each summary span based on it similarity with the predicted span from the previous step. Finally, all span-level
scores are aggregated to obtain the final summary-level factuality.

Based on the motivation behind QA metrics, these
similarity scores sim(pi, ai) should indicate the
factuality of the corresponding spans. If span ai
is factual, then the G − A pipeline should output
pi ∈ D with high similarity to ai. Conversely, if
ai is non-factual, the similarity score sim(pi, ai)
should be low. While prior research has only evalu-
ated their sentence-level performance, we use these
span-level factuality scores to additionally evaluate
the localization performance of QA metrics.

2.2 QA Metrics compared

In this work, we focus our analysis on the two best
performing QA-based metrics from prior work:

QuestEval (QE) Scialom et al. (2021) generate
questions for answer spans extracted from both
the summary (“precision questions”) and source
document (“recall questions”). We only use the
former in our experiments as these are shown to
correlate better with factuality. Both the A and
G components of QuestEval use T5-Large mod-
els (Raffel et al., 2020) fine-tuned on question an-
swering datasets (Rajpurkar et al., 2018; Trischler
et al., 2017). The similarity score sim(pi, ai) in
this framework is computed as the average of the
lexical overlap, BERTScore, and the answerability
score predicted by A.

QAFactEval (QAFE) Fabbri et al. (2022) con-
duct an ablation study over the different combi-
nations of available A and G models. Here, we
use their best-performing combination: an ELEC-
TRA-based A model and a BART-based G model
fine-tuned on the QA2D dataset (Demszky et al.,
2018). The sim(pi, ai) score is obtained using
the learned metric LERC (Chen et al., 2020). If
A(qi, D) is unanswerable for span ai, QAFactEval

sets the similarity score sim(_, ai) = 0 instead of
using the LERC metric.

3 Experimental Setup

3.1 Task Definition

Given document D and a generated summary S,
let y∗S ∈ {0, 1} denote the gold summary-level
factuality label. Additionally, we assume access
to L = {(a, y∗a)} which denotes the set of spans
a ∈ span(S) and their corresponding span-level
gold factuality labels y∗a ∈ {0, 1}.

First, we evaluate the summary-level perfor-
mance of factuality models, i.e., is the predicted
factuality equal to the gold factuality judgment
y∗S? To do this, we covert the predicted factual-
ity score yS to a binary judgment using dataset-
specific thresholds. For each factuality model eval-
uated, we select thresholds that yield the best F1
scores on the validation set on each dataset.

Next, we evaluate the span-level (localization)
performance of factuality models. Similar to the
previous setting, we convert span-level predictions
ya to binary labels using the best-F1 threshold de-
rived from the validation set. We report the macro-
averaged performance at correctly predicting the
span-level label y∗a ∀a ∈ span(S) across all (D,S)
pairs in the evaluation dataset.

To align with the current QA frameworks, we re-
strict our evaluation to spans that correspond to
named entities and noun phrases. This takes a
generous view of the QA metrics’ performance
as it does not penalize them for failing to identify
factual-errors outside NPs and NEs. This setting
allows us to study the fundamental issues with the
QA framework instead of those that can potentially
be addressed by extending the question types con-
sidered in the framework.
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Note that even for NP and NE spans, sometimes
the QA metric does not return a span-level predic-
tion if the span has not been selected as an answer
candidate or has been discarded during the ques-
tion filtering phase. We assume the predicted label
ya = 1 for such spans, as the model failed to detect
any errors.1 We discuss the performance loss due
to this additional filtering step in Appendix C.

3.2 Datasets

We conduct our analysis on two human-annotated
factuality datasets from prior work that provide
gold annotations of factuality at the token level. To
the best of our knowledge, these two are the only
datasets that include span-level factuality annota-
tion for summaries generated by SOTA models.

CLIFF (Cao and Wang, 2021) is a dataset con-
sisting of summaries generated by BART (Lewis
et al., 2020) and PEGASUS (Zhang et al., 2020)
models trained on the XSum and CNN/DM sum-
marization datasets. For each generated summary,
the dataset includes token-level factuality labels
y∗t ∈ {0, 1}. For y∗t = 0, these are additionally
labeled with fine-grained error types: extrinsic, in-
trinsic, or requiring world knowledge.

GD21 (Goyal and Durrett, 2021) contains XSum
summaries generated using a fine-tuned BART

model. Similar to CLIFF, it contains token-level
factuality labels for all generated summaries.

Deriving gold summary- and span-level factu-
ality labels from human annotations To derive
the summary-level gold label y∗S from these token-
level human annotations, we set y∗S = 1 iff all
tokens are factual, i.e. y∗t = 1 ∀t ∈ S. To derive
span-level gold labels, for each NP/NE span a, we
set y∗a = 1 iff all tokens t ∈ a are factual.

We construct validation and test sets by divid-
ing each dataset into equal subsets. The statistics
for the test set are included in Table 1. It shows
that ~26% of non-factual tokens do not correspond
to NEs or NPs and are therefore ignored by the
QA metrics’ evaluation pipeline. Also, note that
the error statistics differ for the XSum summaries
in GD21 and CLIFF due to the differences in the
annotation methodologies and the trained models
used (both BART and PEGASUS in CLIFF vs only
BART in GD21).

1Operationally, we set sim = 6.0 for QAFactEval and
sim = 1.0 for QuestEval for filtered spans.

Label Metric GD21 CLIFF
Gran. XSum C/D XSum

Summ. Total 46 150 150
% Non-Factual 52.2 15.3 70.7

Span # per summary 7.9 15.3 5.4
% Non-Factual 9.9 1.9 28.1

Token
# per summary 17.1 31.6 13.1
% Non-Factual 8.8 1.7 24.5

% Ignored (Non-Factual) 28.9 24.5 27.6

Table 1: Test set statistics for CLIFF and GD21 at dif-
ferent levels of label granularity. All our evaluation is
done at the summary- and span-levels to align with the
QA metrics’ formulation. We convert the token-level
human annotations to span-level to achieve this. The ta-
ble reports the % of non-factual tokens outside NE/NPs
that are ignored by the QA metrics’ evaluation pipeline.

3.3 Baselines for Comparison

Exact Match Baseline (EM) first extracts all
nouns, proper nouns, numbers, adjectives, and pro-
noun tokens from the generated summary S. For
these tokens, we set yt = 1 if yt ∈ D, else yt = 0.
We use the fraction of tokens predicted as factual
as a summary-level score.

Dependency-Arc Entailment (DAE) Goyal and
Durrett (2020) evaluate the factuality of each de-
pendency arc in generated summaries separately.
We follow the methodology proposed by Goyal
and Durrett (2021) to derive both summary- and
token-level factuality scores from these arc-level
judgments. We refer readers to the original paper
for further details. We use their available model
checkpoint in our experiments.2

We convert token-level judgments from these
baseline models into span-level judgments to make
their outputs compatible with our evaluation frame-
work. This is described in detail in Appendix A.3.

4 Summary vs. Span Level Performance

QA metrics motivate the use of span-level factual-
ity as building blocks for evaluating factuality at
the sentence level. Therefore, our hypothesis is
that good summary-level performance must be
accompanied by good span-level performance.
Here, we test this by comparing summary- and
span-level performances.

Figure 3 outlines the performance of QA metrics
and baseline systems. The top row shows ROC

2Code and trained model checkpoint provided by authors
at: https://github.com/tagoyal/factuality-datasets
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Figure 3: ROC curves and F1 scores (legend) for all systems at the summary- and span-levels (EM is a point as
it provides hard binary judgments). Here, D (or E) denotes that the performance difference with DAE (or EM) is
statistically significant according to a paired bootstrap test (p-value < 0.05). We observe that for QA metrics, good
summary-level performance (e.g. on GD21 and CLIFF (CNN/DM)) does not imply good localization performance.

curves and F1 scores (in the legend) for all three
datasets; the bottom row shows span-level results.
The dotted black lines show the performance of a
random baseline. First, we observe that none of
the baselines or QA metrics have a clear advantage
over other systems for all datasets at the summary-
level. For instance, QA metrics outperform base-
lines on GD21, and show similar performance
on CLIFF (CNN/DM) and worse performance on
the CLIFF (XSum) dataset. However, across all
datasets, we see that there exists a substantial
mismatch between the performance of QA met-
rics at the summary- and span-levels. Notably,
for GD21, both QE and QAFE substantially out-
perform baseline models at the summary-level, but
exhibit much poorer span-level performance. Sim-
ilarly, QA metrics are comparable to baselines at
the summary-level for CLIFF (CNN/DM) but much
worse at the span-level. On the other hand, the er-
ror localization performance of the DAE model
is more consistent with its summary-level perfor-
mance. Surprisingly, the trivial exact match (EM)
baseline consistently outperforms QA metrics at
error localization for all datasets. These results
clearly show that our hypothesis is false: QA-based
metrics do not provide reliable span-level explana-
tions for their summary-level predictions.

Note that the diagonal lines in the span-level
ROC curves for QA metrics arise due to a large
number of spans being assigned the same factuality

scores. As discussed in Section 2.1, some spans
are filtered during the question filtering stage (Step
3) if their corresponding generated questions are
of low quality. We consider these to be factual and
assign them the maximum factuality score; this re-
sults in the diagonal line from (0, 0).3 We study the
effects of this span filtering on localization perfor-
mance in Appendix C. Additionally, QAFE assigns
the same factuality score (= 0) to all spans with
unanswerable questions resulting in the diagonal
line to (1, 1).

5 Why do QA metrics fail at span-level
error localization?

Consider the error localization task in the example
in Figure 1. Here, the QA metric needs to correctly
distinguish between the factual span “matchbox la-
bels” and the extrinsic error “for the past 15 years”.
For such summaries (containing a mix of factual
and non-factual spans), we observed that the gen-
erated questions for factual spans often inherit
non-factual summary spans. Given such questions,
e.g. “What have I been collecting for 15 years?”,
an ideal QA model should predict unanswerable
(even though that hurts localization) as the source
article does not include any mention of an item
being collected for 15 years. Based on this obser-

3Note that QE generates multiple questions for each span
and therefore rarely discards spans (it is not likely that all
questions are bad). Therefore, it has a shorter diagonal line.
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Summary: For the past 15 years, I have been collecting matchbox labels .
Non-Factual Span

Inherited 
Factual Error

QG Generated 
Factual Error

What have I been 
collecting for 15 years?

What have they collected? Can be solved with stronger 
QG models in the future!

Cannot be easily fixed! 
Stronger QG models will still 
inherit errors already in the 
summary.

Question Generation - Question Answering Framework

Unanswerable

Factual Span

Unanswerable

Figure 4: Generated questions broadly include two types
of errors: (1) inherited errors that copy non-factual spans
from the summary, and (2) errors introduced by imper-
fect QG models. While this latter set of errors may be
eliminated by stronger QG models, inherited errors can-
not be easily fixed.

vation, we hypothesize that such inherited errors
in generated questions adversely affect the local-
ization performance of automatic QA metrics by
misclassifying factual spans.

First, we draw a clear distinction between (1)
errors inherited from summaries, and (2) those in-
troduced due to generation errors by the QG model.
Figure 4 illustrates these two separate cases. We
note that the latter set of errors can potentially be
addressed by stronger QG models in the future.
Our analysis in this section only studies the former
set, i.e. inherited errors, as these will persist inde-
pendent of the improvement in QA/QG models.

What percentage of questions are impacted by
inherited errors? First, we determine the scope
of the limitation introduced by inherited errors. Ta-
ble 2 outlines how frequently generated questions
contain inherited errors; we report these numbers
only for the non-factual summaries as only these
are affected by inherited errors. We define errors in
a summary as inherited when a question copies at
least one token that is annotated as non-factual. We
use error type labels (extrinsic or intrinsic) present
in the CLIFF and GD21 datasets to report separate
numbers for these phenomena4. For the CLIFF
dataset, we include world knowledge errors within
the extrinsic type. In general, we observe that in-
herited errors are more common in QAFactEval
compared to QuestEval; this can be attributed to
the longer length questions generated by the former
(see Appendix B for details).

4Generated questions can inherit both types of errors. In
the tables in this section, “extrinsic error” denotes questions
that inherit at least one extrinsic error, but “only intrinsic error”
denotes questions that only inherit intrinsic errors.

QA Metric Type of GD21 CLIFF
Inherited Error XSum C/D XSum

QuestEval extrinsic error 19.2 9.1 44.8
only intrinsic error 25.7 17.3 3.6

QAFactEval extrinsic error 39.1 11.1 93.1
only intrinsic error 48.9 34.2 6.0

Table 2: Percentage of questions that inherit extrinsic
and intrinsic errors from summaries. We only consider
non-factual summaries, i.e., summaries containing at
least one non-factual span in this table.

QA Metric Type of GD21 CLIFF
Inherited Error XSum C/D XSum

QuestEval
extrinsic error 3.1 93.9 30.5

only intrinsic error 9.3 97.3 50.0
no inherited error 15.5 98.7 56.0

QAFactEval
extrinsic error 7.7 65.4 63.8

only intrinsic error 29.2 82.0 40.0
no inherited error 29.3 92.8 65.4

Table 3: Percentage of factual spans correctly classified
by QA metrics, i.e. yt = y∗t = 1. We use the same
thresholds as for F1 scores in Figure 3. Results show
that inherited errors lead to more erroneous classifica-
tion as non-factual across all datasets.

Do inherited errors in generated questions hurt
factuality prediction? To answer this, we zoom
in on factual spans in generated summaries (we con-
sider both factual and non-factual summaries here),
and investigate how often these are erroneously
classified as non-factual. We report this for three
different scenarios: (1) w/ inherited extrinsic error,
(2) w/ inherited intrinsic errors only, and (3) w/o
any inherited error. Table 3 outlines our results.
We observe that across all settings, factual spans
with inherited errors in their corresponding ques-
tions are more likely to be erroneously classified
as non-factual compared to those with no inherited
errors. Between error types, we observe that extrin-
sic inherited errors tend to harm localization more
than intrinsic errors.

Note that inherited errors are only observed for
summaries that are already non-factual. Therefore,
erroneous classification of factual spans as non-
factual hurts span-level but does not hurt summary-
level performance. In fact, Fabbri et al. (2022)
show that longer questions (which typically inherit
more extrinsic errors, but do not cause summary-
level error) exhibit better summary-level perfor-
mance compared to shorter questions (which can
be under-specified and cause summary-level error).
This indicates that there exists a trade-off in perfor-
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Figure 5: Specificity and lengths of generated questions
affect the answers from QA models and confuse span-
level evaluation. While “Cambridgeshire” is a factual
span, questions with inappropriate specificity can cause
QA models to make mistakes. It is impossible to know
what length of question is “just right” during question
generation.

mance between these different granularity levels.

Can we avoid inherited errors in generated sum-
maries? Since we do not have prior knowledge
of which spans in summaries contain factual errors,
we cannot trivially ensure that generated questions
do not inherit the errors. One possible strategy
could be to generate very short questions that in-
clude minimal details from the summary to avoid
inheriting non-factual spans from the summary.
However, these may then suffer from being too
under-specified. We illustrate this in Figure 5. Con-
sider the factual span “Cambridgeshire”. The short-
est question in the figure “Where was there heavy
rain?” is not under-specified for the summary,
since it is the only place name in the summary.
However, there are multiple possible answers in
the source document, and QA models may reason-
ably answer “Norfolk and Lincolnshire”, leading
to erroneous classification of “Cambridgeshire” as
non-factual. Therefore, there exists a trade-off
between under-specified (short) questions and
over-specified (long) questions and it is difficult to
predict the optimal level of specificity. This prob-
lem cannot be addressed by improving QA models;
an ideal QA model will return unanswerable to
questions with inherited errors and will be still con-
fused by under-specified questions. We explore
this issue further using human question generation
in Section 6.

6 Can Human QG Improve Localization?

In Section 5, we discussed how the number of inher-
ited errors can be indirectly influenced by varying
the length of generated questions and the accompa-
nying trade-offs: longer questions are more likely
to inherit errors but shorter questions may be under-
specified. Here, we investigate this using perfect
QG, i.e., replacing automatic QG with humans. We
evaluate two aspects: (1) How does question length
impact localization? (2) Does human QG improve
localization?

6.1 Experiment Design
For each summary and candidate span pair (S, ai),
we obtain human-written questions of varying
lengths and information content.5 Then, we replace
the QG module of QAFactEval with these human-
written questions to study the effect of question
length on error localization performance.6

Annotators generate 3 types of questions:

1. Shortest possible question such that given the
question-summary pair, humans can unambigu-
ously identify the correct span in the summary.

2. Longest question incorporating as much infor-
mation from the generated summary as reason-
ably allowed, often including almost an entire
summary sentence.

3. Intermediate questions with levels of informa-
tion content between the above two extremes.
We allow annotators to generate any number of
such intermediate questions.

Annotation and Setup We conduct this experi-
ment on 150 randomly selected summaries from the
CLIFF dataset. For the CNN/DM subset, we only
selected non-factual summaries, since CNN/DM
contains a small number of non-factual spans. Hu-
man annotators manually generated 2,186 ques-
tions (please refer to Appendix D for details).7 We
use half of the summaries as validation sets.

We evaluate localization performance using 4
different length configurations for human-written
questions: short, long, intermediate, and oracle.

5Question lengths could also be varied if we used distinct
automatic QG models, but by choosing human QG, we avoid
conflating the impact of varying question specificity/length
with errors or other performance differences in models.

6We also considered using human QA; however, we found
that the QA task is ill-defined for humans when questions
themselves contain extrinsic errors. Fabbri et al. (2022) also
show that QA performance has less impact on factuality.

7Human generated questions are provided at: https://
github.com/ryokamoi/QA-metrics-human-annotation
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Figure 6: Statistics for questions generated by human
annotators and QAFactEval (QAFE). “% Questions with
Inherited Errors” is the percentage of questions that
inherit non-factual spans from non-factual summaries.
As expected, longer questions are more likely to inherit
factual errors from the generated summaries.

For intermediate questions, evaluation is always
done over three questions. We randomly sub-
sample (or over-sample) from this set if more (or
fewer) than three are available and report their av-
erage performance. If no intermediate question is
written, we randomly sample from the other two
categories. This only happens when the length dif-
ference between the shortest and longest questions
is small. For the oracle setting, we report results
using the question for each span that leads to the
best localization performance. In other words, we
use the highest scoring question for factual spans
and the lowest for non-factual spans.

6.2 Results

Figure 6 outlines statistics for questions gener-
ated by human annotators and the QG model of
QAFactEval (QAFE) generated for the same spans.
As expected in Section 5, it shows that the per-
centage of questions that inherit non-factual spans
in summaries increases with length. In this fig-
ure, we only analyze non-factual summaries since
questions generated for factual summaries do not
inherit errors. This result verifies our assumption
and shows that we can analyze a trade-off between
long questions that tend to inherit more non-factual
spans from summaries and short questions with
fewer inherited errors but can be under-specified.

Error Localization Figure 7 outlines the span-
level localization performance for these different
human question configurations and the QG model
of QAFactEval. First, we notice that human QG
does not improve the localization performance
of the QA frameworks, with all three configura-
tions exhibiting similar performance to the fully

CLIFF (CNN/DM) CLIFF (XSum)

Figure 7: ROC curves and F1 scores (in legend) for
span-level performances using human-written questions.
These results show that no single question length con-
figuration (except oracle) can outperform automatic QG.
∗ denotes that improvement over QAFactEval is statisti-
cally significant (paired bootstrap test, p-value < 0.05).

automatic QAFactEval (QAFE) model. However,
the oracle questions report significant improve-
ment over QAFactEval; this indicates that while
there does exist an optimal length question for most
spans, there isn’t a clear pattern that can help select
it during evaluation. We again note that it is not
possible to select an optimal question length for
each span without prior knowledge about errors in
summaries. We conclude that the overall failure
of human QG to improve over QAFactEval sug-
gests that there exist fundamental issues with the
QA-based factuality formulations which cannot be
simply fixed by stronger QG models.

7 Discussion

Analysis in our paper suggests that QA-based met-
rics have fundamental problems which will be dif-
ficult to address in future work. Our view is that
future system designers should favor entailment-
based approaches (Falke et al., 2019; Laban
et al., 2022) as a result. One reason for this is
that successful QA-based approaches actually im-
plement something similar to entailment. Both our
analysis and Fabbri et al. (2022) show that we can
improve summary-level performance by generat-
ing long questions to avoid underspecified ques-
tions. However, answering questions that contain
almost all the information about a sentence can
be regarded as a weak form of entailment evalua-
tion: it assesses whether the question-answer pairs
that include all information about the sentence are
entailed by the original document. Compared to
entailment, the answer comparison step can intro-
duce difficulties and long questions may still lead
to incorrect evaluation. Since this paper shows
that QA-based metrics do not lead to interpretable,
localizable judgments about errors, QA-based met-
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rics do not seem to have any structural advantage
over entailment-based metrics.

8 Related Work

Recent work (Fabbri et al., 2021) has shown that
popular metrics like ROUGE (Lin, 2004) and
BERTScore (Zhang et al., 2019) correlate poorly
with human judgments of summary quality. Fac-
tuality, in particular, has been widely studied in
recent summarization literature (Kryscinski et al.,
2019; Falke et al., 2019), both from the perspec-
tive of identifying non-factual generations (Wang
et al., 2020; Durmus et al., 2020; Goyal and Dur-
rett, 2020) and improving the factuality of summa-
rization models themselves (Kang and Hashimoto,
2020; Cao and Wang, 2021).

The majority of the work in factual evaluation
has focused on summary-level metrics and is not
capable of localizing errors within summaries. Re-
cent work has decomposed factuality into sum-
maries’ dependency arcs (Goyal and Durrett, 2020)
or semantic-graph representations (Ribeiro et al.,
2022). These localization capabilities have several
downstream applications like post-editing (Zhao
et al., 2020; Chen et al., 2021), removing noisy
training data (Nan et al., 2021; Goyal and Durrett,
2021), among others.

9 Conclusion

In this work, we show that although QA-based fac-
tuality metrics are motivated by error localization,
in practice, they exhibit extremely poor localization
capabilities. We provide a detailed analysis of the
different issues in current metrics that hinder better
localization performance. Finally, we run a human
study to investigate whether human-level QG can
fix some of these issues and conclude that there
exist fundamental issues with the QA framework
that cannot be simply fixed by stronger models.

10 Limitations

Given the lack of prior study in error localization of
summarization evaluation, there is no large-scale
dataset with token-level or span-level factuality la-
bels. Constantly-evolving summarization models
also mean that any such dataset would be come out-
dated in a fairly short time. However, we believe
that the fundamental issues we discussed with QA
metrics would persist across different summariza-
tion model outputs, despite our evaluation over a
limited set.

Note that all our analysis is conducted on En-
glish language datasets and models of summariza-
tion, with a limited focus on newswire summaries.
We believe that the issues identified here will trans-
fer to other languages, but other domains such as
dialogue or narrative summaries may exhibit sub-
stantially different types of factuality errors. These
have not been studied as heavily in prior work, so
likely new techniques and analysis will be needed
for these settings.
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A Additional Implementation Details

A.1 QuestEval
We use version 0.2.4 of the implementation by the
authors with the recommended parameters (task
= ’summarization’, do_weighter = False).8

A.2 DAE
Our experiments use a trained model provided
by authors (DAE_xsum_human_best_ckpt). This
model is trained on a subset of XSum dataset
(Maynez et al., 2020) that is distinct from examples
in CLIFF and GD21.

A.3 Converting Tokens-level factuality scores
to span-level scores

For the EM and the DAE baselines provide token-
level factuality scores. We refer readers to the
original DAE paper for details on how token-level
scores are obtained (Goyal and Durrett, 2021).
However, all our evaluation is designed to be at
the span-level to align with QA metrics. To convert
token-level scores to span-level, we annotate a span
as non-factual if it contains any non-factual token.

A.4 Statistics for Ignored non-NP/NE tokens
The QA metrics do not evaluate the factuality of
any token outside the boundary of a named entity
of a noun phrase (discussed in Section 3.1). In
Table 4, we show which kinds of tokens are ignored
by the QA metrics but annotated as non-factual in
our human annotated factuality datasets. Figure 5
provides an illustrative example of such ignored
non-factual tokens in the different datasets).

GD21 CLIFF
XSum C/D XSum

adposition 30.8 25.3 29.9
verb 24.4 23.7 23.5

auxiliary 15.2 10.0 17.1
punctuation 12.6 21.2 17.5

particle 6.7 3.9 4.5

Table 4: Statistics for non-factual POS-tags ouside the
NP/NE boundaries and ignored by the QA metrics.

B Statistics of Generated Questions in
QA-Based Metrics

Table 6 provides statistics for the generated ques-
tions from QuestEval and QAFactEval, highlight-
ing the difference between these two metrics. On

8https://github.com/ThomasScialom/QuestEval

CLIFF (XSum)
An environmental permit has been revoked following a
fire at a fuel recycling plant in Manchester.

CLIFF (CNN/DM)
A Japan Railway maglev train hit 603 kilometers per
hour(374 miles per hour) on an experimental track in Ya-
manashi Tuesday. A spokesperson said the train spent
10.8 seconds traveling above 600 km per hour , during
which it covered 1.8 kilometers ( 1.1 miles ) That ’s nearly
20 football fields in the time it took you to read the last
two sentences . Japan Railways has been testing their train
to figure out the best operational speed for a planned route
between Tokyo and Nagoya scheduled to begin service
in 2027 .

GD21
high winds and heavy rain have caused flooding at a
derbyshire theme park, forcing it to close for the weekend.

Table 5: Example of non-factual tokens outside NP/NE
boundaries and ignored by the QA metric in factuality
evaluation.

Avg Question Length Avg No. Questions

GD21 CLIFF GD21 CLIFF
XSum C/D XSum XSum C/D XSum

QAFactEval 26.3 16.2 21.1 4.9 10.0 3.9
QuestEval 16.4 11.6 13.9 8.3 20.5 7.5

Table 6: Statistics for the generated questions for the
QuestEval and QAFactEval metrics.

average, QAFactEval generates much longer ques-
tions. On the other hand, QuestEval generates a
larger number of questions as it often generates
multiple questions per candidate span.

C Performance Loss due to Span
Filtering

In Section 3.1, we discussed that the current QA
metrics do not evaluate non-NP/NE spans. These
operational shortcomings prevent these metrics
from providing a complete picture of error local-
ization over all summary tokens. Here, we discuss
another similar issue arising due to the question
filtering step of the overall workflow (Step 3).

Although QA metrics select all NP/NE spans
for evaluation during the candidate selection stage
(Step1), some of these are filtered out if their corre-
sponding question is of low quality: ai for which
A(qi, S) ̸= ai are also discarded from further eval-
uation. Since no errors are detected in these spans,
they are considered to be factual.

We observed that this question filtering step re-
moves around 30% of the NE/NPs in the QAFactE-
val framework. This implies that this metric only
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Model GD21 CLIFF
XSum CNN/DM XSum

EM 0.30 0.27 0.64D

DAE 0.32 0.20E 0.78

QE 0.19DE 0.06DE 0.45DE

QAFE 0.21D 0.13DE 0.49DE

Table 7: Span-level performance (F1 scores) over the
subset of NP/NEs that are not discarded by either of the
two QA metrics. D (or E) denotes that the performance
difference with DAE (or EM) is statistically significant
according to a paired bootstrap test (p-value < 0.05).
Even under this generous setting, we observe that the
QA metric show very poor performance.

evaluates 70% of the valid spans, potentially miss-
ing factual errors in the remaining NP/NEs. Note
that these numbers are considerably lower for
QuestEval (<5%) as it generates multiple ques-
tions for each candidate span and hence is more
likely to include an acceptable question.

As this impacted the results in Figure 3, we can
ask what is the performance of the QA metrics over
spans that they actually evaluate for factuality? If
this performance is high, we can reasonably as-
sume that the QA metrics’ localization capabilities
can be improved through better question generation
models. Table 7 outlines our results: we report F1
scores at the span-level when evaluating over the
subset of NP/NEs that are evaluated by both the
QE and QAFE models. Although the QA metrics
report improved results over those reported in Fig-
ure 3, these are still low enough so as to not be
useful for error localization in practical settings.

Figure 8 shows the corresponding ROC curves
for these. These show similar trends: the perfor-
mance of QAFactEval improves when evaluating
on this subset, but is still not better than the base-
line models. Interestingly, for CLIFF (CNN/DM),
we found that most of this improvement comes
from the subset of candidate spans whose questions
contain only a small fraction of factual errors (Fig-
ure 9). This aligns with our analysis in Section 5
that showed that errors in generated questions in-
herited from non-factual summaries was one of the
major reasons for performance degradation, since
questions generated from summaries with small
number of errors are expected to inherit fewer er-
rors.

Figure 8: ROC curves for span-level performance on
the subset of NE/NPs evaluated by all the QA metrics.

(a) Bottom 50% of the sum-
maries according to error rate

(b) Top 50% of the sum-
maries according to error rate

Figure 9: Comparison of ROC curves for the span-level
performance on CLIFF (CNN/DM). There shows results
on the subset of NP/NEs actually judged by QA metrics.
The graphs show that the performance of the QAFE is
better on the subset of summaries with a smaller number
of errors.

D Additional Details about Human QG
Annotation

The human annotation in Section 6 was done by
the authors of this paper. They were provided with
summaries and extracted answer candidate spans.
For spans that were judged to be invalid (e.g. “it”),
they were asked to manually discard these spans.
For all others, questions of varying lengths and
specificity were written. See an example in Table 8.
To aid in this question writing step, we also provide
the corresponding QAFactEval questions. For the
longest questions, we found that annotators often
chose to build on these questions albeit with correc-
tions to the structure and grammar of the automatic
questions.

Table 9 shows the number of summaries, spans,
and generated summaries annotated in our human
QG experiments. We use half of the summaries as
validation sets.
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(a) EM Baseline (b) DAE (c) QuestEval (d) QAFactEval

Figure 10: Summary-level F1 performance on the GD21 test set at different thresholds

(a) EM Baseline (b) DAE (c) QuestEval (d) QAFactEval

Figure 11: Span-level F1 performance on the GD21 test set at different thresholds

(a) EM Baseline (b) DAE (c) QuestEval (d) QAFactEval

Figure 12: Summary-level F1 performance on the CLIFF (CNNDM) test set at different thresholds.

(a) EM Baseline (b) DAE (c) QuestEval (d) QAFactEval

Figure 13: Span-level F1 performance on the CLIFF (CNNDM) test set at different thresholds.

(a) EM Baseline (b) DAE (c) QuestEval (d) QAFactEval

Figure 14: Summary-level F1 performance on CLIFF (XSum) test set at different thresholds.

(a) EM Baseline (b) DAE (c) QuestEval (d) QAFactEval

Figure 15: Span-level F1 performance on the CLIFF (XSum) test set at different thresholds.
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Summary
Plans to build a new hospital in Somer-
set have been given a £3m boost by the
government.

Selected Span a new hospital

Shortest What does the plan propose to build?

Intermediate What does the plan that has been given a
boost propose to build?

Longest
What does the plan that has been given a
£3m boost by the government propose to
build?

QAFactEval
What plans to build in Somerset have
been given a £3m boost by the govern-
ment?

Table 8: Example of human-generated questions.

CLIFF CLIFF
(CNN/DM) (XSum)

# Summary 30 120
# Span 323 470

# Questions 737 1449

Table 9: Number of summaries, spans, and generated
questions annotated by human QG.

E Summary and Span Level Evaluation

We provide additional results for our experiments
in Figure 3. Figure 10 to 15 show F1 scores, pre-
cision, and recall on test sets with different thresh-
olds. These show that QA-based metrics cannot
yield high precision at any threshold.
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Abstract

Socratic questioning is a form of reflective in-
quiry often employed in education to encour-
age critical thinking in students, or to elicit
awareness of beliefs and perspectives in a sub-
ject during therapeutic counseling. Specific
types of Socratic questions are employed for
enabling reasoning and alternate views against
the context of individual personal opinions
on a topic. Socratic contexts are different
from traditional question generation contexts
where “answer-seeking” questions are gener-
ated against a given formal passage on a topic,
narrative stories or conversations.

We present SocratiQ, the first large dataset
of 110K (question, context) pairs for en-
abling studies on Socratic Question Generation
(SoQG ). We provide an in-depth study on
the various types of Socratic questions and
present models for generating Socratic ques-
tions against a given context through prompt
tuning. Our automated and human evaluation
results demonstrate that our SoQG models can
produce realistic, type-sensitive, human-like
Socratic questions enabling potential applica-
tions in counseling and coaching.

1 Introduction

Researchers in Education and Psychology have rec-
ognized the role of cognitive biases in shaping a
person’s perspective towards learning and under-
standing (Azzopardi, 2021; Bautista, 2014; Tversky
and Kahneman, 1974; Vittorio et al., 2021). Indeed,
both pedagogical and counseling environments in-
volve recognizing and alleviating any flawed cogni-
tive biases in students/subjects through appropriate
interventions by trained professionals (Bhardwaj
et al., 2018). Socratic Questioning is one such in-
tervention technique pervasive in Education and
Psychotherapy (Bautista, 2014; Chew et al., 2019;
Vittorio et al., 2022).

Socratic Questioning involves the use of specific
types of probing questions that guide people into

Thought/Passage: I believe that eating meat is ethically
wrong. Since we can easily substitute meat with vegan
food without much nutritional complications, we have
no logical reasons to continue eating living animals. We
should stop killing these animals.

Possible Socratic Questions:

1. But what about eating animals that pass on from natural
causes?

2. Where is your source that says that vegan food and
meat have the same nutrition value?

3. What will happen if we continue killing animals for
our consumption?

Figure 1: Example Socratic Questions

eliciting biases underlying their understanding of
a topic in order to potentially enable alternative
perspectives and further thoughts (Paul and Binker,
1990; Paul and Elder, 2019). Figure 1 illustrates
example Socratic questions on a passage expressing
an individual’s views on “eating meat”.

In this paper, we study automatic Socratic
Question Generation (SoQG ) as a novel, multidis-
ciplinary application area for question generation
(QG) research in NLP. Consider for instance, the
publicly-accessible datasets available for learning
question and dialog generation models (Rajpurkar
et al., 2016; Ramnath et al., 2021; Talmor et al.,
2017; Trischler et al., 2017; Yang et al., 2018).
These existing QG datasets were designed for ma-
chine comprehension and comprise of news arti-
cles, Wikipedia, and other well-written formal pas-
sages and questions whose answers are potentially
expressed in the passages. Similarly, current dia-
log generation datasets focus on capturing conver-
sations related to completing specific tasks (such
as restaurant booking, customer service) or learn-
ing open-domain conversational chatbots for chit-
chat (Byrne et al., 2021; Cui et al., 2020; Danescu-
Niculescu-Mizil and Lee, 2011; Zhou et al., 2018).
As such, these existing datasets do not comprise of
contexts necessary for learning SoQG.
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Socratic contexts differ from the scenarios cap-
tured in existing datasets in the following signifi-
cant ways: 1. Question Context. The contexts or
passages express individual thoughts and personal
opinions on specific topics; 2. Question Objective.
The questions do not seek a “correct answer” and
aim to provoke introspection and reflection from
the question recipient; and 3. Question Type. The
questions adhere to specific Socratic types that chal-
lenge the completeness and accuracy of the thought
expressed in the context in various ways. For exam-
ple, the question-1 in Figure 1 seeks an alternative
perspective, while question-2 probes for evidence
regarding a claim expressed in the passage, and
question-3 invokes further thought on implications
of a specific action mentioned in the passage.

In this paper, we present a first study on Socratic
Question Generation (SoQG ) and make the
following contributions:

1. We describe SocratiQ,1 a large dataset of
∼110k Socratic questions, question type la-
bels, and their contexts to enable learning of
SoQG models. We discuss the curation of
SocratiQ from the large corpus of posts and
replies available from the community discus-
sion website Reddit.2 Socratic question-type
labels collected through crowdsourcing are
included for a subset of questions in SocratiQ.

2. We study question-type prediction for Socra-
tiQ using state-of-the-art deep learning mod-
els. For a given (question, context) pair, our
best fine-tuned BERT classifier is able to iden-
tify its question type with a macro F1-score
of 0.905. We use this highly-accurate classi-
fier to provide question-type labels for all in-
stances in SocratiQ for learning type-sensitive
question generation.

3. We learn type-sensitive question generation
based on Socratic question types. We extend
state-of-the-art QG models based on GPT-2,
T5, and ProphetNet to incorporate Socratic
question types through prompt-tuning. Our
models effectively generate realistic, relevant
human-like Socratic questions as shown in
automatic as well as human evaluation studies.

Through our findings as well as released resources,
we hope to enable future research on QG and chat-
bot applications based on the Socratic Questioning

1https://github.com/NUS-IDS/eacl23_soqg
2https://www.reddit.com/r/changemyview/

paradigm in areas such as coaching and counseling.

Organization: We describe the details of
creating SocratiQ in Section 2. Section 3 provides
details of the models and baselines used to study
SoQG. Our experimental setup, evaluations, and
results are summarized in Section 4 after which we
provide a brief summary of existing datasets and
methods for QG in Section 5. Finally, we conclude
the paper in Section 6 and present some limitations
that can be addressed in future in Section 7.

2 Dataset Collection

To construct a dataset of contentious viewpoints
and the questions challenging these viewpoints,
we consider the social news, content, and discus-
sions website Reddit, in particular, the subreddit
r/changemyview, or CMV. The CMV platform is an
active, targetted community described as “a place
to post an opinion you accept may be flawed, in an
effort to understand other perspectives on the issue”
with people specially encouraged to “enter with a
mindset for conversation, not debate”. Upon closer
examination of the posts, we found that CMV posts
pertain to various controversial topics (e.g. politics,
media, culture, etc.) and, due to its very purpose
of “change my view”, subsequent comments often
include questions aimed to evoke introspection and
reflection (further discussed in Section 2.1).

We obtained the raw data from CMV using the
“Pushshift Reddit” API provided by Baumgartner
et al (2020). After removing moderator comments
that are not relevant to the topic,3 we identify ques-
tions from comments following a given post using
regular expressions comprising of question cues
(e.g. who/what/where/when/why/how), and lexi-
cal indicators such as ‘?’. Next, each identified
question sequence is paired with the most relevant
paragraph sequence (context) in the previous posts
based on the similarity of the two sequences. Sen-
tence BERT encodings (Reimers and Gurevych,
2019) were used for similarity computation. Af-
ter manually inspecting several examples and their
similarity values, we retain pairs having a similar-
ity value above the threshold of 0.55. In total, we
produce a dataset of 110, 050 English4 (question,
context) pairs from the CMV content generated dur-
ing January 2013 and December 2021. On average,
the number of sentences in each context is 4(±2)

3e.g., "All comments that earned delta ... are listed here"
4https://tinyurl.com/yzkxb2mz
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Question type Description Exemplar

Clarification Question probing the ambiguities of a thought. What do mean by ...?

Probing assumptions Question probing the assumptions behind a thought. Why do you assume ...?

Probing reasons and evi-
dences

Question probing the justifications or concrete evidences that
could have supported a thought.

How did you know that
...?

Probing implications and
consequences

Question probing the impacts or implications of a thought. If ..., what is likely to hap-
pen as a result?

Probing alternative view-
points and perspectives

Question probing other possible viewpoints. What else should we con-
sider about ...?

Others∗ Question unrelated to the question types above (e.g. rhetorical,
irrelevant, and/or illogical questions, etc.)

Who wouldn’t want to be
rich?

Table 1: Description and exemplar for each Socratic Question-Type from Paul and Elder (1990; 2019). ∗We add the
catch-all type Others to refer to questions that do not conform to Socratic categories.

comprising of 83(±53) words whereas questions
are a sentence long with 12(±6) words. We re-
fer to this collection of (question, context) pairs as
SocratiQ.

2.1 Question Annotation

Practitioners of Socratic Questioning employ var-
ious types of questions to engage in discussions
with their subjects. For example, a counselor may
ask for further clarification of a given viewpoint, or
request evidence based on which such a stance was
reached. Similar to previous studies (Dinkins and
Cangelosi, 2019; Neenan, 2009; Wilberding, 2021),
we used the taxonomy of Paul and Elder (1990;
2019) for characterizing the different questions. Ta-
ble 1 lists the types of questions from this taxonomy
with their descriptions and exemplars.

To curate the question type information for
SoQG (Section 3), we adopt a semi-automatic pro-
cess by first collecting manual annotations on a
representative sample of data and training an accu-
rate classifier for annotating the full dataset.

Crowd Labeling Process: To reduce the manual
annotation efforts and cover the range of different
question types uniformly in SocratiQ, we employ
the process suggested in previous works (Abdul-
Mageed and Ungar, 2017): First, lexical cues from
available exemplars for each type (See Table 1) are
used to design regular expressions5 to assign a ten-
tative Socratic type to each question in the dataset.
We then use these tentative label assignments to
sample questions from all types uniformly. In this
manner, we sampled a set of 600 (question, context)
pairs for each type, resulting in a balanced subset
of 3, 600 questions for which we obtain human-

5Examples are included in Appendix B.

assigned Socratic question-type labels.
Our annotation task was set up on the

crowdsourcing platform Amazon Mechanical
Turk (Crowston, 2012),6 following previous works
on QA/QG dataset collection (Ko et al., 2020; Ra-
jpurkar et al., 2016; Yang et al., 2018). Each (ques-
tion, context) pair was examined by three indepen-
dent crowdworkers who chose one unique question
type from among the six types listed in Table 1.7

We ensure the ethics, quality, and reliability con-
siderations for all our collected datasets as follows.
On the AMT platform, we required the crowdwork-
ers to have greater than 95% HIT approval rate, a
minimum of 10,000 HITs, be located in the United
States and score at least 80% on a qualification test
we set up to be able to work on our task. Each
worker was paid up to 0.25 USD per HIT based
on the task. In total, we used the AMT platform
to collect data for the classification task as well as
two evaluation studies which are further described
in Section 4. The anonymity and privacy of the
crowdworkers was already ensured on the AMT
platform. We chose the pay-per-HIT based on sim-
ilar on-going tasks on AMT. The settings for the
HIT approval rates, and location of the worker en-
sures the English language skills of the annotator
and thereby, the quality of the dataset.

A total of 40 workers helped in creating our clas-
sification dataset. About 40% of the workers who
attempted our qualification test gained the eligibil-
ity to work on our task. Through this qualification
test, we ensure that their worker annotations are
reliable. For the 3, 600 (question, context) pairs
deployed on AMT, we were able to obtain majority

6https://www.mturk.com/
7AMT interface details are provided in Appendix E.
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annotations (≥ 2 agreement on labels) for about
3, 169 pairs. The Fleiss Kappa (Fleiss, 1971) inter-
annotator agreement value was κ = 0.725 indicat-
ing substantial agreement among the crowd anno-
tators. Overall, about 1% of the annotated ques-
tions were marked with the “Others” class which
includes meaningless or irrelevant questions, and
questions that do not belong to the Socratic types.
This low percentage highlights the effectiveness of
our pre-processing pipeline in extracting relevant
Socratic (question, context) pairs.

Annotating the full dataset: We obtained ques-
tion types for the entire SocratiQ dataset using an
accurate classifier trained with the AMT labeled
dataset. We further detail our classification exper-
iments in Section 4. To summarize, in both auto-
matic and manual evaluation studies, the prediction
F1 and accuracy of our best classifier are around
0.9. Predicted Socratic classes are used for training
prompt-based QG models described in Section 3.

2.2 Dataset Analysis

The question type distribution of the manually-
annotated subset of SocratiQ is shown in Figure 2.
Here, we observe that questions probing for im-
plications and consequences and reasons and ev-
idence comprise the most-asked questions. Previ-
ous studies have highlighted that “people routinely
ask clarifying questions” to make sure “they can
better offer assistance to the original poster” (Rao
and Daumé III, 2018). This aspect is also seen
in our dataset where clarification questions form
the next most-asked questions. This is followed
by questions probing for assumptions and alter-
native viewpoints as these are more cognitively-
challenging than clarification questions (Krath-
wohl, 2002) while the “Other” questions form a
negligible fraction (1.3%) of the overall distribu-
tion. Based on corpus analysis with Latent Dirich-
let Analysis (Blei et al., 2003),8 some representa-
tive topics in SocratiQ include Abortion, Politics,
Taxes, Crimes, Veganism, Racism, and Religion.

3 Socratic Question Generation

To establish baseline performance on SocratiQ, we
follow the current practice in NLP by fine-tuning
state-of-the-art large pretrained language mod-
els (PLMs) with SocratiQ for Socratic Question
Generation (SoQG ) (Brown et al., 2020; Peters

8Topic analysis results are included in Appendix A

Figure 2: Distribution of questions based on their So-
cratic types

et al., 2019; Yu et al., 2021). We use com-
monly employed transformer-based language mod-
els, namely, Generative Pre-trained Transformer or
GPT (Radford et al., 2019), the text-to-text trans-
fer transformer or T5 (Raffel et al., 2019)), and
ProphetNet (Qi et al., 2020). All three models
yield relatively high performance on various NLP
tasks (Wolf et al., 2020) including QG on other
datasets (Chan and Fan, 2019; Ko et al., 2020).

QG models: Following standard answer-
agnostic QG models (Scialom et al., 2019), for
our first set of baselines (GPT, T5, ProphetNet), we
directly fine-tuned the PLMs with SocratiQ para-
graph contexts as inputs and questions as outputs.
We devised a second set of models (GPT-p, T5-p,
ProphetNet-p) by employing prompt-based learn-
ing in keeping with recent developments in control-
lable text generation (Carlsson et al., 2022; Lester
et al., 2021; Zhang et al., 2022). In this second set
of models, we use the Socratic question-types as
prompts in addition to the paragraph contexts as
inputs for learning QG (Figure 3).

Evaluation: We use standard n-gram based met-
rics used for measuring question generation per-
formance (Pan et al., 2019), namely BLEU (Pap-
ineni et al., 2002a), METEOR (Banerjee and Lavie,
2005), and ROUGE (Lin, 2004a). Previous works
have highlighted the problems of using n-gram
based measures for QG (Nema and Khapra, 2018).
For SoQG in particular, these measures are lim-
ited in handling equally valid paraphrases of the
available reference questions. To address these lim-
itations, we adopt recently-designed learnt metrics,
namely, BERT_Score and BLEURT (Sellam et al.,
2020; Zhang et al., 2020; Yuan et al., 2021). Met-
rics based on the BERT-based models (Devlin et al.,
2019) were shown to provide robust evaluation for
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GPT Input <tag> [reasons_evidence] <tag> The gov-
ernment are people ... kind of things. <de-
lim> If people are fantastic at managing all
kinds of things, why are they so bad at them
when organized as a government?

T5 Input reasons_evidence: The government are peo-
ple ... kind of things.

T5 Target If people are fantastic ... bad at them when
organized as a government?

ProphetNet
Input

<tag> reasons_evidence <tag> The govern-
ment are people ... kind of things.

ProphetNet
Target

If people are fantastic ... bad at them when
organized as a government?

Figure 3: Training input for each QG model. Text in red
shows is the prompt based on question type annotation.
<delim> is the delimiter token for separating input from
the output whereas <tag> highlights the prompt tokens.

text generation tasks such as summarization and
translation.

Configuration R P F1
RE 0.681 0.706 0.617
Ltrain 0.797 0.929 0.828
(RED) + Ltrain 0.779 0.779 0.778
(Ltrain + URE) 0.708 0.691 0.627
SelfTrain 0.826 0.883 0.846
GANBERT 0.784 0.930 0.802
Ltrain + UV ∗ 0.933 0.887 0.905

Table 2: Question-Type Classification Performance

4 Experiments

Setup: We set up our question-type classification
and question generation experiments on a single
GPU NVIDIA Tesla V100 machine. For classifi-
cation, all models are based on the BERT classi-
fier (Devlin et al., 2019).9 For QG experiments, we
use the implementations provided by the transform-
ers library for GPT-210 and T511 and ProphetNet.12

On our experimental machine, all models take be-
tween 12− 19 hours for training depending on the
task, specific model and the dataset used.13

4.1 Classification Results
We studied several configurations based on BERT
for training our question-type classifier. Table 2

9https://huggingface.co/bert-large-cased
10https://huggingface.co/gpt2-large
11https://huggingface.co/t5-large
12https://github.com/microsoft/ProphetNet
13The details of deep learning experiment configurations

are included in Appendix D

shows the performance of these configurations on
20% (randomly-selected) test split of the AMT-
annotated dataset using macro-averages of stan-
dard measures Recall/Precision/F1 employed for
multiclass classification. We used the larger (80%)
portion of the dataset for training and validation.
The SocratiQ dataset contains D ≈ 110K (ques-
tion, context) pairs from which about L ≈ 3.1K
instances were collectively annotated by crowd-
workers (Section 2.1). Thus, the unlabeled data
(U = D \L) can also be used to improve the classi-
fication performance via semi-supervised learning
methods.

In Table 2, we show the performance using reg-
ular expression patterns in the first row (RE row)
and the performance of BERT in the basic setting
(fine-tuning on Ltrain) in the second row. The
“(RED) + Ltrain” row refers to fine-tuning BERT
on the tentative labels obtained with regular expres-
sions before fine-tuning on Ltrain, whereas in the
fourth row (Ltrain + URE), we add the unlabeled
data using predictions with regular expressions to
the training dataset.

The next three rows show semi-supervised con-
figurations that involve the use of the unlabeled
data (U ) during model training. The “SelfTrain”
row shows the performance in the self-training
mode where the predictions from basic BERT con-
figuration (second row) was used to predict la-
bels for U and then re-trained on the combined
dataset (Du et al., 2021; Mukherjee and Awadallah,
2020). The performance with the recently proposed
semi-supervised model for BERT, namely, GAN-
BERT (Croce et al., 2020) is shown in the next
row.14 For the final configuration in the last row
(Ltrain +UV ∗), we used voting to choose the dom-
inant label from predictions on U with all configu-
rations and retrained our classifier (Bishop, 2006).
We did not include the regular expression-based
models (RE and Ltrain + URE) in voting due to
their substantially lower performance.

All classification models were fine-tuned using
both the context and question as inputs. It is worth
noting that the F1 performance of using labels
based on regular expressions is significantly lower
than the basic BERT configuration. Using only reg-
ular expressions or adding labels from regular ex-
pressions to unlabeled data results in significantly
lower test performances (first and fourth rows) high-
lighting the inadequacy of only relying on exemplar

14https://github.com/crux82/ganbert
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Model BLEU-1 BLEU-4 METEOR ROUGE-L BERT_Score BLEURT
GPT-p 0.165 0.013 0.167 0.187 0.615 0.423
GPT 0.150 0.007 0.149 0.167 0.601 0.412
T5-p 0.172 0.017 0.170 0.211 0.632 0.426
T5 0.144 0.011 0.142 0.179 0.615 0.413
ProphetNet-p 0.178 0.018 0.177 0.208 0.632 0.425
ProphetNet 0.152 0.011 0.147 0.178 0.616 0.416

Table 3: QG performance is shown using standard measures and BLEURT and BERT_Score values. All models
that use question-type prompts perform significantly better compared to their respective baselines (t(10k), p <.05).

and templates for identifying Socratic Question
type information. The best-performing configu-
ration is obtained through combining all models
to obtain the dominant label for unlabeled exam-
ples, resulting in a significant jump in F1 values as
shown in the last row, even though semi-supervised
learning using self-training and GANBERT have
individually yielded small and no improvements,
respectively.

We also experimented with only question tokens
as input to the models. In general, the performance
using question only as input is moderately high
with the macro-F1 decrease of 1-8% compared to
when both the context and question are used. In-
deed, when the scores of tokens from the context
versus the question are computed for their attribu-
tion towards prediction using the Integrated Gradi-
ents method from Sundararajan et al. (2017), we
found that the average attribution score of ques-
tion tokens, 0.118, is significantly much larger
than that of the context tokens, 0.033 (Cohen’s
D value (2013) of 1.58). This suggests that the in-
put tokens from question have more discriminatory
power for predicting question type. Indeed, using
context-tokens only as input, our basic BERT con-
figuration obtained a macro-F1 score of only 0.185
indicating that the judgement of question-type is,
not surprisingly, highly dependent on the question
tokens as was also indicated in previous studies
on question-type identification (Li and Roth, 2002;
Svikhnushina et al., 2022).15

4.2 Question Generation Results

Next, we evaluate the models described in Section 3
on SocratiQ. For the models using question-type
information (GPT-p, T5-p, ProphetNet-p), we ap-
pend the predictions from our best classifier (last
row in Table 2) with the context and appropriate
separator tokens. For the (GPT, T5, ProphetNet)

15Further details are included in Appendix C

baselines, the context alone forms the input. We
randomly split 105K pairs of SocratiQ that have
a Socratic question label into Train/Dev/Test por-
tions in the ratio “80/10/10” and show the test per-
formance of QG models in Table 3.

Automatic Evaluation: As the reference ques-
tions from Redditors are available in SocratiQ, we
directly employ the n-gram measures for evaluat-
ing QG performance. The BLEU-1/BLEU-4 val-
ues are shown along with METEOR and ROUGE
scores in Table 3. We note that by incorporating
question types, the prompt-based models do signifi-
cantly better than their non-prompt counterparts for
all three PLMs: GPT, T5, and ProphetNet. How-
ever, the overall n-gram overlap with reference
questions is very low with the best BLEU-4 score
of 0.018 and the best ROUGE score value of 0.211.
For comparison, the ProphetNet model could yield
a BLEU-4 score ranging from 0.23− 0.25 on test
splits of SQuAD dataset (a well-used dataset in
QG research) (Rajpurkar et al., 2016; Qi et al.,
2020). Unlike these factual questions, Socratic
questions can be fairly diverse for a given context
and question type. Rather than measuring n-gram
overlap, we posit that measuring semantic similar-
ity between a given reference and generated ques-
tion using recent text generation metrics such as
BERT_Score and BLEURT, would be more indica-
tive of the models’ performance.16

Indeed, as shown in Table 3, the values of these
learnt metrics are significantly higher than the n-
gram based measures, with ProphetNet-p being the
best performing model. When the generated ques-
tions are manually examined, we found that the
fine-tuned PLMs indeed generate human-like ques-
tions which are relevant to the given contexts even
though they do not match the given reference ques-
tions. This aspect was confirmed in our manual
evaluation studies described next.

16F1 metric was used for BERT_score. The precise models
in both cases are described in Appendix D
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Figure 4: Distribution of “most likely to ask" questions
chosen by crowdworkers

4.3 Human Evaluation Studies

We set up manual evaluation studies on Amazon
Mechanical Turk to provide a more comprehensive
analysis of SoQG model outputs. In the first study,
we randomly sample fifty contexts for each Socratic
question type of SocratiQ. For each context and So-
cratic question type, three independent MTurk eval-
uators select among four randomly-ordered ques-
tions (3 generated by GPT-p, T5-p, and ProphetNet-
p + 1 reference) the question they will likely ask,
or the “None” option.17 In Figure 4, we plot the
distribution of the source of the selected questions
for each question type using majority votes from
the above study.

Model Flu Rel Ans
Best 4.287 3.883 0.330
Worst 4.220 3.737 0.353

Table 4: Quality of Questions (Flu:fluency,
Rel:relevance, Ans:answerability)

We found that only two questions out of the
250 questions used in the study were deemed un-
acceptable for the given question-type and context
by our annotators, confirming the accuracy of our
question-type classifier. For the remaining ques-
tions, we see from Figure 4 that based on the ques-
tion type, crowdworkers seem to prefer questions
generated by a specific model and interestingly,
reference questions from CMV were not always
the clear winner. For example, the questions gen-
erated by ProphetNet were clearly preferred for
the “Clarification” type of questions whereas T5-
generated questions were preferred for “Probing
implications and consequences” type. In fact, the

17Further details are included in Appendix E

human-reference questions were on par with the
best model only in one type out of five indicat-
ing that our models are generating fluent and very
human-like Socratic questions.

In a second related study, we sample twenty con-
texts for each of the five question types in the pre-
vious study, select the questions from the best and
worst models (according to Figure 4), and ask three
independent AMT crowdworkers to rate on a Lik-
ert scale of 1-5 (“Very bad” to “Very good”) how
fluent and relevant the questions are for a given
context. They were also asked “if the answer to the
question is present in the passage” (0/1 indicating
absence/presence of the answer). The results for
this study are summarized in Table 4. We found
that the questions from the best models for each
type indeed have higher fluency and relevance com-
pared to questions from the worst model and both
scores are close to the “Good” range on the Lik-
ert scale. Moreover, the answerability scores less
than 0.5 indicate that the questions are not answer-
able from the context (different from traditional
QG datasets).

Finally, we randomly sampled and examined
fifty ground-truth questions per question type.
These questions were examined on a 0/1 scale for
classifier accuracy, fluency, answerability, and rele-
vance. We found that the accuracy values ranged
between 0.86-0.96, fluency and relevance between
0.92-1.00, and answerability was near zero (0.04),
among the five Socratic classes. These scores fur-
ther support our best classifier’s performance on the
AMT annotated test dataset, and that the ground-
truth questions are fluent, relevant, and unanswer-
able from the context. These numbers indicate that
our dataset of 110K (question, context) pairs and
their predicted Socratic question types are of high
quality and can be used by fellow NLP researchers
for further improving SoQG models.

Anecdotes: The model-generated questions for
an example context from SocratiQ are shown in Ta-
ble 5 for illustration. We see that our prompt-based
models are able to incorporate the question type
information to generate questions that are semanti-
cally similar to the reference questions.

SQuAD versus SocratiQ : To highlight how
Socratic questions complement existing QA/QG
datasets, we run SoQG for an example from
SQuAD (Rajpurkar et al., 2016).18 For this context,

18https://rajpurkar.github.io/SQuAD-
explorer/explore/v2.0/dev/Immune_system.html

153



Context: Beyond the boundaries of legal conduct, to ex-
clude people from the society is judged to be a suitable
place of the law. For some heinous conduct, it’s accept-
able to put people beyond the society, and exclude them
for tye benefit of all. But the denial of voting rights to
convicted felons after the end of thier sentence is not
acceptable.
1 - Probing implications and consequences: Are there
serious risks to allowing felons to vote?
2 - Probing reasons and evidences: Why are we con-
cerned about felons voting and what value does purging
felons from voter rolls have to our society?
GPT-p - 1: What will happen if the felons were con-
victed of a crime?
GPT-p - 2: Why should felons be excluded from voting
rights?
GPT: Why should felons be denied the right to vote?
T5-p - 1: What will happen if the felons are not allowed
to vote?
T5-p - 2: Why is it acceptable to deprive people of their
right to vote?
T5: Is it acceptable to deprive convicted felons of their
right to vote?
ProphetNet-p - 1: Are you implying that felons should
be allowed to vote?
ProphetNet-p - 2: Why is it acceptable to deny felons
voting rights after the end of their sentence?
ProphetNet: What about people who have been con-
victed of murder?

Table 5: Questions generated by the different models
are shown for an example context and associated refer-
ence questions from SocratiQ. Table 12 of the Appendix
contains some more examples.

note the contrast between the “fact-seeking” ques-
tions from SQuAD and Socratic questions listed
in Table 6. Socratic questions focus on “what
if/why/on what basis” angles, causing the reader to
reflect on alternate perspectives and implications,
which can be useful for nurturing further thought
and analysis which are essential in Education.

Reference questions from SQuAD
1. What are the anitmicrobial peptides secreted
by the skin called?
2. What enzymes in saliva are antibacterial in nature?
3. What compounds in the stomach protect
against ingested pathogens?
4. Vaginal secretions serve as a chemical protective
barrier following what?
T5-p generated Socratic Questions
1. How do these enzymes kill pathogen?
2. Is it a good thing to assume that the stomach
and intestinal tract are chemically different?
3. Do you have evidence that these enzymes are
effective at killing pathogen?
4. Are you implying that the stomach is more
acidic than other organs?

Table 6: Example from the SQuAD Dataset

We present in Table 7 an example context from
the Real-world Worry Dataset (Kleinberg et al.,
2020). Against this context, SoQG -models gener-

ate questions that draw attention to the underlying
assumptions and potential misconceptions related
to the mentioned “worry” causing the reader to
introspect, which can be useful during counseling.

Context: I am concerned for my family’s safety and I’m
worried about the impact isolation will have
on the mental health of my loved ones.

GPT-p generated Socratic Questions
1. What does isolation have to do with your mental
health or safety?
2. Why do you assume that isolation will lead to
mental health issues?
3. Have you considered that isolation is a mental health
issue that affects the entire family?

Table 7: Example from Real-world Worry Dataset

5 Related Works
Question generation has been a prominent sub-
ject of recent NLP research (Pan et al., 2019;
Lu and Lu, 2021). Except some QG datasets
which discuss inquisitive, probing questions (Ko
et al., 2020), clarification questions (Rao and
Daumé III, 2018), and empathetic questions in
social dialogs (Svikhnushina et al., 2022), most
models are trained on datasets such as SQuAD (Ra-
jpurkar et al., 2016), HotpotQA (Yang et al., 2018),
QuAC (Choi et al., 2018), and CoQA (Reddy et al.,
2019), WebQA (Talmor et al., 2017) that were orig-
inally created for question answering (Pan et al.,
2019). Not only are these datasets targeted towards
extractive or abstractive QA and therefore com-
prise mostly factual, answer-seeking questions, but
their contexts also include non-personal contexts
such as Wikipedia or news articles, narrative sto-
ries, or problem descriptions on forums such as
Stack Exchange (Rao and Daumé III, 2018). In
contrast, Socratic contexts involve personal and
individual opinions and viewpoints on diverse top-
ics with no fixation on “correct” answer (Paul and
Elder, 2019).

For learning QG models, we adopt the cur-
rent approach of fine-tuning transformers on spe-
cific datasets (Wolf et al., 2020; Kriangchaivech
and Wangperawong, 2019). Though SoQG is an
answer-agnostic QG task (Scialom et al., 2019),
due to its uniqueness in availability of question
type information, we extend our QG models to in-
corporate these cues according to latest research
on conditional text generation through the use of
prompts (Lester et al., 2021; Zhang et al., 2022;
Carlsson et al., 2022). Question-type taxonomies
were previously studied for factual questions (Li
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and Roth, 2002) and in context of social dia-
log (Svikhnushina et al., 2022).

6 Conclusions
We created a novel dataset SocratiQ to support re-
search on automatic Socratic Question Generation.
We applied latest research in prompt-based con-
ditional text generation to fine-tune existing large
language models from GPT, T5, and ProphetNet to
learn SoQG. Through our study and the release of
this novel dataset, we take a first step towards en-
abling future research on models for SoQG as well
as impactful applications in areas such as counsel-
ing and education (Inkster et al., 2018; Fitzpatrick
et al., 2017).

7 Limitations

We note the following limitations in our work that
also comprise our future research directions. First,
while a human Socratic method practitioner will
know what type of Socratic question to ask based
only on context, our prompt-based models assume
the availability of question-type for generating a
type-sensitive question. In fact, when only contexts
were used for QG (GPT, T5, ProphetNet baselines
in Section 3), the generated questions matched the
desired question-type (those of the available refer-
ence questions) in only 37-40% of the cases. Fur-
thermore, the question-type identification of auto-
mated methods using context alone was very poor
with overall accuracy comparable to that of random
assignments (Section 4.1).

Secondly, though we showcased the potential use
of SoQG in designing chatbots and dialog systems
for applications such as counseling, we note that
the current evaluation has only been at the single-
turn level. We hope to extend SocratiQ to capture
back and forth discussions on CMV to provide
multiturn data and also deduce via forum votes and
other indicators if the discussion indeed resulted
in changed minds and enabled alternate perspec-
tives. Furthermore, considering the special purpose
of Socratic questions in shaping perspectives and
enabling introspection and reflection, a compre-
hensive evaluation would require measuring these
aspects over the multi-turn sessions.

Finally, our dataset was created by re-purposing
the CMV subreddit data available in English, a
high-resource language for which large-scale pre-
trained language models (PLMs) are readily avail-
able. Obtaining high classification and generation

performances via fine-tuning of PLMs will be a
challenge that needs addressing in low-resource
languages.
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Supplementary Materials

A Composition of SocratiQ

We apply Latent Dirichlet Analysis using the topic
modeling toolkit, Mallet (McCallum, 2002).19

The top-10 topics (by their Topic Coherence val-
ues (Mimno et al., 2011)) uncovered in SocratiQ
with LDA (number of topics set to 30) are shown
with their top words in Table 8. Based on these
words, we note that some representative topics in
SocratiQ include Abortion, Politics, Taxes, Gender,
Crimes, Veganism, Racisim, and Religion.

Top Words
1 child abortion life human children fetus

woman baby parents mother
2 vote trump party voting president election

states political democrats republicans
3 money people pay work tax make taxes

government income wage company
4 women men gender trans woman male sex

man female people transgender
5 crime rape people death crimes

punishment person prison murder law
6 animals food meat eat animal eating

humans dog dogs killing
7 people white black racist racism race

culture person racial group
8 im view people dont ive change argument

opinion post point
9 religion god religious christian bible

religions islam people beliefs christianity
10 school college students education schools

student high class job degree

Table 8: Words from the Top-10 topics (as ranked by
Topic Coherence) from LDA analysis are shown

Figure 5 illustrates the distribution of question
types predicted by our best classifier over SocratiQ.
Compared to the manually annotated spread shown
in Figure 4, we note that the percentage of Clarifi-
cation type questions is significantly higher (33%
versus 19%). We attribute this to the fact that Clar-
ification class seems to be the most-confused one
among the others as shown in the confusion matrix
on the test set presented in Figure 6. As such, even
our best-performing classifier is not 100% accurate.

19https://mallet.cs.umass.edu

Figure 5: Distribution of predicted question types in the
SocratiQ

Figure 6: Confusion matrix of best classifier’s predic-
tions on the test set

160



Question type Lexical Cues Regex

Clarification
What do mean by ...?/What is the meaning of ...? [Ww]hat[\s\w]+mean

How is ... related to ...?/How are they related? [Hh]ow[\s\w]+relate

Probing Assumptions
Are you assuming that...?/Why are you assuming that...? [Aa]re[\s\w]+assum[eing]+

What is the assumption from... [Ww]hat[\s\w]+assumption

Probing reasons and
evidences

Where is your evidence that...? [Ww]here[\s\w]evidence

Why do you think...? [Ww]hy[\s\w]+think

Probing implications and
consequences

Are you implying...? [Aa]re[\s\w]+impl[yied]

What happens...?What would have happened if...? [Ww]hat[\s\w]+happen
Probing alternative
viewpoints and
perspectives

What else...? [Ww]hat[\s\w]+else

What other...?/What are the other...? [Ww]hat[\s\w]]+other

Table 9: Sample lexical cues and regular expression patterns used to tentatively map questions to their Socratic
question types.

B Regular Expressions

Table 9 provides sample lexical cues and their cor-
responding regular expressions (regex) designed
based on available Socratic question templates
(Paul and Elder, 2019; Intel, 2007). We use them
to tentatively assign labels to instances in SocratiQ.
These labels are used to get more balanced sam-
ples of questions for the human annotation process
described in Section 2. The full set of regular ex-
pressions will be made available through our code
repository.

C Computing Attributions for Classifier
Predictions

We explain the model predictions by applying the
Integrated Gradients method (Sundararajan et al.,
2017).20 For a question type prediction, each to-
ken is given an attribution score that indicates its
contribution to that prediction. We normalize the
scores by averaging them over the sequence length
of each question and context sequences. From Ta-
ble 10, we observe that the attribution values from
the question sequences is significantly higher than
those from the contexts; thereby, suggesting that
the classifier predicts the question types mainly
based on tokens from the question.

Based on the attribution scores, we can extract
textual patterns that our classifier associates with
particular question types in a data-driven fashion
by simply using the top N-grams with the highest
attribution scores. We show sample 4-grams in
Table 11. We note the similarities between these
automatically extracted patterns with the template-

20https://captum.ai/

Question Type Qseq
attr

Cseq
attr

Cohen’s
D

Overall .118 .033 1.59**

Clarification .148 .041 1.85**

Probing reasons and evi-
dences .125 .037 1.64**

Probing implication and
consequences .108 .032 1.51**

Probing assumptions .087 .020 1.76**

Probing alternate view-
points and perspectives .110 .025 1.80**

Others .131 .061 0.76**

Table 10: Attribution scores (attr) for question se-
quences remain consistently higher than those of context
sequences across every question type. Qseq indicates
“Question Sequence” and “Cseq” indicates “Context Se-
quence”. ** indicates a statistically significant, p < 0.05,
Cohen’s D effect size (Cohen, 2013) of the difference
in attributions.
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exemplars used by existing Socratic practitioners
listed in Table 1.

GPT Input <tag> [reasons_evidence] <tag> The gov-
ernment are people ... kind of things. <de-
lim> If people are fantastic at managing all
kinds of things, why are they so bad at them
when organized as a government?

T5 Input reasons_evidence: The government are peo-
ple ... kind of things.

T5 Target If people are fantastic ... bad at them when
organized as a government?

ProphetNet
Input

<tag> reasons_evidence <tag> The govern-
ment are people ... kind of things.

ProphetNet
Target

If people are fantastic ... bad at them when
organized as a government?

Figure 7: Training input for each QG model. Text in red
shows is the prompt based on question type annotation.
<delim> is the delimiter token for separating input from
the output whereas <tag> highlights the prompt tokens.

D Configuration Details for Deep
Learning Experiments

For our classification experiments in Section. 4.1,
we fine-tuned the “bert-large-cased”9 model for
the various configurations (Table 2). The model
is tuned by an AdamW optimizer (Ilya and Frank,
2019) set with betas default at (0.9, 0.999), a batch
of 4, and an initial learning rate of 1e-6. We also
use a ReduceLROnPlateau21 learning rate sched-
uler to reduce the learning rate by a default factor
of 0.1 whenever the F1-score from the validation
set does not improve after 2 epochs. Following
Batista et al. (2004), we randomly oversample the
minority classes to alleviate class imbalance among
the data.

For our question generation experiments in Sec-
tion 4.2, we fine-tuned “gpt-large”,10 “t5-large”,11

and “Prophetnet-En”12 models. Prompt-tuning is
enabled by concatenating question type annotations
before the input sequence as shown in Figure 7. For
“gpt-large” and “t5-large”, we fine-tune the models
using the pytorch 22 and huggingface23 libraries,
with an AdamW optimizer (Ilya and Frank, 2019)
of betas (0.9, 0.999), a batch of 4, and an initial
learning rate of 5e-5. This learning rate is adjusted
during training with a ReduceLROnPlateau learn-
ing rate scheduler that reduces the learning rate by

21https://pytorch.org/docs/stable/generated/torch.optim
.lr_scheduler.ReduceLROnPlateau.html

22https://pytorch.org/
23https://huggingface.co/

a factor of 0.1 whenever the loss from the valida-
tion set stops decreasing after 2 epochs. Similar
to Ko et al (2020), for the “gpt-large” language
model, we accumulate losses only for the question
tokens by masking the context tokens before the de-
limiter. For ProphetNet, we use the recommended
hyperparameters12 except the learning rate, batch
size,24 input and target sequence lengths. For our
models, these sequence lengths are set at 400 and
80 respectively to account for computation-related
limits on our experimental machine.

For BLEU (Papineni et al., 2002b), ROGUE
(Lin, 2004b), and METEOR (Banerjee and Lavie,
2005) automatic evaluation metrics, we use the im-
plementations provided in Jury (Cavusoglu et al.,
2022).25 For BLEURT (Sellam et al., 2020), we
use their recommended BLEURT-20 model.26 Sim-
ilarly, we use the recommended “microsoft/deberta-
xlarge-mnli”27 model for the BERTScore metrics.

E Details of MTurk Crowdsourced Tasks

Qualification Task: We presented a qualification
test to crowdworkers on Amazon Mechanical Turk
(AMT) who are interested in working on our tasks.
The descriptions for each Socratic type along with
examples are provided as instructions (Figure 8).
As part of the test, the workers assign question type
to a set of twelve questions (two for each type from
Table 1). A snapshot from AMT platform for the
qualification test is shown in Figure 9. We paid the
workers, 0.05 per HIT for the classification task,
0.15 per HIT for the task involving question selec-
tion, 0.25 per HIT for the task involving question
quality annotations on the Likert scale. These val-
ues were selected based on relevant, similar tasks
on the AMT platform at the time of deployment.

The snapshots from AMT for the question se-
lection and question quality studies described in
Section 4 are shown in Figures 10 and 11.

24Learning rate and batch size are set 5e-5 and 4 in consis-
tent to “gpt-large” and “t5-large”

25https://pypi.org/project/jury/
26https://github.com/google-research/bleurt
27https://github.com/Tiiiger/bert_score
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Clarification Probing assump-
tions

Probing reasons
and evidences

Probing implica-
tions and conse-
quences

Probing alterna-
tive viewpoints
and perspectives

Others

How does that
definition...
(0.467)

How can one con-
clude. . . (0.439)

Why did that mat-
ter... (0.461)

Should we not
care. . . (0.441)

Or what about
drinking. . .
(0.441)

Did you not lis-
ten... (0.431)

What do they
mean. . . (0.457)

Is your hypothesis
that. . . (0.385)

Was there a rea-
son. . . (0.412)

Would it cause
people. . . (0.434)

How about
other physical. . .
(0.434)

Who even cares
about... (0.416)

Do you mean doc-
tors. . . (0.441)

Would you
have assumed. . .
(0.376)

Can you list any. . .
(0.408)

Would the situ-
ation change. . .
(0.429)

What other
species would. . .
(0.424)

Do you not re-
alise... (0.391)

How does that
equal. . . (0.430)

What makes
you presume. . .
(0.360)

What level of evi-
dence. . . (0.357)

Are you implying
rich. . . (0.426)

Was there any-
thing else. . .
(0.415)

Did you not
understand...
(0.370)

How does this
agree. . . (0.413)

Why does so-
ciety assume. . .
(0.338)

What long
term evidence...
(0.354)

What happens
when inclusion . . .
(0.413)

How would any
other. . . (0.367)

What kind
of dumbass...
(0.347)

Table 11: 4-grams and their attributions (in brackets) for the different Socratic question types

CONTEXT:A child should hold no religious (or absense of religion) position. It is as unsettling as calling a child
a conservative or liberal child. Children are vulnerable youths that take their parental figures’ words as absolute fact.
Telling them to hold political views or religious views at a young age is borderline indoctrination.
References:1. What is the harm to the child by raising them as a liberal or a Muslim or a vegetarian or a meat eater?
2. What about teaching your child morals?
Generated Questions:
(Implications/Consequences) What do you think happens to young children who are forced to hold extremist views?
(Clarification) How does teaching kids about the bible relate to holding religious views?
(Reasons/Evidence) Why does it matter what political views children hold at such a young age?
(Assumptions) Why are you assuming kids are even being taught their political views at all?
(Alternate Viewpoints/Perspectives) Or that you would rather parents continue to influence them through their
actions instead of just giving them the information?
CONTEXT:Adult children 25 or older should have to contribute and carry their weight. It would be on a case by case basis
but essentially the child would have to pay a certain amount according to what they make. If you make over this much,
you must pay 50% of the rent or mortgage. If you make below this much, you pay 15-25% and so on and so forth.
This would encourage adults to grow up, pack up and move on from their parents homes.
References: 1. What about parents who live at their kids home?
2. What will happen if the parents own the house free and clear?
Generated Questions:
(Implications/Consequences) Are you implying the bill could be identical between an
adult and a child who are not of the same age ?
(Clarification) What part of the point would you have that will encourage adults to move on?
(Reasons/Evidence) And why should a person be required to move out at all?
(Assumptions) Why do you assume that adults would just move on from their parents when they are adults?
(Alternate Viewpoints/Perspectives) What about people who stay at home and take care of their
parents and siblings for the rest of their lives?
CONTEXT:As a non-American, i find the idea of colleges having, promoting and sponsoring young (mostly female)
students to dress in skimpy outfits to perform dangerous stunts and basically serve as eye-candy for the players
and the audience a disturbing concept in the very least. Now don’t get me wrong, the stunts they do, they teamwork
they show are commendable and in no way a lesser sport in themselves. I’m sure many of the cheerleaders
could have great careers in gymnastics or such organized sports. However, there is a drastic difference in how a
cheerleading squad trains versus how someone trains for other sports.
The cheerleaders often don’t have safety equipment, practice on hard surfaces and have little to no health care.
References:1. If the cheerleaders felt demeaned why would they choose to keep doing it, especially into college?
2. Have you consulted those cheerleaders?
Generated Questions:
(Implications/Consequences) Are you asking the college cheerleaders to do something about it?
(Clarification) How do cheerleaders train on a surface that hard?
(Reasons/Evidence) Do you have any evidence to support the idea that cheerleaders in colleges
might be underprivileged? (Assumptions) Are we assuming cheerleaders are not working out to their maximum potential?
(Alternate Viewpoints/Perspectives) What about professional gymnasts?

Table 12: Examples from SocratiQ are shown with their reference questions and questions generated with the
ProphetNet−p model
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Figure 8: Workers are provided materials and time to learn the question types used in our study

Figure 9: Workers choose a particular question type most suited to a (question-context) pair in the qualification test
(as in the main task).
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Figure 10: Interface on AMT for the question selection study

Figure 11: Interface on AMT for the question quality study
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Abstract

Knowledge Distillation (KD) is a prominent
neural model compression technique that heav-
ily relies on teacher network predictions to
guide the training of a student model. Con-
sidering the ever-growing size of pre-trained
language models (PLMs), KD is often adopted
in many NLP tasks involving PLMs. How-
ever, it is evident that in KD, deploying the
teacher network during training adds to the
memory and computational requirements of
training. In the computer vision literature, the
necessity of the teacher network is put under
scrutiny by showing that KD is a label regu-
larization technique that can be replaced with
lighter teacher-free variants such as the label-
smoothing technique. However, to the best of
our knowledge, this issue is not investigated in
NLP. Therefore, this work concerns studying
different label regularization techniques and
whether we actually need them to improve the
fine-tuning of smaller PLM networks on down-
stream tasks. In this regard, we did a compre-
hensive set of experiments on different PLMs
such as BERT, RoBERTa, and GPT with more
than 600 distinct trials and ran each configu-
ration five times. This investigation led to a
surprising observation that KD and other la-
bel regularization techniques do not play any
meaningful role over regular fine-tuning when
the student model is pre-trained. We further
explore this phenomenon in different settings
of NLP and computer vision tasks and demon-
strate that pre-training itself acts as a kind of
regularization, and additional label regulariza-
tion is unnecessary.

1 Introduction

Nowadays, we witness the tendency of ever-
growing state-of-the-art neural networks. This is
especially more evident in natural language pro-
cessing (NLP): the famous GPT-3 (Brown et al.,
2020) has reached 175 billion parameters and a

∗Equal Contribution

Figure 1: DistilRoBERTa results on the test set for the
average of seven GLUE tasks. Graph shows the mean
performance and one standard deviation interval for the
pre-trained and randomly initialized models computed
over five runs. For the pre-trained model all intervals
intersect, hence label regularization doesn’t improve the
performance, but for the model trained from scratch
label regularization methods outperform base training.

recent Chinese pre-trained language model (Zeng
et al., 2021) has 200 billion parameters. It is shown
that big over-parameterized neural networks not
only have higher VC dimension, and hence more
approximation ability (Shalev-Shwartz and Ben-
David, 2014), but also their optimization regime is
smoother (Safran et al., 2020). At the same time,
the optimal point found for big networks has better
generalization property (Brutzkus and Globerson,
2019).

One can use the advantages of trained big neu-
ral networks and transfer their learned knowledge
(weights and biases) to a smaller network. There
are several approaches to such transferring tech-
niques (Cheng et al., 2017), but here we will fo-
cus on Knowledge distillation (KD) (Hinton et al.,
2015), a prominent neural model compression tech-
nique, which has been applied in many different
forms across various domains (Gou et al., 2020)
such as computer vision and NLP. To distill knowl-
edge from a bigger model (a teacher) to a smaller
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model (a student), KD adds an extra loss term
to ensure the student predictions match with the
teacher output. In the NLP domain, KD is widely
adopted for compressing pre-trained language mod-
els (PLMs) (Sanh et al., 2019; Jiao et al., 2019;
Jafari et al., 2021). The success of KD is attributed
to different potential factors such as additional in-
formation presented by the dark knowledge (i.e.
a term referring to the notion of class similarity
information deriving from the teacher predictions
which can not be found in the one-hot ground-truth
labels) (Hinton, 2012), regularization effect of the
KD loss (Yuan et al., 2020), or transferring induc-
tive bias from one network to another (Abnar et al.,
2020; Touvron et al., 2021).

Despite the widespread use of KD, it strongly
depends on a trained teacher model, and calling
the teacher during training adds to the computa-
tional cost of the training process noticeably. On
the other hand, instead of adding the KD loss term
to the student’s loss, one can add a regularization
term forcing the student predictions to be close
to a uniform (or any arbitrary) distribution. Such
a label smoothing technique results in better cali-
brated and more accurate classifiers (Müller et al.,
2019). Recently, Yuan et al. (2020) demonstrated
that label smoothing can perform as well as or even
outperform KD in several computer vision tasks
and across various models.

This result motivated us to investigate whether
the teacher-free regularization techniques (TF) can
work on par or better than KD on natural language
understanding tasks. In this regard, we compare
KD, label smoothing, and several other teacher-
free methods for BERT and GPT type models. It
is worth mentioning that our setting is different
from the one of Yuan et al. (2020): 1) pre-trained
language models are generally much bigger than
the models from machine vision, and 2) classifi-
cation tasks in our setting are mostly binary or
three classes, compared to a hundred classes in CI-
FAR100 or two hundred in Tiny ImageNet. We ran
the experiments multiple times to take into account
the stochasticity of the training. Overall, we show
a similar pattern: teacher-free techniques perform
on par with KD methods; but we additionally ob-
served a surprisingly different phenomenon: the
gap between base fine-tuning (without KD) and
fine-tuning with label regularization (KD or TF)
diminished.

We explore the reasons why the base fine-tuning

technique is a strong competitor of KD/TF regular-
ization on NLU tasks. This situation is somewhat
opposite to the one reported in computer vision.
We hypothesized and tested the following potential
explanations for our observations: 1) The small
number of classes in GLUE datasets (usually 2
or 3 classes) in contrast to 10 or 100 classes in
CV tasks; 2) Language models are extensively pre-
trained while CV models are not. Our experiments
indicate that the second hypothesis is true, whereas
the number of classes doesn’t play a big role in the
performance gap. To the best of our knowledge,
the effect of pre-training on fine-tuning with label
regularization was never mentioned in the literature
and deserves additional study.

Overall, our main contributions in this paper are
the following:

1. Thorough comparison of TF and KD methods
across both BERT and GPT models on the
GLUE and other NLU benchmarks (more than
600 distinct experiments overall). We showed
that, on average, KD does not significantly
outperform the fine-tuning or TF techniques.

2. We studied the gap between base fine-tuning
and fine-tuning with KD/TF and observed that
this gap is negligible for NLU tasks. We
demonstrated that this insignificant result is
unlikely to be caused by the number of classes
in the dataset.

3. We showed the evidence that the pre-training
of neural networks reduces the performance
gap on downstream tasks between the base
training and training with label regulariza-
tion both in NLP and computer vision do-
mains. We supported this claim by performing
Wilcoxon statistical test to demonstrate signif-
icance.

2 Background

In this section, we give a brief overview of the
KD and TF techniques we will be investigating.
Everywhere in the paper, we consider a classifica-
tion problem with K classes. Denote by q(x) the
one-hot label of a data point x.

2.1 Knowledge distillation (KD)

This classical method of transferring knowledge
gained traction after the paper (Hinton et al., 2015).
Assume that we have a trained network (a teacher)
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Figure 2: All the baselines of TF/KD methods we consider can be abstracted as cross-entropy training with smoothed
labels. The choice of label smoothing functions determines the method. The flow in the algorithms of each method
is indicated by a colored line, where

⊕
indicates the convex combination of the one-hot label and the output of the

label smoothing function.

and a network we want to train (a student). Let
pt(x) and ps(x) be teacher’s and student’s predic-
tions respectively. One wants to transfer the knowl-
edge from the teacher to the student. For that, one
can formulate a total loss for KD as:

L = (1− α)H(q, p) + αLKD, (1)

where H(q, p) is the cross-entropy loss and
LKD = DKL(p

t
τ , p

s
τ ) is a KL divergence between

the teacher’s and the student’s outputs scaled with
the temperature τ , i.e., pτ (k) = softmax(zk/τ),
where zk is the output logits of the model. When
τ = 1, KD training is equivalent to cross-entropy
training with the new labels “smoothed" by the
teacher:

q′(x) = (1− α)q(x) + αpt. (2)

2.2 Teacher-free methods
Label smoothing (LS) As Yuan et al. (2020) ob-
served, the loss in Equation 1 is structurally simi-
lar to the label smoothing loss, where one has to
replace the term LKD with LLS = DKL(u, p

s),
where u(k) = 1/K is the uniform distribution
on K classes. Training with the label smoothing
loss is equivalent to cross-entropy training with
smoothed labels:

q′(x) = (1− α)q(x) + αu. (3)

Varying the hyperparameter α, one can change the
shape of the new labels q′ from smoother (higher
values of α) to sharper (α closer to zero).

TF-reg (Yuan et al., 2020)) introduced a mod-
ification of LS with a sharper label-dependent
smoothing distribution. More formally, for TF-reg
one switches the uniform distribution u in Equa-
tion 3 to a more peaky label-dependent distribution
pdc(k), defined by:

pdc(k) =

{
a, if k = c

(1− a)/(K − 1), otherwise.
(4)

The smoothed label for x in TF-reg is given by:

q′(x) = (1− α)q(x) + αpdc(x), (5)

where c(x) is the correct label for x. Here one has
two hyperparameters (a and α) instead of just one
(α), which allows for better tuning, even though
mathematically it is the same as LS.

Yuan et al. (2020) showed that LS and TF-reg
perform on par or even outperform KD in ma-
chine vision for several models and across several
datasets.

Self distillation (Self KD) Furlanello et al.
(2018) and Yuan et al. (2020) considered the situ-
ation where the student and the teacher have the
same architectures, and a student distills the knowl-
edge from its fine-tuned alter-ego. In particular,
first, we fine-tune a copy of the student on the
dataset and then freeze it. Denote its outputs by
p̄s. Then take the second copy and train it with the
cross-entropy loss with smoothed labels:

q′(x) = (1− α)q(x) + αp̄s(x). (6)
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The summary of all the TF and KD methods we
compare can be found in Figure 2.

3 Experiments on GLUE benchmark

Inspired by the results of Yuan et al. (2020) in ma-
chine vision, we wanted to investigate the perfor-
mance of TF training on NLP data. In this section,
we evaluate the performance of the methods intro-
duced in the Background section.

3.1 Dataset

We considered seven classification datasets of
the General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018). These
datasets include linguistic acceptability (CoLA),
sentiment analysis (SST-2), paraphrasing (MRPC
and QQP), Natural Language Inference (MNLI,
RTE) and Question Answering (QNLI). Notice that
unlike most of the popular datasets in computer
vision, GLUE tasks are either binary or ternary
classification (only MNLI has three classes).

3.2 Experimental Setup

We explored all the KD/TF methods in three differ-
ent setups to check the consistency of the results
across different models. Our first student is Dis-
tilRoBERTa (Sanh et al., 2019). It has 6 layers,
768 hidden dimensions, 8 attention heads, and 82
million parameters. In the KD scenarios, we use
RoBERTa-large (Liu et al., 2019) as its teacher (it
has 24 layers, 1024 hidden dimensions, 16 atten-
tion heads, and 355 million parameters). In the
second experiment, we use the BERT-small (Turc
et al., 2019) model with 4 layers, 512 hidden dimen-
sions, 8 heads, and 28.7 million parameters. As a
teacher, we use BERT-large (Devlin et al., 2018)
with 24 layers, 1024 hidden dimensions, and 336
million parameters. The third student is DistilGPT-
2 with 6 layers, 768 hidden dimensions, and 82
million parameters. As its teacher, the 12-layer
GPT-2 (Radford et al., 2019) model is used with
the 768 hidden dimensions and 117 million param-
eters. For all these setups, we use the pre-trained
models from Huggingface (Wolf et al., 2019). All
the hyperparameters and the process of their tuning
are reported in the Appendix in more detail.

Hardware Setup For our experiments, we used 8
NVIDIA TESLA V100 GPUs. Each task is trained
on a single GPU.

3.3 Results

DistilRoBERTa We start with conducting the
GLUE experiments over the DistilRoBERTa model.
We report the results on GLUE dev and test sets in
Table 1. On the dev set, we observe the following
patterns: 1) The teacher-free methods (LS, TF-reg,
Self-KD) outperform the Finetune baseline; 2) KD
is the best technique but the standard deviation
intervals intersect with the TF baselines.

Although the results of the dev set in the first
experiments follow the trends of TF results in CV,
examining the test results reveals some irregulari-
ties (Table 1). In particular, we observe that: 1) all
the TF regularization techniques perform slightly
worse than Finetune; 2) KD is on average the best
technique, but it is comparable with Finetune up to
one standard deviation. See Figure 1 (left) for the
summary.

BERT-small In the second experiment, we eval-
uate the BERT-small model. Even here the story is
more or less similar to our first experiment on Dis-
tilRoBERTa. Results are reported in Table 2. On
the dev set, we observe that: 1) TF performs on par
(up to one standard deviation) with Finetune while
LS is slightly better. 2) KD is the best performer,
but standard deviation intervals intersect with some
of the TF baselines. On the test set, we observe that
all the methods perform more or less on par up to
one standard deviation while LS is slightly better.

DistilGPT-2 For DistilGPT-2, we see roughly
similar patterns as in our previous experiments (Ta-
ble 3). On both dev and test sets, all the methods’
performance is more or less similar, with the stan-
dard deviation intervals overlapping.

The overall conclusion of our experiments is
that, on average, KD or TF methods are slightly
better, but the gap between the regularization tech-
niques and the pure fine-tuning technique is not
significant. Our results on the GLUE benchmark
are very different from the reported results in the
CV domain where pure fine-tuning without TF or
KD underperforms. To explain the results, we for-
mulate some hypotheses and scrutinize them with
more experiments in the next section.

4 Analysis

In this section, we investigate potential reasons for
getting the negligible difference in the relative per-
formance of base fine-tuning, teacher-free training,
and KD. We conduct some experiments to evaluate
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baseline CoLA RTE MRPC SST-2 QNLI MNLI QQP Score

DEV

Teacher 68.14 81.23 91.62 96.44 94.60 90.23 91.00 87.67
Finetune 60.53 ± 0.70 68.66 ± 1.28 90.58 ± 0.69 92.43 ± 0.16 90.78 ± 0.12 84.04 ± 0.25 91.44 ± 0.03 82.64 ± 0.11

LS 60.46 ± 0.74 69.24 ± 0.90 90.87 ± 0.42 92.75 ± 0.41 90.71 ± 0.09 83.99 ± 0.13 91.41 ± 0.07 82.78 ± 0.15

TF-reg 60.74 ± 0.98 68.81 ± 0.98 90.78 ± 0.77 92.68 ± 0.15 91.13 ± 0.43 83.86 ± 0.17 91.45 ± 0.10 82.78 ± 0.29

Self-KD 60.48 ± 0.59 69.24 ± 1.20 90.97 ± 0.46 92.43 ± 0.29 90.91 ± 0.27 84.00 ± 0.19 91.62 ± 0.09 82.81 ± 0.19

KD 62.13 ± 0.67 68.66 ± 1.24 90.83 ± 0.31 92.73 ± 0.34 91.23 ± 0.29 84.34 ± 0.22 91.68 ± 0.08 83.08 ± 0.14

TEST

Teacher 65.1 82.6 89.5 92.1 91.5 84.3 88.7 84.82
Finetune 51.62 ± 0.96 62.70 ± 0.41 88.12 ± 0.35 93.22 ± 0.46 90.66 ± 0.15 83.52 ± 0.26 88.92 ± 0.19 79.82 ± 0.18

LS 49.46 ± 3.84 62.52 ± 0.38 87.94 ± 0.51 93.42 ± 0.33 90.26 ± 0.43 83.34 ± 0.32 89.04 ± 0.08 79.43 ± 0.62

TF-reg 49.16 ± 3.82 62.92 ± 0.32 87.44 ± 0.74 93.26 ± 0.28 90.28 ± 0.21 83.36 ± 0.36 89.04 ± 0.08 79.35 ± 0.70

Self-KD 51.56 ± 1.04 62.88 ± 0.82 87.92 ± 0.43 93.10 ± 0.11 90.58 ± 0.27 83.46 ± 0.29 89.12 ± 0.10 79.80 ± 0.20

KD 50.28 ± 3.07 63.04 ± 0.43 88.80 ± 0.54 93.44 ± 0.48 90.74 ± 0.26 83.64 ± 0.21 89.42 ± 0.04 79.91 ± 0.54

Table 1: DistilRoBERTa results on the dev and test sets for the GLUE benchmark. F1 scores are reported for MRPC,
Matthew’s Correlation for CoLA, and accuracy scores for all other tasks. The teacher is RoBERTa-large. Averages
and standard deviations are over 5 runs.

baseline CoLA RTE MRPC SST-2 QNLI MNLI QQP Score

DEV

Teacher 65.80 71.48 89.38 92.77 92.82 86.3 91.45 82.19
Finetune 41.76 ± 1.09 65.13 ± 1.22 87.09 ± 0.62 88.83 ± 0.27 86.96 ± 0.11 78.46 ± 0.13 90.02 ± 0.08 76.89 ± 0.25

LS 41.97 ± 1.63 65.85 ± 1.16 87.41 ± 0.55 88.56 ± 0.24 86.90 ± 0.16 78.51 ± 0.14 90.04 ± 0.03 77.03 ± 0.24

TF-reg 42.13 ± 0.74 64.98 ± 1.57 87.19 ± 0.43 88.58 ± 0.31 86.96 ± 0.13 78.54 ± 0.11 90.02 ± 0.04 76.91 ± 0.18

Self-KD 41.52 ± 1.74 65.63 ± 1.52 86.73 ± 0.25 88.72 ± 0.28 86.74 ± 0.58 78.63 ± 0.29 90.08 ± 0.09 76.86 ± 0.39

KD 42.48 ± 1.34 65.42 ± 0.95 88.56 ± 0.40 88.60 ± 0.60 87.31 ± 0.22 78.73 ± 0.19 90.23 ± 0.08 77.33 ± 0.15

TEST

Teacher 63.8 69.2 85.1 89.7 89.2 83.2 86.2 80.91
Finetune 38.58 ± 0.87 62.74 ± 0.31 83.12 ± 0.42 89.56 ± 0.65 86.62 ± 0.65 78.26 ± 0.27 87.80 ± 0.17 75.24 ± 0.29

LS 40.08 ± 0.58 62.84 ± 0.22 83.24 ± 0.56 89.88 ± 0.50 86.60 ± 0.79 78.48 ± 0.26 87.78 ± 0.15 75.56 ± 0.14

TF-reg 38.92 ± 1.25 60.70 ± 3.03 82.92 ± 0.50 89.82 ± 0.42 86.22 ± 0.70 78.16 ± 0.33 87.78 ± 0.12 74.93 ± 0.63

Self-KD 38.92 ± 2.44 61.32 ± 1.26 83.12 ± 0.64 89.82 ± 0.43 86.60 ± 0.30 78.22 ± 0.53 87.76 ± 0.05 75.11 ± 0.41

KD 38.26 ± 2.20 62.32 ± 1.04 84.74 ± 0.65 89.96 ± 0.22 86.58 ± 0.27 78.34 ± 0.20 88.02 ± 0.12 75.46 ± 0.51

Table 2: BERT-small results on the dev and test sets of the GLUE benchmark. F1 scores are reported for MRPC,
Matthew’s Correlation for CoLA, and accuracy scores for all other tasks. The teacher is BERT-large. Averages and
standard deviations are over 5 runs.

two particular hypotheses we have as potential rea-
sons behind these inconsistencies: 1) the number
of classes in the GLUE tasks is much lower than
for the CV tasks; 2) NLU models are pre-trained
and pre-training can attenuate the regularization
impact of KD and TF methods. In the remainder of
this section, we will go over some new experiments
which were done to evaluate these two hypotheses
respectively.

4.1 Hypothesis 1: Number of Classes

4.1.1 SST-5
SST-5 is a fine-grained sentiment classification
dataset with 5 classes introduced in (Socher et al.,
2013). We consider a setting of DistilRoBERTa stu-
dent and RoBERTa-large (24 layers) teacher. We
ran experiments for 5 seeds. The results are pre-
sented in Table 4. Overall, we can see that the stan-
dard deviations of the results are quite big, which
prevents us from concluding that any technique is
superior. Similar to GLUE, we note that the gap
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baseline CoLA RTE MRPC SST-2 QNLI MNLI QQP Score

DEV

Teacher 43.2 66.8 87.6 92.2 88.6 82.3 89.5 78.6
Finetune 38.20 ± 1.23 64.92 ± 0.92 87.74 ± 0.34 91.54 ± 0.34 86.48 ± 0.52 79.93 ±0.08 89.70 ± 0.06 77.13 ±0.34

LS 38.24 ± 1.25 64.84 ± 0.66 87.50 ± 0.28 91.54 ± 0.25 86.56 ± 0.36 80.14 ± 0.14 89.67 ± 0.10 76.93 ± 0.27

TF-reg 38.04 ± 1.23 64.90 ± 0.62 87.58 ± 0.26 91.34 ± 0.14 86.72 ± 0.34 80.14 ± 0.22 89.64 ± 0.08 76.91 ± 0.27

Self-KD 39.41 ± 0.91 65.62 ± 1.61 87.24 ± 0.21 90.84 ± 0.31 87.04 ± 0.17 80.57 ± 0.16 89.83 ± 0.04 77.16 ± 0.33

KD 38.94 ± 1.10 66.80 ± 0.82 87.22 ± 0.74 90.86 ± 0.33 86.82 ± 0.32 80.30 ± 0.17 89.97 ± 0.24 77.34 ± 0.30

TEST

Teacher 46.7 65.0 86.4 88.3 88.5 81.8 87.9 77.8
Finetune 31.00 ± 1.32 60.52 ± 0.66 84.52 ± 0.56 90.22 ± 1.08 85.34 ± 0.30 79.84 ± 0.22 87.68 ± 0.12 74.16 ± 0.28

LS 31.30 ± 2.00 60.18 ± 0.63 84.68 ± 0.41 91.18 ± 0.41 85.28 ± 0.30 79.78 ± 0.19 87.76 ± 0.14 74.31 ± 0.25

TF-reg 31.74 ± 2.06 60.22 ± 0.40 84.50 ± 0.46 90.62 ± 0.56 85.38 ± 0.32 79.68 ± 0.28 87.24 ± 0.50 74.20 ± 0.40

Self-KD 35.28 ± 1.55 61.02 ± 1.23 83.72 ± 0.50 90.30 ± 0.54 86.14 ± 0.33 80.12 ± 0.15 87.86 ± 0.16 74.92 ± 0.18

KD 32.96 ± 2.84 60.40 ± 0.20 84.76 ± 0.56 90.38 ± 0.53 85.82 ± 0.15 80.10 ± 0.14 88.08 ± 0.14 74.64 ± 0.43

Table 3: DistilGPT-2 results on the dev and test sets of the GLUE benchmark. F1 scores are reported for MRPC,
Matthew’s Correlation for CoLA, and accuracy scores for all other tasks. The teacher is GPT-2 (12 layers). Averages
and standard deviations are over 5 runs.

between fine-tuning and TF/KD is not observed.
In our next experiment, we increase the number

of classes even more to see if the gap appears.

baseline Accuracy (dev) Accuracy (test)
Teacher 56.86 59.95
Finetune 53.40 ± 0.85 54.43 ± 0.56

LS 53.50 ± 0.98 53.96 ± 0.77

TF-reg 53.62 ± 0.90 53.93 ± 0.42

KD 53.59 ± 0.26 54.14 ± 0.92

Table 4: DistilRoBERTa results on SST-5. Averages
and standard deviations are over 5 runs.

4.1.2 FewRel
Han et al. (2018) introduced this dataset for relation
classification. Originally, this dataset was designed
for few-shot learning, so we had to slightly modify
it for our purpose. First, we consider the train set
of FewRel. It has 64 classes and each class has 700
instances. We shuffle the data for each class and
allocated 500 instances to our train set, 100 to our
dev set, and 100 to our test set. We perform the ex-
periments five times and get a new dataset for each
seed, as recommended by Bouthillier et al. (2021).
The detailed procedure can be found in Appendix.
Overall, we generated a text classification dataset
with 64 classes.

We took DistilRoBERTa as a student and
RoBERTa-base (12 layers) as a teacher. We ran
experiments for 5 seeds and tuned hyperparameters

for the first one (see Appendix for details). The
results are in Table 5. We can observe that all the
methods perform similarly up to one standard devi-
ation and we don’t see a gap between Finetune and
KD/TF again.

As a conclusion of SST-5 (5 classes) and FewRel
(64 classes) experiments, we do not see any evi-
dence that the number of classes in classification
tasks affects the gap.

baseline Accuracy (dev) Accuracy (test)
Teacher 88.93 ± 0.27 88.63 ± 0.45

Finetune 86.31 ± 0.32 86.28 ± 0.51

LS 86.35 ± 0.31 86.22 ± 0.47

TF-reg 86.35 ± 0.31 86.26 ± 0.47

KD 86.66 ± 0.36 86.41 ± 0.54

Table 5: DistilRoBERTa results on FewRel (64 classes).
Averages and standard deviations are over 5 runs.

4.2 Hypothesis 2: Effect of Pre-training

We pose the following question: what is the major
difference between Language Models and Com-
puter Vision Models that might affect the perfor-
mance gap between base training and label regular-
ization? As an immediate hypothesis, we thought
that extensive pre-training of the models we experi-
mented with in the previous sections might be the
reason.
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baseline From scratch Pre-trained
Base 77.04 ± 0.26 78.17 ± 0.27

LS 78.01 ± 0.20 78.67 ± 0.20

TF-reg 78.16 ± 0.20 78.94 ± 0.28

Table 6: ResNet18 on CIFAR100. Pre-training is done
on the ImageNet dataset. Averages and standard devia-
tions are over 10 runs.

4.2.1 Computer vision
First, we did a sanity check and performed some
experiments from (Yuan et al., 2020) for multiple
seeds. In the paper, they didn’t mention the stan-
dard deviation, but it is important for us to check
if the gap we hoped to find is not a result of ran-
domness. We considered CIFAR100 (Krizhevsky
et al., 2009) and trained ResNet18 student (He et al.,
2016) without label regularization and with LS and
TF-reg techniques. At the same time we repeated
similar experiments, but now with ResNet18 pre-
trained on ImageNet dataset (Russakovsky et al.,
2015). The results are reported in Table 6. Here, we
can see that for the unpretrained model the standard
deviation intervals between base training and label
regularization don’t intersect and the gap is reason-
ably large. However, the gap diminishes notably
for the pre-trained model.

This gives us some initial evidence that our hy-
pothesis might be true. In our next experiment, we
report results that support this hypothesis.

4.2.2 NLU
GLUE experiments To investigate the effect
of pre-training on the relative performance, we
took a model with the same architecture as Dis-
tilRoBERTa, but instead of initializing it with pre-
trained weights, we randomly initialize it (with
normal distribution using the built-in Huggingface
function). We used the hyperparameters from the
pre-trained experiments. Then we ran experiments
for 5 seeds. The results are reported in Table 7.
We can see that, unlike the pre-trained model, the
gap between base training and all the label regu-
larization methods is bigger and the intersection
of standard deviation intervals is much smaller or
nonexistent. See Figure 1 (right) for the summary.

SST-5 experiments As a next step, we wanted
to formally check the statistical significance of the
findings that we reported in the previous sections.
For this, we considered again the SST-5 dataset and
trained both the pre-trained and randomly initial-

ized DistilRoBERTa on it. We aim to determine
whether there is a statistically significant differ-
ence between base training and TF/KD training
for each of the pre-trained and randomly initial-
ized cases. We used the (two-sided) Wilcoxon
signed-rank test (Wilcoxon, 1945) over the results
of eight random seeds. The Wilcoxon test is a
non-parametric statistical test that checks the null
hypothesis, i.e., whether two related paired sam-
ples come from the same distribution. The results
are reported in Table 8. We can see that for the pre-
trained model there is no statistically significant
difference between base training and label regular-
ization (p-value is greater than 0.05). However, if
the model is trained from scratch, the difference
becomes statistically significant.

We also tried state-of-the-art KD method, An-
nealing KD (AKD) (Jafari et al., 2021) which is
like vanilla KD doesn’t require data augmentation
or an access to teacher’s intermediate layers. The
result of the Wilcoxon test (Table 8) shows that
similarly it doesn’t give a significantly better per-
formance for a pre-trained model.

5 Related Work

Our finding that pre-training reduces or even re-
moves the gap between base training and TF/KD
training can serve as an indication of a regulariza-
tion property of pre-training. Several works are
exploring this in the literature.

Tu et al. (2020) studied the relation between pre-
training and spurious correlations. They demon-
strated that pre-trained models are more robust to
spurious correlations because they can generalize
from a minority of training examples that counter
the spurious pattern. Furrer et al. (2020) demon-
strated that Masked Language Model pre-training
helps in semantic parsing scenarios to improve
compositional generalization. The authors hypoth-
esize that the primary benefit provided by MLM
pre-training is the improvement of the model’s abil-
ity to substitute similar words or word phrases by
ensuring they are close to each other in the rep-
resentation space. Turc et al. (2019) showed that
pre-training is very beneficial for smaller architec-
tures, and fine-tuning pre-trained compact models
can be competitive with more elaborate methods.

6 Discussion and Future Work

We started this comparison of KD and TF regular-
izations on NLU tasks in the hope that a pattern
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baseline CoLA RTE MRPC SST-2 QNLI MNLI QQP Score

DEV

Teacher 68.14 81.23 91.62 96.44 94.60 90.23 91.00 87.67
Base 13.3 ± 0.9 53.0 ± 0.4 81.4 ± 0.3 81.2 ± 0.5 60.8 ± 0.6 62.1 ± 1.1 80.8 ± 0.2 61.87 ± 0.21

LS 14.0 ± 0.9 53.8 ± 1.0 82.1 ± 0.7 81.7 ± 0.5 61.5 ± 0.6 62.8 ± 0.8 81.1 ± 0.5 62.45 ± 0.45

TF-reg 14.4 ± 1.2 53.0 ± 0.5 82.3± 0.4 81.8 ± 0.4 61.5 ± 1.3 62.7 ± 1.1 80.6 ± 0.2 62.35 ± 0.25

Self-KD 14.3 ± 0.5 53.0 ± 0.4 82.3 ± 0.5 81.4 ± 0.1 61.3 ± 0.4 63.5 ± 1.2 80.7 ± 0.1 62.39 ± 0.28

KD 16.6 ± 0.7 53.6± 0.9 81.8 ± 0.4 81.2± 0.5 61.4 ± 0.4 63.1 ± 0.3 81.6 ± 0.1 62.80 ± 0.45

TEST

Teacher 65.1 82.6 89.5 92.1 91.5 84.3 88.7 84.82
Base 9.8 ± 0.1 51.6 ± 1.3 79.6 ± 0.3 80.3 ± 0.0 60.7 ± 0.5 61.4 ± 0.3 80.8± 0.2 60.60 ± 0.21

LS 10.5 ± 0.2 53.0 ± 0.0 80.0 ± 0.4 80.9 ± 0.4 60.7 ± 0.7 61.7 ± 0.1 81.1 ± 0.7 60.72 ± 0.07

TF-reg 11.8 ± 1.1 51.8 ± 1.5 79.2 ± 1.5 81.2 ± 0.3 60.9 ± 0.4 61.7 ± 0.1 81.2 ± 0.4 61.08 ± 0.32

Self-KD 11.5 ± 0.3 51.0 ± 0.7 79.5 ± 1.2 80.6 ± 0.1 61.9 ± 0.4 62.3 ± 0.2 81.3 ± 0.1 61.13 ± 0.31

KD 12.8 ± 2.8 51.5 ± 1.1 79.3 ± 0.6 82.1 ± 0.4 61.2 ± 0.2 62.6 ± 0.0 81.4 ± 0.4 61.54 ± 0.60

Table 7: Randomly initialized DistilRoBERTa results on the dev and test sets for the GLUE benchmark. F1 scores
are reported for MRPC, Matthew’s Correlation for CoLA, and accuracy scores for all other tasks. The teacher is
RoBERTa-large. Averages and standard deviations are over 5 runs.

Comparison Pre-trained From scratch
Base vs TF-reg 0.46 0.01

Base vs KD 0.94 0.01
Finetune vs AKD 0.74 -

Table 8: Wilcoxon signed-rank test results for Distil-
RoBERTa model trained on SST-5 dataset. P-values of
the test are reported with p-value less than 0.05 meaning
the difference is significant. The results are over the test
results of 8 runs.

similar to the one in computer vision (Yuan et al.,
2020) will emerge. In particular, we expected to
see TF and KD perform on par while outperform-
ing Finetune. However, it turned out that the gap,
even if it exists for some seeds, is not significant.

We further scrutinized the gap between Finetune
and KD/TF regularization. We hypothesized that
the lack of this gap in NLU might be the result of
a small number of classes in GLUE classification
tasks, however, this doesn’t seem to be the case:
experiments on SST-5 (5 classes) and FewRel (64
classes) datasets didn’t show a significant gap ei-
ther. We showed that another hypothesis is likely
to be true: the extensive pre-training of Language
Models erases the gap. The application of a statisti-
cal test confirms that a non-negligible gap appears
when models are trained from scratch. It seems
that pre-training discovers a good enough initializa-
tion for fine-tuning so that even basic unregularized

training can find a solution as good as training with
(TF or KD) regularization. A rigorous explanation
of this phenomenon is an interesting challenge for
future work.

We would like to add one important remark. Our
finding of this work does not suggest disregarding
KD or other types of regularizations in NLP but
rather using the more advanced or enhanced ver-
sions of these techniques. First of all, as shown in
several works in the literature (Sanh et al., 2019;
Sun et al., 2019; Turc et al., 2019; Jiao et al., 2019;
Tahaei et al., 2021), KD is very important for the
pre-training stage of the student models. Similarly,
Gao et al. (2020) demonstrated the value of label
smoothing for training machine translation models.

Moreover, improved variants of KD might still
facilitate fine-tuning of pre-trained models. Even
when vanilla KD doesn’t give a statistically signifi-
cant advantage over base fine-tuning, several works
in the literature show that improved versions of KD
with different auxiliary training schemes could be
beneficial. For example, one can incorporate inter-
mediate layer distillation (Sun et al., 2019; Passban
et al., 2021; Wu et al., 2020, 2021), data augmenta-
tion (Rashid et al., 2021; Kamalloo et al., 2021) or
contrastive training (Sun et al., 2020). Investigat-
ing better KD techniques or, more generally, better
regularization methods that can improve the fine-
tuning of PLMs even further will be an important
direction for future work.

173



Limitations

In the current work we present an extensive em-
pirical evidence that label regularization doesn’t
improve fine-tuning of a pre-trained model. How-
ever, we don’t have any theoretical explanation of
this puzzling phenomenon. Understanding the in-
teractions of different regularization methods and
how they affect the optimization is a highly non-
trivial problem.
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A Hyperparameters for GLUE and SST-5
experiments

We ran experiments for seeds 42, 549, 1237, 230
and 805. For all baselines we run experiments
for 30 epoch. All hyperparameters for pre-trained
and randomly initialized models are listed in the
Tables 9, 10.

When we do 8 seeds for the statistical test, we
add seeds 4653, 5589 and 992.

Hyperparameters for Annealing KD on SST-5
are listed in Table 11

B Experiments on FewRel

B.1 How we constructed the dataset

For each seed (42, 549, 1237, 230 and 805) sepa-
rately we constructed a new dataset.

Train set of FewRel has 64 classes, each class
has 700 instances. We shuffle the data for each
class (with a current seed) and allocated first 500
instances for our train set, second 100 for our dev
set and last 100 for our test set.

We concatenated the context, head, and tail of
the relation into one piece of text to be classified.

B.2 Hyperparameters

All hyperparameters are shown in Table 12

C Experiments on CIFAR100

We follow the experimental setup (Yuan et al.,
2020). For optimization we used SGD with a mo-
mentum of 0.9. The learning rate starts at 0.1 and
is then divided by 5 at epochs 60, 120 and 160. All
experiments are repeated 10 times with different
random initialization. The seeds we used: 11, 125,
1350, 23, 230, 4653, 5589, 56, 6, and 992. The
validation set is made up of 10% of the training
data. For experiments with pre-trained models, we
use the checkpoints available at 2.

D Hyper-parameter tuning

For hyper-parameter tuning, we use the ray tune
library (Liaw et al., 2018). The tuned hyper-
parameters are batch size, learning rate, α, and
temperature where they have been selected among
{8, 16, 32, 64}, {9e-6, 1e-5, 2e-5, 3e-5}, {0.4,
0.5, 0.7, 0.8, 0.9, 0.95}, and {1, 2, 5, 10} sets re-
spectively. We use ASHAScheduler algorithm of
ray tune to find the best hyper-parameters. The

2https://pytorch.org/vision/stable/models.html

metric of choosing them was maximum perfor-
mance on dev set. The sample size of tuning hyper-
parameters was 20 and 1 GPU was used for each
experiment. Also, the maximum number of epochs
for each trial was 20 epochs.

Since tuning hyper-parameters requires a huge
amount of computational resources, we tried
hyper-parameter tuning for vanilla KD on Distill-
RoBERTa model for GLUE benchmark. Then we
chose the five best hyper-parameter sets from this
experiment and checked their performance with
other baselines and chose the one with highest av-
erage performance among all baselines. Only dif-
ferent α parameters for random initialization and
pre-trained experiments on GLUE tasks and SST-5
made considerable differences in results. Therefore
we used different α values in these experiments.

Tuning hyper-parameters individually for each
baseline would be a better option, but this would
require a very large amount of computational re-
sources. However, after careful hyper-parameter
tuning for vanilla KD and less intensive hyper-
parameter tuning for teacher-free baselines, the lat-
ter show very close performance to vanilla KD and
this fact supports the main message of our paper.
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Hyper-parameter Value
Learning rate 2 · 10−5

Batch Size 32
Temperature 1

Training epoch 30
α for LS 0.1

α for KD, Self-KD and TF-reg 0.5
α for KD and TF-reg RI SST-5 0.9

a for TF-reg 0.95

Table 9: Hyperparameters for DistilRoBERTa and BERT-Small models on GLUE and SST-5 for pre-trained and
randomly initialized (RI) models

Hyper-parameter CoLA RTE MRPC SST-2 QNLI QQP MNLI
Learning rate 10−5 2 · 10−5 10−5 2 · 10−5 10−5 2 · 10−5 2 · 10−5

Batch Size 16 16 16 16 16 16 16
Temperature 1 1 1 1 1 1 1

Training epoch 30 30 30 30 30 30 30
α for LS 0.1 0.1 0.1 0.1 0.1 0.1 0.1
α for KD 0.5 0.5 0.5 0.5 0.5 0.5 0.5

α for Self-KD 0.5 0.5 0.5 0.5 0.5 0.5 0.5
α for TF-reg 0.5 0.5 0.5 0.5 0.5 0.5 0.5
a for TF-reg 0.95 0.95 0.95 0.95 0.95 0.95 0.95

Table 10: Hyperparameters for DistilGPT-2 on GLUE tasks for Finetune and regular KD and TF

Hyper-parameter Value
Learning rate 2 · 10−5

Batch Size 8
Max Temperature 10

Training epochs Phase I 20
Training epochs Phase II 10

Table 11: Hyperparameters for Annealing KD for DistilRoBERTa on SST-5

Hyper-parameter Value
Learning rate 1.5 · 10−5

Batch Size 32
Temperature 1

Training epoch 30
α for LS 0.1
α for KD 0.5

α for TF-reg 0.5
a for TF-reg 0.95

Table 12: Hyperparameters for DistilRoBERTa on
FewRel for Finetune, KD and TF

Hyper-parameter Value
Learning rate 0.1

Batch size 128
Weight decay 5 · 10−4

Training epoch 200
α for LS 0.1

α for TF-reg 0.1
Temperature for TF-reg 20

Table 13: Hyper-parameters for ResNet18 on CI-
FAR100.
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Abstract

We introduce a new benchmark, COVID-VTS,
for fact-checking multi-modal information in-
volving short-duration videos with COVID19-
focused information from both the real
world and machine generation. We propose,
TwtrDetective, an effective model incorporat-
ing cross-media consistency checking to detect
token-level malicious tampering in different
modalities, and generate explanations. Due to
the scarcity of training data, we also develop an
efficient and scalable approach to automatically
generate misleading video posts by event ma-
nipulation or adversarial matching. We investi-
gate several state-of-the-art models and demon-
strate the superiority of TwtrDetective.

1 Introduction

The proliferation of misinformation in social media
poses a serious threat to our society, especially
during the COVID-19 pandemic. Therefore, it is
necessary to develop automatic fact-checking tools
to verify the claims propagated online.

Recent fact-checking work (Thorne et al., 2018;
Wadden et al., 2020; Augenstein et al., 2019; Fung
et al., 2021; Bekoulis et al., 2021) investigated au-
tomatic misinformation detection by developing
various benchmark datasets as well as state-of-the-
art neural network architectures involving sources
such as Wikipedia pages, tables, news articles, and
scientific articles. However, due to the lack of pub-
licly available benchmarks, fact checking is still
challenging on short video platforms, such as Tik-
Tok, Twitter, and Instagram.

Verifying the factual correctness of claims in
short video platforms poses new challenges. Firstly,
multi-modal misinformation that leads to short
video posts is more misleading than using just tex-
tual content (Micallef et al., 2022), since the claims
usually only tamper with subtle elements of the
factual information from the source video. Further-
more, short videos (Shang et al., 2021) containing

diverse scene shifts, human activities, and cross-
modal information, greatly increase the complexity
and ambiguity of the video content. Moreover,
current methods explored the authenticity of GAN-
generated video with unimodal analysis (Güera and
Delp, 2018). Nevertheless, they cannot be directly
applied to the short video platform, where the video
content is often intentionally manipulated.

To tackle these challenges, we introduce
COVID-VTS, a new benchmark dataset with trust-
worthy claims and corresponding good-quality
videos, collected from Twitter video posts.
COVID-VTS contains different inconsistent tax-
onomies and the inconsistency comes from differ-
ent modalities. Examples are shown in Figure 1.
We additionally introduce a novel approach to gen-
erate fake video posts automatically by manipulat-
ing event elements or adversarial matching (Luo
et al., 2021a). The advantage of our event manipu-
lation tool is that it’s able to control the polarization
of semantics and track the manipulation object by
editing a small component of the factual informa-
tion. We apply quality control to delete unqualified
generations and address the linguistic bias.

We propose TwtrDetective, a multimodal fact-
checking model, where the input consists of a claim
with the paired video, and the goal is to predict the
consistency. TwtrDetective takes advantage of
the Event Alert module to precisely extract fine-
grained factual details from the claim, as well as
Pairwise Consistency Aggregation module to ef-
fectively measure the consistency between each
modality. TwtrDetective is also able to point out
the inconsistent modality (e.g., see Figure 3).

Experimental results show that TwtrDetective
achieves higher detection accuracy over baselines
on two datasets. Our main contributions are sum-
marized as:
• We introduce COVID-VTS, a fact-checking dataset

for short video platforms, consisting of 10k video
text pairs with diverse scenes, more accessible
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(Claim)
#BritishAirways is expecting a 
drop in profits this year - due to 
cancelled flights #coronavirus

(Speech)
… 
grounded BA flight likely to lead 
to a profit drop
… 
expected to forecast profits and 
this year that's not currently
possible because the duration 
potentially affected coronavirus 
prices remain unclear
…

(Claim)
Officials are scrambling to contain 
the spread of ebola outside of China, 
joined @cherylcasone with more 
coronavirus

(Speech）
new cases reported in Italy South 
Korea
…
the officials struggled to contain 
coronavirus outside China
…
as the death toll has twenty six 
hundred is it too early to call the 
crime virus
 …

(Speech)
… 
slovakia's government has now 
approved a two week national 
lockdown 
…
start of the pandemic with the 
emphasis on pushing 
vaccination programs it should 
be has tightened the screws on 
people …

(Claim)
slovakia to prevent new lockdown 
while italy toughens up on the 
unvaccinated

Figure 1: Examples of different inconsistent taxonomies from COVID-VTS, which are generated by our automatic
manipulation tool. The red box indicates the inconsistent modality. Our task is to independently decide whether the
video-text pair is consistent and point out which modality is fake. (1) The event argument in the claim is modified;
(2) The event trigger in the claim is tampered; (3) The short video is curated by adversarial matching.

modalities, and trustworthy claims from both the
real world and machine generation.

• We propose an effective approach to automati-
cally generate large-scale verifiable, trustworthy
as well as misleading video posts rather than em-
ploying human annotators.

• We propose TwtrDetective, a new explainable
fact-checking framework for the short video plat-
form, showing superior results on two challeng-
ing datasets with respect to baselines.

Our code is publicly available at https://github.
com/FuxiaoLiu/Twitter-Video-dataset.

2 Related Work

The spread of misinformation has led to a growing
body of research in automatic fact-checking. Many
large scale datasets collected from Wikipedia and
fact-checking websites were introduced, includ-
ing FEVER (Thorne et al., 2018), SciFact (Wad-
den et al., 2020), UKP Snopes (Hanselowski et al.,
2019), MultiFC (Augenstein et al., 2019). How-
ever, the fake claims in these datasets are manually
generated by humans, making it expensive to de-
ploy at scale. Recently, some synthetic datasets
were proposed to address this limitation. (Jiang
et al., 2020) generated complex fake claims using
word substitutions. (Saakyan et al., 2021) took ad-
vantage of the token-infilling ability from Masked
Language Model to replace the salient tokens. Also,
(Fung et al., 2021) formulated a novel data synthe-
sis method by manipulating knowledge elements
within the multi-modal knowledge graph. In order
to alleviate the linguistics bias within the machine-
generated claims, (Luo et al., 2021a) constructed
the out-of-context captions by retrieving the real-
world sentence with the similar semantics. In a sim-
ilar vein our dataset, (Liu et al., 2020b) constructed

VIOLIN for the Video-Language Inference while
all the statements are written by experts. (Wang
et al., 2022) collected social media video posts
from Twitter but the fake claims are constructed
by random swap. In comparison, COVID-VTS is
the first COVID-19 fact-checking dataset for short
video platforms, containing rich information with
diverse scenes, more accessible modalities as well
as misleading claims from both the real world and
machine generation.

Traditional fact-checking approaches (Zellers
et al., 2019; Schuster et al., 2020; Atanasova et al.,
2019) are mainly based on text. They fall short if
the evidence stems from visual information. Re-
cent multi-modal models (Fung et al., 2021; Tan
et al., 2020; Shang et al., 2021) are equipped with
the ability to check consistency according to the in-
formation conveyed across modalities. In contrast,
we propose a fact-checking model for the short
video platforms with multimedia explanations that
achieves higher accuracy to detect misinformation.

3 COVID-VTS Dataset Construction

COVID-VTS contains 10k well-formed claims with
the paired videos to support or refute the claims.
In this section, we first describe the procedure to
select the trustworthy and consistent video/claims
pairs from Twitter video posts. Second, we also
present our approach to automatically construct
well-formed inconsistent video-claim pairs.

3.1 Filtering for Authentic and Consistent
Video Posts

To assemble the COVID-VTS dataset, we used the
Twitter scraper to collect over 100k English video
posts using COVID related keywords and hashtags
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ranging from the end 2019.10 to 2022.8. Examples
are shown in Table 1. We retain one post for a
video link to reduce the potential bias. To retrieve
the speech from videos, we leverage the Speech-
to-Text tool from IBM Cloud (Pitrelli et al., 2006).
In addition, we leverage SimpleOCR (Ko and Kim,
2004) to recognize text on screen. After the prelim-
inary filtering, we have several steps to select the
authentic and consistent video posts:

VERIFIED User Account. According to the re-
quirements from Twitter, only the authentic, no-
table, and active accounts will receive the blue ver-
ified badge (including official government, official
company, etc.). Accounts that routinely post con-
tent that harasses, shames, or engaged in severe
violations of our platform manipulation and spam
policy are ineligible for blue badge. We collect
the authentic posts from the verified accounts into
COVID-VTS to improve the data quality.

Claims Must be VERIFIABLE. Event structures
are essential to reveal the factual information of a
sentence, since the overall semantics might be op-
posite if event elements are changed. Moreover,
claims in COVID-VTS are supposed to be verifi-
able propositions whose truthfulness is determined
by multi-modal evidences from the paired videos.
Without the event structures, its truthfulness isn’t
verifiable. Thus, we delete instances with personal
opinions or emotions. For example, ’So proud of
my boys! GetVaccinated’, which has no factual
information to be verified.

In practice, we first remove the claims without
event structures, by using DYGIE++ (Wadden et al.,
2019), a state-of-art event extraction framework,
pretrained on MECHANIC dataset. The event
structures generated by DYGIE++ include event
triggers and event arguments. For example in ’Of-
ficials are scrambling to contain outbreaks of the
coronavirus outside of China’, ’contain’ is the trig-
ger which express the occurrence of the event, ’offi-
cials’ and ’outbreaks of the coronavirus’ are event
arguments which play different roles in this event.

After selecting these verifiable claims, we man-
ually check whether they are consistent with the
associated videos. We also select verifiable and
consistent video text pairs from the unverified ac-
counts in order to increase the size of our dataset.
Our hypothesis is that the video posts are trustwor-
thy after the “cleaning” steps. Given this hypoth-
esis, the main task is to analyze the inconsistency
between different modalities.

Keywords/Hashtags

covid, #covid, #covid19, corona, #coronavirus, maskup,
pandemic, ICU, vaccine, #vaccine, coronavirus, quar-
antine, #quarantine, moderna, #covidvariant, omicron,
booster, mRNA, phizer, #phizer, #who, #workfromhome,
#vaccinepassports, #travelbans, #social_distance, n95

Table 1: Summary of the covid related keywords and
hashtags in the data collection process.

Most frequent Tokens

Event Trigger
(Original Claims)

fight, infect, protect, prevent,
help, stop, quarantine, contain,
confirm, threat, plunge, man-
date, deal, cause

Event Argument
(Original Claims)

coronavirus, omicron, pfizer,
covid, delta, moderna, booster,
mask, lockdown, protest, social
distance, ban, vaccine

Event Trigger
(Generated Claims)

produce, increase, create, de-
velop, remove, protect, avoid,
identify, support, generate, rule,
allow, establish

Event Argument
(Generated Claims)

omicron, variant, death, can-
cer, hospital, WHO, community,
medical service, drug, viruses,
migration, media, ICU

Table 2: Most frequent event triggers and arguments in
original claims and generated claims.

3.2 Automatic INCONSISTENT Video-Claim
Pairs Generation

In this section, we describe the steps to automati-
cally generate inconsistent video-claim pairs. Our
dataset contains the following three inconsistent
taxonomies: (1) Real video, Real speech and Incon-
sistent claim; (2) Real video, Inconsistent speech
and real claim; (3) Inconsistent video, Real speech
and Real claim.
Inconsistent Claim Generation. Inspired by (Liu
et al., 2020b), we automatically generate fake-
claims by controlling the polarization of semantics
and tracking the manipulation object by modifying
a small portion of the factual information in true
claims. In this case, most of the statement remains
true to the video content. This strategy can also
alleviate the linguistic bias, which was introduced
by (Fung et al., 2021; Zellers et al., 2019). In their
datasets, the model correctly detects the fake claims
without comparing different modalities. This is be-
cause all the fake claims are generated by language
models. Another advantage is that we can gener-
ate the large-scale training set automatically rather
than employing human annotators.
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Original TRUE Claims Generated FAKE Claims

Officials are scrambling to contain outbreaks of the coron-
avirus outside of China.

Officials are scrambling to contain the spread of ebola out-
side of China.

Moderna chairman getting vaccinated booster shots is the
only way to stop the virus.

Moderna chairman getting infected is the only way to stop
the virus.

Fed chair powell warns omicron variant could dent economic
recovery.

Fed chair powell warns omicron variant could facilitate
economic recovery.

Australians caught up in china’s crisis have finally returned
home after 14 days quarantined on christmas island.

Australians caught up in china’s crisis have lost home after
14 days quarantined on christmas island.

Table 3: A detailed look into the examples generated by our efficient automatic approach. The first two examples
are the event-argument manipulation and the final two are the event-trigger manipulation.

Figure 2: The histogram indicates COVID-VTS is more
accessible to speech content and text on the screen than
previous datasets.

Only event triggers or event arguments will be se-
lected as the manipulated tokens [mask] depending
on different intentions. We follow the procedures
from (Nguyen et al., 2020) and use BERTWeet, pre-
trained on the Tweets related to the COVID-19 pan-
demic, to predict the domain-aware alternates of
the event elements which can be subject to masking.
In order not to introduce additional noise, we delete
the candidates if their substituted tokens are not in
the vocabulary of the original dataset to reduce
the potential bias. Then, we feed the candidates
and their corresponding true claims as input to the
CrossEncoder model trained on Mutli-NLI dataset
(Williams et al., 2017) and select the candidates
with the CONTRADICTION label. If the candidate
pair has the highest contradiction score, it will be
assigned as the fake claim. Table 3 presents exam-
ples generated by our efficient automatic approach.
The first two examples are the event-argument ma-
nipulation and the final two are the event-trigger
manipulation.

Table 2 shows the most frequent event elements
in original claims and generated claims. In prac-
tice, we found that these frequent alternatives bring
the additional linguistic bias. Models can learn to
classify the claims as fake ones simply by detecting
these frequent tokens without absorbing informa-

COVID-VTS VIOLIN

Average Caption Length 19.2 18.0
Average Speech Length 69.2 76.4
Average Video Length 26.5s 35.2s
Named Entities (Sentence) 90.8% 10.3%
Source Twitter TV show

Table 4: Summary of COVID-VTS dataset.

tion from other modalities. Therefore, we alleviate
this bias by only keeping one claim for each alterna-
tive. Then replace unqualified claims by selecting
the most similar claims from the dataset. Incon-
sistent pairs constructed this way focus more on
the global understanding of the pairs. This rigor-
ous setting makes the claims more challenging to
distinguish by the analysis model, and in-depth
reasoning is required to identify the fake content.
Inconsistent Speech Generation. Unlike (Tan
et al., 2020) and (Fung et al., 2021) editing multiple
parts of the article, our target is to only modify the
evidence sentences from the speech to reduce the
linguistic bias. First, we use cosine similarity on
SBERT sentence embeddings to extract the most
similar sentences to the real claims. After that, we
manipulate the named entities or event elements
within the evidence sentences.
Inconsistent Video Generation. As for the third
type of inconsistent pairs, we keep the speech and
claims as the original ones. However, we replace
the original videos with another real video that is
similar to the current one by using the adversarial
matching (Liu et al., 2020b) method. Specifically,
we utilize pretrained VideoCLIP (Xu et al., 2021)
to generate video representations to calculate the
cosine similarity.
Missing Modalities. In order to handle the video-
claim pairs missing the speech text, we select the
real speech text from the dataset which has com-
mon entities with respect to the current claim. This
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L(y,yP)
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P  … 

Multi-head AoA layer

   Frame Embeddings
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      … 2, 2, 2, 1, 0, 0, 0 … 

“... coronavirus crisis outbreak 
rising concerns of pandemic …”

           OCR Text

…  t1
R, t2

R    …   tM
R  … 

Multi-head AoA layer

 OCR Sentence  Embeddings

 galert  … 0, 0, 1, 2, 0, 0, 2, 0, … 

 “ … struggled to contain coronavirus 
in the Korean country…”

        Speech Text

…  t1
S, t2

S    …   tK
S  … 

Multi-head AoA layer

Speech Sentence  Embeddings

  galert

 “ Officials are scrambling to contain 
outbreaks of the coronavirus outside of 
China, joined @cherylcasone”

         Claim Text

…  t1
C, t2

C    …   tI
C  … 

Multi-head AoA layer

Claim Sentence  Embeddings

 galert

Cross-Modal Transformer
(Video / Speech)

Cross-Modal Transformer
(Video / Claim)

Cross-Modal Transformer
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Embedding
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Embedding
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Embedding
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PCA

Feature 
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Figure 3: Overview of TwtrDetective. It detects the cross-modal inconsistency by comparing with video appear-
ance, speech content, screen text and claims. galert means the event alert module. In this example, TwtrDetective
predicts it as a an inconsistent pair and points out speech is manipulated since cvs and ccs are smaller.

new tuple with the real video, fake speech and real
claim will be regarded as the inconsistent pairs in
COVID-VTS. Examples generated by our tool are
shown in Figure 1 and Figure 4. Without the in-
depth reasoning and cross-modal understanding,
it’s challenging to distinguish them from the real
pairs.

After all the filtering steps of automatic quality
and bias control with manual validation, we assign
the same amount of manipulated samples with pris-
tine ones. Thus, the resulted dataset consists of 10k
well-formed claims with associated videos.

3.3 Dataset Analysis

COVID-VTS exhibits three important differences to
current benchmark datasets for video-text tasks
(Xu et al., 2016; Chen and Dolan, 2011; Rohrbach
et al., 2015; Anne Hendricks et al., 2017; Krishna
et al., 2017). First, COVID-VTS brings new chal-
lenges with more diverse and complex scenes, in-
cluding indoor press conference, news broadcast-
ing, outdoor activities like protests, interviews, and
screen recordings as well a slide shows. In con-
trast to recent video-text datasets (Xu et al., 2016;
Chen and Dolan, 2011; Rohrbach et al., 2015;
Anne Hendricks et al., 2017; Krishna et al., 2017),
COVID-VTS has more available speech and screen
text in Figure 2. Specifically, 87.5% of the videos
have speech and over 77% of the videos have the
screen text. COVID-VTS has more named entities
and videos (Table 4). 90.8% of the sentences in

COVID-VTS have named entities while VIOLIN
(Liu et al., 2020b) is 10.2%. This large gap indi-
cates COVID-VTS not only is an excellent resource
to support research in the alignment between videos
and named entities, but also provides new chal-
lenges to existing video-language inference mod-
els. Finally, COVID-VTS is the first fact-checking
benchmark on the short video platform with in-
consistent information from different modalities,
which makes the fact-checking task more challeng-
ing.

4 Fact-Checking Model

4.1 Overview

As shown in Figure 3, our fine-grained fact-
checking system, TwtrDetective, is able to eval-
uate the overall factual consistency by integrating
pairwise relation embeddings between different
modalities. TwtrDetective also points out which
modality is inconsistent and provides explanations
to support the verification.
Feature Extractor. We use the vision transformer
of CLIP (ViT-B/32) (Radford et al., 2021) to en-
code every frame into features. In particular, it
extracts N non-overlapping image patches from
the frame and perform linear projection to map
every patch into 1D token {vp1 , . . . , vpN}, where
vi ∈ RD, where D = 512, N is the number of
patches for each frame. Second, we apply pre-
trained RoBERTa (Liu et al., 2019b) to generate
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contextual text representations, which utilizes byte
pair encoding (Shibata et al., 1999) to tokenize the
sentences. Therefore, each sentence in the speech
content S is represented as a sequence of tokens
{ts1, . . . , tsK}, where tsi ∈ RD and D = 768 and
screen text O are {tr1, . . . , trM}, where tri ∈ RD
and D = 768. Finally tokens in the claim C
are defined as {tc1, . . . , tcI}, where tci ∈ RD and
D = 768.

Event Alert Module The intuitive method to check
the consistency is to calculate the video-text sim-
ilarity with video-sentence retrieval models (Liu
et al., 2019a; Gabeur et al., 2020). However, the
performance is dismal if the true information is tam-
pered by small fragments. This is because existing
models mainly encode the text at the document
level without giving sufficient signal to focus on
the factual elements, namely the event trigger and
event argument.

To provide explicit guidance to learn the internal
event semantic of the text, we first employ DY-
GIE++ (Hope et al., 2020) to detect the event struc-
tures within the text, assigning 1 if the token is the
event trigger, 2 if it’s the event argument and 0 oth-
erwise. The indices are then fed into the learnable
embedding table to generate Event Alert gate galert,
where galert ∈ RD and D = 512. A key property
of galert is that it helps our model determine the
salience of tokens in the text. Then, the claim to-
ken tci , speech token tsi , OCR token tri are projected
into a common semantic subspace with the same
dimension by learning parameters W c, W s, W r.

tc′i = galert ⊙ tanh(W ctci ) (1)

ts′i = galert ⊙ tanh(W stsi ) (2)

tr ′i = galert ⊙ tanh(W rtri ) (3)

where⊙ represents the element-wise multiplication
operation and tanh is the activation function.

Multi-head AoA Layer. Motivated by the archi-
tecture presented in (Liu et al., 2020a), we contex-
tualises tc′i, t

s′
i, t

r ′
i by using stacked Multi-Head At-

tention on Attention Layer, which takes advantage
of the "Attention on Attention" module (Huang
et al., 2019) to facilitate the generation of attended
information. After encoding the text, the output of
[CLS] tokens named as sc, ss and sr are utilized
as the sentence representations of claim, speech

content and screen text correspondingly.

sc = MHAoAMask({tc′i, . . . , tc′I})[cls] (4)

ss = MHAoAMask({ts′i, . . . , ts′K})[cls] (5)

sr = MHAoAMask({tr ′i, . . . , tr ′M})[cls] (6)

Patch features are also projected into the common
subspace with the text by W v. In order to learn
the salience of patches in each frame, we feed the
patch features with injection of positional infor-
mation into Multi-Head AoA Layer to model the
correlation of each patch. After that, we leverage
the global average pooling to output the representa-
tion of each frame vf .

v′i = tanh(W vvi) (7)

vf = Pool(MHAoAMask({v′1, . . . , v′N})) (8)

Pairwise Consistency Aggregation (PCA). To
model the consistency between the claim, speech
and video frames, we apply the Cross-modal Trans-
former (Li et al., 2020) learn the pairwise relation-
ship. First, we fed the speech sentence embed-
dings S = {ss1 . . . , ssLs

}, visual frame embeddings
F = {vf1 . . . , vfLf

} and its associated OCR sen-
tence embeddings O = {sr1 . . . , srLr

} as the input.
Ls, Lf , Lr present the number of sentences. We
also add the [CLS] token in the first place of the
input sequence. The outputs from Cross-modal
Transformer is a sequence of contextualized em-
beddings. We use the output from the [CLS] token
represent the consistency relationship between the
video and speech.

Rvs = Cross-Transformer(F,O, S) (9)

Rvc = Cross-Transformer(F,O,C) (10)

Rcs = Cross-Transformer(C, S) (11)

As for the consistency measurement between the
claim C = {sc1 . . . , scLc

} and speech S, video F ,
we also utilize the Cross-modal Transformer to
integrate different modalities and [CLS] to repre-
sent the weight. The claim can be regarded as
the pointer to precisely retrieve relevant evidences
from the paired video and speech, which play a key
role to infer the truthfulness of the pairs.
Explanations. After feeding pairwise consistency
embeddings Rvs, Rvc and Rcs into MLP layers
and sigmoid functions, our model produces the re-
lation scores cvs which represents the consistency
score between video and speech, cvc which rep-
resents the consistency score between video and
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Model Accuracy F1

CLIP4Clip (Luo et al., 2021b) 57.3 55.8
CLIP2Video (Fang et al., 2021) 59.4 56.8
VideoClip (Xu et al., 2021) 50.4 49.5
McCrae (McCrae et al., 2022) 62.7 62.3
MTS (Liu et al., 2020b) 56.3 55.4
MMT (Gabeur et al., 2020) 61.2 60.6
TwtrDetective (Ours) 68.1 67.9

Human Check 82.7 81.9

Table 5: Comparative results (%) with baselines on the
COVID-VTS Dataset.

Model Accuracy

MTS (Liu et al., 2020b) 60.4
XML (Lei et al., 2020) 69.6
HERO (Li et al., 2020) 70.4
TwtrDetective (Ours) 72.6

Table 6: Comparative results (%) with baselines on the
VIOLIN Dataset.

claim and ccs, which represents the consistency
score between claim and speech. If a video post is
classified as inconsistent by our model, the com-
mon modality of the two links with lower scores
will be pointed as the inconsistent modality. For
example in Figure 3, TwtrDetective detects that
speech is inconsistent since cvs and ccs are smaller.
It can be used the explanation to support the judge-
ment.
Objective Function. We optimize our model by
minimizing the standard cross-entropy as shown on
the top of Figure 3, where y is the ground truth label
and yP is the prediction probability after putting
cvs, cvc and ccs into the transformer attention layer.

5 Experiments

In this section, we first introduce details of our
implementation and compare the results to com-
peting methods. Lastly, we present comprehensive
experiment results and discussions.

5.1 Implementation Details

Datasets. We conduct experiments on two datasets:
(1) COVID-VTS dataset, which consists of 10k
video-text pairs with different taxonomies gener-
ated by our automatic tool. Half of the samples
are pristine and half are manipulated. (2) VI-
OLIN dataset (Liu et al., 2020b), a Video-and-
Language Inference, collected from TV shows and
movies, which contains 15,887 video clips and
claims written by human. We also generate incon-
sistent speech and video pairs with our automatic

Model Accuracy F1

TwtrDetective 68.1 67.9
TwtrDetective (w/o Event Alert Module) 64.4 64.5
TwtrDetective (w/o PCA) 66.3 65.9

Table 7: Ablation study to investigate our model’s per-
formance without the event alert module or the pairwise
consistency aggregation module.

tool so as to make sure the inconsistency comes
from different modalities. Our model is compared
with baselines on both datasets.
Model Training. Our model is implemented using
Pytorch. In our implementation, the dimensions
for the common subspace is 512. Models are opti-
mized using Adam with learning rate as 0.0005. In
addition, we adopt a uniform sampling strategy to
extract the frames and the sampling rate is 1 frame
per second. In all the experiments, we split the
COVID-VTS dataset into 80% for training, 10%
for validation and 10% for testing.
Evaluation Metric. We compute the accuracy and
F1 score at distinguishing inconsistent pairs from
consistent ones.
Baselines. (1) CLIP4Clip (Luo et al., 2021b) (2)
CLIP2Video (Fang et al., 2021) uses CLIP (Rad-
ford et al., 2021) to encode visual frames and
text and use the transformer to fuse temporal in-
formation. (3) VideoClip (Xu et al., 2021) is a
state-of-art zero-shot video and text understanding
model, which learns fine-grained association be-
tween video and text in a transformer. (4) McCrae
(McCrae et al., 2022) employs Long LSTM to inte-
grate the video, text and named entity information
from the video posts. (5) MMT, a video-text model
that designs a multi-modal transformer to jointly
encode the different modalities in video. (7) HERO
(Li et al., 2020): a transformer-based framework
with two standard hierarchies for local and global
context computation.

5.2 Results and Discussion

Comparison Experiments. As Table 5 and Table 6
show, our model achieves SOTA results compared
with baselines on the both COVID-VTS and VIOLIN
dataset. CLIP-variant models fail to perform well,
revealing they do not detect token-level manipu-
lation by analyzing the semantics of the sentence
level. We notice that McCrae and MMT outper-
form MTS on both scores. This is because McCrae
and MMT extract additional features from videos
to help verification like objective detection and
face detection. However, named entity verification
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(Claim)
OECD  warns omicron variant 
could be a prerequisite to 
economic recovery

(Speech)

… 
efficacy tells us how well the 
vaccine protects us from a 
disease in the real world clinical 
trials need to be precise and 
replicable 
…

(Claim)
tells us how well the vaccine 
protects us from a disease in the 
real world clinical trials need to 
be precise and replicable

(Speech)
…
Omicron could be a threat to the 
Welsh quick return to economic 
normality that's according to the 
OECD
…
OECD. has stressed the global 
recovery is becoming 
increasingly unbalanced
…

(Speech)
…
Germany and Austria are very 
highly vaccinate countries 
they're singing on precedent to 
numbers of infections so much 
…
what is the justification for these 
vaccine mandates at this point…

(Claim)
Large turnout in Melbourne, 
Australia, in protest march 
against COVID vaccine mandate

Figure 4: Qualitative analysis results. The red box indicates the inconsistent modality. TwtrDetective predicts the
first two examples correctly except the third one.

Model Accuracy F1

TwtrDetective 68.1 67.9
TwtrDetective ( w/o Pair[Claim,V ideo] ) 66.6 66.3
TwtrDetective ( w/o Pair[Claim,Speech] ) 67.2 67.0
TwtrDetective ( w/o Pair[Speech,V ideo] ) 67.5 67.2

Table 8: Analysis on the importance of different modal-
ity pairs in the PCA module.

proposed by McCrae does not show improvement
on our since because it’s incapable of finding the
event-trigger manipulation. The main advantages
of our model is that our event alert module is able to
extract fine-grained factual details from the hetero-
geneous content. The pairwise consistency aggre-
gation module is able to measure the interaction be-
tween each modality precisely. These observations
also explain why our model outperforms HERO,
which ignores the guide from the event structures.
The performance on the VIOLIN dataset is bet-
ter compared to the results on COVID-VTS dataset.
This is because our COVID-VTS dataset is more
challenging with more named entities and events.
Analysis on Different Modalities. We gain further
insights into the importance of different modality
pairs in PCA module. Our model in the first row
of Table 8 uses all three pairs Pair[Claim,V ideo],
Pair[Claim,Speech] and Pair[Speech,V ideo] in PCA.
Other rows miss one of these pairs. Table 8 indi-
cates the PCA module is effective to improve the
consistency checking performance between multi-
ple modalities. In addition, Pair[Claim,V ideo] con-
tributes more than the other two pairs. This is
because the evidence sentences are the only ma-
nipulated parts in the long speech text, making it
challenging to be detected by referring to claims
and videos.
Ablation Study. We investigate frame length in
Figure 5, we can see a significant increase between
1 and 6 frames which shows it is better to encode
the videos with a sequence of multiple frames in-

Figure 5: Ablation study to investigate our model’s
performance with different frame length.

stead of one single frame. We sampled 18 frames
for our experiment, which is both efficient and ef-
fective. Furthermore in Table 7, our model mainly
benefits from Event Alert module which provides
3.7% boost in classification accuracy by explicitly
tracking distorted factual pieces at the token level,
PCA module contributes 1.8% improvement com-
pared to using one-stream transformer to aggregate
features from different modalities. Additionally,
our model achieves better accuracy on short claims
(length < 15) than on long claims (length > 25).
This is because long claims have more event trig-
gers and arguments than short claims, which makes
it challenging for our event alert module to capture
the manipulated tokens.
Qualitative Analysis. Figure 4 presents predic-
tion examples from our model. The correct cases
(first two examples) demonstrate the model’s abil-
ity to recognize the tiny inconsistent tokens. Since
the original pair of third example miss the speech
modality, we add the speech text which shares
more common entities with the claim as the incon-
sistent modality. TwtrDetective fails to predict
third post, suggesting that it does not work well
on the video and speech alignment. The reasons
behind might because both the video and speech
describe the protest against the vaccine mandate
but in different countries. Only from the video, it’s
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hard to detect whether it’s in Australia, Germany
or Austria. In addition, the date information is also
challenging to check. The future direction could be
asking the model to point out which part of the in-
formation is inconsistent or unverifiable and define
the inconsistency taxonomy for them.

6 Conclusions
In this paper, we release a new benchmark,
COVID-VTS, for fact-checking in short video plat-
forms, consisting of 10k video-claim pairs. We
develop an efficient tool to automatically gen-
erate large-scale trustworthy inconsistent pairs
with different semantic meanings. Furthermore,
our proposed fact-checking model TwtrDetective
achieves state-of-the-art detection accuracy. We
hope this work paves the way for future studies in
multi-modal fact-checking as well as other related
research areas in video and language.

7 Ethical Statement

Our goal in developing state-of-art consistency
checking technique is to enhance the field’s ability
to detect fake news and improve the Twitter com-
munity health. According to Twitter Developer
Policy, Twitter supports the research that measures
and analyzes topics like spam, abuse, or other plat-
form health-related topics for non-commercial re-
search purposes. In addition, the posts we collected
are from verified and authentic accounts. Certain
accounts are ineligible for the verified badge if
they post content that harasses, shames, or insults
any individual or group, or violate the Platform
manipulation and spam policy. To protect the per-
sonal information, we will only use the captions
and videos as input without the user information.
We also work to filter the dataset and only keep
the posts discussing public news instead of per-
sonal life. Personal information but not limited to,
user’s name, health, financial status, racial or ethnic
origin, religious or philosophical affiliation or be-
liefs, sexual orientation, trade union membership,
alleged or actual commission of crime. It’s crucial
to mention that we will not share our source video
file but the URL links or the extracted features from
the videos. This is to due to the licence policy and
avoid anyone to deliberately generate and spread
misinformation. As such, we will release the model
code but not the output in our work for public ver-
ification and auditing so it can be used to combat
fake news.

8 Limitations

There is a significant gap between our model and
human performance on the accuracy. We hope
COVID-VTS dataset will encourage the community
to develop stronger models in the future. One pos-
sible direction is to develop models to localize key
frames or key sentences from the speech to deduce
the difficulty of consistency check.
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Abstract

Despite the success of Transformer models in
vision and language tasks, they often learn
knowledge from enormous data implicitly and
cannot utilize structured input data directly. On
the other hand, structured learning approaches
such as graph neural networks (GNNs) that in-
tegrate prior information can barely compete
with Transformer models. In this work, we aim
to benefit from both worlds and propose a novel
Multimodal Graph Transformer for question an-
swering tasks that requires performing reason-
ing across multiple modalities. We introduce a
graph-involved plug-and-play quasi-attention
mechanism to incorporate multimodal graph
information, acquired from text and visual data,
to the vanilla self-attention as effective prior. In
particular, we construct the text graph, dense re-
gion graph, and semantic graph to generate ad-
jacency matrices, and then compose them with
input vision and language features to perform
downstream reasoning. Such a way of regu-
larizing self-attention with graph information
significantly improves the inferring ability and
helps align features from different modalities.
We validate the effectiveness of Multimodal
Graph Transformer over its Transformer base-
lines on GQA, VQAv2, and MultiModalQA
datasets.

1 Introduction

A myriad of complex real-world tasks require both
prior knowledge and reasoning intelligence (Yi
et al., 2018a; Ilievski and Feng, 2017). These
days, vision-and-language reasoning tasks such as
as vision question answering (VQA) (Antol et al.,
2015) and multimodal question answering (Multi-
ModalQA) (Talmor et al., 2021) post further needs
for integrating structured info from different input
modalities and thus perform reasoning. Towards
this, two questions yield: What is the best way to
integrate prior knowledge and reasoning compo-
nents from multiple modalities in a single model?
How would such an integration lead to accurate

Answer a
Tell Me
That You
Love Me,
Junie
Moon

Question q
What B. Piazza title came
earlier: the movie S.
Stallone’s son starred in or
the movie with half of a lady’s
face on the poster?

Multimodal input Guided
graph

Compute
attention
score

Answer
prediction

Visual features

Text features

+

Figure 1: Overview of Multimodal Graph Transformer.
It takes visual features, text features, and their corre-
sponding generated graphs as inputs. The generated
graph is first converted to an adjacency matrix to induce
the mask matrix G. The modified quasi-attention score
in the Transformer is computed to infer the answer. In
the formular, G is the graph-induced matrix constructed
by concatenating adjacency matrices both from the vi-
sion and the language end. Ĝ is the trainable bias. The
input features from different modalities are fused along
with graph info to perform downstream reasoning.

models, while being more computationally efficient
and allowing for significantly more interpretabil-
ity? Such questions are important to address when
scaling reasoning systems to real-world use cases.

These years, there are a spectrum of methods in
the literature exploring different ways of integrat-
ing structured prior information. Graph neural net-
works (GNNs) (Wu et al., 2020), have been widely
used in representation learning on graphs. Some
experts tried to investigate the embedding of the
structured information by resorting to them. How-
ever, GNNs are inefficient (Wu et al., 2020) and
they can barely compete with Transformer mod-
els. Besides, most GNNs are designed to learn
node representations on fixed and homogeneous
graphs. Thereby, it is suboptimal to operate GNNs
on vision-and-language tasks such as visual ques-
tion answering (VQA), where graphs encountered
in these problems (e.g. scene graphs) can be more
complex; Alternatively, knowledge graphs (KGs),

189



such as Freebase (Bollacker et al., 2008), represent
world-level factoid information of entities and their
relations in a graph-based format, surfaced these
years. They have been successfully used in vision
and language applications including VQA (Marino
et al., 2019). However, they have not been dedi-
cated to be applied to our scenario, more concretely,
we aim at filling the gap of capturing prior knowl-
edge in Transformer models.

To mitigate deficiencies of the existing meth-
ods, this paper proposes a novel plug-and-play
graph-involved Transformer-based method for mul-
timodal question answering tasks. Our method
is Multimodal Graph Transformer in the sense
that it is built upon the well-established Trans-
former (Vaswani et al., 2017a) backbone, albeit
with several key fundamental differences. First,
we introduce a systematic scheme to convert text
graphs, dense region graphs, and semantic graphs
from vision and language tasks to adjacency ma-
trices to use in our method. Second, instead of
directly computing the attention score, we learn the
newly proposed quasi-attention score with graph-
induced adjacency matrices live at its heart, to sig-
nify the importance of learning relative importance
as a highly effective inductive bias for computing
the quasi-attention score. Third, different from pre-
vious Transformer methods, where self-attention
are fully learned from data, we switch gears to
introduce the graph-structured information in the
self-attention computation to guide the training of
Transformers as shown in Figure 1.

The main contributions are summarized below:

• We propose a novel Multimodal Graph Trans-
former learning framework that combines mul-
timodal graph learning from unstructured data
with Transformer models.

• We introduce a modular plug-and-play graph-
involved quasi-attention mechanism with a
trainable bias term to guide the information
flow during training.

• The effectiveness of the proposed methods is
empirically validated on GQA, VQA-v2, and
MultiModalQA tasks.

2 Related Works

2.1 Multimodal question answering

Visual Question Answering (VQA)(Antol et al.,
2015) has been a prominent topic in the field of

multimodal question answering, garnering signifi-
cant attention and advancing significantly since the
introduction of the first large-scale VQA dataset
byAntol et al. (2015). To answer VQA questions,
models typically leverage variants of attention to
obtain a representation of the image that is rele-
vant to the question (Andreas et al., 2016; Yang
et al., 2015; Xu and Saenko, 2016; Fukui et al.,
2016; Lu et al., 2016). A plethora of works (Liang
et al., 2021; Hudson and Manning, 2018; Yi et al.,
2018b; Xiong et al., 2016; Kim et al., 2018; Teney
et al., 2017a) have attempted to enhance the rea-
soning capability of VQA models, with Teney et al.
(2017a) proposing to improve VQA using struc-
tured representations of the scene contents and
questions. They developed a deep neural network
that leverages the structure in these representations
and builds graphs over scene objects and question
words. The recent release of MultiModalQA (Tal-
mor et al., 2021), a dataset that demands joint rea-
soning over texts, tables, and images, has received
widespread attention. However, similar to VQA,
existing MultiModalQA methods have not fully
utilized structured information from the input con-
cepts. To address this, we propose a combination of
multimodal graph learning and Transformer mod-
els to improve question answering across inputs
from multiple different modalities.

2.2 Attention mechanisms

The attention mechanism (Xu et al., 2015a,b; De-
vlin et al., 2018), has dramatically advanced the
field of representation learning in machine learning.
The attention mechanism is introduced in Vaswani
et al. (2017b) and widely used in language tasks
(i.e., abstract summarization (Xu et al., 2020)), ma-
chine translation (Bahdanau et al., 2014), reading
comprehension (Dai et al., 2020), question answer-
ing (Min et al., 2019), etc. Zhang et al. (2020)
proposes using syntax to guide the text modeling
by incorporating explicit syntactic constraints into
attention mechanisms. Meanwhile, it has seen in-
creasing application in multimodal tasks (Li et al.,
2020; Nam et al., 2017; Lu et al., 2016), where
it is usually used for learning of interactions be-
tween multiple inputs. Following their success,
multimodal Transformer models (Chen et al., 2019;
Hu et al., 2020; Sun et al., 2019) have also shown
impressive results on several vision-and-language
tasks. Yun et al. (2019) proposes Graph Trans-
former Networks (GTNs) that can generate new
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graph structures and learn effective node represen-
tation on the new graphs in an end-to-end fashion.
Different from these works, our work incorporates
graph information from different modalities into
the Transformer to improve the reasoning ability.

2.3 Exploiting graphs in multimodal
reasoning

Considering that graph priors can transfer com-
monalities and mitigate the gap between visual and
language domains, researchers explore how to use
graphs (Teney et al., 2017b; Yu et al., 2020) prop-
erly in both tasks. In recent years, many classes of
GNNs have been developed for both tasks which
are divided into two approaches: spectral (Bruna
et al., 2013) and non-spectral methods (Chen et al.,
2018). Graphs can also be transferred into latent
variables by GCN (Yang et al., 2019a; Yao et al.,
2018), which can be directly utilized by models.
However, the need for aligning graph priors from
different modalities to do reasoning limits the use
of graph priors. Our work addresses this problem
via the graph-involved quasi-attention mechanism.

2.4 Pretraining

Pretrained models in computer vision (Simonyan
and Zisserman, 2014; He et al., 2016) and NLP (De-
vlin et al., 2018; Yang et al., 2019b; Liu et al.,
2019), have achieved state-of-the-art performances
in many downstream tasks (Thongtan and Phien-
thrakul, 2019; White et al., 2017; Karpathy and
Fei-Fei, 2015; Lee et al., 2018; Ren et al., 2015b).
Other pretrained models such as VLBERT (Lu
et al., 2019; Sun et al., 2019) and ViLT (Kim et al.,
2021) also demonstrate their effectiveness on down-
stream vision-language tasks. Recent works on
vision-language pretraining such as OSCAR (Li
et al., 2020) perform cross-modal alignment in
their visual-language pretraining models. Like-
wise, our proposed method includes cross-modality
alignment, which is critical for reasoning. Our pro-
posed modular plug-and-play graph-involved quasi-
attention mechanism is also model-agnostic and
can be also applied to other pretrained Transformer-
based vision and language models.

3 Multimodal Graph Transformer

3.1 Background on Transformers

The Transformer layer (Vaswani et al., 2017b)
consists of two modules: a multi-head attention
and a feed-forward network (FFN). Specifically,

each head is represented by four main matrices:
the query matrix W q

i ∈ Rdm×dq/h, the key matrix

W k
i ∈ Rdm×

dk

h , the value matrix W v
i ∈ Rdm×

dv

h ,

and the output matrix W o
i ∈ R

dv

h
×do , and takes

the hidden states H ∈ Rl×dm of the previous layer
as input, where d denotes the dimension of the
model, h represents the number of head, and i
denotes the index of layer number. The output of
attention is given by:

Qi,Ki,Vi = HW q
i ,HW k

i ,HW v
i (1)

Attention (Qi,Ki,Vi) = SoftMax

(
QiK

T
i√

dq|k
h

)
Vi (2)

Hi = Attention (Qi,Ki,Vi)W
o
i (3)

where Qi ∈ Rl×
dq

h ,Ki ∈ Rl×
dk

h ,Vi ∈ Rl×
dv

h

are obtained by the linear transformations of
W q

i ,W
k
i ,W

v
i respectively. Attention(·) is the

scaled dot-product attention operation. Then out-
put of each head is transformed to Hi ∈ Rl×do by
W o

i .

3.2 Framework overview
The entire framework of the proposed Multimodal
Graph Transformer method is depicted in Figure 2.
Without loss of generality, we assume the end task
is VQA in the following discussion while noting
that our framework can be applied to other vision-
language tasks, such as multimodal question an-
swering.

Given the input images and questions, the frame-
work first constructs three graphs, including the
semantic graph, dense region graph, and text graph,
which will be described in more detail in the fol-
lowing sections. The graph G = (V, E), where
V represents the set of nodes in the graph and E
represents the edges connecting them, is fed into
Transformers to guide the training process.

3.3 Multimodal graph construction
We build three types of graphs and feed them into
Transformers: text graph, semantic graph, and
dense region graph. We now introduce them in
detail.

Text graph The task of Visual Question Answer-
ing involves a combination of an image, a question,
and its corresponding answer. To process the ques-
tion, we extract the entities and create a text graph
representation. We then build the graphG = (V, E)
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Input Concepts Semantic graph

Answer
Question 
What color is the thing under 
the food left of the little girl 
with the yellow shirt?

Dense region graph

M
LP ……

Features Transformer

Masks

Figure 2: The figure illustrates the overall framework of our Multimodal Graph Transformer. The input from
different modalities are processed and transformed into corresponding graphs, which are then converted into masks
and combined with their features to be fed into Transformers for downstream reasoning. In detail, semantic graphs
are created through scene graph generation methods, dense region graphs are extracted as densely connected graphs,
and text graphs are generated through parsing.

Figure 3: The naive demonstration of converting a se-
mantic graph into an adjacency matrix. Cells in blue
means ‘0’s for that element in the graph matrix, while
white ones means ‘-inf’s. We employ the matrix as the
mask when computing the quasi-attention.

as shown in the left of Figure 2. The set of nodes,
V , represents the entities and the set of edges, E ,
represents the relationships between the pairs of
entities. This results in:

• A set of N entities, each represented by a
vector of token embeddings, that constitute
the nodes of the graph.

• A set of pairwise relations between entities,
forming the edges of the text graph. The rela-
tionship between entities i and j is represented
by a vector eij which encodes the relative re-
lationships.

Semantic graph In tasks such as multimodal
question answering, there might be additional in-
puts in the form of tables or lengthy paragraph
sentences. To handle these inputs, a linear repre-
sentation of the table can be created and a seman-
tic graph can be constructed using a similar ap-
proach. They are processed using the scene graph
parser (Zhong et al., 2021), which transforms the
text sentence into a graph of entities and relations,

as depicted in Figure 3. The output of the scene
graph parser includes:

• A set of N words that constitute the nodes of
the semantic graph, where N is the number of
parsed words in the texts.

• A set of possible pairwise relations between
words, such as "left" and "on" as shown in Fig-
ure 3, which constitute the edges of our graph.
An edge between words connecting j to i is
represented by eij , namely, the connectivity is

indicated as: eij =

{
0, i, j not connected
1, i, j connected

.

Dense region graph The visual features are ex-
tracted by slicing the input images into patches and
flattening them. A dense region graph G = (V, E)
is then converted into masks, with V being the set
of extracted visual features and E being the set of
edges connecting each feature node, following the
method described in (Kim et al., 2021). This results
in a graph that is nearly fully connected.

The resulting three graphs are then transformed
into adjacency matrices, where the elements are
either -∞ or zero. The conversion process is de-
picted in Figure 3 using the semantic graph as an
example. These adjacency matrices are used inside
the scaled dot-product attention to control the flow
of information, by masking out (setting to−∞) the
values.

3.4 Graph-involved quasi-attention

In order to effectively utilize structured graph
knowledge in our self-attention computation, we
incorporate the graph as an extra constraint in each
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Figure 4: A naive demonstration of adding the graph-
induced mask while computing the quasi-attention when
the inputs are from two modalities. The visual mask is
the mask converted from the dense region graph and the
text mask is converted from the text graph. The cross-
modal mask, which is always set as an all-zero matrix,
is imposed to encourage the model to learn the cross-
attention between the image features and text features,
thus facilitating the alignment across them.

attention head by converting it into an adjacency
matrix. The graph matrix, denoted as G, is con-
structed by combining various masks. An illustra-
tion of this process can be seen in Figure 4. The
visual mask is generated from the dense region
graph, while the text mask is derived from the text
graph. Additionally, the cross-modal mask is set to
an all-zero matrix to encourage the model to learn
the cross-attention between visual and text features,
thereby promoting alignment across the different
modalities.

Within the context of adding graph information,
when vision graph mask and text graph mask are
concatenated and aligned with image and text fea-
tures, we believe that a more flexible masking-out
mechanism is beneficial, rather than keeping a sin-
gle constant mask matrix inside the Softmax op-
eration. Drawing insights from Liu et al. (2021),
where they include a relative position bias to each
head in computing similarity, we also intuitively
parameterize a trainable bias Ĝ and involve it in
the training process. Finally, we compute the quasi-
attention as follows:

Attention = SoftMax(
QiK

T
i√

dq|k
h

+G+ λĜ)Vi,

(4)
where λ is the tradeoff hyper-parameter that con-

trols the contribution of Ĝ, and G is our graph-
induced matrix constructed by concatenating a
graph matrix both from the vision and the language
end. Here for clear clarification, we use G and Ĝ
to distinguish the graph matrices fixed and train-
able, respectively. During training, G is frozen as
before and does not receive gradient updates, while
Ĝ contains trainable parameters.

We now introduce the motivation behind adding

two types of graph matrices. We perform the mask-
ing process by adding G when computing the quasi-
attention because it can be interpreted as a form
of attentional pooling (learning to align), in which
each element of G pools all relevant information
across all elements of the relative importance ma-

trix computed by

(
QiK

T
i√

dq|k
h

)
. Hence during fine-

tuning, the model ignores redundant features and
only focuses on useful information. The mask can
also force the model to learn the cross attention
between features from the images and questions
and perform aligning across them. And the train-
able bias Ĝ captures information gained during the
training process. Such information is valuable for
fine-tuning, making the Transformer more robust
and helping it gain numerical stability.

3.5 Training
The interdependence of output features from vari-
ous modalities calls for a unified optimization ap-
proach for the Transformers in both the visual ques-
tion answering and multimodal question answering
tasks. To accomplish this, we implement a kind of
end-to-end training, which ensures the optimality
of the models. The final outcome of our models
is a classification logit, which is generated by the
VQA models that select the best answer from the
available candidate answers. To evaluate the accu-
racy of the models, we compute the cross-entropy
loss (Zhang and Sabuncu, 2018) using the output
logits produced by the Transformer. This measure
helps us determine the difference between the pre-
dicted class probabilities and the actual class labels.

4 Experiments

4.1 Datasets
VQA v2 The VQA v2 dataset (Goyal et al., 2017)
extends the VQA (Antol et al., 2015) dataset to bet-
ter balance visual and textual information through
the collection of complementary images. Each
question in VQA v2 is associated with a pair of
similar images with different answers, resulting in
a total of 1.1 million QA pairs and 204,000 im-
ages. The data split for VQA v2 includes a train-
ing set with 83,000 images and 444,000 questions,
a validation set with 41,000 images and 214,000
questions, and a test set with 81,000 images and
448,000 questions. The annotated answers are in
natural language, but they are commonly converted
to a classification task with 3,129 answer classes.
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Table 1: Accuracy (%) comparison of different methods on the GQA and VQA v2 test-dev. Ours has the second best
performance and is comparable to state-of-the-art methods. After applying our proposed quasi-attention mechanism
and exploiting the use of graphs, there is also a 2% improvement of overall accuracy on the LXMERT baseline,
suggesting the generalization ability of our method.

Dataset Method Open questions Binary questions Overall accuracy

GQA

LXMERT (Tan and Bansal, 2019) - - 60.0
LXMERT w/ Graph (Tan and Bansal, 2019) - - 61.4

HANs (Kim et al., 2020) - - 69.4
NSM (Hudson and Manning, 2019b) 49.3 78.9 63.2

OSCAR (Li et al., 2020) - - 61.6
VinVL (Zhang et al., 2021) - - 65.1

Multimodal Graph Transformer (Ours) 59.4 80.5 68.7

VQA v2

LXMERT (Tan and Bansal, 2019) - - 72.4
HANs (Kim et al., 2020) - - 65.1

NSM (Hudson and Manning, 2019b) - - 63.0
OSCAR (Li et al., 2020) - - 73.8

VinVL (Zhang et al., 2021) - - 76.6
Multimodal Graph Transformer (Ours) 66.5 87.0 74.5

As described by Anderson et al. (2018), the model
selects the answer to each question from a set of
3,129 most frequent answers. Following this con-
vention, we fine-tune the multimodal graph trans-
former model on the VQAv2 training and valida-
tion sets, while reserving 1,000 validation images
and related questions for internal validation.

GQA The GQA dataset contains 22M questions
over 113K images. The questions in GQA are
designed to require multi-hop reasoning to test the
reasoning skills of VQA models. GQA greatly
increases the complexity of the semantic structure
of questions, leading to a more diverse function
set. The real-world images in GQA also bring in
a bigger challenge in visual understanding. We
conduct experiments on the public splits (Hudson
and Manning, 2019a) of the GQA dataset and also
treat the task as the classification task reffering to
the VQA v2 setting.

MultiModalQA MultiModalQA (MMQA) con-
tains 29, 918 questions. We split the dataset into
23,817 training, 2,441 development (dev.), and
3,660 test set examples referring to the official split.
Around 60% of the questions in MMQA are com-
positional. The answer for each question can be a
single answer or a list of answers.

4.2 Baselines

We compare with four state-of-the-art VQA mod-
els: LXMERT (Tan and Bansal, 2019), NSM (Hud-
son and Manning, 2019b), OSCAR (Li et al., 2020),
and VinVL (Zhang et al., 2021).

• LXMERT (Tan and Bansal, 2019) designs five
pretraining tasks: masked language model-
ing, feature regression, label classification,
cross-modal matching, and image question
answering to pretrain a large Transformer
model. Towards this, a large-scale Trans-
former (Vaswani et al., 2017b) model is built
that consists of three encoders: an object re-
lationship encoder, a language encoder, and a
cross-modal encoder.

• NSM (Hudson and Manning, 2019b) predicts
a probabilistic graph that represents its under-
lying semantics and performs sequential rea-
soning over the graph to traversing its nodes
to make the inference.

• OSCAR (Li et al., 2020) uses object tags de-
tected in images as anchor points to signifi-
cantly ease the learning of alignments, improv-
ing previous methods and using self-attention
to learn image-text semantic alignments.

• VinVL (Zhang et al., 2021) developed a new
object detection model to create better visual
features of images than previous classical ob-
ject detection models.

We compare with four baselines introduced
in the MultiModalQA paper (Talmor et al.,
2021): Question-only (Kaushik and Lipton, 2018),
Context-only (Kaushik and Lipton, 2018), Au-
toRouting, ImplicitDecomp.

• Question-only is a sequence-to-sequence
model that directly generates the answer given

194



the question.

• Context-only first predicts the question type
using the classifier and then feed in the rele-
vant context to predict the answer.

• AutoRouting first determines the modality
where the answer is expected to occur, and
then runs the corresponding single-modality
module.

• ImplicitDecomp is a 2-hop implicit decompo-
sition baseline and so far the state-of-the-art
method on the MultiModalQA dataset.

4.3 Implementation details
The input texts undergo preprocessing using a
scene graph parser which extracts entities and
their relationships. The text features are obtained
through a pre-trained BERT tokenizer, allowing
us to extract text spans of individual entities and
text spans containing two related entities. As for
images, we employ the methods described in Doso-
vitskiy et al. (2020); Kim et al. (2021) to extract vi-
sual features and create graph masks. This involves
resizing the shorter edge of the input images while
preserving the aspect ratio and limiting the longer
edge, followed by patch projection and padding for
batch training. The resulting patch embeddings are
used as inputs along with constructed dense region
graph that is densely connected. The Transformer
backbone used in this setting is the pretrained VIT-
B-32 (Dosovitskiy et al., 2020) version, consisting
of 12 layers with a hidden size of H = 768, layer
depth ofD = 12, patch size of P = 32, a multi-layer
perceptron size of 3072, and 12 attention heads. To
test this setting, all inputs and graphs are merged
and processed by the Transformer backbone, which
learns from features from different modalities.

4.3.1 MultiModalQA
We further investigate the effectiveness of our pro-
posed method on MultiModalQA (Talmor et al.,
2021), a recently introduced and demanding task
that requires joint reasoning across various modal-
ities such as texts, images, tables, etc. We em-
ploy a Multimodal Graph Transformer to tackle the
task, using the same approach for extracting vision
and text features as in VQA. Additional modalities,
such as tables, are encoded by linearizing them
and utilizing pre-trained models like RoBERTa-
large (Liu et al., 2019). After generating text
graphs, semantic graphs, and dense region graphs

Table 2: EM (%) and F1 (%) of Multimodal Graph
Transformer and its Transformer baseline on questions
in MultiModalQA that require reasoning over multiple
modalities. Incorporating graph information into the
Multimodal Graph Transformer can boost about 2% F1
and 4% EM performance.

Method EM F1

Question-only 16.9 19.5
Context-only 6.6 8.5

AutoRouting 32.0 38.2
ImplicitDecomp 46.5 51.7

Human 84.8 90.1

Multimodal Transformer w/o Graph 50.1 56.4
Multimodal Graph Transformer (Ours) 52.1 57.7

from input questions, text, tables, and images, we
feed them along with the extracted features into the
Transformer. Unlike the Transformer used in VQA,
which takes inputs from two modalities, the Mul-
tiModalQA Transformer accepts input from three
modalities and performs the final reasoning.

4.4 Results and analysis

Table 1 presents a comparison of the accuracy of
our proposed method on the GQA dataset with
previous state-of-the-art methods. Our proposed
method ranks second in terms of accuracy and out-
performs the third best method by a substantial mar-
gin, with an absolute improvement of over 3% in
overall accuracy. The performance of our method
is comparable to the state-of-the-art method.

We also conducted experiments on the VQA v2
dataset, and the results are summarized in Table 1
and Table 3. As shown, there are significant im-
provements over methods without graphs, suggest-
ing that incorporating graph information into the
Transformer is effective.

Additionally, after incorporating our proposed
graph method into LXMERT, we can observe a
boost in overall accuracy on the GQA dataset,
demonstrating the generalization ability of the pro-
posed method in incorporating graph information
into quasi-attention computation.

Table 2 compares the Exact Match (EM) and
average F1 score of our proposed method on the
MultiModalQA dataset with the baseline. The re-
sults show that our proposed method outperforms
the baseline without the aid of graph information,
demonstrating the generalization of our method to
more complicated vision-and-language reasoning
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Table 3: Ablation Studies on the GQA and VQA v2 Validation Sets. The figure demonstrates the effectiveness of
incorporating graph information into the Transformer architecture through ablation studies performed on the GQA
and VQA v2 validation sets. The results of these studies clearly indicate that including graph information can lead
to an improvement in performance.

Dataset Method Open questions Binary questions Overall accuracy

GQA
One-modality Transformer 47.7 78.1 62.7

Multimodal Transformer w/o Graph 49.9 81.0 65.4
Ours 60.1 90.2 72.4

VQA v2
One-modality Transformer w/ one Transformer 60.5 85.4 70.1

Multimodal Transformer w/o Graph 64.8 86.3 72.1
Ours 66.7 87.2 74.6

tasks.

4.5 Ablation studies
We perform ablation studies to verify the neces-
sity of using two-stream inputs with the help of
graphs to deal with input from different modali-
ties, with GQA dataset as our testing bed. For all
experiments, we use the overall accuracy as the
evaluation metric.

The results presented in Table 3 show the supe-
riority of our proposed Multimodal Graph Trans-
former over the method where a single modality
input is fed into a Transformer. Our method, which
involves dividing the input streams into two sepa-
rate parts and processing each part through a Trans-
former, outperforms the Multimodal Transformer
without Graph. This demonstrates the beneficial
effect of incorporating graph information into the
processing of the input data and performing train-
ing. The use of different input features with the
help of graphs allows for a better alignment of
the information from different modalities, which
is reflected in the improved performance of our
proposed method.

4.6 Qualitative results
One qualitative example is shown in Figure 5. As
can be seen, predictions from Multimodal Graph
Transformer are more relevant to contents of the
input image as the graph information improves the
inferring ability of the Transformer, which further
indicates the effectiveness of Multimodal Graph
Transformer.

5 Conclusions

In this paper, we have presented a novel method to
integrate structured graph information to guide the
Transformers training. Our method can model inter-
actions between different modalities and achieves

Figure 5: A qualitative comparison from VQA v2. fresh
is the ground truth. Predictions from the Multimodal
Graph Transformer (ours) are more relevant to the con-
tents of the input image and achieve a higher confidence
score over the ground truth.

competitive performance on multimodal reasoning
tasks such as VQA and MultiModalQA. Experi-
mental results show that our method outperforms
many other methods on the GQA dataset. More
importantly, the proposed quasi-attention mecha-
nism is model-agnostic and it is possible to apply it
to other Transformer-based methods. We will test
our methods on other vision-and-language reason-
ing tasks and include the comparison with existing
graph representation learning methods in our future
work.

6 Limitations and Potential Risks

The Limitations of the proposed Multimodal Graph
Transformer include the potential preservation of
fairness and bias issues inherent in the pretrained
Transformer models, despite the involvement of
graph information. Additionally, the integration of
graphs may introduce new biases that can further
exacerbate the problem. One potential source of
bias is the vision-and-language dataset itself, which
may favor majority cases and overlook minority
cases. Unfortunately, the proposed method is not
equipped to address these biases and issues, making
further research and consideration crucial when
building upon or directly using this method for
vision and language tasks.
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A Appendix

A.1 Visual Question Answering dataset
To address the problem of visual question answer-
ing, a number of visual question answering datasets
have been developed. The comparison of them
is shown in Table 4. The VQA dataset (Antol
et al., 2015) is developed on real images in MS
COCO (Lin et al., 2014) and abstract scene images
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Table 4: Comparison of VQA datasets

Source of images # images # QA pairs Answer type Evaluation metrics
DAQUAR NYU-Depth V2 1,449 12,468 Open Accuracy&WUPS

VQA COCO 204K 614K Open/MC Accuracy
VQA v2 COCO 204K 1.1M Open/MC Accuracy

COCO-QA COCO 123K 118K Open/MC Accuracy
CLEVR Generated 100K 999K Open Accuracy

GQA Visual Genome 113K 22M Open Accuracy

in Antol et al. (2014); Zitnick and Parikh (2013).
The question-answer pairs are created by human
annotators who are encouraged to ask “interest-
ing" and “diverse" questions. VQA v2 (Goyal
et al., 2017) is extended from the VQA (Antol
et al., 2015) dataset to achieve more balance be-
tween visual and textual information by collecting
complementary images in a way that each ques-
tion is associated with a pair of similar images
with different answers; In the COCO-QA (Ren
et al., 2015a) dataset, the question-answer pairs
are automatically generated from image captions
based on syntactic parsing and linguistic rules;
DAQUAR (Malinowski and Fritz, 2014) is built
on top of the NYU-Depth V2 dataset (Silberman
et al., 2012) which contains RGBD images of in-
door scenes. DAQUAR consists of (1) synthetic
question-answer pairs that are automatically gen-
erated based on textual templates and (2) human-
created question-answer pairs produced by five an-
notators; CLEVR (Johnson et al., 2017) is a dataset
developed on rendered images of spatially related
objects (including cube, sphere, and cylinder) with
different sizes, materials, and colors. The locations
and attributes of objects are annotated for each
image. The questions are automatically generated
from the annotations; GQA is a new dataset for real-
world visual reasoning and compositional question
answering, seeking to address key shortcomings of
previous VQA datasets. Considering questions in
GQA are most objective, unambiguous, composi-
tional, and can be answered by reasoning only on
the visual content. We mainly use the GQA dataset
in this work as it best fits our goal of reasoning. We
also evaluate our methods on the VQA v2 dataset
as it is the most common and general VQA dataset
so far.

Figure 6: Examples from the GQA dataset for visual
reasoning and compositional question answering.

Figure 7: Examples from the VQA v2 dataset for Visual
Question Answering.
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Abstract
Prior studies in privacy policies frame the ques-
tion answering (QA) task as identifying the
most relevant text segment or a list of sentences
from a policy document given a user query. Ex-
isting labeled datasets are heavily imbalanced
(only a few relevant segments), limiting the QA
performance in this domain. In this paper, we
develop a data augmentation framework based
on ensembling retriever models that captures
the relevant text segments from unlabeled pol-
icy documents and expand the positive exam-
ples in the training set. In addition, to improve
the diversity and quality of the augmented data,
we leverage multiple pre-trained language mod-
els (LMs) and cascade them with noise reduc-
tion filter models. Using our augmented data
on the PrivacyQA benchmark, we elevate the
existing baseline by a large margin (10% F1)
and achieve a new state-of-the-art F1 score of
50%. Our ablation studies provide further in-
sights into the effectiveness of our approach.

1 Introduction

Privacy policies describe how service providers col-
lect, manage, and use their users’ data. Understand-
ing them is crucial for users as they can determine
if the conditions outlined are acceptable. Policy
documents, however, are lengthy, verbose, equivo-
cal, and hard to understand (McDonald and Cranor,
2008; Reidenberg et al., 2016). Consequently, they
are often ignored and skipped by users (Commis-
sion et al., 2012; Gluck et al., 2016).

Building question answering (QA) systems for
privacy policies is a stepping stone to allow users
to ask questions about their rights. Prior works
(Harkous et al., 2018; Ravichander et al., 2019)
framed the QA task as a sentence selection task, es-
sentially a binary classification task that identifies
if a policy text segment is relevant to a question.
Since policy documents consist of many sentences
and typically a few are relevant to a question,1 the

1PrivacyQA (Ravichander et al., 2019) dataset has 1,350

Segmented policy document S
(s1) We do not sell or rent your personal infor-
mation to third parties for their direct marketing
purposes without your explicit consent. (sn) ...We
will not let any other person, including sellers and
buyers, contact you, other than through your ...
Queries I annotating the red segment as irrelevant
(i1) How does Fiverr protect freelancers’ personal
information? (i2) What type of identifiable infor-
mation is passed between users on the platform?
Queries R annotating the red segment as relevant
(r1) What are the app’s permissions? (r2) What
type of permissions does the app require?
Queries D that annotators disagree about relevance
(d1) Do you sell my information to third parties?
(d2) Is my information sold to any third parties?

Table 1: QA (sentence selection) from a policy doc-
ument S. Sensitive: For queries R and I, annotators
at large tagged sentence s1 as relevant, and irrelevant
respectively. On the other hand, sentence sn, though
analogous to s1 in meaning, was never tagged as rele-
vant. Ambiguous: For queries D, experts interpret s1
differently and disagree on their annotations.

classification data is imbalanced. In this work, we
attempt to mitigate the data imbalance by augment-
ing positive QA examples. Specifically, we develop
automatic retrieval models to supplement relevant
policy sentences for each user query. We keep the
queries unchanged as they are usually limited to a
few forms only (Wilson et al., 2016).

Unlike other domains, augmenting privacy pol-
icy statements is very challenging. First, they of-
ten describe similar information (Hosseini et al.,
2016). Thus, their annotations are sensitive to small
changes in the text (see Table 1) which may not be
tackled using the existing augmentation methods
based on data synthesis (e.g., mixup (Zhang et al.,
2018), back-translation (Edunov et al., 2018)). For

questions with an average number of answer sentences is 5,
while the average length of policy documents is 138 sentences.
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example, Kumar et al. (2020) identifies that even
linguistically coherent instances augmented via
generative models do not preserve the class labels
well.2 Hence, to reflect the data properties, we
consider a retrieval-based approach to augment the
raw policy statements. Given a pre-trained LM
and a small QA dataset, we first build a dense
sentence retriever (Karpukhin et al., 2020). Next,
leveraging an unlabeled policy corpus with 0.6M
sentences crawled from web applications, we per-
form a coarse one-shot sentence retrieval for each
query in the QA training set. To filter the noisy
candidates retrieved,3 we then train a QA model
(as a filter model) using the same pre-trained LM
and data and couple it with the retriever.

Second, privacy policies are ambiguous; even
skilled annotators dispute their diverse interpreta-
tions, e.g., for at least 26% questions in PrivacyQA,
experts disagree on their annotations (see Table 1).
Therefore, a single retriever model may not cap-
ture all sorts of relevant policy segments written
in various diversified ways. To combat this insuf-
ficient data diversity, we propose a novel retriever
ensemble technique. Different pre-trained models
learn distinct language representations due to their
pre-training objectives, and hence, retriever models
built on them can retrieve a disjoint set of candi-
dates (verified in Section 3). Therefore, we build
our retrievers and filter models based on multiple
different pre-trained LMs (See Figure 1). Finally,
we train a user-defined QA model on the aggre-
gated corpus using them.

We evaluate our framework on the PrivacyQA
benchmark. We elevate the state-of-the-art perfor-
mance significantly (10% F1) and achieve a new
one (50% F1). Furthermore, our ablation studies
provide an insightful understanding of our model.
We will release all data and code upon acceptance.

2 Methodology

The privacy policy QA is a binary classification task
that takes a user query q, a sentence p from policy
documents and outputs a binary label z ∈ {0, 1}
that indicates if q and p are relevant or not. As most
sentences p are labeled as negative, our goal is to
retrieve relevant sentences to augment the training
data and mitigate the data imbalance issue. Given a

2To verify, in our preliminary study, for each positive ex-
ample in the PrivacyQA training set, we augment a new syn-
thesized positive example by en-zh-en back-translation using
Google Translator API, and the performance drops by 3% F1.

3We refer the misclassified candidates as noisy retrievals.
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Figure 1: Our framework. Given a pre-trained LM, we
train (i) a retriever, (ii) a QA model (filter) both on the
small-size labeled data. From an unlabeled corpus, we
first, retrieve the coarse relevant sentences (positive ex-
amples) for the queries in the training set and use the
filter model to filter out noisy ones. We repeat this for
multiple different pre-trained LMs. Finally, we aggre-
gate them to expand the positive examples in the training
set and learn any user-defined final QA model.

QA training dataset D = {(qi, pi, zi)}mi=1, for each
question in D, we (1) retrieve positive sentences
from a large unlabeled corpus. (2) filter the noisy
examples using filter models and aggregate final
candidates. The final candidates are combined with
the base data D to train the end QA model. We
use an ensemble of retrievers and filter models built
upon various pre-trained LMs throughout the whole
process. Details are discussed in the following.

Retriever. Our retriever module is built upon the
Dense Passage Retriever (DPR) model (Karpukhin
et al., 2020). It consists of two encoders Q(⋅) and
P (⋅) that encode the queries and the policy sen-
tences, respectively. The relevance of a query q and
a policy sentence p is calculated by the dot product
of Q(q) and P (p), i.e., sim(q, p) = Q(q)T ⋅P (p).
We train a retrieverRL on D, where the encoders
inRL are initialized with a pre-trained LM L. At
inference, RL retrieves the top-k most relevant
policy sentences from an unlabeled corpus of pol-
icy sentences P = {p1, . . . , pM} for each query
qi in D, i.e., RL({qi}mi=1,P, k) = {(qi, pj , 1) ∶
i ∈ [m], pj ∈ Ptop(qi, k)}, where Ptop(qi, k) ∶=
argmaxP ′⊂P,∣P ′∣=k∑p∈P ′ sim(qi, p).

Filtering Model. To filter out the misclassi-
fied retrievals from RL({qi}mi=1,P, k), we train
a QA (i.e., a text-classification) model (QL) as
a filter to predict whether a query q and a (re-
trieved) policy sentence p are relevant or not (i.e.,
QL(q, p) ∈ {0, 1}). Note that, the retriever model
is a bi-encoder model that can pre-encode, index,
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and rank a large number of candidates. In con-
trast, our filtering model is a single cross-encoder
model that can achieve comparatively higher per-
formances (Humeau et al., 2019) (i.e., hence better
as a filter) but can not pre-encode and hence can not
be used for large-scale retrieval (more differences
are below and in Appendix F). Once the retrieval
is done, QL serves as an inexpensive binary clas-
sifier which naturally suits as a filter and fit into
the pipeline. We verify the effectiveness of our
filtering in Section 3.4. We denote retrieval outputs
after filtering as DL = {(q, p, 1) ∶ QL(q, p) =
1,∀(q, p, 1) ∈ RL({qi}mi=1,P, k)}.

Training ofQL andRL. Both the single encoder
in QL and the two encoders in RL are initialized
with the same pre-trained LM L (e.g., BERT). Both
are then fine-tuned as a binary classifier using the
paired (query and policy is relevant or not) training
data D. Additionally, to better-train the relatively
weak bi-encoderRL, we consider the in-batch neg-
ative examples schema (Henderson et al., 2017;
Parvez et al., 2021) and its hyper-parameters are
tuned using mean ranking or mean reciprocal rank-
ing (MRR) loss. At inference, for query q and
candidate p, raw scores from RL is used to rank
and prediction {0,1} from QL is used to filter p.

Ensemble. In order to enhance the diversity and
the quality of the retrieved candidates, we use a
set of pre-trained LMs L = {L1, . . . , Ll} and ag-
gregate all the corresponding retrieved corpora,
Daug = ⋃L∈LDL. In Section 3, we show that
retrieved corpora using multiple pre-trained LMs
with different learning objectives can bring a differ-
ent set of relevant candidates. Lastly, we aggregate
Daug with D (i.e., final train corpus T = Daug ∪D)
and train our final QA model with user specifica-
tions (e.g., architecture, pre-trained LM).

3 Experiments

3.1 Setup

Evaluation Metrics. We evaluate our approach
on PrivacyQA that is framed as a text classification
task (Ravichander et al., 2019). We use precision,
recall, and F1 score as the evaluation metrics.

Implementations. As for the retrieval database
P , we crawl privacy policies from the most popu-
lar mobile apps spanning different app categories
in the Google Play Store and end up with 6.5k
documents (0.6M statements). By default, all re-
trievals use top-10 candidates w/o filtering. All

Method F Precision Recall F1

Human - 68.8 69.0 68.9

W/o data augmentation
BERT+Unans.

-

44.3 36.9 39.8
BERT (reprod) 48.0±2.0 37.7±1.2 42.2±1.5
PBERT 51.2±0.4 42.7±0.6 46.6±0.4
SimCSE 48.4±0.8 41.4±0.7 44.7±0.7
Retriever augmented

BERT-R
✗ 39.0±0.8 52.4±1.7 44.7±0.4
✓ 48.1±1.4 44.7±0.9 46.3±0.5

PBERT-R
✗ 48.7±1.9 44.1±1.8 46.3±1.6
✓ 49.2±1.6 44.9±2.0 47.0±1.2

SimCSE-R
✗ 47.0±2.1 44.5±2.4 45.7±1.9
✓ 48.6±2.2 43.9±1.2 46.1±1.6

Ensemble retriever augmented
Baseline-E ✗ 22.2±0.8 54.4±0.8 31.4±0.8
ERA ✓ 47.4±0.6 50.5±2.2 48.9±0.8
ERA-D ✓ 51.0±0.4 48.7±0.9 49.8±0.7

Table 2: Test performances on PrivacyQA (mean±std). F
indicates filtering and BERT+Unans. refers to the previ-
ous SOTA performance (Ravichander et al., 2019). Re-
trieved candidates improve all the baseline QA models,
especially when being filtered. Our ensemble retriever
approach combines them and achieves the highest gains.

data/models/codes are implemented using (i) Hug-
gingface Transformers (Wolf et al., 2019), (ii)
DPR (Karpukhin et al., 2020) libraries.

Baselines. We fine-tune three pre-trained LMs on
PrivacyQA as baselines: (i) BERT: Our first base-
line is BERT-base-uncased (Devlin et al., 2019)
which is pre-trained on generic NLP textual data.
A previous implementation achieves the existing
state-of-the-art performance (BERT+Unams. in
Ravichander et al. (2019)). (ii) PBERT: We adapt
BERT to the privacy domain by fine-tuning it using
masked language modeling on a corpus of 130k
privacy policies (137M words) collected from apps
in the Google Play Store (Harkous et al., 2018).
Note that the retrieval database P is a subset of
this data that is less noisy and crawled as a recent
snapshot (more in Appendix E) (iii) SimCSE: We
take the PBERT model and apply the unsupervised
contrasting learning SimCSE (Gao et al., 2021)
model on the same 130k privacy policy corpus. We
also consider three other retrieval augmented QA
models based on individual pre-trained LM without
ensemble: (iv) BERT-R: L = {BERT}, (v) PBERT-
R: L = {PBERT}, (vi) SimCSE-R: L = {SimCSE}.
We first construct T (both settings: w/ and w/o
filter model) and fine-tune on it the corresponding
pre-trained LM as the final QA model. Finally, we
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Query Type % B PB S ERA

Data Collection 42 45 46 46 48
Data Sharing 25 43 37 41 43
Data Security 11 65 61 60 60
Data Retention 4 52 35 35 56
User Access 2 72 48 31 61
User Choice 7 41 60 42 31
Others 9 36 45 52 55
Overall 100 45 47 48 49

Table 3: F1-score breakdown (values are in Appendix
D). B, PB, S refers to retrievers BERT-R, PBERT-R,
and SimCSE-R. Different models performs better for
different types (black-bold). ERA combines them and
enhances performances for all categories (except: red).

consider one more ensemble retrieval augmented
baseline (vii) Baseline-E, which is precisely the
same as ours (settings below), except there are no
intermediate filtering models.

Ours. We construct the augmented corpus T
using (i) all 3 aforementioned pre-trained LMs:
L = {BERT, PBERT, SimCSE} (ii) domain adapted
models only: L = {PBERT, SimCSE}. For brevity,
we call them: Ensemble Retriever Augmenta-
tion (ERA) and Ensemble Retriever Augmentation–
Domain Adapted (ERA-D). By default, we fine-
tune SimCSE as the final QA model.

3.2 Main Results

The results are reported in Table 2. Overall, do-
main adapted models PBERT and SimCSE excel
better than the generic BERT model. The retrieval-
augmented models enhance the performances more,
especially the recall score, as they are added as ad-
ditional positive examples. However, these models
may contain noisy examples (see Table 4), which
lowers precision. Filtering these examples leads
to improved precision for all retrievers. Finally,
ERA and ERA-D aggregate these high-quality fil-
tered policies–leading toward the highest gain (10%
F1 from the previous baseline) and a new state-of-
the-art result with an F1 score of ∼50. Note that
Baseline-E unifies all the candidates w/o any fil-
tering performs considerably worse than all other
models, including each individual retrieval model:
Baseline-E augments more candidates as positives,
which explains the highest recall score; in the mean-
time, as it does not filter any, the corresponding
precision score is oppositely the lowest.

SimCSE-R

BERT-RPBERT-R

904 22

18

6446

6720 5834

15

(a)

SimCSE-R

BERT-RPBERT-R

338 5

4

1390

1563 2719

3

(b)

Figure 2: Venn diagram of low mutual agreement (<1%)
among retrievers (a); even amplified after filtering (b).

3.3 Analysis

Table 3 shows the performance breakdown for dif-
ferent query types (more in Appendix D). For ques-
tions related to data collection, data sharing, and
data security, the performance difference among
the models is relatively small (≤ 5% F1); for data
retention and user access, BERT-R, that is pre-
trained on generic NLP texts, performs signifi-
cantly well (> 15% F1), possibly because the an-
swers to these query types focus on providing nu-
merical evidence for the questions (e.g., How many
days the data are retained?) that is less relevant to
the domain of privacy policies; and for other types
of questions the domain adapted models performs
better (> 15% F1). Overall, the individual retrieval
augmented models based on LM pre-trained w/ dif-
ferent corpora and objectives perform at different
scales for each type, and combining their expertise,
ERA enhances the performances for all types.

Next, we show the Venn diagram of overlapping
retrievals in Figure 2. Although policy statements
describe similar information (i.e., have common
phrases), they are often verbose and equivocal (i.e.,
multiple-different interpretations). Consequently,
retrievers w/ different objectives and training cor-
pora rank them differently. Therefore, although
being retrieved from the same corpus, candidates
retrieved by different models rarely match fully but
may have notable overlapping information (word-
s/phrases) and improve their performances equi-
tably. For example, while the performances of
BERT-R, PBERT-R and SimCSE-R w/ filtering are
similar (∼46) in Table 2, from Figure 2 their over-
lapping (exact match) is < 1% (qualitative exam-
ples in Appendix G). At the same time, their raw re-
trieval corpora have a high BLEU score of (≥ 0.78).
This validates our hypothesis that retrievers built
upon different pre-trained LMs learn distinct repre-
sentations and hence retrieve diverse candidates.

204



3.4 Ablation Study

Sampling to tackle data imbalance. The prelim-
inary experiments studied rebalancing techniques
like equal sampling, but oversampling does not add
new information and undersampling limits data,
leading to poor generalization on unseen test data.
Using equal positive and negative sub-sampled
training instances resulted in a 9% drop in F1 score.
Even augmented with a higher number of filtered
positive examples retrieved by a single retriever
model does not perform as well as when a lower
number of ensemble-based positive instances are
augmented. From Table 8 in Appendix, augment-
ing with a high number of filtered positive exam-
ples from a single retriever model performed worse
than using a lower number of ensemble-based posi-
tive examples–suggesting the need for diverse and
high-quality knowledge not present in training data.

A common filter. Performances of ERA (last row
in Table 3) with a common filter model based on
SimCSE for all the retrievers regardless of their
corresponding pre-trained models are 49.2, 45.2,
and 47.1, respectively–validating the requirement
of filtering using the corresponding pre-trained LM.

Other pre-trained LM as the final QA model.
Fine-tuning PBERT instead of SimCSE on T (last
two rows in Table 2) becomes: 47.0, 47.1, 47.0 and
51.0, 45.9, 48.3, respectively–showing that ERA is
generic to end model choices.

Which pre-trained LMs to use? Table 3 shows
ERA-D that combines fewer pre-trained LMs
can outperform the one with more models, ERA.
Though here we consider a simple approach (in-
domain) for selecting the potential subset of mod-
els, this paves a new direction for future research
(e.g., Parvez and Chang (2021)).

Recall performances on PrivacyQA dataset.
Example retriever BERT-R scores the recall@k (k
up to 10) values as 17, 28, 36, 42, 48, 53, 58,
59, 63, 67 respectively while the (cross-encoder)
BERT QA model (i.e., filter model) achieves a re-
call (same as recall@1) of ∼ 37. This shows the
effectiveness of our designed filter model.

Can the final QA model be used as a filter and
impact of filter models on the end performance?
The final QA model can be used as a filter model.
As for the single retriever model-based augmenta-
tion, the performance of the downstream end task
depends on the performance of the retriever model,
the filtering model, and the end QA model. A

Q: do you sell my photos to anyone?

Gold: i) We use third-parties to serve ads on our
behalf across the Internet. (ii) We may share per-
sonal information within our family of brands. (iii)
From time to time we share the personal informa-
tion we collect with trusted companies who work
with or on our behalf. (iv) No personally identifi-
able information is collected in this process.

Correct Retrievals: (i) SimCSE-R: The Applica-
tion does not collect or transmit personally iden-
tifiable information such as your name, address,
phone number or email address. (ii) PBERT-R: We
also use the Google AdWords to serve ads on our
behalf across the Internet and sometimes on this
Website. (iii) BERT-R: To organ and tissue dona-
tion requests: By law, we can disclose your health
information to organ procurement organizations.

Incorrect Retrievals: (i) BERT-R: These are not
linked to any information that is personally iden-
tifiable. (ii) SimCSE-R: When you upload photos
to our platform or give us permission to access the
photos on your device, your photo content may
also include related information such as the time
and place your photo was taken and similar “meta-
data” captured by your image capture device.

Table 4: Example retrieved policies. Retrieved candi-
dates are distinct from expert annotated ones and can
bring auxiliary knowledge to the model. Filtering is
needed as inappropriate candidates can also be retrieved.

stronger filter model leads to better end QA per-
formance in general. With a BERT-R retriever and
BERT end QA model, the use of a PrivacyBERT
filter model improves that of a BERT filter model
from 46.3 to 46.8. However, when doing the en-
sembling using a combination of retriever and filter
models from the same pre-trained language model
(PLM) results in even better performance than us-
ing a stronger filter model from different PLMs.
Qualitative examples. Table 4 shows some ex-
ample retrievals of different models. Retrieved
candidates are distinct from expert annotated ones
and can bring auxiliary knowledge to the model.

4 Conclusion

We develop a noise-reduced retrieval-based data
augmentation method that combines different pre-
trained language models to address the data im-
balance issue in privacy policy QA. However, our
approach can possibly be adapted to other domains
and we leave the exploration as the future work.
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Limitations

In this work, we develop a retrieval-augmented QA
framework specifically for Privacy Policies. Its
effectiveness rooted on the characteristics of dis-
joint retrievals from different pre-trained language
models (PLMs). Although this focused work com-
pletely aligns, addresses and adheres to the guide-
lines for a short-paper in this venue, we have not
performed any experiments on data outside this pri-
vacy policy domain. Hence, the applicability of our
method for any generic data domain is unknown.
While the time/latency and resource utilization re-
mains unchanged at inference-time, using multiple
retriever modules our method introduce an addi-
tional overhead in model training. Using different
implementation, PLMs, and random seeds may also
lead to results that could be different from ours.

Ethics Statement

In this work, our approach crawls an unlabeled
privacy policy corpus from the web policy doc-
uments specifically from the Google play store
which we use as a retrieval database. Although
these documents are completely publicly available
and was used only for research purpose, they may
contain some nomenclature of certain persons, ob-
jects, products, users, developers, or production
houses (i.e., industries). We neither obfuscate nor
make any altercation/modification to them.
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Supplementary Material: Appendices

A Related Works

A line of works focuses on using NLP techniques
for privacy policies (Wilson et al., 2016; Hark-
ous et al., 2018; Zimmeck et al., 2019; Bui et al.,
2021; Ahmad et al., 2021). Besides the QA tasks
as sentence selection, Ahmad et al. (2020) pro-
pose another SQuAD-like (Rajpurkar et al., 2016)
privacy policy reading comprehension dataset for
a limited number of queries. Oppositely, we fo-
cus on the more challenging one, which allows
unanswerable questions and “non-contiguous” an-
swer (Ravichander et al., 2021). In relevant liter-
ature works, retrieval augmented methods are ap-
plied in various contexts including privacy policies
(e.g., Van et al. (2021); Keymanesh et al. (2021);
Yang et al. (2020)). Non-retrieval data aggregation
has also been studied under different NLP con-
texts (e.g., bagging (Breiman, 1996), meta learning
(Parvez et al., 2019)). However, we uniquely aggre-
gate the retriever outputs using different pre-trained
language models.

B Limitations/Reproduction

In this paper, we show that leveraging multiple dif-
ferent pre-trained LMs can augment high-quality
training examples and enhance the QA (sentence
selection) task on privacy policies. Our approach
is generic and such unification of different kinds
of pre-trained language models for text data aug-
mentation can improve many other low-resourced
tasks or domains. However, it is possible that our
approach:

• may not work well on other scenarios (e.g.,
domains/language or tasks etc.,).

• subject to the choice of a particular set of mod-
els. For example, as mentioned in Section, 3.4,
fine-tuning pre-trained models other than Sim-
CSE (Gao et al., 2021) as the final QA model
achieve lower gain.

• may not work for certain top-k retrievals. For
example, from Table 8, we get different results
with different scales for variable top-k values
(e.g., top-10, top-100).

• uses the same set of hyperparameters for all:
– QA model:

* learning rate: 2e−5,
* train epoch: 4,
* per gpu train batch size: 31,
* num gpus: 4

* fp16 enabled
* others: mostly default as in Hugging-

face
* train time: around 2 hours
* Higgingface transformer version

0.3.2. (it has Apache License 2.0)
– Retriever model:

* learning rate: 2e−5,
* train batch size: 16,
* train epoch: 100,
* global_loss_buf_sz 600000,
* others: mostly default as in DPR (It

has Attribution-NonCommercial 4.0
International license)

* num gpus: 3
* Higgingface transformer version

0.3.2 (it has Apache License 2.0)
* train time: around 12-18 hours

As our primary goal is on the retrieval-based
data augmentation technique, we expect further op-
timization of task-specific model hyperparameters
to improve performance. Note that our results are
based on upto 4 runs using different random seeds.

C Privacy Policy Data Crawling &
Retrieval Statistics

We crawl our English retrieval corpus from Google
App Store using the Play Store Scraper4.

Query Type No. of Retrieval

Data Collection 2893
Data Sharing 1848
Data Security 891

Data Retention 542
User Access 145
User Choice 335

Others 14

Table 5: Retrieval statistics per query type.

However, below is the statistics of our (ERA)
augmented corpus per each question category in
the PrivacyQA training set.

D PrivacyQA Dataset and Breakdown of
Performance in Absolute Numbers

Table 6 shows the accuracy breakdowns in abso-
lute numbers. In addition, A brief summary of the

4https://github.com/danieliu/play-scraper
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Query Type total B PB S ERA

Data Collection 6280 1901 1157 1186 1806
Data Sharing 4734 1332 777 1092 1268
Data Security 994 416 399 423 393
Data Retention 453 150 98 110 173
User Access 221 89 47 43 87
User Choice 493 91 49 24 55
Others 28 2 1 2 4
Overall 10332 3135 2084 2334 2935

Table 6: Number of correct predictions. Note that F1-score is not proportional to the accuracy. B, PB, S refers to
retrievers BERT-R, PBERT-R, and SimCSE-R.

PrivacyQA

Source Mobile application
Question annotator Mechanical Turkers
Form of QA Sentence selection
Answer type A list of sentences
# Unique policy docs train: 27, test: 8
# Unique questions train: 1350, test: 400
# QA instances train: 185k, test: 10k
Avg Q. Length train: 8.42 test: 8.56
Avg Doc. Length train: 3.1k, test: 3.6k
Avg Ans. Length train: 124, test: 153

Table 7: Brief summary of PrivacyQA.

PrivacyQA benchmark is in Table 7. Note that the
questions in Privacy can be categorized into a few
OPP-115 classes. These categories are enlisted in
Table 3 in the main paper and the details of each
category can be found in Wilson et al. (2016).

E Difference Between Pre-training and
Retrieval Corpus

130k documents were collected before 2018 and
by that time, the GDPR5 and CCPA6 were not en-
forced by then. Thus, the 130k documents are
out-of-date and some content might not be com-
prehensive as the retrieval corpus. Besides, the
130k documents provided by (Harkous et al., 2018)
contains some noises since we observe that the doc-
uments are not all written in English. However, as
the data size is larger, we still use it for pre-training.
In contrast, our corpus was collected after 2020 and
we filtered out some possible noises (e.g., filtering
out non-English document) while crawling.

5https://gdpr-info.eu/
6https://oag.ca.gov/privacy/ccpa

F Difference Between the Filtering Model
and the Retriever

The retriever model is a bi-encoder model whose
model parameters are fine-tuned with in-batch neg-
ative loss (discussed in Section 2 in the main paper),
hyper-parameters are tuned based on average rank-
ings (https://github.com/facebookresearc
h/DPR/blob/a31212dc0a54dfa85d8bfa01e1669
f149ac832b7/train_dense_encoder.py#L294)
and that can pre-encode, index and rank a large
number of candidates while our filtering model is
a cross-encoder text-classifier (e.g., single encoder
fine-tuned BERT) that is fine-tuned w/o any addi-
tional in-batch negatives and in-general achieves
comparatively higher performance (Humeau et al.,
2019) (i.e, better as a filter) but can not pre-encode
and hence can not be used for large scale retrieval.

Method Filter top-k Precision Recall F1

BERT-R
✗ 10 39.9 50.8 44.7
✓ 10 46.5 45.5 46.0

PBERT-R

✗ 10 48.4 45.6 46.9
✓ 10 46.9 43.3 45.1
✗ 50 47.8 45.5 46.7
✓ 50 49.5 46.3 47.8

SimCSE-R

✗ 10 48.4 47.2 47.8
✓ 10 49.4 44.8 47.0
✗ 100 42.1 41.3 41.7
✓ 100 51.0 45.2 47.9

Table 8: Model performances with and without filter-
ing (i.e., w/o the filter model) with top-k. In general,
without filtering, augmenting the retrieved candidates
enhances recall but may reduce the precision (and hence
may not improve the overall F1). Filtering, however,
improves the performance, especially with larger top-
k candidates. In above, top-100 augmented examples
(∼13K total positives after filtering) retrieved by a sin-
gle retriever perform worse than with top-10 examples
by ERA or ERA-D (total 7K or 4K positive examples)
reported in Table 2 in the main paper.

209

https://github.com/facebookresearch/DPR/blob/a31212dc0a54dfa85d8bfa01e1669f149ac832b7/train_dense_encoder.py#L294
https://github.com/facebookresearch/DPR/blob/a31212dc0a54dfa85d8bfa01e1669f149ac832b7/train_dense_encoder.py#L294
https://github.com/facebookresearch/DPR/blob/a31212dc0a54dfa85d8bfa01e1669f149ac832b7/train_dense_encoder.py#L294


G More Qualitative Examples

The below tables show some example retrievals of
different models. Retrieved candidates are distinct
from expert annotated ones and can bring auxiliary
knowledge to the model.

Q: do you sell my photos to anyone?

Gold: i) We use third-party service providers to
serve ads on our behalf across the Internet and
sometimes on the Sites. (ii) These companies may
use your personal information to enhance and per-
sonalize your shopping experience with us, to com-
municate with you about products and events that
may be of interest to you and for other promo-
tional purposes. iii) Your use of our Application
with that healthcare institution may be subject to
that healthcare institution’s policies and terms. (iv)
We may share personal information within our
family of brands. (v) From time to time we share
the personal information we collect with trusted
companies who work with or on behalf of us. (vi)
No personally identifiable information is collected
in this process. (vii) We use third-party service
providers to serve ads on our behalf across the In-
ternet and sometimes on our Sites and Apps.

Correct Retrievals: (i) The Application does not
collect or transmit any personally identifiable in-
formation about you, such as your name, address,
phone number or email address. -(SimCSE-R) (ii)
Some of this information is automatically gathered,
and could be considered personally identifiable in
certain circumstances, however it will generally
always be anonymised prior to being viewed by
Not Doppler, and never sold or shared. -(BERT-
R) (iii) We also use the Google AdWords service
to serve ads on our behalf across the Internet and
sometimes on this Website. -(PBERT-R) (iv) To
organ and tissue donation requests: By law, we
can disclose health information about you to organ
procurement organizations. -(BERT-R)

Incorrect Retrievals: (i) When you upload your
photos to our platform or give us permission to ac-
cess the photos stored on your device, your photo
content may also include related image informa-
tion such as the time and the place your photo was
taken and similar “metadata” captured by your im-
age capture device. -(SimCSE-R) (ii) These are
not linked to any information that is personally
identifiable.-(BERT-R)

Table 9: A fraction of retrieval examples (i).

Q: who all has access to my medical information?

Gold: i) Apple HealthKit to health information
and to share that information with your healthcare
providers. ii) Your use of our Application with
that healthcare institution may be subject to that
healthcare institution’s policies and terms.

Correct Retrievals: (i) We may share your infor-
mation with other health care providers, laborato-
ries, government agencies, insurance companies,
organ procurement organizations, or medical ex-
aminers. -(SimCSE-R) (ii) Do not sell your per-
sonal or medical information to anyone. -(BERT-
R) (iii) Lab, Inc will transmit personal health infor-
mation to authorized medical providers. -(PBERT-
R) (iv) To organ and tissue donation requests: By
law, we can disclose health information about you
to organ procurement organizations. -(BERT-R)

Incorrect Retrievals: (i) However, we take the
protection of your private health information very
seriously. -(SimCSE-R) (ii) All doctors, and many
other healthcare professionals, are included in our
database. -(PBERT-R) (iii) You may be able to
access your pet’s health records or other informa-
tion via the Sites. -(BERT-R) (iv) will say “yes”
unless a law requires us to disclose that health
information.-(BERT-R) (v) do not claim that our
products “cure” disease.-(BERT-R) (vi) Has no ac-
cess to your database password or any data stored
in your local database on your devices.-(BERT-R)

Table 10: A fraction of retrieval examples (ii).
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Abstract

Syntax is a fundamental component of lan-
guage, yet few metrics have been employed to
capture syntactic similarity or coherence at the
utterance- and document-level. The existing
standard document-level syntactic similarity
metric is computationally expensive and per-
forms inconsistently when faced with syntacti-
cally dissimilar documents. To address these
challenges, we present FastKASSIM, a met-
ric for utterance- and document-level syntactic
similarity which pairs and averages the most
similar constituency parse trees between a pair
of documents based on tree kernels. FastKAS-
SIM is more robust to syntactic dissimilarities
and runs up to to 5.32 times faster than its prede-
cessor over documents in the r/ChangeMyView
corpus. FastKASSIM’s improvements allow
us to examine hypotheses in two settings with
large documents. We find that syntactically
similar arguments on r/ChangeMyView tend to
be more persuasive, and that syntax is predic-
tive of authorship attribution in the Australian
High Court Judgment corpus.

1 Introduction

Syntax, the form of language, plays a crucial role
in all aspects of natural language and communi-
cation, whether explicitly or implicitly. In story-
telling, writers often have their own styles rooted
in different syntactic tendencies (Feng et al., 2012),
allowing syntax to become indicators in prediction
tasks such as gender (Sarawgi et al., 2011) and au-
thorship (Raghavan et al., 2010) attribution. Syntax
also has social connotations in different cultures
— for example, in Russia, different social and de-
mographic groups tend to use different syntactic
patterns (Bogdanova-Beglarian et al., 2016). Such
examples makes syntactic consistency crucial to
capture in tasks such as machine translation and
dialogue generation so that social conventions are
not lost. Yet, recent research focuses primarily

∗denotes equal contribution.

Utterance 1: When we hate, we
always move away from the grace
of God. When we become
resentful and unforgiving, the
world around us seems spiteful
and meaningless.

Utterance 2: How can you be
skiing if you are already
swimming?

FastKASSIM Score: 0.219

CASSIM Score: 0.838

LSM Score: 0.623

Utterance 1: I like swimming
because it is cool.

Utterance 2: I love running
because it is fun.

FastKASSIM Score: 0.928

CASSIM Score: 0.962

LSM Score: 1.0

Figure 1: Comparison of FastKASSIM, CASSIM, and
Linguistic Style Matching similarity scores. Top: two
dissimilar utterances. Bottom: two similar utterances.
All three metrics have strong agreement in cases of sim-
ilar syntactic structure, but only FastKASSIM is able to
recognize syntactically dissimilar utterances. The parse
trees of these examples are visualized in Appendix D.

on evaluating similarity and coherence in terms
of dimensions like semantics, the meaning behind
language, (with approaches such as BERT embed-
dings (Reimers and Gurevych, 2019; Zhang et al.,
2019b)), or lexical overlap (e.g., BLEU (Papineni
et al., 2002)) — even in work which uses syntax as
an input to improve translation quality (Zhang et al.,
2019a). A lack of work on syntax can be partially
attributed to the absence of a practical, efficient
metric that specifically compares syntax at the ut-
terance level. The current standard metric is CAS-
SIM (Boghrati et al., 2016, 2018), but CASSIM
uses a computationally expensive distance metric
and can yield inconsistencies when comparing syn-
tactically dissimilar documents (e.g., Figure 1). To
address this issue, we introduce FastKASSIM, a
Fast Tree Kernel-bAsed Syntactic SIMilarity Met-
ric1, an improved metric for syntactic similarity at
the utterance- and document-level.

1https://github.com/jasonyux/FastKASSIM
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Like its predecessor, CASSIM, FastKASSIM
computes the constituency parse tree of each sen-
tence in a pair of documents, and the similarity be-
tween each pair of parse trees. But, while CASSIM
used Edit Distance (Pawlik and Augsten, 2011;
Zhang and Shasha, 1989) for similarity, we propose
using a Label-based Tree Kernel (henceforth LTK),
our more syntactically thorough implementation of
the Fast Tree Kernel (Moschitti, 2006). We evalu-
ate FastKASSIM against CASSIM and Linguistic
Style Matching (henceforth LSM; Niederhoffer
and Pennebaker (2002); Ireland and Pennebaker
(2010)). We find that FastKASSIM is more robust
in cases of dissimilarities between documents and
is generally more agreeable with human perception
of differences in syntax. Additionally, the runtime
of LTK is much faster than that of Edit Distance;
it scales linearly with the number of node pairs
with the same label in a pair of parse trees. We
empirically show large improvements in runtime
with FastKASSIM.

Previously, it was difficult to observe the role
of syntax in behavioral phenomena at scale due to
runtime constraints. Here, we contribute a study of
hypotheses in two sets of applications. First, we
examine the relationship between the persuasive-
ness of online arguments and syntactic similarity,
and second, we observe the viability of syntax as
an indicator in authorship attribution. FastKAS-
SIM unlocks potential for evaluatory use in more
contexts where it is important to preserve syntactic
consistency and writing style, e.g., style transfer,
machine translation, and story generation.

2 Related Work

A few early studies focused solely on capturing syn-
tactic structures. Sagae and Gordon (2009) sought
to cluster words by syntactic similarity. In order
to establish a distance metric, they computed the
cosine distance between vector representations of
their unique constituency parses. Other approaches
have used LIWC (Tausczik and Pennebaker, 2010).
Danescu-Niculescu-Mizil et al. (2011) took a prob-
abilistic approach to measure symmetry and influ-
ence of linguistic style.

Other early analytical work found that people
will adjust their syntax to match dialog systems’
syntactic (Stoyanchev and Stent, 2009) and lexi-
cal (Stoyanchev and Stent, 2009; Hoshida et al.,
2017) choices. Reitter et al. (2006) found that in-
dividual syntactic productions would repeat at low

"distances" across utterances in both task-oriented
and “spontaneous” dialog. For instance, Reitter
and Moore (2007) found that syntactic priming was
predictive of success on the HCRC Map Task (An-
derson et al., 1991). Baker et al. (2021) similarly
discussed the use of syntactic similarity and over-
all linguistic style synchrony as an indicator of
trust and cohesion in teamwork settings, and Boncz
(2019) used syntactic similarity in modeling cogni-
tive alignment.

Syntactic features have been shown to improve
prediction performance in downstream tasks, e.g.,
authorship attribution (Posadas-Duran et al., 2014;
Raghavan et al., 2010; Zhang et al., 2018) and gen-
der attribution (Sarawgi et al., 2011). In each case,
the studies found significant performance gains
from models that included syntax features. Despite
interest in syntax and clear improvements in pre-
diction performance, the vast majority of recent
work primarily focuses on semantic, or even lexi-
cal similarities/differences. This ranges from tradi-
tional methods such as TFIDF or Jaccard similar-
ity to modern approaches including BERT embed-
dings (Devlin et al., 2019; Reimers and Gurevych,
2019; Zhang et al., 2019b) and AMR kernels (Opitz
et al., 2021). Some approaches use syntactic fea-
tures specific to certain domains such as Twit-
ter (Alnajran, 2019; Little et al., 2020) or web doc-
uments (Broder et al., 1997; Pereira and Ziviani,
2003). Other metrics include “syntactic elements”
which take on various forms of parts-of-speech ag-
gregation (Alnajran, 2019; Pakray et al., 2011).

A syntactic similarity metric should appropri-
ately consider differences in syntactic structure at
the word-, utterance-, and document-level, as op-
posed to aggregating parts-of-speech or relying on
domain-specific features. To our knowledge, CAS-
SIM is the only metric to do this and has been
proposed as a solution in applications ranging from
measuring communicative alignment (Boncz, 2019;
Baker et al., 2021) to evaluating stylistic creativ-
ity in language learning (Kokkola and Rydström,
2022) to clustering text (Boghrati et al., 2017).
However, CASSIM relies on the expensive Edit
Distance metric, and occasionally assigns high sim-
ilarity scores to documents that appear syntactically
dissimilar. An improved syntactic similarity met-
ric would afford new opportunities, from creating
novel syntax feature vectors for classification tasks
(e.g. authorship and gender attribution), to mea-
suring syntactic coherence in machine translation.
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Algorithm 1 FastKASSIM
1: DOCUMENTS D1, D2

2: for sentences S1, S2 in D1, D2 do
3: Compute Parse Tree(S1), Parse Tree(S2)
4: end for
5: for Parse Trees P1, P2 do
6: Compute Tree Kernel:
7: s← 0
8: for Node Pair n1, n2 in P1, P2 do
9: s← s+∆lb(n1, n2)

10: end for
11: Kernel← normalize(s)
12: end for
13: Hungarian Algorithm Max. Cost Assignment
14: return mean(maximal cost pairings)

3 FastKASSIM

3.1 CASSIM Background
CASSIM (Boghrati et al., 2018) was the first metric
to compute syntactic similarity at the document-
level. Their original algorithm uses the Stanford
Parser (Klein and Manning, 2003; Chen and Man-
ning, 2014) to compute the parse tree for each sen-
tence in a pair of documents, before computing
the Edit Distance (Wagner and Fischer, 1974) be-
tween each parse tree pairing. Then, they construct
a bipartite graph and use the Hungarian Algorithm
for minimum cost assignment (Kuhn, 1955) to pair
each tree in one document to the lowest distance
tree in the second document. They finally average
the Edit Distances of the minimal cost pairings.
When there are different numbers of sentences, the
number of assignments will correspond to the num-
ber of sentences in the document with fewer sen-
tences. Each of that document’s sentences will get
paired with the most similar sentence in the sec-
ond document, and the least similar sentences in
the second document will remain unpaired. The
final Edit Distance between a pair of parse trees
P1, P2 is normalized as EditDistance

Size(P1)+Size(P2)−2 , where
Size(P ) is the number of nodes in P .

An important advantage of CASSIM is that it is
generalizable to any corpus; it does not represent
syntax using platform-specific features like Alna-
jran (2019); Little et al. (2020). However, the cost
of exhaustively using a metric such as Edit Distance
is rather penalizing, as its implementations range in
asymptotic time complexity from Θ(mn) (Wagner

and Fischer, 1974) to O(s ×min(m,n)) (Ukko-
nen, 1985), where m and n are the string lengths,
and s is the maximal Edit Distance.

Algorithm 2 Deltalb Function (∆lb)
1: Tree Nodes n1, n2; cache
2: Decay λ; Subtree/Subset Tree Indicator σ
3: if n1, n2 is cached then
4: return cache(n1, n2)
5: end if
6: if n1, n2 have different labels then
7: return 0
8: end if
9: if both n1, n2 are preterminals then

10: cache(n1, n2)← λ if same label, else 0
11: return cache(n1, n2)
12: end if
13: Product← 1
14: for child c1 of node n1 do
15: Accumulator← 0
16: for child c2 of node n2 do
17: Acc. ← Acc. + Deltalb(c1, c2)
18: end for
19: Product← Product ×(σ+ Acc.)
20: end for
21: cache(n1, n2)← λ× Product
22: return λ× Product

3.2 The FastKASSIM Algorithm
In large multi-sentence documents, repeated Edit
Distance becomes the most expensive component
of CASSIM. Thus, we propose FastKASSIM,
which avoids the expensive Edit Distance com-
putation by using Tree Kernels (Moschitti, 2006).
Tree Kernels can greatly reduce time complexity by
caching between recursive subcalls. The Fast Tree
Kernel algorithm Moschitti (2006) runs in linear
time on average with respect to parse tree sizes.

We propose FastKASSIM, which replaces CAS-
SIM’s Edit Distance with a new normalized Tree
Kernel. Figure 2 provides a high-level overview
of FastKASSIM, which is formally described in
Algorithm 1. However, the Fast Tree Kernel does
not allow for the case in which two parse tree nodes
have matching labels but different productions. We
thus also introduce the Label-based Tree Kernel
(LTK)2, which compares the labels at each node
in a pair of subtrees or subset trees3. This also

2There is a very strong correlation between LTK and the
Fast Tree Kernel (R = 0.97, p<0.001).

3Moschitti (2006) defines a subtree as a node and all its

213



D1

S1: I enjoy reading
books and ...

S2: The nice thing
about ...

D2

S1: When we hate, we
learn to ...
S2: When we learn to
hate more ....

S3: When we think,  
we become ...

D1S1

D1S2

D2S1

D2S2

D2S3

Label-
based
Tree

Kernel

Pairwise Sentence Syntax Similarity Hungarian Max. Cost Assignment Output: Syntax Sim. ScoreInput: Document Pair (D1, D2)

(D1S1, D2S1) => 0.628 
(D1S1, D2S2) => 0.580 
(D1S1, D2S3) => 0.560 
(D1S2, D2S1) => 0.498 
(..., ...)            => ...

0.561

(D1S1, D2S1) 
(D1S1, D2S2) 
(D1S1, D2S3) 
(D1S2, D2S1) 
(..., ...)          

0.628

Figure 2: A high-level illustration of FastKASSIM computation. The parse trees of all sentence pairs between
D1, D2 are computed using LTK. The Hungarian algorithm is used to pair together the most similar parse trees of
each sentence in the two documents by the “maximal cost” (i.e., the largest tree kernels). The score is normalized by
summing the paired kernel values then dividing by the number of sentences in the document with more sentences.
D2S3 is unpaired because D1S1, D2S1 and D1S2, D2S2 are paired, and D2 has more sentences than D1.

more closely follows (Collins and Duffy, 2002),
which proposes comparing the actual subset trees
rooted at two nodes in each parse tree, rather than
the production. Figure 3 depicts the LTK algorithm
computing the number of shared subset trees in a
pair of parse trees. More formally, as described in
lines 7-11 of Algorithm 1, LTK accumulates the
value of ∆lb (Algorithm 2), which is the number
of common fragments rooted in a pair of parse tree
nodes n1, n2.

We follow Moschitti (2006) by normaliz-
ing LTK(T1, T2) as LTK(T1,T2)√

LTK(T1,T1)×LTK(T2,T2)
.

This normalized tree kernel is not biased towards
tree shape, in contrast to CASSIM’s normalized
Edit Distance ( EditDistance

Size(P1)+Size(P2)−2 ). Under CAS-
SIM’s normalization, if two sentences resulted in
the same parse tree size despite being composed
of entirely different labels, the normalized Edit
Distance approaches 0.50 (the expression approx-
imates Size(P1)

2×Size(P1)−2 ). In other words, according
to CASSIM, sentences with the same shape but
different parts-of-speech should be neither similar
nor dissimilar. We further highlight possible ex-
amples of this bias by visualizing parse trees in
Appendix D. Ultimately, our normalized LTK re-
sults in significant runtime improvements over Edit
Distance, as we show in Section 3.3 and derive
in Appendix A, and agrees strongly with human
perception, as we show in Section 4.

Like the original CASSIM algorithm, our high-
level algorithm allows for flexibility in the choice

descendants, whereas a subset tree does not require its leaves
to be terminal.

of which parser to use, allowing for future improve-
ments in runtime and correctness as research in
parsing progresses. FastKASSIM similarly allows
for flexibility in the implementation of tree kernels.
Our implementation will be publicly released upon
acceptance. In order to directly compare FastKAS-
SIM and CASSIM, we default to using the Stanford
Parser (Chen and Manning, 2014) and LTK, our
aforementioned modified approach to the Fast Tree
Kernel (Moschitti, 2006).4

3.3 Overall Metric Runtime Comparison

The largest difference in the runtime of CASSIM
and FastKASSIM is that CASSIM uses a normal-
ized Edit Distance to evaluate parse tree similarity,
while FastKASSIM uses a normalized tree kernel.

LTK recursively computes ∆lb across all n1, n2
pairs in parse trees P1, P2. But, importantly, all
comparisons are cached to avoid repetition. This
results in LTK having an asymptotic runtime com-
plexity of O(S12), where S12 is the total num-
ber of pairs of nodes in a pair of parse trees
P1, P2 that have the same label. We prove this
runtime in Appendix A. This is a large improve-
ment over Edit Distance’s runtime complexity of
O(s × min(m,n)). We confirmed that these
asymptotic improvements apply to real-world uses
cases by comparing how Edit Distance and LTK
scale with the product of parse tree sizes in Figure 6
of the Appendix, finding that LTK scales sublin-
early while Edit Distance scales superlinearly.

4However, we provide users with a native interface to
interchangeably use any parser supported by NLTK (Bird
et al., 2009).
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VPVP .

VB

S1 I eat.

S2 Hey you!

Compute Syntax Tree Compute Num. Shared Subset Trees (SST)Input: Sentence Pair (S1, S2) Output: Syntax Sim. Score

S1 S2

NP

PRP

VP

VBP

.

I eat .
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VB NP
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.

Hey you

S2

NP

S2

VP .

S2

VBP
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S1 S1 S1
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NPVBP
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...
!
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... S1 S2

...

S2S1

VPVP

SUM

Figure 3: Overview of the Label-based Tree Kernel. The parse trees of a pair of sentences are computed, along with
the number of common fragments rooted in each pair of parse tree nodes (i.e., number of shared subset trees). This
is normalized by dividing by the square root of the product of the number of subset trees in each parse tree.

While Figure 6 indicates that LTK can be up to
an order of magnitude faster than Edit Distance,
the largest bottleneck in overall time is still the
time to compute each parse tree. Thus, in Figure 4,
we investigated the difference in "end-to-end" run-
time between FastKASSIM and CASSIM without
precomputing the parse trees.

In this experiment, the ChangeMyView dataset
(henceforth CMV; Tan et al. (2016)) is used, pro-
viding a corpus of unstructured text with large doc-
ument sizes, to evaluate the promises of FastKAS-
SIM and CASSIM for their abilities to process
entire documents. First, we sample entire docu-
ment pairs and record the time it takes to compute
the syntactic similarity of each pair. Each pair is
randomly sampled from the 18,363 posts in the
CMV training set. Then, we exhaustively paired
documents based on the product of their document
sizes, providing an approximation of the number of
comparisons between parse trees. The document
length for each CMV root posts has high variance,
so document length products are grouped into bins.
For each bin, we randomly sample 60 document
pairs and report the average runtime.

Figure 4 shows that FastKASSIM scales well
in runtime as the product of document lengths
increases. For instance, when syntactic similar-
ity between documents of lengths 300 words and
310 words were compared (product of 93, 000),
CASSIM needed on average 113.3 seconds while
FastKASSIM took only 21.3 seconds on average.
Given these drastic improvements in time complex-
ity, it is now more feasible to compute syntactic
similarity at the document level for large corpora.

4 Evaluating FastKASSIM

In this section, we first demonstrate FastKAS-
SIM’s overall ability to differentiate between simi-

Figure 4: Runtime comparison between FastKASSIM
and CASSIM. On the CMV corpus, FastKASSIM runs
2.42 times to 5.32 times faster on average, depending
on document size.

lar and dissimilar documents. Then, we correlate
its scores with CASSIM and LSM. Finally, we
discuss FastKASSIM’s advantages by explaining
discrepancies in scoring.

4.1 Discriminating Between Syntactically
Similar and Dissimilar Documents

Boghrati et al. (2018) validated CASSIM by com-
paring whether it was consistent with human per-
ception of syntactic similarity. The authors asked
Mechanical Turkers to write syntactically simi-
lar sentences given a sentence prompt. This re-
sulted in a dataset of 472 English documents from
118 anonymous human annotators, and the authors
found that CASSIM was able to “identify syntacti-
cally similar documents.”

Following Boghrati et al. (2018), we computed
the syntactic similarity between each pairing of
sentences generated both within the same prompt
and between different prompts. Each individual
prompt is structurally quite different (Table 1). By
construction, documents resulting from the same
prompt should be syntactically similar, whereas
documents resulting from different prompts should
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Prompts
1. The two most important days in your life are the day you
are born and the day you find out why. The nice thing about
being a celebrity is that you bore people and they think it’s
their fault.
2. I am enough of an artist to draw freely upon my imagination.
Imagination is more important than knowledge. Knowledge is
limited. Imagination encircles the world.
3. When we love, we always strive to become better than we
are. When we strive to become better than we are, everything
around us becomes better too.
4. What is the point of being alive if you don’t at least try to
do something remarkable?

Table 1: Prompts for the crowd-sourced corpus collected
by Boghrati et al. (2018).

be dissimilar. As per their work, we fit a maximal
structure linear mixed effect model with an indica-
tor for whether the sentence corresponded to the
same prompt or a different prompt as a fixed effect
and the document ID as a random effect against
standardized syntactic similarity5.

We computed ANOVA of this full model against
the reduced model, which drops the comparison
type indicator as a fixed effect. The ANOVA
χ2 test on the impact of comparison type yields
statistically significant differences in the distribu-
tion of FastKASSIM (χ2 = 1438.9, p < 0.001),
CASSIM (χ2 = 331.84, p < 0.001), and LSM
(χ2 = 201.85, p < 0.001) scores between syntacti-
cally similar and dissimilar documents. FastKAS-
SIM results in the largest effect size, 1438.9, indi-
cating it creates the largest differences in distribu-
tion.

4.2 Correlating Syntax Metrics
LSM6 is a metric computing similarities from func-
tion word categories. This has ties to matching
syntax, as those matching function words corre-
spond to specific parts-of-speech. Moreover, LSM
is a widely accepted metric for synchrony and cor-
respondence of general linguistic style in docu-
ments (e.g. Chartrand et al. (2005); Ludwig et al.
(2013)). We examine the actual similarity scores
calculated in the previous section on the crowd-
sourced document similarity corpus collected by
Boghrati et al. (2018) using each of LSM, FastKAS-
SIM, and CASSIM. In Figure 5, we see that there is
a moderately strong correlation between FastKAS-
SIM and LSM (R = 0.5, p < 0.001). This indi-
cates that FastKASSIM is able to detect matches
in key parts-of-speech. We would not expect to

5We use z-score standardization, x−µ
σ

.
6We compute LSM using an implementation publicly avail-

able at https://github.com/miserman/lingmatch.

see a greatly higher correlation, because LSM is
a measure of function words rather than a holistic
measure of syntax. On the other hand, while we
see a statistically significant correlation between
CASSIM and LSM, its correlation coefficient is
much lower (R = 0.11, p < 0.001), indicating a
smaller connection between CASSIM representa-
tions and function words. This is likely due to the
biased Edit Distance normalization mentioned in
Section 3.1. Moreover, we actually find an over-
all negative correlation between FastKASSIM and
CASSIM (R = −0.33, p < 0.001) with a seem-
ingly bipartite relationship. There is an apparent
disagreement over documents that FastKASSIM
deems dissimilar, with agreement over documents
that FastKASSIM deems similar.

4.3 Discrepancies Across Syntax Metrics

Figure 5 indicates that there are several regions of
disagreement (vertical clustering). In one region
of Figure 5a, FastKASSIM assigned low scores
(less than 0.4) despite LSM ranging from 0.258
to 0.842. Recall that in this corpus, every utter-
ance resulting from the same prompt was perceived
as syntactically similar, and utterances from two
different prompts were perceived as syntactically
dissimilar. We find that in 248 out of 249 cases
where FastKASSIM assigned a score below 0.4
yet LSM assigned a high score (above 0.6), the
two documents being compared came from dif-
ferent prompts. This implies that FastKASSIM
indeed is discriminating between different syntac-
tic structures, whereas LSM may be picking up on
similarities other than syntax, as expected.

Figure 5b does not indicate any obvious relation-
ship between CASSIM and LSM. More surpris-
ingly, Figure 5c shows that for document pairings
that FastKASSIM deems syntactically dissimilar
(values of less than 0.5), there is a very strong neg-
ative correlation between FastKASSIM and CAS-
SIM (R = −0.783, p < 0.001). Visually, there is
a cluster of pairings where FastKASSIM assigns
a value less than 0.4 but CASSIM assigns a value
larger than 0.75. We find that in 677 of the 678 pair-
ings in this cluster, the documents originate from
different prompts, indicating that the documents
are syntactically dissimilar.

We evaluate these discrepancies in Table 2 in
terms of each metric’s ability to correctly iden-
tify documents originating from the same prompt
as syntactically similar and those from differ-
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Figure 5: (a). FastKASSIM v. LSM. Moderately strong positive correlation with R = 0.5 and p < 0.01.
(b). CASSIM v. LSM. Weak but statistically significant positive correlation with R = 0.11 and p < 0.01. (c).
FastKASSIM v. CASSIM. Moderately strong negative correlation with R = −0.33, p < 0.01.

ent prompts as syntatically dissimilar using ac-
curacy, recall, and precision7. In addition to
CASSIM and LSM, we include an evaluation of
BERTScore (Zhang et al., 2019b) and Sentence-
BERT (Reimers and Gurevych, 2019). While they
are not syntax metrics, they are strong embedding-
based metric which may account for syntactic
forms.

As similarity scores lie between 0.0 and 1.0, we
use 0.5 as a boundary between similar and dis-
similar documents. We reason that in unknown
contexts, 0.5 is neutral. We also compare against
quantile transformations of each baseline metric,
which map each metric’s scores to a uniform dis-
tribution (note this is an unfair advantage, since in
real-time deployment, one cannot observe the en-
tire distribution of values), due to their apparent bi-
ases in Figure 5. In Table 2, we find that FastKAS-
SIM holistically outperforms both CASSIM and
LSM, with the exception of similar document re-
call and dissimilar document precision. In these
cases, CASSIM achieves perfect precision and re-
call because it only classified one document pair
as dissimilar. BERTScore similarly yields a small
range in similarity scores on this corpus. After un-
dergoing a quantile transformation, BERTScore’s
sensitivity to syntactic differences is magnified, and
it performs well in the aforementioned categories
but underperforms FastKASSIM in accuracy, simi-
larity precision and dissimilarity recall.

As indicated by its low Dissimilar Document
Recall in Table 2, we found CASSIM frequently
assigned high similarity scores to syntactically dif-
ferent documents. This likely comes from the bias
in its normalized Edit Distance as discussed in Sec-
tion 3.1, and we show the significant improvements

7Exact expressions provided in Appendix B.

Metric Acc. SR SP DR DP
LSM 46.2 92.5 30.8 30.7 92.5
LSMa 65.6 81.1 40.6 60.4 90.6
CASSIM 25.1 100. 25.0 0.11 100.
CASSIMa 48.8 47.7 23.8 49.2 73.8
BERTScore 25.0 100. 25.0 00.0 00.0
BERTScorea 74.6 99.3 49.6 66.4 99.6
Sentence-BERT 18.9 19.8 74.0 2.70 0.20
Sentence-BERTa 34.3 9.50 19.2 59.3 39.3
FastKASSIM 88.3 96.1 69.1 98.5 85.6

Table 2: Evaluation of LSM, CASSIM, BERTScore,
Sentence-BERT and FastKASSIM in terms of Accuracy
(Acc.), Similar Document Recall (SR), Similar Docu-
ment Precision (SP), Dissimilar Document Recall (DR),
and Dissimilar Document Precision (DP). Metrica de-
notes adjusting to a uniform distribution by quantile
transformation.

achieved by FastKASSIM.

Overall, our results indicate that with respect to
human intuition of syntax, FastKASSIM is more
robust than CASSIM, LSM and BERTScore. In
Appendix D, we visualize comparisons of several
pairs of parse trees along with their FastKASSIM
and CASSIM scores.

5 Applications

FastKASSIM is a more accurate and efficient syn-
tactic similarity metric than the current state-of-the-
art, opening the possibility for investigating new
hypotheses in data-heavy fields with large corpora.
Existing applications use syntax metrics for classi-
fication (e.g. Posadas-Duran et al. (2014)) as well
as analytically to measure hypotheses (e.g. Kaster
et al. (2021)). Here, we use syntax as a linguistic
style indicator in authorship attribution, and mea-
sure syntactic similarity to study communication
accommodation in persuasive arguments.
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5.1 Persuasiveness of Syntax Accommodation

Early work in communication accommodation the-
ory found that matching communication styles can
create a sense of familiarity, which improves so-
cial and conversational outcomes (e.g. Curhan and
Pentland (2007); Giles (2016)). While most exist-
ing work has focused on hypotheses at the word-
level (Tan et al., 2016), we hypothesize that CMV
arguments that are more syntactically similar to
opinions may be more persuasive as well.8

On CMV, users write an original post describing
an opinion and allow “challengers” to present argu-
ments attempting to change their opinion. Original
posters (OP) indicate whether their opinions have
been changed by assigning a “delta,” which we
can use an indicator of successful persuasion. We
computed the syntactic similarity between a chal-
lenger’s initial argument and an original poster’s
(OP) original opinion. This choice is made because
the OP presents their full opinion in their original
post, and a challenger typically presents their cen-
tral argument in their initial challenge (Tan et al.,
2016). While many CMV studies predict persua-
sion outcomes, prediction tasks do not reveal the
actual bidirectional relationship between syntactic
similarity and persuasion. We use FastKASSIM to
analyze this relationship.

We find that arguments which eventually lead
to deltas (µ = 0.307) tend to be more syntac-
tically similar to original opinions than unsuc-
cessful (µ = 0.263) arguments (t = 19.016; p
< 0.001). However, this finding does not imply
on its own that syntactically similar arguments are
more persuasive. Thus, we also examined the con-
verse by computing the persuasion rates (propor-
tion of threads receiving deltas) of the most syn-
tactically similar and dissimilar arguments. We
computed the syntactic similarity of each pair-
ing of initial arguments and original opinions and
grouped them into the top and bottom 33% of syn-
tactic similarity. This resulted in a minimum syn-
tactic similarity value of 0.341 for the top 33%
(µ = 0.453) and maximum of 0.171 for the bot-
tom 33% (µ = 0.096). We found that threads
grouped in the bottom 33% of syntactic similarity
only had a persuasion rate of 6.377%, while the
persuasion rate for threads grouped in the top 33%
was nearly twice that, 12.347% (t = 19.135; p
< 0.001). These findings support the hypothesis

8Appendix C includes full details on CMV and preprocess-
ing.

Features Acc.(σ) F1(σ)
Majority Baseline 0.767 0.868
Bag of Words 0.892(0.02) 0.867(0.02)
Bag of Words + Syntax 0.923(0.02) 0.922(0.01)
RoBERTa 0.939(0.01) 0.935(0.00)
RoBERTa + Syntax 0.945(0.01) 0.938(0.01)

Table 3: Judgment test set results comparing accu-
racy and weighted F1 score between unigram counts
and unigram counts augmented with syntactic features.
Standard deviation (σ) given in subscripts.

.

that similar syntactic patterns play a role in persua-
sion — may be an indication of stylistic familiarity
for the OP.

5.2 Authorship Attribution

Much work has examined methods for attributing
authorship based upon linguistic features (Juola,
2008; Raghavan et al., 2010; Seroussi et al., 2011b).
The Judgment dataset (Seroussi et al., 2011a)
contained English judgments delivered by judges
on the Australian High Court from 1913 to 1975.
We classified whether 924 judgments were writ-
ten by Sir Edward McTiernan or Sir George Rich
during non-overlapping time periods (Rich’s judg-
ments from 1913-1928 and McTiernan’s from
1965-2971). We follow the experimental design
and preprocessing steps in Seroussi et al. (2011b)9.

To capture semantics, one setting used normal-
ized Bag of Words with Support Vector Machines
and the other used a state-of-the-art fine-tuned
RoBERTa (Liu et al., 2019) model10. We aug-
mented both semantic settings with a syntactic sim-
ilarity feature vector — for each classification in-
stance, we randomly sampled 25 posts from the
training set and computed the FastKASSIM syntac-
tic similarity between judgments written by Rich
and McTiernan, respectively. The syntactic similar-
ity features consisted of the minimum, maximum,
mean, and standard deviation of these comparisons.
We evaluated our classifier on a 10% withheld test-
ing set11.

Table 3 shows that adding syntactic features to
both semantic models results in gains in both ac-
curacy and weighted F1. This is even the case
when using RoBERTa; we achieve the strongest
performance using RoBERTa with a weighted sum
between textual and syntactic features, fine-tuned

9All experiments were computed on one RTX A6000 GPU.
10Base RoBERTa (123M parameters). We set an initial

learning rate of 2e-5 and a 0.01 weight decay.
11We used 4 seeds to sample our data.
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using modules from the frameworks in Gu and
Budhkar (2021); Wolf et al. (2020). Syntactic sim-
ilarity with reference documents may provide a
strong indicator of writing style.

6 Conclusion

We have introduced FastKASSIM, which has run-
time improvements that scale significantly with
document sizes and achieves better agreement with
human perception of syntactic differences com-
pared to standard syntax metrics. These improve-
ments are possible due to our Label-based Tree
Kernel, which has an improved asymptotic run-
time complexity and a corrected normalization.
FastKASSIM also allowed us to verify hypothe-
ses regarding the importance of syntax both in au-
thorship attribution and social dynamics such as
persuasion. These findings motivate further appli-
cations of syntax.
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Limitations

Our work relies on a couple assumptions. Our
main corpus for evaluation is the crowdsourced
and human-annotated dataset from Boghrati et al.
(2018). As a result, our claim to better represent hu-
man perception of syntax relies on the assumption
that their annotators correctly filter out responses
which are not actually syntactically similar to each
prompt. They had an acceptable Cohen’s Kappa of
0.53. Additionally, we only use corpora that are in
English. Future work should look towards applying
our general approach to other languages.

In our evaluation of FastKASSIM against LSM
and CASSIM, we also evaluate its ability to cor-
rectly identify statements created from the same
prompt as similar and statements created from dif-
ferent prompts as dissimilar (Table 2). In this
evaluation, we assume that 0.50 is an acceptable
threshold for syntactic similarity and dissimilarity,
because without any contextual information, one
would assume that there are an equal amount of

similar and dissimilar documents. Despite this, we
still performed quantile adjustments for each com-
parison metric, uniformly distributing the scores
between 0.0 and 1.0. This gives is an unfair ad-
vantage for the comparison metrics (i.e., CASSIM,
LSM, and BERTScore), since “in-the-wild” it is
impossible to obtain the eventual distribution of
scores. Future work may consider methods to re-
balance each of these scores, including conducting
human evaluation to evaluate whether 0.50 is an
acceptable threshold for syntactic similarity both
before and after each metric undergoes an adjust-
ment to the uniform distribution.

FastKASSIM is a metric for syntactic similarity
between a pair of utterances or documents. How-
ever, similarity is only one dimension of syntax,
which removes some granularity — for instance,
syntactic similarity cannot explain which specific
productions are shared. Similarity metrics like
FastKASSIM instead afford opportunities in a vari-
ety of other applications, such as syntactic coher-
ence in language generation and verifying compu-
tational social science hypotheses.

Additionally, parsing is still a significant bottle-
neck in runtime. Future work may wish to consider
ways to mitigate the cost of parsing. One may also
consider using sequential modeling to generate syn-
tactic parse trees, or to directly model the output of
FastKASSIM.

Ethical Considerations

Our study makes use of three datasets. First is the
set of prompts collected in Boghrati et al. (2018),
which involved anonymous participants creating
fictional statements, so there is no personal infor-
mation involved. Second is the publicly available
r/ChangeMyView dataset collected by Tan et al.
(2016), which consists of statements made by users
behind typically anonymous aliases. Lastly is the
publicly available WikiQA corpus (Yang et al.,
2015), which does not contain identifying infor-
mation.

In our r/ChangeMyView application study-
ing the relationship between syntactic similar-
ity and persuasion, we make the assumption
that r/ChangeMyView is a community represen-
tative of online arguments. However, partially
due to its anonymity, it is unknown whether
r/ChangeMyView is a representative sample with
diversity in location, educational background, so-
cioeconomic status, ethnicity, and many other im-
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portant factors. An ideal study should be able to
control for proxies for individual traits in order to
isolate the impact of syntax itself.

Generally, while most algorithms are not inher-
ently unethical, there is often potential for abuse in
their applications. The individual computations in
the FastKASSIM algorithm do not have any nega-
tive implications, but it is possible to use syntactic
similarity for unethical downstream tasks. For in-
stance, because syntax is an important aspect of
writing style, it is possible that users may try to
adversarially uncover an anonymous author’s iden-
tity. We do not condone the use of FastKASSIM
for any unlawful or morally unjust activities. We
do not propose any new tasks that would introduce
unethical activity.
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A Formalizing FastKASSIM

Figure 6: Runtime Comparison of Edit Distance (ED)
and Label-based Tree Kernel (LTK) on WikiQA with
varying NM (product of parse tree sizes).

The Label-based Tree Kernel recursively com-
putes Deltalb across all n1, n2 pairs in parse trees
P1, P2. The time complexity of ∆lb(n1, n2) has a
ceiling of O(Lh1 ×Lh2), where Lhi is the number of
nodes at height h for a tree rooted at ni, and h is
the minimum height between the two trees. In the
worst case scenario, ∆lb of a fully uncached pair
ni, nj results in recursive calls at every depth level.
∆lb is computed for each node pair, so the ceil-
ing of the tree kernel runtime is O(NM), where
N,M are the total number of nodes in P1 and P2,
respectively.12

O(NM) is a ceiling assuming the worst-case,
where the labels are the same at each comparison,
requiring full recursion. Let us consider there to be
k shared labels in a pair of parse trees.

In each parse tree P1, P2, there will be
C

(1)
i , C

(2)
i connected components, one for each

shared label i ∈ [1, k], where a connected com-
ponent consists of connected nodes with the same
label. Out of the C(1)

i components in parse tree P1,
let N (1)

i,j be the size of each individual component
j. So, for label i = 1, the number of comparisons
follows:

O



C

(1)
1∑

l=1

C
(2)
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m=1

N
(1)
1,l N
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1,m




which represents iterating through every pair of
the C(1)

1 × C(2)
1 possible pairs of connected com-

ponents and computing LTK. Then, for k shared
labels, the worst-case runtime (i.e. the connected

12Note that this is only possible due to ∆lb caching the
repetitive computations when iterating over node pairs.

components do not form shared subtrees), we have
equation 1:

O
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)

(1)

whereN (1)
i , N

(2)
i are the total number of nodes that

have label i in P1, P2 respectively. However, recall
from Algorithm 2 that LTK only iterates through
pairs that share the same label; it does not matter
if the connected components themselves are inter-
twined. Then, further simplifying this term we
have equation 2:

O

(
k∑

i=1

N
(1)
i N

(2)
i

)
= O(S12) (2)

where S12 is simply the total number of pairs in
P1, P2 that have the same label. When all nodes
have the same label, S12 = NM , consistent with
the observed runtime ceiling. Empirically, we see
that the expectation of S12 is much smaller than
NM , as seen by the sublinear time scaling in Fig-
ure 6.

A.1 Scaling with Node Pairings (NM )

Figure 7: Statistics of Parse Trees in WikiQA

We first examine the relationship between LTK
andNM , the number of possible node pairings, us-
ing the WikiQA corpus (Yang et al., 2015), a public
dataset containing annotated question and answer
pairs written in English. This dataset is chosen in
order to compare FastKASSIM and CASSIM on
well-structured text, and because of the ability to
extract clean sentences of various length, which is
crucial in determining NM . The experiment uti-
lized 20,347 answer sentences from the WikiQA
training set. We compute the parse trees prior to
computing the runtimes of Edit Distance and LTK.
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Metric Sim. Dis.
LSM 70.4 56.0
LSMa 72.2 42.6
CASSIM 82.1 82.0
CASSIMa 48.3 50.6
BERTScore 89.9 85.1
BERTScorea 85.7 38.0
Sentence-BERT 60.6 81.4
Sentence-BERTa 26.7 57.7
FastKASSIM 73.1 31.7
FastKASSIMa 86.1 38.0

Table 4: Average score assigned to similarity document
pairings (Sim.) and dissimilar document pairings (Dis.)
by each metric. Metrica denotes an adjustment to a
uniform distribution using a quantile transformation.

Statistics of parse trees from the WikiQA-train cor-
pus are shown in Figure 7.

As the corpus is rather large, we consider sen-
tences with fewer than 30 nodes, which resulted
in a total of 16,591,680 possible pairings. Then,
pairings are grouped by the product of their nodes
N ×M . For each value of N ×M , we track the
cost of computing both the Edit Distance and LTK
for all pairings if there are less than 10 pairs, or
randomly sample 10 pairs if there are more. The
average runtime for both Edit Distance and LTK
for each value of N ×M are shown in Figure 6.

B Metrics for Evaluating FastKASSIM,
CASSIM, and LSM

In Section 4.3 and Table 2, we evaluated FastKAS-
SIM, CASSIM, and LSM in terms of Similarity
Accuracy, Similar Document Recall, Similar Docu-
ment Precision, Dissimilar Document Recall, and
Dissimilar Document Precision. These all follow
the standard formulas for accuracy, recall, and pre-
cision. Adapted to our similarity context:

Similarity accuracy is the sum of the number of
same prompt pairs receiving a score greater than
0.50 and the number of different prompt pairs re-
ceiving a score lower than 0.50 divided by the total
number of pairings.

Similar document recall is the number same
prompt pairs receiving a score greater than 0.50
divided by the total number of pairings originating
from the same prompt.

Similar document precision is the number of
same prompt pairs receiving a score greater than
0.50 divided by the total number of pairings receiv-

ing a score greater than 0.50.
Dissimilar document recall is the number differ-

ent prompt pairs receiving a score less than 0.50
divided by the total number of pairings originating
from different prompt.

Dissimilar document precision is the number of
different prompt pairs receiving a score less than
0.50 divided by the total number of pairings receiv-
ing a score less than 0.50.

C Persuasiveness of Syntactic Similarity:
Additional Context

C.1 CMV Background

We investigate the role of syntax in persuasive
arguments in the r/ChangeMyView13 community
(CMV) on Reddit. CMV users come in "good faith"
that they are open to changing their view on a con-
troversial topic. They write an original post describ-
ing an opinion and allow “challengers” to comment
on their post and attempt to change their opinion.
If their opinion is changed, the original poster (OP)
will indicate this by assigning a “delta” (by typing
either “!delta” or ∆ in response to the persuasive
comment). An OP may choose to present a rebuttal
to a challenger, openly disagree with a challenger,
or simply ignore a challenger (e.g., Figure 8). All
Reddit users use anonymous aliases, unless they
explicitly disclose their identity.

Earlier work found positive relationships be-
tween behavioral mimicry (mirroring behaviors)
and in-person negotiations (Curhan and Pentland,
2007; Maddux et al., 2008). Yet, Healey et al.
(2014) found that in general spoken conversations,
peoples’ syntactic patterns diverged from each
other. We thus investigate the hypothesis that as a
challenger on CMV continues to engage in an ar-
gument with an OP, their syntactic communication
styles may begin to converge in order to “optimize
for social differences.” Additionally, we hypothe-
size that challengers who utilize similar syntactic
patterns, whether intentionally or not, may be more
persuasive.

C.2 Dataset

We use the CMV dataset consisting of 18,363 posts
and 1,114,533 comments written in English and
collected by Tan et al. (2016). As in Tan et al.
(2016), we examine discussion trees with at least
10 replies from challengers and at least one OP

13https://www.reddit.com/r/changemyview/
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Figure 8: An example of a thread on CMV. The OP
presents a set of arguments defending their opinion (or-
ange, top), inviting challengers to contest their opinion
(blue). The OP acknowledged their opinion has been
changed by assigning a delta (orange, bottom).

reply, in order to focus on discussions with “non-
trivial” amounts of engagement. We also filter out
posts which receive more than 10,000 comments
in order to reduce noise from “outsiders” in cases
where a post goes viral. When a challenger com-
ments on an original post, it starts a “thread,” with
the original post (OP’s opinion) taking on the root,
index 0, and the challenger’s comment taking on
index 1. Each additional comment made in reply
extends the thread. We are interested in syntac-
tic accommodation, so we only consider threads
that consist of conversations between the OP and a
single challenger to eliminate confounders. These
preprocessing steps results in a final dataset con-
sisting of 15, 986 posts.

C.3 Dicusssion & Implications

In Section 5.1, we found two very statistically sig-
nificant relationships between syntactic similarity
and persuasive arguments. First, arguments that
eventually lead to deltas tend to be more syntac-
tically similar to original opinions compared to
arguments that do not. Second, the arguments
that are the most syntactically similar to original
opinions actually were nearly twice as likely to
receive deltas than the least syntactically similar
arguments. Altogether, this may imply that syntac-
tically similar arguments are more persuasive. This
idea is supported by the rich body of work suggest-
ing that similarity and communicative familiarity
leads to improved social and conversational out-
comes (Curhan and Pentland, 2007; Giles, 2016;
Kaptein et al., 2014; Maddux et al., 2008; Wetzel
and Insko, 1982).

D Parse Tree Examples

We visualize the constituency parse trees of sev-
eral sentences taken from the corpus collected in
Boghrati et al. (2018) using the online interface of
the Berkeley Neural Parser14, which uses the parser
described in Kitaev et al. (2019).

We first compare the parse trees of the exam-
ples provided in Figure 1. Figure 9 compares the
parse trees of the two similar documents shown in
Figure 1. The first document is composed of one
sentence — “I like swimming because it is cool.”
and the second document is also composed of one
sentence — “I love running because it is fun.” CAS-
SIM assigned a score of 0.962, and FastKASSIM
assigned a score of 0.928. The structure and compo-
sition of these two documents are nearly identical;
the only difference is the production associated
with the words “running” and “swimming.”

Figure 10 is a visualization of the parse trees of
the two dissimilar documents shown in Figure 1.
The first document is composed of two sentences:
“When we hate, we always move away from the
grace of God. When we become resentful and un-
forgiving, the world around us seems spiteful and
meaningless.” The second document is composed
of one sentence: “How can you be skiing if you are
already swimming?” Beyond the differing number
of sentences, the sentences in the first document in-
dividually appear structurally dissimilar compared
to the sentence in the second document. FastKAS-
SIM assigned a low score — 0.219, whereas CAS-
SIM assigned a high score — 0.838.

Figure 11 compares the parse trees of the two
single-sentence documents “How can you be skiing
if you already swimming?” and “Knowledge is im-
portant to succeed.” As is clear from Figure 11, the
two sentences are structurally and compositionally
quite different. FastKASSIM assigned a score of
0.439, whereas CASSIM assigned a score of 0.679.

Figure 12 compares the parse trees of two sepa-
rate documents. The first document is composed of
two sentences: “When we dream, we often search
for deeper meaning. When we search for deeper
meaning, other things become more nuanced too.”
The second document is composed of two sen-
tences as well: “When we concentrate, we try to
do better on a task. When we strive to do better,
we end up doing better too.” The structures of
the two documents appear rather similar, but there
do appear to be some differences in composition

14https://parser.kitaev.io/
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(i.e., in terms of the constituent parts-of-speech).
FastKASSIM assigned a score of 0.656, and CAS-
SIM assigned a score of 0.837. While both scores
are relatively high, FastKASSIM may be more pe-
nalizing towards these types of differences.

Figure 13 compares the parse trees of two sep-
arate documents. The first document is composed
of four sentences: “I am old enough to draw freely
upon my experience. Experience is more important
than luck. Luck can turn. Experience lasts a life-
time.” The second document is composed of one
sentence: “Being loving makes you become better.”
Holistically, the structures of the two documents
are quite different. Beyond the differing number
of sentences in each document, there are also not
any individual sentences between the two docu-
ments that appear particularly syntactically similar.
FastKASSIM assigned a score of 0.15, whereas
CASSIM assigned a score of 0.924.
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Figure 9: A comparison of the parse trees of two syntactically similar documents from Figure 1. Top document: “I
like swimming because it is cool.” Bottom document: “I love running because it is fun.” FastKASSIM similarity
score: 0.928; CASSIM similarity score: 0.962.
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Figure 11: A comparison of the parse trees of two syntactically dissimilar documents. Top document: “How can you
be skiing if you are already swimming?” Bottom document: “Knowledge is important to succeed.” FastKASSIM
similarity score: 0.439; CASSIM similarity score: 0.679.
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Abstract
Current self-training methods such as standard
self-training, co-training, tri-training, and oth-
ers often focus on improving model perfor-
mance on a single task, utilizing differences in
input features, model architectures, and train-
ing processes. However, many tasks in natural
language processing are about different but re-
lated aspects of language, and models trained
for one task can be great teachers for other
related tasks. In this work, we propose friend-
training, a cross-task self-training framework,
where models trained to do different tasks are
used in an iterative training, pseudo-labeling,
and retraining process to help each other for
better selection of pseudo-labels. With two
dialogue understanding tasks, conversational
semantic role labeling and dialogue rewriting,
chosen for a case study, we show that the
models trained with the friend-training frame-
work achieve the best performance compared
to strong baselines.

1 Introduction

Many different machine learning algorithms, such
as self-supervised learning (Mikolov et al., 2013;
Devlin et al., 2019; Liu et al., 2021), semi-
supervised learning (Yang et al., 2021) and weakly
supervised learning (Zhou, 2018), aim at using un-
labeled data to boost performance. They have been
of even greater interest recently given the amount
of unlabeled data available. Self-training (Scudder,
1965) is one semi-supervised learning mechanism
aiming to improve model performance through
pseudo-labeling and has been successfully ap-
plied to computer vision (Lee et al., 2013; Chen
et al., 2021), natural language processing (Dong
and Schäfer, 2011; Bhat et al., 2021) and other
fields (Wang et al., 2019; Kahn et al., 2020).

The main challenge of self-training is how to
select high-quality pseudo-labels. Current self-
training algorithms mainly focus on a single task

∗Work done when interning at Tencent AI Lab.

predicate: 喜欢 (like)

arg-0: 

arg-1: 宫崎骏(Hayao Miyazaki)

知道久石让吗？
(Do you know Joe Hisaishi?)

我很喜欢他。
(I like him so much.)

知道啊，宫崎骏的很多电影配
乐都是久石让的，比如《幽灵
公主》。
(Yes, I do. Many of Hayao 
Miyazaki’s movie soundtracks 

are composed by Hisaishi, such 

as Princess Mononoke).

cross-task supervision

DR

CSRL

context

current utterance

rewritten utterance

predicate-arguments

我很喜欢久石让。
(I like Joe Hisaishi so much.)

Figure 1: An example of cross-task supervision between
a CSRL parser and a DR system in a dialogue. 久石
让( Joe Hisaishi ) from the rewritten utterance provides
cross-task supervision to 宫崎骏( Hayao Miyazaki ),
the predicted arg-1 of喜欢(like) from the CSRL parser,
while我( I ) to the predicted arg-0.

when assessing the quality of pseudo-labels and suf-
fer from gradual drifts of noisy instances (Zhang
et al., 2021). This work is motivated by the observa-
tion that learning targets of tasks represent different
properties of the inputs, and some properties are
shared across the tasks which can be used as super-
vision from one task to another. Such properties
include certain span boundaries in dependency and
constituency parsing, and some emotion polarities
in sentiment analysis and emotion detection. Two
dialogue understanding tasks, conversational se-
mantic role labeling (CSRL) and dialogue rewriting
(DR), are also such a pair, with shared properties
such as coreference and zero-pronoun resolution.
As shown in Figure 1, the rewritten utterance can
be used to generate cross-task supervision to the
arguments of predicate喜欢(like). We leverage the
cross-task supervision from friend tasks – different
but related tasks – as a great criterion for assessing
the quality of pseudo-labels.

In this work, we propose friend-training, the
first cross-task self-training framework. Compared
to single-task self-training, friend-training exploits
supervision from friend tasks for better selection
of pseudo-labels. To this end, two novel modules
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are proposed: (1) a translation matcher, which
maps the pseudo-labels of different tasks for one
instance into the same space and computes a match-
ing score representing the cross-task matching
degree of pseudo-labels from different tasks; (2)
an augmented (instance) selector, which leverages
both the confidence of pseudo-labels from task-
specific models and the matching score to select
instances with pseudo-labels of high quality as new
training data. We choose CSRL and DR as friend
tasks to conduct a case study for friend-training,
and specify the translation matcher and augmented
selector for friend-training between these tasks. Ex-
perimental results of domain generalization and
few-shot learning show friend-training surpasses
both classical and state-of-the-art semi-supervised
learning algorithms by a large margin. To summa-
rize, contributions from this work include:

• We propose friend-training, the first cross-task
self-training framework which exploits super-
vision from friend tasks for better selection of
pseudo-labels in the iterative training process.

• We provide specific modeling of friend-training
between CSRL and DR, with a novel translation
matcher and a novel augmented selector.

• Extensive experiments with CSRL and DR
demonstrate the effectiveness of friend-training,
outperforming several strong baselines.

2 Related Work

Self-training Self-training (Scudder, 1965; An-
gluin and Laird, 1988; Abney, 2002; Lee et al.,
2013) is a classical semi-supervised learning frame-
work (Chapelle et al., 2009) which has been widely
explored in recent years. The general idea of self-
training is to adopt a trained model to pseudo-label
easily acquired unlabeled data and use them to
augment the training data to retrain the model it-
eratively. This paradigm shows promising effec-
tiveness in a variety of tasks: including text classi-
fication (Mukherjee and Awadallah, 2020; Wang
et al., 2020a), image classification (Xie et al., 2020;
Zoph et al., 2020), machine translation (He et al.,
2020) and model distillation (Mukherjee and Has-
san Awadallah, 2020). Co-training (Blum and
Mitchell, 1998) and tri-training (Zhou and Li, 2005)
are similar iterative training frameworks to self-
training but with a different number of models or
considering different views of the training data,
both of which see wide adoption in NLP (Mihalcea,

2004; McClosky et al., 2006; Wan, 2009; Li et al.,
2014; Caragea et al., 2015; Lee and Chieu, 2021;
Wagner and Foster, 2021). These frameworks aim
at improving performance with multiple models
trained on one task, without directly leveraging the
benefit of supervision from related tasks.
Multi-task Learning Multi-task learning (Caru-
ana, 1997; Yang et al., 2021) seeks to improve the
learning performance of one task with the help of
other related tasks, among which two lines of work
are related to ours: (1) semi-supervised multi-task
learning (Liu et al., 2007; Li et al., 2009) combines
semi-supervised learning and multi-task learning.
Liu et al. (2007) exploited unlabeled data by ran-
dom walk and used a task clustering method for
multi-task learning. Li et al. (2009) integrated ac-
tive learning (MacKay, 1992) with the model in
Liu et al. (2007) to retrieve data that are most infor-
mative for labeling. Although these works tried to
utilize unlabeled data to enhance multi-task learn-
ing, our work differs from them in incorporating su-
pervised signals among tasks to select high-quality
pseudo-labels for updating models, which is an iter-
ative training process without additional human an-
notation. (2) Task grouping (Kumar and III, 2012;
Standley et al., 2020; Fifty et al., 2021) aims to
find groups of related tasks and employs multi-task
learning to each group of tasks, with one model for
each group. Our work focuses on training single-
task models, but task grouping techniques can be
used to look for possible friend tasks.

Conversational Semantic Role Labeling CSRL
is a task for predicting the semantic roles of
predicates in a conversational context. Wu
et al. (2021) leveraged relational graph neural net-
works (Schlichtkrull et al., 2018) to model both the
speaker and predicate dependency, achieving some
promising results. However, the current dataset (Xu
et al., 2021) for CSRL is limited to mono-domain.
High-quality labeled data for new domains are
needed to empower more applicable CSRL models.

Dialogue Rewriting DR is commonly framed as a
sequence-to-sequence problem which suffers large
search space issue (Elgohary et al., 2019; Huang
et al., 2021). To address it, Hao et al. (2021) cast
DR to sequence labeling, transforming rewriting
an utterance as deleting tokens from an utterance
or inserting spans from the dialogue history into an
utterance. Jin et al. (2022) improved the continuous
span issue in (Hao et al., 2021) by first generating
multiple spans for each token and slotted rules and
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then replacing a fixed number rules with spans.

3 Friend-training

Friend-training is an iterative training framework to
jointly refine models of several friend tasks. Differ-
ent from self-training, friend-training injects cross-
task supervision into the selection of pseudo-labels.
We first briefly describe self-training before pre-
senting friend-training.

3.1 Self-training

Classic self-training aims at iteratively refining a
model of a single task by using both labeled data
and a large amount of unlabeled corpus. At each
iteration, the model first assigns the unlabeled data
with pseudo-labels. Subsequently, a set of the unla-
beled instances with pseudo-labels is selected for
training, presumably with information for better
model generalization. Then cross-entropy of model
predictions and labels on both gold and pseudo-
labeled data is minimized to update the model:

L =
N∑

i=1

yi log
yi
pi

+ λ
N ′∑

i=1

y′i log
y′i
p′i
, (1)

where the left term is the loss for the labeled data
and the right for the unlabeled data while λ is a
coefficient to balancing them; N (N ′) is the number
of instances, y (y′) is the label and p (p′) is the
output probability of the model.

Self-training is usually limited to only one task,
but there are thousands of NLP tasks already pro-
posed and many of them are related. Models
trained for one task can be great teachers for other
related tasks. We explore this cross-task supervi-
sion in self-training by incorporating two novel
modules introduced in subsection 3.2.

3.2 Friend-training

For friend-training with two tasks,1 we have two
classifiers fa and fb trained on two different tasks
with labeled training sets La and Lb, with expected
accuracies ηa and ηb, respectively. The two datasets
are created independently and the prediction tar-
gets of the two tasks are partially related through
a pair of translation functions Fa : Ŷa → Σ
and Fb : Ŷb → Σ, where Σ is the set of possi-
ble sub-predictions that all possible predictions

1We focus on the two-friend version of friend-training in
this work, however, friend-training can easily be extended to
more than two friends.

of the two tasks Ŷa and Ŷb can be reduced to.
|Ŷa| ≥ |Σ|, |Ŷb| ≥ |Σ|. We assume that the
translation functions are general functions with
the expected probability of generating a translation
ϵF = 1

|Σ| . The translation functions are determin-
istic and always map the gold labels of the friend
tasks for the same input to the same translation.

Both classifiers make predictions on the unla-
beled set U at iteration k. Some instances UkF
with pseudo-labels are chosen as new training data
based on the results of the translation functions,
ϕa(x) = Fa(fa(x)) and ϕb(x) = Fb(fb(x)), and
some selection criteria, such as total agreement. If
total agreement is used as the selection criterion,
the probability of erroneous predictions for fa in
these instances is

Prx[fa(x) ̸= f∗a (x)|ϕa(x) = ϕb(x)]

=1− ηaPrx[ϕa(x) = ϕb(x)|fa(x) = f∗a (x)]
Prx[ϕa(x) = ϕb(x)]

,

(2)

with f∗ being the optimal classifier.
Because both classifiers are very different due to

training data, annotation guidelines, models, pre-
diction targets, etc., being all different, the two
classifiers are very likely to be independent of each
other. Under this condition Equation 2 becomes

1− ηa(ηb + ϵF (1− ηb))
Prx[ϕa(x) = ϕb(x)]

=1− Z

Z + ηbϵF (1− ηa) + E
, (3)

where Z = ηa(ηb + ϵF (1− ηb)) and E = ϵ2F (1−
ηa)(1 − ηb). We give the detailed derivation of
Equation 2 and 3 in Appendix A.1. This indi-
cates that the quality of the picked instances is
negatively correlated with the number of false pos-
itive instances brought by the noisy translation
ηbϵF (1 − ηa), and the number of matching nega-
tive instances E. When ϵF is minimized by choos-
ing translation functions with a sufficiently large
co-domain Σ, the probability of error instances
chosen when two classifiers agree approaches 0.
This also indicates that even when 1− ηa is large,
i.e. fa performs badly, if the co-domain is large,
the error rate of the chosen instances can still be
kept very low.2 As the dependence between the

2Intuitively, this means independent classifiers trained to
do different tasks are unlikely to predict the same but wrong
sub-prediction for a given input, if the sub-prediction includes
a large number of decisions.
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two classifiers grows in training, the probability
of error instances also increases. When they are
completely dependent on each other, Equation 2
becomes 1− ηa, i.e. classic self-training.

Based on this formulation, two additional mod-
ules are needed: (1) a translation matcher that
maps predictions of two models trained on different
tasks into the same space and computes a matching
score; (2) an augmented (instance) selector which
selects instances with pseudo-labels for the clas-
sifiers considering both the matching score of the
translated predictions and the model confidences.
Translation Matcher Given the prediction of mod-
els of two friend tasks fa(x) and fb(x), the transla-
tion matcherM leverages translation functions Fa
and Fb to get the translated pseudo-labels and com-
putes a matching score m for the pair of pseudo-
labels, which represents the similarity of the pair
in the translation space:

ma,b =M (Fa(fa(x)),Fb(fb(x))) , (4)

with total agreement being 1. This matching score
serves as a criterion for the selection of high quality
pseudo-labels with cross-task supervision.
Augmented Selector Apart from pseudo-label sim-
ilarity, other information about pseudo-label quality
can be found from model confidence, which self-
training algorithms specifically utilize, to augment
matching scores. The augmented selector consid-
ers both the confidence of the pseudo-labels from
task models, denoted as {ca, cb}, and the matching
scores:

qτ = Sτ (ma,b, cτ ), (5)

where qτ ∈ {0, 1} represents the selection result
of the pseudo-label for task τ ∈ a, b. Therefore,
instances with low matching scores but high con-
fidence may also be selected as the training data.
The complete algorithm is shown in Algorithm 1.

4 Friend Training between CSRL and DR

To verify the effectiveness of friend-training, we
select two dialogue understanding tasks as friend
tasks to conduct friend-training experiments for a
case study: conversational semantic role labeling
(CSRL) and dialogue rewriting (DR). While both
require skills such as coreference and zero-pronoun
resolution, the two tasks focus on different proper-
ties of the dialogue utterance: (1) CSRL focuses
on extracting arguments of the predicates in the
utterance from the whole dialogue history; (2) DR

Algorithm 1: Two-task friend-training
Input :Labeled data sets for two friend

tasks, La,Lb; an unlabeled data set
U ; task models fa, fb.

Output :Refined fa, fb.
Pre-train fτ with Lτ (τ ∈ a, b);
while not until the maximum iteration do
Lua = ∅; Lub = ∅;
for z in U do

Generate fa(z), fb(z) and ca, cb;
ma,b← Equation 4;
qa, qb← Equation 5;
if qτ = 1 (τ ∈ a, b) then
Luτ = Luτ + {z, vτ};

end
Update fτ with Lτ ,Luτ by Equation 1
(τ ∈ a, b);

end
Return fa, fb;

aims to rewrite the last turn of a dialogue to make it
context-free and fluent by recovering all the ellipsis
and coreference in the utterance. Figure 2 provides
an overview of friend-training between the above
two tasks. Next, we first introduce the task mod-
els and then specify the translation matcher and
augmented selector for applying friend-training.

4.1 Task Models
Task Definition A dialogue consists of N tempo-
rally ordered utterances {u1, ..., uN}. (1) Given
utterance ut and K predicates {pred1, ..., predK}
of ut, a CSRL parser predicts spans from the di-
alogue as arguments for all predicates. (2) A dia-
logue rewriter rewrites ut to make it context-free
according to its context {u1, ..., ut−1}.
Dialogue Encoder We concatenate dialogue con-
text {u1, ..., ut−1} and the current utterance ut as
a sequence of tokens {x1, ..., xM} and encode it
with BERT (Devlin et al., 2019) to get the contex-
tualized embeddings:

E = e1, ..., eM = BERT(x1, ..., xM ) ∈ RH×M .

Encoders for CSRL and DR share no parameters,
but for simplicity, we use the same notation E for
their outputs.
Conversational Semantic Role Labeling With
the contextualized embeddings, we further gener-
ate predicate-aware utterance representations G =
{g1, ...,gM} ∈ RH×M as Wu et al. (2021) by ap-
plying self-attention (Vaswani et al., 2017) to E
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Figure 2: The overview of the friend-training process between CSRL and DR for one dialogue instance which
has three utterances and the last utterance contains two predicates. Step1: the unlabeled dialogue is labeled by
the CSRL parser and dialogue rewriter, resulting in predictions of arguments for the predicates (CSRL) and the
rewritten utterance (DR), respectively. Step2: Pseudo-labels of both tasks are fed into the translation matcher to get
their matching scores: the translation matcher first conducts sentence-level semantic role labeling (SSRL) on the
rewritten utterance u′3 and then compares the results with those of the CSRL parser for matching scores. Step3: The
threshold-based augmented selector makes the final decision of whether to add each pseudo-label to the training
data considering both their confidence and matching scores. Best viewed in color.

with predicate-aware masking, where a token is
only allowed to attend to tokens in the same utter-
ance and tokens from the utterance containing the
predicate:

Maski,j =

{
1 if u[i] = u[j] or u[j] = u[pred],

0 otherwise,

where u[m] denotes the utterance containing token
xm and u[pred] denotes the one with the predicate.

The predicate-aware representations are then pro-
jected by a feed-forward network to get the distri-
bution of labels for each token:

Pc = softmaxcolumn-wise(WcG+ bc) ∈ RC×M ,

where Wc and bc are learnable parameters and C
is the number of labels. The labels follow BIO se-
quence labeling scheme: B-X and I-X respectively
denote the token is the first token and the inner
token of argument X, where O means the token
does not belong to any argument. The output of
the CSRL parser for K predicates are denoted as
{A1, ...,AK}, where set Ak containing the argu-
ments for predk.
Dialogue Rewriting Following Hao et al. (2021),
we cast DR as sequence labeling. Specifically, a
binary classifier on the top of E first determines
whether to keep each token for in utterance ut in
the rewritten utterance:

Pd = softmaxcolumn-wise(WdE+ bd) ∈ R2×M ,

where Wd and bd are learnable parameters. Next,
a span of the context tokens is predicted to be in-
serted in front of each token. In practice, two self-
attention layer (Vaswani et al., 2017) are adopted
to calculate the probability of context tokens being
the start index or end index of the span:

Pst = softmaxcolumn-wise(Attnst(E)) ∈ RM×M ,
Ped = softmaxcolumn-wise(Attned(E)) ∈ RM×M ,

where Pst
i,j (Ped

i,j) denotes the probability of xi be-
ing the start (end) index of the span for xj . Then
by applying argmax to P, we could obtain the start
and end indexes of the span for each token:

sst = argmaxcolumn-wise(P
st) ∈ RM ,

sed = argmaxcolumn-wise(P
ed) ∈ RM ,

The probability of the span to be inserted in front
of xm is Pst

sstm,m
×Ped

sedm ,m
when sstm ⩽ sedm . When

sstm > sedm , it means no insertion. The output of the
dialogue rewriter for ut is denoted as u′t.

4.2 Translation Matcher
To translate the outputs (pseudo-labels) from
the CSRL parser {A1, ...,AK} and the dialogue
rewriter u′t into a same space, we leverage a nor-
mal sentence-level semantic role parser with fixed
parameters to greedily extract arguments from the
rewritten utterance u′t for theK predicates, denoted
as {B1, ...,BK} (Appendix A.5 shows an example).
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So the common target space Σ is the label space of
CSRL, which is large enough to make the error rate
of chosen instances keep very low (see the analysis
in subsection 3.2). The matching score mk ∈ [0, 1]
for predk is calculated based on the edit distance
between Ak and Bk:

mk = 1− dist(⊕Ak,⊕Bk)
max(len(⊕Ak), len(⊕Bk))

,

where dist() calculates the edit distance between
two strings, len() returns the length of a string
and ⊕Ak denotes the concatenation of arguments
in set Ak in a predefined order of arguments3

(empty strings means arguments do not exist). Fur-
thermore, we obtain the overall matching score
m′ ∈ [0, 1] for the rewritten utterance u′t as fol-
lows:

m′ = GM(m1, ...,mK),

where GM() represents the geometric mean.

4.3 Augmented Selector
The augmented selector selects high-quality
pseudo-labels according to both their matching
scores and confidence. For CSRL, we calculate
the confidence score for each predicate based on
the output of the softmax layer. Specifically, we
obtain the confidence of an argument for predk by
multiplying the probability of its tokens, denoted
as {ak1, ..., ak|Ak|}. We then use the geometric
mean of all the confidence of arguments belonging
to predk as the confidence for predk. The overall
score sk ∈ [0, 1] for predk is calculated as follows:

sk = αGM(ak1, ..., ak|Ak|) + (1− α)mk,

where hyper-parameter α gives a balance between
the matching score and the confidence. For DR, we
multiply the probabilities of spans to be inserted
and of decisions on whether to keep tokens or not
as the model confidence of u′t, denoted as bt. The
overall score rt ∈ [0, 1] of u′t is as follows:

rt = βbt + (1− β)m′,
where a larger value of hyper-parameter β places
more importance on the model confidence. α and
β are set to be 0.2 for both tasks in the experiments.

Pick thresholds are set for sk and rt to control the
number and quality of selected pseudo-labels. We
analyze the effects of different values of thresholds
in subsection 5.4.

3Argument concatenating order: ARG0, ARG1, ARG2, ARG3,
ARG4, ARGM-TMP, ARGM-LOC, ARGM-PRP

5 Experiments

5.1 Setup

Datasets We use five dialogue datasets in our ex-
periments with domains spanning movies, celebri-
ties, book reviews, products, and social networks.
For CSRL, we use DuConv (Xu et al., 2021) and
WeiboCSRL and for DR, REWRITE (Su et al.,
2019) and RESTORATION (Pan et al., 2019). The
datasets of the same task differ in domains and
sizes. WeiboCSRL is a newly annotated CSRL
dataset for out-of-domain testing purposes. More-
over, we use LCCC-base (Wang et al., 2020b) as the
unlabeled corpus, which is a large-scale Chinese
conversation dataset with 79M rigorously cleaned
dialogues from various social media. More details
on the annotation of WeiboCSRL and the proper-
ties of the datasets could be found in Appendix A.2.
Experiment Scenarios Our main experiments
involve two scenarios. (1) Domain generaliza-
tion: we use DuConv as the training data in the
source domain and WeiboCSRL for out-of-domain
evaluation, while for DR, REWRITE is used for
training and RESTORATION for evaluation. (2)
Few-shot learning: we randomly select 100 cases
from DuConv and REWRITE as the training data
for CSRL and DR, respectively, and conduct in-
domain evaluation, which means models of both
the tasks are co-trained with only a few samples of
each task. The unlabeled data for both scenarios
are 20k dialogues extracted from LCCC-base. Im-
plementation details are provided in Appendix A.3.
Evaluation We follow Wu et al. (2021) to report
precision (Pre.), recall (Rec.), and F1 of the ar-
guments for CSRL and Hao et al. (2021) to report
word error rate (WER) (Morris et al., 2004), Rouge-
L (R-L) (Lin, 2004) and the percent of sentence-
level exact match (EM) for DR.

5.2 Baselines

We compare friend-training with six semi-
supervised training paradigms: two standard tech-
niques such as standard self-training (SST) (Scud-
der, 1965) and standard co-training (SCoT) (Blum
and Mitchell, 1998), as well as four recent methods
such as mean teacher (MT) (Tarvainen and Valpola,
2017), cross pseudo supervision (CPS) (Chen
et al., 2021), self-training with batch reweight-
ing (STBR) (Bhat et al., 2021) and self-teaching
(STea) (Yu et al., 2021). See Appendix A.4 for
more details.

237



WeiboCSRL RESTORATION

Method Pre. Rec. F1 R-L EM WER(⇓)

Base 57.97 54.47 56.16 82.78 25.25 28.69
Multitask-Base 53.66 54.32 53.99 81.68 22.49 32.44
SST (Scudder, 1965) 60.85 56.54 58.62 85.22 32.97 22.22
MT (Tarvainen and Valpola, 2017) 58.42 55.71 57.03 83.76 28.82 26.49
CPS (Chen et al., 2021) 60.34 52.87 56.36 85.60 32.68 22.78
SCoT (Blum and Mitchell, 1998) 57.33 54.13 55.69 84.51 29.25 24.87
STBR (Bhat et al., 2021) 60.77 58.04 59.38 85.79 33.78 23.30
STea (Yu et al., 2021) 60.10 55.13 57.50 85.75 34.23 22.17

FDT (Ours) 65.29(↑4.44) 58.63(↑2.09) 61.78(↑3.16) 86.82(↑1.60) 38.22(↑5.25) 20.31(↑1.91)

(a) Domain generalization for models trained with DuConv and REWRITE.

DuConv REWRITE

Method Pre. Rec. F1 R-L EM WER(⇓)

Base 29.50 21.90 25.14 73.44 3.60 39.98
Multitask-Base 22.43 20.63 21.49 78.97 11.70 40.46
SST (Scudder, 1965) 34.16 27.49 30.46 80.93 27.80 31.02
MT (Tarvainen and Valpola, 2017) 36.32 30.69 33.27 81.66 33.00 31.66
CPS (Chen et al., 2021) 37.14 29.47 32.86 79.56 23.30 32.60
SCoT (Blum and Mitchell, 1998) 38.37 26.15 31.10 78.58 22.31 33.79
STBR (Bhat et al., 2021) 32.37 25.21 28.34 82.37 29.80 30.31
STea (Yu et al., 2021) 39.34 28.78 33.25 83.04 31.57 30.36

FDT (Ours) 40.41(↑6.25) 30.82(↑3.33) 34.97(↑4.51) 82.83(↑1.90) 34.20(↑6.40) 27.87(↑3.15)
FDT-S (Ours) 40.12 33.41 36.46 83.11 37.10 26.88

Fully-trained Base 69.83 68.53 69.17 89.47 52.30 20.54

(b) Few-shot learning for models trained with DuConv and REWRITE.

Table 1: Test results for domain generalization and few-shot learning. Base denotes the task models trained with
data from a single task. Multitask-Base denotes the base model of CSRL and DR sharing the same dialogue encoder.
Results are averaged across three runs. ⇓ means lower is better. For few-shot learning, performance of the base
models trained with the full training set from the single task is provided for reference.

5.3 Main Results

Table 1 shows the comparison between friend-
training (FDT) and the baselines mentioned in sub-
section 5.2. FDT achieves the best overall perfor-
mance over the baselines by significant margins
in both domain generalization and few-shot learn-
ing scenarios, which demonstrates the effective-
ness of FDT in different experimental situations
to utilize large unlabeled corpora. Moreover, we
show the absolute improvements of FDT over SST
in parentheses (↑). As we could see, in few-shot
learning, FDT obtain 4.51 and 3.15 higher abso-
lute points over SST on F1 of DuConv and WER
of REWRITE, respectively, than those of domain
generalization, which are 3.16 and 1.91 points, re-
vealing that FDT could realize its potential easier
in few-shot learning. Besides, for few-shot learn-
ing, we further consider the situation where a full-
trained base model from the friend task is available,
denoted as FDT-S. As we could see, when the tar-
get task is CSRL, FDT-S makes a gain of 1.49
points on F1 over FDT and when the target task

is DR, FDT-S outperforms FDT on WER by 0.99
points and EM by 2.90 points, indicating that more
reliable supervision from friend task could further
enhance the few-shot learning of the target task.

5.4 Analysis

In this section, we conduct experiments to analyze
how selected parameters and settings interact with
model performance in FDT.
Pick Thresholds We vary the pick thresholds of
CSRL and DR in domain generalization scenario
and track the model performance: we fix the pick
threshold of the friend task to the best (see Ap-
pendix A.3) when varying that of the evaluating
task. As illustrated in Figure 3a, when the thresh-
olds increase gradually, the models become better
with higher F1 for CSRL and lower WER for DR.
We attribute this to wrong pseudo-labels being fil-
tered out by the augmented selector of FDT. Then
the model performances hit the peaks and drop as
the thresholds keep increasing in the interval of
high values, which is owed to high thresholds pro-
ducing insufficient pseudo-labels for iterative train-
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Figure 3: Sub-figures (b) and (c) show the model performance of the comparing methods with different strengths of
base models; the dashed horizontal line represents the performance of FDT with a fully trained base model.
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Figure 4: The role of co-updating in friend-training.

ing. Automatically choosing proper pick thresholds
is worth to be explored in the future.
The Strength of Base Model To understand and
compare how performance of models before friend-
training or self-training influences their final per-
formance, we compare STBR, STea and FDT with
the base models trained on different percentages of
labeled data in the source domain when evaluating
on out-domain testing data. Specifically, we follow
domain generalization settings and use a variable
percentage of labeled data to conduct experiments.

For CSRL and DR, respectively, we set the
amount of labeled data as {10%/10%, 30%/30%,
50%/50%, 70%/70%, 90%/90%}. The results are
shown in Figure 3b and Figure 3c. We can see
that all the methods adopting self-training to make
use of unlabeled data surpass the base model by a
significant margin, whether when given a weak or
strong base model, demonstrating the effectiveness
of self-training paradigm. Moreover, FDT achieves

the best results across the evaluating percentages
of labeled data: when the base model has a good
amount of training data, such as those trained on
30% labeled data and above, the performance of
FDT is significantly better than STBR and STea,
proving that FDT leverages the features learned
from labeled data more effectively with cross-task
supervision.
The Role of Co-updating We also explore the
case where one of the models of the friend tasks is
fully trained and does not have to be updated. We
consider FDT-SF, FDT with a fixed fully trained
base model from the friend task in domain gener-
alization4. As illustrated in Figure 4, FDT-SF sur-
passes FDT when given a weak base model for the
evaluating task because of the strong supervision
from the friend task. However, FDT outperforms
FDT-SF when the evaluating task is given a fairly-
trained model, which demonstrates the benefits of
co-updating the models in friend-training.

6 Conclusion

We propose friend-training, the first cross-task self-
training framework, which leverages supervision
from friend tasks for better selection of pseudo-
labels. Moreover, we provide specific modeling
of friend-training between conversational seman-
tic role labeling and dialogue rewriting. Experi-
ments on domain generalization and few-shot learn-
ing scenarios demonstrate the promise of friend-
training, which outperforms prior classical or state-
of-the-art semi-supervised methods by substantial
margins.

4Specifically, when the evaluating task is CSRL, the
amount of labeled data for the two tasks are set as {10%/100%,
30%/100%, 50%/100%, 70%/100%, 90%/100%}, and
when the evaluating task is DR, {100%/10%, 100%/30%,
100%/50%, 100%/70%, 100%/90%}.
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Limitations

We showed how the friend-training strategy can be
applied to two dialogue understanding tasks in the
case study here, but many other task pairs or task
sets can be examined to fully explore the generality
of the approach. Identifying friend tasks depends
on expert knowledge in this work, but approaches
for task grouping and task similarity may be used to
automatically discover friend tasks. Besides, with
the proliferation of cross-modal techniques, tasks
of different modalities are expected to act as friend
tasks as well. Also, designing translation functions
and matchers for friend tasks in the friend-training
framework requires an understanding of the rela-
tionship between the friend tasks, but prompting
and model interpretability methods could poten-
tially be applied for easing this process.
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A Appendix

A.1 Error rates

We have two classifiers fa and fb trained on two
different tasks with labeled training sets La and
Lb, with expected accuracies ηa and ηb, respec-
tively. The prediction targets of the two tasks are
partially related through a pair of translation func-
tions Fa : Ŷa → Σ and Fb : Ŷb → Σ, where Σ
is the set of possible sub-predictions that all pos-
sible predictions of the two tasks Ŷa and Ŷb can
be reduced to. |Ŷa| ≥ |Σ|, |Ŷb| ≥ |Σ|. The sub-
predictions can be a part of the whole prediction
targets for both tasks, or some lossy transforma-
tion of the prediction targets. For example, a sub-
prediction for a POS-tagging task can be the POS
tag of the first word (a part of the prediction) or the
number of the NN tag in the whole prediction se-
quence (a transformation of the prediction). We as-
sume that the translation functions are general func-
tions with the expected probability of generating
a translation ϵF = 1

|Σ| ; they are deterministic and
always map the gold labels of the friend tasks for
the same input to the same translation. Both clas-
sifiers make predictions on the unlabeled set U at
iteration k. Some instances UkF with pseudo-labels
are chosen as new training data based on the results
of the translation functions, ϕa(x) = Fa(fa(x))
and ϕb(x) = Fb(fb(x)), and some selection crite-
ria, such as total agreement. If total agreement is
used as the selection criterion, the probability of
erroneous predictions for fa in these instances is

Prx[fa(x) ̸= f∗a (x)|ϕa(x) = ϕb(x)]

=1− Prx[fa(x) = f∗a (x)|ϕa(x) = ϕb(x)]

=1− Prx[fa(x) = f∗a (x)]·
Prx[ϕa(x) = ϕb(x)|fa(x) = f∗a (x)]

Prx[ϕa(x) = ϕb(x)]

=1− ηa·
Prx[ϕa(x) = ϕb(x)|fa(x) = f∗a (x)]

Prx[ϕa(x) = ϕb(x)]
, (6)

with f∗ being the optimal classifier. If we consider
the two classifiers very likely to be independent
from each other, then the probability of the transla-
tion of the predictions from the two classifiers be-
ing the same given the prediction from classifier fa
is correct, which is Prx[ϕa(x) = ϕb(x)|fa(x) =
f∗a (x)], is the sum of the probability of the clas-
sifier fb making the correct prediction ηb and the
probability of an erroneous translation of the wrong

prediction ϵF (1− ηb). The probability of the trans-
lations matching Prx[ϕa(x) = ϕb(x)] has four sit-
uations: both predictions of the two classifiers are
correct ηaηb; fa(x) is correct but fb(x) is wrong
and being translated erroneously ηaϵF (1 − ηb);
fb(x) is correct but fa(x) is wrong and being trans-
lated erroneously ηbϵF (1 − ηa); both fa(x) and
fb(x) are wrong but matching in the translation
space ϵ2F (1− ηa)(1− ηb). Under these conditions
Equation 6 becomes

1− ηa(ηb + ϵF (1− ηb))
Prx[ϕa(x) = ϕb(x)]

=1− Z

Z + ηbϵF (1− ηa) + E
, (7)

where Z = ηa(ηb + ϵF (1− ηb)) and E = ϵ2F (1−
ηa)(1 − ηb) which shows that the term ηbϵF (1 −
ηa)+E needs to be small to make the probability of
matching translations with predictions being wrong
small. This indicates that the quality of the picked
instances based on the total agreement criterion
is negatively correlated with the number of false
positive instances brought by the noisy translation
ηbϵF (1−ηa), and the number of matching negative
instances E. ϵF can be minimized by choosing
translation functions with a sufficiently large co-
domain Σ, which means that when the translation
space is large enough, it is unlikely that the two
classifiers totally agree in the translation space but
do not agree in their own prediction target spaces.
So the probability of them agreeing and making
correct predictions is much larger than agreeing but
making incorrect predictions while the probability
of error instances chosen when two classifiers agree
approaches 0, indicating that even when 1− ηa is
large, i.e. fa performs badly, if the co-domain is
large, the error rate of the chosen instances can still
be kept very low.

A.2 Datasets

Annotation Procedure of WeiboCSRL The dia-
logues we use for CSRL annotation are extracted
from LCCC-base (Wang et al., 2020b), which
consists of at least 4 turns and 80 total charac-
ters to assure enough context for CSRL and DR.
These dialogues and those used as unlabeled data
for experiments in section 5 are from different
parts of LCCC-base. For each dialogue, we an-
notate the predicates in the last utterance with
the guidance of frame files of Chinese Proposi-
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tion Bank5. For each predicate, the arguments
we annotate are numbered arguments ARG0-ARG4
and adjuncts ARGM-LOC, ARGM-MNR, ARGM-TMP and
ARGM-NEG, whose definitions are shown in (Xue,
2006). ARGM-MNR is not included for evaluation in
section 5 because annotation of ARGM-MNR is lack-
ing in DuConv, the training data for CSRL. In the
end, we obtain 3891 annotated predicates.
Dataset Details Table 2 shows the statistic of the
datasets used in the experiments. DuConv (Xu
et al., 2021) focuses on movies and celebrities and
we adopt the same train/dev/test splitting as Xu
et al. (2021). REWRITE (Su et al., 2019) contains
20K dialogues with a wide range of topics crawled
from Chinese social media platforms; the last ut-
terance of each dialogue is rewritten to recover all
co-referred and omitted information. RESTORA-
TION (Pan et al., 2019) contains dialogues from
Douban6, most of which are book, movie or prod-
uct reviews. Compared with REWRITE, it contains
more annotated dialogues, but around 40% of the
last utterances require no rewriting.

Domain #Instance(train/dev/test)

DuConv movies and celebrities 23361 / 2852 / 2977
WeiboCSRL social media - / 1945 / 1946
REWRITE social media 16925 / 1000 / 1000

RESTORATION book, movie and
product reviews

- / 5000 / 5000

Table 2: Dataset statistics.

A.3 Implementation Details

Dataset configuration of the tasks for the experi-
mental scenarios are shown in Table 3.
Preprocessing Details The maximum length of
the input dialogue is set to 125. We transform the
word-based labeling of DuConv to character-based
labeling and we use the scripts7 provided by Hao
et al. (2021) to generate token-level annotations for
sequence-labeling-based DR. For unlabeled data,
we discard dialogues with less than 4 turns to guar-
antee sufficient context for CSRL and DR.
Model Details We use pretrained BERT8 (Devlin
et al., 2019) as the dialogue encoder for CSRL and
DR. Both the values of hyper-parameter α and β
are set to 0.2 and the pick thresholds are set to 0.6.
We choose a state-of-the-art sentence-level seman-

5https://verbs.colorado.edu/chinese/cpb/
6https://www.douban.com
7https://github.com/freesunshine0316/

RaST-plus
8https://huggingface.co/bert-base-chinese

tic role labeling (SSRL) parser9 for the translation
matcher which follows the same structure as (He
and Choi, 2021).
Training Details We adopt AdamW (Loshchilov
and Hutter, 2019) to optimize models with a learn-
ing rate of 4e-5 and batch size of 16. We use λ = 1
to balance the loss of labeled and unlabeled data.

Task Train Dev&Test

DG CSRL DuConv (train) WeiboCSRL (dev,test)

DR REWRITE (train) RESTORATION (dev,test)

FSL CSRL DuConv (100 cases) DuConv (dev,test)

DR REWRITE (100 cases) REWRITE (dev,test)

Table 3: Dataset configuration of domain generalization
(DG) and few-shot learning (FSL).

A.4 Baselines

Standard self-training (Scudder, 1965) generates
pseudo-labels to unlabeled data with a base model
and uses them to train a new base model, which is
repeated until convergence. Standard co-training
(Blum and Mitchell, 1998) is similar to Standard
self-training, but with two different base models
dealing with the same task, generating pseudo-
labels and adding the trusted ones for iterative train-
ing. Mean teacher (Tarvainen and Valpola, 2017)
maintains a teacher model on the fly, whose weights
are the exponential moving average of the weights
of a student model across iterations. Cross pseudo
supervision (Chen et al., 2021), a state-of-the-art
variant of self-training, maintains two networks
with different initialization; the pseudo-label of
one network is used to supervise the other network.
Self-training with batch reweighting (Bhat et al.,
2021) is a state-of-the-art self-training method that
reweights the pseudo-labels in a batch when train-
ing according to the confidence from the teacher
model. Self-teaching (Yu et al., 2021), a state-of-
the-art semi-supervised method that sequentially
trains a junior teacher, a senior teacher and an ex-
pert student to leverage the unlabeled data.

For the hyper-parameters of the baselines, we
keep the common hyper-parameters, such as learn-
ing rate, batch size, optimizer, and so on, the same
as our proposed method. And we adopt the values
of method-specific hyper-parameters used in the
original papers, such as the merging weight of soft
and hard labels of self-teaching and the smoothing
parameter for updating of mean teacher.

9https://github.com/hankcs/HanLP
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Context:
ch: [A]我有一个非常喜欢的女明星。[B]她叫什么名字？[A]布蕾克·莱弗利。[B]她很有名吗？
en: [A] I have a favorite actress. [B] What’s her name? [A] Blake Lively. [B] Is she famous?

Current utterance
ch: [A]她是一个非常受关注的女明星。
en: [A] She is a actress attracting much attention.

Rewritten utterance
ch: [A]布蕾克·莱弗利是一个非常受关注的女明星。
en: [A] Blake Lively is a actress attracting much attention.

Predicates 是(is) 受(attract)

CSRL
ch: ARG1: 一个非常受关注的女明星
en: ARG1: a actress attracting much attention

ARG0: 布蕾克·莱弗利, ARG1: 关注
ARG0: Blake Lively, ARG1: attention

SSRL
ch: ARG0: 布蕾克·莱弗利, ARG1: 一个非常受关注的女明星
en: ARG0: Blake Lively, ARG1: a actress attracting much attention

ARG0: 布蕾克·莱弗利, ARG1: 关注
ARG0: Blake Lively, ARG1: attention

Predicate matching score 0.61 1.0

Predicate confidence 0.95 0.54

Predicate overall score 0.67 0.90

Utterance matching score 0.81
Utterance confidence 0.92
Utterance overall score 0.83

Table 4: Case study: [A] and [B] are the signatures of speakers. ch and en are the language abbreviations.

A.5 Case Study

We show a representative case of selecting pseudo-
labels in Table 4. There are two predicates in cur-
rent utterance: 是(is) and 受(attract). For 是(is),
the CSRL parser yields only ARG1 while SSRL
parser gives the same ARG1 but more of ARG0
based on the rewritten utterance. With the differ-
ence in arguments, the overall score is not high and
this predicate could be regarded as low-quality if a
high pick threshold is set. For受(attract), the CSRL
and SSRL parsers give the same arguments, which
are the right answer. However, if we only consider
the model confidence of the predicate, which is
0.54, this high-quality predicate are more likely
to been discarded than consider the overall score,
which is 0.90. And the rewritten utterance gets a
high overall score, which is what we expected.

A.6 Discussion on Generalization of the
Framework

It is not uncommon at all for different language
tasks sharing some information. With one case
study presented in detail in the main body of the
paper, we also provide a short example of a dif-
ferent friend task pair – constituency parsing and
dependency parsing – and explain how they can
help each other and show the general nature of the
friend-training framework.

Early work (Magerman, 1995; Collins, 2003) has
shown relationship between dependency and con-
stituency parsing through head-finding rules, and
Jin and Schuler (2019) show directly how common

structures between dependency and constituency
trees can be derived for parsing evaluation. In a
dependency graph, a set of nodes with a single
incoming edge is usually indicative of a phrase
structure, such as a noun phrase, a verb phrase or
a prepositional phrase. Such phrasal structures are
well-marked in constituency treebanks, and could
be used as the shared friend information for friend-
training. Here is a sketch of how friend-training
can be applied to this pair:

1. Train a constituency parser and a dependency
parser, presumably trained with a small num-
ber of training instances, as the models for the
friend-training framework.

2. Run both parsers on a common set of unla-
beled data for parsing results.

3. Find phrases such as noun, verb or preposi-
tional phrases in the predicted constituency
trees.

4. Compare with the dependency trees, and
check if spans of such phrases have only a
single incoming edge. If so, the constituency
and dependency parsing results can be consid-
ered agreeing, and added to the silver training
set. If not, the silver annotation is discarded.

5. Train the parsers again with the gold and silver
training instances.

As long as some shared information can be iden-
tified between two seemingly different tasks, the
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noisy agreement between that partial target can
provide valuable supervision between two tasks.
The translation and matching between constituency-
dependency targets are simpler compared to the
CSRL-rewriting pair presented in the paper, partly
because no model is required for the translation
process. However the CSRL-rewriting pair is more
significant because heuristics may be difficult or
not obvious to design where ‘bridging’ tasks such
as single-sentence SRL may be readily available.
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Abstract

To produce accurate predictions, language mod-
els (LMs) must balance between generalization
and memorization. Yet, little is known about
the mechanism by which transformer LMs em-
ploy their memorization capacity. When does
a model decide to output a memorized phrase,
and how is this phrase then retrieved from mem-
ory? In this work, we offer the first methodolog-
ical framework for probing and characterizing
recall of memorized sequences in transformer
LMs. First, we lay out criteria for detecting
model inputs that trigger memory recall, and
propose idioms as inputs that typically fulfill
these criteria. Next, we construct a dataset of
English idioms and use it to compare model
behavior on memorized vs. non-memorized
inputs. Specifically, we analyze the internal
prediction construction process by interpreting
the model’s hidden representations as a gradual
refinement of the output probability distribu-
tion. We find that across different model sizes
and architectures, memorized predictions are a
two-step process: early layers promote the pre-
dicted token to the top of the output distribution,
and upper layers increase model confidence.
This suggests that memorized information is
stored and retrieved in the early layers of the
network. Last, we demonstrate the utility of
our methodology beyond idioms in memorized
factual statements. Overall, our work makes a
first step towards understanding memory recall,
and provides a methodological basis for future
studies of transformer memorization.1

1 Introduction

Transformer language models (LMs) memorize in-
stances from their training data (Carlini et al., 2021;
Zhang et al., 2021b), and evidence is building that
such memorization is an important precondition for
their predictive abilities (Lee et al., 2022; Feldman,

∗ Now at Google Research.
1Our code and data are available at https://github.

com/adihaviv/idiomem/.

2020; Feldman and Zhang, 2020; Raunak et al.,
2021; Raunak and Menezes, 2022). Still, it is un-
known when models decide to output memorized
sequences, and how these sequences are being re-
trieved internally from memory. Current methods
for analyzing memorization (Feldman and Zhang,
2020; Zhang et al., 2021b; Carlini et al., 2022)
use definitions that are based on models perfor-
mance, which changes between models and often
also between training runs. Moreover, these meth-
ods study memorization behavior in terms of the
model’s “black-box” behavior rather than deriving
a behavioral profile of memory recall itself.

Our first contributions are to provide a definition
and construct a dataset that allows probing memo-
rization recall in LMs. We define a set of criteria
for identifying memorized sequences that does not
depend on model behavior:2 sequences that have
a single plausible completion that is independent
of context and can be inferred only given the entire
sequence. We show that many idioms (e.g., “play
it by ear”) fulfill these conditions, allowing us to
probe and analyze memorization behavior. Fur-
thermore, we construct a dataset of such English
idioms, dubbed IDIOMEM, and release it publicly
for the research community.

Next, to analyze memory recall behavior, we
compare the construction process of predictions
that involve memory recall with those that do not.
To this end, given a LM, we create two sets of mem-
orized and non-memorized idioms from IDIOMEM

(Fig. 1, A). We then adopt a view of the transformer
inference pass as a gradual refinement of the output
probability distribution (Geva et al., 2021; Elhage
et al., 2021). Concretely, the token representation
at any layer is interpreted as a “hidden” probabil-

2Literature often purports to “define memorization”, result-
ing in a multitude of technical definitions with subtle differ-
ences, although we would expect this concept to be consistent
and intuitive. Thus, instead of explicitly defining “memoriza-
tion”, we will define sufficient criteria for detecting memo-
rized instances.

248

https://github.com/adihaviv/idiomem/
https://github.com/adihaviv/idiomem/


Candidate 
Promotion

Confidence 
boosting

IdioMem

play it by

(A) Splitting IdioMem to two sets of memorized 
and non-memorized idioms

think outside the

yourself

milk

box

crying over spilt

(B) Tracking the prediction’s rank 
and probability at each layer

(C) Visualization: memorized idioms 
display two-steps prediction process

spiltovercrying

milk

___

0.7 milk
0.03 blood

0.004 wine

0.003 coffee

0.1 unden
0.04 streng

>0.0001 milk
…

…

…

... ... ... ...
…

Figure 1: Our methodological framework for probing and analyzing memorized predictions of a given LM: (A) we
create two sets of memorized (mem-idiom) and non-memorized (non-mem-idiom) idioms by probing the LM with
instances from IDIOMEM, (B) for each instance, we extract hidden features of the prediction computation – the
rank and probability of the predicted token across layers, and (C) we compare the prediction process of memorized
idioms versus non-memorized idioms and short sequences from Wikipedia (wiki). Memorized predictions exhibit
two characteristic phases: candidate promotion and confidence-boosting.

ity distribution over the output vocabulary (Geva
et al., 2022) (Fig. 1, B). This interpretation allows
tracking the prediction across layers in the evolving
distribution. We find a clear difference in model be-
havior between memorized and non-memorized
predictions (Fig. 1, C). This difference persists
across different transformer architectures and sizes:
retrieval from memory happens in two distinct
phases, corresponding to distinct roles of the trans-
former parameters and layers: (1) candidate promo-
tion of memorized predictions’ rank in the hidden
distribution in the first layers, and (2) confidence
boosting where, in the last few layers, the predic-
tion’s probability grows substantially faster than
before. This is unlike non-memorized predictions,
where the two phases are less pronounced and of-
ten indistinct. We further confirm these phases of
memorized predictions through intervention in the
network’s FFN sublayers, which have been shown
to play an important role in the prediction construc-
tion process (Geva et al., 2022; Mickus et al., 2022).
Concretely, zeroing-out hidden FFN neurons in
early layers deteriorate memory-recall, while inter-
vention in upper layers does not affect it.

Last, we show our findings extend to types of
memory recall beyond idioms by applying our
method to factual statements from the LAMA-
UHN dataset (Poerner et al., 2020) (e.g. “The
native language of Jean Marais is French”). For
factual statements that were completed correctly
by the LM, we observe the same two phases as in
memorized idioms, further indicating their connec-
tion to memory recall.

To summarize, we construct a novel dataset of
idioms, usable for probing LM memorization irre-
spective of the model architecture or training pa-
rameterization. We then design a probing method-
ology that extracts carefully-devised features of the
internal inference procedure in transformers. By ap-
plying our methodology and using our new dataset,
we discover a profile that characterizes memory
recall, across transformer LMs and types of mem-
orized instances. Our released dataset, probing
framework, and findings open the door for future
work on transformer memorization, to ultimately
demystify the internals of neural memory in LMs.

2 Criteria for Detecting Memory Recall

To study memory recall, we require a set of inputs
that trigger this process. Prior work on memoriza-
tion focused on detecting instances whose inclu-
sion in the training data has a specific influence
on model behavior, such as increased accuracy on
those instances (Feldman and Zhang, 2020; Ma-
gar and Schwartz, 2022; Carlini et al., 2022, 2021,
2019). As a result, memorized instances differ
across models and training parameterization. Our
goal is instead to find a stable dataset of sequences
that correctly predicting their completion indicates
memorization recall. This will greatly reduce the
overhead of studying memorization and facilitate
useful comparisons across models and studies.

To build such a dataset, we start by defining
a general set of criteria that are predicates on se-
quence features, entirely independent of the LM
being probed. Given a textual sequence of n words,
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we call the first n − 1 words the prompt and the
nth word the target. We focus on the task of pre-
dicting the target given the prompt, i.e., predicting
the last word in a sequence given its prefix.3 Such
predictions can be based on either generalization
or memorization, and we are interested in isolat-
ing memorized cases to study model behavior on
them. Particularly, we are looking for sequences
for which success in this task implies memorization
recall.

We argue that the following criteria are sufficient
for detecting such memorized sequences:
1. Single target, independent of context: We

require that the target is the only correct contin-
uation, regardless of the textual context where
the prompt is placed.4

2. Irreducible prompt: The target is the single
correct completion only if the entire prompt is
given exactly. Changing or removing parts from
the prompt would make the correct target non-
unique.

Claim 2.1. Assume a sequence fulfills the above
criteria. Then, if a LM correctly predicts the tar-
get, it is highly likely that this prediction involves
memory recall.

Justification. First, observe that most natural-
language prompts have many possible continua-
tions. For example consider the sentence “to get
there fast, you can take this ____”. Likely con-
tinuations include “route”, “highway”, “road”,

“train”, “plane”, “advice”, inter alia. Note that
there are several divergent interpretations or con-
texts for the prompt, and for each, language offers
many different ways to express similar meaning.

A prediction that is a product of generalization
— i.e., it is derived from context and knowledge
of language — always has plausible alternatives,
depending on the context and stylistic choice of
words. Hence, the relationship between the entire
prompt and the target, where the target is the single
correct continuation, is something that needs to be
memorized rather than derived via generalization.
A LM that predicts the single correct continuation
either memorized this relationship, or used “cues”
from the prompt that happen to provide indica-
tion towards the correct continuation. To illustrate
the latter, consider the sequence “it’s raining cats

3In cases where tokenization divides the target to sub-
tokens, our task becomes predicting the target’s first token.

4We assume that contexts are naturally-occurring and not
adversarial.

and ____” which has a single correct continuation,
“dogs”, but a LM might predict it without observing
this sequence during training, due to the seman-
tic proximity of “cats” and “dogs”. Our second
criterion excludes such cases by requiring that the
correct continuation is only likely given the entire
sequence.

Therefore, a LM that correctly completes a se-
quence that fulfills both criteria, is likely to have
recalled it from memory.

In the next section, we argue that idioms are a
special case of such sequences, and are thus useful
for studying memorization (§3).

3 The Utility of Idioms for Studying
Memorization

An idiom is a group of words with a meaning that
is not deducible from the meanings of its individual
words. For example, consider the phrase “play it
by ear” — there is a disconnect between its non-
sensical literal meaning (to play something by a
human-body organ called ‘ear’) and its intended
idiomatic meaning (to improvise).

A key observation is that idioms often satisfy our
criteria (§2), and therefore can probe memoriza-
tion. First, by definition, idioms are expected to
be non-compositional (Dankers et al., 2022). They
are special “hard-coded” phrases that carry a spe-
cific meaning. As a result, their prompts each have
a single correct continuation, regardless of their
context (criterion 1). For example, consider the
prompt “crying over spilt ____” — a generaliz-
ing prediction would predict that this slot may be
filled by any spillable item, like wine, water or
juice, while a memorized prediction will retrieve
only milk in this context. Notably, while this is an
empirical characterization of many idioms, there
might be exceptions, e.g., contexts that are adver-
sarially chosen to change the completion. Second,
many idioms are “irreducible”, for example the
sub-sequences “crying over” or “over spilt” by
themselves have but scant connection to the word

“milk”.
Still, not all idioms fulfill the criteria. For exam-

ple, even when the idiom is far from literal, its con-
stituents sometimes strongly indicate the correct
continuation, such as with the case of “it’s raining
cats and ____” (as explained in §2). To construct
a dataset of memorization-probing sequences, we
will carefully curate a set of English idioms and
filter out ones that do not fulfill our criteria.
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Source # of Idioms Idiom Length (words)

MAGPIE 590 4.5± 0.9
LIDIOMS 149 5.1± 1.2
EF 97 5.6± 1.9
EPIE 76 4.4± 0.7

Total (unique) 814 4.7± 1.8

Table 1: Statistics per data source in IDIOMEM.

3.1 The IDIOMEM Dataset

We begin with existing datasets of English idioms:
MAGPIE (Haagsma et al., 2020),5 EPIE (Saxena
and Paul, 2020), and the English subset of LID-
IOMS (Moussallem et al., 2018). We enrich this
collection with idioms scraped from the website
“Education First” (EF).6 We then split each idiom
into a prompt containing all but the last word, and
a target that is the last word. Next, we filter out
idioms that do not comply with our criteria (§2) or
whose target can be predicted from their prompt
based on spurious correlations rather than memo-
rization. To this end, we use three simple rules:
• Short idioms. We observe that prompts of id-

ioms with just a few words often have multiple
plausible continuations, that are not necessar-
ily the idiom’s target, violating our first crite-
rion. For example, the prompt “break a ____”
has many possible continuations (e.g. “win-
dow”, “promise”, and “heart”) in addition to its
idiomatic continuation “leg”. To exclude such
cases, we filter out idioms with < 4 words.

• Idioms whose target is commonly predicted
from the prompt’s subsequence. We filter such
cases to ensure the prompt fulfills our second
criterion (prompt irreducibility).
To detect these cases, we use an ensemble of
pretrained LMs: GPT2M, ROBERTA-BASE

(Liu et al., 2019), T5-BASE (Kale and Ras-
togi, 2020) and ELECTRA-BASE-GENERATOR

(Clark et al., 2020), and check for each model if
there is an n-gram (1 ≤ n ≤ 4) in the prompt
from which the model predicts the target. We
filter out idioms for which a majority (≥ 3) of
models predicted the target (for some n-gram).

• Idioms whose targets are semantically simi-
lar to tokens in the prompt. To further ensure
prompt irreducibility, we embed the prompt’s
tokens and the target token using GloVe word

5We take idioms with an annotation confidence of > 75%
and exclude frequently occurring literal interpretations.

6https://www.ef.com/wwen/english-resources/
english-idioms/

Prompt Target Pred. Sim. IDIOMEM

“make a mountain
out of a”

molehill ✓

“think outside the” box ✓
“there’s no such
thing as a free”

lunch ✓

“go back to the
drawing”

board ✓

“boys will be” boys ✓
“take it or leave” it ✓ ✓

Table 2: Example English idioms included and ex-
cluded from IDIOMEM by our filters of predictable tar-
get (Pred.) and prompt-target similarity (Sim.).

embeddings (Pennington et al., 2014). We mea-
sure the cosine distance between the target token
to each token in the prompt separately and take
the maximum of all the tokens. We filter out
idioms where this number is higher than 0.75
(this number was tuned manually using a small
validation set of idioms).

Overall, 55.7% of the idioms were filtered out,
including 48.5% by length, 6.1% by the predictable-
target test and an additional 1.6% by the prompt-
target similarity, resulting in an 814 idioms dataset,
named IDIOMEM. Further statistics are provided
in Tab. 1, and example idioms in Tab. 2.

4 Probing Methodology

Background and Notation Assuming a trans-
former LM with L layers, a hidden dimension d
and an input/output-embedding matrixE ∈ R|V |×d
over a vocabulary V . Denote by s = ⟨s1, ..., st⟩
the input sequence to the LM, and let hℓi be the
output for token i at layer ℓ, for all ℓ ∈ 1, ..., L and
i ∈ 1, ..., t. The model’s prediction for a token si is
obtained by projecting its last hidden representation
hLi to the embedding matrix, i.e. softmax(EhLi ).

Following (Geva et al., 2021, 2022), we in-
terpret the prediction for a token si by viewing
its corresponding sequence of hidden representa-
tions h1

i , ...,h
L
i as an evolving distribution over

the vocabulary. Concretely, we read the “hidden”
distribution at layer ℓ by applying the same pro-
jection to the hidden representation at that layer:
pℓi = softmax(Ehℓi). Using this interpretation,
we track the probability and rank of the predicted
token in the output distribution across layers. A
token’s rank is its position in the output distribution
when sorted by probability from highest to lowest
(e.g. the rank of the final predicted token is zero).
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GPT2M GPT2L BERTB BERTL

Memorized idioms (mem-idiom) 364 44.7% 392 48.2% 230 28.3% 305 37.5%
Non-memorized idioms (non-mem-idiom) 450 55.3% 422 51.8% 584 71.7% 509 62.5%

Table 3: Number of memorized idioms vs. non-memorized idioms from the IDIOMEM dataset for each model. An
instance is considered a memorized example if the model correctly predicts the target.

Probing Procedure Our key method to under-
stand how transformer LMs retrieve information
from memory is comparing features of memory re-
call to inference that does not necessarily include
memory recall. Given a set of sequences that fulfill
the criteria in §2, we split them into a “memo-
rized” set whose targets’ first token is predicted
correctly by the model being analyzed given (and
are therefore memorized), and a “non-memorized”
set whose target is predicted incorrectly. We addi-
tionally include a second set of “non-memorized”
instances: natural-language sequences randomly
sampled from a large corpus (we assume most
naturally-occurring sequences are not memorized).

To probe a LM, we run it on the 3 sets, and for
each set and each layer, we (a) extract the rank and
probability of the final predicted token in the hid-
den distribution for each prompt, and (b) compute
the mean rank and probability over all prompts.

5 Probing Memorization Using Idioms

5.1 Experimental Setup

Datasets For each LM under analysis (see be-
low), we split IDIOMEM into two disjoint subsets
of memorized and non-memorized idioms, denoted
as mem-idiom and non-mem-idiom, respectively,
according to whether or not the LM succeeds in
completing them. We produce an additional set
of non-memorized instances, wiki, by sampling
prompts from the WIKITEXT-103 dataset (Merity
et al., 2017) of the same length distribution as in
IDIOMEM (see Tab. 1).

Models We use multiple transformer LMs that
are different in size, architecture, and optimiza-
tion objective. We use GPT2 (medium and large)
(Radford et al., 2019), an autoregressive trans-
former decoder, and BERT (base and large) (De-
vlin et al., 2019), a transformer encoder trained
with a masked language modeling (MLM) objec-
tive. To evaluate BERT on a specific idiom, we
feed the idiom’s prompt concatenated with the spe-
cial mask token and a period (e.g. “think outside
the [MASK].”). Further details on each model are
presented in Tab. 6. The number of memorized and

non-memorized idioms from IDIOMEM for each
model are provided in Tab. 3.

5.2 Memorized Predictions are a Two-Step
Process

Fig. 2 shows the probability and rank of the
output token across layers, for memorized and
non-memorized idioms and short sequences from
Wikipedia, by GPT2M, GPT2L, BERTB, and
BERTL. Naturally, the prediction’s rank decreases
across layers as the prediction probability increases.
However, for memorized predictions these trends
occur as two distinct and sharp inference phases. In
lower layers, the prediction’s rank decreases from a
high rank to near zero, while its probability is also
close to zero. For example, in GPT2L the rank de-
creases until layer 20 while the probability remains
below 0.1. We refer to this phase as candidate pro-
motion, as the predicted token is being promoted
to be a top candidate in the output distribution.

Compared to non-memorized predictions, the
initial rank of memorized predictions is generally
higher, especially in GPT2 (6000 vs. 3000 in
GPT2M, and 3000 vs. 1500 in GPT2L). A po-
tential explanation would be a generally lower fre-
quency of the predicted token for memorized id-
ioms. However, we find there is only low negative
correlation between the initial rank of the predicted
token and its frequency (see Tab. 4). We there-
fore offer a different explanation: non-memorized
predictions are often promoted in early layers that
detect local “shallow” patterns, such as common
bigrams (Geva et al., 2021), while predictions for
memorized idioms are not local as they requires
processing of the entire input.

In the middle layers, once the predicted token
reaches the top of the hidden distribution, its proba-
bility increases until the last layer. We refer to this
phase as confidence boosting, as the distribution
shifts towards the predicted token. For memorized
idioms, this increase is abrupt and dramatic, with
a final probability of > 0.6 across all models. In
comparison, predictions on short sequences from
Wikipedia and non-memorized idioms have a sub-
stantially lower probability of ∼ 0.2. This can be
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Figure 2: The predicted token’s probability and rank across layers, for memorized idioms (mem-idiom), non-
memorized idioms (non-mem-idiom) and short sequences from Wikipedia (wiki). Memory recall exhibits two
characteristic phases of candidate promotion and confidence boosting.

explained by the fact that memorized idioms have
a single correct target, rather than many possible
continuations, as in the instances from Wikipedia.
In addition, low-probability predictions for non-
memorized idioms are expected as the model did
not memorize the idioms and does not know their
continuation. In §B, we provide more fine-grained
analysis of these trends via a log-scaled view of the
prediction’s rank and a visualization of the ranks
and probabilities for separate clusters of the memo-
rized predictions.

We further verify that our extracted hidden-
distribution features distinguish between memo-
rized and non-memorized predictions by training
linear classifiers over combinations of these fea-
tures (details in §A). We observe that, indeed, our
features enable separation between memorized and
non-memorized predictions at high accuracy (77%-
85% across models). Moreover, classifiers that use
hidden distribution features are more accurate than
those relying only on the model’s output. Over-

correlation p-value

GPT2M -0.22 2.9e−21

GPT2L -0.18 5.4e−14

BERTB -0.19 1.8e−15

BERTL 0.15 3.5e−10

Table 4: Pearson correlation between the predicted to-
ken’s rank at the first layer and its general frequency in
Wikipedia.

all, these findings provide a profile of memorized
predictions, suggesting that the memorized infor-
mation is retrieved in early layers at inference.

5.3 Testing the Roles of Different Layers
Through Intervention

Our analysis in the previous section interprets hid-
den representations as distributions over the output
vocabulary. We now conduct intervention experi-
ments to verify that this interpretation is meaning-
ful for studying memory recall, and to test layers’
roles in that process. Concretely, we zero out FFN
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Figure 3: Intervention in non-dominant (left) and dominant (right) FFN sub-updates in GPT2M. Each cell shows
the percentage of memorized idioms for which the prediction was changed by zeroing-out the FFN sub-updates
between the start and end layers.

sub-updates to the hidden representation (§4) and
measure changes in memorized predictions.

A Short Primer on Transformer FFN Sublayers.
FFN sublayers are the final computation in trans-
former layers, which output the hidden distribution
at the center of our analysis. In general, they have
a key role in capturing knowledge in transformer
LMs (Dai et al., 2022; Meng et al., 2022). We
follow Geva et al. (2022) and view the computa-
tion of each FFN sublayer as a weighted collection
of dm sub-updates to the output distribution, each
promoting a concept in the vocabulary space, e.g.
“past-tense verbs” or “female athletes”. To under-
stand this, consider the computation of the FFN
at layer ℓ, given by FFNℓ(hℓi) = f(W ℓ

Khℓi)W
ℓ
V ,

where W ℓ
K ,W

ℓ
V ∈ Rdm×d are parameter matri-

ces, dm is the intermediate hidden dimension, and
f is a point-wise non-linearity activation func-
tion. This computation can be decomposed as:
FFNℓ(hℓi) =

∑dm
j=1 f(h

ℓ
i · kℓj)vℓj =

∑dm
j=1m

ℓ
jv

ℓ
j ,

where kℓj and vℓj are the j-th row in W ℓ
K and the

j-th column in W ℓ
V , respectively. Geva et al. argue

that each weight mℓ
j is the score assigned by the

model for some textual pattern, and each vector vj
promotes a concept that follows that pattern.

Experiment First, we sample 100 random in-
stances from IDIOMEM that the model memorized.
Then, for each range of up to 3 consecutive lay-
ers, we perform two complementary experiments,
where we run GPT2M’s inference on the 100 in-
stances while intervening in the chosen layers to
cancel the contribution of FFN sub-updates to the
prediction. Specifically, for each layer ℓ in the layer
range, we perform the following two interventions:
first, we zero out (i.e. artificially set to 0 during
inference) the weights of the 10 most dominant

sub-updates, which are known to be particularly
salient for predictions (Geva et al., 2022) (there are
dm sub-updates per layer). Concretely, we sort the
sub-updates by their contribution to the FFN out-
put |mℓ

i |||vℓi || ∀i ∈ [1, ..., dm], and set mℓ
i = 0 for

the 10 sub-updates with the highest contribution.
Next, we zero out non-dominant sub-updates, i.e.
all the sub-updates except for the 10 most dominant
ones. For each intervention, we measure how often
it changes the predicted token. Further measure-
ments of the change in rank and probability of the
target token are reported in §C.

Results Fig. 3 shows, for each layer range, the
percentage of memorized idioms where the pre-
dicted token has changed. Focusing on zeroing out
non-dominant FFN sub-updates (Fig. 3, left), we
observe a two-phase pattern of decreasing “layer
importance” which corresponds to the two-phase
pattern of decreasing rank and increasing prob-
ability during inference (§5.2): layers’ effect on
memory recall drops precipitously in the first 10
layers, corresponding to the candidate promotion
phase. Then, from around layer 10 onwards, the
drop in effect is much less steep, corresponding to
the confidence-boosting phase. Intervention in up-
per layers rarely changes the predicted token, and
its effect is limited to reducing the model’s con-
fidence (§C). We further visualize this two-phase
behavior in Fig. 7 in §C.

These findings suggest that the candidate pro-
motion phase, while having a smaller effect on
the prediction’s assigned probability compared to
the later confidence-boosting stage, in fact, has a
crucial role in memory recall.

We also observe that interventions in the first
layer are by far the most destructive, with 100%
change in prediction for non-dominant updates
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(Fig. 3, left). Unlike for other layers, this is also
observable when zeroing out the dominant sub-
updates (Fig. 3, right), which constitute only 0.1%
of layer sub-updates. This suggests the first layer
is especially critical for memorized predictions.

6 Memorization of Factual Statements

We now examine if our findings generalize beyond
idioms to other types of memory recall, focusing
on the completion of statements expressing facts.

Data Datasets for evaluating memorization of
factual knowledge typically contain simple queries
such as “The continent of Kuwait is”, where pre-
dicting the next token requires knowledge of the
triplet ⟨s, r, t⟩ where s is a source entity (e.g.,
Kuwait), t a target entity (e.g., Asia), and r is the
relation between them (e.g., is the continent
of). However, unlike idioms, such queries are not
suitable for probing memorization since they often
fail to satisfy the criteria in §2. Concretely, queries
often include “clues” that could make the predic-
tion easy to guess and based on generalization
(Poerner et al., 2020) (e.g. predicting a Spanish-
speaking country for the query “Federico López
was born in”), and the same fact can be expressed
in multiple different ways (e.g. “Kuwait is a coun-
try in Western Asia” also encodes the above fact).

To test memorization of facts, we, therefore,
collect factual statements where such cases are
excluded. We use LAMA-UHN (Poerner et al.,
2020), a subset of the LAMA dataset (Petroni et al.,
2019), where “easy-to-guess” queries are filtered
out. LAMA comprises of queries structured as
“fill-in-the-blank” cloze statements (e.g. “Gordon
Scholes is a member of the ____political party.”).
To accommodate autoregressive LMs, we consider
only queries where the blank appears at the end. In
addition, we keep only queries with a single cor-
rect completion (based on LAMA). This turns our
definition of memorized and non-memorized sets
(§4) equivalent to separating based on the evalu-
ation metric of LAMA: an instance is considered
memorized if the model predicts the single correct
completion and non-memorized otherwise. Overall,
the resulting collection consists of 17,855 factual
statements with 22 unique relations.

Memorized Facts Exhibit a Similar Predic-
tion Process to Idioms We repeat our analysis
(§5.1), using the collected factual statements and
GPT2M. Splitting the statements to those memo-
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Figure 4: The predicted token’s probability and rank
across layers of GPT2M, for memorized (mem-fact)
and non-memorized (non-mem-fact) facts and short
sequences from Wikipedia (wiki).

rized and non-memorized by the model results in
786 mem-facts vs. 17,069 non-mem-facts state-
ments.

Fig. 4 shows the rank and probability of the pre-
dicted token across layers. Like idioms, memorized
facts exhibit a clear two-phase prediction process,
where the prediction probability rapidly increases
once the candidate reaches a low rank (at layer
16). This is in contrast to non-memorized facts and
short sequences from Wikipedia, where the rank
(probability) gradually decreases (increases) across
layers without a distinct two phases.

Differences from Memorized Idioms Stem from
Ill-Defined Targets There is one major differ-
ence compared to memorized idioms (Fig. 4 vs.
Fig. 2 upper left), which is a substantial drop in
probability (0.62 → 0.21) in the last two layers.
We hypothesize that this is because the input query
has multiple plausible completions that were not
specified as “correct” targets in LAMA. We verify
this by manually analyzing predictions, and find
that for 82 out of 100 queries there is more than
one correct continuation in top 5 predicted tokens.
We posit that the above deficiency of LAMA is
inherent because, in violation of our criterion (§2),
factual statements can usually be expressed in many
ways so their prompt has no single correct target.

7 Related Work

Memorization as Training-Data Influence.
Memorization in LMs has attracted immense atten-
tion due to their rich sensitive training data (Carlini
et al., 2019; Song and Shmatikov, 2019; Carlini
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et al., 2021; Zhang et al., 2021b; Carlini et al.,
2022; Tirumala et al., 2022; Tänzer et al., 2022;
Raunak and Menezes, 2022). Recent work suggests
that memorization is necessary for performant ML
due to the “long tail” of infrequently-observed pat-
terns (Zhang et al., 2021a; Feldman, 2020; Brown
et al., 2021; Raunak et al., 2021). This line of
work has two key limitations: (a) only black-box
behavior is measured rather than looking at models’
internal prediction process, and (b) it detects mem-
orized instances by measuring the effect of their
inclusion in the training set on inference behavior.
This results in a set of memorized examples that
is specific to the model, training data, and even
training pass, making it difficult to build on these
results in future research.

Transformers and Idioms. Nedumpozhimana
and Kelleher (2021) showed that idioms are iden-
tified using textual cues within the expression;
Dankers et al. (2022) showed that idioms tend to
be internally processed as single units of meaning.
It has also been known (Fakharian and Cook, 2021;
Salton et al., 2016) that LM contextual embeddings
encode information about whether or not an expres-
sion is idiomatic (vs. literal). (Shwartz and Dagan,
2019; Chakrabarty et al., 2022) also studied repre-
sentations and interpretation of non-compositional
sequences, such as idioms. No prior work used
idioms to probe LM memorization, which is one of
the main contributions of this work. We release our
dataset, IDIOMEM, to facilitate future research on
memorization recall in LMs. Diagnostic datasets,
such as IDIOMEM, have often proven useful in the
past (Sugawara et al., 2022; Parrish et al., 2021).

Memorization of Factual Knowledge. An ex-
tensive line of work (Petroni et al., 2019; Jiang
et al., 2020; Poerner et al., 2019; Lewis et al.,
2020; Elazar et al., 2021) studied LMs’ capacity
to acquire relational knowledge during training.
Some attention has also been given to understand-
ing the inner workings of factual-memory recall:
Wallat et al. (2020) showed that some facts are
retrieved from the bottom and intermediate layers,
and Meng et al. (2022) localized factual-knowledge
recall within feed-forward-component computation.
Since factual statements do not fulfill our criteria, it
is difficult to convincingly argue that correct predic-
tions indicate memory recall, making it impossible
to use them to isolate the effect of memorization.

8 Conclusion

We introduce a methodological framework for de-
tecting and analyzing memorized predictions in
transformer LMs. This includes a set of criteria
on textual sequences for probing memorized pre-
dictions, the IDIOMEM dataset of idioms fulfilling
these criteria, and an interpretation method of pre-
diction internals. We characterize a behavioral pro-
file that is unique to predictions involving memory
recall and is observable across different LMs and
data types. By providing these fundamental tools
and initiating a thread of research on the phenom-
ena we observe, we hope to empower future work
towards demystifying transformer memorization.

Limitations

Our criteria for detecting memorized instances are
sufficient but not necessary, which raises the ques-
tion of what other sequences that trigger memory
recall satisfy them.

Additionally, while correct prediction for se-
quences that fulfill our criteria implies memory
recall, incorrect prediction does not necessarily im-
ply that no memory was used. This means that
our set non-mem-idiom might include some por-
tion of memorized sequences. This does not qual-
itatively affect our results as long as mem-idiom
still contains more memorized predictions than
non-mem-idiom, as is evidenced by the stark differ-
ences we observe between LMs’ internal behaviors
on these sets.

Our work focuses on showing the utility of id-
ioms for probing memorization, and opening up a
new thread of research in this vein. We therefore
leave further investigation of the above gaps for
future work.
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A Distinguishing Memorization Using
Hidden-Distribution Features

§5.2 shows differences in our extracted hidden-
distribution features, namely the rank and probabil-
ity across layers, between memorized idioms and
non-memorized sequences. To verify that these fea-
tures are distinguishing between memorized and
non-memorized predictions, we build a classifier
that receives them as input, as follows.

Experiment To answer the above, we represent
every instance in IDIOMEM, for every LM we ex-
periment with, as a sequence of probabilities and
ranks assigned to the predicted token at each layer.
This results in a feature vector for each instance in
IDIOMEM for each of our LMs (GPT2M, GPT2L,
BERTB, and BERTL). We then append a class
label for each LM’s instances corresponding to
whether it memorized them. Then, for each LM’s
dataset, we perform 10-fold cross-validation with
an 80%-20% train-test split to evaluate the accuracy
of a logistic-regression classifier using the Logis-
ticRegresion classifier of scikit-learn,7 specifying
L1 penalty and a bilinear solver as constructor pa-
rameters. After each split and before evaluating the
classifier, we balance the test set by replacing the
larger class with a random subsample the size of the
smaller class. To isolate the distinguishing utility
of ranks from that of probabilities, we repeat this
process while only taking either of them as features
at each time. We also repeat this process while sep-
arately considering just the last-layer probability
as a single feature, the last hidden state vector, and
finally, the ranks in layers of layers 1-12 (omitting
ranks in layers 13-16 where ranks are usually 0)
appended to all layer probabilities.

Results Results are given in Tab. 5. We observe
that, across all models, most classifiers perform
well over the 50%-accuracy baseline for their class-
balanced test sets. The output probability alone is
often highly distinguishing with around 78% accu-
racy, but the vector of 16 hidden-distribution prob-
abilities seems to contain additional distinguish-
ing information, as using it alongside ranks results
in higher accuracy, typically around 84%. Using
the ranks in addition to probabilities usually de-
creases accuracy, but omitting the ranks in layers
13-16 (which we know are mostly 0 as this is the
confidence-boosting phase) attenuates this effect.

7https://scikit-learn.org/
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Figure 5: The predicted token’s probability and rank
across layers for each cluster, after clustering the mem-
orized idioms in GPT2M according to rank and proba-
bility across layers.

We conjecture that ranks have little meaningful in-
formation, especially in the confidence-boosting
phase.

B Fine-grained Analysis of Memorized
Predictions

§5.2 shows how recall of memorized predictions
exhibits two characteristic phases (specifically, see
Fig. 2). To shed light on this phenomenon, we
conduct additional analysis.

B.1 Memorized Idioms In-depth Breakdown

In our analysis, we address all memorized predic-
tions jointly. We now check whether these aver-
aged results are consistent across subgroups of the
memorized idioms. To this end, we cluster the
memorized idioms by GPT2M, using the same hid-
den features as in §A, i.e., each instance is repre-
sented by the predicted token probability and rank
across layers. We then cluster the idioms into seven
groups, using K-mean clustering, and visualize the
prediction rank and probability across layers for
each group. We set the number of clusters to k = 7
based on manual inspection, and as we observed
no substantial differences in the resulting clusters
for larger values of k.

Results are shown in Fig. 5. We find that all
groups exhibit the confidence-boosting phase, as
the prediction probability quickly increases starting
from the intermediate layers. Notably, the lowest
final probability observed is > 0.5, which is sub-
stantially higher than the average probability of
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GPT2M GPT2L BERTB BERTL

probability 84.6± 2.8 84.0± 2.3 84.2± 1.8 77.6± 3.3
ranks 63.2± 1.6 59.5± 2.7 73.3± 3.3 64.5± 3.6
probability + ranks 83.6± 2.7 82.9± 2.9 82.7± 2.2 76.9± 2.9
ranks layer 1-12 + probability 84.3± 2.8 83.4± 2.7 82.7± 2.2 77.2± 4.2

probability last layer 79.5± 3.5 83.3± 2.3 77.7± 2.3 74.2± 4.8
final hidden state 72± 2.1 72.5± 3.7 72.7± 2.9 66.0± 3.0
token ids 58± 0.2 59.4± 0.2 58.8± 0.2 71.6± 0.2
random 49.5± 3.8 49.7± 4.7 50.4± 4.9 50.1± 3.5

Table 5: Cross-validation accuracy of a logistic-regression classifier trained to distinguish between memorized and
non-memorized idioms.

∼ 0.2 for non-memorized predictions (§5.2). How-
ever, considering the prediction rank for the differ-
ent groups, we observe a relatively large variation.
Specifically, we observe that 55% of the instances
(cluster 0) have a low initial rank. This further
supports the findings in §A.

B.2 Log-Scale Visualization
Fig. 6 shows a log-scaled view of the graphs from
Fig. 2. We observe that, in terms of orders of mag-
nitude (vs. absolute value), the differences in initial
ranks between memorized and non-memorized pre-
dictions are more minor, especially in BERT mod-
els, whereas rank differences measured in upper
layers are more stark.
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Figure 6: The predicted token’s probability and log-scaled rank across layers, for memorized idioms (mem-idiom),
non-memorized idioms (non-mem-idiom) and short sequences from Wikipedia (wiki).
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Figure 7: We visualize the effect of intervening in each
3-consecutive-layer range according to the procedure
in §5.3.

C Intervention Experiments: Additional
Analysis

C.1 Additional Visualization

In §5.3, we performed an intervention-based ex-
periment to test the effect of zeroing out FFN sub-
updates in layer computation. This produced a
heat map of values corresponding to intervention’s
effect for each layer range. Here, we plot the in-
tervention’s effect across all 3-layer layer ranges.
Note that since there are 24 layers, there are a to-
tal of 22 ranges of 3 consecutive layers. Fig. 7
visualizes the effect of intervening in each such
range.

As discussed in §5.3, we observe a steep drop
in effect in the first 10 layers, followed by a more
leveled slope of decrease in the upper layers.

C.2 Analyzing Changes in Rank and
Probability of the Target Token

In addition to measuring how often an intervention
changes memorized predictions (§5.3), we further
measure the average change in the rank and prob-
ability of the target token. Note that the original
target rank for memorized predictions is always
zero, as the target token is the top candidate in the
original output distribution.

Change in target rank Fig. 8 shows the change
in the target token’s rank for all intervention ex-
periments. Overall, we observe similar trends as
in §5.3. First, zeroing out either dominant or non-
dominant FFN sub-updates in upper layers (layers
11-24) does not affect memory recall, as the target
token is still ranked as the top candidate in the out-
put distribution. Moreover, zeroing out in early lay-
ers (1-10) damages memory recall as the target rank

increases by > 20 positions. Specifically, zeroing-
out non-dominant FFN sub-updates in layers 2-4
increases the target rank by 60, and disabling either
dominant or non-dominant sub-updates in the first
layer completely eliminates memory recall as the
rank increases to > 6000.

Change in target probability Fig. 9 shows the
change in the target token’s probability for all in-
tervention experiments. Unlike the prediction rank,
which is mostly influenced by the lower layers dur-
ing memory recall, the prediction probability is
highly influenced by the intermediate and upper
layers, where confidence boosting happens. Dis-
abling FFN sub-updates in only three of these lay-
ers reduces the prediction probability by up to 33%.
Considering the lower layers (1-9), zero-outs lead
to a large probability decrease (up to 50%). This is
expected since these interventions often change the
prediction, i.e. they eliminate the target from the
top of the output distribution.

D Experimental Setting Details

Tab. 6 shows the evaluated models’ hyperparame-
ters.
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Figure 8: Change in the rank of the target token following intervention zeroing out non-dominant (left) and dominant
(right) FFN sub-updates in GPT2M. Each cell shows the average change in rank of the target token after zeroing out
the sub-updates in the layers between the start and end layers. For readability, we provide plots with the first layer
(top) and without (bottom).

1 3 5 7 9 11 13 15 17 19 21 23
end layer

1
3
5
7
9

11
13
15
17
19
21
23

st
ar

t l
ay

er

non-dominant FFN sub-updates

1 3 5 7 9 11 13 15 17 19 21 23
end layer

1
3
5
7
9

11
13
15
17
19
21
23

st
ar

t l
ay

er

dominant FFN sub-updates

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

end layer

2
4

6
8

10
12

14
16

18
20

22
24

st
ar

t l
ay

er

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

end layer

2
4

6
8

10
12

14
16

18
20

22
24

st
ar

t l
ay

er

0%

20%

40%

60%

80%

100%

-10%

0%

10%

20%

30%

40%

50%

0%

20%

40%

60%

80%

100%

-10%

0%

10%

20%

30%

40%

50%

Figure 9: Change in the probability of the target token following intervention zeroing out non-dominant (left) and
dominant (right) FFN sub-updates in GPT2M. Each cell shows the average change in probability of the target token
after zeroing-out the sub-updates in the layers between the start and end layers. For readability, we provide plots
with the first layer (top) and without (bottom).

GPT2M GPT2L BERTB BERTL

Layers 24 36 12 24
Model hidden dimensions (d) 1024 1280 768 1024
Feed-forward dimensions (dm) 4096 5120 3072 4096
Attention heads 12 20 12 16
Parameters 345M 774M 110M 340M
Vocabulary size (# of tokens) 50,256 50,256 30,522 30,522

Table 6: The models’ hyperparameters.
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Abstract

Knowledge of syntax includes knowledge of
rare, idiosyncratic constructions. LLMs must
overcome frequency biases in order to mas-
ter such constructions. In this study, I prompt
GPT-3 to give acceptability judgments on the
English-language Article + Adjective + Nu-
meral + Noun construction (e.g., “a lovely five
days”). I validate the prompt using the CoLA
corpus of acceptability judgments and then zero
in on the AANN construction. I compare GPT-
3’s judgments to crowdsourced human judg-
ments on a subset of sentences. GPT-3’s judg-
ments are broadly similar to human judgments
and generally align with proposed constraints
in the literature but, in some cases, GPT-3’s
judgments and human judgments diverge from
the literature and from each other.

1 Introduction

Consider the English Article + Adjective + Nu-
meral + Noun (AANN) construction: “ a beautiful
228 pages [iWeb]” or “The president has had a ter-
rible five weeks [COCA]”. Usually cardinal num-
bers precede the adjective (“five terrible weeks”),
but here the adjective precedes the numeral. More
strangely, the normally singular article “a” in this
case is followed by a plural noun phrase.1

An eclectic dozen or so papers have been writ-
ten on the construction, many focused on eluci-
dating relevant semantic and syntactic constraints
(Goldberg and Michaelis, 2017; Jackendoff, 1977;
Dalrymple and King, 2019; Bylinina and Nouwen,
2018; Ionin and Matushansky, 2018, 2004; Solt,
2007; Keenan, 2013). The presence of the modifier
is crucial: “a 228 pages” is unacceptable. The type
of modifier is also crucial: “a pink 228 pages” is
odd because color words are “stubbornly distribu-
tive” (Schwarzschild, 2011) and thus cannot refer
to a set of items as a whole: the nominal phrase

1Data and code: https://github.com/mahowak/
aann-public/

Figure 1: GPT-3 acceptability judgments (bars), com-
pared to human ratings (green triangles) on a matched
set of sentences. The comparison is between the AANN
construction and the standard alternative, as well as
4 degenerate versions. Both humans and GPT-3 rank
the AANN construction as being as acceptable as the
standard, and all degenerate constructions are rated sig-
nificantly lower.

needs to function as a unit (Solt, 2007). These id-
iosyncratic constraints are typical of constructions
(Goldberg, 2019).

Prior work on the AANN construction has fo-
cused on characterizing the semantic and syntac-
tic constraints on the construction and proposing
analyses in various frameworks. For instance, Solt
(2007) focuses on how the construction coerces the
phrase into a singular noun phrase; Keenan (2013)
proposes treating it as akin to a partitive, and Dal-
rymple and King (2019) give an LFG analysis.

The same properties that make AANN inter-
esting from the perspective of human language
use—its low frequency but high sensitivity to
constraints—also make it interesting from the per-
spective of LLMs and what they learn about linguis-
tic structure. Indeed, much work on LLM syntactic
competence has centered on ubiquitous abstract fea-
tures of grammar like subject-verb number agree-
ment (e.g., Linzen et al., 2016; Gulordava et al.,
2018), part of speech (Tenney et al., 2019), and
syntactic dependencies (e.g., Hewitt and Manning,
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2019). That said, there has also been a recent spate
of research on construction-grammar-inspired ap-
proaches in NLP, including studies showing that
LLMs have access to construction information
(Tayyar Madabushi et al., 2020; Tseng et al., 2022;
Weissweiler et al., 2022) and capture verb argument
construction biases (Hawkins et al., 2020) as well
as fine-grained lexical semantic information (Pe-
tersen and Potts, 2022). Moreover, sentences with
similar constructions cluster in embedding space
(Li et al., 2022).

These works are valuable because better under-
standing how LLMs handle constructions could
help us better understand what LLMs learn about
linguistic structure (Baroni, 2021; Linzen and Ba-
roni, 2021) and could also inform us as to what
can be learned about language from primary data
(Warstadt and Bowman, 2022, 2020). In our case,
for an LLM to get the AANN construction right, a
number of statistical regularities must be eschewed:
“a” cannot be treated as a singular marker since the
noun is plural, the normal ordering of the number
and adjective must be reversed, and normal verb
number agreement rules must in some cases be
suspended. Understanding whether these heuris-
tics (which work well for the vast majority of text)
can be overcome can guide us towards future work
understanding how they are overcome.

Here, I ask what GPT-3 text-davinci-002
(now often classed as an instance of GPT-3.5)
learns about the AANN construction by testing its
sensitivity to several constraints proposed in the lit-
erature. In doing so, I treat the LLM as a linguistic
test subject (Linzen et al., 2016; Futrell et al., 2019;
Wilcox et al., 2021; Warstadt et al., 2019; Ettinger,
2020). I use a custom prompt to elicit quantitative
grammaticality judgments (Schütze, 2016; Gibson
and Fedorenko, 2013) from GPT-3, and show that
the prompt performs well on CoLA, a data set of
binary acceptability judgments on a carefully con-
structed 10,657 English sentences (Warstadt et al.,
2019). I then unleash it on the AANN construction
and compare GPT-3 to human ratings.

2 Methods

Attaining acceptability judgments from language
models is not straightforward. Simply comparing
sentence probabilities is difficult because they are
dependent on the individual lexical items, as well
as sentence length (Warstadt et al., 2020). I rely
on the prompting paradigm to elicit acceptability

Figure 2: The prompt used for attaining grammaticality
judgments. The target sentence is inserted, and then
GPT-3 is asked to generate one token (overwhelmingly
likely to be “good” or “bad”). That token’s probability
is taken as a rating.

judgments—validating the measure first using a
known data set of judgments from CoLA. The
prompt was created by drawing on a combination
of CoLA training sentences and handcrafted sen-
tences and iteratively experimenting. Ultimately,
a diverse 8 sentences were chosen, some of which
intentionally have low lexical probability to ensure
that the model does not call all low-probability
strings ungrammatical. Each prompt example sen-
tence appears along with a binary judgment: “good”
or “bad”. Then, GPT-3 is passed the prompt, along
with the critical test sentence, and asked to generate
one more token (always either “good” or “bad”).
The probability of the generated word (whether
“good” or “bad”) is our numerical rating.

To validate the measure, I tested the final prompt
on the CoLA dev set. It attained accuracy of 84%,
with a Matthew’s correlation coefficient of 0.63.
This is worse than, but in the ballpark of, human
inter-annotator agreement on CoLA which is 86%
and .697, respectively (Warstadt et al., 2019). It is
also comparable to top performers on the GLUE
leaderboard for the CoLA sub-task.

I used this technique to test the AANN con-
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template temporal: The family spent X in London; The diplomat
worked X in Nairobi; The tourist stayed X in Papua New
Guinea; objects: She bought X; They discovered X; Some-
one saw X; human: We served dinner to X; X greeted us at
the door; We congratulated X; art: The newspaper reviewed
X; I experienced X; Please enjoy X; distance: He drove X;
Someone walked X; Someone traveled X; unitlike: Luis
took in X; They consumed X; It lasted X

template
for agree-
ment
task

temporal: X is/are just what you need; X is/are ideal ob-
jects: X is/are available; X make(s) a lovely gift; human:
X regularly show(s) up at the door; X is/are here art: X
was/were reviewed in the newspaper; X was/were enjoyed
distance: X is/are a long way; X is/are not far; unitlike X
was/were uncovered; X was/were make(s) an impression

adj ambig: astonishing; incredible; impressive; disappointing;
surprising; devastating; pathetic; remarkable; mediocre; un-
satisfying; qualitative: lovely; beautiful; enchanting; sooth-
ing; charming; disgusting; uninviting; haunting; hideous;
ugly; quant: mere; staggering; whopping; hefty; paltry;
meager; extra; measly; substantial; record-setting; stub-
born: large; big; small; round; tall; color: blue; green; red;
yellow; orange; human: lucky; talented; graceful; fancy;
friendly; collegial; hopeful; shy; bold; grinning

noun human: soldiers; students; athletes; pianists; teammates;
lawyers; doctors; actors; Americans; bankers; objects:
desks; marbles; pencils; belts; forks; chairs; cans; bananas;
apples; trays; art: movies; paintings; books; shows; operas;
temporal: days; weeks; months; years; hours; distance:
meters; feet; yards; blocks; steps; unit_like: pages; acts;
paragraphs; awards; meals

num. three; five; six; eight; ten; twenty; fifty; 500; 1000; 10,000;
21; 51; 512; 1,429; 21,234

Table 1: A superset of the items used, which were com-
bined in various ways across experiments. In the tem-
plates, X is replaced by the AANN construction.

struction by templatically constructing sentences
in which I parametrically vary the main sentence
template, adjective, numeral, and nominal, from
the superset shown in Table 1. Templates were de-
signed to work with the key manipulations. Certain
nouns work with some templates and not others, to
ensure template/ noun pairs are always plausible.

Adjectives in the AANN construction behave
differently depending on whether they are quan-
titative (i.e. modify the numeral as in “a mere 5
days”), qualitative (e.g., modify the noun as in “a
beautiful five days), or are ambiguous between the
two (e.g., “an astonishing five days” which leaves it
unclear whether the number of days is astonishing,
or the days themselves). It has been claimed (e.g.,
Dalrymple and King, 2019; Solt, 2007; Keenan,
2013) that quantitative and ambiguous adjectives
are typically more acceptable than qualitative ones
in AANN—although there are specific instances
where qualitative adjectives are acceptable. I also
consider “stubbornly distributive” (Schwarzschild,
2011) adjectives (e.g., “large” or “blue”), which
“stubbornly” refer to individuals even when applied
to a group. For instance, “The chairs are large.”
can refer only to the individual chairs being large,
not to the collective group of chairs being large.
It’s claimed (Bylinina and Nouwen, 2018; Ionin

and Matushansky, 2018; Keenan, 2013) that this
same property makes a phrase like “a large five
trees” less acceptable, compared to something like
“a beautiful five trees” (in which it is possible for
“beautiful” to refer to not just the individual trees
but to the collection of trees).

Solt (2007) and others observe measure nouns
work best in the AANN construction, but that other
nouns can be okay as long as they can be treated as
a single unit. I sampled nouns from 6 categories,
as shown in Table 1. Also as shown in that table, I
sampled numerals of various kinds but focused on
“three” and “five” for the human experiments and
most analyses. See Appendix B for a discussion of
sensitivity to the numeral.

From these templates and candidate words, I gen-
erate semantically plausible sentences (meaning
that, throughout the experiments, I only use human-
appropriate sentence templates with human nouns
and object-appropriate ones with object nouns). De-
pending on the specific question in each experi-
ment, I run controlled subsets of these sentences
(or their degenerate variants as in Experiment 1)
through GPT-3 to obtain acceptability judgments,
getting the probability of “good” or “bad” as the
next word in the continuation.

I also use Amazon’s Mechanical Turk to obtain
human judgments on a subset of the test sentences.
I asked raters to rate sentences on a rating bar scale
from 1-10. For Experiments 1 and 3, each rater
rated 3 critical sentences. They rated 18 critical
sentences in Experiment 2 since there were many
more conditions to test in that experiment.

To guard against raters becoming inured to the
construction, half or more items were fillers not
involving AANN. To maintain similar calibration
between humans and GPT-3, these fillers always
included all example judgments used in the GPT-3
prompt. I excluded participants who did the survey
more than once, who did not rate the good filler
items at least 1 point higher than the bad, or who
did not have a US IP address. I obtained annota-
tions for only a sample of sentences rated by GPT-3.
When applicable, analyses focus on the union of
sentences rated by both humans and GPT-3.

3 Exp. 1: AANN Fundamentals

First, I tested the basics of the AANN construction
as laid out in the literature by having GPT-3 and
human raters rate the AANN construction (e.g., “a
beautiful five days”) vs. the default (“five beauti-
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ful days”) vs. a select four degenerate conditions:
one with the order of the numeral and adjective
switched, one with no modifier, one with a singu-
lar noun, and one with no article “a”. To generate
examples in each condition, I crossed 3 temporal
nouns (days, weeks, months), with a low numeral
(three), one of 14 appropriate adjectives, and one of
3 templates. For the resulting sentences, I attained
human ratings from MTurk (after exclusions, 126
raters rating 3 sentences each, for 378 total ratings)
and GPT-3 and focus on that subset for analysis.

Figure 1 shows results for this experiment. Al-
though GPT-3 uses a wider range of the scale, both
rate the AANN construction as just as good as the
default and give lower ratings to the 4 degenerate
versions. Humans rate the 4 degenerate construc-
tions as about equally bad (all between .46 and .53),
whereas GPT-3 rates the versions with swapped
adjective/numeral order and a missing article as
significantly better than the versions with a missing
plural and a missing modifier. Running a mixed ef-
fect regression (Bates et al., 2015; Barr et al., 2013)
comparing the AANN construction to the “default”
construction and the degenerate alternatives (treat-
ing the default construction as the baseline, with
random intercepts for adjective class, adjective, and
template; and, for humans, for rater), both GPT-3
and humans show no significant difference in rating
between AANN and default (both p > .05), but
do show a significant difference between AANN
and all 4 degenerate conditions (all ps < .0001).
See Appendix C for regression details. Overall, I
conclude that humans and GPT-3 “get” the AANN
construction, even though they differ in the relative
ratings of the bad variants.

4 Exp. 2: Adjectives and nouns

In this experiment, I focus on only the AANN con-
struction and parametrically vary the kinds of adjec-
tives (quantitative, ambiguously quantitative/quali-
tative, qualitative, human-referring, color adjective,
stubbornly distributive; see Table 1 for examples)
and kinds of nouns in the sentences (art, distance,
human nouns, object nouns, temporal nouns, unit-
like nouns; again see Table 1). This process pro-
duced a carefully controlled 12,960 unique sen-
tences, from which we sampled a random subset
for human ratings. After exclusions, there were
190 raters left who each rated 18 sentences, giving
us ratings for 3,420 sentences.

I test whether GPT-3 and human raters agree

Figure 3: GPT-3 acceptability scores broken down by
adjective type (x-axis), and noun type (on facets). Hu-
man ratings are pink triangles.

with the attested claims that (a) more measure-like
nouns (e.g., temporal nouns, distance nouns, and
unit-like nouns) are more acceptable in AANN, (b)
qualitative adjectives are acceptable in only some
AANN cases, and (c) stubbornly distributive adjec-
tives (including color words) are not acceptable in
the AANN construction. To assess significance, I
predicted acceptability separately for humans and
GPT-3 in a mixed effect regression, using adjective
class, noun class, and their interaction as predictors
and with random effects for adjective, noun, nu-
meral, and template. I treated qualitative adjectives
with temporal nouns as the baseline.

For both humans and GPT-3, there are significant
differences in how nouns interact with adjectives
(Figure 3). For temporal, distance, and unit-like
nouns, all adjective types show high acceptability
(although the qualitative adjectives are rated low-
est). For art and object nouns, qualitative nouns
score significantly worse (p < .01 for both humans
and GPT-3) than ambiguous or quantitative nouns
(an observation consistent with the literature). As
predicted, colors and other stubbornly distributive
adjectives (which can be tested only for humans
and objects) show the lowest acceptability (signif-
icantly lower, p < .01, compared to qualitative
adjectives, for both human and GPT-3 ratings). See
Appendix D for regression details.

5 Exp. 3: Adjective Order

It is claimed that, in AANN, qualitative adjectives
must appear before quantitative ones in order to
be acceptable (Solt, 2007): “The family spent a
beautiful mere five days in London.” is preferred
over “The family spent a mere beautiful five days in
London.”. To compare whether there is an effect of
adjective ordering (putting the qualitative adjective
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Figure 4: GPT-3 and human preference for adjective
order (quantitative before qualitative; qualitative before
quantitative).

before the quantitative one or vice versa), I ran
an experiment crossing 3 templates; 5 adjectives
(astonishing, impressive, beautiful, hideous, ugly);
the noun “days”; and the numeral “three” or “five”.
I ran each sentence in two conditions (quantitative
adjective first or qualitative adjective first). For
instance, I compared: “The family spent a beautiful
mere five days in London.” to “The family spent a
mere beautiful five days in London.” This left 60
sentences total, rated by 99 raters (each sentence
rated between 18 and 36 times; 1,782 ratings total).

GPT-3 significantly prefers the order dispre-
ferred in the literature (quantitative first, as in “a
mere beautiful five days”; β = .04, p < .01). Hu-
mans (n=99) showed no clear preference according
to the model, under the same analysis (but with a
random intercept for rater): β = −.513, p > .05.
Thus, the attested claim does not replicate. But the
ratings for these sentences are relatively low over-
all, so we should remain open to the possibility that
there are better examples of the double-adjective
constructions than the ones tested. See Appendix E
for regression details.

6 Exp. 4: Verb Agreement

The AANN construction also challenges number
agreement. AANN subjects sometimes take singu-
lar verbs (when the noun phrase would be singular
anyway, as in “A mere fifty cents for a cup of cof-
fee sounds/*sound reasonable to me!”); sometimes
plural (“A delicious four courses *was/were served
in the main dining room.”), and sometimes either
(“A healthy two runs weekly was/were prescribed
by the doctor.” See Keenan (2013).

I tested agreement by comparing phrases which
differed only in the verb number (e.g., compar-
ing “A beautiful five days is...” vs. “A beauti-
ful five days are....”). Sampling a subset of noun

Figure 5: Mean GPT-3 acceptability ratings in the
AANN construction for plural and singular verb agree-
ment, as a function of noun class.

classes (art, distance, human nouns, objects, unit-
like nouns, and temporal nouns), I generated a total
of 280 sentences (each appearing with a singular
or plural verb for a total of 560 sentences) and
attained judgments from GPT-3. As shown in Fig-
ure 5, these results replicated in detail several at-
tested judgments in the literature: art nouns, human
nouns, unit-like nouns, and object nouns all pre-
fer the plural for the AANN construction (art and
humans almost categorically so). Distance nouns
and temporal nouns prefer the singular (although
temporal nouns can also take the plural). See Ap-
pendix F for details.

7 Conclusion

This work shows that GPT-3 can recognize and use
the form of the AANN construction in a relatively
(but not perfectly) human-like way, matching judg-
ments across a variety of conditions, which is not
the same thing as showing that it understands the
meaning or function of the construction (Mahowald
et al., 2023). In future work, we should study not
just the form of the construction but its construal
(Trott et al., 2020). This may be particularly rele-
vant since Weissweiler et al. (2022), which studies
the “Xer the Yer” construction (e.g., “the better the
criticism, the better the science” [COCA]), show
that LLMs can recognize the construction but fail
at tests of understanding its meaning.

That said, GPT-3’s performance on the AANN
construction demands a significant amount of con-
structional knowledge and involves overriding ma-
jor widespread “rules” of grammar (e.g., that the
article a signals a singular noun). Future work
exploring how LLMs override those heuristics, per-
haps using causal intervention techniques (Ravfo-
gel et al., 2021; Geiger et al., 2021) could illumi-
nate their syntactic processing mechanisms.
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8 Limitations

Many researchers have pointed out that the AANN
construction is sensitive to context. For instance,
Solt (2007) points out that “a hungry thirty hikers”
may be acceptable in some sentences (namely ones
where “hikers” is more easily construed as a single
unit) than others. Because of the cost of running
sentences through GPT-3 and on MTurk and the
combinatoric nature of the construction, I could
only run a constrained number of templates and did
not consider larger context. Broader context may
matter and so these results should be taken to apply
to the particular contexts shown, which is why I
show the exact templates used in the main text.

Another limitation is that the task of how to
prompt GPT-3 for grammaticality judgments is not
a settled question. Our focus in this paper was not
on settling it, so I used one particular method for
prompting GPT-3. While I explored the prompt
space some, it is likely there are better prompts out
there that would make GPT-3’s performance on the
task better. It’s also possible that prompting GPT-3
for grammaticality judgments is not the best way to
ascertain its knowledge of language and that a more
naturalistic task would produce different results.

As has often been pointed out in the linguistics
literature, naive human judges of out-of-context
sentences may sometimes tap into different pro-
cesses than they would when encountering lan-
guage in the wild. Moreover, English is not a
monolith and this construction’s acceptability may
vary across dialects of English. In a more detailed
human study, it would be possible to tease apart
effects of different dialects on ratings.

GPT-3 text-davinci-002 is often catego-
rized as GPT-3.5 because it is trained on more than
just a word prediction task, and so we should not in-
terpret its output as being purely reflective of what
is learned by word prediction alone.

Finally, I note that I use templatically con-
structed sentences, which differ in important ways
from naturalistic ones.
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A Frequency of AANN

I sampled the AANN construction on
SketchEngine for the English Web 2020
corpus with the following prompts:
[lemma=”a[n]*”] [tag="JJ.*"]
[tag="CD.*"] [tag="NNS"] for AANN
and [tag="CD.*"] [tag="JJ.*"]
[tag="NNS"] for the vanilla construction.
The AANN showed up 23.62 per million tokens,
compared to 457.22 for the vanilla construction.
Of the AANN construction examples, the vast
majority contain quantitative adjectives (e.g.,
mere, staggering, etc.) and measurement nouns.
Of a sample of 200 AANN constructions that
I manually inspected on SketchEngine, none
contained a qualitative adjective.

B Numerals

I sampled numerals from round low numbers
(“three”, “five”, “six”, “eight”, “ten”), medium
numbers (“twenty”, “fifty”), high numbers (500,
1000, 10,000), non-rounded medium numbers (21
and 51), and non-rounded high numbers (1,429 and
21,234). I focused on round low numbers (“three”
and “five”) for most analyses.

For the overall analysis (across all adjectives and
nouns in the main experiment), I get the below
AANN ratings from GPT-3.

numclass example avg. AANN score
num-high 500 0.68
num-high_odd 1,429 0.93
num-low three 0.80
num-med twenty 0.70
num-med_odd 21 0.73

Low numbers like “three” and “five” are rated
higher somewhat than other numbers, with the ex-
ception of high, non-round numbers (e.g., 1,429).
These are rated unusually highly. Because of this
anomalous behavior, I focus mostly on the low nu-
merals for the analysis and did not attain human
ratings for these other numerals. It remains an open
question how humans would rate a sentence like
“We spent a beautiful 1,429 days in London.”

C AANN vs. default vs. degenerate
regression

I run the following regression using the R lme4
(Bates et al., 2015) package.

lmer(value ~ construction +
(1|adjclass) +
(1|adj) +
(1 | temp))

where I treat the construction as a predictor (with
the AANN constructor as a default) and adjclass,
adjective, template as random effects. (Other ran-
dom effects were removed to help the model con-
verge, by iteratively removing ones with the small-
est variance.)

For humans, there is also a random intercept for
worker.

coef. βgpt3 Sig βhuman Sig
(Intercept) 0.99 * .81 *

five ADJ days 0.00 .06
a five ADJ days -0.22 * -.39 *

a five days -0.87 * -.35 *
a ADJ five day -0.72 * -.35 *
ADJ five days -0.20 * -.38 *

Table 2: Fixed effect coefficients for GPT-3 comparing
across constructions on the subset of sentences also run
with human annotators

D Regression for adjective x noun
sub-experiment with GPT-3 and
humans

To assess significance, I predicted acceptability sep-
arately for humans and GPT-3 in a mixed effect
regression, using adjective class, noun class, and
their interaction as predictors and with random ef-
fects for adjective, noun, numeral, and template. I
treated qualitative adjectives with temporal nouns
as the baseline. For the human regression, it was
identical except I included a random intercept for
each worker, with a random slope for adjective
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class and noun class (but not their interaction, due
to convergence issues).

lmer(rating ~ adjclass *
nounclass +
(1|adj) +
(1|noun) +
(1|num) +
(1 |template))

beta t-value p<.05
(Intercept) 0.80 12.09 *
adj-quant 0.02 0.27

adj-stubborn -0.62 -10.27 *
adj-ambig -0.02 -0.32

noun-unit_like 0.14 3.49 *
noun-objects 0.02 0.58
noun-human 0.03 0.76

noun-distance 0.14 3.40 *
noun-art -0.10 -2.33 *

adj-quant:noun-unit_like -0.02 -0.80
adj-quant:noun-objects 0.09 2.63 *

adj-stubborn:noun-objects -0.17 -3.64 *
adj-quant:noun-human 0.08 2.24 *

adj-quant:noun-distance -0.01 -0.28
adj-quant:noun-art 0.07 2.35 *

Table 3: Fixed effect coefficients for GPT-3 comparing
the adjective class x noun class manipulation.

beta t-value p<.05
(Intercept) 0.73 16.84 *
adj-quant 0.10 2.63 *

adj-stubborn -0.25 -5.58 *
adj-ambig 0.09 2.65 *

noun-unit_like -0.08 -3.11 *
noun-objects -0.09 -3.38 *
noun-human -0.12 -4.25 *

noun-distance 0.00 0.17
noun-art -0.12 -4.28 *

adj-quant:noun-unit_like 0.02 0.72
adj-quant:noun-objects 0.06 2.04 *

adj-stubborn:noun-objects -0.04 -0.91
adj-quant:noun-human 0.05 1.62

adj-quant:noun-distance 0.03 1.27
adj-quant:noun-art 0.04 1.51

Table 4: Fixed effect coefficients for human annotators
comparing the adjective class x noun class manipulation.

E Regression for adjective ordering

I ran a mixed effect linear regression predicting the
GPT-3 score from the condition (quantitative-first
vs. qualitative-first), with random intercepts for
adjective, numeral, and template.

l = lmer(value ~ cond +
(1|adj) +
(1|num) +
(1 |template)

beta t-value p<.05
(Intercept) 0.57 4.88 *

singular 0.35 3.14 *
noun-unit_like 0.27 3.37 *

noun-objects 0.17 2.50 *
noun-human 0.29 4.27 *

noun-distance -0.18 -2.25 *
noun-art 0.20 2.52 *

singular:noun-unit_like -0.63 -6.40 *
singular:noun-objects -0.50 -6.12 *
singular:noun-human -1.07 -12.96 *

singular:noun-distance 0.16 1.65
singular:noun-art -1.16 -11.71 *

Table 5: Fixed effect coefficients and significance val-
ues for an experiment comparing whether nouns in the
AANN construction prefer singular or plural verbs.

F Agreement

I ran a regression predicting the rating based on the
nounclass, and its interaction with whether there
was singular plural. I included random intercepts
for noun, adjective, and template, with a random
slope for whether the verb was singular or plural
on the noun factor.

lmer(rating ~ singplur *
nounclass +
(1 + singplur|noun) +
(1|adj) +
(1|template))

Results appear in Table 5, where the baseline val-
ues are temporal nouns in the plural (e.g., “days”).
Singular verbs are preferred overall, relative to plu-
rals for the temproal nouns (main effect of “singu-
lar”). There are various main effects of nouns, but
the critical effects here are interactions. There are
significant effects such that, relative to temporal
nouns (e.g., “days”), unit-like nouns are less likely
to prefer singular agreement, object nouns are less
likely to prefer singular agreement, human nouns
are less likely to prefer singular agreement, and
art nouns are less likely to prefer singular agree-
ment. Distance nouns are more likely than tem-
poral nouns to prefer singular agreement (but not
significantly so).
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Abstract
Though pre-trained language models achieve
notable success in many applications, it’s usu-
ally controversial for over-confident predic-
tions. Specifically, the in-distribution (ID) mis-
calibration and out-of-distribution (OOD) de-
tection are main concerns. Recently, some
works based on energy-based models (EBM)
have shown great improvements on both ID
calibration and OOD detection for images.
However, it’s rarely explored in natural lan-
guage understanding tasks due to the non-
differentiability of text data which makes it
more difficult for EBM training. In this pa-
per, we first propose a triple-hybrid EBM
which combines the benefits of classifier, con-
ditional generative model and marginal genera-
tive model altogether. Furthermore, we lever-
age contrastive learning to approximately train
the proposed model, which circumvents the
non-differentiability issue of text data. Exten-
sive experiments have been done on GLUE and
six other multiclass datasets in various domains.
Our model outperforms previous methods in
terms of ID calibration and OOD detection by
a large margin while maintaining competitive
accuracy.

1 Introduction

Since many industrial applications involve safety
-critical domains such as healthcare (Li et al.,
2019; Blinov et al., 2020; Li et al., 2020; Rasmy
et al., 2021; Sarabadani, 2019), anticipating credit
card defaults (Sun and Vasarhalyi, 2021) and self-
driving (Khaitan et al., 2021), it’s essential for ma-
chine learning systems to provide not only accurate
but also well-calibrated predictions (Li et al., 2019),
which can help to decide whether it can be trusted.

However, models achieving high accuracy usu-
ally lead to overconfidence and miscalibration (Guo
et al., 2017; Thulasidasan et al., 2019; Ovadia et al.,
2019). This motivates an interesting and important
area that attempts to achieve a better trade-off be-
tween accuracy and calibration. In addition to ID

calibration, it’s more important for machine learn-
ing models to produce high uncertainty when OOD
data is observed, rather than to produce wrong yet
wildly confident predictions.
Related works. To overcome the problem of mis-
calibration, numerous methods have been proposed.
The natural way is post-hoc calibration that trans-
forms the output of the original network into cal-
ibrated confidence scores while maintaining the
network’s accuracy (Guo et al., 2017; Rahimi et al.,
2020; Jung et al., 2020). The second method to mit-
igate miscalibration is to add regularizations dur-
ing training such as label smoothing (Wang et al.,
2020), Mixup (Zhang et al., 2018). Desai and Dur-
rett (2020) and Kong et al. (2020) further conveys
that the aforementioned methods can be applied
to improve the calibration of pre-trained language
models on NLU tasks. The third way is to design a
specific loss function to minimize the discrepancy
between accuracy and confidence. For example,
Kong et al. (2020) lately propose the ID and OOD
regularizer to leverage the relationship between ac-
curacy and uncertainty, and it obtains a significant
improvement over previous methods in ID calibra-
tion and OOD detection.
Energy-based Models. In another line of work,
Joint EBM (JEM; Grathwohl et al., 2019) has been
shown great improvements on ID calibration and
OOD detection for images without explicit cali-
bration correction mechanism. The core idea is
to reinterpret a joint distribution pθ(x, y) from
a neural classifier pθ(y|x) in the perspective of
EBMs and jointly optimize the marginal distribu-
tion pθ(x) and a neural classifier pθ(y|x). Elflein
et al. (2021) further investigate the OOD detection
performance with different training approaches for
pθ(x) such as Stochastic Gradient Langevin Dy-
namics (SGLD; Welling and Teh, 2011), Sliced-
Score-Matching (SSM; Song et al., 2020) and Vari-
ational Entropy Regularized Approximate maxi-
mum likelihood (VERA; Duvenaud et al., 2021).
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Besides, Du and Mordatch (2019) propose an im-
plicit generative models based on EBMs (IGEBM)
and apply SGLD to optimize pθ(x|y). It performs
significantly better OOD detection than other gen-
erative models. However, as shown by Grathwohl
et al. (2019), the accuracy of IGEBM has dropped
dramatically to 49.1% on CIFAR10 while standard
finetuning can achieve 95.8% accuracy. This result
indicates that different loglikelihood factorization
leads to great gaps in accuracy, ID calibration and
OOD detection. Moreover, these training methods
such as SGLD, SSM, VERA need to calculate the
gradients about inputs, the none differentiability of
text data limits the application of these methods on
both calibration and OOD detection for NLU tasks.

Recently, He et al. (2021) proposes a joint train-
ing of classifier pθ(y|x) and marginal distribution
pθ(x) based on Residual EBM (Deng et al., 2019)
for NLU tasks. Different from JEM, their model
is more flexible by designing various energy func-
tions for marginal distribution without any restric-
tion on joint distribution pθ(x, y). To estimate the
parameters of marginal distribution pθ(x), they pro-
pose to apply noise contrastive estimation (NCE;
Gutmann and Hyvärinen, 2010) to train the energy
model by discriminating the real data and the fake
data generated by a noise distribution. To make the
noise distribution as close as possible to the data
distribution, they finetune a task-specific GPT-2
(Radford et al.). Though it achieves improvements
on ID calibration, it’s often resource-intensive com-
pared to previous methods to finetune GPT-2 (Li
et al., 2022). Moreover, the quality and quantity of
fake samples generated by noise distribution has
great impacts for NCE training (He et al., 2021;
Gutmann and Hyvärinen, 2010).

Contribution. Methodologically, we propose a
novel model namely Triple-Hybrid Energy-based
Model (THEM) based on the JEM (Grathwohl
et al., 2019) through different decompositions of
logp(x, y) into a unified framework. Compared
to Grathwohl et al. (2019) and Du and Mordatch
(2019), our model combines the classifiers p(y|x),
class-conditional density p(x|y) and unconditional
data density p(x) into a hybrid model. Due to the
none differentiability of text data, we further pro-
pose to adopt InfoNCE (Oord et al., 2018) with
memory bank (He et al., 2020) to approximate
the normalized constant of EBM efficiently. This
method makes it possible for EBM training on
NLU tasks which is not well explored in previous

works regardless of input differentiability. We con-
duct comprehensive experiments with BERT (Ken-
ton and Toutanova, 2019) and RoBERTa (Liu et al.,
2019) as the backbone and demonstrate the effec-
tiveness of our framework on various datasets in-
cluding GLUE (Wang et al., 2018) and six multi-
class classification datasets (Kong et al., 2020) on
various domains. Not only the experimental results
show that our method achieves significant improve-
ments in ID calibration and OOD detection with
competitive accuracy over previous methods, but
also it is more robust with respect to the temper-
ature and size of memory bank compared to con-
trastive learning trained EBM including JEM(CL),
IGEBM(CL) and HDGE.

Overall, the contributions can be summarized as
follows:

• We propose a Triple-Hybrid Energy-based
model (THEM) and apply InfoNCE with
memory bank to optimize it efficiently and ef-
fectively for discrete data. It achieves signifi-
cantly better performance compared to strong
baselines including He et al. (2021) and Kong
et al. (2020) in terms of ID calibration and
OOD detection.

• We apply this training technique to JEM and
IGEBM to obtain JEM(CL) and IGEBM(CL)
respectively. THEM and JEM(CL) achieves
better ID calibration and OOD detection com-
pared to HDGE and IGEBM(CL) in average.

• We further study the effect of the tempera-
ture and size of memory bank for contrastive
learning on ID calibration and OOD detec-
tion. THEM is more robust to these hyper-
parameters than JEM(CL) and HDGE(CL).

2 Preliminaries: Joint Energy Model and
Contrastive Learning

Joint Energy Model (JEM). Energy-based mod-
els (EBMs; LeCun et al., 2006) measure the com-
patibility of the input variables x ∈ X and tar-
get variables y ∈ Y with an energy function
Eθ(x, y) : X ×Y → R, which is the main building
block. Low energy corresponds to high compata-
bility. With Eθ, the probability for data in an EBM
can be written as

pθ(x, y) =
exp (−Eθ(x, y))

Zθ
, (1)

where Zθ is the normalizing constant. EBMs are
flexible to parameterize since they do not make
restrictions on the tractability of Zθ.

275



Joint Energy Model (JEM; Grathwohl et al.,
2019) reinterpret a classifier pθ(y|x) in super-
vised learning as an EBM for the joint distribu-
tion pθ(x, y). Specifically, pθ(y|x) is a categorical
distribution:

pθ(y|x) =
exp(fθ(x)[y])∑
y exp(fθ(x)[y])

, (2)

where fθ(x) : RD → RK maps each data point
x ∈ RD to K real-valued numbers known as logits,
and fθ(x)[y] indicates the logit of label y. JEM
defines an EBM of the joint distribution with the
same logits fθ:

pθ(x, y) =
exp(fθ(x)[y])

Zθ
, (3)

where energy function Eθ(x, y) = −fθ(x)[y]. To
retain discriminative performance of pθ(y|x), JEM
factorizes the loglikelihood as

log pθ(x, y) = log pθ(x) + log pθ(y|x), (4)

and apply EBM training to benefit from genera-
tive models pθ(x). Grathwohl et al. (2019) and
Elflein et al. (2021) have shown that EBM training
of the joint distribution improves calibration and
out-of-distribution detection with various training
methods.
Constrastive Learning. Our work is also re-
lated to contrastive learning, in that we approxi-
mate log pθ(x) and log pθ(x|y) by constrastive loss.
Contrastive learning achieves remarkable success
on downstream tasks, includes image classification,
video understanding, knowledge distillation, etc
(Khosla et al., 2020; Chen et al., 2020). In con-
strastive learning, a widely-used objective has the
following form (Oord et al., 2018):

−Epdata(x)

[
log

exp{tθ(x)⊤t′θ(x)}∑N
i=1 exp{tθ(x)⊤t′θ(xi)}

]
, (5)

where tθ(x) and t′θ(x) map each data point x to
two different representation spaces. This is usu-
ally called InfoNCE loss. Different from existing
methods for EBM training, we propose to leverage
constrastive learning approximation for effective
learning, without considering the generation ability
such as SGLD, SSM and so on.

3 Triple-Hybrid Energy-based Model

Motivation. Many works (Grathwohl et al., 2019;
Elflein et al., 2021; Du and Mordatch, 2019)

have shown that EBMs could significantly reduce
the expected calibration error and improve out-
of-distribution detection for image classification.
Specifically, the JEM proposed in Grathwohl et al.
(2019) factorizes the joint distribution log pθ(x, y)
into log pθ(x) + log pθ(y|x), where log pθ(y|x)
is to maintain the classification performance and
log pθ(x) is the generative term which contributes
to better calibration and out-of-distribution detec-
tion. On the contrary, the IGEBM proposed in
Du and Mordatch (2019) factorizes the joint dis-
tribution log pθ(x, y) into log pθ(y) + log pθ(x|y)
for implicit generation and surprisingly find that it
achieves better OOD performance. However, lack
of pθ(y|x) leads to terrible classification perfor-
mance. It’s shown in Grathwohl et al. (2019) that
the classification accuracy dropped dramatically to
49.1% on the CIFAR10 dataset, while the accuracy
is 92.9% by JEM.

On the other hand, Liu and Abbeel (2020) pro-
posed a hybrid discriminative-generative energy-
based model (HDGE) for both classification and
generation. The loss function consists of a discrim-
inative conditional log-likelihood log pθ(y|x) and
a generative conditional log-likelihood log pθ(x|y).
Compared to IGEBM, it includes log pθ(y|x) and
thus achieves better classification performance.
Compared to JEM, it includes the conditional gen-
erative model, rather than the marginal generative
model. In other words, JEM targets to reduce the
energy for data from the population pθ(x), while
HDGE aims at reducing the energy for compatible
pair (x, y). This motivates us to combine the ben-
efits of both conditional and marginal generative
model for better calibration and OOD detection.
Triple-Hybrid Energy-based Model (THEM).
We propose to make a hybrid model of the triple
log pθ(y|x), log pθ(x|y) and log pθ(x), called
Triple Hybrid Energy-based Model (THEM) and
the objective function is

Epdata(x,y) [log pθ(y|x) + log pθ(x|y) + log pθ(x)] ,

(6)

where pθ(y|x) is the standard softmax neural clas-
sifer and the generative models pθ(x), pθ(x|y)
serve as regularization, always accompanied with
better calibration and OOD detection.

From another perspective, we combine the two
factorizations of the joint distribution log pθ(x, y)
from JEM and IGEBM. We remark that the joint
distribution can also be factorized as (log pθ(x) +
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log pθ(x|y)+log pθ(y)+log pθ(x|y))/2. Our pro-
posed THEM utilizes this factorization and treats
pθ(y) known as the label frequencies in data, which
does not need to be optimized. Now we are ready
to resolve the computational issues for THEM in
the following.
Neural Classifier. The neural classifier term is
easy to cope with. Specifically,

pθ(y|x) =
exp(fθ(x)[y])∑
y exp(fθ(x)[y])

, (7)

where fθ(x)[y] is the logit of label y. Thus we
can derive the first term in (6) as the traditional
cross-entropy loss:

Epdata(x,y) [log pθ(y|x)] . (8)

Conditional Generative Likelihood. The condi-
tional generative likelihood can be derived from
the joint distribution:

log pθ(x|y) = log
pθ(x, y)

pθ(y)
= log

pθ(x, y)∑
x pθ(x, y)

= log
exp(fθ(x)[y])

Zθ(y)
,

(9)

where Zθ(y) =
∑

x exp(fθ(x)[y]). By defini-
tion, this is also an EBM with energy function
Eθ(x, y) = −fθ(x)[y]. Energy-based models are
well-known to be difficult to train. The Fenchel
duality method used in Chen et al. (2021b) can es-
timate Zθ(y). The stochastic gradient langevin dy-
namics (SGLD) adopted in Grathwohl et al. (2019)
can approximate the gradient of log pθ(x|y). How-
ever, these methods require to calculate the deriva-
tive with respect to the input x and thus can’t be
applied to discrete data such as text tasks.

Approximation with Contrastive Learning. The
above training methods are successful for gener-
ation purpose. Differently, we focus on classifi-
cation with better calibration and OOD detection.
As such, we propose to coarsely approximate the
normalization constant as

Zθ(y) ≈
N∑

i=1

exp(fθ(xi)[y]), (10)

where xi is sampled from the data no matter
whether yi is equal to y or not. The second term in

(6) is approximately

Epdata(x,y) [log pθ(x|y)] ≈ log
exp(fθ(x)[y])

N∑
i=1

exp(fθ(xi)[y])

.

(11)

Since the samples for approximation are incorpo-
rated in the denominator using the same label y, the
logits fθ(x)[y] can be treated as the score function
of input-label contrast (Rethmeier and Augenstein,
2021). As a result, this objective can be seen as
the InfoNCE (5) in contrastive learning. Liu and
Abbeel (2020) also proposed this approximation
for image classification, while it’s more suitable to
text classification due to the discreteness of data.

To be more distinguishable between positive and
negative samples but not concentrated on the near-
est few samples (Zhang et al., 2021), we employ
the temperature parameter τ in InfoNCE and the
objective loss becomes

log
exp(fθ(x)[y]/τ)

N∑
i=1

exp(fθ(xi)[y]/τ)

.
(12)

For the effectiveness of contrastive learning, it
often requires a large number of negative sam-
ples (Chen et al., 2021a). Since directly increasing
N is limited to hardware memory, we instead pro-
pose to use a memory bank (He et al., 2020) to store
logits with negligible computational resources. In
detail, we store the logits fθ(x)[y] of the past sam-
ples into the memory bank.
Marginal Generative Likelihood. The marginal
generative likelihood can be handled in the similar
way as conditional generative likelihood. Specifi-
cally,

logpθ(x) = log

{∑

y

pθ(x, y)

}

= log

∑
y exp(fθ(x)[y])

Zθ
,

(13)

where Zθ =
∑

x

∑
y exp(fθ(x)[y]). We propose

to approximate the third term in (6) as

Epdata(x,y) [log pθ(x)] ≈ log

∑
y exp(fθ(x)[y])

N∑
i=1

∑
y exp(fθ(xi)[y])

,

(14)

where xi is sampled from the data distribution. As
the conditional generative likelihood, techniques of
temperature parameter and memory bank are also
employed.
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4 Experiments

In this section, we conduct thorough experiments
to investigate the empirical peformance of our pro-
posed methods. We first introduce the criteria for
ID calibration and OOD detection.
ID Calibration. For a well-calibrated model, the
confidence estimate p̂ of the model is expected
to be comparable to true probability (accuracy):
P(ŷ = y|p̂) = p̂ (Desai and Durrett, 2020; Kong
et al., 2020). The calibration error for a given con-
fidence p ∈ (0, 1) is defined as the followings:

Ep = |P(ŷ(x) = y(x)|P̂ (x) = p)− p|, (15)

where ŷ(x) is the label predicted by the model,
y(x) is the true label for input x and P̂ (x) is the
output probability associated with the predicted
label ŷ(x). To evaluate the overall calibration error,
we partition (0, 1) into M bins of equal size and let
bm denote the set of prediction confidences which
lie in the m-th bin. The expected calibration error
(ECE) is calculated by weighting the difference
between accuracy and confidence of each bin:

acc(bm) =
1

|bm|
∑

i∈bm
I(ŷi = y).

conf(bm) =
1

|bm|
∑

i∈bm
p̂i.

ECE =

M∑

m=1

|bm|
N
|acc(bm)− conf(bm)|.

(16)

OOD Detection. In general, OOD detection is
a binary classification problem, where the model
is required to produce a score sθ(x) ∈ R. Usu-
ally we can set a threshold δ to detect OOD sam-
ples whose score functions are below the thresh-
old. A well-calibrated model is expected to output
higher scores for in-distribution examples than out-
of-distribution examples. A widely used score func-
tion is maximum prediction probability (Hendrycks
and Gimpel, 2016):

sθ(x) = maxypθ(y|x). (17)

Following Kong et al. (2020), we employ the em-
pirical Normalized Bounded Area Under the Cali-
bration Curve (NBAUCC) as the evaluation metric
rather than the Area Under the Receiver-Operating
curve (AUROC; Hendrycks and Gimpel, 2016) and
the Area Under the Precision-Recall curve (AUPR;
Elflein et al., 2021). The main reason is that we

would like to use a threshold as low as possible to
detect ODD samples and more details are referred
to Kong et al. (2020).
Target. In our experiments, we are interested in
answering the following questions:

1. Does THEM achieve better calibration com-
pared to baselines?

2. Does THEM improve OOD detection?
3. The effect of temperature and the size of

memory bank on THEM, JEM(CL) and
HDGE(CL).

Datasets. We consider the eight datasets of GLUE
used in He et al. (2021) to evaluate the ID calibra-
tion, since there are no out-of-distribution samples
in GLUE. We use the official code1 to acquire the
development and test dataset of GLUE. Further-
more, we consider six more datasets used in Kong
et al. (2020) to evaluate both ID calibration and
OOD detection. Details of the datasets are in Table
4 and 5 in Appendix.
Baselines. For GLUE datasets, we compare our
method against that of He et al. (2021), which
is state-of-the-art EBMs on natural language un-
derstanding models. Their method is based on
Residual-EBM which can work with more flexi-
ble energy functions, but the computational cost
is also huge compared to our method. We also
compare with other three strong baselines for cali-
bration: finetune, Scal-bin and T-scale used in He
et al. (2021). For fair comparisons, we follow the
experiment settings in their work. We use Roberta
as the backbone and the bins of ECE is set to 20.

For the additional six datasets, we compare
our methods with nine strong baselines in Kong
et al. (2020) including (1) BERT finetuning, (2)
Post-calibration method: Temperature Scaling
(TS; Guo et al., 2017), (3) Model ensemble:
Monte Carlo Dropout (MCDP; Gal and Ghahra-
mani, 2016), (4) Over-confident correction: La-
bel Smoothing (LS; Müller et al., 2019), Entropy
Regularized Loss (ERL; Pereyra et al., 2017),
Virtual Adversarial Training (VAT; Miyato et al.,
2018), and (5) Data-augmentation: Mixup (Zhang
et al., 2018), Manifold-Mixup (M-Mixup; Verma
et al., 2019), and Manifold-regularization (M-
regularization; Kong et al., 2020). We use BERT as
the backbone and the bins of ECE is set 15 just as
Kong et al. (2020). Besides, we also use NBAUCC
as the misclassification evaluation to make fair and

1We use the official code: https://github.com/
salesforce/ebm_calibration_nlu
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comprehensive comparisons. For these datasets,
we don’t compare our method with that of He et al.
(2021) since it is time-consuming and needs more
computational resources to finetune a noise dis-
tribution and generate negative samples for NCE
training. At last, we use NBAUCC0.5 as the evalua-
tion metric for OOD detection. The OOD datasets
often need an ID dataset for training and an OOD
dataset for OOD detection evaluation. More details
of datasets can be found in Appendix A.
Implementation Details. We employ ADAM
(Kingma and Ba, 2014) as the optimizer for all
experiments with the following parameters: β1 =
0.9, β2 = 0.999, gradient clip of 1.0, and L2

weight decay of 0.1. We search learning rate in
[1e−5, 2e−5, 3e−5, 5e−5] with the training epochs
in [2, 3, 5, 10]. Our model is built with a classifier
on the top of the pretrained language models includ-
ing BERT (Devlin et al., 2019) and Roberta (Liu
et al., 2019) using the implementation of Hugging-
face (Wolf et al., 2020). For contrastive learning,
we set the size of memory bank N to 65536 and
the temperature τ to 0.1. All experiments run 5-
times and we report the average performance on
test dataset. The test result is selected based on
loss and accuracy on the development dataset2. All
experiments are conducted on a single NVIDIA
RTX 2080TI 12G GPU. Our implementation is
based on the official codes of MoCo3 and Manifold-
regularization4.
Results on ID Calibration. Table 1 and 2 show
the accuracy (acc) and ECE results for GLUE tasks
and the six additional datasets respectively, with
different baseline methods. Except our proposed
THEM, we also include (1) HDGE: log p(x|y) +
log p(y|x), (2) JEM: log p(y|x) + log p(x), (3)
IGEMB: log p(x|y) but trained with contrastive
learning (CL) proposed in this paper. These three
EBMs are trained by MCMC for images in previ-
ous literatures, while we are the first to train them
by contrastive learning for NLU tasks.

From Table 1, EBMs with contrastive learning
achieves significant improvements on ECE with
competitive accuracy, compared to He et al. (2021).
He et al. (2021) redefines energy function based
on Residual-EBM and estimates parameters us-
ing NCE with a finetuned GPT (Radford et al.)

2Following He et al. (2021), we don’t use ECE as the
metric to select the best model for evaluation

3https://github.com/facebookresearch/moco
4https://github.com/Lingkai-Kong/

Calibrated-BERT-Fine-Tuning

on dataset as noise distribution. Not only does
it need more computing resources to finetune a
GPT model for each dataset, but also the quan-
tity and quality of negative samples generated by
noise distribution have big impacts for accurate pa-
rameters estimation using NCE (He et al., 2021;
Gutmann and Hyvärinen, 2010). In contrast, our
model achieves better results with negligible com-
putational resource compared to standard finetun-
ing.

From Table 2, our method achieves the best
ECE on six multiclass datasets on various domains.
Compared to M-regularization (Kong et al., 2020)
which is specifically designed to prevent overconfi-
dent predictions for both in-distribution and out-of-
distribution, our framework without an explicit cal-
ibration mechanism achieves the best ECE, demon-
strating the effectiveness of EBMs trained with
contrastive learning paradigm. On average, the re-
sult of the proposed THEM is very close to the best
one in terms of ECE.

Results on OOD Detection. In general, OOD de-
tection is a binary classification problem, where
the model is required to produce a score for a
data point to detect whether it is an ID or OOD
sample. Here we use equation (17) as score func-
tion and NBAUCC0.5 as evaluation metric. Ta-
ble 3 summarizes the NBAUCC0.5 for misclassi-
fication detection and OOD detection. It can be
seen that compared with all baselines, especially
the strong baseline M-regularization (Kong et al.,
2020), our method achieves the best misclassifica-
tion on all data sets with significant improvements.
In terms of OOD detection, our results averaged on
six datasets are comparable to the performance of
M-regularization and are superior to other baselines
on all datasets except M-regularization on Yahoo.
These results shows that THEM provides a simple
yet effective way to improve OOD detection.

Analysis of Generative Density. From Table 1 and
Table 2, the generative density including marginal
data density pθ(x) and class conditional data den-
sity pθ(x|y) are mainly contributed to the improve-
ments of ID calibration and OOD detection com-
pared to standard finetuning and previous calibra-
tion methods. However, different generative terms
may have different impacts on final performance.
In most NLU tasks, JEM(CL) achieves better ID
and OOD calibration performance compared to
HDGE(CL) which is different from the experimen-
tal results observed in Liu and Abbeel (2020) on
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Table 1: Test-set accuracy and ECE results for different methods on GLUE tasks. The leading zeros are omitted
to save space. Note that the hyperparameters of T-Scal and Scal-bin are searched on the development dataset and
applied to test dataset. The average value is compute on all nine test sets. For each task, the method that achieves
best calibration are shown in bold.

Method SST-2 MNLI MNLI(mm) QNLI QQP MRPC COLA RTE WNLI AVG
acc ECE acc ECE acc ECE acc ECE acc ECE acc ECE acc ECE acc ECE acc ECE acc ECE

Baseline (He et al., 2021)
finetune .942 .050 .876 .067 .872 .068 .929 .043 .904 .034 .862 .133 .539 .182 .724 .279 .571 .058 .802 .102

Scal-bin(dev) .944 .019 .876 .030 .870 .032 .931 .021 .905 .021 .862 .062 .557 .048 .731 .042 .542 .189 .802 .052
T-Scale(dev) .942 .037 .876 .024 .872 .026 .929 .018 .904 .026 .862 .126 .539 .109 .724 .235 .571 .046 .802 .072

Residual-EBM-NCE (He et al., 2021)
ebm-scalar .942 .033 .871 .038 .871 .047 .927 .016 .899 .034 .862 .098 .540 .150 .753 .207 .542 .033 .801 .073
ebm-hidden .956 .032 .869 .032 .868 .044 .923 .016 .900 .033 .867 .099 .545 .131 .797 .148 .542 .036 .807 .063

ebm-s-hidden .947 .038 .875 .027 .872 .031 .930 .016 .900 .032 .862 .089 .563 .133 .811 .182 .571 .073 .815 .069
Ours

HDGE(CL) .938 .036 .870 .040 .864 .049 .927 .024 .908 .023 .862 .056 .539 .101 .753 .069 .571 .051 .803 .048
JEM(CL) .926 .043 .872 .033 .868 .023 .927 .021 .907 .009 .877 .060 .562 .107 .753 .073 .571 .057 .806 .047

IGEBM(CL) .922 .054 .868 .124 .869 .125 .931 .065 .910 .087 .867 .029 .549 .060 .789 .052 .571 .044 .808 .071
THEM .922 .035 .867 .043 .866 .043 .928 .028 .910 .019 .872 .062 .551 .085 .724 .082 .571 .050 .801 .049

Table 2: ECE and accuracy (in percentage) on test set for different methods on six multiclass datasets listed in
Table 5. We report the average performance of 5 random initializations. For each task, the method that achieves best
calibration are shown in bold.

Method 20NG15 20NG WOS100 WOS Yahoo8 Yahoo AVG
acc ECE acc ECE acc ECE acc ECE acc ECE acc ECE acc ECE

baseline (Kong et al., 2020)
BERT 87.42 9.24 84.55 11.61 81.94 6.81 79.40 6.74 73.58 10.11 71.89 10.54 79.79 9.17

TS 87.42 4.42 84.55 8.17 81.94 3.63 79.40 4.43 73.58 5.18 71.89 4.24 79.79 5.01
MCDP 87.45 6.88 84.55 9.17 82.09 4.00 79.67 3.55 73.67 6.54 71.99 6.72 79.90 6.14

LS 87.54 4.35 85.02 6.15 81.95 4.35 79.47 4.67 73.66 4.89 71.54 3.61 79.86 4.67
ERL 87.67 7.16 84.83 6.10 81.96 3.74 79.48 3.35 73.63 3.42 72.01 2.96 79.92 4.45
VAT 87.61 9.07 85.20 11.28 81.65 7.27 79.71 6.76 73.71 10.96 72.08 7.92 79.99 8.87

Mixup 87.49 5.98 84.86 9.02 81.97 4.72 79.51 4.21 73.88 4.60 71.82 5.18 79.92 5.61
M-Mixup 87.40 5.04 84.45 7.78 81.77 6.48 79.57 6.68 72.03 7.01 72.03 6.07 79.54 6.51

M-regularization 87.44 3.69 84.53 4.43 81.59 3.24 79.06 3.04 73.71 3.03 72.17 3.42 79.75 3.47
Ours

HDGE(CL) 87.34 4.71 84.47 7.76 81.14 4.00 78.68 4.12 73.53 4.02 71.62 5.97 79.46 5.09
JEM(CL) 87.98 3.10 84.81 2.17 81.80 3.47 78.74 3.27 73.72 2.17 72.60 1.64 79.86 2.58

IGEBM(CL) 88.35 2.47 84.06 3.87 81.51 11.72 78.46 13.73 73.01 4.00 70.82 2.01 79.36 6.30
THEM 88.35 2.09 84.99 3.91 81.05 3.01 78.72 3.19 73.80 1.55 72.00 2.19 79.81 2.65

computer vision tasks. The main reason may lie
on the estimation methods that it is more stable
and effective to approximate the log-likelihood
with contrastive loss compared to MCMC or score-
matching for calibration, when the generation abil-
ity is not under consideration. While our model
achieves comparable ID calibration performance
across various datasets on average and better OOD
detection.

The hyper-parameters study of InfoNCE on ID
calibration and OOD detection. To study the
effect of the hyper-parameters including the sam-
ple size, and temperature of InfoNCE for training
THEM, JEM(CL) and HDGE(CL), we conduct nu-
merous experiments on 20NG, Yahoo and WOS
dataset. Due to the limited computational resources,
we set temperature to 0.1 and vary the size of mem-
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Figure 1: The effect of the memory bank size and tem-
perature for ECE and OOD on WOS dataset.

ory bank from 128 to 65536 to study the effect of
the memory bank size on ECE and OOD. Similarly,
we set the memory bank size to 65536 and vary the
temperature from 0.01 to 0.2 to study the effect of
the temperature on ECE and OOD.
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Table 3: NBAUCC0.5 on misclassification detection and OOD detection (in percentage) for different methods on six
multiclass datasets listed in Table 5. We report the average performance of 5 random initializations.

Misclassification(↑) OOD Detection(↑)
Data 20NG15 20NG WOS100 WOS Yahoo8 Yahoo AVG 20NG15 20NG WOS100 WOS Yhaoo8 Yahoo AVG(OOD) 20NG5 SST-2 WOS34 AGnews Yhaoo2 Yelp

baseline (Kong et al., 2020)
BERT 2.30 2.86 16.53 20.52 7.47 8.43 9.68 2.66 21.65 23.12 49.84 8.35 13.88 19.91

TS 6.08 5.74 21.20 23.76 10.48 12.74 13.33 6.62 32.64 28.12 53.32 11.55 20.27 25.42
MCDP 4.37 5.28 20.44 24.16 10.12 10.75 12.52 3.99 25.10 27.28 53.52 9.98 15.93 22.63

LS 4.72 6.75 20.37 23.56 11.19 16.15 13.79 5.70 41.08 27.12 58.48 12.02 19.81 27.36
ERL 8.54 10.35 20.49 25.13 12.89 15.47 15.47 8.78 47.00 27.73 56.67 13.78 23.47 29.57
VAT 2.52 3.36 18.70 19.96 6.54 10.37 10.24 2.96 29.62 23.41 54.60 7.42 17.65 22.61

Mixup 4.99 4.51 20.65 24.80 10.75 11.29 12.83 5.86 31.84 26.77 58.02 11.62 19.84 25.65
M-mixup 2.16 3.16 16.94 19.39 9.09 11.79 10.42 2.36 26.08 24.08 51.39 10.08 22.41 22.73

M-regularization 9.10 10.76 26.93 30.80 14.34 17.88 18.30 9.69 63.92 35.60 71.13 14.94 29.40 37.44
Ours

HDGE(CL) 7.99 6.68 25.25 27.82 12.31 14.72 15.79 7.42 57.09 34.81 68.29 11.55 20.62 33.29
JEM(CL) 15.31 14.88 25.55 32.97 16.25 16.16 20.18 12.23 61.99 34.70 72.31 16.17 19.80 36.20

IGEBM(CL) 13.87 15.34 14.37 15.64 14.52 21.83 15.92 14.47 64.75 23.67 57.94 17.93 24.22 33.83
THEM 11.56 11.11 31.82 33.02 16.11 18.25 20.31 9.36 62.86 40.16 71.94 17.28 19.73 36.88
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Figure 2: The effect of the memory bank size and tem-
perature for ECE and OOD on Yahoo dataset.
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Figure 3: The effect of the memory bank size and tem-
perature for ECE and OOD on 20NG dataset.

From the trends of memory bank size and tem-
perature on WOS(134-class) in Fig 1, HDGE per-
forms better than THEM and JEM(CL) in terms
of ECE. However, it performs significantly worse
than THEM and JEM(CL) in terms of OOD. On
the other hand, they are all stable in terms of ECE
and OOD from the trend of memory bank size.

However, for Yahoo(10-class) in Fig 2 and
20NG(20-class) in Fig 3, from the trend of mem-

ory bank size, THEM and HDGE are superior to
JEM(CL) in terms of OOD. THEM and JEM(CL)
perform better than HDGE in terms of ECE. From
the trend of temperature, THEM performs better
than JEM(CL) and HDGE in all evaluation metrics.
In general, THEM is more stable in terms of ECE
from the trend of temperature and memory bank
size.

5 Conclusion

In our work, we propose a triple-hybrid EBM
with combination of classifier, conditional gen-
erative model and marginal generative model
into a unified framework called THEM. To train
EBMs effectively and efficiently, we leaverage con-
trastive learning to approximate the log-likelihood
of EBMs with negligible computational resources.
Extensive experiments demonstrates that our model
outperforms the state-of-art methods in terms of ID
calibration and OOD detection with competitive
accuracy. We further apply contrastive learning to
JEM and IGEBM without considering the genera-
tion ability to obtain JEM(CL) and IGEBM(CL) re-
spectively. Compared to JEM(CL) and HDGE(CL),
our model is more robust to the hyper-parameters
of contrastive learning including the temperature
and size of memory bank in terms of ID calibration
and OOD detection.

6 Limitations

In our work, our model is derived from the per-
spective of EBMs. However, it lacks of generation
ability due to the approximation of log-likelihoods
with contrastrive learning which may limit the
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power of generative modeling such as data aug-
mentation (Grathwohl et al., 2019). We will ex-
plore MCMC-based methods such as (Eikema et al.,
2021; Qin et al., 2022) to train THEM to take ad-
vantage of generative modeling. As for OOD detec-
tion, we only use Maximum Prediction Probability.
But many other OOD scoring functions are pro-
posed from the perpective of EBMs (Ouyang et al.,
2021; Zhou et al., 2021; Liu et al., 2020; Elflein
et al., 2021; Grathwohl et al., 2019). And it may
be explored in future works to study the OOD per-
formance with different scoring functions.
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A Dataset

The details of dataset for evaluation of in-
distribution ECE and out-of-distribution detection.

Table 4: The detail information about GLUE

dataset task labels train/dev/test
RTE Similarity 2 2.5k/0.14k/0.14k

CoLA Grammatical 2 8.5k/0.51k/0.51k
WNLI Entailment 2 3.1k/0.03k/0.03k
MRPC Paraphrase 2 3.7k/0.20k/0.20k
QNLI Entailment 2 108k/2.5k/2.5k

MNLI-m Entailment 3 393k/4.8k/4.8k
MNLI-mm Entailment 3 393k/4.4k/4.4k

QQP Paraphrase 2 364k/20k/20k
SST-2 Classification 2 67k/0.43k/0.43k

Table 5: The detail information about six multiclass-
datasets

in-distribution labels train/dev/testout-of-distribution
20NG15 15 7k/1.7k/5.8k
20NG5 5 -/-/1.7k
20NG 20 9k /2.2k/7.5k
SST-2 2 -/-/1.8k

WOS100 100 16k/4.1k/14k
WOS34 34 -/-/ 4.8k

WOS 134 22k/5.6k /18k
AGnews 4 - /-/ 7.6k
Y ahoo8 8 16k/4k/48k
Y ahoo2 2 -/-/12k
Yahoo 10 20k/5k/60k
Yelp 2 -/-/38k

1. 20NG5. The 20 Newsgroups dataset (20NG)
contains news articles with 20 categories.
We use Stanford Sentiment Treebank (SST-
2) (Socher et al., 2012) as the OOD data.

2. 20NG15. We take the first 15 categories of
20NG as the in-distribution data and the other
5 categories (20NG5) as the OOD data.

5We use the 20 Newsgroups dataset from: http://qwone.
com/~jason/20Newsgroups/
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3. WOS (Kowsari et al., 2017). Web of Science
(WOS) dataset contains 134 categories of sci-
entific articles. We use AGnews (Zhang et al.,
2015) as the OOD data.

4. WOS100. We use the first 100 classes of WOS
as the in-distribution data and the other 34
classes (WOS34) as the OOD data.

5. Yahoo (Chang et al., 2008). This dataset con-
tains 10 categories posted to ‘Yahoo!Answers’
of questions. We randomly draw 2000 from
140,000 samples for each category as the train-
ing set. We use Yelp (Zhang et al., 2015) as
the OOD data.

6. Yahoo8. We use the first 8 classes of Yahoo as
the in-distribution data and the other 2 classes
(Yahoo2) as the OOD data.
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Abstract

Zero-shot text classification is a widely studied
task that deals with a lack of annotated data.
The most common approach is to reformulate
it as a textual entailment problem, enabling
classification into unseen classes. This work
explores an effective approach that trains on a
weakly supervised dataset generated from tradi-
tional classification data. We empirically study
the relation between the performance of the en-
tailment task, which is used as a proxy, and
the target zero-shot text classification task. Our
findings reveal that there is no linear correlation
between both tasks, to the extent that it can be
detrimental to lengthen the fine-tuning process
even when the model is still learning, and pro-
pose a straightforward method to stop training
on time. As a proof of concept, we introduce
a domain-specific zero-shot text classifier that
was trained on Microsoft Academic Graph data.
The model, called SCIroShot, achieves state-
of-the-art performance in the scientific domain
and competitive results in other areas. Both the
model and evaluation benchmark are publicly
available on HuggingFace1 and GitHub2.

1 Introduction

Ever since the first BERT (Devlin et al., 2019) and
GPT (Radford et al., 2018) models were introduced
to the world, the Transformer (Vaswani et al., 2017)
has become the dominant architecture in the Nat-
ural Language Processing (NLP) field. As a con-
sequence, in the years that followed, the pretrain-
then-finetune paradigm (Howard and Ruder, 2018)
has been widely adopted to progressively push the
state-of-the-art in a wide variety of downstream
tasks and languages (Nozza et al., 2020).

Even though the current training regime is far
from being environmentally friendly due to the
computational cost of pre-training (Patterson et al.,

∗Equal contribution.
1https://huggingface.co/BSC-LT/sciroshot
2https://github.com/bsc-langtech/sciroshot

2021; Strubell et al., 2019), transfer learning re-
moves the need of having to train a new model
from scratch for each application. However, the
fine-tuning of models for every single task is ex-
pensive both in terms of time and money as it is
always preceded by a labor-intensive data labelling
process (Wang et al., 2021a). In order to over-
come this issue, as well as the fact that real world
data can be scarce in many scenarios, the field
has started to shift towards techniques that require
smaller amounts of labelled examples or even none
at all (Wang et al., 2021b; Schick and Schütze,
2021; Radford et al., 2019; Brown et al., 2020).

In particular, in the scientific domain, the grow-
ing amount of publications in an ever-increasing
number of fields makes the classification task very
challenging for neural language models (Larsen
and Von Ins, 2010; Bornmann et al., 2021). The
impossibility to predict the emergence of new fields
of study and the high cost associated with the cre-
ation of new datasets (which often requires domain
experts) generate a need for systems that are capa-
ble of adapting to new situations. Furthermore, the
complexity and technicality of scientific language
makes general-domain models perform poorly in
comparison to domain-specific ones (Lee et al.,
2020; Cohan et al., 2020).

This work addresses these problems by training
an entailment-based zero-shot classifier for scien-
tific text. Instead of using a general domain dataset
such as the popular XNLI (Conneau et al., 2018)
or MNLI (Williams et al., 2018), a textual entail-
ment dataset of scientific documents was built from
scratch in a weakly supervised manner. By train-
ing a vanilla model on the entailment task, it is
then able to classify documents into unseen classes
with a high degree of success. As a by-product of
this, the study of the relation between the training
and target tasks led to intriguing questions about
the strengths and limitations of the entailment ap-
proach to Zero-Shot Text Classification (ZSTC).
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2 Related Work

Zero-Shot Learning is a widely studied problem
in Machine Learning that consists in completing
a task for which no training examples were pro-
vided. Although the term became initially popular
in computer vision (Lampert et al., 2009; Xian
et al., 2018), it soon made the leap into NLP with
an early paper (Chang et al., 2008) that presented
a classifier capable of interpreting the Explicit Se-
mantic Analysis (ESA) representations of docu-
ments and labels from a semantic point of view,
using Wikipedia as a source of world knowledge.

This highlighted the importance of capturing the
labels’ semantics in their representations, unlike
in conventional text classification where labels are
mapped to meaningless indices. This became easier
to capture with the arrival of word embeddings, and
can be enhanced by simply replacing their name
with a short description (Song and Roth, 2014).

In subsequent research, zero-shot tasks were oc-
casionally tackled from another problem’s perspec-
tive (Levy et al., 2017; Obamuyide and Vlachos,
2018), which implies training a model on a task for
which annotated data is available and performing
inference on a different one. Recognizing Textual
Entailment (RTE) (Dagan et al., 2005) is arguably
the most versatile task because of its generality,
which is why it is commonly used to model other
downstream tasks (Wang et al., 2021b).

The most popular approach at the time of writ-
ing is to reformulate ZSTC as a textual entailment
problem as proposed by Yin et al. (2019), aiming
to imitate the way humans would address this Nat-
ural Language Understanding task. The underlying
idea is that a model trained on the entailment task
should be able to perform classification of unseen
classes by computing the entailment score between
the input text, which acts as a premise, and candi-
date labels conveniently converted into hypotheses.

Later research showed that the Next Sentence
Prediction (NSP) objective for sentence pair clas-
sification can also be used as a strong baseline for
ZSTC, since competitive results where obtained
using raw BERT models that were not fine-tuned
on any Natural Language Inference (NLI) data (Ma
et al., 2021). Even though entailment-based zero-
shot text classifiers have shown to have certain
limitations like a high instability or an excessive
reliance on spurious lexical patterns, the current
literature offers no better alternatives for a problem
that is still far from being mastered by machines.

3 Creation of weakly supervised data

This section describes the methodology followed
to transform a text classification dataset into entail-
ment data that could potentially be used to fine-tune
a domain-specific (or not) zero-shot text classifier.
This approach takes advantage of the fact that there
are plenty of publicly accessible labelled examples
for classification while there is not so much avail-
able for entailment tasks, most likely due to the
difficulty of producing this type of data.

In this work, a weakly supervised NLI dataset
was constructed using Microsoft Academic Graph3

(MAG) data as a starting point. To do so, all labels
were converted to natural language sentences that
would serve as hypotheses. Therefore, the gener-
ated training examples consist of pairs of sequences
(premise and hypothesis) that are delimited by EOS
tokens, where the first part of the text contains
the abstract section from a scientific publication
(premise) and the second part is an artificially gen-
erated sentence that somehow embeds the class
label of the scientific text (hypothesis). Table 1
shows this idea in a simplified form.

Input Sequence Label
<s>Text1</s></s>This example is X</s> 1
<s>Text1</s></s>This example is Y</s> 0
<s>Text2</s></s>This example is Z</s> 1

Table 1: Format of the training examples. The label is 1
if the premise entails the hypothesis and 0 otherwise.

Once the classification data has been turned into
the entailment format, any model can be fine-tuned
by predicting whether the premise of each input
sequence entails the corresponding hypothesis or
not. Note however that this is rather an adaptation
of the RTE task, since the second sentence does not
really "entail" the first in positive examples. It is
basically like performing a text classification task
where labels are not converted into numeric indices,
ensuring that their semantic content is preserved.

Figure 1 illustrates how a ZSTC model would op-
erate both during fine-tuning (left) and at inference
time (right), providing a full picture of the method-
ology followed in this work. We basically adopt
the approach introduced by Yin et al. (2019) but
going one step further by fine-tuning on a weakly
supervised domain-specific dataset instead of using
already existing general-domain NLI data.

3https://academic.microsoft.com/
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Figure 1: Overview of the entailment approach to ZSTC. On the left hand side it can be seen how the model is
fine-tuned on a two-class textual entailment task, by providing the input text as a premise and the label name
embedded in a natural language sentence that represents the hypothesis. On the right, the trained model classifies
documents into unseen classes by computing the entailment score between the input text and each candidate label.

4 Data

4.1 Training Dataset

As mentioned in Section 3, our training dataset
builds on top of scientific-domain annotated data
from Microsoft Academic Graph (Sinha et al.,
2015). This database consists of a heterogeneous
graph with billions of records from both scientific
publications and patents, in addition to metadata in-
formation such as the authors, institutions, journals,
conferences and their citation relationships. The
documents are organized in a hierarchical struc-
ture composed of hundreds of thousands of scien-
tific concepts, creating a six-level hierarchy with
a subsumption-based model (Shen et al., 2018),
although the two top-most levels are manually cu-
rated to guarantee accuracy. As an example, the
0-level field of study (FoS) in the MAG taxonomy
covers the following 19 scientific concepts: {Art,
Biology, Business, Chemistry, Computer Science,
Economics, Engineering, Environmental Science,
Geography, Geology, History, Materials Science,
Mathematics, Medicine, Philosophy, Physics, Polit-
ical Science, Psychology, Sociology}.

Dataset Labels Examples
train 240 2,104,493
devseen 240 233,833
devunseen 52 5,200
Total 292 2,343,526

Table 2: Number of labels and examples in the train
and development sets of our dataset. Note that the 240
labels from the train and devseen set are the same, while
the 52 labels from the devunseen set were purposely kept
aside for label-fully-unseen setups.

Due to the descriptive broadness of the 0-level
MAG taxonomy, we have created our training cor-
pus focusing exclusively the 1-level MAG taxon-
omy, which is composed of 292 FoS classes. The
higher granularity of this level provides more de-
scriptive information in the form of narrower sci-
entific concepts, such as “Computational biology”,
“Transport engineering” or “Civil engineering”.

Using the relationship between scientific texts
and their matching concepts in the 1-level MAG
taxonomy we are able to generate the premise-
hypothesis pairs corresponding to the entailment
label. Conversely, we generate the pairs for the
neutral label by removing the actual relationship
between the texts and their scientific concepts and
creating a virtual relationship with those to which
they are not matched (see Table 3).

Input Sequence Label
One plus one is two. Maths
Cancer is a disease. Health
One plus one is two. This text is Maths. entails
One plus one is two. This text is Health. neutral
Cancer is a disease. This text is Maths. neutral
Cancer is a disease. This text is Health. entails

Table 3: Toy example of the initial classification dataset
(top) and the adapted entailment dataset (bottom).

For each of the 292 classes, a random sample of
scientific articles with a publication year between
2000 and 2021 was extracted with their respective
titles and abstracts in English. We have collected a
maximum of 5k and 10k positive and neutral tex-
tual entailment samples, respectively, for each of
the possible 1-level FoS classes. In total, SCIroshot
has been fine-tuned using 919k documents with a
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total of 465M words. In order to perform experi-
ments in label-fully-unseen setups, the examples
associated to 52 labels were kept aside. For com-
putational reasons, the size of the development set
was reduced considerably to the point that it be-
came a fully balanced set of 100 examples per class.
The number of labels and examples of each set are
summarized in Table 2.

4.2 Evaluation Datasets

We evaluate the performance of our models on a
collection of disciplinary-labeled textual datasets.
For the in-domain evaluation, we gathered cross-
disciplinary and domain-specific datasets of sci-
entific publications. For the out-of-domain case,
we use the three datasets from the benchmark pro-
vided by Yin et al. (2019), which study 3 aspects
of ZSTC: topic categorization (Yahoo! Answers),
emotion detection (UnifyEmotion) and situation
frame detection (Situation Typing). Table 4 pro-
vides an overview of the number of examples and
labels for each dataset.

Dataset Labels Examples
arXiv 11 3,838
SciDocs-MeSH 11 16,433
SciDocs-MAG 19 17,501
Konstanz 24 10,000
Elsevier 26 14,738
PubMed 109 5,000
Yahoo! Answers 10 60,000
UnifyEmotion 10 15,689
Situation Typing 12 3,311

Table 4: Statistics of each dataset from the scientific-
domain (top) and general-domain (bottom) benchmarks.

4.2.1 Scientific-domain datasets

arXiv (He et al., 2019). 11-label dataset of pa-
pers from the arXiv repository. The labels are a
set of sub-categories within the branches of Com-
puter Science and Mathematics. While the original
dataset contains the full publication texts, we only
gathered titles and abstracts from the 3,838 publi-
cations for which a DOI was available in the API4.
SciDocs-MeSH (Cohan et al., 2020). Over 16k
papers from the medical domain. Each paper is as-
signed one of 11 high-level disease classes derived
from the MeSH vocabulary (Lipscomb, 2000).

4https://arxiv.org/help/api/

SciDocs-MAG (Cohan et al., 2020). More than
17k cross-disciplinary publications labelled using
the 0-level MAG taxonomy (Wang et al., 2020).
None of the labels are included in our training data.
Konstanz5. 10k journal articles produced by re-
searchers at the University of Konstanz, extracted
from the Konstanz Online Publication System
(KOPS). Publications from this open-access reposi-
tory are manually labelled by the research staff with
a category taken from the DDC taxonomy (Dewey,
1876), which unfolds into more than 30 classes
describing different scientific domains. We only
consider English journal articles labelled within a
reduced set of 24 categories.
Elsevier (Kershaw and Koeling, 2020). Cross-
disciplinary corpus of 14.7k open access articles
from Elsevier’s journals. The document labels are
given by their ASJC Subject Classification scheme,
which links publication venues (and, transitively,
each single publication) to 27 scientific subject do-
mains. We removed all publications labelled with
more than 1 subject area. Publications annotated
with the non-informative “Multidisciplinary” label
were removed as well.
PubMed6. We collected 5k publications labelled
with a manually-selected subset of 109 MeSH
terms within the Disciplines and Occupations and
Technology, Industry, and Agriculture branches of
the MeSH taxonomy. The chosen categories are
general-domain and well-known concepts out of
specific medical terminology, as most MeSH terms.

4.2.2 Out-of-domain datasets
Yahoo! Answers (Zhang et al., 2015). Topic
categorisation dataset with questions and their cor-
responding best answer in Yahoo! Answers. We
only use the test set, which consists of 60k exam-
ples that belong to exactly one of the 10 largest
main categories in the website.
UnifyEmotion (Oberländer and Klinger, 2018).
Emotion detection dataset with texts from a variety
of sources (tweets, emotional events, tales, and
artificial sentences) classified into 9 emotions and
"none" when no emotion fits the case. We use
the modified version from Yin et al. (2019), which
removes all multi-label instances.
Situation Typing (Mayhew et al., 2019). Multi-
label event-type classification dataset of 11 classes,
designed for low-resource situation detection.

5https://kops.uni-konstanz.de/
6https://pubmed.ncbi.nlm.nih.gov/
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5 Experiments

5.1 Design choice
The newly-created scientific dataset from Sec-
tion 4.1 was used to fine-tune a 355M parameters
RoBERTa (Liu et al., 2020) and a 400M parameters
BART (Lewis et al., 2020) models, in an attempt
to determine which architecture (i.e. encoder or
encoder-decoder) is best suited for the task at hand.
As already noted in section 4.1, 52 labels from the
training data were kept apart so that they could be
used as a development set of fully-unseen classes.
For a given input text, the entailment score with
each candidate label has to be computed by the
model. The final prediction will be the highest
scoring class in a single-label classification setup,
or the N classes above a certain threshold in a multi-
label scenario. Table 5 shows the accuracy score of
the last checkpoints evaluated in RTE’s devseen set
as well as the ZSTC devunseen set.

Model RTE ZSTC
RoBERTa-large 98.00 48.78
BART-large 98.30 45.69

Table 5: Accuracy scores of our two models in the
Recognizing Textual Entailment (RTE) and Zero-Shot
Text Classification (ZSTC) tasks.

Even though both models achieved a similar ac-
curacy in the entailment task, we could not help
noticing that the best performing model on RTE
(even if only by a small margin) was doing worse
on ZSTC by three full points. This raised a concern
as to whether our fine-tuning task, which at the end
is no more than an adaptation of the real RTE, was
positively correlated with the target task of ZSTC
or not.

5.2 Correlation between the RTE-ZSTC tasks
In order to verify the correlation between both
tasks, we conducted an exhaustive evaluation of
all checkpoints using the 52-labels devunseen set.

As it can be observed in Figure 2, after a certain
point the performance in the ZSTC task begins to
gradually worsen while on RTE it is still getting
better at a slow but steady pace. This means that
somehow, as the training progresses, the model
forgets the meaning of the unseen labels, with the
exception of the initial checkpoints where an ex-
ponential growth is experienced simultaneously in
both tasks. We can observe a peak ZSTC perfor-
mance when the model has an evaluation RTE score

Figure 2: Accuracy scores obtained by the RoBERTa-
large checkpoints. Each y-axis represents a different
range of accuracies for better visualization.

of roughly 0.96. Despite the high variability, it is
clear that from that point onwards the zero-shot
capacities of the model decrease. To mitigate this
effect we propose an early stopping technique.

5.3 Early stopping

We concluded that, at training time, the validation
of the model should be done on the target task
rather than the training task. This way the training
process can be interrupted as soon as the model
stops improving on ZSTC, something that we ex-
pect to happen at an earlier stage. We propose to
evaluate each checkpoint on the subset of 52 un-
seen classes described in Section 4.1 and use early
stopping with a patience of 10.

Model RTE ZSTC
RoBERTa-largelast 98.00 48.78
RoBERTa-largeselected 96.07 53.90
BART-largelast 98.30 45.69
BART-largeselected 96.59 52.76

Table 6: Accuracies in the RTE and ZSTC tasks. The
last subscript indicates that it was the last checkpoint
stored during fine-tuning, while the selected subscipt
refers to the checkpoint selected with early stopping.

In Table 6 it is clear that the early stopping tech-
nique improves the results in the ZSTC evaluation
task, since both architectures obtain a substantial
boost when early stopping is applied. Overall, the
RoBERTa-large model performs better than BART-
large, what we hypothesize that might be caused
by a loss of generality from models that achieve
higher scores in the RTE task.
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Model arXiv SciDocs-MesH SciDocs-MAG Konstanz Elsevier PubMed
fb/bart-large-mnli 33.28 66.18 51.77 54.62 28.41 31.59
bart-large-rteselected 36.71 56.57 63.98 63.57 48.48 27.46
bart-large-rtelast 28.58 44.21 57.75 62.25 42.51 21.72
SCIroShotselected 42.22 59.34 69.86 66.07 54.42 27.93
SCIroShotlast 35.44 52.27 65.27 60.74 50.92 22.85

Table 7: Label wise weighted F1 score of different models in our scientific benchmark. For simplicity, the hypothesis
template was set to "This example is {}." in all cases.

6 Results

This section assesses the performance of our zero-
shot classifiers, which were trained on a weakly
supervised entailment dataset of scientific text. In
an effort to obtain a more complete picture, we per-
form both an in-domain and out-of-domain study.

6.1 Scientific domain

For an in-domain evaluation, the in-house gener-
ated scientific benchmark from Section 4.2.1 was
used. We compare our SCIroShot with the strong
baseline set by Facebook’s bart-large-mnli model7.
This NLI-based model is the most downloaded
zero-shot classifier in the HuggingFace Hub (over
1M monthly downloads) and the one used by de-
fault in the zero-shot-classification pipeline from
their transformers library (Wolf et al., 2020). For
an apples-to-apples comparison, we also consider
a BART-large model that was trained following the
same methodology employed for SciroShot, as it
has the same architecture as the Facebook model.

The results presented in Table 7 prove the im-
portance of domain-specific training, something
that has been repeatedly seen in traditional text
classification. The models trained on MAG data
obtain the best results in four out of six datasets, by
large margins in all cases, and interestingly enough
the Facebook model only wins in the two medical
datasets: PubMed and SciDocs-MeSH. The num-
bers also support our theory that too much training
can be detrimental, as the models selected with
early stopping score higher than their "last" coun-
terpart in all cases.

6.2 General domain

For the out-of-domain study, we include ourselves
in the benchmark proposed by Yin et al. (2019).
This amounts to a total of three datasets that cover

7https://huggingface.co/facebook/
bart-large-mnli

(Yin et al., 2019)
Topic this text is about {}
Emotion this text expresses {}
Situation The people there need {}

(Ma et al., 2021)
Topic It is related with {} .
Emotion This person feels {} .
Situation The people there need {} .

SCIroShot (ours)
Topic

This example is {}Emotion
Situation

Table 8: Hypothesis templates used for each dataset.
The {braces} indicate the label name location.

a variety of topics, with classes ranging from news
article topics to human emotions.

The results reported in Table 9 show that our
SCIroShot model is competitive in other domains
as well. Actually, it is quite impressive that it was
able to outperform the rest in two tasks and obtain
the second highest score in the third one.

It is important to note that the Situation dataset
has the added difficulty of being multi-label, mean-
ing that a piece of text can be linked to an arbitrary
number of labels. In a single-label setting, softmax
is applied over all the labels logits (so that they sum
up to one) and the highest scoring class is chosen
as the final prediction. On the other hand, when
performing multi-label classification, the softmax
function is applied to each label separately (so they
are independent variables that do not add up to
one) and all labels with a probability above a cer-
tain threshold are selected. We did not tune such
threshold, so the model’s predictions included all
labels with a score higher than 0.5.

7 Analysis

7.1 RTE vs ZSTC in the scientific benchmark

This section analyses the relation between the train-
ing task and the ZSTC task to assess the effective-
ness of the early stopping technique presented in
Section 5.3. We evaluate every checkpoint in our
ZSTC Scientific Benchmark in the same way that
several models were evaluated in Section 5.2.
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Model Topic Emotion Situation
RTE (Yin et al., 2019) 43.8 12.6 37.2
FEVER (Yin et al., 2019) 40.1 24.7 21.0
MNLI (Yin et al., 2019) 37.9 22.3 15.4
NSP (Ma et al., 2021) 50.6 16.5 25.8
NSP (Reverse) (Ma et al., 2021) 53.1 16.1 19.9
SCIroShotlast 51.51 22.63 23.70
SCIroShotselected 59.08 24.94 27.42

Table 9: Results obtained in the general benchmark. Accuracy is used for Topic classification and label-wise
weighted F1 for the rest. For simplicity, the hypothesis template was set to "This example is ." in all cases.

Figures 3 and 4 corroborate our hypothesis that
the performance in the ZSTC task does not neces-
sarily improve hand-by-hand with the performance
on RTE. Taking a closer look to the plots we can
appreciate how the ZSTC accuracy drops after the
model reaches an accuracy of 96% on RTE. The
checkpoints selected using the early stopping tech-
nique based on the ZSTC task achieve 96.07% RTE
accuracy in the case of RoBERTa-large and 96.60%
for BART-large. We argue that, although the se-
lected checkpoints are not the best possible option
for all the datasets in the benchmark, our technique
has stopped training before the overall ZSTC per-
formance diminishes, and it has done so using a
subset of unseen labels from the training dataset.
This implies obvious savings in time and computa-
tion that would otherwise have been wasted for no
good reason.

Figure 3: Evaluation of all RoBERTa-large checkpoints
in the training (RTE) and testing (ZSTC) tasks.

7.2 Robustness to hypothesis templates

This section is an attempt to measure the impor-
tance of the hypothesis template and its impact on
the final performance of a zero-shot model. With

Figure 4: Evaluation of all BART-large checkpoints in
the training (RTE) and testing (ZSTC) tasks.

this goal in mind, we evaluate our SCIroShot and
Facebook’s bart-large-mnli with two hypothesis
templates that are virtually the same: "This exam-
ple is {LABEL}" and "This example is {LABEL}.".
Note that their semantic content is exactly the same,
being the only difference that the first template does
not contain a punctuation mark at the end.

Figure 5 shows that SCIroShot is quite robust
against changes in the hypothesis template. On
the other hand, as it can be seen in Figure 6,
bart-large-mnli can experience severe performance
drops caused by an apparently insignificant change
in the template. We hypothesize that this might
happen because the model was trained with high-
quality NLI data where dots were always present
at the end of the hypothesis, and thus it is not used
to the absence of these type of anchor tokens. It
can also be inferred that our training task is quite
robust to different hypothesis templates.

We would like to point out that the high sen-
sitivity of the Facebook model was accidentally
detected during our experiments. We noticed that
using our default template the model obtained sur-

292



Figure 5: SCIroShot performances when using slightly
different hypothesis templates.

Figure 6: Facebook’s bart-large-mnli performances
when using slightly different hypothesis templates.

prisingly low results in several tests, something
highly unexpected considering its great capabili-
ties. In pursue of intelectual honesty, we decided
to report the results obtained with the template that
best suited the model’s interests. The exact same
template was given to our models so that there was
one less thing to take into account when comparing
performances, even though it might not be the one
providing the best results.

Conclusion

The benefits offered by a zero-shot text classifier
are four-pronged: (i) it removes the need for time-
consuming annotation processes carried out by do-
main experts, (ii) reduces the computational cost
of having to fine-tune a model for each application,
(iii) allows the classification of documents in real-
world scenarios where there is a scarcity of data,
and (iv) is able to handle new classes that might
not even have existed at the time of training.

This work proposes the usage of readily avail-
able classification datasets for effortless generation
of entailment data, which can be used to train ZSTC

models. By not using conventional RTE datasets
of generic nature, the resulting model exhibits su-
perior performance in the domain for which it has
been trained. We show that this is the case for the
scientific domain, but the idea could certainly be
extrapolated to other fields (e.g. a model trained on
news articles should excel at topic classification of
this kind of documents). As a proof of concept, we
present a scientific-domain zero-shot text classifier
that achieves state-of-the-art performance in the
scientific domain and competitive results in other
areas.

Furthermore, our experiments and analysis
suggest that entailment-based classifiers are no
panacea: they are very sensitive to the input se-
quences and do not exhibit the linear correlation
that one would expect between the performance
on the training (RTE) and testing (ZSTC) tasks.
We have empirically proven that the model can be-
come worse at ZSTC as it improves in RTE, which
is counter-intuitive and goes against the idea of
entailment being a unified method to model other
downstream tasks. Our analysis also show that our
technique does not suffer from the instability ob-
served in models trained with conventional RTE
datasets, which can occasionally experience severe
performance drops with minor changes such as re-
moving a punctuation mark from the hypothesis
template.

Future Work

In future work, we will further investigate the cor-
relation between different tasks as this could only
be the tip of the iceberg. It might also be interest-
ing to increase the difficulty of the fine-tuning task
by working with thousands of fine-grained labels
from deeper levels of the MAG taxonomy, aiming
to delay the point at which the model performance
starts worsening in the ZSTC task.

Our findings also motivate an interesting re-
search direction that we would like to explore: em-
ploying novel prompt tuning techniques to find
the ideal hypothesis template. Having seen that
zero-shot text classifiers experience dramatic per-
formance drops caused by apparently insignificant
modifications in the hypothesis text, it is clear to
us that there is a need to find a suitable text in an
automatic manner. We consider this to be a major
pitfall of zero-shot models, and thus we are willing
to study the feasibility of applying prompt tuning
to this particular case as future work.
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Limitations

Our main limitations had to do with time and com-
putational constraints. Given the low efficiency
of entailment-based classifiers, which need to ex-
ecute a forward pass per class, the time required
to traverse certain datasets was simply too high.
Specially when the number of candidate labels is
large, because every sequence-label pair has to be
fed through the model to compute the logits of all
possible combinations. This low ability to scale
is certainly a drawback with respect to traditional
classifiers, and the reason that forced us to discard
datasets with over 500 labels as well as a few ex-
periments that we intend to leave for future work.

Ethics Statement

We believe that this work meets the ACL Code of
Ethics as it provides an already trained zero-shot
text classifier that can be used in an endless number
of situations that would otherwise require a task-
specific fine-tuning. Moreover, one of the main
findings of this work is that entailment-based text
classifiers should not be over-trained as it nega-
tively affects their final performance. This should
encourage fellow NLP practitioners to shorten the
training time of their ZSTCs thus minimizing their
carbon footprint, which is in line with the idea of
moving towards more sustainable language models.
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A Fine-tuning hyperparameters

Hyper-parameter Value
Learning Rate 8e-6
Learning Rate Decay Linear
Weight Decay 0.0
Warmup Steps 0
Batch Size 256
Max. Training Epochs 10
Adam ϵ 1e-8
Adam β1 0.9
Adam β2 0.999
Gradient Clipping 1.0

Table 10: Hyper-parameter values.

B Computing infrastructure

The fine-tuning of each model took around 2 days
on 16 HPC nodes8 equipped with an AMD EPYC
7742 (@ 2.250GHz) processor with 128 threads
and 2 AMD MI50 GPUs each.

8https://www.bsc.es/innovation-and-services/
technical-information-cte-amd

C Proportion of Entailment and Neutral
samples in the training data

Figure 7: Proportion of entailment and neutral samples
in the training data. For space limitations it is not pos-
sible to display all 292 labels, so the bar plot has been
purposely limited to the top 75 classes.
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Abstract

Modern NLP systems exhibit a range of biases,
which a growing literature on model debiasing
attempts to correct. However current progress
is hampered by a plurality of definitions of
bias, means of quantification, and oftentimes
vague relation between debiasing algorithms
and theoretical measures of bias. This paper
seeks to clarify the current situation and plot
a course for meaningful progress in fair learn-
ing, with two key contributions: (1) making
clear inter-relations among the current gamut
of methods, and their relation to fairness the-
ory; and (2) addressing the practical problem
of model selection, which involves a trade-off
between fairness and accuracy and has led to
systemic issues in fairness research. Putting
them together, we make several recommenda-
tions to help shape future work.1

1 Introduction

In NLP and machine learning, there has been a
surge of interest in fairness due to the fact that
models often learn and amplify biases in the train-
ing dataset, leading to a range of harms (Badjatiya
et al., 2019; Díaz et al., 2018). A central notion is
group-wise fairness (Dwork et al., 2012; Choulde-
chova, 2017; Berk et al., 2021), which is typically
measured as the model performance disparities
across groups of data that are created by the com-
binations of protected attributes, such as race and
gender. A broad range of bias evaluation metrics
have been introduced in previous studies to capture
different types of biases – such as demographic
parity (Feldman et al., 2015) and equal opportunity
(EO) (Hardt et al., 2016) – and different approaches
have been adopted to both measure group dispar-
ities within each class, and aggregate over those
disparities. Each of these choices implicitly en-
codes assumptions about the nature of fairness, but

1Code available at https://github.com/HanXudo
ng/Fair_Enough
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Figure 1: True positive rate (TPR) evaluation results
over a biography classification dataset broken down
by author demographic and selected profession classes.
$ and $ denote the economic status (wealthy vs. not,
respectively). The pattern of results exhibits various
biases, however it is difficult to distil this into a single
figure of merit, and thus determine which is the better
or fairer of the two models.

little work has been done to spell out what those
assumptions are, or guide the selection of evalua-
tion metric from first principles of what constitutes
fairness.

As an illustration of this issue, Figure 1 depicts
the true positive rate (TPR) values for two models.2

Given that the EO fairness is satisfied if different
groups achieve identical TPR, which model is fairer
or “better” out of the two? The answer is far from
clear, and in terms of evaluation practice, dictated
by a series of choices which implicitly encode dif-
ferent assumptions about what fairness is.

In terms of research practice, these choices have
led to a lack of consistency and direct empirical
comparability between methods. Equally concern-
ingly, given that fairness research involves an inher-
ent trade-off between raw model performance and
fairness, it has more subtly led to a lack of rigour
in terms of how model selection has been carried
out, meaning that methods are often deployed in

2For further details see Appendix A.
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suboptimal ways relative to a particular evaluation
methodology.

In this paper, we seek to address these problems.
We start by surveying current practices for fair-
ness evaluation aggregation within an integrated
framework, and discuss considerations and moti-
vations for using different aggregation approaches.
To ensure fairness metrics are fully comparable, we
present a checklist for reporting fairness evaluation
metrics, and also recommendations for aggregation
method selections. We next survey model compari-
son methods, and demonstrate the issues stemming
from using inconsistent model selection criteria.
To ensure fair comparisons, we further introduce
a metric for comparison without model selection,
which measures the area under the trade-off curve
of each method.

Overall this paper makes two key contributions:
(1) we characterise current practices for fairness
evaluation and their grounding in theory, proposing
a best-practice checklist; and (2) we propose a new
method which resolves several issues relating to
model selection and comparison.

2 Related Work

In terms of bias metrics, there are mainly two lines
of work in the literature on NLP fairness: bias in
the geometry of text representations (intrinsic bias),
and performance disparities across groups in down-
stream tasks (extrinsic bias), respectively. Based
on the hypothesis that measuring and mitigating in-
trinsic bias will also reduce extrinsic bias, previous
work has mainly focused on measuring and mitigat-
ing intrinsic bias, such as the Word Embedding As-
sociation Test (WEAT) (Caliskan et al., 2017), Sen-
tence Encoder Association Test (SEAT) (May et al.,
2019), and Embedding Coherence Test (ECT) (Dev
and Phillips, 2019). However, Goldfarb-Tarrant
et al. (2021) recently showed that there is no re-
liable correlation between intrinsic and extrinsic
biases, and suggest future work focusing on extrin-
sic bias measurement (which is the focus of this
work).

As for bias mitigation, debiasing methods for
intrinsic and extrinsic bias generally suffer from
performance–fairness trade-offs controlled by par-
ticular hyperparameters such as the number of prin-
cipal components used to define the intrinsic bias
subspace (Bolukbasi et al., 2016), and the strength
of addition objectives for performance parity across
groups (Shen et al., 2022b). In measuring perfor-

mance (perplexity and LM score for sentence em-
beddings, for example) and fairness simultaneously,
the model comparison framework presented in this
paper is generalizable for both intrinsic and extrin-
sic fairness.

3 Fairness Metrics

In this section, we discuss the considerations in-
volved in fairness evaluation. We start with a sur-
vey of different methods for aggregating scores,
and propose a two-step aggregation framework for
fairness evaluation.

3.1 Formal Notation Preliminaries

We consider fairness evaluation in a classification
scenario. Evaluation is based on a test dataset con-
sisting of n instances D = {(xi, yi, zi)}ni=1, where
xi is an input vector, yi ∈ {c}C

c=1 represents tar-
get class label, and zi ∈ {g}G

g=1 is the group label,
such as gender.3

Given a model that has been trained to make
predictions w.r.t. the target label ŷ = f(x), fair-
ness evaluation metrics generally measure group-
wise performance disparities for a particular metric
m(y, ŷ). For example, positive predictive rate and
true positive rate have been employed as the metric
for demographic parity (Feldman et al., 2015) and
equal opportunity (Hardt et al., 2016), respectively.

For each group, the results of a metric m are C-
dimensional vectors, one dimension for each class.
Given G protected groups, the full results are or-
ganized as a C × G matrix, denoted as M . For
the subset of instances Dc,g = {(xi, yi, zi)|yi =
c, zi = g}ni=1, we denote the corresponding evalua-
tion results asMc,g. Taking Figure 1 as an example,
M refers to the heatmap plot, and Mc,g is the cell
in the c-th row and g-th column.

Given M , the question is how exactly to ag-
gregate the result matrix as a single number that
measures the degree of fairness. We split the aggre-
gation into two steps: (1) group-wise aggregation,
which aggregates evaluation results of all groups
within a class ([Mc,1, . . . ,Mc,G]) into a single num-
ber (βc); and (2) class-wise aggregation, which ag-
gregates [β1, . . . , βC] scores of all classes into a
single number δ.4

3When considering multiple protected attributes, z can be
intersectional identities as shown in Figure 1.

4Mathematically, it would be possible to do the class-wise
aggregation first, and then the group-wise aggregation. How-
ever, aggregating class-wise performances within a particu-
lar group essentially measures the long-tail learning problem
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Aggregation Method Description Unit Reference

Group-wise

mean gap βc =
1
G

∑
g |Mc,g −M c| G (Shen et al., 2022b)

variance βc =
1

G−1

∑
g |Mc,g −M c|2 G (Lum et al., 2022)

max gap βc = maxg|Mc,g −M c| G (Yang et al., 2020)
min score βc = mingMc,g S (Lahoti et al., 2020)
min ratio βc = ming

Mc,g

Mc
R (Zafar et al., 2017)

max difference βc = maxgMc,g −mingMc,g S (Bird et al., 2020)
max ratio βc =

maxgMc,g
mingMc,g

R (Feldman et al., 2015)
difference threshold (γ) βc =

1
G

∑
g 1[0,γ](|Mc,g −M c|) G (Kearns et al., 2019)

ratio threshold (γ) βc =
1
G

∑
g 1[0,γ](|Mc,g

Mc
− 1|) R (Barocas et al., 2019)

Class-wise
binary δ =

∑
c βc1{1}(c) β (Roh et al., 2021)

quadratic mean δ =
√

1
C

∑
c β

2
c β (Romanov et al., 2019)

mean δ = 1
C

∑
c βc β (Li et al., 2018)

Table 1: Summary of different aggregation approaches. Based on the basic unit, group-wise aggregations are
additionally categorized into three types: Score (Mc,g), Gap (|Mc,g −M c|), and Ratio (Mc,g

M c
).

3.2 Existing Aggregation Approaches
Table 1 summarizes several aggregation approaches
from previous work, which are categorized based
on the level of aggregation.

3.2.1 Basic Unit
The basic unit refers to the inputs to an aggregation
function.

Group-wise Broadly, there are three types of ba-
sic units for group-wise aggregation:

1. the original score (Mc,g), which maintains the
actual performance level under aggregation
and larger is better;

2. the gap, i.e., absolute difference, between the
evaluation results of a group and the average
performance (|Mc,g −M c|), where smaller is
better and the minimum is 0; and

3. ratio of the evaluation results of a group to
the average (Mc,g

M c
), where closer to 1 is better.

Score describes the actual performance of each
group, and is generally used to measure extrema of
actual performances. For example, the Rawlsian
Max Min criterion (Rawls, 2001) is satisfied if the
utility of the worst-performing group is maximized.
Related fairness notions are also known as per-
group fairness (Hashimoto et al., 2018; Lahoti et al.,
2020).

The other two units, gap and ratio, support the
notion of group fairness, and evaluate whether or
not ŷ is fair w.r.t. z. Taking EO (Hardt et al., 2016)

rather than fairness.

as an example, it requires the true positive rate to
be independent of z. Formally, for a particular class
c, the EO criterion is satisfied iff

TPRc,g = TPRc,∀g ∈ {g}G
g=1.

As such, it is straightforward to directly measure
the absolute difference between TPRc,g and TPRc,

TPRc,g = TPRc ⇔ |TPRc,g − TPRc| = 0,

which is essentially the gap unit.
Alternatively, the ratio unit can be used to mea-

sure inequality as a percentage:

TPRc,g = TPRc ⇔
TPRc,g

TPRc
= 1.

Ratio-based scores can also be interpreted via
a “q%-rule” (Zafar et al., 2017; Barocas et al.,
2019), for example, the 80%-rule for disparate
impact (Feldman et al., 2015), which requires that
the ratio is no less than 0.8.

The q%-rule can be captured more explicitly by a
threshold (Kearns et al., 2018; Barocas et al., 2019),
which is a relaxation of the equality based on a
slack threshold ϵ ∈ R+, |1− TPRc,g

TPRc
| ≤ ϵ. Similarly,

the threshold can be applied to gap, resulting in
|TPRc, g− TPRc| ≤ ϵ.
Class-wise The next step is class-wise aggrega-
tion, taking the group-wise aggregation for each
class from above as inputs, [β1, . . . , βC].

3.3 Generalized Mean Aggregation
Before discussing each of these aggregation meth-
ods, we first introduce the basic concept of the
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Power (p) Formulation

−∞ Minimum: min{v1, . . . , vn}
−1 Harmonic Mean: n∑n

i=1 v−1
i

1 Arithmetic Mean: 1
n

∑n
i=1 vi

2 Quadratic Mean:
√

1
n

∑n
i=1 v

2
i

+∞ Maximum: max{v1, . . . , vn}

Table 2: Commonly-used cases of generalized mean
aggregation.

generalized mean as a framework for describing
aggregation functions, and then make the link be-
tween the generalized mean and existing aggrega-
tion methods.

Formally, the generalized mean is defined as:

Mp(v1, . . . , vn) =


 1

n

n∑

i=1

vpi




1
p

,

where vi ∈ R+ are positive real numbers to be
aggregated, and p is the exponent parameter. A
desired property of the generalized mean is its in-
equality, which states that,

Mp(v1, . . . , vn) >Mp′(v1, . . . , vn),∀p > p′.

Essentially, a larger value of p encourage the aggre-
gation to focus more on the larger-valued elements,
which can be illustrated with the specific cases
shown in Table 2.

By setting p = ±∞, generalized mean returns
extremum values, including (in Table 1): (1) the
maximum value of gap (Yang et al., 2020), differ-
ence (Bird et al., 2020), and ratio (Feldman et al.,
2015); and (2) the minimum value of score (Lahoti
et al., 2020) and ratio (Zafar et al., 2017).

For other p values, the generalized mean reflects
the relative dispersion of its inputs. For exam-
ple, group-wise mean gap aggregation (Shen et al.,
2022b) and class-wise mean aggregation (Li et al.,
2018) are both equivalent to p = 1. Class-wise
quadratic mean aggregation (Romanov et al., 2019)
is essentially p = 2, which focuses more on those
classes with higher bias. Similarly, group-wise vari-
ance aggregation (Lum et al., 2022) is proportional
to the p = 2 setting, implying that groups with
larger gaps will influence results more.

The additional advantage of using generalized
mean aggregation is that comparison across arbi-
trary p values can be easily stated. For example,
group-wise aggregation is the p = −5 generalized

mean with respect to the score units in a toxicity
classification competition,5 meaning that evalua-
tion focuses more on groups with lower perfor-
mance.

Other Aggregation Methods: Although gener-
alized mean aggregation is a powerful tool for
describing and interpreting the aggregation pro-
cess, there are other ways that need further dis-
cussion. Previous work has also considered as-
signing different weights under aggregation, for in-
stance, Kearns et al. (2018) assign larger weights to
groups with larger populations. Such aggregations
can be implemented as the weighted generalized

mean: Mp,w(v) =
(

1
n

∑n
i=1wiv

p
i

) 1
p , where w is

the weight vector, and
∑n

i=1wi = 1.
An example of the weighted generalized mean

for class-wise aggregation is binary aggregation
that only considers the positive class in a binary
classification setting (Hardt et al., 2016; Zafar et al.,
2017; Kearns et al., 2018; Zhao et al., 2019; Lahoti
et al., 2020; Han et al., 2021; Lum et al., 2022).
The positive class is often treated as the “advan-
taged” outcome, so the analysis focuses solely on
the positive class. Moreover, the one-versus-all
trick is not necessary for the binary setting, and
natural derivations of the confusion matrix can be
used to refer to a particular class, e.g., TPR for the
positive class and TNR for the negative class.

3.4 Recommendations
We are now in a position to be able to provide
recommendations for fairness evaluation.

Following the work of Dodge et al. (2019), we
provide a checklist for fairness evaluation metric
aggregation:

□ Statistics of the datasetD, e.g., the probability
table of the joint distribution of y and z, and
the size of each partition.

□ The evaluation metric m (e.g., TPR for EO
fairness).

□ The basic unit of group-wise aggregation, in-
cluding score, gap, and ratio, or other possi-
ble measures.

□ The aggregation function for group-wise ag-
gregation, and the corresponding motivation.

5Jigsaw Unintended Bias in Toxicity Classification: http
s://www.kaggle.com/competitions/jigsaw-u
nintended-bias-in-toxicity-classificatio
n/
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Figure 2: Decision path for exponent parameter selection for generalized mean aggregation.

□ The aggregation function for class-wise ag-
gregation, and the corresponding motivation.

Although the particular choice of evaluation
dataset D and evaluation metric m are critical to
the overall evaluation, they are not the main focus
of this paper. Rather, we provide guidance based on
the selection of basic unit, and methods for group-
and class-wise aggregation, as detailed in Figure 2.

Basic Unit Selection: The circles in Figure 2 an-
notated as Score, Ratio, and Gap are the decision
points for basic unit selection.

If per-group fairness is the primary criterion (e.g.,
Rawlsian Max-Min fairness (Rawls, 2001)), using
score is the best practice, which maintains the orig-
inal values under aggregation. On the other hand,
if inter-group fairness is critical, gap and ratio are
more appropriate choices. Gap reflects disparities
in the same scale as the per-group scores, and is
easy to visualize (e.g. as differences in height be-
tween clustered bars). However, if one wished to
measure disparities in relative terms, e.g., the q%-
rule (Feldman et al., 2015), ratio is a better choice
than gap.

Group-wise Aggregation Function Selection:
The selection of group-wise aggregation functions
is shown as the exponent parameters of the gener-
alized mean aggregation.

Measuring extrema is similar to the notion of
per-group fairness, and encourages improvements

in the worst-performing groups. For basic units
where smaller is fairer, e.g., gap, aggregation gen-
erally focuses on the maximum (Yang et al., 2020),
i.e., p = +∞. For units like score (p = −∞),
on the other hand, the minimum value should be
measured, as a lower bound.

Besides extrema, it is also reasonable to mea-
sure fairness variability across groups. A typical
choice is taking the arithmetic mean (i.e., p = 1)
across all groups, which implicitly assigns equal
importance to each individual group. Similar to the
signs in extremum aggregations, the value of p in
variability aggregations should be selected based
on the type of basic unit, to focus more on worse-
performing groups. Taking the gap unit as an exam-
ple, the quadratic mean (p = 2) is influenced more
by larger gaps than the arithmetic mean. Moreover,
quadratic mean aggregation based on gap is es-
sentially the standard deviation of scores, and can
be used to reconstruct variance aggregation (Lum
et al., 2022).

Class-wise Aggregation Function Selection:
Although our focus is on the fairness evaluation
metric, class-wise aggregation is almost identical
to aggregation methods for general utility metrics.
Binary aggregation for fairness is the same as util-
ity metrics, while mean aggregation (Li et al., 2018;
Wang et al., 2019) for fairness evaluation is equiva-
lent to “macro”-averaging in general evaluation.
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Figure 3: Figure 3a shows an example of performance
and fairness with respect to different iterations of the
nullspace projection in INLP. Figure 3b presents the
Pareto frontiers in the performance–fairness trade-offs
of four debiasing methods in recent work. Figure 3b
also provides an illustration of DTO. The green dashed
vertical and horizontal lines denote the best performance
and fairness, respectively, and their intersection point
is the Utopia point. The length of a line, e.g., the red
line from A to the Utopia point, is the DTO for the
corresponding candidate model.

4 Model Comparison

This section focuses on comparison of debiasing
methods when considering utility and fairness si-
multaneously. We first introduce the performance–
fairness trade-off curve (PFC) for debiasing meth-
ods, and then discuss the limitations of existing
comparison frameworks. Finally, we propose a
new metric, namely the area under the curve (AUC)
w.r.t. PFC, which integrates existing approaches
and reflects the overall goodness of a method.

4.1 Performance and Fairness Metrics

As discussed in Section 3, there are many options
to measure performance and fairness. This paper is
generalizable to all different metrics, but for illus-
tration purposes, we follow Ravfogel et al. (2020);
Subramanian et al. (2021) and Han et al. (2022c)
in measuring the overall accuracy and equal oppor-
tunity fairness.

Specifically, equal opportunity fairness measures

TPR disparities across groups, such as the situa-
tion depicted in Figure 1. We use the TPR gap
across subgroups to capture absolute disparities.
For group-wise aggregation, we treat all groups
equally in computing the unweighted sum of gap
scores (∝ p = 1). In the last step, class-wise aggre-
gation, we focus more on less fair classes by using
root mean square aggregation (p = 2).

4.2 Performance–Fairness Trade-off

It has been observed in previous work that a
performance–fairness trade-off exists in bias miti-
gation (Li et al., 2018; Wang et al., 2019; Ravfogel
et al., 2020; Han et al., 2022b; Shen et al., 2022b).

Typically, debiasing methods involve a trade-off
hyperparameter to control the extent to which the
model sacrifices performance for fairness. Exam-
ples of such trade-off hyperparameters include: (1)
interpolation between the target and vanilla data
distribution for pre-processing approaches (Wang
et al., 2019; Han et al., 2022a); (2) the strength of
additional loss terms for loss manipulation meth-
ods (Zhao et al., 2019; Lahoti et al., 2020; Han
et al., 2021; Shen et al., 2022a); (3) the target level
of fairness in constrained optimization (Kearns
et al., 2018; Subramanian et al., 2021); and (4) the
number of debiasing iterations for post-hoc bias
mitigation methods (Ravfogel et al., 2020).

Taking INLP (Ravfogel et al., 2020) as an ex-
ample, which debiases by iteratively projecting the
text embeddings to the nullspace of the protected at-
tributes, Figure 3a shows performance and fairness
with respect to the number of nullspace projection
iterations.6 It is clear that more iterations lead to
better fairness at the cost of performance.

Instead of looking at performance/fairness for
different trade-off hyperparameter values, it is more
meaningful to focus on the Pareto frontiers in trade-
off plots (Figure 3b), where each point corresponds
to a particular value of the trade-off hyperparameter
in Figure 3a. The frontiers represent the best fair-
ness that can be achieved at different performance
levels, and vice versa.

One limitation of a trade-off plot is that it is hard
to make quantitative conclusions based on the plot
itself, and we cannot conclude that one method is
better than another if there exists any intersection
of their trade-off curves. As shown in Figure 3b,
in addition to INLP, we also include the trade-

6Without loss of generality, we assume that for both fair-
ness and performance, larger is better.
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off curves for three recent adversarial debiasing
variants: ADV (Li et al., 2018), DADV (Han et al.,
2021), and A-ADV (Han et al., 2022b). Although
A-ADV is better than the other methods under most
conditions, there exist intersections between their
trade-off curves. As such, we can only state that A-
ADV is better than other methods within particular
ranges, which is insufficient for making a precise
comparison, especially when comparing multiple
debiasing methods (as demonstrated in Figure 3b).

4.3 Model Selection

In order to conduct quantitative comparisons across
different debiasing methods, current practice is to
select a particular point on the frontier for each
method, and then compare both the performance
and fairness of the selected points.

One problem associated with model selection
is that typically, no single method simultaneously
achieves the best performance and fairness. For
example, as shown in Figure 3b, if points A and B
were the selected models for A-ADV and DADV,
respectively, A would represent better performance
and B better fairness. As such, although we have
actual numbers for quantitative comparison, it is
still hard to conclude which method is best.

Distance to the Optimal: To address this prob-
lem, we propose to measure the Distance To
the Optimal point (“DTO”) to quantify the
performance–fairness trade-off (Salukvadze, 1971;
Marler and Arora, 2004; Han et al., 2022a). A
model is said to outperform others if it achieves
a smaller DTO, i.e. the distance to the optimal
(Utopia) point (the point at which performance and
fairness are the maximum possible values) is mini-
mized. Figure 3b illustrates the calculation of DTO
for A and B, where the optimal point is the top-right
corner7 and DTO is measured by the normalized
Euclidean distance (the length of the green and red
lines) to the optimal point.

A notable advantage of DTO is that a Pareto im-
provement implies a smaller value of DTO. There-
fore, DTO can be seen as relaxation of Pareto
improvements, and the smallest DTO must be
achieved by a point on the Pareto frontier. A key
limitation of DTO is that it quantifies the trade-off
of a single model rather than the full frontier, pre-
supposing some means of model selection. This

7The location of the utopia point and the scale of metrics
are discussed in Appendix C.
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Figure 4: AUC of the performance–fairness trade-off
curve. Taking the trade-off curve of INLP as an exam-
ple, the yellow shaded area refers to the AUC-PFC, and
the green shaded area refers to the integration of DTO
in polar coordinates.

has been somewhat arbitrary in prior work, which
is the problem we now seek to address.

Selection Criteria: Similar to the aggregation of
fairness metrics, model selection should be done in
a domain-specific manner. Previous work has used
different criteria for model selection, including: (1)
minimum loss (Hashimoto et al., 2018; Li et al.,
2018); (2) maximum utility (Lahoti et al., 2020),
e.g., based on accuracy or F-measure; (3) manual
selection based on visual inspection of the trade-
off curve (Elazar and Goldberg, 2018; Ravfogel
et al., 2020); (4) constrained selection (Han et al.,
2021; Subramanian et al., 2021), by selecting the
best fairness constrained to a particular level of
performance, and vice versa; and (5) minimising
DTO (Han et al., 2022b; Shen et al., 2022b).

Selection based on minimum loss and maximum
utility is identical to classic model selection, and
does not consider fairness explicitly. The other
three types of criteria are based on trade-offs, dif-
ferentiated by the method for aggregating fairness
and performance.

Such inconsistency in model selection makes
it very hard to rigorously compare methods. The
question we want to address is: how can we quanti-
tatively compare methods without model selection?

4.4 AUC-PFC

Recall that DTO is a metric for measuring the good-
ness of the trade-off of a particular model, and
model selection is a process for selecting a par-
ticular frontier model from the Pareto curve. To
address the problem associated with model selec-
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(c) DTO is better than 0.60.

Figure 5: Yellow shaded area denote the partial AUC-PFC score computed in the region where a particular condition
applied.

tion, we propose to integrate DTO over the whole
performance–fairness curve (PFC). Specifically,
we integrate DTO in a polar coordinate system,
where the reference point (pole) is the optimal
point. Given that the DTO of a point on the trade-
off curve is also the distance from the pole in the
polar coordinate system, the trade-off curve can
be treated as a function that maps angular coordi-
nates to DTO. For example, as shown in Figure 4,
the green area denotes the region enclosed by the
performance–fairness trade-off curve of INLP and
the utopia point with fairness = 1.00 and perfor-
mance = 0.82.8

Alternatively, we can interpret the proposed met-
ric from the performance–fairness perspective, in
calculating the area under the Pareto curve, and
subtracting this from the area under the optimal
Pareto curve defined by the optimal point.

The magnitude of AUC-PFC differs from a sin-
gle metric; for example, a 0.0001 improvement in
the AUC-PFC score is equivalent to a 1 percentage
point (pp) boost in both performance and fairness
(0.01× 0.01).

Partial AUC-PFC In practice, worse perfor-
mance or fairness can be unacceptable, for example,
one may want to prioritize fairness in particular ap-
plications. To address this problem, we present the
Partial AUC-PFC score to focus on a specific re-

8In the interests of consistent comparison, the Utopia point
is typically (1, 1), as in Table 3. In practice, this does not affect
the calculation of AUC-PFC, as we discuss in Appendix C.

gion of the PFC Curve, where the AUC-PFC score
is computed w.r.t. specific acceptable levels of per-
formance and fairness.

Figure 5a shows an example of partial AUC-PFC,
where the region can be considered if correspond-
ing accuracy is better than 0.49. Similarly, Fig-
ures 5b and 5c show partial AUC-PFC scores with
respect to particular fairness and DTO constraints.

With the partial AUC-PFC metric, one can ex-
plicitly compare different methods with a single
number, and w.r.t. particular values of performance
and fairness.

4.5 Case Studies

Experimental Details: We conduct experiments
over the BIOS dataset (De-Arteaga et al., 2019)
which was augmented with economic status by Sub-
ramanian et al. (2021), resulting in 28 profes-
sions as the target label and 4 intersectional de-
mographic groups.9 We use public implementa-
tions for all models in our experiments, primarily
in fairlib (Han et al., 2022c).

Results: In Table 3, we investigate 7 different
selection criteria and report the DTO score over
the test set. Specifically, we conduct model selec-
tion over the development set based on: (1) min-
imum DTO; (2) maximum performance (P); (3)
maximum performance within a fairness threshold
of 5% improvement (P@F+5%); (4) maximum

9Performance and fairness metrics have been introduced
in Section 4.1.
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Selection Criteria

Method DTO P P@F+5% P@F+10% F F@P−5% F@P−10% AUC↑
INLP (Ravfogel et al., 2020) 41.9 41.9 52.6 52.6 70.2 41.9 41.9 39.8
ADV (Li et al., 2018) 39.0 44.6 43.3 41.8 49.4 41.2 41.2 43.6
DADV (Han et al., 2021) 37.9 44.7 41.0 40.5 39.9 40.4 41.9 44.5
A-ADV (Han et al., 2022b) 36.9 45.4 39.5 39.0 62.1 43.8 42.8 44.0

Table 3: DTO scores of selected models over the BIOS dataset (smaller is better), based on the distances from mean
performance and fairness to (1,1) over the test set. Models are selected based on the criterion listed for each column
over the development set. The final column is the AUC, which does not involve model selection. Bold = the best
score per column. See Appendix B for the full results.

performance within a fairness threshold of 10% im-
provement (P@F+10%); (5) maximum fairness
(F); (6) maximum fairness within a performance
trade-off threshold of 5% (F@P−5%); and (7)
maximum fairness within a performance trade-off
threshold of 10% (F@P−10%). Criteria (3), (4),
(6), and (7) are constrained selections as discussed
in Section 4.3, where we select the model with the
highest fairness/performance within 5/10% of per-
formance trade-off/fairness improvement relative
to the STANDARD model. Taking F@P−10% as
an example, the model with the highest fairness
is selected within 10% performance trade-off over
the vanilla model performance (i.e., with perfor-
mance greater than 72% (82%− 10%)). Similarly,
P@F+5% selects the model with highest perfor-
mance subject to at least 5% fairness improvement
over the vanilla model (63% = 58% + 5%).

It can be seen that each of the four methods is
the best for at least one selection criteria, as a stark
illustration of our claim about model selection cri-
teria biasing any possible conclusions about which
method is best. For example, INLP and ADV are
the best methods with respect to selection criteria
P and F@P−10%, respectively.

On the contrary, our proposed AUC-PFC score
(in the final column of Table 3) is unaffected by
model selection, and reflects the overall trade-off
of a method. Consistent with the trend in Fig-
ure 3b, AUC scores in Table 3 are smaller for
worse-performing methods, e.g., INLP, and larger
for better-performing methods such as A-ADV and
DADV. Moreover, as the trade-off curves for A-
ADV and DADV overlap one another (see Fig-
ure 3b), it is hard to pick a winner visually, let
alone make quantitative comparisons. By using
the AUC-PFC metric, we can conclude that over-
all, DADV is slightly better than A-ADV over this
dataset.

Discussion The current DTO calculation as-
sumes that users have no preference for perfor-
mance over fairness or vice versa, where in prac-
tice it is possible that the choice of the fairness
metric could be influenced by task-specific goals or
the relative importance of fairness. Such problems
have been widely studied in the literature on multi-
objective learning, and a typical line of work is
weighted generalized mean, which incorporates ad-
ditional weight parameters in the generalized mean
framework to reflect the importance or preference
of each objective.

5 Conclusion

We have discussed the current practice in evalu-
ation, model selection, and method comparison
in the fairness literature, and shown how current
practice in experimental fairness lacks rigour and
consistency. We made recommendations for select-
ing a fairness evaluation metric, and introduced a
new metric for measuring the overall performance–
fairness trade-off of a method.
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Limitations

This paper focuses on the notion of group fairness,
under the assumption that each individual belongs
to a particular demographic group. One limitation
of methods in this space is that the demographic
attributes must be observed (for the development
and test data, at least) in order to evaluate fairness.
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We only investigate the proposed evaluation
aggregation framework in a classification setting.
However, our framework is naturally generalizable
to other tasks with discrete outcomes, such as gen-
eration and sequential tagging. Moreover, in terms
of continuous labels, such as regression, one can
skip the class-wise aggregation.

Ethical Considerations

This work focuses on current practice in fairness
evaluation and method comparison. Our proposed
“checklist” recommendations are specific to the
fairness literature and complement existing frame-
works, to encourage future research to think care-
fully about harms and what type of fairness is ap-
propriate.

Demographics are assumed to be available only
for evaluation purposes and are not used for model
training or inference. We only use attributes that
the user has self-identified in our experiments. All
data and models in this study are publicly available
and used under strict ethical guidelines.
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Figure 6: True positive rate (TPR) evaluation results
over a biography classification dataset broken down by
author demographics and profession classes. $ and $
denote the economic status (high vs. low, respectively).

A Full Disaggregated Results

Figure 6 depicts the full TPR scores for two
real-world models over a profession classifica-
tion dataset, stratified across 4 protected attributes
(male vs. female and high vs. low economic sta-
tus) from Figure 1. Specifically, the two models are
both trained naively without debiasing. They share
the same hyperparameter settings and random seed,
except that Model 1 and Model 2 are the 9th and 5th
epochs, respectively. For professions such as Pro-
fessor, there is little discernible difference either
between the two models or across different com-
binations of protected attributes. For DJ, on the
other hand, Model 1 appears to be reasonably fair
w.r.t. economic status but biased for binary gender,
whereas Model 2 is biased across both protected at-
tributes but appears to have the higher overall TPR.
Finally, with Paralegal, Model 2 appears to be
fairer w.r.t. both economic status and binary gender
but perform substantially worse than the more bi-

Profession Total Male Female

$ $ $ $

professor 21715 46 9 37 7
physician 7581 42 8 41 8
attorney 6011 51 10 33 6
photographer 4398 53 11 30 6
journalist 3676 41 9 41 9
nurse 3510 8 1 76 15
psychologist 3280 31 6 52 11
teacher 2946 35 6 49 10
dentist 2682 52 11 30 6
surgeon 2465 73 12 13 2
architect 1891 64 12 21 3
painter 1408 47 9 36 8
model 1362 15 2 70 13
poet 1295 46 7 39 8
software engineer 1289 70 14 14 2
filmmaker 1225 56 10 29 6
composer 1045 70 14 14 2
accountant 1012 55 9 29 6
dietitian 730 5 1 82 12
comedian 499 69 9 19 3
chiropractor 474 62 14 21 3
pastor 453 59 15 23 4
paralegal 330 12 3 70 15
yoga teacher 305 13 3 71 12
interior designer 267 16 4 67 12
personal trainer 264 41 10 42 7
DJ 244 71 16 11 2
rapper 221 75 15 9 1

Total 72578 9 45 7 39

Table 4: Training set distribution of the BIOS dataset.
For each profession, the table shows the number of
individuals and the breakdown across demographics as
a percentage. $ and $ denote the economic status (high
vs. low, respectively).

ased Model 1 in terms of the individual TPR scores
for every combination of protected attributes. So it
is hard to tell which model is fairer or “better” out
of the two, without aggregation.

A.1 Dataset: BIOS

All experiments are based on a biography classifi-
cation dataset (De-Arteaga et al., 2019; Ravfogel
et al., 2020), where biographies were scraped from
the web, and annotated for the protected attribute
of binary gender and target label of 28 profession
classes.

Besides the binary gender attribute, we addi-
tionally consider economic status as a second pro-
tected attribute. Subramanian et al. (2021) semi-
automatically labeled economic status based on
the individual’s home country (wealthy vs. rest of
world), as geotagged from the first sentence of the
biography. For bias evaluation and mitigation, we
consider the intersectional groups, i.e., the Carte-
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sian product of the two protected attributes, leading
to 4 intersectional classes: female–wealthy, female–
rest, male–wealthy, and male–rest.

Since the data is not directly available, in or-
der to construct the dataset, we use the scraping
scripts of Ravfogel et al. (2020), leading to a dataset
with 396k biographies.10 Following Ravfogel et al.
(2020), we randomly split the dataset into train
(65%), dev (10%), and test (25%).

The augmentation for economic attributes fol-
lows previous work (Subramanian et al., 2021),
which results in approximately 30% of instances
that are labelled with both protected attributes.

Table 4 shows the target label distribution and
protected attribute distribution.

A.2 Experimental Details

This work focuses on evaluation and model com-
parison in the fairness literature. Instead of training
models from scratch, we use existing checkpoints
from previous work (Han et al., 2022c), which are
publicly available online.11 Please refer to the orig-
inal work (Han et al., 2022c) for experimental de-
tails.

A.3 Subset Confusion Matrices

Figure 7 presents the confusion matrices of all 4
subgroups. For each confusion matrix, the i-th row
and j-th column entry indicates the number of sam-
ples which have the true label of the i-th class and
predicted label of the j-th class. Since the distri-
butions of classes within each group can be highly
imbalanced, without further normalization and ag-
gregation, it is difficult to draw any conclusion by
just observing the number of samples in each cell.

A.4 Fairness Reproducibility

So far, we have listed critical factors underlying
the choice of fairness metric, and provided rec-
ommendations for metric selection. However, we
acknowledge that, in actual applications, the selec-
tion should be made in a domain-specific manner
in close consultation with stakeholders or policy-
makers. In practice, countless types of fairness
evaluation metrics could be derived from different
combinations of aggregation methods.

10There are slight discrepancies in the dataset composition
due to data attrition: the original dataset (De-Arteaga et al.,
2019) had 399k instances, while 393k were collected by Rav-
fogel et al. (2020).

11Bios_both at https://github.com/HanXudong
/fairlib/tree/main/analysis/results

Instead of reporting all possible fairness met-
rics, we suggest providing a set of confusion ma-
trices for classification tasks, as it can form the
basis of calculating a large number of metrics, in-
cluding PPR, TPR, TNR, accuracy, and F-measure.
The other key advantage of reporting confusion
matrices is that the number of reported values is
generally much smaller than the model or dataset
size. Given a C-class classification dataset with
G distinct protected groups, the combined size of
the confusion matrices is G × C2 (one confusion
matrix per group). Taking the BIOS dataset as an
example, the sizes of the confusion matrices, test
dataset, and model parameters (for a BERT-base
classifier (Devlin et al., 2019)) are approximately
3× 103, 4× 104, and 1× 108, respectively.

B Full Results of Case Studies

Table 5 shows the experimental results for both the
test and development sets.

C AUC-PFC Extension

C.1 Weighted DTO

On the one hand, as suggested by Marler and Arora
(2004), if fairness and performance have differ-
ent scales, the Euclidean distance is not a suitable
mathematical representation of closeness, resulting
in worse approximation of Pareto optimality and
efficiency. Therefore, the scales of performance
and fairness should be normalized.

C.2 Selection of Utopia Point

Typically, most debiasing methods will share the
same maximum performance, which is the perfor-
mance of the vanilla model (corresponding to a hy-
perparameter setting where the debiasing method
does nothing.) Accordingly this is a sensible choice
for the performance of the Utopia point, as we have
proposed for model selection. In terms of the cal-
culation of areas of integration, moving the Utopia
point to (1, 1) has little effect, simply adding a
constant triangular region which is identical for all
methods, and thus irrelevant for model comparison.
As such, it makes no difference whether we use
1 or the maximum-achieved model performance
when comparing models based on AUC-PFC.

Distance to Arbitrary Ideal Point: Compared
to the default value of DTO, moving the utopia
point to the right (e.g., the (1, 1) point) prioritizes
methods with higher performance.
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Figure 7: Confusion matrices of subgroups. Following Figure 6, confusion matrices are based on the predictions of
Model 1, and class labels 0 to 27 are in the same order as the 28 professions in Figure 6.
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Figure 8: Integration of DTO with respect to an arbitrary
ideal point, which is (1, 1) in this example.

As shown in Figure 9, without loss of generality,
let

• Q = (0, 0) denote the candidate point;

• U = (c, a) denote the Utopia point, where c is

b a  

c r
r’

OU

Q

P

Figure 9: The influence of using different optimal points.
Uppercase (Q, P , U , and O) and lowercase (c, a, b,
r, and r′) characters represent points and Euclidean
distances between points.

the fairness distance from Q to the maximum
fairness (which is 1), and a is the performance
distance fromQ to the maximum performance
(which is 0.82 is Figure 9); and

• O = (c, a + b) denote the arbitrary model,
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Test Set Development Set

Selection Method Performance Fairness DTO Performance Fairness DTO

DTO

INLP 81.4± 0.0 62.4± 0.0 41.9 80.3± 0.0 54.4± 0.0 49.7
ADV 64.6± 4.5 83.7± 1.1 39.0 63.9± 4.4 79.9± 3.0 41.3
DADV 68.1± 5.5 79.5± 6.8 37.9 67.6± 5.5 75.5± 6.7 40.7
A-ADV 69.7± 4.9 78.8± 7.7 36.9 69.3± 4.7 75.2± 5.4 39.5

P

INLP 81.4± 0.0 62.4± 0.0 41.9 80.3± 0.0 54.4± 0.0 49.7
ADV 81.5± 0.2 59.5± 1.7 44.6 80.7± 0.2 55.2± 1.3 48.8
DADV 81.4± 0.3 59.3± 1.7 44.7 80.6± 0.3 54.9± 1.7 49.1
A-ADV 81.3± 0.3 58.6± 2.0 45.4 80.6± 0.3 54.4± 1.6 49.6

P@F+5%

INLP 53.8± 0.0 75.0± 0.0 52.6 53.8± 0.0 74.4± 0.0 52.8
ADV 71.5± 5.7 67.3± 5.4 43.3 71.3± 5.8 66.2± 4.2 44.4
DADV 73.4± 3.8 68.8± 4.9 41.0 73.0± 3.7 66.0± 3.7 43.5
A-ADV 70.4± 5.7 73.9± 8.9 39.5 70.0± 5.8 67.4± 6.6 44.3

P@F+10%

INLP 53.8± 0.0 75.0± 0.0 52.6 53.8± 0.0 74.4± 0.0 52.8
ADV 68.8± 4.8 72.1± 5.6 41.8 68.2± 4.8 70.3± 6.5 43.6
DADV 69.7± 2.9 73.2± 6.8 40.5 69.2± 2.7 70.6± 4.0 42.6
A-ADV 70.0± 3.3 75.0± 3.9 39.0 69.4± 3.4 70.8± 2.1 42.2

F

INLP 29.8± 0.0 100.0± 0.0 70.2 29.9± 0.0 86.6± 0.0 71.4
ADV 51.6± 16.5 90.2± 9.3 49.4 51.2± 16.2 81.0± 6.0 52.4
DADV 61.8± 3.7 88.6± 3.7 39.9 61.2± 3.5 82.2± 2.5 42.7
A-ADV 37.9± 9.1 99.0± 1.2 62.1 37.6± 8.8 86.5± 0.2 63.8

F@P−5%

INLP 81.4± 0.0 62.4± 0.0 41.9 80.3± 0.0 54.4± 0.0 49.7
ADV 79.1± 1.1 64.5± 1.3 41.2 78.5± 0.9 58.7± 2.4 46.5
DADV 80.4± 0.5 64.7± 1.4 40.4 79.9± 0.5 57.4± 1.1 47.1
A-ADV 79.9± 2.2 61.1± 2.8 43.8 79.1± 2.2 58.1± 2.8 46.8

F@P−10%

INLP 81.4± 0.0 62.4± 0.0 41.9 80.3± 0.0 54.4± 0.0 49.7
ADV 79.1± 1.1 64.5± 1.3 41.2 78.5± 0.9 58.7± 2.4 46.5
DADV 74.2± 3.2 67.0± 2.4 41.9 73.7± 3.3 64.2± 1.1 44.4
A-ADV 74.9± 5.1 65.4± 6.9 42.8 74.3± 5.3 64.2± 5.4 44.1

Table 5: Evaluation results ± standard deviation (%) of selected models over the BIOS dataset. DTO scores are the
distance from mean performance and fairness to (1,1) over the test set.

where b > 0, e.g., b = (1 − 0.82) for the
running example.

Before discussing the influence of the optimum
point selection, recall that the magnitude of vector
sum, |v⃗| = |v⃗1 + v⃗2| is:

|v⃗| =
√
|v⃗1|2 + |v⃗2|2 + 2|v⃗1||v⃗2| cosα,

where α is the angle between v⃗1 and v⃗2.
Let QU denote the vector from candidate model

Q to the Utopia point U , the DTO based on the
Utopia point is the r =

√
a2 + c2.

When calculating DTO based on the arbitrary
optimum point O, r′ = |QU + UO|, which can be
shown as:

r′ =
√
r2 + b2 + 2rb cosα′,

where α′ is the angle between QU and UO, and is
equivalent to ∠PUQ. Furthermore, as discussed
in Section 4.4, given a trade-off curve, the DTO is
a function of ∠PUQ, i.e., the green shaded area is∫ π/2
0 DTO(∠PUQ)d∠PUQ.

Lemma C.1. Let Q1 and Q2 be two models with
the same DTO score (r1 = r2), r′1 and r′2 be the
DTO to the new Utopia pointO. If the performance
of Q1 is worse than Q2, then r′1 > r′2.

Proof. Assuming that r′1 > r′2,

|Q1U + UO| > |Q2U + UO|
|Q1U + UO|2 > |Q2U + UO|2

2r1b cos∠PUQ1 > 2r2b cos∠PUQ2

(1)

Since ∠PUQ ≤ π/2, ∀Q, and r1 = r2,

a1 = r1 cos∠PUQ1 > a2 = r2 cos∠PUQ2,

where a1 and a2 are the performance distances
from Q1 and Q2 to the maximum performance,
respectively.
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Abstract

We motivate and introduce CHARD: Clinical
Health-Aware Reasoning across Dimensions,
to investigate the capability of text generation
models to act as implicit clinical knowledge
bases and generate free-flow textual explana-
tions about various health-related conditions
across several dimensions. We collect and
present an associated dataset, CHARDat, con-
sisting of explanations about 52 health con-
ditions across three clinical dimensions. We
conduct extensive experiments using BART
and T5 along with data augmentation, and per-
form automatic, human, and qualitative analy-
ses. We show that while our models can per-
form decently, CHARD is very challenging
with strong potential for further exploration.

1 Introduction
Pretrained language models (PLM) have seen in-
creasing popularity for NLP tasks and applications,
including text generation. Researchers have be-
come interested in the extent to which PLMs can:
1) act as knowledge bases, 2) reason like humans.

Rather than using external databases, exposure
to large amounts of data during training combined
with their large number of parameters, has given
PLMs the ability to store knowledge that can be
extracted through effective probing strategies such
as text infilling (Donahue et al., 2020), prompt-
ing (Liu et al., 2021), and QA (Jiang et al., 2021).
PLMs imitate a more high-level information store,
allowing for greater abstractness, flexibility, and
generalizability. They are also able to better exploit
contextual information than simple retrieval.

Studies have also shown that as PLMs scale
up, they have have emergent abilities (Wei et al.,
2022a), including reasoning. There has been in-
creasing attention on their commonsense reasoning
through works like COMET (Bosselut et al., 2019).
However, studies show that even large PLMs strug-

∗ Work done while at CMU.

Template Full Text with Explanation
A person with Costochondri-
tis has a/an exercise risk fac-
tor because/since/as {explana-
tion}

A person with Costochondritis has an
exercise risk factor because costochon-
dritis can be aggravated by any activity
that places stress on your chest area.

A person with gout has a/an
lose weight prevention be-
cause/since/as {explanation}

A person with gout has a lose weight pre-
vention because losing weight can lower
uric acid levels in your body and signifi-
cantly reduce the chance of gout attacks.

A person with rheumatoid
has a/an therapy treatment be-
cause/since/as {explanation}

A person with rheumatoid has a therapy
treatment because physiotherapy helps
rheumatoid patients with pain control,
reducing inflammation and joint stiffness
and to return to the normal activities of
daily living or sports.

Table 1: Examples of CHARD templates with explanations
(from CHARDat). The human was asked to write the entire
output text (not just the explanation) by infilling the template.

gle with commonsense tasks that humans can rea-
son through very easily (Talmor et al., 2020). There
are works that investigate more complicated reason-
ing tasks, e.g. arithmetic and symbolic reasoning
(Wei et al., 2022b). PLMs inherently have some
extent of reasoning capability, and many more com-
plex reasoning tasks are easier to carry out over
abstract PLM embedding space.

In this paper, we are interested in the intersection
of these areas. Can PLMs act as knowledge bases
and also reliably reason using their own knowl-
edge? We investigate whether PLMs can learn and
reason through health-related knowledge. Work on
generation-based reasoning for health has been lim-
ited, with most prior work exploring retrieval-based
methods. Generation-based reasoning is more diffi-
cult, as such a specialized domain contains esoteric
information not prevalent in the PLM’s training
data, and involves a higher degree of specialized
reasoning to handle domain-specific problems.

Healthcare is an important domain that deals
with human lives. It is a large application area
for machine learning and NLP. The need for au-
tomation in healthcare rises, as countless studies
show that healthcare workers are overworked and
burned out, especially recently due to the COVID-
19 pandemic (Portoghese et al., 2014; Brophy et al.,

Code: https://github.com/styfeng/CHARD
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2021; Couarraze et al., 2021). Further, healthcare
resources will continue to be strained as the baby
boomer generation ages (Canizares et al., 2016).

To this end, we propose CHARD: Clinical
Health-Aware Reasoning across Dimensions (§2.1).
This task is designed to explore the capability of
text generation models to act as implicit clinical
knowledge bases and generate textual explanations
about health-related conditions across several di-
mensions. The ultimate goal of CHARD is to
eventually have a model that is knowledgeable and
insightful across numerous clinical dimensions and
reasoning pathways. For now, we focus on three
relevant clinical dimensions using a template in-
filling approach, and collect an associated dataset,
CHARDat, which includes information for 52
health conditions across these dimensions (§2.2).

We perform extensive experiments on CHAR-
Dat using two SOTA seq2seq models: BART
(Lewis et al., 2020) and T5 (Raffel et al., 2020)
(§3.1), with data augmentation using backtransla-
tion (Sennrich et al., 2016) (§3.2,4.2). We bench-
mark our models through automatic, human, and
qualitative analyses (§5). We show that our models
show strong potential, but have room to improve,
and that CHARD is highly challenging with room
for additional exploration. Lastly, we discuss sev-
eral potential directions for improvement (§6).

2 Task and Dataset
2.1 The CHARD Task
Our task, CHARD: Clinical Health-Aware
Reasoning across Dimensions, investigates the ca-
pability of text generation models to produce clin-
ical explanations about various health conditions
across several clinical dimensions ( dim). Essen-
tially, we assess how a PLM can be used as and
reason through an implicit clinical knowledge base.

We focus on threedim: risk factors (RF), treat-
ment (TREAT), and prevention (PREV), as they
are important and relevant in the context of health.
A risk factor refers to something that increases
the chance of developing a condition. For cancer,
some examples are age, family history, and smok-
ing. Treatment refers to something that helps treat
or cure a condition. For migraines, some examples
are medication, stress management, and meditation.
Prevention refers to strategies to stop or lower the
chance of getting a condition. For diabetes, some
examples are a healthy diet and regular exercise.

As an initial approach to CHARD, we use a
template infilling formulation, where given an in-

put template that lays out the structure of the de-
sired explanation, the model’s goal is to generate
a complete explanation of how the particular dim
attribute relates to the given condition. In particu-
lar, the templates end with an {explanation} span
that the models fill in by explaining the appropriate
relationship. Some examples are in Table 1.

2.2 CHARDat Dataset
Collection Process: We collect a dataset for our
task called CHARDat (where DAT is short for
data). We collect data across the three dim for 52
health conditions, listed in Appendix A. This is a
manually curated list of health conditions which
range from common conditions such as migraine
and acne to rare conditions such as Lyme dis-
ease and Paget–Schroetter. The conditions were
also selected by volume of online activity (e.g.
number of active subreddit users), treatable vs.
chronic conditions, and whether a condition can
be self-diagnosed or not. This allows us to assess
CHARD across a variety of conditions.

For each dim, we manually collect an exhaus-
tive list of dim-related attributes (e.g. risk factors)
for each condition. By attribute, we refer to a par-
ticular example of that dim (e.g. "obesity"). This
was accomplished by searching through reliable
and reputable medically-reviewed sources such as
MayoClinic, CDC, WebMD, and Healthline.

We collect the final text (with explanations) us-
ing Amazon Mechanical Turk (AMT). We ask ap-
proved AMT workers (with strong qualifications
and approval ratings on healthcare-related tasks) to
write factually accurate, informative, and relatively
concise passages given a particular condition and
dim attribute template (per HIT), while encourag-
ing them to consult the aforementioned health re-
sources. Three separate annotation studies (one per
dim) with strict quality control were conducted
to collect an annotation per example.1 Annota-
tions were regularly verified by authors, and a large
subset of CHARDat was manually examined for
medical accuracy. More details are in Appendix B.
Some examples from CHARDat are in Table 1.

Splits and Statistics: We split CHARDat
by dim into train, val, and test splits of ≈
70%/15%/15%, and combine the individual splits
per dim to form the final splits called CHAR-

1Explanations for CHARD are typically quite standard-
ized, and additional annotations were repetitive. Differences
are mainly in language, so we instead opt for paraphrasing
data augmentation techniques such as backtranslation (§3.2).
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Dataset Stats Train Val Test
(seen/unseen)

# conditions = 52 44 39 41 (37/4)
rf = 52 44 26 26 (22/4)
treat = 52 43 21 20 (16/4)
prev = 44 35 11 21 (17/4)

# sentences = 937 655 141 141 (70/71)
rf = 457 319 69 69 (32/37)
treat = 297 207 45 45 (20/25)
prev = 183 129 27 27 (18/9)

Avg length = 36.2 37.7 36.1 35 (35.9/34.2)

Table 2: CHARDat statistics. Differing #s by dim are
because there are more risk factors for most conditions, and
some do not have prevention strategies. Length is in words.

Dattr, CHARDatval, and CHARDattest, re-
spectively. The individual dim splits are called
dimtr, dimval, and dimtest, where dim is a
short-form of the particular dimension: rf,
treat, or prev. The individual dimension sub-
sets of CHARDat are called CHARDatDIM .

For each dim’s test split, we ensure that ap-
proximately half consist of examples from con-
ditions entirely unseen during training for that
dim, called dimtest−unseen. This is to assess
whether the model can generalize to unseen condi-
tions. The other half contains examples from con-
ditions seen during training called dimtest−seen,
but the specific condition and dim attribute com-
bination was unseen. The combined halves
(across dim) are called CHARDattest−unseen
and CHARDattest−seen. We do the same for the
val split to ensure consistency for model selection
purposes. CHARDat statistics are in Table 2.

3 Methodology
3.1 Models
BART and T5: We experiment using two pre-
trained seq2seq models: BART and T5 (both base
and large versions). These are suitable for our task
formulation (template infilling). T5 (Raffel et al.,
2020) has strong multitask pretraining. BART
(Lewis et al., 2020) is trained to reconstruct original
text from noised text (as a denoising autoencoder).
We use their HuggingFace codebases.

Retrieval Baseline (RETR): We use a retrieval-
based approach as a baseline. We manually query
Google using {condition + dim + dim attribute},
e.g. {asthma + risk factor + smoking}, and extract
either the featured snippet at the top of the results
page, or the text below the first link if there is no
featured snippet. If the featured snippet is a list
or table, we manually concatenate the items into a
single piece of text. An example is in Figure 1.

The extracted text approximates an explanation,

Figure 1: An example of the Google search results for the
query {asthma + risk factor + smoking} highlighting: a) the
featured snippet, b) the text below the first link.

which we then concatenate to the first part of the
associated template to form the final text, e.g. A
person with asthma has a/an smoking risk factor
because/since/as {retrieved explanation}. RETR

leverages Google’s strong search and summariza-
tion capabilities, serving as a useful baseline. Fur-
ther, Google Search is an evolving baseline that
continually challenges our CHARD models.2

3.2 Data Augmentation (DA)
Since CHARDat is relatively small, which is
mainly a function of our task and domain, i.e. there
are a limited number of non-obscure medical con-
ditions and associated dim attributes, we hypothe-
size that data augmentation (DA) techniques (Feng
et al., 2021a, 2020) may be useful.

As noted by Feng et al. (2021a), text genera-
tion and specialized domains (such as healthcare)
both present several challenges for DA. In our case,
many explanations contain clinical or health jar-
gon which makes techniques that leverage lexical
databases such as WordNet, e.g. synonym replace-
ment (Feng et al., 2020), challenging or impossible.

We decide to use backtranslation (BT) (Sennrich
et al., 2016) to augment examples in CHARDattr,
a popular and easy DA technique which translates a
sentence into another language and back to the orig-
inal language.3 This usually results in a slightly
altered version (paraphrase) of the original text.
BT is effective here as healthcare-related terms are
preserved relatively well, and the resulting para-
phrased explanation remains relatively intact.

We use UDA (Xie et al., 2020) for BT, which
translates sentences from English to French, then
back to English. UDA is a DA method that uses
unsupervised data through consistency training on
(x,DA(x)) pairs. An advantage of UDA’s BT is
that we can control for the degree of variation using

2We will release our current baseline data.
3This is sometimes referred to as round-trip translation.
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Tmp Text
0 A person with acne has an avoid irritants prevention because using oily

or irritating personal care products clog your pores causing acne.
0.5 if you use oily or irritant personal care products, you block pores and

cause acne.
0.7 using oily or irritating personal care products, you block acne pores.
0.9 use oily and irritating disinfectant products freezing your pores to

cause the Acne restructurs.
0 A person with MultipleSclerosis has a stress management prevention

because stress is more likely to exacerbate the symptoms of MS and
bring about a flare or relapse.

0.5 stress is more likely to exacerbate MS symptoms and lead to an out-
break or relapse

0.7 stress is more likely to exacerbate symptoms of MS and trigger a flare
or relapse.

0.9 severe mourning problems occurred at Vancouver Hospital (Prince
Edward Island), British Columbia. (...)

Table 3: Examples of original (tmp=0) and BT text. The
explanation portion (which is backtranslated) is italicized.

Backtranslation Temperature (tmp)
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80

0.4 0.5 0.6 0.7 0.8 0.9

ROUGE-1 ROUGE-2 ROUGE-L BERTScore

ROUGE and BERTScore vs. Backtranslation Temperature

Figure 2: Graph showing how avg. ROUGE and BERTScore
of BT vs. original text vary by BT tmp on CHARDattr .

a temperature (tmp) parameter, where higher val-
ues (e.g. 0.9) result in more varied paraphrases. We
only backtranslate the explanation portion of ex-
amples (concatenating them back to the preceding
part) as we wish to keep the preceding part intact.

From the examples in Table 3, we can see that
higher tmp typically results in more varied text,
albeit with issues with content preservation and
fluency. For the second example, the tmp=0.9 BT
is completely unrelated to the original text. This is
not entirely undesirable, as some noise may make
our trained models more robust. From Figure 2, we
see that the average ROUGE and BERTScore of
backtranslated CHARDattr text compared to the
original text decrease as tmp increases, as expected.

3.3 Evaluation Metrics
We use several standard text generation evaluation
metrics including reference-based token and se-
mantic comparison metrics used in works like Lin
et al. (2020) such as ROUGE (Lin and Hovy, 2003),
CIDEr (Vedantam et al., 2015), and SPICE (Ander-
son et al., 2016). SPICE translates text to semantic
scene graphs and calculates an F-score over graph
tuples. CIDEr captures sentence similarity, gram-

maticality, saliency, importance, and accuracy.4

We also use average word length (Len),
BERTScore (Zhang et al., 2019), and Perplex-
ity (PPL). BERTScore serves as a more seman-
tic similarity measure by assessing BERT (Devlin
et al., 2019) embeddings similarity between indi-
vidual tokens. We multiply by 100 when reporting
BERTScore. PPL approximately measures fluency,
where lower values represent higher fluency. We
use GPT-2 (Radford et al., 2019) for PPL. Higher
is better for all metrics other than PPL and Len.

4 Experimental Setup
4.1 Model Finetuning and Generation
For the standard (non-augmented) CHARD mod-
els, we train and evaluate four versions of each on
CHARDat, CHARDatRF , CHARDatTREAT ,
and CHARDatPREV , respectively. The first of
these is a combined model that learns to handle all
three dim at once depending on the dim given at
inference, while the latter three are models trained
on each individual dim. We predict that while the
latter three may perform better on their particular
dim, the first model is more effective overall as it
accomplishes our goal of having a single PLM that
can store knowledge and reason through several
dim. It is thus more adaptable and generalizable.

For training the CHARD models, we keep most
hyperparameters static, other than learning rate
(LR) which is tuned per individual model. For each
model, we select the epoch that corresponds to
highest ROUGE-2 on CHARDatval, and decode
using beam search. See Appendix C for more.

4.2 Data Augmentation Experiments
We try several backtranslation DA experiments.

2x DA with Different Tmp: Our first set of ex-
periments involves 2x DA (backtranslating each
CHARDattr explanation once, to 2x the original
training data) using different BT tmp which we call
BT-set: {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. We predict
that the optimal tmp lies in the 0.6-0.7 range, as the
text is modified to a reasonable degree.

Different DA Amounts (2x-10x): We also try
further DA amounts: 3x, 4x, 5x, 7x, and 10x
the original amount of training data. We explore
whether the amount of augmentation affects per-
formance, and hypothesize that performance will

4Matching metrics are sufficient as CHARD explanations
are standardized (space for explanations is low) since our
inputs present a particular condition and dim attribute combo.
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increase to a certain point and decline afterward.
This is because the advantages of DA may taper
off since the augmented data are variations of the
original, and models may overfit past a point.

DA Amount Strategies (best-tmp vs. diff-tmp):
We also investigate two strategies for selecting each
successive iteration of augmented examples. The
first is best-tmp, where all the augmented data
comes from BT of the tmp that performed best
for 2x DA (e.g. all from 0.7).5

The second is diff-tmp, where each successive
iteration is the tmp that performed next best (e.g.
2x is the best tmp, 3x is additionally the second-
best tmp, etc.). For the highest DA amounts (e.g.
10x), when the six tmp values in BT-set have been
exhausted, we go back to the best tmp and repeat.

Base vs. Large Models: For the base models
(BART-base and T5-base), we try all aforemen-
tioned tmp, DA amounts, and amount strategies.
For the large models, we try the top three temper-
atures (for 2x DA) and amount strategy that per-
formed best on the corresponding base model, and
only 3x, 5x, 7x, and 10x DA amounts.

Note that BT tmp and DA amounts are both
hyperparameters, so while we train models corre-
sponding to different values of them, the final cho-
sen models correspond to the ones that performed
best on CHARDatval. We then use these final
models to generate on CHARDattest. We report
the results of the overall best models in §5.

4.3 Human Evaluation
We conduct human evaluation using AMT.6 We ask
two approved annotators (with strong qualifications
and approval ratings on healthcare-related tasks)
to each evaluate all 141 CHARDattest examples.
Our evaluation uses pairwise comparison of the
outputs from two methods, split into three studies
per dim: RETR vs. best CHARD model, RETR

vs. human, and human vs. best CHARD model.
We ask annotators to choose which amongst the

two outputs (presented in a random order per exam-
ple) has better 1) medical accuracy (MedAcc), 2)
informativeness (Inform), and 3) readability (Read).
Medical accuracy refers to which explanation is
more clinically correct for the given dim attribute
and condition. Informativeness refers to which is
more complete and explains in sufficient detail (in-
cluding why?). Readability refers to which is more

5This is possible because UDA uses sampling, so even for
the same tmp, the backtranslations differ each time.

6See Appendix D for further human evaluation details.

Metric RETR BART-base BART-large T5-base T5-large
ROUGE-1 43.30 51.37 51.54 50.00 50.66
ROUGE-2 28.18 39.35 40.27 38.31 37.74
ROUGE-L 39.03 49.55 49.88 48.07 48.05
BLEU-1 32.20 31.20 28.40 32.60 34.30
BLEU-2 25.20 27.10 24.90 28.10 29.20
BLEU-3 21.50 24.70 22.90 25.50 26.40
BLEU-4 18.50 23.00 21.30 23.60 24.30

METEOR 24.40 22.10 22.10 21.80 22.10
CIDEr 2.36 8.56 6.90 8.71 9.03
SPICE 35.10 50.50 50.70 49.10 49.20

BERTScore 39.54 60.04 60.78 59.80 59.00
PPL 65.27 61.00 87.45 56.78 52.52
Len 52.80 20.16 18.60 21.35 22.23

Table 4: Avg. auto eval results of RETR and the best models
(for BART and T5) on CHARDattest. Bold corresponds to
best performance. For human text, PPL = 67.86, Len = 35.04.

Metric test split (full) test-seen test-unseen
ROUGE-1 50.66 49.42 51.93
ROUGE-2 37.74 37.04 38.35
ROUGE-L 48.05 46.98 49.12
BLEU-1 34.30 33.50 35.20
BLEU-2 29.20 28.60 29.90
BLEU-3 26.40 25.90 27.00
BLEU-4 24.30 23.80 24.80

METEOR 22.10 21.60 22.60
CIDEr 9.03 10.31 7.59
SPICE 49.20 48.60 49.80

BERTScore 59.00 57.79 60.18
PPL 52.52 51.06 53.96
Len 22.23 22.73 21.73

Table 5: Avg. auto eval results of T5-large onCHARDattest

and the test-seen and test-unseen halves.

readable, which includes fluency (natural-sounding
English) and conciseness/brevity (not overly long).

There are 3 choices for each evaluation aspect -
O1: first is better, O2: second is better, O3: both
are indistinguishable. To aggregate multiple anno-
tations per example, we find the overall fraction of
responses towards each outcome value.

5 Results and Analysis
We report automatic results on CHARDattest of
the best models (for BART-base, BART-large, T5-
base, T5-large) trained on CHARDat compared
to RETR in Table 4. The best models are tmp=0.9
2x DA for BART (base and large), 5x DA with diff-
tmp for T5-base, and tmp=0.6 2x DA for T5-large.

Our best overall CHARD model is T5-large
based on automatic results and qualitative analy-
sis. We break down results of T5-large on CHAR-
Dattest−seen and CHARDattest−unseen in Table
5. We show results of T5-large compared to T5-
largeDIM (models trained on the individual dim)
in Table 6. We conduct human evaluation with
T5-large, and the results are in Table 7.

Graphs displaying models’ ROUGE-2 on
CHARDatval for 2x DA across various BT tmp
and different DA amounts can be found in Figures
3 and 4, respectively. Tables 8 and 9 contain quali-
tative examples, with more in Appendix E.
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Risk Factors (RFtest) Treatment (TREATtest) Prevention (PREVtest)
Metric T5-large T5-largeRF T5-large T5-largeTREAT T5-large T5-largePREV

ROUGE-1 52.74 53.17 49.42 47.38 47.73 50.00
ROUGE-2 40.52 41.88 36.12 36.69 33.00 36.10
ROUGE-L 50.40 51.03 46.60 45.54 44.43 48.19
BLEU-1 34.80 34.70 31.10 25.70 30.80 29.80
BLEU-2 30.40 30.90 26.30 22.40 25.10 25.00
BLEU-3 27.90 28.60 23.90 20.70 21.90 22.00
BLEU-4 26.10 26.90 22.10 19.30 19.30 19.30

METEOR 23.00 24.20 20.70 19.20 20.50 20.80
CIDEr 13.50 10.57 5.06 5.98 5.88 5.83
SPICE 49.90 51.50 46.60 45.30 46.50 46.60

BERTScore 60.40 61.03 58.07 56.60 56.90 59.09
PPL 40.90 58.92 52.13 86.15 84.06 110.66
Len 22.30 20.28 22.09 19.82 22.27 20.52

Table 6: Breakdown of the avg. auto eval results of T5-large compared to T5-largeDIM models (trained on the three individual
dim) on the respective dim subsets of CHARDattest. Bold corresponds to best performance per dim.
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Figure 3: Graph showing how avg. ROUGE-2 on CHAR-
Datval varies by backtranslation temperature for 2x DA.

Methods Aspect O1 O2 O3

RETR vs. Human
MedAcc 0.45 0.53 0.02
Inform 0.45 0.53 0.02
Read 0.22 0.69 0.09

Human vs. T5
MedAcc 0.72 0.24 0.04
Inform 0.72 0.25 0.03
Read 0.41 0.49 0.10

RETR vs. T5
MedAcc 0.73 0.25 0.02
Inform 0.73 0.26 0.01
Read 0.35 0.62 0.03

Table 7: Avg. human eval results on CHARDattest. O1:
first method wins, O2: second method wins, O3: indistinguish-
able. Bold corresponds to higher fractional outcome. T5 refers
to T5-large. See §4.3 and Appendix D for further details.

5.1 Automatic Evaluation Results

From Table 4, we see that all CHARD models
perform better than RETR across most metrics.
RETR’s average outputs are much longer than those
of our models and humans. Among our models, T5-
large and BART-large perform best, demonstrating
that larger models are more adept. T5-large per-
forms best overall (combined with the qual analysis
in §5.3), with the longest average outputs among
our models. Some of our models achieve better
average fluency (PPL) compared to humans, but
the outputs are generally noticeably shorter.

From Table 5, we see that T5-large surprisingly
performs better on the test-unseen half. It appears
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Figure 4: Graph showing how avg. ROUGE-2 on CHAR-
Datval varies by DA amount. 1x essentially refers to no DA.

Method Text
Input (1) A person with Hyperhidrosis has a medication treatment because {explanation}
Human A person with Hyperhidrosis has a medication treatment because anticholinergics

medicines such as glycopyrrolate, oxybutynin, benztropine, propantheline etc are
helping to prevent the stimulation of sweat glands and, thus, decreasing sweating.

RETR A person with Hyperhidrosis has a medication treatment because the most common
medications used to manage excessive sweating are anticholinergics, including but
not limited to: Glycopyrrolate (Robinul). Oxybutynin (Ditropan). Benztropine.
Propantheline bromide.

T5-L A person with Hyperhidrosis has a medication treatment because medications such
as ibuprofen, phenytoin, and phenobarbital can help reduce the amount of sweating
in the body.

T5-B A person with Hyperhidrosis has a medication treatment because it helps to reduce
the amount of blood in the body and reduces the risk of a blood clot.

Input (2) A person with Alzheimers has an engage in activity prevention because {explanation}
Human A person with Alzheimers has an engage in activity prevention because engaging in

activity will increase nerve connections in the brain or release hormones that increase
nerve cell creation and this helps preserve nerve cells in the brain and mental function

T5-L A person with Alzheimers has an engage in activity prevention because activities such
as walking, jogging, swimming, and playing games can help prevent Alzheimer’s

BART-B A person with Alzheimers has an engage in activity prevention because a person with
Alzheimer’s disease is more likely to develop dementia

Input (3) A person with Prostatitis has an infection risk factor because {explanation}
Human A person with Prostatitis has an infection risk factor because the condition is caused

by common strains of bacteria which spread from other parts of the urinary or
reproductive systems to infect and inflame the prostate resulting in prostatitis.

T5-L A person with Prostatitis has an infection risk factor because infections of the prostate,
urethra, and genital tract can lead to prostatitis.

Table 8: Qual examples for CHARDattest−seen: human,
RETR, T5-large (L), T5-base (B), BART-base (B).

that the model can generalize decently to unseen
conditions when trained on CHARDat. This may
partially be due to similar explanations for partic-
ular dim attributes across conditions, e.g. why
sleep helps treat some conditions may be similar.

From Table 6, we see that for most dim (namely
RF and PREV), the model trained on that specific
dim performs better on that dim. However, our
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Method Text
Input (4) A person with Costochondritis has a fix improper posture prevention because {expla-

nation}
Human A person with Costochondritis has an fix improper posture prevention because bad

posture puts stress on joints and tissues, causing joint stiffness, weakened muscles,
and inflammation that is so common in Costochondritis.

RETR A person with Costochondritis has a fix improper posture prevention because what
can I do to relieve costochondritis? Lifestyle and home remedies. Nonprescription
pain relievers. Acetaminophen (Tylenol, others) ibuprofen (Advil, Motrin IB, others)
or naproxen sodium (Aleve, others) (...)

T5-L A person with Costochondritis has a fix improper posture prevention because poor
posture can lead to pain and stiffness.

Input (5) A person with rheumatoid has a diet risk factor because {explanation}
Human A person with rheumatoid has a diet risk factor because unhealthy food choices can

increase inflammation from rheumatoid
RETR A person with rheumatoid has a diet risk factor because the results of this study

revealed that high intakes of carbohydrates (e.g., potatoes) might be associated with
increased RA risks.

T5-L A person with rheumatoid has a diet risk factor because people who eat a high-fat
diet are at a higher risk of developing the disease.

BART-L A person with rheumatoid has a diet risk factor because a diet rich in red meat, dairy
products, and dairy products can cause inflammation

Input (6) A person with depression has a life-changing event risk factor because {explanation}
Human A person with depression has a life-changing event risk factor because approximately

70% of first depression episodes and 40% of recurrent episodes of depression are
preceded by a severe life event

RETR A person with depression has a life-changing event risk factor because psychological
and Psychosocial Risk Factors for Recurrence · by SL Burcusa · 2007 · Cited by 1085
— These factors include age at onset of the first episode, lifetime number of

T5-L A person with depression has a life-changing event risk factor because a major life
event, such as the death of a loved one, can increase the risk of depression.

Table 9: Qual examples for CHARDattest−unseen: human,
RETR, T5-large (L), BART-large (L).

general T5-large model performs better on TREAT.
It may be that training on CHARDat has allowed
the model to learn from data of other dim, improv-
ing its overall knowledge and generation capabili-
ties (an advantage of a single combined model).

From Figure 3, we see that the BART models
generally increase in performance with higher BT
tmp (upward trend), whereas T5 fluctuates. This
may be due several reasons, e.g. differences in the
architecture and pretraining strategies of the mod-
els, allowing BART to leverage noisy data more
effectively. From Figure 4, we see that performance
generally increases for each model up to a certain
point (e.g. 2x or 3x DA), and then decreases after-
ward, aligning with our hypothesis from §4.2.

5.2 Human Evaluation Results
From Table 7, we see that both RETR and T5-large
are outperformed by humans, although RETR is
relatively close in informativeness and medical ac-
curacy, and T5-large slightly outperforms on read-
ability. RETR outperforms T5-large on medical
accuracy and informativeness, which is somewhat
expected as it uses Google Search. It is worse than
T5-large on readability, as our models generate
more fluent, concise, and readable text (see §5.3).

5.3 Qualitative Analysis
We examine the qualitative examples in Tables 8
and 9. Firstly, we see that RETR is able to generally
perform well by extracting relevant information
(ex.1 - a list of medications for Hyperhidrosis, ex.5
- that carbohydrates increase RA risk), which is
expected using Google Search. However, it some-

times extracts a lengthy amount of irrelevant infor-
mation. For ex.4, RETR extracts a difficult-to-read
list of different TREAT strategies, which is for the
wrong dim, and does not narrow down on an ex-
planation for the specific dim attribute in the input.
For ex.6, it extracts the info and beginning of a
passage from a scientific article, ending abruptly
and not explaining the given dim attribute.

Our models, specifically T5-large, are generally
able to output more concise, readable, and some-
times relevant explanations compared to RETR. For
ex.1, T5-large outputs a list of medications, albeit
not for Hyperhidrosis - showing weaknesses in
medical accuracy. Other than ibuprofen, the other
medications are not in CHARDattr, showing
that these were likely already known to T5-large
through pretraining. For ex.2, it generates a reason-
able list of activities to help prevent Alzheimer’s,
and for ex.3, it lists correct body parts where an
infection can occur to cause Prostatitis. It can gen-
eralize well to unseen conditions, as shown through
ex.4-6. It reasons that poor posture can lead to pain
and stiffness, high-fat diets can increase the chance
of rheumatoid, and that a major life event ("death
of a loved one") can cause depression. These gener-
alization capabilities are likely from a combination
of pretraining and CHARDattr.

Compared to humans, T5-large’s outputs are
lacking. Human explanations are typically longer
and more informative, explaining the exact reason
(why?) a specific dim attribute relates to the given
condition. For ex.2, it explains how activities can
help "preserve nerve cells in the brain and mental
function", whereas T5-large simply lists activities.
This similarly occurs for ex.3-5. Human explana-
tions are also typically more medically accurate,
e.g. for ex.1, the listed medications are correct.
However, we do see that some of T5-large’s outputs
(for ex.1,2,4) are more readable. Further, T5-large
sometimes presents more information, e.g. an ex-
act list of activities for ex.2, a specific type of diet
("high-fat") for ex.5 (human just says "unhealthy"),
and an example of a life-changing event for ex.6.

BART-large also performs decently. In ex.5, it
lists several specific and correct types of foods
("red meat, dairy products"). The base models
perform much worse. For ex.1, T5-base talks about
medication reducing "blood clots", unrelated to
Hyperhydrosis. For ex.2, BART-base writes an ex-
planation completely irrelevant to the input dim.
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6 Directions for Improvement
We see that our models are decent and generate
readable text, but can improve on medical accuracy
and informativeness. While they are not nearly
ready for real-world use, they show potential.

As stated, the purpose of CHARD is to assess
the capabilities of PLMs to act as implicit clinical
knowledge bases that can reason through several
dimensions. How can we improve our models, and
possibly our dataset and task formulation?

Dataset and task formulation: We introduce
CHARD and initially frame the task using a tem-
plate infilling approach which is more constrained.
More flexible formulations may better leverage the
knowledge and generation capabilities of PLMs.

Our current approach involves generating expla-
nations about a single condition and dim attribute
at a time. We can possibly improve CHARDat
by annotating for more complicated input queries.
This is because a PLM may be more effective at an-
swering more complicated queries, e.g. comparing
and contrasting conditions and dim and multi-hop
reasoning. It is likely easier to make complicated
inferences and connections over the abstract PLM
embedding space than over retrieved text passages.

Further, we can expand CHARDat to include
more dimensions and topics in the health domain.
These improvements may allow for the training of
a single system that is able to make complicated
clinical inferences across various topics and dim.

Model improvements: We can explore models
such as GPT-3 (Brown et al., 2020) and PALM
(Chowdhery et al., 2022) for CHARD that are
larger with stronger pretraining. We can also inves-
tigate enhancing PLMs with information retrieval,
e.g. using a retrieval approach to obtain relevant
scientific literature as evidence, combined with a
text summarization system to digest the content.
Our model can then conduct its clinical reasoning
on this digested content. Users can potentially take
advantage of such a system to automatically ver-
ify the medical accuracy of generated explanations,
and then improve the generation model itself using
this feedback loop (i.e. a self-improving system).

7 Related Work
Constrained Text Generation: There have been
several works on constrained text generation. For
creative text generation, Gangal et al. (2022) intro-
duce narrative reordering (NAREOR) to edit the
temporality of narratives. Keh et al. (2022) and

Keh et al. (2023) explore the generation of person-
ifications and tongue twisters, respectively. Don-
ahue et al. (2020) introduce and investigate the task
of infilling. Feng et al. (2019) propose Semantic
Text Exchange to adjust topic-level text seman-
tics using infilling. Rajagopal et al. (2021) investi-
gate cross-domain reasoning using a prompt-tuning
setup. Our work distinctly investigates template in-
filling for clinical reasoning along dimensions.

Commonsense Reasoning for Models: One
large commonsense KG is COMET, which trains
on KG edges to learn connections between words
and phrases. COSMIC (Ghosal et al., 2020) uses
COMET to inject commonsense into models. Com-
monGen (Lin et al., 2020) assesses the common-
sense reasoning of text generation models. Several
works investigate CommonGen, including SAP-
PHIRE (Feng et al., 2021b) and VisCTG (Feng
et al., 2022), the latter of which uses visual ground-
ing. Unlike these works, CHARD distinctly inves-
tigates reasoning for the clinical/health domain.

Reasoning for Clinical/Health Domain: Most
existing work here involves retrieval or extraction.
MIMICause (Khetan et al., 2022) extracts causal
medical information from electronic health records
to help understand narratives in clinical texts. Ahne
et al. (2022) extract a causal graph and reason about
diabetes distress for better understanding the opin-
ions, feelings, and observations of the diabetes on-
line community from a causality perspective.

For generation, Moramarco et al. (2021) inves-
tigate the use of LMs to simplify medical text.
Abaho et al. (2022) probe factual knowledge from
LMs to elicit answers related to treatment out-
comes. CHARD has a different goal: rather than
simply probe for factual knowledge, we assess how
LMs can act as and reason through an implicit
knowledge base. Meng et al. (2022) investigate
probing biomedical knowledge by introducing a
benchmark, MedLAMA, that focuses on 19 rela-
tions. CHARD instead focuses on clinical knowl-
edge reasoning along different dimensions.

8 Conclusion and Future Work
In conclusion, we proposed and investigated
the task of CHARD: Clinical Health-Aware
Reasoning across Dimensions, to explore the capa-
bility of text generation models to act as implicit
clinical knowledge bases and generate explanations
across several health dimensions. We presented a
dataset, CHARDat, and conducted experiments
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with BART and T5. Extensive evaluation and qual-
itative analysis demonstrated that our models are
decent, especially for generating concise and read-
able text, but can be improved on medical accuracy
and informativeness, and that CHARD is chal-
lenging with much potential for further exploration.
We highly encourage the research community to
further investigate and improve upon CHARD.

Future directions are discussed in §6. Some addi-
tional ideas include trying more data augmentation
strategies and decoding strategies for text infilling.

Limitations

We discuss some limitations of our work and poten-
tial directions for improvement in §6. Specifically,
our template-infilling approach is less flexible, and
we can expand to more complicated input queries
to better leverage the power of PLMs in future
work. Further, CHARDat focuses on three main
clinical dimensions, which can be expanded upon
to include more dimensions and topics in the future.
Our seq2seq models are also relatively weaker com-
pared to GPT-3, PALM, and recent larger PLMs,
which may perform more effectively on CHARD.
We are also investigating a completely generative
approach, and combining generation with retrieval
in interesting ways may be more effective. Over-
all, our current CHARD models have room to
improve on medical accuracy and informativeness,
and are not nearly ready for real-world use.

However, we note again that we are the first to
propose CHARD, and our work is the first step
towards longer-term goals regarding clinical rea-
soning using PLMs. We are after more of the com-
monsense medical reasoning for now, rather than
very deep medical knowledge. In this paper, we
see how far one can get with a standard task formu-
lation, NLP methods, seq2seq models, and AMT
annotations. As they say, "walk before you run"!

Ethics

We collected CHARDat and conducted our hu-
man evaluation studies using AMT, in a manner
consistent with terms of use of any sources and
intellectual property and privacy rights of AMT
crowd workers.

Our collected dataset, CHARDat, consists of
general clinical information, where explanations
are impersonal. We also manually examined a large
subset of the data, and ensured there were no issues
with respect to privacy and other ethical concerns,

e.g. offensive words, profanities, racism, gender
bias, and other malicious language.

We acknowledge the weaknesses of CHARD
models and the potential risks if they are used for
real-world purposes. We will never use our models
or encourage their use for real-world purposes, at
least in their current state, and also emphasize this
in the paper. As we noted, we propose CHARD
and conduct our initial experiments purely for in-
vestigation purposes and to test our hypotheses.
Our paper presents an important contribution to
the ML, NLP, and healthcare communities, and we
encourage researchers to further improve upon it.

Our task, models, dataset, and accompanying
publication are intended only for research purposes
and to assess the capabilities of text generators.
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A Full List of Health Conditions

See Table 10 for a list of all health conditions in
CHARDat.

B CHARDat Annotation Details

Human annotation for CHARDat was done via
paid crowdworkers on AMT, who were from An-
glophone countries. They were selected through a
series of qualification tests on a small subset of the
samples, and have a history of high approval rates
(> 95%) and good performance on related tasks.
Based on initial annotations and performance on
the qualification tests, workers were only re-hired
if their performance was sufficient over time and
they reliably followed the given instructions. The
annotators were paid variable amounts (with peri-
odic bonuses over time) depending on their perfor-
mance and consistency, and the pay for all workers
exceeds the minimum wage for the USA.

The workers were asked to write passages (that
include explanations) that are as specific and factu-
ally accurate as possible, describing how a specific
dimension attribute relates to the given condition.
Each HIT (annotation page) contains a single con-
dition + dimension attribute combination, and they
write a single passage that fills in the given template
with an explanation. In the instructions, we de-
scribe each dimension in detail, and include several
examples of correct and incorrect passages (regard-
ing medical/factual accuracy, brevity/readability,
and informativeness). We also encourage them to
consult useful and trusted clinical resources such
as MayoClinic, CDC, WebMD, and Healthline, if
necessary, while writing the explanation.

Annotations were manually examined by the au-
thors as they came in, and annotators were asked
to improve their explanations if necessary. Annota-
tors with consistently poor annotations were asked
to stop annotating, and their completed annotations
were re-annotated by others. At the end of the data
collection process, the authors manually examined
a large subset of CHARDat, ensuring sufficiently
high quality of annotations in terms of medical ac-
curacy, informativeness, and readability.

C Further Model Finetuning and
Generation Details

T5-large consists of 770M params, T5-base 220M
params, BART-large 406M params, and BART-
base 139M params. For all models, we use beam

search with a beam size of 5, decoder early stop-
ping, a decoder length penalty of 0.6, and a de-
coder minimum length of 1. We set the maximum
encoder and decoder lengths depending on values
that can fit all examples in CHARDattr, which
ended up being 32 and 128 (for encoder and de-
coder, respectively) for the BART models, and 35
and 128 for the T5 models. Models are trained
using fp16, and Adam optimizer with epsilon=1e-
08. We use a training seed of 42 for all models,
and a random seed of 42 for all other scripts that
involved randomization. Decoding is done using
beam search with a beam width of 5.

For model training, we use a batch size of either
64 or 32 for T5-base and BART-base, and either 8
or 16 for BART and T5-large (depending on GPU
memory). For T5-base and BART-base, we use 400
warmup steps, 500 for BART-large, and 1200 for
T5-large. We train all models up to a reasonable
number of epochs (e.g. 20 to 30 for base models
and 10 to 15 for large models). The learning rates
for CHARD models were determined by trying a
range of values (e.g. from 1e-8 to 5e-1), and finding
ones which led to good convergence behavior. For
the best-performing models, learning rates are as
follows: BART-base = 5e-06, BART-large = 1e-05,
T5-base = 1e-03, T5-large = 1e-05.

Training was done using single GTX 1080 Ti,
TITAN RTX, RTX 2080 Ti, and GTX TITAN X
GPUs. Model training time varied depending on
the model type+size and amount of data augmenta-
tion, and varied between 5 minutes to 3 hours.

D Further Human Evaluation Details

Human evaluation was done via paid crowdwork-
ers on AMT, who were from Anglophone countries.
They were selected through qualification tests and
have a history of high approval rates (> 95%) and
good performance on related tasks. Each exam-
ple was evaluated by 2 annotators. The time given
for each AMT task instance or HIT was 1 hour
maximum for an approximately 1-minute task. Suf-
ficient time to read instructions, as calibrated by
authors, was also considered. Annotators were paid
20 cents per HIT. This rate ($12/hr) exceeds the
minimum wage for the USA ($7.25/hr) and consti-
tutes fair pay. Workers who performed well were
also paid periodic bonuses based on the timeliness
and quality of their annotations.

The human evaluation was split into 9 studies: 3
pairwise method comparisons (RETR vs. T5-large,
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Dysthymia cfs ibs Narcolepsy bulimia
Hypothyroidism Costochondritis psychosis CysticFibrosis POTS

MultipleSclerosis Gastroparesis gout adhd diabetes
CrohnsDisease lupus rheumatoid Sinusitis thyroidcancer
Hyperhidrosis gerd AnkylosingSpondylitis endometriosis schizophrenia

asthma bipolar depression pcos covid19
acne anxiety dementia ptsd dystonia

Epilepsy ErectileDysfunction Herpes insomnia Anemia
LymeDisease migraine ocd parkinsons Alzheimers

hpv Prostatitis backpain Sciatica Fibromyalgia
bpd PagetSchroetter

Table 10: A list of all 52 health conditions used in CHARDat.

RETR vs. human, and human vs. T5-large) by 3 di-
mensions (risk factors, treatment, and prevention).
Each HIT or task page presented a given condi-
tion, the associated dimension attribute, and two
explanations (from the two methods of the study)
in a random order. They are asked to select among
the three choices (first explanation is better, second
explanation is better, hard to prefer one over the
other) for the three evaluation aspects of medical
accuracy, informativeness, and readability. In the
instructions, we describe the clinical dimension and
each evaluation aspect in detail with positive and
negative examples of each, and encouraged them
to consult useful and trusted clinical resources such
as MayoClinic, CDC, WebMD, and Healthline, if
necessary, while evaluating the explanations.

E Further Qualitative Examples

See Tables 11 and 12 for more qualitative examples
on CHARDattest.
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Method Text
Input A person with Hyperhidrosis has a/an infection risk factor because/since/as {explanation}
Human A person with Hyperhidrosis has an infection risk factor because some kinds of infections like tuberculosis, HIV,

bone infection cause hyperhidrosis
RETR A person with Hyperhidrosis has a/an infection risk factor because/since/as this increases the risk of skin conditions

such as athlete’s foot and more severe conditions such as bacterial infections or pitted keratolysis. Study results
report a nearly 30% greater risk of skin infections in patients with hyperhidrosis compared with healthy controls.

T5-L A person with Hyperhidrosis has an infection risk factor because infections such as staph, typhoid, hepatitis and
polio can cause excessive sweating.

T5-B A person with Hyperhidrosis has an infection risk factor because a person who has a viral infection is more likely
to have a virus infection.

BART-L A person with Hyperhidrosis has an infection risk factor because infection can cause hyperhidrosis
BART-B A person with Hyperhidrosis has an infection risk factor because a person with hyperhidrosis is more likely to have

an infection.
Input A person with AnkylosingSpondylitis has a/an age risk factor because/since/as {explanation}
Human A person with AnkylosingSpondylitis has an age risk factor because about 80 percent of people first develop

ankylosing spondylitis symptoms under age 30
RETR A person with AnkylosingSpondylitis has a/an age risk factor because/since/as about 80 percent of people first

develop ankylosing spondylitis symptoms under age 30
T5-L A person with AnkylosingSpondylitis has an age risk factor because people over 50 years of age are at a higher risk

of developing the disease
T5-B A person with AnkylosingSpondylitis has an age risk factor because older adults are more likely to develop

ankylosis.
BART-L A person with AnkylosingSpondylitis has an age risk factor because the risk of developing ankylosis increases with

age
BART-B A person with AnkylosingSpondylitis has an age risk factor because older people are more likely to develop the

disease
Input A person with rheumatoid has a/an regular exercise treatment because/since/as {explanation}
Human A person with rheumatoid has a/an regular exercise treatment because it helps reduce the disability often associated

with rheumatoid arthritis and boosts strength and flexibility
RETR A person with rheumatoid has a/an regular exercise treatment because/since/as but exercise is one of the key

treatments to help reduce the disability often associated with rheumatoid arthritis. Regular exercise can boost
strength and flexibility in people who have rheumatoid arthritis. Stronger muscles can better support your joints,
while improved flexibility can aid joint function.

T5-L A person with rheumatoid has a regular exercise treatment because exercise can help reduce inflammation and
improve blood flow to the joints.

T5-B A person with rheumatoid has a regular exercise treatment because regular exercise can help reduce the symptoms
of the disease.

BART-L A person with rheumatoid has a regular exercise treatment because exercise can help reduce inflammation and pain
BART-B A person with rheumatoid has a regular exercise treatment because regular exercise can help reduce inflammation

and inflammation in the body.

Table 11: More qual examples for CHARDattest: human, RETR, T5-large (L), T5-base (B), BART-large (L), BART-base (B)
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Method Text
Input A person with thyroidcancer has a/an chemotherapy treatment because/since/as {explanation}
Human A person with thyroidcancer has a chemotherapy treatment because Chemotherapy (chemo) uses anti-cancer drugs

that are injected into a vein or are taken by mouth. Chemotherapy is systemic therapy, which means that the drug
enters the bloodstream and travels throughout the body to reach and destroy cancer cells and stops cancer growth.

RETR A person with thyroidcancer has a/an chemotherapy treatment because/since/as chemotherapy is seldom helpful for
most types of thyroid cancer, but fortunately it is not needed in most cases. It is often combined with external beam
radiation therapy for anaplastic thyroid cancer and is sometimes used for other advanced cancers that no longer
respond to other treatments.

T5-L A person with thyroidcancer has a chemotherapy treatment because chemotherapy destroys the cells that cause the
cancer.

T5-B A person with thyroidcancer has a chemotherapy treatment because chemotherapy reduces the risk of thyroid
cancer.

BART-L A person with thyroidcancer has a chemotherapy treatment because chemotherapy can slow down the growth of
thyroid cancer

BART-B A person with thyroidcancer has a chemotherapy treatment because chemotherapy can help reduce the risk of
thyroid cancer

Input A person with depression has a/an medical conditions risk factor because/since/as {explanation}
Human A person with depression has a medical conditions risk factor because the pain and stress that come with certain

conditions, including cancer, stroke, or heart disease, can take a toll on a person’s mental state resulting in
depression.

RETR A person with depression has a/an medical conditions risk factor because/since/as more commonly studied were
the connections between depression and cardiovascular disease, metabolic syndrome, biochemical alterations,
diabetes, dementia, cognitive impairment, Alzheimer’s disease, somatization and chronic pain, asthma, arthritis,
and hyperlipidemia.

T5-L A person with depression has a medical conditions risk factor because depression can be caused by a number of
medical conditions, such as diabetes, heart disease, high blood pressure, high cholesterol and high blood sugar.

T5-B A person with depression has a medical conditions risk factor because medical conditions such as diabetes, heart
disease, diabetes, AIDS, and other conditions that cause depression, such as cancer, are linked to depression.

BART-L A person with depression has a medical conditions risk factor because depression can be caused by a variety of
medical conditions.

BART-B A person with depression has a medical conditions risk factor because depression can be a cause of depression.
Input A person with depression has a/an grief risk factor because/since/as {explanation}
Human A person with depression has a grief risk factor because grief associated with loss of dear one greatly increases the

risk of psychiatric complications such as depression
RETR A person with depression has a/an grief risk factor because/since/as risk Factors · Genetics: A history of depression

in your family may make it more likely for you to get it. · Death or loss: Sadness and grief are ...
T5-L A person with depression has a grief risk factor because people who have experienced a loss of a loved one are

more likely to develop depression.
T5-B A person with depression has a grief risk factor because grief is the most common cause of depression.
BART-L A person with depression has a grief risk factor because grief can cause depression
BART-B A person with depression has a grief risk factor because grief is associated with depression.

Table 12: More qual examples for CHARDattest: human, RETR, T5-large (L), T5-base (B), BART-large (L), BART-base (B)
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Abstract

Recently, prompt tuning has achieved promis-
ing results in a variety of natural language pro-
cessing (NLP) tasks. The typical approach is to
insert text pieces (i.e., templates) into the input
and transform downstream tasks into the same
form as pre-training. In essence, a high-quality
template is the foundation of prompt tuning to
support the performance of the converted cloze-
style task. However, for sarcasm recognition,
it is time-consuming and requires increasingly
sophisticated domain knowledge to determine
the appropriate templates and label words due
to its highly figurative nature. In this work, we
propose SarcPrompt, to incorporate the prior
knowledge about contradictory intentions into
prompt tuning for sarcasm recognition. Sar-
cPrompt is inspired by that the speaker usually
says the opposite of what they actually mean
in the sarcastic text. Based on this idea, we
explicitly mimic the actual intention by prompt
construction and indicate whether the actual in-
tention is contradictory to the literal content by
verbalizer engineering. Experiments on three
public datasets with standard and low-resource
settings demonstrate the effectiveness of our
SarcPrompt for sarcasm recognition.

1 Introduction

Sarcasm is a sophisticated language phenomenon
in which one conveys implicit intention with the
opposite meaning of what is said or written literally
(Campbell and Katz, 2012; Joshi et al., 2015). Due
to its high ambivalence and figurative nature, sar-
casm recognition which targets to predict a text as
sarcastic or non-sarcastic, becomes a particularly
challenging classification task. With the usage of
sarcasm becoming prevalent on social media plat-
forms like microblogs and online forums, sarcasm
recognition has received growing research attention
to facilitate sentiment analysis applications. Recent
advances have shown that Pre-trained Language
Models (PLMs), such as RoBERTa (Liu et al.,

2019b), BERT (Devlin et al., 2019), can achieve
promising performance in many downstream Nat-
ural Language Processing (NLP) tasks (Xu et al.,
2019; Liu et al., 2019a; Zhou et al., 2021). The
success of PLMs has also attracted much attention
for sarcasm recognition. Researchers mainly add
extra classifiers on top of PLMs (Lou et al., 2021)
to further train the models under classification ob-
jectives, or re-train popular PLMs by incorporating
sentiment knowledge and external sarcastic cor-
pus (Babanejad et al., 2020).

Despite fine-tuning has achieved satisfying re-
sults, some recent studies (Schick and Schütze,
2021a,b) have found that one of its critical chal-
lenges is the significant gap in objective forms be-
tween pre-training and fine-tuning. This largely
limits the transfer and adaptation of knowledge
in PLMs to downstream tasks. Recently, a se-
ries of studies propose to use prompt tuning (Han
et al., 2021; Schick and Schütze, 2021a; Chen et al.,
2022b) to bridge the gap between pre-training and
fine-tuning. Specifically, the downstream task is
formulated as a (masked) language modeling prob-
lem similar to the pre-training. By fusing the orig-
inal input with the specially constructed prompt
template to predict [MASK] and then mapping pre-
dicted words to corresponding labels, we can stim-
ulate the task-related knowledge in PLMs to boost
the model’s performance.

Nevertheless, there are still several non-trivial
challenges for sarcasm recognition with prompt
tuning as follows. On the one hand, texts of a
specific task can differ from that of PLMs used in
prompt tuning (Chen et al., 2022b). For sarcasm
recognition, the sarcastic data is usually composed
of abundant deliberately ambiguous texts. In con-
trast, the corpora for PLMs in prompt tuning mainly
include objective and deterministic texts (Liu et al.,
2022). This greatly restricts PLMs from taking full
advantage of their knowledge. On the other hand,
though prompt tuning works well in text classifica-
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serious
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Figure 1: The example of prompt tuning to stimulate
the contradictory for sarcasm recognition.

tion tasks, prompt templates and verbalizer are not
easily transferable to sarcasm recognition. Both
handcrafting an appropriate prompt template and
choosing effective label words require domain ex-
pertise in sarcasm language. Furthermore, there
exists deliberate ambiguity in sarcasm and the spe-
cial written content cannot be ignored. In this sense,
we argue that the power of prompt tuning has not
been fully exploited for sarcasm recognition.

Shed light by the above challenges and insights,
in this paper, we propose SarcPrompt, a novel
prompt tuning method to leverage the contradiction
knowledge-enhanced prompts to tune the PLMs.
SarcPrompt is inspired by that sarcasm is known
as “the activity of saying or writing the opposite
of what you mean” (Tungthamthiti et al., 2014).
According to this definition, we can recognize sar-
casm by evaluating the inconsistency between the
actual intention and the literal content in sarcastic
texts. Based on intention contradiction, we care-
fully devise the prompt templates that can mimic
the speakers’ actual intention and then select label
words to judge whether the prompt is contradictory
to the literal content. Take the sentence in Figure 1
as an example, the original input is “I love being
ignored”. A good prompt template may denote
“Actually [MASK]”. “Actually” is an indicator to
trigger the authentic intention. If PLMs predict
the masked position with a good label word “kid-
ding”, the new completed sentence denotes “I love
being ignored. Actually kidding.”. The intention of
the prompt template completed with the predicted
word is contradictory to the original input’s content.
Then we can intuitively recognize a sarcastic text.

To be specific, SarcPrompt mainly contains two
steps: prompt construction and verbalizer engineer-
ing. Firstly, in the stage of prompt construction,
we devise two kinds of sarcasm-specific prompts
with different patterns to mimic the actual intention
straightforwardly. Secondly, during the verbalizer
engineering, we determine the label words that trig-

ger contradictory or suggest sarcasm based on the
statistical information of sarcastic corpora. Fur-
thermore, we investigate a contrastive loss to com-
prehend various sarcastic contrast patterns, jointly
with the cross-entropy loss for optimization. The
contrastive loss strives to pull the representation of
a sarcastic text towards that of other sarcastic texts
in the same mini-batch, while pushing it away from
representations of other non-sarcastic texts.

We conduct extensive experiments on three
benchmark datasets for sarcasm recognition. Em-
pirical experimental results demonstrate that our
SarcPrompt1 has achieved state-of-the-art perfor-
mance under both standard supervised settings and
low-resource settings.

2 Related Work

In this section, we briefly review two lines of
related work, including sarcasm recognition and
prompt tuning.

Sarcasm Recognition. Identifying sarcasm in texts
has evolved from traditional methods to deep neu-
ral methods. Traditional approaches mostly uti-
lize machine learning methods with manually en-
gineered features (Riloff et al., 2013; González-
Ibáñez et al., 2011; Patra et al., 2016; Hee et al.,
2018b; González-Ibánez et al., 2011; Joshi et al.,
2015). Deep neural models for sarcasm recognition
aim to capture the contrast of sarcasm through the
design of the model structure. They are mainly di-
vided into two categories: contrast between words
or phrases intra-sentence(Ghosh and Veale, 2016;
Wu et al., 2018; Ghosh and Veale, 2018; Tay et al.,
2018; Xiong et al., 2019; Lou et al., 2021) and
contrast based on the essence of sarcasm phe-
nomenon (Liu et al., 2022).

With the advent of pre-trained language mod-
els, a lot of sarcasm recognition methods based on
PLMs have been proposed. There are two lines
of utilizing PLMs: fine-tuning and pre-training.
Fine-tuning mode uses PLMs as an encoder to ob-
tain text representation (Lou et al., 2021; Liu et al.,
2022; Li et al., 2021). Pre-training mode usually
combines sentiment knowledge and external sarcas-
tic corpora to advance the performance of sarcasm
recognition (Babanejad et al., 2020). However, the
existing methods using PLMs have many draw-
backs which make PLMs ineffective in sarcasm
recognition. Pre-training a new language model for
a specific task is seriously affected by the external

1https://github.com/yiyi-ict/sarcprompt.
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knowledge used, and also increases the complex-
ity. And the acquisition and selection of external
knowledge suitable for different sarcasm patterns
are not easy.

Prompt Tuning. With the emergence of GPT-
3 (Brown et al., 2020), prompt tuning, as a new
paradigm for utilizing PLMs, has attracted more
and more attention of researchers. Prompt tun-
ing methods have achieved promising performance
in many NLP tasks (Schick and Schütze, 2021a;
Hu et al., 2022; Chen et al., 2022a; Zhong et al.,
2021; Chen et al., 2022b). Especially, a lot of
work has been proposed to solve text classification,
which can be divided into two categories: man-
ual prompts (Schick and Schütze, 2021a) and au-
tomatic prompts (Gao et al., 2021; Schick et al.,
2020). Hu et al. (2022) propose to incorporate ex-
ternal knowledge into verbalizer for text classifica-
tion. Chen et al. (2022b) propose to use input with
prompt as a query to retrieve relevant task-specific
data from large raw texts, which makes prompt tun-
ing better fit classification tasks. Shin et al. (2020)
propose gradient-guided search method to automat-
ically generate prompt templates. However, these
work cannot be adapted to sarcasm recognition di-
rectly. So far there is no prompt tuning method
specially designed for sarcasm recognition.

3 Background

Before introducing SarcPrompt, we first briefly re-
view the regular prompt tuning method for senti-
ment classification. Formally, let M be a masked
language model with vocabulary V and mask token
[MASK] ∈ V , and let Y be the set of labels for
sentiment classification.

Traditional classification methods including fine-
tuning PLMs train a model to take in an input x =
(x0, x1, . . . , xn), generate a probability distribution
over class Y and predict an output y as P (y|x). As
for prompt tuning, the input x is wrapped with a
prompt template. For example, assuming we need
to classify the input sentence x = “Best pizza ever!”
into label POSITIVE or NEGATIVE, the prompt
template is defined as “It is [MASK].”. This is a
general template widely accepted and used in text
classification tasks (Schick and Schütze, 2021a; Hu
et al., 2022), which is also applicable to sarcasm
recognition task. Then the wrapped input is

xp = x It is[MASK].
Then M generates a probability over vocabulary V
on position [MASK], which gives the probability

of each token v ∈ V being filled in [MASK] token
PM ([MASK] = v|xp). Furthermore, a verbalizer
is to map from label word set Vy ∈ V to the la-
bel space Y . Corresponding to the above prompt,
we may define Vpos = {“positive”} as the label
word of “positive” class, Vneg = {“negative”} de-
notes the label word of “negative” class. Then the
probability of label y is calculated as
P (y|xp) = g(PM ([MASK] = v|xp)|v ∈ Vy),

where g is a function that transforms the probability
of label words into the probability of the class. If
P (ypos) > P (yneg), we classify the instance into
POSITIVE.

4 SarcPrompt

In this section, we introduce our prompt tuning
model for sarcasm recognition (SarcPrompt) in de-
tail. The overview of SarcPrompt is shown in Fig-
ure 2. We first introduce prompt construction and
then verbalizer engineering. Finally we elucidate
the training objective.

4.1 Prompt Construction

Recall that the representative characteristic of sar-
castic texts is the contradiction between the lit-
eral content and the actual intention. The actual
intention usually hides behind the literal content
obscurely. The goal of prompt construction is to
mimic the actual intention. Specifically, we define
two kinds of prompts, including clash prompt and
question prompt.

Clash Prompt. The goal of clash prompt for sar-
casm recognition is to mimic the actual intention.
For sarcastic texts, a good prompt template should
reflect disapproval of the original text; for non-
sarcastic texts, the prompt should agree with the
meaning of the original text. Therefore, we utilize
fact-related phrases which can either express the
inconsistency with facts or consistency with facts.

We design five clash prompts Tc1(x)~Tc5(x).
Key phrases such as “in fact”, “actually” are used to
elicit whether the prompt clause has contradictory
intentions with original input x.
Tc1(x) = x Actually [MASK].

Tc2(x) = x In reality, it was [MASK].

Tc3(x) = x As a matter of fact, it was [MASK].

Tc4(x) = x To tell you the truth, it was [MASK].

Tc5(x) = x In fact, it was [MASK].

Question Prompt. Question prompt is equiva-
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Figure 2: SarcPrompt specified with clash prompt.

lent to directly telling the model that the task is
to identify sarcasm by asking a question. Inspired
by the summary of prompt design for different
tasks in (Liu et al., 2021), we propose three ques-
tion prompt templates Tq1(x)~Tq3(x) for sarcasm
recognition. Compared with clash prompt, ques-
tion prompt is a more direct way to judge whether
the input text x is sarcastic.
Tq1(x) = x Are you kidding? [MASK].

Tq2(x) = x Are you sarcastic? [MASK].

Tq3(x) = x Are you ironic? [MASK].

4.2 Verbalizer Engineering

By fusing the original input with the prompt tem-
plate, we can obtain a new input xp. Then PLMs
can output a probability distribution over the vo-
cabulary set V . The goal of verbalizer engineering
is to determine label words that should be filled in
the masked position, and then how to map label
words to the corresponding labels. Verbalizer en-
gineering is crucial because label words directly
determine the corresponding relationship with sar-
casm or not. Specifically, verbalizer engineering
consists of two steps: label word searching and
verbalizer mapping.

4.2.1 Label Word Searching
The goal of label word searching is to find words
that are appropriate in the masked position. The key
idea is to find words that suggest the contradictory
intention between the original input and the prompt
template. For question prompt, “Yes” or “No” is
enough to answer the questions. There is no need
to search for label words.

For clash prompt, the label word searching
mainly includes three steps: (1) to determine seed
words based on the statistical information of sar-

Table 1: Top 5 frequently appearing hashtags in a sar-
castic tweet dataset.

Hashtag Frequency

#not 42.12%
#sarcasm 37.62%

#irony 21.14%
#joke 0.84%

#kidding 0.37%

castic corpora; (2) to retrieve candidate words by
knowledge based on the seed words, and (3) to
denoise and obtain the final label words based on
rules. In the next, we will introduce the process of
label word searching for the clash prompt.

Seed Words. The regular prompt tuning method
usually uses the class name as the only label word
for each class directly. For the sarcastic class, the
label word can be "sarcasm", however, for the non-
sarcastic class, the label word is not trivial to find.
The intuitive idea of designing verbalizer is to re-
flect the contradiction of the literal content and the
actual intention in one sarcastic text. We observe
that people tend to add sarcasm-related hashtags
to suggest the content they post expresses sarcastic
meaning especially on the Twitter platform, which
is shown below.

I love waking up with migraines #not
I just love when you test my patience!! #sarcasm

We count the frequency of the hashtags used in
a sarcastic dataset consisting of tweets2. And the
top five frequently appearing hashtags in sarcastic
texts are shown in Table 1. Expressions in real
scenes provide us with prior knowledge for deter-
mining label words of sarcasm recognition, which
is exactly what we want in SarcPrompt. We use
“not”, “irony”, “sarcasm”, “kidding”, “joke”, which
appear frequently in the sarcasm-related hashtags
as seed words for sarcastic class. On the contrary,
their antonyms serve as seeds for the non-sarcastic
class. These words are well-suit to indicate that the
prompt template has contradictory intentions with
the original input’s content.

Candidate Words. Based on the seed words, we
can retrieve more candidate words from the knowl-
edge base. The process of predicting masked words
based on the context is not a single-choice proce-
dure. There is no standard correct answer. Maybe
abundant words fit this context. So it is necessary
to expand the candidate word set.

2https://github.com/Cyvhee/SemEval2018-Task3
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Table 2: Examples of the final label words for different prompts.

Prompt Type Label Label Words

Clash Prompt
Sarcastic not, sarcasm, irony, joke, kidding, no, ridiculous...

Non-sarcastic yes, do, so, serious, true, real, indeed...

Question Prompt
Sarcastic yes

Non-sarcastic no

Inspired by (Hu et al., 2022), we choose Related
Words3 as our external KB to widen the coverage
of candidate words. Related Words is a knowl-
edge graph G aggregated from multiple resources,
including ConceptNet (Speer et al., 2017), Word-
Net (Pedersen et al., 2004), et al..

Label Words. After the expansion of seed words,
we obtain comprehensive candidate words. How-
ever, the collected candidate words can be noisy
since the vocabulary of the KB is not tailored for
sarcasm. Thus we refine the candidate word set by
frequency and part of speech. There are several cri-
teria for denoising candidate words: (1) For words
out of PLMs’ vocabulary and sarcastic corpus, dis-
card them; (2) Only keep words whose parts of
speech are adjective, noun, verb, and adverb to
ensure consistency with prompt templates syntac-
tically and semantically. Finally, label words are
defined in Table 2.

4.2.2 Verbalizer Mapping.
The goal of verbalizer mapping is to map the pre-
dicted probability of label words to the final label y.
For question prompt, since there is only one label
word in each class, the probability of the label word
is the probability of the corresponding class.

For clash prompt, there is more than one label
word for each class. We use the average of label
words based on label word searching process as the
probability of each class, which is

P (ŷ) =

∑
v∈Vy PM ([MASK] = v|xp)

|Vy|
. (1)

4.3 Training Objective

The process of SarcPrompt is a prompt-oriented
fine-tuning approach (Gu et al., 2022). We need to
compute the loss based on the supervised label of
datasets and train the model. The training objec-
tive of SarcPrompt considers two aspects including
cross-entropy loss and contrastive loss.

Cross-entropy Loss. The first training objective is

3https://relatedwords.org

to minimize the cross-entropy loss of the sarcasm
label probability distribution. The cross-entropy
loss is to ensure the basic ability of sarcasm recog-
nition. The objective Lsarc is formulated as:

Lsarc(θ) =
∑

cross-entropy(y, P (ŷ)), (2)

where y is the groundtruth of the sarcasm label, and
P (ŷ) is the predicted score.

Contrastive Loss. Inspired by (Khosla et al.,
2020), we introduce contrastive learning objective
to our SarcPrompt model. Sarcasm takes many
patterns of expression such as sarcasm by clash,
situational sarcasm, and other sarcasm (Hee et al.,
2018a). Supervised contrastive learning is an au-
tomatic way of capturing the entailed similarity of
various sarcasm patterns.

Specifically, for (xi, yi) within a batch, we first
extract sentence representation si. Recall that in
Equation 1, we obtain the probability distribution
of the label by computing the score of predicted
words in the masked position. This can not only
be viewed as word representation in the masked
position, but also be viewed as a kind of sentence
representation. So we use this probability distribu-
tion as sentence representation si to calculate the
contrastive loss. Then the supervised contrastive
loss in a batch Lcon is defined as:

Pcon(i, c) =
exp (sim(si, sc)/τ)∑

b∈B,b ̸=i exp (sim(si, sb)/τ)
(3)

Lcon(θ) =
∑

i∈B
− log

1

Ci

∑

yi=yc,c ̸=i
Pcon(i, c).

(4)

Here Pcon(i, c) indicates the likelihood that sc is
most similar to si. τ is the temperature of softmax.
We use sim(si, sc) = si · sc for similarity calcula-
tion. Supervised contrastive loss Lcon is calculated
for each input sentence representation si in a batch.
And Ci = |{c|yc = yi, c ̸= i}| is the number of
samples in the same category yi in a batch.

Considering the two objectives, we obtain the
final objective function L by adding them together:

L(θ) = λ1Lsarc(θ) + λ2Lcon(θ),
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Table 3: Statistics of datasets. Avg ℓ denotes the average
length of texts in the number of tokens.

Dataset Train Valid Test Avg ℓ

IAC-V15 1,595 80 320 68
IAC-V26 5,216 262 1,042 43
Tweets7 3,634 200 784 14

where θ is the parameter set of the model. λ1, λ2
are used to leverage the contributions.

5 Experimental Settings

5.1 Datasets

We carry out experiments on three benchmark
datasets: IAC-V1, IAC-V2, and Tweets.

• IAC-V1 (Lukin and Walker, 2017) and IAC-
V2 (Oraby et al., 2016) are collected from online
political debates forum4. IAC-V2 contains more
data than IAC-V1.

• Tweets dataset is proposed in SemEval 2018
Task 3 Subtask A (Hee et al., 2018a).

Table 3 reports the statistics. For all datasets, we
follow the train/valid/test split in (Liu et al., 2022).
All datasets are class-balanced.

5.2 Baselines

We adopt three types of baseline methods for
comparison, including deep models without pre-
training, pre-trained models with fine-tuning, and
pre-trained models with prompt tuning.

Deep Models without Pre-training. We choose
recent and widely compared deep models including
LSTM-based Bi-LSTM (Hochreiter and Schmidhu-
ber, 1997), CNN-LSTM-DNN (Ghosh and Veale,
2016), attention-based MIARN (Tay et al., 2018),
graph neural network-based ADGCN (Lou et al.,
2021) and state-of-the-art DC-Net (Liu et al., 2022).
In this work, we study context-free sarcasm recog-
nition. The input is a sentence without contexts
like history posts and user profiles (Hazarika et al.,
2018). So the baselines we choose are restricted
with this area.

Pre-trained Models with Fine-tuning. For fine-
tuning pre-trained models, we utilize RoBERTabase
as the basic encoder to make a fair comparison.
Both ADGCN and DC-Net report versions of fine-
tuning pre-trained models in their paper. So we

4http://www.4forums.com/political/
5https://nlds.soe.ucsc.edu/sarcasm1
6https://nlds.soe.ucsc.edu/sarcasm2
7https://github.com/Cyvhee/SemEval2018-Task3

use the RoBERTa as backbone and implement
ADGCN-RoBERTa and DC-Net-RoBERTa based
on their released code.

Pre-trained Models with Prompt Tuning. Recall
that in Section 3, we introduce a regular prompt
tuning method for sentiment classification. We
utilize this approach as the prompt tuning baseline.
Specifically, the vebalizer of regular prompt tuning
method is the same as clash prompt.

5.3 Implementation Details

Under the standard supervised settings, we uti-
lize the whole datasets to fine-tune. For hyperpa-
rameters, we employ λ1 = 1, and λ2 among {0,
0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1} on the val-
idation set respectively. 0.005, 0.5 and 0.05 are
the best λ2 for IAC-V1, IAC-V2 and Tweets re-
spectively. As for the low-resource settings, we
randomly sample r% instances of each class from
the initial training and validation sets to form the
few-shot training and validation sets. r ranges from
{1, 5, 10, 20}. Our model is implemented based on
the open source PET8. PET (Schick and Schütze,
2021a) is a regular prompt tuning method that uses
the class name as the only label word for each class.
But we do not use any tricks in the original PET
paper since we want to study the effect of sarcasm-
specific templates and label words alone. For each
method, we train them with three seeds and report
the results of the best seed.

6 Experimental results

In this section, we report and analyze the experi-
mental results to demonstrate the effectiveness of
the proposed SarcPrompt method. Specifically, we
target the following research questions:

• RQ1: How does SarcPrompt perform under the
standard supervised settings?

• RQ2: How does SarcPrompt perform under the
low-resource settings?

• RQ3: Which prompt performs best and why?
• RQ4: How does the contrastive loss affect the

performance of SarcPrompt?
• RQ5: Can we better understand how SarcPrompt

performs via some case studies?

6.1 Results under Standard Settings

To answer RQ1, we compare SarcPrompt with
three kinds of strong baselines on three benchmark

8https://github.com/timoschick/pet
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Table 4: Precision, recall, macro F1, and accuracy under standard supervised settings. The “*” in the upper right
corner of the model name represents that the results are retrieved from (Liu et al., 2022). Best results are bold.

Standard Supervised Settings

Model
IAC-V1 IAC-V2 Tweets

Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc.

Deep models without pre-training

Bi-LSTM∗ 64.6 64.6 64.6 64.6 79.8 79.7 79.7 79.7 71.8 71.7 71.7 73.0
CNN-LSTM-DNN∗ 61.5 61.2 60.9 61.1 75.4 75.3 75.2 75.3 71.9 72.9 71.9 72.3

MIARN∗ 65.6 65.2 64.9 65.2 75.4 75.3 75.2 75.3 68.6 68.8 68.8 70.2
ADGCN∗ 64.3 64.3 64.3 64.3 81.0 80.9 80.9 80.9 72.6 73.2 72.8 73.6
DC-Net∗ 66.6 66.5 66.4 66.5 82.2 82.1 82.1 82.1 76.4 77.5 76.3 76.7

Pre-trained models with fine-tuning

RoBERTa 73.0 72.1 71.9 72.1 82.9 82.8 82.7 82.7 72.7 72.8 72.8 73.9
ADGCN-RoBERTa 72.5 72.4 72.4 72.4 82.2 82.1 82.1 82.1 71.3 71.9 71.4 72.2
DC-Net-RoBERTa 69.7 69.3 69.1 69.3 83.7 83.7 83.7 83.7 69.7 68.3 68.7 70.9

Pre-trained models with prompt tuning

Prompt Tuning-RoBERTa 72.5 72.1 72.0 72.1 83.4 83.3 83.3 83.3 71.8 72.7 71.8 72.3
SarcPrompt-Question-RoBERTa 73.7 73.0 72.9 73.0 84.3 84.2 84.2 84.2 74.1 75.2 73.7 74.0

SarcPrompt-Clash-RoBERTa 75.5 75.2 75.2 75.2 84.9 84.9 84.9 84.9 77.1 78.3 76.6 76.9

datasets under standard supervised settings. Table 4
shows the results. We observe that: (1) Fine-tuning
models perform better than traditional deep models
on IAC-V1 and IAC-V2, which demonstrates the
effectiveness of fine-tuning models. However, on
Tweets, the results for fine-tuning models are simi-
lar to or even worse than traditional deep models.
The reason may be that tweets are non-standard and
chatty compared with the corpora of pre-trained
models. (2) The performance of applying prompt
tuning method for text classification directly to
sarcasm recognition is similar to or even worse
than fine-tuning methods. This indicates that nei-
ther fine-tuning models nor regular prompt tuning
method can make enough use of the knowledge in
PLMs for sarcasm recognition.

When we look at the two types of SarcPrompt,
we find that: (1) SarcPrompt with clash prompt out-
perform all the baseline methods. SarcPrompt with
clash prompt improves a lot over regular prompt
tuning, which demonstrates that it is improper to
simply transplant the regular prompt tuning method
to sarcasm recognition. By stimulating sarcastic
characteristics, SarcPrompt is able to well exploit
the capability of pre-trained language models in
sarcasm recognition. (2) SarcPrompt with clash
prompt performs better than with question prompt,
showing clash prompt is more valid to reflect the
contradictory intentions of sarcastic texts. (3) The
improvements of SarcPrompt over baselines on
Tweets are higher than that on both IAC-V1 and
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Figure 3: Macro F1 scores under low-resource settings,
using 1%, 5%, 10%, and 20% instances for IAC-V2 and
Tweets datasets.

IAC-V2. The reason may be that the label words
selection process relies on the seed words extracted
from Tweets. It is necessary to explore other ways
to obtain the prior information in the future.

6.2 Results under Low-resource Settings

In real-word scenes, it is often time-consuming and
labor-intensive to collect annotated data to fine-
tune classification models especially for difficult
tasks like sarcasm recognition. To answer RQ2, we
choose RoBERTa and Prompt Tuning-RoBERTa as
baselines. For SarcPrompt, we use clash prompt
type, which achieves the best performance under
standard settings. IAC-V1 and IAC-V2 have the
same source, and experimental results show the
same trend under low-resource settings. So we
report the results of IAC-V2 and Tweets datasets.

The experimental results are shown in Figure 3.
We observe that: (1) Our SarcPrompt consistently
outperforms the baseline methods with less train-
ing data on both datasets, which demonstrates the
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Table 5: Cases of right and wrongly classified by SarcPrompt. The check mark indicates classification is correct,
while the cross mark indicates wrong.

ID Input Prompt with predicted word Result

1 Pretty excited about how you gave up on me. Actually not. !

2 I just love being ignored Actually kidding. !

3 thanks I thought it was tomorrow Actually indeed. %

4 make sure you don’t say Christmas!! The decorate for the holiday. Actually yes. %

effectiveness of SarcPrompt model under low re-
source settings. (2) As r increases from 1 to 20,
the improvement in our SacrPrompt over IAC-V2
decreases gradually. But for Tweets, with the in-
crease of data, the improvement of SarcPrompt is
also greater. The reason may be Tweets are short
and non-standard, and may lack information. Also,
SarcPrompt is based on the statistical information
of Tweets. Therefore as the training data of Tweets
increases, SarcPrompt can obtain more information
and achieve better results, which is consistent with
performance under standard settings.

6.3 Results of Different Prompts

To answer RQ3, we report the performance of dif-
ferent prompts of SarcPrompt model in Table 6.
We observe that: (1) Among question prompts, Tq1
performs best on IAC datasets and Tq2 on Tweets.
As for clash prompt, Tc2 performs best on IAC
datasets while Tc1 on Tweets. It is worth noting
that the best clash template on Tweets Tc1 is short
and colloquial, which is similar to the usage of
Tweets. On the contrary, Tc2 is a complete sen-
tence. It matches IAC datasets, which are longer
and more formal. (2) The effect of the template
fluctuates more on IAC-V1 and Tweets datasets be-
cause they are relatively small and do not contain
enough sarcastic patterns. An appropriate template
can be well adapted to most of the data while an
inappropriate template may perform poorly. This
also shows that it is more difficult to find suitable
templates for small datasets.

6.4 Ablation Study

To answer RQ4, we conduct an ablation study to
analyze the impact of contrastive loss, which is
shown in Table 7. Note that the removal of con-
trastive loss degrades the performance a lot, which
indicates that the similarity information between
the same class and the contrast information be-
tween different classes are significant in sarcastic
expressions’ learning.

Table 6: Performance (Macro F1) comparison of
different prompt templates of SarcPrompt model.
“AVG±VAR” means average results and the variances
of question and clash prompts.

Prompt Type IAC-V1 IAC-V2 Tweets

Question-Tq1 72.9 84.2 73.1
Question-Tq2 71.1 83.7 73.7
Question-Tq3 69.4 84.1 69.3

AVG±VAR 71.1±3.1 84.0±0.1 72.0±5.7

Clash-Tc1 73.4 83.3 76.6
Clash-Tc2 75.2 84.9 75.3
Clash-Tc3 70.8 83.5 73.8
Clash-Tc4 71.7 83.4 72.9
Clash-Tc5 73.0 84.6 73.7

AVG±VAR 72.8±2.8 83.9±0.6 74.5±2.2

Table 7: Performance (Macro F1) of SarcPrompt-Clash-
RoBERTa with and without contrastive loss.

Model IAC-V1 IAC-V2 Tweets

SarcPrompt-Clash-RoBERTa 75.2 84.9 76.6
w/o contrative loss 74.3 82.4 75.2

6.5 Case Study

To answer RQ5, we analyze sarcasm recognition
results on Tweets by several cases in Table 5. We
observe that: (1) Our SarcPrompt is good at deal-
ing with input samples that contain subjective sen-
timent expressions, such as “excited” and “love”
in the first and second samples. When combined
with the prompt clause, the contradictory intention
is obvious to recognize. (2) However, in the third
and fourth samples, the contradictory intentions are
not strong enough and hidden in deeper semantics.
They require external contexts to assist sarcasm
recognition. Specifically, the speaker remembers
the wrong time in the third sample. In the fourth
sample, the speaker complains the decoration is
not good-looking for Christmas. This indicates that
current templates and label words are not suitable
for recognizing sarcasm in factual texts.
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7 Conclusion

In this paper, we have proposed SarcPrompt, a
simple and effective prompt tuning method to rec-
ognize sarcasm in texts. Specifically, we design
several prompt templates to mimic the actual in-
tention behind the sarcastic literal content. We
define verbalizers based on the statistics of sarcas-
tic corpus. Then it is able to determine whether
the prompt is contradictory to the literal content by
the predicted label words. Empirical experimental
results show that SarcPrompt achieves state-of-the-
art performance under both standard supervised
settings and low-resource settings.

Limitations

Although our SarcPrompt has achieved the SOTA
performance on several benchmark datasets for sar-
casm recognition, there are still limitations, mainly
in the following aspects.

Firstly, we combine sarcastic characteristics into
prompt tuning in a hard-coded form by manually
designing prompt templates and label words based
on the statistical information in sarcastic corpora.
This hard-coded approach may not be able to adapt
to all sarcasm patterns and may miss some good
prompt templates or label words. Moreover, in the
current verbalizer mapping process, we decay the
weight of each label word according to the relation-
ship in the knowledge base. The mapping approach
is trivial and not learnable. Lastly, as we analyzed
in the case study, current SarcPrompt is not good
at dealing with situational sarcasm. In situational
sarcasm pattern, there is no contradictory intention
by looking at the literal content alone, which is
hard to recognize even for humans.

In future work, we will explore continuous
prompt templates and learnable mapping functions
for prompt tuning in sarcasm recognition. Combin-
ing external knowledge is also a direction to make
prompt tuning suitable for situational sarcasm in
our future work.
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Abstract

Open knowledge graph (KG) consists of (sub-
ject, relation, object) triples extracted from mil-
lions of raw text. The subject and object noun
phrases and the relation in open KG have se-
vere redundancy and ambiguity and need to
be canonicalized. Existing datasets for open
KG canonicalization only provide gold entity-
level canonicalization for noun phrases. In
this paper, we present COMBO, a Complete
Benchmark for Open KG canonicalization.
Compared with existing datasets, we addition-
ally provide gold canonicalization for relation
phrases, gold ontology-level canonicalization
for noun phrases, as well as source sentences
from which triples are extracted. We also pro-
pose metrics for evaluating each type of canon-
icalization. On the COMBO dataset, we em-
pirically compare previously proposed canon-
icalization methods as well as a few simple
baseline methods based on pretrained language
models. We find that properly encoding the
phrases in a triple using pretrained language
models results in better relation canonicaliza-
tion and ontology-level canonicalization of the
noun phrase. We release our dataset, baselines,
and evaluation scripts at https://github.com/

jeffchy/COMBO/tree/main.

1 Introduction

Large ontological knowledge graphs (KG) such as
Wikidata (Vrandečić and Krötzsch, 2014), DBpe-
dia (Bizer et al., 2009), Freebase (Bollacker et al.,
2008) use a complex ontology to formalize and
organize all the entities and relations. Figure 1(a)
shows an example ontological knowledge graph
(Wikidata): “Joe Biden (Q6279)” is categorized as
“Human (Q5)” in Wikidata and linked to “Scran-
ton (Q271395)” with relation “birth place (P19)”,
where prefix Q and P denote unique identities for

†This work was done during Chengyue Jiang’s internship
at DAMO Academy, Alibaba Group.

∗Yong Jiang and Kewei Tu are corresponding authors.
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Figure 1: Example of ontological KG (a) and Open KG
triples (b). The differently colored bounding boxes and
the tags on the open KG triples illustrate three types of
gold canonicalization. Yellow (e.g., Q5 Human) shows
the gold ontology-level NP cluster, the salvia blue (e.g.,
Q6279) indicates the gold entity-level NP cluster, and
the purple (e.g., P19) indicates gold RP cluster.

entity and relation respectively in Wikidata1. As
ontological KGs are well organized and canoni-
calized, one can efficiently query information and
extract knowledge from them to assist NLP models
in various tasks (Rao et al., 2013; Luo et al., 2015;
Cui et al., 2019; Murty et al., 2018; Wang et al.,
2021; Liu et al., 2023; Gao et al., 2022; Liu et al.,
2022). However, building and maintaining an ac-
curate ontological KG requires large human effort
(Färber et al., 2015).

In contrast, open knowledge graphs such as Re-

1Wikidata links https://www.wikidata.org/wiki/Q5,
https://www.wikidata.org/wiki/Property:P19
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Verb (Fader et al., 2011) and OLLIE (Mausam
et al., 2012) are built using (subject, relation, ob-
ject) triples automatically extracted from millions
of raw text by OpenIE systems (Angeli et al., 2015;
Fader et al., 2011; Mausam et al., 2012). They
are frequently used to assist in building ontologi-
cal KGs (Martinez-Rodriguez et al., 2018; Dessì
et al., 2021) and slot filling (Broscheit et al., 2017).
As OpenIE systems do not rely on pre-defined on-
tologies or human supervision, the extracted triples
contain noun phrases (NPs) and relation phrases
(RPs) that are not canonicalized. Take the open KG
triples shown in Figure 1(b) as an example. The NP

“Joseph Biden” and “Biden” both refer to the US
president Joe Biden, but the open KG regards them
as two different nodes because of their different sur-
face forms. On the other hand, “was born in” in the
first and second triple means “birth place of” and

“birth time of” respectively, but the open KG cannot
disambiguate them. These examples reveal the re-
dundancy and ambiguity of uncanonicalized open
KG (Vashishth et al., 2018), which makes query-
ing open KG inaccurate and inefficient. To this
end, open KG canonicalization aims to improve
the quality of open KGs to the level of ontological
KGs. It is therefore different from tasks such as
entity linking (Rao et al., 2013) and KB aligning
(Elsahar et al., 2018) that align entity mentions or
sentences to an existing ontological KG.

Existing open KG canonicalization datasets such
as ReVerb-base, ReVerb-ambiguous (Galárraga
et al., 2014), ReVerb45K (Vashishth et al., 2018)
and CanonicNELL (Dash et al., 2021) mainly fo-
cus on entity-level canonicalization of NPs, pro-
viding the gold Entity-level NP Canonicalization
(NPC-E). The blue tags and dashed boxes in Figure
1(b) show examples of NPC-E, e.g., “Biden” and

“Joseph Biden” should be canonicalized as the same
entity Q6279. However, these datasets do not pro-
vide the gold RP Canonicalization (RPC), and do
not consider the Ontology-level Canonicalization
of NP (NPC-O). RPC is to canonicalize RPs that
mean same relation together, for example, the sec-
ond and the third “was born in” in Figure 1(b)
should be canonicalized into the same cluster of
birth place (P19), different from the first one which
means “birth time (P569)”. Similarly, NPC-O is
to canonicalize NPs that have same type together,
for example, the “Scranton” should be canonical-
ized into class “CountySeat” and into class “Local
Government” together with “Atlantic County”, it

can be viewed as canonicalizing special ontological
relations such as “instance of ”, “subclass of ” rep-
resented by dotted arrows in Fig. 1(a). We formally
define these tasks in Sec. 3.

RPC and NPC-E are important as parts of a
canonicalization benchmark (1) Relations and on-
tology are necessary for an expressive KG (Klyne
and Carroll, 2004) (2) Most KG queries involve
relations and ontology (e.g., the query “actress
that was born in California”, involve the relational
constraint “X, birth place, California” and the on-
tological constraint “X, instance of, Actress”).

In this paper, we present COMBO, a complete
benchmark for open KG canonicalization consist-
ing of three subtasks: besides NPC-E which has
been adequately studied in previous work, we ad-
ditionally provide gold RPC and NPC-O along
with their evaluation metrics. Gold NPC-O is ob-
tained by querying the Wikidata using SPARQL,
and RPC is obtained by performing Stanford Ope-
nIE on sentences from Wiki20 (a distantly labeled
relation extraction dataset), and a per-instance hu-
man revision process to ensure the quality of ex-
tracted RPs. We introduce the data construction
process detailedly in Sec. 4.

Our new benchmark makes it possible for the
first time to quantitatively evaluate the full range
of open KG canonicalization. We conduct compre-
hensive experiments to compare existing canonical-
ization methods as well as a few simple baseline
methods proposed by us. Somewhat surprisingly,
none of the existing methods utilizes pretrained
contextualized word embedding, probably because
previous work only focuses on NPC-E and NPs are
often not very ambiguous, making contextualiza-
tion not so helpful. For example, the “Joe Biden”
and “Joseph Biden”. However, contexts are more
helpful in RPC and NPC-O. For RPC, relations
are more ambiguous and diverse in surface forms
(e.g., “was born in” in Figure 1) and contexts are
needed for disambiguation. For NPC-O, the RP
and the other NP in the triple will help understand
the type of an NP. Therefore, our proposed baseline
methods are based on pretrained language mod-
els (PLM) (Devlin et al., 2019; Liu et al., 2019b;
Sun et al., 2019) which produce contextualized
embedding and have been shown to contain a cer-
tain amount of factual knowledge (Petroni et al.,
2019; Lauscher et al., 2020). We found that, after
properly encoding triples and contexts, our base-
line methods outperform well on all three subtasks
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compared with previous state-of-the-art methods,
especially on RPC and NPC-O. We also propose a
triple-based pretraining method and find that it fur-
ther boosts the performance on all subtasks. There-
fore, our work provides strong baselines for future
research on open KG canonicalization.

In summary, our contributions are threefold.
First, we propose a complete definition of the open
KG canonicalization problem along with the met-
rics. Second, we construct the complete benchmark
for open KG canonicalization consisting of entity-
level and ontology-level NP canonicalization and
RP canonicalization. Third, we propose a stronger
baseline based on autoencoding PLMs and conduct
a comprehensive empirical comparison of canoni-
calization methods on our benchmark.

2 Open KG Canonicalization Datasets

We introduce existing open KG canonicalization
datasets and COMBO. The statistics of datasets
are shown in Table 1.
ReVerb-Base (Galárraga et al., 2014) Constructed
using the ReVerb open KB. As half of the NPs in
ReVerb triples are linked to an entity in the onto-
logical database FreeBase (Bollacker et al., 2008),
the authors sample 150 FreeBase entities that have
at least two surface forms, collect all triples con-
taining these 150 entities, and use the entity labels
as the gold NP clusters.
ReVerb-Ambiguous (Galárraga et al., 2014)
ReVerb-Ambiguous is constructed similarly as
ReVerb-Base, it has 37K triples, but with only 445
gold NP clusters (entities). One problem with the
ReVerb-Base and ReVerb-Ambiguous datasets is
they contain too few NP clusters and too many NP
aliases, which is inconsistent with real open KGs.
ReVerb45K(Vashishth et al., 2018) ReVerb45K
increases the entity number to 7.5K and has 45K
triples in total. ReVerb45K, Reverb-Base, and
ReVerb-Ambiguous extract a source sentence for
each triple from ClueWeb09 Callan et al. (2009).
However, some of the source sentences are simply
the concatenation of triples.
CanonicNELL (Dash et al., 2021) Constructed
using the open KB NELL (Mitchell and Fredkin,
2014) and the entity linking information for NPs
(Pujara et al., 2013). They remove triples contain-
ing NPs without aliases. CanonicNELL does not
provide source sentences.
COMBO (Ours) As shown in the Table 1, the
main differences of our dataset between others are

that we additional provide gold RP canonicaliza-
tion and ontology-level NP canonicalization. Con-
structed based on the large Ontological KG Wiki-
data2, the OpenIE system, a relation extraction
dataset Wiki20m and human revisions, as detailed
in next section. Our dataset contains 18K triples
with their source sentences and we provide gold
NPC-E, RPC and NPC-O annotations. We com-
pare COMBO with existing datasets in Table 1.
Although our dataset is middle-sized, it has the
longest average triple length and the largest num-
ber of unique NPs, indicating the diversity of the
surface forms of NPs and RPs. Providing source
sentences of extracted OpenIE triples is natural but
important since additional contextual information
can be helpful in understanding and disambiguat-
ing NPs and RPs. We ensure all triples contain rich
context, and the average length of source sentences
is 21. We show some data samples in Appendix A,
and analyze our data in Sec. 4.

3 Task Definition and Evaluation Metrics

Task Definition The goal of open KG canon-
icalization is to assign NPs and RPs in triples
into clusters, such that NPs that refer to the
same entity (NPC-E) or have the same type
(NPC-O) are clustered together, and similarly,
RPs that refer to the same relation are clustered
together. Note that the task is unsupervised,
meaning that the canonicalizer does not have
access to gold annotations. We have N samples
containing triples and their corresponding source
sentences: T = {ci, ti = (si, ri, oi)| i = 1 . . . N},
where ci is the i-th sentence, ti is the i-th triple
containing subject NP si, RP ri, and object NP oi.
S = {(si, i)| i = 1 . . . N} is the indexed subject
NP set. The indexed RP setR and object NP set O
are defined similarly asR = {(ri, i)| i = 1 . . . N}
and O = {(oi, i)| i = 1 . . . N}. We have
|S| = |O| = |R| = N . The gold NPC-E, RPC,
and NPC-O annotations are defined as sets of clus-
ters. As subject NPs and object NPs are asymmetric
(Juffs and Harrington, 1995; McGinnis, 2002), we
follow Vashishth et al. (2018) and evaluate the
clusters of subject NPs and object NPs separately.
The gold NPC-E and NPC-O for subject NPs
are defined as NPC-E (Subj) = {C1 . . . CKE

s
},

NPC-O (Subj) = {C1 . . . CKO
s
}, where Ci denotes

the i-th cluster of NP. The NPC-E and NPC-O
2The official suggested replacement of Freebase after it

retired shorturl.at/kmnBR
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# NP # NPC-E # RP # RPC # NPC-O # Triples Avg triple len Context (%)
ReVerb-Base 290 150 3K ✗ ✗ 9K 5.26 78%
ReVerb-Ambiguous 717 446 11K ✗ ✗ 37K 5.27 78%
ReVerb45K 15.5K 7.5K 22K ✗ ✗ 45K 6.17 91%
CanonicNELL 8.7K 1.4K 139 ✗ ✗ 20K 6.38 ✗

COMBO (Ours) 16.5K 13.8K 3.2K 79 2946 18K 8.12 100%

Table 1: Statistics and comparison of open KG canonicalization datasets including ours. ✗ means not available in
the dataset (i.e., zero). “Avg triple len” is the average number of words in the triple. The last column shows the
ratios of triples containing additional context in their source sentences.

NPC-E RPC NPC-O

Gold non-overlapping non-overlapping overlapping

Predicted non-overlapping non-overlapping
non-overlapping /

overlapping

Metric Ma, Mi, Pair Mi, Pair
Ma, Mi, Pair /
Jg→p, Jp→g

Table 2: Evaluation of the three subtasks. Ma, Mi, Pair
are abbreviations of macro, micro and pairwise metrics.

of object NPs are defined similarly, the gold
RPC is defined as RPC as {C1 . . . CKr}. NPC-E
(Subj) is a non-overlapping cluster assignment and
satisfies two conditions: (1)

⋃KE
s

i=1 C
i = S; (2)

Ci ∩ Cj = ∅, i ̸= j. NPC-E (Obj) and RPC satisfy
similar conditions. NPC-O (Subj) and NPC-O
(Obj) are overlapping cluster assignments, i.e., we
allow an NP to belong to multiple clusters, so they
only need to satisfy the first condition. The task is
to predict the cluster assignments of NPs and RPs
given their source triples and sentences. Following
previous works, we assume the cluster number is
unknown beforehand and split our data into the
dev (20%) and test (80%) sets.

Task Evaluation Most clustering algorithms
such as K-means (Lloyd, 1982) and Hierarchical
Agglomerative Clustering (HAC) (Maimon and
Rokach, 2005) produce non-overlapping cluster
assignments, and several algorithms (e.g., HAC)
can also produce hierarchical and overlapping clus-
ter assignment. For the NPC-E subtask, we adopt
the classic macro, micro and pairwise metrics to
compare the gold and predicted NPC-E cluster as-
signments (please refer to App. C for details). For
RPC, the macro metrics that calculate the fractions
of pure clusters are too strict because gold RP clus-
ters are large and hence are unlikely to be pure.
Therefore we only use the micro and pairwise met-
rics to evaluate RPC.

For NPC-O, the gold cluster assignments are

overlapping. If the predicted clusters are non-
overlapping, we can apply the macro and pairwise
metrics and a modified micro metric (Appendix
D). If the predicted clusters are overlapping, say
P = {Cp1 . . . CpM}, we propose evaluation met-
rics Jg→p and Jp→g based on the Jaccard index
(Jaccard, 1908; Tanimoto, 1958). Jg→p (Eq.1) cal-
culates the average Jaccard index of a gold cluster
and its best matched predicted cluster. Jp→g is
similarly defined but with the roles of NPC-O and
P switched. Table 2 summarizes the evaluation
metrics of each subtask.

Jaccard(g, p) =
|g ∩ p|
|g ∪ p|

Jg→p =
1

|NPC-O|
∑

g∈NPC-O

max
p∈P

(
Jaccard(g, p)

) (1)

4 Construction of Our Dataset

We illustrate the construction process of COMBO
in Figure 2. We rely on the Wiki20 dataset (Han
et al., 2020) to obtain the source sentence and the
gold NPC-E. Wiki20 is a large multi-domain re-
lation extraction dataset constructed by aligning
the Wikipedia corpus with Wikidata using distant
supervision. As shown in the bottom of Figure 2,
each sample of Wiki20 contains a sentence with
the object and subject NP spans labeled and linked
to entities in Wikidata and the relation between
them is also labeled. To ensure data quality, we use
the recently revised version of Wiki20 (Gao et al.,
2021), which aligns the Wiki20 relation labels with
the supervisedly constructed Wiki80 dataset (Han
et al., 2019) and provides 56K human-annotated
data samples. The object and subject NP spans
and its entity linking information (e.g., Q6275) are
from Wikipedia and have high precision, so we
directly use it for task NPC-E.

Extracting Relational Phrases Wiki20 only pro-
vides the relation label of two NPs for each instance.
We further extract RP for Wiki20 instances to ob-
tain full open KG triples. We first discard samples
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with the relation label “NA” and then run the Stan-
ford OpenIE system on Wiki20 sentences to extract
triples. We choose Stanford OpenIE3 because com-
pared with older OpenIE systems such as ReVerb
and NELL that are used in constructing previous
datasets, Stanford OpenIE can leverage the linguis-
tic structure of a sentence and generalizes better to
out-of-domain and longer utterances (Angeli et al.,
2015). We empirically find that Stanford OpenIE
yields a better recall and can extract more triples per
sentence compared to ReVerb. We use the default
model configuration of Stanford OpenIE. After ob-
taining the OpenIE triples of each non-NA Wiki20
instance, we select the triples whose subject NP
and object NP are consistent with the NP spans pro-
vided by Wiki20. This triple selection step ensures
the NPs in the extracted triples have gold NPC-
E annotations, and remove wrong relation spans
caused by wrongly extracted head and tail entities.
We filter out 88% of the original triples through
this step. Although this step reduces noises caused
by OpenIE, the extracted relation spans could still
be wrong in two ways:

1. Invalid RP between correct NPs. For exam-
ple, for sentence “. . . the Althing, the ruling leg-
islative body of Iceland . . . ”, OpenIE wrongly
extracts (the Althing, body of, Iceland), while
the true triple should be (the Althing, ruling
legislative body of, Iceland).

2. Correct NPs and valid RP but RP does not
imply the relation given by Wiki20. For the
given relation mother of and sentence “. . . bart
and lisa got sent out of the house by marge
simpson . . . ”, the extracted triple (lisa, got sent
out of the house by, marge simpson) is valid but
cannot imply the mother of relation.

Therefore, we manually check all the extracted
triples for these two types of errors, correcting in-
valid relational phrase spans and removing triples
whose RP cannot imply the given relation. We also
standardize the form of RP (e.g., OpenIE some-
times includes “a” and “the” and sometimes does
not). The detailed guidelines for the check and re-
vision process are shown in the Appendix B. The
error analysis is shown in Table 3.

After all these steps, we obtain an open KG con-
sisting of 18K triples. Similar to NPC-E, we use
the relation labels given by the Wiki20 annotations

3https://stanfordnlp.github.io/CoreNLP/

Human  
Revision

Wiki20 [Joe Biden] was born in [Scranton, Pennsylvania]
P19 BirthPlace

 OpenIE

Q6275 Q271395

Triple  
Selection

Was born in Joe Biden Scranton, Pennsylvania

Was born in Joe Biden Scranton

P19 BirthPlaceQ6275 Q271395

Human 
(Q5) Q6501447 Q62049Ontology 

Retrieval

Triple 
Extraction

Manual revision of extracted RP for all triples

Constraint 1

Constraint 2

 Valid RP between entities

 RP implies the relation Remove

Revise

Figure 2: Steps of dataset construction.

Error Type Rate

Invalid RP 23.5%
RP doesn’t imply relation 5.5%

Table 3: OpenIE error analysis.

(e.g., P19) as the gold RPC. As shown in Figure 3,
the constructed open KG contains 79 relations in
various domains, such as relations between geopo-
litical entities (mouth of the watercourse (7.3%),
mountain range (3.8%), etc), relations between
people (spouse of (1.7%), child of (1.6%), etc),
and various relations between people and other
objects (citizenship (2.4%), work location (3.7%),
etc). The extracted RPs are diverse in surface forms.
The number of distinct RPs is 3.2K. We show RP
examples in Table 4. There exist some RPs that
represent multiple relations and one representative
example is “in”.

Extracting Ontology To obtain ontology-level
NP clusters for the NPC-O subtask, we query Wiki-

spouse of
was married twice to , was married to,

lover, consort of, second husband, widow of
’s wife, ’s second wife, arranged a wedding with

mountain range
peak, large nunatak, summits of, the only crossing of the

most prominent feature of, small glacier, summits in
valley in, only crossing of, northernmost subrange of, in

location
is headquartered in, moved to, is carved on

took place at, ironworks in, was again held at, in

Table 4: RP examples.
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Figure 3: Pie charts of 79 RP clusters.

data for the classes of each entity. For example,
to obtain the classes of “Joe Biden (Q6275)”, we
run the SPARQL (RDF query language) query “
Q6275 P31 ?”, where P31 represents the “instance
of” relation in Wikidata. This query obtains all the
classes of an NP. If an NP does not have a class, its
NPC-O annotation is the same as its NPC-E annota-
tion. If an NP has more than one class, we include
all of them in the NPC-O annotation (e.g., city and
big city for “New York”). We query Wikidata us-
ing a third-party client Wikidata Integrator4.As the
ontology information in Wikidata is crowdsourced
and contains errors, we apply pattern-based correc-
tions to the extracted ontological NP clusters, for
example, if an NP belongs to the cluster million
cities, it should also belong to the cluster city. The
resulting 2.9K ontological NP clusters form a 6-
level overlapping hierarchy which allows a node to
have more than one parent. We illustrate part of the
hierarchy in Figure 5 and show the statistics of the
top 12 ontological NP clusters in Figure 4.
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Figure 4: Size of top 12 ontological NP clusters.

4https://github.com/SuLab/WikidataIntegrator
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Figure 5: Part of the class hierarchy in our dataset.

5 Comprehensive Evaluation of Methods

Our benchmark makes it possible to conduct a com-
prehensive empirical comparison of different meth-
ods on the full range of open KG canonicalization.
Below we first give an overview of existing meth-
ods and propose a few new baseline methods. Then
we present our experimental settings and results.

5.1 Previous Methods

Non-neural Methods Galárraga et al. (2014) uti-
lizes token features such as TF-IDF scores and
Jaccard token similarity to canonicalize NPs. They
merge similar NPs based on a threshold (tuned on
the validation set) to form clusters. For RPs, they
use AMIE (Galárraga et al., 2013), an unsupervised
algorithm based on statistical rule mining, to ob-
tain relation clusters. Vashishth et al. (2018) use
additional side information obtained from various
sources (such as PPDB (Ganitkevitch et al., 2013),
WordNet (Miller, 1992)) to produce clusters.
SE-HAC Trivial baseline that performs HAC clus-
tering over phrase embeddings produced by aver-
aging static word embeddings such as GloVe (Pen-
nington et al., 2014) or random embeddings.
CESI Vashishth et al. (2018) encode phrases using
the same method as in SE-HAC; then apply the
HolE graph embedding algorithm (Nickel et al.,
2016) on triples and incorporate side information
to finetune the embedding, and finally run HAC
clustering on the learned embeddings.
CUVA Dash et al. (2021) adopt VAEGMM (Jiang
et al., 2017) to jointly learn and cluster the embed-
dings. They initialize VAEGMM by performing
HAC clustering on GloVe NP and RP embeddings,
and then simultaneously optimize the knowledge
embedding loss, side information loss, and VAE
loss for the final clustering.

Previous methods encode NPs and RPs using
either token frequency features or static word em-
bedding. Although CESI and CUVA learn graph
embedding on open KG triples, they assign the
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Data Encoding Clusters

Triple Pretraining

HAC

Figure 6: Pipeline of the proposed PLM-based method.

same representation to phrases with the same sur-
face form and therefore cannot deal with ambiguity.
No method utilizes original sentences to provide
additional contexts. HAC is a popular choice of
the clustering algorithm because it does not require
knowing the number of clusters, but instead re-
quires a distance threshold indicating when to stop
merging. Unlike the number of clusters, the thresh-
old can be tuned on a validation set and directly
applied to the test set.

5.2 PLM-Based Baseline Methods

We propose a set of new baseline methods based on
PLMs that produce contextualized embedding. We
use a pipeline similar to CESI as shown in Figure
6. We encode NPs and RPs using different PLMs,
PLM layers, and span representation methods and
apply HAC clustering over their representations.
We use the cosine similarity as the distance func-
tion and apply the complete linkage variant of HAC
clustering because we prefer compact clusters and
the single linkage variant suffers from the chaining
phenomenon. Before encoding, an optional triple-
level continuous pretraining step can be applied
for better canonicalization. Token similarity and
other side information are not used in our PLM-
based method, but we generate them for our data
using the code provided by Vashishth et al. (2018)
to facilitate running of other methods.

5.2.1 Encoding

PLMs We use autoencoding PLMs5 including
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019b), ERNIE2.0 (Sun et al., 2019) which inte-
grates entity information, and SpanBERT (Joshi
et al., 2020) which is pretrained with span masks.

Input Given a triple ti = (si, ri, oi) and its cor-
responding source sentence ci, we formulate the
input of PLM in the following four ways to obtain
the contextualized embedding of words in the NPs
and RP. Note that the fourth method sep indepen-

5Huggingface models https://huggingface.co/

dently encodes each phrase in the triple.

sentence: [CLS] . . . si . . . ri . . . oi . . . [SEP ]

triple: [CLS] si ri oi [SEP ]

triple-sep: [CLS] si [SEP ] ri [SEP ] oi [SEP ]

sep: [CLS] si/ri/oi [SEP ]

(2)

Phrase Representation After obtaining the con-
textualized embedding of words in an NP or RP
span, denoted as hi . . . hj , we follow Toshniwal
et al. (2020) and use three methods to produce a
single span embedding. Following Timkey and van
Schijndel (2021), we also standardize the embed-
dings to remove rogue dimensions (Appendix E).
Previous work (Vulić et al., 2020; Liu et al., 2019a)
shows that different layers of a PLM contain differ-
ent information, so we investigate contextualized
embedding from different layers .

mean: average_pooling(hi . . . hj)

max: max−pooling(hi . . . hj)

diff-sum: [hi − hj ;hi + hj ]

(3)

5.2.2 Triple-level Pretraining
Inspired by the HolE algorithm used in previous
works (Vashishth et al., 2018; Dash et al., 2021),
we may perform an optional triple-level continuous
pretraining step before encoding to mimic the link
prediction objectives in knowledge graph embed-
ding learning. For each sentence in our dataset,
we randomly mask a phrase in the triple and then
train the PLM to predict the whole masked span.
We perform pretraining for 10 epochs using the
AdamW optimizer (Loshchilov and Hutter, 2019)
with a linear scheduler and a start learning rate of
5e-5. We then use the continuously pretrained ver-
sion of PLM as the phrase encoder. We also use
the causal subword-level MLM strategy in BERT
(Devlin et al., 2019) for comparison.

5.3 Experimental Setup
For each subtask, we use grid search to tune the
HAC distance threshold on the dev set to obtain
non-overlapping clusters for all the methods. We
select the best threshold based on the average of the
metrics shown in Table 2. We obtain overlapping
clusters for NPC-O from the full HAC hierarchy.
As HAC is deterministic, we run experiments once
for methods without randomness and four times for
methods involving random initialization (CUVA,
Random+HAC). As Token Sim+SI and VAEGMM
based methods cannot provide overlapping cluster
assignments, we do not evaluate them by metrics
based on the Jaccard index. For our PLM-based
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NPC-E RPC NPC-O
Subj Obj Relation Subj Subj-Jaccard Obj Obj-Jaccard

Token Sim+SI (Galárraga et al., 2014) 82.90 79.35 33.94 33.14 - 40.59 -
Random+HAC 85.32 85.11 35.98 37.31 38.79 44.90 44.40
GloVe+HAC 78.31 86.57 35.57 38.00 39.04 47.35 45.45
GloVe+HolE+HAC (Vashishth et al., 2018) 80.13 87.33 17.93 39.63 39.87 48.25 47.18
GloVe+SI+HAC (Vashishth et al., 2018) 80.42 87.34 17.91 39.87 39.83 48.26 47.11
CESI (Vashishth et al., 2018) 80.11 86.82 18.37 39.93 39.89 48.25 47.19
VAEGMM+SI (Dash et al., 2021) 80.86 82.91 34.10 37.41 - 46.90 -
VAEGMM+HolE (Dash et al., 2021) 80.15 82.87 36.12 37.22 - 46.88 -
CUVA (Dash et al., 2021) 80.68 82.95 36.13 37.09 - 46.89 -
Bert-base 86.93 86.91 54.47 42.97 44.16 50.71 46.99
Roberta-base 82.85 85.00 41.08 39.21 41.24 46.07 44.14
SpanBert-base 84.38 86.32 44.04 41.61 43.16 47.29 45.35
ERNIE2.0-base 86.68 88.11 54.66 42.60 44.05 52.27 47.05
Bert-base-triple 86.01 88.92 58.45 43.71 45.19 51.78 47.49
Roberta-base-triple 85.37 87.22 50.81 42.29 44.33 50.31 46.81
SpanBert-base-triple 85.73 85.89 46.18 42.53 44.23 47.60 45.56
ERNIE2.0-base-triple 87.21 86.93 57.28 43.21 44.33 50.66 47.27
Bert-large 87.09 89.05 50.31 42.34 44.16 50.71 47.25
Roberta-large 83.50 85.81 40.51 39.88 42.35 48.35 45.58
SpanBert-large 86.32 86.67 45.84 40.96 42.90 47.92 45.68
ERNIE2.0-large 86.21 88.86 49.80 42.71 44.01 51.98 47.22

Table 5: Averaged metrics (of Table 2) on all the subtasks. For example, NPC-O, Subj is the average of Ma,Mi
and Pair metrics on the ontology-level canonicalization of subject NPs, and NPC-O, Obj-Jaccard is the average
of Jp→g and Jg→p for the overlapping clustering assignment of object NPs. Full results including the results of
large-triple models are shown in Appendix F

methods, we select the best input form and span
representation strategy based on the dev set per-
formance. We also compare different encoding
strategies in Appendix G, and layer-wise perfor-
mances in Appendix H.

5.4 Overall Results

We report averaged metrics for each subtask in Ta-
ble 5 because of limited space. The full results
are shown in Appendix F. The results show that
our PLM-based baseline methods outperform previ-
ous methods in most cases, especially on RPC and
NPC-O, indicating the importance of contextual in-
formation. Trivial baselines such as Token Sim+SI,
Random+HAC and GloVe+HAC already perform
well (around 80%) on NPC-E, because NPs refer-
ring to the same entity usually have similar surface
forms and do not have to rely on contexts for cor-
rect prediction. However, they perform badly on
RPC and NPC-O, because surface forms alone are
no longer adequate for these two subtasks because
of higher ambiguity. CESI has bad RPC perfor-
mance but is very competitive on NPC-E (Obj),
and better than SpanBERT and RoBERTa with-
out triple-level pretraining, but is still worse than
the other PLM-based methods. CUVA performs
generally badly, probably because it is sensitive to
VAEGMM initialization and relies heavily on side
information. As our dataset has the longest aver-

age triple length and consists of texts from various
domains, it could be more challenging for methods
that do not use contextualized embedding.

For PLM-based methods, BERT leads to the
best overall performance on NPC-E (Obj), RPC
and NPC-O (Subj); ERNIE2.0 performs best on
NPC-E (Subj) and NPC-O (Obj) and is compara-
ble to Bert on NPC-E (Obj) and RPC; RoBERTa
and SpanBERT fall behind, but are still better than
most other non-PLM methods on NPC-O and RPC.
Large PLMs are better than base PLMs on NPC-E,
comparable on NPC-O, but worse on RPC. We also
found the triple-level pretraining effective, having
a positive influence in most cases, especially on
RPC (e.g., +9.73 for RoBERTa). In contrast, using
the causal subword-level pretraining for Bert im-
proves the object NPC but harms the subject NPC
and RPC (-1.07 points). A detailed comparison
between triple-level and subword-level pretraining
is shown in Appendix I.

6 Conclusion

We present COMBO, a complete benchmark for
open KG canonicalization. COMBO consists of
three subtasks, entity-level and ontology-level NP
canonicalization, and RP canonicalization. We con-
struct the data and propose the evaluation metrics
for the RPC and NPC-O that are not been ade-
quately studied before. We also propose a stronger
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canonicalization method based on autoencoding
PLMs and conduct a comprehensive comparison of
different canonicalization methods on our dataset.

For future study, NPC-O and RPC still have a
lot of room for improvement and the efficiency of
canonicalization methods is also worth studying.
We also note that COMBO can be additionally
used as a probing benchmark for PLMs and as a
phrase-level relation classification dataset.
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Limitations

One limitation of our work is that, the size of our
dataset (18K) is relatively small compared to previ-
ous datasets (Table 1). Another limitation is that,
similar to previous work, we perform clustering
for three subtasks and evaluate the canonicalization
results independently, but canonicalization of the
head NP, tail NP and RP is in fact closely corre-
lated. For example, the NPC-O clusters of the head
NP and tail NP reveal the domain and range of the
relation given by RPC. We leave jointly canoni-
calization and evaluation as future work. Our pro-
posed baseline is straightforward. We encourage
future studies to investigate better canonicalization
methods based on pretrained language models.

Ethics Statement

Our dataset is constructed based on Wiki20 and
Wikidata. The two sources are both publicly avail-
able. Wiki20 is under the MIT Licence and the
Wikidata is under the Creative Commons CC0 Li-
cense. Both of them allow modification and distri-
bution. Regarding human revision during dataset
construction, the annotators were properly paid.
The annotating procedure lasted 12 days and the
daily workload was relatively light: around 2.5
hours per day. During human inspection, we did
not identify any unethical instances in our dataset.
Regarding baseline models, we use PLMs as our
text encoder and our task is inherently unsuper-
vised. As PLMs are learned on large corpora, our
method can potentially create biased clustering re-
sults. How to de-bias PLM embedding is worth
further investigation.
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A Dataset Examples

We show examples of our dataset in Figure 7.

B Guidelines for Revising Relational
Phrases

B.1 RP Annotating Procedure

1. We first split all triples by relations and form 79
json files for two major paid annotators, each
annotator is responsible for around 40 relations.

2. Annotators should check one relation file at a
time for annotating consistency, and start the
next one after the former one is finished.

3. For each relation, annotators are given: (a) The
original sentences of the relation with markers
indicating the head NP, tail NP and RP extracted
by OpenIE. (b) The name (e.g., composer), and
the Wikidata ID (e.g., P86) of the gold relation.

4. Annotators should first understand the rela-
tion by querying the Wikidata, take the re-
lation “composer (P86)” as an example, an-
notators should first query Wikidata through
the link https://www.wikidata.org/wiki/

Property:P86 to obtain the definition of the
relation and skim through example relational
phrases of RPs. The Figure 8 shows the Wiki-
data page containing the definition and exam-
ples of “composer”.

5. After fully comprehend the relation, annotators
can start to check and revise triples in each file,
the details and examples of RP revision and
justification of if RP implies the relation are
shown in the next two subsection (Appendix
B.2, Appendix B.3).

6. After two annotators finished their part, we ran-
domly sample 100 samples from each part and
ask the annotator responsible for the other part
to check. The annotators reached a consensus
for approving 97% of these samples.

B.2 Guideline for checking the validity of RPs
and revision

Definition of relational phrases Relational
phrases are textual representations of relations be-
tween named entities (Grycner et al., 2015), we
follow ReVerb (Fader et al., 2011) and require
the relational phrases be continuous span in the
sentence. We summarize most cases of relational
phrases occurring in our dataset, and the guideline
for annotating each case. The annotated RPs are
shown in pink.

• Case 1: Verb example: [A] married [B], in-
clude different tenses of verbs.

• Case 2: Verb+preposition example:
[A] located at [B].

• Case 3: Passive voice example: [A] is de-
signed by [B], [A] is headquartered in [B] the
linking verb is sometimes omitted: [A], de-
signed by [B].

• Case 4: When the tail entity is the apposi-
tive of the head entity example: [A] ’s son is
[B], [A] ’s son , [B], [A] ’s masterpiece , [B],
the content between the appositives is usually
informative and regarded as RPs.

• Case 5: Compound predicate A common case
is that the tail NP is a part of the compound
predicate of the head NP, e.g., [A] is the civil
branch of [B], [A] is an agency of [B], [A] is
a novel by [B]. When encountering these cases,
we do not include the linking verb and article
because they are not informative (e.g., “is the”).

• Case 6: Cases omit verb Some cases omit
verb, we only annotate the preposition. For ex-
ample, [yokosuka arts theatre], part of the bay
square complex by [kenzou tange], this sentence
omits the verb “built”.
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{'h': {'id': 'Q533336', 'instance': ['Q18812508'], 'name': ['node', '1'], 'pos': [16, 18]}, 'r': 
{'label': 'manufacturer', 'name': ['built', 'by'], 'pos': [19, 21]}, 't': {'id': 'Q66', 'instance': 
['Q891723', 'Q4830453', 'Q936518', 'Q6881511', 'Q2538889', 'Q2995256'], 'name': ['boeing'], 'pos': 
[21, 22]}, 'text': ['this', 'was', 'followed', 'in', 'december', 'by', 'the', 'first', 'u.s.', 
'module', ',', '`', 'unity', '`', 'also', 'called', 'node', '1', ',', 'built', 'by', 'boeing', 'in', 
'facilities', 'at', 'msfc', '.']}
{'h': {'id': 'Q18391244', 'instance': ['Q13406463', 'Q105543609'], 'name': ['motets'], 'pos': [18, 
19]}, 'r': {'label': 'composer', 'name': ['are', 'composed', 'by'], 'pos': [19, 21]}, 't': {'id': 
'Q81752', 'instance': ['Q5'], 'name': ['anton', 'bruckner'], 'pos': [21, 23]}, 'text': ['two', 
'asperges', 'me', ',', 'wab', '3', 'the', 'two', 'thou', 'wilt', 'sprinkle', 'me', ',', 'wab', '3', 
',', 'are', 'sacred', 'motets', 'composed', 'by', 'anton', 'bruckner', '.']}

{'h': {'id': 'Q3764815', 'instance': ['Q47461344'], 'name': ['pedda', 'bala', 'siksha'], 'pos': [0, 
3]}, 'r': {'label': 'language of work or name', 'name': ['is', 'encyclopedia', 'in'], 'pos': [3, 
7]}, 't': {'id': 'Q8097', 'instance': ['Q34770', 'Q1288568'], 'name': ['telugu'], 'pos': [8, 9]}, 
'text': ['pedda', 'bala', 'siksha', 'is', 'an', 'encyclopedia', 'in', 'the', 'telugu', ',', 
'suitable', 'for', 'children', 'and', 'adults', '.']}

Figure 7: Examples of our dataset, “h” means head or subject NP, “r” means relation, “t” means tail or object NP.
“instance” stands for the gold ontology-level clusters.

Figure 8: Wikidata query example.

We also provide several revision examples of
wrong OpenIE triples, part of them are shown in
the Table 6 below.

B.3 Guideline for justifying if RP implies the
given relation

As we stated in the fourth step of the overall an-
notating process in the Appendix B.1, we require
annotators to fully understand the meaning of the
given relation. For each triple, annotators should
ask themselves if the relational phrase could ex-
press the relation of the head and tail NP in the
given context sentence. Note that we don’t require
the relation could be solely implied by the RP, for
example, given the triple and its context: “[mount
elbert] in the [sawatch range] is the highest sum-
mit of the rocky mountains”, it is impossible to
infer the relation by the RP “in”, but RP is a rea-
sonable text representation of the relation mountain
range in this context. We found that the extracted
RPs can imply the relation in most cases, we show
some concrete bad cases to the annotators to help
them identify the bad RPs, part of the examples are
shown in the Table 7.

C Classic Metrics

Gold cluster assignment: G = {Cg1 . . . CgK}, pre-
dicted cluster assignment: P = {Cp1 . . . CpM},
where Cgi and Cpj are gold and predicted cluster
respectively.

Macro Metrics

Pmacro(G,P) =
|{p ∈ P|∃g ∈ G, p ⊆ g}|

|P|
Rmacro(G,P) = Pmicro(P,G)

(4)

Micro Metrics

Pmicro(G,P) =
∑

g∈G maxp∈P |g ∩ p|
N

Rmicro(G,P) = Pmicro(P,G)
(5)

Where N is the total number of different phrases
that appear in G (or P).

Pairwise Metrics

Ppair(G,P) =∑
p∈P |{(u, u′) ∈ p, ∃g ∈ G, ∀(u, u′) ∈ p}|∑

p∈P C
|p|
2

Rpair(G,P) =∑
p∈P |{(u, u′) ∈ p,∃g ∈ G,∀(u, u′) ∈ p}|∑

g∈G C
|g|
2

(6)

For more details about classic metrics, please refer
to the Sec. 7.2 of the CESI paper (Vashishth et al.,
2018).
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Bad OpenIE RP ... [the generalitat de catalunya], the governing body of [catalonia], approved ...
Revised ... [the generalitat de catalunya], the governing body of [catalonia], approved ...

Bad OpenIE RP ... the “[althing]” , the ruling legislative body of [iceland]
Revised ... the “[althing]” , the ruling legislative body of [iceland]

Bad OpenIE RP ... [t-d center] dominion centre, designed by [ludwig mies van der rohe] ...
Revised ... [t-d center] dominion centre, designed by [ludwig mies van der rohe] ...

Bad OpenIE RP [ace attorney investigations 2] ... and features character designs by
tatsuro iwamoto and music by [noriyuki iwadare]

Revised [ace attorney investigations 2] ... and features character designs by
tatsuro iwamoto and music by [noriyuki iwadare]

Bad OpenIE RP [A] is a farcical musical comedy with music by [walter alfred slaughter]
Revised [A] is a farcical musical comedy with music by [walter alfred slaughter]

Bad OpenIE RP [beta cygni a] is a bright star from the constellation [cygnus]
Revised [beta cygni a] is a bright star from the constellation [cygnus]

Bad OpenIE RP ... [daya district], taichung, taiwan in the [chinese taipei]
Revised ... [daya district], taichung, taiwan in the [chinese taipei]

Table 6: Examples of revising RPs in OpenIE triples.

P1001
applies to jurisdiction

...the process to amend the constitution cannot be initiated in times of war
or when the [belgian federal parliament] is unable to freely meet in [belgium]

P84
architect [u. b. city], the headquarters of the [united breweries group], is a high-end commercial zone.

P40
child he was a great-grandson of [berge sigval natanael bergeson], grand-naphew of [ole bergeson]

P25
mother bart and [lisa], sent out of the house by [marge simpson] ...

Table 7: Examples of bad RPs that cannot imply the given relations.

D Extension of Micro Metrics

Gold overlapping clusters: NPC-O =
{CO1 . . . COK3

}, predicted clusters P =
{Cp1 . . . CpM}.

Pmicro(NPC-O,P) =
∑

g∈NPC-O maxp∈P |g ∩ p|∑
g∈NPC-O |g|

Rmicro(NPC-O,P) = Pmicro(P,NPC-O)
(7)

We modify the denominator compared to the micro
metric in (Vashishth et al., 2018).

E Standardization

Following Timkey and van Schijndel (2021), we
perform standardization for phrase embeddings
to remove the rogue dimensions. Denote ER ∈
RN×D as the embedding matrix of all RP phrases,

where N is the number of triples, and D is the
dimension of contextual embedding. The standard-
ized RP embedding matrix E′R is:

µ =
1

N

N∑

i

ER[i]

σ =

√√√√ 1

N

N∑

i

(ER[i]− µ)2

E′R[i] =
ER[i]− µ

σ

(8)

We empirically find that the standardized phrase
embedding is better than the original one in most
cases.

F Full Result

We show the full results in Table 8 and Table 9.
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NPC-E (subject) NPC-E (object) RPC
Ma Mi Pair AVG Ma Mi Pair AVG Mi Pair AVG

Token Sim+SI 86.85 88.41 73.43 82.90 78.43 85.34 74.29 79.35 50.26 17.62 33.94
Random+HAC 87.97 89.90 78.10 85.32 81.24 88.11 85.97 85.11 48.47 23.49 35.98
GloVe+HAC 85.63 87.22 62.07 78.31 79.90 87.06 92.74 86.57 47.92 23.22 35.57
GloVe+HolE+HAC 88.74 89.59 62.06 80.13 80.85 88.20 92.95 87.33 27.05 8.80 17.93
GloVe+SI+HAC 88.72 89.82 62.72 80.42 80.85 88.21 92.95 87.34 27.02 8.79 17.91
CESI 88.72 89.58 62.02 80.11 82.93 88.37 89.17 86.82 27.31 9.43 18.37
VAEGMM+SI 85.63 87.51 69.44 80.86 78.55 85.93 84.26 82.91 47.86 20.34 34.10
VAEGMM+HolE 85.50 87.26 67.69 80.15 78.54 85.91 84.17 82.87 47.92 24.31 36.12
CUVA 85.58 87.45 69.00 80.68 78.56 85.95 84.33 82.95 47.94 24.32 36.13
Bert-base 90.84 92.11 77.84 86.93 86.84 90.53 83.36 86.91 55.85 53.09 54.47
Roberta-base 87.74 89.59 71.22 82.85 83.12 88.22 83.66 85.00 44.81 37.35 41.08
SpanBert-base 91.14 91.86 70.14 84.38 85.82 89.92 83.22 86.32 43.49 39.36 44.04
ERNIE2.0-base 91.19 92.50 76.35 86.68 83.15 88.89 92.29 88.11 53.94 55.38 54.66
Bert-base-triple 90.05 91.57 76.41 86.01 83.57 89.67 93.51 88.92 57.53 59.36 58.45
Roberta-base-triple 90.40 91.05 74.66 85.37 81.07 87.96 92.62 87.22 52.75 48.86 50.81
SpanBert-base-triple 91.95 91.87 73.36 85.73 85.26 89.19 83.23 85.89 48.09 44.26 46.18
ERNIE2.0-base-triple 91.14 92.34 78.16 87.21 85.71 90.12 84.96 86.93 56.58 57.98 57.28
Bert-large 90.47 91.93 78.87 87.09 83.81 89.78 93.56 89.05 53.81 46.81 50.31
Roberta-large 88.34 90.14 72.03 83.50 84.48 89.01 83.93 85.81 43.01 38.02 40.51
SpanBert-large 85.82 89.92 83.22 86.32 87.14 90.81 82.07 86.67 45.5 46.18. 45.84
ERNIE2.0-large 91.06 92.26 75.30 86.21 83.09 89.56 93.92 88.86 49.48 48.32 48.90
Bert-large-triple 90.02 92.35 93.64 92.00 87.47 90.99 84.49 87.65 56.27 60.04 58.16
Roberta-large-triple 87.93 89.35 72.93 83.40 84.24 88.57 83.56 85.46 47.37 41.41 44.39
SpanBert-large-triple 90.57 94.26 94.74 93.19 85.87 89.80 82.34 86.00 49.24 45.68 47.46
ERNIE2.0-large-triple 93.32 94.41 85.90 91.21 86.19 90.65 91.21 89.35 54.37 53.32 53.85

Table 8: Full results of NPC-E and RPC.

G Encoding Strategy Comparison

sentence
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Figure 9: Overall average performance of different en-
coding strategies.

We compare the performance of encoding strate-
gies averaged on all subtask metrics and PLM mod-
els in Figure 9, and the task-specific and model-
specific comparison of encoding strategies are
shown in Figure 10. sentence is the best input
form in general, probably because it is easier for
a PLM to encode a valid sentence and the source
sentence contains more context. sep is the worst
on the RPC because it separately encodes the RPs
and NPs. However, it is comparable to triple-sep
and triple on NPC-E because NPC-E requires less
context. mean is the best strategy for phrase rep-

resentation, which is consistent with the results
obtained by (Toshniwal et al., 2020)6, and diffsum
is a bad choice for phrase canonicalization.

H Layerwise PLM Performance

We show the layerwise performance for all PLMs
(base) on all subtasks in Figure 11, and find dif-
ferent layers perform differently on three subtasks.
We empirically find that lower layers [1,2,3] per-
form well for NPC-E, upper layers [10,11,12] per-
form best for RPC and NPC-O (subj), while middle
layers [3,4,5,6,7] perform relatively better on NPC-
O (obj). As context-specificity increases in upper
layers (Ethayarajh, 2019), these results make sense
as NPC-E requires less context while RPC and
NPC-O need more context.

I Triple Pretraining

We show the average performance difference after
triple-level or causal subword-level pretraining in
Figure 12 for different PLMs and subtasks.

6Toshniwal et al. (2020) shows that mean pooling is best
for named entity labeling, which is a semantic task for NPs.
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NPC-O (subject) NPC-O (object)
Ma Mi Pair Avg Jg→p Jp→g Avg Ma Mi Pair Avg Jg→p Jp→g Avg

Token Sim+SI 63.28 35.86 0.29 33.14 - - - 66.24 51.61 3.91 40.59 - - -
Random+HAC 69.04 42.20 0.69 37.31 62.54 15.05 38.79 74.72 54.25 5.72 44.90 66.78 22.02 44.40
GloVe+HAC 70.37 42.80 0.84 38.00 63.00 15.07 39.04 74.08 60.25 7.73 47.35 68.73 22.17 45.45
GloVe+HolE+HAC 71.41 46.06 1.43 39.63 63.95 15.78 39.87 76.68 60.38 7.68 48.25 71.06 23.30 47.18
GloVe+SI+HAC 71.68 46.32 1.62 39.87 63.88 15.78 39.83 76.63 60.43 7.72 48.26 70.96 23.26 47.11
CESI 71.66 46.51 1.62 39.93 63.98 15.90 39.89 76.57 60.45 7.74 48.25 71.14 23.24 47.19
VAEGMM+SI 69.32 42.08 0.83 37.41 - - - 72.52 60.10 8.07 46.90 - - -
VAEGMM+HolE 69.09 41.81 0.75 37.22 - - - 72.48 60.09 8.07 46.88 - - -
CUVA 68.76 41.76 0.76 37.09 - - - 72.48 60.12 8.08 46.89 - - -
Bert-base 78.77 47.20 2.93 42.97 73.27 15.04 44.16 68.10 63.71 20.32 50.71 76.41 17.56 46.99
Roberta-base 74.18 42.67 0.78 39.21 68.06 14.42 41.24 78.22 54.17 5.81 46.07 71.24 17.04 44.14
SpanBert-base 79.00 44.58 1.25 41.61 71.54 14.78 43.16 80.58 55.29 6.00 47.29 68.52 22.18 45.35
ERNIE2.0-base 78.64 46.85 2.31 42.60 72.93 15.17 44.05 68.15 66.89 21.76 52.27 71.81 22.29 47.05
Bert-base-triple 80.71 47.58 2.84 43.71 75.02 15.36 45.19 67.87 65.96 21.51 51.78 77.56 17.42 47.49
Roberta-base-triple 78.49 46.94 1.44 42.29 73.36 15.31 44.33 82.31 60.14 8.47 50.31 76.09 17.53 46.81
SpanBert-base-triple 80.49 45.47 1.63 42.53 73.47 14.98 44.23 80.17 56.15 6.49 47.60 68.84 22.29 45.56
ERNIE2.0-base-triple 79.10 47.61 2.91 43.21 73.51 15.15 44.33 69.07 66.02 16.90 50.66 72.22 22.33 47.27
Bert-large 77.93 46.33 2.76 42.34 73.09 15.22 44.16 71.92 63.47 16.75 50.71 76.92 17.58 47.25
Roberta-large 75.16 43.63 0.86 39.88 69.96 14.73 42.35 78.54 59.72 6.80 48.35 69.07 22.09 45.58
SpanBert-large 77.40 43.99 1.48 40.96 71.08 14.72 42.90 81.05 56.38 6.33 47.92 69.00 22.36 45.68
ERNIE2.0-large 76.86 48.16 3.11 42.71 72.90 15.11 44.01 71.49 64.90 19.56 51.98 72.06 22.39 47.22
Bert-large-triple 80.19 47.92 2.11 43.41 75.46 15.58 45.52 66.59 64.34 21.86 50.93 77.63 17.96 47.79
Roberta-large-triple 77.56 46.91 1.99 42.15 71.82 14.99 43.40 76.83 59.18 7.64 47.88 74.44 17.42 45.93
SpanBert-large-triple 82.09 44.88 0.62 42.53 70.47 14.71 42.59 81.97 56.08 5.81 47.95 73.79 16.85 45.32
ERNIE2.0-large-triple 79.81 48.04 3.04 43.63 75.28 15.52 45.40 71.23 64.80 20.93 52.32 76.67 17.71 47.19

Table 9: Full results of NPC-O.
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Figure 10: Comparison on different input forms and span representations for tasks and PLMs.
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Abstract
The vast majority of evaluation metrics for ma-
chine translation are supervised, i.e., (i) are
trained on human scores, (ii) assume the exis-
tence of reference translations, or (iii) leverage
parallel data. This hinders their applicability
to cases where such supervision signals are
not available. In this work, we develop fully
unsupervised evaluation metrics. To do so,
we leverage similarities and synergies between
evaluation metric induction, parallel corpus
mining, and MT systems. In particular, we
use an unsupervised evaluation metric to mine
pseudo-parallel data, which we use to remap
deficient underlying vector spaces (iteratively)
and to induce an unsupervised MT system,
which then provides pseudo-references as an
additional component in the metric. Finally, we
also induce unsupervised multilingual sentence
embeddings from pseudo-parallel data. We
show that our fully unsupervised metrics are
effective, i.e., they beat supervised competitors
on four out of five evaluation datasets. We make
our code publicly available.1

1 Introduction
Evaluation metrics are essential for judging
progress in natural language generation (NLG) tasks
such as machine translation (MT) and summariza-
tion, as they identify the state-of-the-art in a key
NLP technology. Despite their wide dissemination,
classical lexical overlap evaluation metrics like
BLEU (Papineni et al., 2002) and ROUGE (Lin,
2004) have difficulties judging the quality of mod-
ern NLG systems (Mathur et al., 2020a; Marie et al.,
2021), necessitating novel metrics that correlate bet-
ter with humans. Lately, this has been a very active
research area (Zhang et al., 2020; Zhao et al., 2019,
2022; Colombo et al., 2021; Yuan et al., 2021).2

Recently, more and more supervised metrics are
being proposed. E.g., BLEURT (Sellam et al.,

1github.com/potamides/unsupervised-metrics
2Of course, the search for high quality metrics dates back

at least to the invention of BLEU and its predecessors.

(g)
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m(𝑥, 𝑦)

+
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Katze
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Kuh

cow

· · ·

Er mag Hunde.
Toll!

I love cats.
It was great.
· · ·

(a)

(b)
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Figure 1: Relationship between metrics m, vector spaces,
parallel data, and MT systems: Metrics build on (poten-
tially deficient) multilingual vector spaces (a), and can
be used to mine (pseudo-)parallel sentences (b), which
in turn can be used to improve deficient vector spaces (c).
(Pseudo-)parallel data can also be used to train MT
systems (d), which can generate pseudo-references (e).
Conversely, metrics can also be optimization criteria
for MT systems, which in turn can generate additional
pseudo-parallel data through translation (f & g; not ex-
plored in this work).

2020) trains on human annotated datasets rang-
ing from 5k-150k pairs, the COMET (Rei et al.,
2020) models regress on 12k-370k data points and
UniTE (Wan et al., 2022), before fine-tuning on
the same data as COMET, pre-trains on 5m-10m
parallel sentences. Of course, training on larger
amounts of data leads to better metrics (measured
on in-domain data), but also increases the risk of
learning biases from the data (Poliak et al., 2018)—
and limits the applicability to domains and language
pairs where supervision is available. Here, we go
the opposite route and try to minimize the amount
of supervision as much as possible.

We classify existing metrics making use of dif-
ferent types of supervision as follows (cf. Ta-
ble 1). TYPE-1 metrics are trained on human
assessments such as Direct-Assessment (DA) or
Post-Editing (PE) scores, and compare system out-
puts to either human references (reference-based;
Sellam et al., 2020; Rei et al., 2020) or directly
to source texts (reference-free; Ranasinghe et al.,
2021). TYPE-2 metrics, by comparison, do not
use human assessments for training but still require
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Training References Parallel Data
TYPE-1 ✓ (✓) (✓)
TYPE-2 ✗ ✓ (✓)
TYPE-3 ✗ ✗ ✓

Unsupervised ✗ ✗ ✗

Table 1: Different types of supervision used by TYPE-
1/2/3 metrics compared to unsupervised metrics. Check-
marks surrounded by parentheses denote optional super-
vision signals.

human references, i.e., are untrained and reference-
based (Yuan et al., 2021; Zhao et al., 2019; Zhang
et al., 2020). Finally, TYPE-3 metrics are un-
trained (unlike TYPE-1) and reference-free (unlike
TYPE-2), i.e., do not use supervision as in TYPE-
1 or 2. However, to work well, they still rely on
parallel data (Zhao et al., 2020; Song et al., 2021),
which is considered a form of supervision, e.g., in
the MT community (Artetxe et al., 2018; Lample
et al., 2018).

In contrast, we aim for fully unsupervised eval-
uation metrics (for MT) that do not use any form
of supervision (cf. Table 1). In addition, subject to
the constraint that no supervision is allowed, our
metrics should be of maximally high quality, i.e.,
correlation with human assessments. We have two
use cases in mind: (a) Such sample efficiency3 is a
prerequisite for the wide applicability of the metrics.
This is especially important when we want to over-
come the current English-centricity (Anastasopou-
los and Neubig, 2020) of MT systems and evaluation
metrics and also cover low-resource languages like
Nepali or Sinhala (Fomicheva et al., 2021) and
low-resource pairs like Yoruba-German.4 (b) Our
fully unsupervised evaluation metrics should be
considered strong lower bounds for any future work
that uses (mild) forms of supervision for metric
induction, i.e., we want to push the lower bounds
for newly developed TYPE-k metrics.

To achieve our goals, we employ self-
learning (He et al., 2020; Wei et al., 2021) and
in particular, we leverage the following dualities to
make our metrics maximally effective, cf. Figure 1:

3We use the term sample efficiency in a generalized sense
to denote the amount of supervision required.

4Neither Yoruba (a language spoken in Nigeria) nor German
are classical low-resource languages. For German, this is clear
and Yoruba is even included in mBERT, i.e., belongs to the
languages with 100+ largest Wikipedias. Nonetheless, from
own experience, we find it inherently difficult to obtain high-
quality annotations for the language pair, as a result of few
competent parallel speakers as well as technical difficulties
(e.g., lack of adequate compute infrastructure in Nigeria).

(1) Evaluation metrics and NLG systems are closely
related; e.g., a metric can be an optimization crite-
rion for an NLG system (Böhm et al., 2019), and a
system can conversely generate pseudo references
(a.o.) from which to improve a metric. (2) Evalua-
tion metrics and parallel corpus mining (Artetxe and
Schwenk, 2019) are closely related; e.g., a metric
can be used to mine parallel data, which in turn can
be used to improve the metric (Zhao et al., 2020),
e.g., by remapping deficient embedding spaces.

Our contributions are: (i) We show that effective
unsupervised evaluation metrics can be obtained by
exploiting relationships with parallel corpus mining
approaches and MT system induction; (ii) to do so,
we explore ways to (a) make parallel corpus mining
efficient (e.g., overcome cubic runtime complexity)
and (b) induce unsupervised multilingual sentence
embeddings from pseudo-parallel data; (iii) we
show that pseudo-parallel data can rectify deficient
vector spaces such as mBERT; (iv) we show that
our metrics beat three state-of-the-art supervised
metrics on four of five datasets we evaluate on.

2 Background
We take inspiration from three recent super-
vised (reference-free; TYPE-3) metrics: XMover-
Score (Zhao et al., 2020), DistilScore (Reimers
and Gurevych, 2020), and SentSim (Song et al.,
2021). Below, we review key aspects of them, and
show where supervision plays a role.

2.1 XMoverScore
Central to XMoverScore is the use of Word
Mover’s Distance (WMD) as a similarity between
two sentences (Zhao et al., 2020). WMD and
further enhancements are discussed below.

WMD WMD is a distance function that com-
pares sentences at the token level (Kusner et al.,
2015), by leveraging word embeddings which in
XMoverScore’s case come from mBERT (Devlin
et al., 2019). From a source sentence 𝑥 and an MT
hypothesis 𝑦, WMD constructs a distance matrix
C ∈ R |𝑥 | , |𝑦 | , where C𝑖 𝑗 is the distance between two
word embeddings, C𝑖 𝑗 = ∥ E(𝑥𝑖) − E(𝑦 𝑗)∥; 𝑥𝑖 , 𝑦 𝑗

index respective words in 𝑥, 𝑦. WMD uses this
distance matrix to compute the similarity of the
two sentences. This can be defined as the linear
programming problem

WMD(𝑥, 𝑦) = min
F

|𝑥 |∑︁
𝑖=1

|𝑦 |∑︁
𝑗=1

F𝑖 𝑗C𝑖 𝑗 , (1)
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where F ∈ R |𝑥 | , |𝑦 | is an alignment matrix with F𝑖 𝑗

denoting how much of word 𝑥𝑖 travels to word 𝑦 𝑗 .
Additional constraints prevent it from becoming a
zero matrix.

Vector space remapping Zhao et al. (2020), akin
to similar earlier and subsequent work (Cao et al.,
2020; Schuster et al., 2019), argue that the monolin-
gual subspaces of mBERT are not well aligned. As
a remedy, they investigate linear projection methods
which post-hoc improve cross-lingual alignments.
We refer to this approach as vector space remapping.
XMoverScore explores two different remapping
approaches, CLP and UMD. They both leverage
parallel data on sentence-level from which they
extract word-level alignments using fast-align,
which are then used for remapping. We give more
details in the Appendix A.

Language Model XMoverScore linearly com-
bines WMD with the perplexity of a GPT-2 lan-
guage model (Radford et al., 2019). Allegedly this
penalizes ungrammatical translations. This updates
XMoverScores scoring function to

𝔪(𝑥, 𝑦) = 𝑤xlng WMD(𝑥, 𝑦) + 𝑤lm LM(𝑦). (2)

Here, 𝑤xlng, 𝑤lm are weights for the cross-lingual
WMD and LM components of XMoverScore.

2.2 DistilScore
Reimers and Gurevych (2020) show that the co-
sine between multilingual sentence embeddings
captures semantic similarity and can be used to as-
sess cross-lingual semantic textual similarity. Their
approach to inducing embedding models is based
on multilingual knowledge distillation. We refer
to this metric as DistilScore. Their approach re-
quires supervision at multiple levels. First, parallel
sentences are needed to induce multilingual models,
and second, NLI and STS corpora are required to
induce teacher embeddings in the source language.

2.3 SentSim
A key difference between XMoverScore and Dis-
tilScore is that one approach is based on word-
and the other on sentence embeddings. Song et al.
(2021) and Kaster et al. (2021) show that combining
approaches based on word-level and sentence-level
representations can substantially improve metrics.
The metric of Song et al. (2021), which is called
SentSim, combines supervised DistilScore with
one of two word embedding-based metrics. The

Score

mBART

mBERT

mBERT

Remap

GPT-2

Perplexity

𝑤pseudo 𝑤xlng

𝑤lm

Source Sentence Hypothesis

Word Mover’s
Distance

Word Mover’s
Distance

Figure 2: UScorewrd with pseudo references (left),
unsupervised remapping (middle) and a LM (right).

first one is quite similar to XMoverScore, as it is
also based on WMD. The other one is a multilingual
variant of BERTScore (Zhang et al., 2020).

3 Methods
In this section, we introduce our fully unsuper-
vised metric UScore. UScore builds upon the
existing metrics XMoverScore, DistilScore, and
SentSim, but eliminates all supervision signals and
instead leverages the dualities shown in Figure 1. In
particular, we mine pseudo-parallel data from unsu-
pervised metrics, which we use (iteratively) to (a)
rectify deficient vector spaces (for XMoverScore)
and to (b) train unsupervised MT systems which can
generate pseudo-references (as pseudo-references
are in the same language as the hypothesis, this
eliminates problems of cross-lingual deficiency).
Furthermore, we use pseudo-parallel data to (c)
induce an unsupervised sentence embedding model
analogous to DistilScore, which we can then (d)
integrate with the unsupervised word based model
analogous to SentSim. We now give details.

3.1 UScorewrd

XMoverScore uses sentence-parallel data to ex-
tract word pairs for vector space remapping. (i)
We replace this parallel data with pseudo-parallel
data.5 (ii) In addition, we use pseudo-references
to address the issue of deficient vector spaces. We
now give details on (i) and (ii) below.

Efficient WMD Pseudo-Parallel Data Mining
Metrics such as XMoverScore could in principle
be used for pseudo-parallel corpus mining since

5To extract the word pairs from the sentence-parallel data,
XMoverScore uses fast-align (Dyer et al., 2013), but since
this depends directly on how well sentences are aligned, we first
replace it with unsupervised awesome-align (Dou and Neubig,
2021) which only relies on pre-trained language models.
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they can compare arbitrary sentences. However,
when WMD-based metrics are scaled to corpus
mining, algorithmic efficiency problems arise: (a)
the computational complexity of WMD scales cu-
bically with sentence length (Kusner et al., 2015);
(b) to compare 𝑚 source to 𝑚 target sentences, 𝑚2

WMD invocations are necessary, which quickly
becomes intractable. Thus, we explore ways to
improve the performance of WMD to mine effi-
ciently. In particular, Kusner et al. (2015) define a
linear approximation of WMD called word centroid
distance (WCD) and a mining algorithm that first
sorts all target samples according to their WCD to
a given query and computes exact WMD for the
𝑘 nearest neighbors. We use this algorithm for
efficient WMD-based pseudo-parallel data mining.

In our work, we apply this approach iteratively
(cf. Figure 1): we start out with an initial WMD
metric (based on mBERT), obtain sentence-level
pseudo-parallel data with it via the efficient approxi-
mation algorithm described, and obtain a dictionary
of word pairs from unsupervised awesome-align
from the sentence pseudo-parallel data. We use the
pseudo-parallel word pairs with UMD and CLP to
remap mBERT. From this, we obtain a better WMD
metric; then we iterate.

Pseudo References Apart from remapping,
pseudo-parallel data could be used to overcome
problems of deficient vector spaces in other ways.
Specifically, we want to mine enough pseudo-
parallel data to train an unsupervised MT system
to translate source sentences into the target lan-
guage to create pseudo references (Albrecht and
Hwa, 2007; Gao et al., 2020; Fomicheva et al.,
2020b). This would allow for a comparison with
the hypothesis in the target language, similar to
reference-based metrics, circumventing alignment
problems in multilingual embeddings. This ap-
proach updates UScorewrd to

𝔪(𝑥, 𝑦, 𝑦′) = 𝑤xlng WMD(𝑛) (𝑥, 𝑦) + 𝑤lm LM(𝑦)
+ 𝑤pseudo WMD(𝑦, 𝑦′),

(3)

where 𝑛 denotes the iterations of remapping, and
𝑤pseudo is a new weight to control the influence
of the pseudo reference 𝑦′. All components of
UScorewrd are illustrated in Figure 2.

3.2 UScoresnt

Besides a word-based metric, we use pseudo-
parallel data to induce an unsupervised sentence

level metric, UScoresnt = cos(𝑥, 𝑦), based on the
cosine similarity between sentence embeddings.
One could, similarly to DistilScore, perform
knowledge distillation but since our initial exper-
iments showed that this doesn’t work well with
pseudo-parallel data, we chose another approach.

Contrastive Learning We explore contrastive
learning for unsupervised multilingual sentence
embedding induction, which has recently been suc-
cessfully used to train unsupervised monolingual
sentence embeddings (Gao et al., 2021). In our
context, the basic idea is to pull semantically close
sentences together and to push distant sentences
apart in the embedding space. Let 𝑥𝑖 and 𝑦𝑖 be the
embeddings of two sentences that are semantically
related and 𝑁 an arbitrary batch size. The training
objective for this pair can be formulated as

𝐿𝑖 = − log
exp ( cos(𝑥𝑖 ,𝑦𝑖 )

𝜏 )∑𝑁
𝑗=1, 𝑗≠𝑖 exp( cos(𝑥𝑖 ,𝑦 𝑗 )

𝜏 )
, (4)

where 𝜏 is a temperature hyperparameter that can
be used to either amplify or dampen the assessed
distances. For each sentence 𝑥𝑖 , all remaining sen-
tences 𝑦 𝑗≠𝑖 in the current batch should be pushed
apart in the embedding space. For positive sen-
tences that should be pulled together, we again use
pseudo-parallel sentence pairs. Since noisy data
is beneficial for contrastive learning (Gao et al.,
2021), we expect this paradigm to work well with
pseudo-parallel data. We use pooled XLM-R em-
beddings as sentence representations, and, as with
unsupervised remapping, we experiment with mul-
tiple iterations of successive mining and sentence
embedding induction operations.

Ratio Margin Pseudo-Parallel Data Mining As
UScoresnt is based on sentence embeddings, we
cannot use the WMD-based mining algorithm to
obtain pseudo-parallel sentences since it requires
access to word-level representations. An alternative
would be to just use cosine similarity for mining,
but that approach is susceptible to noise in the
data (Artetxe and Schwenk, 2019). Instead, we
follow Artetxe and Schwenk (2019) and use a ratio
margin function defined as

margin(𝑥, 𝑦) = cos(𝑥, 𝑦)∑
𝑧∈𝑁𝑥

cos(𝑥,𝑧)
2𝑘 + ∑

𝑧∈𝑁𝑦

cos(𝑦,𝑧)
2𝑘

, (5)

where 𝑁𝑥 and 𝑁𝑦 are the 𝑘 nearest neighbors of
sentence embeddings 𝑥 and 𝑦 in the respective
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language. Informally, this ratio margin function di-
vides the cosine similarities of the nearest neighbor
by the average similarities of the neighborhood.

3.3 UScorewrd ⊕ snt
Inspired by SentSim, which combines word
and sentence embeddings, we similarly ensemble
UScorewrd and UScoresnt. We refer to this final
metric as UScore = UScorewrd ⊕ snt with two
new weights 𝑤wrd and 𝑤snt = 1 − 𝑤wrd:

UScore(𝑥, 𝑦) = 𝑤wrd UScorewrd(𝑥, 𝑦)
+ 𝑤snt UScoresnt(𝑥, 𝑦).

(6)

4 Experiments
In this section, we evaluate all UScore variants
at the segment level6 and compare them to TYPE-
1/2/3 upper bounds. We detail additional hyperpa-
rameters in Appendix D.

4.1 Datasets
We use various datasets to assess the performance of
our metrics on MT evaluation, i.e., computing the
correlation with human assessments using Pearson’s
r correlation, and parallel sentence matching, a
standard evaluation measure in the corpus mining
field where a set of shuffled parallel sentences is
searched to recover correct translation pairs (Guo
et al., 2018; Kvapilíková et al., 2020). For this we
report Precision at N (P@N).

MT evaluation In WMT-16 and WMT-17, each
language pair consists of tuples of source sentences,
hypotheses and references. Each tuple was anno-
tated with a direct assessment (DA) score, which
quantifies the adequacy of the hypothesis given the
reference translation. Following Zhao et al. (2020)
and Song et al. (2021), we use these DA scores
to assess the adequacy of the hypothesis given the
source. MLQE-PE has been used in the WMT
2020 Shared Task on Quality Estimation (Specia
et al., 2020), and only provides source sentences and
hypotheses for its language pairs, with no references.
Each source sentence and hypothesis pair was anno-
tated with cross-lingual direct assessment (CLDA)
scores. In terms of annotation, Eval4NLP is very
similar to MLQE-PE but focuses on non-English-
centric language directions, especially de-zh and
ru-de. WMT-MQM uses fine-grained error anno-
tations from the Multidimensional Quality Metrics

6We do not evaluate at the system level since metrics there
often perform very similarly, making it difficult to determine
the best metric (Mathur et al., 2020b; Freitag et al., 2021b).

(MQM) framework (Freitag et al., 2021a) for ade-
quacy assessments. Like MLQE-PE and Eval4NLP,
WMT-MQM also assigns scores based on source
sentences and hypotheses. Additional statistics can
be found in the appendix in Table 8. Using ISO 639-
1 codes, our datasets cover the language pairs de-zh,
ru-de, en-ru, en-zh, cs-en, de-en, en-de, et-en, fi-en,
lv-en, ne-en, ro-en, ru-en, si-en, tr-en, zh-en.

Parallel sentence matching To evaluate on par-
allel sentence matching, we use the News Com-
mentary7 dataset. It consists of parallel sentences
crawled from economic and political data.

4.2 Fine-grained analysis on de-en
To gain an understanding of the properties of the
iterative techniques and the influence of individual
parameters / components, we conduct a fine-grained
analysis on the de-en language direction of WMT-
16 (for MT evaluation) and News Commentary v15
(for parallel sentence matching). We list examples
of pseudo-parallel data used during training in the
appendix in Table 3. The mined sentences are often
semantically similar, but contain factuality errors
(e.g., have wrong places or numbers in hypotheses).

Vector space remapping We explore if remap-
ping works with pseudo-parallel data. We use News
Crawl for mining. We randomly extract 40k mono-
lingual sentences per language, and select the top
5% sentence pairs with the highest metric scores
for remapping. This gives us the same number of
sentences (2k pairs) as were used for remapping
XMoverScore.

The results for UMD and CLP-based remapping
on de-en can be seen in Figure 3 (top). The figure
contains two graphs, one for correlation with hu-
man judgments and one for precision on parallel
sentence matching. Each graph illustrates model
performance before remapping (Iteration 0) and
after remapping one to five times. After remapping
once, both UMD and CLP improve substantially in
Pearson’s r correlation. The improvement of CLP,
however, is noticeably larger. For subsequent itera-
tions, UMD seems to continue to improve slightly,
but the correlations of CLP seem to drop. This
can be explained by the results for precision where
the P@1 of CLP drops each iteration, meaning
the remapping capabilities of the metrics decrease.
UMD does not exhibit this problem. Thus, UMD

7data.statmt.org/news-commentary
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Figure 3: Results for unsupervised vector space remap-
ping (top) and contrastive learning with UScoresnt
(bottom) for de-en. Pearson’s r is computed on WMT-16
(MT evaluation) and P@1 on News Commentary v15
(parallel sentence matching).

could be a more robust choice for metrics that
should perform reasonably well on both tasks.

Pseudo References & Language Model Next,
we add a language model to the metric and investi-
gate pseudo-parallel corpus mining to train an MT
system for pseudo references. Tran et al. (2020)
show that fine-tuning mBART using pseudo-parallel
data leads to very promising results, so we use
mBART for our own experiments as well. Since fine-
tuning for MT is a very resource-intensive undertak-
ing requiring many parallel sentence pairs (Barrault
et al., 2020), especially compared to our vector
space remapping experiments, we need consider-
ably more training data. On average, Tran et al.
(2020) use around 200k pseudo-parallel sentence
pairs for training. To obtain the same amount
with our extraction rate of 5%, we now use a
pool of 4m sentences per language for mining.
Our results on the de-en data of WMT-16 are re-
ported in Figure 4, which is similar to an ablation
study. On the x-axis, we vary the weight 𝑤pseudo ∈
{0.0, 0.1, . . . , 0.9, 1.0} for UScorewrd with pseudo
references, and on the y-axis, we explore different
weights 𝑤lm ∈ {0.0, 0.1, . . . , 0.9, 1.0} for the lan-
guage model. We set 𝑤xlng = 1−𝑤pseudo−𝑤lm. The
best correlation uses 𝑤pseudo = 0.4, 𝑤lm = 0.1, and
𝑤xlng = 0.5. The improvement when pseudo refer-
ences and a language model are included is substan-
tial (over only using WMD)—e.g., we improve from
28% correlation with humans (𝑤pseudo = 𝑤lm = 0)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
𝑤pseudo
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𝑤
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41.7 41.9 42.1 42.2 42.3 42.4
42.6 43.0 43.2 43.4 43.5 42.5 43.5
43.9 44.4 44.8 45.0 45.2 45.2 45.0 44.8
45.1 46.0 46.8 47.2 47.4 47.3 47.0 46.5 45.9
43.7 45.9 47.5 48.5 49.0 48.8 48.2 47.3 46.1 44.9
28.3 31.8 34.9 37.4 39.1 39.8 39.8 39.0 37.9 36.6 35.2

30 35 40 45

Figure 4: Influence of a language model and an MT
system on UScorewrd, segment-level Pearson’s r for
different values of 𝑤pseudo (weight for pseudo references)
and 𝑤lm (weight for the language model) on WMT-16
de-en data. Note that the point 𝑤pseudo = 𝑤lm = 0 uses
only WMD(𝑥, 𝑦); see Equation 3. Here, 𝑛 = 1.

to 49% with the best weight combination, an im-
provement of 75%.

Contrastive Learning For UScoresnt, we also
use 4m monolingual sentences per language for
mining but only retain the top 100k sentence pairs,
as for the contrastive training objective we addi-
tionally have to filter out duplicate sentences. The
results of UScoresnt are shown in Figure 3 (bot-
tom). The P@1 scores seem to steadily improve
every two training iterations. Beginning with the
sixth iteration, the precision seems to converge.

4.3 Other Languages: Results & Analysis
We now test our metrics on other languages and
datasets. For UScoresnt, we train its sentence em-
bedding model for six iterations. For UScorewrd,
we remap mBERT once with UMD and make use of
a language model and pseudo references obtained
from an MT system. Based on Section 4.2, we
set 𝑤pseudo = 0.4, 𝑤lm = 0.1, and 𝑤xlng = 0.5.
Additionally, based on analogous, unreported ex-
periments, we set 𝑤wrd = 0.6 and 𝑤snt = 0.4 for
ensembling. Since determining the weights for
UScorewrd and UScorewrd ⊕ snt this way consti-
tutes a form of supervision, we also evaluate weights
chosen independently from our conducted experi-
ments. Namely, we also evaluate UScore+ with
𝑤wrd = 𝑤snt = 0.5. For 𝑤lm, we follow XMover-
Score and set it to 0.1 (setting 𝑤lm lower makes
sense because the LM only addresses the hypoth-

363



esis without considering the source); accordingly,
we set 𝑤xlng = 𝑤pseudo = 0.45. Since 𝑤lm = 0.1
coincides with our findings in Section 4.2, we also
evaluate UScore++ where each component uses
entirely uniform weights, i.e., 𝑤wrd = 𝑤snt = 1

2 and
𝑤lm = 𝑤xlng = 𝑤pseudo = 1

3 .
Correlations with human judgments averaged

over language pairs are shown in Table 2 (individ-
ual results are in the appendix). We also present
the results of the popular TYPE-2 metric BLEU,
where possible, and the recent TYPE-1 metrics
MonoTransQuest (Ranasinghe et al., 2020b,a)
and COMET-QE (Rei et al., 2021). Finally, as more
direct competitors, we compare to the TYPE-3 met-
rics XMoverScore, SentSim, and DistilScore.
We compute all reported scores ourselves.

Overall, the tuned weights of UScore per-
form marginally better than UScore+ on most
datasets, but UScore+ is usually a very close sec-
ond. UScore++ performs worse, however, and only
competitively on two of the five datasets. This
indicates that the language model should be set to a
lower value, a choice that makes intuitively sense.

Expectedly, DistilScore, which uses parallel
data, is always better than UScoresnt, which uses
pseudo-parallel data. In contrast, UScorewrd is
generally on par with XMoverScore, even though
XMoverScore uses real parallel data—the dif-
ference is that UScorewrd also leverages pseudo-
references which XMoverScore does not. In-
deed, from Figure 4, we observe that the pseudo-
references can make an improvement of up to 1–11
points in correlation (comparing ‘column’ labeled
𝑤pseudo = 0 to the columns 𝑤pseudo > 0).

Our metrics beat reference-based TYPE-2 BLEU
across the board. TYPE-1 metrics, which are fine-
tuned on human scores, are generally the best.
Intriguingly, the only two language pairs where our
metrics are on par with them are the non-English
de-zh and ru-de from Eval4NLP. These languages
are outside the training scope of the current TYPE-1
metrics and thus test their generalization abilities.
For example, on ru-de our best metric outperforms
MonoTransQuest by 5 points correlation and
COMET-QE by 9 points (Table 7 in the appendix).

UScore and UScore+ also outperform the
TYPE-3 upper bounds on four of five datasets. On
WMT-16, WMT-17 and Eval4NLP, they have the
best overall results. On WMT-MQM, UScorewrd
alone is best. The drop in performance for the
combined metric is caused by UScoresnt, which

on its own performs very badly. As supervised
DistilScore exhibits the same issues, this could be
a general problem for sentence embeddings based
metrics on this dataset. We identify further reasons
in Appendix E.

For MLQE-PE, the SentSim metrics perform
best on average among TYPE-3 and our metrics—
although our reproduced scores for this dataset differ
noticeably from the authors’ results, due to issues
in their original code (Chen et al., 2022). Among
our self-learned metrics, the combined variant per-
forms best on average again, but still is 3–5 points
below SentSim and DistilScore, even though it
outperforms both XMoverScore variants by over 6
points. Interestingly, UScoresnt works better than
UScorewrd, unlike for the other datasets. Similarly,
DistilScore clearly outperforms XMoverScore.
This could be because MLQE-PE contains Sinhala,
a language mBERT was not trained on. Another
explanation is the data collection scheme for ru-en,
which uses different sources of parallel sentences,
mainly colloquial data and Russian proverbs, which
use rather unconventional grammar (Fomicheva
et al., 2022). This apparently confuses the language
model and MT system which have been trained
on data from other domains. When we exclude
si-en and ru-en from MLQE-PE, UScorewrd ⊕ snt
performs best, with an average Pearson’s r of 44.22
for tuned weights and 44.45 for default weights vs.
43.82 for SentSim (BERTScore). In Appendix C,
we show that incorporating real parallel data (in
addition to pseudo-parallel data) at an order of mag-
nitude lower than SentSim allows us to outperform
SentSim on MLQE-PE also.

5 Discussion

Throughout, we have presented a mix of results and
analysis, which we now summarize and discuss. In
Figure 4, we conducted an ablation study on the
individual components of UScorewrd (on de-en).
This showed that all three components (pseudo-
references, language model, WMD) matter; by
itself, the LM is more important than the pseudo-
references which are more important than WMD.
However, in combination, the LM is least impor-
tant. We also showed that pseudo-parallel data can
successfully rectify deficient multilingual vector
spaces, similar to real parallel data, see Figure 3.
We note, however, that pseudo-parallel data may
introduce an important bias in our data sampling:
namely, it may mine factually incorrect parallel
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Metric WMT-16 WMT-17 MLQE-PE Eval4NLP WMT-MQM

TYPE-1/2
Supervised

MonoTransQuest 64.68 66.47 66.28 42.21 42.23
COMET-QE 65.76 68.77 49.97 40.00 45.89

BLEU 47.82 47.01 – – 19.76

TYPE-3
Supervised

XMoverScore (UMD) 49.96 51.02 33.99 29.60 20.07
XMoverScore (CLP) 53.10 55.09 31.98 36.93 20.59
SentSim (BERTScore) 51.86 55.57 45.36 26.60 13.71
SentSim (WMD) 50.66 54.29 44.72 24.44 12.24
DistilScore 43.79 51.22 43.31 28.90 2.20

Unsupervised

UScorewrd 53.87 53.52 31.13 36.96 23.28
UScoresnt 36.06 42.68 37.51 20.39 -0.47
UScorewrd ⊕ snt 55.78 57.55 40.60 39.87 19.35

UScore+
wrd 53.66 52.97 30.94 36.29 23.15

UScore+
wrd ⊕ snt 55.28 57.29 41.41 38.22 17.71

UScore++
wrd 51.88 51.73 23.76 25.42 19.00

UScore++
wrd ⊕ snt 54.99 56.49 34.15 32.05 17.08

Table 2: Segment-level Pearson’s r correlations with human judgments, averaged over language directions. The best
results are highlighted in bold, while results that are not significantly worse (as determined by a two-sample t-test
with 10% significance level) are underlined.

sentences, see Table 3 in the appendix, which may
amplify issues of adversarial robustness; see our
discussion in Section 8.

We remark that, depending on the annotation
scheme, better correlations with human judgments
do not necessarily entail better metrics (Freitag et al.,
2021a). The datasets in this work were annotated
using either DA, CLDA, or MQM scores, with
MQM explicitly addressing this problem. Since our
metrics are consistent regardless of the annotation
scheme, they are unlikely to overfit a particular one.

We finally note that combining word and
sentence-level models is meaningful, because they
offer complementary views (Song et al., 2021).
Kaster et al. (2021) also show that they capture or-
thogonal linguistic factors to varying degrees. Such
complementarity may also stem from different un-
derlying vector spaces, i.e., mBERT vs. XLM-R
that we use in sentence- and word-level metrics.

6 Related Work
All metrics in this work presented so far treated the
MT model generating the hypotheses as a black-
box. There also exists a recent line of work of
so-called glass-box metrics, which actively incor-
porate the MT model under test into the scoring
process (Fomicheva et al., 2020a,b). In particular,
Fomicheva et al. (2020b) explore whether the MT
model under test can be used to generate additional
hypotheses (Dreyer and Marcu, 2012). A crucial
difference to our metrics is the required availability
of the original MT model, which we are agnostic

about. The MT models used in Fomicheva et al.
(2020b) are all trained on parallel data, which makes
their approach a supervised metric in our sense.

Other recent metrics that leverage the re-
lationship between metrics and (MT) systems
are Prism (Thompson and Post, 2020) and
BARTScore (Yuan et al., 2021). We do not classify
them as unsupervised, however, as Prism is trained
from scratch on parallel data and BARTScore uses
a BART model fine-tuned on labeled summarization
or paraphrasing datasets.

There are also multilingual sentence embedding
models which are highly relevant in our context.
Kvapilíková et al. (2020), for example, fine-tune
XLM-R on synthetic data translated with an unsu-
pervised MT system. Similar to our contrastive
learning approach, the resulting embedding model
is completely unsupervised. Important differences
are that our sentence embedding model can be
improved iteratively and does not rely on an MT
system. We leave a comparison to future work.

Finally, the idea of fully unsupervised text gen-
eration systems has originated in the MT commu-
nity (Artetxe et al., 2018; Lample et al., 2018;
Artetxe et al., 2019). Given the similarity of MT
systems and evaluation metrics, designing fully un-
supervised evaluation metrics is an apparent next
step, which we take in this work.

7 Conclusion
In this work, we aimed for sample efficient evalua-
tion metrics that do not use any form of supervision.
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In addition, our novel metrics should be maximally
effective, i.e., of high quality. To achieve this,
we leveraged pseudo-parallel data obtained from
fully unsupervised evaluation metrics in three ways:
we (i) remapped deficient vector spaces using the
pseudo-parallel data, (ii) trained an unsupervised
MT system from it (yielding pseudo references),
and (iii) induced unsupervised multilingual sen-
tence embeddings. To enable our approach, we also
explored efficient pseudo-parallel corpus mining
algorithms based on our metrics as an orthogonal
contribution. Finally, we showed that our approach
is effective and can outperform three supervised
upper bounds (making use of parallel data) on 4
out of 5 datasets we included in our comparison.

In future work, we want to aim for algorithmic
efficiency, include pseudo source texts as additional
components (using the MT system in backward
translation), and address the missing dualities dis-
cussed in Figure 1 (i.e., use of metrics as optimiza-
tion criteria and MT systems to generate additional
pseudo-parallel data). Further, our approach has
substantial room for improvement given that we
selected hyperparameters completely unsupervised
or based on one high-resource language pair (de-en).
Thus, it will be particularly intriguing to explore
weakly-supervised approaches which leverage min-
imal forms of supervision.

8 Limitations

Limitations of our metrics include (1) algorith-
mic inefficiency, (2) resource inefficiency, (3) the
brittleness of unsupervised MT systems in certain
situations, and (4) issues of adversarial robustness.

(1) Some of the components of UScorewrd
(mainly the MT system) have high computa-
tional costs. For example, XMoverScore and
SentSim (BERTScore) take less than 30 seconds
to score 1000 hypotheses on an Nvidia V100 GPU.
UScorewrd, on the other hand, takes over 2.5 min-
utes. This algorithmic inefficiency trades off with
our sample efficiency, by which we did not use
any supervision signals. In future work, we aim
to experiment with efficient MT architectures to
reduce computational costs (Kamal Eddine et al.,
2022; Grünwald et al., 2022).

(2) Similarly to XMoverScore, MonoTrans-
Quest or SentSim, our metrics use high-quality
encoders such as mBERT, which are not only mem-
ory and inference inefficient but also leverage large
monolingual resources. Future work should thus

not only investigate using smaller mBERT mod-
els but also models that leverage smaller amounts
of monolingual resources. Wang et al. (2020),
for example, propose a competitive LSTM-based
approach that completely forgoes monolingual re-
sources and instead uses small parallel corpora
(i.e., a few hundred parallel sentences as a weak
supervision signal). Similarly, we give a recipe
for improving mBERT for unseen languages using
limited amounts of parallel data in Appendix C.

(3) Using unsupervised MT approaches, as we do
via pseudo references, may be less effective for truly
low-resource languages (Marchisio et al., 2020).
However, this remains a very active research field
with a constant influx of more powerful solutions
(Ranathunga et al., 2022; Sun et al., 2021).

(4) As indicated in Sections 4.2 and 5, our mined
pseudo-parallel data tends to contain factual incon-
sistencies such as “Uruguay was seventh” vs. (a
translation of) “Russia was second”. As a conse-
quence, our induced metrics may be less robust
than existing metrics (Chen and Eger, 2022; Rony
et al., 2022). An approach to address this incon-
sistency would be to retain only high probability
aligned words in parallel sentences (recall that we
infer word-level parallel data from sentence-level
parallel data).
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A Vector Space Remapping

Zhao et al. (2020) explore two different remapping
approaches for XMoverScore, which are defined
as follows:

Procrustes alignment Mikolov et al. (2013)
propose to compute a linear transformation ma-
trix W which can be used to map a vector 𝑥 of
a source word into the target language subspace
by computing W𝑥. The transformation can be
computed by solving the problem

min
W

| |WX − Y| |2. (7)

Here X,Y are matrices with embeddings of source
and target words, respectively, where the tuples
(𝑥𝑖 , 𝑦𝑖) ∈ X × Y come from parallel word pairs.
XMoverScore constrains W to be an orthogonal
matrix such that W⊺W = I, since this can lead to
further improvements (Xing et al., 2015). Zhao et al.
(2020) call this remapping Linear Cross-Lingual
Projection remapping (CLP).

De-biasing The second remapping method of
XMoverScore is rooted in the removal of biases
from word embeddings. Dev and Phillips (2019)
explore a bias attenuation technique called Uni-
versal Language Mismatch-Direction (UMD). It
involves a bias vector 𝑣𝐵, which is supposed to cap-
ture the bias direction. For each word embedding
𝑒, an updated word embedding 𝑒′ is computing by
subtracting their projections onto 𝑣𝐵, as in

𝑒′ = 𝑒 − (𝑒 · 𝑣𝐵)𝑣𝐵, (8)

where · is the dot product. To obtain the bias
vector 𝑣𝐵, Dev and Phillips (2019) use a set E of
word pairs that should be de-biased (e.,g. man and
woman). The subtractions of the embeddings of the
words in each pair are then stacked to form a matrix
Q, and the bias vector 𝑣𝐵 is its top-left singular
vector. Zhao et al. (2020) use the same approach for
XMoverScore, but E instead consists of parallel
word pairs.

Zhao et al. (2020) show that these remapping
methods lead to substantial improvements of their
XMoverScore metric (on average, up to 10 points
in correlation). The required parallel word pairs
were extracted from sentences of the EuroParl cor-
pus (Koehn, 2005) using the fast-align (Dyer et al.,
2013) word alignment tool. The best results were
obtained when remapping on 2k parallel sentences.
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Figure 5: Pearson’s r correlations on MLQE-PE for
UScorewrd ⊕ snt when fine-tuning on limited amounts
of parallel data. We explore sample sizes of 10k, 20k,
30k, and 200k.

B Filtering

Since large corpora tend to include low-quality data
points, we follow Artetxe and Schwenk (2019) and
Keung et al. (2021) and apply three simple filtering
techniques. We first remove all sentences from
each monolingual corpus for which the fastText
language identification tool (Joulin et al., 2017)
predicts a different language. We then filter all
sentences which are shorter than 3 tokens or longer
than 30 tokens. As the last step, we discard sentence
pairs sharing substantial lexical overlap, which
prevents degenerate alignments of, e.g., proper
names. We remove all sentence pairs for which
the Levenshtein distance detects an overlap of over
50%.

C Fine-Tuning on Parallel Data

To examine whether and by how much we can fur-
ther improve our metrics using forms of supervision,
we experiment with a fine-tuning step on parallel
sentences and treat self-learning on pseudo-parallel
data as pre-training (He et al., 2020). We use the
parallel data to fine-tune the contrastive sentence
embeddings of UScoresnt and the MT system of
UScorewrd, which is responsible for generating
pseudo references. Further, we also compute new
remapping matrices for UScorewrd. Since CLP is
superior to UMD when parallel data is used (see
Section 4.2), we compute these remapping matrices
using CLP instead of UMD. To assess how different
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amounts of parallel sentences affect performance,
we fine-tune our metrics on 10k, 20k, 30k, and 200k
parallel sentences. We use WikiMatrix (Schwenk
et al., 2021) and the Nepali Translation Parallel
Corpus (Duwal et al., 2019) to obtain parallel sen-
tences.

Pearson’s r correlations with human judgments
for individual and averaged language pairs are
shown in Figure 5; we focus on MLPQE-PE, where
our metrics performed worst. Overall, introducing
parallel data into the training process consistently
improves performance for the majority of language
directions; more parallel data leads to better results.
The relatively biggest improvements are achieved
for the si-en language direction, which is in accor-
dance with our discussion above. When fine-tuning
with 30k parallel sentences, the performance of our
metrics is roughly on par with the SentSim vari-
ants (see Table 2). With 200k parallel sentences,
our metrics clearly outperform SentSim, which
uses millions of parallel sentences and NLI data as
supervision signals.

D Hyperparameters

For efficient WMD pseudo-parallel mining, we
set 𝑘 = 20 for remapping, and 𝑘 = 1 for training
mBART. For ratio-margin-based pseudo-parallel
mining, we use 𝑘 = 5. With regard to training
UScoresnt, we follow Gao et al. (2021), and iter-
atively train XLM-R for one training epoch with
a learning rate of 5e-5, a batch size of 256, and
a temperature coefficient of 𝜏 = 0.05 utilizing the
AdamW optimizer (Loshchilov and Hutter, 2019).
Fine-tuning of mBART was performed for three
epochs with a batch size of four and using the same
learning rate of 5e-5 as well as AdamW optimizer.

We decided to continue using mBERT in
UScorewrd for two reasons. Firstly, we want
UScorewrd to remain directly comparable to
XMoverScore which is based on mBERT. Secondly,
in our own experience, vanilla mBERT is very ro-
bust in terms of layer choice, especially compared to
vanilla XLM-R. Intuitive choices like the first or last
layer work very well for a lot of problems. This is an
important property for unsupervised metrics, since
we can’t easily justify a (supervised) hyperparame-
ter search in an unsupervised setting to determine
the best layer or even a linear combination of those.

E Supplementary Data and Results
Table 3 shows examples of pseudo-parallel data
obtained with UScorewrd and UScoresnt. Ta-
bles 4, 5, 6, and 7 show segment-level Pearson’s r
correlations with human judgments on WMT-16,
WMT-17, MLQE-PE, as well as WMT-MQM and
Eval4NLP, respectively. Table 8 provides additional
statistics for each dataset.

A surprising finding is the poor performance
of UScoresnt and DistilScore on the German-
English language pair in Table 7. It is well known
that high-resource language directions, such as
English-German, can be affected by a lack of low-
quality translations (Fomicheva et al., 2022), and
with only high-quality translations available, there
is little variation in the scores, which makes a mean-
ingful assessment of correlation difficult (Specia
et al., 2020). Further, since both UScoresnt and
DistilScore are based on sentence embeddings of
XLM-R, and sentence embedding-based metrics
are known to be a bit worse on average than their
word embedding-based counterparts, we believe
that both aspects combined could be the root cause
for this.
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Case Source Target
Top-WRD Uruguay belegt mit vier Punkten nur Platz Sieben. Russia was second with four gold and 13 medals.
Top-WRD Soweit lautet zumindest die Theorie. That, at least, is the theory.
Rnd-WRD Die USA stellen etwa 17.000 der insgesamt 47.000

ausländischen Soldaten in Afghanistan.
Currently, there are about 170,000 U.S. troops in Iraq
and 26,000 in Afghanistan.

Rnd-WRD “Das ist eine schwierige Situation”, sagte Kaczynski. “It seemed like a ridiculous situation,” Vanderjagt
said.

Top-SNT Die Wahlen für ein neues Parlament sollen dann An-
fang Januar stattfinden.

Parliamentary elections are to be held by January.

Top-SNT Anzeichen für die Blauzungenkrankheit sind Fieber,
Entzündungen und Blutungen an der Zunge der Tiere.

Contact with the creatures can cause itching, rashes,
conjunctivitis and, in some cases, breathing problems.

Rnd-SNT Riesen-Wirbel an der Universität Zagreb: An
der wirtschaftlichen Fakultät und am Institut für
Verkehrsstudien durchsuchen Polizisten die Büros von
Dozenten.

Those attending the Soil Forensics International Con-
ference work in the fields of science, policing, forensic
services as well as private industries.

Rnd-SNT Frankfurt soll WM-Finale der Frauen ausrichten The women’s tournament gets underway on Sunday.

Table 3: Pseudo-parallel data obtained via UScorewrd and UScoresnt; top and random sentence pairs. The mined
sentences are semantically similar, but contain factuality errors (e.g., have wrong places or numbers in hypotheses).

Metric de-en en-ru ru-en ro-en cs-en fi-en tr-en

TYPE-1/2
Supervised

MonoTransQuest 61.65 66.69 63.32 62.36 67.67 68.33 62.71
COMET-QE 65.73 71.91 69.71 66.40 67.98 64.83 53.73

BLEU 45.39 55.08 46.33 47.09 53.80 39.92 47.15

TYPE-3
Supervised

XMoverScore (UMD) 43.46 62.16 60.52 47.88 58.83 43.52 33.34
XMoverScore (CLP) 45.29 63.58 56.12 54.24 58.89 51.40 42.14
SentSim (BERTScore) 48.49 50.37 57.89 55.06 59.08 46.66 45.47
SentSim (WMD) 47.78 48.49 56.19 54.48 56.87 46.00 44.84
DistilScore 40.62 41.21 43.16 51.22 49.51 39.65 41.14

Unsupervised

UScorewrd 48.94 60.97 59.09 56.06 57.15 53.76 41.15
UScoresnt 30.48 39.73 35.31 44.18 40.80 31.30 30.62
UScorewrd ⊕ snt 50.37 62.92 60.49 60.07 59.25 52.93 44.41

UScore+
wrd 48.97 60.57 58.35 56.23 56.44 53.78 41.30

UScore+
wrd ⊕ snt 50.29 62.37 59.43 60.71 58.47 51.48 44.19

UScore++
wrd 44.50 61.45 53.50 56.03 52.95 54.08 40.65

UScore++
wrd ⊕ snt 47.27 64.14 56.40 60.36 56.29 55.62 44.85

Table 4: Segment-level Pearson’s r correlations with human judgments on the WMT-16 dataset.

Metric cs-en de-en fi-en lv-en ru-en tr-en zh-en

TYPE-1/2
Supervised

MonoTransQuest 60.93 63.54 65.33 72.01 59.56 75.91 68.03
COMET-QE 68.99 69.34 72.83 64.75 69.06 68.43 68.01

BLEU 41.22 41.29 56.48 39.28 45.99 53.06 51.75

TYPE-3
Supervised

XMoverScore (UMD) 41.72 51.19 56.61 56.11 47.24 46.52 57.73
XMoverScore (CLP) 47.76 50.04 62.22 63.95 48.79 52.97 59.88
SentSim (BERTScore) 49.90 52.26 57.85 57.42 55.10 56.84 59.59
SentSim (WMD) 47.62 50.42 56.59 56.91 53.42 56.24 58.86
DistilScore 46.42 45.64 54.03 55.51 54.13 54.04 50.89

Unsupervised

UScorewrd 46.70 52.71 61.91 59.22 49.10 50.06 54.95
UScoresnt 38.89 41.92 39.77 48.95 37.27 48.83 43.10
UScorewrd ⊕ snt 50.67 56.50 61.86 64.54 53.17 57.31 58.80

UScore+
wrd 44.55 52.96 60.96 59.02 48.82 49.70 54.75

UScore+
wrd ⊕ snt 48.62 56.31 60.44 63.62 54.19 57.54 60.28

UScore++
wrd 45.41 48.00 61.33 60.64 49.65 47.06 50.00

UScore++
wrd ⊕ snt 49.27 52.20 63.10 66.64 53.70 54.93 55.62

Table 5: Segment-level Pearson’s r correlations with human judgments on the WMT-17 dataset.
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Metric en-de en-zh ru-en ro-en et-en ne-en si-en

TYPE-1
Supervised

MonoTransQuest 41.85 45.76 76.76 88.81 73.19 75.70 61.90
COMET-QE 36.03 30.70 49.33 64.95 63.45 57.46 47.85

TYPE-3
Supervised

XMoverScore (UMD) 16.56 16.48 28.07 65.83 53.95 38.23 18.81
XMoverScore (CLP) 25.59 20.25 20.31 57.34 58.46 25.15 16.74
SentSim (BERTScore) 6.15 22.23 47.30 78.55 55.09 57.09 51.14
SentSim (WMD) 3.86 22.62 47.46 77.72 54.60 57.00 49.79
DistilScore 12.96 28.68 45.34 76.57 51.16 46.73 41.76

Unsupervised

UScorewrd 24.53 21.58 16.66 60.30 54.83 28.62 11.38
UScoresnt 13.62 13.27 39.09 66.50 41.75 46.83 41.49
UScorewrd ⊕ snt 24.67 21.63 27.83 71.48 57.62 45.70 35.25

UScore+
wrd 23.78 21.40 15.18 60.39 56.27 27.34 12.22

UScore+
wrd ⊕ snt 22.00 21.41 27.71 73.65 57.94 47.27 39.91

UScore++
wrd 26.17 27.16 0.75 32.92 52.24 12.79 14.30

UScore++
wrd ⊕ snt 26.37 27.26 9.29 57.70 56.81 31.24 30.38

Table 6: Segment-level Pearson’s r correlations with human judgments on the MLQE-PE dataset.

WMT-MQM Eval4NLP
Metric en-de zh-en de-zh ru-de

TYPE-1/2
Supervised

MonoTransQuest 31.38 53.07 34.66 49.76
COMET-QE 40.94 50.84 33.51 46.49

BLEU 17.94 21.58 — —

TYPE-3
Supervised

XMoverScore (UMD) 12.72 27.41 10.85 48.35
XMoverScore (CLP) 12.89 28.29 21.61 52.25
SentSim (BERTScore) 1.03 26.39 -7.71 60.91
SentSim (WMD) -0.23 24.70 -11.54 60.42
DistilScore -2.66 7.06 6.57 51.22

Unsupervised

UScorewrd 18.13 28.43 29.29 44.63
UScoresnt -5.93 4.99 0.86 39.91
UScorewrd ⊕ snt 13.94 25.17 24.66 55.08

UScore+
wrd 19.83 26.46 29.99 42.59

UScore+
wrd ⊕ snt 13.72 21.7 22.64 53.8

UScore++
wrd 20.19 17.80 36.51 14.32

UScore++
wrd ⊕ snt 17.18 16.97 34.00 30.09

Table 7: Segment-level Pearson’s r correlations with human judgments on the WMT-MQM and Eval4NLP datasets.

Dataset Pairs Tokens Type

WMT-16 560 9886 CA
WMT-17 560 11189 CA
MLQE-PE 1000 15263 CLDA
Eval4NLP 1295 25975 CLDA
WMT-MQM 17090 549835 MQM

Table 8: Statistics of our used datasets averaged over language pairs. For each dataset we report the number of
sentences we evaluated on, the amount of tokens in these, and the type of human annotation. The number of tokens
refers to source sentences.
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Abstract

Home cooks often have specific requirements
regarding individual ingredients in a recipe
(e.g., allergies). Substituting ingredients in a
recipe can necessitate complex changes to in-
structions (e.g., replacing chicken with tofu in
a stir fry requires pressing the tofu, marinating
it for less time, and par-cooking)—which has
thus far hampered efforts to automatically cre-
ate satisfactory versions of recipes. We address
these challenges with the RecipeCrit model
that allows users to edit existing recipes by
proposing individual ingredients to add or re-
move. Crucially, we develop an unsupervised
critiquing module that allows our model to iter-
atively re-write recipe instructions to accommo-
date the complex changes needed for ingredient
substitutions. Experiments on the Recipe1M
dataset show that our model can more effec-
tively edit recipes compared to strong language-
modeling baselines, creating recipes that satisfy
user constraints and humans deem more correct,
serendipitous, coherent, and relevant.

1 Introduction

Individual preferences and dietary needs shape the
types of recipes that home cooks choose to fol-
low. Cooks must often accommodate the desire for
versions of recipes that do not contain a specific
ingredient (substitution—e.g., for food allergies)
or do make use of particular ingredients (addition—
e.g., to use up near-expiry items). We thus aim to
build a system for recipe editing that accommo-
dates fine-grained ingredient preferences.

Prior research in recipe editing has focused on
substituting individual ingredients in the ingredi-
ents list (Yamanishi et al., 2015) or recommending
new recipes based on similar ingredients (Teng
et al., 2012). Individual ingredient substitution
rules (e.g., tapioca flour and xanthan gum for wheat
flour) often necessitate additional changes to the

∗Work done while at EPFL and a research stay at UCSD.
†Work done while at UCSD.

cooking procedure to function properly (Li et al.,
2022). Other studies employed recommendation-
based approaches. However, they suffer from data
sparsity: there is an extremely large set of possible
recipes that differ by a single ingredient, and many
specific substitutions may not appear in recipe ag-
gregators (Petrescu et al., 2021).

Recipe editing can be seen as a combination
of recipe generation and controllable natural lan-
guage generation (Shin et al., 2020), and has been
explored to adapt recipes for broad dietary con-
straints (Li et al., 2022) and cuisines (Pan et al.,
2020). Pre-trained language models have been
used to create recipe directions given a known title
and set of ingredients (Kiddon et al., 2016; Bosse-
lut et al., 2018), but generated recipes suffer from
inconsistencies. Li et al. (2022) instead build a
paired recipe dataset, but face challenges scaling
due to the large set of possible recipes and dietary
restrictions; people often express even more spe-
cific ingredient-level preferences (e.g., dislikes of
certain ingredients or allergies).

In this work, we address the above challenges
and propose RecipeCrit, a denoising-based model
trained to complete recipes and learn semantic re-
lationships between ingredients and instructions.
The novelty of this work relies on an unsuper-
vised critiquing method that allows users to pro-
vide ingredient-focused feedback iteratively; the
model substitutes ingredients and also re-writes
the recipe text using a generative language model.
While existing methods for controllable genera-
tion require paired data with specially constructed
prompts (Keskar et al., 2019) or hyperparameter-
sensitive training of individual models for each
possible piece of feedback (Dathathri et al., 2020),
our unsupervised critiquing framework enables
recipe editing models to be trained with arbitrary
un-paired data. This generalizes recipe editing, un-
like existing methods for controllable generation
that rely on paired data with specially constructed
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Cherry tomato confit
Title

- 1 pint red cherry tomatoes
- ¼ cup extra virgin olive oil
- …

Ingredients

- Preheat even to 325 degrees
- Spread tomatoes and garlic on a sheet
- …

Instructions

Cooking Recipe

Encoder
Encoder

Encoder
Encoder

Projection

Encoder

!

"#!"$

1st Forward
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$# !"# Ing. Encoder
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Space

Set Transformer
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Figure 1: RecipeCrit includes a recipe encoder and an
ingredient and instruction decoders using the base recipe
and target ingredients to edit cooking instructions.

prompts (Keskar et al., 2019) or hyperparameter-
sensitive training of individual models for each
possible feedback (Dathathri et al., 2020).

Experiments on the Recipe1M (Salvador et al.,
2017) dataset show that RecipeCrit edits recipes
in a way that better satisfies user constraints, pre-
serves the original recipe, and produces coherent
recipes (i.e., recipe instructions are better condi-
tioned on the ingredients list) compared to state-of-
the-art pre-trained recipe generators and language
models. Human evaluators judge RecipeCrit’s
recipes to be more serendipitous, correct, coher-
ent, and relevant to the ingredient-specific positive
and negative feedback (i.e., critiques).

2 RecipeCrit: a Hierarchical Denoising
Recipe Auto-encoder

Previous methods to edit recipes focused on broad
classes like dietary categories (Li et al., 2022) and
cuisines (Pan et al., 2020) and require paired cor-
pora (which do not exist for fine-grained edits).
We propose RecipeCrit: a hierarchical denoising
recipe auto-encoder that does not require paired cor-
pora to train and accommodates positive and nega-
tive user feedback about ingredients (Figure 1).

RecipeCrit is divided into three submodels: an
Encoder E(·), which produces the latent represen-
tation z from the (potentially noisy) recipe; an
ingredient predictor C(·), which predicts the in-
gredients ŷing , and a decoder D(·), which recon-
structs the cooking instructions ŷins from z condi-

tioned on the ŷing .

Recipe Encoder E(·) We build a powerful latent
representation that captures the different elements
of a recipe via the mean-pooled output of the rep-
resentation of each sentence using a Transformer
encoder (Vaswani et al., 2017). We provide the
title xttl , ingredients Xing , and instructions Xinst

as raw text input. While the title xttl comprises a
single sentence, the ingredients Xing and instruc-
tions Xinst are provided as lists of sentences; we
use raw recipe texts directly as input, removing the
need of a pre-processing step. We encode the in-
gredients and instructions in a hierarchical manner
using another Transformer to create fixed-length
representations. We compute the latent represen-
tation z by concatenating the representations of
each component and applying a projection followed
by a tanh function: z = tanh(W[TRF(xttl ) ‖
HTRF(Xing) ‖HTRF(Xins)]), where ‖ is the con-
catenation, and W, b the projection parameters.

Ingredient Predictor C(·) We treat ingredient
prediction as multi-label binary classification over
an ingredient vocabulary I , with a boolean target
vector ying representing ingredients in a ground
truth recipe. We use a Set Transformer (Salvador
et al., 2019) to decode ingredients, pooling ingredi-
ent logits over time-steps to compute binary cross-
entropy loss against the target; we also employ an
EOS token to predict the ingredient set cardinality:

Ling(·) = −
∑|I|

i
ying
i log ŷing

i − λying
eos log ŷ

ing
eos,

where λ controls the impact of the EOS loss. At
inference, we return the top-k ingredients, where k
is the first position with a positive EOS prediction.

Instruction Decoder D(·) The last component
generates cooking instructions using a Transformer
decoder. We condition the decoder on z, previ-
ously generated outputs ŷins

1:t−1, and ingredients
ŷing . Specifically, we encode the ingredients using
an embedding layer A(·) and concatenate their rep-
resentations with the recipe representation z. We
train using teacher-forcing and cross-entropy:

Lins(z, A(ŷing)) = −
∑

t
yins
t log ŷins

t .

Taking inspiration from masked language and
span modeling (Devlin et al., 2019; Joshi et al.,
2020), we train RecipeCrit as a de-noising recipe
auto-encoder via the task of recipe completion: We
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mask random ingredients and instruction sentences
in model input, and task our model to generate the
full recipe. We train our model in two stages: first
minimizing ingredient prediction loss Ling ; then
freezing the encoder and optimizing for instruction
decoding loss Lins using ground truth ingredients.

Unsupervised Critiquing We aim to refine a
recipe based on the user’s feedback and the pre-
dicted ingredients ŷing . We denote ỹing the vector
of desired ingredients. Simply incorporating user
feedback by explicitly including/removing ingre-
dients before generating instructions often cannot
satisfy user preferences due to weak conditioning
between predicted ingredients and generated in-
structions. In RecipeCrit we turn to a critiquing
method that modifies the recipe representation z
before using the updated representation to jointly
generate the edited ingredients and instructions.
Specifically, users add a new ingredient c by set-
ting ŷing

c = 1 or remove some using ŷing
c = 0.

Inspired by success in editing the latent space in
text style transfer and recommendation (Antognini
et al., 2021a; Wang et al., 2019), we first compute
the gradient with respect to z:

gt−1 = ∇zt−1Ling(C(zt−1), ỹing).

Then ,we use the gradient to modulate z such that
the new predicted ingredients ŷing are close to the
desired ingredients ỹing :

zt = zt−1 − αt−1gt−1/||gt−1||2.

Prior work stopped updating z when ‖ ỹing −
ŷing ‖1< ε for some threshold ε. We instead pro-
pose to compute the absolute difference |ỹing

c -
ŷing
c |. Since the optimization is nonconvex, we

improve convergence by using an early stopping
mechanism. Our approach is unsupervised and can
update the full recipe latent representation, reflect-
ing how adding or removing an ingredient can ne-
cessitate adjustments to other ingredients and cook-
ing steps. Pseudo-code is available in the App.

Another advantage of our approach is the pos-
sibility to update multiple ingredients simultane-
ously: adding or removing an ingredient might af-
fect other ones as well and thus, a local-based stop-
ping criteria allows such a change.

3 Experiments

Dataset We assess our model on the Recipe1M
(Salvador et al., 2017) dataset of 1M recipe texts.

Each recipe contains a title, a list of ingredients,
and a list of cooking instructions. We filter out
recipes with more than 20 ingredients or steps, cre-
ating train, val, and test splits with 635K, 136K,
and 136K recipes, respectively. The average recipe
comprises 9 ingredients and 166 words. We fol-
low Salvador et al. (2019) and build a set of 1, 488
ingredients. For critiquing, we select 20 ingredi-
ents to be critiqued among the most and the least
popular ingredients across the train set. For each
critique, we randomly sample 50 recipes that con-
tain the critiqued ingredient and 50 that do not.

Baselines We compare our proposed RecipeCrit
architecture against large language models trained
using our denoising objective. We fine-tune BART
(Lewis et al., 2020), an encoder-decoder language
model trained to denoise documents, as well as
RecipeGPT (Lee et al., 2020), a decoder-only lan-
guage model pre-trained on Recipe1M to predict
ingredients and cooking steps. To demonstrate the
necessity of our denoising approach, we also com-
pare against PPLM (Dathathri et al., 2020), a recent
method for controllable generation from language
models that leverages sets of desired and undesired
sequences (for ingredient addition and substitution,
respectively). All models use greedy decoding.

Metrics We evaluate edited recipes via metrics
that reflect user preferences. First, a user wants a
recipe similar to the base recipe—we measure in-
gredient fidelity via IoU (Jaccard distance) and F1
scores between the edited and base recipe ingredi-
ents list. Next, the recipe must satisfy the user’s spe-
cific ingredient feedback—we report the percent-
age of edited recipes that properly include/exclude
the target ingredient (Success Rate). Finally, the
recipe must be coherent: able to be followed and
internally consistent. As an ingredient constraint
can be satisfied in many ways, we follow Kiddon
et al. (2016) and measure coherence via precision,
recall, and F1-score of ingredients mentioned in
the generated steps compared to the predicted in-
gredients. This verifies that the recipe itself relies
on the listed ingredients.

Training Details For fair comparison, we com-
pare similar-sized models. RecipeCrit uses an en-
coder and decoder with 4 Transformer layers, 4 at-
tention heads, and hidden size of 512. We randomly
mask 50% of the ingredients and instructions dur-
ing training, and tune them on the validation set us-
ing random search. We give more details in App. B.
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Ingr. Fidelity Predicted Instr.

Model % Succ. IoU F1 Prec. Rec. F1

A
dd

RecipeGPT 33.2 65.4 78.7 56.7 69.0 62.2
PPLM 34.4 60.9 72.7 53.0 63.0 57.6
BART 41.1 70.5 82.8 61.5 61.1 61.3
RecipeCrit 66.3 74.5 85.4 73.7 74.4 74.1

R
em

ov
e RecipeGPT 91.1 37.2 52.9 38.4 54.6 45.0

PPLM 92.3 61.3 32.6 47.2 53.5 50.2
BART 95.4 55.7 73.3 57.6 61.6 59.5
RecipeCrit 95.8 68.8 80.7 74.0 74.5 74.2

Table 1: Critiquing performance: success rate of
adding/removing an ingredient, IoU and F1 ingredient
scores, and the Precision, Recall, and F1 of ingredients
in cooking instructions.

RQ1: Recipe Editing via Critiquing We evalu-
ate whether our models can edit recipes by creating
new ingredient sets and corresponding recipe in-
structions when faced with positive and negative
feedback: an ingredient that must be added or re-
moved (substituted) from the recipe to create a new
version. For ingredient substitution, we mask the
critiqued ingredient and all steps that reference it as
denoising inputs; for addition, we use the full base
recipe. For RecipeGPT and BART, we filter the
predicted ingredients lists to exclude/include the
target ingredient. For PPLM, we provide the target
ingredient as a bag of words to steer generation,
using RecipeGPT as the base generative model.
RecipeCrit uses our iterative critiquing framework
(Section 2) to accommodate user feedback.

We show results for constraint satisfaction (suc-
cess rate), ingredient fidelity, and recipe coherence
(predicted instructions) in Table 1. RecipeCrit out-
performs baselines across all metrics for ingredient
addition and removal. While our baselines take ad-
vantage of pre-trained language models, they can-
not successfully incorporate user feedback during
editing. PPLM-guided constrained decoding is not
only two orders of magnitude slower than our de-
noising models (3min vs. 1s per recipe), but we ob-
serve poor fidelity and frequent incoherent instruc-
tions (e.g., repetition). Meanwhile, forcing ingredi-
ent lists to omit or contain specific ingredients has
little impact on the generated recipe instructions—
even when the desired ingredient is manually in-
serted into the ingredients list, RecipeGPT and
BART mention using the ingredient only in 33%
and 41% of generated instructions.

Our model and gradient-based critiquing method
leads to a stronger influence of the edited ingredi-
ents on recipe instructions. By directly modifying

Model Ser. Cor. Coh. Rel.
RecipeGPT −0.04∗ −0.03∗ −0.01∗ −0.07∗
PPLM −0.03∗ −0.05∗ 0.01 0.00∗

BART −0.05∗ −0.07∗ −0.09∗ −0.07∗
RecipeCrit 0.12 0.14 0.10 0.14

Table 2: Human evaluation of edited recipes in terms of
best-worst scaling for serendipity, correctness, coher-
ence, and relevance. ∗ denotes a significant difference
compared to RecipeCrit (posthoc Tukey test, p < 0.01).

the recipe latent representation that is then attended
over during step generation, RecipeCrit achieves
30-50% relative improvement in success rate for
adding ingredients and 20-65% relative improve-
ments in coherence (F1 score between predicted
ingredients and those mentioned in the instructions)
for both addition and removal. Meanwhile, base-
lines tend to ignore many ingredients in the ingre-
dient list when generating new recipe directions.

Human Evaluation We have established that
RecipeCrit creates edits that better satisfy user con-
straints (as expressed via critiques), more closely
resemble the user’s original preferences (base
recipe), and make better use of the predicted in-
gredients (ingredient coherence). We next perform
a qualitative human evaluation of our edited recipes
via Mechanical Turk, asking the user: how pleas-
antly surprised they were (Serendipity); whether
the recipe respected their feedback (Correctness);
how easy the recipe was to follow (Coherence); and
whether the recipe resembled the original recipe
(Relevance). We uniformly sampled 800 edited
recipes (400 for adding and 400 for removing)
across the ingredients to critique and showed them
in random order. The annotators judged the edited
recipes using best-worst scaling (Louviere et al.,
2015) with scores normalized to [−1,+1]. Table 2
shows that our edited recipes are largely preferred
on all criteria. Our results highlight that critiquing
improves the coherence of generated recipes and
their resemblance to the original ones.

Case Study Table 3 shows a sample of our best-
performing baseline (BART) and RecipeCrit edit-
ing the “cherry tomato confit” recipe to include
“kale”. While both edited recipes include kale,
RecipeCrit stays faithful to the user’s preference
for “tomato confit” while incorporating the new
feedback: it makes a slightly different tomato con-
fit but uses kale as the “fresh” or salad part of the
dish. However, BART generates a cocktail recipe
instead that ignores the base recipe: it’s a drink
rather than food, sweet rather than savory, and ig-

378



Cherry tomato confit (base recipe)

clove, oil, pepper, rosemary, salt, tomato

1) preheat oven to 325 degrees
2) spread tomatoes and garlic on a sheet.
3) drizzle with oil, and sprinkle with rose-
mary, crushed red pepper, a large pinch of
salt and several grinds of pepper.
4) bake until tomatoes are wrinkled and fra-
grant, about 45 minutes, shaking pan.
5) transfer tomato pan to a rack to cool.
6) discard garlic.

BART

kale, cachaca, cream, ice, juice, liqueur,
pineapple, rum, strawberries, sugar, water
clove, oil, pepper, rosemary, salt, tomato

1) place ice cubes in a cocktail shaker.
2) add pineapple juice, coconut liqueurs,
cachacca, cream and rum ; shake well add
crushed ice to a collins glass.
3) add kale and strawberries to shaker.
4) strain drink into glass over crushed ice.
5) garnish with strawberry and pineapple.

RecipeCrit (Ours)

clove, kale, oil, pepper, rosemary, salt,
tomato

1) heat oven to 350 degrees.
2) place tomatoes in a large bowl.
3) drizzle with olive oil and sprinkle
with rosemary, salt and pepper; coat.
4) spread in a single layer on a sheet.
5) roast for 40 minutes.
6) remove and let cool for 10 minutes.
7) toss kale with tomatoes and garlic.

Table 3: Comparison of a cherry tomato confit recipe with its edited versions to include “kale” as an additional
ingredient. RecipeCrit proposes tomato confit with kale, but BART disregards the base recipe to make a cocktail.

nores tomatoes altogether. This aligns with the
results of the human evaluation. Complementary
results are shown in Table 5 and 6.

RQ2: Variants of Critiquing Algorithms Now
we show the significance of the early stopping
mechanism in our particular critiquing module
compared to previous thresholding methods (An-
tognini et al., 2021a; Wang et al., 2019). To demon-
strate why, we re-run experiments from RQ1 and
compare our early stopping against two baseline
thresholding criteria using 1) the absolute differ-
ence (i.e., |C(z∗t )c−ỹing

c | < τ ) and 2) the L1 norm
(i.e., ||C(z∗t ) − ỹing ||1 < τ ). We find that an L1-
based stopping criterion is suboptimal due to the
high dimensionality of the ingredients. Using the
absolute difference considerably improves the suc-
cess rate (+25% for add and +12% for remove).
Finally, our early stopping further increases the suc-
cess rate (+10%) for both adding and removing an
ingredient (see App. for exact numbers).

4 Conclusion

We present RecipeCrit, a denoising-based model
to edit cooking recipes. We first trained the model
for recipe completion to learn semantic relation-
ships between the ingredients and the instructions.
The novelty of this work relies on the user’s abil-
ity to provide ingredient-focused feedback. We
designed an unsupervised method that substitutes
the ingredients and re-writes the recipe text accord-
ingly. Experiments show that RecipeCrit can more
effectively edit recipes compared to strong base-
lines, creating recipes that satisfy user constraints
and are more serendipitous, correct, coherent, and
relevant as measured by human judges. For future
work, we plan to extend our method to large pre-
trained language models for other generative tasks
and to explainable models in the context of ratio-

nalization (Bastings et al., 2019; Antognini et al.,
2021b; Lei et al., 2016; Yu et al., 2021; Antognini
and Faltings, 2021).

5 Limitations

We demonstrated the effectiveness of our method
for the English language since, to the best of our
knowledge, there is no multi-lingual dataset similar
to Recipe1M. We would expect similar behavior for
languages having similar morphology to English.

Regarding computational resources, the training
on a single GPU takes a couple of hours, while the
inference and the critiquing can run on a single-
core CPU (in the range of 10 to 100 ms).

Cooking recipes are long and complex docu-
ments. While current language models and similar
ones have achieved impressive results, they still
suffer from a lack of coherence for long documents.
We have shown in our experiments that RecipeCrit
produced recipes whose coherence is preferred over
the baselines by human annotators. However, there
is still room for improvement as language model-
ing approaches for recipe generation do not have
an explicit guarantee of coherence (i.e. only listed
ingredients used, instructions only make use of in-
gredients or products mentioned before).

Similarly, as recipe instructions can consist of
free-text, there is no guarantee that recipe texts
will, for example, completely remove an ingredi-
ent. In real-world usage, our system can be adapted
by post-processing the recipe, including perform-
ing beam-search sampling and eliminating non-
satisfactory recipes. As a result, we continue to
urge caution for users with e.g. severe ingredient
allergies who may still need to carefully review
edited recipes to ensure compliance.
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Table 4: Reconstruction performance. We report the
IoU and F1 ingredient scores, and the Precision, Recall,
and F1 scores of ingredients in predicted instructions
w.r.t. predicted ones.

Ingr. Fidelity Predicted Instr.

Model IoU F1 Prec. Rec. F1
RecipeGPT 73.5 84.7 61.2 72.6 66.4
BART 76.7 86.4 61.5 64.7 63.1
RecipeCrit 78.6 88.2 68.2 73.0 70.5

A Ingredient & Recipe Reconstruction

As baseline recipe generation models are unable
to perform editing, we train all models using our
denoising recipe completion task. To evaluate their
generalization performance, we ask the models to
reconstruct recipes from the unseen test set, with
results shown in Table 4. We measure how well
each model can infer the missing ingredients given
the partial recipe context (IoU and F1 ingredient
scores), as well as how coherent the reconstructed
recipes are—the precision, recall, and F1 score of
ingredients mentioned in the generated instructions
compared to the predicted ingredients list.

RecipeCrit outperforms baselines in both mea-
sures. In particular, we find a significant im-
provement in ingredient mention precision, indicat-
ing that RecipeCrit better constrains its generated
recipe directions based on the predicted ingredients
list. Meanwhile, RecipeGPT and BART both tend
to mention new ingredients in the recipe text even if
they are not included in the ingredients list. As we
see in Section 3, this is problematic because such
models can include ingredients in the recipe steps
even if users have specified dislikes or allergies.

Such text-to-text models capture the distribu-
tion of language well, producing fluent-sounding
text. However, their lower scores for ingredient
completion and recipe text coherence suggest that
RecipeGPT and BART cannot distinguish how
recipes are procedural texts with internal consis-
tency, compared to generic text documents.

B Additional Training Details

We use a batch size of 32, dropout of 0.2, and
Adam with learning rate 0.0001. For the baselines
RecipeGPT and PPLM, we reuse the official code
from the authors. For BART, we employ the Hug-
gingFace library.
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Figure 2: Critiquing algorithm comparison between
global or local stopping criteria with threshold or early
stopping.

B.1 Hardware / Software
• CPU: 2x Intel Xeon E5-2680 v3, 2x 12 cores,

24 threads, 2.5 GHz, 30 MB cache;

• RAM: 16x16GB DDR4-2133;

• GPU: 1x Nvidia Titan X Maxwell;

• OS: Ubuntu 18.04;

• Software: Python 3.6, PyTorch 1.6.1, CUDA
10.2.
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Algorithm 1 Iterative Critiquing Gradient Update (Crit).

1: function CRITIQUE(latent vector z, critiqued ingredient c, trained ingredients predictor C, decay
coefficient ζ, patience P , a maximum number of iterations T , desired ingredients ỹing )

2: Set z0 = z∗ = z, α0 = 1, best_val =∞, patience = 0, t = 1;
3: while patience < P and t < T do
4: gt−1 = ∇zt−1Ling(C(zt−1), ỹing);
5: zt = zt−1 − αt−1 gt−1

||gt−1||2 and ŷing = C(zt)

6: if |ỹing
c − ŷing

c | < best_val then
7: best_val = ŷing

c , z∗ = zt, and patience = 0
8: else
9: patience = patience + 1

10: αt = ζαt−1 and t = t+ 1;
11: return z∗;

Table 5: Comparison of a cherry tomato confit recipe with its edited versions to include “kale” as an additional
ingredient. None of those baselines add the critique ingredient. RecipeGPT disregards the base recipe. PPLM
generates a recipe in the same style than the base one, but three times longer and with a lack of coherence.

Cherry tomato confit (base recipe)

clove, oil, pepper, rosemary, salt, tomato

1) preheat oven to 325 degrees
2) spread tomatoes and garlic on a sheet.
3) drizzle with oil, and sprinkle with rosemary, crushed red
pepper, a large pinch of salt and several grinds of pepper.
4) bake until tomatoes are wrinkled and fragrant, about 45
minutes, shaking pan.
5) transfer tomato pan to a rack to cool.
6) discard garlic.

RecipeGPT

cream, cheese, margarine, milk, onion, pepper, salmon,
salt, tea
clove, oil, rosemary, tomato

1) saute green peppers and onions in margarine.
2) add cream cheese and stir until melted.
3) add velveeta, milk and corn.
4) heat until melted, stirring occasionally.
5) add salt.
6) garnish with thin strips of red pepper and cilantro.
7) serve with crackers.

PPLM

oil, pepper, tomato, clove, rosemary, tomato

1) preheat the oven to 400 degrees f.
2) place a large roasting pan in the center of the oven.
3) heat the olive oil in a large skillet over medium heat until hot.
4) add the tomatoes and cook for about 3 minutes or until the skins begin to split.
5) place in the oven for about 30 to 40 minutes until the skins begin to blister and shrivel.
6) place the tomatoes in cold water to cool, then remove the skins.
7) in a bowl, combine the tomatoes and their juices, salt, and pepper, tossing well to coat evenly.
8) remove the tomatoes, place them on a sheet tray, and bake for about 45 minutes, until the skins begin to blister and shrivel.
9) the tomatoes should still be juicy, and the skins should be very wrinkly. remove the tomatoes from the oven and let cool.
10) remove the skins from the tomatoes and discard the skins. transfer the tomatoes to a clean food processor.
11) blend the tomatoes with the roasted garlic, and add the peppercorns in the last 3 minutes of the cooking time, just until you
can no longer process the tomatoes into a paste. place a sheet of parchment paper 12) on a clean work surface.
13) place a sheet of the phyllo on the work surface.
14) (keep the rest of the oil covered with damp paper towel.
15) brush the sheet of phyllo with oil. repeat with two more sheets of phyllo to form the second sheet.
16) you should have four layers.
17) if you have extra sheets left, place on a baking sheet and toast in oven with the oven door propped open until the sheets
become golden brown.
18) remove the phyllo sheets from the oven and place on a clean work surface. cut each layered sheet along the scored lines into
quarters.
19) place 1 heaping tablespoon of the tomato-peppercorn mixture in the center of each of four phyllo sheets.
20) fold the phyllo over into a triangle and place on a parchment-lined baking sheet. bake at 400 degrees f for 7 to 8 minutes,
until lightly browned.
21) cool slightly before removing from the baking sheet, and serve warm.
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Table 6: Comparison of a baked parmesan fish recipe with its edited versions to include “cream” as an additional
ingredient. RecipeCrit incorporates the cream into a single-batter style fry, while BART only uses cream as a “serve
with sour cream” addition to the original recipe. RecipteGPT disregards the base recipe to make a pizza. PPLM
generates a completely different and incoherent recipe, and it suffers from text degeneration.

Baked parmesan fish (base recipe)

catfish, cheese, egg, flour, milk, paprika,
pepper, salt

1) preheat oven to 350 degrees.
2) rinse fillets and pat dry with paper towel.
3) in a pie plate , combine parmesan cheese
, flour , paprika , salt and pepper.
4) in another pie plate , combine milk and
beaten egg.
5) dip fillet in egg mixture and then coat
with parmesan cheese mixture.
6) place in a well greased 9 x 13 pan.
7) bake uncovered for 25-30 minutes or un-
til fish easily flakes with a fork.

BART

cream, egg, fillets, flour, garlic, milk, pa-
prika, parsley, pepper, salt, thyme
catfish, cheese

1) preheat oven to 350 degrees.
2) rinse fillets and pat dry with paper
towel.
3) in a pie plate, combine parmesan
cheese, flour, paprika, salt and in an-
other pie plate or bowl, combine milk and
beaten egg.
4) dip fillet in egg mixture and then coat
with parmesa cheese mixture.
5) place in a well greased 9 x 13 pan.
6) bake uncovered for 25-30 minutes or
until fish easily flakes with a fork.
7) remove from oven and let stand for 5
minutes.
8) serve with sour cream and lemon
wedges.
9) enjoy!

RecipeCrit (Ours)

catfish, cheese, cream, egg, flour, pa-
prika, pepper, salt
milk

1) preheat oven to 350 degrees f ( 175
degrees c ).
2) grease a baking dish.
3) rinse fillets and pat dry with paper
towel.
4) in a medium bowl , mix together the
cream cheese , sour cream , flour , salt ,
paprika , and pepper.
5) beat in the eggs.
6) dip filles
7) pour the mixture into the baking dish.
8) bake in the preheated oven until the
fish flakes easily with a fork , about 30
minutes.

RecipeGPT

crusts, jalapeno, mushrooms, oil, popcorn, sauce, tomato
catfish, cheese, egg, flour, milk, paprika, pepper, salt

1) combine barbecue sauce and tomato sauce in bowl ;
set aside.
2) toss mushrooms with oil ; bake in 425 degrees f
standard oven 5 min.
3) or until softened.
4) place crusts on sheet pan.
5) spread each crust with 1/2 cup sauce mixture.
6) top evenly with mushrooms, jalapenos, shrimp and
cheese.
7) bake 7 min.
8) or until cheese is melted and golden brown.
9) slice each pizza into 8 pieces.
10) serve with remaining barbecue sauce mixture.
11) serve with pickled jalapeno slices.

PPLM

basil, bread, butter, cod, garlic, eggplant, oil, onions, parmesan,
parmigiano, parsley, pepper, salt, tomatoes
catfish, cheese, egg, flour, milk, paprika, pepper

1) preheat oven to 400 degrees.
2) wash the potatoes and put them in a saucepan with the cream.
3) bring cream to a boil and add the parmigiano-cream cheese
and the cream and cream.
4) let simmer, stirring often, to make a soft creamy cream and
thick cream cheesecreamcream.
5) season with salt and pepper set aside. melt the cream cheese
and cream togethercream and cream together.
6) beat in the buttercreamcreamcreamcreamcreamcream is
verycreamcreamcreamcreamcreamcreamcreamcream.
7) creamcreamcreamcreamcreamcreamcreamcreamingcream-
creamcreamcreamcreamcreamcreamcream.
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Abstract

Zero-shot cross-lingual transfer is promising,
however has been shown to be sub-optimal,
with inferior transfer performance across low-
resource languages. In this work, we envision
languages as domains for improving zero-shot
transfer by jointly reducing the feature incon-
gruity between the source and the target lan-
guage and increasing the generalization capa-
bilities of pre-trained multilingual transformers.
We show that our approach, DiTTO , signifi-
cantly outperforms the standard zero-shot fine-
tuning method on multiple datasets across all
languages using solely unlabeled instances in
the target language. Empirical results show that
jointly reducing feature incongruity for multi-
ple target languages is vital for successful cross-
lingual transfer. Moreover, our model enables
better cross-lingual transfer than standard fine-
tuning methods, even in the few-shot setting.

1 Introduction

Due to the emergence of pre-trained Mas-
sively Multilingual Transformers (MMTs) such as
mBERT (Devlin et al., 2019), XLM-R (Conneau
et al., 2020) and mT5 (Xue et al., 2020), zero-shot
cross-lingual transfer (Hu et al., 2020; Ruder et al.,
2021; Lauscher et al., 2020; Ansell et al., 2021;
Pfeiffer et al., 2022) has received significant atten-
tion in the NLP community. This approach orig-
inated due to the skew in resource distribution in
languages (Joshi et al., 2020), with most languages
of the world having a scarcity of labeled data. Zero-
shot transfer involves fine-tuning the MMT with
task-specific data in one or more source languages,
followed by evaluation on target languages whose
labeled instances are not used during fine-tuning.
Accurate zero-shot transfer is crucially important
for MMTs to be useful for low-resource languages.

The performance of MMTs drops in the fol-
lowing two cases - when the source and target
languages exhibit dissimilar typological features,

or when the size of pre-training data in the tar-
get language is limited (Lauscher et al., 2020;
Ebrahimi et al., 2022). Two common techniques to
improve zero-shot performance include few-shot
cross-lingual transfer (Lauscher et al., 2020; Kumar
et al., 2022) and the translate-train approach (Ruder
et al., 2021; Ahuja et al., 2022). Several studies
have been conducted comparing these approaches,
of which (Ahuja et al., 2022) concludes that if the
cost of machine translation is greater than zero, the
optimal and lowest-cost performance is achieved
with at least some manually labeled data (i.e. the
few-shot method). Since annotating data is expen-
sive for many languages (Dandapat et al., 2009;
Sabou et al., 2012; Fort, 2016), we investigate im-
proving cross-lingual zero-shot transfer using only
unlabelled data in this paper.

Zero-shot Cross-lingual Transfer has been iden-
tified as an under-specified optimization problem
(Wu et al., 2022). A majority of the solutions re-
ports a high performance on the source language
but fluctuating performance on target languages.
Wu et al. (2022) use linear interpolation to prove
that it is possible to obtain a subset of solutions
which have optimal performance on both source
and target languages. Furthermore, they also con-
clude that current optimization techniques cannot
converge to this smaller subset of optimal solutions
without the availability of labeled target language
data. Aghajanyan et al. (2020) and Liu et al. (2021)
have observed similar behavior in the zero-shot
setup and hypothesize that sub-optimal zero-shot
performance may be due to the degradation of gen-
eralizable representations of MMTs during the fine-
tuning stage. This leads to the model trained on
the source language not being able to generalize
well to the target languages. MMTs have also been
shown to be over-parameterized (Smith and Le,
2018; Kolesnikov et al., 2020; Zhang et al., 2021),
which leads to memorizing the training data (source
language) and achieving poor generalization during
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Figure 1: Relation between the zero-shot performance
using mBERT, and CKA similarity between the source
(EN) and various target languages in XNLI dataset.

cross-lingual transfer.
Similar to Deshpande et al. (2022), in our ex-

periments, we also observe that once MMTs are
fine-tuned on source languages, there is an incon-
gruity between the features of the source and target
languages, as shown in Figure 2. We speculate that
the mismatch in the feature representation space
causes problems in generalization. We also find
that this mismatch strongly correlates with zero-
shot performance as shown in Figure 1.

Furthermore, we hypothesize that this instabil-
ity can be reduced either by finding solutions that
can generalize well or learning to match the fea-
ture representations. Solutions (Zhang et al., 2018;
Jiang et al., 2020) that have been used for improv-
ing generalization in other tasks can be considered,
so that the model reaches to a better local minima.
Sharpness-aware Optimization (SAM) (Foret et al.,
2021) is one such technique that has been used
to improve the generalization of language models
(Bahri et al., 2022) and vision transformers (Chen
et al., 2021) by smoothing the loss landscape for
various adversarial tasks. SAM is used to gen-
eralize across domains, however, by treating lan-
guages as separate domains, we can apply SAM for
generalizing across languages. While SAM looks
promising, our experiments (cf. 7.3) showed that
it does not guarantee optimal generalization at all
times. We need to further reduce the incongruency
between language features by aligning target lan-
guage features to mimic the features of the source
language. We propose DiTTO for improving
cross-lingual transfer by source language Directed
adversarial Transition of Target language using
sharpness aware Optimization.

The key contributions of this work are: 1) Ex-
hibiting the limitations of standard fine-tuning by
unveiling the feature incongruity between source
and target languages. 2) DiTTO enhances cross-
lingual transfer by joint feature transformation
of the multiple target languages to mimic the

source. 3) DiTTO makes cross-lingual transfer
cost-effective and efficient for distant (typologi-
cally different languages), resource-lean and un-
seen (not present in the pre-training data) lan-
guages. 4)DiTTO exhibits superior performance
compared to augmenting the training data for either
the source or the target language.

2 Related Work

Cross-Lingual Transfer: Since the inception of
pre-trained MMTs, zero-shot learning has become
popular for cross-lingual tasks. Recent works
(Lauscher et al., 2020; Ebrahimi et al., 2022; Wu
et al., 2022) have shown it to be sub-optimal for tar-
get languages which are either distant to the source
language or have limited data during pre-training of
the MMT. Some works (Wu and Dredze, 2020; Yu
and Joty, 2021) have tried to improve the transfer
using feature alignment from parallel data or bi-
texts (Zhang et al., 2020; Tiedemann, 2012) which
is often expensive to obtain for many languages.
To address this issue, DiTTO relies only on unla-
beled data in the target languages. As pre-training
size of the language affect transfer performance,
adapter-based frameworks (Pfeiffer et al., 2020;
Ansell et al., 2021) have been proposed for learning
language and task representations for low-resource
languages and languages that are unseen during
pre-training. Though this framework is helpful for
unseen languages, it provides limited gains for ty-
pologically dissimilar and high resource languages,
and our method can easily be integrated with adap-
tors to further improve the transfer performance.
Improving Generalization: Deep neural networks
such as MMTs are generally over-parameterized
and fine-tuning leads to easy memorization of the
labeled training data, does not always general-
ize well to other domains (Smith and Le, 2018;
Kolesnikov et al., 2020; Zhang et al., 2021). Var-
ious methods have been proposed to improve the
generalization like dropout (Srivastava et al., 2014),
label smoothing (Müller et al., 2019), batch normal-
ization (Ioffe and Szegedy, 2015), mixup (Zhang
et al., 2018).

A few papers (Dziugaite and Roy, 2017; He et al.,
2019; Jiang et al., 2020) have explored the connec-
tion between the flatness of minima and general-
ization gaps, showing flatter minima leads to better
generalization. Recently, SAM has been proposed
to find a smoother minima by minimizing the loss
value and its sharpness. SAM has been shown to
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improve the generalization capabilities of vision
transformers (Chen et al., 2021). Recently, Bahri
et al. (2022) employed SAM in language models
such as GPT-3 (Brown et al., 2020) and T5 (Raf-
fel et al., 2020), showing significant improvements
in generalization in English. In this work, we use
SAM to improve the generalization across other
languages. Another line of work (Aghajanyan et al.,
2020; Liu et al., 2021) hypothesizes that inferior
transfer is due to forgetting and degradation of fea-
ture representation from pre-trained MMTs when
they are fine-tuned on the source language data.
They propose to preserve the pre-trained features
to improve the generalization using regularization
and continual learning.
Unsupervised Domain Adaptation (UDA): Var-
ious studies have been proposed to reduce the
domain shift to perform UDA by minimizing
discrepancy distances such as Maximum Mean
Discrepancy (MMD) (Long et al., 2015) and
correlation alignment distance (Sun and Saenko,
2016). Adversarial-based feature alignment meth-
ods (Ganin and Lempitsky, 2015; Ganin et al.,
2016; Long et al., 2018; Kurmi et al., 2019) have
been one of the popular UDA methods where
the domain discrepancy between the domains is
reduced using an adversarial objective. In this
work, we use Domain-Adversarial Neural Net-
works (DANN) (Ganin et al., 2016) for performing
adversarial adaptation of languages.

3 Background

Training a Zero-Shot Model: In zero-shot cross-
lingual transfer, we fine-tune an MMT on a source
language and evaluate its performance on the target
language, whose instances are not used during fine-
tuning. To do this, we need a source language s and
task-specific labeled dataset Ls = {(xsi , ysi )}ni=1

with n examples. We use the provided MMT
M as the encoder and fine-tune it along with the
task-specific classifier C by minimizing the cross-
entropy loss:

Ltrain(M, C) = E(xsi ,y
s
i )∼Ls

L(C(M(xsi )), y
s
i )

(1)

Sharpness-Aware Minimization (SAM): SAM
seeks to find the parameter w such that even its
neighborhood has seemingly similar low training
loss Ltrain with minimal variation by optimizing the
following objective:

min
w

max
||ϵ||2≤ρ

Ltrain(w + ϵ) (2)

where ρ is the size of the neighborhood. Since, the
exact solution of the inner maximization is hard to
obtain, the authors of SAM propose a simple first
order approximation:

ˆϵ(w) ≈
argmax
||ϵ||2≤ρ

Ltrain(w) + ϵT∇wLtrain(w)

= ρ∇wLtrain(w)/||∇wLtrain(w)||2

(3)

After computing ϵ̂, the parameter w is up-
dated based on the the sharpness-aware gradient
∇wLtrain(w)|w+ ˆϵ(w)

.
Domain-Adversarial Neural Networks (DANN):
DANN (Ganin et al., 2016) has been successful
applied for many unsupervised domain adaptation
tasks for minimizing the domain shift (Du et al.,
2020; Long et al., 2018). DANN needs a labeled
source domain dataset Ls = {(xsi , ysi )}ni=1 with n
examples and an unlabeled target domain dataset
Ut = {xti}

m
i=1 with m examples. It consists of

three modules: Encoder E , Task-Specific Classifier
C, and Domain Discriminator D. In a nutshell,
DANN requires solving a two-player game where
the first player is the Domain Discriminator D, is
trained to distinguish the target domain from the
source domain, and the second player is the encoder
E , which is trained simultaneously to confuse the
Discriminator D such that the encoder learns to
generate domain invariant features. We minimize
the task-specific classification loss LC using the
source domain labeled dataset for optimizing the
classifier C and encoder E .

LC(E , C) = E(xsi ,y
s
i )∼Ls

L(C(E(xsi )), ysi ) (4)

D is trained to predict the domains by minimiz-
ing domain classification loss:

LD(E ,D) = −Exsi∼Ls log[D(E(xsi ))]
−Extj∼Ut

log[1−D(E(xtj))]
(5)

LD is maximized for E so that D is not able to
distinguish between the domains. The minimax
optimization of DANN is defined as:

min
E,C

LC(E , C)− λLD(E ,D)

min
D

LD(E ,D)
(6)

where λ is a hyper-parameter to control trade-off
between classification and domain adversarial loss.
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(a) Language-wise Labels (Zero-shot) (b) Class-wise Labels (Source: EN) (c) Class-wise Labels (Target: RU)

(d) Language-wise Labels (DiTTO) (e) Class-wise Labels (Source: EN) (f) Class-wise Labels (Target: RU)

Figure 2: 3D t-SNE visualization of the features from the last layer of fine-tuned mBERT on XNLI (S=1%).

mBERT XLM-R

Dataset |T| 1% 10% 100% 1% 10% 100%

XNLI 14 10.3 12.3 15.5 8.3 10.3 11.3
MARC 5 14.8 18.1 20.3 4.5 8.8 9.9
AmNLI 10 24.8 32.9 41.2 29.9 39.2 45.1

Table 1: We have reported the mean of difference △
between the zero-shot performance of all the target lan-
guages and source language for varying amount of the
source language (EN) data used while fine-tuning. |T| is
the number target languages available in the dataset.

4 Limitations of Zero-shot Learning

Inconsistent Cross-Lingual Transfer: We have
reported the average difference (δ) in the zero-shot
performance between the target and the source lan-
guage in Table 1. We experiment with mBERT and
XLM-R on XNLI (Conneau et al., 2018), AmNLI
(Ebrahimi et al., 2022) and MARC (Keung et al.,
2020) datasets to measure the average δ between
zero-shot performance of the target and source lan-
guage. Table 1 shows that XNLI and AmNLI hav-
ing relatively higher δ due to diverse number of lan-
guages. We also notice that mBERT has a higher δ
than XLM-R across all tasks except AmNLI, show-
ing the importance of amount of pre-training size.
Feature Incongruity between Languages: We
hypothesize that the inconsistent zero-shot perfor-
mance is due to the mismatch in the feature rep-
resentation space of the fine-tuned MMT on the

source language. To verify that we visualize the
target and source language feature representations
learned using standard zero-shot training method
using 3D t-SNE (Van der Maaten and Hinton, 2008)
in Figure 2. In Figure a, there is clear distinction
between the source (En) and target language (Ru)
features. While in Figure 2b and 2c, the feature
space for the entailment class is overlapping with
the source language, but fairly distinct for the other
two classes, this could be potential cause for infe-
rior cross-lingual transfer.

We measure centered kernel alignment (CKA)
(Kornblith et al., 2019) between the source and
the target language feature representations to quan-
tify the incongruity. In Figure 1. We have plotted
the CKA similarity with the zero-shot performance
across all the languages. The plot suggests that
there is a strong correlation between CKA and zero-
shot performance, with Pearson and Spearman cor-
relation coefficients as 0.98 and 0.96, respectively
establishing our hypothesis.

5 Unveiling DiTTO

Typological similarity and incongruency between
feature representations lead us to envision different
languages as domains. As discussed in the previous
section, DANN is useful in minimizing the domain
shift across domains using only unlabeled data in
the target domain. We propose to perform adver-
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sarial adaptation of the target language features for
transforming the same towards the source language
feature distribution.

We have a set of target languages T with each
target language t having dataset Ut = {xti}Ti=1

with T unlabeled examples and an unlabeled set
Us = {xsi}Si=1 with S examples in the source
language. In DANN, there is one target domain,
whereas in our case we have a set of target lan-
guages T and we hypothesize and empirically show
that performing adaptation for each language sep-
arately may cause degradation in other target lan-
guages, as seen in Table 5. Hence, we propose
DiTTO where we jointly perform adaptation across
all target languages.

DiTTO consists of an MMT M for encoding
the features, a task-specific classifier C and Lan-
guage Discriminators DL = {DLt }|T|i=1. We train
these modules using two losses: task-specific clas-
sification loss LC , defined in the Equation (1) and
language discrimination loss LL for distinguishing
the target and source language.

As we have |T| discriminators, we randomly
sample a target language t from a prior distribution
p(T) at each training step and train the discrimi-
nator {DLt } to accurately distinguish target t and
source language using the following loss:

LL(M,DL
t ) = −Exsi∼Us log[b

L
t (M(xsi ))]

−Extj∼Ut
log[1−DLt (M(xtj))]

(7)

We maximize the above loss LL(M,DLt ) for con-
fusing the language discriminator DLt to transform
the target features towards the source language.

In our initial experiments (reported in Table 4),
we observed some instability due to adversarial
adaptation (Mao et al., 2017; Xing et al., 2021).
We propose optimizing the task-specific loss LC
using SAM so that it may generalize to the target
languages, improving the stability during adver-
sarial adaptation. We directly fine-tune the MMT
M on the source language labeled dataset Dls by
minimizing Equation (1) using SAM. Following
DANN and SAM, the final optimization objective
of DiTTO can be defined as:

min
M,C

max
||ϵ||2≤ρ

LC(M̂, Ĉ)− λEt∼p(T)LL(M,DLt )

(8)

min
DL

Et∼p(T)LL(M,DLt ) (9)

where M̂, Ĉ are the updated parameters using ϵ.

6 Experimental Setup

6.1 Datasets
We evaluate our method on three benchmark
datasets consisting of languages from various lan-
guage families, to ensure better cross-lingual trans-
fer evaluation. XNLI dataset (Conneau et al., 2018)
consists of translated dataset in 14 languages from
English. The task requires any model to predict
whether the premise entails, contradicts, or neutral
to the given hypothesis. AmericasNLI (AmNLI)
dataset (Ebrahimi et al., 2022) is an extension of
XNLI to 10 indigenous languages of the Ameri-
cas, which are even unseen during pre-training of
XLM-R and mBERT. Multilingual Amazon Review
Corpus (MARC) dataset (Keung et al., 2020) is a
large-scale dataset consisting of Amazon reviews
for text classification in 6 languages. We use the
review text and title to predict its star rating.

6.2 Baselines and DiTTO Variants
In the Baseline experiments, we fine-tune MMTs
on labeled data of the source language using Equa-
tion (1). In the vanilla DiTTO setup, we use all
the target languages available in the dataset. In the
vanilla setup, we want to assign a higher probabil-
ity to those target languages with a lower zero-shot
performance from the Baseline method. We de-
fined the prior distribution p(T) of target languages
as follows:

∆t = max(Z(s)−Z(t), 0) (10)

p(t) = δt + σ∆t (11)

where, Z is the zero-shot performance from the
Baseline method, ∆t is the non-negative delta be-
tween the source and target language, and σδ is the
standard deviation of the ∆t across all the target
languages.
DiTTO (UNF) is a variant of vanilla DiTTO in
which we set the prior distribution p(T) to be uni-
form across all the target languages. DiTTO (t) is
a single target language variant of DiTTO where
only one target language t is used during training.
DiTTO-LA does not perform adaptation of the tar-
get languages, however optimization is done using
SAM on the source language labeled data. DiTTO-
SAM performs language adaptation without SAM.

6.3 Training Details
We conduct all of our experiments using mBERT
(bert-base-multilingual-cased) and XLM-R (xlm-
roberta-base). We use a batch size of 32 and a
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maximum sequence length of 128 across all the
datasets. We fine-tune for {15, 20, 25}, {3, 5, 7},
{2, 3, 5} epochs while using 1%, 10% and 100%
of the source language data respectively. We use
the AdamW (Loshchilov and Hutter, 2018) opti-
mizer with linear scheduler and learning rate as
1e-5 for the encoder and classifier and 5e-5 for the
discriminator. We set the λ hyper-parameter as 1
for all the experiments. We run experiments for
each hyper-parameter and report the best average
accuracy on three random seeds.

7 Results

In this section, we describe the results of several ex-
periments to analyze the DiTTO method and com-
pare its performance with the Baseline in the zero-
shot setting. In order to justify the robustness of our
method, we conduct experiments with the varying
amount of source language data. In our experi-
ments, EN is the default source language and we
categorize target languages as follows: 1. Distant:
languages that are typologically dissimilar to the
source language 2. Low-resource: languages that
have scarcity of data for pre-training 3. Unseen:
languages that were not included in the pre-training
data of MMT. Furthermore, we compare the tech-
niques in the few-shot setting with few labeled
examples in target languages. Then, we perform a
thorough ablation study and analyze various vari-
ants of DiTTO . Finally, we show evidence in the
form of congruity between the source and target
language feature representations and t-SNE visual-
ization in support of our hypothesis.

7.1 Zero-shot Transfer Results

Performance across datasets: In Table 2, we have
reported the relative gains from DiTTO for zero-
shot setting averaged across all the languages over
the baseline method using 1%, 10% and 100% of
the source language data. We observe the gains are
positive (upto 23.05%) across all the training con-
figurations. The gains are much higher for mBERT
than XLM-R due to lower cross-lingual transfer in
mBERT except the AmNLI dataset. The relative
gains start to decrease with the increased amount
of the source language data S on all the datasets
except AmNLI, where the gains remains consistent
for higher values of S (10% and 100%).
Performance across Seen Target Languages: We
have reported the absolute gains of DiTTO in Fig-
ure 3 on XNLI using XLM-R We observe positive

mBERT XLM-R

Dataset 1% 10% 100% 1% 10% 100%

XNLI 23.05 6.58 2.10 13.57 4.10 2.71
AmNLI 11.61 19.72 15.10 17.95 19.87 19.09
MARC 12.28 15.40 19.03 5.61 3.04 2.41

Table 2: Relative gains (in %) of DiTTO over Baseline.
grey

Figure 3: Absolute gains (darker shades of grey denotes
higher gains) from DiTTO for XLM-R on XNLI dataset.
Magnified view available in Figure 7 in Appendix.

Figure 4: Absolute gains (darker shades of grey denotes
higher gains) from DiTTO for XLM-R on AmNLI.

gains from DiTTO for all the target languages, with
much larger gains especially on the low-resource
and distant languages compared to the Baseline
model. Similar to the earlier observation in Table 2,
the gains starts to decrease across target languages
as we increase the amount of the source language
data.
Performance across Unseen Target Languages:
To measure the impact of DiTTO on unseen lan-
guages, we report the absolute gains from DiTTO
on XLM-R on the AmNLI dataset in Figure 4. We
have provided a similar analysis for mBERT in Fig-
ure 8 of the Appendix. The gains from DiTTO are
consistent across all unseen languages. We observe
that the gains are higher for languages with bet-
ter Baseline performances, which is in contrast to
trends on seen languages. For unseen languages,
we do not observe the trend of diminishing gains
with an increase in the source language data. If
we compare the gains on AmNLI with the XNLI
dataset, we notice DiTTO providing on average 1.7
times higher gains across all the configurations.

7.2 Few-shot Transfer Results

It can be argued that the gains from DiTTO in
zero-shot setting can be achieved using few-shot
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cross-lingual transfer. Therefore, we conduct exper-
iments in the few-shot setting by adding k labeled
instances in each of the target languages to measure
capabilities of DiTTO when some labeled data is
available along with unlabeled data. In Figure 5,
we have reported the accuracy and relative gains1

using Baseline and DiTTO on MARC dataset. We
have provided a similar analysis for AmNLI dataset
in Figure 11 in the Appendix.

Figure 5: Accuracy/relative gains on MARC dataset.

The heat maps in Figure 5 show that while XLM-
R has better accuracy than mBERT for both Base-
line and DiTTO setup, but the gains (both abso-
lute and relative) on mBERT for both methods are
higher compared to XLM-R. We also notice that by
increasing either the source or the target language
data, performance for both Baseline and DiTTO
increased and hence, we will compare the gains of
DiTTO with Baseline in these two dimensions.
Impact of Target Language Labeled Data: We
observe that when we fix the amount of source
language data and increase the value of k, the gains
from DiTTO are higher than Baseline. Also, the
gains from DiTTO on k=0 is comparable with the
gains of baseline on k=500. In AmNLI, the gains
from DiTTO for lower values of k are quite high
compared to baseline, while for higher values of k
Baseline performance for XLM-R is comparable
to DiTTO.
Impact of Source Language Labeled Data: We
also noticed that by fixing the value of k and in-
creasing the size of source language data S, there
is an increase in gains for both methods on MARC.
However, the increase in gains from DiTTO is much
higher than Baseline. At the same time, on the
AmNLI dataset consisting of unseen target lan-

1The relative gain is calculated with respect to the accuracy
obtained by the Baseline method on S = 1% and k = 0.

guages, the gains is much smaller with the increase
in S (cf. Appendix).
Chinese as Source Language: To measure the
effectiveness of DiTTO across different source lan-
guages, we conduct zero-shot experiments con-
sidering Chinese (ZH) as the source language on
the MARC dataset. We have reported the aver-
age accuracy across all the languages in Table 3.
DiTTO provides consistent gains over the Base-
line method across all the training configurations,
comparatively higher gains than EN as the source
language.

mBERT XLM-R

Dataset 1% 10% 100% 1% 10% 100%

Baseline 32.88 39.48 42.68 45.83 50.86 51.38
DiTTO 39.09 46.90 50.82 51.84 53.34 55.27

RG(%) 19.45 20.80 20.67 13.31 5.34 8.12

Table 3: We have reported the zero-shot accuracy av-
eraged across all languages with ZH as the source lan-
guage data on MARC dataset. RG denotes the rela-
tive gains averaged across all the languages from using
DiTTO over Baseline.

Performance and Cost Trade-off: DiTTO is seven
times more cost-effective in terms of both source
and target language data. We validate this by plot-
ting the accuracy from both methods against the
cost incurred while collecting the labeled data for
fine-tuning. For detailed analysis refer to the sec-
tion B in the Appendix.

7.3 Ablations and Variants Analysis

Ablation Study: Here we scrutinize the contri-
butions from adaptation of target languages and
optimization with SAM. We report the zero-shot
relative gains in Table 4 by ablating each of these
components. We observe that removing any com-
ponent reduces the performance for most of the
training configurations, indicating that both target
language adaptation and optimization have a contri-
bution in achieving better results. We also observe
that removing SAM (DiTTO - SAM) leads to un-
stable performances on XNLI and AmNLI datasets
with negative relative gains on AmNLI (S=1%) for
both MMTs, and on XNLI (S=10%) for mBERT,
showing instability caused in adversarial training
(Mao et al., 2017; Xing et al., 2021). Removing
target language adaptation (DiTTO-LA) reduces
the relative gains by a significant margin, show-
ing the importance of adaptation of target language
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features. It performs similar to DiTTO on XNLI
(S=1%) dataset using mBERT, demonstrating just
optimization using SAM can also improve cross-
lingual transfer. The performance of DiTTO - SAM,
it is often higher compared to DiTTO - LA, which
indicates that Language Adaptation is a much more
crucial for improving cross-lingual transfer.

mBERT XLM-R

Method 1% 10% 100% 1% 10% 100%

DiTTO 23.05 6.58 2.10 13.57 4.10 2.71
DiTTO - SAM 8.84 -0.36 1.80 6.04 1.81 2.02

X
N

L
I

DiTTO - LA 22.25 3.89 2.02 7.43 2.81 1.74

DiTTO 12.28 15.40 19.03 5.61 3.05 2.41
DiTTO - SAM 8.64 9.90 14.98 2.89 -0.13 2.27

M
A

R
C

DiTTO - LA 5.5 1.54 2.20 4.02 0.35 -0.54

DiTTO 11.61 19.72 15.10 17.95 19.87 19.09
DiTTO - SAM -3.85 14.35 14.52 -11.88 14.81 15.89

A
m

N
L

I

DiTTO - LA 7.21 5.17 -1.00 7.57 7.58 9.33

Table 4: Ablation Study: Zero-shot relative gains (in %)
averaged across all the languages over Baseline.

Single vs Multiple Target Language Adaptation:
In the base setup of DiTTO , we propose to perform
an adaptation of all the target languages available
in the dataset. We conduct zero-shot experiments
with a single target language variant DiTTO (t) to
validate our assumption. In Table 5, we observe
that the single language variant provides similar
gains as the vanilla DiTTO in the selected language
t. However, often there is very little/no improve-
ment observed in languages other than t. DiTTO
(JA) and DiTTO (ZH) under-perform than Baseline
for most of the languages.

Method EN DE ES FR JA ZH AVG

Baseline 54.3 42.3 42.3 43.8 36.8 32.3 42.0

DiTTO (DE) 55.7 48.2 42.4 44.0 36.5 34.9 43.8
DiTTO (ES) 55.5 42.5 45.9 45.7 36.4 34.8 43.5
DiTTO (FR) 55.2 44.9 43.7 46.4 36.5 35.6 43.7
DiTTO (JA) 55.2 40.9 41.3 42.5 38.1 33.9 42.0
DiTTO (ZH) 55.8 41.8 41.9 42.9 35.1 40.2 43.0

DiTTO (UNF) 55.0 46.4 46.2 45.9 38.5 40.4 45.4
DiTTO 55.3 47.0 45.1 46.2 38.6 40.7 45.5

Table 5: Accuracy for single and multiple target lan-
guage variants of DiTTO on MARC (S=1%, mBERT).

Target Language Prior Distribution: In DiTTO
with multiple target language variant, the prior lan-
guage distribution p(T) is used to sample a target
language for adaptation. To measure the impor-
tance of prior distribution, we experiment with two
variants: (i) sampling based on the zero-shot per-

formance of the Baseline method, which is used in
the base setup of DiTTO and (ii) DiTTO (UNF) -
with uniform sampling. Both the variants outper-
form Baseline with similar gains as shown in Table
5. In the vanilla DiTTO , where languages with
lower zero-shot performance have a higher like-
lihood during sampling, provides better gains on
these selected languages compared to the DiTTO
(UNF).
Task-Adaptive Pre-training (TAPT): The Base-
line method does not utilize the available unlabeled
data in the target languages, whereas DiTTO uses
the unlabeled data to improve the performance
across all the target languages. Recently task-
adaptive pre-training (TAPT) (Gururangan et al.,
2020; Hossain et al., 2020; Caselli et al., 2021) us-
ing unlabeled task-specific data has been shown to
improve the performance for pre-trained language
models across multiple tasks. However, TAPT has
yet to be evaluated in a multilingual setting.

To make a fair comparison, we have compared
our proposed method with another baseline us-
ing unlabelled data, we shall refer this as Base-
line (TAPT). TAPT uses continued pre-training on
the unlabeled target language data and fine-tuning
is performed using the source language labelled
dataset. We have reported the comparison between
the new baseline method in Table 6. The Baseline
(TAPT) method outperforms the Baseline method
where unlabeled data is not used in the source
language (EN); however, it regresses for all the
target languages. We hypothesize that the TAPT
method generally improves the performance of the
language used during fine-tuning. Still, it suffers
from similar issues which the Baseline method suf-
fers, such as low feature congruity in the fine-tuned
features between the languages. DiTTO , which
does not suffer the feature incongruity issue, out-
performs Baseline (TAPT) for all the languages.

Method EN DE ES FR JA ZH

Baseline 56.40 56.02 53.29 52.15 49.77 48.05
Baseline (TAPT) 57.80 55.58 52.14 51.70 49.60 45.71

DiTTO 61.28 59.06 54.87 55.50 53.29 51.01

Table 6: Comparison of Baseline and DiTTO methods
with the new Baseline method using Task-Adaptive Pre-
training (TAPT) on MARC (S=1%, XLM-R).

7.4 Congruity in Feature Representation

As shown in Figure 1 earlier that the zero-shot per-
formance and feature congruity between the source
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and target languages are highly correlated. To val-
idate our hypothesis that increasing the congruity
between the features (via language adaptation) will
improve the performance, we have plotted the in-
crement in CKA similarity from DiTTO over the
Baseline method in Figure 6. We observe incre-
ment in CKA similarity across all the languages
using DiTTO , which is comparatively higher for
distant or low-resource target languages. We also
visualize the t-SNE projection of the feature repre-
sentations of the source and the target languages in
Figure 2. It is difficult to distinguish between both
languages in this figure, showcasing the quality of
language adaptation.

8 Discussion and Conclusion

In this work, we propose a novel method to im-
prove the cross-lingual transfer capability of pre-
trained MMTs. We find that zero-shot performance
is correlated with incongruency between the fea-
tures of source and target languages. Experiments
show that our proposed method DiTTO outper-
forms the standard fine-tuning approach across
multiple setups. In general, the gains from our
method are higher on the models (as in mBERT)
with less cross-lingual transfer. AmNLI consists
only of languages that were not present in the pre-
trained MMTs leading to similar transfer perfor-
mance to the Baseline method. DiTTO improves
cross-lingual transfer using the pre-training fea-
tures, hence the gains from DiTTO are similar on
both mBERT and XLM-R. Due to a similar reason,
the relative gains for unseen languages do not fol-
low the trend observed on seen languages, where
the gains are higher for languages with the lower
cross-lingual transfer. We find higher relative gains
on unseen and low-resource languages, followed
by distant languages. We also notice that the cross-
lingual transfer improves with the amount of source
language data S for seen languages. In contrast,
for unseen languages, improvements are limited.
Due to this, the gains from DiTTO start to decrease
for high values of S for seen languages but remain
significant for unseen languages.

Our method provides similar gains using only
unlabeled data compared to the fine-tuned Base-
line model (using 500 instances for each target
language). Our ablation study shows that both LA
and SAM are essential components of DiTTO, with
LA being the primary contributor to the gains. Ex-
periments show that single language adaptation

Figure 6: Gains in CKA similarity (between features
of source and target language) from DiTTO over the
Baseline method using mBERT on XNLI (S=10%).

improves on that corresponding target language
but may regress on other languages as the feature
may remain incongruent to the source. However,
DiTTO that adapts to multiple target languages
performs best. DiTTO tries to exploit the pre-
training knowledge for improving the cross-lingual
transfer, however few promising works such as
adaptors (Pfeiffer et al., 2020; Ansell et al., 2021)
have been proposed to improve the pre-training fea-
tures for low-resource and unseen languages. How-
ever, task specific adaptors trained on the source
language will also face the issue of incongruity in
the feature representations. Hence, adaptors will
not improve the cross-lingual transfer, but only im-
proves the pre-trained features. We plan to extend
our method towards integrating with adaptors to
take advantage of pre-training features and improve
performance.

9 Limitations

Unlabeled data in the target language is essential
for the proposed method DiTTO for improving
cross-lingual transfer. Obtaining unlabeled data
can be challenging for specific tasks where the pro-
posed approach may not be applicable. However,
we recommend using the DiTTO-LA variant for
these scenarios. Another limitation of DiTTO is
that it requires all the target languages to be present
during the fine-tuning stage to obtain the perfor-
mances mentioned in our work, which might not
be viable for all the tasks. Nevertheless, the gains
from DiTTO may transfer to the new target lan-
guages if these languages are typologically similar
to the target languages used during the fine-tuning
of DiTTO . In the vanilla setup of DiTTO , the
prior language probability depends upon the zero-
shot accuracy using the Baseline method, which
requires a validation or test dataset in each target
language. This dependency may limit its appli-
cation. However, DiTTO (UNF) can be used for
obtaining similar gains if the validation sets are not
available.
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A Data Statistics

We have provided the statistics of training and test
data after removing any duplicates in each of the
target languages for all the datasets in Tables 7, 8,
and 9.

B Performance and Cost Trade-off

From the above results, it seems that DiTTO is
more cost-effective in terms of both source and
target language data We validate this by plotting
the accuracy from both methods against the cost
incurred while collecting the labeled data for fine-
tuning. Assuming there is no cost associated with
collecting unlabeled data, we define the cost C for
building a fine-tuning dataset as follows:

C = cs ∗ nls + cs ∗ ct/s ∗ k ∗ |T| (12)

where cs is the cost of obtaining one instance
labeled in the source language and we assume it to
be 3 cents considering EN as the source language.
ct/s is the relative cost of obtaining labeled data in
target language compared to the source language.
We use Gaussian Process Regression with a dot
product kernel for modeling performance with cost.
In Figure 12 and 13, we plot the accuracy for var-
ious values of ct/s against the total cost incurred
using mBERT on the MARC dataset, we observe
a convex curve with increasing curvature as the
value of ct/s increases. From the plot, we can see
that higher accuracy can be achieved using DiTTO
than Baseline at the same cost for all the values of
ct/s, showing the cost-saving nature of DiTTO with
average savings of 7 times.
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ISO Language Train Test XLM-R Group mBERT Group

AR Arabic 392403 5010 Distant Distant
BG Bulgarian 392335 5010 Distant Distant
DE German 392440 5010 Similar Similar
EL Greek 392331 5010 Distant Distant
EN English 392568 5010 Source Source
ES Spanish 392405 5010 Similar Similar
FR French 392405 5010 Similar Similar
HI Hindi 392356 5010 Distant Low-Resource
RU Russian 392318 5010 Similar Similar
SW Swahili 391819 5010 Low-Resource Low-Resource
TH Thai 392480 5010 Distant Low-Resource
TR Turkish 392177 5010 Distant Distant
UR Urdu 388826 5010 Low-Resource Low-Resource
VI Vietnamese 392416 5010 Distant Distant
ZH Chinese 392251 5010 Distant Distant

Table 7: In this table, we have reported the target language categories and statistics of training and test data available
in each language for XNLI dataset.

ISO Language Train Test XLM-R Group mBERT Group

AYM Aymara 743 750 Unseen Unseen
CNI Asháninka 658 750 Unseen Unseen
BZD Bribri 743 750 Unseen Unseen
GN Guaraní 743 750 Unseen Unseen

NAH Nahuatl 376 738 Unseen Unseen
OTO Otomí 222 748 Unseen Unseen
QUY Quechua 743 750 Unseen Unseen
TAR Rarámuri 743 750 Unseen Unseen
SHP Shipibo-Konibo 743 750 Unseen Unseen
HCH Wixarika 743 750 Unseen Unseen

Table 8: In this table, we have reported the target language categories and statistics of training and test data available
in each language for AmNLI dataset.

ISO Language Train Test XLM-R Group mBERT Group

DE German 199877 4993 Similar Similar
EN English 199891 4998 Source Source
ES Spanish 199726 4986 Similar Similar
FR French 199612 4986 Similar Similar
JA Japanese 199845 4995 Distant Distant
ZH Chinese 197418 4903 Distant Distant

Table 9: In this table, we have reported the target language categories and statistics of training and test data available
in each language for MARC dataset.

398



S = 1% S = 10% S = 100%

Language Baseline DiTTO RG Baseline DiTTO RG Baseline DiTTO RG

XLM-R

EN 67.84 69.00 1.68 78.08 79.24 1.48 83.83 82.59 -1.48
AYM 37.47 43.60 16.37 36.00 46.93 30.37 36.27 45.73 26.10
BZD 35.73 50.40 41.04 38.13 54.40 42.66 38.40 55.07 43.40
CNI 37.60 44.27 17.73 38.13 42.80 12.24 39.07 42.27 8.19
GN 42.46 49.53 16.67 42.86 56.21 31.15 39.92 48.60 21.74

HCH 33.51 41.92 25.10 38.72 41.39 6.90 37.92 41.39 9.15
NAH 38.89 44.99 15.68 42.01 45.26 7.74 42.14 46.21 9.65
OTO 37.43 42.91 14.64 38.24 43.72 14.34 38.90 45.45 16.84
QUY 37.47 42.27 12.81 37.60 43.87 16.67 37.20 46.53 25.09
SHP 38.93 46.13 18.49 42.27 46.67 10.41 41.07 45.73 11.36
TAR 40.05 40.45 1.00 35.11 44.33 26.24 36.45 43.52 19.41

AVG 37.95 44.65 17.95 38.91 46.56 19.87 38.73 46.05 19.09

mBERT

EN 62.53 64.83 3.67 71.20 73.05 2.61 81.18 79.64 -1.89
AYM 38.27 44.93 17.42 38.93 47.07 20.89 39.33 47.07 19.66
BZD 34.80 44.00 26.44 37.47 45.60 21.71 42.13 45.60 8.23
CNI 37.60 39.87 6.03 37.47 47.47 26.69 40.00 44.93 12.33
GN 40.19 46.86 16.61 38.85 49.80 28.18 41.79 51.67 23.64

HCH 34.98 40.85 16.79 36.98 45.79 23.83 39.92 44.59 11.71
NAH 40.79 44.72 9.63 42.28 46.07 8.97 43.90 48.92 11.42
OTO 38.10 38.64 1.40 37.43 41.58 11.07 37.97 44.39 16.90
QUY 38.67 39.47 2.07 36.53 42.80 17.15 38.00 43.87 15.44
SHP 38.40 40.53 5.56 40.13 46.93 16.94 41.73 46.67 11.82
TAR 35.91 40.99 14.13 36.85 44.86 21.74 35.65 42.72 19.85

AVG 37.77 42.09 11.61 38.29 45.80 19.72 40.04 46.04 15.10

Table 10: We have reported the accuracy and relative gains using XLM-R and mBERT on AmNLI dataset. The
average relative gain is denotes the average gains across all the languages except the source EN.
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S = 1% S = 10% S = 100%

Language Baseline DiTTO RG Baseline DiTTO RG Baseline DiTTO RG

XLM-R

AR 55.25 65.19 17.99 64.69 67.96 5.06 71.16 73.39 3.14
BG 60.78 68.84 13.27 70.56 73.87 4.70 76.59 78.16 2.06
DE 60.98 67.50 10.70 70.64 71.92 1.81 75.33 77.37 2.70
EL 59.78 66.75 11.65 68.72 71.02 3.34 74.91 76.47 2.08
EN 66.49 72.91 9.67 77.80 79.72 2.46 83.71 84.65 1.12
ES 63.77 69.44 8.89 72.46 74.99 3.50 77.17 79.12 2.53
FR 62.51 68.86 10.15 71.52 73.77 3.15 76.85 78.50 2.16
HI 54.85 63.81 16.34 64.07 67.05 4.64 68.98 71.32 3.39
RU 60.32 66.67 10.52 69.62 71.66 2.92 74.49 76.93 3.27
SW 51.86 60.16 16.01 61.34 63.75 3.94 65.67 66.39 1.09
TH 55.81 64.75 16.02 63.89 68.14 6.65 70.96 73.45 3.52
TR 57.88 65.89 13.83 67.62 69.98 3.48 71.82 74.03 3.09
UR 53.17 62.12 16.82 61.94 65.91 6.41 64.83 66.95 3.26
VI 58.56 66.65 13.80 68.82 72.12 4.79 74.05 75.99 2.61
ZH 58.58 66.79 14.00 68.46 70.52 3.00 73.25 75.43 2.97

Average 58.15 65.96 13.57 67.45 70.19 4.10 72.57 74.54 2.71

mBERT

AR 47.09 56.75 20.52 57.78 62.87 8.81 63.07 65.21 3.39
BG 50.00 60.26 20.52 63.31 66.47 4.98 68.78 68.50 -0.41
DE 49.44 60.10 21.56 65.35 67.92 3.94 70.00 72.02 2.88
EL 48.70 59.08 21.31 60.12 64.63 7.50 65.91 66.99 1.64
EN 57.17 64.87 13.48 72.00 74.97 4.13 81.34 82.67 1.64
ES 50.12 62.38 24.45 66.11 70.88 7.22 73.11 75.43 3.17
FR 51.96 61.40 18.17 67.52 69.06 2.28 72.63 74.91 3.13
HI 46.57 54.93 17.96 57.25 60.58 5.82 60.26 62.02 2.91
RU 49.64 58.82 18.50 63.39 66.35 4.66 67.70 68.98 1.89
SW 37.82 46.51 22.96 45.91 49.20 7.17 50.68 49.42 -2.48
TH 36.61 53.31 45.64 48.20 56.21 16.60 53.85 57.03 5.89
TR 45.35 57.25 26.23 58.22 61.26 5.21 62.20 61.42 -1.25
UR 45.19 53.91 19.30 54.83 59.10 7.79 58.74 59.64 1.53
VI 49.20 59.98 21.91 63.45 67.25 5.98 69.46 71.44 2.84
ZH 48.74 60.26 23.63 63.97 66.63 4.15 68.64 71.60 4.30

Average 46.89 57.50 23.05 59.67 63.46 6.58 64.65 66.04 2.10

Table 11: We have reported the accuracy and relative gains using XLM-R and mBERT on XNLI dataset. The
average relative gain is denotes the average gains across all the languages except the source EN.
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S = 1% S = 10% S = 100%

Language Baseline DiTTO RG Baseline DiTTO RG Baseline DiTTO RG

XLM-R

EN 56.40 61.28 8.66 64.17 64.37 0.31 66.81 66.91 0.15
DE 56.02 59.06 5.43 60.54 62.11 2.58 63.31 64.11 1.27
ES 53.29 54.87 2.97 56.34 56.96 1.10 57.68 58.80 1.95
FR 52.15 55.50 6.42 56.62 57.72 1.95 58.44 58.76 0.55
JA 49.77 53.29 7.08 52.93 55.46 4.77 53.77 55.98 4.10
ZH 48.05 51.01 6.15 50.34 52.74 4.78 51.50 53.66 4.20

Average 51.86 54.75 5.61 55.35 57.00 3.04 56.94 58.26 2.41

mBERT

EN 54.32 55.82 2.76 60.80 62.77 3.22 65.53 65.71 0.27
DE 42.32 46.75 10.46 44.30 52.55 18.63 48.61 58.90 21.18
ES 42.30 45.81 8.30 45.77 51.18 11.83 49.56 54.75 10.48
FR 43.76 47.31 8.11 48.28 51.42 6.52 49.74 55.31 11.21
JA 36.82 38.66 5.00 39.00 43.78 12.27 39.32 48.77 24.03
ZH 32.31 41.85 29.55 36.32 46.40 27.74 38.67 49.60 28.27

Average 39.50 44.08 12.28 42.73 49.07 15.40 45.18 53.47 19.03

Table 12: We have reported the accuracy and relative gains using XLM-R and mBERT on MARC dataset. The
average relative gain is denotes the average gains across all the languages except the source EN.

(a) XLM-R

(b) mBERT

Figure 7: Absolute gains (darker shades of grey denotes higher gains) from DiTTO across all target languages on
XNLI dataset.

401



(a) XLM-R

(b) mBERT

Figure 8: Absolute gains (darker shades of denotes higher gains) from DiTTO across all target languages on
AmNLI dataset.
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(a) XLM-R

(b) mBERT

Figure 9: Absolute gains (darker shades of denotes higher gains) from DiTTO across all target languages on
MARC dataset.
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Figure 10: Accuracy/relative gains2 on MARC dataset. Rows and columns denoting the amount of source and target
language labeled instances, respectively.
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Figure 11: Accuracy/relative gains3 on AmNLI dataset. Rows and columns denoting the amount of source and
target language labeled instances, respectively.

Figure 12: The plot shows Accuracy (vs) Cost graph with various values of ct/s for DiTTO and Baseline method
trained using mBERT on XNLI (S=10%) dataset.
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Figure 13: The plot shows Accuracy (vs) Cost graph with various values of ct/s for DiTTO and Baseline method
trained using XLM-R on XNLI (S=10%) dataset.
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Abstract

In current NLP research, large-scale language
models and their abilities are widely being dis-
cussed. Some recent works have also found
notable failures of these models. Often these
failure examples involve complex reasoning
abilities. This work focuses on a simple
commonsense ability, reasoning about when
an action (or its effect) is feasible. To this
end, we introduce FeasibilityQA, a question-
answering dataset involving binary classifi-
cation (BCQ) and multi-choice multi-correct
questions (MCQ) that test understanding of
feasibility. We show that even state-of-the-art
models such as GPT-3, GPT-2, and T5 strug-
gle to answer the feasibility questions correctly.
Specifically, on MCQ and BCQ questions, GPT-
3 achieves an accuracy of just (19%, 62%) and
(25%, 64%) in zero-shot and few-shot settings,
respectively. We also evaluate models by pro-
viding relevant knowledge statements required
to answer the question. We find that the ad-
ditional knowledge leads to a 7% gain in per-
formance, but the overall performance still re-
mains low. These results make one wonder how
much commonsense knowledge about action
feasibility is encoded in state-of-the-art models
and how well they can reason about it. 1

1 Introduction

Commonsense reasoning has been a key aspect of
AI since its advent in the 1950s. It is closely associ-
ated with reasoning about actions and their effects,
which is considered a big challenge, especially for
deep learning-based AI approaches and language
models (LeCun, 2022; Dalvi et al., 2018; Banerjee
et al., 2020). While several datasets have been de-
veloped to evaluate large-scale language models, in
this paper, we propose a dataset focused on reason-
ing about actions and their effects; specifically, the
ability to reason if an action or its effect is feasible.

1Dataset, baseline approaches, and instruction-tuned mod-
eling approaches are freely available at https://github.
com/kevinscaria/feasibilityQA

Figure 1: Illustrating a binary classification (BCQ) and
a multiple choice question (MCQ) from FeasibilityQA.
The correct answer options (False in BCQ and (45, 37)
in MCQ) are highlighted in bold.

Figure 1 illustrates an example of our dataset;
given the information “Sam gave 50 dollars to the
shopkeeper to buy a book and the shopkeeper re-
turned some money”, it is not possible to compute
the exact price of the book; however, it can be estab-
lished that the feasible price of the book is less than
50 since the shopkeeper returned some money. We
often come across such questions in our daily life
and find it trivial to reason about them. Therefore,
in order to develop NLP systems that can reliably
reason about real-world situations, it is important
to evaluate their understanding of feasibility.

Recently, many datasets have been created that
test different reasoning skills such as pronoun res-
olution (Sakaguchi et al., 2021; Levesque et al.,
2012), commonsense reasoning (Singh et al., 2021;
Mihaylov et al., 2018; Banerjee et al., 2021), nu-
merical reasoning (Mishra et al., 2022b; Ravichan-
der et al., 2019; Lin et al., 2020; Zhang et al., 2020;
Amini et al., 2019; Mishra et al., 2022e; Creswell
et al., 2022; Pal and Baral, 2021), qualitative rea-
soning (Tafjord et al., 2019b,a), discrete reasoning
(Dua et al., 2019), and temporal reasoning (Zhou
et al., 2019). However, they do not have an am-
ple number of examples that test understanding of
feasibility.
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Category Knowledge Context Questions

Attribute Comparison Larger volume holds more
amount of water.

Barrett’s has two cylindrical shaped
bottles. A bottle with a higher volume
holds 32 units of water.

Amount of water in other bottle could be 28 units.
Amount of water in other bottle could be 33 units.
What could be the amount of water in other bottle?

Change with Time Age increases with time
Today, while filling the
application form Edward
filled the age field with 16.

Edward could have been 8 years old on his last birthday.
Edward could have been 19 years old on his last birthday.
What could have been Edward’s age last year?

Change with Action Selling something reduces
its quantity

Joshua organized a garage sale
yesterday. Joshua sold a total of
273 items at a minimum price of
1 USD each.

Joshua could have made 300 dollars in the garage sale.
Joshua could have made 260 dollars in the garage sale.
How much money Joshua could have made
from the garage sale?

Implicit
Numerical Knowledge 4 quarters make 1 dollar

Christopher is accepting
quarters for a donation and
fails to collect 12 dollars.

He could have collected 35 quarters.
He could have collected 52 quarters.
How many quarters could Christopher have collected?

Non Numerical New movies can be watched
after the release date.

The latest superhero movie was
releasing on 28th February 2022.
Ashton wanted to see the movie.

He could have watched the movie on 2nd March 2022.
He could have watched the movie on 3rd February 2022.
When could Ashton have watched the movie ?

Table 1: Illustrative examples of two binary choice questions and one multiple choice question corresponding to a
context statement. We also provide the corresponding category and relevant knowledge for the questions.

In this work, we address the above limitation
and introduce FeasibilityQA, a dataset consisting
of questions that require an understanding of fea-
sibility. This dataset comprises of two types of
questions: binary classification (BCQ) and multi-
choice multi-correct questions (MCQ). In BCQ, the
task is to determine whether the question is feasible
or not given a context; in MCQ, the task is to se-
lect all feasible answers to the given question. The
dataset consists of ∼5K instances covering diverse
aspects of feasibility. Table 1 illustrates examples
of various categories of feasibility questions.

We conduct comprehensive experiments with
GPT-3, GPT-2, and T5 models (Brown et al., 2020;
Radford et al., 2019; Raffel et al., 2020) in zero-
shot and few-shot settings and show that all of
these models struggle to correctly answer feasibil-
ity questions. Specifically, on (MCQ, BCQ) ques-
tions, GPT-3 achieves an accuracy of just (19%,
62%) and (25%, 64%) in zero-shot and few-shot
settings, respectively.

Prior work has found that explicitly providing
relevant knowledge helps the model reason better
and improves its performance (Chen et al., 2018;
Xiong et al., 2019; Banerjee et al., 2019; Varsh-
ney et al., 2022a). We explore this aspect of rea-
soning by explicitly providing relevant knowledge
statements and find that it leads to ∼7% improve-
ment in performance. However, the overall per-
formance still remains low. We further investigate
GPT-3’s ability to reason about feasibility questions
by prompting it to generate the reasoning chain. In
many cases, we find that GPT-3 successfully gen-
erates the correct reasoning chain but still fails to
output the correct answer. This analysis further
leads to several interesting findings (Section 3).

2 FeasibilityQA

2.1 Dataset Creation

For creating data instances of FeasibilityQA, we
first create a context statement that describes a real-
life situation. Then, we write two binary classifi-
cation questions and one multiple choice question
conditioned on the context that tests the understand-
ing of feasibility.

Dataset creation and verification process
Seven computer science graduate students were
involved in creating the dataset. Dataset creation
consists of 3 phases. First, in the data creation
stage, each student created 700 samples over the
period of 3 months. In the next phase, each dataset
creator’s questions were verified by a different stu-
dent to ensure fairness during data validation. The
3rd stage of the validation was done when all the
questions were compiled and cross-verified. In
each verification stage, the dataset creators rejected
some samples where the inter-annotator agreement
was low. 2

2.1.1 Context Creation
We create context statements from real-life situa-
tions spanning diverse topics such as elementary
physics, profit-loss scenarios, temporal compar-
isons, and quantity comparisons. We divide the
contexts into the following five categories:

Attribute comparison: This category consists
of questions that test feasibility aspects involving
the comparison of attributes of two quantities. Im-
plicit numerical: Questions in this category in-
volve fundamental mathematical facts that test the
ability to use those facts in real-world situations.
Change with action: This category tests the abil-

2All the dataset creators are authors of the paper.
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ity to perceive a change in an item or state as an
outcome of an action. Change with time: Here,
questions test the understanding of feasibility re-
lated to temporal-based events. Non Numerical:
This category includes questions where numbers
are not explicitly involved in reasoning about fea-
sibility. Table 1 provides examples of these cate-
gories. More details about them are in Appendix A.

Motivation behind category selection The mo-
tivation behind developing a large language model
such as GPT-3 is to mimic human intelligence and
come closer to Artificial General Intelligence. We
attempt to gauge the performance of models’ intelli-
gence by developing simple commonsense reason-
ing questions. GPT-3 models are few-shot learners
but find it hard to do proper numerical reasoning.
Earlier datasets like this attempted to analyze nu-
merical reasoning in this aspect. We are also trying
to study it in the aspect of feasibility. Previous
datasets, such as Numersense (Lin et al., 2020) and
MC Taco (Zhou et al., 2019), do not have such a
category, and we tried to bridge those gaps.

We think that these five categories are also a
good representation of numerical feasibility. We
found that questions from those categories had an
adequate amount of complexity that the average
human could easily figure out. So we expected
that large language models should also be able to
understand and answer accordingly. We created
these categories to compare the models’ numerical
reasoning ability with and without knowledge. This
gives us insights into whether knowledge helps
in each aspect. We hope that these comparative
studies across these five preliminary categories will
inspire more future categories.

Target of our dataset: Our selection of cate-
gories in feasibility is inspired by the limitations in
existing datasets since it is not possible to cover all
the aspects of feasibility exhaustively.

2.1.2 Question Creation

From each context, we create two binary classifica-
tion and one multiple-choice question. Recall that
in our questions, the context may not provide suf-
ficient information to find the exact answer. How-
ever, the information is sufficient to test the validity
of question/answer options (notice the use of the
word ‘could’). In question creation, we ensure that
all our contexts and questions describe realistic sit-
uations, e.g., we keep a range of numerical entities

Category Binary
Instances

MCQ
Instances

Attribute comparison 1696 848
Non numerical 700 350
Implicit numerical 444 222
Change with action 196 98
Change with time 36 18
Total 3072 1536

Table 2: Categorization of FeasibilityQA across differ-
ent categories .

Correct Answers #Instances
1 555
2 622
3 285
4 31
None 43

Table 3: Frequency of correct answers for MCQ section.

and units appropriate for their context. Table 1
illustrates examples of our dataset.

BCQ: For each context, we create two binary clas-
sification questions where the correct answer is
True for one and False for the other. Evaluating
models’ consistency in answering two contrasting
hypotheses conditioned on the same context pro-
vides an additional benefit.

MCQ: For each context, we create a multi-correct
multiple-choice question. Here, a context-question
pair and the corresponding answer options are
given, and the task is to select all feasible options
for the question. We ensure that there is also a
None option, which needs to be selected when all
the other options are not feasible. For a question,
one or more options (including ‘None’) could be
correct.

2.2 Dataset Statistics

Our dataset consists of 1536 contexts and 4608
context-question pairs (3072 BCQ and 1536 MCQ).
The category-wise distribution of the dataset is
present in Table 2. BCQ dataset is label balanced,
i.e., 1536 instances for each of True and False la-
bels. MCQ dataset has a varying number of correct
options. Table 3 shows the number of correct an-
swers in the MCQ category.
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GPT-3 GPT-2 T5
BCQ (%) MCQ (%) BCQ (%) MCQ (%) BCQ (%) MCQ (%)

w/o K w/ K w/o K w/ K w/o K w/ K w/o K w/ K w/o K w/ K w/o K w/ K
Zero Shot 62.96 69.11 19.43 25.89 50.00 50.00 0.19 0.45 50.55 50.64 0.13 0.39
One Shot 57.94 64.66 20.94 24.15 50.00 50.00 0.58 1.69 50.61 50.33 0.45 0.58
Few Shot 64.72 68.55 25.94 37.23 50.00 50.00 0.97 0.39 49.81 49.87 0.84 1.10

Table 4: Exact match accuracy of three models in BCQ (Binary Classification) and MCQ (multi-choice multi-
correct) tasks across three settings. w/o K and w/ K represents without knowledge and with knowledge respectively.

3 Experiments

3.1 Performance Evaluation & Metrics
For BCQ, we calculate exact match accuracy
against the gold label (True or False) for each ques-
tion. We also use a stricter evaluation metric, pair-
wise accuracy, to better estimate the model’s capa-
bility of understanding feasibility. Here we only
consider a sample to be correct if both BCQ (True
and False questions) are correctly answered by the
model for one context statement. For MCQ, we
evaluate exact match accuracy, i.e., the model’s
prediction is considered to be correct if all the cor-
rect answer options are predicted. We also compute
recall, which we define as the number of correct
answers predicted by the model out of all the cor-
rect answer options. Other results (false positive,
false negative, category-wise) are in Appendix B.

Models: We evaluate the performance of GPT-3
(Text-DaVinci-002, with 256 max tokens, top p of
1, and frequency & presence penalty of 0), T5-11B,
and GPT-2 large models on our dataset.

3.2 Results
Low Performance of All Models: Table 4 shows
the accuracy of all three models in zero-shot, one-
shot, and few-shot settings. On BCQ, GPT-3
achieves exact match accuracy of just 62.9%. GPT-
2 and T5 perform even worse and achieve close to
the majority baseline (50%). GPT-2 gets an exact
50, indicating that the model does not understand
such feasibility reasoning 3. On MCQ, which is a
more difficult task than BCQ, all models, including
GPT-3, achieve a very low strict accuracy score.
This highlights that feasibility questions are chal-
lenging for even state-of-the-art models.

Decrease in performance in one-shot setting:
In the one-shot setting, the model’s prediction is
heavily influenced by the label of the example (one)
presented to the model. This phenomenon is also
observed in several prior zero-shot, and one-shot

3Please refer Appendix B.2 for details

w/o Knowledge w/ Knowledge
Zero 46.2 49.9
One 63.5 64.5
Few 66.7 70.3

Table 5: Recall scores of GPT-3 on MCQ task.

w/o Knowledge w/ Knowledge
Zero Shot 42.9 56.8
One Shot 17.9 34.3
Few Shot 39.8 55.8

Table 6: Pairwise Accuracy of GPT-3 in BCQ Task.

studies (Zhao et al., 2021). A similar trend is ob-
served in the chain of thought experiments (results
described in Table 8).
Providing Knowledge Improves GPT-3’s perfor-
mance by ∼ 7% across all settings. The accuracy
particularly increases (∼ 12%) in the MCQ task
in the few-shot setting. Although GPT-3 performs
better than T5 and GPT-2, it achieves just 68.5%
and 37.2% on BCQ and MCQs, respectively.

GPT-3 achieves High Recall Scores on MCQs:
In Table 5, we show recall scores of GPT-3 on
MCQs. GPT-3 achieves a high score (up to 70%),
highlighting that it gives correct responses but fails
to give all the correct responses.

Pairwise Evaluation: Recently, instance-level
analysis of the evaluation data has received con-
siderable research attention (Zhong et al., 2021;
Varshney et al., 2022b; Rodriguez et al., 2021;
Mishra et al., 2022a). Motivated by this, we ana-
lyze GPT-3’s performance on BCQ questions using
the stricter pairwise accuracy metric. Even though
the model performs∼ 63% using exact match accu-
racy, Table 6 shows that the models’ performance
is at most ∼ 43% via pairwise accuracy, highlight-
ing a performance gap. The accuracy increases
(∼ 13%) when knowledge is introduced, and the
gap between different settings also narrows down,
indicating that the addition of knowledge helps.
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BCQ MCQ
w/o K w/ K w/o K w/ K

Attribute Comparison 58.2 62.5 17.7 23.2
Non Numerical 77.2 89.4 23.6 30.9
Implicit Numerical 54.7 50.9 16.7 21.9
Change with Action 66.3 78.2 20.3 26.6
Change with Time 58.3 66.6 17.8 23.4

Table 7: Category wise Exact Match Accuracy of GPT-3
on BCQ and MCQ in one-shot setting.

Figure 2: Answers with explanations given by GPT-3
on FeasibilityQA dataset.

BCQ MCQ
w/o K w/ K w/o K w/ K

Zero Shot 61.3 70.2 20.1 25.1
One Shot 59.7 67.2 19.5 22.8
Few Shot 65.4 69.1 23.4 35.7

Table 8: Exact Match Accuracy of GPT-3 on BCQ and
MCQ tasks with chain of thought setting.

Category wise results: Table 7 shows the
category-wise results in one-shot setting for BCQ
and MCQ tasks on GPT-3. Non Numerical cate-
gory performed the best out of all categories (15%
more than other categories). Addition of knowl-
edge improves the performance of all categories
by around 5% to 10%. Similar trends are observed
across MCQ task as well. We believe that Non Nu-
merical performed the best because these samples
were conditioned around factual knowledge and
that it could be present in the pretraining corpus of
GPT-3. We further analyze this in Appendix B.

Investigating Chain of Thoughts Prompting:
Recent work has demonstrated the success of learn-
ing from instructions (Wei et al., 2021; Wang et al.,
2022; Mishra et al., 2022d,c; Lu et al., 2022; Par-
mar et al., 2022; Mishra and Nouri, 2022; Luo et al.,
2022) and chain of thought (Wei et al., 2022) and

scratchpad prompting (Nye et al., 2021). To test
this on FeasibilityQA, we add explanations to one-
shot and few-shot examples provided in the context.
Table 8 shows marginal improvement. More details
are in Appendix C.

A Case Study on Prompting GPT-3 to Pro-
vide Explanation: We further investigate the
reason behind GPT-3’s poor performance on
FeasibilityQA by prompting it to provide the rea-
son behind its answer. Specifically, we add "Ex-
plain the reason behind your answer" in the prompt.
Figure 2 illustrates a response from GPT-3. The an-
swer demonstrates that it did not understand the nu-
merical value of Abraham’s age. We also provide
additional knowledge to assist the model, as shown
in Figure 2. Even with knowledge, the model could
not understand the feasible age.

4 Conclusion

In this work, we proposed FeasibilityQA, a
question-answering dataset that evaluates the un-
derstanding of feasibility. We conducted extensive
experiments with several state-of-the-art models
in zero-shot, one-shot, and few-shot settings and
show that these models struggle to answer the fea-
sibility questions correctly. We also experimented
by providing additional knowledge (relevant to the
question) and showed that it leads to a small gain
in performance, but the overall performance still
remains low. We further analyzed the performance
of models that reveals several interesting findings.
Finally, we release our dataset and hope that our
work will encourage further research in feasibility
reasoning, an important yet underexplored aspect
of commonsense reasoning.

Limitations

Like any other commonsense reasoning ability, the
concept of feasibility, in general, can be applied
in numerous real-world situations. In our dataset,
we try to cover a diverse set of such situations
that test the understanding of feasibility, but it is
in not an exhaustive list. In the future, we will
expand the category space by either converting ex-
isting numerical datasets into feasibility questions
or manually creating new category spaces. Along
with the dataset, we release the list of contexts and
situations on which the question is based. In the
future, this would help expand the dataset to cover
other domains and situations. The human evalu-
ation of the dataset could also be an interesting
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study, but it can be an expensive. The selection of
humans in terms of their educational background
and age is also required for unbiased evaluation.
A completely random selection of humans is also
required for a comprehensive study. Finally, our
dataset includes questions in only one language,
i.e., English.

Ethical Considerations

The names used in this dataset are selected from
the most common English names. In question cre-
ation, we ensure that all our contexts and questions
describe realistic situations, e.g., we keep a range
of numerical entities and units appropriate for their
context. No personal information from data cre-
ators has been collected during the creation of the
dataset.
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Appendix

A Dataset characteristics

In this section, we describe FeasibilityQA in more
detail. Table 1 shows illustrative examples of each
category discussed in section 4. Each row of the
4th Column of the table shows three questions
that were prepared in response to a context. Ta-
ble 2 gives the distribution of each category of the
dataset. We will explain the motivation behind each
category. Please note that the explanations are with
respect to examples presented in Table 1.

Attribute Comparison shows the comparative
properties between two similar objects. The con-
text from attribute comparison is designed to show
that quantities can be measured using words like
higher and lower, and the model has to understand
the relation between them to answer different ques-
tions. In this example, it is not possible that the
smaller bottle can have a volume of 33 units since
the larger one is 32 units.

Change with Time gives the events that have
time as the changing factor. The context is designed
to test the model’s ability to deduce time-based
changes and how certain actions/ events/ quantities
can or cannot be done before/ after a certain time.
In this case, it is impossible that Edward’s age
could be 19 on his last birthday as his current age
is 16.

Change with Action describes the actions which
alter certain quantities/events and test the model’s
ability to understand that. In this case, it is demon-
strated that selling/giving away a certain quantity
reduces it. In the example, it is demonstrated that
selling all 273 items at least 1 dollar will leave
Joshua with at least 273 dollars. Hence the ques-
tion that he could have 260 dollars is false.

Implicit Numerical Knowledge tests the
model’s ability to understand numerical entities
as facts and how to manipulate them in different
situations. In this case, using the knowledge (or
without using it) that four quarters make 1 dollar,
the model needs to understand how many quarters
will be used in 12 dollars, which is 48 quarters.
Hence the question tells us that Christopher can
have 52 quarters.

Non Numerical category tests the model’s un-
derstanding of very broad domains. They do not
have to be numerical based in all the cases.

The dataset contains diverse topics ranging from
physics, mathematics, biology, and numerical rea-
soning. A total of 422 subcategories are present in
the dataset. Table 2 shows the distribution of BCQ
and MCQ questions across different categories in
the dataset.

B Other performance results

B.1 Performance Metrics

For the MCQ setting of the dataset, we study true
positive, false positive, and false negative rates as
the evaluation metrics. Each metric definition is
listed below:

False Negative rate is defined as the number of
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w/o Knowledge w/ Knowledge
Zero 0.17 0.13
One 0.36 0.32
Few 0.33 0.24

Table 9: False Positive rate of GPT-3 on MCQ section

w/o Knowledge w/ Knowledge
Zero 0.42 0.42
One 0.21 0.24
Few 0.18 0.20

Table 10: False negative rate of GPT-3 on MCQ section

Zero shot BCQ
w/o Knowledge w/ Knowledge

Attribute Comparison 51.2 55.8
Non Numerical 72.7 85.7
Implicit Numerical 52.9 52.0
Change with Action 60.7 65.3
Change with Time 55.5 55.5

Zero shot MCQ
w/o Knowledge w/ Knowledge

Attribute Comparison 17.9 20.4
Non Numerical 25.5 29.0
Implicit Numerical 18.5 21.1
Change with Action 21.3 24.2
Change with Time 19.4 22.2

Table 11: Category wise Accuracy of GPT-3 on BCQ
and MCQ task in zero-shot setting.

incorrect predictions the model gave as correct. For
example, if the model gave output as A, B, C, and
the predicted result is A, C, then B is missed. The
number of false negatives would be 1 (B).

False Positive rate is defined as the number
of correct predictions the model gave as incorrect.
For example, if the given output is A, B and the
predicted result is A, B, C, then the number of false
negatives would be 1 (C).

B.2 Results

False positive results shown in Table 9 follow
trends similar to accuracy where the performance
of one-shot experiments is worse than zero-shot
and few-shot. But with the addition of knowledge,
the false positive rate decreases.

As shown in Table 10, the False negative rate
decreases from zero-shot to few-shot experiments,
but contrary to other experiments, it increases with
the addition of knowledge in almost all the cases.

Table 11 shows the category-wise results in zero-
shot settings for BCQ and MCQ tasks. For the BCQ
task, accuracy was lowest in the Attribute compari-

Few shot BCQ
w/o Knowledge w/ Knowledge

Attribute Comparison 64.5 69.5
Non Numerical 85.9 99.4
Implicit Numerical 60.8 56.6
Change with Action 73.7 86.8
Change with Time 64.8 74.1

Few shot MCQ
w/o Knowledge w/ Knowledge

Attribute Comparison 25.2 35.8
Non Numerical 33.5 47.6
Implicit Numerical 23.7 33.7
Change with Action 28.8 40.9
Change with Time 25.3 35.9

Table 12: Category wise Accuracy of GPT-3 on BC and
MCQ task in few-shot setting.

son category and highest in Non-Numerical Cate-
gory. Performance of the Non Numerical category
improved significantly in with knowledge setting.

In the MCQ portion of the dataset, the perfor-
mance gap between Non-Numerical and other cat-
egories reduces significantly. It is still the best-
performing category for the model, but the Change
with Action Category also produced similar results.
There was no significant improvement in both Non-
Numerical and change with action as observed in
the Non-Numerical with the addition of knowledge.

Table 12 shows the category-wise results for
BCQ and MCQ tasks in few shot setting. For
the BCQ task, accuracy was lowest in the At-
tribute comparison category and highest in Non-
Numerical Category. Performance of the Non
Numerical category improved significantly in the
knowledge setting with accuracy reaching above
90% for the first time in any of the categories.

In the MCQ portion of the dataset, the perfor-
mance gap between Non-Numerical and other cat-
egories reduces significantly. It is still the best-
performing category for the model. There was
a significant improvement in Non Numerical and
change with action and change with time categories
with the addition of knowledge.

Exact 50% accuracy of GPT-2: The input for-
mat for all models was as follows: Zero-Shot, Ques-
tion (Different questions), and Options (True or
False). Example(s) preceded the question in the
one-shot and few-shot settings. Based on this for-
mat, GPT-2 gave the probability of “False” higher
in all cases. Since the dataset is label balanced,
all the True hypothesis questions were incorrectly
predicted, hence giving a 50% accuracy.
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Example or
Evaluation sample Text / Context

Prompt Select the best option for the questions based on the Context and explain
the reasoning. An Example to show how it works:

Example fed in
GPT-3 as 1 shot
learning example

Context Eric boiled a glass of water to drink the hot water. The level of the water in the
glass is 63 units. After boiling was done, she took the water into the glass.

Question What could be the level of the water after boiling?
Options A: 65, B: 59, C: 64, D: 61, E: None

Answer:
Since boiling leads to evaporation, there is a possibility that the volume of water
would have decreased. Due to this, the current water level should be less than
63 units. Hence the answer is B:59 and D: 61

Example given to
GPT-3 for
evaluation

Context A negative number was added to 70.
Question What could be the result?
Options A: 70, B: 89, C: 87, D: 68, E: None

GPT-3
Answer

The result could be A: 70, since adding a negative number would not change the
value of 70. The result could also be C: 87, since adding a negative number
would increase the value of 70

Example given to
GPT-3 for
evaluation

Context Last year 758 people joined the company and this vear the number of people
who joined was more than double the last time

Question How many people could have joined this year?
Options A: 1440, B: 1600, C: 1460, D: 1370, E: None

GPT-3
Answer:

Since the number of people who joined this year was more than double the
last time, the number of people who joined this year could be up to 1460.
Therefore, the answer is C: 1460.

Table 13: Illustrating chain of thought approach on some examples of feasibilityQA dataset in 1 shot setting without
providing knowledge. 1st set of rows demonstrate the example fed into GPT-3 for 1 shot learning. 2nd and 3rd set
of rows show GPT-3’s response to Context, Question and Options asked.

Example or
Evaluation sample Text / Context

Prompt Select the best option for the questions based on the context, knowledge
and explain the reasoning. An Example to show how it works:

Example fed in
GPT-3 as 1 shot
learning example

Context Eric boiled a glass of water to drink the hot water. The level of the water in the
glass is 63 units. After boiling was done, she took the water into the glass.

Knowledge Water will convert into water vapour on boiling.
Question What could be the level of the water after boiling?
Options A: 65, B: 59, C: 64, D: 61

Answer
Since boiling leads to evaporation, there is a possibility that the volume of water
would have decreased. Due to this, the current water level should be less than
63 units. Hence the answer is B:59 and D: 61

Example given to
GPT-3 for
evaluation

Context Two boys competed in a race. The loser finished the race in 24 minutes.
Knowledge Loser will take more time to finish the race.
Question How many minutes the other boy could have taken to finish the race?
Options A: 32, B: 25, C: 15, D: 22, E: None
GPT-3
Answer

The other boy could have taken less time to finish the race.
Hence, the answer is B: 25.

Table 14: Illustrating chain of thought approach on some examples of feasibilityQA dataset in 1 shot setting with
providing knowledge. 1st set of rows demonstrate the example fed into GPT-3 for 1 shot learning. 2nd row shows
GPT-3’s response to Context, Question and Options asked.

C Case study: Chain of Thought
Reasoning Approach

Table 13 and 14 show the unsuccessful attempts
in the chain of thought reasoning approach. Ta-
ble 13 shows the setting where the 1st example is
fed into the model as an example of how to rea-
son out the answer. The reason and answer were
clearly mentioned that told that evaporation leads

to a decrease in water level and hence water level
should decrease. This led to a decrease in water
level; hence, the correct answers were quantities
less than 63; 59 and 61.

The 2nd and 3rd sets of rows show the Con-
text, question, and options supplied to GPT-3, and
we get responses in GPT-3 Answer row. The
logic given for the addition of a number is wrong.
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Adding a negative number should decrease the
value, and hence rest of the answer will be wrong.
In the 3rd row GPT-3’s response, the logic used to
calculate the answer is correct, but it was unable to
calculate that 1600 was double 758. Both parts are
highlighted in the table.

The situation did not improve much when knowl-
edge was supplied with other rows, as shown in
Table 14. The model was able to interpret the logic
correctly but could not associate that logic with
numerical quantities.

417



Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 418–429
May 2-6, 2023 ©2023 Association for Computational Linguistics

Efficient Encoders for Streaming Sequence Tagging

Ayush Kaushal♣∗ Aditya Gupta♠ Shyam Upadhyay♠ Manaal Faruqui♠
♠Google Assistant

♣The University of Texas at Austin
ayushk4@utexas.edu, {gaditya, shyamupa, mfaruqui}@google.com

Abstract
A naive application of state-of-the-art bidirec-
tional encoders for streaming sequence tag-
ging would require re-encoding all tokens from
scratch whenever a new token appears in an
incremental streaming input (like transcribed
speech). The lack of re-usability of previ-
ous computation leads to a higher number
of Floating Point Operations (or FLOPs) and
higher number of unnecessary label flips. In-
creased FLOPs consequently lead to higher
wall-clock time and increased label flipping
leads to poorer streaming performance. In
this work, we present Hybrid Encoder with
Adaptive Restart (HEAR) that addresses these
issues while maintaining the performance of
bidirectional encoders over offline (or com-
plete) inputs and improving performance on
streaming (or incomplete) inputs. HEAR uses
a HYBRID unidirectional-bidirectional encoder
architecture to perform sequence tagging, along
with an Adaptive Restart Module (ARM) to se-
lectively guide the restart of bidirectional por-
tion of the encoder. Across four sequence tag-
ging tasks, HEAR offers FLOPs savings in
streaming settings upto 71.1% and also outper-
forms bidirectional encoders for streaming pre-
dictions by upto +10% streaming exact match.

1 Introduction

State-of-the-art text encoding methods assume the
offline setting, where the entire input text is avail-
able when encoding it. This differs from the
streaming setting where the input text grows over
time (such as transcribed speech or a typed query)
(Cho and Esipova, 2016; Gu et al., 2017; Chang
et al., 2022). Processing streaming input incre-
mentally can enable suggestions on partial inputs
(Iranzo Sanchez et al., 2022), reduced final latency
(Zhou et al., 2022) and lead to more interactive
NLU agents (Cai and de Rijke, 2016).

Existing state-of-the-art bidirectional encoders
(such as Devlin et al. (2019)) are computationally

∗Work done as part of an internship at Google.

Model GFLOPs Offline F1 Streaming EM

BiDi encoder 74.7 93.1 75.1
HYBRID encoder 43.4 93.0 72.5
HEAR (HYBRID + ARM) 21.6 93.0 85.1

Table 1: Computation cost (Giga FLOPs), Offline
F1 and Streaming Exact Match accuracy of standard
bidirectional (BiDi) encoder, HYBRID encoder model
and HEAR (HYBRID encoder with ARM for guiding
Adaptive Restarts) on SNIPS test set.

expensive for streaming processing. When a new
token is received, these models require a restart,
i.e., re-computation of representation of each token
by re-running the bidirectional layer (Kahardipraja
et al., 2021). This adds to the computational cost
(i.e., Higher FLOPs) during streaming and leads
to higher wall clock time. Another limitation of
these encoders is poorer generalization to partial
inputs (Madureira and Schlangen, 2020), stemming
from these models being trained only on complete
(and offline) inputs. Despite these disadvantages,
such bidirectional models offer better offline per-
formance than unidirectional models across sev-
eral NLP tasks like sequence tagging (Kahardipraja
et al., 2021).

We address these issues by proposing HEAR
– Hybrid Encoder with Adaptive Restarts, where
a separate Adaptive Restart Module (ARM) pre-
dicts when to restart the encoder. The encoder in
HEAR is a HYBRID encoder that reduces the com-
putational cost of running the models in streaming
settings. In a HYBRID encoder, the earlier lay-
ers are unidirectional and the deeper layers are
bidirectional. This design allows early contextual-
ization, and limits the need for restart to the later
layers. While HYBRID encoder reduce streaming
computational overhead, restarting them at every
new token may not be required. Thus, we propose
a lightweight Adaptive Restart Module (ARM) to
guide restarts, by predicting whether restarting the
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bidirectional layers of the HYBRID encoder will
benefit the model performance. This module is also
compatible with fully bidirectional encoders.

Table 1 showcases the strength of HEAR on
one of the sequence tagging dataset we consider. In
terms of streaming computation, measured in terms
of FLOPs (lower is better), HYBRID encoder offers
significant saving from purely bidirectional (BiDi)
encoders and FLOPs savings improve upon incor-
porating ARM in HEAR. In terms of offline per-
formance, HYBRID encoder and HEAR achieves
parity with BiDi encoders and in terms of stream-
ing performance, HEAR significantly outperforms
BiDi encoders.

Following are our key contributions:

• We introduce HYBRID encoder for computa-
tionally cheaper streaming processing (§3.1),
that maintains the offline F1 score of bidirec-
tional encoders, while reducing FLOPs by an
average of 40.2% across four tasks.

• We propose the ARM module (§3.2) to decide
when to restart. The ARM reduces FLOP
of HYBRID encoder by 32.3% and improves
streaming predictions by +4.23 Exact Match.

• Our best model HEAR combines HYBRID

encoder with ARM (§5) to achieve strong
streaming performance while saving FLOPs
and offering competitive offline performance
across four sequence tagging tasks.

2 Streaming Sequence Tagging

In the streaming sequence tagging task, we assume
that at time 1 ≤ t ≤ n, we have received the
first t tokens xt = (x1, · · ·xt) as input from a
stream of transcribed speech or user-typed input.1

The model then predicts the tags for all t tokens
ŷt = (ŷ1,t, ŷ2,t · · · ŷt,t). The models predictions
ŷn over the offline input x = xn is the offline
tag sequence prediction which is evaluated against
the ground truth y∗n = (y∗1, y

∗
2 · · · y∗n). However,

in the streaming settings, we are concerned with
predicted label sequences over all of the prefixes
Ŷ = (ŷ1, ŷ2 · · · ŷn).

During training we only have access to the of-
fline ground-truth label sequence over the offline

1We assume that new tokens get added without changing
previous tokens (contrary to some ASR systems), even though,
our method can be used in such settings.

input sequence y∗n, even though ground truth la-
bels for tokens may change as additional context is
received in the future timesteps.

3 Streaming Sequence Tagging with
HEAR

In order to motivate HEAR, consider how exist-
ing BiDi encoders would be used in streaming se-
quence tagging. At time t and the input sequence
xt, the model restarts to predicts the label sequence
ŷt i.e. it re-computes all its layers for all tokens,
without leveraging any of its previous computation
or any previously predicted labels. Consequently,
running a typicalO(n2) encoder would haveO(n3)
computations in streaming settings, over n input
tokens. Therefore, naively using existing BiDi en-
coders for streaming settings is highly inefficient.
Previous works tackle inefficiency by modifying
the streaming model to infer only once for each
word, after k future tokens have been received (Oda
et al., 2015; Grissom II et al., 2014). This leads
to a k-delayed output with possibility for revisions
after additional future words have been received.
However, this may lead to poor performance for
tasks involving long-range dependency (e.g., SRL)
and a higher output lag.

HEAR is a system consisting of a trained HY-
BRID encoder model and an ARM that is trained
over the HYBRID encoder. The early unidirectional
layers in HYBRID encoder, reduces the computa-
tional cost of restart of the encoder. The ARM
guides when to restart the HYBRID encoder. It
saves computational cost by keeping the model
from restarting at each timestep and also improves
streaming performance by avoiding unnecessary la-
bel flips stemming from avoidable restarts. Figure
2 shows running of HEAR in streaming settings
over an example. For each new token in the stream-
ing input, all the unidirectional layers and a part of
first bidirectional layer is ran for the token, to ob-
tain its unidirectional encodings and updated cache.
These are then used by ARM to predict whether
to restart the bidirectional layer or not. If the bidi-
rectional layer is to be restarted, then we obtain
updated labels for all the tokens received in the
stream. Otherwise, the auxiliary predictor is ran
over the unidirectional encoder for the current to-
ken to obtain its label and the labels from previous
timestep is copied for all other tokens.

We now formally introduce HYBRID encoder
(§3.1), followed by ARM (§3.2).
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Figure 1: In HYBRID encoder architecture, the earlier
u layers are unidirectional, and later b layers are bidi-
rectional. The blue layers require restart, i.e. at each
timestep when the model receives a new token of the
streaming input, these layers will recompute all interme-
diate representations for all the input tokens. The orange
layers (like unidirectional layers) can avoid restart by
caching the intermediate state. A portion of the first
bidirectional layer before application of softmax also
does not require restart and can be cached.

3.1 HYBRID Encoder

The HYBRID encoder is a combination of unidirec-
tional and bidirectional encoding layers, where the
early layers are unidirectional and the later layers
are bidirectional as shown in Figure 2. The ear-
lier unidirectional layers do not require a restart as
the previous tokens’ embeddings do not need to
be updated for the newly received tokens. Thus,
the HYBRID encoder only require a restart for its
later bidirectional layers. Formally, the HYBRID

encoder has u unidirectional and b bidirectional
layers where total layers in the model are u+ b = l.

Let
→
L and

↔
L denote unidirectional and bidirectional

layers in the model respectively. Each of the
→
L lay-

ers are one of the existing unidirectional layers -
RNN, GRU, transformer with causal masking etc.
with the first of these being the static embedding

layer. Each of the
↔
L layers are bidirectional layers,

being one of bi-GRU, bi-LSTM, transformer etc.

3.1.1 HYBRID Encoder in Offline Setting:
First, the input tokens x are fed to u unidirectional

layers to get the unidirectional encodings
→
H,

→
H = [

→
h1, · · ·

→
hn] =

u layers︷ ︸︸ ︷
→
L ◦

→
L ◦ · · ·

→
L(x) (1)

where ◦ denotes the functional composition and
→
hi is the unidirectional encoding for the token xi.

Notation Meaning
→
L ,

↔
L Unidirectional and bidirectional layers, respec-

tively.
→
h i,

↔
h i,t Encoding of xi token when t tokens have been

received, using
→
L and

→
L +

↔
L , respectively.

→
Ht,

↔
Ht

→
h i,

↔
h i,t of first t tokens, respectively.

→
y i,

↔
y i,t Predicted label of xi token using

→
h i and

↔
h i,t,

respectively.

Table 2: Notations used in HYBRID encoder for layers,
token representations, and predicted labels.

Then the bidirectional encodings
↔
H are computed

and used to predict the label sequence:

↔
H = [

↔
h1, · · ·

↔
hn] =

b layers︷ ︸︸ ︷
↔
L ◦

↔
L ◦ · · ·

↔
L(

→
H) (2)

The final offline labels are obtained by passing
↔
H through a feed-forward neural network layer.

3.1.2 HYBRID Encoder in Streaming Setting

In the streaming setting, the unidirectional layers’
computation can be cached.2 These cached inter-
mediate representations for the previously received
tokens xt−1 are used in computing the unidirec-

tional encoding
→
ht of the new token xt. This along

with the cached unidirectional encoding of xt−1
gives us

→
Ht = [

→
Ht−1;

→
ht]. The bidirectional en-

coding, however, for each token in xt is restarted

at time t as
↔
Ht = [

↔
h1,t, · · ·

↔
ht,t] using the obtained

final unidirectional encoding
→
Ht as input.

3.1.3 Training and Inference of HYBRID
Encoder

We predict labels over both
→
Ht and

↔
Ht of the

HYBRID encoder using a linear layer with soft-
max at each timestep. Let

↔
yt = [

↔
y 1,t, · · ·

↔
y t,t]

denote the predictions over bidirectional embed-
dings at time t for all the tokens received so far.
Let

→
yt = [

→
y 1, · · ·

→
y t] be predictions over unidirec-

tional embeddings at time t. While the unidirec-
tional predictions do not perform as well as bidi-
rectional predictions, these auxiliary predictions
enables waited restarts (§3.2).

2Cache for RNNs and causally masked transformer con-
sists of hidden states and keys-values respectively. This is
similar to implementations of auto-regressive models (Wolf
et al., 2020; Heek et al., 2020).
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HYBRID encoder is trained over the offline input-
output sequence pairs and optimize both the bidi-
rectional predictions and unidirectional predictions.
for the standard softmax cross entropy loss against
the offline ground truth label sequence y∗. In order
to preserve the strong performance of the BiDi en-
coders, we inhibit backward flow of gradient from
the parameters θuni of unidirectional prediction
head (consisting only of a linear layer with soft-
max) to the remaining parameters - θbi.Following
are the losses of these two portions of the model,
optimized together with equal weight.3

L(θbi,
↔
yn,y

∗) = CE(
↔
yt,y

∗) (3)

L(θuni,
→
yn,y

∗) = CE(
→
yt,y

∗) (4)

L(θ) = L(θbi,
↔
yn,y

∗) + L(θuni,
→
yn,y

∗) (5)

3.2 Waited Restarts

The HYBRID encoder reduces the computational
overhead of each restart by limiting the recompu-
tation over previous tokens only to the later bidi-
rectional layers. However, restarting at each step is
not required and the auxiliary predictions from the
unidirectional layers can suffice.

We define a variable RESTART(t) to decide
whether to restart the bidirectional layers at time
t. When RESTART(t) = 1, we restart the model to
get the bidirectional predictions

↔
yt as the final pre-

dicted label sequence ŷt =
↔
yt. If RESTART(t) =

0, the model does not run the bidirectional en-
coder, but uses the unidirectional encoding to pre-
dict the current token’s label

→
y t and copy the la-

bel sequence from the previous step ŷt−1 to ob-
tain ŷt. Formally, the predicted sequence ŷt =
(ŷ1,t, · · · ŷt,t) at time t is

ŷt =

{ ↔
yt if RESTART(t) = 1 or t = n

[ŷt−1;
→
y t] otherwise

(6)
where ‘;’ denotes the concatenation. We always

restart in the final timestep (i.e., RESTART(n) = 1)
to preserve the offline performance.

3.2.1 Adaptive Restart Module (ARM)
A baseline restart strategy for waited restarts would
be to restart the bidirectional layers every fixed k
steps, i.e., RESTART(t) = 1 whenever t is a mul-
tiple of k. Note that k = 1 reduces to a HYBRID

3CE is the Cross Entropy Loss

encoder model without waited restarts. We refer to
this as RESTART-k.

Rather than having a heuristic function for
RESTART(t), we can let a lightweight parametric
module determine when to do the restart by deter-
mining RESTARTθ(t) for each t. We refer to this as
Adaptive Restart Module (ARM). We first discuss
the set of features for ARM (§3.2.2), followed by
its architecture (§3.2.3) and training (§3.2.4).

3.2.2 Input Features for ARM
We use HYBRID encoder’s intermediate represen-
tations that do not require restart as the features
for ARM. This includes the unidirectional layers
as well as from the pre-softmax features from the

first
↔
L layer. The main motivation to use these fea-

tures is to incorporate more information without
incurring any restarts.

The following features are stored in unidirec-
tional cache and used without any restart for ARM:

(i) unidirectional encodings
→
ht from the last uni-

directional layer computed once and cached
for capturing the backward flow,

(ii) query qt and key kt from the first bidirectional

layer computed only from
→
ht,

(iii) unnormalized forward attention scores at =
[q1 · kt, · · · ,qt−1 · kt] from the first bidi-
rectional layer, where ‘·’ is the dot product.
These scores are concatenated across the pre-
fix tokens (restricted and padded to latest m
tokens) across all heads.

These features are then concatenated and provided

as input to the ARM as ft = [
→
ht,qt,kt,at].

3.2.3 ARM Architecture
We use a single-layered GRU (Cho et al., 2014)
to predict restart. The probability of restart
pθ(RESTART(t) = 1) is modeled as,

(ot, st) = GRU(ft, st−1) (7)

pθ(RESTART(t) = 1) = σ(LINEAR(ot)) (8)

Here st and ot are the GRU hidden state and out-
put at time t, respectively. These outputs can be
post-processed to handle too frequent or too infre-
quent waiting and obtain the final selector predic-
tions.Details can be found in Appendix (§A.2).
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Figure 2: The HEAR model in streaming setting. At t = 1, ARM decides not to run the bidirectional layers and
exit early through the auxiliary predictor over unidirectional encoding. Similarly at t = 2, ARM decides not to
restart and considers the auxiliary predictions of the latest token and the predictions from the previous steps. At
t = 3 and t = 4, ARM decides to restart and runs the bidirectional layers to get prediction for all the tokens from
scratch. Note that in all the steps, for unidirectional layers and ARM, the computation is performed only for the
latest token received.

3.2.4 Training the ARM
Ideally, HYBRID encoder should restart only when
it would lead to improved predictions over the pre-
fixes i.e., more number of prefix inputs should have
the same output as the the offline ground truth for
those prefixes. We use this to define our ground
truth RESTART sequence for training the ARM.

Given the ground truth offline tag sequence y∗,
unidirectional predictions

→
y = [

→
y 1, · · ·

→
yn] and

final bidirectional prediction sequence over each

of the n prefixes
↔
Y = [

↔
y1, · · ·

↔
yn], we define the

ground truth policy RESTART∗(t) = π∗t for ARM,
at time t, as follows.

π∗t =

{
1 if |y∗≤t =

→
y≤t| < |y∗≤t =

↔
y≤t|

0 otherwise
(9)

The policy decides to restart at time t if more
tokens in bidirectional predictions match with the
ground truth (|y∗≤t =

↔
y≤t|) than those from unidi-

rectional predictions (|y∗≤t =
→
y≤t|).4 ARM is

trained against this policy with features from a
frozen and trained HYBRID encoder model with a
standard binary cross entropy loss.

4 Experimental Setup

Datasets and Tasks. We consider four com-
mon sequence tagging tasks – Slot Filling over
SNIPS (Coucke et al., 2018), Semantic Role La-
belling (SRL) over Ontonotes (Pradhan et al.,
2013), and Named Entity Recognition (NER) and
Chunking (CHUNK) over CoNLL-2003 (Sang and
Meulder, 2003). The standard train, dev and test
splits are used for all datasets.

Models and Baselines. For our models, we con-
sider a layer budget of 4 for the encoder. Nat-
urally, our baselines are the UniDi encoder and
BiDi encoder with all unidirectional and bidirec-

4This policy is greedy. The optimal policy obtained via
dynamic programming relies on the future tokens.
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Current Token Prefix Predictions Total Unnecessary Exact Match Exact Match
Edits Edits w/ ground truth w/ final prediction

find O 1 0 1 1
new O O 2 1 1 1
york O LOC LOC 4 3 2 1
times O ORG ORG ORG 7 3 2 2
square O ORG ORG ORG LOC 8 3 2 3

Ground Truth O LOC LOC LOC LOC EO= Unnecessary Edits
Total Edits = 3

8
Streaming EM = EM w/ ground truth

# steps = 2
5

RC = EM w/ final labels
# steps = 3

5

Table 3: Example computation for the metrics described in §4.1 . EO is calculated as fraction of edits that were
unnecessary. RC measures the fraction of prefix predictions that matches the model’s final predictions. Streaming
EM measures the fraction of prefix predictions that are correct with respect to the ground truth labels.

tional layers, respectively. For HEAR, we tune
for the optimal fractions of unidirectional layers in
encoder by selecting the one that maximizes the
offline F1 performance over the development set.
We consider RESTART-k baseline for ARM. For
each dataset, we picked the best value of k from
{2, 3, 5, 8}, maximizing the Streaming EM over
development set.

4.1 Metrics
The model evaluation is done over three criteria: of-
fline performance over complete input text, stream-
ing performance over prefixes and efficiency of
running the model in streaming settings.

Offline Metrics. The offline performance of the
model is measured using the widely used chunk-
level F1 score for sequence labelling tasks (Sang
and Meulder, 2003).

GFLOPs. We measure total number of Floating
Point Operations (FLOPs) required for running
the model in a streaming setting in GigaFLOPs
(GFLOP), estimated via XLA compiler’s High
Level Operations (HLO) (Sabne, 2020). GFLOP
positively correlates with how computation-heavy
a model is and its wall-clock execution time.

Streaming Metrics. An ideal streaming model
should predict the correct labels for all prefixes
early (Trinh et al., 2018) and avoid unnecessary la-
bel flips. Following previous works (Madureira and
Schlangen, 2020; Kahardipraja et al., 2021), we use
Edit Overhead (EO) and Relative Correctness (RC)
metrics from Baumann et al. (2011).

EO (Edit Overhead) is a measure of the fraction
of the label edits that were unnecessary with respect
to the final prediction on complete output. Consider
the example in Table 3. At the first timestep, the
token “find” is assigned a label “O” from “N/A”;
taking the total edits to 1. Similarly, in the second

timestep, the newly received token “new” gets a
label edit; taking the total edit to 2. In the third
timestep, however, not only the newly received
token “york” receives a label edit but the second to-
ken “new” is also edited from “O” to “LOC”; result-
ing in 4 total edits. Of these edits, the label edit for
token "new" in timestep 2 from “N/A” to “O” was
unnecessary as it differs from its final label “ORG”.
Similarly, the label flips for “new” and “york” in
the timestep 3 from “O” and “N/A” to “LOC” and
“LOC”, respectively, were also unnecessary. Cumu-
latively, towards the end of fifth timestep, we have
3 out of 8 total edits which were overhead. Thus,
the EO turns out to be 3

8 , where lower is better.

RC measures the relative correctness of prefixes,
i.e. correctness of prefix prediction sequence with
respect to the final label set over the complete input.
For the example in Table 3, only the label sequence
in the first timestep (“O”), fourth timestep (“O ORG
ORG ORG”) and final (fifth) timestep are prefixes
of the label sequence in the final timestep (“O ORG
ORG ORG LOC”). Thus 3 prefixes of a total 5 pre-
fixes were correct. So, the Relative Correctness is
3
5 , where higher is better.

While EO and RC capture consistency and stabil-
ity in streaming predictions, neither of these mea-
sures performance with respect to the ground truth
label over offline input. Relying on these metrics
alone is not sufficient to measure streaming per-
formance. For example, a UniDi encoder achieves
perfect EO and RC scores, despite have poor predic-
tions with respect to the offline ground truth. Thus,
we consider Streaming Exact Match (Streaming
EM), which is the streaming setting analogue of
the Exact Match metric. Streaming EM calculates
the percentages of prefix label sequence which are
correct with respect to the offline ground truth la-
bels. For example in Table 3, only the first label
sequence (“O”) for input “find” and third label se-
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Model SNIPS CHUNK NER SRL

UniDi encoder 86.8 88.1 73.8 56.4
HYBRID encoder 93.0 89.4 86.8 80.0

BiDi encoder 93.1 89.4 86.0 80.1

Table 4: Offline F1 over test set of datasets described
in §4. On all datasets, HYBRID encoder achieves perfor-
mance parity with the BiDi models.

quence (“O LOC LOC”) for input “find new york”
is a prefix of the ground truth label sequence (“O
LOC LOC LOC LOC”), leading to only 2 out of
5 prefix label sequence being correct. Thus, the
Streaming EM is 2

5 . Similar to RC, higher score is
better as more prefixes have exact matches.

5 Experimental Results

In this section, we provide empirical results to an-
swer the following questions:

(a) In offline setting, does HYBRID encoder
achieve parity with BiDi encoders?

(b) In streaming setting, by how much does HY-
BRID encoder reduce GFLOPs count?

(c) Does HEAR improve streaming performance
and save on GFLOP count?

HYBRID Encoder’s Offline Performance is Com-
petitive to BiDi Encoders. Table 4 shows the of-
fline F1 scores of the HYBRID encoder, UniDi and
BiDi encoders across the four tasks. The HYBRID

encoder has similar offline F1 as BiDi encoders. In
fact, on NER, it even outperforms it by a margin
of 0.8 F1 score. As expected, the UniDi model per-
forms poorly compared to the BiDi encoder across
all the tasks. From here on, we omit UniDi encoder.

HYBRID Encoder Improves Streaming Effi-
ciency. Table 5 shows the GFLOP (per input
instance) in streaming settings across the four
datasets for the HYBRID encoder and BiDi en-
coders, with a trivial restart at every new token
to get predictions over streaming text. We ob-
serve that HYBRID encoder consistently offers
lower GFLOP count than BiDi encoder across the
datasets, and in three of the four datasets, offer-
ing more than 40% FLOP reduction. However,
HYBRID encoder does not improve on streaming
performance (Streaming EM, EO, and RC) over
BiDi, and its FLOP can be further reduced. We
next see how incorporating HEAR addresses this.

HEAR Improves Streaming Efficiency and
Performance. Across all datasets, we observe
HEAR further reduces GFLOP count from the al-
ready computationally lighter HYBRID encoder,
giving us upto 71% total FLOP reduction from
BiDi. HEAR has better streaming predictions,
as its Streaming EM is much higher (upto +10.0)
than BiDi, improving on the shortcoming of Hy-
brid. This highlights that naively restarting at each
timestep can worsen the streaming performance, as
evident through the lower performance of Hybrid
and BiDi. HEAR also offers reduced number of
avoidable label flips, as signified by a lower EO. Its
high RC score signifies that its streaming predic-
tions are more consistent with its final prediction.

All these results demonstrate that HEAR pre-
serves the offline performance of BiDi encoders,
while being computationally lighter by 58.9% on
average across tasks. HEAR has more consistent
streaming predictions which are accurate with re-
spect to offline ground truth.

6 Analysis and Ablations

In this section, we perform various analysis pertain-
ing to the HYBRID encoder and ARM.

6.1 HYBRID Encoder’s Unidirectional Layers
Performance

Table 6 compares the performance of the predic-
tion over the intermediate (unidirectional) and fi-
nal (bidirectional) encodings for the best HEAR
model. While the intermediate ones lag in compar-
ison to the final, we get decent performance from
intermediate ones across all except for SRL dataset.
This shows that, when used selectively, UniDi in-
termediate predictions can serve as a good source
of auxiliary predictions.

6.2 ARM vs RESTART-k.

Table 6 shows the performance of baseline - the
best RESTART-k from {2, 3, 5, 8} over dev set
Streaming EM and the ARM. We observe that
across all the datasets, on both Streaming EM and
EO metric, ARM performs significantly better than
the heuristic RESTART-k mechanism. This shows
that using a fixed length wait is not sufficient.

6.3 Intrinsic Performance of ARM

Table 6 shows the performance of the ARM on its
binary classification task. Given the lightweight
ARM architecture and the task complexity, the
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Dataset GFLOP ↓ Streaming EM ↑ EO ↓ RC ↑
BiDi HYBRID HEAR BiDi HYBRID HEAR BiDi HYBRID HEAR BiDi HYBRID HEAR

SNIPS 74.7 43.4 21.6 75.1 72.5 85.1 15.9 16.7 6.3 78.2 76.3 88.5
CHUNK 238.8 126.3 91.3 77.7 77.7 77.9 5.0 4.8 4.5 91.6 91.9 91.6
NER 238.8 126.2 83.8 79.3 78.2 81.9 8.7 8.3 5.4 87.2 88.2 90.9
SRL 741.2 557.7 460.4 43.6 49.1 50.6 33.0 29.9 21.0 56.0 61.5 62.5

Table 5: Streaming performance over test set of datasets. HEAR significantly outperforms BiDi on all metrics
improving upon efficiency and performance. Direction of arrow indicates whether higher or lower is better.

Dataset Offline F1↑ Streaming EM ↑ EO ↓ ARM Classification

BiDi UniDi RESTART-k ARM RESTART-k ARM Micro-F1

SNIPS 93.6 79.1 82.1 85.3 7.9 6.0 79.5
CHUNK 90.4 86.8 75.6 76.5 4.5 4.5 67.1
NER 91.3 77.9 85.6 87.8 4.1 4.0 75.7
SRL 79.7 42.8 41.8 48.9 31.5 21.6 80.2

Table 6: Development set ablation and analyses. From left to right - comparing performance of HYBRID encoder
over sequence tagging using its bidirectional (final) vs unidirectional (intermediate) encoding, comparison of
Streaming EM and EO of RESTART-k vs ARM, and the performance of ARM w.r.t. its ground truth policy labels.

performance is satisfactory with 80.2 F1. However,
there is a considerable margin for its improvement
both in terms of model architecture and features.

6.4 ARM’s Architecture Ablation

Dataset Streaming EM ↑ EO ↓
No ARM 73.8 16.3
Linear ARM 81.3 6.8
MLP ARM 81.4 6.9
GRU ARM 85.3 6.0

Table 7: Performance of HEAR with different ARM
model architectures over SNIPS development set.

Table 7 shows the Streaming EM and EO scores
of HEAR with different ARM model architectures
for the SNIPS development set. We observe that
HEAR having either a Linear layer or MLP as
ARM does much better than having no ARM and
restarting at each timestep. However, modeling
ARM as a GRU recurrent model gives the best
scores in both metrics.

7 Related Work

Streaming (or incremental) setting has been widely
studied in machine translation and parsing, dating
as far back as two decades (Larchevêque, 1995;
Lane and Henderson, 2001). Specifically, for in-
cremental parsing, there are two broad approaches
that have been studied: transition-based and graph-
based. Transition-based incremental parsers allow
for limited backtracking and correcting parsing

over prefixes by keeping track of multiple parse seg-
ments (Buckman et al., 2016) or via beams search
(Bhargava and Penn, 2020). Such methods can fail
on garden-path sentences and long-range dependen-
cies and only work proficiently with a large beam.
Graph-based parsers incrementally assign scores
to edges of the graph, discarding those edges that
cause conflicts to tree-structure of the graph. (Yang
and Deng, 2020) proposed an attach-juxtapose sys-
tem to grow the tree, requiring restart at each new
token over streaming input. (Kitaev et al., 2022)
improved on its efficiency by proposing a infor-
mation bottleneck. However, these methods rely
on the structured nature of parsing output can not
be adapted to incremental sequence tagging tasks
without restarting at each token.

Recently, Madureira and Schlangen (2020)
benchmarked the modern encoders on stream-
ing sequence labelling and observed poor stream-
ing performance of pretrained transformer mod-
els. They explored improvement strategies by
adopting techniques from other streaming stream-
ing like chunked training (Dalvi et al., 2018),
truncated training (Köhn, 2018) (training model
on heuristically-aligned partial input-output pairs),
and prophecy (Alinejad et al., 2018) (autocomplet-
ing input using a separate language model). They
observed performance degradation from truncated
training unless used with prophecies. However,
running a language model at each timestep for
prophecy is computationally infeasible. Therefore,
unlike our approach, neither methods can improve
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performance feasibly.
Previous works have attempted to improve com-

putation efficiency in BiDi encoders. Monotonic
attention moves away from O(n2) soft attention
overhead by restricting attention to monotonically
increase across timesteps (Raffel et al., 2017; Chiu
and Raffel, 2018; Ma et al., 2020). However, unlike
HEAR, such attempts can’t maintain offline perfor-
mance. Recently, Kahardipraja et al. (2021) used
linear transformer (Katharopoulos et al., 2020) as
unidirectional model using masking for streaming
sequence tagging and classification. This approach
performs well under the assumption of delayed out-
put (Grissom II et al., 2014; Oda et al., 2015), a
relaxation, where the model waits for additional
tokens before predicting. Furthermore, the unidi-
rectional model could not revise its output, render-
ing the model incapable of handling long-range
dependency or tasks that go backward like SRL —
an ability common to any model with some bidi-
rectionality, such as HEAR. Similar drawbacks
were in the partial bidirectional encoder, a bidirec-
tional attention with restricted window, proposed
by Iranzo Sanchez et al. (2022).

Improving efficiency through adaptive comput-
ing has been independently studied for reasoning-
based tasks (Eyzaguirre and Soto, 2020), text gen-
eration models (Arumae and Bhatia, 2020; Eyza-
guirre et al., 2022) and diffusion models (Ye et al.,
2022). These works are restricted to offline set-
tings and can be readily incorporated within the
proposed overall approach of HEAR.

8 Conclusion

We propose HEAR for sequence tagging in stream-
ing setting where the input is received one token
at a time to the model. The encoder in our model
is HYBRID encoder where early layers are unidi-
rectional and later are bidirectional. It reduces the
computational cost in streaming settings, by reduc-
ing the need of restart only to the later bidirectional
layers while preserving the offline performance
of the model. HEAR additionally consists of an
ARM to predict when to restart the model. Using
ARM leads to reduced number of restart of the
encoder, leading to better streaming performance
and further savings in computation. Compared to
BiDi encoders, our model, HEAR (HYBRID en-
coder + ARM) reduces the computation by upto
71% in streaming settings while maintaining the
performance of the BiDi encoders across various

sequence tagging tasks. HEAR improved stream-
ing EM by upto +10.0% and reduced unnecessary
edits by upto -12.0%.

Limitations

An additional but small training cycle is required
to train the lightweight ARM module of HEAR
in order to reap the benefits of extra savings in
efficiency and streaming performance. Also, even
though we do not assume any language specific-
design choices, we benchmarked on the standard
streaming sequence labelling benchmark datasets,
all of which were in English.
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A Experiment Details

A.1 Implementation Details

All the experiments were done using the Flax (Heek
et al., 2020) and Jax (Bradbury et al., 2018) with
Adam optimizer (Kingma and Ba, 2014) on TPUs.
We measure flops in terms of XLA’s HLO (Sabne,
2020). The optimizer’s learning rate is set to 1e-3,
betas are set to default at (0.9, 0.999), batch size
is 256 and feedforward hiden is 2048 with 512
transformer dimension and 8 heads.

For all the datasets we use the standard splits,
the links to which can be found in their respective
papers along with statistics. Following (Ratinov
and Roth, 2009), we use the BIOES tagging scheme
for the NER task and BIO scheme for the rest. In
SRL, following (He et al., 2017) the indicator for
predicate verb is also used as input the along with
the sentence.
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All the values over test sets are averaged across
four seeds. For experiments involving ARM we av-
erage across four different HYBRID encoder trained
from different seeded initialization. We initialize
static embeddings with 300 dimensional glove em-
bedding (Pennington et al., 2014).

A.2 Postprocessing ARM Predictions
We post process the ARM predictions to prevent
too frequent or too infrequent restarts. Specifically,
for hyperparameters α and β where 0 ≤ α < β, at
any time t, if the ARM hasn’t restarted once since
max(0, t− β) timesteps, then ARM’s prediction
is set to 1, else, if the ARM has restarted atleast
once since max(0, t− α) timesteps, then it is set
to 0. We tune for the values of α and β in the range
{0, 1, 2, 3, 5, 10} over the development set.

We also observe that even if bidirectional layers
improve predictions over previous tokens, for the
latest token only, the unidirectional label

→
y t is often

better than
↔
y t. If this is observed, then, we exclude

the most recent token from getting updated during
restart. We tune for this binary postprocessor over
the development set as well.

B Analysis and Ablation

B.1 Benefits of Optimizing Unidirectional
Predictor Separately

In HYBRID encoder the performance we inhibit
backward gradient flow from the auxiliary predictor
over the unidirectional layers unidirectional. This
is because we observed offline F1 performance
drop of bidirectional predictor when trained with
unidirectional predictor, dropping from 81.20 to
71.62 on CoNLL development set. Even after tun-
ing for loss scaling for the to predictors in ratio
{1:1, 3.3:1, 10:1, 33:1, 100:1}, the performance
was only increased upto 75.06 F1.

B.2 Oracle Policy for ARM
We also experimented with alternate policy for
ARM where it’s label is conditioned on the last
bidirectional restart. However, it led to a perfor-
mance drop in terms of Streaming EM from 86.7
to 83.0, as observed across SNIPS development set.
We attribute this poor performance on alternate pol-
icy, due to the lightweight nature of ARM. Thus,
we did not proceed with this policy.
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Abstract
Task-oriented semantic parsing models have
achieved strong results in recent years, but un-
fortunately do not strike an appealing balance
between model size, runtime latency, and cross-
domain generalizability. We tackle this prob-
lem by introducing scenario-based semantic
parsing: a variant of the original task which sep-
arates disambiguating an utterance’s “scenario”
(an intent-slot template with variable leaf spans)
and generating its frame, complete with on-
tology and utterance tokens. This formula-
tion closely ties to the data collection process
where the scenarios are first designed followed
by crowd sourced utterance annotation. Con-
cretely, we create a Retrieve-and-Fill (RAF) ar-
chitecture comprised of (1) a retrieval module
which ranks the best scenario given an utter-
ance and (2) a filling module which imputes
spans into the scenario to create the frame. Our
model is modular, differentiable, interpretable,
and allows us to garner extra supervision from
scenarios. RAF achieves strong results in high-
resource, low-resource, and multilingual set-
tings, outperforming recent approaches despite,
using base pre-trained encoders and efficient
decoding.

1 Introduction

Task-oriented conversational assistants typically
first use semantic parsers to map textual utterances
into structured frames for language understand-
ing (Hemphill et al., 1990; Coucke et al., 2018;
Gupta et al., 2018; Rongali et al., 2020; Agha-
janyan et al., 2020). While these parsers achieve
strong performance with rich supervision, they of-
ten face obstacles adapting to novel settings, es-
pecially ones with distinct semantics and scarce
data. Recent approaches address this by improv-
ing parsers’ data efficiency, such as by using pre-
trained representations (Aghajanyan et al., 2020;
Rongali et al., 2020), optimizing loss functions
(Chen et al., 2020b), and supplying natural lan-
guage prompts (Desai et al., 2021). However, these

approaches typically rely on larger models and
longer contexts, impeding their applicability in
real-world conversational assistants. Even though
non-autoregressive models can alleviate some con-
cerns (Babu et al., 2021; Shrivastava et al., 2021;
Zhu et al., 2020), to the best of our knowledge,
there exists no approach which strikes an appealing
balance between model size, runtime latency, and
cross-domain generalizability.

We begin tackling this problem by introducing
scenario-based task-oriented semantic parsing
which is more closely tied to how new task do-
mains are developed. A slight variation on orig-
inal semantic parsing, we are given access to all
supported scenarios apriori and have to parse the
utterance given this scenario bank. Here, a sce-
nario is akin to a incomplete frame; it is, precisely,
an intent-slot template with variables as leaf spans
(e.g., IN:GET_WEATHER [SL:LOCATION x1 ] ]),
indicating it maps to a family of linguistically sim-
ilar utterances. As domain development and data-
collection usually starts out with designing the set
of supported scenarios, our intuition is that by giv-
ing the model access to this bank we can train it to
more explicitly reason about scenarios and improve
performance especially in the low data regime.

Concretely, we propose RAF (Retrieve-and-
Fill), a modular yet differentiable architecture
for scenario-based task-oriented semantic parsing.
Guided by the definition of our task, RAF also
proceeds in two steps: (1) given an utterance, a
retrieval module finds the highest ranking scenario
and (2) given the utterance and retrieved scenario,
a filling module imputes spans into the scenario,
creating the final frame. This approach requires
no extra supervision despite performing auxiliary
inference: utterances and frames are typically pro-
vided, and scenarios are obtained by stripping leaf
text in frames. We design RAF to capitalize on the
advantages of prior work but avoid their disadvan-
tages; using base pre-trained encoders across-the-
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Figure 1: High-Level Overview. Retrieve-and-Fill (RAF) consists of 4 steps: (1) Encode the utterance via an
utterance encoder (e.g., RoBERTa); (2) Encode all scenarios (Desai et al., 2021) in the scenario bank into a cached
index via a scenario encoder (e.g., RoBERTa); (3) Compute the dot product similarity amongst the incoming
utterance and the index of all scenarios, obtaining the top-n candidates; (4) For each retrieved scenario, leverage the
non-autoregressive span pointer decoder (Shrivastava et al., 2021) to impute each scenario’s spans.

board, our retrieval module caches intrinsic repre-
sentations during inference and our filling module
non-autoregressively decodes leaf spans in a gener-
alizable fashion.

We evaluate our approach in high-resource, low-
resource, and multilingual settings using standard
task-oriented semantic parsing datasets. RAF
achieves 87.52% EM on TOPv2 (Chen et al.,
2020b) and 86.14% EM on TOP (Gupta et al.,
2018), outperforming recent autoregressive and
non-autoregressive models. RAF also excels in
weakly supervised settings: on TOPv2-DA, we
outperform Inventory (Desai et al., 2021) on 4 do-
mains (alarm, music, timer, weather) despite using
<128 token sequence lengths and 2-4x less parame-
ters, on TOPv2 low resource, we outperform BART
(Lewis et al., 2020), RINE (Mansimov and Zhang,
2021), and RoBERTa + Span Pointer (Shrivastava
et al., 2021), and on MTOP (Li et al., 2021), we
outperform XLM-R + Span Pointer, achieving 42%
EM averaged across en→{es, fr, de, hi, th} transfer
tasks.

To summarize, our contributions are: (1) Intro-
ducing scenario-based task-oriented semantic pars-
ing, a novel task which requires disambiguating
scenarios during typical utterance→frame predic-
tions; (2) Creating RAF (Retrieve-and-Fill), a mod-
ular yet differentiable architecture composed of a
retrieval and filling module for solving scenario-
based task-oriented semantic parsing; and (3)
Achieving strong results in high-resource, low-

resource, and multilingual settings, outperforming
recent models such as Span Pointer, Inventory, and
RINE by large margins, while also optimizing for
model size, runtime latency, and cross-domain gen-
eralizability.

2 Scenario-based Semantic Parsing

We formally introduce the task of scenario-based
semantic parsing. Task-oriented conversational as-
sistants support a wide range of domains (e.g., call-
ing, reminders, weather) to maximize coverage
over users’ needs. Over time, in response to re-
quests and feedback, developers often iterate on as-
sistants’ skill-sets by adding new domains. Though
the crowdsourcing process of collecting and anno-
tating samples—utterances and frames—for new
domains can be accomplished in many ways, we
propose a two-step methodology where develop-
ers (a) develop scenarios which roughly describe
a family of samples and (b) collect linguistically-
varied samples consistent with each scenario. We
elaborate more on our scenario-based methodology
below.

Scenario Definition. We define a scenario as
an intent-slot rule which abstracts away linguistic
variation in utterances. More specifically, it is a de-
coupled semantic frame (Aghajanyan et al., 2020)
with variables in leaf spans, indicating it can sub-
class utterances with similar syntactic and semantic
structure, an example is showing in table 1. Our no-
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Utterance Frame

Scenario: [IN:GET_WEATHER [SL:LOCATION x1 ] ]

what’s the weather in seattle [IN:GET_WEATHER [SL:LOCATION seattle ] ]
how’s the forecast in sf [IN:GET_WEATHER [SL:LOCATION sf ] ]

Scenario: [IN:GET_WEATHER [SL:LOCATION x1 ] [SL:DATE_TIME x2 ] ]

what’s the weather in seattle tomorrow [IN:GET_WEATHER [SL:LOCATION seattle ] [SL:DATE_TIME tomorrow ] ]
how’s the forecast in sf at 8pm [IN:GET_WEATHER [SL:LOCATION sf ] [SL:DATE_TIME 8pm ] ]

Table 1: Scenario Description. Scenarios are intent-slot templates with missing slot text, suggesting they subclass
linguistically similar utterances. We show examples of utterances, scenarios, and frames in the weather domain;
each scenario consists of multiple (utterance, frame) pairs.

tion of a scenario is inspired by production rules in
constituency parsing (Chomsky, 1959), but the par-
allel is not exact given our scenarios have semantic
not syntactic types.

Using scenarios, we can effectively quantize the
space of possible utterances by identifying and
defining slices of user requests. Our solution also
offers fine-grained control over precision and recall,
which is important in real-world systems; we can
collect more paraphrases to improve precision and
we can create more scenarios to improve recall.

We collect scenarios by taking train, eval, and
test frames from our datasets, and stripping out
the utterance text, to yield a decoupled semantic
frame. As discussed later in this manuscript, our
approach requires knowing, beforehand, the space
of possible scenarios, in order to perform global
inference.

Case Study: Weather. Table 1 shows an ex-
ample setting where we crowdsource weather do-
main samples using the scenario-based methodol-
ogy outlined above. To begin, we may envision
building a weather system which supports requests
with location and/or date-time information. There-
fore, we can define two scenarios: (1) a family of
samples with one location span; and (2) a family
of samples with one location span and one date-
time span. Each scenario explicitly outlines the
intents and slots that must be present, as scenar-
ios are not “one-size-fits-all” rules with optional
slotting. So, as an example, the utterance “how’s
the forecast in sf” would not be compatible with
the scenario [IN:GET_WEATHER [SL:LOCATION x1
] [SL:DATE_TIME x2 ] ] since it does not have a
date-time span as specified by the x2 variable.

Task Definition. Finally, we precisely define our
task of scenario-based semantic parsing. For the
typical task of semantic parsing, we define U as
a random variable over utterances, F as a random
variable over frames, and model P (F |U): find the

most likely frame given the utterance. However,
because we introduce scenarios as a coarse, inter-
mediate representation of frames, we additionally
define S as the set of all supported scenarios given
a priori, and model P (F |U, S).

3 RAF: Retrieve and Fill

We propose a model called RAF (Retrieve and Fill)
for scenario-based semantic parsing that naturally
decomposes the task into a coarse-to-fine objective
where we (a) find the most likely scenario given the
utterance and (b) find the most likely frame given
the utterance and scenario. More concretely given
an utterance u and scenarios s1, · · · , sn, as well as
a gold scenario s∗ and gold frame f∗, we learn our
model as follows:

1. Retrieve (Coarse Step; §3.1): A retrieval
module maximizes P (S = s∗|U = u) by
learning to retrieve scenario si given utter-
ance u, e.g., “what’s the weather in seattle”→
[IN:GET_WEATHER [SL:LOCATION x1 ] ].

2. Fill (Fine Step; §3.2): A filling module maxi-
mizes P (F = f∗|U = u, S = s∗) by decod-
ing the most likely frame f given the structure
of scenario s∗i and spans of utterance u, e.g.,
[IN:GET_WEATHER [SL:LOCATION x1 ] ]→
[IN:GET_WEATHER [SL:LOCATION seattle ]
].

RAF is a composable yet differentiable model
which implements coarse-to-fine processing: we
first develop a coarse-grained sketch of an utter-
ance’s frame, then impute fine-grained details to
achieve the final frame. In these types of ap-
proaches, there often exists a trade-off when cre-
ating the intermediate representation; if it is “too
coarse”, the filling module suffers, but if it is “too
fine”, the retrieval module suffers. We find sce-
narios, as defined in §2, offer the most appealing
solution, as the retrieval module unearths rough
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syntactic-semantic structure, while the filling mod-
ule focuses in on imputing exact leaf spans.

In the following sub-sections, we discuss the
technical details behind the retrieval and filling
modules, as well as describe the training and infer-
ence procedures.

3.1 Retrieval Module
First, we discuss the coarse-grained step of RAF,
which aims to find the best-fitting scenario for an
utterance. We formulate this task as a metric learn-
ing problem. Here, we can maximize the similarity
sim(u, s∗) between an utterance u and scenario s∗

as judged by a scalar metric. This offers numerous
advantages: we can explore ad-hoc encodings of
utterances and scenarios, adjust the output space
dynamically during inference, and compute exact
conditional probabilities by leveraging a (tractable)
partition function.

3.1.1 Bi-Encoder Retrieval
Following retrieval modeling in open-domain QA
(Karpukhin et al., 2020), we specifically lever-
age pre-trained encoders (EU for utterances and
ES for scenarios) to compute dense vector repre-
sentations, then maximize the dot product simi-
larity sim(u, s∗) = EU (u)

⊤ES(R(s∗)) between
utterance-scenario pairs (u, s∗); the precise nature
of R is discussed in §3.1.3. To learn such a metric
space and avoid degenerate solutions we need to
train the encoders to pull positive pairs together
and push negative pairs apart. Hence, we need ac-
cess to both positive (gold; (u, s+)) and negative
(non-gold; (u, s−)) pairs.

3.1.2 Negatives Sampling
The choice of negatives has a large impact on re-
trieval performance, which is consistent with find-
ings in information retrieval (Zhan et al., 2021;
Karpukhin et al., 2020). We explore two types
of negative sampling to improve retrieval perfor-
mance: in-batch negatives and model-based nega-
tives.

In-Batch Negatives. We mine positive and nega-
tive pairs from each training batch using in-batch
negatives (Karpukhin et al., 2020). Let U and S
be the utterance and scenario matrices, each be-
ing a (B × d) matrix consisting of d-dimensional
embeddings up to batch size B. We obtain B2

similarity scores upon computing the similarity ma-
trix M = US⊤, where Mi=j consists of positive
scores and Mi ̸=j consists of negative scores. For

each positive utterance-scenario pair (ui, s+i ), we
now have (B − 1) negative pairs {(ui, s−ij)}i ̸=j .
Having collected multiple negative pairs per posi-
tive pair, we leverage the contrastive loss for utter-
ance i is defined in Karpukhin et al. (2020); Chen
et al. (2020a):

Liretrieval(ui, s1, · · · , sb) =

log
esim(ui,si)

∑b
j=0 e

sim(ui,sij)
(1)

Since our set of scenarios isn’t huge this can result
in conflicts so we additionally implement identity
masking while training which ensures that for ev-
ery utterance each scenario is present at-most once
in it’s positive/negative set.

Model-Based Negatives. Following prior work
in IR (Xiong et al., 2020; Oğuz et al., 2021) we
train an initial retrieval model that uses only In-
Batch negatives. This model is used to rank all
scenarios for each utterance and the top K ranked
scenarios which are not the gold scenario are se-
lected as additional negative examples. Those neg-
atives examples are expected to be harder examples
since they were ranked higher by the initial model.
We train a new model using those added k scenar-
ios as explicit negative examples for each positive
example.

3.1.3 Frame Representation
While we have covered scenario-based retrieval
above, we have not yet precisely described how
dense vectors for scenarios are computed. Recall
our definition of utterance-scenario similarity in
§3.1.1: our objective is to maximize sim(u, s) =
EU (u)

⊤ES(R(s)), where R is a string transforma-
tion applied to scenarios.

Following Desai et al. (2021), we leverage in-
trinsic modeling to rewrite intents and slots as
a composition of their intrinsic parts in a single
string. Desai et al. (2021) define two, in particu-
lar: the categorical type (e.g., “intent” or “slot”)
and language span (e.g., “get weather” or “loca-
tion”). Using this methodology, we can transform
the scenario IN:GET_WEATHER [SL:LOCATION x1
] ] → [ intent | get weather [ slot |
location x1 ] ], which is inherently more natural
and descriptive.

Guided by the general concept of intrinsic mod-
eling, our goal here is to define R such that
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EU (u)
⊤ES(s) ≤ EU (u)

⊤ES(R(s)), all else be-
ing equal. We discuss our approach in detail in the
following sub-sections.

3.1.4 Language Spans

Desai et al. (2021) chiefly use an automatic
method to extract language spans from ontology
labels. For example, using standard string process-
ing functions, we can extract “get weather” from
IN:GET_WEATHER. While this method is a surpris-
ingly strong baseline, it heavily relies on a third-
party developers’ notion of ontology nomenclature,
which may not always be pragmatically useful. In
TOPv2 (Chen et al., 2020b), our principal evalu-
ation dataset, there exists ambiguous labels like
SL:AGE—is this referring to the age of a person,
place, or thing?

Therefore, to improve consistency and de-
scriptiveness, we propose a handmade method
where we manually design language spans for
each ontology label.1 The most frequent tech-
niques we use are (1) using the label as-
is (e.g., IN:GET_WEATHER → “get weather”);
(2) inserting or rearranging prepositions (e.g.,
IN:ADD_TO_PLAYLIST_MUSIC → “add music to
playlist”; and (3) elaborating using domain knowl-
edge (e.g., IN:UNSUPPORTED_ALARM → “unsup-
ported alarm request”).

3.1.5 Example Priming

Despite using curation to improve ontology label
descriptions, there are still many labels which re-
main ambiguous. One such example is SL:SOURCE;
this could refer to a travel source or messaging
source, but without seeing its exact manifestations,
it is challenging to fully grasp its meaning. This
motivates us to explore example priming: aug-
menting scenario representations with randomly
sampled, dataset-specific slot values. This can help
our model further narrow down the set of spans
each slot maps to during parsing. Furthermore, our
examples are just spans, so they are straightforward
to incorporate into our representation. For example,
for the slot SL:WEATHER_TEMPERATURE_UNIT, we
can augment and contextualize its representation
“slot | unit of weather temperature” with “slot | unit
of weather temperature | F / C” where “F” and “C”
are examples which appear in our dataset.

1See Appendix §D for our curated intent and slot descrip-
tions, respectively.

3.1.6 Representation Sampling

Our scenario-based retrieval task performs reason-
ing over a compact set of scenarios, unlike large-
scale, open-domain tasks such as information re-
trieval and question answering which inculcate mil-
lions of documents. As such, the chance our sys-
tem overfits to a particular representation is
much greater, no matter what it is set to. So, we
instead make R stochastic by uniformly sampling
unique frame representations for encoding scenar-
ios, and only using the handmade representations
during inference; Table 12 enumerates the com-
plete set of outcomes.

3.2 Filling Module

We use Span pointer model (Shrivastava et al.,
2021; Nicosia et al., 2021) as the basis of our infill-
ing model. Figure 2.A shows the how the model
works. In our case, we use scenario tokens from
the retrieved scenario as input tokens to decoder
as shown in figure 2.B. We also tried to pass the
scenario encoder output as input to the decoder to
replace the discrete input to the decoder and called
this scenario fusion as shown in figure 2.C.

Our final objective is Lfilling = NLL(f∗, f) +
αLS(f) where LS refers to label smoothing
(Pereyra et al., 2017).

4 Experiments and Results

We evaluate RAF in three settings: a high-resource
setting (100,000+ training samples), low-resource
setting (1-1,000 training samples), and multilingual
setting (0 training samples). Hyper parameter de-
tails are described in Appendix §E. Our goal here
is to show that our system both achieves competi-
tive performance on established benchmarks and
offers substantial benefits in resource-constrained
environments where training samples are limited.

4.1 Datasets for Evaluation

Following prior work in task-oriented semantic
parsing, we use 5 datasets for evaluation: TOP
(Gupta et al., 2018), TOPv2 (Chen et al., 2020b),
TOPv2-LR (Low Resource; Chen et al. (2020b)),
TOPv2-DA (Domain Adaptation; Desai et al.
(2021)), and MTOP (Li et al., 2021). TOP and
TOPv2 are used for high-resource experiments,
TOPv2-LR and TOPv2-DA are used for low-
resource experiments, and MTOP is used in multi-
lingual experiments.
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Figure 2: Infilling Model. A. the Span Pointer model in (Shrivastava et al., 2021). B. the Infilling model using tokens from
retrieved scenario and C. the infilling model with scenario fusion where scenario encoder output is connected to the decoder
directly. Note in all cases the decoder apply cross attention on the utterance encoder output.

4.2 Systems for Comparison

We compare against multiple task-oriented seman-
tic parsing models, which cover autoregressive
(AR), and non-autoregressive (NAR) training. See
Aghajanyan et al. (2020); Mansimov and Zhang
(2021); Babu et al. (2021); Shrivastava et al. (2021)
for detailed descriptions of these models.

The autoregressive models consist of BART
(Lewis et al., 2020) and RoBERTa (Liu et al.,
2019), and RINE (Mansimov and Zhang, 2021),
and the non-autoregressive models are RoBERTa
NAR (Babu et al., 2021) and RoBERTa NAR +
Span Pointer (Shrivastava et al., 2021). These mod-
els are applicable to both high-resource and low-
resource settings; though, for the latter, we also
add baselines from Desai et al. (2021): CopyGen
(BART + copy-gen decoder) and Inventory (BART
+ intrinsic modeling). The multilingual setting only
requires swapping RoBERTa with XLM-R (Con-
neau et al., 2020).

We denote our system as RAF in our ex-
periments. Unless noted otherwise, we use
RoBERTaBASE for the utterance encoder θU and
secnario θS and a random-init, copy-gen, trans-
former decoder for the frame decoder θF . As
alluded to before, we swap RoBERTaBASE with
XLM-RBASE for multilingual experiments.

4.3 High-Resource Setting

First, we evaluate RAF in a high-resource setting
where hundreds of thousands are samples are avail-
able for supervised training; Table 2 shows the re-
sults. RAF achieves strong results across-the-board,
using both base and large pre-trained encoders:
RAFBASE consistently outperforms other base
variants by 0.25-0.5 EM and RAFLARGE com-
paratively achieves the best results on TOPv2.

Model TOPv2 TOP

Type: Autoregressive Modeling (Prior)

RoBERTaBASE 86.62 83.17
RoBERTaLARGE 86.25 82.24
BARTBASE 86.73 84.33
BARTLARGE 87.48 85.71
RINEBASE — 87.14
RINELARGE — 87.57

Type: Non-Autoregressive Modeling (Prior)

RoBERTaBASE 85.78 82.37
+ Span Pointer 86.93 84.45

RoBERTaLARGE 86.25 83.40
+ Span Pointer 87.37 85.07

Type: Scenario Modeling (Ours)

RAFBASE 87.11 86.00
RAFLARGE 87.52 86.14

Table 2: High-Resource Results. Exact Match (EM) on
TOPv2 (Chen et al., 2020b) and TOP (Gupta et al., 2018). We
compare various semantic parsing paradigms: autoregressive,
non-autoregressive, and scenario. RAF achieves strong per-
formance on TOPv2 and TOP, illustrating its competitiveness
with state-of-the-art models.

4.4 Low-Resource Setting

Having established our system is competitive in
high-resource settings, we now turn towards eval-
uating it in low-resource settings, where training
samples are not as readily available. Here, we
chiefly consider two setting types: a high diffi-
culty setting (TOPv2-DA) with 1-10 samples and a
medium difficulty setting (TOPv2-LR) with 100-
1,000 samples. The exact number of samples in a
few-shot training subset depend on both the sub-
set’s cardinality and sampling algorithm.

Tables 3 and 4 show results on the high
and medium difficulty settings, respectively.
RAF achieves competitive results in the
high-difficulty setting, outperforming both
CopyGenBASE and InventoryBASE by large
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alarm music timer weather

CopyGenBASE 47.24 25.58 16.62 47.24
CopyGenLARGE 36.91 23.84 32.64 53.08
InventoryBASE 62.13 23.00 28.92 54.53
InventoryLARGE 67.25 38.68 48.45 61.77
RAFBASE (ours) 62.71 35.47 55.06 61.05

Table 3: High-Difficulty Low-Resource Results. EM on the
1 SPIS split of TOPv2-DA (Desai et al., 2021). Compared to
Inventory and CopyGen baselines, RAF achieves competitive
performance with a fraction of parameter usage.

Weather Domain (SPIS)

10 25 50 100 500 1000

Type: Autoregressive Modeling (Prior)

RoBERTaBASE AR 69.71 74.90 77.02 78.69 — 86.36
BARTBASE AR 73.34 73.35 76.58 79.16 — 86.25
RINEBASE — 74.53 — — 87.80 —
RINELARGE — 77.03 — — 87.50 —

Type: Non-Autoregressive Modeling (Prior)

RoBERTaBASE NAR 59.01 72.12 73.41 78.48 — 87.42
+ Span Pointer 72.03 74.74 74.85 78.14 — 88.47

Type: Scenario Modeling (Ours)

RAFBASE 75.10 78.74 77.53 79.67 87.91 88.17

Table 4: Medium-Difficulty Low-Resource Results. EM
on various SPIS splits of the TOPv2 (Chen et al., 2020b)
weather domain. RAF largely outperforms autoregressive and
non-autoregressive models, trailing RoBERTa-Base + Span
Pointer only in a high-resource split.

margins; notably, on timer, we nearly double
InventoryBASE’s exact match score. RAF also per-
forms well in the medium-difficulty setting; our
system consistently outperforms prior autoregres-
sive, and non-autoregressive models.

4.5 Multilingual Setting

Finally, we consider a multilingual setting, where a
model trained on English samples undergoes zero-
shot transfer to non-English samples. In Table 5,
we see that, compared to XLM-RBASE NAR +
Span Pointer, RAF achieves +2.3 EM averaged
across all 5 non-English languages. Upon inspect-
ing this result more closely, RAF’s performance is
strong across both typologically similar languages
(+4.8 EM on Spanish, +3.5 EM on French) and
distinct languages (+2.7 EM on Hindi and Thai).

5 Ablations and Analysis

We perform model ablations on RAF, removing
core retrieval- and filling-related components we
originally introduced in §3 to better understand the
design decisions. From Tables 6 and Table 7, we
draw the following conclusions:

Negatives are important for accurate scenario
retrieval. The metric learning objective for re-
trieval, as introduced in §3.1.2, precisely delineates
between positive and negative samples. Our ab-
lations show model-based negatives and identity
masking are critical to achieve best performance;
when removing model-based negatives, for exam-
ple, retrieval accuracy drops by 3%+. We also
investigate training RAF with heuristic-based nega-
tives: a simple algorithm which finds top-k similar
scenarios with string-based edit distance (Appendix
C). However, heuristic-based negatives regress both
retrieval-only and end-to-end approach, suggesting
model-based negatives are more informative.

Sharing parameters between retrieval encoders
improves quality. Our retrieval module has two
encoders: an utterance encoder EU and a scenario
encoder ES . An important design decision we
make is tying both encoders’ parameters together
with RoBERTa (Liu et al., 2019); this improves
end-to-end performance by roughly +0.6 EM. We
believe that parameter sharing among retrieval en-
coders improves generalizability: because there are
more vastly more unique utterances than scenar-
ios, the scenario encoder may overfit to a select
set of scenarios, so weight tying enables the joint
optimization of both encoders.

Scenario fusion enables better end-to-end mod-
eling. Because RAF is composed of two neu-
ral modules—the retrieval and filling modules—
chaining them together arbitrarily may result in
information loss. The filling module chiefly uses
scenario token embeddings to reason over the re-
trieval module’s outputs. Our results show that sce-
nario fusion, initializing these embeddings using
the scenario encoder’s final state, improves upon
random init by +0.77 EM and +0.65 EM-S.

Intrinsic representations improve low-resource
performance. When comparing the high-level
scenario representation, we see that canonical (e.g.,
“[IN:GET_WEATHER [SL:LOCATION ]”) under-
performs intrinsic (e.g., “[ intent | get weather [slot
| location ] ]”) by a wide margin (-4.49%) in the tar-
get domain. This implies RAF better understands
scenarios’ natural language descriptions even if
they contain unseen, domain-specific terms. Fur-
thermore, we see leveraging all concepts (hand-
made, automatic, examples) achieves both com-
petitive source and target performance. Even
though excluding handmade improves target perfor-
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Zero-Shot Evaluation

en en→es en→fr en→de en→hi en→th Avg

XLM-RBASE NAR 78.3 35.2 32.2 23.6 18.1 16.7 25.2
+ Span Pointer 83.0 51.2 51.4 42.0 29.6 27.3 40.3

RAFBASE (ours) 81.1 56.0 54.9 40.1 32.1 30.0 42.6

Table 5: Multilingual Results. We perform zero-shot experiments where we fine-tune a parser on English (en), then evaluate it
a non-English language—Spanish (es), French (fr), German (de), Hindi (hi), and Thai (th)—without fine-tuning. Average EM
(Avg) is taken over the five non-English languages. RAF outperforms XLM-R-Base + Span Pointer by +2.3% on average.

Model EM EM-S

Classify and Fill 84.80 87.16
RAFBASE 87.03 89.34

- Hard Negatives 83.69 86.00
- Identity Masking 85.87 88.23
- Scenario Fusion 86.26 88.69
- Parameter sharing 86.76 89.10
- Repr. Sampling 86.70 89.05
+ Heuristic negatives 85.66 89.10

Table 6: Model Ablations. We assess several components
of our model, individually removing them and evaluating EM
(Exact Match) and EM-S (Exact Match of Scenarios, i.e.,
intent-slot templates without slot text) on TOPv2 (Chen et al.,
2020b) validation set.

Source Fine-Tuning Target Fine-Tuning

Model EM EM-S EM EM-S

Canonical Repr. 86.67 88.74 74.25 76.80
Intrinsic Repr. 87.10 89.15 78.74 81.70

- Automatic 87.02 89.06 78.92 81.80
- Handmade 86.85 88.87 79.27 82.29
- Examples 86.91 88.90 78.25 80.89

Table 7: Scenario representation ablation, where the target
domain is a 25 SPIS split of the TOPv2 (Chen et al., 2020b)
weather. Following the typical few-shot fine-tuning method-
ology, we perform source fine-tuning on all domains except
weather and reminder, then perform target fine-tuning on a
specific split.

mance (+0.53%), it regresses source performance
(-0.28%), suggesting sampling all representations
is more generalizable.

Runtime Latency Empirically we find that RAF
retains the runtime latency of Span Pointer, due
to it’s non-autoregressive decoding nature despite
leveraging the retrieval module. We find that the
difference is within 3ms P99 and significantly faster
than the autoregressive counter part (189ms). We
report the full experiment details in A.2.

Interpretablity RAF offers a more interpretable
modeling paradigm Due to (1) RAF encoding utter-
ances and scenarios into a joint embedding space
which we can directly visualize. We present two
case studies leveraging these visualizations: do-

main development (B.1) and error analysis (B.2).
(2) RAF retains modularity of components to iso-
late retrieval vs filling issues. In A.1 we show the
comparisons of retrieval vs filling to highlight po-
tential of each module, in particular on the TOPv2
eval dataset, oracle retrieval improves performance
+9.5% where oracle filling improves performance
+2.3% indicating the importance of retrieval.

5.1 Extra-Scenario Generalization
A core difference between scenario-based and non-
scenario-based (seq2seq; autoregressive or non-
autoregressive) models is that scenario-based mod-
els “know” of all scenarios beforehand, while
seq2seq models do not, and therefore have to purely
rely on generalization. We further quantify the im-
pact that this has by dividing overall EM using two
groups: (1) Known vs. Unknown - i.e scenarios in
the training dataset vs. scenarios only in the test
dataset and (2) In-Domain vs. Out-of-Domain -
scenarios with a supported intent vs. unsupported
intent (e.g., IN:UNSUPPORTED_*).

From the results in Table 8, we draw a couple of
conclusions. First on Unknown EM, even though
Span pointer, BART models are capable of generat-
ing novel scenarios not part of the train set they do
so poorly. RAF does much better on this given the
caveat that it adds the novel scenarios to its frame
index beforehand but it hasn’t seen any paired ut-
terance to them. Second, RAF outperforms on In-
Domain EM but underperforms on Out-of-Domain
EM. Because RAF leverages intrinsic descriptions
of scenarios, the word “unsupported” may not pre-
cisely capture what it means for an utterance to be
in- vs. out-of-domain.

6 Related Work

Scaling Semantic Parsing A critical theme in se-
mantic parsing is reducing data requirements to
stand up new domains and scenarios. Existing
works rely on leveraging large language models
such as BART (Lewis et al., 2020) with augmenta-
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Model EM Known EM Unknown EM ID EM OOD EM

RAFBASE 87.14 88.30 59.96 88.67 44.11
SpanPointerBASE 86.76 88.50 46.20 88.07 49.70
BARTBASE 86.72 88.33 49.15 88.03 49.69

Table 8: Comparing EM on Known vs. Unknown and In-Domain (ID) vs. Out-of-Domain (OD) frames. RAF
performs better on unknown frames, but struggles with out-of-domain frames.

tions for scaling. In particular Chen et al. (2020b)
introduce a meta-learning approach to improve do-
main scaling in the low-resource setting. Other
works such as (Liu et al., 2021; Zhu et al., 2020;
Mansimov and Zhang, 2021) aim to improve scal-
ing through new decoding formulations. Desai et al.
(2021) introduce the concept of intrinsic modeling
where we provide a human-readable version of the
semantic parsing ontology as context to encoding
to improve few-shot generalization.

Our work leverages the intrinsic modeling
paradigm by building a function R to convert each
intent-slot scenario into a readable representation
via intent slot descriptions and example priming.
Furthermore, our bi-encoder based retrieval setup
allows us to inject additional context into each sce-
nario and cache it to an index in order to retain
inference efficiency.

Retrieval Based Semantic Parsing Finally,
there has been a recent trend towards dense re-
trieval in various NLP domains such as machine
translation (Cai et al., 2021), question answering
(Karpukhin et al., 2020), text generation (Cai et al.,
2019) and language modeling (Borgeaud et al.,
2018). Recent works also introduce retrieval-based
semantic parsing: RetroNLU (Gupta et al., 2021)
and CASPER (Pasupat et al., 2021) both leverage
a retrieval step to provide examples as context to
seq2seq models.

Our approach differs in two ways: (1) We
phrase our problem as utterance-to-scenario re-
trieval rather than utterance-to-utterance retrieval.
This allows us to look into supporting new scenar-
ios with minimal-to-no-data required for retrieval.
(2) Prior work leverage a separate module (Pasu-
pat et al., 2021) or separate iteration (Gupta et al.,
2021) for retrieval. We conduct our retrieval after
encoding but prior to decoding as an intermediate
step for non-autoregressive parsing. This allows
our model to retain similar inference speed to one
shot non-autoregressive decoding despite leverag-
ing retrieval.

7 Conclusion

In this paper, we tackle scenario-based semantic
parsing with retrieve-and-fill (RAF), a coarse-to-
fine model which (a) retrieves a scenario with the
best alignment to an utterance and (b) fills the sce-
nario with utterance spans in leaf positions. Exper-
iments show our model achieves strong results in
high-resource, low-resource, and multilingual set-
tings. The modular nature of our architecture also
lends itself well to interpretability and debuggabil-
ity; we perform several case studies uncovering the
inner-workings of our approach.

8 Limitations

Although RAF has shown promising results on
task oriented parsing, we identify the following
limitations.

Use of Scenario Index Critically we introduce
the scenario based parsing task, a problem where
we assume knowledge of all possible scenarios
across train/test/eval. This new task is inspired by
how domain development usually happens 1)De-
fine scenarios 2) collect and annotate utterances.
While powerful and applicable when grammars and
downstream applications can provide a scenario
index, it prohibits generating novel scenarios or
intent/slot combination that have not been indexed,
where as prior seq2seq approaches are capable of
this. We argue that such generalization is not a
priority in pipelined task oriented assistant systems
as the downstream application usually handles a
set of pre-defined scenarios. Refer to §5.1 for more
analysis/commentary on this.

Training Cost RAF has a high training cost due
to the use of dense retrieval models and model
based negative sampling. While inference is cheap
due to a cached index and non-autoregressive de-
coding. During training, we must compute for-
ward/backward over 2 large encoders (utterance
encoder/scenario encoder) which uses significant
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memory and prohibits larger batch sizes. Addition-
ally, model based negative samples requires two
training iterations: first with in-batch negatives,
second using the first stage model to identify hard
negative samples from the model.
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A Analysis

A.1 Retrieval vs. Filling
We now turn towards better understanding the as-
pects our model struggles with. Because RAF
jointly optimizes both the retrieval and filling mod-
ules, one question we pose is whether the retrieval
or filling task is more difficult. We create three
versions of RAF: (1) standard retrieval + standard
filling, (2) oracle retrieval + standard filling, and (3)
standard retrieval + oracle filling. By comparing
models (1), (2), and (3), we can judge the relative
difficulty of each task.

We begin by evaluating these models in a high-
resource setting; on the TOPv2 eval dataset, the
standard model gets 87.03%, retrieval oracle gets
96.56%, and filling oracle gets 89.34%. Here, the
gap between models (1)-(2) is +9.53%, while
the gap between models (1)-(3) is +2.31%, indi-
cating the retrieval module is the main perfor-
mance bottleneck. We also perform experiments
in low-resource and multilingual settings, display-
ing results in Tables 9 and 10, respectively. These
results also confirm the same trend: in both settings,
the retrieval oracle achieves the best performance,
notably achieving +18.3% averaged across 5 multi-
lingual transfer experiments.

Despite retrieval having the most room for im-
provement, we also see some evidence filling strug-
gles in certain multilingual transfer cases; for ex-
ample, providing gold spans can improve en→th
transfer by +16.7%. As such, there is ample op-
portunity for optimizing the retrieval and filling
modules in future work.

A.2 Runtime Latency
We compare the latency of the non-autoregressive
Span Pointer Networks against RAF to show
that there is minimal degradation, despite the
improved generalization from RAF. In order to
measure latency, we measure wall clock time
(ms) of the SpanPointerBASE, RAFBASE, and
AutoregressiveBASE, all models use a 12-layer
RoBERTaBASE encoder with a 1 layer transformer
decoder. We run the benchmark on the TOPv2
source domain evaluation set (17k utterances across
6 domains) on a Tesla V100 GPU, using batch size
of 1. In table 11 we report P50, P90, and P99. Our
results find that there is less than a 3ms in latency
increase in P99 for RAF compared to SpanPointer
due to the non-autoregressive nature, despite lever-
aging our retrieval based model in RAF, and both

models are significantly faster than the autoregres-
sive counter part.

B Visualizations

Because RAF encodes utterances and scenarios
into a joint embedding space, we can directly visu-
alize this space to further understand our models’
inner-workings. We present two case studies: do-
main development (§B.1) and error analysis (§B.2).

B.1 Domain Development
Figure 3 presents an example of performing domain
development on the weather domain. Here, we
train RAF with 4 dataset sizes (0 SPIS, 10 SPIS, 25
SPIS, and 1,000 SPIS) to simulate zero-shot, few-
shot, low-resource, and high-resource settings, re-
spectively. Each utterance (from the high-resource
split) is projected using an utterance encoder and
colored according to its gold scenario. Interestingly,
the zero-shot setting has multiple, apparent clusters,
but the overall performance is poor given many sce-
narios overlap with each other. The clusters spread
further apart as the dataset size increases, suggest-
ing the scenarios become more well-defined.

B.2 Error Analysis
While we have demonstrated how RAF refines the
utterance-scenario space as we increase dataset
size, we now dive deeper into how each space can
be used to further analyze domain semantics. In fig-
ure 4, using our high-resource-trained RAF model,
we create multiple scenario spaces: each utterance
is projected using an utterance encoder and col-
ored according to its predicted frame. We use these
scenario spaces in several debugging exercises:

• Slot Ambiguity: In Figure 4 (a), we in-
vestigate the scenario [IN:CREATE_ALARM
[SL:ALARM_NAME ] [SL:DATE_TIME ]. Here,
we notice a cluster of predictions with the
frame [IN:CREATE_ALARM [SL:DATE_TIME
] missing the [SL:ALARM_NAME ]. These map
to utterances such as “I want to wake up at
7 am” where the annotation has “wake up”
is SL:ALARM_NAME; however, our model does
not identify this. There are other examples,
such as “wake me up at 7 am”, which are an-
notated without SL:ALARM_NAME, leading to
ambiguity of whether or not “wake up” is an
alarm name.

• Incorrect Annotations: In Figure 4 (b), we
investigate the scenario [IN:PLAY_MUSIC

441



Weather Domain (SPIS)

0 10 25 50 100 500 1000 Avg

RAFBASE
Standard Retrieval + Standard Filling 26.19 75.10 78.74 77.53 79.67 87.91 88.17 73.33
Oracle Retrieval + Standard Filling 81.68 90.43 92.13 91.97 93.35 95.74 96.27 91.65
Standard Retrieval + Oracle Filling 27.67 77.84 81.70 79.92 81.78 89.88 90.44 75.60

Table 9: Evaluating whether retrieval or filling is the most challenging components of RAF in low-resource settings.
We fine-tune several variants of RAF, using either a standard / oracle retriever and a standard / oracle filler, on
various SPIS splits of the TOPv2 (Chen et al., 2020b) weather domain. RAF with oracle retrieval achieves the best
performance, suggesting utterance→scenario retrieval is the most difficult piece to model.

Zero-Shot Evaluation

en en→es en→fr en→de en→hi en→th Avg

RAFBASE
Standard Retrieval + Standard Filling 81.1 56.0 54.9 40.1 32.1 30.0 42.6
Oracle Retrieval + Standard Filling 91.0 68.9 71.6 67.5 47.5 48.9 60.9
Standard Retrieval + Oracle Filling 83.8 66.5 62.8 45.5 40.2 46.7 52.3

Table 10: Evaluating whether retrieval or filling is the most challenging components of RAF in low-resource settings.
See Table 9 for a description of our methodology; we use MTOP (Li et al., 2021) for evaluation instead.

Figure 3: Visualizing the semantic space for the weather domain as the model is trained on more and more data. We
visualize the index prior to any training (0 SPIS) to low-resource (10, 25 SPIS) and high resource (1000 SPIS). The
graphs are TSNE projections of the utterance vectors used for retrieval color coded by the scenario each utterance
belongs to.

Figure 4: Depicting scenario visualizations, where each is a TSNE projection of utterances belonging to
the specified scenario color coded by the predicted scenario. (A) covers the scenario [IN:CREATE_ALARM
[SL:ALARM_NAME ] [SL:DATE_TIME ] showing a case of ambiguity of alarm names. (B) covers the scenario
[IN:PLAY_MUSIC [SL:MUSIC_TYPE ] where annotations are missing the slot “music type”. (C) covers the scenario
[IN:SET_DEFAULT_PROVIDER_MUSIC [SL:MUSIC_PROVIDER ] showing how our model requires more support
here as the predictions for this scenario span OOD and music domain.
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Model P50 P90 P99

SpanPointerBASE 28.30 29.62 37.78
RAFBASE 28.92 31.40 39.94
AutoregressiveBASE 90.29 155.11 228.92

Table 11: Runtime latency (ms) comparison of
SpanPointerBASE, RAFBASE, and AutoregressiveBASE us-
ing batch size 1 on the TOPv2 source evaluation set.

[SL:MUSIC_TYPE ]. Here, we notice
a cluster of predictions with the frame
[IN:PLAY_MUSIC [SL:MUSIC_GENRE
] [SL:MUSIC_TYPE ] adding the
[SL:MUSIC_GENRE ]. These map to ut-
terances such as “Play 1960s music” where
here the annotation only has “music” as
SL:MUSIC_TYPE, but our model predicts
“1960s” as SL:MUSIC_GENRE. We believe this
is an incorrect annotation in this cluster.

• Underfitting: In Figure 4
(c), we investigate the scenario
[IN:SET_DEFAULT_PROVIDER_MUSIC
[SL:MUSIC_PROVIDER ]. This cluster
is highly diverse, consisting of predic-
tions from other music intents (e.g.,
IN:PLAY_MUSIC) and out-of-domain intents
(e.g., IN:UNSUPPORTED_MUSIC). This sce-
nario may need more data in order to be more
properly defined.

C Heuristic negatives

In order to understand the importance of model
based hard negatives, we develop a simple heuris-
tic to curate a set of hard negative scenarios for each
gold scenario. Our heuristic involves selecting the
top-N scenarios that share the top level intent but
have the lowest Levenshtein edit distance (Leven-
shtein, 1966) compared to the gold scenario. The
full algorithm is described in Algorithm 1.

In §5 and Table 6 we present the full results de-
picting the importance of model based negative
sampling. We show that while our heuristic im-
proves on top of no hard negatives (in-batch neg-
atives only), it still lags behind model based hard
negatives (-1.37%).

D Intrinsic Descriptions

In table 12 we provide brief examples of the various
representation functions used in RAF training.

Algorithm 1 Heuristic-based negative sampling
via edit distance.

1: procedure EDIT DISTANCE NEGATIVES

2: S← all scenarios
3: s*← current scenario
4: Ssame intent ←

Scenarios with the same top level intent as Si
5: heap← min heap of score and structure
6: for Si ∈ Ssame intent do
7: score← LevenshteinDistance(s*, Si)
8: heappush(heap, score, Si)

return heap

In tables 13, 14, 15, and 16 we present the in-
trinsic hand made descriptions used for each in-
tent/slot on TOPv2 (Chen et al., 2020b) and MTOP
(Li et al., 2021) respectively. §3.1.3 describes the
various scenario representations used in full detail.

E Hyperparameters

In this section we describe the hyper parameters
for training our various RAF models.

Architecture Parameters. For our RAF archi-
tectures we leverage a shared RoBERTa (Liu et al.,
2019) or XLM-R (Conneau et al., 2020) encoder
for both the utterance and scenario encoders. We
augment each of these encoders with an additional
projection layer with a hidden dimension of 768
(base models) or 1024 (large models). For our span
pointer decoder we leverage a 1 layer transformer
decoder with the same hidden dimension as the
respective encoder (1L, 768/1024H, 16/24A).

Optimization Parameters. We train our models
with the Adam (Kingma and Ba, 2015) optimizer
along with a warmup and linear decay. We train our
models across 8 GPUs with 32GB memory each.
Additionally we optionally augment our models
with the R3F loss (Aghajanyan et al., 2021) based
on validation set tuning in each setting. To deter-
mine hyperparameters, we conduct hyperparameter
sweeps with 56 iterations each. The hyperparam-
eters for the high resource runs on TOPv2 (Chen
et al., 2020b) are described in Table 17.
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R Type R Example

type-only [ intent [ slot ] ]
automatic-span [ add time timer [ measurement unit ] ]
automatic-type-span [ intent | add time timer [ slot | measurement unit ] ]
automatic-type-span-exs [ intent | add time timer [ slot | measurement unit | sec / min / hr ] ]
curated-span [ add time to timer [ unit of measurement ] ]
curated-type-span [ intent | add time to timer [ slot | unit of measurement ] ]
curated-type-span-exs [ intent | add time to timer [ slot | unit of measurement | sec / min / hr ] ]

Table 12: List of intrinsic representations used for encoding scenarios in RAF.
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Intent Token Description

IN:ADD_TIME_TIMER add time to timer
IN:ADD_TO_PLAYLIST_MUSIC add music to playlist
IN:CANCEL_MESSAGE cancel message
IN:CREATE_ALARM create alarm
IN:CREATE_PLAYLIST_MUSIC create playlist music
IN:CREATE_REMINDER create reminder
IN:CREATE_TIMER create timer
IN:DELETE_ALARM delete alarm
IN:DELETE_REMINDER delete reminder
IN:DELETE_TIMER delete timer
IN:DISLIKE_MUSIC dislike music
IN:GET_ALARM get alarm
IN:GET_BIRTHDAY get birthday
IN:GET_CONTACT get contact
IN:GET_DIRECTIONS get directions
IN:GET_DISTANCE get distance between locations
IN:GET_ESTIMATED_ARRIVAL get estimated arrival time
IN:GET_ESTIMATED_DEPARTURE get estimated departure time
IN:GET_ESTIMATED_DURATION get estimated duration of travel
IN:GET_EVENT get event
IN:GET_EVENT_ATTENDEE get event attendee
IN:GET_EVENT_ATTENDEE_AMOUNT get amount of event attendees
IN:GET_EVENT_ORGANIZER get organizer of event
IN:GET_INFO_CONTACT get info of contact
IN:GET_INFO_ROAD_CONDITION get info of road condition
IN:GET_INFO_ROUTE get info of route
IN:GET_INFO_TRAFFIC get info of traffic
IN:GET_LOCATION get location
IN:GET_LOCATION_HOME get location of my home
IN:GET_LOCATION_HOMETOWN get location of my hometown
IN:GET_LOCATION_SCHOOL get location of school
IN:GET_LOCATION_WORK get location of work
IN:GET_MESSAGE get message
IN:GET_RECURRING_DATE_TIME get recurring date or time
IN:GET_REMINDER get reminder
IN:GET_REMINDER_AMOUNT get amount of reminders
IN:GET_REMINDER_DATE_TIME get date or time of reminder
IN:GET_REMINDER_LOCATION get location of reminder
IN:GET_SUNRISE get info of sunrise
IN:GET_SUNSET get info of sunset
IN:GET_TIME get time
IN:GET_TIMER get timer
IN:GET_TODO get todo item
IN:GET_WEATHER get weather
IN:HELP_REMINDER get help reminder
IN:IGNORE_MESSAGE ignore message
IN:LIKE_MUSIC like music
IN:LOOP_MUSIC loop music
IN:NEGATION negate
IN:PAUSE_MUSIC pause music
IN:PAUSE_TIMER pause timer
IN:PLAY_MUSIC play music
IN:PREVIOUS_TRACK_MUSIC play previous music track
IN:REACT_MESSAGE react to message
IN:REMOVE_FROM_PLAYLIST_MUSIC remove from music playlist
IN:REPLAY_MUSIC replay music
IN:PREVIOUS_TRACK_MUSIC play previous music track
IN:REACT_MESSAGE react to message
IN:REMOVE_FROM_PLAYLIST_MUSIC remove from music playlist
IN:REPLAY_MUSIC replay music
IN:REPLY_MESSAGE reply to message
IN:RESTART_TIMER restart timer
IN:RESUME_TIMER resume timer
IN:SELECT_ITEM select item
IN:SEND_MESSAGE send message
IN:SEND_TEXT_MESSAGE send text message
IN:SET_DEFAULT_PROVIDER_MUSIC set default music provider
IN:SILENCE_ALARM silence alarm
IN:SKIP_TRACK_MUSIC skip music track
IN:SNOOZE_ALARM snooze alarm
IN:START_SHUFFLE_MUSIC start shuffling music
IN:STOP_MUSIC stop music
IN:SUBTRACT_TIME_TIMER subtract time from timer
IN:UNSUPPORTED_ALARM unsupported alarm request
IN:UNSUPPORTED_EVENT unsupported event request
IN:UNSUPPORTED_MESSAGING unsupported messaging request
IN:UNSUPPORTED_MUSIC unsupported music request
IN:UNSUPPORTED_NAVIGATION unsupported navigation request
IN:UNSUPPORTED_TIMER unsupported timer request
IN:UNSUPPORTED_WEATHER unsupported weather request
IN:UPDATE_ALARM update alarm
IN:UPDATE_DIRECTIONS update directions
IN:UPDATE_REMINDER update reminder
IN:UPDATE_REMINDER_DATE_TIMER update date time of reminder
IN:UPDATE_REMINDER_TODO update todo of reminder
IN:UPDATE_TIMER update timer

Table 13: List of intrinsic handmade descriptions for
intents in TOPv2 (Chen et al., 2020b).

Slot Token Description

SL:AGE age of person
SL:ALARM_NAME alarm name
SL:AMOUNT amount
SL:ATTENDEE attendee
SL:ATTENDEE_ADDED attendee to be added
SL:ATTENDEE_EVENT attendee of event
SL:ATTENDEE_REMOVED attendee to be removed
SL:ATTRIBUTE_EVENT attribute of event
SL:BIRTHDAY birthday
SL:CATEGORY_EVENT category of event
SL:CATEGORY_LOCATION category of location
SL:CONTACT contact
SL:CONTACT_RELATED contact related
SL:CONTENT_EMOJI content text with emoji
SL:CONTEnT_EXACT content text
SL:DATE_TIME date or time
SL:DATE_TIME_ARRIVAL date or time of arrival
SL:DATE_TIME_BIRTHDAY date or time of birthday
SL:DATE_TIME_DEPARTURE date or time of departure
SL:DATE_TIME_NEW new date or time
SL:DATE_TIME_RECURRING recurring date or time
SL:DESTINATION travel destination
SL:DURATION duration
SL:FREQUENCY frequency
SL:GROUP group
SL:JOB job
SL:LOCATION location
SL:LOCATION_CURRENT current location
SL:LOCATION_HOME location of my home
SL:LOCATION_MODIFIER location modifier
SL:LOCATION_USER location of user
SL:LOCATION_WORK location of work
SL:MEASUREMENT_UNIT unit of measurement
SL:METHOD_RETRIEVAL_REMINDER method of retrieving reminder
SL:METHOD_TIMER method of timer
SL:METHOD_TRAVEL method of traveling
SL:MUSIC_ALBUM_TITLE title of music album
SL:MUSIC_ARIST_NAME name of music artist
SL:MUSIC_GENRE genre of music
SL:MUSIC_PLAYLIST_TITLE title of music playlist
SL:MUSIC_PROVIDER_NAME name of music provider
SL:MUSIC_RADIO_ID id of music radio
SL:MUSIC_TRACK_TITLE title of music track
SL:MUSIC_TYPE type of music
SL:MUTUAL_EMPLOYER mutual employer
SL:MUTUAL_LOCATION mutual location
SL:MUTUAL_SCHOOL mutual school
SL:NAME_APP name of app
SL:NAME_EVENT name of event
SL:OBSTRUCTION_AVOID obstruction to avoid
SL:ORDINAL ordinal
SL:ORGANIZER_EVENT obstruction to avoid
SL:ORDINAL ordinal
SL:ORGANIZER_EVENT organizer of event
SL:PATH path
SL:PATH_AVOID path to avoid
SL:PERIOD time period
SL:PERSON_REMINDED person to be reminded
SL:PERSON_REMINDED_ADDED added person to be reminded
SL:PERSON_REMINDED_REMOVED removed person to be reminded
SL:POINT_ON_MAP point on map
SL:RECIPIENT message recipient
SL:RECURRING_DATE_TIME recurring date or time
SL:RECURRING_DATE_TIME_NEW new recurring date or time
SL:RESOURCE resource
SL:ROAD_CONDITION road condition
SL:ROAD_CONDITION_AVOID road condition to avoid
SL:SEARCH_RADIUS search radius
SL:SENDER message sender
SL:SOURCE travel source
SL:TAG_MESSGE tag of message
SL:TIMER_NAME timer name
SL:TIME_ZONE time zone
SL:TODO todo item
SL:TODO_NEW new todo item
SL:TYPE_CONTACT contact type
SL:TYPE_CONTENT content type
SL:TYPE_INFO info type
SL:TYPE_REACTION reaction type
SL:TYPE_RELATION relation type
SL:UNIT_DISTANCE unit of distance
SL:WAYPOINT waypoint
SL:WAYPOINT_ADDED waypoint to be added
SL:WAYPOINT_AVOID waypoint to avoid
SL:WEATHER_ATTRIBUTE weather attribute
SL:WEATHER_TEMPERATURE_UNIT unit of temperature

Table 14: List of intrinsic handmade descriptions for
slots in TOPv2 (Chen et al., 2020b).
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Intent Token Description

IN:FOLLOW_MUSIC follow music
IN:GET_JOB get job
IN:GET_GENDER get gender
IN:GET_UNDERGRAD get undergrad education
IN:GET_MAJOR get college major
IN:DELETE_PLAYLIST_MUSIC delete playlist
IN:GET_EDUCATION_DEGREE get education degree of person
IN:GET_AGE get age of person
IN:DISPREFER dislike item
IN:RESUME_MUSIC resume music
IN:QUESTION_MUSIC question about music
IN:CREATE_CALL create a caoo
IN:GET_AIRQUALITY get airquality
IN:GET_CALL_CONTACT get contact for caller
IN:SET_UNAVAILABLE set status to unavailable
IN:END_CALL end call
IN:STOP_SHUFFLE_MUSIC stop shuffle of music
IN:PREFER prefer item
IN:GET_LANGUAGE get language
IN:SET_AVAILABLE set available
IN:GET_GROUP get group
IN:ANSWER_CALL answer call
IN:GET_CONTACT_METHOD get method to contact
IN:UPDATE_METHOD_CALL update method of call
IN:GET_ATTENDEE_EVENT get attendee for event
IN:UPDATE_CALL update call
IN:GET_LIFE_EVENT get life event
IN:REPEAT_ALL_MUSIC repeat all music
IN:GET_EDUCATION_TIME get education time
IN:QUESTION_NEWS question about news
IN:GET_EMPLOYER get employer
IN:IGNORE_CALL ignore call
IN:REPEAT_ALL_OFF_MUSIC turn of repeat
IN:UNLOOP_MUSIC turn loop off
IN:SET_DEFAULT_PROVIDER_CALLING set default provider for calling
IN:GET_AVAILABILITY get avalability of contact
IN:HOLD_CALL hold call
IN:GET_LIFE_EVENT_TIME get time of life event
IN:SHARE_EVENT share event
IN:CANCEL_CALL cancel call
IN:SET_RSVP_YES set rsvp to yes
IN:PLAY_MEDIA play media
IN:GET_TRACK_INFO_MUSIC get information about the current track
IN:GET_DATE_TIME_EVENT get the date time of the event
IN:SET_RSVP_NO set rsvp to no
IN:MERGE_CALL marge call
IN:UPDATE_REMINDER_LOCATION update the location of the reminder
IN:GET_MUTUAL_FRIENDS get mutual friends
IN:GET_MESSAGE_CONTACT get information about message contact
IN:GET_LYRICS_MUSIC get lyrics about the song
IN:GET_INFO_RECIPES get information about recipe
IN:GET_DETAILS_NEWS get news details
IN:GET_EMPLOYMENT_TIME get employment time
IN:GET_RECIPES get a recipe
IN:GET_CALL get call
IN:GET_CALL_TIME get time of the call
IN:GET_CATEGORY_EVENT get the category of the event
IN:RESUME_CALL resume the call
IN:IS_TRUE_RECIPES ask question about recipes
IN:SET_RSVP_INTERESTED set rsvp to interested
IN:GET_STORIES_NEWS get news stories
IN:SWITCH_CALL switch call
IN:REWIND_MUSIC rewind the song
IN:FAST_FORWARD_MUSIC forward the song

Table 15: List of intrinsic handmade descriptions for
intents in MTOP (Li et al., 2021).

Slot Token Description

SL:GENDER gender of person
SL:RECIPES_TIME_PREPARATION time to prepare recipe
SL:RECIPES_EXCLUDED_INGREDIENT exclude ingredient for recipe
SL:USER_ATTENDEE_EVENT attendee of event
SL:MAJOR major
SL:RECIPES_TYPE type of recipe
SL:SCHOOL school
SL:TITLE_EVENT title of event
SL:MUSIC_ALBUM_MODIFIER type of album
SL:RECIPES_DISH recipe dish
SL:NEWS_TYPE type of news
SL:RECIPES_SOURCE source of recipe
SL:RECIPES_DIET diet of recipe
SL:RECIPES_UNIT_NUTRITION nutrition unit of recipe
SL:MUSIC_REWIND_TIME time to rewind music
SL:RECIPES_TYPE_NUTRITION nutrition type of recipe
SL:CONTACT_METHOD method to contact
SL:SIMILARITY similarity
SL:PHONE_NUMBER phone number
SL:NEWS_CATEGORY category of news
SL:RECIPES_INCLUDED_INGREDIENT ingredient in recipe
SL:EDUCATION_DEGREE education degree
SL:RECIPES_RATING rating of recipe
SL:CONTACT_REMOVED removed contact
SL:NEWS_REFERENCE news reference
SL:METHOD_RECIPES method of recipe
SL:LIFE_EVENT life event
SL:RECIPES_MEAL recipe meal
SL:NEWS_TOPIC news topic
SL:RECIPES_ATTRIBUTE recipe attribute
SL:EMPLOYER employer
SL:RECIPES_COOKING_METHOD cooking method of recipe
SL:RECIPES_CUISINE cuisine of recipe
SL:MUSIC_PLAYLIST_MODIFIER music playlist modifier
SL:RECIPES_QUALIFIER_NUTRITION nutrition qualifier of recipe
SL:METHOD_MESSAGE method to send message
SL:RECIPES_UNIT_MEASUREMENT unit of measurement in recipe
SL:CONTACT_ADDED added contact
SL:NEWS_SOURCE news source

Table 16: List of intrinsic handmade descriptions for
slots in MTOP (Li et al., 2021).
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Parameter RAF Models

RoBERTaBASE RoBERTaLARGE XLM-RBASE

Params 134M 372M 288M
Epochs 40
Optimizer Adam
Weight Decay 0.01
ϵ 1e-8
Warmup Period (steps) 1000
Learning Rate Scheduler Linear Decay
Learning Rate 0.00002 0.00003 0.00002
Batch Size 40 12 16
Sampled Negatives 1 1 1
βLRetrieval 2.69 4 2.69
LfillingLabel Smoothing Penalty 0.2
# GPU 8
GPU Memory 32GB 32GB 32GB

Table 17: Hyperparameter values for RAF architectures.
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Abstract
Existing work in document-level neural ma-
chine translation commonly concatenates sev-
eral consecutive sentences as a pseudo-
document, and then learns inter-sentential de-
pendencies. This strategy limits the model’s
ability to leverage information from distant
context. We overcome this limitation with a
novel Document Flattening (DOCFLAT) tech-
nique that integrates FLAT-BATCH ATTEN-
TION (FBA) and NEURAL CONTEXT GATE
(NCG) into Transformer model to utilize infor-
mation beyond the pseudo-document bound-
aries. FBA allows the model to attend to all the
positions in the batch and learns the relation-
ships between positions explicitly and NCG
identifies the useful information from the dis-
tant context. We conduct comprehensive ex-
periments and analyses on three benchmark
datasets for English-German translation, and
validate the effectiveness of two variants of
DOCFLAT. Empirical results show that our ap-
proach outperforms strong baselines with sta-
tistical significance on BLEU, COMET and
accuracy on the contrastive test set. The analy-
ses highlight that DOCFLAT is highly effective
in capturing the long-range information.

1 Introduction

Remarkable progress has been made in neural ma-
chine translation (NMT) (Sutskever et al., 2014;
Vaswani et al., 2017; Chen et al., 2018), yet human
translation still clearly outperforms NMT at the
document level (Läubli et al., 2018; Freitag et al.,
2021), because current sentence-level NMT sys-
tems ignore the inter-sentential relationships. To
narrow this gap, numerous document-level NMT
(DocNMT) approaches have been proposed in re-
cent years to improve the context awareness by in-
corporating the contextual information during the
translation (Tiedemann and Scherrer, 2017; Maruf
and Haffari, 2018; Wong et al., 2020).

Existing DocNMT systems commonly concate-
nate several consecutive sentences to form a
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Figure 1: The change of BLEU (left) and COMET
(right) given by DOC2DOC on TED with regard to the
context size of pseudo-document (in sentences) based
on the experimental setup described in Section 4.1.

pseudo-document, instead of processing the entire
document (Zhang et al., 2018b; Voita et al., 2019;
Junczys-Dowmunt, 2019; Fernandes et al., 2021).
One typical pseudo-document contains the current
sentence to be translated and the surrronding con-
text. Intuitively, larger context should result in
better performance. In our preliminary study, the
model performance does not always grow as the
context size increases as shown in Figure 1. Liu
et al. (2020) and Bao et al. (2021) also observe that
Transformer’s performance declines with longer
inputs. We refer to this phenomenon as the qual-
ity saturation problem (Glaser and Strauss, 1967).
Therefore, such formation of pseudo-document lim-
its the DocNMT systems to leverage the informa-
tion from a relatively small context. Consequently,
once the entire original document is segmented
into several pseudo-documents for reducing the
sequence length, the information out of the pseudo-
document’s scope is no longer accessible to the
current sentence. Therefore, a natural research
question to ask is that, is there a more effective way
to model the parallel documents in DocNMT?

In this work, we seek DocNMT approaches that
could better expand the context scope and improve
the corresponding translation performance. Instead
of directly training DocNMT system on the entire
document, we propose to store the document as
multiple pseudo-documents in a single batch and
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optimize the DocNMT models by leveraging the
inter-pseudo-document relationships at the batch
level. Inspired by Kossen et al. (2021), we propose
a Document Flattening (DOCFLAT) technique that
integrates FLAT-BATCH ATTENTION (FBA) and
NEURAL CONTEXT GATE (NCG) into the Trans-
former model (Vaswani et al., 2017). FBA flattens
all the current sentences in the batch with the orig-
inal order into a sequence along the temporal di-
mension. It then applies the attention mechanism
to the flattened sequence. The goal of this design
is to preserve the linguistic structure of documents
and expand the scope of context by explicitly learn-
ing the pseudo-document relationships. As there is
both supportive and noisy information in the longer
context, we introduce NCG, a simple feed-forward
network, to identify the usefulness of contextual
information and filter out the noise. With the com-
bination of FBA and NCG, DOCFLAT effectively
captures the information in the distant context. To
the best of our knowledge, Morishita et al. (2021)
propose mini-batch embedding (MBE), which is
the only close work to ours. They compute the
average representation for all the source tokens in
the batch and prepend it to the source and target
pseudo-documents. The compressed representa-
tion ignores the linguistic structure of documents,
providing limited contextual information.

Our contributions are summarized as follows.
Firstly, we propose a novel approach DOCFLAT

that allows the model to attend the content beyond
the pseudo-document boundaries using FBA and
NCG. Secondly, we demonstrate that DOCFLAT

outperforms strong baselines with statistical sig-
nificance, in terms of BLEU, COMET and ac-
curacy on the contrastive test set, on three Doc-
NMT benchmark datasets, including TED, News
Commentary and Europarl. Thirdly, we con-
duct comprehensive analyses to understand the ef-
fectiveness of DOCFLAT. The analyses highlight
that DOCFLAT is highly effective in capturing the
distant context.

2 Preliminaries

Sentence-level NMT (SentNMT) The sentence-
level NMT model neglects the inter-sentential de-
pendencies between the current sentence and its
context. Its probability of translation is defined as:

P (yyyi|xxxi) =
d∏

t=1

P (yi,t|yyyi,<t,xxxi), (1)

where xxxi and yyyi are the i-th source and target train-
ing sentence, yi,t denotes the t-th token in yyyi and d
is the sentence length of yyyi.

Document-level NMT (DocNMT) Given a doc-
ument pair {(xxxi, yyyi)}Mi=1 where we denote the
aligned sentence pair as xxxi and yyyi and M is the
length of document in sentences, the i-th pseudo-
document pairXXXi and YYY i can be defined as:

XXXi = Concat([xxxi−c− , . . . ,xxxi, . . . ,xxxi+c+ ]),

YYY i = Concat([yyyi−c− , . . . , yyyi, . . . , yyyi+c+ ]),
(2)

where c− is the context size before the current sen-
tence and c+ is the context size after the current
sentence. The translation probability of target cur-
rent sentence yyyi in the target pseudo-document YYY i

given the source pseudo-documentXXXi in DocNMT
can be written as:

P (yyyi|xxxi,CCC−i) =
d∏

t=1

P (yi,t|yyyi,<t,xxxi,CCC−i), (3)

whereCCC−i is the collection of all the sentences in
the pseudo-document pair except (xxxi, yyyi), and xxxi
is the source current sentence. We do not consider
the context after the current sentence in this work,
so c+ is 0.

3 Document Flattening

In this section, we firstly describe the overview
of DOCFLAT (Section 3.1). We then introduce
DOCFLAT’s core components, FLAT-BATCH AT-
TENTION (FBA; Section 3.2) and NEURAL CON-
TEXT GATE (NCG; Section 3.3). Finally, we dis-
cuss the practical considerations (Section 3.4 and
Section 3.5) of DOCFLAT along with a concrete
example.

3.1 Overview of DOCFLAT

We present the overall architecture of DOCFLAT

in Figure 2. Given a sequence-to-sequence Trans-
former with L encoder layers and L decoder lay-
ers, we apply the FBA and NCG to the input
word embeddings with the residual connection
and Layer Normalization, instead of directly feed-
ing the embeddings into either encoder or de-
coder. DOCFLAT’s translation probability of the
i-th target current sentence yyyi of the original docu-
ment in the i-th target pseudo-document YYY i given
the i-th source pseudo-document XXXi in the batch
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BBB = {(XXXj ,YYY j)}nj=1, where n is the batch size, is
defined as:

P (yyyi|xxxi,CCC−i,BBB−i) =
d∏

t=1

P (yi,t|yyyi,<t,xxxi,CCC−i,BBB−i),
(4)

where CCC−i is defined as in Equation 3 and BBB−i
is the collection of all the current sentences in the
batch except (xxxi, yyyi). We categorize the context
for the current sentence into two groups, the global
context (GC) from other pseudo-documents BBB−i
and the local context (LC) from its own pseudo-
documentCCC−i (See Figure 3).

3.2 FLAT-BATCH ATTENTION

Multi-Head Self-Attention (MHSA) Scaled dot-
product attention is the core mechanism of Trans-
former model with the inputs of query QQQ, key KKK
and VVV (Vaswani et al., 2017). The attention mecha-
nism computes the attention weights by comparing
queriesQQQ with keysKKK and then updates the repre-
sentations of queries by computing the weighted
sum of values VVV with the attention weights, which
is described as follows:

Attn(QQQ,KKK,VVV ) = softmax(
QQQKKK⊤√

e
)VVV , (5)

where e is the hidden state dimension. Multi-head
self-attention (MHSA) then allows the model to
jointly attend to information from different hidden
subspaces by concatenating a sequence of indepen-
dent attention heads as follows:

MHSA(QQQ,KKK,VVV ) =

Concat(head1, . . . , headk),
(6)

where headj is the scaled dot-product attention in
Equation 5 with independent parameters and j ∈
{1, . . . , k} for each head j.

FLAT-BATCH ATTENTION (FBA) To leverage
the contextual information beyond the pseudo-
document boundaries, we propose FLAT-BATCH

ATTENTION (FBA). It explicitly transforms the
stacked instances in the batch to a single flattened
sequence of tokens as shown in Figure 3. Given
a batch of hidden representations HHH ∈ Rn×d×e
consisting of n instances padded to the length of d
with the hidden dimension of e, FBA operates as

Softmax

Feed-Forward

Cross Attention

Masked Self-
Attention

Self-Attention

Feed-Forward

LayerNorm LayerNorm

NCG

FBA

Source Embedding

NCG

FBA

Target Embedding

×L

×L

Figure 2: The model architecture of DOCFLAT. ⊗
denotes the element-wise multiplication. ⊕ denotes the
element-wise addition. More details are in Section 3.

follows:

ĤHHflat = Flatten(HHH) ∈ R(n×d)×e,

ĤHHmhsa = MHSA(ĤHHflat, ĤHHflat, ĤHHflat),

ĤHH rsh = Reshape(ĤHHmhsa) ∈ Rn×d×e,

ĤHH = LN((1− ggg)⊗HHH + ggg ⊗ ĤHH rsh).

(7)

As shown in Equation 7, we first flatten HHH ∈
Rn×d×e to ĤHHflat ∈ R(n×d)×e, where (n × d) in-
dicates the flattened sequence length. The ĤHHflat is
then fed into a MHSA layer and reshaped back to
ĤHH rsh ∈ Rn×d×e. We then add a residual connec-
tion with ggg given by NCGψψψ followed by a sigmoid
function σ and apply the Layer Normalization (LN;
Ba et al., 2016) following the reshape operation.
⊗ denotes the element-wise multiplication. We
discuss the details of NCG in Section 3.3. Note
that FBA at the decoder side is associated with a
causal mask to preserve the auto-regressive prop-
erty. By attending to all the other current sentences
in the batch, FBA effectively allows the current
sentences to access a much larger context than the
self-attention on the pseudo-documents. In addi-
tion, this does not increase the input length of each
instance, preventing the quality saturation problem
as shown in Figure 1.

Complexity Given a Transformer model with
L encoder layers and L decoder layers, suppose
the average sentence length is n, the pseudo-
document contains c consecutive sentences, and
the batch size is b. The complexity of self-attention
layer in the concatenation-based DOC2DOC is
O(L(cn)2). The extra complexity introduced by
FBA is O((bn)2). Lc2 and b2 have the same order
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YYY 1: yyy1

YYY 2: yyy1 yyy2

YYY 3: yyy1 yyy2 yyy3

YYY 4: yyy1 yyy2 yyy3 yyy4

YYY 5: yyy2 yyy3 yyy4 yyy5

YYY 6: yyy3 yyy4 yyy5 yyy6

Local Context Current Sentence

(a) An example batch of pseudo-documents BBBtgt = {YYY 1,YYY 2,YYY 3,YYY 4,YYY 5,YYY 6} at the target side. Each YYY j contains four
consecutive sentences and yyyi indicates the i-th sentence of the same original document. The segments in red indicate the current
sentence of each pseudo-document.

YYY flat: yyy1 yyy2 yyy3 yyy4 yyy5 yyy6

Extra Context out of YYY 6’s scope

Global Context

Current Sentence

(b) An example of the flattened sequence YYY flat transformed from BBBtgt in Figure 3a with FLAT-BATCH ATTENTION. For the
current sentence yyy6, The blue arrows indicate the extra inter-sentential attention for yyy6 that our approach can model. yyy1 and yyy2
are the extra context introduced by our approach.

Figure 3: An example batch of pseudo-documents at the target side and its flattened sequence. Another example at
the source side can be found at Appendix A.

of magnitude. The batch size b is set to be con-
stant in practice and the self-attention operation in
FBA is highly parallelizable, so integrating FBA
into Transformer does not significantly increase the
computational cost. Empirically, DOCFLAT is only
3% slower in training and 15% slower in inference,
compared with DOC2DOC (See Section 4.2).

3.3 NEURAL CONTEXT GATE

The distant context can contain both supportive
and noisy information. Supportive information can
assist the translation of the current sentence, while
the noise may damage the model predictions. To
address this issue, we introduce a novel NEURAL

CONTEXT GATE (NCG) to automatically identify
the context usefulness and control the information
flow from the distant context.

In this work, NCG ψψψ is a single-layer element-
wise feed-forward neural network followed by a
sigmoid function σ. Given a batch of hidden repre-
sentationsHHH , the operations are defined as follows:

ggg = σ(ψψψ(FBA(HHH))),

HHHo = (1− ggg)⊗HHH + ggg ⊗ FBA(HHH),
(8)

where ggg is the information gate given by NCG ψψψ
and the sigmoid function σ, HHHo is output of the
residual connection and ⊗ denotes the element-
wise multiplication. The values of ggg are continuous,
so we denote DOCFLAT with NCG described in
Equation 8 as DOCFLATC.

However, the continuous gate may result in the
noise leakage. In a long document, the noise at

different positions may accumulate, even if they
are only associated with very small gating values.
The accumulated noise can make a substantial neg-
ative impact on the model predictions. Hence, we
propose the discrete NCG as follows:

gggD = 1γ(σ(ψψψ(FBA(HHH)))),

HHHo = (1− gggD)⊗HHH + gggD ⊗ FBA(HHH),
(9)

where 1γ(·) is indicator function defined as:

1γ(g) =

{
1 if g ≥ γ,
0 otherwise,

(10)

where γ is the threshold for binarizing the gating
values. We denote DOCFLAT with the discrete
NCG in Equation 9 as DOCFLATD and set γ = 0.5
in this work. We expect DOCFLATD is more robust
against the noise in the context.

3.4 Data Shuffling

DOCFLAT aims to leverage the distant context with
FBA by flattening a batch of sequences into a sin-
gle sequence. As the ordering information among
sentences is critical in DocNMT, we do not shuffle
the pseudo-documents during the training and infer-
ence to preserve the linguistic structure of the orig-
inal document. For each sentence, we replace the
<BOS> symbol with its global index i in the doc-
ument to preserve the ordering information. Fig-
ure 3a is an example at the target side to demon-
strate how the pseudo-documents in the batch is
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Train Valid Test

TED 204.4K/1.7K 8.9K/93 2.2K/23
News 242.4K/6.1K 2.3K/81 3.2K/155
Europarl 1.8M/117.9K 3.8K/240 5.5K/360

Table 1: The number of sentences/documents of each
split of the parallel corpora.

organized in this work. Figure 3b demonstrates
how FBA flattens a batch of pseudo-documents.
Since the pseudo-documents are not shuffled, yyy6
can attend to yyy1 and yyy2 which are not in the pseudo-
document YYY 6. We apply the causal mask to FBA at
the decoder side for preserving the auto-regressive
property. Note that the pseudo-documents in a
batch are mostly from the same original document.
The batches crossing the document boundaries are
relatively rare and have little effect on performance
in our preliminary study.

3.5 Inference

We discuss the batch inference of DOCFLAT in
this section. At the encoder side, each source cur-
rent sentence can attend to its own local context
(LC) and all other source current sentence as the
global context (GC) in the batch during the infer-
ence, as it is at the training stage. At the decoder
side, all the target current sentences are translated
simultaneously, so each target current sentence can
attend to its own LC and partially translated target
GC. For example, all the target current sentences
in Figure 3a are translated simultaneously during
the inference. yyy6 is conditioned on its own LC,
yyy3, yyy4 and yyy5, and partially translated target GC.
Additionally, we use the batched inference as usual
and there is no overlap between batches. For ex-
ample, the first batch of sentences to be translated
is {yyy1, · · · , yyyb}, and the second batch of sentences
to be translated is {yyyb+1, · · · , yyy2b}, where b is the
inference batch size. For decoding, we used the
iterative decoding method for decoding (Maruf and
Haffari, 2018; Maruf et al., 2019). The initial trans-
lations of each sentence were generated by a Sent-
NMT model, and then, we translate each sentence
using the DOCNMT model with the translations in
the first pass as the context.

4 Experiments

4.1 Setup

Datasets We conduct experiments on three
benchmark datasets for English-German trans-

lation, including the small-scale datasets TED
(Cettolo et al., 2012) and News Commentary
(Tiedemann, 2012), and the large-scale dataset
Europarl (Koehn, 2005). We tokenize the
datasets with the Moses (Koehn et al., 2007) and ap-
ply BPE (Sennrich et al., 2016b) with 32K merges.
Data statistics can be found in Table 1. We choose
up to 3 previous sentences as the local context for
each source and target sentence to form the pseudo-
document unless otherwise specified.

Evaluation We report the detokenized BLEU
(Papineni et al., 2002) using SacreBLEU (Post,
2018) and the neural-based COMET (Rei et al.,
2020) to measure the translation quality.1 We re-
port the results with inference batch size of 16 and
beam size of 5 for all the approaches, unless other-
wise specified.

Contrastive Evaluation This evaluation
paradigm is proposed to evaluate the contextual
awareness of DOCNMT models with an indepen-
dent test set, where each test example includes
one correct translation and several incorrect
translations. The model is required to identify the
correct translation and its overall performance
is measured by micro-average Accuracy. In this
work, we use the large-scale English-German
anaphoric pronoun test set from Müller et al.
(2018), containing 12K contrastive examples.
Given the provided context, the model of interest is
required to identify the translation with the correct
use of pronoun from er, es and sie in German.

Models All the models in this work are based
on the standard Transformer base (Vaswani et al.,
2017). Besides the direct comparisons with prior
works, we also compare DOCFLAT with several
re-implemented baselines, including SENT2SENT

(Vaswani et al., 2017), DOC2DOC (Tiedemann and
Scherrer, 2017), FLATTRANS (Ma et al., 2020),
MBE (Morishita et al., 2021) and ABD (Kossen
et al., 2021). We only apply ABD at the en-
coder side in this work unless otherwise specified,
which is its best-performing setup as shown in Ap-
pendix C. We re-produce the results of GTRANS

(Bao et al., 2021) with its official code and recom-
mended hyperparameters. The optimization details
are in Appendix B.

1SacreBLEU Signature: nrefs:1|case:mixed|
eff:no|tok:13a|smooth:exp|version:2.2.0
and COMET Signature: wmt20-comet-da.
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TED News Europarl UPS
BLEU COMET Acc. BLEU COMET Acc. BLEU COMET Acc.

Reported
DocTransformer (Zhang et al., 2018b) 24.00 — — 23.08 — — 29.32 — — —
HAN (Miculicich et al., 2018) 24.58 — — 25.03 — — 28.60 — — —
Selective (Maruf et al., 2019) 24.42 — — 24.84 — — 29.75 — — —
Hybrid (Zheng et al., 2020) 25.10 — — 24.91 — — 30.40 — — —

Re-produced (standard)
SENT2SENT 24.78 0.2860 46.48 25.00 0.1993 47.71 31.24 0.5933 53.02 2.57
DOC2DOC 25.01 0.3021 66.99 24.95 0.1990 64.21 31.65 0.5929 78.18 0.86
FLATTRANS 24.71 0.2963 45.45 25.05 0.2020 48.54 31.58 0.5954 51.14 0.90
GTRANS 25.29 0.3058 — 25.59 0.2097 — 32.33 0.5904 — —

Re-produced (batch-level)
MBE 24.75 0.3032 68.12 24.86 0.1969 62.82 31.63 0.5954 77.08 0.64
ABD 24.97 0.3046 68.25 24.33 0.1772 62.52 31.98 0.5955 78.16 0.84

Ours
DOCFLATC 25.31† 0.3173† 70.92† 25.96† 0.2199† 65.45† 32.38† 0.6020† 77.65 0.84
DOCFLATD 25.41† 0.3101† 72.04† 25.38 0.2119† 66.70† 32.16† 0.5990† 79.68† 0.84

Table 2: BLEU, COMET and accuracy on three benchmark datasets for English-German translation. UPS (↑)
indicates updates per second. The best results are highlighted in bold. — indicate the result is not available. †
indicates the statistical significance at p = 0.05 against re-implemented DOC2DOC based on Koehn (2004).

4.2 Main Results

We present the main results in Table 2.

Comparisons with Baselines Compared with all
the baselines regardless whether they utilize the
batch information or not, both DOCFLATC and
DOCFLATD substantially outperform these strong
baseline approaches, especially in terms of the con-
text awareness (accuracy) which is the main empha-
sis of this work. For the approaches that utilize the
batch information, we observe that MBE and ABD
only marginally improves the performance com-
pared with DOC2DOC, suggesting the importance
of preserving the linguistic structure in utilizing the
batch-level information for DocNMT. We also ob-
serve the larger performance gain from DOCFLAT

on small TED and News, implying DOCFLAT per-
forms better in the low-resource settings.

DOCFLATC vs. DOCFLATD As shown in Ta-
ble 2, DOCFLATC and DOCFLATD demonstrate
different strengths: DOCFLATC mainly improves
the translation quality (BLEU and COMET), while
DOCFLATD improves the context awareness (ac-
curacy). In the contrastive evaluation, we have no
access to the entire document, so the model predic-
tions are always conditioned on the golden local
context (LC) and irrelevant global context (GC).
DOCFLATD outperforms DOCFLATC in terms of
accuracy, suggesting the discrete NCG is more
robust against the noise in the context as we ex-

pected in Section 3.3. However, DOCFLATD also
aggressively filters out the supportive information
in the context as demonstrated on its lower results
in BLEU and COMET on News and Europarl.
We believe tuning γ in Equation 9 can fix this issue.

Computational Efficiency As described in Sec-
tion 3.2, FBA introduces additional computational
overhead. We thus evaluate computational ef-
ficiency of DOCFLAT along with the baselines
in terms of update per second (UPS) and re-
port the results in Table 2. When the context
size of the pseudo-document is the same, our ap-
proach DOCFLAT is almost as fast as the standard
DOC2DOC on the identical computational infras-
tructure (one Tesla A40 GPU) with significant per-
formance gain. Note that GTRANS (Bao et al.,
2021) does not support FP16 mode, so its UPS is
not reported. During the inference, DOCFLAT is
only 15% slower than DOC2DOC.

4.3 Ablation Study

Ablation Study for FBA We conduct the ab-
lation study for FBA and present the results in
Table 3. Compared with DOC2DOC, FBA at ei-
ther side can effectively improve the model perfor-
mance of DOCFLAT in terms of BLEU, COMET
and accuracy, although both FBAs does not demon-
strate orthogonal effectiveness. We also observe
that, when the FBA at the decoder side is removed,
the contextual awareness (accuracy) is slightly im-
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Enc. Dec. BLEU COMET Acc.

DOC2DOC ∅ ∅ 24.86 0.2821 66.98

DOCFLATC 25.31 0.3173 70.92
∅ 25.58 0.3114 71.83

∅ 25.70 0.3176 71.06

DOCFLATD 25.41 0.3101 72.04
∅ 25.22 0.3112 73.60

∅ 25.71 0.3113 70.48

Table 3: Ablation study for FBA on TED. ∅ indicates
FBA is removed. The best results for DOCFLATC and
DOCFLATD are highlighted in bold respectively.

BLEU COMET Acc.

DOCFLATC 25.31 0.3173 70.92
DOCFLATD 25.41 0.3101 72.04
DOCFLATI 25.07 0.3049 69.45

Table 4: Ablation study for NCG on TED. DOCFLATI
indicates DOCFLAT with identity mapping in NCG. The
best results are highlighted in bold.

proved. All these results demonstrate that FBA can
effectively leverage the distant context beyond the
pseudo-document boundaries.

Ablation Study for NCG We present the ab-
lation study for NCG in Table 4. To probe the
utility of NCG, we replace NCG in Equation 7
with identity mapping (He et al., 2016) and de-
note this variant of DOCFLAT as DOCFLATI. The
results from DOCFLATI support our argument
that not all the information in the context is use-
ful. Both DOCFLATC and DOCFLATD outper-
form DOCFLATI on BLEU, COMET and accuracy,
which confirms NCG can effectively filter out the
noise in the context.

Ablation Study for Data Shuffling To preserve
the linguistic structure of the original document,
we do not shuffle examples during training. If the
examples are shuffled, the predictions of the cur-
rent sentence are conditioned on the gold local con-
text (LC) and the irrelevant global context (GC).
In this section, we investigate how the data shuf-
fling affects DOCFLAT. We present the results in
Table 5. We observe the performance reduction
for DOCFLATC and DOCFLATD when the current
sentence is conditioned on the gold LC but irrele-
vant GC. When conditioned on the irrelevant GC,
DOCFLAT even performs worse than DOC2DOC

which is free from the irrelevant GC. We also train
DOCFLAT and DOC2DOC with the completely ir-
relevant context and find out that both models fail

GC LC BLEU COMET Acc.

DOC2DOC ∅ ✓ 25.01 0.3021 66.99
✗ ✗ — — —

DOCFLATC ✓ ✓ 25.31 0.3173 70.92
✗ ✓ 24.86 0.2738 66.83
✗ ✗ — — —

DOCFLATD ✓ ✓ 25.41 0.3101 72.04
✗ ✓ 24.81 0.2037 69.30
✗ ✗ — — —

Table 5: Ablation study for data shuffling on TED. ✓
indicates the golden context. ✗ indicates the irrelevant
context. — indicates the model fails to converge. ∅
indicates DOC2DOC is not associated with GC. The best
results for DOCFLATC and DOCFLATD are highlighted
in bold respectively.

avg er es sie

DOC2DOC 66.99 56.82 89.20 54.95
MBE 68.12 52.57 89.72 62.07
ABD 68.25 55.30 90.65 58.82

DOCFLATC 70.92 56.65 89.52 66.60
DOCFLATD 72.04 60.02 89.67 66.42

Table 6: Accuracy (in %) on the contrastive test set for
TED with regard to the anaphoric pronoun types. The
best results are highlighted in bold.

to converge. Hence, we confirm that the related-
ness between the context and current sentence is of
vital importance in DocNMT and DOCFLAT can ef-
fectively leverage the information from the context
beyond the scope of the pseudo-documents.

5 Analysis

In this section, we investigate the effectiveness of
DOCFLAT on the contextual awareness and the
quality saturation problem. We also demonstrate
how the inference batch size affects the model pre-
dictions. A visualization of FBA attention map is
presented in Appendix D.

Contextual Awareness In English-German trans-
lation, the choice of anaphoric pronoun types, in-
cluding feminine sie, neutral er and masculine es,
commonly depends on its context. We present
the accuracy with regard to the anaphoric pronoun
types given by the selected models trained on TED
in Table 6. DOCFLATD is the only approach that
demonstrates substantial improvements on the neu-
tral er. For the feminine sie, DOCFLATC and
DOCFLATD both outperform DOC2DOC by ap-
proximately 12% accuracy. MBE and ABD only
improves the accuracy on the feminine sie by 7%

454



0 1 2 3 > 3

0

5

10

Antecedent Distance

∆
A

cc
.

MBE ABD DOCFLATC DOCFLATD

Figure 4: The change of accuracy (in %; ∆acc) given by
the selected models against DOC2DOC with regard to
the antecedent distance (in sentences) on TED.
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Figure 5: BLEU (left) and COMET (right) against
the LC size of pseudo-document (in sentences) by
DOC2DOC, DOCFLATC and DOCFLATD on TED.

and 4% respectively. We also present the change
of accuracy given by the selected models against
DOC2DOC with regard to the antecedent distance
on TED in Figure 4. Compared with DOC2DOC,
the approaches that leverage the batch-level in-
formation all effectively improves the accuracy
on the distant context (antecedent distance ≥ 2).
DOCFLATC significantly outperforms DOC2DOC

with regard to the accuracy on the distant context
by more than 8%, while DOCFLATD outperforms
DOC2DOC by more than 10% on the distant con-
text. All these results demonstrate that DOCFLAT

can effectively improve the contextual awareness
on the discourse phenomena.

Effect of DOCFLAT on Quality Saturation
DOC2DOC suffers from the quality saturation
problem as shown in Figure 1. We investigate if
DOCFLAT also suffers from the same problem. We
display the results in Figure 5 and observe that
DOCFLATC and DOCFLATD perform consistently
with regard to the LC size. We conjecture the rea-
sons for this observation from two perspectives.
When the LC size is small, the information from
GC introduced by FBA complements the miss-
ing information in LC. When the LC size is large
enough, most information from GC is already cov-
ered by LC and FBA functions as a regularizer.
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Figure 6: BLEU (left) and COMET (right) against the
inference batch size (in sentences) given by DOCFLATC
and DOCFLATD on TED.

Inference Batch Size At the inference stage,
DOCFLAT is also able to leverage the batch-
level information. We visualize how the infer-
ence batch size impacts the model performance
in Figure 6. Overall, the model performance of
DOCFLAT is positively correlated to the inference
batch size. When the batch size is 1, DOCFLATC
and DOCFLATD still outperform DOC2DOC, sug-
gesting the FBA can help the model utilize the dis-
tant context during training. The performance gain
on BLEU and COMET for both DOCFLATC and
DOCFLATD diminishes as the inference batch size
increases, and we do not observe further improve-
ment when the inference batch size is larger than
16, suggesting the over-distant context is less influ-
ential to the predictions of the current sentence.

6 Related Work

Document-Level NMT Numerous document-
level NMT approaches have been proposed in re-
cent years. Tiedemann and Scherrer (2017) firstly
proposed the simple concatenation-based DocNMT
model. Existing works in the document-level NMT
widely spread on a variety of research topics, in-
cluding the model architecture (Miculicich et al.,
2018; Maruf et al., 2019; Zhang et al., 2021), train-
ing methods (Sun et al., 2022; Lei et al., 2022),
evaluation (Bawden et al., 2018; Jiang et al., 2022),
etc. Zhang et al. (2018b) incorporate the contextual
information using an independent context encoder.
Bao et al. (2021) propose group attention that intro-
duce a locality bias to force the model to focus on
the recent context. Morishita et al. (2021) compute
the average representation of all the source tokens,
which is the only close work to ours. Maruf et al.
(2021) present a detailed review on DocNMT.

Batch-Level Information Modeling instance re-
lationships in the batch is relatively less explored.
Prior works leveraging the instance relationships
are mostly from the computer vision area. Ioffe
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and Szegedy (2015) keep the running mean and
variance in the batch to normalize the training and
testing instances. Zhang et al. (2018a) linearly
combine a random pair of instances to improve the
model generalization. Mondal et al. (2021) use
graph neural networks to aggregate information
from similar images. Hou et al. (2022) propose
BATCHFORMER to improve the long-tail recogni-
tion by combining different instances. Our work is
directly inspired by Kossen et al. (2021) that com-
putes the pairwise similarity among all the batched
instances, with distinct motivation. We aim to uti-
lize distant context beyond the pseudo-document
boundaries, instead of finding the similar patterns.

7 Conclusion

In this work, we address the limitation of the
pseudo-document formation in the DocNMT by
utilizing the batch-level information. We propose
a novel Document Flattening (DOCFLAT) tech-
nique that integrates FLAT-BATCH ATTENTION

(FBA) and NEURAL CONTEXT GATE (NCG) into
the Transformer model. FBA enables the cur-
rent sentence to access the information beyond the
pseudo-document boundaries and NCG identifies
the usefulness of context and controls the infor-
mation flow. We conduct comprehensive experi-
ments and analyses on three benchmark datasets
for English-German translation. We demonstrate
that DOCFLAT outperforms several strong base-
lines with statistical significance. The analyses
highlight that DOCFLAT can effectively alleviate
the quality saturation problem in DocNMT and
capture the long-range information.

8 Limitations

As suggested in Figure 6, the performance of
DOCFLAT is positively correlated to the inference
batch size. This is because large inference batch
size could help DOCFLAT to better utilize distant
context within the same inference batch. However,
this property of DOCFLAT could become an issue
when there are only limited inference computa-
tional resources available.

Acknowledgment

This research is supported by the ARC Future Fel-
lowship FT190100039. This work is partly spon-
sored by the Air Force Research Laboratory and
DARPA under agreement number FA8750-19-2-
0501. The U.S. Government is authorized to re-

produce and distribute reprints for Governmental
purposes notwithstanding any copyright notation
thereon. The authors are grateful to the anonymous
reviewers for their helpful comments to improve
the manuscript.

References
Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E.

Hinton. 2016. Layer normalization. CoRR,
abs/1607.06450.

Guangsheng Bao, Yue Zhang, Zhiyang Teng, Boxing
Chen, and Weihua Luo. 2021. G-transformer for
document-level machine translation. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 3442–3455, Online.
Association for Computational Linguistics.

Rachel Bawden, Rico Sennrich, Alexandra Birch, and
Barry Haddow. 2018. Evaluating discourse phenom-
ena in neural machine translation. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1304–1313, New Orleans, Louisiana.
Association for Computational Linguistics.

Mauro Cettolo, Christian Girardi, and Marcello Fed-
erico. 2012. WIT3: Web inventory of transcribed and
translated talks. In Proceedings of the 16th Annual
conference of the European Association for Machine
Translation, pages 261–268, Trento, Italy. European
Association for Machine Translation.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin John-
son, Wolfgang Macherey, George Foster, Llion Jones,
Mike Schuster, Noam Shazeer, Niki Parmar, Ashish
Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Zhifeng
Chen, Yonghui Wu, and Macduff Hughes. 2018. The
best of both worlds: Combining recent advances in
neural machine translation. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
76–86, Melbourne, Australia. Association for Com-
putational Linguistics.

Patrick Fernandes, Kayo Yin, Graham Neubig, and An-
dré F. T. Martins. 2021. Measuring and increasing
context usage in context-aware machine translation.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
6467–6478, Online. Association for Computational
Linguistics.

Markus Freitag, George Foster, David Grangier, Viresh
Ratnakar, Qijun Tan, and Wolfgang Macherey. 2021.
Experts, errors, and context: A large-scale study of

456

http://arxiv.org/abs/1607.06450
https://doi.org/10.18653/v1/2021.acl-long.267
https://doi.org/10.18653/v1/2021.acl-long.267
https://doi.org/10.18653/v1/N18-1118
https://doi.org/10.18653/v1/N18-1118
https://aclanthology.org/2012.eamt-1.60
https://aclanthology.org/2012.eamt-1.60
https://doi.org/10.18653/v1/P18-1008
https://doi.org/10.18653/v1/P18-1008
https://doi.org/10.18653/v1/P18-1008
https://doi.org/10.18653/v1/2021.acl-long.505
https://doi.org/10.18653/v1/2021.acl-long.505
https://doi.org/10.1162/tacl_a_00437


human evaluation for machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 9:1460–1474.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in Neural Information
Processing Systems 29: Annual Conference on Neu-
ral Information Processing Systems 2016, December
5-10, 2016, Barcelona, Spain, pages 1019–1027.

BG Glaser and AL Strauss. 1967. The discovery of
grounded theory: strategies for qualitative research.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recogni-
tion. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas,
NV, USA, June 27-30, 2016, pages 770–778. IEEE
Computer Society.

Zhi Hou, Baosheng Yu, and Dacheng Tao. 2022. Batch-
former: Learning to explore sample relationships for
robust representation learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 7256–7266.

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings
of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015,
volume 37 of JMLR Workshop and Conference Pro-
ceedings, pages 448–456. JMLR.org.

Yuchen Jiang, Tianyu Liu, Shuming Ma, Dongdong
Zhang, Jian Yang, Haoyang Huang, Rico Sennrich,
Ryan Cotterell, Mrinmaya Sachan, and Ming Zhou.
2022. BlonDe: An automatic evaluation metric for
document-level machine translation. In Proceedings
of the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1550–1565,
Seattle, United States. Association for Computational
Linguistics.

Marcin Junczys-Dowmunt. 2019. Microsoft translator
at WMT 2019: Towards large-scale document-level
neural machine translation. In Proceedings of the
Fourth Conference on Machine Translation (Volume
2: Shared Task Papers, Day 1), pages 225–233, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of the
2004 Conference on Empirical Methods in Natural
Language Processing, pages 388–395, Barcelona,
Spain. Association for Computational Linguistics.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In Proceedings of
Machine Translation Summit X: Papers, pages 79–86,
Phuket, Thailand.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
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A A Concrete Example at the Source Side

We present a concrete example at the source side
in Figure 7.

B Optimization and Hyperparameters

We use a two-stage training routine following the
previous works (Zhang et al., 2018b; Voita et al.,
2019; Lopes et al., 2020; Bao et al., 2021).

Stage I We first train a SENT2SENT NMT model.
The model is randomly initialized and optimized
with Adam (Kingma and Ba, 2015) with β1 = 0.9,
β2 = 0.98 and the learning rate α = 5×10−4. The
model is trained with the batch size of 32K tokens
for both datasets and the dropout rate p = 0.3. The
batch size of 32K tokens is achieved by using the
batch size of 4096 tokens and updating the model
for every 8 batches. The learning rate schedule
is the same as described in Vaswani et al. (2017)
with 4K warmup steps. We use early stopping on
validation loss.

Stage II The document-level models are all fine-
tuned from the best SENT2SENT model in the
Stage I. With the same learning rate schedule as the
Stage I, we set the learning rate α = 2× 10−4. All
the other hyperparameters are identical. Training
is early stopped on validation loss, and we average
the last 5 checkpoints to report the model perfor-
mance, following Vaswani et al. (2017). Following
Bao et al. (2021), we apply word dropout (Gal and
Ghahramani, 2016; Sennrich et al., 2016a) to the
inputs with p = 0.1.

C ATTENTION BETWEEN DATAPOINTS

We adapt ATTENTION BETWEEN DATAPOINTS

(ABD) proposed by Kossen et al. (2021) to the
DocNMT. The model architecture is identical to
DOCFLAT as shown in Figure 2 with FBA replaced
with ABD. Given a batch of hidden representations
HHH ∈ Rn×d×e, ABD is defined as follows:

H̃HHavg = AvgPool(HHH) ∈ Rn×1×e,

H̃HHflat = Flatten(H̃HHavg) ∈ R1×n×e,

H̃HHmhsa = MHSA(H̃HHflat, H̃HHflat, H̃HHflat) ∈ R1×n×e,

H̃HH rsh = Reshape(Repeat(H̃HHmhsa)) ∈ Rn×d×e,

H̃HH = LN(HHH + H̃HH rsh) ∈ Rn×d×e.
(11)

There is a noticeable difference in Equation 11
from Equation 7 that we apply the average pooling

Enc. Dec. BLEU COMET Acc.

DOC2DOC ✗ ✗ 25.01 0.3021 66.99

ABD 18.57 -0.1202 66.55
✗ 18.46 -0.1123 66.47

✗ 24.97 0.3046 68.25

Table 7: Preliminary study on the usage of ABD on
TED. ✗ indicates ABD is removed.

to the sequence to obtain the instance representa-
tion, instead of directly flattening the token repre-
sentations into a single vector. ABD is originally
designed for fixed-length data, and it is non-trivial
to apply ABD to the variable-length inputs, and
hence, we use the average pooling for simplicity.

We present the preliminary study of ABD on
TED in Table 7. When ABD is applied at the de-
coder side, the model performance is significantly
reduced. This observation suggests that the linguis-
tic structure at the target side is of vital importance
to DocNMT.

D Visualization of FBA

To better understand the behavior of FBA, we vi-
sualize the sentence-wise attention map learned by
the FBA of DOCFLATC and DOCFLATD at the en-
coder side in Figure 8. The sample document for
producing Figure 8 can be found in Table 8.

It is infeasible to visualize the token-wise atten-
tion map for a very long sequence, so we aggregate
the token-wise attention scores into the sentence-
level. We denote the token-wise attention map for
the flattened sequence as A. For each pair of sen-
tences sssi attending to sssj , their token-wise attention
map is a patch of A, denoted as Apij . We aggre-
gate the token-level attention scores in the attention
patch Apij into a sentence-level score, as follows:

AS(i, j) =
1∣∣∣Apij
∣∣∣

∑
Apij (12)

where
∣∣∣Apij

∣∣∣ is the size of Apij and AS(i, j) is the
sentence-level attention score for sssi attending to
sssj .

The FBA of DOCFLATC at the encoder side
considers all the sentences in the document to be
equally important, while the one of DOCFLATD
approximately splits the whole documents into two
parts. As shown by DOCFLATD in Figure 8, sen-
tences in the first half focus more on its neigh-
bors in the same split but those in the second half
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XXX1: xxx1

XXX2: xxx1 xxx2

XXX3: xxx1 xxx2 xxx3

XXX4: xxx1 xxx2 xxx3 xxx4

XXX5: xxx2 xxx3 xxx4 xxx5

XXX6: xxx3 xxx4 xxx5 xxx6

Local Context Current Sentence

(a) An example batch of pseudo-documents BBBsrc = {XXX1,XXX2,XXX3,XXX4,XXX5,XXX6} at the source side. Each XXXj contains four
consecutive sentences and xxxi indicates the i-th sentence of the same original document. The segments in red indicate the current
sentence of each pseudo-document.

XXXflat: xxx1 xxx2 xxx3 xxx4 xxx5 xxx6

Extra Context

Global Context

Current Sentence Extra Context

Global Context

(b) An example of the flattened sequenceXXXflat transformed fromBBBtgt with FLAT-BATCH ATTENTION. For the current sentence
xxx5, The blue arrows indicate the extra inter-sentential attention for xxx5 that our approach can model. xxx1 and xxx6 are the extra
context introduced by our approach.

Figure 7: An example batch of pseudo-documents at the source side and its flattened sequence.

10 20 30 40
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DOCFLATC

10 20 30 40

DOCFLATD

1

2
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Figure 8: Sentence-wise attention map produced by the
FBA of DOCFLATC and DOCFLATD at the encoder side.
x-axis indicates sentences as the keys of FBA. y-axis
indicates sentences as the queries of FBA.

roughly attend to all the sentences in the documents.
This observation implies that the latter context is
more dependent on the former context.
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idx Context

1 <d>
2 We’re at a tipping point in human history, a species poised between gaining the stars and losing the planet we call home.
3 Even in just the past few years, we’ve greatly expanded our knowledge of how Earth fits within the context of our universe.
4 NASA’s Kepler mission has discovered thousands of potential planets around other stars, indicating that Earth is but one of billions of planets in our galaxy.
5 Kepler is a space telescope that measures the subtle dimming of stars as planets pass in front of them, blocking just a little bit of that light from reaching us.
6 Kepler’s data reveals planets’ sizes as well as their distance from their parent star.
7 Together, this helps us understand whether these planets are small and rocky, like the terrestrial planets in our own Solar System, and also how much light

they receive from their parent sun.
8 In turn, this provides clues as to whether these planets that we discover might be habitable or not.
9 Unfortunately, at the same time as we’re discovering this treasure trove of potentially habitable worlds, our own planet is sagging under the weight of

humanity.
10 2014 was the hottest year on record.
11 Glaciers and sea ice that have been with us for millennia are now disappearing in a matter of decades.
12 These planetary-scale environmental changes that we have set in motion are rapidly outpacing our ability to alter their course.
13 But I’m not a climate scientist, I’m an astronomer.
14 I study planetary habitability as influenced by stars with the hopes of finding the places in the universe where we might discover life beyond our own

planet.
15 You could say that I look for choice alien real estate.
16 Now, as somebody who is deeply embedded in the search for life in the universe, I can tell you that the more you look for planets like Earth, the more you

appreciate our own planet itself.
17 Each one of these new worlds invites a comparison between the newly discovered planet and the planets we know best: those of our own Solar System.
18 Consider our neighbor, Mars.
19 Mars is small and rocky, and though it’s a bit far from the Sun, it might be considered a potentially habitable world if found by a mission like Kepler.
20 Indeed, it’s possible that Mars was habitable in the past, and in part, this is why we study Mars so much.
21 Our rovers, like Curiosity, crawl across its surface, scratching for clues as to the origins of life as we know it.
22 Orbiters like the MAVEN mission sample the Martian atmosphere, trying to understand how Mars might have lost its past habitability.
23 Private spaceflight companies now offer not just a short trip to near space but the tantalizing possibility of living our lives on Mars.
24 But though these Martian vistas resemble the deserts of our own home world, places that are tied in our imagination to ideas about pioneering and frontiers,

compared to Earth Mars is a pretty terrible place to live.
25 Consider the extent to which we have not colonized the deserts of our own planet, places that are lush by comparison with Mars.
26 Even in the driest, highest places on Earth, the air is sweet and thick with oxygen exhaled from thousands of miles away by our rainforests.
27 I worry – I worry that this excitement about colonizing Mars and other planets carries with it a long, dark shadow: the implication and belief by some that

Mars will be there to save us from the self-inflicted destruction of the only truly habitable planet we know of, the Earth.
28 As much as I love interplanetary exploration, I deeply disagree with this idea.
29 There are many excellent reasons to go to Mars, but for anyone to tell you that Mars will be there to back up humanity is like the captain of the Titanic

telling you that the real party is happening later on the lifeboats.
30 Thank you.
31 But the goals of interplanetary exploration and planetary preservation are not opposed to one another.
32 No, they’re in fact two sides of the same goal: to understand, preserve and improve life into the future.
33 The extreme environments of our own world are alien vistas.
34 They’re just closer to home.
35 If we can understand how to create and maintain habitable spaces out of hostile, inhospitable spaces here on Earth, perhaps we can meet the needs of both

preserving our own environment and moving beyond it.
36 I leave you with a final thought experiment: Fermi’s paradox.
37 Many years ago, the physicist Enrico Fermi asked that, given the fact that our universe has been around for a very long time and we expect that there are

many planets within it, we should have found evidence for alien life by now.
38 So where are they?
39 Well, one possible solution to Fermi’s paradox is that, as civilizations become technologically advanced enough to consider living amongst the stars, they

lose sight of how important it is to safeguard the home worlds that fostered that advancement to begin with.
40 It is hubris to believe that interplanetary colonization alone will save us from ourselves, but planetary preservation and interplanetary exploration can work

together.
41 If we truly believe in our ability to bend the hostile environments of Mars for human habitation, then we should be able to surmount the far easier task of

preserving the habitability of the Earth.
42 Thank you.

Table 8: The sample document used for producing Figure 8.
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Abstract

Sign language gloss translation aims to trans-
late the sign glosses into spoken language texts,
which is challenging due to the scarcity of la-
beled gloss-text parallel data. Back-translation
(BT), which generates pseudo parallel data by
translating in-domain spoken language texts
into sign glosses, has been applied to alleviate
the data scarcity problem. However, the lack
of large-scale high-quality in-domain spoken
language text data limits the effect of BT. In
this paper, to overcome the limitation, we pro-
pose a Prompt based domain text Generation
(PGEN) approach to produce the large-scale
in-domain spoken language text data. Specifi-
cally, PGEN randomly concatenates sentences
from the original in-domain spoken language
text data as prompts to induce a pre-trained lan-
guage model (i.e., GPT-2) to generate spoken
language texts in similar style. Experimental
results on three benchmarks of sign language
gloss translation in varied languages demon-
strate that BT with spoken language texts gen-
erated by PGEN significantly outperforms the
compared methods. In addition, as the scale
of spoken language texts generated by PGEN
increases, the BT technique can achieve further
improvements, demonstrating the effectiveness
of our approach. We release the code and data
for facilitating future research in this field1.

1 Introduction

Sign language is the dominant form of communica-
tion for the deaf and hearing impaired community.
Sign language processing has received substantial
attention in the last few years and achieved signifi-
cant progress (Bragg et al., 2019; Yin et al., 2021;
Shterionov, 2021; De Coster et al., 2022). Among

∗Jinhui Ye and Wenxiang Jiao contributed equally to this
work. Work was mainly done when Jinhui Ye was interning at
Tencent AI Lab.

†Xing Wang is the corresponding author.
1Code and data are available at https://github.com/

Atrewin/PGen.
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Figure 1: The translation performance of back-
translation when scaling the generated spoken language
data from 1) our PGEN which uses the large pretrained
language model, and 2) selected in-domain data from
large-scale spoken language corpus. The red dashed
line denotes the baseline model without back-translation.
Best viewed in color.

them, sign language translation (SLT) aims to trans-
form continuous sign language videos into natural
spoken language texts (Bungeroth and Ney, 2004;
Camgoz et al., 2018). SLT consists of two sub-
tasks: (1) sign language understanding task that
recognizes the continued videos to the sign glosses;
and (2) spoken language gloss translation (SLGT)
task that generates the spoken language text of the
given sign glosses. In this work we focus on the
second sub-task, i.e., SLGT.

Data scarcity has been considered the ma-
jor limitation of sign language gloss transla-
tion (Moryossef et al., 2021; Zhang and Duh,
2021). To alleviate the data scarcity problem, back-
translation (Sennrich et al., 2016), which trans-
lates in-domain spoken language texts into sign
glosses to construct synthetic parallel data, has
been adopted and achieved certain success in SLGT.
However, the lack of large-scale high-quality in-
domain spoken language text data limits the capa-
bility of back-translation for the SLGT task (Zhang
and Duh, 2021). The common practice is adopt-
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ing data selection (Axelrod et al., 2011), or data
mining (Jiang et al., 2009) approaches to obtain
in-domain data. But theses approaches assume the
availability of enough in-domain data or expert
knowledge (e.g., language background to mine the
in-domain data in a specific language), which pre-
vents them from applying to gloss translation task
that has broader scenarios (e.g., more languages
and domains).

In this work, we propose a Prompt-based do-
main text Generation (PGEN) to generate large-
scale high-quality in-domain spoken language text
data, motivated by the advances in data augmenta-
tion with pretrained language models (PLMs). The
main idea is to induce the large PLMs to mimic
the style of original spoken language texts with
prompt-based learning techniques (Radford et al.,
2019; Liu et al., 2021). Our PGEN approach is able
to generate large-scale in-domain spoken language
texts based on the small-scale original monolingual
texts and maintains diversity (§2.1). Besides, our
approach can be performed without requiring large-
scale in-domain data or expert knowledge of the
sign language domain and maintain the high qual-
ity of generated in-domain spoken language texts.
Finally, we employ a sequence-sequence pretrained
model (e.g, mT5) to translate spoken language texts
generated by PGEN into sign glosses and synthe-
size gloss-text pseudo-parallel data (§2.2).

We conduct extensive analyses of the spoken
language texts generated by PGEN. We find that
the generated and original spoken language texts
share a similar word distribution (§3.2). To further
verify the effectiveness of PGEN, we also conduct
back-translation experiments for the SLGT task
with large-scale in-domain spoken language texts
generated by PGEN (§3.3). Experimental results
on three widely used benchmark datasets across
languages and domains show that back-translation
with spoken language texts generated by PGEN

significantly outperforms the compared methods.
Most importantly, as shown in Figure 1, when scal-
ing the spoken language texts generated by PGEN

in BT approach, the performance of the gloss-to-
text translation task can achieve constant improve-
ment while conventional data selection approach
failed. The contributions of our work are summa-
rized as follows:

• We propose a novel text generation approach,
i.e., PGEN, to produce large-scale in-domain
spoken language texts which share similar lin-

guistic properties as the original spoken lan-
guage texts.

• We scale back-translation with the proposed
PGEN approach and achieve significant and
consistent improvements on three benchmark
SLGT datasets.

• We release the code and the large-scale syn-
thetic gloss-text datasets produced by the pro-
posed approach to promote the research in
sign language gloss translation field.

2 Methodology

The whole framework of this work includes two
components, i.e., the PGEN method for in-domain
text generation and the BT model (i.e., text-to-gloss
translation) for constructing synthetic data. We will
introduce more details for these two components in
this section. For clarity, we provide the definition
of SLGT (i.e., gloss-to-text translation task) and
notations used throughout the paper as below.

Task Definition. Let X and Y denote the gloss
annotations and spoken language texts, and X and
Y represent the sentence sets of corresponding lan-
guages. The dataset of gloss-text pairs can be ex-
pressed as Dg2t = {(xi,yi)}Ni=1, where xi ∈ X
is the annotations, yi ∈ Y is the spoken language
sentence and N is the number of pairs. Given a
sequence of gloss annotations, the task is to output
the corresponding fluent and semantically equiva-
lent sentence.

2.1 Prompt-Based Domain Text Generation

We exploit the large PLMs for domain text genera-
tion. Large PLMs have been successfully applied
for text generation in NLP, such as text classifi-
cation (Kumar et al., 2020) and medical dialogue
summarization (Chintagunta et al., 2021), for two
advantages: (1) PLMs are demonstrated to mem-
orize the knowledge of their training data (Car-
lini et al., 2021), which usually covers different
domains. With proper guidance (e.g., prompts),
we can export the memorized sentences that be-
long to the same domain as the sign language
text data. (2) Large PLMs are also able to gen-
erate abundant new sentences rather than only the
memorized sentence in training data (Qiu et al.,
2020). Therefore, we propose the Prompt-based
domain text Generation (PGEN) approach to pro-
duce large-scale in-domain spoken language text
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dezember [SEP] … an diesem 
unbeständigen wetter ändert sich 
bis mittwoch wenig [SEP]
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Figure 2: The overall framework of back-translation for gloss-to-text translation in this work. Procedures framed in
the red dashed box corresponds to our prompt-based domain text generation (PGEN) approach.

corpora based on the text part of the original small-
scale dataset Dg2t.

For the original text Dt = {yi}Ni=1 from Dg2t,
and a PLM MG, we attempt to generate an
in-domain spoken language text dataset D̂t =
{ŷi}Mi=1 with a much larger data size than Dt (i.e.,
M ≫ N ). As shown in Figure 2, our PGEN ap-
proach includes two phases:

• Prompt Tuning: Following (Kumar
et al., 2020), we finetune the PLM on the
original small-scale spoken text dataset
Dt with artificial prompts. Specifi-
cally, we randomly concatenate k sen-
tences from Dt as a training sample, i.e.,
[yi1 ; [SEP];yi2 ; [SEP]; . . . ;yik ; [EOS]], where
[SEP] and [EOS] represent the delimiter and
the end-of-sentence tokens, respectively. We
denote the finetuned PLM asMGFT

.

• Prompt-Based Generation: In the genera-
tion phase, we randomly select k−1 sentences
from Dt to form a prompt, i.e., prompt =
[yj1 ; [SEP];yj2 ; [SEP]; . . . ;yjk−1 ; [SEP]].
Then, we input the prompt into
MGFT

to generate the k-th sentence
ŷjk = MGFT

(prompt). We complete the
text generation process when the model
produces an [EOS] token.

According to the design of prompts, the number of
permutations for any k − 1 sentences from the full
set with N sentences is Ak−1N = N !

(N−k−1)! ≫ N ,
which allows us to generate a large number of in-
domain sentences and maintain the diversity of D̂t.

2.2 Back-Translation

Generally, the BT model is trained on the same
dataset for the gloss-to-text task but in the opposite
direction, i.e., Dt2g = {(yi,xi)}Ni=1. However, the
data scale of Dt2g is too small to develop a well-
performing text-to-gloss translation model. Previ-
ous study (Hoang et al., 2018) on machine trans-
lation also suggests that the quality of BT models
heavily affects the performance of the final mod-
els. Therefore, we take advantage of pretrained
sequence-to-sequence models by finetuning them
on Dt2g to improve the performance of the BT
model. Specifically, we utilize a multilingual pre-
trained model, i.e., mT5 (Xue et al., 2020), to sup-
port the different languages (i.e., German, Chinese
and English) of the SLT benchmarks.

2.3 Overall Framework

The workflow of our approach is illustrated in
Figure 2, which is divided into four steps: (1.1)
finetune the pretrained GPT-2 model on the origi-
nal small-scale spoken language text dataset; (1.2)
apply the finetuned GPT-2 model for in-domain
spoken language texts generation with artificial
prompts; (2.1) finetune the pretrained sequence-
to-sequence model (i.e., mT5) on the original
text-gloss dataset Dt2g to obtain the BT model;
(2.2) adopt the BT model to translate the gener-
ated in-domain spoken language texts into glosses
to synthesize a large-scale pseudo-parallel data,
which are combined with the original small-scale
dataset Dg2t to train the final gloss-to-text transla-
tion model.
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Dataset Language Pair Gloss-Text Pairs

Phoenix2014T DSL-German 7,086 / 519 / 642
CSL-Daily CSL-Chinese 18,401 / 1,077 / 1,176
ASLG-PC12 ASL-English 82,709 / 4,000 / 1,000

Table 1: Statistics of the three benchmark datasets for
gloss-to-text translation used in this work. The third
column presents the number of gloss-text pairs in the
training, validation and test sets, respectively.

3 Experiments

In this section, we conduct both intrinsic and ex-
trinsic evaluations (Kumar et al., 2020) for the
proposed PGEN approach. For intrinsic evalua-
tion (§3.2), we perform analyses on the domain
properties of spoken language texts generated by
PGEN. As for extrinsic evaluation (§3.3), we con-
duct sign gloss translation experiments using back-
translation approach with the generated texts. The
performance of the downstream task can indirectly
reflect the effectiveness of PGEN.

3.1 Experimental Setup

Dataset. We employ three widely used bench-
mark datasets for sign language translation,
namely, Phoenix2014T (Camgoz et al., 2018),
CSL-Daily2 (Zhou et al., 2021a), and ASLG-
PC123 (Othman and Jemni, 2012), which are in
German, Chinese and English, respectively. Statis-
tics of the datasets are presented in Table 1.

Model. As shown in Figure 2, there are three
kinds of models involved in this work for 1) in-
domain text generation, 2) gloss-to-text translation
and 3) back-translation, respectively. Details of the
model and training settings can be found in §3.2 ,
§3.3 and Appendix A.1.

3.2 Domain Text Generation

We perform intrinsic evaluation by analyzing the
domain properties of spoken language texts gen-
erated by PGEN. Unless otherwise stated, we
primarily conduct the analyses on the German
Phoenix2014T dataset. More results on ASLG-
PC12 and CSL-Daily datasets can be found in Ap-
pendix A.3.

We first adopt the pre-trained GPT-2 model (e.g.,
German GPT-24 for Phoenix2014T) and finetune

2http://home.ustc.edu.cn/~zhouh156/dataset/
csl-daily/

3https://github.com/kayoyin/transformer-slt
4https://huggingface.co/dbmdz/german-gpt2
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Figure 3: The word frequency distribution on different
types of spoken language texts. The X-axis represents
different words, while the Y-axis represents the normal-
ized word frequency. Best viewed in color. Analyses is
conducted on the German Phoenix2014T

the model on the artificial prompts created from the
text part of SLT dataset. Specifically, the PLM is
finetuned to predict the next token in the exact way
that GPT-2 was pretrained, with the same training
procedure and hyper-parameters. Then, we use
the finetuned PLM to generate in-domain spoken
language texts for each SLT task (§2.1). By default,
we set the hyper-parameter k to 20.

For comparison, we consider four types of spo-
ken language texts:

• TEXT-AUTHENTIC: The text side of the SLT
dataset.

• TEXT-PGEN: The spoken language texts gen-
erated by our PGEN approach with k = 20.

• TEXT-SELECTED: We use the cross-entropy
difference selection method (Moore and
Lewis, 2010) to collect in-domain texts data
from IWSLT17 Multilingual Task5 based on
the AUTHENTIC texts.

• TEXT-GENERAL: We randomly sample sen-
tences from the target text part of IWSLT17
Multilingual Task. TEXT-GENERAL can be
considered as the general domain spoken lan-
guage texts.

We measure the similarity of the other three spo-
ken language texts to the TEXT-AUTHENTIC at
both word level and sentence level.

Word Distribution. Recent study by Wang et al.
(2022) suggests that the word frequency distribu-
tions can reflect the domain difference of datasets.

5https://sites.google.com/site/
iwsltevaluation2017/TED-tasks
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Data JS↓
TEXT-PGEN vs. TEXT-AUTHENTIC 0.01
TEXT-SELECTED vs. TEXT-AUTHENTIC 0.18
TEXT-GENERAL vs. TEXT-AUTHENTIC 0.26

Table 2: The JS divergence between different types of
spoken language texts for Phoenix2014T dataset.

Thus, we count the word frequencies for the above
four spoken language texts and present the re-
sults by both visualization and the Jensen-Shannon
(JS) divergence (Lin, 1991). For a fair compar-
ison, we sample the same number of texts from
the other three spoken language texts as TEXT-
AUTHENTIC (i.e., 7086 for Phoenix2014T).

Figure 3 visualizes the word frequency dis-
tributions of top 10000, in which the words
are ranked according to their frequencies in the
TEXT-AUTHENTIC corpus. We can observe that
TEXT-PGEN (blue line) shows a similar distri-
bution as TEXT-AUTHENTIC (red line) while
TEXT-SELECTED and TEXT-GENERAL differ from
TEXT-AUTHENTIC significantly. This result quali-
tatively shows that the spoken language texts gen-
erated by our PGEN approach are more close to the
domain of TEXT-AUTHENTIC (e.g. the domain of
sign language).

To quantitatively measure the distance between
these distributions, we compute the JS divergence
expressed as:

JS (P ||Q) =
1

2

(
KL(P ||P +Q

2
) + KL(Q||P +Q

2
)

)
,

where KL(·||·) denotes the Kullback–Leibler diver-
gence (Kullback and Leibler, 1951) of two distribu-
tions (i.e., P andQ). Table 2 lists the JS divergence
from the other three corpora to TEXT-AUTHENTIC.
We find that the JS divergence from TEXT-PGEN

to TEXT-AUTHENTIC is much smaller than the oth-
ers, further demonstrating that the spoken language
texts generated by PGEN are closer to the domain
of TEXT-AUTHENTIC. These demonstrate the ef-
fectiveness and generalizability of the proposed
PGEN approach.

Domain Classifier. The word frequency distribu-
tion only characterizes one aspect of the domain.
More features, for example, the styles of texts, can
not be explicitly modeled. Thus, we follow Du et al.
(2020) to train a domain classifier to distinguish
the in-domain and the general domain data with

Test Data In-domain General

TEXT-AUTHENTIC 99.38% 0.62%
TEXT-PGEN 98.60% 1.40%
TEXT-SELECTED 56.23% 43.77%
TEXT-GENERAL 0.31% 99.69%

Table 3: The domain classification results of different
spoken language texts on Phoenix2014T dataset.

the consideration of all potential features implic-
itly. We perform a binary classification task with
equal examples (i.e., train/valid as 7086/519) from
TEXT-GENERAL and TEXT-AUTHENTIC, respec-
tively. To train the domain classifier, we finetune
the German BERT6 on the above dataset (Sun et al.,
2019). Specifically, we use the German BERT to
encode the input sentence and feed the [CLS] token
vector as a reasonable sentence embedding to the
domain discriminator. For testing, we also sam-
ple the same number of examples from the other
three spoken language text corpora as the test set
of TEXT-AUTHENTIC (i.e., 642) and predict their
domains (i.e., general or in-domai).

The results are listed in Table 3. We observe that
the domain classifier successfully predicts the true
labels of TEXT-AUTHENTIC and TEXT-GENERAL,
indicating the significant domain differences be-
tween sign language spoken texts and general spo-
ken language texts. As for TEXT-PGEN, the ex-
amples are categorized into authentic texts with
very high accuracy (i.e., 98.60%), while the value
is much lower for TEXT-SELECTED (i.e., 56.23%).
These results again demonstrate that our PGEN

approach can produce better in-domain spoken lan-
guage texts than the compared methods.

3.3 Sign Language Gloss Translation

We perform extrinsic evaluation for the proposed
PGEN by applying back-translation with the gen-
erated spoken language texts to the sign language
gloss translation task. For the different SLT tasks in
1, we adopt the corresponding German7, Chinese8

and English9 GPT-2 models to generate in-domain
spoken language texts with PGEN.

For the gloss-to-text translation task, we follow

6https://huggingface.co/
bert-base-german-cased

7https://huggingface.co/dbmdz/german-gpt2
8https://huggingface.co/uer/

gpt2-chinese-cluecorpussmall
9https://huggingface.co/gpt2
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Dev Set Test Set
BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU-1 BLEU-2 BLEU-3 BLEU-4

Phoenix2014T
Camgoz et al. (2018) 44.40 31.83 24.61 20.16 44.13 31.47 23.89 19.26
Camgoz et al. (2020b) 50.69 38.16 30.53 25.35 48.90 36.88 29.45 24.54
Yin and Read (2020) 49.05 36.20 28.53 23.52 47.69 35.52 28.17 23.32
Transformer 43.05 32.57 25.50 20.81 43.71 33.40 26.45 21.73

+ Scaling BT(General) 43.52 32.42 25.30 20.62 42.68 32.06 25.09 20.40
+ Scaling BT(Selected) 44.20 33.02 25.86 21.06 44.29 33.25 25.97 21.09
+ Scaling BT(PGen) 48.68 37.94 30.58 25.56 48.30 37.59 30.32 25.54

ASLG-PC12
Yin and Read (2020) 92.67 88.72 85.22 81.93 92.88 89.22 85.95 82.87
Transformer 91.85 87.53 83.73 80.19 92.04 88.07 84.56 81.25

+ Scaling BT(General) 91.59 87.43 83.81 80.45 91.97 88.19 84.89 81.79
+ Scaling BT(PGen) 93.23 88.91 85.63 82.04 93.51 89.74 86.55 83.35

CSL-Daily
Transformer 49.63 35.62 25.52 18.64 49.41 35.57 25.55 18.72

+ Scaling BT(General) 54.66 39.80 29.23 21.78 54.07 39.34 28.99 21.75
+ Scaling BT(PGen) 60.48 46.92 36.95 29.72 60.21 46.76 36.90 29.75

Table 4: Gloss-to-text translation performance on Phoenix2014T, ASLG-PC12 and CSL-daily. "+ Scaling
BT(PGen)" represents that training data is increased by 40 times with BT, in which the monolingual is gen-
erated by our PGen approach.

Yin and Read (2020) to train a Transformer model
with 2 encoder layers and 2 decoder layers. For
back-translation, we first finetune the mT5 pre-
trained model on the authentic text-gloss parallel
data and then use it to translate the collected spoken
language texts (sampled from TEXT-PGEN, TEXT-
SELECTED or TEXT-GENERAL) into glosses. Fol-
lowing Wu et al. (2019), we train the Transformer
model on the combination of the authentic and
synthetic parallel data, and then finetune it on the
authentic gloss-to-text parallel data.

For evaluation, we follow previous studies (Cam-
goz et al., 2018, 2020b; Zhou et al., 2021a) to eval-
uate the performance of gloss-to-text translation
with BLEU score (Papineni et al., 2002), ROUGE-
L (Lin, 2004), and METEOR (Banerjee and Lavie,
2005) scores. Specifically, we report the BLEU-
1,2,3,4 scores to reflect the translation quality at
different phrase levels.

Table 4 lists the main results of the gloss-to-
text translation performance on the Phoenix2014T,
ASLG-PC12 and CSL-daily datasets. By scaling
the BT synthetic data to 40 times of the authentic
parallel data with the different types of spoken text
data, TEXT-PGEN (i.e., “+ Scaling BT(PGen)”)
improves the performance over the baseline Trans-
former model significantly and consistently (e.g.,

up to 11.03 BLEU-4 points on CSL-daily), while
TEXT-GENERAL and TEXT-SELECTED only im-
prove slightly or even hurt the performances (e.g.,
down to 1.33 BLEU-4 points on Phoenix2014). We
also report the translation performance in terms of
ROUGE-L and METEOR in Appendix A.4. These
demonstrate the effectiveness and generalizability
of the proposed PGEN approach.

4 Analysis

To gain a deeper understanding on our PGEN ap-
proach, we conduct extensive analyses in terms of
ablation study and translation outputs.

4.1 Ablation Study

We conduct three ablation studies regarding the
prompt length, the back-translation model and
the scale of synthetic data on the Phoenix2014T
dataset. We introduce more details as below:

Prompt Length. We first investigate the impact
of the prompt length k on the gloss-to-text transla-
tion task, which decides how many sentences are
concatenated as prompts for generation via PGEN.
Specifically, we increase k from 0 to 35 to induce
the PLM to generate in-domain spoken language
texts with a data size 5 times of the authentic par-
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Text-to-Gloss Dev Set Gloss-to-Text Dev Set
BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU-1 BLEU-2 BLEU-3 BLEU-4

Transformer – – – – 43.05 32.57 25.50 20.81
+ BT Model SC 57.72 39.41 27.86 19.66 44.80 34.33 27.47 22.86
+ BT Model mT5 59.78 43.70 32.58 25.01 46.87 35.95 28.59 23.54

Table 5: Translation performance with different back-translation models on text-to-gloss and gloss-to-text tasks.
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Figure 4: Gloss-to-text translation performance with
respect to different prompt sizes. The X-axis represents
the number of sentences in one prefix, while the Y-axis
represents the BLEU-4 score.

allel data. Then, we perform back-translation with
the generated spoken language texts on the gloss-
to-text translation task, individually. The results
are shown in Figure 4, in which we observe that the
performance of gloss-to-text translation constantly
improves with the increase of prompt length. This
is because a larger prompt length can provide more
domain signals so as to encourage the generation
of higher-quality spoken language texts with closer
domain and higher diversity (see Appendix A.2).
However, the larger prompt length requires more
computation memory, slowing down the generation
process. Therefore, we set the prompt length to 20
throughout the work for a good tradeoff between
the generation quality and the computation costs.

Back-Translation Model. In §2.2, we state that
the quality of BT models heavily affects the per-
formance of final models. To validate this claim,
we compare two back-translation models: a Trans-
former model trained from scratch (i.e., “+ BT
Model SC”) and the finetuned mT5 (Xue et al.,
2020) model (i.e., “+ BT Model mT5”). As shown
in the left of Table 5, the finetuned mT5 model pro-
duces higher-quality pseudo parallel data according
to BLEU scores on the validation set of the text-to-

gloss translation (i.e., back-translation) task. Con-
sequently, the performance of gloss-to-text transla-
tion is considerably improved when synthesizing
data by “+ BT Model mT5”, which reconfirms our
claim. Therefore, throughout this work, we adopt
the finetuned mT5 model for back-translation.

Scale of Synthetic Data. In §2.1, we show the
potential of PGEN in generating large-scale in-
domain spoken language texts. Let us recap Fig-
ure 1, where we increase the scale of spoken lan-
guage texts used for back-translation. We observe
that scaling the spoken language texts generated by
PGEN can improve the performance of the gloss-
to-text translation task consistently while that by
retrieval degrades the performance. It suggests that
our approach can scale the BT technique to play its
maximum effect for gloss-to-text translation, which
has not been achieved in previous studies.

4.2 Translation Output

We conduct further analyses to understand how the
proposed approach improves the gloss-to-text trans-
lation quality. Specifically, we analyze the trans-
lation outputs of Phoenix2014 in Table 4 by the
compare-mt10 toolkit in terms of word frequency
and sentence length.

Words Frequency. Previous study (Fadaee and
Monz, 2018) shows that the back-translation im-
proves the translation performance by improving
the low-frequency word predictions. Meanwhile,
our analyses in §3.2 suggest that the spoken langu-
gae texts generated by our PGEN shows a similar
word frequency distribution as TEXT-AUTHENTIC.
We wonder how such consistency benefits the pre-
diction of low-frequency words in gloss-to-text
translation. Specifically, we first categorize the
vocabulary into three groups based on the word
frequency in the training data, including High:
frequency ∈ [2000,+∞); Medium: frequency
∈ [100, 2000); Low: frequency ∈ (0, 100]. Then,

10https://github.com/neulab/compare-mt
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Data Word Frequency

Low Medium High

TEXT-AUTHENTIC 28.86 49.94 58.27
+ TEXT-PGEN 33.23 52.98 60.17
+ TEXT-SELECTED 24.65 49.87 58.58
+ TEXT-GENERAL 25.45 49.12 58.12

Table 6: Prediction accuracy (F1 score) of target words
in the test set with respect to word frequency. As the
higher F1 score, the better, we mark the improvement
by green and degradation by red background.

Data Sentence Length

Short Medium Long

TEXT-AUTHENTIC 21.73 22.61 10.00
+ TEXT-PGEN 21.87 27.29 20.15
+ TEXT-SELECTED 16.24 23.93 12.80
+ TEXT-GENERAL 16.68 23.97 9.47

Table 7: Translation quality (BLEU score) of examples
in the test set with respect to sentence length.

we utilize compare-mt to calculate the prediction
accuracy of target words in the test set with respect
to the three groups.

Table 6 lists the results for different models with
scaling back-translation (e.g. 40 times synthetic
data ). As seen, scaling back-translation with in-
domain spoken language texts of TEXT-PGEN im-
proves the prediction of words in all three groups,
especially for low-frequency words. However, the
situation is much different for TEXT-SELECTED

and TEXT-GENERAL such that they bring little im-
provement for high-frequency words and inversely
harm the performance on low-frequency words. It
indicates that back-translation becomes ineffective
when the domains of spoken language texts and au-
thentic parallel data are mismatched, which implies
the importance of our PGEN approach.

Sentence Length. We investigate the translation
quality of examples with varied lengths, which
can be biased during generating or retrieving spo-
ken language texts. Similar to word frequency,
we also categorize the examples of test set into
three groups based on the sentence length, includ-
ing Long: (20,+∞) tokens; Medium: (10, 20]
tokens; Short: (0, 10] tokens.

Table 7 lists the corresponding results. Clearly,
long sentences are more difficult to trans-
late (Zheng et al., 2020) and our PGEN can par-

ticularly improve the translation quality of medium
and long sentences. In contrast, the other methods
show little improvement on medium and long sen-
tences and degrade the performance on short sen-
tences significantly. This demonstrates the better
stability of our approach regarding the distribution
of sentence length over the compared methods.

5 Related Work

Sign Language Gloss Translation. SLGT trans-
lates sign gloss to spoken language texts, which has
attracted more attention in recent years with the de-
velopment of neural machine translation (NMT).
For example, Camgoz et al. (2018) released the
PHOENIX14T and for the first time proposed a
neural SLT model to translate from spatial represen-
tations or sign glosses. Recent studies attempt to
improve both SLR and gloss-to-text translation for
the better performance of SLT. Yin and Read (2020)
proposed the STMC-Transformer network (Zhou
et al., 2020) to improve SLR and exploited Trans-
former for gloss-to-text translation. Camgoz et al.
(2020b) formulated SLR and gloss-to-text transla-
tion in the multi-task form while Li et al. (2020)
explored the hierarchical structure for learning sign
video representations. More recently, multi-cue
characteristics of sign language have also been uti-
lized for improving SLT (Camgoz et al., 2020a;
Zhou et al., 2021b; Kan et al., 2022). Different
from these works, we improve SLT by focusing on
the gloss-to-text translation task in the perspective
of spoken language generation.

Data Augmentation. Data augmentation has
been proposed and proven valuable and effective in
machine translation research (Sennrich et al., 2016;
Zhang and Zong, 2016; Wang et al., 2018; Jiao
et al., 2020, 2021). To address the data scarcity
issue in gloss-to-text translation, there have been
studies on producing synthetic gloss-text pairs for
data augmentation. One stream is to extract dis-
crete phrases from natural texts based on linguis-
tic rules (Moryossef et al., 2021). Another is to
adopt BT technique (Sennrich et al., 2016) to gen-
erate glosses from natural texts by a pretrained
text-to-gloss translation model. However, the lim-
ited in-domain spoken language texts prevent BT
from playing its maximum effect for the gloss-to-
text translation task. While we may collect in-
domain texts from public websites as Zhou et al.
(2021a), it is unreliable due to both the require-
ment for domain knowledge and the accessibility
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of websites. Our approach exploits the knowledge
and generalization capability of large PLMs to pro-
duce in-domain texts with prompt learning. While
large PLMs have been successfully applied for text
generation in NLP (Kumar et al., 2020; Chinta-
gunta et al., 2021), we craft the prompts to theo-
retically guarantee that we can produce large-scale
in-domain texts based on the small-scale original
spoken language texts data.

6 Conclusion

In this paper, we propose the PGEN approach to
produce large-scale in-domain monolingual texts
based on the original small-scale texts of the gloss-
text parallel data. With PGEN, we scale back-
translation and achieve significant and consistent
improvements on three benchmark datasets for
SLGT task. Extensive analyses suggest that our
approach generates monolingual texts with similar
linguistic properties as the original monolingual
texts, thus outperforms the compared methods in
terms of both low-frequency word prediction and
long sentence translation. Future work includes
exploring ChatGPT for sign language translation
task by using proper prompts (Jiao et al., 2023).

7 Limitations

We identify two limitations of our PGEN approach:

• We rely on the seed in-domain spoken lan-
guage texts and the pretrained models. There-
fore, a bit of expert knowledge is still required
for the selection of the seed dataset, and the
pretrained models need to be carefully se-
lected to ensure a large data coverage and a
strong generalization ability.

• We only investigate the sign language transla-
tion without considering the sign language un-
derstanding part. Since the latter part may in-
troduce errors into glosses, it requires the sign
gloss translation models to be robust to noisy
inputs. We leave this for the future work.
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A Appendix

A.1 Model Training

We perform extrinsic evaluation for the proposed
PGEN by applying back-translation with the gen-
erated spoken language texts to the sign language
gloss translation task. For the Chinese and English
SLT tasks, we adopt the corresponding English11

and Chinese12 GPT-2 models to generate in-domain
spoken language texts with PGEN.

For the gloss-to-text translation task, we follow
Yin and Read (2020) to train a Transformer model
with 2 encoder layers and 2 decoder layers. We use
Adam (Kingma and Ba, 2015) with β = (0.9, 0.98)
and ϵ = 10−6 for optimization. We adopt the warm-
up learning rate scheduler, which linearly increases
from 1.0 × 10−4 to a peak of 5.0 × 10−4 within
2000 steps, and then decays with the inverse square
root schedule. The dropout rate is 0.3 and the label
smoothing is 0.1.

For back-translation, we first finetune the mT5
pre-trained model on the authentic text-gloss par-
allel data and then use it to translate the collected
spoken language texts (sampled from TEXT-PGEN

or TEXT-SELECTED) into glosses. Following Wu
et al. (2019), we train the Transformer model on the
combination of the authentic and synthetic parallel
data, and then finetune it on the authentic gloss-to-
text parallel data.

Table 8 presents the hyper-parameters of differ-
ent transformer models used in this work.

SLT

Valid BLEU vs Scale

B
LE

U

19

21

23

25

27

Scaling Times

0 11 22 33 44 55

T-sign
T-gpt
T-retrieval
T-general

Valid BLEU vs Scale

B
LE

U

23.0

23.5

24.0

24.5

25.0

Prompt Length

0 5 10 15 20 25 30 35

Valid BLEU vs Scale

JS

0.0

0.1

0.2

0.3

0.4

Se
lf-

B
LE

U

12

14

16

18

20

Prompt Length
0 5 10 15 20 25 30 35

Self-BLEU
JS

Figure 5: Diversity and domain closeness of sign lan-
guage texts generated by PGEN measured by Self-
BLEU and JS with respect to different prompt sizes.

11https://huggingface.co/gpt2
12https://huggingface.co/uer/

gpt2-chinese-cluecorpussmall

A.2 Diversity and Quality
Figure 5 shows the diversity and domain closeness
of sign language texts generated by PGEN mea-
sured by Self-BLEU and JS scores with respect
to prompt length. Lower Self-BLEU (Zhu et al.,
2018) and JS scores indicate higher diversity and
closer domain, respectively.

A.3 Intrinsic Analsys Results for ASLG-
PC12 and CSL-Daily Datasets

We extend the intrinsic analyses to both ASLG-
PC12 and CSL-Daily datasets. Tabel 9 shows
the JS divergence between different types of spo-
ken language texts on the two SLT datasets. As
seen, the JS divergence from TEXT-PGEN to
TEXT-AUTHENTIC is much smaller than TEXT-
GENERAL to TEXT-AUTHENTIC. Table 10 lists the
domain classification results on the ASLG-PC12
and CSL-Daily datasets. The results indicate the
significant domain differences between sign lan-
guage spoken texts and general spoken language
texts, and our PGEN approach can produce in-
domain spoken language texts.

Clearly, the results on both ASLG-PC12 and
CSL-Daily datasets are consistent with that in sec-
tion 3.2, which demonstrates the effectiveness and
generalizability of the proposed PGEN approach.

A.4 Other Metrics
Table 11 presents the ROUGE-L and METEOR
scores of the gloss-to-text translation performance
on the Phoenix2014T, ASLG-PC12 and CSL-daily
datasets.
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Parameter Text-to-Gloss Gloss-to-Text
Transformer mT5 Pretrain Finetune

encoder-layers 2 12 6 6
decoder-layers 2 12 6 6
learning rate 7 · 10−4 7 · 10−4 7 · 10−4 7 · 10−4
learning rate scheduler inverse_sqrt inverse_sqrt inverse_sqrt inverse_sqrt
Adam β (0.9, 0.98) - (0.9, 0.98) (0.9, 0.98)
warmup-updates 2000 - 4000 1000
label-smoothing 0.1 0.1 0.1 0.1
dropout 0.3 0.1 0.1 0.5
batch-size 2048 2048 2048 2048

Table 8: Hyperparameters of translation models.

Data ASLG-PC12 CSL-Daily

TEXT-PGEN vs. TEXT-AUTHENTIC 0.02 0.08
TEXT-GENERAL vs. TEXT-AUTHENTIC 0.18 0.14

Table 9: The JS divergence results on the ASLG-PC12 and CSL-Daily datasets.

Test Data In-domain General

TEXT-AUTHENTIC 98.63% 1.37%
TEXT-PGEN 99.44% 0.56%
TEXT-GENERAL 1.58% 98.42%

ASLG-PC12

Test Data In-domain General

TEXT-AUTHENTIC 99.86% 0.14%
TEXT-PGEN 98.57% 1.43%
TEXT-GENERAL 0.24% 99.76%

CSL-Daily

Table 10: The domain classification results on the ASLG-PC12 and CSL-Daily datasets.
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Dev Set Test Set
ROUGE-L METEOR ROUGE-L METEOR

Phoenix2014T
Camgoz et al. (2018) 46.02 - 45.45 -
Yin and Read (2020) 47.36 46.09 46.58 44.85
Transformer 47.77 43.46 47.48 42.36

+ Scaling BT(General) 46.43 42.35 46.12 42.24
+ Scaling BT(Selected) 48.16 43.35 47.95 42.96
+ Scaling BT(PGen) 50.89 45.50 49.25 44.78

ASLG-PC12
Yin and Read (2020) 82.41 95.93 95.87 96.46
Transformer 91.45 92.85 94.74 95.30

+ Scaling BT(General) 91.65 92.95 94.96 95.50
+ Scaling BT(PGen) 94.82 96.79 96.43 96.79

CSL-Daily
Transformer 40.94 23.78 40.87 23.53

+ Scaling BT(General) 55.76 36.28 44.64 35.62
+ Scaling BT(PGen) 62.31 50.48 60.54 50.35

Table 11: Gloss-to-text translation performance on Phoenix2014T, ASLG-PC12 and CSL-daily. "+ Scaling
BT(PGen)" represents that training data is increased by 40 times with BT, in which the monolingual is generated by
our PGen approach.
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Abstract

Conversational Question Answering (ConvQA)
models aim at answering a question with its rel-
evant paragraph and previous question-answer
pairs that occurred during conversation multi-
ple times. To apply such models to a real-world
scenario, some existing work uses predicted an-
swers, instead of unavailable ground-truth an-
swers, as the conversation history for inference.
However, since these models usually predict
wrong answers, using all the predictions with-
out filtering significantly hampers the model
performance. To address this problem, we
propose to filter out inaccurate answers in the
conversation history based on their estimated
confidences and uncertainties from the Con-
vQA model, without making any architectural
changes. Moreover, to make the confidence
and uncertainty values more reliable, we pro-
pose to further calibrate them, thereby smooth-
ing the model predictions. We validate our
models, Answer Selection-based realistic Con-
versation Question Answering, on two stan-
dard ConvQA datasets, and the results show
that our models significantly outperform rele-
vant baselines. Code is available at: https:
//github.com/starsuzi/AS-ConvQA.

1 Introduction

Conversational Question Answering (ConvQA) is
the task of answering a series of questions during
conversation, taking into account a given relevant
paragraph (Choi et al., 2018; Reddy et al., 2019).
Contrary to traditional extractive question answer-
ing tasks (Rajpurkar et al., 2016; Trischler et al.,
2017) that answer each question with the given
paragraph just once, ConvQA aims at answering
the current question using its previous question-
answer pairs taking into account the given para-
graph multiple times. For example, as illustrated in
Figure 1, the goal of ConvQA is to correctly answer
the questionQ3 based on the previous conversation

∗ Corresponding author

: H.E. 
Pennypacker

: Van Nostrand

1: What were some of his pseudonyms?

C : Like the other three characters, Kramer has pseudonyms he uses in 
various schemes; (𝐴1) H.E. Pennypacker, Dr. Martin van Nostrand, and 
Professor Peter van Nostrand are the most popular. Under the name 
H.E. Pennypacker in (𝐴2) “The Puerto Rican Day” (𝐴3) Kramer poses as 
a prospective buyer interested in an elegant apartment in order to use 
its bathroom. … He also uses the Van Nostrand alias in the episode "The 
Slicer", posing as a "Juilliard-trained dermatologist" …

2 : Which episode did he use this name in?

: What happened in this episode?

: Kramer

: Van Nostrand

: posing as a 
"Juilliard-trained 
dermatologist"

: Kramer poses 
as a prospective 
buyer

55.76
55.44

57.35

54

55

56

57

58

All Pred. No Pred. AS-ConvQA

: posing as a 
"Juilliard-trained 
dermatologist"

Figure 1: Illustration of realistic ConvQA evaluation with
three models: 1) using all predicted answers (All Pred.); 2)
not using predicted answers (No Pred.); 3) only using probably
correct answers while filtering out others (AS-ConvQA, Ours).
The scores in the bar chart underneath represent the F1 scores
measured by all test samples (see Table 1 for full results).

history such as Q2, A2, Q1, and A1, as well as the
current context C.

ConvQA has recently gained much attention as
it follows the human’s information seeking process
through multi-turn interactions with others. How-
ever, it is also known to be quite challenging since it
requires capturing all the information over the cur-
rent question, previous conversation, and the given
paragraph. To tackle this problem, a considerable
amount of work focuses mainly on developing a
model architecture for ConvQA (Qu et al., 2019a,b;
Huang et al., 2019; Chen et al., 2020; Kim et al.,
2021; Qiu et al., 2021; Raposo et al., 2022).

Despite their successes, however, there remains
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a critical limitation in that they use the ground-truth
answers (i.e., A2 and A1) in the conversation his-
tory during both training and evaluation steps. Such
an evaluation procedure is not applicable to the
real-world scenario, since the ground-truth answers
are not accessible when the user’s query is posed.
Therefore, the supporting dialogue history for the
current question should consist of the model’s pre-
dictions Ā1 and Ā2 in the real-world application,
instead of the nonexistent gold answers A1 and A2.

There is some recent work (Mandya et al., 2020;
Siblini et al., 2021) that considers such a realistic
setting on evaluation. In particular, they propose to
use the model’s predicted answers (i.e., Ā1 and Ā2),
instead of the ground-truth answers (i.e., A1 and
A2), for its evaluation. However, in such a setting,
the model faces inconsistency between training and
evaluation since the model is evaluated with the
predictions while trained with the ground-truth an-
swers. To handle such a discrepancy, Mandya et al.
(2020) and Siblini et al. (2021) suggest strategies
that randomly decide whether to use predicted or
gold answers for the input question during training.

However, as Figure 1 shows, using all predic-
tions as the answer history is not effective: The
performance difference is not so significant when
compared to not using them at all. We see that this
originates from a model’s failure to answering pre-
vious questions. Specifically, if a model incorrectly
predicts an answer Ā1 for the previous question
Q1, using the incorrectly predicted answer Ā1 for
the question Q2 not only affects the model’s cur-
rent prediction Ā2 negatively, but also engenders
further errors in the future prediction for Q3.

Therefore, in this work, we propose a novel se-
lection scheme for predicted answers from the con-
versation history, which filters out predictions that
are likely to be incorrect, unlike the existing work
that uses all the predicted answers including incor-
rect ones. The remaining step is then to identify
possibly incorrect predictions. To this end, we pro-
pose to use the confidence and uncertainty of the
model’s prediction, which are measured by its like-
lihood and entropy, respectively. In particular, if
the model predicts the previous answer with lower
confidence (i.e., lower likelihood) or higher uncer-
tainty (i.e., higher entropy) than a certain threshold,
we regard the model’s previous answer as proba-
bly incorrect, and remove it from the conversation
history in answering the current question during
evaluation. On the other hand, during training, we

soften the sampling process so that, instead of us-
ing the hard threshold above, we sample a predicted
answer based on its confidence or uncertainty (e.g.,
the lower the uncertainty, the higher the chance to
include the predicted answer in the conversation
history), in order to diversify the model’s input.

However, when dealing with confidence and un-
certainty, we should be careful about a miscali-
brated situation (Guo et al., 2017), which happens
when uncertainty and confidence do not correspond
to the error and accuracy of ground-truth correct-
ness, respectively. In other words, if the model is
not calibrated enough and the distribution for confi-
dence and uncertainty is highly skewed over partic-
ular ranges, the highly uncertain or low confident
yet valid predictions could be removed. Therefore,
to prevent such a performance degrading situation,
we further calibrate models using a temperature
scaling scheme (Guo et al., 2017) before estimat-
ing the uncertainty or confidence. We refer to our
method as Answer Selection-based realistic Con-
versational Question Answering (AS-ConvQA).

We validate our method on two standard Con-
vQA datasets, QuAC (Choi et al., 2018) and
CoQA (Reddy et al., 2019), against diverse base-
lines on a realistic evaluation protocol. The experi-
mental results show that our method significantly
outperforms these baselines, and a detailed anal-
ysis supports the importance of uncertainty- and
confidence-based answer selection schemes.

Our contributions in this work are threefold:

• We propose to remove incorrect predictions in
a conversation history, which degenerate Con-
vQA models’ performances during inference.

• We present confidence- and uncertainty-based
answer filtering schemes, which are further
calibrated to obtain reliable predictions.

• We show that our method achieves outstand-
ing performances on realistic ConvQA tasks.

2 Related Work

Conversational Question Answering ConvQA
requires a model to understand the context of ques-
tions and paragraphs along with previous conver-
sational questions and answers (Choi et al., 2018;
Reddy et al., 2019). While the simplest approach
to consider such conversation histories is to embed
them along with the given question and paragraph
in the representation space, recent work (Huang
et al., 2019; Qu et al., 2019b; Chen et al., 2020)
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proposed to leverage the relevant histories by se-
lectively using them. However, Vakulenko et al.
(2021) and Kim et al. (2021) have shown that even
a simple concatenation of previous questions and
answers outperforms these selection-based meth-
ods, thanks to the advances in pre-trained language
models (Devlin et al., 2019; Liu et al., 2019) that
are designed to attend to the relevant parts. Fur-
thermore, recent methods (Elgohary et al., 2019;
Kim et al., 2021; Vakulenko et al., 2021; Raposo
et al., 2022) rather focus on the problem of ambi-
guity in the input question by proposing a question
rewriting scheme for its disambiguation, showing
remarkable performance improvements.

However, the aforementioned work has a funda-
mental limitation on the evaluation protocol: They
evaluate models based on ground-truth answers
working as a conversation history, which are not
available in a real-world setting. Li et al. (2022)
point out this problem of ground-truth history eval-
uation but use the ground-truth answers during eval-
uation as well, since they target at disambiguating
pronouns in the question by comparing the pre-
dicted and ground-truth answers. Alternatively,
Mandya et al. (2020) and Siblini et al. (2021) use
the model’s predictions instead of the ground-truth
answers during evaluation, and further train the
model with predicted answers. However, they do
not take into account the quality of predicted an-
swers, where low-quality ones are not useful (see
Figure 1). Thus, we propose to selectively use the
predicted answers that are probably correct, based
on their calibrated confidences and uncertainties.

Confidence and Uncertainty As it is nearly im-
possible for models to always make accurate predic-
tions, unreliable predictions become serious issues
when deploying machine learning models to real-
world settings. Motivated to prevent such a risk,
mechanisms of estimating the reliability of model’s
predictive probabilities based on confidence and un-
certainty are recently proposed (Abdar et al., 2021;
Houben et al., 2022). We note that confidence is
usually measured by the softmax outputs of mod-
els (Guo et al., 2017), and that uncertainty can be
quantified by Bayesian models, which can be ap-
proximated via Monte Carlo (MC) dropout (Gal
and Ghahramani, 2016; Kendall and Gal, 2017).
With much work on confidence and uncertainty es-
timations in computer vision tasks (Guillory et al.,
2021), related topics have been recently adopted
for NLP tasks as well (Shelmanov et al., 2021; Wu

et al., 2021; Malinin and Gales, 2021; Vazhentsev
et al., 2022). While confidence and uncertainty es-
timation should also be considered in ConvQA, we
believe that this venue is under-explored so far. In
particular, since questions are asked sequentially,
it is likely that untrustworthy predictions in the
conversation history would negatively affect the
performance. To tackle this, we propose to exclude
low-confident or uncertain predictions when train-
ing and evaluating the ConvQA model.

Calibration Confidence and uncertainty help in-
terpret the validity of the model’s prediction. How-
ever, it is not safe to rely on them when the model
is not calibrated, where the correct likelihood does
not match the predicted probability (Guo et al.,
2017), or the model error does not match the pre-
dicted uncertainty (Laves et al., 2019). Since deep
neural networks are prone to miscalibration as the
number of parameters has much increased, large
pre-trained language models are also not free from
this problem (Wang et al., 2021; Zhao et al., 2021;
Dan and Roth, 2021). One of the most prevalent
approaches to calibrating the model is to rescale
a logit vector before the softmax function for reg-
ularizing the probability, which is known as tem-
perature scaling (Guo et al., 2017). While there
exist lots of calibration schemes, including label
smoothing (Szegedy et al., 2016) and confidence
penalty (Pereyra et al., 2017), in this work, we use
temperature scaling as a calibrator, since it is sim-
ple yet effective while not changing the output class
of the model prediction (i.e., only scaling logits).

3 Method

We first introduce ConvQA. Then, we describe our
answer validating methods based on confidence and
uncertainty values with their calibration schemes.

3.1 Conversational Question Answering
We provide general descriptions of a ConvQA
task. For the i-th turn of the conversation, we
are given a question Qi and its corresponding con-
text C, as well as its conversation history con-
sisting of previous questions and answers: Hi =
{Qi−1, Ai−1, ..., Q1, A1}. Then, the goal of Con-
vQA is to correctly extract the ground-truth answer
Ai from C along with Qi andHi, as follows:

P (Ai) =Mθ(C,Qi, Qi−1, Ai−1, ..., Q1, A1), (1)

where Mθ is a ConvQA model, parameterized by θ,
and, for the sake of simplicity, we omit conditional
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variables C, Qi, and Hi on the left side of Equa-
tion 1, i.e., P (Ai) = P (Ai|C,Qi,Hi). Note that
existing work (Elgohary et al., 2019; Kim et al.,
2021; Vakulenko et al., 2021; Raposo et al., 2022)
has an unrealistic assumption that a set of ground-
truth answers {Ai−1, ..., A1} is available during
evaluation as in Equation 1. However, this evalu-
ation setup is far from reality, since they are not
always available when the user’s novel questions
come in, unlike the training phase which optimizes
a model with ground-truth answers. Therefore,
we should particularly modify the formulation in
Equation 1 to accommodate a realistic evaluation
scenario, which we describe in the next subsection.

3.2 Realistic ConvQA
To tackle the problem of accessing ground-truth
answers during evaluation in Equation 1, we aim
at redefining its formulation to evaluate ConvQA
models under real-world situations as shown below.

Evaluation When a user asks a unique question
whose ground-truth answers are not accessible, the
most naïve approach is to work with the relevant
context and previous questions, as follows:

P (Āi) =Mθ(C,Qi, Qi−1, ..., Q1), (2)

where Āi denotes the ith predicted answer (i > 1)
during inference time. However, the formulation
in Equation 2 may be suboptimal, since it ignores
predicted answers { ¯Ai−1, ..., Ā1} that occurred in
the former conversation, which may be beneficial
for the current prediction. Thus, we can instead
make inference with predicted answers, as follows:

P (Āi) =Mθ(C,Qi, Qi−1, Āi−1, ..., Q1, Ā1). (3)

However, when evaluating with Equation 3 while
training with Equation 1, a problematic discrep-
ancy arises, as model Mθ uses gold answers Ai for
training but predicted answers Āi for inference.

Training To tackle this inconsistency, recent
work (Mandya et al., 2020; Siblini et al., 2021)
randomly decides whether to use Āi or Ai during
the training phase, as follows:

P (Ai) =

{
Mθ(C,Qi, Qi−1, Āi−1, ...) w.p. λrand,
Mθ(C,Qi, Qi−1, Ai−1, ...) w.p. 1− λrand,

(4)

where λrand is the probability of using Āi, which
is set based on heuristic sampling schemes, either
using the random coin flipping or increasing the
sampling rate based on the number of steps.

While such an attempt bridges the gap between
training and inference in the real-world setting, crit-
ical limitations remain. First, as Figure 1 shows,
we observe that using all the predicted answers
rarely contributes to the model performance, as
they include incorrect answers that hinder accurate
predictions for the current question. Also, we fur-
ther point out that there still exists a discrepancy
between training and evaluation: The model ob-
serves ground-truth answers in Equation 4 which
are yet unobservable for evaluation in Equation 3.
Therefore, to tackle these challenges, we propose
to selectively use the predicted answers based on
the predictions’ confidences and uncertainties.

3.3 Predicted Answer Selection Scheme
Our key intuition is that confidence and uncertainty
are simple yet effective measures to filter out inac-
curate predictions. Before going into details, we
first define the notations. Let xi ∈ X be an ith in-
put (i.e., turn) for ConvQA model Mθ, which con-
sists of current question Qi, its relevant context C,
and conversation historyHi. Then, labels of given
input xi are defined as y(start)i ∈ C and y(end)i ∈ C
with C ∈ {1, ...,K}, where K is the number of
sequence lengths for context C. In other words,
y
(start)
i and y(end)i denote the start and end spans,

respectively. Further, to predict labels y(start)i and
y
(end)
i , we first obtain a logit vector zi for each

label1, and use it for calculating a probability vec-
tor pi over K spans: pi = softmax(zi), where
softmax is a softmax function.

Confidence We now define the confidence. From
the probability p = softmax(z), a model likeli-
hood can be interpreted as confidence, as follows2:

sconf = max
y∈C

p(y|z), (5)

where sconf denotes the confidence value.

Uncertainty While confidence can estimate how
confident the model is on its prediction, it might
be also beneficial to measure the model’s certainty
with Bayesian deep learning techniques (Kendall
and Gal, 2017) to prevent erroneous predictions,
which we describe here. At first, to calculate the
uncertainty value, we need to obtain N different
predictions for approximating the model’s distribu-
tion. To do so, we first enable dropout (Srivastava

1We omit superscripts start and end for simplicity.
2For simplicity, we omit a turn index i, which is repre-

sented in a subscript, for example, Qi for the ith conversation.
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et al., 2014) in the language model during infer-
ence, and then forward input x for N times with
N different dropout masks, which is referred to as
Monte Carlo (MC) dropout (Gal and Ghahramani,
2016). Then, we can obtain probability vector p
via MC integration: p = 1

N

∑N
n=1 softmax(z

(n)),
where z(n) is the logit vector from each forward
pass. Then, based on probability p, the uncertainty
is quantified via its entropy overK classes (Kendall
and Gal, 2017; Laves et al., 2019), as follows:

suncer = −
1

logK

K∑

k=1

p(k) log p(k), (6)

where suncer denotes the uncertainty value, which
we normalize to be on a scale between 0 and 1 with

1
logK in Equation 6, following (Laves et al., 2019).

3.4 Calibrating Confidence and Uncertainty

We then describe the calibration schemes to match
the model’s predicted confidence and uncertainty
to its correct likelihood and error, respectively.

Perfect Calibration In order to calibrate trust-
worthiness of the confidence and uncertainty, we
first describe perfectly calibrated situations. Given
the input x, the model predicts the most likely class,
ȳ = argmaxp, from the entire classes with the
highest probability, p̄ = maxp. Each perfect cal-
ibration for confidence and uncertainty is then as
follows (Guo et al., 2017; Laves et al., 2019):

P(ȳ = y|sconf = p) = p,

P(ȳ ̸= y|suncer = p) = p,
(7)

where y denotes the true label with ∀p ∈ [0, 1].

Calibration and Uncertainty Error However,
perfect calibration defined in Equation 7 is hardly
achievable in practical settings due to noise and pre-
diction errors. Thus, we rather define a calibration
error to estimate how much the model’s prediction
is calibrated. One of the most prevalent methods
to quantify calibration error for confidence is to
measure the difference in expectation between con-
fidence and accuracy as follows (Guo et al., 2017):

Esconf
[ |P(ȳ = y|sconf = p)− p| ], (8)

where ∀p ∈ [0, 1]. Also, miscalibration of uncer-
tainty is quantified as follows (Laves et al., 2019):

Esuncer [ |P(ȳ ̸= y|suncer = p)− p| ]. (9)

However, since sconf and suncer lie in a continu-
ous domain, it is impossible to sample them infinite
times for every p when measuring calibration er-
rors. Therefore, we further approximate them in a
discrete space, which was in the continuous domain
(Equations 8, 9), by dividing the predictions into
M bins and then measuring accuracy for each cor-
responding bin. Formally, accuracy and confidence
per bin are as follows (Guo et al., 2017):

acc(Bm) =
1

|Bm|
∑

i∈Bm

1(sconf = y(i)),

conf(Bm) =
1

|Bm|
∑

i∈Bm

sconf ,

(10)

where Bm is a set of label indices whose values
are within the mth bin among M non-overlapping
bins. Similarly, error and uncertainty per bin are
formally defined as follows:

err(Bm) =
1

|Bm|
∑

i∈Bm

1(suncer ̸= y(i)),

uncer(Bm) =
1

|Bm|
∑

i∈Bm

suncer.

(11)

Using definitions in Equations 10, 11 above, we
now measure the approximated calibration errors.
Regarding confidence, the Expected Calibration Er-
ror (ECE) (Guo et al., 2017) is defined as follows:

ECE =
M∑

m=1

|Bm|
n
|acc(Bm)− conf(Bm)|, (12)

where n is the number of samples in total. For un-
certainty, Expected Uncertainty Calibration Error
(UCE) (Laves et al., 2019) is defined as follows:

UCE =
M∑

m=1

|Bm|
n
|err(Bm)− uncer(Bm)|. (13)

Calibration with Temperature Scaling With
the calibration criteria (i.e., ECE and UCE), we
now aim at obtaining well-calibrated confidence
and uncertainty values having low ECE and UCE.
To do so, we apply a temperature scaling scheme,
which regulates the scale of the obtained logit vec-
tor z with a single scalar, namely temperature
τ > 0. Note that temperature scaling does not
affect the maximum value of the softmax output;
therefore, accuracy is preserved. Formally, the cali-
brated probability vector p̂ is defined as follows:

p̂ = softmax(z/τ). (14)

We find the τ value based on the low calibration
errors, i.e., ECE and UCE, in experiments.
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3.5 Overall Pipeline
We now summarize the overall pipeline of our
AS-ConvQA framework, which leverages the cali-
brated confidence and uncertainty values to sample
valid predictions for inference, while using them
during training as well. Our training pipeline con-
sists of two steps, which we explain below.

Step 1 We start training a model with gold an-
swers Ai following the training protocol in Equa-
tion 1, since, if the model cannot observe gold
answers, it might fail to capture and generate accu-
rate answers, easily leading to degenerated perfor-
mances (Mandya et al., 2020). Then, to prepare for
Step 2, we make inference with it to obtain predic-
tion Āi together with its confidence and uncertainty,
for each input xi in the training set.

Step 2 With the predicted answers and their con-
fidences and uncertainties from Step 1, we further
train the model to reflect the predicted answers in-
stead of the ground-truth answers. Note that our
objective is to filter out less confident or uncertain
predictions in inference. Thus, since filtered ones
are not observable during our realistic evaluation
phase, we also aim at reflecting such an occurrence
during training to narrow the gap between training
and evaluation. To do so, instead of training with all
predicted answers, we rather sample a predicted an-
swer based on its confidence or uncertainty value:

P (Ai) =

{
Mθ(C,Qi, Qi−1, Āi−1, ...) w.p. λvalid,
Mθ(C,Qi, Qi−1, ...) w.p. 1− λvalid,

(15)

where λvalid is obtained by the previous predic-
tion’s (Āi−1) confidence or uncertainty: λvalid ∈
[sconf , 1 − suncer]. Note that, in contrast to exist-
ing work (Mandya et al., 2020; Siblini et al., 2021)
represented in Equation 4, our work does not use
previous gold-answers (Ai−1) for training as well.

For evaluation, we follow the realistic evaluation
protocol described in Equation 3. However, instead
of using all predictions (Mandya et al., 2020; Sib-
lini et al., 2021), we rather remove low-confident
or uncertain predictions against the threshold.

4 Experimental Setups

We explain datasets, metric, and models. Please
see Appendix A for further implementation details.

4.1 Dataset and Metric
QuAC QuAC (Choi et al., 2018) is the bench-
mark ConvQA dataset, which is known to resem-

QuAC CoQA
BERT RoBERTa BERT RoBERTa

Gold 59.86 65.08 72.79 77.62
No Pred. 55.44 61.24 70.83 75.56
All Pred. 55.76 61.53 71.28 75.42
CoQAM 55.83 61.55 71.27 74.29
Robust-P 54.21 60.32 70.17 73.96
Attentive Selection 55.74 61.42 71.05 74.60
AS-ConvQAconf (Ours) 57.03 62.47 72.00 76.52
AS-ConvQAuncer (Ours) 57.35 62.33 72.08 76.33
AS-ConvQAcombine (Ours) 57.06 62.18 71.99 76.76

Table 1: F1-scores on QuAC and CoQA. Note that Gold model
is not a fair baseline as it uses the ground-truth answers during
inference, and thus is evaluated in an unrealistic setting.

ble a realistic information seeking dialogue, where
questioners were prevented from reading para-
graphs for its collection. QuAC consists of 14K
dialogues and 100K pairs of questions and para-
graphs. As the test set is not publicly open, we use
a development set.

CoQA CoQA (Reddy et al., 2019) is another
ConvQA dataset with 127K pairs of questions and
paragraphs; however, unlike QuAC, questioners
were allowed to share paragraphs during collection.
We also use a development set instead of the test
set, which is not publicly available.

F1-score We evaluate models with F1-score, fol-
lowing the standard protocol (Kim et al., 2021).

4.2 Question Answering Models

For question answering models, we use two base-
size pre-trained language models widely used in
ConvQA tasks: BERT-base (Devlin et al., 2019)
and RoBERTa-base (Liu et al., 2019).

4.3 Baselines and Our Models

We compare AS-ConvQA to other relevant base-
lines using predicted answers. Gold model, which
is an indicator, uses gold answers as the answer
history during evaluation, which is not realistic,
whereas all the others are evaluated with predicted
answers. All models are trained with the same
protocol, using gold answers as the conversation
history for the first half of training epochs (Step 1).

Gold This model uses the ground-truth answers
during training and evaluation, thus unrealistic.

No Prediction (No Pred.) This model does not
use the predicted answers as the conversation his-
tory in either training or evaluation steps.

All Prediction (All Pred.) In contrast to No
Pred., this model uses all the predicted answers
during both training and evaluation steps.
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Figure 2: Comparison results of certain (confident) and uncer-
tain (unconfident) predictions on QuAC. Note that a threshold
is set as the median of the uncertainty (confidence) values.

CoQAM For training, this model uses the ran-
dom sampling scheme represented in Equation 4,
which samples either predicted or ground-truth an-
swers with coin-flipping (Mandya et al., 2020). For
evaluation, it uses all the predictions as the history.

Robust-P Similar to CoQAM, this model uses
a heuristic answer sampling scheme in a random
manner, but increases the predicted answer sam-
pling rate for training (Siblini et al., 2021). Also, it
is evaluated with all predicted answers.

Attentive Selection This model uses the atten-
tion mechanism to softly select the relevant answers
in the history, following previous work (Qu et al.,
2019b; Huang et al., 2019; Chen et al., 2020).

AS-ConvQAconf (Ours) This is our model that
filters out unconfident answers via confidence val-
ues during training and evaluation, after calibration.

AS-ConvQAuncer (Ours) This is also our model
that filters out uncertain answers during training
and evaluation, after calibrating uncertainty values.

AS-ConvQAcombine (Ours) This model com-
bines our confidence and uncertainty modules,
where we use the mean of calibrated confidence
and (1-uncertainty) values for filtering out samples.

5 Results and Discussion

In this section, we show overall performances of
our proposed method along with detailed analyses.

Main Results As Table 1 shows, the proposed
AS-ConvQA models including confidence and un-
certainty schemes show significant performance
gains over all baselines on two different QA mod-
els. Interestingly, No Pred. model, which does
not utilize previous answers as the conversation
history, shows comparable to or even better per-
formance than the other baseline models based on
either exploiting all the predicted answers or ran-
domly sampling them with heuristic ratios. This
implies that it is more helpful not to use low-quality
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Figure 3: F1-scores on the mismatching evaluation settings
for each baseline model on QuAC, either using all of the
predictions or none of them as the previous answer history.

predicted answers – unconfident or uncertain – at
all than to use them. On the other hand, our mod-
els take advantage of filtering out probably invalid
predictions, thus achieving improved performance.

Moreover, our AS-ConvQA models outperform
the attention-based history selection model (i.e.,
Attentive Selection). This is because, even though
previous answers are all incorrect, the attention
scheme should leverage some of them (i.e., the sum
of attention scores for previous answers should be
1), which leads the model to answer with an inaccu-
rate history. Meanwhile, AS-ConvQA models can
ignore possibly wrong predictions, thus decreasing
the risk of being affected by the inaccurate history.

Last, when combining confidence and uncer-
tainty modules, the performance is not much fur-
ther enhanced. To analyze this, we first measure the
number of overlapping questions, where each of the
AS-ConvQAconf and AS-ConvQAuncer models pre-
dicts with higher confidence or lower uncertainty
than its median value. Then, we observe that about
74.82% and 77.12% of the questions overlap on
QuAC and CoQA, respectively. This indicates that
unconfident and uncertain samples are highly cor-
related, which are likely to be filtered out by both
confidence- and uncertainty-based models. In other
words, due to similar effects of AS-ConvQAconf

and AS-ConvQAuncer models, the performance of
combined models is not much improved.

Unconfident and Uncertain Predictions In or-
der to see whether predictions with low confidence
or high uncertainty actually correspond to incorrect
answers, we compare the performances between
the certain (unconfident) and uncertain (confident)
predictions. As Figure 2 shows, low-confident
and uncertain samples lead to drastic performance
degradation. This result corroborates our hypoth-
esis that a prediction with low confidence or high
uncertainty acts as an obstacle in ConvQA tasks.

Impact of Realistic Evaluation Setups To see
results in realistic settings – not using ground-truth
answers during inference – for the Gold model, we
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Figure 4: Reliability diagrams with and without temperature
scaling (TS), regarding confidence or uncertainty on QuAC.

train it with ground-truth answers, and then test
either with predicted answers or without them. Fig-
ure 3 shows that performances of the Gold model
are drastically dropped, and even lower than both
No Pred. and All Pred., even though tested on the
same strategies. This can be explained with the
term of exposure bias (Bengio et al., 2015; Mandya
et al., 2020), where a discrepancy exists between
training and evaluation, which hinders the model
from performing well on test data that differs from
training data. Furthermore, this also explains one
of the reasons why CoQAM and Robust-P models
perform poorly: Since they observe ground-truth
answers for training, which are not observable dur-
ing evaluation, they underperform ours.

Training & Evaluation Discrepancy We have
observed a discrepancy between training and eval-
uation for the Gold model above. Then, the next
possible question is whether this discrepancy also
happens for models that are trained on the predicted
answers, but evaluated in different settings. To see
this, we test No Pred. and All Pred. models in a
mismatching evaluation setting. As Figure 3 shows,
a discrepancy exists for both models, though the
gaps are smaller than the Gold model. This im-
plies that even if a ConvQA model is trained on the
predictions, the problem of discrepancy should not
be ignored. Meanwhile, our proposed models can
alleviate such an issue with a selective sampling
scheme based on confidence and uncertainty.

Effectiveness of Calibration We show the effect
of calibration on confidence and uncertainty values
in Figure 4. Regarding confidence, the QA model
already generates calibrated scores; thus there is
no reason to scale the logit vector with temperature
scaling (i.e., w/ temperature scaling yields more
errors in terms of ECE). However, regarding un-
certainty, the estimated uncertainty scores from the
model have high errors in terms of UCE, i.e., not
calibrated. Thus, after applying the temperate scal-
ing scheme, the uncertainties become calibrated.
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Figure 5: Comparison between the calibrated and not cali-
brated AS-ConvQAuncer with varying thresholds on QuAC.
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Figure 6: F1-scores for the first, second, and third conversa-
tional turns on QuAC with baselines and our AS-ConvQA.

Note that the calibrated uncertainties further con-
tribute to the performance gain, as Figure 5 shows,
since the model can observe a broad range of un-
certainty values during training, making the model
easily capture and reject uncertain predictions.

Effectiveness on Conversational Turns To see
how the proposed AS-ConvQA contributes to the
quality of the conversation as it proceeds, we fur-
ther analyze the performances of former and latter
conversational turns. As shown in Figure 6, both
the former and latter turns benefit from our AS-
ConvQA, and the performance improvements are
more significant on the latter turn. This result im-
plies that our AS-ConvQA effectively prevents the
accumulation of errors, which originate from the
incorrect predictions in the previous turns.

Case Study We conduct a case study. As the first
example in Table 2 shows, even though both All
Pred. and AS-ConvQAuncer models inaccurately
predict Ā6, they handle it differently: All Pred.
accepts it, while ours reject it for the subsequent
question. In particular, All Pred. model misinter-
prets ‘this’ as ‘big break’ when answering Q6 as
well as Q7; however, since ‘this’ actually refers
to ‘Laputa: Castle in the Sky’, All Pred. further
propagates the misleading prediction to the next
question. By contrast, our model decides not to
select Ā6 as a conversational history due to its high
uncertainty, thus not repeating the previous mistake
when answering Q7. The proportion of such exam-
ples is about 0.52, where our model predicts the
previous answer incorrectly but answers the next
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Table 2: Examples in a realistic ConvQA evaluation setting for No Pred., All Pred., and AS-ConvQAuncer (Ours) models.

Case # 1: Our AS-ConvQA removes a previous answer and then predicts a correct answer.
C1: ... Their collaboration has invited comparisons to the collaborations of Steven Spielberg and John Williams. This big
break led to Hisaishi’s overwhelming success as a composer of film scores. In 1986, Laputa: Castle in the Sky, would be the
first feature to appear under the Studio Ghibli banner, and (A6) its gentle, faintly melancholic tone would become a familiar
trademark of much of the studio’s later output. (A7) And later, in the 1990s, Porco Rosso and Princess Mononoke were released.
Q7: What other output did the studio release?

All Pred. AS-ConvQAuncer (Ours)

H7
Q6: What made this so successful? Q6: What made this so successful?
Ā6: This big break led to Hisaishi’s overwhelming success Ā6: CANNOTANSWER (suncer > Threshold)

Ā7
In 1986, Laputa: Castle in the Sky, would be the first feature
to appear under the Studio Ghibli banner

And later, in the 1990s, Porco Rosso and Princess
Mononoke were released.

Case # 2: Our AS-ConvQA keeps a previous answer and then, based on it, predicts a correct answer.
C2: ... The Walk, Hanson’s second studio album with 3CG Records (Fourth overall), was released in the US, Mexico and
Canada on July 24. It was released in Japan on February 21 and in the UK on April 30. On May 6, 2007, the 10th anniversary
of Hanson Day, (A5) the band re-recorded their first major label album, Middle Of Nowhere, at The Blank Slate bar in their
hometown of Tulsa, Oklahoma. (A6) The band invited fan club members, causing hundreds to fly to Oklahoma for the acoustic
event. Hanson played concerts in the summer of 2007, supporting release of The Walk.
Q6: Was it well received?

No Pred. AS-ConvQAuncer (Ours)

H6

Q5: What did they do on their tenth anniversary? Q5: What did they do on their tenth anniversary?
Ā5: the band re-recorded their first major label album, Mid-
dle Of Nowhere, at The Blank Slate bar in their hometown
of Tulsa, Oklahoma.

Ā5: the band re-recorded their first major label album, Mid-
dle Of Nowhere, at The Blank Slate bar in their hometown
of Tulsa, Oklahoma. (suncer < Threshold)

Ā6 CANNOTANSWER
The band invited fan club members, causing hundreds to
fly to Oklahoma for the acoustic event.

Case # 3: Our AS-ConvQA predicts an incorrect answer since it filters out a correct previous answer.
C3: ... Official calendars have also been issued annually from 2004 to 2009, the only exception being 2005. (A3) Girls Aloud
co-wrote an autobiography titled Dreams That Glitter - Our Story. The book, named after a lyric in C̈all the Shots,̈ was published
in October 2008 through the Transworld imprint Bantam Press. Before the release, OK! magazine bought the rights to preview
and serialise the book. (A4) In 2007, Girls Aloud signed a PS1.25m one-year deal to endorse hair care brand Sunsilk.
Q4: What else did they do?

All Pred. AS-ConvQAuncer (Ours)

H4

Q3: What else did they do/create? Q3: What else did they do/create?
Ā3: Girls Aloud co-wrote an autobiography titled Dreams
That Glitter - Our Story.

Ā3: Girls Aloud co-wrote an autobiography titled Dreams
That Glitter - Our Story. (suncer > Threshold)

Ā4
In 2007, Girls Aloud signed a PS1.25m one-year deal to
endorse hair care brand Sunsilk.

Girls Aloud co-wrote an autobiography titled Dreams That
Glitter - Our Story.

question with a high F1-score over 50. This em-
phasizes the importance of our selection scheme,
especially when there exist ambiguous words prone
to mispredictions.

In addition to this case of removing the uncertain
previous prediction, we further compare our model
against the No Pred. model in the case where the
model predicts with the previous answer history
having a low uncertainty value. As the second ex-
ample in Table 2 shows, while both No Pred. and
AS-ConvQAuncer correctly predict Ā5, No Pred.
does not use Ā5 as the answer history when answer-
ing the next question, Q6. However, as Ā5 contains
important information of ‘it’ inQ6, No Pred. model
gives an inaccurate answer to Q6, since the model
is confused about what ‘it’ refers to. On the other
hand, our model selects Ā5 as the answer history
due to its low uncertainty value, thereby correctly

predicting Ā6 with the previous prediction Ā5. In
a third example of Table 2, we show the poten-
tial failure of our model, which is discussed in the
Limitations section after Section 6.

6 Conclusion
In this work, in order to tackle the challenge of inac-
curately predicted answers in the conversation his-
tory, we proposed a novel answer selection scheme
based on their confidence and uncertainty values.
We further calibrated the output values of the model
to match the model’s predicted confidence and un-
certainty to its correct likelihood and error, which
makes our answer selection scheme more reliable.
The experimental results and analyses demonstrate
that AS-ConvQA significantly improves the Con-
vQA model performance in a realistic evaluation
setting without making any architectural changes.
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Limitations
While we show the clear advantages of using
our AS-ConvQA in realistic ConvQA tasks with
both quantitative and qualitative perspectives, there
could be possible failures: estimated confidence
and uncertainty of a model’s prediction do not
match its actual correctness. For instance, the third
example in Table 2 shows that AS-ConvQAuncer

gives an incorrect answer to Q4, since it removes
the correctly predicted previous answer (i.e., Ā3)
due to its incorrectly estimated uncertainty. Specif-
ically, both Q3 and Q4 ask the additional informa-
tion: ‘What else did they do?’. However, the erro-
neous deletion of Ā3 makes our model bound to
the previous question, repeatedly giving the same
answer as Ā3. This implies that AS-ConvQAuncer

sometimes assigns high uncertainty to the correct
prediction and filters it, which may mislead the
model, especially for the one that requires careful
attention to the context with the previous answer.
Therefore, as future work, one may improve mech-
anisms to measure incorrectness of predictions.

Ethics Statement
As the need for fully autonomous conversational
agents has been rapidly emerging, it is crucial to
consider whether ConvQA models can correctly
answer a sequence of questions in a realistic set-
ting, in which gold answers for previous questions
are unavailable. We note that, in such a challenging
setting, our work contributes to the improved per-
formance by selectively using predicted answers
with model confidence and uncertainty instead of
using predefined gold answers. However, as Con-
vQA models predict answers based on the given
paragraph, we should further consider a scenario
where the paragraph itself is not trustworthy, some-
times having offensive contents. Subsequently, this
may lead the entire conversation vulnerable to gen-
erating unexpected and undesired texts. While this
is not the concern raised from our proposed AS-
ConvQA models themselves, we still have to make
an effort to prevent such an undesirable behavior.
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Figure 7: F1-scores on the mismatching evaluation settings
for the recent ExCorD model (Kim et al., 2021) on QuAC.

A Experimental Implementation Details

We implement all models using PyTorch (Paszke
et al., 2019) and Transformers library (Wolf et al.,
2020). For language models, we use BERT-base
and RoBERTa-base models with 110M and 125M
parameters, respectively. For training, we set the
training epoch as 2 with the batch size of 12, where
the first epoch is used for Step 1 while the second
epoch is used for Step 2. Furthermore, we optimize
all models with the Adam optimizer (Kingma and
Ba, 2015) with a learning rate of 3e-5. For com-
putiting resources, we use a single GeForce RTX
3090 GPU with 24GB memory, on which each
training epoch requires approximately 4 hours.

For hyperparameters, we search the tempera-
ture value τ for temperature scaling with a val-
idation set, in the range of (0, 2]. Also, we set
the filtering threshold for Step 2, in the range of
[median− 0.25, median+ 0.25], where median is
the median value of confidence or uncertainty for
all samples. For the number of dropout masks (i.e.,
N for the uncertainty estimation in Section 3.3) for
measuring uncertainty, we set it as 10.

We use two benchmark ConvQA datasets, which
are QuAC3 (Choi et al., 2018) and CoQA4 (Reddy
et al., 2019). Note that, while our main focus is
on predicting the extractive answers within a given
context, CoQA is designed for answering question
in a free-form text, which might not appear in a
given context. Therefore, following the experimen-
tal setting from Reddy et al. (2019), we convert the
CoQA dataset to our extractive ConvQA setting.
In particular, we assume the gold answer as the
provided rationale, and then make prediction on it,
except for simple yes or no questions. For the yes
or no questions, we additionally augment yes and
no tokens at the end of the paragraph.

B Additional Experimental Results

Realistic Evaluation of ExCorD Even though
we validate a negative impact of exposure bias in

3https://quac.ai/
4https://stanfordnlp.github.io/coqa/
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Figure 8: F1 scores with varying dropout numbers on QuAC.

Figure 3, we further explore the performance of the
unrealistic state-of-the-art model, ExCorD (Kim
et al., 2021), that uses gold answer histories, in Fig-
ure 7 with the realistic ConvQA setting that uses
predicted answers. We observe that, similar to the
mismatching evaluation experiments reported in
Figure 3, the F1-scores of ExCorD drastically drop
when evaluated with No Pred. and All Pred. set-
tings, which aligns with our motivation. On the
other hand, the performance is much improved by
further adapting our AS-ConvQA on ExCorD. This
result indicates the importance of filtering unneces-
sary predictions together with the applicability of
our AS-ConvQA model in a realistic setting.

Varying the Number of Dropout Masks In or-
der to understand how the number of dropout masks
(i.e., N used for uncertainty estimation in Sec-
tion 3.3) affects the performance, we vary the num-
ber of masks for AS-ConvQAuncer. As Figure 8
shows, the performance is stabilized after a certain
number of masks (i.e., 5). This indicates the impor-
tance of setting an appropriate sampling number,
since approximating the uncertainty with a small
number of masks is likely to be inaccurate.
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Abstract

Tongue twisters are meaningful sentences that
are difficult to pronounce. The process of au-
tomatically generating tongue twisters is chal-
lenging since the generated utterance must sat-
isfy two conditions at once: phonetic diffi-
culty and semantic meaning. Furthermore, pho-
netic difficulty is itself hard to characterize
and is expressed in tongue twisters through
a heterogeneous mix of phenomena such as
alliteration and homophony. In this paper,
we propose PANCETTA: Phoneme Aware
Neural Completion to Elicit Tongue Twisters
Automatically. We leverage phoneme represen-
tations to capture the notion of phonetic diffi-
culty, and we train language models to gener-
ate original tongue twisters on two proposed
task settings. To do this, we curate a dataset
called TT-Corp, consisting of existing English
tongue twisters. Through automatic and hu-
man evaluation, as well as qualitative analysis,
we show that PANCETTA generates novel,
phonetically difficult, fluent, and semantically
meaningful tongue twisters.

1 Introduction

A tongue twister is a sentence which is both artic-
ulatorily difficult (i.e. colloquially speaking, hard
to say or "twisting") while at the same time being
meaningful and fluent. Some examples of tongue
twisters are shown in Table 1.

Together with riddles, rhymes, fables, and other
such creative artifacts, tongue twisters were histor-
ically often employed as a vehicle for early trans-
mission of native language diction, grammar, and
vocabulary to children, through parent-child inter-
action, playtime activity, and kindergarten instruc-
tion (Akinyemi, 2003; Mcgovern, 2021). Tongue
twisters have also been used as experimental aids
for research studies of speech production in cog-
nitive science and related disciplines, both among

∗Work done while at CMU.
† Equal contribution by Steven and Varun

Figure 1: Overview of the phoneme-aware training in
the PANCETTA model.

healthy speakers and those with speech and audi-
tory disorders such as dysarthria (Kember et al.,
2017). They are also used as pedagogic aids in
speech therapy, as well as for treatment of speech
disorders and psychological disorders relating to
public speaking and elocution (Revathy and Ravin-
dran, 2016). An example of this was in a scene1

from The King’s Speech (2010), where George VI
repeats a tongue twister during therapy to reduce
his stutter. Lastly, tongue twisters find use as teach-
ing aids for English diction in EFL (English as a
Foreign Language) instructional settings (Prošić-
Santovac, 2009).

The coining of a novel, unique tongue twister
which spreads sufficiently to become normative and
well-recognized is rare, hence characterizing them
as long-tailed linguistic phenomena (Naik, 2022).
However, they are not limited to English, and are
found across the world’s languages, e.g., Persian
("Shish sikh jigar sikhi shi shezar.") (Jam, 2018)
and French ("Cinq chiens chassent six chats.")

Consider the idealized scenario where we have
a "mouth model" which a) maps different regions
of the mouth, palate, and the larynx to the dictio-

1https://youtu.be/7WJts0gKCRM?t=53
Code can be found at: https://github.com/

sedrickkeh/PANCETTA
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Task Input Tongue Twister Tongue Twister (Phoneme)

TT-Prompt
A good cook A good cook could cook as many cookies as

a good cook who could cook cookies.
@ gUd kUk kUd kUk æz mEni kUki:z
æz @ gUd kUk hu: kUd kUk kUki:z.

Chubby
jugglers

Chubby jugglers juggling oranges jovially. tS2bi dZ2g@lRz dZ2g@lIN Or@ndZ@z
dZoUveIli.

Does the Does the rapid rabid rabbit wrap it? d2z D@ ræp@d ræbId ræb@t ræp It?

TT-Keyword
shoes, dog If a dog chews shoes, whose shoes does he choose? If @ dOg tSu:z Su:z, hu:z Su:z d2z hi: tSu:z?
blood, death Bad dead bed-bugs bleed bug blood. bæd dEd bEd-b2gz bli:d b2g bl2d.
king, art,
wall

A truly rural frugal ruler’s mural was on the
wall.

@ tru:li rUr@l fru:g@l ru:lRz mjUr@l
wA:z A:n D@ wOl.

Table 1: Example inputs and target outputs for both the TT-Prompt and TT-Keyword task settings, along with the
phoneme representations of the tongue twisters.

nary of fundamental sounds, i.e. phones being
produced, and b) based on this grounding, can
quantify the hardness of producing one sound after
another by inducing a distance measure between
any phone pair. Assuming access to this idealized
model, one could deconstruct the process of gen-
erating a tongue twister as sampling a sequence of
preferably difficult/distant phone-phone transitions
starting with an initial sequence of one or more
phones (which could come from a prompt, or be
chosen uniformly, based on the task setting).

However, there are several impediments which
make realizing such an idealized model consider-
ably intractable. First, the dictionary of fundamen-
tal sounds at the granularity we use in practice,
i.e. at the level of phonemes, does not neatly map
to particular points of the palate (Ladefoged and
Johnson, 2014). Rather, each phoneme itself corre-
sponds to a set of actions involving multiple organs
and palatal regions. For instance, velar consonants
like k are produced based on tongue-velum (soft up-
per palate) interaction. Secondly, a tongue twister
as per its definition is not merely a difficult to pro-
nounce sequence of phonemes, but also one that
maps to a meaningful and fluent sequence of words.
How one can maintain this property in conjunction
with the process of sampling difficult transitions
from the mouth model’s space is unclear.

The automatic generation of tongue twisters has
largely been unexplored. This task is challenging
because it requires being able to model phonetic
difficulty of various syllables and tokens, which is
not something that existing language models are
trained to do. To achieve this, we have to work
in the phoneme space. Phonemes have previously
been used to aid in speech recognition (Sundarara-
man et al., 2021) and rhyme generation (Hopkins
and Kiela, 2017). We hypothesize that by working
with phonemes, we will be able to model and gen-
erate patterns that characterize phonetic difficulty.

Tongue twisters go beyond relatively simpler
phonetic phenomena such as alliteration, since they
employ a heterogeneous mix of strategies (Jor-
gensen, 1981) including alliteration itself (she sells
seashells), use of homophonic words/subwords
(sells/-shells, she/sea-), and alternating between
similar start phonemes for tokens (s and sh), some-
times even using multiple such phenomena in con-
junction within the same example to create the
cumulative effect of articulatory difficulty.

Our contributions are as follows: (1) We cu-
rate a dataset, TT-Corp, of diverse tongue twisters.
(2) We present two new task settings (TT-Prompt
and TT-Keyword) for automatic tongue twister gen-
eration, and we design and evaluate simple base-
lines for these tasks. (3) We propose a phoneme-
aware method called PANCETTA, which models
and generates coherent and phonetically difficult
phrases by taking phonemes into account. We show
that PANCETTA generates higher-quality tongue
twisters through both automatic and human evalua-
tions and qualitative analysis of the outputs.

2 Task Settings and Dataset

2.1 Task Settings

We propose two settings for automatic tongue
twister generation. We call these tasks TT-Prompt
and TT-Keyword. Examples of these two tasks can
be found in Table 1, and they are detailed below:

1. Generating tongue twisters from prompts
(TT-Prompt): Given a few words to start a sen-
tence, the goal is to complete the sentence in a
coherent way such that the resulting generation is a
tongue twister. Prompts can be of varying lengths.

2. Generating tongue twisters from keywords
(TT-Keyword): Given a set of keywords, the goal
of this task is to generate a coherent tongue twister
which incorporates the semantics of the keywords.
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Tongue Twister Non-TT Version
There was a little witch
which switched from Chich-
ester to Ipswich. (ex.1)

There was a small en-
chantress which exchanged
from Chichester to Ipswich.

He wanted to desert his
dessert in the desert. (ex.2)

He desired to abandon his
sweet in the desert.

Tie a tight knot in the shape
of a nought. (ex.3)

Bind a taut gnarl in the form
of a zero.

Table 2: Examples of the synonym replacement process
to generate non-tongue twister versions of the tongue
twisters in TT-Corp. Different colors are used to indicate
which words are replaced by their synonyms.

The set of keywords can be of varying sizes. These
keywords do not necessarily have to appear verba-
tim and do not necessarily have to appear in order.

2.2 TT-Corp Dataset

As previously noted, tongue twisters are long-tailed
linguistic phenomena, and it is rare to find new
unique tongue twisters. Given this, we curate a
dataset of 644 unique English tongue twisters into
a dataset called TT-Corp. These tongue twisters
are compiled from various sources, ranging from
blog posts to English learning websites. A more
detailed list of these sources and data processing
details can be found in Appendix A. Despite the
seemingly small scale of this dataset, multiple stud-
ies have successfully generated creative text even
when training data is limited: 511 personifications
(Keh et al., 2022), 1400 MadLibs (Hossain et al.,
2017), 401 portmanteaus (Deri and Knight, 2015),
and 576 clippings (Mattiello, 2013).

We also create a non-tongue twister version of
each input in TT-Corp, which will later be used to
explore style transfer models (§3.1) and to train a
phonetic difficulty classifier (§3.2.1). This is done
through synonym replacement. First, we determine
the parts-of-speech of all the words in the sentence
and identify the nouns, verbs, and adjectives.2 We
then use WordNet (Fellbaum, 1998) to generate a
list of synonyms for each of these nouns, verbs,
and adjectives, and we select the highest ranked
replacement which shares the same part-of-speech.
Examples of this process are shown in Table 2.

One key advantage of this synonym replacement
process is that it can replace a word according to
its part-of-speech in the sentence. In the second ex-
ample in Table 2, the word "desert" appears twice –
first as a verb (which is replaced with "abandon"),

2The spaCy library (Honnibal and Montani, 2017) was
used to extract the POS tags.

and again as a noun (which is not replaced). How-
ever, this synonym replacement process does not
take the context of the words into account. In the
third example, while the individual synonym re-
placements make sense on their own, the final sen-
tence sounds quite unnatural. For our purposes,
however, this is not a significant issue: we do not
need the replacement sentences to be absolutely
perfect, as the quality of the ground-truth tongue
twister is more important. This will be explained
further when we use this parallel dataset in §3.2.1.

3 Methodology

As this is a new task, there are no existing meth-
ods that can easily generate novel tongue twisters.
The main challenge is how to incorporate phonetic
difficulty into our generations. To do so, we pro-
pose two baseline and two phoneme-aware models,
which are applicable to both the TT-Prompt and
TT-Keyword task settings (see Table 3).

3.1 Models

1. Grapheme-based Methods (g2g) – We treat
tongue twister generation as a seq2seq task, where
the prompt (for TT-Prompt) or keywords (for TT-
Keyword) is the input, and the tongue twister is the
target output. We fine-tune GPT-2 (Radford et al.,
2019) and GPT-J (Wang and Komatsuzaki, 2021)
using the input sequences "(X [SEP] Y)", where X
represents the prompt/keywords, Y represents the
tongue twister, and [SEP] is a separator token.

2. Style Transfer Methods – Given a prompt or
a set of keywords, we generate a sentence (not
necessarily a tongue twister) using GPT-2. This
is easy for TT-Prompt since GPT-2 is trained to
do causal language modeling. For TT-Keyword,
we need to first train a GPT-2 model to perform
keyword-to-text. We sample 10,000 sentences from
WikiText-103 (Merity et al., 2016) and extract their
keywords using KeyBERT (Grootendorst, 2020).
We then fine-tune GPT-2 using an "(X [SEP] Y)"
template as described in the g2g methods. Here,
X represents the keywords, and Y represents the
corresponding sentence.

We then attempt to convert these generated nat-
ural sentences into tongue twisters. We treat this
as a seq2seq task and train a seq2seq model using
our parallel dataset. During training, we use the
non-TT versions as inputs and the tongue twisters
as the ground truth target outputs. We use BART
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Method Name Models Used Description Phoneme
Representation Leverage Pretraining

Grapheme-based Methods GPT-2, GPT-J g2g ✗ ✓
Style Transfer Methods BART, T5 g2g + g2g ✗ ✓

PANCETTA-P GPT-2, BART g2p + p2p + p2g ✓ ✗

PANCETTA-J GPT-2, GPT-J g2g, p2p, g2p, p2g
(only g2g during test-time) ✓ ✓

Method Name Example
Grapheme-based Methods She sells→ She sells seashells on the seashore.

Style Transfer Methods She sells→ She sells things on the beach. → She sells seashells on the seashore.
PANCETTA-P She sells→ Si: sElz→ Si: sElz si:SElz A:n D@ si:SOr→ She sells seashells on the seashore.
PANCETTA-J She sells→ She sells seashells on the seashore.

She sells seashells on the seashore. → Si: sElz si:SElz A:n D@ si:SOr.
Si: sElz si:SElz A:n D@ si:SOr. → She sells seashells on the seashore.
Si: sElz→ Si: sElz si:SElz A:n D@ si:SOr.

Table 3: Summary of the models discussed in §3.1, along with some examples.

Figure 2: Overview of PANCETTA-P pipeline.

(Lewis et al., 2020) and T5 (Raffel et al., 2020)
models for this seq2seq task.

3. PANCETTA-P (Phoneme) – For the previous
g2g models, the fine-tuning was done only using
graphemes. Because graphemes are not always
representative of pronunciation, we hypothesize
that it may be difficult for such models to capture
information regarding the pronunciation. If we
instead had a generative model which works on the
phoneme space, then we could fine-tune this model
on the tongue twister phonemes and hope that it
can better capture these phonetic cues.

We first pretrain a GPT-2 model to perform
causal LM generation for phonemes. Pretraining
is done using WikiText: we first convert all the
WikiText sentences into their IPA phoneme rep-
resentations and train a GPT-2 model on it.3 For
TT-Keyword, instead of training a causal phoneme
LM, we train to generate from keywords, using
the (X [SEP] Y) template previously described.
While there are multiple g2p phonemization toolk-

3The deep-phonemizer Python package was used for
g2p transliteration.

its, there are no readily available p2g toolkits that
work well. Hence, we train our own p2g model. We
treat this as a seq2seq translation task, once again
using WikiText. We train a BART model with the
phonemes as the inputs and the graphemes as the
targets. Once both the p2p generation and the p2g
translation models are trained, we then fine-tune
the p2p models on the tongue twister phonemes
(all steps similar to g2g), then use the p2g model to
retrieve the grapheme representation of the outputs
(see Figure 2). Lastly, since there is no capital-
ization in the phoneme space, we have to fix the
capitalization of the generated outputs. We use the
FastPunct library for this.4 Unlike the previous
g2g methods, we only use GPT-2 (and not GPT-J)
for PANCETTA-P because GPT-J is too large to
pretrain in a reasonable fashion.

4. PANCETTA-J (Joint) – One drawback of
PANCETTA-P is that because we do our own pre-
training on the phoneme space, we are not able to
leverage the existing pre-training of large language
models. In order to leverage both the phoneme rep-
resentations and the pre-training of GPT, we pro-
pose PANCETTA-J. This is similar to g2g, but
instead of only training with the template (X [SEP]
Y), we train with 4 different templates, representing
4 different modalities. Specifically, we train with
the templates (PKG [SEP] TTG), <PKP [SEP]
TTP>, [TTG [SEP] TTP ], and {TTP [SEP] TTG},
where PK represents the prompts/keywords, TT
represents the tongue twisters, G represents the
grapheme representation, and P represents the
phoneme representation. These 4 modalities rep-
resent g2g, p2p, g2p, and p2g respectively. Here,
the type of surrounding brackets function similar

4https://github.com/notAI-tech/fastPunct
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to custom tokens which indicate the modality for
the model.

At test time, the model can be directly decoded
using g2g mode without requiring phoneme infor-
mation. We hypothesize that the phonetic struc-
tures learned during training time can serve as an
effective "scaffold" — being used explicitly only
during finetuning time (Swayamdipta et al., 2018).

3.2 Evaluation Metrics
3.2.1 Automatic Evaluation
As described in §1, a good tongue twister needs to
satisfy two criteria: it needs to be both difficult to
pronounce, as well as semantically coherent. We
consider these two notions separately.

1. Phonetic Difficulty: We fine-tune a pretrained
BERT-base classifier to differentiate between
tongue twisters and regular sentences. To train
this model, we use the parallel dataset of (TT, non-
TT) pairs as described in §2.2. We specifically use
these (TT, non-TT) pairs so that the model learns
to classify based on phonetic difficulty rather than
semantics. However, as mentioned in §2.2, some
replacement sentences may sound unnatural. To en-
sure that the classifier learns to differentiate tongue
twisters instead of picking up on these false signals,
we augment our dataset with additional negative
examples consisting of 500 sentences randomly
sampled from WikiText. Rather than directly train-
ing on the sentences, we first convert the sentences
to phoneme representations and train a classifier
on the phonemes. This trained BERT classifier
achieves an 83.4 F1-score on the test set of the
parallel dataset, indicating that it is indeed success-
ful at discriminating phonetically easy and difficult
sentences. To further verify that this metric success-
fully measures phonetic difficulty, we show that it
correlates well with human-annotated measures of
phonetic difficulty (§5.2 and Table 6).

2. Fluency: We not only want phonetically dif-
ficult sentences; they must also be fluent and co-
herent. To measure this, we use the generation
(log-perplexity) losses from a pretrained GPT-2.

3. Keyword Relevance (only for TT-Keyword):
In TT-Keyword, we want to ensure that the gener-
ated tongue twister is semantically similar to the
keywords used. To measure this, we use the BERT
embedding of keywords and compare it with the
embedding of the target sentence. More specifi-
cally, we use the BERTScore (Zhang* et al., 2020)

between the generated sentence and the "sentence"
consisting of the keywords separated by commas.

3.2.2 Human Evaluation

The human evaluation metrics are very similar to
the ones in §3.2.1. These are as follows: (1) Pho-
netic Difficulty ("How hard is the sentence to pro-
nounce? To get a better sense of the difficulty, try
saying the sentence out loud, quickly, and multiple
times.") and (2) Fluency ("Does it sound like good
English with good grammar?") Evaluations were
done on a scale of 1-5, with 5 being the highest.
Further details about human evaluation are in §4.2.

4 Experimental Setup

4.1 Implementation Settings

Prompt / Keyword Extraction: To extract
prompts for TT-Prompt, we simply consider the
first three words of each sentence by checking for
the whitespace character. To extract keywords for
TT-Keyword, we use the KeyBERT library (Groo-
tendorst, 2020), which returns keywords ranked
by their cosine similarity scores to the entire sen-
tence itself. For each sentence, we consider the
top 5 keywords as our set of keywords. When a
sentence has <5 keywords, we simply take all the
keywords. In our dataset, 39.56% of the examples
had <5 keywords.

Dataset splits: We split TT-Corp into a training-
validation-test split with a 70-15-15 ratio. We use
the same splits across all models and across both
TT-Prompt and TT-Keyword task settings, as well
as for training the phonetic difficulty classifier.

GPT-2 fine-tuning (g2g, PANCETTA-P,
PANCETTA-J): We use the pretrained GPT2-base
(124M params.) and fine-tune for 5 epochs with a
learning rate of 5e-5 and 100 warmup steps.

BART pretraining ( PANCETTA-P): For the
p2g model, we pretrain BART-base (139M params.)
on WikiText-103 phonemes. We split WikiText into
train-validation-test splits of 80-10-10. The final
training set has size 523k. Training was done for 20
epochs with batch size of 16, learning rate of 5e-4,
and weight decay of 0.1 with a cosine scheduler.

BART & T5 fine-tuning (Style Transfer): We
fine-tune BART-large (406M params.) & T5-large
(737M params.) for 30 epochs with a batch size of
16, learning rate of 2e-5, and 400 warmup steps.

GPT-J fine-tuning (g2g, PANCETTA-J): Be-
cause GPT-J is too large (6B parameters), we use
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TT-Prompt TT-Keyword
Method Phon. Difficulty Fluency ↓ Phon. Difficulty Fluency ↓ Keyword Relevance

g2g (GPT-2) 0.774 5.433 0.786 5.224 0.795
g2g (GPT-J) 0.848 5.643 0.856 5.593 0.794

Style Transfer (GPT-2+BART) 0.672 4.356 0.472 3.662 0.783
Style Transfer (GPT-2+T5) 0.631 4.256 0.414 4.309 0.780

PANCETTA-P (GPT-2+BART) 0.794 5.986 0.871 6.596 0.801
PANCETTA-J (GPT-2) 0.785 5.244 0.803 5.058 0.803
PANCETTA-J (GPT-J) 0.866 5.718 0.888 5.169 0.800

Gold Outputs 0.925 5.745 0.925 5.745 0.812

Table 4: Automatic evaluation averages for both TT-Prompt and TT-Keyword. The best-scoring method for each
metric is highlighted in bold. Higher scores are better for all metrics except for fluency.

a compressed version of GPT-J, 5 which incorpo-
rates various techniques such as 8-bit quantization
(Dettmers et al., 2021) and low-rank adaptation
(Hu et al., 2021). To fine-tune, we use 10 epochs, a
batch size of 1, and a learning rate of 1e-5.

For the GPT models (i.e. GPT-2 and GPT-J), gen-
eration was done using nucleus sampling (p=1.0,
temperature=0.8). Meanwhile, for the BART and
T5 models, generation was done using beam search
with a beam size of 5. Additional hyperparame-
ters and details on implementation can be found in
Appendix C.

4.2 Human Evaluation Settings

Human evaluation was done on Amazon Mechani-
cal Turk (AMT). We selected annotators with >97%
HIT approval rate from Anglophone countries. 6

In each HIT, we present the generated outputs for
each example in randomized order, and each test
example was evaluated by exactly 2 annotators.

We conduct two rounds of annotation, one
for TT-Prompt and another for TT-Keyword.
Within each round, we further subdivide annotat-
ing GPT-2 experiments and GPT-J experiments.
This GPT-2/GPT-J split only applies to g2g and
PANCETTA-J models; for the style-transfer and
PANCETTA-P models, we keep the same mod-
els for both rounds of evaluation. This is done to
ensure that we only have one independent variable
so that the changes in performance are due to the
methodologies rather than the size of the models.
Another reason for subdividing GPT-2/GPT-J ex-
periments is so that we do not subject annotators to
information overload from having to annotate too
many similar examples. Owing to the same consid-
eration, we also decided to omit human evaluation
on the Style Transfer T5 baseline because we found
it very similar to Style Transfer BART.

5https://huggingface.co/hivemind/gpt-j-6B-8bit
6More details about the human eval are in Appendix B.

5 Results and Analysis

5.1 Automatic Evaluation Results

Table 4 shows the average results for the metrics
outlined in §3.2.1. From the phonetic difficulty
results, we see that our proposed PANCETTA
models score higher than the baselines. More
specifically, comparing g2g (GPT-2) (0.774) vs
PANCETTA-J (GPT-2) (0.785) and comparing
g2g (GPT-J) (0.848) vs PANCETTA-J (GPT-J)
(0.866), we see that incorporating phoneme repre-
sentations indeed aids in producing more phonet-
ically difficult sentences. This pattern also holds
true for TT-Keyword, where both GPT-2 and GPT-
J see increases in performance after incorporating
phonemes. We also observe that PANCETTA-P
performs reasonably well in phonetic difficulty and
has the highest score of the non-GPT-J models for
both TT-Prompt and TT-Keyword. In fact, for TT-
Keyword, PANCETTA-P is able to get very close
to PANCETTA-J (GPT-J), which is remarkable,
considering that it is only using a GPT-2 model.

For fluency, style transfer models score better
than the other models. This is likely because style
transfer models first generate a regular sentence,
then attempt to "tongue twisterize" it. However,
there is no guarantee that the sentence can even
be reasonably converted to a tongue twister, result-
ing in minimal changes being made to the original
GPT-generated sentence, thereby leading to good
fluency scores when using perplexity. Meanwhile,
we see that PANCETTA-P has the worst perplex-
ity score. However, it is important to note that even
the ground truth tongue twisters score poorly here
(around the same scores as PANCETTA mod-
els). Tongue twisters do not usually use typical
English tokens in standard sequences, thereby re-
sulting in worse perplexity scores. Nonetheless, flu-
ency/perplexity is still important as a sanity check
for the basic qualities of the generated text (whether
the generation is coherent, if it makes unnecessary
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TT-Prompt TT-Keyword
Method Phonetic Difficulty Fluency Phonetic Difficulty Fluency

g2g (GPT-2) 3.056 3.736 3.847 4.139
Style Transfer (GPT-2+BART) 2.569 3.639 3.500 3.819
PANCETTA-P (GPT-2+BART) 3.528 3.778 3.722 3.764

PANCETTA-J (GPT-2) 3.153 3.764 3.889 3.931
Gold Outputs 3.361 3.931 3.833 4.000

g2g (GPT-J) 3.521 3.979 3.791 3.708
Style Transfer (GPT-2+BART) 3.271 3.75 3.25 3.750
PANCETTA-P (GPT-2+BART) 3.854 3.708 3.833 3.896

PANCETTA-J (GPT-J) 3.708 3.646 3.979 3.604
Gold Outputs 3.750 4.000 4.104 3.729

Table 5: Human evaluation averages for TT-Prompt and TT-Keyword. The top half of the table correspond to
methods using GPT-2 as the base architecture, while the bottom half of the table correspond to methods using GPT-J
as the base architecture. Top method scores for each metric are highlighted in bold.

grammatical errors, etc.). To this end, the fluency
scores of PANCETTA models are adequate.

Lastly, for keyword relevance, most scores are
close to each other. The three PANCETTA mod-
els have the three highest scores, indicating that
PANCETTA is able to generate difficult tongue
twisters without compromising the task at hand.

5.2 Human Evaluation Results

Table 5 shows the average results for the human
evaluation. As with the automatic evaluations, we
see an increase in phonetic difficulty when we intro-
duce phonemes into the training process. Compar-
ing g2g (GPT-2) and PANCETTA-J (GPT-2), we
see an increase from 3.056 to 3.153 for TT-Prompt
and from 3.847 to 3.889 for TT-Keyword. This
trend also occurs for GPT-J models. Despite not
being able to leverage existing GPT pretraining,
PANCETTA-P also works very well, outperform-
ing all non- PANCETTA models in all but one
setting. These positive results indicate that incor-
porating phonetic information is indeed helpful.

In terms of phonetic difficulty, we observe that
for TT-Prompt, PANCETTA-P works best for
both GPT-2 and GPT-J, while for TT-Keyword,
PANCETTA-J works best for both GPT-2 and
GPT-J. This may be because generating from key-
words is generally more difficult than complet-
ing a prompt, so PANCETTA-J benefits from
existing pretraining. Meanwhile, in terms of flu-
ency, g2g methods work best for 2 settings, and
PANCETTA-P works best for 2 settings. Tongue
twisters usually use words in creative and unnatural-
sounding ways, and this may sometimes negatively
affect fluency, so the "most fluent" sentence may
not necessarily be the best tongue twister. Never-
theless, all the fluency metrics for PANCETTA
models are around 3.7 to 3.8, indicating good flu-
ency. Overall, we conclude that PANCETTA

Task Pearson Correlation Spearman Correlation
TT-Prompt 0.117 (p=0.076) 0.116 (p=0.079)

TT-Keyword 0.102 (p=0.177) 0.134 (p=0.075)

Table 6: Corr. between human annotations and auto-
matic metrics (BERT classifier) for phonetic difficulty.

substantially improves phonetic difficulty while
maintaining a competitive level of fluency.

To verify the validity of using our BERT clas-
sifier to automatically measure phonetic difficulty,
we compute correlations between the classifier’s
scores and human-annotated phonetic difficulty
scores (Table 6). We observe that the correlations
are > 0.1 with relatively low p-values, which is an
adequate score when comparing various automatic
and human-annotated metrics (Gangal et al., 2022).
While this can be further improved and is a limita-
tion of our work, we also note that the automatic
phonetic difficulty metric scores the gold outputs
the highest (at 0.925) and the style transfer models
lowest, which indicates that it is able to decently
capture the notion of phonetic difficulty.

5.3 Qualitative Analysis
Table 7 shows sample generations for both TT-
Prompt and TT-Keyword. We observe that both
PAN-P and PAN-J are able to use a wide vari-
ety of tongue twister techniques, such as rhyme
(grape/crepe/crate- in ex.1 PAN-P), alliteration
(kneadle/knuckle in ex.3 PAN-J), alternating final
sounds (land/lamb in ex.2 PAN-P), alternating ini-
tial sounds (six-/sheik in ex.4 PAN-J), and repeti-
tion. They are also able to generate proper nouns
to suit the sentence, such as "Donna" and "Nee-
dles Nood" in ex.3 PAN-P. They can also combine
multiple such techniques in a single tongue twister,
such as stick/stock and land/lamb in ex.2 PAN-P.

Comparing this with the baseline methods (g2g
and Style T.), we see that the generated outputs of
the g2g baseline are decent and somewhat tongue
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Method Text
Inputs (ex.1) The pirates pirated ...
Gold out. The pirates pirated private property.
g2g The pirates pirated the pepper pot.
Style T. The pirates pirated more than $50 million in online gambling in 2013.
PAN-P The pirates pirated a little grape crepe. The pirate dread cratered a little.
PAN-J The pirates pirated the paired prince with a pair of paired pistols.
Inputs (ex.2) If you stick ...
Gold out. If you stick a stock of liquor in your locker, it is slick to stick a lock

upon your stock or some joker who is slicker is going to trick you of
your liquor if you fail to lock your liquor with a lock?

g2g If you stick two sticks together, you get two sticks tied together.
Style T. If you stick with the same line, you have different things going for you.
PAN-P If you stick a stock of land in a lamb and a lamb in a farm.
PAN-J If you stick a stock stick on the stock stick you stick, who’s going to

stick it on the stock stick you stick?

Method Text
Inputs (ex.3) needles, noodles, kneadle, don, need
Gold out. I don’t need your needles to kneadle noodles.
g2g One noodle needs a kneeler to lean on
Style T. Near the end of his reign, Leiblau had to send a delegate to Parliament,

to support his friend King Gules of Northumbria.
PAN-P If Donna Needles Need, who is Needles Nood, and the Need?
PAN-J Don’t kneadle a knuckle with a knuckle needle!
Inputs (ex.4) thieves, thankful, thanked, thirty, thursday
Gold out. The thirty-three thankful thieves thought that they thanked the other

thirty-three thankful thieves throughout Thursday.
g2g The thieve thanked the thankful thief on Thursday.
Style T. Thanked by Thnx for the idea, I thought it was an idea that I wanted to

do a spoof of Thankful Thankful and Thnx.
PAN-P Thankful thieves thought that they thought they thrilled the throne

throughout Thursday.
PAN-J These sixty sheiks sent these thousand and sixty sheiks sixty sheiks

thanking them for shouting these sixty sheiks sixty shouts on Thursday.

Table 7: Qualitative examples for both TT-Prompt (first 2
examples) and TT-Keyword (last 2 examples). We report
only the best performing model based on phonetic difficulty
from automatic evaluations for each type (in brackets): literal
input, gold output, g2g (GPT-J), Style Transfer (BART),
PANCETTA-P (GPT-2+BART), and PANCETTA-J (GPT-
J). Additional examples can be found in Appendix D.

twister-like but usually are very short and simple,
often relying too much on alliterations. Meanwhile,
the outputs for the style transfer methods are gen-
erally not tongue twisters. As discussed in §5.1,
this is likely because it commonly fails at fully
converting a regular sentence into a tongue twister.

For TT-Prompt, we observe that even with a non-
alliterative prompt such as "If you stick" (ex.2),
the PANCETTA models can still generate good
tongue twisters, whereas the g2g method attempts
to use repetition but the generated text is not that
difficult to pronounce. Meanwhile, for the TT-
Keyword setting, PAN-J is able to incorporate the
semantics of the words, rather than just copying
the words themselves: in ex.4, PAN-J replaces
"thirty/thieves" in the keywords with "sixty/sheiks".
Lastly, comparing PAN-P and PAN-J, we see that
PAN-J sentences generally sound smoother, while
PAN-P sentences sometimes end rather abruptly
("in a farm." in ex.2; "and the Need?" in ex.3). In
addition, some of the outputs from PAN-P lack co-
herence (ex.3). This is likely because PAN-P uses
a phoneme language model and hence is unable
to leverage the large-scale pretraining from GPT
models. On the other hand, this lack of large-scale

pretraining can potentially free up PAN-P to use
more diverse tongue twister techniques, such as
rhymes (ex.1) and proper nouns (ex.3) which are
less common in PAN-J.

6 Related Work

Automatic tongue twister generation is a largely
unexplored task. Existing systems mostly use
synonym replacements (Zeng, 2019) on existing
tongue twisters, which requires a large list of
tongue twisters to begin with and cannot generate
novel ones from scratch. Carey (2017) generates
tongue twisters using sound vectors, and Joshipura
(2020) trains an LSTM on a small tongue twister
dataset, but neither are able to produce novel and
semantically coherent examples. Furthermore, no
methods currently exist for the TT-Keyword task.

There have been multiple studies on creative gen-
eration of various figures of speech such as similes
(Chakrabarty et al., 2020), metaphors (Chakrabarty
et al., 2021), and personifications (Keh et al., 2022).
However, these other creative linguistic constructs
don’t require working with another modality in the
same way that tongue twister generation relies on
phonemes. Among these creative linguistic con-
structs, the closest ones to tongue twisters would
likely be alliterations (Hopkins and Kiela, 2017),
rhymes (Xue et al., 2021), and poetry (Ghazvinine-
jad et al., 2017; Cruys, 2020). Notably, DeepHaiku
(Gonsalves, 2022) also explores using phonemes
and a multitask objective in order to generate
haikus. However, tongue twister generation goes
beyond alliterations and rhymes; rather it is a mix
of all these various techniques. In addition, it dif-
fers from poetry generation because poetry gener-
ation focuses on generating rhythmic verses and
syllables, whereas the main focus of tongue twister
generation is on phonetic difficulty.

Using phonemes in language modeling has been
previously explored in the speech domain for au-
tomatic speech recognition (Sundararaman et al.,
2021; Belinkov et al., 2019; Xu et al., 2021). In this
paper, we trained a BART model to do p2g transla-
tion. Other existing methods include expectation
maximization (Knight et al., 2006), A* search (Cor-
lett and Penn, 2010), and Hidden Markov Models
(Hopkins and Kiela, 2017).

There is also work on more general constrained
text generation tasks. An example is Feng et al.
(2019), who propose Semantic Text Exchange to
adjust a text’s topic-level semantics. Lin et al.

498



(2020) introduce a generative commonsense reason-
ing task using keyword-to-text generation called
CommonGen. SAPPHIRE (Feng et al., 2021b) and
VisCTG (Feng et al., 2022) investigate approaches
to improve performance on CommonGen, the latter
using per-example visual grounding.

7 Conclusion and Future Work

In this paper, we proposed the task of automatic
tongue twister generation, and explored it under
two settings: TT-Prompt and TT-Keyword. We
curated a dataset called TT-Corp of 600+ English
tongue twisters from various sources and proposed
PANCETTA, a training methodology which in-
corporates phoneme representations. We imple-
mented two variants: PANCETTA-P (Phoneme),
which trains a phoneme-based language model, and
PANCETTA-J (Joint), which jointly incorporates
both phoneme-level information and grapheme-
level information during training time. Through
empirical results and qualitative evaluations, we
showed that incorporating phonemes is indeed help-
ful in producing effective tongue twisters which are
harder to pronounce while staying fluent.

While PANCETTA works well at generation,
the generation process lacks interpretability. This
is most notable when looking at the phonetic dif-
ficulty classifier. Currently, the classifier does not
identify and separately score elements of phonetic
difficulty or come up with an explicit decomposi-
tion. We believe that such explicit decomposition
can be very useful in the future for understand-
ing more about tongue twisters and the "mouth
model" discussed in §1. In addition, the procedure
of fine-tuning a pretrained model in 4 different
modes involving both graphemes and phonemes,
devised here to fine-tune PANCETTA-J, can also
be adopted more generally as a data augmentation
(Feng et al., 2021a, 2020) method for LM fine-
tuning, creating a (pseudo) count of 4N training ex-
amples given N initial ones. Lastly, tongue twisters
can potentially be incorporated in dialogue agents,
adding creativity and personality (Li et al., 2020).

Limitations

As mentioned in §7, our current model and classifer
are deficient in terms of their interpretability on
certain aspects, and would greatly benefit from
addition to their interpretability on these fronts.

Our models and datasets are limited to English
tongue twisters (Bender and Friedman, 2018). In

addition, when we convert to the phoneme space,
we only use IPA phonemes. We selected IPA be-
cause it is the most common and most readily
available phonemization method. However, there
also exist many other phonemization methods such
as the ARPAbet / CMU Pronouncing Dictionary
(Weide, 2005), the SAMPA (Wells, 2005), or the
Festival phonemization scheme (Black and Lenzo,
2003). We also choose to use deep-phonemizer for
g2p transliteration. There are many other available
phonemization tools such as Epitran (Mortensen
et al., 2018) and the phonemizer Python pack-
age (Bernard and Titeux, 2021). It would be inter-
esting to explore how the performance will change
if we try other phoneme alphabets or phonemiza-
tion methods.

In addition, we see in §5 that the style transfer
models do not really work that well. In this paper,
we only tried simple BART and T5 seq2seq models.
One possible way to expand on this would be to try
other more sophisticated style transfer methods.

Due to computational resources, we were not
able to explore larger models and had to use a com-
pressed version of GPT-J, which may have slightly
affected the performance.

Ethics

The TT-Corp dataset we propose and release herein
has undergone a per-example, manual, vetting pro-
cess during its curation and pre-processing stage, as
described further in Appendix A.2, which removes
examples which may exhibit offensive words, pro-
fanities, racism, gender bias, and other malicious
language.

We do collect human evaluation ratings using
crowd-sourcing, specifically through AMT. How-
ever, we neither solicit, record, nor request any
kind of personal or identity information from the
annotators. Our AMT annotation was conducted
in a manner consistent with terms of use of any
sources and intellectual property and privacy rights
of AMT crowd workers. Crowdworkers were fairly
compensated: $0.56 per fluency and phonetic diffi-
culty HIT, for roughly 2 min tasks. This is at least
2 times the minimum U.S.A. wage of $7.25 per
hour ($0.56 per 2 mins is around $16.8 per hour).

NLG models are known to suffer from biases
learnable from training or finetuning on data, such
as gender bias (Dinan et al., 2020). However, our
work and contribution does not present or release
any completely new model architectures, and is
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primarily concerned with more careful adaptation
and finetuning of existing pretrained models for
a particular class of creative linguistic constructs
(i.e. tongue twisters). The frailties, vulnerabilities,
and potential dangers of these models have been
well researched and documented, and a specific
re-investigation would be repetitive and beyond the
scope and space constraints of this paper.

We do not foresee any explicit way that mali-
cious actors could specifically misuse finetuned
models that could be trained on our data, beyond
the well-researched, aforementioned misuse that is
possible in general with their instantiation for any
transduction task or dataset (e.g. summarization).
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A Additional Details — Dataset
Collection

A.1 Sources

We curate our tongue twisters from a heterogeneous
mix of online sources, including but not limited to
the ones listed below:

1. University of Arkansas

2. The r/tonguetwister Subreddit

3. Various AskReddit threads

4. Mondly.com

5. Uebersetzung

6. Marcus Stuart’s LOL Tongue Twisters book

7. Language Avenue

8. Bilingual Monkeys

9. Pun.me

10. ESL

11. Sweetrhymes

12. EngVid

13. IvyPanda

A.2 Vetting

We then perform the following filtering steps to
retain only a collection of high-quality dataset ex-
amples:

• Remove near-repetitive examples to ensure
each example is unique

• Remove excessively short or meaningless ex-
amples lacking sentence structure, e.g. blue
blood, bad blood

• Remove poems or rhymes

• Remove examples containing offensive words,
racism, gender bias or other harmful and mali-
cious language of any nature, to prevent mod-
els learnt from this data from further ingrain-
ing or amplifying such phenomena.
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B Appendix B: Evaluation Details

To prevent annotator judgements for one attribute
from inadvertently influencing the other, we con-
duct the studies for soliciting Fluency and Phonetic
Difficulty scores separately.

Averaging over the 4 settings described in §4.2 (
TT-Keyword/TT-Prompt × GPT-2/GPT-J), a total
of 20 unique AMT annotators participated in the
study for Fluency, each performing 3.6 HITs on
average. Annotators were compensated $0.56 per
HIT, each of which was designed to take < 2 mins
on average.

Averaging over the 4 settings, 16.51 unique
AMT annotators participated in the second, sepa-
rate study for Phonetic Difficulty, each performing
4.36 HITs on average. Annotators were compen-
sated $0.56 per HIT, each of which was designed
to take < 2 mins on average.

C Further Implementation Details

In §4.1, we detailed the hyperparameters used for
pre-training BART, as well as for fine-tuning GPT-
2, GPT-J, BART, and T5. We conduct a hyperpa-
rameter search to check which values led to the
best performance. For learning rate, we tried {1e-6,
5e-6, 1e-5, 2e-5, 2e-5, 1e-4}; for batch size, we
tried {2,4,8,16}; and for number of epochs, we
tried {2, 5, 10, 20}. These search bounds were
selected based on known commonly-used values
for these models. We start with a baseline model
of lr=2e-5, bsz=8 and 10 epochs, and individu-
ally change each setting to investigate its effect on
performance. One trial was conducted per hyper-
parameter setting. We use a maximum sequence
length of 256. In terms of other hyperparameters,
we mostly used default values which are known to
work for these models. This includes the warmup
steps and learning rate decays, which we detail
in §4.1. (Note: the above hyperparameter search
settings are for fine-tuning. We could not do an ex-
tensive hyperparameter search for pre-trainig due
to time constraints. We ran pre-training twice to
test the effect of learning rate 1e-4 vs. 5e-4, and
ultimately selected 5e-4.)

Model selection was done based on the epoch
with the best validation loss. We report the best
validation losses for each training process below:
GPT-2 pre-training=0.77, GPT-2 fine-tuning (TT-
Prompt)=1.08, GPT-2 fine-tuning (TT-Keyword)
=0.95, GPT-J fine-tuning (TT-Prompt)=1.23, GPT-
J fine-tuning (TT-Keyword)=1.19, BART-fine-

tuning (TT-Keyword) = 1.31, BART-fine-tuning
(TT-Prompt) = 1.30, T5-fine-tuning (TT-Keyword)
= 1.45, T5-fine-tuning (TT-Prompt) = 1.52.

All training was done on Google Colaboratory
environments using V100 GPUs with 16GB mem-
ory. Pre-training GPT-2 for the p2p model took 90
minutes per epoch, and pre-training BART for the
p2g model took 70 minutes per epoch. In terms
of fine-tuning on TT-Corp, GPT-2 takes around
1 minute per epoch, GPT-J around 2 minutes per
epoch, BART around 1 minute per epoch, and T5
around 1 minute per epoch.

D Additional Qualitative Examples

In §5.3, we only report the best performing models
for each of the methods. In Table 8, we extend
this to all models for all the methods. We also
provide a few more examples for both TT-Prompt
and TT-Keyword.
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Method Text
Inputs (ex.1) The pirates pirated ...
Gold out. The pirates pirated private property.
g2g (GPT2) The pirates pirated the property.
g2g (GPTJ) The pirates pirated the pepper pot.
Style T. (BART) The pirates pirated more than $50 million in online gambling in 2013.
Style T. (T5) The pirates pirated more than $50 million in online gambling in 2013,

according to a government-backed study.
PAN-P The pirates pirated a little grape crepe. The pirate dread cratered a little.
PAN-J (GPT2) The pirates pirated the music and the Roman river carried the criminals

off.
PAN-J (GPTJ) The pirates pirated the paired prince with a pair of paired pistols.
Inputs (ex.2) If you stick ...
Gold out. If you stick a stock of liquor in your locker, it is slick to stick a lock

upon your stock or some joker who is slicker is going to trick you of
your liquor if you fail to lock your liquor with a lock?

g2g (GPT2) If you stick a weight silky liquor on your wrist, you should stick a
weight silky liquor on your inner wrist.

g2g (GPTJ) If you stick two sticks together, you get two sticks tied together.
Style T. (BART) If you stick with the same line, you have different things going for you.
Style T. (T5) If you stick with the same line, you have different things going for yout.
PAN-P If you stick a stock of land in a lamb and a lamb in a farm.
PAN-J (GPT2) If you stick a stock of liquor in your locker it is slick to put a lock on

your stock.
PAN-J (GPTJ) If you stick a stock stick on the stock stick you stick, who’s going to

stick it on the stock stick you stick?
Inputs (ex.3) I saw Susie ...
Gold out. I saw Susie sitting in a shoe shine shop.
g2g (GPT2) I saw Susie sitting on the sofa with a big black basket of biscuits.
g2g (GPTJ) I saw Susie sitting on a buttercup.
Style T. (BART) I saw Susie and then she came and took me to the kitchen where we

cleaned.
Style T. (T5) I saw Susie and then she came and took me to the kitchen where we

cleaned up and we started talking about the new dog," she recalled.
PAN-P I saw Susie sitting on a seasawe horse. and I saw haunted houses.
PAN-J (GPT2) I saw Susie sitting in a speck of sheared sheep’s sheep’s sheep’s sheep

skin.
PAN-J (GPTJ) I saw Susie sitting on a butter bucket with a black butter bucket sat on

her butter bucket.
Method Text
Inputs (ex.4) needles, noodles, kneadle, don, need
Gold out. I don’t need your needles to kneadle noodles.
g2g (GPT2) Don’s dirt feet meet your earrings at the bottom of the dirt cany bore

trail.
g2g (GPTJ) One noodle needs a kneeler to lean on
Style T. (BART) Near the end of his reign, Leiblau had to send a delegate to Parliament,

to support his friend King Gules of Northumbria.
Style T. (T5) Near the end of his reign, Leiblau had to send a delegate to Parliament,

to support his friend King Gules of Northumbria.
PAN-P If Donna Needles Need, who is Needles Nood, and the Need?
PAN-J (GPT2) If you crave a soft chew toy, buy a chew toy that needs to chew.
PAN-J (GPTJ) Don’t kneadle a knuckle with a knuckle needle!
Inputs (ex.5) thieves, thankful, thanked, thirty, thursday
Gold out. The thirty-three thankful thieves thought that they thanked the other

thirty-three thankful thieves throughout Thursday.
g2g (GPT2) Twelve thieves today took sixty dollars from Thies’ birthday party.
g2g (GPTJ) The thieve thanked the thankful thief on Thursday.
Style T. (BART) Thanked by Thnx for the idea, I thought it was an idea that I wanted to

do a spoof of Thankful Thankful and Thnx.
Style T. (T5) Thanked by Thnx for the idea, I thought it was an idea that I wanted

to do a spoof of Thankful Thankful and Thnx, so it went to the video
website, Twitter, and did some research on a T shirt.

PAN-P Thankful thieves thought that they thought they thrilled the throne
throughout Thursday.

PAN-J (GPT2) I’m grateful tonight for thanking the valiant brave thieves.
PAN-J (GPTJ) These sixty sheiks sent these thousand and sixty sheiks sixty sheiks

thanking them for shouting these sixty sheiks sixty shouts on Thursday.
Inputs (ex.6) snails, silently, sailed, slimy
Gold out. Six slimy snails sailed silently.
g2g (GPT2) Six silently sullen sullen snails slid silently across the sea.
g2g (GPTJ) Slimy snails sailed silently.
Style T. (BART) The ship was spotted by U.S. Coast Guard helicopter from a distance

of four thousand, seven hundred nautical miles.
Style T. (T5) The ship was spotted by Uas was was was was by by by by by by by.
PAN-P Sailed from static line seven and all silently from Trondheim at seven

on Sunday night.
PAN-J (GPT2) Sailing silently on the sleigh.
PAN-J (GPTJ) Six squandered snails silently sailed in a slivy ship.

Table 8: Additional qualitative examples for both TT-Prompt
(first 3) and TT-Keyword (last 3): literal input, gold out-
put, g2g (GPT-2), g2g (GPT-J), Style Transfer (BART),
Style Transfer (T5), PANCETTA-P (GPT-2+BART),
PANCETTA-J (GPT-2), and PANCETTA-J (GPT-J).
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Abstract

Human-in-the-loop topic modelling incorpo-
rates users’ knowledge into the modelling pro-
cess, enabling them to refine the model itera-
tively. Recent research has demonstrated the
value of user feedback, but there are still issues
to consider, such as the difficulty in tracking
changes, comparing different models and the
lack of evaluation based on real-world exam-
ples of use. We developed a novel, interactive
human-in-the-loop topic modeling system with
a user-friendly interface that enables users com-
pare and record every step they take, and a
novel topic words suggestion feature to help
users provide feedback that is faithful to the
ground truth. Our system also supports not
only what traditional topic models can do, i.e.,
learning the topics from the whole corpus, but
also targeted topic modelling, i.e., learning top-
ics for specific aspects of the corpus. In this
article, we provide an overview of the system
and present the results of a series of user stud-
ies designed to assess the value of the system
in progressively more realistic applications of
topic modelling.

1 Introduction

Huge amounts of unstructured, textual data are
generated daily. As more data becomes available,
it becomes more difficult to search, understand
and discover the knowledge within it. Because of
the human effort it requires, conventional qualita-
tive approaches, such as Grounded Theory, (Glaser
et al., 1968) are no longer feasible with such large
volumes of data. Topic modelling is a potential
solution that has received increasing attention in
recent research (Heidenreich et al., 2019; Curiskis
et al., 2020; Dantu et al., 2021; Goyal and Howlett,
2021) to help users organize, search, and under-
stand large amounts of information. It is an unsu-
pervised machine learning technique for identify-
ing hidden topics in large, unstructured text cor-
pora, in which a hidden topic is represented by a

group of words describing a common theme. Users
can easily identify the topics in each document
and search for documents closely associated with a
specific topic for a more in-depth study. However,
the topics generated by conventional topic models
are often incoherent and contain many unrelated
words (Chang et al., 2009; Mimno et al., 2011;
Boyd-Graber et al., 2014). Although these issues
can be addressed by pre-processing the target data
source, for example, by removing irrelevant words
from the vocabulary list and adjusting the hyper-
parameters of the model, such as the number of
topics, this requires familiarity with the algorithm.
Hence, it is difficult for anyone who does not have
some knowledge of topic modelling.

Human-in-the-loop topic modelling (HL-TM)
incorporates human knowledge into the topic mod-
elling process to address the aforementioned issues.
It allows users who are not experts in topic mod-
elling to refine the model through a set of refine-
ment operations, such as adding words to a topic,
removing words from a topic, splitting topics, or
merging topics (Jagarlamudi et al., 2012; Wang
et al., 2012; Choo et al., 2013; Hoque and Carenini,
2015; Lund et al., 2017; Smith et al., 2018). While
most of these studies did not feed the refinement op-
erations into an iterative retraining process, Smith
et al. (2018) implemented a fully interactive, user-
centered HL-TM system, and examined how the
user experience is affected by issues arising in inter-
active systems, such as unpredictability, trust and
lack of control. However, there are still limitations
to their work. First, their system only allows users
to refine the model sequentially, meaning that once
a user updates the model, a new model overrides
the previous model. This prevents users from com-
paring the effects of applying different refinement
operations to the same model, making it difficult
to find the most appropriate ones. Furthermore,
because the previous model is no longer accessible,
users may find it challenging to decide whether
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the new version is really an improvement. Sec-
ond, their system does not allow users to retract the
changes they made after the underlying model was
updated. This becomes a problem when users make
inappropriate changes that lead to unexpected re-
sults. It is especially frustrating when a user has
spent a lot of time refining the model and the whole
effect is ruined by one inappropriate change. Third,
they use Latent Dirichlet Allocation (LDA) (Blei
et al., 2003) as their underlying model.

Since LDA is a full-analysis model that can only
learn topics from the whole corpus, its application
is limited to when users have no apriori assump-
tions about the topics of the corpus. While users
can refine the model by adding prior knowledge in
an attempt to turn an unrelated topic into one that
focuses on the aspect of interest, the phenomenon
of higher order co-occurrence in LDA (Heinrich,
2009) may prevent any infrequent words related
to the aspect of interest being assigned to the un-
related topic. For instance, given a set of posts
about health, researchers may wish specifically to
analyze the impact of food on health. Researchers
would add food-related words such as “food”, “eat”
to an unrelated topic. If these words have a rel-
atively low frequency of occurrence in the posts,
then the system may not turn the unrelated topic
into a food-related topic. Fourth, an important ques-
tion that has not yet been explored is how to signal
to users when their assumptions do not match real-
ity (Kumar et al., 2019), which may bias the refine-
ment process. For instance, a user may think that
a technology-related topic should contain words
like “apple, google", while the input corpus has the
word “apple" related to fruit. By adding “apple" to
the topic, the topic will be contaminated with fruit-
related words. Such incorrect refinements would
result in poor results.

To address these issues, we implemented a novel
HL-TM system that supports six refinement oper-
ations, including add words, remove words, swap
word order, remove documents, merge topics, and
split topic (Lund et al., 2017; Smith et al., 2018).
Unlike Smith et al. (2018), where users can only
refine the model sequentially and cannot retract
the changes they made, in our system, users can
make different attempts at refinement to the same
model node and compare the resulting models. A
complete refinement history is also presented, al-
lowing users to track their changes from the first
step. These also ensure that users can revert to the

previous model node when an inappropriate refine-
ment operation is applied. Instead of using LDA as
the underlying model, our system uses the query-
driven topic model (QD-TM) from (Fang et al.,
2021) as the underlying model. The advantage is
that the QD-TM not only supports the full-analysis
capabilities from LDA, i.e., learning the overall
topics from the whole corpus, but also supports
users in performing targeted analysis, i.e., learning
topics focused on specific aspects of the corpus by
mitigating the effects of higher order co-occurrence
phenomenon in LDA (Fang et al., 2021).

Moreover, we also implemented a novel auto-
matic topic words suggestion feature to guide users
in adding appropriate words to the selected topic.
This feature extracts a list of candidate words re-
lated to the topic from which users can select words
to add to the topic. Our evaluation results demon-
strate the usefulness of this feature, where the sug-
gested words are closely related to the selected
topic and align better with the ground truth. We
also conducted a series of user studies designed
to assess the value of the system on real world
application scenarios.

This work makes the following contributions:
(1) a novel interactive HL-TM system with an ad-
vanced user interface that allows users to train dif-
ferent models from the same model node and re-
tract inappropriate changes applied; (2) the use of
QD-TM as the underlying model to support both
the full-analysis and targeted-analysis topic mod-
elling capabilities; (3) a novel and efficient topic
words suggestion feature to guild users add appro-
priate words to the selected topics; and (4) a small
scale user study and two detailed studies designed
to replicate real-world application scenarios.

2 Background

Query-driven topic model is a semi-supervised
topic modelling algorithm developed by Fang et al.
(2021). It allows users to specify a simple query in
words or phrases and return query-related topics.
The original model involves a two-stage modelling
process; in the first stage, the model infers one topic
for each concept as well as other unrelated topics,
while in the second stage, the model extends the
topic of each concept into a set of subtopics. In our
work, we are only interested in the first stage of the
model. If there is no query input, the model works
as a conventional topic model.

The model is based on a variant of a Hierarchical
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Dirichlet Process (HDP) (Teh et al., 2006), which
is a nonparametric Bayesian model that assumes
that a restaurant (i.e., a document) has a set of
tables and serves dishes (i.e., topics) from a global
menu. A single dish is only served at a single table
for all customers (i.e., words) who sit at that table.
We developed our version of the algorithm based
on the Gibbs sampling technique. For a word wji
at document j and position i, the probability for
sampling an existing table t is:

p(tji = t | t−ji, k) ∝ 1(wji, kjt)n
−ji
jt f

−wji

kjt
(wji)

(1)

and the probability for sampling a new table tnew

is:

p(tji = tnew | t−ji, k) ∝ αp(wji | t−ji, tnew,k) (2)

Here, t−ji are the table assignments of all other
words. kjt is the topic assignment of table t at doc-
ument j. n−jijt is the number of words in document

j at table t and f−wji

kjt
(wji) is the probability of

wji assigned to topic kjt. 1(wji, kjt) is an indi-
cator function, which takes on value 0 if wji is a
pre-defined word associated to a topic z that z ̸=kjt,
and 1 otherwise. α is a hyperparamenter of the
model. The probability for sampling a topic kjtnew

for the new table is:

p(kjtnew | t, k−jtnew

) ∝ 1(wji, kjt)mkf
−wji

k (wji) (3)

Human-in-the-Loop topic modelling has re-
ceived a lot of attention in recent years. Boyer
et al. (2017) created a Human–Machine methodol-
ogy for identifying Systems Thinking topics in a
large corpus of text. Users are required to subjec-
tively identify and provide seed documents describ-
ing the topic to guide the topic model’s training.
The methodology, however, did not incorporate any
prior knowledge into the modelling process, instead
it simply modified the training corpora. Various
refinement operations, such as adding words, re-
moving words, adding documents, removing docu-
ments, creating topics, merging topics, or removing
topics, were implemented to better utilize human
knowledge in the topic modelling process (Hoque
and Carenini, 2015; Lund et al., 2017; Smith et al.,
2018). During the model sampling process, the
refinements change the prior knowledge of the un-
derlying model. To understand the usefulness of
different refinement operations, Lee et al. (2017)
conducted a user-centered approach to find out how
non-expert users interpret topic models and what

refinement operations they want most, but they only
implemented a basic system without full interac-
tion, so the refinement operations they applied did
not update the underlying topic model.

Smith et al. (2018) took one step forward from
Lee’s work by implementing a fully interactive,
user-centered HL-TM system and further examined
how common interactive machine learning chal-
lenges, such as unpredictability, latency and trust,
affect the user experience. Kumar et al. (2019)
were the first to comparatively evaluate different
refinement operations, as well as two feedback in-
jection frameworks, namely informed priors and
constraints. They not only suggested that future re-
search should test the system with end users, since
their experiments only used simulated user behav-
ior, but also mentioned that it’s important to signal
to users when their assumptions do not match re-
ality. Though other HL-TM systems exist such
as UTOPIAN (Choo et al., 2013) and ConVisIT
(Hoque and Carenini, 2015), they use alternative
approaches such as non-negative matrix factoriza-
tion and fragment quotation, and do not provide
the complete set of refinement operations that users
need (Lee et al., 2017).

Our work can be seen as an extension of the work
of Smith et al. (2018). Compared to these studies,
it not only provides a fully interactive HL-TM sys-
tem incorporating various refinement operations
but also provides a more user-centered design, such
as a complete refinement history and a topic words
suggestion feature to enhance the user experience.

3 Proposed System

We introduce our implementation and the interface
design in this section.

3.1 Refinement Implementations
Our system uses Gibbs sampling as the inference
technique and adopts the constraint method de-
scribed in Kumar et al. (2019) to inject new in-
formation. Every time a user provides a feedback
to the system, it first forgets table-word assignment
tji and then injects new information into the system
using a potential function f(k,w, j) (Yang et al.,
2015) of the hidden topic k of word w in document
j. The equation (1) then becomes:

p(tji = t | t−ji, k) ∝ 1(wji, kjt)n
−ji
jt f

−wji

kjt
(wji)f(kjt, wji, j)

(4)

Prior work (Lee et al., 2017; Smith et al., 2018)
discovered that users typically prefer simple refine-

507



ment operations, therefore, we implemented the
following six refinement operations that are com-
monly used by users in previous studies:

Add word x to topic z. We update the potential
function f(k,w, j) such that f(k,w, j) = 1 if k =
z and w = x, otherwise it is assigned a value of 0.

Remove word x from topic z. We update the po-
tential function f(k,w, j) such that f(k,w, j) = 0
if k = z and w = x, otherwise it is assigned a
value of 1.

Swap word order of w1 and w2 in topic z so
that w2 has higher order than w1. We first compute
the ratio r between the difference nw1,z − nw2,z

and nw2 , where nw1,z and nw2,z are the counts
of w1 and w2 in topic z, respectively, and nw2 is
the counts of w2 in all topics except z. We then
update the potential function f(k,w, j), such that
f(k,w, j) = 1 if k = z and w = w2, otherwise
it is assigned δ, where δ = 0 if r > 1, otherwise
δ = 1.0− r.

Remove document d from topic z. We up-
date the potential function f(k,w, j) such that
f(k,w, j) = 0 if k = z and j = d, otherwise
it is assigned a value of 1.

Merge topic t2 into t1. In the next Gibbs sam-
pling iteration, we only sample topics for words
assigned to t2 in the previous Gibbs sampling iter-
ation. We update the potential function f(k,w, j)
such that f(k,w, j) = 1 if k = t1 and w ∈ t2,
otherwise it is assigned a value of 0.

Split topic t into two topics using seed words
s, i.e., s need to be moved from t to a new topic
tn. To do this, we first create a new topic using
the nonparametric model. Then, we apply the add
word operation to add all the words in s to tn.

3.2 Topic words suggestion
We developed a novel topic words suggestion fea-
ture in QD-TM to let users decide which words
should appear or not appear in the topic words.
Using only subjective input may result in topic
words that are spurious, but combining the sug-
gested words can help users to steer the model in
the right direction. The topic words suggestion fea-
ture is integrated into the Gibbs samplings process
of the model. It has two stages. First, it samples
an indicator of whether a document is relevant to
a topic or not. Second, it updates the suggested
words from the relevant documents.

Document relevance sampling For each topic
k, if a document contains any of the suggested
words and is sampled to be relevant to the topic
in the previous Gibbs sampling iteration, then it
is assumed to be relevant to the topic in the cur-
rent Gibbs sampling iteration. Otherwise, we use
the following equation modified from Wang et al.
(2016) to decide if the document is relevant to the
topic:

p(rk = c | r, π, β, γr, γir) ∝



(C
R(−m)
c + γr)×

∏V
v Γ(n−m

k,v +β)

Γ(
∑V

v (n−m
k,v +fc,m,v)+V β)

if c = 1

(C
R(−m)
c + γir)×

∏V
v Γ(n−m

k̃,v
+β)

Γ(
∑V

v (n−m

k̃,v
+fc,m,v)+V β)

if c = 0

(5)

where CR(−m)
c is the number of documents under

relevance status c excluding the current document
m, n(−m)

k,v is the counts of term v in target topic k
excluding the words from the current document m,
fc,m,v is the frequency of term v in documentm un-
der relevance status c, and π indicates the Bernoulli
distribution over relevance status. β, γr, and γir
are hyperparameters, and V is the vocabulary size
of the dataset.

Automatic keywords expansion To get sug-
gested words for a topic in each Gibbs sampling
iteration, we first calculate the score of term v in
the relevant documents of the topic:

Score(v) = PR(v)log
PR(v)

PC(v)
, (6)

where PR(v) is the probability of term v in the
relevant documents and PC(v) is the probability
of term v in the whole corpus. We extract terms
with high scores as the candidate terms. We then
calculate the cosine similarity between each can-
didate term and the embedding of the topic, and
only add terms to the suggested words list when
the similarity is greater than 0.5. The embedding
of a topic k can be obtained by:

emb(k) =
M∑

m

P i(k,m)emb(m), (7)

where pi(k,m) is the probability of mth word of
topic k in ith iteration, M is the total number of
representative words in the topic, which is usually
set to 10, and emb(m) is the pretrained word em-
bedding of the mth word.
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3.3 Interface Design

The user interface of the system consists of two
windows (Appendix A). In the first window (Figure
A1), users can define the hyper-parameters of a
topic model, such as the initial number of topics.
If users are interested in topics describing specific
concepts or aspects of the corpus, they can also
define the prior knowledge of a topic model in this
window. If no prior knowledge is provided, then
the model behaves as a conventional topic model
without any prior knowledge.

The second window (Figure A2) displays the
detailed information of the trained model. Users
can view the model as a list of topics. Users can
also refine the model using the refinement opera-
tions implemented and track model change histo-
ries. Different from previous systems where users
can only refine a model sequentially and cannot
retract the changes they made, we include a model
history panel with a novel model tree structure so
users can make different attempts at refinement to
the same model node and compare the resulting
models. To help users interpret each topic, we also
show a set of topic labels from the automatic topic
labeling algorithm (Mei et al., 2007), where a topic
label is a phrase that summarises the main idea of
the topic. A detailed description of the interface
can be found in Appendix A.

4 Evaluation

The evaluation is divided into two parts. In the first
part, we evaluated the performance of the topic
words suggestion feature in a controlled, laboratory
experiment, where we compared two versions of
our system. In the second part, we evaluated the
HT-LM system by applying it in two realistic topic
modelling use cases.

4.1 Topic words suggestion evaluation

Datasets Three commonly used datasets for topic
modelling were chosen: the 20newsgroup 1 dataset
containing 18k news posts from 20 categories; the
TagMyNews 2 dataset containing 32k short English
news from 7 categories; and the SearchSnippets
(Xu et al., 2017) dataset containing 12k short En-
glish news from 8 categories.

Baselines Our HL-TM system uses QD-TM as
the underlying model. To test whether the topic

1http://qwone.com/ jason/20Newsgroups/
2http://acube.di.unipi.it/tmn-dataset/

words suggestion feature can improve the origi-
nal model, we used only this feature to refine the
QD-TM and compared the refined model with the
original QD-TM.

Parameterisation We focused on the targeted
topic modelling capabilities of QD-TM. To make
fair comparisons, we adopted the same experimen-
tal settings described in Fang et al. (2021). We used
query phrases to represent the main concept of each
category in a dataset, following the same setup as
in Fang et al. (2021). Categories that do not have
meaningful names were removed from the datasets,
e.g., talk.politics.misc in the 20Newsgroup
dataset. The query phrases were integrated into
the model using the first window of our HL-TM
interface.

We used our HL-TM system to refine the original
QD-TM and only used the add word refinement
operation. In each Gibbs sampling iteration, for
each topic, we added all suggested words to the
topic. For the hyper-parameters in equation (5), β
is set to 0.5, and both γr and γir are set to 1. We
ran 2000 Gibbs sampling iterations.

Results We evaluated the quality of the final mod-
els in terms of topic coherence and document re-
trieval performance as in Fang et al. (2021). Better
precision@K scores indicate that the learnt topics
are more discriminative and representative. Higher
coherence scores indicate better topic interpretabil-
ity. Table 1 shows the performance of adding sug-
gested topic words to the model. We observed that
the refined model achieves higher coherence scores
compared with the original model. It indicates that
the suggested words are semantically related to
each topic and can help produce more coherent
topics. The better precision@K scores also show
that the suggested topic words are highly relevant
to the predefined categories of the dataset. This is
expected as the word suggestion feature in our sys-
tem tends to identify more important words related
to the category of the corresponding topic. Instead
of blindly adding the suggested words to the model,
our system allows users to decide which suggested
words should be added. This allows them to use
their domain knowledge to further filter out noise.

4.2 Laboratory evaluation
Description To compare our system with the
state-of-the-art human-in-the-loop topic modelling
system (Smith et al., 2018), we recruited 20 par-
ticipants via a university campus email list to run
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Model 20news TagMyNews SearchSnippets

Coherence Precision@K Coherence Precision@K Coherence Precision@K

QD-TM 0.445 0.612 0.413 0.736 0.475 0.741
QD-TM + words suggestion 0.482 0.634 0.477 0.763 0.481 0.825

Table 1: Average results for adding suggested topic words for model refinement. We ran each model five times. We
used the topic coherence metric C_V from Röder et al. (2015)

a small-scale user study, with one subject group
working with an equivalent of Smith et al. (2018) –
our system with no model history, no words sugges-
tion, and no topic labeling (old system) – and one
group working with our full-featured system (new
system). In a factorial design with two independent
variables, we used two corpora of Reddit posts fo-
cusing on online teaching platforms (corpus A) and
Twitter tweets discussing the 2021 United Nations
Climate Change Conference (corpus B). Partici-
pants were randomly allocated into two groups.
The first group did corpus A with the old system
and corpus B with the new system, and the second
group did corpus B with the old system and corpus
A with the new system. The task was to conduct a
qualitative analysis of the datasets.

Participants randomly started with either the old
system or the new system to eliminate the influence
of training effects. We then evaluated the average
topic quality of the two system conditions. In addi-
tion to comparing topic quality across systems, we
also asked participants questions about how much
they like the new features. All participants were
fluent English speakers and non-experts in topic
modelling. Each participant received a £20 Ama-
zon gift card as payment for the experiment.

Dataset and Topic Model We used two datasets
for the experiments. The Reddit dataset contains
9,651 posts focusing on online teaching platforms.
These posts were randomly sampled from the orig-
inal dataset taken from Alqazlan et al. (2021). The
Twitter dataset contains 8,990 tweets related to the
2021 United Nations Climate Change Conference.
We used keywords related to the conference to
search for tweets between 31 October 2021 and 17
November 2021. These keywords (see Table B1)
were checked and provided by social scientists re-
searching COP26 climate change tweets through a
few rounds of manual inspection of the tweets. We
used QD-TM as the underlying model, and used a
standard stop words list and 2000 Gibbs sampling
iterations to initialize the topics. We set the ini-
tial topic number to 10 and 13 respectively for the

Reddit and Twitter datasets, respectively, based on
our previous experience with these datasets. For
each subsequent update during the task, 10 Gibbs
sampling iterations were run.

Procedure Sessions took around 60 minutes on
average, and they were conducted face-to-face. We
began by introducing participants to topic mod-
elling and how to use the tools to refine topics. For
both systems, we asked them to first read the top
five posts of each topic to interpret the underly-
ing theme and then read the corresponding top 10
topic words and use the provided refinement op-
erations to refine the topic until the top 10 topic
words and the top 5 posts are consistent with the
interpreted theme. For the new system, participants
could also access the new features – model history,
word suggestions, and topic labelling to assist their
in refinements. We asked participants to click the
apply refinements button to update the underlying
model after they have added all the necessary re-
finements to a topic. They were allowed to undo
any operations that have not been applied to the
underlying model. After they finished the refining
tasks, we asked them to rate how much they are sat-
isfied with the resulting topics and how much they
like the new features. Due to time limitations, we
only asked participants to refine the first five topics
of each system. The first five topics of the starting
model for each corpus can be found in Table B2
and Table B3.

Findings We recorded user interactions with the
tools. Users performed a total of 1,284 refinements
using the two systems. Among the top four most
used operations were the delete words operation
(used 554 times), the swap words operation (used
512 times), the add words operation (used 171
times), and the delete document operation (used
81 times). This is consistent with the findings of
Smith et al. (2018), who also observed that these
operations were the four most used operations (ex-
cluding the add to stop words operation since our
system didn’t implement this). For the new system,
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the add words operation was applied 115 times in
total, among which 56 times were adding suggested
words, which indicates that the suggested words
operation had high usage. We report the usage of
refinements for each subject group in Table B4.

To evaluate whether using the new system can
result in better topics than the old system, partici-
pants were asked to rate their satisfaction with the
final topics of the two systems on a five point scale
(1 not very satisfied, 5 very satisfied). For the Red-
dit dataset, the average satisfaction score for the
new system was 4.2 (SD=0.67), while the score for
the old system was 3.89 (SD=0.78). Although a
Mann-Whitney U test (U=30.5, z=0.83887, p=.200)
showed this difference was not statistically sig-
nificant, 8 out of 10 participants were satisfied
with final topics of the new system. For the Twit-
ter dataset, the score for the new system was 4.0
(SD=0.71), while the score for the old system was
3.2 (SD=0.67). A Mann-Whitney U test (U=18.5,
z=1.8985, p=.029) showed that the difference was
statistically significant, suggesting that the new sys-
tem can help improve topic quality.

To evaluate whether the model tree feature can
help users track changes, we asked participants to
rate their agreement with the statement, “I was able
to remember what the model looked like before
my updates”, on a five point scale (1 strongly dis-
agree satisfied, 5 strongly agree), for both the old
and new systems. The average agreement was 3.1
(SD=1.07) for the old system and 3.9 (SD=0.85) for
the new system. A Mann-Whitney U test (U=116,
z=2.25868, p=.012) showed the difference to be sta-
tistically significant. Participants were also asked
to rate their agreement with the statement, “the
model tree feature of the new system can help me
track my updates”. The average agreements for
the statement was 4.35 (SD=1.04). This strongly
suggests that the model tree feature of the new sys-
tem can help users track their changes. To evaluate
the usefulness of the words suggestion feature, we
asked participants to rate their agreement with the
statement, “the suggested words feature of the new
system can help me identify relevant words of the
topics”. The average agreements for the statement
was 4.1 (SD=0.64). 17 out of 20 participants stated
that the feature is very useful, suggesting that the
feature is a good supplement for adding words to
topics. The finding is consistent with the obser-
vation of user interactions with the new system
that around 50% (56 out of 115) of added words

were from the suggested words list. For the topic
labelling feature, participants were asked if they
agreed with the statement, “the topic labels from
the full-featured system can help me interpret the
meaning of the topics”. The average score for the
statement was 3.25, and 11 out of 20 mentioned
that the provided labels for some topics are totally
irrelevant. This suggests that the algorithm (Mei
et al., 2007) doesn’t fit the datasets well and sug-
gests the needs for a more accurate topic labelling
algorithm in the future.

Suggestions Though the user studies show
promising results, participants also had suggestions
for improving the new system. Six mentioned that
the swap words operation didn’t fit their needs well.
Instead of swapping the order of the two selected
words, they prefer to allow the selected words to be
inserted in new positions, which provides more flex-
ibility when ranking topic words. One participant
suggested allowing the undo any of the previously
added operations directly, rather than starting with
the most recently operation.

4.3 Use case one: Tutors’ experiences in the
Gig Economy

Description To evaluate our system on real-
world document analysis tasks, we invited a re-
searcher who is investigating the Gig Economy to
use our model. In previous work, Alqazlan et al.
(2021) applied LDA to identify topics that are re-
lated to tutors’ experiences in the Gig Economy
from a Reddit dataset where tutors posted about
their experiences of working on online teaching
platforms. We asked the researcher to use our sys-
tem to identify the relevant topics in the dataset
and assess whether using our system can produce
better results than LDA. As Alqazlan et al. (2021)
has previously found that a 17-topic LDA extracted
the most number of relevant topics, for a fair com-
parison, the initial number of topics for our system
was also set to 17. The researcher was encouraged
to use any refinement operations provided by the
system until she felt that the top 5 relevant posts
of each detected topic revolved around one main
theme.

Results A total of 16 models were trained and
two branches were created during the refinement
process, with models 11, 12 and 13 constituting one
branch and models 14, 15 and 16 constituting the
other branch. Both of these branches were extended
from model 10, which was trained sequentially
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from the initial model. By using the model tree
panel to compare these models, it was found that
Model 16 produced the most satisfactory results.
Of all the refinement operations, remove document
was used the most and swap word order was used
the least. The researcher commented that the swap
word order could be more useful if it only adjusts
the position of a word in the topic, rather than
swapping a word with another one.

We compare LDA with Model 16 and present
the qualitative results here. For both models, the
researcher was asked to manually assign a label
to each topic. For the LDA model, 11 topics were
found to be relevant to tutors’ experience in the Gig
Economy, two of which (Table C1) were missed
by Model 16, while for Model 16, 16 topics were
found to be relevant, of which seven topics (Table
C2) were not identified by the LDA. This indi-
cates that our HL-TM system is able to assist the
researcher to identify more relevant topics.

To determine whether using our system can help
produce better quality topics, we measured the
topic coherence score for the 9 relevant topics
identified by both LDA and Model 16 (Table C3).
We used the best performing topic coherence mea-
sure CV based on the external corpus (Wikipedia)
(Röder et al., 2015). We found that our system
produced better topic coherence scores for six top-
ics, while the LDA produced better scores for only
three topics. This finding is consistent with the re-
searcher’s view that only two topics from the LDA
were of better quality than Model 16. We present
the relevant topics from both LDA and Model 16
in Appendix C.

4.4 Use case two: Patenting strategies for
pre-determined patent value categories

Description We invited a second researcher, who
is working on patenting strategies, to evaluate our
system. In a previous study, Ribeiro and Shapira
(2020) has identified a set of patent value cate-
gorises (Table D1) for synthetic biology patents.
However, their work was based entirely on human
evaluation and was, therefore, time-consuming,
and biased evaluations could occur, so only 102
patent documents were analysed. In this use case,
the researcher aimed to use our system to cate-
gorise a larger patent sample to the pre-defined cat-
egories and reduce human selection bias. 2607 re-
lated patents in the United States Patent and Trade-
mark Office (USPTO) dataset were used. The pre-

defined categorises are presented in Appendix D.
To identify documents in their predefined cate-

gories in the dataset, the researcher used the first
window of the interface to incorporate prior knowl-
edge. A list of final concept words of each category
is presented in Table D2 in Appendix D. The initial
number of topics is set to 20.

Results By using the first window of the user in-
terface to incorporate priori knowledge, the initial
model was able to roughly infer topics for the pre-
defined categories, although the topics were not
yet of high quality. We then asked the researcher
to examine the top 10 relevant documents of these
topics to assess the categorisation quality. The av-
erage precision is 0.3. The researcher then refined
these topics using the system until she felt that it
best categorised the top 5 relevant documents into
each category and was satisfied with the resulting
topic words. In total 23 models were trained and
five branches were created, with Model 23 being
the best one. After the refinements, we asked the
researcher to further examine the top 10 relevant
documents of the refined topics to compare with
the initial model. The average precision for the
refined topics is 0.96, which is much higher than
the result from the initial model. This verifies that
the use of the system can help identify a larger sam-
ple of documents in pre-defined categories than the
previous manual evaluation method. In total, the
add word operation was applied 62 times, among
which 41 times were related to adding suggested
words from the system. This shows that our topic
words suggestion feature can indeed identify words
that are highly relevant to specific topics.

We also compared the topic coherence scores
for the focused topics from the initial model (Table
D2) and from Model 23 (Table D3). The scores are
0.404 and 0.434, respectively. It shows that using
the system can help produce better quality topics.

5 Conclusions and Future work

We have developed a novel user-centered, interac-
tive, HL-TM system to address the limitations of
the prior work (Smith et al., 2018). An advanced
user interface with a model history panel is pre-
sented to allow users compare different models
and retract inappropriate changes. The use of the
QD-TM as the underlying model supports both the
full-analysis and targeted-analysis capabilities. A
novel topic words suggestion feature is also inte-
grated into the system and the evaluation shows
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that the feature is promising for suggesting reason-
able and coherent words for topics. A small scale
experimental user study and two detailed use cases
further verified the usefulness of the system on
real-world tasks. From the use cases, we observed
that both researchers trained many different mod-
els with multiple branches created (use case one
has 16 models trained and two branches created,
while use case two has 23 models trained and five
branches created). This shows that researchers are
very likely to change their mind when refining a
topic model, so allowing researchers to compare
different models and retract their changes is help-
ful. In the future, we plan to improve the system
based on the results from the user evaluations and
conduct more extensive evaluations to gather feed-
back on deploying the system in a wide variety of
applications.

Limitations

We used two small datasets in the user evaluations,
so participants were not affected by latency issues,
where the user would have to wait while the algo-
rithm performs updates. Since QD-TM is more
complex than LDA, and the words suggestion fea-
ture further increased the complexity of the com-
putation, a large dataset could lead to latency prob-
lems. The time complexity of our system is O(DLK
+ KV), where D is the number of documents used,
L is the average document length, K is the number
of topics and V is the vocabulary size. We tested
the system with two different dataset sizes (20,000
tweets vs. 8,990 tweets). By using 20,000 tweets,
the average wait time for model updates during
user interaction (10 Gibbs sampling iterations) was
34 seconds, compared to 14 seconds using 8,990
tweets.

According to Smith et al. (2018), longer wait
times can negatively affect users when using inter-
active systems, suggesting that latency could be
an issue in our system as the size of the dataset
increases. However, as is well known, these effects
can be mitigated through the provision of time af-
fordances (Conn, 1995). We will address this in
the future.

In addition to the latency issue, the laboratory
evaluation we conducted also has limitations. Not
all the participants were familiar with qualitative
analysis. It is likely that participants with extensive
experience in qualitative analysis identify more
valuable refinements to the models, resulting in

better quality topics.
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Appendix A: Interface Design

The user interface of the system consists of two
windows. If users are interested in topics describ-
ing specific concepts or aspects of the corpus, they
can define the prior knowledge of a topic model in
the first window (Figure A1). They can use a query
phrase to define the concept of interest. The input
query phrase is expanded to a set of candidate con-
cept words using the concept words extractor from
Fang et al. (2021). Users can use their knowledge
to determine which words should be included in
a topic and click the "+" buttons next to them to
add to the final concept words list of a topic. They
can also add words that are not in the candidate
words list to the final list based on their knowledge.
The words in the final list can be removed by click-
ing the corresponding “-” buttons. It also supports
viewing the top relevant documents of the input
query by changing the viewing options from "By
keywords" to "By documents".

If users have no preferred interest in the topics of
the corpus, they can leave the final concept words
list of each topic empty, and the model behaves as a
conventional topic model without any prior knowl-
edge. Users can click the "apply" button to apply
the settings to the underlying model. Users can
view the resulting topics by clicking the "View"
button in the bottom, which takes them to the sec-
ond window of the user interface.

The second window of the interface (Figure A2)
has three panels: model history panel (left panel),
model detail panel (middle panel), and inter-topic
distance map (right panel). The model history
panel consists of two subpanels: the model tree
panel (top panel), which displays the refined mod-
els in a tree structure, and the refinements history
panel (bottom panel). Every time a user refines a
selected model, a new model is added to the tree.
As shown in Figure A2, users can also create new
branches from the same model node. For exam-
ple, model 5, model 6 and model 7 are all refined
from model 4. The refinements history panel allows
users to view the refinements history between two
connected models by clicking on the edge between
them. Users can also view the pending refinements
of the selected model as shown in Figure A2.

The pending refinements will not be applied to
the underlying model until users click the "Apply
Refinement" button. We also include an "undo"
button to allow users to undo previously added re-
finements. The model history panel allows users to

compare previously refined models and keep track
of their previous changes to further assist the refine-
ment process. By clicking the "Download models"
button, users can download the entire model tree
to their local machine, and by clicking the "Load
models" button, users can load a previously down-
loaded model tree to continue the refinements.

The model detail panel, shown in the middle of
Figure A2, provides an overview of the selected
model’s topics, as well as the top words in each
one. Weight represents the prevalence of the topic
in the whole corpus. Users can rename a topic by
typing a new name in the “Topic” column. Users
can also merge or split topics in this panel. The
right side of Figure A2 is the inter-topic distance
map. Each circle represents a topic, with its size
representing the topic weight in the corpus. The
inter-topic distance map is an intuitive way to re-
veal the quality of a topic model where a larger
distance between topics indicates a better model
(Sievert and Shirley, 2014). By clicking the “view”
button on the window, the selected topic’s specifics
will then be presented as shown in Figure A3.

The top left side of Figure A3 shows a set of
topic labels from the automatic topic labeling al-
gorithm (Mei et al., 2007), where a topic label is a
phrase that summarises the main idea of the topic.
The aim of the topic label is to help users inter-
pret the topic. We also present the top words of
the topic with corresponding topic-word weights.
Weights indicate the prevalence of the words in the
topic. Users can apply add, delete or swap word
order refinement operations here. The right side
of Figure A3 displays the top documents associ-
ated with the topic and ranks them based on their
weight, representing the document’s prevalence of
the topic. Users can apply the remove document
refinement operation here. By clicking the "view"
button, users can view the details of the selected
document.

When users click the "add" button in Figure A3,
an "add words" sub-panel (Figure A4) appears. A
list of words suggested by the topic words sugges-
tion feature is displayed in the panel. Users can
select from the suggested words or from their own
knowledge to add words to the selected topic.
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Figure A1: The first window of the user interface. Users can define the prior knowledge of a topic model here.

Figure A2: The second window of the user interface, where users can view the details of the selected model and
apply merge or split topics refinement operations. Users can also compare different models that have been previously
refined and keep track of their previous changes.
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Figure A3: The specifics of a selected topic. Users can apply add, remove or swap word order refinement operations
here.

Figure A4: The “add words” sub-panel.
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Appendix B: Tables for the small-scale user study (section 4.2)

keywords

police liaison, Police Liaison Officer, PLO, blue bib, #peacefulprotest, #right-
toprotest, Police, Policing, Anarchy, Anarchism, Violence, #ClimateJustice,
#ClimateCrisis, #ClimateAction, cop26, #GlobalDayofAction, #GlobalDayfor-
ClimateJustice, #greenwash, Pigs, Fascist, Stormtrooper, Nazi, crowd, march,
rally, mob, extremist, class, privilege, eco-zealot, vandal, nutter, lunatic, eco-
fascist, hypocrite, far-left, chaos, stunt, marxist, terror, rabble, anarchist, filth,
rozzer, clown, pc plod, old bill, polis, wankers, woke, eco-warrior, campaign,
radical, extremist, zealot, authoritarian, tyranny, tyrant, numpty, numpties,
scum, disgusting, awful, unbelievable, evil, frightening, selfish, vicious, violent,
thug, brutal, vicious, fight, carnage, blood, injury, hostility, aggression, force,
assault, invasion, offensive, friction, stress, strain, damage, hurt, harm, block,
kettle, contain, arrest, imprison, charge, thankyou, thanks, carnival, festival, fun,
enjoy, party, tension, tense, disrupt, soft

Table B1: Keywords used to retrieve tweets related to the 2021 United Nations Climate Change Conference.

Topic Top 10 words

topic 1 hour class week pay month work time day start make
topic 2 email apply work company good check send interview hire process
topic 3 teach english online native tefl degree experience company teacher certificate
topic 4 student class give rating lesson feedback time parent level bad
topic 5 tutor account student lesson video group profile share bank paypal

Table B2: The first five topics of the starting model for the Reddit dataset. Both the new and old systems used the
same starting model.

Topic Top 10 words

topic 1 climate action change cop people glasgow world today day amp
topic 2 party vote tory labour johnson boris government mps paterson sleaze
topic 3 amp emissions countries climate carbon energy gas global coal fuel
topic 4 charge pay people covid money case work claim give email
topic 5 game great play team today enjoy amp fun win time

Table B3: The first five topics of the starting model for the Twitter dataset. Both the new and old systems used the
same starting model.
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Operation New system/Reddit New system/Twitter Old system/Reddit Old system/Twitter Total

Delete words 74 205 198 77 554
Reorder words 118 152 139 103 512
Add own words 14 45 32 24 115
Add suggested words 7 49 / / 56
Delete document 12 37 20 12 81
Split topic 0 3 0 4 7
Merge topics 0 1 0 1 2

Table B4: The usage of refinements for each subject group. “New system/Reddit” indicates the use of new system
with the Reddit dataset.
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Appendix C: Tables for the use case one (section 4.3)

Label Top 10 words

Reasons to join or leave a plat-
form

company, teacher, job, work, pay, people, make, money, online, think

Miscommunication with plat-
form management

know, anyone, video, tutor, help, ask, let, please, apply, interview

Table C1: Relevant topics identified by LDA, but missed by Model 16.

Label Top 10 words

Minimum and living wages pay, work, company, teacher, make, hour, rate, wage, job, time

Nationalities of students china, people, country, live, chinese, student, american, america, world, government

A restriction on what tutors
can wear while tutoring

wear, background, shirt, blue, eat, light, use, bao, love, dino

Chinese new law on out-of-
school tutoring

teacher, china, parent, chinese, company, foreign, school, class, new, student

Differences between a profes-
sional tutor and a community
tutor

student, lesson, teacher, tutor, use, english, learn, language, make, conversation

Discussions about Facebook
groups created by platforms’
management

post, group, find, facebook, link, see, teacher, use, share, name

Tutors express anger and dis-
satisfaction with the platform

people, make, good, fuck, post, shit, go, feel, na, sorry

Table C2: Relevant topics identified by Model 16, but missed by LDA.

Label Top 10 words (LDA) Top 10 words (Model 16)

Bookings and working hours week, hour, day, time, book, class, slot, sched-
ule, open, month

class, week, time, day, hour, book, student,
schedule, month, slot

Rating system student, teacher, work, class, give, rating, re-
ally, think, month, company

student, rating, call, minute, reservation, time,
hour, ph, tutor, week

Teaching materials and meth-
ods

student, use, lesson, question, word, ask, say,
make, learn, conversation

word, use, game, read, student, slide, play,
question, lesson, sentence

Technical issues class, minute, student, call, time, show, start,
late, happen, reservation

use, issue, work, app, internet, problem, try,
phone, computer, test

Payment lesson, pay, time, student, hour, teacher, rate,
tutor, base, minute

class, hour, pay, per, bonus, teach, minute,
base, lesson, student

Experiences with kids in class kid, teach, level, well, old, year, think, really,
feel, say

student, class, kid, teach, parent, time, lesson,
give, teacher, make

Hiring process email, send, message, say, get, group, reply,
back, try, see

interview, apply, video, demo, hire, good, ap-
plication, new, company, process

Job requirements english, native, live, country, speaker, lan-
guage, china, work, american, non

teach, online, english, native, tefl, company,
work, experience, teacher, school

Bank transfers and transaction
fees

rating, account, pay, demo, use, bank, test,
paypal, payment, internet

account, bank, pay, paypal, use, payment,
transfer, payoneer, fee, money

Table C3: Relevant topics identified by both LDA and Model 16
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Appendix D: Tables for the use case two (section 4.4)

Category Definition

Market and industrial opportu-
nities

The potential of the invention to enter existing markets

Cost and efficiency Reduction of production costs associated with more efficient processes

Increasing compound yields Improvements in compound productivity based on novel processes

Upscaling production Taking production to the commercial level

Scientific advancements Contribution to knowledge production

Environmental sustainability Contribution to environmental quality and preservation

Human health Improvements in the quality of human health

Food security Avoiding competition with human food sources

Animal health Improvements in the quality of animal health

Table D1: categories table from (Ribeiro and Shapira, 2020).

Category Final Concept Words

Market and industrial opportu-
nities

market, commercial, value, exists

Cost and efficiency Reduction of production costs associated with more efficient processes

Increasing compound yields compound, yield, increasing, plant

Upscaling production production, improve, scale, large

Scientific advancements advancement, benefit, filed

Environmental sustainability renewable, sustainable, energy

Human health health, human, patient, cancer, disease

Food security food, security, supply, preparation, chain

Animal health animal, health, disease

Table D2: Final concept words for each pre-defined category.

Category Topic (Top 10 words)

Market and industrial opportu-
nities

healthy, improved, serum, level, variant, commercial, value, concentration, woman, sample

Cost and efficiency efficiency, increase, cost, increasing, efficient, enhance, reaction, amplification, low, target

Increasing compound yields plant, tolerance, improved, compound, yield, marker, increasing, herbicide, soybean, resis-
tance

Upscaling production improve, improved, production, activity, antibody, enzyme, property, polypeptide, stability,
expression

Scientific advancements benefit, fold, effective, greater, composition, field, size, skin, provide, material

Environmental sustainability renewable, energy, product, source, diesel, produced, carbon, lipid, sustainable, fuel

Human health disease, patient, effective, cancer, amount, antibody, human, treatment, administering, subject

Food security chain, healthcare, ge, mm, food, preparation, light, healthy, column, region

Animal health health, animal, disease, effective, national, institute, dose, determined, administration,
amount

Table D3: Focused topics identified by the initial model.
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Category Topic (Top 10 words)

Market and industrial opportu-
nities

value, commercial, market, industrial, exists, business, global, adding, hepcidin, year

Cost and efficiency efficiency, improve, increase, increasing, cost, enhance, reaction, efficient, amplification, low

Increasing compound yields plant, efficiency, compound, yield, increasing, transformation, improved, gene, resistance,
increased

Upscaling production improve, production, improved, improvement, improving, higher, activity, greater, expression,
enzyme

Scientific advancements benefit, provide, field, improved, skin, cleaning, enzyme, surface, cellulase, material

Environmental sustainability renewable, energy, reducing, biofuels, source, diesel, biofuel, carbon, lipid, product

Human health disease, patient, cancer, diagnosis, effective, human, liver, lung, clinical, antibody

Food security chain, sample, food, preparation, assay, light, supply, improved, donor, culture

Animal health health, animal, medical, disease, care, healthy, nutrition, population, clinical, bethesda

Table D4: Focused topics identified by Model 23.
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Abstract

Many natural language processing (NLP) tasks
are naturally imbalanced, as some target cate-
gories occur much more frequently than others
in the real world. In such scenarios, current
NLP models tend to perform poorly on less
frequent classes. Addressing class imbalance
in NLP is an active research topic, yet, finding
a good approach for a particular task and im-
balance scenario is difficult.

In this survey, the first overview on class im-
balance in deep-learning based NLP, we first
discuss various types of controlled and real-
world class imbalance. Our survey then covers
approaches that have been explicitly proposed
for class-imbalanced NLP tasks or, originating
in the computer vision community, have been
evaluated on them. We organize the methods
by whether they are based on sampling, data
augmentation, choice of loss function, staged
learning, or model design. Finally, we discuss
open problems and how to move forward.

1 Introduction

Class imbalance is a major problem in natural lan-
guage processing (NLP), because target category
distributions are almost always skewed in NLP
tasks. As illustrated by Figure 1, this often leads to
poor performance on minority classes. Which cate-
gories matter is highly task-specific and may even
depend on the intended downstream use. Develop-
ing methods that improve model performance in
imbalanced data settings has been an active area for
decades (e.g., Bruzzone and Serpico, 1997; Japkow-
icz et al., 2000; Estabrooks and Japkowicz, 2001;
Park and Zhang, 2002; Tan, 2005), and is recently
gaining momentum in the context of maturing neu-
ral approaches (e.g., Buda et al., 2018; Kang et al.,
2020; Li et al., 2020; Yang et al., 2020; Jiang et al.,
2021; Spangher et al., 2021). The problem is exac-
erbated when classes overlap in the feature space
(Lin et al., 2019; Tian et al., 2020). For example,
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(a) Single-label relation
classification on TACRED
(Zhou and Chen, 2021)
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(b) Hierarchical multi-label
patent classification
(Pujari et al., 2021)

labels0k

2.5k

#t
ra

in
 in

st
.

0100020003000
label count

0

1

te
st

 F
1

(c) Implicit discourse rela-
tion classification (PDTB)
(Shi and Demberg, 2019)
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(d) UD dependency parsing

using RoBERTa on EWT
(Grünewald et al., 2021)

Figure 1: Class imbalance has a negative effect on per-
formance especially for minority classes in a variety of
NLP tasks. Upper charts show label count distributions,
lower part show test/dev F1 by training instance count
(lighter colors indicate fewer test/dev instances). All
models are based on transformers.

in patent classification, technical categories differ
largely in frequency, and the concepts mentioned
in the different categories can be very similar.

On a large variety of NLP tasks, transformer
models such as BERT (Vaswani et al., 2017; Devlin
et al., 2019) outperform both their neural predeces-
sors and traditional models (Liu et al., 2019; Xie
et al., 2020; Mathew et al., 2021). Performance
for minority classes is also often higher when us-
ing self-supervised pre-trained models (e.g., Li and
Scarton, 2020; Niklaus et al., 2021), which paral-
lels findings from computer vision (Liu et al., 2022).
However, the advent of BERT has not solved the
class imbalance problem in NLP, as illustrated by
Figure 1. Tänzer et al. (2022) find that on syn-
thetically imbalanced named entity datasets with
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Figure 2: Instance counts per label follow different distributions: examples of class imbalance types.

majority classes having thousands of examples, at
least 25 instances are required to predict a class
at all, and 100 examples to learn to predict it with
some accuracy.

Despite the relevance of class imbalance to NLP,
related surveys only exist in the computer vision
domain (Johnson and Khoshgoftaar, 2019b; Zhang
et al., 2021b). Incorporating methods addressing
class imbalance can lead to performance gains of
up to 20%. Yet, NLP research often overlooks how
important this is in practical applications, where
minority classes may be of special interest.

Our contribution is to draw a clear landscape
of approaches applicable to deep-learning (DL)
based NLP. We set out with a problem defini-
tion (Sec. 2), and then organize approaches by
whether they are based on sampling, data aug-
mentation, choice of loss function, staged learn-
ing, or model design (Sec. 3). Our extensive sur-
vey finds that re-sampling, data augmentation, and
changing the loss function can be relatively simple
ways to increase performance in class-imbalanced
settings and are thus straightforward choices for
NLP practitioners.1 While promising research di-
rections, staged learning or model modifications
often are implementation-wise and/or computation-
ally costlier. Moreover, we discuss particular chal-
lenges of non-standard classification settings, e.g.,
imbalanced multi-label classification and catch-all
classes, and provide useful connections to related
computer vision work. Finally, we outline promis-
ing directions for future research (Sec. 4).

Scope of this survey. We focus on approaches
evaluated on or developed for neural methods.
Work from “traditional” NLP (e.g., Tomanek and
Hahn, 2009; Li et al., 2011; Li and Nenkova, 2014;
Kunchukuttan and Bhattacharyya, 2015) as well as
Natural Language Generation (e.g., Nishino et al.,
2020) and Automatic Speech Recognition (e.g.,
Winata et al., 2020; Deng et al., 2022) are not ad-

1We provide practical advice on identifying potentially ap-
plicable class imbalance methods in the Appendix (Figure 3).

dressed in this survey. Other types of imbalances
such as differently sized data sets of subtasks in
continual learning (Ahrens et al., 2021) or imbal-
anced regression (Yang et al., 2021) are also beyond
the scope of this survey. In Sec. 3.5, we briefly
touch upon the related area of few-shot learning
(Wang et al., 2020c).

Related surveys. We review imbalance-specific
data augmentation approaches in Sec. 3.2. Feng
et al. (2021) give a broader overview of data aug-
mentation in NLP, Hedderich et al. (2021) provide
an overview of low-resource NLP, and Ramponi
and Plank (2020) discuss neural domain adaptation.

2 Problem Definition

Class imbalance refers to a classification set-
ting in which one or multiple classes (minority
classes) are considerably less frequent than others
(majority classes). More concrete definitions, e.g.,
regarding the relative share up to which a class
is seen as a minority class, depend on the task,
dataset and labelset size. Much research focuses on
improving all minority classes equally while main-
taining or at least monitoring majority class perfor-
mance (e.g., Huang et al., 2021; Yang et al., 2020;
Spangher et al., 2021). We next discuss prototypi-
cal types of imbalance (Sec. 2.1) and then compare
controlled and real-world settings (Sec. 2.2).

2.1 Types of Imbalance
To systematically investigate the effect of imbal-
ance, Buda et al. (2018) define two prototypical
types of label distributions, which we explain next.

Step imbalance is characterized by the fraction
of minority classes, µ, and the size ratio between
majority and minority classes, ρ. Larger ρ values
indicate more imbalanced data sets. In prototyp-
ical step imbalance, if there are multiple minor-
ity classes, all of them are equally sized; if there
are several majority classes, they also have equal
size. Figure 2a shows a step-imbalanced distribu-
tion with 40% of the classes being minority classes
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and an imbalance ratio of ρ = 10. NLP datasets
with a large catch-all class as they often arise in
sequence tagging (see Sec. 2.2) or in relevance
judgments in retrieval models frequently resem-
ble step-imbalanced distributions. The ρ ratio has
also been reported in NLP, e.g., by Li et al. (2020),
although more task-specific imbalance measures
have been proposed, e.g., for single-label text clas-
sification (Tian et al., 2020). In linear imbalance,
class size grows linearly with imbalance ratio ρ
(see Figure 2b), as, e.g., in the naturally imbal-
anced SICK dataset for natural language inference
(Marelli et al., 2014).

Long-tailed label distributions (Figure 2c) are
conceptually similar to linear imbalance. They
contain many data points for a small number of
classes (head classes), but only very few for the
rest of the classes (tail classes). These distributions
are common in computer vision tasks like instance
segmentation (e.g., Gupta et al., 2019a), but also
in multi-label text classification, for example with
the goal of assigning clinical codes (Mullenbach
et al., 2018), patent categories (Pujari et al., 2021),
or news and research topics (Huang et al., 2021).

2.2 Controlled vs. Real-World Class
Imbalance

Most real-world label distributions in NLP tasks do
not perfectly match the prototypical distributions
proposed by Buda et al. (2018). Yet, awareness
of these settings helps practitioners to select ap-
propriate methods for their data set or problem by
comparing distribution plots. Using synthetically
imbalanced data sets, researchers can control for
more experimental factors and investigate several
scenarios at once. However, evaluating on naturally
imbalanced data provides evidence of a method’s
real-world effectiveness. Some recent studies com-
bine both types of evaluation (e.g., Tian et al., 2021;
Subramanian et al., 2021; Jang et al., 2021).

Many NLP tasks require treating a large, often
heterogenous catch-all class that contains all in-
stances that are not of interest to the task, while
the remaining (minority) classes are approximately
same-sized. Examples include the “Outside” label
in IOB sequence tagging, or tweets that mention
products in contexts that are irrelevant to the an-
notated categories (Adel et al., 2017). Such real-
world settings often roughly follow a step imbal-
ance distribution, with the additional difficulty of
the catch-all class.

2.3 Evaluation

As accuracy and micro-averages mostly reflect ma-
jority class performance, choosing a good evalu-
ation setting and metric is non-trivial. It is also
highly task-dependent: in many NLP tasks, recog-
nizing one or all minority classes well is at least
equally important as majority class performance.
For instance, non-hateful tweets are much more
frequent in Twitter (Waseem and Hovy, 2016), but
recognizing hateful content is the key motivation of
hate speech detection. Which classes matter may
even depend on downstream considerations, i.e.,
the same named entity tagger might be used in one
application where a majority class matters, and an-
other where minority classes matter more. Several
evaluation metrics exist that have been designed
to account for class-imbalanced settings, but no de
facto standard exists. For example, balanced ac-
curacy (Brodersen et al., 2010) corresponds to the
average of per-class recall scores. It is often useful
to record performance on all classes and to report
macro-averages, which treat all classes equally.

3 Methods for Addressing Class
Imbalance in NLP

In this section, we survey methods that either
have been explicitly proposed to address class-
imbalance issues in NLP or that have been em-
pirically shown to be applicable for NLP problems.
We provide an overview of which methods are ap-
plicable to a selection of NLP tasks in Appendix A.

3.1 Re-Sampling

To increase the importance of minority instances
in training, the label distribution can be changed
by various sampling strategies. Sampling can ei-
ther be executed once or repeatedly during training
(Pouyanfar et al., 2018). In random oversampling
(ROS), a random choice of minority instances
are duplicated, whereas in random undersampling
(RUS), a random choice of majority instances are
removed from the dataset. ROS can lead to overfit-
ting and increases training times. RUS, however,
discards potentially valuable data, but has been
shown to work well in language-modeling objec-
tives (Mikolov et al., 2013).

When applied in DL, ROS outperforms RUS
both in synthetic step and linear imbalance (Buda
et al., 2018) and in binary and multi-class English
and Korean text classification (Juuti et al., 2020;
Akhbardeh et al., 2021; Jang et al., 2021). More
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flexible variants, e.g., re-sampling only a tunable
share of classes (Tepper et al., 2020) or interpo-
lating between the (imbalanced) data distribution
and an almost perfectly balanced distribution (Ari-
vazhagan et al., 2019), can also further improve
results. Class-aware sampling (CAS, Shen et al.,
2016), also referred to as class-balanced sampling,
first chooses a class, and then an instance from
this class. Performance-based re-sampling dur-
ing training, following the idea of Pouyanfar et al.
(2018), works well in multi-class text classification
(Akhbardeh et al., 2021).

Issues in multi-label classification. In multi-
label classification, label dependencies between
majority and minority classes complicate sampling
approaches, as over-sampling an instance with a
minority label may simultaneously amplify the ma-
jority class count (Charte et al., 2015; Huang et al.,
2021). CAS also suffers from this issue, and addi-
tionally introduces within-class imbalance, as in-
stances of one class are selected with different prob-
abilities depending on the co-assigned labels (Wu
et al., 2020). Effective sampling in such settings is
still an open issue. Existing approaches monitor the
class distributions during sampling (Charte et al.,
2015) or assign instance-based sampling probabili-
ties (Gupta et al., 2019b; Wu et al., 2020).

3.2 Data Augmentation

Increasing the amount of minority class data dur-
ing corpus construction, e.g., by writing additional
examples or selecting examples to be labeled using
Active Learning, can mitigate the class imbalance
problem to some extent (Cho et al., 2020; Ein-Dor
et al., 2020). However, this is particularly labo-
rious in naturally imbalanced settings as it may
require finding “the needle in the haystack,” or may
lead to biased minority class examples, e.g., due
to collection via keyword queries. Synthetically
generating additional minority instances thus is a
promising direction. In this section, we survey data
augmentation methods that have been explicitly
proposed to mitigate class imbalance and that have
been evaluated in combination with DL.

Text augmentation generates new natural lan-
guage instances of minority classes, ranging from
simple string-based manipulations such as syn-
onym replacements to Transformer-based gener-
ation. Easy Data Augmentation (EDA, Wei and
Zou, 2019), which uses dictionary-based synonym
replacements, random insertion, random swap, and

random deletion, has been shown to work well
in class-imbalanced settings (Jiang et al., 2021;
Jang et al., 2021; Juuti et al., 2020). Juuti et al.
(2020) generate new minority class instances for
English binary text classification using EDA and
embedding-based synonym replacements, and by
adding a random majority class sentence to a mi-
nority class document. They also prompt the pre-
trained language model GPT-2 (Radford et al.,
2019) with a minority class instance to generate
new minority class samples. Tepper et al. (2020)
evaluate generation with GPT-2 on English multi-
class text classification datasets, coupled with a
flexible balancing policy (see Sec. 3.1).

Similarly, Gaspers et al. (2020) combine
machine-translation based text augmentation with
dataset balancing to build a multi-task model. Both
the main and auxiliary tasks are German intent clas-
sification. Only the training data for the latter is
balanced and enriched with synthetic minority in-
stances. In a long-tailed multi-label setting, Zhang
et al. (2022) learn an attention-based text augmen-
tation that augments instances with text segments
that are relevant to tail classes, leading to small im-
provements. In general, transferring methods such
as EDA or backtranslation to multi-label settings
is difficult (Zhang et al., 2022, 2020; Tang et al.,
2020).

Hidden space augmentation generates new in-
stance vectors that are not directly associated
with a particular natural language string, leverag-
ing the representations of real examples. Using
representation-based augmentations to tackle class
imbalance is not tied to DL. SMOTE (Chawla et al.,
2002), which interpolates minority instances with
randomly chosen examples from their K-nearest
neighbours, is popular in traditional machine learn-
ing (Fernández et al., 2018), but leads to mixed
results in DL-based NLP (Ek and Ghanimifard,
2019; Tran and Litman, 2021; Wei et al., 2022).
Inspired by CutMix (Yun et al., 2019), which cuts
and pastes a single pixel region in an image, Text-
Cut (Jiang et al., 2021) randomly replaces small
parts of the BERT representation of one instance
with those of the other. In binary and multi-class
text classification experiments, TextCut improves
over non-augmented BERT and EDA.

Good-enough example extrapolation (GE3, Wei,
2021) and REPRINT (Wei et al., 2022) also oper-
ate in the original representation space. To synthe-
size a new minority instance, GE3 adds the vec-
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tor representing the difference between a major-
ity class instance and the centroid of the respec-
tive majority class to the mean of a minority class.
Evaluations on synthetically step-imbalanced En-
glish multi-class text classification datasets show
improvements over oversampling and hidden space
augmentation baselines. GE3 assumes that the dis-
tribution of data points of a class around its mean
can be extrapolated to other classes, an assump-
tion potentially hurting performance if the minority
class distribution differs. To account for this when
subtracting out majority characteristics, REPRINT

performs a principal component analysis (PCA) for
each class, leveraging the information on relevant
dimensions during sample generation. This method
usually outperforms GE3, with the cost of an addi-
tional hyperparameter (subspace dimensionality).

MISO (Tian et al., 2021) generates new in-
stances by transforming the representations of mi-
nority class instances that are located nearby ma-
jority class instances. They learn a mapping from
minority instance vectors to “disentangled” repre-
sentations, making use of mutual information esti-
mators (Belghazi et al., 2018) to push these repre-
sentations away from the majority class and closer
to the minority class. An adversarially-trained gen-
erator then generates minority instances using these
disentangled representations. Tian et al. apply
MISO in naturally and synthetically imbalanced
English and Chinese binary and multi-class text
classification with a single minority class.

ECRT (Chen et al., 2021) learns to map en-
coder representations (feature space) to a new space
(source space) whose components are independent
of each other given the class, assuming an invari-
ant causal mechanism from source to feature space.
The independence enables them to generate new
meaningful minority examples by permuting or
sampling components in the source space, result-
ing in medium improvements on a large multi-label
text classification dataset with many labels.

Further related work exists in the area of trans-
fer learning (Ruder et al., 2019), e.g., from addi-
tional datasets that provide complementary infor-
mation on minority classes. For instance, Spangher
et al. (2021) achieve small gains by manually se-
lecting auxiliary datasets to improve imbalanced
sentence-based discourse classification. However,
complementary datasets have to be retrieved for
each application, and task loss coefficients have
to be tuned. Adapting methods to predict useful

transfer sources (Lange et al., 2021) might help
alleviate these problems.

3.3 Loss Functions

Standard cross-entropy loss (CE) is composed
from the predictions for instances that carry the
label in the gold standard, which is why the result-
ing classifiers fit the minority classes less well. In
this section, we summarize loss functions designed
for imbalanced scenarios. They either re-weight
instances by class membership or prediction diffi-
culty, or explicitly model class margins to change
the decision boundary. Throughout this section, we
use the variables and terms as shown in Table 1.

Losses for Single-Label Scenarios. Weighted
cross-entropy (WCE) uses class-specific weights
αj that are tuned as hyperparameters or set to the
inverse class frequency (e.g., Adel et al., 2017; Tay-
yar Madabushi et al., 2019; Li and Xiao, 2020).
While WCE treats all instances of one class in the
same way, focal loss (FL, Lin et al., 2017) down-
weights instances for which the model is already
confident (implemented with the (1− pj)β coeffi-
cient). FL can of course also be used with class
weights. Instead of mimicking accuracy like CE,
dice loss (Dice, Milletari et al., 2016) tries to cap-
ture class-wise F1 score, with the predicted prob-
ability pj proxying precision and the ground truth
indicator yj proxying recall. Self-adjusting dice
loss (ADL, Li et al., 2020) combines confidence-
based down-weighting via 1 − pj with Dice loss.
For sequence labeling, QA and matching on En-
glish and Chinese datasets, Dice performs better
than FL and ADL.

Rather than re-weighting instances, label-
distribution-aware margin loss (LDAM, Cao et al.,
2019), essentially a smooth hinge loss with label-
dependent margins ∆j , aims to increase the dis-
tance of the minority class instances to the deci-
sion boundary with the aim of better generalization
for these classes. Cao et al.’s evaluation largely
focuses on computer vision, but they also report
results for LDAM on a synthetically imbalanced
version of the IMDB review dataset (Maas et al.,
2011), achieving a much lower error on the minor-
ity class than vanilla CE or CE with re-sampling
or re-weighting. Subramanian et al. (2021) pro-
pose LDAM variants that consider bias related to
socially salient groups (e.g., gender-based bias) in
addition to class imbalance, evaluating them on
binary text classification.
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with qj = yjσ(zj − vj) + (1− yj)σ(λ(zj − vj))

C number of classes
y target vector
p model prediction vector
α class weights
β tunable focusing parameter
z model logits vector
γ smoothing constant
nj size of class j
K label-independent constant
gt index of ground-truth class
m+ margin to correct class
m− ... to most competitive incorrect class
A special catch-all class
c− index of largest non-gt logit
λ scaling factor
α̂j instance-specific class weights
vj class-specific bias

Table 1: Overview of loss functions formulated for one instance. See Appendix A for references/implementations.

In settings with a large artificial and potentially
heterogeneous catch-all class (see Sec. 2.2), many
areas of the space contain representations of the
catch-all class. Here, vanilla LDAM might be an
appropriate loss function as it encourages larger
margins for minority classes. In such cases, rank-
ing losses (RL) can also be effective to incentivize
the model to only pay attention to “real” classes.
On an imbalanced English multi-class dataset with
a large catch-all class, Adel et al. (2017) find a
ranking loss introduced by dos Santos et al. (2015)
improves over CE and WCE. For minority classes,
this loss function maximizes the score of the cor-
rect label zgt while at the same time minimizing
the score of the highest-scoring incorrect label zc− .
For the catch-all class A, only zc− is minimized;
zgt is ignored. Similarly, Hu et al. (2022) apply
class weights only to non-catch-all classes.

Losses for Multi-Label Scenarios. In multi-
label classification, each label assignment can be
viewed as a binary decision, hence binary cross-
entropy (BCE) is often used here. Under imbal-
ance, two issues arise. First, although class-specific
weights have been used with BCE (e.g., Yang et al.,
2020), their effect on minority classes is less clear
than in the single-label case. For each instance,
all classes contribute to BCE, with the labels not
assigned to the instance (called negative classes)
included via (1−yj) log(1−pj). Thus, if weighted
binary cross-entropy (WBCE) uses a high weight
for a class, it also increases the importance of neg-
ative instances for a minority class, which may
further encourage the model to not predict this mi-
nority class.

To leverage class weights more effectively in
BCE, one option is to only apply them to the loss

of positive instances as proposed for multi-label
image classification (Kumar et al., 2018). Related
work includes uniformly upweighting positive in-
stances of all classes in hierarchical multi-label text
classification (e.g., Rathnayaka et al., 2019). An
approach to multi-label emotion classification by
Yilmaz et al. (2021) performs training time balanc-
ing by adapting FL such that for a given mini-batch
the loss over all instances in this mini-batch has
exactly the same value for every class.

If a classifier already correctly predicts a nega-
tive class for an instance, the loss can be further
decreased by reducing the respective label’s logits.
In CE, due to the softmax that uses the logits of
all classes, the impact of this effect becomes minor
once the logit for the correct class is much larger
than those of the other classes. However, the prob-
lem is more severe in BCE (Wu et al., 2020), as
logits are treated independently. As minority labels
mostly occur as negative classes, this logit suppres-
sion leads to a bias in the decision boundary, mak-
ing it less likely for minority classes to be predicted.
To tackle this issue and based on a multi-label ver-
sion of FL, Wu et al. (2020) propose distribution-
balanced loss (DB) for object detection, adding
Negative Tolerant Regularization for the loss for
negative classes by transforming the logits of posi-
tive and negative classes differently (see qj in Ta-
ble 1). This regularization imposes a sharp drop
in the loss function for negative classes once the
respective logit is below a threshold. Moreover,
DB introduces instance-specific class weights α̂
to account for imbalances caused by class-aware
sampling (see Sec. 3.1) in multi-label scenarios.
These weights reflect the frequency of a class and
the quantity and frequency of the positive labels of
the instance. Huang et al. (2021) have shown large
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improvements of DB over BCE even when using
uniform sampling on two long-tailed multi-label
English text classification datasets.

While Cao et al. (2019) propose and theoretically
justify LDAM for single-label classification only,
it has been successfully applied to multi-label text
classification as well (Biswas et al., 2021). Ferreira
and Vlachos (2019) show that applying a cross-
label dependency loss (Yeh et al., 2017; Zhang
and Zhou, 2006) can be helpful for multi-label
stance classification. Similarly, Lin et al. (2019)
introduce a label-confusion aware cost factor into
their loss function. The adaptive loss of Suresh
and Ong (2021) integrates inter-label relationships
into a contrastive loss (Khosla et al., 2020), which
compares the score of a positive example with the
distance to that of other positive and negative ex-
amples in order to push its representation closer to
the correct class and further away from the wrong
class(es). The resulting loss function learns how to
increase the weight of confusable negative labels
relative to other negative labels. Combining label-
confusion aware loss functions with class weight-
ing techniques is a promising research direction.

Re-Sampling vs. Loss Functions. Re-sampling
and loss functions that are specifically designed for
class-imbalanced settings are based on the same
idea of increasing the importance of minority in-
stances. Re-sampling is conceptually simpler and
has a direct impact on training time, e.g., oversam-
pling may cause a considerable increase. By con-
trast, the loss functions explained above are more
flexible, e.g., by modeling desirable properties of
margins, but also mostly harder to interpret.

3.4 Staged Learning

One approach to finding a good trade-off between
learning features that are representative of the un-
derlying data distribution and reducing the clas-
sifier’s bias towards the majority class(es) is to
perform the training in several stages. Two-staged
training is common in imbalanced or data-scarce
computer vision tasks (e.g., Wang et al., 2020b,a;
Zhang et al., 2021a). The first stage usually per-
forms standard training in order to train or fine-
tune the feature extraction network. Later stages
may freeze the feature extractor and re-train the
classifier layers using special methods to address
class imbalance, e.g., using more balanced data
distributions or specific losses. For example, Cao
et al. (2019) find their LDAM loss to be most ef-

fective when the training happens in two stages. In
NLP, deep-learning models are usually based on
pre-trained neural text encoders or word embed-
dings. Further domain-specific pre-training before
starting the fine-tuning stage(s) can also be effec-
tive (Gururangan et al., 2020).

Several NLP approaches that fall under staged
learning are directly inspired by computer vision
research. In the context of long-tailed image classi-
fication, Kang et al. (2020) find that class-balanced
sampling (see Sec. 3.1) helps when performing
single-stage training, but that in their two-stage
classifier re-training (cRT) method, using the orig-
inal distribution in the first stage is more effective
than class-balanced sampling. cRT employs the
latter only in the second stage after freezing the
representation weights. Yu et al. (2020) perform a
similar decoupling analysis on long-tailed relation
classification, essentially confirming Kang et al.
(2020)’s results on this NLP task with respect to
the re-sampling strategies. Additionally, they find
that loss re-weighting under this analysis behaves
similar to re-sampling, i.e., it leads to worse perfor-
mance when applied during representation learning,
but boosts performance when re-training the clas-
sifier. Hu et al. (2022) successfully leverage Kang
et al.’s ideas for event detection, where both trig-
ger detection and trigger classification suffer from
class imbalance.

Jang et al. (2021) model imbalanced classifi-
cation as a continual learning task with k stages
where the data gradually becomes more balanced
(sequential targeting, ST). The first stage contains
the most imbalanced subset, and then the degree
of imbalance decreases, with the last stage pre-
senting the most balanced subset. The training ob-
jective encourages both good performance on the
current stage and keeping information learnt in pre-
vious stages. Their experiments include binary and
ternary English and Korean text classification. Ac-
tive Learning (AL), which contains several stages
by definition, has also been shown to boost perfor-
mance of BERT models for minority classes (Ein-
Dor et al., 2020). For a discussion about AL and
deep learning, see Schröder and Niekler (2020).

3.5 Model Design

The methods described so far are largely indepen-
dent of model architecture. This section describes
model modifications that aim at improving perfor-
mance in imbalanced settings.
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Observing that the weight vectors for smaller
classes have smaller norms in standard joint train-
ing compared to staged-learning based cRT (see
Sec. 3.4), Kang et al. (2020) normalize the classi-
fier weights directly in one-staged training using
a hyperparameter τ to control the normalization
“temperature” (τ -norm). τ -norm achieves similar
or better performance than cRT in long-tailed im-
age classification and outperforms cRT in relation
extraction, but cRT works better for named entity
recognition and event detection (Nan et al., 2021).

SetConv (Gao et al., 2020) and ProtoBERT
(Tänzer et al., 2022) learn representatives for each
class using support sets and classify an input (the
query) based on its similarity to these represen-
tatives. SetConv applies convolution kernels that
capture intra- and inter-class correlations to extract
class representatives. ProtoBERT uses class cen-
troids in a learned BERT-based feature space, treat-
ing the distance of any instance to the catch-all
class as just another learnable parameter. At each
training step, SetConv uses only one instance per
class in the query set, but preserves the original
class imbalance in the support set, whereas Proto-
BERT uses fixed ratios. In the respective experi-
mental studies, ProtoBERT performs better than
using a standard classification layer on top of BERT
for minority classes in NER if less than 100 exam-
ples are seen by the model, while SetConv excels
in binary text classification with higher degrees of
imbalance and in multi-class text classification.

The HSCNN model (Yang et al., 2020) uses
class representatives only for the classification of
tail classes, while head classes are assigned us-
ing a standard text CNN (Kim, 2014). HSCNN
learns label-specific similarity functions, extracting
instance representations from the pre-final layers
of two copies of the original CNN, and assigns a
tail class if the similarity to the class representa-
tive (computed as the mean of 5 random support
instances) exceeds 0.5. On tail classes, HSCNN
consistently improves over the vanilla CNN.

In addition, there exist a number of task-specific
solutions. Prange et al. (2021) propose to con-
struct CCG supertags from predicted tree struc-
tures rather than treating the problem as a standard
classification task. In order to recognize implicit
positive interpretations in negated statements in a
class-imbalanced dataset, van Son et al. (2018) ar-
gue that leveraging information structure could be
one way to improve inference. Structural causal

models (SCMs) have been applied to imbalanced
NLP tasks, encoding task-specific causal graphs
(e.g., Nan et al., 2021). Similarly, Wu et al. (2021)
causally model how bias in long-tailed corpora af-
fects topic modeling (Blei et al., 2003) and use this
to improve training of a variational autoencoder.

A research area closely related to class im-
balance is few-shot learning (FSL, Wang et al.,
2020c), which aims to learn classes based on only
very few training examples. Model ideas from FSL
can be leveraged for long-tailed settings, e.g., by
making use of relational information about class
labels in the form of knowledge graph embeddings
or other forms of embedding hierarchical relation-
ships between labels (Han et al., 2018; Zhang et al.,
2019), or computing label-specific representations
(Mullenbach et al., 2018).

4 Insights and Future Directions

We have provided a comprehensive, concise and
structured overview of current approaches to deal-
ing with class imbalance in DL-based NLP.

What works (best)? As there is no established
benchmark for class-imbalanced settings, evalua-
tion results are hard to compare across papers. In
general, re-sampling or changing the loss function
may lead to small to moderate gains. For data aug-
mentation approaches, the reported performance
increases tend to be larger than for re-sampling or
new loss functions. The effects of staged training or
modifications of the model vary drastically, ranging
from detrimental to very large performance gains.

Hence, re-sampling, data augmentation, and
changing the loss function are straightforward
choices in class-imbalanced settings. Approaches
based on staged learning or model design may
sometimes outperform them, but often come with a
higher implementation or computational cost. For
a practical decision aid and potential application
settings of some class imbalance methods, see Fig-
ure 3 in Appendix B and Table 3 in Appendix A.

How should we report results? Much NLP re-
search only reports aggregate statistics (Harbecke
et al., 2022), making it hard to judge the impact on
improvements by class, which is often important
in practice. We thus argue that NLP researchers
should always report per-class statistics, e.g., as in
Figure 1. Open-sourcing spreadsheets with the ex-
act numbers would enable the community to com-
pare systems more flexibly from multiple angles,
i.e., with respect to whichever class(es) matter in
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a particular application scenario, and to re-use this
data in research on class imbalance. Reviewers
should also value works that analyze performance
for relevant minority classes rather than focusing
largely only on overall accuracy improvements.

A main hindrance to making progress on class
imbalance in computer vision and NLP alike is
that experimental results are often hard to compare
(Johnson and Khoshgoftaar, 2019a, 2020). A first
important step would be to not restrict baselines
to methods of the same type, e.g., a new data aug-
mentation approach should not only compare to
other data augmentation methods, but also to using
loss functions for class imbalance. Establishing a
shared and systematic benchmark of a diverse set
of class-imbalanced NLP tasks would be highly
beneficial for both researchers and practitioners.

How can we move forward? Most work on
class-imbalanced NLP has focused on single-label
text classification. Finding good solutions for multi-
label settings is still an open research challenge.
Class imbalance also poses problems in NLP tasks
such as sequence labeling or parsing, and we be-
lieve that the interaction of structured prediction
models with methods to address class imbalance is
a promising area for future research. Moreover, we
need to study how class imbalance methods affect
prediction calibration in order to provide reliable
confidence estimates.

In general, inspiration for new model archi-
tectures could for example be drawn from ap-
proaches developed for few-shot learning (Wang
et al., 2020c). Recently, prompting (Radford et al.,
2019) has emerged as a new paradigm in NLP,
which performs strongly in real-world few-shot
settings (Schick and Schütze, 2022). Methods that
improve worst-case performance under distribution
shift (e.g., Sagawa et al., 2020) might also be ap-
plied to improve minority-class performance.
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Appendix

A Method Overview

We here provide details on a selection of methods
surveyed in this paper. Table 3 shows whether they
have been applied respectively whether they are
applicable in binary, multi-class, and multi-label
classification. Moreover, it contains information
on whether authors open-sourced their implemen-
tation. For links to open-sourced code, see Table 2.

B Practical advice

In Figure 3, we provide practical advice which
class imbalance methods might be beneficial un-
der which circumstances. Due to the lack of an
established benchmark, we can only give rough
guidance.

Method Link
Data Augmentation
EDA (Wei and Zou, 2019) GitHub
GE3 (Wei, 2021) ACL Anthology
ECRT (Chen et al., 2021) GitHub

Loss Functions
FL (Lin et al., 2017) GitHub
ADL (Li et al., 2020) GitHub
LDAM (Cao et al., 2019) GitHub
DB (Wu et al., 2020) GitHub

Staged Learning
cRT (Kang et al., 2020) GitHub
ST (Jang et al., 2021) GitHub

Model Design
τ -norm (Kang et al., 2020) GitHub
ProtoBERT (Tänzer et al., 2022) GitHub

Table 2: Open-sourced implementations of examples
of class imbalance methods.
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Method Binary classification Multi-class classification Multi-label classification Code

Re-Sampling

ROS/RUS (Sec. 3.1) X X ? N/A

CAS (Shen et al., 2016) X X ? ×

Data Augmentation

EDA (Wei and Zou, 2019) Juuti et al. (2020) Jiang et al. (2021) Zhang et al. (2022, 2020) X
Jiang et al. (2021)

TextCut (Jiang et al., 2021) Jiang et al. (2021) Jiang et al. (2021) X ×

GE3 (Wei, 2021) X Wei (2021) ? X
Wei et al. (2022)

MISO (Tian et al., 2021) Tian et al. (2021) Tian et al. (2021)* ? ×

ECRT (Chen et al., 2021) X X Chen et al. (2021) X
Loss Functions

WCE (Sec. 3.3) Tayyar Madabushi et al. Adel et al. (2017) N/A N/A
(2019) Li and Xiao (2020)

FL (Lin et al., 2017) X Li et al. (2020) X X
Nan et al. (2021)

ADL (Li et al., 2020) X Li et al. (2020) X X
Spangher et al. (2021)

LDAM (Cao et al., 2019) Cao et al. (2019) X Biswas et al. (2021) X
Subramanian et al. (2021)

WBCE (Sec. 3.3) X × Yang et al. (2020) N/A

RL (dos Santos et al., 2015) X Adel et al. (2017) × ×

DB (Wu et al., 2020) × × Huang et al. (2021) X
Staged Learning

cRT (Kang et al., 2020) X Nan et al. (2021) X X
Hu et al. (2022)

ST (Jang et al., 2021) Jang et al. (2021) Jang et al. (2021) X X
Model Design

τ -norm (Kang et al., 2020) X Nan et al. (2021) X X

SetConv (Gao et al., 2020) Gao et al. (2020) Gao et al. (2020) X ×

ProtoBERT (Tänzer et al., 2022) X Tänzer et al. (2022) X X

HSCNN (Yang et al., 2020) X X Yang et al. (2020) ×

Table 3: Examples of class imbalance methods and NLP application settings. X: method applicable (but
no particular reference reporting experimental results exists)/code: authors open-sourced their implementation, ?:
application not straightforward / open research issues. *: The authors select only one class as the minority class
in their experiments. For links to open-sourced code, see Table 2. Methods for binary and multi-class classifi-
cation are in general applicable to classification-based relation extraction approaches; applying class-imbalance
techniques to sequence labeling methods in general is similar to the case of multi-label classification. For exam-
ple, if sampling for a particular category, the whole sequence sample may contain additional annotations for other
categories.
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Figure 3: Practical advice which methods to try under which circumstances.
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Abstract
In this paper, we seek to improve the faithful-
ness of TEMPREL extraction models from two
perspectives. The first perspective is to extract
genuinely based on contextual description. To
achieve this, we propose to conduct counter-
factual analysis to attenuate the effects of two
significant types of training biases: the event
trigger bias and the frequent label bias. We
also add tense information into event represen-
tations to explicitly place an emphasis on the
contextual description. The second perspec-
tive is to provide proper uncertainty estimation
and abstain from extraction when no relation is
described in the text. By parameterization of
Dirichlet Prior over the model-predicted cate-
gorical distribution, we improve the model esti-
mates of the correctness likelihood and make
TEMPREL predictions more selective. We also
employ temperature scaling to recalibrate the
model confidence measure after bias mitigation.
Through experimental analysis on MATRES,
MATRES-DS, and TDDiscourse, we demon-
strate that our model extracts TEMPREL and
timelines more faithfully compared to SOTA
methods, especially under distribution shifts.

1 Introduction

Event temporal relation (TEMPREL) extraction is
an essential step towards understanding narrative
text, such as stories, novels, news, and guideline
articles. With a robust temporal relation extrac-
tor, one can easily construct a storyline from text
and capture the trend of temporally connected event
mentions. TEMPREL extraction is also broadly ben-
eficial to various downstream tasks including clin-
ical narrative processing (Jindal and Roth, 2013;
Bethard et al., 2016), question answering (Llorens
et al., 2015; Meng et al., 2017; Stricker, 2021), and
schema induction (Chambers and Jurafsky, 2009;
Wen et al., 2021; Li et al., 2021).

Most existing TEMPREL extraction models are
developed with data-driven machine learning ap-
proaches, for which recent studies also incorporate

A) I went to e1:SEE the doctor. However, I was
more seriously e2:SICK. =⇒ e1 AFTER e2

B) Microsoft said it has e3:IDENTIFIED three
companies for the China program to run through
June. The company also e4:GIVES each partici-
pating startup in the Seattle program $20,000 to
create software. =⇒ e3 BEFORE e4

Figure 1: Examples of unfaithful extractions. BEFORE
and AFTER that follow the arrows denote the extracted
TEMPREL’s from the sentences by (Zhou et al., 2021).

advanced learning and inference techniques such as
structured prediction (Ning et al., 2017, 2018b; Han
et al., 2019; Wang et al., 2020; Tan et al., 2021),
graph representation (Mathur et al., 2021; Zhang
et al., 2022), data augmentation (Ballesteros et al.,
2020; Trong et al., 2022), and indirect supervision
(Zhao et al., 2021; Zhou et al., 2021). These mod-
els are prevalently built upon pretrained language
models (PLMs) and fine-tuned on a small set of
annotated documents, e.g., TimeBank-Dense (Cas-
sidy et al., 2014), MATRES (Ning et al., 2018c),
and TDDiscourse (Naik et al., 2019).

Though these recent approaches have achieved
promising evaluation results on benchmarks,
whether they provide faithful extraction is an un-
explored problem. The faithfulness of a relation
extraction system is not simply about how much
accuracy a system can offer. Instead, a faithful ex-
tractor should concern the validity and reliability
of its extraction process. Specifically, when there is
a TEMPREL to extract, a faithful extractor should
genuinely obtain what is described in the context
but not give trivial guesses from surface names of
events or most frequent labels. Besides, when there
is no relation described in the context, the system
should selectively abstain from prediction.

We observe that in recent models, biases from
prior knowledge in PLMs and statistically skewed
training data often lead to unfaithful extractions
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(see Fig. 1). Example A thereof exhibits a case
where the model adheres to the prior knowledge
where people usually see the doctor after getting
sick, but in this context getting sick is obviously
a consequent of seeing the doctor. In Example
B, BEFORE is extracted due to statistical biases
learned from training data that BEFORE is not only
the most frequent TEMPREL between identify and
give, but is also the most frequent TEMPREL be-
tween the first and second event in narrative order
(Gee and Grosjean, 1984). However, with a closer
inspection, it can be noticed that the two events in
Example B are involved in different programs, one
in the China program, the other in the Seattle pro-
gram. Therefore, the system should abstain from
prediction and give VAGUE as output.

In this paper, we seek to improve the faithfulness
of TEMPREL extraction models from two perspec-
tives. The first perspective is to guide the model to
genuinely extract the described TEMPREL based
on a relation-mentioning context. To achieve this
goal, we conduct counterfactual analysis (Niu et al.,
2021) to capture and attenuate the effects of two
typical types of training biases: event bias caused
by treating event trigger names as shortcuts for
TEMPREL prediction, and label bias that causes
the model prediction to lean towards more frequent
training labels. We also propose to affix tense in-
formation to event mentions to explicitly place an
emphasis on the contextual description.

The second perspective is to teach the model
to abstain from extraction when no relation is de-
scribed in the text. To know when to abstain, the
models need to have a good estimate of the correct-
ness likelihood. By incorporating Dirichlet Prior
(Malinin and Gales, 2018, 2019) in the training
phase of current TEMPREL extraction models, we
improve the predictive uncertainty estimation of
the models and make the TEMPREL predictions
more selective. Furthermore, since the counterfac-
tual analysis component (from the first perspective)
may shift the model-predicted categorical distri-
bution, we also employ temperature scaling (Guo
et al., 2017) in inference to allow for recalibrated
confidence measure of the model.

The technical contributions of our work are two-
folds. First, to the best of our knowledge, this
is the first study on the faithfulness issue of event-
centric information extraction. Evidently, the devel-
opment of a faithful TEMPREL extraction system
contributes to more robust and reliable machine

comprehension of events and narratives. Second,
we propose training and inference techniques that
can be easily plugged into existing neural TEM-
PREL extractors and effectively improve model
faithfulness by mitigating prediction shortcuts and
enhancing the capability of selective prediction.

Our contributions are verified with TEMPREL

extraction experiments conducted on MATRES
(Ning et al., 2018c), TDDiscourse (Naik et al.,
2019) and distribution-shifted version of MATRES
(MATRES-DS). Particularly, we evaluate on how
precise and selective our TEMPREL extraction
method is on in-distribution data, and how well
it generalizes under distribution shift. Experimen-
tal results demonstrate that the techniques explored
within the two aforementioned perspectives bring
about promising results in improving faithfulness
of current models. In addition, we also apply our
method to the task of timeline construction (Do
et al., 2012), showing that faithful TEMPREL ex-
traction greatly benefits the accurate construction
of timelines.

2 Related Work

Event TEMPREL Extraction. Recent event TEM-
PREL extraction approaches are mainly built on
PLMs to obtain representations of event mentions
and are improved with various learning and infer-
ence methodologies. To improve the quality of
event representations, Mathur et al. (2021) embrace
rhetorical discourse features and temporal argu-
ments; Trong et al. (2022) select optimal context
sentences via reinforcement learning to achieve
SOTA performances; while Liu et al. (2021b);
Mathur et al. (2021); Zhang et al. (2022) employ
graph neural networks to avoid complex feature
engineering. From the learning perspective, Ning
et al. (2018a), Ballesteros et al. (2020), and Wang
et al. (2020) enrich the models with auxiliary train-
ing tasks to provide complementary supervision
signals, while Ning et al. (2018b), Zhao et al.
(2021) and Zhou et al. (2021) bring into play dis-
tant supervision from heuristic cues and patterns.
Nevertheless, recent data-driven models risk am-
plifying bias by exacerbating biases present in the
pretraining and task training data when making
predictions (Zhao et al., 2017). To rectify the mod-
els’ biases towards prior knowledge in PLMs and
shortcuts learned from biased training examples,
our work proposes several training and inference
techniques, seeking to improve the faithfulness of
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neural TEMPREL extractors as described in §1.

Bias Mitigation in NLP. Methods for mitigating
prediction biases can be categorized as retraining
and inference (Sun et al., 2019). Retraining meth-
ods address the bias in early stages or at its source.
For instance, Zhang et al. (2017) masks the enti-
ties with special tokens to prevent relation extrac-
tion models from learning shortcuts from entity
names, whereas several works conduct data aug-
mentation (Park et al., 2018; Alzantot et al., 2018;
Jin et al., 2020; Wu et al., 2022) or sample reweight-
ing techniques (Lin et al., 2017; Liu et al., 2021a)
to reduce biases in training. However, masking
would result in the loss of semantic information
and performance degradation, and it is costly to
manipulate data or find proper unbiased data in
temporal reasoning. Directly debiasing the training
process may also hinder the model generalization
on out-of-distribution (OOD) data (Wang et al.,
2022). Therefore, inspired by several recent stud-
ies on debiasing text classification or entity-centric
information extraction (Qian et al., 2021; Nan et al.,
2021), our work adopts counterfactual inference to
measure and control prediction biases based on
automatically generated counterfactual examples.

Selective Prediction. Neural models have be-
come increasingly accurate with the advances of
deep learning. In the meantime, however, they
should also indicate when their predictions are
likely to be inaccurate in real-world scenarios. A
series of recent studies have focused on resolving
model miscalibration by measuring how closely
the model confidences match empirical likelihoods.
Among them, computationally expensive Bayesian
(Gal and Ghahramani, 2016; Küppers et al., 2021)
and non-Bayesian ensemble (Lakshminarayanan
et al., 2017; Beluch et al., 2018) methods have
been adopted to yield high quality predictive un-
certainty estimates. Other methods have been pro-
posed to use uncertainty reflected from model pa-
rameters to assess the confidence, including sharp-
ness (Kuleshov et al., 2018) and softmax response
(Hendrycks and Gimpel, 2017; Xin et al., 2021).
Another class of methods adjust the models’ out-
put probability distribution by altering loss func-
tion in training via label smoothing (Szegedy et al.,
2016) and Dirichlet Prior (Malinin and Gales, 2018,
2019). Besides, temperature scaling (Guo et al.,
2017) also serves as a simple yet effective post-
hoc calibration technique. In this paper, we model
TEMPREL’s with Dirichlet Prior in learning, and

during inference we employ temperature scaling to
recalibrate confidence measure of the model after
bias mitigation.

3 Preliminaries

A document D is represented as a sequence of
tokens D = [w1, · · · , e1, · · · , e2, · · · , wm], where
some tokens belong to the set of annotated event
triggers, i.e., ED = {e1, e2, · · · , en}, and the rest
are other lexemes. For a pair of events (ei, ej), the
task of TEMPREL extraction is to predict a relation
r fromR∪ {VAGUE}, whereR denotes the set of
TEMPREL’s. An event pair is labeled VAGUE if the
text does not express any determinable relation that
belongs toR. Let y(i,j) denote the model-predicted
categorical distribution overR.

In order to provide a confidence estimate y that
is as close as possible to the true probability, we
first describe three separate factors (Malinin and
Gales, 2018) that attribute to the predictive uncer-
tainty for an AI system, namely epistemic uncer-
tainty, aleatoric uncertainty, and distributional un-
certainty. Epistemic uncertainty refers to the de-
gree of uncertainty in estimating model parameters
based on training data, whereas aleatoric uncer-
tainty results from data’s innate complexity. Distri-
butional uncertainty arises when the model cannot
make accurate predictions due to the lack of famil-
iarity with the test data.

We argue that the way of handling VAGUE rela-
tions in existing TEMPREL extractors is problem-
atic since they typically merge VAGUE intoR. In
fact, VAGUE relations are complicated exception
cases in the IE task, yet the annotation of such
exceptions are never close to exhaustive in bench-
marks, or even not given (Naik et al., 2019). In this
work, we consider VAGUE relations as a source of
distributional uncertainty and separately model
them. Details are introduced in §4.2.

4 Methods

In this section, we first present how we obtain event
representations and categorical distribution y in a
local classifier for TEMPREL (§4.1). Then we intro-
duce proposed learning and inference techniques to
improve model faithfulness from the perspectives
of selective prediction (§4.2) and prediction bias
mitigation (§4.3), before we combine these two
techniques with temperature scaling and introduce
the OOD detection method in §4.4.
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4.1 Local Classifier
Given that the context around an event pair (ei, ej)1

has linguistic signals and temporal cues that are
beneficial to TEMPREL prediction, the context of
(ei, ej) considered in our model starts from the sen-
tence before ei and ends at the sentence after ej .
Inspired by Zhou and Chen (2021) for improving
entity representation by prepending entity type in-
formation to entity mention spans, we add tense
information of events into event trigger represen-
tations in this work. Accordingly, we enclose ei
and ej with “@” and “#” respectively2 and prepend
their tense information to their spans with “∗” and
“∧”. We provide a detailed example for affixing
tense information in Appx. §A.1.

To characterize event pair (ei, ej), we obtain the
two events’ contextual representations and atten-
tion heads from PLMs. The classifer is trained to
uncover the context that is critical to both events
by multiplying their attentions before we send the
concatenation of token embeddings and attention
multiplication to a multi-layer perceptron (MLP)
with |R| outputs. In this fashion, we obtain the
|R|-dimensional logits vector z(i,j) and categorical
distribution y(i,j), where the probability of a label
r ∈ R is given by the softmax function σ(·):

yr = σ(z)r =
ezr

∑|R|
k=1 e

zk
. (1)

4.2 Parameterization of Dirichlet Prior
As discussed in preliminaries (§3), VAGUE corre-
sponds to complicated exception cases in inference.
We model them as out-of-distribution (OOD) cases
which are different from in-distribution (ID) data
describing the relations inR. The goal of provid-
ing high-quality confidence estimate y requires the
model to yield a sharp predicted distribution cen-
tered on one of the labels inR when it is confident
and yield a flat distribution overR for OOD inputs,
as is shown in Fig. 2. To achieve this goal, we
explicitly parameterize a prior distribution over
categorical distributions. Because of the tractable
analytic properties3 of Dirichlet distribution (Eq. 2),
we choose to parameterize a sharp and a flat Dirich-
let prior over the model-predicted categorical dis-
tribution for ID and OOD inputs, respectively. The

1For event pair (ei, ej) we assume ei is the first event in
narrative order if i < j.

2Note that similar to typed entity marker (punct) by Zhou
and Chen (2021), such enclosing has the benefit of highlight-
ing mention spans without introducing new special tokens.

3Γ(·) in Eq. 2 denotes the gamma function.

Figure 2: An illustration for desired behaviors of model
predicted categorical distribution.

Dirichlet distribution is parameterized by its con-
centration parameters α, where α0 is the precision
of Dirichlet distribution. Higher values of α0 lead
to sharper, more confident predicted distributions.

Dir(y;α) =
Γ(α0)∏|R|
k=1 Γ(αk)

|R|∏

k=1

yαk−1
k ,

αk > 0, α0 =

|R|∑

k=1

αk .

(2)

To attain the aforementioned behaviors, on ID
data the model is trained to minimize the KL diver-
gence between a sharp Dirichlet distribution and
the model-predicted categorical distribution:

LID = EpID(x)[KL[p(y) ∥ Dir(y;αs)]], (3)

where pID(x) denotes ID data and αs denotes con-
centration parameters of the sharp Dirichlet distri-
bution. On OOD data, the model minimizes the KL
divergence between a flat Dirichlet distribution and
the model-predicted categorical distribution:

LOOD = EpOOD(x)[KL[p(y) ∥ Dir(y;αf )]], (4)

where pOOD(x) denotes OOD data and αf denotes
the concentration parameters of the flat Dirichlet
distribution. And the total loss of the model is

L = λ1LID + λ2LOOD, (5)

where the λ’s are hyperparameters to balance the
influence of each loss. With the parameterization of
Dirichlet prior, the learning process seeks to partly
enhance the model’s faithfulness by outputting con-
fident estimates when it encounters ID inputs, and
outputting equivocal estimates when the context
does not express any TEMPREL in the meantime.

4.3 Counterfactual Analysis
After looking into the selective prediction perspec-
tive of faithfulness, we now address the other per-
spective: to mitigate biases from pre-trained knowl-
edge and the task training data during the inference
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Figure 3: An overview of our approach to improving model faithfulness. In the training phase we obtain the
model-predicted categorical distribution y with a neural encoder and parameterize a Dirichlet Prior over y. And
then we conduct counterfactual analysis to distill and mitigate biases during inference before leveraging temperature
scaling to obtain recalibrated and debiased y.

stage. Given that we have observed two types of
biases in existing models, namely the event trig-
ger bias and the frequent label bias, we ask the
following questions:

• What will the model prediction be if seeing the
full context?

• What will the model prediction be if seeing only
the event tiggers?

• Will the model predict anything even if it sees
nothing?

Inasmuch as we have described the learning pro-
cess of the model, we know how to obtain model
prediction given full context and can easily answer
the first question. The second and third one, how-
ever, are hypothetical questions whose answers re-
flect the confounding biases that we would like
to mitigate. With attention masks in recent PLMs
(Devlin et al., 2019; Liu et al., 2019; Joshi et al.,
2020; Lan et al., 2019), our model can be endowed
with imagination ability effortlessly. By inputting
a counterfactual instance with the context masked
while maintaining the spans of event triggers to the
model, we can obtain the model prediction given
event trigger names only, which we denote by y̌.
And by sending an empty (counterfactual) instance,
we obtain the model prediction where no textual
information is given, which we denote by ȳ. In-
tuitively, the two terms y̌ and ȳ thereof provide
measurements for the trigger bias and label bias.

Our goal is to use the biases assessed from model
prediction (on counterfactual instances) to generate
debiased categorical distribution. We remove the
event trigger bias and the frequent label bias via
element-wise subtraction, which is proved to be
simple yet empirically effective (Qian et al., 2021):

y′ = y − β1y̌ − β2ȳ, (6)

where y′ denotes the debiased categorical distribu-
tion and the β’s are independent parameters for bal-
ancing the terms that represent biases. We find the
optimal values for β1 and β2 on different datasets4

via grid beam search (Hokamp and Liu, 2017):

β̂1, β̂2 = argmax
β1,β2

ψ(β1, β2), β1, β2 ∈ [a, b], (7)

where ψ is a metric function (e.g., F1 scores) for
evaluation, and a, b are the search boundaries.

In a nutshell, we obtain debiased categorical dis-
tribution by removing biases distilled via counter-
factual inputs, thus encouraging the model to ex-
tract genuinely based on the contextual content.
Nevertheless, the debiased model is not yet perfect.
A minor drawback lies in that its confidence es-
timates might have been shifted by element-wise
subtraction in Eq. 6 though it provides predictions
with good evaluation results. Therefore we employ
temperature scaling as our last step to allow for
recalibrated confidence measure of the model.

4.4 Temperature Scaling and OOD Detection

The subtraction operation in Eq. 6 might result in
negative values in y′. To provide a proper estimate
of the correctness likelihood, we first normalize the
probabilities in y′, where we replace the negative
values with a small positive value and clips the
values that are greater than 1:

norm(y′r) =
{ ϵ, if y′r < 0

1− ϵ, if y′r > 1
y′r, otherwise

(8)

4Using the development splits of datasets.
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where ϵ denotes a small positive number, r ∈ R.
And then we use the inverse function of softmax to
obtain the debiased logits vector z′:

z′ = σ−1(norm(y′)), (9)

In this way we are able to apply temperature scaling
(Guo et al., 2017) over z′ and get the recalibrated
and debiased categorical distribution ŷ:

ŷ = σ(z′/T ), (10)

where T > 0 denotes the temperature5.
To detect OOD inputs, we need to measure the

uncertainty of the model predictions. We use the
entropy (Eq. 11) of the final categorical distribution
ŷ, which captures the uncertainty encapsulated in
the entire distribution. On the dev set with VAGUE

examples, we find the optimal threshold of H[ŷ]
below which the model predictions are considered
equivoques and the inputs are OOD.

H[ŷ] = −
|R|∑

k=1

ŷk ln(ŷk) . (11)

To sum up, we improve the model faithfulness
in both training and inference phase with robust
event presentations, Dirichlet Prior parameteriza-
tion, counterfactual analysis and temperature scal-
ing. The entire workflow is shown in Fig. 3.

5 Experiments

In this section, we describe the experiments6 on
two tasks: TEMPREL extraction and timeline con-
struction. We first introduce the datasets that we
adopt or create for evaluation (§5.1), followed by
the evaluation protocols (§5.2). Evaluation results
are discussed in §5.3 before we provide a detailed
ablation study and case study in §5.4 and §5.5.

5.1 Datasets
We evaluate using the following datasets, for which
statistics are given in Appx. §A.4.

MATRES (Ning et al., 2018c) is a TEMPREL

benchmark annotated with the multi-axis scheme
that helps achieve higher inter-annotator agree-
ments (IAA) than previous benchmark datasets
(Cassidy et al., 2014; Styler et al., 2014; O’Gorman

5T is obtained by minimizing the negative log likelihood
on the dev set. We refer readers to Appx. §A.3 for details.

6We refer readers to Appx. §A.5 for the discussion of
experimental setup.

et al., 2016). Four relations are annotated for the
start time comparison of event pairs in 275 docu-
ments, namely BEFORE, AFTER, SIMUTANEOUS,
and VAGUE. We train our model on the training
set of MATRES, and evaluate our model on the
dev and test sets of MATRES, MATRES-DS and
TDDiscourse, which we introduce next.

MATRES-DS is an evaluation dataset that we cre-
ated with distribution shifts (DS) compared to MA-
TRES. Since one of our goals is to mitigate the
bias of event triggers in the training data, we ex-
amine whether our proposed model stays uninflu-
enced when the distribution of event triggers is
altered. We replace frequent triggers in the MA-
TRES dev and test sets that appear within the top
5K frequent lemmas7 with their uncommon syn-
onyms, and replace infrequent triggers with their
frequent synonyms from the list of frequent lem-
mas. MATRES-DS also presents a mismatch be-
tween the training and test distributions, or dataset
shift (Quinonero-Candela et al., 2008), where dis-
tributional uncertainty often arises.

TDDiscourse (Naik et al., 2019) is a dataset for
discourse-level event temporal ordering, in which
TEMPREL’s between global long-distance event
pairs are annotated. As another data source with
distribution shifts compared to MATRES, we adopt
the manually annotated subset of TDDiscourse,
namely TDD-man, in our experiments. The TEM-
PREL set RT 8 annotated in TDDiscourse is a su-
perset of the TEMPREL set RM defined in MA-
TRES. Given that TDD-man serves as evaluation
data on which we do not train our model, a relation
in RM ∪ {VAGUE} is predicted for each pair of
events in the test set of TDD-man.

5.2 Evaluation Protocols

For event TEMPREL extraction, we compare our
model with the current and previous SOTA models
(Trong et al., 2022; Mathur et al., 2021) trained
on MATRES. The models are evaluated on not
only how precise and selective their extraction
is on ID data (MATRES), but are also examined
for their generalizability under distribution shifts
(MATRES-DS and TDD-man). We report micro-
F1 score as an evaluation metric following previous
papers. We also report macro-F1, which reflects the
fairness of model prediction, and expected calibra-

7https://www.wordfrequency.info/
8RT = {BEFORE, AFTER, SIMULTANEOUS, INCLUDES,

IS INCLUDED}.
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MATRES MATRES-DS TDD-man
Model micro-F1 macro-F1 ECE micro-F1 macro-F1 ECE micro-F1 macro-F1 ECE
Mathur et al. (2021) 82.3 55.7 12.8 76.7 52.3 16.3 82.1 52.8 20.3
Trong et al. (2022) 83.4 56.4 13.0 77.9 52.7 15.4 82.7 52.3 14.2
Ours 82.7 56.3 3.4 78.7 54.7 4.0 83.1 52.9 5.8

Ours w/o TI 81.8 55.2 2.0 77.3 52.4 8.6 79.5 66.4 21.9
Ours w/o DP 81.3 55.2 11.8 77.5 52.0 12.9 79.3 50.5 14.5
Ours w/o CA 80.3 54.7 5.0 78.6 52.9 3.4 83.0 52.7 6.4
Ours w/o TS 82.6 56.1 49.6 78.7 54.7 15.8 83.1 52.9 31.0

Table 1: Model performance on MATRES, MATRES-DS, and TDD-man for event TEMPREL extraction. The
results of ablation study are shown in the last four rows, where TI, DP, CA and TS respectively stand for the four
components in our model: Tense Information, Dirichlet Prior, Counterfactual Analysis and Temperature Scaling.
Note that the numbers we report on MATRES-DS and TDD-man are model performances under distribution shifts.

MATRES MATRES-DS TDD-man
Model Acc MED Acc MED Acc MED
Mathur et al. (2021) 43.5 1.44 32.1 1.75 37.3 1.49
Trong et al. (2022) 44.7 1.36 28.0 1.96 30.5 1.55
Ours 48.2 1.28 43.5 1.55 51.7 1.06

Ours w/o TI 45.8 1.37 34.5 1.66 27.1 1.87
Ours w/o DP 38.7 1.48 28.6 1.93 23.3 1.85
Ours w/o CA 43.5 1.34 39.3 1.63 49.7 1.11
Ours w/o TS 48.2 1.28 43.5 1.55 51.7 1.06

Table 2: Model performance on MATRES, MATRES-
DS, and TDD-man for timeline construction. The met-
rics are exact match accuracy (Acc) and minimum edit
distance (MED) between prediction and ground truth.

tion error (ECE) that approximates the difference
in expectation between confidence and accuracy.
The definition of ECE is provided in Appx. §A.2.

We also apply our model to the timeline con-
struction task, where the goal is to sort a list of
events in a document in chronological order. To
construct the timeline, the model first constructs a
directed graph G with predicted non-VAGUE TEM-
PREL’s between every event pairs. Then, edges in
G with lowest confidence scores are removed until
G becomes a directed acyclic graph (DAG). Finally,
the timeline is generated as the linear ordering of
the vertices in the DAG by topological sorting. In
this way, we circumvent the possible conflicts in
model predictions for timeline construction and the
faithful removal of least confident edges serves as
an examination on the quality of model-predicted
confidence. On the three datasets, we report the
accuracy of exact match and the average minimum
edit distance between predicted and ground truth
timelines as evaluation metrics.

5.3 Results

In Tab. 1, we report the TEMPREL extraction re-
sults. On MATRES, the SOTA model (Trong et al.,
2022) still offers the best performance in terms of

micro-F1 whereas our model achieves compara-
ble macro-F1 score and lower calibration error. In
contrast, our proposed faithful TEMPREL extractor
outperforms baseline methods in terms of all eval-
uation metrics under the dataset shifts caused by
replacement of event triggers in MATRES-DS and
longer context distances between global event pairs
in TDD-man. Specifically, our model shows a sig-
nificant gain of 2.0% macro-F1 and 0.8% micro-F1

over the SOTA model on MATRES-DS and sur-
passes the previous SOTA model on TDD-man by
1.0% micro F1, not to mention the improvements
on confidence calibration. We attribute this supe-
rior performance under dataset shifts to the mitiga-
tion of biases from prior knowledge and training
set statistics as well as the techniques we employ
to improve predictive uncertainty estimation. For a
visual illustration of model calibration, we present
the reliability diagram that plots the expected sam-
ple accuracy as a function of confidence in Fig. 4.

Tab. 2 exhibits similar observations: our model
outperforms both baselines on timeline construc-
tion by a large margin in terms of both metrics.
Specifically, under dataset shifts within MATRES-
DS and TDD-man, our model surpasses the best
baseline by 11.4% and 14.4% in accuracy, while
drastically reducing the minimum edit distance by
relatively 11.4% and 28.9%. Evidently, the capa-
bilities of selective prediction and bias mitigation
make our model stand out in complex scenarios
like timeline construction, whereas the bias and
inferior calibration of existing models exacerbate
unfaithful extractions when multiple decisions have
to be made simultaneously.

5.4 Ablation Study

To analyze the effect of each model component, we
conduct an ablation study of our model where we
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Figure 4: Reliability diagram and confidence histogram
of our model predictions on test set of MATRES.

remove one component at a time (see Tab. 1)9. We
observe on MATRES that, without the counterfac-
tual analysis component, the model performance
becomes worse by 2.4% in micro-F1 and 1.6% in
macro-F1. Under dataset shifts, the model perfor-
mance is reduced by 3.8% in micro-F1 and 2.4% in
macro-F1 on TDD-man without the parameteriza-
tion of Dirichlet Prior. The model performance in
terms of F1 scores is slightly influenced by taking
away the temperature scaling component while the
model calibration severely degrades.

From the ablation results in Tab. 2, we notice
that temperature scaling has modest effects on the
model performances, while Dirichlet Prior plays
the most important role towards faithful timeline
construction. It is also noteworthy that tense infor-
mation considerably benefits the model to general-
ize well under distribution shifts in that it provides
a useful feature applicable to all domains.

5.5 Case Study

As shown in Fig. 5, we provide a case study on time-
line construction for three events. The reason why
our model predicts AFTER for the third pair is prob-
ably due to the misleading temporal cues in text,

9We leverage cross-entropy as the training loss when we
remove Dirichlet Prior in the training phase.

A new Essex County task force began delving
Thursday into the e1:SLAYINGS of 14 people ...
officials have been e2:CAREFUL not to draw any
firm conclusions, leaving open the possibility of
a serial killer ... “I haven’t e3:SEEN a pattern yet,”
said Patricia Hurt, the Essex County prosecutor,
who created the task force on Tuesday.

Model (e1, e2) (e2, e3) (e1, e3) Timeline
Gold B B B (e1, e2, e3)
Ours B, 0.92 B, 0.72 A, 0.51 (e1, e2, e3)
Ours w/o TI B, 0.99 A, 0.53 B, 0.63 (e1, e3, e2)
Ours w/o DP B, 0.92 A, 0.34 B, 0.52 (e1, e3, e2)
Ours w/o CA B, 0.94 B, 0.43 B, 0.49 (e1, e2, e3)
Ours w/o TS B, 0.43 B, 0.38 A, 0.36 (e1, e2, e3)

Figure 5: Case study on timeline construction for one of
the documents in TDD-man. The table shows predicted
TEMPREL’s and confidence for three event pairs, where
B stands for BEFORE and A stands for AFTER. The cells
in light red and light blue are wrong predictions and
relations removed in timeline construction, respectively.

Thursday and Tuesday, while the long distance be-
tween events undermines the confidence for this
prediction. When our model builds a directed graph
with three relations, a cycle is identified and the
edge with lowest confidence is removed from the
graph, and thus our model constructs the correct
timeline. Without tense information, the model
makes wrong prediction concerning the second
event whose trigger is an adjective. And without
Dirichlet Prior or temperature scaling, the model
calibration becomes noticeably worse.

6 Conclusion

In this paper, we investigate on improving faithful-
ness for event TEMPREL extraction from two per-
spectives. To enhance the selectiveness of model
predictions, we parameterize a Dirichlet Prior over
the model-predicted categorical distribution to reg-
ularize the model to behave differently with ID
and OOD data. To mitigate two types of biases
from PLMs and training data, we add tense infor-
mation to obtain robust event representations and
conduct a counterfactual analysis to reduce the risk
of carrying prediction shortcuts into inference. We
also employ temperature scaling to combine the
two faithful perspectives, which recalibrates the
confidence measure of the model after bias mitiga-
tion. Through experimental analysis on MATRES,
MATRES-DS, and TDDiscourse, we demonstrate
that our model faithfully extracts event temporal re-
lations and timelines from text, so as to generalize
well under distribution shifts.
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Limitations

As the event representation introduced in our
method is augmented with tense information, it
potentially leads to limitations when applying to
languages other than English, especially tenseless
languages and languages having fewer tenses. The
training of our models also requires considerable
GPU resources which might produce environmen-
tal impacts, though the inference stage does not
take up much computational resources.

Ethics Statement

There are no direct societal implications of this
work. The proposed method attempts to provide
high-quality and faithful event TEMPREL extrac-
tion and timeline construction. We believe that
the intellectual merits of developing robust event-
centric information extraction methods are demon-
strated by this work. For any information ex-
traction methods, real-world open source articles
used to extract information may contain societal
biases. Extracting event-event relations from ar-
ticles with such biases may spread the bias into
the acquired knowledge. Yet we believe that the
proposed method can benefit various downstream
NLP/NLU tasks like event prediction, task-oriented
dialogue systems and risk detection.
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A Appendix

A.1 Example of event context affixed tense
information

Original context: [CLS] For his part, Fidel
Castro is the ultimate political survivor.[SEP]
People have PREDICTED his demise so many
times, and the US has TRIED to hasten it on
several occasions.[SEP] Time and again, he
endures.[SEP]

Context with affixed tense information: [CLS]
For his part, Fidel Castro is the ultimate polit-
ical survivor.[SEP] People have @ * Present
Perfect Simple * PREDICTED @ his demise so
many times, and the US has # ∧ Present Perfect
Simple ∧ TRIED # to hasten it on several occa-
sions.[SEP] Time and again, he endures.[SEP]

Figure 6: An example of the original context of event
pair (PREDICTED, TRIED) and the context after affixing
tense information to corresponding event spans.

A.2 Definition of ECE
Expected Calibration Error (ECE) metric (Guo
et al., 2017) measures exactly the difference in
expectation between confidence and accuracy. Em-
pirically it is approximated by dividing the data
into M confidence based bins, i.e., Bm (where
m ∈ {1, 2, ...,M}) contains all datapoints i for
which predicted confidence pi lies in (m−1M , mM ]. If
acc(Bm) and conf(Bm) denotes the average accu-
racy and prediction confidence for the points in
Bm, ECE is defined as:

ECE =
M∑

m=1

|Bm|
n

∣∣∣∣ acc(Bm)− conf(Bm)

∣∣∣∣, (12)

where n is the number of samples. The difference
between acc and conf for a given bin represents the
calibration gap (red bars in reliability diagrams –
e.g. Fig. 4). We use ECE as the primary empirical
metric to measure model calibration.

A.3 Negative Log Likelihood
Negative log likelihood is a standard measure of
a probabilistic model’s quality. It is also referred
to as the cross entropy loss in the context of deep
learning. Given a probabilistic model π̂(Y |X) and
n samples, NLL is defined as:

L = −
n∑

i=1

log(π̂(yi|X̄i)) (13)

It is a standard result that, in expectation, NLL
is minimized if and only if π̂(Y |X) recovers the
ground truth conditional distribution π(Y |X). The
temperature T in temperature scaling is optimized
with respect to NLL on the dev sets.

A.4 Dataset Statistics
MATRES is composed of 275 news documents
and the train/dev/test split is 183/72/20 docu-
ments where 6336/6404/818 event pairs are an-
notated respectively. The same statistics hold for
MATRES-DS since we only change the event trig-
gers in the inputs instead of the labels. In TD-
Discourse, 4,000/650/1,500 and 32609/1435/4258
TEMPREL’s are annotated in the train/dev/test sets
of TDD-man and TDD-Auto, respectively.

A.5 Experimental Setup and Hyperparameter
Setting

In the training phase, we fine-tune the pre-trained
1024-dimensional Big Bird (Zaheer et al., 2020)
to encode the context of event triggers. We obtain
the tense information of event triggers with an off-
the-shelf tense identifier10. The parameters of the
model are optimized using AMSGrad (Reddi et al.,
2018) with the learning rate set to 5× 10−6, batch
size set to 20, and the training process is limited to
40 epochs on a server with Nvidia A6000 GPU. All
experiments are repeated with five different random
seeds and the results reported are their average. To
obtain αs in Eq. 3, we smooth the target means to
redistribute a small amount of probability density
to the other corners of the Dirichlet. In our exper-
iments, we set λ1 = λ2 = 1 in Eq. 5. On the dev
set of TDD-man the optimal β’s of the model in
Eq. 6 are β1 = −0.4, β2 = 0.6, where the search
bounds, a and b equal to -1 and 1.

10https://tense-sense-identifier.
herokuapp.com/
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Abstract

Logical Table-to-Text (LT2T) generation is
tasked with generating logically faithful sen-
tences from tables. There currently exists two
challenges in the field: 1) Faithfulness: how
to generate sentences that are factually cor-
rect given the table content; 2) Diversity: how
to generate multiple sentences that offer dif-
ferent perspectives on the table. This work
proposes LOFT, which utilizes logic forms
as fact verifiers and content planners to con-
trol LT2T generation. Experimental results
on the LOGICNLG dataset demonstrate that
LOFT is the first model that addresses unfaith-
fulness and lack of diversity issues simultane-
ously. Our code is publicly available at https:
//github.com/Yale-LILY/LoFT.

1 Introduction

Table-to-Text (T2T) generation aims to produce
natural language descriptions from structured ta-
bles. A statement generated from tabular data can
be inferred based on different levels of information
(e.g., value of a specific cell, logical operation re-
sult across multiple cells). Although current T2T
models (Lebret et al., 2016; Wiseman et al., 2017;
Puduppully et al., 2019; Parikh et al., 2020) have
shown remarkable progress in fluency and coher-
ence, they mainly focus on surface-level realiza-
tions without much logical inference.

Recently, Chen et al. (2020a) proposed LOG-
ICNLG, which is tasked with generating textual
descriptions that require logical reasoning over tab-
ular data (i.e., LT2T generation). LT2T genera-
tion is challenging as it requires a model to learn
the logical inference knowledge from table-text
pairs and generate multiple factually correct sen-
tences. Another challenge for LT2T generation is
the diversity of generated text. Natural Language
Generation (NLG) encourages the diverse output
of statements over a single input, as it provides

∗Equal Contributions.

The average earnings of Hale Irwin and Dana Quigley is 19,663,467
Five of the players are from the same country, United States
Dana Quigley had less wins than Larry Nelson
Most of the players had earnings less than 18,964,040
Larry Nelson had the least number of earnings

Hale Irwin and Gil Morgan represent the same country
Hale Irwin had more wins than Gil Morgan
Hale Irwin had more earnings than Gil Morgan
Hale Irwin had the more wins than Bruce Fleisher
Bruce Fleisher had the highest earnings of any player with 13,990,356

1 Hale Irwin United States 24,920,665 45 1 Hale Irwin … 24,920,665 45
2 Gil Morgan United States 18,964,040 25 2 Gil Morgan … 18,964,040 25
3 Dana Quigley United States 14,406,269 11 3 Dana Quigley … 14,406,269 11
4 Bruce Fleisher United States 13,990,356 18 4 Bruce Fleisher … 13,990,356 18
5 Larry Nelson United States 13,262,808 19 5 Larry Nelson … 13,262,808 19

1 Hale Irwin United States 24,920,665 45
2 Gil Morgan United States 18,964,040 25
3 Dana Quigley United States 14,406,269 11
4 Bruce Fleisher United States 13,990,356 18
5 Larry Nelson United States 13,262,808 19

…Player Earnings Wins

Rank Player Country Earnings Wins

RankRank Player Country WinsEarnings

2008 Champions Tour

Five statements generated by R2D2

Five statements generated by LOFT

Figure 1: An example of logical table-to-text genera-
tion. (a) Statements generated by previous models (Nan
et al., 2022): the generation suffers from 1) Lack of
diversity, as three of the generated statements are fo-
cused on the same table regions (i.e., “Hale Irwin” and
“Gil Morgan”), and three of them use the similar rea-
soning operations (i.e., comparative); 2) Unfaithfulness,
as one of the generated statements is factually incorrect
given the table content. (b) Statements generated by
LOFT: By utilizing logic forms to control the genera-
tion, our method can generate multiple factually correct
sentences that each use a different reasoning operation
to offer various perspectives on the tabular data.

various perspectives on the data and offers users
more choices. In LT2T generation, requirements
for diversity naturally emerge from the need to ap-
ply different logical operations to extract different
levels of table information. However, current meth-
ods (Chen et al., 2021; Nan et al., 2022; Liu et al.,
2022a; Zhao et al., 2022b) that address issues of
unfaithfulness have overlooked the importance of
diversity. As shown in Figure 1, multiple state-
ments generated using current methods (Nan et al.,
2022) might only cover information from the same
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table region or logical operation. Such issues re-
lated to lack of diversity could limit the deployment
of LT2T models in the real world.

In this work, we attribute unfaithfulness and lack
of diversity to the absence of controllability over
generation. Specifically, due to the large number
of combinations of different logical operations and
table regions, the space of factually correct state-
ments is exponentially large. However, LOGIC-
NLG uses the whole table as the input, without
providing annotations related to any other explicit
control attribute. As a result, it is hard and uncon-
trollable for neural models to decide a favorable
choice of logical selections solely based on the ta-
ble input. We believe such uncontrollability leads
to unfaithfulness and lack of diversity issues.

This work proposes LOFT, a framework that
utilizes logic forms as mediators to enable con-
trollable LT2T generation. Logic forms (Chen
et al., 2020d,b) are widely used to retrieve evidence
and explain the reasons behind table fact verifica-
tion (Yang et al., 2020; Yang and Zhu, 2021; Ou
and Liu, 2022). In this work, logic forms are used
as: 1) fact verifiers to ensure the factual correctness
of each generated sentence; and 2) content planners
to control which logical operation and table region
to use during the generation. Experimental results
show that LOFT surpasses previous methods in
faithfulness and diversity simultaneously.

2 Related Work

Logical Table-to-Text (LT2T) Generation
LOGICNLG (Chen et al., 2020a) is tasked with
generating logically faithful sentences from
tables. To improve the faithfulness of generated
statements, Nan et al. (2022) trained a system both
as a generator and a faithfulness discriminator with
additional replacement detection and unlikelihood
learning tasks. Liu et al. (2022a) pre-trained a
model on a synthetic corpus of table-to-logic-form
generation. Zhao et al. (2022b) demonstrated
that faithfulness of LT2T can be improved by
pre-training a generative language model over
synthetic Table QA examples. However, these
methods overlook the importance of diversity
in T2T generation, and might generate multiple
statements that cover the same table regions or
reasoning operations. Previous methods in NLG
proposed to improve diversity by modifying the
decoding techniques (Li et al., 2016). However,
these approaches degrade faithfulness as measured

against baselines (Perlitz et al., 2022). To enable
controllable generation and improve diversity,
Perlitz et al. (2022) used logical types of statements
as a control. However, such methods still suffer
from problems related to unfaithfulness, and may
generate statements covering limited table regions.
This work proposes to leverage the logic form as a
fact checker and content planner to control LT2T
generation, which tackles the challenges about
faithfulness and diversity at the same time.

Table Fact Verification via Logic Form Logic
forms are widely used in Table Fact Verifica-
tion (Chen et al., 2020b). Specifically, given an
input statement, the model (Yang et al., 2020; Yang
and Zhu, 2021; Ou and Liu, 2022) will first trans-
late it into logic form. Then the logic form will be
executed over the table, and return true/false
as the entailment label for a given statement. While
several works (Chen et al., 2020d; Shu et al., 2021;
Liu et al., 2021) focused on generating fluent state-
ments from logic forms, the utilization of logic
forms to benefit LT2T generation is still unexplored.

3 LOFT

This section first introduces the logic form utilized,
and then delves into the training and inference pro-
cess of LOFT. We also explain how the use of
logic forms can enhance both faithfulness and text-
diversity in LT2T generation.

3.1 Logic Form Implementation
Logic forms are widely used to retrieve evidence
and explain the reasons behind table fact veri-
fication. We use the same implementation as
Chen et al. (2020d), which covers 8 types of the
most common logical operations (e.g., count, ag-
gregation) to describe a structured table. Each
logical operation corresponds to several Python-
based functions. For example, the definition
of function all_greater(view, header,
value) under “majority” category is: checking
whether all the values under header column are
greater than value, with the scope (i.e., view) of
all or a subset of table rows. The complete list of
logical operation types and corresponding function
definitions are shown in Table 4 in Appendix.

3.2 LOFT Training
Training Task Formulation Given the serialized
tabular data with selected columns as T , the train-
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LoFT

Execution result is True

concatenate

Translated Logic Form

Hale Irwin is the only 
player that has more 
than 40 wins

Prediction

Hale Irwin is the only 
player that has more 
than 40 wins

Reference

Supervise

SASP 
Logic Form Translation 

and { 
  only{filter_greater{all_rows; 
Wins; 40}}; 
  eq{hop{filter_greater{all_rows; 
Wins; 40}; Player}; Hale Irwin} 
} 

(a) LOFT training stage.

LoFT

Logic Form 1

concatenate

Logic Form 2

Logic Form 3

Logic Form n

Candidate Logic Form 
Synthesis Pipeline

Logic Form …

Generated Statement 1

Generated Statement 2

Generated Statement 3

Generated Statement n

Generated Statement …

Statement Verifier

Sample 5 Statements for 
LogicNLG Evaluation

(b) LOFT inference stage.

Figure 2: The illustration of LOFT. (a) During the training stage, the SASP model is first applied to translate each
statement in the LOGICNLG training set into the logic form. Then LOFT is trained to generate the reference
statement given the translated logic form and serialized table data. (b) During the inference stage, given each table,
the logic form synthesis pipeline was first applied to synthesize candidate logic forms that cover different table
regions and logical operations. LOFT is applied to generate statements for each candidate logic form. Then a
statement verifier is used to filter out those potentially unfaithful statements. As a result, LOFT can generate a
diverse set of faithful statements covering different table regions and reasoning operations. For each table in the
LOGICNLG test set, we randomly sampled five candidate statements for evaluation.

ing objective of LOFT is to generate a sentence
y = (y1, y2, . . . , yn) that is both fluent and faith-
ful, with the translated logic form l as control.

y = argmax

n∏

i=1

P (yi|y<i, T, l; θ) (1)

where θ denotes the parameters of a seq2seq LM.

Training Dataset Collection Since the LOGIC-
NLG dataset does not contain logic form anno-
tations, we had to augment each statement in the
training set with its corresponding logic forms. To
construct {statement, logic form} parallel data for
the LOGICNLG training set, we adapted SASP (Ou
and Liu, 2022), the state-of-the-art model for TAB-
FACT dataset, which leverages structure-aware se-
mantic parsing over tables to translate the given
statement into logic form. In this work, given an
example in the LOGICNLG training set, SASP was
applied to generate its logic form, resulting in a
total of 15,637 examples for LOFT training.

3.3 LOFT Inference
During the inference stage, for each given table,
we first applied the logic form synthesis pipeline
to synthesize multiple candidate logic forms (Liu
et al., 2022a). For each of these logic forms,
the system generates its corresponding statement.
The faithfulness of these statements were further
checked by a verifier.

Logic Form Synthesis Pipeline To synthesize
a candidate set of logic forms paired with each

supporting table, we applied a similar logic form
synthesis pipeline as Liu et al. (2022a).

We extracted templates of logic forms from the
collected LOFT training dataset. Specifically, we
categorized functions with similar definitions (e.g.,
max/min, greater/less) into smaller groups
to obtain a more abstract template. Each function
category corresponded to one unique table reason-
ing skill. For each template, we masked specific en-
tities in the logic forms as typed placeholders (i.e.,
col to denote a column header, obj to denote
an object). Finally, we obtained 45 different tem-
plates, covering 8 table logical operations. Table
4 shows the complete list of reasoning operations
and corresponding function definitions.

Given the table and each set of selected columns,
the pipeline would synthesize a total of 20 can-
didate logic forms whose execution result over
the table is True. To generate a candidate logic
form, the pipeline first sampled a logic form using a
weighted-sampling technique with the weight equal
to the template distribution in the LOFT training
dataset (Section 3.2). The weighted sampling is
to ensure that the generated candidate logic forms
follow a similar distribution as LOGICNLG. To
instantiate the sampled template, a bottom-up sam-
pling strategy is adopted to fill in each placeholder
of the template and finally generate the logic form.

Statement Generation & Verification Through
the logic form synthesis pipeline, we obtained a
large number of candidate logic forms. For each
logic form, we used LOFT to generate the cor-
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responding statement. The candidate statements
might still contain some factually incorrectness,
thus we applied an NLI-based verifier to filter out
those potentially unfaithful generations. Specifi-
cally, we used the TABFACT (Chen et al., 2020b)
dataset to train a classifier, which adopts RoBERTa-
base as the backbone. We fed each generated state-
ment and its corresponding table into the classifier,
and only kept those statements that were predicted
as entailed. Then we randomly sampled five state-
ments as the output for each table in LOGICNLG.

3.4 Enhancing LT2T via Logic Form Control

This subsection provides two perspectives to ex-
plain why logic forms can help improve both faith-
fulness and diversity of LT2T generation.

Logic Form as Content Planner Logic forms
pass column or cell values as arguments, guid-
ing the model to focus on relevant table regions.
The function category of the logic form, such as
count, helps the model better organize logical-
level content planning.

Logic Form as Fact Verifier Logic forms are
defined with unambiguous semantics, hence are re-
liable mediators to achieve faithful and controllable
logical generations. During the inference stage, we
synthesize candidate logic forms with 100% exe-
cution correctness. The sampled logic form serves
as a fact verifier and conveys accurate logical-level
facts for controllable LT2T generation.

4 Experimental Setup

We next discuss the evaluation metrics, baselines,
and implementation details for the experiments.

4.1 Evaluation Metrics

We applied various automated evaluation metrics at
different levels to evaluate the model performance
from multiple perspectives.

Surface-level Following Chen et al. (2020a), we
used BLEU-1/2/3 to measure the consistency of
generated statements with the reference.

Diversity-level We used Distinct-n (Li et al.,
2016) and self-BLEU-n (Zhu et al., 2018) to mea-
sure the diversity of five generated statements for
each table. Distinct-n is defined as the total number
of distinct n-grams divided by the total number of
tokens in the five generated statements; Self-BLEU-
n measures the average n-gram BLEU score be-

tween generated statements. We measured Distinct-
2 and Self-BLEU-4 in our experiment.

Faithfulness-level Similar as the previous
works (Chen et al., 2020a; Nan et al., 2022; Liu
et al., 2022a), we used a parsing-based evaluation
metric (i.e., SP-Acc) and two NLI-based evalua-
tion metrics (i.e., NLI-Acc and TAPEX-Acc) to
measure the faithfulness of generation. SP-Acc
directly extracts the meaning representation from
the generated sentence and executes it against
the table to verify the correctness. NLI-Acc and
TAPEX-Acc use TableBERT (Chen et al., 2020b)
and TAPEX (Liu et al., 2022b) respectively as their
backbones, and were finetuned on the TABFACT

dataset (Chen et al., 2020b). Liu et al. (2022a)
found that NLI-Acc is overly positive about the
predictions, while TAPEX-Acc is more reliable to
evaluate the faithfulness of generated sentences.

4.2 Baseline Systems

We implemented following baseline systems for the
performance comparison: GPT2-TabGen (Chen
et al., 2020a) directly fine-tunes GPT-2 over the
LOGICNLG dataset; GPT2-C2F (Chen et al.,
2020a) first produces a template which deter-
mines the global logical structure, and then gen-
erates the statement conditioned on the tem-
plate; DCVED (Chen et al., 2021) applies a de-
confounded variational encoder-decoder to reduce
the spurious correlations during LT2T generation
training; DEVTC (Perlitz et al., 2022) utilized
reasoning operation types as an explicit control
to increase the diversity of LT2T generation; and
R2D2 (Nan et al., 2022) trains a generative lan-
guage model both as a generator and a faithfulness
discriminator with additional replacement detec-
tion and unlikelihood learning tasks, to enhance
the faithfulness of LT2T generation.

4.3 Implementation Details

Following Shu et al. (2021), we converted each
logic form into a more human-readable form for
both LOFT training and inference data. LOFT
was implemented using fairseq library (Ott et al.,
2019), with BART-Large (Lewis et al., 2020) as
the backbones. All experiments were conducted
on an 8 NVIDIA RTX-A5000 24GB cluster. Both
LOFT and the statement verifier was trained for
5,000 steps with a batch size of 128. The best
checkpoints were selected by the validation loss.
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Model
Surface-level Diversity-level Faithfulness-level

BLEU-1/2/3↑ Distinct-2↑ s-BLUE-4↓ SP-Acc↑ NLI-Acc↑ TAPEX-Acc↑
GPT2-TabGen (Chen et al., 2020a) 48.8/27.1/12.6 59.0 55.3 42.1 68.7 45.0
GPT2-C2F (Chen et al., 2020a) 46.6/26.8/13.3 60.3 52.8 42.7 72.2 44.1
DCVED∗ (Chen et al., 2021) 49.5/28.6/15.3 – – 43.9 76.9 –
DEVTC‡ (Perlitz et al., 2022) 51.3/30.6/16.3 73.7 21.3 44.3 77.9 55.6
R2D2 (Nan et al., 2022) 51.8/32.4/18.6 60.1 51.5 50.8 85.6 60.2

LOFT 48.1/27.7/14.9 79.5 17.7 57.7 86.9 61.8

Table 1: Performance on the LOGICNLG test set. ‡: results from our own implementation; ∗: code not released and
we used the results reported in original papers. LOFT achieves great improvement on faithfulness and diversity.

Diversity DEVTC R2D2 LOFT
Criteria Best↑ Worst↓ Best↑ Worst↓ Best↑ Worst↓
Table Coverage 8 16 5 20 29 5
Reasoning Op 19 1 2 37 24 2

Table 2: Number of times the system was selected as
best or worst by majority vote (including ties). LOFT
outperforms other baselines in terms of diversity for
both table coverage and reasoning operations.

Model Faithfulness ↑ Fluency ↑
Agreement / κ Agreement / κ

DEVTC 63.5 / 0.69 86.5 / 0.80
R2D2 71.5 / 0.73 90.0 / 0.84
LOFT 75.0 / 0.76 88.0 / 0.81

Table 3: Human evaluation results on the criteria of
faithfulness and fluency, with the total agreement by
Fleiss’ Kappa (κ) (Fleiss, 1971). LOFT has the best
performance in terms of faithfulness, while achieving
comparable performance in fluency.

5 Experimental Results

This section discusses automated and human evalu-
ation results of different systems.

5.1 Main Results

Table 1 presents the results on LOGICNLG.
LOFT outperforms all the baselines on the crite-
ria of diversity and faithfulness, and is the first
model that achieves state-of-the-art results on both
faithfulness- and diversity-level. It is worth noting
that in the LOGICNLG setting, a generated state-
ment is allowed to cover a different table region or
reasoning operations from the references, as long
as it is fluent and factually correct. However, in
such cases, the reference-based metrics will be low,
explaining why the BLEU-1/2/3 scores of LOFT
are lower than other models.

5.2 Human Evaluation

We conducted the human evaluation with four ex-
pert annotators using the following three criteria:
(1) Faithfulness (scoring 0 or 1): if all facts con-
tained in the generated statement are entailed by
the table content; (2) Diversity (voting the best
& worst): if the five generated statements cover
information from different table regions, and use
different reasoning operations; (3) Fluency (scor-
ing 0 or 1): if the five generated statements are
fluent and without any grammar mistakes.

We chose R2D2 (Nan et al., 2022) and DE-
VTC (Perlitz et al., 2022) for comparison, as they
achieved best-performance results in faithfulness
and diversity, respectively. We sampled 50 tables
from the LOGICNLG test set. For each table, we
selected all five generated statements from each
model’s output. To ensure fairness, the model
names were hidden to the annotators, and the dis-
play order between three models was randomly
shuffled. Human evaluation results show that
LOFT delivers improvements in both faithfulness
(Table 3) and diversity (Table 2), while achieving
comparable performance in fluency (Table 3).

6 Conclusions

This work proposes LOFT, which utilizes logic
forms as fact verifiers and content planners to en-
able controllable LT2T generation. Experimental
results on LOGICNLG demonstrate that LOFT de-
livers a great improvement in both diversity and
faithfulness of LT2T generation.

Limitations

The first limitation of our approach is that LOFT
does not explore long text generation (Moosavi
et al., 2021). LOFT only supports the generation of
multiple single sentences. To enable long text gen-
eration (i.e., generate a long paragraph that delivers

558



various perspectives on the table data), a global con-
tent planner (Su et al., 2021) needs to be designed
to highlight which candidate sentences should be
mentioned and in which order. Additionally, we
believe that LOFT can also be applied to text gen-
eration over hybrid context with both textual and
tabular data (Chen et al., 2020c; Zhao et al., 2022a;
Nakamura et al., 2022).

The second limitation of our work is that the
statement verifier discussed in Section 3.3 was
trained using the same data as NLI-Acc and
TAPEX-Acc. This might bring some bias for NLI-
based metrics on faithulness-level evaluation. In
the future, we will exploit a more robust auto-
mated evaluation system (Fabbri et al., 2021; Liu
et al., 2022c) to comprehensively evaluate the LT2T
model performances from different perspectives.

Moreover, we applied the SASP model (Ou
and Liu, 2022) to convert statements into logic
forms (Section 3.2). Some converted logic forms
may be inconsistent with the original statement.
We believe that future work could incorporate the
Logic2Text (Chen et al., 2020d) dataset into train-
ing data to further improve the LOFT performance.

Ethical Consideration

We used the LOGICNLG (Chen et al., 2020a)
dataset for training and inference. LOGICNLG is
publicly available under MIT license1 and widely
used in NLP research and industry.
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Cann, Caiming Xiong, Richard Socher, and Dragomir
Radev. 2021. SummEval: Re-evaluating summariza-
tion evaluation. Transactions of the Association for
Computational Linguistics, 9:391–409.

Joseph L Fleiss. 1971. Measuring nominal scale agree-
ment among many raters. Psychological bulletin,
76(5):378.

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with ap-
plication to the biography domain. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1203–1213, Austin,
Texas. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting ob-
jective function for neural conversation models. In
NAACL 2016.

Ao Liu, Haoyu Dong, Naoaki Okazaki, Shi Han, and
Dongmei Zhang. 2022a. PLOG: Table-to-logic
pretraining for logical table-to-text generation. In
EMNLP 2022.

Ao Liu, Congjian Luo, and Naoaki Okazaki. 2021.
Improving logical-level natural language generation
with topic-conditioned data augmentation and logical
form generation. arXiv preprint arXiv:2112.06240.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. 2022b.
TAPEX: Table pre-training via learning a neural SQL
executor. In International Conference on Learning
Representations.

Yixin Liu, Alexander R. Fabbri, Pengfei Liu, Yilun
Zhao, Linyong Nan, Ruilin Han, Simeng Han,
Shafiq Joty, Chien-Sheng Wu, Caiming Xiong, and
Dragomir Radev. 2022c. Revisiting the gold stan-
dard: Grounding summarization evaluation with ro-
bust human evaluation.

559

https://doi.org/10.18653/v1/2020.acl-main.708
https://doi.org/10.18653/v1/2020.acl-main.708
https://openreview.net/forum?id=rkeJRhNYDH
https://openreview.net/forum?id=rkeJRhNYDH
https://aclanthology.org/2020.findings-emnlp.91/
https://aclanthology.org/2020.findings-emnlp.91/
https://aclanthology.org/2020.findings-emnlp.91/
https://doi.org/10.18653/v1/2021.acl-long.430
https://doi.org/10.18653/v1/2021.acl-long.430
https://opensource.org/licenses/MIT
https://doi.org/10.18653/v1/2021.acl-long.430
https://doi.org/10.48550/ARXIV.2004.14579
https://doi.org/10.48550/ARXIV.2004.14579
https://doi.org/10.1162/tacl_a_00373
https://doi.org/10.1162/tacl_a_00373
https://www.semanticscholar.org/paper/Measuring-nominal-scale-agreement-among-many-Fleiss/cfb4592221080deb127de94e8063fb403b13a298
https://www.semanticscholar.org/paper/Measuring-nominal-scale-agreement-among-many-Fleiss/cfb4592221080deb127de94e8063fb403b13a298
https://doi.org/10.18653/v1/D16-1128
https://doi.org/10.18653/v1/D16-1128
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/N16-1014
https://aclanthology.org/N16-1014
https://aclanthology.org/2022.emnlp-main.373
https://aclanthology.org/2022.emnlp-main.373
https://arxiv.org/abs/2112.06240
https://arxiv.org/abs/2112.06240
https://arxiv.org/abs/2112.06240
https://openreview.net/forum?id=O50443AsCP
https://openreview.net/forum?id=O50443AsCP
https://doi.org/10.48550/ARXIV.2212.07981
https://doi.org/10.48550/ARXIV.2212.07981
https://doi.org/10.48550/ARXIV.2212.07981


Nafise Sadat Moosavi, Andreas Rücklé, Dan Roth,
and Iryna Gurevych. 2021. Scigen: a dataset for
reasoning-aware text generation from scientific ta-
bles. In Thirty-fifth Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks
Track (Round 2).

Kai Nakamura, Sharon Levy, Yi-Lin Tuan, Wenhu Chen,
and William Yang Wang. 2022. HybriDialogue: An
information-seeking dialogue dataset grounded on
tabular and textual data. In Findings of the Associa-
tion for Computational Linguistics: ACL 2022, pages
481–492, Dublin, Ireland. Association for Computa-
tional Linguistics.

Linyong Nan, Lorenzo Jaime Flores, Yilun Zhao, Yixin
Liu, Luke Benson, Weijin Zou, and Dragomir Radev.
2022. R2D2: Robust data-to-text with replacement
detection. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 6903–6917, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48–53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Suixin Ou and Yongmei Liu. 2022. Learning to gener-
ate programs for table fact verification via structure-
aware semantic parsing. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 7624–
7638, Dublin, Ireland. Association for Computational
Linguistics.

Ankur Parikh, Xuezhi Wang, Sebastian Gehrmann, Man-
aal Faruqui, Bhuwan Dhingra, Diyi Yang, and Dipan-
jan Das. 2020. ToTTo: A controlled table-to-text
generation dataset. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1173–1186, Online. As-
sociation for Computational Linguistics.

Yotam Perlitz, Liat Ein-Dot, Dafna Sheinwald, Noam
Slonim, and Michal Shmueli-Scheuer. 2022. Diver-
sity enhanced table-to-text generation via type con-
trol. arXiv preprint arXiv:2205.10938.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019.
Data-to-text generation with entity modeling. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2023–
2035, Florence, Italy. Association for Computational
Linguistics.

Chang Shu, Yusen Zhang, Xiangyu Dong, Peng Shi,
Tao Yu, and Rui Zhang. 2021. Logic-consistency
text generation from semantic parses. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 4414–4426, Online. Association
for Computational Linguistics.

Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang,
and Nigel Collier. 2021. Plan-then-generate: Con-
trolled data-to-text generation via planning. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 895–909, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253–2263, Copenhagen, Denmark. Association for
Computational Linguistics.

Xiaoyu Yang, Feng Nie, Yufei Feng, Quan Liu, Zhigang
Chen, and Xiaodan Zhu. 2020. Program enhanced
fact verification with verbalization and graph atten-
tion network. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 7810–7825, Online. Association
for Computational Linguistics.

Xiaoyu Yang and Xiaodan Zhu. 2021. Exploring de-
composition for table-based fact verification. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 1045–1052, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Yilun Zhao, Yunxiang Li, Chenying Li, and Rui Zhang.
2022a. MultiHiertt: Numerical reasoning over multi
hierarchical tabular and textual data. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6588–6600, Dublin, Ireland. Association for
Computational Linguistics.

Yilun Zhao, Linyong Nan, Zhenting Qi, Rui Zhang,
and Dragomir Radev. 2022b. ReasTAP: Injecting ta-
ble reasoning skills during pre-training via synthetic
reasoning examples. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 9006–9018, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan
Zhang, Jun Wang, and Yong Yu. 2018. Texygen: A
benchmarking platform for text generation models.
In The 41st International ACM SIGIR Conference
on Research; Development in Information Retrieval,
SIGIR ’18, page 1097–1100, New York, NY, USA.
Association for Computing Machinery.

A Appendix

560

https://openreview.net/forum?id=Jul-uX7EV_I
https://openreview.net/forum?id=Jul-uX7EV_I
https://openreview.net/forum?id=Jul-uX7EV_I
https://doi.org/10.18653/v1/2022.findings-acl.41
https://doi.org/10.18653/v1/2022.findings-acl.41
https://doi.org/10.18653/v1/2022.findings-acl.41
https://aclanthology.org/2022.emnlp-main.464
https://aclanthology.org/2022.emnlp-main.464
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/2022.acl-long.525
https://doi.org/10.18653/v1/2022.acl-long.525
https://doi.org/10.18653/v1/2022.acl-long.525
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://arxiv.org/pdf/2205.10938.pdf
https://arxiv.org/pdf/2205.10938.pdf
https://arxiv.org/pdf/2205.10938.pdf
https://doi.org/10.18653/v1/P19-1195
https://doi.org/10.18653/v1/2021.findings-acl.388
https://doi.org/10.18653/v1/2021.findings-acl.388
https://aclanthology.org/2021.findings-emnlp.76
https://aclanthology.org/2021.findings-emnlp.76
https://doi.org/10.18653/v1/D17-1239
https://doi.org/10.18653/v1/2020.emnlp-main.628
https://doi.org/10.18653/v1/2020.emnlp-main.628
https://doi.org/10.18653/v1/2020.emnlp-main.628
https://doi.org/10.18653/v1/2021.findings-emnlp.90
https://doi.org/10.18653/v1/2021.findings-emnlp.90
https://doi.org/10.18653/v1/2022.acl-long.454
https://doi.org/10.18653/v1/2022.acl-long.454
https://aclanthology.org/2022.emnlp-main.615
https://aclanthology.org/2022.emnlp-main.615
https://aclanthology.org/2022.emnlp-main.615
https://doi.org/10.1145/3209978.3210080
https://doi.org/10.1145/3209978.3210080


Reasoning Op Function Category Name Arguments Output Description

Unique UNIQUE only view bool returns whether there is exactly one row in the view

Aggregation AGGREGATION avg/sum view, header, string number returns the average/sum of the values under the header column

Count COUNT count view number returns the number of rows in the view

Ordinal
ORD_ARG nth_argmax/nth_argmin view, header string view returns the row with the n-th max/min value in header column

ORDINAL nth_max/nth_min view, header string number returns the n-th max/n-th min of the values under the header column

SUPER_ARG argmax/argmin view, header string view returns the row with the max/min value in header column

Comparative COMPARE

eq/not_eq object, object bool returns if the two arguments are equal

round_eq object, object bool returns if the two arguments are roughly equal under certain tolerance

greater/less object, object bool returns if 1st argument is greater/less than 2nd argument

diff object, object object returns the difference between two arguments

Majority MAJORITY

all_eq/not_eq view, header string, object bool returns whether all the values under the header column are equal/not equal to 3rd argument

all_greater/less view, header string, object bool returns whether all the values under the header column are greater/less than 3rd argument

all_greater_eq/less_eq view, header string, object bool returns whether all the values under the header column are greater/less or equal to 3rd argument

most_eq/not_eq view, header string, object bool returns whether most of the values under the header column are equal/not equal to 3rd argument

most_greater/less view, header string, object bool returns whether most of the values under the header column are greater/less than 3rd argument

most_greater_eq/less_eq view, header string, object bool returns whether most of the values under the header column are greater/less or equal to 3rd argument

Conjunction
FILTER

filter_eq/not_eq view, header string, object view returns the subview whose values under the header column is equal/not equal to 3rd argument

filter_greater/less view, header string, object view returns the subview whose values under the header column is greater/less than 3rd argument

filter_greater_eq /less_eq view, header string, object view returns the subview whose values under the header column is greater/less or equal than 3rd argument

OTHER filter_all view, header string view returns the view itself for the case of describing the whole table

Other
OTHER hop view, header string object returns the value under the header column of the row

OTHER and bool, bool bool returns the boolean operation result of two arguments

Table 4: A complete list of function definitions for the logic forms (Similar as Chen et al. (2020d)).
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Abstract

Recent advances in large pre-trained language
models (PLMs) lead to impressive gains on nat-
ural language understanding (NLU) tasks with
task-specific fine-tuning. However, directly
fine-tuning PLMs heavily relies on sufficient
labeled training instances, which are usually
hard to obtain. Prompt-based tuning on PLMs
has shown to be powerful for various down-
stream few-shot tasks. Existing works studying
prompt-based tuning for few-shot NLU tasks
mainly focus on deriving proper label words
with a verbalizer or generating prompt tem-
plates to elicit semantics from PLMs. In addi-
tion, conventional data augmentation strategies
such as synonym substitution are also widely
adopted in low-resource scenarios. However,
the improvements they bring to prompt-based
few-shot learning have been demonstrated to be
marginal. Thus, an important research question
arises as follows: how to design effective data
augmentation methods for prompt-based few-
shot tuning? To this end, considering the label
semantics are essential in prompt-based tuning,
we propose a novel label-guided data augmen-
tation framework PROMPTDA, which exploits
the enriched label semantic information for
data augmentation. Extensive experiment re-
sults on few-shot text classification tasks show
that our proposed framework achieves superior
performances by effectively leveraging label
semantics and data augmentation for natural
language understanding.

1 Introduction

Pre-trained language models (PLMs) have shown
promising performances in various applications
such as text classification (Yang et al., 2019), docu-
ment summarization (Zhang et al., 2020a), question
answering (Mirzaee et al., 2021). The recent ad-
vancement of prompt-based tuning has shown a
significant improvement over normal fine-tuning
on various few-shot tasks (Brown et al., 2020).
Typically, the prompt-based tuning paradigm trans-

[CLS] neat movie to watch. [SEP]

[CLS] nice film to watch. [SEP]

[CLS] nice movie to watch. [SEP]

(a) Conventional augmentation
method (Synonym Substitution)

[CLS] nice movie to watch. [SEP]

(b) Our augmentation approach
for Prompt Tuning

good
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PLM

[CLS] nice movie to watch. [SEP]

[CLS] nice movie to watch. [SEP]
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Figure 1: The basic comparison of conventional data
augmentation methods and our proposed augmentation
framework PROMPTDA. {good, great, fine}
are the label words for prompt tuning. Conventional DA
constructs instances for augmentation. But PROMPTDA
conducts instance-label pairs for augmentation.

forms a NLU task into a masked language model-
ing (MLM) problem. For example, in sentiment
analysis, an original sentence “nice movie to
watch." can be augmented with a template “It
is [MASK]" as the input x. Each class (e.g.,
POSITIVE) is represented by a label word (e.g.,
good) selected by a verbalizer from the vocabu-
lary (Schick and Schütze, 2021). The prediction of
the class POSITIVE is based on the probability of
the [MASK] being filled with the token good.

In addition, conventional data augmentation
(DA) methods such as synonym substitution are
also widely applied when the training data is lim-
ited (Chen et al., 2021). However, it has been
shown in previous works that they can only bring
marginal improvements for prompt-based few-shot
learning (Zhou et al., 2021). We argue that one
of the reasons could be that these DA methods
mainly focus on transforming the instances while
not incorporating the label semantics, which have
great potential to improve the performances of few-
shot tasks (Luo et al., 2021) and are essential for
prompt-based few-shot learners (Liu et al., 2021).
Therefore, we focus on a new problem of design-
ing augmentation strategies for the prompt tuning
paradigm and explore fusing label semantics into

562



augmentation for prompt-based few-shot learners.

Specifically, different from most prompt-based
tuning methods that adopt an one-to-one verbal-
izer (Schick and Schütze, 2021; Gao et al., 2021),
we propose to incorporate the rich label seman-
tic information contained in the label words de-
rived from an one-to-multiple verbalizer into a new
data augmentation paradigm. As shown in Fig-
ure 1, compared with previous data augmentation
methods that mainly focus on constructing more
instances, our method PROMPTDA proposes to
construct instance-label pairs for augmentation,
which opens a new dimension for conducting aug-
mentation. For example, with the one-to-multiple
verbalizer mapping from the class POSITIVE to
a set of label words {good, great, fine},
we aim to generate a set of synthetic data points
{(x,good), (x,great), (x,fine)} based on
the original instance x and leverage them to en-
hance the performances of the prompt-based few-
shot learners. Furthermore, extensive experiment
results in section § 5.5 also show that our proposed
PROMPTDA can be regarded orthogonal to the con-
ventional DA methods (e.g., synonym substitution)
to some extent. Thus, PROMPTDA can comple-
ment with conventional augmentation approaches
to further improve the performances.

To this end, we propose a new label-guided data
augmentation framework for prompt-based few-
shot learners named PROMPTDA, which contains
three coherent modules including Label Augmen-
tation, Augmented Prompt-based Tuning, and Pre-
diction Transformation. First, we utilize a PLM to
automatically search for an one-to-multiple verbal-
izer on a specific training set and derive a set of
semantically similar tokens for each class as the
label words. Second, in the training stage, we con-
struct the instance-label pairs from the original data
with regards to each label word for augmentation
in prompt tuning. Third, in the inference stage, we
utilize the trained language model to predict the
label by aggregating the probability scores on the
derived label words.

The contributions of this paper are summarized
as follows: (1) we study a new problem of design-
ing data augmentation strategies for prompt-based
few-shot learners; (2) we propose a novel label-
guided data augmentation framework PROMPTDA
that exploits the rich label semantic information of
one-to-multiple verbalizer for improving prompt
tuning; (3) we conduct extensive experiments on

real-world few-shot classification tasks and demon-
strate the effectiveness of the proposed framework.

2 Related Work

Prompt-based Tuning has attracted increasing
attention recently for various natural language pro-
cessing tasks including text classification (Gao
et al., 2021), question answering (Jiang et al.,
2020), language generation (Li and Liang, 2021),
etc. The prompt-based learning framework has
shown promising performances especially in zero
shot or few shot classification tasks when limited or
no labels are available (Liu et al., 2021). For exam-
ple, Gao et al. propose a prompt-based fine-tuning
framework that automatically generates prompt
templates and incorporates demonstrations to im-
prove few-shot classification performances (Gao
et al., 2021). Shin et al. proposes the AutoPrompt
method to automatically generate prompts and ver-
balizers for eliciting the knowledge from language
models (Shin et al., 2020). Other works on improv-
ing prompt-based model performances also mainly
focus on constructing various types of prompt tem-
plates and verbalizers (Liu et al., 2021).

Few-shot Text Classification aims to build text
classification model when few labeled data is avail-
able. Existing works mainly follow the following
categories. First, semi-supervised learning where
unlabeled data, alongside usually a small amount
of labeled data, is used for learning (Mukher-
jee and Awadallah, 2020; Lee et al., 2021). For
example, Subhabrata et al. propose to jointly
learn from a small set of labeled data and a large
amount of unlabeled data with uncertainty using
self-training (Mukherjee and Awadallah, 2020).
Second, meta-learning frameworks such as metric-
based (Sui et al., 2020) and optimization-based
approaches (Bansal et al., 2019). Third, weakly su-
pervised learning to derive weak labels (Shu et al.,
2020; Meng et al., 2020) in addition to the limited
clean labels to improve text classification. Other
approaches include transfer learning via learning
to adapt transferable information from the source
domain to the target domain (Gupta et al., 2020),
or leveraging auxiliary tasks to improve the target
tasks (Xia et al., 2021; Yin, 2020).

Data Augmentation is to construct synthetic
data from an available dataset to enlarge the data
size, which can help supervised training with en-
riched training data (Chen et al., 2021; Guo, 2020;
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Shu et al., 2018), or self-supervised learning for
constructing samples in pretext tasks (Zhang et al.,
2017; Yoon et al., 2020), etc. Data augmentation
techniques for natural language generally fall into
data space and feature space (Bayer et al., 2021).
In the data space, augmentation methods transform
the data in character-level, word-level, phrase-level
or document-level. In the feature space, representa-
tions in the latent space are manipulated by adding
noise or interpolation (Schwartz et al., 2018; Verma
et al., 2019). However, conventional data augmen-
tation methods bring marginal improvements under
prompt tuning paradigm (Zhou et al., 2021). It is
under exploring about how to design effective data
augmentation methods for prompt-based few-shot
scenarios. Therefore, we propose a novel label-
guided data augmentation mechanism in prompt-
based tuning for few shot tasks.

3 Problem Definition

The goal of few-shot classification task is to learn
a classifier to predict the label of unseen instances
with limited labeled samples during the training.
Following the widely-used few-shot setting (Gao
et al., 2021; Liu et al., 2021), we assume that a
large pre-trained language model (e.g., BERT)M
can be utilized to fine-tune on a downstream task
with the datasetD = {X ,Y}, whereX denotes the
instances and Y indicates the corresponding labels.
For each task, the number of training instances for
each class is K, which is usually small (e.g., 8
or 16). The goal is to design a prompt learning
strategy that generalizes well on unseen samples
in the test set Dtest with few labeled training data
in Dtrain. To ensure a fair parameter setting, we
assume that a validation set Dval is available, and
|Dval| = |Dtrain|. The test set Dtest is the same as
the full-data training setting.

4 Label-guided Data Augmentation for
Prompt-based Tuning

In this section, we detail the proposed framework
PROMPTDA, which is illustrated in Figure 2. It
mainly consists of three modules: (1) a Label Aug-
mentation module to derive multiple label words
for each class to enrich the label space; (2) an Aug-
mented Prompt-based Tuning module for augment-
ing the training data guided by label words; (3) a
Prediction Transformation module to transform the
prediction from the label words to original classes.

4.1 Label Augmentation

Due to the limited available labels in few-shot learn-
ing, recent works are generating label words to help
prediction (Schick and Schütze, 2021; Gao et al.,
2021). The goal is to extend the label space by
incorporating the rich semantics in the vocabulary.
While existing works mainly focus on selecting
one label word for each class manually or automat-
ically in prompt-tuning, the resultant label words
often have a large variance and the semantics in
other candidate label words are ignored. Therefore,
we explore automatically searching for multiple
label words for each class to better enrich the label
space. Let F : Y → VY denote the one-to-multiple
verbalizer that maps each label category y ∈ Y to
a set of label words Vy = {v1y , v2y , ..., v

ky
y } ⊂ V ,

where ky = |Vy| denotes the number of selected
label words for each class.

Firstly, we aim to search for a candidate set of
label word Ṽy ⊂ V that is semantically similar to
each class y ∈ Y . Let Dytrain denote the subset of
training data with the class y. T (x) denotes the
input x with a fixed template T . Po([mask])
denotes the position of [mask] in the input x. We
propose to select the Top-m label words from vo-
cabulary as Ṽy based on the conditional likelihood
over Dytrain for each class y:

Ṽy = Top-m
v∈V





∑

(x,y)∈Dy
train

Pr(v, T (x))



 (1)

where Pr(v, T (x)) denotes the corresponding
probability score of each token in the vocabulary
filling in Po([mask]) in PLM inference as:

Pr(v, T (x)) = Pr(Po([mask]) = v | T (x))
(2)

Secondly, we construct a verbalizer candidate set
F for the whole dataset. It is a combinatorial prob-
lem to select ky label words from Ṽy to construct
Vy for each class y. The number of possible can-

didates of Vy is
(|Ṽy |
ky

)
. Then the element number

of the verbalizer candidate set F is |F | =
(|Ṽy |
ky

)|Y|
.

We utilize each one-to-multiple verbalizer candi-
date in F to infer and calculate the prediction ac-
curacy on Dtrain via the same prediction transfor-
mation method in section § 4.3. Then we select the
Top-n candidates from F based on the prediction
accuracy. If there exist multiple candidates with the
same accuracy score, we randomly select one as the
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It is [MASK][CLS] nice movie to watch. [SEP]

It is [MASK][CLS] nice movie to watch. [SEP]

It is [MASK][CLS] nice movie to watch. [SEP]

Figure 2: The proposed PROMPTDA for few-shot learning (with sentiment classification task as an example): (a)
Label Augmentation: deriving multiple label words for each class to enrich the label semantic space; (b) Aug-
mented Prompt-based Tuning: training with the augmented instance-label pairs via masked language modeling; (c)
Prediction Transformation: aggregating the probability scores on the derived label words for the final prediction.

final one-to-multiple verbalizer. Otherwise, we se-
lect the verbalizer candidate with highest accuracy
score. Note that m and n are both hyperparameters
picked by pilot study on the specific datasets.

4.2 Augmented Prompt-based Tuning

To enrich the training data for the few-shot text
classification task, it is natural to utilize data aug-
mentation methods such as token-level or sentence-
level augmentation for fine-tuning (Chen et al.,
2021). Most of the existing data augmentation
methods focus on enlarging training data condi-
tioned on the original label space. Orthogonal to
previous augmentation methods, our method in-
corporates label semantic information into prompt-
tuning via augmenting sample-label pairs rather
than only augmenting samples. For (x, y) ∈ Dtrain,
we have obtained the corresponding label word
set Vy = {v1y , v2y , ..., v

ky
y }. Then we can in-

clude {(x, v1y), (x, v2y), ..., (x, v
ky
y )} for augmenta-

tion. Let D̃train denote the augmented dataset. The
resultant dataset can be denoted as follows:

D̃train = ∪(x,y)∈Dtrain{(x, v1y), (x, v2y), ..., (x, v
ky
y )}

(3)
In the training process, we follow the MLM

training paradigm and minimize the negative log-
likelihood on the whole augmented training set

D̃train. The optimization objective is:

L =
∑

(x,v)∈D̃train

− log Pr(v | x) (4)

For (x, v) ∈ D̃train, the conditional probability
of filling the position of [mask] with v is:

Pr(v | x) = Pr(Po([mask]) = v | x)

=
exp (wv · h[MASK])∑

v′∈V exp (wv′ · h[MASK])
(5)

where wv denotes the pre-softmax output vector
for each token v in the vocabulary, and h[MASK]
denotes the corresponding hidden state of the
[MASK] position. Note that we completely reuse
the PLM and do not introduce new parameters in
the training process, which is important for prompt-
based tuning to be effective in few-shot scenarios.

4.3 Prediction Transformation
We have demonstrated the process of training the
MLM classifier head with the augmented data in
the prompt-based tuning paradigm. Next, we de-
scribe how to perform the inference for the tar-
get class. Let h denote the function that trans-
forms the probability scores on the label word set
Vy = {v1y , v2y , ..., v

ky
y } into the probability score of

each class y. Since the label word with the highest
probability score in set Vy can represent the class y,
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we use h = max() to calculate the final probability
score of each class. Then the probability score of
each class y can be calculated as:

Pr(y | x) = h(P(v1y , x),P(v
2
y , x), ...,P(v

ky
y , x))

(6)
where for (x, viy) that satisfies (x, viy) ∈ D̃train and
viy ∈ Vy, (i = 1, 2, ..., ky), P(viy, x) is denoted as
the conditional probability of filling the position of
[mask] with viy:

P(viy, x) = Pr(Po([mask]) = viy | x) (7)

After we obtain the probability score over each
class, the final predicted class ŷ is calculated as:

ŷ = argmaxy∈Y Pr(y | x) (8)

5 Experiments

In this section, we present the experiments to eval-
uate the effectiveness of the proposed PROMPTDA.
Specifically, we aim to answer the following re-
search questions:

• RQ1 Can PROMPTDA improve the perfor-
mance of few-shot prompt-based tuning?

• RQ2 Can the proposed Label Augmentation
strategy help the target label prediction?

• RQ3 Can the PROMPTDA make the prompt-
based tuning method more stable?

5.1 Experimental Settings
Datasets. We evaluate the proposed framework
on few shot text classification datasets from the
widely-used NLU benchmark GLUE (Wang et al.,
2018) including SST-2 (Socher et al., 2013),
CoLA (Warstadt et al., 2019) and other com-
mon datasets including MR (Pang and Lee, 2005),
CR (Hu and Liu, 2004), Subj (Pang and Lee, 2004),
MPQA (Wiebe et al., 2005), SST-5 (Socher et al.,
2013). These datasets covers different tasks such
as sentiment analysis, topic classification and opin-
ion classification from various domains including
movie reviews, news pieces, etc. The statistics of
the datasets are shown in Table 4 in Appendix.

Baselines. We compare the proposed approach
with various representative methods including Ma-
jority, Fine-Tuning, GPT-3 (Brown et al., 2020),
EFL (Wang et al., 2021), LM-BFF (Gao et al.,
2021) and Prompt Tuning. More details are de-
scribed in the Appendix A.3.

Evaluation setting. Evaluation is critical in few-
shot scenarios because small changes of the train-
ing set can result in a large variance in the per-
formance of the test set. Following the few-shot
setting in (Perez et al., 2021), (Zhang et al., 2020b),
(Gu et al., 2021) and (Gao et al., 2021), we ran-
domly select K-shot samples from original dataset
for each class to construct the training setDtrain and
select another K-shot samples to construct the de-
velopment set Dval. For enhancing the stability of
evaluation, we utilize the whole test set of original
dataset as out test set Dtest and change the random
seed of sampling Dtrain and Dval for five times. We
select RoBERTa-large as our backbone model to
make fair comparison with baseline LM-BFF.

5.2 Experimental Results

In this section, we present our main results, and
address the aforementioned research questions per-
taining to our PROMPTDA approach.

In addition to comparing with baselines such
as Majority, normal fine tuning and prompt-based
method GPT-3, EFL, LM-BFF, we conduct more
experiments to verify the effectiveness of our pro-
posed method PROMPTDA as a plug-in module.
Because different template choices can result in a
large variance of performance (Gao et al., 2021),
we design two groups of experiments, namely
template-free and template-augmented, to inves-
tigate whether or not our method can improve over
standard prompt-based tuning method regardless
of template design. For the template-augmented
group of experiments, we manually choose “It
is [MASK]" as the template, following (Wang
et al., 2021). For the template-free group of experi-
ments, we only append “[MASK]" in the input. We
report the results of PROMPTDA in Table 1 when
the size of data augmentation is ×3 (i.e., ky = 3).
We also consider two scenarios where the label
words are derived manually or with our automatic
label augmentation mechanism. We choose 8 sam-
ples (K = 8) per class as the few-shot setting of
our main experiments. For fair comparison, we
choose the same random seed of training set sam-
pling as LM-BFF. We train for 10 epochs on each
dataset following (Wang et al., 2021). We report the
average performance and standard variance of our
results over five runs of sampling on each dataset.
The main results can be seen in Table 1.

Performance analysis We analyze the perfor-
mance from three perspectives to answer the afore-
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Method SST-2 MR CR Subj CoLA MPQA SST-5
(Acc) (Acc) (Acc) (Acc) (Acc) (Acc) (Acc)

Majority (full) 50.9 50.0 50.0 50.0 69.1 50.0 23.1
Fine-Tuning (full) 95.0 90.8 89.4 97.0 86.2 89.4 58.7

Fine-Tuning 60.5 (3.1) 60.3 (7.5) 61.9 (5.1) 78.3 (8.2) 51.1 (8.4) 59.0 (3.4) 31.5 (7.5)
GPT-3 (Brown et al., 2020) 82.9 (3.4) 81.2 (2.5) 86.8 (1.5) 53.2 (1.5) 52.1 (6.2) 62.9 (3.5) 31.5 (4.3)
EFL (Wang et al., 2021) 67.5 (8.5) 69.8 (7.5) 75.3 (4.8) 78.9 (7.8) 54.3 (8.9) 68.4 (5.7) 35.2 (6.3)
LM-BFF (Gao et al., 2021) 89.1 (4.1) 83.6 (3.4) 87.8 (4.3) 81.6 (6.1) 53.5 (4.5) 73.9 (8.9) 41.2 (3.1)

Prompt Tuning‡ 85.5 (5.2) 83.0 (3.7) 86.5 (3.0) 81.8 (5.6) 50.5 (10.3) 71.5 (9.8) 37.5 (5.5)
PT + PROMPTDA(m.)‡ 87.3 (4.4) 82.5 (1.4) 88.1 (2.7) 81.3 (4.9) 51.2 (7.5) 72.9 (9.1) 39.4 (4.3)
PT + PROMPTDA(au.)‡ 87.6 (4.1) 83.1 (3.1) 87.8 (1.2) 83.4 (2.5) 52.8 (8.1) 74.5 (7.8) 41.8 (3.9)

Prompt Tuning† 85.8 (5.8) 79.3 (8.2) 86.1 (8.0) 81.2 (5.7) 52.7 (6.6) 75.1 (13.7) 38.4 (4.7)
PT + PROMPTDA(m.)† 88.9 (3.9) 83.8 (1.9) 84.9 (5.7) 82.4 (9.9) 51.3 (15.5) 78.1 (8.9) 42.7 (7.1)
PT + PROMPTDA(au.)† 89.5 (2.9) 83.7 (2.6) 88.3 (4.1) 86.8 (3.1) 55.9 (7.1) 78.4 (9.2) 43.3 (1.6)

Table 1: The main results using RoBERTa-large on representative NLU tasks. All the results are evaluated on full
test sets and averaged over 5 runs. K = 8: 8 samples per class for all the experiments; †: template augmented; ‡:
template-free; (m.): manual label augmentation; (au.): automatic label augmentation; PT: Prompt Tuning.

mentioned research questions.
To answer RQ1, we compare the proposed

method with existing baselines. First, in general,
we can observe that the standard prompt-based tun-
ing method with PROMPTDA consistently perform
better than or is comparable with baselines such
as GPT-3, EFL, LM-BFF and normal fine tuning
(results of “PT + PROMPTDA(au.)†” in Table 1).
Compared with LM-BFF, standard prompt-based
tuning with PROMPTDA performs better on all the
datasets. For example, our method achieves a 6%
gain over LM-BFF on Subj and MPQA datasets.
Compared with normal fine tuning, our method
achieves superior performance by a large margin.
For example, our method obtains a 47.9% improve-
ment over normal fine tuning on SST-2 dataset.

Second, we can see that PROMPTDA can im-
prove over standard prompt-based tuning method
regardless of template design (results of “PT +
PROMPTDA(au.)†” and “PT + PROMPTDA(au.)‡”
in Table 1). Compared with standard prompt
tuning, PROMPTDA can achieve a better perfor-
mance over the seven datasets regardless of being
template-free or template-augmented, which sug-
gests that PROMPTDA has no relation with tem-
plate design and can be used as a plug-in module
for improving performance of prompt tuning.

Third, PROMPTDA generally improves over
standard prompt-based tuning method regard-
less of automatic label word selection or man-
ual label word selection (results of “PT +
PROMPTDA(au.)†” and “PT + PROMPTDA(m.)†”
in Table 1). Compared with standard prompt tun-
ing, prompt tuning with automatic label word se-
lection achieves improvements over all the datasets.

For prompt tuning with manual label word selec-
tion, it also has performance gains over SST-2, MR,
Subj, MPQA and SST-5 datasets.

To answer RQ2, we perform an ablation study
of PROMPTDA, and compare the results of “PT +
PROMPTDA(au.)†” and “PT + PROMPTDA(m.)†”
in Table 1. We can see that regardless of tem-
plate design, our proposed automatically searched
label words generally perform better than manu-
ally searched label words. For example, “PT +
PROMPTDA(au.)†” achieves a 5.3% improvement
over “PT + PROMPTDA(m.)†” on Subj dataset.

We analyze the reason from three perspectives.
First, we hypothesize that human bias may hinder
selecting optimal label words and our proposed
automatic method relies on language model itself
and can minimize human bias. Second, it may
be easier for human to select similar words as la-
bel words for sentiment-related datasets with the
label name “positive, negative”, but it is
hard to select semantically similar words as label
words for tasks in other domains. For example,
it is hard to manually identify semantically sim-
ilar words as label words for Subj dataset with
the label name “subjective, objective”,
which illustrates the necessity of our proposed auto-
matic method for searching label words. Third, our
proposed Label Augmentation method can search
for different label words on different training data,
but it is hard for the manual label word selection
method to adapt to different specific datasets.

To answer RQ3, we analyze the stability of
performances of PROMPTDA. In general, we
observe that PROMPTDA reduces the variance
of prompt-tuning. (Standard variance of “PT +
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SST-2
label name positive | negative
label words (m.) positive, great, good | negative terrible bad
label words (au.) wonderful brilliant fantastic | terrible done disappointing

Subj
label name objective | subjective
label words (m.) good neutral fair | bad emotional personal
label words (au.) disturbing terrifying key | bad not nonsense

SST-5

label name very positive | positive | neutral | negative | very negative

label words (m.) great perfect excellent | good, pretty, wonderful |
neutral normal fine | bad worse not | terrible awful ridiculous

label words (au.) great brilliant fantastic | extraordinary remarkable fascinating |
enough terrible funny | awful bad worse | boring done unnecessary

Table 2: An illustration of the label words searched automatically or manually on SST-2, Subj and SST-5 datasets.

PROMPTDA(au.)†” in Table 1). The uncertainty of
prompt-based tuning methods mainly comes from
different distribution of small training set, different
designs of the template and various selections of la-
bel words for each class. Compared with LM-BFF
and normal fine tuning methods, our method gen-
erally reduces the variance of prediction. For ex-
ample, the standard variance of prediction over five
runs for “PT + PROMPTDA(au.)†” has decreased
around 48.4% on Subj compared to LM-BFF and
has decreased 78.7% on SST-5 compared with nor-
mal fine tuning. Compared with standard prompt-
based tuning method, PROMPTDA can improve the
stability of tuning on most of the datasets.

5.3 Analysis of Label Word Selection

Without loss of generosity, we take the dataset SST-
2, Subj and SST-5 for example to analyze the qual-
ity of Label Augmentation (the label word results
are shown in Table 2 and the complete label word
results over five runs on SST-2, CR, MR, Subj,
CoLA, MPQA, SST-5 datasets are shown in Ap-
pendix Table 6). The goal of label augmentation
is to find semantically similar words to enrich the
label space. With regards to the manual way, we
find the synonyms of label name from dictionary as
the label words and ensure these words are in the
vocabulary. And we select the same label words for
different seeds. With regards to our proposed auto-
matic method, we only rely on the training set and
language model (e.g., RoBERTa-large) to find the
semantically similar words from vocabulary and
do not rely on label name itself.

The Table 2 shows the label words automat-
ically or manually searched on datasets SST-2,
Subj and SST-5 respectively. For sentiment re-
lated datasets such as SST-2 with the label name
{positive/negative}, the label words auto-
matically searched are literally similar to the man-
ually selected label words, which probably means
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Figure 3: The impact analysis of the size of label words
and training samples per class on SST-2 dataset.

the way language models (e.g., RoBERTa-large)
reasons about what are similar words is close to
the human way in sentiment domain. Nonetheless,
for other datasets such as Subj with the label name
{objective/subjective}, it is interesting to
observe that the label words automatically searched
are not literally similar to label name or manu-
ally selected label words, which may infer that
the way language models (e.g., RoBERTa-large)
reason about what are similar words is different
from the human way in other domains. We argue
that how to define word similarity in label seman-
tic space needs more research in the future. For
dataset such as SST-5, we can see that it is much
harder to select appropriate label words when the
number of classes is larger, which also verifies the
importance of automatic label word selection.

5.4 Assessment of Data Augmentation

We analyze data augmentation from two perspec-
tives including the size of data augmentation and
the size of training set.

The size of data augmentation We choose to
study the effect of the size of PROMPTDA on
template-augmented prompt-based tuning on SST-
2 dataset. The results over five runs for 10 epochs
are presented in Figure 2 (a). We can observe that
PROMPTDA can generally improve over prompt-
based tuning regardless of the size of augmentation.
However, larger augmentation may result in more
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Method SST-2 MR CR Subj SST-5
(Acc) (Acc) (Acc) (Acc) (Acc)

PT 85.8 (5.8) 79.3 (8.2) 86.1 (8.0) 81.2 (5.7) 38.4 (4.7)
PT with Conventional DA 89.2 (1.3) 80.3 (3.1) 86.5 (4.5) 82.3 (8.0) 39.1 (4.5)
PT with PROMPTDA 89.5 (2.9) 83.7 (2.6) 88.3 (4.1) 86.8 (3.1) 43.3 (1.6)
PT with PROMPTDA & Conventional DA 89.7 (1.6) 84.8 (1.5) 89.2 (1.3) 87.0 (3.1) 44.7 (1.1)

Table 3: The main results of evaluating Prompt Tuning (PT) with PROMPTDA and conventional DA method on
NLU tasks. All the results are evaluated on full dev sets and averaged across 5 different training sets. K = 8 : 8
samples per class for the experiments. Conventional DA refers to synonym substitution.

unstable final prediction. We analyze the reason
from two perspectives. First, larger data augmenta-
tion may contain more label noise. Since we utilize
an one-to-multiple verbalizer to guide data augmen-
tation, the size of data augmentation is equal to the
number of label words per class, which may cause
more noisy label words. Unsuitable label word se-
lections may worsen the performance and increase
the variance of final prediction. Second, more la-
bel words per class may cause the model harder to
converge on small training sets. When training for
the same epochs, prompt tuning with more label
words per class may perform more unstable.

The size of the training set We study the
effect of the size of training set on template-
augmented prompt-based tuning with and with-
out PROMPTDA. The size of data augmentation
is ×3. The results over five runs for 10 epochs
are presented in Figure 2 (b). We have several
observations from the results. First, our method
PROMPTDA consistently improves over standard
prompt-based tuning regardless of the size of train-
ing sets. Second, our proposed method gener-
ally decreases the variance of prompt-based tuning.
Third, the improvement space of PROMPTDA over
prompt-based tuning decreases as the number of
samples per class increases.

5.5 Combination with Conventional DA

Although conventional data augmentation meth-
ods are still effective when training data is lim-
ited (Chen et al., 2021), previous works verified
that they can bring marginal improvement for the
prompt tuning paradigm (Zhou et al., 2021). It is
worth exploring whether or not PROMPTDA can
complement with conventional DA for further en-
hancing the performance of prompt tuning.

We follow the same setting as the main experi-
ments and test conventional DA, PROMPTDA and
the combination on standard prompt-based tuning
paradigm with template. With regards to conven-
tional DA, we select synonym substitution method

from nlpaug toolkit (Ma, 2019) and enlarge the
training set by ×2. With regards to our proposed
PROMPTDA, we enlarge the training set by ×3.
The experiment results over five different sampling
seeds for 10 epochs are shown in Table 3.

We can observe that the combination of
PROMPTDA and Conventional DA method con-
sistently outperforms only using PROMPTDA or
Conventional DA method. Conventional DA meth-
ods mostly focus on exploiting the semantic in-
formation of the instance itself. Our method pro-
poses to utilize label semantic information to guide
data augmentation and does not change instances.
PROMPTDA conducts the augmentation from a
different perspective compared with conventional
augmentation methods. Therefore, our proposed
method PROMPTDA can be regarded orthogonal
to conventional DA methods to some extent and
complement with each other.

6 Conclusion and Future Work

In this paper, we study a new problem of data
augmentation in prompt-based tuning for few shot
learners. To leverage the label semantic informa-
tion, we propose a novel label-guided data aug-
mentation approach PROMPTDA, which can derive
multiple label words and exploit the rich semantic
information of the label words. We conduct exten-
sive experiments on various datasets and demon-
strate the effectiveness of PROMPTDA for few-shot
learning. We also conduct detailed analysis on the
effects of manual/automatic label augmentation,
the size of augmentation, the size of label words,
and combination with conventional DA.

There are several interesting directions for future
work. First, we will extend PROMPTDA to multi-
label few shot tasks and leverage multi-aspect label
space. Second, we will explore prompt-based data
augmentation for token-level tasks such as few-
shot name entity recognition (NER). Third, we will
explore prompt-based tuning to enhance the inter-
pretability capacity for various NLP tasks.
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Limitations

Our work is the first step for designing data aug-
mentation strategies for prompt tuning paradigm.
In this work, we focus on the natural language
understanding (NLU) tasks. The prompt tuning
paradigm is applied in various tasks including lan-
guage generation, question answering, dialog sys-
tem, etc. Designing augmentation strategies for
prompt-based few-shot learners in more applica-
tions is under exploration.
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This paper focuses on the task of few-shot natural
language understanding and conducts experiments
on open datasets. The implementation details are
described in Appendix for reproduction.
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A Appendix

A.1 Implementation Details
We implemented our model and all baselines with
PyTorch and run each experiment on a single
NVIDIA GeForce RTX 3090 GPU. The hyperpa-
rameters are the same for all methods based on
RoBERTa-large (the learning rate is 3e-6, the batch
size is 4, the number of training epochs is 10). Fol-
lowing (Gao et al., 2021), we select the random
seeds for sampling the training set and validation
set as {13, 21, 42, 87, 100}.

A.2 Dataset Details
In general, we follow the experiment setting of
(Gao et al., 2021). For datasets from GLUE (Wang
et al., 2018) including SST-2 (Socher et al.,
2013) and CoLA (Warstadt et al., 2019), we use
the original development sets for testing. For
datasets requiring cross-validation evaluation like
MR (Pang and Lee, 2005), CR (Hu and Liu, 2004),
MPQA (Wiebe et al., 2005) and Subj (Pang and
Lee, 2004), we randomly sample 2,000 instances as
the testing set and remove them from the training
set. For the dataset SST-5 (Socher et al., 2013), we
use the official test sets. The dataset statistics are
shown in Table 4.

A.3 Baseline Details
The details of the baselines are as follows:

• Majority: The label is predicted by taking the
majority class in the training set. We run this
baseline on the full-data setting.

• Fine-Tuning: The prediction is based on the
pre-trained language model that is fine-tuned
with the specific training data. We run this
baseline in the full-data and few-shot setting.

• GPT-3 (Brown et al., 2020): GPT-3 in-context
tuning in the zero-shot setting. We pack the
training samples into the input together and
directly conduct inference.

• EFL (Wang et al., 2021): An entailment-
based prompt tuning framework. For fair
comparison, we do not pretrain the language
model on MNLI task but directly tune the lan-
guage model as the prompt tuning paradigm.

• LM-BFF (Gao et al., 2021): A prompt tuning
model that automatically searches for demon-
strations, templates and label words. Note

that LM-BFF utilizes one-to-one verbalizer
for label word selection.

• Prompt Tuning: The standard Prompt-based
Tuning augmented by a simple template or
template-free.

A.4 Comparison of RoBERTa vs BERT
We conduct experiments to investigate the impact
of the backbone model. Table 5 shows the results
of using BERT-large(uncased) and RoBERTa-large.
The experiment setting is the same as the main
experiments. We can observe that our proposed
PROMPTDA improves the performance of prompt
tuning regardless of the backbone model.

A.5 The Verbalizer and Template Design
For each random seed of {13, 21, 42, 87, 100}, we
can construct different training sets and validation
sets. Thus, the verbalizers searched automatically
for each run are different, which are shown as “la-
bel words (au.)” in Table 6. The verbalizers manu-
ally designed for each run are the same, which are
shown as “label words (m.)” in Table 6. We follow
previous works (Gao et al., 2021; Wang et al., 2021)
and design a simple template “It is [MASK]”
for each input.
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Dataset # Classes # Length # Train # Test Type Labels

SST-2 2 19 6,920 872 sentiment positive, negative
MR 2 20 8,662 2,000 sentiment positive, negative
CR 2 19 1,775 2,000 sentiment positive, negative
Subj 2 23 8,000 2,000 subjectivity subjective, objective
CoLA 2 8 8,551 1,042 acceptability grammatical, not_grammatical
MPQA 2 3 8,606 2,000 opinion polarity positive, negative
SST-5 5 18 8,544 2,210 sentiment v. pos., positive, neutral, negative, v. neg.

Table 4: Statistics of the datasets.

BERT-large SST-2 Subj SST-5

PT 82.3 (4.6) 80.3 (6.2) 34.5 (3.8)
PT + PROMPTDA 87.1 (3.1) 82.9 (3.3) 37.5 (2.8)

RoBERTa-large SST-2 Subj SST-5

PT 85.8 (5.8) 81.2 (5.7) 38.4 (4.7)
PT + PROMPTDA 89.5 (2.9) 86.8 (3.1) 43.3 (1.6)

Table 5: A comparison of RoBERTa-large vs BERT-large on template-augmented prompt tuning.
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SST-2

label name positive | negative
label word (s.) positive | negative
label words (m.) good perfect fantastic | terrible awful hilarious

label words (au.)

brilliant amazing wonderful | not awful terrible
great perfect brilliant | terrible disappointing bad
beautiful perfect fantastic | terrible awful hilarious
fantastic excellent beautiful | terrible awful worse
wonderful, brilliant, fantastic | terrible done disappointing

MR

label name positive | negative
label word (s.) positive | negative
label words (m.) positive, great, good | negative, terrible, bad

label words (au.)

refreshing good beautiful | not terrible disappointing
beautiful perfect fantastic | awful disappointing horrible
fantastic wonderful beautiful | terrible awful funny
fantastic incredible unforgettable | terrible funny bad
excellent refreshing amazing | terrible wrong bad

CR

label name positive | negative
label word (s.) positive | negative
label words (m.) good perfect fantastic | terrible awful hilarious

label words (au.)

amazing fun cool | disappointing frustrating bad
excellent fun cheap | awful horrible terrible
free fun cool | bad painful useless
fantastic brilliant incredible | terrible inevitable useless
amazing great awesome | terrible awful horrible

Subj

label name objective | subjective
label word (s.) actual | individual
label words (m.) good neutral fair | bad emotional personal

label words (au.)

epic life America | madness not wrong
life history significant | right that great
what real interesting | me good great
fiction interesting America | wonderful great brilliant
disturbing terrifying key | bad not nonsense

CoLA

label name grammatical | not_grammatical
label word (s.) good | bad
label words (m.) positive correct good | negative wrong bad

label words (au.)

it wrong correct | ridiculous not good
different sad interesting | complicated hilarious scary
wrong interesting important | insane sad crazy
all good important | bad new impossible
how amazing normal | true him me

MPQA

label name positive | negative
label word (s.) good | bad
label words (m.) good perfect fantastic | terrible awful hilarious

label words (au.)

possible necessary adopted | wrong bad dark
obvious awesome fun | then difficult gone
right fun decided | reported unfair rejected
accepted good great | unavoidable awful bad
different good amazing | wrong bad funny

SST-5

label name very positive | positive | neutral | negative | very negative
label word (s.) extraordinary | great | enough | boring | awful

label words (m.)
great perfect excellent | good pretty wonderful |
neutral normal fine | bad worse not |
terrible awful ridiculous

label words (au.)

good excellent unforgettable | hilarious inevitable funny |
different time interesting | predictable bad over |
dreadful boring horrible
magnificent unforgettable fantastic | refreshing remarkable sublime |
disappointing bad hilarious | neither predictable inevitable |
depressing pathetic unnecessary
wonderful fantastic incredible | terrifying refreshing interesting |
hilarious done easy | better disappointing predictable |
disgusting ridiculous horrible
magnificent excellent too | stunning unexpected refreshing |
simple done interesting | boring there worse |
ridiculous sad weird
great brilliant fantastic | extraordinary remarkable fascinating |
enough terrible funny | awful bad worse |
boring done unnecessary

Table 6: The verbalizer design (single label word (s.) for normal prompt tuning, label words manually designed
(m.) and automatically searched (au.) for prompt tuning with PROMPTDA) over five runs on SST-2, CR, MR, Subj,
CoLA, MPQA, SST-5 datasets.
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Abstract
In this work, we propose a method for in-
corporating question-answering (QA) signals
into a summarization model. Our method
identifies salient noun phrases (NPs) in the
input document by automatically generating
wh-questions that are answered by the NPs
and automatically determining whether those
questions are answered in the gold summaries.
This QA-based signal is incorporated into a
two-stage summarization model which first
marks salient NPs in the input document us-
ing a classification model, then condition-
ally generates a summary. Our experiments
demonstrate that the models trained using
QA-based supervision generate higher-quality
summaries than baseline methods of identify-
ing salient spans on benchmark summarization
datasets. Further, we show that the content
of the generated summaries can be controlled
based on which NPs are marked in the input
document. Finally, we propose a method of
augmenting the training data so the gold sum-
maries are more consistent with the marked in-
put spans used during training and show how
this results in models which learn to better ex-
clude unmarked document content.1

1 Introduction

Abstractive sequence-to-sequence summarization
models have become very effective methods of
easily generating summaries of input documents
(Rush et al., 2015; Nallapati et al., 2016; Lewis
et al., 2020).

Previous work has demonstrated that condition-
ing the summary generation on salient document
sentences results in higher-quality summaries and
more controllable summarization models (Chen
and Bansal, 2018; Dou et al., 2021). Salient sen-
tences are typically identified during training by

1http://cogcomp.org/page/publication_view/997
†Work done while at the University of Pennsylvania

Incumbent Goodluck Jonathan  phoned  former 
military leader Muhammadu Buhari  on Tuesday to 
concede defeat in Nigeria’s presidential elections, 
Buhari’s party says.  Jonathan  acknowledged the 
phone call and  his defeat  in a written statement to 
his countrymen. “I thank all Nigerians once again for 
the great opportunity… I promised the country  free 
and fair elections.  I have kept my word…” Buhari  
ruled  Nigeria  from late 1983 until August 1985… The 
72-year-old retired major general’s experience…

Input Document

Incumbent President  Goodluck Jonathan  
acknowledges  defeat,  says  he delivered on promise 
of fair elections.  Muhammadu Buhari  ’s party says 
Jonathan called to concede even before final results 
are announced. Buhari  is a 72-year-old retired major 
general who ruled in  Nigeria  in the 1980s.

Gold Summary

Figure 1: Salient spans identified by QA-based signals
(shown in color) more precisely identify salient docu-
ment content than those that identify salient sentences
based on lexical overlap (shown in bold). Our method
classifies the salient spans, marks them in the input doc-
ument, and then generates a summary.

lexical overlap with the gold summaries (Nallapati
et al., 2017) and predicted during inference.

Although marking different sentences as salient
allows for some controllability over the content of
the summary, desired summary content cannot be
specified at the sub-sentence level. Further, label-
ing sentences as salient via n-gram overlap does
not directly take the predicate-argument structure
of the text into account, which could result in a
lower-quality supervision signal that misidentifies
which particular instance of an n-gram is salient.

In this work, we propose to condition the sum-
mary generation on salient sub-sentence level
spans which are identified by reasoning about the
predicate-argument relations in the text.

We mark noun phrases (NPs) in the input docu-
ment as salient if the predicate-argument relation
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they participate in is present in the gold summary
(§2). This idea is implemented using automatic
question generation (QG) and answering (QA). For
each NP, a wh-question that is answered by the
NP is generated from the text. Then, the NP is
marked as salient if the generated wh-question is
correctly answered in the gold summary according
to a learned QA model, resulting in a more precise,
sub-sentence level supervision signal (see Fig. 1).

The QA-based salience signal is incorporated
into a two-stage summarization model (§3). First,
a phrase salience classifier is trained to identify
which NPs in the document are salient. Then, the
predicted salient spans are marked in the input doc-
ument with special tokens and used to conditionally
generate a summary of the document with a fine-
tuned BART model (Lewis et al., 2020).

While we show that marking NPs as salient con-
trols the summary content, the model often out-
puts extra, undesired information. To that extent,
we propose a data augmentation procedure that re-
moves sentences unsupported by any salient span
and generates new training examples based on what
content should be able to be generated by subsets
of the salient spans (§4).

Our experiments on three different summariza-
tion datasets show that the two-stage model trained
with QA-based salient span supervision gener-
ates higher-quality summaries than lexical base-
line methods of identifying salient spans on more
extractive datasets according to several automatic
evaluation metrics (§6.1). Further, our data aug-
mentation procedure results in summaries that are
significantly shorter with only a small reduction in
the percent of target content covered, demonstrat-
ing it successfully eliminates undesired summary
content (§6.2).

The contributions of our work include: (1)
a novel method of including QA-based signals
into summarization generation; (2) a two-stage
model for incorporating phrase-level supervision
into a summarization system; and (3) a data-
augmentation procedure which results in more con-
trollable summarization models.

2 Question-Based Salience

We begin by describing how QA is used to identify
salient spans of text in the input document and
discuss the advantages of this approach.

We define a document NP as salient if its corre-
sponding predicate-argument relation also appears

Input Document

A British military health care worker in  Sierra Leone  has 
tested positive for Ebola, a UK health agency said… An Ebola 
outbreak has devastated parts of West Africa, with  Sierra 
Leone … being the hardest hit…

Where did a British 
military health care worker 
test positive for Ebola?  
Sierra Leone

Spokesperson: Experts are investigating how the UK military 
health care worker got Ebola. It is being decided if the military 
worker infected in  Sierra Leone  will return to England. There 
have been some 24,000 reported cases and 10,000 deaths in 
the latest Ebola outbreak.

Automatically Generated Questions
An Ebola outbreak has 
devastated parts of West 
Africa, with which nations 
hardest hit?  Sierra Leone

Gold Summary with Predicted Answers

Figure 2: We define a document noun phrase as salient
if the wh-question it answers is also answered in the
gold summary. Here, the first (yellow) instance of
“Sierra Leone” is salient and the second (red) is not
because the gold summary answers the automatically
generated question for the first instance but not the sec-
ond.

in the gold summary. To identify such NPs au-
tomatically, we employ question-generation and
question-answering models as follows.

For each NP in the source document, we use the
sentence it appears in to automatically generate a
wh-question for which the NP is the answer. This
QA pair represents the predicate-argument relation
that the NP participates in. Then, we assume if a
second text can be used to correctly answer that
question, it contains the same predicate-argument
relation. Thus, we use a QA model to automatically
answer the question against the gold summary and
mark the NP as salient if the QA model predicts
the question is answerable and the predicted an-
swer is correct. In practice, we assume a predicted
answer is correct if it shares at least one token in
common with the NP which was used to generate
the question.

An example of this procedure is illustrated in
Fig. 2 for two occurrences of the NP “Sierra Leone.”
Questions for each phrase are automatically gener-
ated from the input document and answered against
the gold summary. Since the QA model correctly
answered the first question but predicted the second
question is not answerable, only the first occurrence
of “Sierra Leone” is marked as salient.

We refer to the NPs identified by this procedure
as “silver spans.”2 Specific implementation details

2The term “silver” refers to the fact that the salient spans
are not perfect because they were identified by sequence of
learned models rather than humans (“gold” spans; §6.1).
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of the generation and answering models can be
found in §5.

2.1 Advantages of a QA-Based Approach

Using QA to identify salient spans of text has sev-
eral advantages. First, because our QA approach
operates at the phrase-level, it is able to be more
precise about what specifically is salient in the doc-
ument in contrast to sentence-level approaches. For
example, in the second sentence of Fig. 1, the QA-
based salience signal identifies “Jonathan” and “his
defeat” as salient but not “written statement.” A
sentence-level approach would mark the entire sen-
tence as salient and thus cannot make that distinc-
tion.

Second, because the QA-based approach reasons
about the predicate-argument structure of the text,
it is able to distinguish between which specific in-
stances of the same NP are salient and which are
not. This is illustrated in Fig. 2 in which the first oc-
currence of “Sierra Leone” is marked as salient but
the second is not because the gold summary does
say the health care worker was infected in Sierra
Leone, but it does not say it is one of the hardest
hit countries. A salience signal that uses a bag-of-
n-grams approach (e.g., ROUGE-based methods)
cannot easily decide which instance “Sierra Leone”
is salient.

3 A Two-Stage, Span-Based Model

Next, we propose a two-stage, span-based model
that can incorporate the QA-based salience signals
into the learning procedure. The first of the two
stages, the span selection component, classifies
salient spans within the text. The second stage,
the generation component, generates the summary
given the document and the salient spans. The
details of each component are detailed next.

3.1 Salient Span Classifier

Given an input document d = [x1, . . . , xn] and
a set of spans S, in which each span si,j repre-
sents a sequence of tokens xi, . . . , xj in d, the span
classifier outputs a score for each span based on
how salient it is in the document. Our definition of
salience is discussed in §2.

Concretely, the input tokens are first encoded
using BART. Then, the representation of a span is
created by concatenating the BART encodings of
the first and last tokens in the span. Finally, a linear
classifier is trained using this encoding to predict

the salience of each span.
A set of silver spans S∗ ⊆ S is used to train the

model using a binary cross-entropy loss. When us-
ing the QA-based approach, S is the set of NPs in
the document and S∗ is the subset that our QG-QA
algorithm identified as salient. We reweight the
loss term of each span such that positive and nega-
tive spans contribute equally. During inference, a
score is predicted for each span in S and the top-k
sorted by highest score are passed to the generation
component. We choose the k spans independently,
although they could also be selected jointly.

3.2 Generation Component

Given an input document and set of salient spans,
the generation component produces a summary of
the document. The salient spans are represented
by inserting special tokens directly into the doc-
ument’s sequence of tokens before and after the
spans. For example, if span s4,5 was marked as
salient, the document’s tokens would be repre-
sented as

... x3 [SS] x4 x5 [SE] x6 ...

where [SS] and [SE] mark the start and end of the
span.

Since the salient spans are represented in the
document tokens, we are able to directly train a
sequence-to-sequence model to generate the gold
summary from the modified document representa-
tion without any changes to the model’s architec-
ture.

During training, we use silver spans and the
ground-truth summary to fine-tune BART using
a standard cross-entropy loss function. The ground-
truth summary does not have any marking of salient
spans. For inference, the predicted salient spans
from the span classifier are used instead of the sil-
ver spans.

4 Improving Controllability via Data
Augmentation

Although there is nothing to directly force the gen-
eration model to learn to include content based on
the supervision provided by the salient spans, if the
supervision is of high enough quality, we expect
the model will learn to do so. Indeed, we later show
in §6.2 that this is true, thus the content of the sum-
mary can be controlled by which spans are marked
as salient. However, it is also desirable for a con-
trollable summarization model to also not include
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Usain Bolt  rounded off the world championships Sunday by claiming  his 
third gold  in Moscow as he anchored  Jamaica  to  victory  in  the men’s 
4x100m relay.  The fastest man in the world charged clear of United…

Usain Bolt  rounded off the world championships Sunday by claiming  his 
third gold  in Moscow as he anchored  Jamaica  to  victory  in  the men’s 
4x100m relay.  The fastest man in the world charged clear of United …

Usain Bolt  wins third gold of world championship. Anchors  Jamaica  to 
4x100m relay  victory.  Jamaica double up in women’s 4x100m relay. 

Usain Bolt  wins third gold of world championship. Anchors  Jamaica  to 
4x100m relay  victory.  Jamaica double up in women’s 4x100m relay. 

Input Document with Question-Based Supervision Modified Training Summary

Figure 3: An example of our data augmentation procedure. The colors represent the mapping between document
and summary spans. The document spans are given to the generation model during training. In this example, no
span maps to the third summary sentence, so it is removed entirely. Then, new training instances are generated
using the first summary sentence and first two summary sentences with their corresponding salient document spans.

content which is not marked as salient. The genera-
tion models may learn to include extra information
for at least two reasons.

First, the gold summaries may include content
which cannot be generated based on only the silver
salient spans that were used to train the generation
model, so it may learn to output extra, unmarked
information. This could happen if the QG/QA mod-
els are imperfect (resulting in a noisy supervision
signal) or if the gold summary contains information
that cannot be mapped to the document. Second,
if the model is trained to generate summaries of a
certain length and the length of the summary nec-
essary to include all of the information marked by
the spans is smaller than those used for training —
for example, because the number of marked spans
is small — the model could generate additional in-
formation simply to increase the summary length.

An artifact of our silver span annotation pro-
cedure enables us to address these controllability
issues. If a document span is marked as salient,
that means it has a corresponding phrase in the
gold summary which expresses the same content.
Therefore, the QG-QA procedure creates a map-
ping between which parts of the gold summary
should be able to be generated by marking differ-
ent parts of the input document.

We propose to leverage this mapping to augment
the training data in two ways. First, we remove
any gold summary sentence which has no phrase
mapped to the document. These sentences would
encourage the model to generate additional content
based on unmarked spans.

Second, we generate new pairs of salient spans
and gold summaries for training by selecting the
first k remaining gold summary sentences and the
subset of salient document spans which map to
them. For instance, if k = 2, only the salient
spans which are mapped to the first two summary
sentences are marked in the input document, and

the model is trained to generate only those sen-
tences. We generate new examples for each origi-
nal training instance using all possible values of k.
By training on these new pairs, the model should
learn to better control the length of the output sum-
mary based on the number of marked salient spans.
An example of these augmentations is included in
Fig. 3.

Although this procedure is described within the
context of the QA-based supervision, it can be im-
plemented with any such mapping between the doc-
ument and gold summaries.

5 Experimental Setup

Datasets Our experiments use three popular
English single-document summarization datasets:
CNN/DailyMail (Nallapati et al., 2016), XSum
(Narayan et al., 2018), and NYTimes (Sandhaus,
2008). Specific details on the sizes of the datasets
can be found in Appendix A.

Baselines & Other Work We compare the
salient spans selected by our QA-based method
against three baseline span selection methods. The
first marks salient sentences by greedily selecting
k sentences that maximize the ROUGE-2 score
calculated against the gold summary, a popular
method that is frequently used to train extractive
summarization models (Nallapati et al., 2017) as
well as other two-step abstractive systems (Chen
and Bansal, 2018; Dou et al., 2021). The other
two mark entities and NPs as salient if they appear
in the gold summaries as determined by lexical
matching. We only mark the first occurrence of
the phrases as salient since we found that worked
better than marking all occurrences.

Additionally, we compare our results to BART
(the original implementation and our own; Lewis
et al., 2020) since our models are built on top of
it. We also compare to GSum (Dou et al., 2021),
which uses salient sentence guidance that is similar
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to our baseline salient sentence method. GSum
encodes the additional guidance signal separately
from the input document and uses the document
and guidance encodings to generate the summary.

Summarization Evaluation Metrics The mod-
els are automatically evaluated using three metrics
which calculate a similarity score between the gen-
erated and gold summaries. ROUGE (Lin, 2004)
compares the two summaries based on their lexical
overlap. BERTScore (Zhang et al., 2020) calculates
a similarity score between the summaries based
on their tokens’ BERT embeddings (Devlin et al.,
2019). QAEval (Deutsch et al., 2021) is a QA-
based evaluation metric which generates questions
from the gold summaries and answers them against
the generated summaries. Its similarity score is
equal to the average token F1 score calculated be-
tween the predicted and expected answers.

We additionally perform a human evaluation of
summary quality on Mechanical Turk. We ask 3
Turkers to rate the quality of 50 summaries per
model from the CNN/DailyMail dataset on a scale
from 1 to 5 based on the importance of the infor-
mation, faithfulness, fluency, and coherence. De-
tails on the manual evaluation can be found in Ap-
pendix G.

Controllability Evaluation Metrics The con-
trollability of our model is evaluated using the ques-
tion recall. Given k marked spans, we define the
question recall to be equal to the percent of the
corresponding k wh-questions that are answered
by the summary according to the QA model. This
approximates the recall on the desired predicate-
argument structures in the summary. We addition-
ally report the ratio between k and the length of
the generated summary in tokens to measure the
precision of the generated information. A larger
value means the summary is more concise.

Implementation Details The QG/QA models
are the same as used by QAEval. The genera-
tion model is initialized with BART-Large and
fine-tuned on data collected by Demszky et al.
(2018). The answering model is initialized with
ELECTRA-Large (Clark et al., 2020) and fine-
tuned on SQuAD 2.0 (Rajpurkar et al., 2018).

The span classification and generation models
are both initialized with BART-Large and fine-
tuned on the respective datasets. They were trained
for three and five epochs, respectively, and the
model with the best precision@1 and ROUGE-2 F1,

respectively, on the validation set were selected as
the final models. See Appendix B for more specific
implementation details.

6 Results

6.1 Summarization Evaluation

Automatic Evaluation Table 1 contains the
models’ performances as evaluated by automatic
metrics, both using the spans predicted by the clas-
sifier (“end-to-end”) and the silver spans (i.e., as-
suming a “perfect” classifier).

Interestingly, we find a somewhat surprising re-
sult. On CNN/DailyMail and NYTimes, the end-to-
end QA-based model performs the best among the
different span labeling methods and the baseline
BART. On NYTimes, it is also better than GSum.
However, if the silver span labels are used, the
lexical NP-based model out-performs the rest by
a somewhat large margin. It is surprising that a
seemingly better generation model would result in
worse end-to-end performance.

To better understand this result, we manually
labeled all of the NPs in 50 CNN/DailyMail doc-
uments as salient or not salient based on whether
the corresponding predicate-argument relation was
present in the reference summary (see Appendix E
for details). These spans, which we call the gold
spans, can be used to evaluate the precision and
recall of the silver spans as well as the output from
the salient span classifiers.

Table 2 shows that the QA-based labels are more
precise but have lower recall than the lexical NP
labels. Because the lexical NP method aggressively
marks the first occurrence of any NP in the docu-
ment which is present in the reference as salient, it
is unsurprising that its recall would be high. Since
it cannot distinguish between instances of the same
NP due to its bag-of-words representation, its pre-
cision is low. In contrast, the QA-based approach
can reason about which occurrence of an NP is
salient (resulting in higher precision), but the recall
is lower likely due to noise in the QG/QA models.
This same pattern appears in Table 2 with the out-
puts from the salient span classifiers, although the
precisions and recalls are notably lower than the
silver span labels’.

We believe that the discrepancy between the end-
to-end and silver span-based models’ performances
can be explained by these results. The lexical NP
generation model was trained with a high recall
silver supervision at 66.3, allowing the generation
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Method
CNN/DailyMail NYTimes

R1 R2 RL BSc QAE R1 R2 RL BSc QAE

Baselines & Other Work
BART 44.2 21.3 40.9 - - - - - - -
BART (ours) 44.1 21.0 40.9 88.3 23.5 54.0 35.2 50.7 89.5 27.3
GSum 46.0† 22.3† 42.6† 88.6† 22.9 54.3 35.4 47.6 - -

Silver Spans
Sentences 51.7 29.9 48.8 89.4 28.6 62.7 46.0 59.8 91.2 33.5
Entities 51.5 27.6 48.0 89.6 30.0 60.9 42.8 57.6 90.8 32.0
Lexical NPs 59.6 34.6 55.8 90.6 36.2 68.2 50.7 64.8 92.0 36.6
QAs 55.3 31.4 51.9 90.0 33.7 65.7 48.7 62.6 91.6 35.8

End-to-End
Sentences 45.0 21.8 41.8 88.2 23.2 54.6 35.9 51.4 89.6 27.6
Entities 43.5 20.3 40.4 88.3 23.2 53.5 34.6 50.3 89.4 27.0
Lexical NPs 44.8 21.0 41.6 88.4 23.2 54.6 35.4 51.3 89.6 27.1
QAs 45.5 21.9 42.4† 88.5 24.4† 55.2† 36.3† 51.9† 89.7† 28.0†

Table 1: The automatic metric results for the baselines and other work (top), models that use silver spans (middle),
and end-to-end models (bottom) evaluated with ROUGE (R1, R2, RL), BERTScore (BSc), and QAEval (QAE).
Values in bold are statistically the best in each section and † marks the best values overall (excluding silver labels)
using a permutation test with α = 0.05.

Method Precision Recall F1

Silver Labels
Lexical NPs 32.7 66.3 41.8
QAs 43.8 51.5 45.3

Predicted Spans
Lexical NPs@25 23.8 54.4 32.0
QAs@20 27.3 49.1 33.8

Table 2: The average summary-level precision, recall,
and F1 scores of the silver labeling methods (top) and
the output from the span classifiers (bottom) evaluated
against the human-annotated gold labeling. Results in
bold are statistically higher (or tied) under a single-tail
pairwise permutation test with α = 0.05. The @k val-
ues were selected based on validation set performance.

model to achieve good performance when the sil-
ver spans are provided. Yet during inference the
model is provided with spans that only have around
54.4 recall, 12 points lower. We suspect the gener-
ation model learned to rely heavily on the marked
salient spans — and empirically we observed that
it copied very heavily from them — thus when the
quality of the span signal was reduced, the result-
ing summaries similarly got worse. In contrast, the
difference between the QA-based model’s recall
during training and inference is only estimated to
be around 2.4, so this issue is less severe, resulting
in better end-to-end summaries.

To test this hypothesis, we artificially ablated the
lexical NP-based generation model’s silver span

Method
CNN/DailyMail

R1 R2 RL

Silver Spans
Lexical NPs 59.6 34.6 55.8

+10% Noise 57.8 32.8 54.0
+20% Noise 56.3 31.5 52.6
+30% Noise 55.0 30.4 51.4
+35% Noise 54.1 29.6 50.6

QAs 55.3 31.4 51.9

End-to-End
Lexical NPs 44.8 21.0 41.6

+10% Noise 45.0 21.3 41.8
+20% Noise 45.2 21.6 42.0
+30% Noise 45.3 21.7 42.1
+35% Noise 45.1 21.6 41.9

QAs 45.5 21.9 42.4

Table 3: The ablated lexical NP supervision shows as
the noise increases, the silver span performance de-
creases but end-to-end performance improves.

supervision’s recall by removing k% of the salient
spans uniformly at random — thus making the
training spans look more similar to the spans during
inference — and retrained the model. We would
expect the silver span-based model’s performance
to decrease while the end-to-end model’s increases.
Indeed, in Table 3 we find that this does happen.
These results suggest that the relationship between
the classifier’s performance and generation model’s
supervision is important for good end-to-end re-
sults and could be explored in future work.

Although the end-to-end lexical NP results begin
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BART Sentences QA

Quality Score 3.76 3.86 4.00

Table 4: Summary quality scores according to humans.
Results in bold are statistically tied for the best score.

to approach the QA-based model’s performance,
they do not quite reach it. Further, the QA-based
silver spans maintain an F1 advantage over the lex-
ical NP method (Table 2). While the QA-based
approach can be improved with better question
generation and answering models, the lexical NP
labeling method is inherently limited. Therefore,
the QA-based method does appear to be the best
method of incorporating additional supervision into
the summarization models based on the automatic
metrics.

Human Evaluation Table 4 contains the results
of evaluating BART and the sentence- and QA-
based models on CNN/DailyMail (the best per-
forming) using human summary quality annota-
tions from Mechanical Turk. On average, our span-
based methods have higher quality summaries than
the baseline method of BART. After collecting an-
notations for 50 summaries on CNN/DailyMail,
we were unable to obtain statistical significance
between the two span-based models, however, do-
ing so may be prohibitively difficult (Wei and Jia,
2021).

6.2 Controllability Evaluation
Automatic Evaluation The controllability of the
QA-based generation model is evaluated in Fig. 4
using the original training data as well as the aug-
mented data described in §4. We plot the question
recall and the ratio between k and the length of
the generated summaries for the top k most salient
spans output by the QA-based salient span clas-
sifier for various values of k on CNN/DailyMail.
The data augmentation procedure is split into only
removing sentences that do not answer a question
(“+Rm Sents”) plus also generating new training
examples (“+New Examples”). We also include
the results for BART (for which the summary is
constant for all k) for relative comparisons.

Although BART’s question recall is initially
higher than the QA models’ recalls, as k increases
it falls lower. We suspect this is because BART has
learned to include the same content that the span
classifier also identifies as salient when k is small
and the length of its summaries allows it to cover
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Figure 4: The percent of questions which correspond
to the marked spans answered by the generated sum-
maries (top) and the summary lengths in tokens (bot-
tom). The QA methods have higher question recall
than BART and are far more concise, demonstrating
that marking input spans controls the summary content.

more content. However, when k increases, the
span classifier potentially predicts different spans
as salient than what BART learned, resulting in
divergent content and a lower recall for BART. The
higher recall of the QA models demonstrates that
their summary content is indeed being controlled
via the input spans. Further, the QA models have
far better k-to-length ratios, meaning their sum-
maries are shorter than BART’s even when their
recalls are higher, suggesting they generate far less
content which is unrelated to the marked spans.

Among the QA-based models, we do observe a
small drop in recall when the model is trained with
data augmentation. However, the data-augmented
summaries express that information far more con-
cisely (because the ratio between k and the sum-
mary length is higher). For example, when 10 input
spans are marked, there is a relative 0.9% and 3.2%
drop in recall for removing sentences and the full
data augmentation procedure, respectively, but the
summary lengths are 14% and 22% shorter. There-
fore, the data augmentation procedures do result in
models which have learned to not generate extra
content.

Controllability Example Example summaries
from the QA models and sentence-based model
with different marked input spans are shown in
Fig. 5. Because the sentence-based model is lim-
ited to marking full sentences, the content which is
taken from the marked sentence cannot be further
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Input Document

Talk show host Dr. Mehmet Oz is defending himself against a group of doctors who accuse him of "manifesting an egregious lack of integrity" in his TV and 
promotional work and who call his faculty position at Columbia University unacceptable. In a written statement issued last week, Oz said, … “I will address this on 
the show next week." That show was taped on Tuesday and in a clip posted online after the taping, he tells his audience he will not be silenced. …

Marked Sentences
Talk show host Dr. Mehmet Oz is defending himself against a group of doctors who 
accuse him of "manifesting an egregious lack of integrity" in his TV and promotional 
work and who call his faculty position at Columbia University unacceptable. 

Sentence-Based Summary

QA-Based + Data Augmentation SummaryMarked Noun Phrases QA-Based Summary

…  Dr. Mehmet Oz  is defending himself … "manifesting an 
egregious lack of  integrity " in his TV and promotional 
work…

…  Dr. Mehmet Oz  is defending himself against a group of 
doctors   who accuse him of "manifesting an egregious lack 
of  integrity " in his TV and promotional work …

…  Dr. Mehmet Oz  is defending himself against a group of 
doctors  who accuse him of "manifesting an egregious lack 
of  integrity  ” in his TV and promotional work and who call 
his  faculty position  at Columbia University unacceptable. 

Dr. Mehmet Oz  is accused of “manifesting 
an egregious lack of  integrity”  in his work.

Dr. Mehmet Oz is defending himself against a group of doctors. The doctors 
accuse him of “an egregious lack of integrity” in his TV and promotional 
work. They call his faculty position at Columbia University unacceptable.

Doctors  accuse  Oz  of “manifesting an 
egregious lack of  integrity”  in his work.

Doctors  accuse  Oz  of “an egregious lack of  integrity 
in his TV and promotional work. Oz will address the 
issue on his show next week.

Doctors  accuse  Oz  of “an egregious lack of  integrity 
in his TV and promotional work. They call his  faculty 
position  at Columbia University unacceptable. Oz will 
address the issue on his show next week.

Dr. Mehmet Oz  has been accused of 
“manifesting an egregious lack of  integrity.” 
Doctors  call his  faculty position  at 
Columbia University unacceptable.

Dr. Mehmet Oz  is being criticized for his TV and 
promotional work. He is accused of “an egregious lack 
of  integrity  in his work. Oz will address the issue on 
his show next week.

Figure 5: Example summaries generated by the sentence-based model (middle), QA-based model (bottom cen-
ter) and QA-based model trained on the augmented data (bottom right). The QA-based models allow for much
more control over the summary content than the sentence model by marking different combinations of phrases.
The augmented-data summaries better eliminate unmarked content from the input than the standard model (extra
information generated by the standard model shown in bold).

controlled. In contrast, the figure shows how the
QA models’ summaries can be altered by marking
different NPs within the sentence, thus demonstrat-
ing the benefits of phrase-level controllability.

The example in Fig. 5 also shows how the data
augmentation procedure improves controllability.
The phrases which the standard model includes
but the augmented model does not are marked in
bold. The augmented model does a better job at
excluding content which was not marked in the
input document.

7 Related Work

QA-Based Signals QA-based signals have been
used for evaluating summaries (Eyal et al., 2019;
Durmus et al., 2020; Wang et al., 2020; Deutsch
et al., 2021), including Scialom et al. (2021), who
explore a similar notion of document salience.
They have also been used to align content across
documents (Weiss et al., 2021) as well as train sum-
marization models (Arumae and Liu, 2018, 2019;
Scialom et al., 2019). The models which incorpo-
rate QA-based signals typically do so using rein-
forcement learning. In contrast, our approach is
simpler. We incorporate the QA-based signal by
marking spans in the document, and our models
are trained using easier-to-optimize cross-entropy
objective functions.

Incorporating Additional Supervision Recent
work by Dou et al. (2021) proposes a framework

for incorporating additional guidance into summa-
rization models, called GSum. They separately en-
code the input document and the supervision signal,
whereas we directly mark spans in the text. This
allows for our generation component to have a sim-
pler architecture than theirs. While they are able to
encode any natural language string, our model pro-
vides more direct supervision by identifying which
specific tokens are salient.

Other work has included predicate-argument
structure into summarization to generate more faith-
ful summaries (Cao et al., 2018; Jin et al., 2020;
Zhu et al., 2021). They represent the predicate-
arguments either using dependency trees or OpenIE
tuples, whereas we represent them via QA pairs.
These works include that information to try and
generate faithful summaries, whereas our goal is to
identify salient document content.

Controllable Summarization Work on control-
lable summarization has focused on aspects such
as the length of the summary (Fan et al., 2018) and
the content in an interactive setting (Shapira et al.,
2017) or via prompting (He et al., 2020). Incor-
porating our QA-based signal via prompting may
be difficult given the number of questions which
would need to be concatenated onto the input.

Other approaches control content via planning
as in entity templates (Narayan et al., 2021), mark-
ing records in a data-to-text approach (Puduppully
et al., 2019), or using aspect controllers (Amplayo
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et al., 2021). The marked salient spans in our work
could be viewed as a content plan as well.

Data Augmentation Previous work has pro-
posed methods for removing sentences or full sum-
maries from the training data in order to discourage
the summarization model from learning to gener-
ate unfaithful information (Matsumaru et al., 2020;
Nan et al., 2021; Narayan et al., 2021). In addition
to removing sentences, we generate new training
instances in order to learn to exclude content which
is not marked as salient in the input, resulting in
more controllable models.

8 Conclusion

In this work, we proposed a method for incor-
porating QA-based signals into a summarization
model by automatically marking document NPs
as salient based on whether a NP’s corresponding
wh-question is answered correctly in the summary.
We showed that incorporating this signal into our
two-stage summarization model results in higher
quality summaries than baseline methods of identi-
fying salient spans. Finally, we demonstrated that
our data augmentation algorithm, which attempts
to ensure the span supervision is consistent with
the gold summaries, improves controllability by
eliminating unmarked content from the output sum-
maries.
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Limitations

The summarization model proposed in this work
relies on the existence of question generation and
question answering models, which are used to pre-
process the data for training. It is likely that such
models only exist or are of high-enough quality for
high resource languages, such as English, which
limits the languages that our model can be trained

on in practice. However, we do not see a reason
why our model could not be applied to another
language as long as those additional resources are
available.

Further, because the question generation model
produces simple wh-questions and the question an-
swering model is only able to reason about the
predicate-argument structure of the text (due to it
being trained on SQuAD 2.0), our procedure for
identifying salient document phrases requires that
the same information across the document and ref-
erence summary must be expressed in relatively
similar ways (e.g., up to rephrasing and synonyms).
If the reference summary does contain the answer
to the generated question but identifying that an-
swer requires a level of reasoning beyond reasoning
about the predicate-argument structure (e.g., does it
require multi-hop reasoning?), the specific models
proposed in this work may fail to identify those
salient phrases. This limits the types of datasets for
which we expect our proposal to do well on (dis-
cussed more in Appendix D). However, if matching
document and reference summary information re-
quires a level of reasoning that is supported by the
generation and answering models, then we suspect
our proposal will work, in theory, but we have not
experimented with this in practice.

Our methods out-perform the baseline systems
the most when evaluated by QAEval, and we lever-
age the same QG/QA technology as this metric.
While this commonality may bias our system to-
ward summaries that are favored by QAEval, we
argue this is not necessarily a bad thing. Previous
work has incorporated ROUGE-based signals into
their models, either indirectly by selecting extrac-
tive labels based on ROUGE or directly by optimiz-
ing ROUGE via reinforcement learning. Our ap-
proach is analogous to these modeling approaches,
and QAEval has been demonstrated to be a better
evaluation metric than ROUGE, so it is likely a
better metric to optimize for.
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Dataset #Train #Valid #Test Span Type #Spans

CNN/DM 287,113 13,368 11,490

Sentences 3
Entities 10

Lex. NPs 25
QA 20

XSum 204,045 11,332 11,334

Sentences 1
Entities 1

NPs 5
QA 1

NYTimes 44,382 5,523 6,495

Sentences 4
Entities 15

Lex. NPs 45
QA 27

Table 5: The number of instances in the training, vali-
dation, and test splits of the three datasets used in our
experiments as well as the number of spans selected by
the classification component that were passed as input
to the generation component.

also includes the number of spans per span type
that were selected from the classification compo-
nent and passed to the generation component dur-
ing inference. The values were selected based on a
parameter sweep on the validation set. The number
of spans with the highest ROUGE-2 F1 score was
selected.

B Implementation Details

All of the models were trained with the same hy-
perparameters for across datasets and span types
which were based on those used by BART (Lewis
et al., 2020).

The classification component was a BART-Large
model that was fine-tuned with a binary cross-
entropy classification loss. We selected the model
based on which had the best precision@1 on the
validation dataset. The generation models were
also fine-tuned BART-Large models, but they in-
stead use a cross-entropy loss function.

Both the components were trained using Adam
(Loshchilov and Hutter, 2019) with weight decay
and learning rate 3e-5. The classification compo-
nent was trained for 3 epochs, and the final model
was selected based on the precision@1 on the vali-
dation set. The generation component was trained
for 5 epochs, and the final model was selected
based on the ROUGE-2 F1 score on the validation
set.

C Salient Span Classifier Evaluation

Fig. 6 contains the precision@k and recall@k of
the span based classifiers calculated against the cor-
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Figure 6: The performances of the salient span classi-
fiers using the different types of salient phrase labeling
evaluated against the silver spans. The “x” marks the
operating points used in the end-to-end models.

responding silver spans. These plots should be in-
terpreted as how well the span classifiers were able
to learn from their respective supervision, not nec-
essarily the true quality of the output span labels
(which would require evaluating against human-
annotated gold labels, as in Table 2). The “x” sym-
bols denote the operating points used in the end-to-
end model, which were chosen based on the num-
ber of spans that resulted in the highest ROUGE-2
F1 score on the validation data.

D XSum Results

Table 6 contains the automatic summarization eval-
uation results on the XSum dataset. These results
are included in the Appendix because incorporat-
ing the span-based supervision does not improve
end-to-end results over the baseline BART model,
which is a conclusion also reached by GSum, a
model closely related to ours.

We suspect this is due to the abstractive na-
ture of XSum compared to the more extractive
CNN/DailyMail and NYTimes. Since the methods
for identifying salient spans rely on the document
and gold summary explicitly stating the salient con-
tent, we suspect the abstractiveness of XSum would
result in this happening less frequently and thus be
less beneficial to a summarization model trained
on XSum.

E Gold Span Annotation Protocol

We selected 50 test instances from the
CNN/DailyMail dataset uniformly at random and
labeled each of the document NPs as salient or
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Method
XSum

R1 R2 RL BSc QAE

Baselines & Other Work
BART 45.1 21.3 40.9 - -
BART (ours) 45.7† 22.4† 37.2† 91.3† 18.9†

GSum 44.9 21.2 36.0 90.4 17.9

Silver Spans
Sentences 47.3 24.2 38.7 91.5 19.9
Entities 48.1 24.2 39.1 91.7 21.3
Lexical NPs 54.3 29.3 44.1 92.4 26.1
QAs 47.9 24.1 39.2 91.6 21.4

End-to-End
Sentences 45.0 21.7 36.6 91.2 18.6
Entities 44.1 20.9 35.9 91.0 17.6
Lexical NPs 42.5 19.2 34.2 90.8 16.4
QAs 45.1 21.8 36.7 91.2 17.9

Table 6: The results of the models trained on the XSum
dataset as evaluated with the automatic evaluation met-
rics. The span-based models do not improve over the
baseline BART, potentially due to the abstractive nature
of the XSum dataset.

not salient based on whether the corresponding
predicate-argument relation also appears in the
gold summary. We did not mark instances in
which the NP’s predicate-argument relation could
be inferred from the gold summary via entailment
as salient since our silver span labeling methods
aim to mark phrases as salient if the content is
explicilty included in the gold summary.

In general, this procedure was straightforward
due to the extractive nature of the dataset in which
the gold summaries copy heavily from the input
document. If information was repeated in the input
document, we tried to label the occurrence which
contained the most predicate-argument relations
which also matched the gold summary. That is,
we selected the “best match.” Otherwise, the first
occurrence was selected.

Although our labeling procedure may be noisy,
we do not have reason to believe that the labels may
be biased in favor of either the lexical NP or QA la-
beling methods. Therefore, the statistics calculated
from these labels should only be used as diagnos-
tic tools to make relative comparisons between the
different labeling methods rather than precise es-
timates of their exact values. 50 documents were
sufficient to achieve statistically different results.

Our annotations will be released after publica-
tion.

Model R1 R2 RL BSc QAE

Silver Spans
QAs 55.3 31.4 51.9 90.0 33.7
QAs + Data Aug. 55.2 31.3 51.7 89.9 33.4

End-to-End
QAs 45.5 21.9 42.4 88.5 24.4
QAs + Data Aug. 45.3 21.8 42.1 88.4 24.3

Table 7: The automatic evaluation metrics for summary
quality are nearly the same for the QA-based model and
the QA-based model trained on the augmented data.

F Data-Augmentation Automatic
Evaluation

Table 7 contains the comparison between the stan-
dard and data-augmented training procedures based
on the automatic metrics. The scores are nearly
the same. The benefit of the model trained on the
augmented data is in its controllability, which is
not captured by this evaluation because the models
trained with the standard and augmented training
data receive the same spans as input supervision.

G Human Evaluation Details

Fig. 7 contains a screenshot of the tool we used for
annotating summary quality on MTurk. The anno-
tators were instructed to rate the summaries from
“Very Poor” to “Very Good” based on whether the
summary contained important information, was
faithful to the input document, was fluent, and was
cohesive. The ratings were converted to a Likert
scale from 1-5 and averaged across all of the ratings
for a system.

In order to encourage the annotators to pay at-
tention to the task, we also required that they write
a very brief explanation of how they made their
decision, inspired by Narayan et al. (2021).

The MTurk annotators were paid at a rate of
around $15 USD per hour.
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Figure 7: A screenshot of the tool we used for annotating summary quality on MTurk.
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Abstract
Multitask deep learning has been applied to
patient outcome prediction from text, taking
clinical notes as input and training deep neu-
ral networks with a joint loss function of
multiple tasks. However, the joint training
scheme of multitask learning suffers from
inter-task interference, and diagnosis predic-
tion among the multiple tasks has the gener-
alizability issue due to rare diseases or unseen
diagnoses. To solve these challenges, we pro-
pose a hypernetwork-based approach that gen-
erates task-conditioned parameters and coeffi-
cients of multitask prediction heads to learn
task-specific prediction and balance the mul-
titask learning. We also incorporate semantic
task information to improve the generalizabil-
ity of our task-conditioned multitask model.
Experiments on early and discharge notes ex-
tracted from the real-world MIMIC database
show our method can achieve better perfor-
mance on multitask patient outcome predic-
tion than strong baselines in most cases. Be-
sides, our method can effectively handle the
scenario with limited information and improve
zero-shot prediction on unseen diagnosis cate-
gories.

1 Introduction

Recent advances apply artificial intelligence to pre-
dict clinical events or infer the probable diagno-
sis for clinical decision support (Shickel et al.,
2017; Li et al., 2021). Those works extensively
study clinical data from Electronic Health Records
(EHRs). For example, the Doctor AI model for pre-
dictive modeling on EHRs (Choi et al., 2016) and
the Deep Patient model for unsupervised patient
record representation learning (Miotto et al., 2016)
is proposed by leveraging longitudinal medical data.
Within the patient records, we can also find various
clinical notes written by general practitioners or
physicians and annotated with specific diagnosis re-
sults, medical codes, and other clues of patient out-
come. Those clinical notes consist of meaningful

health information, including health profile, clini-
cal synopsis, diagnostic investigations, and medi-
cations, which can empower the clinical decision
making (Li et al., 2021). Clinical text mining has
demonstrated its feasibility in diverse healthcare
applications, including medical code prediction (Ji
et al., 2021), readmission prediction (Huang et al.,
2019) and diagnosis prediction (van Aken et al.,
2021). Readmission and length-of-stay prediction
can help with utility management, especially when
healthcare service is in high demand. Diagnostic
prediction can support clinicians in making deci-
sions based on many clinical reports. This study
focuses on multitask patient outcome prediction
from clinical notes, which classifies patients’ di-
agnostic results and predicts clinical outcomes to
empower expert clinicians and improve healthcare
services’ efficiency.
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Figure 1: An example of multitask patient outcome pre-
diction based on sequential inputs of clinical notes in
the electronic health record. The multitask deep learn-
ing model dynamically predicts the probabilities of sev-
eral patient outcomes at different stages during hospital
admission.

Existing work on clinical note representation
learning and multitask clinical outcome prediction
focuses on building neural architectures for feature
learning (Huang et al., 2019) or considers differ-
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ent prediction tasks under the joint learning frame-
work (Harutyunyan et al., 2019). However, there
remain some unsolved challenges. First, the joint
learning scheme for multiple tasks cannot effec-
tively deal with inter-task interference, in which
the predictors of different tasks compete with each
other. Second, the task context information is usu-
ally underused, making multitask learning task-
ignorant. Third, current learning algorithms are
easy to overfit on seen training examples but fail to
generalize on rare diseases or unseen diagnoses.

We propose a novel multitask learning method
for patient outcome and zero-shot diagnosis predic-
tion from clinical notes to solve the aforementioned
challenges. We propose to incorporate task infor-
mation to enable task-specific prediction in multi-
task learning. Inspired by the hypernetworks (Ha
et al., 2017) that use a small neural network to
generate parameters for a larger neural network,
we encode the semantic task information as the
task context and use the encoded task embeddings
as shared meta knowledge to generate the task-
specific parameters of prediction heads for multiple
tasks. Our proposed method effectively utilizes the
task information and produces task-aware multi-
task prediction heads. Our method is also gener-
alizable on unseen diagnoses by maintaining the
shared meta knowledge encoded as semantic task
embeddings. Furthermore, we propose to dynami-
cally update the weight coefficients of the multitask
learning objective using another random hypernet-
work, inspired by random projections (Wójcik and
Kurdziel, 2019), to balance the learning from mul-
tiple clinical tasks.

Our contributions include:

• We propose to utilize task information via
task embeddings for multitask patient out-
come prediction spanning readmission, diag-
nosis, and length-of-stay prediction from clin-
ical text and develop a hypernetwork for task-
specific parameter generation to share infor-
mation among different tasks.

• We propose to regularize the objective func-
tion via a randomly parameterized task
weighting scheme that effectively balances the
learning process among multiple tasks, taking
their relationships into account.

• Experiments on two datasets extracted from
a real-world clinical database show that our

proposed method outperforms strong multi-
task learning baselines and achieves more ro-
bust performance in zero-shot diagnosis pre-
diction.

2 Method

2.1 Problem Setup and Overall Architecture

The clinical document in patient health records is
denoted as d1:n = x1, . . . , xn, where each xi is
the i-th token. Patient outcome prediction predicts
clinical results by mapping the input text into pre-
diction scores with a function F : X n → Ym such
that y = F (x1, . . . , xn;θ), where y ∈ Rm is the
patient outcome, m is the number of classes, and θ
are the model parameters. Under the multitask task
setting, we have k learning tasks {Tt}kt=1 that are
related to the outcome of clinical intervention. Mul-
titask learning algorithm captures the relatedness of
multiple tasks and improves the modeling (Zhang
and Yang, 2021). In this study, we predict multiple
clinical outcomes. Thus, the goal of the learning
process is to fit a single-input multi-output function
yt = F (x1, . . . , xn;θshared,θt), where yt ∈ Rmt

is the ground truth label and mt is the number
of classes of the t-th task, θshared are the shared
model parameters, and θt the task-specific param-
eters. The learning objective is to minimize the
weighted sum of loss functions of multiple tasks,
denoted as

L(θ) =
k∑

t=1

αtLt (yt, p̂t;θshared,θt) , (1)

where αt is the weight coefficient of t-th task.
The progress of a clinical intervention comes

with multiple records, as illustrated in Fig. 1, lead-
ing to lengthy clinical notes. Following Huang et al.
(2019), we segment long clinical documents into
several chunks, i.e., the document segmented to r
chunks becomes d1:r = c1, . . . , ci, . . . , cr, where
the i-th chunk ci contains s tokens. The segmenta-
tion has two advantages: 1) it enables progressive
prediction from chunks of clinical notes calculated
from the predictions of individual chunks (see de-
tails in Experiments); 2) it makes the input text
length suitable for standard transformer-based pre-
trained models (described in the next section).

We propose a hypernetwork-guided multitask
learning framework to predict multiple patient out-
comes. Fig. 2 illustrates the overall framework,
where the generation flow generates parameters.
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Figure 2: The illustration of our proposed hypernetwork-guided multitask learning framework

Specifically, we use a shared transformer-based
text encoder to obtain hidden representations of
clinical notes and task information. We develop a
hypernetwork-based module, called Adapter Hy-
perNet, to generate task-specific parameters for
classification heads based on the task embeddings
trained by a bottleneck network. The generated
task-specific parameters then become the parame-
ters of classification heads. To balance the learn-
ing of the joint objective function, we deploy the
weight hypernetwork to generate weight coeffi-
cients conditioned on the task embeddings.

2.2 Base Text Encoder
We deploy the Bidirectional Encoder Representa-
tions from Transformers (BERT) model (Devlin
et al., 2019) as our base text encoder to learn rich
text features. The BERT text encoder pre-trains
a language model with masked language model-
ing and next sentence prediction objectives in an
unsupervised manner. Then, a downstream fine-
tuning is followed by tuning the pre-trained model
checkpoint with suitable learning objectives for
downstream applications. The pre-training and
fine-tuning paradigm can effectively exploit se-
mantic knowledge from large training corpora and
achieve superior performance in many downstream
applications. Due to the discrepancy of vocabular-
ies in general and specific domains, many efforts
have been made to pre-train a transformer language
model in various specific domains. To benefit the
most from unsupervised representation learning for
clinical application, we adopt the ClinicalBERT

that starts from the standard BERT checkpoint and
continues pre-training on clinical notes (Huang
et al., 2019). Given text chunks ci as inputs, we
use the last layer’s hidden representation of BERT-
based text encoder to represent the encoded clinical
note, i.e.,

H = [BERT(c1, θ0), . . . ,BERT(cr, θ0)] (2)

where H ∈ Rs×dh , s is the sequence length, ci
is the i-th chunked text, and θ0 is the model pa-
rameter of BERT encoder initialized from self-
supervised pretraining. We can use the pooled
embedding of the hidden representations to rep-
resent the clinical note, which is denoted as h ∈
Rdh . Similarly, we input the textual label of each
task to obtain the task description embeddings
with a shared BERT-based text encoder param-
eterized with θ0. Specifically, for the t-th task
with mt classes, the initial task embeddings are
Tt ∈ Rmt×dt , where dt is the embedding dimen-
sion. The obtained task embeddings capture the
task information and preserve the semantic mean-
ing of classes in each task.

2.3 Task-Conditioned Hypernetworks
Our goal is to utilize task side-information to en-
able robust patient outcome prediction, especially
for those classes with very few instances or that
were unseen in the training set. In the joint train-
ing of multitask learning, it is easy to suffer from
intertask interference. Inspired by the hypernet-
works (Ha et al., 2017) that generate model param-
eters to enable weight-sharing across neural layers,
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we propose the task-conditioned hypernetworks
with semantic task label embeddings to generate
the parameters of multitask classification heads for
clinical outcomes. The task-conditioned parameter
generation can enable task context-aware learning
from multiple tasks and share knowledge across
different tasks.

Task Embeddings To facilitate the parameter
generation conditioned on task information, we
further use a bottleneck network to train the task
embeddings obtained from the contextualized em-
beddings of the BERT-based text encoder. The
bottleneck network contains two fully-connected
layers with ReLU as the activation function (Nair
and Hinton, 2010), denoted as:

Zt =
(
ReLU(TtW1)

)
W2, (3)

where W1 ∈ Rdt×db and W2 ∈ Rdb×dt are
weight matrices of linear layers, Zt ∈ Rmt×dt

are the output task embeddings, db is the hidden
dimension that restricts the bottleneck with fewer
neurons, and the bias terms are omitted for sim-
plicity. The bottleneck network has been applied
in many fields, such as image noise reduction. We
use this structure to reduce the potential noise in
task classes because the assignment of diagnosis in
MIMIC-III does not use a systematic ontology.

Adapter Hypernetwork Inspired by the
hypernetwork-generated adapters (Mahabadi et al.,
2021) that fine-tune transformer layers, we equip
the multitask classification heads with adapter
hypernetworks that generate the parameters.
Furthermore, we inject the contextual information
in the task labels into parameter generation, which
provides task-specific classification heads capable
of task context-aware learning.

The adapter hypernetwork takes task embed-
dings of each task as input and generates model
parameters written as

Wt = H(Zt), ∀ t = 1, . . . , k (4)

where Wt ∈ Rdh×mt is the generated weight
parameters for the classification head of the t-th
task. We instantiate hypernetworks with simple
linear layers. Specifically, the matrices of task
embeddings Zt are flattened into vectors vt ∈
Rmt∗dt×1, projected into the hidden representation
space Rmt∗dh×1 with nonlinear activation, and re-
shaped to the size of weight matrices Rmt×dh to
act as the parameters of classification heads. The

bias parameters are also generated similarly. The
adapter hypernetwork conditioned on the task con-
text shares the meta knowledge of tasks and enables
task-specific prediction. Thus, the inter-task inter-
ference in the multitask setting can be effectively
mitigated. Furthermore, the semantic embeddings
of task context provide the adapter hypernetwork a
good initialization of task classes to generate task-
specific parameters, facilitating the meta-learning
from limited information for zero- or few-shot sce-
narios.

2.4 Task-Conditioned Learning Objective

In the joint training framework of multitask learn-
ing, the standard method corresponds to manually
tuning the weight coefficient αt. However, this
requires human efforts to configure additional hy-
perparameters when tuning the multitask learning
algorithms manually. To avoid this, we propose
to use another random hypernetwork G to gener-
ate the weight coefficients and make the weighted
objective function of the joint multitask learning
conditioned on task context. The weight coefficient
hypernetwork G is defined as

βt = G(Zt), ∀ t = 1, . . . , k. (5)

This hypernetwork is a multilayer perceptron
(MLP), and it takes the task embeddings Zt as in-
put and outputs a one-dimensional scalar. Then we
apply the softmax function to generate normalized
weight probability, i.e.,

αt =
exp(βt)∑k
t=1 expβt

. (6)

In practice, we initialize the weight hypernetwork
randomly and freeze the weights during optimiza-
tion. Hence this approach can be seen as analogous
to the technique of random projection (Wójcik and
Kurdziel, 2019), which projects high-dimensional
points to a lower dimension using a random weight
matrix, and which is known to preserve the rela-
tionships of the points. Here, however, the role of
the projection weight matrix is taken by the weight
hypernetwork. In this way, the weight coefficients
learned from the task context can preserve the se-
mantic task information and reweigh the joint loss
dynamically when the contexts change. We hypoth-
esize that this also adds flexibility to training and
regularization of the model, which contributes to
the improved performance (see Section 3.5).
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3 Experiments

3.1 Datasets and Setup
3.1.1 Datasets
We use the admission-level patient records in the
MIMIC-III dataset for experiments. From the vast
information in this database, we select the free-text
patient notes as the testbed for natural language
processing research. We release the source code 1.

Table 1: A statistical summary of datasets and tasks

Dataset # Samples # Classes
Train Val. Test Readm. Adm. Type Diag. LoS

Discharge 26,245 3,037 3,063 2 3 2,624 10
Early Notes 6,656 743 608 2 3 2,637 10

This study considers four classification tasks,
i.e., readmission prediction, diagnosis classifica-
tion, length-of-stay prediction, and admission type
classification. Following the prior work (Huang
et al., 2019), we build two datasets, i.e., one
extracted from discharge summaries (denoted as
Discharge) and one with early notes that were
created within three days after admission (denoted
as Early Notes), according to the period of pa-
tient admission date and the date when the notes
are charted. Table 1 summarizes the number of
instances and classes in our extracted datasets. In-
hospital death prediction is also an essential task
of patient outcome. However, we focus more on
readmission, and mortality precludes the possibil-
ity of readmission. Thus, we filter out all the in-
hospital death cases, which also aligns with the
prior work (Huang et al., 2019). We also consider a
proxy task of admission type classification that cat-
egorizes the clinical notes into “emergency", “elec-
tive" and “urgent" (studied in Sec. 3.4).

3.1.2 Tasks
Readmission Prediction The goal of this binary
classification task is to predict whether the patient
will be readmitted within 30 days of discharge.

Diagnosis Prediction The MIMIC-III dataset
has a total of 15,691 classes of diagnoses in the
“ADMISSIONS” table. We extract the clinical notes
from the “NOTEEVENTS" table and get a total of
2,715 diagnoses in the extracted datasets of dis-
charge and early notes, where frequent diagnoses
include pneumonia, congestive heart failure, and
sepsis. In our train/val/test split of discharge notes,

1Code available at https://agit.ai/jsx/
MT-Hyper

2,209 diagnoses appear in the training set, which
allows us to test the performance of zero-shot pre-
diction.

Length-of-Stay (LoS) Prediction Following
the setting of Harutyunyan et al. (2019), we define
the length-of-stay prediction as a 10-class classifi-
cation problem. Specifically, the duration of stay
is divided into ten buckets, i.e., one class for stays
less than a day, seven classes for one-to-seven-day
stays, one for stays longer than a week but shorter
than two, and the last one class for stays over two
weeks. A slight difference is that the duration of
stay in our definition is calculated during the span
between when the patient was admitted to the hos-
pital and when discharged from the hospital.

3.1.3 Baselines
We compare our method, dubbed MT-Hyper, with
several multitask learning algorithms on electronic
health records and clinical natural language pro-
cessing. MT-LSTM (Harutyunyan et al., 2019)
adopts a basic LSTM-based neural network and is
jointly trained with several patient outcome predic-
tion tasks. This method is initially designed for
modeling time series. We modify it with a word
embedding module for modeling clinical text in
patients’ health records. MT-BERT (Mulyar and
McInnes, 2020) is a unified clinical NLP model
that utilizes the BERT model architecture for text
encoding and learns features with multiple clinical
task prediction heads simultaneously. It originally
consists of eight task heads, while our implemen-
tation uses fewer clinical prediction tasks. MT-
RAM (Sun et al., 2021) proposes a neural module
with feature recalibration and aggregation for multi-
task learning that mitigates the mutual interference
of different tasks and refines the feature learning
from noisy clinical text.

3.1.4 Settings and Evaluation
We use the Adam optimizer (Kingma and Ba, 2014)
to optimize the model and set different learning
rates for different text encoders and classification
heads. The learning rates of LSTM-based meth-
ods range from 5e−5 to 1e−3. As to BERT-based
methods, we use a lower learning rate for both base
text encoder and classification heads, ranging from
1e−5 to 5e−5. Because clinical BERT only has pre-
trained checkpoints with the BERT base model and
the limitation of computing resources, we adopt the
BERT base architecture as our text encoder. We
use 300D word embedding, and the dimension of
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Table 2: Results of patient outcome prediction from early notes with average score ± standard deviation reported.
Bold values indicate the cases when our model obtain the best performance.

Task Method Progressive Ultimate
F1 AUC-ROC F1 AUC-ROC

Readmission

MT-LSTM 51.69 ± 3.72 53.80 ± 1.99 52.36 ± 3.62 56.17 ± 2.23
MT-BERT 55.52 ± 3.92 56.75 ± 2.56 56.02 ± 4.34 60.85 ± 1.61
MT-RAM 56.00 ± 3.09 57.26 ± 1.94 56.51 ± 2.80 62.78 ± 1.39
MT-Hyper 56.38 ± 2.30 57.57 ± 1.27 57.67 ± 2.21 62.41 ± 1.61

Diagnosis

MT-LSTM 8.50 ± 3.39 63.00 ± 0.95 8.69 ± 3.79 62.26 ± 0.91
MT-BERT 11.63 ± 4.83 64.13 ± 1.30 11.80 ± 5.02 63.24 ± 1.30
MT-RAM 14.06 ± 1.21 68.58 ± 1.60 14.39 ± 1.41 67.84 ± 1.64
MT-Hyper 19.56 ± 1.33 72.98 ± 0.45 20.47 ± 1.38 73.21 ± 0.43

LOS

MT-LSTM 30.19 ± 2.70 75.73 ± 0.92 30.54 ± 2.68 76.50 ± 0.87
MT-BERT 26.40 ± 4.34 72.60 ± 2.81 27.25 ± 4.08 73.71 ± 2.66
MT-RAM 26.20 ± 3.08 73.15 ± 3.44 27.08 ± 2.80 74.04 ± 3.31
MT-Hyper 33.18 ± 0.91 71.84 ± 1.95 33.28 ± 1.03 72.23 ± 2.18

Average

MT-LSTM 30.12 ± 3.27 64.18 ± 1.29 30.53 ± 3.36 64.97 ± 1.34
MT-BERT 31.18 ± 4.36 64.49 ± 2.22 31.69 ± 4.48 65.93 ± 1.86
MT-RAM 32.09 ± 2.46 66.33 ± 2.33 32.66 ± 2.34 68.22 ± 2.11
MT-Hyper 36.37 ± 1.51 67.47 ± 1.23 37.14 ± 1.54 69.28 ± 1.41

LSTM hidden states is also set to 300. We run each
algorithm ten times and report the average score
and standard deviation. We monitor the validation
loss in each trial and set the number of epochs that
triggers the early stop mechanism to be 3 for the
BERT encoder and 10 for the LSTM encoder.

Our problem definition considers readmission as
a binary classification problem, while the rest of the
tasks are defined as multi-class classification prob-
lems. For readmission prediction, we use weighted
F1 and AUC-ROC. For multi-class classification
problems, we report micro averaged scores. As we
segment lengthy clinical notes into shorter chunks
for progressive prediction, we report the results of
two types of evaluation scheme, i.e., progressive
scores that are calculated with the prediction prob-
abilities of note chunks and the ultimate scores of
a complete admission that are measured by aggre-
gating every prediction on segmented notes. The
ultimate scores can also be viewed as a similar strat-
egy to the bagging-based ensemble, in which each
single prediction is based on different chunks of an
instance and the final prediction is an ensemble of
different predictions.

3.2 Main Results

This section presents the main results on prediction
at discharge and early prediction. As admission
type classification has limited usage in real-world
scenarios, we do not include it in the comparison
of main results but use it in the discussion of task
conditioning.

Early Prediction Table 2 shows the results of
patient outcome prediction from early notes. In
both progressive and ultimate prediction, our pro-

posed method outperforms three baselines in most
cases. The baseline models are relatively stronger
in tasks with fewer classes. For example, MT-
BERT and MT-RAM produce a relatively good
prediction on readmission, while their performance
for multi-class diagnosis prediction is much worse
than our proposed method. Furthermore, our pro-
posed method can make more stable predictions in
most cases according to the standard deviation. Our
method outperforms the baselines by a relatively
large margin in terms of the average scores of three
prediction tasks.

Prediction at Discharge Next, we consider pre-
diction at discharge, while keeping the setup
otherwise similar to the early prediction. Dis-
charge notes provide relatively complete informa-
tion about patient hospital visits. Table 3 shows
the prediction results. Our method has compara-
ble readmission prediction performance, superior
diagnosis prediction, inferior performance in the
length-of-stay prediction, and relatively better over-
all performance measured by average score than
other baselines. Besides, our method has smaller
values of standard deviation in most cases when
making a prediction at discharge.

3.3 Zero-shot Diagnosis Prediction

We study a more challenging scenario of zero-shot
diagnosis prediction. In the extracted datasets,
among the total 2,624 diagnoses of discharge,
2,209 diagnoses appear in the training set, i.e., 415
types of diagnoses are unseen in the evaluation
data. We adopt this sampled setting to test the per-
formance of zero-shot diagnosis prediction. Table 4
shows the AUC-ROC scores of progressive and ul-
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Table 3: Results of patient outcome prediction at discharge with average score± standard deviation reported. Bold
values indicate the cases when our model obtain the best performance.

Task Method Progressive Ultimate
F1 AUC-ROC F1 AUC-ROC

Readmission

MT-LSTM 60.54 ± 1.38 60.39 ± 1.22 63.17 ± 1.64 68.46 ± 1.93
MT-BERT 64.86 ± 1.08 64.78 ± 1.15 68.66 ± 3.17 76.33 ± 2.88
MT-RAM 65.92 ± 1.86 65.88 ± 1.34 70.41 ± 2.67 77.49 ± 2.30
MT-Hyper 66.41 ± 0.77 66.08 ± 0.74 69.66 ± 1.52 76.93 ± 1.11

Diagnosis

MT-LSTM 9.08 ± 1.60 66.51 ± 0.98 11.04 ± 2.74 64.85 ± 1.01
MT-BERT 9.75 ± 1.82 69.19 ± 6.22 10.80 ± 2.83 68.04 ± 7.98
MT-RAM 10.26 ± 1.99 67.38 ± 0.79 11.39 ± 2.99 65.70 ± 0.92
MT-Hyper 10.28 ± 0.25 76.93 ± 0.73 12.99 ± 1.57 79.07 ± 1.07

LOS

MT-LSTM 31.09 ± 0.93 76.77 ± 0.67 32.57 ± 1.29 79.33 ± 1.19
MT-BERT 31.37 ± 1.23 78.27 ± 0.90 34.91 ± 0.31 82.13 ± 0.26
MT-RAM 31.29 ± 1.91 76.14 ± 4.48 32.29 ± 2.95 77.69 ± 5.34
MT-Hyper 31.33 ± 0.38 73.76 ± 1.31 31.08 ± 0.21 73.01 ± 1.28

Average

MT-LSTM 33.57 ± 1.30 67.89 ± 0.96 35.59 ± 1.89 70.88 ± 1.38
MT-BERT 35.33 ± 1.37 70.75 ± 2.76 38.13 ± 2.10 75.50 ± 3.71
MT-RAM 35.82 ± 1.92 69.80 ± 2.20 38.03 ± 2.87 73.63 ± 2.86
MT-Hyper 36.01 ± 0.47 72.26 ± 0.93 37.91 ± 1.10 76.34 ± 1.15

timate diagnosis prediction on zero-shot diagnosis
categories. The results indicate that the baseline
models make terribly incorrect predictions with
AUC-ROC scores lower than the random guess.
These baselines cannot learn meta-knowledge of
diagnoses, making them overfitting on seen diag-
noses in the training set. In contrast, our proposed
MT-Hyper can capture the task context and seman-
tic diagnosis information. Therefore, our method
is more generalizable on unseen diagnoses and
achieves satisfactory performance under the chal-
lenging zero-shot setting.

Table 4: Results (AUC-ROC) of zero-shot diagnosis
prediction on unseen diagnosis results with average
score ± standard deviation reported. Bold values in-
dicate the cases when our model obtain the best perfor-
mance.

Dataset Method Progressive Ultimate

Discharge

MT-LSTM 11.00 ± 2.31 9.74 ± 1.55
MT-BERT 10.47 ± 0.76 9.00 ± 0.36
MT-RAM 11.40 ± 1.44 10.37 ± 1.25
MT-Hyper 64.06 ± 2.02 68.33 ± 2.76

Early

MT-LSTM 8.65 ± 1.19 8.47 ± 1.00
MT-BERT 8.24 ± 0.79 8.20 ± 0.74
MT-RAM 14.25 ± 3.11 14.12 ± 3.12
MT-Hyper 62.04 ± 1.13 63.76 ± 1.03

3.4 Semantic Relation of Task Embeddings

We study the semantic relation of task embeddings
to verify if task conditioning uses task information.
We include the admission type classification as an
auxiliary task and train four tasks jointly to achieve
this goal. We filter out “newborn" and “death"
and define the admission type classification as a
three-way classification task with admission types
of “emergency", “elective" and “urgent". The clas-
sification task categorizes the type of admission for

each clinical note. It may have no practical usage
in clinical support. However, it is a useful auxil-
iary task for clinical note understanding. Thus, we
choose this task as an auxiliary task to help study
the semantic relation of task embeddings. We ob-
tain the task embeddings from the trained model
and aggregate embeddings of each task into a vec-
tor via mean pooling. To visualize task vectors in
low dimensional space, we apply principal com-
ponent analysis to reduce the dimension of task
vectors. Firstly, we plot task label embeddings
of readmission, admission type and length-of-stay
and together with the first 50 diagnoses. Figure 3a
shows that different label embeddings are relatively
far apart from each other, and the two tasks that
are similar to each other, readmission prediction
and admission type prediction, appear close to each
other. We further zoom in to the embeddings of
length-of-stay task labels in Figure 3b. However,
here we cannot find any clear interpretable pattern.
We hypothesize that the prediction of length-of-stay
would benefit from clinical document understand-
ing and numerical reasoning over the ordinal cat-
egories, and the hypernetwork-based architecture
with semantic task embeddings does not effectively
capture this ordinal relation of different lengths of
stay. This may partially explain why our method
did not provide advantage over other methods on
the length-of-stay prediction.

3.5 Ablation Study

Our proposed method consists of two hypernet-
works, i.e., adapter hypernetwork for task-specific
parameter generation and weight hypernetwork
(WH) for task weight coefficient generation. We
conduct an ablation study on the usage of weight
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Table 5: Ablation study on patient outcome prediction from early notes with three tasks jointly trained

Task Method Progressive Ultimate
F1 AUC-ROC F1 AUC-ROC

Readmission without WH 56.74 ± 1.26 57.28 ± 1.17 57.94 ± 1.53 61.56 ± 1.79
with WH 56.38 ± 2.30 57.57 ± 1.27 57.67 ± 2.21 62.41 ± 1.61

Diagnosis without WH 18.90 ± 2.06 69.26 ± 0.33 19.91 ± 2.29 69.58 ± 0.47
with WH 19.56 ± 1.33 72.98 ± 0.45 20.47 ± 1.38 73.21 ± 0.43

LOS without WH 33.59 ± 0.36 71.14 ± 1.25 33.85 ± 0.34 71.44 ± 1.32
with WH 33.18 ± 0.91 71.84 ± 1.95 33.28 ± 1.03 72.23 ± 2.18

Average without WH 36.41 ± 1.23 65.89 ± 0.92 37.23 ± 1.39 67.53 ± 1.19
with WH 36.37 ± 1.51 67.46 ± 1.22 37.14 ± 1.54 69.28 ± 1.41

Table 6: Ablation study on patient outcome prediction at discharge with three tasks jointly trained

Task Method Progressive Ultimate
F1 AUC-ROC F1 AUC-ROC

Readmission without WH 65.42 ± 0.88 65.21 ± 0.73 68.11 ± 1.46 75.99 ± 0.37
with WH 66.41 ± 0.77 66.08 ± 0.74 69.66 ± 1.52 76.93 ± 1.11

Diagnosis without WH 10.05 ± 0.87 75.13 ± 1.12 12.68 ± 1.39 78.54 ± 1.56
with WH 10.28 ± 0.25 76.93 ± 0.73 12.99 ± 1.57 79.07 ± 1.07

LOS without WH 31.20 ± 0.31 73.47 ± 0.59 30.82 ± 0.34 72.62 ± 0.79
with WH 31.33 ± 0.38 73.76 ± 1.31 31.08 ± 0.21 73.01 ± 1.28

Average without WH 35.56 ± 0.69 71.27 ± 0.81 37.20 ± 1.06 75.72 ± 0.91
with WH 36.01 ± 0.47 72.26 ± 0.93 37.91 ± 1.10 76.34 ± 1.15
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Figure 3: Visualization of task embeddings with dimen-
sion reduced by PCA

hypernetwork. Table 5 and Table 6 show the results
of patient outcome prediction from early notes and
prediction at discharge respectively. The weight
hypernetwork dynamically adjusts the weight coef-
ficients of joint loss and contributes to the perfor-
mance improvement in most cases. MT-Hyper with
weight hypernetwork has better predictive scores
in 10 out of 16 evaluation metrics on patient out-
come prediction from early notes. As for patient
outcome prediction at discharge, MT-Hyper with
weight hypernetwork outperforms its counterpart
without weight hypernetwork.

4 Related Work

Patient outcome prediction, including automatic
coding (Friedman et al., 2004; Yan et al., 2010),
patient severity (Naemi et al., 2020), in-hospital
mortality, decompensation, length of stay and phe-
notyping (Harutyunyan et al., 2019), can empower
health practitioners to make better clinical decision.

Many studies have been conducted to investigate
the usability of deep learning for accurate predic-
tion using time-series, clinical text, or multimodal
data. Zufferey et al. (2015) compared different
multi-label learning algorithms. Che et al. (2015)
proposed a deep phenotyping model regularized on
the categorical structure of the medical ontology.
Zhang et al. (2019) proposed an attention-based
LSTM network to model the disease progression in
a time-aware fashion. Similarly, Men et al. (2021)
extended the LSTM model to be attention- and
time-aware for multi-disease prediction. Convolu-
tional neural networks have also been deployed in
this field. For example, (Bardak and Tan, 2021)
developed CNN-based networks for multimodal
learning from patient records. Clinical notes as an
essential modality of EHRs have also been studied
intensively. Ghassemi et al. (2014) extracted topic
features from free-text patient data for mortality
prediction. Mulyar and McInnes (2020) extracted
clinical information from clinical documents via
fine-tuning large-scale pretrained language models.

Multitask learning learns multiple tasks simul-
taneously with a shared representation and trans-
fers the domain knowledge in related tasks to im-
prove the learning capacity (Caruana, 1997). It
has also attracted much attention from the research
community of machine learning and natural lan-
guage processing for healthcare. Mahajan et al.
(2020) studied semantic similarity degrees of clini-
cal notes by a multitask learning method with iter-
ative data selection. Sun et al. (2021) proposed a
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multitask learning framework with feature calibra-
tion for medical coding. Several multitask learn-
ing schemes have also been developed for learn-
ing from clinical time-series (Harutyunyan et al.,
2019). Hypernetworks (Ha et al., 2017) that gen-
erate weights for other networks have also been
adopted to solve the learning problem with multiple
tasks, for example, the Hyperformer that generates
the parameters of adapter modules for fine-tuning
NLP task streams (Mahabadi et al., 2021). Inspired
by this work, our work starts from a different set-
ting that learns different tasks simultaneously, uti-
lizes the semantic information of clinical predica-
tion tasks, and balances the learning objective via
task conditioning.

5 Conclusion

Patient hospitalization is a complex process, which
needs the learning algorithm to model multiple
risk indicators. Multitask learning can jointly learn
from patient records to empower clinical decision-
making. To address the challenges of inter-task
interference and poor generalizability to unseen la-
bels in recent multitask learning frameworks for
healthcare, we propose a hypernetwork-guided
multitask learning method that learns from the task
context and generates task-specific parameters for
effective multitask prediction on patient outcomes.
The proposed method incorporates contextualized
language representations to encode clinical notes
and capture the task context via the semantic em-
beddings of tasks. The hypernetwork-guided multi-
task learning framework enables task-conditioned
learning and balances the joint learning objective
across different tasks. Experimental studies on the
real-world MIMIC-III dataset show our proposed
method achieves better performance on early pre-
diction and more robust performance on zero-shot
diagnosis prediction.

Limitations

The proposed task-conditioned multitask learning
method requires to obtain task embeddings from
the semantic description.
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Abstract
Aspectual meaning refers to how the internal
temporal structure of situations is presented.
This includes whether a situation is described
as a state or as an event, whether the situation
is finished or ongoing, and whether it is viewed
as a whole or with a focus on a particular phase.
This survey gives an overview of computational
approaches to modeling lexical and grammati-
cal aspect along with intuitive explanations of
the necessary linguistic concepts and terminol-
ogy. In particular, we describe the concepts
of stativity, telicity, habituality, perfective and
imperfective, as well as influential inventories
of eventuality and situation types. Aspect is a
crucial component of semantics, especially for
precise reporting of the temporal structure of
situations, and future NLP approaches need to
be able to handle and evaluate it systematically.

1 Introduction

Lexical and grammatical aspect play essential roles
in semantic interpretation (Smith, 2003), and yet
even state-of-the-art natural language understand-
ing (NLU) systems do not address these linguistic
phenomena systematically (Metheniti, 2022). Con-
sider this example: an NLU-based personal assis-
tant, noticing the boarding time of a flight, tells
a passenger (who is still shopping at the airport)
“You miss flights” (i.e. on a regular basis) instead
of “You are missing the flight” (now!). The traveler
might misinterpret this utterance as chit-chat and
indeed miss the flight. Aspectual encoding errors
impair fluid and correct communication.

While there has been a notable amount of work
on modeling lexical and grammatical aspect in
the computational linguistics community (Moens
and Steedman, 1988; Siegel and McKeown, 2000b;
Friedrich et al., 2016; Kober et al., 2020), this area
is still a niche in natural language processing (NLP).
In this paper, we survey the state of research in
this area and argue that a good computational un-
derstanding of lexical and grammatical aspect is

Tom is climbing.
ongoing event, progressive, activity

Tom climbed the mountain (yesterday).
dynamic, completed event, perfective

telic = has endpoints, accomplishment

John is standing/stood on the cliff.
no change, state

At 4:07pm, Tom reached the top.
punctual, change of state, achievement

Tom climbs
mountains.
habitual

Figure 1: Aspect is like the camera lens of language,
the device by which we focus on particular phases of a
situation (Vendler, 1957; Smith, 1997).

paramount for capturing temporal information sig-
naled by linguistic encoding. We thereby add to the
on-going discussion in the NLP community about
what is required to achieve true natural language
understanding (Bender and Koller, 2020; Dunietz
et al., 2020; Trott et al., 2020).

When describing a situation, as exemplified in
Figure 1, producers of language have options for
how to depict the situation and which subparts of it
to highlight. Just as a cinematographer uses focus
to highlight certain elements of a scene and thus
bring them to the attention of the viewer, different
aspectual choices focus on different subparts of the
situation at hand, leaving the rest as background
(analogy due to Smith, 2003). For example, many
situations can be construed as either foregrounded
events (“Tom climbed the mountain”), moving nar-
rative time forward, or as states (“John stood on the
cliff”), which often function as the background in
a narrative or explanation. Aspectual choices may
trigger hard inferences, softer implicatures, or sim-
ply expectations, having a non-negligible impact on
the reader or listener. One aim of this survey is to
clarify the sometimes complex linguistic work on
aspect, giving NLP researchers and practitioners a
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Dataset Reference Language Size Annotated Categories

Asp-Ambig Friedrich and Palmer (2014a) EN 7875 clauses stativity
SitEnt Friedrich et al. (2016) EN 40,000 clauses situation entities, stativity, habituality
Tense-Europarl Loáiciga and Grisot (2016) EN/FR 435 verb phrases boundedness (in sentence context)
MASC-telicity Friedrich and Gateva (2017) EN 1863 clauses telicity
Captions Alikhani and Stone (2019) EN 2600 captions stative, durative, telic/atelic, punctual
SdeWac-Aspect Egg et al. (2019) DE 4200 clauses stativity, durative vs. punctual, boundedness
DIASPORA Kober et al. (2020) EN 927 utterances stative, telic, atelic
UDS Gantt et al. (2022) EN 16,624 sentences; stativity, some telicity, durativity,

granularity varies other event properties

Table 1: Available Datasets labeled with aspectual information.

conceptual toolkit, plus a glossary of aspect-related
terminology (Appendix A). The second aim is to
survey computational work on modeling aspect.

Aspectual categories are semantic notions that
are conveyed through a variety of mechanisms (Sec-
tion 2). Fundamental aspectual distinctions (Sec-
tion 3) may be part of the lexical meaning of a
verb and are also influenced by context. These
distinctions drive some influential inventories of
eventuality types (Section 3.3). Grammatical as-
pect (Section 4) is marked morphologically in some
(e.g., Slavic) languages, or via the choice or ab-
sence of tense-aspect features in languages such as
English. Section 5 explains the idea of situation
types, aspectual distinctions at the clause level.

As a consequence of the often distributed or even
implicit encoding of aspect, computational models
need to consider a variety of lexical and grammat-
ical features as well as discourse and pragmatic
information. While some NLP systems trained on
end-to-end datasets may get some of these cases
right, we are not aware of a system treating such
problems in a principled manner. A recent study
finds that transformer-based embeddings are use-
ful for classifying clausal aspect (Metheniti, 2022),
but it remains unclear just how these models learn
or incorporate aspectual information. This survey
focuses on modeling aspectual information as it is
annotated in the datasets listed in Table 1.

In Section 6, we discuss potential ways of mov-
ing the field forward. We argue that explicit mod-
eling or evaluation of aspectual categories should
become a routine perspective in future NLP: getting
aspect right has high stakes for applications such as
temporal question answering, machine translation,
or computer-aided language learning.

2 Where Does Aspect Live?

Comrie (1976) notes that there is a terminological
and conceptual confusion around tense and aspect.

This is at least partially because the expression
of temporal location is intertwined morphologi-
cally with aspect in many languages of the world
(Smith, 1997), so the traditional grammatical ter-
minologies of individual languages often introduce
tense/aspect combinations simply as tenses. Tense
is deictic and locates the time of a situation rela-
tive to the utterance or relative to another situation.
Aspect, in contrast, refers to situation-internal time.

Aspectual distinctions are covert categories
(Whorf, 1945; Smith, 1997), expressing particu-
lar temporal semantic concepts in a way that does
not have a one-to-one mapping to lexical, grammat-
ical or syntactic categories (Fillmore, 1969). For
example, the English Progressive1 often indicates
an ongoing situation without focusing on its end-
points (“I am eating an apple”), but it also signals
future events (“I am going to Paris”). The grammat-
ical form of such tense-aspect combinations can
often be automatically detected with high accuracy
(Ramm et al., 2017; Myers and Palmer, 2019). This
type of aspect, encoded in the tense system of a lan-
guage, is different from semantic concepts which
refer to how the internal structure of a situation is
presented; this survey focuses on the latter.

So where does covert, semantic aspect live? As-
pectual meaning is compositional, composed by the
verb’s inherent meaning, its arguments, its tense,
any morphological aspect markers, some prepo-
sitional phrases, and the adverbs of the sentence
(Verkuyl, 1972; Mourelatos, 1978; Smith, 1997).
Eventuality and situation type inventories make
use of several dimensions of aspect to distinguish
between different types of temporal structures. Lex-
ical aspect refers to information contained in the
meaning of verbs (or verb senses), with the conse-
quence that their values often can be determined

1Following Comrie (1976), we use initial capitals for the
names of language-particular categories and lower case for
language-independent semantic distinctions.
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only when observing how the verb interacts with
its clausal context. A second dimension, grammat-
ical or viewpoint aspect, refers to whether there
is a focus on part of the situation or whether the
situation is viewed as a whole or even as repeating.
Grammatical aspect and situation types are both se-
mantic categorizations at the sentence/clause level
(e.g., Vendler, 1957; Verkuyl, 2005; Smith, 2003).

3 Inherent Lexical Aspect

Here we explain two fundamental notions related to
inherent lexical aspect: stativity refers to whether a
situation is viewed as an event or state, and telicity
refers to whether an endpoint is visible in a clause.

3.1 Stativity

The most fundamental distinction made in the hier-
archies of eventuality types is that between states
(“love,” “own”) and events (“run,” “buy”). In con-
trast to dynamic predicates, stative verbs entail no
change (Filip, 2012). States obtain in time but they
do not take time; events occur, happen, or take
place (Smith, 1997). Events may have a beginning
and/or an end (Comrie, 1976), and they are often
durative, i.e., conceived as lasting for a certain
period of time. Some events are dynamic situa-
tions describing a change of state such as “John
reached the goal”; these are perceived as punctual.
For punctual, single-stage events which cause no
change of state, Smith (1997) adds the situation
type semelfactives, for verbs like “knock,” “flash,”
or “blink.” While dynamic in nature, semelfactives
return to their initial state at their end and often
occur as iteratives (Filip, 2012). The stativity dis-
tinction pertains to verb senses, not verb types. For
example, the verb type “make” has both a dynamic
(1a) and a stative (1b) sense.

(1) (a) She is making a cake. (dynamic)
(b) She makes a great host. (stative)

In theory, the analysis of stativity could be ap-
plied to inventories of verb senses such as WordNet
(Fellbaum, 2010). In practice, most computational
works focus on classifying verbs in context.

Early computational approaches. The
dynamic-stative distinction is at the heart of early
approaches to computational modeling of tense
and aspect. In the PUNDIT system for temporal
information processing (Passonneau, 1988a), the
lexical aspect of verbs in tensed clauses can be
read from the system’s output: transition events
use become, processes use do; other cases signal

states. In the context of lexicon induction, Klavans
and Chodorow (1992a) suggest representing event
structure of a verb as its degree of stativity, which
is estimated by the proportion of occurrences in a
corpus that are in the Progressive. Brent (1991a)
also presents a program for identifying stativity
using syntactic indicators: verbs that occur fre-
quently with the Progressive or that combine with
rate adverbs (e.g. “quickly”, “slowly”) are usu-
ally dynamic. Both works evaluate by manually
inspecting system output.

Datasets. Siegel (1999) presents a manually an-
notated dataset of 739 training and 739 test clauses
taken from medical discharge summaries, covering
222 different verb types. With the aim of reproduc-
ing and extending their work, Friedrich and Palmer
(2014a) have three annotators label 7,875 clauses
from MASC (Ide et al., 2008), marking the clause’s
main verb as stative or dynamic.If annotators see
both readings, they may select both. The dataset
has later been extended to cover 30,333 clauses
from MASC and 10,607 clauses from Wikipedia
(Friedrich et al., 2016). Kober et al. (2020) intro-
duce the DIASPORA dataset, in which 927 utter-
ances from a corpus of human-human phone con-
versations (Brennan et al., 2013) are labeled with
whether the first verb phrase of each utterance is
stative or dynamic. The dataset spans 69 differ-
ent verb types. Chen and Palmer (2022) produce
292 contrast sets for stativity in English and out-
line strategies for converting between stative and
dynamic expressions of the same situation. For
more datasets that annotate stativity as one feature
among others, see Section 3.3.

Modeling.2 Siegel (1999, 1997) and Siegel and
McKeown (2000b) propose a machine-learning ap-
proach to classifying stativity that describes each
verb occurrence exclusively using corpus-based
statistics of the corresponding verb type. The verb-
type based indicators are normalized counts that
reflect, for instance, how often the verb co-occurs
with the past tense, in the perfect, or in negated
form (for a full list, see Appendix D.1). Using these
features, they train logistic regression models, de-
cision trees, and genetic programming algorithms.

Friedrich and Palmer (2014a) compare these
corpus-based linguistic indicators to instance-
based syntactic-semantic features representing the
clausal context, e.g., the part-of-speech tag of the

2Appendix B summarizes computational systems and ap-
proaches to modeling aspect.
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verb, tense, voice, and WordNet information (Fell-
baum, 2010) for the verb’s arguments. Using the
LCS database (Dorr, 2001) and a procedure de-
scribed by Dorr and Olsen (1997), they also con-
struct three seed sets with verb types that either
occur exclusively as dynamic, only as stative, or
can take both aspects. Based on these seed sets and
a pre-trained syntactic distributional model (Thater
et al., 2010), similarity values are computed and
used as additional features. Kober et al. (2020) in-
put sums of non-contextualized word embeddings
(Mikolov et al., 2013) for the clause’s main verb
as well as selected context words to a logistic re-
gression classifier. Overall, they find that using the
local context in the form of a word window outper-
forms the verb-type only classifier, but that feed-
ing in the entire sentence hurts. Metheniti (2022)
also classify stativity (called “duration” in their
work) by fine-tuning various transformer models
and classification layers. They find BERT (Devlin
et al., 2019) models work better than RoBERTA
(Liu et al., 2019), AlBERT (Lan et al., 2019) and
XLNet (Yang et al., 2019).

3.2 Telicity

The second important distinction related to inherent
lexical aspect is that of telicity. The term telic,
derived from Greek télos (goal) was introduced by
Garey (1957). In his definition, telic verb senses
have a built-in goal: when that goal is reached, a
change of state occurs and the event is complete
(Smith, 1997). Telicity is also sometimes referred
to as boundedness (e.g., by Loáiciga and Grisot,
2016). As illustrated by (2), telicity is a feature of
the entire clause (Verkuyl, 2005).
(2) (a) He was swimming in the lake. (atelic)

(b) He was swimming across the lake. (telic)
When a telic verb is used in the imperfective as in

(3a), the arrival or nonarrival at the goal is hidden
(Garey, 1957). If the same verb is applied in the
perfective as in (3b), it means that the goal has been
reached at the time of reference. Hence, if (3a) is
true at some particular point in time, it cannot be
the case that (3b) is true at the same point in time.
(3) (a) John was recovering. (telic, imperfective)

(b) John has recovered. (telic, perfective)
In contrast, atelic verbs do not have to wait for

a goal for their realization; they are realized as
soon as they begin. If an atelic verb is used in
imperfective form as in (4a), we can infer that the
sentence in perfective form (4b) is also true.

(4) (a) Sue was singing. (atelic, imperfective)
(b) Sue has sung. (atelic, perfective)

Datasets. Siegel and McKeown (2000b) de-
scribe a small dataset annotated for completedness,
i.e, telicity. Their training and test sets each con-
sist of approximately 300 clauses taken from 10
novels and covering 204 different dynamic verbs.
Friedrich and Gateva (2017) manually annotate
1863 clauses taken from MASC (Ide et al., 2008)
for telicity. The Captions dataset (Alikhani and
Stone, 2019) marks telicity in several image cap-
tion corpora. They find that the proportion of telic
verbs ranges from 6% to 59% across corpora, with
atelic descriptions prevailing in almost all corpora.
In the DIASPORA dataset (Kober et al., 2020), in
each utterance, the first VP is annotated with its
predicational aspect (stative, telic, or atelic).

Modeling. Siegel and McKeown (1996, 2000b)
propose a machine-learning approach to classify-
ing telicity of verb occurrences using their above-
described corpus-based linguistic indicators. For
example, verbs frequently occurring in the Pro-
gressive are likely atelic. Leveraging these corpus-
based linguistic indicators, Friedrich and Gateva
(2017) integrate syntactic-semantic contextual fea-
tures into their logistic regression model. They
also leverage additional silver standard training
data in the form of projected annotations from
the English-Czech InterCorp (Čermák and Rosen,
2012; Rosen and Vavřín, 2012). Their approach, us-
ing the machine-readable Czech dictionary Vallex
(Žabokrtskỳ and Lopatková, 2007), is based on the
assumption that most perfective Czech verbs are
translated using telic verb constructions, and that
most imperfective verbs correspond to atelic con-
structions. Loáiciga and Grisot (2016) create an
automatic classifier similar to that of Friedrich and
Gateva (2017) to classify boundedness of French
verbs, i.e., whether the endpoint of an event has
occurred or not. They show that this is useful for
picking the correct tense in French translations of
the English Simple Past. Several more recent stud-
ies have shown that distributional and neural mod-
els can be trained to predict telicity as annotated
in available datasets (Kober et al., 2020; Metheniti
et al., 2021; Metheniti, 2022). BERT-style mod-
els perform well on existing telicity datasets (with
larger models outperforming smaller models), yet
it is still unclear how or whether they actually cap-
ture aspect. Metheniti (2022) observe that models
are always highly confident in their predictions, re-
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Type

dy
na
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e

te
lic

Examples

state - + - know the answer, love Mary
activity + + - laugh, stroll in the park, swim
accomplishment + + + build a house, walk to school
achievement + - + win a race, recognize
semelfactive + - - tap, knock, hiccup, tap, wink

Table 2: Eventuality types (Vendler, 1957; Smith, 1997).

gardless of their accuracy (a common phenomenon
for neural models). We are not aware of any prob-
ing or explainability studies in this area yet, and
how to obtain better calibrated models is an open
research question.

3.3 Eventuality Types
We now explain some influential inventories of
eventuality types, which are ontologies of the tem-
poral structures of events and/or states. Table 2
shows the set of situation types introduced by
Vendler (1957): state, activity, accomplishment,
and achievement. There are other similar schemata
(Kenny, 1963; Mourelatos, 1978, more details in
Appendix C.1); we use Vendler’s terminology here.

States are inherently stative and atelic. They are
durative as they usually extend in time, though this
time period may be very short as in (5).
(5) He was very quiet for two seconds.

The other three Vendler classes are all dynamic.
They differ in whether they have a built-in endpoint,
and in whether a clearly defined process leads up
to this endpoint. Activities as in (6), consisting
entirely of a process, use atelic verbs. Accomplish-
ments as in (7) consist of a process that leads up to
a built-in terminal point. Similarly, achievements
as in (8) have an endpoint including a change of
state, but the verb meaning does not include a pro-
cess leading up to this point. Smith (1997) adds the
semelfactive type (see Section 3.1).
(6) Mary was laughing. (activity)
(7) Mary wrote a letter. (accomplishment)
(8) He arrived at the station. (achievement)

Moens and Steedman (1988) work with as-
pectual profiles of sentences (for details see Ap-
pendix C.1) that are classified by making reference
to a so-called nucleus. For example, “John built a
house” consists of the preparatory phase (the house
is being built), a culmination point (the moment
at which it is completed), and a consequent state
(the house is complete). The process of aspectual
coercion shifts aspectual verb types based on their

arguments or other aspectual operators such as ad-
verbials. When used with a predicate whose lexical
entry corresponds to a culminated process, the En-
glish Progressive strips off the culmination point
and makes visible only the preparatory process as
in “John was running a mile.”3

Datasets. Zarcone and Lenci (2008) create a
dataset of 3129 occurrences of 28 Italian verbs
manually annotated for Vendler-style event types.
Keelan (2012) works on an eight-way classification
task for categories based on Leech’s (1971) classes
(see Appendix C.2). More recently, in the context
of the Richer Event Description (RED) annotation
scheme (Ikuta et al., 2014; O’Gorman et al., 2016;
O’Gorman et al., 2021), the annotation of events
with finer-grained Vendler-style situation types has
been proposed (Croft et al., 2016). Falk and Martin
(2016) select 167 frequent French verbs from a lex-
ical resource (François et al., 2007), and label the
corresponding 1199 entries (“readings”) with eight
aspectual classes similar to those of Mourelatos
(1978) as listed in Appendix C.1. Their classifica-
tion task is finer-grained than labeling verb types,
but coarser-grained than clause-level labeling. Egg
et al. (2019) annotate 4200 clauses from the Ger-
man SdeWac (Faaß and Eckart, 2013) with the
features stative, durative vs. punctual, and bound-
edness. With the aim of improving zero-shot image
to verb recognition, Zellers and Choi (2017) crowd-
source a dataset of 1710 verb templates (such as
“put up”) for 1203 different verbs annotated with
the four Vendler categories. The Caption dataset
(Alikhani and Stone, 2019) annotates image cap-
tions with the features stative, durative, punctual,
telic, and atelic.

Modeling. Zarcone and Lenci (2008) train a
maximum entropy classifier that uses adverbial,
morphological, and syntactic features, as well as
features capturing argument structure. Keelan
(2012) uses an SVM (Cortes and Vapnik, 1995)
with features similar to the linguistic indicators of
Siegel and McKeown (2000b). Zellers and Choi
(2017) use GloVe embeddings (Pennington et al.,
2014) to represent the input verb. They concatenate
this embedding with a phrase embedding of the
verb’s dictionary definition computed using a recur-
rent neural network, and add a linear layer on top.
Hermes et al. (2015) induce Vendler classes for Ger-
man verb types, using Siegel-style distributional

3Thus offering an elegant solution to the imperfective para-
dox (Dowty, 1979; Lascarides, 1991).
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features extracted from dependency-parsed corpus
data (3000 sentences per verb type) and SVMs for
type-level classification. Hermes et al. (2018) com-
pare the above framework to shallow distributional
vectors considering only co-occurring word types
for each verb. Finally, Gantt et al. (2022) propose
a generative model for event types (and other infor-
mation) fitted from English data annotated with a
range of aspectual and other properties. The result-
ing 4-class event type inventory closely resembles
Vendler classes in the distinctions it draws.

The main obstacle to systematically comparing
the works mentioned in this section is that their au-
thors make differing choices for the granularity of
both the annotation scheme and the computational
modeling, and conclusions drawn from the studies
depend on these choices. For better comparability,
we need better benchmarking.

4 Grammatical Aspect / Viewpoint

Phenomena treated as grammatical aspect or view-
point (Smith, 1997) take different views (the entire
situation vs. a part of it), or signal recurrence.

4.1 Perfective vs. Imperfective

The perfective viewpoint presents situations as
complete with both an initial and a final endpoint,
while the imperfective viewpoint makes only cer-
tain parts of the situation visible to the receiver
(Smith, 1997). The situation in (9a) is presented
imperfectively, focusing on the middle phase of
John’s eating. In contrast, (9b) is viewed in the per-
fective. Here, the interpretation is that (b) happens
during the interval at which (a) is true.
(9) (a) John was eating a sandwich (imperfective)

(b) when Susan entered. (perfective)
The perfective/imperfective distinction is ob-

served cross-linguistically, although some lan-
guages make even finer distinctions. For example,
Chinese has two perfective aspect markers and two
imperfective aspect markers. The two perfective
markers le (10a) and guo (10b) differ in the present
relevance, with the former indicating completion
of a situation while the latter emphasizes the ex-
perience of having been through a situation. The
two imperfective aspect markers zhèngzài and zhe
both indicate a situation is on-going at the refer-
ence time, but the latter emphasizes the resulting
state of a situation (Chao, 1968; Li and Thompson,
1989; Ljungqvist, 2007).

(10) (a) tā jìn le fángjiān “He has entered the room

(and is still in the room)”
(b) tā jìn guò fángjiān “He entered the room

(at some point but is no longer in the room)”
(c) tā zhèngzài jìn fángjiān “He is entering the

room”
(d) fángjiān de mén kái zhe “The door of the

room is open.”
While also referring to endpoints, the concept of

viewpoint differs from telicity: telicity describes
types of situations independent of which phase is
focused (e.g., “eating a sandwich” in (9a) is an
(inherently-telic) accomplishment); viewpoint adds
the focus (in this case on the phase during which
the eating happens and the endpoint has not yet
been reached; more details in Appendix C.3). It
is the perfective-imperfective distinction that has
traditionally been referred to as aspect in Slavic
linguistics (Filip 1999). Computational work lever-
ages parallel corpora to map the distinction, which
is partially overt (i.e., explicit in the morphosyntax)
in Slavic languages, to English text (Stambolieva,
2011; Friedrich and Gateva, 2017). Despite overall
high accuracy, the models still struggle to reach
high scores for the minority class atelic. In addi-
tion, such annotation projection approaches are not
easily scalable, as they require strong knowledge
of the languages involved.

4.2 Habituality

Habituals such as (11b) are sentences that “express
regularities about the world which constitute gen-
eralizations over events and activities” (Carlson,
2005); on a sentence-level, they can be regarded as
“derived statives” (Smith, 1997). In contrast, the
term episodic refers to particular events. Habituals
allow exceptions, e.g., (11b) is still true if Mary
sometimes takes the train.
(11) (a) Mary cycled to work. (episodic)

(b) Mary cycles to work. (habitual)
Habitual sentences may also use stative predicates
as in (12), generalizing over situations in which
some state applies (Smith, 2005).
(12) Sloths sometimes rest on trees. (habitual)

Habituals are not restricted to what one would usu-
ally consider a matter of habit (Carlson, 2005); they
can also have inanimate subjects as in (13).
(13) Glass breaks easily. (habitual)

Habituality is not to be confused with iterativity,
which states that a situation occurs repeatedly, but
not regularly, as in “the light flashed.” Borderline
cases are discussed in Appendix C.4.
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Data and Modeling. Mathew and Katz (2009)
randomly select 1052 sentences for 57 verbs from
the Penn TreeBank (Marcus et al., 1993) and man-
ually mark them as habitual or episodic. They train
both a decision tree and a Naive Bayes classifier
on syntactic features extracted from gold parses.
Friedrich and Pinkal (2015a) argue that in order
to be able to apply such a model on free text, a
third category, which they call static, needs to be
taken into consideration, which covers lexically
stative, negated, and modalized clauses. They ex-
periment with Random Forest classifiers (Breiman,
2001) using syntactic-semantic features and lin-
guistic indicators (see Section 3.1). Govindarajan
et al. (2019) label UD-EWT (Silveira et al., 2014)
with real-valued properties indicating e.g., the “de-
gree” of habituality. Their multi-layer perceptron
uses features from verb databases such as LCS and
GLoVe embeddings. Results for predicting habitu-
ality are overall promising, although there is a need
for experiments with careful consideration of and
controls over the verb types involved.

Other recent related work (Williams, 2012;
Williams and Katz, 2012; Vempala et al., 2018) ex-
tracts typical durations (in terms of actual time mea-
sures) for verb lemmas from Twitter. They distin-
guish episodic and habitual uses of the verbs, using
the method of Mathew and Katz (2009), and collect
typical durations (e.g., “seconds” or “weeks”) for
episodic and habitual uses separately for each verb.
The problem has further been studied in the context
of acquiring common sense knowledge (e.g., Zhou
et al., 2019; Yang et al., 2020).

4.3 Grammatical Aspect in Recent
Syntactic-Semantic Frameworks

The Universal Dependencies (UD) guidelines4

define six aspectual features for verbs: Hab, Imp,
Iter, Perf, Prog, and Prosp (prospective, for relative
future). The categories are assumed to be language-
specific and close to the respective morphologies,
and the exact definition of each feature is left to the
individual languages. UD parsers frequently treat
the identification of these features as a tagging task
(e.g., Kondratyuk and Straka, 2019).

In the context of a pilot study on integrating
aspect into Abstract Meaning Representations (Ba-
narescu et al., 2013, AMR), Donatelli et al. (2018)
propose to indicate whether a clause is habitual or
ongoing (in addition to marking stativity and telic-

4https://universaldependencies.org/u/feat/Aspect.html

ity). Tense and aspect annotation has been incorpo-
rated into Dialogue-AMR and used to annotate a
corpus of human-robot interactions (Bonial et al.,
2019, 2020). The Uniform Meaning Representa-
tions (UMR) framework (Van Gysel et al., 2021)
uses a lattice for typologically-motivated annota-
tion of aspect. The lattice begins by making the
distinction between three categories: HABITUAL,
which covers recurring states and events; PROCESS,
which covers all non-recurring dynamic situations;
and IMPERFECTIVE, designated for non-recurring
states and atelic processes. The PROCESS category
is further divided into ongoing ACTIVITIES, EN-
DEAVORS which have begun but not finished, and
PERFORMANCES, which are completed dynamic
processes. See Appendix D.2 for the full lattice.

Chen et al. (2021) build a rule-based system
leveraging syntactic and semantic cues to annotate
English sentences according to the UMR aspect
lattice. Due to the recency of these frameworks, so
far there is only very limited computational work.

5 Situation Entities

In this section, we review work on automatically
classifying situation entity (SE) types (see inven-
tory in Appendix D.3). SEs are “semantic concepts
organized according to their internal temporal prop-
erties” (Smith, 2003). They are introduced to the
discourse by a clause’s verb constellation, i.e., the
clause’s main verb and its arguments and modi-
fiers. Deciding on the type of an SE thus involves
the combination of lexical and syntactic factors. In
contrast to eventuality types (Section 3.3), situation
entities capture the linguistic nature of the clause
(Friedrich and Palmer, 2014b). EVENTs include all
dynamic verb constructions referring to particular
non-recurring situations, no matter whether there
is a pre-defined endpoint or not. They may occur
in the perfective or imperfective. GENERALIZING

SENTENCEs correspond to habituals as described
in Section 4.2, with the exception of GENERIC

SENTENCEs that comprise all sentences making
statements about kinds (Krifka et al., 1995).

Datasets. Palmer et al. (2007) present 6065
clauses taken from the Brown corpus (Francis and
Kučera, 1979) and MUC-6 (Grishman and Sund-
heim, 1996), manually annotated with SE types.
The SitEnt dataset (Friedrich et al., 2016; Friedrich,
2017) consists of 40,000 clauses from 13 genres
annotated for SE types with substantial agreement
(Friedrich and Palmer, 2014b). Govindarajan et al.
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(2019) crowdsource UDW-G, a dataset of 37,146
arguments and 33,114 predicates in 16,222 sen-
tences with continuous judgments on a scale from
1 to 5 with distinctions essentially following the
schema of Friedrich et al. (2016).

Modeling. Palmer et al. (2007) use a maximum
entropy sequence tagger with part-of-speech and
CCG-based (Steedman, 2000) syntactic features to
predict labels for each sentence separately. In an or-
acle experiment, they show that including the label
of the previous sentence(s) as a feature improves
performance. Friedrich et al. (2016) present the
first true sequence labeling approach to SE types
classification using conditional random fields (Laf-
ferty et al., 2001) with distributional features in the
form of Brown cluster IDs (Brown et al., 1992) and
syntactic-semantic features. Kober et al. (2020)
propose to classify predicational aspect with distri-
butional semantics, using non-contextualized word
embeddings and sums of the word vectors of the tar-
get words and their context words. Several works
(Palmer et al., 2007; Palmer and Friedrich, 2014;
Friedrich et al., 2016) find that sequence informa-
tion mostly helps when training in-domain and has
the biggest impact on identifying GENERIC SEN-
TENCES, which often require discourse context for
classification, even by human annotators (Friedrich
and Pinkal, 2015b).

SE types have also been modeled using a variety
of neural approaches. Becker et al. (2017) employ
a GRU-based (Cho et al., 2014) RNN with an at-
tention mechanism. Dai and Huang (2018) dynam-
ically build context-aware clause representations,
informed by their paragraph-wide contexts. They
propose a hierarchical recurrent neural network that
reads entire paragraphs at once, learning interde-
pendencies for clauses. Their model uses word2vec
(Mikolov et al., 2013) embeddings for words, and
first computes contextualized word embeddings us-
ing a BiLSTM over the entire paragraph. Clause
embeddings are formed by max pooling over the
word embeddings of each clause, and then clause
embeddings are further contextualized via another
BiLSTM. For further improving SE classification,
they add a CRF layer on top, and finally predict SE
labels via softmax. Recently, BERT (Devlin et al.,
2019) and GPT-2 (Radford et al., 2019) have been
employed for the classification task by Rezaee et al.
(2021), who also compare to using ParBERT (Co-
han et al., 2019). While BERT only considers one
clause at a time, ParBERT reads several sentences

at once, separated by [SEP] tokens, and then uses
the embeddings of the [SEP] tokens to predict a
label for the corresponding clause. Comparing a va-
riety of neural models based on non-contextualized
word embeddings on their situation-entity related
regression tasks, Govindarajan et al. (2019) reach
levels similar to human agreement.

The computational problem of identifying SE
types has recently been studied extensively. Over-
all, SE patterns are specific to the domain, genre
or discourse mode (Smith, 2003). Future research
could use SE-style analysis for NLP tasks like tem-
poral processing or information extraction.

6 How Can We Move Forward?

In this section, we discuss potential steps that could
lead to more successful modeling of aspectual infor-
mation, as well as how to leverage that information
in NLP applications.

6.1 Dataset Construction

To date, there is no consensus or standard across
languages regarding where aspect lives. Ongoing
efforts in the UMR community aim to develop
typologically-informed aspectual representations
that work across languages, but so far very few
UMR datasets exist. Whether achieving a standard
for aspectual representation is a necessary step or
not, in order to make more rapid progress on the
computational modeling of aspect, first the various
models need to be benchmarked on the same tasks
and datasets. Dataset construction in this area is
challenging. Annotators not only need to have ex-
tensive linguistic training but also often domain
expertise. Formulating the problem as a crowd-
sourcing task is a possible direction (Govindarajan
et al., 2019), but obtaining consistently high agree-
ment is (as for most tasks) difficult in this setup.
Multilingual datasets and models are still under-
researched, yet they are of particular relevance due
to applications in computer-aided language learn-
ing or the evaluation of machine translation (see
examples in Appendix E).

6.2 Modeling

More research is also needed on whether recent
embeddings or text encoders capture or abstract
away from aspectual features. Recent experimen-
tal findings on the SitEnt dataset show that, when
training data within the same domain and genre
is available, performance of pre-trained transform-
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ers is in the range of human agreement (Metheniti,
2022; Dai and Huang, 2018). The current state-
of-the-art model based on BERT-GPT achieves a
macro-average F1 of 79.1 compared to an estimate
of human performance (78.6). Yet, most verbs
are either not ambiguous or have a strongly pre-
dominant majority class that the models memorize
(Friedrich and Palmer, 2014a; Kober et al., 2020).
We expect much insight to come from further study-
ing verb types that behave differently depending on
the context. Moreover, results on cross-genre clas-
sification of SE types are yet inconclusive. Dai and
Huang (2018) report high cross-genre scores for
BERT, ParBERT, and BERT+GPT, but out of these
models, there is no clear winner across all gen-
res. Overall, when only using out-of-genre training
data, performance of the BERT+GPT model still
drops to an F1 of 70.7.

Investigating aspectual information in the con-
text of document-level models (e.g., Beltagy et al.,
2020) is another opportunity: cues for aspectual
interpretion may occur earlier in the discourse than
the sentence being interpreted (see App. E).

Linguistic indicators (Siegel and McKeown,
2000a) have been shown to be useful for predict-
ing aspectual features in the absence of training
data. Another research direction should hence
look at how aspectual information can be induced
from raw data or parallel corpora on a larger scale
and for a broader set of distinctions. Future work
should also investigate the interaction with other
elements of semantics such as argument structure.

In sum, systems for predicting aspectual infor-
mation encounter several challenges: (a) many
verb types are ambiguous, (b) datasets for the task
show significant class imbalance, and (c) for many
verb types, no training data at all is available. Ini-
tial experiments with careful controls for different
groups of verbs were highly promising (Friedrich
and Palmer, 2014a; Kober et al., 2020), but avail-
able annotated data is sparse, especially for am-
biguous verb types. More research is required to
disentangle the effects of potentially lexically bi-
ased datasets, class imbalance, and sparsity.

6.3 Applications

Automatic classifiers for aspectual distinctions
clearly have applications in the digital humanities
and quantitative linguistics, where research ques-
tions may directly target the use of aspect. Recent
highly fluent (but not necessarily always accurate)

language generation models such as GPT-3 (Brown
et al., 2020) and ChatGPT5 open up a new level
of writing assistance or language learning systems.
We believe that a fruitful direction for future re-
search is to make such systems explainable, also
in the sense that they are able to give linguistically
founded qualitative feedback to the user about why
an aspectual form is correct or wrong in a particular
context. Benchmarking on datasets explicitly anno-
tated for aspectual information will let us estimate
the degree to which text generated by the models is
in line with the author’s intentions. In Appendix F,
we provide some chat logs of conversations with
ChatGPT that illustrate how far it is from being an
adequate tool for teaching the linguistic concepts
described in this survey.

However, we argue that paying attention to as-
pect is necessary to arrive at fluent human-level
NLP systems as motivated by our “miss the flight”
example in Section 1. In Appendix E, we discuss
two potential application areas: temporal process-
ing and machine translation. In a nutshell, some
works suggest that embedding spaces still struggle
to capture the nature of tense and aspect, with con-
sequences for commonsense reasoning driven by
temporal properties, and can hence lead to wrong
conclusions. Similarly, machine translation sys-
tems may (and still do) go wrong when cues for
the correct temporal form occur much earlier in the
document then the sentence being translated. More
research is needed on how to incorporate features
explicitly or guide systems implicitly towards the
right output with regard to aspectual information,
and also on how to convincingly evaluate generated
output with regard to aspectual plausibility.

7 Conclusion

This paper provides an overview of the linguistic
concepts and terminology associated with aspect,
and also surveys existing datasets and prior work
in computational modeling of aspect. Because the
expression of aspect varies across languages, the
proper incorporation of aspect into downstream
NLP tasks requires language-dependent research
rooted in the language-independent categories sur-
veyed here. The semantic concepts expressed by
lexical and grammatical aspect play essential roles
in semantic interpretation, and their proper coding
and evaluation must not be neglected if we are to
one day develop human-level NLU systems.

5https://openai.com/blog/chatgpt
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Limitations

This survey reviews linguistic and computational
work on lexical and grammatical aspect. While we
believe that we covered the vast majority of relevant
computational works, we of course only scratch the
surface of the body of theoretical linguistic work
and need to simplify at times.

As the term aspect is highly ambiguous and used
in NLP primarily within sentiment analysis, it is
difficult to search for relevant papers. Our search
hence relied mainly on following citation networks.

Ethical Considerations

We did not identify any potential ethical issues with
this survey.
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Zdeněk Žabokrtskỳ and Markéta Lopatková. 2007. Va-
lency information in vallex 2.0. The Prague Bulletin
of Mathematical Linguistics, 87:41–60.

Alessandra Zarcone and Alessandro Lenci. 2008. Com-
putational models for event type classification in
context. In Proceedings of the Sixth International
Conference on Language Resources and Evaluation
(LREC’08), Marrakech, Morocco. European Lan-
guage Resources Association (ELRA).

Rowan Zellers and Yejin Choi. 2017. Zero-shot activity
recognition with verb attribute induction. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 946–958,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Yuchen Zhang and Nianwen Xue. 2014. Automatic
inference of the tense of Chinese events using im-
plicit linguistic information. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1902–1911,
Doha, Qatar. Association for Computational Linguis-
tics.

Ben Zhou, Daniel Khashabi, Qiang Ning, and Dan Roth.
2019. “going on a vacation” takes longer than “go-
ing for a walk”: A study of temporal commonsense
understanding. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 3363–3369, Hong Kong, China. Association
for Computational Linguistics.

614

https://doi.org/10.1007/s13218-021-00722-w
https://doi.org/10.1007/s13218-021-00722-w
https://doi.org/https://www.clips.uantwerpen.be/clinjdraft/clinj/article/view/73
https://doi.org/https://www.clips.uantwerpen.be/clinjdraft/clinj/article/view/73
https://doi.org/10.18653/v1/2020.findings-emnlp.363
https://doi.org/10.18653/v1/N18-2026
https://doi.org/10.18653/v1/N18-2026
https://aclanthology.org/P12-2044
https://aclanthology.org/P12-2044
https://aclanthology.org/P12-2044
https://doi.org/10.18653/v1/2020.findings-emnlp.302
https://doi.org/10.18653/v1/2020.findings-emnlp.302
http://www.lrec-conf.org/proceedings/lrec2008/pdf/315_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/315_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/315_paper.pdf
https://doi.org/10.18653/v1/D17-1099
https://doi.org/10.18653/v1/D17-1099
https://doi.org/10.3115/v1/D14-1204
https://doi.org/10.3115/v1/D14-1204
https://doi.org/10.3115/v1/D14-1204
https://doi.org/10.18653/v1/D19-1332
https://doi.org/10.18653/v1/D19-1332
https://doi.org/10.18653/v1/D19-1332


APPENDIX

A Glossary

This glossary intends to provide a concise alpha-
betically ordered overview of the linguistic termi-
nology used in this paper.

accomplishment eventive / dynamic situation
type according to (Vendler, 1957; Smith, 1997),
consisting of a preparatory phase and an end-
point, e.g., “build a house.”

achievement eventive / dynamic situation type ac-
cording to (Vendler, 1957; Smith, 1997) consist-
ing only of the punctual event that changes a
state, e.g., “win the race.”

activity eventive / dynamic situation type accord-
ing to (Vendler, 1957; Smith, 1997), describes
a process that does not have a pre-defined end-
point, e.g., “swim.”

atelic describes situations or verbs that do not have
a built-in endpoint, e.g., “draw.”

bounded see telic.

covert describes linguistic categories that are not
directly inferrable from the lexicon or from gram-
matical/syntactic structure (Whorf, 1945). They
usually consist of semantic concepts that require
taking into account the context or pragmatic fac-
tors.

durative describes states that extend in time.

dynamic describes a type of situation / verb that
has a part to its meaning that applies a force or
changes a state.

episodic describes particular events that “happen”
or “have happened” (opposite of habituals).

eventive see dynamic.

habitual clause that expresses a situation that re-
peats regularly and expresses a characteristic,
e.g., “John drives to work” or “Bishops move
diagonally” (Krifka et al., 1995).

imperfective describes a perspective on a situa-
tion focusing one or none of the potential end-
points, but not both

iteratives clauses (usually with semelfactive
verbs) that signal that the event expressed by
the verb is executed a number of times, e.g., “the
light flashed.”

overt describes linguistic categories that are di-
rectly inferrable from the lexicon or from gram-
matical/syntactic structures.

state a situation that is not changing, e.g., “John
owns a house.”

stative describes verbs or situations that express a
state.

perfective describes constructions that show a sit-
uation with its endpoint(s), e.g., “John traveled
to the US (last week).”

progressive describes constructions that focus on
a particular phase of a situation that is currently
ongoing, e.g., “John is traveling to the US (at the
moment).”

punctual event that occurs at a single point in time,
e.g., “hiccup.” – dynamic by definition.

semelfactive punctual situation or event type
(Smith, 1997).

telic describes situations or verbs that have a built-
in endpoint, e.g., “capture.”

B Overview of Modeling Approaches

Table 3 gives a concise overview of existing mod-
eling approaches.

C Further Linguistic Background

C.1 Eventuality Types

In Section 3.3, we explain a taxonomy of eventual-
ity types according to Vendler (1957). As shown in
Figure 2, Kenny (1963) adds performances, which
are “actions that tend towards a goal.” Mourelatos
(1978) criticizes that these earlier analyses focus
too much on predicates that require human agency,
and suggests the terminology in Figure 2.

As explained in Section 3.3, Moens and Steed-
man (1988) introduce an inventory of eventuality
types similar to those of Vendler (1957), but refer-
ring to the characteristics of whether an event is
atomic, extended (durative) and whether it has a
consequent state. The definitions of the types along
with examples are given in Table 4.
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Type of Model Reference(s) Categories Targeted / Task

Rule-based Passonneau (1988b) (PUNDIT) stativity
Chen et al. (2021) UMR aspect features

Progressive as indicator Klavans and Chodorow (1992b) stativity
Linguistic indicators Brent (1991b) stativity

Siegel and McKeown (1996, 2000b) stativity, boundedness
Naive Bayes + Decision Tree Mathew and Katz (2009) habituality
Random Forest Classifiers Friedrich and Pinkal (2015a) habituality
Logistic regression Friedrich and Palmer (2014a) lexical aspect

Loáiciga and Grisot (2016) boundedness
Friedrich and Gateva (2017) telicity
Zarcone and Lenci (2008) Vendler types

Distributional models Kober et al. (2020) telicity
SVM Keelan (2012) Leech’s classes

Hermes et al. (2015, 2018) Vendler classes
Max Ent Sequence Tagger Palmer et al. (2007) situation entity types
CRF Friedrich and Pinkal (2015b) genericity

Friedrich et al. (2016) situation entities
word2vec + GRU Becker et al. (2017) situation entity types
GloVe + GRU Zellers and Choi (2017) verb-level Vendler classes
Paragraph-level neural model Dai and Huang (2018) situation entity types
ELMO + MLP Govindarajan et al. (2019) habituality (continuous features, UDS-G)
BERT + classifiers Metheniti et al. (2021); Metheniti (2022) telicity
BERT + tagger e.g., Kondratyuk and Straka (2019) UD aspectual features
BERT, GPT, ParBERT Rezaee et al. (2021) situation entity types
Generative model Gantt et al. (2022) event types

Table 3: Computational systems and approaches to modeling aspect.
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Examples

State - + - state NA NA NA know the answer, love Mary, understand
Activity + + - process - + - laugh, stroll in the park, run, swim
Accomplishment + + + culminated process - + + build a house, walk to school
Achievement + - + culmination + - + win a race, reach the top, recognize
Semelfactive + - - point event + - - tap, knock, hiccup, wink

Table 4: Eventuality types (Vendler, 1957; Smith, 1997) / Temporal Ontology (Moens and Steedman, 1988).

situations

occurrences
(actions)

events
(performances)

punctual occurrences
(achievements)

developments
(accomplishments)

processes
(activities)

states

Figure 2: Classification of aspectual oppositions accord-
ing to Mourelatos (1978), terms used by Vendler (1957)
and Kenny (1963) in parentheses.

C.2 Leech’s Classes

In addition to categories corresponding to those
of Figure 2, Leech (1971) distinguishes between
Attitude states (“hate,” “hope”) and Relationship
states (“own,” “resemble”). There are also two
categories for Perception and Cognition verbs such

as “hear,” “see,” or “feel,” which are generally hard
to classify along the stative-dynamic dimension
(Comrie, 1976).

C.3 Details on Viewpoint Aspect

In some cases, viewpoint aspect (Section 4) and
situation type interact. The perfective viewpoint
is naturally available for the situation types (Sec-
tion 3.3) activity, accomplishment, semelfactive
and achievement; the imperfective viewpoint is
available for states, activities and accomplishments
(Smith, 1997). The usage of the perfective view-
point with stative predicates indicates aspectual
coercion as introduced in Section 3.3. For example,
in Chinese the stative predicate “gāo” means to be
tall. When used with the perfective marker “le,”
an ingressive meaning is implied, i.e., “tā gāo-le”
translates as “he became tall.”
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C.4 Habituals: Borderline cases
Habitual sentences (Section 4.2) describe situations
that are characteristic of an extended period of time
(Comrie, 1976), a decision that is of conceptual
rather than of linguistic nature. In fact, Filip and
Carlson (1997) even argue that sentential generic-
ity, which corresponds to habituality, is indepen-
dent from tense and aspect, and that habitual sen-
tences such as (14) can occur in the perfective.
(14) In the eighties, John went to work by bus.

The interaction of habituality and modality is by
no means trivial (Hacquard, 2009) as illustrated by
(15a), and negated sentences are another unclear
case (15b-c).
(15) (a) I had to swim every day. (habitual?)

(b) John smokes. (habitual)
(c) John does not smoke. (habitual?)

The concept of habituality does not include dispo-
sitional sentences such as “John can swim,” which
denote abilities or preferences.

D Further Computational Background

D.1 Linguistic Indicators
Table 5 reports the full set of linguistic indicator fea-
tures as proposed by Siegel and McKeown (2000b)
and related works.

Feature Example

frequency -
past said
perfect had won
progressive is winning
negated not/never
particle up/in/...
no subject -
continuous adverb continually, endlessly
evaluation adverb better, horribly
manner adverb furiously, patiently
temporal adverb again, finally
in-PP in an hour
for-PP for an hour

Table 5: Linguistic indicators computed over large
syntactically parsed text corpora (Siegel and McKeown,
2000b).

D.2 Aspect in UMR
As briefly described in Section 4.3, the UMR (Uni-
form Meaning Representation) (Van Gysel et al.,
2021) framework approaches annotation of aspect
from a typological perspective. Aspect is repre-
sented as an attribute for events in UMR, and since
cross-linguistically languages mark aspect in dif-
ferent ways, both grammatically and lexically, the

SE type Example

Eventualities
STATE The colonel owns the farm.

EVENT John won the race.
REPORT “...”, said Obama.

General Statives
GENERIC SENT. The lion has a bushy tail.
GENERALIZING Mary often fed the cat last year.

SENTENCE

Abstract Entities
FACT (I know) that she refused the offer.

PROPOSITION (I believe) that she refused the offer.

QUESTION Who wants to come?
IMPERATIVE Hand me the pen!

Table 6: Situation entity types (Smith, 2003).

UMR aspect categories are arranged in a lattice.
This allows UMRs to be annotated at the level of
granularity that is most appropriate for a particular
language.

The resulting lattice (Van Gysel et al., 2022)
appears in Figure 3. The top-level of the lattice
represents broad distinctions between aspect cat-
egories across languages, while the bottom level
represents the finer distinctions.

D.3 Situation entity inventory

Table 6 provides the complete inventory of situation
entity types. Section 5 offers a partial inventory,
focusing on those categories for which aspect is a
key determining property.

D.4 Event Classes in TimeBank

TimeML (Pustejovsky et al., 2003, 2010) events
are “situations that occur or happen,” but also in-
clude “states or circumstances in which something
obtains or holds true.” Thus, the usage of the term
event denotes a situation in the sense of Smith
(1997). In TimeML, tensed verbs, stative adjec-
tives and event nominals that describe situations
temporally located in the text can be marked with
the categories shown in Table 7.

TimeML event classification corresponds to a
word-sense level task. Saurí et al. (2005), in their
event recognition system, simply assign the class
that was most frequently observed for each verb
type in the training data to events and reach an
accuracy of 82.3% on TimeBank 1.2. The top-
performing systems (Jung and Stent, 2013; Bethard,
2013; Chambers, 2013) of the 2013 TempEval chal-
lenge (UzZaman et al., 2013) use corpus-based
features, WordNet synsets, parse paths and fea-
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Figure 3: UMR annotation lattice for aspect (Van Gysel et al., 2022).

tures from typed dependencies to classify events
as a joint task with determining the event’s span.
Bethard and Martin (2006) phrase the recognition
of EVENTs and their semantic class as a chunk-
ing task using syntactic-semantic features such as
part-of-speech, morphological information, word
clusters and WordNet hypernyms. Llorens et al.
(2010) extend this idea by using a conditional ran-
dom field (Lafferty et al., 2001) enhanced with se-
mantic role information. Costa and Branco (2012)
explore the usefulness of a wider range of explicitly
aspectual features, including linguistic indicators,
for temporal relation classification in Portuguese.

More recent TempEval challenges (Bethard et al.,
2016, 2017) did not offer a task for classifying
event classes.

E (Potential) Applications

Despite its importance for understanding, few NLP
tasks explicitly incorporate aspectual information.
Here we discuss the potential uses in two appli-
cation areas; many other areas could also benefit,
including argumentation mining, computer-aided
language learning, and information extraction.

Temporal Processing. Together with tense, as-
pect is essential to the linguistic system encoding
temporal information (Smith, 1997, 2003). Yet

Event Class Explanation and Examples

OCCURRENCE situations that happen:
die, crash, merge

STATE circumstances in which sth. holds:
like, own, the kidnapped girl, on board

I_ACTION intensional actions: try, persuade
I_STATE intensional states: love, believe, enjoy

ASPECTUAL predicates that pick out a phase
of the event: begin, start, continue

I_REPORTING capture attribution: said
PERECPTION physical perception of another event:

see, hear, feel

Table 7: TimeML event classes (Pustejovsky et al.,
2003).

there is little work systematically leveraging as-
pectual information in temporal relation extraction
systems, possibly because TimeML event classes
(Pustejovsky et al., 2003, 2010, Appendix D.4) are
not strictly rooted in linguistic theory. We believe
that recognizing the mode of discourse and the type
of temporal progression (which is different e.g., in
a narrative, an encyclopedia entry, or a news article)
is key to recognizing temporal structure in text.

With the help of templates, Vashishtha et al.
(2020) re-cast existing temporal relation and tem-
poral duration datasets as natural language infer-
ence (NLI) datasets. Existing models perform
well on classifying English sentence-internal rela-
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tions this way, indicating that the number of tense
pair patterns is somewhat limited. However, us-
ing large-pretrained transformer based models with
a paradigm shift (Sun et al., 2021) is unlikely to
be the solution to temporal reasoning, as shown
by Kober et al. (2021). They create a dataset con-
sisting of 11,138 pairs of short sentences labeled
with a binary annotation scheme (entailment vs.
non-entailment), addressing tense and the perfect
vs. progressive distinction in English. For exam-
ple, “John is visiting London” entails “John has
arrived in London,” but “John will visit London”
does not. They evaluate a range of models includ-
ing non-contextualized and contextualized embed-
dings pre-trained on SNLI (Bowman et al., 2015)
and DNC (Poliak et al., 2018) and find that none of
these models outperforms a majority class baseline
on the new dataset. This suggests that embedding
spaces struggle to capture the more latent nature of
tense and aspect.

In our view, a first step towards leveraging the
knowledge about tense and aspect provided by lin-
guistic theory could be to systematically study how
recent language models and NLP systems succeed
or fail with regard to these categories, as pioneered
in the pre-neural age for example by Zhang and
Xue (2014); Reichart and Rappoport (2010).

Machine Translation. While recent MT systems
often perform well, they do not systematically treat
aspectual notions (Vanmassenhove et al., 2017), but
rather rely on common translations for a particular
domain. Consider the following example. In con-
trast to English, the German simple present may or
may not indicate habituality. When translating to
English, a choice must be made based on the con-
text. The translation6 in (16b) wrongly indicates
habitual viewpoint, while the context suggests an
ongoing event (the correct translation would be “is
riding”).
(16) (a) Tim ist schon weg. Er fährt gerade mit

dem Fahrrad zur Arbeit. (ongoing event)
(b) Tim is already gone. He just rides his

bike to work. (habitual, wrong)
The cue need not be in the immediately preceding
sentence, but could occur much earlier in the dis-
course. In (17), “fährt” should be translated as “is
riding,” but the cue is in the first sentence.
(17) (a) Tim ist schon weg. Er arbeitet an der

Universität. Er fährt gerade mit dem
Fahrrad zur Arbeit. (ongoing event)

6Google Translate, October 5, 2022

(b) Tim is already gone. He works at the
university. He just rides his bike to work.
(habitual, wrong7)

Aspect is a crucial component of semantic inter-
pretation, and special care is needed to make sure
translations correctly capture it.

F ChatGPT Logs

Accessed January 26 and 27, 2023.
In this section we provide logs from our inter-

actions with ChatGPT on some of the main topics
covered by this survey. Our aim is to investigate
the extent to which a system like ChatGPT could
serve as a tool for teaching about aspect; in other
words, what does ChatGPT know about aspect?

Note that some of ChatGPT’s analyses are sur-
prisingly accurate, however, it also presents several
completely wrong analyses and only produces cor-
rect analyses if guided to them by the user during
the generation process.

Each subsection contains one or more segments
from a chat log about a particular aspectual notion.
We use the formatting shown below:

• Prompt

• Text generated by ChatGPT (with interesting
parts highlighted in bold)

• [Comments]

F.1 Talking about Stativity

Consider the following text. "Alice was beginning
to get very tired of sitting by her sister on the bank,
and of having nothing to do: once or twice she
had peeped into the book her sister was reading,
but it had no pictures or conversations in it, and

‘what is the use of a book,’ thought Alice, ‘without
pictures or conversation?’" Which verb phrases
refer to states, which verb phrases refer to events
in this passage?

In this passage, "was beginning to get very tired"
and "having nothing to do" are verb phrases that
refer to states. "She had peeped" and "had no
pictures or conversations in it" are verb phrases
that refer to events.

[The verb phrases "have nothing to do" and
"had no pictures or conversations in it" are states;
"had peeped" is an event; "was beginning" is a
special case at it signals the beginning of a state

7Google Translate, October 19, 2022
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(inchoative aspect). ChatGPT’s response is sim-
plistic and in some cases completely wrong.]

Why is "had no pictures or conversations in it"
an event?

The phrase "had no pictures or conversations
in it" is an event because it describes something
that happened in the past, specifically that the
book did not contain pictures or conversations. The
verb "had" is in the past tense which indicates that
the action of the book not having pictures or
conversations is completed, and it happened in
the past. An event can be a completed past action
or something that is happening currently or in the
future.

[...]
Could you interpret the phrase as a state as well?
It could be interpreted as a state in the sense

that the book currently lacks pictures or conversa-
tions, however, in the context of the passage it is
clear that the author is describing a past event
where Alice had looked into the book and found
that it did not contain pictures or conversations, as
opposed to the book being in a state of lacking
pictures or conversations. The past tense of the
verb "had" and the context of Alice peeping into
the book suggest it’s an event that happened in the
past. Additionally, the phrase "‘what is the use of a
book,’ thought Alice, ‘without pictures or conversa-
tion?’" also suggest that it’s an event that happened
in the past. So, it can be interpreted as a state, but
in this context, it is more likely an event.

[Even in this context, the verb phrase describes
a state (a property of the book).]

I agree that "peeped into the book" is an event.
But what about "the book had no pictures in it"?

In the sentence "the book had no pictures in
it", the phrase "had no pictures in it" describes
the state of the book, specifically that it did not
contain any pictures. The verb "had" is in the
past tense, which indicates that this is a statement
about the book’s state at a specific point in the
past. The phrase describes a state that existed at
a certain point in the past. Even though "had" is
in past tense, it is used to describe a state, not an
event. Additionally, the phrase is not describing
something that just happened, but a characteristic
of the book, which implies a state.

[This explanation is correct. However, the above
conversation clearly illustrates that ChatGPT gen-
erates text explaining the aspectual nature of the
various verb phrases without having a deeper un-

derstanding of their semantics and hence without
being consistent in its relatively random interpreta-
tions.]

Telicity is a property of an event type expressed
by verbs, i.e., referring to events that have an end-
point. Atelic verbs refer to event types that do not
have a built-in endpoint. Can you give me examples
for each case?

Sure, here are some examples of telic verbs and
the events they describe:

"She finished the book." (finish)
"He graduated from college." (graduate)
"They completed the project." (complete)
And here are some examples of atelic verbs and

the events they describe:
"She is reading a book." (read)
"He is studying for the exam." (study)
"They are working on the project." (work)
[These examples are correctly classified except

for "read a book."]
Why is the event type "read a book" atelic?
The event type "read a book" is considered

atelic because it does not have a built-in end-
point. In other words, when someone says "She is
reading a book," it does not necessarily imply that
the act of reading will come to a definite conclu-
sion. Reading a book can be an ongoing activity
that may or may not be completed. It does not
have an inherent endpoint.

[Here, the analysis confuses between progressive
aspect and analysing telicity at the event type (pred-
icate) level. (Admittedly, this is a very fine-grained
notion that humans also need to think carefully
about.) In "She was reading a book", the event
type "read a book" is telic, while the sentence in
the progressive presents the ongoing situation of
reading a book, hiding the end points.]

Wouldn’t the endpoint mean she finished reading
the entire book?

Yes, in the sentence "She finished the book" the
endpoint would mean she finished reading the en-
tire book. The verb "finish" implies that an action
has come to completion, so when it is used in the
context of reading a book, it implies that the book
has been read in its entirety. However, it’s worth
noting that some verbs can have multiple mean-
ings and context can affect the interpretation of a
sentence.

In contrast, when someone says "She is reading
a book" it doesn’t necessarily imply that the act of
reading will come to a definite conclusion or that
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she will finish reading the entire book, she could
stop reading at any time. And that’s why the event
is atelic.

I think the event is still telic, but the sentence
focuses on a phase of it.

You are correct that the event of reading a book,
in general, is telic, as it does have a natural end-
point, which is when the person finishes reading the
book. However, when we use the verb "read" in the
present progressive form "is reading," it describes
the action as being ongoing and does not imply
a definite conclusion. It describes the event as a
phase or a state of being rather than a completed
action.

So in the sentence "She is reading a book," the
emphasis is on the current state of reading and not
on the endpoint of finishing the book. The sentence
"She finished the book" implies that the action of
reading is completed and the verb "finish" implies
that an action has come to completion.

So, in summary, while the overall event of
reading a book is telic, in certain sentence con-
structions, such as "She is reading a book," the
focus is on the ongoing state of the event, making
it atelic.

[The last part of the analysis is correct, except
that the event of reading a book is always telic,
and the progressive focuses on part of the situation.
This does not make the event type atelic. The ex-
planations given in this section focus more on the
progressive vs. non-progressive distinction, not on
the telic vs. atelic distinction.]

F.2 Eventuality Types

(Prompted with the first two paragraphs of Sec-
tion 3.3 of this paper including examples.)

Can you please analyse: "Tom held a meeting"
The sentence "Tom held a meeting" is an ex-

ample of an achievement according to Vendler’s
(1957) classification of situation types. The sen-
tence describes an event that has an endpoint, the
meeting, and it is also a change of state. The verb
"held" is also telic, meaning it has a specific end-
point and it does not include a process leading up
to this point, which fits with the definition of an
achievement. The phrase "held a meeting" implies
that there was a start and an end to the meeting and
it implies that it has been completed.

Can you please analyse: "Tom was holding a
meeting"?

The sentence "Tom was holding a meeting" is

an example of an activity according to Vendler’s
(1957) classification of situation types. The sen-
tence describes an ongoing process of holding a
meeting without any specific endpoint. The verb
"was holding" is also atelic, meaning it does not
have a specific endpoint, which fits with the defini-
tion of an activity. The phrase "holding a meeting"
implies that there is a meeting in progress, but it
does not specify when or if the meeting is com-
pleted.

[...]
[The predicate "hold a meeting" is in fact an ac-

complishment, as it is dynamic, durative, and telic.
The change in grammatical aspect from perfect to
progressive does not change the underlying eventu-
ality type. Again, the system seems to be misled by
the progressive aspect.]

Can you please analyse: "Anna was swimming
across the lake"?

The sentence "Anna was swimming across the
lake" is an example of an activity according to
Vendler’s (1957) classification of situation types.
The sentence describes an ongoing process of
swimming without any specific endpoint. The verb
"was swimming" is also atelic, meaning it does
not have a specific endpoint, which fits with the
definition of an activity. The phrase "across the
lake" indicates that Anna is swimming over a
significant distance, covering a large geograph-
ical area, but the sentence does not specify when
or if the journey is completed.

[The default interpretation for this sentence is
as an accomplishment, with the goal of reaching
the other side of the lake. There is a second plau-
sible, though less likely, interpretation in which
Anna is engaged in the activity of swimming in a
location that is across the lake from the speaker.
ChatGPT proposes a third, highly-unlikely interpre-
tation, akin to describing something as happening
"all across the world."]

Can you please analyse "Tim swam across the
pool three times".

The sentence "Tim swam across the pool three
times" is an example of an accomplishment ac-
cording to Vendler’s (1957) classification of situa-
tion types. The sentence describes a process (swim-
ming) that leads to a built-in terminal point, the
completion of swimming across the pool. The verb
"swam" is telic, meaning it has a specific endpoint,
which fits with the definition of an accomplishment.
Additionally, the phrase "across the pool" indicates
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that Tim is swimming over a significant distance,
covering a large geographical area and the sentence
implies that the journey has been completed. The
number "three times" indicates that the process was
repeated a specific number of times, and it gives the
sense that the accomplishment has been reached
multiple times.

[When substituting “pool” for “lake” and
adding the frequency adverb “three times”, GPT’s
interpretation of the event type of "swim across X"
is correct, again hinting at the randomness of the
generated explanations.]
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Abstract
Most current popular subword tokenizers are
trained based on word frequency statistics
over a corpus, without considering informa-
tion about co-occurrence or context. Neverthe-
less, the resulting vocabularies are used in lan-
guage models’ highly contextualized settings.
We present SAGE, a tokenizer that tailors sub-
words for their downstream use by baking in
the contextualized signal at the vocabulary cre-
ation phase. We show that SAGE does a bet-
ter job than current widespread tokenizers in
keeping token contexts cohesive, while not in-
curring a large price in terms of encoding effi-
ciency or domain robustness. SAGE improves
performance on English GLUE classification
tasks as well as on NER, and on Inference and
NER in Turkish, demonstrating its robustness
to language properties such as morphological
exponence and agglutination.

1 Introduction

Much of the research space in current NLP is
focused on advancing models: modifying pre-
training objectives, improving network architec-
tures, adding tasks and schemes for downstream
evaluation. Limited work is dedicated to a crucial
step underlying all modern large language models
(LLMs), namely the tokenization phase. In order
to process a given string of text, an LLM must first
obtain a vector representation of the input by seg-
menting it into tokens. Since out-of-vocabulary
(OOV) items inhibit the performance of models,
current tokenizers produce tokens which are possi-
bly proper subsegments of input words, known as
subwords. This method, popularized by systems
such as WordPiece (Schuster and Nakajima, 2012),
Byte-Pair Encoding (BPE; Sennrich et al., 2016)
and UNIGRAMLM (Kudo, 2018), allows any word
to be represented by one or more tokens, removing
the OOV problem while allowing more flexibility
in determining the token vocabulary size, which
ultimately affects model speed (mostly through

BPE His son Raj ash ri Sud h ak ar has p enn ed
dial og ues and songs for some films that
were dubbed into Telugu .

SAGE His son Raj ash r i Sud h a k a r has penn
e d dial ogues and songs for some films
that were dubbed into Telugu .

BPE This gene is a pseud og ene in humans
and most other prim ates .

SAGE This gene is a pseud ogene in humans
and most other prim ates .

BPE The St o og es work for Mir acle Det ective
Agency ,

SAGE The St o o g e s work for Mir acle Det
ective Agency ,

Table 1: The token og is selected by BPE (vocabulary
of size 16,000) for achieving the frequency objective,
but is discarded by SAGE for failing to be contextually
coherent. These examples from the corpus demonstrate
some different contexts.

the softmax generation targets) and performance
(through better ability to represent less-frequent
words).

One potential pitfall of both BPE and UNI-
GRAMLM, as well as their proposed variants (He
et al., 2020; Provilkov et al., 2020), is that they are
trained on word frequency statistics alone, without
considering information about word co-occurrence
or contexts. At the same time, the resulting vocabu-
laries are used in highly contextualized settings, the
LLMs, where a single subword such as og might ap-
pear in very different contexts derived from words
like dial og ues and pseud og ene. We propose a sys-
tem which prepares subwords for their downstream
use by baking in the contextualized signal at the
vocabulary creation step. Our model, SAGE, uses
the SKIPGRAM objective (Mikolov et al., 2013)
over a corpus as the basis for iteratively eliminating
candidate subwords from an initial large vocabulary
until the desired vocabulary size has been reached.
As Table 1 shows, SAGE succeeds in removing the
ambiguous og token, facilitating distinct contex-
tualization procedures for the example sentences
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(taken from Wikipedia).
We present our algorithm, SAGE, which is pred-

icated on iterative pruning of contextually noisy
tokens from the vocabulary, and compare its effects
on token properties and context cohesion with BPE
both in- and out-of-domain, in English and Turkish.
We then evaluate its performance on downstream
tasks by training a BERT-based LLM (Devlin et al.,
2019) on a vocabulary produced by both tokeniz-
ers in both languages, demonstrating substantial
improvements on most English GLUE tasks and
on NER, as well as Turkish NLI and NER. We em-
phasize that as opposed to most current tokenizer
variants, our model is a “plug and play” substitu-
tion for any subword token vocabulary, requiring
no modification in the inference protocol (or code)
when pre-training or applying an applicable LLM
from a popular shared library.1

2 Subword Vocabulary Creation

The methods used to tokenize corpus in order to
later assign tokens with continuous vectors, or em-
beddings, have evolved over the years. Initially,
each word in the corpus was assigned its own em-
bedding (Collobert and Weston, 2008; Mikolov
et al., 2013). OOVs, i.e. words not appearing in
the original training corpus or below a certain fre-
quency threshold, would receive a special (but iden-
tical) “UNK” vector. Subword tokenizers (Schuster
and Nakajima, 2012; Wu et al., 2016) were intro-
duced to alleviate this issue, allowing segmentation
of all text into embeddable units (assuming no un-
seen characters, a much more relaxed constraint for
languages using alphabetical scripts). The training
process used to create a subword vocabulary from
which the model then decodes text input involves
optimizing an encoding objective over a large cor-
pus. To date, all tokenizers used in practice in
large models focus on efficiency and information-
theoretic objectives, and reduce the corpus to a
unigram frequency count of space-delimited words,
reducing calculation time but losing all contextual
signal. SAGE reintroduces the contextual depen-
dencies between words into vocabulary creation
via a two-stage process, namely over-application
of BPE followed by iterative pruning using ideas
inspired by UNIGRAMLM and SKIPGRAM. We
briefly present these algorithms before tying them
together into SAGE.

1Our code and models are available at www.github.
com/MeLeLbgu/SaGe.

Algorithm 1 Byte-pair encoding vocabulary cre-
ation (Gage, 1994; Sennrich et al., 2016)

Input: Corpus C, Vocabulary final size V .
Output: Vocabulary V of size V (ordered).

1: procedure BPE(C, V )
2: V ← All unique characters in C
3: while |V| < V do ▷ Merge tokens
4: ⟨tL, tR⟩ ←Most frequent bigram in C
5: tNEW ← tL ⊕ tR ▷ Make new token
6: V ← V ⊕ [tNEW ]
7: C.ReplaceAll(⟨tL, tR⟩, tNEW )
8: end while
9: return V

10: end procedure

Byte-Pair Encoding. The BPE algorithm cre-
ates a vocabulary “bottom-up”, starting with all sin-
gle characters from the alphabet, iteratively adding
tokens until reaching the desired vocabulary size.
In each iteration, the added token is the concate-
nation of the most frequent adjacent pair of ex-
isting tokens (see Algorithm 1). The default set-
ting of the algorithm’s most popular implementa-
tion (Kudo and Richardson, 2018) restricts token
addition within word boundaries, facilitating train-
ing from unigram frequencies. In addition, LLM
tokenizers using BPE (Liu et al., 2019; Radford
et al., 2019; Wolf et al., 2020) decode sequences
not by applying merges by order of the vocabulary,
as originally dictated by the algorithm, but through
greedy largest-subsequence left-to-right inference.

Unigram Language Model. UNIGRAMLM of-
fers a top-down vocabulary creation process, start-
ing with an initial vocabulary of all substrings in
the input corpus and pruning tokens iteratively until
reaching the desired vocabulary size. The pruning
procedure involves calculating the overall unigram
likelihood of the corpus with the current vocabulary
versus a vocabulary lacking the candidate pruning
token (see Algorithm 2 for details), which we refer
to as the ablation objective. Under this system,
decoding is ideally performed by considering prob-
abilities of all possible segmentations using, e.g.,
the Viterbi algorithm; again, common practice is to
use left-to-right greedy decoding.

Skipgram Objective. The SKIPGRAM objec-
tive (Mikolov et al., 2013) formalizes the relation
between a target token t and its context, asking
whether context tokens c within a window Wt of
pre-defined size can be predicted from t. These
predictions are done via sigmoid activation over
the inner product of embeddings trained for targets
(E(T )) and contexts (E(C)). When aggregated over
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Algorithm 2 UNIGRAMLM vocabulary creation
(Kudo, 2018). n argminX denotes the n bottom-
ranked elements in X .

Input: Corpus C, Vocabulary final size V , pruning batch
size k.

Output: Vocabulary V of size V .
1: procedure UNIGRAMLM(C, V )
2: V ← All substrings occurring more than once in C
3: while |V| > V do ▷ Prune tokens
4: X(j) ← tokenize(C, V)

5: L(V)←
|C|∑

j=1

log
(
P (X(j))

)

6: for all t ∈ V do: ▷ Calculate ablation objective
7: losst ← L(V \ {t})− L(V)
8: end for
9: P ← min(k, |V| − V ) argmint∈V(losst)

10: V ← V \ P ▷ Prune
11: end while
12: return V
13: end procedure

all tokens in a corpus, SKIPGRAM can be used as a
total likelihood measure, approximating its overall
contextual cohesion:

L(V, C) = −
∑

t∈tok(C,V)

∑

cj∈Wt

log
(
σ(E

(T )
t ·E(C)

cj )
)
.

(1)

As token vocabularies or their inference methods
change, so do the target sequences and their con-
texts, resulting in differences in aggregated likeli-
hood which can then act as scores comparing one
tokenization to another. We use this behavior as
the ablation objective for SAGE.

3 SAGE Vocabulary Creation

SAGE2 is a top-down tokenizer, following UN-
IGRAMLM’s general procedure, incorporating a
SKIPGRAM objective as its vocabulary trimming
rule. Given an initial vocabulary V and a corpus C,
SAGE computes a SKIPGRAM embedding space
over V which provides it with an overall likelihood
over C as in (1). It then proceeds to calculate the
loss of each token in the vocabulary were it to be
removed, eliminating the tokens incurring minimal
loss and re-tokenizing the corpus according to the
updated vocabulary, repeating this procedure until
reaching the desired vocabulary size V . Having
learned this vocabulary, downstream inference pro-
ceeds exactly as in the other segmentation-based
methods, in a greedy left-to-right manner. SAGE

can also be adapted to anticipate other decoding

2The name is not an acronym; it is intended to evoke
SkipGram while maintaining the “suffix” of BPE.

Algorithm 3 SAGE vocabulary creation.
n argminX denotes the n bottom-ranked elements
in X .

Input: Corpus C, Vocabulary final size V , basic tok-
enizer T , overshoot factor n, pruning batch size k, likelihood
recalculation frequency m, size of pruning candidate set M ,
embedding recalculation frequency l.

Output: Vocabulary V of size V .
1: procedure SAGE(C, V )
2: V ← T (C, n · V )
3: i← 0
4: while |V| > V do
5: if i ≡ 0 (mod l ×m) then
6: EV ←Word2Vec(V) ▷ Embedding table
7: end if
8: L(V, C)← SGObj(EV , C) ▷ Total likelihood (1)
9: if i ≡ 0 (mod m) then ▷ Update bottom set

10: for all t ∈ V do:
11: losst ← L(V \ {t}, C)− L(V, C)
12: end for
13: Vbot ←M argmint∈V(losst)
14: else ▷ Update losses for bottom set
15: for all t ∈ Vbot do:
16: losst ← L(V \ {t}, C)− L(V, C)
17: end for
18: end if
19: P ← min(k, |V| − V ) argmint∈Vbot

(losst)

20: Vbot ← Vbot \ P ▷ Prune
21: V ← V \ P
22: i← i+ 1
23: end while
24: return V
25: end procedure

algorithms, by changing the re-tokenization steps
accordingly.

In practice, applying the full process described
above introduces multiple sources of considerable
computational complexity: for example, calculat-
ing the ablation objective for each token in each it-
eration produces a quadratic amount of calculations
over the entire corpus; recalculating embeddings
for an updated vocabulary is similarly unreason-
able to perform at each iteration. We ameliorate
these and other sources of complexity using a se-
ries of heuristics found in preliminary experiments
to be minimally disruptive to precision of likeli-
hood calculations. We will now describe these
heuristics, all depicted in Algorithm 3. First, in-
stead of initializing the vocabulary as the full set
of possible character sequences in the corpus, as in
UNIGRAMLM, we use any existing noncontextual
tokenizer such as BPE to learn a vocabulary larger
than V by a factor of n, and begin the pruning pro-
cess from there. Next, instead of removing a single
token from the bottom of the loss-ranked vocab-
ulary, we remove a batch of the k bottom tokens
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Sentence fragment . . . use of an include directive is when referring to . . .
Tokenization using V use of an includ [e direct ive is when] ref er r ing to
Tokenization using V \ { includ} use of an inc l u [de direct ive is when] ref er r ing to

Table 2: The effect of retokenization on a context window of width 2 (in brackets) surrounding a target token (in
bold). A left-side context token has been replaced as a result of an out-of-window vocabulary ablation.

each time, as does UNIGRAMLM.3 To avoid fre-
quent loss recalculation, we recompute the entire
likelihood set once everym ablation steps, and only
keep the bottom M tokens as pruning candidates
for the next m steps. Our preliminary experiments
support this decision, as we found the ranked list of
losses tends to stay relatively stable over dozens of
batch-pruning iterations. Lastly, to avoid the costly
re-training of the embedding matrix for all tokens
given the updated corpus, which only results in
minor changes in likelihood during subsequent iter-
ations, we only perform it every l iteration batches,
i.e. after the ablation of k ×m× l tokens. n, k, l,
m and M are all algorithm hyperparameters tuned
empirically based on desired runtime, corpus size
and vocabulary size.

Contextual Loss. In order to calculate the per-
token SKIPGRAM likelihood loss, all sentences
where a token t occurs need to be re-segmented
according to V \ {t}, and their new likelihoods
recorded. To support performing this calculation
on a large scale, we maintain a mapping of tokens
to sentences containing them, as well as these sen-
tences’ current likelihoods. This must be done at
the sentence level rather than the window level,
since a remaining suffix from an out-of-window
re-tokenization may combine with in-window char-
acters and form different token sequence replace-
ments at a given stage. Consider the example in
Table 2, where re-tokenization results in the re-
placement of a context token for a distant target.

Negative Sampling. The original SKIPGRAM

objective uses negative samples to estimate con-
text probabilities. Since our application of SKIP-
GRAM within the vocabulary creation algorithm
(independent of the embeddings training proce-
dure) includes only likelihood estimation with no
parameter updates, we do not sample negative to-
kens, a process which would introduce substantial
noise and complexity.

3As in UNIGRAMLM and other ablation-based vocabu-
laries, single-character tokens are never removed from the
vocabulary, in order to allow for all in-alphabet words to be
tokenized.

4 SAGE Vocabulary Properties

For an analysis of our modified algorithm’s advan-
tages, we trained vocabularies of a pre-determined
size using both BPE and SAGE. We selected
|V| = 16, 000, and obtained corpora for English
(750,000 lines from the August 2022 Wikipedia
dump) and Turkish (the entire text of the September
2022 Wikipedia dump), opting for languages that
share the Latin alphabet but differ in family (Indo-
European vs. Turkic) and, crucially, in morpholog-
ical properties: English is a low-exponence, low-
synthesis language, while Turkish features multiple
inflectional exponence and high verbal synthesis,
as well as highly agglutinative morphology (Bickel
and Nichols, 2013a,b). We used the following hy-
perparameter settings to compute the vocabularies:
Initial vocab size 20, 000 (or n = 1.25), l = 4,
k = 100, M = 1500, m = 10. We used the Gen-
sim package to train the SKIPGRAM models (Re-
hurek and Sojka, 2011), and Sentencepiece (Kudo
and Richardson, 2018) to obtain the initial BPE
vocabularies.4 More hyperparameters are detailed
in Appendix A.

We present an analysis of the resulting vocabu-
laries, highlighting the advantages and trade-offs
exhibited by context-based subword tokenization.
Generally speaking, most of the tokens discarded
from SAGE’s initial vocabulary appear in the base-
line BPE’s final vocabulary. Among the differ-
ences between the vocabularies are many short to-
kens that appear in BPE’s but not SAGE’s, proper
substrings of longer tokens also appearing in the
BPE vocabulary. This is due to BPE’s bottom-up
merge table construction, which forces retention of
the entire chain of tokens created: if the is part of
the vocabulary, either th or he must also be there.
While essential for the original intended decoding
process, actual implementations of greedy decod-
ing have no need for this property. SAGE’s ini-
tial vocabulary shares this characteristic, but the
trimming process allows any token to be ablated,

4Since BPE augments its vocabulary iteratively, the base-
line BPE vocabulary is a proper subset of that used to initialize
SAGE.
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Figure 1: Token length distribution of BPE’s vocabulary
vs. SAGE’s on English.

More frequent in
SAGE BPE

e s es ic
ing ist ings ff
ation ate ations ates

Table 3: Tokens with high difference in frequency be-
tween tokenizations (English models).

including those in the middle of merge chains. An-
other difference found between the vocabularies
is the strong preference of SAGE for word-initial
tokens. 83% of the tokens that appear in SAGE’s
vocabulary but not in BPE’s are word-initial, com-
pared to only 22% of the BPE-only tokens. This is
reasonable, since a token surviving SAGE’s abla-
tion steps exhibits high loss for the condition of its
removal, which is arguably the case when a nearby
target word needs to predict a word-initial context.

Token Length. Figure 1 shows a histogram of
token lengths (in characters) for the 16,000-token
SAGE and BPE vocabularies in English (results on
Turkish are similar). SAGE clearly selects longer
tokens for its vocabulary, again a sensible outcome
given their higher chance of being contextually
coherent. The difference is most stark with tokens
of length 2 and 3; when considering only tokens
appearing in exactly one of the final vocabularies,
we find that 56% of BPE-only tokens are of length
2 and 3, while 55% of SAGE-only tokens are of
length 5 and above.

Token Frequency. We compute the frequency of
tokens in the encoding form of the English train-
ing corpus, once using SAGE vocabulary and once

Figure 2: Number of subwords required to tokenize a
word, collected over the original English training cor-
pus.

using BPE’s. In Table 3 we show some of the
tokens with the biggest difference in frequency be-
tween SAGE and BPE tokenizations. We can see
SAGE reverts to single-character tokens consider-
ably more often than BPE (also demonstrated in
the last example in Table 1). We view this as a fea-
ture of context-based tokenization—its vocabulary
is partitioned between (mostly short) tokens that are
highly ambiguous in context and (mostly long) to-
kens that have coherent contexts. At the same time,
BPE is rife with tokens that are medially ambigu-
ous contextually, whose resulting embeddings can
be neither useful nor completely ignorable, adding
noise to the representation sequences. As a result,
SAGE breaks down complex suffixes, which in
English are compositional, into their constituent
morphology. The suffix ings is thus dismantled to
ing s, whereas BPE reserves a token for it, mostly
unhelpful in itself.

Subword Fertility. Fertility, as defined in the
statistical machine translation literature, refers to
the average number of subwords produced per to-
kenized word. Figure 2 exhibits a histogram of
all English corpus words by their subword length,
using the BPE vocabulary and the SAGE vocabu-
lary. Although SAGE retains more words as single
tokens, it trades them off with more words hav-
ing five subwords or more, compared with BPE’s
abundance of words with 2 and 3 subwords. This
follows the trend described so far, of SAGE’s pref-
erence for dismantling unknown words into mean-
ingless single-character tokens rather than confus-
ing, ambiguous length-2 and length-3 tokens. We
believe that BPE’s behavior harms text understand-
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Figure 3: Number of distinct neighbors each token encounters in a width-5 window, top 200, Turkish.

ing in suggesting that these ambiguous fragments
(consider “og”) have some meaning that an LLM
can try and learn, whereas SAGE’s single-character
breakdown indicates a word that’s truly unknown
and cannot be inferred by composing constituent
in-vocab subwords.

Fertility translates to a trade-off in encoding
efficiency to SAGE’s contextual advantage: a sam-
ple of 150K lines from English Wikipedia is en-
coded by 4 million BPE tokens, optimizing only
an information-theoretic objective, whereas SAGE

produces 4.5 million. Having said that, this inef-
ficiency might be further offset during LLM pre-
training: we propose that contextually coherent
tokens will require fewer update steps in order to
achieve useful embedding parameters, helping the
model converge faster compared to BPE tokens.
We leave testing this hypothesis to future work.

Contextual Exponence. To determine the degree
to which SAGE effectively optimizes tokens’ con-
textual soundness, which is its ultimate goal, we
plot the number of distinct neighbors each token
encounters throughout the training corpus, ranked
from high to low, in Figure 3. The very top of
the ranking is occupied by single-character tokens
which are context-null by design, which SAGE

makes the most of by placing in almost all contexts.
After a few dozen tokens, SAGE’s context counts
dip below BPE’s, a trend which continues all the
way through the vocabulary, making up a more
contextually coherent set. These findings hold for
English as well as Turkish, and replicate when tak-
ing a context window of size 2, different from that
used during SAGE construction.

Figure 4: Distribution of token neighbors/frequency
ratio for a width-5 window in English (top) and Turkish
(bottom); BPE (left) and SAGE (right)
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These findings can arguably be attributed to a fre-
quency artifact, where SAGE simply outputs more
tokens with lower frequency in order to provide
them with fewer contexts. We thus present a nor-
malized analysis in Figure 4, depicting the ratio
between each token’s number of unique neighbors
and its frequency, distributed over the entire vocab-
ulary. SAGE provides substantially lower ratios in
both languages, supporting our original claim.

4.1 Robustness to Domain Change

One possible limitation of the SAGE objective is
that it increases the reliance on the original training
corpus compared to word-count-only algorithms.
In and of itself, this should not necessarily be
viewed as a problem, assuming the collected cor-
pus is a faithful representative of an LLM’s use
case.5 To this end, we collected comparable cor-
pora from non-Wikipedia domains and ran our anal-
ysis on the SAGE and BPE vocabularies trained on
Wikipedia. Our findings suggest that while SAGE

loses its relative advantage in context-dependence
over BPE, it does not fall behind it (i.e. it has not
overfit to the Wikipedia domain). We present a
fertility chart for an English corpus of 7.5M words
from Quora questions6 in Figure 5, depicting simi-
lar trends to that on Wikipedia (Figure 2) but with
smaller differences between SAGE and BPE; the
neighbor-to-frequency ratio aggregation chart in
Figure 6 differs from Figure 4 (top) substantially
but shows that SAGE and BPE tokens do not di-
verge significantly on this measure. We repeated
the experiment on English legal text centered on
US congress bills (Henderson et al., 2022) and on a
2.6M-word Turkish corpus of online reviews,7 and
observed similar trends.

These results indicate that while a consider-
able amount of the longer tokens preferred by
SAGE were selected to optimize contextuality in
the source domain, as it was designed to do, there
is no “short blanket” effect for text originating in
different domains. This could either be due to wide-
scope advantages of some of the tokens selected by
SAGE, or due to an intrinsic deficiency in BPE’s
long-tail tokens, or a combination of both.

5Indeed, existing literature recommends adding pre-
training steps on new domains before fine-tuning models for
them (e.g., Han and Eisenstein, 2019).

6https://huggingface.co/datasets/
chenghao/quora_questions

7https://huggingface.co/datasets/
cansen88/turkishReviews_5_topic

Figure 5: Number of subwords required to tokenize a
word using the original Wikipedia-trained vocabularies,
collected over a English Quora questions corpus.

Figure 6: Distribution of token neighbors/frequency
ratio for a width-5 window in English, based on a
Wikipedia-trained vocabulary and collected over a En-
glish Quora questions corpus.

5 Downstream Evaluation

In order to evaluate the utility of our tokenization
algorithm for major NLP tasks, we compare SAGE

to a BPE vocabulary of the same size by means
of pre-training a BERT-parameterized model (De-
vlin et al., 2019) using an expedited training
scheme (Izsak et al., 2021). We then evaluate the
LLM’s performance both on sequence classifica-
tion via the English GLUE benchmark (Wang et al.,
2018) and the Turkish partition of XNLI (Conneau
et al., 2018), and on named entity recognition in
English (Wang et al., 2019) and Turkish (Al-Rfou
et al., 2015). We use the default settings from
Huggingface’s library implementations of the fine-
tuning processes (Wolf et al., 2020) and do not
perform hyperparameter tuning for either model.

We present our results on sequence-level tasks
in Table 4. SAGE tokenization improves perfor-
mance on nearly all tasks with particularly sub-
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MRPC MNLI COLA QNLI SST2 STSB QQP XNLItur
(F1) (Acc %) (Matt.) (Acc %) (Acc %) (Pear.) (Acc %) (Acc %)

BPE .7918 62.76 .0777 66.17 80.54 .3094 82.75 41.20
SAGE .8004 64.00 .0985 74.83 79.85 .3387 84.69 46.46

Table 4: Performance on sequence-level tasks for BERT models trained on different 16k-size vocabularies. XNLItur
is Turkish, the rest are English GLUE tasks. All results averaged over three runs on the dev set with different seeds.

English Turkish

BPE .7142 .4660
SAGE .7502 .5475

Table 5: Performance (F1) on NER tasks of BERT Turk-
ish and English models trained on different subword
vocabularies of size 16,000. All results averaged over
three runs on the dev set with different seeds.

stantial improvements (1.3–8 accuracy points) on
NLI datasets. Results on NER are presented in
Table 5, again showing SAGE’s dominance over
BPE. Due to the length of the training pipeline lead-
ing from vocabulary creation through pre-training
to fine-tuning, it is difficult to find individual ex-
amples where difference in tokenization leads to
direct changes in prediction; we attribute the con-
sistent overall gains in downstream performance
mostly to the LLM pre-training step, where the
design of SAGE’s context-friendly vocabulary en-
ables a more coherent contextual signal to flow
through the transformer layers during backpropaga-
tion. We note that in general, our models fare worse
on GLUE tasks compared to Izsak et al. (2021).
We attribute this in part to the smaller token vocab-
ulary size, and more substantially to the smaller
pre-training corpus we used in our experiments.

6 Related Work

In recent years, a growing body of research has
demonstrated the shortcomings of existing tok-
enization algorithms in the context of represent-
ing linguistic phenomena in different languages
across different tasks (Banerjee and Bhattacharyya,
2018; Klein and Tsarfaty, 2020; Hakimi Parizi and
Cook, 2020; Rust et al., 2021; Maronikolakis et al.,
2021; Mielke et al., 2021; Hofmann et al., 2021),
as well as the statistical properties affecting their
downstream performance (Bostrom and Durrett,
2020). Our work addresses the concerns raised in
this line of work by introducing an improved sub-
word vocabulary creation method which leverages

the contextual aspects of the main intended use
case, namely LLMs. Previous work towards this
goal includes algorithms which offer robustness
within an existing subword vocabulary (Provilkov
et al., 2020; He et al., 2020; Hiraoka, 2022), neces-
sitating modification of either training, inference,
or both procedures in the context of LLMs. Others
have considered tuning the size of a subword vo-
cabulary (Salesky et al., 2020), or selecting from
an enlarged set of possible segmentations (Asgari
et al., 2020), for optimizing performance on down-
stream tasks.

Some alternative tokenization methods focus on
the application of a model which considers the
expected downstream tasks together with the pre-
training corpus (Hiraoka et al., 2020), to the de-
gree of jointly optimizing the tokenizer with the
downstream model (Hiraoka et al., 2021). In ad-
dition to the massive changes in training and in-
ference procedures this approach incurs, we note
that it is difficult to apply to large contextualized
models due to the long path from tokenization
to prediction; SAGE overcomes this problem by
“nudging” only the LLM vocabulary itself towards
a contextualization-friendly segmentation.

The concept of subword tokenization made its
rise alongside that of contextualized representa-
tions, meaning that little work exists where SKIP-
GRAM or other static models are trained over
proper subword segmentations. Recently, Kaushal
and Mahowald (2022) did so for a proof-of-concept
of a spelling prediction model, in lieu of training
full LLMs. To our knowledge, no work to date has
used a static embedding-based objective to score
token sequence likelihood for a separate task (as
we do for vocabulary trimming).

Finally, we acknowledge the recent efforts
to do away with tokenization altogether, be it
through character-only (Clark et al., 2022) or byte-
only (Xue et al., 2022) models, or through encoding
characters visually and passing them through a vi-
sion model (Salesky et al., 2021; Rust et al., 2022).
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These represent an even more radical departure
from the established application of LLMs, and we
look forward to testing their abilities against our im-
proved contextual subword tokenization methods.
We note that while these models have been fac-
ing issues regarding scaling, mostly on the decod-
ing side, SAGE vocabularies are ready to be used
immediately within existing popular LLM imple-
mentations. Furthermore, recent work has shown
the limited utility of character-level transformers
in semantic tasks, even for morphologically rich
languages with nontrivial orthography-morphology
relations (Keren et al., 2022).

7 Conclusion

In this work, we introduced SAGE, a context-aware
tokenizer built using insights from BPE, UNI-
GRAMLM, and SKIPGRAM, and showed that it
achieves better results when used in an LLM-pre-
train-then-fine-tune schema on two typologically
distant languages on both the sequence and token
levels. We believe that further investigation into
incorporating context in tokenization models can
improve results even further, and intend to also
extend our efforts toward other languages and writ-
ing systems, as well as to multilingual tokenizers.
For example, we plan to apply SAGE in the con-
text of Abjads like Hebrew and Arabic, as well
as languages written in alphasyllabaries such as
Devanagari.

Within SAGE itself, there is room for improve-
ment. The algorithm is still relatively slow, taking
roughly a day to run on a strong CPU, making it dif-
ficult to apply to a truly large corpus, to start from
a larger initial vocabulary, or to conduct exhaus-
tive search over the hyperparameters. We intend to
keep optimizing it, and continue evaluation against
other subword and character-only schemas.

Limitations

We acknowledge several limitations of SAGE, a
novel algorithm still in its development stages.
First, scaling the vocabulary creation framework
up from corpus-level unigram statistics to context
dependence incurs many points where linear fac-
tors turn into quadratic, and worse. We introduced
several heuristics to alleviate this issue in §3, how-
ever SAGE still takes longer to train compared to
BPE and other tokenizers, by roughly a factor of
ten. While having no effect on downstream pre-
training and fine-tuning steps, it does mean hy-

perparameters are more difficult to tune. Second,
the prohibitive resources required to implement
a full LLM pipeline has limited our downstream
evaluation setup to ten individual tasks on two lan-
guages. Ideally, as more languages with more di-
verse scripts and typological properties are exam-
ined, better generalizations can be made about the
utility of integrating context into subword tokenizer
vocabularies. Finally, we still do not have a well-
formed theory of integrating multiple domains, lan-
guages, or scripts together into a single vocabulary.
This question has interested researchers in recent
years (e.g., Chung et al., 2020; Rust et al., 2021;
Zhang et al., 2022), yet a tokenizer-internal solu-
tion (as opposed to data balance manipulation) still
seems to have eluded the community. This question
affects SAGE more than other tokenizers, given its
reliance on context, which changes starkly when
considering multiple sources of text in unison.
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Final Vocab Size 16K
Initial Vocab Size 20K
k (tokens to prune each batch) 100
M (size of pruning candidate set) 1500
m (likelihood recalculation frequency) 10
l (embedding recalculation frequency) 4
SAGE window size 5
Word2Vec window size 5
Word2Vec vector dimension 50
Word2Vec negative samples 15

Table 6: Hyperparameters for vocabulary creation.

A Hyperparameters

In Table 6, 7, and 8, we present the hyperparame-
ters used for training the various elements in our
experiments.

B Computing Resources

For our experiments we used Quadro RTX 8000
GPU.

layer norm type pytorch
model type bert-mlm
hidden act gelu
hidden size 1024
num hidden layers 24
num attention heads 16
intermediate size 4096
hidden dropout prob 0.1
attention probs dropout prob 0.1
encoder ln mode pre-ln
lr 1e-3
train batch size 4032
train micro batch size per gpu 32
lr schedule time
curve linear
warmup proportion 0.06
gradient clipping 0.0
optimizer type adamw
weight decay 0.01
adam beta1 0.9
adam beta2 0.98
adam eps 1e-6
total training time 24.0
optimizer type adamw
validation epochs 3
validation epochs begin 1
validation epochs end 1
validation begin proportion 0.05
validation end proportion 0.01
validation micro batch 16
deepspeed yes
data loader type dist

Table 7: Hyperparameters for pre-training BERT-
architecture models using the academic-budget-bert
code (Izsak et al., 2021).

max seq length 128
evaluation strategy steps
per device train batch size 16
gradient accumulation steps 1
per device eval batch size 16
learning rate 5e-5
weight decay 0.1
max grad norm 1.0
lr scheduler type polynomial
warmup steps 50

Table 8: Hyperparameters for fine-tuning tasks using
scripts from the academic-budget-bert package.
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Abstract
Text Summarization is a popular task and an
active area of research for the Natural Lan-
guage Processing community. It requires ac-
counting for long input texts, a characteristic
which poses computational challenges for neu-
ral models. Moreover, real-world documents
come in a variety of complex, visually-rich,
layouts. This information is of great relevance,
whether to highlight salient content or to en-
code long-range interactions between textual
passages. Yet, all publicly available summa-
rization datasets only provide plain text con-
tent. To facilitate research on how to exploit
visual/layout information to better capture long-
range dependencies in summarization models,
we present LoRaLay, a collection of datasets
for long-range summarization with accompa-
nying visual/layout information. We extend
existing and popular English datasets (arXiv
and PubMed) with visual/layout information
and propose four novel datasets – consistently
built from scholar resources – covering French,
Spanish, Portuguese, and Korean languages.
Further, we propose new baselines merging
layout-aware and long-range models – two or-
thogonal approaches – and obtain state-of-the-
art results, showing the importance of combin-
ing both lines of research.

1 Introduction

Deep learning techniques have enabled remarkable
progress in Natural Language Processing (NLP)
in recent years (Devlin et al., 2018; Raffel et al.,
2019; Brown et al., 2020). However, the majority
of models, benchmarks, and tasks have been de-
signed for unimodal approaches, i.e. focusing ex-
clusively on a single source of information, namely
plain text. While it can be argued that for specific
NLP tasks, such as textual entailment or machine
translation, plain text is all that is needed, there
exist several tasks for which disregarding the vi-
sual appearance of text is clearly sub-optimal: in

*Work partially done while at reciTAL.

a real-world context (business documentation, sci-
entific articles, etc.), text does not naturally come
as a sequence of characters, but is rather displayed
in a bi-dimensional space containing rich visual
information. The layout of e.g. this very paper
provides valuable semantics to the reader: in which
section are we right now? At the blink of an eye,
this information is readily accessible via the salient
section title (formatted differently and placed to
highlight its role) preceding these words. Just to
emphasize this point, imagine having to scroll this
content in plain text to access such information.

In the last couple of years, the research commu-
nity has shown a growing interest in addressing
these limitations. Several approaches have been
proposed to deal with visually-rich documents and
integrate layout information into language mod-
els, with direct applications to Document Under-
standing tasks. Joint multi-modal pretraining (Xu
et al., 2021; Powalski et al., 2021; Appalaraju et al.,
2021) has been key to reach state-of-the-art per-
formance on several benchmarks (Jaume et al.,
2019; Graliński et al., 2020; Mathew et al., 2021).
Nonetheless, a remaining limitation is that these
(transformer-based) approaches are not suitable for
processing long documents, the quadratic complex-
ity of self-attention constraining their use to short
sequences. Such models are hence unable to en-
code global context (e.g. long-range dependencies
among text blocks).

Focusing on compressing the most relevant infor-
mation from long texts to short summaries, the Text
Summarization task naturally lends itself to benefit
from such global context. Notice that, in practice,
the limitations linked to sequence length are also
amplified by the lack of visual/layout information
in the existing datasets. Therefore, in this work,
we aim at spurring further research on how to in-
corporate multimodal information to better capture
long-range dependencies.

Our contributions can be summarized as follows:
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• We extend two popular datasets for long-range
summarization, arXiv and PubMed (Cohan
et al., 2018), by including visual and layout
information – thus allowing direct comparison
with previous works;

• We release 4 additional layout-aware summa-
rization datasets (128K documents), covering
French, Spanish, Portuguese, and Korean lan-
guages;

• We provide baselines including adapted archi-
tectures for multi-modal long-range summa-
rization, and report results showing that (1)
performance is far from being optimal; and
(2) layout provides valuable information.

All the datasets are available on HuggingFace.1

2 Related Work

2.1 Layout/Visually-rich Datasets
Document Understanding covers problems that in-
volve reading and interpreting visually-rich docu-
ments (in contrast to plain texts), requiring com-
prehending the conveyed multimodal information.
Hence, several tasks with a central layout aspect
have been proposed by the document understand-
ing community. Key Information Extraction tasks
consist in extracting the values of a given set of
keys, e.g., the total amount in a receipt or the date
in a form. In such tasks, documents have a layout
structure that is crucial for their interpretation. No-
table datasets include FUNSD (Jaume et al., 2019)
for form understanding in scanned documents, and
SROIE (Huang et al., 2019), as well as CORD
(Park et al., 2019), for information extraction from
receipts. Graliński et al. (2020) elicit progress on
deeper and more complex Key Information Extrac-
tion by introducing the Kleister datasets, a collec-
tion of business documents with varying lengths,
released as PDF files. However, the documents
in Kleister often contain single-column layouts,
which are simpler than the various multi-column
layouts considered in LoRaLay. Document VQA
is another popular document understanding task
that requires processing multimodal information
(e.g., text, layout, font style, images) conveyed by
a document to be able to answer questions about a

1
https://hf.co/datasets/nglaura/arxivlay-summarization,

https://hf.co/datasets/nglaura/pubmedlay-summarization,

https://hf.co/datasets/nglaura/hal-summarization,

https://hf.co/datasets/nglaura/scielo-summarization,

https://hf.co/datasets/nglaura/koreascience-summarization

visually rich document (e.g., What is the date given
at the top left of the form?, Whose picture is given
in this figure?). The DocVQA dataset (Mathew
et al., 2021) and InfographicsVQA (Mathew et al.,
2022) are commonly-used VQA datasets that re-
spectively provide industry documents and info-
graphic images, encouraging research on under-
standing documents with complex interplay of text,
layout and graphical elements. Finally, to foster
research on visually-rich document understanding,
Borchmann et al. (2021) introduce the Document
Understanding Evaluation (DUE) benchmark, a
unified benchmark for end-to-end document under-
standing, created by combining several datasets.
DUE includes several available and transformed
datasets for VQA, Key Information Extraction and
Machine Reading Comprehension tasks.

2.2 Existing Summarization Datasets

Several large-scale summarization datasets have
been proposed to boost research on text summa-
rization systems. Hermann et al. (2015) proposed
the CNN/DailyMail dataset, a collection of English
articles extracted from the CNN and The Daily
Mail portals. Each news article is associated with
multi-sentence highlights which serve as reference
summaries. Scialom et al. (2020) bridge the gap be-
tween English and non-English resources for text
summarization by introducing MLSum, a large-
scale multilingual summarization corpus providing
news articles written in French, German, Spanish,
Turkish and Russian. Going toward more challeng-
ing scenarios involving significantly longer doc-
uments, the arXiv and PubMed datasets (Cohan
et al., 2018) consist of scientific articles collected
from academic repositories, wherein the paper ab-
stracts are used as summaries. To encourage a shift
towards building more abstractive summarization
models with global content understanding, Sharma
et al. (2019) introduce BIGPATENT, a large-scale
dataset made of U.S. patent filings. Here, invention
descriptions serve as reference summaries.

The vast majority of summarization datasets only
deal with plain text documents. As opposed to
other Document Understanding tasks (e.g., form
understanding, visual QA) in which the placement
of text on the page and/or visual components are
the main source of information needed to find the
desired data (Borchmann et al., 2021), text plays
a predominant role in document summarization.
However, guidelines for summarizing texts – espe-
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cially long ones – often recommend roughly pre-
viewing them to break them down into their major
sections (Toprak and Almacioğlu, 2009; Luo et al.,
2019). This suggests that NLP systems might lever-
age multimodal information in documents. Miculi-
cich and Han (2022) propose a two-stage method
which detects text segments and incorporates this
information in an extractive summarization model.
Cao and Wang (2022) collect a new dataset for
long and structure-aware document summarization,
consisting of 21k documents written in English and
extracted from WikiProject Biography.

Although not all documents are explicitly or-
ganized into clearly defined sections, the great
majority contains layout and visual clues (e.g., a
physical organization into paragraphs, bigger head-
ings/subheadings) which help structure their textual
contents and facilitate reading. Thus, we argue that
layout is crucial to summarize long documents. We
propose a corpus of more than 345K long docu-
ments with layout information. Furthermore, to
address the need for multilingual training data (Chi
et al., 2020), we include not only English docu-
ments, but also French, Spanish, Portuguese and
Korean ones.

3 Datasets Construction

Inspired by the way the arXiv and PubMed datasets
were built (Cohan et al., 2018), we construct our
corpus from research papers, with abstracts as
ground-truth summaries. As the PDF format allows
simultaneous access to textual, visual and layout
information, we collect PDF files to construct our
datasets, and provide their URLs.2

For each language, we select a repository that
contains a high number of academic articles (in the
order of hundreds of thousands) and provides easy
access to abstracts. More precisely, we chose the
following repositories:

• Archives Ouverte HAL (French),3 an open
archive of scholarly documents from all aca-
demic fields. As HAL is primarily directed
towards French academics, a great proportion
of articles are written in French;

• SciELO (Spanish and Portuguese),4 an open
access database of academic articles published
in journal collections from Latin America,

2We make the corpus-construction code publicly available at https://
github.com/recitalAI/loralay-datasets.

3
https://hal.archives-ouvertes.fr/

4
https://www.scielo.org/

Iberian Peninsula and South Africa, and cov-
ering a broad range of topics (e.g. agricultural
sciences, engineering, health sciences, letters
and arts). Languages include English, Span-
ish, and Portuguese.

• KoreaScience (Korean),5 an open archive of
Korean scholarly publications in the fields of
natural sciences, life sciences, engineering,
and humanities and social sciences. Articles
are written in English or Korean.

Further, we provide enhanced versions of the
arXiv and PubMed datasets, respectively denoted
as arXiv-Lay and PubMed-Lay, for which layout
information is provided.

3.1 Collecting the Data
Extended Datasets The arXiv and PubMed
datasets (Cohan et al., 2018) contain long scien-
tific research papers extracted from the arXiv and
PubMed repositories. We augment them by provid-
ing their PDFs, allowing access to layout and visual
information. As the abstracts contained in the orig-
inal datasets are all lowercased, we do not reuse
them, but rather extract the raw abstracts using the
corresponding APIs.

Note that we were unable to retrieve all the orig-
inal documents. For the most part, we failed to
retrieve the corresponding abstracts, as they did not
necessarily match the ones contained in the PDF
files (due to e.g. PDF-parsing errors). We also
found that some PDF files were unavailable, while
others were corrupted or scanned documents.6 In
total, about 39% (35%) of the original documents
in arXiv (PubMed) were lost.

arXiv-Lay The original arXiv dataset (Cohan
et al., 2018) was constructed by converting the
LATEX files to plain text. To be consistent with
the other datasets – for which LATEX files are not
available – we instead use the PDF files to extract
both text and layout elements. For each document
contained in the original dataset, we fetch (when
possible) the corresponding PDF file using Google
Cloud Storage buckets. As opposed to the original
procedure, we do not remove tables nor discard
sections that follow the conclusion. We retrieve
the corresponding abstracts from a metadata file
provided by Kaggle.7

5
http://www.koreascience.or.kr

6For more details on this, see Section A.1 in the Appendix.
7
https://www.kaggle.com/Cornell-University/arxiv
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PubMed-Lay For PubMed, we use the PMC
OAI Service8 to retrieve abstracts and PDF files.

HAL We use the HAL API9 to download re-
search papers written in French. To avoid exces-
sively long (e.g. theses) or short (e.g. posters)
documents, extraction is restricted to journal and
conference papers.

SciELO Using Scrapy,10 we crawl the following
SciELO collections: Ecuador, Colombia, Paraguay,
Uruguay, Bolivia, Peru, Portugal, Spain and Brazil.
We download documents written either in Spanish
or Portuguese, according to the metadata, obtaining
two distinct datasets: SciELO-ES (Spanish) and
SciELO-PT (Portuguese).

KoreaScience Similarly, we scrape the Korea-
Science website to extract research papers. We
limit search results to documents whose publishers’
names contain the word Korean. This rule was de-
signed after sampling documents in the repository,
and is the simplest way to get a good proportion
of papers written in Korean.11 Further, search is
restricted to papers published between 2012 and
2021, as recent publications are more likely to have
digital-born, searchable PDFs. Finally, we down-
load the PDF files of documents that contain an
abstract written in Korean.

3.2 Data Pre-processing
For each corpus, we use the 95th percentile of the
page distribution as an upper bound to filter out
documents with too many pages, while the 5th (1st
for HAL and SciELO) percentile of the summary
length distribution is used as a minimum thresh-
old to remove documents whose abstracts are too
short. As our baselines do not consider visual in-
formation, we only extract text and layout from
the PDF files. Layout is incorporated by provid-
ing the spatial position of each word in a docu-
ment page image, represented by its bounding box
(x0, y0, x1, y1), where (x0, y0) and (x1, y1) respec-
tively denote the coordinates of the top-left and
bottom-right corners. Using the PDF rendering li-
brary Poppler12, text and word bounding boxes are
extracted from each PDF, and the sequence order is
recovered based on heuristics around the document
layout (e.g., tables, columns). Abstracts are then

8
https://www.ncbi.nlm.nih.gov/pmc/tools/oai/

9
https://api.archives-ouvertes.fr/docs/search

10
https://scrapy.org/

11For further details, see Section A.2 in the Appendix.
12
https://poppler.freedesktop.org/

removed by searching for exact matches; when no
exact match is found, we use fuzzysearch13

and regex14 to find near matches.15 For the non-
English datasets, documents might contain several
abstracts, written in different languages. To avoid
information leakage, we retrieve the abstract of
each document in every language available – ac-
cording to the API for HAL or the websites for
SciELO and KoreaScience – and remove them us-
ing the same strategy as for the main language. In
the case an abstract cannot be found, we discard
the document to prevent any unforeseen leakage.
The dataset construction process is illustrated in
Section A in the Appendix.

3.3 Datasets Statistics
The statistics of our proposed datasets, along with
those computed on existing summarization datasets
of long documents (Cohan et al., 2018; Sharma
et al., 2019) are reported in Table 1. We see that
document lengths are comparable or greater than
for the arXiv, PubMed and BigPatent datasets.

For arXiv-Lay and PubMed-Lay, we retain the
original train/validation/splits and try to reconstruct
them as faithfully to the originals as possible. For
the new datasets, we order documents based on
their publication dates and provide splits following
a chronological ordering. For HAL and Korea-
Science, we retain 3% of the articles as validation
data, 3% as test, and the remaining as training data.
To match the number of validation/test documents
in HAL and KoreaScience, we split the data into
90% for training, 5% for validation and 5% for test,
for both SciELO datasets.

4 Experiments

4.1 Models
For reproducibility purposes, we make the mod-
els’ implementation, along with the fine-tuning and
evaluation scripts, publicly available.16

We do not explore the use of visual information
in long document summarization, as the focus is on
evaluating baseline performance using state-of-the-
art summarization models augmented with layout
information. While visual features might provide
a better understanding of structures such as tables
and figures, we do not expect substantial gains with

13
https://pypi.org/project/fuzzysearch/

14
https://pypi.org/project/regex/

15We use a maximum Levenshtein distance of 20 with fuzzysearch, and a
maximum number of errors of 3 with regex.

16
https://github.com/recitalAI/loralay-modeling
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Dataset
# Docs Mean Mean

Article Summary
Length Length

arXiv (Cohan et al., 2018) 215,913 3,016 203
PubMed (Cohan et al., 2018) 133,215 4,938 220

BigPatent (Sharma et al., 2019) 1,341,362 3,572 117

arXiv-Lay 130,919 7,084 125
PubMed-Lay 86,668 4,038 144

HAL 46,148 4,543 134
SciELO-ES 23,170 4,977 172
SciELO-PT 21,563 6,853 162

KoreaScience 37,498 3,192 95

Table 1: Datasets statistics. Article and summary
lengths are computed in words. For KoreaScience,
words are obtained via white-space tokenization. Dif-
ference between arXiv and arXiv-Lay is due to the fact
that we retain the whole document, while Cohan et al.
(2018) truncate it after the conclusion.

respect to layout-aware models. Indeed, the infor-
mation provided in figures (i.e., information that
cannot be captured by layout or text) are commonly
described in the caption or related paragraphs.

Text-only models with standard input size We
use Pegasus (Zhang et al., 2020) as a text-only base-
line for arXiv-Lay and PubMed-Lay. Pegasus is
an encoder-decoder model pre-trained using gap-
sentences generation, making it a state-of-the-art
model for abstractive summarization. For the non-
English datasets, we rely on a finetuned MBART as
our baseline. MBART (Liu et al., 2020) is a multi-
lingual sequence-to-sequence model pretrained on
large-scale monolingual corpora in many languages
using the BART objective (Lewis et al., 2019). We
use its extension, MBART-50 (Tang et al., 2020),17

which is created from the original MBART by ex-
tending its embeddings layers and pre-training it on
a total of 50 languages. Both Pegasus and MBART
are limited to a maximum sequence length of 1,024
tokens, which is well below the median length of
each dataset.

Layout-aware models with standard input size
We introduce layout-aware extensions of Pega-
sus and MBART, respectively denoted as Pe-
gasus+Layout and MBART+Layout. Following
LayoutLM (Xu et al., 2020), which is state-of-
the-art on several document understanding tasks
(Jaume et al., 2019; Huang et al., 2019; Harley
et al., 2015), each token bounding box coordinates
(x0, y0, x1, y1) is normalized into an integer in the
range [0, 1000]. Spatial positions are encoded us-
ing four embedding tables, namely two for the co-
ordinate axes (x and y), and the other two for the

17For the sake of clarity, we refer to MBART-50 as MBART.

bounding box size (width and height). The layout
representation of a token is formed by summing
the resulting embedding representations The final
representation of a token is then obtained through
point-wise summation of its textual, 1D-positional
and layout embeddings.

Long-range, text-only models To process longer
sequences, we leverage BigBird (Zaheer et al.,
2020), a sparse-attention based Transformer which
reduces the quadratic dependency to a linear one.
For arXiv-Lay and PubMed-Lay, we initialize Big-
Bird from Pegasus (Zaheer et al., 2020) and for
the non-English datasets, we use the weights of
MBART. The resulting models are referred to as
BigBird-Pegasus and BigBird-MBART. For both
models, BigBird sparse attention is used only in
the encoder. Both models can handle up to 4,096
inputs tokens, which is greater than the median
length in PubMed-Lay, HAL and KoreaScience.

Long-range, layout-aware models We also in-
clude layout information in long-range text-only
models. Similarly to layout-aware models with
standard input size, we integrate layout informa-
tion into our long-range models by encoding each
token’s spatial position in the page. The resulting
models are denoted as BigBird-Pegasus+Layout
and BigBird-MBART+Layout.

Additional State-of-the-Art Baselines We fur-
ther consider additional state-of-the-art baselines
for summarization: i) the text-only T5 (Raffel et al.,
2019) with standard input size, ii) the long-range
Longformer-Encoder-Decoder (LED) (Beltagy
et al., 2020), and iii) the layout-aware, long-range
LED+Layout, which we implement similarly to
the previous layout-aware models.

4.2 Implementation Details

We initialize our Pegasus-based and MBART-based
models with, respectively, the google/pegasus-large
and facebook/mbart-large-50 checkpoints shared
through the Hugging Face Model Hub. As for T5
and LED, we use the weights from t5-base and
allenai/led-base-16384, respectively.18

Following Zhang et al. (2020) and Zaheer et al.
(2020), we fine-tune our models up to 74k (100k)
steps on arXiv-Lay (PubMed-Lay). On HAL, the
total number of steps is set to 100k, while it is de-

18The large versions of T5 and LED did not fit into GPU due to their size.
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Dataset Instances Input Length Output Length
Train Dev Test Median 90%-ile Median 90%-ile

arXiv (Cohan et al., 2018) 203,037 6,436 6,440 6,151 14,405 171 352
PubMed (Cohan et al., 2018) 119,924 6,633 6,658 2,715 6,101 212 318

arXiv-Lay 122,189 4,374 4,356 6,225 12,541 150 249
PubMed-Lay 78,234 4,084 4,350 3,761 7,109 182 296

HAL 43,379 1,384 1,385 4,074 8,761 179 351
SciELO-ES 20,853 1,158 1,159 4,859 8,519 226 382
SciELO-PT 19,407 1,078 1,078 6,090 9,655 239 374

KoreaScience 35,248 1,125 1,125 2,916 5,094 219 340

Table 2: Datasets splits and statistics. Input and output lengths are computed in tokens, obtained using Pegasus and
MBART-50’s tokenizers for the English and non-English datasets, respectively.

creased to 50k for the other non-English datasets.19

For each model, we select the checkpoint with
the best validation loss. For Pegasus and MBART
models, inputs are truncated at 1,024 tokens. For
BigBird-Pegasus models, we follow Zaheer et al.
(2020) and set the maximum input length at 3,072
tokens. As the median input length is much greater
in almost every non-English dataset, we increase
the maximum input length to 4,096 tokens for
BigBird-MBART models. Output length is re-
stricted to 256 tokens for all models, which is
enough to fully capture at least 50% of the sum-
maries in each dataset.

For evaluation, we use beam search and report a
single run for each model and dataset. Following
Zhang et al. (2020); Zaheer et al. (2020), we set the
number of beams to 8 for Pegasus-based models,
and 5 for BigBird-Pegasus-based models. For the
non-English datasets, we set it to 5 for all models,
for fair comparison. For all experiments, we use
a length penalty of 0.8. For more implementation
details, see Section B.1 in the Appendix.

5 Results and Discussion

5.1 General Results

In Table 3, we report the ROUGE-L scores ob-
tained on arXiv and PubMed datasets (reported by
Zaheer et al. (2020)), as well as on the correspond-
ing layout-augmented counterparts we release. 20

On arXiv-Lay and PubMed-Lay, we observe that,
while the addition of layout to Pegasus does not
improve the ROUGE-L scores, there are gains in in-
tegrating layout information into BigBird-Pegasus.
To assess whether these gains are significant, we
perform significance analysis at the 0.05 level us-
ing bootstrap, and estimate a ROUGE-L thresh-

19We tested different values for the number of steps (10k, 25k, 50k, 100k)
and chose the one that gave the best validation scores for MBART.

20For detailed results, please refer to Section C.1 in the Appendix.

old that predicts when improvements are signifi-
cant. ROUGE-L improvements between each pair
of models are reported in Table 11 in the appendix.
On arXiv-Lay, we compute a threshold of 1.48
ROUGE-L, showing that BigBird-Pegasus+Layout
significantly outperforms all Pegasus-based mod-
els. In particular, we find a 1.56 ROUGE-L im-
provement between BigBird-Pegasus and its layout-
augmented counterpart, demonstrating that the ad-
dition of layout to long-range modeling signifi-
cantly improves summarization. On PubMed-Lay,
we compute a threshold of 1.77. Hence, the 0.96
ROUGE-L improvement from BigBird-Pegasus to
its layout-augmented counterpart is not significant.
However, the variance in font sizes in PubMed-Lay
is much smaller compared to arXiv-Lay (see Ta-
ble 12 in the appendix), reflecting an overall more
simplistic layout. Therefore, we argue that lay-
out integration has a lesser impact in PubMed-Lay,
which can explain the non-significance of results.
In addition, we find that BigBird-Pegasus signifi-
cantly outperforms Pegasus and Pegasus+Layout
only when augmented with layout, with an im-
provement of, respectively, 2.3 and 2.2 points. This
demonstrates the importance of combining layout
and long-range modeling.

While T5 and LED obtain competitive results,
we find that the gain in adding layout to LED is
minor. However, the models we consider have all
been pre-trained only on plain text. As a result,
the layout representations are learnt from scratch
during fine-tuning. Similarly to us, Borchmann
et al. (2021) show that their layout-augmented T5
does not necessarily improve the scores, and that
performance is significantly enhanced only when
the model has been pre-trained on layout-rich data.

Further, we observe, for both Pegasus and
BigBird-Pegasus, a drop in performance w.r.t. the
scores obtained on the original datasets. This can
be explained by two factors. First, our extended
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Model # Params
arXiv/

arXiv-Lay
PubMed/

PubMed-Lay

Pegasus (Zhang et al., 2020) 568M 38.83 41.34
BigBird-Pegasus (Zaheer et al., 2020) 576M 41.77 42.33
T5 (Raffel et al., 2019) 223M 37.90 39.23
LED (Beltagy et al., 2020) 161M 40.74 41.54
LED+Layout 165M 40.96 41.83
Pegasus 568M 39.07 39.75
Pegasus+Layout 572M 39.25 39.85
BigBird-Pegasus 576M 39.59 41.09
BigBird-Pegasus+Layout 581M 41.15 42.05

Table 3: ROUGE-L scores on arXiv-Lay and PubMed-Lay. Reported results obtained by Pegasus and BigBird-
Pegasus on the original arXiv and PubMed are reported with a gray background. The best results obtained on
arXiv-Lay and PubMed-Lay are denoted in bold.

Model # Params
HAL
(fr)

SciELO-ES
(es)

SciELO-PT
(pt)

KoreaScience
(ko)

MBART 610M 42.00 36.55 36.42 16.94
MBART+Layout 615M 41.67 37.47 34.37 14.98
BigBird-MBART 617M 45.04 37.76 39.63 18.55
BigBird-MBART+Layout 621M 45.20 40.71 40.51 19.95

Table 4: ROUGE-L scores on the non-English datasets. The best results for each dataset are reported in bold.

Dataset Train Validation Test

HAL (fr) 90.72 90.54 85.84
SciELO-ES (es) 84.86 84.28 84.90
SciELO-PT (pt) 90.95 90.58 91.96

KoreaScience (ko) 73.53 70.26 68.78

Table 5: Percent confidence obtained for the main lan-
guage, for each dataset split.

datasets contain less training data due to the inabil-
ity to process all original documents. Secondly,
the settings are different: while the original arXiv
and PubMed datasets contain clear discourse in-
formation (e.g., each section is delimited by mark-
ers) obtained from LATEX files, documents in our
extended versions are built by parsing raw PDF
files. Therefore, the task is more challenging for
text-only baselines, as they have no access to the
discourse structure of documents, which further
underlines the importance of taking the structural
information, brought by visual cues, into account.

Table 4 presents the ROUGE-L scores reported
on the non-English datasets. On HAL, we note
that BigBird-MBART does not benefit from lay-
out. After investigation, we hypothesize that this is
due to the larger presence of single-column and
simple layouts, which makes layout integration
less needed. On both SciELO datasets, we notice
that combining layout with long-range modeling
brings substantial improvements over MBART. Fur-

ther, we find that the plain-text BigBird models do
not improve over the layout-aware Pegasus and
MBART on arXiv-Lay and SciELO-ES, demon-
strating that simply capturing more context does
not always suffice. Regarding performance on Ko-
reaScience, we can see a significant drop in perfor-
mance for every model w.r.t the other non-English
datasets. At first glance, we notice a high amount
of English segments (e.g., tables, figure captions,
scientific concepts) in documents in KoreaScience.
To investigate this, we use the cld2 library21 to de-
tect the language in each non-English document.
We consider the percent confidence of the top-1
matching language as an indicator of the presence
of the main language (i.e., French, Spanish, Por-
tuguese or Korean) in a document, and average
the results to obtain a score for the whole dataset.
Table 5 reports the average percent confidence ob-
tained on each split, for each dataset. We find
that the percentage of text written in the main lan-
guage in KoreaScience (i.e., Korean) is smaller
than in other datasets. As the MBART-based mod-
els expect only one language in a document (the
information is encoded using a special token), we
claim the strong presence of non-Korean segments
in KoreaScience causes them to suffer from inter-
ference problems. Therefore, we highlight that
KoreaScience is a more challenging dataset, and

21
https://github.com/GregBowyer/cld2-cffi
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(b) Summary length
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(c) σ of bounding box height

Figure 1: Benefit of using layout on arXiv-Lay (blue) and PubMed-Lay (red), defined as the difference in ROUGE-L
scores between BigBird-Pegasus+Layout and BigBird-Pegasus. For each dataset, quartiles are calculated from
the distributions of article lengths (a), summary lengths (b) and variance in the height of the bounding boxes (c).
ROUGE-L scores are then computed per quartile range, and averaged over each range.

we hope our work will boost research on better
long-range, multimodal and multilingual models.

Overall, results show a clear benefit of integrat-
ing layout information for long document summa-
rization.

5.2 Human Evaluation

Metric BigBird BigBird+Layout

Precision % 35.15 (0.81) 37.51 (0.70)
Recall % 28.07 (0.73) 33.59 (0.86)
Coherence 3.80 (0.38) 3.75 (0.62)
Fluency 4.48 (0.03) 4.34 (0.16)
Overlap % 8.77 (0.24) 7.49 (0.36)
Flow % 30.75 (0.68) 33.02 (0.71)

Table 6: Average human judgement scores obtained by
comparing gold-truth abstracts and summaries gener-
ated by BigBird and BigBird+Layout from 50 docu-
ments sampled from arXiv-Lay and HAL. Inter-rater
agreement is computed using Krippendorff’s alpha co-
efficient, and enclosed between parentheses.

To gain more insight into the effect of docu-
ment layout for summarizing long textual content,
we conduct a human evaluation of summaries gen-
erated by BigBird-Pegasus/BigBird-MBART and
their layout-aware counterparts. We choose the
BigBird-based models over the LED ones, as the
gain in augmenting BigBird with layout is much
more apparent. We evenly sample 50 documents
from arXiv-Lay and HAL test sets, filtering docu-
ments by their topics (computer science) to match
the judgment capabilities of the three human an-
notators. We design an evaluation interface (see
Section C.2 in the appendix). For each sentence si

in the generated summary, we ask the annotators
to highlight the relevant tokens in si, along with
the equivalent parts in the ground-truth abstract (de-

noted hi). Further, we ask them to rate the summary
in terms of coherence and fluency, on a scale of 0
to 5, following the DUC quality guidelines (Dang,
2005). Finally, annotators are asked to penalize
summaries with hallucinated facts. The highlight-
ing process allows us to compute precision and
recall as the percentage of highlighted information
in the generated summary and the ground-truth ab-
stract, respectively. Moreover, we can compute an
overlap ratio as the percentage of highlighted infor-
mation that appears several times in the generated
summary. Lastly, we calculate a flow percentage
that evaluates how well the order of the ground-
truth information is preserved by computing the
percentage of times where the highlighted text hi

in the gold summary for one generated sentence
si follows the highlighted text hi−1 for the previ-
ous sentence si−1 (i.e. where any token from hi

occurs after a token in hi−1). Table 6 reports the
scores for each metric and model, averaged over all
50 documents, along with inter-rater agreements,
computed using Krippendorff’s alpha coefficient.
We find that adding layout to the models signifi-
cantly improves precision and recall, results in less
overlap (repetition), and is more in line with the
ground truth order. Further, annotators did not en-
counter any hallucinated fact in the 50 generated
summaries. To conclude, reported results show that
human annotators strongly agree that adding lay-
out generates better summaries, further validating
our claim that layout provides vital information for
summarization tasks.

5.3 Case Studies

To have a better understanding of the previous re-
sults, we focus on uncovering the cases in which
layout is most helpful. To this end, we identify fea-
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tures that relate to the necessity of having layout: 1)
article length, as longer texts are intuitively easier
to understand with layout, 2) summary length, as
longer summaries are likely to cover more salient
information, and 3) variance in font sizes (using
the height of the bounding boxes), and, as such,
the complexity of the layout. The benefit of using
layout is measured as the difference in ROUGE-
L scores between BigBird-Pegasus+Layout and
its purely textual counterpart, on arXiv-Lay and
PubMed-Lay. We compute quartiles from the dis-
tributions of article lengths, ground-truth summary
lengths, and variance in the height of bounding
boxes.22 Based on the aforementioned factors, the
scores obtained by each model are then grouped
by quartile range, and averaged over each range,
see Figure 1. On arXiv-Lay, we find that layout
brings most improvement when dealing with the
25% longest documents and summaries, while, for
both datasets, layout is least beneficial for the short-
est documents and summaries. These results cor-
roborate our claim that layout can bring important
information about long-range context. Concerning
the third factor, we see, on PubMed-Lay, that layout
is most helpful for documents that have the widest
ranges of font sizes, showcasing the advantage of
using layout to capture salient information.

6 Conclusion

We have presented LoRaLay, a set of large-scale
datasets for long-range and layout-aware text sum-
marization. LoRaLay provides the research com-
munity with 4 novel multimodal corpora cover-
ing French, Spanish, Portuguese, and Korean lan-
guages, built from scientific articles. Furthermore,
it includes additional layout and visual informa-
tion for existing long-range summarization datasets
(arXiv and PubMed). We provide adapted architec-
tures merging layout-aware and long-range models,
and show the importance of layout information in
capturing long-range dependencies.

7 Limitations

The proposed corpus is limited to a single domain,
that of scientific literature. Such limitation arguably
extends to the layout diversity of documents. In
terms of risks, we acknowledge the presence of
Personally Identifiable Information such as author
names and affiliations; nonetheless, such informa-

22The quartiles are provided in Appendix C.3.

tion is already voluntarily made public by the au-
thors themselves.
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LoRaLay: A Multilingual and
Multimodal Dataset for Long Range
and Layout-Aware Summarization –

Appendix

A Datasets Construction

w1  bbox1
w2  bbox2
w3  bbox3
w4  bbox4
w5  bbox5

…

w1  bbox1
w2  bbox2
w3  bbox3
w4  bbox4
w5  bbox5

…

Data Repository

w1  bbox1
w2  bbox2
w3  bbox3
w4  bbox4
w5  bbox5

…

w1  bbox1
w2  bbox2
w3  bbox3
w4  bbox4
w5  bbox5

…

w1  bbox1
w2  bbox2
w3  bbox3
w4  bbox4
w5  bbox5

…

w1  bbox1
w2  bbox2
w3  bbox3
w4  bbox4
w5  bbox5

…
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(3)  Text Extraction

(4)  Abstract Removal

Figure 2: Dataset Construction Process.

A.1 Extended Datasets – Lost Documents

Figure 3 provides details on the amount of original
documents lost in the process of augmenting arXiv
and PubMed with layout/visual information. We
observe four types of failures, and provide numbers
for each type:

• The link to the document’s PDF file is not
provided (Unavailable PDF);

• The PDF file is corrupted (i.e., cannot be
opened) (Corrupted PDF);

• The document is not digital-born, making it
impossible to parse it with PDF parsing tools
( Scanned PDF);

• The document’s abstract cannot be found in
the PDF (Irretrievable Abstract).

Figure 3: Distribution of failure types in arXiv-Lay (top)
and PubMed-Lay (bottom).

A.2 KoreaScience – Extraction Rule

Korean documents in KoreaScience are extracted
by restricting search results to documents contain-
ing the word "Korean" in the publisher’s name. We
show that this rule does not bias the sample to-
wards a specific research area. We compute the
distribution of topics covered by all publishers, and
compare it to the distribution of topics covered by
publishers whose name contains the word Korean.
Figure 4 shows that the distribution obtained using
our rule remains roughly the same as the original.

Nature
Life Artificial

Human
Society

Human Science and Technology

0

10

20

30

40

Publishers with `Korean` in name
All publishers

Figure 4: Distribution of topics covered by all publishers
(red) vs distribution of topics covered by publishers
whose name contains the word Korean (blue).

A.3 Samples

We provide samples of documents from each
dataset in Figure 5.
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A.4 Datasets Statistics

The distribution of research areas in arXiv-Lay and
HAL are provided in Figures 6 and 7, respectively.
Such distributions are not available for the other
datasets, as we did not have access to topic infor-
mation during extraction.

Figure 6: Distribution of research areas in arXiv-Lay.

Figure 7: Distribution of research areas in HAL.

B Experiments

B.1 Implementation Details

Models were implemented in Python using Py-
Torch (Paszke et al., 2017) and Hugging Face (Wolf
et al., 2019) librairies. In all experiments, we use
Adafactor (Shazeer and Stern, 2018), a stochastic
optimization method based on Adam (Kingma and
Ba, 2014) that reduces memory usage while retain-
ing the empirical benefits of adaptivity. We set
a learning rate warmup over the first 10% steps –
except on arXiv-Lay where it is set to 10k consis-
tently with Zaheer et al. (2020), and use a square
root decay of the learning rate. All our experiments
have been run on four Nvidia V100 with 32GB
each.

C Results

C.1 Detailed Results

Model R-1 R-2 R-L

MBART 47.05 22.23 42.00
MBART+Layout 46.65 21.96 41.67
BigBird-MBART 49.85 25.71 45.04

BigBird-MBART+Layout 49.99 25.20 45.20

Table 8: ROUGE scores on HAL. Best results are re-
ported in bold.

Model R-1 R-2 R-L

MBART 17.33 7.70 16.94
MBART+Layout 15.43 6.69 14.98
BigBird-MBART 18.96 8.01 18.55

BigBird-MBART+Layout 20.36 9.49 19.95

Table 10: ROUGE scores on KoreaScience. The best
results are reported in bold.

C.2 Human Evaluation

Using the Streamlit23 framework, we design and
develop an interface to aid human evaluation of
summarization models.24

23https://streamlit.io/
24The code is publicly available at

https://anonymous.4open.science/r/
loralay-eval-interface-C20D.
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Model arXiv / arXiv-Lay PubMed / PubMed-Lay
R-1 R-2 R-L R-1 R-2 R-L

Pegasus (Zhang et al., 2020) 44.21 16.95 38.83 45.97 20.15 41.34
BigBird-Pegasus (Zaheer et al., 2020) 46.63 19.02 41.77 46.32 20.65 42.33

T5 (Raffel et al., 2019) 42.79 15.98 37.90 42.88 17.58 39.23
LED (Beltagy et al., 2020) 45.41 18.14 40.74 45.28 19.86 41.54

LED+Layout 45.51 18.55 40.96 45.41 19.74 41.83
MBART 37.64 13.29 33.49 41.19 16.04 37.47
Pegasus 43.81 17.27 39.07 43.52 17.96 39.75

Pegasus+Layout 44.10 17.01 39.25 43.59 18.24 39.85
BigBird-Pegasus 44.43 17.74 39.59 44.80 19.32 41.09

BigBird-Pegasus+Layout 46.02 18.95 41.15 45.69 20.38 42.05

Table 7: ROUGE scores on arXiv-Lay and PubMed-Lay. Reported results obtained by Pegasus and BigBird-Pegasus
on the original arXiv and PubMed are reported with a gray background. The best results obtained on arXiv-Lay and
PubMed-Lay are denoted in bold.

Model
SciELO-ES SciELO-PT

R-1 R-2 R-L R-1 R-2 R-L

MBART 41.04 15.65 36.55 41.18 15.53 36.42
MBART+Layout 42.27 15.73 37.47 39.45 14.17 34.37
BigBird-MBART 42.64 16.60 37.76 44.85 18.70 39.63

BigBird-MBART+Layout 45.64 19.33 40.71 45.47 20.40 40.51

Table 9: ROUGE scores on the SciELO datasets. The best results are reported in bold.

Figure 8: LoRaLay evaluation interface.

C.3 Analysis of the Impact of Layout
Table 12 lists the quartiles computed from the dis-
tributions of article lengths, summary lengths, and
variation in the height of bounding boxes, for arXiv-
Lay and PubMed-Lay.
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LED LED+Layout Pegasus Pegasus+Layout BigBird-Pegasus BigBird-Pegasus+Layout

T5 2.84 / 2.31 3.06 / 2.60 1.17 / 0.52 1.35 / 0.62 1.69 / 1.86 3.25 / 2.82
LED – 0.22 / 0.29 1.67 / 1.79 1.49 / 1.69 1.15 / 0.45 0.41 / 0.51
LED+Layout – – 1.89 / 2.08 1.71 / 1.98 1.38 / 0.74 0.19 / 0.22
Pegasus – – – 0.34 / 0.10 0.52 / 1.34 2.08 / 2.30
Pegasus+Layout – – – – 0.34 / 1.24 1.90 / 2.20
BigBird-Pegasus – – – – – 1.56 / 0.96

Table 11: Absolute ROUGE-L score differences between each pair of models, on arXiv-Lay/PubMed-Lay.

Distribution Q1 Q2 Q3
arXiv-Lay PubMed-Lay arXiv-Lay PubMed-Lay arXiv-Lay PubMed-Lay

Article Length 6,226 3,513 9,142 5,557 13,190 8,036
Summary Length 119 130 159 182 202 247

σ of bounding box height 3.37 1.34 3.98 1.73 4.70 2.28

Table 12: Quartiles calculated from the distributions of article lengths, summary lengths, and variation in the height
of bounding boxes, for arXiv-Lay and PubMed-Lay.
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Experimental Review of Photon Structure Func-

tion Data

Richard Nisius

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 Mün-
chen, Germany, E-mail: Richard.Nisius@mpp.mpg.de∗
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The present knowledge of the structure of the photon is presented based on results obtained
by measurements of photon structure functions at e+e− collider. Results are presented both
for the QED structure of the photon as well as for the hadronic structure, where the data
are also compared to recent parametrisations of the hadronic structure function F γ

2 (x, Q2).
Prospects of future photon structure function measurements, especially at an International
Linear Collider are outlined.

1 Introduction

The measurements of photon structure functions have a long tradition since the first of such
measurements was performed by the PLUTO Collaboration in 1981. The investigations concern
the QED structure of the photon as well as the hadronic structure. For the hadronic structure
function F γ

2 (x, Q2) the main areas of interest are the behavior at low values of x and the
evolution with the momentum scale Q2, which is predicted by QCD to be logarithmic. The
experimental information is dominated by the results from the four LEP experiments.

This review is based on earlier work [1, 2] and as an extension provides a number of updated
figures, together with a comparison of the experimental data with new parametrisations of
F γ
2 (x, Q2) that became available since then. Only results on the structure of quasi-real photons

are discussed here. The structure of virtual photons and the corresponding measurements of
effective structure functions are detailed in [3].

2 Structure function measurements

The photon can fluctuate into a fermion–anti-fermion state consistent with the quantum num-
bers of the photon and within the limitations set by the Heisenberg uncertainty principle. These
fluctuations are favored, i.e. have the longest lifetimes, for high energetic photons of low virtu-
ality. If such a fluctuation of the photon is probed, the photon reveals its structure. Using this
feature, measurements of photon structure functions are obtained from the differential cross-
section of the deep-inelastic electron-photon scattering1 process sketched in Figure 1. In this

∗Invited talk presented at the Photon09 Conference in Hamburg on May 12, 2009.
1In this paper, the term electron encompasses positrons throughout.
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Anthocyanin pigments and associated flavonoids have demonstrated ability to protect against a myriad of human diseases, yet they
have been notoriously difficult to study with regard to human health. Anthocyanins frequently interact with other phytochemicals
to potentiate biological effects, thus contributions from individual components are difficult to decipher. The complex, multicompo-
nent structure of compounds in a bioactive mixture and the degradation of flavonoids during harsh extraction procedures obscure
the precise assignment of bioactivity to individual pigments. Extensive metabolic breakdown after ingestion complicates tracking of
anthocyanins to assess absorption, bioavailability, and accumulation in various organs. Anthocyanin pigments and other flavonoids
that are uniformly, predictably produced in rigorously controlled plant cell culture systems can be a great advantage for health and
nutrition research because they are quickly, easily isolated, lack interferences found in whole fruits, can be elicited to provoke rapid
and prolific accumulation, and are amenable to biolabeling so that metabolic fate can be investigated after ingestion.

ANTHOCYANINS AND BIOMEDICINAL PROPERTIES

Anthocyanins are members of the flavonoid group
of phytochemicals, a group predominant in teas, honey,
wines, fruits, vegetables, nuts, olive oil, cocoa, and cereals.
The flavonoids, perhaps the most important single group
of phenolics in foods, comprise a group of over 4000
C15 aromatic plant compounds with multiple substitution
patterns (www.nal.usda.gov/fnic/foodcomp/index.html).
The primary players in this group include the an-
thocyanins (eg, cyanidin, pelargonidin, petunidin), the
flavonols (quercetin, kaempferol), flavones (luteolin,
apigenin), flavanones (myricetin, naringin, hesperetin,
naringenin), flavan-3-ols (catechin, epicatechin, gallocat-
echin), and, although sometimes classified separately, the
isoflavones (genistein, daidzein). Phytochemicals in this
class are frequently referred to as bioflavonoids due to
their multifaceted roles in human health maintenance,
and anthocyanins in food are typically ingested as com-
ponents of complex mixtures of flavonoid components.
Daily intake is estimated from 500 mg to 1 g, but can be
several g/d if an individual is consuming flavonoid supple-
ments (grape seed extract, ginkgo biloba, or pycnogenol;
see, eg, [1]).

The colorful anthocyanins are the most recognized,
visible members of the bioflavonoid phytochemicals. The
free-radical scavenging and antioxidant capacities of an-
thocyanin pigments are the most highly publicized of the
modus operandi used by these pigments to intervene with
human therapeutic targets, but, in fact, research clearly

suggests that other mechanisms of action are also respon-
sible for observed health benefits [2, 3, 4, 5]. Anthocyanin
isolates and anthocyanin-rich mixtures of bioflavonoids
may provide protection from DNA cleavage, estrogenic
activity (altering development of hormone-dependent
disease symptoms), enzyme inhibition, boosting produc-
tion of cytokines (thus regulating immune responses),
anti-inflammatory activity, lipid peroxidation, decreas-
ing capillary permeability and fragility, and membrane
strengthening [6, 7, 8, 9, 10]. The chemical structure (po-
sition, number, and types of substitutions) of the indi-
vidual anthocyanin molecule also has a bearing on the
degree to which anthocyanins exert their bioactive prop-
erties [11, 12] and the structure/function relationships
also influence the intracellular localization of the pig-
ments [7]. The anthocyanin literature includes some con-
troversy over the relative contributions of glycosylated an-
thocyanins versus aglycones in terms of bioavailability
and bioactive potential [7, 13, 14, 15, 16]. Originally, it
was assumed that only aglycones could enter the circu-
lation circuit, however, absorption and metabolism of an-
thocyanin glycosides has now been demonstrated. The na-
ture of the sugar conjugate and the aglycone are important
determinants of anthocyanin absorption and excretion in
both humans and rats [15].

The roles of anthocyanin pigments as medicinal
agents have been well-accepted dogma in folk medicine
throughout the world, and, in fact, these pigments are
linked to an amazingly broad-based range of health ben-
efits. For example, anthocyanins from Hibiscus sp have

(b) PubMed-Lay
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Les représentations des enseignants de ZEP sur la relation école/famille à 

travers le prisme des élèves en grande réussite scolaire 

 

Publié dans la revue Cahier E&D 2017 Cahier N° 28 Familles, Parents, Ecole 

Lien vers le site Education & Devenir 

Lien vers le site Les cahiers pédagogiques 

Résumé 

Les familles sont des partenaires essentiels de l’école. Pourtant, la relation école/famille est souvent décrite 

comme problématique. Quelles représentations les enseignants ont de cette relation et de l’influence du 
milieu familial sur la réussite de leurs élèves ? Nous avons réalisé une enquête nationale auprès de 1790 

professeurs des écoles (PE) en zone d’éducation prioritaire (ZEP) puis des entretiens avec dix d’entre eux. Le 
prisme des élèves en grande réussite scolaire (EGRS) dans les ZEP a été choisi pour étudier la différence de 

perceptions des enseignants en fonction de la réussite de l’élève. Les PE décrivent le profil idéal des parents 

d’élèves. Ils souhaitent davantage d’implication de la part des familles et voudraient mettre en place une 

réelle coéducation qu’ils jugent indispensable à la réussite des élèves.  

Mots clefs 

Représentations – enseignants – coéducation – grande réussite scolaire - éducation prioritaire 

Caroline HACHE – ADEF – AMU 

(caroline.hache@univ-amu.fr) 

 

Introduction 

Lorsqu’ils étudient la proportion d’élèves de milieu populaire ayant obtenu le baccalauréat général sans 

redoubler, Ould Ferhat et Terrail (2005) indique qu’un désir fort de la part des parents peut faire la différence 
entre les élèves qui réussissent et ceux qui échouent. On retrouve dans la littérature (Lorcerie, 2015) une 

catégorisation des conduites des élèves lorsqu’ils font face aux apprentissages en fonction de l’attitude de 
leurs parents. Les textes officielsi encouragent une relation positive école/famille, car la famille est 

considérée comme un partenaire de l’école avec une place importante dans la scolarité de l’élève (Houssaye, 

2001). Que pensent les enseignants de ces déclarations ? Quelles sont les représentations des enseignants 

concernant l’influence des familles populaires sur la réussite scolaire de leur enfant ?  

Notre étude se propose, dans une première enquête, d’interroger par questionnaire 1790 enseignants 

d’école élémentaire, toutes en ZEPii, autour de leur quotidien dans les classes et, dans une deuxième 

enquête, de réaliser des entretiens avec dix d’entre eux. Le sujet des parents d’élèves a pris une place 
importante dans les entretiens de tous les enseignants, comme ceux interrogés par Moisan et Simon (1997, 

p. 68) qui ont plus parlé « des parents que des élèves ».  

Le choix du prisme des élèves en grande réussite scolaire (EGRS) et donc ici, des parents de ceux-ci, a été pris 

pour étudier l’avis des enseignants sur un profil particulier, celui des familles dont les élèves réussissent  
(Hache, 2016) alors que l’on s’attendrait à ce qu’ils soient en difficulté scolaire. En effet, Charlot (2001, p. 7) 

les appelle les « réussites paradoxales » car ils réussissent dans un milieu qualifié de défavorable pour la 

réussite scolaire. Cela a permis aux enseignants de s’exprimer sur la différence ou l’absence de différence 
entre les parents des EGRS et les autres.  

(c) HAL
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국문요약  본 연구는 2000년부터 2018년까지를 분석의 시간적 범위로 설정하여 제조업 창업 활동이 공간적으로 

어떠한 변화를 보여왔는지를 탐색적으로 분석하고, 향후 창업 활동의 분포 패턴 변화를 예측하는 것을 목적으로 한

다. 분석을 위해 2000년부터 2018년까지의 「전국사업체조사」 마이크로데이터 제조업 사업체 자료를 활용하였다. 

한국산업연구원의 ISTANS 분류체계에서 제시하는 40대 제조업 기준에 따라 제조업을 4개의 세부 산업군으로 구

분한 후, 수도권 행정구역 읍면동 수준에서 공간자기상관 분석 및 공간 마르코프 체인 분석을 수행하였다. 분석 결

과에 따르면, 고위기술산업군 및 중고위기술산업군의 창업 활동은 시간이 흐름에 따라 경기도 남부를 중심으로 집

중되고 있는 것으로 나타났으며, 중저위기술산업군 및 저위기술산업군 창업 활동의 집중은 수도권 외곽으로 분산

되고 있는 것으로 나타났다. 2000년부터 2018년까지의 추세를 연장하여 2036년까지의 분포 변화를 예측하였을 

때, 창업 활동이 활발히 발생하는 지역 및 그와 인접하고 있는 지역의 경우 향후 분위 상승의 가능성이 높은 것으로 

나타나 긍정적인 공간 효과가 존재하는 것으로 확인되었다. 본 연구는 일자리 창출의 주요 원천이 되는 제조업 창

업 활동의 분포 패턴 변화를 동태적으로 분석함으로써 창업 육성 및 일자리 창출과 관련한 지역 정책에의 시사점을 

제공하고자 하였다.
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Abstract: 
is study aims to explore how manufacturing start-up activities from 2000 to 2018 have changed spatially 
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Abstract

The rise in hateful and offensive language di-
rected at other users is one of the adverse side
effects of the increased use of social networking
platforms. This could make it difficult for hu-
man moderators to review tagged comments fil-
tered by classification systems. To help address
this issue, we present the ViHOS (Vietnamese
Hate and Offensive Spans) dataset, the first
human-annotated corpus containing 26k spans
on 11k comments. We also provide definitions
of hateful and offensive spans in Vietnamese
comments as well as detailed annotation guide-
lines. Besides, we conduct experiments with
various state-of-the-art models. Specifically,
XLM-RLarge achieved the best F1-scores in
Single span detection and All spans detection,
while PhoBERTLarge obtained the highest in
Multiple spans detection. Finally, our error
analysis demonstrates the difficulties in detect-
ing specific types of spans in our data for future
research. Our dataset is released on GitHub1.

Disclaimer: This paper contains real com-
ments that could be considered profane, of-
fensive, or abusive.

1 Introduction

Social networking sites have been widely used all
over the world. Here, users can easily share their
thoughts, connect with others, or earn money by
selling items, creating content, and so on. Since
these sites are universally accepted, many extreme
users misuse comment functions to abuse other
individuals or parties with hate and offensive lan-
guage. Consequently, it has been proved that these
types of speech could harm other users’ health (Mo-
han et al., 2017; Anjum et al., 2018). Sometimes
these behaviors can be considered cyberbullying,
cyber threats, or online harassment.

However, current studies are mainly about clas-
sifying comments as a whole with binary labels

1https://github.com/phusroyal/ViHOS

Figure 1: An example of the aid of spans detection for
traditional foul language tagging system can provide
additional insightful knowledge about tagged comments
for human moderators.

(Zampieri et al., 2019; Nguyen et al., 2021b) or
multiple labeling schemes of abusive behaviors
(Davidson et al., 2017; Founta et al., 2018; Mathur
et al., 2018). These efforts are made to aid hu-
man moderators, who need to review a massive
number of online tagged comments that violate
their community standards. However, a system
that can highlight the spans that make a comment
hateful or offensive can be more advantageous
to human moderators who frequently deal with
long and tedious comments and prefer explana-
tions over a system-generated unexplained tag per
comment. Furthermore, in some cases, using high-
lighted spans and moderators’ context knowledge,
they can take some actions to stop cyberbullying
or online harassment. Nevertheless, there is only a
study on toxic spans, SemEval-2021 Task 5: Toxic
Spans Detection (Pavlopoulos et al., 2021). On
the other hand, in a study of Mathew et al. (2020),
hate and offensive spans worked as a rationale to
support models in classifying the whole comments.

In Vietnamese, the resources about hate and of-
fensive language are limited, namely ViHSD (Luu
et al., 2021), HSD-VLSP (Vu et al., 2020), and
UIT-ViCTSD (Nguyen et al., 2021b). Indeed, there
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is no study about hate and offensive spans in Viet-
namese. This motivated us to (i) develop a new
task of extracting hate and offensive spans from
Vietnamese social media texts that conceivably im-
pact research and downstream applications and (ii)
provide the Natural Language Processing (NLP)
research community with a new dataset for rec-
ognizing hate and offensive spans in Vietnamese
social media texts.

Our two main contributions are summarized:

1. We created the first human-annotated dataset
for Vietnamese Hate and Offensive Spans (Vi-
HOS) comprising 26,467 human-annotated
spans on 11,056 comments. Our dataset is
annotated with a clear definition of hate and
offensive spans, along with detailed and spe-
cialized guidelines for a less-studied language
like Vietnamese. Compared to the toxic spans
dataset at SemEval-2021 Task 5 (Pavlopou-
los et al., 2021), which is built to detect toxic
spans from toxic comments, or the HateX-
plain dataset (Mathew et al., 2020), which has
spans working as a rationale for classifying the
whole sentence, ours includes not only a large
number of texts with annotated hate and of-
fensive spans but also clean texts without any
spans. This effort is made to serve a new task
of detecting hate and offensive spans from
Vietnamese online social media comments.

2. To evaluate the efficacy of our dataset, strong
baselines are empirically investigated on Vi-
HOS, including BiLSTM-CRF (Lample et al.,
2016), XLM-R (Conneau et al., 2019), and
PhoBERT (Nguyen and Nguyen, 2020). We
conducted various experiment schemas, in-
cluding comparing the full dataset having ad-
ditional clean comments with the dataset that
does not have; Single span detection, Multiple
spans detection, and All spans detection. We
obtain that: (i) Additional clean comments
help the baselines have better performance
than the dataset without them for 10±2% (ii)
After fine-tuning the deep learning model and
pre-trained language models, results show that
the pre-trained language models outperform
the deep learning models.

2 Related work

To the best of our knowledge, much of the research
in the field of hate speech detection has been con-
ducted in English due to the abundance of corpora

and the robust pre-trained models. Many bench-
mark datasets for hate and offensive speech in other
languages have also been published in recent years,
including Arabic (Mubarak et al., 2020), Dutch
(Tulkens et al., 2016), and French (Chiril et al.,
2019). Novel models are introduced to improve
the efficiency of hate and offensive speech detec-
tion. Initial approaches were based on typical ma-
chine learning and deep neural networks with word
embeddings. Transformer-based models such as
BERT (Devlin et al., 2018), BERTology (Rogers
et al., 2020), and BERT-based transfer learning
(Ruder et al., 2019) have recently been used to de-
tect hate and offensiveness that achieved competi-
tive results in major SemEval shared tasks such as
SemEval-2020 Task 12 (Zampieri et al., 2020), and
SemEval-2021 Task 5 (Pavlopoulos et al., 2021).
However, research in Vietnamese is still limited
in terms of the dataset and experimental meth-
ods. Only a few outstanding research exist, such as
ViHSD (Luu et al., 2021), HSD-VLSP (Vu et al.,
2020), and UIT-ViCTSD (Nguyen et al., 2021b).

For the topic of detecting foul spans, there are
only a few case studies in English that are closely
related, namely the SemEval-2021 Task 5: Toxic
Spans Detection dataset (Pavlopoulos et al., 2021)
and the HateXplain dataset (Mathew et al., 2020).
The toxic spans, defined in the SemEval-2021 Task
5 dataset, are the sequences of words that make
a text toxic. There are a total of 10,629 posts in
this dataset, which stems from the Civil Comments
dataset (Borkan et al., 2019). Another dataset with
hate and offensive spans at the word level is Hat-
eXplain. The HateXplain contains 20,148 Gab and
Twitter posts. Each post is manually classified into
one of three labels: hateful, offensive, and normal.

In this study, we focus on Vietnamese to close
the gap and develop the first Vietnamese hate
and offensive spans detecting benchmark.

3 Dataset Creation

3.1 Dataset Source

ViHOS consists of 11,056 comments derived from
the ViHSD dataset (Luu et al., 2021). The Viet-
namese Hate Speech Detection dataset (ViHSD)
is one of the few large and credible social me-
dia text datasets in a low-resource language like
Vietnamese. ViHSD contains 27,624, 3,514, and
2,262 of CLEAN, HATE, and OFFENSIVE com-
ments, respectively. Comments in ViHSD are
public and collected from social media platforms.
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Figure 2: Detailed annotation guidelines for annotating comments for annotators. In which, Ha/Off? stands for a
requirement for annotators to check whether the associated components are hate (Ha) or offensive (Off) or not.

Thus, metaphors, idioms, proverbs, and other tricky
characteristics of online comments abound.

All of the HATE, OFFENSIVE comments from
ViHSD after removing duplicates (5,528 comments
left) are used to annotate the hate and offensive
spans. Otherwise, 5,528 CLEAN comments, which
also come from ViHSD and do not violate any hate
or offensive definition defined in Section 3.2, are
manually annotated for our dataset. We append
the 5,528 CLEAN comments because: (*) We aim
to detect the hate and offensive spans directly in
online comments; (**) With an equal number of
span and non-span (clean) comments helps models
not be biased towards any type.

3.2 Annotation Guidelines

Our goal is to create a dataset that contains com-
prehensive hate and offensive thoughts, meanings,
or opinions within the comments rather than just a
lexicon of hate and offensive terms. We define the
hate or offensive spans as follows to help annotators
understand our goals:

• Harassing, cursing, insulting, disrespecting
others.

• Sexual or verbal abuse towards one or a group
of individuals based on their sensitive char-
acteristics such as region, religion, politics,
body, gender, etc.

• Insinuations, metaphors, metonymy used for
hate, offensive or controversial purposes on
sensitive issues such as region, gender, reli-
gion, politics, human rights, etc.

• Disuniting any factions or parties based on
their politics, religion, ideologies, genders,
etc.

• Causing verbal disrespect by using inappro-
priate pronouns.

• If replaced or removed, the sentence will no
longer be hateful or offensive.

However, the hate or offensiveness in Viet-
namese comments might cover one or even many
components of a sentence. For instance: "thằng
ad thở ra cái tư duy như trẻ lớp mầm" (Eng: the
admin speaks as his mind just like a kindergarten
boy.) This comment consists of three nouns/nouns
phrases: "thằng ad"the admin (it is offensive when
calling a guy as a "thằng") as subject; "cái tư
duy"mind (the appearance of the word "cái" causes
this noun phase become offensive) and "trẻ lớp
mầm"kindergarten boy as objects; one verb: "thở" (it
usually means breathe, but in this context, we could
consider it as speak but in a hate manner). As de-
fined above, we must annotate a part of the subject,
"thằng," and the whole phrase of the verb with its
objects, "thở ra cái tư duy như trẻ lớp mầm" (Eng:
speaks as his mind just like a kindergarten boy) in
order to capture the whole hate or offensive ideas.

Therefore, we provided detailed guidelines (Fig-
ure 2) to assist annotators in determining when to
annotate one or multiple components in a hateful
and offensive sentence. As we observed, most of
the comments in our dataset are colloquial. These
comments are written freely and lack many gram-
matical rules. As a result, we frequently witness
comments that lack subject(s), verb(s), conjunc-
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Phase 1 Phase 2 Phase 31st 2nd 3rd 4th

Kappa score 0.4161 0.4568 0.4936 0.6402 0.7239 0.7215
F1-score 0.7085 0.7186 0.7534 0.8219 0.8219 0.8585

Table 1: Inner-annotator agreement scores in three phases of annotation. In which, 1st, 2nd, 3rd, 4th are corre-
sponding with four rounds of training annotators in Phase 1.

tions, punctuation marks, and so on. To deal with
this, the comments were split into clauses/sentences
(units). The smallest subdivided unit must have at
least a cluster of "Chủ ngữ"-"Vị ngữ" ("Subject"-
"Verb, objects, complements"), which is considered
as a simple sentence or clause, or a cluster of "Chủ
ngữ"-"Vị ngữ" nesting in another "Chủ ngữ"-"Vị
ngữ" as a complex sentence or clause. From this,
annotators can recognize components in clauses or
sentences before annotating them.

Furthermore, in Appendix A and Appendix B,
we also provided notices for annotators in Table 9
and ways to help them deal with nine online foul
linguistic phenomena in Table 8 while annotating
the data.

3.3 Dataset Construction Process

For dataset construction, we conducted three
phases in which Phases 2 and 3 were inspired by
Truong et al. (2021) and used metrics as bellow to
calculate Inter-Annotator Agreement (IAA) among
annotators. LightTag (Perry, 2021) is the tool we
used for annotating data.

Assessment of Inter-Annotator Agreement
Cohen’s Kappa is widely used to measure inter-
annotator agreement (IAA) in most tasks and is
accepted as the standard measure (McHugh, 2012).
However, numerous studies indicated that Kappa is
not the most proper measure for the NLP sequence
tagging task like NER (Hripcsak and Rothschild,
2005; Grouin et al., 2011). The reason is that the
definite number of negative cases required to cal-
culate the Kappa does not exist for named entity
spans. Spans in our task are the sequences of char-
acters rather than sequences of tokens since hate
and offensive spans could be icon(s), word(s), or
distinct character set(s) (see Table 8 for more de-
tails). Therefore, the pre-existing fixed number of
characters to consider in the process of annotating
is not existent.

A solution to deal with this is to calculate a
character-level-based Kappa. Still, it has two asso-
ciated problems: (1) annotators need to look at se-

quences of one or more characters instead of char-
acters alone, causing the Kappa not to reflect the
annotation task well; and (2) the "O"-labeled char-
acters (the negative cases) outnumber the hate and
offensive ones (the positive cases), provoking the
Kappa to be computed on highly imbalanced data.
For these reasons, the F1-score calculated without
the negative cases is usually the measure for cal-
culating IAA for the NLP tagging tasks like NER
(Deleger et al., 2012). In this paper, IAA based on
both F1-score (macro average) and character-level-
based Kappa are calculated, while the former is the
primary measure.

Phase 1: Pilot Annotation
Six undergraduate students were hired for our

annotation tasks. The primary purpose of this pilot
annotation phase was to familiarize our annotators
with this task before entering the Main Annotation
phase. We then developed an initial version of an-
notation guidelines with examples and distributed
them to annotators. All annotators were required to
carefully study the guidelines and give feedback be-
fore annotating the same 100 random samples from
the 5,528 HATE, OFFENSIVE comments from
ViHSD. This process was conducted four times
with the F1-score and the Kappa for measuring
IAA, which was calculated by averaging the re-
sults of pairwise comparisons across all annotators,
shown in Table 1. All annotators were qualified
as there was no F1-score of pairwise comparisons
below 0.8.

Phase 2: Ground Truth Annotation
We randomly sampled a Ground Truth set of 600

comments from the 5,528 HATE, OFFENSIVE
comments for this phase. Two guideline develop-
ers annotated the Ground Truth set separately us-
ing the well-developed guidelines from the former
phase, resulting in an F1-score of 0.86 and Kappa
(Cohen’s Kappa) of 0.72. Afterward, we hosted
a discussion to deal with annotation conflicts and
update the annotation guidelines.

Phase 3: Main Annotation
We split the remaining HATE and OFFENSIVE
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Train Dev Test
Number of clean comments 4,552 569 575
Number of Ha/Off comments 4,422 553 553
Average clean comments length 8.69 8.50 9.04
Average Ha/Off comments length 16.81 17.68 16.13
Clean comments vocabulary size 4,234 1,423 1,400
Ha/Off comments vocabulary size 5,162 2,089 2,013
Number of multi-span comments (%) 2,322 (26.26) 308 (27.85) 296 (26.76)
Number of single-span comments (%) 1,970 (22.27) 229 (20.70) 235 (21.25)
Number of non-span comments (%) 4,552 (51.47) 569 (51.45) 575 (51.99)
Average number of spans 2.10 2.09 2.00

Table 2: ViHOS statistics. Vocabularies size and comments length are calculated at the syllable level.

comments (Luu et al., 2021) (4,928 comments left)
into six non-overlapping and equal subsets. We
also divided the 600-sample Ground Truth set from
Phase 2 into six equal 100-sample smaller sets to
insert into each subset. Each well-trained anno-
tator from Phase 1 received a subset to annotate.
Their annotation performance was assessed by cal-
culating the F1 score and the Kappa score of the
100-sample Ground Truth sets in their subset. If
any score is below 0.81 in terms of the F1 score,
its corresponding annotator has to annotate again
until it meets the requirement. This process was
completed with an F1-score of 0.86 in the mean.

Furthermore, our annotators manually annotated
CLEAN comments from ViHSD to spot any hate
and offensive spans before being added to our
dataset. This process collected 5,528 additional
clean comments that met our requirements of hav-
ing no hate and offensive spans.

3.4 Dataset Statistics

Before conducting dataset analysis and experi-
ments, ViHOS has a total of 11,056 comments af-
ter the annotation process and is divided into three
subsets: train, development, and test, with an 8:1:1
ratio. In detail, ViHOS has 5,360 comments with
hate and offensive spans and 5,696 clean comments
without in which 5,528 comments were addition-
ally added and 168 comments have no hate and
offensive spans after Phase 3 in the annotation pro-
cess. Table 2 contains more information on the
ViHOS statistics. It is apparent that the vocabu-
lary of ViHOS is medium-sized, which is due to
the small number of words in comments and com-
ments in our dataset. In addition, more statistics
about spans in ViHOS are shown in Table 3.

Train Dev Test

Sp
an

sQ
ua

nt
ity

0 span (%) 4,552 (51.47) 569 (51.45) 575 (51.99)
1 span (%) 1,970 (22.27) 229 (20.71) 235 (21.25)
2 - 3 spans (%) 1,527 (17.27) 207 (18.72) 202 (18.26)
4 - 6 spans (%) 601 (6.80) 75 (6.78) 68 (6.15)
7 - 10 spans (%) 164 (1.85) 18 (1.63) 21 (1.90)
>10 spans (%) 30 (0.34) 8 (0.72) 5 (0.45)

Sp
an

sL
en

gt
h 1 syllable (%) 5,253 (52.03) 699 (52.48) 647 (52.77)

2 - 3 syllables (%) 3,554 (35.20) 466 (34.98) 474 (38.66)
4 - 6 syllables (%) 916 (9.07) 122 (9.16) 112 (9.14)
7 - 10 syllables (%) 259 (2.57) 31 (2.33) 19 (1.55)
>10 syllables (%) 114 (1.13) 14 (1.05) 14 (1.14)

Table 3: Spans quantity and length statistics.

4 Experiments and Results

4.1 Baseline Models

We treat the task of detecting hate and offensive
spans as a task of sequence tagging. As a result, we
make use of IOB format (Ramshaw and Marcus,
1995) to tag characters for model training, and test-
ing. We conduct experiments on a set of solid base-
line models, including BiLSTM-CRF and two pre-
trained language models, XLM-R and PhoBERT,
to assess the difficulty of our dataset.

BiLSTM-CRF: We use BiLSTM-CRF (Lample
et al., 2016), a model that achieves high perfor-
mance in the span detection tasks (Pavlopoulos
et al., 2021; Nguyen et al., 2021a). We imple-
mented this model with three main layers: (1) The
word embedding layer using pre-trained PhoW2V
(Nguyen et al., 2020), (2) The BiLSTM layer, and
(3) the Conditional Random Field (CRF).

XLM-R: XLM-RoBERTa (Conneau et al., 2019)
is a multilingual language model and a variant of
RoBERTa, pre-trained on 2.5T of data across 100
languages containing 137GB of Vietnamese texts.
On several cross-lingual benchmarks, XLM-R out-
performs mBERT.
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BiLSTM-CRF
+ Pho2Wsyllable

BiLSTM-CRF
+ Pho2Wword

XLM-RBase XLM-RLarge PhoBERTBase PhoBERTLarge

Full Data 0.7453 0.7036 0.7467 0.7770 0.7569 0.7716
W/o additional clean comments 0.6241 0.6244 0.6479 0.6756 0.6738 0.6867

Table 4: Experimental results on Full Data versus Without additional clean comments.

Model Single span Multiple spans All spans
P R F1 P R F1 P R F1

Sy
lla

bl
e BiLSTM-CRF + Pho2Wsyllable 0.4222 0.5009 0.4329 0.5134 0.5712 0.5068 0.7452 0.7769 0.7453

XLM-RBase 0.7604 0.7653 0.7203 0.7927 0.7574 0.7327 0.7766 0.7574 0.7467
XLM-RLarge 0.7577 0.7679 0.7214 0.7829 0.7569 0.7357 0.8071 0.7887 0.7770

W
or

d

BiLSTM-CRF + Pho2Wword 0.3196 0.4468 0.3594 0.3533 0.5001 0.4013 0.6823 0.7489 0.7036
PhoBERTBase 0.7392 0.7485 0.7016 0.7761 0.7329 0.7092 0.7870 0.7680 0.7569
PhoBERTLarge 0.7435 0.7567 0.7067 0.7878 0.7557 0.7321 0.8028 0.7835 0.7716

Table 5: Experimental results on Single span, Multiple spans, and All spans subsets.

PhoBERT: PhoBERT (Nguyen and Nguyen,
2020) is a monolingual language model which is
pre-trained on a 20GB Vietnamese dataset and has
the same architecture and approach as RoBERTa.
PhoBERT is proven as a state-of-the-art method in
multiple Vietnamese-specific NLP tasks such as
Part-Of-Speech Tagging, Dependency Parsing, and
NER (Truong et al., 2021; Nguyen and Nguyen,
2020).

4.2 Experimental Settings

We empirically fine-tuned all pre-trained language
models using simpletransformers2. For the tok-
enizer, each comment was tokenized using Vn-
CoreNLP (Vu et al., 2018) in word-level and
syllable-level for fine-tuning the PhoBERT and the
XLM-R, respectively. In addition, we used Adam
optimizer with a learning rate of 2e-5, a batch size
of 8, and trained with 10 epochs.

We utilized a pre-trained word embedding -
PhoW2V both syllable-level and word-level set-
tings (Nguyen et al., 2020) with 100 dims to im-
plement the BiLSTM-CRF model. The optimal
hyper-parameters of BiLSTM-CRF are described
in Table 6. All baseline models were trained on a
system having 26GB RAM and an NVIDIA Tesla
P100 GPU.

4.3 Evaluation Metrics

The macro-average F1-score (F1) is used to eval-
uate our models. For each pair of gold-predicted
spans, we compute F1 and then calculate the arith-
metic mean of F1 for each of these cases. It should
be noted that the final F1-score, Accuracy, and Pre-

2https://simpletransformers.ai/ (ver.0.63.3)

Hyper-parameters Values
Optimizer Adam
Learning rate 0.001
Mini-batch size 64
LSTM hidden state size 60
Embedding size 100
Dropout [0.1, 0.1]
Epochs 10

Table 6: Hyper-parameters of the BiLSTM-CRF.

cision reported are an average of more than ten runs
with various random seeds.

4.4 Experiments and Results
Table 4 reports the baseline results before and af-
ter adding the 5,528 additional clean comments.
We discover that after the addition, the perfor-
mances improve 0.1002±0.0210. Specifically,
PhoBERTLarge considerably outperforms other
models in the dataset without additional clean data,
achieving 0.6867 in F1-score. In addition, the best
model trained on Full data is XLM-RLarge, which
has an F1-score of 0.7770. We find that XLM-
RLarge increased by 0.1014 and PhoBERTLarge
increased by 0.0849. These results demonstrate that
the appearance of the additional clean comments
successfully reduces model bias and improves per-
formance.

Table 5 reports our results in three subsets corre-
sponding to Single, Multiple, and All spans. Both
Single and Multiple spans subsets are made by the
process of splitting the All spans, which also known
as the test set, based on the number of spans in each
comment. Their results are described as follows:

Single span: We experimented with both
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Figure 3: Error analysis conducted on prediction on dev set made by PhoBERTLarge and XLM-RLarge. We divide
error cases into 12 categories including wrong spans detection, wrong spans boundary, allusion, annotation error,
abbreviation, spelling mistake, needing domain knowledge, lack of context, idiom or proverb, missing diacritical
marks, metaphor or metonymy, and others (rare characters, mixing other languages, all words stick together, etc.).
These error cases are defined in Appendix C.

syllable-level and word-level language models.
We discover that the pre-trained language mod-
els outperform the BiLSTM-CRF model by
0.3521±0.0099 in F1. This significant gap proves
the fact that word embedding and features extrac-
tion of the pre-trained language models on the
social media texts are superior to the BiLSTM-
CRF. The XLM-RLarge model achieves the best
performance with a 0.7214 in F1-score. On the
other hand, PhoBERTLarge achieves a 0.7067 in
F1-score. These results show no significant differ-
ence in performances among the multilingual and
monolingual pre-trained models in the Single span.

Multiple spans: We experimented with the
syllable-level and word-level and found that the
pre-trained language models beat the BiLSTM-
CRF model by 0.3212±0.0132. In addition, the
performance of XLM-RLarge is slightly better than
the PhoBERTLarge by 0.0036 in F1-score. The re-
sults on the Multiple spans are always better than
the Single span, which might be explained by the
fact that data in Multiple spans comprise more hate
and offensive spans that can assist the models in
learning more features of the data.

All spans: The results of the experiments on the
All data are higher than the Single span and the
Multiple spans. Specifically, in terms of F1-score,
results of the XLM-RLarge model are higher by
0.0556 and 0.0413 than the highest in the Single
span and the Multiple spans, respectively while
the figures for the PhoBERTLarge are 0.0649 and
0.0395, respectively.

4.5 Results Analysis

We choose two best models: PhoBERTLarge and
XLM-RLarge to conduct error analysis. As shown

in Figure 3, we report the statistics of the ratio of
various types of error cases3 of 100 random sam-
ples in the dev set. We notice that wrong spans pre-
diction4, wrong spans boundary5, allusion6, anno-
tation error7, and lack of context8 are major types
of prediction failure of the PhoBERTLarge and the
XLM-RLarge.

We show some cases from the ViHOS develop-
ment set in Table 7. In the first case of "Ns vậy
lại xúc phạm cái đầu b**i *neutral face emoji*"
(Eng: If you said so, you insult the d**k head *neu-
tral face emoji*), we notice that the PhoBERTLarge
could only predict "đầu"head as a hate and offensive
span, whereas XLM-RLarge predicts "b**i"b∗∗i.
Both fail to predict the full boundary of "đầu
b**i"d∗∗k head. The reason is that asterisks ex-
ist in the text ("b**i"). As defined in Subsection
4.2, the PhoBERTLarge, which was fine-tuned on
the word-level data, cannot identify these tokens,
but the XLM-RLarge, which was fine-tuned on the
syllable-level data, can somewhat predict more ac-
curate hate and offensive span even if it has aster-
isks.

Furthermore, in the second sampled comment,
both best models failed to predict "đám cờ vàng"
(Eng: those yellow flag ones) as a hate and offen-
sive span, owing to the fact that this phase is an
offensive metaphor for a rival party to Vietnamese

3Definition of errors are explained in the Appendix C.
4The model predicts clean spans as hateful and offensive.
5The model predicts inadequate boundary or fails to predict

correctly.
6The comment refers to another person or subject indirectly

and disrespectfully.
7The annotated span is wrong in terms of our guidelines.

There is no later annotation modification in ViHOS.
8The comment has multiple meanings in different contexts,

which mislead the prediction.
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Ground truth spans Models
PhoBERTLarge XLM-RLarge

Ns vậy lại xúc phạm cái đầu b**i *neutral face emoji*
(Eng: If you said so, you insult the d**k head *neu-
tral face emoji*)

["xúc", "đầu"] ["b**i"]

@username nhân dân VN tức là cờ đỏ. Còn đám cờ
vàng là lũ súc vật lưu vong. Hiểu hông?
(Eng: @username Vietnamese people are red flag.
The yellow flag ones are animals and exiled. Under-
stand?)

["đỏ.", "đám", "lũ",
"súc"]

["đám", "lũ", "súc",
"vật", "vong."]

Cướp đêm là giặc, cướp ngày là quan. 24/7 lúc nào
cũng phải nơm nớp. Than ôi cái đất nước hạnh phúc
(Eng: Night thieves are enemies, day thieves are bu-
reaucrats. 24/7, we are in a perpetual state of fear
and anxiety. What a happy country)

["Cướp", "cướp",
"nớp."]

["Cướp", "giặc,",
"cướp"]

Đúng rồi đéo thể tin được. Đáng lẽ phải cào bằng ra
mới đúng. Thật không thể tin nổi. Phải cào bằng ra
mới được
(Eng: Yes, fucking unbelievable. They should dig
until it comes out. Unbelievable. Should dig till it
comes out)

["đéo", "cào", "cào"] ["đéo"]

Table 7: Case studies in the dev set from ViHOS that are complicated for the PhoBERTLarge and XLM-RLarge.
The highlighted spans in first column are Ground truth spans associated with their comments. Eng refers to the
English meaning of associated comments.

people. In the third instance, the phrase "cướp đêm
là giặc, cướp ngày là quan," (Eng: night thieves are
enemies, day thieves are bureaucrats) which is an
idiom that originated from folk poetry, also mis-
leads the prediction. In the final example, the verb
"cào"dig has no object and must be comprehended
in context. These intriguing and challenging lin-
guistic phenomena encourage more research into
more robust models and methods in this field.

5 Conclusion and Future Work

We presented ViHOS, a new Vietnamese dataset
for evaluating hate and offensive spans detec-
tion models. ViHOS includes 26,467 human-
annotated spans on 11,056 comments. In addi-
tion, state-of-the-art models are conducted as the
first baseline models, including BiLSTM-CRF and
pre-trained language models such as XLM-RBase,
XLM-RLarge, PhoBERTBase, and PhoBERTLarge.
As a result, the XLM-RLarge model achieves the
best performance, with an F1-score of 0.7770. Fur-
thermore, we discover that the performance when
detecting multiple spans is better than the perfor-
mance in detecting single spans in Vietnamese hate

and offensive spans detection. Our dataset is avail-
able publicly at the GitHub link9.

Despite the study’s many promising contribu-
tions, the proposed research work still has sev-
eral potential concerns, especially since the per-
formance is still modest, and incorrect predictions
could harm users’ reputations if they rely heavily on
our method. We intend to expand the dataset size
and diversity of hate and offensive context for Viet-
namese in the future to address this shortcoming.
Furthermore, pre-and post-processing techniques
will be used to standardize social networking texts
(Clark and Araki, 2011) and deal with complex
cases (as discussed in Subsection 4.5) to improve
model performance(Suman and Jain, 2021; Kotyu-
shev et al., 2021; Chhablani et al., 2021), particu-
larly for Vietnamese pre-trained language models.

9https://github.com/phusroyal/ViHOS
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Limitations, Social Impacts, and Ethical
Considerations

Limitations and Social Impacts
There are numerous incomprehensible comments
in our dataset due to the lack of context. Con-
sequently, our annotators had to place themselves
in imaginary contexts in order to annotate those
comments (see Table 9 for more details about our
solution). This shortcoming combined with the
limitations of the neural networks in terms of un-
derstanding various linguistic phenomena (see Ta-
ble 8 for more details about nine different linguistic
phenomena) caused their performances of this task
still insufficient to become practical.

We also acknowledge the risk associated with
publicizing a dataset of hate and offensive spans
(e.g. utilizing ours as a source for building abusive
chatbots). However, we firmly believe that our
proposed benchmark creates more value than risks.

Ethical Considerations
The undergraduate students in the annotation pro-
cess are Vietnamese native speakers; have at least
12 years of studying Vietnamese with average
scores on the Vietnam National Exam on Liter-
ature of 6.5; have at least three years of using social
network platforms. They were explicitly warned
that their tasks will display hateful and offensive
content and if they became overwhelmed, they were
also urged to stop labeling. These undergraduate
students were paid $0.1 per comment, which takes
an average of 6.44 seconds to complete (excluding
the time used by workers who took exceptionally
lengthy comments).

All the comments in ViHOS originated in the
study of Luu et al., 2021, which preserved users’
anonymity by removing all of them when creat-
ing the ViHSD. As a result, the comments in our
dataset do NOT reflect our thoughts or viewpoints.
ViHOS is available to the public under a usage
agreement for research and related purposes only.
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A Abusive Language Characteristics

Table 8: Characteristics of abusive language in ViHOS with examples, explanations, and solutions for annotators.

Abusive language
characteristics Examples Explanations and Solutions

Non-diacritical
marks comments

(1) Dit me cai quy trinh,vao cap cuu
deo co tien,deo bao hiem thi nam do
di.
(Eng: Fuck the procedure, without
money or insurance, you could just
lay there and no one cares about your
emergency
(2) Dung la con linh dien dien vua
thoi chang qua nt goi de choc my
dien thoi "con ng" nhu linh dien thi
ai them
(Eng: That must be the Crazy Linh,
so crazy! I just call to tease the Crazy
My. No one gonna love Crazy/The
person like Crazy Linh!

Explanation: some of these
non-diacritical marks comments
might trick annotators a little bit.
(1): this is a non-diacritical marks
comment but still able to under-
stand.
(2): there are some problems caus-
ing annotators to re-read multiple
times as no punctuation, diacritic,
and the text "con ng" could be
considered as "crazy girl" or "the
type (of human)" and both of these
meanings is inappropriate.

Solution: Non-diacritical marks
comments are annotated as others.
Annotators have to re-read until
they fully understand the texts
if needed. Those examples are
annotated as follows:
(1): ["Dit me", "deo", "deo"]
(Eng: ["Fuck", "fuck", "fuck"])
(2): ["con", "dien", "dien", "con
ng", "dien", "ai them"]
(Eng: ["con", "crazy", "crazy",
"crazy/the person like", "crazy",
"No one gonna love"] in which the
word "con" is an inappropriate way
to call a woman.)
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Table 8 continued from the previous page.

Metaphors,
metonymies

(1) cái miệng rộng quá đẻ con ra còn
lọt
(Eng: The mouth is too big that a
baby could even be born through it)
(2) Dm! qua đợt dịch này thì thằng
sống ích kỷ này chắc sớm gia nhập
juventuts
(Eng: Fuck it! After the pandemic,
this selfish boy will soon join Juven-
tuts)

Explanation: in our dataset,
many comments use metaphors or
metonymy to convey their hate or
offensiveness in another way.
(1): this is a metaphor of a mouth
as a vagina.
(2): this is a metonymy of Ju-
ventus’ jersey as prison shirts (a
common metonymy in Vietnamese).

Solution: Annotators are re-
quired to annotate the whole ideas
of metaphors, metonymy.
(1): ["cái miệng rộng quá đẻ con ra
còn lọt"]
(2): ["Dm", "thằng sống ích kỷ này
chắc sớm gia nhập juventuts"]
(Eng: ["Fuck", "this selfish boy will
soon join Juventuts"])

Puns

(1) Ad đăng bài này cũng là Bồn Kỳ
Lắc nè nè nè :)
(Eng: The admin, who posts this, is
also a "Bồn Kỳ Lắc")

Explanation: Some comments
use phrases that only read them
backwards, they make sense. As in
the example, "Bồn Kỳ Lắc", if this
phrase is read backwards, it is "Bắc
Kỳ Lồn" (pussy north).

Solution: Annotators are re-
quired to annotate these puns too.
(1): ["Bồn Kỳ Lắc"]

Using non-words
characters to form
hieroglyphs

(1) có tin t lấy *knife symbol* xiên
chết cụ m ko :)))
(Eng: Do you belive that I could
get a *knife symbol* to fucking kill
you?)
(2) Đâm vào ()
(Eng: stab in the ()

Explanation:
(1): the *knife symbol* is used
instead of the word knife.
(2): the existence of "()" can be
considered as pussy in this context.

Solution: Annotating the non-
words only if they can convey a full
meaning of hate or offensiveness,
and the whole phase if they can not.
(1): ["t", "*knife symbol*", "xiên
chết cụ m""]
(Eng: ["t", "*knife symbol*",
"fucking kill you"]) in which "t",
"m" are inappropriate pronouns.)
(2): ["Đâm vào ()"]
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Table 8 continued from the previous page.

Spelling mistakes

(1) Tôi đeo hiểu bạn noi cai gì luôn a
:)))
(Eng: I have no fucking idea about
what you saying)
(2) Mà dx cái chữi ngta nghe hài vcl
bù lại củng đở
(Eng: Those fucking curses is so
funny that can even refill that)
(3)Khi bạn xai trính tã nhưng cá ghén
vít đún trính tã :))
(Eng: When you make spelling mis-
takes but trying to fix it :)))

Explanation:
(1): the words "đeo," "noi," "cai,"
"a" are spelling mistakes. The
words can be understood as "đéo,"
"nói," "á". As that, these words are
the same in accidentally missing
acute marks.
(2): the words: "chữi," "củng,"
"đở" are spelling mistakes is a
phenomenon of mistaking tilde
mark for hook above mark, and
this often happens in some parts of
Vietnam (Nguyen Hoai Nguyen,
2010). There are also familiar
phenomena of mistaking marks
such as tilde mark for underdot
mark, acute mark for hook above
mark, and so on (Nguyen Hoai
Nguyen, 2010).
(3): the phases: "xai trính tã,"
"cá ghén," "vít đúng trính tã" are
spelling mistakes but on purpose.
This comment utilizes spelling
mistakes to attack opponents who
also have spelling mistakes. Fur-
thermore, these spelling mistakes
also abuse opponents based on
regional distinctions in accent,
which cause some phenomenon of
mistaking diacritical marks as in
Example (2).

Solution: The same as deal-
ing with non-diacritical marks
comments, annotators work as
usual.
(1): ["deo"]
(Eng: ["fuck"])
(2): ["chữi", "vcl"]
(Eng: ["curse", "fuck"])
(3): ["bạn xai trính tã nhưng cá
ghén vít đún trính tã :))"]
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Table 8 continued from the previous page.

Allusive language

(1) ra gì thì toi rồi, nó khác gì
cách đảng CS chọn người, hồng hơn
chuyên. Suy nghĩ kĩ đi. Giải độc
cộng sản đã khó, giải độc tư tưởng
cánh tả còn khó hơn.
(Eng: If it had something, it was
done! It is just like the way CS
(stands for Communism) chooses
people, beauty over the profession.
Detoxifying Communism is hard;
detoxifying the left-wing political ide-
ologies is even harder.)
(2) Rút kinh nghiệm lại được xài
nghìn tỷ
(Eng: Just say learned and then can
use trillion VND)

Solution: Annotators are required
to annotate the whole profound
abuse.
(1): ["toi", "hồng hơn chuyên",
"Giải độc cộng sản đã khó, giải độc
tư tưởng cánh tả còn khó hơn"]
(Eng: ["die", "beauty over the pro-
fession", "Detoxifying Communism
is hard; detoxify the left-wing politi-
cal ideologies even harder"])
(2): ["Rút kinh nghiệm lại được xài
nghìn tỷ"]

Homonym
(1) coin card
("coin card" is a homonym of "con
cặc", which means dick)

Solution: annotate the whole abu-
sive homonym.
(1): ["coin card"]

Mixing languages

(1) Vl fake
Eng: Fuck! Fake)
(2) phe X compat tổng Y =))
(Eng: X’s side combats Y’s side)
(3) Tối Thầy stream đá phò đi thầy ơi
(Eng: You should stream fucking
some whores tonight, please!)

Solution: treat foreign words as
others and annotate if they meet
the definition of hate and offensive
spans.
(1): ["Vl", "fake"]
(Eng: ["fuck", "fake"])
(2): ["compat"]
(Eng: ["combat"])
(3): ["đá phò"]
(Eng: ["fuck some whores"])
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Table 8 continued from the previous page.

Trick hate speech de-
tecting systems on
purpose

(1) Đấy Ông già xạo l*n của các bạn
được tắm bồn Thái Lan đấy=)))
(Eng: See, your fucking old liar is
Thai bathing again =))))
(2) thằng c h.ó ngu
(Eng: Fucking stupid guy)
(3) vualonemlabaonhieu cm
(Eng: How long in cm to fit your
pussy?)

Explanation: some hate or offen-
sive comments use punctuation to
censor their inappropriate words
(as in (1), asterisk is used in the
word l*n (pussy)) or to disunite
characters in words (as in (2), dot
and space are used to disunite the
words chó (dog) into c h.ó).
These efforts actually can trick
many hate speech detecting sys-
tems, or to put all words together
(as in (3), vualonemlabaonhieu cm
should be "vừa lồn em là bao nhiêu
cm").

Solution: we annotate all characters
which can be form into hate or
offensive phase.
(1): ["xạo l*n"]
(Eng: ["fucking lie"])
(2): ["thằng c h.ó", "ngu"]
(3): ["lon"]
(Eng: ["pussy"])

B Notices for annotators

Table 9: Additional notices for annotators.

Notices Example Explanation
Try to figure out and
consider as in the
original context of
the comments.

This could help annotators under-
stand complex and non-context hate,
offensive comments.

Do not let emotion
affect the annotating
process.

Annotators exposed in a long time
to toxic comments are reported to get
used to the frequently appearing hate,
offensiveness.

Check the provided
Vietnamese Dictio-
nary if there is any
uncertainty in being
sure a word is hate or
offensive.

We use the most reputable Viet-
namese dictionary (Hoang Phe,
1983) to provide to annotators.

Should span the ob-
ject is compared to
in an inappropriate
comparison.

"Ăn cơm nhìn như chó"
(Eng: You eat like a dog)
Spans: ["nhìn như chó"]

We consider this is an inappropriate
comparison in which annotators must
span "chó"dog.
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Table 9 continued from the previous page.
However, we should
span the whole com-
parison if spanning
only the object is
compared to might
not convey the com-
plete hate or offen-
sive idea

"ý thức như trẻ lớp mầm"
Spans: ["ý thức như trẻ lớp mầm"]
(Eng: Your awareness is just like a
kindergarten kid)

If we only span "trẻ lớp mầm"
(kindergarten kid), it will not convey
the complete offensive idea. As that,
annotators are encouraged to span the
whole text instead.

Do not span conjunc-
tions; exceptional
Vietnamese cases;
standard ways to call
LGBTQ+.

(1) Vì thế, nên, nhưng, mà, etc.
(Eng: so, so, but, but, etc.)
(2) Gay, les, etc
(3) Bóng, bê đê, ái nam ái nữ, etc.

(1) Some conjunctions in Viet-
namese.
(2) Appropriate ways to specify
LGBTQ+.
(3) Inappropriate ways to specify
LGBTQ+ that need to be spanned in
comments.

Blatant hate and
offensive words
prioritize being
spanned over the
others, especially in
sentences without
diacritics and could
not be understanded.

May Cha H O an Tro. Cap. Ranh c.
Di ngoi le. Nhieu chuyen. Do Cai
Thu , do tam than
Spans: ["Cap", "ngoi le", "Nhieu
chuyen", "do tam than"]
(Eng: ["steal", "gossip", "talkative",
"psycho"])

Similar to this non-diacritical and in-
comprehensible comment, words as
highlighted ones are more straight-
forward to be spanned.

Span the whole
phase violating
human rights.

"Về nước anh nên vào tù ở trước thay
vì đi cách ly."
(Eng: When you return to Vietnam,
you should go to jail first instead of
going to isolation)
Spans: ["Về nước anh nên vào tù ở
trước thay vì đi cách ly"]

Comments violate human rights, usu-
ally complex to specify hate, offen-
sive words to span. As in this exam-
ple, a Vietnamese citizen comes back
from a foreign country has a right to
have isolated healthcare firstly.

Span the whole ob-
scene acronyms.

(1) clgv
(Eng: wtf is that?)
(2) clmn
(Eng: your mom’s pussy)
(3) cmn
(Eng: your mother).

Follow the rule with
words that do not
have diacritics and
conjoin to span out
the hate, offensive
spans.

cailongithe
(Eng: wtf is that?)

Some comments have strings being
constructed by many words missing
diacritical marks, but still able to un-
derstand. The annotators should only
span the hate and offensive characters
set out of the string as in the example.

Span hate, offensive-
ness separately.

"Cả đám dlv là nhóm ngu dốt, trẻ trâu
potay vcl luôn."
(Eng: The whole dlv crew are stupid,
bull-headed kids (so I have) no fuck-
ing thing to say.)
Spans: ["đám", "ngu dốt", "trẻ trâu"]
(Eng: ["crew", "stupid", "bull-
headed kids"])

This comment must be spanned as in
the example, but not as "đám," "ngu
dốt, trẻ trâu," "vcl," "NGU."
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C Definition of Error Cases for Error
Analysis

We introduce 12 error definitions as follows:

1. Wrong spans prediction: The model predicts
clean spans as hateful and offensive.

2. Wrong spans boundary: The model predicts
inadequate boundary or fails to predict cor-
rectly.

3. Allusion: The comment refers to another per-
son or subject in an indirect and disrespectful
way.

4. Annotation error: Annotators have improp-
erly annotated the span. The reason might be
that they somehow do not follow the provided
guidelines. However, there is no modification
in the final dataset.

5. Abbreviation: The comment contain short
forms of words.

6. Spelling mistake: The comment is spelling
mistake.

7. Needing domain knowledge: Dialect and
professional expertise are required to detect
span in comments.

8. Lack of context: In different contexts, the
comment could be understand in multiple
meaning.

9. Idiom or proverb: The comment contains
idiom or proverb.

10. Missing diacritical marks: Words in the
comment do not have diacritical marks.

11. Metaphor or metonymy: The comment con-
tains metaphor or metonymy.

12. Others: The comment contains rare charac-
ters, other languages, words in it are stick to-
gether, etc.
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Abstract

The development of state-of-the-art systems
in different applied areas of machine learning
(ML) is driven by benchmarks, which have
shaped the paradigm of evaluating generalisa-
tion capabilities from multiple perspectives. Al-
though the paradigm is shifting towards more
fine-grained evaluation across diverse tasks, the
delicate question of how to aggregate the per-
formances has received particular interest in
the community. In general, benchmarks fol-
low the unspoken utilitarian principles, where
the systems are ranked based on their mean av-
erage score over task-specific metrics. Such
aggregation procedure has been viewed as a
sub-optimal evaluation protocol, which may
have created the illusion of progress. This pa-
per proposes VOTE’N’RANK, a framework for
ranking systems in multi-task benchmarks un-
der the principles of the social choice theory.
We demonstrate that our approach can be effi-
ciently utilised to draw new insights on bench-
marking in several ML sub-fields and identify
the best-performing systems in research and de-
velopment case studies. The VOTE’N’RANK’s
procedures are more robust than the mean av-
erage whilst being able to handle missing per-
formance scores and specify conditions under
which the system becomes the winner.

1 Introduction

Benchmarking has evolved as a conventional prac-
tice for accelerating the development of general-
isable systems in different applied areas of ma-
chine learning (ML). Benchmarks are typically
designed as a collection of datasets, correspond-
ing task-specific evaluation metrics, and a crite-
rion for summarising the overall performance on
the tasks (Ruder, 2021). The benchmark holders
provide public leaderboards, which are utilised by
ML researchers and practitioners for comparing

∗Equal contribution.
†Work done while at HSE University.

novel systems against one another, and, if applica-
ble, human baselines, as well as selecting the best-
performing ones for practical purposes. According
to the benchmark sharing platform PAPERSWITH-
CODE1, the community has put much effort into
creating more than 10, 000 influential benchmarks
in natural language processing (NLP), computer
vision, and knowledge graphs, to name a few.

Criticism of the benchmark pillars. The bench-
mark methodological foundations have received
wide criticism from academic and industrial com-
munities (Bowman and Dahl, 2021). The criticism
covers various aspects of benchmarking, raising
concerns about the construct validity (Raji et al.,
2021), fragility of the design and task choices (De-
hghani et al., 2021), data leakage and annotation ar-
tifacts (Elangovan et al., 2021), SoTA-chasing ten-
dencies at the cost of large carbon footprints (Ben-
der et al., 2021), and low reproducibility of the re-
ported results (Belz et al., 2021), inter alia. Recom-
mendations proposed in these studies are of utmost
importance to benchmark holders, system users,
and developers. However, little attention has been
paid to a more nuanced methodological question:
how to aggregate performance scores in multi-task
benchmarks?

Limits of canonical aggregation. The appropriate-
ness of mean aggregation in multi-task ML prob-
lems is an ongoing debate in the community. The
mean aggregation procedure implies that all task
metrics are homogeneous (Colombo et al., 2022).
Otherwise, it is recommended to evaluate the sta-
tistical significance of differences between models
with non-parametric tests (Demšar, 2006; Benavoli
et al., 2016). In practice, the NLP GLUE-style
benchmarks (Wang et al., 2018, 2019a, 2021; Liang
et al., 2020) use arithmetic average to rank mod-
els over heterogeneous metrics, which may lead to

1URL: paperswithcode.com/sota. Access date:
February 6, 2023.
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biased evaluation and subjective outcomes (Nießl
et al., 2022; Waseem et al., 2021). The top-leading
systems may dominate the others only on the out-
lier tasks (Agarwal et al., 2021), and their ranking is
inconsistent with other Pythagorean means (Shav-
rina and Malykh, 2021). At the same time, the
mean aggregation ignores the relative ordering and
relies on the absolute score difference (Peyrard
et al., 2017), equally treating tasks of different com-
plexity (Mishra and Arunkumar, 2021) and from
different domains (Webb, 2000).

Novel aggregation principles. Recent research
has addressed these limitations, introducing novel
aggregation methods and principles. One of the di-
rections frames benchmarking in terms of microe-
conomics, highlighting the importance of the user
utility (Ethayarajh and Jurafsky, 2020). The other
studies urge evaluation of technical system proper-
ties in real-world scenarios (Zhou et al., 2021; Ma
et al., 2021) and reliability of system rankings (Ro-
driguez et al., 2021). The benchmarking paradigm
is also shifting towards adopting evaluation prin-
ciples from other fields, such as non-parametric
statistics and social choice theory (Choudhury and
Deshpande, 2021; Min et al., 2021; Varshney et al.,
2022; Colombo et al.).

Contributions. Drawing inspiration from the
social choice theory, we make two application-
oriented contributions and introduce an alternative
tool for benchmark evaluation. First, this paper
proposes VOTE’N’RANK, a flexible framework
to rank systems in multi-task/multi-criteria bench-
marks and aggregate the performances based on
end-user preferences. VOTE’N’RANK includes 8
aggregation procedures that rely on rankings in
each criterion and allow to aggregate homogeneous
and heterogeneous information. The framework is
easy-to-use and allows the users to plug in their
own data. Second, we analyse the framework’s ap-
plication in four case studies: (i) re-ranking three
NLP and multimodal benchmarks; (ii) exploring
under which circumstances a system becomes a
Condorcet winner; (iii) evaluating robustness to
omitted task scores; and (iv) ranking systems in
accordance with user preferences.

We publicly release the VOTE’N’RANK frame-
work2 to foster further development of reliable and
interpretable benchmark evaluation practices for
both academic and industrial communities.

2github.com/PragmaticsLab/vote_and_rank

2 VOTE’N’RANK

2.1 Background
The study of how individual preferences can be
combined to reach a collective decision is the fo-
cus of social choice theory (Arrow, 2012). There
are two main approaches to deal with preferences:
utilitarian and ordinal. The first approach relies
on the so-called cardinal utility, which implies that
there exists some unique utility function for each
individual that defines their preferences. Here, we
can work with utilities as numerical values, and
collective decision making aims to maximise the
social welfare utility. Examples of such utilities are
utilitarian and egalitarian social welfare measures,
where the sum of utilities of individual agents and
the utility of the worst agent get maximised, respec-
tively.

The utilitarian approach has its drawbacks. First,
it implies that kind of utility exists, which is not
always true: individuals can compare two systems
and prefer one to another but cannot say how many
“utils” they got. Second, it assumes that individual
utilities can be compared. The latter is a solid re-
quirement for benchmarking problems, e.g. when
we need to aggregate heterogeneous criteria such
as performance and computational efficiency. In
order to sum them up, one needs a transformation
function that puts the metrics in the same mea-
surement scheme. For example, DYNASCORE (Ma
et al., 2021) utilises Marginal Rate of Substitu-
tion (MRS) from economics as such transformation
function. Third, the utilitarian compensatory prin-
ciple is questionable. Can low performance in one
task/criterion be compensated by high performance
in the others? (Munda, 2012)

The ordinal approach has a weaker requirement,
where individuals have preferences (x is preferred
to y, x ≻ y, i.e. binary relations over objects),
which should be aggregated in social preference
(also called social rankings). This approach al-
lows us to aggregate rankings from different tasks
and criteria without worrying about measurement
schemes.

2.2 Aggregation Procedures
Definitions. We adopt the conceptual definitions
from the social choice theory to the objectives of
selecting the best-performing system and ranking a
set of systems as follows: (i) a voter or a criterion is
a task in a given benchmark, and (ii) an alternative
is a system candidate.
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Objectives. Suppose we have a set M of systems
m ∈ {m1, . . . ,m|M |} from the benchmark includ-
ing a set T of voters t ∈ {t1, . . . , t|T |} and the cor-

responding criteria S = {smt}m=|M |,t=|T |
m=1,t=1 , where

smt is the score of system m in task t. Given that,
we pursue two main objectives of the aggregation
procedure σ, σ : S 7→ (M,≻σ): (i) to select the
best performing alternative m∗, so that there is no
alternative m̂, m̂ ≻σ m∗, and (ii) to rank the al-
ternatives in the descending order according to σ
values, so that mi ≻σ mj . Here ≻σ denotes the
preference resulting from the aggregation proce-
dure σ.

Procedures. We propose 8 rules from 3 different
classes: scoring rules, iterative scoring rules, and
majority-relation based rules. We provide more
details and examples in Appendix A.1.

2.2.1 Scoring rules
The total score of each system is calculated as the
sum of corresponding scores in each task Sc(m) =∑|M |

i=1 cipi(m), where pi(m) is the number of tasks
having model m in the ith place, and ci is the ith

element of the scoring vector c. The systems with
the highest scores constitute the final decision. We
study the following rules that differ in their scoring
vectors.
• Plurality rule applies c = (1, 0, . . . , 0).
• Borda rule operates on c = (|M | − 1, |M | −
2, . . . , 1, 0).

• Dowdall rule applies the scoring vector c =
(1, 1/2, . . . , 1/|M |).
The scoring vectors are designed to satisfy the

voting rules’ properties mentioned in Table 8 in Ap-
pendix A.2. The scoring vectors’ design is based on
the mathematical foundations of the social choice
theory and is generally accepted in the community
(Aizerman and Aleskerov, 1995).

Interpretation. The Plurality rule is one of the
most widely used in everyday life. It only re-
quires information about the best alternative for
each voter. The Borda rule takes into account in-
formation about all alternatives. It assumes that
differences in positions should be treated the same,
whether it is between the first and the second al-
ternatives or the second and the third ones. At
the same time, the Dowdall rule is in some way
in-between Plurality and Borda. It considers infor-
mation about all alternatives but gives more weight
to the difference in the preferences. A similar ap-
proach is used in the Eurovision song contest: they

use c = (12, 10, 8, 7, . . . , 1) making the difference
in top positions more important to the outcome.

2.2.2 Iterative scoring rules
• The Threshold rule applies c = (1, 1, .., 1, 1, 0).

In case of ties scoring vectors (1, 1, ..., 1, 0, 0),
..., (1, 0, ..., 0, 0) are iteratively applied and used
only to compare systems with the maximum sum
of scores.

• The Baldwin rule iteratively applies scoring vec-
tors (|M |−1, |M |−2, ..., 1, 0), (|M |−2, |M |−
3, ..., 1, 0, 0) ,..., (1, 0, ..., 0, 0), and at each iter-
ation discards systems with the minimum sum
of scores.

Both rules stop the procedure when it is impossible
to break ties or there is only one alternative left.

Interpretation. The rules are similar in their iter-
ative nature but different in terms of the intuition
behind them. The Threshold rule is based on the
idea that the worst position is what matters the
most. When we start with c = (1, 1, .., 1, 1, 0),
we choose the alternatives declared worst in the
least amount of cases. Since there can be ties,
additional iterations are used to break them with
c = (1, 1, ..., 1, 0, 0) and so on; in other words, by
looking at the least-k positions until we have one
alternative left or can not break ties.

The Baldwin rule has two main differences from
Threshold. First, it is based on the Borda score
and considers information from all positions in the
ranking, not only the worst one. Second, whilst
the Threshold rule applies a new vector to the orig-
inal profile and compares only tied alternatives, the
Baldwin rule iteratively eliminates the least scored
systems and moves the remaining up in rankings.
For example, if system mA is in the fifth place, but
alternatives from the first four places are eliminated
in the first rounds, mA will be the first until it is
eliminated or is among alternatives in the outcome.

2.2.3 Majority-relation based rules
Let us define a majority relation µ over the set
of alternatives as the following binary relation:
mAµmB iffmA is ranked higher thanmB by more
criteria.
• Condorcet rule. mC is the Condorcet winner

(CW) iff mCµm for any m ∈M .
• Copeland rule. Define the lower counter set of

systems mA as a set of systems dominated by
mA via µ: L(mA) = {m ∈ M,mAµm}. In a
similar way, define the upper counter set of sys-
tems mA as a set of systems that dominate mA
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via µ: U(mA) = {m ∈ M,mµmA}. Define
u(m) = |L(m)| − |U(m)|. The final decision
is provided by the alternatives with the highest
u(m).

• Minimax rule. Let s(mA,mB) be the number of
criteria for which system mA is ranked higher
than system mB if mAµmB or s(mA,mB) = 0
otherwise. The systems are ranked according to
the formula rank(mA) = −maxB s(mB,mA).

Interpretation. CW is the alternative that beats all
the others in pairwise comparison. However, the
Condorcet rule does not declare any winner if the
CW does not exist. The Copeland and Minimax
rules select the CW whenever it exists and solve the
drawback as follows. The Copeland rule selects an
alternative that dominates more alternatives and is
dominated by less (the difference between the num-
bers is maximised). The Minimax rule chooses the
alternative with the minimum number of defeats.

2.3 Properties of the Aggregation Procedures

There is a multitude of voting rules in the social
choice theory (Nurmi, 1983; Levin and Nalebuff,
1995; De Almeida et al., 2019; Aleskerov et al.,
2010). The motivation behind our rules3 is that
they generally overcome the mean aggregation lim-
itations and vary in their properties, allowing the
user to be more flexible in choosing the rule for
their purposes. The outcomes can be interpreted
in terms of the properties followed or violated by
the rules. We discuss our rules’ properties in Ap-
pendix A.2.

2.4 Framework

Figure 1 describes three supported settings of per-
forming the aggregation objectives. The toy bench-
mark has three evaluated alternatives and consists
of seven voters grouped by the task, e.g. natural
language inference, text classification, and question
answering (QA).

A Basic aggregation: the aggregation procedure
is applied to the leaderboard as is.

B Weighted aggregation: each voter in the
group is assigned a group weight equal to
1/|Tgroup|. The blue group weights are 1/3,
and the orange and the violet group weights
are 1/2. Each group contributes equally to

3We do not consider more complex rules like Kemeny
since it is NP-hard to find the Kemeny winner (Bartholdi
et al., 1989), and it is often implemented as the Borda rule
approximation (Colombo et al.).
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Figure 1: Three ways to run the aggregation proce-
dures. A: Basic aggregation. B: Weighted aggregation.
C: Two-step aggregation.

the final ranking, regardless of the number of
voters.

C Two-step aggregation: each voter group is
treated as a standalone leaderboard. We in-
dependently apply a procedure to each voter
group and compute an interim ranking shown
as “elector”. Next, we aggregate the group-
wise rankings by applying the same procedure
one more time and compute the final ranking.

3 Case Studies

This section describes four case studies on three
NLP and multimodal benchmarks. Our main objec-
tive here is to re-interpret the benchmarking trends
under the social choice theory. We provide a brief
description of the benchmarks below.
• GLUE (General Language Understanding Eval-

uation; Wang et al., 2018) combines nine
datasets on QA, sentiment analysis, and textual
entailment. GLUE also includes a linguistic
diagnostic test set. |M |=30.

• SGLUE (Wang et al., 2019a) is the GLUE
follow-up consisting of two diagnostic and eight
more complex NLU tasks, ranging from causal
reasoning to multi-hop and cloze-style QA.
|M |=22.

• VALUE (Video-and-Language Understanding
Evaluation; Li et al.) covers 11 video-and-
language datasets on text-to-video retrieval,
video QA, and video captioning. |M |=7.
The leaderboards present the results of evaluat-

ing various neural models, such as BERT (Devlin
et al., 2019), STRUCTBERT (Wang et al., 2019b),
ALBERT (Lan et al., 2019), ROBERTA (Liu et al.,
2019), T5 (Raffel et al., 2020), DEBERTA (He
et al., 2020), ERNIE (Zhang et al., 2019), and
their ensembles and other model configurations.
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Benchmark k σgm σog Copeland Minimax Plurality Dowdall Borda

GLUE

top-1 1.0 1.0 1.0 1.0 1.0 1.0 1.0
top-3 1.0 0.67 1.0 0.67 0.67 0.67 1.0
top-5 1.0 0.80 0.60 0.80 0.80 0.80 0.8
top-7 1.0 0.86 0.86 0.86 0.86 0.86 1.0

least-5 0.67 0.00 1.0 0.33 0.33 1.0 1.0
least-7 0.86 0.71 1.0 0.14 0.14 1.0 1.0

τ 0.56 -0.08 0.23 -0.05 0.03 0.28 0.41

SGLUE

top-1 1.0 1.0 0.00 1.0 0.00 0.00 1.0
top-3 1.0 1.0 0.67 0.67 0.67 0.67 1.0
top-5 1.0 1.0 1.0 1.0 0.80 1.0 1.0
top-7 1.0 0.86 0.86 0.71 0.57 0.86 0.86

least-5 1.0 1.0 1.0 0.33 0.33 1.0 1.0
least-7 0.86 0.86 0.86 0.14 0.14 0.86 1.0

τ 0.45 0.36 0.08 -0.5 -0.15 0.12 0.24

Table 1: Agreement rates between the top/least-k rank-
ings with σam. The Kendall Tau correlation (τ ) is com-
puted on the total rankings.

3.1 Re-interpreting Benchmarks

Method. We begin with a case study on re-ranking
systems on the publicly available leaderboards us-
ing the scoring and majority-relation based rules4:
Plurality, Dowdall, Borda, Copeland, and Mini-
max as the baselines. σog is an aggregation metric
that identifies the amount by which the system fails
to get a minimum score of γ = 0.95 (lower is
better). The comparison is run by computing (i)
the agreement rate (AR; in %), i.e. the proportion
of the top/least-k systems between the given pro-
cedure and σam, (ii) the Kendall Tau correlation
(τ ) between the total rankings, (iii) the discrimina-
tive power (DP) or the number of tied alternatives.
i.e. alternatives with the same score (Brandt and
Seedig, 2016), and (iv) the independence of irrel-
evant alternatives (IIA), i.e. how often the new
systems change the ranking (see Appendix A.2 for
details). IIA is computed iteratively in two steps.
First, we initialise a leaderboard with two random
systems mA and mB . Second, we add a new ran-
dom system mC to the leaderboard and check if
the rankings of mA and mB have changed. We
repeat the procedure by adding up to |M | systems
and counting how often the new system affects the
ranking. The experiment is run 50 times to account
for randomness.

Results. Table 1 and Table 2 present the results
except for the VALUE benchmark which is dis-
cussed in Appendix B. We find that methods tend
to agree on the top systems, but Minimax and Plu-
rality disagree on which ones are the worst. De-
spite high ARs on particular top/least-k systems,
the order of the systems on GLUE and SGLUE is
different, which is indicated by the low correlation

4We omit the iterative rules here for the sake of space.

Method
GLUE SGLUE

DP IIA DP IIA

σam 1 0.0 ±0.0 0 0.0 ±0.0

σgm 0 0.0 ±0.0 0 0.0 ±0.0

σog 3 0.0 ±0.0 1 0.0 ±0.0

Copeland 6 2.76 ±1.3 2 0.90 ±0.8

Minimax 21 2.94 ±1.5 17 1.14 ±1.0

Plurality 25 5.26 ±1.6 17 1.98 ±1.4

Dowdall 0 9.10 ±2.4 0 4.24 ±2.1

Borda 0 7.96 ±3.8 1 5.38 ±1.8

Table 2: Discriminative power (DP) and independence
of irrelevant alternatives (IIA) values. The lower, the
better for both DP and IIA.

coefficients. The Pythagorean mean results are con-
sistent with one another on the top-7 systems and
may lead to different worst systems. σog generally
disagrees with σam for the top and worst systems
on GLUE but has higher ARs and correlation on
SGLUE.

At the same time, the DP results demonstrate
that Dowdall and Borda produce only one pair of
alternatives with the same score, whilst Minimax
and Plurality treat a significantly larger number of
systems as equivalent. The reason is that the rules
initially intend to define the best alternative, and
they are indecisive between the alternatives when
utilised to rank. The IIA experiment shows that
introducing a new system influences the Dowdall
and Borda rankings. However, this tendency is less
common for Copeland, Minimax, and Plurality and
is observed only up to 2 times on SGLUE.

Overall, we observe that the GLUE and SGLUE
benchmark rankings depend on the aggregation
procedure. The human baseline (HUMAN) rank
has risen by up to 13 positions on GLUE (see Ta-
ble 3). The Copeland method takes HUMAN, DE-
BERTA+CLEVER, and T5 equal, meaning that
the difference between the number of candidates
they dominate and are dominated by is the same.
The Minimax ranking suggests that HUMAN, T5,
and the ALBERT+DAAF+NAS ensemble are
equivalent, meaning that minimal maximum de-
feats against other models are the same. In their
turn, the Plurality and Dowdall procedures rank
HUMAN as the second-best solution, since HUMAN

receives the best performance in several tasks, such
as RTE (Wang et al., 2018) and MNLI (Williams
et al., 2018). The tendency is also observed on the
SGLUE benchmark (see Table 9 in Appendix B),
with the exception that HUMAN is selected as the
winner by the Copeland, Plurality, and Dowdall
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Rank σam σgm σog Copeland Minimax Plurality Dowdall Borda

1 91.18 90.89
↕0

0.074
↕0

29.00
↕0

0
↕0

2.00
↕0

4.95
↕0

260.50
↕0

2 91.07 90.78
↕0

0.075
↑4

25.00
↑1

−5.50
↑1

2.00
↑13

4.08
↑13

256.00
↕0

3 90.88 90.56
↕0

0.076
↓1

24.00
↓1

−6.00
↑1

1.50
↕0

3.82
↕0

247.50
↕0

4 90.86 90.48
↕0

0.076
↕0

22.00
↑3

−6.50
↓2

1.00
↑1

3.41
↕0

241.50
↕0

5 90.74 90.44
↕0

0.077
↕0

22.00
↑10

−7.00
↑2

1.00
↓3

3.27
↓3

233.50
↑1

6 90.66 90.34
↕0

0.078
↑1

22.00
↓2

−7.00
↑9

0.50
↕0

2.57
↓1

229.50
↑1

7 90.48 90.11
↕0

0.082
↑3

16.00
↓1

−7.00
↓1

0.00
↓3

2.55
↕0

220.50
↓2

Table 3: Results of re-ranking the GLUE benchmark. Changes in the system ranks are depicted with
arrows, whilst the superscripts denote scores assigned by the aggregation procedure. Notations: =HUMAN;

=ERNIE; =STRUCTBERT+CLEVER; =DEBERTA+CLEVER; =DEBERTA/TURINGNLRV4;
=MACALBERT+DKM; =T5; =ALBERT+DAAF+NAS; =FUNNEL. The superscript values stand for the

voting rules’ scores, whilst the subscript values indicate changes in the ranking positions. ↑ x means up x positions,
↓ x means down x positions, ↕ means no changes.

procedures and is equal to the ERNIE system ac-
cording to Minimax. The results for Borda are
similar to σam and σgm on the top-4 and top-6
ranks on GLUE and SGLUE, respectively.

Selecting the winner. Another application of the
voting rules includes selecting the winner from
the set of alternatives. Here, we also utilise the
Threshold, Baldwin, and Condorcet rules. Note
that we run the VALUE experiment over missing
and non-missing scores since the HUMAN results
are presented for only 6 out of 11 tasks.

Results. Table 4 presents the results of selecting
the winner for each benchmark. ✗ denotes that (i)
the given method does not support missing values,
or (ii) there is no Condorcet winner (CW). We ob-
serve that different SoTAs are selected by 2/7/3
(on GLUE/SGLUE/VALUE) procedures as op-
posed to σam, σgm, and σog. The Threshold rule
selects T5+UDG and STRUCTBERT+CLEVER
as winners because their performance is the worst
the least amount of times. The Baldwin rule agrees
with the Plurality and Minimax results. When con-
sidering VALUE missing scores, we find that HU-
MAN is declared SoTA by the Copeland, Minimax,
and Condorcet procedures. It means that HUMAN

beats any other model in pairwise comparison and
is declared the CW, whilst significantly outperform-
ing the systems on specific tasks.

Case study discussion. Benchmarks can suffer
from saturation, which is characterised by surpass-
ing estimates of the human performance followed
by stagnation in SoTA improvements (Ott et al.,
2022). The NLP community has discussed satu-

Method GLUE SGLUE VALUE

σam ✗/
σgm ✗/
σog ✗/
Copeland /
Minimax /
Plurality ✗/
Dowdall ✗/
Borda ✗/
Threshold ✗/
Baldwin ✗/
Condorcet ✗ /

Table 4: The winner selection results. Notations:
=STRUCTBERT+CLEVER; =HUMAN;
=CRAIG.STARR; =ERNIE; =T5+UDG.

ration of the GLUE benchmark over time (Kiela
et al., 2021; Ruder, 2021) and minor performance
gains of the upcoming top-leading systems on
SGLUE (Rogers, 2019). However, the discus-
sion relies on the mean aggregation. Let us take
a step away from the utilitarian approach. We ob-
serve that HUMAN may still take leading positions,
and system ranking varies on these benchmarks
under the social choice theory principles. VALUE
demonstrates more stable results in terms of the
AR and the system order, which we attribute to
its novelty and minor performance differences be-
tween the systems. Overall, our rules provide inter-
pretable results and cope with the missing leader-
board values in contrast to the utilitarian methods.
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Figure 2: Spearman correlation (ρ) between top-7 model rankings with/without omitted leaderboard values for σam,
σog , Minimax, and Copeland rankings. The results are averaged over 100 runs.

3.2 The Condorcet Winner
One of the most natural ways to choose the best
system given a set of weights defined by the user
is the Condorcet method, which declares a system
the winner if it dominates all other alternatives
in pairwise comparison (Black et al., 1958). The
Condorcet method is hard to destabilise (Edelman,
2015) and easy to interpret in practice, indicating
that the CW best matches the preferences. Given
the weights vector, finding the CW, if it exists, is
trivial. We can also find the weights that make
a given alternative the CW or determine that no
weights with that property exist.

Method. Let us define an operator R(m1,m2, i):

R(m1,m2, i) =





1, if ∃sm1i ∧ ∃sm2i ∧ sm1i > sm2i,

−1, if ∃sm1i ∧ ∃sm2i ∧ sm1i < sm2i,

0, otherwise

(1)

A system m is declared a CW if the following
property is satisfied:

∀m′ ∈M \ {m} ∑|T |
k=1R(m,m

′, k)wk ≥ 0 (2)

Let Gm ∈ {−1, 0, 1}|M |−1×|T | be a ma-
trix such that Gij = R(m,m′i, j), where
{m′1, ..,m′|M |−1} =M \ {m}.
Equation 2 can be re-written as: Gm ·w ≽ 0, which
results in defining a space W ∗ in R|T |, whose each
point is a weight vector makingm a CW. Any linear
algorithm can be applied to find a point inW ∗ or de-
termine that W ∗ is empty. Furthermore, any other
linear conditions can be added, such as upper/lower
bounds of the w components and a linear function
that needs to be optimised, e.g. wi −→ min. Let
us call a system for which there exists a vector of
weights making it a CW prospective. By definition,
the system is prospective if W ∗ is not empty.

Example. Let us illustrate the method on the
SGLUE benchmark (see Table 4). There is no CW
if the task weights are assigned uniformly. Never-
theless, T5 may become the CW when the BOOLQ
accuracy (Clark et al., 2019) and MULTIRC exact
match scores (Khashabi et al., 2018) have equal
weights of 0.5, and the other criteria weights are
zeroed. In this scenario, T5 has been found to be a
prospective system on SGLUE, whiste ROBERTA

is declared non-prospective.

Results. There are 9/88, 10/12, and 3/3
prospective/non-prospective systems on GLUE,
SGLUE, and VALUE, respectively. The results
indicate that it is possible to find specific evaluation
scenarios in which a given system is the best. In
contrast, the non-prospective system always has an
alternative that performs neither worse nor better.

Case study discussion. The CW criterion presents
another perspective of selecting the best systems.
Notably, the existence of the CW weights assumes
that practitioners can simulate a set of real-world
scenarios where the system is the best across the
given axes. Specifying if the system can be the
CW on the leaderboard would help diagnosing
the systems without additional heavy experiments.
The developers also can document this informa-
tion on model sharing platforms, e.g. HUGGING-
FACE (Wolf et al., 2020).

3.3 Robustness to Missing Scores

This case study considers a more detailed analy-
sis of the majority-relation based voting rules that
can be efficiently utilised for ranking systems and
selecting the winner over missing scores. Here,
we evaluate the robustness of the rules to omitted
performance scores and analyse how the rankings
change under such perturbation.
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Method. Copeland and Minimax take as input the
majority graph in which each vertex corresponds
to a candidate and an edge from the candidate m1

to m2 exists iff m1µm2, i.e. m1 is ranked higher
than m2 by more criteria. Let us say there are T
criteria t ∈ {t1, . . . , tT } and w ∈ {w1, . . . , wn}
are the weights assigned to them.

m1µm2 ⇐⇒
∑|T |

i=1wiR(m1,m2, i) > 0 (3)

When evaluating R(m1,m2, i), this approach can
handle missing values, ignoring the pairs where
either of the scores is missing. We can apply the
majority-relation based rules using relation µ to
rank alternatives with missing scores without losing
any information whilst accounting for the available
criteria.

We analyse the robustness of the Copeland and
Minimax rules as follows. First, we compute the
rankings using both methods on each benchmark
without omitting scores and use them as references.
Next, we randomly replace N scores with empty
values and find top-7 systems over the corrupted
leaderboards. We calculate the Spearman correla-
tion (ρ) between the final rankings and the refer-
ences. Note that we use the median values when
omitting scores for σam and σog as the baselines.

Results. Figure 2 shows that σam and σog dis-
play lower stability and Copeland performs the
best on GLUE and SGLUE. However, we observe
that Minimax is the least stable on VALUE, whilst
Copeland, σam, and σog perform on par.

Case study discussion. We attribute the low sta-
bility of Minimax on VALUE to its limitations.
Recall that there are minor differences between the
systems on VALUE, which cause Minimax to score
them very similar (see Table 10 in Appendix B).
In this case any missing value can influence the
rankings, which results in the low ρ coefficients.

3.4 Ranking Based on User Preferences
This case study aims at system ranking based on
the user utility. We rank systems in a simulated sce-
nario that considers preferences on performance,
computational efficiency, and fairness.

Method. We use the HUGGINGFACE library to
fine-tune and evaluate systems on GLUE. Each
system is initialised with a fixed set of five ran-
dom seeds and fine-tuned for five epochs with
default hyper-parameters and a batch size of
16. The development set performance is aver-
aged across all runs. We consider the following

systems: BERT-base, RoBERTa-base, ALBERT-
base, DeBERTa-base, DistilBERT-base (Sanh et al.,
2019), DistilRoBERTa-base (Sanh et al., 2019),
and GPT2-medium (Radford et al., 2019). The ex-
periments are run on a single GPU unit, NVIDIA
A100 80 GB SXM (NVLink), 4-CPU cores, AMD
EPYC 7702 2-3.35 GHz, and 1 TB RAM.

The efficiency is computed during fine-tuning
via the Impact tracker toolkit (Henderson et al.,
2020): the total power, run time in hours, GPU
usage in hours, and estimated carbon footprint. To
maximise these, we inverse the computational effi-
ciency features through multiplying them by −1.

To measure fairness, we choose three social bias
evaluation datasets: CROWS-PAIRS (Nangia et al.,
2020), STEREOSET (Nadeem et al., 2021), and
WINOBIAS (Zhao et al., 2018). In these datasets,
one sentence is always more stereotyping than the
other. Following Nangia et al. (2020), we use MLM
scoring (Salazar et al., 2020) to score the pairs. The
final metrics account for cases (%) in which a less
stereotyping sentence is the most probable.

For the sake of space, we present the results on
the Borda procedure in the basic, weighted, and
two-step aggregation settings (§2.4). We assign the
weights vector as (0.4, 0.3, 0.3) to performance,
efficiency, and fairness. The weights are introduced
to increase the impact of performance. We use
σam as the baseline and interim rankings by each
criterion individually as references.

Results. Table 5 shows that DEBERTA is the win-
ner according to σam and Borda. However, it re-
quires more computational resources than the other
systems and is mediocre in detecting social biases.
As a result, it is not the best system in any user-
oriented ranking. In this scenario, Borda tends
to favour the distilled systems (DISTILROBERTA

and DISTILBERT) due to their computational effi-
ciency, which has the highest impact on the ranking
with four criteria assigned per task. The weighted
Borda ranks DISTILBERT, ALBERT, and BERT
as the top-3 systems. In its turn, the weighted 2-
step Borda prefers ALBERT first, followed by
BERT and DISTILBERT. ALBERT is selected as
the winner by the fairness ranking only and occu-
pies the middle positions in the two other rankings.
ROBERTA drops down drastically from the second
rank (σam), whilst GPT2 remains in the least-3
systems.

Case study discussion. Overall, our setup follows
DYNASCORE (Ma et al., 2021), where the microe-
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Rank σam
Performance Borda Weighted

Borda
Weighted

2-step Borda
Borda

Performance
Borda

Efficiency
Borda

Fairness

1 82.73 267.0
↑4

10.75
↑5

4.30
↑2

56.5
↕0

223.0
↑4

19.0
↑2

2 82.52 245.0
↑4

9.83
↑1

3.60
↑2

49.0
↕0

216.0
↑4

18.0
↑4

3 80.94 166.0
↑1

8.96
↑1

3.40
↑3

32.5
↕0

120.0
↑1

14.0
↑1

4 79.20 154.0
↓1

8.63
↑1

3.00
↓3

32.0
↕0

103.0
↓1

11.00
↓3

5 78.56 144.0
↓3

7.17
↓4

2.90
↕0

17.0
↕0

91.0
↓3

11.0
↑1

6 77.89 10.0
↑1

7.04
↓4

2.60
↓3

11.0
↕0

84.0
↑1

7.00
↑1

7 75.95 70.50
↓6

5.47
↕0

0.90
↕0

8.0
↕0

3.00
↓6

4.00
↓5

Table 5: Results of re-ranking the GLUE benchmark using the Borda rule in the simulated user-oriented scenario.
Notations: = ALBERT; =BERT; =DISTILBERT; =ROBERTA; =DISTILROBERTA; =DEBERTA;

=GPT2.

conomic concept of MRS is used to compare perfor-
mance, efficiency, and fairness metrics, followed
by the weighted average score as the final ranking.
Unlike the DYNASCORE results, we find that the av-
erage performance ranking is not preserved when
using our voting rules. The most notable differ-
ence is with DEBERTA and ROBERTA systems,
which may become penalised for low efficiency in
our case. The reason is that in DYNASCORE, the
weight of 0.5 is assigned to performance which
blocks substantial changes in re-ranking.

4 Recommendations for Rules Choice

The information about the voting rules’ properties
can be used to choose the most suitable one to
the user’s preferences (Felsenthal and Machover,
2012). We also provide the following recommen-
dations.
• The Plurality rule is a good choice if the user

wants only the best systems in each criterion.
• If all ranking positions matter, use the Borda or

Dowdall rules. Note that Dowdall assigns higher
weights to the top positions.

• The Threshold rule is helpful in cases when the
user wants to minimise the number of the low-
performance criteria: the rule assigns the highest
rank to the system that is considered the worst
in the least amount of criteria.

• If the goal is to select the system that beats all the
others in pairwise comparison, use the Baldwin,
Condorcet, Copeland, or Minimax rules. These
rules are Condorcet consistent; i.e. choose the
CW if it exists. The main difference is how the
rules behave when there is no CW. In particular,

Baldwin selects the system that is left after elim-
ination according to the Borda scores. Copeland
chooses the system that dominates the others in
more cases and is dominated by the least. In
turn, Minimax selects the system with minimum
defeat in pairwise comparison.

• The outcomes may contain equivalent alterna-
tives (§3.1). Depending on the scenario, the user
can select the rule that produces ties with a lower
probability or Dowdall and Borda if their prop-
erties meet the preferences.

5 Conclusion and Future Work

This paper introduces novel aggregation procedures
to rank and select the best-performing systems un-
der the social choice theory principles. Our ap-
proach provides an alternative perspective of sys-
tem evaluation in benchmarking and overcomes the
standard mean aggregation limitations.

Our case studies show that VOTE’N’RANK pro-
vides interpretable decisions on the best and worst
systems whilst accounting for missing performance
scores and potential user preferences. The frame-
work allows for finding scenarios in which a given
system dominates the others. At the same time, the
rule choice may depend on the particular research
and development purpose. We provide recommen-
dations based on the rules’ properties and scenarios
of the intended framework’s application.

The application scope of VOTE’N’RANK is not
limited and may be easily extended to other ap-
plied ML areas. In our future work we hope to
explore applications of the social choice theory in
the multilingual and multimodal benchmarking.
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6 Limitations

Robustness. In the robustness experiments, the
Copeland and Minimax rules are less sensitive to
performance score drops than σam and σog. How-
ever, in certain circumstances Minimax may display
low resistance to such corruption due to its nature,
which is analysed in §3.3. Other robustness evalua-
tion settings can be considered, such as sensitivity
to removing and adding new tasks (Procaccia et al.,
2007; Colombo et al.), which are out of scope of
this work.

Ambiguity. Almost all rules in our study allow
ties or the recognition of systems as equivalent.
This may result in non-resoluteness: the selection
of multiple winning systems or the presence of
many equivalencies in ranking. However, we em-
pirically observe no or a few ties using the Dow-
dall, Borda, and Copeland rules, whilst Minimax
and Plurality treat a significant number of sys-
tems as equivalent due to their properties (§3.1).
VOTE’N’RANK does not currently support any ad-
ditional tie-breaking rules to be applied in this case.
The only exception here is the Threshold rule that
gives only one winner in almost all cases due to the
built-in tie-breaking procedure.

Independence of irrelevant alternatives. The
violation of the IIA axiom in applications is a well-
known fundamental aspect in the social choice the-
ory, and the voting rules can violate the IIA with
different probabilities (Dougherty and Heckelman,
2020). IIA violation may imply undesirable behav-
ior: submitting a new system to the leaderboard
affects the relative ranking of the other systems.
However, we empirically show that Copeland and
Minimax are less likely to violate IIA than Plurality
and Borda rules (§3.1). The IIA assumption may
be unrealistic in practice as it takes no account of
perfect or near-perfect substitutes (Suppes, 1965).

Lack of ground truth. Comparison of the ag-
gregation procedures is hindered by the absence
of the correct ranking, especially when votes are
noisy and incomplete. There is no universal answer
to the question of how the systems on the multi-
task benchmarks should be preferred. However,
we hope to contribute from a practical standpoint,
offering an alternative approach to the mean aggre-
gation procedure.

7 Ethical Considerations

Stereotypes and discrimination in LMs’ pre-
training data can lead to representation biases
against race, religion, and social minorities. Our
framework allows ranking systems to account for
sensitive attributes (Celis et al., 2018), e.g. gender
and nationality, or to find the trade-off between mul-
tiple criteria, e.g. performance and fairness (Bal-
dini et al., 2022). The rank aggregation rules have
been widely adopted to information retrieval and
recommendation systems (Dwork et al., 2001; Mas-
thoff, 2011). We assume that translation of the so-
cial choice theory into the system evaluation prob-
lems may improve the user experience by selecting
systems that best satisfy evaluative criteria and in-
dividual or group preferences in downstream appli-
cations.

Acknowledgements

Mark Rofin, Mikhail Florinskiy, and Daniel
Karabekyan were supported by the grant for re-
search centres in the field of AI provided by the
Analytical Centre for the Government of the Rus-
sian Federation (ACRF) in accordance with the
agreement on the provision of subsidies (identifier
of the agreement 000000D730321P5Q0002) and
the agreement with the HSE University No. 70-
2021-00139. We acknowledge the computational
resources of HPC facilities at the HSE University.
We would also like to thank colleagues from the
IT University of Copenhagen and the anonymous
reviewers for their comments on this paper.

References
Rishabh Agarwal, Max Schwarzer, Pablo Samuel Cas-

tro, Aaron C Courville, and Marc Bellemare. 2021.
Deep Reinforcement Learning at the Edge of the Sta-
tistical Precipice. Advances in Neural Information
Processing Systems, 34.

Mark Aizerman and Fuad Aleskerov. 1995. Theory of
Choice, volume 38. North Holland.

Fuad Aleskerov, Vyacheslav V Chistyakov, and Valery
Kalyagin. 2010. The threshold aggregation. Eco-
nomics Letters, 107(2):261–262.

Kenneth J Arrow. 2012. Social choice and individual
values. In Social Choice and Individual Values. Yale
university press.

Ioana Baldini, Dennis Wei, Karthikeyan Natesan Ra-
mamurthy, Moninder Singh, and Mikhail Yurochkin.
2022. Your fairness may vary: Pretrained language

679

https://doi.org/10.18653/v1/2022.findings-acl.176


model fairness in toxic text classification. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2022, pages 2245–2262, Dublin, Ireland.
Association for Computational Linguistics.

John Bartholdi, Craig A Tovey, and Michael A Trick.
1989. Voting schemes for which it can be difficult to
tell who won the election. Social Choice and welfare,
6(2):157–165.

Anya Belz, Shubham Agarwal, Anastasia Shimorina,
and Ehud Reiter. 2021. A systematic review of re-
producibility research in natural language processing.
In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Main Volume, pages 381–393, Online.
Association for Computational Linguistics.

Alessio Benavoli, Giorgio Corani, and Francesca
Mangili. 2016. Should We Really Use Post-Hoc
Tests Based on Mean-Ranks? Journal of Machine
Learning Research, 17(5):1–10.

Emily M Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
Dangers of Stochastic Parrots: Can Language Mod-
els Be Too Big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Trans-
parency, pages 610–623.

Duncan Black et al. 1958. The theory of committees
and elections.

Samuel R. Bowman and George Dahl. 2021. What will
it take to fix benchmarking in natural language under-
standing? In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4843–4855, Online. Association for
Computational Linguistics.

Felix Brandt and Hans Georg Seedig. 2016. On the
Discriminative Power of Tournament Solutions. In
Operations Research Proceedings 2014, pages 53–58.
Springer.

L Elisa Celis, Damian Straszak, and Nisheeth K Vishnoi.
2018. Ranking with Fairness Constraints. In 45th
International Colloquium on Automata, Languages,
and Programming (ICALP 2018). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

Monojit Choudhury and Amit Deshpande. 2021. How
Linguistically Fair are Multilingual Pre-trained Lan-
guage Models. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages
12710–12718.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2924–2936, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Pierre Colombo, Nathan Noiry, Ekhine Irurozki, and
Stephan CLEMENCON. What are the Best Sys-
tems? New Perspectives on NLP Benchmarking. In
Advances in Neural Information Processing Systems.

Pierre Jean A Colombo, Chloé Clavel, and Pablo Pi-
antanida. 2022. InfoLM: A New Metric to Evaluate
Summarization & Data2Text Generation. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 10554–10562.

Adiel Teixeira De Almeida, Danielle Costa Morais, and
Hannu Nurmi. 2019. Systems, procedures and voting
rules in context: A primer for voting rule selection,
volume 9. Springer.

Mostafa Dehghani, Yi Tay, Alexey A Gritsenko, Zhe
Zhao, Neil Houlsby, Fernando Diaz, Donald Metzler,
and Oriol Vinyals. 2021. The Benchmark Lottery.
arXiv preprint arXiv:2107.07002.

Janez Demšar. 2006. Statistical Comparisons of Clas-
sifiers over Multiple Data Sets. The Journal of Ma-
chine learning research, 7:1–30.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Keith L Dougherty and Jac C Heckelman. 2020. The
probability of violating arrow’s conditions. European
Journal of Political Economy, 65:101936.

Cynthia Dwork, Ravi Kumar, Moni Naor, and Danda-
pani Sivakumar. 2001. Rank Aggregation Methods
for the Web. In Proceedings of the 10th international
conference on World Wide Web, pages 613–622.

Paul H Edelman. 2015. The myth of the condorcet
winner. Supreme Court Economic Review, 22(1):207–
219.

Aparna Elangovan, Jiayuan He, and Karin Verspoor.
2021. Memorization vs. generalization : Quantify-
ing data leakage in NLP performance evaluation. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 1325–1335, Online.
Association for Computational Linguistics.

Kawin Ethayarajh and Dan Jurafsky. 2020. Utility is in
the eye of the user: A critique of NLP leaderboards.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4846–4853, Online. Association for Computa-
tional Linguistics.

Dan S Felsenthal and Moshé Machover. 2012. Electoral
Systems: Paradoxes, Assumptions, and Procedures.
Springer Science & Business Media.

680

https://doi.org/10.18653/v1/2022.findings-acl.176
https://doi.org/10.18653/v1/2021.eacl-main.29
https://doi.org/10.18653/v1/2021.eacl-main.29
http://jmlr.org/papers/v17/benavoli16a.html
http://jmlr.org/papers/v17/benavoli16a.html
https://doi.org/10.18653/v1/2021.naacl-main.385
https://doi.org/10.18653/v1/2021.naacl-main.385
https://doi.org/10.18653/v1/2021.naacl-main.385
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.eacl-main.113
https://doi.org/10.18653/v1/2021.eacl-main.113
https://doi.org/10.18653/v1/2020.emnlp-main.393
https://doi.org/10.18653/v1/2020.emnlp-main.393


John Geanakoplos. 2005. Three brief proofs of arrow’s
impossibility theorem. Economic Theory, 26(1):211–
215.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. DeBERTa: decoding-enhanced
BERT with disentangled attention. In International
Conference on Learning Representations.

Peter Henderson, Jieru Hu, Joshua Romoff, Emma Brun-
skill, Dan Jurafsky, and Joelle Pineau. 2020. Towards
the Systematic Reporting of the Energy and Carbon
Footprints of Machine Learning. Journal of Machine
Learning Research, 21(248):1–43.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking
beyond the surface: A challenge set for reading com-
prehension over multiple sentences. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 252–262, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh
Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie Vid-
gen, Grusha Prasad, Amanpreet Singh, Pratik Ring-
shia, Zhiyi Ma, Tristan Thrush, Sebastian Riedel,
Zeerak Waseem, Pontus Stenetorp, Robin Jia, Mohit
Bansal, Christopher Potts, and Adina Williams. 2021.
Dynabench: Rethinking benchmarking in NLP. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 4110–4124, Online. Association for Computa-
tional Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. ALBERT: A Lite BERT for self-supervised
learning of language representations. In Interna-
tional Conference on Learning Representations.

Jonathan Levin and Barry Nalebuff. 1995. An intro-
duction to vote-counting schemes. The Journal of
Economic Perspectives, 9(1):3–26.

Guohao Li, Feng He, and Zhifan Feng. 2021. A CLIP-
Enhanced Method for Video-Language Understand-
ing. arXiv preprint arXiv:2110.07137.

Linjie Li, Yen-Chun Chen, Yu Cheng, Zhe Gan, Licheng
Yu, and Jingjing Liu. 2020. HERO: Hierarchical en-
coder for Video+Language omni-representation pre-
training. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 2046–2065, Online. Association for
Computational Linguistics.

Linjie Li, Jie Lei, Zhe Gan, Licheng Yu, Yen-Chun
Chen, Rohit Pillai, Yu Cheng, Luowei Zhou, Xin Eric
Wang, William Yang Wang, et al. VALUE: A Multi-
Task Benchmark for Video-and-Language Under-
standing Evaluation. In Thirty-fifth Conference on

Neural Information Processing Systems Datasets and
Benchmarks Track (Round 1).

Yaobo Liang, Nan Duan, Yeyun Gong, Ning Wu, Fenfei
Guo, Weizhen Qi, Ming Gong, Linjun Shou, Daxin
Jiang, Guihong Cao, Xiaodong Fan, Ruofei Zhang,
Rahul Agrawal, Edward Cui, Sining Wei, Taroon
Bharti, Ying Qiao, Jiun-Hung Chen, Winnie Wu,
Shuguang Liu, Fan Yang, Daniel Campos, Rangan
Majumder, and Ming Zhou. 2020. XGLUE: A new
benchmark datasetfor cross-lingual pre-training, un-
derstanding and generation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6008–6018,
Online. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. arXiv preprint arXiv:1907.11692.

Zhiyi Ma, Kawin Ethayarajh, Tristan Thrush, Somya
Jain, Ledell Wu, Robin Jia, Christopher Potts, Adina
Williams, and Douwe Kiela. 2021. Dynaboard: An
Evaluation-As-A-Service Platform for Holistic Next-
Generation Benchmarking. In Advances in Neural
Information Processing Systems, volume 34, pages
10351–10367. Curran Associates, Inc.

Judith Masthoff. 2011. Group Recommender Systems:
Combining Individual Models. In Recommender sys-
tems handbook, pages 677–702. Springer.

Sewon Min, Jordan Boyd-Graber, Chris Alberti,
Danqi Chen, Eunsol Choi, Michael Collins, Kelvin
Guu, Hannaneh Hajishirzi, Kenton Lee, Jenni-
maria Palomaki, Colin Raffel, Adam Roberts, Tom
Kwiatkowski, Patrick Lewis, Yuxiang Wu, Hein-
rich Küttler, Linqing Liu, Pasquale Minervini, Pon-
tus Stenetorp, Sebastian Riedel, Sohee Yang, Min-
joon Seo, Gautier Izacard, Fabio Petroni, Lucas Hos-
seini, Nicola De Cao, Edouard Grave, Ikuya Ya-
mada, Sonse Shimaoka, Masatoshi Suzuki, Shumpei
Miyawaki, Shun Sato, Ryo Takahashi, Jun Suzuki,
Martin Fajcik, Martin Docekal, Karel Ondrej, Pavel
Smrz, Hao Cheng, Yelong Shen, Xiaodong Liu,
Pengcheng He, Weizhu Chen, Jianfeng Gao, Bar-
las Oguz, Xilun Chen, Vladimir Karpukhin, Stan
Peshterliev, Dmytro Okhonko, Michael Schlichtkrull,
Sonal Gupta, Yashar Mehdad, and Wen-tau Yih. 2021.
NeurIPS 2020 EfficientQA Competition: Systems,
Analyses and Lessons Learned. In Proceedings of
the NeurIPS 2020 Competition and Demonstration
Track, volume 133 of Proceedings of Machine Learn-
ing Research, pages 86–111. PMLR.

Swaroop Mishra and Anjana Arunkumar. 2021. How
Robust are Model Rankings: A Leaderboard Cus-
tomization Approach for Equitable Evaluation. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 13561–13569.

Giuseppe Munda. 2012. Choosing aggregation rules
for composite indicators. Social Indicators Research,
109(3):337–354.

681

https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/2021.naacl-main.324
http://www.jstor.org/stable/2138351
http://www.jstor.org/stable/2138351
https://doi.org/10.18653/v1/2020.emnlp-main.161
https://doi.org/10.18653/v1/2020.emnlp-main.161
https://doi.org/10.18653/v1/2020.emnlp-main.161
https://doi.org/10.18653/v1/2020.emnlp-main.484
https://doi.org/10.18653/v1/2020.emnlp-main.484
https://doi.org/10.18653/v1/2020.emnlp-main.484
https://proceedings.neurips.cc/paper/2021/file/55b1927fdafef39c48e5b73b5d61ea60-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/55b1927fdafef39c48e5b73b5d61ea60-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/55b1927fdafef39c48e5b73b5d61ea60-Paper.pdf
https://proceedings.mlr.press/v133/min21a.html
https://proceedings.mlr.press/v133/min21a.html
http://www.jstor.org/stable/23325434
http://www.jstor.org/stable/23325434


Moin Nadeem, Anna Bethke, and Siva Reddy. 2021.
StereoSet: Measuring stereotypical bias in pretrained
language models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 5356–5371, Online. Association for
Computational Linguistics.

Nikita Nangia, Clara Vania, Rasika Bhalerao, and
Samuel R. Bowman. 2020. CrowS-pairs: A chal-
lenge dataset for measuring social biases in masked
language models. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1953–1967, Online. As-
sociation for Computational Linguistics.

Christina Nießl, Moritz Herrmann, Chiara Wiedemann,
Giuseppe Casalicchio, and Anne-Laure Boulesteix.
2022. Over-optimism in Benchmark Studies and the
Multiplicity of Design and Analysis Options when
Interpreting Their Results. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery,
12(2):e1441.

Hannu Nurmi. 1983. Voting procedures: A sum-
mary analysis. British Journal of Political Science,
13(2):181–208.

Simon Ott, Adriano Barbosa-Silva, Kathrin Blagec, Jan
Brauner, and Matthias Samwald. 2022. Mapping
Global Dynamics of Benchmark Creation and Satu-
ration in Artificial Intelligence. Nature Communica-
tions, 13(1):6793.

Maxime Peyrard, Teresa Botschen, and Iryna Gurevych.
2017. Learning to score system summaries for bet-
ter content selection evaluation. In Proceedings of
the Workshop on New Frontiers in Summarization,
pages 74–84, Copenhagen, Denmark. Association for
Computational Linguistics.

Ariel D Procaccia, Jeffrey S Rosenschein, and Gal A
Kaminka. 2007. On the Robustness of Preference Ag-
gregation in Noisy Environments. In Proceedings of
the 6th international joint conference on Autonomous
agents and multiagent systems, pages 1–7.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
Models are Unsupervised Multitask Learners. Ope-
nAI blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the Lim-
its of Transfer Learning with a Unified Text-to-text
Transformer. J. Mach. Learn. Res., 21(140):1–67.

Inioluwa Deborah Raji, Emily Denton, Emily M Bender,
Alex Hanna, and Amandalynne Paullada. 2021. AI
and the Everything in the Whole Wide World Bench-
mark. In Thirty-fifth Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks
Track (Round 2).

Pedro Rodriguez, Joe Barrow, Alexander Miserlis
Hoyle, John P. Lalor, Robin Jia, and Jordan Boyd-
Graber. 2021. Evaluation examples are not equally
informative: How should that change NLP leader-
boards? In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 4486–4503, Online. Association for Computa-
tional Linguistics.

Anna Rogers. 2019. How the Transformers Broke NLP
Leaderboards. https://hackingsemantics.
xyz/2019/leaderboards.

Sebastian Ruder. 2021. Challenges and Opportuni-
ties in NLP Benchmarking. http://ruder.io/
nlp-benchmarking.

Julian Salazar, Davis Liang, Toan Q. Nguyen, and Ka-
trin Kirchhoff. 2020. Masked language model scor-
ing. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
2699–2712, Online. Association for Computational
Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Tatiana Shavrina and Valentin Malykh. 2021. How not
to lie with a benchmark: rearranging NLP leader-
boards. In I (Still) Can’t Believe It’s Not Better!
NeurIPS 2021 Workshop.

Minchul Shin, Jonghwan Mun, Kyoung-Woon On, Woo-
Young Kang, Gunsoo Han, and Eun-Sol Kim. 2021.
Winning the ICCV’2021 VALUE Challenge: Task-
aware Ensemble and Transfer Learning with Visual
Concepts. arXiv preprint arXiv:2110.06476.

P Suppes. 1965. Preference, utility and subjective prob-
ability. inhandbook of mathematical psychology, ed.
rd luce, rr bush and eh galanter, 3, 249–410.

Neeraj Varshney, Swaroop Mishra, and Chitta Baral.
2022. ILDAE: Instance-level difficulty analysis of
evaluation data. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 3412–3425,
Dublin, Ireland. Association for Computational Lin-
guistics.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019a. SuperGLUE: A Stick-
ier Benchmark for General-purpose Language Under-
standing Systems. Advances in Neural Information
Processing Dystems, 32.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing

682

https://doi.org/10.18653/v1/2021.acl-long.416
https://doi.org/10.18653/v1/2021.acl-long.416
https://doi.org/10.18653/v1/2020.emnlp-main.154
https://doi.org/10.18653/v1/2020.emnlp-main.154
https://doi.org/10.18653/v1/2020.emnlp-main.154
https://doi.org/10.18653/v1/W17-4510
https://doi.org/10.18653/v1/W17-4510
https://doi.org/10.18653/v1/2021.acl-long.346
https://doi.org/10.18653/v1/2021.acl-long.346
https://doi.org/10.18653/v1/2021.acl-long.346
https://hackingsemantics.xyz/2019/leaderboards
https://hackingsemantics.xyz/2019/leaderboards
http://ruder.io/nlp-benchmarking
http://ruder.io/nlp-benchmarking
https://doi.org/10.18653/v1/2020.acl-main.240
https://doi.org/10.18653/v1/2020.acl-main.240
https://doi.org/10.18653/v1/2022.acl-long.240
https://doi.org/10.18653/v1/2022.acl-long.240
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446


and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Boxin Wang, Chejian Xu, Shuohang Wang, Shuohang
Wang, Zhe Gan, Yu Cheng, Jianfeng Gao, Ahmed
Awadallah, and Bo Li. 2021. Adversarial GLUE: A
Multi-Task Benchmark for Robustness Evaluation
of Language Models. In Proceedings of the Neural
Information Processing Systems Track on Datasets
and Benchmarks, volume 1.

Wei Wang, Bin Bi, Ming Yan, Chen Wu, Jiangnan Xia,
Zuyi Bao, Liwei Peng, and Luo Si. 2019b. Struct-
BERT: Incorporating Language Structures into Pre-
training for Deep Language Understanding. In Inter-
national Conference on Learning Representations.

Zeerak Waseem, Smarika Lulz, Joachim Bingel, and
Isabelle Augenstein. 2021. Disembodied Machine
Learning: On the Illusion of Objectivity in NLP.
arXiv preprint arXiv:2101.11974.

Geoffrey I Webb. 2000. MultiBoosting: A Technique
for Combining Boosting and Wagging. Machine
learning, 40(2):159–196.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. ERNIE: En-
hanced language representation with informative en-
tities. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
1441–1451, Florence, Italy. Association for Compu-
tational Linguistics.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2018. Gender bias in
coreference resolution: Evaluation and debiasing
methods. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 15–20, New

Orleans, Louisiana. Association for Computational
Linguistics.

Xiyou Zhou, Zhiyu Chen, Xiaoyong Jin, and
William Yang Wang. 2021. HULK: An energy effi-
ciency benchmark platform for responsible natural
language processing. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: System Demonstra-
tions, pages 329–336, Online. Association for Com-
putational Linguistics.

683

https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/335f5352088d7d9bf74191e006d8e24c-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/335f5352088d7d9bf74191e006d8e24c-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/335f5352088d7d9bf74191e006d8e24c-Paper-round2.pdf
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/N18-2003
https://doi.org/10.18653/v1/N18-2003
https://doi.org/10.18653/v1/N18-2003
https://doi.org/10.18653/v1/2021.eacl-demos.39
https://doi.org/10.18653/v1/2021.eacl-demos.39
https://doi.org/10.18653/v1/2021.eacl-demos.39


A Aggregation Procedures

A.1 Examples

Rank Task 1 Task 2 Task 3 Task 4 Task 5

1 mA mA mB mC mD

2 mB mC mD mB mB

3 mC mD mC mD mC

4 mD mB mA mA mA

Table 6: A toy leaderboard for illustration purposes.

Rank Task 1 Task 2 Task 3 Task 4 Task 5

1 mB mC mB mC mD

2 mC mD mD mB mB

3 mD mB mC mD mC

Table 7: The leaderboard based on Table 6 used for
describing the Baldwin rule.

This appendix provides illustrative examples on
how our voting rules work. Here, suppose we have
a toy leaderboard with five tasks and four systems
as shown in Table 6. The systems are ranked within
each task by their performance score. We now
compute the rankings using each voting rule.

Scoring rules.
• Plurality rule assigns the score of 2 to mA

and scores of 1 to mB , mC , and mD.
• According to the Borda rule, the systems that

take the first position get 3 points for each
task, 2 points are awarded for the second posi-
tion, etc. As a result, the systems receive the
following Borda scores: mA = 6, mB = 9,
mC = 8, and mD = 7. The system mB has
the highest score and is chosen as the best one.

• For the Dowdall rule scoring vector, we get
the following scores: SmA = 2.75, SmB =
2.75, SmC = 2.5, and SmD = 1.75 + 2/3.
There is a tie between the systems mA and
mB , and both of them are considered the best
models.

Iterative scoring rules.
• For the Threshold rule scoring vector (1,1,1,0),

we get the following scores: SmA = 2,
SmB = 4, SmC = 5, and SmD = 4. The
system mC is the winner. If there is a tie, the
scoring vector (1,1,0,0) is further applied for
only tied systems.

• The Baldwin rule: first, we calculate the
Borda scores as mentioned above. Second,

Figure 3: A toy graph example of the majority relation
µ based on Table 6.

we eliminate the system mA since it has the
lowest score (see Table 7). Next, we re-
calculate the Borda scores for a new scoring
vector (2,1,0) and get the following results:
SmB = 6, SmC = 5, and SmD = 4. At this
step, the systemmD is eliminated. Finally, we
re-calculate the results for the scoring vector
(1,0). The results are SmB = 3 and SmC = 2,
and the system mB is declared the winner.

Majority-relation based rules. The majority re-
lation in this example is illustrated in Figure 3.

• The system mB is the Condorcet winner as it
beats each of the alternatives. Note that since
all majority-relation based rules (Copeland
and Minimax) are Condorcet consistent, they
declare the systemmB the winner as well. Let
us illustrate it in more detail.

• The Copeland rule scores are u(mA) = −3,
u(mB) = 3, u(mC) = 1, u(mD) = −1. The
system mB is the winner as it has the highest
u(x).

• The Minimax rule scores are rank(mA) =
−3, rank(mB) = 0, rank(mC) = −3,
rank(mD) = −3. Here, the system mB has
the highest rank.

A.2 Properties

We consider the following properties to describe
our voting rules and summarise them in Table 8.

• Transitivity. There are no cycles in the final
ranking. An example of the cycle is a situ-
ation, where mA is better than mB , mB is
better than mC , and mC is better than mA.
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Transitivity ✓ ✓ ✓ ✓ ✓ ✓ ✓
Anonymity ✓ ✓ ✓ ✓ ✓ ✓ ✓
Unanimity ✓∗ ✓ ✓ ✓ ✓ ✓ ✓
IIA ✗ ✗ ✗ ✗ ✗ ✗ ✗

Monotonicity ✓ ✓ ✓ ✓ ✗ ✓ ✓
Majority ✓ ✗ ✓ ✗ ✓ ✓ ✓
CW ✗ ✗ ✗ ✗ ✓ ✓ ✓
Condorcet loser ✗ ✓ ✗ ✗ ✓ ✓ ✗

Sum 5 5 5 4 6 7 6

Table 8: Rules and their properties. ∗The non-winning
Pareto-dominated systems can be tied.

• Unanimity (Pareto efficacy). If the system
mA is ranked higher than mB according to all
criteria, then mA should be ranked higher.

• Non-dictatorship (Anonymity). There is no
single criterion that defines the final ranking.

• Independence of irrelevant alternatives
(IIA). For any two systems, the information
about other systems should not influence their
ranking.

• Monotonicity. If the system mA is the win-
ner and it started to rank higher according to
one of the criteria, then it should still be the
winner.

• Majority criterion. If the system mA is con-
sidered the best by more than 50% criteria,
then it should be the winner.

• Condorcet winner criterion. This criterion is
a stronger version of the Majority criterion. If
the system mA is the Condorcet winner (CW),
it should be the winner according to the rule.

• Condorcet loser criterion. If the system mA

is the Condorcet loser (aµML for any a ∈ A),
it should never be the winner according to the
rule.

Recall that the Condorcet rule by definition com-
plies with the Condorcet winner and loser criteria.
The other properties can not be checked in applica-
tion to benchmarking since the rule is defined on
a restricted domain: it does not provide the results
on any possible combination of rankings.

There is no single best voting rule since none of
them satisfies properties of the Arrow’s impossi-
bility theorem (Arrow, 2012; Geanakoplos, 2005):
transitivity, unanimity, non-dictatorship, and inde-
pendence of irrelevant alternatives (IIA).

B Case Studies

We do not report the agreement rate, the Kendall
Tau (τ ) correlation, and the IIA results for VALUE
since we are given only up to 7 evaluated alterna-
tives: CRAIG.STARR (Shin et al., 2021), DUKG (Li
et al., 2021), HUMAN, and four HERO-based con-
figurations (Li et al., 2020). The HERO-based
baselines are trained in the following settings:
single-task training (ST), multi-task training (MT)
by tasks or domains, all-task training (AT) and AT
first then ST (AT -> ST). We refer to the configura-
tions as follows:

• HERO1: AT->ST, PT+FT;
• HERO2: AT->ST, FT-only;
• HERO3: ST, PT+FT;
• HERO4: ST, FT-only.

The VALUE results. Table 10 and Table 11 show
the VALUE re-ranking results over missing/non-
missing scores. ✗ means that the given aggregation
method does not operate over missing values. In the
first case, we observe that the Copeland and Min-
imax rules generally agree on the final outcomes
except for the fifth and sixth positions. The rules
select HUMAN as the winner. At the same time
DUKG and HERO1 have the same Minimax val-
ues, and the Minimax values of the least-3 systems
are also equal. In the second case, we omit HU-
MAN due to missing scores on 6 out of 11 tasks for
comparable interpretation. However, there are 3
tied alternatives in the Minimax and Dowdall out-
comes. Interestingly, all methods are consistent in
conclusions on the top-3 systems, with the Minimax
treating DUKG and HERO1 as equal alternatives.
The σog, Minimax, Plurality, Dowdall, and Borda
rules make equal decisions on the final outcomes.
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Rank σam σgm σog Copeland Minimax Plurality Dowdall Borda

1 90.62 90.04
↕0

0.066
↕0

20.00
↑3

0
↕0

4.00
↑3

4.98
↑3

155.00
↕0

2 90.39 89.84
↕0

0.068
↕0

19.00
↓1

0
↑2

2.50
↓1

4.25
↓1

154.50
↕0

3 90.29 89.75
↕0

0.068
↕0

18.00
↓1

−4.50
↓1

1.00
↓1

3.62
↓1

153.00
↕0

4 89.79 88.80
↕0

0.073
↑1

15.00
↓1

−5.00
↓1

0.50
↓1

3.29
↓1

145.50
↕0

5 89.25 88.75
↕0

0.074
↓1

13.00
↕0

−7.50
↕0

0.00
↑9

2.11
↕0

141.50
↕0

6 86.65 85.93
↕0

0.089
↑1

11.00
↕0

−8.00
↑8

0.00
↑12

1.16
↕0

116.50
↕0

7 86.09 85.38
↕0

0.10
↑5

9.00
↑1

−8.00
↑11

0.00
↑12

1.06
↑1

108.00
↑1

Table 9: Results of re-ranking the SGLUE benchmark. The model rank changes are depicted with
arrows, whilst the superscripts denote scores assigned by the voting method. Notations: =HUMAN;

=ERNIE; =DEBERTA/TURINGNLRV4; =NEZHA-PLUS; =T5+UDG; =BERT++; =PAI AL-
BERT; =ROBERTA-ICETS; =GPT-3 FEW-SHOT; =IPET (ALBERT) FEW-SHOT; =T5; =AILABS
TEAM.

Rank σam σgm σog Copeland Minimax Plurality Dowdall Borda

1 ✗ ✗ ✗ 6.00
↕0

0
↕0 ✗ ✗ ✗

2 ✗ ✗ ✗ 4.00
↕0

−6.00
↕0 ✗ ✗ ✗

3 ✗ ✗ ✗ 2.00
↕0

−10.00
↕0 ✗ ✗ ✗

4 ✗ ✗ ✗ 0.00
↕0

−10.00
↕0 ✗ ✗ ✗

5 ✗ ✗ ✗ −2.00
↕0

−11.00
↕0 ✗ ✗ ✗

6 ✗ ✗ ✗ −4.00
↕0

−11.00
↕0 ✗ ✗ ✗

7 ✗ ✗ ✗ −6.00
↕0

−11.00
↕0 ✗ ✗ ✗

Table 10: Results of re-ranking the VALUE benchmark over missing scores. Changes in the system ranks are
depicted with arrows, whilst the superscripts denote scores assigned by the aggregation procedure. Notations:

=HUMAN; =CRAIG.STARR; =DUKG; =HERO1; =HERO2; =HERO3; =HERO4.

Rank σam σgm σog Copeland Minimax Plurality Dowdall Borda

1 62.87 49.96
↕0

0.365
↕0

5.00
↕0

0
↕0

9.00
↕0

10.00
↕0

53.00
↕0

2 60.00 46.30
↕0

0.381
↕0

3.00
↕0

−10.00
↕0

1.00
↕0

5.17
↕0

39.00
↕0

3 57.58 44.12
↕0

0.399
↕0

1.00
↕0

−10.00
↕0

1.00
↕0

4.08
↕0

30.00
↕0

4 56.96 43.22
↕0

0.403
↑1

−1.00
↕0

−11.00
↑1

0.00
↑1

2.87
↑1

20.00
↑1

5 56.07 42.81
↕0

0.404
↓1

−3.00
↕0

−11.00
↓1

0.00
↓1

2.82
↓1

18.00
↓1

6 52.59 37.56
↕0

0.438
↕0

−5.00
↕0

−11.00
↕0

0.00
↕0

2.02
↕0

5.00
↕0

Table 11: Results of re-ranking the VALUE benchmark over non-missing scores. The HUMAN results are discarded
due to missing scores. Changes in the system ranks are depicted with arrows, whilst the superscripts denote
scores assigned by the aggregation procedure. Notations: =CRAIG.STARR; =DUKG; =HERO1; =HERO2;

=HERO3; =HERO4.
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Abstract

A modular design encourages neural models to
disentangle and recombine different facets of
knowledge to generalise more systematically
to new tasks. In this work, we assume that
each task is associated with a subset of latent
skills from an (arbitrary size) inventory. In turn,
each skill corresponds to a parameter-efficient
(sparse / low-rank) model adapter. By jointly
learning adapters and a routing function that
allocates skills to each task, the full network
is instantiated as the average of the parameters
of active skills. We propose several inductive
biases that encourage re-usage and composi-
tion of the skills, including variable-size skill
allocation and a dual-speed learning rate. We
evaluate our latent-skill model in two main set-
tings: 1) multitask reinforcement learning for
instruction following on 8 levels of the BabyAI
platform; and 2) few-shot fine-tuning of lan-
guage models on 160 NLP tasks of the CrossFit
benchmark. We find that the modular design of
our network enhances sample efficiency in rein-
forcement learning and few-shot generalisation
in supervised learning, compared to a series of
baselines. These include models where param-
eters are fully shared, task-specific, or condi-
tionally generated (HyperFormer), as well as
sparse mixture-of-experts (Task-MoE).

1 Introduction

Task-level generalisation involves training a model
on multiple tasks (in parallel or sequentially) and
then performing zero-shot inference or few-shot
adaptation on new tasks (Caruana, 1997; Ye et al.,
2021). However, the training signals from different
tasks may interfere with each other (McCloskey
and Cohen, 1989) or lead to catastrophic forgetting
of previous knowledge (French, 1999). Moreover,
when the nature of the tasks varies between training
and evaluation, models often struggle to generalise
systematically (Hupkes et al., 2020).

A potential solution to these challenges consists
in a modular design of neural architectures. In

Tasks

Skills

Skill Inventory

Layer 1

Layer N

Active skills
x

y
Active Task

Fine-Grained Skill Selection

Figure 1: A diagram of our latent-skill model: 1) a
row of the task–skill binary matrix is selected accord-
ing to the active task; 2) the sparse (SFT) or low-rank
(LoRA) adapters corresponding to active skills from a
layer-specific inventory are combined; 3) the resulting
combination is applied to the weights of a neural net-
work, e.g. BART in our multi-task experiments.

fact, these are endowed with an inductive bias to-
wards updating and activating modules locally and
asynchronously, thus preventing negative interfer-
ence (Jacobs et al., 1991b). Additionally, by dis-
entangling autonomous facets of knowledge (also
known as skills) that are re-used and recombined in
original ways for new tasks, modularity facilitates
systematic generalisation (Alet et al., 2018; Ponti,
2021; Kingetsu et al., 2021, inter alia).

Previous work on task-level generalisation fo-
cused on settings where the skills relevant for new
tasks are already known a priori (Pfeiffer et al.,
2020; Ansell et al., 2022). However, this requires
expert knowledge, possibly with sub-optimal gran-
ularity and limited to a few domains. In alternative,
mixture-of-expert (MoE) methods such as Task-
MoE (Kudugunta et al., 2021a) learn a routing
function that allocates modules to tasks end-to-end.
However, MoEs mostly focus on scaling large lan-

687



guage models trained from scratch, and their effec-
tiveness for out-of-domain generalisation is a moot
point (Artetxe et al., 2021; Fedus et al., 2022).

In this work, we introduce a modular architecture
that can efficiently adapt to new tasks, by virtue of
a series of inductive biases that facilitate general-
isation. The full model is shown in Figure 1. For
each task, we learn a binary vector that specifies
which skills (from a fixed inventory) are used to
solve it. In the example, skills 2 and 4 are active.
We implement each skill as a parameter-efficient
adapter, either sparse (Ansell et al., 2022, SFT)
or low-rank (Hu et al., 2021, LoRA). The param-
eters corresponding to every active skill (red and
blue in the example) are then combined, by simple
averaging. The resulting combination adapts a pre-
trained model, such as BART (Lewis et al., 2020),
towards a specific task during multitask learning.
The variable-size allocation of skills encourages
their re-usage and re-combination in new tasks. To
promote a coarse-to-fine dynamic where skill allo-
cation is determined before skill-specific parame-
ters, we explore a dual-speed learning rate for these
two components (see Section 2.3).

We evaluate our model on reinforcement learn-
ing on BabyAI (Chevalier-Boisvert et al., 2019), a
platform for instruction following in a simulated en-
vironment, and supervised learning on CrossFit (Ye
et al., 2021), a benchmark recasting 160 NLP tasks
as text-to-text generation problems. Compared to
a series of competitive baselines, we obtain higher
sample efficiency and higher performance in few-
shot adaptation to held-out tasks. In particular, our
latent-skill model surpasses non-modular methods
for multi-task adaptation, such as HyperFormers
(Karimi Mahabadi et al., 2021) and CA-MTL (Pi-
lault et al., 2021), and mixture-of-experts methods
such as Task-MoE (Kudugunta et al., 2021a).

Finally, we probe the learnt task–skill alloca-
tion matrix and illustrate how our method also en-
hances interpretability, as it discovers which pairs
of tasks require common skills. The code is made
available at https://github.com/McGill-NLP/
polytropon.

2 A Latent-Skill Multitask Model

The goal of multitask learning in modelling a set
of tasks T = (T1, . . . , T|T |) is two-fold: 1) in-
creasing sample efficiency on each seen task by
borrowing statistical strength from the others; and
2) attaining systematic generalisation, the ability

to adapt robustly to new tasks, possibly based on
a few target-domain examples. In particular, in su-
pervised learning, each task Ti is associated with a
dataset Di ≜ {(x1,y1), . . . , (xn,yn)} and a loss
function L(ŷ,y), where x is an input and y is an
output. In reinforcement learning, each task is char-
acterised by an initial state distribution q(x1), a
transition distribution q(xt+1 | xt, at), and a loss
function L(x1, a1, . . . ,xh, ah) → R,1 where x is
a state, a is an action, and h is the temporal horizon
of each episode. Thus, each task defines a Markov
Decision Process (MDP).

Fully sharing the parameters of a model across
tasks (Stickland and Murray, 2019) may exhaust
its capacity or create interference among the gradi-
ents from task-specific losses (Wang et al., 2021).
These limitations can be countered by instead com-
posing task-specific adapters (Pfeiffer et al., 2021)
or softly sharing parameters (Ponti et al., 2021a;
Karimi Mahabadi et al., 2021; Ansell et al., 2021).
The first method leads to an explosion in parame-
ter count, which grows with the number of tasks.
Moreover, the second method suffers during few-
shot adaptation to new tasks as the entangled (i.e.,
non-modular) knowledge may overfit the training
distribution.

Instead, we posit that there exists a (possibly
small) fixed inventory of skills S = (S1, . . . ,S|S|),
where |S| ≪ |T |. Each skill is an independent
facet of knowledge that is reused across a subset of
tasks. These assumptions guarantee both scalabil-
ity and modularity. In particular, we seek to create
a model that jointly learns which skills are active
for which task, aggregates the corresponding skill
parameters according to some deterministic func-
tion, and maximises the multitask log-likelihood:

argmax
Z,Φ

∑

Ti

∑

(x,y)∈Ti
log p(y | x,ϑi) p(Z) p(Φ),

where ϑi = δ(Zi,Φ,ϑ0)
(1)

The learnable parameters, as shown in Figure 1, are:
i) Z, which denotes the task–skill allocation matrix,
representing a soft partition of skills across tasks;
ii) Φ, a tensor containing the parameters of each
skill. As we explain in Section 2.4, these consist
in either sparse or low-rank linear adapters. δ is
a deterministic combination function that takes as
input the task–skill allocation vector Zi for task Ti,

1This is the negative of the reward: L(·) = −R(·).

688

https://github.com/McGill-NLP/polytropon
https://github.com/McGill-NLP/polytropon


the skill parameters Φ and some shared parameters
across tasks ϑ0 and creates a task-dependent set
of parameters ϑi, i.e. in our model, we use simple
averaging of the active skills (see Figure 1). ϑi is
then used to predict the task label y given the input
x. In what follows, we illustrate each component
separately.

2.1 Soft Partitions

What is the best strategy to determine which skills
are active for which task? The cognitively inspired
notion of modularity at the level of structured in-
puts assumes that modules compete with each other
for activation and updating (Bengio, 2017; Goyal
et al., 2021). This intuition is translated in practice
into a softmax across modules and top-k selection,
such as in mixtures of experts (MoEs; Kudugunta
et al., 2021a; Fedus et al., 2022). Nevertheless, we
argue, modularity at the task level should reflect the
fact that tasks fall into a hierarchy: more complex
ones subsume simpler ones as sub-tasks. This idea
has a long history, harking back to early works on
MoEs (Jacobs et al., 1991b) and neural programme
induction (Rosenbaum et al., 2019). Hence, we
allow for variable-size subsets of skills.

As a consequence, we assume that the matrix
Z ∈ {0, 1}|T |×|S| representing task–skill alloca-
tions is a soft partition: each cell zij is a binary
scalar indicating if skill-specific parameters Φj are
active for a certain task Ti. However, being dis-
crete, such a binary matrix is not differentiable and
therefore cannot be learned end-to-end via gradi-
ent descent. Instead, we implement it as a collec-
tion of Bernoulli distributions continuously relaxed
through a Gumbel-sigmoid (Maddison et al., 2017;
Jang et al., 2017), which ensures stochasticity while
allowing for differentiable sampling:

ẑi,j = σ

[
log

σ(zi,j)u

(1− σ(zi,j)) (1− u)
1/τ
]

u ∼ Uniform(0, 1). (2)

In principle, either a coarse-grained soft partition
can be learned globally for the entire neural net-
work, or different fine-grained soft partitions can
be assigned to each layer. We opt for the second
alternative as it affords the model more flexibility
and, foreshadowing, yields superior performance.
Therefore, Z and Φ are henceforth assumed to be
layer-specific, although we will omit layer indexes
in the notation for simplicity’s sake.

2.2 Skill-specific Parameters

Given the matrix row Ẑi for task Ti from Equa-
tion (2) and a matrix of skill-specific parameters
Φ ∈ R|S|×d, where d is the dimension of the layer
parameters, the aggregate of the parameters of ac-
tive skills is superimposed to a base parameterisa-
tion ϑ0 ∈ Rd shared across tasks. For instance, ϑ0

may be either the initialisation from a pre-trained
model or learned from scratch:

ϑi = δ(Zi,Φ,ϑ0) ≜ ϑ0 +
∑

Sj
Φj

ẑi,j∑
Sj ẑi,j

, (3)

where ϑi denote the parameters obtained by com-
bining the active skills for the specific task Ti. Note
that we normalise the rows of the task–skill allo-
cation matrix Ẑ prior to composition because the
variable number of active skills per task would oth-
erwise affect the norm of the combined parameters
ϑi, thus making training unstable.

2.3 Inductive Biases

A possible failure mode during training is a col-
lapse into a highly entropic or non-sparse alloca-
tion matrix Ẑ, e.g., where all skills are active and
skill-specific parameters remain general-purpose
rather than specialising. Thus, we also provide an
inductive bias to encourage the model to learn a
low-entropy, highly-sparse allocation matrix.

In particular, we experiment with a dual-speed
learning rate, setting its value for Z higher than for
Φ. Intuitively, by accelerating learning of the soft
partition matrix, to minimise the loss it becomes
more convenient to discover better task–skill alloca-
tions over settling for general-purpose parameters
that are agnostic with respect to the subset of ac-
tive skills. This is reminiscent of the hypothesis
that different kinds of knowledge require faster or
slower rates of learning (Kahneman, 2011).

2.4 Parameter Efficiency

In order to keep the skills modular, each of them
must correspond to a separate layer parameterisa-
tion. Nevertheless, this may lead to a significant
increase in both time and space complexity. Thus,
we explore parameter-efficient implementations of
Φ that only add a negligible amount of parameters
to the base model. In particular, we contemplate
both sparse and low-rank approximations.

Sparse Fine-Tuning (SFT; Ansell et al., 2022)
learns a highly sparse vector of differences Φ with
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respect to a base model ϑ0. Its non-zero entries
are identified by a binary matrix M ∈ {0, 1}|S|×d.
For simplicity, we randomly draw M , as this was
shown to perform almost on par with more sophisti-
cated criteria without requiring a separate selection
phase (Ansell et al., 2022). SFT is agnostic with
respect to the underlying neural architecture.

Low-Rank Adapters (LoRA; Hu et al., 2021) is
another method for parameter-efficient fine-tuning
designed specifically for Transformer architectures.
It factorises each weight of the linear projections
inside self-attention as a batched matrix multiplica-
tion between two low-rank tensors A ∈ R|S|×o×r
and B ∈ R|S|×r×i, where r stands for the rank. In
our model, each linear projection f : Ri → Ro is
implemented as:

x′ = [W0 + (z⊤AB)]x+ b0 (4)

where Φ ≜ flatten(AB).
We employed sparse adapters (LT-SFT) for the

reinforcement learning experiments and low-rank
adapters (LoRA) for the NLP experiments. The
rationale behind this choice is showing that our
method is effective independent of the choice of
adapters.

2.5 Baselines

We measure the performance of our SKILLED

model, where we learn the skill–task allocation ma-
trix Z end-to-end, against these baselines, which
derive from a certain configuration of Z:

• PRIVATE: each task has a separate model param-
eterisation. During few-shot adaptation, given
that Ttrain ∩ Teval = ∅, this model cannot ben-
efit from any transfer of information between
training and evaluation tasks. This is equivalent
to the special case where the task–skill alloca-
tion matrix is an identity matrix Z = I of size
|T | × |T | and |S| = |T |.

• SHARED: a shared skill is learnt on the training
tasks and then fine-tuned for each evaluation
task separately. This is equivalent to the special
case where the task–skill allocation matrix is
a matrix of ones Z = 1 of size |T | × 1 and
|S| = 1.

• EXPERT, where the task–skill allocation is con-
tingent on expert knowledge about task relation-
ships. Crucially, Z is fixed a priori rather than
being learned.

In addition, for the NLP experiments, we com-
pare our SKILLED method to two state-of-the-
art baselines for multitask learning. In the first
baseline, HYPER, parameters are softly shared
(Karimi Mahabadi et al., 2021; Pilault et al., 2021).
These methods generate adapters for the pre-trained
model parameters with hyper-networks conditioned
on task embeddings. Note that HYPER has a hidden
connection with SKILLED, despite their apparent
difference. In fact, we can draw an equivalence be-
tween i) binary skill vectors z and task embeddings;
ii) the matrix of skill-specific parameters Φ and lin-
ear hyper-network weights. Crucially, in our case z
is binary and modular, rather than continuous and
entangled.

Secondly, we compare SKILLED with TASK-
MOE (Kudugunta et al., 2021a). MoEs were orig-
inally conceived for scaling large language mod-
els trained from scratch, rather than model adapta-
tion. Moreover, their modules consist of multiple
feed-forward networks after the attention layer in-
side Transformers. The routing function to allocate
modules to tasks is based on softmax and top-k
selection. This, however, does not favour module
re-usage, contrary to variable-size allocation, and
instead creates a rich-gets-richer mechanism.

Contrary to their original formulation, we im-
plement the modules of HYPER and TASK-MOE
through LoRA adapters rather than Adapter layers
and FFNs, respectively. This ensures that the num-
ber of updated parameters is similar to SKILLED as
implemented in Equation (4) and thus their results
are comparable. On top of this, LoRA was shown
to offer a better trade-off between performance and
efficiency (Liu et al., 2022).

3 Reinforcement Learning Experiments

3.1 Dataset

As a proof-of-concept experiment, we perform mul-
titask reinforcement learning on the BabyAI plat-
form (Chevalier-Boisvert et al., 2019). This bench-
mark consists in a series of increasingly complex
levels, where an agent must execute a linguistic
command by navigating a two-dimensional grid
world and manipulating objects. Crucially, levels
are procedurally generated to reflect different sub-
sets of skills (e.g., PICKUP, UNLOCK, et cetera).
This enables us to test our model in a controlled
setting where performance based on learned skills
can be compared with ‘ground truth’ skills. In par-
ticular, we focus on a similar subset of 8 levels as
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Hui et al. (2020).

3.2 Experimental Setup
The neural architecture adheres to the best model
reported in Hui et al. (2020), BOW_ENDPOOL_RES.
It encodes the linguistic input through a Gated Re-
current Unit (GRU; Cho et al., 2014) and the vi-
sual input through a convolutional network (CNN).
These two streams from different modalities are
then merged into a single representation through
FiLM (Perez et al., 2018). This component per-
forms a feature-wise affine transformation of the
CNN output conditioned on the GRU output.

Afterwards, a Long Short-Term Memory net-
work (LSTM; Hochreiter and Schmidhuber, 1997),
a recurrent module keeping track of the agent state
trajectory, receives the multimodal representation
and returns the current hidden state. This in turn
is fed into two distinct MLPs, an actor and a critic
(Sutton, 1984). The actor yields a distribution over
actions, whereas the critic a reward baseline for the
current state. In our experiments, each row of the
matrix Φ corresponds to a possible parameterisa-
tion for all these components.

To determine a priori a skill–task allocation for
the EXPERT baseline, we harness the information
about the skills employed to procedurally generate
each level by Chevalier-Boisvert et al. (2019, p.
6). For the SKILLED model, we set |S| = 9 simi-
larly to EXPERT. This allows us to compare learned
skills and ‘ground-truth’ skills from an inventory of
identical size. As a parameter-efficient implemen-
tation of Φ, we employ SFT (Ansell et al., 2022)
with a sparsity of 90%. For all model variants, ϑ0

and Φ are both initialised from a Kaiming uniform
(He et al., 2015) and learnable. During training, we
sample levels uniformly. The full specification of
hyper-parameters is available in Appendix A.

3.3 Results
We now measure if our latent-skill model facili-
tates sample efficiency, which following Chevalier-
Boisvert et al. (2019) is defined as the number of
episodes required for an agent to reach a success
rate greater than 0.99.2 Success in turn is defined
as executing an instruction in a number of steps
n < nmax, where the threshold again depends on
the level complexity.

We plot our results in Figure 2. Firstly, mod-
els sharing information across tasks (either fully

2Success rate alone is insufficient as a performance metric
as most models can solve all the levels if given enough time.

or mediated by skills) enjoy higher sample ef-
ficiency than assigning disjoint parameters for
each task (PRIVATE), as they can borrow statis-
tical strength from each other. Crucially, among
information-sharing models, dual-speed SKILLED

(where knowledge is modular) surpasses SHARED

(where knowledge is entangled among tasks). Thus,
considering a task as a collection of fine-grained
skills that can be separated and reused is the most
effective way of sharing information. Finally, re-
sults surprisingly show that learning a task–skill al-
location matrix end-to-end (SKILLED) is more ben-
eficial than leveraging the ground-truth task–skill
decomposition used to create the BabyAI levels
(EXPERT). This highlights the fact that different
tasks might mutually benefit in ways that go be-
yond what is posited a priori by experts, and that
our proposed approach can successfully uncover
and exploit such task synergies.

Moreover, we run ablations to study the impact
of the inductive biases and the parameter-efficient
implementation. We compare the SKILLED model
in the standard setup (with dual-speed learning
rates and sparse skill-specific parameters) with
other variants (with a single learning rate or with
fully dense skill-specific parameters) in terms of
sample efficiency in Table 3 in Appendix B. We
find that assigning the same learning rate to every
model component drastically slows convergence to
an almost-perfect success rate. In addition, employ-
ing fully dense skill-specific parameters increases
sample efficiency only to a limited degree (~1.9M).
Thus, we can verify that parameter sparsification
offers an effective trade-off between performance
and space complexity.

4 Supervised Learning Experiments

4.1 Dataset

In order to measure the benefits of a modular design
for systematic generalisation to new tasks, we run
a second set of experiments on CrossFit (Ye et al.,
2021), a benchmark including 160 diverse natural
language processing tasks in English sourced from
Huggingface Datasets (Lhoest et al., 2021). The
tasks in CrossFit are all converted into a unified
text-to-text format inspired by Raffel et al. (2020).
Moreover, they are partitioned into three disjoint
subsets. First, a model is pre-trained in a multitask
fashion on training tasks Ttrain. Afterwards, it is
adapted to each evaluation task from Teval in a few-
shot learning setting. Hyper-parameter are tuned
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TASK Metric Ye et al.
(2021)

Shared Private Expert Hyper-
Former

Task-MoE Skilled

AG-NEWS C–F1 84.6 ± 1.4 59.6 ± 21.1 74.7 ± 10.2 47.0 ± 9.9 64.6 ± 13.4 79.2 ± 13.1 81.2 ± 8.0
AI2-ARC Acc 22.8 ± 1.9 23.7 ± 2.4 20.3 ± 0.8 28.3 ± 3.7 23.8 ± 6.7 19.6 ± 5.6 22.3 ± 3.4
AMAZON-POLARITY C–F1 92.2 ± 0.6 92.4 ± 2.8 94.4 ± 0.4 57.4 ± 3.1 93.8 ± 1.5 87.3 ± 14.0 93.7 ± 0.9
BSN-NPI-LICENSOR Acc 99.9 ± 0.2 99.9 ± 0.0 99.9 ± 0.0 99.9 ± 0.0 99.9 ± 0.0 99.9 ± 0.0 99.9 ± 0.2
BSN-NPI-SCOPE Acc 85.7 ± 13.0 99.8 ± 0.3 99.6 ± 0.9 99.9 ± 0.2 99.9 ± 0.0 99.9 ± 0.0 99.9 ± 0.2
BREAK-QDMR EM 4.8 ± 0.4 4.1 ± 0.5 1.9 ± 1.7 4.1 ± 0.9 3.8 ± 1.2 4.2 ± 0.8 4.9 ± 0.6
CIRCA C–F1 42.3 ± 7.8 44.3 ± 7.5 22.2 ± 6.3 13.0 ± 7.0 25.0 ± 6.3 39.9 ± 9.3 45.9 ± 5.7
CRAWL-DOMAIN EM 20.7 ± 2.0 40.9 ± 2.2 36.2 ± 6.3 37.1 ± 5.3 34.9 ± 3.8 44.5 ± 2.7 39.0 ± 4.2
ETHOS-DISABILITY C–F1 75.3 ± 2.2 66.9 ± 11.8 64.7 ± 12.1 59.2 ± 15.8 79.4 ± 3.9 66.8 ± 5.2 72.2 ± 5.2
ETHOS-SEXUAL C–F1 59.7 ± 5.7 62.4 ± 8.4 71.2 ± 9.8 40.3 ± 11.4 76.8 ± 10.0 76.7 ± 14.4 86.1 ± 2.6
FREEBASE-QA EM 1.3 ± 0.1 0.7 ± 0.2 0.2 ± 0.1 1.3 ± 0.5 1.6 ± 0.8 0.7 ± 0.6 0.7 ± 0.3
GLUE-COLA M-Corr 3.5 ± 6.7 12.9 ± 5.5 9.1 ± 6.3 7.6 ± 5.6 6.8 ± 4.2 10.8 ± 10.7 7.1 ± 5.3
GLUE-QNLI Acc 74.7 ± 2.9 75.5 ± 3.6 57.1 ± 7.7 56.6 ± 19.7 73.9 ± 3.2 75.0 ± 3.3 78.1 ± 1.6
HATEXPLAIN C–F1 44.9 ± 2.5 33.1 ± 8.2 26.5 ± 7.8 11.9 ± 4.0 23.2 ± 6.2 41.9 ± 4.2 32.6 ± 13.6
QUOREF QA-F1 41.2 ± 1.6 46.0 ± 4.4 36.3 ± 4.6 48.4 ± 4.3 41.7 ± 6.5 44.3 ± 3.1 47.3 ± 3.5
RACE-HIGH Acc 30.5 ± 1.5 34.0 ± 2.7 28.5 ± 1.4 38.5 ± 2.0 30.8 ± 1.9 30.2 ± 3.2 34.8 ± 2.0
SUPERGLUE-RTE Acc 60.4 ± 3.6 60.6 ± 2.9 49.7 ± 5.1 51.7 ± 4.8 60.9 ± 3.8 59.5 ± 5.2 60.4 ± 5.9
TWEET-EVAL-IRONY C–F1 55.2 ± 3.6 52.1 ± 8.0 50.1 ± 14.2 25.6 ± 8.9 38.4 ± 6.0 51.8 ± 12.6 57.2 ± 2.4
WIKI-SPLIT Rouge-L 79.3 ± 0.5 80.1 ± 0.6 80.3 ± 0.6 79.2 ± 0.8 79.2 ± 0.7 80.0 ± 0.7 80.6 ± 0.3
YELP-POLARITY C–F1 71.8 ± 21.1 88.3 ± 14.9 65.0 ± 20.5 53.9 ± 12.7 95.0 ± 0.9 76.2 ± 17.6 94.5 ± 1.1
ALL - 52.5 ± 1.5 53.9 ± 1.7 49.4 ± 1.6 43.0 ± 2.2 52.7 ± 1.0 54.9 ± 1.4 56.9 ± 1.2

Table 1: Few-shot adaptation results of SKILLED and five baselines, including the original model from Ye et al.
(2021), on 20 evaluation tasks of CrossFit (Ye et al., 2021). For the full name of the metrics, refer to Section 4.1.
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Figure 2: Sample efficiency (success rate vs. number of
episodes) for different multitask models across 8 levels
of BabyAI. Moving average with window of 100.

on the held-out set Tdev.
We adopt the partition 1 (called RANDOM) from

Ye et al. (2021), where |Ttrain| = 120, |Tdev| =
|Teval| = 20, and tasks are split randomly. This is
the most comprehensive partition and most suited
for general-purpose models, as it includes all types
of tasks. Every task is associated with 5 different
few-shot data splits for train Dtrain and develop-
ment Ddev and 1 larger data split for evaluation
Deval. During multitask pre-training, we concate-
nate all Dtrain and Ddev from Ttrain. During few-
shot adaptation, for each task in Teval we use each
Dtrain and Ddev separately in 5 distinct runs and

evaluate on Deval. We measure the performance
of a model with 7 evaluation metrics according to
the type of task: C[lassification]-F1, Acc[uracy],
QA-F1, E[xact] M[atch], Rouge-L, M[atthew]-
Corr[elation], and P[earson]-Corr[elation].

4.2 Experimental Setup

As pre-trained weights ϑ0 and architecture for con-
ditional text generation, we choose BART Large
(Lewis et al., 2020), a 24-layer Transformer-based
encoder–decoder. We use LoRA (Hu et al., 2021)
to implement skill-specific parameters efficiently,
as it was explicitly designed for the Transformer
architecture (cf. Section 2.4). While ϑ0 remains
frozen, A matrices in Φ are initialised to zero ma-
trices following Hu et al. (2021).

As a source of expert knowledge for the EXPERT

baseline, we associate each task to a unique skill
corresponding to one of the 4 task types of Ye
et al. (2021, p. 20)’s taxonomy: question answering,
conditional text generation, classification, or other
(e.g., regression). The skill inventory size of 8
for SKILLED was chosen among {2, 4, 8, 16, 32}
based on validation. We set the embedding size e
and hidden size h of HYPER to an identical value
to ensure a fair comparison. Both SKILLED and
HYPER therefore increase the parameter count by
∼ 0.78% per skill and task embedding dimension,
respectively. We provide more information on the
hyper-parameter configuration in Appendix A.
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Figure 3: Delta in performance in terms of task-specific metrics between SKILLED (bottom) and HYPER (top) on
the one hand and SHARED on the other, across 120 CrossFit tasks seen during multitask pre-training.

4.3 Results

Few-shot Adaptation to New Tasks In the few-
shot adaptation setting, our goal is to evaluate the
capability of the model to quickly generalise to
new tasks unseen during training. This is the most
realistic setting as tasks encountered by models
deployed ‘in the wild’ will be characterised by dif-
ferent distributions or involve different input / out-
put spaces. Performance in terms of task-specific
metrics is reported in Table 1 for the 20 evaluation
tasks individually and on average.

Crucially, results show that SKILLED outper-
forms alternative formulations of the task–skill al-
location matrix, such as SHARED, PRIVATE and
EXPERT. Importantly, we note that SKILLED also
surpasses HYPER by a sizeable margin despite the
two models having comparable parameter counts.
This points to the fact that explicitly modularising
knowledge learnt during multitask training is im-
portant for systematic adaptation to unseen tasks,
whereas entangled knowledge is more brittle to dis-
tribution shifts in cross-task transfer. Similarly, the
average performance of SKILLED is significantly
higher that TASK-MOE, which illustrates the im-
portance of variable-size module allocation. Also,
it demonstrates that modularity holds promise not
only for scaling large language models, but also
as a strategy to favour generalisation. Finally, we
corroborate the soundness of our experiment setup
by reproducing the results of Ye et al. (2021).3

Multitask Evaluation on Seen Tasks Moreover,
to ensure that modularity does not adversely affect
in-domain performance, we evaluate models on the
test sets of seen tasks after multitask training. In

3Note that in Ye et al. (2021) the pre-trained model is
BART Small and all parameters are fine-tuned. Hence, these
results are not directly comparable.

Figure 3, we report the delta in performance in
terms of task-specific metrics between two models
(SKILLED on top, HYPER on the bottom) and a
baseline (SHARED) for the 120 training tasks. Both
models yield positive gains for most tasks over
SHARED. Most importantly, SKILLED achieves a
performance (48.95 on average) comparable to HY-
PER (49.37 on average), therefore confirming that
explicit modularisation can be as effective as con-
ditional parameter generation when evaluated on
seen tasks, but also engenders vast improvements
on held-out tasks.

In-Depth Analysis of Learned Skills Finally,
we run an in-depth analysis of the task–skill alloca-
tion matrices Z learned by SKILLED. We visualise
its posterior for |S| = 4 in Figure 5. Specifically,
we measure:

1. Discreteness. How close is the continuous re-
laxation to a binary matrix? To this end, we
report the average normalised entropy across all
probabilities in the cells of the matrix:

Discrete(Z) =
1

|T | · |S|
∑

Ti

∑

Sj

H(zij)
log 2

(5)

For instance, a binary matrix yields a score of 1,
a matrix where every cell is 0.5 yields a score of
0.

2. Sparsity. How many skills are active per task on
average? We count the rate of non-zero cells in
the values rounded to the closest integer:

Sparsity(Z) =
1

|T | · |S|
∑

Ti

∑

Sj
⌊zij⌉ (6)

3. Usage. Is the allocation of skills across tasks
balanced or are some preferred over others? We
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Figure 4: Statistics of the task–skill matrices for differ-
ent choices of skill inventory size, including: discrete-
ness, sparsity, usage, and the average exact match on
the development set of 120 CrossFit tasks.

provide the normalised entropy of a categorical
distribution parameterised by

∑
j Z⋆,j , the sum

of the columns of Z:

Usage(Z) =
H
[∑
Ti zi,⋆

]

log |S| (7)

Note that the entropy values are normalised into the
range [0, 1] to make them invariant to the number
of skills: this quantity is known as ‘efficiency’.

We plot these metrics—as well as the perfor-
mance on in-domain train tasks in terms of exact
match—as a function of the skill inventory size in
Figure 4. We find that, whilst a continuous relax-
ation, the learned matrices are highly discretised
and all their values are extremely close to either
0 or 1. Moreover, the level of sparsity decreases
as the number of skills increases. This means that
relatively smaller subsets of skills are required. In-
stead, usage stays consistently near the maximum
value, which implies that there is uniformity in how
frequently each skill is active across tasks. Finally,
exact match is consistently high for sufficiently
large (|S| ≥ 8) skill inventories.

Overall, these results demonstrate that a quasi-
binary, highly-sparse, and non-trivial allocation ma-
trix can be successfully learned in an end-to-end
fashion even with simple inductive biases such as
a dual-speed learning rate.

Crucially, learning a skill allocation also facili-
tates interpreting black-box multitask models. In
fact, the structure of Z corresponds to an explicit
hierarchy of tasks, where simpler ones are sub-
sumed by more complex ones, and similar tasks
can be grouped into the same category if they share
the same subset of skills. We plot this hierarchy
as a dendrogram in Figure 6. For instance, most
GLUE tasks (Wang et al., 2018) are grouped to-
gether as they are all focused on natural language
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Figure 6: Task partitions for |S| = 4, which corresponds
to 2|S| = 16 possible subsets of skills.

understanding: for instance, they require skill 1
(COLA), 2 (MRPC, RTE, SST2, WNLI), or both 1
and 2 (MNLI, QQP).

5 Related Work

Modular Networks Modularising neural net-
works has long been sought as a way to achieve
better generalisation to unseen inputs (Jacobs et al.,
1991b; Andreas et al., 2016; Kirsch et al., 2018),
tasks (Jacobs et al., 1991a; Alet et al., 2018), and
recently to improve continual learning (Ostapenko
et al., 2021), to be more robust to changes in the
environment (Goyal et al., 2021) and for sequence
generation (Zhang et al., 2022).

In routing networks (Rosenbaum et al., 2019), a
learnable router decides the order in which mod-
ules are applied to the input. Learning the structure
of this composition has been achieved using an ex-
ternal parser (Andreas et al., 2016) or by sampling
structures with simulated annealing (Alet et al.,
2018). In mixture of experts (MoE), the system
selects a soft subset of modules depending on the
input to be processed (Jacobs et al., 1991b; Shazeer
et al., 2017). MoEs can be interpreted invoking the
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theory of independent mechanisms (Parascandolo
et al., 2018) that Goyal et al. (2021) further extend
to handle sequential problems. Sun et al. (2020)
share subsets of parameters among sparse sub-
networks corresponding to different tasks. Within
NLP, Fedus et al. (2021) uses a MoE architecture to
scale large language model pre-training to trillions
of parameters.

Our model conditions the computation on the
task rather than on task inputs. Attempts to en-
force parameter reuse and modularity for multi-
task learning include (Rajendran et al., 2017; Ponti
et al., 2021a; Kingetsu et al., 2021; Kudugunta
et al., 2021b). Rajendran et al. (2017) learn sepa-
rate modules for each task and then learn how to
reuse those modules for a new task. Kudugunta
et al. (2021b) uses a set of modules for each task
in a multi-lingual translation setting. Our approach
does not assume a set of modules for each task
but instead decomposes a task into a set of skills
themselves reusable across tasks.

Multitask NLP Joint multitask learning in NLP
proved an effective strategy for improving model
performance in low-resource tasks and for quickly
adapting to new tasks (Ruder et al., 2019; Min
et al., 2021; Wei et al., 2021; Aribandi et al., 2021;
Sanh et al., 2022), languages (Ponti et al., 2019),
and modalities (Bugliarello et al., 2022). Liu et al.
(2019) trained a shared model for all GLUE tasks
and achieved impressive performance on GLUE.
Pfeiffer et al. (2021) share information across task-
specific parameters while alleviating negative task
interference.

In our experiments we parameterise each skill
with two kinds of adapters: either SFT (Ansell
et al., 2022) or LoRA (Hu et al., 2021). Re-
cently, Karimi Mahabadi et al. (2021) and Pilault
et al. (2021) ensure cross-task information sharing
by using a hyper-network to generate adapters from
task embeddings. Differently, our task-specific pa-
rameters are composed of a set of skills from a
shared inventory, which makes our approach mod-
ular and more scalable.

Several multitask approaches specifically target
adaptation to new tasks, such as meta-learning ap-
proaches (Alet et al., 2018; Rusu et al., 2019; Ponti
et al., 2021b; Garcia et al., 2021; Ostapenko et al.,
2021). In our paper, we efficiently achieve few-
shot task adaptation by inferring the skill allocation
for new tasks and fine-tuning skill parameters ini-
tialised from multitask learning.

6 Conclusions

We argued that a modular design is crucial to en-
sure that neural networks can learn from a few
examples and generalise robustly across tasks by
recombining autonomous facets of knowledge. To
this end, we proposed a model where a subset of
latent, discrete skills from a fixed inventory is al-
located to each task in an end-to-end fashion. The
task-specific instantiation of a neural network is
then obtained by combining efficient parameterisa-
tions of the active skills, such as sparse or low-rank
adapters. We evaluate the sample efficiency of our
model on multitask instruction following through
reinforcement learning and its few-shot adaptability
on multitask text-to-text generation through super-
vised learning. In both experiments, we surpass
competitive baselines such as conditional param-
eter generation (HyperFormer) and mixture of ex-
perts (Task-MoE). Finally, we show that modularity
helps interpret multi-task models by inferring ex-
plicit relationships between tasks according to the
skills they share.

Limitations

Firstly, the kind of knowledge captured by indi-
vidual skills is not fully interpretable. In terms of
task–skill allocation, while some patterns based
on task type and textual domain emerge from the
clusters of Figure 6, it remains unclear how to sys-
tematically probe this information. Moreover, in
terms of skill-specific parameters, it is hard to mea-
sure the diversity among learned skills. In fact, due
to the under-specification of neural networks, dif-
ferent configurations in the parameter space may
in fact correspond to the same function.

Secondly, few-shot adaptation in our experi-
ments is based on the assumption that the skill in-
ventory is fixed. Therefore, the model is compelled
to recombine and possibly fine-tune old skills. In-
stead, each unseen task should involve a combi-
nation of newly discovered and previously honed
skills. In the future, a possible extension of our
method for continuous learning should adopt this
more natural assumption.

Finally, we explore only a subset of the prob-
lems where different skills can be combined. In
addition to instruction following and conditional
text generation, our results should be replicated
also in multilingual and multimodal benchmarks
(Bugliarello et al., 2022, inter alia).
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and Ivan Vulić. 2022. Composable sparse fine-tuning
for cross-lingual transfer. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics.

Alan Ansell, Edoardo Maria Ponti, Jonas Pfeiffer, Se-
bastian Ruder, Goran Glavaš, Ivan Vulić, and Anna
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Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
bastian Ruder. 2020. MAD-X: An Adapter-based
framework for multi-task cross-lingual transfer. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7654–7673.

697

https://watermark.silverchair.com/neco.1991.3.1.79.pdf
https://watermark.silverchair.com/neco.1991.3.1.79.pdf
https://openreview.net/pdf?id=rkE3y85ee
https://openreview.net/pdf?id=rkE3y85ee
https://aclanthology.org/2021.acl-long.47
https://aclanthology.org/2021.acl-long.47
https://aclanthology.org/2021.acl-long.47
https://arxiv.org/pdf/2112.13208.pdf
https://arxiv.org/pdf/2112.13208.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2018/file/310ce61c90f3a46e340ee8257bc70e93-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/310ce61c90f3a46e340ee8257bc70e93-Paper.pdf
https://doi.org/10.18653/v1/2021.findings-emnlp.304
https://doi.org/10.18653/v1/2021.findings-emnlp.304
https://aclanthology.org/2021.findings-emnlp.304
https://aclanthology.org/2021.findings-emnlp.304
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2021.emnlp-demo.21
https://aclanthology.org/2021.emnlp-demo.21
https://openreview.net/forum?id=rBCvMG-JsPd
https://openreview.net/forum?id=rBCvMG-JsPd
https://aclanthology.org/P19-1441
https://aclanthology.org/P19-1441
https://openreview.net/references/pdf?id=S1jE5L5gl
https://openreview.net/references/pdf?id=S1jE5L5gl
https://arxiv.org/pdf/2110.15943.pdf
https://arxiv.org/pdf/2110.15943.pdf
https://proceedings.neurips.cc/paper/2021/file/fe5e7cb609bdbe6d62449d61849c38b0-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/fe5e7cb609bdbe6d62449d61849c38b0-Paper.pdf
http://proceedings.mlr.press/v80/parascandolo18a/parascandolo18a.pdf
http://proceedings.mlr.press/v80/parascandolo18a/parascandolo18a.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/11671/11530
https://ojs.aaai.org/index.php/AAAI/article/view/11671/11530
https://aclanthology.org/2021.eacl-main.39
https://aclanthology.org/2021.eacl-main.39
https://aclanthology.org/2020.emnlp-main.617
https://aclanthology.org/2020.emnlp-main.617


Jonathan Pilault, Amine El hattami, and Christopher
Pal. 2021. Conditionally adaptive multi-task learn-
ing: Improving transfer learning in NLP using fewer
parameters & less data. In International Conference
on Learning Representations.

Edoardo Ponti. 2021. Inductive Bias and Modular De-
sign for Sample-Efficient Neural Language Learning.
Ph.D. thesis, University of Cambridge.

Edoardo M Ponti, Ivan Vulić, Ryan Cotterell, Marinela
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A Hyper-parameters

A.1 BabyAI
We follow closely the best hyper-parameter setup
of Hui et al. (2020). Tiles in the visual input are
encoded into embeddings of size 128 via a look-up
table. The CNN has 2 layers, filter size 3, stride
1, and padding 1; whereas the FiLM module has
2 layers. A residual layer is added between the
CNN output and each of the FiLM layers. The
output of FiLM is max-pooled with a layer of size
7 and stride 2. Both the LSTM and the GRU have
a hidden size of 128.

A learning rate of 1e-4 is adopted for Adam
(Kingma and Ba, 2015). We optimise the model
with Proximal Policy Optimisation (PPO; Schul-
man et al., 2017) and Back-Propagation Through
Time (BPTT; Werbos, 1990). Additionally, we use
an Advantage Actor–Critic (A2C; Wu et al., 2017)
with Generalised Advantage Estimation (GAE;
Schulman et al., 2015). The reward is calculated
as (1−0.9n/nmax) if the agent completes a task—
where n is the number of steps required and nmax

is a threshold set according to the level difficulty, 0
otherwise. Returns are discounted by γ = 0.99.

A.2 CrossFit
During both multitask pre-training and few-shot
adaptation, we use the Adam optimiser (Kingma
and Ba, 2015) and select a learning rate for Φ
among {1e − 2, 1e − 3, 1e − 4} based on perfor-
mance on the development sets of Ttrain and Tdev,
respectively. As a more aggressive learning rate
for Z in SKILLED instead we search in the range
[1e− 1, 1e− 2]. We run multitask pre-training for
30 epochs with an effective batch size of 32, with
a warm-up of 6% of the total steps. Instead, dur-
ing few-shot adaptation, the effective batch size is
8 for 1000 training steps, with a warm-up rate of
10% and a weight decay of 1e-2. For each held-out
task, a newly added row in Z (initialised with a
vector of 0.5) and Φ (initialised from pre-training)
are fine-tuned, but not ϑ0.

For a comparison of parameter counts, LoRA
adds 4l(2hr + |T |) · |S| parameters to the pre-
trained model, where l is the number of layers in
the encoder and decoder, h is the hidden size, and 4
is the number of linear projections in self-attention
(query, key, value, output). We use r = 16,
l = 24 and h = 1024 for BART Large, so we
add ∼ 3 · 106 parameters per skill. Given that the
pre-trained model has ∼ 4 · 108 parameters, this

implies an increase of ∼ 0.78% per skill. HYPER

adds 4l(2he + 2e) · e parameters, an increase of
∼ 0.78% per task embedding dimension.

B Additional Results for BabyAI

Skills Level

1 2 3 4 8 GOTO

1 8 GOTOOBJMAZE

1 2 3 6 7 PICKUPLOC

1 2 3 5 PUTNEXTLOCAL

1 2 3 4 GOTOLOCAL

1 2 3 GOTOREDBALL

1 2 GOTOREDBALLGREY

1 GOTOOBJ

Table 2: BabiAI EXPERT task–skill allocation.

Model Episodes

PRIVATE >6000000
SHARED 3544294
EXPERT 4608019

SKILLED 2218226
- SPARSITY 1853060

Table 3: Sample efficiency of various models on 8
BabyAI levels measured as the number of episodes
needed to reach a success rate > 0.99.

C Additional Results for CrossFit

Metric SHARED HYPER SKILLED

TASK-SPECIFIC

Acc 58.47 62.63 62.66
C-F1 41.76 56.74 55.39

EM 20.05 21.68 21.70
P-Corr 56.83 61.54 52.60
QA-F1 48,88 51.04 52.35

Rouge-L 28.02 26.71 28.05

GLOBAL

Average 43.09 49.37 48.95

Table 4: Performance of multitask models averaged
over test sets of 120 seen CrossFit task. Performance
is both aggregated globally across all tasks (in terms of
task-specific metrics) and across subsets of tasks with
the same evaluation metric.

700



ELI5-ASKS, ELI5-ELI5, ETHOS-SEXUAL-ORIENTATION

3 GOOGLE-WELLFORMED-QUERY, REDDIT-TIFU-TITLE

2 APP-REVIEWS, CLIMATE-FEVER, DBPEDIA-14, EMOTION, GLUE-MRPC, GLUE-RTE,
GLUE-SST2, GLUE-WNLI, HATEXPLAIN, IMDB, LIAR, MOCHA, ONESTOP-ENGLISH,
PAWS, PIQA, POEM-SENTIMENT, ROTTEN-TOMATOES, SCICITE, TAB-FACT, TREC-
FINEGRAINED, TWEET-EVAL-EMOJI, TWEET-EVAL-SENTIMENT, TWEET-EVAL-STANCE-
ABORTION, TWEET-EVAL-STANCE-ATHEISM, TWEET-EVAL-STANCE-CLIMATE, TWEET-
EVAL-STANCE-FEMINIST, WIKI-AUTO, YAHOO-ANSWERS-TOPICS, YELP-REVIEW-FULL

2 3 ADE-CORPUS-V2-DOSAGE, BIOMRC, BOOLQ, EMO, ETHOS-DISABILITY, HATE-SPEECH18,
KILT-AY2, LAMA-CONCEPTNET, LAMA-GOOGLE-RE, LAMA-SQUAD, MC-TACO, NUMER-
SENSE, PROTO-QA, ROPES, SEARCH-QA, SMS-SPAM, SUPERGLUE-RECORD, TWEET-EVAL-
HATE, TWEET-EVAL-IRONY, TWEET-EVAL-OFFENSIVE

1 CIRCA, CRAWL-DOMAIN, GLUE-COLA, SUPERGLUE-RTE

1 3 LAMA-TREX, LIMIT, QA-SRL, SUPERGLUE-MULTIRC, TWEET-EVAL-STANCE-HILLARY,
WIKISQL

1 2 AI2-ARC, ANLI, AQUA-RAT, BLIMP-SENTENTIAL-NEGATION-NPI-LICENSOR-PRESENT,
CODAH, ETHOS-GENDER, ETHOS-NATIONAL-ORIGIN, ETHOS-RACE, ETHOS-RELIGION,
FREEBASE-QA, GLUE-MNLI, GLUE-QQP, HELLASWAG, MEDICAL-QUESTIONS-PAIRS,
OPENBOOKQA, QUAREL, QUARTZ-NO-KNOWLEDGE, QUARTZ-WITH-KNOWLEDGE, RACE-
MIDDLE, SCITAIL, SICK, SOCIAL-I-QA, SUPERGLUE-CB, SUPERGLUE-COPA, SUPERGLUE-
WIC, SUPERGLUE-WSC, SWAG, WIKI-QA

1 2 3 ADVERSARIALQA, ART, COMMONSENSE-QA, COS-E, DEFINITE-PRONOUN-RESOLUTION,
ETHOS-DIRECTED-VS-GENERALIZED, HOTPOT-QA, SCIQ, SQUAD-WITH-CONTEXT, WINO-
GRANDE, WIQA

0 BREAK-QDMR, BREAK-QDMR-HIGH-LEVEL, E2E-NLG-CLEANED, ELI5-ASKH, MULTI-
NEWS

0 3 AESLC, COMMON-GEN, GIGAWORD, RACE-HIGH, REDDIT-TIFU-TLDR, TWEET-QA, WIKI-
SPLIT

0 2 AG-NEWS, KILT-WOW

0 2 3 BLIMP-SENTENTIAL-NEGATION-NPI-SCOPE, DISCOVERY, HATE-SPEECH-OFFENSIVE,
JEOPARDY, KILT-HOTPOTQA, KILT-NQ, KILT-TREX, KILT-ZSRE, SQUAD-NO-CONTEXT,
WEB-QUESTIONS, XSUM

0 1 ADE-CORPUS-V2-CLASSIFICATION, ASLG-PC12, FINANCIAL-PHRASEBANK, GLUE-QNLI,
SPIDER

0 1 3 SAMSUM, TREC, WIKI-BIO

0 1 2 AMAZON-POLARITY, BLIMP-ANAPHOR-GENDER-AGREEMENT, BLIMP-ANAPHOR-
NUMBER-AGREEMENT, BLIMP-DETERMINER-NOUN-AGREEMENT-WITH-ADJ-
IRREGULAR-1, BLIMP-ELLIPSIS-N-BAR-1, BLIMP-ELLIPSIS-N-BAR-2, BLIMP-
EXISTENTIAL-THERE-QUANTIFIERS-1, BLIMP-IRREGULAR-PAST-PARTICIPLE-
ADJECTIVES, BLIMP-WH-QUESTIONS-OBJECT-GAP, COSMOS-QA, CROWS-PAIRS,
DREAM, KILT-FEVER, MATH-QA, QUOREF

0 1 2 3 ACRONYM-IDENTIFICATION, ADE-CORPUS-V2-EFFECT, DUORC, EMPATHETIC-
DIALOGUES, HEALTH-FACT, QASC, QUAIL, TWEET-EVAL-EMOTION, YELP-POLARITY

Table 5: Skill allocation to 120 training CrossFit tasks for |S| = 4.
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Figure 7: Per-layer discreteness (top) and per-layer sparsity (bottom).
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Abstract
In this work, we study reinforcement learning
(RL) in solving text-based games. We address
the challenge of combinatorial action space,
by proposing a confidence-based self-imitation
model to generate action candidates for the RL
agent. Firstly, we leverage the self-imitation
learning to rank and exploit past valuable tra-
jectories to adapt a pre-trained language model
(LM) towards a target game. Then, we devise a
confidence-based strategy to measure the LM’s
confidence with respect to a state, thus adap-
tively pruning the generated actions to yield
a more compact set of action candidates. In
multiple challenging games, our model demon-
strates promising performance in comparison
to the baselines.

1 Introduction

Text-based games are situated systems where the
game agents observe textual descriptions, and gen-
erate textual commands to interact with the en-
vironment. These games have proven to be suit-
able test-beds for studying various natural language
processing (NLP) tasks, such as question answer-
ing (Yuan et al., 2019; Xu et al., 2022), dialogue
systems (Ammanabrolu et al., 2022), situated lan-
guage learning (Shridhar et al., 2020) and common-
sense reasoning (Murugesan et al., 2021; Ryu et al.,
2022). Recent years have witnessed the thriveness
of designing reinforcement learning (RL) agents
in solving these games (Narasimhan et al., 2015;
Hausknecht et al., 2020; Ammanabrolu and Riedl,
2019; Xu et al., 2020b), while the combinatorial
action space remains as a challenging issue, pre-
venting RL agents from being deployed in real
world applications.

In general, text-based games accept free-form
actions, resulting in a large combinatorial action
space. Fig. 1 shows a raw excerpt from the classic
game “Zork1”. A 4-word action has to be selected
from |V|4 candidates, where V denotes the vocab-
ulary set (Xu et al., 2020a). Given that only 130

Figure 1: Excerpt from the game “Zork1”. With a
vocabulary size of 697, there are around 6974 ≈ 200
billion potential 4-word actions in the game.

actions are required to solve this game, the agent
wastes both training data and time in attempting
irrelevant actions (Dulac-Arnold et al., 2015). To
handle the combinatorial action space, early efforts
either heavily rely on hand-crafted rules, or sim-
ply assume the availability of the action candidate
set. For example, some works consider a set of
currently admissible actions (He et al., 2016), or
a template-based action space (Hausknecht et al.,
2020). Alternatively, some other works allevi-
ated this challenge by filtering inadmissible actions
through methods such as action affordance (Jain
et al., 2020), bandit-based elimination (Zahavy
et al., 2018) and rule-based scoring (Ammanabrolu
and Riedl, 2019).
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In handling the combinatorial action space for
text-based games, recent pre-trained language mod-
els (PLMs) (Devlin et al., 2019; Radford et al.,
2019; Brown et al., 2020; Andreas and Klein, 2016)
can help generate actions. However, the potential
of LM is still less effectively explored. As one of
the pioneer works, Yao et al. (2020) proposed the
CALM, which is a GPT-2 model pre-trained on hu-
man gameplay trajectories, to generate the action
candidate set for the RL agent. However, when
solving a previously unseen game, CALM tends
to generate actions with less satisfying qualities,
leading to two consequences that may affect RL
training: 1) the action set may contain a large pro-
portion of inadmissible actions, and 2) the useful
actions may not be generated. As a mitigation, the
CALM model is set to generate a relatively huge
action candidate set, followed by ad-hoc operations
to filter out the inadmissible actions, which requires
prior knowledge. Micheli and Fleuret (2021) ex-
tended the LM-based agent to goal-conditioned
tasks to follow instructions. Besides the offline pre-
training data, the LM is further improved with the
successful trajectories collected during online in-
teraction. However, text-based games do not have
well-defined goals. Furthermore, some games are
so challenging that it is impossible to collect suc-
cessful trajectories (Tuyls et al., 2022).

In this work, we address the crux of combina-
torial action space in solving text-based games.
We propose the Confidence-based Self-imitation
Model (CSM) to generate the action candidates
for the RL agent.* Firstly, we leverage the self-
imitation learning method (Oh et al., 2018) to rank
and exploit past trajectories of high values to adapt
a pre-trained LM towards the target game. Then,
we propose a confidence-based strategy to measure
the LM’s confidence (Gandrabur et al., 2006) with
respect to a state, thus adaptively pruning the ac-
tion candidates based on the confidence value. Our
model achieves promising performance in six chal-
lenging man-made games. Apart from significantly
outperforming an action generation-based baseline,
our strategy helps the RL agent to even achieve
comparable performance to a baseline armed with
the oracle action candidate set.

Our main contributions are summarized as fol-
lows: Firstly, we develop a LM-based framework
to handle the issue of combinatorial action space
in solving text-based games. Secondly, we pro-

*Code is available at https://github.com/winni18/CSM.

pose a strategy to further improve the LM via self-
imitation learning during the RL training. Thirdly,
our experiments demonstrate that, the proposed
method significantly improve the performance on
multiple games compared with the strong contem-
porary method.

2 Related Work

2.1 RL Agents for Text-based Games

Inspired by the success of RL in playing games (Sil-
ver et al., 2016) and various NLP tasks (Fang et al.,
2017; Yuan et al., 2019; Ammanabrolu et al., 2022),
Narasimhan et al. (2015) and He et al. (2016) in-
troduce RL to solve text-based games. Compared
with non-learning-based agents (Hausknecht et al.,
2019; Atkinson et al., 2019), the RL-based agents
reduce the demand for extensive expert knowledge
to develop gameplay strategies, and become the
predominant modelling paradigm for solving text-
based games. Subsequently, many variants of RL-
based agents with different architectures and learn-
ing schemes have been proposed (Yuan et al., 2018;
Jain et al., 2020; Guo et al., 2020; Xu et al., 2021;
Tuyls et al., 2022; Shi et al., 2023). Innovations
include modeling state space utilising knowledge
graphs (Adhikari et al., 2020; Xu et al., 2020b),
integrating question-answering and reading com-
prehension modules (Ammanabrolu et al., 2020;
Xu et al., 2022). While these approaches focus
on the problems of partial observability and lan-
guage semantics, they still face the challenge of the
combinatorial action space.

2.2 Combinatorial Action Space in TBGs

The combinatorial language-based action space is
one primary challenge in solving text-based games.
Early efforts mainly utilise hand-crafted rules or
assume the agent has a predefined set of actions
to choose from. For instance, the Jericho bench-
mark provides a valid action handicap that filters
out inadmissible actions (i.e. actions that are ei-
ther unrecognized by the game engine or do not
change the underlying game state) at each game
state (Hausknecht et al., 2020). This handicap has
been widely used as the reduced action space by
approaches like DRRN (He et al., 2016). In addi-
tion, the template-based action space is introduced
where the agent selects first a template, and then
a verb-object pair either individually (Hausknecht
et al., 2020) or conditioned on the selected tem-
plate (Ammanabrolu and Hausknecht, 2020). Even
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using the reduced action space, approaches filter-
ing unnecessary actions can further improve the
computational tractability and speed up the learn-
ing convergence (Zahavy et al., 2018; Jain et al.,
2020).

2.3 Pre-training Methods for TBGs

Recent studies focus on enhancing the language
understanding capability of agents by introducing
pre-trained language processing modules. For in-
stance, Singh et al. (2021) utilise the DistilBERT
(Sanh et al., 2019) fine-tuned on human gameplay
trajectories to represent game states. Ammanabrolu
et al. (2020) employ the pre-trained ALBERT (Lan
et al., 2019) to extract information from the textual
observation by answering questions, and then up-
date the knowledge graph during training. Adolphs
and Hofmann (2020) use a pre-trained task-specific
module to predict what is left to complete the tasks.
In general, RL-based agents are initialised with
knowledge using pre-trained modules before ex-
ploring game environments.

Some studies leverage pre-trained language
models for action generation (Hausknecht et al.,
2020) or word embeddings for affordance detec-
tion (Fulda et al., 2017). The approach closest to
our work is Yao et al. (2020), which is state-of-the-
art without requiring access to admissible actions.
In their study, a GPT-2 language model trained on
human gameplay trajectories is used to generate
action candidates for the RL agent to select. To
ensure that the correct actions are provided, the
GPT-2 model is set to generate a relatively huge ac-
tion candidate set, followed by ad-hoc operations to
predict the admissibility of an action based on envi-
ronmental feedback. In contrast, our work intends
to narrow down the action space via self-imitation
learning and make learning tractable.

3 Preliminaries

Text-based Games as POMDPs The text-based
game can be formally formulated as a partially
observable Markov Decision Process (POMDP)
(S, T,A,O, R, γ). At each step t, the agent re-
ceives a textual observation ot ∈ O from the game
environment, while the latent state st ∈ S, which
contains the complete internal information of the
environment, could not be observed. By execut-
ing an action at ∈ A, the environment will transit
to the next state according to the latent transition
function T , and the agent will receive the reward

signal rt = R (st, at) and the next observation
ot+1. The objective of the agent is to take actions
to maximize the expected cumulative discounted
rewards Rt = E[

∑∞
t=0 γ

trt], where γ ∈ [0, 1] is
the discount factor.

Trajectory and Episode We define the tra-
jectory τ as the sequence of observation-action
pairs collected in an RL episode, i.e., τ =
(o1, a1, o2, a2, . . . , ol, al), where lτ is the length of
τ . An RL episode is the process of an agent inter-
acting with the environment from the beginning of
a game to a termination state (e.g., the agent dies)
or the step exceeding the pre-defined limit.

DRRN Existing RL methods for solving text-
based games use game rewards to learn a value
function. For instance, the Deep Reinforcement
Relevance Network (DRRN) (He et al., 2016) is a
choice-based game agent, where each action can-
didate a is paired with the state o to check its rel-
evance. The agent then passes each pair through
a deep neural network with parameters ϕ to esti-
mate the Q-values Qϕ(o, a). The parameters ϕ of
DRRN are trained using tuples (o, a, r, o′) sampled
from a prioritized experience replay buffer with the
temporal difference (TD) loss:

LTD(ϕ) =

(
r + γmax

a′∈A
Qϕ
(
o′, a′

)
−Qϕ(o, a)

)2

(1)
where r is the game reward and γ is the discount
factor. The next action is then selected by softmax
sampling the predicted Q-values:

πϕ(a|o) =
exp (Qϕ(o, a))∑

a′∈A exp (Qϕ (o, a′))
(2)

To circumvent the challenge of combinatorial ac-
tion space, DRRN assumes access to the valid ac-
tion handicap provided by the environment at each
game state.

4 Methodology

4.1 Overview
To address the combinatorial action space, we pro-
pose the Confidence-based Self-imitation Model
(CSM), which leverages the advantages of pre-
trained LM and Self-imitation Learning (SiL)
for adaptive action generation. Fig.2 shows an
overview of CSM. At time step t, the LM is pro-
vided with the context ct = (ot−1, at−1, ot) as the
input, and generates a set of action candidates At
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Figure 2: An overview of CSM. The LM takes the context ct and generates action candidates At, and conducts
action pruning to further reduce the action space. The RL agent takes the observation ot, and selects an action
at ∈ Ât. The valuable trajectories τ are collected to further improve the LM through self-imitation learning.

as well as their probabilities using beam search
decoding. Based on the probabilities, we conduct
Action Pruning (AP) to obtain a more compact sub-
set of action candidates Ât ⊆ At for the RL agent.
Then the RL agent considers the observation ot and
selects an action at ∈ Ât. To generate high-quality
actions which are more context-relevant, we adapt
the LM towards the target game during the RL
training. Specifically, we collect and then select
the past valuable trajectories τ in an additional re-
play buffer, to further improve the LM through a
self-imitation learning manner.

4.2 Self-imitation Learning

We follow the work of Yao et al. (2020) to utilize
the LM for action generation. During pre-training,
given human gameplay trajectories τ , we first build
the context ct, then train the LM to minimize the ex-
pected cross-entropy loss: LLM = −E[logp(a|c)],
where logp(a|c) =∑m

i=1 p(a
i|a<i, c) for an action

with m tokens. During RL, the LM will serve as
a “rough” action selector to generate the top-k ac-
tions. Then the RL agent will select one action to
interact with the environment.

One drawback of the previous work Yao et al.
(2020) is that when facing an unseen context, the
LM may generate actions with poor performance.
A straightforward solution is to continuously im-
prove the LM during RL, thus making it adapted to

the target game. Since no external trajectories (e.g.,
from human players) are available in the RL stage,
we consider resorting to the self-imitation learning
(Gangwani et al., 2019), i.e., letting the LM learn
from the trajectories collected during the RL inter-
action. One thing we should pay attention to is the
quality of the trajectories − sub-optimal trajecto-
ries may adversely affect imitation learning (Hu
et al., 2019; Xu et al., 2022). Text-based games,
especially games originally designed for human
players, may be too challenging for agents to walk
through. Thus, we cannot directly obtain successful
trajectories during interacting with the environment.
To alleviate this problem, we build a heap-like re-
play buffer to store past high-quality trajectories.
We regard those obtaining higher scores with fewer
steps as high-quality trajectories. Specifically, we
rank trajectories within the replay buffer by their
game scores (i.e., the sum of collected rewards)
and lengths. In addition, we also take into account
the novelty, by periodically replacing the old trajec-
tories with new ones of equivalent qualities (e.g.,
the same scores and lengths).

4.3 Confidence-based Action Pruning

Through the aforementioned SiL, the LM is ex-
pected to generate a more reliable action candidate
set At of size N . For each action at,i ∈ At, we
then calculate its normalized probability P (at,i|ct)
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Table 1: Game statistics.

Game Avg.Action Avg.Action Avg.Steps Walkthough Max Score
Number Length Per Reward Length

Balances 23.29 2.99 12 122 51
Inhumane 6.96 2.36 14 123 90
Ludicorp 14.52 2.76 4 364 150

Snacktime 5.68 2.14 8 34 50
Zork1 15.96 2.75 9 400 350
Ztuu 33.93 2.96 5 84 100

according to the beam search score. The probabili-
ties exhibit two characteristics: 1) the long-tail phe-
nomenon in linguistics (Zhan et al., 2021), where
only a few probabilities produce lots of actions;
2) the probability distribution varies greatly under
different states. Given these findings, we adopt a
confidence-based strategy to further prune action
candidates of low values, aiming to obtain a further
reduced action candidate set Ât ⊆ At. Specifically,
we accumulate the probabilities of top-k action
candidates as the confidence value: Conft(k) =∑k

i=1 P (at,i|ct). We then conduct action pruning
(i.e., constraining the action space k) by bonding
the confidence value to a fixed, manually deter-
mined threshold ξ: Ât = {at,i|Conft(k) ≤ ξ}.
In this way, top-k action candidates are selected
adaptively. For a more “familiar” context ct (e.g.,
it is similar to a context that LM has encountered
before), the LM is supposed to be able to obtain
correct actions from the training data, and the prob-
ability distribution will be centralised to top-ranked
actions. In contrast, for an “unfamiliar” ct, the
actions’ probabilities might be more uniformly-
distributed. In this case, the size of action candi-
dates (e.g., k) will be expanded to ensure a high
confidence value.

5 Experiments

5.1 Experimental Setup

We conduct experiments upon six games provided
by the Jericho Game Suite (Hausknecht et al.,
2020). These games have diverse themes and gen-
res, and each of them can represent a type of task.
Different from those generated through pre-defined
simple rules (Côté et al., 2018), the games we use
are more complex, making them even challenging
for human players. Some games contain nonstan-
dard actions (e.g., the spells), which are unlikely to
be understood by the language model pre-trained
with commonsense knowledge. Table 1 shows the

game statistics calculated from the walkthrough of
each game.

5.2 Baselines
Our work focus on the challenge of combinatorial
action space in text-based games. Thus, we com-
pare CSM with two baselines:

• CALM (Yao et al., 2020), which is a pioneer
work in LM-guided action generation.

• DRRN (He et al., 2016), which assumes ac-
cess to the “oracle” action set (i.e., the valid ac-
tion handicap provided by the environment).

Of these methods, CALM is the previous state-of-
the-art model without the availability of “oracle”
action sets, while the DRRN agent with “oracle”
action sets can be regarded as our “upper bound”.

5.3 Implementation Details
Training We implement CSM upon CALM’s re-
leased code, including a pre-trained GPT-2 LM †.
Both CSM and CALM adopt DRRN as the RL
agent, except that At is obtained by LM. We set
the step limit of an RL episode as 100, and train the
RL agent on 8 parallel running environments for
100k steps. For each step, we train the RL agent
with a batch size of 64, using an Adam optimizer
with a learning rate of 1e-4. We set the first 20k
steps as the warm-up phase, and start self-imitation
learning as well as action pruning after this phase.
For SiL, we use a trajectory buffer with a size of
50. For every 500 steps, we update the LM for 1
epoch with a batch size of 8, using an Adam op-
timizer with a learning rate of 2e-5. If there are
no fresh trajectories as the training progresses, we
conduct SiL using existing trajectories within the
buffer. For AP, we use beam search decoding with
a beam size of 40 to generate actions and choose

†https://github.com/princeton-nlp/
calm-textgame
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Figure 3: The performance of CSM compared to baselines (CALM and DRRN) throughout training. Shaded areas
indicate one standard deviation. Our CSM outperforms CALM while getting much closer to DRRN. Besides, it
successfully solves the game “Snacktime”.

Table 2: The performance of CSM compared to baselines (CALM and DRRN) after training. The result with † is
from Hausknecht et al. (2020). In six environments, our method obtains significant improvement compared to the
CALM model, with an average normalized game score of 31.4%.

Game Generated At Oracle At MaxCSM CALM DRRN
Balances 11.7 10.5 14.0 51

Inhumane 27.0 20.6 33.6 90
Ludicorp 9.8 6.8 17.5 150

Snacktime 49.8 24.0 20.0 50
Zork1 40.6 34.3 40.0 350
Ztuu 17.5 11.7 21.6† 100

Avg.Norm 31.4% 19.6% 24.9%

the top 30 actions, i.e., N = 30. Then, we use the
proposed confidence-based strategy to keep top-k
highest-scoring action candidates (k<30). We set
ξ as 0.6, and bound k to be no lower than 10. Fol-
lowing previous works, we define the score as the
sum of rewards collected within an episode, and
report the score averaged over the last 100 finished
episodes.

LM For both CSM and CALM, we use the pre-
trained GPT-2 model provided by Yao et al. (2020)
as the LM module. The LM consists of 12 layers,
768 hidden sizes, and 12 attention heads. This mod-

ule is first pre-trained on the WebText corpus (Rad-
ford et al., 2019), then re-trained on the ClubFloyd
dataset (Yao et al., 2020), which consists of 426 hu-
man game playing transcripts on 590 games (note
that the Jericho-supported games that we experi-
ment with are not included).

RL Both CSM and CALM adopt the DRRN as
the RL agent, except that the action candidate set
is generated by the LM module. Given the current
observation ot, and a set of currently admissible
actions At, the RL agent first encodes ot to build
the state representation, then pairs it with each ac-
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Figure 4: Average episode score throughout training for ablation models. Shaded areas indicate one standard
deviation.

Table 3: Average episode score after training for ablation models. Overall, both the SiL and AP are crucial to our
framework.

Game CSM w.o. AP w.o. SiL constant AP CALM
Balances 11.7 11.1 7.0 11.2 10.5

Inhumane 27.0 23.6 1.5 1.1 20.6
Ludicorp 9.8 6.6 8.6 10.0 6.8

Snacktime 49.8 37.1 10.5 18.8 24.0
Zork1 40.6 35.6 34.1 15.2 34.3
Ztuu 17.5 12.1 12.9 15.1 11.7

Avg.Norm 31.4% 24.8% 10.8% 14.5%. 19.6%

tion candidate at,i ∈ At to compute the Q-value,
which will be used as the probability for sampling
the action at.

Warm-up Since this work does not address the
RL exploration problem, we equip both CSM and
CALM with a warm-up phase to facilitate training
at the very beginning. During this phase, we follow
Yao et al. (2020) to filter inadmissible actions from
At through a pre-trained fast-text module, without
applying SiL or AP. Then after this phase, the fast-
text module will be discarded, and the LM has
to generate the reliable At by itself. Note that
this module is not essential, and could be replaced
by other exploration strategies such as Zha et al.
(2021); Yao et al. (2021). We leave such integration
as a future direction.

5.4 Results

Fig. 3 shows the average episode score throughout
training for the baselines, and Table 2 shows the
average episode score after training for the base-
lines. Our CSM demonstrates its effectiveness by
significantly outperforming the backbone CALM
in all of the six games, with an average normalized
game score of 31.4%. Given that DRRN has access
to the “oracle” action set At, its performance can
be regarded as our “upper bound”. We observe
that the performance of CSM is much closer to
DRRN, and even surpasses DRRN in two games.
In particular, while DRRN gets stuck in the game
“Snacktime”, CSM solves this game, making its av-
erage normalized score among the highest of all. In
Sec. 5.6, we further discuss this case by analyzing
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Figure 5: Sample gameplay from the game “Snacktime” along with the generated action candidates, and the action
chosen by the RL agent (coloured with blue).

the underlying reasons.

5.5 Ablation Studies

In order to evaluate the contribution of the two com-
ponents in CSM, we compare our model with two
variants with either SiL (“w.o. AP”) or AP (“w.o.
SiL”). In order to demonstrate the effectiveness of
confidence-based AP, we also employ constant AP.
We set k to 12, which is the average number of
actions selected by the confidence-based strategy.
Fig. 4 shows the average episode score for the abla-
tion models throughout training, and Table 3 shows
the average episode score for the ablation models
after training.

In general, adapting the LM with respect to the
target game helps (“w.o. AP” v.s., “CALM”), while
reducing the action space upon it further boosts the
performance (“CSM” v.s., “w.o. AP”). Solely re-
ducing the action space At, in contrast, leads to
poor performance (“CSM” v.s., “w.o. SiL” v.s.,
“CALM”). Also, simply utilizing the constant AP
together with SiL results in a considerable perfor-
mance drop. (“CSM” v.s., “constant AP”). Without
SiL, the LM has a greater chance of incorrectly
filtering actions that are essential to go through the
target game.

5.6 Qualitative Analysis

To demonstrate the efficacy of the proposed frame-
work, we present two gameplay examples from the

game “Snacktime”. Fig.5 shows the generated ac-
tion candidates and the action chosen by the RL
agent, where “Context” denotes ct, “CSM” and
“CALM” denote the actions generated by CSM and
CALM respectively, “DRRN” denotes the “ora-
cle” action set used by DRRN. In the first example,
all models generate and select the correct action
“jump on him”, which leads to a +10 reward. Com-
pared with CALM, CSM successfully reduces the
action set from 30 to 10, relieving the burden for
the RL agent. In the second example, both CSM
and CALM generate action sets with the correct
action “chew wand” being included. We found that
the “oracle” action set provided by the environment
is not always perfect, which explains why DRRN
gets stuck here‡. It shows that our model is capable
of generating high-quality, context-relevant actions,
and further limits the action space while keeping
key actions that may lead to higher scores in the
games. Appendix B provides the detail interaction
log of CSM on the game “Snacktime”.

6 Conclusion

In this work, we studied reinforcement learning
in solving the text-based game. We proposed the
CSM framework to generate a set of action candi-
dates for the RL agent, which alleviates the issue of
combinatorial action space. During RL training, we

‡Similar phenomenon has also been reported in some
other games (Tuyls et al., 2022)
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collected and exploited past high-quality trajecto-
ries and utilised self-imitation learning to improve
the language model. In addition, a confidence-
based action pruning strategy was proposed to fur-
ther restrict the action space. We evaluate our
method using the Jericho benchmark. In a variety
of text-based games, our method significantly im-
proves the performance compared with the strong
contemporary method, and even overcomes the
challenging bottleneck in the game “Snacktime”.

Limitations

In terms of limitations, text-based games are still
far from being solved. Even if the agent has access
to admissible actions, sparse rewards, language se-
mantics and partial observability remain challeng-
ing obstacles for the existing game agent. In this
study, we develop an effective framework to solve
the issue of combinatorial action space. Future
work can integrate our framework with methods
that better leverage linguistic signals in order to
make further progress in solving text-based games.
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Appendix

The appendix is organized as follows: Sec. A shows more experiment results. Sec. B provides the
interaction log of CSM on the game “Snacktime”.

A More Results

Reproduction of DRRN Fig. 6 shows the reproducing result of the DRRN baseline, where “DRRN -
Ours” denotes the “DRRN” used in the main paper. The dashed lines “DRRN - Official” denote the results
reported in Hausknecht et al. (2020) and Yao et al. (2020). According to Tuyls et al. (2022), the action
candidate set At provided by the environment is not always perfect, so that they manually augmented
the environment-provided At with actions from the game walkthrough which are required for making
progress§. We follow their setting to modify the environment and rerun the DRRN baseline, yielding
much better performance than the official results except one game “Ztuu”, which we use the official result
in Table 2.

Reproduction of CALM Fig. 7 shows the reproducing result of the CALM baseline, where “CALM
20% WU - Ours” denotes the “CALM” used in the main paper. The dashed lines “CALM 100% WU -
Official” denote the results reported in Yao et al. (2020). In terms of the original CALM, our replication
results are comparable with or better than the official results (“CALM 100% WU” v.s., “CALM 100%
WU - Official”). The original CALM adopts a fast-text model to filter out the inadmissible actions from
At throughout the RL training process (i.e., they conduct warm-up for 100k steps), heavily alleviating
the problem of generating inadmissible actions (“CALM 100% WU” v.s., “CALM w.o. WU”). However,
obtaining this fast-text model requires prior knowledge, such as the additional training data and annotations.
In our work, we would like to reduce the requirement of such external knowledge, and let the LM to
conduct action pruning by itself. For all LM-based models, we only conduct warm-up for the first 20k
steps, and discard the fast-text model afterwards (“CALM 20% WU”). As a future direction, we would like
to consider more advanced warm-up strategies (Zha et al., 2021), thus eliminating the need for pre-training
the fast-text model.

More results Besides the episode score, we provide more results for further analyzing self-imitation
learning and action pruning. Regarding SiL, Fig. 8 and Fig. 9 show the average score and length of the
trajectories collected in the ranked buffer, respectively. There’s no doubt that the average score grows
higher as the agent makes progress. Diverse trends could be observed in terms of the average length, since
a newly-added trajectory might have both high score and more steps. Regarding AP, Fig. 10 shows the
number of LM generated actions k, i.e., |Ât|, where it could be observed k gets close to the lower bound
after pruning. Fig. 11 shows the LM probability of the top-1 generated action, and Fig. 12 shows the LM
probability sum of the top-5 generated actions. After self-imitation learning, the top actions account for a
larger proportion of the probability, making it safer for filtering those with low probabilities.

§https://github.com/princeton-nlp/XTX
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Figure 6: The reproducing result of the DRRN baseline, where “DRRN - Ours” denotes the “DRRN” used in the
main paper. The dashed lines denote the results reported in Hausknecht et al. (2020) and Yao et al. (2020).
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Figure 7: The reproducing result of the CALM baseline, where “CALM 20% WU - Ours” denotes the “CALM”
used in the main paper. The dashed lines denote the results reported in Yao et al. (2020).
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Figure 8: The average score of trajectories in the ranked buffer.
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Figure 9: The average length of trajectories in the ranked buffer.
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Figure 10: The number of LM generated actions k, i.e., |Ât|.
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Figure 11: The LM probability of the top-1 generated action.
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Figure 12: The LM probability sum of the top-5 generated actions.
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B Interaction Example

We provide the interaction log of our CSM on the game “Snacktime”, where “Context” denotes ct,
“Actions” denotes Ât, “Action” denotes at, “Reward” denotes rt after executing at, “Score” denotes the
episodic sum of the collected rewards, and “Done” indicates whether this episode is finished.

Con tex t56826 : [CLS] r e s e t [ SEP ] <RRROWWGRROWL> Your s tomach
g r ow l s . You ' ve been vegg ing o u t i n f r o n t o f t h a t f l i c k e r i n g
s c r e e n f o r hours , your p e t by your s i d e . Now your c o m p l a i n i n g
s tomach s e t s you up on your f e e t , and on a m i s s i o n . Snack Time !
An I n t e r a c t i v e Break f o r a B i t e by Hardy t h e Bu l ldog ( wi th h e l p
from Renee Choba ) R e l e a s e 1 / S e r i a l number 080929 / In fo rm 7
b u i l d 5U92 ( I6 / v6 . 3 1 l i b 6 /12N) ( For more i n f o r m a t i o n p l e a s e t y p e
ABOUT) S i t t i n g Room Thi s i s t h e room where you s i t a l o t . Well ,

you s l e e p h e r e somet imes t o o . But t h e r e i s a d i f f e r e n t room t h a t
i s j u s t f o r s l e e p i n g , and i t i s t o t h e n o r t h . There ' s a n o t h e r room

t o t h e wes t . I t ' s t h e room wi th t h e food . Tha t i s a good room .
Even though t h i s i s t h e s i t t i n g room you can ' t s i t on e v e r y t h i n g .
There

Ac t ions56826 : [ " ' s no [ c l s ] [ c l " , " ' s [ c l s ] [ c l s " , " ' s no [ c l s ] [
c l s " , ' a r e [ c l s ] [ c l s ] ' , ' i s no [ c l s ] [ c l s ' , ' [ c l s ] [ c l s ' , ' a r e
no [ c l s ] [ c l s ' , ' a r e [ c l s ] [ c l s ' ]

>> Act ion56826 : a r e no [ c l s ] [ c l s
Reward56826 : 0 , Score 0 , Done F a l s e

Contex t56827 : [CLS] a r e no [ c l s ] [ c l s [ SEP ] That ' s n o t a t r i c k you
know . r i g h t now you a r e n ' t c a r r y i n g a n y t h i n g . ( i t ' s n o t l i k e you

need a l o t o f s t u f f , anyway . ) [ SEP ]
Ac t ions56827 : [ ' move arm ' , ' s c r a t c h p e t ' , ' l i c k p e t ' , ' k i s s p e t ' , '

jump on man ' , ' s c r a t c h man ' , ' p u l l man ' , ' p u l l p e t ' , ' push p e t ' , '
p u l l arm ' ]

>> Act ion56827 : s c r a t c h man
Reward56827 : 0 , Score 0 , Done F a l s e

Contex t56828 : [CLS] Tha t ' s n o t a t r i c k you know . [ SEP ] s c r a t c h man
[ SEP ] You s c r a t c h your pe t , j u s t g e n t l y , n o t t o h u r t him or
a n y t h i n g . Your p e t t w i t c h e s a l i t t l e and s t i r s , t h e n i s s t i l l
a g a i n . I t ' s a s t a r t a t waking him up . r i g h t now you a r e n ' t c a r r y i n g

a n y t h i n g . ( i t ' s n o t l i k e you need a l o t o f s t u f f , anyway . ) [ SEP ]
Ac t ions56828 : [ ' move arm ' , ' l i c k man ' , ' chew man ' , ' jump on man ' , '

push p e t ' , ' push man ' , ' l i c k p e t ' , ' p u l l man ' , ' p u l l p e t ' , ' p u l l
arm ' ]

>> Act ion56828 : push p e t
Reward56828 : 0 , Score 0 , Done F a l s e

Contex t56829 : [CLS] push p e t [ SEP ] You t u c k your head up unde r your
p e t and push back and f o r t h t o shake him . Your p e t g e t s one eye

open and h a l f h e a r t e d l y p e t s a t you . You ' r e making p r o g r e s s . r i g h t
now you a r e n ' t c a r r y i n g a n y t h i n g . ( i t ' s n o t l i k e you need a l o t o f

s t u f f , anyway . ) [ SEP ]
Ac t ions56829 : [ ' p u l l man ' , ' jump on man ' , ' l i c k man ' , ' s c r a t c h p e t ' ,

' l i c k p e t ' , ' s c r a t c h man ' , ' p u l l p e t ' , ' p u l l arm ' , ' move arm ' , '
push p e t ' ]
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>> Act ion56829 : s c r a t c h man
Reward56829 : 0 , Score 0 , Done F a l s e

Contex t56830 : [CLS] s c r a t c h man [ SEP ] You s c r a t c h your pe t , j u s t
g e n t l y , n o t t o h u r t him or a n y t h i n g . Hmm, your p e t seems t o have
t u r n e d t h a t i n t o p a r t o f h i s dream or someth ing , b e c a u s e he s u r e
d idn ' t move t h i s t ime when you s c r a t c h e d him . r i g h t now you a r e n ' t
c a r r y i n g a n y t h i n g . ( i t ' s n o t l i k e you need a l o t o f s t u f f , anyway
. ) [ SEP ]

Ac t ions56830 : [ ' jump on man ' , ' k i s s p e t ' , ' l i c k p e t ' , ' k i s s man ' , '
l i c k man ' , ' push p e t ' , ' move arm ' , ' p u l l p e t ' , ' p u l l arm ' , ' push
man ' ]

>> Act ion56830 : jump on man
Reward56830 : 10 , Score 10 , Done F a l s e

Contex t56831 : [CLS] jump on man [ SEP ] You jump up and g e t your paws
on your p e t f o r a second b e f o r e s l i d i n g back down . Your p e t

s h i f t s and s t r e t c h e s , b l i n k i n g . He moves a round u n t i l he i s mos t l y
s i t t i n g up . " Hey Hardy , " he mumbles . I t might t a k e a l i t t l e

more t o g e t him up and moving , b u t a t l e a s t now h i s eyes a r e open !
[ Your s c o r e has j u s t gone up by t e n p o i n t s . ] r i g h t now you a r e n ' t

c a r r y i n g a n y t h i n g . ( i t ' s n o t l i k e you need a l o t o f s t u f f , anyway
. ) [ SEP ]

Ac t ions56831 : [ ' k i s s man ' , ' s o u t h ' , ' i n ' , ' o u t ' , ' s o u t h e a s t ' , '
n o r t h w e s t ' , ' n o r t h e a s t ' , ' s o u t h w e s t ' , ' e a s t ' , ' down ' ]

>> Act ion56831 : down
Reward56831 : 0 , Score 10 , Done F a l s e

Contex t56832 : [CLS] down [ SEP ] I f you want t o go t o t h e food room ,
i t ' s t o t h e west , and t h e s l e e p i n g room i s t o t h e n o r t h . r i g h t now
you a r e n ' t c a r r y i n g a n y t h i n g . ( i t ' s n o t l i k e you need a l o t o f
s t u f f , anyway . ) [ SEP ]

Ac t ions56832 : [ ' s e a r c h s o f t t h i n g ' , ' s e a r c h couch ' , ' s e a r c h s o f a ' , '
s e a r c h door ' , ' s e a r c h s l e e p i n g ' , ' s e a r c h box ' , ' s e a r c h arm ' , '
s e a r c h p e t ' , ' s e a r c h man ' , ' s e a r c h f r i d g e ' ]

>> Act ion56832 : s e a r c h s o f t t h i n g
Reward56832 : 0 , Score 10 , Done F a l s e

Contex t56833 : [CLS] s e a r c h s o f t t h i n g [ SEP ] You t u g and p u l l a t t h e
l i t t l e s o f t t h i n g s u n t i l f i n a l l y one b r e a k s f r e e from t h e bunch .

As you d i s l o d g e i t , some th ing c l a t t e r s t o t h e f l o o r . Ah ha ! You ' ve
found t h e magic wand ! Those l i t t l e s o f t t h i n g s were t r y i n g t o e a t
i t ! " So t h a t ' s where t h a t g o t away to , " s a y s your pe t , s n a t c h i n g
up t h e magic wand . He p o i n t s i t a t t h e box of l i g h t and makes i t

even l o u d e r . h e l d c a r e f u l l y between your t e e t h i s a s q u a r e s o f t
t h i n g . [ SEP ]

Ac t ions56833 : [ ' wes t wes t ' , ' wes t wes t wes t wes t wes t wes t wes t wes t
wes t ' , ' wes t wes t wes t wes t wes t wes t wes t wes t wes t wes t ' , ' wes t
wes t wes t wes t wes t wes t wes t wes t ' , ' wes t wes t wes t wes t wes t
wes t wes t ' , ' wes t wes t wes t wes t wes t wes t ' , ' wes t wes t wes t ' , '
wes t wes t wes t wes t wes t ' , ' wes t wes t wes t wes t ' , ' wes t ' ]
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>> Act ion56833 : wes t wes t wes t wes t wes t wes t wes t wes t wes t wes t
Reward56833 : 0 , Score 10 , Done F a l s e

Contex t56834 : [CLS] wes t wes t wes t wes t wes t wes t wes t wes t wes t
wes t [ SEP ] Food Room Food room , g l o r i o u s food room ! Your bowl
f o r food and w a t e r i s here , b u t t h a t ' s on ly t h e b e g i n n i n g . There ' s

a l s o a l o t o f s e c r e t p l a c e s where your p e t keeps food and t h i n g s
t h a t go wi th food and t h i n g s t h a t make food b e t t e r . There ' s a
t h i n g t h a t g e t s h o t and a box t h a t s t a y s co ld , and t h a t i s your
f a v o r i t e b e c a u s e you know t h e r e i s a lways food i n s i d e t h e r e . A
c l o t h hangs down from t h e door o f t h e c o l d box . h e l d c a r e f u l l y
between your t e e t h i s a s q u a r e s o f t t h i n g . [ SEP ]

Ac t ions56834 : [ ' open c o l d box ' , ' open box ' , ' open door ' , ' g e t c l o t h ' ,
' open f r i d g e ' , ' t a k e c l o t h ' , ' p u l l c l o t h ' , ' open r e f r i g e r a t o r ' , '

u se wand on box ' , ' push c l o t h ' ]
>> Act ion56834 : open r e f r i g e r a t o r
Reward56834 : 0 , Score 10 , Done F a l s e

Contex t56835 : [CLS] open r e f r i g e r a t o r [ SEP ] Th i s i s a good t r i c k !
( As you open your mouth , you drop t h e s q u a r e s o f t t h i n g . ) You
p u l l on t h e c l o t h wi th your t e e t h and back up as t h e door opens .
I n s i d e you can s e e v a r i o u s l e f t o v e r s , some j a r s , some sandwich
f i x i n g s and one s h i n y can . r i g h t now you a r e n ' t c a r r y i n g a n y t h i n g .
( i t ' s n o t l i k e you need a l o t o f s t u f f , anyway . ) [ SEP ]

Ac t ions56835 : [ ' g e t can ' , ' t a k e can ' , ' g e t a l l from f r i d g e ' , ' t a k e
a l l from f r i d g e ' , ' t a k e a l l ' , ' g e t a l l ' , ' g e t a l l from
r e f r i g e r a t o r ' , ' t a k e a l l from r e f r i g e r a t o r ' , ' g e t e v e r y t h i n g ' , '
t a k e e v e r y t h i n g ' ]

>> Act ion56835 : t a k e a l l from f r i d g e
Reward56835 : 0 , Score 10 , Done F a l s e

Contex t56836 : [CLS] t a k e a l l from f r i d g e [ SEP ] l e f t o v e r s : A l l t h e
food i n t h e c o l d box i s up t o o h igh f o r you or c l o s e d away . Looks
l i k e you w i l l need your p e t t o h e l p you g e t a snack . j a r s : J a r s
a r e no good f o r you , t h e y j u s t t e a s e you by l e t t i n g you s e e what ' s

i n s i d e . But you can ' t g e t them open w i t h o u t your p e t ' s h e l p
anyway . sandwich f i x i n g s : A l l t h e food i n t h e c o l d box i s up t o o
h igh f o r you or c l o s e d away . Looks l i k e you w i l l need your p e t t o
h e l p you g e t a snack . s h i n y can : You s n a t c h up t h e s h i n y can wi th
your mouth and ho ld on t i g h t . h e l d c a r e f u l l y between your t e e t h i s
one s h i n y can . [ SEP ]

Ac t ions56836 : [ ' e a s t e a s t ' , ' e a s t ' , ' e a s t e a s t e a s t ' , ' e a s t e a s t e a s t
e a s t ' , ' e a s t e a s t e a s t e a s t e a s t ' , ' e a s t e a s t e a s t e a s t e a s t e a s t

' , ' e a s t e a s t e a s t e a s t e a s t e a s t e a s t ' , ' e a s t e a s t e a s t e a s t e a s t
e a s t e a s t e a s t ' , ' e a s t e a s t e a s t e a s t e a s t e a s t e a s t e a s t e a s t ' ,

' e a s t e a s t e a s t e a s t e a s t e a s t e a s t e a s t e a s t e a s t ' ]
>> Act ion56836 : e a s t e a s t
Reward56836 : 0 , Score 10 , Done F a l s e

Contex t56837 : [CLS] e a s t e a s t [ SEP ] Be f o r e you l e a v e t h e food room ,
you push t h e c o l d box door wi th your nose t o c l o s e i t . ( I t ' s
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i m p o r t a n t t o c o n s e r v e en e r gy . ) S i t t i n g Room Your p e t i s here ,
s t a r i n g a t t h e box of l i g h t , h o l d i n g on t i g h t t o t h e magic wand .
h e l d c a r e f u l l y between your t e e t h i s one s h i n y can . [ SEP ]

Ac t ions56837 : [ ' f e e d p e t ' , ' f e e d man ' , ' g i v e can t o p e t ' , ' g i v e can
t o man ' , ' w a i t ' , ' push wand ' , ' e a s t ' , ' f e e d f e e d man ' , ' t a k e can ' ,

' down ' ]
>> Act ion56837 : g i v e can t o man
Reward56837 : 10 , Score 20 , Done F a l s e

Contex t56838 : [CLS] g i v e can t o man [ SEP ] Your p e t s m i l e s a s he
r e a c h e s f o r t h e can . " Good boy , Hardy , " he says , s c r a t c h i n g you
be h i nd t h e e a r s . Your t a i l s t a r t s wagging ; you j u s t can ' t h e l p i t .

( You ' ve a lways been a f o o l f o r a good b eh i n d t h e e a r s s c r a t c h . )
The can h i s s e s wi th r e l e a s i n g a i r a s t h e t o p pops , and t h e n your
p e t s t a k e s a few good g u l p s . He must have been r e a l l y t h i r s t y ,
b e c a u s e soon he s t a n d s up and walks o f f t o t h e o t h e r room . From
t h e o t h e r room , you h e a r your p e t bang ing around and y e l l i n g a b o u t

t h e d ino . Your p e t must have a l m o s t t r i p p e d on i t . He ' s a lways
a l m o s t t r i p p i n g on l i t t l e s t u f f l i k e t h a t . A f t e r a second , you
h e a r a c l i c k as t h e door t o t h e w a t e r room c l o s e s . Now you have
t h e long s o f t t h i n g a l l t o y o u r s e l f ! [ Your s c o r e has j u s t gone up

by t e n p o i n t s . ] r i g h t now you a r e n ' t c a r r y i n g a n y t h i n g . ( i t ' s n o t
l i k e you need

Ac t ions56838 : [ ' t o move ' , ' a l l ' , ' p e t ' , ' your p e t ' , ' much ' , ' a p e t ' ,
' a n y t h i n g ' , ' you ' , ' i t ' , ' any ' , ' anymore ' ]

>> Act ion56838 : p e t
Reward56838 : 0 , Score 20 , Done F a l s e

Contex t56839 : [CLS] p e t [ SEP ] Tha t ' s n o t a t r i c k you know . r i g h t now
you a r e n ' t c a r r y i n g a n y t h i n g . ( i t ' s n o t l i k e you need a l o t o f

s t u f f , anyway . ) [ SEP ]
Ac t ions56839 : [ ' g e t a l l ' , ' t a k e a l l ' , ' t a k e e v e r y t h i n g ' , ' g e t

e v e r y t h i n g ' , ' t a k e p e t ' , ' g e t p e t ' , ' t a k e a l l from r e f r i g e r a t o r ' ,
' t a k e a l l from f r i d g e ' , ' g e t can ' , ' t a k e can ' ]

>> Act ion56839 : g e t e v e r y t h i n g
Reward56839 : 0 , Score 20 , Done F a l s e

Contex t56840 : [CLS] Tha t ' s n o t a t r i c k you know . [ SEP ] g e t
e v e r y t h i n g [ SEP ] magic wand : You s n a t c h up t h e magic wand wi th
your mouth and ho ld on t i g h t . h e l d c a r e f u l l y between your t e e t h i s
a magic wand . [ SEP ]

Ac t ions56840 : [ ' use wand on box ' , ' push wand ' , ' b i t e wand ' , ' chew
wand ' , ' t a k e wand ' , ' g e t wand ' , ' r e a d wand ' , ' p u l l wand ' , ' l i c k
wand ' , ' e a s t ' ]

>> Act ion56840 : chew wand
Reward56840 : 0 , Score 20 , Done F a l s e

Contex t56841 : [CLS] chew wand [ SEP ] Making s u r e you a r e f a c i n g t h e
box of l i g h t , you c a r e f u l l y p r e s s down on t h e wand wi t h your t e e t h

and a r e d e l i g h t e d when t h e box of l i g h t f l i c k e r s and changes !
Now you s e e a bunch of t i n y p e o p l e r u n n i n g around c h a s i n g a l i t t l e
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b i t t y b a l l . Uh oh , someone g o t pushed . Ugh , t h e f a c e s g o t a l l
huge , and t h e y don ' t l ook happy . h e l d c a r e f u l l y between your t e e t h
i s a magic wand . [ SEP ]

Ac t ions56841 : [ ' use wand on box ' , ' b i t e wand ' , ' push wand ' , ' chew
wand ' , ' s c r a t c h wand ' , ' t a k e wand ' , ' g e t wand ' , ' r e a d wand ' , ' p u l l

wand ' , ' l i c k wand ' ]
>> Act ion56841 : push wand
Reward56841 : 0 , Score 20 , Done F a l s e

Contex t56842 : [CLS] push wand [ SEP ] Once a g a i n you chomp down t o
change what ' s i n s i d e t h e box . Th i s t ime t h e r e a r e t h e s e guys
pok ing a t each o t h e r , k i n d a f i g h t i n g and j o k i n g around and a l l .
Th i s i s t h e s o r t o f t h i n g your p e t seems t o e n j o y w a t c h i n g
sometimes , p e o p l e g e t t i n g h i t w i t h food and s l i p p i n g and f a l l i n g
down and s t u f f . Everybody i s l a u g h i n g and nobody e v e r seems t o
r e a l l y g e t h u r t , so you g u e s s i t ' s OK. h e l d c a r e f u l l y between your
t e e t h i s a magic wand . [ SEP ]

Ac t ions56842 : [ ' use wand on box ' , ' b i t e wand ' , ' push wand ' , ' chew
wand ' , ' jump on man ' , ' t a k e wand ' , ' g e t wand ' , ' r e a d wand ' , ' p u l l
wand ' , ' l i c k wand ' ]

>> Act ion56842 : chew wand
Reward56842 : 10 , Score 30 , Done F a l s e

Contex t56843 : [CLS] chew wand [ SEP ] You ' ve g o t t h e hang of t h i s
t r i c k now f o r s u r e ! One more b i t e on t h e wand b r i n g s up some th ing
new . Th i s i s more l i k e i t ! I n s i d e t h e box now i s t h i s l a d y
p u t t i n g t o g e t h e r some t a s t y l o o k i n g food ! You ' r e a l m o s t d r o o l i n g
j u s t w a t c h i n g . Th i s has g o t t o make your p e t t h i n k a b o u t e a t i n g !
[ Your s c o r e has j u s t gone up by t e n p o i n t s . ] h e l d c a r e f u l l y between

your t e e t h i s a magic wand . you f i n a l l y h e a r a f a m i l i a r r u s h o f
w a t e r from t h e l i t t l e w a t e r room and , a f t e r a second , t h e sound of

t h e door open ing . [ SEP ]
Ac t ions56843 : [ ' use wand on box ' , ' s o u t h ' , ' s o u t h e a s t ' , ' n o r t h w e s t ' ,

' s o u t h w e s t ' , ' o u t ' , ' n o r t h e a s t ' , ' wes t ' , ' t a k e wand ' , ' e a s t ' ]
>> Act ion56843 : n o r t h w e s t
Reward56843 : 0 , Score 30 , Done F a l s e

Contex t56844 : [CLS] n o r t h w e s t [ SEP ] I f you want t o go t o t h e food
room , i t ' s t o t h e west , and t h e s l e e p i n g room i s t o t h e n o r t h .
You f i n a l l y h e a r a f a m i l i a r r u s h o f w a t e r from t h e l i t t l e w a t e r
room and , a f t e r a second , t h e sound of t h e door open ing . h e l d
c a r e f u l l y between your t e e t h i s a magic wand . from t h e o t h e r room
, you h e a r your p e t bang ing around and y e l l i n g a b o u t t h e d ino .
your p e t must have a l m o s t t r i p p e d on i t . he ' s a lways a l m o s t
t r i p p i n g on l i t t l e s t u f f l i k e t h a t . your p e t walks i n . he s t a r t s
t o s i t down on t h e long s o f t t h i n g b u t s t o p s when he s e e s what ' s
i n t h e box of l i g h t . t h a t l a d y cook ing i s do ing h e r j o b ! you p e t
s t a n d s and watches , t r a n s f i x e d . he must be t h i n k i n g o f food ! [ SEP ]

Ac t ions56844 : [ ' o u t ' , ' s o u t h e a s t ' , ' down ' , ' s o u t h ' , ' n o r t h w e s t ' , '
s o u t h w e s t ' , ' n o r t h e a s t ' , ' w a i t ' , ' e a s t ' , ' t a k e wand ' ]

>> Act ion56844 : n o r t h e a s t
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Reward56844 : 0 , Score 30 , Done F a l s e

Contex t56845 : [CLS] n o r t h e a s t [ SEP ] I f you want t o go t o t h e food
room , i t ' s t o t h e west , and t h e s l e e p i n g room i s t o t h e n o r t h .
From t h e o t h e r room , you h e a r your p e t bang ing around and y e l l i n g
a b o u t t h e d ino . Your p e t must have a l m o s t t r i p p e d on i t . He ' s
a lways a l m o s t t r i p p i n g on l i t t l e s t u f f l i k e t h a t . Your p e t walks
i n . He s t a r t s t o s i t down on t h e lo ng s o f t t h i n g b u t s t o p s when he

s e e s what ' s i n t h e box of l i g h t . Tha t l a d y cook ing i s do ing h e r
j o b ! You p e t s t a n d s and watches , t r a n s f i x e d . He must be t h i n k i n g
of food ! h e l d c a r e f u l l y between your t e e t h i s a magic wand . your
p e t makes h i s way t o t h e food room . your p e t s t a r t s r a t t l i n g
a round i n t h e food room . yes ! he must be making a snack ! [ SEP ]

Ac t ions56845 : [ ' wes t ' , ' s o u t h e a s t ' , ' down ' , ' n o r t h w e s t ' , ' s o u t h ' , '
s o u t h w e s t ' , ' e a s t ' , ' n o r t h e a s t ' , ' o u t ' , ' w a i t ' ]

>> Act ion56845 : s o u t h w e s t
Reward56845 : 0 , Score 30 , Done F a l s e

Contex t56846 : [CLS] s o u t h w e s t [ SEP ] I f you want t o go t o t h e food
room , i t ' s t o t h e west , and t h e s l e e p i n g room i s t o t h e n o r t h .
Your p e t makes h i s way t o t h e food room . Your p e t s t a r t s r a t t l i n g

a round i n t h e food room . Yes ! He must be making a snack ! h e l d
c a r e f u l l y between your t e e t h i s a magic wand . from t h e o t h e r room
you can h e a r t h e happy sound of t h e c o l d box b e i n g opened . [ SEP ]

Ac t ions56846 : [ ' down ' , ' s o u t h ' , ' s o u t h e a s t ' , ' w a i t ' , ' n o r t h w e s t ' , '
e a s t ' , ' t a k e wand ' , ' n o r t h e a s t ' , ' o u t ' , ' s o u t h w e s t ' ]

>> Act ion56846 : e a s t
Reward56846 : 0 , Score 30 , Done F a l s e

Contex t56847 : [CLS] e a s t [ SEP ] I f you want t o go t o t h e food room ,
i t ' s t o t h e west , and t h e s l e e p i n g room i s t o t h e n o r t h . From t h e

o t h e r room you can h e a r t h e happy sound of t h e c o l d box b e i n g
opened . h e l d c a r e f u l l y between your t e e t h i s a magic wand . from
t h e o t h e r room you can h e a r t h e sound of s e c r e t p l a c e s open ing and

c l o s i n g . [ SEP ]
Ac t ions56847 : [ ' s o u t h e a s t ' , ' n o r t h w e s t ' , ' s o u t h ' , ' o u t ' , ' n o r t h e a s t ' ,

' t a k e wand ' , ' down ' , ' e a s t ' , ' s o u t h w e s t ' , ' r e a d wand ' ]
>> Act ion56847 : r e a d wand
Reward56847 : 0 , Score 30 , Done F a l s e

Contex t56848 : [CLS] r e a d wand [ SEP ] A magica l , bumpy t h i n g your p e t
u s e s t o c o n t r o l t h e box of l i g h t . From t h e o t h e r room you can

h e a r t h e sound of s e c r e t p l a c e s open ing and c l o s i n g . h e l d c a r e f u l l y
between your t e e t h i s a magic wand . you don ' t h e a r a n y t h i n g from
t h e food room . b u t then , making a sandwich i s n o t a ve ry n o i s y

j o b . [ SEP ]
Ac t ions56848 : [ ' t a k e wand ' , ' s o u t h e a s t ' , ' n o r t h w e s t ' , ' s o u t h ' , '

n o r t h e a s t ' , ' down ' , ' o u t ' , ' e a s t ' , ' r e a d wand ' , ' s o u t h w e s t ' ]
>> Act ion56848 : e a s t
Reward56848 : 0 , Score 30 , Done F a l s e
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Contex t56849 : [CLS] e a s t [ SEP ] I f you want t o go t o t h e food room ,
i t ' s t o t h e west , and t h e s l e e p i n g room i s t o t h e n o r t h . You don '
t h e a r a n y t h i n g from t h e food room . But then , making a sandwich i s

n o t a ve ry n o i s y j o b . h e l d c a r e f u l l y between your t e e t h i s a magic
wand . you don ' t h e a r a n y t h i n g from t h e food room . b u t then ,

making a sandwich i s n o t a ve r y n o i s y j o b . [ SEP ]
Ac t ions56849 : [ ' s o u t h ' , ' down ' , ' t a k e wand ' , ' s o u t h e a s t ' , ' n o r t h w e s t

' , ' o u t ' , ' n o r t h e a s t ' , ' s o u t h w e s t ' , ' r e a d wand ' , ' e a s t ' ]
>> Act ion56849 : down
Reward56849 : 0 , Score 30 , Done F a l s e

Contex t56850 : [CLS] down [ SEP ] I f you want t o go t o t h e food room ,
i t ' s t o t h e west , and t h e s l e e p i n g room i s t o t h e n o r t h . You don '
t h e a r a n y t h i n g from t h e food room . But then , making a sandwich i s

n o t a ve ry n o i s y j o b . h e l d c a r e f u l l y between your t e e t h i s a magic
wand . from t h e o t h e r room , you h e a r t h e sound of t h e c o l d box

c l o s i n g . you ' r e s u r e t h a t i n j u s t a minu te your p e t w i l l be
l e a v i n g t h e food room wi th t h e sandwich ! [ SEP ]

Ac t ions56850 : [ ' n o r t h w e s t ' , ' s o u t h e a s t ' , ' s o u t h ' , ' down ' , ' n o r t h e a s t
' , ' s o u t h w e s t ' , ' o u t ' , ' r e a d wand ' , ' e a s t ' , ' t a k e wand ' ]

>> Act ion56850 : n o r t h w e s t
Reward56850 : 0 , Score 30 , Done F a l s e

Contex t56851 : [CLS] n o r t h w e s t [ SEP ] I f you want t o go t o t h e food
room , i t ' s t o t h e west , and t h e s l e e p i n g room i s t o t h e n o r t h .
From t h e o t h e r room , you h e a r t h e sound of t h e c o l d box c l o s i n g .
You ' r e s u r e t h a t i n j u s t a minu te your p e t w i l l be l e a v i n g t h e
food room wi th t h e sandwich ! h e l d c a r e f u l l y between your t e e t h i s a

magic wand . [ SEP ]
Ac t ions56851 : [ ' wes t wes t wes t wes t wes t wes t ' , ' wes t wes t wes t wes t

wes t ' , ' wes t wes t wes t wes t ' , ' wes t wes t wes t ' , ' wes t wes t
wes t wes t wes t wes t wes t ' , ' wes t wes t wes t wes t wes t wes t ' , ' wes t
wes t wes t wes t wes t ' , ' wes t wes t wes t wes t ' , ' wes t wes t wes t ' , '
wes t wes t ' , ' wes t wes t wes t wes t wes t ' , ' wes t wes t wes t wes t ' ]

>> Act ion56851 : wes t wes t wes t
Reward56851 : 0 , Score 30 , Done F a l s e

Contex t56852 : [CLS] wes t wes t wes t [ SEP ] Food Room Your p e t i s
here , working on making a snack . You can a l s o s e e a s q u a r e s o f t
t h i n g h e r e . Your p e t seems t o have f i n i s h e d c l e a n i n g up a f t e r
making t h e snack . He t u r n s t o l e a v e . Now i s t h e moment o f t r u t h .
h e l d c a r e f u l l y between your t e e t h i s a magic wand . sandwich i n
hand , your p e t heads f o r t h e s i t t i n g room . you f o l l o w your p e t a s

he makes h i s way t o t h e long s o f t t h i n g and s t a r t s munching away
on t h e sandwich . i n a moment , i t i s gone , a l o n g wi th your dream of

t h e p e r f e c t snack . l o o k s l i k e you ' l l have t o w a i t u n t i l d i n n e r t o
e a t . poor hungry puppy ! you have missed your chance t o
snack i n t h a t game you s c o r e d 30 o u t o f a p o s s i b l e 50 , i n

25 t u r n s . would you l i k e t o r e s t a r t , r e s t o r e a saved game or
q u i t [ SEP ]
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Act ions56852 : [ ' g i v e sandwich t o p e t ' , ' g i v e sandwich sandwich t o p e t
' , ' g i v e sandwich sandwich sandwich t o p e t ' , ' g i v e sandwich
sandwich sandwich sandwich sandwich sandwich sandwich t o p e t ' , '
g i v e sandwich sandwich sandwich sandwich sandwich sandwich t o p e t
' , ' g i v e sandwich sandwich sandwich sandwich sandwich t o p e t ' , '
g i v e sandwich sandwich sandwich sandwich t o p e t ' , ' g i v e sandwich
sandwich sandwich sandwich sandwich sandwich sandwich sandwich
sandwich ' , ' g i v e sandwich sandwich sandwich sandwich sandwich
sandwich sandwich sandwich t o ' ]

>> Act ion56852 : g i v e sandwich sandwich sandwich sandwich sandwich
sandwich sandwich t o p e t

Reward56852 : 20 , Score 50 , Done True
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Abstract

Text generation from Abstract Meaning Repre-
sentation (AMR) has substantially benefited
from the popularized Pretrained Language
Models (PLMs). Myriad approaches have lin-
earized the input graph as a sequence of to-
kens to fit the PLM tokenization requirements.
Nevertheless, this transformation jeopardizes
the structural integrity of the graph and is
therefore detrimental to its resulting represen-
tation. To overcome this issue, Ribeiro et al.
(2021b) have recently proposed StructAdapt, a
structure-aware adapter which injects the input
graph connectivity within PLMs using Graph
Neural Networks (GNNs). In this paper, we
investigate the influence of Relative Position
Embeddings (RPE) on AMR-to-Text, and, in
parallel, we examine the robustness of Struc-
tAdapt. Through ablation studies, graph attack
and link prediction, we reveal that RPE might
be partially encoding input graphs. We sug-
gest further research regarding the role of RPE
will provide valuable insights for Graph-to-Text
generation.

1 Introduction

Earliest works on AMR-to-Text generation were
mostly based on statistical methods. A common
practice was to convert AMR-to-Text task into
an already studied problems such as Tree-to-Text

∗Work done while at Orange Innovation (Lannion, France).
Now at Huawei Edinburgh Research Centre (United King-
dom).

(Flanigan et al., 2016; Lampouras and Vlachos,
2017), aligned text-to-text (Pourdamghani et al.,
2016), Travel Sales Problems (Song et al., 2016) or
Grammatical Framework (Ranta, 2011). Recently,
most methods are neural-centered with an encoder-
decoder architecture (Sutskever et al., 2014) as a
backbone (Konstas et al., 2017; Takase et al., 2016;
Cao and Clark, 2019). Unfortunately, this archi-
tecture coerces the AMR to be linearized as a se-
quence of tokens. This ends up in structural infor-
mation loss. To tackle this issue, several strategies
have attempted to integrate structure using message
propagation (Song et al., 2018; Guo et al., 2019;
Damonte and Cohen, 2019; Ribeiro et al., 2019;
Zhang et al., 2020b; Zhao et al., 2020). A lim-
itation of those is the absence of pretraining, as
demonstrated by Ribeiro et al. (2021a). To this end,
Ribeiro et al. (2021b) introduced StructAdapt for
lightweight AMR-to-Text with structural adapters.
As linearization and tokenization of the input graph
are mandatory steps for PLMs, StructAdapt first
defines a new graph where nodes are the result-
ing subwords from the tokenization. As a result,
adapter can henceforth include GNN layers oper-
ating on the subsequent graph while leveraging
pretrained representations.

However, although studies have been made to
probe position embeddings (Wang and Chen, 2020;
Wang et al., 2021; Dufter et al., 2022), their role on
graph encoding has remained unanswered. In this
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paper, we are particularly interested in measuring
the saliency of RPE with StructAdapt for AMR-to-
Text generation. Our novelty is not in proposing
a new method to encode graphs such as (Schmitt
et al., 2021) but rather in revealing the interesting
behaviours of RPE along with StructAdapt.

2 STRUCTADAPT: A Structural Adapter

A major issue in AMR-to-Text, and more generally
Graph-to-Text with Transformers (Vaswani et al.,
2017), is the linearization of the input structure.
The linearization of the graph returns a sequence of
node and edge labels according to a certain traver-
sal of the graph. Nonetheless, adjacent nodes in
the graph may be at multiple positions away from
one another in the final serialization. To counteract
this, Ribeiro et al. (2021b) introduced StructAdapt,
a structure-aware (encoder) adapter. It solves the
problem of segmented nodes labels by reconstruct-
ing a new graph from the resulting subwords. More
specifically, the relations are primary reified as
new nodes in the AMR graph. Furthermore, la-
bels of those reified relations will be added in the
vocabulary as new tokens and therefore will not
be decomposed into subwords. However, the la-
bels of the original nodes can still be chunked. To
deal with this, each subword node will be con-
nected independently to the reified relation of the
initial (non-chunked) node. An example is out-
lined in Figure 1. As a consequence, the vanilla
Adapter can now integrate any GNN-based neural
network which operates on the new constructed
graph (Figure 1), where nodes are the input tokens.
Concretely, StructAdapt replaces the first stacked
MLP of vanilla adapter with a GNN-based model
as shown in Figure 2. For AMR-to-Text, only
the encoder is equipped with StructAdapt in or-
der to encode AMR structure. The decoder layers
adopt vanilla adapters. In our study, we consider
three different GNN-based models which are Graph
Convolutional Network (GCN) (Kipf and Welling,
2017), Graph Attention network (GAT) (Veličković
et al., 2017) and Relational Graph Convolutional
Network (RGCN) (Schlichtkrull et al., 2018). GCN
computes a representation for each node a which
is a (normalized) aggregation function of repre-
sentation of its neighbor nodes noted N (a). GAT
is akin to GCN but differs in that aggregation of
neighbors embeddings are weighted using an atten-
tion mechanism. Unlike GAT and GCN, RGCN
further captures the type of the relation between

a/and

o1/occidentalism o2/orientalism

:op1 :op2

and :op1 occidentalism :op2 orientalism

and :op1 occidental is m orient alism

1 2 3 4 5 6 7

:op2

8

Tokenization

LIN(..)

(a) AMR

(b) Linearization

(c) New Graph

Figure 1: Examples of AMR tokenization for the sen-
tence “Occidentalism and Orientialism.”. The resulting
input graph in (c) contains 8 nodes.

Multi-Head
Attention

Add & Norm

Feed-forward

Adapter Vanilla Adapter

StructAdapt 

Layer Norm.

GNN

Feed-forward

Layer Norm.

Feed-forward

Feed-forward

Figure 2: Vanilla Adapter vs StructAdapt

two nodes. In our case, as AMR relations are rei-
fied and stand for new nodes of the graphs, our
new relations can either be of direct (a d−→ b) or re-
verse (a r←− b) connections type as in (Ribeiro et al.,
2021b). The details of the representations compu-
tation for each model can be found in Appendix A.
The returned nodes embeddings will then be given
as input features to the following MLP.

3 Relative Position Embeddings

Instead of adding Absolute Position Embeddings
(APE) directly to the token embedding as in stan-
dard Transformer model, some models such as T5
make use of relative position embeddings inspired
from Shaw et al. (2018). As an alternative to APE,
RPE offer interesting features. A noteworthy limi-
tation of APE is the need to set a limit of available
positions. Therefore, long sequences may have
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Adapter BLEU ↑ METEOR ↑ Chrf++ ↑ TER ↓ BERTScore ↑ M ↑ F ↑
MLP w/ RPE 41.6±0.3 56.5±0.3 70.6±0.2 45.9±0.5 95.6±0.0 84.2±0.1 78.0±0.5

w/o RPE 16.3±0.5 38.5±0.8 49.9±1.1 85.5±0.9 91.8±0.2 81.9±1.1 76.2±0.6

GCN w/ RPE 42.6±0.8 56.7±0.4 71.0±0.5 44.8±0.7 95.7±0.1 84.6±0.3 79.0±0.6
w/o RPE 34.4±0.8 52.0±0.7 64.8±0.6 55.8±1.2 94.6±0.1 79.2±0.6 75.2±1.0

GAT w/ RPE 42.8±0.1 57.0±0.1 71.1±0.0 44.3±0.3 95.8±0.0 84.8±0.1 78.5±0.8
w/o RPE 34.8±1.1 52.3±0.7 64.8±0.7 54.9±1.4 94.6±0.2 79.6±0.8 75.6±0.4

RGCN w/ RPE 44.7±0.6 58.2±0.3 72.5±0.3 42.6±0.4 96.0±0.0 85.5±0.2 79.6±0.7
w/o RPE 39.9±0.8 55.7±0.5 68.9±0.8 48.8±1.3 95.3±0.1 83.1±0.4 78.0±0.6

Table 1: Comparing impact of Relative Positional Embeddings (RPE) on generation. We report mean performances
(±s.d.) over 3 seeds.

Adapter
Meaning

Preservation
Linguistic

Correctness
MLP w/ RPE 4.8±1.2 5.5±0.9

MLP w/o RPE 3.5±1.5 5.2±1.2

GCN w/ RPE 5.0±1.2 5.6±0.8

GCN w/o RPE 4.7±1.3 5.5±1.0

RGCN w/ RPE 5.2±1.1 5.6±0.8

RGCN w/o RPE 4.7±1.3 5.4±1.0

Table 2: Human Evaluation. Mean scores (±s.d.)

to be segmented. Furthermore, APE are directly
added to the token representation leading to infor-
mation inconsistency, i.e. position versus semantic
information. To this extent, Shaw et al. (2018)
came up with relative position encodings which are
supplied to the self-attention mechanism by simply
adding a scalar to the logits encoding the supposed
relation between a current token i and a token j.

4 Experiments

Throughout our experiments, we make use of the
LDC2020T02 dataset (AMR 3.0 release)1 and use
the T5base model which employs RPE. The training
and evaluation details can be found in Appendix B
and C, respectively.

4.1 Exploring the Salience of RPE

In this section, we investigate the influence of RPE
on the generation quality using structural adapter.
RPE are computed in each Transformer head. Po-
sition information is then forwarded to the adapter
module on top (Figure 2). However, since con-
nections between input nodes (i.e. tokens) are al-
ready given to structural adapters in encoder, it is
legitimate to question the necessity for RPE on
the encoder part but also how would the genera-
tion quality vary without such information. Hence,
we propose to remove the RPE from the encoder
heads to gauge their salience to structure encoding
for downstream language generation. Since de-
coder is not encoding any graph structure, we leave

1https://catalog.ldc.upenn.edu/LDC2020T02

RPE in decoder untouched. For better readabil-
ity, MLP, GCN, GAT, and RGCN respectively de-
note: the vanilla adapter, StructAdapt with a GCN
layer, StructAdapt with a GAT layer and Struc-
tAdapt with a RGCN layer. MLP-based adapter
with RPE is our baseline. Results are given in Ta-
ble 1. A human evaluation is also provided for
some encoder adapters in Table 2. First, it is ap-
parent that using RPE systematically yields better
generation performances. For the vanilla adapter
(i.e. our baseline), we note a 25.3% absolute drop
in BLEU when removing RPE. This can also be
seen on human evaluation. More than one point is
lost toward meaning preservation. The downturn
for linguistic correctness is less important since
T5 is pretrained and thus rarely prone to syntax er-
rors. Such a result is not surprising for MLP-based
adapter since it solely relies on RPE to differentiate
tokens at different positions in the linearized AMR.
However, a striking observation is that getting rid
of RPE for GNN-based adapters leads to lower
performances than our baseline. Indeed, when re-
moving RPE when using structural adapter, we
would have expected GNN-based approaches to
be as competitive as a MLP-based adapter with
RPE. We report a relative drop of 12.5 points in
BLEU from the baseline. The same conclusion
can be drawn from Table 2. This indicates that
RPE are capturing relevant information for final
generation. To further assess the impact and the
role of RPE, we conduct a graph attack experi-
ment. Instead of conveying the correct adjacency
matrix, we propose to corrupt connectivity informa-
tion. We randomly generate an adjacency matrix
such that generated matrix does not contain any
actual connection. We suppose that without RPE,
structure-aware adapter will lead to a significant
decrease in generated text due to the absence of in-
formation about the graph nor the position of nodes
in the input sequence. We are especially interested
to measure to which extent RPE might be able to
take over the encoding of the graph for generation.
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Adapter BLEU ↑ METEOR ↑ Chrf++ ↑ TER ↓ BERTScore ↑ M ↑ F ↑
GCN w/ RPE 35.1±0.5 52.0±0.4 65.7±0.5 53.6±0.9 94.8±0.1 80.5±0.4 74.1±1.2

w/o RPE 13.9±0.5 35.2±0.6 46.7±0.5 86.5±2.7 91.1±0.1 77.1±14.4 78.0±2.6

GAT w/ RPE 36.8±0.6 52.3±0.5 67.0±0.5 51.1±0.9 95.0±0.1 81.6±0.5 75.7±0.3
w/o RPE 13.1±2.8 34.1±3.6 45.2±4.2 89.1±0.6 90.7±0.1 68.9±14.1 77.4±1.9

RGCN w/ RPE 38.0±0.9 54.1±0.6 67.6±0.6 49.3±0.8 95.2±0.1 81.9±0.7 75.9±0.8
w/o RPE 11.3±1.3 30.1±1.1 41.6±1.0 87.2±1.3 90.0±0.2 66.8±16.3 75.5±5.2

Table 3: Graph Attack - We corrupt the graph connectivity information given to the structural adapters in encoder.
We report mean performances (±s.d.) over 3 seeds.

Adapter
Meaning

Preservation
Linguistic

Correctness
GCN w/ RPE 5.0±1.2 5.6±0.8

RGCN w/ RPE 5.2±1.1 5.6±0.8

Table 4: Graph Attack - Human Evaluation. Mean
scores (±s.d.)

Results are shown in Table 3. Human evaluation
for attacked GCN and RGCN adapters is given in
Table 4. As hypothesized, providing erroneous con-
nectivity without any position embeddings makes
structural adapters no longer compelling. We ob-
serve that StructAdapt with RGCN is significantly
more affected compared to GAT and GCN based
adapters. Since RGCN adds direction information
for each edge (direct and reverse), we conjecture
that RGCN is much more bewildered. Interest-
ingly, using RPE with corrupted graph (Table 3)
leads to similar performance than using graph in-
formation without RPE (Table 1). This strongly
demonstrates the usefulness of RPE to carry out
the generation. We additionally provide a position
attack experiment in Appendix E where RPE are
shuffled randomly. Accordingly, we can further
identify the saliency of RPE despite the available
GNN. This raises the question of RPE encoding
the input graph.

4.2 Can the Graphs Be Reconstructed ?

As shown in Section 4.1, RPE seem to be as com-
petitive as applying GNNs alone. If claiming that
RPE also encode graphs is tempting, no strong
evidence has been revealed. Indeed, better gen-
eration quality is not necessarily a consequence
of better graph encoding. Therefore, we probe
whether graphs can indeed be reconstructed from
the learned hidden representations. To do so, we
train a logistic regression, i.e. our probe, to perform
link prediction as a binary classification. More
specifically, given two nodes representations at a
given layer l, our probe returns the probability
that nodes are connected. To train our logistic
regression model, we sample k positive connec-
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Figure 3: Probing - Link Prediction Results using hid-
den representations h̃i at different layers i.

tions, i.e. two connected nodes, and k negative
connections, i.e. two non-connected nodes, for
each sample of training and test sets.2 For our ex-
periment, we choose k = 2 which leads to 109,490
and 3,770 samples for each class for training and
testing respectively. We plot results in Figure 3.
Firstly, we observe very high accuracy for the
vanilla adapter without RPE. Accuracies over 60%
are easily reached while no structure encoding nor
positions information are supplied. This might be a
side effect of our probe training. Nevertheless, this
gives a lower bound for our experiment. We can see
that adding RPE increases the link prediction per-
formance for MLP, GCN and GAT-based adapters.
We observe a constant gap of about 3.5% on aver-
age. However, we remark that RGCN is able to re-
construct edges on its own with best accuracy. We
report a maximum accuracy about 76% while other
models are not reaching 73%. This strengthens the
idea that giving information of reverse connection
may add robustness to graph encoding as shown in
(Beck et al., 2018). Generally, we observe that the
deeper the representation, the better the link predic-
tion. We notice however that after the 10th layer,
significant drops in link prediction arise regardless

2If k samples cannot be extracted for both positive and
negative classes, the sample is discarded.
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of adapter type. We assume representations should
lose some information about the structure to per-
form language generation. This may indicate that
encoded representation for Graph-to-Text is not
just graph-centered. Although counter-intuitive,
encoder representations given to the decoder part
may not have to encode input graph efficiently in
order to verbalize it. We leave this research ques-
tion for future work. We further provide an analysis
on self-attention matrices in Appendix F.

5 Conclusion

In this paper, we have explored the effect of relative
position embeddings on AMR-to-Text generation
using structural adapters. We have shown that the
generation process could be enabled by relative po-
sition embeddings when structure is erroneous or
missing. In addition, we have demonstrated the ca-
pacity of those representations to encode the input
graph to some extent. We have further revealed
interesting robustness of RGCN model in graph
reconstruction ability. For future work, we believe
further experiments on other pretrained models and
Graph-to-Text tasks may shed more light on the
role of position embeddings.

Limitations

A limitation of our study is that we focus on the T5
model only. Since adapters are additional modules
to add, it is required to manually implement and
directly modify the original code of the pretrained
model which is not easily scalable. In addition, we
only evaluate on the LDC2020T02 dataset which
is the cleanest AMR dataset available.
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Maja Popović. 2017. chrF++: words helping charac-
ter n-grams. In Proceedings of the Second Confer-
ence on Machine Translation, pages 612–618, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Nima Pourdamghani, Kevin Knight, and Ulf Hermjakob.
2016. Generating English from Abstract Meaning
Representations. In Proceedings of the 9th Inter-
national Natural Language Generation conference,

pages 21–25, Edinburgh, UK. Association for Com-
putational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Lan-
guage Models are Unsupervised Multitask Learners.
https://openai.com/blog/better-language-models/.

Aarne Ranta. 2011. Grammatical Framework - Pro-
gramming with Multilingual Grammars. CSLI Stud-
ies in Computational Linguistics. Cambridge Univer-
sity Press.

Leonardo F. R. Ribeiro, Claire Gardent, and Iryna
Gurevych. 2019. Enhancing AMR-to-text genera-
tion with dual graph representations. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3183–3194, Hong Kong,
China. Association for Computational Linguistics.

Leonardo F. R. Ribeiro, Martin Schmitt, Hinrich
Schütze, and Iryna Gurevych. 2021a. Investigating
pretrained language models for graph-to-text genera-
tion. In Proceedings of the 3rd Workshop on Natural
Language Processing for Conversational AI, pages
211–227, Online. Association for Computational Lin-
guistics.

Leonardo F. R. Ribeiro, Yue Zhang, and Iryna Gurevych.
2021b. Structural adapters in pretrained language
models for AMR-to-Text generation. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 4269–4282, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem,
Rianne van den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In The Semantic Web, pages 593–
607, Cham. Springer International Publishing.

Martin Schmitt, Leonardo F. R. Ribeiro, Philipp Dufter,
Iryna Gurevych, and Hinrich Schütze. 2021. Mod-
eling graph structure via relative position for text
generation from knowledge graphs. In Proceedings
of the Fifteenth Workshop on Graph-Based Methods
for Natural Language Processing (TextGraphs-15),
pages 10–21, Mexico City, Mexico. Association for
Computational Linguistics.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 464–468, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Linfeng Song, Yue Zhang, Xiaochang Peng, Zhiguo
Wang, and Daniel Gildea. 2016. AMR-to-text genera-
tion as a traveling salesman problem. In Proceedings

732

https://doi.org/10.18653/v1/N16-1087
https://doi.org/10.18653/v1/N16-1087
https://doi.org/10.1162/tacl_a_00269
https://doi.org/10.1162/tacl_a_00269
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/S17-2096
https://doi.org/10.18653/v1/S17-2096
https://doi.org/10.3115/1075096.1075117
https://doi.org/10.3115/1075096.1075117
https://doi.org/10.18653/v1/2021.eacl-main.129
https://doi.org/10.18653/v1/2021.eacl-main.129
https://doi.org/10.18653/v1/2021.eacl-main.129
https://doi.org/10.18653/v1/W17-4770
https://doi.org/10.18653/v1/W17-4770
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W16-6603
https://doi.org/10.18653/v1/W16-6603
http://cslipublications.stanford.edu/site/9781575866277.shtml
http://cslipublications.stanford.edu/site/9781575866277.shtml
https://doi.org/10.18653/v1/D19-1314
https://doi.org/10.18653/v1/D19-1314
https://doi.org/10.18653/v1/2021.nlp4convai-1.20
https://doi.org/10.18653/v1/2021.nlp4convai-1.20
https://doi.org/10.18653/v1/2021.nlp4convai-1.20
https://doi.org/10.18653/v1/2021.emnlp-main.351
https://doi.org/10.18653/v1/2021.emnlp-main.351
https://doi.org/10.18653/v1/2021.textgraphs-1.2
https://doi.org/10.18653/v1/2021.textgraphs-1.2
https://doi.org/10.18653/v1/2021.textgraphs-1.2
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/D16-1224
https://doi.org/10.18653/v1/D16-1224


of the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2084–2089, Austin,
Texas. Association for Computational Linguistics.

Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel
Gildea. 2018. A graph-to-sequence model for AMR-
to-text generation. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1616–1626,
Melbourne, Australia. Association for Computational
Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume
2, NIPS’14, page 3104–3112, Cambridge, MA, USA.
MIT Press.

Sho Takase, Jun Suzuki, Naoaki Okazaki, Tsutomu Hi-
rao, and Masaaki Nagata. 2016. Neural headline gen-
eration on Abstract Meaning Representation. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1054–
1059, Austin, Texas. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.
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A Graph Neural Networks

A.1 Graph Convolutional Network (GCN)

To compute the node representation glu ∈ Rdg of
the node u at layer l, GCN computes an aggregation
of neighbors nodes embeddings as:

glu = σ


 ∑

v∈N (u)

1

deg(u)× deg(v)
W lglv


 (1)

with σ an activation function and deg(x) the degree
of the node x.

A.2 Graph Attention Network (GAT)

GAT applies an attention mechanism to determine
importance of neighboors nodes regarding current
node u. We have:

glu = σ


 ∑

v∈N(u)

softmax(eu,v)W
lglv




eu,v = LeakyReLu


au,v

v∥∥∥∥gli
i=u




(2)

with both σ and LeakyReLu non-linear activation
functions and au,v ∈ R2×dg a learnable vector.

A.3 Relational Graph Convolutional Network
(RGCN)

RGCN takes into consideration the nature of the
relation r ∈ R between nodes u and v. It performs
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Adapter
Runtime
(in hours)

MLP 21.5
GCN 15.6
GAT 22.0

RGCN 16.2

Table 5: Runtime - Runs are executed on a single
NVIDIA GeForce RTX 3090 GPU.

convolution as the following:

glu = σ


∑

r∈R

∑

v∈Nr(u)

cu,rW
l
rg
l
v


 (3)

with Nr(u) the direct neighbors of node u under
the relation r, cu,r a normalization term and W l

r ∈
Rdg×dg a learnable relation-dependent parameter.

B Training Setting

We used the version 3.3.1 of the HuggingFace’s
Transformers library (Wolf et al., 2020). We use
Adam optimizer with a linearly decreasing learning
rate, without warm-up. The initial learning rate is
set to 1× 10−4. Batch size is set to 8. For decod-
ing, a beam search of 5 is selected. A maximum
length of 384 is used in case the end-of-sentence
token is not encountered. We didn’t use gradient
clipping nor label smoothing. For GNNs, we make
use of the version 1.7.2 of the PyTorch Geometric
library (Fey and Lenssen, 2019). We only use a sin-
gle layer for our GNNs networks, similarly to the
vanilla adatper. For GAT, a single attention head
was applied. The bottleneck dimension is set to 256
for all of our adapters. This is equivalent to about
4% only of the whole T5base model’s parameters to
train. The training time for MLP, GCN, GAT and
RGCN adapters are given in Table 5. Note that the
total runtime depends on the convergence as we are
using early stopping.

C Automatic Evaluation

For evaluation, we consider multiple automated
metrics. We employ popular n-gram-based met-
rics which are SacreBLEU (Post, 2018), METEOR
(Banerjee and Lavie, 2005), chrf++ (Popović,
2017), TER (Och, 2003) and the semantic-based
BertScore metric (Zhang et al., 2020a). In addition,
we also report bothM and F pillars of the decom-
posableMF score recently proposed by Opitz and
Frank (2021). The meaning preservation, noted
M, measures how close the AMR of the gener-
ated sentence is to the reference sentence. To do

so, both the generated sentence and target sentence
are parsed with a pretrained Text-to-AMR model
from Cai and Lam (2020). Then, their AMRs are
compared using graph-based similarity measures
such as Smatch (Cai and Knight, 2013). In con-
trast, the grammatical form, noted F , measures the
linguistic quality of the generated text using state-
of-the-art language model (Radford et al., 2019).
We also report human evaluation in Section 4.1 to
accurately assess the quality of the generated out-
puts. We ask annotators to evaluate the meaning
preservation and linguistic correctness of our gen-
erated outputs compared to the references. Details
of human evaluation are given in Appendix D.

D Human Evaluation

Since handcrafted annotation is extremely costly,
we limited the number of samples and models to
assess. We randomly selected 30 test samples per
model to evaluate manually. We further limited
evaluation to 8 configurations of adapters. This led
us with 240 samples to score by multiple annota-
tors. We asked 22 annotators to answer to these
following questions with a rate on a 1-6 Likert
scale, with 6 the best score:

• Is the generated sentence semantically close
to the reference ?

• Is the generated sentence grammatically cor-
rect ?

Each annotator was given 50 samples to annotate.
We adopted FlexEval (Fayet et al., 2020) to im-
plement a flexible evaluation environment. This
allows a streaming evaluation were annotators can
stop at any moment and come back to the evalu-
ation later, at one’s will. Furthermore, different
samples from different models are given to annota-
tors in an balanced manner such that each sample
of each model is exposed to at least 2 annotators.
Note that one annotator is given some samples from
multiple configuration. This avoids evaluation bias
toward a single annotator. In our case, each sample
from each configuration has been annotated by 4
distinct annotators.

E Position Attack

For a given graph, we also propose to corrupt RPE
with a random shuffle. Since the model may learn
the generated order through training, we system-
atically shuffle RPE for each epoch for all graphs.
Results are given in Table 6.
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Figure 4: 1-Wasserstein distances of attention distributions for each head (columns) at each layer (rows) from both
normalized adjacency matrices (top) and uniform distribution (down). The bluer, the lower the distance.

Adapter BLEU
MLP 19.0±0.6

GCN 28.1±0.6

GAT 28.9±2.3

RGCN 35.4±1.2

Table 6: Position Attack - Relative Position Embeddings
are shuffled.

F Analysis of Attention Matrices

The self-attention matrix gives information about
how much weight should be assigned to other to-
kens (i.e. nodes). Thus, attention matrix can be
seen as a pseudo-adjacency matrix. We further pro-
pose to inspect the similarity between the attention
matrix of each head at each layer with the adja-
cency matrix of the input graph. Since the input
is considered as a sequence of nodes, the shape of
the attention matrix and adjacency matrix are equal.
However, a limitation of the similarity comparison
lies in the respective type of those mathematical ob-
jects. Attention matrices are probabilities whereas
adjacency matrices are not. To deal with this issue,
we convert the adjacency matrix As of a sample s
to a normalized form Ãs such that each row Ãsn is
normalized and sums up to one, as described in Eq.
4.

As =



0 1 1

1 1 1

0 0 1


 Ãs =



0 1

2
1
2

1
3

1
3

1
3

0 0 1


 (4)

This enables the rows of both attention and ad-
jacency matrices to be probabilities distributions
over input nodes. We can therefore measure the
distance between those distributions to find out
whether attention matrices are somehow close to
the (normalized) adjacency matrix, and thus en-
coding graph connections. To do so, we compute
the 1-Wasserstein distance W1

3 between the at-
tention distribution of each token n and its corre-
sponding normalized nth row of Ã. We average
distances over tokens, and then over samples (Eq.
5). We note Ã, S, and Ns the adjacency matrices,
the total number of AMR samples and the length
of sequence s, respectively.

W1(head
l
i, Ã) =

1

S

S∑

s=1

1

Ns

Ns∑

n=1

W1(head
l,s
i,n, Ã

s
n)

(5)

For fair comparison, we also provide the dis-
tance between attention distribution headli and
the uniform distribution U which assigns a prob-
ability of 1

N to each token for a graph with N
nodes. We plot distances as heatmaps on Figure 4
where each square indicates either W1(head

l
i, Ã)

or W1(head
l
i, U). When using RPE, we can see

that, for both MLP and RGCN-based adapters,
the distribution of the attention scores are close
to the normalized adjacency matrices of our graphs.
Meanwhile, when removing them, we can witness

3Equivalent to earth mover’s distance.
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that attention scores are much closer to the uniform
distribution and thus smoother. This is in line with
our previous results suggesting that RPE might par-
tially encode graphs. Since RPE are shared across
layers, we can easily detect similar distances across
layers for same heads (visible vertical lines). We
also find similar behavior we have previously noted
where last layers tend to lose graph information as
attention scores slightly move away from the nor-
malized adjacency matrix distribution.
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Abstract
The Bar-Hillel construction is a classic result
in formal language theory. It shows, by a
simple construction, that the intersection of a
context-free language and a regular language
is itself context-free. In the construction, the
regular language is specified by a finite-state
automaton. However, neither the original
construction (Bar-Hillel et al., 1961) nor
its weighted extension (Nederhof and Satta,
2003) can handle finite-state automata with
ε-arcs. While it is possible to remove ε-arcs
from a finite-state automaton efficiently with-
out modifying the language, such an operation
modifies the automaton’s set of paths. We give
a construction that generalizes the Bar-Hillel
in the case where the desired automaton has
ε-arcs, and further prove that our generalized
construction leads to a grammar that encodes
the structure of both the input automaton and
grammar while retaining the asymptotic size
of the original construction.

https://github.com/rycolab/
bar-hillel

1 Introduction

Bar-Hillel et al.’s (1961) construction—together
with its weighted generalization (Nederhof and
Satta, 2003)—is a fundamental result in formal
language theory. Given a weighted context-free
grammar (WCFG) G and a weighted finite-state
automaton (WSFA) A, the Bar-Hillel construction
yields another WCFG G∩ whose languageL(G∩) is
equal to the intersection ofL(G) withL(A). Impor-
tantly, the Bar-Hillel construction directly proves
that weighted context-free languages are closed un-
der intersection with weighted regular languages.
The construction was later extended to other for-
malisms, e.g., tree automata (Maletti and Satta,
2009), synchronous tree substitution grammars
(Maletti, 2010) and linear context-free re-writing
systems (Seki et al., 1991; Nederhof and Satta,
2011b). Furthermore, the Bar-Hillel construction
has seen applications in the computation of infix

probabilities (Nederhof and Satta, 2011a) and hu-
man sentence comprehension (Levy, 2008, 2011).

Unfortunately, Bar-Hillel et al.’s construction,
as well as its weighted generalization by Nederhof
and Satta, requires the input automaton to be
ε-free.1 Although any WFSA can be converted
to a weakly equivalent2 ε-free WFSA using well-
known techniques (Mohri, 2001, 2002; Hanneforth
and de la Higuera, 2010), such an approach adds an
additional step of computation, typically increases
the size of the output grammar G∩, and does not, in
general, maintain a bijection between derivations
in G∩ and the Cartesian product of the derivations
in G and paths in A. In other words, G∩ is not
strongly equivalent to the product of G and A.3

In this note, we generalize the classical Bar-
Hillel construction to the case where the automaton
we seek to intersect with the grammar has ε-arcs.
Our new construction produces a WCFG G∩ that
is strongly equivalent to the product of G and A.
We further generalize the Bar-Hillel construction
to work with arbitrary commutative semirings.
Finally, we give an asymptotic bound on the size
of the resulting grammar and a detailed proof of
correctness in the appendix.

2 Languages, Automata, and Grammars

As background, we now give formal definitions of
semirings, weighted formal languages, finite-state
automata, and context-free grammars.

2.1 Semirings

Semirings are useful algebraic structures for de-
scribing weighted languages (Droste et al., 2009,
Chapter 1). In order to define semirings we must
first give the definition of a monoid. A monoid
is a 3-tuple M = (A, •, 1), where A is a set,

1But they do not require the input grammar to be ε-free.
2Two WFSAs are said to be weakly equivalent if they

represent the same weighted formal language.
3Strong equivalence is formally defined in Definition 6 and

Theorem 1.
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q0 q1 q2 q3
The/2 ε/0.3

many/0.75

cyclists/1

ε/0.6

(a) Weighted finite-state automaton

S→ Det NP 1

NP→ Adj N 1

NP→ Adj NP 0.5

N→ cyclists 2

Adj→ many 2

Adj→ ε 1

Det→ The 2

(b) Weighted context-free grammar
S

Det

The

NP

Adj

many

NP

Adj

ε

N

cyclists

(c) Original derivation

S

(q0, S̃, q3)

(q0, S̃, q3)

(q0, S̃, q3)

(q0,S, q3)

(q0,Det, q1)

(q0,The, q1)

The

(q1,NP, q3)

(q1,Adj, q2)

(q1,many, q2)

(q1, ε, q2)

ε

(q2,many, q2)

many

(q2,NP, q3)

(q2,Adj, q2)

ε

(q2,N, q3)

(q2, cyclists, q3)

cyclists

(q3, ε, q3)

ε

(q3, ε, q3)

ε

(d) Derivation in the intersection grammar

Figure 1: Example of a derivation in the grammar obtained as the intersection of the finite-state automaton (a) and
the context-free grammar (b). The derivation tree (d) encodes the derivation tree (c) in the original grammar, and

path q0
The/2−−−→ q1

ε/0.3−−−→ q2
many/0.75−−−−−−→ q2

cyclists/1−−−−−→ q3
ε/0.6−−−→ q3

ε/0.6−−−→ q3. We use rules from Eq. (5g) for ε-arcs
appearing before an input symbol, and rules from Eq. (5b) for ε-arcs appearing at the end of the input.

• : A × A → A is an associative operator, and
1 ∈ A is a distinguished identity element such
that 1 • w = w • 1 = w for any w ∈ A. We say
that a monoid is commutative if • commutes, i.e.,
w1 • w2 = w2 • w1 for any w1, w2 ∈ A. We can
now give the definition of a semiring.

Definition 1. A semiringW = (A,⊕,⊗, 0, 1) is
a 5-tuple where (A,⊕, 0) is a commutative monoid,
(A,⊗, 1) is a monoid, ⊗ distributes over ⊕, and
0 is an annihilator for ⊗, meaning that 0 ⊗ w =
w ⊗ 0 = 0 for any w ∈ A.

We say thatW is commutative if ⊗ commutes.
In this work, we assume commutative semirings.

2.2 Weighted Formal Languages

This paper concerns itself with transforms between
devices that generate weighted formal languages.

Definition 2. Let Σ be an alphabet and
W = (A,⊕,⊗, 0, 1) be a semiring. Then a
weighted formal language L : Σ∗ → A is a
mapping from the Kleene closure of Σ to the set of
weights A. Furthermore, the set supp(L) =

{
s ∈

Σ∗ | L(s) 6= 0
}

is called the language’s support.

Unweighted formal languages (e.g., Sipser,
2006; Hopcroft et al., 2006) are simply the special
case of Definition 2 where W is the boolean
semiring. In this note, we discuss algorithms for
computing the intersection of two weighted formal
languages.4

Definition 3. Let L1 and L2 be two weighted for-
mal languages over the same alphabet Σ and the
same semiringW . The intersection of L1 with L2

is defined as the weighted language

(L1 ∩ L2) (s)
def
= L1(s)⊗ L2(s), ∀s ∈ Σ∗ (1)

Specifically, this paper concerns itself with the
special case of Definition 3 when L1 is a weighted
context-free language (represented by a WCFG),
and L2 is a weighted regular language (represented
by a WFSA); we define these two formalisms in
the subsequent sections.

In the following, the symbol ε always represents
the empty string.

4The intersection of two weighted languages is also called
their Hadamard product (Droste et al., 2009, Chapter 1).
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2.3 Weighted Finite-State Automata
We now review the basics of weighted finite-state
automata (WFSA), which provide a formalism to
represent weighted regular languages.
Definition 4. A weighted finite-state automaton
A over a semiring W = (A,⊕,⊗, 0, 1) is a 6-
tuple (Σ, Q, δ, λ, ρ,W). In this tuple, Σ is an al-
phabet, Q is a finite set of states, and δ ⊆ Q×Q×
(Σ∪ {ε})×A is a finite multi-set of weighted arcs.
Further, λ : Q→ A and ρ : Q→ A are the initial
and final weight functions, respectively. We also
define the sets QI = {q | q ∈ Q, λ(q) 6= 0} and
QF = {q | q ∈ Q, ρ(q) 6= 0} for convenience.

We will represent an arc in δ with the notation

q0
a/w−−→ q1 where a ∈ Σ∪{ε} and w ∈ A. A path

π (of length N > 0) is a sequence of arcs in δ∗

where the states of adjacent arcs are matched, i.e.,

q0
a1/w1−−−−→ ··· qn−1

an/wn−−−−→ qn ···
aN/wN−−−−−→ qN (2)

and where q0 ∈ QI and qN ∈ QF , i.e., the path
starts at an initial state and ends at a final state.
The path’s yield, denoted yield (π), is the con-
catenation a1a2 ··· aN of all its arc labels (strings
of length ≤ 1). The path’s weight, denoted w (π),
is the product

w (π) = λ(q0)⊗
(

N⊗

n=1

wn

)
⊗ ρ(qN ) (3)

We denote the set of all paths in A as DA, and
the set of all paths with yield s as DA(s). Finally,
we define the language of an automaton as
the mapping LA : Σ∗ → A where we have5

LA(s) =
⊕
π∈DA(s)w (π). The set of languages

that can be encoded by a WFSA forms the class
of weighted regular languages.

2.4 Weighted Context-Free Grammars
We now go over the necessary background on
weighted context-free grammars (WCFGs).
Definition 5. A weighted context-free grammar
is a tuple G = (N ,Σ,W, S,P), where N is a
non-empty set of nonterminal symbols, Σ is an al-
phabet of terminal symbols,W = (A,⊕,⊗, 0, 1)
is a semiring, S ∈ N is a distinguished start
symbol, and P is a set of production rules. Each
rule p ∈ P is of the form X

w−→ α, with X ∈ N ,
w ∈ A, and α ∈ (Σ ∪N )∗.

5In the main paper we gloss over the question of how⊕
-summations over infinite sets are to be defined (or left

undefined), but we treat this issue in App. B.2.

Given two strings α,β ∈ (Σ ∪ N )∗, we write
α

p⇒L β if and only if we can express α = zX δ
and β = z γ δ where z ∈ Σ∗ and p ∈ P is the
rule X

w−→ γ. A derivation d (more precisely, a
leftmost derivation) is a sequence α0, . . . ,αN
with N > 0, α0 = S, and αN ∈ Σ∗, such that for
all 0 < n ≤ N , we have αn−1

pn⇒L αn for some
(necessarily unique) pn ∈ P . The derivation’s
yield, yield (d), is αN , and its weight, w(d),
is w (p1) ⊗ · · · ⊗ w (pN ). We denote the set of
derivations under a grammar G as DG and the set
of all derivations with yield s as DG(s). Finally,
we define the language of a grammar as LG
where5 LG(s)

def
=
⊕
d∈DG(s)w (d),∀s ∈ Σ∗. The

languages that can be encoded by a WCFG are
known as weighted context-free languages.

3 Generalizing Bar-Hillel

Given any context-free grammar (CFG) G and
finite-state automaton (FSA) A, Bar-Hillel et al.
(1961) showed how to construct a CFG G∩ such
that LG∩=LG ∩ LA. Later, Nederhof and Satta
(2003) generalized Bar-Hillel’s construction to
work on a weighted context-free grammar and
a weighted finite-state automaton. While they
focused on the real semiring, their construction
actually works for any commutative semiring.
However, neither of these versions correctly com-
putes the intersection when the WFSA (or FSA)
contains ε-arcs. Yet, in several applications—such
as modeling noisy inputs for human sentence
comprehension (Levy, 2008, 2011)—we may be
interested in using a WFSA A that contains ε-arcs.
A naïve application of the construction would
ignore paths in A that contain ε-arcs. The problem
may be sidestepped by transforming A into a
weakly equivalent ε-free WFSA6 before applying
the construction;7 this, however, might increase the
size of the WFSA and of the intersection grammar,
and it would not allow us to identify the paths in
the input WFSA that yield a target string in the

6See footnote 2 for the definition of weak equivalence.
7Levy (2008, 2011) uses WFSAs to model the degree of

uncertainty under which a human comprehends a particular
sentence, in which ε-arcs are used to represent word dele-
tion. He applies the Bar-Hillel construction to compute the
intersection of the language represented by the WFSA and
the language encoded by a WCFG that represents the compre-
hender’s grammatical knowledge, in order to obtain a joint
posterior distribution over parses and words. While he trans-
forms A to eliminate ε-arcs prior to applying the Bar-Hillel
construction (Levy, p.c.), the solution we propose here is an
alternative.
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intersection grammar.8

3.1 The problem with ε-arcs

Before proposing our solution, we explain how
the original construction works, and how it
fails in the case of ε-arcs. Given a WFSA
A = (Σ, Q, δ, λ, ρ,W) and a WCFG G =
(N ,Σ,W,S,P) over the same alphabet Σ and
commutative semiring W , their intersection G∩
is defined by the tuple (N∩,Σ,W, S,P∩), where:

• The set of nonterminal symbols N∩ = {S} ∪
Q × (N ∪ Σ) × Q contains the triplets
(qi,X, qj) plus the start symbol S.9

• The set of production rules P∩ is given by the
equations in Construction 1 of Fig. 2.10

• Σ,W , S are the same as in the input grammar.
The intuition behind this construction is that a
derivation in the intersection grammar encodes
both a path in the input WFSA and a derivation
in the input WCFG with matching yield. Specifi-
cally, rules (4f) encode arcs in the WFSA and rules
(4d) encode production rules in the WCFG. Rules
(4e) handle the special case of ε-productions in the
input WCFG and rules (4a) are designed to take
into account the initial and final weight of a path.
These rules may combine through matching non-
terminals to permit derivations in the intersection
grammar G∩.

Unfortunately, this mechanism breaks in the
presence of ε-arcs. Although the rules (4f) do
construct nonterminals for ε-arcs (when a = ε),
the rules (4d) never generate those nonterminals
(since the Xm on the right-hand side of a rule are
never ε). We show this with an example. Consider
the automaton and the grammar in Fig. 1, both of
which assign non-zero weight to the string The
many cyclists. However, their intersection com-
puted with the Bar-Hillel construction is empty. To
see this, note that all the paths from q0 to q3 contain

the arc q1
ε/0.3−−−→ q2. Eq. (4f) will create a rule

8In contrast, this is easy under our construction. Each
derivation of the target string under G∩ uses a particular path
in A. To reconstruct that path, ε-arcs and all, simply traverse
from left to right the leaves of the derivation tree (e.g., Fig. 1d)
and list the states on the triplets where rule (5f) is applied.

9Many of the nonterminals will turn out to be useless in
that they do not participate in any derivation in DG∩ . These
can be pruned from the grammar along with all rules that
mention them (Hopcroft et al., 2006).

10Note that this construction can handle multiple initial and
final states, whereas Nederhof and Satta’s (2003) construction
assumes a WFSA with a single initial and a single final state.
A path’s initial and final weights are taken into account by
the weight of rules (4a) of Construction 1 in Fig. 2.

(q1, ε, q2)
0.3−−→ ε, but none of the rules produced

by Eqs. (4d) and (4e) has the triplet (q1, ε, q2) on
the right hand side. This misalignment results in
an empty set of derivations in G∩. In App. A we
describe more failure cases in a detailed manner.

3.2 Our generalized construction
We now describe an improved version of the Bar-
Hillel construction that handles ε-arcs in the WFSA.
In comparison to the original construction, our ver-
sion of G∩ = (N∩,Σ,W, S,P∩) has

• N∩ = {S} ∪ Q× (N ∪{S̃}∪Σ)×Q as the
set of nonterminals, where S̃ is a new symbol;

• P∩ as the augmented set of production rules
given in Construction 2 of Fig. 2.

Our generalized construction adds additional
production rules that traverse the ε-arcs. Rules
(5g) can traverse a WFSA subpath labeled with
ε∗a to yield a terminal symbol a ∈ Σ. At the
end of the yielded string, rules (5b) can traverse
a WFSA subpath labeled with ε∗ that ends at a
final state qF . Our construction carefully avoids
overcounting11 by ensuring that each matching
pair of an A-path and a G-derivation of its string
corresponds to exactly one G∩-derivation of that
string, as illustrated in Fig. 1. Note that rules (5d)
to (5f) are identical to their counterparts in the
original construction. Rules (5a) are a modified
version of rules (4a) with the special start symbol
S̃; this allows our construction to handle ε-arcs
immediately before the final state—by repeated
applications of rule (5b)—before switching S̃ back
to S with rule (5c). In App. A we illustrate the
mechanism with examples.

We now state the theorem of correctness.

Definition 6. Let Σ be an alphabet and W be a
commutative semiring. Let G be a WCFG and A
be a WFSA—both over Σ and W . The weighted
join of the derivations in DG with the paths in DA
is defined as:

(DG ./ DA)
def
=
{
〈d,π〉 | d ∈ DG ,π ∈ DA (6)

s.t. yield(d) = yield(π)
}

with w (〈d,π〉) = w(d)⊗ w(π).
11As Fig. 1d illustrates, we do this by introducing a single,

right-branching subderivation for each A-subpath ε∗a that
matches an input symbol a. A nonterminal of the form
(q0, ε, q1) is never used as a right child, nor does it ever
combine with a nonterminal of the form (q0,X, q1), except at
the end of the input, which is specially handled by rules (5b).
Similarly, Allauzen et al. (2010) avoid overcounting when in-
tersecting or composing finite-state machines that have ε-arcs.
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Construction 1

S
λ(qI)⊗ρ(qF )−−−−−−−−→ (qI ,S, qF ) (4a)

∀qI ∈ I, ∀qF ∈ F

(q0,X, qM )
w−→ (q0,X1, q1) ··· (qM−1,XM , qM )

∀(X w−→ X1 ···XM ) ∈ P,M > 0 (4d)

∀q0, . . . , qM ∈ Q
(q0,X, q0)

w−→ ε (4e)

∀(X w−→ ε) ∈ P, ∀q0 ∈ Q
(q0, a, q1)

w−→ a (4f)

∀(q0
a/w−−→ q1) ∈ δ

Construction 2

S
λ(qI)⊗ρ(qF )−−−−−−−−→ (qI , S̃, qF ) (5a)

∀qI ∈ I, ∀qF ∈ F
(qI , S̃, q1)

1−→ (qI , S̃, q0)(q0, ε, q1) (5b)

∀qI ∈ I, ∀q0, q1 ∈ Q
(qI , S̃, q0)

1−→ (qI ,S, q0) (5c)

∀qI ∈ I, ∀q0 ∈ Q
(q0,X, qM )

w−→ (q0,X1, q1) ··· (qM−1,XM , qM )

∀(X w−→ X1 ···XM ) ∈ P,M > 0 (5d)

∀q0, . . . , qM ∈ Q
(q0,X, q0)

w−→ ε (5e)

∀(X w−→ ε) ∈ P,∀q0 ∈ Q
(q0, a, q1)

w−→ a (5f)

∀(q0
a/w−−→ q1) ∈ δ, a ∈ Σ ∪ {ε}

(q0, a, q2)
1−→ (q0, ε, q1)(q1, a, q2) (5g)

∀a ∈ Σ, ∀q0, q1, q2 ∈ Q

Figure 2: The original Bar-Hillel construction (left) and our generalized version (right) that covers ε-arcs. We
highlight the differences from the original construction in red. Note that the weights of rules (4a) and (4f) (respec-
tively (5a) and (5f)) encode the weights of the WFSA, while the weights of rules (4d) and (4e) (respectively (5d)
and (5e)) encode weights of the WCFG. All other rules in the generalized construction ((5b), (5c) and (5g)) are
assigned weight 1, and, thus, they do not change the weight of a derivation.

Theorem 1. Let G be a WCFG and A a WFSA
over the same alphabet Σ and commutative
semiringW . Let G∩ be the grammar obtained with
our generalized construction. Then we have strong
equivalence between G∩ and 〈G,A〉; meaning
that there is a weight-preserving, yield-preserving
bijection between DG∩ and (DG ./ DA).

Corollary 1. G∩ and 〈G,A〉 are weakly equivalent,
meaning that LG∩(s) = LG(s)⊗LA(s) whenever
the values on the right-hand side are defined.

See App. B for proofs. Theorem 1 may be seen
as a generalization of Theorem 8.1 by Bar-Hillel
et al. (1961) and Theorem 12 by Nederhof and
Satta (2003). Indeed, the set of derivations
produced by Construction 1 is equivalent to the set
of derivations produced by Construction 2, modulo
an unfold transform (Tamaki and Sato, 1984) to
remove rules containing S̃. Among the groups of
rules listed in Fig. 2, the set of rules with maximum
cardinality is the one defined by Eq. (5d). This set
has cardinality O

(
|P||Q|M?

)
, where M? is 1 plus

the length of the longest right-hand side among all
the rules P . All other equations in this construction
lead to smaller sets of added rules. Since Eq. (5d)
is unchanged from Eq. (4d) in the original
construction, the asymptotic bound on the number
of rules in our output grammar remains unchanged.

4 Conclusion

We generalized the weighted Bar-Hillel inter-
section construction so that the given WFSA
may contain ε-arcs. Our construction is strongly
equivalent to the product of the original WCFG and
WFSA, i.e., every derivation tree in the resulting
grammar represents a pairing of a derivation tree
in the input WCFG and a path in the WFSA with
the same yield. We gave a full proof of correctness
for our construction. By adding output strings to
the WFSA arcs and having rule (5f) rewrite to the
arc’s output string, our method can also be used
to compose a WCFG with a weighted finite-state
transducer (WFST) that could usefully model
morphological post-processing or speaker errors.
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6 Limitations

In this note, we generalize a fundamental theoret-
ical result in formal language theory, which has
seen a variety of practical applications, including
human sentence comprehension under uncertain
input (Levy, 2008, 2011) and infix probability com-
putation (Nederhof and Satta, 2003). Although we
motivate our paper by discussing the necessity of
performing intersections on automata with ε-arcs,
we do not explore any such practical applications.
Further, while we show that the asymptotic bound
on the size of our intersection grammar matches the
original Bar-Hillel construction’s, we do not dis-
cuss multiplicative or added constants introduced
in our grammar’s size.
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A Failure Cases of Original Construction

We distinguish two types of failure cases: (i) supp(LG∩) 6= supp(LA) ∩ supp(LG) and (ii) LG∩ 6=
LA ∩ LG , both of which we will exemplify now. Notably, the case (ii) follows from (i), but—to be
comprehensible—we will nonetheless give an example where (ii) fails without (i). For case (i), consider
the following unweighted FSA:

q0 q1 q2 q3
a ε b

and the following unweighted CFG:

S→ A B

A→ a

B→ b

It is easy to see that the intersection of the language accepted by the FSA and the language generated by
the CFG is {ab}. Construction 1, however, outputs an empty grammar (after pruning useless rules as in
footnote 9) and, hence, an empty language. To see this, consider Eq. (4d) and Eq. (4f). First, Eq. (4f)
will create a rule (q1, ε, q2)→ ε, but (q1, ε, q2) will be useless because it cannot be reached from any of
the rules produced by Eq. (4d). Second, Eq. (4d) will produce reachable nonterminals (q0,A, qi) and
(qi,B, q3), with i ∈ {1, 2}. The case of i = 1 will reach a but not b, and i = 2 will reach b but not
a. Let us now show how our generalized construction fixes this failure case. Eq. (5g) generates the
rule (q1, b, q3)→ (q1, ε, q2)(q2, b, q3) which then combines with rule (q1,B, q3)→ (q1, b, q3) to form a
subderivation12 that covers the substring εb, as shown in the picture below.

(q1,B, q3)

(q1, b, q3)

(q1, ε, q2)

ε

(q2, b, q3)

b

Note that rules generated by Eq. (5g) can only mention symbol ε in the left child, not in the right child, as
discussed in footnote 11.

As stated above, to be comprehensive, we also show a case where only case (ii) fails, without (i). Take
the following WFSA over the Inside semiring (Huang, 2008):

q0/1 q1 q2/1
a/1

ε/13

b/1

and the same grammar as above with weight 1 for all rules. It is easy to see that the language’s weight for
s = ab in the WFSA is a geometric series LA(s) =

∑∞
i=0

(
1
3

)i
= 3

2 , while in the WCFG, LG(s) = 1.
However, the output grammar G∩ of Construction 1 will contain one single derivation d:

12In App. B we give a formal definition of subderivation.
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S

(q0,S, q2)

(q0,A, q1)

(q0, a, q1)

a

(q1,B, q2)

(q1, b, q2)

b

with w (d) = 1, as all rules either stem from G or from the arcs q0
a/1−−→ q1 and q1

b/1−−→ q2.This will result
in LG∩ = 1, but LA ∩ LG = 3

2 . This is because there are no derivations rooted at S in G∩ that match with
the ε-arcs in A: Similarly to the example above, (q1, ε, q1) will not be reachable. We will now briefly
show how our construction fixes this failure case as well. Note that there are infinitely many paths in the
WFSA with yield s = ab; but there is also only a single derivation in DG with this yield. Our construction
thus ensures that there is exactly one derivation in DG∩ for every ab path in DA. As the ε-loop allows
unboundedly long subpaths from q1 to q2 that are labeled with ε∗b, the rules generated by Eq. (5g) will
build corresponding unboundedly deep subderivations of the following form:

(q1, b, q2)

(q1, ε, q1)

ε

(q1, b, q2)

(q1, ε, q1)

ε

(q1, b, q2)

b

· · ·

Finally we observe that a similar argument holds for rules generated by Eq. (5b), and ε-arcs that occur
immediately before a final state.

B Proofs

B.1 Proof of Theorem 1

Theorem 1 gives a result for derivations (which are always rooted at S) and paths (which always connect
an initial state with a final state). However, in order to prove this theorem we must also consider
subderivations and subpaths. We define subderivations as follows: a subderivation d̃ is a sequence
α0, . . . ,αN with N ≥ 0, where (i) in the case of N > 0, α0 = X, X ∈ N , and αN ∈ (ε∪Σ∗), such that
for all 0 < n ≤ N , we have αn−1

pn⇒L αn for some pn ∈ P , and (ii) in the case of N = 0, α0 ∈ Σ∪{ε}.
The weight and yield of subderivations are defined analogously to that of derivations. In the extended case
of N = 0, the yield is equal to α0 and the weight is set to 1. We will say that a subderivation is rooted
at X if α0 = X. We denote the set of subderivations rooted at X with DG(X). Moreover, a subpath is
defined as follows: A subpath π̃ (of length N ≥ 0), is (i) in the case of N > 0, a sequence of arcs in δ∗

where the states of adjacent arcs are matched, and (ii) in the case of N = 0 a single state q ∈ Q.13 The
subpath’s weight, denoted w̃ (π̃), is the product w̃ (π̃) =

⊗N
n=1wn of the weights of the arcs along the

subpath. In the extended case N = 0 we set the weight to 1 and the yield to ε. Note that, in contrast to the

13We note the difference to paths defined in §2.3: a subpath does not need to start in an initial state and end in a final state.
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weight of a path, the weight of a subpath does not account for initial and final weights. The yield is defined
identically to that of paths. We denote the set of all paths starting at qi and ending at qj with DA({qi, qj}).
Note that the definitions of subderivation and subpath encapsulate the definitions of derivation and path
respectively. Furthermore, we will denote with p (π) and n (π), respectively, the first and the last state
encountered along a path.

We will now prove two lemmas that will be necessary for the proof of Theorem 1.

Lemma 1. For any triplet (q0,X, qm) ∈ N∩, with X 6= S̃ and q0, qm ∈ Q, there is a bijection
ψ(d̃∩) = 〈d̃, π̃〉 from DG∩

(
(q0,X, qm)

)
to the weighted join (DG(X) ./ DA({q0, qm})), restricted to

tuples in which the path does not have an ε-arc immediately before a final state. Moreover, it holds that:

w
(
d̃∩
)

= w
(
d̃
)
⊗ w̃ (π̃) (7)

yield
(
d̃∩
)

= yield
(
d̃
)

= yield (π̃) (8)

Proof. We begin by showing that ψ is well defined, that it is injective and that it satisfies the properties in
Eqs. (7) and (8). We prove this by induction on subderivations.

Lemma 1’s Base Case. We begin by observing that the only terminal rules from P∩ are defined by Eq. (5f)
and Eq. (5e).

Lemma 1’s Base Case, Part #1. d̃∩ is obtained by the application of a single production rule

(q0, a, q1)
w−→ a from Eq. (5f). We define ψ(d̃∩) = 〈d̃, π̃〉, where π̃ = q0

a/w−−→ q1 and d̃ = a is the
subderivation that contains just the string a with weight 1. It is easy to see that the yield is preserved.
Moreover:

w
(
d̃∩
)

= w (by Eq. (5f)) (9a)

= w ⊗ 1 (9b)

= w̃ (π̃)⊗ w
(
d̃
)

(9c)

Lemma 1’s Base Case, Part #2. d̃∩ is obtained by the application of a single production rule
(q0,X, q0)

w−→ ε from Eq. (5e). We construct ψ as follows: ψ(d̃∩) = 〈d̃, π̃〉, where d̃ = X
p⇒L ε with

p = X
w−→ ε, and π̃ is the subpath q0 with weight 1. Clearly the yield is preserved and:

w
(
d̃∩
)

= w (by Eq. (5e)) (10a)

= w ⊗ 1 (10b)

= w
(
d̃
)
⊗ w̃ (π̃) (10c)

Lemma 1’s Induction Step. In the induction step, we show that the properties that we have shown
for the base case propagate upwards along the derivation. In general, we will show that for any
d̃∩ = (q0,X, qM )

p⇒L (q0,X1, q1), . . . , (qM−1,XM, qM ) ⇒L . . ., we can construct ψ(d̃∩) = 〈d̃, π̃〉
such that the mapping is injective and that the properties in Eqs. (7) and (8) hold. Additionally, as for
the base case, we will show that π̃ connects q0 with qM and that d̃ is rooted at X. As our inductive
hypothesis, we will assume that each of these hypotheses hold for the subderivations rooted at each of
the child nonterminals (q0,X1, q1), . . . , (qM−1,XM, qM ). We note that the rules from P∩ which apply
to a nonterminal of form (q0,X, qM ) with X ∈ Σ are discussed in base case #1, if instead X ∈ N , we
either have base case #2 or one of the rules defined by Eq. (5d) and Eq. (5g); we discuss each now.

Lemma 1’s Induction Step, Part #1. The topmost rule applied in d̃∩ is p =

(q0, a, q2)
1−→ (q0, ε, q1)(q1, a, q2) defined by Eq. (5g). We denote with d̃∩,1 the subderivation

rooted at (q0, ε, q1), and we observe that the only possible form for this derivation is (q0, ε, q1)
p⇒L ε for
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some p = (q0, ε, q1)
w−→ ε. We denote with d̃∩,2 the subderivation rooted at (q1, a, q2), then by inductive

hypothesis, we know that there is a mapping ψ(d̃∩,2) = 〈d̃2, π̃2〉 such that Eqs. (7) and (8) are satisfied.

Then we construct ψ(d̃∩) = 〈d̃, π̃〉, so that d̃ = d̃2 and π̃ = q0
ε/w−−→ q1 ◦ π̃2. As the yield of the

subderivation rooted at (q0, ε, q1) is ε, the yield of d̃∩ is the same as that of d̃∩,2. Further, the yield of
π̃ is the same as π̃2. We thus have that:

yield
(
d̃∩
)

= yield
(
d̃∩,2

)
, yield

(
d̃
)

= yield
(
d̃2

)
, yield (π̃) = yield (π̃2) (11)

By induction, we have that the yield is preserved. Similarly, we have that the weight is preserved:

w
(
d̃∩
)

= 1⊗ w
(
d̃∩,1

)
⊗ w

(
d̃∩,2

)
(12a)

= 1⊗ w ⊗ w
(
d̃2

)
⊗ w̃ (π̃2) (inductive hypothesis) (12b)

= w
(
d̃2

)
⊗
(
w ⊗ w̃ (π̃2)

)
(commutativity) (12c)

= w
(
d̃
)
⊗ w̃ (π̃) (12d)

Finally, by induction we assume that π̃2 connects state q1 with state q2, which implies that π̃ connects
state q0 with state q2.

Lemma 1’s Induction Step, Part # 2. The topmost rule applied in d̃∩ is p =
(q0,X, qM )

w−→ (q0,X1, q1), . . . , (qM−1,XM, qM ) defined by Eq. (5d). By induction we assume
that the subderivation d̃∩,m rooted at (qm−1,Xm, qm) is mapped by ψ into a subderivation d̃m rooted

at Xm and a path π̃m, so that yield
(
d̃∩,m

)
= yield

(
d̃m

)
= yield (π̃m) and that w

(
d̃∩,m

)
=

w
(
d̃m

)
⊗ w̃ (π̃m). We then define ψ(d̃∩) = 〈d̃, π̃〉 where d̃ = X

p⇒L X1, . . . ,XM ⇒L . . . with

p = X
w−→ X1, . . .XM and π̃ = π̃1 ◦ . . . ◦ π̃M . As the states of neighboring triplets are matched, and

by induction we assume that π̃m connects states qm−1 with state qm, we have that π̃ is a path from q0

to qM . We note that the yield of d̃ is obtained by concatenation of yield
(
d̃m

)
from left to right, and

that similarly the yield of π̃ is obtained by concatenation of yield (π̃m) from left to right. This, together
with the inductive hypothesis proves Eq. (8) of the lemma—as the yield of d̃∩ will also be given by the
concatenation of yield

(
d̃∩,m

)
from left to right. We now show that Eq. (7) on weights holds:

w
(
d̃∩
)

= w ⊗
M⊗

m=1

w
(
d̃∩,m

)
(13a)

= w ⊗
M⊗

m=1

w
(
d̃m

)
⊗ w̃ (π̃m) (inductive hypothesis) (13b)

=

(
w ⊗

M⊗

m=1

w
(
d̃m

))
⊗

M⊗

m=1

w̃ (π̃m) (commutativity) (13c)

= w
(
d̃
)
⊗ w̃ (π̃) (13d)

We have defined ψ in a bottom-up fashion. At each step changing the topmost rule would result either in
a different tree d̃ or in a different path π̃, which proves injectivity. The proof that ψ is surjective is very sim-
ilar, and consists in showing by induction, that for any d̃ ∈ DG(X), and for any path π̃ that does not have a
sequence of ε-arc before a final state, it is always possible to build a derivation in DG∩((p (π),X, n (π))).
We limit ourselves to noting that it is always possible to do so by using rules from Eqs. (5d) to (5f), as in
the original Bar-Hillel construction, and by using rules defined by Eq. (5g) to cover ε-arcs in the WFSA.

�
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Lemma 2. For any triplet (qI , S̃, q) ∈ N∩, with qI ∈ QI , q ∈ Q, there is a bijection ξ(d̃∩) = 〈d̃, π̃〉
from DG∩

(
(qI , S̃, q)

)
to the join (DG(S) ./ DA({qI , q})), and we have that:

w
(
d̃∩
)

= w
(
d̃
)
⊗ w̃ (π̃) (14)

yield
(
d̃∩
)

= yield
(
d̃
)

= yield (π̃) (15)

Proof. We now present an inductive proof (similar to the above) for this lemma.

Lemma 2’s Base Case. The topmost rule applied in d̃∩ is (qI , S̃, q)
1−→ (qI ,S, q) from rules defined by

Eq. (5c). We denote with d̃∩,1 the subderivation rooted at (qI ,S, q). Then by Lemma 1, we know
that there is a mapping ψ(d̃∩,1) = 〈d̃1, π̃1〉 such that Eqs. (14) and (15) are satisfied. We then define
ξ(d̃∩) = 〈d̃1, π̃1〉, and one can easily see that the properties in Eqs. (14) and (15) are satisfied.

Lemma 2’s Induction Step. The topmost rule applied in d̃∩ is (qI , S̃, q1)
1−→ (qI , S̃, q0)(q0, ε, q1) from

rules defined by Eq. (5b). We denote with d̃∩,1 the subderivation rooted at (qI , S̃, q0), and we assume by
induction that ξ(d̃∩,1) = 〈d̃1, π̃1〉 and that properties in Eqs. (14) and (15) hold. We denote with d̃∩,2
the subderivation rooted at (q0, ε, q1), and we observe that the only possible form for this derivation is
(q0, ε, q1)

p⇒L ε for some p = (q0, ε, q1)
w−→ ε. Then we can construct ξ(d̃∩) = 〈d̃, π̃〉, where d̃ = d̃1

and π̃ = π̃1 ◦ q0
ε/w−−→ q1. The property in Eq. (15) is clearly satisfied, for property Eq. (14), we have:

w
(
d̃∩
)

= 1⊗ w
(
d̃∩,1

)
⊗ w

(
d̃∩,2

)
(16a)

= w
(
d̃∩,1

)
⊗ w (weight of d̃∩,2) (16b)

= w
(
d̃1

)
⊗ w̃ (π̃1)⊗ w (inductive hypothesis) (16c)

= w
(
d̃
)
⊗ w̃ (π̃) (weight of π̃) (16d)

As for Lemma 1 we note that modifying the topmost rule in d̃∩, would always result either in a different
derivation d̃ or in a different path π̃, which proves injectivity. Surjectivity can be shown by induction,
similarly to how we did for injectivity. We will simply note that given any derivation d̃ rooted at S,
and given any path π̃ starting from an initial state, it is always possible to build a matching derivation
d̃∩in DG∩((p (π), S̃, n (π))), by using the result from Lemma 1, and applying rules defined by Eqs. (5b)
and (5c). �

We can finally prove Theorem 1, which we restate here for convenience.

Theorem 1. Let G be a WCFG and A a WFSA over the same alphabet Σ and commutative semiringW .
Let G∩ be the grammar obtained with our generalized construction. Then we have strong equivalence
between G∩ and 〈G,A〉; meaning that there is a weight-preserving, yield-preserving bijection between
DG∩ and (DG ./ DA).

Proof. Any derivation d∩ in DG∩(S) takes the form S
p⇒L (qI , S̃, qF ) ⇒L . . . with p =

S
λ(qI)⊗ρ(qF )−−−−−−−−→ (qI , S̃, qF ), for qI ∈ QI and qF ∈ QF . We denote with d̃∩ the subderivation rooted

at (qI , S̃, qF ). We can thus define φ(d∩) = 〈d,π〉 = 〈d̃, π̃〉, where ξ(d̃∩) = 〈d̃, π̃〉, and ξ is the
bijection defined in Lemma 2. By Lemma 2 we have that d̃ = d is rooted at S, and that π̃ = π has
initial and final states: p (π̃) = qI and n (π̃) = qF . Clearly, yield (d∩) = yield

(
d̃∩
)

and, by

Lemma 2, yield
(
d̃∩
)

= yield
(
d̃
)

= yield (π̃). Further, by definition yield (d) = yield
(
d̃
)
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and yield (π̃) = yield (π). Moreover, we have that:

w (d∩) = w (p)⊗ w
(
d̃∩
)

(weight of a derivation) (17a)

= w (p)⊗ w
(
d̃
)
⊗ w̃ (π̃) (Lemma 2) (17b)

= λ(qI)⊗ ρ(qF )⊗ w
(
d̃
)
⊗ w̃ (π̃) (weight of p) (17c)

= w
(
d̃
)
⊗ λ(qI)⊗ w̃ (π̃)⊗ ρ(qF ) (commutativity) (17d)

= w (d)⊗ w (π) (definition of weight of a path) (17e)

which proves that φ is weight and yield preserving. By Lemma 2 we know that ξ is a bijection, which
implies that modifying the topmost rule p would result in a different tuple 〈d,π〉. This proves the
injectivity of φ. Conversely, consider any path π connecting an initial state with a final one and any
derivation d rooted at S, such that yield (d) = yield (π). By Lemma 2 we know that it is always
possible to construct a subderivation d̃∩, rooted at (qI , S̃, qF ), that satisfies Eqs. (14) and (15). Thus we

can construct d∩ = S
p⇒L (qI , S̃, qF ) ⇒L · · · with p = S

λ(qI)⊗ρ(qF )−−−−−−−−→ (qI , S̃, qF ) a rule from Eq. (5a).
This shows the surjectivity of φ.

�

B.2 Proof of Corollary 1
Corollary 1. G∩ and 〈G,A〉 are weakly equivalent, meaning that LG∩(s) = LG(s)⊗ LA(s) whenever
the values on the right-hand side are defined.

Proof. §2.1 defined both LA(s) and LG(s) as sums over derivations that yield s. If there are only finitely
many such derivations, then the sum is well-defined by applying the associative–commutative operator ⊕
finitely many times. However, footnote 5 noted that countably infinite sums can arise. We treat this issue
by augmenting the semiring with an operator

⊕
that is applied to a countable (possibly infinite) multiset

of weights and returns a value that is interpreted as the sum of those weights, or else returns a special
“undefined” value ⊥ /∈ A to indicate that the sum diverges.

We require
⊕

to satisfy the following axioms for any two countable multisets I, J ⊆ A such that
⊕

I = W ∈ A
⊕

J = V ∈ A (18)

• Infinite distributivity: Let I
⊗
J denote the multiset ⦃i ⊗ j : i ∈ I, j ∈ J⦄. Then

⊕
(I
⊗
J) =

W ⊗ V ∈ A.

• Infinite associativity: for any partition14 I =
⋃
k∈K Ik, we have

⊕
Ik ∈ A for each k ∈ K and

furthermore
⊕

k∈K (
⊕
Ik) = W .

• Base cases: For any w,w′ ∈ A,
⊕⦃w,w′⦄ = w ⊕ w′,⊕⦃w⦄ = w, and

⊕⦃⦄ = 0. Together with
the previous property, this ensures that

⊕
agrees with the ⊕-based definition on finite multisets.

The first two axioms are adapted from part of Mohri (2002)’s definition of closed semirings. The proof
of Corollary 1 uses only the first axiom, as follows. Given a string s such that LA(s), LG(s) ∈ A. By
definition (§§2.3–2.4), LA(s) =

⊕
I and LG(s) =

⊕
J if we define I = ⦃w (π) : π ∈ DA(s)⦄ and

J = ⦃w (d) : d ∈ DG(s)⦄. Then also LG∩(s) =
⊕

(I
⊗
J) since I

⊗
J = ⦃w (d) : d ∈ DG∩(s)⦄

according to Theorem 1. By infinite distributivity, then, LG∩(s) = (
⊕
I)⊗(

⊕
J) = LA(s)⊗LG(s) ∈ A

as claimed. �

14Recall that partitions are definitionally disjoint.
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Abstract

Dialogue systems capable of social influence
such as persuasion, negotiation, and therapy,
are essential for extending the use of technol-
ogy to numerous realistic scenarios. However,
existing research primarily focuses on either
task-oriented or open-domain scenarios, a cate-
gorization that has been inadequate for captur-
ing influence skills systematically. There exists
no formal definition or category for dialogue
systems with these skills and data-driven efforts
in this direction are highly limited. In this work,
we formally define and introduce the category
of social influence dialogue systems that influ-
ence users’ cognitive and emotional responses,
leading to changes in thoughts, opinions, and
behaviors through natural conversations. We
present a survey of various tasks, datasets, and
methods, compiling the progress across seven
diverse domains. We discuss the commonalities
and differences between the examined systems,
identify limitations, and recommend future di-
rections. This study serves as a comprehensive
reference for social influence dialogue systems
to inspire more dedicated research and discus-
sion in this emerging area.

1 Introduction

Consider a human user who signs up to interact
with a persuasive dialogue system that motivates
for engaging in physical exercise. The system: 1)
uses social cues like small talk and empathy, useful
for providing continued support, and 2) employs
persuasive strategies to convince the user who, at
least in the short-term, is reluctant to indulge in
exercise. Does such a system fit the definition of a
task-oriented dialogue system that are traditionally
designed to assist users in completing their tasks
such as restaurant or flight booking (Zhang et al.,
2020c)? Although the system is task-oriented or
goal-oriented per se, the task here goes beyond the
traditional definition of assisting users, given the

∗Equal contribution, ∗∗Co-supervised project

possible misalignment between the goals of the sys-
tem and the user. Clearly, this system is also not
open-domain (Huang et al., 2020). Although con-
versations involve social open-ended interactions,
there is still a concrete goal of persuading the user
towards a healthier habit.

Scenarios similar to above are ubiquitous in ev-
eryday life, including games (Peskov et al., 2020),
social platforms (Tan et al., 2016), and therapeu-
tic interactions (Tanana et al., 2016). Dialogue
systems for these applications require a core func-
tion in human communication, that is, social in-
fluence (Cialdini and Goldstein, 2004; Cialdini,
2009), which involves influencing users’ cogni-
tive and emotional responses, leading to changes in
thoughts, opinions, and behaviors through natural
conversations. This goes beyond what is captured
by traditional task definitions in the dialogue com-
munity which primarily focus on task completion
and social companionship.

Despite numerous independent efforts in iden-
tifying and analyzing various social influence sce-
narios, there is a lack of common understanding
around social influence in AI research which in-
hibits a systematic study in this space. Further,
data-driven efforts for dialogue systems in this
space are highly limited. To this end, we introduce
the category of social influence dialogue systems
(Section 2), providing a comprehensive literature
review and discussing future directions.

Developing these systems holds importance in
AI research for multiple reasons. Tackling these
tasks not only involves AI but also aspects of game
theory, communication, linguistics, and social psy-
chology, making them an ideal testbed for inter-
disciplinary AI research. Most importantly, they
reflect AI’s general ability to consider their part-
ners’ inputs, tailor the communication strategies,
personalize the responses, and lead the conversa-
tion actively.

We design a taxonomy for existing social influ-
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ence dialogue datasets, studying their task struc-
ture (symmetric vs asymmetric) and context (lo-
cal vs global). We also organize them by their
domains: games, multi-issue bargaining, social
good, e-commerce, therapy and support, argumen-
tation, conversational recommendations, and mis-
cellaneous tasks (Section 3). We further design a
taxonomy of existing methods, assisting readers
to comprehend the progress and reflect on future
directions. We organize them based on the system
strategy, language generation, partner model, archi-
tecture, learning process, and the use of pretrained
language models (Section 4). Finally, we identify
key challenges and provide recommendations for
future work (Section 5).

Over the years, research in task-oriented and
open-domain dialogues has benefited from a myr-
iad of survey efforts (Huang et al., 2020; Zhang
et al., 2020c; Ni et al., 2021). We instead focus on
dialogue systems with social influence capabilities
and present a thorough review across various do-
mains. We hope that our work serves as a timely
entry point for interested researchers to take this
area further, inspiring dedicated effort and discus-
sion on social influence in the dialogue community.

2 Social Influence Dialogue Systems

“Social influence is a fact of everyday life” (Gass,
2015). It is the change in thoughts, feelings, atti-
tudes, or behaviors resulting from interaction with
an individual or a group (Rashotte, 2007). Influ-
ence is measured by quantifiable proxies of the ob-
served change, like the interest to indulge in phys-
ical exercise before or after the interaction with a
system, or the final deal in a negotiation as opposed
to one person taking it all. Social influence dia-
logue systems act interactively and influence their
partners in decision-making and behavioral con-
texts (Zhang et al., 2020a; Lee et al., 2020). This
calls for an active role by the system, distinguish-
ing them from other well-studied scenarios, such
as purely task-oriented, where systems passively
assist their partners to complete tasks, and open-
domain, that target social companionship. Key
social influence tasks include persuasion (Wang
et al., 2019), aiming to change users’ attitudes or
behaviors, and negotiation, aiming to change the
users’ perspective to achieve a common ground
(Lewis et al., 2017).
Conceptual overview: Figure 1 distinguishes be-
tween the kinds of conversational content in social

Figure 1: A conceptual overview.

influence interactions. The task-oriented content
focuses on influencing for a domain-specific goal,
like persuading for donation, bargaining with trade-
offs, or encouraging healthier habits. These interac-
tions may also contain social content, such as small
talk, empathy, or self-disclosure. The task-oriented
content provides a context for social interactions.
Depending on the task, social content is optional,
but if present, can in turn build rapport and en-
hance user-system relationship for improved task
outcomes (Liao et al., 2021).
Connections with task-oriented and open-
domain systems: Similar to a task-oriented or an
open-domain scenario, social influence dialogue
can also be seen as a sequential decision mak-
ing process with the goal of maximizing the ex-
pected reward (Huang et al., 2020; Gao et al., 2018).
Our proposed category is not meant to be disjoint
from these traditional categories. However, it still
uniquely brings together the tasks that capture so-
cial influence, which is fundamentally absent from
how we primarily define dialogue tasks in the com-
munity. Defining a new category that captures so-
cial influence dialogue would foster a dedicated
effort towards this important aspect of real-world
conversations.

Task-oriented scenarios focus on collaborative
information exchange for a common goal of task
completion. In social influence tasks, the goals
of the system and the user can be different and
even conflicting, leading to collaborative or non-
collaborative interactions. Further, the goals can
go beyond the current task (e.g. multiple therapy
interactions, repeated negotiations), leading to so-
cial interactions for long-term relationships. If a
scenario involves the system’s goal to influence its
partner, we consider it under social influence in this
paper. For instance, He et al. (2018) studied buyer-
seller price negotiations. The task of the buyer is to
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negotiate for a reasonable price (arguably making it
task-oriented), but achieving it requires social influ-
ence skills of engaging in trade-offs and building a
rapport with the seller so as to reach an agreement.
Measures of Success: The above discussion indi-
cates that a comprehensive evaluation of social in-
fluence systems must draw from both task-oriented
and open-domain dialogue research. Since there
exist surveys that discuss the evaluation in these set-
tings (Deriu et al., 2021; Li et al., 2021), we don’t
cover them here in detail. However, we define
three essential axes for evaluation: 1) Linguistic
Performance, or the system’s linguistic sophistica-
tion based on automatic (e.g. perplexity, BLEU)
and human (e.g. fluency, consistency, coherency)
evaluation. 2) Influence Outcome, or the ability to
influence defined by objective goals like the nego-
tiated price or weight loss after therapy. 3) Partner
Perception, or the subjective evaluation of the user,
for instance, the user’s satisfaction, likeness to-
wards the system, and interest in interacting again.
In a buyer-seller negotiation, if the seller hates the
buyer in the end, no matter how favorable the deal
is for the buyer, one might argue that this is still a
failed negotiation for the buyer. Hence, we encour-
age future work to take all three dimensions into
account collectively.

3 Social Influence Across Diverse
Application Areas

We now illustrate social influence across numer-
ous domains and application areas. In total, we
curated 22 datasets from prior work that capture
social influence in various forms, spanning 12 pub-
lication venues, 4 languages, and 7 application do-
mains (see Appendix A for details on the compi-
lation process). In general, the datasets capture
the following information about an interaction: the
non-conversational context for the participants (e.g.
negotiation preferences or other role-specific infor-
mation), the conversation between them, and out-
come assessment. Optionally, some datasets also
gather participant demographics and personality
traits, utterance-level annotations, and subjective
evaluations via post-surveys.

To understand the structural similarities and dif-
ferences between these datasets, we design a taxon-
omy with two primary dimensions: Task Structure
(Symmetric vs Asymmetric), and Context Defini-
tion (Global vs Local). Task Structure captures
whether the participant roles are defined in a sym-

metric or an asymmetric manner. For instance, a
typical multi-issue negotiation is symmetric, in the
sense that both parties have their own preferences
and goals based on which they actively try to reach
a favorable agreement (Lewis et al., 2017). On
the other hand, a counseling session between a
therapist and a patient is asymmetric, where the
therapist attempts to emotionally support the pa-
tient by employing social influence skills (Althoff
et al., 2016). Context Definition relates to whether
the input context before each interaction is defined
globally or locally. For instance, the PersuasionFor-
Good dataset globally defines the context of persua-
sion for charity donation, which is kept the same
throughout (Wang et al., 2019). On the contrary,
in a typical debate, although the rules are defined
globally, the conversation topic and arguments are
local and can vary for each conversation (Durmus
and Cardie, 2019). We present this categorization
in Table 1. We further categorize the datasets ac-
cording to their Domain, Source, and the # of
parties. We provide key statistics and the available
metadata in Appendix B. We now briefly discuss
the datasets in each domain.

Games: Strategy games involve social influence
dynamics of trust and deception. Diplomacy cap-
tures deception in long-lasting relationships, where
players forge and break alliances to dominate Eu-
rope (Peskov et al., 2020). Catan revolves around
the trade of resources for acquiring roads, settle-
ments, and cities (Asher et al., 2016; Boritchev and
Amblard, 2021). The players have access to only
a subset of resources that they would need, which
encourages strategic influence and trade.

Multi-Issue Bargaining Tasks (MIBT): MIBT is
a tractable closed-domain abstraction of a typical
negotiation (Fershtman, 1990). It is based on a
fixed set of issues each with a predefined priority
for each player, which essentially governs the goals
of the players. If the priorities of the players align,
this leads to competitive negotiations, where each
party attempts to convince their partner with trade-
offs and persuasive arguments. If they don’t, this al-
lows cooperative interactions where the negotiators
try to find optimal divisions that benefit everyone.
DealOrNoDeal (Lewis et al., 2017) involves nego-
tiations over three issues: books, balls, and hats.
Other datasets define a more grounded scenario,
such as symmetric CaSiNo (Chawla et al., 2021b)
negotiations between two campsite neighbors and
asymmetric JobInterview (Yamaguchi et al., 2021)
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Name (Citation) Domain Source Structure Context # of Parties
STAC (As16) Games Crowdsource Symmetric Global Multiparty
Diplomacy (Pe20) Games Crowdsource Asymmetric Global Multiparty
DinG (Bo21) Games University game night logs Symmetric Global Multiparty
Tabletop (De15) MIBT Face-to-face, Wizard-of-Oz Symmetric Local Bilateral
DealOrNoDeal (Le17) MIBT Crowdsource Symmetric Local Bilateral
CaSiNo (Ch21) MIBT Crowdsource Symmetric Local Bilateral
JobInterview (YaD21) MIBT Crowdsource Asymmetric Local Bilateral
PersuasionforGood (Wa19) Social Good Crowdsource Asymmetric Global Bilateral
CraigslistBargain (He18) E-commerce Crowdsource Asymmetric Local Bilateral
AntiScam (Li20) E-commerce Crowdsource Asymmetric Global Bilateral
MI (TaC16) Therapy & Support Psychotherapy session logs Asymmetric Global Bilateral
SMS Counseling (Al16) Therapy & Support SMS chat logs Asymmetric Global Bilateral
EmpatheticDialogues (Ra19) Therapy & Support Crowdsource Asymmetric Global Bilateral
Hotline Counseling (De19) Therapy & Support Synthetic Transcripts Asymmetric Global Bilateral
mPED (LiE21) Therapy & Support Physical activity clinical trials Asymmetric Global Bilateral
Congressional Debates (Th06) Argumentation U.S. Congressional transcripts Asymmetric Local Multiparty
Supreme Court (Da12) Argumentation Oyez.org transcripts Asymmetric Local Multiparty
DeCour (Fo12) Argumentation Italian court hearings Asymmetric Local Multiparty
ChangeMyView (Ta16) Argumentation Reddit Asymmetric Local Multiparty
DDO Debates (Du19) Argumentation debate.org logs Symmetric Local Bilateral
Court Debates (Ji20) Argumentation China Court transcripts Asymmetric Local Multiparty
Target-Guided (Ta19) Miscellaneous Crowdsource Symmetric Local Bilateral

Table 1: Categorization of social influence dialogue corpora. This list is non-exhaustive, and also covers the datasets
that have enabled research into various sub-tasks and analyses that can eventually be useful for dialogue systems in
respective domains. MIBT: Multi-Issue Bargaining Task. Key statistics and associated metadata are in Appendix 3.

negotiations between recruiters and applicants.
Social Good: Social influence is critical for social
good applications. The tactics must be person-
alized using knowledge that is both relevant and
appealing. PersuasionForGood (Wang et al., 2019)
involves asymmetric interactions led by a persuader
who attempts to convince the other participant for
charity donation by employing a variety of tactics.
For instance, Logical Appeal uses reason and ev-
idence to support the argument, while Emotional
Appeal elicits specific emotions.
E-commerce: These tasks are typically asymmet-
ric. A buyer influences the seller towards a rea-
sonable price, while the seller tries to maximize
their own profit. An effective system must combine
price-related reasoning with language realization.
CraigslistBargain (He et al., 2018) involves open-
ended price negotiations with rich influence strate-
gies like embellishments, side offers, emotional
appeals, and using world knowledge. Another ex-
ample is customer support interactions in AntiScam
dataset (Li et al., 2020), where users defend them-
selves against attackers who try to steal sensitive
personal information with convincing arguments.
Therapy & Support: Effective therapy using so-
cial influence aids in the treatment of mental dis-
orders, and substance use disorders, along with
changing undesirable behaviors like unhealthy di-
ets. A counselor needs to be adaptive, personalized,

should understand the core issues, and should facil-
itate a change in patient’s perspective (Althoff et al.,
2016). In SMS counseling, Althoff et al. (2016)
found that linguistic influence like pushing the
conversation in the desired direction is associated
with perspective change. Similar scenarios were
captured in other datasets as well (Demasi et al.,
2019; Liang et al., 2021). Tanana et al. (2016) col-
lected the Motivational Interviewing dataset where
the goal is to elicit and explore the patient’s own
motivations for behavior change. EmpatheticDia-
logues (Rashkin et al., 2019) captured empathetic
support interactions, which has been associated
with rapport and better task outcomes (Kim et al.,
2004; Norfolk et al., 2007; Fraser et al., 2018).

Argumentation: In addition to factuality and so-
cial proof, a convincing argument must also con-
sider the intensity, valence, authoritativeness, and
framing (Chaiken, 1987; Althoff et al., 2014). Tan
et al. (2016) released the ChangeMyView logs from
Reddit, involving discussions on numerous contro-
versial topics. Other datasets include Debate Dot
Org (DDO) debates on diverse topics (Durmus and
Cardie, 2019), congressional proceedings (Thomas
et al., 2006), and court hearings (Fornaciari and
Poesio, 2012; D.-N.-M. et al., 2012; Ji et al., 2020).

Conversational Recommendation: Everyday sce-
narios naturally hold potential for influence via
recommendations, for instance, a movie fan per-
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suading their friends to watch a movie that they
adore. Li et al. (2018) and Dodge et al. (2016) col-
lected movie recommendation datasets. Instead of
guiding the conversation towards a specific movie,
the goal is simply to provide recommendations
based on facts and personal experiences. Never-
theless, they still provide interesting examples of
scenarios that can involve social influence.
Miscellaneous: The Target-Guided dataset (Tang
et al., 2019) was constructed from the PersonaChat
corpus (Zhang et al., 2018). Instead of being open-
ended, the Target-Guided scenario defines a con-
crete goal of naturally guiding the conversation to
a designated target subject, thereby, making it a
social influence setting.

4 Methodological Progress

Having summarized the datasets that capture so-
cial influence, we now discuss the modeling ap-
proaches developed for social influence dialogue
systems. Most domains have seen efforts in ana-
lyzing human dialogue behaviors and their impact
on task outcomes. Examples include analyzing de-
ception in games (Peskov et al., 2020), the impact
of persuasive strategies and dialogue acts on char-
ity donations (Wang et al., 2019), cooperative and
non-cooperative strategies in MIBT (Chawla et al.,
2021b), the use of emotion expression for predict-
ing partner perceptions (Chawla et al., 2021a), and
studying semantic categories of persuasive argu-
ments on web forums (Egawa et al., 2019).

In addition, researchers have targeted various
domain-specific subtasks that can be crucial for
the eventual development of dialogue systems in
this space. This involves research in lie detection
methods (Yeh and Ku, 2021; Yu et al., 2015), dis-
course parsing (Shi and Huang, 2019; Ouyang et al.,
2021), strategy prediction (Chawla et al., 2021b;
Wang et al., 2019), breakdown detection (Yam-
aguchi et al., 2021), outcome prediction (Sinha and
Dasgupta, 2021; Chawla et al., 2020; Dutt et al.,
2020), and argument mining (Dutta et al., 2022).

Research that directly targets the development
of dialogue systems in this space is still nascent.
Among other challenges like limited cross-cultural
diversity and relatively smaller dataset size, social
influence dialogue settings pose a unique challenge:
an average human often exhibits sub-optimal strate-
gic behaviors in social influence tasks (Wunderle,
2007; Babcock and Laschever, 2009). This means
that standard seq2seq approaches trained on these

collected datasets using supervised learning are fun-
damentally insufficient for developing effective di-
alogue systems with influence capabilities. Hence,
prior work has put a special attention to the system
strategy, employing different ways to model the
strategy and language together.

We design a taxonomy of methods developed for
social influence tasks, assisting readers to compre-
hend the progress and reflect on future directions.
We organize them based on the system strategy,
language generation, partner model, architecture,
learning process, and the use of pretrained language
models. We present annotations for all the surveyed
methods in Table 2 and discuss the common cate-
gories in brief below.

4.1 Strategy Representation

Implicit: The most obvious way to represent the
system strategy is implicitly, without any intended
decoupling between system strategy and response
realization. This corresponds to the usual sequence-
to-sequence framework that has been a standard
baseline for the methods developed in this space.
An important example is the work by Lewis et al.
(2017), who were one of the first works to train end-
to-end dialogue models that exhibit social influence.
The authors employed a neural network based on
GRUs, one for encoding the negotiation context,
one to encode the dialogue utterances, and two
recurrent units to generate the output agreement in
a bidirectional manner.
Latent vectors: Yarats and Lewis (2018) explored
latent vectors to decouple utterance semantics from
its linguistic aspects. Their hierarchical approach
first constructs a latent vector from the input mes-
sage, which is then used for response generation
and planning. These latent vectors are trained to
maximize the likelihood of future dialogue mes-
sages and actions, which enables the decoupling
between semantics and realization.
Dialogue Acts (DAs): Dialogue Acts, such as
greeting, offer propose, agreement, or disagree-
ment, are effective at capturing a high-level struc-
ture of the dialogue flow in social influence settings,
reducing the model strategy to first predicting the
dialogue act for the next response. The use of DAs
makes it convenient to apply reinforcement learn-
ing approaches (Zhang et al., 2020b; Yang et al.,
2021), while also aiding in developing a modular
dialogue system design (He et al., 2018).
Semantic Strategies: The structural properties ex-
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Method Domain Strategy NLG Partner Model Architecture Learning PLM
Le17 MIBT Implicit Generation Simulated User Enc-Dec RL
Ya18 MIBT Latent Vectors Generation Simulated User Hierarchical RL
Zh20 MIBT DAs Generation DA Look-Ahead Modular RL
He18 E-Com, MIBT DA Templates + Retrieval Implicit Modular RL
Ya21 E-Com DAs Templates + Retrieval DA Look-Ahead Modular RL
Zh19 E-Com, Social Good DAs + Semantic Generation Implcit Hierarchical SL
Jo20 E-Com DAs + Semantic Generation Implcit Hierarchical SL
Li20 E-Com, Social Good DAs Generation Implicit Dec-only SL GPT
Li21 Therapy Implicit Generation Implicit Enc-Dec SL
Jh21 Therapy Emotion Labels Retrieval, Generation Simulated User Modular RL BERT, GPT
Ha21 Argumentation DAs Rule-based Implicit Modular SL
Wu21 Social Good Implicit Generation Implicit Dec-only SL GPT2
Ta19 Misc Keywords Retrieval Implicit Modular SL

Table 2: Categorization of methods (non-exhaustive) for social influence dialogue. We only cover papers that
explicitly design a dialogue system. NLG: Natural Language Generation, PLM: Pretrained Language Model,
MIBT: Multi-Issue Bargaining Task, E-Com: E-Commerce, DA: Dialogue Act, Enc: Encoder, Dec: Decoder, SL:
Supervised Learning, RL: Reinforcement Learning. Methods that use RL usually apply it in conjunction with SL.

pressed by DAs are insufficient for capturing se-
mantics like emotion, small talk, and appeal. To
better incorporate them, researchers have relied on
additional utterance-level annotations grounded in
prior theories in social influence contexts (Wang
et al., 2019; Chawla et al., 2021b). These strategies
have been used in conjunction with DAs (Zhou
et al., 2019; Joshi et al., 2020).

4.2 Language Generation
An important aspect of the system design is an ef-
fective way to realize the language, that is, to gener-
ate the next response so that it portrays the desired
strategic behaviors. Borrowing from task-oriented
and open-domain research, existing dialogue mod-
els for social influence use a variety of methods to
generate the final system response.
Templates and retrieval methods: Predefined
templates and response retrieval from the training
data simplify the generation pipeline, improving
controllability and modularity. He et al. (2018) used
templates in their generator which are later filled
by retrieving similar responses from the data. This
allowed the authors to explore supervised and re-
inforcement learning at the level of DAs for the
influence strategy of the system.
Conditional Generation: Text generation meth-
ods result in more diverse responses, but negatively
impact the controllability and interpretability. Prior
work relies on autoregressive text generation condi-
tioned on the dialogue history, non-conversational
context, and additional annotations. These are ei-
ther encoder-decoder networks (Lewis et al., 2017;
Li et al., 2020; Joshi et al., 2020) or use a decoder-
only design (Li et al., 2020). A useful future di-
rection is to combine generation with retrieval for

knowledge-grounded settings like argumentation.
Similar methods have been explored for other NLP
tasks like open-domain question answering and
question generation (Lewis et al., 2020).

4.3 Partner Modeling
Partner modeling refers to inferring the mental
states of the partner based on the conversation.
For example, understanding the cause that the per-
suadee cares about in the PersuasionForGood con-
text, or inferring the priorities of the partner in
DealOrNoDeal negotiations. Building an accurate
partner model is essential in social influence set-
tings for guiding the decision-making of the sys-
tem (Baarslag et al., 2013; Zhang et al., 2020b).
Hence, we discuss various ways in which prior
work tackles partner modeling.
Implicit: A majority of the efforts do not explicitly
model the behavior of the partner but instead, this
behavior implicitly guides the next response of the
sequence-to-sequence dialogue system pipeline.
Simulated User: Lewis et al. (2017) trained a sim-
ulated user on the available data in a supervised
manner. This was then used to further train the
dialogue system. Instead of inferring mental states
explicitly, this takes a more behavioral approach
of estimating the future actions of the partner and
using these for training via reinforcement learning.
Dialogue Act Look-Ahead: With a similar
idea, Zhang et al. (2020b) proposed OPPA model
with a look-ahead based partner modeling strategy
at the level of DAs. At each step, OPPA first esti-
mates the user’s future DA, which is then used to se-
lect the next DA of the system. The authors found
significant improvements on the DealOrNoDeal
task. Yang et al. (2021) used a similar method
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for buyer-seller negotiations. Taking a different
approach, Chawla et al. (2022) trained a ranking
model to directly predict the hidden preferences
of the partner in a multi-issue negotiation. Instead
of predicting future actions, these methods assume
that the partner’s behavior can be explained by their
context and goals in the dialogue. However, this
approach is yet to be used in an end-to-end system.

4.4 Training

Architecture Choices: One crucial aspect is the
architecture design: End-to-end (Lewis et al., 2017;
Radford et al., 2019) vs Modular (He et al., 2018).
While end-to-end methods improve the diversity
and need less manual effort, a modularized design
enhances controllability and explainability. Per-
haps, this is why modular methods are popular in
large-scale models (Hadfi et al., 2021). Improving
the control of desired variables such as topics, strat-
egy, or emotion in the end-to-end methods is an
open area of research and is yet to be explored for
social influence dialogue systems.
Supervised Learning (SL) and Reinforcement
Learning (RL): Zhou et al. (2019) used SL to
train a hierarchical encoder-decoder for generating
the next response and used Finite State Transduc-
ers (FSTs) to encode the historic sequence of DAs
and persuasive strategies into the model, showing
improvements in negotiation and persuasion tasks.
The performance was later improved by Joshi et al.
(2020), who replaced FSTs with Graph Neural Net-
works to better model the interdependencies. Oth-
ers have relied on RL to explicitly optimize the
model on task-specific objective outcomes. While
SL trains the model to mimic the average human
behavior, RL techniques, such as those based on
REINFORCE (Williams, 1992), allow the system
to explore its own strategies in the wild while be-
ing guided by one or more overall reward met-
rics. Lewis et al. (2017) used RL in negotiations,
with the final points scored in the agreed deal as the
reward. More recent work employed RL to incor-
porate simplistic partner models into the decision-
making process of the dialogue system, showing
improvements in negotiation tasks (Zhang et al.,
2020b; Yang et al., 2021).
Multi-tasking and Pretraining: Limited efforts
have also explored multi-tasking and pretrained lan-
guage models for social influence dialogue systems,
which provide promising ways to deal with the
challenge of insufficient training data. Liu (2021)

trained a sequence-to-sequence transformer on a
mix of Cornell Movie Dialogue corpus (Danescu-
Niculescu-Mizil and Lee, 2011) and psychother-
apy data. Li et al. (2020) fine-tuned the GPT
model (Radford et al., 2018), while employing
multi-tasking to incorporate intents and slots for
both the human and the system. Wu et al. (2021)
recently introduced ARDM which uses GPT2 (Rad-
ford et al., 2019) to separately encode the utter-
ances of the human and the dialogue system, reduc-
ing the reliance on additional annotations.

5 Discussion and Recommendations

Past few years have seen an exciting progress in
social influence dialogue systems. However, build-
ing sophisticated and practically useful systems
remains a challenging endeavor. Several limita-
tions still exist that must be addressed. To guide
future work, we now discuss the key challenges
and provide our recommendations.
Need for unifying the efforts: One challenge in
this space has been the lack of large-scale datasets
for model training. Social influence tasks are com-
plex for crowdsourcing workers to understand and
to participate in. Hence, prior work used exten-
sive instructions and tutorials, making the study
expensive and time consuming (Wang et al., 2019;
Chawla et al., 2021b). To address this, we recom-
mend the researchers to aim for a more unified view
of the efforts in social influence.

First, this would encourage researchers to adopt
the best practices from other social influence sce-
narios. For instance, most datasets miss out on
user attributes like demographics and personal-
ity, which are crucial in social influence scenar-
ios (Stuhlmacher and Walters, 1999; Bogaert et al.,
2008). Most datasets also ignore the partner per-
ception after the interaction is over. This can re-
sult in misleading conclusions about the model
performance, where the models perform well objec-
tively, but hurt the relationship with their partners,
and thus, negatively impacting practical utility (Ay-
doğan et al., 2020).

Secondly, a holistic outlook will promote trans-
fer learning and domain adaptation. Our taxonomy
for datasets (Table 1) governs the way systems must
be modeled and trained. Task structure is crucial
to understand whether the model can learn from
the utterances of all parties or just one. Further,
understanding the context definition guides how it
must be encoded. Hence, one interesting future
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direction is joint training on datasets with similar
structure and context definition.

Finally, progress in task-oriented and open-
domain systems can inspire more unified modeling
for social influence tasks involving multiple skills
in the same interaction (e.g. a combination of ne-
gotiation and persuasion tactics as common in real-
istic scenarios). Roller et al. (2020) blend various
open-domain tasks to address multiple challenges
together (e.g., persona-based, knowledge-enriched,
etc.). Hosseini-Asl et al. (2020) concatenate struc-
tured and unstructured data in task-oriented dia-
logues, and unify task-oriented dialogue system
building to be a single sequence generation prob-
lem. Future work should explore similar unified
approaches for social influence settings as well, es-
pecially since these tasks follow a common concep-
tual foundation (Figure 1), with similar evaluation
and theoretical principles (Cialdini, 2009).

To encourage this unified view, we encapsulate
our insights from this survey effort in a theoretical
framework, which is presented in Appendix C. The
framework covers key components for designing
a social influence dialogue task, including system
attributes, target audience, underlying modeling
techniques, and evaluation mechanisms.

Theory integration: Most modeling efforts are
based on crowdsourced datasets. Since crowdsourc-
ing workers may not exhibit optimal strategies, su-
pervised training on these datasets is fundamentally
insufficient to build an effective system for appli-
cations like pedagogy (teaching social skills to stu-
dents). Unfortunately, this holds regardless of how
system strategy and partner model are designed.
Further, using RL to optimize on objective rewards
is also not expected to be enough to reliably learn
complex influence capabilities, especially when the
reward is restrictive.

To address this, we recommend to tap into the
vast amount of research effort in social sciences
and psychology on building theories for social
influence (Cameron, 2009; Giles, 2016; Lewicki
et al., 2016; Cialdini and Goldstein, 2004). In-
stead of solely relying on the collected data, fu-
ture work should consider leveraging fundamentals
from this research to guide the dialogue policy.
Previous works have studied resistance to social
influence (Knowles and Linn, 2004; Dal Cin et al.,
2004; Petty and Cacioppo, 1977; Ahluwalia, 2000).
Rucker et al. (2004) found that people resist persua-
sion differently depending on their beliefs, suggest-

ing personalizing the social influence process. One
can also employ the politeness theory (Brown and
Levinson, 1978) and model the participants’ face
acts to better understand users in social influence
contexts (Dutt et al., 2020).

Task Evaluation: Another key limitation of exist-
ing work is the lack of a comprehensive evaluation.
Prior work majorly focused on objective metrics
which only provides a limited view of the model
performance. A comprehensive evaluation is chal-
lenging since it must consider partner perception
along with objective outcomes. Building user sim-
ulators could potentially alleviate this problem (Li
et al., 2016; Jain et al., 2018; Shi et al., 2019). Most
existing simulators are developed for task-oriented
systems which follow a certain agenda. Future re-
search should study how to use partner modeling
to build social influence user simulators for more
efficient and accurate task evaluation (He et al.,
2018; Yang et al., 2020). For instance, one could
potentially design different user personalities and
simulate the change in user’s beliefs, opinions, and
attitudes accordingly (Yang et al., 2021).

Multimodal systems: Being a core function of
human communication, social influence occurs not
just through text, but through all possible modali-
ties. Schulman and Bickmore (2009) showed that
embodied agents achieve better persuasion results
than text-only agents. Other studies have recog-
nized the importance of emotion in social influ-
ence tasks (Asai et al., 2020; Chawla et al., 2021a).
Nguyen et al. (2021) proposed a speech dataset in
debates and study the influence of spoken tactics
on persuasiveness across genders. Given these find-
ings, we encourage interdisciplinary efforts in the
future to explore the developement of multimodal
social influence agents.

Knowledge-enriched systems: Social influence
tasks often involve constantly-changing world
knowledge such as organization facts and news.
Often, the system’s internal state (e.g., the change
of task setting from one set of products to a differ-
ent set) needs to be updated. Retraining the entire
system is costly to maintain after the initial devel-
opment. Recent work has proposed to augment
the dialogue system with internet-search ability
to generate more factual and updated responses
in open-domain dialogues (Komeili et al., 2021).
Future efforts in this direction will benefit social
influence dialogue systems as well.
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6 Conclusions

We introduced the category of social influence di-
alogue systems that aim to influence their part-
ners through dialogue. We presented a survey
of the recent prior work in this space, compiling
datasets and methods across diverse application do-
mains. We pointed out key limitations in existing
methodologies and proposed promising directions
for designing more sophisticated systems in the
future. Our survey reveals that although substantial
progress has been made, this is still an emerging re-
search area. We hope our work inspires more dedi-
cated interdisciplinary effort and discussion, which
is necessary for making progress in this space.

7 Broader Impact and Ethical
Considerations

Social influence is ubiquitous in everyday life. Re-
search on how we use influence in all aspects of
our lives spans a number of fields, including so-
cial psychology, communication, consumer behav-
ior, behavioral change, and behavioral economics.
This research has led to crucial findings about the
strategies of social influence and how they impact
our decision-making. Over the past few decades,
research has accumulated and demonstrated the
effectiveness of using various strategies across con-
texts and domains. Prominent examples include
core principles of social influence by Cialdini from
social psychology: reciprocity, commitment and
consistency, social proof, liking and attractiveness,
authority, and scarcity (Cialdini, 2009). Further,
communication strategies used in persuasion and
general social influence contexts include credibil-
ity appeals, two-sided argumentation, emotional
tactics, and appeals to social norms, among oth-
ers (Cameron, 2009; O’keefe, 2015).

First, the well-studied principles in social influ-
ence research can guide the development of ef-
fective dialogue systems with influence capabili-
ties. In fact, many of the strategies found in the
datasets developed for social influence tasks (Sec-
tion 3) directly map to the principles laid out by
Cialdini, for instance, credibility and emotional ap-
peal in PersuasionForGood dataset (Wang et al.,
2019) and reciprocity observed in CaSiNo negoti-
ation dataset (Chawla et al., 2021b). Second, re-
search in social influence dialogue systems pro-
vides novel datasets on human-human and human-
machine communication, and therefore, holds a
great potential to advance theories of human cogni-

tion and influence processes (Gratch et al., 2015).
The datasets and subsequent analyses can further
contribute new theoretical insights to social influ-
ence research.

Although dialogue systems have already been
used in a number of applications involving chatbots
and AI assistants, advancements in social influence
dialogue systems can help to bridge the gap be-
tween our existing task definitions and a number
of other real-world applications. For instance, re-
alistic customer support interactions often involve
active behaviors from both the support agent and
the user where the agent uses social cues for im-
proved customer satisfaction and retention, while
the user attempts to address their queries. These
settings naturally involve aspects of social influ-
ence, unlike traditional task-oriented definitions
where the dialogue system plays a passive role to
assist the human users. As discussed earlier, social
influence dialogue systems can positively help to
advance other areas as well. In therapy domain,
these systems can assist in various psychological
treatments such as by increasing the willingness
to disclose (Lucas et al., 2014). In pedagogy, they
can help to make social skills training more acces-
sible (Johnson et al., 2019).

While we think about these applications, it is
crucial to also lay out proper ethical guidelines
to avoid any misuse of these systems. Primary
concerns are around the use of deception (e.g. in
Diplomacy and other negotiation tasks), emotional
appeals (e.g. in persuasion), and behavior change
(e.g. in conversational recommendations).

To mitigate possible misuse scenarios or unin-
tended harms, we now lay out a few ethical guide-
lines which also apply to dialogue research in gen-
eral. First, rigorous attempts must be made to en-
sure that the data collection, design processes, and
evaluations, strictly abide by the guidelines and
regulations laid out by the relevant Institutional
Review Board (IRB). Second, the research team
needs to develop a thorough plan to monitor and
understand the behaviors of the developed systems
before deployment. This includes identifying the
goals of the dialogue system, identifying potential
toxic language use, and any discriminatory behav-
iors. Third, investment into improved data col-
lection practices, along with explainable and con-
trollable dialogue systems can help identify these
issues early on and allow manipulation to avoid
them. Fourth, we argue that transparency is the key.
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All stakeholders must be made aware of the goals
and design objectives of the system, along with any
known misbehaviors or potential risks. The users
must also be informed of any data collected during
the deployment phase. Lastly, we believe that con-
tinuous monitoring of dialogue systems is neces-
sary to ensure that the system performs consistently
and does not diverge to unexpected conditions that
may incur offensive or discriminative actions. We
hope that our work promotes a more systematic
study of social influence dialogue systems, which
in turn will help to tackle the ethical concerns in a
more principled way.

8 Limitations

Literature Search: We presented a survey of ef-
forts in social influence dialogue systems. Al-
though every attempt was made to provide the read-
ers with a comprehensive overview of the research
in this space, our work does not claim exhaustive-
ness in the covered literature and it is likely that we
missed out on other relevant research in this space.
Intention for influence: The datasets and tasks
covered in this literature review focus on scenar-
ios where social influence is intentional by design.
However, social influence can also be unintentional,
that is, interactions between humans and machines
can have unintended influence on the attitudes, be-
haviors, or feelings of the human user (Gass, 2015).
For instance, changes in topic preferences after
interacting with a system on a variety of topics,
or incorporating biases after interacting with a bi-
ased system. As we continue to make an unprece-
dented progress towards AI systems that interact
with humans via natural means of communication,
we must also take into account the unintended influ-
ence on the users of the underlying technology. We
hope that our work motivates researchers to study
these effects methodically in the future.
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A Literature Compilation

In this section, we provide details about how the
literature was curated for our survey. We hope this
helps the overall reproducibility and also guides
similar studies in the future. We followed a simple
two-stage process. First, we compiled the relevant
datasets that capture various forms of social influ-
ence across diverse domains (presented in Section
3) and then, we compiled the techniques developed
on these datasets (presented in Section 4).
Step I - Datasets: Our objective was to gather
datasets that (by design) capture forms of social
influence. We primarily focused on dialogue inter-
actions but include the datasets based on transcripts
from multimodal interactions as well. Given the
large breadth of research in this space across a num-
ber of domains, our collection is not exhaustive but
is rather restricted to the following sources.

We surveyed the past 6 years of *ACL confer-
ence proceedings. We then covered several online
repositories of dialogue data to capture datasets
published at other venues. This includes ParlAI1,
Huggingface2, NLP-Progress3, and Convokit4. Fur-
ther, we revisited several recent surveys in dia-
logue systems and Natural Language Generation
(NLG) research (Huang et al., 2020; Zhang et al.,
2020c; Ni et al., 2021; Duerr and Gloor, 2021).
Datasets that were categorized as task-oriented or
open-domain in these surveys but also contain some
aspects of social influence have been included in
our discussion. As discussed in Section 4, we also
include the datasets that have not been directly used
for designing dialogue systems but rather for vari-
ous Natural Language Understanding (NLU) sub-
tasks that can be crucial for the eventual develop-
ment of dialogue systems in this space. Finally, we
also reviewed the citation graphs of the collected
papers from Google Scholar. Overall, we ended
up with 22 dataset papers, spanning 12 publication
venues, 4 languages, and 7 application domains.
Step II - Methods: Compiling the methodological
progress was based on the models developed on
the curated datasets. For this purpose, we simply
reviewed the citations of all the dataset papers using
Google Scholar.

1https://github.com/facebookresearch/ParlAI
2https://huggingface.co/docs/datasets/index
3http://nlpprogress.com/english/dialogue.html
4https://convokit.cornell.edu/documentation/

datasets.html

B Datasets

A comprehensive list of the available datasets for
investigating social influence in dialogues is pro-
vided in Table 3. For each dataset, we mention
the application domain, source, key statistics, as
well as the available metadata and annotations apart
from the conversation logs.

C Five Stages for Designing Social
Influence Dialogue Systems

We develop a five-stage framework to summarize
our recommendations for future work. These stages
cover key decisions in the design of a dialogue
system in this space, encouraging a holistic under-
standing of the system characteristics, target audi-
ence, underlying modeling techniques, and evalua-
tion mechanisms. These steps are inspired by a be-
havior change model in healthcare research (Zhang
et al., 2020a). We adapt this model to make it suit-
able for general social influence tasks in NLP. We
present these steps in Figure 2.
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Name (Citation) Domain Source Key Statistics Metadata & Annotations

STAC
(Asher et al., 2016)

Games Crowdsource
Dialogues: 1081
Turns/Dialogue: 8.5
Tokens/Turn: 4.2

Dialogue Acts;
Discourse Structures

Diplomacy
(Peskov et al., 2020)

Games Crowdsource
Games: 12
Messages/Game: 1440.8
Words/Message: 20.79+

Intended and perceived
truthfulness; Participant demographics
and self-assessment of lying abilities;
Ground-truth betrayals

DinG
(Boritchev and Amblard, 2021)

Games
University game

night logs
Games: 10
Turns/Game: 2357.5

Annotated question-answer pairs

Tabletop
(DeVault et al., 2015)

MIBT
Face-to-face,
Wizard-of-Oz

Face-to-face Dialogues: 89
Wizard-of-Oz Dialogues: 30

Participant demographics; Subjective
questionnaire-based assessment

DealOrNoDeal
(Lewis et al., 2017)

MIBT Crowdsource
Dialogues: 5808
Turns/Dialogue: 6.6
Tokens/Turn: 7.6

—

CaSiNo
(Chawla et al., 2021b)

MIBT Crowdsource
Dialogues: 1030
Utterances/Dialogue: 11.6
Tokens/Utterance: 22

Participant demographics and
personality traits; Outcome satisfaction;
Partner perception;
Strategy Annotations

JobInterview
(Yamaguchi et al., 2021)

MIBT Crowdsource
Dialogues: 2639
Turns/Dialogue: 12.7
Words/Turn: 6.1

Dialogue acts

PersuasionforGood
(Wang et al., 2019)

Social Good Crowdsource
Dialogues: 1017
Turns/Dialogue: 10.4
Words/Turn: 19.4

Participant sociodemographics,
personality, and engagement in the
conversation; Strategy annotations;
Dialogue Acts

CraigslistBargain
(He et al., 2018)

E-commerce Crowdsource
Dialogues: 6682
Turns/Dialogue: 9.2
Tokens/Turn: 15.5

Dialogue Acts

AntiScam
(Li et al., 2020)

E-commerce Crowdsource
Dialogues: 220
Turns/Dialogue: 12.4
Words/Turn: 11.1

Dialogue Acts; Semantic Slots

Motivational Interviewing
(Tanana et al., 2016)

Therapy &
Support

Psychotherapy
session logs

Sessions: 341
Utterances/Session: 513.2
Words/Utterance: 9.7

Behavior annotations

SMS Counseling
(Althoff et al., 2016)

Therapy &
Support

SMS chat logs
Dialogues: 80,885
Messages/Dialogue: 42.6∗

Words/message: 19.2∗

Post-conversation assessment for both
the counselor (e.g. suicide risk, main
issue etc.) and user (how they feel
afterwards)

EmpatheticDialogues
(Rashkin et al., 2019)

Therapy &
Support

Crowdsource
Dialogues: 24,850
Utterances/Dialogue: 4.3
Words/Utterance: 15.2

—

Hotline Counseling
(Demasi et al., 2019)

Therapy &
Support

Synthetic
Transcripts

Dialogues: 254
Messages/Dialogue: 40-60

Paraphrases by trained counselors

mPED
(Liang et al., 2021)

Therapy &
Support

Physical activity
clinical trials

Sessions: 107
Turns/Session: 423.5
Minutes/Session: 28.8

Demographics; Physical activity related
pre and post surveys; Strategy
annotations

Congressional Debates
(Thomas et al., 2006)

Argumentation
U.S. Congressional

transcripts
Debates: 53
Speech segments/Debate: 72.8

Ground-truth label with each speech
segment for support/oppose of the
proposed bill

Supreme Court
(D.-N.-M. et al., 2012)

Argumentation
Oyez.org
transcripts

Cases: 7700
Utterances/Case: 220.8

Case-related metadata such as key
dates, citation, parties involved, and
voting results

DeCour
(Fornaciari and Poesio, 2012)

Argumentation
Italian court

hearings

Hearings: 35
Utterances/Hearing: 173.4
Tokens/Utterance: 13.9#

Metadata for testimonies like place,
date, demographics; Hearing related
details; Truthfulness annotations

ChangeMyView
(Tan et al., 2016)

Argumentation Reddit
Discussion Trees: 20,626
Nodes/Tree: 61.1

The original post with initial arguments
and explicitly recognized successful
persuasive arguments from the
opposing side

DDO Debates
(Durmus and Cardie, 2019)

Argumentation debate.org logs
Debates: 78,376
Messages/Debate: 7.7

User demographics; Debate metadata
like dates and category; Audience votes
and comments

Court Debates
(Ji et al., 2020)

Argumentation
China Court
transcripts

Dialogues: 260,190
Utterances/Dialogue: 13.9

—

Target-Guided
(Tang et al., 2019)

Miscellaneous Crowdsource
Dialogues: 9939
Utterances/Dialogue: 11.4

—

Table 3: Social Influence Dialogue Corpora, grouped by task domains and sorted by publishing year within a
domain. All statistics of the form X/Y denote average numbers. MIBT: Multi-Issue Bargaining Task. ∗Only
computed for dialogues with additional survey responses, +Only computed for the training data. #Only for Speaker
utterances in front of the judge (doesn’t include other members of the court). Note that not all datasets listed above
have been directly used for designing end-to-end dialogue systems, but instead, these have enabled research into
various sub-tasks and analyses that can eventually be useful for dialogue systems in this area. Please refer to Section
3 in the main paper for a detailed discussion about these datasets and to Section 4 for information about various
methods developed using them.
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Figure 2: A theoretical model for the development of dialogue systems for social influence tasks. Curved arrows
represent forward relations and the straight arrow represents the feedback. I. Task Specifications: Key properties
that define the task in consideration and are captured by the collected dataset, II. Chatbot Characteristics and
User Backgrounds: Attributes for the agent design and target audience, III. Chatbot Capacity: The desirable
capabilities of the system, IV. Chatbot Design & Techniques: The modeling techniques to develop the dialogue
system, and V. Evaluation Mechanisms: Metrics to evaluate system performance.
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Abstract
Although several datasets annotated for
anaphoric reference / coreference exist, even
the largest such datasets have limitations in
terms of size, range of domains, coverage of
anaphoric phenomena, and size of documents
included. Yet, the approaches proposed to scale
up anaphoric annotation haven’t so far resulted
in datasets overcoming these limitations. In this
paper, we introduce a new release of a corpus
for anaphoric reference labelled via a game-
with-a-purpose. This new release1 is compa-
rable in size to the largest existing corpora for
anaphoric reference due in part to substantial
activity by the players, in part thanks to the
use of a new resolve-and-aggregate paradigm
to ‘complete’ markable annotations through the
combination of an anaphoric resolver and an ag-
gregation method for anaphoric reference. The
proposed method could be adopted to greatly
speed up annotation time in other projects in-
volving games-with-a-purpose. In addition, the
corpus covers genres for which no compara-
ble size datasets exist (Fiction and Wikipedia);
it covers singletons and non-referring expres-
sions; and it includes a substantial number of
long documents (> 2K in length).

1 Introduction

Many resources annotated for anaphoric reference /
coreference exist; but even the largest such datasets,
such as ONTONOTES (Pradhan et al., 2012), have
limitations. The largest resources are still medium
scale (e.g., ONTONOTES (Pradhan et al., 2012) is
1.5M tokens, as is CRAFT (Cohen et al., 2017)).
They only cover a limited range of domains, pri-
marily news (as in ONTONOTES) and scientific ar-
ticles (as in CRAFT), and models trained on these
datasets have been shown not to generalize well to
other domains (Xia and Durme, 2021).2 The range

∗Work was done prior to joining Amazon research.
1The corpus is available at https://github.com/

dali-ambiguity/Phrase-Detectives-Corpus-3.0
2The largest existing corpus for English, the 10M words

PRECO (Chen et al., 2018), consists of language learning texts,

of anaphoric phenomena covered is also narrow
(Poesio et al., 2016).

Several proposals have been made to scale up
anaphoric annotation in terms of size, range of do-
mains, and phenomena covered proposed, includ-
ing automatic data augmentation (Emami et al.,
2019; Gessler et al., 2020; Aloraini and Poesio,
2021), and crowdsourcing combined with active
learning (Laws et al., 2012; Li et al., 2020; Yuan
et al., 2022) or through Games-With-A-Purpose
(Chamberlain et al., 2008; Hladká et al., 2009; Bos
et al., 2017; Kicikoglu et al., 2019). However, the
largest existing anaphoric corpora created using
Games-With-A-Purpose (e.g., (Poesio et al., 2019))
are still smaller than the largest resources created
with traditional methods, and the corpora created
using data augmentation techniques are focused on
specific aspects of anaphoric reference. In order
to use such approaches to create resources of the
required scale in terms of size, variety and range of
phenomena covered novel methods are required.

The first contribution of this paper is the Phrase
Detectives 3.0 corpus of anaphoric reference anno-
tated using a Game-With-A-Purpose. This corpus
has a comparable size in tokens (1.37M) to the
ONTONOTES corpus (Pradhan et al., 2012), but
twice the number of markables3. Its annotation
scheme also covers singletons and non-referring ex-
pressions; it is focused on two genres - fiction and
Wikipedia articles - not covered in ONTONOTES,
and for which only much smaller datasets exist;
and it includes a range of documents ranging from
short to fairly long (14K tokens) enabling research
in NLP on long documents (Beltagy et al., 2020).
While ONTONOTES will remain a fundamental re-
source for the field in terms of size and languages
it covers, we therefore hope that Phrase Detec-

but the models trained on this genre have proven to have even
worse performance on other domains.

3The number of non-singleton markables is similar to that
of ONTONOTES
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tives 3.0 will complement ONTONOTES, providing
a comparable amount of data in genres so far less
covered, while at the same time covering aspects
of anaphoric interpretation not covered there, such
as singletons and non-referring expressions.

The second contribution of the paper is a new it-
erative resolve-and-aggregate approach developed
to ‘complete’ the corpus by combining crowdsourc-
ing with automatic annotation. Only about 70% of
documents in the corpus were completely anno-
tated by the players. The proposed method (i) uses
an anaphoric resolver to automatically annotate all
mentions, including the few still unannotated; (ii)
aggregates the resulting judgments using a proba-
bilistic aggregation method for anaphora, and (iii)
uses the resulting expanded dataset to retrain the
anaphoric resolver. We show that the resolve-and-
aggregate method results in models with higher
accuracy than models trained using only the com-
pletely annotated data, or the full corpus not com-
pleted using the method.

2 Background

Anaphorically annotated corpora A number of
anaphorically annotated datasets now exist, cover-
ing a number of languages (Hinrichs et al., 2005;
Hendrickx et al., 2008; Recasens and Martí, 2010;
Pradhan et al., 2012; Landragin, 2016; Nedoluzhko
et al., 2016; Cohen et al., 2017; Chen et al., 2018;
Bamman et al., 2020; Uryupina et al., 2020; Zeldes,
2020) and turning anaphora / coreference into a
very active area of research (Pradhan et al., 2012;
Fernandes et al., 2014; Wiseman et al., 2015; Lee
et al., 2017, 2018; Yu et al., 2020; Joshi et al., 2020).
However, only a few of these are genuinely large
in terms of markables (Pradhan et al., 2012; Cohen
et al., 2017), and most are focused on news. Cor-
pora of comparable size exist for scientific articles
(e.g., CRAFT (Cohen et al., 2017)), and substan-
tially smaller ones for fiction (e.g., LitBank (Bam-
man et al., 2020) and Phrase Detectives 2 (Poe-
sio et al., 2019)), and Wikipedia (e.g., WikiCoref
(Ghaddar and Langlais, 2016) or again Phrase De-
tectives 2 (Poesio et al., 2019)). But important gen-
res such as dialogue are barely covered (Muzerelle
et al., 2014; Yu et al., 2022a). There is evidence
that this concentration on a single genre, and on
ONTONOTES in particular, results in models that do
not generalize well (Xia and Durme, 2021).

Existing resources are also limited in terms of
coverage. Most recent datasets are based on general

purpose annotation schemes with a clear linguistic
foundation, but especially the largest ones focus on
the simplest cases of anaphora / coreference (e.g.,
singletons and non-referring expressions are not
annotated in ONTONOTES). And the documents
included in existing corpora tend to be short, with
the exception of CRAFT: e.g., average document
length is 329 in PRECO, 467 in ONTONOTES, 630
in ARRAU, and 753 in Phrase Detectives.

Scaling up anaphoric annotation One approach
to scale up anaphoric reference annotation is using
fully automatic methods to either annotate a dataset,
such as AMALGUM (Gessler et al., 2020), or cre-
ate a benchmark from scratch, such as KNOWREF

(Emami et al., 2019). While entirely automatic an-
notation may result in datasets of arbitrarily large
size, such annotations cannot expand current mod-
els’ coverage to aspects of anaphoric reference they
do not already handle well. And creating from
scratch large-scale benchmarks for specific issues
hasn’t so far been shown to result in datasets re-
flecting the variety and richness of real texts.

Crowdsourcing has emerged as the dominant
paradigm for annotation in NLP (Snow et al., 2008;
Poesio et al., 2017) because of its reduced costs
and increased speed in comparison with traditional
annotation. But the costs for really large-scale an-
notation are still prohibitive even for crowdsourc-
ing (Poesio et al., 2013, 2017). To address this is-
sue, a number of approaches have been developed
to optimize the use of crowdsourcing for corefer-
ence annotation. In particular, active learning has
been used to reduce the amount of annotation work
needed (Laws et al., 2012; Li et al., 2020; Yuan
et al., 2022). Another issue is that anaphoric refer-
ence is a complex type of annotation whose most
complex aspects require special quality control typ-
ically not available with microtask crowdsourcing.

Games-With-A-Purpose A form of crowdsourc-
ing which has been widely used to address the is-
sues of cost and quality is Games-With-A-Purpose
(GWAP) (von Ahn, 2006; Cooper et al., 2010;
Lafourcade et al., 2015). Games-With-A-Purpose
is the version of crowdsourcing where labelling
is created through a game, so that the reward for
the workers is in terms of enjoyment rather than
financial. They were proposed as a solution for
large-scale data labelling. A number of GWAPs
were therefore developed for NLP, including Jeux
de Mots (Lafourcade, 2007; Joubert et al., 2018),
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Phrase Detectives (Chamberlain et al., 2008; Poe-
sio et al., 2013), OntoGalaxy (Krause et al., 2010),
the Wordrobe platform (Basile et al., 2012), Dr
Detective (Dumitrache et al., 2013), Zombilingo
(Fort et al., 2014), TileAttack! (Madge et al., 2017),
Wormingo (Kicikoglu et al., 2019), Name That Lan-
guage! (Cieri et al., 2021) or High School Super-
hero (Bonetti and Tonelli, 2021). GWAPs for coref-
erence include Phrase Detectives (Chamberlain
et al., 2008; Poesio et al., 2013), the Pointers game
in WordRobe (Bos et al., 2017) and Wormingo (Ki-
cikoglu et al., 2019), all deployed, and PlayCoref
(Hladká et al., 2009), proposed but not tested.

However, whereas truly successful GWAPs such
as FOLDIT have been developed in other areas of
science (Cooper et al., 2010), even the most suc-
cessful GWAPs for NLP only collected moderate
amounts of data (Poesio et al., 2019; Joubert et al.,
2018). In part, this is because the games used to
actually collect NLP labels aren’t very entertain-
ing, leading to efforts to develop engaging designs
such as (Jurgens and Navigli, 2014; Dziedzic and
Włodarczyk, 2017; Madge et al., 2019).

An interesting solution to this issue was pro-
posed although not fully developed for Wordrobe
(Bos et al., 2017). This solution is a hybrid be-
tween automatic annotation and crowdsourcing: a
combination of crowd and automatically computed
judgments is aggregated to ensure that every item
has at least one label. This solution wasn’t prop-
erly tested in Wordrobe, which only collected very
few judgments and for a small corpus; and any-
way the approach followed could not be applied to
anaphora/coreference, due to the lack of a suitable
aggregation mechanism for anaphora/coreference.
In this paper we present the first true test of the idea
by proposing a method for aggregating crowd and
automatic judgments inspired by this idea, but us-
ing an aggregation method for anaphora, and truly
tested on a dataset containing a very large number
of anaphoric judgments.

3 Phrase Detectives

The human judgments used in our corpus were
collected using the Phrase Detectives Game-With-
A-Purpose4 (Chamberlain et al., 2008; Poesio
et al., 2013; Chamberlain, 2016; Poesio et al.,
2019), designed to collect multiple judgments
about anaphoric reference.

4http://phrasedetectives.com/

Game design Phrase Detectives doesn’t follow
the design of some of the original von Ahn games
(von Ahn and Dabbish, 2008), in that it is a one-
person game, and not timed; both competition and
timing were found to have orthogonal effects on
the quality of the annotation (Chamberlain, 2016).
Points are used as the main incentive, with weekly
and monthly boards being displayed.

Players play two different games: one aiming
at labelling new data, the other at validating judg-
ments expressed by the other players. In the an-
notation game, Name the Culprit, the player pro-
vides an anaphoric judgment about a highlighted
markable (the possible judgments according to the
annotation scheme are discussed next). If differ-
ent participants enter different interpretations for a
markable then each interpretation is presented to
other participants in the validation game, Detec-
tives Conference, in which the participants have to
agree or disagree with the interpretation.

Every item is annotated by at least 8 players (20
on average), and each distinct interpretation is vali-
dated by at least four players. Players get points for
each label they produce, but especially when their
interpretation is agreed upon by other players, thus
rewarding accuracy. Initially, players play against
gold data, and are periodically evaluated against
the gold; when they achieve a sufficient level of
accuracy, they start seeing incompletely annotated
data. Extensive analyses of the data suggest that al-
though there is a great number of noisy judgments,
this simple training and validation method delivers
extremely accurate aggregated labels (Poesio et al.,
2013; Chamberlain, 2016; Poesio et al., 2019).

Annotation Scheme The annotation scheme
used in Phrase Detectives is a simplified version
of the ARRAU annotation scheme (Uryupina et al.,
2020), covering all the main aspects of anaphoric
annotation, including the distinction between re-
ferring and non-referring expressions (all noun
phrases are annotated as either referring or non-
referring, with two types of non-referring expres-
sions being annotated: expletives and predicative
NPs); the distinction between discourse-new and
discourse-old referring expressions (Prince, 1992);
and the annotation of all types of identity refer-
ence (including split antecedent plural anaphora).
Only the most complex types of anaphoric refer-
ence (bridging references and discourse deixis) are
not annotated. The main differences between the
annotation scheme used in Phrase Detectives and
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Type Example ONTONOTES PRECO ARRAU Phrase Detectives

predicative NPs [John] is a teacher Pred Coref Pred Pred
[John, a teacher]

singletons No Yes Yes Yes
expletives It’s five o’clock No No Yes Yes
split antecedent plurals [John] met [Mary] No No Yes Yes

and they ...
generic mentions [Parents] are usually busy. Only with Yes Yes Yes

Parents should get involved pronouns
event anaphora Sales [grew] 10%. Yes No Yes No

This growth is exciting
ambiguity Hook up [the engine] No No Explicit Implicit

to [the boxcar]
and send it to Avon

Table 1: Comparison between the annotation schemes in ONTONOTES, PRECO, ARRAU and Phrase Detectives.

those used in ARRAU, ONTONOTES, and PRECO

are summarized in Table 1, modelled on a similar
table in (Chen et al., 2018). In the Phrase Detec-
tives corpus predication and coreference are clearly
distinguished, as in ONTONOTES and ARRAU but
unlike in PRECO. Singletons are considered mark-
ables. Expletives and split antecedent plurals are
marked, unlike in either ONTONOTES or PRECO.

Possibly the most distinctive feature of the an-
notation scheme is that disagreements among an-
notators are preserved, encoding a form of implicit
ambiguity as opposed to the explicit ambiguity an-
notated in ARRAU. The DEV and TEST subsets of
the corpus (see next Section) have been annotated
according to the full ARRAU scheme.

Preliminary player statistics At the time of writ-
ing (11th October, 2022), 61,391 players have reg-
istered on Phrase Detectives, of which more than
4,000 demonstrated sufficient linguistic understand-
ing that they allowed to provide judgments on par-
tially labelled data. So far, the players provided
about 3.7M annotations and 1.7M validations, for
a total of over 5.4M judgments.

Speed of annotation Over the course of the
project, the games has been collecting an average of
385,000 judgments a year, i.e., slightly over 1,000
judgments per day, every day. While this is an im-
pressive number of judgments, it only translates in
an average of around 10,000 new completely an-
notated markables per year, or 20 new completely
annotated documents, for an average of 30,000 ex-
tra words. (Progress was faster in the early years
of the project, when all short documents were an-
notated; but as discussed in the next Section, the
corpus also contains a number of fairly long texts
– these are the ones still being annotated.) The

Docs Tokens Markables

TRAIN
COMPLETE

Gutenberg 154 181142 48329 (29527)
Wikipedia 359 244770 65050 (21803)

Other 2 7294 2126 (1347)
Subtotal 515 433206 115505 (52677)

TRAIN
FULL

Gutenberg 194 372001 102354 (57387)
Wikipedia 544 931752 258560 (92465)

Other 2 7294 2128 (1347)
Subtotal 740 1311047 363042 (151199)

DEV

Gutenberg 5 7536 2133 (1494)
Wikipedia 35 15287 4423 (1669)

Other 5 989 331 (126)
Subtotal 45 23812 6887 (3289)

TEST

Gutenberg 7 20646 5925 (3332)
Wikipedia 13 22998 7704 (3876)
Subtotal 20 43644 13629 (7208)

All

Gutenberg 206 400183 110412 (62213)
Wikipedia 592 970037 270687 (98010)

Other 7 8283 2459 (1473)
Total 805 1378503 383558 (161696)

Table 2: Summary of the current release. In parentheses
the number of markables that are non-singletons.

project discussed in this paper was motivated by
the simple calculation that at this speed, it would
take us 40 years to completely annotate all the doc-
uments already in the corpus, and 300 years to
completely annotated a corpus of 10M words.

4 Characteristics of the corpus

The Phrase Detectives 3.0 corpus includes all the
805 documents originally uploaded in the game. In
this Section we highlight the main characteristics
of the texts in this release, summarized in Table 2.
For comparison, we include in the Appendix a short
description of the previous release of the Phrase
Detectives corpus, Phrase Detectives 2, released in
2019 (Poesio et al., 2019).

The new release The new release of the corpus,
Phrase Detectives 3.0, is more than three times
larger than the previous release of the Phrase De-
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tectives corpus described in the previous section in
terms of the number of tokens (1.4M) and mark-
ables (383K). (See ‘All’ row in Table 2.) This
makes the Phrase Detectives 3.0 corpus compara-
ble in the number of tokens to ONTONOTES, but
double the size of ONTONOTES in terms of mark-
ables, partly due to the singletons and non-referring
expressions being included. 72% of the documents
were completely annotated by the players (580 out
of 805 documents), and the near totality of men-
tions have at least one crowd annotation (99.4%).

Genres The corpus covers mainly two genres.
The Gutenberg domain consists of fiction texts
from the Gutenberg Project: in part children fic-
tion (e.g., Alice in Wonderland, Grimm brothers
stories), in part classics (e.g., Sherlock Holmes
stories). At 400K tokens, it is twice the size of
the largest existing fiction corpus (Bamman et al.,
2020). The Wikipedia domain consists of primarily
the ‘Wikipedia Unusual’ documents. This subset is
1M tokens in size, substantially larger than Wiki-
Coref (60K tokens) (Ghaddar and Langlais, 2016).

Organization The corpus is split into train, de-
velopment, and test subsets, where the develop-
ment and test sets are annotated by human experts
(see below) and the training set is aggregated using
the MPA anaphoric annotation model (Paun et al.,
2018b) as described in Section 5. But crucially,
two versions of the training set exists.

TRAIN COMPLETE is like the training sets re-
leased in previous versions of the corpus, in that
it consists of documents that were completely an-
notated by the players: i.e., all markables in the
documents have more than 8 judgments, and all
interpretations have more than 4 validations.

The second training set, TRAIN FULL, addition-
ally includes documents that have not yet been
‘completely’ annotated by the players. These doc-
uments are considerably longer, and as a result it
is harder to have them completely annotated. So
a state-of-the-art coreference model for this anno-
tation scheme (Yu et al., 2020) was used in the
resolve-and-aggregate setting discussed in Section
5 to augment the existing annotations by ensuring
that every markable had at least one label, which
would then be aggregated with the others. TRAIN

FULL is three times larger than TRAIN COMPLETE,
both in the number of tokens and of markables.

A New Gold The test set from the previous re-
lease of the corpus, consisting of 45 documents, is

now available as DEV. DEV was fully revised by
human experts for this release to correct previous
labelling mistakes, and has now been annotated
according to the full ARRAU guidelines, including
ambiguity annotation, bridging references, and dis-
course deixis. In addition, a brand new TEST set of
20 documents was also created, balanced between
the two domains, double in size compared to the
old test set, and also annotated according to the full
ARRAU guidelines by the annotators that have been
preparing the ARRAU 3 release.

Domain specific training With the new release,
the corpus is now large enough to be used sepa-
rately for domain-specific research. We demon-
strate in Section 6 that models trained on the
domain-specific portion of the training set achieve
comparable results to those trained on TRAIN

FULL. The results indicate that the domain-specific
training data can be sufficient to be used separately
for dedicated research in target domains.

Long and short documents An important char-
acteristic of the corpus is that it was designed to
contain both short documents (< 2K tokens) and
long ones. 34.5% of the documents are longer than
2K tokens, and the longest document reaches 14K
tokens. (In contrast, in ONTONOTES only 0.4% of
the documents have more than 2K tokens.) This
makes our corpus a suitable resource for research
on long-distance anaphora and on long document
training. To this end, we use our dataset to replicate
the experiments by Beltagy et al. (2020) compar-
ing the LONGFORMER model with the ROBERTA

model. In the original paper, which used the
ONTONOTES corpus, no obvious differences were
found between the two models, partly due to the
lack of long documents. We discuss these experi-
ments in Section 6.5. The only other corpus that we
are aware of with a large portion of long documents
is the CRAFT corpus (Cohen et al., 2017), which is
however focused on biomedical texts.

5 Resolve-and-Aggregate

The challenge To create a reliable corpus using
crowdsourcing, multiple judgments are required to
ensure a good coverage of correct answers, together
with sufficient evidence to enable an accurate aggre-
gation method (Paun et al., 2018a, 2022) to distill
the correct answers from the noisy ones. The prob-
lem of collecting such large number of judgments is
even more serious for long documents. Annotating
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all anaphoric relations in long documents is chal-
lenging, partly due to the amount of time needed
to complete the task, but also because the great
number of entities makes it difficult for annotators
to keep track of all the coreference chains. And in-
deed, the short documents in our corpus were com-
pleted much faster than the longer documents: the
average length of the incomplete documents is 4K
tokens, whereas for the complete documents is 850
tokens. Thus in our corpus the rate at which judg-
ments are collected from players, while substantial
(over 1,000 judgments per day) is not sufficient to
extract reliable labels in a reasonable amount of
time, as discussed in Section 3.

Possible solutions Clearly, part of the solution is
to develop more engaging games, thus able to at-
tract more players and keep them playing for longer
(von Ahn and Dabbish, 2008; Jurgens and Navigli,
2014; Madge et al., 2019; Kicikoglu et al., 2019). A
second ingredient is to use active learning-like ap-
proaches to minimize the number of labels required
to complete the annotation (Laws et al., 2012; Li
et al., 2020; Yuan et al., 2022). A number of pro-
posals have been made in these two directions, and
we are carrying out research in these areas as well
(Madge et al., 2022). In this work however we in-
vestigate an approach that to our knowledge has
been much less studied: combining crowdsourcing
with automatic labelling. Specifically, we propose
a new resolve-and-aggregate method that iteratively
makes use of a coreference resolver to enhance the
collected annotations. The approach is inspired,
apart from Wordrobe (Bos et al., 2017), by previ-
ous work on Bayesian combination of classifiers
(Kim and Ghahramani, 2012) which allows for ag-
gregating predictions from classifiers and humans
together with the help of a probabilistic annotation
model. Both the iterative use of the coreference re-
solver and the application domain of the annotation
model are however novel to this paper.

The coreference resolver As a coreference re-
solver, we use the system by Yu et al. (2020) which,
to the best of our knowledge, is the only modern
coreference resolver that also predicts singletons
and non-referring expressions, both of which need
to be annotated in our corpus. The system is an ex-
tension of (Lee et al., 2017, 2018), replacing their
mention-ranking algorithm with a cluster-ranking
algorithm to build the entity clusters incrementally.
The system uses BERT (Devlin et al., 2019) for pre-

trained contextual embeddings instead of the Elmo
embeddings (Peters et al., 2018) used in (Lee et al.,
2018).

Aggregation Standard aggregation methods for
classification labels such as the (Dawid and Skene,
1979) model are not appropriate for coreference la-
bels, whose class space is not fixed but depends on
the document mentions. However, an aggregation
model for coreference judgments is now available,
the mention-pair annotation model (MPA) (Paun
et al., 2018b). We used MPA to aggregate judg-
ments by players and by the coreference resolver.
MPA can capture the accuracy and bias of the play-
ers, and of the coreference resolver, respectively,
and adjust the aggregated labels accordingly.

Resolve-and-aggregate resolve-and-aggregate
is an iterative procedure which relies on the MPA

aggregation model to label the corpus, which is in
turn used to retrain the coreference resolver to get
better system predictions. More specifically, in the
first step of the procedure we aggregate the players’
annotations from the complete documents and
build an initial training set, TRAIN COMPLETE.
Then, we train the coreference resolver on this set,
but in a gold mention setting to mimic the players
who focus only on the resolution task. Having
trained the system, we then use it to get predictions
for the entire dataset. The resolver can be seen as a
player who played all the documents in the corpus.
Next, all the players’ annotations and the system’s
predictions are aggregated using MPA, and an
initial version of the entire corpus, TRAIN FULL,
is built as a result. This procedure is repeated,
taking TRAIN FULL as input and creating a new
version every time. With each new version, the
MPA-aggregated labels get refined, leading in turn
to better predictions from the coreference resolver.
The procedure is repeated until the performance
of the resolver plateaus. The final version of the
corpus contains the MPA-aggregated labels of
the players’ annotations and the system’s best
predictions. We show in the next Section that this
approach results in substantial improvements in the
quality of the labels produced by the coreference
resolver, which translate to more accurate labels
for the items not fully annotated by the players.

6 Resolving-and-Aggregating results

Experiment Setting For our experiments, we re-
port the CoNLL F1 scores as defined in (Pradhan
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Figure 1: Left and Middle: The CoNLL scores for Yu et al. (2020) trained on different training sets and tested
on the DEV set in gold mention setting. Right: The percentage of MPA labels changed by using the additional
judgments from the Yu et al. (2020) system in different iterations.

et al., 2012) in both singleton included and ex-
cluded settings, as well as non-referring F1 scores
for non-referring expressions. We use the Univer-
sal Anaphora (UA) Scorer (Yu et al., 2022b) that
reports all the necessary scores.

We trained the Yu et al. (2020) system using
most of its default settings. The only exception
is that we always use the full context of the doc-
uments for training instead of choosing a random
1K tokens as done in Yu et al. (2020). The default
setting gives priority to the short documents as for
each epoch, the full context of the short documents
is always used, whereas for long documents only
part of the documents is used.

We establish three baselines, all using the same
system Yu et al. (2020) with the same settings,
but trained with different training sets. The first
baseline is trained on the PREVIOUS RELEASE.
The second baseline is trained on TRAIN COM-
PLETE (complete documents aggregated by MPA

without resolve-and-aggregate). The third baseline
is trained on TRAIN FULL aggregated by MPA but
without annotations from the coreference resolver.

6.1 Parameter Tuning

We first trained the system using the gold mention
settings to improve the quality of the corpus. We
used the baseline trained on TRAIN COMPLETE

to annotate the full corpus, then assigned labels to
all the mentions by aggregating player and system
annotations using MPA. We then trained a new
model by using the full corpus (TRAIN FULL (with
Coref)) and doing resolve-and-aggregate between
the system and MPA in iterations until the system
performance stopped improving.

The first key result is that, the system trained
with TRAIN FULL (with Coref) always beats the
baseline trained on the TRAIN COMPLETE (see

CoNLL Avg. F1
Train data Sing. (inc) Sing. (exc) NR F1

PREVIOUS RELEASE 65.5 53.6 36.8
TRAIN COMPLETE 66.1 54.7 39.4
TRAIN FULL(original) 64.9 52.9 35.5
TRAIN FULL(with Coref) 66.8 56.1 40.1

Joshi et al. (2020) - 60.2 -

Table 3: The CoNLL and non-referring scores for (Yu
et al., 2020) trained on different training sets and tested
on the TEST set in predicted mention setting.

Figure 1). The improvements on the singletons
excluded setting are larger than those in the single-
tons included setting; this makes sense as all the
models use gold mentions, hence the performance
with singletons is inflated by the gold mentions.
The system achieved the best performance on the
third iteration with CoNLL F1 scores of 79% and
66.9% for singletons included and excluded set-
tings respectively. This is 0.6% and 1.9% higher
than the TRAIN COMPLETE baseline.

What is especially interesting is that the improve-
ment is not just a matter of TRAIN FULL being
larger than TRAIN COMPLETE: running the coref-
erence resolver helps substantially. The system
trained on TRAIN FULL original (i.e., without any
automatic labels) is slightly worse than the TRAIN

COMPLETE baseline, despite using the additional
training data. One explanation would be that MPA’s
performance is affected by the lower number of
judgments collected in the incomplete documents:
the correct answer might not appear in the players’
annotations, or the players producing the annota-
tions might not be considered sufficiently reliable.

To quantify the contribution of the automatic
coreference resolver, we calculate the percentage
of MPA labels flipped due to the additional system
annotations. We compare the labels of the TRAIN
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FULL (with Coref) in different iterations with the
TRAIN FULL (original) labels. We find that in the
first iteration, 7% of the MPA labels (26K) were
changed (see Figure 1). The percentages increased
sharply until iteration 3 to 8.2% (31K) but slowed
down for iteration 4. This might explain why per-
formance starts dropping in the 4th iteration.

MPA works very well when the number of judg-
ments is high, but performance might be affected
when there are not enough annotations, e.g. for the
incomplete documents. We suspected MPA might
benefit more from system annotations when the
document is incomplete. To assess our hypothe-
sis, we took a closer look at MPA labels from our
best iteration. We split the documents into two
classes, complete and incomplete, according to our
complete criterion (i.e., a document is considered
complete when every markable has been annotated
by at least 8 players, and each distinct interpreta-
tion has been validated by at least 4 players) and
calculate a separate score for each class. We find
that for the complete document only 3.3% of the
MPA labels are changed as a result of the additional
system annotations; in contrast, 10.8% of MPA la-
bels are changed in the incomplete documents.

To assess the quality of these label changes, we
checked the different MPA labels between iteration
3 and the original on the DEV set. Since all docu-
ments from the DEV set are complete documents,
out of 7K mentions, only 201 have a different label.
The TRAIN FULL (original) gets 70 of the labels
correct with an accuracy of 34.8%, whereas after
the 3rd iteration of resolve-and-aggregate, the num-
ber increased to 125 (62.2% accuracy). Although
the sample is not large, it still gives a clear pic-
ture that even for complete documents the system
annotations can improve the quality of the corpus.

6.2 Evaluation on the Test set

After finding the best setting as discussed in the pre-
vious Section, we evaluated the impact of resolve-
and-aggregate on the TEST set in the more realistic
predicted mention setting. As shown in Table 3,
our best model trained on the TRAIN FULL ag-
gregated by MPA with additional coreference an-
notation by the Yu et al. (2020) system (TRAIN

FULL(with Coref)) beats all the baselines in both
singletons included and excluded settings. Of the
baselines trained on the complete documents only,
the TRAIN COMPLETE baseline works better than
the PREVIOUS RELEASE baseline, most likely be-

cause the training set is larger while the quality of
the annotation remains the same. But again, when
training with the additional incomplete documents
(TRAIN FULL (original without Coref)), the per-
formance dropped substantially by 1%-2% when
compared with the TRAIN COMPLETE baseline.
This highlights again the importance of combining
automatic and crowd annotations via resolve-and-
aggregate: the model trained on this corpus pushes
up the TRAIN FULL (original) baseline by up to
3.2%. The story is the same for the models’ per-
formance on non-referring expressions ( Table 3):
again, the model trained on TRAIN FULL (with
Coref) is top of the list.

Finally, we report the result by the Joshi et al.
(2020) system on our corpus to give insight into
the complexity of our corpus when compared with
ONTONOTES. The system was trained on the same
TRAIN FULL (with Coref) corpus. Since the Joshi
et al. (2020) system only output the non-singleton
clusters, we report only the CoNLL F1 score in a
singleton excluded setting. As expected the system
has a better CoNLL F1 score when compared with
our baselines, since SpanBERT has been shown to
be more effective than BERT on coreference. The
Joshi et al. (2020) result on our corpus is, however,
20% lower than on ONTONOTES (79.6%), which
indicates that our corpus is more complex than
ONTONOTES. We hypothesize this is partially due
to the longer documents and more diverse domains
included in our release.

6.3 Annotation speed-up

The results in the previous Sections show that using
automatic annotations turns the incomplete docu-
ments into documents whose quality is enough to
result in improved performance when training a
coreference resolver, speeding up annotation. In
this section, we try to estimate the amount of time
potentially saved by the proposed method. For the
complete documents, we have on average 20 judge-
ments (annotations and validations) per markable,
which seems sufficient to ensure the quality of the
corpus, if not perhaps necessary. For incomplete
documents, the average number of judgements is
currently 7.7. If we do need 20 judgements to
achieve the same quality as the complete docu-
ments, we still need to collect on average 12.3 more
judgements for every markable. Multiplied by the
number of markables in the incomplete documents
(250K), this means we would need 3M more judge-
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CoNLL Avg. F1
Train data Sing. (inc) Sing. (exc) NR F1

Gutenberg

DOMAIN ONLY 70.4 61.8 43.8
TRAIN FULL (with Coref) 71.5 62.1 44.9

Wikipedia

DOMAIN ONLY 61.9 50.9 36.1
TRAIN FULL (with Coref) 62.3 50.6 36.0

Table 4: The CoNLL and non-referring scores for the
system trained on different training sets and tested on the
TEST set of different domains using predicted mention.

Model Short Doc Long Doc All Doc

LONGFORMER 61.0 67.2 64.7
ROBERTA 60.1 65.2 63.1

Table 5: The CoNLL scores (exclude singletons) for
LONGFORMER and ROBERTA trained on TRAIN FULL
and tested on the TEST set using gold mentions.

ments to complete all documents in the game. In
the last five years, we have been averaging 334K
judgements per year, which means if we proceed
at the current speed, we need another 9 years be-
fore we can release this corpus. In other words, the
resolve-and-aggregate method significantly speeds
up the annotation process.

6.4 Domain-specific Training

Thanks to the resolve-and-aggregate method, this
new release gives us datasets of a reasonable size
for both the Gutenberg (fiction) and Wikipedia
domains. We evaluated system performance on
the domain-specific portion - e.g., for Fiction we
trained our model on the Gutenberg section of
TRAIN FULL (with Coref) and tested it on the
Gutenberg section of the TEST. We then compared
the performance of these domain-specific models
with that of the best system trained on the entire
corpus. As shown in Table 4, the DOMAIN ONLY

systems trained on the domain-specific subsections
of the corpus achieve scores close to the system
trained on the full corpus. This suggests each
domain-specific part of the corpus is sufficiently
large to be used for domain-specific research.

6.5 Long and short documents

As stated earlier, one of the emerging challenges
for research on anaphora (and NLP in general) are
longer documents (>2K tokens). Our corpus is
unusual in that it includes a large number of doc-
uments more than 2K in length, with the longest
document containing 14K tokens. TEST also bal-

ances short (55%) and long (45%) documents.

To test that the corpus can support research on
anaphora in long documents, we used it to replicate
the comparison in (Beltagy et al., 2020) between
their new model designed specifically for longer
documents, the LONGFORMER, with ROBERTA

(Liu et al., 2019). In that paper, the LONGFORMER

is compared with ROBERTA on the ONTONOTES

corpus, without however finding a clear difference
between the two systems. We suspected this might
be because ONTONOTES does not contain enough
long documents to observe improvements. We
replicated the experiments by Beltagy et al. with
our corpus, and report the CoNLL F1 score on
full TEST as well as separate scores for long/short
documents. (Since neither system predicts single-
tons and non-referring expressions, we report the
CoNLL F1 scores in the singleton excluded set-
ting.) We evaluated the systems with the gold men-
tions so that the system’s performance will not be
affected by mention detection.

Table 5 shows the results for both systems on
different test set. The LONGFORMER works bet-
ter on all test sets, but with a much larger gain
over ROBERTA on long documents: the improve-
ment over ROBERTA is 0.9% and 2% on short and
long documents respectively. This finding con-
firms that long documents benefit more from the
LONGFORMER architecture, while also showing
that our corpus can be used to differentiate systems
designed to perform on long documents.

7 Conclusions

This research makes two main contributions. First
of all, we proposed an iterative method for speeding
up anaphoric annotation via GWAPs by combining
crowdsourced data with labels produced by an au-
tomatic coreference resolver, and aggregating the
labels using a probabilistic annotation method; and
showed that the resulting extension leads to quan-
tifiable improvements in model performance. The
method can be easily extended to other types of
annotation. Second, we introduced a new corpus
for anaphoric reference which, thanks to the use of
resolve-and-aggregate, is of a comparable size to
ONTONOTES in terms of tokens, but twice the size
in terms of markables; it contains two substantial
datasets for genres not covered in ONTONOTES;
and it includes both short and long documents.
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8 Limitations

The main limitation of this work is that the new
release is still only twice the size of ONTONOTES

in terms of markables. In ongoing work, we are
developing a new platform to label a corpus twenty
times the size of the current release. The new plat-
form5 combines more engaging games with active-
learning like methods for allocating work to players
more efficiently and according to their linguistic
understanding (Madge et al., 2022). We hope that
the new platform, in combination with the methods
proposed here, will allow us to label the new and
larger dataset much more quickly.

A second limitation of the new release is that
the markables in the corpus were automatically ex-
tracted; thus, the quality of the mentions is lower
than in corpora in which they were hand-identified.
The approach followed in these years has been to
ask our players to signal issues; as a result, tens
of thousands of markables were hand-corrected.
However, this approach doesn’t really lend itself
to scaling up. Thus, in our new platforms we are
following a different strategy: asking our players
to do the corrections themselves, by including also
games to check other levels of linguistic interpreta-
tion.

A third limitation, in particular in comparison
with ONTONOTES, is that this release of the corpus
only contains English documents, although a small
amount of Italian documents was uploaded in the
game.
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Appendix

A The previous release of the corpus

Phrase Detectives 2 consisted of a total of 542 documents containing 408K tokens and 108K markables
from two main genres: Wikipedia articles and fiction from the Gutenberg collection. This version of
the corpus was divided in two subsets. The subset referred to to as PDsilver consisted of 497 documents,
for a total of 384K tokens and 101K markables, whose annotation was completed–i.e. 8 judgments
per markable were collected, and 4 validations per interpretation–as of 12th of October 2018. In these
documents, an aggregated (‘silver’) label obtained through MPA is also provided. 45 additional documents
were also gold-annotated by two experts annotators. The subset of the corpus for which both gold and
silver annotations are available was called PDgold, as it is intended to be used as test set.8 The gold subset
consists of a total of 23K tokens and 6K markables. The contents of the Phrase Detectives 2 corpus are
summarized in Table 6.

Docs Tokens Markables

PDgold

Gutenberg 5 7536 1947 (1392)
Wikipedia 35 15287 3957 (1355)
GNOME 5 989 274 (96)
Subtotal 45 23812 6178 (2843)

PDsilver

Gutenberg 145 158739 41989 (26364)
Wikipedia 350 218308 57678 (19444)

Other 2 7294 2126 (1339)
Subtotal 497 384341 101793 (47147)

All Total 542 408153 107971 (49990)

Table 6: Summary of the contents of the 2019 release of the Phrase Detectives corpus. The numbers in parentheses
indicate the total number of markables that are non-singletons.

B Detailed Evaluation Results

This appendix section includes the detailed evaluation results for this paper. More specifically, Table 7
and Table 8 show the detailed scores for our experiments on predicted mentions (discussed in Section
6.2); Table 9 and Table 10 show the detailed scores of coreference and non-referring expressions for the
domain specific training experiments set out in Section 6.4. Table 11 shows the detailed scores for the
long/short documents experiments discussed in Section 6.5.

Singletons Train Data
MUC BCUB CEAFE Avg.

F1P R F1 P R F1 P R F1

Included

PREVIOUS RELEASE 83.2 60.6 70.1 73.9 54.8 62.9 59.7 67.5 63.4 65.5
TRAIN COMPLETE 83.1 62.1 71.1 74.7 54.5 63.0 62.4 66.2 64.3 66.1
TRAIN FULL (original) 84.2 58.6 69.1 76.0 52.5 62.1 60.2 66.8 63.4 64.9
TRAIN FULL (with Coref) 83.4 63.4 72.0 74.5 55.3 63.5 63.4 66.5 64.9 66.8

Excluded

PREVIOUS RELEASE 83.2 60.6 70.1 72.4 36.6 48.6 52.8 34.9 42.0 53.6
TRAIN COMPLETE 83.1 62.1 71.1 71.6 37.6 49.3 53.6 36.8 43.6 54.7
TRAIN FULL (original) 84.2 58.6 69.1 73.4 33.4 46.0 55.1 36.1 43.7 52.9
TRAIN FULL (with Coref) 83.4 63.4 72.0 71.0 39.0 50.4 56.2 38.8 45.9 56.1

SpanBERT-Large (Joshi et al.) 89.0 65.5 75.5 79.7 43.2 56.0 60.9 41.4 49.2 60.2
SpanBERT-Base (Joshi et al.) 88.1 64.6 74.5 79.3 43.4 56.1 58.8 40.2 47.7 59.4

Table 7: The CoNLL scores for the Yu et al. (2020) and Joshi et al. (2020) systems trained on different training sets
and tested on the TEST set in predicted mention setting.

8PDgoldis the dataset released in 2016 as Phrase Detectives corpus, Release 1 (Chamberlain et al., 2016).
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Train data P R F1

PREVIOUS RELEASE 73.8 24.6 36.8
TRAIN COMPLETE 71.1 27.3 39.4
TRAIN FULL(original) 75.1 23.3 35.5
TRAIN FULL(with Coref) 77.9 27.0 40.1

Table 8: Non-referring scores for Yu et al. (2020) system trained on different training sets and tested on the TEST
set in predicted mention setting.

Singletons Train Data MUC BCUB CEAFE Avg.
F1P R F1 P R F1 P R F1

Gutenberg

Included DOMAIN ONLY 87.3 75.2 80.8 71.5 57.6 63.8 61.3 73.4 66.8 70.4
TRAIN FULL (with Coref) 87.6 75.9 81.3 73.2 57.8 64.6 65.0 72.5 68.5 71.5

Excluded DOMAIN ONLY 87.3 75.2 80.8 70.2 42.0 52.5 56.3 48.5 52.1 61.8
TRAIN FULL (with Coref) 87.6 75.9 81.3 69.9 42.7 53.0 56.3 48.2 51.9 62.1

Wikipedia

Included DOMAIN ONLY 75.4 52.0 61.6 72.8 54.0 62.0 61.2 62.8 62.0 61.9
TRAIN FULL (with Coref) 78.1 51.3 61.9 75.5 53.3 62.5 62.4 62.7 62.5 62.3

Excluded DOMAIN ONLY 75.4 52.0 61.6 69.8 36.9 48.3 54.1 35.5 42.9 50.9
TRAIN FULL (with Coref) 78.1 51.3 61.9 72.3 35.8 47.9 56.2 33.5 42.0 50.6

Table 9: The CoNLL scores for Yu et al. (2020) system trained on different training sets and tested on the TEST set
of different domains in predicted mention setting.

Train data P R F1

Gutenberg

DOMAIN ONLY 79.9 30.2 43.8
TRAIN FULL (with Coref) 84.0 30.6 44.9

Wikipedia

DOMAIN ONLY 71.6 24.1 36.1
TRAIN FULL (with Coref) 72.4 24.0 36.0

Table 10: Non-referring scores for Yu et al. (2020) system trained on different training sets and tested on the TEST
set of different domains in predicted mention setting.

Settings Model MUC BCUB CEAFE Avg.
F1P R F1 P R F1 P R F1

Short Doc LONGFORMER 96.2 61.5 75.0 88.4 45.9 60.4 74.8 34.7 47.4 61.0
ROBERTA 96.3 60.8 74.5 89.3 45.1 59.9 71.1 33.9 45.9 60.1

Long Doc LONGFORMER 94.2 71.6 81.3 77.6 53.3 63.1 73.2 46.7 57.0 67.2
ROBERTA 94.4 71.1 81.1 76.3 49.4 59.9 71.9 43.8 54.4 65.2

All Doc LONGFORMER 94.9 67.5 78.9 81.6 50.2 62.2 73.8 41.3 52.9 64.7
ROBERTA 95.1 66.9 78.5 81.1 47.6 60.0 71.6 39.3 50.7 63.1

Table 11: The CoNLL scores for LONGFORMER and ROBERTA systems trained on TRAIN FULL and tested on the
TEST set using gold mentions in a singleton excluded setting.
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Abstract

The degree of semantic relatedness of two units
of language has long been considered funda-
mental to understanding meaning. Addition-
ally, automatically determining relatedness has
many applications such as question answering
and summarization. However, prior NLP work
has largely focused on semantic similarity, a
subset of relatedness, because of a lack of relat-
edness datasets. In this paper, we introduce a
dataset for Semantic Textual Relatedness, STR-
2022, that has 5,500 English sentence pairs
manually annotated using a comparative an-
notation framework, resulting in fine-grained
scores. We show that human intuition regarding
relatedness of sentence pairs is highly reliable,
with a repeat annotation correlation of 0.84.
We use the dataset to explore questions on what
makes sentences semantically related. We also
show the utility of STR-2022 for evaluating
automatic methods of sentence representation
and for various downstream NLP tasks.

Our dataset, data statement, and annotation
questionnaire can be found at: https://doi.

org/10.5281/zenodo.7599667.

1 Introduction

The semantic relatedness of two units of language
is the degree to which they are close in terms of
their meaning (Mohammad, 2008; Mohammad and
Hirst, 2012). The linguistic units can be words,
phrases, sentences, etc. Though our intuition of
semantic relatedness is dependent on many factors
such as the context of assessment, age, and socio-
economic status (Harispe et al., 2015), it is argued
that a consensus can usually be reached for many
pairs (Harispe et al., 2015). Consider the two sen-
tence pairs in Table 1. Most speakers of English
will agree that the sentences in the first pair are
closer in meaning to one another than those in the
second. When judging the semantic relatedness
between two sentences, humans generally look for
commonalities in meaning: whether they are on the

Pair 1: a. There was a lemon tree next to the house.
b. The boy enjoyed reading under the lemon tree.

Pair 2: a. There was a lemon tree next to the house.
b. The boy was an excellent football player.

Table 1: Most people will agree that the sentences in
pair 1 are more related than the sentences in pair 2.

same topic, express the same view, originate from
the same time period, one elaborates on (or follows
from) the other, etc.

The semantic relatedness of two units of lan-
guage has long been considered fundamental to
understanding meaning (Halliday and Hasan, 1976;
Miller and Charles, 1991); given how difficult it
has been to define meaning, a natural approach to
get at the meaning of a unit is to determine how
close it is to other units. Thus, unsurprisingly, auto-
matically determining relatedness has many appli-
cations such as question answering, text generation,
and summarization (more discussion in §7).

However, prior NLP work has focused on se-
mantic similarity (a small subset of semantic re-
latedness), largely because of a dearth of datasets
on relatedness. The few relatedness datasets that
exist are only for word pairs (Rubenstein and Good-
enough, 1965; Radinsky et al., 2011) or phrase
pairs (Asaadi et al., 2019). Further, most existing
datasets were annotated, one item at a time, using
coarse rating labels such as integer values between
1 and 5 representing coarse degrees of closeness.
It is well documented that such approaches suf-
fer from inter- and intra-annotator inconsistency,
scale region bias, and issues arising due to the fixed
granularity (Presser and Schuman, 1996). Further,
the notions of related and unrelated have fuzzy
boundaries. Different people may have different
intuitions of where such a boundary exists. Finally,
for some tasks, it is more appropriate to train on
a dataset of relatedness than similarity. (§2.1 dis-
cusses how relatedness and similarity are different.)

In this paper, we present the first manually an-
notated dataset of sentence–sentence semantic re-
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latedness. It includes fine-grained scores of relat-
edness from 0 (least related) to 1 (most related)
for 5,500 English sentence pairs. The sentences
are taken from diverse sources and thus also have
diverse sentence structures, varying amounts of
lexical overlap, and varying formality.

The relatedness scores were obtained using a
comparative annotation schema: two (or more)
items are presented together and the annotator has
to determine which is greater with respect to the
metric of interest. Since annotators are making rel-
ative judgments, the limitations discussed earlier
for rating scales are greatly mitigated. Importantly,
such annotations do not rely on arbitrary bound-
aries between arbitrary categories such as “strongly
related” and “somewhat related”.
We use the relatedness dataset to explore:
1. To what extent do speakers of English intuitively

agree on the relatedness of sentences? (§4)

2. What makes two sentences more related? (§5)

3. How well do existing approaches of sentence
representation capture semantic relatedness (by
placing related sentence pairs closer to each
other in vector space)? (§6)

4. How can an improved annotation schema to cap-
ture relatedness benefit other NLP tasks? (§7)

We refer to our dataset as STR-2022, and the task
of predicting relatedness between sentences as the
Semantic Textual Relatedness (STR) task. Data,
data statement, and annotation questionnaire are
made available1.

2 Related Work and Our Approach to
Annotating for Semantic Relatedness

The three subsections below discuss key ideas from
past work on annotating relatedness and similarity,
existing datasets, and comparative annotation, re-
spectively. Notably, each of these subsections also
discusses how relevant past work has influenced
our approach to data annotation.

2.1 Annotating Relatedness and Similarity
Semantic relatedness and semantic similarity are
two ways to explore closeness of meaning. Two
terms are considered semantically similar if there
is a synonymy, hyponymy, or troponymy relation
between them (examples include doctor–physician

1doi.org/10.5281/zenodo.7599667 or
https://github.com/Priya22/
semantic-textual-relatedness or
https://huggingface.co/datasets/vkpriya/str-2022

and mammal–elephant). Two terms are considered
to be semantically related if there is any lexical
semantic relation at all between them. Thus, all
similar pairs are also related, but not all related
pairs are similar. For example, surgeon–scalpel
and tree–shade are related, but not similar.

Analogous to term pairs, two sentences are con-
sidered semantically similar when they have a para-
phrasal or entailment relation. Determining such
an equivalence of meaning is useful in NLP tasks
such as text summarization and plagiarism detec-
tion. Semantic Relatedness, however, accounts for
all of the commonalities that can exist between two
sentences (Halliday and Hasan, 1976; Morris and
Hirst, 1991). For example, the sentences in Table
1 Pair 1 are highly related, but they are not para-
phrases or entailing. This expands the scope of the
measure to include aspects such as the relatedness
between their topics, their styles, etc.

However, because semantic relatedness in-
volves innumerable classical and ad-hoc semantic
relationships, it is markedly more complex than
semantic similarity, and there are no widely agreed
upon linguistic theories or guidelines for judging
relatedness. This presents a challenge for gather-
ing annotations; one can either: (i) construct their
own codified instructions on how to judge semantic
relatedness under various scenarios (e.g., overlap-
ping sentence structure, relatedness of topic, etc.),
at the risk of artificially over-simplifying the task
or (ii) abstain from explicitly and comprehensively
defining relatedness for numerous types of sentence
pairs, relying instead on a simple description of re-
latedness, a few examples, and framing the task in
relative terms.2 In this work, we chose the latter.
This allows us to: (i) determine the extent to which
human intuition of relatedness is reliable and (ii)
use the resulting dataset to empirically determine
what makes sentences semantically related.

2.2 Existing Relatedness and Similarity Data
Existing datasets created for sentence pair similar-
ity (e.g., STS (Agirre et al., 2012, 2013, 2014, 2015,
2016), MRPC (Dolan and Brockett, 2005), and
LiSent (Li et al., 2006)) ask annotators to choose
among coarse similarity labels. This leads to infor-
mation loss and makes annotation difficult because
distinctions between categories are often not clear;
for example, the STS 2012–2016 questionnaires

2Recall that for Table 1, we were able to judge relative
relatedness without explicit instruction on how to judge relat-
edness.
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ask annotators to make the distinction between 2:
not equivalent but share some details and 1: not
equivalent, but are on the same topic, which is of-
ten not straightforward. Further, despite claiming
to determine semantic similarity, the descriptions
of categories 1 and 2 incorporate aspects of seman-
tic relatedness — an amalgamation muddying the
waters with respect to the phenomenon being an-
notated. Such an amalgamation is also seen in the
SICK (Marelli et al., 2014) dataset which combines
a labeling scheme from STS with those about en-
tailment and contradiction. These datasets have
helped make progress in the field, but there is a
need for relatedness datasets obtained strictly from
relatedness judgments as opposed to a hybrid in-
volving artificially created categories for similarity
and entailment. For our annotations, we avoid
fuzzy ill-defined categories, and rely instead on
the intuitions of fluent English speakers to judge
relative rankings of sentence pairs by relatedness.

2.3 Comparative Annotations

The simplest form of comparative annotations
is paired comparisons (Thurstone, 1927; David,
1963). Annotators are presented with pairs of ex-
amples and asked to choose which item is greater
with respect to the property of interest (relatedness,
sentiment, etc.). The choices are then used to gener-
ate an ordinal ranking of items. Paired comparison
avoids a number of biases, but it requires a large
number of annotations (N2, where N = # items).

Best–Worst Scaling (BWS) is a comparative
annotation schema that builds on pairwise com-
parisons and requires fewer labels (Louviere and
Woodworth, 1991). Annotators are given n items
at a time (for our work, n = 4 and an item is a
pair of sentences). They are instructed to choose
the best (i.e., most related) and worst (i.e., least
related) item. Annotation for each 4-tuple provides
us with five pairwise inequalities. For example if
a is marked as most related and d as least related,
then we know that a > b, a > c, a > d, b > d, and
c > d. These inequalities can be used to calculate
real-valued scores, and thus an ordinal ranking of
items, using a simple counting mechanism (Orme,
2009; Flynn and Marley, 2014): the fraction of
times an item was chosen as the best (most related)
minus the fraction of times the item was chosen
as the worst (least related). Given N items, reli-
able scores are obtainable from about 2N 4-tuples
(Kiritchenko and Mohammad, 2016, 2017).

3 Creating STR-2022

Dataset creation included several steps: curating
sentence pairs for annotation, designing the ques-
tionnaire, crowdsourcing annotations, and aggre-
gating the annotations to obtain relatedness scores.

3.1 Data Sources
Like previous work on semantic similarity, we
chose to construct our dataset by sampling sen-
tences from many sources to capture a wide variety
of text in terms of sentence structure, formality,
and grammaticality. Pairs of sentences were cre-
ated from the sampled sentences in a number of
ways as described below. The sources are:
1. Formality (Rao and Tetreault, 2018): Pairs of

sentences having the same meaning but differing
in formality (one formal, one informal).

2. Goodreads (Wan and McAuley, 2018): Book
reviews from the Goodreads website.

3. ParaNMT (Wieting and Gimpel, 2018): Para-
phrases from a machine translation system.

4. SNLI (Bowman et al., 2015): Pairs of premises
and hypotheses, created from image captions,
for natural language inference.

5. STS (Cer et al., 2017): Pairs of sentences with
semantic similarity scores. (Integer label re-
sponses, 0 to 5, from multiple annotators were
averaged to obtain the similarity scores.)

6. Stance (Mohammad et al., 2016): Tweets la-
belled for both sentiment (positive, negative,
neutral) and stance (for, against, neither) to-
wards targets (e.g., Donald Trump, Feminism).

7. Wikipedia Text Simplification Dataset (Horn
et al., 2014): Pairs of Wikipedia sentences and
their simplified forms.

From each source, we sampled sentences that were
between 5 and 25 words long. We selected sen-
tence pairs with varying amounts of lexical over-
lap because randomly sampling sentence pairings
would result in mostly unrelated sentences. This
also allowed us to systematically study the im-
pact of lexical overlap on semantic relatedness.
For the paraphrase datasets (Formality, ParaNMT,
and Wikipedia), we obtained sentence pairs in two
ways: by directly taking the paraphrase pairs (indi-
cated by the suffix _pp), and by randomly pairing
sentences from two different paraphrase pairs (suf-
fixed by _r). The paraphrase pairs were selected at
random from the source dataset, whereas the lexi-
cal overlap strategy was applied in the creation of
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Types of Pairs Key Attributes # pairs
1. Formality paraphrases, style

Formality_pp paraphrases, differ in style 300
Formality_r random pairs 700

2. Goodreads reviews, informal 1000
3. ParaNMT automatic paraphrases

ParaNMT_pp automatic paraphrases 450
ParaNMT_r random pairs 300

4. SNLI captions of images 750
5. STS have similarity scores 250
6. Stance tweet pairs with same ha-

shtag, less grammatical 750
7. Wikipedia formal

Wiki_pp paraphrases, formal 500
Wiki_r random pairs, formal 500

ALL 5500

Table 2: Summary of sentence pair types in STR-2022.

the random pairs. From STS, we randomly sam-
pled 50 sentence pairs having similarity scores in
[0-1), 50 pairs having scores in [1-2), and so on.

Initially, we sought to annotate 1000 sentence
pairs from each source. As our goal was to cover
as large a range of relatedness, sentence structures,
lengths and topics as possible, we lowered the
amount of sentence pairs to obtain the desired vari-
ety. For example, SNLI pairs had little variation in
sentence length and so we reduced the number of
sampled instances; their semantic relatedness also
tends to skew towards the higher range, and we
aimed to balance this out with a larger number of
random, non-paraphrasal pairs from other sources
(Formality). Table 2 summarizes key details of the
sentence pairs in STR-2022. Further details about
the source data and sampling are in Appendix A.

3.2 Annotating For Semantic Relatedness

From the list of 5,500 sentence pairs, we generated
11,000 unique 4-tuples (each 4-tuple consists of 4
distinct sentence pairs) such that each sentence pair
occurs in around eight 4-tuples.3

In our framing of the task, we did not use de-
tailed or technical definitions; rather, we provided
brief and easy-to-follow instructions, gave exam-
ples, and encouraged annotators to rely on their
intuitions of the English language to judge relative
closeness in meaning of sentence pairs (similar to
Asadi et al.’s (2019) work on bigrams). Annota-
tors were asked to judge the “closeness in meaning
of sentence pairs”. Inspired by early work in lin-
guistics on cohesion in text (Halliday and Hasan,
1976), we also specified that: “Often sentence pairs

3The tuples were generated using the BWS scripts pro-
vided by Kiritchenko and Mohammad (2017): http://
saifmohammad.com/WebPages/BestWorst.html.

that are more specific in what they share tend to
be more related than sentence pairs that are only
loosely about the same topic" and "If a sentence
has more than one interpretation, consider that
meaning which is closest to the meaning of the
other sentence in the pair." This is inline with ap-
plication scenarios where often relatedness is to
be determined between sentences from the same
document. The full questionnaire is included in the
supplementary material.

3.2.1 Crowdsourcing Annotations
We used Amazon Mechanical Turk (MTurk) for
obtaining annotations.4 Each 4-tuple (also referred
to as a question) in our MTurk task consists of four
sentence pairs. Annotators are asked to choose the
(a) most-related, and (b) least-related sentence pairs
from among these four options. Each question is
annotated by two MTurk workers.5

For quality control, the task was open only to
fluent speakers of English and those MTurk work-
ers with an approval rate higher than 98%. Further,
we inserted “Gold Standard” questions at regular in-
tervals in the task. These questions were manually
annotated by all the authors, and had high agree-
ment scores. If an annotator gets a gold question
wrong, they are immediately notified and shown the
correct answer. This has several benefits, including:
keeping the annotator alert and clearing any mis-
understandings about the task. Those who scored
less than∼70% on the gold questions were stopped
from answering further questions and were paid for
their work. All their responses were discarded.

3.2.2 Annotation Aggregation
We aggregate information from various responses
by using the counting procedure discussed in §2.3.
Since relatedness is a unipolar scale, the resulting
relatedness score was linearly transformed to fit
within a 0–1 scale of increasing relatedness. Ap-
pendix Table 8 presents sample sentence pairs from
each data source.

Figure 1 presents a histogram of relatedness
scores for STR-2022. Observe that each of the sub-
sets covers a wide range of relatedness scores; that
the lexical overlap sampling strategy has resulted
in a wide spread of relatedness scores; and that
supposed paraphrases are spread across much of
the right half of the relatedness scale.

4This project was approved by the first author’s Institu-
tional Research Ethics Board (Protocol #: Masked for review).

5Pilot studies showed that this results in reliable scores.

785

http://saifmohammad.com/WebPages/BestWorst.html
http://saifmohammad.com/WebPages/BestWorst.html


# Sentence Pairs # Tuples # Annotations Per Tuple # Annotations # Annotators SHR
5,500 11,000 8 21,936 389 0.84

Table 3: Annotation statistics of STR-2022. SHR = split-half reliability (as measured by Spearman correlation).

Figure 1: Histogram of STR-2022 relatedness scores.

4 Reliability of Annotations

For annotations producing real-valued scores, a
commonly used measure of quality and reliability is
split-half reliability (SHR) (Cronbach, 1951; Kuder
and Richardson, 1937). SHR is a measure of the
degree to which repeating the annotations would
result in similar relative rankings of the items. To
measure SHR, annotations for each 4-tuple are split
into two bins. The annotations for each bin are used
to produce two different independent relatedness
scores. Next, the Spearman correlation between the
two sets of scores is calculated—a measure of the
closeness of the two rankings. If the annotations
are reliable then there should be a high correla-
tion. This process is repeated 1000 times and the
correlation scores are averaged.

As shown in Table 3, STR-2022 has an SHR of
0.84—signifying high annotation reliability. This
is a key result of this paper. Recall that our annota-
tion guidelines did not hard code the various sce-
narios of sentence pair types and how they should
be judged, but rather were designed to elicit how
native speakers of English naturally judge related-
ness. The high reliability of annotations, despite
this, shows that speakers of a language are inher-
ently consistent in their judgments of relatedness.

It also validates our approach as a way to produce
high-quality relatedness datasets; which, in turn,
can be used to study the mechanisms underpinning
relatedness (as we explore in the next Section).

4.1 STR vs STS
We also conducted experiments to assess fine-
grained rankings of common sentence pairs as per
our relatedness scores and as per STS’s similarity
scores. For each of the sets of 50 sentence pairs
taken from STS (with scores in (0–1], (1–2], etc.),
we calculated the Spearman correlation between

the rankings by similarity and rankings by relat-
edness. We found that the correlations are only
0.25 (weak) and 0.19 (very weak) for the bins of
(1,2] and (3,4], respectively, and only about 0.49
(moderate) for the bins of (2,3] and (4,5]. Overall,
this shows that the fine-grained ranking of items in
the STS dataset by similarity differ considerably
from that of the STR dataset.

5 What Makes Sentences More
Semantically Related?

The availability of a dataset with human notions
of semantic relatedness allows one to explore fun-
damental aspects of meaning: for example, what
makes two sentences more related? In this section,
we examine some basic questions. On average, to
what extent is the semantic relatedness of a sen-
tence pair impacted by presence of:

• identical words (lexical overlap)? (Q1)
• related words? (Q2)
• related words of the same part of speech? (Q3)
• related subjects, related objects? (Q4)

5.1 Method
To explore the questions above, we first computed
relevant measures for Q1 through Q4 (lexical over-
lap, term relatedness, etc.) for each sentence pair
in our dataset. We then calculated the correlations
of these scores with the gold relatedness scores.

Lexical Overlap. A simple measure of lexical
overlap between two sentences X and Y is the Dice
Coefficient (the number of unique unigrams occur-
ring in both sentences, adjusted by their lengths):

2× |unigram(X) ∩ unigram(Y ) |
|unigram(X) | + |unigram(Y ) | (1)
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Question Spearman # pairs
Q1. Lexical overlap 0.57 5500
Q2. Related words - All 0.61 5500
Q3a. Related words - per POS

PROPN 0.50 1907
NOUN 0.45 4746
ADJ 0.36 2236
VERB 0.31 3946
PRON 0.30 1800
ADV 0.28 1147
AUX 0.25 2069
ADP 0.23 2476
DET 0.20 3265

Q3b. Related words - per POS group
Noun Group 0.60 5478
Verb Group 0.32 4999
ADJ Group 0.29 4584

Q4. Related Subjects and Objects
Subject 0.29 1611
Object 0.43 1618

Table 4: Correlation between features and the related-
ness of sentence pairs. A rule of thumb for interpreting
the numbers: 0–0.19: very weak; 0.2–.39: weak; 0.4–
0.59: moderate; 0.6–0.79: strong; 0.8–1: very strong.

Related Words: We averaged the embeddings for
all the tokens in a sentence and computed the cosine
between the averaged embeddings for the two sen-
tences in a pair. This roughly captures the related-
ness between the terms across the two sentences.6

Token embeddings were taken from Google’s pub-
licly released Word2Vec embeddings trained on the
Google News corpus (Mikolov et al., 2013a).
Related Words with same POS: The same proce-
dure was followed as for Q2, except that only the
tokens for one part of speech (POS) at a time were
considered. We determined the part-of-speech of
the tokens using spaCy (Honnibal et al., 2020).7

Related Subjects and Related Objects: For
Q4, which examines the importance of different
parts of a sentence, we employ the same process
as Q2, except that for a given sentence: only
tokens marked as subject are averaged; and only
tokens marked as object are averaged. We use
the packages spaCy (Honnibal et al., 2020) and
Subject Verb Object Extractor (de Vocht, 2020) to
determine all tokens that are the subject and object.

5.2 Results
Table 4 shows the results. Row Q1 shows that
simple word overlap obtains a correlation of 0.57
(considered to be at the high end of weak correla-

6Other ways to estimate relatedness between sets of words
across two sentences may also be used.

7We used the simple (coarse-grained) UPOS part-of-
speech tags: https://universaldependencies.org/docs/u/pos/

Figure 2: Scatter plot showing the relationship between
lexical overlap and semantic relatedness of sentence
pairs. Each dot in the plot is a sentence pair.

tion). Figure 2 is a scatter plot where the x-axis is
the word overlap score, the y-axis is the relatedness
score, and each dot is a sentence pair. Observe that
a number of pairs fall along the diagonal; however,
there are also a large number of pairs along the
top-left side of this diagonal. This suggests that
even though STR-2022 has pairs where the relat-
edness increases linearly with the amount of word
overlap, there are also a number of pairs where a
small amount of word overlap results in substantial
amount of relatedness. The sparse bottom-right
side of the plot indicates that it is rare for there to
be substantial word overlap, and yet very low relat-
edness. On average, occurrence of related words
across a sentence pair leads to slightly higher relat-
edness scores than lexical overlap (row Q2).

The Q3a rows in Table 4 show correlations for
related tokens of a given part of speech.8 (The rows
are in order from highest to lowest correlation.) Ob-
serve that proper nouns (PROPN) and nouns have
the highest numbers. It is somewhat surprising that
related verbs do not contribute greatly to seman-
tic relatedness; they have similar correlations as
pronouns and adverbs, and markedly lower than
adjectives and nouns. Not surprisingly, determiners
(DET) are at the lower end of weak correlation.

The Q3b rows show correlations of coarse
POS categories: NOUN Group (NOUN, PRON,
PROPN), VERB Group (VERB, AUX), and ADJ

8Only those POS tags that occur in both sentences of a pair
in more than 10% of the pairs are considered (>550 pairs).
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Group (ADJ, ADP, ADV). We see that presence of
related nouns in a sentence pair impacts semantic
relatedness much more than any other POS group.

Since related nouns were found to be especially
important, we also wanted to determine what im-
pacts overall relatedness more: the presence of re-
lated nouns in the subject position or in the object
position. Q4 rows show that, on average, related
objects lead to markedly higher sentence-pair relat-
edness than related subjects.

In order to examine whether lexical overlap
and some POS are less or more relevant in low or
high relatedness pairs, we repeated the experiment
of Table 4, only for pairs with relatedness scores
<0.5, and separately, only for pairs with scores
≥0.5. We find that for the <0.5 relatedness pairs,
only the existence of related proper nouns across
sentence pairs has moderate correlation with the
semantic relatedness of sentences; the correlation
is weak for nouns, and close to 0 for all other
parts of speech. The notable importance of related
proper nouns and nouns is likely because they
indicate a common topic, person, or object being
talked about in both sentences—making the two
sentence pairs related. For the ≥0.5 relatedness
pairs, the correlations are weak for most POS;
highest for nouns; and the gap between nouns and
adjectives, adverbs, and verbs is reduced. Lexical
overlap in general has a much higher correlation
for the ≥0.5 relatedness pairs than the <0.5 pairs.
Detailed results are in Appendix B.

6 Evaluating Sentence Representation
Models using STR-2022

Since STR-2022 captures a wide range of fine-
grained relations that exist between sentences, it is
a valuable asset in evaluating sentence representa-
tion and embedding models. Essentially, predicting
semantic relatedness is treated as a regression task,
where first, using various unsupervised and super-
vised approaches described in the two sub-sections
below, we represent each sentence as a vector. We
use the cosine similarity between the vectors as a
prediction of their semantic relatedness. We use the
Spearman correlation between the prediction and
gold relatedness scores to measure the goodness
of the relatedness predictions (and in turn of the
sentence representation).

The experiments below (unless otherwise spec-
ified) all involve 5-fold cross-validation (CV) on
STR-2022. We report the average of the Spear-

Model Spearman
Baseline

1. Lexical overlap (Dice) 0.57
Unsupervised, Static Embeddings

2. Word2Vec (mean, Googlenews) 0.60
3. Word2Vec (max, Googlenews) 0.54
4. GloVe (mean, Common Crawl) 0.49
5. GloVe (max, Common Crawl) 0.56
6. GloVe (mean, 200_Twitter) 0.44
7. GloVe (max, 200_Twitter) 0.48
8. Fasttext (mean, Common crawl) 0.29
9. Fasttext (max, Common crawl) 0.24

Unsupervised, Contextual Embeddings
10. BERT-base (mean) 0.58
11. BERT-base (max) 0.55
12. BERT-base (cls) 0.41
13. RoBERTa-base (mean) 0.48
14. RoBERTa-base (max) 0.47
15. RoBERTa-base (cls) 0.41

Supervised (Fine-tuning on portions of STR-2022)
16. BERT-base (mean) 0.82
17. RoBERTa-base (mean) 0.83

Table 5: Average correlation between human annotated
relatedness of sentence pairs and the cosine distance
between their embeddings across the CV runs.

man correlations across the folds. Note that even
for models that do not require training (e.g., Dice
score), to enable direct comparisons with trained
methods, we evaluate their performance on each
test fold independently and report the average of
the correlations across folds.

6.1 Do Unsupervised Embeddings Capture
Semantic Relatedness?

We first explore unsupervised approaches to sen-
tence representation where the embedding of a sen-
tence is derived from that of its constituent tokens.
The token embedding can be of two types:

• Static Word Embeddings: We tested three pop-
ular models: Word2Vec (Mikolov et al., 2013b),
GloVe (Pennington et al., 2014), and Fasttext
(Grave et al., 2018).

• Contextual Word Embeddings: We tested pre-
trained contextual embeddings from BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019).
We use the bert-base-uncased and roberta-base
models from the HuggingFace library.9

We obtain sentence embeddings by both mean-
pooling and max-pooling the token embeddings
from the final layer. For the contextual embed-
dings, we also explore using the embedding of the
classification token ([CLS]).

Table 5 shows the results. As baseline, we in-
clude how well simple lexical overlap (Dice score)

9https://huggingface.co
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Dice SBERT(RoBERTa)
CV CV LOO CV

STS 0.60 0.79 0.82
SNLI 0.53 0.80 0.77
Stance 0.20 0.49 0.39
Goodreads 0.44 0.73 0.70
Wiki 0.48 0.79 0.75
Formality 0.69 0.86 0.83
ParaNMT 0.44 0.80 0.79

Table 6: Breakdown of average test-fold correlations
for each source: (a) using lexical overlap (Dice), (b)
using SBERT and some in-domain data for fine-tuning
(in addition to data from other domains), and (c) using
SBERT and only out-of-domain data for fine-tuning
(LOO CV). CV: cross-validation. LOO: leave-one-out.

predicts relatedness (row 1). Observe that mean-
pooling with word2vec (row 2) obtains slightly
higher correlation than the baseline, but the major-
ity of the static embedding models fail to obtain
better correlations (rows 3–9). The contextual em-
beddings from BERT and RoBERTa do not per-
form better than the word2vec embeddings (rows
10–15). Overall, the unsupervised methods leave
much room for improvement.

6.2 Do Supervised Embeddings Capture
Semantic Relatedness?

We now evaluate the performance of BERT-based
models on STR-2022 when formulated as a su-
pervised regression task. We use the S-BERT
cross-encoder framework of Reimers and Gurevych
(2019), and apply mean-pooling on top of the to-
ken embeddings of the final layer to obtain sen-
tence embeddings. The model is trained using a
cosine-similarity loss—the cosine between the em-
beddings of a sentence pair is compared to the gold
semantic relatedness scores to obtain the Mean
Squared Error (MSE) loss for each datapoint.

Table 5 rows 16 and 17 show the results: fine-
tuning on STR-2022 leads to considerably better
relatedness scores.

6.2.1 Impact of Domain on Fine-Tuning
The results above show that fine-tuning is critical
for better sentence representation. However, it is
well-documented that the domain of the data can
have substantial impact on results; especially when
quite different from the training data. With the in-
clusion of data from various domains in STR-2022
(Table 2), one can systematically explore perfor-
mance on individual domains, as well as the extent
to which performance may drop if no training data
from the target domain is included for training.

Table 6 shows the results. The RoBERTa CV
column shows a breakdown of results by source
(domain). Essentially, these are results for the sce-
nario where some portion of in-domain data is in-
cluded in the training folds (along with data from
other domains), and the system correlations are
determined only on the test fold’s target domain
pairs. Observe that performance on most domains
is comparable to each other.

The LOO CV column shows correlations with a
leave-one-out cross-validation setup: no in-domain
training data is used and system correlations are de-
termined only for the target domain pairs. Observe
that this leads to drops in scores for all domains
except STS. However, the drop is small; and scores
are still much higher than the lexical overlap (Dice
CV) baseline. This suggests that the diversity of
data in the remaining subsets is useful in overcom-
ing a lack of in-domain training data.

7 Utility of Semantic Relatedness and
STR-2022 in Downstream NLP Tasks

Semantic relatedness is central to textual coherence
and narrative structure. Often, sentences in a docu-
ment are not paraphrases, entailments, or similar,
but rather semantically related to each other. This
need for continuity of meaning has long been iden-
tified as a crucial component of language (Halliday
and Hasan, 1976; Morris and Hirst, 1991). Thus,
when generating a summary or a response to a ques-
tion, systems must choose sentences that are not
paraphrases or entailments of each other, but yet
suitably semantically related. Therefore, being able
to judge both similarity and relatedness is crucial.

Since we made STR-2022 publicly available,
it has already been used in some projects. No-
table among these is Wang et al. (2022). Wang
et al. (2022) propose a new intrinsic evaluation
method, EvalRank, that focuses on local neighbor-
hoods (how well systems identify close neighbors,
rather than how well they rank the full set of pairs).
Using STR-2022, they are able to obtain markedly
higher correlations between performance scores on
the intrinsic evaluation and performance on down-
stream tasks (seven NLP tasks including NLI, ques-
tion classification, caption retrieval, and sentiment
analysis). Their ablation study demonstrates that
using STS instead of STR-2022 decreases perfor-
mance up to 10 points, leading them to conclude
that STR-2022 is particularly useful in generating
sentence embeddings for downstream tasks.
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8 Conclusion

We created STR-2022, the first dataset of English
sentence pairs annotated with fine-grained relat-
edness scores. We used a comparative annotation
method that produced a split-half reliability of 0.84.
Thus, we showed that speakers of a language can
reliably judge semantic relatedness. We used the
dataset to explore several research questions per-
taining to what makes two sentences more related.
Finally, we used STR-2022 to evaluate the abil-
ity of sentence representation methods to embed
sentences in vector spaces such that those that are
closer to each other in meaning are also closer in
the vector space. The dataset is made freely avail-
able; facilitating further research in semantic relat-
edness and sentence representation.

9 Limitations

For limitations surrounding the dataset, please re-
fer to the Ethics Statement (§10). In our exper-
iments, we used the most common methods for
sentence representations (e.g., mean-pooling and
max-pooling of traditional and contextual word
embeddings). However, there may exist other em-
beddings which are better suited for predicting se-
mantic relatedness (e.g., other order-aware embed-
dings). Expanding the set of embedding techniques
tested using our dataset may yield different results
and provide us a stronger understanding of the ef-
fects of different representation techniques. Fur-
thermore, while we explored the impact of some
sentence-pair features such as lexical overlap, POS,
and some aspects of sentence structure (subject and
object) on semantic relatedness, we did not explore
the impacts of other features such as logicality and
common sense reasoning on relatedness. These
remain interesting directions for future work.

10 Ethics Statement

This paper respects existing intellectual property
by making use of only publicly and freely available
datasets. The crowd-sourced task was approved by
our Institutional Research Ethics Board. The anno-
tators were based in the United States of America
and were paid the federal minimum wage of $7.25
per hour. Our annotation process stored no infor-
mation about annotator identity and as such there is
no privacy risk to them. The individual sentences
selected did not have any risks to privacy either (as
evaluated by manual annotation of the sentences).

Models trained on this dataset may not generalize
to external datasets gathered from different popula-
tions. Knowledge about language features may not
generalize to other languages.

Any dataset of semantic relatedness entails sev-
eral ethical considerations. We list some notable
ones below. Many of these were first introduced
in the context of sentiment lexicons (Mohammad,
2020, 2023). We adapted them to semantic related-
ness datasets and added to the discussion.

• Coverage: We sampled English sentences from
a diverse array of sources from the internet, with
a focus on social media. Yet, it is likely that
several types of sentences (and several demo-
graphic groups) are not well-represented in STR-
2022. The dataset likely includes more sentences
by people from the United States and Europe
and with a socio-economic and educational back-
grounds that allow for social media access.

• Not Immutable: The relatedness scores do not
indicate an inherent unchangeable attribute. The
relatedness can change with time, but the dataset
entries are largely fixed. They pertain to the time
they are created.

• Socio-Cultural Biases: The annotations of relat-
edness capture various human biases. These bi-
ases may be systematically different for different
socio-cultural groups. Our data was annotated by
US annotators, but even within the US there are
diverse socio-cultural groups.

• Inappropriate Biases: Our biases impact how
we view the world, and some of the biases of an
individual may be inappropriate. For example,
one may have race or gender-related biases that
may percolate subtly into one’s notions of how
related two units of text are. Our dataset curation
was careful to avoid sentences from problem-
atic sources, and we have not seen any inappro-
priate relatedness judgments, but it is possible
that some subtle inappropriate biases still remain.
Thus, as with any approach for sentence represen-
tation or semantic relatedness, we caution users
to explicitly check for such biases in their system
regardless of whether they use STR-2022.

• Perceptions (not “right” or “correct” labels):
Our goal here was to identify common percep-
tions of semantic relatedness. These are not
meant to be “correct” or “right” answers, but
rather what the majority of the annotators believe
based on their intuitions of the English language.
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• Relative (not Absolute): The absolute values of
the relatedness scores themselves have no mean-
ing. The scores help order sentence pairs relative
to each other. For example, a pair with a higher
relatedness score should be considered more re-
lated than a pair with a lower score. No claim is
made that the mid-point (relatedness score of 0.5)
separates related words from unrelated words.
One may determine categories such as related
or unrelated by finding thresholds of relatedness
scores optimal for their use/task.

We recommend careful reflection of ethical consid-
erations relevant for the specific context of deploy-
ment when using STR-2022.
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A Further Details on Sampling Sentence
Pairs from Source Datasets

This Appendix provides further information about
the sources of data and how sentence pairs were
sampled from them to be included in STR-2022.

A.1 STS Data

We selected 250 sentence pairs from existing STS
corpora. This selection was done to enable a small
investigation into the interplay between relatedness
and similarity, which could serve as motivation
for further investigation in future work. For this
dataset, we randomly sampled 50 sentence pairs
from each of bucket of annotation (i.e., 50 sentence
pairs having an STS similarity scores falling in
[0, 1), 50 sentence pairs having scores in [1, 2),
and so on).

A.2 Stance Data

We created 750 sentence pairs by sampling from
Mohammad et al. (2016)’s dataset of tweets la-
beled for stance. The original dataset is com-
posed of individual tweets labelled for both stance
(‘For’, ‘Against’, ‘Neither Inference Likely’) and
sentiment (‘Positive’, ‘Negative’, ‘Neutral’). The
dataset was built from tweets focused on six targets:
‘Atheism’, ‘Climate Change’, ‘Donald Trump’,
‘Feminism’, ‘Hillary Clinton’, ‘Abortion’.

When curating our sentence pairs, we limited
the possible targets to ‘Hillary Clinton’, ‘Donald
Trump’, and ‘Abortion’. Sentence pairs were cho-
sen such that both sentences shared the same tar-
get. 500 sentence pairs shared their stance towards
their target (i.e., 250 for–for pairs and 250 against–
against pairs). 250 sentences pairs differed on their
stance (i.e., 250 for–against pairs). We did not
use any lexical overlap heuristic to specify which
tweets should be paired with each other because
we were interested in studying whether overlap in
topic was a strong enough signal to impact relat-
edness. That is, by choosing pairs with the same
target, we were already pre-selecting for various
degrees of relatedness.

A.3 SNLI Data

We created 750 sentence pairs by sampling from
the Stanford Natural Language Inference (SNLI)
Dataset (Bowman et al., 2015). SNLI is composed
of image description captions; for each caption,
multiple premise sentences are generated, along
with multiple possible hypothesis sentences that
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could possibly belong to each premise. To build our
sentence pairs we sought to pair different premise
sentences together. We did not wish to pair between
premise and hypothesis sentences as the sentence
structure was significantly different (and simpler
for the hypothesis sentences), as noted by the cre-
ators of the dataset. Even still, the majority of
premise sentences are very short (with a mean to-
ken count of 14), often following very simple (and
similar) grammatical structure.

To generate the sentence pairs, first we removed
all sentences with less than 5 or more than 25 to-
kens. Then, for each token in all remaining sen-
tences, we replaced each token with its most fre-
quent synonym, using Roget’s Thesaurus (Roget,
1911) to define synonymous relationships. Words
which did not have synonyms were left unchanged.
The intention behind replacing each word with its
most frequent synonym was to ensure that synony-
mous phrasings would count as overlaps when we
measure it. We then randomly selected 750 sen-
tences to serve as the first sentence of our final
pairings. To find the second sentence to each pair-
ing we looped through all premise sentences and
returned the first sentence that satisfied two con-
ditions: 1) The unigram overlap was greater than
or equal to 25% and less than 75% of the first sen-
tence, and 2) the difference in length between both
sentences did not exceed 25%.

A.4 Wikipedia Data

We sampled 1000 sentence pairs from a dataset
that pairs sentences from English Wikipedia with
sentences from Simple English Wikipedia. Created
to enable the task of sentence simplification,
the paired sentences, paired using rules-based
classification, are often very closely related. We
used this dataset in two ways: 1. Extracting
sentence pairs which serve as paraphrases or near
paraphrases (we refer to these as Wiki_pp), and 2.
pairing sentences to other random sentences in the
dataset (we refer to these as Wiki_r).

Wiki_pp: First, we removed any pairings for
which either sentence was less than 5 words or
more than 25 words. Then we narrowed the list
of pairings further by removing any pairings that
did not share more than 25% but less than 75% of
unique unigrams. From the remaining sentence
pairs, we randomly selected 500 paired sentences.

Wiki_r: Here, we only made use of the full sen-
tences from the original Wikipedia, discarding sen-

tences from Simple Wikipedia. We removed all
sentences that have less than 5 or more than 25
tokens. To create the sentence pairs, we looped
in a random order through all possible pairing of
sentences. We paired two sentences if they share at
least 25% of their tokens but less than 75% of their
tokens AND the difference in length between both
sentences did not exceed 25%. We stopped once
we had generated 500 sentence pairs.

A.5 Goodreads Data

We created 1000 sentence pairs by sampling from
the UCSD Goodreads Dataset (Wan and McAuley,
2018; Wan et al., 2019), which has book reviews
from the Goodreads website. We limited the sam-
pling to the ‘Fantasy and Paranormal’ genre, since
it contained a relatively higher number of reviews
per book, allowing for a higher possibility of sam-
pling more related sentence pairs. Each review was
first split into sentences using the default NLTK
sentence tokenizer; we kept only those sentences
with the number of tokens between 5 and 25. We
then randomly examined pairs of sentences, and
quantified the lexical overlap between then with
an IDF-weighted Dice overlap score. The pairs
were then assigned to buckets based on this overlap
score; the range of each bucket was obtained by
first finding 50 equally-spaced percentiles of the
entire score distribution. We then sampled expo-
nentially increasing number of sentences from low
to high weighted Dice overlap bins such that a total
of 1000 sentence pairs were included.

A.6 ParaNMT Data

ParaNMT (Wieting and Gimpel, 2018) is a dataset
of 51 million sentential paraphrases that were
automatically generated using a neural machine
translation system. We generated two sets of pairs
from these sentences corresponding to paraphrases
and random pairs:

ParaNMT_pp: We assigned paraphrases to
buckets based on the Dice score between the two
sentences. We divided the range of scores into
100 equally-sized percentiles. We then sampled
pairs uniformly from each bucket, for a total of
450 sentence pairs.

ParaNMT_r: For the random, non-paraphrase sen-
tence pairings, we used the Dice score to extract
300 pairs, analogous to the creation of the Wiki_r
pairs.
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A.7 Formality Data
Our third paraphrase corpus is the Formality
dataset from Rao and Tetreault (2018) (They refer
to it as GYAFC). This consists of human-written
formal and informal paraphrases for sentences
sourced from the Yahoo! Answers platform. Our
sampling procedure for this dataset followed that
of the ParaNMT dataset.

Formality_pp: We assigned sentences to one of
50 buckets based on their lexical overlap score as
before. We then uniformly sampled from each
bucket to extract 300 sentence pairs.

Formality_r: We sampled random pairings of sen-
tences using the token overlap and length difference
conditions as defined for Wiki_r and ParaNMT_r.
We extracted 700 such sentence pairs.

B Correlation of Features in Low and
High Relatedness Sentence Pairs

As discussed in Section 5.2, in order to examine
whether lexical overlap and some parts of speech
are less or more relevant in low or high relatedness
pairs, we repeated the experiment in Table 4, only
for pairs with relatedness scores less than 0.5 and
also for pairs with scores greater than 0.5. Table 7
shows the detailed correlation scores. See Section
5.2 for a discussion of the main trends.

C Sample Sentence Pairs from STR-2022

Table 8 presents sample sentene pairs from differ-
ent domains.
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Spearman
Question 0–1 pairs <0.5 pairs ≥0.5 pairs
Q1. Lexical overlap 0.57 0.14 0.52
Q2. Related words - All 0.61 0.14 0.50
Q3a. Related words - per POS

PROPN 0.50 0.34 0.26
NOUN 0.45 0.18 0.37
ADJ 0.36 0.04 0.35
VERB 0.31 0.03 0.31
PRON 0.30 0.01 0.30
ADV 0.28 0.04 0.35
AUX 0.25 0.03 0.20
ADP 0.23 0.07 0.22
DET 0.20 0.03 0.19

Q3b. Related words - per POS group
Noun Group 0.60 0.34 0.41
Verb Group 0.32 0.09 0.29
ADJ Group 0.29 0.04 0.32

Q4. Related Subjects and Objects
Subject 0.29 0.00 0.32
Object 0.43 0.14 0.33

Table 7: Correlation between features and the relatedness of sentence pairs in STR-2022 when considering full
relatedness range (0–1), only the pairs with relatedness < 0.5, and only the pairs with relatedness ≥ 0.5.
Note: The 0–1 pairs column was shown earlier in Table 4. It is repeated here for ease of comparison.

Source Sentence Pairs STR score

Formality_pp I think Taylor is really cute, but I hate his voice.
I think Taylor is SUPER cute...but I hate his voice. 1.000

Wiki_pp It is sometimes referred to as the trunk.
Some people also call it the trunk. 0.969

Goodreads I loved this short story - wish it were longer!
It was a quick read and part of me wished that it would go on a little longer. 0.844

Wiki_r On August 2 , a tropical storm hit Northeastern Florida .
In early October , a hurricane caused damage and erosion to northeastern Florida . 0.625

Stance So unfortunate #thebriefcase @cbs. Adoption isn’t always the answer.
Just remember, there is a living family out there just waiting to #adopt your aborted baby. 0.562

SNLI A woman in speaking in a theater.
deleon speaking into a mic. 0.406

ParaNMT_pp Are you–are you going to tell every one?
will you say it now – all of you? 0.334

Formality_r i believe in american dreams ...
You are the woman of my dreams 0.219

STS A person is riding a horse.
A woman is slicing potatoes. 0.062

Table 8: Sample sentence pairs from different domains in the STR-2022 dataset.
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Abstract

The existence of external (“side”) semantic
knowledge has been shown to result in more
expressive computational event models. To en-
able the use of side information that may be
noisy or missing, we propose a semi-supervised
information bottleneck-based discrete latent
variable model. We reparameterize the model’s
discrete variables with auxiliary continuous la-
tent variables and a light-weight hierarchical
structure. Our model is learned to minimize the
mutual information between the observed data
and optional side knowledge that is not already
captured by the new, auxiliary variables. We
theoretically show that our approach general-
izes past approaches, and perform an empiri-
cal case study of our approach on event mod-
eling. We corroborate our theoretical results
with strong empirical experiments, showing
that the proposed method outperforms previ-
ous proposed approaches on multiple datasets.

1 Introduction

In this work, we are interested in addressing limita-
tions in how computational event modeling can
make use of relevant, supplementary semantic
knowledge. This is because when modeling text
descriptions of complex situations, such as newspa-
per descriptions of real world events, learning how
to encode richer information about those descrip-
tions can be a fruitful way of improving modeling
performance (Judea and Strube, 2015; Xia et al.,
2021). E.g., if we are dealing with sequences of
events, like a newspaper report of a stock or com-
merce transaction, then being able to encode that
“buying” or “selling,” even though they may have
nuanced connotation differences, are instances of
the same general event (a TRANSACTION event)
can improve downstream predictive performance
on what events might happen next (Ferraro and
Van Durme, 2016; Rezaee and Ferraro, 2021).

However, there is not an obvious single way to
learn to encode this richer information, as three dif-
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Figure 1: Revise and Update steps for an observed node.
We update the proposed distribution rγ(t|z) with the
empirical distribution pD(t|x) to produce the revised
distribution pγ(t|x, z) (dashed). We then minimize the
KL divergence between the proposed and revised distri-
butions to update the proposed distribution. For unsu-
pervised nodes, we rely on rγ(t|z) without updating.

ferent questions naturally come to mind: (1) If
the model is representationally limited, can we
address these representational limitations of the
model itself, such as through developing richer la-
tent representations z of the input x? (2) If there
is available background or side information t that
may be especially relevant for the modeling task
at hand, can we develop systems that make use of
it? (3) Even when side information is available, it
may be noisy, e.g., it may not always be available
(missing data) or it may contain errors: how can
we make our models robust to this noisy side in-
formation? In the context of a text-based sequence
modeling problem, we propose an approach that
addresses all three of these questions.

We provide a conceptual overview of our
method—RevUp—in Fig. 1. The building blocks
of RevUp are revision of modeling side informa-
tion t: forming a new distribution by combining the
(red) learned proposal distribution with (blue) em-
pirical information about when particular aspects
of side knowledge appeared in training, and updat-
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<latexit sha1_base64="I6+oKPm4ujxwBcZzjZlnNAYU8VY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6rHoxWMF+wFtKJvNpl262Q27E6GU/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvTAU36HnfTmltfWNzq7xd2dnd2z+oHh61jco0ZS2qhNLdkBgmuGQt5ChYN9WMJKFgnXB8l/udJ6YNV/IRJykLEjKUPOaUoJU6fREpNJVBtebVvTncVeIXpAYFmoPqVz9SNEuYRCqIMT3fSzGYEo2cCjar9DPDUkLHZMh6lkqSMBNM5+fO3DOrRG6stC2J7lz9PTEliTGTJLSdCcGRWfZy8T+vl2F8E0y5TDNkki4WxZlwUbn5727ENaMoJpYQqrm91aUjoglFm1Aegr/88ippX9T9q7r/cFlr3BZxlOEETuEcfLiGBtxDE1pAYQzP8ApvTuq8OO/Ox6K15BQzx/AHzucP9K+PUg==</latexit>

...

<latexit sha1_base64="pfMKxQ3TvnWEJvwqCXomOxB0KnY=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBFclUREXVbduKxgH9CGMplO2qGTBzM3xRL6J25cKOLWP3Hn3zhps9DWAwOHc+5h7j1+IoVGx/m2VlbX1jc2S1vl7Z3dvX374LCp41Qx3mCxjFXbp5pLEfEGCpS8nShOQ1/ylj+6y/3WmCst4ugRJwn3QjqIRCAYRSP1bLuL/AmzG0Qe5cq0Z1ecqjMDWSZuQSpQoN6zv7r9mKWhyTNJte64ToJeRhUKJvm03E01Tygb0QHvGBrRkGsvm20+JadG6ZMgVuZFSGbq70RGQ60noW8mQ4pDvejl4n9eJ8Xg2stElKTmMDb/KEglwZjkNZC+UJyhnBhCmRJmV8KGVFGGpqyyKcFdPHmZNM+r7mXVfbio1G6LOkpwDCdwBi5cQQ3uoQ4NYDCGZ3iFNyuzXqx362M+umIVmSP4A+vzB1kJlCA=</latexit>

Attention

<latexit sha1_base64="0otqrFlXdm5I0i2AAaC4CKtsAn4=">AAAB6nicdVBNS8NAEJ34WetX1aOXxSJ4Cklpq70VvXisaD+gDWWz3bRLN5uwuxFK6E/w4kERr/4ib/4bN20EFX0w8Hhvhpl5fsyZ0o7zYa2srq1vbBa2its7u3v7pYPDjooSSWibRDySPR8rypmgbc00p71YUhz6nHb96VXmd++pVCwSd3oWUy/EY8ECRrA20q0eusNS2bEbNadRqyHHdhbISNWpVyvIzZUy5GgNS++DUUSSkApNOFaq7zqx9lIsNSOczouDRNEYkyke076hAodUeeni1Dk6NcoIBZE0JTRaqN8nUhwqNQt90xliPVG/vUz8y+snOrjwUibiRFNBlouChCMdoexvNGKSEs1nhmAimbkVkQmWmGiTTtGE8PUp+p90KrZbt92barl5mcdRgGM4gTNw4RyacA0taAOBMTzAEzxb3Hq0XqzXZeuKlc8cwQ9Yb59PEY3T</latexit>

t1

<latexit sha1_base64="twjR3SE18g/BzW8vxa6rOcHRciQ=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgKewGX7kFvXiMaB6QLGF2MpsMmZ1dZnqFEPIJXjwo4tUv8ubfOElWUNGChqKqm+6uIJHCoOt+OLml5ZXVtfx6YWNza3unuLvXNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMrmZ+655rI2J1h+OE+xEdKBEKRtFKt9ir9Iolt+zOQb6RavXUrbrEy5QSZKj3iu/dfszSiCtkkhrT8dwE/QnVKJjk00I3NTyhbEQHvGOpohE3/mR+6pQcWaVPwljbUkjm6veJCY2MGUeB7YwoDs1vbyb+5XVSDC/8iVBJilyxxaIwlQRjMvub9IXmDOXYEsq0sLcSNqSaMrTpFGwIX5+S/0mzUvbOyt7NSal2mcWRhwM4hGPw4BxqcA11aACDATzAEzw70nl0XpzXRWvOyWb24Qect082XY3D</latexit>

t2

<latexit sha1_base64="DPAMQlUqS0Kh8iXYUkQ+623El8Q=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgKeyKr9yCXrwIEU0MJEuYnUySIbOzy0yvEJZ8ghcPinj1i7z5N06SFaJoQUNR1U13VxBLYdB1P53cwuLS8kp+tbC2vrG5VdzeaZgo0YzXWSQj3Qyo4VIoXkeBkjdjzWkYSH4fDC8n/v0D10ZE6g5HMfdD2leiJxhFK91i57pTLLlldwoyRyqVE7fiEi9TSpCh1il+tLsRS0KukElqTMtzY/RTqlEwyceFdmJ4TNmQ9nnLUkVDbvx0euqYHFilS3qRtqWQTNX5iZSGxozCwHaGFAfmtzcR//JaCfbO/VSoOEGu2GxRL5EEIzL5m3SF5gzlyBLKtLC3EjagmjK06RRsCN+fkv9J46jsnZa9m+NS9SKLIw97sA+H4MEZVOEKalAHBn14hGd4caTz5Lw6b7PWnJPN7MIPOO9fX0mN3g==</latexit>

tM

<latexit sha1_base64="I6+oKPm4ujxwBcZzjZlnNAYU8VY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6rHoxWMF+wFtKJvNpl262Q27E6GU/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvTAU36HnfTmltfWNzq7xd2dnd2z+oHh61jco0ZS2qhNLdkBgmuGQt5ChYN9WMJKFgnXB8l/udJ6YNV/IRJykLEjKUPOaUoJU6fREpNJVBtebVvTncVeIXpAYFmoPqVz9SNEuYRCqIMT3fSzGYEo2cCjar9DPDUkLHZMh6lkqSMBNM5+fO3DOrRG6stC2J7lz9PTEliTGTJLSdCcGRWfZy8T+vl2F8E0y5TDNkki4WxZlwUbn5727ENaMoJpYQqrm91aUjoglFm1Aegr/88ippX9T9q7r/cFlr3BZxlOEETuEcfLiGBtxDE1pAYQzP8ApvTuq8OO/Ox6K15BQzx/AHzucP9K+PUg==</latexit>

...

<latexit sha1_base64="pfMKxQ3TvnWEJvwqCXomOxB0KnY=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBFclUREXVbduKxgH9CGMplO2qGTBzM3xRL6J25cKOLWP3Hn3zhps9DWAwOHc+5h7j1+IoVGx/m2VlbX1jc2S1vl7Z3dvX374LCp41Qx3mCxjFXbp5pLEfEGCpS8nShOQ1/ylj+6y/3WmCst4ugRJwn3QjqIRCAYRSP1bLuL/AmzG0Qe5cq0Z1ecqjMDWSZuQSpQoN6zv7r9mKWhyTNJte64ToJeRhUKJvm03E01Tygb0QHvGBrRkGsvm20+JadG6ZMgVuZFSGbq70RGQ60noW8mQ4pDvejl4n9eJ8Xg2stElKTmMDb/KEglwZjkNZC+UJyhnBhCmRJmV8KGVFGGpqyyKcFdPHmZNM+r7mXVfbio1G6LOkpwDCdwBi5cQQ3uoQ4NYDCGZ3iFNyuzXqx362M+umIVmSP4A+vzB1kJlCA=</latexit>

Attention

<latexit sha1_base64="+1CnvmOhVUc1M3ebExQ0dXfeuDM=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtSTaWGLigQlcyN6ywIa9vcvunJFc+A02Fhpj6w+y89+4wBUKvmSSl/dmMjMvTKQw6LrfTmFtfWNzq7hd2tnd2z8oHx61TJxqxn0Wy1g/hNRwKRT3UaDkD4nmNAolb4fjm5nffuTaiFjd4yThQUSHSgwEo2glv/rU86q9csWtuXOQVeLlpAI5mr3yV7cfszTiCpmkxnQ8N8EgoxoFk3xa6qaGJ5SN6ZB3LFU04ibI5sdOyZlV+mQQa1sKyVz9PZHRyJhJFNrOiOLILHsz8T+vk+LgKsiESlLkii0WDVJJMCazz0lfaM5QTiyhTAt7K2EjqilDm0/JhuAtv7xKWvWad1Hz7uqVxnUeRxFO4BTOwYNLaMAtNMEHBgKe4RXeHOW8OO/Ox6K14OQzx/AHzucPxZKOAA==</latexit>x1

<latexit sha1_base64="9phBAZiOUD0utk5td4gmxqXDCoI=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtSTaWGLigQlcyN4ywIa9vcvunpFc+A02Fhpj6w+y89+4wBUKvmSSl/dmMjMvTATXxnW/ncLa+sbmVnG7tLO7t39QPjxq6ThVDH0Wi1g9hFSj4BJ9w43Ah0QhjUKB7XB8M/Pbj6g0j+W9mSQYRHQo+YAzaqzkV5969WqvXHFr7hxklXg5qUCOZq/81e3HLI1QGiao1h3PTUyQUWU4EzgtdVONCWVjOsSOpZJGqINsfuyUnFmlTwaxsiUNmau/JzIaaT2JQtsZUTPSy95M/M/rpGZwFWRcJqlByRaLBqkgJiazz0mfK2RGTCyhTHF7K2EjqigzNp+SDcFbfnmVtOo176Lm3dUrjes8jiKcwCmcgweX0IBbaIIPDDg8wyu8OdJ5cd6dj0VrwclnjuEPnM8fxxeOAQ==</latexit>x2

<latexit sha1_base64="Jc9Mol8Ak8mP7BRJmc7isTr4+qk=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtSTa2Jhg4gEJXMjesgcbdvcuu3tGcuE32FhojK0/yM5/4wJXKPiSSV7em8nMvDDhTBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVBHqk5jHqhNiTTmT1DfMcNpJFMUi5LQdjm9mfvuRKs1i+WAmCQ0EHkoWMYKNlfzqU/+u2i9X3Jo7B1olXk4qkKPZL3/1BjFJBZWGcKx113MTE2RYGUY4nZZ6qaYJJmM8pF1LJRZUB9n82Ck6s8oARbGyJQ2aq78nMiy0nojQdgpsRnrZm4n/ed3URFdBxmSSGirJYlGUcmRiNPscDZiixPCJJZgoZm9FZIQVJsbmU7IheMsvr5JWveZd1Lz7eqVxncdRhBM4hXPw4BIacAtN8IEAg2d4hTdHOi/Ou/OxaC04+cwx/IHz+QPwHo4c</latexit>xM

<latexit sha1_base64="h57yX2tru0PndtrkNA/RfqWZXoc=">AAAB+3icdVBNS8NAEN34WetXrUcvi0XwFJIa2noTvXhUsFVIQ9lsJ3bp5oPdiVhC/4oXD4p49Y9489+40Qoq+mDg8d4MM/PCTAqNjvNmzc0vLC4tV1aqq2vrG5u1rXpPp7ni0OWpTNVVyDRIkUAXBUq4yhSwOJRwGY5PSv/yBpQWaXKBkwyCmF0nIhKcoZEGtXof4RbDqPB7oIaCYzAd1BqOfdhpNb0WdWzHabtNtyTNtnfgUdcoJRpkhrNB7bU/THkeQ4JcMq1918kwKJhCwSVMq/1cQ8b4mF2Db2jCYtBB8XH7lO4ZZUijVJlKkH6o3ycKFms9iUPTGTMc6d9eKf7l+TlGnaAQSZYjJPxzUZRLiiktg6BDoYCjnBjCuBLmVspHTDGOJq6qCeHrU/o/6TVtt2W7517j6HgWR4XskF2yT1zSJkfklJyRLuHkltyRB/JoTa1768l6/myds2Yz2+QHrJd3+vuVEQ==</latexit>

[Verdict]

<latexit sha1_base64="luROTs0AuY7+Ailbh5x2LDM8w0A=">AAAB/nicdVDLSgMxFM34rPU1Kq7cBIvgqiRF+tgV3bisaB/QDiWTZtrQTGZIMmIZCv6KGxeKuPU73Pk3ZtoKKnogcDjn3pt7jx8Lrg1CH87S8srq2npuI7+5tb2z6+7tt3SUKMqaNBKR6vhEM8ElaxpuBOvEipHQF6ztjy8yv33LlOaRvDGTmHkhGUoecEqMlfruYc+wO+MHafeaScMk5XLoTftuARURQhhjmBFcKSNLarVqCVchziyLAlig0Xffe4OIJqGdQQXRuotRbLyUKMOpYNN8L9EsJnRMhqxrqSQh0146W38KT6wygEGk7JMGztTvHSkJtZ6Evq0MiRnp314m/uV1ExNUvZTLOMkum38UJAKaCGZZwAFXjBoxsYRQxe2ukI6IItTYxPI2hK9L4f+kVSrichFfnRXq54s4cuAIHINTgEEF1MElaIAmoCAFD+AJPDv3zqPz4rzOS5ecRc8B+AHn7RNPcJZg</latexit>

[Sentencing]

<latexit sha1_base64="6hpOIWKkKq4yDsaTOE9D5q+wokA=">AAACC3icbVA9SwNBEN3z2/gVtbRZDIJVuBNRS9HGMoJJhCSEvb25uLgfx+5cMBzpbfwrNhaK2PoH7Pw33iVX+PVg4PHeDDPzwkQKh77/6c3Mzs0vLC4tV1ZW19Y3qptbLWdSy6HJjTT2OmQOpNDQRIESrhMLTIUS2uHteeG3h2CdMPoKRwn0FBtoEQvOMJf61d0uwh1m3Oih4AgRVUxTE1OV2gis0INxpV+t+XV/AvqXBCWpkRKNfvWjGxmeKtDIJXOuE/gJ9jJmUXAJ40o3dZAwfssG0MmpZgpcL5v8MqZ7uRLR2Ni8NNKJ+n0iY8q5kQrzTsXwxv32CvE/r5NifNLLhE5SBM2ni+JUUjS0CIZGwgJHOcoJ41bkt1J+wyzLU7GuCCH4/fJf0jqoB0f14PKwdnpWxrFEdsgu2ScBOSan5II0SJNwck8eyTN58R68J+/Ve5u2znjlzDb5Ae/9CzhsmyU=</latexit>

convicted man of murdering

<latexit sha1_base64="lMtkAdGc24NkZZqXhbK/5/oF3+4=">AAACBnicbVDLSsNAFJ3UV62vqEsRBovgqiQi6rLoxmUF+4A2lMnkph06mYSZiVhCV278FTcuFHHrN7jzb5y0WWjrgYHDuY+55/gJZ0o7zrdVWlpeWV0rr1c2Nre2d+zdvZaKU0mhSWMey45PFHAmoKmZ5tBJJJDI59D2R9d5vX0PUrFY3OlxAl5EBoKFjBJtpL592NPwoDMFQoOgEOCICKxjHADRw0nfrjo1Zwq8SNyCVFGBRt/+6gUxTSOzjnKiVNd1Eu1lRGpGOUwqvVRBQuiIDKBrqCARKC+b2pjgY6MEOIyleULjqfp7IiORUuPIN52RuU7N13Lxv1o31eGllzGRpLnJ2UdhynOfeSY4YBKo5mNDCJXM3IrpkEhCtUmuYkJw5y0vktZpzT2vubdn1fpVEUcZHaAjdIJcdIHq6AY1UBNR9Iie0St6s56sF+vd+pi1lqxiZh/9gfX5A4wGmSo=</latexit>

sentenced man to death

<latexit sha1_base64="I6+oKPm4ujxwBcZzjZlnNAYU8VY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6rHoxWMF+wFtKJvNpl262Q27E6GU/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvTAU36HnfTmltfWNzq7xd2dnd2z+oHh61jco0ZS2qhNLdkBgmuGQt5ChYN9WMJKFgnXB8l/udJ6YNV/IRJykLEjKUPOaUoJU6fREpNJVBtebVvTncVeIXpAYFmoPqVz9SNEuYRCqIMT3fSzGYEo2cCjar9DPDUkLHZMh6lkqSMBNM5+fO3DOrRG6stC2J7lz9PTEliTGTJLSdCcGRWfZy8T+vl2F8E0y5TDNkki4WxZlwUbn5727ENaMoJpYQqrm91aUjoglFm1Aegr/88ippX9T9q7r/cFlr3BZxlOEETuEcfLiGBtxDE1pAYQzP8ApvTuq8OO/Ox6K15BQzx/AHzucP9K+PUg==</latexit>

...

<latexit sha1_base64="I6+oKPm4ujxwBcZzjZlnNAYU8VY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6rHoxWMF+wFtKJvNpl262Q27E6GU/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvTAU36HnfTmltfWNzq7xd2dnd2z+oHh61jco0ZS2qhNLdkBgmuGQt5ChYN9WMJKFgnXB8l/udJ6YNV/IRJykLEjKUPOaUoJU6fREpNJVBtebVvTncVeIXpAYFmoPqVz9SNEuYRCqIMT3fSzGYEo2cCjar9DPDUkLHZMh6lkqSMBNM5+fO3DOrRG6stC2J7lz9PTEliTGTJLSdCcGRWfZy8T+vl2F8E0y5TDNkki4WxZlwUbn5727ENaMoJpYQqrm91aUjoglFm1Aegr/88ippX9T9q7r/cFlr3BZxlOEETuEcfLiGBtxDE1pAYQzP8ApvTuq8OO/Ox6K15BQzx/AHzucP9K+PUg==</latexit>

...

<latexit sha1_base64="114rY/oPPBJKU14aCGQLWWwgJGI=">AAACDHicbVDLSgMxFM34rPVVdekmWIS6KTMi6rLoxk2hgn1AZxgymbQNTWaG5I5Qh/kAN/6KGxeKuPUD3Pk3po+Fth4IHM45N7k5QSK4Btv+tpaWV1bX1gsbxc2t7Z3d0t5+S8epoqxJYxGrTkA0EzxiTeAgWCdRjMhAsHYwvB777XumNI+jOxglzJOkH/EepwSM5JfK7uSOTLEwV37m9omUJK+AX3fNGOAHv35iUnbVngAvEmdGymiGhl/6csOYppJFQAXRuuvYCXgZUcCpYHnRTTVLCB2SPusaGhHJtJdNFsnxsVFC3IuVORHgifp7IiNS65EMTFISGOh5byz+53VT6F16GY+SFFhEpw/1UoEhxuNmcMgVoyBGhhCquNkV0wFRhILpr2hKcOa/vEhap1XnvOrcnpVrV7M6CugQHaEKctAFqqEb1EBNRNEjekav6M16sl6sd+tjGl2yZjMH6A+szx9CS5u5</latexit>

r�(tM |zM )
<latexit sha1_base64="PQRM+LBIvVMbyzGW2yGJPUvXPOs=">AAACEnicbVDLSgMxFM34rPVVdekmWIR2U2ZE1GVRF24KFewDOmXIpJk2NPMguSOWYb7Bjb/ixoUibl2582/MtLPQ1gOBwzn3JDfHjQRXYJrfxtLyyuraemGjuLm1vbNb2ttvqzCWlLVoKELZdYliggesBRwE60aSEd8VrOOOrzK/c8+k4mFwB5OI9X0yDLjHKQEtOaWqPb0jcUXM0shJbJ/AiBKRXKdpBZyGrcOAH5xG1SmVzZo5BV4kVk7KKEfTKX3Zg5DGPguACqJUzzIj6CdEAqeCpUU7ViwidEyGrKdpQHym+sl0nRQfa2WAvVDqEwCeqr8TCfGVmviunsw2VvNeJv7n9WLwLvoJD6IYWEBnD3mxwBDirB884JJREBNNCJVc74rpiEhCQbdY1CVY819eJO2TmnVWs25Py/XLvI4COkRHqIIsdI7q6AY1UQtR9Iie0St6M56MF+Pd+JiNLhl55gD9gfH5A0QlnnE=</latexit>

pD(tM |xM )

<latexit sha1_base64="9tsbXmKbWbea5E5wT9u21dN4fuo=">AAACB3icbVBNS8NAEN34WetX1aMgi0XwVBIR9Vj0oMeK9gOaUDbbSbt0Nwm7E2kJvXnxr3jxoIhX/4I3/43px0FbHww83pthZp4fS2HQtr+thcWl5ZXV3Fp+fWNza7uws1szUaI5VHkkI93wmQEpQqiiQAmNWANTvoS637sa+fUH0EZE4T0OYvAU64QiEJxhJrUKB9hyqGuEoi5CH9PrRPkg76IAFesP861C0S7ZY9B54kxJkUxRaRW+3HbEEwUhcsmMaTp2jF7KNAouYZh3EwMx4z3WgWZGQ6bAeOn4jyE9ypQ2DSKdVYh0rP6eSJkyZqD8rFMx7JpZbyT+5zUTDC68VIRxghDyyaIgkRQjOgqFtoUGjnKQEca1yG6lvMs045hFNwrBmX15ntROSs5Zybk9LZYvp3HkyD45JMfEIeekTG5IhVQJJ4/kmbySN+vJerHerY9J64I1ndkjf2B9/gCaMJkn</latexit>

t1 ⇠ GumbelSoftmax

<latexit sha1_base64="mtuazyNe2hGRggxsLMFqEu5C4IM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZrVfrrg1dw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ+7zmXda85kWlfpPHUYQTOIUqeHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPbvGMsg==</latexit>

(
<latexit sha1_base64="mtuazyNe2hGRggxsLMFqEu5C4IM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZrVfrrg1dw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ+7zmXda85kWlfpPHUYQTOIUqeHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPbvGMsg==</latexit>

(
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Figure 2: Components of RevUp for event modeling. We encode the sequence of events x into Gaussian latent z
and discrete knowledge t. Red nodes such as t1 are latent: [VERDICT] for the convicted man of murdering event.
RevUp predicts these latent nodes by sampling from the GumbelSoftmax distribution. Blue nodes such as tM are
observed: [SENTENCING] for the sentenced man to death event. We use this observed node to modify the proposed
distribution and then we draw a sample from the revised distribution.

ing by minimizing the KL-divergence between the
new distribution with the previous proposed one.

Our approach is inspired by recent work (Kong
et al., 2019), which argued that a key to the suc-
cess of neural advances in NLP (Mikolov et al.,
2013; Devlin et al., 2018; Yang et al., 2019, i.a.,) is
that they fall within the information theoretic-based
InfoMax framework (Linsker, 1988). In this view-
point, neural advances can be attributed to implic-
itly maximizing the mutual information between
different representations of the same document.

However, we additionally want to use “side” or
“external” knowledge to aid our modeling. The
use of side information has long been desired for
effective representation (Wyner, 1975; Wyner and
Ziv, 1976). While this side information can occur
in a variety of forms (Chen et al., 2020; Padia et al.,
2018), we broadly view it as a concise, abstract
view of information conveyed in the main input.

Our work centers on the idea that the latent neu-
ral representations z and side knowledge t act as
complementary representations of the same input
x: z provides a compact representation of the input
itself, while t provides more generic information
about the data or task. As such, we use an InfoMax-
inspired formulation to incorporate external knowl-
edge into the modeling and latent representation
aspects. Since recent work (Joy et al., 2022; Chen
et al., 2019) has suggested that providing some sort
of “guidance” to these latent variables is beneficial
and can lead to these guided models outperform-
ing both fully supervised and fully unsupervised

methods, learning with less-than-full observation
of structured side knowledge is a requirement. We
illustrate this in Fig. 2, where the correct value for
the first piece of side information (t1 = Verdict)
is missing but the last piece of side information
is known (tM = Sentencing). Our model must
be able to operate over this partially observed se-
quence of side knowledge as a way of modeling
the original event description.

We propose a unified approach, RevUp (Revise
and Update Information Bottleneck), that maxi-
mizes the mutual information between the exter-
nal knowledge and latent representation I(z; t).
We consider the external knowledge t to be a dis-
crete random variable in a lightly structured, semi-
supervised setting. We demonstrate the effective-
ness of this approach on multiple modeling tasks.
Our contributions are:

(1) We provide a principled, information theoretic
approach for injecting side information into
neural discrete latent variable models. We
provide theoretical backing to show that our
methodology captures available information
from external knowledge.

(2) We define a new model that leads to state-of-
the-art results in the semi-supervised setting on
two standard event modeling datasets.

(3) We show that our proposed model generalizes
the existing state-of-the-art model studied in
Rezaee and Ferraro (2021), where the “param-
eter injection” method developed there can be
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understood as a special case of our framework.

(4) We experimentally show that our model is
more robust when the external knowledge is
noisy and it outperforms other baselines when
the external knowledge is partially observed.

Our code is available at https://github.
com/mmrezaee/RevUp.

2 Background

In this section we present the related work and
discuss the connections to our approach.

Mutual Information (MI) The mutual infor-
mation I(x; y) measures how much two random
variables x and y depend on each other. It is
defined as I(x; y) = Ep(x,y) log

p(x,y)
p(x)p(y) , where

I(x; y) = 0, when x and y are independent. Con-
ditional MI I(x; y|z) extends MI to measure the
conditional dependence between x and y given
z, as I(x; y|z) = Ep(x,y,z) log

p(x,y|z)
p(x|z)p(y|z) . When

I(x; y|z) = 0, there isn’t any information between
x and y that is not present in z.

Information Bottleneck Principle (IB) The In-
formation Bottleneck principle is a method for find-
ing the most informative encoding of an input x
with respect to the target output y. This is accom-
plished by finding the maximally compressed en-
coding z of x that is most informative about y
(Tishby et al., 1999). The objective is to maximize

I(z; y)− βI(x; z), (1)

where I(z; y) denotes z and y mutual information,
and I(x; z) denotes x and z mutual information. β
balances compression and informativeness.

Variational Autoencoder (VAE) The Varia-
tional Autoencoder is similar to the Information
Bottleneck Principle in that it finds an encoding
z of x to reconstruct x. However, the approach
is different as the aim is to approximate the in-
tractable posterior distribution pθ(z|x) with a vari-
ational distribution qϕ(z|x) in order to optimize
the Evidence Lower Bound (ELBO) (Kingma and
Welling, 2013).

Incorporation of Side Knowledge Conceptu-
ally, we consider an “event” to be a condensed
form of knowledge that outlines part of a particular
situation. Semantic frames are a prime example
of relevant side knowledge: a semantic frame can

be thought of as an abstraction over highly related
events. Though they also provide abstractions over
the whos, whats, wheres and hows of events, in this
setting, it is sufficient to consider an event’s seman-
tic frame as a type of label or cluster id. Multiple
potential sources of semantic frames exists, e.g.,
FrameNet, PropBank, or VerbNet.

Recently, incorporating external knowledge has
been investigated by numerous studies in a wide
range of tasks beyond NLP (Kang et al., 2017; Fla-
jolet and Jaillet, 2017; Zhang et al., 2021), and zero-
shot classification (Badirli et al., 2021). Common
across these efforts is treating the side information
as part of the input to be encoded. This makes
the side information prerequisite knowledge for the
model to be learned, rather than supplementary.

A recent approach, called Sequential,
Semi-supervised Discrete Variational Au-
toencoder (Rezaee and Ferraro, 2021, SSDVAE),
is a new method for structured semi-supervised
modeling that allows, but does not require, side
information to guide the learning in an approach
called “parameter injection.” Because the SSDVAE
framework is a deep latent variable model that is
specifically designed to treat external knowledge
as supplementary to the main task, we focus our
study within it and the associated NLP-based
computational event modeling tasks examined.
They define parameter injection as

Definition. (Parameter injection) Let t ∼
GumbelSoftmax(t; γ), where γ are the logits. If t
is observed as external knowledge and represented
with a one-hot vector 1(t) with tk∗ = 1, the op-
eration γ = γ + (∥γ∥ ∗ 1(t)) guides the latent
variable t during the training because on average
increases the tk∗ value (Maddison et al., 2016).

In RevUp, we build on and generalize this notion
of parameter injection, in part by introducing the
empirical distribution pD(t|x) to accommodate the
dependence between data x and knowledge t.

3 RevUp: Revise and Update

Previous work (Rezaee and Ferraro, 2021, SSD-
VAE) has empirically shown that incorporating ex-
ternal knowledge in discrete GumbelSoftmax pa-
rameters improves model performance with differ-
ent metrics such as classification, event modeling
and training speed. We seek to re-frame this view
with information theory terms and generalize it.
For fairness and consistency we stick with the same
types of computational event modeling tasks that
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SSDVAE was developed for. We first describe the
probabilistic model we develop (section 3.2) and
the loss/training methodology (section 3.3). These
enable smoothly incorporating side knowledge into
a probabilistic neural model. Recall we provide a
conceptual overview of RevUp in Fig. 1.

3.1 Setup
We assume that within a document, we have a se-
quence of M different predicate/argument-style
events, x = x1...xM , with each xm describing
some action (the predicate) occurring among par-
ticipants of that action (the arguments). If each
event xm could also be paired with a semantic
frame tm, so we have a corresponding sequence
t, then considered across multiple events, t could
provide a sequential generalization. E.g., in the
example event sequence from Fig. 2 that includes
“convicted man of murdering,” and “sentenced man
to death,” if each event can be associated with a se-
mantic frame (such as VERDICT and SENTENCING

for these two events), then the corresponding se-
quence of frames provides both an abstraction over
the entire event sequence, and an incredibly rich,
yet low-dimensional, collection of side knowledge.

Having paired sequences x and t is not restric-
tive. Whether t is partially observed (i.e., not all
xm have observed frames tm) or noisy (i.e., the
observed tm for xm is incorrect) during training,
our approach can still extract useful signal.

3.2 Probabilistic Encoding
Our problem setup is that we have input text x de-
scribing some complex situation, paired with a par-
tially observed sequence of frames t. To account
for when side knowledge is/isn’t observed, we de-
fine a knowledge indicator set l = lm|Mm=1 with
lm ∈ {0, 1}, where lm = 1 denotes the external
knowledge tm is present and lm = 0 means the ex-
ternal knowledge is not available (latent). To enable
successful modeling, we introduce z = zm|Mm=1, a
set of M latent variables to first compress the infor-
mation of the given inputs x and then be informa-
tive regarding t. We define pθ(z|x), a probabilistic
encoder from data points x to the latent variables
z, parameterized by a neural network θ.

We define a joint model over
t,x and z as p(t,x, z; l) =
pD(x)

∏
m pθ(zm|tm−1,x)pγ

(
tm|xm, zm; lm

)
,

where pD(x) is the empirical distribution over
the input variables x. Consistent with previous
approaches, pθ(zm|t(s),x; lm) is a Gaussian. Simi-

larly pγ
(
tm|xm, zm; lm

)
posits a distribution over

semi-supervised latent knowledge t given x and
latent variables z. To learn richer representations,
we force z and t to depend on one other in a
sawtooth fashion: ti depends on zi, but zi depends
on ti−1. Fig. 2 shows an illustration. This is a
novel segmented, autoregressive sequencing for
event modeling.

We define rγ(t|z) as the proposed distribution
that relates z to t, where γ is computed as the
outcome of a neural encoding of z, NN(z). This
distribution must be learned. For simplicity we
omit the node index m when possible.

Revision Phase Incorporating the external
knowledge in the training phase must satisfy two
criteria: First, without observation (lm = 0),
we just rely on rγ(tm|zm). Second, when we
have access to external knowledge, pD(tm|xm)
should be used for guidance and not discarding
the proposed distribution. We define the revised
distribution pγ

(
tm|xm, zm; lm

)
as a smoothed

weighted average of the proposed distribution and
the empirical distribution as pγ

(
tm|xm, zm; lm

)
=

1

1 + λlm
rγ(tm|zm)+

λlm
1 + λlm

pD(tm|xm), where

λ ∈ R+ is a weighting parameter for balancing the
proposed and empirical distributions. In this set-
ting, λ depends on the level of confidence in our ex-
ternal knowledge, where for less noisy knowledge,
we can choose higher values for λ. In practice, we
found that λ = 1.0 works reasonably.1

If side knowledge is absent (lm = 0), we have
λ̂m = 1.0 so pγ(tm|xm, zm) = rγ(tm|zm): the
model just uses the proposed distribution. This
allows gradients to propagate through the network.
During the test phase we do not use any external
knowledge, so the revised distribution pγ

(
t|x, z; l

)

reduces to the proposed distribution rγ(t|z).
Analysis and Insights If we define

λ̂m = 1/(1 + λlm), we rewrite this as
pγ
(
tm|xm, zm; lm

)
= λ̂mrγ(tm|zm) + (1 −

λ̂m)pD(tm|xm). This slight notation change is
beneficial, as it lets us characterize the behav-
ior of our revision step in terms of expected

1In dev experiments we tried various values of λ, both large
and small. When λ was high (greater weight to the empirical
distribution), the model over-emphasized this signal, which
was detrimental at test time when we intentionally withheld
this signal. In contrast, when λ is low (greater weight to the
proposed distribution), there is less emphasis on the empirical
distribution. However, as that empirical distribution could
itself be quite sparse (due to ϵ), the model learns to disregard it.
This highlights a strength in simplicity of the equal weighting.
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observability of side knowledge. Specifically,
in a semi-supervised setting, if the probability
of observing any particular piece of side infor-
mation can be modeled as l ∼ Bern(ϵ), where
ϵ is the observation probability, by marginal-
izing out l we have El∼Bern(ϵ)pγ(t|x, z, l) =

ϵ̂rγ(t|z)+(1− ϵ̂)pD(t|x), where ϵ̂ = 1−
(

λ
1+λ

)
ϵ.

This indicates that with more observation, we rely
more heavily on the empirical distribution and
less on the proposed distribution. For space, see
Appendix E for more details/the derivation.

Finally, our framework generalizes SSDVAE’s
parameter injection (see Appendix F):

Theorem 1. If rγ(t|z) = Cat(γ) , a categorical
distribution with parameters γ, and the empirical
distribution pD(t|x) is a one-hot representation
with tk∗ = 1, the revision step reduces to SSDVAE
parameter injection.

We have described how to guide the latent variable t
in the encoding phase. Next we define our objective
function to capture the background information and
decoding t to effectively model event descriptions.

3.3 Training Objective and Decoding

After training, the model relies solely on the pro-
posed distribution rγ(tm|zm) to predict tm, imply-
ing the statistics of tm will only depend on zm. To
capture the background information in t, minimize
I(x; t|z) during training. In information theory
terms, in the ideal situation where I(x; t|z) = 0,
there is not any residual information between x and
t that is not captured by the latent representation z
(Kirsch et al., 2020). Therefore without the need of
x and pD(t|x), the latent z is enough to predict t.

To be meaningfully learned, t must be infor-
mative enough to make some prediction or recon-
struction. For clarity, we refer to the targets as y,
though for a task like language modeling, x = y.
To achieve this learning, we maximize I(y, t).

Together, our ideal objective is L = −I(y; t) +
αI(x; t|z), where α is a tunable hyperparameter.
This is difficult to optimize because within each I
term there are intractable marginalizations (such
as over x). To understand why this is our ideal
objective, we show that maximizing the intractable
mutual information I(t; z) is inherently included
in this unified objective for the reconstruction tasks:

Theorem 2. For tasks where we maximize I(x; t):
minimizing I(x; t|z) leads to maximizing I(t; z).
This theorem shows that reconstruction tasks like

language modeling explicitly maximize the mutual
information between different data representations,
which is consistent with the InfoMax principle. See
Appendix G for the proof. As a consequence of
Theorem 2, we are maximizing the mutual infor-
mation between two views of x: compressed repre-
sentation z and side information t.

With that understanding, we proceed to a
tractable approximation for our objective. Fol-
lowing Alemi et al. (2016), we have −I(y; t) =
−Ep(y,z,t) log p(y|t)

p(y) . We approximate this as

−I(y; t) ≤ −Ep(y,z,t) log
qϕ(y|t)
p(y)

(2)

= −Ep(y,z,t) log qϕ(y|t)︸ ︷︷ ︸
Ly

−H(y). (3)

Since p(y|t) is intractable, we approximate it via a
decoder qϕ(y|t) that can be computed by a neural
network, denoted as ϕ. As the task entropy H(y)
is constant, we just minimize Ly. While not ex-
plicitly reflected in Eq. 2, note that irrespective of
whether side information is present or not, I(y; t)
depends on rγ(t|z). See Appendix B.1 for addi-
tional analysis of Eq. 3.

Updating Phase The term I(x; t|z) =

Epγ(t,x,z) log
pγ(t|x,z;l)
p(t|z) makes z informative about

t. We approximate with a surrogate objective LI :

I(x; t|z) ≤ Ep(t,x,z) log
pγ(t|x, z)
rγ(t|z)

= LI . (4)

This surrogate objective encourages the proposed
distribution rγ(t|z) to be updated to be close to the
revised distribution pγ(t|x, z; l). After training,
the proposed distribution rγ(t|z) plays the role
of pγ(t|z,x) and does not need to explicitly use
pD(t|x). Throughout, we refer to LI as updating.
The updating objective for our model is given by

LI =
M∑

m=1

KL
(
pγ(tm|xm, zm; lm) ∥ rγ(tm|zm)

)
,

(5)

where by expanding further we obtain

LI =
M∑

m=1

[
−H(tm|xm, zm) + λ̂mH(tm|zm)

− (1− λ̂m)EpD(tm|xm) log rγ(tm|zm)
]
. (6)
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This sum is computed over observed nodes. For
unsupervised nodes, the revised distribution and
proposed distribution are equal and their KL terms
are zero. The last term is a classification term.

Regularization To improve the model general-
ization ability, we introduce regularization terms
for z and t. We constrain the mutual informa-
tion between data x and z latent representations,
I(x; z) = Ep(z,x) log

pθ(z|x)
p(z) as

I(x; z) ≤ KL
(
pθ(z|x) ∥ q(z)

)
︸ ︷︷ ︸

Lz

, (7)

where we introduce a variational distribution q(z)
due to intractability of p(z). For simplicity we
assume that q(z) factorizes over independent Gaus-
sian random variables as q(z) =

∏M
m=1 q(zm) ,

where the variational distribution over zm is given
by the unit Gaussian zm ∼ N (0, I). Here Lz is es-
timated with the standard Monte-Carlo sampling:

Lz ≈
1

S

M∑

m=1

S∑

s=1

KL
(
pθ(zm|t(s)m−1,x) ∥ q(zm)

)
.

(8)

We reduce the distance between the proposed dis-
tribution rγ(t|z) and a uniform distribution U(t):

Lt = EpD(x)pθ(z|x)rγ(t|z) log
rγ(t|z)
U(t) . (9)

The Kullback-Leibler (KL) divergence terms in
Eq. 7 and Eq. 9 help avoid overfitting. An alter-
native interpretation for these regularization terms
is discarding the task-irrelevant information. We
combine Eqs. 3, 4, 7 and 9 to at our final objective

LU = Ly + αLI + βLz + ζLt, (10)

where β and ζ denote the trade-off parameters, and
can be set empirically, as described in Appendix I.

3.4 Architecture For Event Modeling
To ensure fair comparisons, we focus on the recon-
struction task similar to a β-VAE framework (Hig-
gins et al., 2016). The overall structure is depicted
in Fig. 2. Following previous work on event mod-
eling (Pichotta and Mooney, 2016; Rezaee and Fer-
raro, 2021; Weber et al., 2018b; Gao et al., 2022),
we represent each document x as a sequence of M
events, where each event is a 4 tuple of predicate
(verb), two main arguments (subject and object),

and a modifier (if applicable). Each event is associ-
ated with a discrete semantic frame. E.g., convicted
man murdering of is an event and the semantic
frame is [VERDICT]. All the possible frames are
collected in a vocabulary of size T . In this set-
ting, we obtain a point estimate for pD(tm|xm) as
δ(xm, tm). Sampling from this empirical distribu-
tion outputs a one-hot vector of dimension T . The
proposed distribution rγ(t|z) is a Gumbel-Softmax
distribution. We found that the Gumbel-Softmax
algorithm is particularly suitable for our task be-
cause it can effectively approximate discrete distri-
butions and backpropagate gradients. While experi-
ments with the Straight-Through Gumbel-Softmax
(STGT) yielded near identical performance to the
Gumbel-Softmax method, we opted for the latter.
STGT generates one-hot vectors during the forward
pass, but requires an approximation of the gradient
using Gumbel-Softmax samples. By setting a low
temperature of 0.5, the generated Gumbel-Softmax
samples become almost identical to one-hot vec-
tors, eliminating the need for gradient approxima-
tion. The effects on the gradient were carefully
analyzed and the results are presented in Damadi
and Shen (2022), where a comprehensive study of
gradient properties was conducted. To learn richer
representations, we define an embedding matrix
E ∈ RT×dt , to convert a simplex frame into a
vector representation as em = tTmE.

Encoding and Decoding With data point x ∼
pD(x), we encode the whole sequence into recur-
rent hidden representations H = {h}Tt=1. For each
event m, we draw Gaussian random variable zm ∼
N (µm, σm) where µm and σm are the outputs of
attention layers over frame embedding em−1 and
hidden states H. We use a linear mapping over zm
to compute Gumbel softmax parameters for the pro-
posed distribution rγ(tm|zm). Given the proposed
distribution rγ(tm|zm) and the empirical distribu-
tion pD(tm|xm), we first draw a Bernoulli sample
λ̂m, then we draw knowledge sample from the mix-
ture of probabilities by tm ∼ pγ(tm|xm, zm; lm).
From the encoding phase, all the embedding vec-
tors are gathered into e = {em}Mm=1. At generation
time, analogously to the encoder, we use an atten-
tion layer over the decoder recurrent hidden state
h and frame embeddings e, resulting in decoder
logits g. The generative distribution over possible
next tokens is given by xt ∼ p(xt|g).
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statement

arriving

causation
motion

intentionally act

becoming

awareness
getting

did

go

get

getting

went

knew

made

makes

got

says

gone

making

make

gets

1.00

0.91 0.09

0.20 0.14 0.66

0.19 0.12 0.69

0.76 0.24

1.00

0.17 0.83

0.14 0.86

0.53 0.01 0.46

1.00

0.95 0.05

0.29 0.71
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Frames

(c) The proposed and revised distributions
converge to the ground truth distribution.

Figure 3: A demonstration of RevUp working on a small dataset with 10 frames. Ground truth frame distributions
are shown in Fig. 3b, where in Fig. 3a we show that the distribution rγ(t|z) that RevUp learns very closely matches
the ground truth. In Fig. 3c, we show how RevUp affects both the proposed and revised distributions. Initially,
the rγ(t|z) prediction is random. After 50 iterations it is closer to the revised distribution pγ(t|z, x). After 100
iterations of training, both of them get close to the ground truth distribution.
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(d) Wikipedia F1 score

Figure 4: RevUp vs SSDVAE accuracy for sequential semantic frame classifications for NYT and Wikipedia dataset.
See Appendix H for full results. For all degree of observation probabilities, RevUp outperforms the baseline.

4 Experimental Results

Following previous work (Rezaee and Ferraro,
2021), we experiment on event modeling tasks us-
ing Concretely Annotated versions of New York
Times Gigaword (NYT) and Wikipedia datasets
(Ferraro et al., 2014). Both are English and
have FrameNet semantic frames provided via Se-
maFor (Das et al., 2014). We perform a di-
rect comparison with the previous state-of-the-
art work (Rezaee and Ferraro, 2021) by using
the same frame types, which were derived from
the FrameNet annotations on Wikipedia articles.
Training, validation and test splits for NYT and
Wikipedia have 320k/17k/7k and 240k/8k/11k doc-
uments, respectively. For both the validation and
test phases we set lm = 0 (unsupervised). We av-
erage results over three runs (standard deviations
in the appendix). We tuned the hyperparameters
on the validation dataset. See Appendix I for addi-
tional implementation and data details.

4.1 Small Dataset Example
We first examine RevUp by examining its behavior
on a small, focused example dataset. We sampled

400 newswire documents from the NYT dataset.
We trained a RevUp model, with 10 semantic frame
types (10 options for each t) and where each z was
100 dimensional. To obtain the ground-truth dis-
tributions of frames given events, we just focus on
the predicates and collect all the semantic frames
given that specific predicate. We carefully selected
the frame types and data to reflect a diverse range
of difficulties. For example, events including the
did predicate are always associated with the IN-
TENTIONALLY_ACT frame and the corresponding
semantic frames for the gets predicate are ARRIV-
ING, BECOMING and GETTING. RevUp predictions
are acquired from the revised distribution rγ(t|z):
given an event x we first draw a Gaussian sample
z and then use argmax(t) to find the proposed in-
dex. Finally, we normalize across all the proposed
frames. We visualize the revision and update steps
for the predicate “made” in Fig. 3c.

As evidenced by Eq. 4, the minimization of the
KL-divergence between the proposed distribution
rγ(t|z) and the revised distribution pγ(t|x, z) re-
sults in the elimination of non-essential informa-
tion. Fig. 3c gives a visual representation of this
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phenomenon. At iteration 0, the proposed distribu-
tion pγ(t|x, z) is almost uniform, while the revised
distribution rγ(t|z) is more aligned with the ground
distribution. With additional iterations, reaching
100, the gap between these distributions reduces,
ultimately leading to convergence with the ground
truth for both distributions.

Additionally, our framework is able to effectively
capture the conditional distribution of frames given
predicates in diverse scenarios, as demonstrated
in the heatmap figures in Figs. 3a and 3b. For
instance, certain predicates such as “did,” “says,”
and “knew” have a single associated frame of “in-
tentionally_act,” “awareness,” and “statement,” re-
spectively. Meanwhile, the predicate “made” has
two possible semantic frames of “arriving” and
“causation.” In some cases, such as the predicate
“get,” there are even three possible frames of “arriv-
ing,” “becoming,” and “getting.” The comparison
between the ground truth distribution of frames
given predicates and the normalized samples high-
lights the accuracy of our model in capturing these
conditional distributions, with minimal error.

4.2 Baselines
We compare the proposed RevUp method
with the following event modeling approaches.
(a) RNNLM (Pichotta and Mooney, 2016): A Bidi-
rectional GRU cell with two layers, hidden dimen-
sion of 512, gradient clipping at 5 and Glove 300
embeddings to represent words. We used the im-
plementation provided in (Weber et al., 2018b).
(b) HAQAE (Weber et al., 2018b): An unsuper-
vised VAE-based method for script learning and
generation. They use vector quantization (VQ–
VAE) to define a hierarchical discrete latent space.
(c) SSDVAE (Rezaee and Ferraro, 2021) A semi–
supervised VAE-based model. They utilize Gumbel
softmax and use the parameter injection to incor-
porate the side knowledge. The architecture of our
model largely follows the SSDVAE and HAQAE
models with minor modification; see Appendix I.

4.3 Effect of Noisy Knowledge
We empirically compare the predictive perfor-
mance of RevUp and SSDVAE with noisy knowl-
edge. To do so, in a fully supervised setting, for
each event xm, instead of using the associated se-
mantic frame tm, with probability η we replace tm
with a random semantic frame t̂m. We train both
models with this new training dataset. During the
testing phase, we compare the predicted knowledge

model η
Wiki NYT

Acc F1 Acc F1
SSDVAE

0.1
0.77 0.43 0.76 0.55

RevUp 0.85 0.58 0.83 0.71

SSDVAE
0.2

0.69 0.35 0.67 0.44
RevUp 0.82 0.52 0.80 0.63

SSDVAE
0.3

0.60 0.28 0.58 0.36
RevUp 0.79 0.45 0.77 0.58

SSDVAE
0.5

0.41 0.17 0.41 0.23
RevUp 0.72 0.36 0.71 0.48

SSDVAE
0.7

0.23 0.09 0.22 0.11
RevUp 0.64 0.29 0.63 0.37

SSDVAE
0.9

0.02 0.00 0.02 0.00
RevUp 0.41 0.09 0.25 0.06

Table 1: Effect of Noise on robustness. We present
standard deviations in Appendix H.

model ϵ Wiki NYT
RNNLM - 56.96 64.57
HAQAE - 39.47 50.10
SSDVAE 0.0 39.75 47.50
RevUp 39.48 45.36
SSDVAE 0.1 39.73 45.91
RevUp 33.34 44.87
SSDVAE 0.7 36.79 44.79
RevUp 33.20 41.74
SSDVAE 1.0 30.69 36.96
RevUp 28.33 34.85

Table 2: Test perplexity results, varying the percent ϵ of
side knowledge that was observed during training. We
present standard deviations in Appendix H (table 4).

with ground-truth one. Results in Table 1 show that
classification and parameter injection in SSDVAE
are not enough for capturing knowledge. These
results validate the effectiveness of our information
capturing strategy when the external knowledge is
noisy. As we increase η, SSDVAE performance
degrades much more than RevUp. As an instance
when η = 0.9, SSDVAE’s accuracy is almost zero
but our proposed model can achieve 0.41.

4.4 Effect of Incomplete Knowledge

We consider the case of semi-supervised learn-
ing, where with probability ϵ a node tm is ob-
served. We report the classifications on the
latent nodes as KL

(
pD(t|x) ∥ rγ(t|x)

)
≈

−EpD(x)pθ(z|x)pD(t|x) log rγ(t|z). The results are
shown in Fig. 4. We report two widely-used classi-
fication metrics including accuracy and F1 to eval-
uate the performance of all methods. SSDVAE
just relies on the guidance and classification but
RevUp also uses the updating phase to shift the
available knowledge from side information into la-
tent variables. Thus the results demonstrate the
superiorities of RevUp to predict knowledge when
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they are partially observed, attributable to its novel
information injection and learning.

To investigate whether the proposed approach
works for task representation, we compare the per-
plexity of our approach to prior work in Table 2.
Perplexity has been commonly used in the litera-
ture, which allows us to provide a fair comparison
with previous efforts. We investigate the effect of
supervision with various observation probabilities
ϵ = 0.0 (unsupervised), 0.1, 0.7 and 1.0 (fully su-
pervised) on the generated samples from the model.
We see that our model is able to obtain lower per-
plexity scores than the previous event modeling
methods. We observe as ϵ increases, the perfor-
mance of our proposed model improves. For each
observation probability, our method outperforms
SSDVAE. The results demonstrate that our method
achieves state-of-the-art performance with large
margins from the baselines.

5 Related Work

Information Bottleneck The concept of using
side information for discrete source coding was
explored by Wyner (1975); Wyner and Ziv (1976).
The Information Bottleneck (IB) principle was then
introduced by (Tishby et al., 2000) to compress in-
put variables while predicting a target. Chechik
and Tishby (2002) proposed incorporating negative
side information through an auxiliary loss in a su-
pervised manner. Our method stands apart by han-
dling both supervised and semi-supervised settings
with ease. The Variational Information Bottleneck
(VIB) was introduced by Alemi et al. (2016), which
improved the IB estimation through amortized vari-
ational methods. Voloshynovskiy et al. (2020) ex-
tended the VIB method for semi-supervised clas-
sification. In relation to our work, there have been
numerous studies focused on maximizing the mu-
tual information between different views and dis-
carding the non-shared information (Federici et al.,
2019; Wan et al., 2021; Wang et al., 2019; Mao
et al., 2021; Yan et al., 2019).

Variational Autoencoders (VAEs) Kingma and
Welling (2013) and Rezende et al. (2014) intro-
duced the reparameterization technique for varia-
tional inference. Recently, Huang and Xiao (2021)
applied adversarial training to enhance the abil-
ity of VAE in processing sequential data, while
Qiu et al. (2020) explored the possibility of VAE
handling multi-view temporal data. Our focus is
limited to objectives that can be expressed with

discrete latent variables.
Jang et al. (2016) and Maddison et al. (2016)

independently presented the Gumbel-Softmax dis-
tribution, which allows backpropagation through
latent discrete variables in variational autoencoders.
For more information, refer to the review by Hui-
jben et al. (2022). Van Den Oord et al. (2017)
proposed VQ-VAE, which uses vector quantization
to represent discrete values with embeddings.

Kingma et al. (2014) proposed a VAE for semi-
supervised classification, where labels in unsuper-
vised settings are treated as latent variables and
predicted when available. Joy et al. (2022) later im-
proved this approach by separating latent variables
to differentiate label characteristics from values.
Lo and Lim (2020) modified the VAE objective to
incorporate external knowledge with embedding
vectors, and Feng et al. (2020) proposed a new
ELBO to incorporate label prediction loss.

Event Modeling In recent years, much research
has been dedicated to the challenge of modeling the
sequence of events (Weber et al., 2018b; Rezaee
and Ferraro, 2021; Gao et al., 2022). One such con-
tribution was made by Weber et al. (2018a), who in-
troduced a tensor-based composition to effectively
capture semantic event relations. Gao et al. (2022)
proposed a self-supervised contrastive learning ap-
proach based on co-occurring events. Another ap-
proach suggested by Weber et al. (2018b) involves
the use of Recurrent Neural Networks (RNNs) to
model the hierarchical latent structures that exist in
sequences of events. This methodology was further
developed in a subsequent study by Rezaee and Fer-
raro (2021), where external knowledge was incor-
porated into the latent layer for enhanced modeling,
which is highly relevant to our proposed approach.

6 Conclusion

We show how to incorporate noisy partially ob-
served side knowledge source along with latent
variables. To do so, we generalized the main idea
of parameter injection and maximizing the mutual
information between external knowledge and latent
variables. Our experiments show that our approach
is more robust to noisy knowledge and outperform
other baselines for the event modeling task
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7 Limitations

Some limitations of our work are that multiple
hyper parameters should be tuned for each task.
While we provide guidance and insights into ef-
fective settings (and some intuition as to why), we
acknowledge that the settings may be domain de-
pendent.

Because we use semantic frames as our side
knowledge, our focus is on improving the represen-
tation and use of discrete latent variables. While
current NLP approaches have often focused on text-
to-text methods for input and output, and individual
words in text can be considered a form of discrete
latent variables, we note that these methods are
driven by large continuous embedding methods.
While we believe this work can be extended to con-
tinuous cases, the approximations did make use of
aspects of discrete variables, and they would need
to be re-derived.

RevUp depends on mixing in statistics and
learned representations from external side knowl-
edge. While we envision this side knowledge
as containing useful generalizations and semantic
information, such resources could encode overly
broad generalizations or other biases. While the
degree of this mixture can be adjusted, imperfec-
tions or biases in the external knowledge could be
captured and propagated through RevUp.

We focus on the task of event modeling, but we
believe RevUp represents a step towards improving
settings where noisy side information is available.
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A Information Bottleneck Principle (IB)

Given its importance to our effort, we restate the
information bottleneck principle, and discuss how
it ties in with our loss formulation. Then, in sub-
sequent appendices (App. B to D) we step through
individual subloss terms.

Given the original input data x with the target y,
IB aims to extract a compact representation of x
that is most informative about the target y via max-
imizing I(y; z)− βI(x; z). The first term I(y; z)
motivates the model to predict y, whilst the second
term I(x; z) aims at discarding irrelevant informa-
tion from the input x. The hyperparameter β can be
set or tuned to adjust the relative importance of dis-
carding irrelevant information. In our framework,
we have a generalized version of IB as follows

L =− I(y; t) + αI(x; t|z)
+ βI(x; z) + ζKL

(
rγ(t|z) ∥ U(t)

)
. (11)

Our generalized version accounts for additional
random variables, and the associated dependencies.
Here, rγ(t|z) is the proposed distribution, U is a
uniform distribution over t. The KL term helps
avoid overfitting.

B Regularization and Task
Representation Derivation

Throughout we use the following inequality

Ep(z,x) log
q(z)

pθ(z|x)
≤

EpD(x)
logEpθ(z|x)

q(z)

pθ(z|x)︸ ︷︷ ︸
1

= 0.

(12)

The regularization term I(x; z) is

I(x; z) = Ep(z,x) log
pθ(z|x)
p(z)

≤ Ep(z,x) log
pθ(z|x)
q(z)

(13)

where since p(z) =
∫
pθ(z|x)pD(x) dx is in-

tractable we use the inequality in Eq. 12. Now,

we can approximate Eq. 13 as follows

EpD(x)pθ(z|x) log
pθ(z|x)
p(z)

(14)

= EpD(x)pθ(z|x) log

∏M
m=1 pθ(zm|tm−1,x)∏M

m=1 q(zm)

=
M∑

m=1

EpD(x)pθ(z|x) log
pθ(zm|tm−1,x)

q(zm)

≈ 1

S

M∑

m=1

S∑

s=1

KL
(
pθ(zm|t(s)m−1,x) ∥ q(zm)

)
,

(15)

where for simplicity we assume that q(z) factor-
izes over independent random variables as q(z) =
q(z1, z2, . . . , zM ) =

∏M
m=1 q(zm). We parameter-

ize each zm via a multivariate Normal, q(zm) =

N (0, I), and pθ(zm|z(s)m−1,x) = N (µm,Σm):

µm = fµ(z
(s)
m−1,x)

Σm = fΣ(z
(s)
m−1,x),

where both fµ and fΣ are neural networks.
With this formulation, we can calculate the KL-
divergence terms of Eq. 15 in closed forms.

B.1 Approximating I(y; t) (Eq. 3)
In the same way for the task representation, we
have

−I(y; t) = −Ep(y,z,t) log
p(y|t)
p(y)

≤ −Ep(y,z,t) log
qϕ(y|t)
p(y)

≤ −Ep(y,z,t) log qϕ(y|t) +H(y),

(16)

where H(y) is constant and we ignore it. We have:

Ep(y,z,t) log qϕ(y|t)
= EpD(x,y)pθ(z|x)pγ(t|z) log qϕ(y|t), (17)

≈ 1

Sz

1

St

Sz∑

sz=1

St∑

st=1

log qϕ(y|t(st)), (18)

where we first sample x,y ∼ pD(x,y), then
z(sz) ∼ pθ(z|x) and finally t(st) ∼ rγ(t|z(sz)). In
this approximation Sz and St are the total number
of samples for z and t respectively.

We wish to clarify why this term is included
in the objective and how optimizing it affects the
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model parameters. The answer is that in computing
I(y; t), the distribution used to compute the mu-
tual information’s expectation depends on the pro-
posed distribution rγ . This is by construction and
irrespective of whether side information is present
or not. This is where the model parameters come
in.

Specifically, while by definition I(y; t) =

Ep(y,t)
logp(y|t)

p(y) , because p(|t) does not depend
on a (free) z, we can compute mut(y; t) =

Ep(y,z,t)
logp(y|t)

p(y) . This follows from the fact that
for random variables u and v, Ep(u,v)[f(u)] =
Ep(u)[f(u)]. With this, we can then write

I(y; t) = Ep(y,t) log
p(y|t)
p(y)

= Ep(y,t,x,z) log
p(y|t)
p(y)

(19)

= E{
pD(x,y)p(z,t|x)

} log p(y|t)
p(y)

(20)

= E{
pD(x,y)

∏M
m=1 pθ(zm|tm−1,x)pγ(tm|xm,zm;lm)

}

(21)

log
p(y|t)
p(y)

. (22)

This red term, pγ(tm|xm, zm; lm), is defined as the
interpolation of a proposal distribution rγ(tm|zm)
and an empirical distribution tm|xm. Defined as a
GumbelSoftmax, this proposal distribution explic-
itly allows uncertainty. Therefore, even when side
information is present, we sample the value of tm
to approximate that final expectation.

Finally, as mentioned in the paper, this last line is
intractable, so we learn an approximation qϕ(y|t),
which introduces additional model parameters to
learn. We compute qϕ using the sampled values
t1...tM .

C Update Step Upperbound

In this section, we show how we approximate the
update term I(x; z|z) in Eq. 4. We have the fol-
lowing

I(t;x|z) = Epγ(t,z,x) log
pγ(t,x|z)
p(t|z)p(x|z)

= Epγ(t,x,z) log
pγ(t|x, z)p(x|z)
p(t|z)p(x|z)

= Epγ(t,x,z) log
pγ(t|x, z)
p(t|z) (23)

≤ Epγ(t,x,z) log
pγ(t|x, z)
rγ(t|z)

, (24)

First, we should note that in Eq. 23, the distribution
p(t|z) is not equal to rγ(t|z), because for each
node m, we have

p(tm|zm) =
∫
p(tm, xm|zm) dxm

=

∫
p(tm|xm, zm)p(xm|zm) dxm

=

∫
λ̂mrγ(tm|zm)p(xm|zm) dxm+

∫
(1− λ̂m)pD(tm|xm)p(xm|zm) dxm

̸= rγ(tm|zm). (25)

Our the last step of estimation in Eq. 24 is

Epγ(t,x,z) log
pγ(t|x, z)
p(t|z) ≤

Epγ(t,x,z) log
pγ(t|x, z)
rγ(t|z)

. (26)

The proof for Eq. 26 is as follows.

Ep(t,x,z) log
rγ(t|z)
p(t|z)

= Ep(t,z) log
rγ(t|z)
p(t|z)

= Ep(z)Ep(t|z) log
rγ(t|z)
p(t|z)

≤ Ep(z) log
{
Ep(t|z)

rγ(t|z)
p(t|z)︸ ︷︷ ︸
1

}

= 0

D Update State Approximation for
Discrete Case

We show how we approximate the upperbound pre-
sented in Eq. 24.

Epγ(t,z,x) log
pγ(t|z,x)
rγ(t|z)

= EpD(x)pθ(z|x)pγ(t|z,x) log pγ(t|z,x)︸ ︷︷ ︸
A1

− EpD(x)pθ(z|x)pγ(t|z,x) log rγ(t|z)︸ ︷︷ ︸
A2

. (27)
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Here A1 is the negative entropy of the revised
distribution pγ(t|x, z):

A1 = −H(t|x, z) (28)

= −
∑

m=1

H(tm|xm, zm). (29)

For the second term we have:

A2 = EpD(x)Epθ(z|x)
[
λ̂Erγ(t|z)+

(1− λ̂)EpD(t|x)
]
log rγ(t|z)

= λ̂EpD(x)Epθ(z|x)Erγ(t|z) log rγ(t|z)︸ ︷︷ ︸
A21

+ (1− λ̂)EpD(x)EpD(t|x) log rγ(t|z)︸ ︷︷ ︸
A22

. (30)

Similarly A21 is the entropy of the proposed

distribution rγ(t|z):

A21 = −H(t|z) (31)

= −
M∑

m=1

H(tm|zm) (32)

Also B22 guides the model to discriminator t

given z which is a classifier. To compute the en-
tropy terms, in the discrete case (Gumbel Softmax),
we use Monte Carlo sampling as follows

H(tm|xm, zm) ≈
1

S

N∑

n=1

S∑

s=1

γ̂⊤(s)m log γ̂(s)
m ,

(33)

H(tm|zm) ≈
1

S

S∑

s=1

γ⊤(s)m log γ(s)
m , (34)

where S is the number of point estimates and γ̂m
is derived from Eq. 35. Here, we have defined
γ̂ to be [λ̂γ1, λ̂γ2, . . . , λ̂γk∗ + (1− λ̂), . . . , λ̂γK ].
The γ̂ can be thought of as a mixture of the γ
and empirical categorical distributions. (We use
this definition of γ̂ in the proof of Theorem 1 in
Appendix F.) To sample from the revised distri-
bution pγ(tm|x, z; lm) we first draw a Bernoulli
sample λ̂m ∼ Bern(λ̂m; 1/(1 + λlm)) and con-
sequently we draw knowledge sample from the
mixture of probabilities by tm ∼ λ̂mrγ(tm|zm) +
(1 − λ̂m)pD(tm|xm). We implement this with a
single-sample approximation.
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Figure 5: Effect of λ and observation probability ϵ on ϵ̂

E Revision Step Property of
pγ
(
tm|xm, zm; lm

)

In this section we show how the formulation
of pγ (tm|xm, zm; lm) leads to the property that,
during the revision step, we rely more on the
available side/external knowledge as more of it
becomes available. Recall that we initially de-

fined pγ (tm|xm, zm; lm) =
1

1 + λlm
rγ(tm|zm) +

λlm
1 + λlm

pD(tm|xm), where λ allows a fractional

portion of the empirical distribution pD to influence
the learned model. Suppose that lm ∼ Bern(ϵ) and
λ̃ = 1/(1 + λ), given node m we have

p
(
tm|xm, zm

)
=
∑

lm

p
(
tm|xm, zm, lm

)
p(lm)

= ϵpγ(tm|xm, zm, lm) + (1− ϵ)rγ(tm|zm)
= ϵ

[
λ̃rγ(tm|zm) + (1− λ̃)pD(tm|xm)

]

+
(
1− ϵ

)
rγ(tm|zm)

=
(
1− ϵ(1− λ̃)

)
rγ(tm|zm)

+ ϵ(1− λ̃)pD(tm|xm)
= ϵ̂rγ(tm|zm) + (1− ϵ̂)pD(tm|xm),

where ϵ̂ = 1− ϵ
( λ

1 + λ

)
. In particular, this formu-

lation allows us to account for both our estimate of
observation of side knowledge, and the extent to
which we wish to use it when learning our model.
In Fig. 5, we show the effect of λ and ϵ on ϵ̂.

F Generalization of SSDVAE (Proof of
Theorem 1)

We show that under specific setting, our model
reduces to the SSDVAE parameter injection mech-
anism.
Theorem. If rγ(t|z) = Cat(γ) , a categorical dis-
tribution with parameters γ, and the empirical dis-
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tribution pD(t|x) is a one-hot representation with
tk∗ = 1, the revision step reduces to SSDVAE pa-
rameter injection.

Proof. Using the interpolation form
pγ
(
tm|xm, zm; lm

)
= λ̂mrγ(tm|zm) + (1 −

λ̂m)pD(tm|xm) and due to the fact that the
mixture of categorical distributions is a single
categorical, we have p

(
t|x, z; l = 1

)
= Cat(γ̂),

where

γ̂ = [λ̂γ1, λ̂γ2, . . . , λ̂γk∗ + (1− λ̂), . . . , λ̂γK ].
(35)

Given 0 ≤ γi ≤ 1 and 0 ≤ λ̂ ≤ 1, we have λ̂γi ≤
γi (∀i ̸= k∗), and λ̂γk∗ + (1 − λ̂) ≥ γk∗ . This
implies that for all the indices i ̸= k∗, the value
of γi is reduced and γk∗ is increased, confirming
that parameter injection is a specific form of our
definition.

G Updating Step Maximizes Mutual
Information (Proof of Theorem 2)

We show that for the reconstruction tasks, where
y is a copy of x, minimizing I(x; t|z) maximizes
I(t; z). While not explicitly reflected in our model
definition, note that I(t; z) is intractable. This can
be seen in the definition of I(t; z),

I(t; z) = Ep(t,z) log
p(t|z)
p(t)

, (36)

here both p(t, z) and p(t) are intractable due to the
integral over x. Following Cover (1999), the mu-
tual information between three random variables x,
t, and z can be defined as

I(x; t; z) = I(x; t)− I(x; t|z). (37)

Eq. 37 is symmetric in x, t and z, so we have:

I(x; t; z) = I(t; z)− I(t; z|x). (38)

As already proven by Federici et al. (2019), the
second term I(t; z|x) equals to zero. Combining
Eq. 37 and Eq. 38, we have

I(x; t)− I(x; t|z) = I(t; z) (39)

As evident from Eq. 39, maximizing I(x; t) and
minimizing I(x; t|z) is equivalent to maximizing
I(t; z).

H Full Results

In this section, we present the full results for those
presented in the main paper. Specifically, the re-
sults presented here augment those in Fig. 4, Ta-
ble 1, and Table 2.

Results on the Effect of Noisy Knowledge (η)
In Table 3, we how the full results from our noisy
knowledge experiments, shown in the main paper’s
Table 1. As with our other results, these are av-
eraged over three runs. In our development we
noticed that precision tended to be the main hin-
drance on F1, and therefore we additionally report
precision.

Full Perplexity Results In Table 4, we how the
full language modeling perplexity results that are
shown in the main paper’s Table 2. Here, we are
showing results across both the dev and test sets.
We also include standard deviation results (from
three runs).

Full Results on Frame Classification In Table 5,
we show the full results for the side knowledge (per-
event frame) prediction experiments we reported
in Fig. 4. The main classification results were aver-
aged over three runs, along with standard deviation.
These results are visible in Fig. 4, but we include
the numeric values for any future comparisons.

I Setup/Implementation Details

The NYT dataset is available through the LDC and
a research license, and the Wikipedia dataset is
publicly available under a CC BY-NC 4.0 license.
For both datasets, the token vocabulary size is 150k
and the number of unique semantic frames is 600.
In line with previous research (Rezaee and Ferraro,
2021), for the documents with more than 5 events,
we used the first 5 events that had frames. Each
model was trained using a single GPU (an RTX
2080 TI, TITAN RTX, or a Quadro 8000). Each
RevUp model took approximately 12 hours to train.

We noticed that the observability of side knowl-
edge can affect the relative importance of the loss
terms in Eq. 10. Given a mini batch of training
data, we define ϵ̂ as an approximation of ϵ. To do
so, we calculate the number of observed frames
over total frames. In all cases, high importance
placed on the regularization term Lt (Eq. 9) was
important to help prevent overfitting. When frames
were frequently observed (ϵ̂ ≥ 0.5), the model
needed to rely more heavily on the updating phase
(LI , Eq. 4) and the regularization on z (Lz , Eq. 7)
was less important; specifically, we found α = 0.3,
β = 1e− 6 and ζ = 0.7 to be effective. Otherwise,
we found the model needed to place small but rel-
atively equal weight on the updating phase and z
regularization components; specifically, we found
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model noise η
Dataset

Wiki NYT
Acc F1 Prec Acc F1 Prec

SSDVAE
0.1

0.77± 0.008 0.43± 0.019 0.41± 0.015 0.76± 0.000 0.55± 0.001 0.52± 0.001
RevUp 0.85± 0.005 0.58± 0.015 0.56± 0.012 0.83± 0.000 0.71± 0.002 0.69± 0.002

SSDVAE
0.2

0.69± 0.002 0.35± 0.001 0.33± 0.002 0.67± 0.001 0.44± 0.000 0.41± 0.001
RevUp 0.82± 0.001 0.52± 0.001 0.49± 0.003 0.80± 0.000 0.63± 0.001 0.60± 0.001

SSDVAE
0.3

0.60± 0.010 0.28± 0.018 0.27± 0.013 0.58± 0.001 0.36± 0.000 0.34± 0.000
RevUp 0.79± 0.008 0.45± 0.023 0.42± 0.019 0.77± 0.000 0.58± 0.001 0.55± 0.000

SSDVAE
0.5

0.41± 0.017 0.17± 0.014 0.18± 0.011 0.41± 0.003 0.23± 0.001 0.23± 0.002
RevUp 0.72± 0.007 0.36± 0.022 0.34± 0.017 0.71± 0.001 0.48± 0.001 0.45± 0.000

SSDVAE
0.7

0.23± 0.002 0.09± 0.001 0.11± 0.001 0.22± 0.004 0.11± 0.002 0.13± 0.002
RevUp 0.64± 0.005 0.29± 0.003 0.28± 0.002 0.63± 0.003 0.37± 0.002 0.35± 0.002

SSDVAE
0.9

0.02± 0.001 0.00± 0.000 0.01± 0.000 0.02± 0.001 0.00± 0.000 0.01± 0.000
RevUp 0.41± 0.009 0.09± 0.003 0.11± 0.003 0.25± 0.039 0.06± 0.013 0.09± 0.015

Table 3: Effect of Noise on the test dataset.

model ϵ
Dataset

Wiki NYT
Valid Test Valid Test

RNNLM - 64.02 ±2.53 64.57 ±2.60 65.07 ±3.25 56.96 ±2.82
HAQAE - 49.03 ±3.90 50.10 ±4.05 43.13 ±5.29 39.47 ±4.84
SSDVAE

0.0
46.61 ±1.08 47.50 ±1.06 44.80 ±0.85 39.75 ±1.21

RevUp 44.38 ±1.38 45.36 ±1.40 42.61 ±0.58 39.48 ±0.49
SSDVAE

0.1
45.17 ±1.17 45.91 ±1.15 43.52 ±0.16 39.73 ±0.16

RevUp 43.99 ±1.79 44.87 ±1.83 36.10 ±0.94 33.34 ±0.96
SSDVAE

0.7
44.38 ±0.55 44.79 ±0.58 39.77 ±1.05 36.79 ±0.91

RevUp 40.90 ±1.11 41.74 ±1.05 35.77 ±0.25 33.20 ±0.17
SSDVAE

1.0
36.79 ±0.33 36.96 ±0.34 33.18 ±0.39 30.69 ±0.31

RevUp 34.28 ±0.89 34.85 ±0.90 30.61 ±0.38 28.33 ±0.43

Table 4: Perplexity results on the Wikipedia and NYT
datasets (extension of Table 2). Main results are the
average of three runs, along with standard deviation.

α = 0.1, β = 0.2 and ζ = 1.0 to be effective. We
obtained these values via experimentation on dev
data.

Following SSDVAE and HAQAE models, we
use pre-trained Glove 300 embeddings to represent
tokens and used gradient clipping at 5.0 to prevent
exploding gradients. We use a two-layer of bi-
directional GRU for the encoder and a two-layer
uni-directional GRU for the decoder (with a hidden
dimension of 512 for both). We used early stopping
(lack of validation performance improvement for 3
iterations).
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model ϵ
Dataset

Wiki NYT
Acc F1 Prec Acc F1 Prec

SSDVAE
0.1

0.02± 0.002 0.01± 0.001 0.02± 0.002 0.02± 0.002 0.00± 0.001 0.01± 0.003
RevUp 0.06± 0.001 0.02± 0.000 0.04± 0.000 0.05± 0.003 0.02± 0.001 0.04± 0.002

SSDVAE
0.3

0.10± 0.002 0.05± 0.001 0.08± 0.002 0.11± 0.003 0.06± 0.001 0.09± 0.002
RevUp 0.23± 0.002 0.11± 0.001 0.13± 0.000 0.17± 0.005 0.07± 0.002 0.09± 0.002

SSDVAE
0.5

0.23± 0.002 0.11± 0.000 0.14± 0.001 0.25± 0.005 0.15± 0.002 0.18± 0.003
RevUp 0.44± 0.014 0.22± 0.009 0.21± 0.006 0.36± 0.017 0.22± 0.008 0.22± 0.007

SSDVAE
0.7

0.52± 0.008 0.28± 0.008 0.28± 0.007 0.56± 0.005 0.40± 0.005 0.39± 0.004
RevUp 0.84± 0.004 0.65± 0.003 0.65± 0.002 0.76± 0.010 0.61± 0.015 0.57± 0.018

SSDVAE
0.9

0.84± 0.004 0.61± 0.008 0.62± 0.010 0.83± 0.001 0.77± 0.013 0.78± 0.014
RevUp 0.86± 0.001 0.72± 0.003 0.73± 0.005 0.85± 0.002 0.81± 0.007 0.82± 0.008

SSDVAE
1.0

0.85± 0.002 0.68± 0.003 0.69± 0.003 0.84± 0.001 0.81± 0.002 0.82± 0.001
RevUp 0.87± 0.003 0.75± 0.008 0.76± 0.009 0.85± 0.001 0.82± 0.007 0.83± 0.006

Table 5: Classification Results: these are the full numeric values (averages and standard deviations computed from
three runs) for the graphs shown in Fig. 4.
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Abstract

Natural language processing (NLP) has sig-
nificant impact on society via technologies
such as machine translation and search engines.
Despite its success, NLP technology is only
widely available for high-resource languages
such as English and Mandarin Chinese, and re-
mains inaccessible to many languages due to
the unavailability of data resources and bench-
marks. In this work, we focus on developing re-
sources for languages of Indonesia. Despite be-
ing the second most linguistically-diverse coun-
try, most languages in Indonesia are catego-
rized as endangered and some are even extinct.
We develop the first-ever parallel resource for
10 low-resource languages in Indonesia. Our
resource includes sentiment and machine trans-
lation datasets, and bilingual lexicons. We
provide extensive analysis, and describe chal-
lenges for creating such resources. Our hope
is that this work will spark more NLP research
on Indonesian and other underrepresented lan-
guages.

1 Introduction

Indonesia is one of the most populous and
linguistically-diverse countries in the world, with
more than 700 languages spoken across the coun-
try (Aji et al., 2022; Eberhard et al., 2021). How-
ever, while many of these languages are spoken by
millions of people they have received little atten-
tion from the NLP community. There are very few
public datasets, preventing the global research com-
munity from exploring these languages. To this end,
we introduce NusaX,1 a high-quality multilingual
parallel corpus that covers 10 local languages from
Indonesia: Acehnese, Balinese, Banjarese, Bugi-
nese, Madurese, Minangkabau, Javanese, Ngaju,
Sundanese, and Toba Batak.

∗ These authors contributed equally.
1The dataset is released at https://github.com/

IndoNLP/nusax.

The NusaX dataset was created by translating
SmSA (Purwarianti and Crisdayanti, 2019) — an
existing Indonesian sentiment analysis dataset con-
taining comments and reviews from the IndoNLU
benchmark (Wilie et al., 2020) — using compe-
tent bilingual speakers, coupled with additional
human-assisted quality assurance. Sentiment anal-
ysis is one of the most popular NLP tasks, and
has been explored in many applications in Indone-
sia, including presidential elections (Ibrahim et al.,
2015; Budiharto and Meiliana, 2018), product re-
views (Fauzi, 2019), stock forecasting (Cakra and
Trisedya, 2015; Sagala et al., 2020), and COVID-
19 monitoring (Nurdeni et al., 2021). By translating
an existing text, we additionally produce a parallel
corpus, which is useful for building and evaluat-
ing translation systems. As we translate from a
regional high-resource language (Indonesian), we
ensure that the topics and entities reflected in the
data are culturally relevant to the other languages,
which is generally not the case when translating
an English dataset (Conneau et al., 2018; Ponti
et al., 2020). We apply the corpus to two down-
stream tasks: sentiment analysis and machine trans-
lation. We use the new benchmark to assess the
performance of existing Indonesian language mod-
els (LMs), multilingual LMs, and classical machine
learning methods.

Our contributions are as follows:
• We propose NusaX, the first high-quality hu-

man annotated parallel corpus in 10 languages
from Indonesia, and corresponding parallel
data in Indonesian and English, covering the
tasks of sentiment analysis and machine trans-
lation.

• We provide an extensive evaluation of deep
learning and classical NLP/machine learning
methods on downstream tasks in few-shot and
full-data settings.

• We conduct comprehensive analysis of the
languages under study both from linguistic
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Figure 1: Language taxonomy of the 10 focus languages
and Indonesian, according to Ethnologue (Eberhard
et al., 2021). The color represents the language cat-
egory level in the taxonomy. Purple denotes language,
and other colors denote language family.

and empirical perspectives, the cross-lingual
transferability of existing monolingual and
multilingual LMs, and an efficiency analysis
of various methods for NLP tasks in extremely
low-resource languages.

2 Focus Languages

We work on 10 local languages in Indone-
sia: Acehnese, Balinese, Banjarese, Buginese,
Madurese, Minangkabau, Javanese, Ngaju, Sun-
danese, and Toba Batak. Most of these languages
have a population of over 2 million speakers (van
Esch et al., 2022; Aji et al., 2022), but are under-
represented in NLP research. Figure 1 shows the
taxonomy of these languages and Indonesian. Geo-
graphically, these languages are spoken on different
big islands in Indonesia, including Sumatra, Bor-
neo, Java, Madura, and Sulawesi. The languages
belong to the Austronesian language family un-
der the Malayo-Polynesian subgroup. While some
of the covered languages are written in multiple
scripts, we use the Latin script in NusaX, which
has become predominant for all covered languages.

Indonesian (ind) is the national language of In-
donesia based on the 1945 Constitution of the Re-
public of Indonesia (article 36). It is written in
Latin script, and was developed from literary “Clas-
sical Malay” of the Riau-Johor sultanate (Sneddon,
2003), with regional variants. Its lexical similar-

ity to Standard Malay is over 80%. It has a rich
affixation system, including a variety of prefixes,
suffixes, circumfixes, and reduplication. Most of
the affixes in Indonesian are derivational (Pisceldo
et al., 2008).

Acehnese (ace) is a language spoken mainly in
the Aceh province. Although it is the de facto
language of Aceh, language use is shifting to In-
donesian in urban areas. Acehnese has features
typical of the Mon-Khmer languages of mainland
Southeast Asia, a result of its former status as part
of the early Chamic dialect continuum on the coast
of Vietnam. In addition to the large number of diph-
thongs, it has a high percentage of monosyllabic
root morphemes.

Balinese (ban) is a language spoken mainly in
the Bali province. It has three main dialects: High-
land Balinese, Lowland Balinese, and Nusa Penida.
Since the early 20th century, it has mainly been
written in the Latin script, but also has its own Ba-
linese script. The word order in Balinese is SVO.
Balinese has three sociolinguistic registers (Arka,
2003).

Banjarese (bjn) is a language spoken in Kali-
mantan (Central, East, South, and West Kalimantan
provinces). It is dominant in the South Kalimantan
Province and is also growing rapidly in the Central
and Eastern Kalimantan provinces. It has two main
dialects: Kuala and Hulu. Although it is a Malayic
language, it has many Javanese loanwords, prob-
ably acquired during the Majapahit period from
the late thirteenth century until the fifteenth cen-
tury (Blust et al., 2013). It has 73% of lexical
similarity with Indonesian and is written in Arabic
and Latin scripts (Eberhard et al., 2021).

Buginese (bug) is a language spoken mainly in
the South Sulawesi, Southeast Sulawesi, Central
Sulawesi, and West Sulawesi provinces. The word
order is SVO. Verb affixes are used to mark per-
sons. Historically, it was written in the Buginese
script (derived from Brahmi script), but is mainly
written in Latin script now (Eberhard et al., 2021).
Buginese employs sentence patterns, pronouns, and
other terms to express politeness (Weda, 2016).

Madurese (mad) is a language spoken in the
East Java province, mainly on Madura Island, south
and west of Surabaya city, Bawean, Kangean, and
Sapudi islands. It has vowel harmony, gemination,
rich affixation, reduplication, and SVO basic word
order (Davies, 2010).

Minangkabau (min) is a language spoken
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mainly in West Sumatra and other provinces on
Sumatra Island such as Bengkulu and Riau. Al-
though it is classified as Malay, it is not intel-
ligible with Indonesian. Standard Minangkabau
voice can be characterised as an Indonesian-type
system, whereas colloquial Minangkabau voice is
more effectively characterised as a Sundic-type sys-
tem (Crouch, 2009).

Javanese (jav) is a language spoken mainly on
Java Island. It is the de facto language of provin-
cial identity in central and eastern Java. The num-
ber of native Javanese speakers is greater than the
number of Indonesian L1 speakers (Eberhard et al.,
2021). Javanese consists of several regional di-
alects, which differ primarily in pronunciation and
vocabulary. Javanese has an elaborate system of
speech levels related to the relation of the speaker
to the interlocutor that depend on social status, age,
kinship distance, and familiarity (Wedhawati et al.,
2001). It used to be written in Javanese script, but
since the 20th century has mostly been written in
Latin script.

Ngaju (nij) is a language spoken in the Central
Kalimantan province. It is widely used as a lan-
guage for trade in much of Kalimantan, from the
Barito to the Sampit River. It has various affixes
and reduplication, and its word order is similar to
Indonesian. Pronouns have enclitic forms to mark
possessors in a noun phrase or passive agents (Uchi-
bori and Shibata, 1988).

Sundanese (sun) is a language spoken mainly
in the Banten and West Java provinces. It is the
de facto language of provincial identity in west-
ern Java. The main dialects are Bogor (Krawang),
Pringan, and Cirebon. It has elaborate coding of re-
spect levels. It has been written in Latin script since
the mid-19th century but was previously written
in Arabic, Javanese, and Sundanese scripts. Sun-
danese is a predominantly SVO language, and has
voice marking and incorporates some (optional)
actor-verb agreement, i.e., number and person (Kur-
niawan, 2013).

Toba Batak (bbc) is a language spoken in the
North Sumatra province. Similarly to Acehnese,
it is slowly being replaced by Indonesian in urban
and migrant areas. It used to be written in the Batak
script but is mainly written in Latin script now. The
Batak languages are verb-initial, and have verb sys-
tems reminiscent of Philippine languages, although
they differ from them in many details (Blust et al.,
2013).

3 Data Construction

Our data collection process consists of several steps.
First, we take an existing dataset in a high-resource
local language (Indonesian) as a base for expansion
to the other ten languages, and ask human annota-
tors to translate the text. To ensure the quality of
the final translation, we run quality assurance with
additional human annotators.

3.1 Annotator Recruitment

Eliciting or annotating data in underrepresented lan-
guages generally requires working with local lan-
guage communities in order to identify competent
bilingual speakers (Nekoto et al., 2020). In the In-
donesian setting, this challenge is compounded by
the fact that most languages have several dialects.
As dialects in Indonesian languages may have sig-
nificant differences in word usage and meaning (Aji
et al., 2022), it is important to recruit annotators
who speak the same or similar dialects to ensure
that translations are mutually intelligible.

In this work, we employ at least 2 expert annota-
tors who are native speakers of each local language
and Indonesian. To filter the recruited annotators,
we first ask annotator candidates to translate three
samples. We then conduct a peer review by ask-
ing whether they can understand the translations of
other annotators for the same language, using the
hired annotators as translators as well as translation
validators. We also conducted 2 hours of training
to introduce the user interface of the annotation
system for selected workers. For English transla-
tions, we hire annotators based on their English
proficiency test scores with an IELTS score ≥ 6.5
or TOEFL PBT score ≥ 600.

3.2 Data Filtering and Sampling

We base our dataset on SmSA, the largest publicly
available Indonesian sentiment analysis dataset
from the IndoNLU benchmark (Purwarianti and
Crisdayanti, 2019; Wilie et al., 2020). SmSA is
an expert-annotated sentence-level multi-domain
sentiment analysis dataset consisting of more than
11,000 instances of comments and reviews col-
lected from several online platforms such as Twit-
ter, Zomato, and TripAdvisor. We filter the
data to remove abusive language and personally-
identifying information by manually inspecting all
sentences. We randomly select 1,000 samples via
stratified sampling for translation, ensuring that the
label distribution is balanced.
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3.3 Human Translation

We instructed the annotators to retain the mean-
ing of the text and to keep entities such as per-
sons, organizations, locations, and time with no
target language translation the same. Specifically,
we instructed them to: (1) maintain the sentence’s
sentiment polarity; (2) preserve entities; and (3)
maintain the complete information content of the
original text.

Initially, we asked the translators to maintain
the typography. Most sentences from the origi-
nal dataset are written in an informal tone, with
non-standard spelling, e.g., elongated vowels and
punctuation. When the sentence is translated into
the target language, direct translation can sound
unnatural. For example, translating the Indonesian
word kangeeeen (originally kangen; en: miss) to
taragaaaak (originally taragak) in Minangkabau
may sound unnatural. Similarly, the original sen-
tence may also contain typos. Due to the difficulty
of accurately assessing typographical consistency
of translations, we removed this as a criterion.

3.4 Human-Assisted Quality Assurance

We conduct quality control (QC) between two an-
notators by having annotator A check the transla-
tions of annotator B, and vice versa. We include
the corrected translations in our dataset. To ensure
the quality assurance is performed well, we ran-
domly perturb 5% of the sentences by removing a
random sequence of words. The quality assurance
annotators are then expected to notice the perturbed
sentences and fix them.

We analyze the quality assurance edits for Bali-
nese, Sundanese, and Javanese, which are spoken
by the authors of this paper. For each language, we
randomly sample 100 translations that have been
edited by a QC annotator. We classify edits as
follows:
Typos and Mechanics: Edit that involves correct-
ing typos, punctuation, casing, white spaces/dashes,
and numerical formatting.
Orthography: Edit that changes the spelling of
words due to orthographic variation in local lan-
guages without a standard orthography. The word
sounds and means the same before and after editing,
and both are used by natives. The QC annotator
might feel that one writing variant is more natu-
ral/commonly used, and hence make this change.
Translation: The words used by the translator are
still in Indonesian and the QC annotator translates

them to the local language.

Word edit: The QC annotator paraphrases a
word/phrase. This also includes adding/removing
words and morpheme changes.

Major changes: Other edits that significantly alter
the original translation.

The results are shown in Table 1. Generally,
word edits make up the majority of QC modifica-
tions, which involve replacing a word/phrase with
a synonym or altering a morpheme slightly. In con-
trast, major changes are extremely rare. We also
see changes to the orthography around 10% of the
time. Other types of edits vary between languages.
Sundanese has significantly less typos compared
to other languages, but a considerably higher num-
ber of translation edits. We suspect this is because
code-switching with Indonesian happens regularly
in Sundanese, which results in many Indonesian
words being adopted despite the existence of equiv-
alent Sundanese translations.

Category ban sun jav

Typos & Mechanic 31 14 42
Orthography 14 6 12
Translation 22 55 10
Word edit 67 65 61
Major changes 3 0 1

Table 1: Statistics of QC edits per category over 100
samples.

3.5 Bilingual Lexicon Creation

Bilingual lexicons are useful for data augmentation
(Wang et al., 2022) and evaluating cross-lingual rep-
resentations (Artetxe et al., 2018). We select 400
words from an Indonesian lexicon2 to be translated
into the 10 local languages and English. For each
language, we employ two annotators and ask them
to translate the word into all possible lexemes. The
translations from both annotators are combined.
We obtain 800–1,600 word pairs for each of our 11
language pairs (from Indonesian to the remaining
languages). We augment the bilingual lexicon with
data from PanLex (Kamholz et al., 2014).

2https://github.com/andria009/
IndonesianSentimentLexicon
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4 NusaX Benchmark

4.1 Tasks

We develop two tasks — sentiment analysis and
machine translation — based on the datasets cov-
ering 12 languages, including Indonesian, English,
and the 10 local languages. For the NusaX sen-
timent dataset, each language has the same label
distribution and we show the label distribution of
each dataset subset in Table 2. We maintain the
label ratio in each dataset subset to ensure a sim-
ilar distribution. More details of the dataset are
provided in Appendix C.

4.1.1 Sentiment Analysis
Sentiment analysis is an NLP task that aims to
identify the sentiment of a given text document.
The sentiment is commonly categorized into 3
classes: positive, negative, and neutral. We fo-
cus our dataset construction on sentiment analysis
because it is one of the most widely explored tasks
in Indonesia (Aji et al., 2022) due to broad indus-
trial relevance, such as for competitor and market-
ing analysis, and detection of unfavorable rumors
for risk management (Socher et al., 2013). Af-
ter translating 1,000 instances from the sentiment
analysis dataset (SmSA), we have a sentiment anal-
ysis dataset for each translated language. For each
language, we split the dataset into 500 train, 100
validation, and 400 test examples. In total, our
dataset contains 6,000 train, 1,200 validation, and
4,800 test instances across 12 languages (Indone-
sian, English and the 10 local languages).

4.1.2 Machine Translation
Indonesia consists of 700+ languages covering
three different language families (Aji et al., 2022).
Despite its linguistic diversity, existing machine
translation systems only cover a small fraction of
Indonesian languages, mainly Indonesian (the na-
tional language), Sundanese, and Javanese. To
broaden the coverage of existing machine transla-
tion systems for underrepresented local languages,
we construct a machine translation dataset using
our translated sentiment corpus, which results in a
parallel corpus between all language pairs. In other
words, we have 132 possible parallel corpora, each
with 1,000 samples (500 train, 100 validation, and
400 test instances) which can be used to train ma-
chine translation models. Compared to many other
MT evaluation datasets, our data is in the review
domain and is not English-centric.

Subset Negative Neutral Positive

Train 192 119 189
Valid 38 24 38
Test 153 96 151

Table 2: Label distribution of NusaX Sentiment dataset.

4.2 Baselines

4.2.1 Classical Machine Learning
Classical machine learning approaches are still
widely used by local Indonesian researchers and
institutions due to their efficiency (Nityasya et al.,
2021). The trade-off between performance and
compute cost is particularly important in situations
with limited compute, which are common for low-
resource languages. We therefore use classical
methods as baselines for our comparison. Namely,
we use naive Bayes, SVM, and logistic regression
for the classification tasks. For MT, we employ
a naive baseline that copies the original Indone-
sian text, a dictionary-based substitution method
using the bilingual lexicon, and a phrase-based MT
system based on Moses (Koehn et al., 2007).

4.2.2 Pre-trained Local Language Models
Recent developments in neural pre-trained LMs
have brought substantial improvements in vari-
ous NLP tasks. Despite the lack of resources
in Indonesian and local languages, there have
been some efforts in developing large pre-trained
LMs for Indonesian and major local languages.
IndoBERT (Wilie et al., 2020) and Sundanese-
BERT (Wongso et al., 2022) are two popular LMs
for natural language understanding (NLU) tasks
in Indonesian and Sundanese. IndoBART and In-
doGPT have also been introduced for natural lan-
guage generation (NLG) tasks in Indonesian, Sun-
danese, and Javanese (Cahyawijaya et al., 2021).
We employ these LMs as baselines to assess their
adaptability to other languages.

4.2.3 Massively Multilingual LMs
We consider large pre-trained multilingual LMs
to further understand their applicability to low-
resource languages. Specifically, we experiment
with mBERT (Devlin et al., 2019) and XLM-
R (Conneau et al., 2020) for sentiment analysis,
and mBART (Liu et al., 2020) and mT5 (Xue et al.,
2021) for machine translation. We provide the
hyper-parameters of all models in Appendix B.
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Model ace ban bbc bjn bug eng ind jav mad min nij sun avg

Naive Bayes 72.5 72.6 73.0 71.9 73.7 76.5 73.1 69.4 66.8 73.2 68.8 71.9 72.0
SVM 75.7 75.3 76.7 74.8 77.2 75.0 78.7 71.3 73.8 76.7 75.1 74.3 75.4
LR 77.4 76.3 76.3 75.0 77.2 75.9 74.7 73.7 74.7 74.8 73.4 75.8 75.4

IndoBERTBASE 75.4 74.8 70.0 83.1 73.9 79.5 90.0 81.7 77.8 82.5 75.8 77.5 78.5
IndoBERTLARGE 76.3 79.5 74.0 83.2 70.9 87.3 90.2 85.6 77.2 82.9 75.8 77.2 80.0
IndoLEMBASE 72.6 65.4 61.7 71.2 66.9 71.2 87.6 74.5 71.8 68.9 69.3 71.7 71.1

mBERTBASE 72.2 70.6 69.3 70.4 68.0 84.1 78.0 73.2 67.4 74.9 70.2 74.5 72.7
XLM-RBASE 73.9 72.8 62.3 76.6 66.6 90.8 88.4 78.9 69.7 79.1 75.0 80.1 76.2
XLM-RLARGE 75.9 77.1 65.5 86.3 70.0 92.6 91.6 84.2 74.9 83.1 73.3 86.0 80.0

Table 3: Sentiment analysis results in macro-F1 (%). Models were trained and evaluated on each language.

5 Results

5.1 Overall Results

Sentiment Analysis Table 3 shows the sentiment
analysis performance of various models across dif-
ferent local languages, trained and evaluated us-
ing data in the same language. Fine-tuned large
LMs such as IndoBERTLARGE and XLM-RLARGE
generally achieve the best performance. XLM-R
models achieve strong performance on some lan-
guages, such as Indonesian (idn), Banjarese (bjn),
English (eng), Javanese (jav), and Minangkabau
(min). Many of these languages are included in
XLM-R’s pre-training data while others may ben-
efit from positive transfer from related languages.
For instance, Banjarese is similar to Malay and
Indonesian (Nasution et al., 2021), while Minangk-
abau shares some words and syntax with Indone-
sian (Koto and Koto, 2020). IndoBERT models,
despite only being pre-trained on Indonesian, also
show good performance across some local lan-
guages, suggesting transferability from Indonesian
to the local languages.

The classic approaches are surprisingly com-
petitive with the neural methods, with logistic re-
gression even outperforming IndoBERTLARGE and
XLM-R on Acehnese (ace), Buginese (bug), and
Toba Batak (bbc). These results indicate that both
Indonesian and multilingual pre-trained LMs can-
not transfer well to these languages, which is sup-
ported by the fact that these languages are very dis-
tinct from Indonesian, Sundanese, Javanese, or Mi-
nangkabau — the languages covered by IndoBERT
and XLM-R.

Machine Translation We show the results on
machine translation in Table 4 (x → idn) based
on SacreBLEU (Post, 2018). As some local lan-

guages are similar to Indonesian, we observe that
the Copy baseline (which does not do any trans-
lation) performs quite well. Minangkabau (min)
and Banjarese (bjn) achieve high BLEU without
any translation despite not being included in the
LM pre-training data, due to their similarity with
Indonesian (Koto and Koto, 2020; Nasution et al.,
2021). Since these local languages share gram-
matical structure with Indonesian, dictionary-based
word substitution yields a reasonable improvement.

Both PBSMT and fine-tuned LMs reach en-
couraging performance levels despite the limited
training data, which we again attribute to the tar-
get languages’ similarity to Indonesian. In con-
trast, the performance for translating Indonesian
languages from/to English is extremely poor as
shown in Table 5, demonstrating the importance
of non-English-centric translation. Overall, we ob-
serve good translation performance across local
languages. Thus, there is an opportunity to utilize
translation models to create new synthetic datasets
in local languages via translation from a related
high-resource language, not only for Indonesian
local languages but also other underrepresented
languages. However, note that even for language
pairs where the SacreBLEU score is very high, we
observe translation deficiencies stemming from the
small amount of training data: rare words may just
be copied with PBSMT, and mistranslated with
NMT.

Similar effects are also observed for (idn→ x)
translation, as shown in Table 6. Similar to (x→
idn) translations, we observe that the Copy base-
line performs quite well on Minangkabau (min)
and Banjarese (bjn) due to their similarity with In-
donesian (Koto and Koto, 2020; Nasution et al.,
2021). Dictionary-based word substitution also
yields a reasonable improvement especially for Ja-
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x→ idn

Model ace ban bbc bjn bug eng jav mad min nij sun avg

Copy 5.88 9.99 4.28 15.99 3.44 0.57 9.29 5.11 18.10 7.51 9.24 8.13
Word Substitution 7.33 12.30 5.02 16.17 3.52 1.67 17.34 7.89 24.17 12.07 15.38 11.17
PBSMT 25.17 41.22 20.94 47.80 15.21 6.68 46.99 38.39 60.56 32.86 41.79 34.33

IndoGPT 7.01 13.23 5.27 19.53 1.98 4.26 27.31 13.75 23.03 10.83 23.18 13.58
IndoBARTv2 24.44 40.49 19.94 47.81 12.64 11.73 50.64 36.10 58.38 33.50 45.96 34.69
mBART-50 18.45 34.23 17.43 41.73 10.87 17.92 39.66 32.11 59.66 29.84 35.19 30.64
mT5BASE 18.59 21.73 12.85 42.29 2.64 12.96 45.22 32.35 58.65 25.61 36.58 28.13

Table 4: Results of the machine translation task from other languages to Indonesian (x→ idn) based on SacreBLEU.

Model avg. SacreBLEU
ind � x x � ind eng � x x � eng

PBSMT 28.72 34.33 4.56 5.84
IndoBARTv2 28.21 34.69 6.36 7.46
mBART-50 24.69 30.64 7.20 6.45

Table 5: MT performance from / to Indonesian com-
pared to from / to English.

vanese (jav), Minangkabau (min), and Sundanese
(sun) due to the high similarity of the grammati-
cal structure with Indonesian. PBSMT and fine-
tuned IndoBARTv2 models achieve the best scores
over multiple local languages despite the limited
training data, which is also attributed to the target
languages’ similarity to Indonesian.

5.2 Cross-lingual Capability of LMs

From a linguistic perspective, local languages
in Indonesia share similarities according to lan-
guage family. Many local languages share a simi-
lar grammatical structure and have some vocabu-
lary overlap. Following prior work that demon-
strates positive transfer between closely-related
languages (Cahyawijaya et al., 2021; Hu et al.,
2020; Aji et al., 2020; Khanuja et al., 2020; Winata
et al., 2021, 2022), we analyze the transferability
between closely-related languages in the Malayo-
Polynesian language family.

Empirically, we show the cross-lingual capabil-
ity of the best performing model (XLM-RLARGE)
in the zero-shot cross-lingual setting for sentiment
analysis. The heatmap is shown in Figure 2. In
general, most languages, except for Buginese (bug)
and Toba Batak (bbc), can be used effectively as
the source language, reaching ∼70–75% F1 on av-
erage, compared to an average of 80% F1 in the
monolingual setting (cf. XLM-RLARGE in Table 3).
This empirical result aligns with the fact that both

Figure 2: Zero-shot cross-lingual results for the senti-
ment analysis task with XLM-RLARGE. The model is
trained on the language indicated on the x-axis and eval-
uated on all languages.

Buginese (bug) and Toba Batak (bbc) have very low
vocabulary overlap with Indonesian (cf. Copy in
Tables 4 and 6). Interestingly, despite coming from
a completely different language family, English can
also be effectively used as the source language for
all 10 local languages, likely due to its prevalence
during pre-training.

These results demonstrate that we can take
advantage of language similarity by transferring
knowledge from Indonesian and other local lan-
guages to perform zero-shot or few-shot classifica-
tion in closely-related languages. New datasets for
underrepresented languages that are closely related
to high-resource languages thus do not necessar-
ily need to be large, which make the development
of NLP datasets in low-resource languages more
affordable than may initially appear to be the case.

5.3 Multilingual Capability

We explore training multilingual models, as most
Indonesian local languages share similarities. For
sentiment analysis, we concatenate the training
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ind→ x

Model ace ban bbc bjn bug eng jav mad min nij sun avg

Copy 5.89 10.00 4.28 15.99 3.45 0.56 9.29 5.11 18.10 7.52 9.24 8.13
Word Substitution 7.60 10.31 5.99 17.51 3.57 0.76 14.75 7.58 22.34 9.76 12.38 10.23
PBSMT 20.47 26.48 18.18 42.08 10.84 7.73 39.08 33.26 52.21 29.58 36.04 28.72

IndoGPT 9.60 14.17 8.20 22.23 5.18 5.89 24.05 14.44 26.95 17.56 23.15 15.58
IndoBARTv2 19.21 27.08 18.41 40.03 11.06 11.53 39.97 28.95 48.48 27.11 38.46 28.21
mBART-50 17.21 22.67 17.79 34.26 10.78 3.90 35.33 28.63 43.87 25.91 31.21 24.69
mT5BASE 14.79 18.07 18.22 38.64 6.68 11.21 33.48 0.96 45.84 13.59 33.79 21.39

Table 6: Results of the machine translation task from Indonesian to other languages (idn→ x) in SacreBLEU.

Language Single Multi LOLO

Acehnese 75.9 76.96 75.79
Balinese 77.1 80.13 77.83
Banjarese 86.3 84.85 82.68
Buginese 70.0 67.86 63.67
English 92.6 91.05 89.88
Indonesian 91.6 91.13 90.62
Javanese 84.2 88.19 87.39
Madurese 74.9 79.41 78.52
Minangkabau 83.1 85.29 84.45
Ngaju 73.3 78.82 76.31
Sundanese 86.0 86.02 84.41
Toba batak 65.5 70.00 68.76

Average 80.04 81.64 80.03

Table 7: Sentiment analysis results for macro-F1 (%) of
XLM-RLARGE in the multilingual setting.

data of all languages. Additionally, we also ex-
plore Leave-One-Language-Out (LOLO), where
we train on all data except for the test language.
The LOLO setting arguably reflects the most realis-
tic scenario where we do not have training data for
a particular language, but we do have access to data
in other local languages. The multilingual results
for sentiment analysis are shown in Table 7. Multi-
lingual training outperforms monolingual training,
while LOLO matches the performance of training
on target language data. Related language data is
thus often sufficient for good cross-lingual results.

6 Data Collection Challenges

In this section, we discuss challenges faced during
data collection.

Finding annotators We found collecting the
NusaX dataset challenging. First of all, finding
local language-speaking annotators is not easy, and
popular platforms such as MTurk do not support
these languages. Instead, we looked for annota-

tors through local Indonesian networks and forums,
such as the INACL forum, local campus forums, or
the Indonesian polyglot community. We intended
to cover as many local languages as possible, but
based on the available annotators, only the 10 lan-
guages presented in this paper were possible, as
we needed at least 2 annotators for each language.
Searching for annotators online is not easy, due
to disparities in Internet penetration in different
parts of Indonesia. Hence, we might not reach
potential annotators through online communities
alone. However, holding an in-person workshop
for data collection is also not practical; Indone-
sia is an archipelago and traveling between islands
is costly. Similar challenges occur in many other
regions, including Africa and South America.

Communication with annotators Communica-
tion between the authors and annotators was done
through WhatsApp, as the most popular commu-
nication tool in Indonesian (Mulyono et al., 2021).
Annotation was conducted through spreadsheets.
We found that some of the annotators use mobile
apps instead of a desktop for annotation. Their rea-
sons include ease of use, no access to a laptop, and
better keyboard support for typing diacritics. In the
most extreme case, one annotator printed out the
sheet and performed the annotation on paper, then
took a picture of the paper and sent it back to us.
We found some annotators to be difficult to contact,
due to other commitments such as college or work.
Some of them were not responsive and had to be
replaced by new annotators.

7 Related Work

Multilingual Parallel Corpora Several multi-
lingual parallel corpora have been developed to
support studies on machine translation such as
GCP (Imamura and Sumita, 2018), Leipzig (Gold-
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hahn et al., 2012), JRC Acquis (Steinberger et al.,
2006), TUFS Asian Language Parallel (Nomoto
et al., 2018), Intercorp (ek Čermák and Rosen,
2012), DARPA LORELEI (Strassel and Tracey,
2016), Asian Language Treebank (Riza et al.,
2016), FLORES (Guzmán et al., 2019), the Bible
Parallel Corpus (Resnik et al., 1999; Black, 2019),
JW-300 (Agić and Vulić, 2019), BiToD (Lin et al.,
2021), and WikiMatrix (Schwenk et al., 2021).
Guzmán et al. (2019) describe the procedure to
generate high-quality translations as part of FLO-
RES. Similar to FLORES, we also conducted QC
of the translations.

Emerging Language Benchmarks Recently,
benchmarks in underrepresented languages have
emerged, such as MasakhaNER (Adelani et al.,
2021), AmericasNLI (Ebrahimi et al., 2022),
PMIndia (Haddow and Kirefu, 2020), Samanantar
(Ramesh et al., 2022), and NaijaSenti (Muhammad
et al., 2022). Particularly, for Indonesian languages,
NLP benchmarks have been developed such as
IndoNLU (Wilie et al., 2020), IndoLEM (Koto
et al., 2020), IndoNLG (Cahyawijaya et al., 2021),
IndoNLI (Mahendra et al., 2021), and English–
Indonesian machine translation (Guntara et al.,
2020).

Datasets for Indonesian Local Languages Only
a limited number of labeled datasets exist for lo-
cal languages in Indonesia. WikiAnn (Pan et al.,
2017) — a weakly-supervised named entity recog-
nition dataset — covers Acehnese, Javanese, Mi-
nangkabau, and Sundanese. Putri et al. (2021)
built a multilingual dataset for abusive language
and hate speech detection involving Javanese, Sun-
danese, Madurese, Minangkabau, and Musi lan-
guages. Sakti and Nakamura (2013) constructed
speech corpora for Javanese, Sundanese, Balinese,
and Toba Batak. Few datasets exist for individ-
ual languages, e.g., sentiment analysis and ma-
chine translation in Minangkabau (Koto and Koto,
2020) and emotion classification in Sundanese (Pu-
tra et al., 2020). Finally, some datasets focus on col-
loquial Indonesian mixed with local languages in
the scope of morphological analysis (Wibowo et al.,
2021) and style transfer (Wibowo et al., 2020).

8 Conclusion

In this paper, we propose NusaX, the first parallel
corpus for 10 low-resource Indonesian languages.
We create a new benchmark for sentiment analysis

and machine translation in zero-shot and full-data
settings. We present a comprehensive analysis of
the language similarity of these languages from
both linguistic and empirical perspectives by as-
sessing the cross-lingual transferability of existing
Indonesian and multilingual pre-trained models.

We hope NusaX can enable NLP research for
under-represented languages, and can be used as a
testbed for adaptation or few-shot learning meth-
ods that take advantage of similarities between
languages. NusaX opens up the possibility for
future research that focuses on covering more
local languages, and additionally, further exten-
sion to other tasks and domains. Our study on
cross-lingual transfer enables further exploration
on cross-lingual zero-shot learning for more di-
verse tasks in local languages. Our guidelines and
discussion of data collection issues may also moti-
vate future work on more efficient high-quality data
collection for extremely low-resource languages.
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Limitations

We created data for low-resource languages, which
increases the accessibility of NLP research for
marginalized communities. However, we were only
able to cover 10 languages with only 1000 samples
each, due to cost and the number of available an-
notators. This dataset has limited domain coverage
and may also contain biases towards certain groups
or entities. We tried our best to eliminate negative
biases based on a manual inspection of the data.
As our dataset was translated, there may be some
translationese artifacts in the resulting corpus. We
invited annotators based on their fluency level on a
particular language. However, the fluency level is
self-declared, and there is no mechanism to verify
it, except for several languages that are spoken by
authors of this paper. The dialect used in the dataset
also depends on the annotator, for languages with
multiple dialects.
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A Data Statement for NusaX

A.1 General Information

Dataset title NusaX

Dataset curators Alham Fikri Aji (MBZUAI),
Rahmad Mahendra (Universitas Indonesia),
Samuel Cahyawijaya (HKUST), Ade Romadhony
(Telkom University, Indonesia), Genta Indra
Winata (Bloomberg), Fajri Koto (University of
Melbourne), Kemal Kurniawan (University of
Melbourne)

Dataset version 1.0 (May 2022)

Data statement author Kemal Kurniawan (Uni-
versity of Melbourne)

Data statement version 1.0 (February 2022)

A.2 Executive Summary

NusaX is a multilingual parallel corpus across 10
local languages in Indonesia: Acehnese, Balinese,
Banjarese, Buginese, Madurese, Minangkabau, Ja-
vanese, Ngaju, Sundanese, and Toba Batak. The
data was translated obtained by human translation
from Indonesian and human-assisted quality assur-
ance.

A.3 Curation Rationale

The goal of the dataset creation process is to pro-
vide gold-standard sentiment analysis corpora for
Indonesian local languages. The Indonesian data
is sampled from SmSA (Purwarianti and Cris-
dayanti, 2019), an Indonesian sentiment analysis
corpus. SmSA is chosen among other corpora (e.g.,
HoASA (Azhar et al., 2019) based on (1) the agree-
ment of our manual re-annotation of a small and
randomly selected samples and (2) manual inspec-
tion to ensure that the topics are diverse. After sam-
pling, the data is edited and/or filtered to remove
harmful contents and maintain quality. Several cri-
teria are used in this process:

1. Is the sentiment label correct?
2. Does the sentence contain multiple senti-

ments?
3. Does the sentence contain harmful content

that discriminates against race, religion, or
other protected groups?

4. Does the sentence contain an attack toward an
individual or is abusive?

5. Is the sentence politically charged?

6. Is the sentence overly Bandung/Sunda-
centric?3

7. Will the sentence be difficult to translate into
local languages?

8. Are there any misspellings?

A.4 Documentation for Source Datasets

NusaX is obtained by translating SmSA (Purwari-
anti and Crisdayanti, 2019), an Indonesian senti-
ment analysis dataset.

A.5 Language Variety

NusaX covers a total of 10 local languages spoken
in Indonesia (ID) as shown in Table 8.

A.6 Speaker Demographic

The SmSA dataset was obtained from social media
and online forums: Twitter, Zomato, TripAdvisor,
Facebook, Instagram, Qraved. We can assume the
users’ age ranges from 25 to 34 years, which is
the age range of the majority of Indonesian social
media users4.

A.7 Annotator Demographic

A total of 28 translators are employed in the transla-
tion process. All translators are Indonesian and re-
cruited by via either online surveys or personal con-
tacts. They are then selected based on (1) the self-
reported fluency in the local language into which
they would be translating and (2) the highest ed-
ucation level achieved. Those who (a) are native
speakers of or fluent in the target local language
and (b) finished at least high school education (id:
SMA/sederajat) are selected.

Acehnese There are 3 translators for Acehnese,
but only 2 of them responded when asked for de-
mographic information. Thus, what follows is the
demographic information of only those 2 transla-
tors. One has some experience in translation work,
while the other does not. One identifies as male,
and the other as female. Both are in their 20s.
Lastly, one works as a freelancer, while the other
is a farmer.

Balinese Three people translate into Balinese.
Two of them have previous experience in trans-
lation work, and both identify as female. The other
one, who identifies as male, does not have such

3Bandung is the capital city of West Java, in which Sunda
is the ethnic group.

4
https://www.statista.com/statistics/997297/

indonesia-breakdown-social-media-users-age-gender/
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Language ISO 639-3 Annotators’ Dialect Example

Acehnese ace Banda Aceh Meureutoh rumoh di Medan keunong ie raya
Balinese ban Lowland Satusan umah ring medan merendem banjir
Toba Batak bbc Toba, Humbang Marratus jabu di medan na hona banji
Banjarese bjn Hulu, Kuala Ratusan rumah di medan tarandam banjir
Buginese bug Sidrap Maddatu bola okko medan nala lempe
Javanese jav Matraman Atusan omah ing medan kebanjiran
Madurese mad Situbondo Ratosan bangko e medan tarendem banjir
Minangkabau min Padang, Agam Ratuihan rumah di medan tarandam banjir
Ngaju nij Kapuas, Kahayan Ratusan huma hong medan lelep awi banjir
Sundanese sun Priangan Ratusan bumi di medan karendem banjir

Table 8: Local languages spoken in Indonesia (ID) that are covered in NusaX.

experience. Two of them are aged 20-29 years old,
while the other is in their 30s. Their occupations
are university lecturer, school teacher, and civil
employee respectively.

Banjarese Two translators are employed for Ban-
jarese, but only one responded when asked for de-
mographic information. The translator has prior
experience in translation work, identifies as male,
is in his 40s, and works as a university lecturer.

Buginese Buginese is translated by 2 people, but
only one responded when asked for demographic
information. The person has prior translation expe-
rience, identifies as male, is aged 30-39 years old,
and runs an Islamic boarding school as a living.

Javanese Four translators are employed for Ja-
vanese, but one did not respond when asked for
demographic information. The other three have
prior experience in translation work. Among them,
two identify as female, and one as male. All of
them are in their 20s. Two of them are university
students, and the other one works as a freelance
assistant editor.

Madurese There are 3 translators for Madurese.
Only one of them has previous experience in trans-
lation work. Two of them identify as female, while
the other as male. One person is aged under 20
years old and is a university student. The others are
20-29 years old and work as a school teacher and
an employee in a private company respectively.

Minangkabau Three people translate into Mi-
nangkabau. Two of them have previous transla-
tion experience. All three identify as female and
are aged 20-29 years old. They work as a civil

employee, a university student, and a senior data
annotator respectively.

Ngaju Two translators work on Ngaju, but only
one responded when asked for demographic infor-
mation. The translator has prior experience, iden-
tifies as female, is aged no less than 50 years old,
and is a stay-at-home mother.

Sundanese There are 5 translators for Sundanese,
four of which identify as female, and the other one
as male. Three translators are in their 20s, one is
younger than 20 years old, and the remaining one
is in their 30s. The translators work as a school
teacher, a university student, a university lecturer,
and the remaining two as employees in a private
company.

Toba Batak Three translators are employed for
Toba Batak. One has prior translation experience.
Two translators identify as male while the other as
female. All three are in their 20s. One works for
a private company, and the others are university
students.

B Hyperparameters

B.1 Sentiment Analysis

Hyperparams NB SVM LR

feature {BoW, tfidf} {BoW, tfidf} {BoW, tfidf}
alpha (0.001 - 1) – –
C – (0.01 - 100) (0.001 - 100)
kernel – {rbf, linear} –

Table 9: Hyperparameters of statistical models on senti-
ment analysis.

For statistical models, we use a spaCy as our
toolkit, and we perform grid-search over the pa-
rameter ranges shown in Table 9 and select the
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Hyperparams Values

learning rate [1e-4, 5e-5, 1e-5, 5e-6, 1e-6]
batch size [4, 8, 16, 32]
num epochs 100
early stop 3
max norm 10
optimizer Adam

Adam β (0.9, 0.999)
Adam γ 0.9
Adam ϵ 1e-8

Table 10: Hyperparameters of pre-trained LMs on sen-
timent analysis. Bold denotes the best hyperparameter
setting.

best performing model over the devset. For all pre-
trained LMs, we perform grid-search over batch
size and learning rate while keeping the other hy-
perparameters fixed. The list of hyperparameters is
shown in Table 10.

B.2 Machine Translation

Table 11 shows the hyperparameters of deep learn-
ing models on machine translation.

Hyperparams IndoGPT IndoBARTv2 mBART-50 mT5BASE

learning rate 1e-4 1e-4 2e-5 5e-4
batch size 16
gamma 0.98 0.98 0.98 0.95
max epochs 20
early stop 10
seed {1...5}

Table 11: Hyperparameters of pretrained LMs on ma-
chine translation.

C Dataset Statistics

In this section, we present more detail statistics
of our NusaX datasets. To evaluate the difference
between each language in the NusaX dataset, we
analyze the vocabulary characteristic for each lan-
guage. We collect the vocabulary for each language
by removing all the punctuation in the sentence and
tokenize the sentence with the spaCy tokenizer. 5

We show the vocabulary size and the top-10 words
for each language on Table 12, and the vocabulary
histogram for each language in Figure 4. We can
see that the most common words between Indone-
sian and other local languages vary a lot, despite
having a similar vocabulary size and histogram pat-

5https://github.com/explosion/spaCy

tern. This shows the intuitive difference between
Indonesian and local languages in Indonesia.

We further measure the vocabulary overlap over
different language pairs. We measure the vocab-
ulary overlap for each pair of languages by mea-
suring the intersection over union (IoU) of the two
vocabularies. We show the vocabulary overlap in
Figure 3. From the results, we can conclude that En-
glish has the smallest vocabulary overlap with the
other languages. This makes sense since English
comes from a different language family, i.e., Indo-
European language under the Germanic language
branch, while the others are from the Austrone-
sian language family under the Malayo-Polynesian
branch. Other languages that have low vocabulary
overlap are Buginese (bug) and Toba Batak (bbc).
This aligns with our discussion in §5, which shows
the distinction between these languages and the
other languages in the NusaX dataset.

831

https://github.com/explosion/spaCy


Acehnese
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Banjarese
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English
Indonesia

Javanese
Madurese

MinangkabauNgaju
Sundanese

Toba Batak

Acehnese

Balinese

Banjarese

Buginese

English

Indonesia

Javanese

Madurese

Minangkabau

Ngaju

Sundanese

Toba Batak

19.7% 19.5% 13.0% 9.5% 24.7% 19.0% 17.1% 20.5% 21.1% 19.3% 16.0%

19.7% 22.6% 13.8% 9.9% 34.7% 27.7% 19.6% 24.3% 26.4% 25.8% 18.0%

19.5% 22.6% 13.9% 9.8% 35.9% 22.8% 18.3% 28.3% 26.0% 24.7% 18.3%

13.0% 13.8% 13.9% 8.7% 16.0% 13.8% 13.6% 14.3% 14.4% 14.9% 13.5%

9.5% 9.9% 9.8% 8.7% 11.7% 9.7% 9.2% 10.9% 10.3% 10.0% 9.5%

24.7% 34.7% 35.9% 16.0% 11.7% 31.5% 23.3% 34.5% 35.4% 32.1% 21.3%

19.0% 27.7% 22.8% 13.8% 9.7% 31.5% 19.3% 24.2% 24.3% 26.9% 17.4%

17.1% 19.6% 18.3% 13.6% 9.2% 23.3% 19.3% 19.6% 20.0% 21.0% 15.7%

20.5% 24.3% 28.3% 14.3% 10.9% 34.5% 24.2% 19.6% 25.4% 25.9% 18.4%

21.1% 26.4% 26.0% 14.4% 10.3% 35.4% 24.3% 20.0% 25.4% 24.6% 18.9%

19.3% 25.8% 24.7% 14.9% 10.0% 32.1% 26.9% 21.0% 25.9% 24.6% 19.7%

16.0% 18.0% 18.3% 13.5% 9.5% 21.3% 17.4% 15.7% 18.4% 18.9% 19.7%
0%

25%

50%

Figure 3: Vocabulary overlap between language pairs in NusaX dataset.
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Figure 4: Word frequency histogram for each language in NusaX.
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Toba Batak Balinese Banjarese
(4681 words) (4927 words) 4631 words

na lan nang
di sane wan

dohot ring di
ni ane kada
tu ne ulun
do sajan nyaman

dang tiyang gasan
pe tiang banar

tabo ajak makan

Minangkabau English Ngaju
(446 words) (4233 words) (4005 words)

di the te
nan and dengan
dan to ji
jo is mangat

untuak a eka
awak of akan
yang for aku
lamak in jadi

ka I diak

Sundanese Buginese Indonesian
(4693 words) (5118 words) (4269 words)

nu e yang
sareng na di

di okko dan
teu sibawa tidak

pisan iya saya
abdi de dengan
ka i ini
ieu ko enak
aya ladde untuk

Javanese Acehnese Maduranese
(4719 words) (4250 words) (4846 words)

sing nyang se
lan ngon e
ora hana bik

karo lon engkok
aku that ben
ing mangat tak
iki nyoe nyaman

ning dan ka
enak bak ghebey

Table 12: Vocabulary size (in bracket) and top-10 words
on each language in the NusaX dataset.
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Abstract

Recent studies have shown that transformer
models like BERT rely on number informa-
tion encoded in their representations of sen-
tences’ subjects and head verbs when perform-
ing subject-verb agreement. However, probing
experiments suggest that subject number is also
encoded in the representations of all words in
such sentences. In this paper, we use causal
interventions to show that BERT only uses the
subject plurality information encoded in its rep-
resentations of the subject and words that agree
with it in number. We also demonstrate that cur-
rent probing metrics are unable to determine
which words’ representations contain function-
ally relevant information. This both provides a
revised view of subject-verb agreement in lan-
guage models, and suggests potential pitfalls
for current probe usage and evaluation.

1 Introduction

The phenomenon of subject-verb agreement has re-
ceived significant attention from the NLP commu-
nity. In English, this phenomenon is very simple:
present tense verbs must agree in number with their
subject noun, which is either singular or plural. In
the present tense, verbs that agree with 3rd-person
singular nouns receive one verb conjugation, gener-
ally ending in “-s”; in all other cases, the bare form
of the verb is used.

The simplicity of this phenomenon, combined
with the potential for long-distance subject and verb
agreement across intervening adverbs or relative
clauses (e.g. “The friend [that probably called my
parents] is. . . ”) has made it the object of intense
study in humans (Vigliocco et al. (1995) and Franck
et al. (2010), inter alia). It also prompted early
investigations on the ability of language models
to capture it (left-to-right LSTMs in Linzen et al.
(2016); Gulordava et al. (2018)). More recently,
the popular pre-trained model BERT (Devlin et al.,
2019) has been shown to be relatively proficient at

subject-verb agreement (Goldberg, 2019), although
these abilities depend somewhat on verb frequency
and lexical patterns (Newman et al., 2021; Lasri
et al., 2022a).

Other studies ask not how models behave
(e.g. with respect to subject-verb agreement), but
how models’ representations support this behav-
ior. Such studies often use probing, a technique in
which an auxiliary classifier (probe) is trained to
extract some property of words or sentences from
models’ internal representations thereof (Belinkov
and Glass, 2019; Belinkov, 2022). If the probe
can extract the property with high accuracy, one
concludes that the model has encoded the property
in the word’s representation. Klafka and Ettinger
(2020) discover that probes can extract the plural-
ity of a sentence’s subject from last-layer BERT
representations of any word in the sentence.

However, probing has received criticism because
the information discovered by probes is not always
used by models (Ravichander et al., 2021). Causal
interventions have been proposed as a means of
connecting models’ internal representations to their
external behavior. Such techniques make targeted
changes to models’ representations, and observe
how model behavior changes, in order to establish a
causal connection between the two (Ravfogel et al.,
2021; Geiger et al., 2021). For example, Ravfogel
et al. (2020) remove gender information from mod-
els’ noun representations, and observe that models
behave as if they do not know the nouns’ gender.

Recently, Lasri et al. (2022b) unified these lines
of work by using causal probing interventions to
investigate subject-verb agreement. They did so
by first training probes to predict subject number
information from representations of verbs and their
subjects. Then, they removed subject number infor-
mation from the representations of subjects and
verbs. This caused BERT to make errors on a
subject-verb agreement task, indicating that the
probes discovered functionally relevant informa-
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tion about subject number in subject and verb repre-
sentations. However, this leaves open the question
of whether models use the subject number infor-
mation in the representations of other words of the
sentence, found by Klafka and Ettinger (2020).

In this paper, we focus on these questions: do
large language models (LLMs) like BERT rely
on subject number information stored outside of
subject and verb representations when perform-
ing subject-verb agreement? Moreover, do current
probing evaluation metrics allow us to determine
which information is used and which is not? Our
goal is thus twofold: first, to clarify how subject-
verb agreement occurs in LLMs, and second, to de-
termine if any current non-causal probing metrics
can determine which probes have found function-
ally relevant information.

We achieve these goals as follows. First, we
adopt the setup of Klafka and Ettinger (2020), ex-
amining simple sentences of a fixed structure and
length. We use probing to demonstrate that subject
number information is extractable from represen-
tations of any word in the sentence, at most layers.
Next, we use causal interventions to show that al-
though subject number information exists in the
representations of all words of the sentence, it is
not always used; rather, it seems that BERT uses
information stored in words that agree with the sub-
ject in number. Finally, we evaluate our probes
using modern probe evaluation metrics, to ascer-
tain if any metric can determine whether subject
number information found by a probe is used by
the model or not. We find that these metrics are
unable to do this.1

2 Probing for Plurality

To determine if the subject number information that
is contained in all words of a sentence is used, we
first verify that all words’ representations contain
said information. We adopt the setup of Klafka
and Ettinger (2020), and thus investigate simple
sentences with a fixed structure, using a synthetic
English-language dataset. Their original dataset
contains sentences of the form “The [subject] [verb-
past] the [object]”. However, we create our own
dataset, which contains not only subject-verb agree-
ment but also article-subject agreement. It consists
of sentences of the form “[This / these] [adjective]
[subject] [adverb] [verb-present] the [object]”, e.g.

1The code for all experiments is available at https://
github.com/hannamw/probed-information.

Figure 1: Test accuracy (left, solid) and V-information
(right, dashed) of probes of a given word and layer

“This short boy definitely admires the firefighter.”
The dataset contains 6000 sentences, with roughly
equal numbers of singular and plural subjects. We
split our dataset into train, valid, and test splits
containing 4000/1000/1000 examples.

Having generated a dataset, we must then de-
fine the model representations to be probed for
subject number information. Klafka and Ettinger
(2020) find said information in all words’ final-
layer BERT representations; in contrast, we exam-
ine the representations generated as the output of
the entire transformer block at each layer, of a va-
riety of LLMs. We also consider representations
from the embedding, which have by definition no
contextual information (except for positional infor-
mation). Concretely, we analyze the base, large,
and distilled variants of BERT and RoBERTa (De-
vlin et al., 2019; Liu et al., 2019; Sanh et al., 2019).
However, we present only the BERT-base represen-
tations unless discussing another model, as results
are similar across all models analyzed.

Having extracted model representations, we train
probes on the subject number prediction task. Each
probe is specific to a word in the sentence and to a
model layer; a given probe might predict the num-
ber of a sentence’s subject given the 5th-layer rep-
resentation of the sentence’s verb. Each probe is a
linear layer with a sigmoid activation. We use Hug-
gingFace (Wolf et al., 2020) implementations of
these models; for precise model names, and dataset
and training details, see Appendices A and B.

For each probe, we record 3 metrics, aver-
aged across the dataset: (i) test accuracy; (ii) V-
information (Xu et al., 2020), and (iii) codelength,
as measured by online minimum description length
(MDL) probing (Voita and Titov, 2020). We record
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Figure 2: Probe codelength for a given word and layer

the latter two metrics to see if recently-proposed
metrics can distinguish functionally relevant from
irrelevant information in representations. We report
metrics averaged over 10 probe training runs.
V-information measures, given a family V of

probes used to extract a label from a representation,
how much those probes benefit from receiving a
representation as input, as opposed to no input at
all. In contrast, online MDL probing measures
codelength by retraining probes on subsets of the
dataset of increasing size. If probes assign low en-
tropy to a dataset when training data is limited, the
information being probed for is easily accessible
from the input representations. A detailed descrip-
tion of these metrics can be found in Appendix C.

Results Figure 1 shows the accuracy and V-
information of our probes (higher is better). Note
that for all figures, ‘ART1’ refers to the subject’s
article, and ‘ART2’ to the object’s. We also probe
the representation of masked verbs (‘[MASK]’),
discussed in the following section. As in Klafka
and Ettinger (2020), accuracy is high for all words
in later BERT layers. Unsurprisingly, accuracy is
also high for subjects, their articles, and unmasked
verbs using just BERT’s embeddings. But start-
ing in layer 0, when information is first able to
move between positions, accuracy is high for most
other words in the sentence as well. V-information
tracks accuracy; this is unsurprising, as it combines
entropy, which tracks with accuracy, and a model-
family-specific baseline, which is the same for all
words / layers. This indicates that subject num-
ber information is present in the representations of
all words of the sentence, and could be used for
subject-verb agreement.

Figure 2 shows the codelength in bits for each
probe, by layer; lower codelength means probes

could learn to extract subject number information
given less data. Broad trends are similar to those
from accuracy and V-information. Before layer 0,
codelength given by the unmasked verb, subject,
and subject article probes is notably lower than in
others; this makes sense, because the very form
of these words indicates the number of the sub-
ject. However, the plurality of the subject quickly
becomes available, and the codelength for other
words’ probes drops. By the last layer, the dispar-
ity between words that agree in number with the
subject, and those that do not, has mostly disap-
peared; the exception is the object probe, whose
codelength remains high.

3 Causal Interventions

We now apply causal interventions to test if the in-
formation found by probes in the prior experiment
is actually used by BERT2. In our case, this means
we will alter BERT’s internal representations with
respect to subject number information, and observe
BERT’s performance on a subject-verb agreement
task. In order to perform such interventions, we al-
ter our dataset to accommodate this task: we mask
out the verb of the sentence, and task BERT with
predicting this masked word.

Then, we apply causal interventions, specifically
reflection (Ravfogel et al., 2021) and interchange
(Geiger et al., 2021) interventions. To define these,
consider the case where BERT’s input s is “This
short boy definitely [MASK] the firefighter.”. In
the middle of computation, we extract z, BERT’s
nth-layer representation of our word of interest; for
example, the sentence’s object (“firefighter”). z
serves as input to a linear probe trained on the full
training set, defined as h(x) = σ

(
W⊤x+ b

)
. Let

h(z) < 0.5, indicating that the probe predicts the
subject of this sentence is singular. In the reflection
intervention, we reflect z over the decision bound-
ary of h (a hyperplane defined by (W,b)), creat-
ing zr. By definition, h(zr) > 0.5; the probe now
predicts that the sentence’s subject is plural. We
replace the original representation z in the BERT
with zr, and observe how BERT’s output changes.
In contrast, in the interchange intervention, we do
not use the probe. Define zi as the same represen-
tation as z, but taken from the opposite-plurality
context, e.g. the n-th layer representation of “fire-
fighter” in “These short boys definitely [MASK]

2In this section, we discuss only BERT, but the procedure
is identical for all models tested.
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Figure 3: perror induced by intervening on a represen-
tation, by word (x-axis), and layer (y-axis). Top: reflec-
tion intervention; bottom: interchange intervention

the firefighter.” We then run BERT on s, but replace
z with zi, and observe how its behavior changes.

In both cases, we attempt to reverse the plurality
of the subject number information in z by replacing
it with z′. Thus, if the intervention was effective
(i.e. BERT was using said information in z), BERT
should predict verbs that do not agree in number
with the original subject of the sentence.

We perform interventions on examples from the
test split. Each intervention targets one word at
a specific layer. To measure the effectiveness of
a given intervention, we record perror, the prob-
ability mass assigned by BERT to all 3rd-person
present-tense verbs in its vocabulary that do not
agree in number with the sentence’s original sub-
ject. Higher perror indicates a more successful
intervention, i.e. that BERT relied on informa-
tion in the targeted word representation to perform
subject-verb agreement.

Results Figure 3 shows, for each word and layer
of BERT, the error induced by performing either
a reflection or interchange intervention on that
word’s representation at the given layer, averaged

across the test split. For reflection interventions,
we previously trained 10 sets of probes, and thus
also average over the results obtained for each set.
Note that with no interventions, perror ≈ 0; BERT
assigns 80% of its probability mass to verbs that
agree with the subject in number (BERT sometimes
predicts conjunctions or other words that neither
agree nor disagree with the sentence’s subject).

The results show clearly that not all subject num-
ber information in a sentence is used. Information
stored in representations of the adjective, object,
and object’s article, is not used at all, producing no
effects when either intervention is performed. On
the other hand, considering only the interchange
intervention, information from the subject (in early
layers) and masked verb (in later layers) is heavily
used, as reported by Lasri et al. (2022b). More-
over, there is minor usage of number information
(perror ≈ 0.05) in the adverb in layers 9-10, the
transition layers between subject and verb. Al-
though the error induced is very small, this could
hint at instances where BERT’s subject-verb agree-
ment processing diverge from our expectations.

Our setup also reveals a new phenomenon:
BERT uses the number information in the repre-
sentation of the subject’s article (a demonstrative,
which agrees with the subject). The information
in the subject article representation is used in the
same layers as the subject information, with slightly
weaker intervention effects. On this basis, we con-
clude that BERT uses subject number information
in the subject and words that agree with it (not just
the masked verb); however, further study, with ad-
ditional agreement effects, would strengthen this.

These results are strengthened by the reflection
intervention, which yields only slightly different
results. It produces the same effects as the inter-
change at the masked verb and subject’s article, al-
beit at a lower magnitude, indicating that the infor-
mation found by probes is indeed the information
the model is using to perform subject-verb agree-
ment. Moreover, the strong effects at the masked
verb position indicate that the model may be en-
coding subject number linearly. While linearity in
BERT’s representations of subject number was also
found by (Lasri et al., 2022b), they used a much
more complex approach, iteratively projecting rep-
resentations into classifiers’ null space; in contrast,
our reflection approach is non-iterative, and sug-
gests the model may be encoding this information
in just one dimension.
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Figure 4: Top: Accuracy and V-information for
distilroberta-base. Bottom: effects of reflection inter-
ventions on distilroberta-base

It is notable that the reflection intervention pro-
duces almost no effect when performed on the
subject. As this effect does appear under the in-
terchange intervention, this result likely does not
reflect a non-reliance on subject information there
encoded; rather, it is due to specific properties of
this intervention. First, the information encoded in
the subject may well be used, but simply not en-
coded as the probe found it. Second, the subject is
often split into multiple tokens; while we apply the
reflection to each token, reflecting multiple tokens
representations might not be as effective, as mul-
tiple tokens of the same word might not share the
same plurality boundary as that of single tokens.

Although we primarily discuss results for BERT,
results generalize to the RoBERTa models and their
large / distilled variants: interchange interventions
show use of information in representations of the
subject, its article, and the verb, at expected lo-
cations (see Appendix D for plots and heatmaps).
This could be surprising, especially in the case
of the distilled models. If one views the unused
subject number information present in model rep-

resentations as extraneous or irrelevant encoded
information, one might expect that these smaller
distilled models do not have the space to encode ir-
relevant information. However, this is not the case,
as seen in Figure 4; probe achieve high accuracies
even when the their information is not used.

4 Discussion and Conclusions

In our prior two experiments, we showed that sub-
ject number information is extractable from the
representation of any word in our simple sentences;
however, it is only used if it comes from a repre-
sentation of the subject or a word that agrees with
it. Could any existing metrics have warned us of
this, without requiring causal interventions?

Accuracy is insufficient to distinguish functional
relevant information; probes extract functionally
irrelevant subject number information with high ac-
curacy. The same is true for V-information, for the
same reasons; high V-information is necessary but
not sufficient for a property to be used by models.

This leaves codelength, which measures ease
of extracting the property from the data. It is an
appealing hypothesis that models might encode
functionally relevant information more accessibly
in their representations; if this were the case, MDL
probing could detect functionally relevant infor-
mation. Indeed in early layers, it distinguishes
between words that directly reflect subject number
(the verb, subject, its article) and those that do not.
However, when we mask the verb, such that subject
number cannot be determined from the verb’s form,
but its representation’s subject number information
is still functionally relevant to subject-verb agree-
ment, this distinction is lost. Thus, MDL probing
seems unable to determine functional relevance.

So, we conclude the following. First, we show
via probing that subject number information is
present in representations of all words of our sim-
ple sentences. Then, using causal interventions, we
show that only in the subject and words that agree
in number with it, is said information functionally
relevant. This indicates, as previously shown, that
probing is not a reliable method for understanding
how models function. Moreover, a way of distin-
guishing between functionally relevant and irrele-
vant information in model representations remains
elusive. For now, causal interventions remain the
most promising way to make this determination.
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Limitations

This study is limited to a single phenomenon
(number agreement), in a morphologically poor
language (English). Our conclusions should be
checked against different domains (person/gender
agreement) and in morphologically complex lan-
guages. In particular, the study of sentences in
which agreement extends beyond a demonstrative,
the subject, and the verb, could help determine
the extent to which models rely on agreement in-
formation in each word whose form expresses it.
This study is also limited by its use of small, sim-
ple, synthetic data; expanding to real-world data,
or data that follows a less rigid template, would
strengthen our conclusions. From a modeling point
of view, these results do generalize to various dif-
ferent masked language models, but this study does
not investigate larger, more modern language mod-
els; autoregressive language models are also ex-
cluded. Thus, it is unclear to what extent these
popular models exhibit the phenomenon studied.
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A Dataset Details

Our dataset is a tightly-controlled synthetic dataset
created using the BLiMP sentence generator
(Warstadt et al., 2020), which we altered and up-
dated to fit our use-case. A benefit of using this
specific generator is that it forms (relatively) co-
herent sentences, such that e.g. all subjects and
objects are valid (if not especially plausible) argu-
ments of their verb. Moreover, it also allows us
to specify additional constraints, and sample an
arbitrary number of sentences fulfilling them.

Each example in the dataset consists of a sen-
tence of the form “[This / these / that / those] [adjec-
tive] [subject] [adverb] [verb-present] the [object]”;
we also automatically generate the same sentence,
but with an opposite-number subject (and corre-
sponding verb / article) for use with interchange
interventions. At intervention time, we append (but
do not probe / investigate) the word “nowadays”.
This encourages BERT to output a present-tense
verb for the masked token; otherwise, BERT often
predicts past-tense verbs or conjunctions. Subjects
have distinct singular and plural forms, where the
plural form ends in “-s”.

Each of the word types contained in brackets
is always one word long (so there are no multi-
word subjects, or phrasal verbs). If a word is split
into multiple tokens, we handle it in the following
way. During the probe training phase, we con-
sider each token as a separate training example (so
the number of training examples for each probe
might differ, and be slightly greater than the num-
ber of sentences in the dataset). Then, during the
intervention phase, we simply apply the interven-
tion to every token composing the word. For the
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interchange intervention, both the original word
and its opposite-number counterpart must have the
same number of tokens. Thus, we discard from our
dataset any examples where the two have differ-
ent token lengths. In order to determine whether
the model’s prediction is a present-tense verb, and
whether it was conjugated in the singular or plu-
ral, we use the nodebox_linguistics_extended
package (Harmon, 2017).

B Experimental Details

Probes are scikit-learn (Pedregosa et al., 2011)
LogisticRegression models, trained with L2
normalization to predict the number (singular
/ plural) of the subject. For some experiments,
we use the weights from these models as the
weights for identical PyTorch (Paszke et al.,
2019) models, consisting of linear layer with bias
and sigmoid activation. The bert-base-cased
model has approximately 110 million parameters
(Devlin et al., 2019). Each probe has 1538
parameters, for a total of 140000 parameters
summed over all probes. All experiments were
performed using an NVIDIA A100 GPU, and
take no more than 24 GPU hours to run in total.
We study bert-base-cased, bert-large-cased,
distilbert-base-cased, roberta-base,
roberta-large, and distilroberta-base.

C Metric Details

We consider two metrics in addition to standard
accuracy. The first, predictive V-information (Xu
et al., 2020), measures the degree to which infor-
mation in representations is made available to a
chosen model family V . We study linear probes f ,
where f(x) is the probability that the subject of the
sentence from which the representation x comes, is
plural. For the purposes of V-information, however,
it is useful to define f ′(y|x) = (1−y)(1−f(x))+
yf(x), and V as the family of such functions.
V-information relies on conditional V-entropy:

HV(Y |X) = inf
f ′∈V

Ex,y∼D − log f ′(y|x)

where D is our dataset of representation, number
label pairs. We can define baseline V-entropy as

HV(Y |∅) = inf
f ′∈V

Ey∼YD − log f ′(y|∅)

where ∅ represents the absence of representational
information, e.g. a constant vector. Now we can

define predictive V-information as

I(∅ → X) = HV(Y |∅)−HV(Y |X)

i.e. the predictive advantage given to models of
the family V’ by representational information. Put
simply, this metric asks how much better our probes
can extract subject number given representational
information, as opposed to if they had none.

The conditional V-information can be estimated
via probing; it is the entropy achieved by a probe
trained on our dataset. We compute the baseline
as the maximum likelihood estimate of the label
distribution, i.e. f ′(y|∅) = c(y)/(c(0) + c(1)),
where y ∈ {0, 1} is a label, and c(y) is its count.

We also use minimum description length
(MDL) probing, described by Voita and Titov
(2020). Their codelength metric rewards probes
that are both high-performing and simple. We
measure it using their online MDL method, which
measures the cost of encoding a dataset’s labels
with probes trained on limited data. In this
setup, we have a dataset of data X and binary
labels Y ; we begin by partitioning this dataset
into groups (x1:t1 , y1:t1); (xt1+1:t2 , yt1+1:t2);
. . . ; (xtS−1+1:tS , ytS−1+1:tS ) of increasing size.
We encode the first group of labels y1:t1 at full cost,
t1 bits. For each timestep i = 1, . . . , S − 1, we
train a probe pθi on {(xj , yj)}ij=1, and encode the
next set of labels using the updated model, for a
cost of − log pθi(yti+1:ti+1 |xti+1:ti+1). The online
codelength is, in bits

L = t1 +

S−1∑

i=1

− log pθi(yti+1:ti+1 |xti+1:ti+1).

In this setup, probes that quickly learn how to ex-
tract subject plurality from BERT representations
will have a shorter codelength. So, comparing code-
length across representations from different words
will tell us the words that are easier or more difficult
to extract plurality information from.

We follow this procedure in our analysis: we
split our data into partitions; then, we repeatedly
train probes on increasing portions of our dataset,
until we have trained on all data. Probes are
trained using scikit-learn’s (Pedregosa et al., 2011)
LogisticRegression, with L2 normalization. Af-
ter each round of training, we compute the cost
of encoding the next partition. We sum over all
partitions, and repeat this process 10 times, report-
ing average codelength. The partition sizes we use
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are identical to those in Voita and Titov (2020),
i.e. 0.1%, 0.2%, 0.4%, 0.8%, 1.6%, 3.2%, 6.25%,
12.5%, 25%, 50%, and 100% of the dataset (cu-
mulatively). In some cases (e.g. when training on
embeddings that contain no subject plurality infor-
mation), MDL is very high; in this case we cap it
at 4000 (the cost of transmitting the labels uncom-
pressed, i.e. 4000 examples, at 1 bit / example).

D Results for All Models

Figure 5: Top: Accuracy and V-information; bottom:
MDL codelength
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Figure 6: Top: Accuracy and V-information; bottom:
MDL codelength

Figure 7: Top: Accuracy and V-information; bottom:
MDL codelength
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Figure 8: Top: Accuracy and V-information; bottom:
MDL codelength

Figure 9: Top: Accuracy and V-information; bottom:
MDL codelength
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Figure 10: perror induced by intervening on a repre-
sentation, by word (x-axis), and layer (y-axis). Top:
reflection intervention; bottom: interchange interven-
tion

Figure 11: perror induced by intervening on a repre-
sentation, by word (x-axis), and layer (y-axis). Top:
reflection intervention; bottom: interchange interven-
tion
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Figure 12: perror induced by intervening on a repre-
sentation, by word (x-axis), and layer (y-axis). Top:
reflection intervention; bottom: interchange interven-
tion

Figure 13: perror induced by intervening on a repre-
sentation, by word (x-axis), and layer (y-axis). Top:
reflection intervention; bottom: interchange interven-
tion
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Figure 14: perror induced by intervening on a repre-
sentation, by word (x-axis), and layer (y-axis). Top:
reflection intervention; bottom: interchange interven-
tion
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Abstract

Semitic morphologically-rich languages
(MRLs) are characterized by extreme word
ambiguity. Because most vowels are omitted
in standard texts, many of the words are homo-
graphs with multiple possible analyses, each
with a different pronunciation and different
morphosyntactic properties. This ambiguity
goes beyond word-sense disambiguation
(WSD), and may include token segmentation
into multiple word units. Previous research
on MRLs claimed that standardly trained
pre-trained language models (PLMs) based
on word-pieces may not sufficiently capture
the internal structure of such tokens in order
to distinguish between these analyses. Taking
Hebrew as a case study, we investigate
the extent to which Hebrew homographs
can be disambiguated and analyzed using
PLMs. We evaluate all existing models for
contextualized Hebrew embeddings on a novel
Hebrew homograph challenge sets that we
deliver. Our empirical results demonstrate
that contemporary Hebrew contextualized
embeddings outperform non-contextualized
embeddings; and that they are most effective
for disambiguating segmentation and mor-
phosyntactic features, less so regarding pure
word-sense disambiguation. We show that
these embeddings are more effective when the
number of word-piece splits is limited, and
they are more effective for 2-way and 3-way
ambiguities than for 4-way ambiguity. We
show that the embeddings are equally effective
for homographs of both balanced and skewed
distributions, whether calculated as masked or
unmasked tokens. Finally, we show that these
embeddings are as effective for homograph
disambiguation with extensive supervised
training as with a few-shot setup.

1 Introduction

Semitic morphologically-rich languages (MRLs)
such as Arabic, Hebrew, and Aramaic are char-
acterized by extreme ambiguity at the word level

(Wintner, 2014; Tsarfaty et al., 2020). In a standard
text, many (and often most) of the words will be
homographs with multiple possible analyses. The
high ambiguity derives from several factors. First,
prepositions, conjunctions, accusative pronouns,
and possessive pronouns are often seamlessly af-
fixed to words. Next, vowels are generally omitted
in written texts. Finally, proper nouns are not differ-
entiated from common nouns (no capital letters).

The task of distinguishing between Hebrew ho-
mograph analyses is related to the general task of
Word Sense Disambiguation (WSD) (Agirre and
Edmonds, 2006; Navigli, 2009), yet it is more chal-
lenging. In the standard case of WSD, a single
orthographic form is associated with a single word
that can be analyzed in terms of two or more senses;
also, the analyses are generally pronounced iden-
tically, and often have the same morphosyntactic
properties (e.g bank of a river vs. savings bank).
In contrast, in Semitic languages, the need for dis-
ambiguation often goes beyond a determination of
sense. Hebrew word ambiguities can be divided
into three primary categories (Table 1): 1. Segmen-
tation ambiguities, in which a given orthographic
form may (or may not) be segmented into multi-
ple word units each bearing its own role (POS tag)
in the sentence. 2. Morphosyntactic ambiguities,
in which the segmentation of the form is not am-
biguous, but multiple analyses of the word reflect
different morphosyntactic properties of each word
unit(s). 3. Sense ambiguities (the aforementioned
standard case of WSD), in which the analyses of the
unit(s) do not differ in their morphosyntactic prop-
erties, but rather in their sense. One orthographic
form may exhibit multiple types of ambiguity si-
multaneously.

Pretrained contextualized language models with
standard word-piece tokenization mechanisms have
been shown to excel at WSD in English and other
Indo-European languages (Yaghoobzadeh et al.,
2019). However, for Hebrew and other semitic lan-
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Type Form Word (translation) Morphology

Segmentation

הקפה! +קָּפֶה! הַ! (the+coffee) DET + Noun [M,S,abs]
הַקָּפָה! (credit) Noun [F,S,abs]

!Pשא !Pַא+ שׁ¬! (for+even) Sconj + Cconj
!Pַאµׁש (he aspired) Verb [M,S,3,PAST]

Morph

אלימות! אַלִּימוֹת! (violent) Adj [F,P,abs]
אַלִּימוּת! (violence) Noun [F,S,abs/cons]

!Mהרי !Mהֵר£י (he lifted) Verb [M,S,3,PAST]
!Mהָר£י (mountains) Noun [M,P,abs]

Semantic

הזמר! הַ!+זªּמֶר! (the+song) DET + Noun [M,S,abs]
+זּ®מָּר! הַ! (the+singer) DET + Noun [M,S,abs]

הסופר! +סּוֹפֵר! הַ! (the+author) DET + Noun [M,S,abs]
+סּוּפֶּר! הַ! (the+market) DET + Noun [M,S,abs]

Table 1: Examples of Hebrew ambiguity types

guages it has been argued that such models would
not sufficiently capture the structure of MRLs in
order to distinguish between internally-complex ho-
mograph analyses (Klein and Tsarfaty, 2020; Tsar-
faty et al., 2020). In this work, we take Modern
Hebrew, a Semitic language with rich and highly
ambiguous morphology, as a case study, and we
investigate the extent to which homographs can
be disambiguated by contextualized embeddings,
regarding all three levels of ambiguity. Regarding
Arabic — a sister language to Hebrew — a wide
survey of WSD methods is presented by Abder-
rahim and Abderrahim (2022). They raise the pos-
sibility of utilizing pretrained contextualized em-
beddings, yet leave its evaluation to future work.1

Hebrew is a particularly challenging language
on which to perform a homograph disambiguation
due to the limited available corpora. First of all,
currently existing Hebrew treebanks are severely
limited in size, such that most of the words in the
language are not amply represented. Furthermore,
even regarding common Hebrew words, this corpus
is problematic, because the nature of language is
such that many homographs are skewed in their
distribution; thus, even if the primary analysis is
sufficiently represented within a tagged corpus, the
secondary analysis will often be hopelessly under-
represented. For instance, one common Hebrew
homograph is !Mמה (mhm), which can be analyzed
as a preposition with pronominal suffix, or as an
interrogative. The ratio of these two analyses in
naturally-occurring Hebrew text is over 50:1; thus,
occurrences of the secondary analysis within exist-
ing tagged corpora are insufficient.

In theory, these homograph ambiguities could
be addressed using POS tagging systems. For in-
stance, Habash and Rambow (2005) consider the

1Additional studies in Arabic WSD include Merhben et al.
(2010), Merhbene et al. (2013), and Shah et al. (2010).

use of a morphological tagging system to solve
WSD in Arabic. A number of Hebrew POS tagging
systems have been published as well (Yona and
Wintner, 2005; Adler and Elhadad, 2006; Shacham
and Wintner, 2007). The current SOTA for He-
brew POS tagging is the YAP morpho-syntactic
parser (Tsarfaty et al., 2019). However, as we have
shown in a previous study (Shmidman et al., 2020,
p. 3318, table 2), although YAP produces high ac-
curacy overall on normal Hebrew text, its scores
drop drastically regarding homographs of skewed
distribution.

For analogous cases of skewed distribution in
other languages, researchers have proposed the cre-
ation of dedicated challenge sets, containing hard-
to-classify sentences not easily found in naturally-
occurring text (Gardner et al., 2020; Elkahky et al.,
2018). In the aforementioned previous study, we
produced 22 such challenge sets for Hebrew homo-
graphs, and demonstrated that a Bi-LSTM of non-
contextualized embeddings can obtain high accu-
racy on this task, establishing the current SOTA for
Hebrew homograph disambiguation (Shmidman
et al., 2020). In this paper, we extend the investi-
gation by considering whether contextualized em-
beddings from pretrained language models (PLMs)
can provide a more optimal solution. We consider
all existing contextualized Hebrew PLMs: multi-
lingual BERT ("mBERT") (Devlin et al., 2019);
HeBERT (Chriqui and Yahav, 2021); and Aleph-
BERT (Seker et al., 2021) (Table 2). Moreover, we
evaluate and verify these on a new dataset, substan-
tially larger than all previous datasets for Hebrew
homograph disambiguation.

Our experiments demonstrate that contextual-
ized PLMs pre-trained on sufficiently large unla-
beled data and vocabulary size are excellent at dis-
ambiguating the word-internal structures of homo-
graphs, yet face some challenge with pure sense dis-
ambiguation. We show the efficacy of these models
in cases of homographs with skewed distribution,
and in a few-shot setup. Finally, we establish new
state-of-the-art results on the challenging task of
homograph disambiguation for a morphologically-
rich language printed without vowels, along with a
novel benchmark for assessing the morphological
reach of future PLMs in Hebrew.

2 The Data

The challenge sets for Hebrew homograph disam-
biguation from our previous study were limited in
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Model Vocab Corpus Size
(Heb. tokens) (Heb. sentences)

mBERT 2.5K 6.3M
HeBERT 30K 27.2M

AlephBERT 52K 98.7M

Table 2: Comparison of available Hebrew BERT models

number (only 22 sets) and insufficiently representa-
tive regarding types of ambiguities; only one of the
sets was a prefix-segmentation ambiguity. Further,
they were limited to binary cases, where only two
analyses exist.

In contrast, for this study we employed field ex-
perts to choose the most critical homographs in
the language. The experts chose 75 homographs
from a list of the 3600 most frequent words in the
language, balancing frequency of word occurrence
with practical need for its disambiguation. All of
the homographs occur with a minimum frequency
of 27 words per million in naturally occurring He-
brew text. Our challenge sets include homographs
with 2-5 possible analyses. Our sets contain a wide
representation of segmentation ambiguities (15 in
number), as well as 5 cases of purely semantic
ambiguities. For each of the 75 homographs, we
collect hundreds of naturally-occurring sentences
attesting to each analysis. In almost all cases, we
succeed in collecting 1000 sentences for the pri-
mary analysis, at least 500 sentences for the sec-
ondary analysis, and at least 250 for each additional
analysis. The sentences were culled from newspa-
pers, Wikipedia, literature, and social media. We
employed a team of annotators who chose the rel-
evant homograph analysis for each case.2 All in
all, our 75 challenge sets contain 150K tagged sen-
tences. The full list of homographs and analyses is
provided in Appendix A.3

3 Experimental Setup

To evaluate the ability of pre-trained language mod-
els (PLMs) to disambiguate the in-context analyses
of morphologically rich and highly ambiguous ho-
mographs in Hebrew, we adopt a "word expert"
approach, producing dedicated classifiers for each
individual homograph (Zhao et al., 2020).

We use two types of PLMs, contextualized and
non-contextualized. For the non-contextualized
case, we replicate our previous method detailed

2The annotation process is detailed in Appendix B.
3The dataset is downloadable at: https://github.com/

Dicta-Israel-Center-for-Text-Analysis/EACL_2023

Figure 1: Comparison of previous SOTA (w2v-based
Bi-LSTM method) versus BERT-based approaches.

in Shmidman et al. (2020). For each training ex-
ample, we use a BiLSTM on top of the word2vec
embeddings of all of the words in the sentence
(other than the homograph itself) to produce an
encoding for disambiguation.4 An MLP is trained
to predict the correct homograph analysis based on
this encoding.5 For the contextualized case, we run
the sentence through a pretrained contextualized
language model and retrieve the 768-dimension em-
bedding representing the homograph in question.
An MLP is trained to predict the correct analysis
based on the homographs embeddings alone. In the
standard "unmasked" scenario, the sentence is fed
into the model as is, including the homograph in
question. In the "masked" scenario, the homograph
is replaced with a [MASK] token.

We evaluate the performance of each given
method on each given challenge set using 10-fold
cross-validation. We calculate an F1 score for each
homograph analysis, based upon the precision and
recall scores micro-averaged across all folds. We
then calculate the macro-average of the F1 scores
for all possible analyses for a given homograph,
and this is the score reported in the charts herein.

4 Results and Analysis

Standard (Unmasked) Scenario Figure 1
presents the cumulative F1 score obtained by the
models for all challenge sets. Our results show that
HeBERT and AlephBERT far outperform mBERT,
with AlephBERT achieving the higher score. The
poor performance of mBERT is likely due to its
smaller pre-training data size and exceedingly lean
Hebrew vocabulary (cf. Table 2). Furthermore, the

4We also tested fastText, but results were inferior.
5For implementation details, see Appendix D.
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Figure 2: Disambiguation accuracy across various cate-
gories of homograph ambiguity.

Figure 3: AlephBERT’s disambiguation accuracy across
homographs with differing counts of possible analyses.

HeBERT and AlephBERT models both substan-
tially outperform the previous word2vec-based
SOTA. It is thus apparent that contextualized
language models do effectively capture Hebrew
homograph distinctions, even those based on
word-pieces, even for an MRL, and they do so
more effectively than non-contextualized models.

Figure 2 demonstrates AlephBERT’s perfor-
mance on different ambiguity types. AlephBERT
performs equally well on cases of segmentation am-
biguity and morphosyntactic ambiguity. In contrast,
when it comes to ambiguities that are purely seman-
tic, the scores are noticeably lower. This is in line
with the findings of Ettinger (2020), who shows
that BERT is stronger with syntax than semantics;
Goldberg (2019) also notes BERT’s strong syntac-
tic abilities. Interestingly, the same gap exists with
the W2V-based method. Thus, both contextualized
and non-contextualized embeddings struggle to dif-
ferentiate between senses which are morphologi-
cally equivalent. Although such cases are only of
minimal import when it comes to sentence parsing,

Figure 4: Disambiguation accuracy across varying de-
grees of word piece splits within the target homograph,
using mBERT.

they are critical for downstream tasks such as coref-
erence resolution and relation extraction. It thus
remains a desideratum to improve disambiguation
of purely semantic Hebrew homographs.

The results in Figure 3 demonstrate that Aleph-
BERT performs equally well on cases of binary
homographs as on cases of three-way homograph
classification. However, when faced with cases of
4-way or 5-way classification, accuracy declines.

The Effect of Word-Pieces Previous studies
have hypothesized that word-pieces are not ade-
quate for capturing complex morphosyntactic struc-
tures due to arbitrary (non-linguistic) word-splits.
To probe into this we investigate the question, do
such splits affect performance. Our 75 homographs
are all treated as single tokens in HeBERT and
AlephBERT. However, many of the homographs
are broken up into word pieces in mBERT, due to
its meager Hebrew vocabulary. We thus compare
mBERT’s results on words treated as single tokens
versus those that are broken up into two or three
pieces, which are aggregated using first, sum, or
average of the vectors. With regard to cases of
split words, we train models using three separate
methods: providing the MLP with only the embed-
ding of the first word piece; with an average of
the word piece embeddings; or with the sum of the
embeddings. As shown in Figure 4, the splitting
of a homograph into three word-pieces appears to
have a negative impact on the ability of the result-
ing embedding to differentiate between homograph
analyses, for all aggregation methods.

Masked Scenario We consider whether Aleph-
BERT embeddings are more effective if we replace
the homograph word with [MASK] when running
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Figure 5: Comparison of unmasked vs. masked scenar-
ios, across varying degrees of skewed homographs. The
ratio axis indicates the relative distribution between the
least and most frequent analyses of each plotted homo-
graph within naturally-occurring Hebrew text.

the challenge set sentences through AlephBERT.
The motivation behind this experiment is that, as ex-
plained above, many of the homographs are skewed
in their natural proportion. In such cases, we worry
whether AlephBERT might be disproportionately
influenced by the skewed distribution; replacing
the word with [MASK] would prevent the model
from being influenced as such. As shown in figure
5, AlephBERT achieves high scores both with bal-
anced homographs as well as with homographs of
highly skewed distribution. Using a [MASK] token
instead of the actual word does not generally im-
prove performance, whether or not the homographs
are of skewed proportion.

Few-Shot Scenarios In our experiments thus far,
the 10-fold cross-validation allows the MLP to
leverage 90% of the data in each fold (hundreds of
sentences for each analysis) in order to learn the
difference between the analyses. We now consider
whether the AlephBERT embeddings can suffice
on a few-shot basis, where the training stage has
access to only 100, 50, 25, 10 or even 5 examples
of each analysis. In these cases, we train an MLP
based only on these few samples, and we use the
rest of the sentences for evaluation. Astoundingly,
as demonstrated in Figure 6, the AlephBERT em-
beddings provide a highly accurate solution even on
this few-shot basis. Even when training with only
5 examples of each homograph analysis, Aleph-
BERT reaches an accuracy that is not far below the
accuracy achieved when performing full 10-fold
CV across hundreds of sentences of each analysis.

Probing Scenarios Finally, we probe the pre-
trained AlephBERT embeddings (Yaghoobzadeh
et al., 2019; Tenney et al., 2019; Klafka and Et-
tinger, 2020; Belinkov, 2021) to see whether in

Figure 6: Use of AlephBERT embeddings to differenti-
ate between homographs on a few-shot basis, contrasted
with scores from the full 10-fold CV ("All").

and of themselves they reflect clusters which cor-
respond to different homograph analyses. We skip
the MLP, and instead use the raw embeddings di-
rectly, classifying sentences based on their proxim-
ity to the centroid of the training samples for each
homograph analysis. As shown in the orange bars
in Figure 6, this method generally does not per-
form as well as the MLP-based method; however,
the degradation is limited to only a few percentage
points, indicating that the raw embeddings are gen-
erally clustered in groups which indeed reflect the
distinctions between the analyses.

5 Conclusion

In this study we have utilized a wide-ranging col-
lection of Hebrew homograph challenge sets in
order to evaluate the extent to which raw con-
textualized embeddings can be leveraged to dis-
ambiguate Hebrew homographs. We found that
contextualized embeddings can effectively disam-
biguate analyses of homographs, much more so
than non-contextualized ones, regarding multiple
types of ambiguity: segmentation, morphosyntac-
tic and sense. Yet, efficacy on pure sense ambiguity
is lower than on the other two types. Additionally,
an increasing number of splits, or an increasing
number of different possible analyses of a token,
each lower efficacy. Finally, we found that contex-
tualized embeddings can function effectively for
this purpose on a few-shot basis, with as little as
5 examples of each analysis. This indicates that
with relatively modest effort, highly ambiguous
homographs may be effectively treated.
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Limitations

One of the major strengths of this paper is its new
and comprehensive dataset for the training and
benchmarking Hebrew homograph disambiguation.
The dataset is uncomparable in size, quality and bal-
ance to all previous Hebrew homograph datasets;
we have made every effort to be as inclusive as
possible in the creation of the dataset, making sure
to include data from a widely diverse set of genres.
Nevertheless, a perennial challenge in corpus-based
studies is that the lion’s share of the available data
tends to be authored by male writers. In order to
offset this bias, we bolstered our corpus with a
large corpus of texts specifically taken from blog
sites devoted entirely to female bloggers. Even so,
we cannot escape the fact that female writing and
feminine conjugations are underrepresented in our
dataset.

A further limitation derives from our filter for
sentences with offensive language. We perceived
early on that our human annotators were not com-
fortable tagging sentences with offensive language,
and we therefore took steps to remove such sen-
tences from our corpus. Nevertheless, this means
that our resulting dataset is limited in that it does
not properly reflect the use of offensive language
in naturally-occurring Hebrew sentences. Further-
more, our resulting tests and reported scores may
not accurately reflect the performance of our mod-
els when applied to sentences with offensive lan-
guage.

Ethics Statement

Creation of the Dataset As noted, our dataset
contains over 150K sentences in all. Every sen-
tence was reviewed and tagged by our team of hu-
man annotators, who chose the relevant homograph
analysis for each instance of each of our 75 ho-
mographs. Our annotator team included members
of diverse genders and sexual orientations. They
were paid hourly wages with legal pay stubs. Their
hourly wage was well above the minimum wage
required by law. The entirety of the dataset will
be made available for research purposes with the
acceptance of this article, together with the tagging
information.

Risks of the Research Ultimately, this data will
enable end-users to automatically diacritize and
parse large corpora of Hebrew text. For the most
part, this will provide a beneficial contribution to

the world: for the visually impaired, this technol-
ogy will enable the development of more precise
text-to-speech products; teachers will be able to
provide children and second-language learners with
accessible diacritized texts; and humanities and lin-
guistics researchers can bolster their research with
big-data analysis. However, there also is a risk
of nefarious use, for instance, if an end user were
to leverage these capabilities in order to produce
anonymous texts or recordings containing threats
to life, liberty, or happiness.
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A Appendix A: Table of Homographs

We present three tables of homographs, corresponding to the three categories of homographs discussed
within the paper (segmentation ambiguity, morphosyntactic ambiguity, and semantic ambiguity).6 In
each table, the first column ("form") indicates the homograph as it is found in naturally-occurring non-
diacritized Hebrew text.7 The second column ("word") indicates the possible diacritizations of each form.
In cases where the diacritized word includes an attached prefix, a plus sign indicates the segmentation
point between the prefix letters and the primary word. Regarding all homographs considered in this
paper, different segmentation options are diacritized differently. Thus, for each sentence in the dataset,
our human annotators were asked simply to choose the correct diacritization for the target homograph
(that is, they were asked to choose among the options listed in the "word" column). There was no need
for the annotators to separately tag the segmentation, because in all cases the choice of diacritization
itself indicates the segmentation.8 The third column indicates the morphology of each of the possible
diacritizations.9 The fourth column lists the translation.10 Within each table the homographs are listed
alphabetically.11

A.1 Homographs with Segmentation Ambiguity

Form Word Morphology12 Translation Sentences
!Mהא !Mִהַא Interrogative does 1,000

!Mֵהָ!+א Det + Noun [F,S,abs] the + mother 1,000
המראה! הַ!+מַּר�אֶה! SConj + Ptcp [M,S] / Det + Noun [M,S,abs] that + indicates / the + sight 1,000

הַ!+מַּר�אָה! SConj + Ptcp [F,S] / Det + Noun [F,S,abs] that + indicates / the + mirror 882
הַמְר´אָה! Noun [F,S,abs] takeoff 735

6It should be noted that the higher level of ambiguity are supersets of the lower levels: segmentation ambiguities generally
entail differences on the morphosyntactic and semantic levels as well, and morphosyntactic ambiguities generally also entail
semantic ambiguities. Furthermore, because many of the homographs admit to more than two analyses, it is often the case
that a subset of the analyses may form a lower level of ambiguity (e.g., just a semantic ambiguity), while other analyses form
a higher level of ambiguity (e.g. segmentation ambiguity). For the purposes of this paper, we categorize each homograph
according to the highest level of ambiguity involved: First, if a segmentation ambiguity is indicated anywhere across the
possible analyses, then we include the homograph in the "segmentation ambiguity" category. Next, if there is no segmentation
ambiguity, but a morphosyntactic ambiguity is indicated anywhere across the possible analyses, then we include the homograph
in the "morphosyntactic ambiguity" category. Finally, if the analyses all differ only on the semantic level, then we include the
homograph in the "semantic ambiguity" category.

7The ranking of analyses is based on a frequency analysis of our in-house annotated corpus. It is worth emphasizing that the
paper as a whole relates to each of the 75 homographs specifically as they are spelled in this list, and does not relate to cases
where further prefixes are attached to the homographs. As a result, the frequency analysis may sometimes seem counterintuitive.
For instance, regarding the form ,ראשי! a native Hebrew speaker might intuit that the adjectival form is primary ( .(ר´אשׁ¤י! However,
in practice, that sense is common only when prefixed with a definitive marker ( .(הראשי! In contrast, the homograph considered
here involves the form ראשי! as is, without any prefixes; in this case, the other analyses are far more common.

8It should be noted that in certain sentences, an exceedingly rare diacritization was warranted, which was not among the
options listed in the "word" column. The annotators were instructed to tag such cases as "none of the above", and all such
sentences were removed from the corpus. Similarly, some sentences do not provide enough context to determine the correct
diacritization; the annotators were asked to tag such sentences as "unclear", and these sentences too were removed from the
corpus.

9In most cases, a diacritized form has one specific morphological analysis. However, in other cases, the diacritized form can
admit to multiple morphologies. In such cases, we list all of the practically relevant morphological analyses in the third column,
separated by a slash (thus for instance in the case of .(זר! Rare analyses which hardly ever occur in practice are not listed.

10Naturally, a given Hebrew term often captures a substantial range of potential English translations, and it would not be
practical to list them all in this column; therefore, we generally present only a single representative translation.

11Ideally, we might have grouped the homographs based on part-of-speech instead. However, as can be seen from the following
tables, the 75 homographs vary so widely in terms of the parts of speech that they can represent, such that alphabetical listing
was deemed most useful.

12Key to morphology abbreviations: F=Feminine; M=Masculine; S=Singular; P=Plural; abs=absolute; cons=construct;
1,2,3=First Person, Second Person, Third Person; suf=suffix; Det = determiner; SConj=Subordinating Conjunction;
Adj=Adjective; Conj=Conjunction; Prep=Preposition; Propn=Proper Noun; Adv=Adverb; Ptcp=Participle; ACC=Accusative
marker.
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הקפה! +קָּפֶה! הַ! Det + Noun [M,S,abs] the + coffee 1,000
הַקָּפָה! Noun [F,S,abs] credit 500

הקשר! +קֶּשׁ¬ר! הַ! Det + Noun [M,S,abs] the + connection 1,000
+קµ�ַּר! הַ! Det + Noun [M,S,abs] the + signaler 1,000
הֶקְשׁ¨ר! Noun [M,S,abs/cons] context 588

השלמה! הַשׁ לָמָה! Noun [F,S,abs] completion 1,000
הַ!+� לֵמָה! Det + Adj [F,S] the + complete 906

ועד! ו�!+עַד! Conj + Prep and + until 1,000
ו®עַד! Noun [M,S,abs/cons] committee 519

!Mלש !M¨ׁלְש Prep for the purpose of 1,000
!Mµׁלְ!+ש Prep + Adverb to + there 1,000

מבחינה! +בְּחִיÉה! מִ! Prep + Noun [F,S,abs] from + point of view 1,000
מַבְחִיÉה! Participle [F,S,abs] she notices 607

מסיבות! מְסִיבּוֹת! Noun [F,P,abs] parties 1,000
+סִּיבּוֹת! מִ! Prep + Noun [F,P,abs/cons] due to + reasons 1,000

מפתח! מַפְתֵּחַ! Noun [M,S,abs] key 1,000
מְפַתֵּחַ! Participle [M,S,abs] develops / developer 329

+פֶּתַח! מִ! Prep + Noun [M,S,abs/cons] from + opening 206
שאלה! שׁ אֵלָה! Noun [F,S,abs] question 1,000

שµׁאֲלָה! Verb [F,S,3,Past] she asked 1,000
+אֵלֶּה! שׁ¬! SConj + Pronoun [MF,P,3] that + these 228

!Pשא !Pַשׁ¬!+א SConj + CConj for + even 1,000
!Pַאµׁש Verb [M,S,3,Past] he aspired 665

שבה! שׁ¬!+בָּהּ! Sconj + Prep [suf=F,S,3] that + in it 1,000
שµׁבָה! Verb [F,S,Present/Past] she returns / she returned 1,000

!Nשמ !Nֶשׁ¬מ Noun [M,S,abs/cons] oil 1,000
!Nֵמµׁש Adj [M,S,abs] wide 335

!Nִּשׁ¬!+מ SConj + Prep that + from 207
!Nָשׁ מ Noun [M,S,abs,suf=F,P,3] their name 149

שמר! שµׁמַר! Verb [M,S,3,Past] he guarded 1,000
שׁ¬מֶר! Propn Shemer 872

שׁ¬!+מַּר! SConj + Titular [M,S] that + Mr. 224

A.2 Homographs with Morphosyntactic Ambiguity

Form Word Morphology Translation Sentences
אהבה! אַהֲבָה! Noun [F,S,abs] love 1,000

אָהֲבָה! Verb [F,S,3,Past] she loved 1,000
אוכל! אֹוכֶל! Noun [M,S,abs/cons] food 748

אוּכַל! Modal [MF,S,1,Future] I can 729
אוֹכֵל! Participle [M,S,abs/cons] eats 640

אחדות! אֲחָדוֹת! Det [F,P,abs] several 1,000
אַחְדוּת! Noun [F,S,abs] unity 1,000
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אחיו! אֶחָיו! Noun [MF,P,abs,suf=M,S,3] his brothers 1,000
אָחִיו! Noun [MF,S,abs,suf=M,S,3] his brother 774

אלימות! אַלִּימוֹת! Adj [F,P] violent 1,000
אַלִּימוּת! Noun [F,S,abs/cons] violence 1,000

!Mא !Mִא Conj if 1,000
!Mֵא Noun [F,S,abs/cons] mother 1,000

אמצעי! אֶמְצָעֵי! Noun [M,P,cons] centers of / methods of 1,000
אֶמְצָעִי! Noun [M,S,abs] / Adj [M,S] method / central 969

אמרה! אָמְר´ה! Verb [F,S,3,Past] she said 1,000
אִמְר´ה! Noun [F,S,abs] a saying 343

אפשר! אֶפְשµׁר! Modal / Adv possible 1,000
אִפְשׁ¨ר! Verb [M,S,3,Past] he allowed 511

את! אֶת! ACC accusative 1,000
אַתְּ! Pronoun [F,S,2] you 1,000

!Kבהמש +הֶמְשׁ¨�! בְּ! Prep + Noun [M,S,cons] in + continuation of 1,000
+הֶמְשׁ¨�! בַּ! Prep [with Det] + Noun [M,S,abs] in the + future 930

בחיי! +חַיּ¦י! בְּ! Prep + Noun [M,P,cons] in + lives of 1,000
+חַיּ®י! בְּ! Prep + Noun [M,P,abs,suf=MF,S,1] in + my life 1,000

!Mבעול !Mָעוֹל+ בָּ! Prep [with Det] + Noun [M,S,abs] in the + world 1,000
!Mַעוֹל+ בְּ! Prep + Noun [M,S,cons] in + a world of 913
!Mָעוֹל+ בְּ! Prep + Noun [M,S,abs] in + a world 485

בקרב! +קֶר»ב! בְּ! Prep + Noun [M,S,cons] in + midst of 1,000
+קְּר´ב! בַּ! Prep [with Det] + Noun [M,S,abs] in the + battle 1,000
+קְר¯ב! בִּ! Prep + Verb [Bare Infinitive] in + approaching of 734
+קְר´ב! בִּ! Prep + Noun [M,S,abs] in + a battle 256

גילו! גּ¢ילּוּ! Verb [MF,P,3,Past] they discovered 1,000
גּ¢ילוֹ! Noun [M,S,abs,suf=M,S,3] his age 859

די! דּ¯י! Adverb sufficiently 1,000
דּ§י! Det [cons] enough of 828
דּ£י! Prefix di- 808

!Nהזק !Nָז³ּק+ הַ! Det + Noun [M,S,abs] the + beard 739
!Nֵז³ּק+ הַ! Det + Adj [M,S] / Det + Noun [M,S,abs] the + old / the + elderly man 533

החל! הֵחֵל! Verb [M,S,3,Past] he began 1,000
הָחֵל! Verb [Bare Infinitive] starting (from) 1,000

המשנה! +מִּשׁ נªה! הַ! Det + Noun [M,S,abs] the + deputy 1,000
+מִּשׁ Éה! הַ! Det + Propn [F,S,abs] the + Mishna 1,000

הנחה! הַנ³ּחָה! Noun [F,S,abs] placing 1,000
הִנ�חָה! Verb [M,S,3,Past] he directed 731
הÉֲחָה! Noun [F,S,abs] discount 517

!Mהרי !Mהֵר£י Verb [M,S,3,Past] he lifted 1,000
!Mהָר£י Noun [M,P,abs] mountains 1,000

ואת! +אֶת! ו�! Conj + ACC and + accusative 1,000
+אַתְּ! ו�! Conj + Pronoun [F,S,2] and + you 1,000

זר! ז¦ר! Noun [M,S,abs/cons] bouquet 1,000
ז³ר! Adj [M,S] / Noun [M,S,abs] foreign / stranger 1,000
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חברות! חֲבָרוֹת! Noun [F,P,abs] companies 1,000
חֶבְרוֹת! Noun [F,P,cons] companies of 1,000
חֲבֵרוֹת! Noun [F,P,abs/cons] friends 501
חֲבֵרוּת! Noun [F,S,abs/cons] friendship 398
חַבְרוֹת! Noun [F,P,cons] friends of 261

חדר! חֲד¯ר! Noun [M,S,cons] room of 1,000
חֶד»ר! Noun [M,S,abs] room 1,000
חָד¯ר! Verb [M,S,3,Past] penetrated 783

טוב! טוֹב! Adj [M,S] good 1,000
טוּב! Noun [M,S,abs/cons] goodness 357

יהודי! י�הוּד£י! Noun [M,S,abs] / Adj [M,S] a Jew / Jewish 1,000
י�הוּד§י! Noun [M,P,cons] Jews 1,000

!Nכיוו !Nכֵּיו³ו Conj because 487
!Nּכִּיוּו Noun [M,S,abs] / Noun [M,S,cons] direction 468
!Nכִּיוּ¦ו Verb [M,S,3,Past] directed 455

לו! לוֹ! Prep [suf=M,S,3] to him 1,000
לוּ! Conj if only 1,000

!Mלח !Mֶלֶח Noun [M,S,abs] bread 1,000
!Mַלָח Verb [M,S,3,Past] he fought 1,000

לפנות! לִפְנוֹת! Prep / Verb [Infinitive] facing / to turn 1,000
לְפַנּוֹת! Verb [Infinitive] to clear out 570

מדי! מִדּ§י! Det [cons] every 1,000
מִדּ¯י! Adv too much 802
מַדּ§י! Noun [M,P,cons] uniforms of 541

!Mמה !Mֶמֵה Preposition [suf=M,P,3] from them 1,000
!Mֵמָה Interrogative what are 587

מי! מִי! Interrogative / Pronoun [S,3] who 1,000
מֵי! Noun [M,P,cons] waters of 1,000

!Kמל מֶלֶ�! Noun [M,S,abs/cons] king 1,000
מָלַ�! Verb [M,S,3,Past] he ruled 522

מעבר! מֵעֵבֶר! Prep beyond 1,000
מַעֲבָר! Noun [M,S,abs] passage 1,000
מַעֲבַר! Noun [M,S,cons] passage of 883

מראה! מַר�אֶה! Participle [M,S] he shows 1,000
מַר�אָה! Participle [F,S] she shows 1,000

מרכז! מֶר�כַּז! Noun [M,S,cons] center of 1,000
מֶר�כָּז! Noun [M,S,abs] center 1,000
מְר¯כֵּז! Participle [M,S,abs/cons] organizes / organizer 393

משחק! מִשׂ חָק! Noun [M,S,abs] game 1,000
מְשׂ°חֵק! Participle [M,S,abs] plays / player 479

נעשה! נ®עֲשׂ¬ה! Verb [MF,P,1,Future] we will do 1,000
נ®עֲשµׂה! Verb [M,S,3,Past] was done 1,000

!Mנשי !Mשׁ¤יÉ Noun [F,P,abs] women 1,000
!Mשׂ¤יÉ Verb [MF,P,1,Future] we will put 613

!Nנת !NַתÉ Verb [M,S,3,Past] gave 1,000
!NָתÉ Propn Nathan 681
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עבר! עָבַר! Verb [M,S,3,Past] he passed 1,000
עָבָר! Noun [M,S,abs] past 1,000
עֵבֶר! Noun [M,S,abs/cons] side 456

עד! עַד! Prep until 1,000
עֵד! Noun [M,S,abs/cons] witness 1,000

עובדות! עuובְדּוֹת! Noun [F,P,abs/cons] facts 1,000
עוֹבְדוֹת! Participle [F,P] they work / workers 1,000

!Mע !Mִע Prep with 1,000
!Mַע Noun [M,S,abs/cons] nation 1,000

פני! פְּנ¦י! Noun [M,P,cons] faces of 1,000
פָּנ®י! Noun [MF,P,abs,suf=MF,S,1] my face 338

פרס! פְּר´ס! Noun [M,S,abs] award 1,000
פֶּר»ס! Propn Peres 956
פָּר¯ס! Verb [M,S,3,Past] he spread 630
פְּר¯ס! Noun [M,S,cons] award of 290

!Nציו !Nֹצִיּו Propn Zion 1,000
!Nּצִיּו Noun [M,S,abs/cons] mark 1,000

!Mקוד !M«קֹוד Adv before 1,000
!M§קוֹד Adj [M,S] previous 1,000
!M¯ּודuק Verb [M,S,3,Past] was promoted 284

ראשי! ר´אשׁ¨י! Noun [M,P,cons] heads 1,000
ר¸אשׁ¤י! Noun [M,S,abs,suf=MF,S,1] my head 881
ר´אשׁ¤י! Adj [M,S,abs] head 399

שירת! שׁ¨יר§ת! Verb [M,S,3,Past] he served 1,000
שׁ¤יר¯ת! Noun [F,S,cons] poetry of 896

שכר! שÈµׂר! Noun [M,S,abs] salary 1,000
שׂ כַר! Noun [M,S,cons] salary of 751
שµׂכַר! Verb [M,S,3,Past] rented 681

!Mש !M¨ׁש Noun [M,S,abs/cons] name 1,000
!Mµׁש Adv there 1,000
!Mµׂש Verb [M,S,Present/Past] he placed 1,000

תנאי! תÉְּאֵי! Noun [M,P,cons] conditions of 1,000
תְּנ®אי! Noun [M,S,abs/cons] condition 834

A.3 Homographs with Semantic Ambiguity

Form Word Morphology Translation Sentences
הזמר! +זªּמֶר! הַ! Det + Noun [M,S,abs] the + music 1,000

+זּ®מָּר! הַ! Det + Noun [M,S,abs] the + musician 1,000
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הסופר! +סּוּפֶּר! הַ! Det + Noun [M,S,abs] the + market 763
+סּוֹפֵר! הַ! Det + Noun [M,S,abs] the + author 570

זמר! ז®מָּר! Noun [M,S,abs] musician 1,000
זªמֶר! Noun [M,S,abs] song 602

חברה! חֲבֵר´ה! Noun [F,S,abs] friend 1,000
חֶבְר´ה! Noun [F,S,abs] company 1,000

רשות! ר�שׁוּת! Noun [F,S,abs/cons] permission 1,000
ר´שׁוּת! Noun [F,S,abs/cons] authority 1,000
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B Appendix B: Creation of our
Annotated Dataset

We present here further details regarding the cre-
ation of our annotated homograph dataset. As
noted above, our dataset contains challenge sets
for 75 Hebrew homographs. In almost all cases,
we collect 1000 sentences for the primary analysis,
at least 500 sentences for the secondary analysis,
and at least 250 for each additional analysis. Ev-
ery sentence was tagged by our team of human
annotators.

The main challenge that we faced is that it is of-
ten extraordinarily difficult to identify a sufficient
number of naturally-occurring Hebrew sentences
attesting to the non-primary homograph analyses.
In many cases, the naturally-occurring ratio of
these analyses is 100:1 or worse, meaning that the
non-primary analyses only occur once in 100 or
more sentences. In such cases, prima facie, we
would need to tag some 50,000 randomly-selected
cases of the homograph in order to gather 500 cases
of the alternate analysis. It would not be practical
to tag this number of sentences for each of the 75
homographs. Therefore, we devised the following
three-step process to allow us to efficiently gather
a sufficient number of sentences attesting each pos-
sible analysis of each homograph:

1. For each homograph, we first gather 4000
randomly-selected sentences from an untagged He-
brew corpus. For each sentence, our annotation
team determines the correct analysis of the homo-
graph. This initial step virtually always provides
us with a sufficient number of sentences attesting
to the primary analysis, and sometimes for the sec-
ondary analysis as well. However, it often leaves us
with an insufficient number of sentences regarding
the non-primary analyses.

2. In order to find additional sentences for the
non-primary homograph analyses, we train classi-
fiers to identify a wide net of potential candidate
sentences. For these classifiers, we use the known
cases of the primary homograph analysis (iden-
tified in the previous step) as the first class, and
we use various proxies to represent the opposing
class. The proxies used for the opposing class
include the following: (A) Hebrew words which
unambiguously function morphosyntactically in a
manner that is different from the morphosyntactic
function of the primary class; (B) Hebrew words
whose word2vec embedding is maximally distant
from that of the homograph in question (because,

in practice, for homographs of skewed proportions,
the word2vec embedding of the word tends to rep-
resent the primary usage); (C) Randomly-selected
Hebrew words. These classifiers are trained with
a BiLSTM encoding of the word2vec embeddings
of the four neighbors on either side of the target
word (not including the target word itself). Essen-
tially, the point of these classifiers is to identify
a generous selection of cases in which the homo-
graphs may possibly be functioning in a way that
is different than their primary usage.

3. We run these classifiers on all instances of the
target homograph in our untagged Hebrew corpus.
Cases that are classified as the opposing class are
sent to our annotators for human verification. In
practice, these proxy-based classifiers reach a preci-
sion of 15-30% on the task of identifying sentences
in which the target homographs function according
to a non-primary analysis. Thus, on average, for
any given homograph, tagging an additional 2222
sentences allows us to collect 500 relevant cases of
the secondary analysis.

Our procedure ensures diversity while keeping
the process cost-effective. All in all it took approx-
imately 1500 hours of annotation time to amass the
sentences in the present dataset.

C Appendix C: Computational
Equipment

We performed all computations on a desktop work-
station with an i9-10980XE processor and 256GB
of memory. This system enabled us to run 36 exper-
iments in parallel (the processor contains 18 hyper-
threaded cores), and thus we were able to complete
all of the relevant experiments and computations
over the course of several weeks of calendar time.

D Appendix D: Neural Network
Implementation Details

All BiLSTMs and MLPs were trained using dynet
(http://dynet.io/). All MLPs are constructed with a
hidden layer of size 100, and with two layers. We
train with the Adam optimizer at a learning rate of
.001, for 3 epochs.

Our word2vec embeddings for Hebrew are of
size 100. We trained them on a 500M-word Hebrew
corpus using word2vecf (https://github.com/
BIU-NLP/word2vecf, adding position info to con-
text words, and excluding words with a frequency
of less than seven. All in all, our word2vec vocabu-
lary covers 94.6% of the tokens in our dataset. For
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the out-of-vocabulary words, we use a trainable
UNK parameter in place of the word2vec embed-
ding, which is trained from scratch for each “word
expert” classifier.

As per the "word expert" paradigm, a completely
separate MLP is trained for each homograph. In
each case, the possible homograph analyses are
each treated as a possible class for prediction, and
the MLP is trained to choose from among those
classes. Thus, for instance, if the homograph has
two analyses, we train an MLP to predict one of the
two classes; if the homograph has three analyses,
then we train an MLP to predict one of the three
classes; and so on.

For the Probing Scenarios based on centroid clas-
sification, we proceed as follows. For each of the
homographs, given the training sample size (100,
50, 25, etc.), we randomly select that amount of
training sentences for each of the possible analyses
of the homograph. We calculate the centroid for
each of the analyses by averaging the embeddings
of the target homographs within the corresponding
training sentences. The remainder of the available
sentences for the homograph forms the test set.
We classify them by calculating the dot product
of the embedding of the target homograph in each
given test sentence with the centroid of each of
the homograph analyses. We run this process 200
times, each time selecting a different random set of
training sentences. The values plotted in Figure 6
reflect the average of the F1 scores across these 200
rounds. For the corresponding MLP-based experi-
ments presented for comparison in the aforemen-
tioned table, we follow an analogous procedure,
across 10 rounds.
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Abstract

Parameter-efficient tuning aims at updating
only a small subset of parameters when adapt-
ing a pretrained model to downstream tasks.
In this work, we introduce PASTA, in which
we only modify the special token representa-
tions (e.g., [SEP] and [CLS] in BERT) be-
fore the self-attention module at each layer in
Transformer-based models. PASTA achieves
comparable performance to full finetuning in
natural language understanding tasks includ-
ing text classification and NER with up to only
0.029% of total parameters trained. Our work
not only provides a simple yet effective way of
parameter-efficient tuning, which has a wide
range of practical applications when deploying
finetuned models for multiple tasks, but also
demonstrates the pivotal role of special tokens
in pretrained language models.1

1 Introduction

Built upon a pretrained language model (PLM; De-
vlin et al. 2019; Liu et al. 2019; Yang et al. 2019;
Chowdhery et al. 2022), many of the recent NLP
systems are developed based on task-specific fine-
tuning. In this way, the PLM effectively leverages
the task-agnostic knowledge captured during self-
supervised pretraining and adapts itself to down-
stream tasks. However, full finetuning poses a
challenge to model deployment under multi-task,
memory-limited scenarios, where we need to train
and store a separate full-sized model for each sub-
stantially distinct task. As an alternative, parameter-
efficient tuning (Ding et al., 2022) aims at only up-
dating a small number of parameters when adapting
PLMs to downstream tasks while making most of
the model parameters fixed and shared among tasks,
thus reducing memory usage.

In this paper, we propose PArameter-efficient
tuning with Special Token Adaptation (PASTA),

∗Work done when visiting USC.
1Our code is publicly available at: https://github.

com/luka-group/PASTA/

L5-H3 L5-H5 L5-H6 L5-H7

L20-H3 L20-H5 L20-H8 L20-H15

Figure 1: Examples of vertical attention heads in the 5-
th and 20-th layer of BERT-large with a random sample
from CoLA (Warstadt et al., 2019) as input. Heads in
the first row and second row assign most of maximal
attention weights to [CLS] and [SEP] respectively.
See Appx. §C for the full attention map.

where we only add trainable vectors to hidden rep-
resentations of special tokens 2 at each layer before
the multi-head attention module in Transformer-
based PLMs. Our work is motivated by the role
of special tokens in PLMs. First, special tokens
such as [CLS] collect information from the whole
input sequence and are typically regarded as the
global text representation (Devlin et al., 2019). For
sentence-level tasks such as GLUE (Wang et al.,
2018), a common practice is to add a new classifier
head based on the [CLS] representation in the last
model layer. Thus, if trained properly, by updating
the [CLS] representations, we can approximate
the result of the information collection process in
PLMs. Second, many attention heads in PLMs fol-
low a vertical pattern3, where the attention scores
are mostly allocated to either the [CLS] or [SEP]
token (Clark et al., 2019; Kovaleva et al., 2019), as

2WLOG, we use the notation of special tokens [CLS] and
[SEP] in BERT for the convenience of expression, while the
method applies in the same way to other paradigms such as
<S> and </S> in RoBERTa (Liu et al., 2019).

3Following Voita et al. (2019) and Yao et al. (2021), an
attention head is regarded as vertical if at least 90% tokens
assign maximal attention scores to either [CLS] or [SEP].
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illustrated in Fig. 1. Therefore, updates to special
tokens can also be disseminated to other tokens dur-
ing the forward pass through the vertical attention
heads (Elhage et al., 2021), enabling the PLMs to
adapt to both sentential and lexical tasks.

By tuning as few as up to 0.029% of the total
parameters, PASTA achieves competitive perfor-
mance on par with full finetuning and BitFit (Za-
ken et al., 2022) on GLUE (§4.2). It also outper-
forms P-tuning v2 (Liu et al., 2022) by 0.6% on
CoNLL2003 with 20× fewer additional parame-
ters (§4.3). The ablation study shows that we can
further reduce trainable parameters to 0.009% with
only a slight performance drop (§4.4), showing the
merit of adapting special token representations.

2 Related Work

A recent survey (Ding et al., 2022) categorizes three
types of parameter-efficient tuning methods. Ad-
dition methods (Houlsby et al., 2019; Lester et al.,
2021; Liu et al., 2022) introduce a small number
of additional trainable parameters while keeping
those in the PLM unchanged. Specification meth-
ods (Zaken et al., 2022; Guo et al., 2021; Zhao
et al., 2020) update a portion of parameters in the
PLM while keeping others frozen. Reparameteri-
zation methods (Aghajanyan et al., 2021; Hu et al.,
2021; Qin et al., 2021) modify PLMs’ structures to
parameter-efficient forms. Our method belongs to
the addition-based methods and follows the basic
settings of P-tuning v2 (Liu et al., 2022), where
newly initialized hidden representations of tokens
are inserted into each Transformer layer. Different
from most prompt tuning methods that introduce
new tokens, we add the introduced vectors to the
hidden states of special tokens and keep the se-
quence length unchanged.

Previous works use probing tasks (Wu et al.,
2020) and pruning methods (Prasanna et al., 2020)
to study the roles of different modules inside BERT.
It has been shown that functional specialization
exists in BERT self-attention heads (Clark et al.,
2019), and vertical attention heads3 take up a large
portion (Yao et al., 2021). Kovaleva et al. (2019)
find that vertical attention heads are almost ex-
clusively associated with attention to [SEP] or
[CLS] tokens, and Clark et al. (2019) conclude
that heads in early layers often attend to [CLS]
while in middle layers attend to [SEP]. In this
work, we demonstrate that adapting hidden repre-
sentations of special tokens is sufficient to bring the

Multi-Head Attention

h([CLS]) Sentence1

Frozen

Trainable

e(𝑣𝟏
𝒍 )

h([SEP]) Sentence2 h([SEP])

e(𝑣𝟐
𝑙 ) e(𝑣𝟑

𝑙 )

Add & Norm

Feed-Forward Network

Add & Norm

Figure 2: Architecture of PASTA layer in Transformer.
Skip-connections in Transformers are not shown for
brevity. At layer l we add a trainable vector e(vl

p) ∈ Rd

to the hidden representation of the p-th special token in
the input sequence, and freeze the weights of the PLM.

performance of PLMs to the level of full finetuning.

3 PASTA

Given a large PLM, our goal is to develop a
parameter-efficient tuning method that only up-
dates a small set of parameters when adapting to a
downstream task. To this end, we propose a simple
yet effective method called PASTA, in which we
train a hidden vector for every special token at each
Transformer layer, along with a task-specific clas-
sifier, while freezing the parameters of the PLM.

3.1 Special Token Adaptation
The special token adaption is illustrated in Fig. 2.
Although these adaptations are not directly applied
to non-special tokens, changes in special token hid-
den states can be effectively disseminated to other
tokens via self-attention during forward passes,
thanks to the prevalence of vertical attention heads3

in PLMs.
Specifically, denote the inputs to the l-th Trans-

former layer as Hl = {hli}Ni=1,h
l
i ∈ Rd, where N

is the number of input tokens, d is the hidden size,
PASTA modifies the inputs as follows:

Hl
mod = {hli +ml

i}Ni=1,

Hl+1 = Trml(Hl
mod),

where Trml is the l-th Transformer layer, ml
i ∈

Rd is our special token adaptation defined as fol-
lows:

ml
i =

{
0 if token i is not a special token

e(vlp) if token i is the p-th special token
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# Param Parameter Consistency

Adapter O(L× d× r) ✓
P-tuning v2 O(L× d× T ) ✓
BitFit O(L× (d+m)) ✓
Diff-Prune - ✗

PASTA O(L× d) ✓

Table 1: Parameter complexity of PASTA and baselines.
Here L and d refer to the number of layers and hidden
size of the PLM. m and r refer to the intermediate size
of FFN modules in Transformers and Adapters, respec-
tively. T is the prompt length. Parameter consistency
refers to whether the set of trainable parameters is con-
sistent across different tasks (Zaken et al., 2022).

where e(vlp) ∈ Rd is the trainable vector added to
the hidden representation of the p-th special token
in the input sequence. During downstream task
training, only those introduced hidden vectors for
special tokens and the task-specific classifier are
optimized, and the rest of model parameters are
frozen.

3.2 Parameter Efficiency and Consistency

As shown in Tab. 1, PASTA achievesO(L× d) pa-
rameter complexity4 and updates as few as 0.015%-
0.029% of the parameters compared to a full PLM
when using BERT-large or RoBERTa-large as back-
bone. Unlike Adapter (Houlsby et al., 2019) that
learns the transformation of all input tokens using
a shared FFN, PASTA only learns the task-specific
update of special token representations as a bias
term, which significantly reduces the parameter ca-
pacity needed for adaptation on downstream tasks.

Meanwhile, the set of parameters introduced by
PASTA is consistent across different tasks, making
it efficient for hardware-based deployment (Zaken
et al., 2022). On the contrary, in Diff-Prune, the
parameter update is considered as a term of the loss
function (Guo et al., 2021), resulting in different
sets of updated parameters in distinct tasks.

4 Experiments and Results

We hereby study the downstream performance of
PASTA and analyze the properties of introduced
hidden vectors.

4.1 Experimental Setup

Baseline Methods. We compare PASTA with
the following parameter-efficient tuning methods

4The number of special tokens are invariant to the scale of
models, and are usually very small.

in prior studies. Adapter (Houlsby et al., 2019)
introduces new feed-forward modules in Trans-
former layers while keeping original parameters
of the PLM frozen. BitFit (Zaken et al., 2022) up-
dates all bias terms in the PLM during finetuning.
Diff-Prune (Guo et al., 2021) introduces L0-norm
penalty on the updated parameters to encourage
sparsity of tuned parameters. P-tuning v2 (Liu
et al., 2022) prepends trainable hidden vectors be-
fore the input sequence at each layer while keeping
the original PLM parameters frozen. LoRA (Hu
et al., 2021) uses low-rank decomposition matrices
to model the parameter updates.
Model Configuration. We conduct our exper-
iments using BERT-large and RoBERTa-large
(We also report experiments with BERT-base in
Appx. §A). To facilitate comparison with baseline
works, we take most of the experimental results
from their original papers which are reported with
either BERT-large or RoBERTa-large. Note that
multiple [SEP] tokens in a single sequence (e.g.,
in sentence pair tasks like MNLI) are treated as
different special tokens and have separate sets of
trainable parameters, and the number of trainable
parameters varies among downstream tasks accord-
ing to the number of special tokens added. Details
of training and hyperparameters settings are shown
in Appx. §B.

4.2 GLUE Tasks

Task Setup. We evaluate PASTA on the widely
used GLUE benchmark5 (Wang et al., 2018). For
the convenience of direct comparison, we use the
same metrics as were used in baseline works (De-
vlin et al., 2019; Liu et al., 2019). For experi-
ments with BERT, MRPC and QQP are evaluated
using F1 score, STS-B is evaluated using Spear-
man’s correlation coefficient, CoLA is evaluated
using Matthew’s Correlation, and the other tasks
are evaluated using accuracy. For experiments
with RoBERTa, STS-B is evaluated using Pear-
son’s correlation coefficient, CoLA is evaluated
using Matthew’s Correlation, and the other tasks
are evaluated using accuracy.
Results. Tabs. 2 and 3 report the performance of
PASTA on GLUE benchmark with BERT-large
and RoBERTa-large respectively. PASTA with
RoBERTa-large achieves the same average score

5Following previous work (Houlsby et al., 2019; Guo et al.,
2021; Zaken et al., 2022), we exclude WNLI since BERT
underperforms the majority class baseline (Devlin et al., 2019).
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%Param RTE CoLA STS-B MRPC SST-2 QNLI MNLI(m/mm) QQP Avg.
acc. mcc. Spearman F1 acc. acc. acc. F1

Full Finetuning∗ 100% 70.1 60.5 86.5 89.3 94.9 92.7 86.7/85.9 72.1 81.6
Adapter∗∗ 3.6% 71.5 59.5 86.9 89.5 94.0 90.7 84.9/85.1 71.8 81.1
Diff-Prune† 0.5% 70.6 61.1 86.0 89.7 94.1 93.3 86.4/86.0 71.1 81.5
P-tuning v2 0.29% 70.1 60.1 86.8 88.0 94.6 92.3 85.3/84.9 70.6 81.0
BitFit‡ 0.08% 72.0 59.7 85.5 88.9 94.2 92.0 84.5/84.8 70.5 80.9

PASTA 0.015%-0.022% 70.8 62.3 86.6 87.9 94.4 92.8 83.4/83.4 68.6 80.9

Table 2: BERT-large model performance on GLUE benchmark test set. Lines with ∗ and ∗∗ are results from Devlin
et al. (2019) and Houlsby et al. (2019), and lines with † and ‡ are from Guo et al. (2021) and Zaken et al. (2022)
respectively. We reimplement experiments of P-tuning v2 on GLUE benchmark with a prompt length of 20.

%Param RTE CoLA STS-B MRPC SST-2 QNLI MNLI(overall) QQP Avg.
acc. mcc. Pearson acc. acc. acc. acc. acc.

Full Finetuning∗ 100% 86.6 68.0 92.4 90.9 96.4 94.7 90.2 92.2 88.9
LoRA† 0.24% 87.4 68.2 92.6 90.9 96.2 94.9 90.6 91.6 89.0

PASTA 0.015%-0.029% 86.6 69.7 91.8 90.9 96.8 95.1 90.4 89.9 88.9

Table 3: RoBERTa-large model performance on GLUE benchmark. Lines with ∗ are results from Liu et al. (2019),
and lines with † are from Hu et al. (2021). We follow the metric settings of baselines and also report results on
GLUE development set for the convenience of direct comparison.

CoLA RTE MRPC STS-B CoNLL2003

PASTA 65.4 76.2 89.7 90.8 94.0
- w/o [CLS] 58.8 72.6 91.4 90.2 93.7
- w/o [SEP] 64.5 71.1 91.9 90.3 93.7
- shared vector 64.7 74.7 92.1 90.0 93.9
- classifier only 36.5 54.2 81.5 64.9 77.4

Table 4: Performance of ablation study with BERT-large
on GLUE and CoNLL2003 development sets.

as that of full finetuning over GLUE tasks. PASTA
with BERT-large achieves an average score on par
with BitFit using over 3× fewer trainable parame-
ters and comparable results to other higher parame-
ter complexity baselines. The results demonstrate
that by leveraging the pivotal role of special to-
kens in PLMs, PASTA is able to effectively adapt
the model to sentence-level tasks with significantly
fewer parameters tuned than previous methods.

4.3 Named Entity Recognition

Task Setup. We experiment with the NER task on
CoNLL2003 (Tjong Kim Sang and De Meulder,
2003). Following Devlin et al. (2019), we formu-
late NER as a token classification problem.
Results. As shown in Fig. 3, PASTA with
BERT-large achieves an F1 score of 90.8% on
CoNLL2003 test set, outperforming P-tuning v2
(Liu et al., 2022) by 0.6% with 20× fewer trainable
parameters, while falling behind full finetuning
by 2.0%. Nevertheless, the strong performance

Figure 3: NER results on CoNLL03 with BERT-large
(F1 score percentages are marked over the bars). Each
method is labeled with the percentage of trainable pa-
rameter sizes with regard to full finetuning in parenthe-
ses.

of PASTA compared to P-tuning v2 indicates that
even though PASTA only directly adapts special
tokens, the representations of all input tokens can
still be properly tuned, supporting our hypothesis
that vertical attention heads are able to disseminate
adaptations in special token hidden states to other
tokens.

4.4 Analysis

Ablation on choices of special tokens. To under-
stand the effect of tuning different combinations
of special tokens on downstream tasks, we further
limit the additional parameter capacity of PASTA
by only adapting either [CLS] or [SEP], or share
a common vector across all special tokens. Tab. 4
shows the performance of three ablated variants and
a baseline that only tunes the classification head on
top of a fixed BERT-large. In general, we observe
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Figure 4: The distribution map of norms of introduced
hidden vectors on MRPC, RTE and STS-B tasks with
BERT-large. In each subgraph, the first column shows
the norms of introduced vectors added to [CLS] at each
layer, and the second and third columns are introduced
vector norms at two [SEP] tokens respectively.

a decrease in performance on most tasks except on
MRPC for three PASTA variants, and performance
degrades significantly if we do not adapt any spe-
cial tokens. These results demonstrate the vital role
of introduced hidden vectors for special tokens in
PASTA, while the best choice of special tokens to
be adapted may vary depending on the task.
Norm distribution of introduced hidden vectors.
Fig. 4 shows the norm distribution of introduced
vectors on downstream tasks. The introduced hid-
den vectors learn the difference of special tokens
between pretrained and adapted models, and thus
norms of those vectors indicate the magnitude of
parameter change at different layers. Similar to
the pattern of parameter change during full finetun-
ing (Kovaleva et al., 2019), PASTA generally has
larger norms of hidden vectors at layers closer to
the output.

5 Conclusion

We present PASTA, a parameter-efficient tuning
method that only modifies special token represen-
tations at each Transformer layer when adapting to
downstream tasks. Our approach is motivated by
the observation that PLMs have a large amount of
vertical attention heads that heavily attend to spe-
cial tokens, and these heads disseminate value up-
dates from special tokens to all of the other tokens.
Experiments show that PASTA achieves strong per-

formance comparable to full finetuning on senten-
tial and lexical tasks with high parameter efficiency.
Our work not only provides an effective solution for
parameter-efficient tuning, but also demonstrates
the pivotal role of special tokens in PLMs.

Limitations

In this work we hypothesize that the vertical at-
tention heads could play a role as “information
disseminator” based on the theoretical analysis of
Transformers (Elhage et al., 2021). However, we
still have no direct approaches such as probing
tasks and reverse engineering to prove this assump-
tion. And since PASTA relies on adaptation of
special tokens, it cannot be applied to language
models which do not pad special tokens to input
sequences such as GPT-2 (Radford et al., 2019).
For the empirical results, we choose GLUE bench-
mark and CoNLL2003 to study the performance on
language understanding tasks. The effectiveness
of PASTA on language generation tasks has not
been tested in this work due to limited bandwidth.
Finally, similar to other parameter-efficient tuning
methods, PASTA suffers from a higher computa-
tional cost compared to full finetuning.
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A Performance of BERT-base

Tab. 5 reports the performance of PASTA and a
part of baselines with BERT-base as backbones on
GLUE development sets. We do not put the result
table in the main body of this work because most
baselines did not report GLUE test set scores using
BERT-base, and only three of them reported GLUE
development set scores with BERT-base in their
works. PASTA slightly underperforms baselines
on average, while it outperforms other models on
small datasets such as RTE and MRPC.

B Implementation Details

Our model is implemented based on Huggingface’s
Transformers. We optimize models with AdamW
(Loshchilov and Hutter, 2017). We set the maxi-
mum input length to 128 and use a fixed random
seed of 42 for all tasks. Experiments are done
on NVIDIA RTX A5000 for averagely 3 hours
per task, and distributed training is used for most
tasks. Tab. 6 reports the best hyperparameters for
model training. For hyperparameter search, we se-
lect learning rate from {5e-4, 1e-3, 2e-3, 2.5e-3,
3e-3, 4.5e-3, 5e-3, 7e-3} and the number of epochs
from {50, 80, 100, 150}.

C Full Attention Map

Fig. 5 illustrates the attention maps of all heads in
BERT-large. With a random sample from CoLA
dataset as input ("Fred watered the plants flat."),
there are 112 heads out of 384 in total being vertical
heads3.
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Figure 5: Full attention map of BERT-large pretrained with a random sample from CoLA as input. Rows and
columns represent model layers and heads respectively, and darker color indicates larger weights. Vertical attention
heads are highlighted in orange.

%Param RTE CoLA STS-B MRPC SST-2 QNLI MNLI(m/mm) QQP Avg.

Full Finetuning ∗ 100% 66.4 62.1 89.8 90.9 91.6 90.0 83.2/ - 87.4 82.7
Adapter∗ 0.81% 71.8 61.5 88.6 89.9 91.9 90.6 83.1/ - 86.8 83.0
BitFit† 0.8% 72.3 58.8 89.2 90.4 92.1 90.2 81.4/ - 84.0 82.3

PASTA 0.015%-0.022% 73.6 57.9 88.7 91.5 91.2 89.7 77.8/78.8 80.8 81.4

Table 5: PASTA with BERT-base model performance on GLUE benchmark development set. Lines with ∗ and †

refer to results from Mao et al. (2021) and Zaken et al. (2022) respectively.

RTE CoLA STS-B MRPC SST-2 QNLI MNLI QQP CoNLL2003

Learning rate 4.5e-3 5e-3 2e-3 2.5e-3 7e-3 2e-3 5e-4 5e-3 3e-3
Batch size 32×4 32×1 32×3 32×4 64×3 32×4 32×1 32×4 16×1
Number of adapted tokens 3 2 3 3 2 3 3 3 2
Training epochs 150 100 150 150 100 80 50 100 100
Best dev performance 76.2 65.4 90.8 89.7 93.9 92.2 83.7 87.9 94.1
Best epochs 121 63 109 136 99 42 49 97 89

Table 6: PASTA with BERT-large training details for GLUE and CoNLL2003 tasks. Distributed training on multiple
GPUs is used when avaiable for less training time.
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Abstract

Subtle changes in word choice in communi-
cation can evoke very different associations
with the involved actors. For instance, a com-
pany ‘employing workers’ evokes a more posi-
tive connotation than the one ‘exploiting’ them.
This concept is called connotation. This pa-
per investigates whether pre-trained language
models (PLMs) encode such subtle connotative
information about power differentials between
involved entities. We design a probing frame-
work for power connotation, building on Sap
et al. (2017)’s operationalization of connota-
tion frames. We show that zero-shot prompting
of PLMs leads to above chance prediction of
power connotation, however fine-tuning PLMs
using our framework drastically improves their
accuracy. Using our fine-tuned models, we
present a case study of power dynamics in US
news reporting on immigration, showing the
potential of our framework as a tool for under-
standing subtle bias in the media.1

1 Introduction

An author’s choice of words evokes associations
and reactions from a reader that go beyond the lit-
eral meaning they express. This underlying level
of meaning is called connotation and often carries
social, cultural, or emotional implications for lis-
teners or readers (Sonesson, 1998). In high-stakes
settings such as opinion polls or news reporting, it
has been shown that subtle changes in word choices
can influence responses or opinions (Kahneman
and Tversky, 1984; Rashkin et al., 2016). For ex-
ample, the choice of the term ‘undocumented work-
ers’ vs. ‘illegal aliens’ to describe immigrants can
elicit different levels of prejudice toward that group
(M.S., 2010).

Different connotations can inject multiple layers
of meaning into a word, phrase, or passage. This

1Source code is available at
https://github.com/shinyemimalef/Probing-Power-by-
Prompting

Prelude The crowd approves the leader.
Hypothesis The leader has MASK power than the crowd.
Connotation AG≻powerTH

Prelude The crowd hails the leader.
Hypothesis The leader has MASK power than the crowd.
Connotation AG≺powerTH

Figure 1: Top: Connotation frames from Sap et al.
(2017)’s dataset for the predicates ‘approve’ and ‘hail’,
which evoke different power differentials between argu-
ments ‘crowd’ and ‘leader’. Predicate ‘approve’ implies
that the leader needs approval of the powerful crowd;
while ‘hail’ suggests that the crowd praises the pow-
erful leader. Colored arrows show how we map from
predicate- to entity-centric connotation. Bottom: Our
PLM probing framework comprising a prelude (intro-
ducing predicate and arguments) and a hypothesis (ex-
pressing the implied power differential).

paper focuses on connotations of power arising
from descriptions of entities. Power dynamics are
omnipresent at all levels of society, between indi-
viduals, groups, political actors, or institutions, and
the subjective power of an entity can be expressed
through the choice of words used to describe their
actions (Sap et al., 2017). For example, in Figure 1,
sentence (1) implies the leader requires approval of
the powerful crowd; while sentence (2) implies the
crowd praises the powerful leader.

Following the successful application of probing
pre-trained language models (PLMs) to a variety
of tasks ranging from grammatical structure (Koto
et al., 2021; Kulmizev et al., 2020; Kassner and
Schütze, 2020; Sinclair et al., 2022) to common-
sense reasoning (Lin et al., 2020), we extend the
probing paradigm to connotative power and study
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the extent to which PLMs can be used to reliably
predict power dynamics between two entities.

We do so by drawing on the recently proposed
notion of connotation frames (Rashkin et al., 2016;
Sap et al., 2017; Ma et al., 2020), a structured
framework that captures connotative associations
evoked by a predicate (verb) about its agent (sub-
ject) and theme (object). Figure 1 illustrates the
concept of the power connotation frame, which
for a given predicate predicts whether the agent
(subject) has more, less, or equal power compared
to the theme (object). Specifically, we devise a
probing framework to test PLMs for this formaliza-
tion of connotative power which carefully controls
for confounds relating to the specific agents and
themes and probe structure. We show that, while
PLMs cannot reliably predict power dynamics in a
zero-shot setting, it is possible to fine-tune PLMs
using our probes to predict power connotation with
close to 80% macro F1.

Using our fine-tuned PLMs, we present a case
study of power dynamics in US news reporting on
the topic of immigration. News reporting is a par-
ticularly prominent example of documents where
power dynamics are often at the core of the issue
under discussion, and there is often an intrinsic
motivation, especially in partisan news outlets, to
present information in a biased way. We draw con-
nections between power dynamics and emphasis
framing and surface subtle bias in the context of
immigration. In sum, our main contributions are:

• We propose a method to (i) disentangle con-
notation frames implied by the predicate from
its arguments and the sentence structure; and
(ii) quantify predicate connotation frames in
PLMs.

• We probe the zero-shot ability of common
PLMs to capture connotation frames and find
poor performance, suggesting that this subtle
signal is not captured in the representations.

• We show that the power prediction perfor-
mance of PLMs can be drastically improved
by fine-tuning on a small set of labeled in-
stances, achieving F1 scores close to 80%.

• Using the best model, we present a case study
on the news reporting on immigration and
analyze how the power of immigrants and im-
migration services are portrayed in US news
outlets with different political leaning.

2 Background

In this section, we provide an overview of the rele-
vant literature on connotative framing and its for-
malization, probing PLMs, and how connotative
framing and PLMs combined can be harnessed to
study media bias.

2.1 Connotation Frames

Connotation frames were introduced by Rashkin
et al. (2016) as a formalism for examining the
sentiment and presupposed facts about actors and
themes, as implied by the actions and events that
they engage in (i.e., their predicates). The origi-
nal framework cover several connotations, incld-
ing the writer’s perspective (e.g., being sympa-
thetic/antagonistic towards the agent), effect (e.g.,
the theme has been hurt), and the mental states
projected onto agents and themes (e.g., being un-
happy). Later work by Sap et al. (2017) extended
the set of connotation frames to include ‘power’,
which denotes the relative authority levels of the
agent and theme implied by the predicate, and
‘agency’ defined as the capability of the agent to
progress their own narrative. While our paper fo-
cuses on power, we note that our methodology can
be extended to other connotation dimensions.

Sap et al. (2017) published a data set of En-
glish verbs manually annotated with power levels:
The agent has either more power (AG≻powerTH;
the writer implies the agent has a level of control
over the theme), or less power (AG≺powerTH; the
theme is implied to be more authoritative). We use
a subset of their data in this work.2 Unlike previous
approaches to connotation frame prediction, which
used annotated data to train supervised classifiers
(Field et al., 2019; Rashkin et al., 2016), we use
the method of probing to study and extend PLMs’
ability to predict connotative power.

In earlier application of connotation frames
to study various biases, researchers studied enti-
ties’ depicted sentiment polarities in news articles
(Rashkin et al., 2016), gendered bias in movies Sap
et al. (2017), or people portrayals in #metoo stories
Field et al. (2019). In our case study, we connect
power connotation with emphasis frames (Card
et al., 2015) for a more nuanced analysis of media
bias. We show that our method is applicable to
complex input sentences, diverging from settings
in prior work, which largely considered isolated,

2The original data also includes an ‘equal power’ option,
which we do not use here.
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short text snippets (such as (agent,predicate,theme)
tuples), and abstracted away from specific entities
by using placeholders.

2.2 Probing PLMs

Probing language models for different types
of knowledge has become a widely-used ap-
proach to understanding the knowledge encoded in
PLMs (Liu et al., 2023). Typically, a PLM is pre-
sented with a prompting input and either completes
the input or predicts the most likely token to fill
in a masked position. Auto-prompting (Shin et al.
(2020); PLMs generating prompts) and continu-
ous prompting (Qin and Eisner (2021); prompting
with an embedding) have been proposed recently,
reducing the requirement of natural prompt engi-
neering, but also transparency. While probing is a
flexible framework, previous work showed that re-
sults can be sensitive to prompt wording and struc-
ture (Elazar et al., 2021a), and recommended con-
sidering such confounds by careful construction
of controlled probe sets. Probing can be used as a
zero-shot knowledge querying strategy or a way of
fine-tuning to train PLMs to more accurately com-
plete probes (Liu et al., 2023). Here, we extend
probing to subtle connotative power associations
arising from transitive verbs. Following previous
work (Trichelair et al., 2019; Elazar et al., 2021b),
we introduce several layers of controls, including
paraphrased prompts and controlled sets of entities
(i.e., predicate arguments) to ensure our findings
are robust.

2.3 Media Bias and Framing

Automatically predicting framing bias has attracted
recent attention in the NLP community, ranging
from article-level frame prediction (Card et al.,
2016; Field et al., 2018; Khanehzar et al., 2019,
2021) to tweet analysis (Mendelsohn et al., 2021).
Previous works (Card et al., 2016; Khanehzar et al.,
2021) showed characteristics of entities could help
predict the article-level emphasis frames. In a case
study (§ 7) on the topic of immigration in major
US news outlets, we analyze the interplay of power
connotation and article-level emphasis frames. Im-
migration has been a contested issue in the US, with
the proponents and opponents actively trying to
steer public opinion towards their stance by empha-
sizing selective and often simplified aspects of the
topic (Farris and Silber Mohamed, 2018; Lawlor
and Tolley, 2017; Ommundsen et al., 2014).

3 Probing PLMs for Connotative Power

We propose a probing framework to assess how
much connotative information PLMs acquired dur-
ing pretraining, including BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019) and ALBERT
(Lan et al., 2020). Similar to the masked token
prediction objective during PLM pre-training, we
have PLMs predict a masked token which in con-
text reveals the power dynamics between an agent
and theme in a given sentence. Our probe formula-
tion is closely tied to Sap et al. (2017)’s annotation
instructions to align the ground-truth data and in-
formation elicited from the PLMs.

We directly query the underlying masked lan-
guage model in PLMs to compute power conno-
tations associated with predicates. In particular,
we formulate our probing template reflecting the
definition of the power connotation:

Probe 1 AG P TH. TH has MASK power than AG.

Here, P is a placeholder for a predicate (details
in §5.2). AG and TH are placeholders for concrete
entities in the agent and theme position, which
during probing and fine-tuning, are instantiated
with common English names (details in §3.1). In
the remainder of this paper, we will refer to the
first sentence of our template as prelude which
introduces the verb and associated entities; and
to the second sentence as hypothesis. Figure 1
(bottom) shows two instatinated probes.

The PLMs are probed with the context of an
instantiated probe with {P=p,AG=ag, TH=th}:

P (MASK=m|p, ag, th),

for the predicted probability of two possible values
in the MASK position, namely the masked target
word taking value m∈{‘more’, ‘less’}. For exam-
ple, if P (m=‘more’) > P (m=‘less’), the PLM
predicts higher power of theme (th) than agent
(ag) of the verb p, (AG≺powerTH). To reduce the
impact of specific instantiations of entities, we com-
pute the final power connotation score for p as the
average score over a large numger of entity combi-
nations in the AG and TH positions:

Spprobe(m) =
1

K

∑

ag∈A
th∈T

P (MASK=m|p, ag, th)

(1)
where A and T are the set of all candidate entities
for the AG and TH positions, respectively, and
K=|A||T |.
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3.1 Removing confounds

As discussed in §2.2, PLM probing is susceptible
to confounds, including probe structure and choice
of arguments, both of which can effect connotation
frame prediction. We introduce measures to control
three confounds (C1–C3).

C1: Probe structure In addition to Probe 1 we
propose a second, semantically equivalent, probe
with different structure.

Probe 2 AG P TH. TH is MASK powerful than AG.

We use different probe formulations to ensure that
the model predictions are not incidental to a partic-
ular probe wording; and that the model is consis-
tently correct. To this end, we adapt Elazar et al.
(2021b)’s group evaluation (§5.3) score which only
accepts a model prediction as correct if the correct
class is predicted for multiple variants of the probe.

C2: Entity semantics We aim to capture power
differentials as implied by the predicates that re-
late to two entities. As such, we do not want the
predicted scores to be impacted by intrinsic power
associated with the entities (e.g., high power ‘pres-
idents’ vs. low power ‘immigrants’). To this end,
we constrain our entities to common English names.
We use 16 female and male names from Nosek
et al. (2002),3 because (1) unlike general groups
or entities (immigrants, agencies, politicians, etc.)
names are largely free of a priori connotation which
could impact our connotation scores; (2) all names
are in the PLM vocabulary, removing discrepan-
cies in subword tokenization; and (3) the set of
names has been tested in implicit association tests
(IAT and WEAT) and calibrated to only differ in
gender, removing confounding effects of class or
frequency (Jentzsch et al., 2019). The same set
of names has been previously used in the con-
text of gender bias mitigation (Gupta et al., 2022).
To remove the gender confound we instantiate all
possible {ag, th} tuples from our 16 names, and
reporting per-verb power connotations, obtaining
16 × 15 = 240 name combinations for each of
our two probe templates, resulting in 480 instan-
tiated probes per verb. We finally average probe
predictions as in equation 1.

C3: PLM representation bias PLMs encode de-
mographic biases, including stereotypical gender
associations (Sun et al., 2019). Thus, in addition to

3Male: {John, Paul, Mike, Kevin, Steve, Greg, Jeff, Bill};
Female: {Amy, Joan, Lisa, Sarah, Diana, Kate, Ann, Donna}

controlling the entity set, we normalize power pre-
diction scores by the PLM’s a priori power assess-
ment of the agent and theme names in the absence
of a predicate. This normalization is also important
for our case study in §7, where we use our prob-
ing framework with a fine-tuned PLM on less con-
strained contexts involving real-world entities in
news articles. Inspired by previous work (Trichelair
et al., 2019; Elazar et al., 2021b), we subtract from
our connotation score the a priori relative power
between the agent and theme in the absence of a
specific predicate connecting them. To do so, we
predict the MASK token given only the hypothe-
sis:4

Prior 1 TH has MASK power than AG.

Like for the full probes, we obtain the probabil-
ity of m with m∈{‘more’, ‘less’} from our PLMs
and average over all entity combination, obtaining
Sprior:

Spprior(m) =
1

K

∑

ag∈A
th∈T

P (MASK=m|p, ag, th)

where P is computed using the Prior 1 template.

3.2 The Power Probing Score

The final power probing score (PPS) is the differ-
ence of the log predicted probability of the candi-
date MASK terms by the prior and the full probe:

PPSp(m) = logSpprobe(m)− logSpprior(m),

where m ∈ {‘more’, ‘less’}. We finally derive a
connotation score (CS) as a binary indicator vari-
able:

CSp =

{
+1 if PPSp(‘less’)>PPSp(‘more’)
−1 otherwise,

(2)
noting that CS=+1 directly corresponds to Sap
et al. (2017)’s (AG≻powerTH) and CS=-1 to
(AG≺powerTH).

4 Fine-tuning PLMs for connotative
power prediction

As we will show in §6.1, PLMs do not encode
power connotation naturally (in the zero-shot set-
ting). We therefore aim to instill connotative knowl-
edge into PLMs through task-specific fine-tuning.

4See Table 3 in the Appendix for a complete list of priors.
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Probe 1 AG P TH. TH has MASK power than AG.
No-Ent 1 P. has MASK power than.
Part-Sent 1 TH has MASK power than AG.

Table 1: Probe 1 (top) and two derived baseline tem-
plates, where agent (AG), theme (TH), and predicate (P)
are instantiated as explained in §3.1. Probe 2 baselines
are constructed analogously (cf., Appendix Table 3).

We use the probes introduced in §3 to con-
struct a connotation prediction task as masked to-
ken prediction-based fine-tuning. The input to the
model is the instantiated probe with instantiated
ag, th, and p and with the target masked word m.
The model is trained to predict ‘more’ or ‘less’, in
correspondence with the gold standard power con-
notation value for the predicate p, CSp. Training
then proceeds as normal, backpropagating gradi-
ents through the full model, allowing the model to
focus better on aspects of the encoding related to
power connotation.

5 Experimental Setup

5.1 Baselines

We include a random baseline and a majority-class
baseline to compare with PLMs. In addition, we
provide two baselines to investigate the underlying
language models’ biases towards context and argu-
ments of template sentences, by constructing inputs
that are structurally similar to our probes, but do
not carry any signal towards power connotations.
This allows us to test (1) the extent of bias in the
PLMs measured by deviation of the baselines from
a random model; and (2) how much actual power
connotative knowledge (over and above biases) the
models contain in a zero-shot setting, or after fine-
tuning, by comparing the respective models tested
with the probes against these baselines. Both base-
lines are adapted from prior work on controlled
debiasing (Elazar et al., 2021b).

No-Entity Baseline This baseline quantifies a
priori PLM bias towards P in the absence of any
entity. Probe 1 is reduced to No-Ent 1 in Table 1
(middle). An unbiased model should predict ‘more’
and ‘less’ with equal probability as the prompts
contain no signal of the power differential.

Partial-Sentence Baseline This baseline quanti-
fies prior biases related to the arguments by remov-
ing the predicate. We reduce the Probe 1 to only the
prelude (similar to our prior in §3), see Part-Sent 1

in Table 1. Again, there is no information about
power, and we expect an unbiased model to show
random performance. Both baselines predict CSp

analogous to equations 1 and 2, but conditioning
on their respective contexts.5

5.2 Predicate Selection

We use a subset of Sap et al. (2017)’s dataset
of power-annotated verbs, keeping only transi-
tive verbs applicable to human actors and themes
based on manual filtering. We retain 300 verbs,
with 67% of AG≻powerTH and 33% verbs with
AG≺powerTH.

5.3 Evaluation metrics

We report class-wise and macro-averaged F1 scores
to provide a detailed view of model performance
and acknowledge the label skew in the ground truth
data. We report standard (single-instance) evalua-
tion for each test probe separately, resulting in 200
verbs × 2 probes = 400 instances; as well as the
stricter grouped evaluation discussed below.

Group evaluation The more stringent group
evaluation ensures that predictions are consistent
across our semantically equivalent probes. A pre-
diction CSp for a given predicate p is accepted as
correct only if the predicted connotation is correct
for both probe 1 and probe 2. We compute the con-
notation score for each (ag, p, th) with probe 1 and
probe 2 templates, and assign the worst-performing
score. This group evaluation lowers the chance of
random or coincidental correct predictions.

6 Results

We first test PLMs for power connotation knowl-
edge in a zero-shot setting (§ 6.1), before we turn to
task-specific fine-tuning (§ 6.2). See Appendix A
for parameter settings.

6.1 Zero-shot Setting

We perform five separate runs. Each time, we ob-
tain a stratified sample of 200 verbs selected from
the full dataset of 300 to test the model. We report
mean and variance across the five runs.6

Table 2 (top left) shows all three PLMs in the sin-
gle evaluation metric. The ‘No-Entity’ and ‘Partial-
Sentence’ baselines degrade to the majority clas-
sifier, which demonstrates that the PLMs contain

5See Table 3 in the Appendix for Probe 2 baselines.
6This evaluation protocol mirrors the fine-tuning setup in

§6.2, allowing the comparison of variance between settings.
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Single Evaluation Group Evaluation
Setup F1+ F1- macro F1 macro F1

Random 57.20± 2.60 39.74± 2.90 48.49± 2.40 21.56± 2.46
Majority 80.36 0 40.18 40.18

Z
er

o-
sh

ot

No-Entity∗ 80.36 0 40.18 40.18
Partial-Sentence∗ 80.36 0 40.18 40.18
BERT-Prob 75.41± 1.00 49.51± 3.00 41.64± 1.30 32.67± 1.80
ALBERT-Prob 75.22± 0.40 44.54± 1.40 59.88± 0.80 40.84± 1.71
RoBERTa-Prob 49.72± 0.16 2.19± 1.18 25.95± 0.60 25.00± 0.39

Fi
ne

-t
un

ed

BERT-No-Ent 46.01± 14.61 12.81± 6.14 29.41± 4.38 23.35± 7.49
ALBERT-No-Ent 20.58± 2.36 34.17± 2.94 27.38± 0.47 18.91± 0.43
RoBERTa-No-Ent 58.42± 4.69 22.34± 5.76 40.38± 0.70 29.74± 7.69
BERT-Part-Sent 42.88± 12.44 10.62± 4.52 26.74± 8.84 20.02± 14.80
ALBERT-Part-Sent 19.11± 27.02 46.17± 4.62 32.64± 11.20 16.48± 11.65
RoBERTa-Part-Sent 72.68± 10.86 13.21± 18.69 42.95± 3.91 26.79± 18.94
BERT-Prob 85.36± 0.96 51.59± 4.37 68.48± 2.62 66.30± 2.57
ALBERT-Prob 84.45± 0.29 66.49± 0.12 75.43± 0.29 74.02± 0.28
RoBERTa-Prob 86.56± 0.98 70.73± 0.86 78.65± 0.88 77.18± 1.51

Table 2: Class-wise and macro F1 score of power connotation frame predictions with both single- (left) and group
evaluation (right) for random and majority baseline, zero-shot setting and after task specific fine-tuning. ∗Results
for these baselines are identical across all PLMs (and to the majority baseline) as they consistently predicted ‘more’
in this setting. Results are the mean and standard deviation over 5× repeated random subsampling of 200 verbs as a
test set.

significant biases. An unbiased model would show
a random performance.

Overall, in the zero-shot setup using the probe
templates, the ALBERT model outperforms the
BERT and RoBERTa models and random baseline
in macro F1. Surprisingly, RoBERTa performs very
poorly compared to the other two PLMs. We specu-
late that this might be due to the next sentence pre-
diction loss, which is not part of RoBERTa training
but is included BERT and ALBERT, thus explain-
ing their ability to learn short-range dependencies
between adjacent sentences in the probe templates.
The main finding in this experiment is that none of
the models contain power connotation information,
as their performances are all close to random. Next,
we show that PLMs can be effectively fine-tuned
on this task.

6.2 Fine-tuned Setting

We evaluate the performance of fine-tuned PLMs
using our proposed masked predication based ap-
proach (§4). As in the zero-shot experiments, we
perfome 5 separate runs, each time using a strat-
ified sample of 100 verbs for model fine-tuning,
and the remaining 200 verbs for testing. We report
mean and variance across these five runs.

Table 2 (bottom) shows that the fine-tuned mod-
els perform significantly better than the zero-shot
versions across architectures. This holds in both
the single (left) and the stricter group evaluation
(evaluation). In the group evaluation, we observe
the performance drops slightly compared to single
evaluation after fine-tuning, and to a lesser extent
than in the zero-shot setting. This suggests consis-
tency of model predictions, increasing our confi-
dence that the PLMs indeed capture connotative
power associations with the predicates. Although
RoBERTa performed poorly in the zero-shot set-
ting, it is the strongest model after fine-tuning.

All fine-tuned models outperform all baselines
by a large margin. Furthermore, we compared
the performance of our fine-tuned models with
the best previously reported approach for power
connotation prediction — the logistic regression
model of Field et al. (2019). The logistic regression
model obtains macro F1 of 60%, substantially
lower than our fine-tuned results.

Next, we analyze the impact of the training
set size, and the robustness and consistency of our
probing score.
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Figure 2: Performance (macro F1) of the fine-tuned
RoBERTa model in single evalution with training sets
of varying size.

Impact of the training set size Our main re-
sults are based on fine-tuning on only 100 la-
beled instances. We investigated the effect of
varying the number of training samples from
{60, 80, . . . , 220, 240}, and a fixed test set of the
remaining 60 instances for RoBERTa. The benefits
of using more training samples plateaued after 100
samples as shown in Figure 2. Pre-trained models
can efficiently learn to capture power connotation
information from few training samples.

Robustness For each predicate, we calculated the
variance of the probability of the masked token tak-
ing values ‘more’ or ‘less’, normalizing their scores
to sum to 1 and averaging across all possible com-
binations of names in the agent and theme position
(n=240). Overall, variance is low (mean=0.003).
The predicates with the highest variance (0.005)
include ‘question’ and ‘reach’, while those with
lowest variance (0.001) include ‘shut’ and ‘ruin’.
Intuitively, the former (high-variance) verbs are
more ambiguous than the latter.

Consistency We checked whether, given a pred-
icate, the predicted filler for the masked token is
the same across possible combinations of names in
the agent and theme position. Across all test predi-
cates, we find that 88% of the time the prediction is
consistent among the 240 argument combinations.
These final two analyses suggest that our probing
score is not sensitive to the confounding variables
of the agent or theme position or gender.

7 Case study

We employ our best-performing fine-tuned model
RoBERTa to explore subtle power dynamics in
US news reports on immigration. In particular,
we study the power connotations implied in the
descriptions (i.e., actions and events) involving

prominent entities in the articles. In doing so, we
draw connections between power connotation and
emphasis frames (§7.1) as well as power connota-
tion and issue stance (§7.2). We first describe our
dataset and the entity extraction process, before ex-
plaining how we map the predicate-centric probing
framework from §3 to an entity-centric measure.

Dataset We use the Media Frames Corpus
(MFC, Card et al. (2015)), which contains 6.7k
news articles about immigration,7 manually la-
beled with one of 15 emphasis frames (including
Legality, Political, Economic, . . . ), as well as
an additional 42k unlabeled news articles. The
articles were sourced from 13 U.S. news outlets
published between 1969 and 2017. A subset of
the immigration articles includes manual labels of
‘stance’ which indicates whether the article author
is supporting, neutral about, or opposing immigra-
tion.8

Entity extraction We identify the most com-
mon entities within each article using an off-
the-shelf transformer-based semantic role labeling
model9 (Shi and Lin, 2019) which has been pre-
viously used to identify key entities in MFC arti-
cles (Khanehzar et al., 2021). For each sentence
in a document, we collect spans corresponding to
the main verbs (predicate), and their first (ARG0)
and second (ARG1) arguments, and then apply a
coreference resolution model (Lee et al., 2018) to
group the arguments into entities. We also use NER
and string matching to find all mentions of each
argument and consider only entities mentioned >3
times in an article. Figure 5 in the Appendix B
shows the most common entities in the dataset.

Entity-level power connotation We apply our
power probing framework as introduced in §3,
and add a final step to map predicate-level CSp

to an entity-level CS. Similar to Field et al.
(2019), and as illustrated in Figure 1, if CSp=+ 1
(AG≻powerTH), we consider connotation score
of the agent as positive CS(AG)=+1 and the theme
as negative CS(AG)=-1, and vice versa for predi-
cates with CSp= − 1. This approach enables us
to obtain power scores for entities in unannotated
documents. To obtain the power score for each
entity in each article, we average the power score

7The MFC covers four other issues, but immigration is the
most prominent issue spanning the longest time period.

8Pro: 2740, Anti: 1685, Neutral: 982, None: 1350
9 From AllenNLP, trained on OntoNotes5.0
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Figure 3: The power of ‘immigrants’ in articles with
different emphasis frames (see legend). The majority of
differences are significant, see Appendix C for details.

predicted for each mention of the entity (in the con-
text of a transitive predicate) in that article. The
entity’s overall power score across the corpus is the
average of its power scores across all articles.

7.1 The Power of Immigrants across Different
Emphasis Frames

Immigration is a contested issue in the US with
politicians, lobby groups, and news agencies se-
lectively framing the topic in a way that supports
their stance (Farris and Silber Mohamed, 2018;
Lawlor and Tolley, 2017; Ommundsen et al., 2014).
We examine how the news outlets portray the key
entity involved in this discourse, namely ‘the immi-
grants’. Specifically, we relate power connotations
to emphasis frames in the MFC. We applied the
method described above to all 6.7k frame-labelled
immigration articles, and considered all mentions
of the term ‘immigrant(s)’ and their co-referents.

Figure 3 shows that immigrants are depicted
as relatively powerful when the articles are us-
ing the Economic, Fairness and Equality,
Security and Defense frames, and fairly pow-
erless when the articles are using the Legality,
Constitutionality, Jurisdiction, Public
Sentiment, Quality of Life, and Political
frames. This suggests that news outlets generally
approve of immigrants’ role in contributing to the
economy as confirmed by example mentions like
‘Low-skilled immigrants provide cheap child care’
and ‘More immigrants than ever before start their
own companies’. The gold standard power conno-
tation label of provide and start is AG≻powerTH,
and our fine-tuned model predicted the same label
with confidence for both cases.

Another example of depicting immigrants as
relatively high in power are articles adopting the
Security and Defense frame. These articles
portray immigrants’ power to disrupt the societal

order. Examples include ‘Immigrants break a se-
curity cordon’, ‘immigrants overwhelm the guards’
and ‘immigrants overstay their visas’. Conversely,
articles using the Fairness and Equality frame
tend to portray immigrants in an unfavorable light,
albeit with high power associated with their actions,
implying malicious intentions. Examples include
‘immigrants bring crime and drugs’, and ‘detained
immigrants fabricate accounts’.

These examples show that our operationalization
of power complements the positive vs negative sen-
timent dimension, and in general, is not a stable
trait of an entity, but rather depends on the more
general frame adopted by an article. Additionally,
in emphasis frames depicting immigrants as low in
power, for example, in the Legality frame, immi-
grants are often associated with either positive or
neutral actions such as ‘immigrants comply with
Federal laws’, or ‘immigrants renounce the citizen-
ship of their native countries’. Among the frames
depicting the immigrants as powerless, we noted
that articles adopting the Quality of Life frame
generally imply that immigrants, especially undoc-
umented immigrants, face difficulties in life. Ex-
amples include ‘immigrants suffer the alleged bru-
tality’, ‘immigrants fear they will be hounded and
deported’. Under the political frame, articles
generally portray politicians’ actions or relations
towards immigrants, often attributing less power to
immigrants. Examples include ‘illegal immigrants
toil for governor’, ‘Rudy accused Mitt employing
illegal immigrants’.

7.2 Power of Immigrants vs. Immigration
Services and Issue Stance

Immigration services such as ICE and INS10 play
a significant role in executing and designing im-
migration policies in the US and are prominent in
the public discourse. Notorious for hardline ap-
proaches, these agencies are often criticized by the
more liberal news outlets for abusing their legal
power (Omokha, 2022). We compare the connota-
tive power associated with immigrants and immi-
gration services in news articles with a supportive,
opposing or neutral stance on immigration, as man-
ually labeled in the MFC.

Figure 4 shows, unsurprisingly, that immigrants
are generally portrayed as less powerful than im-
migration services. At the same time, we observe

10Immigration and Customs Enforcement (ICE) and Immi-
gration and Naturalization Service (INS)
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Figure 4: Power of ‘immigrants’ and ‘immigration ser-
vices’ in articles with an anti-, pro-, and neutral- immi-
gration stance. See Appendix C for significance results.

different trends for the two entities depending on
the author’s stance on immigration: immigrants are
portrayed as ‘most powerless’ in anti-immigration
articles, but slightly less so in neutral and pro-
immigration articles. In pro-immigration articles,
immigrants more often take action (instead of be-
ing acted upon). Illustrative examples from pro-
immigration articles include ‘immigrants navigate
the byzantine rules of permanent residency’, and
‘immigrants discover the power of citizenship’, and
‘people should join immigrants in the continuing
fight for civil rights and human dignity’. Exam-
ples of depictions of immigrants as powerless in
anti-immigration articles include ‘officers detain a
total of thirty Haitian immigrants’ and ‘immigra-
tion officials arrest illegal immigrants’. Immigra-
tion services, on the other hand, are portrayed as
powerful in both pro- and anti-immigration articles,
but less so in neutral ones. Immigration services
in anti-immigration articles are often involved in
strong actions toward immigrants: for instance, the
predicates ‘arrest’ and ‘deport’ appear 1.8 times
more often in anti-immigration articles than in pro-
immigration articles.

8 Conclusion

We introduced a framework to (i) disentangle con-
notation frames implied by the predicate from its
arguments and the sentence structure; and (ii) quan-
tify predicate connotation frames in PLMs. Using
the proposed framework, we investigated the capa-
bility of pre-trained language models to understand
connotative information focusing on power dynam-
ics between involved entities, both in a zero-shot
setting, where performance was overall poor, and
fine-tuning, which lead to drastic improvements.
Our framework can be applied to investigate other

connotation frames such as agency and sentiment,
and their relationships to media bias, although
defining the probing template may be challenging
due to the subtle nature of connotation frames.

Finally, in a case study, we showed how our
model can be used to detect subtle differences in
the implied power dynamics between entities. Our
findings highlight the potential of our framework
as a tool for understanding subtle bias in the media.
Future work could use our framework to analyze
language in various forms of media, e.g. social me-
dia posts and TV programming, to identify patterns
and trends in language usage for conveying power
and other connotations.

It is worth investigating whether the improved
performance in connotation predictions would en-
hance the model’s reading comprehension (Ra-
jpurkar et al., 2016) capability at a higher level.
Naturally, we would like to see that the model can
infer which entity is more powerful or wields more
authority without the text explicitly stating that fact.
Previous work has shown that different layers in
PLMs specialize in various meanings (de Vries
et al., 2020). Future work should investigate the
extent each layer in a PLM contributes to encoding
connotation frames.

Our framework can also be used to study char-
acter roles by analyzing the verbs or verb phrases
used to describe the characters and the connotations
that they carry. For example, a news article about
a political leader who is advocating for tougher
immigration policies might mention the event of
‘cracking down on illegal immigration’, evoking
a negative connotation and portraying the leader
as a ‘villain’. A different article on the same en-
tity might include an event of ‘helping refugees
find safety’ assigning the leader the role of ‘hero’
with a more positive connotative association. Both
articles frame the immigrants as ‘victims’. By an-
alyzing the language used to describe characters
and the connotations it carries, it is possible to gain
insight into their framing and roles in the broader
narratives around an issue.

9 Limitations

We identify several limitations and shortcomings in
our work as potential areas for future work. While
the proposed probing framework could be used to
investigate other connotation frames, we focused
only on the power dimension. We plan to extend
our work to other connotation dimensions and ex-
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plore their relationships with media bias.
While our case study demonstrates that predi-

cate connotative information can be used to depict
entity-level power connotation, we recognize that
many other relevant features might do so. These
include low-level features like adjectives and noun
phrases, as well as high-level ones like the posi-
tion of the entity in the article, and whether or not
the entity is directly quoted. Future studies could
compare how these different features contribute to
predictions of connotation frames.

We acknowledge that our model, which predicts
power dynamics on predicate signals alone, sim-
plifies the construct of social power. This might
lead to inaccurate predictions. Furthermore, the au-
tomatic analysis of portrayed power of real world
entities or groups bears a risk of misuse to justify
discriminatory practices or policies on the basis of
the power portrayal in the media.

To mitigate these risks, it is essential to consider
the potential consequences of the model’s predic-
tions and ensure they are used ethically and respon-
sibly, including considering the potential impact
on marginalized groups and taking steps to mini-
mize any potential biases in the model’s predictions.
Additionally, human oversight and interpretation
of the results is important, especially when they
are used in decision-making processes that have a
social impact.
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Figure 5: Most common entities such as Immigration
Services (IS) and United States (US) in the immigration
articles from the MFC (Card et al., 2015).

B Most Common Entities in MFC
Immigration

To complement the list of entities extracted by SRL
and coreference resolution, we also used NER to ex-
tract entities tagged as PERSON, and string match-
ing to find all mentions of each entity. We consider
only entities mentioned more than three times in
each article as the most common entities within
each article. Figure 5 shows the most common en-
tities, with the number of their appearance in the
immigration articles from the MFC dataset.

C Statistical Significance of the Power
Scores in Case Studies

In the case studies in §7, the overall power scores of
entities are reported by averaging the power score
across the whole corpus. We test the significance of
pairwise differences in power score using a z-test
assuming a binomial distribution of labels (CS =
+1 or -1). Below we discuss the result for each case
study separately.

In case study in §7.1 we compare the power
score of ‘immigrants’ in articles with different
emphasis frames (as shown in Fig 7.1). The ma-
jority of comparisons of the power score are sig-
nificant (as shown in Fig 4); for example, the p-
value between frames Fairness vs. legality is
0.0004, and Fairness vs. Public Sentiment is
0.001. Overall, differences of power scores be-
tween frames of > 0.1 are significant at p ≤ 0.05.
The difference of power scores between frames
Economic vs. Security are not significant (p =
0.1).

In the case study in §7.2 the comparisons be-
tween power score of ‘immigrants’ vs. ‘immigra-

F E S Q Po Pu L
F * * * * * *
E * - * * * *
S * - * * * *
Q * * * - - *
Po * * * - - *
Pu * * * - - -
L * * * * * -

Table 4: Shows the comparisons of the power score
of ‘immigrants’ in different emphasis frames including
Fairness, Economic, Security, Quality of Life,
Political, Public Sentiment, and Legality. The *
indicates the difference is significant at p ≤ 0.05 (z-test)
while ‘-’ means insignificant.

tion services’ in articles with different issue stances
(as shown in Fig 4 as same color across blocks) are
significant with a p-value of ≤ 0.005. Addition-
ally, the comparison of the power score for each
entity in different issue stances (pairwise compari-
son of bars within blocks) is almost significant with
a p-value of p ≤ 0.05.
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Abstract

Task-oriented Dialogue (ToD) agents are
mostly limited to a few widely-spoken lan-
guages, mainly due to the high cost of acquir-
ing training data for each language. Existing
low-cost approaches that rely on cross-lingual
embeddings or naive machine translation sac-
rifice a lot of accuracy for data efficiency, and
largely fail in creating a usable dialogue agent.
We propose automatic methods that use ToD
training data in a source language to build a
high-quality functioning dialogue agent in an-
other target language that has no training data
(i.e. zero-shot) or a small training set (i.e. few-
shot). Unlike most prior work in cross-lingual
ToD that only focuses on Dialogue State Track-
ing (DST), we build an end-to-end agent.

We show that our approach closes the accu-
racy gap between few-shot and existing full-
shot methods for ToD agents. We achieve
this by (1) improving the dialogue data repre-
sentation, (2) improving entity-aware machine
translation, and (3) automatic filtering of noisy
translations.

We evaluate our approach on the recent bilin-
gual dialogue dataset BiToD. In Chinese to
English transfer, in the zero-shot setting, our
method achieves 46.7% and 22.0% in Task
Success Rate (TSR) and Dialogue Success
Rate (DSR) respectively. In the few-shot set-
ting where 10% of the data in the target lan-
guage is used, we improve the state-of-the-art
by 15.2% and 14.0%, coming within 5% of
full-shot training.1

1 Introduction

While dialogue agents in various forms have be-
come commonplace in parts of the world, their
lack of support for most human languages has pre-
vented access to the benefits they provide for much
of the world. Commercial virtual assistants for

1Code can be accessed at https://github.com/
stanford-oval/dialogues

example, only support a handful of languages, as
extending their functionality to each new language
is extremely costly, partially due to the need for
collecting new annotated training data in that lan-
guage.

In recent years, several non-English task-
oriented dialogue (ToD) datasets have been created;
they are either collected from scratch such as Ri-
SAWOZ (Quan et al., 2020) and CrossWOZ (Zhu
et al., 2020), paraphrased from synthetic sentences
by crowdworkers such as BiToD (Lin et al., 2021),
or manually translated from another language (Li
et al., 2021b). All of these approaches are labor-
intensive, expensive, and time-consuming; such
investment is unlikely to be made for less widely
spoken languages.

Cross-lingual transfer, i.e. using training data
from other languages to build a dialogue agent for a
specific language, seems especially appealing. An
emerging line of work has employed machine trans-
lation of training data, and multilingual pre-trained
neural networks to tackle this task (Sherborne et al.,
2020; Li et al., 2021a; Moradshahi et al., 2023).
However, work in ToD cross-lingual transfer has
for the most part, focused on understanding the user
input, namely Dialogue State Tracking (DST) and
Natural Language Understanding (NLU). Other
necessary parts of a dialogue agent like policy and
response generation have mostly remained unex-
plored.

In this paper, we present a methodology for
building a fully functional dialogue agent for a
new language (e.g. English), by using training data
in another language (e.g. Chinese) with little to no
additional manual dataset creation effort. We found
that despite prior efforts to improve modeling for
existing ToD datasets, the dialogue representation
used as input to these models, e.g. full dialogue
history in natural language (Hosseini-Asl et al.,
2020), is sub-optimal, especially when the training
data is either scarce or created automatically us-
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ing noisy machine translation. We propose a new
Distilled representation to fix the shortcomings of
current representations. We also found that previ-
ously proposed entity-aware translation technique
Moradshahi et al. (2023) to be inadequate. Our pro-
posed technique effectively combines entity-aware
neural machine translation with text similarity clas-
sifiers to automatically create training data for a
new language. This paper explains all the ingredi-
ents we found useful, and motivates their use by
performing extensive ablation studies.

The contributions of this paper are:
1. A new state-of-the-art result for the BiToD

dataset in both few-shot and full-shot settings on
English according to all of our 6 automatic met-
rics, including an improvement of 14.0% and
2.9%, respectively, in Dialogue Success Rate
(DSR). In fact, using our Distilled representa-
tion, our few-shot model trained on only 10% of
the training data, achieves similar results to the
previous SOTA model trained on 100% training
data.

2. The first dialogue agent created in the zero-shot
cross-lingual transfer setting, i.e. starting from
no training data in the target language. Our
agent achieves 71%, 62%, 40%, and 47% of
the performance of a full-shot agent in terms of
Joint Goal Accuracy (JGA), Task Success Rate
(TSR), DSR, and BLEU score, respectively.

3. A concise dialogue representation designed for
cross-lingual ToD agents. The Distilled dia-
logue representation works well with our new
decomposition of agent subtasks, making signif-
icant improvements possible.

4. An improved methodology for automatic transla-
tion of ToD training data. We adapt and improve
an existing entity-aware machine translation sys-
tem that localizes entities (Moradshahi et al.,
2023), extend it to agent response generation,
and equip it with a filtering step that increases
the quality of the resulting translations.

2 Related Work

2.1 Multilingual Dialogue Datasets

MultiWOZ (Budzianowski et al., 2018; Ramadan
et al., 2018; Eric et al., 2019) and CrossWOZ (Zhu
et al., 2020) are two monolingual Wizard-Of-Oz
dialogue datasets that cover several domains, suit-
able for building travel dialogue agents in English
and Chinese respectively. For the 9th Dialog Sys-
tem Technology Challenge (DSTC-9) (Gunasekara

et al., 2020), they were translated to Chinese and
English using Google Translate.

GlobalWOZ (Ding et al., 2021), AllWOZ (Zuo
et al., 2021), and Multi2WOZ (Hung et al., 2022)
translate MultiWOZ to even more languages such
as Spanish, Hindi, and Indonesian, with human
translators post-editing machine translated dia-
logue templates, and filling them with newly col-
lected local entities. Although manual post-editing
improves data quality and ensures fluency, it also
increases the cost and time to create new datasets,
thus limiting scalability.

Different from these translation approaches, Lin
et al. (2021) introduced BiToD, the first bilingual
dataset for end-to-end ToD modeling. BiToD uses
a dialogue simulator to generate dialogues in 5
tourism domains in English and Chinese, then uses
crowdsourcing to paraphrase entire dialogues to be
more natural. Unlike WOZ-style datasets which
usually suffer from poor annotation quality due to
human errors (Moradshahi et al., 2023), BiToD is
automatically annotated during synthesis. Since
neither manual nor machine translation is used in
the creation of BiToD, it does not contain transla-
tionese (Eetemadi and Toutanova, 2014) or other
artifacts of translated text (Clark et al., 2020), and
provides a realistic testbed for cross-lingual trans-
fer of task-oriented dialogue agents.

2.2 Multilingual Dialogue State Tracking

Mrkšić et al. (2017) proposed using cross-lingual
word embeddings for zero-shot cross-lingual trans-
fer of DST models. With the advent of large lan-
guage models, contextual embeddings obtained
from pre-trained multilingual language models (De-
vlin et al., 2018; Xue et al., 2021; Liu et al., 2020)
have been used to enable cross-lingual transfer in
many natural language tasks, including DST.

Chen et al. (2018) used knowledge distilla-
tion (Hinton et al., 2015) to transfer DST capa-
bilities from a teacher DST model in the source
language to a student model in the target language.

Machine translation has been used for DST, both
as a way of obtaining cross-lingual representations,
and to translate training data. For instance, Schus-
ter et al. (2019) used representations obtained from
machine translation models and reported that it per-
forms better than training with machine translated
training data for single-turn commands. More ad-
vanced data translation approaches like the entity-
aware method of Moradshahi et al. (2023) further
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API Call Detection (ACD)

Dialogue State Tracking (DST) 

Lev. Belief State
(hotels search) price_level = "cheap"

Belief State
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Agent Dialogue Acts
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offer name = "Royal Plaza Hotel" , offer rating =  "9"

Response Generation (RG)

Dialogue Act Generation (DAG) 

Agent Response
“Okay. I found 4 hotels. 
I recommend the Royal Plaza 
Hotel, which has a 9 rating.”

...

User Utterance
“I’m looking for a 
cheap hotel.”

Previous Agent Dialogue Acts
(hotels search) request rating 
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...History
Ut

ΔBt

Bt-1Ct-2:t-1
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Figure 1: Inference-time flow diagram for our dialogue
agent. DST, ACD, DAG, and RG share the same neu-
ral model. U , A, C, B, and R indicate user utterance,
agent response, agent dialogue acts, dialogue state, and
retrieved database results respectively. t is the turn
number. ⊗ indicates text concatenation. ⊕ refers to
the update rule in Equation 1.

improved the DST data quality achievable with
machine translation.

3 Distilled ToD Agent

Our methodology includes a dialogue task decom-
position and a Distilled dialogue representation that
are tailored to cross-lingual ToD agents. In this sec-
tion we describe these two components.

We follow the end-to-end task-oriented dialogue
(ToD) setting (Hosseini-Asl et al., 2020) where a
user converses freely with an agent over several
turns to accomplish his/her goal with all of its con-
straints (e.g. “book a restaurant that is rated at
least 3.”). In each turn, the agent must access its
database if needed to find the requested information
(e.g. find a restaurant that satisfies user constraints),
decide on an action (e.g. to present the information
to the user or to ask follow-up questions) and fi-
nally respond to the user in natural language based
on the action it selects.

3.1 Preliminaries

Formally, a dialogue D = {U1, A1, ..., UT , AT }
is a set of alternating user utterances Ut and agent

responses At for a number of turns T .
A belief state at turn t, Bt, consists of

a list of 〈domain, intent〉 tuples and a set of
〈slot, relation, value〉 tuples. Intent is the user in-
tent, either search or book. Relation is a compar-
ison or membership operator. Value can be one
or more entity names or strings from the ontology,
or a literal. To see all possible domains, slots and
values please refer to Table 4 in Lin et al. (2021).

The Levenshtein belief state (Lin et al., 2020) is
the difference between belief states in consecutive
turns, i.e. ∆Bt = Bt −Bt−1. It captures only the
relations and values that have changed in the last
user utterance, or tuples that have been added or
removed.

An Agent dialogue act at turn t, Ct, is
a list of 〈domain, intent〉 tuples and a set of
〈dialogue_act_name, slot, value〉 tuples indicating
the action the agent takes and the information of-
fered to the user, if any.

3.2 Task Decomposition
The task of dialogue agents is usually broken
down to subtasks, which may be performed by
a pipelined system (Gao et al., 2018) or by a sin-
gle neural network (Hosseini-Asl et al., 2020; Lei
et al., 2018). Here we describe our subtasks and
their inputs and outputs (Figure 1).

After the user speaks at turn t, the agent has
access to the belief state up to the previous
turn (Bt−1), the history of agent dialogue acts
(C1, ..., Ct−1), and the history of agent and user
utterances so far (A1, ..., At−1 and U1, ..., Ut). Our
agent performs the following four subtasks:
1. Dialogue State Tracking (DST): Generate ∆Bt,

the Levenshtein belief state, for the current turn
based on the previous belief state, the last two
agent dialogue acts2, and the current user utter-
ance. ∆Bt is combined with Bt−1 to produce
the current belief state.

∆Bt = DST(Bt−1, Ct−2, Ct−1, Ut)

Bt ← Bt−1 + ∆Bt
(1)

2. API Call Detection (ACD): Call an API to query
the database, if needed.

qt = ACD(Bt, Ct−2, Ct−1, Ut, Rt−1) (2)
Rt ← qt? KB(Bt) : ∅ (3)

2Our ablation study described in Section 6.1 justifies the
use of the last two agent dialogue acts instead of just the last
one.
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In turn t, ACD determines if an API call is nec-
essary. If so, the result Rt is the top entity in
the knowledge base KB, based on a determin-
istic ranking scheme, that matches the API call
constraints in Bt, and is empty otherwise. If no
entities match the constraint, we set Rt to the
special value NORESULT.

3. Dialogue Act Generation (DAG): Generate Ct,
the agent dialogue act for the current turn based
on the current belief state, the last two agent
dialogue acts, the user utterance, and the result
from the API call.

Ct = DAG(Bt, Ct−2, Ct−1, Ut, Rt) (4)

4. Response Generation (RG): Convert the agent
dialogue act Ct to the new agent utterance At.
Note that Ct contains all the necessary informa-
tion for this subtask. However, providing Ut
improves response fluency and choice of words,
leading to a higher BLEU score, partly due to
mirroring (Kale and Rastogi, 2020).

At = RG(Ut, Ct) (5)

3.3 The Distilled Dialogue Representation

The design of Distilled is based on the following
principles:
1. For cross-lingual agents, it is important to re-

duce the impact of translation errors. The rep-
resentation should make minimal use of natural
language by using a formal representation where
possible.

2. Dialogues can get long, but the representation
should be succinct, containing only the neces-
sary information, so the neural network need not
learn to ignore unnecessary information from
copious data. This improves data efficiency as
well as the training and inference speed of neu-
ral models.
We note that BiToD’s original representa-

tion (Lin et al., 2021) follows neither of these prin-
ciples.3 It makes extended use of natural language:
all previous user and agent natural language utter-
ances are included in the input of all subtasks. It has
many redundancies: for each subtask, it inputs the
concatenation of all previous subtask’s inputs and
outputs. In the following, we highlight the changes
we made to the (Lin et al., 2021) representation.

3We found this to be true for several previously-proposed
popular representations of MultiWOZ as well (Lei et al., 2018;
Chen et al., 2019).

Replace agent utterances with formal agent di-
alogue acts. Since agent responses are automat-
ically generated, it is possible to capture all infor-
mation useful to the different subtasks with formal
agent dialogue acts. In this way, the neural net-
work need not interpret previous natural language
utterances.

We take two steps to generate the agent re-
sponses: DAG (Dialogue Act Generation) first pro-
duces the formal act, Ct, which is then fed into RG
(Response Generation) to generate the natural lan-
guage responseAt. Note that RG is not a part of the
dialogue loop: the natural language At only serves
to communicate to the user; it is the formalCt from
DAG that gets fed to subsequent subtasks instead.
In contrast, Lin et al. (2021) generates the agent
response directly from API results. Hosseini-Asl
et al. (2020) also separates the response generation
into two steps, but they use At instead of Ct as
input to the semantic parser for the next turn.

Note that the agent dialogue acts are indepen-
dent of the natural language used in the dialogues,
if we ignore the entity values. This is beneficial to
cross-lingual agents as it can learn easier from data
available in other languages. Furthermore, DAG
can be validated on whether the output dialogue
acts match the gold answers exactly. This is not
possible with natural language results, whose qual-
ity is typically estimated with BLEU score.

Shorten user utterance history. Since the be-
lief state formally summarizes what the user
has said, we remove previous user utterances
U1, ..., Ut−1 from input to all subtasks, relying on
the belief state Bt−1 instead.

Untangle API call detection from response
generation. After DST is done, depending on
whether or not an API call is needed, Lin et al.
(2021) either directly generates the agent response,
or makes the API call and then generates the re-
sponse in two steps. Our design is to always take
two steps: (1) generate the API call or indicate that
there is none, and (2) generate the agent response.

4 Automatic Dialogue Data Translation

Given a training dataset for one language, we au-
tomatically generate a training set in the target lan-
guage we are interested in. This problem has been
studied in the context of NLU for questions (Morad-
shahi et al., 2020; Sherborne et al., 2020; Li et al.,
2021a) and for dialogues (Moradshahi et al., 2023;
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Ding et al., 2021; Zuo et al., 2021). One chal-
lenge is that the translated dataset should refer to
entities in the target language. Thus, Moradshahi
et al. (2020) proposed to first use cross-attention
weights of the neural translation model to align en-
tities in the original and translated sentences, then
replace entities in the translated sentences with lo-
cal entities from a target language knowledge base.
Our initial experiments showed that applying this
approach directly to end-to-end dialogue datasets
does not yield good performance, especially for re-
sponse generation. Thus, we adapted and improved
this approach for dialogues as discussed below.

4.1 Alignment for Dialogues
First, we found that while translation with align-
ment works for NLU, it does not work well for
RG. Machine translation introduces two kinds of
error: (1) Translated sentences can be ungrammat-
ical, incorrect, or introduce spurious information.
(2) The alignment for entities may be erroneous,
which can seriously hurt the factual correctness
of the responses. As shown in Moradshahi et al.
(2023), these errors are tolerable in NLU since (1)
sentences are seen by machines, not shown to users,
(2) pre-trained models like mBART are somewhat
robust to noisy inputs, since they are pre-trained
on perturbed data. However, training with such
low-quality data is not acceptable for RG, since the
learned responses are shown directly to the user.

Second, we found alignment recall to be particu-
larly low for an important category: entities that are
mostly quantitative. We observe that dates, times,
and prices can be easily mapped between differ-
ent languages using rules. We propose to first try
to translate such entities with dictionaries such as
those available in dateparser (Scrapinghub, 2015)
and num2words (faire Linux, 2017), and to match
them in the translated text. We resort to using neu-
ral alignment only if no such match is found.

4.2 Filtering Translation Noise for RG
To reduce translation noise for RG, we automati-
cally filter the translated data based on the semantic
textual similarity between the source and translated
sentences. For this purpose, we use LaBSE (Feng
et al., 2020), a multilingual neural sentence encoder
based on multilingual BERT (Devlin et al., 2018),
trained on translation pairs in various languages
with a loss function that encourages encoding pairs
to similar vectors. To score a pair of sentences,
the model first calculates an embedding for each

sentence and computes the cosine distance between
those vectors. The lower the distance is, the more
semantically similar the sentences are, according
to the model.

In creating the RG training set, we first translate
the source agent utterances to the target language
and use LaBSE to remove pairs whose similarity
score is below a threshold. We found a threshold
of 0.8 to work best empirically. Higher thresholds
would inadvertently filter correctly translated ut-
terances. We construct the final training data by
pairing aligned translated utterances that pass the
filter with their corresponding translated agent dia-
logue acts.

5 Experiment Setting

5.1 Base Dataset
We perform our experiments on BiToD, a large-
scale high-quality bilingual dataset created using
the Machine-to-Machine (M2M) approach. It is a
multi-domain dataset, including restaurants, hotels,
attractions, metro, and weather domains. It has a
total of 7,232 dialogues (3,689 dialogues in English
and 3,543 dialogues in Chinese) with 144,798 utter-
ances in total. The data is split into 5,787 dialogues
for training, 542 for validation, and 902 for testing.
The training data is from the same distribution as
validation and test data.

5.2 Implementation details
Our code is implemented in PyTorch (Paszke et al.,
2019) using GenieNLP (Campagna et al., 2019)
library for training and evaluation metrics. We
also use the Dialogues4 library for data preprocess-
ing and evaluation. We use pre-trained models
available through HuggingFace’s Transformers li-
brary (Wolf et al., 2019). The following model
names are from that library. We use mbart-large-50
as the neural model for our agent in all our experi-
ments. All models use a standard Seq2Seq architec-
ture with a bidirectial encoder and left-to-right au-
toregressive decoder. mBART is pre-trained to de-
noise text in 50 languages, while mT5 is trained on
101 languages. mBART uses sentence-piece (Kudo
and Richardson, 2018) for tokenization.

In each setting, all four subtasks of DST, API
detection, dialogue act generation, and response
generation are done in a single model, where we
specify the task by prepending a special token to the

4https://github.com/stanford-oval/
dialogues
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input. We found mBART to be especially effective
in zero-shot settings as the language of its outputs
can be controlled by providing a language-specific
token at the beginning of decoding. Additionally,
its denoising pre-training objective improves its
robustness to the remaining translation noise.

For translation, we use the publicly available
mbart-large-50-many-to-one-mmt (~611M param-
eters) model which can directly translate text from
any of the 50 supported languages to English. It
is an mBART model additionally fine-tuned to do
translation. We use greedy decoding and train our
models using teacher-forcing and token-level cross-
entropy loss. We used Adam (Kingma and Ba,
2014) as our optimizer with a starting learning
rate of 2 × 10−5 and linear scheduling. These
hyperparameters were chosen based on a limited
hyperparameter search on the validation set. For
the numbers reported in the paper, due to cost, we
performed only a single run for each experiment.

Our models were trained on virtual machines
with a single NVIDIA V100 (16GB memory) GPU
on the AWS platform. For a fair comparison, all
monolingual models were trained for the same num-
ber of iterations of 60K, and bilingual models for
120K. In the few-shot setting, we fine-tuned the
model for 3K steps on 1% of the data and 6K steps
on 10% of the data. Sentences are batched based
on their input and approximate output token count
for better GPU utilization. We set the total number
of tokens per batch to 800 for mBART. Due to the
verbosity and redundancy of the original BiToD
representation, Lin et al. (2021) used a batch size
of 1 example for training mbart-large. Using our
Distilled representation, however, we can fit up to
6 examples in each batch and process each batch
3 times faster during training. Training and eval-
uating each model takes about 10 GPU-hours on
average.

During error analysis, we noticed that although
certain slots (max_temp and min_temp slots in
Metro domain, and time and price_range slots in
Weather domain) are present in the retrieved knowl-
edge base values, the model does not learn to output
them in the agent dialogue act generation subtask.
This issue stems from BiToD’s non-deterministic
policy where an agent sometimes provides these
slots and sometimes not in the gold training data.
To mitigate this, during evaluation, we automati-
cally check if these slots are present in the input
and append them and their retrieved values to the

generated agent dialogue acts.
At inference time, we use the predicted belief

state as input to subsequent turns instead of ground
truth. However, to avoid the conversation from
diverging from its original direction, Lin et al.
(2021) use the ground-truth natural-language agent
response as input for the next turn. To make sure
the settings are equivalent for a fair comparison,
we use ground-truth agent acts as input for the next
turn.

5.3 Evaluation Metrics

We use the following metrics to compare different
models. Scores are averaged over all turns unless
specified otherwise.

• Joint Goal Accuracy (JGA) (Budzianowski
et al., 2018): Is the standard metric for evalu-
ating DST. JGA for a dialogue turn is 1 if all
slot-relation-value triplets in the generated belief
state match the gold annotation, and is 0 other-
wise.

• Task Success Rate (TSR) (Lin et al., 2021): A
task, defined as a pair of domain and intent, is
completed successfully if the agent correctly pro-
vides all the user-requested information and sat-
isfies the user’s initial goal for that task. TSR is
reported as an average over all tasks.

• Dialogue Success Rate (DSR) (Lin et al., 2021):
DSR is 1 for a dialogue if all user requests are
completed successfully, and 0 otherwise. DSR is
reported as an average over all dialogues. We use
this as the main metric to compare models, since
the agent needs to complete all dialogue subtasks
correctly to obtain a full score on DSR.

• API (Lin et al., 2021): For a dialogue turn, is 1
if the model correctly predicts to make an API
call, and all the constraints provided for the call
match the gold. It is 0 otherwise.

• BLEU (Papineni et al., 2002): Measures the nat-
ural language response fluency based on n-gram
matching with the human-written gold response.
BLUE is calculated at the corpus level.

• Slot Error Rate (SER) (Wen et al., 2015): It
complements BLEU as it measures the factual
correctness of natural language responses. For
each turn, it is 1 if the response contains all enti-
ties present in the gold response, and is 0 other-
wise.
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Representation JGA ↑ TSR ↑ DSR ↑ API ↑ BLEU ↑ SER ↓
Original (Lin et al., 2021) 69.19 69.13 47.51 67.92 38.48 14.93
Distilled (Ours) 76.79 75.64 53.39 76.33 42.54 10.61
• Generate full state 74.30 74.19 50.90 73.93 41.90 11.38
• Natural agent response 75.62 73.41 49.10 73.93 40.94 11.90
• Only last agent turn 73.97 74.19 52.71 74.27 41.83 11.81
• Prev. user utterance as state 71.75 61.66 33.94 67.67 39.72 15.97
• Remove state 70.84 51.89 24.43 66.47 37.10 19.61

Table 1: Full-shot English monolingual training with ablation. All results are reported on the English test set of
BiToD using the same evaluation script. The best result is in bold.

6 Results and Discussion

We first show how our Distilled representation af-
fects the performance of an agent in a full-shot
setting. We then evaluate our proposed techniques
on cross-lingual settings with varying amounts of
available training data.

6.1 Evaluation of Distilled Representation
To understand how our design of Distilled represen-
tation affects the performance of ToD agents in gen-
eral, we train an English agent using all the English
training data and perform an ablation study (Table
1). We observe that even though the Distilled repre-
sentation removes a lot of natural language inputs,
it improves the best previous English-only results
on JGA, TSR, DSR, API, BLEU and SER by 7.6%,
6.5%, 5.9%, 8.4%, 4.1%, and 4.7%, respectively.
This suggests that natural language utterances carry
a lot of redundant information, and the verbosity
may even hurt the performance. Note that the im-
provement in BLEU is also accompanied by an
improvement of factuality measured by SER.

Furthermore, using the Distilled representation
reduces training time by a factor of 3. See Sec-
tion 5.2 for more details.

Generate full state. Our first ablation study con-
firms that the proposal by Lin et al. (2020) to pre-
dict the Levenshtein belief state (∆Bt) is indeed
better than the cumulative state (Bt). Note that the
training time per gradient step is more than twice
as long in this ablation since the outputs are longer.

Natural agent response. Here we use natural
language agent responses as input instead of
agent dialogue acts, replacing Ct−1, Ct−2 with
At−1, At−2. The drop in TSR and DSR shows
this is an important design choice - distilling natu-
ral language into a concise formal representation
improves the model’s ability to understand the im-
portant information in the sentence.

Only last agent turn. When we remove Ct−2
from the input and only use Ct−1, we observe a

drop across all metrics. This is because some turns
in BiToD refer to the agent’s states from two turns
ago. We experimented with carrying three turns,
but there was no improvement.

Previous user utterance as state. In this abla-
tion, we use Ut−1 instead ofBt−1 as subtask inputs.
Compared to all previous ablations, accuracy dras-
tically decreases across all metrics, especially JGA.
This is expected since the information from ear-
lier turns present in the dialogue state is now lost.
Additionally, it shows that the dataset is highly con-
textual and therefore a summary of the conversation
history is necessary.

Remove state. We remove Bt−1 without adding
back the previous user utterance Ut−1. Compared
to the previous ablation, TSR and DSR drop by
10.5% and 5.2% respectively. This difference
shows Ut−1 does contain part of the information
captured in Bt−1.

6.2 Evaluation of Cross-Lingual Transfer

The goal of this experiment is to create an agent in
a target language, given the full training data in a
source language (Dsrc), and a varying amount of
training data in a target language (Dtgt). We also
assume that valuation and test data are available
in both source and target languages. We chose
Chinese as the source language and English as the
target language so we can perform error analysis
and the model outputs are understandable for a
wider audience.

6.2.1 Varying Target Training Data
Full-Shot. In the full-shot experiments, all of
Dtgt is available for training. We train two models
on two data sets: (1) on a shuffled mix of Dsrc and
Dtgt. (2) on Dtgt alone. The ablation “−Mixed” in
Table 2 refers to the latter.

Zero-Shot. In our zero-shot experiments, we
train with a canonicalized Dsrc and an automat-
ically translated data set, as explained below.
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Setting JGA ↑ TSR ↑ DSR ↑ API ↑ BLEU ↑ SER ↓
Full-Shot

MinTL(mT5) 72.16 71.18 51.13 71.87 40.71 13.75
−Mixed 69.19 69.13 47.51 67.92 38.48 14.93
MinTL(mBART) 69.37 42.45 17.87 65.35 28.76 –
−Mixed 67.36 56.00 33.71 57.03 35.34 –
Ours 77.52 75.04 54.07 74.44 41.46 11.17
−Mixed 76.79 75.64 53.39 76.33 42.54 10.61

Zero-Shot
Ours 55.33 46.74 21.95 63.04 20.01 20.52
− Filtering 54.83 45.03 19.68 60.81 19.11 20.86
− Alignment 47.21 4.72 1.13 52.74 8.26 39.20
− Translation 14.73 3.52 1.58 6.26 0.69 41.30
− Canonicalization 2.13 1.20 0.00 0.26 0.25 42.39

Few-Shot (1%)
Ours 64.60 57.89 34.16 62.09 28.15 17.94
− Filtering 63.88 57.80 32.35 59.95 28.00 18.57
− Alignment 58.86 51.89 23.76 57.12 26.84 21.56
− Translation 49.58 41.34 19.68 46.05 22.73 24.86
− Canonicalization 44.56 42.97 20.36 46.23 23.08 24.77

Few-shot Only 25.08 24.61 11.09 23.67 18.71 32.62
Few-Shot (10%)

MinTL(mT5) 58.85 56.43 34.16 57.54 31.20 –
− Translation 48.77 44.94 24.66 47.60 29.53 19.75
Few-shot Only 19.86 6.78 1.36 17.75 10.35 –
MinTL(mBART) 37.50 21.61 10.18 27.44 17.86 –
− Translation 42.84 36.19 16.06 41.51 22.50 –
Few-shot Only 4.64 1.11 0.23 0.60 3.17 –
Ours 72.70 71.61 48.19 72.56 36.02 12.71
− Filtering 72.45 69.55 44.57 69.55 34.67 13.62
− Alignment 68.40 63.38 38.24 63.38 32.99 16.63
− Translation 67.13 63.12 41.40 63.64 32.86 16.40
− Canonicalization 64.51 63.64 40.27 62.69 32.71 16.63

Few-shot Only 57.18 54.80 28.73 55.66 29.61 19.66

Table 2: All results are reported on the original English test set of BiToD using the same evaluation script. The best
result in each section is in bold. Each “−” removes one additional component from the previous row. All MinTL
results are from Lin et al. (2021). SER numbers are not available for some models. An upward arrow is show for
columns where bigger numbers are better, and vice versa.

Canonicalization: To increase transfer learning
from the source to the target language, we use the
same canonical formal representation across lan-
guages (Moradshahi et al., 2020; Razumovskaia
et al., 2021). To do so, we adapt Dsrc so that the
domain names, slot names, agent dialogue acts, and
API names in the formal representation to be the
same as the target language. Note that the user ut-
terance, agent response, and slot values will remain
in the source language. The BiToD dataset has a
one-to-one mapping for most of the above and we
added the missing items.

Translation: We use machine translation to con-
vert the user and agent utterances and slot values in
Dsrc to create a training set for the target language.

Alignment: After translating the data, we use
alignment (Section 4) to localize entities while
ensuring the entities in translated utterances still
match the values specified in annotations.

Filtering: We use the filtering procedure de-
scribed in Section 4.2 to remove turns where agent

responses are deemed to have low translation qual-
ity.

In Table 2, Ours refers to our main approach,
which combines all four techniques. Each ablation
incrementally takes away one of the techniques.

Few-Shot. In the few-shot setting, we start with
our pre-trained zero-shot models (with various ab-
lations) and further fine-tune it on 1% and 10%
of Dtgt, which comprises 29 and 284 dialogues,
respectively. Lin et al. (2021) reported the results
only for the 10% setting. We use their few-shot
data split in that case to be directly comparable. We
add one more ablation study where we eliminate
cross-lingual transfer by training a model only on
the few-shot data (Few-shot Only).

6.2.2 Baseline
We compare our results to the best previously re-
ported result on BiToD from Lin et al. (2021). This
SOTA result was obtained using MinTL (Lin et al.,
2020) and using a single mT5-small model to per-
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form all dialogue subtasks.
Contrary to what Lin et al. (2021) reported, we

found that mBART-large model outperforms mT5-
small in all settings. We have included all the
results including MinTL(mBART) in Table 2 for
comparison.

6.2.3 Results
The results for our cross-lingual experiment are
reported in Table 2. Overall, in the full-shot setting,
when training on both source and target language
data, we improve the SOTA in JGA by 5.3%, TSR
by 3.8%, DSR by 2.9%, API by 2.6%, BLEU by
0.8%, and SER by 2.6%.

Our zero-shot agent achieves 71%, 62%, 40%,
and 47% of the performance of a full-shot agent in
terms of JGA, TSR, DSR, and BLEU score, respec-
tively. In the 10% few-shot setting, our approach
establishes a new SOTA by increasing JGA, TSR,
DSR, API, and BLEU absolutely by 13.9%, 15.2%,
14.0%, 15.0%, and 4.8% respectively. Prominently,
training with just 10% of the data beats the full-shot
baseline which is trained on 100% of the training
data, on all metrics except for DSR and BLEU. It
also comes within 5% of full training using the
Distilled representation on all metrics.

Our Distilled representation improves the per-
formance, especially in few-shot. Comparing our
results with that of Lin et al. (2021), in the full-
shot monolingual setting (MinTL(mT5) “−Mixed”
vs. Ours “−Mixed”), models trained on data with
our representation outperform the baseline on all
metrics. In the pure few-shot (10%) setting, Ours
outperforms MinTL(mT5) significantly in all met-
rics. This suggests that our Distilled representation
and task decomposition are much more effective in
low-data settings.

Canonicalization is useful. Comparing
“−Translation” with “−Canonicalization”, training
on canonicalized data significantly improves the
results in the zero-shot setting. This is intuitive
since canonicalization brings training data closer
in vocabulary to the test data in the target language.
This improvement comes at almost no cost since
translation is done automatically using a dictionary.

Automatic naive translation of the training set
does not work for zero-shot. The naive translation
approach (i.e. without alignment) completely fails
in the zero-shot setting by achieving only 4.7%
in TSR, and 1.1% in DSR, as translated entities
might no longer match with ones in the annotation.
Adding few-shot data helps significantly as the gap

closes between “−Alignment” and “−Translation”
ablations.

Alignment improves translation quality in all
settings and metrics. With alignment, the transla-
tion approach performs much better in all settings,
establishing a new state-of-the-art in zero and few-
shot settings according to almost all metrics. As a
general trend, the lower data settings benefit more
from alignment. We additionally performed an ex-
periment using the alignment proposed by (Morad-
shahi et al., 2023). There is a 4.0% drop in TSR
and 4.5% in DSR, confirming the benefit of our
improved alignment.

Filtering noise for RG improves fluency. We per-
form an ablation by training separate models on
filtered and unfiltered translated agent utterances.
The filtering process is described in Section 4.2. In
10% fewshot setting, both BLEU and SER improve
by 1.4% confirming that automatically removing
poor translations from training data improves the
agent response quality. Interestingly, we observe an
increase in other metrics too. Since model param-
eters are shared between all subtasks, enhancing
the data quality for one subtask will have a positive
impact on the others as well.

7 Conclusion

This paper shows how to build a dialogue agent
in a new language automatically, given a dialogue
dataset in another language, by using entity-aware
machine translation and our new Distilled dialogue
representation. The performance can be further
improved if a few training examples in the target
language are available, and we show that our ap-
proach outperforms existing ones in this setting as
well.

On the BiToD dataset, our method achieves 3.9%
and 2.9% improvement in TSR and DSR, respec-
tively, over the previous SOTA in full-shot setting,
and 15.2% and 14.0% in a 10% few-shot setting,
showing the effectiveness of our approach. More
importantly, training on translated data and only
10% of original training data comes within 5% of
full training.

We have implemented our methodology as a
toolkit for developing multilingual dialogue agents,
which we have released open-source. Our pro-
posed methodology can significantly reduce the
cost and time associated with data acquisition for
task-oriented dialogue agents in new languages.
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8 Limitations

As discussed in Section 2.1, organic (i.e. with-
out the use of translation) multilingual dialogue
datasets are scarce, which has limited the scope
of our experiments. Our guidelines to improve di-
alogue representation mentioned in Section 4 are
general and applicable to any Human-to-Human or
Machine-to-Machine dialogues annotated with slot-
values. We have yet to evaluate the generalization
of our cross-lingual approach across different lan-
guages and datasets, and to Human-to-Human dia-
logues. For instance, we use a Chinese to English
translator in this work. Available translation mod-
els for low-resource languages have much lower
quality, and this will likely lower the performance
of this approach.

Another limitation is the lack of human evalu-
ation for agent responses. BLEU score does not
correlate well with human judgment, and SER only
accounts for the factuality of the response but not
the grammaticality or fluency. This problem is also
reported in prior works (see Section 5). Although
finding native speaker evaluators for different lan-
guages is a challenge (Pavlick et al., 2014), in the
future, we wish to address this by conducting hu-
man evaluations.

9 Ethical Considerations

We do not foresee any harmful or malicious mis-
uses of the technology developed in this work. The
data used to train models is about seeking infor-
mation about domains like restaurants, hotels and
tourist attractions, does not contain any offensive
content, and is not unfair or biased against any
demographic. This work does focus on two widely-
spoken languages, English and Chinese, but we
think the cross-lingual approach we proposed can
improve future dialogue language technologies for
a wider range of languages.

We fine-tune multiple medium-sized (several
hundred million parameters) neural networks for
our experiments. We took several measures to
avoid wasted computation, like performing one
run instead of averaging multiple runs (since the
numerical difference between different models is
large enough), and improving batching and repre-
sentation that improved training speed, and reduced
needed GPU time. Please refer to Appendix 5.2 for
more details about the amount of computation used
in this paper.
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A Appendix

A.1 Dialogue Examples
We include the same example from BiToD’s En-
glish validation set both in our Distilled represen-
tation (Table 3) and in the original (Table 4) rep-
resentation, along with model predictions in the
full-shot setting. For brevity, only the first 3 turns
are shown.

In Table 4, we observe that the model fails to
ask for the hotel price-range in the second turn
and makes an API call instead. Since the API
call results are carried over between turns in this
representation, in the third turn, the model sees
those results in the input and falsely assumes it does
not need to make an API call anymore, ultimately
resulting in an incorrect response. Compare this
to our representation in Table 3. This example
shows the importance of separation between API
call detection and response generation.

Another phenomenon we often observe is that
the model asks for more information than it should
according to the gold agent dialogue act. As shown
in Table 3, in the second turn, the agent requests
user to provide the desired location for the hotel
as well as the price range. We believe the main
reason for this behavior is the randomness in the
agent policy of the BiToD’s dialogue simulator.
For example, if the agent needs to fill out two slots
to make an API call, it can do so by requesting
both in the same turn, or one turn at a time. This
behavior, though reasonable, is penalized during
evaluation, and predictions are considered incorrect
if they contain extraneous slots.
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Turn 1

DST
Input

DST: <state> null <endofstate> <history> USER: I’d like hotel recommendations.
<endofhistory>

Target ( hotels search )

Prediction ( hotels search )

ACD
Input

API: <knowledge> null <endofknowledge> <state> ( hotels search ) <endofstate>
<history> USER: I’d like hotel recommendations. <endofhistory>

Target no

Prediction no

DAG
Input

ACTS: <knowledge> null <endofknowledge> <state> ( hotels search ) <endofstate>
<history> USER: I’d like hotel recommendations. <endofhistory>

Target ( hotels search ) request rating , request stars

Prediction ( hotels search ) request rating , request stars

RG

Input
RG: <actions> ( hotels search ) request rating , request stars <endofactions> <history>
USER: I’d like hotel recommendations. <endofhistory>

Target Certainly. Do you have any requirements for the hotel’s rating or the number of stars
of the hotel?

Prediction Do you have a preference on how many stars and what rating the hotel should have?

Turn 2

DST
Input

DST: <state> ( hotels search ) <endofstate> <history> AGENT_ACTS: ( hotels search
) request rating , request stars USER: The rating doesn’t matter, but should be at least 5
stars. <endofhistory>

Target ( hotels search ) rating equal_to " don’t care " , stars at_least " 5 "

Prediction ( hotels search ) rating equal_to " don’t care " , stars at_least " 5 "

ACD
Input

API: <knowledge> null <endofknowledge> <state> ( hotels search ) rating equal_to
" don’t care " , stars at_least " 5 " <endofstate> <history> AGENT_ACTS: ( hotels
search ) request rating , request stars USER: The rating doesn’t matter, but should be at
least 5 stars. <endofhistory>

Target no

Prediction no

DAG

Input
ACTS: <knowledge> null <endofknowledge> <state> ( hotels search ) rating equal_to
" don’t care " , stars at_least " 5 " <endofstate> <history> AGENT_ACTS: ( hotels
search ) request rating , request stars USER: The rating doesn’t matter, but should be at
least 5 stars. <endofhistory>

Target ( hotels search ) request price_level

Prediction ( hotels search ) request location , request price_level

RG
Input

RG: <actions> ( hotels search ) request price_level <endofactions> <history> USER:
The rating doesn’t matter, but should be at least 5 stars. <endofhistory>

Target Do you have a price range for the hotel?

Prediction And what about location? Do you have a price range for the hotel?
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Turn 3

DST
Input

DST: <state> ( hotels search ) rating equal_to " don’t care " , stars at_least " 5 "
<endofstate> <history> AGENT_ACTS_PREV: ( hotels search ) request rating , request
stars AGENT_ACTS: ( hotels search ) request price_level USER: cheap <endofhistory>

Target ( hotels search ) price_level equal_to " cheap "

Prediction ( hotels search ) price_level equal_to " cheap "

ACD
Input

API: <knowledge> null <endofknowledge> <state> ( hotels search ) price_level
equal_to " cheap " , rating equal_to " don’t care " , stars at_least " 5 " <endofs-
tate> <history> AGENT_ACTS_PREV: ( hotels search ) request rating , request stars
AGENT_ACTS: ( hotels search ) request price_level USER: cheap <endofhistory>

Target yes

Prediction yes

DAG

Input

ACTS: <knowledge> ( hotels search ) available_options " 4 " , location " Mong Kok
| Kowloon | Yau Tsim Mong District " , name " Royal Plaza Hotel " , price_level "
cheap " , price_per_night " 793 HKD " , rating " 9 " , stars " 5 " <endofknowledge>
<state> ( hotels search ) price_level equal_to " cheap " , rating equal_to " don’t care "
, stars at_least " 5 " <endofstate> <history> AGENT_ACTS_PREV: ( hotels search
) request rating , request stars AGENT_ACTS: ( hotels search ) request price_level
USER: cheap <endofhistory>

Target ( hotels search ) offer available_options equal_to " 4 " , offer name equal_to " Royal
Plaza Hotel " , offer rating equal_to " 9 "

Prediction ( hotels search ) offer available_options equal_to " 4 " , offer name equal_to " Royal
Plaza Hotel " , offer rating equal_to " 9 "

RG

Input
RG: <actions> ( hotels search ) offer available_options equal_to " 4 " , offer name
equal_to " Royal Plaza Hotel " , offer rating equal_to " 9 " <endofactions> <history>
USER: cheap <endofhistory>

Target Okay. There are 4 hotels available. I recommend the Royal Plaza Hotel, which has a 9
rating.

Prediction There are 4 available hotels. I recommend Royal Plaza Hotel. Its rating is 9.

Table 3: An example from BiToD English validation set in Distilled representation, along with our mBART model
predictions. For brevity, only the first 3 turns are shown.
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Turn 1

DST
Input

Track Dialogue State:<knowledge><dialogue_state> <user> I’d like hotel
recommendations.

Target <API> hotels search

Prediction <API> hotels search

API/ Response
Input

Generate Response:<knowledge><dialogue_state> <API> hotels
search<user> I’d like hotel recommendations.

Target Certainly. Do you have any requirements for the hotel’s rating or the
number of stars of the hotel?

Prediction What rating would you like the hotel to have?

Turn 2

DST

Input
Track Dialogue State:<knowledge><dialogue_state> <API> hotels
search<user> I’d like hotel recommendations.<system> Certainly. Do
you have any requirements for the hotel’s rating or the number of stars of
the hotel?<user> The rating doesn’t matter, but should be at least 5 stars.

Target <API> hotels search<slot> rating<relation> equal_to<value> don’t
care<slot> stars<relation> at_least<value> 5

Prediction <API> hotels search<slot> rating<relation> equal_to<value> don’t
care<slot> stars<relation> at_least<value> 5

API/ Response

Input
Generate Response:<knowledge><dialogue_state> <API> hotels
search<slot> rating<relation> equal_to<value> don’t care<slot>
stars<relation> at_least<value> 5<user> I’d like hotel recommenda-
tions.<system> Certainly. Do you have any requirements for the hotel’s
rating or the number of stars of the hotel?<user> The rating doesn’t matter,
but should be at least 5 stars.

Target Do you have a price range for the hotel?

Prediction I found 43 hotels. I recommend Cordis, Hong Kong, which has a rating of
10.

Turn 3

DST
Input

Track Dialogue State:<knowledge><dialogue_state> <API> hotels
search<slot> rating<relation> equal_to<value> don’t care<slot>
stars<relation> at_least<value> 5<user> The rating doesn’t matter, but
should be at least 5 stars.<system> Do you have a price range for the
hotel?<user> cheap

Target <API> hotels search<slot> price_level<relation> equal_to<value> cheap

Prediction <API> hotels search<slot> price_level<relation> equal_to<value> cheap

API/ Response
Input

Generate Response:<knowledge><dialogue_state> <API> hotels
search<slot> rating<relation> equal_to<value> don’t care<slot>
stars<relation> at_least<value> 5<slot> price_level<relation>
equal_to<value> cheap<user> The rating doesn’t matter, but should be at
least 5 stars.<system> Do you have a price range for the hotel?<user>
cheap

Target <API> hotels search

Prediction –

API/ Response

Input

Generate Response:<knowledge> [hotels]<slot> name<value> Royal
Plaza Hotel<slot> location<value> Mong Kok<value> Kowloon<value>
Yau Tsim Mong District<slot> price_level<value> cheap<slot>
price_per_night<value> 793 HKD<slot> rating<value> 9<slot>
stars<value> 5<slot> available_options<value> 4<dialogue_state>
<API> hotels search<slot> rating<relation> equal_to<value> don’t
care<slot> stars<relation> at_least<value> 5<slot> price_level<relation>
equal_to<value> cheap<user> The rating doesn’t matter, but should be at
least 5 stars.<system> Do you have a price range for the hotel?<user>
cheap<API> hotels search

Target Okay. There are 4 hotels available. I recommend the Royal Plaza Hotel,
which has a 9 rating.

Prediction The hotel costs 839 HKD per night.

Table 4: Same example as in Table 3 but in the original representation from Lin et al. (2021), along with
MinTL(mT5) model predictions. For brevity, only the first 3 turns are shown.
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Abstract

Robust state tracking for task-oriented dia-
logue systems currently remains restricted to a
few popular languages. This paper shows that
given a large-scale dialogue data set in one lan-
guage, we can automatically produce an effec-
tive semantic parser for other languages using
machine translation. We propose automatic
translation of dialogue datasets with alignment
to ensure faithful translation of slot values and
eliminate costly human supervision used in
previous benchmarks. We also propose a new
contextual semantic parsing model, which en-
codes the formal slots and values, and only the
last agent and user utterances. We show that
the succinct representation reduces the com-
pounding effect of translation errors, without
harming the accuracy in practice.

We evaluate our approach on several dialogue
state tracking benchmarks. On RiSAWOZ,
CrossWOZ, CrossWOZ-EN, and MultiWOZ-
ZH datasets we improve the state of the art by
11%, 17%, 20%, and 0.3% in joint goal accu-
racy. We present a comprehensive error anal-
ysis for all three datasets showing erroneous
annotations can lead to misguided judgments
on the quality of the model.

Finally, we present RiSAWOZ English and
German datasets, created using our transla-
tion methodology. On these datasets, accu-
racy is within 11% of the original showing that
high-accuracy multilingual dialogue datasets
are possible without relying on expensive hu-
man annotations. We release our datasets and
software open source.1

1 Introduction

Tremendous effort has gone into the research and
development of task-oriented dialogue agents for
English and a few other major languages in recent
years. A methodology that can transfer the effort to

1https://github.com/stanford-oval/
dialogues

other languages automatically will greatly benefit
the large population of speakers of the many other
languages in the world.

Underlying an effective TOD agent is dialogue
state tracking, the task of predicting a formal rep-
resentation of the conversation sufficient for the
dialogue agent to reply, in the form of slots and
values. However, DST currently remains restricted
to a few popular languages (Razumovskaia et al.,
2021). Traditional DST agents require large hand-
annotated Wizard-of-Oz (Kelley, 1984) datasets for
training, which are prohibitively labor-intensive
to produce in most languages (Gunasekara et al.,
2020). Large, multi-domain WOZ datasets are only
available in English and Chinese (Quan et al., 2020;
Ye et al., 2021a).
The contributions of this paper are as follows:

1. We propose an automatic technique
to build multilingual data sets using machine
translation. Machine translation has been
shown effective for localizing question-answering
agents (Moradshahi et al., 2020). It shows that for
open ontology datasets, we need to use an align-
ment model to properly translate entities in the
source language to entities in the target language.
This paper shows that alignment is necessary even
for closed ontology datasets and dialogues.

Furthermore, we improve alignment to address
these challenging issues we discovered unique to
dialogues: (1) Translation errors accumulate and
can prevent a correct parse for the rest of the dia-
logue; (2) There are logical dependencies between
slot values across different turns; (3) Utterances are
generally longer and more complex carrying multi-
ple entities. We found that alignment improves the
accuracy on the RiSAWOZ benchmark by 45.6%.
This technique eliminates the cost of human post-
editing used on all previous translation benchmarks,
and can improve machine translation quality on
other tasks too.

Using this methodology, we automatically trans-
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late the RiSAWOZ dataset to English and German,
creating RiSAWOZ-EN-auto and RiSAWOZ-DE-
auto datasets respectively.

2. We show that the accumulation of trans-
lation and annotation errors across turns can
be mitigated with a Contextual Semantic Pars-
ing (CSP) model for state tracking. We propose
a BART-CSP model, a seq-to-seq based on BART,
that encodes the belief state, and the last agent and
user utterances, rather than the full history of utter-
ances.

BART-CSP improves SOTA on Ri-
SAWOZ (Quan et al., 2020) and CrossWOZ (Zhu
et al., 2020), two large-scale multi-domain WoZ
dialogue datasets, by 10.7% and 17% in Joint Goal
Accuracy(JGA). Notably, BART-CSP is more
effective on translated data as evident by bigger per-
formance improvement: on RiSAWOZ-EN-auto
and RiSAWOZ-DE-auto datasets, automatically
translated versions of RiSAWOZ, BART-CSP
improves SOTA by 32.4% and 52.5%.

2 Related Work

2.1 Dialogue State Tracking

Dialogue state tracking (DST) refers to the task of
predicting a formal state of a dialogue at its cur-
rent turn, as a set of slot-value pairs at every turn.
State-of-the-art approaches apply large transformer
networks (Peng et al., 2020; Hosseini-Asl et al.,
2020) to encode the full dialogue history in order
to predict slot values. Other approaches include
question-answering models (Gao et al., 2019), on-
tology matching in the finite case (Lee et al., 2019),
or pointer-generator networks (Wu et al., 2019).
Both zero-shot cross-lingual DST transfer (Ponti
et al., 2018; Chen et al., 2018) and multilingual
knowledge distillation (Hinton et al., 2015; Tan
et al., 2019) have been investigated; however, train-
ing with translated data is the dominant approach,
outperforming zero-shot and few-shot methods.

2.2 Contextual Semantic Parsing

Alternatively to encoding the full dialogue history,
previous work has proposed including the state as
context (Lei et al., 2018; Heck et al., 2020; Ye
et al., 2021b) together with the last agent and user
utterance. Recently, Cheng et al. (2020) proposed
replacing the agent utterance with a formal repre-
sentation as well. Existing models rely on custom
encoder architectures and loss functions for the
state (Heck et al., 2020). Our formulation of CSP

is different since we encode the formal dialogue
state directly as text, which simplifies the architec-
ture and makes better use of the pretrained model’s
understanding of natural text.

Previous work also applied rule-based state
trackers that compute the state based on the agent
and user dialogue acts (Schulz et al., 2017; Zhong
et al., 2018; Zhu et al., 2020). Such techniques
cannot handle state changes outside of a state ma-
chine defined ahead of time and do not achieve
state-of-the-art accuracy on WOZ dialogues.

2.3 Multilingual Dialogues

Several multilingual dialogue benchmarks have
been created over the past few years. Dialogue
State Tracking Challenge (DSTC) has released sev-
eral datasets (Kim et al., 2016; Hori et al., 2019; Gu-
nasekara et al., 2020), covering only a few domains
and languages. CrossWOZ (Zhu et al., 2020) and
RiSAWOZ (Quan et al., 2020) are Chinese datasets
collected through crowdsourcing. BiToD (Lin et al.,
2021) uses a dialogue simulator to generate dia-
logues in English and Chinese, then uses crowd-
sourcing to paraphrase entire dialogues. All these
approaches use crowdworkers in one or multiple
stages of data collection which is costly and human
errors degrade quality. Automatic creation of af-
fordable high-quality dialogue datasets for other
languages still remains a challenge (Razumovskaia
et al., 2021).

3 Task Setting

We are interested in the dialogue state tracking task,
in which the goal is to predict a formal represen-
tation of a conversation up to a certain point, also
known as belief state, consisting of the slots that
were mentioned in the dialogue and their value. At
the beginning of the conversation, the belief state is
empty, and it grows as the conversation progresses,
accumulating the slots that were mentioned across
all turns prior.

Formally, the problem is formulated given a pre-
defined set of slots s1, s2, . . . sn (such as “restau-
rant name”, “restaurant food”, etc.). Each slot has
one value taken from the ontology v1, v2, . . . , vn.
The ontology contains the legitimate values for
the slot from the database (i.e. the list of restau-
rant names or restaurant cuisines), as well as the
special values “none” indicating the slot was not
mentioned, and “dontcare” indicating the slot was
explicitly mentioned by the user but the user has
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CSP Input

DST History Input

null ---

can you help me 
find a place in the 
north where i can 
stay ?

hotel area = " north "

hotel area = " 
north "

sure i have 5 guest 
houses all in the 
moderate price 
range . when is 
your stay ?

do any of them 
have a 4 star 
rating ?

hotel area = " north " 
hotel stars = " 4 "

hotel area = " 
north " hotel 
stars = " 4 "

yes , actually they 
all have 4 star 
ratings , do you 
need parking ?

yes , i would 
like to book 1 
that offers 
parking please

hotel area = " north " 
hotel parking = " yes 
" hotel stars = " 4 "

Figure 1: Visualization of the differences between in-
puts of CSP and traditional DST models. While the lat-
ter encodes the full history of the dialogue, CSP only
encodes the current state and turn. b, a, and u indicate
the dialogue state, agent utterance, and user utterance,
respectively. t is the turn number. ˆ indicates a pre-
dicted dialogue state.

no preference.
Therefore, given a partial conversation history

composed of turns x1, x2, . . . , xt, where each
turn consists of an agent response (at) and user
utterance (ut), the task is to predict the belief state:
bn(x1, . . . , xt) = {s1 = v1,t, s1 = v2,t, . . . , sn = vn,t}
where n is the number of slots and vi,t is the value
of the slot si up to turn t of the conversation. Note
that the slot could be mentioned at turn t, or in any
of the turns before.

4 Reducing Translation Noise

Key to the success of the dialogue state tracking is a
precise and consistent annotation of the belief state
at every turn. This is challenging in the multilin-
gual setting, where we apply automatic translation
to produce new training sets for DST: (1) the trans-
lation can be ungrammatical or incorrect, and it can
introduce spurious information, and (2) the new an-
notation (in the target, translated ontology) can
diverge from the translation of the sentence, such
as referring to the same value in different ways in
the target language.

We refer to the error introduced in translation col-
lectively as translation noise. We posit that trans-
lation noise is the reason for poorer performance
in existing translated dialogue datasets, compared
to the same model on the dialogue dataset in the
source language. In this section, we describe our
methods to reduce translation noise.

4.1 Alignment
A major source of translation noise is due to mis-
matches between the translation of an entity by it-
self and in sentence. For instance, given a Chinese
sentence that refers to an utterance containing the

word “aquarium” (水族馆), incorrect translation
may result in “ocean museum” in the English utter-
ance, which does not match the slot value “aquar-
ium” in the ontology and annotation anymore. Slot
values may also get dropped or transliterated.

Translation with alignment was previously pro-
posed by Moradshahi et al. (2020) to localize open-
ontology multilingual semantic parsing datasets.
Token alignments, obtained from cross-attention
weights of the neural model, are used to track po-
sition of entities during translation so they can be
replaced afterwards with local entity values. Fig-
ure 2 shows the translation and alignment process
for an example input.

We show that alignment is useful also for a finite
(closed) ontology in a dialogue setting. The dia-
logue setting is more challenging since the replace-
ment with local entity values must be consistent
across turns and dependent slots - slots that their
values are logically dependent on each other. For in-
stance, the corresponding price range for a fast food
restaurant should be cheap, or a speaker looking
for an attraction to go to with his girlfriend wants a
place where best-for-crowd = “lover’s date”. Fur-
thermore, utterances are generally longer and more
complex containing multiple entities.

We have made several changes in alignment to
address these issues:

1. We use a dictionary constructed from the
dataset’s ontology for translating the depen-
dent slots to ensure relations are preserved.
For all other slots, we randomly replace them
with values from the target language ontology
similar to previous work.

2. In previous work, quotation marks were used
to mark the boundary of entities and to re-
trieve alignment between tokens in the input
and output. We found the translation of quo-
tation marks to be inconsistent. Instead, we
omit those marks before translation and purely
rely on cross-attention between subwords to
compute alignment.

3. We observed alignment does poorly on digits
and often misplaces them in the output. We
use string matching to retrieve spans for num-
bers, dates, and time slots if present in the
output and omit alignment if successful.

4. Dialogues contain longer utterances with mul-
tiple entities per turn. We found breaking

904



P
o

o
lin

g

Transformer Decoder

Feed Forward

Cross Attention

Alignment

I am looking for a burger

place near woodland pond .

Sto cercando un posto da " hamburger " 

vicino a " stagno bosco ".

Sto cercando un posto da " burger " 

vicino a " woodland pond ".

Transformer Encoder

[it]

….

Sto .

….

cercando

Figure 2: Example of the translation and alignment pro-
cess. The encoder-decoder cross-attention weights are
used to achieve word alignment.

down utterances into individual sentences be-
fore translation, significantly improves the
quality of outputs when there are fewer en-
tities to align.

To measure the effect of our changes, we trans-
late MultiWOZ English dev set to Chinese with
the new and previous alignment methods using
MBART-MMT (see Section 5.3 for details). The
new approach improves BLEU score by 8 points
and JGA by 5% on MultiWOZ-ZH dev set.

4.2 Contextual Semantic Parsing

Previous work on dialogue state tracking encodes
all or several turns up to the current one using a
neural model, which then predicts the value for
each slot. Hence, the input of the model consists
exclusively of natural language, and grows as the
conversation grows, accumulating any translation
noise.

At the same time, we observe that the belief state
at turn t, bt, can be computed from the belief state at
turn t− 1 and the slots mentioned in the utterances
at turn t. Hence, we propose to use a contextual
semantic parser (CSP) for dialogue state tracking
that computes P (bt|at;ut; bt−1). The CSP model
is applied to the dialogue-state tracking task by
iteratively predicting the belief state of all turns,
starting from b0, the initial state consisting of all
empty slots.

The CSP formulation condenses the dialogue
history into a formal, fixed-length representation.
Because the representation does not grow with the

Seq2Seq Model

restaurants Price = " cheap " restaurants Cuisine = " western " 

Old Maple Garden is a good one.

Is that so? What is the recommended dish ?

restaurants Price = " cheap " restaurants Name = " Old Maple 
Garden " restaurants Cuisine = " western "

User utterance:

Agent response:

State:

New state:

+

+

Figure 3: Contextual Semantic Parser model. We use
BART for English and MBART for Chinese and Ger-
man as the seq2seq model.

dialogue, it does not suffer from accumulation of
translation noise.

Our CSP model is based on Seq2Seq Trans-
former models BART (Lewis et al., 2019) for En-
glish and MBART (Liu et al., 2020) for all others.
Here we refer to them as CSP-BART for simplicity.

The model encodes the belief state as a textual
sequence of slot names and slot values. This en-
coding is concatenated to the agent utterance and
user utterance, and fed to the model to predict the
belief state at the end of the turn (Fig. 3). Similar
to (Yang et al., 2021b), we encode the belief state
directly as text, which simplifies the architecture
and leverages the pretraining of BART.

5 Experiments

Our experiments are designed to answer the fol-
lowing questions: 1) How well does CSP perform
on WOZ datasets compared to DST models that
encode the full conversation history? 2) Is our ap-
proach effective to reduce the translation noise?

5.1 Datasets

We evaluate our models on the RiSAWOZ (Quan
et al., 2020), MultiWOZ (Budzianowski et al.,
2018; Eric et al., 2019), and CrossWOZ (Zhu et al.,
2020) datasets and their available translated ver-
sions: MultiWOZ Chinese (Li et al., 2021), Cross-
WOZ English (Li et al., 2021). These particular
datasets were chosen because they are large Wizard-
of-OZ dialogue datasets and therefore more natural
and representative of task-oriented dialogues. Ad-
ditionally, we use our methodology to create the
RiSAWOZ English and German datasets.

RiSAWOZ (Quan et al., 2020) is a Chinese WOZ
dataset of 11k annotated dialogues and over 150k
utterances spanning the 12 domains of attraction,
restaurant, hotel, flight, train, weather, movie, TV,
computer, car, hospital, and courses. Dialogues are
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formed from both single-domain and multi-domain
goals, and annotated with dialogue states, dialogue
acts, and coreference clusters.

MultiWOZ is an English-language WOZ dataset
of 10k single- and multi-domain dialogues span-
ning the following 7 domains: taxi, restaurant, ho-
tel, attraction, train, police, hospital. Following
prior work with this dataset (Lee et al., 2019; Kim
et al., 2019), we drop hospital and police from
the training set as they are not included in the val-
idation and test set. After the release of Multi-
WOZ 2.0 (Budzianowski et al., 2018), later itera-
tions (Eric et al., 2019; Zang et al., 2020; Han et al.,
2020) corrected some of the misannotations.

CrossWOZ is a Chinese-language WOZ dataset
of 6k dialogues and over 102k utterances spanning
the same 5 domains as the MultiWOZ validation
and test sets: hotel, restaurant, attraction, metro,
and taxi. CrossWOZ dialogues are annotated with
dialogue states and dialogue acts, and average over
3.24 domains per dialogue, as opposed to the 1.80
of MultiWOZ.

For DSTC-9, Google NMT was used to trans-
late MultiWOZ 2.1 to Chinese and CrossWOZ to
English (Gunasekara et al., 2020; Li et al., 2021).
To ensure translations of slot values in the dialog
are faithful to the ontology, they replace them with
their translations from a dictionary before feeding it
to the NMT. This approach creates mixed-language
sentences, shifting input distribution away from
what public NMTs have been trained on, thus re-
ducing quality (Moradshahi et al., 2020). Note that
human translators were employed to proofread the
translations and check certain slots to ensure values
are correctly translated.

Table 1 shows a comparison of statistics for the
training split of datasets used or created in this
work. All the datasets have a closed ontology: the
same entities appear in the train, validation, and
test sets.

5.2 Models

We compare BART-CSP results against SOTA for
each dataset. Models include the following:

• TRADE (Wu et al., 2019) uses a sequence-to-
sequence architecture that encodes all utterances
in the dialogue. It uses a pointer-generator to
output the value of each slot.

• MLCSG (Quan and Xiong, 2020) extends
TRADE by improving modeling of long contexts
through a multi-task learning framework.

• SOM (Kim et al., 2019) considers dialogue state
as an explicit fixed-sized memory and uses state
operation to selectively update slot values at each
turn.

• SUMBT (Lee et al., 2019) applies a BERT en-
coder to each utterance on the dialogue and a
recurrent network to compute a representation
of the whole dialogue, which is then matched
against the ontology of each slot.

• MinTL (Lin et al., 2020) uses more recent pre-
trained models such as T5 (Raffel et al., 2019)
and BART as the dialogue utterance encoder and
builds an end-to-end dialogue model jointly learn-
ing dialogue state tracking, policy, and natural
language generation tasks.

• STAR (Ye et al., 2021b) STAR uses two BERT
models for encoding context and slot values. Ad-
ditionally, they use a slot self-attention mecha-
nism that can learn the slot correlations automat-
ically. They use as input both the previous belief
state and history of dialogue.

5.3 Implementation Details
BART-CSP is implemented using the Hugging-
face (Wolf et al., 2019) and GenieNLP (Campagna
et al., 2019) libraries. We use the available open-
source code for the other models. Hyperparameters
for BART-CSP are discussed below; hyperparame-
ters for other models are taken from the respective
papers.

For semantic parsing we used bart-base (~139M
parameters) for English and mbart-large-50
(~611M parameters) model for other languages.
For translation we used mbart-large-50-many-to-
many-mmt (~611M parameters) which can trans-
late directly between any pairs of 50 languages it
supports. All models use a standard Seq2Seq archi-
tecture with a bidirectial encoder and left-to-right
autoregressive decoder. All the models are pre-
trained using text denoising objective. mbart-large-
50-many-to-many-mmt is additionally finetuned
to do translation. BART uses BPE (Gage, 1994)
to tokenize the input sentences whereas MBART
uses sentence-piece model (Kudo and Richardson,
2018). We used Adam (Kingma and Ba, 2014)
as our optimizer with a learning rate of 1 × 10−5

and used transformer warmup schedule (Popel and
Bojar, 2018) with a warmup of 80. These hyper-
parameters were chosen based on a very limited
hyperparameter search on the validation set. For
the numbers reported in the paper, due to cost, we
performed only a single run for each experiment.
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Dataset
RiSAWOZ CrossWOZ MultiWOZ

Languages ZH, EN∗, DE∗ ZH, EN EN, ZH
# Domains 12 5 7
# Dialogues 10,000 5,012 8,438
# Turns 134,580 84,692 115,424
# Slots 159 72 25
# Values 4,061 7,871 4,510

Table 1: Statistics of the training datasets (excluding
validation and test). ∗Created using our methodology.

We batch sentences based on their input and approx-
imate output token count for better GPU utilization.
We set the total number of tokens to 700 for Mbart
and 2000 for Bart models. We use gradient ac-
cumulation of 3 for Mbart and 9 for bart models
boosting the effective batch size for better training.
Our models were trained on NVIDIA V100 GPU
using the AWS platform. For a fair comparison,
all models were trained for the same number of
iterations of 50K.

5.4 Metrics
We evaluate the models using the following two
metrics:

• Joint Goal Accuracy (JGA): The standard met-
ric of evaluation in DST is joint goal accuracy,
which measures the average accuracy of predict-
ing all slot assignments to exact match (EM) for
any given turn. To compute this metric for CSP,
the belief state predicted in previous turn is used
as input for the current turn.

• Gold Joint Goal Accuracy (GJGA): This met-
ric is similar to JGA but is calculated on a turn
by turn basis, with ground-truth belief state used
as input. Assuming the belief state correctly cap-
tures the state up to current turn of the dialogue,
this metric acts as an oracle in evaluation remov-
ing the compounding effect of errors from previ-
ous turns.

6 Analysis and Results

Table 2 shows the results on test set for BART-CSP
and previous SOTA models. For a better compari-
son we have included some details for each model:

• Context Encoder: The neural model used to en-
code the input.

• Dialogue History: If dialogue history is included
in the input. A turn is defined as a pair of user
utterance and agent response. “Partial” history
means only a few turns of dialogue are kept while
“Full” history models encode all previous turns.

• Encodes State: indicates if the user belief state
up to the current turn is included in the input.

• Predefined Slots or Ontology: whether the model
design or the data processing step needs knowl-
edge of slot names or values.

As shown in Table 2, all previous models encode
either a partial or full history. BART-CSP encodes
significantly less information as it relies only on
the current turn and the latest belief state. This sim-
plifies model design and improves data efficiency
for training (Yang et al., 2021a; Kapelonis et al.,
2022).

Furthermore, models that rely on predefined on-
tologies require changes in architecture for new
datasets. On the other hand, BART-CSP is a gener-
ative model that learns to copy slots from context
and can be deployed for a new dataset as is.

On MultiWOZ, we report results for two models:
MinTL which uses BART-large, and STAR2 which
uses BART as the context encoder. Our model
outperforms MinTL despite using a smaller BART
model, and achieves similar performance to STAR
despite not having access to the full history. This
shows bigger models do not necessarily yield bet-
ter performance and model architecture and data
representation are important too.

6.1 RiSAWOZ
The RiSAWOZ experiments shows that contextual
semantic parsing delivers better accuracy than the
state of the art on the original data sets; it is even
more significant for translated data sets because it
is more robust to translation errors.

BART-CSP improves the state of the art by
10.7% on JGA to 76.9% for the original Chinese
data set. It provides an even greater improvement
on the translated data sets: by 32.4% to 68.6% and
by 42.5% to 65.9% on the automatically translated
English and German data sets, respectively.

BART-CSP holds two major advantages over
models that predict the slot-value pairs from the
dialogue history. First, by distilling the belief state
into a concise representation, it reduces noise in
the input that would otherwise be present in a long
dialogue history. Second, by taking the belief state
as input, the model becomes more robust to trans-
lation errors in utterances from previous turns than

2SOLOIST (Peng et al., 2021) and SCORE (Yu et al.,
2021) achieve better performance than STAR; however, these
models use additional dialogue datasets to either pre-train or
fine-tune their models. To keep the comparison fair, we only
consider prior work that trained on MultiWOZ only.
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SOTA BART-CSP

Dataset Model
Context Dialogue Encodes Predefined

GJGA JGA GJGA JGA
Encoder History State Slots / Ont.

RiSAWOZ MLCSG Bi-GRU Full 7 3 – 66.2 90.4 76.9
RiSAWOZ-EN-auto MLCSG Bi-GRU Full 7 3 – 36.2 88.8 68.6

(-alignment) MLCSG Bi-GRU Full 7 3 – 15.6 65.2 22.9
RiSAWOZ-DE-auto MLCSG Bi-GRU Full 7 3 – 13.4 86.7 65.9
CrossWOZ TRADE Bi-GRU Full 7 3 71.3† 36.1 80.2 53.6
CrossWOZ-EN SOM BERT Partial 3 7 – 32.3‡ 81.1 52.3
MultiWOZ 2.1 MinTL BART-large Partial 3 7 – 53.6‡ 81.2 53.7
MultiWOZ 2.1 STAR BERT Full 3 3 78.7∗ 56.7 81.2 53.7
MultiWOZ-ZH 2.1 SUMBT BERT Full 3 3 – 46.0‡ 75.9 46.3
MultiWOZ 2.4 STAR BERT Full 3 3 90.2∗ 74.8 91.7 70.4

Table 2: Comparison of results on test set for the BART-CSP model vs state-of-the-art on various datasets. The best
result on JGA metric is in bold. GJGA is only bolded if SOTA is available. †RuleDST uses the previous system
state and user dialogue acts as input. ∗STAR-GT uses ground truth previous dialogue state as input. ‡ indicates
results are reported from their paper. We reproduced all results for models that source code and pretrained models
were available to ensure correct comparison. “-align.” denotes an ablation where translation is done without
slot-value alignment.

models that accept dialogue histories. Hence it is
even more effective on translated datasets.

Alignment is critical to generating a high-quality
translated dialogue data set. The English and Ger-
man semantic parser show only a degradation of
8-11% from the Chinese parser. In an ablation
study of direct translation without alignment, the
JGA on RiSAWOZ English drops from 68.6% to
22.9%, a difference of 45.7%.

Alignment ensures that entities are translated to
the right phrase from the target ontology. For exam-
ple, the phrase “姑苏区" is translated to “Aguzhou
district” in a user utterance when the whole sen-
tence is translated directly, but becomes “Gusu dis-
trict” in the annotation. With alignment, both are
translated identically to “Gusu district.” The cor-
respondence of utterance and belief state leads to
higher DST performance.

6.2 CrossWOZ

Compared to MultiWOZ and RiSAWOZ, Cross-
WOZ is a more challenging dataset. Besides hav-
ing longer conversations with more domains per
dialogue, the cross-domain dependency is stronger.
For example, the choice of location in one domain
will affect the choice of location in a related do-
main later in the conversation, requiring models to
have better contextual understanding. CrossWOZ
is not only a smaller, more complex dataset than
RiSAWOZ, but also exhibits a higher misannota-
tion rate, to be discussed in Section 7. The current
state of the art result was obtained with TRADE,
which achieves 36.1% JGA.

The experiments with CrossWOZ also confirm
that BART-CSP outperforms prior state-of-the-art
models that encode full or partial history. Specifi-
cally, it exhibits an improvement of 17.5% in JGA
on the original dataset and 20.0% in JGA on the
English translated data set.

The GJGA metric for CrossWOZ was obtained
by using RuleDST (Zhu et al., 2020), a set of hand-
written rules specialized to the dataset to compute
the new belief state from the ground truth user and
system dialogue acts. BART-CSP outperforms the
use of RuleDST in GJGA by 9%, showing that it is
not necessary to handcraft these rules.

The translated CrossWOZ-EN data have been
manually corrected for slot-value errors. Appli-
cation of our automatic slot-value alignment tech-
nique would have greatly reduced the tedious man-
ual effort required. In both GJGA and JGA, BART-
CSP performs within 1% of the original Chinese
dataset on English CrossWOZ.

6.3 MultiWOZ

MultiWOZ is a challenging data set because of
the well-documented problem of misannotations
in the data set (Eric et al., 2019). Misannotations
teach the model to mispredict; conversely, correct
predictions may be deemed to be incorrect. Thus
the current state-of-the-art STAR model can only
achieve an accuracy of 56.7%.

While BART-CSP accepts only the belief state
as input context, the STAR model accepts both the
previous belief state and the dialogue history. The
latter offers an opportunity for the model to recover
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missing state values from the history, giving a 3%
advantage in JGA over BART-CSP. However, we
note that once an agent misinterprets a user input,
it is not meaningful to measure the accuracy for
subsequent turns since the conversation would have
diverged from the test data.

On the other hand, parsing history has its own
cost: (1) It is less data efficient as you need more
data to learn the same task. (2) It requires a more
complex model that can find relevant slots among
a large number of sentences. BART-CSP outper-
forms STAR by a 2.5% improvement in GJGA,
suggesting that having the dialogue history as in-
put can be detrimental when the past turns of a
dialogue have been predicted correctly. On the Chi-
nese translation of MultiWOZ, BART-CSP does
slightly better than state of the art, improving JGA
by 0.3% to 46.3%.

We also compare BART-CSP performance to
MinTL, which is not SOTA, but uses more recent
BART and T5 models as encoder. The results show
that better performance on DST cannot be achieved
by solely relying on better encoders with improved
pretraining as both models are outperformed by
STAR which uses BERT.

Between MultiWOZ 2.1 and 2.4, BART-CSP
results improve by 16.7% on JGA and 10.5% on
GJGA, while STAR improves by 18.1% on JGA
and 11.5% on GJGA, showing dependence of both
BART-CSP and STAR on the quality of annota-
tion. Because MultiWOZ 2.4 only corrects the
validations and test sets, CSP is still affected by
mis-annotations in the training dataset. The lack
of an equally clean training set may be the reason
BART-CSP does not exhibit as much improvement
across the versions.

7 Data and Error Analysis

A manual inspection revealed the following sources
of errors on the CSP model, showing some of the
inference limitations and its susceptibility to mis-
annotations.

7.1 Misannotations

A substantial portion of incorrect predictions is
due to existing annotation errors in all the datasets.
In particular, in a manual review of 200 randomly
chosen turns from each dataset, RiSAWOZ exhibits
a 10.0% misannotation rate while CrossWOZ and
MultiWOZ exhibit 17.9% and 26% misannotation
rates, respectively.

Prevalent misannotation error types observed in
the three datasets are noted below, with examples
in the appendix.

• Inconsistency: Annotation inconsistency is a
common issue with the Wizard-of-Oz data col-
lection method. Examples of inconsistent anno-
tations include inferred slots and slots that are
mentioned by the agent but ignored by the user.

• Inexact Match: Typos, i.e. minor mismatches
between the utterances and the annotation slot
values. Chinese is a homonym-heavy language.
It is not unexpected for single-character mis-
match typos to occur frequently in the dataset.
A second kind of typo is for a character to be
entirely missing in an entity name.

• Missing Slots: Sometimes, values for some slots
are simply just not included in the annotations.

CrossWOZ and MultiWOZ 2.1 are also suscep-
tible to the following:

• Extra Slots: The presence of slot names which
are not mentioned by either the user or the agent.

The following additional annotations problems
are salient in MultiWOZ 2.1:

• Delayed Annotations: Slot values that are al-
ready confirmed by the user show up at a later
turn in the conversation.

In RiSAWOZ, the final parting turn in a dialogue
has no annotations, indicating a state reset:

• Empty Annotation (Hard State Reset): Some
turns are missing annotations altogether.

7.2 Logical Relation Inference
In RiSAWOZ, the model is expected to infer the
logical relationships between entities. For instance,
the price range for a fast food restaurant should
be cheap; looking for an attraction to go to with a
girlfriend implies the interest of a place where best-
for-crowd = “lover’s date”; similarly the desired
hotel rating is to be inferred from the utterance
rather than explicitly mentioned.

For example:

• 我们一家是外地的，来苏州游玩，你可以
帮我找一个在吴中区，中等消费水平的景
点吗 (Our family is foreign, we have come to
Suzhou to have fun, could you help me find, in
the WuZhong area, a medium priced attraction?)
The slot value pair 最适合人群= “家庭亲子”
(best-for-crowd = “family”) must be inferred.
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• 好的。再看看高新区有什么好吃的火锅
店？(Okay. Can you also see if GaoXin District
has some good hotpot?)
The slot 价位= “偏贵” (price = “expensive”)
must be inferred from the fact that the food is
hotpot.

We found that most models struggle with this
type of inference which requires higher level lan-
guage understanding and reasoning. It is unclear
whether this weakness is inherent to the model or
whether it is an artifact of inconsistent annotations.
Of the misannotations counted, 33% were missing
the slot “Best for crowd.”

7.3 Expanded Range Inference

In CrossWOZ, when a user requests, for instance,
a restaurant where the cost per person is within a
price range, oftentimes the agent cannot find such
a restaurant, and responds with a suggestion with a
cost outside of that range. In subsequent slots, the
price range is expanded to include that cost, typi-
cally by rounding to the nearest ten. For example:

• 你好，我想去吃饭。请帮我找一家人均消
费是100-150元，有井冈山豆皮这个菜的餐
馆。 (Hello, I’d like to go eat. Please help me
find a place where the cost per person is 100-150
yuan, and has Jingangshan bean curd.) In this
turn, the slot value for cost per person is 100-150.
However, following the agent response, the slot
changes: 只为您找到一家叫西江美食舫(健
德桥店)，但是它家的人均消费是83元。 (I
could only find a place called XiJiang Gourmet
Boat (Jiandeqiao location), but the cost per per-
son is 83 yuan.) Since 83 is outside the original
range 100-150, the slot value is expanded to 80-
150 for the remaining turns of the dialogue.

We find that CSP struggles with such turns and
will typically mispredict the slot value, assigning
the previous range rather than inventing a new one.

8 Conclusion

Given a dialogue dataset in one language, this pa-
per shows how to build contextual semantic parsers
for a new language using automatically machine-
translated data. We propose an improved alignment
approach for dialogues to ensure faithful transla-
tion of slot values. This removes the need for costly
human-post editing used in all previous bench-
marks.

We show that the compounding effects of transla-
tion noise across turns can be mitigated with a CSP
model for dialogue state tracking. By leveraging
pretrained seq2seq models such as BART, training
with CSP can outperform state-of-the-art results on
RiSAWOZ, CrossWOZ, and MultiWOZ-ZH, and
remains competitive on MultiWOZ, despite not en-
coding any previous conversation turns or having
access to a predefined ontology.

We use our methodology to create RiSAWOZ
English and German, the first automatically cre-
ated high-quality translated datasets for dialogue
state tracking with no human in the loop. We have
implemented our methodology as a toolkit3 which
developers can use to create a new multilingual
dialogue dataset as well as a contextual semantic
parser for it.

9 Limitations

Organic multilingual dialogue datasets (i.e. created
without the use of translation) are scarce, which has
limited the scope of our experiments. We would
have liked to evaluate the generalization of our
approach to other languages. For instance, we par-
tially rely on machine translation models to create
datasets. Available translation models for other lan-
guage pairs, especially from/to low-resource lan-
guages have much lower quality, and it would be
desirable to measure the effect of that in our exper-
iments.

Our methodology has only been applied to
Human-to-Human dialogues annotated with slot-
values. Although our approach is independent of
data collection technique and formal representation,
it should be applied and tested on datasets anno-
tated with representations other than slot-values to
study how well it can generalize.

Previous studies (Ding et al., 2021; Hung et al.,
2022) utilized human post-editing to guarantee the
fluency and accuracy of the translated datasets.
However, in order to reduce cost, we have decided
not to use manual post-editing in this work. As
a result, our findings could be an overestimation
of the model’s actual performance in real-world
scenarios. In future research, we plan to rectify this
by manually post-editing the validation and test
portions of the datasets.

3Code can be accessed at https://github.com/
stanford-oval/dialogues
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10 Ethical Considerations

Our translation method replaces the manual work
needed to create multilingual dialogue datasets usu-
ally done via crowdsourcing. Instead, it requires
some computation time which can be an environ-
mental concern. However, in practice, such addi-
tional computing is small and much cheaper than
the cost of human annotation for the same amount
of data. The translation of the data set takes about
half an hour on an Nvidia TITAN V GPU. Training
takes about 6 hours on an Nvidia V100 GPU. We
did not use crowdworkers for this paper. The error
analysis was done by the authors.
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mone Paolo Ponzetto, and Goran Glavaš. 2022.
Multi2woz: A robust multilingual dataset and
conversational pretraining for task-oriented dialog.
arXiv preprint arXiv:2205.10400.

Eleftherios Kapelonis, Efthymios Georgiou, and
Alexandros Potamianos. 2022. A multi-task bert
model for schema-guided dialogue state tracking.
arXiv preprint arXiv:2207.00828.

911

https://doi.org/10.1145/3314221.3314594
https://doi.org/10.1145/3314221.3314594
https://doi.org/10.1145/3314221.3314594
https://www.aclweb.org/anthology/2020.emnlp-main.651
https://www.aclweb.org/anthology/2020.emnlp-main.651
http://arxiv.org/abs/2110.07679
http://arxiv.org/abs/2110.07679
http://arxiv.org/abs/2110.07679


John F Kelley. 1984. An iterative design methodology
for user-friendly natural language office information
applications. ACM Transactions on Information Sys-
tems (TOIS), 2(1):26–41.

Seokhwan Kim, Luis Fernando D’Haro, Rafael E
Banchs, Jason D Williams, Matthew Henderson, and
Koichiro Yoshino. 2016. The fifth dialog state track-
ing challenge. In 2016 IEEE Spoken Language Tech-
nology Workshop (SLT), pages 511–517. IEEE.

Sungdong Kim, Sohee Yang, Gyuwan Kim, and Sang-
Woo Lee. 2019. Efficient dialogue state tracking
by selectively overwriting memory. arXiv preprint
arXiv:1911.03906.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
arXiv preprint arXiv:1808.06226.

Hwaran Lee, Jinsik Lee, and Tae-Yoon Kim. 2019.
SUMBT: Slot-utterance matching for universal and
scalable belief tracking. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 5478–5483, Florence, Italy.
Association for Computational Linguistics.

Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun
Ren, Xiangnan He, and Dawei Yin. 2018. Sequicity:
Simplifying task-oriented dialogue systems with sin-
gle sequence-to-sequence architectures. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1437–1447.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. arXiv preprint arXiv:1910.13461.

Jinchao Li, Qi Zhu, Lingxiao Luo, Lars Liden, Kaili
Huang, Shahin Shayandeh, Runze Liang, Baolin
Peng, Zheng Zhang, Swadheen Shukla, Ryuichi
Takanobu, Minlie Huang, and Jianfeng Gao. 2021.
Multi-domain task-oriented dialog challenge ii at
dstc9. In AAAI-2021 Dialog System Technology
Challenge 9 Workshop.

Zhaojiang Lin, Andrea Madotto, Genta Indra Winata,
and Pascale Fung. 2020. Mintl: Minimalist transfer
learning for task-oriented dialogue systems. arXiv
preprint arXiv:2009.12005.

Zhaojiang Lin, Andrea Madotto, Genta Indra Winata,
Peng Xu, Feijun Jiang, Yuxiang Hu, Chen Shi, and
Pascale Fung. 2021. BiToD: A bilingual multi-
domain dataset for task-oriented dialogue model-
ing. Proceedings of the Neural Information Pro-
cessing Systems Track on Datasets and Benchmarks

1 pre-proceedings (NeurIPS Datasets and Bench-
marks 2021).

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising
pre-training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Mehrad Moradshahi, Giovanni Campagna, Sina Sem-
nani, Silei Xu, and Monica Lam. 2020. Localizing
open-ontology QA semantic parsers in a day using
machine translation. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 5970–5983, On-
line. Association for Computational Linguistics.

Baolin Peng, Chunyuan Li, Jinchao Li, Shahin Shayan-
deh, Lars Liden, and Jianfeng Gao. 2020. Soloist:
Few-shot task-oriented dialog with a single pre-
trained auto-regressive model. arXiv preprint
arXiv:2005.05298.

Baolin Peng, Chunyuan Li, Jinchao Li, Shahin Shayan-
deh, Lars Liden, and Jianfeng Gao. 2021. Soloist:
Building task bots at scale with transfer learning and
machine teaching. Transactions of the Association
for Computational Linguistics, 9:807–824.

Edoardo Maria Ponti, Ivan Vulić, Goran Glavaš, Nikola
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A Appendix

A.1 Missannotation Examples
See Table 3 below for missannotation examples
discussed in Section 7.
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Error Type Dataset Agent Utterance; User Utterance Annotation Correct Annotation

Delayed Annotation MultiWOZ

great , i can get you a ticket for that train . how
many people are riding with you ?; i need to
book it for 6 people , can i get the reference
number too ?

train day = " thursday "
train departure = " cam-
bridge " train destination
= " birmingham new street
" train leaveat = " 10:00 "

train book people = " 6
" train day = " thursday
" train departure = " cam-
bridge " train destination
= " birmingham new street
" train leaveat = " 10:00 "

[next turn] can i confirm you want to book this
train for 6 people ?; yes , i would like to book
the train for 6 people . i need the reference
number , please .

train book people = " 6
" train day = " thursday
" train departure = " cam-
bridge " train destination
= " birmingham new street
" train leaveat = " 10:00 "

(already correct)

Extra Slot MultiWOZ
; hello ! i am planning my trip there and i
am trying to find out about an attraction called
kettle s yard . what can you tell me about it ?

attraction name = " kettles
yard " , attraction area =
" west "

attraction name = " kettles
yard "

Empty Annotation RiSAWOZ
;你好，刚到苏州，想先找个餐厅吃点东
西。有价位便宜的江浙菜餐厅吗

null 餐厅价位= "便宜"餐厅
菜系= "江浙菜"

Hello, I just came to Suzhou and am looking
for a restaurant to grab a bite. Is there a cheap
Jiangzhe restaurant?

Restaurant Price =
"Cheap" Restaurant
Cuisine = "Jiangzhe"

Inexact Match RiSAWOZ

;你好，我这几天在苏州度假，明天准备
去狐狸家手工奶酪这家餐厅吃饭，但不是
很了解，你能帮我查查那个餐馆附近有没
有地铁能直达呢？

餐厅名称= "狐狸家手工
酸奶酪"

餐厅名称= "狐狸家手工
奶酪"

; Hello, I’m vacationing in Suzhou these sev-
eral days, tomorrow I plan to go to the Fox
Family Handmade Cheese restaurant to eat,
but I don’t really understand, can you help me
look up whether there is direct subway access
to anywhere near there?

Restaurant Name = "Fox
Family Handmade Yogurt
(Yogurt = Sour Cheese)"

Restaurant Name =
"Fox Family Handmade
Cheese"

Missing Slot RiSAWOZ
有呀，推荐您去鑫花溪牛肉米粉。; 这家
店地址在哪？

餐厅价位= "中等"餐厅
菜系= "快餐简餐"

餐厅价位= "中等"餐厅
名称= " 鑫花溪牛肉米
粉"餐厅菜系= "快餐简
餐"

Yes, I recommend you go to Xinhuaxi Beef
Noodle; What is the address of this place?

Restaurant Price =
"Medium" Restuarant
Cuisine = "Quick and
Easy"

Restaurant Price =
"Medium" Restaurant
Name = "Xinhuaxi
Beef Noodle" Restaurant
Cuisine = "Quick and
Easy"

Table 3: Prevalent annotation error types found in the datasets.
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Abstract

Pre-trained Transformer models such as BERT
have shown great success in a wide range of
applications, but at the cost of substantial in-
creases in model complexity. Quantization-
aware training (QAT) is a promising method
to lower the implementation cost and energy
consumption. However, aggressive quantiza-
tion below 2-bit causes considerable accuracy
degradation due to unstable convergence, espe-
cially when the downstream dataset is not abun-
dant. This work proposes a proactive knowl-
edge distillation method called Teacher Inter-
vention (TI) for fast converging QAT of ultra-
low precision pre-trained Transformers. TI in-
tervenes layer-wise signal propagation with the
intact signal from the teacher to remove the
interference of propagated quantization errors,
smoothing loss surface of QAT and expedit-
ing the convergence. Furthermore, we propose
a gradual intervention mechanism to stabilize
the recovery of subsections of Transformer lay-
ers from quantization. The proposed schemes
enable fast convergence of QAT and improve
the model accuracy regardless of the diverse
characteristics of downstream fine-tuning tasks.
We demonstrate that TI consistently achieves
superior accuracy with significantly lower fine-
tuning iterations on well-known Transformers
of natural language processing as well as com-
puter vision compared to the state-of-the-art
QAT methods.

1 Introduction

The Transformer-based pre-trained neural networks
have significantly improved the performance of
various applications of artificial intelligence, in-
cluding natural language processing (NLP) (De-
vlin et al., 2019; Raffel et al., 2020; Brown et al.,
2020) and computer vision (CV) (Dosovitskiy et al.,
2020; Touvron et al., 2021; Liu et al., 2021a). The
self-attention mechanism represents these models

∗Corresponding Author

Figure 1: Comparison of fine-tuning time and accu-
racy of ternary weight quantized Transformer models
between Teacher Intervention (TI) and TernaryBERT
(BERT-base and TinyBERT-6L for CoLA task). TI
achieves higher accuracy within 12.5× shorter fine-
tuning time.

(Vaswani et al., 2017), which links different sym-
bols within a sequence to obtain a relational repre-
sentation. Thanks to the exceptional performance
of the pre-trained Transformer models, there have
been increasing needs for their efficient deploy-
ment. However, the gigantic size of the pre-trained
Transformer models hinders straightforward im-
plementation. Even relatively small models like
BERT-base (Devlin et al., 2019) contain a few
hundred million parameters, incurring profound
memory and computation overhead for resource-
constrained devices with limited memory and com-
puting fabric. Therefore, seminal research efforts
attempted to reduce this burden via model compres-
sion. (Behnke and Heafield, 2020) and (Gordon
et al., 2020) pruned unimportant weights to reduce
the number of parameters, while (Mao et al., 2020)
further employed low-rank matrix factorization.
In addition, Knowledge Distillation (KD) (Hinton
et al., 2015) was employed in (Sanh et al., 2019;
Sun et al., 2019, 2020; Wang et al., 2020) to trans-
fer knowledge of the original model (teacher) to
the compressed one (student) by mimicking the
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Teacher’s behavior.

Among many model compression techniques,
quantization-aware training (QAT) stands out for
its recent success in reducing computational com-
plexity and memory requirements of Transformer
models (Bhandare et al., 2019; Zafrir et al., 2019;
Kim et al., 2021). QAT reflects quantization errors
during the forward pass computation of stochas-
tic gradient descent to train a more accurate quan-
tized model. However, quantizing weight param-
eters of Transformers to a precision lower than
2-bits degrades the accuracy, especially when the
dataset size for the target downstream tasks is
not large enough (Zhang et al., 2020b; Bai et al.,
2021). Although few-sample fine-tuning of Trans-
former models has been reported to be highly unsta-
ble (Grießhaber et al., 2020; Yu et al., 2021; Zhang
et al., 2020a; Dodge et al., 2020; Mosbach et al.,
2020), efforts on understanding and improving
QAT on small dataset tasks are limited. XTC (Wu
et al., 2022) recently revealed that a simple expan-
sion in fine-tuning iterations could heal the QAT
accuracy. Still, it caused an order-of-magnitude
increase in QAT time, hindering the broad deploy-
ment of quantized Transformers.

This work proposes a proactive KD method
called Teacher Intervention (TI) for fast converging
QAT of ultra-low precision pre-trained Transform-
ers. We reveal that the difficulty of quantization on
few-sample fine-tuning originates from disruption
of loss surface due to quantization error propaga-
tion. To mitigate this undesirable phenomenon, we
propose TI to intervene layer-wise signal propaga-
tion with the intact signal from the teacher. TI re-
moves the interference of propagated quantization
errors to smooth out the loss surface and expedite
the convergence. We further discover that subsec-
tions of Transformer layers exhibit different sus-
ceptibility to quantization error for diverse down-
stream tasks. Thus, we propose a gradual interven-
tion mechanism that first intervenes at the attention
output for stable tuning of the feed-forward net-
work, followed by self-attention map intervention
for its recovery from quantization. The proposed
gradual intervention along the subsections of Trans-
former layers enables fast convergence of QAT
and improves the model accuracy regardless of the
diverse characteristics of downstream fine-tuning
tasks. We perform an extensive evaluation on vari-
ous fine-tuned Transformers (BERT-base/large (De-
vlin et al., 2019), TinyBERT-4L/6L (Jiao et al.,

2020), and SkipBERT-6L (Wu et al., 2022) for
NLP, and ViT (Dosovitskiy et al., 2020) for CV)
and demonstrate that TI consistently achieves su-
perior accuracy with lower fine-tuning iterations
compared to the state-of-the-art QAT methods. In
particular, TI outperforms TernaryBERT (Zhang
et al., 2020b) on GLUE tasks with 12.5× savings
in fine-tuning hours, as shown in Fig.1.

2 Related Work

2.1 Knowledge Distillation for BERT
Compression

Knowledge distillation (KD) (Hinton et al., 2015) is
a transfer learning framework that passes on knowl-
edge of a large model (teacher) to a smaller one
(student). Since KD provides extra guidance on
how the student should behave, it can help miti-
gate accuracy degradation for model compression.
Therefore, KD has been widely employed in train-
ing smaller BERT models for various application
domains.

The most common distillation approach is to
match the probability distribution from the final
output softmax between the teacher and student
for the same input, as shown in DistilBERT (Sanh
et al., 2019). In addition to the distillation loss
at the model output, PKD (Sun et al., 2019) sug-
gested loss on intermediate output that matched
the normalized output of the teacher and the stu-
dent at each Transformer layer. MobileBERT (Sun
et al., 2020) also employed per-head attention
map transfer along with the customized network
structure for constructing efficient Transformers.
MiniLM (Wang et al., 2020) further transferred
knowledge from the self-attention map as well
as the value-relation. Considering the structural
mismatch between the Teacher and Student mod-
els, MiniLM performed distillation only at the last
Transformer layer.

While the above mentioned studies focused on
the task-agnostic BERT, there have been several
efforts (Tang et al., 2019; Aguilar et al., 2020) to
train tiny task-specific students. In this line of study,
the task-specific, downstream fine-tuned BERT is
first prepared, and the Student is trained with KD
by utilizing this fine-tuned model as a teacher. As
a hybrid approach, TinyBERT (Jiao et al., 2020)
proposed a two-step KD, the first step for general
distillation, followed by task-specific distillation.

Although extensive research has been conducted
to utilize KD for BERT compression, there are
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limited efforts in investigating and developing KD
techniques for model quantization, an orthogonal
model compression method. In this work, we de-
velop a new KD technique primarily focusing on
improving QAT of pre-trained Transformers. In
particular, we reveal that more aggressive interven-
tion of the teacher on the subsections of each Trans-
former layer helps the ultra-low precision model
regain the model accuracy.

2.2 Quantization for Ultra-Low Precision
BERT

Quantization is a promising technique for reduc-
ing the high inference cost of large-scale models
without changing the model structure. Instead of
representing numbers with the 32-bit floating-point
(FP32) format, employing fixed-point representa-
tion, such as 8-bit integer (INT8) quantization, has
achieved significant speedup and storage savings
for BERT (Zafrir et al., 2019; Kim et al., 2021).
However, direct quantization of weight parame-
ters would suffer accuracy degradation of the orig-
inal model accuracy when the quantization bit-
precision is low. Therefore, quantization-aware
training (QAT) is commonly applied for ultra-low
precision model quantization.

Recently, QAT has been applied for compressing
BERT with precision lower than 2-bit. Ternary-
BERT (Zhang et al., 2020b) represents each
weight element into one of three values {−1, 0, 1}.
TernaryBERT actively incorporates KD into QAT
for improving accuracy degradation. Especially,
KD with the MSE loss on the attention score (be-
fore taking Softmax) and the output of each Trans-
former layer is employed for QAT. To further re-
duce the bit-precision, BinaryBERT (Bai et al.,
2021) suggested a modified QAT procedure that ini-
tializes the weights for binary quantization. How-
ever, ternarizing or binarizing weight parameters
significantly degrades the model accuracy, espe-
cially when the dataset size for the target down-
stream tasks is not large enough.

In fact, it has been reported that finetuning
BERT on downstream tasks with insufficient data is
highly unstable (Grießhaber et al., 2020; Yu et al.,
2021). As a result, several works proposed modi-
fied finetuning procedures for improving the stabil-
ity (Zhang et al., 2020a; Dodge et al., 2020; Mos-
bach et al., 2020). Still, the proposed approaches
do not address the sensitivity of Transformer mod-
els on QAT for small datasets. XTC (Wu et al.,

2022) recently proposed a QAT method with signif-
icantly increased iterations and data augmentation
to improve quantization accuracy of ultra-low bit
precision Transformers. As illustrated in Fig. 1,
however, this prolonged fine-tuning results in siz-
able deployment overhead, let alone costly data
augmentation. In this work, we discover that quan-
tization significantly disrupts the propagation of
self-attention in Transformer layers hindering the
optimization process of QAT. Therefore, we pro-
pose a new KD-based method that proactively inter-
vene the error propagation to improve convergence
of QAT methods.

3 Background and Motivation

3.1 Transformer Layer

The BERT model (Devlin et al., 2019) is built with
Transformer layers (Vaswani et al., 2017), which
include two main sub-modules: Multi-Head At-
tention (MHA) and Feed-Forward Network (FFN).
Input to the l-th Transformer layer is Xl ∈ Rn×d
where n and d are the sequence length and hidden
state size, respectively. Let H be the number of
attention heads and dh = d/H . WQ

h ,W
K
h ,W

V
h ∈

Rd×dh are the weight parameters converting Xl

into Query (Q = XlWQ
h ), Key (K = XlWK

h ),
and Value (V = XlWV

h ), respectively. Then, at-
tention score (ASh = QK⊤), self-attention map
(SAh = Softmaxh(ASh√

d
)), and attention context

(AC = SAhV) can be defined.
The attention output (AO) is defined as AO =

MHA(Xl) = Concat(AC1,AC2, ...ACNH
)×WO.

Motivated by (Kobayashi et al., 2020), the attention
output can be re-written per each token i:

MHA(Xl)(i) =

n∑

j=1

αi,jf(Xl(j)), (1)

where f(x) := (xWV + bV )WO and αi,j is j’th
value of i’th token in SAh. Therefore, the compu-
tation of MHA consists of two parts: self-attention
generation (SA-GEN) corresponding to the atten-
tion map (α) and self-attention propagation (SA-
PROP) corresponding to f(x). Fig. 3 illustrates
the structure of a Transformer layer indicating re-
gions corresponding to SA-GEN and SA-PROP.
FFN consists of two fully-connected layers with
weight parameters W1 and W2:

FFN(Yl) = GeLU(XlW1 + b1)W2 + b2. (2)

918



Therefore, an output of Transformer layer Xl+1 is
defined as:

Yl = LayerNorm(Xl + MHA(Xl)),

Xl+1 = LayerNorm(Yl + FFN(Yl)).
(3)

3.2 Quantization-Aware Training
Quantization-aware training (QAT) emulates
inference-time quantization during fine-tuning of
the full-precision model to adjust the parameters
to be robust to the quantization error (Hwang
and Sung, 2014) (Hubara et al., 2016). In par-
ticular, ternary quantization represents all the
weight parameters (WQ,WK ,WV ,WO,W1,W2)
into ternary values t ∈ {+1, 0,−1} along with a
scale factor s for sub-2bit inference. In this work,
we follow the approach of TWN (Zhu et al., 2016)
that analytically estimates the optimal scale factor
s and the ternary weight Wt = {t}|W| to minimize
∥W− s ·Wt∥.

Due to aggressive bit-reduction, ternary quan-
tization causes significant accuracy loss. KD can
help compensate for accuracy degradation, where
the original full-precision model works as a teacher
to guide the training of the quantized model as a
student. In case of Transformer models, Ternary-
BERT (Zhang et al., 2020b) applied KD on every
output activationXl+1 as well as the attention score
(AS) with mean squared error (MSE) loss:

Ltrm =
L+1∑

l=1

MSE(XS
l ,X

T
l ) +

L∑

l=1

MSE(ASSl ,ASTl ),

(4)
where S and T represent the student and teacher
models, respectively. Also, the output logits of
the student (PS) and the teacher (P T ) are used in
TernaryBERT to compute the cross-entropy (CE)
loss:

Lpred = CE(PS , P T ). (5)

We follow the settings of TernaryBERT as our base-
line QAT method.

3.3 Challenges
Despite attempts to bridge the accuracy gap, prior
works on ultra-low precision Transformers (Bai
et al., 2021; Zhang et al., 2020b) still suffer no-
ticeable accuracy degradation, especially when
the dataset size is small. Recall (Mosbach et al.,
2020) that the few-sample fine-tuning is unsta-
ble. But we observed that QAT often fails even
if it fine-tunes from the successfully trained model.

Figure 2: (a) Loss landscape visualization of a fine-
tuned Transformer for a few-sample task (BERT-base,
CoLA): A well-trained full-precision model and the
quantized models without and with Teacher Intervention
(TI). (b) MSE loss at the output of Transformer layers
of TernaryBERT without and with TI

To gain intuition on this failure, we visualize the
loss landscape of the quantized Transformers fine-
tuned for a few-sample task (BERT-base, CoLA)
in Fig. 2(a). In contrast to the smooth loss surface
of the well-trained full-precision model, Ternary-
BERT exhibits sharp curvatures with many valleys,
suffering unstable fine-tuning due to quantization.
Investigating the internal behavior of Transformer
layers under quantization elucidates the cause of
unstable QAT. We measure the mean-square er-
ror (MSE) of the output of each Transformer layer
between the full-precision baseline (teacher) and
TernaryBERT (student). Fig. 2(b) reveals a promi-
nent trend that MSE grows over the layers. (Similar
trends can be observed in the other GLUE tasks.)
This inflated error along the layers would degrade
the model’s accuracy.

In this work, we focus on managing this aggra-
vating impact of quantization errors on Transform-
ers with a proactive knowledge distillation called
Teacher Intervention (TI). Interestingly, as shown
in Fig. 2(b), TI successfully suppresses the error
propagation and flattens the loss surface for favor-
able convergence without precipitously increased
fine-tuning iterations. We discuss the technical
details of TI in the next section.

4 Method

4.1 Teacher Intervention
Teacher intervention (TI) is a KD method that ag-
gressively intervenes in the student’s signal prop-
agation along the Transformer layers to suppress
propagation of quantization error. Fig. 3(b) illus-
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Figure 3: (a) Architecture of Transformer layer. (b) Locations of Teacher Intervention: output intervention (TI-O)
and map intervention (TI-M). AOT and SAT are teacher’s attention outputs. (c) Accuracy curves of controlled
experiments. Group-A: Quantize all sub-layers with TI-O (Case 1) or do not quantize MHA (Case 2), Group-B:
Quantize all sub-layers with TI-M (Case 3) or do not quantize SA-GEN (Case 4). Note rapid convergence for the
cases with TI.

trates the two options for teacher intervention. First,
intervention on the attention output (a.k.a. output
intervention, TI-O) replaces the student’s attention
output (AOS in Fig. 3(b)) in each Transformer layer
with the teacher’s (AOT in Fig. 3(b)). In this case,
the FFN sub-layers are trained with ultra-low preci-
sion quantization without concerns of erroneous in-
put from the preceding MHA. Meanwhile, the com-
putation within the MHA sub-layer is quantized
for internal distillation. Similarly, intervention on
the self-attention map (a.k.a. map intervention, TI-
M) replaces the student’s SA-GEN output (SAS in
Fig. 3(b))with the teacher’s (SAT in Fig. 3(b)). 1

The development of TI is motivated by the previ-
ous observation of the aggravating impact of quan-
tization error along the layers (cf. Fig. 2(b)). We
conjecture that the root cause of this phenomenon
is error propagation instead of the quantization er-
ror itself. To confirm our hypothesis, we conducted
controlled experiments for TI-O and TI-M with
two groups of quantization cases:

• Group-A: Quantize all sub-layers with TI-O
(Case1) or do not quantize MHA (Case2).

• Group-B: Quantize all sub-layers with TI-M
(Case3) or do not quantize SA-GEN (Case4).

The key difference between the two groups
is that Case2/4 propagates the quantization error

1We empirically investigated other options for teacher in-
tervention and found that TI-O and TI-M were most represen-
tative.

through the sub-layers while Case1/3 does not,
thanks to TI. Fig. 3(c) shows the convergence
curves of the four cases on CoLA. As shown in the
figure, Case1/3 converges rapidly to full-precision
accuracy despite the ultra-low bit quantization in all
the sub-layers. Whereas Case2/4 converges slowly
to the sub-optimal point with noticeable accuracy
degradation. Although Case2/4’s MHA/SA-GEN
computations are in full-precision, the error propa-
gated from its preceding quantized FFN sub-layers
still affects it, corrupting the attention output/self-
attention map. On the other hand, TI-O and TI-M
interrupt this error propagation to stabilize QAT
on FFN sub-layers and MHA outputs, respectively.
Therefore, Fig. 2(b) confirms that the error propa-
gation disappears when TI is applied.

Motivated by this insightful observation, we de-
vise a new QAT method that employs TI for the
step-by-step reconstruction of sub-layers of Trans-
formers. In the first step, TI is used to fine-tune
the quantized weights of either FFN (TI-O) or SA-
PROP (TI-M) sub-layers. Note that the conver-
gence in this step is quick, as shown in Fig. 3(c).
Therefore, Step1 takes only a fraction of fine-tuning
epoch. In the second step, quantization is applied
to the entire weights of Transformer layers for QAT.
Since part of the parameters is already trained in
Step1 with the guidance of TI, Step2 converges
faster to a superior local minimum. In Sec. 5, we
demonstrate this improved convergence leads to
boosts in accuracy for ultra-low bit Transformers.
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Figure 4: (a) Cross-entropy loss of QAT with different TI methods, and (b) Layer-wise MSE loss for different TI
methods (Left: STS-B, Right: CoLA). Note that TI-G converges to lower loss than TI-M and TI-O on both tasks.

4.2 Gradual Teacher Intervention

Type TI-M TI-O TI-G

Sub-layer GEN PROP FFN GEN PROP FFN GEN PROP FFN

Step1-Phase1
Q+TI Q Q Q+TI Q

Q+TI Q

Step1-Phase2 Q+TI Q Q

Step2 Q Q Q

Table 1: Quantization settings for teacher intervention.
Different from TI-M and TI-O, gradual teacher inter-
vention (TI-G) applies TI to quantization (Q) from large
(GEN+PROP) to small (GEN) scope in Step1.

Given multiple teacher intervention options,
which would achieve the best performance? In this
section, we propose a unified approach that grad-
ually applies the output intervention followed by
the map intervention. Note that the two TI options
have strengths and weaknesses. For example, TI-O
focuses on tuning the FFN sub-layers, but it lacks
consideration of the self-attention map recovery.
On the other hand, TI-M is best suited for recover-
ing the self-attention map, but it does not protect
signal propagation through SA-PROP. Interestingly,
we empirically discover that different downstream
tasks of the pre-trained Transformers have diverse
preferences; e.g., BERT-base fine-tuned on STS-
B is sensitive to disruption in the self-attention
map while the model fine-tuned on CoLA prefers
careful tuning of the FFN sub-layers. Therefore,
developing a unified solution that utilizes teacher
intervention in various scopes is beneficial. As a
natural combination, we propose a gradual teacher
intervention mechanism that applies TI-O first to
tune the FFN sub-layers (Step1-Phase1), followed
by TI-M to recover the self-attention map (Step1-
Phase2). The proposed method, called gradual
intervention (TI-G), has shown practical success
in most ultra-low bit Transformers studied in this
work. (We conducted an ablation study for the
other possibilities of a unified solution for teacher
intervention in A.3.) Table. 1 summarizes the TI

settings. Note that the two phases of TI-G in Step1
do not increase the total number of iterations thanks
to fast convergence.

Fig. 4(a) shows the convergence curves of differ-
ent TI options for STS-B and CoLA. As discussed
earlier, TI-M shows better convergences than TI-
O on STS-B, but the opposite trend is shown on
CoLA. Nevertheless, TI-G always shows superior
convergence compared to the other options, demon-
strating its universal applicability. In particular, on
STS-B, TI-G benefits from the output intervention
in the first phase to favorably warm up the FFN
sub-layers, and thus the map intervention in the
next phase can reduce the loss more than TI-M. A
similar situation happens in the case of CoLA.

Fig. 4(b) investigates the internal behavior of
Transformers via the layer-wise MSE at the output
of MHA. As discussed earlier, the fine-tuned Trans-
formers exhibit distinct characteristics depending
on the downstream tasks. For example, in the case
of STS-B, TI-M is more effective in reducing MSE
since the recovery of the self-attention map is es-
sential. On the other hand, CoLA has preferred
TI-O for its focus on tuning FFN sub-layers. In
both cases, TI-G’s gradual intervention with de-
creasing scopes from the attention output to the
self-attention map helps achieve the smallest MSE.
Therefore, this investigation suggests that the pro-
posed unified intervention mechanism can manage
diverse characteristics of fine-tuned Transformers
for various downstream tasks. We demonstrate the
general applicability of TI-G in the next section.

5 Experiments

In this section, we evaluate TI for QAT of fine-
tuned BERT and vision Transformer with ternary
weight quantization. We demonstrate that TI signif-
icantly boosts the convergence of QAT to achieve
higher model accuracy within shorter fine-tuning
time compared to the state-of-the-art QAT methods
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(TernaryBERT (Zhang et al., 2020b) and XTC (Wu
et al., 2022)) on various Transformer tasks and
datasets. More extensive evaluation results on a
wide range of BERT models as well as the abla-
tion studies on various aspects of TI can be found
in Appendix A.3. Due to limited space, detailed
experiment settings are also summarized in Ap-
pendix A.1.

Iterations CoLA RTE MRPC STS-B Avg. Ratio

Budget-O 1,603 233 343 538 1
Budget-A 13,325 4,468 7,050 10,066 16
Budget-C 159,909 53,621 84,611 120,795 200

Table 2: Different budgets for fine-tuning iterations for
GLUE tasks.

5.1 QAT Accuracy on Few-Sample BERT

First, we perform an extensive performance com-
parison of the proposed teacher intervention
methods with the state-of-the-art QAT methods:
TernaryBERT (Zhang et al., 2020b) and XTC (Wu
et al., 2022). We evaluate TI on fine-tuned
BERTbase (12 layer), BERTlarge (24 layer) (De-
vlin et al., 2019), TinyBERT (Jiao et al., 2020)
(6 layer), and SkipBERT (Wu et al., 2022) (6
layer) for GLUE tasks (Wang et al., 2018). We
report the experimental results for the small dataset
tasks (less than 10k of dataset size) here; the re-
sults on the other models and tasks are reported in
Appendix A.2.

To investigate the convergence of these QAT
methods, we consider the following fine-tuning
budgets:

• Budget-O: The number of iterations reported
in the original paper (Zhang et al., 2020b).

• Budget-O2: 2× iterations of Budget-O.

• Budget-O4: 4× iterations of Budget-O.

• Budget-A/C: prolonged fine-tuning budgets
employed in XTC (Wu et al., 2022).

A summary of fine-tuning budgets is shown in Ta-
ble 2. Note that the number of fine-tuning iterations
of Budge-A is roughly 16× larger than Budget-O.
In the following subsections, we categorize the ex-
periments to two scenarios: few-sample fine-tuning
(Scenario-1: Budget O/O2/O4) and prolonged fine-
tuning (Scenario-2: Budget A/C).

Scenario-1: Few-Sample Fine-tuning: Table 3
summarizes the experimental results of few-sample

Figure 5: Convergence analysis of QAT methods with
Hessian Max Eigenvalues.

fine-tuning. Consistent with the prior observa-
tions (Wu et al., 2022), the accuracy of Ternary-
BERT increased as the fine-tuning budget grew
from Budget-O to Budget-O4. But all teacher in-
tervention options have improved these baseline
accuracies. Note that the preference between TI-M
and TI-O varies across the tasks and models. For
example, TI-M is mainly preferred on CoLA and
RTE, while there is a marginally higher preference
for TI-O on STS-B. For most cases, however, TI-G
outperforms the other TI options. Although the
accuracies of TI-M and TI-O are similar, TI-G’s
accuracy significantly exceeds both. From these ob-
servations, we can conclude that the proposed grad-
ual intervention significantly improves the QAT
convergence for regaining model accuracy.

Scenario-2: Prolonged Fine-tuning: Table 4
summarizes the experimental results of prolonged
fine-tuning. For fair comparisons, we followed the
instructions of XTC to match the fine-tuning bud-
gets, learning rates, and the model compression
mechanism on both TinyBERT and SkipBERT. As
expected, TI-G’s accuracy is significantly increased
from Budget-O to Budget-A/C than Budget-O4. In-
terestingly, TI-G’s accuracy is higher than Ternary-
BERT and XTC for these prolonged fine-tuning
budgets with noticeable margins. In fact, XTC’s
average accuracy on Budget-A (for SkipBERT-6L)
is lower than TI-G’s average accuracy on Budge-
O4 (for TinyBERT-6L), highlighting the superior
convergence of TI-G compared to XTC.

5.2 QAT Accuracy on Vision Transformers

We further evaluate the proposed teacher inter-
vention method on ViT. Table 5 summarizes the
QAT accuracies of ViT fine-tuned for CIFAR10,
CIFAR100, and ImageNet with the fine-tuning bud-
gets following the original paper (Dosovitskiy et al.,
2020). As shown in the Table. 5, TI-G outperforms
TernaryBERT on all the QAT cases for ternary
weight quantization. It is noteworthy that TI-G
is exceptionally effective for fine-tuned ImageNet.
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BERTbase BERTlarge

QAT Type Iterations RTE CoLA STS-B MRPC RTE CoLA STS-B MRPC

Full-Prec Budget-O 73.28 58.04 89.24 87.77 70.39 60.31 89.83 88.43

TernaryBERT Budget-O 67.44 ±1.30 49.44 ±1.11 87.58 ±0.09 85.58 ±0.58 63.36 ±1.01 53.25 ±1.20 88.65 ±0.16 88.31 ±0.20

TI-Map Budget-O 69.60 ±0.92 51.37 ±1.23 87.75 ±0.12 86.25 ±1.03 66.13 ±1.12 52.40 ±1.65 88.61 ±0.16 88.67 ±0.32

TI-Output Budget-O 69.31 ±0.57 50.91 ±0.94 87.76 ±0.22 86.04 ±0.61 65.20 ±0.94 52.66 ±1.27 88.56 ±0.16 88.68 ±0.51

TI-G Budget-O 70.32 ±0.72 51.98 ±1.35 87.77 ±0.29 86.44 ±0.49 66.27 ±0.79 54.12 ±1.13 88.66 ±0.05 88.80 ±0.41

TernaryBERT Budget-O2 70.51 ±0.41 52.65 ±0.77 88.04 ±0.14 86.00 ±0.38 66.42 ±0.62 55.72 ±1.26 89.00 ±0.09 88.22 ±0.82

TI-G Budget-O2 71.48 ±0.36 54.98 ±0.66 88.04 ±0.18 88.63 ±0.55 68.11 ±0.75 57.55 ±1.69 89.12 ±0.04 88.25 ±0.46

TernaryBERT Budget-O4 71.23 ±0.42 53.57 ±0.80 88.22 ±0.04 86.58 ±0.32 67.50 ±0.95 57.70 ±0.64 89.12 ±0.01 89.12 ±0.84

TI-G Budget-O4 73.16 ±0.36 57.92 ±1.19 88.48 ±0.61 89.56 ±0.52 69.67 ±0.72 59.89 ±1.07 89.33 ±0.10 88.74 ±0.76

TinyBERT-4L TinyBERT-6L

QAT Type Iterations RTE CoLA STS-B MRPC RTE CoLA STS-B MRPC

Full-Prec Budget-O 68.23 43.06 87.07 87.76 74.00 57.78 88.74 87.35

TernaryBERT Budget-O 63.15 ±0.50 32.15 ±1.43 83.33 ±0.36 84.90 ±0.38 68.74 ±1.42 47.77 ±0.35 87.29±0.12 84.89 ±0.53

TI-G Budget-O 64.29 ±0.72 35.17 ±1.35 83.58 ±0.29 85.48 ±0.49 69.38 ±0.78 49.08 ±1.24 87.31 ±0.11 86.30 ±0.63

TernaryBERT Budget-O2 64.74 ±0.76 34.49 ±1.89 84.10 ±0.34 85.73 ±0.05 69.67 ±0.95 49.54 ±0.22 87.51 ±0.04 86.61 ±0.41

TI-G Budget-O2 64.98 ±1.45 36.30 ±0.24 84.27 ±0.22 86.44 ±0.31 71.12 ±0.63 50.38 ±0.56 87.56 ±0.09 86.80 ±0.42

TernaryBERT Budget-O4 65.10 ±0.55 35.91 ±0.31 84.36 ±0.26 86.70 ±0.13 70.75 ±0.36 51.66 ±0.51 87.75 ±0.04 86.76 ±0.23

TI-G Budget-O4 65.22 ±0.55 37.40 ±1.30 84.39 ±0.27 87.22 ±0.13 72.13 ±0.12 52.08 ±0.01 87.90 ±0.14 87.15 ±0.39

Table 3: Accuracy comparison of QAT methods on BERT family (few-sample GLUE tasks) without and with TI for
regular fine-tuning iterations (Budget-O/O2/O4). Each experiment is repeated 10 times.

TinyBERT-6L SkipBERT-6L

QAT Type Iterations RTE CoLA STS-B MRPC QAT Type RTE CoLA STS-B MRPC

Full-Prec Budget-O 74.00 57.78 88.74 87.35 74.72 55.37 89.27 86.11

TernaryBERT Budget-A 72.02 ±0.21 53.44 ±1.11 88.43 ±0.07 88.14 ±0.31 XTC 69.91 ±0.41 53.74 ±0.77 88.77 ±0.03 86.29 ±0.57

TI-G Budget-A 72.92 ±0.72 54.29 ±1.35 88.45 ±0.29 88.36 ±0.49 TI-G 70.87 ±0.20 56.46 ±0.68 88.94 ±0.04 86.98 ±0.44

TernaryBERT Budget-C 73.40 ±1.30 54.11 ±1.11 88.60 ±0.02 88.43 ±0.58 XTC 73.76 ±0.54 56.30 ±0.67 88.91 ±0.03 87.38 ±0.19

TI-G Budget-C 73.82 ±0.41 55.05 ±1.13 88.60 ±0.01 88.62 ±0.02 TI-G 74.48 ±0.79 56.32 ±1.13 88.92 ±0.03 87.34 ±0.41

Table 4: Accuracy comparison of QAT methods on compressed BERT family (few-sample GLUE tasks) without
and with TI for prolonged fine-tuning iterations (Budget-A/C). Each experiment is repeated 10 times.

Iterations Short (1K) Regular (10K/20K)
Dataset CIFAR100 CIFAR10 CIFAR100 ImageNet

Full-Prec 92.78 99.1 92.78 82.65

TernaryBERT 84.61 ±0.12 97.32 ±0.02 89.57 ±0.04 75.40 ±0.12

TI-G 85.28 ±0.04 97.59 ±0.05 90.07 ±0.04 76.66 ±0.04

Table 5: Accuracy comparison of QAT methods on ViT-
B for vision benchmarks.

5.3 Convergence Analysis

In Sec. 4, we discussed that TI impedes propagation
of quantization errors and flattens the loss surface
for favorable convergence as shown in Fig. 2. To
quantitatively analyze the convergence of QAT, we
conducted the Hessian eigenvalue analysis (Park
and Kim, 2022) on BERTbase over CoLA task. As
shown in Fig. 5, TernaryBERT suffers large magni-
tude (positive and negative) eigenvalues. The large
magnitude Hessian eigenvalues indicate sharp loss
surfaces, unfriendly for quantization (Shen et al.,
2020; Dong et al., 2019). A prolonged fine-tuning

would suppress the large Hessian eigenvalues at
the expense of significantly increased fine-tuning
computations. In contrast, TI significantly reduces
the magnitude with an order of magnitude smaller
fine-tuning iteration. From this analysis, we can
conclude that TI helps flatten the loss surface to
improve the convergence of QAT.

5.4 Further Analysis of TI-G: Self-Attention
Map Recovery

In this section, we provide an analysis of TI-M’s
effectiveness in the use of TI-G. Since the self-
attention map encodes the relational representation
of symbols within a sequence, quantization on SA-
GEN would disrupt this relational encoding. There-
fore, TI on the self-attention map (TI-M) is cru-
cial for maintaining relative order within the self-
attention map. As shown in Sec. 4.2, TI-O lacks
consideration of the self-attention map recovery,
requiring gradual teacher intervention mechanism
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Figure 6: (a) Comparison of ranking loss between TI-O and TI-O with TI-M (TI-Output + Map) (b) Visualization of
self-attention map with full-precision, TI-O and TI-G trained on CoLA. The input sentence is "John was lots more
pleasure than Fred."

that applies TI-M after TI-O for recovering the
self-attention map. Fig. 6 shows two empirical evi-
dences that TI-M helps to recover the self-attention
map with TI-O.

Fig. 6(a) shows the ranking loss computed on
the self-attention map of BERTbase after QAT on
CoLA. Note that the ranking loss quantitatively
indicates how much the relative order in the quan-
tized self-attention map has been skewed from the
teacher’s self-attention map (Liu et al., 2021b). As
can be seen, QAT without TI-M leads to significant
disruption of the self-attention map. In contrast,
QAT with TI-M maintains the original ranking of
cross-symbol correlation, successfully suppress-
ing the ranking loss. We further visualize each
quantized model’s resulting self-attention maps
in Fig. 6(b). Contrary to using TI-O only, TI-O
with TI-M successfully recovers the teacher self-
attention map’s distinctive feature. From this obser-
vation, we can conclude that TI-M approach used
with TI-O is particularly beneficial for preserving
the self-attention map under quantization.

6 Conclusion

In this work, we proposed a proactive knowl-
edge distillation method for improving the con-
vergence of QAT for ultra-low precision Trans-
formers called teacher intervention. The proposed
method intervenes in the propagation of quantiza-
tion error to suppress accuracy degradation and
improve QAT’s convergence speed. We demon-
strate that the proposed method outperforms the
state-of-the-art QAT methods in achieving higher
accuracy on various fine-tuned Transformers with
smaller fine-tuning budgets. Our code is available
at https://github.com/MarsJacobs/ti-kd-qat.

7 Limitations

This work proposes a proactive knowledge dis-
tillation method called teacher intervention for
improving the convergence of QAT with small
fine-tuning budgets. Although our analysis reveals
that quantization error propagation is one of the
main causes of sub-optimal convergence of QAT, a
more in-depth investigation of the detailed recovery
mechanism of QAT from quantization error would
be interesting. Also, extending the discovery of
proactive knowledge distillation to diverse Trans-
former architectures, including encoder-decoder
and decoder-only models, would be a promising
future research direction.
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A Appendix

In this section, we provide experimental setup
and TI implementation in Sec. A.1. We also pro-
vide evaluation results of GLUE (Wang et al.,
2018) large datasets (SST-2, QNLI, MNLI, QQP)
in Sec. A.2 and ablation studies in Sec. A.3. Fur-
ther analysis of TI-G’s effectiveness is provided in
5.4.

A.1 Experimental Settings

Models Description We use task-specific, fine-
tuned BERT family models to evaluate our method.
Further information on each model is as follows:

1. BERTbase L=12, d=768 NH=12, Contains
about 110M parameters.

2. BERTlarge L=24, d=1024 NH=16, Contains
about 340M parameters.

3. TinyBERT-4L L=4, d=312 NH=12, Con-
tains about 14M parameters. This compressed
model is fine-tuned using task-specific distilla-
tion method (Jiao et al., 2020) initialized from
general pre-trained TinyBERT model file. 2

4. TinyBERT-6L L=6, d=768 NH=12, Con-
tains about 67M parameters. This compressed
model is fine-tuned using task-specific distilla-
tion method (Jiao et al., 2020) initialized from
general pre-trained TinyBERT model file. 3

5. SkipBERT-6L L=6, d=768 NH=12, Con-
tains about 67M parameters. This compressed
model parameters are initialized from XTC
(Wu et al., 2022) model initialization method:
using every other layer of the fine-tuned
BERTbase’s parameter to initialize the layer-
reduced model.

Datasets and Settings We evaluate our method on
GLUE benchmark (Wang et al., 2018), which is a
collection of resources for training, evaluating, and
analyzing natural language understanding systems.
For the training setting, we use the batch size of 16
for CoLA and 32 for other tasks. The learning rate
starts from zero and gradually increases to 2e-5
during the warm-up stage and decays linearly to
2e-9 for total training epochs.

2https://huggingface.co/huawei-noah/TinyBERT_4L_zh
3https://huggingface.co/huawei-noah/TinyBERT_6L_zh

(Zhang et al., 2020b) (Wu et al., 2022)

Budget-O Budget-O2 Budget-O4 Budget-A Budget-C

DA ✗ ✗ ✗ ✓ ✓

Epoch 3 6 12 1 12

Table 6: Training budgets for the GLUE tasks. DA is
data augmentation.

CoLA RTE MRPC STS-B

Train (noDA) 8,551 2,490 3,668 5,749
Train (DA) 213,212 142,991 225,630 322,121
DA / noDA 24.9 57.4 61.5 56.0

Budget-O Time 259 97 72 223
Budget-A Time 2,149 1,862 1,484 4,160
Budget-C Time 25,792 22,342 17,813 49,915

Table 7: Training details for the GLUE tasks. DA is
data augmentation.

Comparison of Training Cost We performed
an extensive performance comparison in Sec. 5.1
along the training budget to investigate the
convergence of QAT methods. Table. 6 shows
the training setting of each budget with the Data
Augmentation (DA) option, which is first proposed
by (Zhang et al., 2020b) (Jiao et al., 2020) artifi-
cially expanding the training sample for prolonged
fine-tuning, causing a blow-up in fine-tuning costs.
To investigate how much the DA magnifies the
QAT overhead, we compare the number of training
samples of GLUE small datasets and the number
of data-augmented training samples in Table. 7.
Furthermore, we measured the total QAT time
for each Budget over GLUE small datasets with
the A6000 single GPU, indicating that prolonged
fine-tuning with DA would become profoundly
painful, increasing model deployment costs and
time.

Teacher Intervention Implementation Our exper-
iments were performed on A6000 GPUs. We use
Pytorch 1.10.2 for the implementation of TI and
this implementation is based on the TernaryBERT
Pytorch code base. 4 We would like to emphasize
that TI has strong advantages of simplicity for im-
plementation. To implement TI operation, we mod-
ified the teacher model forward operation, enforc-
ing the teacher model to return layer-wise MHA
outputs and SA-GEN outputs which will be used
in TI-O and TI-M respectively. When the teacher
model’s layer-wise required outputs are returned,

4https://github.com/huawei-noah/Pretrained-Language-
Model/tree/master/TernaryBERT
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BERTbase BERTlarge

Method Cost SST-2 QNLI MNLI QQP SST-2 QNLI MNLI QQP

Full-Prec 93.57 91.32 84.59 89.34 93.57 92.29 86.49 89.55

TernaryBERT Budget-O 91.82 ±0.21 90.68 ±1.11 83.74 ±0.07 89.09 ±0.31 91.62 ±0.41 91.91 ±0.77 85.52 ±0.03 89.26 ±0.57

TI-Gradual Budget-O 92.16 ±0.72 90.91 ±1.35 84.13 ±0.29 89.11 ±0.49 92.12 ±0.20 92.11 ±0.68 86.11 ±0.04 89.46 ±0.44

TinyBERT-4L TinyBERT-6L

Method Cost SST-2 QNLI MNLI QQP SST-2 QNLI MNLI QQP

Full-Prec 92.86 91.32 84.59 89.34 93.57 92.29 86.49 89.55

TernaryBERT Budget-O 91.43 ±0.72 84.18 ±1.35 80.93 ±0.29 85.02 ±0.49 91.12 ±0.20 89.71 ±0.68 83.51 ±0.04 89.43 ±0.44

TI-Gradual Budget-O 91.45 ±0.72 84.51 ±1.35 81.06 ±0.29 85.09 ±0.49 91.43 ±0.20 89.81 ±0.68 83.64 ±0.04 89.44 ±0.44

Table 8: Accuracy comparison of QAT methods on BERT family (large-sample GLUE tasks) without and with TI
for regular fine-tuning iterations (Budget-O). Each experiment is repeated 3 times.

BERTbase BERTlarge

Method Cost RTE CoLA STS-B MRPC RTE CoLA STS-B MRPC

Full-Prec 73.28 58.04 89.24 87.77 70.39 60.31 89.83 88.43

TernaryBERT Budget-A 73.16 ±0.54 54.81 ±0.39 88.92 ±0.02 87.77 ±0.32 70.39 ±0.21 58.65 ±0.31 89.77 ±0.01 88.91 ±0.59

TI-G Budget-A 74.24 ±1.36 58.29 ±0.50 89.01 ±0.01 87.74 ±0.96 71.48 ±0.95 59.24 ±1.38 89.89 ±0.07 88.52 ±0.22

TernaryBERT Budget-C 73.40 ±0.41 58.25 ±0.84 89.23 ±0.01 88.43 ±0.31 71.48 ±0.06 59.11 ±1.47 89.85 ±0.01 89.08 ±0.55

TI-G Budget-C 75.93 ±0.90 58.91 ±0.54 89.39 ±0.16 87.85 ±0.26 72.68 ±1.50 59.17 ±0.61 90.10 ±0.01 88.74 ±0.41

Table 9: Accuracy comparison of QAT methods on BERT family (few-sample GLUE tasks) without and with TI for
prolonged fine-tuning iterations (Budget-A/C). Each experiment is repeated 10 times.

BERTbase BERTlarge TinyBERT-4L TinyBERT-6L

Baseline 72.51 73.29 65.88 72.17

TI - output loss 73.92 73.79 66.85 72.77
TI - two step 73.95 74.26 66.32 72.59
TI 74.13 74.46 67.13 73.02

Table 10: Ablation study of Teacher Intervention. Each
result is averaged score over GLUE small datasets (RTE,
CoLA, STS-B, MRPC)

we passed these to the student model forward op-
eration’s input. With these additional inputs, we
replace the student’s attention map/output with the
teacher’s in the attention sub-layer forward opera-
tion. More detailed implementation can be found
at https://github.com/MarsJacobs/ti-kd-qat.

A.2 Additional Experimental Results

Large-Sample Fine-tuning Table. 8 shows
evaluation of TI in GLUE large datasets (SST-2,
QNLI, MNLI, QQP). TI-G outperforms the
baseline for all the cases as we discussed in
Table. 3, showing that TI improve convergence of
QAT in large sample fine-tuning.

Additional Results of Prolonged Fine-Tuning Ta-
ble. 9 shows additional evaluation results of TI in
prolonged fine-tuning (BERTbase and BERTlarge
with Budget-A/C). As can be seen, TI-G shows

BERTbase BERTlarge TinyBERT-4L TinyBERT-6L

Inverted TI 74.27 74.37 68.28 72.98
Stochastic TI 74.32 74.57 68.17 72.93
TI-G 74.37 74.41 68.32 73.06

Table 11: Comparison of unified TI strategies. Each
result is averaged score over GLUE small datasets (RTE,
CoLA, STS-B, MRPC)

superior accuracy to TernaryBERT with a notice-
able margin in Budget-A/C both. Furthermore,
TI-G achieves close to full-precision accuracy with
Budget-A, showing TI’s beneficial effect on the
convergence of QAT.

A.3 Ablation Study

TI two step QAT and output loss In this section,
we delve deeper into evaluating the efficacy of
the TI method. As TI-O employs one additive
loss for internal distillation (Attention Output
MSE loss, called output loss) and TI QAT is
performed in two steps, conducting an ablation
study on TI (exploiting output loss and two-step
QAT separately) provides a deeper understanding
of our method. Table. 10 demonstrates the effect of
output loss and the use of a two-step method with
TI independently with BERT family models over
GLUE small datasets. As can be seen, both factors
act positively on the performance of quantized
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models. Interestingly, two-step QAT factor
provides a powerful impact (Row 2) in compressed
models (TinyBERT-4L and TinyBERT-6L), and
output loss shows a distinct impact (Row 3) in the
BERTlarge model. When both factors are implied
together (Row 4), performance is boosted further.

Exploration of unified teacher interven-
tion methods In this section, we investigate the
best unified teacher intervention strategy. We
proposed a unified intervention approach (TI-G)
in Sec. 4.2, applying TI with output intervention
(TI-O) followed by map intervention (TI-M). As
more scheduling choices are left when using TI-O
and TI-M together, we propose additional two
scheduling methods, Inverted TI, and Stochastic TI.
Inverted TI applies TI-O and TI-M in the opposite
order of TI-G, and stochastic TI means choosing
TI-O and TI-M options randomly in every training
iteration, ensembling each TI option’s effect in a
stochastic way. Table. 11 shows the comparison
between unified TI scheduling methods with BERT
family models over GLUE small datasets. TI-G
outperforms other unified TI scheduling methods
in almost every model, which shows our proposed
teacher intervention unification approach’s efficacy.
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Abstract

Continual learning aims to accumulate knowl-
edge to solve new tasks without catastrophic
forgetting for previously learned tasks. Re-
search on continual learning has led to the de-
velopment of generative replay, which prevents
catastrophic forgetting by generating pseudo-
samples for previous tasks and learning them
together with new tasks. Inspired by the bi-
ological brain, we propose the hippocampal
memory indexing to enhance the generative re-
play by controlling sample generation using
compressed features of previous training sam-
ples. It enables the generation of a specific
training sample from previous tasks, thus im-
proving the balance and quality of generated
replay samples. Experimental results indicate
that our method effectively controls the sam-
ple generation and consistently outperforms the
performance of current generative replay meth-
ods.1

1 Introduction

Humans and intelligent animals continually acquire
new knowledge and skills throughout their life-
time. This ability, called continual learning (CL)
or lifelong learning, is a fundamental requirement
for human-like general intelligence (Parisi et al.,
2019). CL is also crucial for practical applications,
as new data and tasks to train models appear every
day in the real world. It is especially important
for natural language processing (NLP) systems, in
which vocabulary and language usage change over
time. However, most neural network based mod-
els are trained with a static dataset. When learning
different tasks sequentially, performance on the pre-
viously learned tasks tends to significantly degrade,
referred to as catastrophic forgetting (McCloskey
and Cohen, 1989). Learning new tasks without
catastrophic forgetting has been a long-standing
challenge in machine learning and neural networks.

1The source code is available at https://github.
com/arumaekawa/GR-HMI.

Replay is an approach to alleviate catastrophic
forgetting by retraining with previous tasks’ data
when training a new task. Although replay-based
methods are effective in most CL scenarios, it is
necessary to retain training data for all previous
tasks, which may cause problems with storage re-
quirements and data privacy. Therefore, generative
replay was developed (Shin et al., 2017), which
uses pseudo-samples generated from generation
models instead of real samples. In the NLP do-
main, LAMOL (Sun et al., 2020a) was proposed as
a generative replay framework, where a single lan-
guage model simultaneously learns to solve tasks
and to generate pseudo-samples (Fig. 1a).

Although the generative replay does not require
any previous task’s data, it typically underperforms
actual sample replay because of the balance and
quality problems in sample generation. Regarding
the balance problem, generation models tend to
generate a large number of samples for recently
learned tasks, that results in forgetting older tasks.
This is due to the difficulty in controlling sample
generation and catastrophic forgetting occurring
in generation models. Regarding the quality prob-
lem, generative replay methods commonly assume
to generate even unseen samples which is not in-
cluded in the past training datasets. However, since
generating such unseen samples is more difficult
than generating previously trained samples, it may
cause the degradation of the quality of replay sam-
ples. To prevent the catastrophic forgetting, it is
sufficient to generate only previously learned sam-
ples.

To address these issues, we refer to the mem-
ory retrieval mechanism in the biological brain that
achieves CL. According to the hippocampal in-
dexing theory (Teyler and Rudy, 2007), the hip-
pocampus encodes memory engrams for new neo-
cortical activity patterns and uses them as memory
indexes to recall past experiences. Inspired by this
hippocampal mechanism, we propose hippocam-
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Figure 1: (a) is the overview of the LAMOL framework. The top is the learning QA to solve tasks and the bottom is
the learning LM to generate pseudo-samples. (b) is the proposed HMI implemented on LAMOL. We introduce a
hippocampus module illustrated on the left.

pal memory indexing (HMI) for improving gener-
ative reply. To remember training samples with a
small data usage, we introduce a hippocampus mod-
ule that encodes training samples into compressed
memory engrams using BERT (Devlin et al., 2019)
and product quantization (PQ) (Jégou et al., 2011),
and stores them to generate conditioned samples
during the replay step (Fig. 1b). This method
makes it possible to generate specific training sam-
ples from previously learned tasks.

We evaluated HMI on two different CL scenarios
using the original LAMOL as a baseline. The first
scenario is a sequence of different types of tasks,
for which we used five natural language understand-
ing (NLU) tasks from DecaNLP (McCann et al.,
2018). The other scenario is a sequence of different
domains in the same task, for which we used five
text classification datasets and single-pass setting,
which is considered as an ideal scenario for CL.
The results indicate that HMI consistently outper-
forms LAMOL and improves robustness to training
task order and amount of replay samples. We also
investigated the balance of previously learned tasks
in generated samples and found that HMI enables
the generation of even old task samples, which indi-
cates the controllability of sample generation with
HMI. Furthermore, we explored the potential of
further improvement of HMI with different sample
selection strategies for replay.

2 Related Work

CL, which involves learning from a stream of tasks
without catastrophic forgetting, is a long-standing
issue in machine learning. In the NLP, CL has been
studied for diverse tasks, for example, word and

sentence representations (Xu et al., 2018; Liu et al.,
2019), sentiment analysis (Chen et al., 2015; Xia
et al., 2017), composition language learning (Li
et al., 2020b), relation learning (Han et al., 2020),
dialogue systems (Lee, 2017; Madotto et al., 2021),
text classification, and question-answering (QA)
(de Masson d'Autume et al., 2019; Wang et al.,
2020).

Regularization-based methods aim to constrain
changes in model parameters important for previ-
ous tasks. Various methods have been proposed to
estimate the importance of each parameter. For ex-
ample, elastic weight consolidation (EWC) (Kirk-
patrick et al., 2017) uses the Fisher information
matrix. Synaptic intelligence (SI) (Zenke et al.,
2017) estimates importance from the contribution
to loss changes. Memory-aware synapses (MAS)
(Aljundi et al., 2018) computes the sensitivity of
parameters on the basis of the gradient of model
outputs.

Architecture-based methods dynamically change
the network structure to assign model parameters
for each task. Progressive neural networks (PNN)
(Rusu et al., 2016) freeze the current parameters
and add a new column of the network when train-
ing a new task. Instead of extending the network,
PackNet (Mallya and Lazebnik, 2018) applies net-
work pruning using dynamic filters to separate the
neurons used for each task.

Replay-based methods mitigate catastrophic for-
getting by retraining for previous tasks when train-
ing for a new one. MbPA++ (de Masson d'Autume
et al., 2019) introduces an episodic memory that
stores real samples of previous tasks to use for ex-
perience replay and local adaptation. Meta-MbPA
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(Wang et al., 2020) applies a meta-learning algo-
rithm to improve MbPA++. To enhance the replay-
based methods with a limited amount of samples,
Wang et al. (2020) and Huang et al. (2021) also in-
vestigated effective selection strategies other than
random sampling. Instead of keeping real samples
for replay, Shin et al. (2017) proposed generative
replay, which trains a model to generate pseudo-
samples. Sun et al. (2020a) proposed LAMOL as a
generative replay method for NLP tasks. LAMOL
uses GPT-2 (Radford et al., 2019) to simultane-
ously learn a variety of NLP tasks and pseudo-
sample generation. L2KD (Chuang et al., 2020)
and DnR (Sun et al., 2020b) use knowledge dis-
tillation to extend LAMOL. MFK-LAMOL (Choi
and Kang, 2021) makes replay more efficient by
using more forgotten pseudo-samples in genera-
tive replay. Rational-LAMOL (Kanwatchara et al.,
2021) uses critical freezing guided by supervised
or unsupervised rationale. RVAE-LAMOL (Wang
et al., 2022) enhances LAMOL by mapping differ-
ent tasks into a limited unified feature space.

Current generative replay methods have prob-
lems on the balance and quality of generated sam-
ples. To address these issues, we propose a sample-
generation control with the HMI method, inspired
by the biological brain. In contrast to the previous
work, our approach prevents low quality samples by
using the assumption that a model generates only
previously learned samples. HMI also achieves
balanced sample generation by strong sample-level
conditioning rather than task-level conditioning.
Although our HMI can be applied to most of the
existing generative replay methods, similar to other
recent work, we build HMI upon LAMOL, which
is a simple generative replay baseline for CL in
NLP and whose implementation code is available.

3 LAMOL: Language Modeling for
Lifelong Language Learning

Before describing HMI, we briefly explain
LAMOL (Sun et al., 2020a), on which we propose
our HMI, in this section.

LAMOL is a generative replay framework using
a single GPT-2 to solve different types of NLP
tasks and generate pseudo-samples. In LAMOL, all
training samples are fed into GPT-2 as a sequence
of context, question, and answer. As illustrated
at the top of Figure 1a, GPT-2 learns each task in
a QA manner, predicting the answer part on the
basis of the given context and question. As well

as training QA, GPT-2 learns language modeling
(LM) to generate the whole sequence of the context,
question, and answer, as illustrated at the bottom of
Figure 1a. During the training step, the parameters
of GPT-2, θGPT-2, are optimized to minimize the
QA loss LQA and the LM loss LLM together as
L = LQA + λLLM, where λ is a hyperparameter.

When training for a new task, LAMOL generates
pseudo-samples for previous tasks to use for replay.
Assume a stream of tasks {T1, T2, . . . TT } to train
a model with LAMOL, where the number of tasks
T may be unknown. Before training a new task Ti
(i > 1), GPT-2 generates pseudo-samples by top-k
sampling from the first token [GEN]. The number
of pseudo-samples is γ|Ti|, where γ is the sampling
ratio and |Ti| is the number of training samples in
Ti. Defective samples, which do not have a unique
[ANS] token that indicates the start position of the
answer, are discarded, and the others are mixed
with Ti to alleviate forgetting for T<i in training.

When using the same [GEN] for all tasks, the
ratio for old tasks in the generated samples de-
creases exponentially in theory (Sun et al., 2020a).
Therefore, Sun et al. (2020a) proposed to replace
[GEN] with a task-specific token [TASK] (e.g.,
"__sst__") to control GPT-2 to generate pseudo-
samples belonging to the specific task. In the be-
ginning of training for Ti, γ

i−1 |Ti| pseudo-samples
for each previous task, T1, . . . , Ti−1, are generated
using the corresponding task-specific token.

4 Hippocampal Memory Indexing (HMI)

In this section, we introduce our Hippocampal
Memory Indexing (HMI) that can suppress the
problems of unbalanced and low-quality genera-
tion in the replay by accessing compressed features
for previous training samples.

4.1 Overview

HMI is implemented as a module that works on
LAMOL. Figure 1b shows the overview of our
HMI on LAMOL. The training process of HMI on
LAMOL is as follows.
1. The hippocampus module encodes each train-
ing sample into a feature vector representation with
a BERT encoder (§ 4.2.1).
2. Product Quantization (PQ) compresses the
encoded feature as a memory engram in a hip-
pocampal memory for future replay (§ 4.2.2).
To prevent increasing the size of the hippocam-
pal memory, we apply memory pruning at the end
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of training for each task (§ 4.2.3).
3. The memory engrams are used to condition the
generation by GPT-2 to generate the correspond-
ing samples (§ 4.3). This allows us to control the
task balance in replay samples and generate only
previously learned samples of higher quality.

We describe the hippocampus module, which en-
codes and stores memory engrams for each training
sample, in § 4.2 and explain generation control with
HMI in § 4.3. Finally, we explain the pre-training
for HMI in § 4.4.

4.2 Hippocampus Module

The hippocampus module is a memory component
that stores memory engrams, compressed represen-
tations of training samples in previously learned
tasks. During replay, the module retrieves stored
memory engrams and provides them for GPT-2 to
generate the corresponding previous samples. In
this section, we describe the encoding of a memory
engram from each training sample and the pruning
of the hippocampal memory in the module.

4.2.1 Memory Engram Encoding
A memory engram is created from the context and
question part of each training sample. Each se-
quence consisting of the context and question is
first encoded to a fixed-sized vector representation
with the BERT encoder. Similar to BERT, we use a
special classification token [CLS] in the beginning
of an input sequence to obtain a sample-level em-
bedding h[CLS] ∈ RH , where H is the embedding
dimension in BERT. It is further converted to a d-
dimensional feature vector h = WEh[CLS] ∈ Rd,
where WE ∈ Rd×H is a weight matrix. Note that,
during CL, the encoder parameters {ϕBERT,WE}
are frozen to prevent the features from drifting,
which degrades the controllability of HMI.

4.2.2 Feature Quantization
A feature vector h ∈ Rd is then quantized to re-
duce the data size of the hippocampal memory. In
the beginning of training a new task, we train a
quantization model on encoded feature vectors for
all training samples in the new task and all feature
vectors currently stored in the hippocampal mem-
ory. We use PQ (Jégou et al., 2011), which has a
lower reconstruction error than a simple quantiza-
tion model that uses only k-means. PQ first divides
a d-dimensional h into S sub-vectors, each of di-
mension d/S. It then creates a codebook by com-
puting N centroids for each S partitions with the

GPT-2

+ +

++

+

+

hEmb

Position

Word ...

...

...
hEmb

hMem,1

hMem,2

hMem,L
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h

(a) Self-Attention

(b) Embedding

WD
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Figure 2: Feature-vector injection to GPT-2. (a) Self-
Attention: hMem,l is fed into the l-th self-attention layer
and used as an additional key and value. (b) Embedding:
hEmb is added to word and position embeddings.

k-means algorithm. Using this codebook, each h is
quantized to S integer indices c ∈ {0, . . . , 255}S
and stored in the hippocampal memory as a mem-
ory engram.

4.2.3 Memory Pruning
It is inefficient to keep memory engrams of all
training samples in each previously learned task,
which may cause a scalability problem with the
data size for an increased number of tasks. Thus,
we set the maximum number of stored memory
engrams Mmax. When learning the i-th task Ti, the
memory engrams of all training samples in Ti are
first appended to the hippocampus module as the
i-th task hippocampal memory Mi. After updating
the codebook of the PQ model, every hippocampal
memory {M1,M2, . . .Mi} is reduced to satisfy
|Mj | ≤ Mmax

i for 1 ≤ j ≤ i by randomly selecting
memory engrams to keep from Mj . Therefore, we
can keep the total number of memory engrams at
most Mmax regardless of the number of tasks.

4.3 Sample Generation with Hippocampal
Memory Indexing

To condition the sample generation, we feed the
memory engram of each training sample into GPT-
2. We use two schemes, each of which is based
on embedding and self-attention layers (Li et al.,
2020a; Fang et al., 2021), as described as follows
and illustrated in Figure 2.

Embedding Layer In GPT-2, the embedding rep-
resentation of the t-th token in an input sequence
is the sum of the word embedding h

(t)
WE ∈ RH and

position embedding h
(t)
PE ∈ RH , where H is the
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embedding dimension in GPT-2. The feature vec-
tor h is added to it, so the new embedding vector is
h
(t)
Emb = h

(t)
WE +h

(t)
PE +WDh, where WD ∈ RH×d

is a weight matrix.

Self-Attention Layer The feature vector h is
used as an additional key and value in each
self-attention layer. It is first projected into
an LH-dimensional vector with a weight matrix
WM ∈ RLH×d. It is then divided into L vectors
[hMem,1, . . . ,hMem,L] and converted to a key and
value in each self-attention layer.

We apply the feature-vector injection to the train-
ing, replay, and inference steps. During the training
step, a quantized memory engram c, encoded from
a training sample in the hippocampus module, is
decoded back into a feature vector h′ and given to
GPT-2 to condition the generation for both the QA
and LM. It reduces the effect of quantization errors
between training and generation to use h′ rather
than the BERT encoder outputting h directly. Dur-
ing the replay step, when training for the i-th task
Ti (i > 1), we randomly select γ

i−1 |Ti| memory
engrams from the hippocampal memory for each
previous task,M1, . . . ,Mi−1, and provide them for
GPT-2 to generate the corresponding past training
samples by greedy decoding.

In inference, GPT-2 generates the answer part
on the basis of the given context and question with
injected h encoded from the context and question
of a test sample.

4.4 Pre-training

The memory engrams encoded in the hippocam-
pus module should contain enough information to
reconstruct the corresponding samples with GPT-
2. However, a naive [CLS] token embedding of
BERT and a linear projection with randomly initial-
ized WE are considered insufficient. In addition,
the GPT-2 side uses the connections with WD and
WM, which are initialized randomly, so it may
make CL unstable, especially for initial tasks.

To address these issues, we introduce a pre-
training of the BERT encoder and GPT-2 as an
autoencoder (AE) using an unlabeled text corpus.
In the pre-training, the BERT encoder learns to
encode each input text into a single feature vec-
tor, and GPT-2 learns to reconstruct the original
input from the feature vector. Note that we do not
apply the quantization model to the pre-training.
This is because it is not necessary to store feature
vectors, since we do not consider the replay of

the pre-training data, and this also allows the en-
coder parameters {ϕBERT,WE} to be optimized
through gradient descent. With this pre-training,
the model encodes well-informed memory engrams
and achieves their conditional generation with GPT-
2 from the beginning of CL.

Along with the AE, GPT-2 simultaneously learns
the LM in this pre-training. This is to prevent GPT-
2 from losing the knowledge of the LM that GPT-2
originally has by training the AE. Therefore, we
optimize the sum of the AE loss and the LM loss
L = LAE + LLM, and obtain the initial model pa-
rameters {ϕBERT,WE,θGPT-2,WD,WM} for CL.
The effect of the pre-training are given in Ap-
pendix A.

5 Experiments

5.1 General Settings

Tasks, Datasets, and Metrics To evaluate the
effectiveness of HMI for CL on different types of
tasks, we first evaluated it on a scenario of select-
ing five NLU tasks from decaNLP (McCann et al.,
2018), following the settings of Sun et al. (2020a):
QA (SQuAD), semantic parsing (WikiSQL), senti-
ment analysis (SST), semantic role labeling (QA-
SRL), and goal-oriented dialogue (WOZ).

To evaluate it on another CL scenario, we used
five text classification tasks from diverse domains:
news classification (AGNews), sentiment analysis
(Yelp, Amazon), Wikipedia article classification
(DBPedia), and QA categorization (Yahoo). We
followed the settings of de Masson d'Autume et al.
(2019) to use the balanced version datasets2 and ap-
plied the single-pass setting, where a model trains
with each dataset for only one epoch.

Each dataset has the corresponding evaluation
metric ranging from 0 to 100%. More details of
tasks and datasets are given in Appendix B.1.

Compared Methods We compared the following
methods:
- LAMOL This is the baseline generative replay
method, without HMI. GPT-2 generates pseudo-
samples by top-k sampling with k = 20 given only
first tokens [GEN]/[TASK].
- HMI-LAMOL Our HMI implemented on
LAMOL. We evaluated the effectiveness of HMI
by comparing it to LAMOL.

2We used the random sampled subsets released by Sun
et al. (2020a).
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- Real Samples Replay samples in HMI-LAMOL
are replaced with actual training samples corre-
sponding to the given memory engrams. This is
considered as the upper bound of HMI-LAMOL in
terms of the quality of generated samples.
- Multitask All tasks are simultaneously trained
with GPT-2. Note that GPT-2 optimizes only the
QA loss. Since future tasks are not accessible in
CL, this is often regarded as the upper bound.

Implementation We implemented the above
methods on the basis of the official implementation
of LAMOL.3 We also re-implemented LAMOL to
use [GEN]/[TASK] for learning the QA as well as
learning the LM to make training fast and improve
performance by unifying input format. We used
the smallest pre-trained GPT-24 as the language
model for all methods and the smallest pre-trained
BERT5 for the encoder of the hippocampus module
in HMI-LAMOL.

Hyper-parameters For all methods, we fol-
lowed the settings in Sun et al. (2020a): We set
λ = 0.25 for the weight of the LM loss and applied
greedy decoding during inference. We trained the
models for nine epochs for each NLU task and for
only one epoch for each text classification task. For
HMI-LAMOL, we set the maximum size of the
hippocampal memory Mmax to 10,000. We also set
the dimension d of the feature vector h to 768, the
same as the embedding dimension in BERT and
GPT-2. We set the number of partitions S = 16 and
the number of centroids N = 256 for the feature
quantization. All the results in our experiments
were the average over two runs (seed = 42, 43).
More details of the experimental settings are given
in Appendix C.

For the pre-training in HMI-LAMOL (§ 4.4), we
used 1,070,272 text lines from the Wiki-40B (Guo
et al., 2020) test set as training data. We trained
the model with them for three epochs to obtain the
initial model parameters for CL.

5.2 Evaluations

5.2.1 Five Different NLU Tasks
Settings We trained each model on the five NLU
tasks in either descending/ascending order in ac-
cordance with the number of training samples.

3https://github.com/jojotenya/LAMOL
4https://huggingface.co/gpt2
5https://huggingface.co/

bert-base-uncased

Replay sample ratio (γ) 0.01 0.05 0.2

Large to small: (SQuAD→ WikiSQL→ SST→ QA-SRL→ WOZ)

LAMOLGEN (Sun et al., 2020a)* - 69.6 73.1
LAMOLTASK (Sun et al., 2020a)* - 71.5 74.3
LAMOLGEN 69.1 74.1 75.5
LAMOLTASK 67.9 74.4 76.2

HMI-LAMOLGEN 72.7 75.3 76.4
HMI-LAMOLTASK 72.6 75.2 76.6

HMI-LAMOLGEN + Real samples 73.9 76.4 78.0
HMI-LAMOLTASK + Real samples 73.7 76.4 77.6

Small to large: (WOZ→ QA-SRL→ SST→ WikiSQL→ SQuAD)

LAMOLGEN (Sun et al., 2020a)* - 63.2 73.0
LAMOLTASK (Sun et al., 2020a)* - 75.3 76.9
LAMOLGEN 57.7 59.3 72.9
LAMOLTASK 58.2 60.5 76.4

HMI-LAMOLGEN 67.1 76.5 77.3
HMI-LAMOLTASK 70.8 75.5 77.5

HMI-LAMOLGEN + Real samples 75.5 78.0 78.9
HMI-LAMOLTASK + Real samples 75.0 78.0 79.2

Multitask 77.2

Table 1: Experimental results on the five NLU tasks in
two different orders. * indicates the reported score by
Sun et al. (2020a).

We evaluated it with and without task-specific to-
kens, and with three different replay sample ratios
γ ∈ {0.01, 0.05, 0.2}. We obtained the perfor-
mance of CL as the average score on the five tasks
at the end of training streams.

Results Table 1 shows the results. The results
indicate that HMI-LAMOL outperformed LAMOL
in all cases, that is, in both two task orders and all
γ. HMI-LAMOL with the best resulting setting,
in ascending order and γ = 0.2, even beat multi-
task. HMI-LAMOL also reduced the performance
gap between the two task orders. Although the per-
formance of LAMOL degraded when the value of
γ decreased, HMI-LAMOL mitigated the perfor-
mance degradation of LAMOL. As expected, even
when using the same [GEN] token, HMI-LAMOL
typically performed as well as using task-specific
tokens because it includes their role as well. How-
ever, there is also a performance gap from replacing
generated samples with real samples. This indi-
cates that HMI-LAMOL could be further improved
by developing a better model for conditional gener-
ation.
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γ Methods (i) (ii) (iii) (iv) Avg. Std.

0.01
LAMOLTASK 42.9 49.6 61.7 62.4 54.2 8.3

HMI-LAMOLTASK 68.2 68.9 67.6 69.4 68.5 0.7
+ Real samples 70.2 71.7 70.1 71.0 70.8 0.7

0.05
LAMOLTASK 61.2 66.2 63.8 63.4 63.7 1.8

HMI-LAMOLTASK 70.9 71.7 71.1 71.1 71.2 0.3
+ Real samples 72.7 73.2 73.3 73.1 73.1 0.2

0.2
LAMOLTASK 71.0 71.9 68.0 71.4 70.6 1.5

HMI-LAMOLTASK 72.2 72.6 72.3 71.8 72.2 0.3
+ Real samples 74.9 73.9 75.6 75.5 75.0 0.7

- Multitask 72.7

Table 2: Experimental results on the five text classifica-
tion tasks. (i)–(iv) denote four random task orders. Avg.
and Std. respectively represent average and standard
deviation for the four orders.

5.2.2 Five Text Classification Tasks
Settings We applied the single-pass setting,
which is considered to make it difficult for HMI-
LAMOL to memorize training samples.6 We tried
the three different γ as in the previous experiments
(§ 5.2.1). We used the task-specific tokens for all
methods except multitask learning. Following pre-
vious studies (de Masson d'Autume et al., 2019;
Sun et al., 2020a), we report our results for four
random task orders. The four orders are shown in
Appendix B.2.

Results As shown in Table 2, HMI-LAMOL im-
proved upon LAMOL also in this scenario. For
all γ, the p-value of the paired t-test between the
results on the four task orders of LAMOL and HMI-
LAMOL was smaller than 1%. In particular, the
performance gains were larger for smaller γ. More-
over, HMI-LAMOL had smaller standard devia-
tions for the four task orders, which indicates that
it is robust to the task training order of CL.

5.2.3 Sample Selection Strategies
Although HMI can control sample generation at
the sample level as well as at the task level, in
the previous experiments, we randomly selected
memory engrams to use for the sample generation
for each replay step. In this section, we compare
the following three selection strategies with the
random selection:
- Nearest K-means Inspired by previous studies
on real samples replay (Wang et al., 2020; Huang
et al., 2021), we compute k-means centroids of all
memory engrams in the hippocampal memory for
each task, where k is the number of generated re-

6Results in the multiple-pass setting are shown in Ap-
pendix D.

Methods
NLU tasks Text classification tasks

desc asc (i) (ii) (iii) (iv)

Random 72.9 69.7 68.7 67.4 67.4 68.4
Nearest K-means 73.1 69.1 69.0 68.6 67.0 69.0
Loss Difference 71.8 65.5 62.4 66.2 67.4 68.0
Low Perplexity 71.8 59.3 67.8 63.7 64.9 68.6

Table 3: Results of HMI-LAMOL with different selec-
tion strategies for generating samples.

play samples for each task, and choose the nearest
memory engram for each centroid. This strategy
can be used to include more diverse samples in
replay than the random selection.
- Loss Difference We select samples with a larger
loss difference between before and after training
Lbefore − Lafter. The samples selected through this
process are considered more effective for model
training.
- Low Perplexity To ensure the quality of generated
samples, we use memory engrams for the samples
with low perplexity of the model after training.

In order to simplify the comparison of the se-
lection strategies, we do not apply the memory
pruning (§ 4.2.3) and select samples from all pre-
viously learned samples. We also set the small
γ = 0.01, where the difference in the selection
strategy is more likely to affect CL performance.
We tried all task orders for both CL scenarios with
the task-specific tokens.

Results Table 3 shows the results. We first find
that the selection strategies clearly affected the final
performance of CL. This indicates that the control
of the sample generation with HMI-LAMOL also
works at the sample level as well as at the task level.
This further indicates that HMI-LAMOL has the
potential to improve performance when we can use
a better selection strategy.

The results indicate that nearest k-means had
stably good performance. However, we did not
observe a clear advantage compared with random
selection. This might be because even random
selection can also include a sufficient number of
varied samples. In contrast with these strategies
focusing on the diversity of generated samples, the
other two strategies, which are based on a single
measure, such as loss difference or perplexity, did
not perform well and lacked stability. After observ-
ing generated samples with these strategies, we
discovered a serious bias in the generated samples:
the selection based on the loss difference included
more samples from a single class in the text classifi-
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Figure 3: Task balance in replay samples generated with LAMOL and HMI-LAMOL in the experiments of the NLU
tasks. Each graph shows the results of generated replay samples when training for each new task denoted with [].

cation task; generated samples selected on the basis
of the perplexity tended to be of high quality but
short in length and easy to predict. In conclusion,
our experiments demonstrated that the diversity of
the generated samples contributes to CL perfor-
mance, which is consistent with the recent findings
on real samples replay Wang et al. (2020); Huang
et al. (2021).

6 Analysis

6.1 Balance of Replay Samples

To validate the controllability in sample generation
in HMI-LAMOL, we investigated the balance of
each task in the replay samples generated in the
experiments on the five NLU tasks, described in
§ 5.2.1. To classify the replay samples, we used
the BERT classifier model trained with the same
training data as the experiments of CL.

Figure 3 shows the portion of each task in the
generated replay samples for each replay step in the
CL experiments. We first find that LAMOL gen-
erated many samples from more recently learned
tasks rather than from older tasks. It became
more evident in the smaller γ, which is consis-
tent with the performance trend in CL. Although
task-specific tokens alleviate this problem to some
extent, when γ = 0.01, almost all of the gener-
ated samples were from the most recently learned
task in all replay steps. These results indicate that
the task-specific tokens are insufficient to tie the

NLU tasks Text classification tasks

raw text 103,329 KB 340,200 KB
+ gzip 10,879 KB 106,914 KB

no compression 263,553 KB 862,500 KB
+ PQ 3,129 KB 9,368 KB
+ PQ, Pruning 540 KB 540 KB

Table 4: Storage requirements for the hippocampal
memory after training the last task in our two CL ex-
periments. raw text indicates the size of ASCII text file
containing all real samples, and the next line is the size
after gzip compression. no compression means the case
of keeping all samples as real-valued vectors.

generated samples to each task.
However, HMI-LAMOL successfully controls

the sample generation for each previous task. In
contrast to LAMOL, it enables the generation of
samples for older tasks even with the small γ.

6.2 Effect of Memory Compression

HMI uses the feature quantization (§ 4.2.2) and
the memory pruning (§ 4.2.3) to reduce the extra
storage space required to store memory engrams.
Table 4 shows the storage requirements for HMI
with and without the two compression methods. It
also shows the storage requirements when keeping
real samples as raw text file and when applying
gzip compression.

When keeping real-valued vectors without the
feature quantization, HMI requires even more stor-
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age space than when keeping real samples. How-
ever, after applying the quantization, each memory
engram is compressed to 16 bytes, which is 96x
smaller than real-valued vectors and suppressed
much less than keeping real samples. Note that
the numbers in Table 4 include the PQ codebook,
which is 384 KB in size. In addition, the mem-
ory pruning reduces it to fixed 540 KB, which the
storage requirements will never exceed even if the
number of tasks or training samples increase.

7 Conclusion

We proposed hippocampal memory indexing
(HMI), inspired by the biological brain, that con-
trols generative replay by conditioning sample gen-
eration with compressed representations of previ-
ous training samples. Experimental results indi-
cated that HMI successfully controls the sample
generation of generative replay and consistently im-
proves the CL performance and robustness. HMI is
expected to be further improved by exploring better
selection strategies for generating samples.

Limitations

First, in contrast to most existing generative re-
play approaches, HMI needs extra data space to
store features of previous training samples for the
sample generation control, while these features are
compressed to quantization indices, which require
smaller storage space, and their total number is
limited to at most Mmax by the memory pruning.

Second, there is still a performance gap between
the replay of generated samples and real samples in
HMI. This indicates that it is difficult to completely
reconstruct previously learned samples from mem-
ory engrams.

Third, although HMI can control the generated
samples for replay, there is room for further in-
vestigation into the selection strategies better than
the random selection. In addition, we tried only
random selection and did not further investigate
the selection methods for samples in the memory
pruning, which can be also explored in future work.
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Methods Pre-training
NLU tasks Text classification tasks
desc asc (i) (ii) (iii) (iv)

LAMOL
– 76.2 76.4 71.0 71.9 68.0 71.4
LLM 75.8 76.5 70.0 72.4 71.5 71.7

HMI-LAMOL
LAE 76.2 77.2 71.8 72.3 72.2 71.4
LAE + LLM 76.6 77.5 72.2 72.6 72.3 71.8

Table 5: Results of CL experiments with γ = 0.2 and
using task-specific tokens for the different pre-training
tasks.

A Effect of Pre-training

As described in § 4.4, we applied the LM loss as
well as the AE loss to the pre-training in HMI.
Table 5 shows the CL performance of LAMOL and
HMI-LAMOL for the different pre-training tasks.

The results show that HMI-LAMOL pre-trained
with LM, outperformed HMI-LAMOL, pre-trained
only with AE, for all task settings, which indi-
cates pre-training LM is effective in HMI-LAMOL.
Whereas, it is difficult to say that the pre-training
LM is also effective in LAMOL, and the perfor-
mance of LAMOL, pre-trained with LM, was still
lower than HMI-LAMOL. Therefore, the gain of
HMI is not only due to the pre-training.

B Tasks and Orderings

B.1 Details of Datasets

Following previous studies, we used five NLU tasks
and five text classification tasks for our experiments.
Table 6 contains a summary of the datasets, their
size, metrics, and examples of the SQuAD-like QA
scheme in decaNLP (McCann et al., 2018).

B.2 Ordering for Text Classification Tasks

For text classification tasks, we consider four ran-
dom permutation orders, which mirror those in a
previous study (de Masson d'Autume et al., 2019):
(i) Yelp→AGNews→DBPedia→Amazon→Yahoo,
(ii) DBPedia→Yahoo→AGNews→Amazon→Yelp,
(iii) Yelp→Yahoo→Amazon→DBpedia→AGNews,
(iv) AGNews→Yelp→Amazon→Yahoo→DBpedia.

C Details of Experiment Settings

We used a single Tesla V100 for all experiments.
We implemented all methods with half-precision
number (16-bit float). All experiments were aver-
aged over two runs with seed = 42, 43. A sum-
mary of the training hyperparameter settings, fol-
lowing the settings in the official implementation
of LAMOL,3 are listed in Table 7. More details of

the implementation can be found in our released
experimental source code.1

D Five Text Classification Tasks with
Multiple-pass Setting

In our experiments with the five text classification
tasks (§ 5.2.2), we evaluated our HMI in the single-
pass setting, which is considered as an ideal setting
for CL and where HMI is more difficult to mem-
orize training samples. In this section, we also
present the performance of HMI when training for
each task for nine epochs, the same setting as in
previous work.

Table 8 shows the results of LAMOL and HMI-
LAMOL, which use task-specific tokens and γ =
0.2, and other current methods. The results indicate
that HMI-LAMOL also consistently outperformed
LAMOL in this setting and narrows the gap with
the replay of real samples. Note that although Meta-
MbPA also has a good performance, MbPA++ and
Meta-MbPA cannot be directly compared to other
methods because of using real samples.
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Task Dataset Context Question Answer # of Train # of Test Metric

Question
Answering SQuAD Albert Einstein lived in a flat

at the Kramgasse 49, ...
Where is Albert
Einstein live? The Kramgasse 49 87,599 10,570 nF1

Semantic
Parsing WikiSQL The table has columns club, ...

Which club was founded ... ?
What is the translation
from English to SQL?

SELECT player from
table WHERE ... 56,355 15,878 lfEM

Sentiment
Analysis SST It’s a very valuable film... Is this review

negative or positive? positive 6,920 1,821 EM

Semantic Role
Labeling QA-SRL The trilogy was released on

vinyl by ipecac recordings.
What was released

on something? The trilogy 6,414 2,201 nF1

Goal-oriented
Dialogue WOZ I am looking for African food What is the

change in state? food: African; 2,536 1,646 dsEM

Text
Classification

AGNews Smart phone market
growing ...

Is this sentence
World, ... ? Sci/Tech

115,000 7,600 EM

Yelp Nothing special, your
typical buffet food. ...

Is this sentence
very negative, ... ? negative

Amazon One of the worst
comercials ...

Is this sentence
very negative, ... ? very negative

DBPedia Rubyville Elementary
School ...

Is this sentence
Company, ... ? EducationalInstitution

Yahoo What should I do, I
cant quit smoking? ...

Is this sentence
Society & Culture, ... ? Health

Table 6: Summary of datasets, size, metrics, and example of conversion to dacaNLP format of all tasks.

Hyperparameter Value

optimizer Adam
epsilon of Adam 1.0× 10−4

learning rate 6.25× 10−5

learning rate schedule warm-up linear
warm-up ratio 0.005
weight decay 0.01
max gradient norm 1.0

Table 7: Training hyperparameters in our experiments.

Methods (i) (ii) (iii) (iv) Avg.

MbPA++ (de Masson d'Autume et al., 2019) 70.8 70.9 70.2 70.7 70.6
MbPA++ (Wang et al., 2020) 75.3 74.6 75.6 75.5 75.3
Meta-MbPA (Wang et al., 2020) 77.9 76.7 77.3 77.6 77.3

LAMOL (Sun et al., 2020a) 76.7 77.2 76.1 76.1 76.5
DnR (Sun et al., 2020b) 77.4 77.2 77.1 76.9 77.2

LAMOL 76.6 76.8 76.8 76.8 76.8
HMI-LAMOL 77.5 77.5 77.8 77.3 77.5
HMI-LAMOL + Real samples 77.5 77.5 78.0 78.0 77.7

Table 8: Results on five text classification tasks in the
multiple-pass setting. LAMOL and HMI-LAMOL were
evaluated with our implementation (bottom three rows),
and the other scores are obtained from each paper.
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Abstract
Multi-task learning (MTL) has become increas-
ingly popular in natural language processing
(NLP) because it improves the performance of
related tasks by exploiting their commonalities
and differences. Nevertheless, it is still not
understood very well how multi-task learning
can be implemented based on the relatedness
of training tasks. In this survey, we review re-
cent advances of multi-task learning methods
in NLP, with the aim of summarizing them into
two general multi-task training methods based
on their task relatedness: (i) joint training and
(ii) multi-step training. We present examples
in various NLP downstream applications, sum-
marize the task relationships and discuss future
directions of this promising topic.

1 Introduction

Machine learning generally involves training a
model to perform a single task. By focusing on one
task, the model ignores knowledge from the train-
ing signals of related tasks (Ruder, 2017). There
are a great number of tasks in NLP, from syntax
parsing to information extraction, from machine
translation to question answering: each requires
a model dedicated to learning from data. Biologi-
cally, humans learn natural languages, from basic
grammar to complex semantics in a single brain
(Hashimoto et al., 2017). In the field of machine
learning, multi-task learning (MTL) aims to lever-
age useful information shared across multiple re-
lated tasks to improve the generalization perfor-
mance on all tasks (Caruana, 1997). In deep neural
networks, it is generally achieved by sharing part of
hidden layers between different tasks, while keep-
ing several task-specific output layers. MTL offers
advantages like improved data efficiency, reduced
overfitting, and fast learning by leveraging auxil-
iary information (Crawshaw, 2020).

There have been relevant surveys that looked
into architecture designs and optimization algo-
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Figure 1: Two multi-task learning frameworks.

rithms in MTL. Ruder (2017) classified different
MTL frameworks into two categories: hard param-
eter sharing and soft parameter sharing, as well
as some earlier MTL examples in both non-neural
and neural models; Zhang and Yang (2018) ex-
panded such two “how to share” categories into
five categories, including feature learning approach,
low-rank approach, task clustering approach, task
relation learning approach, and decomposition ap-
proach; Crawshaw (2020) presented more recent
models in both single-domain and multi-modal ar-
chitectures, as well as an overview of optimization
methods in MTL. Nevertheless, it is still not clearly
understood how to design and train a single model
to handle a variety of NLP tasks according to task
relatedness. Especially when faced with a set of
tasks that are seldom simultaneously trained previ-
ously, it is of crucial importance that researchers
find proper auxiliary tasks and assess the feasibility
of such multi-task learning attempt.

In this paper, we first review recent approaches
on multi-task training methods in popular NLP ap-
plications. We find that these approaches can be
categorized into two multi-task training methods
according to the types of task relatedness: (i) joint
training methods and (ii) multi-step training meth-

943



Multi-task training Multi-task frameworks Multi-task frameworks Related papersmethods in our survey defined in Ruder (2017) defined in Crawshaw (2020)

Joint Training

Deep relationship network Shared trunk (Liu et al., 2015; Dong et al., 2015)
Cross-stitch network Cross-talk (Liu et al., 2016; Xiao et al., 2018)
Weighting losses with uncertainty (Xiong et al., 2018; Xu et al., 2019b)
Sluice network (Ruder et al., 2017)

Adversarial feature separation (Liu et al., 2017; Mao et al., 2020)

Multi-step Training
Prediction distillation (Dinan et al., 2019; Lewis et al., 2020)

Low supervision Cascaded information (Søgaard et al., 2016; Hashimoto et al., 2017)

Table 1: Categories of multi-task learning frameworks in two related surveys can be merged into our proposed joint
training and multi-step training frameworks.

ods. Joint training is commonly used when all
given tasks can be performed simultaneously and
all the task-specific data can be learned simulta-
neously. In joint training, model parameters are
shared (either via soft or hard parameter sharing1)
among encoders and decoders so that the tasks
can be jointly trained to benefit from shared rep-
resentations, as shown in Figure 1(a). In contrast,
multi-step training is used when some task’s input
needs to be determined by the outputs or hidden
representations of previous task(s). Due to such
task dependencies, the task-specific decoders are
connected as a multi-step path starting from the
encoder “node”, as shown in Figure 1(b).

Therefore, different from previous surveys
which focus on architecture designs (e.g., how to
share parameters in (Ruder, 2017) and (Zhang and
Yang, 2018)) and optimization methods (e.g., loss
weighting and regularization in (Crawshaw, 2020)),
our motivation lies in categorizing two major multi-
task training methods in NLP, according to task
relatedness. In fact, task relatedness is the key to
determine what training method to use, then the
training method decides the general scope of avail-
able architecture designs. With specific application
tasks, readers are able to identify the ideal training
method from our review before looking for detailed
module design or loss optimization in previous sur-
veys. We also show that how the MTL techniques
covered in previous surveys can be matched with
the two training methods in Table 1.

The remainder of this survey is organized as
follows. Section 2 includes an overview of MTL
models in NLP and the rationales of using MTL.
Section 3 presents a number of joint and multi-
step training applications in different fields of NLP.
Section 4 analyzes the task relatedness involved in
these MTL approaches. Section 5 discusses future

1We do not specifically distinguish different parameter
sharing designs, since this topic is not the focus of our survey.
We refer readers to learn details in Ruder (2017).

directions. Section 6 concludes the paper.

2 Multi-task Training Methods

2.1 Encoder-Decoder Architecture and Two
Multi-Task Training Frameworks

Suppose we train a model on n NLP tasks T1, · · · ,
Tn on a dataset D = {(X(i), Y (i))}|Ni=1 with N
data points. For the j-th NLP task, the model is
trained with {(X

(i)
j , Y

(i)
j )}|Ni=1, where X

(i)
j is a

component of the input X(i), and Y
(i)
j is the desired

output. The input components of different tasks
can be the same, but the desired outputs are usually
different. We formulate the multi-task frameworks
discussed in this paper under the popular encoder-
decoder architecture which are mainly composed of
three components: (a) the encoder layer (including
the embedding layer), (b) the decoder layer (includ-
ing the output layer for classification or generation),
and (c) loss and optimization.

Encoder layer. In NLP networks, an embedding
layer is usually applied to generate the embedding
vectors of the basic elements of the input X(i) For
the j-th task, the encoder layer learns the hidden
state of X

(i)
j as a vector h(i)

j :

h
(i)
j = Encoder(X

(i)
j , ΘEj ), (1)

where ΘEj denotes the parameters of j-th task’s
encoder. Parameters of different encoders can be
shared. Popular encoder modules include BiLSTM
and BERT (Devlin et al., 2019).

Decoder layer. When the tasks are independent
with each other at decoding, the decoder of the j-th
task transforms the hidden state into an output:

Ŷ
(i)
j = Decoderj(h

(i)
j , ΘDj ). (2)

When the tasks are sequentially dependent, the de-
coder of the j-th task needs the output of the (j−1)-
th task, then we have

Ŷ
(i)
j = Decoderj(Ŷ

(i)
j−1,h

(i)
j , ΘDj ). (3)
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where ΘDj denotes the parameters of j-th task’s

decoder. Practically, Ŷ
(i)
j−1 are often presented as

hidden representations of the decoder prediction to
enable end-to-end training. Parameters of different
decoders can be shared. Popular decoder choices
include MLP, LSTM and the Transformer decoder.

According to the two types of task dependencies,
the multi-task learning frameworks define and orga-
nize the decoders in two different ways. As shown
in Figure 1, (i) the joint training framework is for
the tasks that are independent at decoding; and (ii)
the multi-step training framework is for tasks that
are sequentially dependent. It can be easily gener-
alized when the task dependencies form a directed
acyclic graph, in which sequential dependence is a
special and common case.

Optimization. A common optimization approach
of MTL is to optimize the weighted sum of
loss functions from different tasks, (i.e., Loss =
λj

∑n
j=1 Lossj) then compute the gradient de-

scent to update all trainable parameters ({ΘEj}n
j=1,

{ΘDj}n
j=1). The weights of {λj}n

j=1 can be either
pre-defined or dynamically adjusted (Kendall et al.,
2018; Xiong et al., 2018). It is worth mention-
ing that optimization in MTL has many alternative
ways. For example, Søgaard et al. (2016) choose a
random task t from a pre-defined task sets to opti-
mize its loss at each iteration. Readers can find a
more detailed review of MTL optimization meth-
ods in Crawshaw (2020), which is not the main
focus of this paper.

2.2 How does MTL Work

One of the prerequisites of multi-task learning is
the relatedness among different tasks and their data.
Most work prefers to train positively correlated
tasks in a multi-task setting. Such tasks have simi-
lar objectives or relevant data, and can boost each
other to form consistent predictions through shared
lower-level representations. According to Caruana
(1997), in MTL, tasks prefer hidden representations
that other tasks prefer. MTL enables shared repre-
sentations to include features from all tasks, thus
improving the consistency of task-specific decod-
ing in each sub-task. Furthermore, the co-existence
of features from different objectives naturally per-
forms feature crosses, which enables the model to
learn more complex features.

According to the experiments by Standley et al.
(2020), tasks are more likely to benefit from MTL
when using a larger network. This can be achieved

as the emergence of deep neural frameworks in
recent years. Many deep models, like BERT (De-
vlin et al., 2019) and T5 (Raffel et al., 2020), have
strong generalization ability to fit a variety of tasks
with minute changes. Therefore, different tasks can
be learned through similar models, especially in
the field of NLP where the encoder-decoder archi-
tecture has become a norm.

With the above premises, deep models are able
to benefit from MTL in multiple perspectives. First,
MTL improves data efficiency for each sub-task.
Different tasks provide different aspects of informa-
tion, enriching the expression ability of the hidden
representation to the input text. Besides, different
tasks have different noise patterns, which acts as an
implicit data augmentation method. This encour-
ages the multi-task model to produce more gener-
alizable representations in shared layers. Thus, the
model is prevented from overfitting to a single task
and gains stronger generalization ability, which
helps itself perform well when faced with new tasks
from a similar environment (Baxter, 2000). Multi-
task learning are also effective for low-resource
tasks (Lin et al., 2018b; Johnson et al., 2017). Co-
training with a high-resource task in a similar do-
main, low-resource tasks receive ampler training
signals which prevents the model from overfitting
on the limited data.

Auxiliary tasks in MTL can serve as conditions
or hints for the main task. Such setting usually falls
into the category of multi-step training. Providing
additional conditions reduces the distribution space
of possible outputs, thus lower the prediction diffi-
culty of the main task. Such conditions can serve
as additional features during decoding, including
external knowledge pieces, low-level NLP tasks
(e.g., part-of-speech tagging or syntactic parsing)
or relevant snippets extracted from long documents.
When some features are difficult for the main task
to directly learn, explicit supervision signals of
such features, if available, enables the model to
“eavesdrop", i.e., obtaining these features through
the learning of auxiliary task (Ruder, 2017).

3 Training Methods: Applications

3.1 Joint Training Applications

In this section, we list a series of recent approaches
of joint training in different fields of NLP (shown
in Figure 2), including information extraction, spo-
ken language understanding, text classification, ma-
chine translation and language generation.
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Figure 2: Five joint training NLP applications that have been discussed from §3.1.1 to §3.1.5.

3.1.1 Information Extraction (IE)

Two popular tasks that are usually jointly per-
formed in IE are named entity recognition (NER)
and relation extraction (RE). NER seeks to locate
and classify named entities in text into pre-defined
categories, such as names and locations. NER is
often tackled by sequence labeling methods, or say,
token-wise classifiers. RE aims to extract seman-
tic relationships between two or more entities, and
there are multiple ways to define the RE task in the
multi-task training approach.

First, Zhou et al. (2019) predicted the type of re-
lation mentioned in a sentence by the RE decoder.
It works for simple sentences such as those that
have a pair of entities and one type of relation,
e.g., “[President Obama] was born in [Honolulu].”
However, one sentence may have multiple types of
relations. Second, Zheng et al. (2017) predicted a
relation tag for every pair of tokens. If the decoder
performs perfectly, it can identify any number and
any types of relations in a sentence. However, the
complexity is too high to be effectively trained
with annotated data. Third, Bekoulis et al. (2018);
Wang et al. (2018a) treated RE as a sequence la-
beling problem. So both NER and RE decoders
are token-wise classifiers. As shown in Figure 2,
for example, B-BI tag represents the beginning
word of subject entity (person) or object entity (lo-
cation) in the “born_in” (BI) relation. Therefore,
if multiple tag sequences can be generated, they
can identify any number, and any type of relations
in the input sentence.

3.1.2 Spoken Language Understanding

Spoken Language Understanding (SLU) plays an
important role in spoken dialogue system (Qin
et al., 2021c). SLU aims at extracting the semantics
from user utterances, which is a critical component
of task-oriented dialogue. Concretely, it captures
semantic constituents of the utterance and identi-
fies the user’s intent. These two tasks are typically

known as slot filling (SF) and intent detection (ID),
respectively. Each word in the utterance corre-
sponds to one slot label, and a specific intent is
assigned to the whole utterance. An example of
these two sub-tasks is given below:

Word Put Kanye into my rap playlist
↓ ↓ ↓ ↓ ↓ ↓

Slot O B-artist O O B-playlist O
Intent AddToPlaylist

Since two sub-tasks share the same input utterance,
they usually share a single utterance encoder and
are jointly trained (Liu and Lane, 2016; Castel-
lucci et al., 2019). Recent state-of-the-art SLU
models build bi-directional interactions during en-
coding (Liu et al., 2019b; Zhang et al., 2020; Qin
et al., 2021a). Therefore, two tasks mutually im-
pact each other before making respective predic-
tions. It is worth noting that there is also a line
of work that uses the hidden states of intent de-
tection to assist slot filling (Goo et al., 2018; Qin
et al., 2019, 2021b). This can be considered as a
combination of joint training and multi-step train-
ing: intent detection helps the prediction of slot
filling, but finally their predictions are integrated to
perform the parent (larger) SLU task.

3.1.3 Sentence/Document Classification
Sentence/document classification is one of the fun-
damental tasks in NLP with broad applications such
as sentiment classification (SC), emotion classifi-
cation (EC), and stance detection. However, the
construction of large-scale high-quality datasets is
extremely labor-intensive. Therefore, multi-task
learning plays an important role in leveraging po-
tential correlations among related classification
tasks to extract common features, increase cor-
pus size implicitly and yield classification improve-
ments. Popular multi-task learning setting in text
classification has two categories. First, one dataset
is annotated with multiple labels and one input is
associated with multiple outputs (Liu et al., 2015;
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Yu et al., 2018a; Gui et al., 2020). Second, multiple
datasets have their respective labels, i.e., multiple
inputs with multiple outputs, where samples from
different tasks are jointly learned in parallel (Liu
et al., 2016, 2017). Most existing work leverages
joint training for different sentence/document clas-
sification tasks. Specifically, Liu et al. (2016) pro-
posed three different parameter sharing designs un-
der the joint training framework, and further com-
pared their performances.

3.1.4 Multilinguality
Languages differ lexically but are closely related
on the semantic and/or the syntactic levels. Such
correlation across different languages motivates the
multi-task learning on multilingual data. Neural
machine translation (NMT) is the most important
application. Dong et al. (2015) first proposed a
multi-task learning framework based on Seq2Seq
to conduct NMT from one source language to mul-
tiple target languages. Luong et al. (2016) extended
it with many-to-one and many-to-many approaches.
Many-to-one is useful for translating multi-source
languages to the target language, in which only
the decoder is shared. Many-to-many studies the
effect of unsupervised translation between multi-
ple languages. Zhu et al. (2019) proposed to im-
prove cross-lingual summarization by jointly train-
ing with monolingual summarization and machine
translation. Arivazhagan et al. (2019) built a mas-
sive multi-lingual translation model handling 103
languages, and conducted experiments on multiple
sampling schema for building joint training dataset.

Besides, unlabelled data from the target lan-
guage is also a common source of multi-task cross-
lingual training. Ahmad et al. (2019) collected
unannotated sentences from auxiliary languages to
assist learning language-agnostic representations.
Van Der Goot et al. (2021) incorporated a masked
language modeling objective using unlabeled data
from target language to perform zero-shot transfer.

3.1.5 Natural Language Generation (NLG)
Recent success in deep generative modeling have
led to significant advances in NLG, motivated by an
increasing need to understand and derive meaning
from language (Yu et al., 2020b). The relatedness
between different generation tasks promotes the
application of multi-task learning in NLG.

For example, Guo et al. (2018) proposed to
jointly learn abstractive summarization (AS) and
question generation (QG). An accurate summary
of a document is supposed to contain all its salient

information. This goal is consistent with that of
question generation (QG), which looks for salient
questioning-worthy details. Besides, QG and ques-
tion answering (QA) are often trained as dual tasks.
Tang et al. (2017) proposed a joint learning frame-
work that connects QG and QA. QA improves QG
through measuring the relevance between the gen-
erated question and the answer. QG improves QA
by providing additional signal which stands for the
probability of generating a question given the an-
swer. A similar framework was also employed in
Duan et al. (2017); Sachan and Xing (2018).

In other applications, semantic parsing is gain-
ing attention for knowledge-based question answer-
ing since it does not rely on hand-crafted features.
(Shen et al., 2019) developed a joint learning ap-
proach where a pointer-equipped semantic parsing
model is designed to resolve coreference in con-
versations, and naturally empower joint learning
with a novel type-aware entity detection model. Re-
searchers also found NLU tasks, e.g., input mean-
ing representation learning (Qader et al., 2019) or
entity mention prediction (Dong et al., 2020), can
improve the performance of generating sentences

Multi-view learning is also applied in NLG ap-
proaches for auxiliary learning objectives. Input
data are erased partially to create distinct views,
and divergence metrics are usually learned along
with the main loss to force the model generate
consistent predictions across different views of
the same input. Typical approaches include Clark
et al. (2018) which built up the multi-view learning
paradigm in IE and NLG tasks. In addition, Shen
et al. (2020) upgraded the network by combining
multiple cutoff methods to create augmented data,
and achieved success in translation tasks.

3.2 Multi-step Training: Applications

We list recent approaches of multi-step training in
different field of NLP (as shown in Figure 3), such
as language understanding, multi-passage question
answering and natural language generation.

3.2.1 Multi-level Language Understanding
The potential for leveraging multiple levels of rep-
resentations has been demonstrated in various ways
in the field of NLP. For example, Part-Of-Speech
(POS) tags are used for syntactic parsers. The
parsers are used to improve higher-level tasks, such
as natural language inference. Søgaard et al. (2016)
showed when learning POS tagging and chunking,
it is consistently better to have POS supervision
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Figure 3: Four multi-step training NLP applications discussed at §3.2.1, §3.2.2 (2nd and 3rd subfigures) and §3.2.3.

at the innermost rather than the outermost layer.
Hashimoto et al. (2017) predicted increasingly com-
plex NLP tasks at successively deeper layers for
POS tagging, chunking, dependency parsing, se-
mantic relatedness, and textual entailment, by con-
sidering linguistic hierarchies. Lower level predic-
tions may influence predictions in higher levels,
e.g., if the semantic relatedness between two sen-
tences is very low, they are unlikely to entail each
other. Similar architecture can be found in Sanh
et al. (2019b), where low-level tasks are name en-
tity recognition and entity mention detection, with
coreference resolution and relation extraction su-
pervising at higher levels.

3.2.2 Multi-Passage Question Answering
Question answering (QA) models may need to con-
struct answers by querying multiple passages (e.g.,
paragraphs, documents). Given a question, multi-
passage QA (MPQA) requires AI models identify
an answer span from multiple evidence passages.
Due to the complexity of MPQA, it is usually
achieved by multiple sub-tasks. Thus, multi-step
training is utilized by many approaches in MPQA.

Typically, MPQA can be split into a 3-phase
task. Passage retrieval (PR) is to select relevant ev-
idence passages according to the question. Reading
comprehension (RC) is to extract multiple answer
span candidates from the retrieved set of relevant
passages. Answer reranking (AR) is to re-score
multiple answer candidates based on the question
and evidence passages. There exist dependencies
between these tasks: evidence passages are gener-
ated by PR and fed into RC as input; the answer
span candidates are generated by RC and given
into AR as input. So, as shown in Figure 3, the
decoders form a multi-hop path starting from the
shared encoder. Hu et al. (2019) proposed a typi-
cal approach called RE3 (for REtriever, REader,
and REranker). The retriever used TF-IDF co-
sine similarities to prune irrelevant passages. The
reader is a token classifier that predicts the start

and end indices of answer candidates per segment.
The reranker prunes redundant span candidates and
then predict the reranking scores. Other works in
MPQA also considered 2-phase approaches, such
as PR+RC (Wang et al., 2018b) or RC+AR (Wang
et al., 2018d), which are simplified versions of the
above framework. Similar approaches have been
developed for many domains such as news (Nishida
et al., 2018), and web questions (Lin et al., 2018a).

Another branch of this task is multi-choice
MPQA, where we have a set of answer candidates
for the given question. (Kundu et al., 2019) pro-
posed to exploit explicit paths for multi-hop reason-
ing over structured knowledge graphs. The model
attempted to extract implicit relations from text
through entity pair representations, and compose
them to encode each path. It composed the pas-
sage representations along each path to compute a
passage-based representation. Then it can explain
the reasoning via these explicit paths through the
passages. The sub-tasks are named entity recogni-
tion (NER), graph-based reasoning (GR) to extract
and encode paths, and passage-based path scoring
(PS). So, the multi-task QA systems perform inter-
pretable and accurate reasoning (Welbl et al., 2018;
Tu et al., 2019).

3.2.3 Retrieval-augmented Text Generation
In NLG, the input sequence alone often contains
limited knowledge to support neural generation
models to produce the desired output, so the per-
formance of generation is still far from satisfactory
in many real-world scenarios (Yu et al., 2020b).
Retrieval-augmented generation models use the in-
put sequence to retrieve relevant information (e.g.,
a background document) and use it as additional
contexts when generating the target sequence. For
example, Dinan et al. (2019) proposed to tackle the
knowledge-aware dialogue by first selecting knowl-
edge from a large pool of document candidates and
generate a response based on the selected knowl-
edge and context. To enhance the aforementioned
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idea, Kim et al. (2020) presented a sequential la-
tent variable model to keep track of the prior and
posterior distribution over knowledge. It not only
reduced the ambiguity caused from the diversity in
knowledge selection of conversation but also bet-
ter leveraged the response information for proper
choice of knowledge. Similar retrieval-augmented
generation approaches have been applied in ques-
tion generation (Lewis et al., 2020), comment gen-
eration (Lin et al., 2019b), image captioning (Xu
et al., 2019a), summarization (Cao et al., 2018),
and long form QA (Krishna et al., 2021).

4 NLP Task Relatedness

In this section, we summarize the characteristics
of the aforementioned MTL approaches, and look
into the task relatedness between the sub-tasks.

4.1 Joint Training
Joint training with similar tasks. Joint train-
ing with a similar task is the classical choice for
multi-task learning. According to Caruana (1997),
more similar tasks share more hidden units. Hence,
similar tasks are more likely to benefit from shared
generic representations. However, what kind of
tasks can be considered as “similar" are not always
evident in the deep learning era. Empirically se-
lecting similar tasks is still the most mainstream
method (Ruder, 2017; Worsham and Kalita, 2020).
To get some intuitions what a similar task can
be, here we introduce some prominent examples.
(Dong et al., 2015) proposed training neural ma-
chine translation from one language into multiple
languages simultaneously; (Yu et al., 2018a) pro-
posed a joint training framework for sentiment clas-
sification and emotion classification; (Guo et al.,
2018) proposed abstractive summarization can be
jointly learned with question generation. (Yang
et al., 2019) jointly trained question categorization
and answer retrieval.

Recently, Aribandi et al. (2021) attempted to em-
pirically select a set of tasks (from 107 NLP tasks)
to transfer from, using a multi-task objective of
mixing supervised tasks with self-supervised objec-
tives for language model pre-training. In addition,
Guo et al. (2019) used multi-armed bandits to select
tasks and a Gaussian Process to control the mixing
rates. Besides, some recent work tried to select
appropriate sub-tasks based on manually defined
features (Lin et al., 2019a; Sun et al., 2021). Aside
from NLP, Fifty et al. (2021) proposed a method to
select sub-tasks based on task gradients.

Auxiliary task for adversarial learning. Partial
sharing of model parameters is the mainstream in
multi-task learning, which attempts to divide the
features of different tasks into private and shared
spaces. However, the shared feature space could
contain some unnecessary task-specific features,
while some sharable features could also be mixed
in private space, suffering from feature redundancy.
To alleviate this problem, Liu et al. (2017) adds
an adversarial task via a discriminator to estimate
what task the encoding sequence comes from. Such
learning strategy prevents the shared and private la-
tent feature spaces from interfering with each other.
This setup has also received success in multi-task
multi-domain training for domain adaptation (Yu
et al., 2018b). The adversarial task in this case is to
predict the domain of the input. By reversing the
gradient of the adversarial task, the adversarial task
loss is maximized, which is beneficial for the main
task as it forces the model to learn representations
that are indistinguishable between domains.

Auxiliary task to boost representation learn-
ing. While auxiliary tasks are utilized to assist
the main task, they are usually expected to learn
representations shared or helpful for the main task
(Ruder, 2017). Self-supervised, or unsupervised
tasks, therefore, are often considered as a good
choice. Self-supervised objectives allow the model
to learn beneficial representations without leverag-
ing expensive downstream task labels. For example,
language modeling can help to learn transferable
representations. In BERT (Devlin et al., 2019) pre-
training, the next sentence prediction task is used to
learn sentence-level representations, which is com-
plementary to the masked language model task that
mainly targets at word-level contextual represen-
tations. Besides, Rei (2017) showed that learning
with a language modeling objective improves per-
formance on several sequence labelling tasks. An
auto-encoder objective can also be used as an aux-
iliary task. Yu et al. (2020a) demonstrated adding
the auto-encoder objective improves the quality of
semantic representations for questions and answers
in the task of answer retrieval.

Another branch of auxiliary tasks used to facili-
tate representation learning is knowledge distilla-
tion. This is achieved by forcing a smaller student
model to learn a larger teacher model’s output dis-
tribution or hidden representation using additional
training objectives (Hinton et al., 2015). Knowl-
edge contained in the hidden representations is then
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transferred from the teacher to the student. Thus,
the student model gains the generalization ability
of the teacher model, but still preserving its small
size which is more suitable for deployment. Such
distillation idea has been verified on popular NLP
models such as BERT (Sanh et al., 2019a).

4.2 Multi-step Training
Narrow the search space of the subsequent de-
coder. In some cases, it is not easy to predict the
original task directly due to the large search space
of the potential outputs (Lewis et al., 2020). For
example, in open-domain QA, directly answering
a given question is hard. So, multi-stage methods
(e.g., retrieve-then-read) are often used to tackle
open-domain QA problems: a retriever component
finding documents that might contain the answer
from a large corpus, followed by a reader com-
ponent finding the answer in the retrieved docu-
ments. Documents provided by the retriever serves
as conditions to the reader, which narrows the
search space and thus reduces the difficulty of open-
domain QA (Wang et al., 2018b,c).

In another example about pre-trained language
models, BERT only learns from 15% of the tokens
that are masked in the input. ELECTRA (Clark
et al., 2020) proposed a two-step self-supervised
training to improve training efficiency. The masked
language modeling task performed by an auto-
encoder serves as an auxiliary task. It reconstructs
the masked tokens in the input. Then, a discrimina-
tive model in the second step predicts whether each
token in the corrupted input was replaced by the
auto-encoder. The design of such classification task
allows supervision on all tokens in the example.

Select focused contents from the input. The
auxiliary task can be used to focus attention on
parts of the input text that can be leveraged for
the main task. For example, humans tend to write
summaries containing certain keywords and then
perform necessary modifications to ensure the flu-
ency and grammatical correctness of the summary.
Thus, keyword extraction could help the model to
focus on salient information that can be used in the
summary (Li et al., 2020). A similar approach can
be found in Cho et al. (2019), where the authors
used a flexible continuous latent variable for con-
tent selection to deal with different focuses on the
context in question generation.

Predict attributes of the output. In some NLG
scenarios, it may be hard to guarantee the output se-

quence contains certain desired patterns or features
(e.g., emotion, sentiment) if no explicit signals are
given. Therefore, an attribute classifier could be
used for predicting whether the output sequence
contains the desired objective, either before or af-
ter the prediction is made. For example, Fan et al.
(2018) predicted which question type should be
used before generating diverse questions for an
image. The predicted question type acts as an ad-
ditional condition while the decoder is searching
for the best question sequence. Besides, Song et al.
(2019) used a emotion classifier after the decoder
to discriminate whether the generated sentence ex-
presses the desired emotion. The post-decoder clas-
sifier guides the generation process to generate dia-
logue responses with specific emotions.

Introduce external knowledge. Precisely ma-
nipulating world knowledge is extremely hard for
a single neural network model. One could devise
learning tasks informed by the knowledge so that
the model is trained to acquire and utilize exter-
nal knowledge. This research direction is known
as “Knowledge-enhanced NLP” (Yu et al., 2020b).
The knowledge-related tasks can be combined as
auxiliary to the main task, resulting in a multi-task
learning setting (Dinan et al., 2019; Kim et al.,
2020; Zhang et al., 2021). For instance, Wu et al.
(2019) uses the input sequence to query the can-
didate knowledge pieces via attention mechanism,
then fuses the selected knowledge into decoder.
The knowledge selection phase is trained by min-
imizing the KL-divergence between the prior dis-
tribution (queried by the input) and the posterior
distribution (queried by the output).

5 Future Directions

In this section, we will discuss some promising
directions regarding either task relatedness or train-
ing methods of multi-task training in NLP.

5.1 Regarding Task Relatedness

Task-specific multi-task pre-training. Under a
typical “pre-train then fine-tune” paradigm, many
NLP works attempted to design pre-training tasks
that are relevant to downstream objectives (Févry
et al., 2020; Wang et al., 2021b). Such approaches
endow the model with task-specific knowledge ac-
quired from massive pre-training data. For exam-
ple, Wang et al. (2021b) learned a knowledge em-
bedding objective besides masked language mod-
eling (MLM) to assist relation classification and
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entity typing tasks; Févry et al. (2020) and Zhang
et al. (2022) added an entity linking objective into
pre-training for fact checking and question answer-
ing applications. These results have shown that
designing proper downstream-oriented pre-training
tasks is a promising direction. Such pre-training
tasks are jointly trained with the MLM objective
to learn relevant knowledge of downstream tasks,
which can greatly reduce the gap between pre-
training and fine-tuning. These tasks need to be
self-supervised on pre-training corpus, while shar-
ing a similar learning objective with downstream
tasks so that relevant knowledge can be transferred.

Learning to multi-tasking. One critical issue in
MTL is how to train a multi-task model. Exist-
ing works typically design MTL training strategies
(e.g., weighing losses or task grouping) by human
intuition and select the best framework through
cross validation. Such model selection suffers from
heavy computational cost when considering every
possibility. Thus, a promising direction is to learn
to multi-tasking. Meta learning is a popular ap-
proach while encountering “learning to learn” prob-
lems (Hospedales et al., 2021). It aims to allow the
model to quickly learn a new task, given the expe-
rience of multiple learning episodes on different
tasks. Wang et al. (2021a) tried to fuse the feature
of fast adaptation of meta learning into an efficient
MTL model. This approach preliminarily proved
that meta-learning philosophy can benefit the train-
ing of MTL models. For future directions, using
meta-learning to learn a general purpose multi-task
learning algorithm is a promising route to “learning
to multi-tasking”. Besides, learning to group tasks
through meta-learning is worthy of exploration.

5.2 Regarding Training Methods

Adaptive parameter sharing. Parameter shar-
ing is believed to be an effective technique in im-
proving the generalizability of multi-task learning
models and reducing training time and memory
footprint. Two popular parameter sharing methods
are hard and soft sharing (Ruder, 2017). Hard pa-
rameter sharing (Bekoulis et al., 2018) means all
tasks share a certain number of model layers be-
fore branching out. Soft parameter sharing (Duong
et al., 2015) adds constraints to the distances be-
tween specific layers of different tasks. However,
hard sharing suffers from finding the optimal con-
figuration while soft sharing does not reduce the
number of parameters. Therefore, in addition to

empirically tuning which layers to share, learning
adaptable sharing for efficient MTL is a promising
solution. Sun et al. (2020) tried to allow adap-
tive sharing by learning which layers are used by
each task through model training. This approach
suits in the field of computer vision where many
models have the architecture of stacking the same
layer. However, in NLP neural networks, layers are
functionally and structurally discrepant, such as the
encoder-decoder framework. The development of
proper adaptive sharing methods to improve param-
eter sharing in multi-task NLP models is needed.

Mutli-task leaning in training a universal model.
Recently, training a universal model to perform a
variety of tasks becomes an emerging trend in NLP.
Multi-task supervised learning helps the model fuse
knowledge from different domains, and encourages
it to obtain universal representations that generalize
to different downstream tasks. For example, Liu
et al. (2019a) unified the input format of GLUE
tasks to feed into a single model before fine-tuning
on individual tasks. However, the role of multi-
task learning is still unclear in training a universal
model, with different approaches adopting MTL in
different phases of transfer learning. Among recent
works, Aribandi et al. (2021) preferred multi-task
pre-training over multi-task fine-tuning for smaller
gaps between pre-training and fine-tuning. Agha-
janyan et al. (2021) used multi-task pre-finetuning
on a self-supervised pre-trained model before fur-
ther fine-tuning on downstream tasks. Sanh et al.
(2022) used prompted multi-task fine-tuning over
a pre-trained T5 (Raffel et al., 2020) in order to
perform zero-shot transfer on out-of-domain tasks.
Therefore, future researches may dive deeper into
maximizing the benefits of MTL in the transfer
learning paradigm, including the choice of prop-
erly including MTL in pre-training or fine-tuning
for better generalization. Besides, a theoretical
analysis of transfer learning regarding the benefits
of MTL is also desired.

6 Conclusions

In this paper, we reviewed recent work on multi-
task learning for NLP tasks. According to the
types of task relatedness, we categorized multi-
task NLP approaches into two typical frameworks:
joint training and multi-step training. We presented
the design of each framework in various NLP ap-
plications, and discussed future directions of this
interesting topic.
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7 Limitations

Due to the space constraint, we are only able to
show some prominent application scenarios of joint
training and multi-step training, in which we may
not cover all existing fields with multi-task ap-
proaches. For example, in dialogue systems, di-
alogue act recognition and sentiment recognition
can be jointly trained to capture speakers’ inten-
tions. Besides, zero-shot and few-shot approaches
in the multi-task setting are also interesting direc-
tions.

As for another limitation, this work is purely the-
oretical without any software-level implementation
of the mentioned framework. In addition, we did
not list the experimental results of the mentioned
models on benchmark datasets because of the space
limit.
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Siti Oryza Khairunnisa, Mamoru Komachi, and Bar-
bara Plank. 2021. From masked language modeling
to translation: Non-english auxiliary tasks improve
zero-shot spoken language understanding. In Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics (NAACL).

Haoxiang Wang, Han Zhao, and Bo Li. 2021a. Bridg-
ing multi-task learning and meta-learning: Towards
efficient training and effective adaptation. In Interna-
tional Conference on Machine Learning (ICML).

Shaolei Wang, Yue Zhang, Wanxiang Che, and Ting
Liu. 2018a. Joint extraction of entities and relations
based on a novel graph scheme. In International
Joint Conference on Artificial Intelligence (IJCAI).

Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang,
Tim Klinger, Wei Zhang, Gerald Tesauro, Bowen
Zhou, and Jing Jiang. 2018b. R3: Reinforced ranker-
reader for open-domain question answering. In AAAI
Conference on Artificial Intelligence (AAAI).

Shuohang Wang, Mo Yu, Jing Jiang, Wei Zhang, Xiaox-
iao Guo, Shiyu Chang, Zhiguo Wang, Tim Klinger,
Gerald Tesauro, and Murray Campbell. 2018c. Ev-
idence aggregation for answer re-ranking in open-
domain question answering. In International Confer-
ence for Learning Representation (ICLR).

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan
Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang. 2021b.
Kepler: A unified model for knowledge embedding
and pre-trained language representation. In Transac-
tions of the Association for Computational Linguis-
tics (TACL).

Zhen Wang, Jiachen Liu, Xinyan Xiao, Yajuan Lyu, and
Tian Wu. 2018d. Joint training of candidate extrac-
tion and answer selection for reading comprehension.
In Annual Meeting of the Association for Computa-
tional Linguistics (ACL).

Johannes Welbl, Pontus Stenetorp, and Sebastian Riedel.
2018. Constructing datasets for multi-hop reading
comprehension across documents. In Transactions
of the Association for Computational Linguistics
(TACL).

Joseph Worsham and Jugal Kalita. 2020. Multi-task
learning for natural language processing in the 2020s.
In Pattern Recognition.

Wenquan Wu, Zhen Guo, Xiangyang Zhou, Hua Wu,
Xiyuan Zhang, Rongzhong Lian, and Haifeng Wang.
2019. Proactive human-machine conversation with
explicit conversation goal. In Annual Meeting of the
Association for Computational Linguistics (ACL).

Liqiang Xiao, Honglun Zhang, and Wenqing Chen.
2018. Gated multi-task network for text classifica-
tion. In Conference of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL).

Caiming Xiong, Victor Zhong, and Richard Socher.
2018. Dcn+: Mixed objective and deep residual
coattention for question answering. In International
Conference for Learning Representation (ICLR).

Chunpu Xu, Wei Zhao, Min Yang, Xiang Ao, Wan-
grong Cheng, and Jinwen Tian. 2019a. A unified
generation-retrieval framework for image caption-
ing. In International Conference on Information and
Knowledge Management (CIKM).

Yichong Xu, Xiaodong Liu, Yelong Shen, Jingjing Liu,
and Jianfeng Gao. 2019b. Multi-task learning with
sample re-weighting for machine reading comprehen-
sion. In Conference of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL).

955



Min Yang, Lei Chen, Xiaojun Chen, Qingyao Wu, Wei
Zhou, and Ying Shen. 2019. Knowledge-enhanced
hierarchical attention for community question an-
swering with multi-task and adaptive learning. In
International Joint Conference on Artificial Intelli-
gence (IJCAI).

Jianfei Yu, Luis Marujo, Jing Jiang, Pradeep Karuturi,
and William Brendel. 2018a. Improving multi-label
emotion classification via sentiment classification
with dual attention transfer network. In Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP).

Jianfei Yu, Minghui Qiu, Jing Jiang, Jun Huang,
Shuangyong Song, Wei Chu, and Haiqing Chen.
2018b. Modelling domain relationships for trans-
fer learning on retrieval-based question answering
systems in e-commerce. In International Conference
on Web Search and Data Mining (WSDM).

Wenhao Yu, Lingfei Wu, Qingkai Zeng, Yu Deng, Shu
Tao, and Meng Jiang. 2020a. Crossing variational
autoencoders for answer retrieval. In Annual Meet-
ing of the Association for Computational Linguistics
(ACL).

Wenhao Yu, Chenguang Zhu, Zaitang Li, Zhiting Hu,
Qingyun Wang, Heng Ji, and Meng Jiang. 2020b. A
survey of knowledge-enhanced text generation. In
ACM Computing Survey (CSUR).

Linhao Zhang, Dehong Ma, Xiaodong Zhang, Xiao-
hui Yan, and Houfeng Wang. 2020. Graph LSTM
with context-gated mechanism for spoken language
understanding. In AAAI Conference on Artificial In-
telligence (AAAI).

Yu Zhang and Qiang Yang. 2018. An overview of multi-
task learning. In National Science.

Zhihan Zhang, Xiubo Geng, Tao Qin, Yunfang Wu, and
Daxin Jiang. 2021. Knowledge-aware procedural
text understanding with multi-stage training. In Pro-
ceedings of the Web Conference.

Zhihan Zhang, Wenhao Yu, Chenguang Zhu, and Meng
Jiang. 2022. A unified encoder-decoder framework
with entity memory. In Conference on Empirical
Methods in Natural Language Processing(EMNLP).

Suncong Zheng, Yuexing Hao, Dongyuan Lu, Hongyun
Bao, Jiaming Xu, Hongwei Hao, and Bo Xu. 2017.
Joint entity and relation extraction based on a hybrid
neural network. In Neurocomputing.

Xin Zhou, Luping Liu, Xiaodong Luo, Haiqiang Chen,
Linbo Qing, and Xiaohai He. 2019. Joint entity and
relation extraction based on reinforcement learning.
In IEEE Access. IEEE.

Junnan Zhu, Qian Wang, Yining Wang, Yu Zhou, Jiajun
Zhang, Shaonan Wang, and Chengqing Zong. 2019.
Ncls: Neural cross-lingual summarization. In Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

956



Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 957–967
May 2-6, 2023 ©2023 Association for Computational Linguistics

Conclusion-based Counter-Argument Generation

Milad Alshomary
Institute of Artificial Intelligence

Leibniz University Hannover
m.alshomary@ai.uni-hannover.de

Henning Wachsmuth
Institute of Artificial Intelligence

Leibniz University Hannover
h.wachsmuth@ai.uni-hannover.de

Abstract

In real-world debates, the most common way
to counter an argument is to reason against its
main point, that is, its conclusion. Existing
work on the automatic generation of natural
language counter-arguments does not address
the relation to the conclusion, possibly because
many arguments leave their conclusion implicit.
In this paper, we hypothesize that the key to
effective counter-argument generation is to ex-
plicitly model the argument’s conclusion and to
enforce that the stance of the generated counter
is opposite to that conclusion. In particular, we
propose a multitask approach that jointly learns
to generate both the conclusion and the counter
of an input argument. The approach employs
a stance-based ranking component that selects
the counter from a diverse set of generated can-
didates whose stance best opposes the gener-
ated conclusion. In both automatic and man-
ual evaluation, we provide evidence that our
approach generates more relevant and stance-
adhering counters than strong baselines.

1 Introduction

Given an argument, a valid counter-argument to
it should be relevant to the topic discussed by the
argument while opposing to its conclusion’s stance.
Countering the opponent’s arguments in a debate
effectively is key to winning the debate (Zhang
et al., 2016). While some counter-arguments attack
an argument’s premises or their connection to the
conclusion, the most common attack is to directly
rebut the argument’s conclusion (Walton, 2009).

The automatic countering of natural language
arguments is one of the most challenging tasks in
the area of computational argumentation. Prior
research has addressed the task through retrieval
(Wachsmuth et al., 2018; Orbach et al., 2020)
or generation-based approaches (Hua and Wang,
2018; Hidey and McKeown, 2019). By concept,
the former requires the presence of suitable counter-
arguments in a predefined collection, limiting its

Conclusion (title): Purchasing meat encourages animal
abuse.

Premises (post): All meat, to my knowledge, is obtained
by raising animals in cramped quarters and slaughtering
them as soon as they are fully grown. The only exception
i can think of is perhaps when you go into the woods and
hunt food for yourself in which case the animal has lived
an undisturbed life and is put down by humane means
compared to how it happens in nature. However, this is, of
course, time intensive, requires skill, expensive, and thus is
of course not how the vast majority of meat is obtained.

Table 1: An example argument (conclusion + premises)
taken from Reddit ChangeMyView, showing how the
conclusion is mentioned implicitly only in the body.

flexibility. Existing generation-based approaches,
on the other hand, either consider a single claim as
input or do not model the relation between premise
and conclusion in the input argument.

In previous work, we have studied the task of
counter-argument generation through undermining
weak premises in the input arguments (Alshomary
et al., 2021b). We assumed the input argument to
be given as a set of premises and their conclusion
and modeled the weakness of premises relevant
to the argument conclusion. In daily-life debates,
however, people often do not explicitly state their
argument’s main point (i.e., its conclusion), since
it is often clear from the context (Habernal and
Gurevych, 2015) or for rhetorical reasons, as is
often the case in news editorials (Al Khatib et al.,
2016). This makes it challenging for computational
models to generate a proper counter.

Table 1 shows an example of an argument with
the conclusion “Purchasing meat is encouraging an-
imal abuse”. The author states that meat production
would often lead to animal abuse. However, this
statement is never linked explicitly to the conclu-
sion. Such a link may be easy to infer for humans,
but it is challenging for machines.

State-of-the-art language models based on trans-
formers excel in many downstream text generation
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tasks, such as summarization and machine transla-
tion (Vaswani et al., 2017). While they have been
applied successfully for reconstructing implicit ar-
gument components such as conclusions (Gurcke
et al., 2021; Syed et al., 2021), they still fall short
on more complex tasks, such as counter-argument
generation (Hua and Wang, 2019).

In this paper, we investigate how to enable
transformer-based language models to generate an
effective counter-argument to a given argument.
We observe that the performance of these models
in generating relevant counters with correct stance
deteriorates particularly when the input argument
does not mention its conclusion. Hence, we hy-
pothesize that explicitly modeling the argument’s
conclusion and its stance will lead to more adequate
counter-arguments. For this purpose, we propose a
multitask generation approach with a stance-based
ranking component. Our approach jointly models
the two tasks of conclusion generation and counter-
argument generation, and it enforces stance correct-
ness through a stance-based ranking component.

Given a training dataset, where we have access
to both the premises of arguments and their cor-
responding conclusions and counters, we explore
two variations of our approach: The first shares the
transformer’s encoder and decoder between the two
tasks, and we learn to generate both the conclusion
and the counter as one sequence (separated with a
special token). By contrast, the second variation is
composed of one shared encoder along with two de-
coders, one to generate the conclusion and the other
to generate the counter-argument. Although we ex-
pect the trained models to often capture the stance
relation between the argument and its counter, we
reinforce opposite stance through a stance-based
ranking component at inference time. This com-
ponent samples different counter-arguments and
ranks them based on their stance score towards the
corresponding generated conclusion.

To evaluate both approach variations, we use the
ChangeMyView dataset of Jo et al. (2020), which
consists of discussions where someone posts a view
and others write comments opposing to this view.
As in our previous work (Alshomary et al., 2021b),
we use a post’s title as the conclusion, its body text
as the premises, and each comment as a counter.
To classify stance as part of our ranking compo-
nent, we fine-tune RoBERTa (Liu et al., 2019) on
a dataset of pairs of claim and counter-claim col-
lected from the Kialo.org debate platform. We com-

pare our approach against two baselines; one that
learns to generate the conclusion and the counter-
argument independently in a pipeline model and
one that employs a sequence-to-sequence model
but does not actively represent the conclusion.

The results emphasize the deficiency of standard
transformer-based models in counter-argument gen-
eration, particularly when the conclusion is not
mentioned explicitly, highlighting the importance
of conclusions in counter-argument generation. In
most cases, our variation with shared encoder and
decoder produces the best counter-arguments in
terms of relevance and stance correctness.

We summarize our contributions as follows:1

• We study how to generate effective counter-
arguments even if the attacked argument’s con-
clusion is implicit.

• We present two multitask transformer-based
counter-argument approaches, tuned to oppos-
ing to the argument’s conclusion.

• We empirically reveal the impact of model-
ing an argument’s conclusion and counter-
argument jointly in the given task.

2 Related Work

Argument generation is one of the main branches
of computational argumentation, studying the syn-
thesis of arguments in natural language texts. This
field includes a host of tasks like the generation
of argument conclusions (Alshomary et al., 2020;
Syed et al., 2021), implicit premises (Chakrabarty
et al., 2021), controlled claims (Schiller et al., 2021;
Alshomary et al., 2021a), as well as the generation
of counter-arguments (Hua and Wang, 2018; Al-
shomary et al., 2021b). Our work studies the task
of counter-argument synthesis.

The task of counter-argument synthesis has been
addressed through either retrieval or generation-
based approaches. An example of the former is the
work of Orbach et al. (2020) whose approach tries
to retrieve relevant counters for a given argument
from a collection of documents. Wachsmuth et al.
(2018) utilized topic knowledge to retrieve the best
counter for a given argument.

On the other hand, generation-based approaches
aim to construct counter-arguments from scratch.
For example, both Bilu et al. (2015) and Hidey and

1The code of our experiments is available under https:
//github.com/webis-de/EACL-23
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McKeown (2019) worked on the task of counter-
claim generation. The former developed a set of
rules and classifiers to negate claims, while the
latter used neural methods to learn from data. Al-
shomary et al. (2021b) proposed an approach to
generate counter-arguments by automatically iden-
tifying weak points in the input argument given
the conclusion and attacking them. Moreover, Hua
and Wang (2018, 2019) proposed an approach for
generating long texts and applied it to the counter-
argument generation task. Their approach relies
on a retrieval component that acquires relevant
key phrases for an input argument to be used to
guide the generation of counter-arguments. While
the size of the given argument collection limits
retrieval-based approaches, the generation-based
approaches either rely on the conclusion being
given in the input or don’t distinguish the different
components in the input argumentative text. Our
proposed approach is generation-based, where we
study the conclusion’s role in the counter-argument
generation task.

Argument conclusion is the main point an argu-
ment argues towards/against, which is important
for understanding the argument. In daily life argu-
mentation, conclusions often are left implicit Al-
shomary et al. (2020). While it is easy for humans
to infer the main point of an argument, it remains
a challenging task for machines. Hence, several
works have addressed the task of conclusion infer-
ence. Alshomary et al. (2020) reconstructed im-
plicit claim targets from argument premises using
triplet neural networks. Syed et al. (2021) stud-
ied the effectiveness of several transformer-based
models on the conclusion generation and evaluated
the informativeness criteria of conclusions. Gurcke
et al. (2021) utilized conclusion generation to study
argument quality. Our proposed approach also gen-
erates conclusions for a given argument as the first
step in order to generate reliable counters.

3 Approach

As discussed above, the conclusions of arguments
are important for understanding them properly.
However, they are often left implicit, making un-
derstanding hard for machines. Our goal is to study
how the absence of conclusions affects the per-
formance of transformer-based counter-argument
generation models. To alleviate this problem, we
propose an approach that jointly learns to generate
both the conclusion and the counter of an argument.

At inference time, it utilizes a stance-based ranking
component to select the most contrastive candidate
counter in each case. We detail the generation and
ranking in the following.

3.1 Joint Generation of Conclusions and
Counter-Arguments

Text generation is usually modeled as a sequence-
to-sequence generation task and is widely
addressed through transformer-based encoder-
decoder models (Vaswani et al., 2017). Since we
aim to learn two generation tasks (conclusion and
counter), one could think of either sharing the full
model between the two tasks or only the encoder
part. Hence, as illustrated in Figure 1, we experi-
ment with both options to realize our approach:

Fully-shared Encoder and Decoder In the first
model, we maintain the same transformer-based
encoder-decoder architecture and train it to gener-
ate output sequences containing both the conclu-
sion and the counter. Hence, the model learns to
perform the two tasks simultaneously. Particularly,
the input to the model is one sequence representing
an argument’s premises, and the output is a single
sequence composed of the ground-truth conclusion
and counter-argument separated by special tokens,
<conclusion> and <counter>. The model
encodes premises and decodes first the conclusion
and then the counter in one sequence. We train the
model to optimize the following loss function:

L(θ) = −
n∑

1

log p(yi|x, y<i; θ)

Here, x is the input sequence that represents the
premises, y<i is the sequence composing the con-
clusion and counter until the next word yi, and θ
denotes the model’s parameters. We call this model
Joint One-seq later in our experiments.

At inference time, we utilize a mechanism to
generate a diverse set of n candidate conclusions
and their counter-arguments, which are later passed
to our stance-based ranking component to select
the best counter. The diverse generation is as fol-
lows. We first extract a set of m Wikipedia con-
cepts from the input premises using the approach
of Dor et al. (2018). Then, during decoding, we
use these concepts to prompt our trained model by
masking all logits except the ones matching the
prompt tokens, resulting in conclusions address-
ing different aspects of the premises followed by
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…
Figure 1: Both variations of our proposed approach to counter-argument generation. In the training phase, we learn
to jointly generate the conclusion and counter either as one sequence (Joint-based One-seq, variation 1) or as two
separated sequences (Joint-based Two-decoders, variation 2). In the inference phase, we classify and rank a diverse
set of counters with respect to their stance towards the corresponding conclusion. The top-ranked counter is used.

their corresponding counters. Moreover, to ensure
candidate diversity, we enable nucleus sampling
(Holtzman et al., 2019), where at each step, we
randomly select one of the top k tokens with an
accumulated probability of more than p.

Shared Encoder with two Decoders Simi-
larly, the second model starts with an argument’s
premises as input. However, it then decodes two
independent sequences representing the conclusion
and the counter-argument as output. First, the in-
put premises are passed through a shared encoder,
and then two decoders are used to learn to generate
the counter and the conclusion. During training,
we optimize the following multi-task loss function,
which is a weighted average of the two language
modeling losses of the two decoders:

L(θe, θa, θb) = αa ·
n∑

i=1

log p(yai |x, ya<i; θe; θa)

+ αb ·
m∑

i=1

log p(ybi |x, yb<i; θe; θb)

Here, ya and yb are the conclusion and counter
sequences. θe, θa, and θb are the weight parameters
of the encoder, the conclusion decoder, and the
counter decoder, respectively. The weights, αa and
αb, sum up to one. Their best values are determined

experimentally during validation.
The difference between this model and the pre-

vious one is given by the layers shared between
the two tasks. In the previous model, both the en-
coder and decoder layers are shared between the
two tasks, while, here, only the encoder’s layers
are shared, keeping a dedicated decoder for each
of the two tasks. We refer to this model as Joint
Two-decoders below.

We aim to generate a diverse set of candidate
counters similar to the above model. However, we
noticed that counters rarely start by referring to en-
tities or similar concepts, and prompting the model
with concepts might lead to generating irrelevant
texts. Hence, we generate one conclusion for this
model, but a set of candidate counters by only en-
abling the nucleus sampling during decoding.2

3.2 Ranking Component
Give a set of n generated candidate counters, we
rank them based on their stance contrastiveness
towards the corresponding generated conclusion
and select the top-ranked as our final output. In
particular, we trained a transformer-based stance
classifier on pairs of claim and counter-claim ac-
quired from the kialo.com platform to be used to

2We tested the performance of the model empirically and
noticed that these prompted counters of low quality.
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predict whether the pair have a pro or con stance.
Experimental details are provided in the next sec-
tion. To guarantee stance coherence of the selected
counter, we compute the stance-based scores on the
sentence level to ensure all sentences have some de-
gree of contrastiveness towards the conclusion. In
particular, given a pair of a conclusion and the cor-
responding counter, we first split the counter into
a set of sentences. For each sentence si, we apply
our trained classifier to compute the stance label
towards the conclusion c and its probability prlabel.
We then translate this into a stance contrastiveness
score as follows:

cont(si, c) =

{
prcon, if label = con

−prpro, if label = pro

The final score of a counter is averaged across
its sentences, ranging from -1 to 1. The counters
are then ranked accordingly, selecting the top one.

4 Experiments

This section describes the experiments carried
out to investigate the conclusion’s importance in
counter-argument generation.

4.1 Data

We evaluate our approach on the ChangeMyView
(CMV) dataset of Jo et al. (2020). On the CMV
platform, users publish their opinions on controver-
sial topics as posts consisting of a title summarizing
the main point and a body representing the reason-
ing behind it. In turn, others comment on these
posts trying to convince the authors to change their
mind. We follow Alshomary et al. (2021b) by as-
suming the following mapping: The title of a post
represents an argument’s conclusion and its body
is the premises, while each comment is a counter-
argument. To ensure our models are trained on
high quality counters, we select for each post the
comment with highest argumentative quality score
predicted by the model proposed by Gretz et al.
(2020).

To study counter-argument generation for set-
tings where the conclusion is not mentioned ex-
plicitly, we use only the post’s body as input, and
the title as training output to learn to generate the
conclusion. Since users might also restate their
post’s main point (the conclusion) inside their post,
this allows us to study and evaluate the correlation
between a model’s effectiveness in generating good

counter-arguments and the level of implicitness of
the conclusion in the input.

The stance-based ranking component relies on a
classifier that assesses the stance polarity between
two statements. To train such a classifier, we use
dataset of Syed et al. (2021), which is based on the
Kialo.org platform, where claims on controversial
topics contributed by humans are organized in a
hierarchical structure with supporting and opposing
relations. We transformed the data into pairs of
claims labeled as pro or con, and we split it by
debates into 95.6k instances for training, 7.7k for
validation, and 22.4k for testing.

4.2 Models

Approach For generation, we used BART as our
base model (Lewis et al., 2020), and fine-tuned
it starting from the BART-large checkpoint. We
trained for three epochs using a learning rate of
5e − 5 and a batch size of 8. We then selected the
checkpoint with the lowest error on the validation
set. To find the best parameters αa and αb for
the Joint Two-decoders model, we explored pairs
of values between 0.1 and 1.0 on a sample of the
training set, and took the pair that led to the lowest
validation loss: αa = 0.7 and αb = 0.3.

To obtain a diverse set of candidate counters
for ranking, we used nucleus sampling (Holtzman
et al., 2019) with p = 0.95 and top_k = 50. For
the Joint One-seq model, we obtained relevant
Wikipedia concepts from the input premises us-
ing Project Debater’s API3 that we used to prompt
the output sequence (conclusion and counter-
argument) to encourage diversity. As for the stance
classifier, we fine-tuned roberta-large on the Kialo
pairs for three epochs with learning rate 2e−5 and
batch size 64. The trained classifier achieved an
F1-score of 0.81 on the test split. To test its per-
formance on the ChangeMyView data, we took a
sample of 2k instances with pro pairs (an argument
and its conclusion) and con pairs (conclusion and
counter). The trained classifier resulted in an F1-
score of 0.70.

Baselines To study how effective transformer-
based models are when the conclusion is not explic-
itly stated, we compare against four BART-based
models, all trained on the conclusion and premises
as input and the counter-argument as output, but
treated differently in the inference time.

3https://github.com/IBM/debater-eap-tutorial
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Approach BLEU Be.F1 Stance Contr.

BART-based w/o Conclusion 0.149 0.138 0.814 0.447
Pipeline-based 0.148 0.142 0.816 0.437
Pipeline-based w/ Stance 0.141 0.142 0.852 0.615

Joint One-seq 0.143 *0.159 0.850 *0.480
Joint One-seq w/ Stance 0.140 *0.147 0.889 *0.661
Joint Two-decoders *0.154 *0.148 0.798 0.423
Joint Two-decoders w/ Stance *0.164 *0.153 0.825 *0.652

BART-based w/ Conclusion 0.175 0.160 0.773 0.584
Argument Undermining 0.072 0.090 0.805 0.664

Table 2: Automatic evaluation of our two models, with
and without stance ranking, compared to baselines, in
terms of the similarity of the generated and the ground-
truth counters (BLEU and BERT F1-score) and of the
counter’s correct (opposing) stance. Stance is computed
once using Project Debater’s API (Stance) and once
with our stance classifier (Contrastiveness). Results
highlighted with * are significantly better than BART-
based w/o Conclusion at a confidence level of 95%.

In particular, the first baseline (BART w/o Con-
clusion) relies only on the premises at inference
time. To account for the missing conclusion, the
second (Pipeline-based) generates a conclusion
using another BART-based conclusion generation
model trained independently on the training split of
the CMV dataset. This can be seen a pipeline alter-
native to our approach, since conclusions and coun-
ters are learned independently. We also evaluate
a variation of this pipeline approach that chooses
the best counter among a diverse set of candidates
using our ranking component (Pipeline-based w/
Stance). Finally, the fourth model is an oracle that
knows the ground-truth conclusion in addition to
the premises (BART w/ Conclusion).

Additionally, we compare our approach with
the argument undermining approach of Alshomary
et al. (2021b) in which the argument’s weak points
are first identified subject to its conclusion. Then a
counter is generated to attack the weakest point(s).
We obtained the trained model from the authors
and used it to generate counter-arguments corre-
sponding to the top three weak points (similar to
their experiments).

4.3 Automatic Evaluation

In the following we introduce the automatic evalu-
ation measures used in our experiments. We then
present the evaluation results of our approaches,
as well as a detailed analysis of their effectiveness
with respect to argument length (measured by num-
ber of tokens) and conclusion implicitness.

Evaluation Measures To approximate the simi-
larity of generated and ground-truth counters, we
compute BLEU and BERT F1-score4. In addition,
we measure the stance correctness of the generated
counter with respect to the ground-truth conclu-
sion in two ways: First, a contrastiveness score is
computed using the stance classifier trained for our
ranking component. It represents the average likeli-
hood of classifying the counter and the correspond-
ing ground-truth conclusion as con across the eval-
uation dataset. Second, a target-based stance score
that measures the stance of both the conclusion and
the counter towards the conclusion target. Given
the valdiation set, we extract the target of each con-
clusion for this purpose as proposed by Alshomary
et al. (2020) and then use Project Debater’s API5 to
classify the conclusion’s stance and the generated
counter’s stance towards the extracted target. The
final measure is the absolute difference between
the counter and conclusion scores, averaged across
the evaluation dataset.

Results Table 2 shows the evaluation results. All
approaches are close in BLEU and BERT F1-score,
with small but significant advantages for our mod-
els. We observe that the absence of explicit mention
of the conclusion in the input (BART w/o Conclu-
sion) worsens the results across all measures but
the Stance score, and vice versa when introducing
the conclusion (BART w/ Conclusion). This clearly
indicates the importance of the conclusion in the
process of counter-argument generation.

When the conclusion is not mentioned explicitly
but has to be inferred, we can see that both our gen-
eration models which jointly generate conclusions
and counters, outperform the baselines in terms
of correct stance. As expected, adding the rank-
ing component to our approaches and the pipeline
baseline consistently boosts the correctness, the
best being Joint One-seq w/ Stance with stance
score 0.889 and contrastiveness score 0.661.

Although the Argument Undermining approach
of Alshomary et al. (2021b) requires an explicit
mention of the conclusion to rank premises accord-
ing to their attackability, its effectiveness lacks be-
hind. This could be because their model is trained
on only a subset of the training data where the com-
ments are countering specific points in the post.

4For each instance, we compare against all ground-truth
counters and take the maximum score achieved

5Debater API, https://early-access-program.
debater.res.ibm.com/
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Figure 2: Contrastiveness and BERT F1-scores of our approach Joint One-seq against the baseline subject to different
levels of argument complexity (approximated by the number of tokens) and conclusion implicitness (approximated
by the maximum similarity of the ground-truth conclusion to the premises).

Analysis As discussed above, conclusions may
appear in arguments implicitly, which we expect
to correlate with the quality of the generated coun-
ters: the more explicit the conclusion, the better
the generated counters. Moreover, we hypothesize
that, the longer an argument is, the more impor-
tant the inference of its conclusion is for effective
counter-argument generation.

We empirically investigate these two hypothe-
ses by comparing the performance of the counter-
argument generation models subject to argument
length (in terms of the number of tokens) and to
the degree of conclusion implicitness (in terms of
the maximum similarity between the ground-truth
conclusion and premises). In particular, for both
dimensions, we sorted the a sample of 2k instances
from the test set accordingly and split it into five
subsets of equal size. We then compare the BERT
F1-score and contrastiveness score of Joint One-
seq against BART w/o Conclusion and BART w/
Conclusion on the respective subset.

Figure 2 shows the scores for all three models
at different levels of argument length and conclu-
sion implicitness. In Figure 2a, we see that the
baseline’s contrastiveness drops from 0.53 to 0.43
the longer the argument gets, while the scores for
BART w/ Conclusion fluctuate relatively around
0.57. In contrast, our approach achieves scores
between 0.64 and 0.73, indicating the benefit of
the explicit modeling of conclusions. Figure 2c
suggests that the more direct the conclusion is for-
mulated in the premises, the better BART w/o Con-
clusion’s contrastiveness score gets, and vice versa
for BART w/ Conclusion model.

We observe an unexpected drop in scores for
arguments where conclusions have an average sim-
ilarity of 0.7 to the premises. Upon inspection, we
found that the baselines tend to copy parts of the
premises with slight rephrasing. However, our ap-
proach, Joint One-seq, maintains high scores and

also benefits from the clear formulation of the con-
clusion in the premises, since this helps to generate
better conclusions.

Lastly, looking at BERT F1-scores in Figures 2b
and 2d, we notice that the values drop across all
approaches as arguments get longer. Similarly, the
more apparent the conclusion in the premises, the
better the scores get.

4.4 Manual Evaluation
To gain more reliable insights into the performance
of our approaches, we designed a human evaluation
study to measure the quality of the generated coun-
ters in terms of relevance to the input argument
and the correctness of their stance. In a second
study, we also let humans assess the validity of the
generated conclusions.

Counter-Arguments We selected 100 test set
arguments randomly along with the counters gen-
erated by the two variations of our approach, Joint
One-seq w/ Stance and Joint Two-decoders w/
Stance, as well as by two baselines, BART w/o Con-
clusion and Pipeline-based. Using the UpWork
platform, we recruited three human annotators who
are proficient in English with a job success of more
than 90%. We presented them the 100 arguments
together with the texts of the four given counters,
shuffled pseudo-randomly for each argument. For
each argument, we then asked them to rank the
texts based on their adequacy of being a counter-
argument to the input argument, where we defined
adequacy as follows:

An adequate counter is a text that (1)
carries an argumentative and coherent
language and (2) clearly represents an
opposing stance to one of the main points
in the input argument.

Additionally, the annotators should provide com-
ments describing their decision regarding the coun-
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Annotator 1 Annotator 2 Annotator 3

Annotator 1 - 0.43 0.28
Annotator 2 0.43 - 0.30
Annotator 3 0.28 0.30 -

Table 3: Pairwise inter-annotator agreement in terms of
Kendall’s τ in the manual evaluation.

Counter Generation Approach Average ↓ Majority ↓
BART-based w/o Conclusion 2.56 2.54
Pipeline-based w/ Stance 2.38 2.31

Joint One-seq w/ Stance 2.39 2.26
Joint Two-decoders w/ Stance 2.65 2.72

Table 4: Manual evaluation: The average and majority
rank of the counters generated by our two approach
variations and the two baselines. Lower is better.

ters ranked first (the best) and fourth (the worst).
Computing the inter-annotator agreement using
Kendall’s τ results in an average of 0.32 (rang-
ing from 0.32 to 0.43), while we observed majority
agreement on full ranks between the annotators in
78% of the evaluated cases.

Table 3 shows the pairwise inter-annotator agree-
ment of the three annotators in terms of Kendall’s
τ , resulting in an average of 0.32, and ranging from
0.28 to 0.43. We observe that Annotator 1 and
Annotator 2 agree notably more with each other
than with Annotator 3. We observed a full ranking
majority agreement between our annotators in 78%
of the evaluated cases.

Table 4 reports the mean of the average and ma-
jority ranks achieved by each approach. When con-
sidering cases with majority agreement, our model
Joint One-seq w/ Stance performs best (mean rank
2.26). This also can be seen in Figure 3, where we
plot the rank distribution for all approaches. In 55%
of the cases, the approach generated counters that
were ranked either first or second. However, the
variation with two decoders falls short compared
to all others (mean rank 2.72). This suggests that
sharing only the encoder between the two tasks is
not enough to generate relevant counters. Also, as
indicated before, not being able to prompt the gen-
erated conclusions limits the diversity of candidates
in the stance-based ranking component. Finally, we
see that the pipeline-based baseline equipped with
our ranking component is almost on par with our
approaches, indicating the importance of promot-
ing stance correctness.
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Figure 3: A histogram of the ranks that each of the
manually evaluated approaches achieved on the 100 test
cases, summing up the results of all three annotators.

Conclusion Generation Approach Validity ↑
Pipeline-based w/ Stance 1.42
Joint One-seq w/ Stance 1.91
Joint Two-decoders w/ Stance 2.03

Ground-truth Conclusions 2.39

Table 5: Manual evaluation: Average validity score from
1 (non-valid) to 3 (valid) of the conclusions generated
by our two approach variations and by the baseline, in
comparison to the ground truth.

Conclusions To investigate whether the joint
learning of conclusion and counter-argument gener-
ation leads to more valid conclusions, we designed
another human evaluation study, for which we de-
fined validity in a simple way:

A conclusion is valid if humans can infer
it from the input argument.

For 50 random arguments, we selected their ground-
truth conclusion as well as two conclusions gener-
ated by the two variations of our approach and the
best baseline (Pipeline-based w/ Stance), summing
up to seven conclusions per argument. We hired
two annotators through UpWork again. We asked
them to read each argumentsand to evaluate the va-
lidity of each conclusion on a 3-point Likert scale,
where 3 means that they strongly agree that the con-
clusion can be inferred and 1 means they strongly
disagree. The agreement of the two annotators was
0.46 in terms of Cohen’s κ.

Table 5 shows the average scores achieved by
each evaluated model. With 1.42, the pipeline-
based approach is notably worse than the others,
indicating the advantage of multitask learning for
conclusion and counter generation. The best score
is achieved by Joint Two-decoders w/ Stance (2.03),
being only 0.36 points below the ground-truth con-
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Conclusion (title): Artificial General Intelligence does not
need to be conscious to be more intelligent or effective than
humans
Premises (post): In my opinion AGI needs the algorithms
that make us intelligent and by having these missing pieces
they will be a generally intelligent entity. I hear arguments
that an AGI needs to have a subjective experience like a
human being in order to be generally intelligent and I find this
theory to be lackluster if the laws of physics can be computed
than so can the algorithms that make general intelligence.
After all we are information processing systems however, i
am trying to explore all avenues of thought, even play devil’s
advocate and not get caught in some sort of echo chamber or
even worse a spirit of the age.

BART-based w/o Conclusion:

Counter: I don’t think that AGI needs to have a subjective
experience like a human being in order to be generally intel-
ligent. I think it’s more accurate to say that an AGI doesn’t
need to have subjective experience, but that doesn’t mean
that it can’t have an objective experience.

Pipeline-based w/ Stance:

Conclusion: i need to be more intelligent in order to be an
AGI.
Counter: intelligence is not determined by a subjective ex-
perience like a human being. it is determined by the laws of
physics. an agi does not need to have an objective experience
to be intelligent, but it does need to be able to understand the
world around it.

Joint-based One-seq w/ Stance:

Conclusion: Scientific law is the only thing that can make
AGI generally intelligent.
Counter: The problem with AGI is that we don’t really know
what it is that makes us intelligent. we have no idea how it
works, what it’s like to be an AGI, how it’s different from a
human being, or how it will work in the real world.

Table 6: An example argument with conclusion (title)
and premises (post), taken from CMV. Implicitly, the
conclusion is also mentioned in the premises. Below,
we show the output generated by each approach.

clusion’s score. Given the low effectiveness of this
model on the counter-argument generation task, we
assume that the training process optimized more
towards generating conclusions, especially since
the task may be easier than generating counters.
A better weighting scheme for the two tasks may
alleviate this in future work.

Qualitative Analysis Table 6 shows an example
argument discussing Artificial Intelligence along
with counters generated by the two baselines as
well as by our approach Joint One-seq w/ Stance.
BART w/o Conclusion rephrases sentences from the
input argument without generating a proper counter,
possibly due to the ignorance of the conclusion.
While the pipeline-based baseline equipped with
our ranking component generates a somehow rele-
vant conclusion, its counter still vague and doesn’t

clearly oppose the argument’s stance. Finally, Joint
One-seq infers a conclusion that addresses the main
point of the input argument (Scientific law), and
counter it by pointing out the difficulty of defining
intelligent , making it hard to be measured.

Upon exploring annotators’ comments that jus-
tified their decisions of what is the best/worse
counter, we identified some patterns. For exam-
ple, Joint One-seq was most appreciated, because it
generated argumentative and coherent counters that
sometimes offered new perspectives. In contrast,
the cases in which the model’s output was ranked
worst happen mainly due to being vague, incoher-
ent, or diverging from the main topic. The counters
of BART w/o Conclusion were ranked worse due to
coherences sometimes, but often due to not oppos-
ing to the input argument.

5 Conclusion

In this paper, we have studied the task of counter-
argument generation, considering the role of the
argument’s conclusion. We argued that automati-
cally generating counter-arguments becomes more
challenging when the argument’s conclusion is im-
plicit, mandating explicit modeling. To validate our
claims, we have proposed an approach that jointly
learns to generate the conclusion and a counter
for a given argument and compare it to baselines
with no explicit conclusion modeling. Moreover,
it explicitly enforces that the generated counters
have a correct stance through a stance-based rank-
ing component. We haved realized the approach
in two ways, both using transformer-based models
but with varying encoder-decoder concepts.

Although far from perfect, our results clearly
suggest that the joint learning of the two tasks leads
to better counters and to more valid conclusions of
the input argument, in comparison to strong base-
lines. Thereby, we contribute substantially towards
more robused counter-argument generation.
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7 Limitations

In our evaluated, we have only experimented with
BART as the underlining transformer-based model.
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Additional experiment settings could demonstrate
the gain of modeling the conclusion across other
transformer-based models, such as GPT and T5.

Furthermore, we did not explore all possible
weighting schemes for the two jointly learned tasks
in our multitask setting. A potential extension
could be to consider a more systematic evaluation
of different schemes, for example, dynamic weight-
ing schemes (Gong et al., 2019).

Lastly, our models are limited by the quality of
the data we use. We have built on the assumption
that CMV commentators rebut the original post’s
conclusion. However, this might not be a valid
assumption in all cases and should be reassessed in
future work.

8 Ethical Statement

Although our experiments demonstrate the role of
conclusions in counter-argument generation, we be-
lieve that this task is far from solved. We are aware
that issues such as faithful text generation must be
considered when working with language models to
avoid misinformation. We believe that mechanisms
such as a fact-checking component or a factuality
optimizer should accommodate any text generation
model. The primary goal of our experiments is to
highlight the potential of conclusion inference as
part of the counter-argument generation pipeline,
not to create an approach that is already ready for
practical application.
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Linguistics.

A Computing Infrastructure

All our experiments are run inside an
ubuntu20.04 system using Python 3.8.10.
The CUDA version is 11.2. We used one
A100-SXM4-40GB GPU to train our models.
The following libraries are required to run our
experiments:

• torch==1.11.0+cu113

• transformers==4.18.0

• flair==0.11

• spacy==3.3.1

• debater-python-api==3.5.8

967

https://doi.org/10.18653/v1/P18-1021
https://doi.org/10.18653/v1/P18-1021
https://doi.org/10.18653/v1/2020.acl-main.633
https://doi.org/10.18653/v1/2020.acl-main.633
https://doi.org/10.18653/v1/2021.naacl-main.34
https://doi.org/10.18653/v1/2021.naacl-main.34
http://aclweb.org/anthology/P18-1023
http://aclweb.org/anthology/P18-1023
https://doi.org/10.18653/v1/N16-1017
https://doi.org/10.18653/v1/N16-1017


Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 968–979
May 2-6, 2023 ©2023 Association for Computational Linguistics

Question-Answer Sentence Graph for Joint Modeling Answer Selection

Roshni G. Iyer1∗, Thuy Vu2, Alessandro Moschitti2, and Yizhou Sun1

1University of California, Los Angeles; Los Angeles, CA, USA
2Amazon Alexa AI; Manhattan Beach, CA, USA

{roshnigiyer, yzsun}@cs.ucla.edu, {thuyvu, amosch}@amazon.com

Abstract

This research studies graph-based approaches
for Answer Sentence Selection (AS2), an es-
sential component for retrieval-based Question
Answering (QA) systems. During offline learn-
ing, our model constructs a small-scale rele-
vant training graph per question in an unsuper-
vised manner, and integrates with Graph Neu-
ral Networks. Graph nodes are question sen-
tence to answer sentence pairs. We train and
integrate state-of-the-art (SOTA) models for
computing scores between question-question,
question-answer, and answer-answer pairs, and
use thresholding on relevance scores for cre-
ating graph edges. Online inference is then
performed to solve the AS2 task on unseen
queries. Experiments on two well-known aca-
demic benchmarks and a real-world dataset
show that our approach consistently outper-
forms SOTA QA baseline models.

1 Introduction

Automated Question Answering (QA) research has
received renewed attention thanks to diffusion of
Virtual Assistants. For example, Google Home,
Siri, and Alexa provide general information in-
quiry services, while many others serve customer
requests in very different application domains. Two
main tasks have been widely studied: (i) Answer
Sentence Selection (AS2), which, given a question
and set of answer-sentence candidates, consists of
selecting sentences (e.g., retrieved by a search en-
gine) that correctly answer the question; and (ii)
machine reading (MR), e.g., (Chen et al., 2017),
which, given a question and reference text, involves
finding an exact text span that answers the question.

AS2 models can more efficiently target large
text databases (as they originated from the TREC-
QA track (Voorhees and Tice, 1999)) and there is
evidence that they are currently used in personal
assistants, e.g., Alexa (Matsubara et al., 2020).

∗ This work was done while the author was an intern at
Amazon Alexa AI.

q: Who won the 1967 NBA Championship ? score label
c1: The 1967 NBA World Championship Series

was the championship series of the 1966-67
National Basketball Association season and
was the conclusion of the 1967 NBA Playoffs.

0.810 0

c2: This was the first championship series in 11
years without the Boston Celtics, who were
defeated in the Division Finals by Philadelphia.

0.048 0

c3: The 76ers won the series over the Warriors 4-2. 0.142 1
q1: Who won the 2009 Super Bowl ?
a1: The Steelers defeated the Cardinals by the score of 27–23.
q2: Who won Fifa World Cup 2010 ?
a2: In the final, Spain, the European champions, defeated third-

time finalists the Netherlands 1–0 after extra time.
q3: Who won the most NBA championships ?
a3: Bill Russell won 11 championships with the Boston Celtics.

Table 1: An example from WikiQA, for candidates
ranked by TANDA with normalized scores and labels.

Garg et al. (2020) proposed the Transfer and
Adapt (TANDA) approach, which obtained impres-
sive improvement over SOTA for AS2, measured
on two most used datasets, WikiQA (Yang et al.,
2015) and TREC-QA (Wang et al., 2007). How-
ever, TANDA simply applies pointwise rerankers
to individual question-answer pairs, e.g., binary
classifiers, exploiting labeled out domain data (the
ASNQ dataset proposed by the same authors).

The approach above was significantly im-
proved by the Answer Support-based Reranker
(ASR/MASR) (Zhang et al., 2021b), which jointly
models answer candidates of each question. Essen-
tially, the authors showed that answer candidates
bring additional information for determining if a
target answer t is correct, and proposed an ad-hoc
joint model. ASR/MASR uses TANDA as funda-
mental building blocks for its model, but improves
on TANDA’s score via a component with AA sim-
ilarity relations. Our model further improves this
via a QQ similarity component integrated with a
graph neural network (GNN) to capture more inter-
relation dependency.

A way to go beyond ASR/MASR’s approach is
to consider other questions similar to the target one
along with their answers for deciding over t. For ex-
ample, Table 1 reports a question, q = Who won the
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1967 NBA Championship?, with some candidate an-
swers, c1, c2, and c3, sorted by a pointwise reranker.
c1 contains the same phrase from the question, i.e.,
the phrase The 1967 NBA World Championship,
which is also used by q to characterize the asked
information (the name of the winner). The AS2
model mistakenly ranks c1 before the other candi-
dates, as the latter do not contain the phrase above.
The model answers incorrectly because for most
cases matching a portion of the question in the an-
swer is a strong evidence of its correctness. In con-
trast, the correct answer c3 (which also indicates
a winner) does not contain the contextual entities,
i.e., NBA and 1967.

The selection ability of the AS2 model would
improve if it could learn the additional context.
The latter can be provided by other similar ques-
tion/answer pairs. For example, in the lower part
of Table 1, we can see that the correct answer for
q3 (a question very similar to q) is a3, which shows
a predicate argument structure very similar to c3,
i.e., (subj:x, verb:won, obj: championship). Also
a1 and a2 have somewhat similar structure, but
most importantly all three similar questions pro-
vide evidence that it is not necessary having NBA
or, in general, the name of the championship in the
answer to make it correct.

The correctness characterization provided by
the similar questions above can hardly be learned
by the model from individual (q, c) pairs, as the
characterization does not hold in general. It can
be applied relatively to the list of candidates,
{q, c1, c2, c3}. Therefore, these patterns should be
learned from comparing similar questions together
with their list of candidates.

In this paper, we propose to jointly model ques-
tions with their list of candidates for AS2. This
enables the usage of the information from other
questions, similar to the given question, together
with their answers. For this purpose, we design
a graph-based QA model relying on the assump-
tion that, given question q and a corresponding
answer a, there exist other questions, qi and an-
swers ai semantically similar to q, and a, respec-
tively. These similar questions and answers can
provide evidence to decide the correctness of a. To
model the complex interactions among these dif-
ferent sentences, we use Graph Neural Networks
(GNN) (Gori et al., 2005; Scarselli et al., 2009)
applied to graphs which utilize interaction among
question and answer pairs.

Our main innovation regards graph construc-
tion: (i) we propose to build a different small
graph for each target question, such that we im-
prove efficiency, and effectiveness as we use spe-
cific relevant questions; (ii) as we target answer
selection, which traditionally is modeled as clas-
sification of question and answer pairs, (q, a), we
associate graph nodes with them. We use train-
ing data to assign pairs with positive and negative
labels. (iii) We form edges between pairs using
models that automatically score different types of
relations: question-question (QQ), question-answer
(QA), and answer-answer (AA), and then we apply
thresholds to reduce the number of active edges.

We test our models over three datasets, Wik-
iQA, TREC-QA, and WQA, where the latter is an
internal dataset built with de-identified customer
questions. Our GNN for QA improves the best
pointwise model for AS2, i.e., TANDA, over all
datasets (up to 7 absolute points on TREC-QA cor-
responding to 75% of error reduction in Accuracy).
It also establishes the new SOTA among joint mod-
els, improving ASR by 4 and 2 absolute points on
WikiQA and TREC-QA, respectively.

2 Related Work

Our work aims at improving the answer sentence
selection (AS2) task in open-domain question an-
swering (ODQA).

Modeling for AS2 Previous work for AS2 mod-
eling is typically categorized into three approaches:
pointwise (Shen et al., 2017; Yoon et al., 2019;
Garg et al., 2020), pairwise (Rao et al., 2016; Tay-
yar Madabushi et al., 2018; Laskar et al., 2020), and
listwise methods (Cao et al., 2007; Bian et al., 2017;
Ai et al., 2018). TANDA, and most other pointwise
methods for AS2, however, overlook the natural
existing inter-relations in the data. ASR/MASR is
the current SOTA for joint modeling and considers
multiple candidates for a target question. In this pa-
per, we propose graph-based approaches for AS2,
considering multiple questions and answers.

Graph-based Question Answering GNNs (Gori
et al., 2005; Scarselli et al., 2009) have gained trac-
tion for their ability to effectively and scalably learn
graph representations. Empirically, GNNs (Iyer
et al., 2021) have achieved SOTA performance in
many tasks such as node classification, link pre-
diction, and graph classification. GNNs have been
studied to improve QA in several ways. In multi-
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hop QA (Yang et al., 2018), GNNs are used to
provide a structural presentation among several en-
tities, e.g, questions, paragraphs, sentences, named
entities to facilitate reasoning (Fang et al., 2020).
However, the link between text is always triggered
by named entities or concepts.

In our work, we use entire sentence semantics
to link questions or answer text. Moreover, our se-
mantic objects are pairs and we introduce relations
between them. Recently, Yu et al. (2021) has used
GNNs to exploit structural relationship described
in pre-built knowledge graphs to improve ranking
of passages. Their approach is different from ours:
they use entity knowledge graphs. More impor-
tantly, we use multiple questions, while they only
use multiple passages.

For other works proposing graph-based answer
selection methods, they are limited in omitting im-
portant graph dependencies such as between ques-
tions (Tian et al., 2020), answers (Zhang et al.,
2020), or both (Zhang et al., 2021a). Further, sev-
eral existing approaches require additional informa-
tion to be present, such as user reputation data (Lin
et al., 2021; Zhang et al., 2021a), product reviews
for product-related questions (Zhang et al., 2020),
as well as external question and answer subject
knowledge (Yang et al., 2022; Deng et al., 2021),
assumptions that are no longer reasonable in real-
world settings where this information may not be
accessible. Our model overcomes these limitations,
by considering the general setting where only ques-
tion sentence and answer candidate information is
available to effectively solve the AS2 task.

3 Methodology

In this section, we first present an overview of our
QA Graph Model, followed by a discussion of our
graph construction procedure. Then we describe
our GNN model design, and lastly detail our train-
ing and inference framework.

3.1 QA Graph Model Overview

Our approach novelly reformulates the task of AS2
as a graph problem of node classification, where the
goal is classify each (q, a) node from test to label
1 (correct answer) or 0 (incorrect answer). To this
end, our approach carefully designs a QA graph
guided by TANDA-RoBERTa, which captures im-
portant inter-relations between QQ, AA, and QA
sentences, discussed in Section 3.2. GNNs are then
used to learn final embeddings. GNN model param-

⋮

…

top 𝐾𝑖𝑛𝑡𝑟𝑎 nodes (QA dependency)

…
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top 𝐾𝑖𝑛𝑡𝑒𝑟 for 
row 1

(AA dependency)

Inter-row connections

Intra-row connections

⋮

⋮

⋮

Figure 1: EQAG-GNN Graph Construction: each row
is a question with all its answer candidates.

eters are learned during offline training, and online
inference is performed for new node classification
on unseen queries by turning the answer selection
problem into the (q, a) node classification task.

3.2 Graph Construction

Our graph construction procedure designs Effective
QA Graphs, EQAG. These graphs only have (q, a)
nodes, the construction is based on K-best similar
questions, and there is a final step to add intra-
and cross- question connections to capture inter-
relation QQ, AA, and QA sentence dependencies.

3.2.1 EQAG node construction procedure
Nodes are modeled as (q, a) sentence pairs (for
design choice details, see the Appendix), and all
graph nodes are of the type (q, a) (for motivation
on node type choice, see Limitations section).

3.2.2 EQAG edge construction procedure
Figure 1 illustrates our approach: given query q, we
first capture QA dependency using the top Kintra

elements by determining which of the query’s an-
swer candidates to connect (through QA similarity).
Then, we capture QQ dependency by identifying
which similar questions to connect using topKrows

(through QQ similarity). Lastly, we capture AA de-
pendency by identifying which similar answers to
connect given the nodes already have similar ques-
tions, by using the top Kinter answers located in
the top Krows questions (through QA similarity
from one node’s question to the other node’s an-
swer, which was more effective than directly using
AA similarity between the nodes’ answers).
Capturing QA Dependencies. QA dependen-
cies are explicitly captured via intra-row connec-
tions where for each query q, all corresponding
query-answer nodes that have top Kintra scores
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from TANDA are connected for all training data
(offline learning) and test data (online learning) in-
dependently. To reduce connections between noisy
data, selected top Kintra nodes are further thresh-
olded by thintra. We include graph singleton nodes
to enforce total question answerability coverage.
Capturing QQ Dependencies. QQ dependen-
cies are implicitly captured by identifying similar
questions to connect using top Krows per query
via QQ similarity. For QQ similarity, we used
RoBERTa-base model trained on the open-domain
Quora dataset 1. Note that use of Quora is an ad-
ditional improvement in our graph construction.

Capturing AA Dependencies. AA dependen-
cies are captured by identifying similar answers
to connect using top Kinter answers located in top
Krows questions, via TANDA’s prediction scores.
Inter-row connections are further ensured to con-
nect only training data during the offline learning
stage, and performs online inference solely on un-
seen test data. Similar to intra-row connections, to
reduce connections between noisy data, selected
top Kinter nodes are further thresholded by thinter.
Through empirical observation, for training nodes
involved in cross-row connections, only connecting
positively labeled training nodes improves model
performance over connecting all labeled types of
training nodes. These experiments, including other
settings of inter-row connections are in Section 6.
The latter also discusses hyperparameter settings
for datasets.

In practice, we find similar questions to be abun-
dant from datasets and therefore not a limitation
in finding AA dependencies. Empirically, we also
find similar questions have similar answers both
in terms of semantics and syntax (structure). Hy-
pothetically, in the extreme case of having only
few similar questions, EQAG-GNN model accu-
racy will not be compromised since AA construc-
tion additionally requires thresholding where AA
similarity score must be ≥ thinter, ensuring only
sufficiently similar answers have dependencies.

3.2.3 Training Graph Construction Analysis
An alternative graph construction is explicitly intro-
ducing inter-relation dependencies as nodes: (q, q),
(a, a), and (q, a). To keep graph size scalable,
one may use semantically useful nodes, using QQ
and AA language model similarity scores e.g., via
RoBERTa with thresholding, where threshold is a

1kaggle.com/c/quora-question-pairs

hyperparameter e.g., [0.7, 1.0]. To form edges, one
may use a similar procedure as node generation,
where if any q or a elements between both nodes
have a similarity score greater than the threshold
value, to connect them. As GNNs do not update
isolated nodes, one may further consider removing
them to ensure scalable graph size.

However, this above approach shows several lim-
itations: (i) not all questions (which were supposed
to be answerable) may be answered. This occurs
since the constructed graph may eliminate certain
queries altogether since they do not satisfy thresh-
old score when creating nodes. Further, only con-
nected components greater than one element are
considered by the baseline. In other words, isolated
nodes are removed. The edge formation process
may also remove edges due to thresholding of ele-
ments between nodes, thus creating isolated nodes
that are subsequently removed. The thresholding
may also remove correct answer candidates, though
other candidates of that query may be kept. In this
case, the model will be limited to only choosing an
answer candidate from existing set of candidates
labeled as incorrect, leading to lower performance.

EQAG overcomes nodes eliminated by thresh-
olding by instead choosing top-K ranked nodes for
all query-answer pairs. This guarantees all queries
will have prediction made by the GNN (full an-
swerability coverage) due to their presence in the
graph, and further, correct answers that may have
been removed due to thresholding will be included.
Moreover, having all (q, a) pairs as nodes in the
graph does not negatively affect a correct node’s
learned representation. Initial embeddings of all
(q, a) nodes are produced from TANDA-RoBERTa
classifier and then updated by a GCN-GNN model
to learn final embeddings which are then mapped
to a binary label. While all (q, a) nodes are present,
only supporting evidence (q, a) nodes are con-
nected to eachother (which is a sparsely connected
instead of a fully connected graph). Therefore,
the GCN-GNN model will only update node em-
beddings based on sparsely available node edges.
Isolated nodes are not updated via message pass-
ing (as they have no neighbor node information to
aggregate from), so such a suboptimal (q, a) node’s
information will not affect correct nodes.

4 Learning from QA graphs with GNNs

GNNs broadly use message passing with graph
structure learning to inform a node’s representation
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by a recursive neighborhood aggregation scheme.
A node’s neighborhood aggregation considers its
local context of nodes, usually set to one-hop neigh-
bor nodes, or directly connected nodes. In this way,
utilizing a node’s neighborhood for learning its
representation takes into effect graph connectiv-
ity, node degree, and graph features. The general
framework for GNNs is as follows:

h
(l+1)
i = σ

( ∑

j∈Ni

f(h
(l)
i ,h

(l)
j )
)
, (1)

where h
(l)
i ∈ Rd(l) is the feature representation

of node vi at layer l of the neural network, with
dimensionality d. f is a message-specific neural
network function of incoming messages to vi from
its neighborhood context Ni, and activation func-
tion σ, typically being ReLU(·) for all layers but
the last one which is softmax(·).
Graph Convolutional Neural Networks. Graph
Convolutional Networks (GCNs) (Kipf and
Welling, 2017) are a widely used class of GNNs,
which have been shown to achieve superior
performance on semi-supervised classification
on graph-structured data. GCNs have been
successfully applied to several networks in-
cluding various citation network graphs, and
knowledge graphs. GCN’s framework is as
follows where for a node vi = (q, a), where
q ∈ QTrain, a ∈ ATrain, its feature h0

i = xi is
calculated by h0

i = scoreTANDA(vi):

h
(l+1)
i = σ

(
W T

l

( ∑

j∈Ni∪{i}

ej,i√
mjmi

h
(l)
j

))
, (2)

where h
(l)
i are embeddings of node vi at layer

l ∈ [0, L], W l is a layer-specific learnable weight
matrix, Ni is the set of nodes in neighborhood
context of vi, ej,i is edge-weight between nodes
vj → vi, with default edge weight being 1.0 if
edge exists. mi and mj are entries of degree ma-
trix, withmi = 1+

∑
j∈Ni

ej,i. In other words, the
GNN model only uses TANDA as initial embed-
dings for nodes. After that, the GNN model is used
to update these embeddings through multiple layers
of learning, which use message passing and local
neighborhoods to update the node’s representation.

In this work, we explore how GNNs applied to
our QA graphs are effective in learning represen-
tations of QA nodes for AS2, through their ability
to inform embeddings by capturing the latent QA,
QQ, and AA dependencies between nodes.

GNN Loss Function. For the task of binary
node classification, GNNs use binary-cross entropy
(BCE) loss for training, where only the nodes from
the training set are optimized:

BCE = − 1

N

n∑

i=0

yi·log(ŷi)+(1−yi)·log(1−ŷi),

where yi is the binary ground truth label for each
query-answer, and ŷi is the model’s predicted prob-
ability score of the positive label, where ŷi = hLi .

5 Training and Inference

Figure 2 summarizes EQAG-GNN’s pipeline.

5.1 Training
After the graph is constructed, described in Sec-
tion 3.2, it is passed to a GNN. We utilize L = 2
layers of GCN such that initial node features are
TANDA’s relevance scores, representing TANDA’s
prediction score of how well candidate c answers
query q. After node features are updated by the
GCN, the answer candidates are reranked by the
learned relevance scores. Parameters of the GCN
model, which include weight matrix Wl, are op-
timized using BCE loss, described in Section 4,
such that for every query-candidate node i, the
learned relevance score ŷi is computed per c and
ranked. Further, learning rate and dropout rate are
fine-tuned to the dataset. Our model’s task is node
classification, since each node is a query-answer
to be classified with positive label (the candidate
correctly answers the question) or negative label
(the candidate incorrectly answers the question).

5.2 Inference
The inference stage is performed as online in-
ference with only unseen query-candidate nodes.
Here, each new query-answer pair forms one node,
such that all possible answer candidates per query
are considered. For each new query, the trained
EQAG-GNN model leverages its neighborhood
information of certain existing (q, a) nodes from
training that it is connected to, based on top Kinter

rows in EQAG. As computation of the top Kinter

rows uses QQ, AA, and QA semantic similar-
ity, the GNN model leverages these important
inter-relation dependencies when classifying a new
query-candidate node. Further, as the model’s of-
fline training is strictly performed on training nodes
with no additional data leveraged, it is ensured that
there is no information leak. Once EQAG-GNN
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QA Data
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QA Data
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Figure 2: EQAG-GNN Pipeline. Graph nodes are (q, a) which have initial features being TANDA-RoBERTa’s
relevance score. During inference, for an unseen query, (q, a) nodes are created and connected to existing nodes in
training graph. The learned GNN is then applied to obtain classification scores and mapped to binary labels.

predicts scores of unseen nodes, scores are ranked
to find the candidate with the highest learned rel-
evance score. Then, the soft-valued score is con-
verted to a binary valued label where only the high-
est scoring candidate is assigned label 1 and the
remaining candidates are label 0.

For effectiveness, during inference, we also do
not fully connect all test answer candidates of
a query when building the inference graph but
instead use ranked top-K candidates guided by
TANDA-RoBERTa’s prediction score to form edge
connections. This is suggested by our ablation
study: more noise is included in the model when
the QA graph becomes too densely connected. At
the same time, an overly sparsely connected graph
will also lead to less accuracy during inference of
the model since GNN’s message passing compo-
nent will not be as effective. Therefore, we choose
K as tunable hyperparameter on the target dataset.

GNN parameter size: Our GNN is also efficient
in learned parameter size, as it uses the same pa-
rameter size as the efficient TANDA model and its
GNN model parameter size is also minimal. Specif-
ically, for the GCN GNN model, we used parameter
size of d · d + n · d, where d is embedding size,
and n is number of graph nodes. In our model
setting, d = 1 and n is dataset specific, which in
practice is in magnitude of a few thousand nodes in
total, or in magnitude of a few hundred nodes per
question on average. Specifically, n is around 26K,
52K, and 426K in total for the datasets of WikiQA,
TREC-QA, and WQA respectively, which on av-
erage per question is 31, 42, and 121 nodes for
WikiQA, TREC-QA, and WQA respectively.

WikiQA
Statistics Train Dev Test

#Q 873 121 237
#A+ 1,040 140 293
#A- 7,632 990 2,058

TREC-QA
Statistics Train Dev Test

#Q 1,227 65 68
#A+ 6,388 205 248
#A- 46,974 912 1,194

WQA
Statistics Train Dev Test

#Q 3,519 648 717
#A+ 42,739 6,147 6,356
#A- 96,049 10,034 11,539

Table 2: AS2 dataset statistics, number questions, posi-
tive/negative answers, from official train/dev/test splits.

6 Experiments

Here, we compare EQAG-GNN against SOTA QA
models. Then, we show an ablation study for
EQAG-GNN for the best hyperparameters. Finally,
we discuss a case study with error analysis.

6.1 Datasets
Table 2 shows a description of the datasets.

WikiQA: WikiQA (Yang et al., 2015) is an AS2
dataset containing data with form label-question-
answer such that labels are binary, indicating ex-
istence of positive or negative QA pair, and there
are several answer candidates for a question. Data
comes from Bing query logs over Wikipedia where
answers are manually labeled. We follow the most
used setting: training with all questions having at
least one correct answer, and validating and testing
with all questions with at least one correct and one
incorrect answer.
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TREC-QA: TREC-QA (Wang et al., 2007) is an
AS2 dataset containing data in a format like Wik-
iQA of label-question-answer. We use the same
splits of the original data, following the setting of
previous work (Garg et al., 2020).

WQA: WQA (Zhang et al., 2022) is an AS2 dataset
built with anonymized customers’ utterances from
a popular personal assistant. The dataset was built
as part of the effort to improve understanding and
benchmarking in ODQA. The creation process in-
cludes steps: (i) given a set of questions collected
from the web, a search engine is used to retrieve
up to 1,000 web pages from an index containing
millions of pages. (ii) From retrieved documents,
all candidate sentences are extracted and ranked
using AS2 models. Finally, (iii) top candidates
for each question are manually assessed as correct
or incorrect by human judges. This allowed ob-
taining higher average number of correct answers
with richer variety from multiple sources, shown in
Table 2. Data is in a format similar to WikiQA
of label-question-answer. For consistency with
standard QA datasets, we filter out WQA for all
non-answerable questions, or questions with only
negative answer candidate choices.

6.2 Setup
Metrics: Performance of QA systems is typically
measured with Accuracy being percentage of cor-
rect responses. This is also referred to as Precision-
at-1 (P@1) in the context of reranking, while stan-
dard Precision and Recall are not meaningful as the
system does not abstain from providing answers.

Implementation details: As the basic language
model for our systems, we used the TANDA check-
point, which is the SOTA AS2 (Garg et al., 2020).
This is a pre-trained RoBERTa-base, further fine-
tuned on ASNQ data 2. We use the same reported
optimal hyperparameter settings (Garg et al., 2020).
Specifically, 4 Tesla V100 GPUs with 32GB for
training and evaluation batch sizes of 32, with the
maximum sequence length 128, and learning rate
of 1e-6 for adapt step on the target dataset. We
adopt Adam optimizer (Kingma and Ba, 2015) with
learning rate of 2e-5 for the transfer step on ASNQ.

Model Parameters: To construct our QA graph,
we used 8 Tesla V100 GPUs with 32GB with train-
ing batch size of 256. We utilized TANDA’s con-
figuration to guide the initial graph features, as

2Available at github.com/alexa/wqa_tanda

described in Section 6.2. We then utilize the GCN
model to complete the final step of model train-
ing, such that the node’s embedding dimension
size is set to 1, initially being TANDA’s prediction
scores. Learning rates were hyperparameters tuned
from 1e-6, 2e-6, 5e-6, 1e-3, 2e-5, and used for
WikiQA/TREC-QA/WQA with 1e-3, 1e-3, and 1e-
6. Number of layers were hyperparameters tuned
from 2, 4, 8, 16 and we utilized 2 layers for datasets.
Training and eval batch sizes were 32.

6.3 Experiments with EQAG

We consider four EQAG-GNN model variants:
RI (Random Initialization): node features are

randomly initialized with Gaussian uniformly ran-
dom distribution between [0.0, 1.0]. This is to test
impact that TANDA’s model has on guiding EQAG-
GNN’s learned embeddings. For all variant models,
we use hyperparameter settings from Section 6.3.

TA (Train All): both positively and negatively
labeled training examples are considered to connect
nodes between rows (inter-row connections).

T+ (Train on positives): only the positively la-
beled training examples are considered to form the
connections of nodes between rows. This approach
seems to reduce the noise that incorrect training
data may introduce to the model, when learning em-
beddings for all training data considered together.

T± (Train positive and negative individually):
for inter-row connections, both positively and neg-
atively labeled training examples are used for con-
nections, but considered separately. Specifically,
we propagate both positive and negative node infor-
mation throughout the network as different subcom-
ponents. Positively labeled training data connects
to the top Kintra connected test nodes, while nega-
tively labeled training data connects to the bottom
Kintra test nodes, which are isolated while ensur-
ing that node features are less than thintra. This
may guide the model to learn better embeddings,
as negative nodes will be influenced more by their
negative neighbor context, while positive nodes
will be influenced more by their positive neighbor
context during the GNN message passing stage.
This helps better distinguish embeddings between
positive and negative test nodes during inference
as overlap between local contexts of positive and
negative nodes will be minimized.

Choosing EQAG-GNN hyperparameters We
run ablation studies for hyperparameter tuning on
the WikiQA dataset, evaluated on the validation
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(a) top Kintra and top Kinter using WikiQA (b) thintra and thinter using WikiQA

Figure 3: EQAG-GNN Hyperparameters on WikiQA

set. For each hyperparameter tuned, we fix the val-
ues of all other hyperparameters to their optimal
setting. The optimal settings of the variables, as
shown in Figures 3(a) and 3(b), are Kintra = 5,
Kinter = 10, thintra = 0.70, and thinter = 0.90.
It can be observed that Kintra and thintra may
affect the P@1 accuracy more than Kinter and
thinter, perhaps because they directly impact how
the intra-row connections between answer candi-
dates of test queries are formed, which greatly in-
fluences the learned embeddings of each test node.

Comparative Results Table 3 reports P@1 accu-
racies of different SOTA QA models for ODQA on
AS2 evaluated on WikiQA, TREC-QA, and WQA
datasets. Models include TANDA, ASR, MASR,
KGAT, EQAG-GNN model variants, described
above, the SOTA GNN-based model for AS2, BR-
MPGE-AS (Tian et al., 2020), the CNN-based sen-
tence similarity model, L.D.C. (Wang et al., 2016),
the Bi-LSTM CNN-based model which explicitly
models pairwise word interactions, PWIM (He and
Lin, 2016), the hyperbolic space embedding model,
HyperQA (Tay et al., 2018), and the CNN-based
latent clustering (LC) language model (LM), Comp-
Clip+LM+LC (Yoon et al., 2019). All models use
RoBERTa-base pre-trained checkpoint. The table
shows QA-GNN consistently achieves highest per-
formance among all models and all datasets on
P@1 metric. For example, it outperforms TANDA
by around 4, 7, and 3 absolute percent points in
P@1 on WikiQA, TREC-QA, and WQA, respec-
tively. Appendix tables 7 and 8 further report Max-
imum a Posteriori (MAP) and Mean Reciprocal
Rank (MRR) scores, showing EQAG-GNN also
achieves similar performance gains.

Results show 100% coverage of answerable
questions and boosted accuracy of the approach.

Model WikiQA TREC-QA WQA
P@1

BR-MPGE-AS 0.835 0.912 0.600
L.D.C. Model 0.549 0.618 0.402

PWIM 0.823 0.824 0.582
HyperQA 0.827 0.853 0.598

Comp-Clip + LM + LC 0.827 0.838 0.590
TANDA 0.823 0.912 0.651

KGAT (k = 2) 0.844 0.941 –
ASR (k = 3) 0.844 0.971 –

MASR (k = 3) 0.823 0.927 –
EQAG-GNN (RI) 0.309 0.412 0.223
EQAG-GNN (TA) 0.840 0.956 0.671
EQAG-GNN (T+) 0.860 0.985 0.676
EQAG-GNN (T±) 0.864 0.985 0.679

Table 3: P@1 evaluation of GNN applied to EQAG and
leading baselines. The best results are bold-faced.

The ranking mechanism also improves graph con-
nectivity, since all top-ranked question-answer
pairs are included, though some nodes may be iso-
lated. This technique greatly improves the amount
of information needed by the GNN, compared to
when only connected components without isolated
nodes were considered. Finally, since the approach
needs to start from weights learned by TANDA as
random initialization, GNN-RI, produces very low
results. Experiment results confirm effectiveness
of modeling sentence-level semantics via graph-
based models for AS2 (our approach) through com-
prehensive comparison of SOTA methods on AS2
including graph-based AS2 methods that model
entity-level semantics. Further, our model consis-
tently achieves significant improved performance
against all baselines on all comprehensive metrics
for AS2 (P@1, MAP, MRR), showing both accu-
racy and quality of QA pair ranking learned.

7 Case Study
We provide a case study and error analysis com-
paring performance of EQAG with TANDA. Ta-
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q: How is Jameson Irish Whiskey made ?
c1: Jameson is similar in its adherence to the single distillery principle to

the single malt tradition but Jameson blends column still spirit with
Single pot still whiskey a combination of malted barley with unmalted
or “ green ” barley distilled in a pot still.

c2: Jameson is a single distillery Irish whiskey produced by a division of
the French distiller Pernod Ricard.

c3: The company was established in 1780 when John Jameson established
the Bow Street Distillery in Dublin.

c4: Originally one of the six main Dublin Whiskeys Jameson is now
distilled in Cork although vatting still takes place in Dublin.

c5: With annual sales of over 31 million bottles Jameson is by far the best
selling Irish whiskey in the world as it has been sold internationally
since the early 19th century when John Jameson along with his son
(also named John) was producing more than a million gallons annually.

c6: Portraits of John and Margaret Jameson by Sir Henry Raeburn are in
the collection of the National Gallery of Ireland.

c7: Jameson was Scottish a lawyer from Alloa who had married Margaret
Haig a sister of the brothers who founded the main Haig firms and
related to the Steins a Scottish distilling family with interests in Dublin.

Table 4: Case study example of (q, a) from WikiQA.

EQAG score TANDA score label
c1: 0.192 0.108 1
c2: 0.158 0.505 0
c3: 0.103 0.110 0
c4: 0.130 0.266 0
c5: 0.140 0.009 0
c6: 0.128 ∼ 0 0
c7: 0.148 ∼ 0 0

Table 5: EQAG, TANDA scores for Table 4, with nor-
malized predicted candidate answer scores underlined.

ble 4 reports question, q = How is Jameson
Irish Whiskey made?, with candidate answers, c1,
through c7, for which the AS2 model has to pick
out the best candidate answer. Table 5 reports pre-
diction scores learned by EQAG, and TANDA, per
candidate answer and ground truth label.

7.1 Error Analysis

TANDA mistakenly ranks c2 of label 0 before other
candidates, while EQAG correctly ranks c1 of label
1 above other candidates. Though phrase Jameson
Irish Whiskey is important to the question, seman-
tic intent of the question is how it is made. While
TANDA recognizes importance of phrase Jameson
Irish Whiskey, it does not learn necessary context
of what the question asks for. As such, it picks
the candidate describing what the whiskey is rather
than how it is made. EQAG, however, places atten-
tion on both Jameson Irish Whiskey and question
context made, while also learning that entire phrase
Jameson Irish Whiskey may not need to be present
in the candidate sentence as long as there is some
indication of referring to the item e.g., Jameson.

As shown in Table 6, EQAG effectively learns
from similar questions and its corresponding an-
swer candidates that it sees during training to recog-
nize important semantic characteristics of the ques-
tion. For example, all three supporting questions

(q, qi) sim
q1: How is single malt scotch made ? 0.743
a1: As with any Scotch whisky, a single malt

Scotch must be distilled in Scotland and ma-
tured in oak casks in Scotland for at least three
years (most single malts are matured longer).

q2: What is bourboun made of ? 0.622
a2: Bourbon whiskey is a type of American

whiskey– a barrel-aged distilled spirit made
primarily from corn.

q3: How is root beer made ? 0.498
a3: Root beer is a carbonated, sweetened beverage,

originally made using the root of a sassafras
plant (or the bark of a sassafras tree) as the
primary flavor.

Table 6: EQAG learned similar questions to question
from Table 4, with corresponding absolute similarity
scores between (q, qi), i ∈ [1, 3]

e.g., q1 through q3 are about how various items
(single malt scotch, bourboun, root beer) are made.
Further, correct corresponding answers contain in-
formation about both item string name as well as
how it is made. Regarding item string name, it
is not necessary for the entire string name to be
present as long as appropriate substring referring
to this item is there. For example, a1 refers to sin-
gle malt scotch as simply Scotch, which EQAG
also learns in order to identify that Jameson Irish
Whiskey may be referred to as Jameson.

8 Conclusions

To our knowledge, our model is the first graph-
based approach for jointly modeling sentence-level
semantics of question-answer pairs for AS2 as
an offline processing application, such as those
required by community QA, forums, etc. This
is different from previous methods using graphs,
e.g., MultiHop or Graph-based QA, which mainly
model semantics via entities. Our approach builds
query-specific small-scale training graphs for of-
fline learning, through (q, a) pairs as nodes, and
edges encoding relations between members of pairs
to capture both supporting question-question, and
answer-answer dependencies. Further, we demon-
strate that our approach achieves significant perfor-
mance gains over existing SOTA models on AS2
for metrics of P@1, MAP, and MRR.
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Limitations

Our proposed model is efficient as its complex-
ity is comparable to SOTA retrieval models like
TANDA-RoBERTa. However, we note that out
of our model components, the main complexity
is from graph construction for the offline learning
stage when constructing query-specific small-scale
training graphs as opposed to graph processing,
since GNN processing is typically fast. This is
due to retrieval of top K-questions for each target
query, which we perform with a RoBERTa cross-
encoder. While the graph building takes roughly
a few seconds per question in practice, given the
scope of our problem of investigation for offline
training and online learning, our model is efficient.

Further, while we capture Q-Q and A-A de-
pendencies to form edge connections between the
(q, a) nodes, the fact that the nodes in EQAG are all
of the form (q, a) may be seen as a limitation. How-
ever, in the context of QA, the model deciding if
an answer is correct or not for a question is trained
over (q, a) pairs. This means that most informa-
tion is captured by the pair, which is seen as the
whole object. In general, we aim at modeling the
similarity between pairs in the graph as we want to
learn the patterns that make a pair correct. A graph
having nodes as pairs directly enables this kind of
learning, with also the great advantage that cross
encoding two pieces of text in a transformer always
produces a much higher accuracy than separated
encoding of question and answer.

As future work, we plan to investigate building
a model for learning graph topologies (Iyer et al.,
2022), and other online processing applications
e.g., document retrieval, by exploring methods like
DPR (Karpukhin et al., 2020) to further speed up
offline graph construction.

References
Qingyao Ai, Keping Bi, Jiafeng Guo, and W. Bruce

Croft. 2018. Learning a deep listwise context model
for ranking refinement. CoRR, abs/1804.05936.

Weijie Bian, Si Li, Zhao Yang, Guang Chen, and
Zhiqing Lin. 2017. A compare-aggregate model
with dynamic-clip attention for answer selection. In
CIKM, pages 1987–1990. ACM.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and
Hang Li. 2007. Learning to rank: from pairwise
approach to listwise approach. In Proceedings of the
24th international conference on Machine learning,
ICML ’07, pages 129–136, New York, NY, USA.
ACM.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading wikipedia to answer open-
domain questions. CoRR 2017, abs/1704.00051.

Yang Deng, Yuexiang Xie, Yaliang Li, Min Yang,
Wai Lam, and Ying Shen. 2021. Contextualized
knowledge-aware attentive neural network: Enhanc-
ing answer selection with knowledge.

Yuwei Fang, Siqi Sun, Zhe Gan, Rohit Pillai, Shuo-
hang Wang, and Jingjing Liu. 2020. Hierarchical
graph network for multi-hop question answering. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 8823–8838, Online. Association for Computa-
tional Linguistics.

Siddhant Garg, Thuy Vu, and Alessandro Moschitti.
2020. TANDA: transfer and adapt pre-trained trans-
former models for answer sentence selection. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 7780–
7788. AAAI Press.

Marco Gori, Gabriele Monfardini, and Franco Scarselli.
2005. A new model for learning in graph domains.
In Proceedings of International Joint Conference on
Neural Networks, pages 729–734.

Hua He and Jimmy Lin. 2016. Pairwise word interac-
tion modeling with deep neural networks for semantic
similarity measurement.

Roshni G. Iyer, Yunsheng Bai, Wei Wang, and Yizhou
Sun. 2022. Dual-geometric space embedding model
for two-view knowledge graphs. In Proceedings of
the 2022 ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD’22),
Washington, DC, USA, August 14-18, 2022, pages
676–686. ACM SIGKDD.

Roshni G. Iyer, Wei Wang, and Yizhou Sun. 2021. Bi-
level attention graph neural networks. In Proceedings
of the 2021 IEEE International Conference on Data
Mining (ICDM’21), Virtual Event, Auckland, New
Zealand, December 7-10, 2021, pages 1126–1131.
IEEE ICDM.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Lei Ba. 2015. Adam: A
method for stochastic optimization. ICLR 2015.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. ICLR 2017.

977



Md Tahmid Rahman Laskar, Jimmy Xiangji Huang, and
Enamul Hoque. 2020. Contextualized embeddings
based transformer encoder for sentence similarity
modeling in answer selection task. In Proceedings of
The 12th Language Resources and Evaluation Con-
ference, pages 5505–5514, Marseille, France. Euro-
pean Language Resources Association.

Zizheng Lin, Haowen Ke, Ngo-Yin Wong, Jiaxin Bai,
Yangqui Song, Huan Zhao, and Junpeng Ye. 2021.
Multi-relational graph based heterogeneous multi-
task learning in community question answering.

Yoshitomo Matsubara, Thuy Vu, and Alessandro Mos-
chitti. 2020. Reranking for efficient transformer-
based answer selection. In Proceedings of the 43rd
International ACM SIGIR conference on research
and development in Information Retrieval, SIGIR
2020, Virtual Event, China, July 25-30, 2020, pages
1577–1580. ACM.

Jinfeng Rao, Hua He, and Jimmy J. Lin. 2016. Noise-
contrastive estimation for answer selection with deep
neural networks. In CIKM, pages 1913–1916. ACM.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. 2009. The
graph neural network model. IEEE Transactions on
Neural Networks, pages 61–80.

Gehui Shen, Yunlun Yang, and Zhi-Hong Deng. 2017.
Inter-weighted alignment network for sentence pair
modeling. In EMNLP’17, pages 1179–1189, Copen-
hagen, Denmark.

Yi Tay, Luu Ahn Tuan, and Siu Cheng Hui. 2018. Hy-
perbolic representation learning for fast and efficient
neural question answering.

Harish Tayyar Madabushi, Mark Lee, and John Barnden.
2018. Integrating question classification and deep
learning for improved answer selection. In COL-
ING’18, pages 3283–3294.

Zhixing Tian, Yuanzhe Zhang, Xinwei Feng, Wenbin
Jiang, Yajuan Lyu, Kang Liu, and Jun Zhao. 2020.
Capturing sentence relations for answer sentence se-
lection with multi-perspective graph encoding.

E. Voorhees and D. Tice. 1999. The TREC-8 Question
Answering Track Evaluation, pages 77–82. Depart-
ment of Commerce, National Institute of Standards
and Technology.

Mengqiu Wang, Noah A. Smith, and Teruko Mita-
mura. 2007. What is the Jeopardy model? a
quasi-synchronous grammar for QA. In EMNLP-
CoNLL’07, pages 22–32, Prague, Czech Republic.
Association for Computational Linguistics.

Zhiguo Wang, Haitao Mi, and Abraham Ittycheriah.
2016. Sentence similarity learning by lexical decom-
position and composition.

Haitian Yang, Xuan Zhao, Yan Wang, Min Li, Wei
Chen, and Weiqing Huang. 2022. Dgqan: Dual graph
question-answer attention networks for answer selec-
tion.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
Wikiqa: A challenge dataset for open-domain ques-
tion answering. In Proceedings of the 2015 con-
ference on empirical methods in natural language
processing, pages 2013–2018.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Seunghyun Yoon, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, and Kyomin Jung. 2019. A compare-
aggregate model with latent clustering for answer
selection. CoRR, abs/1905.12897.

Donghan Yu, Chenguang Zhu, Yuwei Fang, Wenhao
Yu, Shuohang Wang, Yichong Xu, Xiang Ren, Yim-
ing Yang, and Michael Zeng. 2021. Kg-fid: Infus-
ing knowledge graph in fusion-in-decoder for open-
domain question answering. CoRR, abs/2110.04330.

Wei Zhang, Zeyuan Chen, Chao Dong, Wen Wang,
Hongyuan Zha, and Jianyong Wang. 2021a. Graph-
based tri-attention network for answer ranking in cqa.
AAAI 2021.

Wenxuan Zhang, Yang Deng, and Wai Lam. 2020. An-
swer ranking for product-related questions via multi-
ple semantic relations modeling.

Zeyu Zhang, Thuy Vu, Sunil Gandhi, and Alessan-
dro Moschitti Ankit Chadha. 2022. WDRASS: A
web-scale dataset for document retrieval and answer
sentence selection. CIKM 2022.

Zeyu Zhang, Thuy Vu, and Alessandro Moschitti. 2021b.
Joint models for answer verification in question an-
swering systems. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing, ACL/IJCNLP 2021,
(Volume 1: Long Papers), Virtual Event, August 1-6,
2021, pages 3252–3262. Association for Computa-
tional Linguistics.

A Additional Experiment Results

Table 7 reports MAP scores and Table 8 reports
MRR scores for EQAG variant models, as well as
SOTA QA models for AS2. The tables further show
that QA-GNN consistently achieves the highest
performance among all models and all datasets on
MAP and MRR metrics. For example, on MAP, it
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Model WikiQA TREC-QA WQA
MAP

BR-MPGE-AS 0.867 0.897 0.661
L.D.C. Model 0.706 0.771 0.582

PWIM 0.709 0.758 0.550
HyperQA 0.712 0.784 0.561

Comp-Clip + LM + LC 0.764 0.868 0.610
TANDA 0.889 0.914 0.653

KGAT (k = 2) 0.899 0.916 –
ASR (k = 3) 0.901 0.928 –

MASR (k = 3) 0.889 0.920 –
EQAG-GNN (RI) 0.384 0.485 0.301
EQAG-GNN (TA) 0.869 0.897 0.656
EQAG-GNN (T+) 0.901 0.926 0.658
EQAG-GNN (T±) 0.901 0.941 0.662

Table 7: MAP evaluation of GNN applied to EQAG and
leading baselines. The best results are bold-faced.

Model WikiQA TREC-QA WQA
MRR

BR-MPGE-AS 0.879 0.912 0.669
L.D.C. Model 0.723 0.845 0.598

PWIM 0.723 0.822 0.593
HyperQA 0.727 0.865 0.630

Comp-Clip + LM + LC 0.784 0.928 0.636
TANDA 0.901 0.952 0.681

KGAT (k = 2) 0.912 0.965 –
ASR (k = 3) 0.912 0.982 –

MASR (k = 3) 0.902 0.963 –
EQAG-GNN (RI) 0.359 0.544 0.371
EQAG-GNN (TA) 0.907 0.956 0.690
EQAG-GNN (T+) 0.916 0.971 0.697
EQAG-GNN (T±) 0.924 0.983 0.699

Table 8: MRR evaluation of GNN applied to EQAG and
leading baselines. The best results are bold-faced.

outperforms TANDA by around 1, 3, and 1 absolute
percent points on WikiQA, TREC-QA, and WQA,
respectively. On MRR, it outperforms TANDA by
around 2, 3, and nearly 2 absolute percent points
on WikiQA, TREC-QA, and WQA, respectively.

B Nodes Modeled as Sentence Pairs

In the context of QA, we decide if an answer is
correct or not for a question by training QA classi-
fiers. This means that most information is captured
by the pair, which is seen as the whole object. In
general, we aim at modeling the similarity between
pairs in the graph as we want to learn the patterns
that make a pair correct. A graph having nodes
as pairs directly enable this kind of learning, with
also the great advantage that cross encoding two
pieces of text in a transformer always produces a
much higher accuracy than separated encoding of
question and answer.
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Abstract
Machine translation (MT) requires a wide
range of linguistic capabilities, which current
end-to-end models are expected to learn implic-
itly by observing aligned sentences in bilingual
corpora. In this work, we ask: How well do
MT models learn coreference resolution from
implicit signal? To answer this question, we
develop an evaluation methodology that derives
coreference clusters from MT output and eval-
uates them without requiring annotations in the
target language. We further evaluate several
prominent open-source and commercial MT
systems, translating from English to six target
languages, and compare them to state-of-the-
art coreference resolvers on three challenging
benchmarks. Our results show that the monolin-
gual resolvers greatly outperform MT models.
Motivated by this result, we experiment with
different methods for incorporating the output
of coreference resolution models in MT, show-
ing improvement over strong baselines.1

1 Introduction

Machine translation (MT) may require coreference
resolution to translate cases where the source and
target language differ in their grammatical proper-
ties. For example, consider translating “The trophy
didn’t fit in the suitcase because it was too small”
from English to French: “Le trophée ne rentrait
pas dans la valise car elle était trop petite” (Sak-
aguchi et al., 2020). In French, suitcase (“valise”)
is grammatically feminine, and trophy (“trophée”)
is masculine, while the source-side English does
not encode grammatical noun gender. This re-
quires an MT model to infer that “it” refers to
the suitcase (and not the trophy) to correctly pro-
duce the feminine inflection for the phrase “it was
too small” (“elle était trop petite”), whereas an
incorrect coreference resolution may produce the
masculine inflection (“il était trop petit”) corre-
sponding to the trophy.

1https://github.com/AsafYehudai/MT-coref

Figure 1: MT models can be compared to source-side
coreference resolvers. An example translation from
English (turquoise) to French (yellow). Our method
first identifies the grammatical gender of the mentions in
the target language marked in purple (female) and blue
(male), followed by inferring the source side clusters
(orange), through gender agreement.

Such texts evade lexical one-to-one translation,
and instead demand source-side coreference resolu-
tion as a prerequisite for a correct translation. The
prominent end-to-end approach to MT assumes
that translation models implicitly learn source-side
coreference resolution by observing aligned source-
target pairs, without intermediate coreference su-
pervision. While the importance of addressing such
semantic phenomenon has been stated in various
works (Le Nagard and Koehn, 2010; Stojanovski
and Fraser, 2018), it was also observed that the
ubiquitous BLEU metric (Papineni et al., 2002)
does not adequately quantify it (Hardmeier and
Federico, 2010; Freitag et al., 2022).
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This work addresses the following research ques-
tion: How well does MT learn coreference when
compared against explicit coreference supervision?
Answering this question can improve our under-
standing of the way MT models operate and also
has practical implications: if implicit supervi-
sion lags behind monolingual training, it would
motivate integration between end-to-end MT ap-
proaches and explicitly-supervised monolingual
components.

In Section 3 we devise an evaluation paradigm
that reduces MT output to source-side coreference
resolution predictions by inferring coreference clus-
ters from source inputs and predicted target trans-
lations. E.g., in the previous example, a feminine
inflection for the pronoun “it” in French can in-
fer linking “it” with “suitcase”, while a masculine
French inflection links “it” with “trophy”, as shown
in Figure 1. This approach allows us to distill the
coreference resolution abilities of MT models and
compare them against state-of-the-art coreference
resolution models, trained explicitly on the task.

We use this approach to evaluate the corefer-
ence capabilities of several commercial and open
source MT systems, translating from English to six
target languages. We conduct our experiments in
both synthetic (WinoMT and Wino-X; Stanovsky
et al., 2019; Emelin and Sennrich, 2021) and nat-
uralistic settings (BUG; Levy et al., 2021). Our
results show that state-of-the-art coreference re-
solvers vastly outperform MT models on several
benchmarks, indicating that explicit supervision
may lead to better coreference performance.

Following this finding, in Section 4, we develop
methods for improving coreference in MT, both
implicitly and explicitly. Our implicit approach
consists of fine-tuning MT models on texts that
specifically require many coreference decisions,
thus exposing the model to more implicit corefer-
ence signal. Our explicit approach further enriches
source sentences with predicted coreference mark-
ers. We show that these approaches improve coref-
erence over the end-to-end MT approach, achieving
comparable or better results than much larger MT
models, both commercial systems and open-source.

More broadly, our approach can be applied to
improve the translation of other semantic phenom-
ena that diverge in realization between source and
target languages, such as plurality in second-person
pronouns (Stanovsky and Tamari, 2019) or tense
marking (Wolfram, 1985).

2 Background: Gender Bias in MT

We start our work by extending the methodology
developed in (Stanovsky et al., 2019), which relies
on target-side morphology to infer the translated
gender of certain professions.

In particular, assuming a dataset of English sen-
tences D, where each instance includes gold coref-
erence annotation between a human entity and its
pronoun (e.g., “The doctor asked the nurse to help
her with the procedure.”), they evaluate gender bias
from English to language T with morphological
gender in the following manner:

1. Predict word alignment between D and
M(D), i.e., the output translations of an MT
model M . This finds the translations for pro-
nouns (e.g., “her”) and possible entities (e.g

“doctor”, “nurse”) in the target language T .

2. Automatically extract the gender of the pos-
sible entities and the pronouns in the target
language based on morphological features.

3. Check whether the gender of the co-referred
entity (e.g., “doctor”) in T corresponds to the
gender of the English pronoun (e.g., “her”).

The gender bias of M is then defined as the
difference in performance between stereotypical
and anti-stereotypical gender role assignments.

We use a similar setup to address a different ques-
tion: rather than evaluating the gender bias of the
model, we evaluate its coreference abilities, which
may be hindered by bias, but also by the inherent
difficulty to infer coreference in the absence of an
explicit training signal.

3 MT Models Fare Poorly Against
Coreference Resolvers

The approach taken in WinoMT is limited as it re-
stricts the evaluation to sentences with a known
gender in English, indicated by a gendered pro-
noun of a human entity (e.g., her). Consider the
sentence in Figure 1: “The trophy didn’t fit in the
suitcase because it was too small” with the coref-
erence cluster {suitcase, it}. Step 3 in Stanovsky
et al.’s method will fail to assign a coreference la-
bel to the translation, because “it” does not have
a gender in English. In this section, we extend
the WinoMT approach in order to estimate more
general coreference abilities of MT models.
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To achieve this, we note that many languages
have gender agreement between pronouns and the
noun that they refer to. Therefore, correct target-
side gender agreement requires (implicitly) resolv-
ing the source-side coreference of the relevant en-
tities. As exemplified in Figure 1, a reader of the
French translation would infer from the gender in-
flection of “it” whether it refers to “suitcase” or the
“trophy”. I.e., a feminine pronoun (“elle”) would
agree with the feminine noun suitcase (“valise”),
while a masculine pronoun (“il”) would agree with
the masculine noun trophy (“trophée’). We there-
fore formulate a new metric quantifying the ability
of the MT model to implicitly resolve source-side
coreference (henceforth, Target-side Consistency),
defined as the proportion of instances in which the
morphological gender of an entity (e.g., “suitcase”)
matches that of its referring pronoun (e.g., “it”) in
the target language T .

This metric examines whether an MT model is
consistent in its coreference decisions, regardless
of whether it correctly inferred the coreference re-
lations in the input text. Indeed, some texts may
keep the English ambiguity in the translation, and
hence absolve the MT model from resolving coref-
erence. For example, in the sentence “The battery
didn’t fit in the suitcase because it was too small”,
both battery and suitcase are feminine in French.
Our proposed metric will correctly indicate that
the MT model was successful in such cases (albeit
trivially). The metric thus serves as an upper bound
on the MT model’s coreference abilities.

We note that while this framing uses the mor-
phological gender inflection of common nouns, it
is different in motivation from measures of gen-
der bias. In our example above, gender inflection
allows us to determine whether an MT model cor-
rectly employs common sense rather than examin-
ing whether it tends to prefer stereotypical gender
norms. While a model’s gender bias may explain
some loss in coreference abilities, the model’s abil-
ity to resolve coreference need not be aligned with
the degree of its bias (e.g., a random gender assign-
ment would result in unbiased performance, but
very poor coreference ability).

Most importantly, by considering the gender of
the entity and the pronoun, we obtain mention clus-
ters which can be compared against those produced
by coreference resolution models. In our example
figure, both the first MT model and the coreference
model produce the correct clustering: {{trophy},

{suitcase, it}}, while the second MT model errs by
producing: {{trophy, it}, {suitcase}}.

Another aspect of our evaluation methodology is
its generality. Our method does not require a refer-
ence translation or make any particular assumptions
about the generated output. As there are generally
many correct translations, this flexibility allows us
to accurately assess the model’s coreference abil-
ities. For instance, our methodology does not as-
sume the gender of the entity’s translation as can be
seen in the first example in Table 7 where the two
systems translate the entity “jar” differently. Fur-
ther, some languages might not always translate an
English pronoun into a pronoun but still express its
gender in a different word. Consider the second ex-
ample in Table 7 where the alignment model (step
2 in §2) finds that the English word “it” is aligned
with both “l” and “trouvée” in French. Here, the
feminine suffix of the past participle “trouvée” indi-
cates that the ellipsis “l” corresponds to a feminine
entity.

3.1 Evaluation Setup

Evaluation datasets. The first dataset we use
is Wino-X (Emelin and Sennrich, 2021), a filtered
subset of WinoGrande (Sakaguchi et al., 2020) built
to test commonsense reasoning and coreference res-
olution of MT models and multilingual encoders.
The dataset contains sentences similar to the one in
Figure 1. All sentences have two entities and a pro-
noun, “it”, coreferring to one of them. The dataset
consists of three parts, each part constructed for
a different target language (German, French, and
Russian), where each part only contains sentences
where the two entities have different morphological
gender in the target language (e.g., in French “tro-
phy” is masculine whereas “suitcase” is feminine).
Hence, applying our target-side consistency metric
on these filtered sentences avoids trivial instances
where both candidate entities have the same gen-
der in the target language, and provides a clearer
picture of the coreference capabilities of the model.

Second, we use WinoMT (Stanovsky et al.,
2019),2 a dataset built following the Winograd
schema (Levesque et al., 2011), designed to test
gender bias and coreference resolution of MT mod-
els. The sentences in this dataset contain two hu-
man entities and one gendered pronoun, e.g., “The
doctor asked the nurse to help her in the proce-

2WinoMT is a combination of Winogender (Rudinger et al.,
2018) and WinoBias (Zhao et al., 2018).
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Dataset #sentences

Wino-X (en→ de) 3,774
Wino-X (en→ fr) 2,988
Wino-X (en→ ru) 2,238
WinoMT 3,888
BUG 1,717

Table 1: Statistics of our evaluation datasets. Note that
in all datasets we use the corresponding English source-
side sentences as our input.

dure”. The gendered pronoun reveals the gender of
the entity and adds gender attributes to the source
cluster. In our example, “her” refers to the “doc-
tor”, revealing the doctor’s gender.

Our third dataset is BUG (Levy et al., 2021), a
semi-automatic collection of naturalistic English
sentences that are challenging with respect to soci-
etal gender-role assignments. Similar to WinoMT,
each sentence contains a human entity, identified
by their profession and a gendered pronoun. To
reduce noise, we use the GOLD portion of this
dataset which was validated by human annotators.
All datasets statistics are presented in Table 1.

Machine translation models. We apply our eval-
uation methodology to four Transformer-based
machine translation models from EasyNMT:3

mBART50 (Tang et al., 2020; Liu et al., 2020),
M2M_418M, M2M_1.2B (Fan et al., 2021), and
the bilingual Opus-MT (Tiedemann and Thottingal,
2020), representing the state-of-the-art for publicly
available neural machine translations models. In
addition, we measure coreference consistency on
the output of two commercial systems: Google
Translate4 and Microsoft Translator.5

Target languages. For WinoMT and BUG, we
translate from English to six different languages:
Arabic, German, Spanish, Hebrew, Russian and
French. These languages form a diverse set with re-
spect to how they encode grammatical gender (e.g.,
number of grammatical genders), as well as to their
orthography, word order and other linguistic traits,
while still allowing for highly accurate automatic
morphological analysis. These languages belong
to four families: (1) Romance languages: Spanish
and French, which have gendered noun-determiner
agreement with two grammatical genders; Spanish

3https://github.com/UKPLab/EasyNMT
4https://cloud.google.com/translate
5https://www.bing.com/translator

Wino-X WinoMT BUG

SpanBERT 51.2 76.6 72.0
s2e 60.8 81.7 72.2
LINGMESS 58.7 83.7 74.6

Table 2: Accuracy of SpanBERT, s2e and LINGMESS
model on our evaluation datasets. For simplicity, we
report the accuracy on Wino-X sentences from the three
languages as a single corpus, because there is a small
difference between the languages (up to 0.3).

en→ de en→ fr en→ ru

mBART50 37.4 56.6 44.6
M2M_418M 31.4 48.5 44.9
Google 41.3 36.3 40.7
Microsoft 40.5 36.7 43.5
Opus-MT 37.4 35.3 43.6

Table 3: Target-side consistency results of commercial
and open-source MT systems on Wino-X when translat-
ing into German, French, and Russian.

is also a pro-drop language, i.e., pronouns can be
omitted in certain cases, which in our setting may
keep the coreference ambiguity of the source-side
English sentence (Webster and Pitler, 2020). (2)
Slavic languages (with Cyrillic alphabets): Rus-
sian with 3 grammatical genders. (3) Semitic lan-
guages: Hebrew and Arabic, each with a unique
alphabet; both are partial pro-drop languages and
have two grammatical genders. (4) Germanic lan-
guages: German with 3 grammatical genders.

3.2 Target-side Consistency Results

We first evaluate the accuracy of existing coref-
erence resolvers on our three evaluation datasets,
where accuracy is defined as the percentage of in-
stances in which the model identifies that the pro-
noun is coreferring with the correct entity. We
select state-of-the-art models trained on CoNLL-
2012 (Pradhan et al., 2012): SpanBERT (Joshi
et al., 2020),6 the s2e model (Kirstain et al., 2021)
and LINGMESS (Otmazgin et al., 2022). Results
in Table 2 show that coreference models perform
quite well on WinoMT and BUG but poorly on
Wino-X (60.8 for s2e), indicating weak common-
sense capabilities.

Table 3 shows the target-side coreference consis-
tency scores for all MT models on Wino-X, which,
as mentioned above (§3.1), includes only sentences

6Using AllenNLP’s implementation (Gardner et al., 2018).

983



WinoMT BUG

de es fr ru he ar de es fr ru he ar

mBART50 77.7 75.2 73.3 57.7 69.3 69.5 74.6 69.4 76.0 69.1 80.2 83.0
M2M_418M 69.7 55.1 65.4 54.7 56.5 64.3 81.3 84.9 86.0 71.6 83.6 85.1
M2M_1.2B 69.7 55.1 65.4 54.7 56.5 64.3 83.5 85.1 90.3 70.4 89.6 93.4
Google 69.9 59.4 65.5 57.9 60.1 69.2 56.0 84.4 89.2 71.0 85.2 91.9
Microsoft 78.0 66.5 69.3 57.3 63.9 60.7 77.2 86.7 86.0 67.2 84.0 89.8
Opus-MT 68.2 56.0 63.2 49.8 59.0 59.8 79.8 85.1 86.2 67.3 88.8 88.0

Table 4: Target-side consistency results of commercial and open-source MT systems on WinoMT and BUG when
translating into different languages. These numbers are an upper bound for the source-side coreference accuracy.

where the entity and pronoun should be translated
using different genders in the target language. We
observe that all MT models perform poorly on
Wino-X with the highest average score of 46.2
for mBART50, which vastly underperforms En-
glish coreference resolvers by 14.6 points. Inter-
estingly, many instances are inconsistent because
models tend to generate neutral pronoun whereas a
gendered pronoun is expected, for example, cela,
c’était in French (31% of translations) and это,они
in Russian (17% of translations), meaning “this” or
“they” in English. Likewise, 68% of German trans-
lations include neutral pronouns (e.g., “es”), while
only 22% of the entities are neutral. The reported
percentages were calculated on Opus-MT. Similar
trends were observed in all models.

Table 4 shows the target-side consistency re-
sults for WinoMT and BUG. Following common
practices on those datasets (Stanovsky et al., 2019;
Levy et al., 2021), we omit sentences where the
candidate pronoun does not provide information
about the entity’s gender. For example, in French,
possessive pronouns agree with the gender of the
possessed object, rather than the possessor as in
English. Another example is in Spanish, which
is a pro-drop language, where a valid translation
can drop the pronoun and use a generic verb, leav-
ing the only gender signal in the translation to be
marked on the profession noun. See App. §C for
more examples.

Similarly to Wino-X, target-side consistency re-
sults on WinoMT are consistently lower than coref-
erence resolvers. Further, we observe that consis-
tency is affected by two factors: the MT model and
the target language. Regarding models, Opus-MT
achieves lowest performance, with average consis-
tency of 59.3, while mBART50 achieves high re-
sults with average consistency of 70.5, sometimes
surpassing the second-best MT model by about 9

points. This might be due to the extensive pre-
training of mBART50, as previously demonstrated
for monolingual LMs (Huang et al., 2019; Sak-
aguchi et al., 2020; Bhagavatula et al., 2020). With
respect to target languages, Russian consistency
results are systematically lower than the results in
other languages, to the extent that the best model
in Russian provides lower results than the worst
model in most other languages. In contrast, all
models in German achieve a consistency score of
about 70 or more, which can be due to its similarity
with English and the research focus on improving
English-German translations.

Consistency results on BUG are higher than on
WinoMT for most models, while sometimes sur-
passing English coreference resolvers, notably in
Hebrew and Arabic (e.g., 91.8 for Google vs. 74.6
for LINGMESS). To understand this gap, we an-
alyze the translation of 50 BUG sentences to He-
brew and French and find that most instances (45
in Hebrew and 33 in French) do not include a dis-
tracting entity which should be translated to a dif-
ferent gender in the target language. As mentioned
above (§3), our metric trivially indicates those ex-
amples as consistent.

Overall, target-side consistency results across
all datasets demonstrate that both open-source and
commercial MT systems exhibit rather poor coref-
erence capabilities compared to English corefer-
ence models.

3.3 Human Validation

The use of automatic tools in the proposed method-
ology inevitably implies the introduction of noise
into the process. To assess the quality of our mea-
surements, we randomly sampled 50 translations
of the Opus-MT model from all evaluation datasets
and in all target languages (for a total of 750 an-
notations), annotating each sample in-house by a
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native speaker of the target language. The human
annotators were asked to identify if the candidate
pronoun is indeed the target pronoun and to verify
that the gender prediction is correct. This way, we
can account for both types of possible errors, i.e.,
alignment and gender extraction.

We compare the human annotations to the output
of our automatic method and find that the average
agreement over all languages and datasets is above
90% (see full results in App. §A). These results
are comparable to the ones reported by Stanovsky
et al. (2019), who conducted human validation and
reported that their alignment and gender prediction
of the entity in question were reliable for 85% of
translations across all languages.

Some errors can be caused by idiosyncrasies that
affect the morphological analysis, as Stanovsky
et al. (2019) noted. For example, gender for certain
words in Hebrew cannot be determined without
diacritics, and some pronouns in German are used
in both masculine and neutral forms (e.g., sein), or
feminine and third-person plural forms (e.g., ihr).
In addition, we notice that sentences from BUG,
specifically in partial pro-drop languages, were
found to be more challenging for the alignment
model, and account for most mistakes in Hebrew
and Arabic.

4 Improving MT Coreference
Consistency

In the previous section we showed that the corefer-
ence performance of MT systems, obtained through
an implicit signal, seems inferior to that of coref-
erence resolution learned from an explicit signal.
This result raises the question of whether we can
leverage dedicated conference resolvers to improve
the consistency of MT coreference.

To address this question, we propose two data
augmentation techniques that leverage a source-
side English coreference model, and show that fine-
tuning on them indeed improves coreference reso-
lution in MT.

Augmented fine-tuning with instances which re-
quire coreference resolution. First, we run a
coreference resolution model on the source-side
sentences. We then consider two approaches
for constructing the augmented fine-tuning data:
(1) Coref data with all sentences that have non-
singleton clusters and (2) Gender data, a subset of
Coref data where there is at least one non-singleton
cluster with a gendered pronoun (he, she, her, him,

de es fr ru he ar

Coref data 500K 744K 761K 149K 1.1M 1.4M
Gender data 38K 50K 51K 19K 265K 268K

Table 5: Number of fine-tuning instances in Coref Data
(requiring some sort of coreference resolution) and Gen-
der data (requiring coreference resolution with some
gendered pronoun) for each target language.

hers, his). The motivation for this augmented fine-
tuning strategy is that further fine-tuning on such
instances would expose the MT model to examples
that may bear a coreference signal.

Adding explicit source-side coreference mark-
ers. Second, we use the non-singleton clusters
from the coreference model to add inline coref-
erence markers in the source sentences. For our
example sentence, this process produces the follow-
ing source-side sequence: “The trophy didn’t fit in
the <ENT1> suitcase </ENT1> because <ENT1>
it </ENT1> was too small”, indicating that “suit-
case” and “it” are coreferring.

4.1 Experimental Setup

MT models. In our fine-tuning experiments, we
opt for the Opus-MT model, since its size (68M pa-
rameters) and efficiency (Junczys-Dowmunt et al.,
2018) enables us to run extensive experiments
across many languages.

Training datasets. For fine-tuning data of Span-
ish, French, and German, we use Europarl (Koehn,
2005), and for Russian, Hebrew, and Arabic, we
use CCMatrix (Schwenk et al., 2021), randomly
sub-sampled to 5M sentences for computational
reasons. In each dataset, we find instances that
require coreference resolution and add appropri-
ate markup using the s2e coreference resolver. We
use s2e as it performed well in the previous exper-
iments. Table 5 shows the size of Coref data and
Gender data for all training datasets. Note that
invariably Gender data is an order of magnitude
smaller than Coref data.

Fine-tuning and inference. For each language,
we fine-tune the Opus-MT model using four dif-
ferent finetuning datasets: (1) Coref data (2) Coref
data with explicit coreference markers, (3) Gender
data and (4) Gender data with explicit coreference
markers. The inference on our three evaluation
datasets (Wino-X, WinoMT, BUG) conforms with
the fine-tuning procedure of each model. Namely,
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we run the models (1) and (3) on raw English sen-
tences. For the models (2) and (4), we first add
explicit coreference markers according to the out-
put of the s2e model (a) or the gold annotation (b),
then translate those augmented sentences to the
different languages.

4.2 Results

Table 6 shows the target-side coreference consis-
tency scores of all our fine-tuned models on Wino-
X and WinoMT (see App. §B for the perfor-
mance on BUG, which follow similar trends). For
both datasets, our fine-tuned models surpass the
Opus-MT baseline model, while preserving the
overall translation quality, as indicated by auto-
matic measures such as BERTScore (Zhang et al.,
2020) (+0.08%) and COMET-20 (Rei et al., 2020)
(+0.0025).

Effect of augmented fine-tuning data. The mod-
els fine-tuned on Coref data (1) and Gender data (3)
outperform the Opus-MT baseline for all languages,
both in Wino-X and WinoMT. This demonstrates
that MT models learn implicitly linguistic phenom-
ena from instances involving those phenomena.
Furthermore, we point out that consistency scores
on Wino-X are generally higher when fine-tuning
on Coref data (1, 2a, 2b) while WinoMT results
are better when fine-tuning on Gender data (3, 4a,
4b). This performance gap likely stems from the
similarity between WinoMT and Gender data (as
both include gendered pronouns), while Wino-X’s
like sentences with the pronoun “it” appear only
in Coref data. This further confirms the important
role of fine-tuning data, which is in line with the
observation of Saunders and Byrne (2020), that
smaller, more goal-oriented data is better for fine-
tuning, compared to much larger but less focused
data.

Effect of explicit coreference markers. In the
majority of our experiments (13/18), the explicit
fine-tuning models (2a and 4a) outperform the im-
plicit data augmentation approach when using the
same augmented data (1 and 3) (see examples in
Table 7). These results suggest that an explicit
monolingual signal can improve results more than
an implicit signal. Results also show that the im-
provement is more pronounced when incorporating
gold coreference markers (2b and 4b) instead of
predicted markers (2a and 2b). Hence, applying
more accurate coreference resolution models than

the s2e model will result in higher target-side con-
sistency results.

4.3 Analysis

We turn to observing the empirical effect of the
suggested fine-tuning strategies, using additional
metrics. For each sentence in Wino-X, we have the
gold target pronoun that should appear in its trans-
lation. We use it to compute pronoun translation
accuracy by comparing the candidate pronoun with
the gold target pronoun. Table 8 presents the re-
sults. We can see that our method provides a large
improvement over the baseline. Comparing these
results against those of prominent open-source and
commercial MT (see App. §D) shows that our ap-
proach outperforms other MT models in German
and Russian, and is only second in French.

In WinoMT, Stanovsky et al. (2019) computed
gender accuracy as the percentage of instances
in which the translation preserved the gender of
the entity from the original English sentence (§2).
Table 9 shows that our approach improved gender
accuracy results across all languages except Arabic.

Other metrics that Stanovsky et al. (2019) used,
are ∆S and ∆G. ∆S measures the difference in
gender accuracy between stereotypical and non-
stereotypical gender role assignments (as defined
by Zhao et al., 2017), and ∆G measures the differ-
ence in performance (F1 score) between source sen-
tences with male and female entities. Our method
decreases biases in both ∆S and ∆G by 5-6 points
on average, indicating that the explicit signal helps
the model in associating the pronoun with the core-
ferring entity, even in the presence of social and
gender biases.

5 Related Work

The study of coreference has a long tradition in
machine translation. A long line of work uses pro-
noun translation as a way of measuring coreference,
since BLEU-based evaluation was shown to be in-
sufficient for measuring improvement in corefer-
ence (Hardmeier and Federico, 2010).

An alternative evaluation methodology is using
automatic reference-based methods that produce a
score based on word alignment between the source,
reference translation, and translation output, and
identification of pronouns in them, such as Auto-
PRF (Hardmeier and Federico, 2010) and APT (Mi-
culicich Werlen and Popescu-Belis, 2017). Nev-
ertheless, a later human meta-evaluation showed
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Wino-X WinoMT

en→de en→fr en→ru en→de en→es en→fr en→ru en→he en→ar

Opus-MT 37.4 35.3 43.6 67.6 56.0 63.2 49.8 59.0 59.8
Coref data (1) 42.7 41.0 44.0 74.4 58.0 67.1 62.1 68.1 67.1
+coref markers (2a) 44.1 42.6 45.5 76.0 58.2 67.2 57.7 68.7 67.9
+gold markers (2b) 44.7 45.8 50.5 77.6 58.2 67.3 58.6 69.8 68.9
Gender data (3) 41.2 37.0 45.0 75.0 60.6 68.3 61.6 68.1 66.2
+coref markers (4a) 43.6 36.6 43.8 78.7 60.1 68.6 58.4 69.0 60.9
+gold markers (4b) 42.9 36.7 46.3 80.6 60.8 68.4 59.6 69.9 62.2

Table 6: Target-side consistency results of the Opus-MT baseline and our fine-tuning experiments on Wino-X and
WinoMT when translating into different languages. For both datasets, our fine-tuned models surpass the baseline.

Source The chef tried to store the fat in the jar but it was too large.
Baseline (FR) Le chef a essayé de stocker la graisse dans le bocal, mais il était trop grand. ✗

Ours (FR) Le chef a essayé de stocker la graisse dans le pot, mais elle était trop grande. ✓

Source The chickens escaped from the yard and fled to the field, as they found it so confining.
Baseline (FR) Les poulets se sont échappés de la cour et ont fui vers le champ, comme ils l’ont trouvé si restreint. ✗

Ours (FR) Les poulets se sont échappés de la cour et ont fui vers le champ, car ils l’ont trouvée si encombrée. ✓

Source The headphones blocked the noise but not the vibration, as it was relatively strong
Baseline (RU) Наушники блокировали шум, но не вибрацию, поскольку он был относительно сильным. ✗

Ours (RU) Наушники блокировали шум, но не вибрацию, так как она была относительно сильной. ✓

Table 7: Translation examples of Wino-X sentences to French and Russian by the baseline (Opus-MT) and our
model (with coref markers). Words in blue and red indicate male, female entities, respectively. Bold indicates
coreference mentions in the source sentence.

en→de en→fr en→ru

Opus-MT 39.8 31.7 37.0
Coref data 42.3 38.9 35.0
+coref markers 43.6 39.3 37.2
+gold markers 45.7 42.7 42.6

Table 8: Pronoun accuracy results of our fine tuning
approaches on Wino-X.

de es fr ru he ar

Opus-MT 66 60.4 56.5 50.2 56.6 59.8
Gender data 73.3 66.7 60.3 52.4 60.9 59.7
+coref markers 76.8 67.9 60.1 53.2 63.5 55.6

Table 9: Gender Accuracy results of our fine tuning
approaches on WinoMT.

substantial disagreement between these metrics and
human annotators, especially because of the exis-
tence of valid alternative translations and pronouns
than the ones used in the reference (Guillou and
Hardmeier, 2018). Based on these conclusions,
Sennrich (2017) developed a scoring-based eval-
uation approach that compares model scores of a
predefined set of correct and incorrect translations

and evaluates how often the model selects the cor-
rect option.

Our method extends (Stanovsky et al., 2019),
which used a reference-free approach by aligning
the source and candidate translation, but focused on
entity translation accuracy to evaluate gender bias
in MT models. The availability of references was
assumed by most previous work (Guillou and Hard-
meier, 2016; Bawden et al., 2018; Müller et al.,
2018; Stojanovski et al., 2020; Emelin and Sen-
nrich, 2021), where most of them are limited to a
single language pair. The flexibility afforded by a
reference-free approach allows us to evaluate any
target language for which an alignment model and
morphological analyzer are available. Moreover,
our approach is not restricted by a predefined set
of translations and can also correctly detect valid
translations that are different from the reference.

Several previous methods aimed to improve the
coreference abilities of MT models and reduce un-
desirable biases, by modifying the training data in
ways that share some similarities with our method.
Vanmassenhove et al. (2018) incorporate a “speaker
gender” tag into training data, allowing gender
to be conveyed at the sentence level. Similarly,
Moryossef et al. (2019) added a prefix to dis-
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ambiguate the coreference in the sentence. Sto-
janovski and Fraser (2018) used oracle-based ap-
proach to inject new tokens indicating the pronoun
translation and its gender into the source sentence.
Our method is novel in the way it enriches the data
with coreference signal using only the source-side
signal, and thus requires only an English corefer-
ence resolution model without the need for corefer-
ence annotation in the target language.

6 Conclusion

Our work is the first to present an automatic
methodology for assessing the coreference capabili-
ties of MT models, that can be applied in any target
language and does not require any target side anno-
tations. Furthermore, to the best of our knowledge,
we are the first to conduct a large-scale multilingual
coreference evaluation study on prominent open-
source and commercial MT models, and compare
them against state-of-the-art coreference resolvers
on three challenging benchmarks. Finally, based
on the superior results of coreference resolvers, we
propose a novel approach to improve the corefer-
ence capabilities of MT models, that outperforms
or achieves comparable results to strong and larger
MT models. Despite this substantial gain, there
is still a performance gap between our model and
state-of-the-art coreference resolvers. We hope that
our work, and specifically our automatic evaluation
methodology, will encourage future research to im-
prove the coreference capabilities of MT models.

Future work can expand our approach to account
for number and person agreement phenomena, in-
vestigate how to extend our approach to more coref-
erence clusters and more mentions per cluster in
intra-sentential as well as inter-sentential settings.
Moreover, we intend to investigate how different
morphological attributes affect MT models’ coref-
erence abilities.

Limitations

Even though our study presents the first large-scale
multilingual coreference evaluation study in MT, it
still has some limitations that could be addressed
in future work. First, our methodology provides an
upper bound to the coreference capabilities based
on detecting gender valuations. While this could
allow for a controlled evaluation experiment, this
upper bound can become non-indicative in cases
where gender assignment is not a discriminative
factor. This can be addressed by accounting for

more semantic and syntactic constraints that the
translation needs to follow (e.g., singular/plural
agreement).

Second, our setting addresses one entity and a
single co-referring pronoun in the naturalistic sen-
tences experiment. Our methodology could in prin-
ciple be augmented to deal with more coreference
clusters and mentions per cluster. Another pos-
sible extension is to include event coreference in
addition to entity coreference. For example, in this
work, we focus only on the anaphoric function of
the pronoun “it” but further research can also ex-
amine the event function of “it” (Loáiciga et al.,
2017).

Third, MT models should generally produce
translations with accurate gender inflection for all
words. However, in this work, we focus on the
coreference capabilities of MT models by evaluat-
ing gender agreement between coreferring entity
mentions. Future research can extend our evalua-
tion methodology to assess the gender inflection
of verb and adjective translation (e.g., the gender
of “big” and “small” in Figure 1), using additional
tools and resources such as a semantic role labeling
model and a dependency parser.

Finally, although in Section 4 we show big gains
from the fine-tuning approach, it is clear that there
is much room for improving the coreference capa-
bilities of MT models, especially with regard to
the performance of state-of-the-art coreference re-
solvers. We hope this work will help others develop
MT models with better coreference capabilities.
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he ar es ru fr de

alignment error 14 19 4 4 4 0
gender prediction error 7 7 0 7 2 2
correct annotation 79 74 96 139 144 148
Total # of annotation 100 100 100 150 150 150

Table 10: Human validation results on our three evalua-
tion datasets and six target languages.

A Human Validation Results

Table 10 shows the complete human annotations
results. The results indicate that alignment and
gender prediction are accurate in most languages.
In Arabic and Hebrew, the alignment error occurs
more. A possible explanation for that can be the
fact that both those languages are partial pro-drop
languages. To verify that those results will not
affect our measurement, we verified that the error
has similar consistency distributions as the rest of
our results.

B BUG Consistency Results

Table 11 presents the target-side consistency results
of the Opus-MT baseline model and all our fine
tuning approach on BUG. Similarly to Wino-X and
WinoMT, our fine-tuned models outperform the
baseline.

C Omitted Cases

Table 12 shows translation examples from English
to French and Spanish that demonstrate unique fea-
tures in each language. The first example shows a
French translation that contains a possessive pro-
noun, which does not indicate the gender of the
possessor. The second example shows a Spanish
translation where the pronoun is omitted. In both
cases, we can obtain a correct translation without
information concerning the aligned pronoun gen-
der, we therefore exclude them from the evaluation.

D Pronoun Translation Accuracy

Table 13 shows pronoun accuracy results of our
baselines on Wino-X. We can notice those results
are similar to our consistency results although our
methodology does not use any annotated target data.
Moreover, those results clearly show that MT mod-
els struggle with translating sentences that demand
solving the source side coreference resolution.
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en→de en→es en→fr en→ru en→he en→ar

Opus-MT 79.8 85.1 86.2 67.3 88.8 88.0
gender data 84.1 87.4 88.7 69.9 90.2 91.3
+coref markers 84.2 87.4 88.8 70.1 89.8 91.8

Table 11: Target-side consistency results of our implicit and explicit fine tuning approaches on BUG.

Source [Target lang.] Predicted translation Phenomenon

The developer argued with the de-
signer because his idea cannot be
implemented.

[FR.] Le développeur a argumenté
avec le concepteur parce que son
idée ne peut pas être mis en œuvre.

“son” is male because the pos-
sessed noun (“idée”) is male.

The doctor asked the nurse to
help her in the procedure

[ES.] El doctor le pidio a la enfer-
mera que le ayudara con el proced-
imiento

In Spanish, the pronoun “her” is
dropped in the translation.

Table 12: Examples of omitted sentences from our evaluation datasets and their translations. Words in blue and red
indicate male and female entities, respectively.

German French Russian

mBART50 38.1 47.2 34.7
M2M00_418M 33.8 39.5 32.4
M2M100_1.2B 38.5 39.0 33.7
Google 44.2 34.8 35.8
Microsoft 43.1 35.7 37.8
EasyNMT 39.9 31.8 37.0

Table 13: Pronoun accuracy results of commercial and
open-source MT models on Wino-X.

E Computing Infrastructure

We fine tuned our models using 4 NVIDIA GTX
Titan Black GPUs. The run time of the models
varies between one hour to 24 hours depending on
dataset size.

992



Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 993–1006
May 2-6, 2023 ©2023 Association for Computational Linguistics

Document-Level Planning for Text Simplification

Liam Cripwell
Université de Lorraine

CNRS/LORIA
liam.cripwell@loria.fr

Joël Legrand
Université de Lorraine

Centrale Supélec
CNRS/LORIA

joel.legrand@inria.fr

Claire Gardent
CNRS/LORIA

Université de Lorraine
claire.gardent@loria.fr

Abstract

Most existing work on text simplification
is limited to sentence-level inputs, with at-
tempts to iteratively apply these approaches to
document-level simplification failing to coher-
ently preserve the discourse structure of the
document. We hypothesise that by providing
a high-level view of the target document, a
simplification plan might help to guide gener-
ation. Building upon previous work on con-
trolled, sentence-level simplification, we view
a plan as a sequence of labels, each describing
one of four sentence-level simplification oper-
ations (copy, rephrase, split, or delete). We
propose a planning model that labels each sen-
tence in the input document while considering
both its context (a window of surrounding sen-
tences) and its internal structure (a token-level
representation). Experiments on two simpli-
fication benchmarks (Newsela-auto and Wiki-
auto) show that our model outperforms strong
baselines both on the planning task and when
used to guide document-level simplification
models.

1 Introduction

Text simplification aims to transform a given text
into a simpler version of itself that preserves the
core meaning such that it can be better understood
by a wider audience (Gooding, 2022). Simplifica-
tion has also been shown to be a useful preprocess-
ing step for downstream NLP tasks such as relation
extraction (Miwa et al., 2010; Niklaus et al., 2016)
and machine translation (Chandrasekar et al., 1996;
Mishra et al., 2014; Li and Nenkova, 2015; Štajner
and Popovic, 2016).

Previous research has mostly considered the sim-
plification of isolated sentences. Much work has
focused on training a statistical or a neural model
on pairs of complex and simplified sentences as-
suming that such models will learn to perform sim-
plification operations (e.g. sentence splitting, lexi-
cal simplification or syntactic rephrasing) implic-

itly from the inductive bias present in the train-
ing data (Zhang and Lapata, 2017; Nisioi et al.,
2017; Jiang et al., 2020). However, because the
training data is obtained using distant supervision
techniques and is often imbalanced in terms of sim-
plification operations (many of which occur infre-
quently (Jiang et al., 2020)), system outputs have
been found to be overly conservative, often making
no changes or being limited to the paraphrasing of
short word sequences (Alva-Manchego et al., 2017;
Maddela et al., 2021). In addition, these systems
provide limited capacity for controllability and are
unable to express alternative variants of the sim-
plified text (Alva-Manchego et al., 2017; Cripwell
et al., 2021).

In response, controllable simplification systems
have been proposed which either constrain at-
tributes of the output (length, amount of paraphras-
ing, lexical and syntactic complexity) (Martin et al.,
2020) or explicitly specify which simplification op-
eration to perform (Alva-Manchego et al., 2017;
Dong et al., 2019; Malmi et al., 2019; Scarton et al.,
2020; Maddela et al., 2021; Cripwell et al., 2022).

To guide the simplification of full documents,
we combine the power of data-driven neural gener-
ative models with strategies from controllable sim-
plification. Our hypothesis is that document-level
simplification can be facilitated by a plan specify-
ing how each complex input sentence should be
transformed to yield a simplified version of that
document - should it be copied, deleted, split or
rewritten?

We make the following contributions: We
present a model for predicting document simpli-
fication plans which leverages both the context of
sentences and their internal structure (the words
they consists of). We create the data necessary to
train this model by labelling complex sentences
in simplification corpora with the simplification
operation that relates it to the corresponding sim-
plified sentence. We compare our planning model
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with several alternative neural architectures and we
briefly examine the impact of planning on docu-
ment simplification.

Experiments on two simplification benchmarks
(Newsela-auto and Wiki-auto) show that our model
outperforms strong baselines both on the planning
task and when used to guide document-level sim-
plification models. 1

2 Related Work

Document-Level Simplification. There is lim-
ited existing work on document-level text simpli-
fication. Early attempts largely applied sentence-
level techniques iteratively over a document (Wood-
send and Lapata, 2011a; Alva-Manchego et al.,
2019b). However, this is generally viewed as insuf-
ficient for certain operations and maintaining the
discourse coherence of the document (Siddharthan,
2003; Alva-Manchego et al., 2019b).

There are several works that address sub-
problems of simplification that only consider a
limited set of operations, like paraphrasing and
sentence re-ordering (Lin et al., 2021), insertion
(Srikanth and Li, 2021) or deletion (Zhong et al.,
2020; Zhang et al., 2022). Others fully address
simplification but only extend inputs to the level of
paragraphs without clearly differentiating the prob-
lem from the sentence-level (Laban et al., 2021;
Devaraj et al., 2021).

Recently, Sun et al. (2020) proposed a sentence-
level model (SUC) that uses an encoding of sur-
rounding sentences as context information to in-
fluence the simplification. They use two extra en-
coders to build a representation of the two pre-
ceding and two following sentences, which are at-
tended over in their encoder-decoder generative
model. However, when applied to the document-
level task, their system was unable to outperform
any baseline systems (Sun et al., 2021).

Operation Prediction. Revision-based simplifi-
cation models learn to predict edit operations to
apply at the token-level rather than generating the
entire simplification from scratch (Alva-Manchego
et al., 2017; Dong et al., 2019; Kumar et al., 2020;
Omelianchuk et al., 2021; Dehghan et al., 2022).
This has the benefit of providing more control and
interpretability over generative approaches, often
at the cost of the ability to perform major struc-
tural changes. It also allows some systems to lever-

1Pretrained models, code, and data are available at https:
//github.com/liamcripwell/plan_simp.

age non-autoregressive generation strategies, result-
ing in faster inference times (Malmi et al., 2019;
Omelianchuk et al., 2021).

Some works have attempted to predict rewrite
operations at the sentence-level. Applying a binary
classifier to predict whether simplification should
be performed has been found to improve SARI
results, reducing conservatism and spurious trans-
formations (Scarton et al., 2020; Garbacea et al.,
2021). Others have proposed multi-class systems
to predict sentence-level operations that are then
used to condition a generative model (Scarton and
Specia, 2018; Scarton et al., 2020; Cripwell et al.,
2022). These show some capacity for general im-
provement over end-to-end systems, while also sig-
nificantly improving performance for specific op-
erations (e.g. splitting in the case of Cripwell et al.
(2022)).

At the document-level, there has been limited
interest to date. However, there are recent works
specifically looking at predicting sentence deletions
(Zhong et al., 2020; Zhang et al., 2022). Both of
these use features of the discourse structure from
surrounding sentences to identify likely deletion
candidates.

We bring all of these methods together by
proposing a system that uses both sentence and
document-level information to predict a multi-class,
sentence-level operation plan over an entire docu-
ment.

3 Problem Formulation

Let C denote an English language document. The
aim of document-level simplification is to produce
a text S that simplifies the input document C.

As a plan can provide a high-level view of a doc-
ument, we hypothesize that a document-level sim-
plification model that is based on a plan specifying
a simplification operation for each input sentence
should fare better than a simplification model that
directly simplifies an entire document.

We therefore decompose simplification into a
two-stage generation process:

p(S | C) = p(S | C,P )p(P | C)

where input document C = c1 . . . cn is a se-
quence of complex sentences, S = s1 . . . sk is a
sequence of simplified sentences and P = o1 . . . on
is a sequence of sentence-level simplification oper-
ations for C.
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We consider three simplification operations pro-
posed in previous work on sentence simplifica-
tion (copy, rephrase, and split) to which we add
delete, an operation that is needed to account for
the fact that, contrary to sentence simplification,
document-level simplification can require for a sen-
tence present in the input document to be excluded
from the resulting simplified document.

Given the input document C, the first-stage
model aims to predict the sequence of simplifica-
tion operations P that should be applied to each
individual sentence in that document. The second-
stage model generates the output simplified docu-
ment S conditioned on the input document C and
its accompanying simplification plan P .

In this work, we focus on the planning stage,
comparing different architectures and demonstrat-
ing the impact of planning on three possible
document-level simplification models. We leave
the exploration of alternative, more complex archi-
tectures for the simplification stage to future work.

Wiki-auto Newsela-auto

# Doc Pairs 85,123 18,319
# Sent Pairs 461,852 707,776

Avg. |C| 155.51 868.98
Avg. |S| 97.72 674.94
Avg. |ci| 28.64 22.49
Avg. |si| 21.57 15.84

Avg. n 5.43 38.64
Avg. k 4.53 42.60

Table 1: Statistics of each dataset after preprocessing,
where n is # sentences in C and k is # sentences in S.

4 Data

In this section we introduce the datasets used, ex-
plain how annotation is performed for each com-
plex sentence and describe other preprocessing
steps.

Dataset. For all experiments, we utilise Wiki-
auto and Newsela-auto (Jiang et al., 2020), two
datasets of English documents paired with their
simplification. These datasets were derived from
WikiLarge (Zhang and Lapata, 2017) and Newsela
(Xu et al., 2015) by aligning the input document
with the output simplification at both the sentence
and the paragraph level.

WikiLarge gathers three simplification datasets
which were automatically-collated from English
Wikipedia and Wikipedia simple (Zhu et al., 2010;

delete

29.17%
copy

20.64%

rephrase

39.01%
split

11.18%

Operation Distribution (Wiki-auto)

delete
16.69%

copy

26.06%

rephrase

35.49%

split

21.75%

Operation Distribution (Newsela-auto)

Figure 1: Operation class distributions for Wiki-auto
(top) and Newsela-auto (bottom) datasets.

Woodsend and Lapata, 2011b; Kauchak, 2013).
Newsela consists of news articles, each manually

rewritten at five different levels of simplification,
corresponding to discrete reading levels (0-4) of
increasingly simplicity. Aligned pairs are created
by pairing every article version with each other
version corresponding to a higher reading level.
Because of this, there can be up to four aligned
document pairs that contain the same document as
either the input or the output.

The types of operations present in different read-
ing level pairings differs significantly, with adjacent
level transitions being extremely conservative (no
instances of deletion throughout entire dataset). To
mitigate any issues arising from this, all models
we train with Newsela-auto receive a control-token
at the start of the input which specifies the target
reading level.

We do not use the D-Wikipedia dataset from
Sun et al. (2021) as it does not contain sen-
tence/paragraph alignments and is poorly format-
ted. In particular, all text is lower-cased and pretok-
enized in a way that makes it difficult to accurately
parse sentences. There are also regular formatting
issues at points where references exist in the source
article.

Annotating Complex Sentences. Using the
pairs (ci, sj) of complex and simplified sentences
available in Wiki-auto and Newsela-auto, we
heuristically assign a silver simplification opera-
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tion label to each complex sentence ci in these two
datasets as follows:

Delete: ci is not aligned to any sj .
Copy: ci is aligned to a single sj with a Leven-

shtein similarity above 0.92.
Rephrase: ci is aligned to a single sj with a

Levenshtein similarity below 0.92.
Split: ci is aligned to multiple sjs.

Preprocessing. Wiki-auto contains many docu-
ment pairs with wildly different sizes. We therefore
clip all complex documents after the last aligned
paragraph. Many simple articles resemble a sum-
marization, rather than a simplification of the com-
plex article (lots of deletion, often consisting of
about one sentence from each paragraph in C). Be-
cause of this, we also remove documents where
more than 50% of aligned sentences are labelled as
delete. Finally, we remove all articles that exceed
1024 tokens (so that we can fit them into a BART
baseline generative model).

For Newsela-auto, article pairs are much more
even in length as they are manually created to be
gradual, direct simplifications of each other. We
perform the same length-based filtering to exclude
documents that will not fit into a baseline genera-
tive model.

Train/Dev/Test Split. For both datasets we use
a train/validation/test split of 92.5/2.5/5. This is ap-
plied at the document-level so that sentences from
the same document will not exist across different
sets. For Newsela, this means that all reading level
versions of a single article will exist within the
same set.

Table 1 and Figure 1 give some statistics and
a graphical description of the two datasets after
pre-processing.

5 Planning

We present our model and four alternative models
we explored for comparison. Training details are
given in Appendix A.

5.1 Model (Contextual Classifier)

Given some input document C = c1 . . . cn
consisting of n complex sentences ci, the task
of the planner is to predict a sequence P̂ =
ô1 . . . ôn of n simplification operations with ôi ∈
{copy, rephrase, split, delete}.

One challenge with this is that the operations
have different, sometimes conflicting requirements.

Figure 2: Contextual classifier model architecture.

By construction, splitting is mostly context inde-
pendent as it is mainly determined by the input
sentence’s internal structure: a sentence will be
split only if it has the appropriate syntactic (e.g.,
The man who sleeps snores→ The man sleeps. He
snores.) or discourse (e.g., John went shopping
after he left work→ John left work. Afterwards he
went shopping.) structure. For sentence splitting,
context (the other sentences in the input document)
has little impact.

In contrast, deletion and to a lesser extent, copy
and rephrase are mostly context dependent. Intu-
itively, a sentence can only be omitted in the simpli-
fied text in cases where it is either redundant with,
or of minor semantic import relative to, other sen-
tences in the document. That is, while for splitting,
internal sentence structure is the key factor, for
deletion, it is the semantics of the input sentence
and how it relates to that of the other sentences
which matters most.

We model these different requirements by us-
ing a token level encoder for the target document
sentence ci (the input sentence to be labelled with
a simplification operation) and a sentence level
representation of the context where each cp ∈
c1 . . . ci−1, ci+1 . . . cn is represented by a sentence
level embedding using SBERT. In this way both
the internal structural information needed to cap-
ture splitting operations and the contextual informa-
tion required by the other operations are provided.
Specifically, we propose a model for planning that
combines a classifier with cross-attention over the
(dynamic or static) context and two types of posi-
tional embeddings. Figure 2 illustrates our model
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(a) Dynamic Contextual Classifier (b) Classifier

(c) Contextual Classifier (d) Tagger

(e) Tagger+Dec (f) EncDecfull

Figure 3: Visualisation of the inputs/outputs of the various models, where wi,t is the tth token in ci, n is the
no. sentences in C and m is the no. tokens in C. Sentence-level representations are shown in red, token-level
representations in teal, operation labels in pink, and unused parts of C in grey.

architecture.

Classifier with Cross-attention over the Con-
text. We build upon a RoBERTa classifier archi-
tecture to enable conditioning upon the surrounding
sentences in the document. We do this by insert-
ing an additional cross-attention layer between the
self-attention and the feed-forward layer of each
transformer block, allowing the model to attend to
a latent representation of the surrounding sentences,
Zi.

Context Representation. To obtain Zi, we take
a fixed window of radius r, extract the r sentences
on either side of the target sentence to be simplified
and concatenate the representation of each of these
sentences. Each context sentence is encoded with
the pretrained Sentence-BERT (SBERT) model2

(Reimers and Gurevych, 2019) and combined with
custom learnt positional embeddings.3

To better simulate autoregressive inference, we
consider a strategy where the left context consists
of previously simplified sentences, rather than com-
plex ones. We refer to this as dynamic context. At
training time, we use the ground truth simplifica-
tions

Contexti,r =Concat(sj−r..j−1, ci..i+r) (1)

where j ∈ {1, . . . , |S|} is the index of the first
sentence aligned to ci in the simple document S.

2Specifically, all-mpnet-base-v2.
3At training time, we backpropogate to the positional em-

bedding layers but keep the SBERT weights frozen.

During inference, the simplifications generated at
preceding timesteps ŝj−r..j−1 are used.

Positional Embeddings. We use custom posi-
tional embeddings to encode both information
about document, and relative context-window po-
sitions. These are each handled by a dedicated
embedding layer and added to the representations
of the corresponding context sentence.

Document positional embedding indices are sim-
ply the document quintile (1-5) that a given sen-
tence falls into. We use quintiles as this will en-
sure that all indices are encountered within the
input document. The context positional embed-
ding indices are the relative distance of a given
sentence from the input sentence ci, adjusted to be
within N0 : ContextPosIdxs = {p − i + r | p ∈
{i− r, . . . , i+ r}}.
Initialisation. Given that the cross-attention lay-
ers must be trained from scratch, the start of train-
ing can see a lot of instability in the model, po-
tentially making it more difficult to model context-
independent features of the input sentence. To ac-
count for this, we initialise the RoBERTa layers
with weights from a context-independent classifier.

5.2 Alternative Models
We compare our model with four alternative mod-
els. The different inputs/outputs of the models are
illustrated in Figure 3.

Classifier. We fine-tune pretrained
RoBERTa-base (Liu et al., 2019), which
has 12 hidden layers and a hidden size of 768, and
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Wiki-auto

Model C R S D Micro Macro

EncDecfull 26.9 42.2 36.0 51.8 43.2 40.8
Tagger+Dec 29.3 54.5 30.0 51.8 47.7 41.4
Tagger 38.6 54.2 31.7 58.5 50.6 45.8
Classifier 42.1 52.9 42.6 49.0 48.4 46.7

Dyn. Context 44.8 57.9 42.4 54.8 52.8 50.0
+ docpos 43.7 55.4 43.6 56.7 52.3 49.9

Newsela-auto

C R S D Micro Macro

26.1 10.8 11.7 9.0 12.2 11.5
72.2 73.9 75.9 79.7 75.0 75.4
71.4 72.7 74.1 78.4 73.7 74.1
77.0 75.6 80.0 78.5 77.4 77.8

79.3 77.3 82.8 81.4 79.7 80.2
80.0 78.1 83.6 82.0 80.3 80.8

Table 2: Planning Accuracy. Dyn. Context is the contextual classifier described in Section 5.1 with r = 13,
dynamic context and weights initialised using the classifier weights (C: Copy, R: Rephrase, S: Split, D: Delete).

add a pooled classification head which takes the
final layer [CLS] representation as input. Given
an input sentence ci, the model simply takes
the tokenized sentence as input and outputs a
prediction score for each operation class. The
model is applied from left-to-right on the input
document classifying each sentence in turn. Thus,
in this approach, while the model has access to
the tokens of the sentence to be classified, there is
no notion of context which, intuitively, should be
detrimental in particular for deletions.

Tagger. We consider a model that frames the
problem as a sequence tagging task over the full
document, predicting the entirety of P̂ at once.
Each ci is encoded using the same SBERT model
as the contextual classifier, with the input document
C therefore being represented as a sequence of sen-
tence embeddings. In contrast to the classifier, the
tagger makes predictions based both on the input
sentence to be classified and on the context. How-
ever, because the input representation at each index
is for an entire sentence we lose some resolution
with respect to token-level content. The approach
is thus less adapted for splitting.

Tagger+Dec. We also consider an autoregres-
sive variant of the tagger that better models the
dependencies between predicted tags. Here, we
include a 1-layer decoder and condition each pre-
diction both on the input document and on the
previously predicted operation tags for the earlier
sentences. This approach is somewhat similar to
Dong et al. (2019); Malmi et al. (2019), except
we abstract to the document-level and do not re-
quire explicit realisation, as this will be handled
downstream by the simplication model.

EncDecfull. Finally, we experiment with an
encoder-decoder variant that conditions on a token-
level representation of the input, thereby combining

a global view and a token-level representation of
the input document. We use sentence separator
tokens to delimit each sentence in the input docu-
ment.

5.3 Evaluation Metrics

To evaluate the performance of the various plan-
ners we use F1-score, considering each individual
prediction at the sentence-level. We report the F1
for each operation class as well as both the micro
and macro averages. The micro F1 weights all ex-
amples equally, whereas the macro re-weights ex-
amples such that each class is represented equally
in the final score. Given the class imbalances in the
data, we regard macro F1 as our primary metric.

5.4 Results

Table 2 summarizes the results.
Compared to the various baselines, our model

consistently shows best results on both datasets.
The improvement over the context-free classifier is
slightly less on Newsela-auto however. We conjec-
ture that the much larger dataset and additional
guidance provided by the reading levels allows
the classifier to achieve rather high accuracy with-
out document-level context. We also note that the
context-free classifier is markedly outperformed by
other models with respect to delete, which confirms
the intuition that context modeling particularly mat-
ters for this operation.

Of the four baselines, EncDecfull performs worst
presumably because the very long input (the whole
context is modelled at the token level) challenges
the attention mechanism which tends to become
blurry as the length of the input increases. This is
particularly apparent on the longer Newsela docu-
ments.

The tagger models, which both use sentence-
level encodings of the complex document, perform
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Model Copy Rephrase Split Delete Micro Macro

(a) Ablation on Best Model
Dyn, r = 13, +init, +docpos 80.0 78.1 83.6 82.0 80.3 80.8
-docpos 79.3 77.3 82.8 81.4 79.7 80.2
-init 74.9 72.1 77.8 75.2 74.6 75.0
-init, -docpos 75.6 72.0 77.7 77.1 75.1 75.6

(b) Dynamic vs. Static Context
Stat, r = 9 71.3 69.5 75.4 73.3 72.0 72.4
Stat, r = 13 72.2 65.3 69.9 68.3 68.5 68.9
Dyn, r = 9 73.1 70.1 75.5 75.9 73.1 73.6
Dyn, r = 13 75.6 72.0 77.7 77.1 75.1 75.6

(c) With vs without Initialisation
Dyn, r = 9 73.1 70.1 75.5 75.9 73.1 73.6
Dyn, r = 9 +init 79.3 78.0 82.7 79.8 79.7 80.0
Dyn, r = 13 75.6 72.0 77.7 77.1 75.1 75.6
Dyn, r = 13 +init 79.3 77.3 82.8 81.4 79.7 80.2

(d) Window Size
Stat, r = 9 71.3 69.5 75.4 73.3 72.0 72.4
Stat, r = 13 72.2 65.3 69.9 68.3 68.5 68.9
Dyn, r = 9 73.1 70.1 75.5 75.9 73.1 73.6
Dyn, r = 13 75.6 72.0 77.7 77.1 75.1 75.6
Dyn, r = 9 +docpos 73.8 72.9 77.2 75.8 74.6 74.9
Dyn, r = 13 +docpos 74.9 72.1 77.8 75.2 74.6 75.0
Dyn, r = 9 +init +docpos 79.4 78.0 83.1 82.0 80.1 80.6
Dyn, r = 13 +init +docpos 80.0 78.1 83.6 82.0 80.3 80.8

Table 3: Ablations on Newsela-auto TestSet.

worse than the classifier. This highlights the impor-
tance of having a token-level modeling of the input
sentences.

We observe a strong difference in terms of abso-
lute scores between the two datasets. This is likely
a result of Wiki-auto being an inferior simplifica-
tion corpus (discussed in Section 4).

Next, we examine the impact of our modeling
choices using ablation (Table 3) and focusing on
the higher-quality, Newsela-auto dataset. Our best
model is one with dynamic left-context, a context
radius of 13, document position embeddings and
weight initialisation. We see (Sub-table a) that each
of these components help improve performance
(document position appears less important with
a larger context window). Sub-tables b-d show
that using a dynamic rather than a static context
increases results by up to +6.7 Macro F1, while in-
creasing the context radius from 9 to 13 sentences
mostly improves performance when dynamic con-
text is used. Using document positional embed-
dings also generally improves results (Sub-table
d).

6 Simplification

To assess whether document plans can help im-
prove simplification models, we experiment with

two simple document-level simplification models
and compare their performance with and without a
preceding planning step.

6.1 Simplification Models

All models use the BART model (Lewis et al.,
2020) fine-tuned on aligned text pairs. 4

We consider two variants for document-level
simplification: (i) Doc-BART, which is finetuned
on full document pairs; and (ii) Sent-BART which
is finetuned on sentence pairs and iteratively ap-
plied to each input sentence at test time.

We compare these to various plan-guided (PG)
systems whereby one of our planners predicts an
ôi for each ci and is given as a control-token to a
sentence-level BART simplification model. In the
case of the dynamic planner, ôi is predicted based
on the sequence of previously simplified sentences
ŝi−r . . . ŝi−1.

Training details are given in Appendix B.

6.2 Evaluation

To measure meaning preservation and fluency, we
use BARTScore (Yuan et al., 2021), a state-of-the-

4We use the pretrained facebook/bart-base model
from https://huggingface.co/facebook/
bart-base.
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System BARTScore ↑ SMART ↑ FKGL ↓ SARI ↑ Length

Faith. P R F1 P R F1 Tokens Sents
(s→ h) (r → h) (h→ r)

Input -0.93 -2.47 -1.99 -2.23 63.2 62.7 62.8 8.44 20.52 866.9 38.6
Reference -1.99 -0.93 -0.93 -0.93 100 100 100 4.93 99.99 671.5 42.6

Doc-BART -2.48 -2.68 -2.76 -2.72 61.9 43.9 50.6 10.01 47.07 600.8 20.7
Sent-BART -1.86 -1.63 -1.56 -1.60 78.9 80.1 79.3 5.03 73.02 666.4 42.6

PGTag -1.95 -2.22 -2.18 -2.20 62.0 62.6 61.6 5.07 56.13 657.4 41.8
PGTag+Dec -1.94 -2.22 -2.18 -2.20 62.2 62.5 61.6 5.09 56.06 654.2 41.4
PGClf -1.91 -1.68 -1.53 -1.60 77.8 81.2 79.3 4.95 73.83 688.8 44.5
PGDyn -1.91 -1.60 -1.54 -1.57 80.2 81.0 80.5 4.98 75.00 667.2 42.6

PGOracle -1.93 -1.39 -1.40 -1.40 85.5 85.0 85.3 4.91 80.74 655.6 42.1

Table 4: Results of document simplification systems on Newsela-auto. For BARTScore, s is the source, h is the
hypothesis, and r is the reference.

art summarization metric that has proved effective
on many other text generation tasks. We also com-
pute SMART (Amplayo et al., 2022), a new met-
ric that considers sentences as the primary unit of
comparison. It was shown to be highly effective
for document summarization and does not use any
neural model, making it very fast to compute (we
use the SMARTL+CHRF version). We cannot use
other model-based metrics, such as BERTScore or
QuestEval, as these do not support texts longer than
512 tokens.

To assess simplicity, we use the Flesch-Kincaid
grade level (FKGL), a document-level metric used
to measure text readability, which has been found
to have the highest correlation with simplicity mea-
sures of human-written simplifications (Scialom
et al., 2021). We also report the popular SARI (Xu
et al., 2016). The EASSE python library (Alva-
Manchego et al., 2019a) is used for calculation
of FKGL and SARI. We include results for other
popular metrics in Appendix D.

At test time we generate sequences using beam
search with a beam size of 5 and a maximum length
of 1024 tokens. We enforce a minimum length for
Doc-BART, which is tuned on the validation set.

We do not conduct a human evaluation as we
intend the focus of this work to be on the planning
component and include simplification results only
to confirm its efficacy. We leave a more in-depth
investigation of the interaction between planning
and document-level simplification to future work.

6.3 Results

Results can be seen in Table 4.
PGDyn achieves the highest results of all systems.

Using the silver operation labels (PGOracle) leads to

a substantial further increase in performance across
every metric, highlighting the impact of planning
and pointing to the possibility of further improve-
ments to be made.

Using either PGDyn or PGClf yields generally bet-
ter results than Sent-BART. Both systems achieve
better FKGL and SARI, suggesting greater out-
put simplicity. Sent-BART achieves much higher
source-oriented BARTScore (faithfulness) than
even the references, suggesting some conservativity
in its transformations.

PGClf achieves slightly higher recall BARTScore
than PGDyn, while also generating the longest out-
puts, both in terms of tokens and sentences. This
suggests it is less effective at identifying sentences
for deletion, confirming our hypothesis that con-
text is key for deletion. We can see here that the
rank order of SMART matches that of BARTScore,
suggesting it is similarly suited for simplification.

Both PGTag and PGTag+Dec perform quite badly
relative to the other PG systems and Sent-BART.
However, Doc-BART is by far the worst perform-
ing system, presumably a result of it failing to prop-
erly handle the long document lengths.

7 Conclusion

In this paper we present an approach to document
simplification that decomposes the task into a two-
stage process of planning and generation. We pro-
pose a planning system that is able to take docu-
ment context and structure into account to produce
a coherent high-level simplification plan. By using
this plan to guide a sentence-level simplification
model, we are able to outperform end-to-end sys-
tems in terms of both meaning preservation and
simplicity.

1000



We leave for future work the development of
dedicated simplification models that can leverage
a document-level plan while also considering con-
textual information directly during generation.
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9 Limitations

All models we propose are only trained with En-
glish datasets and therefore do not extent to other
languages. There are also additional high-level
simplification operations for which our planning
framework does not offer support, such as sentence
reordering, insertion, and fusion.

Furthermore, the Newsela dataset which we
use in our experiments requires a license to use,
meaning that researchers cannot fully reproduce
our work without first obtaining said license from
Newsela Inc. Due to this constraint and the
low-quality alignments observed within the Wiki-
auto dataset, we strongly encourage any work to-
wards producing new open-access datasets for the
document-level simplification task.
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A Training Details for the Planning
Models

Each model was trained with a learning rate of
1e−5, a batch size of 32 and a dropout rate of 0.1.
We ran experiments on a computing grid with 2×
Nvidia A40 GPUs (45GB memory).

For the contextual classifier, we test with r
values of 9 and 13, subject to findings in Ap-
pendix C. All layers in common with the stan-
dard RoBERTa architecture are initialised with
the RoBERTa-base pretrained weights. All
added positional embedding layers are also ini-
tialised with the pretrained weights from the
RoBERTa-base positional embedding layer. All
other layers are randomly initialised.

B Training Details for the Simplification
Models

For all generative models, we used a learning rate
of 3e−5, a batch size of 16, and performed dropout
with a rate of 0.1 and early stopping. The network
has 6 layers in each of the encoder and decoder,
with a hidden size of 768. All models were trained
on a computing grid using 2× Nvidia A40 GPUs
(45GB memory) in under 24 hours.

C Context Window Size

To determine the optimal context window size for
the contextual planner we ran a series of experi-
ments with varying values of the radius, r. We
used 100,000 random examples from the Newsela-
auto (non-adjacent reading levels) training set and
trained a model with each of the configurations for
5 epochs. Results can bee seen in Figure 4.

The deletion operation is most affected by the in-
clusion of context, with performance rapidly rising
as r grows to 13. The rephrase operation appears
to slowly degrade in performance as r increases,
while the other two operations show no obvious
pattern. We also observe that r = 9 produces the
highest macro F1.

D Extra Evaluation Results

For clarity, we provide scores for a wider range
of simplification evaluation metrics that were not
included in the main body of the paper in Table 5.
These mostly include popular metrics used for sen-
tence simplification that we do not believe adapt
as well to the document-level setting, do not pro-
vide further insight into system differences, or have
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Figure 4: Effect of context window size on F1 scores.

not recieved much support in the literature. Speci-
fially, we include BLEU (Papineni et al., 2002),
and full operation scores for both SARI and D-
SARI (Sun et al., 2021). For D-SARI, we apply the
document-level penalties on top of the base EASSE
implementation of SARI.

We can see that the main SARI differences be-
tween the context-free planner and Sent-BART is
that Sent-BART achieves higher keep, while the
planner achieves higher add. This suggests that
Sent-BART is likely more conservative in edits.
Further, as the planner does not have access to con-
textual content, it is likely failing to consistently
copy/delete the correct parts of the text.

E Example Planner Predictions

Figure 5 shows example snippets of planner model
outputs. We have selected representative extracts
that highlight the strengths and weaknesses of the
main models. We do not include outputs from Tag-
ger as they are virtually identical to Tagger+Dec
in most cases and therefore do not provide further
insight.

F Example Simplification

Figure 6 shows system output examples for the
simplification models. We only show texts from
Wiki-auto as they are easier to showcase due to
their shorter length, as well as their being licensing
restrictions for Newsela content.
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System BLEU ↑ D-SARI ↑ add keep delete SARI ↑ add keep delete

Input 46.2 8.76 0.0 26.29 0.0 20.52 0.0 61.56 0.0
Reference 100.0 99.98 99.99 99.97 99.99 99.99 100 99.97 99.99

Doc-BART 31.13 30.60 16.54 25.01 50.24 47.07 20.41 55.40 65.40
Sent-BART 70.74 66.27 53.89 71.95 72.95 73.02 55.91 83.66 79.48

PGTag 48.08 42.96 31.70 44.01 53.17 56.13 35.61 65.61 67.18
PGTag+Dec 48.12 43.31 31.57 44.68 53.69 56.06 35.54 65.54 67.11
PGClf 70.84 62.97 56.31 65.15 67.47 73.83 57.62 83.56 80.32
PGDyn 72.41 67.42 56.83 71.82 73.61 75.00 58.88 84.75 81.36

PGOracle 78.97 77.02 63.44 83.92 83.70 80.74 65.22 89.94 87.05

Table 5: Extra results for document simplification experiments on Newsela-auto.

(a) (b)

(c) (d)

Figure 5: Example planning results for various models. Subfigures show representative snippets from Newsela-
auto test-set documents. The silver labels are shown above in yellow, and system outputs are shown on the rows
below with correct predictions in green and incorrect predictions in red. ClfDyn is our best performing model,
the contextual classifier with dynamic context. Figure 5a shows a case where there are lots of context-agnostic
operations (rephrase, split) resulting in poor performance from Tagger+Dec. Figure 5b shows a varied snippet
where ClfDyn appears to be the best at identifying both rephrase and split, as well as delete. Figures 5c and 5d
show that Tagger+Dec is capable of performing well in situations demanding a lot of context-dependent operations
(copy, delete).

1005



System Output

Complex Silvano "Nano" Campeggi (January 23, 1923 – August 29, 2018) was an Italian artist who designed and
produced the artwork for the posters of many classic Hollywood films. His iconic images are associated
with the golden era of Hollywood and Campeggi is now generally regarded as the most important graphic
artist and poster designer in the history of American cinema. In the following decades, Campeggi designed
and produced the poster and advertising graphics for over 3000 films, working not only under contract with
the MGM studios, but also with Warner Brothers, Paramount, Universal, Columbia Pictures, United Artists,
RKO, Twentieth-Century Fox and several other movie studios. Sixty-four of the films he illustrated won
Oscars, including "Casablanca", "Ben-Hur", "Singin’ in the Rain", "An American in Paris", "West Side Story",
"Exodus", "Breakfast at Tiffany’s", and "Gigi". Campeggi died on 29 August 2018, at the age of 95.

Simple Silvano "Nano" Campeggi (January 23, 1923 – August 29, 2018) was an Italian artist. He designed and
produced the artwork for the posters of many classic Hollywood movies. Campeggi was known for his poster
designs for "Casablanca", "Singin’ in the Rain", and "Breakfast at Tiffany’s". Campeggi died on August 29,
2018 in Florence from respiratory failure at the age of 95.

Doc-BART Silvano "Nano" Campeggi (January 23, 1923 – August 29, 2018) was an Italian artist. He designed and
produced the artwork for the posters of many classic Hollywood movies, including "Casablanca", "Ben-Hur",
"Singin’ in the Rain", "An American in Paris", "West Side Story", "Exodus", "Breakfast at Tiffany’s", "Gigi",
and "".

Sent-BART Silvano "Nano" Campeggi (23 January 1923 – 29 August 2018) was an Italian artist. He designed and produced
the artwork for the posters of many classic Hollywood movies. Campeggi is generally regarded as the most
important graphic artist and poster designer in the history of American cinema. Campeggi designed and
produced the poster and advertising graphics for over 3000 movies, working not only under contract with
the MGM studios, but also with Warner Brothers, Paramount, Universal, Columbia Pictures, United Artists,
RKO, Twentieth Century Fox and several other movie studios. Sixty-four of the movies he illustrated won
Oscars, including "Casablanca", "Ben-Hur", "Singin’ in the Rain", "An American in Paris", "West Side Story",
"Exodus", "Breakfast at Tiffany’s", and "Gigi". Campeggi died on 29 August 2018, at the age of 95.

PGDyn Silvano "Nano" Campeggi (January 23, 1923 – August 29, 2018) was an Italian artist. He designed and
produced the artwork for the posters of many classic Hollywood movies. Sixty-four of the movies he illustrated
won Oscars, including "Casablanca", "Ben-Hur", "Singin’ in the Rain", "An American in Paris", "West Side
Story", "Exodus", "Breakfast at Tiffany’s", and "Gigi". Campeggi died on 29 August 2018 at the age of 95.

Table 6: Simplification outputs for a specific document pair example. Although Newsela-auto is the focus of our
simplification experiments, we can only include example documents from Wiki-auto due to licensing constraints.
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Abstract

Aspect-based sentiment analysis (ABSA) has
attracted broad attention due to its commer-
cial value. Natural Language Generation-based
(NLG) approaches dominate the recent ad-
vance in ABSA tasks. However, current NLG
practices are inefficient because most of them
directly employ an autoregressive generation
framework that cannot efficiently generate loca-
tion information and semantic representations
of ABSA targets. In this paper, we propose
a novel framework, namely Efficient Hybrid
Generation (EHG) to revolutionize traditions.
Specifically, we leverage an Efficient Hybrid
Transformer to generate the location and se-
mantic information of ABSA targets in parallel.
Besides, we design a novel global hybrid loss
function in combination with bipartite match-
ing to achieve end-to-end model training. Ex-
tensive experiments demonstrate that our pro-
posed EHG framework greatly improves the
efficiency of NLG-based methods and outper-
forms the competitive baselines in almost all
cases.

1 Introduction

Aspect-based sentiment analysis (ABSA) enjoys
broad commercial value, e.g., analyzing customer’s
opinions through review data to improve products.
ABSA consists of four basic sentiment elements,
including aspect term, opinion term, aspect cate-
gory and sentiment polarity. Illustrated in Fig. 1,
the aspect terms a1, a2 in the sentence belong to
the aspect categories c1, c2 , respectively, and their
corresponding opinion terms are o1, o2 , with senti-
ment polarity s1, s2. For simplicity, we name the
aspect term and opinion term as sentiment entities
(SE), and the aspect category and sentiment polar-
ity as sentiment abstractions (SA). The majority
of ABSA subtasks utilize sentences as input and
the combination of SE and SA as output, so we
define the output set of all ABSA subtasks as sen-
timent tuples (ST). Fig. 1 shows all the subtasks

Sentence: The food is delicious, but the service is not good
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Aspect Term Extraction(AE): Extracting all the aspect terms

Opinion Term Extraction(OE): Extracting all the opinion terms 

Aspect Term Extraction and Sentiment Classification(AESC):
Extracting all aspect terms and their corresponding sentiment polarity 

Aspect Opinion Pair Extraction (AOPE):
Extracting all aspect terms and their corresponding opinion terms

Aspect Sentiment Triplet Extraction (ASTE):
Extracting all aspect terms and their corresponding opinion terms 
and sentiment polarity

Target Aspect Sentiment Detection (TASD):
Extracting all aspect terms and their corresponding aspect categories 
and sentiment polarity
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Figure 1: The six ABSA subtasks studied in this
work, where a1=food, a2=service, c1=food quality,
c2=service general, o1=delicious, o2=not good,
s1=positive, s2=negative.

studied in this work.
Natural Language Understanding (NLU) based

approaches were utilized in early research for mod-
eling ABSA problems. The Two stage pipeline, i.e.,
using a sequence tagging model to extract SE, then
using a classification model to distinguish SA (Li
and Lam, 2017; Ma et al., 2017; Xue and Li, 2018;
Fan et al., 2019), ignored the semantics of the la-
bels and propagated error in a not end-to-end man-
ner. Besides, unique end-to-end NLU variants were
proposed to enhance the information interaction
between elements within ST, however, these ap-
proaches suffered from complex model design and
were not generic for different ABSA subtasks.

Natural Language Generation (NLG) based ap-
proaches model the ABSA tasks uniformly as
sequence-to-sequence generation tasks (Zhang
et al., 2021b; Yan et al., 2021; Zhang et al., 2021a;
Mao et al., 2022) and have dominated the recent
advance in ABSA tasks. Specifically, the sequence-
to-sequence generation framework can adapt to
multiple ABSA subtasks simultaneously without
additional architectural design, and the autoregres-
sive generation mode (Neal, 1992) can naturally
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include information interaction of elements within
ST. Despite the superior performance of NLG-
based approaches, the autoregressive generation
also renders NLG-based methods time inefficient
in generating multiple sets of STs. Besides, exist-
ing NLG-based methods fail to adequately coor-
dinate the semantic representation of STs and the
positioning of SEs when generating results.

In this paper, we propose an Efficient Hybrid
Generation framework EHG to generate seman-
tic representations of multiple STs in parallel and
simultaneously output the location information of
SEs corresponding to each ST. EHG is composed of
two modules: Efficient Hybrid Transformer (EHT)
and Entity Correction Module (ECM). For EHT,
inspired by DETR (Carion et al., 2020), we use
a fixed number of object queries to detect STs in
sentences in parallel and locate the corresponding
SE. Further, we pass object queries that detect ST
(obtained by Filter or Matcher), through the Semi-
Autoregressive Generator to generate semantic rep-
resentations of the corresponding ST. In addition
we propose a novel global hybrid loss function
in combination with bipartite matching named hy-
brid Hungarian loss, to achieve end-to-end model
training. For ECM, we normalize the location in-
formation of the corresponding SEs based on the
input text and the semantic representation of each
ST generated. The contributions of this paper are
summarized as below.

• We propose a novel and Efficient Hybrid Gen-
eration framework that generates semantic
representations of STs and simultaneously lo-
cates the SEs within them.

• We introduce a fixed number of object queries
to detect and decode multiple sentiment tu-
ples in parallel, which greatly improves the
efficiency of current generation methods.

• We propose a novel hybrid Hungarian loss
function that allows our Efficient Hybrid
Transformer to be trained end-to-end.

Experimental results demonstrate that our proposed
EHG achieves the state-of-art performance in al-
most all datasets on the six ABSA subtasks and
outperforms existing NLG-based methods in terms
of inference efficiency.

2 Related Work

In this section, we summarize the existing NLU-
based and NLG-based approaches for aspect-based
sentiment analysis.

2.1 NLU-based ABSA

For NLU-based methods, early work was often de-
voted to solving simple problems. For example,
extracting SEs or classifying the sentiment polar-
ity for a given aspect (Tang et al., 2015; Xu et al.,
2018; Li et al., 2018; Wang et al., 2016). Among
them, the vast majority defined the extraction of
SEs as a sequence tagging problem (Huang et al.,
2015) and the determination SAs as a classifica-
tion problem. However, this approach ignores the
information interaction of the elements within ST
and makes the errors cumulative. Recently, much
work has been devoted to solving complex multi-
objective problems (ASTE (Zhang et al., 2015; Li
et al., 2019; Mitchell et al., 2013), TASD(Wan et al.,
2020), AOPE (Zhao et al., 2020; Chen et al., 2020)),
such as predicting multiple elements simultane-
ously. Some of these works use the idea of pipeline
to solve the extraction of SEs and the classifica-
tion of SAs in stages (Peng et al., 2020; Mao et al.,
2021). There are also some recent approaches that
attempt to introduce interactions between multiple
elements in the ST during inference to achieve end-
to-end multi-objective modeling (Xu et al., 2021,
2020; Ma et al., 2018). However, this approach
usually requires complex model design and is not
generic for different ABSA subtasks.

2.2 NLG-based ABSA

Generation frameworks are increasingly used in
NLP due to their powerful generality and rich pre-
trained models (PTMs) (Sutskever et al., 2014; Cho
et al., 2014; Radford et al., 2018; Shao et al., 2021).
There has been some recent work using NLG-based
approaches to solve ABSA problems. Yan et al.
(2021) use BART (Lewis et al., 2019) to receive
sentence input and generate STs directly autore-
gressively, where SEs are represented using loca-
tion indexes. More directly, Zhang et al. (2021b,a);
Mao et al. (2022) used T5 to generate semantic
representations of STs, and in addition, to locate
the location of SEs, Zhang et al. (2021b) addition-
ally proposed an Annotation pattern to insert STs
to the original sentences. Although the NLG-based
approach can model multiple ABSA subtasks in a
unified framework, the above two methods share
the common problem that the efficiency of the gen-
eration will be greatly reduced when there are mul-
tiple sets of STs on the input in the autoregressive
framework. In addition, for the direct output of the
SE index, although it can locate entity locations,
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Figure 2: Efficient Hybrid Generation Framework. 1) the input sentence is directly passed through the Efficient
Hybrid Transformer to generate a set of STs in parallel and locate the corresponding SEs. Specifically, a fixed
number of learnable embeddings, called object queries, will be fed into the Sentiment Tuple Detector along with the
input, and each object queries will focus on capturing an ST and locating the SE in it. The output of the Sentiment
Tuple Detector will then be passed through a Filter (for training, it’s Matcher) to remove the part of the ST that is
not detected. Finally, the output of the Filter will be fed to the Semi-Autoregressive Generator to generate multiple
STs in parallel. 2) the SE location information will be combined with the input and the corresponding ST to get the
corrected SE index by Entity Correction Module.

this approach is not intuitive enough compared to
directly generating semantic representations, and
still requires additional design for scenarios that
require the extraction of aspect categories, such as
TASD. For the direct generation of semantic repre-
sentations, it is impossible to locate the location of
SEs accurately (the same SE may appear multiple
times in the input), and although the Annotation
pattern is proposed, the operation of inserting senti-
ment tuples to the input makes the generated results
very redundant, which amplifies the problem of au-
toregressive inefficiency.

3 Methodology

Our proposed Efficient Hybrid Generation Frame-
work is depicted in detail in Fig. 2. Since the output
of all six ABSA subtasks contains the part of SEs,
they can be described under a unified framework.
To facilitate the description, this section expands on
AESC as an example, first introducing the task def-
inition, and then Efficient Hybrid Transformer and
Entity Correction Module, are described in detail.

3.1 Problem Formulation
As discussed above, the proposed framework con-
tains two parts of output, which are the semantic
representation of multiple STs and the location of
the corresponding SEs. Specifically, the proposed
framework supports a fixed maximum number M
of outputs, where M is set to be much larger than
the number of STs generally present in the sen-
tence. Here we denote aspect term, opinion term,
aspect category, sentiment polarity, sentiment en-
tity, sentiment abstraction and sentiment tuple as

a, o, c, s, se, sa and st respectively, and define
X = {xi}Ni=1 to represent an input text of length
N , Lhybrid(·) represents the proposed hybrid Hun-
garian loss function. We use hat “ ∗, ∗̂ ” to distin-
guish between model output and ground truth, then
the problem is defined as follows,

argmin

M∑

j=1

Lhybrid[(d
se
j , y

st
j ), (d̂

se
j , ŷ

st
j )] (1)

where dsej and ystj represent the detection result
and semantic representation of the j-th ST, respec-
tively. Specifically, dsej = (cstj , idxj) where cstj is
the class label of the ST and there are only two
classes representing the presence or absence of the
ST respectively. The idxj is defined as the index
range of the SE in the j-th ST normalized in the sen-
tence, and we set idxj = [−1,−1] when cstj = ⊘
represents the absence of the ST.

Furthermore, since the outputs of different
ABSA subtasks may contain different SEs, we de-
scribe the idxj corresponding to the different sub-
tasks as follows:

idxj =





(idxaj ), [AE,AESC, TASD],

(idxoj), [OE],

(idxaj , idx
o
j), [AOPE,ASTE],

where idxaj = [0, 1]2 and idxoj = [0, 1]2 represent
the position indices of aj and oj respectively.

3.2 Efficient Hybrid Transformer

Efficient Hybrid Transformer contains two main
components, Sentiment Tuple Detector, which de-
tects the STs in X , and Semi-Autoregressive Gener-
ator, which generates a semantic representation for
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Figure 3: Inference details of Efficient Hybrid Transformer under AESC.

each detected ST, the details are shown in Fig. 3. It
is worth mentioning that our EHT uses an asymmet-
ric inference and training process, the difference
between the two is that Filter is used for inference
and Matcher is used for training.

3.2.1 Sentiment Tuple Detector

Inspired by DETR, we define mining STs in sen-
tences as an object detection problem. Specifi-
cally, we detect the presence of STs and then locate
the corresponding SEs in X . The Sentiment Tu-
ple Detector utilizes the conventional transformer
encoder-decoder architecture (Vaswani et al., 2017)
, a setup that is convenient to extend to any similar
pre-trained model (Qiu et al., 2020; Peters et al.,
2018; Devlin et al., 2018; Raffel et al., 2019; Song
et al., 2019), and in this paper we directly use the
encoder and decoder of the pre-trained T5 model.

The input text X is vectorized and passed
through the encoder to obtain the encoded D-
dimensional hidden variable H ∈ RN×D. This
process can be described in the following form:

H = T5Encoder(Embed(X)), (2)

where Embed(X) ∈ RN×D, represents the vector-
ized X .

Different from the original autoregressive de-
coder, the decoder of the Sentiment Tuple Detector
decodes M objects in parallel. Similar to DETR,
we use M learnable embeddings qstin ∈ RM×D,
called object queries, as input to the decoder to gen-
erate output embeddings qstout ∈ RM×D through
global self-attention and cross-attention with H .

qstout = T5Decoder(qstin, H), (3)

The output embedding qstout finally outputs the class
labels of the STs and the location coordinates of
the corresponding SEs independently through the
linear projection layer and the feed-forward neural
network, respectively.

ĉst = Softmax(MLP (qstout)),

îdx
a
=FFNa(q

st
out), îdx

o
= FFNo(q

st
out),

(4)

where ĉst = {ĉstj }Mj=1,∈ RM×2 is the class vec-
tor of the ST (here only two classes are present
and absent). îdx

a
= {îdxaj}Mj=1,∈ RM×2 and

îdx
o
= {îdxoj}Mj=1,∈ RM×2 are generated by two

3-layer feed-forward neural networks (FFN ) with
ReLU activation function and hidden dimension D,
representing the normalized position coordinates
of a and o, respectively. Since different ABSA sub-
tasks contain different SEs in their outputs, FFNa

and FFNo are set according to the actual needs,
and in the case of ASEC, only FFNa is used to
generate îdx

a
.

3.2.2 Filter
The role of the Filter in inference is 2-fold, firstly
filtering out the output of the Sentiment Tuple De-
tector; secondly the corresponding qstout of detected
ST need to be fed into the Semi-Autoregressive
Generator to decode the semantic representation
of STs. The process can be expressed as follows.

d̂seĉst ̸=⊘, q
st
out,ĉst ̸=⊘ = Filter(D̂se, qstout), (5)

3.2.3 Semi-Autoregressive Generator
The semi-autoregressive decoder aims to decode
the detected STs in parallel. Different from
traditional autoregressive decoding, our semi-
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autoregressive decoder uses qstout,ĉst ̸=⊘ as the em-
bedding of the starting token for each ST and then
performs autoregressive decoding separately. For
the s-th ST, we use qstout,s,ĉst ̸=⊘ as the starting em-
bedding, then the autoregressive decoding process
can be expressed as:

hds,0 = qstout,s,ĉst ̸=⊘

hds,t = T5Decoder(He, hds,t−1)

sts,t = Softmax(MLP (hds,t))

(6)

where hds,t ∈ RD is the decoder output of step t
of the s-th ST, and sts,t is the corresponding to-
ken representation, which is generated by a linear
projection layer that immediately follows softmax.

Besides Decoder in the Semi-Autoregressive
Generator shares parameters with the Decoder in
the Sentiment Tuple Detector, which allows our
model to maintain almost the same number of pa-
rameters as the original T5.

3.2.4 Matcher
For model training, we need to know the corre-
spondence between a fixed number of M outputs
and the ground truth in order to calculate the loss.
Thus we use the Hungarian algorithm (Kuhn, 1955)
to obtain the optimal bipartite matching between
model outputs and the ground truth, and then cal-
culate the loss for the completed matched outputs
and the ground truth to train the model, this part
focuses on the matching process.

We define ϕ ∈ ΦM as all possible mapping con-
nections between the ground truth and the model
outputs, and Lmatch as the matching loss function
under the given mapping condition, then the ob-
jective function for finding the optimal mapping
ϕoptimal is as follows.

ϕoptimal = argmin
ϕ∈ΦM

M∑

j=1

Lmatch(d
se
j , d̂

se
ϕ(j)) (7)

Since we assume that M is greater than the number
of STs in the actual input, we use ⊘ to padding
each ground truth dse that is less than M . In Eq. 7,
the index of d̂se is mapped by ϕoptimal such that
Lmatch is minimized. For Lmatch, we consider two
components which are class cost Lcls and location
cost Lidx, as follows.

Lmatch = λclsLcls + λidxLidx (8)

Lcls = −
M∑

j=1

(p̂ϕ(j)(c
st
j ))cstj ̸=⊘ (9)

Lidx =

M∑

j=1

(∥idxj − îdxϕ(j)∥1)cstj ̸=⊘ (10)

where λcls and λidx are hyperparameters, p̂ϕ(j)(cstj )
and idxϕ(j) represents the probability of class cj
and normalized index of SEs with index ϕ(i), re-
spectively. At this point, we have completed the
matching between the model output and the ground
truth without any gradient computation, but the
accurate matching is very important for the subse-
quent loss calculation, as discussed later.

3.2.5 Loss
To enable end-to-end training of the EHT, we pro-
pose a hybrid Hungarian loss Lhybrid, which con-
siders both the detection loss Ldet and the gener-
ation loss Lgen under a given optimal matching
ϕoptimal.

Lhybrid = Ldet + µgenLgen

Ldet = µcls

M∑

j=1

[−log(p̂ϕoptimal(j)(c
st
j ))+

µidx(∥idxj − îdxϕoptimal(j)∥1)cstj ̸=⊘]

Lgen =
M∑

j=1

(
∑

t=1

−log(p̂ϕoptimal(j)(stj,t)))cstj ̸=⊘

where ϕoptimal is obtained in Matcher, µcls, µidx
and µgen are hyperparameters. For Ldet, the differ-
ence with Eq. 9 is that we use the standard cross-
entropy loss and consider the part of cstj ̸= ⊘ into
the classification loss as well, which reduces the
redundant detections, as will be shown in the exper-
imental section. For Lgen, we simply computed the
negative log-likelihood loss of the ST generated
by the matched qstout,ĉst ̸=⊘ with the ground truth
ST. Thus we jointly optimize Ldet and Lgen for
end-to-end training.

3.3 Entity Correction Module
In computer vision, object detection is not required
to output the exact pixel coordinates because the
images have redundant information, but for ABSA,
inaccurate detection of SEs is unacceptable. To
solve this problem, we propose an Entity Correc-
tion Module that corrects the detections of SEs
by combining the input text and the output of the
Semi-Autoregressive Generator.

First, we define SEs in the s-th ST of the model
output as ŝes ∈ ŝts and the corresponding detec-
tion result as îdxs, then we have the following
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Algorithm 1 Entity Correction Module

1: N = len(X); res = îdxs
2: Meanidx = Int(mean(îdxs))
3: s, e = ŝts[0], ŝts[−1]
4: L, R =Meanidx;w = len(ŝts))
5: while True do
6: if x[L]==s and x[L : L+w]==ŝts then
7: res← (L,L+w); berak
8: else if x[R]==e and x[R-w+1 : R+1]==ŝts

then
9: res← (R-w+1, R); berak

10: else if L==0 and R==N -1 then
11: berak
12: else
13: L = max(0, L-1);

R = min(N -1, R+1);
14: end if
15: end while
16: return res

algorithm.

In Algorithm 1, Meanidx represents the mid-
point of îdxs rounded down. The essence of
the whole algorithm is to consider the midpoint
Meanidx as a fuzzy detection, and then use
Meanidx to initialize two pointers in the input X
to search for the nearest SE forward and backward
respectively, and finally return the original detec-
tion îdxs if there is no match.

4 Experiments

4.1 Datasets

We evaluate our EHG framework on four bench-
mark datasets Laptop14, Rest14, Rest15, and
Rest16 that are publicly available in SemEval 2014,
2015 and 2016 (Pontiki et al., 2014, 2015, 2016).
We use multiple publicly available datasets derived
from the original dataset to respond to different
ABSA subtasks, and these derived datasets are of-
ten additionally annotated. Specifically, we used
the dataset D17 provided by Wang et al. (2017)
to evaluate the AE and OE; the dataset D19 pro-
vided by Peng et al. (2020) to evaluate the AOPE
and AESC; the dataset D20a provided by Xu et al.
(2020) to evaluate the ASTE task; and the dataset
D20b provided by Wan et al. (2020) to evaluate the
TASD task.

Model
Rest14 Rest15 Laptop14

AE OE AE OE AE OE
IMN-BERT 84.06 85.10 69.9 73.29 77.55 81.0
RACL-BERT 86.38 87.18 73.99 76.0 81.79 79.72
Dual-MRC 86.6 - 75.08 - 82.51 -
SPAN-BERT 86.71 - 74.63 - 82.34 -
Gen-idx 87.07 87.29 75.48 76.49 83.52 77.86
EHG(Ours) 87.43 88.87 79.41 82.72 85.32 84.42

Table 1: Comparison of F1 scores for AE and OE. All
comparison results are from Yan et al. (2021). Bolded
fonts for the best performance and underlined fonts for
the second-best performance.

4.2 Metrics
We use precision(P), recall (R) and F1 scores to
evaluate for all experiments, where a correct pre-
diction is considered when and only when the ST
is exactly the same as the ground truth.

4.3 Experiment Setup
In order to maintain a similar number of parameters
as existing methods, the encoder and decoders in
the proposed EHT are derived from the encoder and
decoder of T5 base model. Since all T5 decoders
in EHT are parameter shared, we have almost the
same number of parameters as the original T51.
It is worth mentioning that our EHT is based on
the T5 model implementation of the huggingface
Transformer library2.

For the different ABSA subtasks, we used a
similar experimental setup. We use the AdamW
(Loshchilov and Hutter, 2018) optimizer to train the
EHT with a learning rate of 3e-4 and a batch size
of 2 and a cumulative gradient every two batches,
and all Transformers are initialized using a pre-
trained T5-base. We train all datasets with 16 ob-
ject queries (M=16), a setting larger than the maxi-
mum number of sentiment tuples in all datasets for
a single sentence. We set λcls=2, λidx=1, µcls=0.75
and µidx=1.5 for all ABSA subtasks. In addition,
for µgen, we set 1.5 for AE, OE and AOPE, 1.25
for ASTE, 1 for AESC, and 0.75 TASD. All train-
ing processes are performed on an ml.p3.2xlarge
instance of Amazon Elastic Compute Cloud, which
includes an NVIDIA Tesla V100 (16G) GPU.

4.4 Competitive Baselines
To demonstrate the superiority of our proposed
EHG framework, we compare multiple SOTA

1Compared to T5-base, which has about 222M parameters,
our EHT has about 223M parameters.

2https://github.com/huggingface/transformers
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Models R14 R15 R16 L14
Li-unified+† 51.0 47.82 44.31 42.34
Two-stage† 51.46 52.32 54.21 42.87
JET-BERT† 62.40 57.53 63.83 51.04
Gen-idx† 65.25 59.26 67.62 58.69
GAS-R∗ 70.52 60.23 69.05 58.19
GAS-Para∗ 72.03 62.56 71.70 61.13
EHG(Ours) 70.13 62.71 70.17 60.8
EHG-Para(Ours) 71.82 63.58 72.35 61.53

Table 2: F1 results for ASTE task. The comparison
results with “†” are retrieved from Yan et al. (2021), and
result with “∗” is from Zhang et al. (2021a). Bolded
fonts for the best performance and underlined fonts for
the second-best performance.

methods for six ABSA subtasks, including NLG-
based methods Gen-idx (Yan et al., 2021), GAS-R
(Zhang et al., 2021b) and GAS-Para (Zhang et al.,
2021a). In addition, for fairness, all NLG-based
methods do not use prediction normalization in
GAS-R (Zhang et al., 2021b). For NLU-based
methods, IMN-BERT (He et al., 2019), RACL-
BERT (Chen and Qian, 2020), SPAN-BERT (Hu
et al., 2019), Jet+BERT (Xu et al., 2020), Peng-
two-stage (Peng et al., 2020), Li-unified-R (Li et al.,
2019), Dual-MRC (Mao et al., 2021), SDRN (Chen
et al., 2020), TAS (Wan et al., 2020) and Baseline
(Brun and Nikoulina, 2018) are selected for com-
parison.

The performance: Tables 1, 2, 3, 4 show the
main comparison results for AE, OE, ASTE, AOPE,
AESC, and TASD, respectively. It is worth men-
tioning that the proposed method achieves the best
F1 score in all cases except for AOPE and ASTE
on the Rest14 dataset, and TASD on the Rest15
dataset. In addition, for ASTE and TASD, we
also combine EHG with GAS-Para to further im-
prove the performance while maintaining the ad-
vantages of the original EHG inference efficiency
(EHG-Para), which fully demonstrates that the pro-
posed method can be easily combined with exist-
ing NLG-based methods, each taking advantage of
the other. Finally, we found that all NLG-based
methods achieved stronger performance on ASTE,
AOPE, AESC, and TASD tasks compared to NLU-
based methods, demonstrating that the semantic
interactions within ST tend to be more effective.

Inference efficiency: To demonstrate the speed
advantage of the proposed method, we compared
the generation speed and generation quality of the
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Figure 4: Comparison of the generation speed and gen-
eration quality of different NLG-based methods, where
the bar chart corresponds to the F1 scores on the right
and the line chart corresponds to the inference time on
the left.

ASTE task on the Rest16 dataset for different NLG-
based methods. As shown in Fig. 4, where the hor-
izontal coordinate represents the number of STs
generated in a single inference, the left vertical
coordinate represents the average time to generate
different numbers of STs and the right vertical coor-
dinate represents the F1 corresponding to different
NLG-based methods for different number of STs
in ground truth. It can be clearly found that the
inference time of the proposed method is indepen-
dent of the number of generated STs, but depends
only on the longest ST generated in parallel, and
that the quality of generation does not decrease for
different numbers of STs, but is relatively better
among the three methods (highest in 1, 3, and 5).
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Figure 5: Visualizing the location distribution of senti-
ment entities detected by the first four object queries on
the rest16 test set under the TASD task.

4.5 Analysis and Ablation Studies
To better understand the proposed framework, we
visualize the location distribution of SEs (aspect
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Model
Rest14 Rest15 Rest16 Laptop14

AOPE AESC AOPE AESC AOPE AESC AOPE AESC
Li-unified+† 55.34 73.79 56.85 64.95 53.75 70.20 52.56 63.38
Two-stage† 56.10 74.19 56.23 65.79 60.04 71.73 53.85 62.34
Dual-MRC† 74.93 76.57 64.97 65.14 75.71 70.84 63.37 64.59
CMLA+† 48.95 70.62 44.60 53.60 50.00 61.20 44.10 56.90
Gen-idx‡ 77.68 78.47 67.98 69.95 77.38 75.69 66.11 68.17
GAS-R 77.75 79.06 68.46 68.82 76.63 75.73 66.25 65.87
EHG(Ours) 77.17 79.32 69.11 70.04 78.19 77.12 69.05 68.48

Table 3: Comparison of F1 scores for AOPE and AESC. The comparison results with “†” are retrieved from Mao
et al. (2021), and result with “‡” is from Yan et al. (2021). Bolded fonts for the best performance and underlined
fonts for the second-best performance.

Model Rest15 Rest16
Baseline - 38.10
TAS-LPM 54.76 64.66
TAS-SW-CRF 57.51 65.89
TAS-SW-TO 58.09 65.44
GAS-R 60.63 68.31
GAS-Para 63.06 71.97
EHG(Ours) 60.56 68.56
EHG-Para(Ours) 62.83 72.09

Table 4: Comparison of F1 scores for TASD. All com-
parison results are from Zhang et al. (2021a). Bolded
fonts for the best performance and underlined fonts for
the second-best performance.

terms) generated from the first four object queries
in the Rest16 test set under the TASD task. As
shown in Figure 5, it can be found that different
object queries have different location preferences
and focus on capturing SEs in different locations.

M µgen TASD AESC ASTE AOPE
16 0.75 68.56 76.33 67.87 75.73
16 1 66.13 77.12 66.22 74.97
16 1.25 67.32 75.03 70.02 75.50
16 1.5 67.15 74.33 67.17 78.19
8 1 66.87 76.16 68.09 75.86
16 1 66.13 77.12 66.22 74.97
32 1 63.59 74.64 66.79 66.91

Table 5: Comparing the effects of different µgen and M
for different ABSA subtasks.

To evaluate the impact of different µgen and M
settings on different ABSA subtasks, we trained
multiple models for the ablation study. All experi-
ments occurred on the Rest16 dataset, as shown in

Table 5. It can be found that the effect of differ-
ent µgen is different for different subtasks, where
TASD performs best at µgen=0.75, AESC performs
best at µgen=1, ASTE performs best at µgen=1 and
AOPE performs best at µgen=1.5. From this we
conclude that as the proportion of SA in ST in-
creases, µgen needs to be smaller to obtain better
performance. The reason for this phenomenon we
believe is that since SAs are usually composed of
a small fixed number of words, it is relatively sim-
ple for the model to learn the mapping of different
SEs to SAs, while the diversity of SEs is greatly
increased, which again makes it relatively difficult
to generate SEs. For M , we found that all ABSA
subtasks performed best when M was set to 8 or
16, and the performance decreased when M was set
to 32. Moreover, through data analysis, we found
that the average number of STs per sentence in all
datasets is about 1.6, and thus we believe that set-
ting M far beyond the actual number of STs is not
conducive to model training.

4.6 Error Analysis

To explore the behavior of EHG more intuitively,
we performed an error analysis. Specifically, we
verified the actual performance of the ASTE task
in the test set of Rest16.

First, we find that the largest percentage of pre-
diction errors is caused by the prediction errors
of the opinion term, which accounts for about 50
percent of all errors. As in Example 2 in Figure
6., in many cases we find that EHG has a mislo-
calization of the opinion term, which often occurs
after "and", which we believe is related to the semi-
autoregressive decoding. In Example 2, the aspect
terms before and after "and" point to a same opin-
ion term, but since the decoding of "server" and
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Example 1
Sentence: Portions was just enough for me, but may not be for a big eater.
Gold Lable: (Portions , enough , neutral)
Prediction: (Portions , enough , positive)

Example 2
Sentence: While I could have done without the youth who shared the evening with us, our wonderful server and food made the experience a very positive one.
Gold Lable: (server , wonderful , positive); (food , wonderful , positive)
Prediction: (server , wonderful , positive); (food , positive , positive)

Example 3
Sentence: My friend enjoyed the grilled Alaskan King Salmon with delectable creamed Washington russet potatoes and crisp green beans.
Gold Lable: (grilled Alaskan King Salmon , enjoyed , positive); (creamed Washington russet potatoes , delectable , positive); (green beans , crisp , positive)
Prediction: (grilled Alaskan King Salmon , enjoyed , positive); (creamed Washington russet potatoes , delectable ,positive); (green beans , crisp , positive)

Figure 6: Examples containing the input sentence, gold label and predicted.

"food" by EHG is independent, the relationship be-
tween them is difficult to be captured. This is also
a part worth optimizing in the future.

Second, we found that EHG is error-prone for
neutral sentiment mining, which is of course a
common problem of many current ABSA meth-
ods. We believe that this is a contradictory point
in the ABSA problem, as positive or negative sen-
timent polarity is often highly correlated with the
opinion term, while neutral sentiment polarity often
requires the understanding of the whole sentence.
However, the model tends to learn the correspon-
dence between opinion term and sentiment polarity
while ignoring the semantics of the whole sentence
during training, which is also worthy of deeper
investigation by researchers.

Finally, since EHG uses different object queries
to capture different sentiment tuples, it is better at
gaining advantages in the extraction of multiple
sentiment tuples, as demonstrated by Example 3
in Figure 6 as well as Figure 4.

5 Conclusion

In this paper, we propose a novel Efficient Hybrid
Generation framework to model various ABSA sub-
tasks. Specifically, we propose an Efficient Hybrid
Transformer to generate sentiment tuples in par-
allel and simultaneously locate the corresponding
sentiment entities. Moreover, we propose a hy-
brid Hungarian loss to achieve end-to-end model
training. Finally, we propose an entity correction
module to normalize the location information of
sentiment entities. Extensive experiments demon-
strate that our proposed EHG framework achieves
competitive results while maintaining efficient in-
ference.

6 Limitations

Although our proposed framework can generate
semantic representations of sentiment tuples and

the corresponding sentiment entity detection in par-
allel, there are still some limitations.

First, for the case where the input sentence con-
tains only one set of sentiment tuples, our frame-
work does not have a speed advantage over other
NLG-based approaches, due to the fact that the ef-
ficiency of the proposed framework is based on the
parallel generation of multiple sets of sentiment
tuples.

In addition, the convergence speed of the pro-
posed framework is slower than other NLG-based
methods, and in all experiments we find that the
convergence speed is positively related to the num-
ber of object queries, specifically, the average num-
ber of convergence epochs is 35 when the number
of object queries is set to 8 and 45 when the number
of object queries is set to 16.
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A Appendix

A.1 Hyperparametric ablation studies

As described in the previous section, the proposed
framework has five hyperparameters λcls, λidx,
µcls, µidx and µgen. Among them, µgen has been
discussed in 4.5, and the ablation experiments of
the remaining hyperparameters are released here.
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Figure 7: F1 scores under
different λcls settings.
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Figure 8: F1 scores under
different µcls settings.
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Figure 9: F1 scores under
different λidx settings.
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Figure 10: F1 scores under
different µidx settings.

To facilitate the adjustment, we fixed all the re-
maining hyperparameters to 1 when adjusting a
particular hyperparameter, and we set M=8 for
all experiments in order to obtain results quickly.
All experiments occurred in the ASTE task on
the Rest15 dataset. Figures 7, 8, 9, 10 show the
curves of F1 variation with λcls, µcls, λidx and µidx,
respectively, from which we use λcls=2, λidx=1,
µcls=0.75 and µidx=1.5 for all experiments.

A.2 Training details

Subtask Rest14 Rest15 Rest16 Laptop14
AE 40 40 - 40
OE 40 40 - 40
ASTE 50 45 50 40
AOPE 50 55 55 50
AESC 45 45 45 45
TASD - 40 55 -

Table 6: Training epochs of EHT under different ABSA
subtasks and different datasets.

Since our comparison experiments consist of
multiple versions of the same dataset, we give the
number of training rounds for all ABSA subtasks

under different datasets, which can be found in
Table 6.
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Abstract

With thousands of academic articles shared on
a daily basis, it has become increasingly diffi-
cult to keep up with the latest scientific find-
ings. To overcome this problem, we introduce a
new task of disentangled paper summarization,
which seeks to generate separate summaries
for the paper contributions and the context of
the work, making it easier to identify the key
findings shared in articles. For this purpose, we
extend the S2ORC corpus of academic articles,
which spans a diverse set of domains ranging
from economics to psychology, by adding dis-
entangled “contribution” and “context” refer-
ence labels. Together with the dataset, we in-
troduce and analyze three baseline approaches:
1) a unified model controlled by input code
prefixes, 2) a model with separate generation
heads specialized in generating the disentan-
gled outputs, and 3) a training strategy that
guides the model using additional supervision
coming from inbound and outbound citations.
We also propose a comprehensive automatic
evaluation protocol which reports the relevance,
novelty, and disentanglement of generated out-
puts. Through a human study involving expert
annotators, we show that in 79%, of cases our
new task is considered more helpful than tradi-
tional scientific paper summarization.

1 Introduction

With the growing popularity of open-access aca-
demic article repositories, such as arXiv or bioRxiv,
disseminating new research findings has become
nearly effortless. Through such services, tens of
thousands of scientific papers are shared by the re-
search community every month1. At the same time,
the unreviewed nature of mentioned repositories
and the sheer volume of new publications has made
it nearly impossible to identify relevant work and
keep up with the latest findings.

1https://arxiv.org/stats/monthly_submissions

Scientific paper summarization, a subtask within
automatic text summarization, aims to assist re-
searchers in their work by automatically condens-
ing articles into a short, human-readable form that
contains only the most essential information. In re-
cent years, abstractive summarization, an approach
where models are trained to generate fluent sum-
maries by paraphrasing the source article, has seen
impressive progress. State-of-the-art methods lever-
age large, pre-trained models (Lewis et al., 2020;
Liu et al., 2022), define task-specific pre-training
strategies (Zhang et al., 2019), and scale to long
input sequences (Zhao et al., 2020; Zaheer et al.,
2020). Available large-scale benchmark datasets,
such as arXiv and PubMed (Cohan et al., 2018),
were automatically collected from online archives
and repurpose paper abstracts as reference sum-
maries. However, the current form of scientific
paper summarization where models are trained to
generate paper abstracts has two caveats: 1) of-
ten, abstracts contain information which is not of
primary importance, 2) the vast majority of scien-
tific articles come with human-written abstracts,
making the generated summaries superfluous.

To address these shortcomings, we introduce the
task of disentangled paper summarization. The new
task’s goal is to generate two summaries simulta-
neously, one strictly focused on the summarized
article’s novelties and contributions, the other intro-
ducing the context of the work and previous efforts.
In this form, the generated summaries can target
the needs of diverse audiences: senior researchers
and field-experts who can benefit from reading the
summarized contributions, and newcomers who
can quickly get up to speed with the intricacies of
the addressed problems by reading the context sum-
mary and get a perspective of the latest findings
from the contribution summary.

For this task, we introduce a new large-scale
dataset by extending the S2ORC (Lo et al., 2020)
corpus of scientific papers, which spans multiple
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scientific domains and offers rich citation-related
metadata. We organize and process the data, and
extend it with automatically generated contribu-
tion and context reference summaries, to enable
supervised model training. We also introduce three
abstractive baseline approaches: 1) a unified, con-
trollable model manipulated with descriptive con-
trol codes (Fan et al., 2018; Keskar et al., 2019;
Liu et al., 2021; He et al., 2022), 2) a one-to-many
sequence model with a branched decoder for multi-
head generation (Luong et al., 2016; Guo et al.,
2018), and 3) an information-theoretic training
strategy leveraging supervision coming from the ci-
tation metadata (Peyrard, 2019). To benchmark our
models, we design a comprehensive automatic eval-
uation protocol that measures performance across
three axes: relevance, novelty, and disentanglement.
We thoroughly evaluate and analyze the baselines
models and investigate the effects of the additional
training objective on the model’s behavior. To
motivate the usefulness of the newly introduced
task, we conducted a human study involving human
annotators in a hypothetical paper-reviewing set-
ting. The results find disentangled summaries more
helpful in 79% of cases in comparison to abstract-
oriented outputs. Code and data preparation scripts
introduced in this work are available at https://
github.com/salesforce/disentangled-sum.

2 Related Work

Recent trends in abstractive text summarization
show a shift of focus from designing task-specific
architectures trained from scratch (See et al.,
2017; Paulus et al., 2018) to leveraging large-
scale Transformer-based models pre-trained on vast
amounts of data (Liu and Lapata, 2019; Lewis et al.,
2020), often in multi-task settings (Raffel et al.,
2019). A similar shift can be seen in scientific paper
summarization, where state-of-the-art approaches
utilize custom pre-training strategies (Zhang et al.,
2019) and tackle problems of summarizing long
documents (Zhao et al., 2020; Zaheer et al., 2020).
Other methods, at a smaller scale, seek to utilize
the rich metadata associated with scientific articles
and combine them with graph-based methods (Ya-
sunaga et al., 2019). In this work, we combine
these two lines of work and propose models that
benefit from pre-training procedures, but also take
advantage of task-specific metadata.

Popular large-scale benchmark datasets in sci-
entific paper summarization (Cohan et al., 2018;

Cachola et al., 2020) were automatically collected
from open-access paper repositories and consid-
ered article abstracts as the reference summaries.
Other forms of supervision have also been inves-
tigated for the task, including author-written high-
lights (Collins et al., 2017) and annotations (Meng
et al., 2021), citations (Yasunaga et al., 2019), and
transcripts from conference presentations of the ar-
ticles (Lev et al., 2019). In contrast, we introduce
a large-scale automatically collected dataset with
more fine-grained references than abstracts, which
also offers rich citation-related metadata.

Update summarization (Dang and Owczarzak,
2008) defines a setting in a collection of documents
with partially overlapping information is summa-
rized, some of which are considered prior knowl-
edge. The goal of the task is to focus the generated
summaries on the novel information. Work in this
line of research mostly focuses on novelty detection
in news articles (Bysani, 2010; Delort and Alfon-
seca, 2012) and timeline summarization (Martschat
and Markert, 2018; Chang et al., 2016) on news and
social media domains. Here, we propose a novel
task that is analogous to update summarization in
that it also requires contrasting the source article
with the content of other related articles which are
considered pre-existing knowledge.

3 Task

Given a source article D, the goal of disentangled
paper summarization is to simultaneously summa-
rize the contribution ycon and context yctx of the
source article. Here, contribution refers to the nov-
elties introduced in the articleD, such as new meth-
ods, theories, or resources, while context represents
the background of the work D, such as a descrip-
tion of the problem or previous work on the topic.
The task inherently requires a relative comparison
of the article with other related papers to effec-
tively disentangle its novelties from pre-existing
knowledge. Therefore, we also consider two sets of
citations: inbound citations CI and outbound cita-
tions CO as potential sources of useful information
for contrasting the article D with its broader field.
Inbound citations refer to the set of papers that cite
D, i.e. relevant future papers, while outbound cita-
tions are the set of papers that D cites, i.e. relevant
previous papers. With its unique set of goals, the
task of disentangled paper summarization poses a
novel set of challenges for automatic summariza-
tion systems to overcome: 1) identifying salient
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Dataset #Examples Avg. #Tokens

Paper D Inbound CI Outbound CO Contribution ycon Context yctx

ArXiv (Train) 203037 4938 - - 220 (Total summary)
PubMed (Train) 119924 3016 - - 203 (Total summary)

Ours - Train 805152 6351 925 877 136 236
Valid 36129 6374 922 875 135 236
Test 54242 6350 927 892 136 237

Table 1: Token length statistics on the training split of our dataset compared to existing scientific paper summarization datasets.
Contribution summaries tend to be shorter than context summaries.

content of D and related papers from CI and CO,
2) comparing the content of D with each document
from the citations, and 3) summarizing the article
along the two axes: contributions and context.

3.1 Dataset
Current benchmark datasets used for the task of
scientific paper summarization, such as arXiv and
PubMed (Cohan and Goharian, 2015), are limited
in size, the number of domains, and lack of citation
metadata. Thus, we construct a new dataset based
on the S2ORC (Lo et al., 2020) corpus, which of-
fers a large collection of scientific papers spanning
multiple domains along with rich citation-related
metadata, such as citation links between papers and
annotated citation spans. Specifically, we curate
the data available in the S2ORC corpus and extend
it with new reference labels.

Data Curation Some papers in the S2ORC cor-
pus2 do not contain a complete set of informa-
tion required by our summarization task: paper
text, abstract, and citation metadata. We remove
such instances and construct a paper summarization
dataset in which each example a) has an abstract
and body text, and b) has at least 5 or more inbound
and outbound citations, CI and CO respectively. In
cases where a paper has more than K incoming or
outgoing citations, we first sample K citations for
each of incoming and outgoing citations and sort
them in descending order by the number of their
respective citation from and to the target paper. K
is a hyperparameter and we choose K = 20 in this
work.3

Citation Span Extraction Each article in the set
of inbound and outbound citations can be repre-
sented by its full text, abstract, or the span of text
associated with the citation. In this study, we fol-
low Qazvinian and Radev (2008) and Cohan and

2Release ID: 20190928.
3Among other values, we experimented with 20, as the

trade-off between computational cost and rich citation con-
texts.

Goharian (2015) in representing citations with the
sentences in which the citation occurs.4 Thus, an
outbound citation is represented by a sentence from
the source paper. Usually, such sentences directly
refer to the cited paper and place its content in rela-
tion to the source paper. Analogously, an inbound
citation is represented by sentences from the citing
paper and relates its content with the source paper.

Reference Generation Our approach relies on
the availability of reference summaries for both
contributions and contexts. However, such annota-
tions are not provided or easily extractable from the
S2ORC corpus, and collecting expert annotations
is infeasible due to the associated costs. There-
fore, we apply a data-driven approach to automat-
ically extract contribution and context reference
summaries from the available paper abstracts. First,
we manually label 400 abstracts sampled from the
training set. Annotations are done on a sentence-
level with binary labels indicating contribution-
and context-related sentences.5 This procedure
yields 3341 sentences with associated binary la-
bels, which we refer to as golden standard refer-
ences. Next, we fine-tune an automatic sentence
classifier using the golden standard data. As our
classifier we use SciBERT (Beltagy et al., 2019),
which after fine-tuning achieves 86.3% accuracy
and 0.932 for Area under ROC curve in classifying
contribution and context sentences on a held-out
test set. Finally, we apply the fine-tuned classifier
to generate reference labels for all examples in our
dataset, which we refer to as silver standard ref-
erences. The statistics of the resulting dataset are
shown in Table 1.

4 Models

Our goal is to build an abstractive summarization
system which has the ability to generate contribu-

4If a publication is cited multiple times within a source
article we concatenate all relevant sentences.

5Sentences not labeled as contribution are considered con-
text, we leave finer-grained labels for future work.
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Figure 1: Model diagram. Left: CONTROLCODE model, in which inputs are prefixed with a prompt symbol and passed to a
shared model to control the output mode. Right: MULTIHEAD model, which shares all of the model’s parameters apart from the
last decoder layer for different output modes, and chooses the final decoder layer accordingly to control the output mode.

tion and context summaries based on the source
article. To achieve the necessary level of control-
lability, we propose two independent approaches
building on encoder-decoder architectures:

CONTROLCODE (CC) A common approach to
controlling model-generated text is by conditioning
the generation procedure on a control code asso-
ciated with the desired output. Previous work on
controllable generation (Fan et al., 2018; Keskar
et al., 2019; Chan et al., 2021; Luo et al., 2022)
showed that prepending a special token or descrip-
tive prompt (Liu et al., 2021) to the model’s in-
put during training and inference is sufficient to
achieve fine-grained control over the generated con-
tent. Following this line of work, we modify our
training instances by prepending textual control
codes, contribution: or context:, to the sum-
marized articles. During training, all model pa-
rameters are updated for each data instance and
the model is expected to learn to associate the pro-
vided prompt with the correct output mode. The
approach does not require changes in the architec-
ture, making it straightforward to combine with
existing large-scale, pre-trained models. The archi-
tecture is shown on the left of Figure 1.

MULTIHEAD (MH) An alternative way of con-
trolling generation is by explicitly allocating layers
within the model specifically for the desired control
aspects. Prior work investigating multi-task mod-
els (Luong et al., 2016; Guo et al., 2018) showed
the benefits of combining shared and task-specific
layers within a single, multi-task architecture. Here,
the encoder shares all parameters between the two
generation modes, while the decoder shares all pa-
rameters, apart from the final layer, which splits
into two generation branches. During training, each
branch is individually updated with gradients from

the associated mode. The model shares the softmax
layer weights between the output branches under
the assumption that token-level vocabulary distribu-
tions are similar in the two generation modes due
to the common domain. This approach is presented
on the right of Figure 1.

4.1 Informativeness-guided Training

In addition to supervising the models with gold-
standard summaries, we consider guiding them to
generate summaries with a focus on contributions
using informativeness (Peyrard, 2019). Specifi-
cally, informativeness measures the user’s degree
of surprise after reading a summary given their
background knowledge, and can be formally de-
fined as:

Inf (D,K) = −
∑

i

PD(ωi) logPK(ωi), (1)

where ωi is a primitive semantic unit, PK is the
probability over the unit under the user’s knowl-
edge, PD is the probability over the unit with re-
spect to the source document, and i is an index over
all semantic units within a summary.

Since paper contributions are novel contents in-
troduced to the community, we argue that contri-
butions cause surprisal given the general knowl-
edge about the state of the field. Quantified such
surprisal as informativeness, we explore utilizing
this measure as an auxiliary objective that is op-
timized during training. We define the semantic
unit ωi as the summary itself,6 which enables a
simple interpretation of the corresponding probabil-

6For simplicity in modeling, we chose the entire summary.
However, this goes against the requirement set by Peyrard
(2019) that ωi is a primitive semantic unit, because a para-
graph’s meaning can be decomposed into higher granular
units.
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ities. We estimate PD as the likelihood of the sum-
mary given the paper content, PD(ωi) = p(y |D).
Since each paper is associated with a unique con-
text and background knowledge, we treat the back-
ground knowledge as all relevant papers published
before the source paper, i.e., outbound citations
CO. Therefore, PK is estimated as the likeli-
hood of the summary given the previous work,
PK(ωi) = p(y |CO). We formulate the informa-
tiveness function as:

Inf (D,K) =

{
−p(ycon |D) log p(ycon |CO)
−p(yctx |D) log p(yctx |CI)

,

(2)

where the conditioning depends on the generation
mode of the model, and aim to maximize it during
the training procedure. The estimation of each
term is done by a forward pass on the model with
corresponding input and output pairs: p(ycon |CO)
is computed by estimating the probability of ycon
when feeding CO as the encoder input.

Combined with a cross entropy loss LCE , we
obtain the final objective which we aim to the min-
imize during training:

L = LCE − λ Inf (D,K), (3)

where λ is a scaling hyperparameter determined
through cross-validation. Note that CI , CO are
only used during training. Models trained with this
objective is applicable to papers without citation
information at inference time.

5 Experiments and Results

In this section, we describe the experimental en-
vironment and report automatic evaluation results.
We consider four model variants:

• CC, CC+INF: CONTROLCODE model with-
out and with the informativeness objective,

• MH, MH+INF: MULTIHEAD model without
and with the informativeness objective.

5.1 Evaluation

We perform automatic evaluation of the system
outputs (scon, sctx) against the silver standard ref-
erences (ycon, yctx). For this purpose, we have de-
signed a comprehensive evaluation protocol, shown
in Figure 2, based on existing metrics that evaluates
the performance of models across 3 dimensions:

Figure 2: Diagram illustrating the evaluation protocol assess-
ing summaries along 3 axes: relevance, purity, and disentan-
glement.

Relevance Generated summaries should closely
correspond with the available reference summaries.
We measure the lexical overlap and semantic sim-
ilarity between (scon, ycon) and (sctx, yctx) using
ROUGE (R-i) (Lin, 2004) and BERTScore (Zhang
et al. 2020; BS), respectively.

Purity Generated contribution summary should
closely correspond with its respective reference
summary, but should not overlap with the context
reference summary. We measure the lexical over-
lap between scon and (ycon, yctx) using Nouveau-
ROUGE con (Ncon-i) (Conroy et al., 2011). The
metric reports an aggregate score defined as a linear
combination between the two components:

NouveauROUGEcon-i = αi0

+ αi1ROUGE-i(scon, ycon)

+ αi2ROUGE-i(scon, yctx),

where weights αij were set by the original authors
to favor outputs with maximal and minimal overlap
with related and unrelated references, accordingly.
Analogously, we calculate Nctx-i in reverse direc-
tion between sctx and (yctx, ycon). Purity P-i is
defined as the average novelty in both directions:

Purity-i = (Ncon-i+ Nctx-i)/2; (P-i).

Disentanglement Generated contribution and
context summaries should have minimal over-
lap. We measure the degree of lexical overlap
and semantic similarity between (scon, sctx) using
ROUGE and BERTScore, respectively. To main-
tain consistency across metrics (higher is better)
we report disentanglement scores as complements
of the associated metrics:

DisROUGE-i = 100− ROUGE-i; (D-i),

DisBERTScore = 100− BERTScore; (DBS).

5.2 Results
In Table 2 we report results from the automatic
evaluation protocol described in Subsection 5.1.
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Model Relevance Purity Disentanglement

R-1 R-2 R-L BS P-1 P-2 D-1 D-2 D-L DBS

CC Con 39.16 15.96 24.65 63.22 2.77 3.69 52.95 72.18 69.12 33.62Ctx 41.84 17.24 24.55 63.78

CC+INF Con 38.92 15.95 24.65 62.94 2.75 3.68 53.68 71.97 68.46 34.09Ctx 41.49 17.03 24.50 63.40

MH Con 39.20 15.98 24.72 63.04 2.73 3.68 50.89 69.51 65.97 32.51Ctx 41.67 17.23 24.65 63.77

MH+INF Con 38.74 15.90 24.59 62.70 2.68 3.60 53.35 71.47 67.20 33.86Ctx 40.39 16.31 23.83 62.85

Table 2: Automatic evaluation results on the test set. For all metrics, higher values indicate better results. Con and Ctx refer to
contribution summary and context summary, respectively. Purity and Disentanglement are measaured on the pairs of contribution
and context summaries.

Original Abstract: Energy optimization in buildings by controlling the Heating Ventilation and Air Conditioning (HVAC) system is being researched extensively. In
this paper, a model-free actor-critic Reinforcement Learning (RL) controller is designed using a variant of artificial recurrent neural networks called Long-Short-Term
Memory (LSTM) networks. Optimization of thermal comfort alongside energy consumption is the goal in tuning this RL controller. The test platform, our office
space, is designed using SketchUp. Using OpenStudio, the HVAC system is installed in the office. The control schemes (ideal thermal comfort, a traditional control
and the RL control) are implemented in MATLAB. Using the Building Control Virtual Test Bed (BCVTB), the control of the thermostat schedule during each sample
time is implemented for the office in EnergyPlus alongside local weather data. Results from training and validation indicate that the RL controller impoves thermal
comfort by an average of 15% and energy efficiency by an average of 2.5% as compared to other strategies mentioned.

Generated Abstract: Despite the advances in research on HVAC control algorithms, most field equipment is controlled using classical methods that include
hysteresis/on/off and Proportional Integral and Derivative (PID) controllers. These classical methods do not perform optimally. The high thermal inertia of buildings
induces large time delays in the building dynamics, which cannot be handled efficiently by the simple on/off controllers. However, due to the high non-linearity in
building dynamics coupled with uncertainties such as weather, energy pricing, etc., these PID controllers require extensive retuning or auto-tuning capabilities,
which increases the difficulty and complexity of the control problem. In this work, we introduce novel control algorithms from a branch of machine learning called
reinforcement learning. From a controls perspective, reinforcement learning algorithms can be considered as direct adaptive optimal control. Like optimal control,
reinforcement training algorithms minimize the cumulative sum of costs over a time horizon. Unlike traditional optimization algorithms can learn optimal control
actions

Contribution: In this work, we introduce novel control algorithms from a branch of machine learning called reinforcement learning. In our current approach, the
impetus is thermostat control. Instead of traditional on/off heating and cooling control, reinforcement learning is utilized to set this schedule to obtain improved
Predicted Mean Vote (PMV)-based thermal comfort at an optimal energy expenditure. Hence, a thermostats schedule is computed using an RL controller. The
results show that the Q-learning algorithm can learn to adapt to time-varying and nonlinear system dynamics without explicit identification of the plant model in both
systems and controls.
Context: The Heating, Ventilation and Air Conditioning (HVAC) systems can account for up to 50% of total building energy demand. In the hopes of moving toward
a greener, more energy-efficient future, a significant improvement in energy efficiency is needed to achieve this goal. Despite the advances in research on HVAC
control algorithms, most field equipment is controlled using classical methods that include hysteresis/on/off and Proportional Integral and Derivative controllers.
However, due to the high nonlinearity in building dynamics coupled with uncertainties such as weather, energy pricing, etc., these PID controllers require extensive
retuning or auto-tuning capabilities, which increases the difficulty and complexity of the control problem. The high thermal inertia of buildings induces large time
delays in the building dynamics, which cannot be handled efficiently by the simple on/off controllers.

Table 3: Generated samples compared with the original and generated abstracts of the associated paper. The second rows shows
the output decoded from DistilBART fine-tuned on our dataset, the third rows shows the outputs from CONTROLCODE model.
Our model successfully generates disentangled content, thus making it easier to follow than the abstract.

Relevance Across most models and metrics, rel-
evance scores for context generation are higher
than those for contribution summarization. Manual
inspection revealed that in some cases generated
context summaries also include article contribution
information, while this effect was not observed in
the reverse situation. Considering that silver stan-
dard annotations may contain noisy examples with
incorrectly separated references, we suspect that
higher ROUGE scores for context summaries may
be caused by noisy predictions coinciding with
noisy references. Examples of such summaries are
shown in the Appendix C. We also observe that
informativeness-guided models (+INF) perform on
par with their respective base versions, and the
additional training objective does not affect the per-
formance on the relevance metric. This insight
corroborates with Peyrard (2019) who defines in-

formativeness and relevance as orthogonal criteria.

Purity While the informativeness objective was
designed to improve the novelty of generated sum-
maries, results show an opposite effect, where
informativeness-guided models slightly underper-
form their base counterparts. The true reason for
such behavior is unknown, however, it might be
an indicator that the outbound citations CO are not
a good approximation of reference context sum-
maries yctx, or the relationship between the two
is weak. This effect is more evident in the Medi-
cal and Biology domains, which are the two most
frequent domains in the dataset.

Disentanglement Results indicate that CON-
TROLCODE-based models perform better than
MULTIHEAD approaches in terms of generating
disentangled outputs. This comes as a surprise
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given that the CC models share all parameters be-
tween the two generation modes, but might indicate
that the two tasks contain complementary training
signals. We also noticed that, both informativeness-
guided models performed better in terms of D-1.

Based on both purity and disentanglement evalu-
ations, we suspect that the informativeness objec-
tive does guide the models to output more disen-
tangled summaries (second term in Eq 2), but the
signal is not strong enough to focus on generat-
ing the appropriate content (first term in Eq 2). It
is also clear that the MULTIHEAD model benefits
more from the additional training objective.

6 Analysis

6.1 Qualitative Analysis
To better understand the strengths and shortcom-
ings of our models, we performed a qualitative
study of model outputs. Table 3 shows an example
of generated summaries compared with the origi-
nal abstract of the summarized article. Our model
successfully separates the two generation modes
and outputs coherent and easy to follow summaries.
The contribution summary clearly lists the novelties
of the work, while the context summary introduces
the task at hand and explains its importance. In
comparison, the original abstract briefly touches
on many aspects: the context, methods used, and
contributions, but also offers details that are not of
primary importance, such as the detailed about the
simulation environment.

More generally, the described trends hold across
summaries generated by our models. The model
outputs are fluent, abstractive, offer good separa-
tion between modes, and are on topic. An artifact
noticed in a few instances of the inspected outputs
was leakage of contribution information into con-
text summaries. Factual correctness of summaries
is discussed in Section 6.4. Other examples of gen-
erated summaries are included in the Appendix C.

6.2 Per-domain Performance
Taking advantage of the rich metadata associated
with the S2ORC corpus, we analyze the perfor-
mance of models across the 10 most frequent scien-
tific domains. Table 4 shows the results of contri-
bution summarization using the CONTROLCODE7

model. While ROUGE-1 scores oscillate around
40 points for most academic fields, the results in-
dicate that summarizing documents from the Med-

7The remaining models exhibit the same pattern.

Metric R-1 R-2 R-L BS

Biology 40.63 17.01 25.59 64.23
Medicine 33.97 13.08 21.73 61.75
Mathematics 40.13 15.56 24.42 61.58
Computer science 43.54 16.41 25.86 63.43
None 40.31 18.14 26.68 64.00
Psychology 39.51 15.56 24.34 62.95
Physics 40.09 15.85 24.89 62.10
Chemistry 40.44 17.77 26.14 63.93
Economics 39.56 14.25 23.41 60.91
Materials science 42.52 18.96 27.57 65.25

Table 4: Relevance evaluation of contribution summaries
for the top 10 domains generated using the CONTROLCODE
model. Performance on Medicine domain is paricularly low.

Dataset A1 A2 A3 AVG.

S2ORC 82% 78% 70% 77%
CORD 88% 76% 78% 81%

Table 5: Usefulness of disentangled summaries in percentage,
e.g., Annotator 1 (A1) chose the disentangled summaries 82%
out of all the samples from S2ORC.

ical domain is particularly difficult, with models
scoring about 7 points below average. Manual in-
spection of instances with low scores (R-1 < 20),
exposed that contribution summaries in the Med-
ical domain are highly quantitative (e.g. “Among
these treated . . . retinopathy was noted in X%”).
While other domains such as Biology also suffer
from the same phenomenon, low-scoring quanti-
tative summaries were 1.9 times more frequent in
Medicine than in Biology. An investigation into the
domain distribution in our dataset (Appendix) re-
vealed that Biology and Medicine are the two best
represented fields in the corpus, with Biology hav-
ing over twice as many examples. We hypothesize
that the poor performance of models stems from the
fact that generating such quantitative summaries re-
quires a deeper, domain-specific understanding of
the source document and the available in-domain
training data is insufficient to achieve that goal.

6.3 Human Evaluation of Usefulness

To assess the usefulness of the newly introduced
task to the research community, we conducted a hu-
man study involving expert annotators. The study
aimed to compare disentangled papers summaries
with traditional, abstract-based summaries in a hy-
pothetical paper reviewing setting. Judges were
shown both types of summaries side by side and
asked to pick one which would be more helpful for
conducting the paper review.8 Abstract-based sum-

8We include a screen shot of the annotation user interface
in Appendix B.
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maries were generated by a model with a configura-
tion identical to the models previously introduced
in this work, trained to generate full abstracts using
the same training corpus. Annotators that partici-
pated in this study hold graduate degrees in techni-
cal fields and are active in the research community,
however, they were not involved or familiar with
this work prior to this experiment. The study used
100 examples, out of which 50 were decoded on
the test split of the adapted S2ORC dataset, while
the other 50 were generated in a zero-shot fashion
from articles in the CORD dataset (Wang et al.,
2020), a recently introduced collection of papers
related to COVID-19. The inter-annotator agree-
ment measured by Fleiss’ Kappa were 0.41 and
0.33 for the S2ORC and CORD datasets, respec-
tively. Results in Table 5 show the proportion of all
examples where the annotators preferred the dis-
entangled summaries over the generated abstracts.
The numbers indicate a strong preference from the
judges for disentangled summaries, in the case of
both S2ORC and CORD examples. The values on
CORD samples are slightly higher than those on
S2ORC; we suspect this being due to the fact that
the annotators were less familiar with the topics
described in Covid-related publications and would
require more help to review such articles.

6.4 Factuality of Generated Summaries

In the scientific literature domain, the truthfulness
of generated summaries with the input articles is a
crucial aspect. Thus, we measured the factual con-
sistency of 10 pairs of summaries sampled from
Computer Science domain by assessing the valid-
ity of each sentence in the generated summaries
against the input article and representing truthful-
ness as the proportion of sentences deemed con-
sistent. We compared summaries from CC+INF
(contribution, context) and DistilBART, resulting
in 57, 71, 67 sentences to evaluate, respectively. As
shown in Table 7, we found that most sentences
copy segments from various positions in the in-
put and lightly paraphrased or fused them together,
which led to high percentage of factually consistent
sentences.

6.5 Evaluation against Gold Annotations
As discussed in Section 3.1, contribution and con-
text labels are assigned automatically using a data-
driven classifier, which could introduce errors in
the process. Therefore, we created a gold standard
evaluation set by manually annotating 100 samples

from the test set and report the evaluation results in
Table 6. A sharp drop in ROUGE scores for the con-
text summaries is caused by some examples receiv-
ing zero scores for generating context summaries
when the manual annotators judged that there are
not existent. The overall trend of CONTROLCODE

model outpeforming MULTIHEAD model is still
observed in the evaluation. More importantly, a
reverse tendency is noticeable when the two mod-
els are trained with the informativeness objective.
Specifically, the MULTIHEAD model showed sig-
nificant improvement in terms of novelty and dis-
entanglement.

7 Conclusions

In this paper, we propose disentangled paper sum-
marization, a new task in scientific paper summa-
rizing where models simultaneously generate con-
tribution and context summaries. With the task
in mind, we introduced a large-scale dataset with
fine-grained reference summaries and rich meta-
data. Along with the data, we introduced three
abstractive baseline approaches to solving the new
task and thoroughly assessed them using a com-
prehensive evaluation protocol design for the task
at hand. Through human studies involving expert
annotators with motivated the usefulness of the task
in comparison to the current scientific paper sum-
marization setting. Together with this paper, we
release the code, trained model checkpoints, and
data preprocessing scripts to support future work
in this direction. We hope this work will positively
contribute to creating AI-based tools for assisting
scientists in the research process.

Limitations

The importance of factuality in scientific literature
summarization is crucial, as the summaries will
serve as evidence for scientific discussion and ci-
tations. While our human annotation showed over
90% of the summary sentences were truthful to the
input documents, the gap needs to be filled towards
zero non-truthful sentences. In addition, failing
to construct discourse-level coherence is another
factor non-truthful summaries, which our models
do not take into account explicitly.

Our models are developed upon DistilBART,
which can process up to 1024 tokens for input.
However, scientific documents (such as an 8-page
paper like this submission) tend to exceed 1024
tokens. While there might be tendencies as to
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Model Relevance Purity Disentanglement

R-1 R-2 R-L BS P-1 P-2 D-1 D-2 D-L DBS

CC Con 39.37 15.86 24.73 63.28 2.30 3.22 52.81 71.52 68.36 33.05Ctx 30.59 11.22 19.08 55.76

CC+INF Con 38.38 15.21 23.47 62.59 2.17 3.10 52.49 69.64 66.60 32.76Ctx 30.14 11.10 19.00 55.55

MH Con 38.63 15.53 24.68 62.84 2.21 3.13 49.62 67.45 64.43 31.39Ctx 29.82 10.61 18.51 55.24

MH+INF Con 39.43 15.75 24.77 63.11 2.26 3.13 51.56 68.57 64.97 32.35Ctx 29.14 10.25 18.48 54.92

Table 6: Automatic evaluation results on 100 samples from the test set with manual annotation on contributions.
For all metrics, higher values indicate better results.

Model Truthfulness [%]

CC+INF Con 93.0
Ctx 90.1

DistilBART - 91.0

Table 7: Proportion of factually consistent sentences in the
summaries.

which sections likely discuss contributions or back-
grounds, it is important to consider all the docu-
ments whenever possible, not to mention those of
cited documents. Efficient incorporation of rele-
vant documents at scale (e.g., efficient attention,
retrieval-augmented generation) is an active re-
search area and should be considered for future
work.
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A Implementation Details

Our models build upon DistilBART9 (Sanh
et al., 2019; Wolf et al., 2019), a Transformer-
based (Vaswani et al., 2017), pre-trained
sequence-to-sequence architecture distilled from
BART (Lewis et al., 2020). Specifically, we used
a model with 6 self-attention layers in both the
encoder and Decoder. Weights were initialized
from a model fine-tuned on a news summarization
task that are available at https://huggingface.
co/sshleifer/student_cnn_6_6. For the
MULTIHEAD model, the final layer of the decoder
was duplicated and initialized with identical
weights. We fine-tuned on the training set for
80000 gradient steps on one NVIDIA V100 GPU
with a fixed learning rate of 3.0 × 10−5 and
choose the best checkpoints in terms of ROUGE-1
scores on the validation set. The loss scaling
hyperparameter λ (Eq. 3) was set to 0.05 and 0.01
for the CONTROLCODE and MULTIHEAD models,
accordingly. Input and output lengths were set
to 1024 and 200, respectively. At inference time,
we decoded using beam search with beam size 5.
The evaluation was performed using SummEval
toolkit (Fabbri et al., 2020).

B Human Evaluation of Disentanglement

Table 8: Best-Worst scal-
ing scores for Disentan-
glement.

Model Rating

CC 0.027
CC+INF 0.020
MH -0.073
MH+INF 0.027

In addition to vari-
ous automatic evalua-
tion, we perform human
evaluation on disentan-
glement to understand
which models human
annotators prefer. We
use Best-Worst scaling
(Kiritchenko and Mo-
hammad, 2017) over the 4-tuples of summaries
on 50 random samples from the test set and have 3
annotators pick the best and the worst contribution
and context summary pairs in terms of disentangle-
ment. The rating in Table 8 shows the percentage a
model is chosen as the best minus the percentage
a model is chosen as the worst; the rating ranges
from -1 to 1. A similar trend to automatic disen-
tanglement evaluation is observed here as well in
that introducing the informativeness objective sig-
nificantly improves MULTIHEAD model, while it
conversely affects CONTROLCODE model.

We show the annotation user interface in Fig 3.
9We did not observe a substantial difference in performance between Dis-

tilBART and BART.

C Generated Full Samples from Different
Models

We show additional samples generated from CON-
TROLCODE model in Table 9. A common failure
case of all our models is the lack of disentangle-
ment between the two summaries. While samples
start generating on-topic, the model for context
summary generation starts generating contributions
at one point.

Table 9: Generated Sample. In this example, the red
highlighted segments describe the contribution.

Original Abstract: Domain adaption (DA) allows machine
learning methods trained on data sampled from one distribu-
tion to be applied to data sampled from another. It is thus of
great practical importance to the application of such methods.
Despite the fact that tensor representations are widely used
in Computer Vision to capture multi-linear relationships that
affect the data, most existing DA methods are applicable to
vectors only. This renders them incapable of reflecting and
preserving important structure in many problems. We thus
propose here a learning-based method to adapt the source and
target tensor representations directly, without vectorization.
. . .

Generated Abstract: The difficulty of securing an appropri-
ate and exhaustive set of training data, and the tendency for
the domain of application to drift over time, often lead to vari-
ations between the distributions of the training (source) and
test (target) data. In Machine Learning this problem is labeled
domain mismatch. Failing to model such a distribution shift
may cause significant performance degradation. Domain adap-
tation (DA) techniques capable of addressing this problem
of distribution shift have thus received significant attention
recently [24]. . . .

Contribution: To address these issues, we propose a novel
approach termed Tensor-Aligned Invariant Subspace Learning
(TAISL) to learn an invariant tensor subspace that is able to
adapt the tensor representations directly. By introducing a set
of alignment matrices, the tensors from the source domain
are aligned to an underlying tensor space shared by the target
domain. Instead of executing a holistic adaptation (where all
feature dimensions would be taken into account), our approach
performs mode-wise partial adaptation where each mode is
adapted separately to avoid the curse of dimensionality. . . .
Context: Deep convolutional neural networks (CNNs) rep-
resent the state-of-the-art method for a substantial number
of visual tasks. The activations of such CNNs, and the inter-
actions between them, are naturally represented as tensors,
meaning that DA should also be applied using this representa-
tion. . . . The proposed direct tensor method uses much lower
dimensional entities, thus avoiding these estimation problems.
To address these issues we propose to learn an invariant ten-
sor subspace that is able to adapt the tensor representations
directly. We show in Section 5 that the proposed method
outperforms all comparators in DA of the Convolutional Ac-
tivation of CNNs. Higher-order tensor modeling offers us
an opportunity to investigate multiple interactions and cou-
plings that capture the commonality and differences between
domains. Following this idea, a novel approach
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Figure 3: The annotation interface. Summaries indicated with A and B are disentangled summaries and a generated
abstract, respectively.

D Ethical Considerations

While we achieve reasonable automatic evaluation
results using the proposed models, we note that
these models pose ethical risks in two ways. From
readers’ perspective, entirely trusting machine-
generated summaries would lead to a wrong un-
derstanding of the articles, thus potentially harm-
ing the progress of the research community. Even
though we show that more than 90% of sentences
from the annotated summaries were truthful to the
input articles, the remaining sentences that were
not truthful are impactful enough to misunderstand
the contributions.

From writers’ perspective, our proposed models
could be used maliciously to appear valuable. In
a hypothetical situation where our model outputs
are regarded trustworthy enough for people to as-
sess articles, “hacking” our summarization model
to output over-claming contributions could be pos-
sible.
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Abstract

Taxonomies, which organize domain concepts
into hierarchical structures, are crucial for
building knowledge systems and downstream
applications. As domain knowledge evolves,
taxonomies need to be continuously updated
to include new concepts. Previous approaches
have mainly focused on adding concepts to
the leaf nodes of the existing hierarchical tree,
which does not fully utilize the taxonomy’s
knowledge and is unable to update the original
taxonomy structure (usually involving non-
leaf nodes). In this paper, we propose a two-
stage method called ATTEMPT for taxonomy
completion. Our method inserts new con-
cepts into the correct position by finding a par-
ent node and labeling child nodes. Specifi-
cally, by combining local nodes with prompts
to generate natural sentences, we take advan-
tage of pre-trained language models for hy-
pernym/hyponymy recognition. Experimental
results on two public datasets (including six
domains) show that ATTEMPT performs best
on both taxonomy completion and extension
tasks, surpassing existing methods.

1 Introduction

Taxonomies1 are an important form of domain
knowledge that organize concepts into hierarchi-
cal structures, representing “hypernym-hyponym”
relationships among concepts in the form of trees
or directed acyclic graphs (Shen et al., 2020).
Taxonomies are essential components of knowl-
edge systems such as ontologies and knowledge
graph (Yu et al., 2020), and are widely used in
various downstream applications, including search
engineering (Yin and Shah, 2010), recommenda-
tion systems (Huang et al., 2019; Zhang et al.,

∗∗ These authors contribute this work equally.
1In this paper, we mainly focus on the taxonomy repre-

sented as tree rather than directed acyclic graph, because trees
are the mainstream form at present, such as the online catalog
taxonomies of Amazon and Yelp.

Existing 
Taxonomy

Expanded 
Taxonomy

Science

Natural Science
Social 

Science

Chemistry Physics
Anthropology

Civics
Mechanics Archeology

Science

Natural Science

Chemistry

Mechanics

Archeology

Physics

Anthropology

Civics

New concept
Social 

Science

Figure 1: An example of taxonomy completion for
a non-leaf node. The new concept “Social Science"
needs to be inserted into the correct position in the ex-
isting taxonomy.

2014), and information filtering (Demeester et al.,
2016).

As domain knowledge continues to evolve, es-
pecially with the rapid growth of web content,
new concepts are constantly emerging. In order
to stay current, original taxonomies must incorpo-
rate these new concepts and adapt their hierarchi-
cal relationships. For example, as shown in Figure
1, with the advancement of sociology and science,
the concept of "Social Science" should be added
to the science knowledge system, and the original
structure should be adjusted accordingly.

However, existing taxonomies are primarily
constructed by human experts (Shen et al., 2018).
Manual extraction of domain concepts and detec-
tion of hierarchical relationships by domain ex-
perts is both time-consuming and labor-intensive,
and may result in missing important concepts and
relationships.

To extend existing taxonomies automatically,
researchers have proposed the tasks of taxonomy
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expansion (TE) and taxonomy completion (TC).
Both tasks aim to append new nodes (concepts) to
a given taxonomy . The main difference is that TE
focuses on identifying the parent of a given node
(usually a leaf node), while TC aims to identify
both the parent and child nodes. As illustrated in
Figure 1, TE would aim to identify the parent node
of “Social Science”, while TC would also aim to
identify the child nodes of “Social Science”.

Recently, researchers have been focusing on us-
ing pre-trained language models, such as BERT
(Devlin et al., 2018), to improve the performance
of taxonomy expansion (Liu et al., 2021; Takeoka
et al., 2021). For example, TEMP (Liu et al.,
2021) appends new concepts to leaf nodes and
generates candidate taxonomy paths, then uses a
pre-trained model for ranking and selecting the
best path. Musubu (Takeoka et al., 2021) gen-
erates candidate “hypernym”-“new concept” pairs
using Hearst patterns (Hearst, 1992), and relies on
pre-trained knowledge to identify the optimal hy-
pernym node for the new concept. These proposed
models have greatly improved the effectiveness of
taxonomy updates, thanks to the improved gen-
eralization performance of pre-trained language
models (Liu et al., 2021).

Although current TE&TC methods have
achieved good results, there are several main
issues that need to be addressed. Firstly, existing
TE methods struggle to extend non-leaf nodes or
perform poorly in this task (Zhang et al., 2021).
Secondly, while existing TC methods can extend
both leaf and non-leaf nodes, they may be less
effective in leaf node expansion than specialized
TE methods (Liu et al., 2021), potentially due
to a lack of sufficient utilization of knowledge.
Furthermore, these methods often require large
amounts of labeled samples or external resources,
which are not always available (Takeoka et al.,
2021). Lastly, current TC methods do not typi-
cally involve modifying the nodes of the original
taxonomy system (all original parent-child rela-
tionships are preserved after adding nodes to the
taxonomy). However, the insertion of new nodes
can modify the relationship of the original nodes.
For example, the insertion of “Social Science" in
Figure 1 would change the relationship between
“Science-Anthropology" from father-son to
grandfather-grandson.

To address these issues, we propose A Two-
stage Taxonomy complEtion Method with Pre-

Trained Language model (ATTEMPT), which in-
serts new concepts into the correct position by
identifying a parent node and labeling child nodes.

In the first stage of our proposed method,
we use the “Taxonomy-path Prompt with Pre-
trained model" (PPT) approach to take advantage
of the local information of the taxonomy path and
convert it into natural language using a prompt
method, which helps to better utilize the implicit
knowledge of the pre-trained model. Addition-
ally, the pre-trained model’s extensive knowledge
reserve allows us to avoid the need for external
resources and large amounts of labeled data. In
the second stage, we propose the “Multiple Nodes
Labeling" (MNL) method, which jointly identi-
fies each child node and better utilizes the in-
terdependence between nodes, resulting in more
accurate node type prediction (including father-
son, sibling and other relationships). Additionally,
MNL allows for modification of the original tax-
onomy nodes and simultaneous annotation of mul-
tiple child nodes.

We conduct detailed experiments on two pub-
lic datasets (including six domains) to evaluate the
effectiveness of our proposed method, ATTEMPT,
in leaf and non-leaf node expansion. Specifically,
for leaf nodes, our parent-finding method (PPT)
outperforms the best baseline by 8.2% in accuracy.
For non-leaf nodes, our children-finding method
(MNL) improves by 21% and 20.3% respectively
in accuracy and average F1 score, compared to
a pair-wise classification method. On the overall
task, our proposed method (ATTEMPT) outper-
forms other methods by 2.4% in average F1 score.

In summary, the main contributions of this pa-
per include:

• The proposal of a two-stage taxonomy expan-
sion method, ATTEMPT, that inserts new concepts
into the correct position by identifying a parent
node and labeling child nodes.

• The introduction of a multiple-nodes label-
ing method, MNL, for the children-finding stage,
which allows for the label of zero to multiple chil-
dren nodes of a given node simultaneously and
modification of the original taxonomy nodes.

• The demonstration of the effectiveness of
our approach through experiments on two public
datasets (including six domains), with the best per-
formance obtained in both non-leaf and leaf node
expansion.
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2 Related Work

Taxonomy construction aims to build a tree-
structured taxonomy with a set of terms from
scratch. Existing methods can be roughly divided
into two categories. The first is an unsupervised
method to construct the taxonomy based on clus-
tering (Alfarone and Davis, 2015; Zhang et al.,
2018a; Shang et al., 2020). The terms are grouped
into a hierarchy based on hierarchical clustering
or topic models (Downey et al., 2015). Each
node of this taxonomy is a collection of topic-
indicative terms, different from the taxonomy in
this paper (each node represented by one individ-
ual term). The other approach constructs a tax-
onomy based on terms, where each node repre-
sents a term concept (Cocos et al., 2018; Dash
et al., 2020). Hypernymy detection models are of-
ten used for this task. For example, pattern-based
(Agichtein and Gravano, 2000; Jiang et al., 2017;
Roller et al., 2018) or distributional models (Yin
and Roth, 2018; Wang et al., 2019; Dash et al.,
2020) extract the hypernymy for a given query
node and then organize them into a tree structure.

Creating a taxonomy from scratch is labor-
intensive. In many scenarios, such as e-commerce,
some taxonomies may already be deployed in on-
line systems, which involves the demand of taxon-
omy extension. QASSIT (Cleuziou and Moreno,
2016) is a semi-supervised vocabulary classifica-
tion method, mainly based on genetic algorithms.
The TAXI (Panchenko et al., 2016) system uses
a taxonomy induction method based on lexico-
syntactic patterns, substrings, and focused crawl-
ing. Later, TaxoGen (Zhang et al., 2018b) uses
term embeddings and hierarchical clustering to
construct topic taxonomies recursively. TEMP
(Liu et al., 2021) is a self-supervised classification
extension method that trains models with a new
dynamic margin loss margin function.

Taxonomy completion (Zhang et al., 2021) is a
recently proposed task that aims to find appropri-
ate hypernyms-hyponyms for new nodes, not just
hypernyms. GenTaxo (Zeng et al., 2021) gathers
information from complex local structural infor-
mation and learns to generate full names of con-
cepts from corpora. TMN (Zhang et al., 2021) fo-
cuses on channel gating mechanisms and triplet
matching networks. CoRel relies on concept
learning and relation transferring to build a seed-
oriented topic taxonomy.

But the above mentioned methods also have

some issues. The addition of new nodes may
also lead to changes in the original taxonomy.
The taxonomy completion task only finds the hy-
ponyms of a given node, which cannot modify
of the original taxonomy. GenTaxo (Zeng et al.,
2021) requires a large amount of training data
to learn enough information, and CoRel (Huang
et al., 2020) focuses more on topic taxonomy than
the taxonomy of individual terms. Other works
such as CGExpan (Zhang et al., 2020) use the au-
tomatically generated class names and the class-
guided entity selection module for entity expan-
sion. However, CGExpan (Zhang et al., 2020) is
more on the entity set than the tree taxonomy.

In addition, although the above methods can
find both hypernyms and hyponyms of a given
query node, they do not make sufficient use of
the pre-trained model or do not use the pre-trained
model at all (Zhang et al., 2021; Zeng et al., 2021).
This may lead them to perform poorly on the
hypernym recognition task, inferior to the spe-
cialized taxonomy extension methods of the pre-
trained model (Liu et al., 2021). And most meth-
ods of taxonomy extension cannot perform well
on the task of taxonomy completion (Zhang et al.,
2021). We are dedicated to finding an approach
that works in both tasks.

3 Method

Given an existing taxonomy T = (V,E) and a set
of new terms V ′, where V is a set of terms, and
E is a set of " hyponym- hypernym" relationships
between terms, the task of Taxonomy completion
is to insert the new terms v′ ∈ V ′ into the appro-
priate position of the existing taxonomy T one by
one and extend them into a more complete taxon-
omy T̃ = (Ṽ , Ẽ).

Figure 2 provided illustrates the overall struc-
ture of the ATTEMPT method, which is broken
down into two main stages: the parent finding
stage and the children finding stage. These two
stages work together to identify the relationships
between terms in the taxonomy, specifically deter-
mining the parent and children of a given term.

3.1 Stage one: Parent Finding

The first stage of the process is to identify the par-
ent node of a given node in the taxonomy. For
example, finding the parent node “science" for the
node “social science" in Figure 2.
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Figure 2: An overview of the proposed method ATTEMPT. ATTEMPT consists of two stages. Given an existing
taxonomy and the new concept term (“Social Science"), the first stage is to find the correct parent ("Science") and
the second stage is to find all possible children ("Anthropology" and "Civics").

3.1.1 TEMP

The TEMP method (Liu et al., 2021) is the first
approach to use pre-trained contextual encoders
as the core component for taxonomy extension.
The pre-trained contextual embeddings are useful
for capturing relationships between terms because
they have been trained on a large corpus. TEMP
predicts the location of new concepts by ranking
the generated taxonomy paths. A taxonomy path
of a new term (ND) in the tree-structured taxon-
omy is the unique path from that term to the root of
the taxonomy. The taxonomy path is represented
as P = [ROOT,N1, N2, ..., ND], where D is the
depth of the ND and ROOT is the root of the tax-
onomy. In the taxonomy, Ni−1 is the parent of Ni.
TEMP generates taxonomy paths for each term,
then adds the new term to be expanded to the end
of each path to form new paths. Finally, the new
paths are ranked and the highest-scoring path is
chosen as the correct parent term.

Equation 1 describes how TEMP uses a contex-
tual encoder to return a sequence of vectors, given
a term’s definition S and an arbitrary taxonomy
path P .

Encoder(S, P ) = v[CLS], v1, . . . , v[SEP], vpd , . . . , vroot
(1)

The TEMP method, which uses pre-trained con-
textual encoders to model taxonomy paths, has
been an inspiration for our work. However, TEMP

also has some limitations. One of the main limi-
tations is that it can only expand new leaf nodes.
Additionally, TEMP has some issues such as:

1) Limited use of local information - although
TEMP uses paths to narrow the search range
within the taxonomy tree, the problem of too long
paths can still arise. In such cases, distant relation-
ships may have a limited impact on the determina-
tion of leaf nodes.

2) Inadequate utilization of pre-trained model -
TEMP only connects the nodes of the path using
special tokens such as [SEP ] or [UNK], which
does not fully leverage the knowledge encoded by
the pre-trained language model.

3.1.2 PPT: Taxonomy-path Prompt with
Pre-trained model

To address the limitations of the TEMP method,
we proposed PPT (A Taxonomy Expansion
Method Based on Taxonomy Path Prompt and Pre-
Trained Model). Our approach includes a few im-
provements:

Utilization of local information - Instead of us-
ing the entire taxonomy path, we use the local in-
formation nodes lp closest to the nodes. For exam-
ple, in Figure 2, for the node “Archeology", the lo-
cal information nodes would be “Archeology" and
"Anthropology". When the depth of the taxonomy
path is less than two, we take only one node.

lp = local(P ) = {ND−1, ND} (2)
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Figure 3: An overview of the MNL (multiple nodes labeling). We concatenate the current node (red), parent node,
candidate children nodes (orange) and their children nodes (green) together to form a unified prompt, and then
input into BERT. Finally, we realize the prediction of various types of nodes through joint labeling.

Improved pre-trained model utilization
- We form a set of taxonomy path points
PScocialScience = (Archeology-Anthropology-
Social Science) by combining the local infor-
mation points of each node and the node Social
Science to be extended. We then generate the
appropriate natural language SGen using a prompt
function.

SGen(q, lp) = Prompt(q, lp) (3)

where q is the node to be expanded and Prompt
is a function to generate natural language from
prompts. For example, SGen(q, lp) = "Social Sci-
ence including Anthropology, and Anthropology
including Archeology". We feed this generated
language SGen into the pre-trained model, rank the
results in the same way as TEMP, and use the high-
est score as the parent node of the given node.

Encoder(SGen) = v
′
[CLS], v

′
1, . . . , v

′
w (4)

The encoder results are as above, where w is the
number of output vectors. We trained the model
with Margin Ranking Loss (MRL), which is de-
fined as follows:

L =
∑

P∈P+

∑

P ′∈P−
max

(
0, f

(
P ′)− f(P ) + γ

(
P, P ′))

(5)

where P+ is the set of taxonomy-paths in the tax-
onomy, P− is the set of negative samples, and
γ (P, P ′) is a function designed for the margin
between positive and negative taxonomy-paths.
To capture the semantic similarity of different
taxonomy-paths, we follow TEMP to set a dy-
namic margin function based on the semantic sim-
ilarity as follows:

γ
(
P, P ′

)
=

( |P ∪ P ′|
|P ∩ P ′| − 1

)
∗ k (6)

where k is a parameter used to adjust margins
(usually between 0.1 and 1).

3.2 Stage two: Children Finding

The second stage of ATTEMPT is to identify all
the children nodes of a given node in the tax-
onomy. For example, finding the children nodes
"Anthropology" and "Civics" for the node "Social
Science", as shown in Figure 2. We propose two
methods for this stage: PWC and MNL.

3.2.1 PWC: Pair-wise Classification
In the second stage, we identify all the child nodes
of a given term. To do this, we form pairs of pos-
sible “hypernym-hyponym" term pairs from the
node to be expanded (red node) and each candidate
child node (orange node, child of the parent iden-
tified in the first stage). These term pairs are con-
nected with the special token [SEP ] and fed into
a pre-trained language model such as BERT. An
example can be seen in Figure 2, where the node
to be classified is “Social Science" and the orange
candidate child nodes are “natural science," “an-
thropology" and “civics."

We use the pre-trained model to perform binary
classification to determine whether the term pairs
have a “hypernym-hyponym" relationship or not.
The traditional cross-entropy function is used as
the loss function to train the classification model.
This method is simple, because the pre-trained
model has been trained on a large corpus already
and it can identify whether the term pairs have a
hierarchical relationship or not. This method is
called Pair-wise classification.
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Dataset Environment Food Science
Metric Wu&P MRR Acc Wu&P MRR Acc Wu&P MRR Acc

Leaf
Nodes

BERT+MLP 47.9 21.5 11.1 47.0 14.9 10.5 43.6 15.7 11.5
TaxoExpan 54.8 32.3 11.1 54.2 40.5 27.6 57.6 44.8 27.8

STEAM 69.6 46.9 36.1 67.0 43.4 34.2 68.2 48.3 36.5
TMN 54.0 43.6 35.0 65.9 47.2 34.7 75.9 53.2 41.9

TEMP-BERT 75.9 62.0 49.0 78.3 57.1 45.2 84.6 64.6 54.4
ATTEMPT-PPT(ours) 82.3 75.1 65.4 78.4 58.1 46.5 86.6 70.7 61.2

All
Nodes

TEMP-BERT 64.8 33.5 15.6 84.3 41.1 37.4 88.0 52.9 43.4
ATTEMPT-PPT(ours) 81.1 52.5 37.5 84.3 42.6 39.0 90.9 60.0 52.8

Table 1: Baseline comparison on the three datasets in stage one (in %)

3.2.2 MNL: Multiple Nodes Labeling
MNL is a new approach that addresses the prob-
lem of identifying multiple children of a given
node in the taxonomy. There are two main chal-
lenges: determining whether a node has children
and how many children it has, and identifying as
many children as possible if there are multiple
children.

To address these challenges, we first determine
whether the given node is a leaf node (has no chil-
dren) and if so, the second stage ends. If there
are multiple children, we treat this as a multiple-
choice problem and model it as a sequential label-
ing task. As shown in Figure 3, we extract the pos-
sible siblings, children, and grandchildren (orange
and green nodes) of the given node to make use
of local information. We then use a prompt func-
tion to convert these three types of nodes into nat-
ural language (e.g., “Natural Science - Chemistry,
Physics" is converted to “Natural Science, and it
including Chemistry and Physics").

We concatenate the node to be expanded “So-
cial Science" with all the sentences generated by
the prompt, and then feed this into the pre-trained
model. Since the model was trained on a large
corpus of natural language, the input of natural
language is consistent with the pre-training phase,
which helps to fully utilize the hidden information
of the model and correctly identify the contextual
relationships. The addition of local information
provides additional context to the model, which
allows it to make more accurate predictions about
the children of the given term.

4 Experiments

In this section, we first describe the experimen-
tal setup and implementation details in Section 4.1
and Section 4.2. We then present the results of

our experiments in Section 4.3, including a com-
parison of our approach to the baseline method.
To further understand the contribution of different
components of our approach, we conduct ablation
experiments in Section 4.4 to investigate the effec-
tiveness of using local information and prompts in
ATTEMPT.

4.1 Experimental Setup

Datasets. We conducted experiments on two
datasets that include six domains and two types of
nodes. The first dataset is the Semeval-2016 task
13 dataset, which was used to evaluate the perfor-
mance of expanding leaf nodes in stage one. We
compared our method to previous approaches such
as TEMP (Liu et al., 2021) and STEAM (Yu et al.,
2020), which have also been tested on this dataset
for leaf node expansion.

To evaluate the expansion of non-leaf nodes, we
constructed a new dataset based on Semeval, as
there are limited previous datasets that are rele-
vant to this task. This dataset was specifically de-
signed for the purpose of non-leaf node expansion
and evaluation.

The following is a description of the two
datasets: 1) We used the dataset from Semeval-
2016 task 13 2, which contains three English
datasets for the environment, science, and food
domains. We followed the setup as in (Yu et al.,
2020) and used the randomly-grown taxonomies
for self-supervised learning, and sampled 20% of
the leaf nodes for testing. We used this dataset to
compare our method with other taxonomy exten-
sion methods for leaf nodes. 2) As there is limited
data available for non-leaf node expansion, we re-
constructed the original data. We defined nodes
with one parent and no children as leaf nodes and

2https://alt.qcri.org/semeval2016/task13/
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Dataset Environment Science Food
Metric acc Avg(F1) acc Avg(F1) acc Avg(F1)

PWC 21.5 50.8 20.0 54.3 12.5 32.1Non-Leaf
Nodes ATTEMPT-MNL(ours) 46.2 68.7 33.3 59.8 37.5 69.6

PWC 47.1 56.3 58.1 74.65 60.3 74.8All
Nodes ATTEMPT-MNL(ours) 64.7 82.8 61.3 74.09 73.3 84.5

Table 2: Baseline comparison on the three datasets in stage two (in %)

Dataset Environment Science Food
Metric acc Avg(F1) acc Avg(F1) acc Avg(F1)

Baseline 11.8 14.7 22.5 23.3 25.9 30.9
ATTEMPT(ours) 12.0 15.0 22.6 28.1 26.7 32.9

Table 3: Comparison of the baseline method and ATTEMPT in the overall process(in %)

nodes with one parent and at least one child as
non-leaf nodes. More details about the dataset are
provided in Appendix A.
Metrics. For the parent finding process in stage
1, we followed the evaluation strategy of (Yu
et al., 2020) using Accuracy, Mean reciprocal rank
(MRR), and Wu & Palmer similarity (Wu&P) to
evaluate our methods. Accuracy (ACC) measures
the count of parent or child nodes that are accu-
rately predicted. MRR calculates the average of
reciprocal ranks of the true taxonomy path. Wu&P
measures the semantic similarity between the pre-
dicted taxonomy path and the truth taxonomy-
path.

For stage two, we proposed two metrics for
evaluating the effectiveness of this phase. One is
ACC, which represents whether all children can
be found or not. The second one is Avg F1, which
can further evaluate how many children are found
for a given node. Avg(F1) = 1

n

∑n
i=1 F1

Compared Methods. We compare with the fol-
lowing methods:
• BERT+MLP The method extracts terms em-

beddings from BERT and then feeds them into a
multilayer perceptron (MLP) to predict their rela-
tionship.
• TEMP (Liu et al., 2021) One state-of-the-

art taxonomy expansion framework which predicts
new concepts’ position by ranking the generated
taxonomy paths. The first method that employs
pre-trained contextual encoders in taxonomy con-
struction and hypernym detection problems.
• STEAM (Yu et al., 2020) A taxonomy expan-

sion framework that leverages natural supervision
in the existing taxonomy for expansion.
•TaxoExpan (Shen et al., 2020) A self-

supervised method for encoding local structures
in seed taxonomy using location-enhanced graph

neural networks.
• TMN (Zhang et al., 2021) A Triplet Match-

ing Network (TMN) that finds suitable hypernym,
hyponym word pairs for a given query concept.

4.2 Implementation Details

We present the PPT method for the first stage of
leaf node expansion, which is based on TEMP
(TEMPs’ code link 3). We use BERT (bert-base-
uncased) as the pre-trained language model and
split the terms into 10% for validation and 10%
for testing. To expand the full type of nodes, both
leaf and non-leaf, we use the new data introduced
previously and select the same number of leaf and
non-leaf nodes as the test set. We use the default
optimal hyperparameters of the original TEMP au-
thors and experiment with different learning rates
to obtain the best performance. We also use mul-
tiple prompts (see Appendix C) according to the
settings of Musubu (Takeoka et al., 2021), and
take the average result as the experimental result.
To reduce the impact of randomness, we repeat the
experiment three times.

For the MNL method in stage two, we connect
the nodes to be expanded (red), the candidate child
nodes (orange), and the child nodes of the candi-
date nodes (green) and generate natural language
by way of prompt. The generated natural language
is fed into the pre-training model and labelled. We
label the real children of a given node as 1, the
sibling nodes as 0, and ignore the computational
loss for all the rest of the nodes. In addition, if
a term has multiple tokens and one of the tokens
is marked as one by the model, we mark all those
tokens as child nodes. See Appendix B for more
details.

3https://github.com/liu-zichen/TEMP
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Dataset Environment Science Food
Metric Wu&P MRR Acc Wu&P MRR Acc Wu&P MRR Acc

no path nodes 81.8 73.2 59.6 81.0 67.2 56.5 78.5 57.5 44.1
no prompt 79.0 64.8 51.9 84.1 67.0 56.5 78.4 56.9 45.1

ATTEMPT-PPT(ours) 82.3 75.1 65.4 86.6 70.7 61.2 78.7 58.1 46.5

Table 4: Results of ablation experiments on the three dataset in stage one (in %)

Dataset Environment Science Food
Metric acc Avg(F1) acc Avg(F1) acc Avg(F1)

no prompt 52.9 53.7 62.0 75.0 52.7 63.4
no grandchild 52.9 52.9 51.6 62.3 51.1 59.8

ATTEMPT-MNL(ours) 64.7 82.8 61.3 74.2 73.3 84.5

Table 5: Results of ablation experiments on the three dataset in stage two (in %)

4.3 Experimental Results

As shown in Table 1, our method PPT outperforms
the existing TEMP model significantly on both
leaf and non-leaf nodes. For leaf nodes, we im-
proved the TEMP model by 8.2%, 6.7%, and 2.8%
on Acc, MRR, and Wu&P, respectively. For all
types of nodes, the improvement is 11.0%, 9.2%,
and 6.4%, respectively.

The comparison results of the two methods
tested in the child discovery phase are presented
in Table 2. For leaf nodes, the MNL method im-
proves Acc and Avg(F1) by 21% and 20.3%, re-
spectively, compared to the pair-wise classifica-
tion method over the three benchmark datasets.
For all type nodes, the improvement is 11.3% and
11.9%, respectively.

Table 3 presents the comparison results between
the baseline method and our ATTEMPT. The base-
line method achieves 14.7%, 23.3%, and 30.9%
in Avg(F1) metrics for the three datasets of envi-
ronment, science, and food, respectively. Our AT-
TEMPT method improved the Avg(F1) by an av-
erage of 2.4% over the baseline. The low results
in Table 3 are due to the challenging nature of the
task. To obtain the correct parent node, all child
nodes must be successfully identified. This high-
lights the potential for further improvement.

4.4 Ablation Studies

To verify local information and prompt effective-
ness, we compare and test the changes in experi-
mental results with/without these two types of in-
formation on both stages.

Local Information As shown in Table 4, af-
ter removing the path nodes, the PPT method in
stage 1 decreases on average by 4.3%, 2%, and

2.1% on acc, mrr,wu&p, respectively, on the three
datasets. Table 5 also shows that the MNL method
decreases by 14.6% and 22.1% on average on ac-
curacy and average F1 score, respectively, after
removing the grandchild node information in the
child finding stage. We found that local informa-
tion is essential in both the first and second phases,
particularly in the second child lookup phase. Re-
moving local information brings about a signifi-
cant performance degradation, which may be at-
tributed to our method’s modelling of relation-
ships. The individual nodes are closely associated
in our MNL method.

Prompt In Table 4, the PPT method with
prompt removal decreased in acc, mrr, wu&p by
6.5%, 5.1%, and 2.0% on average, respectively.
Meanwhile, in the second stage, the MNL method
decreased 8.6% and 15.6% for accuracy and aver-
age F1 metrics, respectively, after prompt removal.
The scientific data in the second stage showed a
slight performance improvement after prompt re-
moval, which we speculate may be due to insuf-
ficient data and pre-trained corpus. Overall, the
prompt is essential for the parent finding process
in the first stage and the child finding process in
the second stage.

5 Conclusion

This paper proposes a two-stage taxonomy com-
pletion method based on pre-trained Language
models (ATTEMPT), which effectively inserts the
new concept in the correct position by finding a
parent node then labeling children nodes. In addi-
tion, we use prompt to generate natural language
information suitable for the pre-trained model fur-
ther to improve the effectiveness of parent node
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recognition and children labeling for the given
node. Our experiments on two types and three
domains with six datasets show that our method
can enhance the effectiveness of locating the posi-
tion of a given node in existing taxonomies. Fur-
thermore, the efficacy of local information and
prompts in ATTEMPT is also demonstrated by ab-
lation experiments. In conclusion, our proposed
ATTEMPT method is an effective approach for
taxonomy completion, and it can be further im-
proved with more comprehensive datasets.

Limitations

Since ATTEMPT uses the pre-trained language
model to complete the taxonomy, the expan-
sion effect is limited by the model. Generally,
pre-trained models with more knowledge scales
are better (e.g., BERT-Large V.S. BERT-Base-
uncased). However, our paper focuses on how to
fully use the knowledge of the pre-trained model
rather than verifying whether more knowledge
scales better or not. Based on the above, this paper
does not conduct more related research (in fact,
TEMP (Liu et al., 2021) has been compared and
reached similar conclusions). In addition, the se-
lection of prompts will also affect the expansion
effect. For the convenience of comparison, we
have selected several basic prompts (the same as
Musubu (Takeoka et al., 2021)) for experimenta-
tion. In future work, we plan to study how to
construct or select better prompts for classifica-
tion expansion. We do not consider the situation
of multi-parent nodes according to the TEMP (Liu
et al., 2021) settings. And according to our statis-
tics, there are only a few multi-parent nodes in the
Semeval-2016(task-13) datasets (1/3843). We will
continue investigating how to make better use of
the pre-trained model knowledge to solve the tax-
onomy completion problem.
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A Dataset
The original dataset and our reconstructed dataset
statistics are in Table 6 and 7.

Dataset Environment Science food
|N | 261 429 1486
|L| 200 306 1161
|D| 6 8 8
|∆leaf | 3.79 5.17 5.37
|∆non| 2.97 4.41 4.78

train(leaf/non) 148/59 226/112 893/284
test(leaf/non) 52/0 85/0 297/0

Table 6: Statistics of the original taxonomy datasets
for evaluation. |N | and |L| are the number of nodes
and leaf nodes in the taxonomy. |D|, |∆leaf | and
|∆non| indicate the depth of the taxonomy and the av-
erage depth of leaf nodes and non-leaf nodes respec-
tively.Train(leaf/non) and test(leaf/non) represents the
proportion of leaf and non-leaf nodes in train data and
test data.

Dataset Environment Science food
|N | 261 429 1486
|L| 200 306 1161
|D| 6 8 8
|∆leaf | 3.79 5.17 5.37
|∆non| 2.96 4.41 4.05

train(leaf/non) 187/46 292/94 1124/214
test(leaf/non) 13/13 21/21 74/74

Table 7: Statistics of the new taxonomy datasets for
evaluation.

To prevent the test data from being leaked dur-
ing training and to thoroughly test the generaliza-
tion ability of the model when encountering un-
seen data, we split each original taxonomy tree
into two subtrees, one for training and one for test-
ing. For example, the left subtree of the scien-
tific taxonomy in Figure 2, natural science and its
children, is used as the test subtree, and the rest is
used for training. Specifically, we select the sub-
tree with 20% of the number of nodes of the cur-
rent taxonomy tree as the subtree for testing and

ignore too many leaf nodes to ensure the ratio of
leaf nodes to non-leaf nodes is 1:1. Too many leaf
nodes will make the child finding stage degener-
ate into an expansion of leaf nodes, and the model
will be easily overfitting. And too few leaf nodes
will make the test inadequate, so we use equal leaf
and non-leaf node data as the test.

In the training and testing phases, we dig out the
node to be expanded in the current taxonomy tree,
and if the node has N children, these N children
are reassigned to the original parent of the node to
be expanded as child nodes. We ignore the case
of double parent nodes because their existence is
too rare. Only one node in the three datasets con-
taining more than 2000 nodes in our experiments
has a dual-parent node. We will consider this case
further in our future work.

B Implementation Details

For the fairness of the experiment, we follow the
setting of TEMP (Liu et al., 2021). We use 10%
terms for validating and 10% for testing. For
each benchmark, we try various learning rates and
report the best performance. We use multiple
prompts to experiment and select the average re-
sult as the experimental result. We repeated the
experiment three times to reduce the impact of ran-
domness. We train the model using the Pytorch
4 (Paszke et al., 2019) on the NVIDIA RTX3090
GPU. For all methods, the bert-base-uncased 5

model are chosen for feature extraction. The pre-
trained contextual encoders are of base size with
12 layers. We use the AdamW (Loshchilov and
Hutter, 2018) as the optimizer with the warm-up
(He et al., 2016), and fine tune the whole model
with a learning rate of 2e-5. The dropout (Srivas-
tava et al., 2014) of 0.1 is applied to prevent over-
fitting.

C Prompt Details

Name Prompt
Such-as Y such as X and Z
One-of X is one of Y, and Z is one of Y

Especiaally Y, especially X and Z
Is-a X is a Y, and Z is a Y

Including Y including X and Z

Table 8: List of prompts used in the experiments. Y
denotes a parent term of a term X and Z

4https://pytorch.org
5https://huggingface.co/bert-base-uncased
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Abstract

Training deep neural networks (DNNs) under
weak supervision has attracted increasing re-
search attention as it can significantly reduce
the annotation cost. However, labels from weak
supervision can be noisy, and the high capacity
of DNNs enables them to easily overfit the label
noise, resulting in poor generalization. Recent
methods leverage self-training to build noise-
resistant models, in which a teacher trained un-
der weak supervision is used to provide highly
confident labels for teaching the students. Nev-
ertheless, the teacher derived from such frame-
works may have fitted a substantial amount of
noise and therefore produce incorrect pseudo-
labels with high confidence, leading to severe
error propagation. In this work, we propose
Meta Self-Refinement (MSR), a noise-resistant
learning framework, to effectively combat label
noise from weak supervision. Instead of rely-
ing on a fixed teacher trained with noisy labels,
we encourage the teacher to refine its pseudo-
labels. At each training step, MSR performs a
meta gradient descent on the current mini-batch
to maximize the student performance on a clean
validation set. Extensive experimentation on
eight NLP benchmarks demonstrates that MSR
is robust against label noise in all settings and
outperforms state-of-the-art methods by up to
11.4% in accuracy and 9.26% in F1 score.

1 Introduction

Fine-tuning pre-trained language models has led
to great success across NLP tasks. Nonetheless, it
still requires a substantial amount of manual labels
to achieve satisfying performance on many tasks.
In reality, obtaining large amounts of high-quality
labels is costly and labor-intensive (Davis et al.,
2013). For certain domains, it is even infeasible due
to legal issues and lack of data or domain experts.
Weak supervision is a widely-used approach for
reudcing such cost by leveraging labels from weak
sources, e,g., heuristic rules, knowledge bases or
lower-quality inexpensive crowdsourcing (Ratner

et al., 2017; Zhou et al., 2020; Lison et al., 2020).
It has raised increasing attention in recent years,
and efforts have been made to quantify the progress
on weakly supervised learning, like the WRENCH
benchmark (Zhang et al., 2021).

Although weak labels are inexpensive to ob-
tain, they are often noisy and inherit biases from
weak sources. Training neural networks with weak
labels is challenging because of their immense
capacity, which leads them to heavily overfit to
the noise distribution, resulting in inferior gener-
alization performance (Zhang et al., 2017). Vari-
ous approaches have been proposed to tackle this
challenge. Earlier research focused primarily on
simulated noise (Bekker and Goldberger, 2016;
Hendrycks et al., 2018), required prior knowl-
edge (Ren et al., 2020; Awasthi et al., 2020) or
relied on context-free aggregation rules without
leveraging modern pre-trained language models
(Ratner et al., 2017; Fu et al., 2020).

Recently, Yu et al. (2021) proposed a contrastive
regularized self-training framework that achieved
state-of-the-art (SOTA) performance in several
NLP tasks from the WRENCH benchmark. It
trains a teacher network on weak labels, then it-
eratively applies the teacher to produce pseudo-
labels for training a new student model. To pre-
vent error propagation, it filters the pseudo-labels
with the model confidence scores and adds con-
trastive feature regularization to enforce more dis-
tinguishable representations. However, we find
that this approach is effective on easy tasks but
fragile on challenging ones, where the initial
teacher model already have memorized a substan-
tial amount of biases with high confidence. Con-
sequently, confidence-based filtering is misleading
and all future students will be reinforced with these
initial wrong biases from the teacher.

To address this weakness, one strategy is learn-
ing to reweight the pseudo-labels with meta learn-
ing (Ren et al., 2018; Shu et al., 2019; Wang et al.,
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2020). By this means, sample weights are dynam-
ically adjusted to minimize the validation loss in-
stead of prefixed with potentially misleading confi-
dence scores. Nevertheless, if the initial teacher is
weak and mostly produces incorrect pseudo-labels,
simply reweighting the labels does not suffice to
extract enough useful training signals.

In this paper, we propose Meta Self-Refinement
(MSR) to go one step further. The teacher is jointly
trained with a meta objective such that the student,
after one gradient step, can achieve better perfor-
mance on the validation set. In each training step,
a copy of the current student performs one step
of gradient descent based on the teacher predic-
tions. The teacher will then update itself towards
the gradient direction that minimizes the validation
loss of the student. Finally, the actual student is
trained by the updated teacher. In MSR, teacher’s
predictions are iteratively refined, instead of only
“reweighted”, based on the meta objective. This
will enable more efficient data utilization since the
teacher still has the opportunity to refine itself to
provide the proper training signal, even if its initial
output label is wrong. To further stabilize the train-
ing, we enhance our framework with confidence
filtering when teaching the student and apply a lin-
early scaled learning rate scheduler to the teacher.

In summary, the main contributions are as fol-
lows: 1) We propose a meta-learning based self-
refinement framework, MSR, that allows robust
learning with label noise induced by weak supervi-
sion. 2) We analyze and quantify how label noise
impacts model predictions and representation learn-
ing. We find existing methods become less effec-
tive in challenging cases when the label noise can
be easily fitted. In contrast, MSR is more stable and
learns better representation. 3) Extensive experi-
ments demonstrate that MSR consistently reduces
the negative impact of the label noise, matching or
outperforming SOTAs on six sequence classifica-
tion and two sequence labeling tasks.1

2 Related Work

Learning with Noisy Labels. Learning in the
presence of label noise is a long-standing problem
(Angluin and Laird, 1988). Zhang et al. (2017)
show that deep neural networks can memorize
arbitrary noise during training, resulting in poor
generalization. Noise-handling techniques - by

1Code is available on: https://github.com/uds-lsv/
msr

modeling (Goldberger and Ben-Reuven, 2017; Pa-
trini et al., 2017; Hendrycks et al., 2018) or filter-
ing (Han et al., 2018; Li et al., 2020) the noisy
instances - are proposed to conquer the label noise.
While being effective, they typically assume that
the noise is feature-independent which may over-
simplify the noise generation process in realistic
settings (Gu et al., 2021; Zhu et al., 2022). Re-
cently, realistic and feature-dependent noise in-
duced by weak supervision has received significant
attention. To handle this type of noise, Awasthi
et al. (2020) propose an implication loss that jointly
denoises the noisy labels and weak sources. Ren
et al. (2020) denoise the weak label by considering
the reliability of different weak sources and aggre-
gating them into one cleaned label. Zhang et al.
(2021) release a benchmark, WRENCH, including
various weakly supervised datasets in both text and
image domains.

Self-Training. Self-training (Yarowsky, 1995;
Lee et al., 2013) is a simple yet effective framework
that is commonly used in semi-supervised learning
(SSL). It typically trains a teacher model to pro-
vide pseudo-labels for the student model. Different
methods have been proposed for better generaliza-
tion (Xie et al., 2020; Zoph et al., 2020; Mukher-
jee and Hassan Awadallah, 2020). Recently, self-
training has been adopted to tackle weak supervi-
sion. Karamanolakis et al. (2021) train a teacher
network that aggregates weak labels to form high-
quality pseudo-labels for the student. Liang et al.
(2020); Yu et al. (2021) initialize the teacher model
by training a classifier directly on the weak labels,
they apply early stopping to prevent this initial
teacher from memorizing the label noise. The stu-
dent is then trained on the highly confident pseudo-
labels provided by the teacher. While the core
assumption of self-training - that highly confident
pseudo-labels are reliable - is generally valid in
SSL, it may not be true for feature-dependent noise
induced by weak supervision, especially when the
noise is easy to learn. In this case, self-training
inevitably suffers more from error propagation and
fails to train robust models.

Meta-Learning. Recently, different works lever-
aged meta-learning techniques to develop noise-
robust learning frameworks. The idea is to optimize
an outer learner (e.g., sample weights) that guides
the inner learner (the classifier) to generalize well.
Often, a clean validation dataset is used as a proxy
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Figure 1: Sentiment analysis dataset annotated with rule-based
weak sources. A weak source is triggered if a specific textual
pattern is matched, after which a pre-defined label is then
assigned. Otherwise, it abstains. Depending on how many
weak sources are triggered, a text may obtain zero, one, or
multiple weak labels.

for estimating the generalization performance. Ren
et al. (2018) attempt to down weight training sam-
ples that increase the validation loss. Shu et al.
(2019) employ a neural network to infer such sam-
ple weights and show a significant boost on per-
formance under feature-independent noise. Wang
et al. (2020) reweight the training samples by their
pseudo-labels instead of the original noisy labels.
In this work, we aim to leverage meta-learning in a
more flexible manner by refining the pseudo-labels
instead of reweighting them. Approach-wise, the
most related works are (Pham et al., 2021; Zhou
et al., 2022) used for semi-supervised learning and
model distillation, which also refine the teacher’s
parameters based on the student feedback. How-
ever, they work with samples from clean distribu-
tions, while we anticipate the noise memorization
effect and enhance our framework with teacher
warm-up and confidence filtering to suppress the
error propagation.

3 Problem Formulation

Let X and Y be the feature and label space, re-
spectively. In standard supervised learning, one is
given a clean dataset Dc = {(xi, yi)}Ni=1, where N
is the number of samples. The clean labels yi are
supposed to be annotated by human experts.

In weak supervision, a dataset is labeled by weak
sources rather than humans. Weak sources can
have diverse forms like lexical rules, knowledge
bases, pre-trained models, lower-quality inexpen-
sive crowdsourcing, etc. Figure 1 shows an ex-
ample of text labeled via weak supervision. Com-
pared to manual annotations, weak labels contain

more mistakes. We denote the dataset labeled by
weak sources by Dw = {(xi, ŷi)}Ni=1 where ŷi is
the weak label.2 Since weak sources might not
cover all data, we may have a set of unlabeled data
Du in addition to Dw. We use Da = Dw ∪ Du
to denote the full set of data. Moreover, as we
do not make any assumption on the quality of the
weak labels, their distribution can deviate arbitrar-
ily from the distribution of clean labels. Learning
with only weak labels can lead to unbounded model
errors (Menon et al., 2016; Gu et al., 2021). Hence,
following standard practice in weak supervision,
we assume the access to a small clean validation
set Dv = {(xvi , yvi )}Mi=1 where M ≪ N . Dv is
used for early stopping, hyper-parameter tuning or
meta-learning so that the learned model will not
fully overfit the noisy weak labels (Ren et al., 2018;
Shu et al., 2019; Zhang et al., 2021).

4 Meta Self-Refinement

We propose a novel meta-learning based frame-
work, named Meta Self-Refinement (MSR), to
tackle the label noise induced by weak supervision.
In contrast to conventional self-training methods,
where the teacher model is fixed after being trained
on weakly labeled data, MSR enables the teacher
to refine itself based on student performance on the
clean validation set, yielding higher-quality labels
and more accurate confidence estimates. In this
section, we first provide an overview of its training
objective (section 4.1), then go into the training
details (section 4.2). Figure 2 illustrates the full
training process.

4.1 Training Objective
MSR contains a teacher network f and a student
network g, both are functions that map X → Y . f
is initialized by fine-tuning a pre-trained language
model (PLM) on the weakly labeled data Dw:

f1 = argmin
f

E(xi,ŷi)∈Dw
L(ŷi, f(xi)) (1)

whereL denotes the loss function. We use the cross
entropy loss throughout the paper:

L(p, q) = −Ey∼p(y) log q(y) (2)

p and q are distributions over the label space Y .
The initial student network, g1, is the PLM without
fine-tuning on any data.

2Multiple weak sources may be triggered simultaneously
by a sample. In this case, we can use different aggregation
methods like majority voting to determine the final weak label.
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Figure 2: Illustration of our proposed Meta-Self Refinement method (MSR). (a) We start by fine-tuning a PLM on weak labels
with early stopping, which yields an initial teacher f1. (b) At each training step t, ft gets training signals by performing a
“teaching experiment” on g̃t: a copy of the student network gt. g̃t is updated by fitting ft with the loss function La. ft is then
updated to minimize the validation loss Lv of g̃t+1. (c): gt is updated by fitting ft+1 with confidence filtering under the loss La.

In conventional self-training, f1 is used to pro-
vide pseudo-labels to train the student. By select-
ing higher-quality pseudo-labels via confidence
filtering (Yu et al., 2021) or uncertainty estima-
tion (Mukherjee and Hassan Awadallah, 2020), the
student can often outperform its teacher. However,
as the teacher is trained solely on the weak labels,
it can easily inherit unexpected biases and provide
misleading signals to the student. In MSR, instead
of using a fixed teacher to provide pseudo-labels,
we use student performance on the clean validation
set as a feedback signal to dynamically refine the
teacher. Specifically, the objective for the teacher
f , formulated as in Equation 3, is that the student
network, after fitting the teacher’s output labels on
Da, can perform best on the validation set Dv:

f⋆ = argmin
f

E(xvi ,y
v
i )∈Dv

L(yvi , g′f (xvi ))

g′f = argmin
g

Exi∈Da L(f(xi), g(xi))
(3)

where g′ is the student network after fitting output
labels from f on Da. Intuitively, MSR aims to
find the best teacher to help the student achieve the
lowest validation loss. After finding the optimal
teacher f⋆ in Equation 3, the student can then be
obtained by learning from the output labels of f⋆:

g⋆ = argmin
g

Exi∈Da L(f⋆(xi), g(xi)) (4)

4.2 Training Details
Finding the exact f⋆ in Equation 3 involves solving
two nested loops of optimization, and each loop
can be computationally expensive given the large
size of Da. We resort to an online approximation

Algorithm 1: MSR Algorithm
Input: Initial teacher network f1 trained according to

Eq. 1. Student network g1, number of training
steps T , teacher’s learning rate scheduler
R(t), confidence threshold τ , Da, Dv .

Result: fT , gT
1 for t← 1 . . . T do
2 {xi} ← SampleMiniBatch( Da)
3 {xvi , yvi } ← SampleMiniBatch( Dv)

// Teacher Update
4 g̃t ← Copy(gt)
5 g̃t+1 ← g̃t − λs Exi ∇g̃tL(ft(xi), g̃t(xi))
6 ft+1 ← ft−R(t)E(xv

i ,y
v
i )∇ftL(yvi , g̃t+1(x

v
i ))

// Student Update

7 w(ft+1(xi))← 1(1− H(ft+1(xi))

log(k)
≥ τ)

8 gt+1 ← gt −
λs Exi ∇gtw(ft+1(xi))L(ft+1(xi), gt(xi))

9 end

to merge Equation 3 and 4 into an iterative training
pipeline. At each training step t, the teacher ft is
first updated based on the meta-objective of “learn-
ing to teach”, the student gt is then trained by the
updated teacher.

Teacher Update. To update the teacher in an
efficient way, we approximate the inner loop in
Equation 3 with a single-step gradient descent of
the student network. Namely, the objective of the
teacher is changed so that the current student, af-
ter one single gradient descent step of fitting the
teacher, can perform best on the validation set. To
do so, the teacher will first conduct a “teaching ex-
periment” on a copy of the current student, denoted
as g̃t. g̃t is updated for one gradient descent step to
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fit the teacher’s pseudo labels3:

g̃t+1 = g̃t − λs Exi∼Da ∇g̃tL(ft(xi), g̃t(xi))

where λs is the learning rate of the student net-
work. Afterwards, we update the teacher network
to minimize the validation loss of g̃t+1:

ft+1 = ft − λt E(xvi ,y
v
i )∼Dv

∇ftL(yvi , g̃t+1(x
v
i ))

where λt is the learning rate of the teacher net-
work. It requires calculating second derivatives
over ft. We always use soft labels from the teacher
for L(ft(xi), g̃t(xi)), so the whole process is fully
differentiable. Note that g̃t is only used in the
“teaching experiment” to help update the teacher. It
will be discarded after the teacher is updated.

Student Update. After obtaining ft+1, the real
student network is updated with the same objective
as in Equation 4, except that we use the updated
teacher ft+1 instead of f⋆. As the teacher has per-
formed the “teaching experiment”, it will provide
more useful signals to guide the student.4

Teacher Learning Rate Scheduler. We find the
teacher is rather sensitive to its learning rate in prac-
tice. If the learning rate is large from the start, the
teacher may over-adjust itself due to the large per-
formance gap between the teacher and the student.
If the learning rate is small, the teacher will adjust
itself too slowly so that more noisy pseudo-labels
are passed to the student network. Therefore, we
apply a linear learning rate scheduler R(t) = tλt

T
to the teacher network where t denotes the current
iteration and λt is the targeted learning rate for the
teacher. By this means, the teacher’s learning rate
will gradually increase as it gets better at teaching.

Confidence-Based Label Filtering. Despite hav-
ing the opportunity to refine itself, the teacher in-
evitably produces some wrong pseudo labels dur-
ing training, especially at early iterations of self-
refinement. To further reduce error propagation, we
only select labels with high confidence to guide the

3We use SGD for illustration purposes. The AdamW
(Loshchilov and Hutter, 2019) optimizer is used in our ex-
periments.

4In theory, if the teacher network is strong enough to gen-
eralize among different batches, we can directly update the
real student in the “teaching experiment”, in the hope that the
teacher from the last step can also work in the current batch.
However, in practice, we find this mismatch leads to poor
performance.

student model. The student is updated as follows:

gt+1 = gt − λs Exi∼Da ∇gtL(ft+1(xi), gt(xi))

× 1(1− H(ft+1(xi))

log(k)
≥ τ)

where 1 is the indicator function, H(ft+1(xi)) is
the entropy of the distribution ft+1(xi), k is the
number of classes in Y and τ is a pre-defined
confidence threshold. log(k) is the upper bound
of the entropy for k-classification tasks. By this
means, only low-entropy (high-confidence) predic-
tions from the teacher are learned. Note that the fil-
tering strategy is only applied to the actual student
update step, not during the teaching experiment.
Otherwise, the teacher will ignore low-confident
samples as they do not contribute to teacher update.

Putting all together, Algorithm 1 summarizes the
self-refinement process.

5 Experimental Settings

Datasets. WRENCH (Zhang et al., 2021) is a
well-established benchmark for weak supervision
and offers weak labels for various datasets. We
compare different baselines on six NLP datasets
from WRENCH including both sequence classifi-
cation and Named-Entity Recognition (NER) tasks.
For sequence classification, we include AGNews
(Zhang et al., 2015), IMDB (Maas et al., 2011),
Yelp (Zhang et al., 2015), and TREC (Li and Roth,
2002). For NER tasks, CoNLL-03 (Sang and
De Meulder, 2003) and OntoNotes 5.0 (Pradhan
et al., 2013) are used. In addition, we further in-
clude two sequence classification datasets in low-
resource languages, Yorùbá and Hausa (Hedderich
et al., 2020), to involve evaluation cases in diverse
languages. Table 1 summarizes the basic statistics
of the datasets. Majority voting over weak sources
is used to determine a single label for each sample.

Dataset Task # Class # Train # Val # Test

AGNews Topic 4 96,000 12,000 12,000
IMDB Sentiment 2 20,000 2,500 2,500
Yelp Sentiment 2 30,400 3,800 3,800

TREC Question 6 4,965 500 500
Yorùbá Topic 7 1,340 189 379
Hausa Topic 5 2,045 290 582

CoNLL03 NER 4 14,041 3,250 3,453
OntoNotes5.0 NER 18 115,812 5,000 22,897

Table 1: Dataset statistics. Refer to Appendix A for more
details on datasets.

Implementation. RoBERTa-base (Liu et al.,
2019) is used as the PLM for English datasets and
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multilingual BERT-base (Devlin et al., 2019) for
non-English ones. We utilize the higher5 library
to perform second-order optimization. Refer to
Appendix B for detailed hyper-parameter configu-
rations.

Baselines. We compare our method with prior
work on learning with noisy labels. 1) Majority ap-
plies majority vote on the weak labels. Ties are bro-
ken by randomly selecting a weak label. 2) Snorkel
(Ratner et al., 2017) trains a labeling model that ag-
gregates weak labels from different weak sources.
3) FT-WL fine-tunes PLMs on the weak labels.
4) FT-WLST further applies classic self-training
(Lee et al., 2013) on the model obtained by FT-WL.
5) L2R (Ren et al., 2018) uses a meta-learning
framework to reweight weakly labeled samples. 6)
Meta-Weight-Net (Shu et al., 2019) also applies
meta-learning based sample reweighting. How-
ever, the weights are computed through an external
reweighting network. 7) Denoise (Ren et al., 2020)
iteratively corrects wrong annotations in the train-
ing set, and the classifier learns with the corrected
labels. 8) UST (Mukherjee and Hassan Awadallah,
2020) is a self-training based method that assigns
higher weights to samples that the teacher is cer-
tain about. The uncertainties are measured via MC-
dropout on the predictions (Gal and Ghahramani,
2016). 9) COSINE (Yu et al., 2021) trains its stu-
dent network with pseudo-labels which the teacher
is highly confident about. In addition, contrastive
regularization is introduced to further alleviate er-
ror propagation.

For our proposed framework, we report the per-
formances of both Teacher-Init (f1): the initial
teacher trained directly on weak labels, and MSR:
the final student model (gT ). f1 is obtained by
running FT-WL five times and selecting the best
one among them according to the validation per-
formance. For a fair comparison, the same f1 is
used as the initial teacher for all self-training based
models. Finally, we also include the results of fine-
tuning PLMs on the clean versions of each dataset,
denoted by FT-CL, to represent the upper bound
performance.

6 Results

Comparison with Baselines. Table 2 shows
a comparison among different methods. MSR
matches or outperforms SOTAs on all eight

5https://github.com/facebookresearch/higher

datasets. FT-WL outperforms majority voting over
the weak labels in all cases except Hausa, which
leads to a minor drop. This confirms that PLMs
encode useful knowledge in their parameters, en-
abling them to generalize better than weak rules
they are trained on. This phenomenon is particu-
larly noticeable on AGNews, IMDB, and Yelp: di-
rect fine-tuning on the noisy labels (FT-WL) can al-
ready achieve decent performance (accuracy above
83%). We consider them easy tasks since label
noise has only a minor impact on performance of
PLMs and decent generalization can be attained
even without specific noise-handling. Applying
self-training to such simple tasks lead to further
performance improvement. COSINE, a SOTA self-
training based model, can even perform compara-
bly to the fully supervised model on these three
datasets. On the other five datasets, however, FT-
WL performs poorly and conventional self-training
methods provide little performance boost (even a
disservice on OntoNotes). This implies that self-
training relies on a well-performed initial teacher
to work effectively. On challenging datasets where
the initial teacher is weak, it struggles to achieve
further performance gain. Meta-learning based
methods such as L2R performs better than CO-
SINE on these challenging datasets. MSR can fur-
ther boost the performance on all the challenging
datasets by up to 11.4% in accuracy or 9.26% in
F1 score while maintaining comparable results on
simpler datasets.

Error Decomposition. Let y′, ŷ, y denote the
model prediction, the noisy weak label, and the
clean label, respectively. To investigate how the
label noise influences the model predictions, we de-
compose model prediction errors into three types:
(1) Type-A error: y′ = ŷ; ŷ ̸= y (2) Type-B error:
y′ ̸= ŷ ̸= y and (3) Type-C error: y′ ̸= y; y = ŷ.
Type-A/B errors correspond to situations in which
a model complies with an incorrect weak label ŷ,
or predicts another incorrect class label. If, on the
other hand, the weak label ŷ is correct, a Type-C
error arises if the model predicts a label different
than ŷ. A higher Type-A error rate indicates that a
model memorizes more label noise from the weak
sources, while a model that underfits fails to learn
useful knowledge from the weak sources can have
a higher Type-C error rate.

Figure 3 visualizes the three types of errors
on three challenging datasets: TREC, Hausa and
CoNLL-03. The blue bars represent model robust-
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Method AGNews
(Acc)

IMDB
(Acc)

Yelp
(Acc)

TREC
(Acc)

Yorùbá
(Acc)

Hausa
(Acc)

CoNLL-03
(F1)

OntoNotes
(F1)

Fully-Supervised Result
FT-CL 92.61 93.20 96.91 96.67 77.24 81.57 92.27 85.74

Label Models
Majority 63.84 71.04 70.21 60.80 58.05 47.93 60.38 58.92
Snorkel (Ratner et al., 2017) 62.67 71.60 68.92 59.60 62.80 47.94 62.88 58.46

DNN Baselines
FT-WL 85.73±0.43 83.43±0.91 87.71±1.46 66.80±1.44 64.12±0.83 46.13±0.43 69.20±0.33 67.26±0.62
FT-WLST† (Lee et al., 2013) 88.61±0.71 89.50±0.65 95.32±0.70 76.00±2.21 67.28±1.12 49.22±1.39 69.87±0.36 64.13±1.45
L2R (Ren et al., 2018)⋄ 87.28±1.00 82.76±1.59 93.34±0.91 83.40±2.01 70.45±0.69 55.67±0.88 79.15±1.34 70.66±0.74
Meta-Weight-Net⋄ (Shu et al., 2019) 85.96±0.80 86.72±0.50 86.97±0.74 69.39±1.27 70.00±2.12 48.63±0.96 69.54±1.43 69.11±1.20
Denoise (Ren et al., 2020) 83.45±0.68 76.22±0.92 71.56±0.56 61.80±1.30 66.10±1.52 49.31±0.93 72.96±0.51 67.64±1.06
UST† (Mukherjee and Hassan Awadallah, 2020) 87.78±0.59 86.74±1.18 91.23±0.90 77.20±2.29 68.12±0.71 47.67±0.91 69.48±1.69 66.98±0.99
COSINE† (Yu et al., 2021) 89.34±0.76 90.52±1.06 95.48±0.13 82.60±1.09 68.87±0.82 49.66±1.32 70.60±0.87 64.59±1.08
Our Framework
Teacher-Init (f1) 86.37±0.00 85.00±0.00 89.92±0.00 69.00±0.00 65.44±0.00 46.74±0.00 69.73±0.00 68.25±0.00
MSR† ⋄ 89.92±0.64 89.16±0.91 95.00±0.35 94.80±0.29 72.56±0.78 59.11±0.78 88.41±0.63 74.59±0.84

Table 2: Accuracy and F1 score (in %) on eight NLP tasks. The mean and standard deviation over five trials are reported.
Teacher-Init is the best model checkpoint selected from the five trials of FT-WL (according to the validation performance). For a
fair comparison, all self-training-based models use the same Teacher-Init checkpoint. MSR matches or outperforms SOTAs on
all tasks. † self-training based method. ⋄ meta-learning based method.
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Figure 3: Prediction error decomposition of various weak supervision baselines, evaluated on the test sets. A model is considered
robust against label noise if it manages to predict the correct labels despite the wrong weak labels (the robustness is represented
by the blue bars). Otherwise, it conforms to the weak label (Type-A error) or predict another incorrect label (Type-B error),
which has a negative effect on generalization. The Type-C error rate quantifies the proportion of incorrect model predictions
when weak labels are correct. MSR consistently reduces the Type-A error rate and attains a high level of noise robustness.
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Figure 4: Accuracy vs. confidence thresholds.

ness, i.e., how often the model predicts correctly
when ŷ ̸= y. It clearly shows that direct fine-
tuning on weak labels (FT-WL) has a much higher
Type-A error rate compared with the model trained
on clean data (FT-CL), suggesting that the model
quickly memorizes the label noise. On the other
hand, the disparity in type C error rate is much
smaller, indicating that all models do not under-
fit and the knowledge from the weak sources is

properly transferred. The Type-B error shows simi-
lar trends and does not differ much across models.
Overall, Type-A error has the strongest impact on
model performance. All the noisy-handling models
mainly help with reducing Type-A errors. We also
observe that while COSINE reduces Type-A errors
on TREC, it barely works on the other two datasets.
Only MSR manages to consistently reduce Type-A
errors by over 20% on all three datasets.

Accuracy vs Confidence. As confidence-based
filtering is a key component in both COSINE and
MSR, we show the accuracy of model predictions
with different confidence thresholds in Figure 4. As
can be seen, even using a high confidence threshold
for COSINE, the accuracy is still low, which is
why it struggles to improve on challenging datasets.
MSR, on the contrary, consistently attains higher
accuracy with higher confidence thresholds, and
thereby confidence-based filtering on top of MSR
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Figure 5: Projected feature space of different models on TREC using t-SNE (Van der Maaten and Hinton, 2008). The circles
represent training samples that are predicted as class 1. a)-c): development of MSR during training. Circles are colored by the
predicted class (i.e., class 1, in purple). The validation samples are represented by crosses and colored according to the ground
truth labels. The MSR student gradually improves its feature space to embed the training and validation samples from the same
class in the same area. d)-f): training samples are colored according to their ground truth labels; model confidence is reflected by
the size of the circles. Teacher-Init and COSINE misclassify samples with high confidence. MSR attains a cleaner cluster.

help lead to better performance.

Impact of Label Noise on Feature Space. We
also analyze how the label noise influences repre-
sentation learning. Figure 5 illustrates the projected
feature space of different models on TREC. For a
clear visualization, we present only training sam-
ples predicted as class 1 by the models in the form
of circles. In figs. 5a to 5c, we further visualize the
feature space of validation samples (represented
by crosses). As can be seen, initially the feature
space of class 1 overlaps with that of other classes
from the validation set. As the training proceeds,
when the teacher keeps refining itself, the MSR
student gradually reduces such overlap and learns a
well-split representation space. In figs. 5d to 5f, we
compare the feature space between different mod-
els. The training samples are colored according to
their ground truth classes to highlight the misclas-
sification ratio (the more colorful the clusters, the
higher the misclassification ratio). We observe that
Teacher-Init makes many wrong predictions with
high degree of confidence. In this case, utilizing
the confidence score for denoising is fragile. This
may explain why COSINE, despite offering a more
compact cluster, still has a considerable amount
of misclassification. Finally, MSR has a consid-
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Figure 6: Accuracy vs. number of validation samples.

erably cleaner cluster and is less affected by error
propagation than COSINE.

Effects of Validation Data Size. The model per-
formance reported in Table 2 is based on the origi-
nal data splits from the WRENCH benchmark. The
size of the validation sets is mostly less than 15%
of the training sets. Typically, they are used to per-
form early stopping and model selection. For meta-
learning based methods, they additionally rely on
the validation sets for meta-update and might be
more sensitive to validation size. Hence, we study
how the validation size affects different models. In
particular, we randomly sample a subset from the
original validation setDv and repeat the same train-
ing process. Figure 6 presents the results. We find
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that the validation size indeed has a greater impact
on meta-learning approaches. However, MSR still
retains its high generalization performance even
with as few as 100 validation samples, suggesting
that MSR is very data efficient in performing the
self-refinement.

Configuration Seq. Classification
(Acc)

NER
(F1)

Teacher-Init 73.75 68.99

Student 83.43 81.50
Teacher 82.38 (↓ 1.05%) 80.26 (↓ 1.24%)

w/o Teacher Scheduler 81.80 (↓ 1.63%) 80.15 (↓ 1.35%)
w/o Confidence Filtering 82.32 (↓ 1.11%) 81.09 (↓ 0.41%)

w/o Both 81.63 (↓ 1.80%) 79.95 (↓ 1.55%)

Table 3: Summary of ablation experiments aggregated across
multiple datasets. See Appendix D for results in each dataset.

Ablation Study. Table 3 summarizes the impact
of different components of our method. In gen-
eral, our student model performs slightly better
than the teacher. This is as expected because a) the
teacher’s goal is to guide the student to generalize
better, the training loss does not explicitly encour-
age the teacher to improve its accuracy, and b) the
confidence filtering helps the student avoid fitting
some wrong pseudo-labels from the teacher. This
is also confirmed by the decreased performance
when the filter is removed. In addition, applying a
learning rate scheduler is better than using a fixed
learning rate throughout training.

7 Conclusion

We present MSR, a meta-learning based self-
refinement framework that enables robust learning
with weak labels. Unlike conventional self-training
which relies on a fixed teacher, MSR dynamically
refines the teacher based on the student’s perfor-
mance on the validation set. To further suppress er-
ror propagation, we introduce a learning rate sched-
uler to the teacher and add confidence filtering to
the student. We demonstrate that our framework
performs on par with or better than current SOTAs
on both sequence classification and labeling tasks.

Limitations

In this work, Our primary focus is to propose a
strong weak supervision method that works reliably
under various weak supervision settings. We em-
ploy meta-learning techniques to address the issue
of unreliable confidence scores under challenging
settings (Figure 4). Despite the effectiveness, the

main limitation of our method, just like other meta-
learning based frameworks, is the computational
overhead. The teacher update step (Algorithm 1,
Line 4-6) requires computing both the first and
second-order derivatives, which incurs additional
computation time and higher memory consump-
tion. Consequently, our method requires longer
training.6 Implementation-wise and computation-
wise, MSR is as complex as other existing meta-
learning based methods, like L2R (Ren et al., 2018)
and MW-Net (Shu et al., 2019), but performs sub-
stantially better than them in all weak supervision
scenarios we evaluated. It is worth noting that MSR
has no overhead at inference time. In weak super-
vision, the data annotation cost is considered the
most significant bottleneck. A stronger model is
often obtained by trading some more computation
with the cost and effort of obtaining more human-
generated, manual annotations. Hence, the one-off
investment of training MSR can be worthwhile for
real-world weak supervision applications.
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A Dataset Details

We experiment with eight NLP datasets, includ-
ing six English datasets and two datasets in low-
resource languages. All datasets come with their
ground truth annotations and as well as the weak
labels.

A.1 Datasets Selection Criteria
The WRENCH (Zhang et al., 2021) benchmark
contains 23 NLP datasets. We choose represen-
tative datasets (like previous research in weak su-
pervision) that a) overlap with previous works to
enable direct comparisons. b) are diverse in terms
of weak label quality, languages and tasks to ap-
prove the applicability of different baselines.

A.2 English Datasets
We experiment with four popular sequence classifi-
cation datasets: AGNews, IMDB, Yelp and TREC.

1. AGNews (Zhang et al., 2015): originates
from AG, which is a large collection of news
articles. The news are categorized in four
classes: “World”, “Sports”, “Business” and
“Sci/Tech”.

2. IMDB (Maas et al., 2011): consists of movie
reviews with binary labels. It is a commonly
used benchmark dataset for sentiment analy-
sis.

3. Yelp (Zhang et al., 2015): obtained from the
Yelp Dataset Challenge in 2015. Similar to
IMDB, it is a sentiment analysis dataset.

4. TREC (Li and Roth, 2002): categorizes
the questions in TREC-6 datasets into 6
categories: “Abbreviation”, “Entity”, “De-
scription”, “Human”, “Location”, “Numeric-
value”.

and with the two sequence labeling datasets:
CoNLL-03 and OntoNotes 5.0.

1. CoNLL-03 (Sang and De Meulder, 2003)
NER dataset with four named-entity cate-
gories.

2. OntoNotes 5.0 (Pradhan et al., 2013): NER
dataset with 18 named-entity categories.

All weak labels are obtained from the WRENCH
benchmark7 (Zhang et al., 2021).

7https://github.com/JieyuZ2/wrench

A.3 Datasets in Low-Resource Languages

Most datasets in the current WRENCH benchmarks
are in English. Although weak supervision is de-
sired in low-resource languages, it is understudied
as finding annotators for them is more difficult.
Hence, we include two low-resource languages,
Yorùbá and Hausa, to cover this scenario. Of-
ten, learning with weak labels in low-resource lan-
guages is more challenging. First, the training set
is often much smaller than English datasets. For
example, Hausa has only about 2k training samples
while AGNews have 96k. Second, the weak labels
in low-resource languages can have lower quality
as experts for weak source development are harder
to find. A set of simple rules is often used for label-
ing (which is the case in Yorùbá and Hausa). Hence,
weak supervision with low-resource languages is a
combination of two challenges: training with small
datasets which have low-quality labels.

Yorùbá and Hausa are text classification datasets
obtained from (Hedderich et al., 2020).8

1. Yorùbá: consists of news headlines from
BBC Yoruba which are categorized in seven
classes: “Nigeria”, “Africa”, “World”, “Enter-
tainment”, “Health”, “Sport”, “Politics”.

2. Hausa: consists of news headlines from VOA
Hausa which have the same seven classes as
Yorùbá. However, only five classes are consid-
ered in the text classification task. “Entertain-
ment” and “Sport” have been removed due to
the lack of samples of these classes.

Hedderich et al. (2020) provided both the clean
labels and weak labels on the two datasets. A
gazetteer is created for each class for weak supervi-
sion. For example, a gazetteer containing names of
agencies, organizations, states and cities in Nigeria
is used to label the class “Nigeria”.

A.4 More Dataset Statistics

We provide more details on the datasets we used in
our experiments in Table 4. In general, not all data
can be covered by weak sources. No weak source
is triggered for some training samples and they
remain unlabeled. The coverage of the datasets
ranges from 69.08% to 100%. Note that for NER
tasks, the coverage is always 100% since if no
weak source is triggered for a token, we assign

8https://github.com/uds-lsv/
transfer-distant-transformer-african
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Dataset Task # Class |Dw| |Da| Coverage Conflict |Dv| |Dt|
AGNews Topic 4 66,314 96,000 69.08% 14.17% 12,000 12,000

IMDB Sentiment 2 17,515 20,000 87.58% 11.96% 2,500 2,500
Yelp Sentiment 2 25,165 30,400 82.78% 18.29% 3,800 3,800

TREC Question 6 4,723 4,965 95.13% 22.76% 500 500
Yorùbá Topic 7 1,340 1,340 100.00% 1.87% 189 379
Hausa Topic 5 2,045 2,045 100.00% 1.90% 290 582

CoNLL03 NER 4 14,041 14,041 100.00% 4.05% 3,250 3,453
OntoNotes5.0 NER 18 115,812 115,812 100.00% 1.86% 5,000 22,897

Table 4: Dataset statistics. |Dw|: number of training samples with weak labels. |Da|: total number of training samples (weakly
labeled + unlabeled). Coverage: fraction of samples that are weakly labeled, i.e., |Dw|

|Da| . Conflict: samples that are labeled by at
least two weak sources with contradicted weak labels. |Dv|: number of validation samples. |Dt|: number of test samples.

Hyperparameter Search Range

Teacher Learning Rate 3e-6, 5e-6, 2e-5, 3e-5
Teacher Warm-Up Steps 500, 100, 2000, 3000
Confidence Filter Threshold 0.4, 0.5, 0.6, 0.7, 0.8, 0.95

Table 5: Hyperparameter search.

label “O” (i.e., non-entity) to it. On the other hand,
some samples can be covered by two or more weak
sources with contradicted weak labels. In this case,
we have a conflict. The conflict ratio ranges from
1.86% to 22.76% in the datasets we tested.

B Implementation Details

Models. All baselines in our paper, except the
majority vote and the Snokerl model (Ratner et al.,
2017) which work with label space only, use the
official RoBERTa model9 (Liu et al., 2019) from
Huggingface as the classification backbone for all
English datasets, and the multilingual BERT10 for
datasets in African languages. We use the base
version of the two models which contain roughly
120M and 110M parameters, respectively.

Fine-Tuning on Classification Task. We fine-
tune all layers using AdamW (Loshchilov and Hut-
ter, 2019) as the optimizer. For sequence classifica-
tion tasks, we pass the final layer of the [CLS] token
representation (R768) to a feed-forward layer for
prediction. For sequence labeling tasks, the final
layers of all tokens (R768×L, where L is the sen-
tence length) are passed to a shared feed-forward
layer to predict the class of each token in the sen-
tence. We report the score where the model per-

9https://huggingface.co/roberta-base
10https://huggingface.co/

bert-base-multilingual-cased

forms the best on the validation set during training.

Hyper-Parameters of MSR. We apply grid
search on the warm-up steps for the teacher and
the confidence threshold for the student network.
Table 5 shows our hyperparameter search config-
uration. We choose the final configurations of the
hyperparameters according to the model’s perfor-
mance on the validation set. Table 6 shows the best
configurations of parameters we used to produce
the results in Table 2.

Evaluation Metrics. For model evaluation,
we report accuracy for sequence classification
tasks and F1 Score for sequence labeling tasks.
In our implementation, we call the function
classification_report() from the scikit-learn
library11 to compute the accuracy, and use the
Seqeval class from Huggingface12 to compute the
F1 Score.

C Validation Performance

The average test performance of MSR is reported
in Table 2. We further report the corresponding
validation performance in Table 7.

11https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.classification_report.
html

12https://github.com/huggingface/datasets/blob/
master/metrics/seqeval/seqeval.py
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AGNews IMDB Yelp TREC Yorùbá Hausa CoNLL-03 OntoNotes 5.0

BERT Backbone RoBERTa RoBERTa RoBERTa RoBERTa mBERT mBERT RoBERTa RoBERTa
Batch Size 32 16 16 32 32 32 32 32
Maximum Sequence Length 128 256 256 64 64 128 64 64
Student Learning Rate 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5
Teacher Learning Rate 2e-5 2e-5 2e-5 2e-5 5e-6 2e-5 2e-5 2e-5
Teacher Warm-Up Steps 500 500 3000 500 1000 3000 2000 2000
Confidence Filter Threshold 0.7 0.7 0.5 0.5 0.7 0.4 0.8 0.5

Table 6: Selected hyperparameters. mBERT: multilingual BERT.

Dataset Test Validation

AGNews 89.92 89.90
IMDB 89.16 89.21
Yelp 95.00 94.79

TREC 94.80 94.42
Yorùbá 72.56 75.13
Hausa 59.11 62.34

CoNLL-03 88.41 87.86
OntoNotes 74.59 75.20

Table 7: The average test and validation accuracy/F1 score (in
%) of MSR over five trials.

D Ablation Studies

We report the detailed ablation results for each
dataset in Table 8.

E Hardware and Average Runtime.

We use Nvidia Tesla V100 to accelerate training.
The average runtime for each method and dataset
is summarized in Table 9.
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MSR Configuration AGNews
(Acc)

IMDB
(Acc)

Yelp
(Acc)

TREC
(Acc)

Yorùbá
(Acc)

Hausa
(Acc)

CoNLL-03
(F1)

OntoNotes
(F1)

Student 89.92 89.16 95.00 94.80 72.56 59.11 88.41 74.59
Teacher 89.02 88.08 94.37 93.80 68.87 60.14 87.30 73.22
w/o Teacher Scheduler 89.68 87.68 93.78 93.60 70.71 55.32 87.82 72.48
w/o Confidence Filtering 89.87 89.04 94.76 93.60 71.50 55.15 88.07 74.11
w/o Both 89.55 87.68 93.33 93.40 70.50 55.32 87.82 72.08

Table 8: Ablation studies. The numbers represent the test accuracy and F1 Score.

AGNews IMDB Yelp TREC Yorùbá Hausa CoNLL-03 OntoNotes 5.0

Running time (hours) 2.5 1.6 0.5 1.2 0.5 0.7 1.1 3.0

Table 9: Average runtime (in hours) for training a MSR model. One single Nvidia Tesla V100 GPU is used in each experiment to
accelerate the computation.
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Abstract

Although the problem of hallucinations in neu-
ral machine translation (NMT) has received
some attention, research on this highly patho-
logical phenomenon lacks solid ground. Pre-
vious work has been limited in several ways:
it often resorts to artificial settings where the
problem is amplified, it disregards some (com-
mon) types of hallucinations, and it does not
validate adequacy of detection heuristics. In
this paper, we set foundations for the study
of NMT hallucinations. First, we work in a
natural setting, i.e., in-domain data without
artificial noise neither in training nor in in-
ference. Next, we annotate a dataset of over
3.4k sentences indicating different kinds of crit-
ical errors and hallucinations. Then, we turn
to detection methods and both revisit methods
used previously and propose using glass-box
uncertainty-based detectors. Overall, we show
that for preventive settings, (i) previously used
methods are largely inadequate, (ii) sequence
log-probability works best and performs on par
with reference-based methods. Finally, we pro-
pose DEHALLUCINATOR, a simple method for
alleviating hallucinations at test time which sig-
nificantly reduces the hallucinatory rate.

1 Introduction

Neural machine translation (NMT) is becom-
ing increasingly accurate (Vaswani et al., 2017;
Akhbardeh et al., 2021), particularly in high re-
source language pairs where parallel data is abun-
dant. However, even the best systems available
today may generate hallucinations. These are ex-
tremely pathological translations that contain con-
tent that is unfaithful to the source sequence. Criti-
cally, a tiny fraction of these mistakes is all it takes
to compromise user trust or safe deployment of
NMT models in production.

Unfortunately, although the problem of hallu-
cinations received some attention, research on
this highly pathological phenomenon lacks solid

ground. First, previous work used multiple and of-
ten overlapping definitions and categories of hallu-
cinations which makes it hard to draw connections
between observations made in different works (Lee
et al., 2018; Raunak et al., 2021; Zhou et al., 2021).
Next, since hallucinations are extremely rare, pre-
vious work focused on settings in which the phe-
nomenon is amplified, e.g. perturbing data either
in training or at inference, or evaluating under do-
main shift (Lee et al., 2018; Raunak et al., 2021;
Müller et al., 2020; Wang and Sennrich, 2020;
Voita et al., 2021; Müller and Sennrich, 2021; Zhou
et al., 2021). Critically, the analysis on these works
mostly relied on the adequacy of the automatic hal-
lucination detection methods they proposed. How-
ever, it is not immediate whether these methods
translate well to unperturbed settings.

In this work, we set foundations for the study of
NMT hallucinations. We take a step back from pre-
vious work and, instead of considering perturbed
settings for which hallucinations are more frequent,
we consider a natural scenario and face the actual
problem of identifying a small fraction of halluci-
nations (a “needle”) in a large number of translated
sentences (a “haystack”). Then, we provide a rig-
orous comparison among hallucination detection
methods. Apart from analysing those proposed in
previous work (e.g., heuristics based on anomalous
encoder-decoder attention), we also propose to use
simple model uncertainty measures as detectors.
For each of these methods, we select examples
marked as hallucinations, put them together, and
gather human annotations. As a result, we intro-
duce a corpus of 3415 structured annotations for
different NMT pathologies and hallucinations. We
use this corpus for analysis and show that, in pre-
ventive settings where high recall is desirable, pre-
viously proposed methods are mostly inadequate,
and filtering according to standard sequence log-
probability performs the best. In fact, it performs
on par with the state-of-the-art COMET (Rei et al.,
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Category Source Sentence Reference Translation Hallucination

Oscillatory
Ist ein Kompromiss aufgrund des zugrundeliegen-
den Regelsystems unmöglich, so spricht man von
Aporie.

The case where, based on the pertinent system
of regulations a compromise is not possible, is
referred to as Aporia.

Aporia is the name of aporia , which is
the name of aporia.

Strongly
Detached

Tickets für Busse und die U-Bahn ist zu teuer, vor
allem in Stockholm.

Tickets for buses and the subway is too expen-
sive, especially in Stockholm.

The hotel is located in the centre of Stock-
holm, close to the train station.

Fully
Detached

Die Zimmer beziehen, die Fenster mit Aussicht
öffnen, tief durchatmen, staunen.

Head up to the rooms, open up the windows
and savour the view, breathe deeply, marvel. The staff were very friendly and helpful.

Table 1: Examples of hallucination types. Hallucinated content is shown shaded.

2020a) which uses reference translation and thus
cannot be used in most real-world on-the-fly ap-
plications. Surprisingly, its reference-free version
COMET-QE (Rei et al., 2020b), which was shown
to generally perform on par with COMET (Kocmi
et al., 2021; Freitag et al., 2021), substantially fails
to penalise the severity of hallucinations. Overall,
methods targeting the phenomena are largely un-
fit, quality estimation systems fail, and sequence
log-probability, i.e. a byproduct of generating a
translation, turns out to be the best.

Apart from our analysis of detection methods,
we propose DEHALLUCINATOR, a method for alle-
viating hallucinations at test time. At a high level,
we first apply a lightweight hallucination detec-
tor and then, if a translation is flagged, we try to
overwrite it with a better version. For this, we
generate several MC-dropout hypotheses (Gal and
Ghahramani, 2016), score them with some mea-
sure, and pick the highest-scoring translation as the
final candidate. With this approach, the proportion
of correct translations among the ones flagged by
the detector increases from 33% to 85%, and the
hallucinatory rate decreases threefold.

Overall, we show that (i) in preventive settings,
previously proposed hallucination detectors are
mostly inadequate; (ii) quality estimation tech-
niques fail to distinguish hallucinations from less
severe errors; (iii) sequence log-probability is the
best hallucination detector and performs on par
with reference-based COMET; and, (iv) our DE-
HALLUCINATOR significantly alleviates hallucina-
tions at test time.

Additionally, we release our annotated dataset
along with the model, training data, and code.1

2 Taxonomy of Translation Pathologies

Choosing a good taxonomy is a compromise be-
tween simplicity (which minimizes annotation ef-
fort) and comprehensiveness. Thus, generic qual-

1All these resources are available at https://github.
com/deep-spin/hallucinations-in-nmt.

ity assessment taxonomies, such as MQM (Lom-
mel et al., 2014), might be unfit or too complex
when we focus only on critical errors and halluci-
nations. For hallucinations, in turn, previous work
used multiple, often overlapping, definitions (Lee
et al., 2018; Raunak et al., 2021; Zhou et al., 2021;
Raunak et al., 2022). The taxonomy we build here
is rather general: it covers categories considered
previously (Lee et al., 2018; Raunak et al., 2021)
and others not reported before. For a broader dis-
cussion on the taxonomy of hallucinations in NMT,
and how it differs from other natural language gen-
eration tasks, refer to Ji et al. (2022).

2.1 Hallucinations

To distinguish hallucinations from other errors, we
rely on the idea of detachment from the source
sequence. From this perspective, other critical er-
rors such as mistranslation of named entities are
not considered as hallucinations. In Section 6 and
Appendix D, we show that properties of hallucina-
tions differ a lot from these other errors and thus
our taxonomy is very reasonable.

Oscillatory hallucinations. These are inade-
quate translations that contain erroneous repetitions
of words and phrases.

Largely fluent hallucinations. These are largely
fluent translations that are unrelated to the content
of the source sequence. Previous work assumed
they always bear no relation at all to the source con-
tent (Lee et al., 2018; Raunak et al., 2021). How-
ever, we find that a large proportion of fluent hal-
lucinations partially support the source. Therefore,
we also consider severity of a hallucination and
distinguish translations that are fully detached from
those that are strongly (but not fully) detached.

Note that oscillatory hallucinations can also be
either fully or only partially detached, but since
these hallucinations are less frequent, in what fol-
lows we do not split them by severity. We show
examples of these hallucination types in Table 1.
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2.2 Translation errors
Undergeneration. These are incomplete transla-
tions that do not cover part of the source content.
This problem is often studied in isolation (Koehn
and Knowles, 2017; Stahlberg and Byrne, 2019;
Kumar and Sarawagi, 2019). Undergenerations are
sometimes considered as hallucinations (Lee et al.,
2018) but we do not consider them so in our work.

Mistranslation of named entities. Appropri-
ately translating named entities (e.g. names, dates,
etc.) is also a known difficulty of NMT sys-
tems (Ugawa et al., 2018; Li et al., 2021; Hu et al.,
2022). Note that for production systems, this error
is rather critical. However, we do not consider it
as an hallucination as it does not show detachment
from the source but rather an incorrect attempt to
translate part of its content.

Other errors. These are other incorrect transla-
tions that do not fit the categories above. They may
include errors related to part of speech, word order,
and others. For an extensive analysis on machine
translation errors, refer to Vilar et al. (2006).

3 Hallucination Detection Methods

Approaches to hallucination detection generally
aim to find low-quality translations that may also
satisfy additional constraints. Previous work either
relied only on quality filtering (Lee et al., 2018;
Raunak et al., 2021; Müller and Sennrich, 2021),
or only on heuristics (Berard et al., 2019), or a
combination of the two (Raunak et al., 2021). We
stick to this general form and consider different
quality filters and heuristics.

3.1 Quality Filters
Quality filters come in two forms: reference-free
and reference-based filters. The latter rely on refer-
ence translations, while the former do not.

Reference-free methods. We use the state-of-
the-art COMET-QE (Rei et al., 2020b) for its
superior performance compared to other met-
rics (Mathur et al., 2020; Freitag et al., 2021;
Kocmi et al., 2021).

Reference-based methods. Previous work used
adjusted BLEU or CHRF2 scores of less than 1%
as a standalone criteria (Lee et al., 2018; Raunak
et al., 2021; Müller and Sennrich, 2021; Yan et al.,
2022). In this work, we analyse CHRF2 because it
is more suitable for sentence-level evaluation. In

addition to this lexical metric, we also consider
neural COMET (Rei et al., 2020a), a state-of-the-
art reference-based metric (Kocmi et al., 2021).

Note that in real-world on-the-fly applications,
detecting hallucinations is needed when references
are not available. Thus, we use reference-based
methods to estimate an upper bound for perfor-
mance of the other methods.

3.2 Hallucination Detection Heuristics

3.2.1 Previously Used Heuristics

Binary-score Heuristics. These heuristics were
used by Raunak et al. (2021) to detect oscillatory
and fully detached hallucinations. Given a corpus
of source-translation pairs, a translation is flagged
as an hallucination if it is in the set of 1% lowest-
quality translations, and if:

• Top n-gram count (TNG). The count of
the top repeated n-gram in the translation
is greater than the count of the top repeated
source n-gram by at least t (in their work,
n = 4 and t = 2);

• Repeated targets (RT). The translation is
repeated for multiple unique source sentences.

Anomalous decoder-encoder attention. Atten-
tion patterns2 in which most attention mass is con-
centrated on the source EOS token are often associ-
ated with a model ignoring the source and generat-
ing a hallucinatory translation (Lee et al., 2018; Be-
rard et al., 2019; Raunak et al., 2021). We consider
two different criteria targeted to find this pattern:

• Attn-to-EOS: the proportion of attention
paid to the EOS source token;

• Attn-ign-SRC: the proportion of source
words with a total incoming attention mass
lower than 0.2. This was used as a data filter-
ing criterion in Berard et al. (2019).

3.2.2 Uncertainty-Based Heuristics

Now we describe the uncertainty measures we
propose to use as hallucination detectors. Previ-
ously, these were used to improve quality assess-
ments (Fomicheva et al., 2020; Zerva et al., 2021).

2These patterns are respective to the average of the cross-
attention heads of the decoder’s last layer.
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Sequence log-probability (Seq-Logprob). For
a trained model P (y|x, θ) and a generated transla-
tion y, Seq-Logprob (i.e., model confidence) is the
length-normalised sequence log-probability:

1

L

L∑

k=1

logP (yk | y<k, x, θ). (1)

We hypothesise that when hallucinating, a model
is not confident.

Dissimilarity of MC hypotheses (MC-DSim).
This method measures how the original hypothe-
sis y disagrees with hypotheses {h1, . . . , hN} gen-
erated in stochastic passes. For the same source
sentence, we generate these new hypotheses using
Monte Carlo (MC) Dropout (Gal and Ghahramani,
2016). Then we evaluate the average similarity:

1

N

N∑

i=1

SIM(hi, y). (2)

Different similarity measures can be used in place
of SIM (e.g. METEOR (Banerjee and Lavie, 2005),
BERTScore (Zhang et al., 2020), etc.). We fol-
low previous work and use METEOR with N =
10 (Fomicheva et al., 2020; Zerva et al., 2021).

3.3 Trained Hallucination Detection Model
An exception from the general framework of hal-
lucination detection is the work by Zhou et al.
(2021) who learn to detect token-level hallucina-
tions. Specifically, the authors create synthetic
data where they randomly corrupt some tokens in
a translation and reconstruct them with the BART
model (Lewis et al., 2020). Then, the authors fine-
tune a pretrained language model to identify the
replaced tokens.

TokHal-Model. We evaluate the proportion of
tokens that are predicted to be hallucinated and use
this as a detection score.

3.4 Binary vs Continuous Scores
The methods above fall into two categories: binary-
score and continuous-score heuristics. The for-
mer (only TNG and RT) output a value in {0, 1},
whereas the latter output a value in R and the pre-
diction is made depending on a chosen threshold.

4 Experimental Setting

Model. We use Transformer base (Vaswani et al.,
2017) from fairseq (Ott et al., 2019).

Data. We use the WMT2018 DE-EN news trans-
lation data excluding Paracrawl (Bojar et al.,
2018) – 5.8M sentence pairs. We randomly choose
2/3 of the dataset for training and use the remaining
1/3 as a held-out set for analysis. For validation,
we use the newstest2017 dataset.

Held-out Data Filtering. We are mainly inter-
ested in hallucinations produced for clean data.
Since our held-out data comes from the WMT2018
training dataset and thus can be noisy, we filter
it using Bicleaner, the filtering tool used in offi-
cial releases of filtered ParaCrawl data (Sánchez-
Cartagena et al., 2018; Ramírez-Sánchez et al.,
2020; Kreutzer et al., 2022). Following previous
work, we exclude examples with a score below 0.5
and end up with about 1.3M examples.

All details on preprocessing, hyperparameters
and implementation can be found in Appendix A.

5 Hallucinations Dataset

To analyse the effectiveness of hallucination detec-
tion criteria, we pick a subset of examples that are
likely to be hallucinations, and obtain fine-grained
annotations from professional translators.

5.1 Data for Annotation

Our data selection is motivated by two goals:
(i) find as many hallucinatory translations as pos-
sible – to analyse hallucinations, (ii) pick some
translations from a long tail of hallucination detec-
tion predictions – to analyse the behaviour of these
detection methods. Thus, we first pick 250 worst-
scored samples for each heuristic and quality filter
(including binary assignments obtained through
TNG and RT). Next, we turn to a broader set of
samples and consider translations whose scores
fall below a chosen percentile for a given method,
i.e. we consider long tails of the scores.3 For in-
domain settings, previous work reported hallucina-
tory rates of 0.2− 2%. However, these rates were
either obtained on noisy and/or low-resource data
or using weaker models. Therefore, in our cleaner
in-domain setting with a stronger model, we ex-
pect the hallucination rate to lie in the lower end
of the indicated range. Thus, we consider approxi-
mately 0.4% of the worst scores (which amounts to
5000 flagged translations for each criteria).4 From

3From now on, we refer to examples contained in a long
tail of a method as “flagged” or “detected” by this method.

4The threshold for prediction is consistent with this per-
centile. For practical details, refer to Appendix G.
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these, we sample 250 examples and add them to
the dataset. In total, we end up with 3415 examples
for annotation.5

5.2 Guidelines and Annotation

The annotation guidelines are developed according
to the taxonomy defined in Section 2. All details
on data collection can be found in Appendix B.

6 High-level Overview of the Dataset

6.1 General Statistics

Figure 1 gives a structured overview of dataset
statistics. First, we see that while we picked trans-
lations that are likely to be pathological, 60% of the
dataset consists of correct translations. This high-
lights that with the existing methods, finding poor
translations reliably is still challenging. Next, note
that most of the incorrect translations have transla-
tion errors that are not severe enough to be deemed
hallucinations. This agrees with the view that hallu-
cinations lie at the extreme end of the spectrum of
MT pathologies (Raunak et al., 2021). Finally, the
results of the annotation confirm that our data se-
lection is very reasonable. Indeed, while previous
work has reported hallucinatory rates of 0.2− 2%
in in-domain settings, we see that, for a reasonably
numbered collection of examples, our hallucination
rate is substantially higher (9%) – 294 hallucina-
tions among the 3415 translations. In Figure 1, we
also show the method-specific statistics of human
annotation results for each heuristic and quality fil-
ter. Unsurprisingly, the long tails of each method
display different characteristics. For example, al-
most all translations flagged by Attn-to-EOS are
correct, whereas the proportion of good translations
flagged by COMET-QE or Seq-Logprob is rather
small. We will analyse this further in Section 7.

6.2 MT Errors vs Hallucinations

Now let us look separately at the sets of exam-
ples with hallucinations and other translation er-
rors. Figure 2 shows the structures of these sets
with respect to interactions of the different criteria.

We see that it is reasonable to consider hallu-
cinations separately from other errors: patterns
in Figures 2a and 2b are substantially different.
For example, for translation errors, COMET-QE
performs well, being on par with reference-aware

5Note that a sample originally obtained from the worst
scores or sampled from the long tail of a given method may
belong to the long tail of another method.

Figure 1: Overall (left) and method-specific (right)
statistics of human annotation results. Method-specific
statistics show the percentages of correct translations
(grey), translation errors (yellow) and hallucinations
(red) among the examples flagged by each method.

COMET (Figure 2b). However, for hallucinations,
it identifies less than half the amount of examples
identified not only by COMET, but even by sim-
ple uncertainty-based heuristics (Figure 2a). Fur-
thermore, Figure 2 reveals a significant difference
between interactions of different criteria for hallu-
cinations and for other translations: hallucinations
in our data are most often flagged by multiple cri-
teria simultaneously (e.g. Seq-Logprob flags the
majority of hallucinations detected with Attn-ign-
SRC and MC-DSim), whereas most MT errors and
correct translations are flagged by a single method.
This difference in patterns supports our choice of
taxonomy: properties of hallucinations are very
different from those of other less severe errors.

7 Analysing Detection Criteria

In this section, we provide a comprehensive analy-
sis of the performance of the heuristics and quality
filters introduced in Section 3.

7.1 Quality Filters

Here we start by analysing reference-based meth-
ods, namely COMET and CHRF2, and then turn
to the reference-free COMET-QE. Overall, our re-
sults show that reference information is helpful,
while COMET-QE fails to penalise hallucinations.

Reference information helps detection. Fig-
ure 2a shows that leveraging reference information
helps detecting hallucinations: COMET detects
more hallucinations than any of the other methods.
As expected, lexical-based CHRF2 is significantly
worse than neural-based COMET. In fact, it lags
behind several heuristics (e.g., Seq-Logprob).

We also explore whether previously proposed
methods for detecting hallucinations under domain
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(a) Hallucinations (b) MT errors (c) Correct translations

Figure 2: Structure of the sets of translations flagged by the considered methods. Horizontal bars show the proportion
of examples flagged by each method among all translations of the considered category. Each vertical bar shows the
size for the set of translations that are (i) flagged by all the methods marked in the corresponding column and (ii) not
flagged by any of the rest; only the top intersections are shown. Quality filters are shown with diamond marks, and
detection heuristics – with circles. Methods requiring reference translations are shaded.

Heuristic Correct MT
Errors

Hallucinations
OSC SD FD

TNG 0 0 32 0 0
RT 18 19 2 1 7

All dataset 2048 1073 86 90 118

Table 2: Translations flagged by TNG and RT.

shift are appropriate in our cleaner in-domain set-
ting. Specifically, we follow Müller and Sennrich
(2021) and consider translations with CHRF2 score
lower than 1%. Strikingly, for our clean setting,
this approach is inadequate: in the entire held-out
set of 1.3M examples, it flagged only 2 translations.
This suggests that methods suitable for noisy set-
tings (e.g., domain shift) might not be applicable in
settings where models are less likely to hallucinate.

COMET-QE fails to penalise hallucinations.
From Figure 1 (right) we see that, as expected,
most of the translations flagged by COMET-QE
are incorrect. However, the vast majority of them
are not hallucinations. Indeed, Figure 2a shows
that COMET-QE is one of the worst hallucination
detectors, meaning that it fails to rank by the sever-
ity of a translation pathology. This supports the
hypothesis made in previous work: since quality
estimation models are mostly trained on data that
lacks negative examples, they may be inadequate
for evaluating poor translations (Takahashi et al.,
2021; Sudoh et al., 2021).

Overall, among the considered quality filters,
only COMET may be used as a hallucination de-
tector. However, it is important to keep in mind
that, in on-the-fly applications, detecting hallucina-

tions is needed when references are not available,
rendering reference-based methods not applicable.

7.2 Detection Heuristics

The results in Section 7.1 leave a relevant gap:
where do we turn to when references are not avail-
able? Is there any information, besides quality, that
may help detecting hallucinations? Our evidence
suggests that in preventive settings, previously pro-
posed heuristics are mostly inadequate, and uncer-
tainty may be the answer for the questions we pose.

Binary-score heuristics perform the worst. Ta-
ble 2 shows the number of detected translations
for Top n-gram count (TNG) and Repeated tar-
gets (RT). These heuristics are targeted to iden-
tify oscillatory and fully detached hallucinations,
respectively. We see that while TNG obtains per-
fect precision, it fails to identify more than half
of the oscillatory translations. RT, in turn, per-
forms poorly across the board: only a few hallu-
cinations are detected, and a significant propor-
tion of flagged translations turn out to be correct.
Moreover, Figure 2 shows that even if we join sets
of translations detected by TNG and RT (as done
in Raunak et al. (2021)), altogether we get fewer
hallucinations than almost any other considered
method. Thus, in preventive settings, these meth-
ods are highly inadequate.

Anomalous attention is mostly not hallucination.
Figures 1 and 2 show that behaviors of Attn-to-
EOS and Attn-ign-SRC are significantly different.
First, Attn-to-EOS is not indicative of hallucina-
tions. Indeed, attention patterns in which most
attention mass is concentrated on the EOS token
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largely correspond to correct translations. On the
other hand, Attn-ign-SRC performs well and is sec-
ond only to uncertainty-based Seq-Logprob. Such a
difference in performance is surprising: both meth-
ods are motivated by a common belief that if al-
most all the attention mass is concentrated on the
source EOS token, a translation is likely to be a
hallucination (Berard et al., 2019; Raunak et al.,
2021). In fact, both methods were designed to
identify this specific pattern. However, patterns
identified with Attn-ign-SRC span from attention
mass coming to various uninformative tokens (e.g.,
punctuation) to examples where attention is mostly
diagonal (typically, these correspond to undergen-
erations). We show examples of such attention
maps in Appendix C. Overall, the results highlight
a disparity between what is believed to indicate
hallucinations and what actually indicates them.

Note that while Attn-ign-SRC performs rel-
atively well, it should be used with caution:
attention-based heuristics rely on the assumption
that attention patterns reflect model reasoning.
This assumption is not reliable: although there
is evidence that attention can play recognizable
roles (Voita et al., 2018, 2019), a lot of work ques-
tions attention explainability (Wiegreffe and Pinter,
2019; Jain and Wallace, 2019; Serrano and Smith,
2019; Bastings and Filippova, 2020; Pruthi et al.,
2020). Since hallucinations identified by Attn-ign-
SRC are overwhelmingly contained among the ones
identified by Seq-Logprob (Figure 2a), we recom-
mend using the latter instead.

TokHal-Model is unfit for natural hallucinations.
Let us recall that the model used for the TokHal-
Model scores was trained to identify replaced to-
kens in corrupted translations that are fluent and
do not differ much from the original ones (Zhou
et al., 2021). This means that during training, the
model was unlikely to observe highly pathological
translations that reflect the types of hallucinations
produced by actual NMT systems. This raises sev-
eral concerns when using this model in our setting.
For example, it might incorrectly flag adequate to-
kens such as synonyms or paraphrases. What is
more, since severely flawed examples are mostly
out of distribution for the model, labels predicted
for such translations may be unreasonable.

The results confirm our concerns: Figures 1
and 2a show that (i) the vast majority of translations
flagged by TokHal-Model are correct and (ii) it is
one of the worst hallucination detectors.

Model confidence may be all you need. Fig-
ure 2 shows that Seq-Logprob is the best heuristic
and performs on par with reference-based COMET.
This means that the less confident the model is, the
more likely it is to generate an inadequate transla-
tion. This agrees with some observations made in
previous work on quality estimation (Fomicheva
et al., 2020). Interestingly, such performance of the
method contrasts with its simplicity: Seq-Logprob
scores are easily obtained as a by-product of gener-
ating a translation. This distinguishes the method
from all the rest that require additional computa-
tion (e.g., corpus-level search for RT or generating
multiple hypotheses for MC-DSim).

On another note, NMT models have been found
to be miscalibrated (Kumar and Sarawagi, 2019).
Thus, investigating the impact of recalibration
methods – aimed at enhancing prediction reliability
– on the detection quality of Seq-Logprob consti-
tutes an interesting avenue for future research.

MC-DSim: hallucinations are mostly unstable.
The intuition behind this heuristic is simple: when
faced with a source sentence for which a good trans-
lation is not immediate, the set of hypotheses the
model “keeps at hand” may be very diverse. Indeed,
MC-DSim performs relatively well and identifies
a good proportion of hallucinations (Figures 1, 2).
Thus, most hallucinations are unstable: dissimilar-
ity of MC hypotheses helps to identify them.

Note that while MC-DSim is not the best choice
for detection, later we will show that the intuition
behind this method is very helpful for alleviating
hallucinations at test time (Section 9).

7.3 Combining Heuristics and Quality Filters

Intersecting a set of translations obtained via a
heuristic with the bottom scored translations ac-
cording to a quality filter was introduced in Raunak
et al. (2021). The motivation for this was to avoid
incorrectly flagging good translations as halluci-
nations (e.g., without this intersection, RT flags
good-quality paraphrases). Intuitively, this idea is
very reasonable: hallucinations are indeed incor-
rect translations. However, implementing this in
practice requires a good quality estimation model,
specifically for ranking poor translations. Unfor-
tunately, we showed in Section 7.1 that for this
purpose, even the state-of-the-art COMET-QE is
largely inadequate. This means that using such
quality estimates may lead to filtering out a lot of
hallucinations, which is not desirable in preven-
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(a) Binary-score heuristics (b) Continuous-score heuristics (c) Quality filters

Figure 3: Distribution of the translations flagged by each method conditioned on each of the considered pathologies.

tive settings. Our results show that this is exactly
the case: e.g., filtering with COMET-QE leads to
losing nearly 80% of hallucinations detected by
Seq-Logprob. All in all, such an intersection gener-
ally does more harm than good.

8 Analysing Hallucination Pathologies

In this section, we look at hallucination pathologies
in isolation and show that the behavior of detection
methods varies depending on the type of pathology.
For example, for a given pathology, some methods
may be specialised, whereas others may fail. For
a similar analysis on other less severe translation
errors, refer to Appendix D.

Fully detached hallucinations. Figure 3 shows
that these hallucinations are easily detected by sev-
eral methods, e.g. Seq-Lobprob, Attn-ign-SRC,
COMET, CHRF2. This is not surprising: intu-
itively, the most severe pathology should be the
easiest to detect. However, COMET-QE fails to
identify almost all these hallucinations. While
COMET-based metrics are known to not penalise
enough certain types of errors (e.g., discrepancies
in numbers and named entities; see Amrhein and
Sennrich (2022); Raunak et al. (2022)), such poor
performance for completely inadequate translations
is highly unexpected. This calls for further research
on the behavior of quality estimation models.

On a more general note, previous work sug-
gested that fully detached hallucinations emerge as
exact copies of references from training data (Rau-
nak et al., 2021). We validate this hypothesis and
find the contrary: out of the 44 unique transla-
tions marked as fully detached from the source,
only 4 are exact copies of references in the training
data. Nevertheless, when looking at these sentences
more closely, we see that they do contain large

substrings that are seen frequently during training.
Therefore, fully detached hallucinations are indeed
likely to be traced back to the training data, but
they emerge in non trivial ways and not necessar-
ily as exact copies. This can be seen as one more
evidence that, when dealing with memorisation in
language models, it is necessary to consider not
just full copies in the training data but also near-
duplicates (Lee et al., 2022).

Strongly detached hallucinations. As expected,
this pathology is harder to detect than fully de-
tached hallucinations (Figure 3). However, the
trends are largely similar: for example, COMET-
QE fails again, and Seq-Logprob performs best and
outperforms even reference-based COMET.

Oscillatory hallucinations. The method specif-
ically developed to detect this hallucination
type (Top n-gram count, TNG) performs worse
than most of the other methods. Among the rest,
COMET performs best. Interestingly, in contrast to
previous observations, COMET-QE performs well,
being on par with COMET.

9 DEHALLUCINATOR: Overwriting
Hallucinations at Test Time

In previous sections, we saw that hallucinations are
more unstable than other translations: for them,
generated MC-dropout hypotheses tend to vary
greatly. This motivates us to look more closely into
these hypotheses: are any of these translations not
hallucinations? Answering this question not only
gives insight into the inner workings of hallucinat-
ing NMT models, but also leads to an interesting
practical application – overwriting hallucinations
at inference time. This is of utmost importance
for production systems where hallucinations have
a deeply compromising effect on user trust.
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Figure 4: Our pipeline scheme along with results.

Whenever flagged, overwrite with better. Intu-
itively, our idea is similar to hybrid pipelines when
a machine-generated translation is first passed to
a quality estimation system and then, if needed, is
corrected by human translators. In our case, we
first apply a hallucination detector and then, if a
translation is flagged, we try to overwrite it with a
better translation (Figure 4). For this, we generate
several MC-dropout hypotheses, score them with
some measure, and pick the highest-scoring trans-
lation as a final candidate (in the spirit of reranking
approaches (Shen et al., 2004; Lee et al., 2021;
Fernandes et al., 2022; Freitag et al., 2022)).

The general pipeline above relies on the choice
of a hallucination detector and a scoring measure.
For the detector, we use the best of the analysed de-
tectors, i.e. Seq-Logprob.6 For the scoring measure,
a natural choice would be a quality estimation sys-
tem: by construction, these systems are designed to
score translations according to quality. However, as
we saw earlier, even the state-of-the-art COMET-
QE may fail (Section 7.1). Therefore, we compare
two measures: COMET-QE and Seq-Logprob.

In this experiment, we randomly choose
200 translations from our dataset flagged by Seq-
Logprob. For each, we generate 10 hypotheses
with MC-dropout. Then, for the overwritten trans-
lations we gather annotations according to our
guidelines (Section 5). The results are summarized
in Figure 4. Although we were concerned about
COMET-QE because of its low performance when
ranking poor translations, we find that for choosing
the best hypothesis, it is indeed appropriate and
performs better than Seq-Logprob. We thus show
results with COMET-QE scores in the main text
and with Seq-Logprob in Appendix E.

Most hallucinations and errors become correct.
Figure 4 shows that most hallucinations are over-

6In this experiment, we take the translations from our
dataset and consider the percentiles defined in Section 5.

written with correct translations. This is surprising:
in most cases, the model is not stuck in a hallucina-
tory mode and can generate good translations in a
small vicinity of model parameters. In this sense,
most hallucinations result from “bad luck” during
generation and not profound model defect. Note
that fully detached hallucinations are the hardest to
improve. This makes sense as these are likely to be
traced back to (near-)duplicates in the training data
and, therefore, they do highlight model anomalies.

Note that in this pipeline, we overwrite not only
hallucinations but also other errors and correct
translations that were flagged by the detector. This
means that our method needs to appropriately han-
dle such translations. From Figure 4 we see a pleas-
ant side-effect: our approach overwrites most of the
errors with correct translations. Just as importantly,
almost all originally correct translations remain cor-
rect. Overall, the proportion of correct translations
among the ones flagged by the detector increases
from 33% to 85%, and the hallucinatory rate de-
creases threefold. In Appendix F, we show several
examples of overwritten hallucinations.

10 Conclusions

Dealing with hallucinations is difficult. First, we
had to take a step back from previous work and
refuse procedures that amplify the problem, as
these hinder the behavior of models in their stan-
dard settings. After that, we notice that work on
detection often relies on assumptions that remained
unquestioned (e.g., generic quality measures, tar-
geted heuristics, anomalous attention being suitable
detectors). Through extensive experiments, we es-
tablish order in detection methods. Surprisingly,
despite introduction of several methods specifically
targeted for hallucinations, what works best has
always been at our disposal: standard sequence log-
probability. This suggests that characteristics in-
nate to a model can have a lot of value. In fact, such
characteristics are the backbone of our DEHALLU-
CINATOR, a lightweight approach that significantly
alleviates hallucinations at test time. This leaves
space for future research on model uncertainty, hal-
lucination prevention, understanding where halluci-
nations come from, among others. For this, we re-
lease our corpus with structured annotations along
with the model and its training data. Altogether,
this allows us to say that we provide solid ground
for future study of hallucinations in NMT.
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Limitations

We highlight three main limitations in our work.
First, although the foundation of our proposed tax-
onomy for hallucinations rests on the idea of de-
tachment from the source content, we do not eval-
uate it quantitatively. Indeed, we cannot point
whether the model that generated the hallucina-
tions was indeed detached from the source sen-
tence when generating them. Nevertheless, we
can guarantee that the hallucinations in our dataset
are translations that are detached from the source
content according to professional translators. We
consider that the quantitative analysis of the detach-
ment to be out of the scope of this paper. Still, it
constitutes an interesting line for future research
on understanding hallucinations in NMT that may
be facilitated with the release of our code, model
and annotated dataset.

Second, while this paper comprehensively stud-
ies the phenomena of hallucinations in NMT for a
high-resource language pair, experiments in more
language pairs (including low-resource languages)
are necessary to assess the broad validity of our
claims. To keep our setup familiar to researchers
and practicioners, we opted for a familiar language
pair for which data is widely available. Moreover
our choice also facilitated the data collection pro-
cess as there is a large supply of professional trans-
lators for this language pair.

Lastly, instead of focusing on more recent NMT
models that use large pretrained language models
as their backbone, we focused on a Transformer
base model. The reason for this choice is that we
wanted to keep the setup simple, familiar, easy to
reproduce, and computationally economical. More-
over, it was important for our work to have full
control on the training and held-out data. Neverthe-
less, research on hallucinations on more recent and
powerful NMT models is an exciting line of future
work and we hope our work spurs that research.
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dalena Biesialska, Ondřej Bojar, Rajen Chatter-
jee, Vishrav Chaudhary, Marta R. Costa-jussa,
Cristina España-Bonet, Angela Fan, Christian Fe-
dermann, Markus Freitag, Yvette Graham, Ro-
man Grundkiewicz, Barry Haddow, Leonie Harter,
Kenneth Heafield, Christopher Homan, Matthias
Huck, Kwabena Amponsah-Kaakyire, Jungo Kasai,
Daniel Khashabi, Kevin Knight, Tom Kocmi, Philipp
Koehn, Nicholas Lourie, Christof Monz, Makoto
Morishita, Masaaki Nagata, Ajay Nagesh, Toshiaki
Nakazawa, Matteo Negri, Santanu Pal, Allahsera Au-
guste Tapo, Marco Turchi, Valentin Vydrin, and Mar-
cos Zampieri. 2021. Findings of the 2021 conference
on machine translation (WMT21). In Proceedings of
the Sixth Conference on Machine Translation, pages
1–88, Online. Association for Computational Linguis-
tics.

Chantal Amrhein and Rico Sennrich. 2022. Identifying
weaknesses in machine translation metrics through
minimum bayes risk decoding: A case study for
comet.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Jasmijn Bastings and Katja Filippova. 2020. The ele-
phant in the interpretability room: Why use attention
as explanation when we have saliency methods? In
Proceedings of the Third BlackboxNLP Workshop
on Analyzing and Interpreting Neural Networks for
NLP, pages 149–155, Online. Association for Com-
putational Linguistics.

Alexandre Berard, Ioan Calapodescu, and Claude Roux.
2019. Naver labs Europe’s systems for the WMT19
machine translation robustness task. In Proceedings
of the Fourth Conference on Machine Translation
(Volume 2: Shared Task Papers, Day 1), pages 526–
532, Florence, Italy. Association for Computational
Linguistics.
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Ma, and Ondřej Bojar. 2020. Results of the WMT20
metrics shared task. In Proceedings of the Fifth Con-
ference on Machine Translation, pages 688–725, On-
line. Association for Computational Linguistics.

Mathias Müller, Annette Rios, and Rico Sennrich. 2020.
Domain robustness in neural machine translation. In
Proceedings of the 14th Conference of the Associa-
tion for Machine Translation in the Americas (Volume
1: Research Track), pages 151–164, Virtual. Associa-
tion for Machine Translation in the Americas.

Mathias Müller and Rico Sennrich. 2021. Understand-
ing the properties of minimum Bayes risk decoding
in neural machine translation. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 259–272, Online. Asso-
ciation for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48–53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Danish Pruthi, Mansi Gupta, Bhuwan Dhingra, Graham
Neubig, and Zachary C. Lipton. 2020. Learning to

deceive with attention-based explanations. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4782–
4793, Online. Association for Computational Lin-
guistics.

Gema Ramírez-Sánchez, Jaume Zaragoza-Bernabeu,
Marta Bañón, and Sergio Ortiz-Rojas. 2020. Bifixer
and bicleaner: two open-source tools to clean your
parallel data. In Proceedings of the 22nd Annual
Conference of the European Association for Machine
Translation, pages 291–298, Lisboa, Portugal. Euro-
pean Association for Machine Translation.

Vikas Raunak, Arul Menezes, and Marcin Junczys-
Dowmunt. 2021. The curious case of hallucinations
in neural machine translation. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1172–1183,
Online. Association for Computational Linguistics.

Vikas Raunak, Matt Post, and Arul Menezes. 2022.
Salted: A framework for salient long-tail translation
error detection.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020a. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020b. Unbabel’s participation in the WMT20
metrics shared task. In Proceedings of the Fifth Con-
ference on Machine Translation, pages 911–920, On-
line. Association for Computational Linguistics.

Víctor M. Sánchez-Cartagena, Marta Bañón, Sergio
Ortiz-Rojas, and Gema Ramírez-Sánchez. 2018.
Prompsit’s submission to wmt 2018 parallel cor-
pus filtering shared task. In Proceedings of the
Third Conference on Machine Translation, Volume 2:
Shared Task Papers, Brussels, Belgium. Association
for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Sofia Serrano and Noah A. Smith. 2019. Is attention in-
terpretable? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2931–2951, Florence, Italy. Association for
Computational Linguistics.

Libin Shen, Anoop Sarkar, and Franz Josef Och. 2004.
Discriminative reranking for machine translation.
In Proceedings of the Human Language Technol-
ogy Conference of the North American Chapter

1070

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.1007/s00521-020-05509-y
https://doi.org/10.1007/s00521-020-05509-y
https://doi.org/10.5565/rev/tradumatica.77
https://doi.org/10.5565/rev/tradumatica.77
https://doi.org/10.5565/rev/tradumatica.77
https://aclanthology.org/2020.wmt-1.77
https://aclanthology.org/2020.wmt-1.77
https://aclanthology.org/2020.amta-research.14
https://doi.org/10.18653/v1/2021.acl-long.22
https://doi.org/10.18653/v1/2021.acl-long.22
https://doi.org/10.18653/v1/2021.acl-long.22
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/2020.acl-main.432
https://doi.org/10.18653/v1/2020.acl-main.432
https://doi.org/10.18653/v1/2021.naacl-main.92
https://doi.org/10.18653/v1/2021.naacl-main.92
https://doi.org/10.48550/ARXIV.2205.09988
https://doi.org/10.48550/ARXIV.2205.09988
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://aclanthology.org/2020.wmt-1.101
https://aclanthology.org/2020.wmt-1.101
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P19-1282
https://doi.org/10.18653/v1/P19-1282
https://aclanthology.org/N04-1023


of the Association for Computational Linguistics:
HLT-NAACL 2004, pages 177–184, Boston, Mas-
sachusetts, USA. Association for Computational Lin-
guistics.

Felix Stahlberg and Bill Byrne. 2019. On NMT search
errors and model errors: Cat got your tongue? In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3356–
3362, Hong Kong, China. Association for Computa-
tional Linguistics.

Katsuhito Sudoh, Kosuke Takahashi, and Satoshi Naka-
mura. 2021. Is this translation error critical?:
Classification-based human and automatic machine
translation evaluation focusing on critical errors. In
Proceedings of the Workshop on Human Evaluation
of NLP Systems (HumEval), pages 46–55, Online.
Association for Computational Linguistics.

Kosuke Takahashi, Yoichi Ishibashi, Katsuhito Sudoh,
and Satoshi Nakamura. 2021. Multilingual machine
translation evaluation metrics fine-tuned on pseudo-
negative examples for wmt 2021 metrics task. In
Proceedings of the Sixth Conference on Machine
Translation, pages 1049–1052, Online. Association
for Computational Linguistics.

Chau Tran, Shruti Bhosale, James Cross, Philipp Koehn,
Sergey Edunov, and Angela Fan. 2021. Facebook
AI’s WMT21 news translation task submission. In
Proceedings of the Sixth Conference on Machine
Translation, pages 205–215, Online. Association for
Computational Linguistics.

Arata Ugawa, Akihiro Tamura, Takashi Ninomiya, Hi-
roya Takamura, and Manabu Okumura. 2018. Neural
machine translation incorporating named entity. In
Proceedings of the 27th International Conference on
Computational Linguistics, pages 3240–3250, Santa
Fe, New Mexico, USA. Association for Computa-
tional Linguistics.

Shikhar Vashishth, Shyam Upadhyay, Gaurav Singh
Tomar, and Manaal Faruqui. 2019. Attention inter-
pretability across nlp tasks.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

David Vilar, Jia Xu, Luis Fernando D’Haro, and Her-
mann Ney. 2006. Error analysis of statistical ma-
chine translation output. In Proceedings of the Fifth
International Conference on Language Resources
and Evaluation (LREC’06), Genoa, Italy. European
Language Resources Association (ELRA).

Elena Voita, Rico Sennrich, and Ivan Titov. 2021. Ana-
lyzing the source and target contributions to predic-
tions in neural machine translation. In Proceedings

of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1126–1140, Online.
Association for Computational Linguistics.

Elena Voita, Pavel Serdyukov, Rico Sennrich, and Ivan
Titov. 2018. Context-aware neural machine trans-
lation learns anaphora resolution. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1264–1274, Melbourne, Australia. Association
for Computational Linguistics.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 5797–5808, Florence, Italy.
Association for Computational Linguistics.

Chaojun Wang and Rico Sennrich. 2020. On exposure
bias, hallucination and domain shift in neural ma-
chine translation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3544–3552, Online. Association for
Computational Linguistics.

Sarah Wiegreffe and Yuval Pinter. 2019. Attention is not
not explanation. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 11–20, Hong Kong, China. Association for
Computational Linguistics.

Jianhao Yan, Fandong Meng, and Jie Zhou. 2022. Prob-
ing causes of hallucinations in neural machine trans-
lations.

Chrysoula Zerva, Daan van Stigt, Ricardo Rei, Ana C
Farinha, Pedro Ramos, José G. C. de Souza, Taisiya
Glushkova, Miguel Vera, Fabio Kepler, and André
F. T. Martins. 2021. IST-unbabel 2021 submission
for the quality estimation shared task. In Proceed-
ings of the Sixth Conference on Machine Translation,
pages 961–972, Online. Association for Computa-
tional Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Chunting Zhou, Graham Neubig, Jiatao Gu, Mona Diab,
Francisco Guzmán, Luke Zettlemoyer, and Marjan
Ghazvininejad. 2021. Detecting hallucinated content
in conditional neural sequence generation. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 1393–1404, Online.
Association for Computational Linguistics.

1071

https://doi.org/10.18653/v1/D19-1331
https://doi.org/10.18653/v1/D19-1331
https://aclanthology.org/2021.humeval-1.5
https://aclanthology.org/2021.humeval-1.5
https://aclanthology.org/2021.humeval-1.5
https://aclanthology.org/2021.wmt-1.113
https://aclanthology.org/2021.wmt-1.113
https://aclanthology.org/2021.wmt-1.113
https://aclanthology.org/2021.wmt-1.19
https://aclanthology.org/2021.wmt-1.19
https://aclanthology.org/C18-1274
https://aclanthology.org/C18-1274
https://doi.org/10.48550/ARXIV.1909.11218
https://doi.org/10.48550/ARXIV.1909.11218
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/413_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/413_pdf.pdf
https://doi.org/10.18653/v1/2021.acl-long.91
https://doi.org/10.18653/v1/2021.acl-long.91
https://doi.org/10.18653/v1/2021.acl-long.91
https://doi.org/10.18653/v1/P18-1117
https://doi.org/10.18653/v1/P18-1117
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/D19-1002
https://doi.org/10.18653/v1/D19-1002
https://doi.org/10.48550/ARXIV.2206.12529
https://doi.org/10.48550/ARXIV.2206.12529
https://doi.org/10.48550/ARXIV.2206.12529
https://aclanthology.org/2021.wmt-1.102
https://aclanthology.org/2021.wmt-1.102
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.18653/v1/2021.findings-acl.120
https://doi.org/10.18653/v1/2021.findings-acl.120


A Experimental setup

Data preprocessing. We filter our data using lan-
guage identification and simple length-heuristics
described in Tran et al. (2021). We encode the
data with byte-pair encoding (Sennrich et al., 2016)
using the SentencePiece framework (Kudo and
Richardson, 2018). We set the vocabulary size to
32k and compute joint encodings and vocabulary.

Model parameters. We follow the setup of
Transformer base model (Vaswani et al., 2017) (hid-
den size of 512, feedforward size of 2048, 6 en-
coder and 6 decoder layers, 8 attention heads). The
model has approximately 77M parameters.

Optimizer. Similarly to (Vashishth et al., 2019),
we train our model using the Adam optimizer with
β1 = 0.9 and β2 = 0.98 and use an inverse square
root learning rate scheduler with initial value 5×
10−4, and a linear warm-up in the first 4000 steps.

Training and Inference. Models are trained for
250K updates with a batch size of about 32K to-
kens. We set dropout to 0.3. At inference time,
we produce translations using beam search with a
beam of 5. We validate our models during training
using SacreBLEU (Post, 2018), and we choose the
checkpoint based on best BLEU in validation. We
provide BLEU7 and COMET baselines on WMT
evaluation campaigns in Table 3. We train and
performance inference on top of the Fairseq frame-
work (Ott et al., 2019).

COMET versions. We use models available
in the official repository8: wmt20-comet-da
for COMET and wmt20-comet-qe-da-v2 for
COMET-QE.

TokHal-Model. We follow the official imple-
mentation.9 For the synthetic data generation step,
we used BART-large; and, for the token-level hal-
lucination predictor, we used XLM-R (Conneau
et al., 2019).

Computing Infrastructure. All our experiments
have been ran on a machine with 2 physical Intel(R)
Xeon(R) Gold 6348 @ 2.60GHz CPUs (total of
112 threads), and 4 NVIDIA RTX A6000 GPUs.
In particular, the NMT model described above was
trained in less than 30 hours on a single GPU.

7BLEU+case.mixed+lang.XX+numrefs.1+
smooth.exp+tok.13a+version.1.4.2

8https://github.com/Unbabel/COMET
9https://github.com/violet-zct/fairseq-detect-

hallucination

Metric WMT2014 WMT2017 WMT2018

BLEU 31.1 32.6 38.9
COMET 0.3178 0.3257 0.3340

Table 3: Evaluation metrics for EN → DE for newstest
sets for the WMT 2014, 2017 and 2018 campaigns.

B Data Collection

We perform a rigorous and comprehensive manual
annotation procedure with professional translators,
in order to make sure that we are reliably analysing
hallucinated translations.10 First, the translators
were asked to be familiar with our task by read-
ing our provided annotation examples, along with
detailed annotation instructions. Then they had to
pass a test to show they can recognize different
pathologies in different translations. We selected
the two best translators to gather the annotations.
After being hired, we ran three one-hour tutorial
sessions to explain the task thoroughly and to clar-
ify any possible questions. During the annotation
process, we made sure to be promptly available to
answer any question from the translators. We paid
a fair wage (25-30 USD per hour) – well above
both the US federal minimum and the average EU
minimum wage – and inspected their work for qual-
ity.

Guidelines. We make available the full guide-
lines used by the translators along with all other
resources in the project repository. In short, the
annotators were presented with a source sentence
and a model-generated hypothesis and asked to
deem that translation as correct (COR) or incorrect.
If incorrect, they were prompted to answer a se-
ries of yes/no questions, regarding the presence
of specific hallucinatory pathologies: oscillations
(OSC), strong detachment (SD) and full detachment
(FD). We also asked annotators to flag critical er-
rors such as named-entity mistranslations (NE) and
under-generated translations (UG).

Inter-annotator agreement. To determine the
reliability of our annotations, we asked both our
translators to annotate a set of 400 randomly sam-
pled translations. For all hallucinatory categories
but SD, the annotators achieved – according to Co-
hen’s kappa coefficient (Cohen, 1960) – almost

10Our translators were hired through Upwork and they were
informed about the academic purposes of the data annotation
process. All translators hired for this study reside in Europe.
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(a) Correct translation, flagged by
Attn-to-EOS

(b) Hallucination, flagged by
Attn-ign-SRC

(c) Undergeneration, flagged by
Attn-ign-SRC

Figure 5: Examples of attention maps flagged by attention-based heuristics.

Fleiss’s Kappa Scores
COR UG NE OSC SD FD

0.62 0.73 0.42 0.86 0.45 0.89

Table 4: Fleiss’s Kappa inter-annotator agreement
scores (↑) for the different categories translators were
prompted to identify.

perfect agreement. For all other categories, mod-
erate to substantial agreement was obtained. This
confirms that our data conforms very well to our in-
structions. The agreement scores for each category
are displayed in Table 4.

C Patterns of attention maps for
translations flagged with
attention-based heuristics

The attention maps are shown in Figure 5. While
both Attn-to-EOS and Attn-ign-SRC were de-
signed to identify translations for which almost all
the attention mass is concentrated on the EOS token,
the patterns identified with Attn-ign-SRC are more
diverse. They span from attention mass coming to
various uninformative tokens (e.g., punctuation and
other tokens as in Figure 5b) to examples shown in
Figure 5c where attention is mostly diagonal (typ-
ically, these correspond to undergenerations; we
follow this discussion in the next section).

D Analysing Less Severe Translation
Errors

We notice that some of the detection methods are
specialised on specific pathologies. For example,
Attn-ign-SRC is by far the best for detecting un-
degenerations. This is expected: an undergener-
ation does not cover part of the source sentence,
thus a significant proportion of source tokens re-
ceives little attention mass (see example in Fig-

Figure 6: Our pipeline scheme along with results when
we use Seq-Logprob as both the detector and the scoring
measure.

ure 5c). For named entity errors, the best heuristic
is TokHal-Model. This mirrors the discussion in
Section 7.2: while severe errors (i.e., hallucina-
tions) fall out of distribution for this model, mis-
translations of short phrases are more in line with
the model’s training.

On a different note, MC-DSim performs much
better for hallucinations than for less severe
pathologies (Figure 3b). This again points to hallu-
cinations being more unstable than other errors.

E Overwriting Hallucinations with
Seq-Logprob as the scoring measure

The results are shown in Figure 6. In order to
use Seq-Logprob as the scoring measure, we score
all generated hypothesis with the original model.
Overall, although the results follow the same trend
as those using COMET-QE as the scoring measure,
they are slightly worse: the hallucinatory rate is
higher and the percentage of correct translations is
smaller.

F Examples of overwritten translations

Table 5 shows examples of each hallucination type
that have been overwritten with correct translations
with the approach described in Section 9.
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G Practical Recommendations for
Detection

As we have mentioned in Section 3.4, Binary-label
heuristics output a value in {0; 1}, and continuous-
score heuristics output a value s in R. These values
s can be used to build a binary decision rule: for
a given source x, translation ŷ and reference y, a
translation is flagged by the detector if and only
if s(x, ŷ, y) ≤ γ. Naturally, s may not need be a
function of x, ŷ and y (e.g. COMET-QE is only a
function of x and ŷ).

Choosing the thresholds. In our work, we chose
the thresholds γ for each detector by assessing the
value s correspondent to approximately the 0.4-th
percentile to be consistent with the data selection
process (see Section 5). We computed these thresh-
olds using the entire filtered held-out data. How-
ever, in practice, we obtained very similar results
when we obtained these thresholds using a collec-
tion of only 10 000 examples from that dataset.

We recommend computing these thresholds on
in-domain clean data. This will guarantee that the
cut-off values were obtained in a scenario where
the model performs best. Finally, the definition of
the k-th percentile is expected to have an impact on
the precision-recall trade-off. Thus, for preventive
settings, we recommend sticking to more conserva-
tive values of k.

Choosing the detectors. The choice of detector
rests upon the application for which it is intended.
For high-precision settings, binary-label heuristics
such as TNG and variants thereof (Raunak et al.,
2022) may be more recommended. For preventive
settings, we suggest using Seq-Logprob as the back-
bone of the hallucination detector. Naturally, we
generally obtain higher recall by joining the sets
of translations flagged with multiple methods. For
example, Figure 3 reveals that joining the set of
translations flagged with Seq-Logprob with the set
of translations flagged with COMET-QE is very
reasonable: COMET-QE performs better for oscil-
latory hallucinations, while Seq-Logprob is better
for the other hallucination types.

Be careful when relying on references. Using
reference information is helpful for detecting hallu-
cinations (see Section 7.1), and while it may not be
used to detect hallucinatins on-the-fly, it may still
prove useful for analysis works. We have found that
high-quality parallel data is critical for adequate ap-

plication of these methods: very low scores might
not only be attributed to poor translations, but also
to reference mismatches. Indeed, preliminary ex-
periments highlighted this worrying trend, which
motivated us to clean the held-out set (Section 4).
Thus, if using reference information to detect hal-
lucinations, make sure to thoroughly clean your
parallel data.
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OVERWRITING FULLY DETACHED HALLUCINATIONS

SOURCE Handys, die bis auf Wäschewaschen und Staubsaugen scheinbar alles können.
REFERENCE Mobile phones that can practically do everything except clean the laundry and vacuum clean.

ORIGINAL
HYPOTHESIS

The staff were very friendly and helpful.

OVERWRITTEN
HYPOTHESIS

Mobile phones that seem to be able to do everything except on laundry and dustproofing.

SOURCE In unserem 2 Personen Van mit Dusche/WC war ausreichend Platz für uns beide.
REFERENCE The space in our 2 person van with shower/toilet was enough for 2 people.

ORIGINAL
HYPOTHESIS

The staff were very friendly and helpful. The room was clean and comfortable.

OVERWRITTEN
HYPOTHESIS

In our 2 person van with shower/WC there was enough room for us both.

OVERWRITING STRONGLY DETACHED HALLUCINATIONS

SOURCE Tickets für Busse und die U-Bahn ist zu teuer, vor allem in Stockholm.
REFERENCE Tickets for buses and the subway is too expensive, especially in Stockholm.

ORIGINAL
HYPOTHESIS

The hotel is located in the centre of Stockholm, close to the train station.

OVERWRITTEN
HYPOTHESIS

Buses and metro tickets are too expensive, especially in Stockholm.

SOURCE Ich freue mich über jeden Tag, wo es mir so gut geht!
REFERENCE I am pleased about each day, where I am so well!

ORIGINAL
HYPOTHESIS

I look forward to seeing you every day!

OVERWRITTEN
HYPOTHESIS

I’m very happy with every day I’m doing so well!

OVERWRITING OSCILLATORY HALLUCINATIONS

SOURCE
In dieser Zeit stürzt sich Murnau bereits wieder in Theaterproben, allerdings widmet er sich nicht mehr
der Schauspielerei, sondern der Regie.

REFERENCE
During this period, Murnau once again dedicates his time to theatre rehearsals; however, this time not
as an actor, but as a director.

ORIGINAL
HYPOTHESIS

Murnau was born in Murnau, Germany. He was born in Murnau, Germany.

OVERWRITTEN
HYPOTHESIS

During this time, Murnau began to appear in theater tests again, but he was no longer concerned with
acting, but with directing.

SOURCE
Die Staaten, deren Fangflotten im Nordwestatlantik Hochseefischerei betreiben, bemühen sich im
Rahmen der NAFO (Organisation für die Fischerei im Nordwestatlantik) um eine gemeinsame Be-
standserhaltung und - bewirtschaftung.

REFERENCE
States which fish in the high seas in the North West Atlantic co-operate in NAFO (North-west Atlantic
Fisheries Organisation) in order to ensure conservation and management of stocks.

ORIGINAL
HYPOTHESIS

The North-West Atlantic Fisheries Organisation (NAFO) is a member of the North-West Atlantic
Fisheries Organisation (NAFO).

OVERWRITTEN
HYPOTHESIS

The states whose fishing fleets in the North-West Atlantic are engaged in deep-sea fishing are seeking
joint conservation and management within the framework of the North-West Atlantic Fisheries Organi-
sation (NAFO).

Table 5: Examples of hallucinations of each type that have been overwritten with correct translations.
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Abstract

Treebanks annotated with Universal Depen-
dencies (UD) are currently available for over
100 languages and are widely utilized by the
community. However, their inherent quality
characteristics are hard to measure and are
only partially reflected in parser evaluations
via accuracy metrics like LAS. In this study,
we analyze a large subset of the UD tree-
banks using three recently proposed accuracy-
free dataset analysis methods: dataset cartogra-
phy, V-information, and minimum description
length. Each method provides insights about
UD treebanks that would remain undetected
if only LAS was considered. Specifically, we
identify a number of treebanks that, despite
yielding high LAS, contain very little informa-
tion that is usable by a parser to surpass what
can be achieved by simple heuristics. Further-
more, we make note of several treebanks that
score consistently low across numerous metrics,
indicating a high degree of noise or annotation
inconsistency present therein.

1 Introduction

Datasets have long played a crucial role in dictat-
ing the pace of progress in NLP. Their function,
for most tasks, is largely two-fold: 1) to collect
data points (and their corresponding gold-standard
labels) on which statistical models can be trained,
and 2) to serve as benchmarks though which var-
ious models can be evaluated and compared. In
recent years, much research has been devoted to-
wards developing new datasets, tasks, and bench-
marks for NLP — so as to articulate the distin-
guishing aspects of a bevy of new neural models.
Syntactic parsing has remained an active area of re-
search in this regard, and Universal Dependencies
(UD) (Nivre et al., 2016, 2020; de Marneffe et al.,
2021) has emerged as a crucial initiative within
NLP, offering a set of cross-lingually consistent
annotation principles that have since been adapted
to over 100 languages.

Notably, the CoNLL shared tasks of 2017 and
2018 (Zeman et al., 2017, 2018) featured UD at the
forefront, inviting researchers to submit systems
that could not only parse, but process the entirety of
UD across its numerous annotation layers. Beyond
parsing, UD has also been utilized for a variety of
other ends, including cross-lingual transfer (Am-
mar et al., 2016; Pires et al., 2019; Wu and Dredze,
2020; Lauscher et al., 2020), domain adaptation (Li
et al., 2019, 2020; Stymne, 2020), and linguistic
typology (Futrell et al., 2015; Hahn et al., 2020;
Levshina, 2019).

Though UD and other initiatives have aided in
driving recent advances in NLP, overall progress
has typically been measured via aggregate accuracy
metrics, which provide little more than a bird’s
eye view into the data. In the era of deep learn-
ing, where popular models are notoriously opaque,
it has thus proven vital to study the contents of
datasets and identify aspects that may misrepre-
sent model performance. In this vein, numerous
studies have shown that the crowd-funded nature
of some popular NLP datasets makes them prone
to annotation artefacts that are readily exploitable
by neural models as heuristics (Kaushik and Lip-
ton, 2018; Gururangan et al., 2018; Poliak et al.,
2018; McCoy et al., 2019). With such insights
in mind, researchers have shifted their focus to-
wards the datasets instead of the models, propos-
ing general methods for exploring the former so
as to better understand the performance of the lat-
ter. Such approaches have drawn from, e.g., in-
formation theory (Perez et al., 2021; Ethayarajh
et al., 2022), item response theory (Rodriguez et al.,
2021; Vania et al., 2021), and model training dy-
namics (Swayamdipta et al., 2020). This work,
however, has predominately focused on classifi-
cation tasks and has proven difficult to extend to
other classes of problems, such as the structured
prediction tasks of UD.

In this paper, we perform an analysis of (a large
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subset of) UD v2.9 through the perspective of a pop-
ular parsing architecture — namely that of Dozat
and Manning (2016). As opposed to much previous
work, which prioritizes metrics like LAS in order
to build accurate parsers, we aim instead to bet-
ter understand the underlying data, as well as how
our parser interfaces with it. To do so, we extend
recently proposed dataset analysis methods based
on model training dynamics (Swayamdipta et al.,
2020), V-information (Xu et al., 2020; Ethayarajh
et al., 2022), and minimum description length
(Blier and Ollivier, 2018; Voita and Titov, 2020;
Perez et al., 2021) to the dependency parsing sce-
nario. In working with each method, we formalize
the following set of research questions:

1. Which treebanks appear hard (or easy) to
parse, given a model’s confidence throughout
training, and variability therein?

2. Which treebanks contain the most (or least)
information that is actually usable by a parser,
with respect to a naive baseline?

3. Which treebanks are the most (or least) sam-
ple efficient, i.e. most easily fit by a parser,
irrespective of training set size?

2 Universal Dependencies

Universal Dependencies (UD) (Nivre et al., 2016,
2020; de Marneffe et al., 2021) is an initiative
focused on the development of dependency tree-
banks. UD is founded upon a lexicalist perspec-
tive on syntax, which posits that (syntactic) rela-
tions are formed directly between words. Although
this approach does not take morphological seg-
mentation explicitly into account, UD nonetheless
provides such information in the form of lemmas,
part-of-speech tags, and morphological features for
each word. These design decisions have inspired
the widespread adoption of UD as an annotation
scheme, which has grown from 10 treebanks across
10 languages in v1.0 to 243 treebanks across 138
languages in v2.11.

2.1 Dependency Parsing

Though UD contains multiple layers, our focus
in this paper is on its syntactic layer — the de-
pendency tree annotation upon which parsers are
trained and evaluated. As a task, dependency
parsing amounts to mapping a sentence x =
{x1, x2, ..., xn} to its respective syntactic struc-
ture y. This is typically a tree (a rooted, directed,
acyclic graph) over x, where each word xi ∈ x

(called a dependent) forms an edge with another
word xj ∈ x that it syntactically modifies (its head).
Though such edges (xi, xj) are sometimes consid-
ered in isolation, most often they are accompanied
by a label describing the relation between xi and
xj . UD comprises of a base set of 37 such labels,
in addition to treebank-specific subtypes that can
be introduced by annotators.

Unlike classification or sequence labeling tasks,
which entail predicting y given a fixed label set K,
parsing is considered a structured prediction task,
where the output space is constrained by the sen-
tence length n + 1 (with a special root symbol
included). In data-driven parsing, a parser is typ-
ically a function f whose parameters θ are fit on
some gold-annotated training set Xtrain, e.g. a UD
treebank. A trained parser’s predictions ŷ = fθ(x)
can then be evaluated on a held out test set Xtest

by means of various metrics. Commonly, these
are labeled attachment score (LAS), which is the
percentage of all words in Xtest that are assigned
the correct head and label by f , and the unlabeled
attachment scores (UAS), which is the percentage
of words that are assigned the correct head, irre-
spective of label. We will focus primarily on LAS
in this study, as it assesses both head attachment
and labeling.

2.2 UD Parsing

In conjunction with UD’s popularity and transition
to v2.0, the CoNLL 2017 and 2018 Shared Tasks on
Multilingual Parsing from Raw Text to Universal
Dependencies (Zeman et al., 2017, 2018) sought to
consolidate trends in parsing research with respect
to a wealth of new data, algorithms, and models.
Overall, the findings of both shared tasks offered
many insights for the future of dependency parsing.
Primarily, they helped establish Dozat and Man-
ning (2016)’s parser as the most popular parsing
architecture of the neural NLP era. Though many
new architectures have been proposed since, the bi-
affine attention decoder continues to feature promi-
nently in parsing research, where the focus has
shifted to the matter of feature representation and
fine-tuning, rather than decoding (see, e.g. Kon-
dratyuk and Straka (2019); Üstün et al. (2020)).

3 Beyond Accuracy

In NLP, system performance is typically measured
via accuracy, which has the advantage of being
intuitive and straightforward to calculate. More-
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over, it is often useful in model selection, as well
in setting the state-of-the-art for a given dataset or
task. Beyond these qualities, however, accuracy
leaves much to be desired when investigating mod-
els vis-a-vis datasets. For one, it is often reported
with respect to a single checkpoint from a model’s
training regime, which typically consists of numer-
ous epochs and parameter updates. In honing in
on one particular checkpoint (usually the best with
respect to validation loss or accuracy), one can-
not readily assess whether the model was easily
fit on the data, or if training was stopped prema-
turely. Furthermore, in choosing the argmax over
the output distribution, one inevitably loses infor-
mation about it: Was the model confident in making
its prediction? Or was the distribution highly en-
tropic? Also relevant is the train/test distinction: in
evaluating on the latter, one can gauge a model’s
ability to generalize, but generally cannot assess
the goodness-of-fit on the former, nor its sample
efficiency. Likewise, accuracy cannot, in principle,
adequately assess the quality of the training data:
can the model learn from all instances therein? Or
does the data contain a substantial amount of noise
due to, e.g. annotation inconsistencies?

With regard to dependency parsing, accuracy-
based metrics like LAS carry a number of addi-
tional drawbacks. For example, if working with an
arc-factored graph-based dependency parser, one
must score all possible n incoming edges for a de-
pendent xi ∈ x. If n = 1, then x must necessarily
be attached to the dummy node and assigned the
root label. For a treebank consisting of many
such sentences (e.g. Russian Taiga), this will lead
to artificially inflated accuracies for that particular
relation. Another concern is the potential prolifera-
tion of functional relations that may arise in some
treebanks (e.g. Japanese GSD), where parsers of-
ten yield disproportionately high accuracies (Nivre
and Fang, 2017). To transcend the limitations of
accuracy-based measures in dependency parsing,
we consider three recently proposed dataset analy-
sis methods as a means of exploring UD treebanks:
dataset cartography (Swayamdipta et al., 2020),
V-information (Xu et al., 2020), and minimum de-
scription length (Blier and Ollivier, 2018).

3.1 Dataset Cartography

Dataset cartography (Swayamdipta et al., 2020) is
a method for analyzing training datasets via the
lens of model training dynamics. Put briefly, DC

assumes the use of a model f trained to minimize
loss on a dataset D of size N . Crucially, for a
given instance Di = (x, y∗), DC posits that f de-
fines a probability distribution over labels y, such
that the probability of the true label p(y∗|x) can
be tracked throughout training. Given a gradient
descent-based training regime of E epochs, DC de-
fines the notion of confidence (CONF) as follows:

CONFi =
1

E

E∑

e=1

pθe(y
∗|x)

where θe are f ’s parameters following the epoch e
update. Intuitively, high CONF values (e.g. ≈ 0.95)
for a given training instance Di indicate that f gen-
erally assigns high probability to y∗ throughout
training — i.e. that Di is “easy-to-learn”. Con-
versely, low CONF values (e.g. ≈ 0.05) indicate
that f generally “fails” to learn from those particu-
lar instances.

As a complement to CONF, Swayamdipta et al.
(2020) also introduce the variability (VAR) metric,
which summarizes the tendency of f to waver in its
assignment of p(y∗|x) throughout training. VAR is
defined as follows:

VARi =

√∑E
e=1(pθe(y

∗|x)− CONFi)2

E

In essence, while CONF is the mean of p(y∗|x)
across E, VAR is its standard deviation. Using
both of these metrics, Swayamdipta et al. (2020)
are able to construct data maps, which visualize
D through the perspective of f . With VAR and
CONF plotted on the x and y axes, respectively,
data maps help in identifying select regions of D
that are easy or difficult for f to learn — or are
otherwise ambiguous.

3.2 V-Information

An alternative approach for quantifying dataset
“difficulty” is proposed by Ethayarajh et al. (2022),
who leverage the concept of V-Information. Intro-
duced by Xu et al. (2020), V-information (denoted
as IV(X → Y )) is a framework for estimating the
amount of information between random variables
X and Y (input and output, respectively) that is
usable by a model in family V — e.g., a sentiment
classifier or syntactic parser. Here, usability is
measured with respect to an encrypted form of the
input ∅, from which V must nonetheless attempt
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to predict Y — essentially a label-only baseline.
Predicting Y from X and ∅ amounts to measuring
V-entropy:

HV(Y ) = inf
f∈V

[− log f ′[∅](Y )]

and conditional V-entropy:

HV(Y |X) = inf
f∈V

[− log f [X](Y )]

where f ∈ V is a model that maximizes the log-
likelihood of the labels Y with the original input X
and f ′ is the same model trained on the encrypted
input ∅. Given these two quantities, IV(X → Y )
can be computed as follows:

IV(X → Y ) = HV(Y )−HV(Y |X)

In essence, V-information is the amount of informa-
tion between inputs and labels that can be estimated
by V beyond the label distribution itself. Given that
V-information is computed with respect to HV(Y ),
it is important to note that IV(X → Y ) ≥ 0. Also,
if X is independent of Y , then IV(X → Y ) = 0.

In addition to functioning as a summary statistic
alternative to accuracy, V-information can also be
generalized to the instance-case. To do so, Etha-
yarajh et al. (2022) propose measuring point-wise
difficulty, which they deem PVI and calculate as
follows:

PVI(x→ y) = − log2 pf ′(y
∗|∅)+ log2 pf (y

∗|x)

where fθ, f ′θ ∈ V are models trained on normal and
encrypted data, respectively. Recall that, as before,
y∗ refers to the gold label and not the one with the
highest score. Unlike V-information, PVI can re-
turn negative values at the instance level (similarly
to pointwise mutual information (Shannon, 1948)),
which indicates that the model would fare better
choosing a class at random.

3.3 Minimum Description Length
Minimum description length (MDL) (Rissanen,
1978) is an information-theoretic concept that con-
cerns the transmission of data through a specified
channel — i.e., a probabilistic model. Ideally, a
model that is fit well on some data will learn to
transmit — or compress — it using as few bits as
possible (Blier and Ollivier, 2018). Naively, in or-
der to evaluate how well a model, e.g., a neural
network, might learn to compress its training data,
one might refer to the model’s cross-entropy loss

after training for a full cycle of E epochs, which
amounts to the Shannon-Humman code (Shannon,
1948). However, a model endowed with enough
parameters may learn to fit the data without nec-
essarily compressing it — see, e.g., Zhang et al.
(2021), who show that training loss can still be
minimized on data that contains no inherent struc-
ture (shuffled labels). MDL is thus designed to
express not only how well a model might learn to
compress some data, but also how efficiently the
model itself might be transmitted.

Blier and Ollivier (2018) outline various meth-
ods for compressing labels, with or without a
model. Among these, they describe online (or pre-
quential) coding (Rissanen, 1984; Dawid, 1984),
which transmits the labels and model without ex-
plicitly compressing the latters’s parameters. On-
line coding requires D to be partitioned into S
blocks where 1 = t0 < t1 · · · < tS = N . The
model of choice, f , is initialized with parameters
θ, learning algorithm A, etc. The first block, t0, is
first evaluated with a uniform prior1 and then used
to train fs (we omit the parameters θ for brevity).
This model is then evaluated on ts+1 and reset to
its initial state, where it is consequently trained on
ts+1, and so on. Formally, the online codelength
can be expressed as:

Lonline(y1:n|x1:n) =
S−1∑

s=1

ts+1∑

n=ts

− log2 pfs(yn|xn)

In contrast to the training loss above, which rep-
resents the data codelength if the model parameters
are known, Lonline (henceforth MDL) is an implicit
way of measuring the same without knowing the
model parameters. Effectively, MDL estimates f ’s
ability to generalize with respect to D: models that
learn efficiently from limited instances will yield
shorter codelengths.

4 Experimental Setup

In this section, we describe our data sampling pro-
cedure, the parsing model we employ, and our ex-
tension of the aforementioned analysis methods to
the context of (graph-based) dependency parsing.
More details about how each metric is calculated
can be found in Appendix A.

Data In order to compare the analysis obtained
with each of the dataset analysis methods, we re-
quire a representative sample of UD treebanks.

1More details on this can be found in Appendix A.
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Figure 1: Spearman’s ρ across all metrics of interest,
including training set size in tokens and sentences.

Since each method requires the training of a parser
on some subset of data (as well as a validation set
for estimating V-INFO), we consider every UD tree-
bank that contains train, validation, and test splits.
To ensure that a) there is sufficient data for training
our parsers and b) training is reasonably quick and
the models do not overfit, we limit our selection to
treebanks whose training sets contain at least 1,000
and at most 20,000 sentences. This gives us 88 tree-
banks across 58 languages,2 with Faroese FarPahC
having the smallest training partition (1,021 sen-
tences, 23,094 tokens) and Polish PDB the biggest
(17,773 sentences, 281,736 tokens). All resuls are
reported with respect to UD v2.9, which was the
most recent release at the time of experimentation.

Parsing Model We employ a neural parser based
on Dozat and Manning (2016)’s biaffine decoder,
as implemented in the SuPar3 Python library. For
input encoding, we make use of randomly initial-
ized word embeddings (d ∈ R100) and LSTM-
based character embeddings (d ∈ R100), as well
as a stacked three-layer LSTM feature extractor
(d ∈ R400). We choose to forego the use of POS
embeddings (contrary to Dozat et al. (2017)), so as
to maintain a direct correspondence between the
input string and its tree, which is vital for measur-
ing V-INFO. Furthermore, we do not initialize the
input embeddings with pretrained representations

2We filter out four treebanks due to issues with tokeniza-
tion, etc.

3https://github.com/yzhangcs/parser

in order to avoid confounds central to language cov-
erage and overlap (Wu and Dredze, 2020). Each
model is trained for 30 epochs with a batch size of
32 and optimized by Adam (Kingma and Ba, 2014)
with a starting learning rate of 2e−3.

Analysis Methods In order to be able to measure
CONF, VAR, and V-INFO, we need to be able to
extract the probabilities that parsers assign to gold
arcs and labels. Recall that Dozat and Manning
(2016)’s parser is effectively a multi-task model,
which jointly maximizes the log-likelihood of a
given word’s correct head, as well as the label for
the relation. The arc and label logits are calculated
via separate biaffine transformations, which yield
a Sarcs ∈ RN×N+1 matrix for the former and a
Slabels ∈ RN×N+1×R tensor for the latter, where
N is the sentence length and R is the size of the
relation set. To obtain a normalized probability dis-
tribution, we apply a softmax to the last dimension
of each Sarcs and Slabels, and index into the correct
cell for the gold head and label probabilities.

For MDL, we train parsers on increasingly larger
partitions of the training set, starting with a min-
imum of five sentences and doubling in size up
to a maximum of 360 — a total of 995 sentences.
We do so in reference to the smallest treebank in
our sample (Faroese FarPahC (1,021 sentences)),
so as to control for training set size, which varies
drastically across treebanks. In accordance with
the parser’s multi-task design, we compute two sep-
arate MDL measures with respect to the separate
arc and relation losses, averaged over five trials.

5 Results and Analysis

In this section, we analyze the results of our four
metrics: CONF, VAR, V-INFO, MDL. We focus
our analysis on arcs (probabilities and loss) and
refer to Appendix B for the full set of results. For
each metric, we begin with a brief discussion of its
pairwise correlation to all other metrics, which is
displayed for reference in Figure 1. We continue by
framing our analyses with respect to the Top 3 best
and worst performing treebanks for each metric.

5.1 Dataset Cartography
Figure 2 (left) depicts the mean CONF and VAR

scores calculated across arcs. We observe a strong
negative correlation between CONF and VAR. This
relationship also appears to be influenced by 1)
validation LAS and 2) training set size. This is
not surprising, as training set size is a common
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Figure 2: Left: mean CONF and VAR scores for Arcs across all languages; color represents Validation LAS and
point size represents the size of the train set in words. Right: Data maps for Arcs for best and worst CONF scoring
languages, with 2d densities super-imposed.

predictor of indicates that parser performance can,
to a large extent, be reliably estimated simply by
observing its confidence throughout training.

In zooming in on individual points, we observe
several treebanks in the upper left-hand corner
of the arc plot, which corresponds to high aver-
age CONF and low VAR. Indeed, many of these
points belong to the largest treebanks in the sample,
e.g., Hindi HDTB (0.92 CONF, 0.06 VAR, 281,057
tokens), French GSD (0.92, 0.06, 354,505), and
Catalan AnCora (0.89, 0.06, 429,141). However,
English Atis — a relatively small treebank with
48,655 tokens— tops out with the highest CONF

overall at 0.94 (VAR: 0.08). This is unsurprising
given the nature of the Atis dataset (Price, 1990),
which collects transcriptions of requests sent to au-
tomated flight information systems, e.g. list the
nonstop flights early tuesday morning from dallas
to atlanta. The imperative nature of such requests,
in combination with a small vocabulary, likely lim-
its the range of structures a parser might encounter
during training, thus making the treebank easy to fit.
Interestingly, the second and third-highest CONF

treebanks are both Japanese: GSDLUW (0.93, 0.07,
130,298) and GSD (0.93, 0.07, 168,333). This
is likewise expected, as GSD has been observed
by, e.g., Nivre and Fang (2017) to possess a large
amount of functional relations, which can be parsed
with near 100% accuracy.

On the other end of the spectrum, we observe
that Turkish IMST (0.58, 0.19, 37,784), Viet-
namese VTB (0.59, 0.24, 20,285), and Uyghur
UDT (0.67, 0.20, 19,262) yield the three lowest

CONF scores overall, as well as generally high
VAR. Interestingly, though Turkish IMST does not
appear within the top-25 highest VAR treebanks, it
nonetheless yields the lowest CONF, indicating the
the treebank might be particularly “hard” to parse
for reasons other than treebank size (Çöltekin et al.,
2017). Conversely, the fact that VTB and UDT
are low CONF and high VAR implies that a lack of
training data might play a role.

The data maps for the highest and lowest CONF

scoring treebanks (depicted in Figure 2 (right))
highlight important disparities between these two
groups. Most strikingly, we observe that the over-
whelming majority of arcs in the English, Hindi,
and Japanese treebanks are concentrated in the up-
per left high-CONF/low-VAR region, which is char-
acterized as easy-to-learn by Swayamdipta et al.
(2020). Indeed, this corresponds to 65.26, 68.02,
and 68.32% of all tokens in the English, Hindi, and
Japanese treebanks where CONF ≥ 0.95 and VAR

≤ 0.1. Conversely, only 3.04, 7.61, and 0.001%
of all arcs in the Turkish, Uyghur, and Vietnamese
treebanks are allocated to this region, indicating
that this group contains few arcs that might be con-
sidered “trivially easy”. Likewise, if we define the
hard-to-learn region as consisting of points where
CONF ≤ 0.25 and VAR ≤ 0.1, we find that 9.5,
5.45, and 5.06% of the latter group’s treebanks can
be characterized as such, respectively, compared to
0% for any treebank in the former group.

5.2 V-Information
Figure 3 depicts the PVI density for the Top 3 and
Bottom 3 treebanks in terms of V-INFO for arcs.
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Figure 3: Left: Arc-level PVI density for Top-3 and Bottom-3 V-INFO treebanks, across arcs (labels omitted for
space). Right: Block-wise codelength (in bits) for Top-3 and Bottom-3 MDL treebanks, across arcs.

We observe weaker correlations between V-INFO

and LAS when measured across all treebanks than
we did for CONF or VAR, indicating that V-INFO

measures different aspects of parser performance
than either of these metrics. Immediately, we can
see that the lowest-ranked treebanks — Telugu
MTG (0.44 average V-INFO), Turkish FrameNet
(0.71), and Turkish Tourism (1.05) — have densi-
ties that are skewed towards 0. In particular, Telugu
shows a sharp peak around this point, suggesting
that it contains many arcs and relations that can
be inferred by sentence sizes and label distribu-
tions. In contrast, the distributions representing
the highest V-INFO treebanks (Latin LLCT (3.74),
Romanian SiMoNERo (3.38), and Catalan AnCora
(3.24)) are much flatter and more evenly distributed
along the space of positive V-INFO values.

Turkish Tourism is composed entirely of hotel
and restaurant reviews. Due to the nature of this
genre, the treebank’s vocabulary is very limited
and many of its sentences are exceptionally short
— 4.77 tokens on average in the dev set. This lim-
its the space of possible trees that a parser may
encounter, potentially biasing it towards certain
structures. For example, the adverb "çok" (very)
appears in the first position of 128 sentences as
modifier of the 2nd word (typically an adjective,
e.g., "güzel" (good)). A similar effect can be ob-
served for Telugu MTG, which contains 5.05 words
per sentence in its development set, and for Turkish
FrameNet, which systematically places the root of
the sentence at the penultimate position (91.7% of
the time).

Given the observations above, V-INFO can be
imagined as a means of simultaneously penaliz-
ing regularity and stochasticity in data. We can
illustrate this further by returning to the CONF re-

sults. Recall that, for arcs, the highest scoring
treebank was English Atis. Interestingly, when
measuring its arc V-INFO, we find that its rank
drops to 77 out of 88 (1.97). Recall that the Atis
dataset contains a single genre of data with simple
sentences often beginning with what is, show me,
etc. In this case, simply guessing (1, 0) and (2, 1)
for the first two arcs yields accuracies of 0.52 and
0.41, respectively, which the label-only baseline
employed for calculating V-INFO would likewise
capture. By contrast, the lowest scoring CONF tree-
bank — Turkish IMST — retains a low rank of
83 (1.27). Recalling that 9.5% of IMST’s tokens
are considered hard-to-learn by the cartography
metrics, this treebank is likely to contain certain
annotation inconsistencies that cannot be system-
atically captured beyond guessing.4 Such cases,
too, are captured by V-INFO. With this in mind,
we might surmise that high V-INFO values might
represent treebanks with a varied distribution of
structures that are likewise consistently annotated,
thus requiring strong generalization of the parser.

In addition to arcs, we would also like to note
the interesting behavior of V-INFO for relations,
which is generally uncorrelated with any other met-
ric (other than arcs). This is due to the fact that the
parser must know the identity of both words when
deciding upon the relation that binds them. For
the vast majority of relations, this cannot be deter-
mined from position alone, even if head placement
is largely systematic (as in the aforementioned Atis
and Tourism treebanks). As a result, aggregate

4Indeed, this is corroborated by Türk et al. (2019), who
discuss the errors resulting from the automatic conversion of
IMST to the UD format, among which are 269 cases where
a subject bearing a genitive marker was misidentified as an
object in the accusative case.

1082



V-INFO for relations (3.89 ± 3.66) is noticeably
higher than for arcs (2.40± 1.98), albeit with more
spread. It is important to note, however, that there
are two primary exceptions to this in the form of
the root and punct relations, which can be de-
terministically assigned to the first (dummy node)
and last (end of sentence punctuations) positions.

5.3 MDL

In terms of MDL, we observe only moderate corre-
lations across all other measures, with the strongest
between CONF for arcs. Here, we find that MDL
for relations (which takes the model’s loss into ac-
count) is actually more correlated with arc CONF

than CONF for relations. Expectably, neither mea-
sure is correlated with treebank size, which was
controlled across treebanks.

For rankings, we observe that the Top 3 tree-
banks (for arcs) are largely the same ones as re-
turned by arc CONF: Japanese GSD and GSDLUW,
(2.85, 2.39) English Atis (3.12), and Turkish Atis
(3.48). This is unsurprising given the reasons out-
lined in previous sections. Therefore, it seems fea-
sible that MDL — which measures a parser’s fit on
successively larger, unseen partitions of a dataset
— would reflect such qualities as well. MDL’s al-
ternative interpretation as a measure of a dataset’s
sample efficiency is also applicable here: a parser
trained on a small number of trees will likely gen-
eralize well in these very narrow distributions.

Interestingly, we encounter a handful of new tree-
banks at the higher end of MDL scores: Finnish
TDT (6.46), Chinese GSD (traditional and simpli-
fied) (6.11, 6.14), and Latin PROIEL (5.94). Intu-
itively, a high MDL in the case of parsing might
suggest that the model is exposed to a larger di-
versity of token types during training, which could
hinder it in learning various types of dependen-
cies. Following this logic, one might hypothesize
that treebanks representing languages with com-
plex morphological systems might yield compar-
atively higher MDL, due to the higher number of
word forms that appear therein. In line with this,
we observe that the highest MDL treebanks tend
to be morphologically rich, e.g., Finnish, Latin,
Turkish, Estonian, Polish, Russian.

In an attempt to quantify the correspondence
between a treebank’s attested morphological com-
plexity and its MDL, we compute a series of proxy
metrics, as featured in Çöltekin and Rama (2018).
These include type-token ratio (TTR) (averaged

across 10 random samples of 1,000 sentences),
number of feature types (in these samples), and
feature entropy (calculated across feature types).
Indeed, Figure 3 shows a strong correspondence
between TTR and MDL, as the two are highly
correlated (ρ = 0.58, p < 0.001). Significant cor-
relations for feature entropy (ρ = 0.35, p < 0.001)
and number of feature types (ρ = 0.28, p < 0.001)
corroborate our hypotheses further. Interestingly,
while both Chinese GSD treebanks simultaneously
yield the highest MDL and comparatively high mor-
phological scores, the language itself is typically
described as having an analytical (impoverished)
morphology. We surmise, however, that this fact
— combined with Chinese’s logographic writing
system — contributes to high MDL scores in the
same way as morphological richness: a lack of
high-frequency function words and a wide range of
lexical items lead to large vocabulary sizes. MDL
for these treebanks is thus expectably high.

6 Conclusion

In this paper, we investigated 88 UD treebanks
through the lens of dataset difficulty measures. We
found that CONF and VAR are capable of paint-
ing a nuanced picture of how easy or hard tree-
banks might be to parse. We also observed that a
model’s confidence throughout training is an ex-
cellent indicator of how well it might generalize
to held-out data. Regarding V-INFO, we observed
that the measure tends to simultaneously penalize
high degrees of predictability and stochasticity, and
that treebanks otherwise characterized as easy may
have low V-INFO due to lack of structural diver-
sity. Finally, treebanks with high MDL seem to
be characterized by low sample efficiency, which
in turn is related to morphological complexity and
vocabulary usage. Given the broad range of in-
sights expressed via these metrics, we hope that
our results — however preliminary — will inspire
future researchers to pursue a greater understand-
ing of UD as trove of data, so as to push further
boundaries in the realms of parsing, typology, etc.

In terms of future work, we make note of several
potentially interesting directions. Indeed, one of
the main drawbacks of our experimental design is
that it only accounts for the perspective of a single
parsing architecture — albeit (arguably) the most
popular one of the neural era. Dependency pars-
ing, however, has a long research tradition where
many different parsing models have been proposed
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throughout the years — each with their respective
advantages and drawbacks (see, e.g. McDonald
and Nivre (2007, 2011)). Though we chose to work
with an arc-factored graph-based parser due to the
need for extracting arc-level probabilities, future
studies may consider consider ways of leveraging
transition-based parsers (Nivre, 2003) or models
that directly maximize full tree probabilities (Koo
et al., 2007; Ma and Hovy, 2017). If working with
a wide range of parsing models, one could employ
item response theory (Rodriguez et al., 2021; Vania
et al., 2021), which is a framework that consol-
idates many predictions per instance in order to
identify regions of datasets that may be perceived
as difficult, easy, etc. Certainly, this would provide
a more broad perspective on UD than what we have
offered here.

A different direction that could be explored is
data selection, which is indeed what Swayamdipta
et al. (2020) proposed as the main uses for dataset
cartography. Although the CONF and VAR met-
rics provide valuable insights about UD treebanks
in our case, they are nonetheless measured at the
token-level. This is distinct from their original
application, in that each token is crucial for the
composition a sentence and cannot be readily re-
moved. Although we experimented with measuring
sentence-level CONF and VAR, some preliminary
results indicated that a naive application of Koo
et al. (2007)’s method is ultimately confounded by
sentence length. As such, it would be interesting
to experiment with models that directly optimize
for tree probability, such as Ma and Hovy (2017).
If successful, this would allow us to identify se-
lect subsets of treebanks for the purpose of training
more accurate parsers with less data, or for choos-
ing the least noisy sentences for typological studies,
etc.

Limitations

As already mentioned, the main limitation to our
work is that we focus on a single parsing archi-
tecture. Indeed, it would be preferable to extend
the experiments described here to other parsers
in order to evaluate the generalizability of our re-
sults. Ideally, we might choose to work with a com-
parable transition-based parsing algorithm, which
have been shown to exhibit different error profiles
than their graph-based counterparts (McDonald and
Nivre, 2007; Kulmizev et al., 2019). However, the
fact that transition-based parsers calculate probabil-

ities over transitions instead of arcs would render
such parsers incompatible with the cartography and
V-INFO measures, which reveal interesting insights
about our surveyed treebanks. Beyond this, we note
that the scope of our current work is quite large,
as we compare 10 metrics across 88 treebanks. By
this token, we can admittedly only offer a bird’s eye
view of the UD treebank collection, even if our sur-
veyed metrics offer more nuance than attachment
scores.

Ethical Considerations

The research presented in this paper is compatible
with the ACL ethics policy. The datasets used come
from the Universal Dependencies repository and
have appropriate licenses and documentation. The
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do not have a significant impact in terms of energy
consumption.
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jič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Francis
Tyers, Elena Badmaeva, Memduh Gokirmak, Anna
Nedoluzhko, Silvie Cinková, Jan Hajič jr., Jaroslava
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A Analysis Method Details

Since every surveyed dataset analysis method was
proposed with classification tasks in mind, we must
make numerous modifications in order to make
them applicable to structured prediction problems
like dependency parsing.

Dataset Cartography Given that we can index
directly into Sarcs and Slabels throughout the train-
ing regime, the process of calculating CONF and
VAR for each token is relatively straightforward. As
such, we keep track of the probabilities assigned
to the gold arcs and labels in the train and develop-
ment sets after each epoch.

V-information In order to calculate V-INFO, we
must be able to estimate V-entropy and conditional
V-entropy. Though the latter can be computed by
simply fitting a model f ′ ∈ V on a designated
training set, the former requires the “encryption”
of the inputX . To do so, we follow Ethayarajh et al.
(2022) in setting every input token string x ∈ X
to _. V-entropy can then be estimated by fitting
f ′ on the same, albeit encrypted, training set, and
IV(X → Y ) subsequently calculated on a held-out
(also encrypted) validation set. Though we track
V-INFO across all epochs, we report it for e = 30,
across arcs and labels. Also, it is worth noting that,
although we attempted to compute IV(X → Y ) at
the sentence level via unlabeled tree probabilities
extracted via Koo et al. (2007)’s method, the model
f ′ trained on encrypted data produced extremely
low probabilities, which led to underflow when
computing the logarithm. As such, we chose to
forego further exploration of this problem for this
study.

Minimum Description Length Since our tree-
banks vary greatly in size, we must set our par-
titions such that they can span the length of the
smallest training set (1,021 sentences). This way,
our estimation of MDL remains comparable across
treebanks. To do so, we employ partitions S =
{5, 10, 20, 40, 80, 160, 320, 360} at the sentence
level, where the entire training set is shuffled prior
to partitioning. For t0, which does not contain any
training data, we follow Voita and Titov (2020) in
calculating the codelength over t0 using a uniform
prior. This is computed as follows:

Lunif(y1:s1 |x1:s1) =
n∑

i=1

log2Kt1i
(1)
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where K is the number of words (arcs or la-
bels) in a given sentence i in the first partition t1
(composed of s = 5 sentences). Note that this is
the extension of uniform coding proposed by Blier
and Ollivier (2018) to structured prediction. In a
typical classification task with K labels, the same
codelength is computed as Lunif(y1:s1 |x1:s1) =
s1 log2K.

For all remaining t ∈ S, we revert a model to
its initial state, train it on ti and compute its code-
length over ti+1. Since MDL is particularly sen-
sitive to the ordering of instances within S, we
repeat this process for 5 trials, fully re-initializing
the model after each one.

B Full Results

The results for all metrics on all treebanks can be
found in Table 1.
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Size Rank Accuracy Arcs Relations

Language Treebank # Tokens Abs. Rank UAS LAS CONF VAR V-INFO MDL CONF VAR V-INFO MDL

Afrikaans AfriBooms 33.88 46 84.48 79.48 0.80 0.21 2.72 3.87 0.89 0.13 2.64 3.69
Ancient Greek PROIEL 187.03 55 85.00 79.92 0.79 0.14 2.83 5.30 0.87 0.09 2.66 5.10
Ancient Greek Perseus 159.90 75 75.13 68.61 0.76 0.15 2.57 5.32 0.85 0.10 2.57 5.31
Arabic PADT 223.88 48 85.45 79.39 0.82 0.10 2.43 4.52 0.88 0.06 2.31 4.94
Armenian ArmTDP 42.10 66 83.07 74.69 0.70 0.22 2.97 5.18 0.76 0.17 2.90 5.27
Basque BDT 72.97 71 82.44 77.90 0.76 0.19 2.34 5.29 0.87 0.13 2.48 5.21
Bulgarian BTB 124.34 15 91.61 86.76 0.90 0.11 2.83 4.14 0.93 0.07 2.60 4.37
Catalan AnCora 429.14 2 92.98 90.13 0.89 0.06 3.24 4.34 0.94 0.03 2.68 4.17
Chinese GSD 98.62 77 78.68 73.78 0.73 0.20 2.78 6.12 0.87 0.15 2.82 6.14
Chinese GSDSimp 98.62 74 78.76 73.90 0.74 0.19 2.78 5.95 0.87 0.13 2.82 6.20
Coptic Scriptorium 30.84 54 86.36 82.54 0.79 0.23 2.86 3.53 0.86 0.21 2.43 3.74
Croatian SET 152.86 31 88.44 83.86 0.85 0.13 3.02 5.21 0.90 0.08 2.81 5.00
Czech FicTree 133.64 24 91.28 86.52 0.87 0.12 2.90 4.77 0.89 0.09 2.84 4.74
Danish DDT 80.38 53 83.88 80.56 0.77 0.18 2.78 5.13 0.90 0.10 2.87 5.15
Dutch Alpino 186.03 29 91.35 87.44 0.86 0.13 3.03 5.48 0.91 0.07 2.78 5.42
Dutch LassySmall 75.13 52 84.95 78.94 0.83 0.19 2.85 4.79 0.89 0.11 2.71 5.00
English Atis 48.66 13 93.63 89.39 0.94 0.08 1.97 3.13 0.94 0.07 1.48 2.99
English EWT 204.58 23 88.95 85.98 0.85 0.10 2.79 5.03 0.94 0.05 2.96 5.24
English GUM 103.40 25 88.66 85.65 0.84 0.13 3.05 4.86 0.92 0.08 3.04 5.00
English LinES 57.37 45 85.77 81.43 0.80 0.17 2.78 4.64 0.89 0.12 2.81 4.64
English ParTUT 43.50 44 86.52 81.67 0.78 0.20 2.86 4.21 0.88 0.14 2.87 4.39
Estonian EWT 49.60 86 75.94 68.64 0.69 0.22 2.31 5.85 0.78 0.17 2.60 5.73
Faroese FarPaHC 23.09 62 79.24 73.43 0.79 0.23 2.43 3.57 0.86 0.17 2.49 3.57
Finnish FTB 127.60 69 86.54 81.32 0.80 0.15 2.07 5.79 0.86 0.12 2.34 5.76
Finnish TDT 162.82 59 85.68 80.96 0.80 0.16 2.68 6.46 0.88 0.12 3.09 6.42
French GSD 354.50 4 94.49 91.46 0.91 0.06 3.13 4.44 0.94 0.04 2.62 4.45
French Rhapsodie 19.14 78 80.63 73.45 0.66 0.24 2.57 4.64 0.79 0.19 2.58 4.62
French Sequoia 50.51 26 89.12 85.50 0.82 0.18 3.16 4.14 0.90 0.12 2.70 4.13
Galician CTG 79.33 37 85.13 81.83 0.79 0.14 2.82 4.03 0.91 0.07 2.15 4.23
German GSD 263.80 19 88.23 83.32 0.87 0.09 2.79 4.35 0.94 0.04 2.77 4.52
Gothic PROIEL 35.02 84 79.59 71.86 0.68 0.21 2.26 5.54 0.77 0.17 2.45 5.57
Greek GDT 42.33 37 86.89 82.84 0.82 0.19 3.00 3.51 0.88 0.13 2.53 3.60
Hebrew HTB 137.72 18 88.68 84.94 0.86 0.12 2.93 4.18 0.92 0.07 2.77 4.38
Hindi HDTB 281.06 6 94.10 90.57 0.92 0.06 3.02 3.83 0.94 0.05 2.05 3.90
Icelandic Modern 123.87 34 91.32 88.40 0.83 0.16 2.79 5.17 0.90 0.11 2.82 5.14
Indonesian GSD 97.60 49 85.86 78.71 0.80 0.13 2.88 5.04 0.85 0.10 2.70 4.83
Irish IDT 95.88 32 86.61 80.02 0.84 0.13 2.60 4.23 0.89 0.10 2.73 4.29
Italian ISDT 276.02 12 91.78 88.80 0.89 0.08 2.98 4.59 0.94 0.05 2.61 4.41
Italian ParTUT 48.93 40 87.63 83.48 0.81 0.18 2.88 4.28 0.90 0.11 2.58 4.42
Italian PoSTWITA 99.54 60 83.23 76.76 0.80 0.14 2.63 5.32 0.86 0.09 2.76 5.36
Italian TWITTIRO 23.63 76 79.60 71.49 0.71 0.22 2.56 4.63 0.78 0.17 2.49 4.62
Italian VIT 225.08 21 87.94 84.94 0.86 0.09 3.04 4.59 0.92 0.05 2.55 4.46
Japanese GSD 168.33 3 94.78 93.46 0.93 0.07 2.88 2.85 0.97 0.04 2.06 2.62
Japanese GSDLUW 130.30 8 94.86 93.70 0.93 0.07 2.46 2.39 0.97 0.04 1.85 2.28
Korean GSD 56.69 80 81.91 76.14 0.73 0.20 2.13 5.25 0.83 0.16 2.07 5.29
Latin LLCT 194.14 1 96.45 95.12 0.91 0.10 3.74 3.76 0.96 0.05 2.90 4.02
Latin PROIEL 172.13 67 81.81 75.85 0.73 0.15 2.49 5.94 0.83 0.11 2.87 6.04
Latvian LVTB 201.60 41 87.03 83.32 0.85 0.13 2.83 5.72 0.92 0.09 2.99 5.57
Lithuanian ALKSNIS 47.64 81 76.43 69.36 0.68 0.23 2.43 5.47 0.81 0.16 2.75 5.29
Maltese MUDT 22.88 67 81.10 73.05 0.70 0.24 2.69 4.47 0.77 0.21 2.83 4.64
Naija NSC 111.88 11 93.09 90.47 0.89 0.12 3.18 4.47 0.93 0.07 2.67 4.37
Norwegian Bokmaal 243.89 14 91.88 89.37 0.88 0.10 2.87 5.15 0.95 0.05 2.86 5.09
Norwegian Nynorsk 245.33 15 90.97 88.47 0.88 0.11 2.95 5.12 0.94 0.06 2.92 4.98
Norwegian NynorskLIA 35.21 79 75.58 69.24 0.70 0.22 2.17 5.00 0.83 0.16 2.61 5.18
Old Church Slavonic PROIEL 37.43 81 81.87 74.62 0.72 0.21 2.31 5.30 0.79 0.18 2.43 5.23
Old East Slavic TOROT 118.63 73 81.85 75.31 0.80 0.14 2.04 5.61 0.86 0.10 2.35 5.74
Old French SRCMF 158.62 39 89.07 83.86 0.86 0.11 2.67 5.23 0.90 0.07 2.68 5.28
Persian Seraji 121.06 36 88.28 84.13 0.83 0.16 3.14 4.77 0.91 0.08 2.44 5.04
Polish LFG 104.75 20 94.43 91.37 0.91 0.11 2.23 4.15 0.92 0.08 2.27 4.27
Polish PDB 281.74 30 91.63 85.57 0.88 0.10 2.89 5.65 0.88 0.08 3.08 5.68
Portuguese Bosque 171.78 17 90.22 86.57 0.85 0.12 3.12 4.26 0.92 0.06 2.60 4.34
Portuguese GSD 255.31 7 92.31 90.37 0.89 0.08 3.09 4.06 0.96 0.04 2.45 4.27
Romanian RRT 185.11 28 89.69 83.80 0.86 0.12 2.97 5.04 0.89 0.07 2.85 4.96
Romanian SiMoNERo 116.86 9 92.43 89.19 0.88 0.13 3.38 4.12 0.93 0.07 2.69 4.18
Russian GSD 74.91 47 86.42 81.26 0.81 0.17 2.89 4.69 0.88 0.11 2.57 4.60
Russian Taiga 176.63 65 77.75 69.63 0.80 0.13 2.28 5.61 0.89 0.08 2.61 5.45
Scottish Gaelic ARCOSG 63.70 51 86.57 80.83 0.82 0.16 2.62 4.65 0.87 0.14 2.66 4.36
Serbian SET 74.26 33 89.18 85.07 0.84 0.17 3.07 4.74 0.89 0.11 2.72 4.68
Slovak SNK 80.63 42 85.90 79.84 0.88 0.14 2.48 4.58 0.89 0.11 2.76 4.61
Slovenian SSJ 112.53 22 90.46 87.66 0.87 0.14 3.09 5.01 0.93 0.08 2.83 4.68
Spanish AnCora 452.74 5 91.90 88.90 0.88 0.07 3.19 4.51 0.94 0.03 2.73 4.12
Spanish GSD 382.44 10 90.75 87.72 0.87 0.06 3.04 4.33 0.94 0.03 2.58 4.21
Swedish LinES 55.45 56 85.07 79.98 0.79 0.19 2.72 4.96 0.87 0.13 2.82 4.85
Swedish Talbanken 66.65 57 83.48 78.97 0.81 0.19 2.67 5.16 0.89 0.13 2.88 5.24
Telugu MTG 5.08 72 86.47 66.87 0.74 0.16 0.44 4.56 0.60 0.13 0.68 4.40
Turkish Atis 36.20 27 90.85 88.44 0.90 0.13 1.13 3.48 0.93 0.11 1.59 3.29
Turkish BOUN 98.21 83 76.09 67.92 0.70 0.16 1.71 5.80 0.81 0.12 2.24 5.76
Turkish FrameNet 16.33 63 86.49 71.15 0.79 0.13 0.71 3.91 0.65 0.15 1.16 3.94
Turkish IMST 37.78 88 67.65 58.38 0.58 0.19 1.29 5.69 0.70 0.16 1.83 5.86
Turkish Kenet 143.29 61 87.14 73.74 0.81 0.13 1.53 4.75 0.79 0.10 1.91 4.69
Turkish Penn 166.51 50 88.11 77.55 0.83 0.09 1.61 4.50 0.82 0.08 1.89 4.56
Turkish Tourism 71.24 34 93.57 88.20 0.91 0.09 1.06 5.02 0.89 0.08 1.34 4.89
Ukrainian IU 92.40 58 85.78 80.97 0.78 0.18 2.88 5.46 0.87 0.11 2.81 5.33
Urdu UDTB 108.69 43 86.51 80.29 0.83 0.13 2.75 4.32 0.87 0.09 1.88 4.27
Uyghur UDT 19.26 85 75.25 60.47 0.66 0.20 1.35 4.92 0.66 0.17 1.46 4.96
Vietnamese VTB 20.29 87 67.44 57.77 0.59 0.24 1.42 5.21 0.71 0.22 1.84 5.14
Western Armenian ArmTDP 72.09 64 82.99 75.46 0.78 0.19 2.77 5.22 0.82 0.14 2.90 5.24
Wolof WTB 23.56 70 79.00 71.16 0.72 0.24 2.66 4.37 0.80 0.20 2.61 4.62

Table 1: Results across all treebanks and metrics. Size is measured per thousand tokens. Green cells indicate that
the treebank is Top 3 in that category. Red cells correspond to Bottom 3.
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Abstract

Semantic parsing is a technique aimed at con-
structing a structured representation of the
meaning of a natural-language question. Re-
cent advances in language models trained on
code have shown superior performance in gen-
erating these representations compared to lan-
guage models trained solely on natural lan-
guage text. The existing fine-tuned neural se-
mantic parsers are vulnerable to adversarial at-
tacks on natural-language inputs. While it has
been established that the robustness of smaller
semantic parsers can be enhanced through ad-
versarial training, this approach is not feasi-
ble for large language models in real-world
scenarios, as it requires both substantial com-
putational resources and expensive human an-
notation on in-domain semantic parsing data.
This paper presents the first empirical study on
the adversarial robustness of a prompt-based
semantic parser based on CODEX, a state-of-
the-art (SOTA) language model trained on code.
Our results demonstrate that the large language
model of code is vulnerable to carefully crafted
adversarial examples. To overcome this chal-
lenge, we propose methods for enhancing ro-
bustness without requiring substantial amounts
of labelled data or intensive computational re-
sources.

1 Introduction

Semantic parsing is a technique that transforms
natural-language utterances (NLs) into machine-
readable logical forms (LFs) and has been widely
applied in various research fields, such as code gen-
eration, question-answering systems, and dialogue
systems (Kamath and Das, 2018). Most current
state-of-the-art semantic parsers are deep-learning
models trained in a supervised manner using in-
domain data. However, this approach requires a
large amount of in-domain semantic parsing data,
which can be costly to obtain (Bapna et al., 2017).

∗corresponding author

To address this issue, prompt-based semantic
parsers based on large pre-trained language mod-
els, such as Codex (Chen et al., 2021) and GPT-
J (Wang and Komatsuzaki, 2021), have become
a new choice for semantic parsing applications.
Prompt-based semantic parsers learn to solve a new
task by in-context learning, instructing the parsers
to generate correct LFs by constructing the prompt
with a few demonstration examples. Such a method
can significantly lower the cost of annotations by
including only a few exemplars in the prompt and
achieve comparable results to fully-supervised se-
mantic parsers (Shin and Van Durme, 2022).

Recent studies (Huang et al., 2021; Pi et al.,
2022) show that fully-supervised semantic parsers
are vulnerable to adversarial attacks, which per-
turb input sentences into their semantic equivalent
adversaries to mislead models to produce attacker-
desired outputs. Hence, to mitigate such attacks,
various adversarial training methods (Tramer and
Boneh, 2019; Shafahi et al., 2019; Ganin et al.,
2016; Shafahi et al., 2020) have been proposed to
improve the adversarial robustness of the semantic
parsers. In light of this, two main questions natu-
rally arise: (1) Do prompt-based semantic parsers
based on large pre-trained language models also
suffer from adversarial attacks? (2) If so, how
can we improve the robustness of the large prompt-
based semantic parsers?

To address the former question, we evaluate the
prompt-based semantic parsers on several evalua-
tion sets built by different perturbation approaches
mentioned in the AdvGLUE (Wang et al., 2021)
dataset. Adopting the adversarial evaluation met-
rics proposed by Huang et al. (2021), it is found
that the prompt-based semantic parsers are vulner-
able to various types of adversarial attacks.

According to the experimental results from the
first step, we perform a three-fold experiment to
answer the latter questions. The first aspect of
the study aims to determine if the inclusion of
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additional examples within the prompt during in-
context learning improves the robustness of prompt-
based parsers. This hypothesis is based on prior
research that has demonstrated that the increase
in the size of the training data results in an en-
hancement of robustness in fully-supervised mod-
els (Pang et al., 2019). The second part of the study
aims to determine if the integration of few-shot
adversarial examples within prompts can improve
the robustness of Codex. This was based on the
observation that conventional adversarial training
methods often include adversarial examples within
the training set (Miyato et al., 2016; Tramer and
Boneh, 2019). Finally, the third part of the study
aims to evaluate if sampling methods other than
random sampling can select more effective exam-
ples that improve the robustness of prompt-based
parsers.

In this work, we perform a series of experi-
ments to probe CODEX, a large pre-trained model
trained on code, on two semantic parsing bench-
marks, GeoQuery (Zelle and Mooney, 1996) and
Scholar (Iyer et al., 2017). Our key findings
from the above experiments are as follows:

• Prompt-based semantic parsers are vulnerable
to adversarial examples, particularly the ones
crafted by sentence-level perturbations.

• In-context learning with more demonstration
examples in the prompt can improve the in-
domain robustness of prompt-based parsers.

• Augmenting the prompt with adversarial ex-
amples has limited effect in improving the
robustness of prompt-based parsers.

• The few-shot example sampling strategy with
higher language complexity can result in
stronger robustness for the prompt-based
parsers.

2 Related Work

Prompt-based Learning. Prompt-based learn-
ing is an alternative approach to supervised learn-
ing that aims to reduce the reliance on large human-
annotated datasets (Liu et al., 2021). Unlike tradi-
tional supervised models, which estimate the prob-
ability of an output given an input text, prompt-
based learning models estimate the probability of
the text directly. This is achieved by applying
prompt functions to modify the input text into

various prompt templates with unfilled slots. By
filling these slots, various Natural Language Pro-
cessing (NLP) tasks can be completed, such as
common-sense reasoning (Kojima et al., 2022),
self-rationalization (Marasović et al., 2021), and
text style transfer (Suzgun et al., 2022). The devel-
opment of prompt-based methods has enabled zero-
shot and few-shot learning in a variety of artificial
intelligence domains (Ramesh et al., 2021; Yang
et al., 2022; Sanghi et al., 2022). Recent research
has also evaluated the capabilities of few-shot
prompt-based learning for semantic parsing (Shin
and Van Durme, 2022; Roy et al., 2022a; Drozdov
et al., 2022). Our contribution extends the current
research by investigating the effect of prompts com-
prising only a limited number of examples on the
robustness of prompt-based semantic parsers.

Adversarial Robustness. Neural networks have
achieved impressive performance across various do-
mains. However, as demonstrated by Szegedy et al.
(2014), neural models are vulnerable to adversar-
ial examples. Adversarial attacks in NLP normally
take on various forms, including character-level ma-
nipulations (Hosseini et al., 2017; Ebrahimi et al.,
2018; Belinkov and Bisk, 2018; Gao et al., 2018;
Eger et al., 2019; Boucher et al., 2022), sentence-
level rewriting (Iyyer et al., 2018; Ribeiro et al.,
2018; Zhao et al., 2018), and adversarial word sub-
stitutions (Alzantot et al., 2018; Liang et al., 2018;
Zhang et al., 2019).

There has been an increasing interest in defend-
ing against adversarial attacks in large language
models via adversarial training (Yi et al., 2021;
Ross et al., 2022; Bartolo et al., 2021; Guo et al.,
2021). Adversarial training involves incorporat-
ing adversarial examples in the training set, thus
making the model robust to such attacks. How-
ever, adversarial training can sometimes negatively
impact the generalization ability of the neural mod-
els (Raghunathan et al., 2019; Min et al., 2021).

3 Robustness Evaluation for
Prompt-based Semantic Parsing

This section gives an overview of our evaluation
framework, including the methods of constructing
the evaluation corpora and the evaluation metrics
to evaluate the robustness of the prompt-based se-
mantic parser.
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Linguistic
Phenomenon

Samples (Strikethrough = Original Text, red = Adversarial Perturbation)

Typo
(Word-level) NL: what can you tellte11 me about theth e population of missouri

Substitution
(Word-level) NL: what canwill you tell me about thea population of missouri

Paraphrase
(Sent.-level)

NL: what can you tell me about the population of missouri
What information can you provide on Missouri’s population?

Table 1: Examples from Robustness Evaluation Set. We show 3 examples from GeoQuery. These examples are generated
with three different perturbations, and they all can successfully change the predictions of CODEX.

3.1 Construction of the Evaluation Corpus

A robust prompt-based semantic parser should be
able to parse both the utterances and their adver-
sarial counterparts into correct LFs. As proposed
by Huang et al. (2021), an adversary of an utterance
for a semantic parser is defined as i) an utterance
with the same semantic meanings as the original
one given the human judgment and ii) an utterance
on which the semantic parser cannot produce cor-
rect LF. Therefore, to evaluate the robustness of
prompt-based semantic parsers, we craft the robust-
ness evaluation sets by perturbing the original utter-
ances in existing benchmark datasets with multiple
adversarial perturbation methods. Such perturba-
tions should not alter the semantics of the original
utterances. Each example in a robustness evalu-
ation set is a perturbed utterance paired with its
ground-truth LF. Next, we introduce the details of
each perturbation method and how we guarantee
the perturbations do not change the semantics. Ta-
ble 1 illustrates some meaning-preserved utterances
after perturbation in the robustness evaluation set of
GeoQuery based on different perturbation meth-
ods. More examples can be found in Appendix B.

3.1.1 Adversarial Perturbations
Following the principles as in Wang et al. (2021) to
design adversarial attacks, we perform five word-
level perturbations and two sentence-level perturba-
tions to generate seven robustness evaluation sets
for the standard evaluation set in each benchmark.

Word-level Perturbations.

• Typo-based (TB) uses TextBugger (Li et al.,
2018) to replace two words in each utterance
with the typos.

• Random Deletion (RD) randomly deletes
two words in the utterance.

• Random Swap (RS) swaps the positions of
two random words in each utterance.

• Context-aware Substitution (CS) leverages
RoBERTa (Liu et al., 2019) to substitute two
random words with their synonyms.

• Context-aware Insertion (CI) inserts two
most probable words selected by RoBERTa at
two random positions in each utterance.

Sentence-level Perturbations.

• Rewriting-based (RB) chooses Quillbot1 (Fi-
tria, 2021), a state-of-the-art (SOTA) commer-
cial paraphrasing model, to rewrite the com-
plete utterances. Quillbot has been demon-
strated as an effective tool to paraphrase ut-
terances in semantic parsing data (Shiri et al.,
2022).

• Distraction-based (DB) appends interroga-
tion statements to the end of each NL, inspired
by StressTest (Naik et al., 2018). Specifically,
we design the following interrogation state-
ments: "who is who; what is what; when
is when; which is which; where is where",
in which the selected interrogative words are
more likely to appear in the utterance.

3.1.2 Data Filtering
In order to ensure that the perturbed examples pre-
serve the meaning of the original NL, we design a
two-stage evaluation process:

Step1: We first generate 20 adversarial exam-
ples against the original NL for each perturbation
method and choose the top 10 candidates ranked
based on text similarity scores between the original
and the perturbed ones, which are calculated by
Sentence-BERT (Reimers and Gurevych, 2019).

1https://www.quillbot.com/paraphrasing
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Step2: We engage human experts to select the
best one among the 10 adversarial candidates pro-
duced in Step1.

3.2 Evaluation Metrics

Since the output LFs of the prompt-based language
models may not follow the same naming conven-
tion (Shin et al., 2021; Shin and Van Durme, 2022)
as the ground truth, previous string-based evalu-
ation metrics, including BLEU (Papineni et al.,
2002) and Exact Match (Poon and Domingos,
2009), are not suitable for prompt-based seman-
tic parsers. Therefore, we follow Rajkumar et al.
(2022) to report the execution accuracy, which is
based solely on the execution correctness of the
LFs on the test sets, for the purpose of robustness
evaluation.

Following Huang et al. (2021), we report the
experiment results with three variants of execution
accuracy, namely standard accuracy, perturbation
accuracy and robust accuracy:

• Standard Accuracy is measured on the stan-
dard (original) test sets.

• Perturbation Accuracy tests the perfor-
mance of the model on perturbed test sets.

• Robust Accuracy is defined as n/|Reval|.
Reval denotes a subset of the perturbed test
sets, and n is the number of the utterances in
Reval that are parsed correctly. More specif-
ically, Reval consists of the examples whose
counterparts before perturbation are parsed
correctly. Intuitively, Robust Accuracy esti-
mates the quantity of cases that a parser can
successfully parse before perturbation but can-
not do so after perturbation, and hence shows
the robustness of the parsers against adversar-
ial perturbation.

4 Improving Robustness of Prompt-based
Semantic Parsers

Instead of predicting the LF conditioned on the
input utterance, large language models such as
CODEX could learn to solve a specific task by in-
context learning. During in-context learning, the
parser predicts the LF conditioned on a prompt
which consists of a small list of utterance-LF pairs
to demonstrate the semantic parsing task and, op-
tionally, a table schema. To defend against adver-
sarial attacks, one seminal approach is adversarial

training. One of the most typical adversarial train-
ing methods augments the training data with adver-
sarial examples, from which the machine learning
model could learn robust features (Allen-Zhu and
Li, 2022) by gradient descent. However, directly
adapting conventional adversarial training is not
suitable for in-context learning. First, the number
of demonstration examples is limited due to the re-
striction on the maximum number of tokens for the
pre-trained language model. As a result, we cannot
include an arbitrary number of adversarial exam-
ples in the prompt, which might not include enough
robust features. Second, in-context learning does
not update the parameters of the language model.
The model would not be optimized towards learn-
ing the robust features in the adversarial examples
through gradient descent.

Given the difference, it is unclear whether in-
context learning could improve the robustness of
the parser as the conventional supervised training.
In this paper, we conduct the first investigation on
in-context learning for model robustness. More
specifically, we examine the impact of variants of
in-context learning and sampling methods on parser
robustness.

4.1 Standard In-context Few-shot Learning

In our setting, given an input utterance x, the pre-
trained language model P (·; θ) predicts the LF y′

conditioned on the prompt, which consists of a set
of demonstration examples M = {(xi,yi)}Ni=1,
and a table schema T :

y′ = argmax
y∈Y

P (y|x,M, T ; θ) (1)

For the few-shot setting, the number of demonstra-
tion examples N is limited by a budget size.

4.2 Adversarial In-context Few-shot Learning

In adversarial in-context learning, we include the
perturbed adversarial examples, Madv, in the
demonstration examples:

y′ = argmax
y∈Y

P (y|x,M∪Madv, T ; θ) (2)

4.3 In-context Few-shot Selection

Current in-context learning assumes there is an ex-
ample pool from where they can select prompting
examples. However, most of the works only ran-
domly pick examples from the pools. We argue that
the way to select the examples might deeply impact
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the robustness of the prompt-based semantic parser.
Therefore, we examine various strategies to select
in-context few-shot examples.

Random Sampling (Random). We randomly
sample N utterances from the example pool.

Confidence-based Sampling (Confi-
dence) (Duong et al., 2018). We score
each utterance with the confidence of the parser on
the predicted LF given the utterance and the table
schema. Then we select the ones with the lowest
parser confidence scores2.

Diversity-based Sampling. Following Li et al.
(2021), we partition the utterances in the utterance
pool into N clusters with the K-means (Wu, 2012)
clustering algorithm and select the example closest
to the cluster centers. We measure the edit distance
(Cluster-ED) (Wagner and Fischer, 1974), and Eu-
clidean distances using utterance features of TF-
IDF (Cluster-TF-IDF) (Anand and Jeffrey David,
2011), or Contextual Word Embedding (Cluster-
CWE) encoded by Sentence-BERT (Reimers and
Gurevych, 2019), between each pair of utterances
for K-means.

Perplexity-based Sampling (Sen and Yilmaz,
2020). We score each utterance with the perplex-
ity of GPT-2 on this utterance. Then we select the
utterances with the highest (PPL. Asc) and lowest
(PPL. Desc) perplexity scores, respectively.

5 Experiments

5.1 Setup
Evaluation Datasets. We evaluate the robustness
of the prompt-based semantic parsers via the ad-
versarial robustness sets built on top of the test
sets of GeoQuery (Finegan-Dollak et al., 2018)
and Scholar (Finegan-Dollak et al., 2018) with
the proposed perturbation methods in Section 3.
As in Finegan-Dollak et al. (2018), we choose the
query splits of both GeoQuery and Scholar,
where there is no LF template overlap among train,
test, and dev sets.

Prompt-based Semantic Parser. We choose
CODEX (Chen et al., 2021) as the representative
prompt-based semantic parser for our evaluation.

2The confidence scoring parser is a zero-shot model, mean-
ing that there are no examples present in the prompt. It op-
erates solely based on the input utterance, instructions, and
schema provided within the prompt. Please see Section 5.1
for more information on the prompt structure.

In recent studies, CODEX has performed com-
parably via in-context few-shot semantic parsing
to the SOTA-supervised trained neural semantic
parsers (Shin and Van Durme, 2022; Roy et al.,
2022b; Drozdov et al., 2022) in terms of execution
accuracy.

To examine the vulnerability of large prompt-
based semantic parsers against adversarial exam-
ples, we choose the code-davinci-002 ver-
sion of CODEX as it is the most powerful variant
among all CODEX models, with 175B parameters.
In our experiments, we sample a maximum of 200
tokens from CODEX with the temperature set to 0,
with the stop token to halt generation.

Prompts. In this work, we adopt the prompt de-
sign of Create Table + Select X as pre-
sented in Rajkumar et al. (2022), which has been
shown to be effective for semantic parsing using
static prompting3.

The prompt for semantic parsing on CODEX

consists of CREATE TABLE commands, includ-
ing specifications for each table’s columns, for-
eign key declarations, and the results of executing
a SELECT * FROM T LIMIT X query on the
tables via the column headers. As described in
Section 4.3, we select NL-LF pairs as in-context
few-shot examples from the train sets.

To guide the prompt-based semantic
parser, we also include the textual instruc-
tion of “Using valid SQLite, answer
the following questions for the
tables provided above.” as proposed
by Rajkumar et al. (2022).

5.2 Research Questions and Discussions

Our experimental results answer the following four
research questions (RQs) related to the robustness
of CODEX.

RQ1: How vulnerable is the prompt-based
semantic parser to adversarial examples?
Settings. To answer RQ1, we evaluate the stan-
dard accuracy and perturbation accuracy of CODEX

on GeoQuery and Scholar test sets through
zero-shot learning.

Results. The zero-shot parsing performances of
CODEX are shown in Table 2. Our first observa-

3In contrast to the approach of Shin et al. (2021) which
involves dynamically selecting few-shot examples from an
example pool, we refer to static prompting as being performed
with a fixed set of examples.
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Category Pert. Strategy GeoQuery Scholar
Pert. Acc. Std. Acc. ∆ Pert. Acc. Std. Acc. ∆

Word-level

TB 53.85

57.14

-3.29 11.35

12.21

-0.86
RD 50.55 -6.59 10.52 -1.69
RS 37.36 -19.78 8.31 -3.90
CS 42.31 -14.83 8.40 -3.81
CI 38.46 -18.68 8.31 -3.90

Sentence-level RB 31.87 -25.27 5.22 -6.99
DB 35.71 -21.43 7.88 -4.33

Table 2: Results of perturbation accuracy (Pert. Acc.) and standard accuracy (Std. Acc.) of zero-shot performance
on GeoQuery and Scholar. The zero-shot prompt only contain the table information and initial semantic parsing
instruction. Perturbation accuracy is calculated based on each perturbation method.

tion is that CODEX is more vulnerable to sentence-
level perturbations than to word-level perturbations,
as indicated by the more significant performance
gaps between standard and perturbed accuracies on
the sentence-level perturbed test sets. Wang et al.
(2021) observed that neural language models are
vulnerable to human-crafted adversarial examples
where there are complex linguistic phenomenons
(e.g., coreference resolution, numerical reasoning,
negation). We observe that the rewriting model
trained on human paraphrase pairs also introduces
such complex linguistic phenomenons.

With respect to the word-level perturbations,
CODEX is most robust to typo-based perturbations,
which is surprising as Wang et al. (2021) shows
typo-based perturbation is the most effective attack
method for large language models like BERT (De-
vlin et al., 2019) in the evaluation of natural lan-
guage understanding tasks. However, utterances
with typos drop only 3% of the accuracy of CODEX.
Random Deletion is also less effective than the
other word-level methods, consistent with the ob-
servations by Huang et al. (2021) on the fully-
supervised semantic parsers. This phenomenon
can be attributed to the fact that Random Deletion
primarily makes minor modifications to the stan-
dard NL utterances, as this method often involves
removing non-functional words such as articles, for
example, “the” and “a.”

Although CODEX is pre-trained on a consider-
ably large dataset, it does not show robustness on
the in-domain tasks. We conjecture that the reason
is that zero-shot CODEX has not yet learned any in-
domain knowledge on GeoQuery or Scholar.
So in RQ2, we would address whether in-domain
examples would improve the robustness of CODEX.

Takeaways. Zero-shot CODEX is vulnerable to
adversarial examples, especially sentence-level per-
turbation of utterances, rather than to word-level

perturbations.

Pert. Strategy 5-shot 10-shot 20-shot 30-shot 40-shot 50-shot
TB 63.19 71.98 78.02 81.32 81.30 82.42
RD 59.34 64.29 71.43 71.98 70.33 75.27
RS 52.20 52.75 54.87 59.34 60.99 63.14
CS 54.40 56.04 60.44 63.19 65.93 67.03
CI 51.65 54.95 55.49 57.69 58.79 61.02
RB 44.51 47.80 49.45 50.55 54.23 57.27
DB 48.35 49.77 53.30 54.20 59.34 59.89

Avg. Pert. Acc. 53.38 56.80 57.50 59.49 64.42 66.58
Std. Acc. 66.48 74.37 79.67 81.87 83.52 84.62

Avg. Robust Acc. 75.67 77.28 78.74 80.44 82.07 83.22

Table 3: Few-shot performances on GeoQuery. We
conduct {5, 10, 20, 30, 40, 50}-shot learning experi-
ments. Average perturbation accuracy (Avg. Pert. Acc.)
is the average score of execution accuracies on different
perturbation sets. Average robust accuracy (Avg. Ro-
bust Acc.) is the average score of execution accuracies
on the test sets perturbed by different perturbation meth-
ods.

Pert. Strategy 3-shot 5-shot 10-shot
TB 10.57 20.33 34.29
RD 12.09 25.27 31.43
RS 6.04 17.03 25.08
CS 9.34 18.13 26.03
CI 8.24 14.29 20.63
RB 3.30 8.43 18.10
DB 4.40 10.44 21.90

Avg. Pert. Acc. 7.71 16.27 25.35
Std. Acc. 14.29 23.08 40.32

Avg. Robust. Acc. 51.12 53.10 55.97

Table 4: Few-shot performances on Scholar. We
conduct {3, 5, 10}-shot learning experiments.

RQ2: Does standard in-context few-shot
learning improve the robustness?
Settings. We respectively select up to 50 and 10
examples from GeoQuery and Scholar train
sets4, with the random sampling strategy, to con-
struct prompts for parsers. Then, for each few-shot

4Due to the larger size of table schema in Scholar, we
could only include up to 10 examples in the prompt.
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learning experiment, we measure standard accu-
racy, perturbation accuracy and robust accuracy on
our various perturbed test sets.

Results. Tables 3 and 4 show the performance of
standard in-context few-shot learning on the robust-
ness evaluation sets perturbed by different methods.
We observe that more standard examples in the
prompt can evidently improve the robust accuracy
of CODEX, which demonstrates the effectiveness
of standard in-context few-shot learning in improv-
ing the robustness of semantic parsing. Although it
performs slightly worse on the test sets perturbed
by typo-based methods than the one perturbed by
the random deletion in GeoQuery, we argue that
this is due to the performance variance, which does
not necessarily hurt the model robustness.

The performance gap between perturbation accu-
racy with standard accuracy is enlarged when the
number of in-context shots increases. However, the
robust accuracy grows slowly. This indicates that
improving the generalization ability of the parser
does not necessarily mean the improvement of the
robustness. The trade-off between standard and
robust accuracies is a long-standing problem in ad-
versarial training. Raghunathan et al. (2019) shows
that increasing the training sample size could elimi-
nate such a trade-off. Our experiments demonstrate
that in-context learning follows similar patterns as
supervised adversarial training. It can be observed
that both objectives can be improved with a limited
number of examples when compared to the zero-
shot parser. However, the extent of improvement
varies.

Takeaways. With more standard in-context ex-
amples, few-shot CODEX can be guided to achieve
better robustness and standard execution perfor-
mance.

RQ3: Does adversarial in-context learning
improve robustness?
Settings. In this work, we present the experi-
mental results of CODEX on both GeoQuery and
Scholar datasets, using 10 and 5 in-context ex-
amples, respectively. In order to assess the ro-
bustness of CODEX through adversarial in-context
learning, we first augment the standard few-shot
examples by incorporating examples whose utter-
ances have been perturbed using various perturba-
tion methods. Subsequently, for each set of aug-
mented examples, we calculate the average robust
accuracy of CODEX based on the average of the

Adv. L. Strategy GeoQuery Scholar
Avg. Robust Acc. Std. Acc. Avg. Robust Acc. Std. Acc.

No Adv. 77.28 74.37 53.10 23.08
No Adv. (× 2) 78.74 79.67 55.97 40.32

TB 77.32 73.62 52.75 34.99
RD 77.40 73.64 53.11 33.65
RS 78.30 74.73 54.88 33.46
CS 78.05 74.47 53.12 34.86
CI 78.14 74.81 54.66 33.65
RB 78.47 75.51 56.58 35.85
DB 78.31 75.08 55.08 35.71

Table 5: The results of the average robust accuracy
obtained through Adversarial In-context Learning (Adv.
L. Strategy) with different types of perturbed few-shot
examples. Additionally, we include results of applying
the method with only standard examples (No Adv.), as
well as with a doubled number of standard examples
(No Adv. (× 2)).

parser robust accuracies on all robustness evalua-
tion sets.

Results. The experimental results of the various
perturbation strategies applied to the in-context
few-shot examples are presented in Table 5. While
the approach of supervised adversarial training has
been widely regarded as an effective means of en-
hancing the robustness of machine learning mod-
els, the results indicate that on both GeoQuery
and Scholar, the robust accuracies are only
marginally improved through the application of
adversarial in-context learning. Previous stud-
ies (Raghunathan et al., 2019; Huang et al., 2021)
have pointed out that supervised adversarial train-
ing can sometimes result in a decrease in stan-
dard accuracy, even as it improves robust accu-
racy. However, the results of adversarial in-context
learning diverge from this trend, with significant
improvement in standard accuracy, from 23% to
more than 33%, observed on Scholar, while ro-
bust accuracy only experiences marginal improve-
ment. These observations indicate that adversarial
in-context learning represents a distinct approach
from supervised adversarial training in terms of
enhancing the robustness of the model. Further-
more, the results suggest that simply incorporating
adversarial examples into the prompt has a limited
impact on the robustness of parsers, in contrast to
supervised adversarial training.

Of all the perturbation strategies analyzed, the
results indicate that CODEX achieves the best per-
formance in terms of both standard and robust ac-
curacy through the application of RB adversarial
in-context learning, but experiences the worst per-
formance through TB adversarial in-context learn-
ing. The hypothesis is that RB produces utterances
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Dataset Metric Confidence Cluster-CWE Cluster-ED Cluster-TF-IDF PPL. Asc PPL. Desc Random

GeoQuery
Avg. Robust Acc. 78.77 78.02 82.40 85.10 70.36 50.82 73.22
Avg. Pert. Acc. 69.80 68.93 74.41 77.74 62.11 45.71 66.58

Std. Acc. 74.73 78.41 81.32 85.64 73.14 70.76 74.18

Scholar
Avg. Robust Acc. 55.31 60.24 60.68 62.61 53.97 47.18 55.97
Avg. Pert. Acc. 28.55 29.81 30.28 31.44 22.25 7.47 25.35

Std. Acc. 37.99 41.49 42.19 42.97 35.93 34.89 36.91

Table 6: The performance of standard few-shot in-context learning using various sampling methods on the
GeoQuery and Scholar datasets. The average robust accuracy, average perturbation accuracy, and standard
accuracy are computed for each sampling method to assess their efficiency in this learning scenario.

Dataset LC. Metric Confidence Cluster-CWE Cluster-ED Cluster-TF-IDF PPL. Asc PPL. Desc Random

GeoQuery
TTR ↑ 7.68 7.24 8.47 10.26 5.94 3.22 6.44

Yule’s I ↑ 68.55 64.37 69.59 71.49 62.94 43.41 58.14
MTLD ↑ 12.44 12.19 13.37 15.58 11.32 8.16 10.41

Scholar
TTR ↑ 28.18 29.91 31.40 33.11 21.15 14.17 25.67

Yule’s I ↑ 198.15 207.11 223.76 262.36 177.37 102.17 193.31
MTLD ↑ 15.68 15.63 16.34 19.49 11.94 13.12 14.36

Table 7: Results of the language complexity of standard NLs sampled by different sampling strategies, measured by
three lexical diversity (LC.) metrics. For the ease of readability and comparison, we multiply both TTR scores and
Yule’s I scores by 100.

with more complex linguistic features, resulting in
enhanced standard and robust accuracy during in-
context learning. To test this hypothesis, the num-
ber of standard examples is doubled (No Adv.×2)
to match the size of the examples augmented with
the adversarial examples. The results show that
the robust and standard accuracies of CODEX are
higher than those obtained through adversarial in-
context learning, likely due to the greater diversity
of linguistic variations in the doubled standard ex-
amples.

Takeaways. The robustness of few-shot CODEX

can be marginally improved by adversarial in-
context learning without significant negative im-
pacts on standard performances.

RQ4: What is the impact of sampling
techniques on the robustness of parsers that
utilize standard in-context few-shot learning?
Settings. In order to compare the influence of
different sampling methods on the robustness of
the model, we vary standard in-context examples
on GeoQuery and Scholar with all 7 strategies
aforementioned in Section 4.3. We choose the 50-
shot setting for GeoQuery and 10-shot setting for
Scholar.

Results and Takeaways. We present standard
accuracies in Table 6 when varying the sampling
methods for the few-shot example selection. We
first observe that different sampling strategies im-
pact the robust and standard performance of the

CODEX. Overall, the Cluster methods, which diver-
sify the features of the selected utterances, perform
better than the other sampling methods. On the
other hand, PPL. Desc sampling method performs
consistently poorly than the other sampling meth-
ods. In brief, we conclude that CODEX is sensitive
to the few-shot example sampling strategies.

RQ4-Ablation: Why does CODEX react
differently to various sampling strategies?

Settings. The findings of RQ 1 and RQ 3 indi-
cate that linguistic complexity has an impact on
the performance of CODEX. As a result, the re-
sults of RQ 4 may also be influenced by linguistic
complexity. To further explore this correlation,
three lexical diversity metrics, Type-Token Ratio
(TTR) (Templin, 1957), Yule’s I (Yule, 1944), and
Measure of Textual Lexical Diversity (MTLD) (Mc-
Carthy, 2005), are adopted to measure the lexical
diversity of the selected NLs from GeoQuery and
Scholar. The TTR is defined as the ratio of the
number of unique tokens, also known as types, to
the total number of tokens. The TTR is used as
an indicator of lexical diversity, with a higher TTR
indicating higher lexical diversity. Yule’s Charac-
teristic Constant (Yule’s K) is a measure of text
consistency that considers vocabulary repetition.
Yule’s K and its inverse, Yule’s I, are considered
more robust to variations in text length than the
Type-Token Ratio (TTR). MTLD is computed as
the average number of words in a text required to
maintain a specified TTR value.
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Results and Takeaways. Table 7 presents the
lexical diversity of each set of NLs sampled by dif-
ferent approaches. The diversity scores obtained
from the three metrics align with the performance
of CODEX as presented in Table 6. For instance, the
three metrics indicate that the examples selected us-
ing the Cluster-TF-IDF method achieve higher lex-
ical diversity compared to those selected through
the other methods. Additionally, the Cluster-TF-
IDF method also produces the highest results in
terms of robust and standard accuracy for CODEX.
Thus, it can be inferred that an increase in the lexi-
cal diversity of the few-shot examples leads to an
improvement in the robust and standard accuracy
of CODEX.

6 Conclusion

This study examines the robustness of semantic
parsers in the context of prompt-based few-shot
learning. To achieve this objective, robustness eval-
uation sets were curated to evaluate the robustness
of the prompt-based semantic parser, CODEX. The
research aims to identify methods to improve the
robustness of CODEX. The results of our com-
prehensive experiments demonstrate that even the
prompt-based semantic parser based on a large pre-
trained language model is susceptible to adversar-
ial attacks. Our findings also indicate that various
forms of in-context learning can improve the ro-
bustness of the prompt-based semantic parser. It
is believed that this research will serve as a cata-
lyst for future studies on the robustness of prompt-
based semantic parsing based on large language
models.

Limitations

In this study, we examine the robustness of the
prompt-based semantic parser, CODEX, by focus-
ing on the impact of prompt design on its execution
performance. However, there is a need for future
research to investigate more alternative adversar-
ial training strategies for prompt-based semantic
parsers in order to advance this field. In addition,
our focus is limited to text-to-SQL tasks, and we en-
courage further investigation into the robustness of
semantic parsers across different datasets and LFs.
Despite these limitations, we emphasize the impor-
tance of exploring more effective prompt design in
order to enhance the robustness of prompt-based
semantic parsers, including CODEX, which shows
non-negotiable vulnerability.
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A Experiments

Datasets. The GeoQuery dataset contains 877 pairs of NL-LF pairs about U.S. geographical infor-
mation. On the other hand, Scholar contains pairs of NL-SQL regarding information about academic
publications. Finegan-Dollak et al. (2018) proposed a dataset split for evaluating the compositional
generalization capability of semantic parsers on several datasets, including GeoQuery and Scholar.
The proposed split, referred to as the query-split, presents a more challenging scenario for semantic
parsing models. This paper utilizes the query-split, where the two test sets in our experiments include 182
NL-LF pairs from GeoQuery and 315 NL-LF pairs from Scholar, respectively, during the evaluation
of the prompt-based semantic parser.

Hyperparameters. We sample at most 200 tokens from CODEX with temperature 0, with the following
strings used as stop tokens to halt generation: “--”, “\n\n”, “;”, “#”.

Model Versioning. The version of the code-davinci-002 model referred to in this paper is as of
the midpoint of the year 2022.

B Adversarial Examples

Table 8 lists the examples generated by all perturbation strategies.

Linguistic
Phenomenon

Samples (Strikethrough = Original Text, red = Adversarial Perturbation)

Typo
(Word-level) NL: what can you tellte11 me about theth e population of missouri

Random Deletion
(Word-level) NL: what can you tell me about the population of missouri

Random Swap
(Word-level) NL: what can you tell me aboutmissouri the population of missouriabout

Context-aware
Substitution
(Word-level)

NL: what canwill you tell me about thea population of missouri

Context-aware
Insertion

(Word-level)
NL: what what can you tell me about the exact population of missouri

Rewriting
(Sent.-level)

NL: what can you tell me about the population of missouri
What information can you provide on Missouri’s population?

Distraction
(Sent.-level)

NL: what can you tell me about the population of missouri
who is who; what is what; when is when; which is which; where is
where

Table 8: Examples from Robustness Evaluation Set. The adversarial utterances in this Table are generated by
applying various perturbation strategies to a single utterance “what can you tell me about the population of missouri”
sampled from the GeoQuery dataset. All of the generated utterances can successfully alter Codex’s output.
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Abstract

We report on an experiment in case outcome
classification on European Court of Human
Rights cases where our model first learns to
identify the convention articles allegedly vio-
lated by the state from case facts descriptions,
and subsequently uses that information to clas-
sify whether the court finds a violation of those
articles. We assess the dependency between
these two tasks at the feature and outcome level.
Furthermore, we leverage a hierarchical con-
trastive loss to pull together article-specific rep-
resentations of cases at the higher level, leading
to distinctive article clusters. The cases in each
article cluster are further pulled closer based on
their outcome, leading to sub-clusters of cases
with similar outcomes. Our experiment results
demonstrate that, given a static pre-trained en-
coder, our models produce a small but consis-
tent improvement in classification performance
over single-task and joint models without con-
trastive loss.

1 Introduction

The NLP task of classifying case outcome infor-
mation from a textual statement of case facts is
generally referred to as Legal Judgement Predic-
tion (LJP)(e.g., Aletras et al. 2016; Chalkidis et al.
2019). It has been studied using corpora from dif-
ferent jurisdictions, such as the European Court
of Human Rights (ECtHR) (Chalkidis et al., 2019,
2021, 2022b; Aletras et al., 2016; Medvedeva et al.,
2020; Santosh et al., 2022, 2023), Chinese Criminal
Courts (Luo et al., 2017; Zhong et al., 2018; Yue
et al., 2021; Zhong et al., 2020; Yang et al., 2019),
US Supreme Court (Katz et al., 2017; Kaufman
et al., 2019), Indian Supreme Court (Malik et al.,
2021; Shaikh et al., 2020), the French court of Cas-
sation (Şulea et al., 2017), Brazilian courts (Berta-
lan and Ruiz, 2020), the Federal Supreme Court
of Switzerland (Niklaus et al., 2021), the Turkish
Constitutional court (Sert et al., 2021; Mumcuoğlu

et al., 2021), UK courts (Strickson and De La Igle-
sia, 2020), German courts (Waltl et al., 2017), the
Philippine Supreme court (Virtucio et al., 2018),
and the Thailand Supreme Court (Kowsrihawat
et al., 2018).

In this work, we experiment with classifying
case outcomes in the ECtHR A and B benchmark
tasks introduced by LexGLUE (Chalkidis et al.,
2022b). Task B is to identify the set of articles
of the European Convention of Human Rights
(ECHR) that the claimant alleges to have been vi-
olated, while Task A’s goal is to classify which of
the convention’s articles has been deemed violated
by the court. The input for both tasks is the case’s
fact description that has been extracted from the
published judgement document. It should be noted
that, despite these tasks being typically referred to
as instances of ‘legal judgement prediction’, the
fact statements are typically not finalized until the
decision outcome is known, making the task effec-
tively one of retrospective classification rather than
prediction (Medvedeva et al., 2021). While this
does lead to distracting and confounding phenom-
ena (see our prior work in Santosh et al. 2022), the
dataset remains a useful resource for the develop-
ment of NLP models that analyze these fact state-
ments for text patterns that correspond to specific
convention articles as drafted by the court. Conse-
quently, we speak of case outcome classification
(COC).

Positive instances for Task A are cases in which
an article was deemed violated by the court. Neg-
ative instances, however, usually encompass not
only cases in which that particular article was al-
leged and considered not violated, but also the
cases in which the particular article was not al-
leged in the first place. Given that the conditional
probability of a positive task A label (violation)
given its task B label (allegation) can be very high
in the LexGLUE dataset, we posit that models can
fall into this pitfall of identifying dominant articles

1103



with high conditional violation probability, miss-
ing information specific to violation classification.
Thus, we experiment with multi-task architectures
to decouple these reasoning steps involved in Task
A . This is similar to work in Chinese criminal
cases judgement prediction carried out in Zhong
et al. 2018; Yang et al. 2019; Xu et al. 2020; Yue
et al. 2021 that coordinated multiple outcome vari-
ables (law articles, criminal charges, and penalty
terms).

In the ECtHR context, most of the previous
works (Chalkidis et al., 2019, 2021, 2022b; Clavié
and Alphonsus, 2021; Santosh et al., 2022, 2023)
employed independent models for allegation iden-
tification and violation classification. Concurrent
work by Valvoda et al. 2023 has recently explored
multi-task joint models that learn Task A and Task
B simultaneously. Their Claim-Outcome model
decomposes them into two independent classifiers
with separate encoders for each allegation and vi-
olation classification given allegation information.
Our work differs in three ways: (i) We learn the
joint representation for both tasks through a shared
encoder following our intuition that the shared rep-
resentation is beneficial as both tasks require sim-
ilar features at the lower level; (ii) We model de-
pendency from allegation to violation classification
at both the allegation outcome and feature levels.
Conditioning violation classification on the alle-
gation outcome leads to higher performance, but
we find that passing along feature level informa-
tion yields additional improvement. This way, the
violation branch will focus on identifying specific
information required for determining violation than
falling prey to only allegation level features. (iii)
We also model correlations among different articles
that tend to be concurrently alleged.

Inspired by recent advances in contrastive learn-
ing to learn effective representations (Khosla et al.,
2020), we further devise a two-level hierarchical
contrastive loss for COC. First, we strive to max-
imize the latent space distance between different
article representations, which assists the model in
learning distinct article-specific views of case facts.
Second, we apply contrastive learning within each
article latent space to form distinct sub-clusters of
similar outcome cases. Unlike our two-level hierar-
chical contrastive learning, a single-level one has
been explored for LJP in the concurrent work by
Zhang et al. 2023.

Our experiments demonstrate that, given a static

Figure 1: Our architecture capturing task dependency
from allegation to violation classification branch.

pre-trained encoder, our models outperform single-
task and joint models without contrastive loss by a
small but consistent margin, with larger improve-
ments for sparse classes in classification perfor-
mance.

2 Method

Our model takes as input the case fact description
as token encodings x = {x1, x2, . . . , xm} where
xi = {xi1, xi2, . . . , xin} and outputs the set of ar-
ticles claimed to be alleged by the applicant (Task
B) and set of articles deemed to be violated by the
court (Task A) as multi-hot vectors. xi and xip
denote ith sentence and pth token of ith sentence
of the case facts respectively. m and n denote the
number of sentences and tokens in the ith fact sen-
tence, respectively. Our model is built on top of a
hierarchical attention network (Yang et al., 2016),
which we chose to be able to process the very long
fact description inputs. Our model contains three
main components: (1) encoding layer, (2) Article-
Specific Case representation and (3) Task Depen-
dency learning. See Fig. 1 for an overview of our
model.
Encoding layer: We encode each sentence in the
case facts description with LegalBERT (Chalkidis
et al., 2020) to obtain the token level representa-
tions {zi1, zi2, . . . , zin}. Sentence level representa-
tions are then computed using a token-level atten-
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tion mechanism as follows:

uit = tanh(Wwzit + bw) & αit =
exp(uituw)∑
t exp(uituw)

& fi =

n∑

t=1

αitzit

(1)
where Ww, bw and uw are trainable parameters.
The sentence level representations {f1, . . . , fm}
are passed through a GRU encoder to obtain
context-aware representations of the case facts
h = {h1, h2, . . . , hm}.
Article-Specific Case Representation: We dis-
entangle the input case facts into multiple article-
view-representations c = {c1, c2, . . . , ck} where
k is the total number of modeled convention arti-
cles, through aggregating context-aware sentence-
level representations h using k sentence-level atten-
tion mechanisms similar to eq. 1 for every article
individually. Through this article-specific atten-
tion mechanism, sentences relevant to a specific
article are emphasized and intended to aid in fine-
grained reasoning of outcome prediction for every
article. This is helpful especially for sparser classes
and mitigates the tendency of models to focus on
skewed dominant articles. This is distinct from pre-
vious works (Chalkidis et al., 2019, 2021, 2022b;
Santosh et al., 2022) which use a single vector rep-
resentation for case facts.
Task Dependency Learning: To capture both the
inter-article correlations for allegation, violation
classification, and the inter-task dependency, we
again use a two-step architecture. First, we apply
a multi-head self-attention layer (Vaswani et al.,
2017) to the obtained article-specific representa-
tions of case c to allow interactions among articles
(e.g., some articles are typically alleged together
while others usually occur in isolation) and obtain
article-interaction-aware allegation feature repre-
sentations c′b = {c′b1, c′b2, . . . , c′bk}. These c′b are
passed through k article-specific Task B classifica-
tion layers to obtain the binary outcome ob corre-
sponding to each article for allegation classification,
which are then concatenated into a multi-hot vector.

Then we utilize the task B allegation informa-
tion to enhance task A violation classification to
capture the task dependency. We concatenate the
obtained article-interaction-aware allegation repre-
sentations c′b and allegation label probability logits
o′b

1 with article-specific case representations c to
obtain the enhanced article-specific representation
for Task A as cai = [ci, c

′
bi, o

′
bi]. We again em-

1We use non-binarized response (i.e. probability logits) as
it avoids the information loss that can occur in the probability
space due to binarization.

ploy multi-head self-attention mechanism on these
enhanced article-aware representations ca for vi-
olation prediction to capture the correlations that
exist between violation of different articles. Finally,
the obtained representations are passed through k
article-specific Task A classification layers to ob-
tain the binary outcome oa corresponding to each
article’s violation output. To be able to evaluate
the effectiveness of our interaction architecture in
a clean way, we freeze the LegalBERT encoder
weights in all our experiments.

2.1 Hierarchical Contrastive Loss
Contrastive learning has recently gained attention
as a technique to obtain effective representations.
In essence, it involves pulling together an ‘anchor
point’ and its related samples while pushing it away
from unrelated samples in the embedding space.
Originally developed in self-supervised learning
(Chen et al., 2020; Henaff, 2020), it has since been
adopted in supervised settings (Khosla et al., 2020)
where samples with the same/different labels are
deemed related/unrelated with respect to an anchor.

In this work, we use a hierarchical contrastive
loss (Liang et al., 2022) alongside the standard
binary cross entropy loss on the task outcome prob-
ability. On the higher level, this is intended to form
distinctive clusters of article-specific case represen-
tations. We hypothesize that this distinctiveness
maximization constraint in turn helps the article-
specific representation component to extract salient
information with respect to each article more effec-
tively. At the lower level, inside the latent space for
each article, we further perform contrastive learn-
ing among cases based on their outcome for tasks
A and B, respectively. This allows the positive
outcome representations of cases under a specific
article to stay closer and separate from the negative
outcome cases, leading to formation of sub-clusters.
We apply contrastive losses for Task A and Task B
separately on the interaction-aware representations.
It is calculated as the mean loss computed based
on every article based representation as an anchor
point. The loss for the interaction-aware representa-
tion of the jth case specific to the ith article for Task
B c′bij as an anchor point is calculated as follows:

l(c′bij ) =log(
∑

f∈Q(i,j)

exp(c′bij · f/τa)∑
g∈P (i,j) exp(c′bij · g/τa)

)

× α
∑

f∈R(i,j)

exp(c′bij · f/τc)∑
g∈Q(i,j) exp(c′bij · g/τc)

)

(2)

where P (i, j) = {c′blm |l ̸= i & m ̸= j} (all rep-
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resentations except the anchor point), Q(i, j) =
{c′blm |l = i & m ̸= j)} (all representations
which share the same article as the anchor point),
R(i, j) = {c′blm |l = i & yij = ylm & m ̸= j},
yij the denotes binary outcome label of case j with
respect to article i (all representations which share
the same article and outcome of that article as the
anchor point). τa and τc are scalar temperature
parameters that control the penalties on negative
samples. The first term in the above equation 2
denotes the contrastive loss among article represen-
tations (i.e., for a given anchor point, positive pairs
are obtained by article-aware representations of
cases in the batch which share the same article with
the anchor point; negative pairs are the remaining
article representations). The second term contrasts
the cases based on their task outcome within spe-
cific article representations. Contrastive learning
has shown to be more effective with larger batch
sizes (Radford et al., 2021; Chen et al., 2020). To
account for smaller batch size due to computational
constraints incurred with our hierarchical setup, we
use a memory bank (Wu et al., 2018) which pro-
gressively reuses the representations from previous
batches in computing the contrastive loss.

3 Experiments & Discussion

3.1 Dataset & Baseline Models

We experiment on the ECHR task A and B datasets
of LexGLUE (Chalkidis et al., 2022b), which con-
sist of 11k case fact descriptions chronologically
split into training (2001–2016, 9k cases), validation
(2016–2017, 1k cases), and test sets (2017-2019,
1k cases). The label set for both tasks include 10
prominent ECHR articles. Implementation details
are given in Appendix A. We compare our models
against the following baselines:
Task A/B only: We train single-task models only
on task A and B labels, respectively. Their archi-
tecture is based on our model with contrastive loss,
task dependency and article-specific representation
components removed.
Multi-task: Using the same architecture, we also
develop a model for both task A and B that is
trained in classic multi-task fashion with separate
classification heads without article-specific repre-
sentations and task dependency components.

3.2 Performance Evaluation

Following Chalkidis et al. 2022b, we report micro-
F1 (µ-F1) and macro-F1 (m-F1) scores across the

Table 1: Results on Task A and B. ‘feat.’, ‘lab,’. ‘Cont.’
indicate feature, label and contrastive, respectively

Task B Task A
Model µ-F1 m-F1 µ-F1 m-F1 hm-F1
Task B only 76.20 67.15 - - -
Task A only - - 68.42 56.26 54.14
Multi-task 78.17 69.16 69.29 58.05 55.57
Our Method 79.29 70.97 71.26 65.24 60.90
w/o feat. & lab. 78.93 71.45 70.07 59.14 57.09
w/o feat. 78.59 71.56 70.68 63.93 59.28
w/o label 79.09 71.38 70.32 64.12 61.70
only gold lab. 78.21 70.03 81.46 78.93 66.59
gold lab. + feat. 77.68 70.40 83.19 78.79 67.42
w/o outcome Cont. 78.42 69.48 69.86 60.84 57.62
w/o article Cont. 79.02 71.14 71.16 64.68 59.86
Task A Cont. - - 70.16 62.14 58.12
Task B Cont. 78.16 69.42 - - -

10 ECtHR articles contained in the dataset. We also
report hard-macro-F1 (hm-F1) for Task A follow-
ing Santosh et al. 2022, which is the mean F1-score
computed for each article where cases with that
article having been violated are considered as pos-
itive instances, and cases with that article being
alleged but not found to have been violated as nega-
tive instances. This forms the most critical measure
for violation classification as it conditions on alle-
gation.
We compare the performance of our method with
the baselines in the first four rows of Table 1. The
multi-task method performs better than the individ-
ual tasks alone, validating the dependency between
them. Our method performs better than the multi-
task architecture, highlighting the effectiveness of
our feature and label dependency components, as
well as of the hierarchical contrastive loss. It scores
higher by a small margin in Task B and Task A
micro-F1 but achieves a larger benefit (>5%) in
task A macro-F1 and hard macro-F1 metrics. This
suggests that our model is of particular utility for
sparser classes.

3.3 Analysis
3.3.1 Ablation on Task Dependency Learning
We create three ablation conditions by removing
one interaction mechanism in each of them: (i) w/o
feature & label (article-specific representation but
with no concatenation with features or labels) (ii)
w/o feature (article-specific representation concate-
nated with task B label as classified by the model)
and (iii) w/o label (article-specific representation
concatenated with task B features).
From the second section of Table 1, we observe
that even the performance of w/o feature and la-
bel is better than multi-task model indicated by a
small but consistent margin, indicating that article-
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specific case representation is a competitive compo-
nent. Both w/o feature, w/o label models perform
better than w/o feature & label in Task A, demon-
strating the benefit of passing on task B model
information explicitly. Between them, w/o label
performs better in m-F1 and hm-F1 scores of Task
A than w/o feature showing that providing the fine-
grained representation of features from the allega-
tion identification model is more useful than the
predicted allegation labels only.

Further, to evaluate the impact of allegation iden-
tification performance on downstream violation
classification, we conduct a control experiment in
which we provide the actual gold allegation set of
articles as input to the violation component in place
of the predicted ones. We create two variants: only
gold labels and gold labels + features (gold labels
along with task B features). From the third section
of Table 1, we observe that performance on Task
A increases substantially in micro-F1 and macro-
F1, which is intuitive as the model gets access to
perfect allegation information. Interestingly, when
adding task allegation feature information, we no-
tice an additional small increase in hard macro-F1,
indicating that adding feature information can have
beneficial effect even in the presence of gold task
B labels. These results form an upper bound of
the benefit of using task dependency information
from allegation branch to violation branch in our
architecture, and the size of the performance gap
motivates future work on accurate allegation classi-
fication.

3.3.2 Ablation Hierarchical Contrastive Loss
We carry out an ablation experiment for each
component of our hierarchical contrastive loss:
(i) disable article-level contrastive learning to ob-
tain distinctive article representations (‘w/o article
contrastive’) and (ii) disable outcome-based con-
trastive learning to separate cases based on out-
come within each article cluster (‘w/o outcome
contrastive’). Intuitively, from the fourth section of
Table 1, we observe that removing the outcome con-
trastive loss has the larger effect on performance, as
it directly relates to the predicted label. The smaller
but consistent drop in performance when removing
article-level contrastive learning supports our hy-
pothesis that maximizing the distinctiveness among
article representations encourages the model to
learn how to extract article-specific salient informa-
tion from case facts.

Finally, to study the impact of our contrastive

loss component alone, we evaluate single-task mod-
els applying our hierarchical contrastive loss re-
ferred to as ‘Task A/B Contrastive’. From the last
section of Table 1, we observe that they outperform
their baseline counterparts in both tasks, but still
stay behind our model.

4 Conclusion

We improve ECtHR article violation classification
from fact statements by leveraging feature and la-
bel information from an allegation classification
model. We also leveraged hierarchical contrastive
loss to contrast between different article represen-
tations and case representations based on outcome
with respect to a specific article. Given a static pre-
trained encoder, our models outperform a straight-
forward multi-task architecture by a small but con-
sistent margin, with larger improvements for sparse
classes. These results suggest that the tasks of alle-
gation and violation classification on ECtHR fact
statements interrelate in a way that may not be op-
timally captured using straightforward multi-task
architectures, and motivate further research on de-
pendency modeling between related legal classifi-
cation tasks.

Limitations

In this work, we have demonstrated improvements
in violation classification for ECtHR cases by lever-
aging the dependency from allegation classification
at the feature and label level. While our feature
transfer and contrastive learning techniques are gen-
eral, our experimental contributions are contextual
to the court. The nature of the fact statements as
being influenced by the eventual case outcome and
not suitable for prospective prediction has already
been addressed in section 1.

While similar tasks (i.e., allegations paired with
findings) exist in many other jurisdictions, they
will differ in, for example, legal nature, semantic
difficulty, and sub-task dependency. In our case,
we choose the allegation classification as the aux-
iliary task which is closely related and also forms
a necessary sub-part of deriving the final outcome
related to the main task (violation prediction) at
hand. We leave an exploration of the relatedness
of auxiliary tasks and their impact on LJP/COC for
future work.

One major challenge is dealing with long input
case facts description, which is currently handled
with hierarchical model in this work. These hierar-
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chical models do not allow tokens in one sentence
to attend to tokens in other sentence which leads
to sub-optimal interaction modelling. This model-
ing impact on performance is still underexplored
except some preliminary empirical work in Dai
et al. 2022; Chalkidis et al. 2022a. Additionally,
we freeze the weights in the LegalBERT encoder,
both to save computational resources and to evalu-
ate the effectiveness of our dependency mechanism
in a clean way.

Ethics Statement

We employ pre-trained language models and do not
train them from scratch, thus inheriting the biases
they may have acquired from their training cor-
pus. Our experiments have been carried out on a
dataset of ECtHR decisions which is publicly avail-
able as the part of LexGLUE benchmark (Chalkidis
et al., 2022b) and has been derived from the public
court database HUDOC2. Though these decisions
are not anonymized and contain the real names of
the involved parties, we do not foresee any harm
incurred by our experiments beyond making this
information available. This collection of decision
documents is of course historical data and using
it to train model may result in classifiers that ex-
hibit behavior that may be considered biased. For
example, Chalkidis et al. 2022c explores dispari-
ties in classification performance with regard to an
applicant’s gender, their age, and the identity of
the respondent state. If COC models are deployed
as part of a decision support systems, then they
of course must be screened for performance/error
differences in between groups that are to be treated
equally.

The task of LJP/COC in itself raises serious ethi-
cal and legal concerns, both in general and specific
to the European Court of Human Rights. However,
we do not advocate for the practical adoption of
LJP/COC systems by courts. Our prior work in
Santosh et al. 2022 demonstrates that these sys-
tems rely on several shallow surface-level spurious
signals that are statistically predictive but legally
irrelevant. This highlights the risk of using predic-
tive systems in high stakes domains such as law.
In the same work, we argue that models leverag-
ing the case outcome signal for analytical purposes
must be developed mindfully and with the goal of
aligning their inferences with legal expert reason-
ing. This further parallels the broader legal NLP

2https://hudoc.echr.coe.int

community increasingly addressing ethical aspects
of developed systems in the context of technical
research (e.g., Wang et al. 2021; Medvedeva et al.
2021, 2022; Tsarapatsanis and Aletras 2021; Leins
et al. 2020).

In this work, we use COC as a technical bench-
marking task that allows the development and study
of neural NLP models on legal text. We focus on
how to leverage dependencies on two successive
tasks (allegation identification and violation classi-
fication) based on case facts, as well as on learning
effective representations of these facts using con-
trastive learning. Our results are hence to be un-
derstood as technical contributions in pursuit of the
overarching goal of developing models capable of
deriving insight from data that can be used legally,
ethically, and mindfully by experts in solving prob-
lems arising in legal research and practice.

All experiments were carried out using Google
Colab. We did not track computation hours.
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A Implementation Details

Our models compute word embeddings of size 768.
Our word level attention context vector size is 300.
The sentence level GRU encoder dimension is 200,
thus giving a bidirectional embedding of size 400,
and a sentence level attention vector dimension of
200. The final dense classifier for all tasks has 100
hidden units. We use a mini batches size of 32
and the model is optimized end-to-end using Adam
(Kingma and Ba, 2015). The dropout rate (Srivas-
tava et al., 2014) in all layers is 0.1. We determine
the best learning rate using grid search on the de-
velopment set and use early stopping based on the
development set m-F1 score. We finetuned τa, τc
with an additional constraint of τa < τc among the
values of {0.07, 0.1, 0.14, 0.2, 0.25, 0.3} so that it
aids in pulling together the representations belong-
ing to the same article in latent space (leading to
distinct article clusters) and also in further slightly
pulling together the representations of cases be-
longing to the same outcome in each separated
article-specific embedding latent space compared
to the other outcome cases in that same article. We
set α to be 0.5. We use a memory bank of size 32
per article and outcome, and store only the most
recent examples per article and its corresponding
outcome.
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Abstract

Due to the semantic complexity of the Relation
extraction (RE) task, obtaining high-quality hu-
man labelled data is an expensive and noisy pro-
cess. To improve the sample efficiency of the
models, semi-supervised learning (SSL) meth-
ods aim to leverage unlabelled data in addition
to learning from limited labelled data points.
Recently, strong data augmentation combined
with consistency-based semi-supervised learn-
ing methods have advanced the state of the
art in several SSL tasks. However, adapting
these methods to the RE task has been chal-
lenging due to the difficulty of data augmen-
tation for RE. In this work, we leverage the
recent advances in controlled text generation
to perform high quality data augmentation for
the RE task. We further introduce small but
significant changes to model architecture that
allows for generation of more training data by
interpolating different data points in their latent
space. These data augmentations along with
consistency training result in very competitive
results for semi-supervised relation extraction
on four benchmark datasets.

1 Introduction

Relation extraction is one of the essential compo-
nents in constructing structured knowledge bases
(Luan et al., 2018), performing interpretable ques-
tion answering (Sun et al., 2021), improving web
search, and many other information extraction
pipelines. It aims to discover the semantic relation
between a given head entity and tail entity based
on the context in the input sentence. For example,
given a sentence "The battle led to panic on the
frontier, and settlers in the surrounding counties
fled.", the goal is to extract the Cause-Effect
relation between the head entity ‘battle’ and the
tail entity ‘panic’. The RE task requires a high
level of language understanding and involves a sig-
nificant level of semantic complexity (Bach and
Badaskar, 2007). Due to this semantic complexity

Input sentence: The battle led to panic on the
frontier, and settlers in the surrounding counties fled.

Synonym-replacement: The struggle cause scare
on the frontier, and settlers in the surrounding
counties fly.

LM-based augmentation: The battle reduced
panic on the frontier, and settlers in the surrounding
counties relaxed.

Vanilla BT: The war caused panic at the border, and
residents of the nearby counties fled.

Our constrained BT: The battle sparked panic at
the border, with residents fleeing in surrounding
counties.

Figure 1: Different data augmentation techniques ap-
plied to a sample datapoint from SemEval dataset. Ex-
isting methods replace the head/tail entities (highlited
in red), change the original meaning or do not give very
fluent paraphrases.

it often requires extensive and highly skilled human
involvement to obtain good quality labelled data,
making data collection an expensive and noisy pro-
cess. Unsurprisingly, because of the same semantic
complexity of the task, models typically require
large amounts of labelled data to give production-
ready performance.

A common strategy to improve the sample
efficiency of machine learning models is semi-
supervised learning methods which leverage easily
accessible unlabelled data to improve the overall
performance. While there are several paradigms
of semi-supervised learning methods, consistency
training based methods have advanced the state of
the art in several SSL tasks (Ghosh and Thiery,
2021). These methods can typically reach perfor-
mances that are comparable to their fully super-
vised counterparts while using only a fraction of la-
belled data points. Recently, strong data augmenta-
tion combined with consistency training algorithms
have shown great success, even surpassing fully su-
pervised models, in low-data settings of various
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tasks (Xie et al., 2020). Adapting these methods to
the task of relation extraction has been challenging
due to the difficulty of data augmentation for RE
task. This is because, in addition to the input sen-
tence, each data point also consists of a head entity
and a tail entity contained in the input sentence.
Typical data augmentation techniques used in NLP
such as back-translation, synonym-replacement,
language-model based augmentation, etc. (Feng
et al., 2021) can not be easily applied to such ‘struc-
tured’ input as they do not guarantee the integrity
of either a) the entities in the input sentence or,
b) the meaning of the input sentence itself. Fig-
ure 1 shows that using synonym-replacement and
vanilla back-translation (BT) methods (Sugiyama
and Yoshinaga, 2019) the entities themselves could
be paraphrased or replaced. Matching the new and
the old entities is a whole problem in itself. In
the Language Model-based augmentation method
(Anaby-Tavor et al., 2020), the semantic meaning
of the input sentence changes altogether, which
makes it difficult to employ consistency training.

Present work. In this work, we leverage the re-
cent advances in controlled text generation to per-
form high quality data augmentation for the rela-
tion extraction task that not only keeps the meaning
and the head/tail entities intact but also produces
fluent and diverse data points. In particular, we
modify back-translation to leverage lexically con-
strained decoding strategies (Post and Vilar, 2018;
Hu et al., 2019) in order to obtain paraphrased
sentences while retaining the head and the tail en-
tities. We further propose novel modifications to
the widely popular relation extraction model archi-
tecture, that allows for generation of more samples
by interpolating different data points in their latent
space, a trick that has been very successful in other
domains and tasks (Berthelot et al., 2019; Chen
et al., 2020b,a). Additionally, we leverage the en-
tity types of the head and the tail entities, when
available, in a way that effectively exploits the
knowledge embedded in pre-trained language mod-
els. These data augmentations, when applied to
unlabelled data, let us employ consistency training
techniques to achieve very competitive results for
semi-supervised relation extraction on four bench-
mark datasets. To the best of our knowledge, this is
the first study to apply and show the merit of data
augmentation and consistency training for semi-
supervised relation extraction task.

2 Related work

Semi-supervised learning for NLP
Semi-supervised learning algorithms can be cate-
gorized into two broad classes–1) self-ensembling
methods and 2) self-training methods.
Self-ensembling methods leverage the smoothness
and cluster/low-density assumptions of the latent
space (Chapelle and Zien, 2005). They train the
models to make consistent predictions under vari-
ous kinds of perturbations to either a) the data (Miy-
ato et al., 2019; Xie et al., 2020), or b) the model pa-
rameters themselves (Tarvainen and Valpola, 2017).
The former methods are broadly referred to as
consistency training methods and have resulted
in state-of-the-art performances for several semi-
supervised NLP tasks. Sachan et al. (2019) add ad-
versarial noise to both labelled and unlabelled data
and train models to make consistent predictions on
the original and the corresponding noisy data-point.
Many recent methods leverage large pre-trained
language models for more advanced data augmen-
tation techniques, like back-translation (Edunov
et al., 2018), and further improve performance in
the low-data regime (Xie et al., 2020). Recently,
Chen et al. (2020b,a) adapted the Mixup algorithm
(Zhang et al., 2018) as another form of data aug-
mentation for textual data and show state-of-the-art
performance on text classification and NER tasks.
Due to the difficulty of data augmentation for rela-
tion extraction task (Figure 1), these methods have
not been adapted for semi-supervised relation ex-
traction (SSRE) task so far. In this work, we fill
that gap and demonstrate the empirical success of
consistency training for SSRE.
Self-training methods are the oldest heuristic
methods of iteratively expanding the labelled train-
ing set by including high-confidence pseudo-labels
from the unlabelled data. All of the existing works
on SSRE fall under this paradigm. These methods
famously suffer from the confirmation bias prob-
lem where the incorrect predictions of the initially
trained model affect the quality of pseudo-labels
and eventually cause the label distribution to drift
away from the true data distribution, resulting in a
semantic drift. Lin et al. (2019) was one of the first
works to address this by training two different mod-
els and augmenting the labelled set with the ‘con-
sensus’ set, i.e., the data points which are labelled
the same by both models. Several works have de-
veloped on this idea of improving the pseudo-label
quality via various strategies like meta-learning
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(Hu et al., 2021a) or reinforcement learning (Hu
et al., 2021b). These set of methods constitute our
baselines.

Data augmentation for NLP

In this work, we concentrate on two major
classes of data augmentation techniques for NLP –
sentence-level data augmentation and latent space
augmentations. Sentence-level data augmenta-
tion techniques include back-translation (Edunov
et al., 2018), language-model based augmentations
(Anaby-Tavor et al., 2020), and word-replacement
strategies (Zhang et al., 2015). We adapt the back-
translation techniques to the RE task.

In latent space augmentations one generates
more samples by interpolating between pairs of
given data points in their latent space. This
was originally introduced for image classification
(Zhang et al., 2018; Verma et al., 2019; Yun et al.,
2019) as a data augmentation and regularization
method. Previous works have generalized this idea
to the textual domain by proposing to interpolate in
embedding space (Cheng et al., 2020) or the gen-
eral latent space (Chen et al., 2020b,a) of textual
data and applied the technique to NLP tasks such as
text classification, machine translation, NER task
and achieved significant improvements. We show
that both these styles of augmentations can be ef-
fectively applied to improve performance on SSRE
task.

3 Background

Task formulation. In this work, we focus on the
sentence-level relation extraction task, i.e., given
a relation statement x : (s, eh, et) consisting of
a sentence, s, a head entity, eh, and a tail entity,
et (both the entities are mentioned in the given
sentence s), the goal is to predict a relation r ∈
R ∪ {NA} between the head and the tail entity,
where R is a pre-defined set of relations. If the
sentence does not express any relation from the
set R between the two entities, then the relation
statement x is accordingly labelled NA.

This is typically done by learning a relation en-
coder model Fθ : x 7→ hr that maps an input
relation statement, x, to a fixed length vector hr
that represents the relation expressed in s between
eh and et. This relation representation, hr, is then
classified to a relation r ∈ R ∪ {NA} via an MLP
classifier.
Base model architecture. Most recent methods for

RE use a Transformer-based architecture (Devlin
et al., 2019; Vaswani et al., 2017) for the relation
encoder model, Fθ. To represent the head and tail
entities in the input to the encoder, the widely ac-
cepted strategy is to augment the input sentence s
with entity marker tokens–[E1], [/E1], [E2],
[/E2]–to mark the start and end of both entities.
Concretely, an input sentence like "Lebron James
currently plays for LA Lakers team." when aug-
mented with entity marker tokens becomes

[E1] Lebron James [/E1] currently

plays for [E2] LA Lakers [/E2] team.

This modified text is input to the Transformer-
based sequence encoder. Next, the encoder output
representations1 of the tokens [E1] and [E2] are
concatenated to give the fixed length relation repre-
sentation, hr = [h[E1] ⊕ h[E2]]. This fixed length
vector is in turn passed through an MLP classifier,
pϕ(hr), to give a probability vector, y, over the
relation setR∪ {NA}.

4 Proposed approach

In our approach we build on the base model archi-
tecture described in §3 and introduce additional
model design elements that are necessary to ob-
tain an improved performance in semi-supervised
relation extraction (SSRE) task.

We first describe the two data augmentation tech-
niques we perform, and the model architectural
changes we introduce that facilitate these augmen-
tations. Then, we describe the training procedure
we follow to leverage unlabelled data and achieve
state-of-the-art performance on three out of four
benchmark datasets for SSRE.

4.1 Constrained back-translation
Back-translation (Edunov et al., 2018) generates
diverse and fluent augmentations while retaining
the global semantics of the original input. Specif-
ically, one translates a given text into an interme-
diate language, say, German, and translates it back
to the source language, say English. Using differ-
ent intermediate languages and temperature-based
sampling results in a diverse set of paraphrases. Ap-
plying this back-translation technique in a vanilla
fashion is not possible for RE task because one has
little control over the retention of the head and tail
entities (Figure 1). Thus, when translating back

1hidden state from the last layer of the Transformer model
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Figure 2: Constrained back-translation process

to the source language from the intermediate lan-
guage we perform lexically-constrained decoding
(Hu et al., 2019), i.e., force the inclusion of pre-
specified words and phrases–positive constraint
set–in the output. In our case the original head
and tail entity words/phrases make up this posi-
tive constraints set. We use German and Russian
as intermediate languages and use the pre-trained
WMT’19 English-German and English-Russian
translation models (in both directions) and their im-
plementations provided by Ott et al. (2019). This
methodology generates diverse data augmentations
for a given sentence. For example, the sentence
"The battle led to panic on the frontier, and settlers
in the surrounding counties fled." is converted to
"The battle sparked panic at the border, with resi-
dents fleeing in surrounding counties" when back-
translated via German, and to "The battle caused
panic on the border and settlers in nearby counties
fled." when done via Russian. This is illustrated
in Figure 2. This strong data-augmentation tech-
nique for RE can be applied to both labelled and
unlabelled data opening the doors to consistency
training (Xie et al., 2020) as we will see in §4.3.

4.2 Latent-space interpolation

Here, we adapt a mixup-based data augmentation
technique to the RE task by making necessary mod-
ifications to the base model architecture we de-
scribed in §3. As done in previous works (Chen
et al., 2020b,a), we sample two random data points–
(x,y) and (x′,y′), where x and y denote the rela-
tion statement and the corresponding relation label–
from the training data and separately compute the
respective latent representations, hm and h′m, upto

the layer m of the relation encoder Fθ as follows:

hl = F lθ(hl−1); l ∈ [1,m],

h′l = F lθ(h′l−1); l ∈ [1,m],

where hl is the latent representation of all tokens in
the sentence x at the lth layer of the encoder. Next,
the latent representations of each token in x at the
mth layer are linearly interpolated:

h̃m = λhm + (1− λ)h′m,

where λ is the mixing coefficient which is sam-
pled from a Beta distribution, i.e., λ ∼ Beta(α, β).
Then, the interpolated latent representation is
passed through the rest of the encoder layers:

h̃l = F lθ(h̃l−1); l ∈ [m+ 1, L].

This final encoder output representation, h̃L, can be
interpreted as the encoder output representation of
a virtual input x̃, i.e., h̃L = Fθ(x̃). We denote this
whole mixup operation2 as h̃L := REMix(x,x′).
The label for this augmented virtual sample is given
by the linear interpolation of the respective labels,
y and y′, with the same mixing coefficient λ i.e.,
ỹ := mix(y,y′) = λy + (1 − λ)y′. This virtual
data point, (x̃, ỹ), is the augmented data point and
can be used as additional training data.
Proposed architecture change. Now, for the RE
task we need to extract a fixed-length relation rep-
resentation from the encoder output representation
of the entire input sequence. The traditional way to
do this for RE task is by concatenating the encoder
output representations of the entity marker tokens
[E1] and [E2]. However, it is challenging to do
this for a virtual sample, x̃, as the entity markers
are not clearly defined in this case. We thus mod-
ify the relation representation to be the encoder
output representation of the [CLS] token. How-
ever, Baldini Soares et al. (2019) have shown this
choice to be sub-optimal compared to concatena-
tion of marker tokens. This is because the marker
token representations provide direct access to the
contextual information of the respective entities.
Although the [CLS] token, in theory, has access
to the entire context of the sentence, it might be
difficult to capture the nuances like the head entity
type, tail entity type, and the contextual informa-
tion around the two entities all in a single vector.

2REMix entails the model architecture changes discussed
below.
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On the other hand, entity type information is
easily accessible in most RE benchmarks3. So, to
compensate for the sub-optimal choice of using
[CLS] token representation as the relation repre-
sentation, we modify how we represent the entity
spans in the input token to more effectively use
the easily accessible entity type information. In
particular, we note that the entity type labels can
trivially be mapped to tokens from any pre-trained
language model’s vocabulary. For example, entity
types like PERSON and STATE_OR_PROVINCE
can be tokenized into a word/phrase like ‘person’
and ‘state or province’, respectively. In such cases
when entity type information is available, instead of
using special marker tokens like [E1] and [E2]
we prepend the entity spans in the input sequence
with the word/phrases corresponding to their re-
spective types and enclose these ‘type-words’ in
punctuation marks (Zhou and Chen, 2021). The
modified input to the transformer along with the
[CLS] token looks as follows:

[CLS]@ * person * Lebron James @ plays

for & * organization * LA Lakers & team.

We use different punctuation symbols to distinguish
between subject and object entities. Specifically,
we use ‘@’ for subject and ‘&’ for object entities.
This representation helps leverage the knowledge
already contained in the pre-trained large-language
model about the type of the entity and offset some
of the downside of using a simplified relation repre-
sentation in the [CLS] token. As we will empiri-
cally see in §5.4, this use of entity type information
is not only effective but is necessary for the optimal
functioning of our approach. Zhou and Chen (2021)
recently showed the success of this method in the
fully supervised setting. Here we use it in conjunc-
tion with a simplified relation representation and
show its merit in semi-supervised RE setting.

4.3 Consistency training for SSRE
Let the given limited labelled set be Xl =
{xl1, ...,xln}, with their relation labels Yl =
{yl1, ...,yln}, where yli ∈ {0, 1}|R∪{NA}| is a one-
hot vector andR is the set of pre-defined relations.
Let Xu = {xu1 , ...,xum} be a large unlabelled set.
The goal is to apply both the data augmentation
techniques described above and train a model with

3From new datasets/applications viewpoint, when entities
are identified in a piece of text it is safe to assume that their
types would also be identified.

consistency loss to effectively leverage unlabelled
data along with the limited labelled data.

We largely adapt the semi-supervised training
techniques introduced by Chen et al. (2020b). For
each xui in the unlabelled set Xu, we generate K
augmentations xai,k, k ∈ {1, 2, ...,K} using the
constrained back translation technique with differ-
ent intermediate languages4. These augmentations
make up the set Xa = {xai,k}. For a given unla-
belled data point xui and its K augmentations xai,k
the label is given by the average of current model’s
predictions on all K + 1 data points:

yui =
1

K + 1

(
pϕ(Fθ(xui )) +

K∑

k=1

pϕ(Fθ(xai,k))
)
,

where yui is a probability vector. This not only en-
forces the constraint that the model should make
consistent predictions for different augmentations
but also makes the predictions more robust by en-
sembling all the predictions. We merge the un-
labelled set and the augmented set into Xua =
Xu ∪ Xa and the corresponding (pseudo-)labels
are given by Yua = Yu ∪Ya, where Yu = {yui },
Ya = {yai,k}, and yai,k = yui ∀k ∈ {1, 2, ...,K},
i.e., all the augmented data points share the same
label as the original unlabelled data point.

Given this cumulative set Xua and their gener-
ated labels Yua as additional training data, we
employ the REMix augmentation technique to
generate arbitrary amounts of training data. In
particular, we randomly sample two data points
xua
s ,x

ua
t ∈ Xua, and compute the encoder output

representation of a new virtual data point with
REMix(xua

s ,x
ua
t ) and the corresponding target la-

bel with mix(yua
s ,y

ua
t ).

Additionally, while computing the final unsuper-
vised loss in each training iteration we filter out
the unlabelled data points with prediction confi-
dence below a certain threshold γ (Xie et al., 2020).
Finally, to encourage low-entropy predictions on
unlabelled data, we sharpen the predictions with a
sharpening coefficient T :

ŷua
i =

(yua
i )

1
T

||(yua
i )

1
T ||1

.

Everything put together, the final unsupervised loss
in each training iteration with mini-batch size B is

4In our specific implementation K = 2; with German and
Russian as intermediate languages.
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computed as:

Lunsp =
1

B

B∑

xua
s ,x

ua
t ∼Xua

m(xua
s ,x

ua
t )Lmix(x

ua
s ,x

ua
t ),

where

Lmix(x
ua
s ,x

ua
t ) = CE(mix(ŷua

s , ŷ
ua
t )||

pϕ(REMix(xua
s ,x

ua
t ))),

m(xua
s ,x

ua
t ) = I(maxyua

s > γ)I(maxyua
t > γ).

Here, I(.) is an indicator function and m(.) denotes
the confidence masking function which filters out
the low-confidence datapoints. In our implementa-
tion pϕ(.) is a two-layer MLP classifier on top of
the relation encoder model. CE denotes the cross
entropy loss function. 5

This combined with the traditional supervised
loss, Lsup =

∑B
xi∼Xl

CE(yli||pϕ(Fθ(xi))), consti-
tutes the total loss:

Ltotal = Lsup + γmLunsp,

where γm is a parameter which controls the trade-
off between supervised and unsupervised loss.

5 Experiments

We perform experiments on four benchmark
datasets for sentence-level RE and compare the
proposed model, REMix, against current state-of-
the-art SSRE approaches. We further conduct abla-
tion studies and sensitivity analysis to expose the
significance of different design choices of REMix.

5.1 Datasets
We use two widely popular relation extraction
benchmark datasets: SemEval 2010 Task 8 (Se-
mEval) (Hendrickx et al., 2010), and the TAC
Relation Extraction Dataset (TACRED) (Zhang
et al., 2017). SemEval is a standard benchmark
dataset for evaluating relation extraction models
containing 10717 examples in total. Each sen-
tence is annotated with a pair of untyped nomi-
nals (concepts; example in Figure 1) that are re-
lated via one of 19 semantic relation types (in-
cluding no_relation). TACRED is a large-
scale crowd-sourced relation extraction dataset

5Note that we only apply the augmentation techniques on
the unlabelled data set. Initial experiments applying these to
the labelled data set resulted in only marginal improvements
and even performance deterioration in some cases, likely due
to introduction of too much noise into an already limited
labelled set.

Table 1: Dataset statistics

Dataset # rel. examples # no_relation

TACRED 42 106264 79.51%
RE-TACRED 40 91467 63.17%
KBP37 37 21046 10.33%
SemEval 19 10717 17.39%

with 106264 examples which is collected from all
the prior TAC KBP relation schema. Unlike Se-
mEval, sentences in TACRED are labelled with
pairs of typed-entities that are related via one of
42 person- and organization-oriented relation types
(including no_relation). In addition to these
standard benchmark datasets, we also show results
on two more datasets: RE-TACRED (Stoica et al.,
2021) and KBP37 (Zhang and Wang, 2015). RE-
TACRED is a re-annotated version of the original
TACRED dataset using an improved annotation
strategy to ensure high-quality labels. Zhou and
Chen (2021) provide a compelling analysis and rec-
ommend using this as the evaluation benchmark
for sentence-level RE. KBP37 is another sentence-
level RE dataset with 21046 total examples col-
lected from 2010 and 2013 KBP documents as well
as July 2013 dump of Wikipedia. In terms of size,
this falls between SemEval and TACRED. Similar
to SemEval the entity types are not available in this
dataset, however the 37 relation types are person-
and organization-oriented like in TACRED. This
dataset is thus a good segue between the two stan-
dard benchmarks. The statistics of these datasets is
given in Table 1.

5.2 Baselines and implementation details

We compare REMix with three state-of-the-art
models that are representative of the existing class
of methods for SSRE: MRefG (Li et al., 2021),
MetaSRE (Hu et al., 2021a), and GradLRE (Hu
et al., 2021b). MRefG leverages the unlabelled data
by semantically or lexically connecting them to la-
belled data by constructing reference graphs, such
as entity reference or verb reference. This approach
heavily leverages the linguistic structure of the data
and is the only existing method that falls outside the
self-training class of methods. MetaSRE generates
pseudo labels on unlabelled data by learning from
the mistakes of the classification model as an addi-
tional meta-objective. GradLRE on the other hand
generates pseudo label data to imitate the gradient
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Table 2: F1 score with various amounts of labelled data and 50% unlabelled data. Mean and standard deviation of 5
different runs is reported. Best performance on each configuration is bolded and second best is underlined.

TACRED KBP37

%labelled Data 3% 10% 15% 5% 10% 30%

MRefG 43.81± 1.44 55.42± 1.40 58.21± 0.71 - - -
MetaSRE 46.16± 0.74 56.95± 0.33 58.94± 0.31 59.29± 0.92 61.83± 0.21 63.51± 0.69

GradLRE 47.37± 0.74 58.20± 0.33 59.93± 0.31 59.98± 0.37 62.67± 0.54 66.41± 0.28

REMix(ours) 55.80± 1.33 61.30± 0.70 63.07± 0.93 60.84± 0.40 63.82± 0.71 66.46± 0.69

RE-TACRED SemEval

%labelled Data 3% 10% 15% 5% 10% 30%

MRefG - - - 75.48± 1.34 77.96± 0.90 83.24± 0.71

MetaSRE 44.42± 3.02 58.71± 1.70 61.71± 3.70 78.33± 0.92 80.09± 0.78 84.81± 0.44

GradLRE 61.22± 0.58 74.03± 1.74 79.46± 0.82 79.65± 0.68 81.69± 0.57 85.52± 0.34

REMix(ours) 71.33± 1.22 77.94± 0.59 79.76± 0.47 77.58± 0.59 81.13± 0.82 85.51± 0.38

descent direction on labelled data and bootstrap
its optimization capability through trial and error
(Hu et al., 2021b). MetaSRE and GradLRE are
two of the strongest methods in the widely adapted
self-training methods for SSRE.
Implementation details. We follow the estab-
lished setting to use stratified sampling to divide
the training set into various proportions of labelled
and unlabelled sets so that the relation label dis-
tribution remains the same across all subsets. Fol-
lowing existing work, we sample 5%, 10%, and
30% of the training set as labelled data for the Se-
mEval and KBP37 datasets, and 3%, 10%, and
15% of the training set as labelled data for TA-
CRED and RE-TACRED datasets. For all datasets
and experiments, unless otherwise specified, we
sample 50% of the training set as the unlabelled
set. For TACRED and SemEval datasets we take
the performance numbers of all baseline models
reported by Hu et al. (2021b). For other datasets,
we re-run the models with their best configuration
as provided in their respective implementations,
when available. To be consistent with all the base-
lines we initialize the text encoder of REMix with
the bert-base-cased model architecture and
pre-trained weights. Full details of all the hyperpa-
rameters can be found in Appendix A.2.

5.3 Main Results

Table 2 shows F1 results of all baseline models and
our proposed model, REMix, on the four datasets
when leveraging various amounts of labelled data
and 50% unlabelled data. We report the mean and

standard deviation of 5 different runs (with differ-
ent seeds) of training and testing. REMix gives
state-of-the-art performance on 10 out of 12 dif-
ferent configurations across all four datasets. This
reinforces the importance of consistency regular-
ization beyond the currently popular self-training
methods for SSRE. Interestingly, the performance
gains are significantly higher for TACRED and RE-
TACRED datasets–we see an average improvement
of as much as 17% when trained on 3% labelled
data. This can be attributed to the fact that entity
type information is available for these datasets and
entity type markers are very effective in exploit-
ing the knowledge embedded in the pre-trained
language models. We revisit this observation in
our ablation studies (§5.4) where we concretely
establish the benefits of using entity type markers.

5.4 Analysis and discussion

We first conduct experiments to empirically demon-
strate the effectiveness of three components of our
proposed model: i) data augmentation by latent
space interpolation (Mix-DA), ii) data augmenta-
tion by constrained back-translation (BT-DA), and
iii) entity type markers (ET). In Table 3, we report
the mean F1 score of five different runs for differ-
ent variations of our model by removing a certain
combination of these components6. As can be seen
from Table 3, each of these components contributes
to the overall success of REMix. For contribution
of just the Mix-DA: we compare i) row 1 v/s row

6We omit standard deviation values for brevity. See the
full results and comparisons in Appendix B
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Figure 3: F1 Performance with various unlabelled data and 10% labelled data
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Figure 4: F1 Performance of REMix with 50% unlabelled and 10% labelled data with changing mixing coefficient λ

3, and ii) row 2 v/s row 4. All comparisons show
positive improvement. For contribution of just the
BT-DA: we compare i) row 1 v/s row 2, and ii) row
3 v/s row 4. We note that BT-DA results only in
marginal improvements in most cases. Upon closer
inspection we note that the constrained-decoding al-
gorithms we implement for BT-DA are actually not
perfect, especially when combined with translation
models. It sometimes misses the constraints and
sometimes falls into repetitive loops in an attempt
to satisfy the constraint. With the ever-improving
language generation capabilities, we believe the
quality of data augmentation will only improve
with time and result in more significant perfor-
mance improvements. For contribution of both
DA techniques together: we compare row 1 v/s row
4. All comparisons show significant improvements
with data augmentation. The contribution of entity
type markers can be noted in TACRED and RE-
TACRED datasets. We see an average drop of 5.4%
in F1 score across all 8 comparisons. Although our
data augmentation techniques are effective, with-
out the entity type information our method doesn’t
result in state-of-the-art performance. This rein-
forces our architectural choice to include entity
type markers when using [CLS] token for relation
representation (§4.2).

Next we examine the effect of using different
amounts of unlabelled data. In Figure 3, we report
the average F1 score for different models trained
with different amounts of unlabelled data and 10%
labelled data. REMix outperforms the baselines in

Table 3: Ablation results on all datasets using 10%
labelled set and 50% unlabelled set.

Mix. BT-DA ET TACRED RE-T KBP37∗ SemEval∗

✓ ✓
✓ 61.30 77.94

63.82 81.13
✗ 56.82 75.11

✓ ✗
✓ 60.81 77.77

63.48 79.71
✗ 56.35 74.67

✗ ✓
✓ 59.65 76.80

62.64 79.17
✗ 55.52 73.78

✗ ✗
✓ 58.96 77.25

63.14 79.20
✗ 55.25 74.58

* these datasets do not have entity type information

all settings except on SemEval dataset, and, inter-
estingly, the performance only marginally changes
with the change in the amount of unlabelled data.
Note that we train the models until the performance
on the validation set stops improving for more than
5 epochs. Hence, REMix generates, in principle,
an infinite amount of unlabelled data via the mixup
strategy. Coupled with the fact that the label dis-
tribution remains the same in all settings, adding
more unlabelled data does not seem to add a lot
of new information. This explains why the model
performance is relatively insensitive to changing
amounts of unlabelled data. This also implies that
REMix can leverage low amounts of unlabelled
data better than the baselines.

Finally, in Figure 4 we show how the perfor-
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mance of REMix changes with a change in the
mean of the Beta distribution from which λ is
sampled on each iteration. Note that a value near
0 and 1 for λ means the augmented virtual data
point will be closer to one of the underlying data
points. As we get closer to 0.5 the virtual data
points get further from the original data mani-
fold and become more ‘novel’. On TACRED and
RE-TACRED datasets the performance peaks at
E(λ) = 0.15(or 0.85) and drops in the mid-values.
This can be interpreted as: adding datapoints far
from the original data manifold is detrimental for
these datasets. Interestingly, on KBP37 and Se-
mEval the pattern inverts, i.e., the performance in-
creases as E(λ) approaches 0.5, implying that more
‘novel’ augmentations help for these datasets.

6 Conclusion

In this paper, we propose a consistency-training-
based semi-supervised algorithm for relation ex-
traction and empirically show the merit of this class
of methods in comparison to the current state-of-
the-art self-training class of methods. In future
work, one could bootstrap the self-training methods
with consistency training as done in some previous
works on vision tasks (Pham et al., 2021). Addi-
tionally, we show how the entity type information,
when available, can result in massive performance
boosts in the semi-supervised scenario. This is im-
portant because in most practical use cases when
entities have already been identified, the entity type
information is easy available and could be effec-
tively leveraged in the proposed fashion.

7 Limitations

One of the key limitations of our proposed method
compared to the baseline methods is the tight de-
pendence on a strong external translation system
to get good quality back-translated data augmen-
tations. Secondly, since we use [CLS] token em-
beddings instead of entity-specific embeddings for
final classification, it is more challenging to deci-
pher entity-specific context. This is evident from
the fact that our method performs relatively the
weakest on the SemEval dataset which consists
of untyped nominals (concepts) as entities and ab-
stract relations which we believe need more entity-
specific context to understand. Hence, our pro-
posed method, REMix, shines bright when the enti-
ties in the dataset are typed or named entities whose
meaning or type is relatively context-agnostic.
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A Reproducibility checklist

A.1 Datasets

The sources of all the datasets are given in Table
4. We use the given train/validation/test splits for
TACRED, RE-TACRED and KBP37 datasets. For
SemEval dataset, we use the same splits as all the
baselines, i.e., we split the original training set into
90% training set and 10% validation set.

A.2 Hyperparameters

We use the BERT tokenizer and set maximum se-
quence length to 256 to pre-process all datasets. We
use the AdamW optimizer (Loshchilov and Hutter,
2019) with 5e-5 learning rate and 0.1 warmup ra-
tio. We sweep over the following hyperparameters:
sharpening coefficient T , confidence threshold γ,
the Beta-distribution parameters (α, β)7, and the
unsupervised loss weight γm. We perform incre-
mental grid search to get the best performing con-
figuration based on the F1 score on validation set.
Table 5 shows the set of values we use for each
parameter. Table 6 shows the best parameter values
on each dataset and configuration. Following Chen
et al. (2020b), we use {7, 9, 12} for the mixup layer
set; this layer subset contains most of the syntactic
and semantic information as suggested by Jawahar
et al. (2019).

Table 5: Hyperparameter search values

Parameter Values

T {0.4, 0.6, 0.8, 1.0}
γ {0, 0.15, 0.2, 0.25}
β {1, 10, 30, 60, 120, 190, 300, 600}*
γm {0.01, 0.1, 1}

* corresponding means of the sampled mixing
coefficient, λ, are given by {0.04, 0.09, 0.17, 0.24,
0.33, 0.50, 0.67, 0.86, 0.98}

7α is fixed to be 60 and we change the values of β to
control the mean of the distribution

Table 6: Best hyperparameter values

TACRED KBP37

3% 10% 15% 5% 10% 30%

T 0.8 0.8 0.8 0.8 0.8 0.8
γ 0.15 0.15 0.90 0.25 0.25 0.70
β 10 10 10 120 120 190
γm 0.01 0.1 0.1 0.1 1.0 1.0

RE-TACRED SemEval

3% 10% 15% 5% 10% 30%

T 0.4 0.4 0.4 0.8 0.8 0.8
γ 0.0 0.0 0.9 0.2 0.2 0.7
β 10 10 10 60 60 60
γm 0.01 0.1 0.1 0.1 1.0 1.0

A.3 Training details
We train each model on a single NVIDIA Tesla T4
GPU with 16GB memory. We employ mixed preci-
sion training and gradient checkpointing techniques
for faster and memory-efficient training. Note that
we train the models until the performance on the
validation set plateaus. The full REMix model
roughly takes about 6 hours to train on TACRED, 5
hours in RE-TACRED, 1 hour in KBP37, and about
30 minutes on SemEval. Note that the training time
slightly varies (± 30 minutes) depending on the
percentage of labelled and unlabelled data we use.
The number of parameters in all our models are
largely dominated by the bert-base-cased
that we use as the text encoder. The relatively
negligible varying component is the MLP classifier
that varies with the varying number of relations in
each dataset.

B Full Ablation results

We conduct experiments to empirically demon-
strate the effectiveness of three components of our
proposed model: i) data augmentation by latent
space interpolation, ii) data augmentation by con-
strained back-translation, and iii) entity type mark-

Table 4: Dataset sources

Dataset Source

TACRED https://catalog.ldc.upenn.edu/LDC2018T24
RE-TACRED https://github.com/gstoica27/Re-TACRED
KBP37 https://github.com/zhangdongxu/kbp37
SemEval https://semeval2.fbk.eu/semeval2.php?location=data

1123

https://catalog.ldc.upenn.edu/LDC2018T24
https://github.com/gstoica27/Re-TACRED
https://github.com/zhangdongxu/kbp37
https://semeval2.fbk.eu/semeval2.php?location=data


Table 7: F1 score with 10% of labelled data and 50% unlabelled data. Mean and standard deviation of 5 different
runs is reported.

Mix. BT aug. Ent. type TACRED RE-TACRED KBP37 SemEval

a) ✓ ✓
✓ 61.30± 0.70 77.94± 0.59

63.82± 0.71 81.13± 0.82
✗ 56.82± 0.64 75.11± 1.16

b) ✓ ✗
✓ 60.81± 1.31 77.77± 0.96

63.48± 0.53 79.71± 0.83
✗ 56.35± 0.97 74.67± 1.04

c) ✗ ✓
✓ 59.65± 0.92 76.80± 0.98

62.64± 0.69 79.17± 1.64
✗ 55.52± 0.89 73.78± 1.34

d) ✗ ✗
✓ 58.96± 1.21 77.25± 0.70

63.14± 0.90 79.20± 0.32
✗ 55.25± 1.53 74.58± 0.91

ers. In Table 7, we report the performance of differ-
ent variations of our model by removing a certain
combination of these components. As can be seen
from Table 7, each of these components contributes
to the overall success of REMix. To see the impact
of data augmentation by latent space interpolation,
we compare the results in row ‘a’ with the corre-
sponding ones in row ‘c’, and similarly row ‘b’ with
row ‘d’. We see a significant and consistent drop in
every comparison with and without that component.
Specifically, we see a drop of an average 1.6% in F1
score over all the 12 comparisons. Another inter-
esting pattern that stands out is the significant and
consistent drop in performance (average 5.4% in
F1 score across all 8 comparisons) when not using
entity type markers. When we drop the entity type
markers from the input representation, we use the
basic entity start and end markers–[E1], [/E1],
[E2], [/E2]. This only applies to TACRED
and RE-TACRED since only these datasets have
entity type information readily available. Note that
when we do not use any of the data augmentations,
consistency training is not possible and we are ef-
fectively using only the labelled set for training
the model (fourth row in Table 7). Surprisingly,
even without any unlabelled data using the entity
type markers alone gives better performance than
the current state-of-the-art results by GradLRE (Hu
et al., 2021b), i.e., an F1 score of 58.96 vs 58.20
on TACRED and 77.25 vs 74.03 on RE-TACRED.
This proves the effectiveness of using entity type in-
formation in the fashion we use, i.e., by tokenizing
the type words to leverage the knowledge embed-
ded in pre-trained language models.
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Abstract

Existing models to extract temporal relations
between events lack a principled method to in-
corporate external knowledge. In this study, we
introduce Bayesian-Trans, a Bayesian learning-
based method that models the temporal rela-
tion representations as latent variables and in-
fers their values via Bayesian inference and
translational functions. Compared to conven-
tional neural approaches, instead of performing
point estimation to find the best set parame-
ters, the proposed model infers the parameters’
posterior distribution directly, enhancing the
model’s capability to encode and express un-
certainty about the predictions. Experimental
results on the three widely used datasets show
that Bayesian-Trans outperforms existing ap-
proaches for event temporal relation extraction.
We additionally present detailed analyses on un-
certainty quantification, comparison of priors,
and ablation studies, illustrating the benefits of
the proposed approach.1

1 Introduction

Understanding events and how they evolve in time
has been shown beneficial for natural language un-
derstanding (NLU) and for a growing number of
related tasks (Cheng et al., 2013; Wang et al., 2018;
Ning et al., 2020; Geva et al., 2021; Sun et al.,
2022). Howeover, events often form complex struc-
tures with each other through various temporal
relations, which is challenging to track even for
humans (Wang et al., 2020a).

One of the main difficulties is the wide vari-
ety of linguistic expressions of temporal relations
across different contexts. Although many of them
share some linguistic similarities, most of the top-
ics in which they occur are characterized by some
shared but unspoken knowledge that determines
how temporal information is expressed. For exam-
ple, when it comes to health, prevention is widely

1Experimental source code is available at https://
github.com/Xingwei-Warwick/Bayesian-Trans

Figure 1: Comparison between with or without external
knowledge incorporation on event relation extraction.

practised, with many treatments (e.g., vaccinations)
being effective only if administered before the on-
set of a disorder. On the contrary, in the automo-
tive industry, it is common that most people repair
their car after a problem occurs. However, despite
its simplicity, such commonsense knowledge is
rarely stated explicitly in text and varies greatly
across different domains. For example, in Figure
1, a detection model lacking the commonsense
knowledge that vaccination can protect people
from infection, tends to get confused by the com-
plex linguistic structures in the excerpt and returns
the wrong prediction entailing that ‘died’ happens
after ‘vaccinated’. Instead, with the considera-
tion of prior temporal knowledge involving the vac-
cination event from an external knowledge source
ATOMIC (Hwang et al., 2021), a model gives the
correct prediction that ‘died’ occurs before ‘vac-
cinated’.

Methods proposed in recent studies for event
relation extraction are mostly end-to-end neural ar-
chitectures making rather limited use of such com-
monsense knowledge (Han et al., 2019a,b). Only a
few works have explored the incorporation of ex-
ternal knowledge to mitigate the scarcity of event
annotations (Ning et al., 2019; Wang et al., 2020b).
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Nevertheless, these approaches typically update the
event representations with knowledge features de-
rived from external sources, lacking a principled
way of updating models’ beliefs in seeing more
data in the domains of interests.

In this work, we posit that the Bayesian learning
framework combined with translational models can
provide a principled methodology to incorporate
knowledge and mitigate the lack of annotated data
for event temporal relations. Translational models,
such as TransE (Bordes et al., 2013), are energy-
based models based on the intuition that the rela-
tions between entities can be naturally represented
by geometric translations in the embedding space.
More concretely, a relation between a head entity
and a tail entity holds if there exists a translational
operation bringing the head close to the tail vector.

Specifically, we introduce a novel Bayesian
Translational model (Bayesian-Trans) for event
temporal relation extraction. Compared to con-
ventional neural translational models, which only
yield a point estimation of the network parame-
ters, the Bayesian architecture can be seen as an
ensemble of an infinite number of neural predictors,
drawing samples from the posterior distribution of
the translational parameters, refining its belief over
the initial prior. As a result, event temporal rela-
tions are determined by the stochastic translational
parameters drawn from posterior distributions. Ad-
ditionally, such posteriors are conditioned upon the
prior learned on external knowledge graphs, pro-
viding the commonsense knowledge required to
interpret more accurately the temporal information
across different contexts. As shown in the results
obtained from the experimental evaluation on three
commonly used datasets for event temporal relation
extraction, the combination of translational mod-
els and Bayesian learning is particularly beneficial
when tailored to the detection of event relations.
Moreover, a favorable by-product of our Bayesian-
Trans model is the inherent capability to express
degrees of uncertainty, avoiding the overconfident
predictions on out-of-distribution context. Our con-
tributions are summarized in the following:

• We formulate a novel Bayesian translational
model for the extraction of event temporal re-
lations, in which event temporal relations are
modeled through the stochastic translational
parameters, considered as latent variables in
Bayesian inference.

• We devise and explore 3 different priors under

Bayesian framework to study how to effec-
tively incorporate knowledge about events.

• We conduct thorough experimental evalua-
tions on three benchmarking event tempo-
ral datasets and show that Bayesian-Trans
achieves state-of-the-art performance on all of
them. We also provide comprehensive analy-
ses of multiple aspects of the proposed model.

2 Related Work

This work is related to at least three lines of re-
search: event temporal relation detection, prior
knowledge incorporation, and graph embedding.

2.1 Event Temporal Relation
Similar to entity-level relation extraction (Zeng
et al., 2014; Peng et al., 2017), the latest event
temporal relation extraction models are based on
neural networks, but in order to learn from limited
labeled data and capture complex event hierarchies,
a wide range of optimization or regularization ap-
proaches have been explored. Ning et al. (2019)
proposed an LSTM-based network and ensured
global consistency of all the event relations in the
documents by integer linear programming. Wang
et al. (2020b) employed RoBERTa (Liu et al., 2019)
and converted a set of predefined logic rules into
differentiable objective functions to regularize the
consistency of the relations inferred and explore
multi-task joint training. Tan et al. (2021) pro-
posed using hyperbolic-based methods to encode
temporal information in a hyperbolic space, which
has been shown to capture and model asymmet-
ric temporal relations better than their Euclidean
counterparts. Hwang et al. (2022) adopted instead
a probabilistic box embeddings to extract asym-
metric relations. Wen and Ji (2021) proposed to
add an auxiliary task for relative time prediction
of events described over an event timeline. Cao
et al. (2021) developed a semi-supervised approach
via an uncertainty-aware self-training framework,
composing a training set of samples with actual
and pseudo labels depending on the estimated un-
certainty scores. None of the aforementioned ap-
proaches explored Bayesian learning for incorpo-
rating prior event temporal knowledge.

2.2 Incorporation of Prior Knowledge
Knowledge plays a key role in understanding event
relations because people often skip inessential de-
tails and express event relations implicitly which
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is difficult to understand without relevant knowl-
edge. For example, TEMPROB (Ning et al., 2018b)
contains temporal relation probabilistic knowledge
which is encoded by Siamese network and in-
corporated into neural models as additional fea-
tures (Ning et al., 2019; Wang et al., 2020b; Tan
et al., 2021). Unlike previous works, we com-
bine the Bayesian Neural Network with distance-
based models, treating the translational parame-
ters as latent variables to be inferred. To this end,
we adopt the variational inference (Kingma and
Welling, 2014a; Blei et al., 2016; Gui et al., 2019;
Pergola et al., 2021a; Zhu et al., 2022), and derive
the prior distribution of the temporal relation infor-
mation from commonsense knowledge bases (Per-
gola et al., 2021b; Lu et al., 2022). Christopoulou
et al. (2021) explored a similar intuition of using
knowledge base priors as distant supervision sig-
nals, but the approach and the task are different.

2.3 Graph Embedding Learning

Multi-relational data are commonly interpreted in
terms of directed graphs with nodes and edges rep-
resenting entities and their relations, respectively.
Several works have recently focused on modelling
these multi-relational data with relational embed-
dings by detecting and encoding local and global
connectivity patterns between entities.

TransE (Bordes et al., 2013) has been a seminal
work adopting geometric translations of entities to
represent relations in the embedding space. If a
relation between a head and a tail entity holds, it
is encoded via the translational parameters learned
at training time. However, TransE cannot model
symmetry relation well by simple addition which
led to several subsequent studies exploring diverse
types of transformation resulting in a family of
translational models (Wang et al., 2014; Ji et al.,
2015; Lin et al., 2015). Among them, Balazevic
et al. (2019) proposed to utilize the Poincaré model,
mapping the entity embeddings onto a Poincaré
ball, and using the Poincaré metric to compute the
score function and predict their relations. Chami
et al. (2020b) further expanded the idea of em-
bedding learning over manifolds by additionally
considering reflections and rotations and redefining
the translation over a learned manifold.

Although translational models are shown effi-
cient in modeling graph relation, they provide rela-
tively limited interaction between nodes than neu-
ral network-based methods, such as Graph Neu-

ral Networks (Estrach et al., 2014; Chami et al.,
2020a). Under this framework, nodes in a graph
are neural units, which can iteratively propagate
information through edges, and whose represen-
tations are learnt during the training process. In
particular, Relational Graph Convolutional Net-
works (RGCN) (Schlichtkrull et al., 2018) encode
relational data through link prediction and entity
classification tasks, while enforcing sparsity via a
parameter-sharing technique. Although modeling
knowledge graphs has been one of the main focuses
of the above-mentioned graph learning approaches,
they lack any systematic mechanism to inject prior
knowledge and update it during training.

3 Bayesian-Trans Model

In identifying temporal relations between events,
we aim at predicting the relation type of two events
given in text, commonly denoted as head event xh
and tail event xt:

ŷ = argmax
y∈R

p(y|xh, xt) (1)

where R denotes a set of possible relation types,
while xh and xt the head and tail event triggers,
respectively. Assuming that a set of latent variables
Λ denotes the collection of all relation-specific
transformation parameters Λr. For example, in
the knowledge embedding learning model such as
MuRE (Balazevic et al., 2019), the head entity is
first transformed through a relation-specific matrix
Wr, followed by a relation-specific translation vec-
tor tr, then Λr = {Wr, tr}. By Bayesian learning,
the probability of inferring a relation type r can be
written as:

p(y = r|xh, xt) =
∫

Λ
p(yr|xh, xt,Λ)p(Λ|G)dΛ (2)

Here, p(Λ|G) denotes the prior distribution of Λ
derived from an existing knowledge graph encoded
as G. Directly inferring Eq. (2) is intractable. But
we can resort to amortised variational inference
to learn model parameters. In what follows, we
present our proposed Bayesian learning framework
built on translational models for event temporal
relation extraction, called Bayesian-Trans, with
its architecture shown in Figure 2.

In particular, the context S in which the two
events occur is the input to our Bayesian-Trans.
First, we encode S via a pre-trained language
model generating the contextual embeddings eh
and et for the triggers of the head and tail events,
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Figure 2: The network structure of Bayesian-Trans. Context sentences are first fed into a COMET encoder to
generate event representations. With MLP layers, the event representations are mapped to generate a variational
distribution of relation representations which is guided by KG priors. The relation representations are then used in
the translational model to generate prediction scores.

respectively. The contextualised event trigger rep-
resentations, eh and et, are fed as input into a
Bayesian translational module. This module, by
means of variational inference, determines the pa-
rameters of the translational model, encoding the
posterior distribution of the temporal relations con-
ditioned upon the input events. Finally, we use a
score function on the translated head and tail trig-
gers to predict their temporal relation. We provide
a more detailed description in the following.

3.1 Contextual Encoder

The proposed model uses COMET-BART (Hwang
et al., 2021) as the context encoder. COMET-BART
is a BART pre-trained language model (Lewis
et al., 2020) fine-tunned on ATOMIC (Bosselut
et al., 2019; Hwang et al., 2021), which is an
event-centric knowledge graph encoding inferen-
tial knowledge about entities and events, including
event temporal relations. The COMET-BART is
able to generate consequence events given the an-
tecedent event and a relation with good accuracy
thus is regarded encodes knowledge well. Fol-
lowing the approach adopted in previous works
(Ning et al., 2019; Wang et al., 2020b; Tan et al.,
2021), we use the representation of the first token
of an event trigger as the contextual embedding
of that event2, eh, et = COMET-BART(xh, xt),
where eh, et ∈ Rd. The event representations are
then concatenated together and fed through MLPs
to generate the parameters of the variational dis-
tribution, from which the latent event-pair repre-
sentation z is sampled. z is then mapped to the

2We conducted some exploratory experiments adopting the
last token or the average representation, but results showed
that the first token was still the best option in this context.

parameter space of the translational model as Λ.

3.2 Incorporating Knowledge via Bayesian
Learning

The proposed model utilizes relation embeddings
for classifying event relation in a similar manner
as the translational models in knowledge graph em-
bedding, such as TransE (Bordes et al., 2013). If
the embedding of the tail event is close enough
to the embedding of head event after applying a
series of relation-specific transformation, the re-
lation stands, and vice versa. A wide range of
translational models typically proposed for learn-
ing knowledge graph embeddings can be adopted in
the proposed Bayesian-Trans. Additionally, to in-
corporate prior knowledge, we extend translational
models to operate within the Bayesian inference
framework. We proceed with introducing a stan-
dard translational model in the context of temporal
relations, and describe how we extend it to work in
the Bayesian framework.

Translational Model Generally speaking, a
translational model uses relation representations
Λr to perform “translation” for relation r on the
head and tail events. Then, the transformed head
and tail event embeddings are compared using a
distance-based score function, whose score is in-
dicative of the temporal relation between the events.
The score function ϕ(·) takes the general form:

ϕ(eh, r, et) = −d(T hΛr
(eh), T tΛr

(et)) (3)

where r is a relation type, TΛr(·) is a function
depending on the parameters Λr of relation r to
transform the event embeddings eh and et, and d(·)
is any distance metrics (e.g., Euclidean distance).
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We explored several models with different transla-
tion functions and distance metrics in the context of
temporal relations, including TransE (Bordes et al.,
2013), AttH (Chami et al., 2020b), MuRE (Balaze-
vic et al., 2019) and MuRP (Balazevic et al., 2019),
and based on our preliminary results3, we eventu-
ally adopted MuRE as it strikes a good balance of
training efficiency and accuracy of temporal rela-
tion classification. We define the scoring function
in the proposed model as follows:

ϕ(eh, r, et) = −∥Wreh + tr − et∥22 (4)

where Wr ∈ Rd×d is a diagonal relation matrix
and tr ∈ Rd a translation vector of relation r, Λr =
{Wr, tr}, r ∈ R.

Although the number of parameters to train is
rather low, the number of annotated samples is
usually small compared to the wide range of lin-
guistic expressions capturing temporal relations.
We thus extend the MuRE model into a Bayesian
framework to enhance its scalability by treating
the translational parameters Λ as latent variables.
The proposed framework enhances generalization
by defining a variational inference process that op-
timizes the regularization and leverages the addi-
tional information injected via the prior distribu-
tions.

Bayesian Inference As shown in the inference
equation 2, the prior is derived from an external
knowledge graph, such as ATOMIC, as a means to
inject prior information about events and temporal
relations. In particular, Λ is assumed to follow a
Gaussian distribution with unit variance and with
mean determined by the relation representations
trained on the knowledge graph. The probability
function is formulated as a softmax function over a
pre-defined scoring function:

p(yr|eh, et,Λ) =
exp

(
ϕ(eh, r, et)

)

∑
r′∈R exp

(
ϕ(eh, r′, et)

) (5)

with eh and et denoting the embedding for the
head and the tail events, respectively.

Yet, Eq. (2) is intractable and cannot be inferred
directly. Thus, we resort to amortized variational
inference by introducing a variational posterior
qθ(Λ|xh, xt), which follows the isotropic Gaussian
distribution and can be modeled as:

3Experimental results using different translational models
are shown in Table A1.

µ = fµ(eh; et) Σ = diag
(
fΣ(eh; et)

)

qθ(Λ|eh, et) = N (Λ|µ,Σ),
(6)

where fµ and fΣ are both fully connected layers
that map the event pair representation into the pa-
rameters of the variational distribution.

Following the amortized variational inference,
we maximize the evidence lower bound (ELBO)
Le, defined in Eq. (7), and approximated by a
Monte Carlo estimation with sample size N , as
described in Eq. (8):

Le = Eqθ(Λ|xh,xt),{xh,xt}∈D
[
log pθ(y|xh, xt,Λ)

]
−

Reg
(
qθ(Λ|xh, xt,G)||p(Λ|G)

)
(7)

≈ 1

N

N∑

n=1

∑

{xh,xt}∈D

[
log pθ(y|xh, xt,Λ(n))−

Reg
(
qθ(Λ

(n)|xh, xt,G)||p(Λ(n)|G)
)]

(8)

where Reg(·) is a regularization term which will
be discussed in 3.3. To train end-to-end a fully dif-
ferentiable model, we adopt the reparameterization
trick (Kingma and Welling, 2014b).

3.3 Prior Distribution and Regularization
We proceed to discuss how the Bayesian framework
enabled the incorporation of prior acquired from
an external knowledge source. Then, we provide
the details of how we compute the regularization
term to induce a more stable training.

Prior Distribution One of the main advantages
of the Bayesian inference framework is the possi-
bility to inject commonsense knowledge into the
model through the prior distribution of the latent
variables, i.e., p(Λ|G) in Eq. (2), where Λ are the
translational parameters and G denotes an external
knowledge graph, in our case, the ATOMIC knowl-
edge graph (Hwang et al., 2021). ATOMIC is a
commonsense knowledge graph containing infer-
ential knowledge tuples about entities and events
encoding social and physical aspects of human ev-
eryday experiences. For our task of event tempo-
ral relation extraction, we are only interested in
the events linked via temporal relations, such as
‘ISBEFORE’ (23,208 triples) or ‘ISAFTER’ (22,453
triples). By conducting link prediction on these
links, we use relation embeddings learnt using an
RGCN (Schlichtkrull et al., 2018) as the mean
of the prior distribution for the translational la-
tent variables. For the relations in the experiment

1129



dataset that do not have applicable counterparts
in ATOMIC (e.g., VAGUE), we set their priors to
standard Gaussian. The variance of the priors is
defined as the identity matrix.

Specifically, we use COMET-BART to encode
the event nodes from ATOMIC, then use their
context embeddings as the node features in the
RGCN. In our preliminary experiment, we also
found that RGCN cannot train well on the com-
monsense graph with only the event-event relation
links. The graph is too sparse which makes the in-
formation difficult to propagate through the nodes.
Thus, we added semantic similarity links based on
the cosine similarity of the event context embed-
dings. During the training of the RGCN, the node
embeddings are kept frozen. After the training
of the link prediction task, we extract the relation
embeddings of the RGCN.

Regularization Term To mitigate the posterior
collapse problem (Lucas et al., 2019) and have a
stable inference process, we adopt the Maximum
Mean Discrepancy (MMD)4 which is an estimation
of Wasserstein distance (Tolstikhin et al., 2018) as
the regularization term (Eq. 8).

4 Experimental Setup

Datasets We evaluated the proposed Bayesian-
Trans model on three event temporal relation
datasets: MATRES (Ning et al., 2018c), Temporal
and Causal Reasoning (TCR) (Ning et al., 2018a),
and TimeBank-Dense (TBD) (Cassidy et al., 2014).
TimeBank-Dense is a densely annotated dataset fo-
cusing on the most salient events and providing 6
event temporal relations. MATRES follows a new
annotation scheme which focuses on main time
axes, with the temporal relations between events
determined by their endpoints, resulting in a consis-
tent inter-annotator agreement (IAA) on the event
annotations (Ning et al., 2018c). TCR follows the
same annotation scheme, yet with a much smaller
number of event relation pairs than in MATRES.
Table 1 shows the statistics of the datasets.

Baselines We compare the proposed Bayesian-
Trans5 with the following baselines:

CogCompTime (Ning et al., 2018d) is a multi-step
system which detect temporal relation using seman-
tic features and structured inference.

4MMD calculation can be found in Appendix A.
5Hyperparameter setting can be found in Appendix B.

Class MATRES TCR TBD

BEFORE 6, 852 1, 780 2, 590
AFTER 4, 752 862 2, 104
EQUAL/SIMULTANEOUS 448 4 215
VAGUE/NONE 1, 425 N/A 5, 910
INCLUDE N/A N/A 836
ISINCLUDED N/A N/A 1, 060

Total 12, 740 2, 646 12, 715

Table 1: The statistics of MATRES, TCR, and TBD.

BiLSTM is a basic relation prediction model built
by Han et al. (2019b).
LSTM + knowledge (Ning et al., 2019) incorpo-
rates knowledge features learnt from an external
source and optimize global consistency by ILP.
Deep Structured (Han et al., 2019a) adds a struc-
tured support vector machine on top of a BiLSTM.
Joint Constrained Learning (Wang et al., 2020b)
constrains the training of a RoBERTa-based event
pair classifier using predefined logic rules, while
knowledge incorporation and global optimization
are also included.
Poincaré Event Embedding (Tan et al., 2021)
learns event embeddings based on a Poincaré ball
and determines the temporal relation base on the
relative position of events.
HGRU + knowledge (Tan et al., 2021) is a neural
architecture processing temporal relations via hy-
perbolic recurrent units which also incorporates
knowledge features like LSTM + knowledge.
Relative Event Time (Wen and Ji, 2021) is a neural
network classifier combining an auxiliary task for
relative time extraction over an event timeline.
UAST (Cao et al., 2021) is an uncertainty-aware
self-training model. We show the result of the
model which is trained on all the labeled data.

5 Experimental Results

Temporal Relation Classification We first com-
pare Bayesian-Trans with the most recent ap-
proaches for temporal event classification in Ta-
ble 2, including methods with or without common-
sense knowledge injection. The results are obtained
by training models on the MATRES training set
and evaluated on both the MATRES test set and
TCR. Table 3 shows results from the TBD dataset
which are generated using the provided train, devel-
opment, and test sets. We report F1 score on MA-
TRES and TCR following the definition in (Ning
et al., 2019), and micro-F1 on TimeBank-Dense.
Compared with existing methods, the proposed
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MATRES TCR

Model P R F1 P R F1

CogCompTime (Ning et al., 2018d) 61.6 72.5 66.6 - - 70.7
Poincaré Event Embeddings (Tan et al., 2021) 74.1 84.3 78.9 85.0 86.0 85.5
Relative Event Time (Wen and Ji, 2021) 78.4 85.2 81.7 84.3 86.8 85.5

LSTM + knowledge (Ning et al., 2019) 71.3 82.1 76.3 - - 78.6
Joint Constrainted Learning (Wang et al., 2020b) 73.4 85.0 78.8 83.9 83.4 83.7
HGRU + knowledge (Tan et al., 2021) 79.2 81.7 80.5 88.3 79.0 83.5

Bayesian-Trans 79.6 86.0 82.7 89.8 82.6 86.1

Table 2: Experimental results on MATRES and TCR. The first three lines contain methods without commonsense
knowledge incorporation. The rest are methods which inject commonsense knowledge. The results of Wang et al.
(2020b) and (Wen and Ji, 2021) on TCR are generated from our run of the source code provided by the authors
since they are not available in their original papers. The others are taken from the cited papers.

Model Micro-F1

BiLSTM (Han et al., 2019b) 61.9
Deep Structured (Han et al., 2019a) 63.2
Relative Event Time (Wen and Ji, 2021) 63.2
UAST (Cao et al., 2021) 64.3

Bayesian-Trans 65.0

Table 3: Experimental results on TBD. All compared
methods do not incorporate commonsense knowledge
explicitly. The result of Wen and Ji (2021) is generated
from our run of the source code provided by the authors
since they are not available in their original paper. The
others are taken from the cited papers.

Bayesian-Trans has generally better performance
on all three datasets, with more noticeably improve-
ments on MATRES. Bayesian-Trans has signifi-
cant performance gains over previous methods with
knowledge incorporation, which shows that it can
utilize knowledge more extensively. Details of the
per-class performance can be found in Table A2
and A3.

Ablation Study We conducted an ablation study
to highlight the impact of the different modules
composing Bayesian-Trans. The results are shown
in Table 4. In particular, we have the following
variants: (1) RoBERTa+MLP, using RoBERTa to
encode the context and then feeding representa-
tions of head and tail events to a multi-layer percep-
tron (MLP) for temporal relation classification; (2)
RoBERTa+ Vanilla MuRE, using MuRE to extract
temporal relations without modeling its parameters
as latent variables; (3) RoBERTa+Bayesian-Trans,
our proposed model by replacing COMERT-BART
with RoBERTa as the text encoder; (4) COMET-

Model MATRES TBD

(1) RoBERTa + MLP 81.5 62.8
(2) RoBERTa + Vanilla MuRE 80.4 60.5
(3) RoBERTa + Bayesian-Trans 82.2 63.0
(4) COMET-BART + MLP 81.8 63.2
(5) COMET-BART + Vanilla MuRE 81.8 62.6

(6) COMET-BART + Bayesian-Trans 82.7 65.0

Table 4: Ablation test results on MATRES and TBD.

BART+MLP, using COMET-BART as context en-
coder and an MLP for temporal relation classifi-
cation; and (5) COMET-BART+ Vanilla MuRE,
the proposed model without Bayesian learning or
knowledge incorporation. The results demonstrate
that COMET-BART is a better choice as the context
encoder. Using MuRE for event temporal knowl-
edge embedding learning does not bring any im-
provement compared to using a simple MLP layer
for event temporal relation prediction (see (1) cf.
(2), and (4) cf. (5)). Regardless of the contex-
tual encoder used, the results of (3) and (6) show
the benefit of employing Bayesian learning which
naturally incorporates prior knowledge of event
temporal relations learned from an external knowl-
edge source for event temporal relation detection.
With our proposed Bayesian translational model,
we observe an improvement of 0.9−1.8% in micro-
F1 on MATRES and 0.2 − 2.5% in micro-F1 on
TimeBank-Dense compare to their non-Bayesian
counterparts.

Effects of the Priors We further investigate the
impact of different priors on the model perfor-
mance. Inspired by the work on VAEs by Burda
et al. (2016) and Truong et al. (2021), we employed
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Figure 3: The box chart of the activity scores across all
the dimensions of the latent encoding Λ with respect to
the priors used in the model.

Dataset Standard Gaussian MuRE RGCN

MATRES 81.2 81.8 82.7
TCR 84.3 85.4 86.1
TBD 63.6 64.6 65.0

Table 5: F1 values based on different priors used in the
proposed model.

an ‘activity’ score, τ = Coveh,et(Eq(Λ|eh,et)[Λ])
to evaluate the quality and diversity of the latent en-
codings. The intuition behind the “activity” score
is that if a latent dimension encodes relevant infor-
mation and is not redundant, its value is expected
to vary significantly over different inputs. By com-
puting the score across all the test instances, ev-
ery dimension of Λ is given an ‘activity’ value.
Latent units with a higher value are considered
more active and thus more informative. Figure
3 shows activity scores with respect to different
prior distributions, including the standard Gaus-
sian prior and priors learned on ATOMIC using
MuRE or RGCN, in which the latent variables are
the least active when using standard Gaussian as
the prior distribution. The higher activation is ob-
tained using the priors learnt on the external knowl-
edge base. In particular, the prior based on RGCN
and MuRE over ATOMIC displays the most active
units, with RGCN showing the most active units
on average. Table 5 shows the performance of the
proposed model based on different priors. Two-
sided Welch’s t-test (p < 0.05) also supports that
the RGCN-learned prior improves over standard
Gaussian prior.

Uncertainty Quantification We present an anal-
ysis of uncertainty quantification of the Bayesian-
Trans predictions. We adopted the uncertainty
quantification methods as in Malinin and Gales

Figure 4: Examples of temporal relations in text and
uncertainty quantification (entropy and mutual informa-
tion) for the Bayesian-Trans model. Examples (a),(b)
show how simplifying the linguistic structure without
altering the temporal relation increases the model con-
fidence. While examples (c),(d) illustrate the model’s
detection of temporal linguistic hints and its confidence.

(2018), computing the entropy (total uncertainty)
and mutual information (model uncertainty) to vi-
sualize the predictive probabilities on a 2-simplex.
Each forward pass on the same test instance is rep-
resented as a point on the simplex. For the sake of
clarity of the visualization, we removed the EQUAL

class, which is hardly ever predicted by the models.
In one of the test cases (Figure 4(a)), the true

label is “die” BEFORE “vaccinate”. This example
exhibits a rather complex linguistic structure, as
such, the model exhibits some uncertainty. Most of
the predictions located at the corner are associated
with BEFORE, but there also are several predictions
scattered around it. We then simplified the sentence
structure by removing “but four”, and fed the mod-
ified sentence to the same model. This time, the
model predicted the right temporal relation with
much lower uncertainty (Figure 4(b)).

In another case study (Figure 4(c)), the true la-
bel is “depart” AFTER “reveal”. This test case is
rather straightforward, because of the explicit tem-
poral word “before”. The model predicted AFTER

with high confidence, as shown by the predictive
probabilities cluster at the top of the simplex. To
show the impact of the temporal description, we
swapped it from “before” to “after” and fed it to the
same model. The model recognized the reversed
meaning and correctly predicted BEFORE with low
uncertainty (Figure 4(d)). The above cases demon-
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strate that the proposed model reacts to different
inputs with reasonable uncertainty, on both the total
and model uncertainty scores.

6 Conclusion

We propose a principled approach to incorporate
knowledge for event temporal relation extraction
named Bayesian-Trans, which models the relation
representations in the MuRE translational model,
as latent variables. The latent variables are inferred
through variational inference, during which com-
monsense knowledge is incorporated in the form
of the prior distribution. The experiments on MA-
TRES, TCR, and TBD show that Bayesian-Trans
achieves state-of-the-art performance. Compre-
hensive analyses of the experimental results also
demonstrate the characteristics and benefits of the
proposed model.

Limitations

Our approach takes an event pair as input for the
prediction of their temporal relation. We observe
that if two events reside in different sentences, the
error rate increases by 19%. A promising future
direction is to construct a global event graph where
temporal relations of any two events are refined
with the consideration of global consistency con-
straints, for example, no temporal relation loop
is allowed in a set of events. Our current work
only deals with even temporal relations, it could
be extended to consider other event semantic re-
lations such as causal, hierarchical or entailment
relations. The event temporal knowledge in this
paper is derived from ATOMIC which can possibly
be extended to more sources. Bayesian learning
could also be extended to life-long learning. But we
need to explore approaches to address the problem
of catastrophic forgetting. We didn’t exhaustively
investigate all the translational models due to the
large volume of work in that area. There might
be a translational model which can achieve bet-
ter performance, but the core idea of the proposed
framework stays the same.

Ethical Considerations

The goal of the proposed method is to understand
the temporal relation between events based on the
descriptions in the given text. What the method
can achieve in the most optimistic scenario is no
more than giving the same text to a human reader
and letting him or her explain the event relations.

Therefore, the ethical concerns only come from
the data collection. In this paper, we only use pub-
licly available datasets which have already been
widely used in the research field. As for potential
application, as long as the user collects the training
data legally, the proposed method does not have
the potential to have a direct harmful impact.
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A Maximum Mean Discrepancy (MMD)

The Maximum Mean Discrepancy (MMD) can be
unbiasedly estimated using the following equation
(Nan et al., 2019):

M̂MD =
1

N(N − 1)

∑

n ̸=m

fk (zn , zm )

+
1

N(N − 1)

∑

n ̸=m

fk (z̃n, z̃m)− 2

N2

∑

n,m

fk (zn, z̃m)

where z1, ..., zn are sampled from variational dis-
tribution qϕ and z̃1, ..., z̃m are sampled from prior
distribution p, fk(·) is inverse multiquadratic kn-
ernel fk(x, y) = C

C+||x−y||22
which is often chosen

for high-dimensional Gaussians.

Model Precision Recall F1

TransE 80.0 84.1 82.0
MuRP 75.4 85.8 80.2
AttH 76.2 87.4 81.4
MuRE 79.6 86.0 82.7

Table A1: The performance of the proposed Bayesian
framework combined with different translational models
on MATRES.

B Hyperparameter Settings and Resource
Consumption

We conducted a grid-search to determine the op-
timal hyperparameters and dimensionality of the
relation embeddings. The searching range for the
dimension of the latent vector the transformation
parameters is [50, 200], with a step size of 50. As
a result, on the MATRES, the dimension of the
latent vector z is 200, the dimension of relation
transformation vectors tr or matrices Wr is 50, the
dropout rate is 0.1. On the TBD, the dimension
of the latent vector z is 100, and the dimension of
relation transformation vectors tr or matricesWr is
100, dropout rate is 0. Based on the above settings,
the number of parameters of the Bayesian-Trans is
443 thousand (excluding the COMET-BART). The
COMET-BART encoder has 204 million parame-
ters. The learning rate αc for the context encoder
is set to 1e− 5, while for other components of the
architecture α = 1e − 3. To calibrate the influ-
ence of the regularization term, we set a scaling
weight smoothly increasing from 1e− 2 to 2.0 dur-
ing training. We ran the training for 60 epochs
which is enough for the model to converge, and

evaluated on the validation set after each training
epoch.

All the experiments were conducted on an
Nvidia GeForce RTX 3090 GPU. On the TBD
dataset, the average training time is 93 seconds
per epoch, while the inference time is 4 seconds.
On the MATRES dataset, the average training time
is 74 seconds per epoch, and the inference time is
7 seconds.

C Comparison of Translational Models

Table A1 shows the performance on MATRES us-
ing different translational models in the Bayesian
framework. TransE (Bordes et al., 2013) is one
of the most commonly used translational models,
which only performs the addition transformation
on the head event. AttH (Chami et al., 2020b) ex-
pands the idea of hyperbolic translational models
by making the curvature learnable. It also intro-
duces more types of transformation, reflection and
rotation. MuRE (Balazevic et al., 2019) strikes a
balance by conducting diagonal matrix transforma-
tion and addition transformation. MuRP (Balaze-
vic et al., 2019) is the Poincarè version of MuRE,
which projects the head and tail onto a Poincarè
ball before performing scaling and addition. The
score function of MuRP computes the Poincarè
distance instead of the Euclidean distance.

We can observe that TransE performs well, beat-
ing the previous state-of-the-art (F1 = 81.7) but
gives slightly worse results compared to MuRE.
Both translational models in the hyperbolic space,
MuRP and AttH, are inferior to the Euclidean-
based translational models. As MuRE gives more
balanced precision and recall values, it is therefore
adopted in our Bayesian learning framework.

Relation Precision Recall F1

BEFORE 82.66 90.40 86.35
AFTER 75.24 88.56 81.36
EQUAL 0.00 0.00 0.00
VAGUE 33.33 15.60 21.25

Table A2: Performance on each relation type class on
MATRES.

D Class-Specific Results

In Table A2 and A3, We show the results obtained
using Bayesian-Trans under each temporal relation
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Relation Precision Recall F1

BEFORE 77.04 62.98 69.31
AFTER 76.37 62.20 68.56
SIMULTANEOUS 33.33 10.42 15.87
INCLUDES 36.84 10.29 16.09
ISINCLUDED 53.33 10.39 17.39
NONE 59.06 83.80 69.29

Table A3: Performance on each relation type class on
TimeBank-Dense.

class on MATRES and TimeBank-Dense, respec-
tively. On MATRES, the performance on BEFORE

and AFTER are significantly better than for the
other two classes. The model predicts no EQUAL

labels, most likely caused by the scarce training
data for this class. Previous works in the litera-
ture (Han et al., 2019b) have also shown similar
class-specific results, with models struggling the
most on the prediction of EQUAL and VAGUE re-
lations. Similar conclusions can be drawn from
the TimeBank-Dense dataset, that Bayesian-Trans
performs relatively well on the BEFORE, AFTER

and NONE classes, but performs worse on the other
three minority classes.
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Abstract

Generating diverse and consistent responses is
the ultimate goal of a persona-based dialogue.
Although many studies have been conducted,
the generated responses tend to be generic and
bland due to the personas’ limited descriptive-
ness. Therefore, it is necessary to expand the
given personas for more attractive responses.
However, indiscriminate expansion of personas
threaten the consistency of responses and there-
fore reduce the interlocutor’s interest in con-
versation. To alleviate this issue, we propose a
consistent persona expansion framework that
improves not only the diversity but also the con-
sistency of persona-based responses. To do so,
we define consistency criteria to avoid possi-
ble contradictions among personas as follows:
1) Intra-Consistency and 2) Inter-Consistency.
Then, we construct a silver profile dataset to
deliver the ability to conform with the consis-
tency criteria to the expansion model. Finally,
we propose a persona expansion model with
an encoder-decoder structure, which consid-
ers the relatedness and consistency among per-
sonas. Our experiments on the Persona-Chat
dataset demonstrate the superiority of the pro-
posed framework.

1 Introduction

In the field of open-domain dialogues, maintain-
ing long-term interaction with users by generating
human-like responses has been a persistent goal.
As efforts along this line of research, persona-based
dialogue models aim at generating more engag-
ing and consistent responses based on personal
traits (Li et al., 2016b; Qian et al., 2018). As the
most widely used benchmark dataset, Persona-Chat
(Zhang et al., 2018) consists of personal profiles,
which contain 3-5 persona sentences (hereinafter
referred to as "personas"), and dialogues condi-
tioned on personas. With the Persona-Chat, many
researches have attempted to improve the quality
of responses from various perspectives (Song et al.,

Figure 1: An example of persona expansion with com-
monsense. The center circle is the predefined profile,
and the dashed circle is the valid expandable range.

2020; Liu et al., 2020; Song et al., 2021; Cao et al.,
2022). However, since the descriptiveness of per-
sonas is limited, they have difficulties in converting
what personas imply into attractive responses.

Unlike dialogue models, humans converse be-
yond the explicit persona itself through rational rea-
soning with commonsense knowledge. The com-
monsense reasoning ability is essential for making
an interlocutor engage in conversations with a dia-
logue agent. Figure 1 illustrates an example of per-
sona expansion through commonsense reasoning.
Given the persona ‘I am an athlete’, it is possible
to infer the characteristic ‘sporty and active’ with
high probability. The implications of ‘want to be
the best athlete’ and ‘need to train hard’ are also
predictable. In order to mimic human reasoning
ability, previous works expand original personas
(Majumder et al., 2020) or infer new personas from
dialogue utterances (Kim et al., 2022). However,
the consistency among expanded personas was not
explicitly considered. To prolong a conversation,
both the engagingness and the consistency of re-
sponses are very important. Therefore, we define
the two consistencies that must comply with while
improving the diversity of responses as follows:
1) Intra-Consistency and 2) Inter-Consistency.
First, the Intra-Consistency means that expanded
personas must not contradict the original persona.
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If the response conditioned on the expanded per-
sona contradicts the original persona, the interlocu-
tor loses interest in the conversation. Second, the
Inter-Consistency means that expanded personas
must not contradict other personas in the same pro-
file. For instance, as shown in Figure 1, the attribute
of ‘healthy’ can be expanded from the original per-
sona of ‘I am an athlete’. However, considering
the other persona in the profile, ‘I have a leg in-
jury’, this comes to an inappropriate expansion.
Therefore, it is necessary to follow the Intra- and
Inter-Consistency when expanding personas to im-
prove the persona-based responses.

To achieve the above goals, we propose a novel
Persona Expansion framework with Commonsense
Knowledge (PECK). PECK aims to not only im-
prove the diversity of responses but also avoid the
problem of contradictions among personas. Both
abilities to understand the relatedness and to reason
with commonsense knowledge are required to sat-
isfy the consistency criteria. Unfortunately, there
are no supervised training datasets for persona ex-
pansion. Furthermore, it costs a lot to annotate
them to train both abilities. Therefore, we build a
silver profile dataset (see Section 4) similar to the
gold profile in the Persona-Chat, with simple ma-
nipulation of the commonsense knowledge graph
ANION (Jiang et al., 2021). In addition, we pro-
pose a persona expansion model (see Section 5)
consisting of an encoder and a decoder for consis-
tent expansion. The bidirectional encoder learns to
understand the relatedness among personas within
the same profile. Then, the auto-regressive decoder
learns to expand personas consistently with nega-
tive log-likelihood (NLL) and unlikelihood (UL)
(Welleck et al., 2019a) training objectives. Finally,
we conduct extensive experiments on persona ex-
pansion and persona-based response generation.
Experimental results confirm the superiority of the
proposed consistent expansion framework.

The contributions of this work are as follows:

• A novel persona expansion framework that
satisfies essential consistency criteria is pro-
posed for attractive chit-chat responses.

• We generate consistent personas with a manip-
ulated silver profile dataset and unlikelihood
training objective.

• We show the effectiveness of the proposed ex-
pansion framework via experimental results.

2 Related Work

2.1 Persona Expansion with Commonsense
COMPAC proposed by Majumder et al. (2020)
makes a fine-grained choice of a persona to gener-
ate more engaging chit-chat responses. They ex-
pand the predefined personas leveraging COMET
(Bosselut et al., 2019) trained with the common-
sense knowledge of ATOMIC (Sap et al., 2019).
For instance, COMET deduces expanded personas
such as ‘I am caring, I want to adopt a cat’ from
the original persona ‘I love animals’ along the
nine relations in ATOMIC. Meanwhile, Kim et al.
(2022) propose the dual task framework of debi-
asing persona-based dialogues via a data-driven
approach. Similary, they utilize COMET to per-
form commonsense-based expansion before match-
ing personas with utterances in a dialogue. The
commonsense-based expansion in the conventional
methods improves the engagingness of persona-
based dialogues. However, they did not consider
that consistency should be kept in the expansion
process. To address this issue, we propose a novel
approach of expanding personas and keeping the
proposed Intra- and Inter-Consistency among them.

2.2 Commonsense Knowledge Graphs
As the demand for the representation of relations
between real-world events, some recent studies on
event commonsense knowledge graphs (CSKGs)
have been conducted. ATOMIC (Sap et al., 2019) is
an event-based CSKG, containing textual descrip-
tions of inferential knowledge on real-world events.
ATOMIC provides nine if-then causal relations,
in which the reasoning such as causes and effects
focuses on the agent (i.e., xAttr, xEffect, xIntent,
xNeed, xReact, xWant.) or the other (i.e., oEffect,
oReact, oWant). As a follow-up study, Hwang et al.
(2021) propose ATOMIC-2020, which contains
social and physical relations as well as eventive
ones. Further, Jiang et al. (2021) introduce AN-
ION, which focuses on negated and contradictory
events contrary to the affirmative ones of ATOMIC.
ANION contains 624k if-then rules consisting of
negated and contradictory relations. We construct
a silver profile dataset by leveraging the inter-event
inferential commonsense of ANION via simple
manipulation. And then, we compose positive and
negative samples of unlikelihood training (Welleck
et al., 2019a) for consistent persona expansion by
leveraging the oppositions between each profile in
the dataset.
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(1) Examples of contradictory root-events and their sub-events (2) Positive and Negative Training Samples

Figure 2: (1) An example of contradictory root-events and their sub-events in ANION. The root-event and its
corresponding sub-events are designated anchor-persona and sub-personas, respectively. (2) Training samples for
consistent persona expansion. Reasonable expansions are classified as positive samples E+, and contradictories are
classified as negative samples E−.

3 Problem Statement

In this paper, our goal is to generate expanded per-
sonas, which contribute to improving the quality of
persona-based responses. To do so, the consistency
criteria that expanded personas must comply with
are as follows: 1) Intra-Consistency and 2) Inter-
Consistency. Formally, given an original persona
pi ∈ P , where P = {p1, p2, ..., pn} is the prede-
fined profile, a persona expansion model aims to
generate expanded personas Ei = {e1, e2, ..., em},
which do not contradict the original persona pi
and all the remaining personas in profile P . For
the model to learn these consistencies, we need
original-expandable persona pairs with a positive
or negative label, and the profile where the original
persona belongs. That is to say, the training dataset
should contain {Original Personas (Profile), Ex-
pandable Personas, Label}. Regrettably, there are
no training datasets of this form, and human an-
notation is expensive. Hence, we construct a new
dataset, silver profile, appropriate for our expan-
sion goal through simple manipulation on ANION,
the existing commonsense knowledge graph. The
detailed construction process will be described in
Section 4. Finally, our model trained with the silver
profile aims to generate expanded personas consis-
tently from gold profiles within Persona-Chat.

4 Data Construction

Leveraging ANION, we construct a new dataset for
training consistent persona expansion. Through ex-
ploratory analysis on Persona-Chat, we identified
some prominent features of profiles. First, each
profile is mostly made up of personas, which are
correlated or at least non-contradictory to one an-
other. In the gold profile example in Table 1, three

Gold Profile Silver Profile
1. I play football.
2. My position is linebacker.
3. I am an athlete.
4. I had 128 tackles last year.
5. My team is the baltimore ravens.

1. I love Halloween.
2. I want to decorate the house.
3. I am childlike.
4. I feel like Halloween is fun.

Table 1: Examples of the gold profile from Persona-
Chat and silver profile from ANION.

of the five personas (1, 2, 3) are directly correlated,
and the others are slightly related. Second, most
of all personas indicate the speaker’s preferences
(i.e., I like –, I love –, I want –) or states (i.e., I
am –). Based on these structural and semantical
features of profiles, we build a silver profile dataset
similar to the gold profile in Persona-Chat to train
our expansion model. Statistics of the silver profile
dataset are given in Appendix B.

4.1 Profilizing Commonsense Events

With reference to the aforementioned feature of
the profile, the root-event existing in ANION and
the sub-events connected by if-then relations can
be defined as the speaker’s profile. In this case,
the root-event selected for profilizing is the sen-
tence described only for PersonX, not including
PersonY.1 As shown on the left of Figure 2, the
root-event is defined as a dominant anchor-persona
in the profile, and each sub-event is defined as a
sub-persona that can be inferred from the anchor-
persona. To filter mislinked relations out during
ANION deployment, we leverage the RoBERTa
(Liu et al., 2019) model fine-tuned with the MNLI

1In ANION, there are events related to the agent (i.e.,
PersonX –) and events related to the agent and the other people
(i.e., PersonX – PersonY –). In this study, events with PersonY
are excluded because we only handle personas representing
the traits of agent ‘I’.
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(Williams et al., 2018) dataset to verify the non-
contradiction between a root-event and its sub-
events. Also, based on the fact that most personas
represent the speaker’s preferences or states, we get
sub-events from four if-then relations as follows:
xWant, xNeed, xAttr, xReact. Then, we change the
subject of each event to ‘I’ and conduct subject-
verb matching to convert them into a sentence of a
persona type, such as <PersonX loves Halloween>
→ ‘I love Halloween’. An example of silver profile
is shown on the right side of Table 1. If ‘I love
Halloween’ is the anchor-persona, then ‘I want to
decorate the house’ and ‘I feel like Halloween is
fun.’ are designated as sub-personas.

4.2 Assigning Expandable Personas to Profile

A silver profile has a maximum of five personas;
one is the anchor-persona, and the others are sub-
personas from four if-then relations. Since there
are one or more sub-personas for each relation,
sentences not designated as sub-personas can be
assigned as expandable personas. As shown on the
right side of Figure 2, ‘I want to play trick or treat’
is not designated as a sub-persona, so it is treated
as an expandable persona. Through this process,
the expandable personas that can be inferred for
the four relations are assigned to the profile.

4.3 Aligning Contradictory Profiles

Inspired by Li et al. (2020), we leverage NLL and
UL objectives which require both positive and neg-
ative samples to endow the model with the con-
sistent expansion ability. Therefore, we align the
corresponding contradictory profiles to construct
positive and negative samples. In ANION, negated
root-events such as <PersonX hates Halloween>
and <PersonX does not loves Halloween> contra-
dict their affirmative <PersonX loves Halloween>.
Using these opposites as pivots, we construct nega-
tive samples by swapping the expandable personas
of each other. As shown on the right side of Fig-
ure 2, for profiles with ‘I love Halloween’ as an
anchor-persona, ‘I want to play trick or treat’ is a
positive expandable persona, and ‘I want to stay in
on Halloween’ comes to a negative one.

Definition 1 A silver profile dataset is defined as
Dsp = {(Pi, E+/−

i )}Ki=1, where Pi is a synthetic
profile, E+

i = {Ewanti , Eneedi , Eattri , Ereacti } is
a set of expandable personas for four relations,
E−i is a set of contradictories, and each Ereli =
{erel1 , erel2 , ..., erelmrel

} consists of mrel personas.
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Figure 3: Overview of the proposed expansion model.
In the training phase, the model leverages the silver
profile dataset to learn consistencies among personas.

 ! tokens …  ! tokens  !" token  ! tokens  !" token

Figure 4: Input token template for training the persona
expansion model.

5 Consistent Persona Expansion

5.1 Overview
In this section, we propose a novel consistent per-
sona expansion model. To achieve the consistency
criteria mentioned above, we design the model with
an encoder-decoder structure as illustrated in Fig-
ure 3. The encoder learns to understand the related-
ness among personas in the profile, and the decoder
learns to consistently reason expandable personas
with commonsense knowledge. This separated ar-
chitecture allows the model to generate expanded
personas satisfying the consistencies.

Formally, given a silver profile dataset Dsp, the
model takes the profile P = {p1, p2, ..., pn} as in-
put, where p1 (= pA) is the anchor-persona, and the
others are sub-personas. Then, the target expand-
able personas are Erel = {erel1 , erel2 , ..., erelmrel

}.

5.2 Encoder
The encoder is initialized by the pre-trained BERT
(Devlin et al., 2019) embedding to inherit its bidi-
rectional language understanding ability.

The input consists of unfolded persona profile
P to recognize a correlation among personas in
the profile. As illustrated in Figure 4, a separate
token [sep] is placed between the sequence of sub-
personas and the anchor-persona, and a relation
token [rel] is placed at the end of the input. The
formatted input is as follows:

p2, ..., pn, [sep], pA, [rel]. (1)

Then, the embedding layer transforms each token
of the input into a vector representation. At this
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time, the sum of the corresponding token and posi-
tion embedding is used as the vector representation.
The resulting vector representation is denoted as
input. Next, the encoder takes the vector represen-
tation and performs multi-head attention (Vaswani
et al., 2017) as follows:

hi+1 = FFN(MultiHead(hi, hi, hi)), (2)

where MultiHead(query, key, value) calculates
the scaled dot-product attention of query, key,
value, FFN(·) is a fully connected feed-forward
network, and h0 = input. The encoder outputs
the vector representation hL after L identical lay-
ers. The vector representation hL implies context
information for expansion and the correlatedness
among all personas in the profile.

5.3 Decoder
The decoder is initialized by the pre-trained GPT-2
(Radford et al., 2019) to leverage its robust auto-
regressive generation ability.

Unlike the encoder, the decoder adopts the cross-
attention and left-to-right mask. First, the cross-
attention is performed to reflect the context infor-
mation among personas. In the cross-attention, the
query is the vector representation from previous
layer, and the output vector hL of the encoder is
given as the key and value:

vi+1 = FFN(MultiHead(vi, hL, hL)), (3)

where v0 is initialized from the embeddings of the
decoder input erelj (∈ Erel) for given relation rel
in Equation 1. Then, the decoder outputs the vector
representation vL after L identical layers. Finally,
after the linear and softmax layer, we get the prob-
abilities of each token in the output sequence.

5.4 Training Objectives
For the consistent persona expansion, we exploit
negative log-likelihood loss (NLL) and unlikeli-
hood loss (UL). NLL is a conventional objective
function for generation tasks that maximizes the
probability of the next target token. In contrast, UL
is an objective function that minimizes the probabil-
ity of the next target token, usually used to prevent
the model from generating dull and repetitive se-
quences. In our setting, referred to Li et al. (2020),
we use NLL and UL for positive samples (D+

sp) and
negative samples (D−sp), respectively. The expres-
sion for each sample is as follows:

D+
sp = {P,E+}, D−sp = {P,E−}, (4)
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Figure 5: Response generation with persona expansion.

where P is the profile, E+ is the expandable per-
sonas, and E− is the contradictory personas. For
simplicity of expression, we omit the index nota-
tion i. See Definition 1 for the exact expression.
The NLL and UL losses are calculated as follows:

L
D+

sp

NLL = −
|e|∑

i=1

log(pθ(ti|P, e<i)), (5)

L
D−

sp

UL = −
|e|∑

i=1

log(1− pθ(ti|P, e<i)), (6)

where e is each persona inE+/E−, and ti is the to-
ken of the persona e at time step i. The final objec-
tive function of the model computes the weighted
sum of NLL and UL losses as follows:

Loss = αL
D+

sp

NLL + βL
D−

sp

UL , (7)

where α and β are hyperparameters. The optimized
objective function is obtained with iterative loss
back-propagation.

5.5 Persona Expansion
Through the training with silver profile, our model
acquires the ability to understand the relatedness
among input personas and to generate consistent ex-
panded personas. The model is leveraged to expand
the personas of the gold profile in the Persona-Chat.
For each persona in the gold profile, we generate
five expanded personas per relation (i.e., xWant,
xNeed, xAttr, xReact) by beam-search decoding.
Then, the number of expanded personas per an
original persona comes to 20 (= 5 × 4).

5.6 Response Generation
After persona expansion, we generate diverse and
consistent responses utilizing the original and ex-
panded personas, as illustrated in Figure 5. In this
paper, we leverage two dialogue models to prove
the effectiveness of the proposed framework on
response generation.
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GPT-2 (Wolf et al., 2019): A GPT-2 model sim-
ply concatenates all personas with dialogue history.
In our setting, up to five expanded personas with
the highest NLI scores on the predefined profile are
selected and fed into the dialogue model.

COMPAC (Majumder et al., 2020): A dialogue
model that generates fine-grained persona-based
responses through expansion and selection. In our
setting, the expanded personas generated by PECK
framework are selected by COMPAC and used for
response generation.

6 Experiments

6.1 Dataset
We conducted experiments on both persona expan-
sion and response generation with Persona-Chat,
converted for the ConvAI2 benchmark (Dinan et al.,
2020). The Persona-Chat consists of dialogues be-
tween two speakers, each utterance conditioned on
personas in the speaker’s profile. We generated
the expanded personas using personas in the pre-
defined profile. And we carried out the response
generation using utterances and expanded personas.
In our experiments, 16,878 instances were used for
training, 1,000 for validation and 1,000 for testing.

6.2 Baselines
To verify the effectiveness of the constructed silver
profile dataset and the proposed expansion model,
the following three baseline models were adopted
and compared.

1. COMETATOMIC (Bosselut et al., 2019): As
a GPT-2 model fine-tuned on ATOMIC, it ex-
pands the original personas along the four re-
lations mentioned above for comparison.

2. COMETSP w/o UL: We fine-tuned the GPT-2
model with a silver profile dataset as a com-
parative model, which takes a concatenated
sequence of personas as input. UL objective
was not used in training.

3. COMETSP w/ UL: We fine-tuned the GPT-2
using a silver profile dataset and UL with neg-
ative samples. The other settings except UL
are the same as the above model.

6.3 Evaluation Metrics
6.3.1 Automatic Evaluation
Four metrics were utilized for automatic evalua-
tion. We employed Perplexity (PPL), which mea-

sures how well a model predicts response tokens,
where lower means better. We employed Distinct-
1/2 (Dist-1/2) (Li et al., 2016a), which measures
the diversity of sentences via calculating the ratio
of distinct words against total uni/bi-grams. We em-
ployed F1 score of BERTScore (F-BERT) (Zhang
et al., 2019), which measures how semantically
relevant the expanded persona is to the original per-
sona or generated response is to the selected per-
sona. We employed Consistency Score (C.Score)
(Madotto et al., 2019), which measures the consis-
tency of the expanded persona (or response) for
the predefined profile P . The scoring process is as
follows:

NLI(pi, e) =

{
0, if e contradicts pi,
1, otherwise,

(8)

C.Score(e) =
n∑

i=1

NLI(pi, e), (9)

where pi is each persona in the profile P , and e
is the expanded persona (or response) to score.
RoBERTa was employed for the NLI model, which
is fine-tuned with the DNLI (Welleck et al., 2019b)
dataset. The Consistency Score is calculated, and
scaled to a value between 0 and 1.

6.3.2 Human Evaluation
For qualitative assessment, we conducted evalua-
tions by three annotators. We recruited annotators
proficient in the language from an external agency.
Annotators had sufficient knowledge of the domain
but knew nothing of the proposed model. During
the evaluation, there was no interaction among an-
notators that could affect each other’s ratings. Also,
annotators were properly compensated for the work
they performed.

We randomly selected 100 samples each to eval-
uate persona expansion and response generation.
Human annotators were asked to evaluate samples
with the following four metrics: (1) Engagement,
(2) Relevance, (3) Diversity, (4) Intra-Consistency,
and (5) Inter-Consistency. Ratings range from 1
to 5, with higher scores indicating better. Intra-
Consistency measures the consistency between the
expanded persona and the original persona. Inter-
Consistency is scaled to a value between 1 to 5,
after summing up the one-to-one Intra-Consistency
score between the expanded persona and each per-
sona in the profile. Further, we conducted human
A/B test that provide consensus among annotators
for consistency.
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Model Automatic Evaluation Human Evaluation
Dist-1 Dist-2 F-BERT C.Score Engagement Relevance Intra-Con. Inter-Con.

COMETATOMIC 0.041 0.162 0.806 0.54 2.92 3.01 3.04 2.24

COMETSP w/o UL 0.044 0.165 0.810 0.66 3.08 3.06 3.12 2.67
COMETSP w/ UL 0.043 0.164 0.818 0.70 3.05 3.18 3.58 3.52

PECK w/o UL 0.052 0.183 0.822 0.74 3.12 3.25 3.61 3.73
PECK w/ UL 0.047 0.179 0.835 0.83 3.10 3.70 4.11 4.05

Table 2: Automatic and human evaluation results on the persona expansion. The best results are bolded, and the
second-best are underlined.

6.4 Persona Expansion Results

The automatic and human evaluation results are re-
ported in Table 2. Compared with baselines, PECK
outperformed other expansion models in all metrics
regarding diversity and consistency. In particular,
relevance (i.e., F-BERT, Relevance) and consis-
tency (i.e., C.Score, Intra/Inter-Consistency) were
significantly improved compared to diversity (i.e.,
Dist-1/2, Engagement). This result demonstrated
the effectiveness of the proposed framework for
consistent persona expansion.

6.4.1 Anlalysis
Through a detailed analysis of the results, we iden-
tified the contributions of the following three imple-
ments: 1) silver profile dataset, 2) encoder-decoder
structure, and 3) UL objective.

First, from the results of COMETATOMIC and
COMETSP w/o UL in Table 2, the latter model using
the silver profile dataset for training showed better
performance in all evaluation metrics. Especially,
C.Score showed a higher improvement compared
to other automatic metrics. In human evaluation,
Inter-Consistency increased more significantly than
other metrics. This result showed that the presence
of the silver profile helped improve the consistency
of the expanded personas. In other words, it means
that the silver profile sufficiently imbued the expan-
sion model with the characteristics of the profile
and correlatedness among personas.

To analyze the impact of the encoder-decoder
structure, COMETSP and PECK were trained us-
ing the same silver profile dataset. Different from
PECK, COMETSP is a model based on GPT-2 with
a decoder-only structure. Our experimental results
showed that PECK outperformed COMETSP de-
spite being trained on the same dataset. In addition,
we found significant increases in C.Score and Inter-
Consistency, the metrics representing one-to-many
consistency. This means that the encoder has effec-

PECK vs.
COMETATOMIC

Intra-Consistency Inter-Consistency
Win Lose k Win Lose k

xWant 72.4 11.6 0.62 76.1 9.4 0.71
xNeed 68.3 18.4 0.52 72.7 10.2 0.66
xAttr 74.5 10.8 0.64 79.5 7.8 0.73

xReact 61.8 23.7 0.48 69.4 14.6 0.54

Table 3: Human A/B results for consistency. Ties are
not indicated in the table. The values of Fleiss’ kappa k
(Fleiss, 1971) for all results are in 0.4 < k < 0.8, indicat-
ing moderate and substantial agreements.

tively fused personas within the profile so that the
decoder could generate expanded personas consis-
tently for the given profile.

In terms of UL objective, both COMETSP w/ UL
and PECK w/ UL models showed higher relevance
and consistency than those without UL training.
We found that Dist-1/2 and Engagement metrics
slightly decreased when using UL training. This
result seems to be because the constraint of genera-
tion by UL training defected the range of expanded
personas. However, despite the decrease in diver-
sity, it can be judged to be a sufficiently attractive
expansion. The analysis demonstrated how effec-
tive the UL training is in improving consistency
while keeping diversity.

6.4.2 Human A/B Test

To compare the consistency of the expansion for
each relation, we conducted a human A/B test.
Human annotators were asked to choose a more
consistent persona between personas expanded by
COMETATOMIC and PECK. Table 3 shows that
Intra- and Inter-Consistency of the persona ex-
panded by PECK outperformed in all relations. In
particular, the performances for Inter-Consistency
were better than Intra-Consistency. Through these
results, we found that PECK is effective in solving
Inter-Consistency contradiction that the existing
model cannot control.
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Dialogue
Model

Expansion
Model

Automatic Evaluation Human Evaluation
PPL Dist-1 Dist-2 C.Score Engagement Diversity Relevance Consistency

GPT-2
- 22.12 0.054 0.108 0.45 2.08 2.64 2.98 2.25

COMETATOMIC 21.43 0.206 0.297 0.39 3.18 2.78 2.71 2.12
PECK w/ UL 21.18 0.223 0.345 0.67 3.22 3.31 3.05 3.24

COMPAC
- 19.84 0.146 0.253 0.58 2.31 3.02 3.14 2.86

COMETATOMIC 16.36 0.836 0.964 0.64 3.35 3.42 3.07 2.97
PECK w/ UL 16.21 0.851 0.986 0.76 3.43 3.67 3.22 3.53

Table 4: Automatic and human evaluation results on the response generation. The best results are bolded, and the
second-best are underlined.

6.5 Response Generation Results

The automatic and human evaluation results on the
response generation are reported in Table 4. The
dialogue models with expansion showed better per-
formance than those without expansion. Especially,
COMPAC with PECK outperformed the others in
all evaluation metrics. In the following sections,
we further analyze the diversity and consistency of
generated responses.

6.5.1 Analysis on Diversity
The results of the response generation showed that
persona expansion greatly contributes to improving
the diversity of responses. In automatic evaluation,
Dist-1/2 metrics significantly outperformed when
using expansion models than when not using them.
In particular, the values of Dist-1/2 showed greater
increases when using the personas expanded by
PECK. The impact of expanded personas was no-
ticeable in human evaluation. In Engagement and
Diversity, the responses based on expanded per-
sonas were rated well by human annotators. This
means that PECK framework is helpful in gener-
ating attractive responses, which are essential to
engage interlocutors and prolong a conversation.

6.5.2 Analysis on Consistency
In terms of consistency, the performance increased
significantly when PECK framework was applied.
Further, PECK outperformed COMET on both dia-
logue models. When COMET expansion was uti-
lized for response generation, C.Score, Relevance,
and Consistency metrics were, in some cases, lower
than without expansion. GPT with PECK achieved
better C.Score and Consistency than COMPAC with

COMET, despite not performing fine-grained per-
sona selection. This suggests that COMET persona
expansion help improve diversity but adversely af-
fects consistency. On the other hand, PECK not
only improved the diversity of responses but was

Intra-Consistency
Original Persona I am primarily a meat eater

COMETATOMIC

I want to avoid meat
I am vegetarian
I feel satisfied

PECK w/ UL

I want to eat meat
I am carnivore
I feel happy

Inter-Consistency

Original Profile
I love to rest at home on the weekend (A)
I am a hard worker
My hobby is walking with my dog

COMETATOMIC
I am lazy
I want to take a rest

PECK w/ UL
I am tired
I want to relax

Table 5: Examples of expanded personas. Each sample
was picked from all expansions. Red indicates expan-
sion that contradicts the original.

also the best in consistency. These results demon-
strated that the proposed expansion framework is
effective at generating diverse and consistent re-
sponses.

6.6 Case Study on Intra-/Inter-Consistency

Table 5 shows sample cases of persona expansion
on Intra-/Inter-Consistency. In Intra-Consistency
case, given the original persona ‘I am primarily
a meat eater’, COMET generated contradictory
personas like ‘I want to avoid meat’ and ‘I am vege-
tarian’. On the other hand, PECK generated consis-
tent personas. In Inter-Consistency case, ‘I love to
rest at home on the weekend’ is an anchor-persona,
and ‘I am a hard worker’ is a sub-persona to be
considered when expanding. COMET generated
expanded personas such as ‘I am lazy’ and ‘I want
to take a rest’. Here, the expanded persona ‘I am
lazy’ contradicts the contents of the sub-persona.
On the contrary, the personas expanded by PECK
are consistent with the original profile.
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7 Conclusions and Future Work

In this paper, we proposed a novel persona expan-
sion framework to improve the diversity and con-
sistency of the persona-based dialogue. Leveraging
the existing commonsense knowledge graphs, we
built a silver profile dataset to deliver the ability to
conform with the consistency criteria (Intra-/Inter-
Consistency) to the expansion model. The expan-
sion model of the encoder-decoder structure was
trained using the silver profile dataset with unlike-
lihood training. After training, the model gener-
ated expanded personas that satisfy the consistency
criteria. The experimental results proved that the
proposed persona expansion is effective at improv-
ing the diversity of responses while keeping their
consistency with personas. In the future, we plan to
extend PECK to leverage more external knowledge,
such as ConceptNet (Speer et al., 2017).

Limitations

In this study, the expansion target was limited to
personas with a first-person subject. However, if
other forms of persona expansion are considered,
more diverse and richer responses can be gener-
ated. To solve this problem, we plan to research
strategies to more effectively utilize various exist-
ing commonsense datasets in the persona-based
dialogue model.

Ethical Considerations

Through our analysis of the persona expansion, we
found that expanded personas highly depend on
the commonsense knowledge used in the model
training. We built a silver profile dataset utilizing
the commonsense knowledge graph ANION and
our expansion model trained with the silver profile
dataset. As mentioned in ANION, linguistic, social,
and cultural biases may exist within the ANION,
the source of our silver profile dataset. These bi-
ases or stereotypes will affect the meaning of the
personas expanded by our framework. This study
did not discuss this aspect, but we believe it is an
issue worth considering in future works.
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A Implementation Details

A.1 Persona Expansion
Our persona expansion model was implemented
with HuggingFace Transformers.2 The encoder
and decoder initialize from the publicly available
BERT-base-uncased3 and GPT-2-small4 model, re-
spectively. Both models are with 12 layers and 768
hidden sizes. In addition, we use an Adam opti-
mizer (Kingma and Ba, 2014), and the learning rate
varies from 5e-6 to 5e-5. The α and β, hyperparam-
eters for weighted NLL and UL training, are 0.8
and 0.07, respectively. The training was conducted
on an Nvidia RTX3090 24G GPU with a batch size
of 16. The best-performing model was found in
epochs 11 to 13.

A.2 Response Generation
We utilized the repositories and implementations
of GPT-25 and COMPAC6 for response generation.
To suit the purpose of our experiment, we adjusted
some of the details of these models and trained
them in a single-turn dialogue setting.

2https://github.com/huggingface/transformers
3https://huggingface.co/bert-base-uncased
4https://huggingface.co/gpt2
5https://github.com/huggingface/

transfer-learning-conv-ai
6https://github.com/majumderb/compac

Positive Negative All
# of unique anchor personas 4,253 12,540 16,793

# of silver profiles 2,428,926 3,710,299 6,139,225

Average # of profiles
per unique anchor persona

571.11 295.88 365.58

Table 6: Statistics of silver profile dataset

Positive Profile
Relation xAttr xNeed xReact xWant

Average # of
expandable personas

4.48 3.65 2.60 4.55

Negative Profile
Relation xAttr xNeed xReact xWant

Average # of
expandable personas

3.17 1.24 2.74 3.50

Table 7: Expandable personas per relation

B Statistics of Silver Profile

The statistics of the silver profile dataset are shown
in Table 6. We built a total of 6,139,225 synthetic
profiles based on 16,793 unique anchor personas.
Each profile has expandable personas for four re-
lations. Table 7 shows the average number of ex-
pandable personas per relation.
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Abstract

FEVEROUS is a fact extraction and verification
task that requires systems to extract evidence of
both sentences and table cells from a Wikipedia
dump, then predict the veracity of the given
claim accordingly. Existing works extract evi-
dence in the two formats separately, ignoring
potential connections between them. In this pa-
per, we propose a Unified Evidence Extraction
model (UNIFEE), which uses a mixed evidence
graph to extract the evidence in both formats.
With the carefully-designed unified evidence
graph, UNIFEE allows evidence interactions
among all candidates in both formats at sim-
ilar granularity. Experiments show that, with
information aggregated from related evidence
candidates in the fusion graph, UNIFEE can
make better decisions about which evidence
should be kept, especially for claims requiring
multi-hop reasoning or a combination of tables
and texts. Thus it outperforms all previous evi-
dence extraction methods and brings significant
improvement in the subsequent claim verifica-
tion step.

1 Introduction

FEVEROUS (Aly et al., 2021) is a fact extrac-
tion and verification task over structured and un-
structured information. Models should extract fine-
grained evidence in two formats, namely, sentences
and table cells, from a Wikipedia dump and verify
the given claim accordingly.

Many previous works focus on the claim veri-
fication procedure. They propose various meth-
ods to fuse evidence in different formats while
leaving the evidence extraction within each for-
mat separately (Kotonya et al., 2021; Malon, 2021;
Bouziane et al., 2021; Hu et al., 2022). For those ef-
forts on evidence extraction, Saeed et al. (2021) use
a neural re-ranker to refine page retrieval. Bouziane

∗The first author and the second author contribute equally
to this work.

† Corresponding Author.

Claim: John Laurie has collaborated with many directors such 
as Alfred Hitchcock, Michael Powell, and Laurence Olivier, but 
his most famous role is Private Frazer in a film written and 
directed by Alfred Hitchcock.

[John Laurie] 
Evidence Cells

Evidence Sentences
[John Laurie] Laurie appeared in scores of feature films with directors 
such as Alfred Hitchcock, Michael Powell, and Laurence Olivier, 
generally playing bit-parts or supporting roles rather than leading roles.
[Dad's Army (1971 film)] Directed by Norman Cohen, Dad's Army was 
filmed between series three and four and was based upon material 
from the early episodes of the television series.

Year Film Role

1970 Step Laughing Into the Grave 

1971 
Dad's Army Private Frazer 

The Abominable Dr. Phibes Darrow 

1976 Crime Casebook George Winterman / 
Sellens 

1979 The Prisoner of Zenda Archbishop 

Figure 1: An example in FEVEROUS. The green rect-
angle shows the gold evidence sentences, while the blue
one is the gold evidence table, where the gold evidence
cells are underlined.

et al. (2021) propose a reinforced adaptive retrieval
embedding paradigm, but they ignore the possible
connections among evidence either in the same for-
mat or across different formats. However, there
are many gold evidence pieces with fewer lexical
or semantic overlaps with the claim, while their
necessity is mainly determined by other evidence.
Without considering evidence connections during
extraction, models may be prone to miss these evi-
dence candidates, thus, propagating errors to sub-
sequent claim verification.

Figure 1 shows an example from FEVEROUS.
To refute the given claim, models should find that
Private Frazer is a role in the film Dad’s Army, and
recognize that its director is Norman Cohen instead
of Alfred Hitchcock. However, the overlap between
the claim and the required evidence sentence Di-
rected by Norman Cohen ... is only two words:
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directed by, without any key entities, which is gen-
erally not strong enough to recognize its usefulness.
With the evidence cells in the table, one can find
that Private Frazer is a role in the film Dad’s Army,
which links the evidence sentence and the given
claim. Therefore, for the evidence extraction step
it is essential to encourage interactions between
evidence pieces of different formats.

Meanwhile, evidence in the same format also
provides context information to each other, espe-
cially for table cells. In Figure 1, the cell Dad’s
Army is not mentioned in the claim, but the column
header, Film, and the cell in the same row, Pri-
vate Frazer, are strong clues appearing in the given
claim, which implies that the cell Dad’s Army is
highly likely to be useful evidence. We argue that
models should allow the evidence to accumulate
context information from all closely-associated ev-
idence in both formats to extract comprehensive
evidence sets for claim verification.

In this paper, we propose a Unified Evidence
Extraction model (UNIFEE), which exploits graph
attention networks (GAT) to encourage interactions
among connected candidates during evidence ex-
traction. We design a novel graph structure, which
accommodates all evidence candidates and intro-
duces column nodes to allow evidence candidates
of different formats to interact with each other in
a similar granularity. This graph also facilitates
the interactions among cells in several nested ta-
bles with better representation of the table layout.
Compared to previous flatten-based methods, our
method exploits the structural relationship among
cells in complicated tables and enhances the inter-
actions between evidence in both formats.

Experiments on FEVEROUS show that our
UNIFEE improves the evidence extraction perfor-
mances and further boosts the final fact verification
scores significantly. The ablation experiments and
case study demonstrate the effectiveness of the pro-
posed evidence extraction method and our graph
designs. Our code is released to the public for
further exploration. 1.

Our contributions can be summarized as follows:
• We propose a novel evidence extraction

method, featuring a mixed graph structure with
carefully designed column nodes and layout-aware
table representations. Our method enables early
and thorough evidence interactions within one for-
mat or across formats at a similar granularity.

1https://github.com/WilliamZR/unifee

• Experiments show that our method outper-
forms previous works by a large margin on both
the evidence extraction and the final verification re-
sults. Thorough analysis shows that our model can
recall more multi-hop evidence and also evidence
with fewer lexical overlaps with the given claim.

2 Our Model

We take the widely-adopted three-step pipeline for
FEVEROUS (Aly et al., 2021), which consists of
retrieving pages from Wikipedia dump, extract-
ing sentences and table cells as evidence from the
pages, and predicting the veracity label of the given
claim based on the evidence set. In this work, we
focus on the second step, i.e., evidence extraction.
We use the DRQA (Chen et al., 2017) based docu-
ment retrieval method and the dual-channel verifi-
cation method proposed by Hu et al. (2022) for the
remaining two steps.

Formally, during evidence extraction, n′s sen-
tences and nt tables are extracted from np retrieved
passages by a pair-wise classification model firstly.
This pre-processing step narrows the search space
of sentences and table cells from thousands to a
few dozens, which makes the mixed graph lighter.
Then, nc cells and ns sentences are extracted by
our proposed Unified Evidence Extraction model
(UNIFEE). These fine-grained evidence pieces are
used for fact verification later.

In UNIFEE, we design a mixed evidence graph
(§2.1) to organize evidence of two formats. Then, a
graph neural network is applied to the graph to
accumulate contextualized information from all
evidence candidates with similar granularity, and
identify useful evidence from a unified perspective
(§2.2).

2.1 Mixed Evidence Graph

There are three kinds of nodes in our mixed evi-
dence graph. Sentence nodes and cell nodes stands
for sentences and cells, e.g., FC Ararat Yerevan
in table 1, evidence candidates. Besides, we fur-
ther introduce a novel node type representing table
columns , e.g., Senior career* Apps 10 164 8 26
in table 1. The intuition is that textual evidence
is mainly at the sentence level but table cells are
generally words or phrases. The unbalanced gran-
ularities will hinder their interactions. Therefore,
we introduce this column node, to act as a mediator
for information transmission between the sentence
nodes and the cell nodes.
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Figure 2: The overview of UNIFEE. The blue lines are edges in the mixed evidence graph, and the gray dash lines
indicate which column each column node comes from .

Specifically, the mixed evidence graph G has
three types of nodes: sentence nodes, cell nodes
(including header cells and content cells), and col-
umn nodes, as shown in Figure 2.

The edge connections are elaborated as follows:

Edges among Sentence Nodes and Column
Nodes We add bi-directed edges between two
nodes vi and vj for vi, vj ∈ V S ∪ V Col if and only
if the two following conditions:
• vi and vj represent evidence in the same
Wikipedia page.
• vi and vj contain common entities or hyperlinks.

Here the text representation of a column node
simply is the concatenation of all cells in that col-
umn.

Edges among Cell Nodes Although we expect
direct messaging between cells, simply connecting
cells in the same rows or the same columns is not
enough. The tables in Wikipedia pages are often
organized as complicated nested tables. Previous
works simply flattening a table or converting cells
to strings with human-designed templates will lose
delicate structural information layout and cannot
reflect the cross-table connections.

Meanwhile, we notice that the tables often have
large headers in the middle of themselves in real-
ity, which separates the influenced columns into
several parts, and, in this case, cells in the same
column could be irrelevant. Disconnecting these
cells in the graph will help us remove confusing
edges and make the information transmission more
reasonable.

Table 1 is a table from the Wikipedia page Ara-
mais Yepiskoposyan. We can see that three long
headers Personal Information, Senior career and

Personal information
Date of birth 27 September 1968 (age 53)
Height 1.75 m (5 ft 9 in)
Position(s) Midfielder

Senior career*
Years Team Apps (Gls)
1986–1991 FC Ararat Yerevan 10 (0)
1992–1997 FC Chernomorets Novorossiysk 164 (8)
1997 FC Kuban Krasnodar 8 (0)
1999–2000 FC Irtysh Pavlodar 26 (2)
2000 FC Spartak Anapa (amateur)

National team
1997 Armenia 1 (0)

Table 1: A table instance from the Wikipedia.

National team cut the table into three parts. The cell
organization and contents within each part are con-
sistent while differing a lot across different parts.
For example, although the header cell Personal
Information and the content cell FC Ararat Yere-
van are in the same column, they do not have a
subordinate relationship.

We believe that a graph deliberately connecting
cells in all table candidates can better model the
table structures and connections. According to the
table layout and lexical features, we connect two
cell nodes vCi and vCj by bi-directional edges:
• If vCi and vCj are two content cells in the same
column and there is no table-header-like cell
between them. For example, the header cells
Senior Career* and Team separate the content cells
Midfielder and FC Ararat Yerevan.
• If vCi and vCj are two cells in the same column,
vCi is a header cell above vCj , and no header cell
exists between them.
• If vCi and vCj are two cells in the same row.
• If vCi and vCj are two cells sharing at least one
entity or hyperlink in their contents.
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2.2 Evidence Extraction with Mixed Graphs

In this section, we will show how we extract the
evidence set with the mixed evidence graph, which
encourages evidence to accumulate context infor-
mation from closely-associated candidates of both
formats and make a better decision to form a com-
prehensive and accurate evidence set for the verifi-
cation step.

We formulate the task as: given a claim Q and
n retrieved Wikipedia pages P = {pi}ni=1, the
models should extract a sentence evidence set E =
⟨S,C⟩, where S are sentences in P and C are cells
in P . The evidence set E can be used to support or
refute the claim Q.

Node Initialization The column nodes and cell
nodes share a common embedding module, which
is more efficient and can build an implicit connec-
tion between cells and columns apart from the ex-
plicit edges in the graph. Specifically, we feed the
claim-table pairs into TAPAS (Herzig et al., 2020),
a pre-trained table representation model, to get the
embedding of cell nodes and column nodes. Each
cell node is initialized by averaging the last hid-
den states of its tokens, n(vCi ). #TOKENS (celli)
means the number of tokens in celli. T means the
table celli belongs to.

n(vC
i ) =

∑
t∈TOKENS(celli)

(Tapast(Q,T ))

#TOKENS (celli)

And each column node is initialized as the mean-
pooling of the embeddings of all cells in this col-
umn n(vColi ). #CELLS (coli) is the number of
cells in the column i.

n(vCol
i ) =

∑
t∈CELLS(coli)

(Tapast(Q,T ))

#CELLS (coli)

A one-layer GAT is applied to the graph, which
updates the node representations by aggregating
representations from their neighbors. h(l)i is the
current representation of node i. W f , a⃗ and W are
training parameters.

h
(l+1)
i =

∑

j∈N (i)

α
(l)
ij W

fh
(l)
j

α
(l)
ij = softmaxi

(
e
(l)
ij

)

e
(l)
ij = LeakyReLU

(
a⃗T

[
Wh

(l)
i ∥Wh

(l)
j

])

With a two-layer feed-forward network and a
softmax layer, we obtain the probability of each
fine-grained evidence candidate being retrieved.
The evidence with a score above a predefined
threshold is kept.

The loss is calculated as the weighted sum of the
sentence loss LS , column loss LCo, and the cell
loss LCe. We use cross entropy as the loss function
for each part separately.

L = LS + α · LCo + β · LCe

LS = − 1

NS

NS∑

i=1

log
(
p
(
ŷS = ySi |Q,S,C

))

LCo = − 1

NCo

NCo∑

i=1

log
(
p
(
ŷCo = yCo

i |Q,S,C
))

LCe = − 1

NCe

NCe∑

i=1

log
(
p
(
ŷCe = yCe

i |Q,S,C
))

whereNS ,NCo, andNCe are the total numbers of
sentence, column, and cell candidates in the train-
ing set, respectively. α and β are the coefficients
of LCo and LCe. If a cell or a sentence is in any
of the gold evidence sets, we give it the label as 1,
otherwise 0. For the labels of the column nodes, if
any of the cells in that column is labeled as 1, this
column is labeled as 1, otherwise 0.

The score of a sentence candidate is simply cal-
culated as the softmax result of the label 1. In the
training procedure, the cell score is calculated sim-
ilarly. While in the evidence prediction step, the
probability of a cell being retrieved is calculated as
the product of the score of the cell node itself and
the score of the column node it belongs to.

2.3 Document Retrieval and Claim
Verification

For the two remaining steps in the whole pipeline,
i.e., document retrieval and claim verification, we
follow (Hu et al., 2022). For the document re-
trieval step, we retrieve evidence pages from the
Wikipedia dump with a DrQA retriever (Chen et al.,
2017) and re-rank the pages with a combination
of BM25 and RoBERTa-base (Liu et al., 2019)
re-rankers. For the verification step, we perform bi-
directional evidence conversions and dual-channel
evidence fusion to predict the final veracity label
of the given claim.
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3 Experiments

3.1 Evaluation Metrics

There are two main official metrics in the FEVER-
OUS task, i.e., accuracy and FEVEROUS score.
The accuracy calculates the proportion of instances
for which the model predicts a correct veracity la-
bel. The FEVEROUS score considers not only the
correctness of the final veracity label but also the
extracted evidence set. It calculates the proportion
when the extracted evidence set covers one of the
gold evidence sets and the predicted veracity label
is consistent with the gold label.

Three additional official metrics are used to eval-
uate the quality of the extracted evidence sets, i.e.,
Evidence Precision, Evidence Recall, and Evidence
F1. Multiple gold evidence sets are provided in
FEVEROUS for each claim. A piece of extracted
evidence is correct if and only if it is contained
by any gold evidence set. For each instance, the
Evidence Precision is the proportion of the correct
predicted evidence. The overall Evidence Preci-
sion is the average score over all instances. The
Evidence Recall is the proportion of instances with
a correct extracted evidence set. An extracted ev-
idence set is correct if and only if it covers any
of the gold evidence sets. The Evidence F1 is the
harmonic mean of the Evidence Precision and Evi-
dence Recall.

3.2 Implementation Details

We retrieve np = 5 pages from the Wikipedia
dump for each claim, and further narrow the ev-
idence searching space to n′s = 5 sentences and
nt = 3 tables with RoBERTa-base and DrQA
model (same as the official baseline), separately.
When we choose the final evidence set according
to UNIFEE, the threshold for selecting cells and
sentences is both 0.01. At most 25 cells are se-
lected for each claim. As for the results, 12.1 cells
and 4.7 sentences are extracted for each instance
on average.

We use an Adam optimizer (Kingma and Ba,
2015) with a batch size of 4. The learning rates
for pre-trained parameters and the others are 10−6

and 10−4, respectively. We train UNIFEE for 3
epochs, which takes 21 hours on a NVIDIA A40
GPU. We use Stanza toolkit2 to identify entities in
the claim and evidence for graph construction. We

2https://github.com/stanfordnlp/stanza/

use base-size RoBERTa3 and TAPAS4 for sentence
and table embedding in evidence extraction. The
sentence encoder in claim verification is RoBERTa-
large fine-tuned with NLI and verification tasks5,
same as the official baseline.

Details of the FEVEROUS dataset are shown in
Appendix § A.

3.3 Baseline Models

The official baseline (Aly et al., 2021) uses
DrQA (Chen et al., 2017) to extract sentences and
tables. It uses pre-trained models to retrieve cells
from flattened tables. EURECOM (Saeed et al.,
2021) proposes a neural re-ranker to improve docu-
ment retrieval. Both NCU (Gi et al., 2021) and Z
team (Kotonya et al., 2021) linearize cells to unify
evidence element format with sentences. NCU con-
catenates the claim and the evidence elements as in-
put into RoBERTa for binary classification. Z team
constructs a fully-connected graph of evidence ele-
ment to extract evidence. A next-hop predictor is
introduced by Papelo (Malon, 2021) to extract the
required evidence. Sentences and cells are retrieved
in multi-hops simply based on word overlap with
imagined evidence. FaBULOUS (Bouziane et al.,
2021) trains a Multi-Hop Dense Retriever (Xiong
et al., 2020) to retrieve sentences and cells sepa-
rately. DCUF(Hu et al., 2022) strengthens the offi-
cial evidence extraction method with a multi-turn
cell retriever.

3.4 Main Results

Our main results are summarized in Table 2. We
obtain remarkable improvements over the best pre-
vious model, DCUF, in evidence extraction. In
the development/test set, the improvements are
3.98%/3.56%, 11.86%/9.77%, and 5.96%/5.22%
in evidence precision, recall, and f1 score, respec-
tively. These results suggest that, with the context
information accumulated from other candidates in
the mixed evidence graph, our model can extract ev-
idence more accurately. We also find that UNIFEE
can easily drop irrelevant evidence and keep crucial
evidence even though it has less word-overlapping
with the claim. Specifically, compared with the
official baseline, UNIFEE extracts 25% more gold
evidence, with an average word overlap of 15.8%,

3https://huggingface.co/roberta-base
4https://huggingface.co/google/tapas-base
5https://huggingface.co/ynie/

roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli
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Models Development/Test

FEVEROUS Score Accuracy Evidence Precision Evidence Recall Evidence F1

Official Baseline 19 / 17.73 53 / 48.48 12 / 10.17 30 / 28.78 17 / 15.03
EURECOM 19 / 20.01 53 / 47.79 12 / 13.73 29 / 33.73 17 / 19.52
Z team – / 22.51 – / 49.01 – / 7.76 – / 42.64 – / 13.12
NCU 29 / 25.14 60 / 52.29 10 / 9.91 42 / 39.07 17 / 15.81
Papelo 28 / 25.92 66 / 57.57 – / 7.16 – / 34.60 – / 11.87
FaBULOUS 30 / 27.01 65 / 56.07 8 / 7.73 43 / 42.58 14 / 13.08
UNIFEE* 43.48 / 39.36 72.35 / 62.41 19.04 / 18.35 55.08 / 53.87 28.30 / 27.37

DCUF 35.77 / 33.97 72.91 / 63.21 15.06 / 14.79 43.22 / 44.10 22.34 / 22.15
UNIFEE 44.86 / 41.50 73.67 / 65.04 19.04 / 18.35 55.08 / 53.87 28.30 / 27.37

Table 2: Model performance on the development set and the test set. UNIFEE* means UNIFEE with the verification
model of the official baseline instead of DCUF’s.

far less than the 28.9% word overlap averagely in
the gold evidence extracted by the official baseline.

Our model also achieves better performance on
the fact verification metrics of FEVEROUS. Com-
pared to previous state-of-the-art model DCUF,
UNIFEE obtains an improvement of 9.09%/7.53%
on the FEVEROUS score and 0.76%/1.83% on
accuracy at the development/test set. Moreover,
we experiment with a simpler verification model
taken from the official baseline instead of that from
DCUF to see the effectiveness of our evidence ex-
traction step (UNIFEE*). Compared to Bouziane
et al. (2021), Kotonya et al. (2021) and Hu et al.
(2022) , who use complex verification models with
template-based format conversion and(or) dual-
channel setting, UNIFEE* still achieves better re-
sults. These results suggest that , with a high-
quality evidence set, even a simple verification
model can achieve good performance.

We also measure the improvement of our model
on instances of different challenges in the dev set.
Compared to the official baseline, UNIFEE shows
an improvement of 65.93% (from 21% to 35%)
on instances requiring multi-hop reasoning and
45.32% (from 41% to 59%) on instances requiring
the combination of tables and texts, far above the
average increase ratio 35.84%. It shows that with
information accumulated from connected evidence
candidates, UNIFEE can recall more required evi-
dence within a limited evidence size.

Meanwhile, compared to the previous models
using multi-turn retriever (Malon, 2021; Bouziane
et al., 2021; Hu et al., 2022) for evidence extraction,
our method does not require iterative running to
retrieve multi-hop evidence and thus is less time-
consuming.

3.5 Ablation Study

We evaluate the effectiveness of our Unified Evi-
dence Extraction model with ablation experiments.
(1)w/o Fusion Graph: We use the baseline proposed
in Aly et al. (2021) to retrieve evidence based on
our document retrieval results. (2) w/o Column
Nodes: we connect sentences and cells directly if
they have common hyperlinks or entities without
column nodes as intermediaries. (3) w/o Cross-
format Interactions: We deprecate sentence nodes
and column nodes, only using cell nodes to retrieve
cell evidence. (4)w/o Threshold: We retrieve top 5
sentences and top 25 cells instead of using a thresh-
old.

The results are listed in Table 3. When we ap-
ply the evidence extraction model proposed in the
official baseline (Aly et al., 2021) on our page re-
trieval results, the evidence precision, recall, and F1
drop by 3.15%, 14.54%, and 5.47%, respectively.
It proves that our UNIFEE extracts the required
evidence and removes confusing evidence candi-
dates more confidently with context information
accumulated from all evidence candidates of both
formats. Meanwhile, the metrics drop a lot when
we directly connect sentence candidates and cell
candidates, with a decrease of 2.78% on evidence
F1. It suggests that with column nodes as inter-
mediaries, UNIFEE allows cross-format evidence
interactions at a similar granularity, thus making
the information flow over the graph more reason-
able and efficient. In the w/o Cross-format Interac-
tions setting, when we remove column nodes and
do not add any edges between sentence nodes and
cell nodes, the evidence F1 decreases to 25.89%.
It shows that context information from evidence
of another format is also crucial for the evidence
extraction step.
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Models P R F1

UNIFEE 19.04 55.08 28.30
w/o Fusion Graph 15.89 40.54 22.83
w/o Column Nodes 16.74 53.66 25.52
w/o Cross-format Interactions 16.98 54.51 25.89
w/o Threshold 12.48 56.22 20.42

Table 3: Ablation study regarding the retrieved evidence
on the development set.

We notice that , without cross-format evidence
interactions, UNIFEE still outperforms the official
baseline by 2.94% and improves the evidence re-
call by 13.97%, which means that our carefully-
designed edges between cells can better represent
the layout of complex nested tables, thus improving
the cell selection results.

From the w/o Threshold setting, we can see that
if we, as many previous works do, directly select
the top 25 cells and 5 sentences even whose scores
are very low, there will be a slight improvement in
the evidence recall, from 55.08% to 56.22%. How-
ever, it is at the expense of a 6.56% drop in evidence
precision and a 7.88% drop in evidence F1. More
irrelevant evidence is selected, which easily con-
fuse the verification model in the final step. With
the rough threshold in evidence selection, UNIFEE
can dynamically select useful evidence according
to their context-aware relevance regardless of the
numbers and formats , which helps even simple
verification models achieve better performance.

4 Analysis

4.1 Adaptive Evidence Selection
The number of sentences and cells required to ver-
ify claims in the FEVEROUS varies a lot. Some
claim needs only sentence evidence, some only cell
evidence, and many others a combination of both.
We find that our UNIFEE can make an adaptive
selection of evidence according to the given claim,
without being bound to certain formats or a fixed
evidence number. With joint evidence extraction
in a mixed evidence graph and evidence selection
with a threshold, UNIFEE keeps more helpful evi-
dence in the fine-grained evidence retrieval step.

We analyze the relationship between evidence
in the gold evidence set and that in the extracted
evidence set. The results are shown in Figure 3.

We can see that UNIFEE extracts more cells for
claims requiring more cell evidence. For claims
that only need sentence evidence, UNIFEE extracts
11 cells on average, and for claims requiring 25
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Figure 3: The relationship between the number of
gold evidence and the average number of predicted
cell/sentence evidence the evidence extraction step.

cells, it extracts cells to the maximum limit. We
can observe a similar trend for sentence evidence.
These results prove that UNIFEE introduces fewer
noisy evidence pieces of unwanted formats than
the previous works that set a fixed number of each
format of evidence, while keeping the required evi-
dence.

4.2 Positions of Cell Candidates
We find that the baseline cell extraction model is
prone to select cells in the first few lines. If the cell
evidence is at the bottom of a table, it is likely to
be left out. A possible explanation is that when flat-
tening the table into lines and applying a sequence
tagging model to extract evidence cells, these cells
are too far from their header cells, making it hard
to capture the crucial context information. The
average row position of the predicted cells in the
baseline is 4.37 on average, much smaller than
6.71, the average of the gold ones. By contrast, it
is easier for UNIFEE to exclude the interference
of the cell positions thanks to its graph structure,
where the cells in different lines are almost equiva-
lent. Therefore, it can extract evidence cells at the
bottom of the tables, and the average row position
of its predicted cells increases to 6.39.

4.3 Case Study
A case is shown in Figure 4. Models are expected
to find the cells The Irish Times and 4/5 stars in
the same row to refute the given claim The Fine
Art of Surfacing received a rating of 5/10 from The
Irish Times. The baseline model leaves out the cell
4/5 stars since it has little word coverage with the
given claim. Instead, it selects the distracting cell
3/10. With the carefully-designed graph structure
in UNIFEE, our model can obtain context informa-
tion from the cell The Irish Times in the same row
and the cell Rating in the same column. Meanwhile,
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Figure 4: The extracted evidence set by UNIFEE and
the official baseline. Cells with a gray background are
the predicted ones.

the column where 4/5 is situated will be given a
high score with the information from the key cell
Rating, B- and even the distracting cell 3/10. As a
result, the cell 4/5 can be easily retrieved.

Figure 4 also shows that UNIFEE introduces less
irrelevant evidence, especially when it comes to the
unwanted evidence format. The cells Christgauś
Record Guide and B- can support one aspect of
the claim, so our model only introduces two more
sentences in need. By contrast, the baseline model
retrieves two irrelevant cells, and 5 sentences from
many different pages, which may confuse the veri-
fication model in the next step.

5 Related Works

In this work, we focus on the evidence extraction
step of the fact verification based on table and text,
i.e. the FEVEROUS dataset (Aly et al., 2021).
Other fact verification datasets only concentrate on
unstructured data (Thorne et al., 2018) or a single

given table (Wang et al., 2021; Chen et al., 2020;
Kwiatkowski et al., 2019). These datasets do not
require fine-grained evidence extraction or only
extract evidence of a single format.

For evidence sentence extraction, most pre-
vious works rank claim-sentence pairs with
ESIM (Hanselowski et al., 2018; Zhou et al., 2019)
or PLM (Liu et al., 2020; Soleimani et al., 2020).
There are also works using the multi-turn retriev-
ing method for multi-hop evidence (Stammbach
and Ash, 2020) or training the evidence extrac-
tion and claim verification model jointly to relieve
the error propagation (Yin and Roth, 2018). For
cell evidence extraction, SEM-TAB-FACT (Wang
et al., 2021) and FEVEROUS (Aly et al., 2021)
are the only two verification datasets requiring fine-
grained cell selection to our best known. Acharya
(2021) propose to parse the claim into logical forms
and identify cells with string matching and de-
pendency parsing. Jindal et al. (2021) use an en-
semble of BERT fine-tuned on a single-cell NLI
task and a cell-wise similarity algorithm to capture
the additional relationship. Many previous works
on FEVEROUS flatten each table to a sequence
and perform binary sequence labeling to select
cells (Aly et al., 2021; Hu et al., 2022). However,
these models extract evidence according to every
single sentence/cell/table, they neglect the connec-
tions of evidence candidates. Meanwhile, they are
not tailored for evidence extraction of two formats
and cross-format evidence interactions, which are
the main challenges of our task.

Many efforts aim at fusing evidence of two for-
mats in FEVEROUS. Kotonya et al. (2021) and
Gi et al. (2021) convert the extracted table cells
to strings with human-designed templates to get
a unified evidence set of sentences. Bouziane
et al. (2021) convert each evidence sentence to
a small table and verify the claim according to a
set of evidence tables. Hu et al. (2022) perform
bi-directional format conversion and apply dual-
channel encoding to the evidence set. However,
their format fusion is only performed in the ver-
ification step after evidence extraction. Without
evidence fusion in the extraction step, much evi-
dence has been left, especially cell evidence and
evidence with fewer overlaps with the given claim.

For works fusing evidence in the extraction step,
Kotonya et al. (2021) and Malon (2021) convert
cells to strings and treat all evidence candidates as
sentences for evidence selection. They neglect the
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delicate structure of nested tables and lose much
context information after the format conversion.

Our proposed UNIFEE introduces column nodes
and layer-aware table representations, which can
gather complex table information and facilitate
cross-format interactions in a similar granularity in
the evidence extraction step.

6 Conclusion

In this paper, we propose a Unified Evidence Ex-
traction model (UNIFEE) for fact extraction over
structured and unstructured data. UNIFEE adopts a
mixed evidence graph to encourage evidence inter-
actions among evidence candidates in both formats
without manually designed conversion rules. Ex-
periments on the FEVEROUS benchmark demon-
strate that, with UNIFEE, a simple claim verifica-
tion model outperforms previous SOTA results by a
large margin. Further analysis shows that UNIFEE
enhances the contextualized modeling of cells in
complicated nested tables, thus largely improving
the evidence extraction performance.
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8 Limitations

Although we consider evidence interactions in the
evidence extraction step and find out required ev-
idence with less overlapping with the claim, it is
hard for our method to recall multi-hop evidence
in different pages since these pages are left out in
the document retrieval step.

Apart from cell evidence and sentence evidence,
there is a small proportion of evidence in the
FEVEROUS dataset whose type is table caption,
list or so. We simply ignore evidence of these types
in the evidence retrieval step. To further improve
the quality of evidence extraction step, we should
also take these evidence types into consideration.

Another limitation is that the instances of the
three veracity labels is unbalanced. From the de-
tails of each split shown in Appendix A, only 3%
of the training split is labelled NEI, which makes
it hard for models to learn predicting this class ac-
curately. We have not tried solving this problem
yet.
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A Statistics of the FEVEROUS dataset

FEVEROUS6 is an open-domain dataset based on
English Wikipedia which contains 95.6 million sen-
tences and 11.8 million tables. The dataset has
87,026 claims, with an average length of 25.3. An
average of 1.4 sentences and 3.3 cells (0.8 tables)
are required to verify each claim. Only text evi-
dence is required in 34,963 instances, only tables
in 28,760 instances, and both formats are required
in 24,667 instances. 49,115 instances are marked
as SUPPORTS, 33,669 as REFUTES, and the re-
maining 4,242 are marked as NEI. Table 4 displays
specific label and evidence distributions in each
split.

Train Dev Test

Supported 41,835(59%) 3,908(50%) 3,372 (43%)
Refuted 27,215(38%) 3,481(44%) 2,973 (38%)
NEI 2,241 (3%) 501 (6%) 1,500 (19%)

Total 71,291 7,890 7,845

Sentences 31,607(41%) 3,745(43%) 3,589 (42%)
Cells 25,020 (32%) 2,738(32%) 2,816 (33%)
Sentence+Cells 20,865 (27%) 2,468 (25%) 2,062 (24%)

Table 4: Details of each split in FEVEROUS

6https://fever.ai/dataset/feverous.html
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Abstract

Pre-trained Language Models (LMs) have
become an integral part of Natural Language
Processing (NLP) in recent years, due to
their superior performance in downstream
applications. In spite of this resounding
success, the usability of LMs is constrained
by computational and time complexity, along
with their increasing size; an issue that has
been referred to as ‘overparameterisation’.
Different strategies have been proposed in the
literature to alleviate these problems, with the
aim to create effective compact models that
nearly match the performance of their bloated
counterparts with negligible performance
losses. One of the most popular techniques
in this area of research is model distillation.
Another potent but underutilised technique is
cross-layer parameter sharing. In this work,
we combine these two strategies and present
MiniALBERT, a technique for converting the
knowledge of fully parameterised LMs (such
as BERT) into a compact recursive student.
In addition, we investigate the application of
bottleneck adapters for layer-wise adaptation
of our recursive student, and also explore the
efficacy of adapter tuning for fine-tuning of
compact models. We test our proposed models
on a number of general and biomedical NLP
tasks to demonstrate their viability and com-
pare them with the state-of-the-art and other
existing compact models. All the codes used
in the experiments are available at https:
//github.com/nlpie-research/
MiniALBERT. Our pre-trained com-
pact models can be accessed from
https://huggingface.co/nlpie.

†The two authors contributed equally to this work.

1 Introduction

Following the introduction of BERT (Devlin et al.,
2019), generic pre-trained Language Models (LMs)
have started to dominate the field of NLP. Virtu-
ally all state-of-the-art NLP models are built on
top of some large pre-trained transformer as a back-
bone and are subsequently fine-tuned on their target
dataset. While this pre-train and fine-tune approach
has resulted in significant improvements across a
wide range of NLP tasks, the widespread use of
resource-exhaustive and overparameterised trans-
formers has also raised concerns among researchers
about their energy consumption, environmental im-
pact, and ethical implications (Strubell et al., 2019;
Bender et al., 2021).

As a response to this, different approaches have
appeared with the aim to make large LMs more
efficient, accessible, and environmentally friendly.
Model compression is a line of research that has re-
cently received considerable attention. It involves
encoding a larger and slower but more performant
model into a smaller and faster one with the aim to
retain much of the former’s performance capability
(Bucilua et al., 2006). Knowledge distillation (Hin-
ton et al., 2015), quantisation (Shen et al., 2020),
and pruning (Ganesh et al., 2021) are three exam-
ples of such methods.

Adapter modules (Bapna and Firat, 2019; He
et al., 2021) are recently introduced as an effective
mechanism to address the parameter inefficiency of
large pre-trained models. In this approach, several
‘bottleneck adapters’(Houlsby et al., 2019a) are em-
bedded inside different locations within the original
network. During fine-tuning, the parameters of the
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original model are kept fixed, and for each new
task only the adapters are fine-tuned. This only
adds a small number of parameters to the overall
architecture and allows for a much faster and more
efficient fine-tuning on different downstream tasks.

Another approach to improve efficiency of LM-
based transformers is shared parameterisation,
which was popularised by ALBERT (Lan et al.,
2019). While the original formulation of trans-
formers (Vaswani et al., 2017) employs full pa-
rameterisation wherein each model parameter is
independent of other modules and used only once
in the forward pass, shared parameterisation allows
different modules of the network to share parame-
ters, resulting in a more efficient use of resources
given the same parameterisation budget. However,
a common downside of this approach is slower in-
ference time and reduced performance. Ge and
Wei (2022) posits two different parameterisation
methods as an attempt to address the compute and
memory challenges of transformer models and ex-
plores layer-wise adaptation in an encoder-decoder
architecture. These methods exploit cross-layer pa-
rameter sharing in a way that would allow for the
model to be utilised on mobile devices with strict
memory constraints while achieving state-of-the-
art results on two seq2seq tasks for English.

In this work, we exploit some of the above ap-
proaches to create a number of compact and ef-
ficient encoder-only models distilled from much
larger language models. The contributions of this
work are as follows:

• To the best of our knowledge, we are the
first to compress fully parameterised large lan-
guage models using recursive transformers
(i.e. ALBERT-like models that employ full
parameter sharing).

• We demonstrate the effectiveness of our pre-
trained bottleneck adapters by merely fine-
tuning them on downstream tasks while still
achieving competitive results.

• We present several light-weight transformers
with parameters ranging from 12M for the
smallest to 32M for the largest. These models
are shown to perform at the same level with
their fully parameterised versions.

• Finally, we evaluate our models on a wide
range of tasks and datasets on general and
biomedial NLP datasets.

2 Background

2.1 LM-based Transformers and
Computational Complexity

Ever since the introduction of the transformer ar-
chitecture (Vaswani et al., 2017), large LM-based
transformers such as BERT (Devlin et al., 2019)
have become increasingly more popular in NLP
and lie at the heart of most state-of-the-art models.
A transformer is primarily composed of a number
of transformer blocks stacked on top of one another.
BERTBase , for instance, consists of 12 of these
blocks. The most important component in a block
is the multi-head self-attention module. To be use-
ful for language tasks, transformers are pre-trained
using a number of self-supervised auxiliary tasks
(Xia et al., 2020); these usually include some varia-
tion of Language Modelling (LM) and an optional
sentence-level prediction task. Examples of the for-
mer include Masked Language Modelling (MLM)
and Casual Language Modelling (CLM). For the
latter, BERT uses Next Sentence Prediction (NSP)
and ALBERT (Lan et al., 2019) employs Sentence
Order Prediction (SOP).

The standard approach to utilise these pre-
trained models is to fine-tune them on a target
task. Given N as the sequence length, the com-
putational and time complexity of self-attention
is N2 (Keles et al., 2022). In recent years, dif-
ferent approaches have appeared in the literature
to address this bottleneck by modifying the self-
attention operation in order to improve the general
efficiency of transformers (with different perfor-
mance trade-offs). Tay et al. (2020) surveys the
most common approaches to develop what is re-
ferred to as ‘efficient transformers’.

The magnitude of the parameters of LM-based
transformers is another significant issue that re-
stricts their use. With new releases like GPT-3
and MT-NLG (Smith et al., 2022) that feature
hundreds of billions of parameters, these models
have become increasingly overparameterised due
to the large number of layers and embedding sizes
(Rogers et al., 2020).

2.2 Model Distillation
The overparameterisation issue has motivated re-
search into developing methods to compress larger
models into smaller and faster versions that per-
form reasonably close to their larger counterparts.
Knowledge distillation (Hinton et al., 2015) is
a prominent method that intended to distill a
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Figure 1: The layer-to-layer distillation procedure proposed for distilling the knowledge of a fully-parameterised
teacher into a compact recursive student. While the teacher has fully parameterised layers, the recursive student
has only one layer and the output is fed back into the same layer repeatedly. Despite this compact structure, our
proposed distillation procedure is designed to align the output of each iteration of the recursive student with a
particular layer of the fully-parameterised teacher, as if the student had fully-parameterised layers. Additional losses,
namely, Output Loss, and MLM Loss, as shown above, are used for further knowledge distillation.

lightweight ‘student’ model from a larger ‘teacher’
network by using the outputs of the teacher netwrok
as soft labels. Distillation can either be done task-
specifically during fine-tuning, or task-agnostically
by mimicking the MLM outputs or the interme-
diate representations of the teacher prior to the
fine-tuning stage. The latter is more flexible and
computationally less expensive (Wang et al., 2020).
DistilBERT is a well-known example of a distilled
model derived from BERT which is claimed to be
40% smaller in terms of parameters and 60% faster
while retaining 97% of BERT’s performance on a
range of language understanding tasks (Sanh et al.,
2019).

2.3 Efficient Fine-tuning Approaches

As discussed in Sec 2.1, LM-based transformers
involve a large number of parameters and they are
often fine-tuned on a target dataset. However, fine-
tuning could become time-consuming as the size
of the datasets grow. Different techniques exist
in the literature to alleviate this bottleneck during
fine-tuning. In this section we explore two of these
techniques, namely, prompt tuning and bottleneck
adapters.

Prompt tuning (Lester et al., 2021) is a technique
in which the weights of a language model are kept

frozen during the fine-tuning stage and fine-tuning
is reformulated as a cloze-style task. Similar to
T5, prompt tuning regards all tasks as a variation
of text generation and conditions the generation
using ‘soft prompts’. A typical prompt consists
of a text template with a masked token and a set
of candidate label words to fill the mask. This
turns the target task into another MLM objective
in which the right candidates are chosen and soft
prompts are learned. This method is especially
useful for few-shot learning scenarios where there
are not many target labels available for standard
fine-tuning.

Bottleneck Adapters (BAs) (Houlsby et al.,
2019b; Pfeiffer et al., 2021; Rücklé et al., 2020;
Pfeiffer et al., 2020) are another mechanism used
during fine-tuning to enhance efficiency of training.
Each BA block consists of a linear down-projection,
non-linearity, and up-projection along with residual
connections. Several of these adapters are placed
after the feed-forward or attention modules in a
transformer. Similar to prompts, only the BAs are
trained during fine-tuning.

2.4 Parameter Sharing via Recursion

Weight sharing is a strategy intended to reduce the
overall number of parameters in a model. Lan et al.
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(2019) introduced cross-layer parameter sharing in
a recurrent-like encoder-only architecture where
instead of having several transformer blocks with
different parameters, there is only one transformer
block whose outputs are recursively fed into itself
a number of times. This drastically reduces the
number of unique parameters in the model.

Edgeformer (Ge and Wei, 2022) is a recent
work towards development of parameter-efficient
encoder-decoder models specialised for on-device
seq2seq generation. EdgeFormer employs two
novel approaches for cost-effective parameterisa-
tion which improve on standard cross-layer param-
eter sharing. In addition to efficient parameteri-
sation, Edgeformer explores the use of layer-wise
adaptation in encoder-decoder models. To the best
of our knowledge, however, the use of layer-wise
adaptation in recursive encoder-only models (Sec
3.2) is yet to be explored.

3 Methods

In this work, we introduce a method to distil the
knowledge of a fully parameterised transformer
into a lightweight efficient recursive transformer
via layer-to-layer distillation. We also experiment
with layer-wise adaption of the recursive trans-
former via bottleneck adapters and factorise the
embedding layer for extra parameter saving. In
this section, we explain each component of our
compact models in detail.

3.1 The Fully Parameterised Transformer

For each layer i, let the multi-head attention and
feed-forward blocks be f iatt(x) and f imlp(x), re-
spectively. The output of each layer is computed as
follows:

Oi = f imlp(f
i
att(Oi−1)) (1)

where Oi is the output of the ith layer of the trans-
former.

3.2 The Recursive Student

The output of the recursive student is computed as
follows:

Oi = fmlp(fatt(Oi−1)) (2)

where Oi is the output of the ith iteration of the
recursive transformer. Note that unlike Equation 1,
the multi-head attention and feed-forward blocks
in this case are layer-agnostic, i.e. the same layers
are used recursively.

...
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Figure 2: The two recursive students proposed in this
work. (A) is a simple recursive student that employs
cross-layer parameter sharing, which means that the
multi-head attention and MLP blocks are shared across
all layers. (B) is a recursive student with cross-layer
parameter sharing which additionally uses layer-wise
adaption via bottleneck adapters.

3.3 Recursive Student with Layer-wise
Adaption

This formulation is identical to the recursive stu-
dent defined in Section 3.2, except that, in addition
to the shared parameters, here we employ a small
number of trainable parameters. This will allow the
model to capture distinct features in each iteration,
similar to how transformer layers behave in a fully
parameterised model. To this end, we use Bottle-
neck Adapters (BAs) which are small bottleneck
blocks followed by residual connections, as defined
in the following equation:

ϕ(X) =Wup σ(Wdown X) +X (3)

where ϕ(.) represents the BA and σ(.) is a non-
linearity function such as RELU or GELU. The
recursive student with layer-wise adaption can be
formulated as follows:

Oi = fmlp(ϕ
i
mlp(fatt(ϕ

i
att(Oi−1)))) (4)

where ϕiatt(.) and ϕimlp(.) are the BAs for the multi-
head attention and feed-forward blocks of the ith

iteration of the recursive transformer.

3.4 Embedding Factorisation
Following the work of ALBERT (Lan et al., 2019),
instead of a full-rank embedding matrix, we use
a low-rank matrix with size |V | × r where V is
the vocabulary and r is the rank of the embedding
matrix. We additionally use a projection weight
with the size of r × d where d is the hidden dimen-
sion of the transformer. This is set to 768 in our
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experiments. Factorisation can be mathematically
expressed as

E = Elow We (5)

where Elow ∈ R|V |×r, We ∈ Rr×d and E ∈
R|V |×d. In our experiments, we employ factori-
sation with ranks 312 and 128, and explore initial-
ising the 312 versions with pre-trained embeddings
obtained from the TinyBERT (Jiao et al., 2019) for
the general models and TinyBioBERT (Rohanian
et al., 2022) for the biomedical models.

In our experiments, we employed factorisation
with ranks of 312 and 128 and initialised the 312
versions with pre-trained embeddings from Tiny-
BERT (Jiao et al., 2019) for general models and
TinyBioBERT (Rohanian et al., 2022) for biomedi-
cal models.

3.5 Distillation Procedure
We use three different loss terms, namely, MLM,
alignment, and output. The MLM loss, which is the
original loss used in Masked Language Modelling,
is defined as follows:

LMLM (X,Y ) =
N∑

n=1

CE(fs(X)n, Y n) (6)

where X denotes the the model’s input, N the
number of input tokens, CE the cross-entropy loss
function, Y n the one-hot encoded label for the nth

token1, and fs(X)n the output distribution of the
student for the nth token. Y n and fs(X)n are both
|V |-dimensional.

Because the number of layers in the student net-
work is less than that of the teacher, alignment is
typically achieved by comparing the student’s lay-
ers to a subset of the teacher’s. However, in our
case, the student is recursive and lacks multiple
layers. Therefore, in each iteration, we map the
output of the student’s layer to a specific layer of
the teacher, i.e. the first iteration is considered the
first layer, the second iteration is the second layer,
and so on. The alignment loss is a combination of
two terms, namely, attention and hidden losses. At-
tention loss is used to align the student’s attention
maps with those of the teacher and is defined as
follows:

Latt(Â, A) =
1

HN

H∑

h=1

N∑

n=1

DKL(Â
h
n || Ahn) (7)

1Y n is a zero vector if the nth token is not masked.

Â and A are the inputs to the loss function, and
they correspond to the attention maps of a certain
layer of the student and its associated layer of the
teacher, respectively. The cosine-based hidden loss
is used to align the hidden states of the student and
teacher, and is defined as:

Lhidden(Ĥ,H) =
1

N

N∑

n=1

1− ψ(Ĥn, Hn) (8)

where Ĥ andH are the hidden states of a particular
layer in the student and teacher networks. The ψ
function denotes cosine similarity2. The alignment
loss is defined as:

Lalign(Â, A, Ĥ,H) = Latt(Â, A) (9)

+ Lhidden(Ĥ,H)

The output loss is based on KL divergence and
is inteneded to align the output distribution of the
student with the teacher on the MLM objective.
This loss term is defined as below:

Lout(X) =
N∑

n=1

WnDKL(fs(X)n || ft(X)n)

(10)
where fs(X)n and ft(X)n are the output distribu-
tions of the student and teacher for the nth token,
respectively. Wn is 1 if the nth token is masked
and 0 otherwise. This ensures that only the masked
tokens will contribute to the loss.

The complete layer-to-layer distillation loss used
in this study is expressed by the following equation:

L(X,Y,As, At, Hs, Ht) = (11)

λ1 LMLM (X,Y )

+ λ2

L∑

l=1

Lalign(A
l
s, A

g(l)
t , H l

s, H
g(l)
t )

+ λ3 Lout(X).

As andAt in Equation 11 are collections of atten-
tion maps for the student and teacher, respectively.
Hs and Ht are sets of hidden states for the student
and teacher. L is the number of iterations (layers)
of the recursive student. g(.) is a mapping func-
tion that connects each iteration of the student to
a specific layer of the teacher. Finally, λ1 to λ3
are hyperparameters used for controlling the im-
portance of each component of the loss function
(we use λ1 = 1.0, λ2 = 3.0, λ3 = 5.0 in our
experiments).

2ψ(u⃗, v⃗) = u⃗.v⃗
||u⃗||2||v⃗||2
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Table 1: The DEV set results on the GLUE benchmark. ALBERT6 and ALBERT12 denote ALBERT models with 6
and 12 layers respectively, and an embedding size of 128, which are trained on the same data for the same number of
training steps as MiniALBERT. DistilBERTbase is a DistilBERT model trained with the same distillation setting as
Sanh et al. (2019) and for the same number of training steps as MiniALBERT. Adapter denotes layer-wise adaption
and EF denotes Embedding Factorisation. The metrics used for reporting the results on each dataset is the same as
the official GLUE benchmark. † denotes that the models were trained using adapter tuning in which all weights of
the model except bottleneck adapters are kept frozen during fine-tuning. ∗ shows that the bottleneck adapters were
initialised randomly since the model has not used bottleneck adapters at the pre-training stage. N/A means that the
model did not learn anything from the target dataset. #Params denotes the number of tunable parameters which are
used during fine-tuning. Note that for fine-tuning TinyBERT on the downstream tasks, unlike the original paper
(Jiao et al., 2019), we do not employ task-specific distillation; this is to ensure the comparison with other models is
fair.

Model Adapter EF #Params MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg

BERT-base - - 110M 84.78/84.78 87.91 91.56 92.77 57.19 89.20 91.46 74.72 83.81
DistilBERT - - 65M 82.17/82.33 87.08 89.47 90.25 53.61 87.20 88.66 66.42 80.79
MobileBERT - - 25M 84.03/83.84 87.41 91.17 91.16 51.55 88.12 90.59 66.78 81.62
TinyBERT - - 15M 80.22/80.65 84.44 85.31 88.87 17.53 87.77 89.41 66.06 75.58

DistilBERTbase - - 65M 82.08/82.27 86.01 86.91 91.28 50.33 83.92 88.06 59.56 78.93
ALBERT6 - ✓ 11M 76.35/77.01 84.73 84.51 86.12 29.54 82.76 86.39 59.56 74.10
ALBERT12 - ✓ 11M 78.93/80.03 85.45 88.12 86.92 41.73 86.21 90.65 63.17 77.91

MiniALBERT768 × × 31M 80.71/81.80 86.25 88.13 89.79 43.71 86.93 89.00 61.37 78.63
MiniALBERT312 × ✓ 17M 80.55/81.29 86.46 87.46 89.56 45.82 85.51 89.22 62.09 78.66
MiniALBERT768 ✓ × 32M 81.04/82.05 86.48 88.79 89.79 46.33 86.92 88.46 67.50 79.70
MiniALBERT312 ✓ ✓ 18M 80.78/81.67 86.35 88.57 90.36 45.50 86.60 88.96 69.31 79.78
MiniALBERT128 ✓ ✓ 12M 80.64/81.33 86.29 88.08 89.67 47.93 86.62 89.77 68.95 79.92

MiniALBERT768
†,∗ × × 0.9M 74.61/75.72 79.72 80.70 85.20 N/A 83.90 81.72 52.70 68.25

MiniALBERT312
†,∗ × ✓ 0.9M 74.48/75.70 79.76 82.39 83.48 N/A 80.94 81.22 54.15 68.01

MiniALBERT768
† ✓ × 0.9M 79.48/80.06 85.29 87.84 90.02 42.26 86.33 87.74 67.14 78.46

MiniALBERT312
† ✓ ✓ 0.9M 79.13/80.16 85.27 86.10 89.90 45.25 85.34 87.91 65.34 78.26

MiniALBERT128
† ✓ ✓ 0.9M 78.05/79.66 84.94 87.40 90.36 44.72 84.62 89.08 66.78 78.40

4 Experiments and Results

We evaluate our general models on the widely used
GLUE benchmark (Wang et al., 2018). All the
models were pre-trained on four Tesla V100 32GB
GPUs with a total batch size of 192 (48 each) and
fine-tuning was done using only one Tesla V100. A
random seed of 42 was used consistently through-
out training for fair comparison. For all of the
datasets, in order to do full fine-tuning, we use a
learning rate from the set {5e-5, 3e-5, 1e-5}. For
large datasets (MNLI, QQP, QNLI, and SST-2), we
train models for a maximum of 5 epochs, and up to
ten epochs on other datasets. The hyperparameters
used for full-finetuning are listed in Table 7.

For adapter-tuning, the learning rate was se-
lected from the set {5e-5, 5e-4, 1e-3}. Models
were trained for a maximum of 10 epochs for large
datasets and up to 15 epochs for other datasets.
Table 8 details the hyperparameters used during
adapter tuning on the GLUE benchmark. The re-
sults of the baselines and our general models are
available in Table 1.

The biomedical models are evaluated on the task

of Named Entity Recognition (NER), which is one
of the most prominent tasks in biomedical NLP.
We use four well-known datasets, namely, NCBI-
disease (Doğan et al., 2014), BC5CDR-disease (Li
et al., 2016), BC5CDR-chem (Li et al., 2016), and
BC2GM (Smith et al., 2008).

We generally follow the same pre-processing
pipeline as Rohanian et al. (2022). For biomedical
NER, we use pre-processed datasets from Lee et al.
(2020). We fine-tune the models using a learning
rate from the set {5e-5, 3e-5, 1e-5} and perform
adapter-tuning with a learning rate from {5e-5, 5e-
4, 1e-3}. The hyperparameters for the biomedical
datasets are presented in Tables 9 and 10. The
results of the baselines and our biomedical models
are available in Table 2.

5 Discussion

We trained our recursive students both with and
without adapters and found that generally having
adapters would increase the learning capacity of
the model since each iteration provides an extra
degree of freedom to the model in order to capture
a specific type of feature. As shown in Tables 1

1166



Table 2: The results of biomedical NER for the biomedical baselines and our models distilled from BioBERT-v1.1 on
the PubMed dataset. BioALBERT6 and BioALBERT12 represent ALBERT models with 6 and 12 layers, respectively,
and an embedding size of 128. These models were trained for the same number of steps as BioMiniALBERT using
the same data. “Adapter” refers to layer-wise adaptation and “EF” stands for Embedding Factorization. The results
are reported using the F1-score as the evaluation metric. The notations here are consistent with Table 1.

Model Adapter EF #Params NCBI-disease BC5CDR-disease BC5CDR-chem BC2GM Avg

DistilBioBERT - - 65M 87.93 85.42 94.53 86.60 88.62
CompactBioBERT - - 65M 88.67 85.38 94.31 86.71 88.76
TinyBioBERT - - 15M 85.22 81.28 92.20 82.52 85.30
BioMobileBERT - - 25M 87.21 84.62 94.23 85.26 87.83
BioBERT - - 110M 88.62 86.67 94.73 87.62 89.41

BioALBERT6 - ✓ 11M 86.07 82.00 93.19 84.51 86.44
BioALBERT12 - ✓ 11M 86.07 81.94 93.11 84.33 86.36

BioMiniALBERT768 × × 31M 87.44 84.40 94.18 86.06 88.02
BioMiniALBERT312 × ✓ 17M 87.94 84.45 94.03 86.03 88.11
BioMiniALBERT768 ✓ × 32M 88.02 84.98 94.49 86.10 88.39
BioMiniALBERT312 ✓ ✓ 18M 88.03 84.75 94.23 86.14 88.28
BioMiniALBERT128 ✓ ✓ 12M 87.16 84.58 94.20 86.00 87.98

BioMiniALBERT768
†,∗ × × 0.9M 85.61 82.31 92.80 84.89 86.40

BioMiniALBERT312
†,∗ × ✓ 0.9M 85.98 81.72 91.99 84.65 86.08

BioMiniALBERT768
† ✓ × 0.9M 87.80 84.64 94.20 86.02 88.16

BioMiniALBERT312
† ✓ ✓ 0.9M 87.61 84.55 94.12 85.60 87.97

BioMiniALBERT128
† ✓ ✓ 0.9M 87.71 84.48 94.22 85.87 88.07

and 2, in virtually all of the studies, models with
adapters outperformed models of comparable size
without adapters. In general, both models with and
without adapter have outperformed their baseline
by a significant margin (as shown in Tables 2 and
1), demonstrating the effectiveness of the proposed
layer-to-layer distillation loss for constructing pow-
erful compact recursive models. Comparison be-
tween the attention maps of our trained student and
teacher models (Figure 3 in appendix) suggests the
specific recursive architecture we have introduced
in this work is indeed capable of mimicking the
components of a larger model.

In addition, our experiments revealed that util-
ising adapters in the pre-training stage enables
the model to effectively use adapter-tuning with
only minor performance drops. However, adapter-
tuning in models that have not used adapters in
the pre-training stage causes major performance
drops. We also found that adapter tuning is nearly
30% faster than full fine-tuning. Therefore, with
adapter-tuning, the models can be trained for a
larger number of epochs given the same training
time, which can potentially increase the perfor-
mance of the model. In general, a higher learning
rate was required for adapter-tuning than for full
fine-tuning. For both general and biomedical tasks
we found that a learning rate of 5e−4 results in the
best performance, however, in some cases, a higher
or lower learning rate such as 5e− 5 or 1e− 3 was

deemed better.
Another method explored in this work for pa-

rameter saving is Embedding Factorisation. In our
experiments, we observed that regardless of drastic
parameter reduction, models using this approach
are still able to perform on par or even in some
cases better than models with full-rank embedding.

6 Ablation Studies

6.1 The Effect of The Alignment Loss

One of the main losses explored in this work for
knowledge distillation is the alignment loss as ex-
plained in Equation 9. Alignment loss is used for
mapping each iteration of the recursive student to a
specific layer of the teacher, so the knowledge of
each fully-parameterised layer is explicitly encoded
into a specific iteration of the recursive student.
The alignment loss consists of two losses, one for
aligning the attention maps and one for aligning the
hidden states. For ablation studies, we trained our
best model for 20k steps on the Wikipedia dataset,
with different alignment losses, and evaluated the
resulting models on the GLUE dataset. The results
are shown in Table 3.

As Shown in Table 3, without alignment, the
performance of the recursive student drops signifi-
cantly which shows the importance of using a layer-
to-layer distillation technique. Furthermore, we
discovered that aligning hidden states is far more
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Table 3: Ablation study on the alignment loss. The
performance drop is computed based on the difference
with the average score of the model with full alignment
(i.e. when all the alignment losses are used).

Alignment Type Performance Drop

Hidden-Only -0.5
Attention-Only -3.27
No-Alignment -5.27

important than aligning attention maps. We even
noticed occasional improvements in some tasks
by solely aligning hidden states, but the average
performance of full alignment remains higher than
hidden states alignment.

6.2 The Effect of an Extra Embedding Loss
Following the work of Jiao et al. (2019) and as part
of our ablation tests, we investigated employing
an extra loss for aligning the embeddings of the
recursive student and fully-parameterised teacher.
This embedding loss is defined as follows:

Lembed(Ê, E) =
1

N

N∑

n=1

1− ψ(Ên, En) (12)

Ê and E are the inputs to the loss function and
represent the embeddings of the student and teacher.
The embedding weights are not aligned globally in
this formulation; instead, the local embeddings cre-
ated for each training sample are compared before
entering the transformer encoder. For our abla-
tion studies, we trained models on the Wikipedia
dataset for 20k steps, with and without this extra
alignment loss, and evaluated them on the GLUE
benchmark.The average performance of the models
are reported in Table 4.

Table 4: Ablation study on the embedding loss. ‘Full-
rank’ denotes models without embedding factorisation,
and ‘Loss’ denotes extra embedding loss during distilla-
tion.

Model Avg Performance

Full-rank 76.01
Full-rank + Loss 75.24
Factorised 76.31
Factorised + Loss 76.14

We discovered that, unlike the trend seen in fully-
parameterised models, embedding loss reduces the

performance of the student model (Table 4). This
difference between the recursive student and the
fully parameterised teacher implies that forcing the
recursive student’s embedding to match that of the
fully parameterised teacher may not be beneficial,
and that allowing the student to learn embeddings
independently works better.

7 Conclusion and Future Works

In this work, we explored distilling the knowledge
of fully-parameterised language models into recur-
sive students with cross-layer parameter sharing.
We used a layer-to-layer distillation technique to
observe the learning capacity of the recursive stu-
dents compared to their fully-parameterised teach-
ers. We used bottleneck adapters for improving
the performance of our recursive students and also
assessed the benefits of adapter-tuning at the fine-
tuning stage. Furthermore, an embedding factori-
sation technique was used for additional parameter
reduction, which was evaluated with and without an
extra distillation loss to match the student’s embed-
dings with the teacher. Finally, by integrating all of
the strategies outlined above, we were able to train
compact recursive students with no more than 12M
parameters, yielding competitive performance on
both general and biomedical NLP. In the future, we
hope to investigate various parameter-sharing and
embedding factorisation strategies, as well as other
layer-wise adaption techniques such as prompt-
tuning. We would also like to train recursive stu-
dents with larger hidden sizes and more training
iterations to compress massive fully-parameterised
models with minor performance drops.
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Limitations

Regardless of the parameter reduction induced by
our proposed recursive architecture, the resultant
models have the same inference latency and mem-
ory complexity as fully-parameterised models of
comparable size, which for our models is Distil-
BERT.

In general, our models’ capacity for learning se-
mantic and grammatical knowledge is limited, and
they may perform poorly on tasks that necessitate a
significant amount of reasoning and understanding,
such as Question Answering or Semantic Accept-
ability. More analysis is required to determine the
source of this limitation, i.e. whether it is a result
of the architecture used or a consequence of the
particular cross-layer sharing method etc.

Ethics Statement

In this study, we aimed to create efficient
lightweight versions of large and less accessible
NLP models. This area of research aims to make
AI/NLP models more readily available, with fewer
computational resources required to run them and
potentially less negative environmental impact.

This work does not use any private or sensitive
data and instead relies on widely used publicly
available datasets that have been utilised by other
researchers in the field with references provided in
the paper for more information. All the codes and
models are going to be made available for repro-
ducibility purposes.
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A Details of the Pre-Training

A.1 General Models
For pre-training our general models we use the
English subset of the Wikipedia dataset which is
available on the Huggingface platform. For pre-
processing the Wikipedia dataset, we use the ‘bert-
base-uncased’ tokeniser and apply a sliding win-
dow with a size of 256 tokens and a stride size of
128. Due to computational restrictions, we limit the
maximum number of tokenised samples per article
to 10, resulting in a total of 21 million training sam-
ples of 256 tokens each. We then follow BERT’s
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masking approach, with a masking probability of
15% for each token.

Table 5: Hyperparameters used for pre-training models
on Wikipedia dataset

Param Value

learning rate 5e− 4
scheduler Linear
optimiser AdamW
weight decay 1e− 4
total batch size 192
warmup steps 5000
epochs 1

A.2 Biomedical Models
We pre-trained the biomedical models using the
PubMed Abstracts dataset which consists of 31
million abstracts from PubMed articles. In the
pre-processing stage, we employed the ‘bert-base-
cased’ tokeniser with a maximum length of 256
and adhered to the same masking strategy as used
in the training of the general models.

Table 6: Hyperparameters used for pre-training models
on Wikipedia dataset

Param Value

learning rate 5e− 4
scheduler Linear
optimiser AdamW
weight decay 1e− 4
total batch size 192
warmup steps 5000
training steps 100K

B Finetuning Details

C Comparison of Teacher and Student
Attention Maps

Figure 3 shows attention maps of a teacher model
and one of the proposed students on the input sen-
tence “This is the first book I’ve ever done”. The
first and second rows of the student contain four
attention heads belonging to the 0th and 4th itera-
tion of the recursive student, respectively. The first
and second row of teacher contain attention heads
belonging to the 1st and 9th layer of the teacher.

Table 7: Hyperparameters used for full fine-tuning of
the models on the GLUE benchmark

Param Value

learning rate {5e-5, 3e-5, 1e-5}
scheduler Linear
optimiser AdamW
weight decay 0.01
batch size {8, 16, 32}
epochs {3, 5, 10}

Table 8: Hyperparameters used for adapter-tuning of
the models on the GLUE benchmark

Param Value

learning rate {5e-5, 5e-4, 1e-3}
scheduler Linear
optimiser AdamW
weight decay 0.01
batch size {8, 16, 32}
epochs {5, 10, 15}

Table 9: Hyperparameters used for full fine-tuning of
the models on the Biomedical datasets

Param Value

learning rate {5e-5, 3e-5, 1e-5}
scheduler Linear
optimiser AdamW
weight decay 0.01
batch size 16
epochs 5

Table 10: Hyperparameters used for adapter tuning of
the models on the Biomedical datasets

Param Value

learning rate {5e-5, 5e-4, 1e-3}
scheduler Linear
optimiser AdamW
weight decay 0.01
batch size 16
epochs {5, 10}

During training, these sets of layers have been com-
pared together in order to compute the alignment

1171



loss. Despite the fact that the recursive student has
only one layer, it has been able to perfectly mimic
its teacher in some of the heads which shows the
efficiency of the layer-to-layer distillation loss.
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Student

Teacher

Figure 3: The attention maps for the teacher and one of the proposed recursive students on the input “This is the
first book I’ve ever done”.
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Abstract

The detection and normalization of temporal
expressions is an important task and prepro-
cessing step for many applications. However,
prior work on normalization is rule-based,
which severely limits the applicability in real-
world multilingual settings, due to the costly
creation of new rules. We propose a novel
neural method for normalizing temporal ex-
pressions based on masked language model-
ing. Our multilingual method outperforms
prior rule-based systems in many languages,
and in particular, for low-resource languages
with performance improvements of up to 33
F1 on average compared to the state of the art.

1 Introduction

Temporal tagging consists of the extraction of
temporal expressions (TE) from texts and their
normalization to a standard format (e.g., May

’22: 2022-05). While there are deep-learning ap-
proaches for the extraction, temporal tagging as a
whole is usually solved with highly specific rule-
based systems, such as SUTime (Chang and Man-
ning, 2012) or HeidelTime (Strötgen and Gertz,
2013). However, transferring rule-based methods
to new languages or text domains requires a large
manual effort to create rules specific to the target
language. Although work on the automatic gen-
eration of rules for many languages (Strötgen and
Gertz, 2015) exists, the rule quality typically does
not match the high accuracy of hand-crafted rules.

In contrast to rule-based systems, neural net-
works are known for their ability to generalize to
new targets, in particular, for cross- and multilin-
gual applications (Rahimi et al., 2019; Artetxe and
Schwenk, 2019). In the context of temporal tag-
ging, recent works have shown promising results
of neural networks for TE extraction in monolin-
gual (Laparra et al., 2018) and multilingual settings
(Lange et al., 2020) where a single neural model is
trained on many languages at once. However, TE

... appear in <TIMEX3 type="DATE" value=MASK>May</TIMEX3>.

CIR: UNDEF-year-05

Slots: ...

The Eta Auariids meteor shower will appear in May .

(1) Extraction

(2) Normalization to CIR
UNDEF-

year 05PAD PAD

(3) Anchoring
Anchor:  2022-03-15 FUTURE2022-05

PADwith MLM
model

Figure 1: Overview of our 3-step pipeline for tempo-
ral tagging consisting of extraction of temporal expres-
sions (step 1), normalization to a context-independent
representation (CIR) using a slot-based masked lan-
guage model (step 2) and anchoring given a reference
time and further contextual cues (step 3).

normalization remains challenging, and no solution
for the normalization across languages exists yet.

We propose a new multilingual normalization
method which can make use of labeled data from
many languages by training a neural transformer
model with a masked language modeling (MLM)
objective. Thus, we adopt the MLM objective func-
tion for a new purpose: TE normalization.

To the best of our knowledge, this is the first
work that uses neural networks for TE normaliza-
tion. For this, as shown in Figure 1 and detailed
below, we split the normalization task into two
steps: normalization to a context-independent rep-
resentation (CIR) and anchoring this representation
using the document context.

The main contribution of this paper is our novel
neural normalization method based on masked lan-
guage modeling. For this, we create a large-scale
multilingual dataset with weakly-supervised anno-
tations of TEs and their normalized values in 87
languages. Our extensive set of experiments across
17 languages demonstrates that our multilingual
method robustly works for many languages and
outperforms the state of the art for multilingual
temporal tagging, HeidelTime (Strötgen and Gertz,
2015), especially for low-resource languages by
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more than 33 F1 on average. Further, we explore
different training and decoding strategies for our
model. The code for our models and the weakly-
supervised data is publicly available.1

2 Related Work

TE Normalization. Besides rule-based systems
(Chang and Manning, 2012; Strötgen and Gertz,
2013), one normalization method for TEs are
context-free grammars (Bethard, 2013; Lee et al.,
2014) which are independent of the extraction
method. However, they are even more language-
specific than rule-based systems and hardly gen-
eralizable to new languages. Laparra et al. (2018)
used a rule-based procedure for English TE nor-
malization based on the SCATE format proposed
by Bethard and Parker (2016). While their method
could be extended to multilingual applications, no
annotated data for other languages is available in
the SCATE format, and it is mostly incompatible
with the predominant TimeML (Pustejovsky et al.,
2005) annotation format. Therefore, we will focus
on the TimeML format in this work and present the
first neural approach to TE normalization.

Masked Language Modeling (MLM). The
MLM paradigm gains a lot of attention (Sun
et al., 2021) due to popular language models like
BERT (Devlin et al., 2019) This leads to active re-
search on using MLM to solve further tasks like
text classification (Brown et al., 2020), named en-
tity recognition (Ma et al., 2021) and relation ex-
traction (Han et al., 2021), also in low-resource
languages (Hedderich et al., 2021). In this work,
we adopt it to TE normalization for the first time.

3 Background on Temporal Tagging

Temporal tagging addresses the detection, clas-
sification and normalization of temporal expres-
sions in unstructured texts — often following the
TimeML specifications (Pustejovsky et al., 2005).

TimeML’s most important attributes are type
(the class of an expression, e.g., DATE, TIME, DU-
RATION or SET), and value (the normalized mean-
ing of an expression, e.g., YYYY-MM-DD for specific
days, such as 2022-05-01 for May 1, 2022). While
some TEs contain all necessary information for the
normalization, e.g., “May 1, 2022”, many expres-
sions are incomplete w.r.t. the temporal informa-
tion required for a normalization. An example is a

1https://github.com/boschresearch/
temporal-tagging-eacl

relative expression like “yesterday” which needs an
anchor point. Given the anchor point May 1, 2022,
for example from the document creation time, “yes-
terday” should be annotated with type=DATE and
value=2022-04-30.

Determining the anchor point can be challeng-
ing as it requires additional context information
that could be given anywhere in the document.
Therefore, systems for TE normalization, such as
HeidelTime (Strötgen and Gertz, 2013), create an
intermediate context-independent representation
(CIR) of the value. In the syntax of HeidelTime,
the expression yesterday would result in a CIR of
UNDEF-last-day. Similarly, an underspecified ex-
pression, such as “May” would be represented with
a CIR of UNDEF-year-05. Note that such a syntax
for CIRs is language-independent. See Appendix A
for more details. To determine the final value, the
CIR needs to be anchored given, e.g., a reference
date and further cues (such as tense information).

4 Approach

We propose to approach multilingual temporal tag-
ging in three steps as shown in Figure 1: (1) Extrac-
tion of temporal expressions and their types using
a multilingual sequence tagger; (2) Normalization
of TEs to CIRs with our novel MLM-based nor-
malization model; (3) Anchoring of CIRs given a
reference time, e.g., using HeidelTime rules.

Our main contribution is a neural model for the
second subtask, the normalization to a CIR. To the
best of our knowledge, this has not been addressed
with neural networks before. In this section, we
detail all components of our approach. Information
on the models that we apply for the first and third
subtasks as well as an ablation study of directly
predicting the normalized anchored value (without
CIRs) are given in Section 5.

Masked Language Modeling. We model the
task of assigning CIRs to temporal expressions
as masked language modeling. In particular, we
add TimeML annotations as inline information
to the text sequences and mask the value field
for prediction, e.g., "... <TIMEX3 type="DATE"
value="MASK">yesterday</TIMEX3> ...". Note
that those annotations could be the ground-truth an-
notations when applying the model on gold tempo-
ral expressions or predicted temporal expressions
when using the model in the 3-step pipeline as
described above. In our experiments, we train a
transformer model for CIR prediction using the

1175

https://github.com/boschresearch/temporal-tagging-eacl
https://github.com/boschresearch/temporal-tagging-eacl


masked language modeling (MLM) objective.

Slot-Based Value Representation. Using only a
single mask token for the whole CIR would require
the model to store all possible CIRs in its vocabu-
lary. Since it is not possible to enumerate, i.a., all
possible dates, we model the CIRs as a fixed-length
sequence of slots. In particular, we define 11 slots
and use regular expressions to split the value field
into slots in the training data. Figure 1 shows an
example for the CIR “UNDEF-year-05” that is rep-
resented as the slots “ [PAD], [year], [05], [PAD],
..., [PAD]”. Details on the slots and regular expres-
sions are given in Appendix A. To cover the full
vocabulary of CIRs, we introduce 200 new tokens
to the vocabulary of the language model.2

Curriculum Learning. Our slot-based represen-
tation with 11 slots per CIR results in 11 masks. To
train the model on this task, we apply curriculum
learning in the first half of the training. In particu-
lar, we start with masking only a single slot of the
CIR and steadily increase the number of masks up
to the maximum of 11. For the second half of the
training, masking is applied to all slots. We follow
Devlin et al. (2019) and mask different parts of
the input with different probabilities. In particular,
we mask the value slots with a probability of 70%,
annotated tokens with 15%, types with 10% and
other text parts with 5%.

Inference and Decoding. For inference, we first
add 11 masks (i.e., one per slot) to the input sen-
tence. They serve as value placeholders that need
to be predicted. Then, we use the masked language
model to predict the most probable sequence of
slots for the CIR. To decode the sequence, we ap-
ply sequential left-to-right decoding of all masks by
iteratively decoding the left-most mask and replac-
ing the mask with its predicted value until all masks
are resolved. We compare this to two alternative
decoding strategies: (i) decoding all masks simul-
taneously, (ii) training a conditional random field
model that takes the logits as input and uses the
Viterbi algorithm to determine the most probable
sequence of predictions (Lafferty et al., 2001).

5 Experiments

This section describes our experiments and dis-
cusses the results. We compare our model to Hei-
delTime (Strötgen and Gertz, 2013), the current

2In our experiments, we compare our pre-defined slots to
using subtokens from the language model tokenizer.

state of the art for multilingual temporal tagging.
For evaluation, we use the TempEval3 evaluation
script (UzZaman et al., 2013) and report strict, re-
laxed and type F1 for the extraction and value F1

for our normalization experiments, respectively.

Evaluation Data. Our models are evaluated on
gold-standard corpora in 17 languages. Details on
the corpora are given in Appendix B.2. We divide
the languages into high- and low-resource depend-
ing on whether manually created HeidelTime rules
are available for the respective language.

Training Data. For training the normalization
model, we create a large-scale weakly-supervised
dataset covering 87 languages.3 Reasons are that (i)
existing gold training data is too small to cover the
wide range of different values and (ii) CIRs are not
part of existing annotations. For all languages, we
take the data from GlobalVoices4 (news-style docu-
ments) and Wikipedia5 (narrative-style documents),
use spacy for tokenization and HeidelTime for the
annotation with temporal expressions. The number
and quality of annotations is highly dependent on
the amount of available data for that language and
the quality of HeidelTime’s rules. Details on the
weakly-supervised data are given in Appendix B.1.

3-Step Pipeline for Temporal Tagging. Both
our temporal expression extraction and normaliza-
tion models are based on the mulitlingual XLM-R
transformer (Conneau et al., 2020).6

We model the TE extraction as a sequence-
labeling problem following Lange et al. (2020). For
this, we convert the annotated corpora into the BIO
format. For the monolingual setting (Mono), we
train one model per language on the gold-standard
resources if available or the weakly-supervised data
otherwise. For the multilingual setting (Multi), we
train a single model on the combined training re-
sources of all languages.

For the normalization to CIRs, we train our pro-
posed model with masked language modeling (see
Section 4). In our experiments, we evaluate this
model in combination with the multilingual extrac-
tion model (Multi+OUR) as well as in combination
with the gold boundaries for temporal expressions
(Gold+OUR) which serves as an upper bound.

3The set of 87 languages is the intersection of languages
covered by HeidelTime, our data and the XLM-R language
model that we use for initializing our models.

4https://globalvoices.org/
5https://wikipedia.org/
6xlm-roberta-base with 270M parameters.
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HeidelTime Mono+OUR Multi+OUR Gold+OUR
Str. Rel. Type Val. Str. Rel. Type Val. Str. Rel. Type Val. Val.

de (N) 69.7 79.3 75.4 62.4 75.4 85.9 80.6 61.5 70.9 82.6 76.2 59.5 74.1
de (W) 88.5 94.3 89.0 84.8 89.6 97.0 96.0 83.8 88.9 96.7 95.4 85.7 87.5
en (N) 81.8 90.7 83.3 78.1 85.7 92.3 86.5 72.5 82.0 88.9 82.8 70.5 79.0
en (W) 90.6 94.3 90.6 94.3 93.1 96.6 93.1 89.7 94.7 98.3 87.7 94.2 94.2
es (N) 83.7 90.2 86.1 80.9 89.6 94.5 91.4 79.0 89.3 94.2 90.0 77.1 84.4
et (N) 42.4 57.4 51.3 44.0 3.3 28.0 24.4 9.6 55.5 78.0 72.0 45.2 64.8
fr (N) 85.6 90.6 82.3 73.3 82.5 88.1 79.7 67.9 82.4 89.8 76.9 61.4 68.0
hr (W) 93.3 95.8 94.6 85.7 84.1 90.8 89.5 74.6 86.3 91.7 90.1 75.7 84.7
it (N) 84.4 92.9 83.5 74.1 69.8 81.4 73.7 60.4 76.8 82.4 78.4 67.2 75.3
nl (N) 54.0 91.3 79.0 44.4 61.4 73.0 67.2 42.7 76.0 82.7 81.4 53.5 64.6
pt (N) 71.3 80.9 76.5 63.2 87.1 91.2 85.0 68.7 87.1 91.1 86.5 68.7 76.6
vi (W) 92.6 89.5 96.6 91.6 87.6 85.0 89.8 83.5 91.5 93.8 92.6 90.8 91.2

avg. 78.2 87.3 82.4 75.6 75.8 83.7 79.7 66.2 81.8 89.2 84.2 70.7 78.7

HeidelTime-auto Mono+OUR Multi+OUR Gold+OUR
Str. Rel. Type Val. Str. Rel. Type Val. Str. Rel. Type Val. Val.

ca (N) 28.1 62.8 61.1 43.6 29.5 64.3 62.3 40.2 77.3 87.8 82.5 59.7 67.9
el (W) 2.2 4.9 4.9 1.3 47.0 88.2 86.1 64.6 81.7 92.0 90.2 70.6 83.7
eu (N) 22.5 26.8 23.9 18.3 0.0 0.0 0.0 0.0 59.7 70.2 66.0 45.0 51.2
id (N) 19.7 54.7 44.5 40.1 17.4 39.7 30.6 25.6 49.7 79.5 63.9 46.9 64.8
pl (N) 18.8 27.2 16.5 11.2 86.1 92.5 87.6 58.7 86.7 92.2 87.7 59.0 66.0
ro (N) 3.2 19.5 16.7 5.5 3.8 22.6 37.0 7.7 9.8 47.2 39.1 19.7 54.6
ua (W) 1.6 2.8 2.2 1.2 80.2 90.6 87.5 63.6 79.4 90.7 88.8 65.4 74.5

avg. 12.7 28.4 24.3 17.3 37.7 56.8 55.9 37.2 63.5 79.9 74.0 50.9 66.1

Table 1: Detailed overview of our results for extraction (Str., Rel., Typ.) and normalization (Val.) per language for
News and Wiki domains. The upper and lower parts display high- and low-resource languages, respectively.

For anchoring CIRs, we use rules similar to Hei-
delTime’s rules.7 In particular, anchor dates can be
given by the document creation time or by previous
temporal expressions (Strötgen and Gertz, 2016).

Results. Table 1 gives an overview of our ex-
perimental results. Multilingual extraction outper-
forms monolingual extraction, probably because
the model is able to use knowledge from different
languages. Our multilingual model achieves +2
F1 for high-resource and +51 F1 for low-resource
languages compared to HeidelTime.

The normalization results are given in the Val.
columns of Table 1. Our masked language model
is matching HeidelTime’s performance rather close
for high-resource languages and outperforms it for
low-resource languages with an increase of 33 F1

points on average with our multilingual extraction
model. Note that our models are multilingual, thus,
we can use the same model for all languages.8 The
upper bound of using gold extractions (Gold+OUR)

7More precisely, we use a slightly modified version of
HeidelTime’s SPECIFYAMBIGUOUSVALUESSTRING function
which incorporates tense information of the context using mor-
phological features from spacy (https://spacy.io/usage/
linguistic-features#morphology).

8Since we actually train the MLM model on 87 languages,
we could even apply it to more languages if there were gold-
standard evaluation datasets publicly available.

shows that the extraction part still offers room for
future improvements.

Note that HeidelTime with automatically cre-
ated rules has a poor performance for some low-
resource languages (el, ro, ua). This is similar
to the observations by Grabar and Hamon (2019)
who found that “[e]xploitation of this automatically
built system produced no results when applied to
the Ukrainian data.” For those languages, the auto-
matic rule generation is not good enough in prac-
tice which emphasizes the need for multilingual
systems like our model.

Ablation Studies. As our proposed model con-
sists of multiple components, we now investigate
their individual effects in more detail. The results
for our ablation studies are given in Table 2.

First, we test different decoding strategies as
described in Section 4. We find that sequential de-
coding works best. However, it also requires more
computation time. A cheaper alternative with only
minor performance decreases is the simultaneous
decoding of all masks.

Second, we analyze the impact of different value
representations by comparing our proposed ap-
proach with CIR and slot tokenization to (i) to-
kenization of values using the standard XLM-R
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tokenizer instead of pre-defined slots (w/o OUR

Slots), and (ii) training a model to directly predict
the anchored value without CIRs in between (w/o
OUR CIR). For (i), we find that our slot method has
major advantages when processing narrative texts,
such as Wikipedia, due to the higher amount of
relative expressions (cf., Table 3 in Appendix B.3),
that are tokenized into many subtokens (up to 34,
instead of 11 when using our slots). For (ii), we
add the document creation time to the input so that
the model has more temporal information to predict
the fully normalized value directly instead of a CIR.
However, we find that current transformers are not
able to correctly incorporate this information in a
combined normalizing+anchoring step and mostly
predict a memorized, incorrect value. Thus, using
CIRs as an intermediate step is important for neural
temporal tagging.

Third, we investigate the training strategy and
training data. Our curriculum learning has ad-
vantages for low-resource languages as it reduces
the training complexity which helps for the diffi-
cult adaptation to languages with few resources.
Weakly-supervised training data is required, as the
amount of gold-standard data is too small to train
the MLM model. Finetuning the trained MLM
model further on gold data (Weak+Gold) decreases
performance slightly. Training the model on mono-
lingual data only also decreases performance, high-
lighting the prospects of our multilingual approach.

Finally, we compare our models to an encoder-
decoder model, i.e., an autoregressive language
model that we adapt to TE normalization. For this,
we follow the entity linking approach from De Cao
et al. (2021) and train a BART encoder-decoder
model (Lewis et al., 2020) for constrained decod-
ing against a subspace of normalized TEs with
our weakly-supervised data. We add the document
creation time to the input, mark the extracted an-
notations and keep other TEs in the context, as in
our other experiments. Given the gigantic amount
of possible temporal expressions, e.g., there are
roughly 32M seconds in a single year, we have to
prune the search space to a reasonable size. Thus,
we do not use time expressions of hour and smaller
granularities and restrict the search space to years
and months from 1 AD to 2100. Finer elements like
weeks, days and daytimes are added for years be-
tween 2000 and 2026. We use durations for all de-
fined units with numbers up to 10,000, e.g., 10,000
days. With this, we prune the search space to 1.4B

News Wiki Low-R.
de en de en ca eu

OUR 74.1 79.0 87.5 94.2 67.9 51.2

Decoding Strategy (OUR uses Sequential)
w/ Simultaneous 73.3 78.3 87.5 93.5 68.1 50.4
w/ Viterbi 73.3 78.3 87.5 94.2 67.9 50.4

Value Representation
w/o OUR Slots 71.9 77.9 83.3 92.8 63.7 27.8
w/o OUR CIR 68.5 68.0 66.5 55.7 41.6 21.2

Training Strategy
w/o Curriculum 72.1 80.4 85.5 94.4 64.7 29.3

Training Data (OUR uses Weak)
Weak + Gold 68.3 76.1 58.2 93.3 - -
only Gold 14.2 13.8 6.7 3.6 - -
only Monolingual 63.1 76.8 86.8 91.4 29.2 8.9

Encoder-Decoder Model
Monolingual 59.3 67.4 49.4 59.6 2.2 7.3
Multilingual 63.5 63.0 49.0 58.5 54.8 25.2

Table 2: Ablation study for our model components
(Value F1) on gold extractions. Low-R. stands for low-
resource languages without gold training data.

terms which we store in a prefix tree. This re-
sults in an acceptable inference speed with BEAM
search (5 beams). It takes roughly twice as long
as our sequential MLM decoding. Note that this
BART model has more parameters (400M) than
the base version of XLM-R (270M) that we use in
our model. The results are shown in the lower part
of Table 2. We see, that our proposed MLM nor-
malization model outperforms the BART model by
a large margin. Nonetheless, the encoder-decoder
model performs comparable to our model variant
that directly predicts fully-normalized expressions.
This clearly highlights the need for normalizing to
CIRs before anchoring temporal expressions.

6 Conclusion

In this paper, we introduced a new method for nor-
malizing temporal expressions based on masked
language modeling and a new slot-based predic-
tion scheme of context-independent representa-
tions. With this approach, we were able to train a
single multilingual model for the task. We evalu-
ated our method in 17 languages and set the new
state of the art in low-resource languages with mas-
sive improvements of 35 F1 points on average. The
success of our method demonstrates the potential
of neural networks for temporal normalization and
we are convinced that it will enable future research
on this topic. An interesting research direction is
the joint modeling of extraction and normalization.
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Limitations

Our experiments are focused on Indo-European
languages due to the lack of publicly available,
labeled data points in other languages. Excep-
tions for which we could test zero-shot transfer
were Basque, Estonian, Indonesian and Vietnamese.
Even though, our model is working for these lan-
guages, it is not clear if the multilingual models
transfer to all languages seen in the pre-training or
by our weak supervision. The training of the mul-
tilingual models requires a considerable number
of computational resources (up to 1.5 GPU days),
which might not be available for all people/orga-
nizations. By publishing our model, we hope to
lower the barrier for this kind of research by provid-
ing a pre-trained starting point. An in-depth error
analysis to better understand which types of tem-
poral expressions are well or less well covered in
which language by our model was not performed.
We are full of hope that such analyses can be tack-
led by users of our models who have the required
language skills so that the analysis does not have
to be limited to English.
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A Slot Tokenization of CIRs

In this section, we describe our slot-based tok-
enization of the context-independent representa-
tion (CIR) of values as introduced in Section 3 and
Section 4 of the main paper.

A.1 Overview of Slots

We use the following 11 slots to represent CIRs
values.9 These slots are then used for masking
during training and inference with our normaliza-
tion model (which basically is a masked language
model).

9Note that our CIRs describe a superset of TimeML.

SB: This slot can contain BC information of
years (e.g., as in BC4000 for the year 4000 BC) or
the duration markers P and PT. Moreover, mathe-
matical operations like PLUS are covered as used in
relative expression involving offset computations
(e.g., this-day-plus-2 for the day after tomor-
row) and holiday names (EasterSunday).

SD1, SD2: These slots are used to represent 4-
digit year numbers (SD1 = 20 and SD2 = 22 for the
year 2022) by splitting the 4-digit number into two
2-digit numbers. This helps to generalize to unseen
years as fewer parameters have to be learned. In
addition, we use SD1 to mark reference expressions
like PAST_REF. For underspecifed expressions like
UNDEF-this-day, this is stored in SD1 and day
in SD2. Moreover, SD1 and SD2 are used to store
numbers of DURATION expressions.

SD3, SD4: Analogously to SD1 and SD2 that
are used to store year information, SD3 is used for
months and SD4 for days.

ST1, ST2, ST3: Temporal information from ex-
pressions of type TIME that are smaller than day
granularity are stored in the ST slots. For exam-
ple, the hour information of 24:00 and the daytime
information, such as EV is stored in ST1. Informa-
tion on minutes and seconds is stored in ST2 and
ST3, respectively. Moreover, these slots are used
to cover additional units in durations, such as in
P1D2H (1 day and 2 hours).

SA1, SA2, SA3: Finally, some CIRs include
function calls which can be augmented with ar-
guments that we store in the SA slots. For example,
the argument 2 of this-day-plus-2 is stored in
SA1. Other function calls are used to compute
days with respect to holidays like EaserSunday or
specific weekdays.

Note that slots can be optional depending on the
temporal expression. For example, the value 2022
representing the year 2022 would only require SD1
and SD2. All other slots are set to a padding value
[PAD] then which allows a fixed-sized representa-
tions of CIRs that can be predicted with our masked
language model.

Examples. The following examples show tempo-
ral expressions, their corresponding CIRs and the
tokenization into our slots. Note that there is no
need to capture terms like UNDEF in our slots as
the presence of words like this, next or last in
a CIR implies the existence of UNDEF in the CIR.
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This information can be reconstructed when obtain-
ing a CIR from our slots. This also includes -- to
separate numbers as in YYYY-MM-DD values, REF in
reference expressions and T for time information.
We use the following format to give examples for
our CIR conversion: Text→ CIR→ Slot Sequence

• Now ...
→ PRESENT_REF
→ SD1=PRESENT

• ... for 1000 days ...
→ P1000D
→ SB=P, SD1=10, SD2=00, SD4=D

• ... for one and a half day ...
→ P1D12H
→ SB=P, SD1=1, SD4=D, ST1=12, ST2=H

• ... in 1000 BC ...
→ BC1000
→ SB=BC, SD1=10, SD2=00

• ... on the morning of March 15, 2022 ...
→ 2022-03-15TMO
→ SD1=20, SD2=22, SD3=03, SD4=15,
ST1=MO

• On March 15, ...
→ UNDEF-year-03-15
→ SD1=year, SD3=03, SD4=15

• ... the day after tomorrow ...
→ UNDEF-this-day-PLUS-2
→ SB=PLUS, SD1=this, SD2=day, SA1=2

• ... at Pentecost10 ...
→ UNDEF-year-00-00 funcDate...
...Calc(EasterSunday(YEAR, 49))
→ SB=EasterSunday, SD1=year, SD2=00,
SA1=49

A.2 Regular expressions
In the following, we will describe the six regular ex-
pressions used to split CIR values from HeidelTime
outputs into our slots for the weakly-supervised
training data.

Notation. For readability, we define the follow-
ing groups to capture temporal units and other
fixed names. Note that these are used across lan-
guages. For example, the German expression Mon-
tag would still be represented with monday.

10In christian communities, the holiday of Pentecost is cele-
brated 49 days after Easer Sunday.

UNITS = (H|D|DE|DT|M|C|Y|
C|CE|W|WE|Qu|Q|S)

UNITS_F = (day|month|year|
decade|century|week|
weekend|quarter|
hour|minute|second)

DAYTIME = (NI|AF|MO|EV|MD|MI)
SPECIAL = (SP|SU|FA|AU|WI|

H1|H2|Q1|Q2|Q3|Q4|H|Q)
NAMES = (monday|tuesday|

wednesday|thursday|
friday|saturday|sunday|
january|february|march|
april|may|june|july|
august|september|
october|november|december)

In the following, DX(n) marks the n-th group
captured by the regular expression DX .

D1: References. The first regular expressionD1
is used to capture simple reference expressions that
refer to uncertain points in time.

D1 = (PRESENT|PAST|FUTURE)_REF
Slots: SD1=D1(1)

D2: Explicit Dates. The second regular expres-
sion D2 detects explicit values that do not need fur-
ther normalization, such as days in the YYYY-DD-MM
format, e.g., 20222-03-15.

D2 =(BC)?(\d\d?|XX)?(\d\d|XX)?
(?:-(W)?(\d\d?|XX|SPECIAL ))?
(?:-(\d\d?|XX|WE ))?\)?
(?:T(\d\d|X|DAYTIME|XX)?
(?::(\d\d))?
(?:(?::| -)(\d\d))?)?

Slots: SB=D2(1), SD1=D2(2),
SD2=D2(3), SD3=D2(5), SD4=D2(6),
ST1=D2(7), ST2=D2(8),
ST3=D2(9)|D2(4)

P1: Durations. The third regular expression
P1 detects expressions of type DURATION, e.g.,
P1D2H. These are defined as P<number><unit>
for units of at least day granularity and
PT<number><unit> for smaller granularities. We
capture up to two different units P1D2H (1 day and
2 hours) but ignore further units that are theoreti-
cally defined in the TimeML specifications but do
not occur often in practice (in our datasets those
did not occur at all).

P1 = (P|PT)(\d\d?|X|XX)
(\d\d|\.)?(\d\d?)?)?( UNITS )?
(\d\d?)?( UNITS)?

Slots: SB=P1(1), SD1=P1(2),
SD2=P1(3), SD3=P1(4), SD4=P1(6),
ST1=P1(5), ST2=P1(7)
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D3: Relative Dates. While the previous regular
expressions D1, D2 and P1 follow the TimeML
specifications and capture fully normalized expres-
sions, i.e., anchored values, the following regular
expressions capture CIRs as used internally by Hei-
delTime. They represent relative expressions that
need to be anchored.
D3 detects relative expressions with respect to

a certain point in time, such as this-day-plus-2
(the day after tomorrow).
D3 = UNDEF -(this|next|last|REF|

REFUNIT|REFDATE )?-?
(UNITS_F|SPECIAL )?-??
(NAMES|SPECIAL )|XX|\d\d?)?
(?: -?(\d\d?|XX))?
(?:-( PLUS|MINUS|LESS)-(\d\d?)-?
(\d\d?)? -?(\d\d?)?)?\)?
(?:T(\d\d?|X|DAYTIME|XX)?
(?::(\d\d?|XX ))?(?:(?::| -)

(\d\d|XX))?)
Slots: SB=D3(5), SD1=D3(1),

SD2=D3(2), SD3=D3(3), SD4=D3(4),
ST1=D3(9), ST2=D3(10), ST3=D3(11),
SA1=D3(6), SA2=D3(7), SA3=D3(8)

D4: Relative Dates (coarse). D4 captures un-
derspecified expressions like May that is missing
year information and would be represented with
the CIR UNDEF-year-05.
D4 = UNDEF -(year|decade|century ?)

-?(\d\d?|X)?-?(\d\d?|X)?-?
(\d\d?|X|SPECIAL )?\)?
(?:T(\d\d?|X|DAYTIME )?
(?::(\d\d?|XX))?
(?:(?::| -)(\d\d|XX))?)?

Slots: SD1=D4(1), SD2=D4(2),
SD3=D4(3), SD4=D4(4),
ST1=D4(5), ST2=D4(6), ST3=D4(7)

D5: Holidays and functions. Finally, D5 cov-
ers special functions used by HeidelTime. These
functions are used to compute days with respect to
weekdays and moveable feasts like EasterSunday
that refer to different days depending on the year.
For example, the earliest possible date of Easter
Sunday is March 22 and the latest is April 25 in
the Gregorian calendar.11 The concrete date is then
computed by an external function given a year.12

D5 = (UNDEF -year|UNDEF -this -year|
UNDEF -century\d\d|\d\d\d\d)-

(\d\d)-00 funcDateCalc \((
WeekdayRelativeTo|
EasterSundayOrthodox|
EasterSunday|

11https://en.wikipedia.org/wiki/List_of_dates_
for_Easter

12https://www.linuxtopia.org/online_books/
programming_books/python_programming/python_ch38.
html

ShroveTideOrthodox)
\(YEAR (?:(?: -(\d\d)))?
(?:-(\d\d))
(?:,\s?(-?\d\d?))?
(?:,\s?(-?\d\d?))?
(?:, ( t rue | f a l s e ))?\)\)

Slots: SB=D5(3), SD1=D4(1),
SD2=D4(2), SD3=D4(5),
SD4=D4(7), ST1=D4(3),
SA1=D5(6), SA2=D5(7), SA3=D5(8)

B Data Statistics

B.1 Weakly-Supervised Data
As detailed in Section 5, we create weakly-
supervised data to train our normalization model,
as the gold standard is too small and is not an-
notated with CIRs which are required by our
method. For all languages, we take the data
from GlobalVoices13 (news-style documents) and
Wikipedia14 (narrative-style documents), use spacy
for tokenization and our HeidelTime version that
outputs CIRs for the annotation with temporal ex-
pressions. The sizes of our weakly-supervised data
for each language are given in Table 4.

B.2 Gold-Standard Data
Detailed information on the datasets used in this
paper (their languages, domains, sizes and refer-
ences) are provided in Table 5. Note that all corpora
come from the news domain except the WikiWars
corpora that are based on Wikipedia articles.

B.3 Distribution of Explicit and Relative
Values

The distribution of explicit and relative values has
a large impact on the normalization performance
of different models, as shown in our ablation study
in Section 5. Exemplarily, we analyze their dis-
tribution in the German and English datasets for
which we have data from two domains: News and
Wikipedia. The results are given in Table 3. We
see, that the Wikipedia corpora contain a much
larger percentage of relative values as these articles
often follow a narrative structure (cf., (Strötgen and
Gertz, 2016).

C A Note on Adopting HeidelTime

In our experiments, we used a modified version of
HeidelTime. First, we implemented a new UIMA
collection reader based on spacy as an alternative to

13https://globalvoices.org/
14https://en.wikipedia.org/wiki/List_of_

Wikipedias
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De En

News 67.1 / 32.9 52.3 / 47.7
Wiki 47.6 / 52.4 44.2 / 55.8

Table 3: Distribution of explicit / relative values accord-
ing to HeidelTime by domains (in %).

the TreeTagger that has a restrictive license. This
results in a slightly different sentence segmenta-
tion and tokenization, and, thus, minor differences
in performance. For example, the original Heidel-
Time achieves 63.47 F1 on the Portuguese test data,
while our spacy version achieves 63.24 F1 as one
additional false positive expression was annotated
due to different sentence boundaries. Second, we
adapted HeidelTime to output its internal CIRs for
the TimeML values, such that we can create our
weakly-supervised training data.

The rather low performance of our models and
HeidelTime for the high-resource languages Esto-
nian (et) and Dutch (nl) can be explained by poor
data quality. An inter-annotator agreement of 44
F1 was reported for the Estonian corpus (Orasmaa,
2014), which is close to our results. The Dutch data
was translated from English and automatically an-
notated via cross-lingual projections (Minard et al.,
2016), which may reduce the annotation quality.
Note, that only the first five sentences for each doc-
ument were annotated in the Meantime corpora
(it and nl). We restricted our evaluation to these
annotated parts accordingly.
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Rank Lang #Ann.

1 de 870897
2 en 542087
3 fr 284871
4 ar 280446
5 es 250871
6 pt 215209
7 it 199236
8 nl 194944
9 ru 122884
10 zh 105421
11 hr 50233
12 ro 33545
13 vi 22048
14 af 21081
15 mk 19539
16 tr 19532
17 gl 17416
18 ca 16747
19 bn 16284
20 cy 14738
21 bg 14550
22 et 13948
23 sv 13705
24 id 13031
25 da 12919
26 fy 12852
27 pl 11283
28 fa 11041
29 eu 10992

Rank Lang #Ann.

30 ne 10750
31 ms 10017
32 mg 9271
33 kk 8080
34 hi 7762
35 eo 7353
36 ur 6228
37 hu 5871
38 sq 5760
39 sk 5172
40 sr 4276
41 ka 4247
42 el 4217
43 he 4057
44 sw 3979
45 ja 3696
46 br 3582
47 uz 3361
48 th 3162
49 cs 3096
50 ga 2799
51 mn 2778
52 gd 2772
53 lt 2734
54 mr 2623
55 la 1876
56 uk 1673
57 hy 1642
58 ta 1556

Rank Lang #Ann.

59 my 1103
60 ml 1079
61 kn 1029
62 fi 1017
63 oa 979
64 jv 968
65 ky 926
66 is 804
67 am 776
68 ku 557
69 so 506
70 yi 485
71 ko 483
72 si 442
73 ps 403
74 lo 354
75 km 350
76 su 335
77 lv 323
78 as 299
79 ug 283
80 sd 278
81 gu 258
82 ha 205
83 sl 125
84 yo 102
85 sa 24
86 or 19
87 xh 3

Table 4: Languages and the sizes of our weakly-supervised data.
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Corpus Language
#Annotations
(train / test)

Reference

Corpora only used for evaluation
KRAUTS-DieZeit German (de) _ / 493 (Strötgen et al., 2018)
TempEval-3 (platinum) English (en) _ / 137 (UzZaman et al., 2013)
KOMPAS (test) Indonesian (id) _ / 192 (Mirza, 2016)
TimeBankCA Catalan (ca) _ / 1383 (Saurı, 2010)
EstTimeML Estonian (et) _ / 622 (Orasmaa, 2014)
EusTimeML Basque (eu) _ / 112 (Altuna et al., 2020)
Fr TimeBank French (fr) _ / 423 (Bittar et al., 2011)
Ro TimeBank Romanian (ro) _ / 151 (Forăscu and Tufiş, 2012)
PT-TimeBank (test) Portuguese (pt) _ / 151 (Costa and Branco, 2012)
WikiWars-EL (test) Greek (el) _ / 414 (Kapernaros, 2020)

Corpora split into train and test sets
Meantime (IT) Italian (it) 229 / 244 (Minard et al., 2016)
Meantime (NL) Dutch (nl) 221 / 259 (Minard et al., 2016)
TempEval-3 (ES) Spanish (es) 730 / 551 (UzZaman et al., 2013)
PolEval-2019 Polish (pl) 633 / 6011 (Kocon et al., 2019)
WikiWars English (en) 1378 / 1251 (Mazur and Dale, 2010)
WikiWars-DE German (de) 1510 / 684 (Strötgen and Gertz, 2011)
WikiWars-HR Croatian (hr) 724 / 677 (Skukan et al., 2014)
WikiWars-UA Ukrainian (ua) 454 / 2237 (Grabar and Hamon, 2019)
WikiWars-VI Vietnamese (vi) 118 / 101 (Strötgen et al., 2014)

Corpora only used for training
KRAUTS-Dolomiten German (de) 388 / _ (Strötgen et al., 2018)
Meantime (EN) English (en) 472 / _ (Minard et al., 2016)
TempEval-3 (train, en) English (en) 1240 / _ (UzZaman et al., 2013)
PT-TimeBank (train) Portuguese (pt) 1127 / _ (Costa and Branco, 2012)
WikiWars-EL (train) Greek (el) 1496 / _ (Kapernaros, 2020)

Table 5: Overview of datasets and details on their usage as training (extraction-only) or evaluation data.
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Abstract

We present FewShotTextGCN, a novel method
designed to effectively utilize the properties
of word–document graphs for improved learn-
ing in low-resource settings. We introduce K-
hop Neighborhood Regularization, a regular-
izer for heterogeneous graphs, and show that
it stabilizes and improves learning when only
a few training samples are available. We fur-
thermore propose a simplification in the graph-
construction method, which results in a graph
that is ∼7 times less dense and yields better
performance in low-resource settings while per-
forming on-par with the state of the art in high-
resource settings. Finally, we introduce a new
variant of Adaptive Pseudo-Labeling tailored
for word–document graphs. When using as lit-
tle as 20 samples for training, we outperform a
strong TextGCN baseline with 17% in absolute
accuracy on average over eight languages. We
demonstrate that our method can be applied to
document classification without any language
model pretraining on a wide range of typolog-
ically diverse languages while performing on
par with large pretrained language models.

1 Introduction

Text classification, a key task in natural language
processing (NLP), has many real-world applica-
tions, including toxic comment identification, news
categorization, spam detection and opinion mining.
One popular approach to this problem relies on
large-scale pretraining of Transformer models (De-
vlin et al., 2018; Conneau et al., 2019; Raffel et al.,
2020), which have shown to be able to approach or
even surpass human performance on many natural
language understanding (NLU) benchmarks (Ra-
jpurkar et al., 2016; Wang et al., 2019; Liang et al.,
2020). While these results are impressive for the
languages on which models are pretrained, perfor-
mance tends to deteriorate on languages where no
or little data is available (Chau and Smith, 2021;
van der Heijden et al., 2020). In practice, this

means that these models are effective on a set of
approximately 100 out of the 7000+ spoken lan-
guages in the world. Next to the requirement for
vast amounts of data for pretraining, Transformer
language models tend to be impractically large in
terms of their number of parameters and have a
high environmental footprint (Strubell et al., 2019).
Recently, Graph Neural Networks (GNNs) have
shown to be effective for text classification in both
transductive (Yao et al., 2019; Liu et al., 2020;
Lin et al., 2021) and inductive (Nikolentzos et al.,
2020; Ding et al., 2020) learning settings – with
promising results in both high- and low-resource
settings. Particularly in the transductive setting,
the authors of TextGCN (Yao et al., 2019) show
that Graph Convolutional Networks (GCNs) (Kipf
and Welling, 2016) can outperform state-of-the-art
methods for document classification on English
datasets without any language model pretraining.
They do so by modeling an entire corpus of docu-
ments simultaneously as one heterogeneous word–
document graph. The document classification task
is formulated as a node-classification task over this
graph.
Later work shows that (multilingual) Pretrained
Language Models (mPLMs) can be used to pro-
vide GNNs used in transductive setting with rich
representations of both words and documents, im-
proving results further in both monolingual (Lin
et al., 2021) and cross-lingual settings (Wang et al.,
2021; Li et al., 2020). These works focus solely on
high-resource settings and do not report any results
on performance in low-resource settings.
In this work, we propose a novel GNN-based
method for learning document classification tasks
on a range of languages without the need for any
pretraining data (i.e., without utilizing any pre-
trained word embeddings or language models), and
from few labeled samples only. To the best of our
knowledge, we are the first to investigate few-shot
graph-based transductive document classification
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in a range of languages other than English.

We present FewShotTextGCN, an improved ver-
sion of the original TextGCN model, where we
exploit properties of the heterogeneous word–
document graph for improved learning from scratch
and with only a few labels. More specifically, we:

(1) Introduce K-hop Neighborhood Regulariza-
tion (K-NR), an unsupervised learning technique
for heterogeneous graphs, and use it in its K =
2 instantiation as a regularizer tailored to word–
document graphs , and show that it consistently
leads to performance gains in low-resource set-
tings;

(2) Propose a simplification of the graph-
construction method, which results in improved
performance in the low-resource setting while re-
ducing the graph density by a factor of approxi-
mately 7 on average, therefore substantially speed-
ing up computations and reducing memory require-
ments;

(3) Present a variant of adaptive pseudo-labeling
(Zhou et al., 2019) on word–document graphs and
show that it leads to consistent gains over the origi-
nal TextGCN approach (Yao et al., 2019), particu-
larly when combined with K-NR.

We compare FewShotTextGCN to its predecessor
and two strong PLMs on ten topic classification
benchmarks comprising eight typologically diverse
languages, and experiment with a range of low-
resource settings, including using as little as 20 la-
beled samples to learn from, and without any other
form of (pre-trained) knowledge about a language
except for what constitutes a word (using word
boundaries or a tokenizer). In our lowest-resource
setting, our method outperforms TextGCN with
4.6% and 17% points in absolute accuracy on aver-
age for Reuters and MLDoc, respectively – while
having a substantially smaller computational and
memory footprint. FewShotTextGCN performs on
par with large PLMs on the great majority of the
considered benchmarks, without the need for any
large-scale pretraining and at only a fraction of the
parameter count of these PLMs – indicating that
graph-based methods are an attractive alternative to
using large PLMs for topic classification. All our
code and models are released to facilitate further
research on this topic.1

1https://github.com/mrvoh/
FewShotTextGCN

2 Graph Neural Networks

Graph Neural Networks (GNNs) are a class of
neural models designed to facilitate representation
learning on geometric data – data that naturally oc-
cur in many situations/fields, such as chemistry, so-
cial networks, maps, visual meshes, etc. Recently,
there has been a great surge in research on GNNs.
GNNs create new feature representations of nodes
by aggregating the nodes’ own feature represen-
tation and a message passed on from neighboring
nodes. A graph G = (V, E) is defined as a set
of nodes V with edges E between them, typically
represented as a square adjacency matrix A, where
each entry holds the weight of the edge between
node j and i. Locality in graphs is defined by
neighborhoods, where the neighbors of node i are
defined as Ni = {j : (i, j) ∈ E ∀(j, i) ∈ E}. Let⊕

be some permutation invariant aggregator such
as sum, average or max, and let ψ and ϕ be two
differentiable, learnable functions such as an MLP.
Using these ingredients, we can describe GNNs by
the way they do message passing.
Convolutional GNNs use the weights cij of the
edge between nodes j and i to weigh the incoming
messages. These weights are part of the definition
of the graph, meaning they are statically defined.
The input feature xi of node i is transformed to a
latent representation hi by taking

hi = ϕ(xi,
⊕

j∈Ni

cijψ(xj)) (1)

The first and most well-known convolutional GNN
is the Graph Convolutional Network (GCN) (Kipf
and Welling, 2016).

3 Related work

Our work is based on TextGCN (Yao et al., 2019),
which also serves as our baseline for all experi-
ments. To the best of our knowledge, we are the
first to investigate few-shot graph-based transduc-
tive learning from scratch for document classifi-
cation in a range of languages other than English.
Since the scope of our work is few-shot document
classification in many languages by learning from
scratch, we do not consider CLHG (Wang et al.,
2021) directly related work. The reasons being
it models corpora in multiple languages jointly,
whereas we learn each task in isolation, and re-
lies on machine translation and mPLMs. Similarly,
MGL (Li et al., 2020) relies on mPLMs for encod-
ing similar corpora in different languages into one
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embedding space, where consecutively a graph is
dynamically constructed based on the similarity of
the documents in the respective embedding space.
Finally, meta-learning is applied to learn to classify
documents in one language, given a limited set of
documents in at least three other languages. Hence,
we do not review these works in-depth.

TextGCN TextGCN (Yao et al., 2019) is the first
application of GNNs to transductive text classifi-
cation, applied on English datasets without any
language model pretraining. The great majority of
experiments is performed in high-resource settings,
but a small set of results on performance in low-
resource settings is also provided – motivating us to
further explore and expand upon this subject. The
authors construct a heterogeneous graph contain-
ing both word and document nodes. Word–word
edges are weighed based on the pointwise mutual
information (PMI) between the respective words,
and word–document edges are created based on the
TF–IDF score of the word in the respective docu-
ment. More specifically, the adjacency matrix A is
defined as:

Aij =





PMI(i, j) i, j words, PMI(i, j) > 0

TF–IDFij i document, j word
1 i = j

0 otherwise
(2)

Document–document links are not considered. A
one-hot encoding is used as input features for the
nodes and a two-layer GCN is used to classify the
document nodes. While this setup is relatively sim-
ple in terms of preprocessing, pretraining and the
number of parameters in the model, the authors
show that their method performs on par with state-
of-the-art methods, even improving the state of the
art for the 20News2 dataset.

BERTGCN Follow-up work on TextGCN is that
of BERTGCN (Lin et al., 2021), where the authors
leverage PLMs to initialize document–node fea-
tures. More specifically, a BERT-based model is
used to encode the documents, and all other nodes
are initialized with a one-hot vector. The BERT
model used for encoding documents is optimized
both via gradients propagated through the GCN
and via an auxiliary classifier that directly uses the
BERT embeddings to classify the documents. Us-
ing BERTGCN, the authors improve over TextGCN

2http://qwone.com/~jason/20Newsgroups/

on a variety of text classification tasks – especially
on a sentiment analysis task, for which word or-
der information is crucial for good performance
(Johnson and Zhang, 2014). To be able to use
BERTGCN in a full-batch gradient descent method,
the authors use a memory bank that allows decou-
pling the dictionary size from the mini-batch size.
Although the presented results are promising, a
drawback of using large PLMs is the need for vast
amounts of pretraining data, making these methods
inaccessible for low-resource languages.

4 Data

In this section, we give an overview of the datasets
we use and the respective classification tasks.

MLDoc Schwenk and Li (2018) published an
improved version of the Reuters Corpus Volume 2
(Lewis et al., 2004) with balanced class priors for
all languages. MLDoc consists of news stories in
8 languages: English, Spanish, French, German,
Italian, Russian, Japanese and Chinese. Each news
story is manually classified into one of four classes:
Corporate/Industrial (CCAT), Economics (ECAT),
Government/Social (GCAT) and Markets (MCAT).
Per language, the train and test datasets contain 1k
and 4k samples respectively.

Reuters 21578 From the Reuters-21578 dataset,
a dataset of English news articles on a wide variety
of topics, we use the R8 and R52 subsets (all-terms
versions3). R8 has 8 categories and consists of
5485 and 2189 samples for training and testing re-
spectively. R52 has 52 categories and 6532 and
2568 samples for training and testing respectively.
The distribution of samples over the respective cat-
egories is highly skewed.

During preprocessing on both datasets for all GNN-
based models, we remove words with a frequency
of less than 5, and tokenize the data. For all lan-
guages except Japanese and Chinese, we split sen-
tences based on whitespace. For Chinese, we use
the Jieba4 tokenizer, and for Japanese, the Fugashi
one (McCann, 2020). For Transformer-based mod-
els, solely their respective tokenizers are used.

5 Approach

Graph construction We follow the graph con-
struction method as described in the original

3
https://ana.cachopo.org/

datasets-for-single-label-text-categorization
4https://github.com/fxsjy/jieba
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TextGCN (Yao et al., 2019) work except we de-
viate in two different directions. Stopword removal
is omitted, as this assumes knowledge of the lan-
guage, whereas we aim for an approach that as-
sumes no prior knowledge. Furthermore, word–
word edges are omitted too. Omitting such edges re-
sults in a much less densely connected graph, mak-
ing learning substantially less memory intensive.
We argue that the added value of word–word edges
in a word–document graph is minimal given 1) only
global information of word co-occurrence is consid-
ered (i.e., co-occurrence over the whole corpus as
opposed to within document co-occurrence), and 2)
over the course of training, words co-occurring in a
document can influence each other’s representation
through an N -layer GNN where N > 1. We illus-
trate this with an example in Appendix E, while
in Section 8, we experimentally demonstrate the
limited effect of word–word edges using ablation
studies.

K-hop Neighborhood Regularization (K-NR)
We propose a new method that can exploit the prop-
erties of a word–document graph, inspired by ap-
proaches such as GraphSage (Hamilton et al., 2017)
that shows that meaningful node representations
can be learned in an unsupervised manner with con-
trastive learning methods like Node2Vec (Grover
and Leskovec, 2016). These methods typically con-
sist of two components: a sampling technique for
deciding what nodes are regarded as positive or
negative samples, and a loss function. Let u be
the anchor node, Pp the positive sample sampling
method, Pn the negative sample sampling method,
and JG(u, Pp, Pn) the contrastive loss function.
In the case of GraphSage, Pp is defined as a ran-
dom walk starting from the anchor node, and Pn is
defined as uniformly sampling from all available
nodes.
This contrastive learning approach on graphs as-
sumes homogeneity and Pp always samples in the
1-hop neighborhood from the anchor node. Herein,
we propose a contrastive learning regularization
method tailored on heterogeneous graphs instead,
where nodes of the same type are K-hops away
from each other on the graph.
In what follows, we describe our approach in detail
for heterogeneous word–documents graphs for the
specific case of K-NR with K = 2. Driven by
the intuition that documents (within a language)
that share large parts of their vocabulary are more
likely to be about the same topic, we introduce 2-

hop Neighborhood Regularization (2-NR), a novel
unsupervised learning method which can be used
as a regularization technique.
Let G = (V, E) be the graph defined by the vertices
V and edges E . Let Vd,Vw be the document and
word nodes respectively. Given anchor node u ∈
Vd, we first sample a word node v ∈ Vw connected
to u by sampling from a multinomial distribution
weighted by the edge attribute values (the TF–IDF
scores):

v ∼Multinomial(1, Au,{w|w∈Vw∧w∈N (v)}) (3)

Then, a positive document node up and negative
document node un are sampled as follows:

up ∼ U(N (v)) (4)

un ∼ U(Vd \ N (v)) (5)

Let zu be the final hidden representation of node u,
the 2-NR loss, L2-NR, is then defined as:

L2-NR(u, up, un) =

max{d(u, up)− d(u, un) +m, 0} (6)

for some distance function d and margin m. This
represents a triplet margin loss (Balntas et al.,
2016), which forces u to be closer to up than un by
at least a margin m. See Appendix A for an elabo-
ration on the intuition of 2-NR as well as a visual-
ization. In the word–document graph case, K = 2
works specifically because we know that document
nodes are only connected to word nodes and vice
versa (see Section 5 for a description of our graph
construction method). Hence, when starting at a
document node, all nodes in its neighborhood are
word nodes and similarly, all those word nodes do
exclusively have edges to document nodes. Hence
any walk of two steps starting at some document,
will end up at another document via a word (node)
they both contain. This simplifies the implementa-
tion for our specific word–document graph, but one
can easily imagine generalizing the method to situ-
ations where taking K hops on the graph does not
guarantee ending up at a node of the same type as
the start node by restricting the sampling methods
to a subset of the desired nodes.

Adaptive pseudo-labeling Pseudo-labeling is
a well-explored technique for improving perfor-
mance in semi-supervised learning settings (Lee
et al., 2013), which, recently, has also been success-
fully applied to graphs (Zhou et al., 2019; Chen

1190



et al., 2021). We argue this technique can be partic-
ularly powerful for heterogeneous word–document
graphs based on three premises:

(1) Different topics/classes have a different dis-
tribution of words in their vocabulary. So it can
be assumed that there exist words per class that
occur more often in documents corresponding to
that respective class – i.e. these words are more
distinctive for that given class, which in the word–
document graph translates to that word node having
relatively more edges to documents of the class the
respective word is distinctive for.

(2) Document nodes are always at least two hops
away from each other in the graph, meaning that
only the input features of one document can in-
fluence the final feature representation of another
document via message passing on the graph. This
is assuming a two-layer GNN.

(3) The most effective way of encoding label
information in the input document embedding is
by directly optimizing for that respective class on
the node, as opposed to relying on indirect opti-
mization via backpropagating through the message-
passing computational graph.
Instead of applying adaptive pseudo-labeling to the
whole graph, we propose to only apply it to a subset
of unlabeled document nodes, Ud, that are not part
of our train or test split. By doing this, we can di-
rectly optimize an unlabeled document embedding
to be a good predictor for a certain class (premise
(3)) . This class-tailored document embedding can
now be propagated over the graph to be used in
the final feature representation of other document
nodes via message passing on the graph (premise
(2)). Finally, we can assume that there exist word
nodes in the graph which are characteristic of a
topic/class and via which the class-specific features
can be propagated to other documents without los-
ing information due to over-smoothing (premise
(1)).
We implement adaptive pseudo-labeling as de-
scribed by Zhou et al. (2019), which adds an extra
component to the total loss, the pseudo-label loss
Lpse:

Lpse =
∑

vi∈U ′

1

Ni
CE(Ỹi, Fi) (7)

With CE representing the cross-entropy loss, Ỹi
the pseudo-label and Fi ∈ RC the predicted prob-
ability per class. The pseudo-label is generated
by taking the argmax over Fi, which results in the

pseudo-label loss optimizing for high-confidence
predictions on the most certain class. The set of
unlabeled samples U ′ used for this loss is defined
as:

U
′
= {ui : ui ∈ Ud|Fi,j ≤ β}, j = argmax

j′
Fi,j′}

(8)

Some minimum confidence threshold β is used to
filter out predictions, and the pseudo-loss per node
is weighted by dividing it by Ni, the amount of
nodes which have the same predicted label as node
ui and are part of U ′.

6 Experimental setting

Throughout our experiments, TextGCN is used as
a directly comparable baseline. Since our main
goal is to develop a method that performs well in
low-resource scenarios for many languages with-
out the need of any knowledge of that language –
apart from the ability to identify word boundaries
in a sentence – our setup deviates from the origi-
nal TextGCN work. Unlike the original work, we
do not perform a grid-search of hyperparameter
settings per experiment/language, but rather keep
them fixed – which make our results not directly
comparable to the original. Similarly to the original
TextGCN work, we also consider the R8 and R52
datasets for an analysis of our approach on English
(see Section 4). Additionally, we also provide re-
sults for two PLMs trained with the same amount
of data. These results are not directly comparable,
since the PLMs are trained in an inductive setting,
but are included to provide better insight into the
positioning of our method in the context of broader
literature.

PLM baselines We introduce both multilingual
BERT (mBERT) (Devlin et al., 2018) and XLM-R
(Conneau et al., 2019) as strong baselines based
on the Transformer (Vaswani et al., 2017) architec-
ture. These baselines are fine-tuned in the same
data settings, with their architecture settings kept as
their defaults as defined in the HuggingFace Trans-
formers library (Wolf et al., 2020). For training, a
learning rate of 5e-5 and a batch-size of 20 is used.

Learning settings We investigate the effective-
ness of our approach when learning from 1%, 2%,
5%, 10% and 90% of the available training samples.
The 1% setting is only considered for the R8 and
R52 datasets, due to the already relatively small
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% train Method MLDoc Reuters

de en es fr it ja ru zh ∆ R8 R52 ∆

1%

mBERT - - - - - - - - - 87.4 73.4 78.6
XLM-R - - - - - - - - - 87.6 75.0 81.3
TextGCN - - - - - - - - - 82.8 65.7 74.3
+ 2-NR - - - - - - - - - 83.9 68.5 76.2
+ Pseudo-label - - - - - - - - - 79.1 65.2 72.2
FewShotTextGCN - - - - - - - - - 88.6 69.2 78.9

2%

mBERT 80.2 68.0 57.1 53.8 53.2 56.6 64.0 27.1 57.5 83.8 78.3 81.1
XLM-R 79.4 79.0 71.1 73.5 62.4 57.5 70.0 40.5 66.7 85.8 81.8 83.8
TextGCN 60.7 68.2 71.4 35.6 59.3 63.8 55.2 73.4 61.0 84.2 59.2 71.7
+ 2-NR 85.9 75.3 75.7 81.9 66.9 70.7 65.7 79.1 75.2 85.3 63.2 74.3
+ Pseudo-label 83.7 76.2 61.0 70.0 47.1 62.6 58.1 74.8 66.9 80.1 64.5 72.3
FewShotTextGCN 86.9 84.0 75.7 83.5 66.9 78.9 67.5 80.3 78.0 87.2 65.2 76.2

5%

mBERT 89.1 85.0 74.0 84.3 67.7 77.1 73.5 80.9 79.0 94.7 86.0 90.4
XLM-R 91.2 84.6 76.3 87.7 75.8 81.2 75.2 85.0 82.1 95.7 88.8 92.3
TextGCN 88.9 73.8 77.2 84.9 70.5 79.6 59.0 80.4 76.8 87.2 67.3 77.2
+ 2-NR 89.6 85.5 79.4 86.4 75.0 81.0 67.3 81.6 80.1 90.4 69.0 79.7
+ Pseudo-label 88.9 87.2 77.0 83.8 72.1 79.8 60.6 80.6 78.0 87.4 64.4 75.9
FewShotTextGCN 91.5 88.6 81.2 88.7 72.6 81.9 70.0 82.0 82.1 90.9 69.2 80.1

10%

mBERT 90.3 87.5 86.3 87.3 77.1 81.2 82.5 82.8 84.4 95.7 85.1 90.4
XLM-R 91.0 88.1 88.8 87.2 75.8 81.9 83.0 88.9 85.6 96.9 92.4 94.7
TextGCN 90.7 85.5 87.2 86.4 72.5 81.1 72.7 85.1 82.7 89.1 73.6 81.4
+ 2-NR 89.9 86.8 87.8 87.1 77.3 81.1 68.1 84.7 82.9 90.9 76.0 83.5
+ Pseudo-label 91.5 87.2 87.2 87.8 72.6 82.5 74.4 85.3 83.6 90.2 75.6 82.9
FewShotTextGCN 91.8 90.0 87.9 88.7 74.4 82.5 74.4 85.3 84.4 92.5 80.2 86.4

90%

mBERT 91.4 93.2 93.3 94.2 86.6 87.8 86.7 90.9 90.5 95.8 94.5 95.2
XLM-R 95.2 94.2 95.9 93.4 87.1 86.9 88.7 91.3 91.4 97.5 95.4 96.5
TextGCN 94.5 91.9 94.3 93.6 85.8 89.1 82.8 89.5 90.2 94.1 82.0 88.1
+ 2-NR 94.0 91.1 93.9 92.1 84.7 86.8 84.5 88.6 89.5 95.3 83.1 89.2
+ Pseudo-label 94.3 92.1 94.3 92.3 85.6 88.5 82.9 89.4 89.9 94.1 82.3 88.2
FewShotTextGCN 94.2 91.8 94.5 92.1 84.3 87.7 84.5 89.3 89.8 95.4 85.1 90.3

Table 1: Average accuracy across 5 different seeds on the test set using a different number of training samples
available. ∆ corresponds to the average accuracy across all datasets/languages. Methods starting with “+” correspond
to TextGCN extended with one of our corresponding proposed methods at a time. FewShotTextGCN refers to the
combination of all our proposed improvements together (i.e., including both 2-NR and adaptive pseudo-labeling) as
well as our adjusted graph construction method. Highest scoring method per benchmark is marked in bold.

training set size in the MLDoc datasets. For all
settings except the 90% one, the size of the val-
idation set is equal to the size of the training set
(see Appendix D for a background experiment on
the influence of the division of a limited set of la-
beled samples over the train and validation sets).
The remaining documents are then added to the
word–document graph as unlabeled nodes. For the
high-resource setting (90%), the remaining 10%
of the training set is used for validation (i.e., no
unlabeled nodes). We train all GNN models from
scratch for each language and do not rely on any
form of transfer- or multi-task learning.

Training setup and hyperparameters We use
the Ranger optimizer (Liu et al., 2019; Zhang et al.,
2019; Yong et al., 2020), an adapted version of
Adam (Kingma and Ba, 2014). All experiments
run for 1000 epochs and the model with the lowest
validation loss is used at test time. A learning rate
of 0.01 and dropout of 0.5 are used throughout all
experiments except when mentioned otherwise. All
hidden dimensions are set to 64 and in line with
the original TextGCN work, we use two layers of
GCN followed by one linear layer for classification.
The log schedule for training signal annealing as
per Appendix A.2 in Xie et al. (2020) is used when-
ever 2-NR is applied. For pseudo-labeling, we set
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% train Edge types MLDoc

de en es fr it ja ru zh ∆

2%
Vd − Vw+Vw − Vw 60.7 68.2 71.3 35.6 59.3 63.8 55.2 73.4 60.9
Vd − Vw 74.6 71.7 71.3 76.7 59.9 65.1 59.9 75.4 69.3

5%
Vd − Vw+Vw − Vw 88.4 73.7 77.2 84.9 70.5 79.6 59.0 80.4 76.7
Vd − Vw 88.5 80.7 78.1 82.7 71.5 78.4 60.2 80.0 77.5

10%
Vd − Vw+Vw − Vw 90.7 85.5 87.2 86.4 72.4 81.0 72.7 83.7 82.5
Vd − Vw 90.3 86.8 87.0 86.4 75.8 82.3 74.7 85.1 83.6

90%
Vd − Vw+Vw − Vw 94.5 91.9 94.2 93.4 85.8 89.1 82.8 89.5 90.2
Vd − Vw 94.1 91.9 94.4 93.0 86.6 88.7 85.0 89.4 90.4

#edges Vd − Vw+Vw − Vw 7.4M 11M 5.5M 8.4M 5.2M 4.9M 10.2M 5.2M 7.2M
Vd − Vw 1M 1.3M 900K 1.1M 758K 1.1M 1.1M 889K 1M

Table 2: Average accuracy of 5 different seeds on the test set, with a different number of training samples available.
Here, the original TextGCN model is used and only the graph-construction method is varied. ∆ corresponds to the
average accuracy across seeds. Highest scoring method per language is marked in bold.

the confidence threshold β = 0.75 following the
original paper.

7 Results

7.1 Comparison to TextGCN

MLDoc Table 1 shows the results of our exper-
iments. In the 2% training data setting, FewShot-
TextGCN outperforms TextGCN by 17% points
on average (∆) on the eight languages of the ML-
Doc dataset, showing that we can effectively utilize
the properties of heterogeneous word–document
graphs to improve learning in low-resource set-
tings in many languages. For MLDoc, which is a
dataset with uniform class priors, we see the dif-
ference in performance between original TextGCN
and TextGCN combined with 2-NR grows larger
as the amount of training data decreases, demon-
strating that our proposed 2-NR regularizer helps to
combat overfitting. Comparing the ‘+2-NR’ results
to those of FewShotTextGCN (that uses both 2-NR
and adaptive pseudo-labeling), it can be seen that,
overall, our regularizer is the primary contributor
in outperforming the TextGCN baseline. Our ver-
sion of adaptive pseudo-labeling also outperforms
the TextGCN baseline, with the largest margins in
the low-resource settings, indicating the effective-
ness of utilizing unlabeled document nodes in the
word–document graph.
In the high-resource (90%) setting of MLDoc, Few-
ShotTextGCN performs on a par with the original
TextGCN. This can be explained by the fact that 2-
NR is a regularization method and the training data

set is relatively large in the high-resource setting,
which makes that adding regularization to the learn-
ing process can be redundant. Furthermore, our
version of adaptive pseudo-labeling works based
on a set of unlabeled documents not belonging to
either the train or the test set, which is a relatively
small set of documents in this setting, namely only
10% of the documents of the total training set.

Reuters Interestingly, FewShotTextGCN outper-
forms TextGCN consistently in all data settings
for the English Reuters datasets, which are highly
skewed in their class distribution. This can be seen
as supporting evidence for the hypothesis that 2-
NR forces the learned feature representations of
documents to contain information of all words it
contains, which helps to learn distinguishing fea-
tures for documents of minority classes.

7.2 Comparison to PLMs

MLDoc Although FewShotTextGCN only uses
≈ 1% of the parameters, has no pretrained knowl-
edge of the considered languages, has no notion of
word order in the documents and does not make
use of a shared subword vocabulary, it performs on
par with large PLMs across all settings for MLDoc.
In the lowest resource setting, FewShotTextGCN
outperforms all considered PLMs, whereas both
PLMs start performing on par as the amount of
available data increases. We hypothesize that the
somewhat larger difference in performance for the
Russian language is attributable to the fact that
Russian is a highly inflective language, resulting
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in many unique words to learn a representation
for. The PLMs have the advantage of using a sub-
word vocabulary which serves as a remedy for the
formerly described sparsity challenge.

Reuters For R8 holds that similarly to the re-
sults on MLDoc, FewShotTextGCN outperforms
the PLM baselines in the two lowest-resource set-
tings, whereas the PLMs perform better when more
training data is available. The results on R52 are
more notable, as the gap in performance between
FewShotTextGCN and the PLMs grows relatively
larger with more available training data. We hy-
pothesize this could be due to the fact for FewShot-
TextGCN we use only a 64 dimensional hidden size
to encode the 52 classes of the dataset, whereas the
PLMs use a hidden size of 768.

8 Ablation experiments

The original TextGCN implementation proposes to
use edges between words based on their respective
PMI. Since PMI is calculated using a window size
of 20, many extra edges are introduced. For the
MLDoc dataset, omitting word–word edges results
in a graph that has, on average, only 15% of the
amount of edges compared to the original graph
(see Table 2 for statistics on the number of edges
per graph construction method). To analyse the ef-
fect of word–word edges, we evaluate the original
TextGCN method across the different graph con-
struction methods in the same data availability set-
tings as our main set of experiments (Table 2). The
results provide empirical evidence that, on average,
word–word edges are redundant in topic classifi-
cation problems. The average performance using
graphs without word–word edges is always higher;
however, performance difference between the two
graph construction methods does get smaller as
more data is added. In Appendix E we present a
visual walk-through of how words can still influ-
ence each other’s feature representations in a graph
without word–word edges.

9 Discussion

K-NR for K > 2 Here, we argue by example
that K-NR can also be applied to other heteroge-
neous graphs with two or more different kinds of
nodes. Consider a network with three kinds of
nodes: venue nodes, paper nodes and author nodes
(Shi et al., 2016). Venue nodes have a connection to
a paper node if the paper is published at that venue

and authors have a connection to the paper node
when they are a contributor to that respective paper.
No other edges exist on this graph and the classifi-
cation task concerns the author nodes. In this case,
we could apply K-NR on the author nodes based
on the intuition that authors that publish a paper
at the same venue are more similar to each other
than authors that do not publish at the same venue.
In order to get from the anchor author node to a
positive author node, one has to traverse the graph
by hopping to a neighboring paper, venue, paper
and finally author node in that respective order –
resulting in K = 4. On this same graph, K-NR can
be applied for paper nodes as well for K = 2 and
traversing via the venue node. In general, consider-
ing a graph withM different node types, K-NR can
be applied if in terms of node types a symmetrical
path with an odd number of nodes can be traversed.
In this case, K = 2(M − 1).

10 Conclusion

We introduced K-hop Neighborhood Regulariza-
tion (K-NR), a contrastive learning method for het-
erogeneous graphs, and showed its implementa-
tion for word–document graphs (2-NR) is highly
effective in improving learning from scratch in
low-resource settings for a range of languages on
topic classification tasks. We also showed that we
can exploit properties of word–document graphs
for improved learning in few-shot settings. We
demonstrated that by simplifying the graph con-
struction method via omitting word–word edges
we can improve performance while reducing mem-
ory requirements in terms of total number of edges.
Additionally, we showed how pseudo-labeling can
be successfully applied to word–document graphs.
All approaches combined together form part of
our new proposed method, FewShotTextGCN, an
improvement over TextGCN for few-shot graph
learning. FewShotTextGCN performs on par with
large PLMs across the considered benchmarks us-
ing only a fraction of the parameters and no pre-
training whatsoever, showing that GNNs are an
attractive alternative for these Transformer-based
models. Finally, using this method, we showed
that transductive document classification can be
performed successfully on a wide range of typo-
logically diverse languages without any language
model pretraining. In future work, we plan to ex-
plore the effectiveness of 2-NR on a large range of
graphs, such as social networks, citation networks
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and product–user networks as well as adaptations
of K-NR for K > 2.

11 Limitations

Our work focused on a subset of the text-
classification field, namely topic classification. In
order to generalize our contributions to other sub-
sets such as sentiment classification, our method
might benefit from incorporating word order (John-
son and Zhang, 2014). Secondly, adding 2-NR
to the training process does slow down the con-
vergence rate of training. Exemplified: regular
TextGCN would often reach its lowest validation
loss in the range of 50 to 200 update steps, whereas
TextGCN + 2-NR would often reach its lowest val-
idation loss in the range of 700 to 900 update steps.
We do not consider this a major limitation as all
experiments can still be performed on a single GPU
with 8Gb of RAM.
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A 2-NR intuition and visualization

In Figure 1, we present a visualization of the pro-
cess behind 2-NR. Intuitively, 2-NR forces the
model to incorporate information of all words con-
tained in it such that documents with shared neigh-
bors (i.e., overlap in vocabulary) are closer to each
other in semantic space than documents without
shared neighbors in feature space, resulting in learn-
ing better feature representations of documents.

B Dataset statistics

Table 3 presents an overview of data statistics.

C Visualization of document embeddings

Figure 2 shows an example of the difference
in class separability between TextGCN and our
method, FewShotTextGCN. It can be easily seen
that using FewShotTextGCN there is less overlap
between regions in which instances of the respec-
tive classes live, which is in line with the observa-
tions in Table 1 where FewShotTextGCN outper-
forms TextGCN by 26% points absolute accuracy.

D Effective use of data on a limited
budget: training vs validation

Figure 3 shows the average accuracy and standard
deviation of 10 seeds when learning from a total of
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Figure 1: 2-hop Neighborhood Regularization visualized for a simple graph. On the left, the graph is defined as
a set of nodes X and an adjacency matrix A. The right figure depicts the transformed features H of each document
Di. Documents D1 and D2 have word W1 as shared neighbor and hence their distance in feature space (depicted
by the dotted line with d(D1, D2)) gets smaller, whereas the feature representations of D1 and D3 get pushed
away from each other, resulting in a larger distance in the respective space (d(D1, D3)). Word nodes are omitted in
feature space (right-hand side) for demonstration purposes.

Table 3: Summary statistics of datasets.

Dataset # Docs # Training # Test # Words # Nodes # Classes Average Length
MLDoc-de 5,000 1,000 4,000 14,358 19,358 4 144
MLDoc-en 5,000 1,000 4,000 17,665 22,665 4 215.6
MLDoc-es 5,000 1,000 4,000 11,662 16,662 4 143.2
MLDoc-fr 5,000 1,000 4,000 15,231 20,231 4 175.8
MLDoc-it 5,000 1,000 4,000 10,075 15,075 4 103.8
MLDoc-ja 5,000 1,000 4,000 8,423 13,423 4 271
MLDoc-ru 5,000 1,000 4,000 19,786 24,786 4 167.3
MLDoc-zn 5,000 1,000 4,000 9,270 14,270 4 163.2

R8 7,674 5,485 2,189 7822 15,496 8 98.9
R52 9,100 6,532 2,568 9027 17,992 52 106.3

100 labeled samples, divided over the train and vali-
dation set for Japanese and German, using the orig-
inal TextGCN model. Other languages are omitted
from the plot to prevent visual cluttering, but follow
a similar trend: when using too little data for train-
ing, the model fails to learn to generalize well – as
can be seen by the relatively low average accuracy
on the test set. For German, it is even the case that
learning does not converge at all when training on
10 samples, as we observe a mean accuracy of 25%
when the number of training samples is 10. The
balance between achieving the highest accuracy
with the smallest standard deviation seems to be
around the 50/50 split point. Increasing the training
data at the cost of fewer validation data after this
point can, in some cases, such as for Japanese at the
80/20 point, result in slightly higher accuracy, but
the standard deviation across different seeds also in-

creases, confirming the importance of a good-sized
validation set during learning.

E On the usefulness of word–word edges
in word–document graphs: illustration

We argue that the added benefit of word–word
edges is limited based on the premises that: 1)
words occurring in the same window might not in-
fluence each other’s meaning at all, especially since
sentence boundaries are not taken into account;
2) only global information of word co-occurrence
(over the whole corpus) is considered, meaning
that word A might be connected to word B, but
they might not co-occur in document X – yet, they
still influence each other’s feature representation as
much as when they would have co-occurred in that
document; 3) over the course of training, words
co-occurring in a document can still influence each
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(a) Original TextGCN (b) FewShotTextGCN

Figure 2: Visualization of the test set document embeddings in the final feature space of TextGCN and FewShot-
TextGCN on MLDoc-de using the 2% training data setting. UMAP (McInnes et al., 2018) is used for dimensionality
reduction

Figure 3: Average test accuracy and standard deviation for 10 seeds with different amounts of data used for training.
Given a total of 100 labeled samples, we vary how many are used for training and validation, adjusted in steps of 10.
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other’s representation, under the assumption that at
least a two-layer GNN is used. We illustrate this
by visualizing the initial node embeddings over the
course of a hypothetical training schedule, starting
at a random initialization in Figure 4a and going
up until some training step i in Figure 4, where the
model has improved its performance in the classifi-
cation task.
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(a) Words influencing each other’s feature represen-
tation without word–word edges over the course of
training: initialization. Classes are represented in differ-
ent node outline color (i.e., two document classes green,
blue) and words with an orange node outline. The actual
color of nodes represents the semantic value encoded in
the initial embedding. We simplify the graph by omitting
the initial features of the document nodes D1, D2 and
D3 and assume they will be learned based on the features
of the words occurring in them. Since both W1 and W3
occur in D1 and D2, they can intuitively not be distin-
guishing features for either the green or the blue class.

(b) Words influencing each other’s feature represen-
tation without word–word edges over the course of
training: during the course of training. Classes are
represented in different node outline color (i.e., two docu-
ment classes green, blue) and words with an orange node
outline. The actual color of nodes represents the semantic
value encoded in the initial embedding. After i steps of
training, D3 will have incorporated some of the informa-
tion of W2 in its own embedding (depicted by the yellow
stripes in the node) in order for it to be a good predictor
of the green class. Similarly, D1 will have incorporated
features of W3 in its own embedding (depicted by the
purple stripes in the node), as it is the most distinguishing
word for the blue class. Finally, if we consider two-layer
GNNs, the feature representation at layer 1 of W1, de-
noted by H1

W1, is a function of its own embedding and
the aggregated messages from H0

D1 and H0
D2 and H0

D3.
Similarly, the final feature representation ofD2,H2

D2, is a
function ofH1

D1 and aggregated messages fromH1
W1 and

H1
W2. In order to perform the right classification, H2

D2,
the information corresponding to the green class (yellow
filling of node) should be passed on from H0

D3, which is
the document embedding of D3, to H1

W1, and then finally
to H2

D2. Due to the nature of GCNs, no distinction can
be made between what message is sent from what node
– as per Equation 1, xi = H0

W1, it can be easily seen
that optimizing H0

W1 to be a good predictor for the green
class (i.e., adjusting its feature representation to the yellow
color), helps in classifying D2 correctly.

Figure 4: A visualization with guiding explanation to provide an intuition behind how features of words might still
influence each other with having direct edges between them
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Abstract

Recognizing medical self-disclosure is impor-
tant in many healthcare contexts, but it has been
under-explored by the NLP community. We
conduct a three-pronged investigation of this
task. We (1) manually expand and refine the
only existing medical self-disclosure corpus,
resulting in a new, publicly available dataset of
3,919 social media posts with clinically vali-
dated labels and high compatibility with the ex-
isting task-specific protocol. We also (2) study
the merits of pretraining task domain and text
style by comparing Transformer-based models
for this task, pretrained from general, medi-
cal, and social media sources. Our BERTweet
condition outperforms the existing state of the
art for this task by a relative F1 score increase
of 16.73%. Finally, we (3) compare data aug-
mentation techniques for this task, to assess the
extent to which medical self-disclosure data
may be further synthetically expanded. We dis-
cover that this task poses many challenges for
data augmentation techniques, and we provide
an in-depth analysis of identified trends.

1 Introduction

Self-disclosure is a complex communicative pro-
cess (Kreiner and Levi-Belz, 2019) that involves
sharing one’s personal thoughts, feelings, or mem-
ories with another individual (Jourard and Fried-
man, 1970). Reciprocal self-disclosure between
conversation partners may strengthen relationships
(Altman and Taylor, 1973) and improve the com-
municative experience (Wang et al., 2016). Self-
disclosure may take nuanced forms, such as med-
ical self-disclosure (see Figure 1), or the act of
disclosing symptoms, diagnoses, or other informa-
tion related to mental or physical health problems
(Valizadeh et al., 2021; Joinson, 2001). Some med-
ical self-disclosures may be explicit (A), whereas
others may be less direct (B and C).

Medical self-disclosure is helpful from a clinical
perspective and reinforces therapeutic relationships

Figure 1: Examples of medical self-disclosure. Note
that medical self-disclosure may be explicit (A) or less
direct (B and C).

during medical interactions (Jannat, 2018; Kadji
and Mast, 2021). It also may enable earlier de-
tection and treatment of medical issues (Joinson,
2001; Tidwell and Walther, 2002; Valizadeh et al.,
2021). Detecting medical self-disclosure automat-
ically could support clinicians and other medical
practitioners in productively identifying helpful pa-
tient information from untapped sources or dur-
ing review of medical conversations (Farber, 2003;
Stricker, 2003; Valizadeh and Parde, 2022; Kaelin
et al., 2021). However, research towards automated
medical self-disclosure detection has been limited
and may require different techniques from those
used to detect self-disclosure in the general domain
(Valizadeh et al., 2021; Reuel et al., 2022).

In this paper, we comprehensively investigate au-
tomated medical self-disclosure detection. We man-
ually expand the only existing dataset (MEDSD)
in this domain to include nearly 4,000 additional
instances collected from publicly available forums,
strengthening our understanding of this task and
its relationship between performance and dataset
size. In parallel, we experiment with data augmen-
tation to study the feasibility of automated dataset
expansion for this task. Finally, we perform a com-
parative analysis of transfer learning models, to dis-
entangle the subtle distinctions and shared charac-
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teristics between medical self-disclosure detection
and other language tasks. Our primary contribu-
tions are as follows.

First (1), we create a publicly-available 3,919-
instance expansion to MEDSD, sourced from
health-related social media posts. The dataset
is triple-annotated with continuous (0-5) and
graded (NO SELF-DISCLOSURE, POSSIBLE SELF-
DISCLOSURE, and CLEAR SELF-DISCLOSURE)
labels. Next (2), we conduct transfer learning ex-
periments using Transformer-based models to de-
termine the utility of different source datasets in
the context of detecting medical self-disclosure.
We find that our highest-performing model outper-
forms the state of the art (Valizadeh et al., 2021)
by relative percentage increases of 14.19% and
16.73% for accuracy and F1, respectively. Finally
(3), we conduct the first study of data augmenta-
tion in the context of medical self-disclosure. We
find that this task poses unique challenges for data
augmentation, and we explore these challenges in
a detailed analysis. It is our hope that our findings
add to the burgeoning knowledge base surround-
ing the detection and processing of medical self-
disclosure, and can be used as a guide for others
working within this domain. We make our data and
source code publicly available to facilitate replica-
tion and rapid follow-up.

2 Related Work

Clinical literature has extensively examined the ef-
fects of patient self-disclosure with medical profes-
sionals, finding both positive benefits to the pa-
tient’s health and overall wellbeing (Arroll and
Allen, 2015), as well as negative experiences if the
patient feels that professional or personal bound-
aries have been crossed (Lussier and Richard,
2007). Often self-disclosure in these studies is
broadly construed, with less frequent exploration
of medical self-disclosure specifically (Wagner,
1982). For instance, Oprescu et al. (2013) exam-
ine the correlation between information-seeking
behaviors and self-disclosure, and Weisband and
Kiesler (1996) investigate disclosure in online and
in-person settings through statistical meta-analyses
of standardized interviews, questionnaires, tests,
and scales reported in existing studies. They con-
clude that disclosure of sensitive and private infor-
mation occurs more frequently in online settings,
highlighting the urgency of analyzing these settings
more closely.

Bak et al. (2014) developed a semi-supervised al-
gorithm to classify self-disclosure levels from Twit-
ter conversations, and Blose et al. (2020) studied
self-disclosure in a large dataset of Twitter conver-
sations about the Coronavirus pandemic, proposing
an unsupervised approach to detect voluntary dis-
closure of personal information. Yang et al. (2017)
detected positive and negative self-disclosures
based on linguistic features, such as LIWC and
word embeddings, in a supervised model. Recently,
Reuel et al. (2022) created a multi-task RoBERTa
model to measure self-disclosure across varying
domains, including both general and medical self-
disclosure. They found poor generalization across
datasets, with in-domain self-disclosure detection
models performing much better than across-domain
models due to widespread differences in the topics
and targets of self-disclosure.

Only two existing works have focused on de-
tecting medical self-disclosure specifically. Bal-
ani and De Choudhury (2015) predicted levels of
self-disclosure of mental wellness in Reddit posts,
and in our prior work we introduced the MEDSD
dataset and established a Transformer-based per-
formance benchmark for the task of medical self-
disclosure detection (Valizadeh et al., 2021). Since
the latter is the current state of the art and offers the
only publicly available dataset and corresponding
benchmark in this domain, we primarily build upon
that work. We investigate medical self-disclosure
specifically, and also study the manual and auto-
mated expansion of the MEDSD dataset.

3 Data

3.1 Data Collection

MEDSD, our source dataset, is a 6,639-
instance dataset annotated with continuous and
graded (NO SELF-DISCLOSURE, POSSIBLE SELF-
DISCLOSURE, and CLEAR SELF-DISCLOSURE)
medical self-disclosure labels. Since our work
seeks to empirically compare the MEDSD bench-
mark (a fine-tuned DistilBERT model) and other
Transformer-based models, we sought to expand it
to a size more consistent with that used to fine-tune
other Transformer-based models (typically 10k or
more instances (Devlin et al., 2019)) while recog-
nizing the time-consuming and challenging nature
of the annotation task (Farzana et al., 2020). This
also presented the opportunity to study the rela-
tive merits of manual and automated (via augmen-
tation) dataset expansion for the task of medical
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self-disclosure detection.
To ensure consistency with the original MEDSD,

we followed the same annotation procedures out-
lined in our previous work (Valizadeh et al.,
2021). We selected patient.info1 as our sole data
source, and downloaded publicly-available English-
language posts from randomly-selected subforums.
Our rationale for selecting patient.info as our sole
data source (rather than our primary data source as
in the original data collection process) was largely
due to task-based motivations—we wanted to max-
imize our capacity to collect data with medical
information, and we observed adequate diversity in
terms of style and content when performing a pre-
liminary review of patient.info posts. To a lesser
extent, our decision was also motivated by site-
specific data privacy and sharing policies. Since
posts collected from other websites in our prior
work already comprised a small minority of the
dataset (less than 12%), we did not anticipate that
this difference would result in meaningful distri-
butional shifts between the original and expanded
datasets in terms of data content or style.

We provide additional details and examples re-
garding our download process in the appendix (Ta-
bles 7 and 8). Posts were complete written utter-
ances submitted by users, and we automatically
segmented posts at the paragraph level following
previously established guidelines. Collected data
instances had an average length of 41 tokens. Over-
all, we added 3,919 instances to MEDSD to reach
a raw, merged dataset size of 10,558 instances. To
preserve user privacy, we did not download user-
names or other identifying metadata and replaced
any names written directly within the post text with
generic name tokens. The terms and conditions of
patient.info maintain public access to forum posts,
and this research was approved by the Institutional
Review Board (IRB) at the University of Illinois
Chicago. Similarly to our prior work, we make our
dataset expansion available upon request.

3.2 Data Annotation
We observed very high inter-annotator agreement
(κ = 0.88), measured using averaged pairwise per-
class Cohen’s kappa scores similarly to our prior
work to facilitate comparison with annotation qual-
ity in the original MEDSD. This suggests that the
annotation guidelines were sufficient for consis-

1https://patient.info, a popular online forum
that offers publicly available information and posts on health,
disease, and other medical topics.

tent replication (Landis and Koch, 1977). We did
not make any changes to the guidelines to maxi-
mize labeling compatibility between original and
new samples. We trained three annotators (com-
puter science graduate and undergraduate students;
a mixture of fluent L2 and native English speakers)
to follow these guidelines, collecting triple annota-
tions for each post. Labels were first assigned using
a graded scheme ranging from 0-5, with “0” indi-
cating no self-disclosure and “5” indicating high
self-disclosure. More specifically, we stipulated
that numeric labels should be assigned as follows:

• 5: The post discloses a specific illness, medi-
cation, surgery, or other specific medical vari-
able(s) or event(s).

• 4: The post discloses specific symptoms but
does not further specify an illness, medication,
or other diagnosis.

• 1-3: The post ranges from very low (ambigu-
ous hinting of possible, non-specific medical
concerns) to moderate (clear reference to non-
specific medical concerns) self-disclosure.

• 0: The post does not disclose any health-
related information.

Annotations were averaged across all three la-
bels for each instance. Cases for which the distance
between one or more individual annotators and
the average was greater than 1.0 were forwarded
to a third-party adjudicator. The adjudicator (a
study lead with high task familiarity) was autho-
rized to decide the gold standard value based on
the provided annotations and their judgment of the
instance itself. The continuous-valued (averaged
or adjudicated) labels were binned into three dis-
crete classes: [0-1] NO SD, (1-4) POSSIBLE SD,
and [4-5] CLEAR SD. This resulted in 520 No SD
instances (13.26% of the expanded dataset), 1,545
Possible SD instances (39.42%), and 1,854 Clear
SD instances (47.30%).

When collecting our data, we ensured that none
of our newly annotated posts were duplicates of
those already present in the existing MedSD, to
maximize the contribution of new information and
content in this dataset expansion. We also spot-
checked agreement early in the annotation process
to identify and resolve systemic disagreements be-
fore they could take root. We worked with in-
person (rather than crowdsourced) annotators to
allow further oversight for compliance with annota-
tion guidelines as needed. We observed very high
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Dataset No SD Pos. SD Clear SD Total
MEDSD 2651 1019 2969 6639
Expansion 520 1545 1854 3919
Merged 3171 2645 4823 10558
Final 2945 2172 4650 9767

Table 1: Medical self-disclosure datasets statistics. The
final dataset refers to the merged dataset comprising
both the original MEDSD and our new dataset expan-
sion after refinement.

final agreement: 93.59% of records did not require
adjudication, and the averaged pairwise Cohen’s
kappa (Landis and Koch, 1977) was 0.81 across
the entire dataset, indicating high agreement in line
with that originally reported for MEDSD. Per-class
agreement was calculated at κ = 0.85, κ = 0.74,
and κ = 0.85 for the No SD, Possible SD, and
Clear SD classes, respectively. We release both the
averaged scores and discretized class labels with
our dataset.

3.3 Dataset Refinement
We observed that a sizable portion of mispredic-
tions by the MEDSD baseline on our new expan-
sion were adjudicated instances. After further man-
ual review of the full MEDSD including our ex-
pansion, we discarded instances that required ad-
judication (791 total) from further inclusion in our
experiments. Our rationale for this refinement step
is that these cases may have arisen from ambiguous
context, systemic and conflicted understanding of
certain nuances in the annotation guidelines, or oc-
casional annotation mistakes that produced labels
that the adjudicator considered to have reasonable
justification (Kilgarriff, 1998).

After refinement, the final, merged dataset com-
prising the pruned MEDSD and our expansion with-
out adjudicated records includes 9,767 instances
(4,650 Clear SD, 2,172 Possible SD, and 2,945
No SD instances). Table 1 provides more details
regarding the dataset composition and class distri-
bution. Table 9 in the appendix also illustrates the
performance change observed when running the
benchmark model on the final, refined dataset ver-
sus the raw merged version. We release our refined
MEDSD alongside our other data as an additional
resource for the community.

3.4 Clinical Validation
Since our annotators did not have external clini-
cal expertise, we also recruited a clinical expert

(a frequent collaborator who holds graduate de-
grees in the healthcare domain and has worked in
clinical settings) to manually label a subset of our
data. We randomly selected a sample of 1,465 data
instances (15% of the final dataset size, evenly dis-
tributed across classes), and asked the expert to
assign labels based on our annotation guidelines
and drawing upon their own expertise.

We compared the expert labels with our gold
standard, and observed high agreement. In total,
92.37% of the expert’s labels (1353/1465 instances)
matched those in the gold standard, confirming our
annotation reliability from a clinical perspective.
At a per-class level, we observed 95.97% label
compatibility with No SD instances, 83.84% com-
patibility with Possible SD instances, and 97.31%
compatibility with Clear SD instances. In the ap-
pendix (Table 15), we briefly discuss some exam-
ples of disagreement between the gold standard and
the clinical expert for further analysis.

4 Methods

We compared fine-tuned Transformer models from
varying source domains on the task of medical self-
disclosure detection (§4.2), and also studied the
utility of data augmentation for automated dataset
expansion within this domain (§4.3). We describe
these studies in the following subsections.

4.1 Data Preprocessing

We passed each instance in our final dataset through
a two-step preprocessing pipeline. First, we con-
verted all emojis to their American English CDLR
short names (e.g., → :smiling face with smil-
ing eyes:), since insight into an author’s emotional
status may provide valuable clues to the presence
of self-disclosure (Eisner et al., 2016; Felbo et al.,
2017). Next, we replaced all numeric values with
generic NUMBER_TOKENs. This prevented our
models from drawing spurious conclusions regard-
ing specific values, allowing them to recenter their
focus on the presence of numeric content. To vali-
date the utility of these preprocessing steps, we ran
the MEDSD baseline (Valizadeh et al., 2021) on
our final dataset without any preprocessing steps
and with each step individually. We report our
findings in Table 11 in the appendix, demonstrat-
ing that each step results in small but measurable
performance improvements.
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4.2 Models

One arm of our study focuses on the influence of
pretraining style and task domain on task perfor-
mance. This is naturally supported through the
use of existing, externally-validated Transformer
models that were originally leveraged for other re-
search problems. We emphasize therefore that the
novelty of our work is not in the model implemen-
tation itself, but in the study of its application to
this new domain and the extent to which these mod-
els could sufficiently leverage and generalize from
out-of-domain or near-domain data. We focused
our comparison of Transformer-based models on
those that are pretrained on health or social media
data. In total, we consider seven models: Dis-
tilBERT, RoBERTa, BioBERT, Bio-ClinicalBERT,
Bio-RedditBERT, MentalBERT, and BERTweet.

DistilBERT was the highest-performing model
in our initial experiments on MEDSD, and is
the current state of the art for this task. The
model achieves comparable performance to larger
Transformer-based models while requiring much
less time and space through the use of knowledge
distillation (Sanh et al., 2019), and is often used
for lower-resource tasks. In contrast, RoBERTa
replicates BERT but is trained on larger batches, a
higher number of epochs, and more training data,
often resulting in higher performance than the orig-
inal BERT model (Liu et al., 2019). Both Distil-
BERT and RoBERTa are trained on general domain
data (BookCorpus and Wikipedia for both, and ad-
ditional news and web data for RoBERTa).

BioBERT leverages nearly the same architec-
ture as BERT, but it is pretrained on large biomed-
ical corpora (Lee et al., 2020). Prior work has
shown that it outperforms other BERT-based mod-
els at biomedical text classification tasks (Mitra
et al., 2021; Zhu et al., 2020). Although BioBERT
is designed to perform well on biomedical tasks
specifically, these may differ from tasks using clin-
ical notes or more casual health discourse. Bio-
ClinicalBERT is pretrained on two million clinical
notes from the MIMIC-III v1.4 database (John-
son et al., 2016; Alsentzer et al., 2019), and Bio-
RedditBERT is initialized from BioBERT (Lee
et al., 2020) and then further pretrained on health-
related Reddit posts (Basaldella et al., 2020). Men-
talBERT is pretrained on mental health posts col-
lected from Reddit (Ji et al., 2022). Finally,
BERTweet was pretrained using RoBERTa’s train-
ing procedures on a massive amount (80 GB)

of uncompressed English tweet text, including
845,000,000 Tweets streamed from January 2012
to August 2019 and 5,000,000 Tweets related to
the Covid-19 pandemic. It outperformed previous
models on a wide variety of social media tasks
(Nguyen et al., 2020).

We fine-tuned each included model separately
for our task. We applied model gradual layer freez-
ing, and optimized model hyperparameters using
grid search. Table 13 provides additional details
regarding the fine-tuned hyperparameters.

4.3 Data Augmentation

Manual dataset expansion, as described in Section
3, can be expensive and time-consuming. Data
augmentation (DA) strategies can be used to au-
tomatically increase training set size, offering an
attractive way to reduce overfitting or other issues
causing poor predictive performance (Bayer et al.,
2021; Feng et al., 2021). They also offer an oppor-
tunity to shift the class distribution of unbalanced
datasets through generation of additional samples
for specific classes, and they have grown more com-
mon in NLP recently (Feng et al., 2021).

Although DA techniques have not been explored
in the context of self-disclosure detection, this task
offers an intriguing testbed for these experiments
since it relies on nuanced language with uneven
class distribution (see Table 1). We experimented
with the following DA techniques to synthetically
expand our dataset and balance its distribution:

• Backtranslation Augmentation (BT): Data
is translated to a different target language (in
this case, German) and then back to the source
language (English). This often paraphrases
the original text (Beddiar et al., 2021).

• WordNet Synonym Augmentation (WS):
One or more words, depending on a fine-tuned
hyperparameter aug_p that controls the per-
centage of words to be augmented, are re-
placed with their synonyms from WordNet,
a large English lexical database (Ramachan-
dran and Parvathi, 2021).2 We set aug_p=0.3
in our experiments.

• Masked Language Model Augmentation
(MLM): A random sample of words is
“masked out” and a pretrained Transformer
model is used to restore the text to its origi-
nal version, typically resulting in a paraphrase

2https://wordnet.princeton.edu/
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(Wu et al., 2019; Kumar et al., 2020). We ex-
periment with DistilBERT (Sanh et al., 2019)
and RoBERTa (Liu et al., 2019) backbones
for this technique.

• Target-Aware Data Augmentation (TA):
The masked word is conditioned on both its
context and the prepended auxiliary sentence
that contains target and label information, pro-
ducing alternative versions of the original text
that are geared toward a specific target (in
our case, the specific target is medical self-
disclosure) (Li and Caragea, 2021).

We generated augmented data for the Possible
SD and No SD classes using each of these tech-
niques as a separate condition. We fine-tune the
augmentation ratio, a hyperparameter indicating
the multiplicative factor by which the dataset size
is increased, setting it to 2 for Possible SD and 1.5
for No SD. Figure 5 in the appendix demonstrates
that the DA process resulted in a relatively balanced
training set (3,488 Clear SD, 3,258 Possible SD,
and 3,488 No SD instances). Following standard
protocol we did not augment the validation or test
sets, to avoid introducing potential biases and allow
for direct comparison with other models.

To compare DA approaches with one another, we
train our best-performing model from our model-
ing experiments (§5.2) on separate combinations of
the final, manual dataset and each of the synthetic
dataset expansions (BT, WS, DistilBERT MLM,
RoBERTa MLM, and TA). We additionally compare
to a baseline no augmentation condition trained
only on the final, manual dataset.

5 Evaluation

We compare model performance using accuracy,
precision, recall, and macro-averaged F1, following
prior work on self-disclosure detection (Valizadeh
et al., 2021; Balani and De Choudhury, 2015). For
each experiment, we randomly split the specified
data into training (80%), validation (10%), and test
(10%) subsets. We measure the efficacy of our
manual dataset expansion (§5.1), empirically com-
pare the performance of the proposed Transformer
models (§5.2), and evaluate the performance of DA
techniques for medical self-disclosure (§5.3).

5.1 Does more (manual) data lead to better
performance?

To investigate whether the manual expansion of
MEDSD directly results in increased model perfor-

Model Acc. Precision Recall F1

MEDSD 76.77 0.7497 0.7241 0.7313
Final 80.91 0.7832 0.7810 0.7816

Table 2: Comparison between DistilBERT models
trained on the original MEDSD and final datasets, sepa-
rately. Accuracy shown as a percentage (%).

Figure 2: Training dataset size versus DistilBERT per-
formance scores. Accuracy and F1 both shown as a
percentage (%) to facilitate presentation.

mance, we train DistilBERT, the MEDSD bench-
mark, separately on the original MEDSD and the
final dataset (Table 2).3 The model trained on the
final dataset exhibits relative percentage increases
of 5.39% and 6.87% for accuracy and F1, respec-
tively, compared to the model trained on MEDSD.
This suggests that manual data expansion boosts
performance for this task, irregardless of model
architecture or pretraining settings.

However, there also appears to be a limit to
which more manual data results in meaningful
improvements. Figure 2 shows DistilBERT per-
formance at gradually increasing training dataset
sizes, exhibiting a flattening performance curve
approaching the final dataset size. Although this
suggests a performance plateau approaching the
full size of the manually-annotated dataset, further
experiments are needed to justify a broader claim
that training set size is detached from performance
beyond a certain size threshold. We move closer
towards validating this claim with the findings from
our data augmentation experiments (§5.3).

3The MEDSD results reported in Table 2 (top row) are
lower than we observed previously (Valizadeh et al., 2021).
After replicating those experiments for this study with differ-
ent random seeds to assess statistical significance, we found
that when averaged across numerous runs, multinomial Distil-
BERT achieves the performance values reported here. These
scores remain higher than the other baselines studied by Val-
izadeh et al. (2021), and the conclusions resulting from those
earlier experiments still hold (and are statistically significant).
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Model Acc. Precision Recall F1

DistilBERT 80.91 0.7832 0.7810 0.7816
RoBERTa 84.40 0.8172 0.7927 0.7968
BioBERT 84.35 0.8117 0.8219 0.8173
Bio-ClinicalBERT 83.10 0.8042 0.7889 0.7954
Bio-RedditBERT 85.15 0.8241 0.8250 0.8245
MentalBERT 85.42 0.8357 0.8282 0.8208
BERTweet 87.67 0.8528 0.8551 0.8537

Table 3: Model performance comparison. Accuracy
shown as a percentage (%).

5.2 How do pretraining style and task domain
impact model performance?

We present the results of our model comparison
in Table 3. BERTweet achieved the highest per-
formance, with accuracy=87.67% and F1=0.8537.
The model outperformed the existing DistilBERT
baseline by relative percent increases in accuracy
and F1 of 8.35% and 9.22%, respectively. We ap-
plied McNemar-Bowker’s test (α = 0.05), an ex-
tension of McNemar’s test designed to accommo-
date more than two classes (McNemar, 1947), to
assess the statistical significance of our results. We
observe that all differences are statistically signifi-
cant (p <= 0.05).

5.3 Does more (augmented) data lead to
better performance?

To investigate whether the synthetic expansion of
the dataset leads to further performance boosts
beyond those observed from the manual dataset
expansion, we retrained BERTweet on each aug-
mented version of the dataset described in §4.3.
We report our results in Table 4. Backtranslation re-
sulted in the best model performance among all DA
approaches with accuracy=86.42% and F1=0.8537.
However, BERTweet with no augmentation outper-
formed all other conditions. The outcomes from
this experiment suggest that synthetic expansion
beyond the current dataset size is unlikely to lead
to substantial model improvement. This also offers
supporting evidence for the insights from Figure 2,
discussed in §5.1.

6 Discussion

6.1 Lessons Learned from Model Comparison

To further disentangle the differences in observed
model performances, we computed per-class ac-
curacy for each model (Table 5). The DistilBERT
baseline had acceptable performance when predict-

Technique Acc. Precision Recall F1

MLM-R 86.28 0.8388 0.8271 0.8325
MLM-D 85.88 0.8355 0.8228 0.8286
TA 85.48 0.8298 0.8362 0.8321
WS 86.01 0.8363 0.8196 0.8263
BT 86.42 0.8389 0.8470 0.8420
NA 87.67 0.8528 0.8551 0.8537

Table 4: Performance comparison for DA techniques.
MLM-R and MLM-D use RoBERTa and DistilBERT
backbones, respectively. NA refers to the no augmenta-
tion condition. Accuracy shown as a percentage (%).

ing No SD and Clear SD instances with 88.70%
and 87.60% accuracy, respectively, but poor perfor-
mance in detecting Possible SD instances, dropping
to 56.25% accuracy. RoBERTa resulted in higher
accuracy for the No SD and Clear SD classes (rel-
ative percent increases of 7.04% and 2.79%, sepa-
rately) while also offering a slight improvement in
detecting Possible SD instances.

Our task’s reliance on social media data in the
medical domain drove our selection of models pre-
trained primarily on social media data (BERTweet),
medical data (BioBERT and Bio-ClinicalBERT),
and data at the intersection of both domains (Bio-
RedditBERT and MentalBERT) for our experi-
ments. We anticipated that BioBERT and Bio-
ClinicalBERT would result in improved recogni-
tion of Clear SD instances, and these expecta-
tions were confirmed with per-class performance
increased by 3.29% and 5.38%, respectively, rel-
ative to DistilBERT. Bio-RedditBERT and Men-
talBERT achieved higher performance still, with
relative performance increases in the Possible SD
class in particular of 20.01% and 21.15% over the
baseline, emphasizing the importance of text style
in addition to domain specificity.

Interestingly, our strongest model overall was
BERTweet, which is pretrained primarily on social
media data although a small subset of the data did
have a specific health focus. This suggests that
ultimately, stylistic patterns may be more impor-
tant than task-based knowledge when recognizing
specific forms of self-disclosure. At the class level,
models trained entirely on healthcare datasets (e.g.,
Bio-ClinicalBERT) experience performance boosts
when detecting Clear SD instances, and models
trained on social media datasets (e.g., BERTweet)
achieve substantial increases in their detection of
Possible SD instances, which was the most chal-
lenging class for human annotators (§3.2).
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Model NO POSSIBLE CLEAR

DistilBERT 88.70 56.25 87.60
RoBERTa 94.95 57.48 90.05
BioBERT 89.79 63.69 90.49
Bio-ClinicalBERT 88.86 58.27 92.32
Bio-RedditBERT 90.71 67.51 91.27
MentalBERT 91.64 68.15 90.83
BERTweet 89.38 78.66 91.45

Table 5: Accuracy per class for all the models imple-
mented for detecting medical self-disclosure. Accuracy
is shown as a percentage (%).

Dataset NO POSSIBLE CLEAR

BT 93.72 70.94 92.27
NA 89.38 78.66 91.45

Table 6: Comparison of per-class accuracy for
the BERTweet model trained on the backtranslation-
augmented (BT) and non-augmented (NA) datasets. Ac-
curacy is shown as a percentage (%).

6.2 Factors Influencing Data Augmentation

Our experiments did not provide conclusive evi-
dence that data augmentation can be effectively
leveraged to detect medical self-disclosure. This
is understandable since the task is known to rely
on often-subtle language patterns (Valizadeh et al.,
2021; Reuel et al., 2022). We examined the per-
class performance of our BERTweet model fine-
tuned on our backtranslation-augmented dataset
compared to the no augmentation condition (Table
6) to develop a deeper understanding of opportuni-
ties for future improvement.4

We find that data augmentation resulted in small
performance increases when predicting No SD and
Clear SD, but larger performance reductions when
predicting Possible SD instances. Although ini-
tially counterintuitive since our primary goal in
augmenting data was to balance the class distribu-
tion (for which frequency was lowest in the Pos-
sible SD class), we conducted further analyses to
pinpoint underlying factors. To analyze the linguis-
tic patterns associated with augmented and non-
augmented instances, we computed the log odds
ratio with an informative Dirichlet prior (Monroe
et al., 2008; Hessel, 2016) for both versions of No
SD and Possible SD (Figures 3 and 4).

We found that after augmenting the dataset, the
ratio of third-person nouns (e.g., “people” or “per-

4Per-class performance of BERTweet fine-tuned on other
augmented datasets is provided in Table 14 in the appendix.

Figure 3: Words most closely associated with NO SD
class. Red and blue plots correspond to original and
augmented data, respectively.

son”) increased in the No SD class (Figure 3). This
may have strengthened the model’s inverse associ-
ation between the use of external language and the
confirmed disclosure of medical information, re-
sulting in the observed 4.85% increase in accuracy
for No SD. The ratio of “feeling” keywords in the
Possible SD class also increased. Prior to DA, these
words were more prominent in the Clear SD class
than the Possible SD class (612 and 331 tokens
prior to DA, respectively, and 621 and 622 tokens
after), due to their use when expressing physical
or mental symptoms. We found that 18.1% of mis-
predicted Possible SD instances contained “feeling”
keywords prior to DA, and 29.54% of mispredicted
Possible SD instances contained these keywords
after DA. Thus, it appears that backtranslation cre-
ated a harmful distributional shift in the expression
of feeling language across classes. Finally, we
suspect that despite its outperformance over other
techniques, backtranslation is still limited in its
ability to create convincing synthetic data for this
task and may not have captured subtleties in writing
style that (as observed in our model comparison)
are important (Longpre et al., 2020; Beddiar et al.,
2021). As a result, the introduction of synthetically
augmented data to the learning process may have
merely added noise.

Although our data augmentation experiments did
not produce positive results, we note that this is the
first exploration of augmentation in the context of
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Figure 4: Words most closely associated with POSSIBLE
SD class. Red and blue plots correspond to original and
augmented data, respectively.

medical self-disclosure. Negative findings move
the dial toward more fully understanding the perfor-
mance boundaries of this and related tasks, and the
recent movement towards leaderboards rather than
hypothesis-driven investigations in NLP has con-
tributed to the under-reporting of negative results
(Tafreshi et al., 2022). This can slow progress as
scientists repeat experiments that they are unaware
have already been attempted, often with substan-
tial effort and carbon footprint. It is our hope that
through reporting the negative outcomes from our
DA experiments, we add to the growing knowledge
base surrounding data augmentation for NLP and
also lay the groundwork for future experiments in
self-disclosure detection.

7 Conclusion

In this work, we study data source, quantity, and
quality as it pertains to detecting medical self-
disclosure. First, we manually expanded MEDSD
with 3,919 additional instances and clinically vali-
dated its labels in collaboration with a healthcare
expert. Next, we compared Transformer models
pretrained on varying source datasets for predict-
ing medical self-disclosure, finding that our best-
performing model outperforms the state of the art
by relative percentage increases of 14.19% and
16.73% for accuracy and F1, respectively. Our
findings also suggest that stylistic patterns prove
more revealing than task-specific trends. Finally,
we study data augmentation in the context of this

task, finding that it poses many DA challenges. We
document these in our analysis, opening the door to
intriguing follow-up studies. We make our dataset
and models available to the research community
upon request, and we hope that our work can be
used as a roadmap for future experiments in self-
disclosure detection.
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Limitations

Our work is limited by several factors. Both the
original MEDSD dataset and our own expanded
version are imbalanced, resulting in some known
performance weaknesses. We attempted to cor-
rect for this using data augmentation techniques,
but across the wide range of techniques tested,
none were able to improve performance beyond
that of the no-augmentation baseline. Thus, we
cannot provide conclusive evidence that synthetic
dataset expansion is a valuable pursuit for this
task (although we note that this negative finding
in itself provides worthwhile direction for other
researchers). The manual expansion of the med-
ical self-disclosure dataset clearly improved per-
formance, highlighting the effectiveness of human
gold standard labels for this task; therefore, man-
ual or semi-supervised dataset expansion may be a
promising avenue for future model improvements.

Our highest performing model was BERTweet,
which is pretrained on a massive amount of primar-
ily general-domain social media data, although a
small subset of it was focused on the Covid-19 pan-
demic. This suggests that stylistic patterns may
be more important than domain knowledge for
the recognition of specific forms of self-disclosure.
Therefore, instead of limiting the methodology to
transfer learning models in clinical and medical
domains, future work should extend the range of
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domains and text styles that are studied. It may
be the case that the most worthwhile domains or
stylistic cues for supporting this task are further
from the target task, and as yet undiscovered.

All data and experiments reported in this paper
were conducted on English data, which constrains
the extent to which our claims can be generalized.
Future work examining medical self-disclosure in
languages that are less-resourced than English or
that differ greatly in their morphological typol-
ogy may provide crucial insight into the gener-
alizability of our findings. Finally, training and
fine-tuning large Transformer-based models often
requires costly GPU resources. This limits the ac-
cessibility of running these experiments at scale.

Ethics Statement

This research was approved by the Institutional
Review Board (IRB) at the University of Illinois
Chicago. Our primary data source was patient.info,
for which the terms and conditions allow public
access to forum posts.5 As outlined in §3.1 and to
protect privacy, we manually anonymized our data
instances by removing any usernames or other iden-
tifying metadata, and replaced any names written
directly within the post text with generic name to-
kens. Annotators were compensated for their work
through paid internships and assistantship positions
at a competitive rate for the cost of living in our
area. We make our expanded dataset available upon
request via email, following IRB protocol.

We intend for our dataset expansion and the pro-
posed methods to be used as a tool to analyze the
linguistic trends and other language behaviors as-
sociated with medical self-disclosure in online set-
tings. Our experiments closely follow this intent,
providing novel insight into the influence of dif-
ferent pre-training tasks and stylistic domains on
the ability of our models to recognize possible and
clear cases of medical self-disclosure. When the
technology is being used as intended and function-
ing correctly, we anticipate that it may be of value
to numerous downstream applications, primarily as
a data analysis tool or as an avenue for providing
information. When the technology is being used as
intended but giving incorrect results, its value may
decrease (since researchers or clinicians using the
tool may need to discard their insights or may fail
to replicate findings in subsequent experiments).

5https://patient.info/
terms-and-conditions

A potential misuse of the technology would be
to use the trained models to identify social me-
dia users disclosing medical information and apply
targeted advertising or messaging to those users.
Since neither our dataset nor our models are de-
signed to recognize or predict specific medical con-
ditions, we note that the extent to which they could
be used for these purposes is limited. We do not
condone this use of the technology, and we will
monitor citations and uses of our dataset to ensure
that others are using our data and models for their
intended purpose.
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A Data Collection

Our data collection and annotation process spanned
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izadeh et al., 2021), we covered numerous medi-
cal topics, ranging from mental to physical health
issues. In Tables 7 and 8, we provide example in-
stances from our dataset regarding some of these
topics. We note that although we categorize these
instances to facilitate presentation here, labels indi-
cating specific health conditions are not included
in our dataset.

B Data Refinement

After our manual data refinement process during
which we removed the instances that required ad-
judication, we ran the benchmark model (Distil-
BERT) established in prior work (Valizadeh et al.,
2021) on the final dataset versus the merged ver-
sion. Table 9 presents the results of this experiment,
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PHYSICAL HEALTH CONDITION

Brain & Nerves

1. I get horrific migraines. The dizzi-
ness/feeling faint and spaced out feeling
is the worst for me.

2. I have nerve testing next week and am
going to have my thyroid retested. I also
want an MRI and a brain scan. I feel
hopeless.

Chest & Lungs

1. For the past year, I’ve had issues with tak-
ing in deep breaths, have had an X-Ray,
CT Scan on my lungs and they couldn’t
find anything.

2. There is a mass in my right lung and I
need to go for a bronchoscopy this com-
ing Monday to determine what exactly it
is.

Bones, Joints, & Muscles

1. Finally after a month of waiting for re-
sults, I was told I do not have Rheuma-
toid Arthritis. I do wish that they would
take my Osteoarthritis more seriously
though. I’m glad you had your test and
all seemed ok.

2. I am nearly 2 years total left knee re-
placement and was a massive diet coke
drinker before surgery. However, since
surgery on March 16, I haven’t been able
to drink the stuff, makes me sick.

Gut, Bowel, & Stomach

1. I recently had appendicitis and got my
appendix removed about a month ago.

2. I went to several doctors for three and
a half months with these symptoms to no
avail after various negative tests. I was
eventually diagnosed with IBS.

Table 7: Some of the physical health-related topics cov-
ered in our dataset.

MENTAL HEALTH CONDITION

Anxiety Disorders

1. I have Panic Disorder and Generalized
Anxiety Disorder. It is well maintained
and I have not had a panic attack in
years.

2. I start PT on Monday and I’m hoping
I get a therapist that is understanding.
I don’t need to cry more than I already
have or have anymore anxiety attacks.

Post Traumatic Stress Disorder (PTSD)

1. I also suffer from C-PTSD so everything
is accentuated and I can’t wait till this
transition is over for all of us.

2. I did not sleep for 6 months due to PTSD
maybe micro sleeps. I just laid in bed
wide awake or with eyes closed.

Depression

1. Since my depression is genetic, it’s been
following me around for a while. It’s
always hung around me, but in the past
couple of months it hit me again and I
was struggling for the longest time.

2. I suffered from depression for many years
but it is nowhere near as bad as it was be-
cause I am on ad’s and had counselling.
Now I can live with it and have a good
life which means something to me.

Bipolar Disorder

1. I’ve only been diagnosed Bipolar just
over a month ago. I am very new to it, but
looking back over many years I realise
I’ve had it for a while.

2. One of the meds I am taking for Bipo-
lar is Seroquel at night. And after elimi-
nating everything else, it seems that the
Seroquel might be the cause of it.

Table 8: Some of the mental health-related topics cov-
ered in our dataset.
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showing relative percentage increases of 3.37%,
3.14%, 1.79%, and 2.41% for accuracy, precision,
recall, and F1, respectively. We also ran our high-
est performing model (BERTweet) established in
Section §5.2 on the final dataset versus the merged
version. Table 10 presents the results of this ex-
periment, showing relative percentage increases
of 3.16%, 1.87%, 3.47%, and 2.22% for accuracy,
precision, recall, and F1, respectively.

Dataset Acc. Precision Recall F1

Merged 78.27 0.7593 0.7672 0.7632
Final 80.91 0.7832 0.7810 0.7816

Table 9: Model performance before and after data re-
finement. The model used for this experiment is the
baseline, a DistilBERT model.

Dataset Acc. Precision Recall F1

Merged 84.98 0.8371 0.8264 0.8351
Final 87.67 0.8528 0.8551 0.8537

Table 10: Model performance before and after data
refinement. The model used for this experiment is our
highest performing model, a BERTweet model (§5.2).

C Data Preprocessing

To validate the utility of the preprocessing tech-
niques described in §4.1, we ran our DistilBERT
benchmark and our highest performing model
BERTweet on the final dataset without any prepro-
cessing steps and with each step individually. We
report our findings in Tables 11 and 12, demonstrat-
ing that each step results in small but measurable
performance improvements.

Technique Accuracy

Base Model (No Preprocessing) 77.21%
Base + DeEmojifying 78.07%
Base + Number Replacement 78.02%

Table 11: Model performance in accuracy (%) before
and after applying each preprocessing technique. Base
model refers to our baseline DistilBERT model, trained
on the final dataset (§5.1).

Technique Accuracy

BERTweet (No Preprocessing) 86.54%
BERTweet + DeEmojifying 87.43%
BERTweet + Number Replacement 87.32%

Table 12: Model performance in accuracy (%) be-
fore and after applying each preprocessing technique.
BERTweet refers to our highest performing model,
trained on the final dataset (§5.2).

D Experimental Settings

We optimized model hyperparameters using grid
search. Table 13 shows the final hyperparameters
we used when training our models.

Model Learning Rate Batch Size Epochs

DistilBERT 2e-6 16 3
RoBERTa 2e-5 16 3
BioBERT 2e-5 8 4

Bio-ClinicalBERT 2e-5 8 4
Bio-RedditBERT 2e-5 16 3

MentalBERT 2e-5 32 3
BERTweet 2e-5 8 3

Table 13: Models’ final hyperparameters.

E Data Augmentation

We generated augmented data for the Possible SD
and No SD classes using each of the techniques
described in §4.3 as a separate condition. We fine-
tune the augmentation ratio, a hyperparameter indi-
cating the multiplicative factor by which the dataset
size is increased, setting it to 2 for Possible SD and
1.5 for No SD. Figure 5 demonstrates that the DA
process resulted in a relatively balanced training
set (3,488 Clear SD, 3,258 Possible SD, and 3,488
No SD instances).

Figure 5: Distribution of training instances before and
after data augmentation technique.
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F Per-Class Performance for Data
Augmentation Techniques

Our experiments did not provide conclusive evi-
dence that data augmentation can be effectively
leveraged for the task of detecting medical self-
disclosure. This is somewhat unsurprising since the
task is known to be challenging due to its reliance
on often-subtle language patterns (Valizadeh et al.,
2021; Reuel et al., 2022). We further examined
the per-class performance of our best-performing
model (BERTweet fine-tuned on various augmented
datasets) compared to the no augmentation condi-
tion to develop a deeper understanding of oppor-
tunities for future improvement, and present the
results in Table 14.

Dataset NO SD POSSIBLE SD CLEAR SD
MLM-R 90.95 64.64 92.53
MLM-D 89.79 63.64 92.40
TA 89.95 68.47 89.92
WS 93.03 60.19 90.67
BT 93.72 70.94 92.27
NA 89.38 78.66 91.45

Table 14: Comparison of per-class accuracy for the
BERTweet models trained on the augmented and non-
augmented (NA) datasets. Accuracy is shown as a per-
centage (%).

G Clinical Validation

After our clinical validation process, we observed
high agreement between the clinical expert and
our gold standard: in total, 92.37% of the expert’s
labels (1353 of the 1465 instances) matched those
in the gold standard. However, there were some
instances for which our annotators and the clinical
expert did not agree. Table 15 presents some of
these instances, along with commentary provided
by our clinical expert to offer additional insight
into their thought process and rationale.
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Instance Clinical Label Gold Standard Expert’s Note

Although the madness part of
King George I might be close to.
Stephen Fry is an idol of mine,
and someone I watch closely for
obvious link in the field of mental
health but if he’s Premier League
I’d barely count as a part time
player!

Clear SD Possible SD Although a specific diagno-
sis is not referenced, when
viewed from a clinical per-
spective this is a clear dis-
closure of a mental health
problem.

I don’t want to die but I can’t af-
ford to live with pain of emotions
that I am worth less and no one
needs me!

Clear SD Possible SD Similar to above, clinical
expertise affords additional
sensitivity to mental health
disclosures.

I have had a perfectly awful past
year....the worst ever in my life.
I have been in perimenopause
for about 4-6 years now (hard
to know for sure), I have been on
here begging for advice on what
I can do to ease my suffering and
I was struck with a major realiza-
tion today!

Possible SD Clear SD Menopause itself is not a
medical problem since it
is a natural circumstance;
thus, focus should instead
be placed on the suffering
that is referenced but unspe-
cific.

I’m also going through hormonal
changes so its been rough trying
to figure out whats causing what.

Possible SD Clear SD Again, hormonal changes
are a natural circumstance
rather than a healthcare
problem; focus should be
placed on the unspecified is-
sues.

I’m honestly aware that it’s ex-
tremely unlikely for a 16 year old
to end up with colon cancer, but
it does happen in rare occasions
so it’s hard for me to completely
let go of the idea.

No SD Possible SD It is unclear whether this dis-
closure is in reference to the
poster.

We have to tell our drs that
we are not stupid nor irrespon-
sible with test results. It is
your body/health and you need
to know and understand what is
happening and not kept in the
dark.

No SD Possible SD Advocating for rights or ex-
pertise is not a disclosure of
a medical concern in itself.

Table 15: Instances with disagreements in the clinical validation process.
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Abstract

Visual-Semantic Embedding (VSE) aims to
learn an embedding space where related vi-
sual and semantic instances are close to each
other. Recent VSE models tend to design
complex structures to pool visual and seman-
tic features into fixed-length vectors and use
hard triplet loss for optimization. However,
we find that: (1) combining simple pooling
methods is no worse than these sophisticated
methods; and (2) only considering the most
difficult-to-distinguish negative sample leads
to slow convergence and poor Recall@K im-
provement. To this end, we propose an adap-
tive pooling strategy that allows the model to
learn how to aggregate features through a com-
bination of simple pooling methods. We also
introduce a strategy to dynamically select a
group of negative samples to make the opti-
mization converge faster and perform better.
Experimental results on Flickr30K and MS-
COCO demonstrate that a standard VSE us-
ing our pooling and optimization strategies out-
performs current state-of-the-art systems (at
least 1.0% on the metrics of recall) in image-
to-text and text-to-image retrieval. Source
code of our experiments is available at https:
//github.com/96-Zachary/vse_2ad.

1 Introduction

Visual Semantic Embedding (VSE) (Frome et al.,
2013; Faghri et al., 2018) is a representation learn-
ing method that embeds images and texts for effi-
cient cross-modal retrieval, and typically has the
following steps: (1) the image and text features are
first extracted by separate visual and text encoders;
(2) these features are then projected into a joint
embedding space and pooled to form fixed-length
vectors; (3) similarity is computed to measure the
distance between image and text representation;
and (4) a suitable objective is chosen for optimiza-
tion (see Figure 1 for an illustration). Our paper

∗ These authors contributed equally to this work.

Feature Extraction Feature Aggregation

Similarity CalculationOptimization Target

Image Text

Inputs

Figure 1: Illustration of VSE.

focuses on improving the steps of feature aggrega-
tion and optimization.

For feature aggregation, the most commonly
used methods are simple pooling aggregators.
MaxPool (Wang et al., 2018) and MeanPool
(Reimers and Gurevych, 2019) are designed to de-
tect the salient and mean points of features, and
K-MaxPool (Kalchbrenner et al., 2014) extracts
the mean of top-K features. Some complex aggre-
gation techniques have been proposed, e.g. local-
importance projection (Gao et al., 2019), sequence-
to-sequence encoder (Hu et al., 2019), graph convo-
lution network (Li et al., 2019), exponential adap-
tive pooling (Stergiou and Poppe, 2021) and self-
attention encoder (Wang et al., 2020). However,
we found that carefully selected pooling functions
can surpass complex methods (see Appendix A.1).
Motivated by this, our paper proposes an approach
that can automatically discover the best pooling
functions. Specifically, we seek to improve the fea-
ture aggregation step by proposing a formulation
that parameterizes the different pooling strategies
and allows the model to learn the best configura-
tion automatically via its objective, alleviating the
need to do manual tuning. In other words, we’ve
turned these hyper-parameters (i.e. choices of pool-
ing functions) into parameters in the model.

For optimization, most VSE models optimize us-
ing the hinge triplet ranking loss with in-batch neg-
ative example (Faghri et al., 2018). The intuition
of the objective is to encourage positive pairs to be
embedded in a similar space while widening the
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distance between a target with the hardest in-batch
negative sample (Li et al., 2022a). In practice, how-
ever, it is often difficult for the model to find a good
negative sample in the early stages of training (as
instances are randomly distributed in space), result-
ing in slow convergence (see Appendix A.2). To
improve optimization, we propose an adaptive op-
timization objective that selects multiple in-batch
negative samples based on model quality during
training. The intuition is that in the early stages of
training, we want to sample more negative samples
for faster convergence, and in the later stages, we
want to sample fewer negative samples for finer
tuning.

Over two public datasets, MS-COCO (Lin et al.,
2014) and Flickr30K (Young et al., 2014), we
show that a standard VSE model using our pro-
posed feature aggregation and optimization strate-
gies outperforms benchmark models substantially.
In particular, our method obtains 1.4% relative
gains on RSUM for MS-COCO and 1.0% for
Flickr30K. Compared with a pre-trained vision-
language model with similar performance (Geigle
et al., 2022), our method is 4.3× faster.

2 Related Work

Depending on whether the image and text features
have any form of cross-modal interaction before
similarity calculation, existing image-text retrieval
can be broadly categorized into two types.

The visual semantic embedding (VSE) (Faghri
et al., 2018; Wang et al., 2020; Chun et al., 2021)
methods process the multimodal instances inde-
pendently before projecting them into a joint em-
bedding space for similarity matching. Wang et al.
(2018) design a two-branch neural networks, LIWE
(Wehrmann et al., 2019) considers character-based
alignment and embedding methods for language
encoder and Faghri et al. (2018) extend it by us-
ing hard triplet loss for optimization. Following
these ideas, PVSE (Song and Soleymani, 2019)
and CVSE (Wang et al., 2020) are proposed to
consider intra-modal polysemous and consensus
information. Recently, Chun et al. (2021) samples
instances as probabilistic distributions and achieves
further improvement. These VSE-based methods
are fast as they do not consider cross-modal interac-
tion and as such the visual and text features can be
pre-computed. The non-VSE methods concentrate
on the interaction of modalities. For example, prior
methods explore fusing multi-modal information

by attention (Lee et al., 2018; Chen et al., 2020;
Zhang et al., 2021a), alignment (Zhang et al., 2020),
multi-view representation (Qu et al., 2020) or fine-
grained reasoning (Qu et al., 2021; Zhang et al.,
2022). The early-interaction methods (Geigle et al.,
2022), like pre-trained vision-language models (Lu
et al., 2019; Chen et al., 2019; Li et al., 2020; Jia
et al., 2021; Li et al., 2022b), focus on maximizing
performance while trading off efficiency.

The performance of VSE ultimately depends on
the quality of the joint embedding space, which is
usually learned with simple transformations (e.g.
linear projection or multi-layer perceptron) and
pooling aggregators (e.g. mean pooling (Faghri
et al., 2018; Qu et al., 2020), max pooling (Zhang
and Lu, 2018; Li et al., 2021), or a combination
of them (Lee et al., 2018)). Compared to these
simple aggregation methods, more complex ag-
gregators that introduce a large number of train-
able parameters have also been explored, e.g. inter-
modal attention (Wehrmann et al., 2020) and self-
attention mechanisms (Han et al., 2021). Zhang
et al. (2021b) design a cross-modal guided pooling
module that attends to local information dynam-
ically. These sophisticated aggregators typically
require more time, and don’t always outperform
simple pooling strategies. Perhaps the closest study
to our work is GPO (VSE∞) (Chen et al., 2021),
which builds a generalized operator to learn the best
pooling strategy that only considers the position
information of the extracted features.

Some studies focus on improving the optimiza-
tion objective, and the most widely adopted ob-
jective is the hinge-based hard triplet ranking loss
(Faghri et al., 2018; Wei et al., 2020b; Messina
et al., 2021), which dynamically selects the “hard-
est” negative sample within a mini-batch. Other
studies explore solutions that choose multiple neg-
ative samples. Zhou et al. (2020) introduce a co-
herence metric to rank the “irrelevant” candidates.
Extending the idea, Wei et al. (2020a) assign dif-
ferent weights for positive and negative pairs. To
tackle the issue of noisy labels which impacts mul-
timodal representation, Hu et al. (2021) propose
maximizing the mutual information between differ-
ent modalities. Huang et al. (2021) separate data
into “clean” and “noisy” partitions by co-teaching.
Ultimate though these methods did not explore
modifying the behaviour of negative sample se-
lection adaptively according to model performance
during training, which we address in this work.

1218



Inputs

All three explosions 
being audible within 
the stadium

Feature Extraction

Feature Aggregation

ConvNet

SeqModel

Similarity Calculation

Optimization Target

ViT

Regions or Grids

Patches

PLM

… …

… …

All 
three 
explosions 
being 
audible 
within 
the 
stadium
Tokens

MaxPool MeanPool K-MaxPool

Aggregate & Normalize X

Cosine
Joint Embedding 

Space

Anchor Text
Anchor Image

Negative Image

Negative Image

Figure 2: The framework of VSE. The visual and text encoders process the image and text separately at first. The
related images and sentences are then directed to a similar space using an appropriate optimization target.

3 Methodology

3.1 Background of VSE
We first discuss the standard formulation of VSE,
before introducing our innovation on improving
feature aggregation (Section 3.2) and optimization
(Section 3.3).

To compute the similarity of given multimodal
instance (image & text), a VSE model (Figure 2)
separately encodes them via a visual encoder
(VisEnc(·)) and a text encoder (TextEnc(·)).
There are three widely used visual features pro-
duced by different visual encoders — grid is the
feature maps from convolutional networks (CNNs;
He et al. (2016)), region is the region of interest fea-
tures from object detectors (Anderson et al., 2018)
and patch is the partition from vision transformer
(Dosovitskiy et al., 2021). The text encoders are
usually RNNs (Sutskever et al., 2014)) and BERT
(Devlin et al., 2019). Formally:

Fv = VisEnc(v)

Ft = TextEnc(t)

where v and t are the input image and text.
Assuming the visual feature Fv has N object vec-

tors (represented either as grids, regions or patches)
in d1 dimension, and the text feature Ft has M to-
ken vectors in d2 dimension, we next project them
to the same d-dimension:

{vn}Nn=1 = FvWv + bv
{tm}Mm=1 = FtWt + bt

(1)

where vn and tm now have the same dimension d.

To aggregate the extracted features into fixed-
length vectors, domain aggregators, fvision(·) and
ftext(·) are used to transform {vn}Nn=1 ∈ RN×d

and {tn}Mm=1 ∈ RM×d into v ∈ Rd and t ∈ Rd,
respectively:

v = fvision

(
{vn}Nn=1

)
,

t = ftext

(
{tm}Mm=1

)

And lastly, to measure how related the inputs we
use cosine similarity:

sim(t, v) =
tTv

∥t∥ · ∥v∥
Existing optimization strategies generally use

the hinge-based triplet ranking loss to optimize the
VSE model. Given an anchor, it aims to maximize
its similarity with positive samples while minimiz-
ing its similarity with the most “difficult” negative
sample in the mini-batch (i.e. the example that has
the highest similarity with the anchor that is not a
positive example), and includes both text-to-image
and image-to-text retrieval objectives:

LHardTriplet =∑

(t,v,̂t,v̂)∼B

[
α− sim(t, v) + sim(t, v̂)

]+

+
[
α− sim(t, v) + sim(̂t, v)

]+
(2)

where α is the margin hyper-parameter, and [x]+ =
max(0, x). (t, v) is a positive text-image pair
in mini-batch B and (̂t, v) and (t, v̂) are nega-
tive pairs, where t̂ = argmaxt′ ̸=tsim(t′, v) and
v̂ = argmaxv′ ̸=vsim(t, v′) are the hardest negative
sentence and image respectively in B.
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Figure 3: Illustration of our proposed adaptive pooling module (ADPOOL). It produces vectors pooled at the
Token-level and Embedding-level and combined via a balance module. Red row denotes a token-level vector.

3.2 Enhanced VSE with Adaptive Pooling
We now describe our approach (named adaptive
pooling, ADPOOL) to improving feature aggrega-
tion, where we parameterize the pooling opera-
tions (fvision and ftext) to allow VSE to learn the
best way to aggregate the features via its objec-
tive adaptively (in other words, we have effectively
turned the pooling methods — which are hyper-
parameters — into model parameters). Our ap-
proach has the advantage of being much faster and
simpler than complex aggregators, as it introduces
only a small number of parameters. Note that we
will describe our method only for the text feature
({tm}Mm=1), as the same process can be applied for
the visual feature ({vn}Nn=1).

3.2.1 Token-level Pooling
Recall that the text feature ({tm}Mm=1) has M to-
kens each of d-dimension. The exact form of tm
can be token vectors. As for vision features, they
can be grids, regions or image patches, depending
on the visual encoder. Let maxk(·) be a function
that extracts the top k-th value in a list, the common
pooling mechanisms can be formulated as follows:

• MeanPool = 1
M

∑M
i=1{tij}Mi=1 ouputs the

mean value among N objects at position j;
• MaxPool = max1

(
{tij}Mi=1

)
returns the max-

imum values of {tij}Mi=1, ∀j;
• K-MaxPool = 1

K

∑K
k=1maxk

(
{tij}Mi=1

)

computes the mean of the top-K values.

where tij denotes the j-th element in the i-th token
vector.

Using the token vectors {tm}Mm=1 in Figure 3
(red rows in the input matrix) as an example, we

follow the “sort→ weight-sum” paradigm (Grefen-
stette et al., 2014) of simple pooling methods to first
sort the feature matrix along the embedding axis.
Next we let the model learn (via a fully-connected
layer) how to weight each vector (red rows in
the matrix) automatically (e.g. [0.1, 0.6, 0.3, 0.0]
in Figure 3). Intuitively, this means we have now
expressed MeanPool and K-MaxPool using a gen-
eralized function (through the “sort→ weight-sum”
process), and the parameters of the function is
learned automatically so the feature aggregation
step is “adaptive”. Formally:

ttok =

M∑

m=1

θm · um

{um}Mm=1 = sort
(
{tm}Mm=1

)

θ = softmax
(
{um}Mm=1Wtok

)

(3)

where sort(·) is a function that sorts the token vec-
tors along the embedding axis.

3.2.2 Embedding-level Pooling
With token-level pooling, we learn to how to weight
each (sorted) token vector and aggregate them.
With embedding-pooling, we learn how to weight
each (original unsorted) object vector in each em-
bedding dimension to extract the most salient ele-
ment within that dimension, and can be interpreted
as a “soft” version of MaxPool:

temb =
M∑

i=1

δij · tij , ∀j

δij =
etij

∑M
i=1 e

tij
,∀i

(4)
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3.2.3 Combining Token-level and
Embedding-level Pooled Vectors

Given the two pooled vectors ttok and temb (which
have the same dimension d), one straightforward
way to combine them is to weight them with scaling
hyper-parameters. To avoid these hyper-parameters
(which requires manual tuning), we let the model
learn these weights automatically with a trainable
Wbal ∈ Rd×1:

t = ω1ttok + ω2temb

ω{1,2} = softmax
(
[ttokWbal, tembWbal]

) (5)

For the visual feature {vn}Nn=1 (Equation 1), we
follow the same process to compute the token-level
(where here an “token” is a unit of image) and
embedding-level pooled vectors (vtok and vemb)
and combine them to produce v ∈ Rd.

3.3 Enhanced VSE with Adaptive Objective
Our next contribution is in improving the optimiza-
tion step. The hard triplet loss (Equation 2) is the
most commonly utilized training objective for op-
timizing VSE. However, we find that locating a
“most-difficult” negative sample is challenging in
the early stages of training (Appendix A.2), result-
ing in delayed convergence. We introduce a novel
adaptive optimization objective, ADOPT, that auto-
matically (or adaptively) selects K (K ≥ 1) nega-
tive samples in each mini-batch B during training.

Wang and Isola (2020) introduce two key proper-
ties, Alignment and Uniformity, that correlate with
a retrieval performance:

• Alignment: the positive (t and v) should
be mapped into a similar embedding space.
Defining γalign ∈ [0, 1] as the average simi-
larity values for all positive pairs, the larger
γalign is, the better the VSE model.

γalign = E
(t,v)∼B

[sim(t, v)]

• Uniformity: all vectors should be roughly uni-
formly distributed on the unit hypersphere,
and γuniform ∈ [0, 1] measures this quality.

γuniform = log E
t∼B,v∼B

[esim(t,v)]

By combining (γalign+γuniform)×π
4 ∈ [0, π2 ], we

can use it to assess the maturity of a VSE model
during training and dynamically adjust the number

of negative samples. That is, in the early stages of
training, we expect the value to be close to 0 (as
the model is unable to differentiate between posi-
tive and negative samples), and we would want to
use more negative samples for optimization. Con-
versely in the later stages of training, the value
should be close to π

2 and we want less negative
samples. Formally:

K′ = round
(
|B| × cos(

(γalign + γuniform)× π
4

)
)

K = max
(
1,min(K′, |B| − 1)

)

(6)
where cos is the cosine function to invert the sum1,
K is the number of negative samples to be used,
and round(x) is a function that rounds down the
value of x. As the hard triplet loss can only work
with K = 1 (Equation 2), we therefore utilize the
InfoNCE objective (Van den Oord et al., 2018),
which is a commonly used contrastive objective
(Radford et al., 2021):

L = Lv2t + Lt2v

Lv2t = −
1

|B|
∑

(t,v)∈B
log

exp
(
sim(t, v)/τ

)
∑K

k exp
(
sim(̂tk, v)/τ

)

Lt2v = − 1

|B|
∑

(t,v)∈B
log

exp
(
sim(t, v)/τ

)
∑K

k exp
(
sim(t, v̂k)/τ

)

where τ is the temperature hyper-parameter.

4 Experiments

4.1 Datasets and Metrics
Datasets. We conduct our experiments on MS-
COCO and Flickr30K using various visual and
text encoders for cross-modal retrieval. The MS-
COCO dataset contains 123,287 images, each with
5 manually annotated sentences. Following the
split method of Faghri et al. (2018), 113,287 im-
ages are used for training, 5,000 for validation, and
5,000 for testing.

Following prior studies (Faghri et al., 2018), we
experiment with two evaluation settings: (1) MS-
COCO 1K averages the results over 5-folds of 1K
test images; and (2) MS-COCO 5K directly results
on the whole 5K test images. Following Chen et al.
(2021), we use the former to assess overall perfor-
mance with state-of-the-art VSE models and the

1The purpose of using cos is to map (γalign+γuniform)×π

4
∈

[0, π
2
] to the range of [1, 0].
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MS-COCO 5-fold 1K Test
Image Retrieval Caption Retrieval

VF Method R@1 R@5 R@10 R@1 R@5 R@10 RSUM
Text Encoder: BiGRU

R VSE++ 54.0 85.6 92.7 68.5 92.6 97.1 490.5
R LIWE 57.9 88.3 94.5 73.2 95.5 98.2 507.6
R PVSE 55.2 86.5 93.7 69.2 91.6 96.6 492.8
R CVSE 55.7 86.9 93.8 69.2 93.3 97.5 496.4
R VSE∞ 61.7 90.3 95.6 78.5 96.0 98.7 520.5
R SCAN(i2t) 54.4 86.0 93.6 69.2 93.2 97.5 493.9
R SCAN(t2i) 56.4 87.0 93.9 70.9 94.5 97.8 500.5
R CAAN 61.3 89.7 95.2 75.5 95.4 98.5 515.6
R IMRAM 61.7 89.1 95.0 76.7 95.6 98.5 516.6
R VSE+2AD 63.5 91.8 96.3 79.7 97.3 99.2 527.8

RG VSE∞ 64.8 91.6 96.5 80.0 97.0 99.0 528.8
RG VSE+2AD 65.7 92.3 97.0 82.1 97.9 99.4 534.4

RGP VSE+2AD 67.1 93.0 97.7 83.8 98.1 99.4 539.1
Text Encoder: BERT

R VSE++ 54.0 85.6 92.5 67.9 91.9 97.0 488.9
R VSE∞ 64.8 91.4 96.3 79.7 96.4 98.9 527.5
R DSRN 64.5 90.8 95.8 78.3 95.7 98.4 523.5
R DIME(i2t) 63.0 90.5 96.2 77.9 95.9 98.3 521.8
R DIME(t2i) 62.3 90.2 95.8 77.2 95.5 98.5 519.5
R VSE+2AD 67.5 93.6 97.7 81.3 96.7 99.2 536.0

RG VSE∞ 68.1 92.9 97.2 82.2 97.5 99.5 537.4
RG VSE+2AD 71.9 94.3 98.3 84.2 98.5 99.4 546.6

RGP VSE+2AD 72.5 94.8 98.7 85.4 98.9 99.2 549.5

Flickr30K 1K Test
Image Retrieval Caption Retrieval

R@1 R@5 R@10 R@1 R@5 R@10 RSUM

45.7 73.6 81.9 62.2 86.6 92.3 442.3
51.2 80.4 87.2 69.6 90.3 95.6 474.3

- - - - - - -
54.7 82.2 88.6 70.5 88.0 92.7 476.7
56.4 83.4 89.9 76.5 94.2 97.7 498.1
43.9 74.2 82.8 67.9 89.0 94.4 452.2
45.8 74.4 83.0 61.8 87.5 93.7 446.2
52.8 79.0 87.9 70.1 91.6 97.2 478.6
53.9 79.4 87.2 74.1 93.0 96.6 484.2
58.0 85.0 91.2 76.9 94.4 98.2 503.7
60.8 86.3 92.3 80.7 96.4 98.3 514.8
62.2 86.8 93.1 82.2 97.1 98.8 520.2
63.5 87.6 93.4 83.1 97.7 99.1 524.4

45.6 76.4 84.4 63.4 87.2 92.7 449.7
61.4 85.9 91.5 81.7 95.4 97.6 513.5
59.2 86.0 91.9 77.8 95.1 97.6 507.6
64.6 85.5 91.0 77.5 93.5 97.4 504.0
60.1 85.5 91.8 77.4 95.0 97.4 507.2
59.1 90.3 93.5 81.8 96.1 98.4 524.7
66.7 89.9 94.0 85.3 97.2 98.9 532.0
69.2 91.3 95.6 87.1 97.9 99.3 540.4
71.4 92.0 95.8 88.2 98.4 99.5 545.3

Table 1: Cross-modal retrieval results on MS-COCO and Flickr30K datasets. The top half of the table uses
BiGRU as the text encoder; the bottom half is BERT. VF denotes vision feature, and R, G, and P mean region, grid
and patch respectively. The best results are marked bold in black, blue and red for region feature (R), ensemble
of region+grid features (RG) and ensemble of region+grid+patch features (RGP) respectively. VSE+2AD is our
proposed model, which enhances the VSE model by using ADPOOL for aggregation and ADOPT for optimization.

latter for further analyses such as ablation results.
Flickr30K consists of 31,783 images with the same
corresponding 5 captions, and 1,000 images are
reserved for validation and testing.

Metrics. We evaluate cross-modal retrieval per-
formance using recall@K (R@K), where K =
{1, 5, 10}. The evaluation tasks include both cap-
tion retrieval (given caption, find images) and im-
age retrieval (given image, find captions). We also
compute RSUM which is a sum of all R@K metrics
across both tasks to assess the overall performance.

4.2 Implementation Details

We implement our models using the PyTorch li-
brary. The dimension of the shared embedding
space d is 1024. We use the Adam optimizer with
a mini-batch size of 128 and train our models with
25 epochs. The learning rate is set to 5e-4 with a
decaying factor of 10% for every 15 epochs.

Visual Encoders. We use Faster-RCNN (Ren
et al., 2015) (ResNet-101 is pre-trained on Ima-
geNet and Visual Genome) to extract region fea-

ture directly (Anderson et al., 2018), and fine-tune
it further with grid feature (resolution = 512×512)
(Jiang et al., 2020) before using it as a grid fea-
ture extractor. For the patch feature, we fine-tune
the pre-trained Vision Transformer 2 (Dosovitskiy
et al., 2021) using images with a resolution of
224×224 to use it as a patch feature extractor.

Text Encoders. We experiment with BiGRU
(Faghri et al., 2018) and BERT-base3 (Devlin et al.,
2019). Additional implementation and training
details are given in the Appendix B.

4.3 Main Results

We compare against several mainstream baselines
with our proposed method, all of which have been
described in Section 2. For these benchmark mod-
els, we use the results reported in the original pa-
pers (test set is the same).

Table 1 presents the full results over both image
and caption retrieval and across two datasets (MS-

2vit-base-patch16-224
3bert-base-uncased
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COCO and Flickr30K). Results for MS-COCO
is an average of over 5-folds of 1K test images.
Our method is “VSE+2AD”, which enhances the
standard VSE model by introducing ADPOOL and
ADOPT. The top half of the table presents results
where we use BiGRU as the text encoder, and the
bottom half uses BERT. For models where we com-
bine visual features from multiple visual encoders
(e.g. “RG” which combines region and grid fea-
ture), we do so by simply taking the average simi-
larity values to rank the candidates.

Looking at the results, VSE+2AD (our model)
outperforms almost all baselines/benchmark mod-
els consistently. Our model displays consistent im-
provement over the state-of-the-art method VSE∞
(Chen et al., 2021) with the same visual (region
feature by BUTD (Anderson et al., 2018)) and text
encoders (BiGRU). In particular, with BiGRU as
the text encoder, it obtains 1.4% (520.5→ 527.8)
and 1.0% (498.1→ 503.1) relative gains on RSUM
for MS-COCO and Flickr30K datasets respectively.
These improvements are consistent irrespective of
the combination of visual and text encoders. We
also see that combining visual encoders (“RG” vs.
“R”) further boosts its performance (like RSUM
from 527.8 to 534.4 for MS-COCO), and utilizing
all types of visual features (“RGP”) produces the
best performance (539.1 > 534.4 > 527.8).

4.4 Comparison with Pre-trained Models

We next compare VSE+2AD (with BERT as the
text encoder) to pre-trained vision language models:
ViLBERT (Lu et al., 2019), UNITER (Chen et al.,
2019), OSCAR (Li et al., 2020), ALIGN (Jia et al.,
2021), CLIP (Radford et al., 2021) and MVP (Li
et al., 2022b) in Table 2. These results are evaluated
on the COCO 5K test images.

Without using any large-scale paired image-
text corpus for pre-training, our ensemble
VSE+2ADRGP (that combines region/grid/patch
features) outperforms two out of six pre-trained
VL methods and is not much worse than OSCAR,
even though it does not use any cross-modal inter-
action. Our model is substantially faster than these
pre-trained models: our slowest ensemble model
is still an order of magnitude faster. As for our
method we can pre-compute and cache the visual
and text features, so the retrieval only need simi-
larity calculation and ranking operations. Overall,
these results demonstrate that our model strikes a
good balance between performance and efficiency.

COCO 5K Test
Image Retrieval Caption Retrieval

Method R@1 R@5 R@1 R@5 RSUM #OIPs
ViLBERT 38.6 68.2 53.5 79.7 406.9 -
UNITER 48.4 76.7 63.3 87.0 454.4 9.6×
OSCAR 54.0 80.8 70.0 91.1 479.9 4.3×
ALIGN 59.9 83.3 77.0 93.5 500.4 1.0×
CLIP 58.7 83.6 76.8 94.0 500.9 -
MVP 60.1 84.0 77.3 93.6 502.6 -
VSE+2AD 52.5 80.2 69.5 91.2 475.9 45.3×

Table 2: Comparison between VSE+2AD and pre-
trained models. #OIPs denotes operating items per sec-
ond, and larger is better. The text encoder for VSE+2AD
is BERT. And the shown number is the ensemble results
considering region+grid+patch visual features.

COCO 5K Test
Image Retrieval Caption Retrieval

Method R@1 R@5 R@10 R@1 R@5 R@10 RSUM
VSE+2AD 41.4 72.3 83.8 54.9 83.0 91.5 426.9
−tok ADPOOL 39.5 71.3 82.3 53.5 82.2 91.3 420.1
−emb ADPOOL 40.1 72.3 83.2 53.7 82.5 91.3 423.1
−ADPOOL 38.5 72.4 81.8 53.3 82.0 91.1 419.1
−ADOPT 39.2 71.1 81.5 53.4 82.2 90.5 417.9

Table 3: Ablation results where we measure the token-
level, embedding-level, overall ADPOOL pooling meth-
ods and ADOPT optimization strategy. The region fea-
ture with simple projection as visual encoder and Bi-
GRU as the textual encoder.

4.5 Ablation Study

To understand the impact of ADPOOL (which im-
proves feature aggregation in Section 3.2) and
ADOPT (which improves optimization in Sec-
tion 3.3), we perform several ablation studies based
on the COCO 5K test. For this experiment (in Table
3), we use only the region feature and BiGRU as
the text encoder. Looking at the aggregate RSUM
performance, we see both the token-level pooling
(“−tok ADPOOL”; Section 3.2.1) and embedding-
level pooling (“−emb ADPOOL”; Section 3.2.2)
appear to be useful, although token-level pooling
is arguably more important. In the case where we
remove ADPOOL entirely (“−ADPOOL”) and use
MeanPool as the aggregation method, the perfor-
mance drops even more, suggesting complementar-
ity. ADOPT is the most impactful method, where
taking it out produces the worst performance. To
understand its impact qualitatively, we also look
at the training curve of a VSE model trained with
and without ADOPT. We found that that ADOPT

is particularly useful in the early stages of train-
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COCO 5K Test
Image RetrievalCaption Retrieval

AggregatorR@1 R@5 R@1 R@5 RSUM#OIPs
LIP 38.4 69.3 52.2 81.1 414.8 4.6×
Seq2Seq 38.2 68.9 52.1 80.9 415.7 1.8×
GCN 40.7 71.3 53.5 81.5 419.2 1.0×
SelfAttn 40.9 71.3 53.8 82.2 420.1 1.6×
AdaPool 40.2 71.8 52.8 81.4 418.3 4.1×
SoftPool 39.2 69.8 52.8 81.4 419.8 5.1×
GPO 41.2 71.1 55.6 82.0 422.9 4.3×
Manual 38.7 71.6 53.7 82.1 419.3 5.6×
ADPOOL 41.4 72.3 54.9 83.0 426.9 4.9×

Table 4: Performance of VSE+2AD using different ag-
gregators. #OIPs denotes operating items per second,
and larger is better. Note that our proposed ADPOOL
aggregation method is only slower than simple pooling,
5.6× > 4.9 ×(ADPOOL) > others, but it no need for
fussily manual tuning.

ing, where it helps the model to converge much
faster. This earlier convergence ultimately impacts
their final performance, where the VSE trained with
ADOPT reaches a plateau that is higher than the
one without ADOPT. For more details, please see
Appendix A.2.

We next investigate the impact of ADPOOL fur-
ther, by replacing it with other more advanced pool-
ing strategies. As before, we use the region feature,
BiGRU for the text encoder, and COCO 5K test.
Table 4 presents the results. Here we see that AD-
POOL outperforms existing pooling strategies (best
RSUM), even against more complex aggregators
such as Seq2Seq, GCN and SelfAttn. It is also
reasonably fast (competitive with other methods).
These results once again highlight that our pro-
posed pooling method has both performance and
speed as we saw in Section 4.4.

4.6 Case Study

To validate the effectiveness of VSE+2AD, we
present two examples for image retrieval and cap-
tion retrieval in Figure 4(a) and Figure 4(b), respec-
tively. As we can see in Figure 4(a), the “incorrect”
sentence retrieved by our model seems sensible,
suggesting that this is likely noise in the data. Fig-
ure 4(b), on the other hand, shows some genuine
erroneous images retrieved by our model, and we
suspect this is because it is a particularly difficult
example where the caption is very descriptive and
the details are difficult to be captured by VSE’s
bi-encoder approach.

5 Conclusion and Discussion

In this paper, we propose methods to improve
VSE’s feature aggregation and optimization objec-
tive. For the former, we introduce a way to param-
eterize the aggregation function to allow the visual
and text encoders to learn the best way to combine
their features to produce a fixed-size embedding.
For the latter, we propose a method that dynami-
cally selects many negative samples that allow the
VSE to converge faster with a better final perfor-
mance. We compare our enhanced VSE model to
several baselines and state-of-the-art models over
two public datasets and demonstrate that it marries
both performance (state-of-the-art retrieval results)
and efficiency (orders of magnitude faster than pre-
trained models). In terms of practical impact, we
also tested a real-world application of our method
in Dianping (a Chinese searching platform) for a
unimodal retrieval task (semantic textual similarity)
and found that it worked very well, demonstrating
its applicability to real-world applications.
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Top-2Top-1 Top-3 Top-4 Top-5

(b) Caption Retrieval

Figure 4: Top-5 image retrieval and caption retrieval results on Flickr30K. The ground-truth results are marked with
greed ✓, and the wrong results are indicated by red .
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Limitations

Our method’s performance has only been verified
on English datasets; other languages can be ex-
plored to understand whether these results translate
to them. In a similar vein, we’ve also only tested
our methods in domain-general datasets; cross-
modal retrieval is a particularly important task in
the general intelligence domain, and with limited
paired image-text datasets it would be interesting
to see whether our proposed enhancements work
with these specialised domains. Lastly, our idea of
parameterizing the pooling and optimization strate-
gies can technically be applied to tasks other than
cross-modal retrieval, and it’s something worth ex-
ploring in future works.
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Appendix

A Verification of Assumptions

A.1 Effectiveness of Simple Pooling Methods
Although various complex methods (described in
Section 1 and Section 2) are explored for aggrega-
tion, we find that the simple pooling strategy works
no worse than those complex methods by numer-
ous experiments. It needs to be carefully manually
tuned, like 5-MaxPool for the visual feature (region
feature from BUTD) and MeanPool for the text fea-
ture (extracted by BiGRU). The results are shown
in Table A.1-1, where the similar conclusion is also
verified by VSE∞ (Chen et al., 2021).

COCO 5K Test
Image RetrievalCaption Retrieval

AggregatorR@1 R@5 R@1 R@5 RSUM
LIP 38.4 69.3 52.2 81.1 414.8
Seq2Seq 38.2 68.9 52.1 80.9 415.7
GCN 40.7 71.3 53.5 81.5 419.2
SelfAttn 40.9 71.3 53.8 82.2 420.1
AdaPool 40.2 71.8 52.8 81.4 418.3
SoftPool 39.2 69.8 52.8 81.4 419.8
GPO 41.2 71.1 55.6 82.0 422.9
Manual 38.7 71.6 53.7 82.1 419.3

Table 1: Comparison of complex aggregators and manu-
ally chosen pooling method evaluated with MS-COCO
5K. The best results are marked bold.

A.2 Slow Convergence of Hard Triplet Loss
Figure A.2-1 shows the comparison of VSE model
with and without our proposed optimization objec-
tive, ADOPT. Note that hard triplet loss (Faghri
et al., 2018) is used for optimization when ADOPT

is not used. The optimization target ADOPT can fit
the model more quickly, thus further improving the
potential of the model, that is performance is better
in the latter stage.

0 5 10 15 20 25
Epochs

50

100

150

200

250

300

350

400

450

M
et

ric
 V

al
ue

w/ ADCAP
w/o ADCAP

14 16 18 20 22 24
Epochs

405

410

415

420

425

430

M
et

ric
 V

al
ue

413.5

409.2

414.7

409.2

415.9

412.2

416.3

412.4

423.3

417.2

423.8

417.4

424.3

417.8

425.2

417.9

425.8

417.5

426.1

417.4

425.9

417.5

425.8

417.6

425.9

417.8

w/ ADCAP
w/o ADCAP

-1 0 1 2 3 4 5 6 7 8
Epochs

50

100

150

200

250

300

350

400

450

M
et

ric
 V

al
ue

356.4

89.3

376.3

150.7

389

228.8

396.1

279.8

399.1

318.9

404.8

333.4

406.5

370.1

408.2

396.2

409.6

402.2

410

404.2

w/ ADCAP
w/o ADCAP

-1 0 1 2 3 4 5 6 7 8
Epochs

50

100

150

200

250

300

350

400

450

M
et

ric
 V

al
ue

356.4

89.3

376.3

150.7

389

228.8

396.1

279.8

399.1

318.9

404.8

333.4

406.5

370.1

408.2

396.2

409.6

402.2

410

404.2

w/ ADCAP
w/o ADCAP

14 16 18 20 22 24
Epochs

405

410

415

420

425

430

M
et

ric
 V

al
ue

413.5

409.2

414.7

409.2

415.9

412.2

416.3

412.4

423.3

417.2

423.8

417.4

424.3

417.8

425.2

417.9

425.8

417.5

426.1

417.4

425.9

417.5

425.8

417.6

425.9

417.8

w/ ADCTO
w/o ADCTO

R
SU
M

ADOPT
ADOPT

Figure 1: Performance of VSE trained with and without
ADOPT.
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Figure 2: Visualization of negative group size learned
by ADOPT on the first 5 epochs (about 12000 iterations).

B Additional Implementation Details

Basic settings. The margin α for hard triplet loss
is set to 0.2 and the τ used in InfoNCE is 0.05. The
image and text features extracted from the encoders
use L2 normalization. The common learning rate
is set to 5e-4, while the learning rate of the pre-
trained modules (like BERT, ResNet and ViT) is
10% of its.

Vision Encoders. When using region feature
that is directly extracted from BUTD (Anderson
et al., 2018), the multilayer perceptron is used to
map the visual feature dimension into 1024 as the
same as the text feature dimension. For the grid
feature, the warm-up strategy is used for the first
epoch. Then, all parameters are optimized in the
rest of the 24 epochs. For the patch feature, the
original image is changed to 224×224 resolution
with the size of a patch as 16.

Text Encoders. When using BiGRU as the back-
bone, the token dimension is 300 and the hidden
dimension is 1024. Only one layer is considered
and the bidirectional features are averaged as the
output feature. For BERT, the hidden dimension
is 768 and the multilayer perceptron is also used
to map the text feature dimension into 1024 as the
same as the visual feature dimension.

C Additional Experiments and Results

We present Figure C-2 to show how the size of
the negative samples changes during training with
ADOPT. We can see that ADOPT starts with a large
number of negative samples, but that decreases
over time to only 4–5 samples at the end of the 5th

epoch (yellow line). Different from the common
hard triplet optimization that only considers one
hardest negative sample, the max_violation strategy
(Faghri et al., 2018) considers the rest of samples
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COCO 5K Test
Weights Image RetrievalCaption Retrieval

obj emb R@1 R@5 R@1 R@5 RSUM
0.25 0.75 39.8 70.2 51.9 80.4 416.6
0.5 0.5 40.1 70.6 52.8 81.1 418.2
0.75 0.25 40.6 71.4 54.1 82.2 421.3

random random 39.3 69.4 51.2 80.1 413.9
ADPOOLADPOOL 41.4 72.3 54.9 83.0 426.9

Table 2: Different choices of parameters for fusing
token-level and embedding-pooling.

within the same mini-batch as negative samples
only on the first epoch and the rest of epochs are
the same as the hard triplet loss.

We last investigate the impact of the balance
module in ADPOOL (Equation 5). Table C-2 shows
that manually tuned weights underperform substan-
tially compared to automatically learned weights4.

4For “random”, we select the weights randomly and run
them 5 times and compute the average to reduce variance.
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Abstract

Text-based environments enable RL agents to
learn to converse and perform interactive tasks
through natural language. However, previous
RL approaches applied to text-based environ-
ments show poor performance when evaluated
on unseen games. This paper investigates the
improvement of generalisation performance
through the simple switch from a value-based
update method to a policy-based one, within
text-based environments. We show that by re-
placing commonly used value-based methods
with REINFORCE with baseline, a far more
general agent is produced. The policy-based
agent is evaluated on Coin Collector and Ques-
tion Answering with interactive text (QAit),
two text-based environments designed to test
zero-shot performance. We see substantial im-
provements on a variety of zero-shot evaluation
experiments, including tripling accuracy on var-
ious QAit benchmark configurations. The re-
sults indicate that policy-based RL has signif-
icantly better generalisation capabilities than
value-based methods within such text-based en-
vironments, suggesting that RL agents could
be applied to more complex natural language
environments.

1 Introduction

General domain language comprehension is an im-
portant component of the goal to create Artificial
Intelligence agents that can perform real-world ac-
tivities (Gil and Selman, 2019). In the pursuit of
such systems, classic text-based games are often
utilised as a bridge to the generality of the real
world (Yuan et al., 2018; Ammanabrolu and Riedl,
2019a).

Text-based games are a useful test-bed for ex-
ploring interactive dialogue agents in the context
of partially observable Markov decision processes
(POMDPs) that have large combinatorial action

∗ Work done whilst at InstaDeep and the University of
Cape Town

spaces. Additionally, they provide environments
that depend on the comprehension and use of nat-
ural language. In recent years, there has been a
shift in focus from simply performing well in a sin-
gle text-based environment (Haroush et al., 2018;
Narasimhan et al., 2015b) to generalising in un-
seen environments (Xu et al., 2021; Adhikari et al.,
2020; Yuan et al., 2018, 2019). This shift in focus
has often relied on complex methods and bespoke
solutions (Ammanabrolu and Riedl, 2019b,a; Yin
et al., 2020; Adolphs and Hofmann, 2019). A great
deal of this research has utilised value-based re-
inforcement learning (RL) methods which often
show high training performance but poor zero-shot
generalisation. These methods have been shown
to overfit and memorise the training environments,
thereby not learning a generalisable policy (Fare-
brother et al., 2018a).

Previous work has shown that policy-based meth-
ods can work well in non text-based settings where
generalization is required (Cobbe et al., 2020).
However, to the best of our knowledge no con-
trolled comparison has been made between the gen-
eralisability of value-based and policy-based RL
methods in text-based environments. This leads us
to investigate policy-based RL in text-based envi-
ronments. We hypothesise that learning an accurate
and general value function in a partially observable
environment with a large action space (such as nat-
ural language) is too difficult for most value-based
methods. We aim to show that policy-based ap-
proaches solve this generalisation issue by directly
learning a stochastic and general policy.

In this paper, we use two text-based environ-
ments, Coin Collector (Yuan et al., 2018) and QAit
(Yuan et al., 2019). Both environments utilise
TextWorld (Côté et al., 2018) to generate environ-
ments on the fly. Agents must acquire natural lan-
guage skills in order to navigate successfully within
the worlds and achieve some specified goal. We
compare a policy-based method, trained using the
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REINFORCE with baseline algorithm (Williams,
1992) against Coin Collector and QAit’s value-
based approaches on the environments’ respective
test sets. For comparison, we make use of both
Coin Collector and QAit’s open-sourced codebases
with a simple replacement of the value-based up-
date and action selection method.

Our results show that the policy-based method
leads to substantially improved performance over
previous value-based methods on a variety of zero-
shot evaluations. In the Coin Collector task, we
see greater average performance and stability on
the easy and medium test sets (after minimal hyper-
parameter tuning). On the QAit benchmark, large
accuracy improvements are obtained for location
questions (28% to 98% for fixed maps) and exis-
tence questions (69.2% to 94.8% for fixed maps).
The results indicate that policy-based RL has signif-
icantly better generalisation capabilities than value-
based methods within these contexts, and are more
suited to text-based environments.

This paper’s main contributions are as follows:

1. We show that policy-based methods have bet-
ter and more stable zero-shot performance on
two text-based environments.

2. We show that large improvements can be made
through a simple replacement of the update
method without significant change to any deep
learning architectures.

3. We provide new results for the QAit and Coin
Collector environments against which further
research can be compared.

2 Background

2.1 Policies and Value Functions
In text-based environments, agents are presented
with a descriptive paragraph describing their cur-
rent state (Figure 1). Agents interact with the
environment using natural language commands.
These commands could be long descriptive sen-
tences such as "go to the kitchen and pick up the
copper key" or a short templated sequence such as
"go kitchen" and "pickup copper key". The envi-
ronment interprets these commands and responds
with a new paragraph or sentence describing the
changed state or event.

An agent in a text-based environment uses a pol-
icy to predict a command string as a sequence of
words at every time step t. A policy π is defined

Figure 1: Overview of agent-environment interaction.
The agent receives a textual observation from the envi-
ronment, encoded in a latent representation, which is
used to compute the policy and value functions. In QAit
this representation is also used for the QA module.

as a mapping of environment states or observations
S to the probabilities of selecting each possible
word in the command string a ∈ A (Sutton and
Barto, 2018). If an agent is following a policy π at
time step t, the policy function π(a|s) is the prob-
ability of performing the specific action At = a
given that the agent is in state St = s. The agent’s
high-level policy for command strings represents
the joint policy of each sub-policy used for each
word.

Widely-used RL methods such as Q-learning
(Watkins and Dayan, 1992) and Actor-Critic algo-
rithms (Konda and Tsitsiklis, 1999) estimate the
state-action value (or Q-value) function within an
environment. This function maps a state-action pair
to the expected cumulative future reward under a
given policy. The expected cumulative reward Gt
is defined as

Gt =

T∑

k=t+1

γk−t−1Rk, (1)

where T is the terminal time step, Rk is the reward
at time step k, and γ is the discount factor (the
weight of importance given to future rewards). For-
mally, the Q-value function for any given policy is
defined for all s ∈ S and a ∈ A as

Qπ(s, a) = E[Gt|St = s,At = a], (2)
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while the state value function Vπ(s) is
max
a

Qπ(s, a).

2.2 Value-Based Methods
In value-based methods the agent tries to learn V (s)
(or Q(s, a)), which tells the agent what states it
should be in (and which actions it should take) in
order to maximise Gt. The agent can use Q(s, a)
to select the action which will take it to the most
valuable next state by choosing argmaxa Qπ(s, a).
This is called the greedy policy and is commonly
used to implement control in value-based methods
(Sutton and Barto, 2018).

2.3 Policy-based Methods
In policy-based methods the agent tries to learn the
policy directly. In contrast to value-based methods,
this allows the agent to learn stochastic policies
(Sutton and Barto, 2018).

REINFORCE (Williams, 1992) is a Monte Carlo
method that updates the policy function’s parame-
ters (neural network weights) directly by moving
them in the direction which will increase the ex-
pected future returns (the network’s loss function).
However, REINFORCE suffers from high variance
with noisy gradient estimates and no clear credit as-
signment to positive or negative actions throughout
the episode (Sutton and Barto, 2018). A simple im-
provement is to reduce the variance of the empirical
returns Gt by subtracting a baseline function b(s)
in the policy gradient. The baseline is regarded as
a proxy for the true expected return. A popular
option for the baseline function is the state value
function V (St). This requires the agent to learn
the value function alongside the policy, which can
introduce a bias at the cost of lowering variance.
REINFORCE uses Monte Carlo episodic sample
returnsGt (refer to §2.1) to update the baseline and
calculate the advantage factor with which to update
the policy.

2.4 Generalisation in Text-based Games
Much research has gone into applying reinforce-
ment learning to text-based games (see Osborne
et al. (2022) for a survey), predominantly using
value-based update methods. These value-based
agents have been shown to often overfit on the
training environment and have poor out-of-domain
performance (Yuan et al., 2018, 2019). This is
supported by evidence showing that DQN suffers
from severe overfitting on training environments
for Atari games (Farebrother et al., 2018b).

Figure 2: Overview of REINFORCE with baseline ac-
tion scorer architecture replacement. The policy and
value functions all share a linear layer that takes in the
encoded text observation as input. Both Coin Collector
and QAit experiments make use of this architecture for
interaction, with the exception that Coin Collector’s pol-
icy outputs two words whereas QAit’s policy outputs
three words.

Research on improving agents’ generalisation
performance in text-based games has mainly fo-
cused on adding components such as knowledge
graphs, as well as improving value-based learning
algorithms (Adhikari et al., 2020; Yuan et al., 2018;
Ammanabrolu and Riedl, 2019b,a; Yin et al., 2020;
Yuan et al., 2019).

Adolphs and Hofmann (2019) showed that em-
ploying an actor-critic learning method, A2C
(Mnih et al., 2016), significantly increased gen-
eralisation performance compared to value-based
baselines such as LSTM-DQN (Narasimhan et al.,
2015a) and DRRN (He et al., 2015). However,
their results do not provide a direct comparison and
their agent employs an additional helper model for
command generation. This helper model is domain-
specific and does not allow one to fully infer the
performance difference from a simple switch to
a policy-based learning method. There has thus
been no research directly showing that policy-based
methods improve generalisation over value-based
ones when applied to text-based tasks.

3 Policy-based Text-based Agents

We propose a policy-based agent that makes only
minor changes to previous value-based approaches.
For both environments, the neural network architec-
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ture is kept largely unmodified, in order to focus on
comparing the generalisation performance of the
value-based baselines and the policy-based method
(REINFORCE with baseline). The only changes
are the use of a policy-based update method, an
additional MLP to predict state values (to use as
b(s) - the baseline function), and the conditioning
of future command words on previous command
words (shown in Figure 2). For most value-based
methods, the Q-values of actions are learnt. This
means that the MLP used to predict Q-values al-
ready has the necessary number of output nodes for
a policy-based method.

Each output layer represents the policy for each
word in the command tuple, e.g. (Action, Modifier,
Object) for QAit and (Verb, Noun) for Coin Col-
lector. Each output gives a probability distribution
over the vocabulary. Each word in the command tu-
ple is then sampled from these probability distribu-
tions to form the command at each game step. This
more closely emulates how a human would speak
compared to value-based methods, which tradition-
ally act using greedy action selection at evaluation
time (which is deterministic) and epsilon-greedy
action selection at training time (which introduces
some stochasticity) (Sutton and Barto, 2018).

The baseline function approximates the state-
value function to aid in the training of the policy.
The baseline network also uses the policy’s shared
linear layer as input to produce the state value V (s).
This is done to regularise the shared linear layer
to a common representation to aid the policy and
value function in generalisation (Silver et al., 2017).
The REINFORCE with baseline algorithm is used
to update model weights. Each policy’s entropy
(for each word in the command tuple) is subtracted
from the total loss. This incentivises more stochas-
tic policies to be learnt whilst maximising reward,
in order to promote exploration and generalisation.
The loss functions used for the policies La and
baseline Lc are:

La =
1

T

T∑

t=0

(Gt − V (st)) ∗ log π(at) (3)

Lc =
1

2T

T∑

t=0

(Gt − V (st))
2 (4)

The command word conditioning is done as fol-
lows: Each consecutive word in the command tuple
receives the vector of raw outputs from the previous
word, concatenated with the shared linear output. A

small ablation of the effects of command condition-
ing indicated only a slight performance increase.
Conditioning on consecutive words did not lead
to any performance gains on the value-based base-
lines.

4 Coin Collector

Coin Collector (Yuan et al., 2018) is a text-based
deterministic version of the chain experiment (Os-
band et al., 2016; Plappert et al., 2017) that intro-
duces off-chain nodes (distractor rooms) to distract
and confuse the agent.

4.1 Environment

An agent needs to learn how to navigate a through
a path of rooms (nodes) to the final goal location
whereby it must collect a “coin". In the optimal
case, an agent never revisits distractor rooms. Ev-
ery game starts off with the agent at one end of the
chain and the coin at the other end. Coin Collector
games have a finite horizon, thereby requiring the
agent to collect the coin with a limited number of
mistakes deviating from the optimal trajectory.

Coin Collector has two parameters that control
environment difficulty. There are 3 possible modes
(easy, medium, hard) for constructing a game, with
zero, one, and two distractors along the optimal
path, respectively. The agent needs to learn that if
it makes a mistake and enters a distractor room, it
needs to go back the way it came and continue in a
different direction. Each game also has a difficulty
level which indicates the length of the optimal path.

The Coin Collector environment has two reward
types. An agent is given an exploration reward each
time it enters a previously unseen physical location.
Additionally, it receives a terminal reward of 1 if it
collects the coin.

4.2 Interaction

Interaction in the environment requires a very lim-
ited vocabulary. Dividing action selection into verb
and noun, the action space is: {go, take} × {north,
south, east, west, coin}. The only valid commands
are: go north, go east, go south, go west and take
coin.

4.3 Evaluation

Each mode (easy, medium, hard) has 5 distinct test
sets of increasing difficulty levels: 5, 10, 15, 20,
30. Each test set contains 10 unseen games. We
evaluate agents on all test sets during training to
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Figure 3: Coin Collector easy (top row) and medium (bottom row) test set results, averaged over all training runs.
Shaded regions indicates max and min performance achieved.

see the performance and stability of generalisation
as an agent learns how to solve its training games.
By evaluating on higher-level games than the agent
has trained on, we can see to what extent it is truly
able to generalise and extrapolate its policy beyond
what it has seen. The evaluation is done on agents
trained on 1, 10, 100, and 500 unique level 10
games in their respective modes. Each agent is
trained for 20 000 episodes.

4.4 Architecture

The original Coin Collector architecture (Yuan
et al., 2018) has two modules: The representation
generator and the action scorer. The representation
generator is used to encode textual observations
and produce an input for the action scorer. It con-
sists of an embedding layer, an LSTM (Hochre-
iter and Schmidhuber, 1997), and a mean pool-
ing layer. The action scorer is used to produce
Q-values for each possible action in the command
sequence (§4.2). It consists of two MLPs that share
a lower layer. This model does not condition on
previous actions or observations, which can present
an issue due to the partially observable nature of
the environment. To mitigate this issue, the previ-
ous command is concatenated to the observation.
Yuan et al. (2018) implemented two value-based RL
methods, LSTM-DQN (Narasimhan et al., 2015a)
and LSTM-DRQN (Hausknecht and Stone, 2015;
Lample and Chaplot, 2017), with this architecture.
The only difference between the two is that LSTM-
DRQN uses a recurrent action scorer module which
takes in the hidden state output of the previous
timestep. Our policy-based agent makes use of this
architecture with changes illustrated in section 3.

4.5 Results

Figure 3 shows the results of our Coin Collector
experiments, comparing the LSTM-DQN to our
policy-based agent trained with REINFORCE. The
curves indicate the average performance over all
test sets for each agent when trained on 1, 10, 100,
and 500 games. Both LSTM-DQN and REIN-
FORCE failed to perform adequately when trained
on 1 or 10 games.

Yuan et al. (2018) showed that LSTM-DQN per-
forms better on the medium setting and is compa-
rable to LSTM-DRQN on the easy setting, so in
this paper we only compare to LSTM-DQN, which
also simplifies the update method replacement. Ex-
periments in the hard mode setting were not run as
we were unable to reproduce the reported results
using the original code base.

For the test sets in the easy setting, our policy-
based agent matches or outperforms DQN on every
level. We see that here the REINFORCE agent
manages to achieve a similar maximum perfor-
mance when training on only 100 games compared
to LSTM-DQN training on 500 games. Addition-
ally, the policy-based method is much more stable
and does not suffer from catastrophic losses in per-
formance due to overfitting the training data. This
suggests that the policies learn not to simply mem-
orise the training set as seen in the LSTM-DQN
agent, which loses generalisation ability as training
continues.

In the medium setting, the performance improve-
ment is less apparent than the easy setting. The
LSTM-DQN architecture performs better overall
than the REINFORCE agent, largely due to the
policy-based method failing to learn anything in
the 500 games setting. Due to the policy-based
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Figure 4: Overview of DQN network (action scorer)
architecture.

method simply being a substitute for the value-
based update, no hyperparameters were changed.
This was done intentionally to show that all that is
needed to generalise better is to replace the update
method. By changing the discount factor from 0.5
(as is specified by Yuan et al. (2018)) to 0.9 the
REINFORCE agent trained on 500 games achieves
significantly higher performance than LSTM-DQN
on all the medium test sets.

5 QAit

The Question Answering with interactive text
(QAit) (Yuan et al., 2019) task is a text-based ques-
tion answering problem in which an agent must
interact with a partially observable text-based en-
vironment to gather the declarative knowledge re-
quired to answer questions. QAit aims to test an
agent’s language comprehension abilities by pos-
ing questions about the location, existence and at-
tributes of objects distributed throughout the envi-
ronment.

5.1 Environment

We use the implementation of QAit built on top of
TextWorld to create text environments and associ-
ated questions dynamically. All environments are
generated procedurally according to two environ-
ment categories (fixed map and random map). The
fixed maps always have 6 unique rooms, while for
random map the number of rooms is drawn from
a uniform distribution between 2 and 12. For both
maps types the number of entities is sampled from
a uniform distribution between 3 and 6 times the
number of rooms in the map. Room connectivity
and structure is also changed from map to map.

Questions based on each environment are cre-
ated on the fly as an agent plays a game. Yuan et al.

(2019) trained agents on datasets consisting of 1, 2,
10, 100, and 500 created environments, as well as
an unlimited setting where different environments
are sampled for each question. In the unlimited set-
ting more than 1040 different games can be created,
making it unlikely that the agent will see the same
environment multiple times.

The QAit environment has two reward types. An
agent is given an exploration reward each time it
enters a previously unseen physical location and/or
new inventory status. In addition, a sufficient in-
formation reward is given at the end of the episode.
These rewards are explained in §5.3.

There are three types of questions that are posed
to the agent: Location questions ask the where-
abouts of objects situated within the world, e.g.
“Where is the can of soda?", where a suitable an-
swer would be “fridge". Existence questions ask
about the presence of objects situated within the
world, e.g. “is there a raw egg in the world?", where
the answer would simply be yes or no. Attribute
questions ask whether or not an object has a certain
associated attribute, e.g. “is apple edible", where
the answer is also yes or no. These questions are
the most challenging, as the agent has to both find
and interact with the object, e.g. find the apple,
pick it up, and try to eat it.

5.2 Interaction

All text commands are triplets of the form action,
modifier, object (e.g., “open metallic gate”). When
there is no ambiguity, the environment understands
commands without modifiers, e.g. “pick key” will
result in picking up the “copper key" provided it is
the only key in the room. At each game step, there
are separate lexicons for actions, modifiers and
objects. An episode of experience terminates when
a maximum number of steps is reached or the wait
command is issued by the agent, indicating that it
wants to answer the question. For our experiments,
we use a maximum of 80 steps. There are, on
average, 17 actions, 18 modifiers, and 27 objects
per game, and 93.1 and 89.7 observed tokens in
fixed and random maps games, respectively.1

5.3 Evaluation

The QAit test set provides 500 hold-out games
for each of the question types and for both map
types. This test set is used to benchmark the gen-
eralisation abilities of agents in all experimental

1Statistics calculated over 10,000 sampled games.
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configurations. This allows for models to be as-
sessed in a reproducible manner and is analogous
to supervised learning test sets. The evaluation met-
rics used are accuracy and sufficient information.
Each agent is trained for 200 000 episodes. Accu-
racy refers to the proportion of correctly answered
questions. The distribution of answers in the QAit
evaluation set is presented in the Appendix (Tables
6, 7 and 8).

Sufficient Information is used to evaluate the
amount of information gathered by the agent and
whether or not the information was sufficient to
answer the question (Yuan et al., 2019). It is also
used as part of the reward function. It measures
the performance of the navigation and interaction
required by the agent to answer a given question.
For each question type, the sufficient information
score is calculated as follows:

• Location: A score of 1 is given if the entity
mentioned in the question is present in the fi-
nal observation when the agent decides to stop
the interaction, indicating that the agent has
observed the information it needs to answer
the question successfully. Otherwise, a score
of 0 is given.

• Existence: If the answer to the question is yes,
a score of 1 is given if the entity mentioned
in the question is present in the final observa-
tion. If the answer is no, a score between 0
and 1 is given representing the proportion of
the environment that the agent has explored,
accounting for the fact that an agent can only
be sure that an entity does not exist if it has
explored the whole environment.

• Attribute: Attribute questions have a set of
heuristics defined to verify each attribute and
assign a score of sufficient information. Each
attribute has specific commands that need to
be executed or certain states the agent needs to
be in for sufficient information to be gathered.

5.4 Architecture
As in the Coin Collector architecture, the original
QAit architecture (Yuan et al., 2019) consists of a
representation generator and an action scorer. An
additional module is used to answer the question
(the component exclusive to QAit in figure 1). The
representation generator is a transformer encoder
(Vaswani et al., 2017) consisting of an embedding
layer, two stacks of transformer blocks (one for

encoding and the other for aggregation), and a final
attention layer. The action scorer has a shared lin-
ear layer followed by MLPs for each word in the
command sequence (Figure 4). The question an-
swerer appends an additional stack of aggregation
transformer blocks to compute the answer from the
encoder output. At each game step, the question
representation is merged with the representation
of the current game observation to produce the fi-
nal state representation, so that the agent cannot
forget the goal. The QAit task (Yuan et al., 2019)
provides three value-based RL methods using this
architecture as baselines: DQN (Mnih et al., 2013),
DDQN (Van Hasselt et al., 2016) and Rainbow
(Hessel et al., 2018). As with Coin Collector, our
policy-based agent uses this architecture with the
changes presented in §3.

5.5 Results

Table 1 gives the QAit test set results for all experi-
ments as well as the baseline models’ performance
as reported by Yuan et al. (2019). Tables 3 and 4 in
the Appendix give the full results including train-
ing performance. The policy-based method outper-
forms all the value-based methods on location and
existence questions in each of the number of games
settings on both map types, in many instances by
a large margin. In many settings the increase in
sufficient information score is even larger than the
increase in question answering accuracy.

Most notable is the large increase in test accu-
racy of the policy-based method in larger num-
bers of training games. The value-based methods’
performances increase only slightly with the num-
ber of games, compared to the large jumps in the
policy-based method, indicating much better gen-
eralisation ability. In the unlimited games setting
the policy-based agent reaches 98% and 90.2% ac-
curacy on location and existence questions respec-
tively on the fixed map setting. This is compared
to the best value-based agent’s accuracies of 28%
and 69.2%. On existence questions, the increase in
sufficient information score from 0.246 to 0.781 is
even larger, suggesting a dramatic improvement in
navigation and interaction. On random maps the
improvement is also large, albeit not as stark as in
fixed maps. We believe that this is due to the more
difficult nature of random map-type games having
potentially double the number of rooms, thereby
making exploration more difficult and giving rise
to more possible entities.
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Fixed Random

Model Location Existence Attribute Location Existence Attribute

Random 0.027 0.497 0.496 0.034 0.5 0.499

10 games

DQN 0.180 (0.188) 0.568 (0.156) 0.518 (0.030) 0.156 (0.160) 0.566 (0.142) 0.518 (0.036)
DDQN 0.188 (0.208) 0.566 (0.128) 0.516 (0.036) 0.142 (0.154) 0.606 (0.153) 0.500 (0.033)

Rainbow 0.156 (0.170) 0.590 (0.131) 0.520 (0.023) 0.144 (0.170) 0.586 (0.128) 0.530 (0.018)
REINFORCE 0.230 (0.244) 0.654 (0.357) 0.498 (0.049) 0.266 (0.282) 0.656 (0.317) 0.534 (0.038)

100 games

DQN 0.194 (0.206) 0.614 (0.160) 0.498 (0.014) 0.184 (0.204) 0.668 (0.181) 0.524 (0.017)
DDQN 0.168 (0.196) 0.650 (0.216) 0.528 (0.017) 0.188 (0.204) 0.662 (0.205) 0.544 (0.019)

Rainbow 0.156 (0.160) 0.602 (0.207) 0.524 (0.022) 0.174 (0.184) 0.654 (0.190) 0.504 (0.032)
REINFORCE 0.786 (0.802) 0.898 (0.768) 0.530 (0.043) 0.492 (0.508) 0.822 (0.471) 0.546 (0.055)

500 games

DQN 0.224 (0.244) 0.674 (0.279) 0.534 (0.014) 0.204 (0.216) 0.678 (0.214) 0.530 (0.017)
DDQN 0.218 (0.228) 0.626 (0.213) 0.508 (0.026) 0.222 (0.246) 0.656 (0.188) 0.486 (0.023)

Rainbow 0.190 (0.196) 0.656 (0.207) 0.496 (0.029) 0.172 (0.178) 0.678 (0.191) 0.494 (0.017)
REINFORCE 0.948 (0.958) 0.948 (0.892) 0.466 (0.045) 0.570 (0.588) 0.836 (0.560) 0.534 (0.044)

unlimited games

DQN 0.216 (0.216) 0.662 (0.246) 0.514 (0.016) 0.188 (0.188) 0.668 (0.218) 0.506 (0.018)
DDQN 0.258 (0.258) 0.628 (0.134) 0.480 (0.024) 0.206 (0.206) 0.694 (0.196) 0.482 (0.017)

Rainbow 0.280 (0.280) 0.692 (0.157) 0.514 (0.014) 0.258 (0.258) 0.686 (0.193) 0.470 (0.017)
REINFORCE 0.980 (0.980) 0.902 (0.781) 0.462 (0.032) 0.738 (0.738) 0.858 (0.584) 0.502 (0.042)

Table 1: QAit test set results for fixed and random map configurations. QA accuracy is reported with sufficient
information scores in brackets.

Fixed

Model Location Existence Attribute

500 games

DQN 0.430 (0.430) 0.742 (0.136) 0.700 (0.015)
DDQN 0.406 (0.406) 0.734 (0.173) 0.714 (0.021)

Rainbow 0.358 (0.358) 0.768 (0.187) 0.736 (0.032)
Policy-based 0.990 (0.990) 0.964 (0.916) 0.748 (0.048)

Table 2: QAit training performance for agents trained
on 500 fixed games. QA accuracy is reported with
sufficient information scores in brackets.

For attribute-type questions, neither the policy-
based model nor the value-based methods achieve
results significantly higher than a random agent in
terms of QA accuracy in any of the settings. By
looking at the sufficient information score, we can
see that the models rarely end up in the states they
should be in order to answer the question. There-
fore these results are most likely due to chance.

The policy-based method achieves higher train-
ing QA accuracy and sufficient information than
the value-based methods when using the same num-
ber of training episodes (Table 2). This is notable
since off-policy methods (DQN, DDQN, Rainbow)
are generally more sample efficient than on-policy
methods (REINFORCE). The REINFORCE agent

only updates weights once per episode, whereas
the value-based methods update their weights ev-
ery 20 steps (2 to 4 times per episode). This result
suggests that learning a policy directly in the QAit
environment is an easier task than approximating
the complicated Q-function.

Analysis of the value-based methods’ interaction
in the test set shows that the methods often get
the agent stuck during exploration. This is largely
due to the deterministic nature of the algorithms
for interaction. We hypothesise that the stochastic
nature of the policy-based method affords it enough
flexibility to learn more generalised policies.

6 Conclusion

This work demonstrates the advantages of us-
ing policy-based methods in textual environments.
More specifically, we investigated the differences
in generalisation performance of the REINFORCE
with baseline algorithm compared to value-based
RL baselines on two sets of text-based tasks. The
results strongly suggest that policy-based RL meth-
ods are not only more suited for textual domains
due to their training performance, but also pos-
sess generalisation capabilities beyond their value-
based counterparts.
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Limitations

As this paper is a comparison of policy-based and
value-based deep RL methods and their generalisa-
tion capabilities, a large limitation is the scarcity
of text-based environments available to evaluate
on. To confirm the stark differences in general-
isation performance, a large suite of text-based
environments would be needed for training and
evaluation. This is clearly hampered by the lack
of such suitable environments. Additionally, more
policy-based methods and value-based baselines
would need to be evaluated to confirm that the
performance differences are not environment- or
algorithm-specific.
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(a) Easy Setting (b) Medium Setting

Figure 5: Coin Collector Average training reward over easy and medium training runs.

Fixed

Model Location Existence Attribute
Train Test Train Test Train Test

Random - 0.027 - 0.497 - 0.496

1 game

DQN 0.972 (0.972) 0.122 (0.160) 1.000 (0.881) 0.628 (0.124) 1.000 (0.049) 0.500 (0.035)
DDQN 0.960 (0.960) 0.156 (0.178) 1.000 (0.647) 0.624 (0.148) 1.000 (0.023) 0.498 (0.033)

Rainbow 0.562 (0.562) 0.164 (0.178) 1.000 (0.187) 0.616 (0.083) 1.000 (0.049) 0.516 (0.039)

REINFORCE 1.000 (1.000) 0.168 (0.172) 1.000 (0.933) 0.584 (0.217) 1.000 (0.216) 0.514 (0.060)

10 games

DQN 0.654 (0.654) 0.180 (0.188) 0.822 (0.390) 0.568 (0.156) 1.000 (0.055) 0.518 (0.030)
DDQN 0.608 (0.608) 0.188 (0.208) 0.842 (0.479) 0.566 (0.128) 1.000 (0.064) 0.516 (0.036)

Rainbow 0.616 (0.616) 0.156 (0.170) 0.768 (0.266) 0.590 (0.131) 0.998 (0.059) 0.520 (0.023)

REINFORCE 1.000 (1.000) 0.230 (0.244) 0.976 (0.820) 0.654 (0.357) 0.996 (0.068) 0.498 (0.049)

100 games

DQN 0.498 (0.498) 0.194 (0.206) 0.756 (0.139) 0.614 (0.160) 0.838 (0.019) 0.498 (0.014)
DDQN 0.456 (0.458) 0.168 (0.196) 0.768 (0.134) 0.650 (0.216) 0.878 (0.020) 0.528 (0.017)

Rainbow 0.340 (0.340) 0.156 (0.160) 0.762 (0.129) 0.602 (0.207) 0.924 (0.044) 0.524 (0.022)

REINFORCE 0.988 (0.988) 0.786 (0.802) 0.940 (0.830) 0.898 (0.768) 0.958 (0.048) 0.530 (0.043)

500 games

DQN 0.430 (0.430) 0.224 (0.244) 0.742 (0.136) 0.674 (0.279) 0.700 (0.015) 0.534 (0.014)
DDQN 0.406 (0.406) 0.218 (0.228) 0.734 (0.173) 0.626 (0.213) 0.714 (0.021) 0.508 (0.026)

Rainbow 0.358 (0.358) 0.190 (0.196) 0.768 (0.187) 0.656 (0.207) 0.736 (0.032) 0.496 (0.029)

REINFORCE 0.990 (0.990) 0.948 (0.958) 0.964 (0.916) 0.948 (0.892) 0.748 (0.048) 0.466 (0.045)

Unlimited games

DQN 0.300 (0.300) 0.216 (0.216) 0.752 (0.119) 0.662 (0.246) 0.562 (0.034) 0.514 (0.016)
DDQN 0.318 (0.318) 0.258 (0.258) 0.744 (0.168) 0.628 (0.134) 0.572 (0.027) 0.480 (0.024)

Rainbow 0.316 (0.330) 0.280 (0.280) 0.734 (0.157) 0.692 (0.157) 0.566 (0.017) 0.514 (0.014)

REINFORCE 0.986 (0.986) 0.980 (0.980) 0.932 (0.828) 0.902 (0.781) 0.552 (0.034) 0.462 (0.032)

Table 3: Results of the fixed map QAit experiments. QA accuracy is shown first and sufficient information scores
are shown in brackets.
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Random

Model Location Existence Attribute

Train Test Train Test Train Test

Random - 0.034 - 0.5 - 0.499

10 games

DQN 0.818 (0.818) 0.156 (0.160) 0.898 (0.607) 0.566 (0.142) 1.000 (0.056) 0.518 (0.036)
DDQN 0.794 (0.794) 0.142 (0.154) 0.868 (0.575) 0.606 (0.153) 1.000 (0.037) 0.500 (0.033)

Rainbow 0.670 (0.670) 0.144 (0.170) 0.828 (0.468) 0.586 (0.128) 1.000 (0.071) 0.530 (0.018)

REINFORCE 0.924 (0.924) 0.266 (0.282) 0.942 (0.788) 0.656 (0.317) 0.958 (0.091) 0.534 (0.038)

100 games

DQN 0.550 (0.550) 0.184 (0.204) 0.758 (0.230) 0.668 (0.181) 0.878 (0.021) 0.524 (0.017)
DDQN 0.524 (0.524) 0.188 (0.204) 0.754 (0.365) 0.662 (0.205) 0.890 (0.025) 0.544 (0.019)

Rainbow 0.442 (0.442) 0.174 (0.184) 0.754 (0.285) 0.654 (0.190) 0.878 (0.044) 0.504 (0.032)

REINFORCE 0.862 (0.866) 0.492 (0.508) 0.846 (0.613) 0.822 (0.471) 0.952 (0.061) 0.546 (0.055)

500 games

DQN 0.430 (0.430) 0.204 (0.216) 0.752 (0.162) 0.678 (0.214) 0.678 (0.019) 0.530 (0.017)
DDQN 0.458 (0.458) 0.222 (0.246) 0.754 (0.158) 0.656 (0.188) 0.716 (0.024) 0.486 (0.023)

Rainbow 0.370 (0.370) 0.172 (0.178) 0.748 (0.275) 0.678 (0.191) 0.636 (0.020) 0.494 (0.017)

REINFORCE 0.818 (0.818) 0.570 (0.588) 0.866 (0.628) 0.836 (0.560) 0.754 (0.045) 0.534 (0.044)

Unlimited games

DQN 0.316 (0.316) 0.188 (0.188) 0.728 (0.213) 0.668 (0.218) 0.812 (0.055) 0.506 (0.018)
DDQN 0.326 (0.326) 0.206 (0.206) 0.740 (0.246) 0.694 (0.196) 0.580 (0.023) 0.482 (0.017)

Rainbow 0.340 (0.340) 0.258 (0.258) 0.728 (0.210) 0.686 (0.193) 0.564 (0.018) 0.470 (0.017)

REINFORCE 0.792 (0.794) 0.738 (0.738) 0.860 (0.624) 0.858 (0.584) 0.550 (0.043) 0.502 (0.042)

Table 4: Results of the random map QAit experiments. QA accuracy is shown first and sufficient information scores
are shown in brackets.
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Fixed Map Random Map
Actions / Game 17 17

Modifiers / Game 18.5 17.7
Objects / Game 26.7 27.5

# Obs. Tokens 93.1 89.7

Table 5: Statistics of the QAit dataset. Numbers are
averaged over 10,000 randomly sampled games. (Yuan
et al., 2019)

Map Type: Fixed Random
pantry 68 39

livingroom 87 34
shed 89 44

inventory 27 32
corridor 79 41
bedroom 75 32
driveway 75 38

street - 38
bathroom - 46

supermarket - 29
garden - 38

backyard - 51
driveway - 38

Table 6: QAit Answer distribution for location type
questions

Map Type: Fixed Random
yes 252 237
no 248 263

Table 7: QAit Answer distribution for existence type
questions.

Map Type: Fixed Random
yes 242 236
no 258 264

Table 8: QAit Answer distribution for attribute type
questions.
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Abstract

Due to their similarity-based learning objec-
tives, pretrained sentence encoders often inter-
nalize stereotypical assumptions that reflect the
social biases that exist within their training cor-
pora. In this paper, we describe several kinds
of stereotypes concerning different communi-
ties that are present in popular sentence rep-
resentation models, including pretrained next
sentence prediction and contrastive sentence
representation models. We compare such mod-
els to textual entailment models that learn lan-
guage logic for a variety of downstream lan-
guage understanding tasks. By comparing
strong pretrained models based on text simi-
larity with textual entailment learning, we con-
clude that the explicit logic learning with tex-
tual entailment can significantly reduce bias
and improve the recognition of social com-
munities, without an explicit de-biasing pro-
cess. The code, model, and data associated
with this work are publicly available at https:
//github.com/luohongyin/ESP.git.

1 Introduction

Recent pretrained language models have achieved
significant improvements on natural language un-
derstanding tasks (Devlin et al., 2018; Liu et al.,
2019; Clark et al., 2020; He et al., 2020; Brown
et al., 2020). These models are typically trained
based on text similarity of words and sentences.
Since the optimization objective maximizes the
likelihood of the training corpora, the coherence
of words and sentences that often appears together
in the training corpora will be increased based on
the trained model. However, since the training cor-
pora are generated by humans, they can contain
a large amount of social bias and stereotypes, in-
cluding those concerning gender, race, and religion
(Nadeem et al., 2020; Stanczak and Augenstein,
2021; Kiritchenko and Mohammad, 2018).

In contrast, learning by textual entailment (Da-
gan et al., 2005; Williams et al., 2018) focuses

The person is a doctor.

The person is feminine.

The person is masculine.

Enc

The person is a nurse.

The person is feminine.

The person is a doctor.
The person is masculine.

Ent
CLS

Enta
il

Neu
tra

l

Con
tra

dict

Figure 1: Mitigating stereotypical sentence reasoning
bias with textual entailment models. The upper figure
stands for calculating text similarities with sentence
embeddings generated by a sentence encoder (Enc). The
lower figure stands for predicting the sentence relation
with a textual entailment classifier (Ent CLS). Both
sentence pairs are predicted neutral by the classifier.

more on logic than semantic similarity. According
to Dagan et al. (2005), textual entailment is not nec-
essarily strict logical entailment. Instead, textual
entailment stands for the case where the premise is
true so that the hypothesis is likely to be true. Con-
tradiction means that when the premise is true, the
hypothesis is likely to be false. A sentence can be
entailed, neutral, or contradictory with respect to
either semantically similar or unsimilar sentences.
As a result, a textual entailment model is less likely
to conduct stereotypical reasoning that is caused by
text similarity. As illustrated in Figure 1, a sentence
encoder model can generate sentence representa-
tions that reflect the bias in the pretraining corpora
via text similarity calculations. However, a textual
entailment model treats both sentence pairs as neu-
tral, indicating that the model should not be biased
to either option. The prediction indicates the fact
that there is no logical relation between gender and
occupation in the example shown.
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Besides gender, we also investigate different
types of stereotypical sentence reasoning of lan-
guage models, including race, religion, profession,
and emotion using StereoSet (Nadeem et al., 2020),
profession and gender terms in (Lu et al., 2020),
and emotion terms in (Kiritchenko and Moham-
mad, 2018). We make the following contributions
in this work:
1. Bias in sentence representations. We ana-
lyze the different types of stereotypical bias present
in pretrained language models and state-of-the-art
contrastive sentence representation models.
2. Textual entailment debiases. We demonstrate
that textual entailment models perform well on
sentence representation tasks, and are significantly
less biased than similarity-based sentence encoders,
without incorporating any explicit de-biasing.
3. Similarity causes bias, logic leads to fairness.
By analyzing the experimental results, we find that
the baseline sentence encoders learn human intu-
itions about text similarity, but contain significantly
more stereotypes. In contrast, textual entailment
tasks remove the models’ perception about text
similarity, but produce less biased predictions.

2 Related Work

Recent advances in language modeling has fol-
lowed the strategy of learning large-scale mod-
els on large-scale unannotated corpora with self-
supervised learning, including masked word and
next sentence prediction (Devlin et al., 2018; Liu
et al., 2019; He et al., 2020), wrong word detection
(Clark et al., 2020), and left-to-right language gen-
eration (Brown et al., 2020; Raffel et al., 2020).
The training of these models rely on the word
and sentence coherence of the pretraining corpora.
Word-level language models are the foundation of
sentence-level language encoders, including sen-
tenceBERT (Reimers and Gurevych, 2019), Sim-
CSE (Gao et al., 2021), and DiffCSE (Chuang et al.,
2022), that were proposed for generating sentence
embeddings with better representation abilities.

Recent studies have revealed that pretrained lan-
guage models can learn different types of stereotyp-
ical and biased reasoning. Recasens et al. (2013) in-
vestigated biased languages using Wikipedia texts.
Lu et al. (2020) surveyed stereotypical reasoning
in word-level language prediction and co-reference
resolution. Kiritchenko and Mohammad (2018)
probed language models with the sentiment anal-
ysis task and measured the different model behav-

iors against different social groups. Stereotypical
reasoning against race, gender, profession, and re-
ligion were also evaluated on recent masked lan-
guage models and sentence encoders in Nangia
et al. (2020) and Nadeem et al. (2020).

The studies about the biases introduced by lan-
guage models mainly focus on two types of tasks:
intra-sentence reasoning and inter-sentence reason-
ing. Intra-sentence, or word-level, reasoning rep-
resents word and co-reference selection in a sin-
gle sentence, which reveals the bias within word
and context representations (Bao and Qiao, 2019;
Bartl et al., 2020; Bolukbasi et al., 2016; Bordia
and Bowman, 2019; Cao and Daumé III, 2019;
Chaloner and Maldonado, 2019; Manzini et al.,
2019; Caliskan et al., 2017). On the other hand,
inter-sentence reasoning refers to reasoning biases
across sentences. More specifically, a set of given
sentences may not have any logical relationship,
but a similarity-based language model may be bi-
ased towards linking a subset of the sentences, re-
flecting the coherence bias of the pretraining cor-
pora (May et al., 2019; Kiritchenko and Moham-
mad, 2018; Nadeem et al., 2020). Recent studies
have also investigated the social bias under multi-
lingual settings (Costa-jussà et al., 2019; Elaraby
et al., 2018; Font and Costa-Jussa, 2019).

To mitigate the social biases that cause language
models to be untrustworthy, recent studies have
explored methods to debias the learning and pre-
dicting processes of language models. Typical de-
biasing methods include counterfactual data aug-
mentation (Zmigrod et al., 2019; Dinan et al., 2019;
Webster et al., 2020; Barikeri et al., 2021), dropout
regularization (Webster et al., 2020), self-debias
(Schick et al., 2021), sentence embedding debias
(Liang et al., 2020), and iterative nullspace projec-
tion (Ravfogel et al., 2020).

Besides the regular similarity-based pretraining
method applied by most language models, some
sentence encoding models also employ natural lan-
guage inference (NLI) corpora to learn textual en-
tailment (Bowman et al., 2015; Williams et al.,
2018). Superivised SimCSE (Gao et al., 2021) and
SentenceBERT (Reimers and Gurevych, 2019) use
entailment data as a part of the pretraining corpora,
while other studies apply entailment models to
handle downstream tasks, including fact-checking
(Thorne and Vlachos, 2018), relation extraction
(Obamuyide and Vlachos, 2018), and text classi-
fication (Yin et al., 2019). The learned textual en-
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tailment knowledge that encodes logic rather than
similarity provides the model a better generaliza-
tion ability across different tasks and domains.

3 Method

3.1 Measuring Stereotypical Reasoning

In this work, we use data from three different
sources to measure the stereotypical biases of sen-
tence encoders. We use the following corpora and
corresponding data construction strategies:
StereoSet. The StereoSet corpus (Nadeem et al.,
2020) contains both intra- and inter-sentence tasks
for evaluating stereotypical reasoning, including
gender, race, religion, and profession. Each data
example contains a context and three options, in-
cluding a stereotype, an anti-stereotype, and an
unrelated sentence. A model is required to score
each option and pick one. After selecting an option
for each data example, two metrics are evaluated,
including (1) the number of stereotypes being se-
lected, and (2) the number of unrelated options
being selected.

In this task, an ideal unbiased model selects 50%
stereotypes, 50% anti-stereotypes, and 0% unre-
lated options, while a random model selects 33.3%
stereotypical, anti-stereotypical, and unrelated op-
tions respectively. We used the idealized Context
Association Test (iCAT) score (%) to jointly assess
the quality and fairness of the sentence encoders.

iCAT = lms · min(ss, 100− ss)
50

(1)

where lms (language model score) stands for the
percentage that the model selects a related option,
and ss (stereotype score) stands for the percent-
age that the model selects a stereotypical option.
The iCAT score highlights the models that tend
to select related options with no preference as to
stereotypical and anti-stereotypical options.
Gender Profession & Emotion Test. We apply
the gender and profession vocabulary sets from
Lu et al. (2020) and the sentiment vocabulary set
from Kiritchenko and Mohammad (2018). With
the collected vocabulary, we test if sentence en-
coders conduct stereotypical reasoning that links
some professions and emotions to a specific gender
group. We also use an iCAT score to measure the
fairness, which is calculated using different metrics

iCAT = grs · min(gbs, 100− gbs)
50

(2)

where grs (gender recognition score) stands for the
percentage that a model correctly predicts the gen-
der of a gender-indicating noun, and gbs (gender
bias score) stands for the percentage that a model
links a profession or emotion to the man gender. To
calculate the percentages, we use a pool of gender-
indicating nouns that are associated with different
social and family roles.

3.2 Data and Prompts

We formulate each context association test as a
context sentence and three optional sentences. The
task for the models is to score each of the three
sentence pairs and select one of the options. We in-
troduce how we construct the test sets and prompts
respectively as follows:
StereoSet Inter-sentence. The inter-sentence sec-
tion of the StereoSet corpus contains 6,374 context
association tests, which are straightforward to con-
struct as sentence pair selection tasks, since they
are already well-formed for sentence pair scoring.
StereoSet Intra-sentence. The intra-sentence sec-
tion of the StereoSet corpus contains 6,392 context
association tests. Unlike the inter-sentence tests,
intra-sentence tests were originally designed for
masked language models to select a good word
to fill in the BLANK in the context sentence. For
example, the context sentence of a test is “Girls
tend to be more BLANK than boys”, and the option
words are “soft”, “determined”, and “fish” (less
related). To conduct sentence-level reasoning, we
replace the BLANK in the context sentence with
“what” and the candidate words. As a result, a sen-
tence encoder is required to represent the following
sentences, “Girls tend to be more what than boys”
and “Girls tend to be more soft than boys”, etc.
Gender-indicating terms. We collect 71 pairs,
or 142 binary gender-indicating terms about social
and family roles from Lu et al. (2020), for example,
uncle and aunt. 71 of them are masculine and the
other 71 are feminine. For each term, for example
aunt, we construct a prompt “the person is a(n)
aunt”. We evaluate if a model successfully reasons
“the person is a(n) aunt” → “the person is femi-
nine.” The motivation for this gender recognition
test is two-fold. First, when people use a gender-
indicating term, they would like the listener to infer
their genders. Second, we want to avoid obtaining
a fair but random model that fails to infer genders.
Professions and emotions. We collect 65 occu-
pation names from Lu et al. (2020), 20 emotion
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Dataset Task Context Options Metric Ideal Score

StereoSet Related option retrieval [premise claim] [related & unrelated claims] Language model score 100%
StereoSet Stereotype retrieval [premise claim] [stereotypical & anti-stereotypical claims] Stereotype score 50%
Gender & profession Gender recognition [masculine/feminine role] The person is masculine/feminine Gender recognition score 100%
Gender & profession Profession bias The person is a [pro] [masculine/feminine role] Gender bias score 50%
Emotion Vocab Emotion bias The person feels [emo] [masculine/feminine role] Gender bias score 50%

Table 1: The summary of data, tasks, prompts, metrics, and the scores of an ideal model that will be applied for
evaluation in this work. Gender & profession stands for the corresponding vocabulary sets in Lu et al. (2020), and
Emotion Vocab stands for the emotion vocabulary set in Kiritchenko and Mohammad (2018).

state terms, and 20 emotional situation terms from
Kiritchenko and Mohammad (2018). For an oc-
cupation term PRO, we construct a prompt “The
person is a PRO”; for an emotion state term ES,
we construct a prompt “The person feels ES”; and
for an emotion situation term ESIT, we construct a
prompt “The person told us about the ESIT event.”
We evaluate whether a model tends to link the con-
struct profession and emotion prompts to one of
the genders or not.

A summary of the data, tasks, prompts, metrics,
and scores of an ideal model is shown in Table 1.
We define an “ideal model” as a fair and perfectly
understanding model.

3.3 Textual Entailment

Training. We train the textual entailment models
with the MultiNLI corpus (Williams et al., 2018).
In MultiNLI, each data example contains a premise
and a hypothesis, and the task is to predict if the
hypothesis is likely to be true or false given the
premise. Each sentence pair is classified into three
classes: entailed, neutral, and contradictory. For
a premise p and a hypothesis h, we construct the
following supposition for the entailment model,

h is entailed by p.

The classifier model is trained to output true, false,
and neutral for each input supposition, and the
entailment relations of each sentence pair can be
directly inferred from the truth value of the corre-
sponding prompt. In this work, we train entailment
classifiers based on BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019), and DeBERTa (He
et al., 2020).
Evaluation. Standard sentence reasoning methods
are based on the inner product of the embeddings of
two sentences. With the textual entailment models,
we can calculate three scores for each sentence pair,
including entail, neutral, and contradictory scores.
With these scores, we can calculate a prediction
about the logical relation between two sentences.
In summary, we have two strategies to score sen-

tence pairs: 1. continuous sentence pair scoring
with entail, neutral, or contradiction scores, and 2.
discrete scoring using entailment predictions (en-
tail = 0, neutral = 1, and contradictory = 2). Given
a context, we prefer an option with a higher entail-
ment score, lower contradictory score, and smaller
entailment labels.

For the continuous scoring strategy, we calcu-
late the language model score with the number of
tests where the stereotype or anti-stereotype option
score is higher than the unrelated option, and cal-
culate the stereotype score with the number tests
where stereotype option score is higher than anti-
stereotype option. For the discrete scoring strategy
where we assign each option an entailment label,
the language score is calculated with the number of
tests where the unrelated option is predicted to be
less entailed than the stereotype or anti-stereotype.
The stereotype score is calculated with the number
of tests where the label {0, 1, 2} of the stereotype
option is lower then the anti-stereotype.

4 Experiments

4.1 Language Understanding

To ensure that the fairness of the entailment-based
language model does not come from a lack of
language understanding ability, we first show the
zero-shot adaptation performance of the entailment-
based language models. On the MNLI-mismatch
task, The RoBERTa model achieves 89.0% accu-
racy, and the DeBERTa model achieves 83.4%. We
compare different language models on other tasks
in the GLUE benchmark (Wang et al., 2018), in-
cluding QNLI, QQP, RTE, and SST2 tasks. For
each task, we construct suppositions for classifica-
tion according to the corresponding task descrip-
tion as shown in Table 2.

We compare the zero-shot adaptation perfor-
mance of our entailment-based supposition (ESP)
language models with weakly supervised baseline
models of different scales as follows:
Few-shot 350M models. We compare our
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Task Inputs Supposition

MNLI {p, h} h is entailed by p.
RTE {p, h} h is entailed by p.
QNLI {p, q} The answer to q is entailed by p.
QQP {x, y} x’s answer is entailed by y’s answer.
SST2 {r} The movie is good is entailed by r.

Table 2: The suppositions constructed based on the
definitions of different GLUE tasks (Wang et al., 2018).

Method QNLI QQP RTE SST2 Avg.

Few-shot 350M models
LM-BFF 69.2 69.8 83.9 90.3 78.3
UPT 70.1 72.1 68.9 92.9 76.0

Few-shot Large-scale 137B models
LaMDA 55.7 58.9 70.8 92.3 69.4
FLAN 63.3 75.9 84.5 94.6 79.6

Zero-shot entailment-based 350M model
RoBERTa 71.5 78.6 81.2 87.7 79.8
DeBERTa 77.3 79.9 84.5 90.1 82.9

Table 3: The performance of zero-shot entailment-based
models and strong few-shot supervised baselines.

entailment-based models with LM-BFF (Gao et al.,
2020) and UPT (Wang et al., 2022) models. Both
baseline models are based on RoBERTa-large
that contains 350M parameters with 32 human-
annotated training samples.
Few-shot 137B models. We also compare the
entailment-based models with large-scale language
models (LLMs), LaMDA (Thoppilan et al., 2022)
and FLAN (Wei et al., 2021) containing 137B pa-
rameters, which are about 400 times larger than the
entailment-based models. The LLMs are adapted
to the tasks with 4 to 8 training samples.

The results are shown in Table 3. We found that
overall, both RoBERTa and DeBERTa-based en-
tailment models outperform all baselines, without
using any task-specific training data. This proves
the computation and data efficiency of entailment-
based language models.

4.2 Fairness

We evaluate pretrained language models, super-
vised/unsupervised SimCSE (Gao et al., 2021),
and entailment models based on BERT, RoBERTa,
and DeBERTa. The overall experiment results are
shown in Table 4.
StereoSet-Intrasentence. In Table 4, we use the
fairness score (FS) to assess the bias of the mod-

els. We have FS = min(ss,1−ss)
0.5 , where ss stands

for the stereotype score defined in (Nadeem et al.,
2020). All baselines are sentence reasoning models
pretrained with the next sentence prediction (NSP)
task. We noticed that stronger sentence encoders
can lead to more biased reasoning results. For
BERT-based models, the unsupervised SimCSE
model achieves a much higher language model
score than the BERT-NSP model, outperforming by
over 10%. The supervised SimCSE also marginally
outperforms the baseline model. However, both
SimCSE models are more biased. The fair score of
the supervised SimCSE is 15% lower than the base-
line BERT model. Because of the high sentence
retrieval performance, the unsupervised SimCSE
model achieves the best iCAT score, outperforming
the pretrained BERT model by 4%.

The result remains the same for RoBERTa-based
models. Both supervised and unsupervised Sim-
CSE models significantly outperform the pretrained
model, by 27% and 32%, respectively. As with the
BERT-based models, RoBERTa SimCSE models
are also more biased. According to the low lan-
guage modeling score, the baseline RoBERTa per-
trained model is almost random. As a result, the
fairness score is as high as 96%. The SimCSE mod-
els achieve higher iCAT scores mainly because of
the improvement on the language model score. We
found that the DeBERTa model achieves the high-
est iCAT score among all NSP models. It achieves
a very high fairness score (99.68%), but a relatively
low language model score of 76.24%. As a result,
the iCAT score of DeBERTa is only marginally
higher than the BERT-based unsupervised SimCSE
model, which achieves a 89.46% language model
score.

The entailment models achieve the best iCAT
score, and both entailment scoring strategies outper-
form baseline sentence embedding models. Com-
paring with the best BERT, RoBERTa, and De-
BERTa based baselines, the corresponding discrete
entailment model achieved a 12.5%, 39%, and 25%
improvement in iCAT score. We observed that
the discrete scoring models are generally better
than the continuous scoring method. Although the
continuous scoring method has certain biases, a
discrete model can prevent biased prediction. For
example, although the entailment score of option
a is higher than option b, both options can be both
classified into the neutral category.

StereoSet-Intersentence. In general, the Intersen-
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Model StereoSet-Intra StereoSet-Inter Gender recog. Profession Emotion
LMS FS iCAT LMS FS iCAT Mean Std Mean Std iCAT Mean Std iCAT

BERT 78.52 89.90 70.58 79.02 93.44 73.84 64.08 24.90 91.27 6.84 58.49 94.51 4.03 60.56
-SimCSE-unsup 89.46 83.38 74.59 90.40 81.36 73.55 85.92 11.95 68.78 21.90 59.10 69.01 22.18 59.29

-SimCSE-sup 79.83 74.82 59.73 91.61 80.68 73.90 97.18 2.00 30.51 24.21 29.65 40.49 20.80 39.35
RoBERTa 32.18 96.78 16.14 57.22 96.04 45.95 57.04 12.95 72.68 15.94 41.46 50.70 9.70 28.92

-SimCSE-unsup 59.01 82.72 48.82 90.10 81.86 73.76 88.03 10.96 55.90 25.33 49.21 67.54 17.26 59.46
-SimCSE-sup 64.24 75.34 48.40 95.14 80.32 76.42 99.30 0.10 42.90 27.75 42.60 76.69 4.60 76.15

DeBERTa 76.24 99.68 76.00 68.90 94.20 64.91 53.52 23.91 73.54 13.63 39.56 60.21 13.78 32.22
BERT-Ent-Score 88.95 87.54 77.88 88.31 96.96 85.62 100.00 0.00 68.56 20.68 68.56 72.89 5.72 48.20
RoBERTa-Ent-Score 91.77 78.48 72.02 96.06 92.16 88.53 99.30 0.10 87.54 8.70 86.93 79.15 19.98 78.60
DeBERTa-Ent-Score 92.88 89.24 82.88 97.44 90.96 88.64 100.00 0.00 80.56 0.63 80.56 81.48 2.68 81.48
BERT-Ent-Pred 90.79 95.82 86.99 98.26 96.90 95.22 75.00 0.34 98.35 1.94 73.76 94.96 3.59 71.22
RoBERTa-Ent-Pred 95.34 92.04 87.75 99.25 94.42 93.70 88.73 8.96 95.80 4.20 85.00 98.77 1.32 87.64
DeBERTa-Ent-Pred 95.31 95.66 91.16 99.42 94.04 93.49 97.53 1.49 97.51 0.88 95.10 95.77 4.13 93.40

Table 4: Performance of pretrained language models and textual entailment models on StereoSet, gender recognition
(rec.), profession, and emotion tests. LMS stands for language model score, FS stands for fairness score, and iCAT
stands for ideal context association test score. NSP stands for next sentence prediction. The profession and emotion
iCAT scores are calculated by multiplying the gender recognition score and the corresponding fairness scores. All
scores are in percentage (%).

tence task had similar trends as the Intrasentence
task. The performance of the pretrained baseline
models perform much better than the intrasentence
tasks since the options are more diverse, making it
easier for the models to identify the more related
options. The difference within the baseline models
are that the supervised SimCSE models perform
better than the unsupervised sentence embedding
models.

The entailment models are also significantly bet-
ter than all the baseline models. All discrete scoring
models achieve higher than 99% language model-
ing scores, and the fairness scores are all higher
than 94%. The iCAT scores of the discrete en-
tailment models are at least 93.4%, outperforming
the best baseline model, supervised SimCSE with
RoBERTa by 18%. On the other hand, the contin-
uous entailment models also outperform the best
SimCSE model by at least 9% in iCAT score. We
also note that the discrete entailment models out-
perform the continuous models by a significant
margin because the labels prevent a large amount
of stereotypical reasoning.
Gender recognition. We evaluated the models’
ability to recognize the gender of binary gender-
indicating nouns, for example, (uncle, aunt) and
(brother, sister). We use the set of 71 pairs, 142
gender-indicating nouns from Lu et al. (2020).
The RoBERTa-based, supervised SimCSE model
achieves high gender recognition accuracy (as high
as 99%), while the performance of the pretrained
DeBERTa model is close to random at around 50%.
We found that the supervised SimCSE models are
significantly better than other baseline models on

this task.
On the other hand, we found that the continu-

ous entailment scoring strategy achieves very high
gender recognition performance. All three models
achieve an accuracy higher than 99% with very
low standard deviations. In contrast to the previous
tasks, the discrete scoring models have decreased
performance. We hypothesize that this is because
the continuous models are good enough, but the
discrete model score blurs the selective bias, which
is needed in this task since we need diverse pre-
dictions. Despite this fact, the DeBERTa based
discrete model still achieves high gender recogni-
tion accuracy (97%).
Profession bias test. We use a vocabulary set from
Lu et al. (2020) consisting of 65 profession nouns
which are expected be gender-neutral, but possi-
bly being affected by stereotypes. For the baseline
models, we found that the stronger sentence rep-
resentation models, supervised and unsupervised
SimCSE, are significantly more biased than pre-
trained language models. Since the SimCSE mod-
els learns better sentence embeddings based on text
similarity, they perform better at gender recogni-
tion, but retain more stereotypes in the pretraining
corpora. Combined with the high gender recogni-
tion performance, the unsupervised BERT SimCSE
model achieves the best iCAT score among all base-
line models.

For this task, all entailment models outperform
all baseline models. The DeBERTa and RoBERTa
models are significantly better than BERT-based
models. For the continuous scoring models, the
RoBERTa-based entailment model achieves the
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Figure 2: Breakdown performance of pretrained and entailment language models on StereoSet, profession, and
emotion bias tests. In StereoSet, we present the performance of all models. In the profession and emotion bias tests,
we compare the performance of RoBERTa-SimCSE and the continuous RoBERTa entailment model.

highest iCAT score (86.93%), outperforming the
best baseline model by 27%. As for previous tasks,
the discrete entailment scoring strategy is more
fair. The best discrete entailment model, DeBERTa,
achieves a high iCAT score (95.1%), outperform-
ing the best baseline model by 36%. The exception
is the RoBERTa-based entailment model. The con-
tinuous RoBERTa model outperforms the discrete
model by almost 2% iCAT score.

Emotion bias test. We use the emotion vocabu-
lary sets, including 40 emotion state and situation
words. We conduct context association tests on the
gender-indicating nouns with the emotion words.
On this task, the BERT and RoBERTa models have
different behaviors. The RoBERTa-based SimCSE
models outperform the pretrained RoBERTa model
on both fairness and iCAT scores. However, the
BERT SimCSE models are outperformed by the
pretrained BERT model. The supervised RoBERTa
model performs best among all baseline models,
achieving 76% iCAT score.

The entailment models outperform most base-
line models. The only exception is that the BERT-

based entailment model is outperformed by the
supervised RoBERTa SimCSE model. However,
the discrete entailment RoBERTa and DeBERTa
entailment models outperform all baseline models
by a large margin. The discrete RoBERTa entail-
ment model outperforms the best baseline model
by more than 11%, and the DeBERTa entailment
model outperforms the best baseline by 17%.
Summary. We make the following observations:

• SimCSE models achieve higher language
model and gender recognition scores than pre-
trained models, but they are more biased.

• The entailment models achieve significantly
better performance than all baseline models in
both language modeling and fairness metrics.
The discrete scoring strategy is more fair than
the continuous strategy, in general.

5 Analysis

5.1 Performance Breakdown
In the previous section, we reported the overall per-
formance of each task. In this section, we analyze
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Figure 3: The prompt analysis with RoBERTa-based SimCSE and entailment models on profession and
emotion bias tests. In figures a. and c, different gender terms are separated by a boundary learned
by a linear SVM, and the gray circles highlight correlated words. In Figure a., the circled clusters are
[singer, designer, writer, filmmaker, artist, musician], [carpenter, plumber], [barber, butcher], [lawyer, judge],
and [economist, scientist, professor]. In Figure c., the circled clusters are [devastated, depressed, anxious],
[relieved, ecstatic, glad, happy, excited], and [angry, annoyed].

the performance of all sub-tasks. The StereoSet
corpus has four sub-tasks, including gender, reli-
gion, profession, and race. The profession bias task
has 65 different profession nouns as sub-tasks, and
similarly, the emotion bias task has 40 sub-tasks.
We break down and analyze the performance of
the sub-tasks to investigate if the models conduct
biased reasoning on sub-tasks, but achieve high
average fairness scores.

StereoSet. The breakdown iCAT scores of Stere-
oSet sub-tasks is shown in Figure 2.a, including the
four sub-tasks under the intra- and inter-sentence
settings. We do not find the entailment models to be
biased on some of the sub-tasks. Instead, the entail-
ment models consistently outperform the baseline
pretrained models. We also note that the pretrained
models based on different architectures achieve
varying results on different tasks. In contrast, the
entailment model based on different architectures

achieve stable iCAT scores. We also notice that the
entailment models perform better on race and reli-
gion tasks. As shown in Table 4, the performance
of the discrete scoring models achieve better and
more stable iCAT scores.

Profession bias test. We compare the breakdown
performance of RoBERTa-based entailment and
SimCSE models. As shown in Figure 2.b, the iCAT
scores on most profession terms of the entailment
model outperforms the SimCSE model by more
than 20%. The only exception where the pretrained
model outperforms the entailment models is the
word “Bartender.” The most significant improve-
ment we achieved is almost 50% iCAT score on the
term “dental hygienist.”

Emotion bias test. We also test the RoBERTa-
based models on different emotion state and situa-
tion terms. In all 40 emotion words, the entailment
model outperforms the SimCSE model in 35 sub-
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tasks. The most biased emotion word of SimCSE
is “disappointed,” which is improved using the
entailment model. On the other hand, the most
biased emotion word of the entailment model is
“devastated.” Both models are relatively biased on
the word “sad,” achieving lower than 40% iCAT
scores. The most significant improvement is on the
word “relieved.” The sub-tasks that the entailment
model does not outperform the pretrained models
are “scared,” “terrified,” “depressed,” “devastated,”
and “miserable.”

5.2 Prompt Embedding Analysis

We have found that the language modeling and
fairness performance of entailment models are sig-
nificantly higher than pretrained language mod-
els. In this section, we attempt to explain this phe-
nomenon. To understand the difference between
the entailment and pretrained models, we analyze
the embedding of the gender terms and profession
and emotion nouns. The results of the RoBERTa-
based SimCSE and entailment models are shown in
Figure 3 with t-SNE (Van der Maaten and Hinton,
2008).

The profession bias test results on RoBERTa-
SimCSE is shown in Figure 3.a. We find that be-
cause of the strong representation ability of Sim-
CSE, the embeddings of the profession and gen-
der terms reflect the word similarities that aligns
with human intuition. The boundary of the gender
terms is detected by a linear SVM model (Hearst
et al., 1998; Pedregosa et al., 2011). We find that
the learned boundary separates terms of different
genders with high accuracy. In addition, we no-
tice that related profession terms group closely, as
shown in the circles in Figure 3.a. In contrast, the
word embedding distribution produced by the en-
tailment model shown Figure 3.b appears to be
more random. A similar phenomenon is observed
on the emotion bias test. In Figure 3.c, nouns rep-
resenting different genders are well-separated, and
related words cluster closely. However in Figure
3.d, similar words are less correlated based on the
entailment prompt embeddings.

The experimental results of both tasks and mod-
els indicate that the prompt embeddings learned
by the entailment models contribute to logical rea-
soning rather than word coherence representation.
Considering the fact that the entailment models per-
form significantly better than the pretrained mod-
els, we conclude that the biases are caused by the

similarity-based learning objectives because such
algorithms learn and reflect the biases in the train-
ing corpora. However, the textual entailment mod-
els learn logic without preserving textual similari-
ties, leading to fairer performance.

6 Conclusion

In this work, we found that textual entailment learn-
ing reduces the bias of pretrained language models
for sentence representation. We evaluated BERT,
RoBERTa, and DeBERTa-based pretrained, Sim-
CSE, and entailment models on stereotype, profes-
sion, and emotion bias tests. The textual entailment
models outperform other models with significantly
lower bias without other explicit debiasing pro-
cesses, while preserving the language modeling
ability, which results in significantly better ideal-
ized context association test scores. By analyzing
the sentence embeddings, we found that the models
relying on textual entailment produce less biased
results by learning logic and reducing the amount
of text coherence knowledge retained from the pre-
training corpora containing existing social biases.
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We investigate the stereotypes and biases of pre-
trained language models and introduce the less bi-
ased textual entailment models that reduce bias on
gender, profession, religion, and race. We noticed
that the existing gender-related bias studies and cor-
pora mainly focus on the binary gender setting, and
we also follow this line of research because of data
limitations. While such data limitation might dis-
appoint a number of communities, we will extend
this work to non-binary settings in future work.

Limitations

As we described in the previous section, we studied
the stereotypes including gender biases. However,
we investigated under the binary gender setting, be-
cause of the limitation of the existing benchmarks.
Furthermore, we evaluated medium-sized language
models with around 350M parameters, but have
not tested the largest language models yet. We
only analyze the predictive bias on a set of gender-
indicating vocabulary, but do not look into every
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example and explain the source of the learned bias
in the pretraining corpora or social traditions.

On the other hand, there are further limitations in
the benchmarks we study in this work, as pointed
out by Blodgett et al. (2021) that StereoSet is not
perfect. On the other hand, some words in the vo-
cabulary collected by (Lu et al., 2020) are rarely
used, for example, “poetess” and “manageress”. In
future work, we will explore building more inclu-
sive and comprehensive benchmarks to mitigate
the limitations.
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Abstract

Cross-task knowledge transfer via multi-task
learning has recently made remarkable progress
in general NLP tasks. However, entity track-
ing on the procedural text has not benefited
from such knowledge transfer because of its dis-
tinct formulation, i.e., tracking the event flow
while following structural constraints. State-
of-the-art entity tracking approaches either de-
sign complicated model architectures or rely
on task-specific pre-training to achieve good
results. To this end, we propose MEET, a
Multi-task learning-enabled entity Tracking ap-
proach, which utilizes knowledge gained from
general domain tasks to improve entity tracking.
Specifically, MEET first fine-tunes T5, a pre-
trained multi-task learning model, with entity
tracking-specialized QA formats, and then em-
ploys our customized decoding strategy to sat-
isfy the structural constraints. MEET achieves
state-of-the-art performances on two popular
entity tracking datasets, even though it does not
require any task-specific architecture design or
pre-training.1

1 Introduction

Pre-trained language models have revolutionized
the NLP field in recent years (Devlin et al., 2019;
Liu et al., 2019; Brown et al., 2020) and also
become more versatile with the novel encoder-
decoder architecture (Raffel et al., 2020; Lewis
et al., 2020), which allows them to handle differ-
ent types of NLP tasks without further architec-
tural changes. This versatility inherently facilitates
cross-task knowledge transfer via multi-task learn-
ing (Raffel et al., 2020; Aribandi et al., 2022), and
thus helps push the boundary of many popular NLP
tasks such as question answering (Khashabi et al.,
2020) and semantic parsing (Xie et al., 2022). How-
ever, entity tracking, which tracks the states and
locations of an entity throughout the procedural

1Our code and data are available at https://github.
com/iamjanvijay/MeeT.

Procedural text: How is hydroelectricity generated? 
1. Water flows downwards thanks to gravity.

2. Enters the dam at high pressure.

3. Moving water spins the turbines in power plant.

4. …

Entity Tracking Input

Query Entity: Water

Water
step 1 exist
step 2 move
step 3 move

… …

State Prediction Location Prediction

Entity Tracking Output

Water
step 1 unknown
step 2 dam
step 3 turbine

… …

Mention-guided 
CRF decoding

State Prediction

    T5step 3
step 2

step 1 exist
move
move

exist
destroy
move

unknown
dam

turbine

Location Prediction

    T5step 3
step 2

step 1

MeeT

Figure 1: Overview of MEET (Multi-task learning-
enabled entity Tracking). MEET utilizes the multi-task
learning in T5 to boost entity tracking performance, with
a customized decoding strategy addressing the structural
constraints in state prediction (e.g., "move" cannot hap-
pen after "destroy").

text, like scientific processes or recipes, has not
been impacted by this multi-task learning wave for
two main reasons. First, entity tracking requires
the model to make step-wise predictions while sat-
isfying structural constraints (e.g., an entity cannot
be "moved" after being "destroyed" in the previ-
ous steps). This requirement is usually tackled by
designing task-specific architectures (Gupta and
Durrett, 2019b; Tang et al., 2020; Huang et al.,
2021), and those generic multi-task models with
the encoder-decoder architecture cannot address
it easily. Second, understanding procedural text
requires domain-specific knowledge, which usu-
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ally does not exist in general domain tasks that
multi-task learning models are trained on, so it is
not clear how effective the knowledge transfer will
be given this domain gap (Zhang et al., 2021; Bai
et al., 2021; Shi et al., 2022).

In this paper, we study how entity tracking
can benefit from the current multi-task learn-
ing paradigm and present MEET, a Multi-task
learning-enabled entity Tracking approach. This
approach includes two parts. The first part fine-
tunes T5 (Raffel et al., 2020), a model that has
been pre-trained on a diverse set of NLP tasks and
has shown great cross-task generalizability. Here,
we design entity tracking-specialized QA formats
to accommodate the need to make step-specific
predictions, while facilitating effective knowledge
transfer from T5. The second part resolves con-
flicted state predictions under structural constraints.
We use a customized offline CRF inference algo-
rithm, where the main idea is to emphasize the
predictions of steps, in which the query entity is
explicitly mentioned, because the fine-tuned model
performs better in those cases (Table 5). On two
benchmark datasets, ProPara (Dalvi et al., 2018)
and Recipes (Bosselut et al., 2018), our MEET out-
performs previous state-of-the-art methods, which
require extra domain-specific pre-training or data
augmentation. We verify the importance of multi-
task learning in T5 and our proposed decoding
strategy through careful analyses and ablation stud-
ies.

To sum up, our contributions are three-fold: (1)
Our work is the first to explore cross-task knowl-
edge transfer for entity tracking on procedural text;
(2) Our proposed approach, MEET, effectively uses
the off-the-shelf pre-trained multi-task learning
model T5 with a customized decoding strategy,
and thus achieves state-of-the-art performance on
two benchmark datasets; (3) Our comprehensive
analyses verify the benefits of multi-task learning
on entity tracking.

2 Related Work

Tracking the progression of an entity within proce-
dural text, such as cooking recipes (Bosselut et al.,
2018) or scientific protocols (Tamari et al., 2021;
Le et al., 2022; Bai et al., 2022), is challenging as
it calls for a model to understand both superficial
and intrinsic dynamics of the process. Recent work
on entity tracking can be divided into two lines.
One focuses on designing task-specific fine-tuning

architectures to ensure that the model makes step-
grounded predictions while following the structural
constraints. For instance, Rajaby Faghihi and Kord-
jamshidi (2021) introduce time-stamp embeddings
into RoBERTa (Liu et al., 2019) to encode the index
of the query step. Gupta and Durrett (2019b) frame
entity tracking as a structured prediction problem
and use a CRF layer to promote global consistency
under those structural constraints. In our case, we
show that, with QA formulation, simply appending
the index of the query step to the question and in-
dexing the procedure produces step-specific predic-
tions. Moreover, we propose a customized offline
CRF-decoding strategy for structural constraints
to compensate for the fact that it is hard to jointly
train T5, our backbone LM, with a CRF layer, like
in previous methods.

The other line of work focuses on domain-
specific knowledge transfer (Zhang et al., 2021;
Bai et al., 2021; Shi et al., 2022; Ma et al., 2022).
Concretely, LEMON (Shi et al., 2022) achieves
great performance by performing in-domain pre-
training on 1 million procedural paragraphs. CGLI
(Ma et al., 2022) shows that adding high-quality
pseudo-labeled data (generated via self-training)
during fine-tuning can also boost the model perfor-
mance. In contrast, our work explores how entity
tracking can benefit from out-of-domain knowl-
edge via using off-the-shelf pre-trained multi-task
learning models.

3 Method

In this section, we present MEET, a Multi-task
learning-enabled entity Tracking approach. Here,
we first review the problem definition, and then lay
out the details of MEET.

3.1 Problem Definition

Entity tracking aims at monitoring the status of
an entity throughout a procedure. The input of
this task contains two items: 1) a procedural para-
graph P , composed of a sequence of sentences
{s1, s2, ..., sT }; and 2) a procedure-specific query
entity e. Given the input, our goal is to predict
the state and location of the query entity at each
timestamp of the procedure (see an example from
the ProPara dataset in Figure 1).

3.2 MEET

MEET includes two parts, task-specific fine-tuning
with our proposed QA formats and the mention-
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guided conflict-resolve decoding.

Task-spefic Fine-tuning We formulate the two
sub-tasks of entity tracking, state prediction and
location prediction, as multi-choice and extractive
QA problems respectively (see §4.2 for comparison
with other task formulations), and fine-tune T5 to
make independent predictions for every step in the
procedure. Given a query entity e and procedure
P , to predict the entity state at step t, the input
sequence is formatted as the concatenation of the
template question “What is the state of e in step t?”,
candidate states (e.g., create, move and destroy),
and the full procedure with step index prepended.
The output is just one of the candidate states. For
location prediction, the input sequence is the con-
catenation of the question “Where is e located in
step t?” and the indexed procedure, with the snip-
pet “Other locations: none, unknown.” appended.
This is because entity locations sometimes are not
explicitly mentioned in the procedure. The output
is a text span, indicating the location of the query
entity after step t. Examples of both tasks can be
found in Appendix A.

Conflict-resolve Decoding Entity tracking
places unique structural constraints on state
predictions (e.g., move cannot happen after
destroy). Similar to Gupta and Durrett (2019a),
we run an offline CRF-decoding method (Viterbi
decoding) to resolve conflicting state predictions.
We initialize CRF transition scores T with the
transition statistics in the training data, following
Ma et al. (2022). For example, T (p, q), the
transition score between state p and q, is log(1/10)
if there is only one p ⇒ q transition out of 10
transitions starting with the state p. We set the
scores of all unseen transitions to −inf . As for
CRF emission scores, we use the state prediction
logits from T5. In contrast with previous methods,
which treat each step equally, we weigh the
emission scores differently, depending on whether
the query entity e is explicitly mentioned in the
step:

U ′i =

{
τexp · Ui, if e is mentioned in step i,
τimp · Ui, otherwise

where U ′i represents the emission score of step
i after weighing, and τexp and τimp are hyper-
parameters, determined by the grid search on the
dev set. The intuition behind our approach is that,

Model P R F1

DYNAPRO (Amini et al., 2020) 75.2 58.0 65.5
TSLM† (Faghini et al., 2021) 68.4 68.9 68.6
KOALA† (Zhang et al., 2021) 77.7 64.4 70.4
LEMON†(Shi et al., 2022) 74.8 69.8 72.2
CGLI† (Ma et al., 2022) 75.7 70.0 72.7

MEET (ours) 80.3 67.1 73.1

Table 1: Test set performance on ProPara. † indicates
that the backbone language model has been further pre-
trained on either in-domain corpus or auxiliary tasks.
MEET performs on par with SOTA models without pre-
finetuning on any in-domain corpus.

as the fine-tuned model performs better on "ex-
plicitly mentioned" steps (Table 5), leaning toward
those steps during decoding via controlled weights
will result in more accurate predictions.2

4 Experiments

Datasets We experiment with two benchmark
datasets of entity tracking: ProPara (Dalvi et al.,
2018) and Recipes (Bosselut et al., 2018). ProPara
contains 488 scientific process-based procedural
paragraphs (Figure 1), and Recipes includes 866
cooking recipes. Note that previous work experi-
ments with different splits of the Recipes dataset;
in this paper, we follow the split of Zhang et al.
(2021)3 as it is used in most of the recent work
(Huang et al., 2021; Shi et al., 2022). More dataset
details are presented in Appendix B.

Evaluation ProPara performances are evaluated
in two levels: sentence-level4 (Dalvi et al., 2018)
and document-level5 (Tandon et al., 2018). Here,
we focus on the document-level evaluation because
it provides a comprehensive assessment of the
model’s understanding of the overall procedure and
serves as the basis for the ProPara leaderboard rank-
ings. The document-level evaluation is conducted
by comparing the input/output entities and their
transformations in the procedure with the gold an-
swers. Further details regarding two evaluations
and the result of the sentence-level evaluation can
be found in Appendix C. For Recipes, following

2After hyper-parameter tuning, the optimal values for τexp
and τimp are 0.6 and 0.7 respectively.

3https://github.com/ytyz1307zzh/KOALA/issues/4
4https://github.com/Mayer123/CGLI/blob/main/

src/evalQA.py
5https://github.com/allenai/

aristo-leaderboard/blob/master/propara/evaluator
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previous work (Zhang et al., 2021; Shi et al., 2022),
we evaluate the location changes of each ingredient
throughout the recipe.6

Baselines For ProPara, we compare MEET with
the top five approaches on its leaderboard. Among
these five approaches, DYNAPRO (Amini et al.,
2020), TSLM (Rajaby Faghihi and Kordjamshidi,
2021), and CGLI (Ma et al., 2022) design task-
specific fine-tuning architecture using off-the-shelf
LMs while KOALA (Zhang et al., 2021) and
LEMON (Shi et al., 2022) develop in-domain LMs
for procedural text. For Recipes, as mentioned
previously, we compare MEET with methods that
experiment on the same data split of Zhang et al.
(2021). We refer readers to the corresponding paper
of each baseline for further details.

Implementation Details Our approach MEET
is implemented using Huggingface Transformers
(Wolf et al., 2020). Given the limited computa-
tional resources, we choose T5-large as the back-
bone of our MEET. The fine-tuning process em-
ploys the AdamW optimizer with a learning rate
of 1 × 10−4 and a batch size of 16. To resolve
any potential conflict between state prediction and
location prediction, we apply the rules designed in
Ma et al. (2022) to integrate the output from both
tasks.

4.1 Results

We present the test set results of ProPara and
Recipes in Table 1 and Table 2, respectively. Our
MEET outperforms the competitive baseline CGLI
(Ma et al., 2022) on the ProPara dataset with
state-of-the-art performance despite the fact that
CGLI uses extra pseudo-labeled training data
(generated by self-training) for data augmentation.
On Recipes, MEET surpasses the previous best-
performing method LEMON (Shi et al., 2022) by a
substantial margin of 4.9 F1. It is noteworthy that
the cooking recipes in the Recipes dataset were
collected from the web,7 which may have been in-
cluded in the C4 corpus8 used for pre-training T5
and thus potentially contributes to the advantage of
our MEET on Recipes.

6https://drive.google.com/drive/folders/
1PYGLe7hSoCYfpKmpPumeTy6jmPyONGz4

7http://www.ffts.com/recipes.htm
8https://www.tensorflow.org/datasets/catalog/

c4

Model P R F1

NCET (Gupta and Durrett, 2019b) 56.5 46.4 50.9
IEN (Tang et al., 2020) 58.5 47.0 52.2
KOALA (Zhang et al., 2021) 60.1 52.6 56.1
REAL (Huang et al., 2021) 55.2 52.9 54.1
LEMON (Shi et al., 2022) 56.0 67.1 61.1

MEET (ours) 64.2 78.0 66.0

Table 2: Test set results on Recipes. MEET achieves
the state-of-the-art performance, outperforming the pre-
vious SOTA LEMON by 4.9 F1.

4.2 Analysis & Ablation Study

Multi-task Learning To investigate the impact
of T5’s multi-task learning process on entity track-
ing, we experiment with two variants of T5 as
the backbone of MEET: 1) T5-v1.1,9 a T5-like
LM (with slight architecture changes) whose pre-
training does not include any supervised tasks; 2)
T5-v1.1QA-FT , the resulting LM after fine-tuning
T5-v1.1 on the three QA datasets,10 which T5 is
pre-trained on. The performance of the three LMs
(T5-large size) on the ProPara dev set is presented
in the top section of Table 3. We can see that
T5 outperforms T5-v1.1 by a large margin, verify-
ing that multi-task learning on out-of-domain non-
entity-tracking tasks can benefit entity tracking. In
addition, the advantage of T5 over T5-v1.1QA-FT

indicates that knowledge transfer can cross the task
boundaries with T5’s encoder-decoder architecture.

Task Formulation We compare our QA formula-
tion with two other task formulations, proposed in
recent work, for T5. The first formulation is called
"step-input" (Gupta and Durrett, 2019a; Amini
et al., 2020), where each pair of the query entity e
and procedure step t is formulated as one instance.
Here, the state prediction is formulated as a classifi-
cation problem, where the entity name is appended
to the input, and no candidate answers are provided.
Moreover, the procedure is trimmed until step t to
specify the step index in the input. The second
formulation is called "process-input" (Zhang et al.,
2021; Gupta and Durrett, 2019b), where the model
predicts entity states or locations in all steps in one
instance. The input is the concatenation of entity
e and the full procedure, and the model decodes

9https://huggingface.co/docs/transformers/
model_doc/t5v1.1

10The three datasets include MultiRC (Khashabi et al.,
2018), ReCoRD (Zhang et al., 2018), and BoolQ (Clark et al.,
2019)
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P R F1

MEET (ours) 77.3 71.1 74.1

Multi-task Learning

T5-v1.1 76.6 64.9 70.3
T5-v1.1QA-FT 76.3 65.8 70.7

Task Formulation

Process-level 89.3 30.2 45.1
Step-level 76.7 61.3 68.1

Decoding Strategy & Model Size

CRF-normal 75.0 72.8 73.8
T5-base 76.8 68.2 72.2

Table 3: Analysis and ablation study on ProPara (dev set
results). Top: Comparison of different backbone LMs
to investigate the impact of multi-task learning. Middle:
Comparison of different task formulations. Bottom:
Ablation on decoding strategy and model size. Multi-
task learning leads to a better entity tracking model,
especially with the QA formulation and mention-guided
decoding.

entity states and locations in all steps sequentially.
The results of two new formulations are presented
in the middle of Table 3. Our proposed QA formu-
lation outperforms the other two formulations by
a large margin. Detailed analyses of formulation
comparison can be found in Appendix D.

Decoding Strategy & Model Size The ablation
study on decoding strategy and model size is shown
at the bottom section of Table 3. Clearly, our pro-
posed "mention-guided" decoding strategy, as well
as using a larger LM as the backbone, contribute to
the success of MEET.

5 Conclusion

We presented MEET, a T5-based entity tracking
approach. This approach includes our newly pro-
posed QA fine-tuning formats and a customized
decoding strategy so that it can effectively encode
the flow of events in the procedural text while fol-
lowing structural constraints. The state-of-the-art
performances on two benchmark datasets demon-
strate the effectiveness of MEET, and further analy-
ses verify that multi-task learning on out-of-domain
tasks can be beneficial for entity tracking.

Limitations

This paper demonstrates that multi-task learning
on a combination of general domain datasets can
effectively improve the model’s understanding of

the procedural text. However, the precise source
dataset responsible for this improvement remains
uncertain, making it an avenue for future research
to investigate more efficient knowledge transfer
through the identification of the most pertinent
source dataset. Moreover, the pipeline structure
of MEET may limit its practical utilization. As
such, future work could consider incorporating our
proposed mention-guided decoding strategy into
the end-to-end training of the multi-task learning
model.
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Dataset Statistics Train Dev Test Total

Recipes
# procedures 693 86 87 866
Avg. steps / proc. 8.8 8.9 9.0 8.8
Avg. entities / proc. 8.6 8.8 8.5 8.6

ProPara
# procedures 391 43 54 488
Avg. steps / proc. 6.8 6.7 6.9 6.8
Avg. entities / proc. 3.8 4.1 4.4 3.9

Table 4: Statistics of Recipes and ProPara.

P R F1

implicit 37.4 23.2 28.3
explicit 68.3 72.4 70.2

Table 5: MEET’s sentence-level performance (before
applying offline CRF) on implicit and explicit steps
(where the query entity is explicitly mentioned). Clearly,
MEET makes more accurate predictions on explicit
steps.

A Fine-tuning Formats for T5

A.1 State Prediction (Multi-choice QA)
Input:

What is the state of water in step 2?
(a) create (b) ... (f) move
step 1: Water flows downawards thanks
to gravity. step 2: Enters the dam at
high pressure. step 3: The moving water
spins the turbines in the power plant ...
step 6: The water leaves the dam at the
bottom.

Output:

move

A.2 Location Prediction (Extractive QA)
Input:

Where is water located in step 2?
step 1: Water flows downwards thanks to
gravity. step 2: Enters the dam at high
pressure. step 3: The moving water spins
the turbines in the power plant ... step
6: The water leaves the dam at the bottom.
Other locations: none, unknown.

Output:

dam

B Dataset

For ProPara (Dalvi et al., 2018), following Ma et al.
(2022), the state prediction task includes six can-
didate states (Outside_Before, Create, Destroy,

Move, Exist and Outside_After). For Recipes
(Bosselut et al., 2018), each ingredient has two pos-
sibles states (Exist or Absence) in each step of
the recipe. Full data statistics on two datasets are
presented in Table 4.

C Evaluation

Sentence-level evaluation This evaluation mea-
sures the following questions for each target entity:

• Cat-1: Is entity created (destroyed, moved) in
the process?

• Cat-2: When (step #) is entity created (de-
stroyed, moved)?

• Cat-3: Where (location) is entity created (de-
stroyed, moved to/from)?

Further, the F1 scores of the three questions are
aggregated with micro/macro averages.

Document-level evaluation It measures the four
questions below for each paragraph:

• What are the input entities to the process?

• What are the output entities of the process?

• What entity conversions occur, when (step #),
and where (location)?

• What entity movements occur, when, and
where?

The macro average of the F1 scores of these four
questions will be used as the final score.

Table 6 provides a comprehensive comparison
of past work on the ProPara dataset, including both
document-level and sentence-level evaluations.

D Analysis of Formulation Comparison

When compared with the "step-input" formulation,
the QA formulation allows the model to have the
full context, and may take better advantage of LM’s
pre-training scheme (Li et al., 2019; Nagata et al.,
2020). The "process-input" formulation works the
worst in this comparison. With qualitative analyses,
we find that it suffers from error propagation due
to its autoregressive decoding, so future work may
explore incorporating structural decoding (Tandon
et al., 2018) into T5.
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Model
Document-level Sentence-level

P R F1 Cat-1 Cat-2 Cat-3 macro micro

NCET (Gupta and Durrett, 2019b) 67.1 58.5 62.5 73.7 47.1 41.0 53.9 54.0
IEN (Tang et al., 2020) 69.8 56.3 62.3 71.8 47.6 40.5 53.3 53.0
DYNAPRO (Amini et al., 2020) 75.2 58.0 65.5 72.4 49.3 44.5 55.4 55.5
ProGraph (Zhong et al., 2020) 67.3 55.8 61.0 67.8 44.6 41.8 51.4 51.5
TSLM (Faghini et al., 2021) 68.4 68.9 68.6 78.8 56.8 40.9 58.8 58.4
KOALA (Zhang et al., 2021) 77.7 64.4 70.4 78.5 53.3 41.3 57.7 57.5
REAL (Huang et al., 2021) 81.9 61.9 70.5 78.4 53.7 42.4 58.2 57.9
LEMON (Shi et al., 2022) 74.8 69.8 72.2 81.7 58.3 43.3 61.1 60.7
CGLI (Ma et al., 2022) 75.7 70.0 72.7 80.8 60.7 46.8 62.8 62.4

MEET (ours) 80.3 67.1 73.1 77.5 61.0 49.6 62.7 62.4

Table 6: Document-level and sentence-level evaluation results on ProPara test set.

1263



Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 1264–1280
May 2-6, 2023 ©2023 Association for Computational Linguistics

Conversational Tree Search: A New Hybrid Dialog Task

Dirk Väth Lindsey Vanderlyn
University of Stuttgart, Germany

{vaethdk|vanderly|thang.vu}@ims.uni-stuttgart.de

Ngoc Thang Vu

Abstract
Conversational interfaces provide a flexible
and easy way for users to seek information
that may otherwise be difficult or inconvenient
to obtain. However, existing interfaces gen-
erally fall into one of two categories: FAQs,
where users must have a concrete question in
order to retrieve a general answer, or dialogs,
where users must follow a predefined path but
may receive a personalized answer. In this pa-
per, we introduce Conversational Tree Search
(CTS) as a new task that bridges the gap
between FAQ-style information retrieval and
task-oriented dialog, allowing domain-experts
to define dialog trees which can then be con-
verted to an efficient dialog policy that learns
only to ask the questions necessary to navigate
a user to their goal. We collect a dataset for the
travel reimbursement domain and demonstrate
a baseline as well as a novel deep Reinforce-
ment Learning architecture for this task. Our
results show that the new architecture com-
bines the positive aspects of both the FAQ
and dialog system used in the baseline and
achieves higher goal completion while skip-
ping unnecessary questions.

1 Introduction

Complex processes, e.g., healthcare, insurance, or
travel reimbursement, can be challenging for users
to navigate. FAQ and task-oriented dialog systems
can provide immediate support, which is especially
helpful as questions in these areas can be time sen-
sitive, e.g., whom to contact in case of a lost pass-
port. To support all types of users, however, such
systems must be fast to satisfy those with more
experience and thorough, so that those with less ex-
perience understand all steps needed to accomplish
their goals. Above all, however, accuracy is critical
in such susceptible domains.

FAQ systems can directly answer to user queries
by matching them to predefined common ques-
tion/answer pairs. It enables quick access to in-
formation while allowing subject experts to define

Figure 1: An example of the proposed task: Slice of
a dialog tree (blue/gray nodes, black edges) showing
how progressively more concrete questions could be
answered. Question a) guiding a user with a general
goal through the tree, b) asking only at nodes that need
more clarification, and c) requiring no clarification and
thus receiving a direct answer.

system output and ensure it is factually correct (Wu
et al., 2005). However, this approach does not al-
low for personalizing answers to a user’s specific
case, e.g., a specific user’s per diem might depend
on their destination and length of travel. Including
information for all cases in one FAQ answer would
make it long and hard to understand, while adding
FAQs for each case, would make retrieval challeng-
ing. Additionally, as retrieval accuracy could be
better (Thakur et al., 2021), the top answer might be
incorrect, but displaying multiple answers makes
the search process longer and transfers the respon-
sibility of selecting the correct answer to the user.
Finally, FAQ systems expect concrete information
needs from users; but, new users may not be famil-
iar enough with the complex process they wish to
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navigate in order to pose specific questions.

Dialog systems provide the opportunity for turn-
based interaction, which can solve many of the
shortcomings of FAQ systems (allowing process
guidance, and shorter, more personalized answers).
While automatically learning dialog behavior can
be quicker and allow for more flexibility than de-
signing a handcrafted system, such dialog systems
rely on large amounts of data (Raghu et al., 2021),
and their behavior can be challenging to control
(Gao et al., 2018). As such, handcrafted dialog
systems have generally still been preferred in low-
resource settings, where there is not enough data
to train a machine learning approach (Zhang et al.,
2020), and in domains where it is essential that
dialog designers can carefully control the system’s
behavior (Cohen, 2020). In these cases, it is com-
mon for non-technical experts to define the system
behavior using a graphical interface (Shukla et al.,
2020), resulting in a dialog tree. However, the
structure of such systems can be rigid to traverse,
making it less suitable for experienced users who
want a specific question answered as fast as pos-
sible, rather than having to navigate through the
whole tree until they reach the answer they were
looking for.

In trying to implement a dialog system for travel
reimbursement, we confirmed the shortcomings of
both FAQ- and dialog-based approaches through
pilot studies. As we are unaware of any system at
the time of writing that can handle both forms of
information-seeking behavior, we propose a new
task called Conversational Tree Search (CTS). In
this task, subject-experts can design arbitrarily com-
plex dialog trees from which a dialog policy can be
automatically trained to support both a guided dia-
log mode – where users with a vague information
need can be guided by questions each turn until
they reach their answer – and a free dialog mode –
where users with a concrete information need can
receive an answer as efficiently as possible (see
Figure 1). In this way, CTS offers a hybrid solu-
tion where experts can still carefully control dialog
structure and system responses while also profiting
from the flexibility of a machine learning policy
that can navigate the tree efficiently, only asking
questions necessary to clarify information needs or
personalize answers. Providing both dialog modes
allows both novices and more experienced users to
receive the correct level of support.

To solve our newly proposed task, we focus on

the following research questions:
(RQ1) How can we develop a dialog policy that can
navigate an expert-designed dialog tree, supporting
both users with a specific information need and
those with only a vague information need?

• (RQ1.1) Can the policy learn to differentiate
between both dialog modes?

• (RQ1.2) Can this policy learn only to ask
questions that are necessary to reach the user
goal?

(RQ2) How robust is such a system to noise added
to the encoding of the user input?
(RQ3) How well can such a system generalize to
unseen utterances?

In the process of answering these research ques-
tions, we make the following concrete contribu-
tions: 1) We define a new task, CTS, and its eval-
uation criteria; 2) we collect and publish REIM-
BURSE, a low resource, real-world German lan-
guage dataset for CTS in the domain of travel re-
imbursement, consisting of a dialog tree and user
utterances; 3) we implement a domain-agnostic
user simulator for CTS, using it to generate new
dialogs based on the REIMBURSE data; and 4) we
design a novel Reinforcement Learning (RL) ar-
chitecture and train an agent to achieve significant
performance increases over the baseline system on
noisy and unseen data. Our data, simulator, and
code are released1 under an open source license to
encourage more research into this task.

Our results show that an RL agent, based on
our novel architecture, can learn to differentiate
between both modes of interaction (guided and
free) and skip unnecessary questions in free mode.
Furthermore, the RL agent can significantly out-
perform the baseline system even in settings where
Gaussian noise is applied to the user utterance en-
codings. Finally, the RL agent outperforms the
baseline on dialogs that are generated based on
unseen user utterances. Its success in this setting
indicates an understanding of the user’s text input,
as the agent cannot exploit structural features, e.g.,
positional information.

2 Definition of Conversational Tree
Search Task

The goal of this task is, given a dialog tree, to de-
velop an interactive dialog system able to efficiently
navigate a user to their goal by traversing the tree,

1https://github.com/DigitalPhonetics/
conversational-tree-search
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Figure 2: Example graph with dialog actions and path p
from start node s to goal node g. AsASK−g ∈ p, this
represents a dialog where the user reached their goal.

and only outputting questions which are needed
to clarify the user’s intention and personalize the
output accordingly. In order to accomplish this,
a policy has two types of actions it can choose at
any node, either to ASK, which represents out-
putting the system text associated with that node,
or to SKIP , which represents transitioning to a
connected node without outputting the text at the
current node.

2.1 Formal Task Description

Given is a dialog tree represented as (cyclic)
directed Graph G = (V,E), where the outgoing
edges of node v include the self-transition
ASK(v) = (v, v), combined with the edges
to neighbours of v (vi, . . . , vk ⊆ V ): E(v) =
{ASK(v), SKIP (v, vi), . . . SKIP (v, vk)}.
Here, SKIP (v, vi) = (v, vi) is an edge to a direct
neighbour vi of v.

Starting from a node s ∈ V , the goal is to find a
path p = (ASK(s), SKIP (s, vi), . . . , ASK(g))
to a given user goal node g ∈ V (see Figure 2)
only described by user utterances U , subject to
ASK(g) ∈ p (the goal node should be presented
to the user) while at the same time minimizing
|{ASK(v)|v ∈ V ∧ASK(v) ∈ p}| (the amount
of asked questions, i.e., perceived length to the
goal, should be as few as possible).

Here, the edgesE also define the system’s dialog
actions, where ASK(v) will output the text associ-
ated with the node v. Depending on the node type,
this can either output information to the user or ex-
tend the user utterance history U as U ′ = U ∪{uv}
by asking a question. The action SKIP (v, v′) will
skip from v to v′ without outputting anything to
the user. Each node v is associated with text rep-
resenting a system utterance and a node type (e.g.
question). SKIP -actions are labeled by domain
experts with a user answer prototype, which are

used to compare user utterances to during dialog.
For more information on node and edge data, see
Section 4.

In order to address both user interactions (gen-
eral exploration and specific questions), we define
two goal settings within this task framework:

Guided Dialog Here, we define guided dialog as
interactions where the user has a vague information
goal and rather than posing a concrete question,
would like to explore the information available in
the dialog graph. Therefore, rather than having one
static goal, the user decides on a new goal every
turn, i.e., each turn their new goal will be to reach
the node connected to the edge associated with the
answer they give to the system question. Thus, a
guided dialog can be seen as having turn-by-turn
goals (g, g′, g′′, . . . ) ⊂ V , meaning that from any
node g, the next goal g′ is an immediate neighbour
of g, i.e., SKIP (g, g′) ∈ p.

Free Dialog Free dialog in contrast, considers
the case that the user has expressed a concrete in-
formation goal, which may or may not require later
clarification. In this form of dialog, rather than
focusing on choosing the next node from the set
of neighbours, the dialog system’s goal is to help
the user fulfill their information need as quickly
as possible. To this end, if the system is not sure
about an upcoming decision, it may choose to ask
for relevant information, thereby increasing its un-
derstanding of the user’s goal. Thus, a free dialog
has only one goal g ∈ V and each turn serves to
clarify the goal or skip closer to the answer.

2.2 Evaluation Objectives

We evaluate the path p taken by the policies accord-
ing to the following criteria:

1. Task success, i.e., the goal node (g ∈ V ) text
is outputted to the user: ASK(g) ∈ p

2. Skip ratio, i.e., the number of times two con-
secutive skip actions occur along the path
((SKIP (v, vi), SKIP (vi, vj)) ∈ p) divided
by the length of the path

For guided dialog, the objective is to maximize
task success while minimizing the skip ratio. In
free mode, the objective is to maximize both task
success and the skip ratio.
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3 Methods

We develop and release1 a baseline system, an RL-
agent, and a domain-agnostic user simulator for
training and evaluating dialog policies on the new
CTS task.

3.1 User Simulator

The user simulator generates new dialogs for both
interaction modes (with 50% probability of starting
in either mode), which can be used to train and
evaluate an RL-agent. The simulator is rules-based
and each turn can respond to the dialog agent, either
by asking a question (initial turn) or responding
to a follow-up question (subsequent turns) using
text from the available paraphrases (Appendix A).
Dialogs are generated by choosing random goals
and constraints. As its behavior only depends on an
interchangeable dialog tree, the simulator remains
domain-agnostic.

To represent exploratory users (guided mode),
the simulator randomly samples a neighboring
node as a new goal after each node transition. This
mimics a user whose goal is only that the system
correctly understands their current input and takes
them to the associated next node. To support user
exploration of the domain, skipping over nodes
should be avoided, so asking after skipping to a
new node – rather than skipping twice in a row – is
rewarded (+2), as is correctly skipping after asking
(+3). The initial utterance is the user answer to
the start node question, subsequent utterances are
given by (paraphrases of) answers leading to the
next goal node.

To represent users with a concrete information
goal (free mode), the simulator randomly selects
a single, static goal and constraints for the entire
dialog. A random node (with at least one associated
FAQ question) is chosen from the graph as the user
goal and one of the FAQ questions associated with
that node is chosen as the initial user utterance. The
simulator then finds a valid path from the start node
to the goal node, saving the user answers along that
path. Each time the dialog agent asks a question
from a node along the goal path, the simulator can
use the stored answers to respond. In case the node
is not along the goal path, a random answer will be
chosen to continue the dialog. To discourage long
dialogs, each turn is given a small negative reward
(-1). To discourage asking unnecessary questions,
any questions that are not part of the stored goal
path are punished (-4). Finally, reaching the goal

Figure 3: Baseline architecture: Combines an FAQ re-
trieval system (free mode) and a handcrafted dialog sys-
tem (guided mode), with a classifier deciding which
policy is active based on the input in the first turn.

node and outputting its content is given a reward of
4× tree_depth (e.g. in the REIMBURSE dataset:
reward of +128).

A dialog will stop after: 1) reaching 50 dialog
turns, 2) presenting the user goal, or 3) present-
ing the same node 3 times (user patience). To
simulate unseen text input, noise can be added to
user utterances in the form of a normal distribution
around the original utterance encoding vector u,
using a percentage n of u as standard deviation:
N (u, n|u|).

3.2 Baseline

For the baseline system (see Figure 3), we com-
bine an FAQ retrieval system (free mode) and a
handcrafted dialog system (guided mode) together,
training a classifier to decide which policy is active
based on the input in the first turn.

To train the dialog mode classifier, we fine-tune
a German BERT model (Chan et al., 2020), provid-
ing a user utterance and the associated node text as
inputs (see Appendix D). In free mode, a state-of-
the-art similarity model (Reimers and Gurevych,
2019) is used to compare the first user utterance
to all nodes in the dialog tree, directly outputting
the most similar match to the user. In guided mode,
node text is outputted to the user at each node.
Their response is then compared to the prototypical
answers for that node (using the same similarity
model), and the policy then skips to the node con-
nected by the most similar prototypical answer.

3.3 Reinforcement Learning Model

We propose a novel RL-architecture based on
Dueling Network Architectures (DDQN) (Wang
et al., 2016). For improved stability and conver-

1267



gence speed, we integrate Munchausen Reinforce-
ment Learning (Vieillard et al., 2020), Double Q-
Learning (van Hasselt et al., 2016), and Hindsight
Experience Replay (Andrychowicz et al., 2017) in
conjunction with Loss-Adjusted Prioritized Experi-
ence Replay (Fujimoto et al., 2020).

As a deviation from conventional DQN-based
(Mnih et al., 2013) algorithms, we re-parameterize
the usual network structure Q : s, θθθ 7→ R|A| to
Q : s, ai, θθθ 7→ R, where s is a state vector, θθθ
represents the trainable network weights, and ai
is the i-th action in action space A with |A| dis-
crete actions. Thus, our architecture has one out-
put node instead of |A| output nodes (see Figure
4). Instead of performing one forward pass per
state, we now perform n(s) forward passes per
state, where n(s) ≤ |A| is the variable action count
at state s, concatenating all outputs to obtain the
full state-action vector Q(s, θθθ). By batching these
forward passes, we achieve comparable runtime
performance. The benefits of this approach are
twofold: 1) It scales to an arbitrary number of ac-
tions without increasing the number of output neu-
rons. 2) We can process action-specific inputs, e.g.,
action text (Figure 4 (a)), allowing the model to in-
fer information from text rather than just exploiting
action-space structure.

To keep the state values stable across different
actions in the same state, we expand on the idea
of DDQN (Wang et al., 2016), which processes
inputs using shared layers (Figure 4 (b)) and cal-
culates a state-value V (s) and an advantage func-
tion A(s, a) with separate network layers on top
of the shared layer. Here, we add separate layers
for encoding action inputs (Figure 4 (c)), which
we then concatenate with the shared layer output
(Figure 4 (b)) in order to calculate A(s, a). V (s)
only receives inputs based on state s, and is thus
decoupled from action-related inputs. We found
this stabilized Q-values and performed better than
the original algorithms in all our experiments (e.g.
DDQN: 31.87% combined success on test data).

After experimenting with an external dialog
mode classifier, we found that adding dialog mode
classification as an auxiliary task improved our
success metric. Therefore, we add an additional bi-
nary classification head to the output of the shared
state layers from our enhanced DDQN to predict
which dialog mode the current turn belongs to.
Using cross entropy loss, we add this task as a
hard-parameter sharing multitask learning objec-

tive (Caruana, 1993) in order to force the model
to develop an understanding of the different tasks:
L = Lddqn + λLintent.

4 REIMBURSE: A Dataset for CTS

For this task, we collect and publish a dataset from
two sources: a dialog tree, defining the general sys-
tem behavior, and a corpus of user utterances, with
paraphrases for both user questions and responses
to system questions. This dataset represents chal-
lenging real-world data, both in the complex struc-
ture of the dialog tree for this domain, and the
real-world nature of the user utterances. Examples
of user questions and user responses are provided
in Appendix B.

Dialog Tree We provide a dialog tree for travel
reimbursement, created by subject-area-experts us-
ing a graphical dialog designer tool. The dialog
tree consists of four different types of nodes: 1)
Dialog Nodes, defining a system question and pos-
sible user answers. 2) Variable Nodes, defining a
system question and storing the user answer for
later use in the beliefstate. 3) Information Nodes,
defining information that the system should share
with the user without expecting a user response.
And 4) Logic Nodes, defining dialog flow based
on logical conditions evaluated against beliefstate
values, without outputting anything to the user. An
example of each of these can be seen in Figure 6 in
the Appendix.

In total, the dialog graph we use contains 123 to-
tal nodes (with a maximum depth of 32), of which,
79 are information nodes which contain answers to
user questions and 23 are Dialog Nodes with sys-
tem questions for the user. The maximum action
count per node (directly connected nodes) is 14.

User Utterances We collected a real world cor-
pus, called REIMBURSE. This corpus consists of
452 free dialog questions, each corresponding to
an Information Node in the dialog tree, with an
average of 5.72 paraphrases per Information Node.
This was done through recording user utterances
in two early pilot studies, and manual augmenta-
tion by two expert annotators. Synonyms for user
responses to system questions were collected the
same way, resulting in 408 total response para-
phrases, on average 5.58 per user answer. For ex-
amples, see Appendix B.1.
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Figure 4: Proposed RL architecture: The state-value function V (s) for state s is calculated from the shared layers
(b), independent of action inputs. For the advantage functionA(s, a), the outputs from shared layers (b) and action-
specific layers (c) are combined. The final state-action-values Q are obtained by performing one forward pass per
action ai, each yielding a scalar qs,ai

, which are then concatenated by state into a vector with one value per action.
Additionally, a binary dialog mode classifier is added on top of the shared layers (b).

5 Experimental Setup

The RL agents receive the following inputs: be-
liefstate, last system action type, action index, and
current node type encoded by one-hot vectors, cur-
rent node position as a binary tree encoding (Shiv
and Quirk, 2019), the dialog history, initial user
utterance, current user utterance, current node text
and the node’s prototypical answer texts encoded
by either an English-German RoBERTa (Liu et al.,
2019) 2 or sentence transformers (Reimers and
Gurevych, 2019) model. The model is trained
against the user simulator using the Adam opti-
mizer (Kingma and Ba, 2015) with a learning rate
of 1e−4. We set the maximum number of training
dialog turns to 1.5M and save the model which
performs best in evaluation (performed every 10k
turns with 500 simulated dialogs) for testing. Eval-
uation and testing are also performed against the
user simulator. However, in this mode agent explo-
ration is disabled. For more details on model and
training parameters, see Appendix D.

Testing is done on 500 simulated dialogs (in RQ3
generated from held out utterances). We measure
success and skip ratios for guided and free mode
separately and jointly. To check task understanding,
we measure the dialog mode prediction consistency:
we calculate the difference between the percentage
of turns predicted for guided and free mode per
dialog, then averaging across all dialogs.

5.1 RQ1: Task Performance
To understand how well the RL agent learns to sup-
port both dialog modes, we measure combined task

2https://huggingface.co/T-Systems-onsite/cross-en-de-
roberta-sentence-transformer?doi=true

success as well as success on each individual mode
(how often user reaches goal), the mode-specific
skip ratios (higher skip ratio desired for free, lower
for guided mode), and the mode prediction and
consistency measures (proxy for task understand-
ing). All models are trained and tested against the
user simulator generating dialogs from the same
distribution, following standard RL procedure. We
apply a noise level of n = 10% to encourage gen-
eralization.

5.2 RQ2: Task Performance in a Noisy
Environment

To test how well our models perform in noisy en-
vironments, we test the success and mode clas-
sification F1 score of models trained in RQ1 on
simulated dialogs with increasing noise levels. We
test five times, reporting average results and statis-
tically significant performance differences.

5.3 RQ3: Generalizing to New Data

In the previous experiments, we have followed the
RL convention of testing our models on new di-
alogs generated from the same user simulator they
trained on, with the same set of possible user ut-
terances. However, much of the challenge in this
domain comes from understanding text input. By
exchanging the set of user utterances available to
the simulator for testing, we explore how well the
model can generalize to user inputs not seen during
training. To this end, we split our corpus into a
test/eval and a train set. The train/eval set contains
279 FAQ questions (3.5 questions per Information
node) and 246 responses (3.4 paraphrases per re-
sponse prototype). The test set contains 173 user

1269



questions (2.2 questions per Information node) and
162 responses (2.2 paraphrases per response pro-
totype). We then train and evaluate the best per-
forming models from RQ1 and RQ2 on simulated
dialogs generated from the train split. Finally, to
measure how well they can generalize, we test the
final performance on dialogs generated from the
unseen paraphrases in the test split.

6 Results and Discussion

6.1 RQ1: Task Performance

To verify the user simulator, we evaluate it against
our baseline model, without noise and only using
the prototypical user answers from the dialog tree.
This yields a success rate of 99.35% for the guided
task and an F1-score of 1.0 for the dialog mode
prediction, showing that the simulator works as ex-
pected. On the free task, it reaches 64.46% success.
Given the challenging nature of the dataset, it is to
be excepted that top-1 retrieval is not perfect.

Just by adding user answer paraphrases and 10%
noise, baseline performance drops substantially
on all tasks (see Table 1), demonstrating the task
difficulty w.r.t. a real-world scenario. Our RL
agents significantly outperform the baseline (t-test
p < 3× 10−8 ) on all task success metrics, except
the skip ratios (see Table 1). This shows our mod-
els are better able to learn the task compared to the
baseline, especially under noisy text inputs, which
we attribute to the improved generalization.

RQ1.1: Differentiating Between Dialog Modes
Table 1 shows that both of our models learn to skip
more frequently in free mode (e.g., 0.58) and less
frequently in guided mode (e.g., 0.07). This indi-
cates that multitask learning helped understand the
user’s intended mode, as we would otherwise not
see a difference in skipping behaviour. Addition-
ally, the classification consistency is 1.0, indicating
stable task understanding. Jointly learning intent
prediction also improves dialog mode classification
compared to using a pre-trained classifier.

RQ1.2: Asking Only Necessary Questions
While the baseline has, by construction, perfect
skip ratios on both free (1-step retrieval) and guided
tasks (no skipping), the skip ratios in Table 1
demonstrate that our models learn to ask questions
in both modes. In free mode, we see that asking
some questions helps differentiate the user goal, as
we obtain much better task success than the 1-step

baseline. High skip ratios (e.g., 0.58) in this mode
show the model still skips unnecessary nodes.

6.2 RQ2: Task Performance in a Noisy
Environment

Figure 5 shows our models are able to handle high
levels of noise: performance only decreases rapidly
after 100% noise. Our models demonstrate a sig-
nificant performance increase over the baseline at
all noise levels (t-test p < 0.003). Additionally, we
find that dialog mode understanding is robust w.r.t.
input noise (dialog mode classification F1 stays un-
changed at 1.0 after rounding, e.g. consistency only
drops from 1.0 without noise to 0.83 at the highest
noise setting). The robustness to noise suggests
that the regularization techniques are effective.

Figure 5: Task performance for different noise levels
on user input (drawn from a normal distribution around
the original text encoding vector u, using a percentage
n of u as standard deviation: N (u, n|u|).

6.3 RQ3: Text Understanding and
Generalization to New Data

When only training on a fraction of the data and
testing on the unseen split, we observe some per-
formance drops for the baseline and all RL agents,
compared to the setting from RQ1, as well as be-
tween evaluation and test performance in RQ3 (see
Table 2). The performance drop in the RL agents
can likely be explained by the drop in the dialog
mode classification score (e.g., from 1.0 in RQ1
to 0.85). This paired with high dialog mode pre-
diction consistency (0.96, 1.0) means the models
more often classified the dialog mode incorrectly
and could not recover during a dialog. This misclas-
sification likely also explains increased skipping in
guided mode (e.g., from 0.07 in RQ1 to 0.19).

However, even in this more challenging setting,
our models demonstrate much better combined task
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Model Success
(guided)

Skip Ratio
(guided)

Success
(free)

Skip Ratio
(free)

Success
(combined)

Dialog Mode
Prediction F1

Dialog Mode
Prediction Consistency

Baseline 64.71% 0.0 22.84% 1.0 43.10% 0.83 1.0
RoBERTa CTS 75.12% 0.10 74.20% 0.55 74.40% 1.0 1.0

Sentencesim CTS 84.77% 0.07 72.00% 0.58 77.16% 1.0 1.0

Table 1: Average model performance on data with 10% noise. Both RL agents are able to significantly outperform
the baseline (t-test: p < 3× 10−8) in terms of success (guided, free, and combined). The RL agents learned to
distinguish between dialog modes, skipping more than half of nodes in free mode and less than 10% in guided.

Model Success
(guided)

Skip Ratio
(guided)

Success
(free)

Skip Ratio
(free)

Success
(combined)

Dialog Mode
Prediction F1

Dialog Mode
Prediction Consistency

Evaluation Data
Baseline 81.05% 0.0 25.54% 1.0 55.40% 0.95 1.0
Sentencesim CTS 82.96% 0.13 71.19% 0.54 76.01% 1.0 1.0
RoBERTa CTS 85.36% 0.07 86.18% 0.53 85.81% 1.0 1.0

Test Data
Baseline 65.52% 0.0 20.38% 1.0 42.05% 0.85 1.0
Sentencesim CTS 74.76% 0.19 54.38% 0.61 62.54% 0.88 0.96
RoBERTa CTS 57.10% 0.25 66.78% 0.53 62.58% 0.85 1.0
- Action Positions 46.70 % 0.29 66.79% 0.55 57.59% 0.82 0.99
- Action Text 57.63% 0.23 55.31% 0.57 55.28% 0.84 0.98
- Node Text 39.82% 0.20 55.34% 0.54 47.95% 0.83 0.96
- Node Positions 54.98% 0.20 55.40% 0.59 55.21% 0.81 0.99
- Node Type 50.67% 0.20 64.41% 0.56 58.39% 0.84 0.98
- Mode Prediction 43.61% 0.23 60.38% 0.59 52.33% n/a n/a
- Beliefstate 62.26% 0.21 42.66% 0.57 51.05% 0.82 0.99

Table 2: Model performance on simulated dialogs generated from dataset splits, and skip ratios (skipped dialog
nodes w.r.t. dialog length). Here, higher skip ratios are better for the free setting (looking for a direct answer),
but lower ones are preferable for guided mode (exploratory dialogs). Rows underneath RoBERTa CTS for the data
represent input ablations, i.e. the listed input was removed from the model.

success than the baseline. This is particularly in-
teresting as utterances in the test data were never
seen in training, meaning the model could not have
merely exploited structural properties of the data,
but rather must have learned text understanding to
solve the task. For example (see Appendix C.2),
the model can understand that when a user asks
what to do after an earthquake, they need the emer-
gency help number and skips directly to that node,
even though nothing about earthquakes appeared in
training. The system also learns to recognize when
information is missing from a user question and
ask for additional information, e.g., if the business
trip took place in or outside the home city, even for
new questions (see Appendix C.3).

To better understand how the model processed
inputs, we performed an ablation study (Table 2)
of the RoBERTa agent. From the success rates
without either action text or action position, we
see that providing action context in input space
increases model performance, validating our new
architecture.

In free mode, when node or action text are re-
moved, there is a large drop in model performance

(about 10%), which is not as severe if instead ac-
tion positions are left out. This suggests that the
model learns to understand text as it can correlate
user utterances to text from nodes and actions in
the dialog graph, even with noise and synonyms
not seen during training. Node position intuitively
simplifies path finding, which explains a drop in
performance when leaving it out. It also makes
sense then that removing the dialog history has a
similar effect, as it encodes path information in
textual form. We conclude from this that both tex-
tual and positional information are needed for this
task and better understanding of either input could
likely boost performance.

In the guided mode, we observe that while node
text was very important (nearly 20% drop), remov-
ing action text had almost no effect. This might
relate to the text length associated with each action,
and the length of user input per node (usually much
less information than in the free mode questions).
As user input was often one to three words long,
it could have been easier for the model to learn to
correlate the user input to an action position rather
than action text, especially given that BERT-based
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language models rely on context. Thus, improving
focus on action text in the guided mode is an area
for future investigation. Removing the node posi-
tion or dialog history had a minor impact, which
agrees well with the objective of the guided mode:
it should not rely much on path planning, instead
user input should be considered at most nodes to
move the dialog along.

In general, dialog mode prediction improves per-
formance in both dialog modes. Without this, the
agent is able to learn to skip more in free mode and
less in guided, but success drops. In the multitask
learning setting, we force the model to learn to out-
put a consistent prediction across a dialog (Table 2
consistency values are close to 1.0 for all multitask
models), which may explain the higher success.

7 Related Work

Data Efficient Task Oriented Dialog Systems
In some domains, e.g., recommendation, the num-
ber of actions for a dialog system can be quite large
prompting new architectures which group the ac-
tions into a tree structure to reduce the search space
(Chen et al., 2019; Montazeralghaem et al., 2021).
While the information seeking dialogs have differ-
ent characteristics, including a tree structure for
the data, can help experts maintain control of the
system and reduce the action search space.

Task Oriented Systems with Expert involve-
ment In many domains, it is crucial domain ex-
perts maintain control of dialog flow to ensure cor-
rectness of system outputs. An early approach
(Williams, 2008) involved a hand-crafted dialog
policy which output the allowed actions at a time
step and a POMDP policy then chose the opti-
mal action from this set. More recent approaches,
e.g., hybrid code networks (HCN) have expanded
on this idea for neural systems (Williams et al.,
2017; Liang and Yang, 2018; Razumovskaia and
Eskenazi, 2019), where action space can be con-
strained using masks. Shukla et al. (2020) extend
the HCN approach by automatically converting
expert designed dialog trees into hybrid code net-
works (HCN). This approach increases explainabil-
ity of system behavior, but doesn’t provide a mech-
anism for skipping portions of a dialog irrelevant
to a user, falling short of addressing free dialog.

Knowledge Augmented Dialog Systems The
DSTC10 challenge (Kim et al., 2022) introduced a
new track for knowledge grounded dialog, combin-

ing task-oriented dialog and FAQ style questions
answered from unstructured documents. Such hy-
brid dialog systems help answer free form user
queries, but still require a concrete question, and do
not allow precise control over generated answers.

Another recent approach (Raghu et al., 2021)
proposed grounding dialog systems on trou-
bleshooting flow charts and FAQ questions. Here,
the dialog system fuses knowledge from FAQs with
an under-specified flow chart to generate an appro-
priate response to a user input. However, dialogs
appear limited to short flow charts, and response
generation is again outside the designer’s control.

Clarifying Questions and Conversational
Search Conversational Search and clarifying
questions are two intertwined areas of research
which focus on disambguating free form user
queries. The goal of these tasks is to generate
one or more questions to narrow down a user’s
information need (Zamani et al., 2020) in order
to retrieve relevant documents. To improve
conversational search performance, much work has
focused on ranking candidate questions (Kumar
et al., 2020) and leveraging the user answers (Bi
et al., 2021). However, neither of these tasks do
not allow for human oversight of the questions that
will be asked, and currently do not consider any
structure for the organization of questions.

8 Conclusion and Future Work

In this work, we introduced a new task, CTS
which combines the positive aspects of both an
FAQ retrieval and task-based dialog system, along
with a real-world German language dataset, RE-
IMBURSE, a domain-agnostic user simulator, and
baseline system based on state-of-the-art language
models. Furthermore, we demonstrated a novel,
scalable RL architecture, showing significant per-
formance improvements over the baseline. Our
models are able to handle high levels of noise in the
input data and demonstrate the ability to learn text-
based information from user utterances, as seen by
their ability to handle unseen data. In the future,
it would be interesting to explore data augmenta-
tion for generating unseen utterances as well as
to explore methods, particularly for guided mode
dialogs, to encourage the model to rely even more
information from text. We also hope that the com-
munity helps in exploring performance on addi-
tional languages and task instances.
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9 Limitations

We recognize the following limitations in our work:

• When testing on unseen real world data rather
than the noisy simulation, we notice a perfor-
mance drop between the evaluation and test
results. As we are working in a very low re-
source setting and using a challenging real-
world dataset, it is difficult to state with cer-
tainty if this is a result of the challenge inher-
ent to the dataset or a weakness of the models
to generalize.

• We were not able to perform testing in an inter-
active user study, but rather tested against sim-
ulated dialogs generated from pre-collected
real-world utterances. While these were col-
lected from real users of the dialog system, a
user study would be valuable to investigate
how the system handles input in a live setting.

• As we only collected a single dataset for the
new CTS task, we have not investigated do-
main generalizability.
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A User Simulator

The (simplified) behavior of the user simulator is show below. To generate dialogs based on unseen
utterances, one can simply replace the files containing questions and answers with new files containing
different questions and answers than were present during the training process.

Require: questions← List of Questions associated with dialog tree nodes
Require: answers← List of Answer synonyms
Require: N ← Number of dialogs to be simulated
Require: G(V,E) . Dialog Tree
Require: T ← Maximum number of turns per dialog
n← 0
for n < N do

v ← start node
m← randomly choose GUIDED or FREE
if m = GUIDED then

g ← randomly choose neighbour(v) . Draw new goal in guided mode
e← e(v, g) ∈ E
u← randomly choose from answers[e]

else
g ← randomly draw g ∈ V with |questions[g]| ≥ 1 . Draw new goal in free mode
p← (e(v, v1), . . . , e(vN , g)) ⊂ E
u← randomly choose from questions[g]

end if
t← 1
while v 6= g ∧ t ≤ T neighbours(v) 6= ∅ do . Simulate dialog

a← next action from dialog policy, with inputs v, u
if a = ASK(v) then . Print / Ask information

print v
e← e(v, v′) where v′ is g in guided mode or in free mode the next node after v in the path
u← randomly choose from answers[e] if type(v) 6= information, else ∅

else if a = SKIP(v,v’) then . Skip to next node
v ← v′

u← ∅
end if
r ← Calculate rewards
Store a, v′, r in replay buffer
if m = GUIDED then

g ← randomly choose neighbour(v) . Draw followup goal in guided mode
e← e(v, g) ∈ E

end if
t← t+ 1

end while
n← n+ 1

end for

B REIMBURSE: Dataset

B.1 Example User Utterances
B.1.1 Answer Paraphrases
Below is an example of the answer paraphrase data we collected. The subject-area expert defined a
prototypical answer to the question and then additional paraphrases were collected (through pilot study
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and manual expansion). Although some are very close to the prototypical answer, there can also be a lot
of variation.

Prototypical Node Answer: Mit Familie (en: With my family)
Associated Paraphrases:

• Zusammen mit meiner Frau (en: Together with my wife)
• Mit Mann und Kinder (en: With husband and kids)
• Ich und meine Angehörigen (en: Me and my relatives)
• Mit Begleitung (en: With accompaniment)

B.1.2 User Question Paraphrases
For each Information node in the graph, a set of paraphrased questions were collected.

Node Text: Eine private Verlängerung muss zum dienstlichen Teil der Reise verhältnismäßig
sein. Das dienstliche Interesse der Reise muss im Vordergrund stehen. Bei Fragen kontaktieren Sie bitte
die Reisekostenstelle. (en: A personal extension must remain in proportion with the official part of the
trip. The business benefit must remain the primary focus of the trip. In case of questions, please contact
the business travel department.)
Associated Questions:

• Darf ich meine Reise privat verlängern? (en: Can i extend my trip privately?)
• Wie lang darf der private Reiseanteil sein? (en: How long is a private extension allowed to be?)
• Kann ich länger bleiben als der dienstliche Teil meiner Reise? (en: Can I stay longer than the official

part of my trip?)
• Darf ich nach meiner Reise Urlaub machen? (en: Can I add vacation to the end of my trip?)

B.2 Example Tree
Below is an example of each of the node types in the dialog editor. For Information nodes (blue) subject
experts could also define associated FAQ questions to help the RL agent understand user user questions
related to that node.

Figure 6: Example of the dialog designer interface. From left to right: Variable Nodes (purple outline), which the
designer can use to ask for information relevant for later decisions, Logic Nodes (orange outline) which control
the flow of the dialog based on user responses stored in the Variable Nodes (here the two options are “true” and

“else”), Information Nodes (blue outline) where the designer can specify information which does not need a user
response, and Dialog Nodes (black outline) where the designer can specify system questions and expected user
responses.

Figure 7 is a view of the full dialog tree used for experiments in this paper, consisting of 123 nodes.
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Figure 7: Overview of the dialog tree used for all experiments in this paper. The tree was designed by subject-area
experts to help users better navigate the travel reimbursement process.

C Example Dialogs

In this section, we show parts of successful conversations between the simulator and the Sentencesim-CTS
agent.

C.1 Guided Mode

SYSTEM: [ASK] Zu welchem Thema haben Sie Fragen? Sie können entweder eine passende Option
aus der Vorschlagsliste anklicken oder unten Text eingeben. (en: What topic do you have
questions about? You can either click one of the suggestions or type your question.)

USER: Ein Forschungssemester planen (en:Plan a research semester)
SYSTEM: [SKIP TO] Wie lange ist ihr Forschungssemester (bitte mit Einheit angeben: Tage, Wochen

oder Monate)? (en:How long will your research semester be (please use a unit: days, weeks, or
months?)

SYSTEM: [ASK] Wie lange ist ihr Forschungssemester (bitte mit Einheit angeben: Tage, Wochen
oder Monate)? (en:How long will your research semester be (please use a unit: days, weeks, or
months?)

USER: 2916 Sekunden (en: 2916 Seconds)
[ Environment action: Match logic node branch condition→ Automatic SKIP TO: Bitte wenden Sie sich zwecks
möglicher Unterkünfte bei einem Aufenthalt ab 4 Wochen an die Reisekostenstelle. ]

SYSTEM: [ASK] Bitte wenden Sie sich zwecks möglicher Unterkünfte bei einem Aufenthalt ab 4
Wochen an die Reisekostenstelle. (en: Please contact the travel department about booking your
accommodations for trips longer than 4 weeks.)

SYSTEM: [SKIP TO] Liegt eine Zuweisung vor? (en: Have you been reallocated?)
SYSTEM: [ASK] Liegt eine Zuweisung vor? (en: Have you been reallocated?)

[ . . . CONTINUES FOR > 30 MORE TURNS ]

C.2 Free Mode - Direct Skipping to Goal

SYSTEM: [ASK] Zu welchem Thema haben Sie Fragen? Sie können entweder eine passende Option
aus der Vorschlagsliste anklicken oder unten Text eingeben. (en: What topic do you have
questions about? You can either click one of the suggestions or type your question.)

USER: Es gab ein Erdbeben, an wen soll ich mich wenden? (en: There was an earthquake, who can
I contact?)

SYSTEM: [SKIP TO] Welcher Notfall ist eingetreten? (en: What type of emergency has happened?)
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SYSTEM: [SKIP TO] Was ist in einem Notfall auf einer Dienstreise zu tun? Bitte führen Sie die Notfal-
lkarte mit der entsprechenden Notfall-Rufnummer stets mit sich: +123456789. Die Notfallkarte
ist auch im Scheckkartenformat erhältlich. Hierzu können Sie sich bei der Reisekostenstelle
oder an ihrem Institut erkundigen. Diese Rufnummer sollte nur für Notfälle genutzt werden.
Die Weitergabe an Dritte ist untersagt. [. . . ] (en: What should you do if an emergency occurs
during a business trip? Please use the emergency card, which has the emergency telephone
number +123456789. You can also get the emergency card in a platic card form. For more
information, ask your institute or the business travel department. This number should only be
used in emergencies. Passing it on to external people is strictly forbidden. [. . . ])

SYSTEM: [ASK] Was ist in einem Notfall auf einer Dienstreise zu tun? Bitte führen Sie die Notfal-
lkarte mit der entsprechenden Notfall-Rufnummer stets mit sich: +123456789. Die Notfallkarte
ist auch im Scheckkartenformat erhältlich. Hierzu können Sie sich bei der Reisekostenstelle
oder an ihrem Institut erkundigen. Diese Rufnummer sollte nur für Notfälle genutzt werden.
Die Weitergabe an Dritte ist untersagt. [. . . ] (en: What should you do if an emergency occurs
during a business trip? Please use the emergency card, which has the emergency telephone
number +123456789. You can also get the emergency card in a platic card form. For more
information, ask your institute or the business travel department. This number should only be
used in emergencies. Passing it on to external people is strictly forbidden. [. . . ])

C.3 Free Mode - Clarifying Question
SYSTEM: [ASK] Zu welchem Thema haben Sie Fragen? Sie können entweder eine passende Option

aus der Vorschlagsliste anklicken oder unten Text eingeben. (en: What topic do you have
questions about? You can either click one of the suggestions or type your question.)

USER: Muss ich etwas tun bevor ich eine Reise antreten darf? (en: Is there anything I have to do
before I can travel?)

SYSTEM: [SKIP TO] Handelt es sich um eine Dienstreise oder einen Dienstgang? (en: is this a trip
within the city of employment or a trip outside of the city of employment?)

SYSTEM: [ASK] Handelt es sich um eine Dienstreise oder einen Dienstgang? (en: is this a trip
within the city of employment or a trip outside of the city of employment?)

USER: Eine dienstliche Reise (en: A trip outside the city of employment)
SYSTEM: [SKIP TO] Haben Sie die schriftliche Genehmigung ihres Vorgesetzten eingeholt? (Do

you have written permission from your supervisor?)
SYSTEM: [SKIP TO] Bitte holen Sie sich zunächst mittels dieses Formulars eine schriftliche

Genehmigug ihres Vorgesetzten ein. Dies ist zwingend erforderlich. (en: Please get writ-
ten permission from your supervisor as soon as possible. This is mandatory.)

SYSTEM: [ASK] Bitte holen Sie sich zunächst mittels dieses Formulars eine schriftliche Genehmigug
ihres Vorgesetzten ein. Dies ist zwingend erforderlich. (en: Please get written permission from
your supervisor as soon as possible. This is mandatory.)
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D Training details

D.1 RL Model Parameters
The following parameters were used by all user RL models (chosen through manual tuning):

Parameter Value
Layer type Linear

Activation (after each layer except in Dialog Mode Classifier Head) SELU
Shared Layer Neurons (one value / layer) 8096, 4096, 4096

Value Function Layer Neurons (one value / layer) 2048, 1024
Advantage Function Layer Neurons (one value / layer) 4096, 2048, 1024

Dialog Mode Classifier Neurons (one value / layer) 256, 1
Dropout (after each layer) 25%

Table 3: RL Model Parameters

D.2 RL Experience Buffer
New goals in the replay phase of the Hindsight Experience Replay are generated only for free mode
dialogs. Here, we follow the original dialog backwards until we find a suitable alternative goal node
(having at least one associated user question). We choose one of the user questions of the new goal node
randomly and replace the original dialog’s initial user utterance with it.

Parameter Value
Buffer size 100000

Priority Replay α 0.6
Priority Replay β 0.4

Table 4: RL Experience Buffer

D.3 Simulation Parameters
The following parameters were used by our user simulator:

Parameter Value
Reward Normalization [−1.0, 1.0]
Maximum Dialog Steps 50

User Patience 3
Probability guided vs. free dialog 0.5

Training utterance noise 10%

Table 5: Simulation Parameters

D.4 Dialog Mode Classifier
We fine-tune GBERT (Chan et al., 2020) using the Huggingface framework (Wolf et al., 2020). As data,
we use utterances from our train data split and evaluate on the test data split. We have two different input
pair types: 1) node text and user answer 2) node text and user FAQ question. Training is done for 5 epochs,
otherwise using the standard Huggingface (Wolf et al., 2020) trainer class parameters.
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D.5 RL Training Parameters
The following parameters were used to train all RL agents (chosen through manual tuning):

Parameter Value
Optimizer Adam

Learning Rate 1e−4

λ 1.0
Maximum Training Dialog Turns 1.5M

Max. Gradient Norm 1.0
Batch Size 128

γ 0.99
Exploration fraction of Training Turns 0.99

Exploration Scheme ε-greedy
ε start 0.6
ε end 0.0

Training frequency (w.r.t. dialog turns) 3
Training start (w.r.t. dialog turns) 1280

DDQN Target Network update frequency (w.r.t. training steps) 15
Q-Value clipping 10.0
Munchausen τ 0.03
Munchausen α 0.9

Munchausen Clipping −1
Evaluation frequency (w.r.t. dialog turns) 10000

Evaluation dialogs 500

Table 6: RL Training Parameters
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Abstract

We conducted a human subject study of named
entity recognition on a noisy corpus of conver-
sational music recommendation queries, with
many irregular and novel named entities. We
evaluated the human NER linguistic behaviour
in these challenging conditions and compared
it with the most common NER systems nowa-
days, fine-tuned transformers. Our goal was
to learn about the task to guide the design of
better evaluation methods and NER algorithms.
The results showed that NER in our context
was quite hard for both human and algorithms
under a strict evaluation schema; humans had
higher precision, while the model higher recall
because of entity exposure especially during
pre-training; and entity types had different error
patterns (e.g. frequent typing errors for artists).
The released corpus goes beyond predefined
frames of interaction and can support future
work in conversational music recommendation.

1 Introduction

Music recommendation systems (RSs), fundamen-
tal to streaming services nowadays, learn from user
listening history or music content which artists or
tracks to suggest next (Schedl et al., 2018). Most of
these algorithms provide personalized music con-
tent to the users when logging in the streaming apps
or websites, or when triggered with pre-defined ut-
terances via voice assistants (Ammari et al., 2019;
Bontempelli et al., 2022). More recent conversa-
tional RSs aim to help users to express their rec-
ommendation needs by supporting interactions via
queries in natural language (Jannach et al., 2021).
However, despite existing in the scientific literature,
such conversational RSs are not widely deployed
because of multiple issues, one being NER.

The processing of recommendation queries en-
tails the extraction of named entity mentions (Moon
et al., 2019; Rongali et al., 2020). This sub-task
faces multiple challenges, even when queries are

framed as pre-defined utterances. The transcrip-
tions of the voice queries results in lower-case noisy
text, often with misspellings (Muralidharan et al.,
2021). The lack of capitalisation in entities and
misspelled words are often present in text-based
queries too (Cheng et al., 2021). Music entities, or
those coming from the creative content domains,
are highly irregular: they do not follow inherent
patterns as it is the case with people’s names, and
there is little to no separation between the vocab-
ularies of entity and context words, especially for
creative works (Derczynski et al., 2017) (e.g. com-
mon words like "I" or "love" in track titles). Also,
new music entities appear all the time. Major mu-
sic streaming services ingest one new track almost
every second (Ingham, 2021).

Previous works have already shown that NER
systems struggle with the aforementioned chal-
lenges (Augenstein et al., 2017; Lin et al., 2020b;
Epure and Hennequin, 2022). Thus, multiple ap-
proaches have been proposed to address them, ei-
ther focused 1) on collecting more and relevant data
for training / fine-tuning standard NER sequential
models (Lison et al., 2020); or 2) on model’s design
choices that favour generalisation (Guerini et al.,
2018; Lin et al., 2020a). Most solutions focused
on the latter objective have been motivated by the
human NER linguistic behaviour, e.g. make the
model rely more on context cues than on named
entity mentions or learn from a few examples only,
as humans do. However, apart from some scarce,
partially related works (Derczynski et al., 2016;
Ding et al., 2021), there is no systematic investiga-
tion of how humans actually perform NER on noisy
text with many new and irregular named entities.
Moreover, in the case of music recommendation,
we are not aware of any existing dataset of queries
in natural language, annotated with named entities.

Thus, our goal is to investigate the human NER
linguistic behavior when confronted with these
challenging conditions. For that, we create Musi-
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cRecoNER, a new corpus of noisy natural language
queries for music recommendation in English that
simulates human-music assistant interactions. We
then conduct a human subject research study to
establish a human baseline and learn from it. Fi-
nally, we perform a detailed comparison of humans
and the most popular NER systems nowadays, fine-
tuned transformers, that covers multiple evaluation
schemes (strict named entity segmentation and typ-
ing, exact segmentation only, or partial segmenta-
tion with strict named entity typing) and scenarios
including entities previously seen or unseen by the
model or humans.

The results showed that the task was challenging
for humans. Given an aggregated metric such as F1
score, human and algorithmic performances were
on par. However, the detailed evaluation revealed
that humans struggled more with recall while the
best model with precision. The high recall obtained
by the model was partially a result of entity expo-
sure during pre-training or fine-tuning. Also, music
entities had different error patterns and, in some
queries, had ambiguous context that made their
segmentation and typing quite hard.

To sum up, our research contribution1 are:

1. MusicRecoNER, a corpus of noisy complex
natural language queries for music recommen-
dation collected from human-human conversa-
tions in English, but which simulates human-
music assistant interactions, annotated with
Artist and WoA (work of art) entities. This
dataset is not limited to pre-defined utterances
as it would be the case if collected from inter-
actions with conversational or voice assistants.
Thus, it contains entities in diverse context,
being also a useful resource for future work
on conversational music recommendation.

2. A human subject study design for NER in
noisy text with many new and irregular named
entities. The proposed method is transferable
to other creative content domains that face
similar challenges to music such as books,
movies, videos, but also to any other domain
with scarce data, which wants to learn more
about the NER task before building a system.

3. An extensive music NER benchmark on noisy
text which compares the performance of hu-
man versus automatic baselines under mul-

1Code and data are available at https://github.
com/deezer/music-ner-eacl2023.

tiple evaluation schemes, scenarios and by
controlling for the novelty of named entities.

2 Related Work

Analysing human and algorithmic performance
was done for multiple NLP tasks in the past. Nan-
gia and Bowman (2019) ran an annotation cam-
paign on the GLUE benchmark with the goal to es-
timate the effort needed by existing models to catch
up with the humans under limited-data regimes.
Kazantseva and Szpakowicz (2012) conducted a
large-scale human study on topic shift identifica-
tion in order to discover patterns of disagreements
and consolidate the evaluation metrics. Ghaly and
Mandel (2017) analysed the human behaviour for
understanding ambiguous text-based or spoken sen-
tences to guide the development of a machine learn-
ing system. Multiple machine translation works
challenged the human parity claim (Toral, 2020)
and proposed a secondary evaluation method to
reveal detailed differences between humans or al-
gorithms (Graham et al., 2020).

Compared to these, we benchmark humans and
models on a different task—named entity recogni-
tion, but we share similar goals—to estimate the
human-algorithmic performance gap and to iden-
tify patterns that could support the design of better
evaluation methods or automatic solutions. Human
annotation is frequent in NER especially when tar-
geting a new domain such as archaeology (Brand-
sen et al., 2020), or a new language such as In-
donesian (Khairunnisa et al., 2020). However, we
are not aware of any annotated corpus of conver-
sational queries for recommendation in the music
domain. Some other related works propose corpora
of noisy social media text containing new entities
including irregular ones (Derczynski et al., 2016,
2017), a noisy dataset of movie-related queries
(Liu, 2014), a dataset of music artist biographies
annotated for entity linking (Oramas et al., 2016),
or a corpus of tweets associated with a classical
music radio channel (Porcaro and Saggion, 2019).

Previous works have showed that transformers
fine-tuned for NER are strong baselines, especially
when training data is scarce (Akbik et al., 2019; Fu
et al., 2020). A more recent line of research em-
ploys these pre-trained models as few-short learn-
ers (Yang and Katiyar, 2020; Tänzer et al., 2022).
However, the results are still below those obtained
with a fine-tuning approach. In order to improve
the bare-bone fine-tuned transformers, other works
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adopted distant supervision (Lison et al., 2020),
and the inclusion of gazetteers (Shang et al., 2018)
or contextual triggers (Lin et al., 2020a). Though
these solutions are interesting and relevant to our
problem and context, in the current research, we
want to rely on the results of this study before mak-
ing any design choices for an advanced NER sys-
tem in the music domain.

When conducting human subject studies, the
quality of annotations (inter-rater agreement or re-
liability) is often assessed with Kappa statistic or
its variations (McHugh, 2012). Yet, for NER, or
more generally for labelling phrases, this statistic
is less applicable as the number of negative cases
on which it relies is ill-defined (Hripcsak and Roth-
schild, 2005). To address this issue, multiple imper-
fect solutions have been proposed such as to com-
pute the Kappa statistic at the token level (Deleger
et al., 2012)—however, this does not reflect the
task well as each token is not tagged individually;
or to estimate the negative cases by enumerating
all n-grams or noun phrases from a text—however,
this lacks accuracy (Grouin et al., 2011). Hripcsak
and Rothschild (2005) show that when the number
of negative cases gets very large, the Kappa statis-
tic approaches the F1 score. Thus, F1 is considered
a better metric, which we also adopt to measure
the performance of humans and compare the NER
human and algorithmic baselines.

3 Human Subject NER Study

3.1 Data Collection
For data collection we have chosen the music sug-
gestions subreddit2 as a relevant data source. Red-
dit is a discussion website where members can sub-
mit questions, share content and interact with other
members. It is organised in subreddits built around
dedicated topics. Each discussion starts with an ini-
tial post that has a title and description. From this
post, threads of conversations develop. We were in-
terested only in posts triggered by a music informa-
tion seeking or recommendation need. We crawled
the full subreddit with 8615 initial posts. This num-
ber corresponds to the posts in the beginning of
2020. We did not consider posts’ comments.

These humans-to-humans posts asking for music
recommendations are particularly relevant to study
as they go beyond pre-defined frames of interaction
with a text or voice-based assistant. Hence, they
exhibit a realistic human use of language, which

2www.reddit.com/r/musicsuggestions/

1 looking for some playlists to listen to before going
to sleep i usually listen to beach house madlib etc

2 ive just started listening to grateful dead and the
ramones what else have i missed

3 looking for music similar to yamashita
4 songs sounds like drive by lil peep
5 new rappers

Table 1: Examples of queries in MusicRecoNER.

although more challenging, could help with the
development of the next generation of music assis-
tants. For NER, the existence of queries in natural
language translates in a more diverse context sur-
rounding named entities, thus in a higher query
generalisation for music recommendation. By man-
ually checking this data, we noticed that many men-
tioned artists or music titles were not popular. Thus,
we expected most named entities to be new to the
annotators, an aspect we wanted to control for, as
mentioned in Section 1.

3.2 Data Cleaning and Pre-processing

As we aimed at creating a corpus of music rec-
ommendation queries simulating human-assistant
interactions, we made multiple decisions to pre-
process the collected posts. We performed a man-
ual cleaning of this data by removing those posts
which directly shared music with the community;
were aimed at promoting music or other music-
related entities; contained explicit words; or con-
tained only links to external music resources.

Then, we focused on titles only as the post con-
tent was rather long, specific to asynchronous com-
munication; as human-assistant interactions happen
synchronously, the written or spoken queries are
expected to be short, composed of a few short sen-
tences at most (Song and Diederich, 2010). We
removed all references to specific music-related
services in order to obtain generic queries (e.g. we
removed "Youtube" from the request "music similar
to my Youtube playlist"). We also removed words
which were explicit markers of human-human inter-
action in order to ensure compatibility with human-
assistant interaction. For instance, we removed
phrases such as "hello guys" or "could anybody".

We performed the rest of the pre-processing
steps to ensure that the queries contained, to some
extent, the kind of noise that could be found in tran-
scribed voice queries too, such as those obtained
when interacting with a voice assistant. For this,
we transformed the text in lowercase and removed
punctuation marks and emoticons (with some ex-
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ceptions when the symbol was part of the named
entity’s pronunciation such as "&"). We kept con-
tent from parentheses when found at the end of a
post title, otherwise we removed it. Although very
common in automatic transcriptions, we did not
introduce any artificial noise regarding the spelling
of named entities. Still some noise was present as
Reddit authors sometimes made misspelling errors.
These steps were done automatically. We release
both the original and pre-processed data. All key-
words used in the described steps are in Appendix
A. We show multiple query examples in Table 1.

3.3 Annotation Guidelines and Procedure

We sampled multiple subsets of 600 queries each
from the cleaned and pre-processed corpus. This
number was established by estimating the required
time for the experiment to be maximum 2 hours per
annotator, based on an initial trial on 751 queries.
The annotation guidelines were also tested in the
trial experiment and refined after. The subjects
were informed that the goal was to identify names
of artists (e.g. bands, singers, composers) and ti-
tles of works of art (e.g. albums, tracks, playlists,
soundtracks) in unformatted music-related queries.
We requested the annotators not to consult the Inter-
net as we wanted them to rely on the query content
only and on their own previous knowledge.

We then introduced the labels: Artist_known,
Artist_deduced, WoA_known, WoA_deduced, and
Artist_or_WoA_deduced with examples. The last
one was for ambiguous cases of named entity typ-
ing, but allowed the annotators to segment. Seg-
mentation is still very relevant when parsing natural
language queries for music recommendation as the
type could be eventually disambiguated with the
help of a search engine, for instance. The other
labels corresponded to Artist and WoA types, com-
pleted by whether the annotator knew the entity
from before or deduced it from query’s content, as
we wanted to keep track of entity’s novelty.

Then, we introduced challenging annotation
cases with guidelines on how to proceed. We in-
structed the annotators to include Artist and WoA
named entities from other domains too such as
movies or video games, but to ignore all the other
entity types such as countries or music genres; to
consider the innermost entities in case of nested
entities; to ignore implicit entities such as "this
singer"; to always include the "’s" from the pos-
sessive case as part of the named entity; and to

consider a named entity with misspelled, translated
and transliterated words as correct. The final form
of the guidelines is shown in Appendix B.

Ten annotators (1 for the trial, and 9 for the main
study) were recruited from our organisation with
the condition to be fluent in English. Each set of
600 queries (DS1, DS2, and DS3) was given to
three annotators. The annotation campaign was
performed using Doccano (Nakayama et al., 2018).
The guidelines and the annotation tool were pre-
sented in a 30-minute workshop where annotators
could ask questions. They could consult the guide-
lines and contact the researchers if they needed any
clarification during the experiment too. After, one
week was set aside for each annotator to complete
the annotations individually.

3.4 Ground-truth MusicRecoNER Corpus

Often in related works, a ground-truth corpus is
obtained by using full agreement or majority voting
(Nangia and Bowman, 2019; Lin et al., 2020a) (e.g.
tag named entities on which at least two out of three
human annotators agreed). However, here, because
we wanted to establish a human baseline and have
a corpus exhaustively annotated, we labelled the
ground-truth corpus ourselves from scratch.

Compared to the settings of the human subject
study, we had access to the original Reddit post
titles including capitalised text and punctuation.
During the annotation, we used web and music
streaming search engines to check if certain entities
were Artist or WoA. The full Reddit post was also
used to disambiguate cases when a name could be
both an Artist or a WoA. The most challenging ex-
amples were discussed among us. The ground-truth
preparation together with the adjudication discus-
sions happened over several weeks, as the process
to disambiguate entities was more complex.

Statistics about each dataset are presented in Part
I of Table 2. Artist mentions are more common than
WoA mentions. Regardless of the type, we could
notice that a large majority of entity mentions are
unique in each dataset. The mean number of entity
mentions per query is around 2, with the maximum
varying between 6 and 10. From these, the propor-
tion of queries with no entity is on average 56%.

4 Evaluation protocol

4.1 Fine-tuned Transformer Baselines

The goals of the human subject NER study are to es-
tablish a human baseline on this challenging dataset
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Artistt Artistu WoAt WoAu %queryw/oents. ents./query Train Pre-train Human
DS1 303 289 208 202 58% 2.0 ± 1.0 15% 51% 29%
DS2 285 271 221 220 56% 1.9 ± 0.9 14% 43% 30%
DS3 299 284 229 229 57% 2.0 ± 1.1 15% 44% 24%
Trial 383 360 270 269 56% 2.0 ± 1.0 11% 47% 27%

Table 2: Part I shows the total ([Type]t) and unique ([Type]u) numbers of Artist and WoA mentions; % of queries
with no entities (%queryw/oents.); and per query mean and std. of entity mentions (ents./query). Part II shows % of
unique test entities in the train set (Train), seen during model pre-training (Pre-train) or known to humans (Human).

of noisy queries for music recommendation and to
learn from the human linguistic behavior in compar-
ison to the most common NER systems nowadays,
the fine-tuned transformers. We consider three
language models proven to have good results in
various natural language tasks including language
understanding, sequence labeling or text classifica-
tion: BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019) and MPNet (Song et al., 2020).

BERT (Devlin et al., 2019) is a multi-layer bidi-
rectional encoder based on the original Transformer
architecture (Vaswani et al., 2017). It is pre-trained
on: 1) the cloze task, i.e. to predict a masked token
from the left and right context; and 2) next sentence
prediction, i.e. to predict the next sentence from
a given one. RoBERTa (Liu et al., 2019) has the
same architecture as BERT, but incorporates multi-
ple training steps proven to lead to an increased per-
formance than the original model: the training of
the model using more data, with larger batches, on
longer sequences and for a longer time; and keep-
ing only the cloze task as a pre-training objective
while applying a dynamic masking schema to the
input training data. MPNet (Song et al., 2020) pro-
poses a new pre-training objective by integrating
the masked language modeling objective of BERT
and the permuted language modeling objective in-
troduced in XLNet (Yang et al., 2019). That is, it
models the dependency among the masked tokens
at prediction (i.e. takes into account the already pre-
dicted masked tokens to generate the current one),
while providing visibility on the position informa-
tion of the full sentence (i.e. the positions of the
masked token and the next ones to be predicted).

We fine-tune the pre-trained versions of these
models released in the huggingface transformers li-
brary (Wolf et al., 2020) for token classification / se-
quence labeling. We took the largest available ver-
sion for each of them: bert-large-uncased, roberta-
large, and mpnet-base. From all, only BERT is
pre-trained on uncased text.

During experiments, we noticed that the model
initialisation had a large impact on the results. This

instability is well-documented in the past work, es-
pecially when the corpus for fine-tuning was small
(Zhang et al., 2021). Thus, to overcome bad ini-
tialisation and have more coherent results over dif-
ferent runs, we re-initialized the last layer of each
pre-trained model. This also led to faster conver-
gence and more efficient fine-tuning. We also tried
to increase the number of the re-initialized layers to
2, but the results were similar or sometimes worse.

4.2 Evaluation Metrics and Schemes

Precision (P), recall (R) and F1 are commonly used
to evaluate automatic NER systems (Yadav and
Bethard, 2018). In our evaluation, we extend these
metrics to support a more detailed benchmark and
understanding of the kind of errors a NER sys-
tem makes. Namely, we also allow for a relaxed
system’s evaluation, when either segmentation or
typing is correct, but not necessarily both.

A NER system can produce various types of out-
comes (Chinchor and Sundheim, 1993a; Chinchor,
1991). Inspired by this and Batista (2018), all NER
outcomes, which we denote O, can be:

• Correct outcomes (Oc): predicted and ground-
truth entities match.

• Missing outcomes (Om): system entirely fails
to spot a ground-truth entity.

• Spurious outcomes (Os): false entities are pro-
duced by the system.

• Incorrect outcomes (Oi): predicted and
ground-truth entities do not match because
of either typing or segmentation errors.

To classify the predictions of a NER system in
these categories, we first need to fix an evaluation
schema. The most common one in the literature
is the Strict match (UzZaman et al., 2013; Chin-
chor, 1991) when both segmentation and typing are
correct. Under the Strict schema, a prediction is in-
correct when its boundaries were correct but not its
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Ground-truth Predicted Strict Exact Type
Artist the beatles Artist the beatles oc oc oc
Artist the beatles WoA the beatles oi oc oi
Artist the beatles Artist beatle oi oi oc
Artist the beatles WoA beatle os os os

WoA love os os os
Artist the beatles om om om

Table 3: Example of outcomes under various evaluation schemes.

type, or when its type was correct but not its bound-
aries. All other cases (e.g. partial segmentation
with incorrect type) are classified as spurious.

The Exact schema classifies a prediction as cor-
rect when its boundaries match those of the ground-
truth, regardless of its type. In contrast, the Entity
schema classifies a prediction as correct when its
type matches that of the ground-truth, regardless of
its boundaries. For these latter schemes, incorrect
is adapted from its definition in Strict; missed and
spurious are the same too.

We use another class of outcomes, partial (Op),
only when computing the human performance. As
described in Section 3.3, humans could annotate a
text as Artist_or_WoA_deduced. Thus, whenever
a human prediction had this label and matched
exactly the boundaries of the ground-truth entity,
partial was incremented and contributed to the final
scores with a factor of 0.5 (Chinchor and Sundheim,
1993b), as follows:

R = (|Oc|+ 0.5 ∗ |Op|)/(|O| − |Os|) (1)

P = (|Oc|+ 0.5 ∗ |Op|)/(|O| − |Om|) (2)

We exemplify the different outcomes under the
mentioned schemes in Table 3.

One practical detail regarding the calculation of
the evaluation metrics is that we had to apply some
segmentation corrections before, to cover the situa-
tions when human annotations started or finished
in the middle of a word. This could appear because
Doccano did not force automatically an alignment
to a desired tokenization (entire words). Thus, we
corrected the start or end index of the concerned
span by moving them to the left or right, based on
a simple heuristic with regard to the closest found
separating character (space or newline) to the con-
cerned word. We did not intervene when an entity
was composed of multiple words and only a part of
them were annotated, but we captured this type of
errors with the used evaluation schemes. No correc-
tion was needed in the case of model annotations
as, during fine-tuning, we propagated the label of

the first word token to the rest; hence, the labels
were always consistent for all word tokens.

4.3 Evaluation Scenarios

We explicitly consider the novelty of entities. In the
case of humans, this was encoded in the annotation
process as we introduced the labels suffixed with
_known. Fine-tuned models could have seen music
entities from the test set during pre-training, when
they were exposed to a large amount of unlabelled
data or during fine-tuning, if the train and test sets
had common entities. While this latter exposure
could be easily checked, the pre-training exposure
is more challenging to assess as it requires access
to the pre-training data or to find other ways to
test exposure based on the model only (Epure and
Hennequin, 2022; Tänzer et al., 2022).

The solution we adopted targeted BERT, which
performed on par with the other models as revealed
in Section 5. BERT is pre-trained on Wikipedia and
BookCorpus (Devlin et al., 2019). Thus, music en-
tities could be found more likely in the Wikipedia
content. However, some music entities could be
quite rarely mentioned in Wikipedia compared to
others. To quantify BERT’s exposure to an en-
tity e we used the following method. First, we
tried to link each entity to Wikipedia by query-
ing the Wikidata knowledge base (Vrandečić and
Krötzsch, 2014). We re-ranked the returned results
to give priority to music entities and returned the
first entity whose type was in a pre-defined type list
(see Appendix C). Second, we computed exposure
by adapting the metric proposed by Carlini et al.
(2019):

expo(e) =
{

log |S| − log rank(e) e ∈Wiki.
0 e ̸∈Wiki.

(3)
where S represents all Wikipedia named entities
and the function rank considers entity popularity
(higher the popularity, lower the rank). We retrieve
S and entity counts from Wikipedia2Vec (Yamada
et al., 2020). We manually checked the linking
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Model Artist WoA Macro
BERT 0.80 ± 0.03 0.72 ± 0.04 0.76 ± 0.03

RoBERTa 0.77 ± 0.01 0.71 ± 0.05 0.74 ± 0.03
MPNet 0.80 ± 0.03 0.72 ± 0.05 0.76 ± 0.04

Table 4: F1 scores under the strict evaluation schema.

for 300 random entities. 82% were correct, either
linked or not found on Wikipedia correctly. 14%
were linked to music-related entities but not the
right ones and the rest were errors or missed en-
tities. Examples of entities with high exposure
values are: the beatles, elvis, pink floyd, metallica,
drake, johnny cash, eminem, nirvana, and coldplay.
We could notice that all are of type Artist.

5 Results and Discussion

We report scores using 4-fold cross-validation on
the datasets presented in Table 2. Means and stan-
dard deviations (std.) are computed over different
folds, different initialisation seeds for the model,
and different human annotators. In most cases, this
was over 12 data points as, for each model, the
results were aggregated over each dataset as a test
and 3 different initialisation seeds3 and for the hu-
man evaluation, over each dataset as a test and 3
human predictors per dataset.

When comparing BERT and the other models in
Table 4, BERT and human baselines in Tables 5 and
6, and results on Seen versus Unseen entities ob-
tained either by humans or BERT in Table 7, scores
in bold are statistically larger (p-value= 0.05). We
test statistical significance with the Mann-Whitney
U Test (Wilcoxon Rank Sum Test, Mann and Whit-
ney 1947), which assesses under the null hypothe-
sis that two randomly selected observations X and
Y come from the same distribution.

5.1 Fine-tuned Transformer Baselines

Table 4 shows that the fine-tuned BERT, pre-trained
on uncased text, and MPNet yield the largest F1
scores for each entity type or overall. RoBERTa
is statistically comparable and only marginally
lower than the other models. Although MPNet
and RoBERTa share the same pre-training corpus
and the Transformer architecture, the addition of
the permuting language objective to the cloze task
gives a slight advantage to MPNet. We use BERT
for the rest of the experiments.

3All the models were trained and tested on the ground-truth
datasets, and did not consider annotator-specific sets.

Artist
Strict Exact Entity

BERT 0.80 ± 0.02 0.84 ± 0.02 0.83 ± 0.02
human 0.77 ± 0.06 0.84 ± 0.05 0.81 ± 0.05

WoA
Strict Exact Entity

BERT 0.71 ± 0.04 0.75 ± 0.04 0.78 ± 0.04
human 0.74 ± 0.07 0.79 ± 0.07 0.80 ± 0.05

Table 5: F1 scores under different evaluation schemes.

P R
Artist BERT 0.79 ± 0.02 0.82 ± 0.03

human 0.82 ± 0.04 0.73 ± 0.07
WoA BERT 0.67 ± 0.04 0.74 ± 0.05

human 0.78 ± 0.07 0.70 ± 0.08

Table 6: Precision (P) and and Recall (R) under the
strict evaluation schema.

5.2 Humans vs. Fine-tuned BERT

Table 5 shows that the performance of BERT is
comparable to that of the human baseline in terms
of F1 score. However, Table 6 shows that humans
and BERT perform differently in terms of precision
and recall. Humans have a higher precision, for
both Artist and WoA, whilst BERT has a marginal or
significantly larger recall than humans, especially
for Artist. We confirmed that this phenomenon was
not due to a particular precision / recall compro-
mise by testing various precision / recall value and
optimizing on F1. Also, BERT has a lower pre-
cision than the recall, but we see the opposite for
humans. Considering Equations 1 and 2, the model
appears to hypothesize spurious entities more often,
while humans tend to miss entities more often.

Table 5 also shows that the F1 scores under Ex-
act and Entity schemes are larger than under Strict
as some of the errors produced are because of seg-
mentation or typing. However, we can notice a
different behaviour for the two entity types for both
BERT and humans. In the case of WoA, the Entity
F1 scores are slightly larger than those obtained
under the Exact schema, showing that boundary
errors happen more frequently. On the contrary,
for Artist entities, the segmentation is more often
correct, but the typing is wrong.

5.3 Error Analysis

Figure 1, showing a detailed error analysis, con-
firms that indeed BERT has more often spurious
outcomes than humans, for both entity types. Also,
humans miss to annotate ground-truth entities more
often than BERT. We can equally observe that
BERT is highly superior in identifying correct
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Figure 1: Normalized correct, incorrect, missed and spurious outcomes per entity type under strict.

named entities. Previous works on NER (Lin et al.,
2020a; Epure and Hennequin, 2022) have discussed
that a system should learn to exploit the context
(i.e. the non-entity words) rather than entity memo-
risation to generalise. However, the high number
of correctly recognised entities as well as the fre-
quent spurious entities suggest that this may not
be the case here; and BERT’s behaviour may be
linked to entity exposure. As shown at the end of
Section 4.3, the entities with the highest exposure
score were of type Artist. We could see in Figure 1
that there are a lot more correct Artist entities, and
the number of missed and spurious outcomes for
Artist is lower, which seems to be aligned with our
hypothesis related to entity exposure.

5.4 Impact of Entity Exposure

In Table 2, Part II, we show the percentage of en-
tities known by at least one annotator among the
three in each dataset. This varies between 24%
and 30%. In practice, each annotator has known at
most this number of entities, which confirms that
most entities from the collected corpus were new
to our subjects. The entity exposure is much larger
for BERT. While the train and test sets share only
maximum 15% of the entities, BERT has seen up
to a half of corpus’ entities during pre-training.

To check the model’s performance on seen ver-
sus unseen entities, we show Recall scores for these
groups in Table 7. Seen entities are those present in
the train set or with expo(e) > 1. Unseen entities
have expo(e) = 0 and are not known to humans.
The rest of the entities are discarded from the evalu-
ation. BERT’s recall on Seen is much larger than on
Unseen, which confirms our hypothesis that mem-
orisation plays a role. However, the model seems
to rely significantly on context too given that the
results on Unseen are still quite high.

We also report the results of humans in Table
7 and see a similar pattern. Although the split is
made considering the model’s exposure, humans
are also very likely to know entities from Seen.
The lower humans’ scores on Unseen show that the
recognition of these entities is quite challenging,
possibly because of insufficient context. For ex-
ample, "songs bands similar to sales getting it on
off and on and porches mood" contains an enumer-
ation that is difficult to segment and type (Artist:
"sales", "porches"; WoA: "getting it on", "off and
on", "mood"). Also, entity typing is ambiguous
in "anything similar to some people say" (WoA).
For these imperfectly recognised entities, includ-
ing external resources such as gazetteers or search
engines might be an option to explore.

6 Conclusion

In this work, we investigated the human linguis-
tic behavior when performing NER in the music
domain. We created MusicRecoNER, a new cor-
pus of complex noisy queries for recommenda-
tions annotated with Artist and WoA entities. We
then designed and conducted a human subject re-
search study to establish a human baseline and
learn from its comparison with the most popular
systems nowadays, fine-tuned transformers. We
performed a thorough evaluation covering multiple
metrics, schemes and scenarios, including a careful
analysis of the impact of entity exposure on results.

The results obtained by the algorithmic base-
lines were comparable to the human ones. Yet, the
detailed evaluation showed that humans yielded a
better precision while the model had a better recall,
linked also to entity exposure during pre-training
and fine-tuning. Thus, when evaluating fine-tuned
pre-trained models, checking their performance on
new entities shows their real generalisation ability.
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Artist WoA
Seen Unseen Seen Unseen

BERT 0.86 ± 0.03 0.74 ± 0.05 0.81 ± 0.05 0.69 ± 0.06
human 0.77 ± 0.07 0.63 ± 0.08 0.74 ± 0.08 0.66 ± 0.09

Table 7: Recall scores under the strict evaluation schema on Seen and Unseen.

Regarding the NER evaluation protocol, human
performances were much better under a more re-
laxed schema focused on segmentation or typing
only. Such a schema could prove a more realistic
setup to aim to when training models too. Also, we
noticed that the relevant schema depended on the
entity type as Artist was better segmented, while
WoA better typed.

Contrary to previous claims, we show that, in
our domain, NER in challenging conditions such as
noisy text, and irregular or novel entities is rather
hard for humans even when provided with complex
instructions and multiple examples. Thus, although
we could learn from the human linguistic behaviour,
we should not, by default, assume their results to
be a target for any NLP problem. For some tasks, it
is common when establishing a human baseline to
consider it as an upper bound for the model. This
is not necessarily a desirable outcome in our case
as it would imply mislabelling 1/3 WoA entities.
More generally, as we also showed by studying
the impact of entity exposure, algorithms can store
a lot more knowledge than humans and one may
want to leverage this as much as possible.

As for proposing a better system to perform mu-
sic NER, one next step would be to continue the
model’s pre-training on more related data, in our
case music, to get even more exposure, or to inte-
grate gazetteers. Still, given the rate of new enti-
ties in our domain, forcing the model to rely more
on context, when context is not confusing, is an-
other desirable future direction. In case of context
ambiguity, asking questions to clarify the request
and supporting user interaction in natural language
could be ultimately the answer towards a more suit-
able, but still very challenging solution. We plan to
explore these ideas as future work.

7 Limitations

We further discuss the limitations of our work. The
corpus of noisy complex queries in natural lan-
guage we use in the human subject study and we
release is built based on a single source, Reddit.
The demographics of the users using Reddit are rel-
atively narrow, with a majority being male, young,

and educated4. Moreover, users seeking music rec-
ommendations on this type of forums may be rather
"music enthusiasts" and may not represent regular
music listeners. The implications are that the lan-
guage employed in these queries could be specific
to this category of population. Also, the mentioned
entities could reflect the music taste of this type
of profiles only. This latter implication turned to
be an advantage for us as we ended up with many
novel entities, unknown by the annotators who par-
ticipated in the study. As for the first implication,
we manually checked the queries, and found them
quite diverse, not necessarily using a specific vo-
cabulary but more general language expressions.
An alternative to creating such a corpus could have
been a Wizard of Oz experimental setup (Green
and Wei-Haas, 1985). However, this would require
significantly more costs and would highly depend
on the type of profiles interested in participating in
such a music discovery experiment.

Second, we pre-processed the corpus in order
to simulate written or transcribed speech-based
human-computer interactions. However, the steps
we took may be largely insufficient to simulate the
kind of noise found in transcriptions. As we also
discussed in Section 3.2, we did not inject any arti-
ficial noise for named entities, while spelling errors
when automatically transcribing them are a com-
mon problem. Another limitation regarding named
entities is the computation of the model’s exposure
by leveraging Wikipedia. Our linking was quite
rudimentary and imperfect, as we reported in Sec-
tion 4.3. Moreover, for retrieving entity ranks, we
used Wikipedia2Vec (Yamada et al., 2020), which
is built on a slightly older Wikipedia version than
the one BERT was trained on. Therefore, the re-
sults obtained by the model on the Unseen dataset
may be slightly larger, as the model could have
been exposed to some of these entities. However,
our goal was to prove a phenomenon—the impact
of named entity exposure on the results, even if this
impact may be marginally underestimated.

Finally, the annotators recruited from our organ-

4https://foundationinc.co/lab/
reddit-statistics/
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isation have similar age and demographics. Also
they likely have a richer musical background com-
pared to regular human subjects. This signifies that,
in reality, the number of novel entities could be
higher, which could also impact the overall results
obtained with the human baseline. Nevertheless,
this hypothesis could be tested only by running
subsequent studies including more subjects.

8 Ethical Considerations

We have provided most of the details about data
collection, data cleaning and pre-processing, and
the annotation procedure and guidelines in Sec-
tion 3 and Appendices. We discuss further various
ethics-related aspects not covered yet in the paper.

The dataset was gathered from the music sugges-
tion subreddit via the Reddit API. According to the
privacy policy of Reddit5, third parties can freely
access public content via the API. We have not
gathered any other information besides the public
posts—their titles and descriptions.

As previously mentioned, the annotators were
recruited from our organisation. They performed
the annotation tasks during their regular paid hours.
Moreover, the participation was fully on voluntarily
basis, following a public call for participation by
the authors within the organisation.
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Spotify Playlist Radio
Check out Skunk YouTube

http Buy Enjoy
Compiled Zoom Download

Event Promotion Quarantine
Weekly Someone Anybody

Instagram iTunes Playlist
[ { /r/

Hour Release Stream
Official Video Anyone
Guys S**t F**k

Reddit Apple Link
Post Soundcloud Radio

Made Our Thanks
Hi Hello Mix

Listen Cover My
If You Inside

Tell me Check Example
Text

Table 8: Keywords used for manually filtering out Red-
dit posts in the data pre-processing step.

A Data Filtering Keywords

The list of keywords used in the data cleaning
and pre-processing steps are presented in Table
8. These keywords were used to filter out posts,
which were manually verified after. The outcome
of the verification was either to exclude these posts
from the data, or to keep the posts as they were or
after having removed specific words (as described
in Section 3.2). We have considered both lower
and upper case variations of each keyword.

B Annotation Guidelines

B.1 Introduction

The goal of this annotation experiment is to identify
names of artists (e.g. bands, singers, composers)
and names of works of art (e.g. albums, tracks,
playlists, soundtracks, movies, video games) in
music-related requests. The requests could be
single- or multi-line. Also, they are unformatted,
meaning that they contain no capitalized letters
or punctuation marks. Also contractions such as
"Artist’s first album", "don’t" are written as if
pronounced, specifically "artists first album" and
"dont".

Through this experiment, we study how well hu-
mans can identify named entities (artists and works
of art) in unformatted text by relying on the request
content only, and on one’s own knowledge. For
this reason, it is important that during annotation
you do not consult the Internet to verify if some
parts of text are named entities, but rely on your
intuition after reading the text.

B.2 Named Entity Categories

There are two categories referring to the entity type
Artist; two categories referring to the entity type
Work of Art (WoA); and one category for dealing
with ambiguous cases as follows:

1. Artist_known. This category should be used
for sequences of words denoting an artist that is
previously known to the annotator.

In the next request I recognize "queen" and "the
clash" to be Artist entities because I knew them
from the past: i like queen and the clash what else
should i listen to.
Note that when "the" is part of the name (e.g. "the
clash"), it should be annotated likewise.

2. Artist_deduced This category should be used
for sequences of words denoting an artist that is not
known to the annotator, but deduced from the text.

In the next request I recognize "stephan forté"
to be an Artist: looking for something like the first
album of stephan forté.
I have never heard of this artist before, but I de-
duced it from the request’s content.

3. WoA_known This category should be used
for sequences of words denoting a work of art that
is previously known to the annotator.

In the next request I recognize "karma police" to
be a WoA because I knew it before: im a very picky
music listener but i love karma police any other
suggestions.

4. WoA_deduced This category should be used
for sequences of words denoting a work of art that
is not known to the annotator, but deduced from
text.

In the next request I recognize "special affair" to
be a WoA: songs like special affair.
I have never heard of this work of art before, but I
deduced it from the request’s content.

5. Artist_or_WoA_deduced This category is
used for sequences of words recognised to denote
an artist or a work of art, but choosing between the
two entity types is challenging.

In the next request I recognize "superunloader"
to be either an Artist or a WoA: music like superun-
loader
I have never heard of this before and it is difficult
for me to distinguish between the two options.
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B.3 (Challenging) Examples

Please read the following examples carefully and
re-consult them during the experiment whenever
needed.

Relevant named entities not related to music.
A text could contain other types of works of art
such as movies or video games. Annotate these
names using the category WoA. Similarly, annotate
with the Artist category movie directors, filmmak-
ers, music composers and so on. All the other types
of named entities not related to Artist and WoA must
be ignored (e.g. names of countries, music genres
etc.).

In the example below, "gemini" is annotated as
WoA and "ang lee" as Artist: i recently watched
this film gemini made by ang lee and liked the
soundtrack any similar recommendations of this.

Multiple named entities clearly delimited. A
text could contain multiple entities which are
clearly delimited by other words such as "by",
"from", "and" etc. Please annotate all of them indi-
vidually.

In the example below, "heartbeat" is a WoA and
"annie" is an Artist: songs with similar vibe and
structure as heartbeat by annie.

In the example below, "hallelujah" is a WoA and
"jeff buckley" is Artist: other beautiful songs by
jeff buckley apart from hallelujah.

Multiple named entities with no delimitation.
A text could contain multiple entities which are not
clearly delimited. Try to annotate each segment
of text individually with its corresponding named
entity category.

In the example below, if the annotator recognizes
the entities, then 3 separate Artist entities should
be selected, namely "imagine dragons", "bastille",
and "daya": singers bands like imagine dragons
bastille and daya.

However, if not all entities are known from
the past, then the unknown span of text could
be annotated either as Artist_or_WoA_deduced,
Artist_deduced or WoA_deduced depending on the
content and the annotator’s intuition. For instance,
if the annotator recognizes only "imagine dragons"
but not the rest, then "bastille and daya" could be
considered either 1 entity ("bastille and daya") or 2
entities ("bastille", "daya") and further annotated
with any of the 3 categories mentioned above.

Named entities collated with ’s from the posses-
sive case. In this case, include the "s" as part of
the named entity.

In the example below, "toni braxton" is the real
name of the artist, but "toni braxtons" (coming from
"toni braxton’s") is actually annotated as an Artist
entity: newer 2005+ ballads in the style of toni
braxtons un break my heart and stevie wonders
all in love is fair. Similarly for "stevie wonders"
(coming from "stevie wonder’s").

Nested named entities. A text could contain
nested entities. This means that there is a larger
text segment that could be considered as an entity
and a smaller text segment inside the larger one
that could be also considered as an entity.

In this case, always favor the innermost text seg-
ment with an exception which is described below.
Multiple examples are given further.

In the example below, "treasure planet" is anno-
tated as WoA and not "treasure planet soundtrack"
(which is also a WoA, but the innermost one is cho-
sen): looking for calm violin music very similar
to the first 34 seconds of 12 years later from the
treasure planet soundtrack.

In the example below, "ezra collective" and "ty"
are annotated as 2 separate Artist entities and not as
one: "ezra collective feat ty": recommend me some
good jazz hip hop songs with rap like chapter 7 by
ezra collective feat ty. There is also a third entity,
"chapter 7", annotated as WoA):

In the example below, although "i took a pill in
ibiza seeb remix" could be considered as a WoA, the
innermost entities are annotated instead, namely "i
took a pill in ibiza" as WoA and "seeb" as Artist:
songs similar to i took a pill in ibiza seeb remix.

Exception: if the name of a well-known band
that you recognize is composed of 2 or more indi-
vidual artist names, then annotate the band name
using the category Artist_known. In the exam-
ple below, I recognized that "emerson lake and
palmer" is the name of a band despite the fact that it
refers to three individual artists ("emerson", "lake",
"palmer"): other artists similar to emerson lake
and palmer.

Explicit versus implicit named entities. There
are cases when an Artist or a WoA are mentioned
in text, but these entities are not explicitly named.
For instance, neither "the last album", nor "this
singer" are explicit named entities in the request
below; hence they must not be annotated: show me
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something similar to the last album of this singer.

(Incorrect) Variations of the original named en-
tities. The text may contain variations of the orig-
inal names of the entities (including misspelled,
missing, translated or transliterated words). Nor-
mally, in order to recognize an incorrectly written
named entity, the named entity must be already
known to the annotator. In these cases, even if the
named entity does not match exactly the real name,
the annotator is required to annotate the correspond-
ing span of text using the named entity categories
ending with the "_known" suffix.

In the example below, the annotator recognizes
"hey ponchuto" to be mistakenly written: fast
dancey blues or songs like hey ponchuto from the
mask. The original named entity which the anno-
tator knows from the past is "hey pachuco". Thus,
"hey ponchuto" is annotated as WoA_known. Note
that "the mask" is a WoA too (a movie).

C Pre-defined Entity Types for Wikidata
Linking

In order to ensure that the entity linking gives pri-
ority to music-related entities, we re-rank the re-
turned results. Specifically, we return the first entity
whose type matches any of the criteria below:

• Artist: type matches exactly one of the fol-
lowing types—musical group, rock group, su-
pergroup, musical ensemble, girl group, or it
contains one of the following strings—band,
duo, musician, singer.

WoA: type matches exactly one of the follow-
ing types—album, musical work/composition,
song, single, extended play, or it contains one
of the following strings—album, song.

If the previous matching fails, the fallback is
the first entity of type human for an Artist entity,
or of type video or film for a WoA entity. If none
of these type criteria is met, then an empty string,
corresponding to failed linking is returned.

D Computational Information

For training and evaluation, we had a 32-core In-
tel Xeon Gold 6134 CPU @ 3.20GHz CPU with
128GB RAM, equipped with 4 GTX 1080 GPUs,
each with 11GB RAM. Fine-tuning a single model
on three datasets from the four we annotated during
3 epochs and testing it on the hold-out dataset on a
single GPU took about 2 minutes.
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Abstract

Local models have recently attained astound-
ing performances in Entity Disambiguation
(ED), with generative and extractive formu-
lations being the most promising research di-
rections. However, previous works have so
far limited their studies to using, as the tex-
tual representation of each candidate, only its
Wikipedia title. Although certainly effective,
this strategy presents a few critical issues, es-
pecially when titles are not sufficiently infor-
mative or distinguishable from one another. In
this paper, we address this limitation and in-
vestigate the extent to which more expressive
textual representations can mitigate it. We eval-
uate our approach thoroughly against standard
benchmarks in ED and find extractive formu-
lations to be particularly well-suited to such
representations. We report a new state of the
art on 2 out of the 6 benchmarks we consider
and strongly improve the generalization capa-
bility over unseen patterns. We release our
code, data and model checkpoints at https:
//github.com/SapienzaNLP/extend.

1 Introduction

Being able to pair a mention in a given text with its
correct entity out of a set of candidates is a crucial
problem in Natural Language Processing (NLP),
referred to as Entity Disambiguation (Bunescu and
Paşca, 2006, ED). Indeed, since ED enables the
identification of the actors involved in human lan-
guage, it is often considered a necessary building
block for a wide range of downstream applications,
including Information Extraction (Ji and Grishman,
2011; Guo et al., 2013; Fatahi Bayat et al., 2022),
Question Answering (Yin et al., 2016) and Seman-
tic Parsing (Bevilacqua et al., 2021; Procopio et al.,
2021). ED generally occurs as the last step in
an Entity Linking pipeline (Broscheit, 2019), pre-
ceded by Mention Detection and Candidate Gen-

∗∗ Work carried out while at the Sapienza University of
Rome.

eration, and its approaches have traditionally been
divided into two groups, depending on whether
co-occurring mentions are disambiguated indepen-
dently (local methods; Shahbazi et al. (2019); Wu
et al. (2020); Tedeschi et al. (2021)), or not (global
methods; Hoffart et al. (2011); Moro et al. (2014);
Yamada et al. (2016); Yang et al. (2018)).

Despite the limiting operational hypothesis of in-
dependence between co-occurring mentions, local
methods have nowadays achieved performances
that are either on par or above those attained by
their global counterparts, mainly thanks to the ad-
vent of large pre-trained language models. In par-
ticular, among these methods, generative (De Cao
et al., 2021) and extractive (Barba et al., 2022)
formulations are arguably the most promising di-
rections, having resulted in large performance im-
provements across multiple benchmarks. Regard-
less of their modeling differences, the key idea
behind these methods is to part away from the pre-
vious classification-based approaches and, instead,
adopt formulations that better leverage the origi-
nal pre-training of the underlying language models.
On the one hand, generative formulations tackle
ED as a text generation problem and train neural
architectures to generate auto-regressively, given
a mention and its context, a textual representation
of the correct entity. On the other hand, extrac-
tive approaches frame ED as extractive question
answering: they first concatenate a textual repre-
sentation of each entity candidate to the original
input and then train a model to extract the span
corresponding to the correct entity.

Although they have admittedly attained great im-
provements, both in- and out-of-domain, to the best
of our knowledge, previous works on both these
formulations have limited their studies to a sin-
gle type of textual representation for entities, that
is, their title in Wikipedia. This strategy, however,
presents a number of issues (Barba et al., 2022) and,
in particular, often results in representations that
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are either insufficiently informative, or are even
virtually indistinguishable from one another. In
contrast to this trend, we address this limitation
and explore the effect of more expressive textual
representations on state-of-the-art local methods.
To this end, we propose complementing Wikipedia
titles with their description in Wikidata, such that,
for instance, the candidates for Ronaldo in Ronaldo
scored two goals for Portugal would be Cristiano
Ronaldo: Portuguese association football player
and Ronaldo: Brazilian association football player,
rather than the less informative Cristiano Ronaldo
and Ronaldo, respectively. We test our novel rep-
resentations on generative and extractive formula-
tions, and evaluate against standard benchmarks in
ED, both in and out of domain, reporting statisti-
cally significant improvements for the latter group.

2 Method

We now formally introduce ED and the textual
representation strategy we put forward. Then, we
describe the two formulations with which we im-
plement and test our proposal.

ED with Entity Definitions. Given a mention m
occurring in a context cm, Entity Disambiguation
is formally defined as the task of identifying, out
of a set of candidates e1, . . . , en, the correct entity
e∗ that m refers to. Each candidate e typically cor-
responds to a page in Wikipedia, and, in generative
and extractive formulations, is additionally associ-
ated with a textual representation ê describing its
meaning. Whereas previous works have considered
the title that e has in Wikipedia as ê (e.g. Cristiano
Ronaldo), here we focus on more expressive al-
ternatives and leverage Wikidata to achieve this
objective. Specifically, we first retrieve the Wiki-
data description of e (e.g. Portuguese association
football player). Then, we define as the new rep-
resentation of e the colon-separated concatenation
of its Wikipedia title and its Wikidata description
(e.g., Cristiano Ronaldo: Portuguese association
football player).

Generative Modeling. In our first formulation,
we follow De Cao et al. (2021) and frame ED as a
text generation problem. Starting from a mention
m and its context cm, we first wrap the span corre-
sponding to m in cm between two special symbols,
namely <s> and </s>; we denote this modified
sequence by c̃m. Then, we train a sequence-to-
sequence model to generate the textual represen-

tation ê∗ of the correct entity e∗ by learning the
following probability:

p(ê∗|c̃m) =
|ê∗|∏

j=1

p(ê∗(j)|ê∗(0:j−1), c̃m)

where ê∗(j) denotes the j-th token of ê∗ and ê∗(0) is
a special start symbol. The purpose of <s> and
</s> is to signal to the model that m is the men-
tion we are interested in disambiguating. As in
the reference work, we use BART (Lewis et al.,
2020) as our sequence-to-sequence architecture for
our experiments and, most importantly, adopt con-
strained decoding on the candidate set at inference
time. Indeed, applying standard decoding methods
such as beam search might result in outputs that
do not match any of the original candidates; thus,
to obtain only valid sequences, at each generation
step we constrain the set of tokens that can be gen-
erated according to a prefix tree (Cormen et al.,
2009) built over the candidate set.

Extractive Modeling. Additionally, we also con-
sider the formulation recently presented by Barba
et al. (2022) that frames ED as extractive question
answering. Here, c̃m, defined in the same way as
it was for Generative Modeling, above, represents
the query, whereas the context is built by concate-
nating the textual representations ê1, . . . , ên of the
candidates e1, . . . , en. A model is then trained to
extract the text span that corresponds to e∗. Follow-
ing the same efficiency reasoning of the authors,
we use as our underlying model the Longformer
(Beltagy et al., 2020), whose linear attention bet-
ter scales to this type of long-input formulations.
Compared to the above generative method, the ben-
efits of this approach lie in i) dropping the need
for a potentially slow auto-regressive decoding pro-
cess, and ii) enabling full joint contextualization
both between context and candidates, and across
candidates themselves.

3 Experiments and Results

In order to assess the impact of our proposal in ED,
we evaluate how the performances of generative
and extractive formulations change when moving
from Wikipedia titles to our alternative. To this
end, in this Section, we first describe our experi-
mental setting, discussing the datasets, evaluation
strategy and comparison systems we adopt. Then,
we describe the architecture we use for the two
formulations. Finally, we present our findings.
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Dataset Instances Candidates Failures
A

ID
A Train 18,448 905,916 / 79,561 5038 / 682

Validation 4791 236,193 / 43,339 1360 / 296

Test 4485 231,595 / 46,660 1395 / 323

O
O

D

MSNBC 656 17,895 / 8336 149 / 72

AQUAINT 727 23,917 / 16,948 142 / 121

ACE2004 257 12,292 / 8045 66 / 50

CWEB 11,154 462,423 / 119,781 3642 / 1265

WIKI 6821 222,870 / 105,440 1216 / 719

Table 1: Number of instances, candidates and failures
to map a Wikipedia title to its Wikidata definition in the
AIDA-CoNLL (top) and out-of-domain (OOD, bottom)
datasets. For candidates and failures, we report both
their total (base) and unique (exponent) number.

3.1 Experimental Setup
Data. We follow the same experimental setting
described by De Cao et al. (2021) and use the stan-
dard AIDA-CoNLL splits (Hoffart et al., 2011) for
training, model selection and in-domain evaluation
(AIDA); similarly, we leverage their cleaned ver-
sion of MSNBC, AQUAINT, ACE2004, WNED-
CWEB (CWEB) and WNED-WIKI (WIKI) (Guo
and Barbosa, 2018; Evgeniy et al., 2013) for out-
of-domain evaluation and use their same candidate
sets, which were originally presented by Le and
Titov (2018).1 We match each entity candidate
with its item in Wikidata2 to retrieve the corre-
sponding description. Due to inconsistencies in the
datasets and different dump versions, this mapping
is not always possible, and, in these cases, we fall
back to employing their Wikipedia title alone. We
report in Table 1 the number of instances, candi-
dates and mapping failures in each dataset under
consideration.

Evaluation. Following previous literature in ED,
we compute scores over the test sets in terms of
inKB Micro F1. Furthermore, for each system we
consider, we calculate the macro average of its per-
formances both over all the test sets (Avg) and over
the five out-of-domain datasets only (AvgOOD).

Comparison Systems. We consider the original
models presented by De Cao et al. (2021, GENRE)
and Barba et al. (2022, ExtEnD), trained on AIDA-
CoNLL with Wikipedia titles, as our main nat-
ural comparison systems; in particular, for Ex-

1These candidate sets were generated through count statis-
tics from Wikipedia, YAGO and a large Web corpus.

2We took the latest dump (June 13th, 2022) at the
moment of writing from the official Wikidata website:
https://dumps.wikimedia.org/wikidatawiki/entities/

tEnD, we evaluate against both its Longformer
base (ExtEnDbase) and large (ExtEnDlarge) alterna-
tives. Furthermore, to better contextualize the per-
formances we attain within the current landscape of
ED, we also include three state-of-the-art systems,
namely, the global model of Yang et al. (2018),
and the variants of De Cao et al. (2021) and Barba
et al. (2022), both pre-trained on BLINK (Wu et al.,
2020) before fine-tuning on AIDA-CoNLL. How-
ever, we note that, differently from our work, these
three systems use additional training data (9M sam-
ples) from Wikipedia, whereas, due to computa-
tional constraints, we limit our experiments to the
sole usage of AIDA-CoNLL (< 20K samples).

3.2 Architectures

For both our formulations, we closely follow the
corresponding reference architectures. For the gen-
erative method, we use BART (406M parameters)
as our underlying sequence-to-sequence model and
fine-tune it on AIDA-CoNLL using a 10,000 to-
ken batch size, Adam (Kingma and Ba, 2015) as
our optimizer and 10−5 learning rate, with 500
warm-up steps and linear decay. For the extractive
method, we test and evaluate our approach on both
the base (139M parameters) and large (435M pa-
rameters) versions of ExtEnD presented in the refer-
ence work, using Rectified Adam as our optimizer,
with 10−5 learning rate, and training with a batch
size of 8000 tokens. All the trainings are done for
a single run on GeForce RTX 3090 graphic card
with 24 gigabytes of VRAM. Henceforth, we refer
to these systems as GENREdef , ExtEnDdef

base and
ExtEnDdef

large, respectively.

3.3 Results

In Table 2 we show the inKB Micro F1 score that
our models and their comparison systems achieve
on the datasets under consideration. As a first
note, we point out that, for easier comparability
between our experiments, we reproduce the orig-
inal AIDA-CoNLL models of both De Cao et al.
(2021) and Barba et al. (2022). While we attain
comparable performances for the latter, and hence
omit it, we find that our own implementation of
GENRE, which we denote in Table 2 by GENRE†,
obtains better results than its reference, especially
out of domain, with an average improvement of
more than 2 points.

Moving to GENREdef , its behavior is definitely
below its counterpart with Wikipedia titles (i.e.,
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In-domain Out-of-domain Avgs

Model AIDAdev AIDAtest MSNBC AQUAINT ACE2004 CWEB WIKI Avg AvgOOD

A
ID

A
+ Yang et al. (2018) - 95.9 92.6 89.9 88.5 81.8 79.2 88.0 86.4

GENRE - 93.3 94.3 89.9 90.1 77.3 87.4 88.8 87.8
ExtEnDlarge - 92.6 94.7 91.6 91.8 77.7 88.8 89.5 88.9

A
ID

A

GENRE - 88.6 88.1 77.1 82.3 71.9 71.7 79.5 78.2
ExtEnDbase - 87.9 92.6 84.5 89.8 74.8 74.9 84.1 83.3
ExtEnDlarge - 90.0 94.5 87.9 88.9 76.6 76.7 85.8 84.9

GENRE† 94.8 90.7 91.3 76.9 87.3 73.9 73.7 82.3 80.6
GENREdef 93.2 84.4 83.1 59.6 81.3 64.0 63.4 72.6 70.3
ExtEnDdef

base 93.9 89.1 93.5 84.9 87.7 74.9 74.5 84.1 83.1
ExtEnDdef

large 94.9 92.4 93.2 87.0 87.7 76.4 78.3 85.8 84.5

Table 2: inKB Micro F1 scores over the AIDA-CoNLL validation and test splits, and the out-of-domain datasets
when training on AIDA-CoNLL (bottom), or on additional resources as well (top). The best score in each section is
marked in bold and, in the bottom part, if its difference from its best alternative is statistically significant (p < 0.01
according to the McNemar’s test (Dietterich, 1998)), we also underline it.

Model MFC LFC UE UEM UM

A
ID

A ExtEnDlarge 98.3 81.6 80.9 80.9 89.0
ExtEnDdef

large 98.3 81.0 86.9 86.5 92.9

O
O

D ExtEnDlarge 97.2 82.2 73.8 74.4 77.2
ExtEnDdef

large 96.5 81.5 74.5 75.0 77.7

Table 3: Fine-grained results analysis over the AIDA-
CoNLL (top) and out-of-domain (bottom) datasets. Left
to right, columns are Most Frequent Class (MFC), Less
Frequent Class (LFC), Unseen Entity (UE), Unseen
Entity-Mention pair (UEM) and Unseen Mention (UM).
Bold and underline have the same meaning as in Ta-
ble 2.

GENRE and GENRE†), with a drop of roughly 10
points on average. To better understand this issue,
we analyzed its predictions over the validation set,
but did not identify any significant error pattern. In
particular, we investigated whether GENREdef pre-
sented length biases or was excessively skewed to-
wards the most frequent entities and, consequently,
less apt to scale over less frequent entities or un-
seen mentions. Interestingly, we did not find either
of these to be the case, with the two systems hav-
ing similar error distributions. We believe instead
that the drop might be happening as the formula-
tion behind GENREdef requires modeling a much
more complex output space and more data could
be needed to scale properly.

Considering, instead, extractive formulations,
we find the role of definitions to be definitely more
impactful. ExtEnDdef

base surpasses ExtEnDbase on
3 out of 5 out-of-domain benchmarks and on the

standard test set, here by more than 1 point. How-
ever, arguably our most interesting finding is the
behavior of ExtEnDdef

large. This system attains large
statistically significant improvements on AIDAtest

(+2.4) and WIKI (+1.5) and comparable perfor-
mances on CWEB.

Yet, when considering Avg and AvgOOD,
ExtEnDdef

large appears to behave worse than its title-
only alternative, with identical Avg and inferior
AvgOOD performances. We argue that this is an
unfortunate limitation of these two metrics, inher-
ent to their nature of macro averages, and that
statistical testing depicts a more complete land-
scape. On the one hand, MSNBC, AQUAINT
and ACE2004 are all very small datasets (Table 1)
where the apparently large performance drop be-
tween ExtEnDdef

large and ExtEnDlarge is not statisti-
cally significant but rather caused by a few different
classifications; to put things into perspective, on
ACE2004, despite the 1.2 difference in F1 score,
the predictions of the two systems differ for a total
of only 8 samples, with 5 and 2 being the number
of these that only ExtEnDlarge and ExtEnDdef

large

get right, respectively. On the other hand, on the
three remaining datasets – which are far larger –
ExtEnDdef

large either reports a statistically significant
improvement (AIDAtest and WIKI) or performs on
par (CWEB), highlighting the benefits of our more
expressive textual representations.

Finally, to further examine the impact of our
proposal, we investigate the effectiveness of
ExtEnDdef

large over different classes of mention and
label frequency, both in domain, i.e., over the test
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set in AIDA-CoNLL, and out of domain, i.e., over
the concatenation of the five datasets, and com-
pare it with ExtEnDlarge (Table 3). Specifically,
we consider instances:

• tagged with their most frequent entity in the
training set (MFC);

• tagged with a less frequent entity (LFC);

• tagged with an unseen entity (UE);

• whose (mention, entity) pair does not appear
in the training set (UEM);

• whose mention does not appear in the training
set (UM).

Overall, apart from the MFC and LFC classes,
where the difference is not statistically significant,
ExtEnDdef

large fares better in all other settings, which
all require scaling over unseen patterns. Most no-
tably, it yields +6.0 (AIDA) and +0.7 (OOD) im-
provements, both statistically significant, on un-
seen entities. This further underlines the better gen-
eralization capability granted by the use of more
expressive textual representations.

4 Qualitative Analysis

We report in Table 4 a selection of examples from
the WIKI dataset, showing candidates with both
their title-only textual representations and those
produced by our proposal. What we can see is that
using the sole titles can result in imposing strong as-
sumptions on what knowledge was captured by the
model under consideration during its pre-training
stage. For instance, in the first example in Table 4,
the model needs to know, beforehand, that Leed
Rhinos is an English rugby league football club.
Moreover, relying only on titles can also result in
underspecified queries. In the second example, if
we were to look only at the titles provided for the
two candidates, both alternatives would arguably
be equally correct. A similar issue holds for the
third example: although it may appear that the sys-
tem could guess that the most likely candidate is
the first one, as the second alternative is explicitly
stated to be in Massachusetts, this strategy does
not hold when considering the actual full list of
candidates, which is not reported in Table 4 due
to space constraints. While the model might be
able to correctly predict these instances thanks to
spurious correlations in the training set (e.g., the

Sentence: Hugh Waddell is a Scottish [...] professional
rugby league footballer [...] has played [...] at club
level for [...] Leeds [...]
Previous Candidates:

✘ Leeds
✓ Leeds Rhinos

New Candidates:
✘ Leeds: city in West Yorkshire, England
✓ Leeds Rhinos: English rugby league football club

Sentence: World Without Superman is a Superman
comic book story arc published by DC Comics.
Previous Candidates:

✓ Superman
✘ Superman (comic book)

New Candidates:
✓ Superman: superhero appearing in DC Comics
✘ Superman: comic book series featuring Superman

Sentence: Frank Mortimer born [...] in Wakefield was
an English professional rugby league footballer [...]
Previous Candidates:

✓ Wakefield
✘ Wakefield, Massachusetts

New Candidates:
✓ Wakefield: city in West Yorkshire, England
✘ Wakefield, Massachusetts: town in Massachusetts

Table 4: Extracts from the WIKI dataset, showing can-
didates with both the textual representations relying
only on Wikipedia titles (Previous candidates), and
our description-enhanced proposal (New Candidates).
Due to space limitations, out of the 100 candidates all
these three examples have, we only report the first two,
which always include the correct one (denoted by ✓, as
opposed to the incorrect alternative marked by ✘).

entity Superman being always linked to the super-
hero meaning, while Superman (comic book) to
the meaning of comic book series), Table 3 clearly
shows that this strategy does not scale.

5 Conclusion

In this work, we focus on a shortcoming of gener-
ative and extractive formulations in Entity Disam-
biguation, namely their usage of Wikipedia titles,
which are often insufficiently informative, and ex-
plore the effect of more expressive representations
on these formulations. While we do not witness
positive gains for generative formulations, at least
in the limited data and computational regime we
consider, we report strong improvements on ex-
tractive formulations. Specifically, our extractive
approach sets a new state of the art on 2 out of
the 6 benchmarks under consideration, and, more
interestingly, shows better scalability over unseen
patterns, especially unseen entities.
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Limitations

We believe that our work has four major limitations.
First, both the generative and extractive formula-
tions that we consider lack parallelism, as they
disambiguate each mention in the input text one at
a time. While batching can definitely help, it poses
additional computational requirements and, what
is more, the same (but for the position of the <s>
and </s> special symbols) input text would still
need to be encoded multiple times. Second, our
representation strategy requires the availability of
descriptions in the target language in Wikidata (or
some other knowledge base with a mapping from
Wikipedia titles). While this data is readily avail-
able for English, this might not be the case for sev-
eral other mid-to-low-resource languages. Third,
both our formulations are local and, granted that
pre-trained language models have certainly bridged
the gap with global alternatives, their underlying
independence assumption is still limiting. Finally,
our proposal does incur an increased computational
cost, with the textual representations getting con-
siderably longer: while using Wikipedia titles re-
sults in sequences with an average subword length
over AIDA-CoNLL of 7 and a 99th percentile of
14, adding descriptions nearly doubles the average,
reaching 12.5, and makes the 99th percentile hit
29.
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Abstract

Document-level neural machine translation
(NMT) has outperformed sentence-level NMT
on a number of datasets. However, document-
level NMT is still not widely adopted in real-
world translation systems mainly due to the
lack of large-scale general-domain training
data for document-level NMT. We examine
the effectiveness of using Paracrawl for learn-
ing document-level translation. Paracrawl is a
large-scale parallel corpus crawled from the In-
ternet and contains data from various domains.
The official Paracrawl corpus was released as
parallel sentences (extracted from parallel web-
pages) and therefore previous works only used
Paracrawl for learning sentence-level transla-
tion. In this work, we extract parallel para-
graphs from Paracrawl parallel webpages using
automatic sentence alignments and we use the
extracted parallel paragraphs as parallel docu-
ments for training document-level translation
models. We show that document-level NMT
models trained with only parallel paragraphs
from Paracrawl can be used to translate real
documents from TED, News and Europarl, out-
performing sentence-level NMT models. We
also perform a targeted pronoun evaluation and
show that document-level models trained with
Paracrawl data can help context-aware pronoun
translation. We release our data and code here1.

1 Introduction

The Transformer translation model (Vaswani et al.,
2017), which performs sentence-level translation
based on attention networks, has achieved great
success and significantly improved the state-of-the-
art in machine translation. Compared to sentence-
level translation, document-level translation (Xu
et al., 2021; Bao et al., 2021; Jauregi Unanue et al.,
2020; Ma et al., 2020; Maruf et al., 2019; Tu et al.,
2018; Maruf and Haffari, 2018) performs trans-
lation at document-level and can potentially fur-

1https://github.com/Yusser96/Exploring-Paracrawl-for-
Document-level-Neural-Machine-Translation

ther improve translation quality, e.g., document-
level context can help word disambiguation for
translating words with multiple senses, document-
level translation can help pronoun translation which
requires context outside of the current sentence
(Müller et al., 2018), document-level translation
can improve document-level lexical cohesion in
the translation (Voita et al., 2019).

Document-level neural machine translation
(NMT) has received much attention in recent years
(Bao et al., 2021; Donato et al., 2021; Fernandes
et al., 2021; Kang et al., 2020; Saunders et al., 2020;
Yu et al., 2020; Zheng et al., 2020; Yang et al., 2019;
Kuang et al., 2018; Bawden et al., 2018; Zhang
et al., 2018; Voita et al., 2018; Kuang and Xiong,
2018). Existing works showed that document-level
translation can outperform sentence-level transla-
tion for a number of datasets, such as TED, News,
Europarl (Bao et al., 2021; Donato et al., 2021; Xu
et al., 2021). Although document-level NMT has
shown promising results on a number of bench-
marks, document-level NMT is still not widely
adopted in real-world translation systems mainly
due to the lack of large-scale general domain train-
ing data for document-level NMT.

We examine the effectiveness of using Paracrawl
(Bañón et al., 2020) for learning document-level
NMT. Paracrawl is a large-scale parallel corpus
crawled from the Internet and contains data from
various domains. The official Paracrawl corpus2

was released as parallel sentences (extracted from
parallel webpages) and therefore previous works
only used Paracrawl for learning sentence-level
translation. In this work, we extract parallel para-
graphs from Paracrawl parallel webpages using
automatic sentence alignments and we use the ex-
tracted parallel paragraphs as parallel documents
for training document-level translation models. We
show that document-level NMT models trained
with only parallel paragraphs from Paracrawl can

2https://paracrawl.eu/
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be used to translate real documents from TED,
News and Europarl, outperforming sentence-level
NMT models and also improving context-aware
pronoun translation (Müller et al., 2018).

2 Extracting Parallel Paragraphs from
Paracrawl

Paracrawl (Bañón et al., 2020) is a large-scale par-
allel corpus crawled from the Internet and contains
texts from various domains. The official Paracrawl
corpus was released as aligned sentence pairs. For
high-resource language pairs like German-English,
the Paracrawl corpus provides 278M aligned sen-
tences for the translation task. As Paracrawl was
released as aligned sentence pairs, previous work
only used Paracrawl for learning sentence-level
translation. However, as described in the Paracrawl
documentation, Paracrawl was constructed by first
identifying aligned webpages (URLs) and then
aligning sentences within aligned webpages. Al-
though texts in parallel webpages tend to be noisy
and are only loosely aligned, we demonstrate that
extracting parallel paragraphs from Paracrawl paral-
lel webpages using automatic sentence alignments
can provide effective training data for learning
document-level translation. Below we describe
how we extract parallel paragraphs from Paracrawl.

Extracting We extract parallel paragraphs from
Paracrawl and examine the effectiveness of using
these aligned paragraphs for learning document-
level NMT. We used German-English, a high-
resource language pair, in our experiments. As
the main purpose of the original Paracrawl project
is to collect aligned sentences, Paracrawl did not
officially release all the webpage-level aligned
texts. Paracrawl only released a subset of all the
aligned webpage texts, for the German-English
language pair3. We extract parallel paragraphs
from the released parallel webpages: we first down-
load aligned webpages4 (one German webpage is
aligned with one English webpage) and then down-
load the automatic sentence alignments (vecalign5)
provided by Paracrawl; we then split a webpage
into paragraphs according to the newline symbol;
then extract aligned paragraphs from aligned web-
pages according to the automatic sentence align-

3https://www.statmt.org/paracrawl-benchmarks/
4https://www.statmt.org/paracrawl-

benchmarks/paracrawl-benchmark.en-de.aligned-docs.xz
5https://www.statmt.org/paracrawl-

benchmarks/paracrawl-benchmark.en-de.vecalign.xz

Words
Paragraphs Sentences En De

Train 1.5M 5.5M 118M 109M
Dev 402 1504 32K 29K
Test 411 1510 33K 30K

Table 1: Statistics of parallel paragraphs extracted from
Paracrawl.

Original vecalign 147M
After parallel paragraph extraction 11.7M
After cleaning 5.5M

Table 2: Numbers of remaining sentence pairs after
different processing steps.

ments. We consider two paragraphs to be aligned
if sentences in these two paragraphs are aligned
to each other and not aligned to any other para-
graphs. We discarded sentences that are not one-
to-one aligned (e.g. one English sentence aligned
to two German sentences) and discarded sentences
that are not aligned to any other sentences. We
discarded repeated paragraphs and discarded para-
graphs that only contain a single sentence. Para-
graphs with non-monotonic sentence alignments
were also discarded.

Cleaning To improve the quality of the extracted
parallel paragraphs, we removed sentences which
do not belong to the correct language6, removed
paragraphs that are too short (contain less than 30
words) and removed paragraphs with more than
50% overlap.

We randomly split the extracted parallel para-
graphs into training, development and test sets as
shown in Table 1. Note that, compared to the offi-
cially released Paracrawl corpus, the size of parallel
paragraphs that we extracted from Paracrawl is still
relatively small. This is because (i) the aligned
webpages provided by Paracrawl we used for par-
allel paragraph extraction is only a subset of all
Paracrawl data (ii) many parallel sentences were
discarded due to our strict extraction rules as shown
in Table 2. For future work, we will collect more
webpage-level aligned Paracrawl data and test more
flexible extraction rules.

We show the length statistics of the parallel para-
graphs that we extracted from Paracrawl in Ta-
ble 3. Compared to normal documents, the parallel
paragraphs extracted from Paracrawl are generally
much shorter. However, sentences in the same para-
graph are usually closely related and can provide

6https://pypi.org/project/langid/
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Sentences Distribution
2 34.63%
3 29.31%
4 15.99%

5∼10 18.29%
>10 1.77%

Table 3: Distribution of paragraph length. For example,
the first line of numbers mean 34.63% of the extracted
paragraphs contain 2 sentences.

useful context information to help the translation
of each other. In our experiments, we use the ex-
tracted parallel paragraphs as parallel documents
to train document-level NMT models and we show
that document-level NMT models trained with only
parallel paragraphs from Paracrawl can be used to
translate real documents from TED, News and Eu-
roparl, outperforming sentence-level NMT models.

3 Document-level Translation with
Paracrawl

3.1 Modeling

Previous works have shown that document-level
NMT models can outperform sentence-level mod-
els on several benchmarks. We adopted the recent
document-level translation model, G-Transformer
(Bao et al., 2021)7, in our experiments to test the
effectiveness of using Paracrawl data for learning
document-level translation. The G-Transformer
model is based on the standard sentence-level
Transformer (Vaswani et al., 2017), but uses a
whole document together as the input of the model
and then generates translation for the whole docu-
ment. G-Transformer improves the standard Trans-
former model for document-level translation with
extra group tags and group attention. Each word
(both source and target words) in the document is
assigned with a group tag to indicate which sen-
tence this word belongs to. Compared to the stan-
dard Transformer attention, G-Transformer com-
putes group attention using group tags to encourage
local attention and reducing the hypothesis space
of the attention, especially from target to source,
for long documents. G-Transformer outperformed
sentence-level Transformer and obtained new state-
of-the-art results on three document-level transla-
tion benchmarks.

7https://github.com/baoguangsheng/g-transformer

3.2 Experimental Setting

We tokenize and truecase all data with MOSES
(Koehn et al., 2007) scripts, and then perform sub-
word segmentation with byte pair encoding (BPE)
(Sennrich et al., 2016) using 30k merging oper-
ations. For both the sentence-level Transformer
and the document-level G-Transformer, we used
the base model setting (Vaswani et al., 2017) with
6-layer encoder/decoder, 512-dimension word em-
bedding and 2048 hidden units for the feed forward
networks. Following the G-Transformer experi-
mental settings (Bao et al., 2021), we set the max
length of a document to 512 BPE tokens (if a doc-
ument is longer than 512 tokens, we split it into
multiple instances). For model training, we first
pretrained a standard sentence-level Transformer
for 100k training steps and then finetuned the
sentence-level Transformer to learn document-level
G-Transformer for another 100k training steps.
For a fair comparison between sentence-level and
document-level translation, we also applied pre-
training for sentence-level translation, i.e. we train
a sentence-level Transformer with 100k pretraining
and 100k finetuning steps in order to compare with
G-Transformer.

3.3 Evaluating with BLEU, COMET and
Targeted Pronoun Evaluation

We used BLEU (Papineni et al., 2002) and COMET
(Rei et al., 2020) for translation quality evalua-
tion8 and we performed significance testing with
bootstrap resampling (Koehn, 2004). In addition
to BLEU and COMET which evaluate the gen-
eral translation quality, we also performed a tar-
geted evaluation for pronoun translation following
Müller et al. (2018)’s work. The correct transla-
tion of a pronoun often requires context outside
of the current sentence. Therefore, evaluation of
pronoun translation can demonstrate the advantage
of document-level NMT models. Following Müller
et al. (2018)’s work, we computed the accuracy of
our models choosing the correct translation for the
English pronoun “it" from the three possible Ger-
man words “es", “er" and “sie". We used a context
of 5 sentences for the test data9 provided by Müller
et al. (2018) for pronoun evaluation.

8Both BLEU and COMET scores were computed on
sentence-level using
https://github.com/mjpost/sacrebleu
https://unbabel.github.io/COMET/html/index.html

9https://github.com/ZurichNLP/ContraPro
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Train-Paracrawl-Only Train-Combined
EnDe DeEn EnDe DeEn
sent doc sent doc sent doc sent doc

BLEU Paracrawl 26.57 26.96 30.94 31.94† 26.44 27.40† 31.36 31.92†

Europarl 22.78 23.04 27.76 28.69† 28.60 29.30† 35.53 35.90†

TED 23.56 24.39† 27.89 28.24 25.70 26.13 30.15 31.49†

News 31.55 32.07† 34.59 35.39† 33.08 33.89† 35.99 36.39
COMET Paracrawl 16.16 17.99 18.90 20.99† 17.66 20.44† 20.60 22.02

Europarl 38.34 39.84† 42.39 45.10† 54.10 54.80† 55.78 56.31†

TED 23.14 23.77 41.34 42.62 34.21 35.25 46.02 46.92
News 33.84 35.51† 44.45 48.26† 42.49 44.20† 49.66 51.35†

Table 4: Translation results. Train-Paracrawl-Only: only Paracrawl as training data. Train-Combined: Paracrawl,
Europarl, TED and News combined as training data. † represents a significant difference at the p < 0.01 level.

Train-Paracrawl-only Train-Combined
total es er sie total es er sie

sent 0.43 0.91 0.15 0.24 0.43 0.94 0.17 0.20
doc 0.55 0.93 0.34 0.37 0.60 0.92 0.44 0.44

Table 5: Accuracy on contrastive pronoun test set with regard to reference pronoun.

Train-Paracrawl-Only Train-Combined
inside outside inside outside
current sentence current sentence current sentence current sentence

sent 0.68 0.37 0.71 0.37
doc 0.67 0.52 0.76 0.56

Table 6: Accuracy on contrastive pronoun test set with regard to antecedent location.

T-P-O T-C
EnDe DeEn EnDe DeEn

Paracrawl 26.88 31.37 27.35 31.65
Europarl 23.22 28.47 29.03 35.61
TED 24.24 28.04 25.62 29.91
News 31.86 34.92 33.41 35.99

Table 7: Translation results (BLEU) of using the
document-level G-Transformer for translating single
sentences. T-P-O: Train-Paracrawl-Only. T-C: Train-
Combined.

3.4 Training with Only Paracrawl
We trained both sentence-level Transformers
and document-level G-Transformers with only
Paracrawl (see Table 1) as training data. Paral-
lel paragraphs were used as parallel documents
to train document-level G-Transformers and par-
allel sentences contained in parallel paragraphs
were used to train sentence-level Transformers.10

For evaluation, we used test data from 4 datasets,
Paracrawl, Europarl, TED and News. For Eu-
roparl, TED and News, we used the same test
data following the original G-Transformer (Bao
et al., 2021) work, i.e., the Europarl, TED and
News test sets are parallel documents in contrast to

10Therefore, training data for the document-level model and
the sentence-level model contain the same number of sentence
pairs.

T-P-O T-C
inside outside inside outside
0.67 0.36 0.78 0.35

Table 8: Accuracy on contrastive pronoun test set with
regard to antecedent location when using the document-
level G-Transformer for translating single sentences
without context.

the Paracrawl test set which is parallel paragraphs.
BLEU and COMET scores are given in Table 4
as Train-Paracrawl-Only. The document-level G-
Transformers achieved higher translation quality
than sentence-level Transformers for all 4 test sets
and only used Paracrawl as training data, which
demonstrates that Paracrawl can provide useful
document-level information for effective training of
document-level NMT models. Table 4 also shows
that the document-level information contained in
Paracrawl is robust across domains as document-
level G-Transformers trained with only Paracrawl
data can help to translate real documents from TED,
News and Europarl test sets.

Table 5 and Table 6 give results of targeted pro-
noun evaluation. Results show that the document-
level model, trained with only Paracrawl data, sig-
nificantly outperformed the sentence-level model
for pronoun translation especially when the an-
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tecedent location of a pronoun is outside of the
current sentence (see Table 6), which again demon-
strates that Paracrawl can provide useful informa-
tion outside of the current sentence for effective
learning of document-level NMT.

3.5 Training with Paracrawl, TED, News and
Europarl Combined

We also trained translation models with training
data from Paracrawl, Europarl, TED and News
combined. The sentence-level Transformers were
trained with sentence pairs from all the 4 training
datasets. The document-level G-Transformers were
trained with parallel paragraphs from Paracrawl
and parallel documents from Europarl, TED and
News. We then computed BLEU and COMET
scores for the 4 test sets as shown in Table 4 as
Train-Combined. The targeted pronoun evalua-
tion results are also given in Table 5 and Table 6
as Train-Combined. Results show that using ad-
ditional parallel documents together with paral-
lel (Paracrawl) paragraphs as training data further
improved the general translation quality (BLEU
and COMET) and also helped the document-level
model to obtain a higher accuracy for targeted pro-
noun translation evaluation.

3.6 Document-level G-Transformer for
Translating Single Sentences

We also evaluated how the document-level G-
Transformer (trained with parallel documents) per-
forms for translating single sentences (i.e. each
sentence is considered as a single document at test
time). Table 7 shows that, when considering the
general translation quality (e.g. BLEU), document-
level G-Transformers can perform well for trans-
lating single sentences, even outperforming the
sentence-level Transformers in Table 4 for most
of the test sets. However, the targeted pronoun
evaluation results in Table 8 show that the accuracy
of translating pronouns with antecedent location
outside of the current sentence dropped more than
10% compared to the document-level model in Ta-
ble 6, which demonstrates that document-level G-
Transformers indeed require context outside of the
current sentence for improving pronoun translation.

4 Conclusion

As document-level translation lacks large-scale
general-domain document-level training data, we
examine the effectiveness of using Paracrawl data

for learning document-level translation. Paracrawl
was officially released as parallel sentences ex-
tracted from parallel webpages. In this work, we
extract parallel paragraphs from Paracrawl aligned
webpages using automatic sentence alignments and
we use the extracted parallel paragraphs as parallel
documents for training document-level NMT mod-
els. We show that document-level models trained
with only parallel paragraphs from Paracrawl can
be used to translate real documents from TED,
News and Europarl, outperforming sentence-level
Transformers and also improving context-aware
pronoun translation.

Limitations

Compared to the officially released Paracrawl cor-
pus (278M sentence pairs for German-English),
the size of parallel paragraphs that we extracted
from Paracrawl is still relatively small. This is be-
cause (i) Paracrawl only released a subset of all
webpage-level aligned texts and we only extracted
parallel paragraphs from these released webpage
texts (ii) we used very strict rules for extracting par-
allel paragraphs from Paracrawl and many parallel
sentences were discarded by our extraction rules.
For future work, we will collect more Paracrawl
webpage-level aligned data for parallel paragraph
extraction and we will test more flexible extraction
rules.
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Abstract

Machine translation quality estimation (QE)
predicts human judgements of a translation hy-
pothesis without seeing the reference. State-
of-the-art QE systems based on pretrained lan-
guage models have been achieving remarkable
correlations with human judgements yet they
are computationally heavy and require human
annotations, which are slow and expensive to
create. To address these limitations, we define
the problem of metric estimation (ME) where
one predicts the automated metric scores also
without the reference. We show that even with-
out access to the reference, our model can es-
timate automated metrics (ρ=60% for BLEU,
ρ̄=51% for other metrics) at the sentence-level.
Because automated metrics correlate with hu-
man judgements, we can leverage the ME task
for pre-training a QE model. For the QE
task, we find that pre-training on TER is better
(ρ=23%) than training for scratch (ρ=20%).

github.com/zouharvi/mt-metric-estimation

1 Introduction

Quality estimation (QE) is often used in machine
translation (MT) production pipelines where we
need to make decisions based on the quality of an
MT output but where the reference is unavailable
(Specia et al., 2020, 2021). For example, QE is
used in translation companies to decide whether
to send a specific MT output for post-editing to
a human translator or whether to use it directly
(Tamchyna, 2021; Zouhar et al., 2021; Murgolo
et al., 2022). In this scenario, an accurate QE
system has the potential to save expensive trans-
lator effort. However, training QE models usu-
ally requires human-annotated judgements of the
translation quality (Specia et al., 2013; Rubino and
Sumita, 2020; Rei et al., 2020a). These human
annotations are scarce and costly, especially for

Source text

Part 1: large data

Reference

MT Hypothesis

predict

Metric Estimator 
(pretraining)

Automated metric score

Source text

Part 2: limited data

Reference

Hypothesis

predict

Quality Estimator 
(fine-tuning)

Human scores

MT

Figure 1: Pipeline for pre-training on automated metrics
(top) and fine-tuning on limited quality estimation data
(bottom). Dotted lines are optional dependency.

low-resource language directions, and may need
to be replicated for new MT systems and domains
(de Souza et al., 2014)

We investigate if automated MT metrics can be
used to reduce the cost of learning QE models.
Automated metrics can be run with no additional
costs and can be used to generate large amounts of
QE data. If these metrics correlate well with human
judgements, this larger data can be used as a partial
substitute for human data during training. Data
augmentation and synthetic QE data via automated
metrics has already been explored (Heo et al., 2021;
Baek et al., 2020; Cui et al., 2021), though never
in the pre-training & fine-tuning fashion.

Our work is guided by a simple intuition. In-
tuitively, human judgements can be thought of
as functions depending on the target sequence
and (optionally) the source and reference(s):
fHUMAN([s], h, [r]). The task of QE is to model
fHUMAN based only on the source s and hy-
pothesis h. Because the function arguments of
fHUMAN([s], h, [r]) resemble those of automated
metrics for MT: fMETRIC([s], h, r), we can use the
automated metrics to guide learning of the human
quality judgements which are hard to obtain and
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replicate. Generating automated metric scores is
limited only by the amount of parallel data which
is more abundant. Because fMETRIC correlates with
human judgement fHUMAN (Ma et al., 2019; Mathur
et al., 2020), we can start by estimating fMETRIC and
only later fine-tune to fHUMAN. We refer to estimat-
ing fMETRIC(s, h, r) as metric estimation (ME) as
a parallel task to quality estimation (QE).

We illustrate our idea of pre-training on the au-
tomatic metrics and fine-tuning on human asses-
ments in Figure 1. Our model uses a BiLSTM
with the source and hypothesis as the input (with
several more features like the decoder confidence
and hypothesis variance) to output a single number
(metric or quality score).

Experimentally, we find the idea of mitigat-
ing data limitation for QE with ME pretraining
challenging. Thus, we structure our investigation
around a set of research questions. First, we try
to establish that it is possible to robustly predict
automated metrics and explore the associated data
requirements. Then, concerned with the applica-
tion and deployment of the ME model, we also
check how transferrable the model is between dif-
ferent MT systems. We break the research down
into the following questions.

RQ1: Can automated reference-based MT met-
rics be reliably predicted without the reference?
RQ2: What is the effect of data size on predict-
ing automated reference-based MT metrics?
RQ3: How detrimental is the transfer between
different MT systems for metric estimation mod-
els?
RQ4: Can metric estimation be used as a pre-
training step for quality estimation?

We answer the research questions with experi-
ments on the English→ German language direc-
tion and replicate the main findings on 12 language
pairs in total in Appendix C. We confirm that BLEU
is predictable with ρ = 60.4% sentence-level Pear-
son’s correlation and other metrics with ρ̄ = 51.3%
(RQ1, Section 4.2). Authentic parallel data is
needed for ME models but this can be alleviated
by using more hypothesis from beam search (RQ2,
Section 4.3). It is possible to train the ME system
on one MT system and then use it on a different
MT system with only a slight loss in performance
(RQ3, Section 4.4). We find that pre-training on
Translation Edit Rate (TER) (Snover et al., 2006)
leads to better results than training on the QE data
directly, though this approach does not outperform
the state-of-the-art in QE (RQ4, Section 4.5).

Source text Hypothesis MT Reference

Automated metric score

Regressor

          BiLSTM

Hidden states MT features

Figure 2: Metric/quality estimation model architecture.

2 Our Metric Estimation Model

Notation. Given a source sentence s and its trans-
lation, h which is an output of a MT system
(h = MT(s)), we build a regressive ME model
which outputs a numeric score that is close to the
output of an automated metric that is further depen-
dent on the reference: fMETRIC(s, h, r). We distin-
guish two cases based on our level of access to the
MT system: blackbox setting (where we assume
access only to the MT system output) and glassbox
setting (where we have access to entire MT model).
In the later case, we may leverage features from
the MT model to improve the ME capabilities.

Model. Our main model for ME/QE, shown in
Figure 2, starts with Byte-Pair-Encoding (Gage,
1994; Sennrich et al., 2016) the source s and hy-
pothesis h. It is followed by BiLSTM on top of
concatenated source and hypothesis with a sepa-
rator (s[SEP]t). The last hidden state (denoted
as BiLSTM−1) is extracted and fused together via
concatenation with the internal MT system and
other features (see the following list). This is then
used in a simple feed-forward layer (FFNN) to out-
put a single number:

source s, hypothesis h := MT(s)

Φ = BiLSTM−1(BPE(s[SEP]h))

Ψ = Features(MTconf.(s, h), s, h)

MEall(s, h) = FFNN[Φ,Ψ]

MEtext(s, h) = FFNN[Φ]

The first ME model is glassbox and the second is
blackbox. In the first case, we utilize hand-crafted
features and also those from the MT system (func-
tion features). Both of these models are optimized
with mean-squared error against a particular met-
ric. That is, we train separate models for each
target metric (COMET, ChrF, BLEURT, BLEU,
METEOR, TER) or human judgements.

L =
1

n

∑
(ME(si, hi)− fMETRIC(si, hi, ri))

2
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The additional features Ψ are:

• Decoder confidence (prob and logprob).
• Source and target lengths and their relation.

This is included as the distribution of errors
may be different for various sentence lengths.

• Average distance and variance between hy-
potheses as measured by an automatic metric.

Decoder confidence. Low probability MT out-
puts have overall lower quality (Specia et al., 2018;
Yankovskaya et al., 2018; Fomicheva et al., 2020).
The decoder confidence is the hypothesis probabil-
ity as defined by the model

∏
i p(ti|t<i, s) which

is in practice usually computed in the logspace∑
i log p(ti|t<i, s).1

Hypotheses variance. Intuitively, there are many
ways to generate a wrong translation but only a
few correct ones (Xu et al., 2011). Similar to
Fomicheva et al. (2020), we hypothesise that larger
variance between the hypotheses correlates nega-
tively with quality. We therefore use the distances
between hypotheses as features for our system.
Specifically, as shown in Figure 7 and formalized
with the following, we use the mean distance and
also the variance between distances as features. We
first consider distances from the current hypothesis
to be estimated (H1) to all other hypotheses, and
then all hypothesis pairs.

Avg or Var({BLEU(h1, hj)|hj ∈ H})
Avg or Var({BLEU(hi, hj)|hi, hj ∈ H, i ̸= j})

Baselines. We use multiple baselines for com-
parison in the ME task. Apart from the individual
features, they are all optimized to minimize the
MSE loss with a specific target metric.

• Linear regression on TF-IDF features (with
limited max features, see Appendix B):
Lin.Reg.

[
TF-IDF(s, h)

]

• Linear regression on all text & MT features:
Lin.Reg.[Ψ]

• Fine-tuned mBERT (Devlin et al., 2019)
with identical regression head architecture
on top of last layer [CLS] hidden state2:
FFNN

[
mBERT(s[SEP]h)

]

We also use an off-the-shelf QE model used in
WMT21 QE task wmt21-comet-qe-mqm (Rei

1The justification for using both conft and exp(conft) is
that the non-linear transformation improves correlation.

2See Appendices A and B for details.

et al., 2020b).3 We do not fine-tune the model to
the available data, but since we use correlation as
an evaluation metric, the mean is subtracted and
the output rescaled to unit variance, same as human
judgements.

Automated metrics. For ME we use the follow-
ing MT metrics. BLEU (Papineni et al., 2002),
ChrF (Popović, 2015), TER (Snover et al., 2006)
and METEOR (Banerjee and Lavie, 2005) work
with lexical or character-level units, commonly in
word or character n-grams. COMET (Rei et al.,
2020a) uses pre-trained encoders to evaluate the
hypothesis at a deeper level. BLEURT (Sellam
et al., 2020) is another learned metric for text gen-
eration which uses pseudo-label. While automated
metrics usually yield only sentence-level scores,
QE is done for multiple levels: word, phrase and
sentence. However, because of the automatic met-
ric restrictions, we also focus on sentence-level QE
in this work.

3 Experiment Setup

Pipeline & data. We start by translating 500k
English→German sentences of the WMT14 dataset
(Bojar et al., 2014) and computing the automated
metrics of these translations.4 We use a pre-trained
WMT19 model by Ng et al. (2019).

For human scores, we use the train data
of WMT21 Sentence-Level Quality Estimation
Shared Task (Specia et al., 2021) which contains
14k human-direct-assessment annotated segments
(5k unique). For the human score prediction, we
do not have access to the features in the hypothesis
space (because the hypotheses were not generated
by the MT system to which we have access) and
use forced decoding of the pre-trained model to
get a confidence estimate. Note that since the data
comes from a different MT system, there is a distri-
bution mismatch which may negatively influence
the results. We address this in Section 4.4.

We refer to the two datasets as ME and QE, re-
spectively and show the distribution of automated
metric scores and human judgements in Figure 6.
We perform ME on both but QE only on the latter
because of the human annotations availability.

3This model was better than wmt21-comet-qe-da.
Note the difference between the automated metric COMET
and the QE system COMET-QE.

4We are not limited by the relatively small size of this
dataset because we are considering only its subset and study
the effect of available data size in Section 4.3.
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Figure 3: Feature correlations on 500k English→ German sentences with reference-based metrics and human
judgement. Colour is based on absolute values to show contained relevant information. Cells with negative
correlations are marked with “-”.
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Figure 4: Correlations with metrics and human judge-
ment of baseline and main metric estimation (ME) mod-
els. Each bar is a separate model trained to predict a
particular metric or human judgement. Individual fea-
tures are shown in Figure 3.

Evaluation. We evaluate ME model performance
with Pearson’s coefficient with the target metric
on a dev set of 10k sentences from WMT14 on
the segment-level. Note that we care about the
magnitude (absolute value) of the correlation and
not whether it is positive or negative. For example,
TER is expected to correlate negatively with human
ranking because higher TER means more errors
while higher human scores mean higher translation
quality. Correlations with human judgement are
evaluated on 1k WMT21 Sentence-Level QE data.
Specifically, we estimate human z-scores which
were computed per-annotator.5

4 Results

This section first studies single-feature baselines
(Section 4.1) and then the possibility of robust ME
model (Section 4.2) and data size requirements
(Section 4.3). The model is then checked on a

5Z-score of a variable has zero mean and unit variance.
They are possibly unbounded but on the other hand, slightly
alleviate the effect of individual annotator differences.

different MT system output to see transferability
between systems and architectures (Section 4.4).
Fine-tuning and evaluation on human data (QE) is
done in Section 4.5. A natural follow-up experi-
ment on using joint prediction to improve the ME
model is documented in Section 4.6.

4.1 Feature analysis

We show the correlations between individual fea-
tures and metrics in Figure 3. An immediate ob-
servation is that confidence-based features corre-
late much more with automatic metrics than the
other features. Some metrics (BLEU and COMET)
and especially human z-scores are highly corre-
lated with the source and target lengths. As a
negative result, very few of the hypothesis space
metrics correlate highly, with an exception of
ρ(BLEU,Var(BLEU(H))). We still use all fea-
tures later on because (1) despite low individual
correlations, they may still be useful in combina-
tion or for the full model, whose input is the text,
and (2) we did not encounter any overfitting issues.

BLEU BLEURT ChrF METEOR COMET TER

11.1% 16.5% 12.3% -12.0% 11.5% 34.6%

Table 1: Pearson correlations between human judge-
ment (human z-scores) and automated metrics.

We show the correlations between the automated
metrics and humans in Table 1. For most of them,
the correlations are very low. Outliers with the high-
est correlation are BLEURT and COMET, which
are known to be strong-performant metrics (Kocmi
et al., 2021). One of the reasons is that they were
specifically trained to correlate well with humans.
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4.2 Metric estimation performance
We show the baselines with comparison to the main
models trained only on the target data (either WMT
News or WMT QE) in Figure 4. Every bar is a
separate model trained to predict a specific metric
and the bar magnitude shows its correlation. The
systems are described formally in Section 2. No-
tably, ME text has access to only the source and
hypothesis texts while ME all in addition fuses in
extra hand-crafted features.

A simple linear regression based on features
from Figure 3 is able to achieve > 40% corre-
lations with automated metrics and ∼13% correla-
tion with human judgement. These features seem
important as demonstrated by the comparatively
lower correlations of a TF-IDF featurizer. This is
also documented by the difference between ME
all and ME text. The former model consistently
outperforms ME text, possibly because it has ac-
cess to all the extra features while the latter model
only works with the source and target texts. The
pre-training of the mBERT model on language mod-
elling helps only marginally, given that it performs
only slightly better than ME text. The COMET-QE
model almost does not correlate with automated
metrics at all apart from its related reference-based
metric COMET. Of all models, it also correlates
the most with human judgement.

RQ1: Best-performing metric estimation models
(mBERT, ME all, ME text) achieve sound cor-
relations with automated metrics (60.4% with
BLEU, ∼ 51.3% for others).

We can interpret this correlation with respect
to the individual features performances (max ρ =
46%) which shows that the model was able to learn
more predictive patterns. On the selected datasets,
the ME task is easier than the QE task where our
moidels have a consistently lower performance.

4.3 Data requirements for ME
We are interested in how much data we need to
train the ME models. This is a practical question
that helps us understand the behaviour and require-
ments of the models.

Naturally, models utilizing just a handful of con-
tinuous non-trainable features require much less
data than models whose inputs are the raw texts.
This is demonstrated in Figure 5 where the lin-
ear regression gains very little even if 500× more
data is used. For the main ME model, a larger
amount of data is required (line H1). So far we
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Figure 5: Model dependency on training data size. H2
and H5 expand the data by top-2 and top-5 decoder
hypotheses, respectively. Note the non-linear x-axis.

have been considering only the highest-scored hy-
pothesis (in terms of decoder score) among 5 gen-
erated by beam search: (s, h1). In a low-resource
scenario, it may be beneficial to create more pairs
from the hypotheses provided by the beam-search
decoder: {(s, hi)|hi ∈ H}. Through this hypothe-
sis expansion, we may obtain more parallel data in
data-restricted settings. Again we show the results
in Figure 5 with a substantial gain of the model
trained on expanded data (H2) over just the top
hypothesis (H1). This effect is quickly diminishing
with larger data (≥ 10k) but for lower data remains
a useful tool.

RQ2: The metric estimation model requires
∼500k parallel sentences and the associated
metric scores before the performance starts to
plateau. For very low-resource scenarios, it is
possible to reduce the ME model data require-
ments by utilizing multiple hypotheses for a sin-
gle source sentence.

ME All ME Text
Model Transfer Auth. Transfer Auth.

Original 60.4% 56.1%
W16Conv. 54.2% 57.3% 48.4% 51.0%
W16Trans. 54.2% 57.1% 47.9% 50.7%
W17Conv. 58.7% 60.8% 55.1% 55.7%
T5 19.8% 72.9% 43.8% 70.9%

Table 2: BLEU estimation correlation for texts trans-
lated by different models than WMT19 Transformer
(original).

4.4 Generalization of ME across MT systems

In this section, we examine whether our ME model
overfits on the specific errors the used MT system
is doing or whether it generalizes and is applicable
to also other MT systems. This is important in
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deployment so that the possible ME/QE model is
not dependent on a specific MT system.

We translate the same data using the following
English→ German models and store the decoder
features: T5-small (Raffel et al., 2020), WMT16
Convolutional (Wu et al., 2019), WMT16 Trans-
former (Ott et al., 2018), WMT17 Convolutional
(Gehring et al., 2017). We then run the ME model
trained on the outputs of the original WMT19 sys-
tem to predict metric scores for the outputs of these
models. We show the results in Table 2, for both
text-only and feature-enriched models. The evalua-
tion of translations by different MT systems shows
a varying decrease in correlation with the auto-
mated metrics. For most systems, the drop was
∼2–3%, which means that the metric estimator
generalizes well across MT systems. However, an
exception is using a completely different model,
the prompted T5 LM, for which the transfer mostly
failed. When training metric estimators on the T5
translated data, they achieved ∼71% correlation
but when models trained on outputs of a different
MT system were used, the correlation dropped to
19.8% and 43.8% for ME All and ME Text, respec-
tively. One of the reasons may be vastly different
extra features, as documented by the noticeably
higher correlation for the ME Text model.

RQ3: It is possible to train a metric estimation
model on sentences produced by MT1 and use it
to estimate metric scores of MT2 with a drop in
correlation of ∼ 3%.

4.5 From ME to QE

This section verifies empirically whether pre-
training on ME helps on the QE task. For this, we
use models trained on estimating automatic met-
rics and either: correlate their outputs with human
judgements (zero-shot), or fine-tune them to pre-
dict the human judgements directly (fine-tuning).
The fine-tuning was done with the same setup as in
Appendix B with all model parameters updated.

The results in Table 3 show that fine-tuning def-
initely improved the performance over zero-shot.
However, only TER was able to outperform train-
ing on z-scores from scratch. This can be attributed
to it being the only metric with reasonable absolute
correlation in the zero-shot. Notably, COMET was
better than the rest of the automated metrics with
the worst being BLEU. Despite the fine-tuning, we
were not able to construct a QE system that would
outperform the standard baseline of COMET-QE
(ρ = 29.2%).

Pre-train metric Zero-shot Fine-tuning

BLEU -3.2% -0.9%
BLEURT 05.9% -5.2%
ChrF -6.9% 06.5%
METEOR -4.2% 06.0%
COMET 01.1% 10.4%
TER -12.5% 22.8% ⋆

human 19.8%

Table 3: Correlations with human judgement (z-scores)
from models (with extra features fusion) which were
pre-trained on metric estimation. Only the magnitude
(absolute value) of the correlation is important.

RQ4: Pre-training on TER (large data) and fine-
tuning on human scores (small data) is better
than training only on human scores (small data).

Further experiments with limited target-domain
data (Figure 8) show that the proposed pre-training
& fine-tuning regime does not perform well even
with less fine-tuning data. The same figure also
shows fine-tuning sensitivity to the selected data.
Variance is caused by both the optimization process
and data subsampling. Even though we include
confidence intervals, in deployment one would
start multiple runs and use the best-performing one.
A striking observation is that very little human-
annotated data is needed for training. Further re-
search should more closely examine the relation-
ship between model capacity, data requirements
and QE performance.

ME QE
Metric Single Multi Single Multi

BLEU 60.4% 47.0% 15.5% 23.9%
BLEURT 59.7% 05.7% 26.7% 05.7%
ChrF 58.5% 42.6% 23.7% 24.0%
METEOR 51.6% 36.5% 22.6% 24.5%
COMET 44.4% 23.1% 13.1% 21.0%
TER 37.4% 36.8% 07.6% 18.7%
human - - 19.8% 05.5%

Table 4: Pearson correlations between system outputs
and automated metrics or human z-scores for either
multiple single-metric models (Single) or a single multi-
target model (Multi).

4.6 Joint prediction of multiple metrics
In this section, we investigate using all the auto-
mated metrics at the same time in a single model
instead of multiple individual models.
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For both the WMT News and QE datasets (indi-
vidually), all the metric scores for a single seg-
ment can be predicted at the same time. In-
stead of training 6+7 individual models to pre-
dict each metric, we train two models (for ME
and QE data) that predict all available metrics at
once (similar to BLEURT pre-training phase) us-
ing different regression heads. The only differ-
ence in the architecture from Appendix B is that
the last linear layer has 6 or 7 output neurons in-
stead of one. The loss for model f is then defined
as
∑

m∈metrics MSE(fm(s, t),m(s, t, r)). Having
multiple targets in a single training can provide
more signal and better representation (Aho et al.,
2012; Korneva and Blockeel, 2020). The results
shown in Table 4 demonstrate that for the smaller
dataset (QE), joint learning mostly helps in met-
ric prediction but not in human z-score prediction.
This may be because of a loss imbalance of 6 target
outputs optimizing on automated metrics and only
1 target output optimizing on human z-scores.

5 Complexity & Fluency Estimation

Currently, our model was dependent on mostly the
source and the hypothesis. If it had access to only
the hypothesis, it could still consider its fluency and
other factors in estimating the metric. Likewise,
having access to only the source would correspond
to sentence difficulty/complexity estimation. Sim-
ilarly to Wan et al. (2022), we explored both of
these modes and found very high sentence-level
correlations.

ρ({(fME(h), fBLEU(h, r))}) = 55.5%

ρ({(fME(s), fBLEU(h, r))}) = 55.3%

h, s, r ∈ D

These high correlations, which are close to the
full text-only model’s performance (ρ = 56.5%)
show that our model is not able to utilize the re-
lationship between the source and the hypothesis
and that a more elaborate models should be consid-
ered. These results are in line with general findings
of Behnke et al. (2022). The models’ inadequacy
is also shown by the imperfect performance when
given access to the hypothesis and the reference,
just as the metric has:

ρ({(fME(s, h, r), fBLEU(h, r))}) = 60.7%

ρ({(fME(h, r), fBLEU(h, r))}) = 61.5%

h, s, r ∈ D

However, the focus solely on the hypothesis or
just the source itself has been confirmed for also
other QE systems (Sun et al., 2020) and our model
is not an outlier.

6 Related Work

This section discusses how our proposed ME task
fits in the field of QE.

Confidence estimation. The task of ME has a
connection to an older task of confidence estima-
tion (Blatz et al., 2004), which predates QE (Specia
et al., 2013). In confidence estimation, the goal is
to predict the probability of the output being cor-
rect. Blatz et al. (2004) define correctness as a
binary class which is based on two thresholded MT
metrics: word error rate and NIST (Doddington,
2002). This is in contrast to the ME task which
is a regression task (predicting e.g. 0.7 instead of
GOOD and segment-level).

More recent works use the term confidence esti-
mation more freely to mean essentially the QE task
with full training data and model access (Chelba
et al., 2020). Because this term is used also in
other contexts, such as in calibration (Wan et al.,
2020; Wang et al., 2020), we define the task metric
estimation to avoid ambiguity.

Feature-based QE models. Specia et al. (2010,
2013) pioneered the work of mainstream MT QE.
The QuEst model uses support vector regression on
top of features such as source & target lengths, the
number of translations in a phrase table or target
sentence language model probability. Further re-
search has been devoted to devising good features
for MT QE models, such as grammatical ones (Fe-
lice and Specia, 2012), ones based on the decoder
(Avramidis, 2012; Fomicheva et al., 2020) or based
on the model embeddings spaces (Shah et al., 2016;
Chen et al., 2017).

Deeper QE models. QUETCH (Kreutzer et al.,
2015), NuQE (Martins et al., 2016), DeepQuest
(Ive et al., 2018) and others (Kim and Lee, 2016;
Li et al., 2018) regress directly from the source and
hypothesis texts into a score. Notably some sys-
tems approach sentence-level QE by aggregating
or otherwise utilizing previously-estimated word-
level QE predictions (Kepler et al., 2019).

Pre-training QE models. Closest to our work
is computing TER between the hypothesis and its
post-edited version (Heo et al., 2021). QE is then

1317



trained jointly on the artificial and authentic QE
data. Other models are first trained on artificial (pre-
training) and then authentic data (Baek et al., 2020;
Cui et al., 2021; Yankovskaya and Fishel, 2021).
The pre-training task does not have to be tied to QE.
Large pre-trained language models have also been
used for QE (Hu et al., 2020; Moura et al., 2020;
Nakamachi et al., 2020; Eo et al., 2021). In contrast,
our pre-training aims not only to acquire better sen-
tence representations in general but specifically to
acquire better sentence representations for transla-
tion quality score estimation.

QE models outside of MT The idea to estimate
the quality of a prediction given only itself and the
input has also been applied to other NLP tasks. RU-
BER (Tao et al., 2018) uses an RNN-based model
to compute a score for a context-response pair in
a dialog that is combined with a reference-based
score to obtain the final metric. BERT-RUBER
extends this by using pre-trained representations
and GRADE uses the unreferenced scorer in com-
bination with a module that constructs a conversa-
tional graph using ConceptNet concepts and rea-
sons over it (Huang et al., 2020). Recently different
works evaluate responses based on specific quality
attributes, for example, groundedness (Honovich
et al., 2021), or combine them into one quality
score (Pang et al., 2020). For open-ended tasks,
reference-free metrics, similar to QE, are more de-
sirable because they make fewer assumptions about
how the hypothesis should look like. Compared to
those tasks, the admissible hypothesis space in MT
for a given source sentence is more constrained.

7 Discussion

The experiments have shown that the outputs of
automated metrics can be predicted even without
access to the reference. Pre-training only on TER
and not any other automated metric outperformed
training from scratch, which highlights the impor-
tance of exploring multiple metrics instead of just
one or two of the most popular ones. Pre-training
on TER helped because of the large absolute zero-
shot correlation. We are, however, unable to pro-
vide an explanation for this zero-shot correlation in
the first place.

Our ME approach can also be potentially used
for improving models, even outside of the MT
field, by providing additional signals through self-
supervision. For example, the ME model could
be used instead of the decoder probabilities for

reranking when decoding with beam-search in gen-
erative models. This approach would be similar to
using QE in decoding by Fernandes et al. (2022)
but would not require a separate scorer model.

BLEU BLEURT ChrF TER METEOR COMET z-score
1.0

0.5

0.0

0.5

1.0

1.5

ME true
QE true

ME pred.
QE pred.

Figure 6: Distribution of metric and human judgement
values in the used ME and QE datasets together with
their predictions. Long tails clipped between -1 and 1.5
for higher resolution.

7.1 Error analysis
In this section, we examine three model predictions
and comment on their comparison with the target
scores. At the first glance, the model predictions
are generally more conservative (lower variance
and concentration around the average), as shown in
Figure 6. This is however not an issue when evalu-
ating with Pearson’s correlation coefficient as the
distributions are rescaled. While the error analysis
serves as a good check for the model outputs, we
are unable to clearly define specific failure modes
of the model, which does not achieve 100% metric
correlation.

Example 1 BLEU 0.08,ME 0.07

Source: Police try new, less-lethal tools as protests con-
tinue.
Reference: Während die Proteste weitergehen, testet die
Polizei weniger tödliche Geräte
Reference (lit.): While the protest continue, the police is
testing less-lethal devices.
Hypothesis: Die Polizei probiert neue, weniger tödliche
Werkzeuge aus, während die Proteste anhalten.
Hypothesis (lit.): The police is testing new, less-lethal
tools, as the protest persist.

We first examine cases in which we compare
our model’s prediction with the true metric value.6

Example 1 is an almost exact match in BLEU and
model prediction. Although the hypothesis is rea-
sonable, it is too literal of a translation. This is
a failure for the automated metric but a success
for our model because it predicted the metric accu-
rately.

6We report true BLEU scores and not percentages (i.e.
scale is 0-1, not 0-100).
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Example 2 BLEU 0.67,ME − 0.51

Source: It didn’t work.
Reference: Das hat nicht funktioniert.
Reference (lit.): That did not function.
Hypothesis: IT hat nicht funktioniert.
Hypothesis (lit.): THAT/IT did not function.

In some error cases, the model prediction was
a better quality estimate than the metric it was
trained to estimate. In Example 2, the word it
is mistaken for a named entity which distorts the
sentence meaning: it - pronoun, IT - abbreviation
Information Technology (can also mean the tech
support department).

Example 3 Human − 4.72,QE − 0.42

Source: There’s mask-shaming and then there’s full on
assault.
Reference: Masken-Shaming ist eine Sache, Körperverlet-
zung eine andere.
Reference (lit.): Mask-shaming is one thing, body assault
is a different one.
Hypothesis: Es gibt Masken-Beschämen und dann gibt es
voll auf Angriff.
Hypothesis (lit.): There is mask-humiliation and then
there is full-on assault.

In certain cases, the model output is very far
from human judgement. In Example 3, the hypoth-
esis contains a phrase voll auf Angriffe which seems
like a good translation but only at the first sight and
is, in fact, incorrect (word-wise translation full -
voll, on - auf, assault - Angriff ). This may be a
reason for the low score by the human annotator
and it was not captured at all by our model.

7.2 Negative results

We also attempted to leverage mBERT representa-
tions in the main LSTM-based model via concate-
nation fusion with the last hidden state, identical to
the approach of Zouhar et al. (2022) for language
modelling. However, the results (ρ = 60.0% for
BLEU) were on par with the main LSTM-based
model alone (ρ = 60.4% for BLEU).

We experimented with the expressivity of the
used model architecture in Section 5 by granting
the model access to the source, the reference and
the hypothesis. This should provide sufficient in-
formation to be able to learn the specific metrics,
however, the model was unable to fit it perfectly.
Approaches in future work should therefore use
models with larger capacities and explore specific
mechanics that could be useful for predicting auto-
mated metrics relying on n-gram overlaps.

6Training one full model takes∼3 hours on 500k sentences
on NVIDIA GeForce GTX 1080 Ti. Machine translation of
the same data takes 120 GPU hours on the same model.

8 Conclusion

We proposed the task of metric estimation for ma-
chine translation, as a parallel to quality estimation
and attempted to solve it with a baseline BiLSTM
model. We show that it is possible to predict the
output of a metric without even seeing the reference
(ρ = 60.4% for BLEU and ρ̄ = 51.3% for other met-
rics). The main advantage of this task compared
to QE is that the data for training ME models to
predict a particular metric can be generated from
any parallel corpus on which the metric can be run.
While pre-training on TER outperformed training
from scratch, it did not perform better than the
commonly used baseline, COMET-QE.

Future work. Despite the negative results, fea-
tures in the hypothesis space should be more ex-
plored for tasks beyond ME/QE, such as calibra-
tion of self-reported confidence in generative mod-
els. Metric and quality estimation could also be
a part of the MT system itself (e.g. as a separate
head) which would alleviate the need for an exter-
nal ME/QE model. The ME models should also
be evaluated for cross-domain performance, simi-
larly to our cross-system evaluation as motivated
by needs of production settings. Non-perfect cor-
relation with the metrics when presented with the
same input shows the imporants of exploring more
complex architectures or optimization approaches.

Limitations

Although our model outperformed the simple base-
lines in ME and QE, it provides less explainability
because a specific QE output can not be linked eas-
ily to input features. The model also required much
longer training6 while the baselines just need a sim-
ple featurizer, MT intrinsic features and can run the
linear regression fitting on a CPU. Nevertheless, the
largest computational bottleneck in this research
has been running the MT system inference6 rather
than training the individual models.

Concerns have long been raised about using
segment-level metrics/evaluations because of the
large variance (Lavie, 2010). However, we find that
for automated metrics, our models are still able to
deal with this variance.

Ethics statement

Detailed error analysis should always be performed
before deploying a quality estimation system in
machine translation production pipelines.
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Figure 7: Four features based on properties of the gen-
erated hypothesis space: mean and variance of either
H1 (top hypothesis) or all pairs. The used metric (any
hyp-ref-based) considers one of the hypotheses in a pair
as the reference.

0.5k 1k 2k 5k 10k 13k
Fine-tuning data size

0.05

0.10

0.15

0.20

0.25

z-
sc

or
e 

co
rre

la
tio

n

BLEU
BLEURT

ChrF
METEOR

COMET
TER

human
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5 runs. Error bars show a 95% confidence interval of
the mean. Error bars shown only for BLEU and human
for clarity.

A Reproducibility

We compute metric scores using SacreBLEU (Post,
2018) with the following signatures:

• All: nrefs:1 | version:2.2.0

• BLEU: case:mixed | eff:yes |
tok:13a | smooth:exp

• ChrF: case:mixed | eff:yes |
nc:6 | nw:0 | space:no

• TER: case:lc | tok:tercom |
norm:no | punct:yes | asian:no

For baseline experiments, multilingual
version of BERT was used: bert-base-
multilingual-cased. Translations using
T5-small are done with the prefix “translate
English to German:”. For other translation
models, we used the following models available
on torch.hub under the pytorch/fairseq
namespace (Ott et al., 2019):

• dynamicconv.glu.wmt16.en-de
• conv.wmt17.en-de
• transformer.wmt16.en-de
• transformer.wmt18.en-de

B Model details

The metric/quality estimation model specifics are
shown in Table 5. Additionally, we concatenate
all forward and backward hidden states from both
LSTM layers. A non-standard choice was to use
sigmoid as the final activation function which
worked better than just the linear output.7 However,
we also rescaled and centered it in case of BLEU,
ChrF and METEOR so that scores of 0 and 100
are attainable. We eventually did not use this in
the main experiments so that a single model setup
could be used for all metrics. All models are trained
with early stopping of 10 epochs. The optimiza-
tion loss is mean squared error. Our used model is
fairly small in comparison to other models, such as
those utilizing the Transformer architecture. This
was an intentional choice with respect to the small
amount of data used. The hyperparameters were
chosen manually by best practices with respect to
final metric correlation (5 trials).

Optimizer Adam (Kingma and Ba, 2015)

Learning rate 10−6

Batch size 10 (0-padded to longest)

Vocab size (BPE) 8192
Vocab embedding 512
LSTM Hidden state 128

2 bidirectional layers
LSTM dropout 20% inter-layer

75% final hidden state
Fusion Concatenate (512 + 6)
Linear 518→ 100
Activation ReLU
Linear 100→ 1 (6/7 for multi)

Table 5: Metric/quality estimation model details.

The TF-IDF featurizer in the linear regression
TF-IDF baseline uses variable maximum number
of features and the best-performing one is chosen.
The search is logarithmical from 24 to 214.

7This is dissimilar to the baseline model where linear re-
gression worked better than logistic regression even in the
case of metrics with bounded output range.
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C Results for other language pairs

The paper used figures and examples from the
English→German language direction. To replicate
the findings, we translate 500k sentences for the fol-
lowing language directions, models and datasets:8

• German↔ English (WMT14)
transformer.wmt19.{de-en,en-de}

• German↔ Polish (opus_paracrawl)
Helsinki-NLP/opus-mt-{de-pl,pl-de}

• Chinese↔ English (CCMatrix)
Helsinki-NLP/opus-mt-{zh-en,en-zh}

• Czech↔ English (WMT14)
Helsinki-NLP/opus-mt-{cs-en,en-cs}

• Russian↔ English (WMT14)
transformer.wmt19.{en-ru,ru-en}

• French↔ English (WMT14)
Helsinki-NLP/opus-mt-{fr-en,en-fr}

• Hindi→ English (CCMatrix)
Helsinki-NLP/opus-mt-{hi-en,en-hi}

The results for metric estimation for all metrics
and language directions are shown in Figure 9. In
comparison to the other languages, the chosen lan-
guage pair in the paper (En→ De) is more conser-
vative than the other language pairs, which achieve
higher correlations across most metrics. Most of
them achieve > 50% correlation, though specifi-
cally COMET appears to be more predictable for
other language pairs. These results confirm the
main results of predictability of the metric without
having access to the reference.

D Confidence Estimation for Metric
Estimation

Quantifying the confidence of the prediction can
be crucial in downstream applications. For exam-
ple, if a quality estimator has low confidence or is
predicted to not be accurate, the decision regarding
the quality of translation should be delegated to
humans. We attempt to do this by training an auxil-
iary model to predict the confidence of the output
score. We do this by training a logistic regression
classifier which takes as input the final layer (λ) of
our metric estimator and is trained to predict the

8WMT14 (Bojar et al., 2014), Opus Paracrawl (Tiedemann,
2012; Bañón et al., 2020), CCMatrix (Schwenk et al., 2021;
Fan et al., 2021).
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Figure 9: Correlations with metrics and human judge-
ment of main metric estimation (ME) models on other
languages. Each bar is a separate model trained to pre-
dict a particular metric or human judgement.

binary label: if the predicted metric fBLEU(s, h, r)
is close to the true metric ME(s, h).

P(|ME− fBLEU| ∈ [0,ME(s, h)× 10%])

= σ(W T · λ+ b)

We, unfortunately, find that the classifier suffers
from a very low accuracy 63.4% against a most
common class (negative) baseline of 51.6%. It
therefore cannot be meaningfully used to ascertain
when our regressor is correct and when it is not.
Glushkova et al. (2021) propose a more complex
solution and exploit uncertainty methods for MT
metric and quality estimation systems.
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Abstract
Non-autoregressive machine translation (NAT)
has recently made great progress. However,
most works to date have focused on standard
translation tasks, even though some edit-based
NAT models, such as the Levenshtein Trans-
former (LevT), seem well suited to translate
with a Translation Memory (TM). This is the
scenario considered here. We first analyze the
vanilla LevT model and explain why it does
not do well in this setting. We then propose a
new variant, TM-LevT, and show how to effec-
tively train this model. By modifying the data
presentation and introducing an extra deletion
operation, we obtain performance that are on
par with an autoregressive approach, while re-
ducing the decoding load. We also show that
incorporating TMs during training dispenses
to use knowledge distillation, a well-known
trick used to mitigate the multimodality issue.

1 Introduction

Non-autoregressive neural machine translation
(NAT) has been greatly advanced in recent years
(Xiao et al., 2022). NAT takes advantage from par-
allel decoding to generate multiple tokens simulta-
neously and speed up inference. This is often at the
cost of a loss in translation quality when compared
to autoregressive (AR) models (Gu et al., 2018a).
This gap is slowly closing and methods based on
iterative refinement (Ghazvininejad et al., 2019;
Gu et al., 2019; Saharia et al., 2020) and on con-
nectionist temporal classification (Libovický and
Helcl, 2018; Gu and Kong, 2021) are now reporting
BLEU scores similar to strong AR baselines.

Most works on NAT focus on the standard ma-
chine translation (MT) task, where the decoder
starts from scratch, with the exception of Susanto
et al. (2020); Xu and Carpuat (2021), who use
NAT to integrate lexical constraints in decoding.
However, edit-based NAT models, such as the Lev-
enshtein Transformer (LevT) of Gu et al. (2019),
seem to be a natural candidate to perform MT with

Translation Memories (TM). LevT is able to itera-
tively edit an initial target sequence by performing
insertion and deletion operations until convergence.
This design also matches the concept of using TMs
in MT, where given a source sentence, we aim to
edit a candidate translation retrieved from the TM.

This idea has been used for decades in the lo-
calization industry and implemented into basic
Computer-Aided Translation tools. Translators
wishing to translate a sentence can benefit from
fuzzy matching techniques to retrieve similar seg-
ments from the TM. These segments can then be
revised, thereby improving productivity and consis-
tency of the translation process (Koehn and Senel-
lart, 2010; Yamada, 2011). The retrieval of similar
examples from a TM has also proved useful in con-
ventional (AR) neural MT systems; they can be
injected into the encoder (Bulte and Tezcan, 2019;
Xu et al., 2020) or as priming signals in the decoder
(Pham et al., 2020) to influence the translation pro-
cess. These studies report significant gains in trans-
lation performance in technical domains, where
the translation of terms and phraseology greatly
benefits from examples found in a TM.

Our main focus in this work is to develop an
improved version of LevT suited to the revision
part of TM use, where the translation retrieved
from TM is modified via edit operations in a non-
autoregressive way. We first show that the original
LevT cannot perform well on this task and explain
that this failure is a direct consequence of its train-
ing design. We propose to fix this issue with TM-
LevT, which includes an additional deletion step.
Next, we propose to further improve the training
procedure in two ways: (a) by also including the re-
trieved candidate translation on the source side, as
done in AR TM-based approaches (Bulte and Tez-
can, 2019; Xu et al., 2020); (b) by simultaneously
training with empty and non-empty initial target
sentences. In our experiments, TM-LevT achieves
performance that is on par with a strong AR ap-
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proach on various domains when translating with
TMs, with a reduced decoding load. We also ob-
serve that incorporating an initial translation both
on the source and target sides makes Knowledge
Distillation (KD, Kim and Rush, 2016) useless.
This contrasts with standard NAT models, which
rely on KD to alleviate the multimodality issue (Gu
et al., 2018a). As far as we know, this work is the
first to study NAT with TMs in a controlled setting.

Our contributions are the following: (a) we show
that the original LevT training scheme is not suited
to edit similar translations from a TM; (b) we pro-
pose a variant of LevT, TM-LevT with an improved
training procedure, which yields performance that
are close, or even similar to AR approaches when
translating with good TM matches, with a reduced
decoding load; (c) we highlight the benefits of
multi-task training (with and without TMs) to attain
the best performance; (d) we discuss the reasons
why KD hurts the training of NAT with TMs.

2 Using Translation Memories in NAT

2.1 Background
TM Retrieval Given a source sentence f , we aim
to retrieve a good match ẽ from the TM. For this,
we search the TM for a pair of sentences (f̃ , ẽ),
where f̃ is similar to f . The corresponding target
ẽ is then used to initiate the translation of f . We
compute the similarity between f and f̃ as:

sim(f , f̃) = 1− ED(f , f̃)

max(|f |, |̃f |)
, (1)

where ED(f , f̃) is the edit distance between f and
f̃ , and |f | is the length of f . The intuition is that
the closer f and f̃ are, the more suitable ẽ will
be. As is custom, we only use TM matches when
the similarity score exceeds a predefined threshold,
otherwise we translate from scratch. We discuss
the effect of the match similarity in Section 4.5.

Levenshtein Transformer LevT is an edit-
based NAT model proposed by Gu et al. (2019). It
performs translation by iteratively editing an initial
target sequence with insertion and deletion opera-
tions until convergence. The insertion operation is
composed of a placeholder insertion module and
a token predictor. The placeholder classifier pre-
dicts the number of additional tokens that need to
be inserted between any two consecutive tokens in
its input sequence. The token predictor then gen-
erates a token for each placeholder position. The

deletion operation aims to detect prediction errors
made by the model. It makes a binary decision for
each token, indicating whether it should be deleted
or kept. During training, a noised initial target se-
quence e′ is first generated by randomly dropping
tokens from the reference e. The insertion mod-
ules learn to reinsert the deleted tokens into e′. The
deletion operation is then trained to erase erroneous
predictions made during insertion.

During inference, LevT starts with an empty tar-
get sequence (e′ = []) and generates the translation
by alternatively performing deletion and insertion
operations until convergence or a maximum num-
ber of decoding rounds is reached. In the first
iteration, the deletion is omitted, as no tokens can
be deleted from the empty sequence. This iterative
refinement procedure converges when the input and
output of one iteration are the same, either because
LevT predicts nothing to delete and to insert, or
because it enters a loop where the deleted tokens
are reinserted in the same round. Unlike almost all
other NAT models, LevT does not require any ex-
ternal prediction of the target length, as the number
of target tokens is iteratively revised and adjusted
by the placeholder prediction module. We refer to
Gu et al. (2019) for more details about LevT.

2.2 Deficiencies of LevT Training
Even though the edit-based nature of LevT makes
it readily able to translate with TMs, it has mostly
been applied to standard MT, where the decoder
starts with an empty sentence.1 This is consistent
with the overall training scheme, illustrated in Fig-
ure 1 (Vanilla LevT), where inputs for the place-
holder insertion module are always subsequences
of the reference and the deletion module only sees
the outputs of the previous token insertion step.

Settings Empty Random Sent Shuffle Ref
Init - 1.3 5.0
LevT 45.4 2.1 40.2
LevT vs Init - 90.4 9.4

Table 1: BLEU scores of LevT decoding with various
target initialization. Empty refers to standard LevT in-
ference with an empty start. Random Sent uses a ran-
dom sentence as initial target. Shuffle Ref starts with a
random shuffle of the reference translation. Init reports
the BLEU score of the initialization, while LevT vs Init
compares LevT’s outputs with their starting points.

To illustrate the deficiency of this training
1One notable exception is the attempt in Gu et al. (2019)

to perform automatic post-editing through iterative revisions.
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TM-LevT encoder

Un chat dort. [sep] A cat is eating.

f ẽ

A cat is sleeping.e

• e' =  eẽ  
• e'' is obtained from e' by applying 
      deletions from Pred and Ref labels. 
• e''' is obtained from e'' by inserting  
      placeholders from Ref labels. 
• e'''' is obtained from e''' by replacing 
      placeholders with Pred labels.

.eatingcatA is

Initial Deletion (init-del)

0001 0
0100 0

e'

Ref:
Pred:

.cat is

Placeholder Insertion

010 0
011 0

e''

Ref:
Pred:

.cat is

Token Prediction

sleepingThe
sleepingA

[] []

Ref:
Pred:

e'''

.sleepingcatThe is

Final Deletion (final-del)

0001 0
0001 0Ref:

Pred:

e''''

Vanilla
LevT

Union

Figure 1: A complete training step for TM-LevT. Compared to the original LevT which starts training from e′′,
TM-LevT adds the init-del step to delete unrelated tokens from a TM match. Figure better viewed in color.

scheme, we learned a vanilla LevT model using the
datasets of Section 3.1 and initialized the decoder
with a sentence randomly selected from the test set
and totally unrelated to the source sentence. We
observe (Table 1, Random Sent) that LevT’s out-
puts are almost as bad as their starting point. This
is because the deletion module fails to delete irrele-
vant input words, presenting the insertion modules
with a fully fluent yet fully inadequate sequence
that the insertion module is hard-pressed to revise.
This contrasts with the Shuffle Ref scenario, where
the decoder starts with a random shuffle of the ref-
erence. LevT can now make changes during the it-
erative refinement and generates translations (40.2
BLEU) that are close to standard decoding (45.4
BLEU). The TM-based scenario discussed below
presents the same challenge for the deletion mod-
ule, that of spotting and deleting irrelevant words.
Our proposal will first focus on fixing this issue.

2.3 Improving Editions with TM-LevT

The experiment of previous section suggests that
LevT will have issues editing TM matches, as they

often contain tokens that are unrelated to the source
and should be removed (see Figure 1 for an ex-
ample TM match ẽ containing an unrelated word
"eating"). The distribution of unrelated tokens may
greatly differ from token prediction errors made by
LevT, which are tokens LevT is trained to delete.

We propose a variant of LevT denoted TM-LevT,
where we include an extra deletion step (init-del)
that applies before the insertion modules. As shown
in Figure 1, init-del is trained to detect unrelated
tokens from the initial e′, whereas the final deletion
(final-del) focuses on prediction errors. During
training, we generate examples for the insertion
modules by removing from e′ tokens that either are
not in the reference, or should be deleted according
to the init-del operation. The resulting subsequence
e′′ is then used to train the insertion operation. TM-
LevT does not change the number of parameters, as
we use the same classifier for the init-del and final-
del steps. During inference, TM-LevT behaves
exactly as LevT, iteratively applying deletions and
insertions to an initial candidate translation.
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2.4 Translating with or without TM Matches

In practical applications, two modes of operations
need to be supported. The first is when a good
match is found in the TM and used to initialize
the decoding (e′ = ẽ). Revising e′ may imply to
delete or insert tokens, which is what the system
is trained for. It may also imply to move words
around, which is achieved by a succession of dele-
tion and insertion. However, as these operations
are performed independently, there is no guaran-
tee that the deleted words will be memorized for
subsequent insertions, causing the loss of relevant
words in the process. This is again illustrated in
Table 1 (Shuffle Ref) where we see that even when
given all the reference tokens (in random order),
LevT still underperforms translating from scratch.
To mitigate this risk, we augment the source side
with the initial TM match, ensuring that ẽ is always
fully available to the decoder. Following the pro-
posal of Bulte and Tezcan (2019); Xu et al. (2020)
for AR models, this is performed by concatenating
f and ẽ on the encoder side (see Figure 1).

The second mode of operation is when no appro-
priate match is found, causing the system to fall
back to a standard MT regime. In order to handle
both situations in a single model, we resort to multi-
task training and prepare our training samples as
follows: with probability p = 0.5, we decide either
to decode with a retrieved TM match ẽ or from
scratch. In the former case, the decoder is initial-
ized with ẽ, while in the latter, we use a noised
subsequence e′ generated as in (Gu et al., 2019).
TM-LevT is then jointly trained on both tasks.

3 Experiments

3.1 Datasets

Our experiments use the same corpus as Xu et al.
(2020), and contains texts from a diverse set of 11
domains for the English-French direction, down-
loaded from OPUS2 (Tiedemann, 2012): docu-
ments from the European Central Bank (ECB);
from the European Medicines Agency (EMEA);
Proceedings of the European Parliament (Epps);
legislative texts of the European Union (JRC);
News Commentaries (News); TED talk subtitles
(TED); parallel sentences extracted from Wikipedia
(Wiki); localization files (GNOME, KDE and
Ubuntu) and manuals (PHP). We include both tech-
nical domains, for which good matches are likely

2https://opus.nlpl.eu/

to exist, and more "general" domains (Epps and
News), for which useful TM matches are harder to
find, allowing us to explore the benefits of using
TMs for a variety of conditions. All these data are
deduplicated prior to training.

For each source sentence, we retrieve from the
same domain the top 3 TM matches according to
the similarity score of Equation (1), further requir-
ing a score of 0.4 ≤ sim<1. For each domain, we
prepare two test sets with 1,000 sentences each:
one contains randomly selected sentences with a
close match (sim>0.6) in the TM, the other with an
acceptable match (sim∈[0.4, 0.6]). We also leave
a held-out set of 1,000 sentences per domain, for
which no matches of sim≥0.4 are found. The re-
maining data is used for training. Note that the ratio
of sentences with at least one TM match greatly
varies across domains. Detailed statistics about
these corpora are in Appendix A. We use all re-
trieved TM matches (up to 3) for training and only
the best match for test. Therefore, a source training
sentence with 3 TM matches yields 3 training sam-
ples. The initial set of 4.4M parallel data is thus
extended with about 5M examples augmented with
a TM match. We tokenize all data using the Moses
tokenizer3 and build a shared source-target vocabu-
lary with 32K Byte Pair Encoding units (Sennrich
et al., 2016) learned with subword-nmt.4

3.2 Experimental Settings

We compare TM-LevT with a strong AR approach
(Bulte and Tezcan, 2019) and the original LevT
model.5 These baselines use the same training
data as TM-LevT, and also process examples with
and without TM matches. For the AR model, TM
matches only appear concatenated to the source
sentence and translation always starts from scratch;
for LevT, we test both cases where the decoder is
initialized with and without TM matches.

TM-LevT is based on the Transformer archi-
tecture (Vaswani et al., 2017), implemented with
fairseq6 (Ott et al., 2019).7 We use a hidden size
of 512 and a feedforward size of 2,048, optimiz-
ing with Adam with a maximum learning rate of
0.0005, an inverse square root decay schedule, and

3https://github.com/moses-smt/mosesdecoder
4https://github.com/rsennrich/subword-nmt
5https://github.com/facebookresearch/fairseq/

tree/main/examples/nonautoregressive_translation
6https://github.com/pytorch/fairseq
7Our implementation is open-sourced at https://github.

com/jitao-xu/tm-levt.
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w/o TM ECB EMEA Epps GNOME JRC KDE News PHP TED Ubuntu Wiki All
copy 59.8 64.5 34.4 70.3 67.6 55.3 12.0 38.6 30.8 51.6 47.4 52.6
AR 58.7 53.8 55.8 55.0 68.8 53.9 27.1 18.2 62.0 54.0 65.0 51.2
LevT 46.6 30.7 51.8 51.0 62.3 47.0 23.6 12.5 58.7 50.0 61.9 46.5
TM-LevT 53.0 49.7 53.2 51.5 64.7 50.8 24.5 37.1 59.5 50.4 64.0 52.6
w/ TM ECB EMEA Epps GNOME JRC KDE News PHP TED Ubuntu Wiki All
AR 71.9 72.0 58.9 80.1 83.2 67.3 28.8 44.7 63.3 67.6 68.6 67.1
LevT 62.4 53.8 55.5 77.5 78.8 63.3 26.1 28.7 60.2 66.0 67.1 60.4
+tgt TM 60.2 63.8 34.8 69.6 67.7 54.5 12.5 38.8 31.1 52.1 47.5 52.8

TM-LevT 69.8 72.2 56.0 78.1 82.2 68.2 26.0 44.1 60.3 66.3 68.7 65.9

Table 2: BLEU scores for each domain when performing translation without and with TMs for sim > 0.6. All is
computed by concatenating all test sets (11k sentences in total). Copy refers to using the TM match ẽ as the output.

10,000 warm-up steps. We share the decoder pa-
rameters for both two deletions and the insertion
operation and also tie all input and output embed-
ding matrices (Press and Wolf, 2017). We train
TM-LevT for 300k iterations with a batch size of
8,192 tokens per GPU on 8 V100 GPUs. For in-
ference, we use a maximum iteration number of
10 for TM-LevT and LevT, and a beam size of 5
for the AR decoder. We use a batch size of 8,192
tokens and perform inference on one single GPU
for all compared models. The vanilla LevT model
is trained similarly, while the AR model (Bulte and
Tezcan, 2019) is trained with a maximum learning
rate of 0.0007, with 4,000 warmup steps for 300k
iterations on 4 V100 GPUs. We report results of a
do-nothing baseline which simply copies the TM
matches as outputs. Performance is measured with
BLEU using SacreBLEU8 (Post, 2018) and with
COMET (Rei et al., 2020).

4 Results and Analyses

4.1 NAT Can Benefit from TMs

We evaluate the performance of standard MT and
TM-based MT on the two test sets (sim>0.6 and
sim∈[0.4, 0.6]) introduced in Section 3.1. When
performing standard MT, the source side only con-
tains the source sentence for all models, and the
decoder side of TM-LevT is initialized with an
empty input. When translating with TMs, the TM
match is concatenated to the source sentence for all
models. TM-LevT is additionally initialized with
the TM match on the decoder side, a setting we also
consider for LevT (+tgt TM). Table 3 reports the
aggregated results computed on all domains (11k
sentences). The results for each domain when trans-
lating with and without TMs on sim>0.6 are in Ta-

8SacreBLEU signature: BLEU+case.mixed+lang.en-
fr+numrefs.1+smooth.exp+tok.13a+version.1.5.1

ble 2. The corresponding results with a breakdown
by domain for sim∈[0.4, 0.6] are in Appendix B.

As reported in Tables 3 and 2, the AR with TM
baseline yields much higher BLEU and COMET
scores than the standard MT setting. LevT can also
make good use of TM matches, but its performance
lags way behind the AR strategy in both settings.9

Scores in Table 2 show that for domains like ECB
and EMEA, it is difficult for LevT to generate good
translations without using TMs, while for more
general domains like News, the performance gap
between LevT and AR are less significant.

sim > 0.6 sim ∈ [0.4, 0.6]

BLEU ↑ w/o TM w/ TM w/o TM w/ TM
copy - 52.6 - 34.5
AR 51.2 67.1 46.1 55.7
LevT 46.5 60.4 40.8 49.3

+tgt TM - 52.8 - 35.0
TM-LevT 52.6 65.9 45.7 53.3
COMET ↑ w/o TM w/ TM w/o TM w/ TM
copy - 0.1330 - -0.3784
AR 0.6143 0.6985 0.5379 0.5900
LevT 0.4251 0.5767 0.3429 0.4404

+tgt TM - 0.1639 - -0.3478
TM-LevT 0.5314 0.6454 0.4263 0.4889

Table 3: BLEU and COMET scores on multi-domain
test sets for various TM similarity ranges. w/o TM is
standard MT, w/ TM adds a retrieved match ẽ on the
source side, and use it as initial target for TM-LevT.
+tgt TM refers to using TM match as the initial target
for LevT.

TM-LevT, on the contrary, does remarkably well
when translating from scratch, even surpassing the

9We use the fairseq source code released by Gu et al.
(2019) to train the LevT model. We have performed a sanity
check by training a LevT model on the WMT14 English-
German data and obtained results that are about 2 BLEU
points below the scores reported in Gu et al. (2019). As Gu
et al. (2019) have not specified the tool used to compute BLEU
scores, it is difficult to make a more precise comparison.
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AR model on BLEU on the sim>0.6 set, which
is arguably easier. When using TM matches, TM-
LevT also performs much better than LevT. We
achieve BLEU scores of only 1.2 and 2.4 below
AR for sim>0.6 and sim∈[0.4, 0.6], respectively
(Table 3). The effect of using TM matches greatly
varies across domains. TM-LevT can improve
more general domains like News and Wiki when
using TMs (Table 2), even though the performance
gains are less significant than for more specific
domains like ECB and KDE. However, the same
trend is also observed for AR, and TM-LevT even
surpasses AR on Wiki in Table 2. The gap in
COMET score between TM-LevT and AR is also
much smaller than reported by Helcl et al. (2022),
indicating that TM-LevT outputs valid translations.

Unrelated Tokens AR approaches are known
to improperly copy "unrelated tokens" from TM
matches into the output (Xu et al., 2020). As TM-
LevT includes the deletion operation, we expect
it to properly delete unrelated tokens. We define
unrelated tokens as those present in ẽ but not in
e and count the ratio of such tokens that appear
in the final translation. This is different from Xu
et al. (2020), as they used a word alignment model
to label tokens that are unrelated to the "source".
We have re-implemented the same method, but the
alignment model was never perfect and yielded ad-
ditional errors, which led to an imprecise measure
of unrelated tokens. Table 4 reports the ratio of
such unrelated tokens: TM-LevT is slightly less
prone than AR to recopy unrelated parts of the TM
matches in both test sets. LevT does even better
on that account, but its comparatively lower BLEU
scores suggest that it also discards valid tokens.

Unrelated rate ↓ sim > 0.6 sim ∈ [0.4, 0.6]

AR 28.42 17.78
LevT 21.39 13.74
TM-LevT 26.67 16.56

Table 4: Percentage of unrelated tokens from the re-
trieved TM matches appearing in the final translations.

4.2 Ablation Analysis

We conduct an ablation analysis to study the ef-
fectiveness of each component of our method, by
training a new model for each contrast. Training
without TM matches on the target side (Table 5, -tgt
TM) vastly degrades the performance in both condi-
tions (w/ and w/o TM), indicating that the standard

sim > 0.6 sim ∈ [0.4, 0.6]

BLEU w/o TM w/ TM w/o TM w/ TM
TM-LevT 52.6 65.9 45.7 53.3

-tgt TM 46.6 60.7 40.7 49.6
-src TM 53.2 64.3 45.9 52.2
-final-del 38.5 64.2 32.7 50.8
-self-pred 52.6 65.2 45.6 52.7

Table 5: BLEU scores for various configurations. -tgt
TM (resp. -src TM) is the model trained without TM
match on the target (resp. source) side. -final-del is
trained without the final-del operation, -self-pred only
applies reference deletions during training.

MT can also benefit from training with TMs as ini-
tial targets. However, removing TM matches on the
source side (-src TM) improves standard MT, as
also observed by Bulte and Tezcan (2019), but has
a negative impact when translating with TMs. This
highlights the importance of always remembering
the TM match on the source side of TM-LevT.

We also compare with alternative implementa-
tions of the deletion operation. Results in Table 5 (-
final-del) show that removing the final deletion step
mostly impacts TM-LevT in the standard MT set-
ting, where the detection of wrong predictions mat-
ters most (Huang et al., 2022). This further demon-
strates that unrelated tokens from TM matches and
the prediction errors of the model are vastly differ-
ent, and training to delete both is necessary. Last,
we experiment with using only reference deletion
labels to train the insertion operation, instead of us-
ing both the reference and model predictions (see
Section 2.3). We observe (-self-pred) a small per-
formance drop with respect to the baseline policy.

4.3 Knowledge Distillation

KD is used in most NAT models, as it reduces the
complexity and lexical diversity of target sentences,
thereby helping NAT approaches to mitigate the
multimodality issue (Zhou et al., 2020; Xu et al.,
2021). Given that our results so far have only relied
on actual target data, we thus ask whether KD could
also improve the performance of TM-based NAT.
We train a teacher Transformer-based model with
the 4.4M parallel data and use it for data distillation.
As expected, using KD does improve BLEU scores
of TM-LevT on standard MT (Table 6). However,
using KD hurts performance when editing an ini-
tial similar translation, resulting in a large drop in
scores compared to using real data. Applying KD
also to TM matches yields similar results.

The benefits of KD are assumed to mainly reduce
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SRC Measures to reduce or eliminate releases from unintentional production
TM match Measures to reduce or eliminate releases from intentional production and use
sim=0.73 Mesures propres à réduire ou éliminer les rejets résultant d’une production et d’une utilisation intentionnelles
TM-LevT Mesures visant à réduire ou à éliminer les disséminations de la production non intentionnelle

+TM Mesures propres à réduire ou éliminer les rejets résultant d’une production non intentionnelle
KD Mesures visant à réduire ou à éliminer les rejets de la production non intentionnelle

+TM Mesures visant à réduire ou à éliminer les rejets provenant de la production non intentionnelle
REF Mesures propres à réduire ou éliminer les rejets résultant d’une production non intentionnelle

Figure 2: An example with the retrieved TM match and translations generated by TM-LevT and KD model. Bene-
fits taken from the TM match by TM-LevT are in blue. Segments KD model fails to make use of are in red.

sim > 0.6 sim ∈ [0.4, 0.6]

BLEU w/o TM w/ TM w/o TM w/ TM
copy - 52.6 - 34.5
Teacher 56.7 - 49.6 -
AR + KD 55.7 56.9 48.7 49.4
TM-LevT 52.6 65.9 45.7 53.3

+KD 54.3 57.1 47.6 49.3
+KD TM 53.8 56.0 47.3 48.5

Table 6: BLEU scores with and without KD. Teacher is
the teacher model used to distill the parallel data. +KD
applies KD to the training references, +KD TM applies
KD to both references and TM matches.

the multimodality issue in NAT (Zhou et al., 2020).
This issue may be less problematic in our context,
as the TM match already provides an explicit and
often unambiguous context for generating the miss-
ing words in the translation. In this case, KD is
even detrimental to the translation quality. This
is because using distilled references exposes TM-
LevT to imperfect translations (with BLEU scores
of respectively 56.7 and 49.6), only a few points
better than the initial TM matches (copy in Table 6).
This seems to limit TM-LevT’s ability in learning
to generate very high quality translation that it can
achieve when exposed to real references (+8.8 and
+4 BLEU on sim>0.6 and sim∈[0.4, 0.6], respec-
tively). For comparison, we also train an AR model
using the same KD data (AR + KD) and again ob-
serve very little gain when translating with TMs.
In fact, the limit of models using KD data, whether
using TMs or not, seems to be upper-bounded by
the performance of the teacher. These intuitions
are illustrated by the example in Figure 2.

4.4 Computational Trade-offs of TM-LevT

Inference speedup is the main advantage of using
NAT models. Table 7 compares the average decod-
ing time per sentence on all domains.10 Here, we

10We exclude PHP, for which AR generates many repeti-
tions, yielding very long runtimes that biased the average.

perform the inference speed analysis as a sanity
check. As discussed by Kasai et al. (2021), Helcl
et al. (2022) and Schmidt et al. (2022), comparing
the inference speed for NAT models could be tricky.
We follow here the recommendations of Helcl et al.
(2022) and use the same hardware conditions and
inference batch size for all settings, making our re-
sults as comparable as possible. TM-LevT is much
faster than AR both with and without TMs. We
also note that decoding with a TM match is always
slightly longer due to (a) finding matches; (b) en-
coding a longer input made of the source and the
TM match.11

Settings AR TM-LevT Speedup
w/o TM 5.91 2.53 ×2.34
w/ TM 7.80 3.43 ×2.28

Table 7: Average decoding time (ms) per sentence for
all domains of both sim > 0.6 and sim ∈ [0.4, 0.6].

sim > 0.6 sim ∈ [0.4, 0.6]

Systems w/o TM w/ TM w/o TM w/ TM
LevT 2.027 1.899 2.544 2.538
TM-LevT 1.781 1.348 2.260 1.880

Table 8: Average number of decoding iterations.

Using TMs in MT is expected to improve the
translation quality while also reducing the decoding
load, as useful tokens can be directly copied to the
output. This is not observed in AR approaches nor
in the original LevT, as both models always start
inference with an empty input. TM-LevT, however,
uses an initial translation to speed up decoding. We
report the average number of iterations required in
inference in Table 8, where we see that translating
with TMs reduces the decoding effort for TM-LevT
by about 20%, while it remains almost unchanged
for LevT. We also find that TM-LevT needs fewer

11The numbers in Table 7 only reflect the effect of (b), as
step (a) is the same for both AR and NAT models.
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iterations to converge than LevT in all conditions.
Note that the training time of TM-LevT is only
1.1-1.2× compared to LevT, which we think is an
acceptable overhead considering the large perfor-
mance gains and the reduction of decoding load.

4.5 Good Matches Increase MT Quality

TM-based models require good TM matches to
improve their translations; when none is found,
standard MT can be used instead. Defining the
minimal similarity for a match to be useful (0.4
in this paper) requires some tuning and the best
threshold may vary from corpora to corpora. In
this section, we take a closer look at the effect of
thresholding for the AR and NAT models consid-
ered here. We compute the best TM match for the
held-out set of Section 3.1, trying to find a matched
translation for all sentences without any filtering.
We then combine the held-out set with the two test
sets (sim>0.6 and sim∈[0.4, 0.6]) and bucket sen-
tences by the similarity of the best TM match. For
each bucket, we compute BLEU scores obtained
for various systems and plot results on Figure 3.
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Figure 3: BLEU scores when translating with TM
matches of various similarity ranges. The Copy strat-
egy uses the retrieved example as the final translation.

We first observe that the scores of all systems,
even those that do not use TMs, increase with bet-
ter TM matches: this is because test sentences with
better matches are also more similar to the training
data, thus easier to translate for all systems. Sec-
ondly, even with very good matches, both models
using TMs are able to improve over the Copy strat-
egy. Comparing AR to TM-LevT, we see that the
former is preferable across the board, even though
the gap closes when very good matches are avail-

able. The TM-based AR model is almost as good
as standard MT for poor matches and starts improv-
ing standard MT when sim≥0.4. In comparison,
we see for TM-LevT a small edge of standard MT
over translating with TMs which subsists as long
as sim<0.5; for higher similarity matches, trans-
lating with TMs gets much better scores. These
results suggest that thresholding may not be nec-
essary and that both TM-based architectures adapt
their behavior to the match quality, with hardly any
performance loss w.r.t. the standard MT approach.

5 Related Work

TM-based MT Most studies using TM sen-
tences to improve translations are based on AR
models and either use a second encoder to integrate
the TM match or concatenate it to the source in
the same encoder. The former approach is illus-
trated by Gu et al. (2018b), who rerun the trans-
lation model as an encoder to encode the similar
translation. Xia et al. (2019) alternatively use a
compact graph as the second encoder. Another
work along this line is He et al. (2021), which en-
codes the TM match using the decoder embedding
matrix and performs a cross-attention between the
decoder input and the encoded TM match. Be-
sides, Cai et al. (2021) directly search in a corpus
of target sentences with a cross-lingual similarity
and encode the resulting sentences with a dual en-
coder approach similar to Junczys-Dowmunt and
Grundkiewicz (2018). Single encoder approaches
are first explored by Bulte and Tezcan (2019), who
concatenate the TM match with the source to per-
form TM-based MT. This idea is extended by Xu
et al. (2020) by adding a second embedding feature
to distinguish related and unrelated tokens and by
Pham et al. (2020), who use both source and target
sentences of the matched TM. Zhang et al. (2018)
explore a different direction to improve translation
with retrieved segments instead of complete sen-
tences. Khandelwal et al. (2021) further propose
k-nearest neighbor MT by searching for target to-
kens that have similar contextualized representa-
tions at each decoding step, an approach contin-
ued by Zheng et al. (2021) with dynamic neighbor-
hoods.

NAT with Augmented Resources Several
works have studied ways to integrate extra infor-
mation into NAT architectures, mostly using the
LevT model as their starting point. Susanto et al.
(2020) incorporate lexical constraints with LevT
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by simply initializing the decoder with constraint
words inserted in a predefined order; this limitation
is lifted in the EDITOR model of Xu and Carpuat
(2021), who introduce a repositioning operation
to allow constraints to be inserted in arbitrary
order. Zeng et al. (2022) pay particular attention
to low-frequency constraints by preventing rare
tokens from being removed when generating
training samples for the insertion operation. The
most relevant study to this paper is the recent work
by Niwa et al. (2022), who also seek to improve
LevT with TMs, using good matches to initialize
the decoder. This work only mildly departs from
the vanilla LevT with a small modification of the
deletion operation to remove unrelated tokens
and only compare with standard MT, failing to
contrast their improvements with TM-based AR
models. Finally, Xu et al. (2022) also explore
the integration of TMs into the original LevT
model, but fail to obtain improvements over a copy
baseline.

6 Conclusion

In this paper, we studied ways to augment the LevT
architecture with TMs. Our proposal adds an initial
deletion operation during training to detect possi-
ble unrelated tokens present in TM matches. By
copying the TM match both on the source side
and on the target side as an initial target sequence,
our model vastly outperformed the original LevT
model and achieved BLEU scores approaching
those of a strong AR model both when decoding
from scratch and when editing a TM match. Com-
pared to LevT, TM-LevT also generates transla-
tions that contain less unrelated tokens, and is able
to converge in fewer iterations. We also found that
training with TMs improves NAT performance on
standard MT. Finally, we have tried to combine
KD with our approach, concluding that it was more
hurting than helpful for TM-based architectures.

Limitations

NAT models such as LevT are more difficult to train
than AR models, as they require larger batch size to
converge. Our TM-LevT adds an initial deletion op-
eration during training, therefore slightly lengthen-
ing the training time by approximately 1.1− 1.2×
with respect to the basic LevT model. Due to com-
putational limits, we have not conducted experi-
ments on other language pairs, especially on more
distant language pairs. Even tough our findings ap-

ply for a wide range of domains, considering also
more languages would be helpful to fully validate
our observations.
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A Details of Data Processing

Table 9 reports statistics of the ratio of TM matches
for various similarity ranges of the multi-domain
dataset described in Section 3.1. These ratios vary
greatly across domains.

Domain Raw sim > 0.6 sim ∈ [0.4, 0.6]

ECB 195,956 51.73% 14.06%
EMEA 373,235 65.68% 12.65%
Epps 2,009,489 10.12% 25.30%
GNOME 55,391 39.31% 11.06%
JRC 503,437 50.87% 16.67%
KDE 180,254 36.00% 10.81%
News 151,423 2.12% 9.65%
PHP 16,020 34.93% 12.38%
TED 159,248 11.90% 26.64%
Ubuntu 9,314 20.32% 8.26%
Wiki 803,704 19.87% 17.32%
Total 4,457,471 24.27% 20.00%

Table 9: Dataset statistics, with ratios of sentences with
at least one TM match for various similarity ranges.

B Detailed Results on Each Domain

BLEU and COMET scores for each domain are in
Tables 10, 11, 12, 13. The variation in scores across
domains is large, confirming that TM matches can
be very beneficial for some technical domains (e.g.
ECB, EMEA, GNOME, KDE, JRC), for which
we often find good matches that help to greatly
increase the performance. On the other hand, News,
Wiki and TED yield less matches, and these only
help for both the AR approach and TM-LevT when
the similarity is high (sim > 0.6).
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BLEU ECB EMEA Epps GNOME JRC KDE News PHP TED Ubuntu Wiki All
copy 59.8 64.5 34.4 70.3 67.6 55.3 12.0 38.6 30.8 51.6 47.4 52.6
AR 58.7 53.8 55.8 55.0 68.8 53.9 27.1 18.2 62.0 54.0 65.0 51.2
LevT 46.6 30.7 51.8 51.0 62.3 47.0 23.6 12.5 58.7 50.0 61.9 46.5
TM-LevT 53.0 49.7 53.2 51.5 64.7 50.8 24.5 37.1 59.5 50.4 64.0 52.6
COMET ECB EMEA Epps GNOME JRC KDE News PHP TED Ubuntu Wiki All
copy 0.4006 0.4625 -0.0797 0.4893 0.6893 0.1150 -0.6083 -0.1977 -0.4184 0.3296 0.2843 0.1330
AR 0.6333 0.6402 0.8137 0.7190 0.9057 0.5116 0.3241 -0.0556 0.7848 0.7031 0.7786 0.6143
LevT 0.4251 0.1322 0.7460 0.6181 0.8291 0.3879 0.2037 -0.6139 0.6912 0.5636 0.6947 0.4251
TM-LevT 0.5637 0.5559 0.7513 0.6355 0.8477 0.4218 0.1660 -0.0980 0.6929 0.5768 0.7335 0.5314

Table 10: BLEU and COMET scores for each domain, the task is standard MT with sim > 0.6. All is computed
by concatenating all test sets (11k sentences in total). Copy refers to copying the TM match into the output.

BLEU ECB EMEA Epps GNOME JRC KDE News PHP TED Ubuntu Wiki All
copy 59.8 64.5 34.4 70.3 67.6 55.3 12.0 38.6 30.8 51.6 47.4 52.6
AR 71.9 72.0 58.9 80.1 83.2 67.3 28.8 44.7 63.3 67.6 68.6 67.1
LevT 62.4 53.8 55.5 77.5 78.8 63.3 26.1 28.7 60.2 66.0 67.1 60.4

+tgt TM 60.2 63.8 34.8 69.6 67.7 54.5 12.5 38.8 31.1 52.1 47.5 52.8
TM-LevT 69.8 72.2 56.0 78.1 82.2 68.2 26.0 44.1 60.3 66.3 68.7 65.9
COMET ECB EMEA Epps GNOME JRC KDE News PHP TED Ubuntu Wiki All
copy 0.4006 0.4625 -0.0797 0.4893 0.6893 0.1150 -0.6083 -0.1977 -0.4184 0.3296 0.2843 0.1330
AR 0.7288 0.7211 0.8223 0.9143 0.9954 0.6299 0.3318 0.0801 0.7910 0.8610 0.8110 0.6985
LevT 0.5647 0.3384 0.7608 0.8617 0.9355 0.5683 0.2443 -0.2183 0.7203 0.8091 0.7618 0.5767

+tgt TM 0.4086 0.4573 -0.0075 0.5230 0.7062 0.1437 -0.5679 -0.1957 -0.3328 0.3710 0.3008 0.1639
TM-LevT 0.6792 0.7003 0.7591 0.8699 0.9696 0.6106 0.2093 0.0353 0.6923 0.8155 0.7614 0.6454

Table 11: BLEU and COMET scores for each domain, the task is MT with TMs with sim > 0.6. All is computed
by concatenating all test sets (11k sentences in total). Copy refers to copying the TM match into the output.

BLEU ECB EMEA Epps GNOME JRC KDE News PHP TED Ubuntu Wiki All
copy 47.3 47.6 12.7 52.6 53.0 42.7 5.8 29.7 8.2 35.1 13.0 34.5
AR 52.3 52.7 44.7 54.4 64.7 53.2 30.0 17.9 41.7 49.2 42.2 46.1
LevT 40.7 31.4 42.6 51.0 59.8 46.8 27.6 11.9 38.7 45.7 40.2 40.8
TM-LevT 47.9 47.7 41.5 51.6 61.1 50.1 26.8 34.3 38.0 46.8 41.0 45.7
COMET ECB EMEA Epps GNOME JRC KDE News PHP TED Ubuntu Wiki All
copy 0.0310 0.1527 -0.7608 0.1416 0.1919 -0.1703 -0.9719 -0.6279 -1.1419 -0.1837 -0.8222 -0.3784
AR 0.5229 0.5920 0.7735 0.7048 0.8834 0.5522 0.4688 -0.1819 0.5501 0.6363 0.4157 0.5379
LevT 0.2908 0.1245 0.6996 0.5956 0.8069 0.4140 0.3567 -0.7332 0.3979 0.5194 0.3011 0.3429
TM-LevT 0.4370 0.5231 0.6515 0.6205 0.8116 0.4576 0.2948 -0.2343 0.3655 0.5035 0.2600 0.4263

Table 12: BLEU and COMET scores for each domain, the task is standard MT with sim ∈ [0.4,0.6]. All is
computed by concatenating all test sets (11k sentences). Copy refers to copying the TM match into the output.

BLEU ECB EMEA Epps GNOME JRC KDE News PHP TED Ubuntu Wiki All
copy 47.3 47.6 12.7 52.6 53.0 42.7 5.8 29.7 8.2 35.1 13.0 34.5
AR 62.3 62.8 44.9 69.6 75.4 62.1 29.9 39.2 42.6 58.1 43.9 55.7
LevT 52.3 47.1 42.7 65.7 71.9 57.6 27.5 23.8 39.0 55.0 40.8 49.3

+tgt TM 47.4 48.0 13.2 53.2 53.5 42.9 6.0 29.7 9.1 37.1 13.2 35.0
TM-LevT 59.7 61.9 41.4 68.1 73.0 61.4 26.4 39.1 37.5 56.1 39.7 53.3
COMET ECB EMEA Epps GNOME JRC KDE News PHP TED Ubuntu Wiki All
copy 0.0310 0.1527 -0.7608 0.1416 0.1919 -0.1703 -0.9719 -0.6279 -1.1419 -0.1837 -0.8222 -0.3784
AR 0.5814 0.6607 0.7740 0.8380 0.9220 0.6217 0.4741 -0.1140 0.5543 0.7453 0.4344 0.5900
LevT 0.4283 0.2846 0.6998 0.7697 0.8746 0.5437 0.3660 -0.4900 0.4107 0.6676 0.2910 0.4404

+tgt TM 0.0487 0.1569 -0.7208 0.1883 0.2167 -0.1151 -0.9508 -0.6205 -1.0949 -0.1234 -0.8100 -0.3478
TM-LevT 0.5102 0.6281 0.6368 0.8142 0.8741 0.5814 0.2781 -0.1853 0.3523 0.6727 0.2172 0.4889

Table 13: BLEU and COMET scores for each domain, the task is MT with TMs with sim ∈ [0.4,0.6]. All is
computed by concatenating all test sets (11k sentences). Copy refers to copying the TM match into the output.
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Abstract

The distribution of knowledge elements such
as entity types and event types is long-tailed
in natural language. Hence information extrac-
tion datasets naturally conform a long-tailed
distribution. Although imbalanced datasets can
teach the model about the useful real-world
bias, deep learning models may learn features
not generalizable to rare or unseen mentions
of entities or events during evaluation, espe-
cially for rare types without sufficient training
instances. Existing approaches for the long-
tailed learning problem seek to manipulate the
training data by re-balancing, augmentation or
introducing extra prior knowledge. In compar-
ison, we propose to handle the generalization
challenge by making the evaluation instances
closer to the frequent training cases. We de-
sign a new transformation module that trans-
forms infrequent candidate mention representa-
tion during evaluation with the average mention
representation in the training dataset. Experi-
mental results on classic benchmarks on three
entity or event extraction datasets demonstrate
the effectiveness of our framework. 1

1 Introduction

Long-tailed distributions are common in natu-
ral language processing tasks. This natural phe-
nomenon of long-tailed distribution is formulated
as Zipf’s Law (Reed, 2001). For information ex-
traction, knowledge elements such as entities, re-
lations and events typically conform a long-tailed
distribution in natural language. This leads to the
imbalanced distribution of types in the benchmark
datasets unless manual manipulation is performed
to balance the dataset. We show the entity type
distribution of an entity extraction dataset (Few-
NERD (Ding et al., 2021)), and the event type dis-
tribution of two event extraction datasets (ACE
2005 (Walker et al., 2006) and MAVEN (Wang

1Code is available at https://github.com/
Perfec-Yu/LongTailIE

et al., 2020)) in Figure 1. All three datasets have
similar long-tailed distributions. Among them,
MAVEN and Few-NERD are two relatively large-
scale datasets, but the training mentions are still
concentrated on a small number of frequent types
and majority of the entity/event types are rare types
without sufficient training examples.

Long-tailed distribution is a generic problem not
limited to NLP research. In fact, a lot of previ-
ous work on the long-tailed learning is in the com-
puter vision domain (Lin et al., 2017; Kang et al.,
2020). These approaches consider the imbalance
in the type distribution as the major problem and
are mostly based on balancing the datasets by up-
weighting the rare types and downweighting the
frequent types. However, we argue that this line of
research faces significant challenges when applying
to the information extraction task. First, balancing
the dataset breaks the real-world long-tailed prior
in the datasets and may lead the model to mistak-
enly predict the long-tailed types too often. We ob-
serve this phenomenon in our experiments in Sec-
tion 3 especially for the Classifier Re-training base-
line (Kang et al., 2020). Second, due to the lack of
effective data augmentation approaches as in the
computer vision domain, upweighting the training
mentions will only make the model to repetitively
learn the same set of instances and aggravate the
overfitting problem.

Instead of the imbalance in distribution, the real
challenge of long-tailed learning for NLP is knowl-
edge insufficiency, i.e. long-tailed datasets don’t
contain enough examples to acquire generalizable
knowledge for the rare types. Learned models tend
to capture features such as event trigger words for
rare types and fail to generalize well to rare or
even unseen cases (unseen trigger words) of those
types during evaluation. For instance, if an event
extraction model is trained on a dataset where all
Acquit events are triggered by the keyword ac-
quit, it may not identify the Acquit event trig-
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Figure 1: Distribution of types in ACE 2005 event
dataset, MAVEN event dataset and the Few-NERD en-
tity dataset. Y-axis is the number of training mentions
divided by that of the most frequent type. X-axis is the
rank of types by number of mentions.

gered by walk free in The adjudicator allowed
the criminal to walk free. Under this perspective,
existing work tackling the long-tailed problem in
information extraction (Han et al., 2018; Zhang
et al., 2019) incorporates external structural knowl-
edge to help learning rare types. However, the
selection of the structural knowledge requires ex-
pertise in the target ontology and is not easily trans-
ferable to other ontologies. Another more recent
line of work (Tang et al., 2020; Nan et al., 2021)
considers the causal inference (Pearl et al., 2000)
approach to solve the long-tailed problem. They
aim to avoid the learning of spurious correlations
between the input features and the labels in the
limited training data for rare types. This is usu-
ally achieved by removing the effect of a manually
selected confounding factor in prediction through
deconfounded learning methods such as backdoor
adjustment and inference based on total direct ef-
fect (Pearl et al., 2000). Although the model is
guided to avoid spurious correlation through causal-
inference-based approaches, learning the generaliz-
able features with real causalities is still challeng-
ing due to the knowledge insufficiency problem.

In this work instead of confronting the knowl-
edge insufficiency problem directly, we propose
to bypass the problem by transforming the evalu-
ation instances that require additional knowledge
into more familiar instances that are closer to the
frequent training instances. We decompose the in-
put sentence {t0, t1, . . . , tn} for the event/entity
prediction task into two parts: a candidate token
e = ti for the i-th token and surrounding con-

textual tokens c = {tj}i−1j=0

⋃{tj}nj=i+1. Instead
of making predictions for an event/entity type yk
solely based on P (yk|e, c), we propose to also
consider predictions on averaged training inputs
P (yk|c, rk), where rk is the average training hid-
den representation of the type yk. Our framework
combines these two predictions using a transforma-
tion module. The transformation module computes
weights ge for the original candidate token e and
gk for each event type representation rk. More-
over, instead of simply combining probabilities as
geP (yk|e, c) + gkP (yk|c, rk), we use two weights
ge and gk to combine in the representation layer
for e and rk to produce P (yk|gee+ gkrk, c). The
transformation module decides the weights ge and
gk based on the frequency of the candidate men-
tion in the training dataset and the cosine similar-
ity between the candidate mention representation
and all event types’ average training mention rep-
resentations in the ontology. Experimental results
on three benchmark datasets demonstrate the ef-
fectiveness of our framework. Additionally, we
found our approach, though derived from a differ-
ent motivation, can be interpreted as a backdoor
adjustment approach (Pearl et al., 2000) as shown
in Section 2.5, which gives another interpretation
that our approach improves long-tail learning by
facilitating the model to learn the true correlation
between the candidate text span and the event/entity
type. We also empirically found that our approach
facilitates the model to capture more generalizable
features, which aligns with the goal of causal infer-
ence approaches.

To summarize, we propose a new approach for
learning from the long-tailed datasets for entity
extraction and event extraction. Our contributions
are two-fold:

• We provide a new framework by bypassing
the knowledge insufficiency problem in long-
tailed learning and propose a novel learning
framework in this perspective.

• We found that our framework aligns theoreti-
cally with the causal inference approach and
can facilitate the model to capture more gen-
eralizable features.

2 Approach

2.1 Task Definition
In this work we take the task of both entity ex-
traction and event extraction as sequence labeling
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Figure 2: Overall long-tail learning information extraction framework. We ignore the original token ti and only
show the token embeddings ei in this figure for conciseness. Here we useM\E to indicate the language model
layers after the embedding layer and D as the classifier heads for the sequence labeling task. The transformation
module S combines rare candidate mentions with average training mentions. The inputs to the transformation
module includes the frequency feature f i, the similarity features b̂i between the token embedding ei and the average
training embeddings {rj}Kj=1, and the context features ci.

problems. The input to the modelH is a sequence
of tokens x = {t0, t1, . . . , tn}, and the model pre-
dicts a label for each tokenH(x) = {l0, l1, . . . , ln}.
Each li is either one of the entity/event types or the
None type for none-entity or none-event tokens.2

2.2 Overview of the Learning Framework
The learning of our proposed long-tailed extrac-
tion framework includes two steps. First, we fine-
tune a language model with an additional classifier
head for the sequence labeling problem without
special treatments for the long-tail problem. In the
second step, we train the transformation module
while fixing the parameters of the language model.
We adopt this two-stage training approach because
the transformation module requires the language
model’s representations as inputs as we will show
in Section 2.4. The finetuning step should render
these representations as more task-specific features,
which we redeem to be helpful for the learning of
the transformation module. We will introduce these
two steps in the following sections. The overall ar-
chitecture is shown in Figure 2 and the two-staged
training strategy is illustrated in Figure 3.

2.3 Finetuning Step
Given an input sequence x = {t0, t1, . . . , tn}, we
first encode it with a pretrained language modelM

2We adopt the IO labeling schema instead of BIO labeling
schema to be consistent with the annotations in the Few-NERD
dataset (Ding et al., 2021)

into M(x) = {t0, t1, . . . , tn}. We then adopt a
linear discriminator D to predict the label for each
token

li = argmaxD(ti). (1)

We finetuneM and D with the cross entropy loss.

2.4 Learning the Transformation Module
The transformation module S transforms the rep-
resentation for each token ti into a weighted com-
bination of its original representation and the av-
erage training representation of each event type.
Our goal is to compute weights ge, gk for the fi-
nal prediction P (yk|gee + gkrk, c) for each type
yk. However, this would require feeding the in-
puts multiple times to the language model, which
is inefficient. Hence, we simplify the prediction
to P (yk|gee+

∑k
i=1 gkrk, c). In other words, our

transformation module combines the average repre-
sentations of all types together in the hidden layer.
We can essentially perform the transformation in
any hidden layers of the pretrained language model
M. In this work, we perform transformation in
the embedding layer to take full advantage ofM’s
capability of encoding contextual information.

Specifically, let E(ti) = ei be the embedding
representation of the token ti. Let {rj}Kj=1 be the
average training embedding representation for the
entity/event type j, i.e.,

rj =
1

#j

∑

{t|l(t)=j}
E(t). (2)
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Figure 3: Illustration of the training and inference stages. There are two stages of the training on the left. Modules
with dashed lines and blue background are not updated during the corresponding training stage.

Here {t|l(t) = j} refers to the training tokens
with the label j and #j is the total number of
such tokens. The transformation module computes
weights to combine each ei with {rj}Kj=1. We use
the following information as input to compute the
weights for combination

• ti’s frequencies of being labeled as enti-
ty/event types : f i = [exp(γfij)]

K
j=1. Here

we rescale the original frequencies inspired by
(Lin et al., 2020). We use γ = 0.1 following
(Lin et al., 2020). We expect the tranforma-
tion module to provide most help in rare cases
when f i is small.

• The similarity of ti’s embedding ei with
average training embeddings rj : bi =
[cos(ei, rj)]

K
j=1. If bi contains large values, ti

is close to some event type’s average embed-
ding and potentially not a rare mention. On
the other hand, if bi is very small, ti deviates
significantly from some event type’s average
embedding and the transformation may signif-
icantly alter the meaning of the input. Taking
these into consideration, we propose to model
the similarity value bi with a quadratic func-
tion, i.e. we use b̂i = [bi; b

2
i ] as the similarity

features to the transformation module.

• The context representation ci, which is com-
puted by the pretrained language model M
while masking ti in the input sequence x.
Hence ci is independent of the token ti. This
is to make sure that the transformation mod-
ule is not overfitted only on the seen candidate

tokens during training, because our goal is to
apply the transformation module to rare cases
in the evaluation corpus.

We decompose the computation of these weights
into two steps. We first compute aggregation
weights {αj}Kj=1 for {rj}Kj=1 with an attention
module based on the context ci:

αj =
exp(⟨aj , ci)⟩∑K
k=1 exp(⟨ak, ci⟩)

si =
∑

j

αjrj
. (3)

Here {aj}Kj=1 are trainable weights. We then feed
all three features [f i; b̂i; ci] into a linear layer with
the sigmoid activation to compute two gating scores
(ge, gs) ∈ [0, 1]2. The final embedding representa-
tion is computed as

hi = geei + gssi. (4)

We then substitute ei with hi for the following
layers inM\E .3

We train the transformation module S using the
same cross entropy loss as the finetuning step. We
also compute the cross entropy on the attention
weights of the entity/event types in Equation (3)
as an additional loss. We fix the parameters of the
finetuned language model M. This ensures that
the similarity features b̂i and the context represen-
tations ci remain fixed during the learning of S.
We provide training details in the Appendix.

3From Equation (4) we essentially have gk = gsαk
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2.5 Connection to Causal Inference
We found our architecture can be mathematically
intepreted as a backdoor adjustment (Pearl et al.,
2000) method in causal inference, which is used to
mitigate the effect of some confounding factor U in
making decisions. In our case, it can be formulated
as the following prediction probability

P (li|do(ti)) =
∑

u

P (li|ti,U = u)P (U = u),

(5)
where u is the value space of U . We refer readers to
(Pearl et al., 2000) for the derivation of the above
equation4. If we select the confounding factor U as
the type prediction based on the context around the
token ti (independent of ti), Equation (5) becomes

P (li|do(ti)) =
K∑

j=1

P (li|ti, j)P (j|ci), . (6)

The attention weights {αj}kj=1 in Equation (3) is
can be considered as probabilities of event types
dependent on ci, thus can be seen as P (j|ci) in the
above equation. If we further model P (li|ti, j) =
P (li|ei + rj) and apply the Normalized Weighted
Geometric Mean (NWGM) approximation follow-
ing (Yue et al., 2020),

P (li|do(ti)) ≈ P (li|ei +
k∑

j=1

αjrj). (7)

In our framework, we are essentially computing

P (li|ti) = P (li|geei + gs

k∑

j=1

αjrj). (8)

This means that αj composes the deconfounding
priors P (U) and (ge, gs) serve as the switch for
the backdoor adjustment decisions. We expect the
model to make decisions on rare or unseen men-
tions with the backdoor adjustment, and rely on the
model’s own prediction with more frequent cases.

3 Experiments

3.1 Datasets and Evaluation
We experiment on an entity extraction dataset, Few-
NERD (Ding et al., 2021) and two event extrac-
tion datasets, ACE 2005 (Walker et al., 2006) and
MAVEN (Wang et al., 2020). We provide data

4Note that the common formulation for P (li|ti) would be
substituting P (U = u) with P (U = u|ti)

statistics in Table 1. Few-NERD, MAVEN and
ACE include 67, 168, and 33 types respectively.
For ACE 2005, we split the dataset such that all
event types are covered in the evaluation data which
is different from the splits used in previous work.
For Few-NERD, we used the “supervised” split for
experiments.

For evaluation, we use the macro F1 score as
the main metric to reflect the influence of long-tail
types. We also report micro F1 for additional ref-
erence. We provide macro recall, macro precision,
micro recall and micro precision in Appendix. Pre-
vious work also reports scores on subsets of rare
types (Nan et al., 2021). Instead of manually deter-
mine a frequency threshold for the “rarest” types,
we plot curves of F1 scores on all types in Figure 4.
All results are averaged over three runs using dif-
ferent random seeds.

3.2 Methods in Comparison

We group previous work on long-tailed learning
into two categories: balancing-based approaches
and causal inference approaches. For balancing-
based approaches, we mainly follow (Kang et al.,
2020) and implemented Classifier Re-training
(CRT), Nearest Class Mean classifier (NCM),
τ -normalized classifier (τ -norm) and Learnable
weight scaling (LWS). We also implemented the
focal loss approach (Lin et al., 2017). For causal in-
ference work, we implemented Momentum (Tang
et al., 2020) and CFIE (Nan et al., 2021). Although
(Nan et al., 2021) also experimented on the ACE
2005 and MAVEN, we re-implemented5 their meth-
ods due to the difference in splits and evaluation
strategies. CFIE also has different designs for the
entity extraction and event extraction models. We
didn’t re-implement the entity model due to insuffi-
cient details. We also compare with a Vanilla base-
line which is the sequence labeling model without
the transformation module.

3.3 Main Results

We show our main results in Table 2 and Figure 4.
From Table 2, our framework achieves the best
macro F1 scores across three datasets. We also no-
ticed that our approach improves macro F1 scores
without suffering from inferior micro F1 scores. Al-

5Due to insufficient details in their paper and released code,
we implemented their framework to the best of our knowledge.
CFIE also requires named entity extraction results as part of
the inputs to event extraction. Therefore it is not clear how the
entity extraction model is designed.
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Dataset
Few-NERD MAVEN ACE 2005

#Sentences # Mentions #Sentences # Mentions #Sentences # Mentions

train 131,767 340,387 32, 431 77,993 16,807 4,254
dev 18,824 48,770 8,042 18,904 2056 500
test 37,648 96,902 9,400 21,835 1,930 570

Table 1: Dataset statistics.

though the Momentum baseline performs closely
to our approach in ACE Macro F1. However, Mo-
mentum has a much worse micro F1 sacrificing
frequent types and worse performance on the other
two datasets. These results also show the superior-
ity of our approach and indicate that our model’s
performance on frequent types is not harmed. This
is because we do not tackle the long-tailed learn-
ing problem in terms of balancing that may affect
the natural distribution in the dataset. Instead, we
transform the long-tailed evaluation samples into
frequent training samples with the transformation
module.

Although macro F1 metric puts extra stress on
the long-tailed types, the performance on the rare
types is still dilated by frequent types especially
for datasets with a large number of types such as
MAVEN. In order to further investigate the per-
formance on different subsets of event types, we
show in Figure 4 macro F1 improvements (over the
Vanilla baseline) for the top X fraction of the
event types with the fewest training examples. We
notice that our approach, together with other ap-
proaches, indeed improves the learning with long-
tailed types when X is small. We notice that our
approach can significantly outperform the baseline
for the less frequent types with a maximum of over
10% on ACE 2005 event dataset. We found our
approach has the best performance of the moder-
ately long-tailed event types compared with other
long-tailed learning approaches. For extremely
long-tailed types, our performance is also close
to the best method Momentum (Tang et al., 2020).
One possible reason of our model’s ineffectiveness
on extremely long-tailed types is that we cannot
learn reliable representation ei to compute similar-
ity values b̂i for the transformation module. An-
other possible reason is that the extreme long-tailed
types don’t have enough training instances to pro-
vide an informative average training representation
rk. A potential solution would be introducing ex-
ternal knowledge (e.g., a few keywords as candi-

date event triggers or entity mentions) to enrich
the rk. Moreover, our approach is more consistent
than other methods when X grows larger. This fur-
ther validates that our approach improves the long-
tailed types without sacrificing the performance
of frequent event types. For more references, we
also provide top 10 event types in MAVEN dataset
where our method achieves most F1 performance
gain on in Appendix. Majority of those types are
rare types.

3.4 Improving Classifier Features

In our second training stage, we finetune the enti-
ty/event classifier head together with the transfor-
mation module. Finetuned classifiers from our ap-
proach should benefit from the connections of our
approach and the backdoor adjustment approach
for causal inference in Section 2.5, which encour-
ages the model to capture generalizable features
instead of surface correlations. To test the fine-
tuned classifiers alone, we evaluate our framework
with the transformation module disabled, i.e. forc-
ing (ge, gs) = (1, 0) in Equation (4). The for-
ward architecture becomes exactly the same as the
Vanilla model. In Table 3, we observe that fine-
tuned classifier alone outperforms the Vanilla
baseline. Since we fixed the language model in the
second stage, the improvements purely come from
the finetuned classifiers that have learned to avoid
surface features for prediction.

In addition to the interpretation of the improve-
ments from the causal inference theory, we give a
more intuitive explanation based on Equation (4).
During the second training step, Equation (4) can
be seen as changing the original candidate repre-
sentation with an interpolation of itself and other
candidates’ representations of the same event type.
This is similar to augmenting the dataset by inter-
changing mention spans of the same type across
sentences, though we interchange it with the aver-
age representation of that type in the entire training
dataset. The classifier may benefit from this “aug-
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Dataset
Few-NERD MAVEN ACE 2005

Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1

Vanilla 62.4 67.8 60.1 67.1 60.4 72.7

Focal 62.5 67.8 59.4 65.3 59.9 73.9
CRT 44.9 54.3 51.2 54.3 60.2 71.8
LWS 61.4 66.9 60.5 66.7 60.9 72.5
τ -norm 62.4 67.8 60.2 67.1 60.2 72.7
NCM 51.5 50.4 57.5 61.2 57.8 72.2
CFIE - - 56.3 61.2 50.6 63.2

Momentum 59.7 63.9 60.1 66.4 62.1 68.9

Ours 62.6 67.8 61.2 67.4 62.4 72.9

Table 2: Macro and micro F1 scores (in %) on three datasets. References to the methods above is provided in
Section 3.2.
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Figure 4: Performance difference compared with
Vanilla w.r.t the portion of rarest event types. We
first rank event types by the number of training men-
tions from low to high, and then compute average F1
scores (minus that of the Vanilla baseline) for the
first X fraction of the event types. We omitted those
approaches that are significantly lower than Vanilla.

mentation” to capture more general features.

Method Ours No Sub Vanilla

Macro F1 62.4 61.9 60.4

Table 3: Performance (in %) with the transformation
module disabled (No Sub) on the ACE 2005 dataset.

3.5 Case Study

We also show some examples that the Vanilla
baseline misses but our approach correctly iden-
tifies and classifies the candidate mentions in Ta-
ble 4. We also visualize the transformation weights
(ge, gs) in Equation (4). As discussed in Sec-
tion 3.3, our model is the best at handling mod-
erately long-tailed types. For these two examples,
the event Start-Position in the first case has
94 mentions and became appears only 2 times as
the trigger. In the second case, the Action ap-
pears 709 times, but only 16 of them are triggered
by undertaken6. It is worth mentioning that
although gs is not as large as ge in both cases, we
found that they are indispensable since the model
fails on both cases if we disable the transformation
module by forcing gs = 0.

4 Related Work

4.1 Balancing-based Long-tailed Learning for
Computer Vision

Long-tailed learning is closely related to imbal-
anced learning. In the computer vision domain,
Lin et al. (2017) proposes the focal loss to handle

6As a comparison, war appears 270 times as the trigger of
Attack in ACE 2005 and storm appears 757 times as the
trigger of Catastrophe in MAVEN.
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Input Sentence Dataset Transformation Weights

This upcoming visit to Russia will be my first trip
aboard since I became president of China. (Event:
Start-Position)

ACE gs ge

The operation was undertaken so that Allies could secure
a beachhead. (Event: Action)

MAVEN gs ge

Table 4: Examples of missing event triggers by the Vanillamodel. Transformation weights (ge, gs) in Equation (4)
are visualized.

the imbalanced learning problem in object detec-
tion. The focal loss downweights the loss terms
for confident training samples so that the model
predicts high probabilities for the gold standard
labels. In addition to this, some work (Zhang et al.,
2019; Rebuffi et al., 2017), though not focusing
on the long-tailed learning problem, adopts spe-
cial training strategies to tackle the imbalance in
the datasets. Kang et al. (2020) summarize these
approaches and evaluate them with the computer
vision tasks. These approaches are mostly based
on balancing the datasets by upweighting the rare
types and downweighting the frequent types, either
by modifying the sampling strategy or associating
weights to the loss terms. These methods first learn
the feature extractor with the original imbalanced
distribution and then perform special treatments
to the classification layer. Classifier Re-training
(CRT) retrains the classification layer by sampling
examples from each type uniformly. Nearest Class
Mean classifier (NCM) uses the average training
features as the type-level features and uses certain
distance metrics to perform the nearest neighbor
classifcation. τ -normalized classifier (τ -norm) nor-
malizes the type weights in the classification layer.
This can make sure the weights for frequent types
are not significantly larger than rare types. Learn-
able weight scaling (LWS) is similar to τ -norm but
learns the normalization weights while sampling
examples from each type uniformly.

4.2 Long-tailed Learning with External
Knowledge for IE

Balancing-based methods are usually ineffective in
information extraction as shown in our experiments.
Existing work usually tackles the long-tailed prob-
lem in information extraction (Han et al., 2018;
Zhang et al., 2019) by incorporating external struc-
tural knowledge. Han et al. (2018) adopt hierar-
chical structures among relation types to transfer

knowledge from the frequent relation types to their
siblings. Zhang et al. (2019) incorporate label se-
mantics and knowledge graph embeddings to trans-
fer knowledge from frequent types to rare types.
Required expertise in selecting external knowledge
limits the generalization of these methods. (Yu
et al., 2021) also leverages correlation between
event types to help the learning of rare event types
in the context of lifelong learning.

4.3 Causal Inference and Its Application to
Long-tailed Learning

Due to the potential of causal inference (Pearl et al.,
2000) theory to reduce the spurious correlation,
there have been explorations on its application in
machine learning (Lopez-Paz et al., 2017; Magli-
acane et al., 2018; de Haan et al., 2019; Bengio
et al., 2020; Yang et al., 2020; Li et al., 2021; Park
et al., 2021). Since the the spurious correlation is
more common in limited data, some work attempts
to interpret the long-tailed learning problem under
a causal inference framework. The core component
of this interpretation is to find a confounding factor
that affects the distribution of the input features and
output labels at the same time. Tang et al. (2020)
consider the training momentum of the gradients to
be the confounding factor and proposed the corre-
sponding deconfounded training with the backdoor
adjustment approach. They use the total direct ef-
fect (TDE) for inference, which essentially lowers
the probabilities of frequent types systematically.
Nan et al. (2021) work on the information extrac-
tion tasks and take a set of linguistic features as the
confounding factor. They also adopt an inference
approach similar to TDE to lower the probabilities
of frequent types.

4.4 Related Few-shot Learning Methods

Few-shot learning aims at training models with a
small number of instances, which is similar to the
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goal of improving rare types in long-tailed learn-
ing. Some few-shot learning methods also over-
lap with long-tailed learning methods. Snell et al.
(2017) proposed a prototypical network that has a
similar framework as NCM for long-tailed learn-
ing. Yue et al. (2020) proposed a backdoor adjust-
ment approach based on the causal inference tho-
ery to reduce the spurious correlation in the model,
since the few-shot learning also has the limited data
size problem. However, few-shot learning usually
works on the N -way K-shot setting. This makes
these approaches usually not directly applicable to
the long-tailed learning scenario.

5 Conclusions and Future Work

In this work we propose a new long-tailed learn-
ing framework for entity and event extraction by
candidate transformation. We design a novel trans-
formation module to convert representations of rare
or unseen mentions during evaluation into repre-
sentations of average training mentions. Experi-
mental results have validated the effectiveness of
our framework. Our framework can significantly
improve the performance on long-tailed types, and
outperform other long-tailed learning methods es-
pecially for moderately long-tailed types. More-
over, our framework does not sacrifice the perfor-
mance on frequent types. We also discover the
connections between our learning framework and
the backdoor adjustment in the causal inference
theory We empirically observe that our training
strategy can improve the model’s capability in cap-
turing more generalizable features, which aligns
with the causal inference theory. In the future, we
will explore: (1) adapt the concept of transforma-
tion module to other NLP tasks; (2) based on our
connection with the causal inference theory, it is
possible to design a better transformation module
by choosing a better confounding factor other than
the context information.

6 Limitations

In terms of the framework design, our current de-
sign of the framework is only applicable to the
sequence labeling task, although we believe it can
be adapted to other NLP tasks without significant
modifications. Besides, our framework should be
most helpful if the semantics of the elements in the
sequence of the same type are close to each other
and thus may require additional modifications in
more heterogeneous cases, such as vision-language

models where visual features may have the same
type as the textual token embeddings.

In terms of time efficiency, our framework will
require an additional training stage to learn the
transformation module, which will cost extra time.
Since we fixed the language model, which com-
poses majority of parameters in our framework,
this additional cost is acceptable. We also recom-
mend to pre-process input features (since they are
fixed with respect to training samples during the
second stage) to the transformation module to fur-
ther reduce the time cost in the second stage.
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A Appendix

A.1 Details on Two-stage Training
In the first training stage, all parameters in the lan-
guage modelMand entity/event classifier head D
are updated. In the second stage, we fix the entire
language model and train both D and the transfor-
mation module S. Apart from the cross entropy
loss for entity/event extraction, we also apply loss
to the weights {αj}Kj=1 in Equation (3). This loss
is only applicable to entity/event mention tokens,
since {αj}Kj=1 corresponds to entity/event types.
For these mention tokens, we compute cross en-
tropy between attention weights and the labeled
types.

For the input features to the transformation mod-
ule, we want to make the values of all three kinds
of features to be in the similar range. Therefore,
we adopt a batch normalization module to these
features. We also add dropout with probability 0.2
to similarity features and frequency features, and
dropout with probability 0.5 to the context features.

A.2 Implementation Details
For all experiments, we use learning rate to be
1e − 5 and batch size to be 8 to fit in a single
Nvidia Tesla V100 GPU with 16GB memory. We
evaluate performance after each epoch and select
the best model based on the development perfor-
mance. We use early-stop strategy with a patience
of 5 epochs. We report average performance over
3 runs initialized with 3 different random seeds.

The approximate number of parameters is 3.5
million (RoBERTa). Added parameters from the
transformation module is significantly less and
dependant on the number of target entity/event
types. Approximately the transformation module
has 2,500 parameters. For the first stage training,
it takes about 10-20 minutes to train an epoch on
ACE 2005 data, 20-30 minutes on MAVEN data
and about 40 minutes on Few-NERD. The time
difference mainly comes from the total number of
sentences in these datasets. However these are just
rough estimations since the performance largely
depends on the environmental factors such as tem-
peratures and also the workload of other gpus/cpus

in the same machine during training. In the second
stage, we didn’t preprocess any features in advance
but block the backpropagation to language model
parameters. In general it is 4-5 times faster than the
first stage. We incorporate the transformation mod-
ule by modifying the RoBERTa implementation
from Transformers7 Library.

A.3 Dataset Licenses
This dataset is licensed by LDC.8 Membership is
required for access. The dataset can be used for
research purpose. Few-NERD dataset is distributed
under the CC BY-SA 4.0 license. MAVEN dataset
is ditributed under MIT License.

A.4 Additional Results
We include precision and recall scores in Table 5.
Moreover, we include top 10 event types in the
MAVEN dataset that our approach achieves most
improvements over the Vanilla baseline, as well as
their number of training mentions in Table.

7https://huggingface.co/docs/
transformers/index

8https://www.ldc.upenn.edu
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Dataset
Few-NERD MAVEN ACE 2005

Macro P,R Micro P,R Macro P,R Micro P,R Macro P,R Micro P,R

Vanilla 60.1, 65.3 65.8, 70.0 61.9, 61.1 65.7, 68.6 63.6, 62.0 73.4, 72.1

Focal 60.6, 64.9 66.0, 69.8 57.8, 63.1 62.0, 69.1 61.9, 63.0 73.8, 74.1
CRT 40.7, 51.1 50.6, 58.8 41.1, 75.1 41.2, 79.8 58.6, 67.2 66.7, 77.9
LWS 58.1, 65.7 64.3, 69.7 60.1, 63.9 62.4, 71.8 62.5, 64.7 72.0. 73.0
τ -norm 60.8, 63.8 65.9, 69.9 62.2, 61.1 64.9, 69.4 63.5, 61.8 73.4, 72.0
NCM 56.0, 65.6 61.0, 43.3 58.9, 63.6 57.3, 65.7 64.2,56.5 76.1, 68.7
CFIE - - 50.9, 66.5 52.5, 73.5 59.7, 56.9 58.0, 69.7

Momentum 60.3, 65.4 59.7, 62.5 61.8, 61.9 66.3, 66.5 60.9, 68.3 66.9, 69.5

Ours 60.3, 65.4 65.8, 70.0 61.3,63.2 65.5, 69.4 63.5, 65.5 71.4, 74.6

Table 5: Macro and micro precision and recall scores (in %) on three datasets.

Event Type # of Mentions F1 (%) Imp.

Kidnapping 87 19.0
Body_movement 115 15.8

Emptying 124 15.1
Manufacturing 326 13.8

Scouring 32 13.2
Carry_goods 48 12.0

Military_operation 1,022 10.5
Practice 37 10.4

Labeling 35 10.0
Cure 71 8.4

Table 6: Top 10 event types in the MAVEN dataset that our approach achieves most improvements over the Vanilla
baseline. We also include the number of training mentions and F1 score improvements (in %) in the second the third
columns. MAVEN has a total of 168 event types. and our training split includes 77,987 training event mentions in
total for all event types.
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Abstract

Compositionality is a pivotal property of sym-
bolic reasoning. However, how well recent neu-
ral models capture compositionality remains
underexplored in the symbolic reasoning tasks.
This study empirically addresses this question
by systematically examining recently published
pre-trained seq2seq models with a carefully
controlled dataset of multi-hop arithmetic sym-
bolic reasoning. We introduce a skill tree on
compositionality in arithmetic symbolic rea-
soning that defines the hierarchical levels of
complexity along with three compositionality
dimensions: systematicity, productivity, and
substitutivity. Our experiments revealed that
among the three types of composition, the mod-
els struggled most with systematicity, perform-
ing poorly even with relatively simple compo-
sitions. That difficulty was not resolved even
after training the models with intermediate rea-
soning steps.1

1 Introduction

Integrating symbolic reasoning capabilities into
neural models has been a crucial goal of artifi-
cial intelligence (Marcus, 2003; d’Avila Garcez
and Lamb, 2020). With this in mind, many re-
searchers investigated how well modern neural
models achieve symbolic reasoning (Lake and Ba-
roni, 2018). However, recent studies have reported
conflicting results on this; some suggest that neu-
ral models can solve complex multi-hop reason-
ing (Clark et al., 2020), while others claim that
models struggle even with performing simple sym-
bolic operations (Qian et al., 2022).

As a step toward further understanding neu-
ral models’ symbolic reasoning ability, this study
systematically analyzes recently published pre-
trained seq2seq models using a carefully controlled
dataset of multi-hop arithmetic symbolic reasoning.

1Our code and data are available at https://github.
com/keitokudo/dentaku_skill_tree.

A=1+2, A=?
Systematicity

A=1, B=2, B=? A=1, B=2, C=3, C=?Productivity

Substitutivity

A=1+2, B=2+3, B=?
A=1, B=2, B=?

A=1, B=2, B=?

(train data) (test data)

α=1, β=2, γ=?

Figure 1: Three dimensionalities of compositionality in
arithmetic symbolic reasoning

Specifically, our study empirically evaluates the
models’ ability to generalize the compositionality
underlying arithmetic reasoning, where we explore
three dimensions of compositionality: (i) system-
aticity, (ii) productivity, and (iii) substitutivity, as
illustrated in Figure 1. Capturing compositionality
is crucial in performing symbolic reasoning since
compositionality is a pivotal property of generaliz-
ability over training instances.

To systematically explore the models’ compo-
sition ability, we introduce a skill tree on compo-
sitionality that defined the hierarchical levels of
complexity in arithmetic symbolic reasoning, as il-
lustrated in Figure 2. Using this hierarchy as a lens,
we identify the limitations of the neural seq2seq
models in capturing the compositionality in arith-
metic symbolic reasoning. Our major findings can
be summarized as follows:

• Among the three types of composition, the
models struggled most with systematicity,
performing poorly even with relatively simple
compositions.

• The major difficulty in systematicity was in
the access to intermediate information that is
not stated in input but produced during the
reasoning.

• Capturing systematicity remained hard for the
models trained with the information of the
intermediate reasoning steps.
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2 Skill tree in arithmetic reasoning

We take arithmetic reasoning as the domain for
our exploration because it allows us to synthesize
questions systematically, as we show in this paper,
which helps examine a model’s composition ability
in a controlled manner. Furthermore, the arithmetic
reasoning ability of neural models has gained much
attention as modern large language models still
struggle with this problems (Rae et al., 2021).

Specifically, we use multi-hop arithmetic reason-
ing problems as follows:

Question: A=1, B=2, C=A+2, C=?
Answer: 3

Here, the value assigned to the variable C is asked.

2.1 Compositionality in multi-hop symbolic
reasoning

In this study, we specifically focused on three di-
mensions: systematicity, productivity, and substi-
tutivity (Hupkes et al., 2020). According to these,
we evaluate how well neural models achieve com-
positional generalization.
Systematicity refers to the ability of combining
known different concepts into a more complex
concept, i.e., structural composition. To evalu-
ate this ability in models, we first trained with
several types of primitive operations (e.g., addi-
tion; A=1+2,A=? and selection; A=1,B=2,B=?).
Then, we measured the performance in solving
problems consisting of combinations of primitives
(e.g., A=1+2,B=2+3,B=?).
Productivity refers to the ability to solve
longer/complex problems based on shorter/simpler
ones. To evaluate this ability in models, we
first trained with a short version of a formula
(e.g., A=1+2,B=2+3,B=?). Then, we measured
the performance in solving longer problems (e.g.,
A=1+2,B=2+3,C=3+4,C=?).
Substitutivity refers to the ability to keep the per-
formance even if a particular constituent in a prob-
lem is replaced with another (unseen) constituent
(i.e., lexical composition). To evaluate this ability
in models, we conduct several experiments chang-
ing the variable characters between training and
test (e.g., train with A=1+2,A=?; then evaluated
withα=1+2,α=?).

2.2 Dataset configurations

Typical symbolic reasoning (e.g., procedural pro-
gramming, assembly language) consists of at least

A=1+2,
A=?

A=1,
B=2,
C=3,
C=?

A=1,
B=2, 
C=A+2,
C=?

A=1,
B=2,
B=?

A=1+2,
B=2+3,
B=?

A=1+2, 
B=A+3,
B=?

A=1+2,
B=2+3,
C=3+4, 
C=?

A=1+2,
B=2+3, 
C=A,
C=?

A=1,
B=A,
B=?

1

2

3

4

5

6

7

X=1+2, 
Y=X+3,
Z=Y+4,
Z=?

arithmetic
operation

assignment

reference

8

9

10

prod

prod
prodsys

sys

sys

sys

primitives multi-hop reasoning

Figure 2: Skill tree to evaluate compositional generaliza-
tion. The data format of primitive operations is gray and
others (complex formulas composed of combinations of
primitive operations) are blue .

three primitive symbol manipulations: assignment
(a=2), arithmetic operation (1+2), and reference
(a=?). With this in mind, our dataset is generated
by combining the following five basic formulas:
(i) A=1 (assignment), (ii) A=B (reference & assign-
ment), (iii) A=1+2 (arithmetic operation & assign-
ment), (iv) A=B+2 (arithmetic operation & assign-
ment & reference), (v) A=? (reference). The de-
tailed properties are explained in Section 3.

2.3 Skill tree evaluations

We preliminarily observed that compositionally
generalizing complex multi-hop arithmetic reason-
ing was difficult for neural seq2seq learners (the
1,2,6→9 setting in Section 4). Building on this
fact, this study questions what type of composition
made it hard for the neural models. To answer this,
we designed a skill tree on compositionality that
organizes the (hierarchical) complexity levels of
symbolic reasoning.2 Evaluating the models using
problems with different complexity of composi-
tion in a step-wise manner, we elucidate the exact
weakness of neural seq2seq models in multi-hop
symbolic reasoning.

Specifically, we designed ten versions of sym-
bolic reasoning problems. The hierarchical rela-
tionship of their task levels is illustrated in Fig-
ure 2; in this skill tree, each vertex, i.e., domain,
corresponds to different task settings with different

2The term "skill tree" refers to a visualization method of
step-by-step learning in the field of pedagogy (Tondello and
Nacke, 2019), distinct from the "tree" in graph theory.
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base large x-large
Task Type ZA WA ZA WA ZA WA

1,2 sys. 42.0 82.1 35.2 89.8 51.7 96.7
→4 +subst. 39.1 80.4 33.2 89.4 50.7 96.7

2,3 sys. 33.6 75.4 32.1 85.6 35.9 94.7
→5 +subst. 33.6 77.0 31.5 87.2 36.5 94.9

2,3,6 sys. 40.8 76.5 39.1 87.7 40.5 94.6
→8 +subst. 39.3 74.7 37.5 86.4 39.2 94.9

2,3,6 sys. 56.5 79.7 51.0 83.7 58.1 94.2
→7 +subst. 57.6 80.2 51.1 85.8 56.7 95.1

1,2,6 sys. 24.1 28.2 23.1 29.3 27.5 32.6
→9 +subst. 25.8 28.0 24.1 31.7 28.5 34.7

7,8 sys. 23.6 21.3 25.3 25.9 22.3 28.2
→10 +subst. 22.3 21.6 24.4 26.4 23.0 30.2

1 prod. 100.0 100.0 100.0 100.0 100.0 100.0
→3 +subst. 100.0 100.0 100.0 100.0 100.0 100.0

4 prod. 100.0 100.0 100.0 100.0 100.0 100.0
→5 +subst. 99.9 99.9 100.0 100.0 100.0 99.9

9 prod. 57.0 59.3 61.7 63.8 60.6 62.7
→10 +subst. 58.4 60.9 62.2 64.1 59.5 64.5

Table 1: Average accuracies in the experiment with 2 dif-
ferent seeds. The “Task” column exhibits (train→test)
domains corresponding to the skill-tree (Figure 2). The
“Type” column shows the targeted compositionality type
in each setting; here, “sys.,” “prod,” and “subst.” denote
the systematicity, productivity, and substitutivity gener-
alizations, respectively.

complexity, and edges represent the hierarchical
complexity levels.

By adequately selecting a particular combina-
tion of training and test domains, we evaluated the
compositional generalization ability of the models
from various perspectives. Here, the arithmetic ex-
pressions used in the test domain are a combination
of those in training domains, creating a semi-order
relationship in the skill tree. For example, using
the settings 1 (A=1+2,A=?) and 2 (A=1,B=2,B=?)
as a training set, and 4 (A=1+2,B=2+3,B=?) as a
test set, one can evaluate the model’s systematicity
generalization towards the arithmetic operations
(a+b) and assignments (A=i,B=j,B=?).

3 Experimental settings

3.1 Data

Dataset: In each experimental setting, we
refer to the training domains as Dtrain =
{dtrain1, · · · dtraink} and the test domain as dtest.
Each domain has 100,000 training data and 3,200
test data; these are randomly generated, and there is
no overlapped instance. When the training domain
consisted of multiple domains, we used the union
of the training data in Dtrain. In addition, when the
training domain is not primitive operations (1, 2,
3, and 6 in Figure 2), we further added the primi-

tive operation data related to the training domain
(Appendix A) into the training data.
Arithmetic expressions: As introduced in Sec-
tion 2, the input is a sequence of arithmetic expres-
sions. Formally, each expression is in the format of
a=n or a=n{+,-,max,min}m except that the final
expression asks the number assigned to a specified
variable (b=?). Here, a and b are a member of a
variable name set Σ; n and m are a member of the
variable name set or number set Σ ∪ N . Specifi-
cally, Σ consists of 21 alphabets, and N consists
of the integer from 0 to 99. The symbol = indicates
that the result of the left-hand side is substituted
into the right-hand side. The operations (+, -, max,
and min) correspond to arithmetic addition, sub-
traction, max (returning the larger of its left and
right numbers), and min (returning the smaller of
its left and right numbers).

The questions are designed so that the answer
is unique, and depending on the problem set-up,
may include mathematical expressions that are not
directly related to the final answer, i.e., distractors.
The order of the equations is arbitrary; the first
equation should not necessarily be calculated first.
Substitivity test: In each experimental setting,
we evaluate the substitutivity generalization per-
formance of the model under the situation where
the variable names are replaced with unseen ones,
e.g., training with a=1+2,a=?; then evaluating with
α=2+4,α=?. In this setting, we replaced each
variable name in the test set with one of five alpha-
bets that do not overlap with the training ones.

3.2 Trainig and test

Training: The training stops when the accuracy
on the validation dataset does not increase in suc-
cessive five epochs or until the validation accu-
racy reaches 100%. Checkpoints with the high-
est accuracy in the validation dataset are used for
evaluation. Note that among the experiments, the
accuracy in the training domain reached at least
99.5%; this indicates that the primitive operations
were learnable for the models. Detailed settings for
training are described in Appendix A.
Evaluation metrics: The accuracy is calculated by
the test data in the test domain dtest. Here, we used
two metrics: (i) zero-shot accuracy (ZA) and (ii)
weighted average of accuracies (WA) to measure
the efficiency of learning (Talmor et al., 2020). In
measuring WA, a model was further trained using
the training set in the test domain dtest; then, the
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weighted average of accuracies at every update was
calculated (details are in Appendix B).

3.3 Models:

We used three different sizes (base, large, and xl)
of T5 (Raffel et al., 2020), which is a widely used
pre-trained seq2seq model in numerical reasoning
tasks (Pal and Baral, 2021; Chung et al., 2022;
Yang et al., 2021). Note that we began our training
using the models with learned parameters. We also
evaluated BART variants and randomly initialized
models in Appendix C.

4 Experiments and results

We adopted nine combinations of training and test
domains as shown in the first column of Table 1
(training domains→test domain). Six of them test
the systematicity generalization and the other three
test productivity generalization. In each setting, we
further tested substitutivity generalization ability
using the test domain data with a different variable
name set (e.g.,α instead of A) to that used in the
training domain.

Table 1 shows the overall results. We observed
the following four trends:

• Systematicity generalization was more diffi-
cult than productivity generalization.

• Even in the simple composition (the setting
1,2→4), the models struggle with generaliza-
tion from zero or few examples.

• Models achieved substitutivity generalization.
• Model size did not incur substantial perfor-

mance difference.

We identified that the systematicity generaliza-
tion of reference and arithmetic operations (setting
2, 3→ 5; from A=1,B=2,C=3,C=? and A=1+2,A=?
to A=1+2,B=2+3,C=4+5,C=?) was a simple set-
ting, yet difficult to solve (refer to Appendix D
for results on other tasks.). To better understand
why neural models struggle with this setting, we
decomposed the complexity of this setting and ana-
lyzed the model performance. Note that Kim and
Linzen (2020) also suggested that neural models
lack systematicity generalization ability in the con-
text of semantic parsing; our results corroborate
their findings from the context of arithmetic multi-
hop reasoning.

Is this difficulty specific to arithmetic sym-
bolic reasoning? We experimented with the

base large x-large
Setting ZA WA ZA WA ZA WA

2,3→5 33.6 75.4 32.1 85.6 35.9 94.7

String 37.3 94.1 66.1 98.4 86.9 99.3
Steps 26.2 82.1 36.1 89.4 33.7 96.4

Table 2: Ablation study with the 2,3→5 (vanilla) setting.
“String” refers to the setting where string operations are
used instead of arithmetic operations. “Step” denotes
the setting generating intermediate steps.

same setting except that the four arithmetic op-
erations are replaced with string operations (join,
reserveJoin, strSub, and stackJoin; details are
in Appendix E.1). The notable difference between
arithmetic and string operations is that the string
operation could be achieved by only copying se-
lective elements in the input (e.g., 12+34=1234),
while arithmetic operation requires the models to
access the arithmetic knowledge stored in their in-
ternals (e.g., 1+2=3) and generate new information
not stated in the input context (e.g., 3).

Larger models tended to overcome the weak-
ness in composition with string operations (e.g.,
the accuracy of 86.9 in zero-shot evaluation with
the x-large model), while they struggled with arith-
metic operations. This suggests that the major dif-
ficulty in systematicity was in the access to the
arithmetic knowledge (e.g., 1+1=2).

Does scratchpad training alleviate the difficulty?
Existing studies suggested that showing the inter-
mediate step (scratchpad-style training/inference)
improves the multi-hop reasoning ability of neural
models (Wei et al., 2022). We tested whether such
an explicit generation of intermediate information
alleviates the difficulty faced in the previous analy-
sis. Specifically, we trained models with interme-
diate steps (e,g. A=1+2,B=2+3,B=?; B=2+3,B=5.
Details are in Appendix E.2) during training.

The accuracy was calculated by the exact match
of the answer and intermediate steps (the steps
are designed to be uniquely determined). The per-
formance gain due to explicating the intermediate
steps was limited (Table 2), at least with our T5-
based models. This shows that, in our carefully con-
trolled setting, merely employing the scratchpad-
style generation is not substantially effective.

5 Analysis

We conduct a more in-depth analysis of compo-
sitional generalization difficulties from another
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Complexity base large x-large
Average

dimensions ZA WA ZA WA ZA WA

∆#variables 0.098 -0.098 0.488 -0.293 -0.098 -0.488 -0.065
∆#numbers 0.059 0.265 -0.088 0.647 0.206 0.677 0.294
∆#operations -0.507 -0.338 -0.338 0.169 -0.338 0.169 -0.197
∆#reference -0.655 -0.655 -0.393 -0.655 -0.655 -0.655 -0.611

Table 3: Spearman’s rank correlation coefficient between the increase of training–test arithmetic complexity and
the compositional generalization performance (accuracy) across the nine settings listed in Table 1. A negative
score indicates that the greater the training–test discrepancy in its dimension, the more difficult compositional
generalization is. In the case that there are multiple training domains, the maximum value among them is used.

perspective—complexity of arithmetic expressions.
Specifically, for each pair of training and test do-
mains listed in Table 1 (e.g., 1,2→4), we quantified
the increase of the complexity of arithmetic formu-
las from several aspects, e.g., how much the for-
mula’s number of variables increased in the test do-
main (setting of 4) compared to the training domain
(setting of 1 and 2). Specifically, we focused on the
increase of the number of variables (∆#variables),
numbers (∆#numbers), operations (∆#operations),
and references (∆#references) from the training to
test domains. Here, “#reference” denotes the num-
ber of access to a particular variable on the right-
hand of equations. For example, the ∆#references
is 1 if the training data format is A=n,B=A+m and
the test format is A=n,B=A+m,C=B+l. Then, we
identified which dimension strongly relates to the
compositional generalization difficulty.

We analyzed the macro trends between formula’s
complexity increase and the difficulty of general-
ization across the experimental settings. Table 3
shows Spearman’s rank correlation coefficient be-
tween each complexity and the test-domain accu-
racy. We found a notable negative correlation in the
∆#reference; that is, the more references in the test
domain compared to the training domain, the more
difficult the compositional generalization becomes
(the cases of 1,2,6→9 and 9→10 settings). Simply
put, this reveals the difficulty of compositional gen-
eralization with multi-hop reasoning—retaining the
results of a calculation and accessing them again
for another calculation.

6 Related work

The analysis of the compositional generalization
ability of neural models and arithmetic multi-hop
reasoning problems have typically been studied
separately; this study has merged these two direc-
tions. As for composition generalization analy-

sis, several studies analyzed neural models using
datasets such as SCAN (Lake and Baroni, 2018),
COGS (Kim and Linzen, 2020), and CFQ (Keysers
et al., 2020). These mainly focused on composi-
tionality in the context of semantic parsing; the
composition ability toward symbol manipulations
(e.g., multi-hop arithmetic reasoning) is typically
out of focus. As for arithmetic reasoning, neural
models’ abilities have been analyzed typically us-
ing benchmarks such as DROP (Dua et al., 2019). It
has recently been reported that such dataset has su-
perficial cues (Al-Negheimish et al., 2021), which
made it unclear how much arithmetic reasoning
neural model achieves; our study using a carefully
controlled dataset contributed to the exact weak-
ness of neural models in this context.

7 Conclusion

In this study, we have empirically investigated the
arithmetic multi-hop reasoning ability of modern
neural models through the lens of compositional
generalization ability. To systematically analyze
neural models’ ability, we have defined a skill tree
that organizes the (hierarchical) complexity levels
of the multi-hop symbolic reasoning dataset.

Our experiments have revealed that the major
weakness lies in systematicity, even with a rela-
tively simple composition. Through the ablation
studies, we also have found that difficulty in sys-
tematicity is pronounced in accessing knowledge
that is not written in input but stored in models.
Furthermore, even in training models with inter-
mediate steps that explicate the composition, they
struggle to capture systematicity. We also found
the difficulty of multi-hop reasoning in composi-
tional generalization. These highlight the exact
weakness of neural models and encourage studies
to overcome such limitations.
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Limitations

In this work, we explored neural networks’ ability
to capture compositionality in symbolic arithmetic
reasoning in hopes that it may lead to future im-
provements in more general reasoning. However,
arithmetic reasoning may not necessarily gener-
alize to natural language tasks. Furthermore, we
explored several aspects of multi-hop arithmetic
reasoning, but these were chosen from a relatively
human-centric perspective, and models may suffer
from unforeseen other difficulties. Finally, while
we found several patterns in how model perfor-
mance degrades, it is difficult to aggregate this into
a full picture of what a model can and cannot do.
Further experiments are needed to gain a more com-
plete understanding of model performance
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A Training configurations

Training data: Data of primitive domains (grey
domains in Figure 2) are also added to the training
data. Specifically, data in the primitive domains
that are reached by traversing the graph (Figure 2)
from the training domain to the left is added. For
example, when the training domain has the domain
of 7, the data of primitive domains of 2, 3, and 6 are
added3. Note that when the domain of 3 is included,
the domain of 1 is not added. Additionally, as
the objective of this study does not emphasize the
generalization performance in arithmetic ability,
the scope of numbers utilized in the test domain
is adjusted to ensure that the upper limit of the
answers in the test domain does not surpass that of
the answers in the train domain.

Hyperparameter: We used the T5 models (v1.1)
as pre-trained model4. We used three model sizes:
base (250 million parameters), large (800 million
parameters), and xl (3 billion parameters). Follow-
ing T5 (Raffel et al., 2020) fine-tuning configura-
tions, we use Adafactor (Shazeer and Stern, 2018)
as the optimizer with a constant learning rate. Also,
we specify the learning rate 1.0×10−5 for training
and 5.0 × 10−5 in measuring the WA. The batch
size is 32 for all experimental settings. We trained
each model on NVIDIA A6000 (48GB memory),
A100 (80GB memory). In addition, following pre-
vious research about numerical reasoning (Geva
et al., 2020), we tokenize numbers in a digit-by-
digit manner.

B How to calculate WA

As described in Section 3, we used weighted av-
erage accuracy (WA). This metric quantifies the
efficiency (ease) of generalization by assigning a
high weight to accuracy in the early training stage.
Specifically, the weights wi (where i is the num-
ber of validation steps) were calculated using the
following formulae:

3Task 7,8→10 do not incorporate data from the primitive
domains into the training data to evaluate if compositional
generalization can be achieved solely from complex compo-
nents.

4https://huggingface.co/docs/transformers/
model_doc/t5v1.1

base large
Task Type ZA WA ZA WA

1,2 sys. 25.5 71.2 33.8 61.0
→4 +subst. 25.2 72.4 30.9 62.0

2,3 sys. 23.0 48.7 25.4 49.1
→5 +subst. 22.1 47.5 25.7 43.5

2,3,6 sys. 29.6 57.6 35.0 55.1
→8 +subst. 28.7 50.4 34.3 50.2

2,3,6 sys. 36.7 59.8 40.4 48.5
→7 +subst. 39.4 57.0 38.6 39.3

1,2,6 sys. 22.0 26.1 21.1 16.1
→9 +subst. 22.6 26.7 23.5 18.2

7,8 sys. 24.1 28.6 32.5 25.3
→10 +subst. 24.9 27.7 34.9 29.3

1 prod. 92.4 99.8 100.0 83.1
→3 +subst. 91.2 99.8 100.0 82.3

4 prod. 60.4 93.0 89.5 90.8
→5 +subst. 63.8 95.9 91.8 87.4

9 prod. 33.5 49.4 41.6 21.0
→10 +subst. 34.3 48.2 43.5 22.2

Table 4: Experimental results when BART is used
as a pre-trained model. The “Task” column exhibits
(train→test) domains corresponding to the skill-tree
(Figure 2). The “Type” column shows the targeted com-
positionality type in each setting; here, “sys.,” “prod,”
and “subst.” denote the systematicity, productivity, and
substitutivity generalizations, respectively.

wi = −ai+ wmax , (1)

wmax = αwmin , (2)

wmin =
2

(N + 1)(α+ 1)
, (3)

a =
(wmax − wmin)

N
. (4)

Here, N is the number of validation steps. α is a
hyperparameter that determines how heavily the
accuracy in the early stages is weighted. We set
α to 1000 in all the experiments. Also, We used
the first 100 validation steps to calculate WA, so
specify N = 100 for all experiments. WA was
calculated with accuracy on the held-out validation
datasets in the test domain.
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Task base large x-large

1,2 (→4) 72.5 100.0 100.0
2,3 (→5) 63.3 56.1 99.9
1,3,6 (→7, 8) 68.6 67.9 67.5
1,2,6 (→9) 99.9 76.0 76.8
7,8 (→10) 48.6 37.3 24.0
1 (→3) 51.1 15.1 16.3
4 (→5) 100.0 99.9 99.9
9 (→10) 99.7 99.9 99.7

Table 5: Accuracy on the training held-out dataset when
we start training the model from randomly initialized
parameters. (When training began with parameters pre-
trained on language, the accuracy was almost 100% in
all settings.) Each training task includes the primitive
operations required to solve train domain tasks as de-
scribed in section A.

C Model variants

C.1 BART

To confirm the generality of our results obtained
with the T5 models, we also conduct the same ex-
periment using BART (Lewis et al., 2020). We
use two model sizes5: base (140 million parame-
ters) and large (400 million parameters). Table 4
shows the result using BART. The same tendency
described in Section 4 was observed when BART
was used as a language-pre-training model.

C.2 Training from scratch

We also experimented with the case where we
started training from randomly initialized parame-
ters to isolate the effect of the pre-training adopted
in T5. We found that these initialized models failed
to learn even primitive operations and in-domain
tasks (Table 5), at least with the hyperparameter set-
ting6 used in this study. Thus, we did not proceed to
their evaluation of compositionality generalization.

D Detailed analysis of T5-based models

Figure 3 shows the learning curves (accuracy on
validation datasets) for all tasks demonstrated in
Table 1. The graphs also show that the neural lan-
guage model struggles to solve tasks that require

5https://huggingface.co/facebook/bart-base,
https://huggingface.co/facebook/bart-large

6Unlike in the training domain used for the language pre-
trained model, we relax the training stopping criterion. We
stopped training when the accuracy did not increase by 10
epochs in the validation dataset.

compositional generalization in the beginning part
of the training.

D.1 String operations ablation for all tasks
Table 6 shows the experimental results of the abla-
tion study using string operations for all tasks.

D.2 Scratch pad evaluation for all tasks
Table 7 shows the experimental results of the abla-
tion study using scratchpad for all tasks.

E Dataset details

Table 8 summarizes the characteristics of each task.

E.1 String operations
Table 9 shows the details of the string operations.

E.2 Scratch pad formulation
For the additional study using scratchpad in sec-
tion 4, we generate problems with ing the in-
termediate steps. Scratchpad is in the form of
straightforward one-by-one calculations of only
those calculations necessary to find the target vari-
able. The following is an example of scratchpad
reasoning:

Question: A=1+2, B=A+3, B=?
Answer: A=1+2;A=3;B=A+3;B=3+3;B=6
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base large x-large

w/o 
subst.

w/ 
subst.

Figure 3: Learning curves of generalization test for all tasks.

base large x-large
Task Type ZA WS ZA WS ZA WS

1,2 sys. 59.2 95.9 66.9 98.5 63.9 98.9
→ 4 +subst. 59.0 95.1 67.3 98.2 62.2 99.0

2, 3 sys. 37.3 94.1 66.1 98.4 86.9 99.3
→ 5 +subst. 35.9 93.5 65.2 98.6 84.2 99.0

2,3,6 sys. 59.6 93.9 71.5 98.0 52.5 97.2
→8 +subst. 56.3 92.8 67.1 98.0 52.3 97.0

2,3,6 sys. 34.3 91.0 46.3 93.6 32.0 95.7
→7 +subst. 34.3 91.3 48.1 93.6 34.2 96.5

1,2,6 sys. 13.2 34.3 11.6 38.1 12.3 59.6
→9 +subst. 12.7 34.9 13.0 39.0 12.4 58.8

7,8 sys. 26.2 61.1 20.0 61.7 21.3 67.4
→10 +subst. 26.4 61.4 19.9 60.0 20.5 68.5

1 prod. 100.0 100.0 100.0 100.0 100.0 100.0
→3 +subst. 100.0 100.0 100.0 100.0 99.9 100.0

4 prod. 100.0 100.0 99.9 100.0 100.0 100.0
→5 +subst. 100.0 100.0 100.0 100.0 100.0 100.0

9 prod. 69.6 88.2 71.5 89.9 75.3 92.0
→10 +subst. 67.4 88.8 72.0 89.6 75.2 92.0

Table 6: Experiments result from string operation ablation. The “Task” column exhibits (train→test) domains
corresponding to the skill-tree (Figure 2). The “Type” column shows the targeted compositionality type in each
setting; here, “sys.,” “prod,” and “subst.” denote the systematicity, productivity, and substitutivity generalizations,
respectively.
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base large x-large
Task Type ZA WS ZA WS ZA WS

1,2 sys. 30.6 81.3 33.9 85.5 35.6 94.9
→4 +subst. 30.3 77.9 32.9 85.5 36.3 95.5

2,3 sys. 26.2 82.1 36.1 89.4 33.7 96.4
→5 +subst. 25.4 81.3 36.1 88.1 32.9 96.4

2,3,6 sys. 0.0 27.6 0.0 47.5 0.0 71.3
→8 +subst. 0.0 26.0 0.0 47.3 0.0 72.9

2,3,6 sys. 0.0 43.1 0.0 59.0 0.0 75.0
→7 +subst. 0.0 40.0 0.0 56.6 0.0 73.3

1,2,6 sys. 0.0 0.2 0.0 2.5 0.0 14.3
→9 +subst. 0.0 0.1 0.0 2.7 0.0 16.4

7,8 sys. 0.0 17.0 0.0 33.2 0.0 55.1
→10 +subst. 0.0 17.4 0.0 32.6 0.0 55.3

1 prod. 100.0 100.0 100.0 100.0 96.0 99.9
→3 +subst. 100.0 100.0 100.0 100.0 95.8 99.9

4 prod. 100.0 100.0 100.0 99.9 100.0 99.9
→5 +subst. 100.0 100.0 100.0 99.9 100.0 99.9

9 prod. 0.0 50.8 0.0 72.2 0.0 80.9
→10 +subst. 0.0 51.8 0.0 69.5 0.0 79.3

Table 7: Experiments result from scratchpad ablation. The “Task” column exhibits (train→test) domains correspond-
ing to the skill-tree (Figure 2). The “Type” column shows the targeted compositionality type in each setting; here,
“sys.,” “prod,” and “subst.” denote the systematicity, productivity, and substitutivity generalizations, respectively.
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Domains Required premitives Targeted composition

Task Example Assign. Arith. Ref. Sys. Prod. Subst.
1 A=1, B=2, B=? ✓
2 A=1+2, A=? ✓ ✓
3 A=1, B=2, C=3, C=? ✓ ✓
3’ α=1, β=2, γ=3, γ=? ✓ ✓ ✓
4 A=1+2, B=2+3, B=? ✓ ✓ ✓
4’ α=1+2, β=2+3, β=? ✓ ✓ ✓ ✓
5 A=1+2, B=2+3, C=3+4, C=? ✓ ✓ ✓ ✓
5’ α=1+2, β=2+3, γ=3+4, γ=? ✓ ✓ ✓ ✓ ✓
6 A=1, B=A, B=? ✓ ✓
7 A=1, B=2, C=B+3, C=? ✓ ✓ ✓ ✓
7’ α=1, β=2, γ=β+3, γ=? ✓ ✓ ✓ ✓ ✓
8 A=1+2, B=2+3, C=B, C=? ✓ ✓ ✓ ✓
8’ α=1+2, β=2+3, γ=β, γ=? ✓ ✓ ✓ ✓ ✓
9 A=1+2, B=A+3, B=? ✓ ✓ ✓ ✓
9’ α=1+2, β=α+3, β=? ✓ ✓ ✓ ✓ ✓
10 A=1+2, B=A+3, C=B+4, C=? ✓ ✓ ✓ ✓ ✓
10’ α=1+2, β=α+3, γ=β+4, γ=? ✓ ✓ ✓ ✓ ✓ ✓

Table 8: Dataset configurations. The “Task” column exhibits (train→test) domains corresponding to the skill-tree
(Figure 2). “Assign.” “Arith.” and “Ref.” in “Required primitives” column mean primitive operations name,
“assignment” “arithmetic operations” and “reference” (see subsection 2.2) The “Target composition” column shows
the targeted compositionality type in each setting; here, “Sys.,” “Prod,” and “Subst.” denote the systematicity,
productivity, and substitutivity generalizations, respectively.

Description Example

join String concatenation. 12 + 34 = 1234

reverseJoin String concatenation + Reverse 123 ^ 78 = 87321

strSub Deletion of duplicate characters.
Return 0 if there are no dupli-
cates.

7873 - 73 = 87

stackJoin Select one character from the left
side of each string alternately and
return the combined string.

12 * 34 = 1324

Table 9: Detail of string operation.
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Abstract

Successful machine learning systems currently
rely on massive amounts of data, which are very
effective in hiding some of the shallowness of
the learned models. To help train models with
more complex and compositional skills, we
need challenging data, on which a system is suc-
cessful only if it detects structure and regulari-
ties, that will allow it to generalize. In this pa-
per, we describe a French dataset (BLM-AgrF)
for learning the underlying rules of subject-verb
agreement in sentences, developed in the BLM
framework, a new task inspired by visual IQ
tests known as Raven’s Progressive Matrices.
In this task, an instance consists of sequences
of sentences with specific attributes. To predict
the correct answer as the next element of the
sequence, a model must correctly detect the
generative model used to produce the dataset.
We provide details and share a dataset built
following this methodology. Two exploratory
baselines based on commonly used architec-
tures show that despite the simplicity of the
phenomenon, it is a complex problem for deep
learning systems.

1 Introduction

Over the last years, driven by the surge in deep
learning methods, models in NLP have become
very powerful. They have even reached super-
human performance on standard benchmarks such
as SuperGLUE (Wang et al., 2019) and SQuAD
(Rajpurkar et al., 2018). Deeper probing, though,
shows that this is due to the models’ surprisingly
robust superficial natural language understanding

∗The work was done while the author was at the Univer-
sity of Geneva.

Figure 1: An example Raven’s progressive matrix (best
seen in colour). The matrix is constructed according to
two rules: (i) the red dot moves one place clockwise
when traversing the matrix left to right; (ii) the blue
square moves one place anticlockwise when traversing
the matrix top to bottom. The task consists in finding
the tile in the answer set that correctly completes the
sequence, indicated with a double border.

ability. This indicates that new benchmarks are nec-
essary that accurately show the level of progress in
language processing (Ruder, 2021).

In this paper, we describe such a benchmark,
developed based on a new method described in
(Merlo et al., 2022), and summarized in Section
2. The method defines a procedure for building
datasets that capture specific linguistic phenom-
ena in a structured problem, inspired by the visual
patterns detection tasks in Raven’s progressive ma-
trices (RPM) (Raven, 1938), as in Figure 1.

The visual RPMs manipulate elements with at-
tributes such as position, shape, colour and size.
The language matrices manipulate phrases, depen-
dencies in the syntactic tree, and lexical, gram-
matical and semantic attributes between connected
elements of a sentence. To successfully tackle such
a complex problem, a system must detect structure
and patterns in the data. To complement the struc-
ture of the problem, the candidate answers set is

1363



also specifically designed – the negative answers
are built following specific criteria – to help de-
termine which facets of the problem the system is
able to learn, and which it is not.

By enabling different levels of analysis, from
the solution of the task in different controlled set-
ting to the analysis of the errors, this dataset in-
tends to support the development of neural mod-
els with stronger abilities of abstraction and gen-
eralization, and more complex and compositional
skills, that could learn robust models from few
examples, and ultimately be deployed on low-
resource languages. The code and the data are avail-
able here: https://github.com/CLCL-Geneva/
BLM-SNFDisentangling.

2 BLM-AgrF: Blackbird’s Language
Matrices for agreement

CONTEXTS TEMPLATE
1 NP-sing PP1-sing VP-sing
2 NP-plur PP1-sing VP-plur
3 NP-sing PP1-plur VP-sing
4 NP-plur PP1-plur VP-plur
5 NP-sing PP1-sing PP2-sing VP-sing
6 NP-plur PP1-sing PP2-sing VP-plur
7 NP-sing PP1-plur PP2-sing VP-sing
8 NP-plur PP1-plur PP2-sing VP-plur

ANSWER SET
1 NP-sing PP1-sing et NP2 VP-sing Coord
2 NP-plur PP1-plur NP2-sing VP-plur correct
3 NP-sing PP-sing VP-sing WNA
4 NP-sing PP1-sing PP2-sing VP-plur AE
5 NP-plur PP1-sing PP1-sing VP-plur WN1
6 NP-plur PP1-plur PP2-plur VP-plur WN2

Figure 2: BLM instances for verb-subject agreement,
with two attractors. WNA= wrong number of attractors;
AE= agreement error; WN1= wrong nr. for 1st attractor
noun (N1); WN2= wrong nr. for 2nd attractor noun
(N2).

The data format we present has been called
Blackbird’s Language Matrices (BLMs) (Merlo
et al., 2022), because it requires the presentation of
the linguistic phenomenon of interest in the form
of a complex set of sentences that have both syntag-
matic and paradigmatic relations, thereby, like in
the RPM visual version, forming a matrix structure.

A BLM has a structure defined by a combination
of rules. The starting point is defining the linguistic
problem that needs to be learned (e.g. subject-verb
agreement) and the grammatical rules that define
it. The combination of rules can be complex and
each rule can act as an interfering factor obfuscat-
ing the other rules. The next step is to devise the

rules governing the abstract automatic generation
process that embody the properties of the linguistic
phenomenon and its underlying rules. Combining
these examples of grammatical rules will produce
templates that can be used to automatically create
large samples of data with lexical/structural vari-
ety. To allow for probing the learned model, apart
from the correct answer, the answer sets contain
negative examples built by corrupting some of the
generating rules. This helps investigate the kind of
information and structure learned, and the type of
mistakes a system is prone to.

2.1 BLM-AgrF for subject-verb agreement

The BLM-AgrF dataset we illustrate here defines
implicitly the rules of subject-verb agreement in
French. As a reminder, the main rule of subject-
verb agreement in French, and English, states that
subjects and verbs agree in their number. Agree-
ment is a rule that applies to the structure of the
sentence and not the linear order, so agreement
applies independently of how many noun phrases
intervene between the subject and the verb.

Subject-verb agreement is a morphological phe-
nomenon of appropriate complexity to start our
investigations with BLMs. Subject-verb agreement
is clearly limited to some specific words in the sen-
tence so that the elements and the attributes manip-
ulated by the underlying rules can be clearly identi-
fied. It is marked explicitly in the forms of words
(for example by an −s ending) and it does not de-
pend on the words’ meaning. Moreover, agreement
rules show structural properties, so that sequences
of increasing complexity of application of the rule
can be defined (Linzen et al., 2016; Linzen and
Leonard, 2018). We choose to work specifically
on French because its agreement system, its verb
conjugations and its noun phrase structure lend
themselves well to our investigation.

The data that illustrates this linguistic rule must
show all patterns of combination of agreement be-
tween subject and verb but also include data that
illustrate the structural nature of the rule. Noun
phrases inserted in the subject NP as prepositional
complements or relative clauses act as intervening
elements. We consider one and two such noun
phrases, to increase the distance between the sub-
ject and the verb, and different clause complexities
to produce data that covers syntactic structures of
various depths.

While intervening noun phrases do not enter into

1364

https://github.com/CLCL-Geneva/BLM-SNFDisentangling
https://github.com/CLCL-Geneva/BLM-SNFDisentangling


an agreement relation based on the grammatical
rules, in practice, the intervening noun phrases can
act as agreement attractors and trigger agreement
mistakes, if they are close to the verb. More specif-
ically, Franck et al. (2002) show, in experiments
with French and English speakers, that attraction
is determined by the syntactic distance between an
intervening noun and the head noun.

BLM-AgrF grammatical templates To gener-
ate the BLMs for the subject-verb number agree-
ment, we develop a context-free grammar based on
the targeted linguistic phenomenon and the inter-
fering factors chosen, illustrated in Figure 3.

<CONSTRUCTION>→ <AGREEMENT>

# structure
<AGREEMENT>→ <MAIN-CLAUSE>
<AGREEMENT>→ <COMPLETIVE-CLAUSE>
<AGREEMENT>→ <RELATIVE-CLAUSE>

# L’ ordinateur avec le programme est en panne .
<MAIN-CLAUSE>→

<SUBJNP(Num)><ATTRACTORS><VP(Num)>

# L’ ordinateur avec le programme dont Jean se servait est
en panne .
<RELATIVE-CLAUSE>→

<SUBJNP(Num)><ATTRACTORS>
<RELCLAUSE><VP(Num)>

# Jean suppose que l’ ordinateur avec le programme est
en panne .
# Jean suppose que l’ ordinateur avec le programme de l’
expérience est en panne .
<COMPLETIVE-CLAUSE>→

<COMPCLAUSE><MAIN-CLAUSE>

# e.g.: "dont Jean se servait"
<RELCLAUSE>→ {Rel chunks}
# e.g.: "Jean suppose que"
<COMPCLAUSE>→ {Comp chunks}

# e.g. ["L’ ordinateur", "Les ordinateurs"]
<SUBJNP(Num)>→ {NP chunks (Num)}

# e.g. PP1: ["avec le programme", "avec les programmes"]
# e.g. PP2: ["de l’ expérience", "des expériences"]
<ATTRACTORS>→ <PP>
<ATTRACTORS>→ <PP><ATTRACTORS>
<PP>→ {Prep chunks (attractor)}

# e.g.: ["est en panne", "sont en panne"],
<VP(Num)>→ {VP chunks (Num)}

Figure 3: Context-free grammar for the subject-verb
agreement in French, illustrated with examples.

The agreement between the subject and the verb
is explicitly included in the production rule for the
different types of clauses. The different types of
clauses will lead to sentences with different struc-

tures, and the attractors’ rule will insert one or
two NPs between the subject and the verb to cre-
ate different levels of linear and syntactic distance
between them.

To instantiate these templates, our starting point
are the examples in Franck et al. (2002, appendix
1). They provide a set of subject NPs of various
complexity – including prepositional phrases, them-
selves of various complexity. We produced sen-
tences based on these subject NPs by manually
adding verb phrases, and by making the NPs more
complex to increase the distance between the sub-
ject and the verb in the sentence. Each of these
sentences is used to produce a seed. A seed con-
tains all number variations of the NPs and VP in
the sentence, and additional complement or prefix
phrases to produce sentence variations of increased
complexity. The end result is a set of 32 seeds,
which provide the terminals (chunks) for the gram-
mar. This progression from Franck et al. (2002)
examples to seeds is illustrated in Figure 4.

The rules for BLM-AgrF generation The gram-
matical templates generate individual sentences. It
is shown in Figure 2. The rules for a BLM-AgrF
problem generation use the grammatical templates
to generate a sequence of sentences according to
specific sentence attributes. In our case, the sen-
tence attributes that vary are the grammatical num-
ber of the subject and verb ({sg, pl}), the number
of attractors ({1, 2}), and the grammatical number
of each of these attractors ({sg, pl}). For each of
the three clause types in the grammar, varying the
above-mentioned attributes process will generate
eight sentences, as illustrated in Figure 5.

To avoid biases in the process that may be caused
by having an overly consistent input (i.e. the se-
quence following always the same sentence struc-
ture), different sentence sequences are generated
for the same seed and same clause type by varying
the alternation of values for the chosen attributes.
For the sequences shown in Figure 5, the subject-
verb grammatical number alternates between {sg,
pl}, sentences with one attractor are generated first
with alternating grammatical number, and then sen-
tences with two attractors are built, but using a
fixed grammatical number for the second attractor.
We can alternate instead between {pl, sg}, gener-
ate sentences with two attractors first, and use a
different grammatical number for the second attrac-
tor. Considering all these variations, we can obtain(
2
2

)
×
(
2
2

)
×
(
3
2

)
= 24 different sequences for each
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generation seed and each clause type (illustrated in
more detail in Appendix A.1, Figure 10).

Each of these sequences of eight sentences will
be transformed into a problem. The first seven
sentences will be the input (we call it context), and
the eighth will be included in the answer set.

The BLM-AgrF answer set The answer set will
contain the eighth sentence as the correct answer,
and another five candidates generated by corrupting
one of the generating rules. The candidates in the
answer set are generated such that they are distin-
guishable from the correct answer but relevant and
challenging. Unlike other RPM-like datasets in vi-
sion, we choose to have a fixed set of answer types,
to be able to then do a type-based error analysis.
At the bottom of Figure 5, we present the answer
set for the Main clause sequence in the table, with
the one correct and five incorrect answers, and the
characteristics of the wrong answer candidates.

The BLM-AgrF dataset The dataset consists of
lexical instantiations of the grammatical templates
produced based on the linguistic phenomenon – a
subject-verb agreement in French declarative sen-
tences – in simple and complex structures, thanks
to noun phrases of various lengths and complexity
between the subject and the verb in the sentence.

The manually provided seeds are useful to con-
trol the structure of the sentence and to ensure a
starting point with syntactically and semantically
valid sentences. By applying the rules of BLM-
AgrF generation to the 32 seeds, which generate
24 sequences for each seed and for each clause
type, we obtain a first dataset consisting of 2304
BLM-AgrF problems. We call this dataset type I.

To introduce some lexical variation in this
dataset in a semi-automatic manner, we use
CamemBERT (Martin et al., 2020) to replace indi-
vidual words in the sentences in the type I dataset.
We mask different words in the three types of
clauses one at a time, and generate the five highest
probability replacements that will be substituted in
the sentence sequence and the candidate set:

Main clause : mask the subject noun and second
noun in the sentence, e.g.:
Les MASK avec le programme de l’experience sont en

panne.

Les ordinateurs avec le MASK de l’experience sont en

panne.

Completive clause : mask the subject and verb in
the completive clause, and mask the nouns in

the embedded clause, e.g.:
MASK suppose que les ordinateurs avec le programme

de l’experience sont en panne.

Jean MASK que les ordinateurs avec le programme de

l’experience sont en panne.

...

Relative clause mask the head noun and verb in
the relative clause, and the subject noun and
following noun in the main clause, e.g. :
Les ordinateurs avec le programme de l’experience dont

MASK se servait sont en panne.

Les ordinateurs avec le programme de l’experience dont

Jean se MASK sont en panne.

...

The process is illustrated in Figure 6, and a more
detailed view of masking scenarios is shown in
Figure in Appendix A.2.

By applying these lexical variations on the type I
dataset we obtain a dataset containing 38400 BLM-
AgrF problems. We call this dataset type II. To
further increase the lexical variation, we build the
type III dataset, where a BLM-AgrF problem con-
sists of a combination of sentences (with the same
grammatical structure) from different type II prob-
lems. As this dataset consists of resampled sen-
tences from type II, it will also contain 38400 BLM
problems.

These three datasets are split 90:10 into train and
test subsets. During experiments we take a random
0.1 portion of the training set for validation.

3 Experiments

Transformers and other neural architectures have
shown very high performance on a variety of NLP
tasks. We describe here two baselines to investigate
the difficulty in learning the underlying regularities
of subject-verb agreement on the proposed dataset.
Figure 7 shows the general process flow. Each
sentence in the input is encoded separately using a
pre-trained multilingual transformer model,1 which
were shown to capture, among others, syntactic
information (Hewitt and Manning, 2019).

1The results reported here are based on sentence embed-
dings obtained using BERTTokenizer and BERTModel from
the transformers Python library, using the pretrained BERT-
base-multilingual-cased model https://huggingface.co/
bert-base-multilingual-cased. This encoder produces
an embedding of size 768 for each sentence. We have run
preliminary experiments with French-specific sentence em-
beddings using FlauBERT (Le et al., 2020). The results were
lower than when using a multilingual cased BERT language
model.
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Example subject NPs from Franck et al. (2002)
L’ordinateur avec le programme de l’experience
The computer with the program of the experiments
Manually expanded and completed sentences
L’ordinateur avec le programme de l’experience est en panne.
The computer with the program of the experiments is down.

Jean suppose que l’ordinateur avec le programme de l’experience est en panne.
Jean thinks that the computer with the program of the experiments is down.

L’ordinateur avec le programme dont Jean se servait est en panne.
The computer with the program that John was using is down.

A seed for language matrix generation
Jean suppose que l’ordinateur avec le programme de l’experience dont Jean se servait est en panne
Jean thinks that the computer with the program of the experiment that John was using is down

les ordinateurs avec les programmes sont en panne
the computers with the programs are down

Figure 4: Examples from Franck et al. (2002), manually completed and expanded sentences based on these examples,
and seeds made based on these sentences for the subject-verb agreement BLM-AgrF dataset that contain all number
variations for the nouns and the verb.

Main clause
1 L’ordinateur avec le programme est en panne.
2 Les ordinateurs avec le programme sont en panne.
3 L’ordinateur avec les programmes est en panne.
4 Les ordinateurs avec les programmes sont en panne.
5 L’ordinateur avec le programme de l’expérience est en panne.
6 Les ordinateurs avec le programme de l’expérience sont en panne.
7 L’ordinateur avec les programmes de l’expérience est en panne.
8 Les ordinateurs avec les programmes de l’expérience sont en panne.
Completive clause
1 Jean suppose que l’ordinateur avec le programme est en panne.
2 Jean suppose que les ordinateurs avec le programme sont en panne.
3 Jean suppose que l’ordinateur avec les programmes est en panne.
4 Jean suppose que les ordinateurs avec les programmes sont en panne.
5 Jean suppose que l’ordinateur avec le programme de l’expérience est en panne.
6 Jean suppose que les ordinateurs avec le programme de l’expérience sont en panne.
7 Jean suppose que l’ordinateur avec les programmes de l’expérience est en panne.
8 Jean suppose que les ordinateurs avec les programmes de l’expérience sont en panne.
Relative clause
1 L’ordinateur avec le programme dont Jean se servait est en panne.
2 Les ordinateurs avec le programme dont Jean se servait sont en panne.
3 L’ordinateur avec les programmes dont Jean se servait est en panne.
4 Les ordinateurs avec les programmes dont Jean se servait sont en panne.
5 L’ordinateur avec le programme de l’expérience dont Jean se servait est en panne.
6 Les ordinateurs avec le programme de l’expérience dont Jean se servait sont en panne.
7 L’ordinateur avec les programmes de l’expérience dont Jean se servait est en panne.
8 Les ordinateurs avec les programmes de l’expérience dont Jean se servait sont en panne.

Answer set for problem constructed from lines 1-7 of the main clause sequence
1 L’ordinateur avec le programme et l’experiénce est en panne. N2 coord N3
2 Les ordinateurs avec les programmes de l’experiénce sont en panne. correct
3 L’ordinateur avec le programme est en panne. wrong number of attractors
4 L’ordinateur avec les programmes de l’experiénce sont en panne. agreement error
5 Les ordinateurs avec le programme de l’experiénce sont en panne. wrong nr. for 1st attractor noun (N1)
6 Les ordinateurs avec les programmes des experiénces sont en panne. wrong nr. for 2nd attractor noun (N2)

Figure 5: BLM-AgrF instances for verb-subject agreement, with two attractors (programme, experiénce), and three
clause structures. And candidate answer set for a problem constructed from lines 1-7 of the main clause sequence.
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Les programmele[MASK] avec expériencel'de panneensont .INPUT

OUTPUT

serveurs, appareils, ordinateurs, connexions, logiciels TOP 5

Les programmeleserveurs avec l'de panneensont .

CamemBERT Masked Language Model

expérience

Figure 6: Creation of lexical variants by generating vari-
ations of a masked input using CamemBERT (Martin
et al., 2020)

3.1 Models

We use two baseline systems – a feed-forward neu-
ral network (FFNN) and a convolutional neural
network (CNN). Because the sentence embedding
produced by the transformer captures structural
information and we are presenting sentences in a
sequence, both the FFNN and the CNN will have
the chance to find patterns shared across the sen-
tences.

The input to the FFNN is a concatenation of
the sentence embeddings in the sequence (size 7
* 768), that is passed through 3 fully connected
layers that gradually compress the input (7 * 768
layer1−−−−→ 3.5 * 768

layer2−−−−→ 3.5 * 768
layer3−−−−→ 768) to

the size of a sentence representation. Because of
the full connectedness between successive layers,
the FFNN has the capacity of capturing patterns
spread out over the entire input vector.

The input to the CNN is an array of embeddings,
of size (7 x 768). This is passed through three
successive layers of 2-dimensional convolutions,
with a kernel size (3x3) (stride 1, no dilation). The
output of the convolution is passed through a fully
connected layer to compress it to the sentence rep-
resentation size (768). Because of the kernel size,
stride=1, and no dilation, this setup will focus on
finding localized patterns in the sentence sequence
array. If the NPs and verb grammatical numbers
are encoded in a more localised manner within the
sentence representation, this architecture should
detect the patterns in the sequence.

The output of the two networks is the same – a
vector representing the sentence embedding of the
correct answer. The learning objective is to max-
imize the probability of the correct answer from
the candidate answer set. Because the incorrect an-
swers in the answer set are specifically designed to
be minimally different from the correct answer, we
implement the objective through the max-margin
loss function. This function combines the distances

Baseline
(CNN /
 FFNN)

Sentence sequence Candidate answers

X

PredictionSentence
representation

Figure 7: Illustration of the baseline setup experiments.

between the predicted answer and the correct and
erroneous ones. We first compute a score for the
embedding ei of each candidate answer ai in the
answer setA with respect to the predicted sentence
embedding epred as the cosine of the angle between
the respective vectors:

score(ei, epred) = cos(ei, epred)

The loss uses the max-margin between the score
for the correct answer ec and for each of the incor-
rect answers ei:

La =
∑

ei

[1−score(ec, epred)+score(ei, epred)]+

At prediction time, we take the answer with the
highest score value from a candidate set as the
correct answer.

3.2 Results and discussion
The results of the experiments, in terms of F1 av-
erages over 5 runs, are shown in Figure 8, and the
detailed version is in Appendix A.3. The exper-
iments were run on a VM on the Google Cloud
Platform with one NVIDIA Tesla T4 GPU and 8G
memory. We ran experiments for 50 epochs, with
a learning rate of 0.001 and Adam optimizer. On
type II and type III data, a run took 20 minutes, on
type I data 2 minutes.

As a reminder, Type I data is lexically consistent
– the same vocabulary is used in all sentences in
the sequence, and in the answer candidates. Type
II has a limited amount of lexical variation – one
word in each sentence is different. Type III is more
lexically varied, with little, if any, lexical overlap
between any of the context or answer candidate
sentences.

The models perform well when using the full
amount of training data – the heatmaps in the left
column in Figure 8 –, confirming that the experi-
mental setup used is suitable for benchmarking the
problem. Type I data has available 2073 instances
for training (of which 20% are used for validation).
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Figure 8: F1 averages over 5 runs, for the FFNN and
CNN baselines, when training on all the available train-
ing data, or on the same amount of data (2073 instances)

When training models on this amount of data for
type II and type III data, the performance on these
subsets drops dramatically – the heatmaps on the
right in Figure 8. This indicates that the success on
Type I data is due to finding superficial clues, which
do not generalize to data with higher lexical vari-
ability in both the input and the candidate answers.
Overall, the FFNN model performs better, poten-
tially indicating that the interesting patterns are not
localized, but rather more spread out in the inputs.
With different stride and dilation parameters, the
CNN might improve its performance.

A plot of the different error types made by the
different models (relative to the size of the test data)
is presented in Figure 9. The error plots show how
the frequency of different types of errors changes
when using a model trained on data of a different
type than the test data.

The error analysis presented in Figure 9 reveals
several insights about the data and the performance
of the models.

The different errors indicate the ability of the
models to learn different types of information:
subject-verb agreement requires long-distance,
structural information; errors on N1 and N2 tell us
whether the model exhibits recency effects, thereby
showing, like humans, that both structural and lin-
ear considerations come into play in learning agree-
ment; choosing the wrong number of attractors is
a very salient form of structural deviance from the
correct answer and coordination is a more subtle
one.

Across both models, the highest error is the
N2_alt – the wrong number in the second attrac-
tor, the one closest to the verb. This proximity
preference suggests that the models are rather shal-
low, with linear distance exerting greater influence
rather than syntactic distance. In one case, when
tested on type III data, the two models diverge. The
pattern of results might indicate that CNNs find
more localised patterns that allow them to avoid a
recency bias. Coordination and number of attrac-
tors mistakes occur much less frequently, suggest-
ing the models do learn the difference in construc-
tion and the rule of attractor sequence. This result
matches our intuition that these are also the two
most saliently different cases from the right answer
because they differ in structure.

These results and error analysis show that cu-
rated datasets like the one presented here reveal
the superficiality of the positive results on the
main task. If the underlying structural rules of the
subject-verb agreement had been learned properly,
lexical variation would not prove so disrupting and
recency effects would not be as strong.

4 Related work

The current paper does not have any direct com-
parison, as this is the first proposal of a dataset
for language using a BLM scheme. But it is in-
spired by work on generating RPM problems, and
on solving such problems in computer vision, and
it contributes to the investigation on learning of
agreement by neural networks.

Structured datasets for vision and language
The automatic generation of RPM-like matrices,
whether in vision or in language, is challenging,
technically, in two aspects. First, how do we rep-
resent the RPM problems to tackle their variations,
regularities, and irregularities? Second, how do we
ensure that the generated RPMs are valid?

To overcome these challenges, some efforts have
been made in computer vision: Wang and Su (2015)
formulate RPMs with first-order logic, which have
inspired Barrett et al. (2018) who propose Proce-
durally Generated Matrices (PGM) dataset through
relation-object-attribute triple instantiations. Zhang
et al. (2019) use the Attributed Stochastic Image
Grammar (A-SIG, proposed by Zhu and Mumford,
2006) as the representation of RPM and create
the Relational and Analogical Visual rEasoNing
(RAVEN) dataset.
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Figure 9: Relative frequencies of error types (relative to test data size) made by the different models, using models
trained for all types of data. The reference – training and testing on the same data type – are given as the black lines,
and we plot as vertical bars the increase (orange) or decrease (blue) in error when using a model trained on the other
two data types.

These structured datasets have been mostly de-
veloped to study issues of generalisation and disen-
taglement. van Steenkiste et al. (2020) developed
a dataset for computer vision similar to the RPMs,
and evaluate the usefulness of the representations
learned for abstract reasoning. They note that learn-
ing disentangled representations leads to faster few-
shot learning. M’Charrak (2018) developed a large
dataset, consisting of simple examples containing a
few morphological markings. They use this dataset
to learn disentangled sentence representations. The
simplicity of the sentences does not provide a suf-
ficiently realistic challenge from a linguistic point
of view.

Learning agreement Previous work on agree-
ment has tested recurrent neural network (RNN)
language models and found that RNNs can learn
to predict English subject-verb agreement if pro-
vided with explicit supervision (Linzen et al., 2016).
Bernardy and Lappin (2017)’s follow-up work has
shown that RNNs are better at modeling long-
distance agreement if they can train the model on
top of a corpus where a larger (10000 types vs.
100) vocabulary is used – the rest of the words are

replaced by their POS to highlight structural pat-
terns. Gulordava et al. (2018) explore the RNNs
capacity to track abstract hierarchical structure, by
predicting long-distance number agreement in vari-
ous constructions in four languages (English, He-
brew, Italian, Russian). Their results suggest that
RNNs can learn hierarchical grammatical phenom-
ena and not just shallow patterns. Lakretz et al.
(2021) found that individual neurons in an RNN
can encode linguistically meaningful features, and
propagate subject-verb number agreement informa-
tion over time. In a recent paper, Li et al. (2023)
investigates deeper representational issues, by con-
trasting two kinds of agreement, subject-verb agree-
ment and past-participle agreement in French. They
argue, based on theoretical accounts, that these su-
perficially similar kinds of agreement, involve in
fact very different abstract operations and demon-
strate that transformers do reflect this difference in
their representations.

5 Conclusions

In this paper we have introduced BLM-AgrF, an
instance of Blackbird’s Language Matrices (BLM)
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(Merlo et al., 2022). This novel linguistic dataset is
generatively constructed to support investigations
in representation learning of grammatical rules.
Each instance, consisting of a sequence of sen-
tences and a candidate answer set, was built using
a combination of rules, to provide a layered and
structured dataset for learning more complex mod-
els. The various layers of the dataset allow for a
variety of explorations, from disentangled sentence
representations to capture structure and regulari-
ties within a sentence, to modular architectures that
could capture structure and regularities in the sen-
tence sequences. The purposefully built candidate
answers supports more in-depth analyses of the be-
haviour of a system, and provide insights into the
source of prediction errors.

Experiments using baseline set-ups – feed-
forward networks and CNNs – show that the task
is difficult for previously successful sentence rep-
resentations and neural architectures, despite the
fact that the agreement rule they are supposed to
discover is rather simple. This supports our hypoth-
esis that the task the data embodies could provide
a new benchmark for modeling generalization and
abstraction.

6 Limitations

Manual creation for seeds for the synthetic data
The seeds to generate the data are manually chosen,
and the grammar rules are specifically designed for
the problem. The process may be further automated
in the future through higher-level formalisation of
the matrix generation process.

Language variations and linguistic phenomena
The dataset described in this paper focuses on
subject-verb agreement in French, with the main
verb in the present tense, covering common inter-
fering factors, different clause complexities and
various depth of syntactic structures. While the
simplicity of the modeled rule can be perceived
as a limitation, it was a deliberate feature. The
low performance of the transferred models to dif-
ferent test sets shows that the simple rule was not
easy to model. But as systems become successful
on a given dataset, new, more complex versions
can be built with richer phenomena at various lin-
guistic levels, including in morphologically-rich
languages.

Human upper bounds We do not have, in this
paper, an explicit experiment on human upper

bounds for the different data types.
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A Appendix

A.1 Generation process
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de l'expérience
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est en panne.

sont en panne. 

est en panne.

sont en panne. 

Les ordinateurs avec les programmes et l'expérience sont en panne. 

Les ordinateurs avec les programmes de l'expérience de l'adulte sont en panne. 

*L'ordinateur avec les programmes de l'expérience sont en panne. 

Les ordinateurs avec le programme de l'expérience sont en panne. 

*Les ordinateurs avec les programmes de l'expérience est en panne. 

Les ordinateurs avec les programmes de l'expérience sont en panne. 

N2 coord N3

wrong number of attractors

wrong number for N1

agreement error

correct 

wrong number for N2 

Context-
free

grammar

(a)

(b)

(c)

(d)

(e)

sg:singular

pl:plurial

na: not applied

Legend

error construction

sg P1sg

*ungrammatical

Figure 10:
Illustration of a BLMs problem generation process. Given sampled [relation, object, attribute] rule tuples
from (a), we first construct the abstract structure of the context with the values of the attributes of different
objects in (b). We then derive, expand and prune the context-free grammar (with details in Figure 3) from
each item’s abstract structure into its corresponding sentence template in (c). In (d), we instantiate each item
template into a sentence from the syntactic segment seed sets adapted from Franck et al. (2002). Finally,
given the correct answer (last item), we modify one attribute at a time to obtain the relevant, minimally
distinguishable and challenging candidate answer set in (e). The entire process is illustrated with an example
of a progression in [1, 2] constructed in a main clause. The error types across the dataset are uniformly
distributed to avoid statistical bias.
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A.2 Masking

Les programmeleavec expériencel'de panneensont .

Les [MASK]leordinateurs avec expériencel'de panneensont .

[MASK]N1:head noun

N2:intermediate noun

(a) Type II Main clause masking
Les programmeleavec expériencel'de panneensont .

Les [MASK]leordinateurs avec expériencel'de panneensont .

[MASK]

servaitdont

Jeandont

[MASK]

servaitdont

Jeandont

se

se

se

se

panneensont .

panneensont .

Les programmeleavec expériencel'de

Les leordinateurs avec expériencel'de

ordinateurs

programme [MASK]

servait

JeanN1:head noun

N2:intermediate noun

head noun

main verb

(b) Type II Relative clause masking

les programmeleavec expériencel'de panneensont .Jean suppose que

les [MASK]leavec expériencel'de panneensont .Jean suppose que

les programmeleavec expériencel'de panneensont .[MASK] suppose que

les leavec expériencel'de panneensont .Jean [MASK] que

ordinateurs

[MASK]

ordinateurs

ordinateurs programme

N1:head noun

N2:intermediate noun

head noun

main verb

(c) Type II Completive clause masking

Figure 11: Creation of lexical variants for Type II: masking strategy.

A.3 Detailed results

TRAIN ON TEST ON FFNN CNN
train on full training data
type I type I 0.9957 (0) 0.9887 (0.0065)

type II 0.6508 (0) 0.6291 (0.0089)
type III 0.5724 (0) 0.4992 (0.0053)

type II type I 0.9870 (0) 0.9861 (0.0017)
type II 0.9578 (0) 0.9236 (0.0062)
type III 0.7469 (0) 0.6159 (0.0064)

type III type I 0.9740 (0) 0.8909 (0.0158)
type II 0.9055 (0) 0.7425 (0.0094)
type III 0.8792 (0) 0.6714 (0.0140)

train on the same amount of data
(2073 instances: 1658 train/415 validation)
type I type I 0.9896 (0.0035) 0.9827 (0)

type II 0.6491 (0.005) 0.6492 (0)
type III 0.5644 (0.0038) 0.5370 (0)

type II type I 0.5584 (0) 0.6234 (0)
type II 0.4779 (0) 0.5229 (0)
type III 0.4622 (0) 0.4914 (0)

type III type I 0.5455 (0) 0.5368 (0)
type II 0.4768 (0) 0.4849 (0)
type III 0.4669 (0) 0.4664 (0)

Table 1: Average F1 (std) scores (to 4 decimal places) for the FFNN and CNN systems, over five runs. The highest
value for each train/test combination is highlighted in bold.
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Abstract
Advances in neural modeling have achieved
state-of-the-art (SOTA) results on public nat-
ural language processing (NLP) benchmarks,
at times surpassing human performance. How-
ever, there is a gap between public benchmarks
and real-world applications where noise, such
as typographical or grammatical mistakes, is
abundant and can result in degraded perfor-
mance. Unfortunately, works which evaluate
the robustness of neural models on noisy data
and propose improvements, are limited to the
English language. Upon analyzing noise in dif-
ferent languages, we observe that noise types
vary greatly across languages. Thus, exist-
ing investigations do not generalize trivially
to multilingual settings. To benchmark the per-
formance of pretrained multilingual language
models, we construct noisy datasets covering
five languages and four NLP tasks and observe
a clear gap in the performance between clean
and noisy data in the zero-shot cross-lingual set-
ting. After investigating several ways to boost
the robustness of multilingual models in this
setting, we propose Robust Contrastive Pre-
training (RCP). RCP combines data augmenta-
tion with a contrastive loss term at the pretrain-
ing stage and achieves large improvements on
noisy (& original test data) across two sentence-
level (+3.2%) and two sequence-labeling (+10
F1-score) multilingual classification tasks.

1 Introduction

Recently, multilingual pre-trained language mod-
els like mBERT (Devlin et al., 2019), XLM-R
(Conneau et al., 2020) and various others (Chi
et al., 2021; Xue et al., 2021; Chi et al., 2022)
have improved multilingual language understand-
ing by pretraining large Transformer models on
web-scale corpora (such as Wikipedia, Common-
Crawl). These models achieve state-of-the-art per-
formance on cross-lingual transfer and many mul-
tilingual NLP tasks (Wu and Dredze, 2019; Pires

⋆ Equal Contribution, ¶ Work done while at Amazon.

et al., 2019). However, a real-world system will
encounter real-world noise, such as linguistic vari-
ations and common errors observed in textual data,
that are often absent from benchmark datasets.

While prior works focused on this issue of ro-
bustness in monolingual settings (Peng et al., 2021;
Sengupta et al., 2021; Tan et al., 2020), investiga-
tion has been scarce for multilingual settings. In
this paper, we study the effect of realistic noise
in multilingual settings and propose methods to
boost the robustness of multilingual language mod-
els across four NLP tasks: Intent Classification
(IC), Slot Labeling (SL), Named Entity Recogni-
tion (NER) and Natural Language Inference (NLI).

Due to the lack of multilingual noisy evaluation
data, we synthesize benchmarks by mining noise
from publicly available corpora and injecting them
into the test sets associated with each of the four
tasks. We conduct human validation to ensure that
this noised data is indeed realistic (see examples
from MultiATIS++ in Figure 1) and identify the
variety of noise-types seen across languages (in §3).
These analyses highlight the potential of our test-
set in evaluating (and motivating future research
on) multilingual robustness.

To benchmark the performance of multilingual
systems, we consider accuracy metrics on two
utterance-level tasks (IC% and NLI%) and F1-
scores on two token-level classification tasks (SL-
F1 and NER-F1). Specifically, we seek to evaluate
the model’s performance on the noised version of
the test datasets in a zero-shot cross-lingual setting.
In this scenario, we have training data for a task
available only in one language (in our case, En-
glish) and test-data in various languages (Liu et al.,
2019, 2020).

While training data augmentation increases
model robustness for monolingual (i.e. English)
settings, it is not immediately obvious if these ro-
bustness gains can transfer across languages, as
error types can often be language-specific. For ex-

1375



Language Noise
Injection
Ratio

Realistic
Utt. %

Realistic Examples (test-set) Unrealistic Examples (test-set)

French
(fr)

0.1 95.4%
Me montré les vols directs de Charlotte à Min-
neapolis mardi matin .
Quelle compagnie aérienne fut YX

Me montré des vols entre Détroit er St. Louis sur
Delta Northwest US Air est United Airlines .
Lister des vols de Las Vegas à Son Diego

German
(de)

0.2 94.5%
Zeige mir der Flüge zwischen Housten und Or-
lando
Welche Flüge gibt es vom Tacoma nach San Jose

Zeige mit alle Flüge vor Charlotte nach Minnea-
polis zum Dienstag morgen
Zeige mit Flüge an Milwaukee nach Washington
DC v. 12 Uhr

Spanish
(es)

0.1 96.9%
qué aerolíneas vuelan de baltimore a san fran-
cesc
muéstrame vuelos entr toronto y san diego

necesito información de un vuelo y la tarifa de
oakland a salt lake city para el jueves antes e sus
8 am
de nuevo york a las vegas el domingo con la tarde

Hindi
(hi)

0.05 95.4%
मुझे डेल्टा उड़ानों के बारे में बताइए जो कोच के
याितर्यों को नाश्ता देता हों
मुझे मेिम्फस से लास वेगास तक उड़ान की जरूरत है

सोमवार दोपहर ने लॉस एंिजल्स से िपट्सबगर्

रिववार दोपहर को िमयामी में क्लीवलैंड

Japanese
(jp)

0.1 92.3%

来�水曜日にカンザスシティ初シカゴ行き
でシカゴの午後 7時ごろ到着して、�り
のフライトが木曜日のフライト

ワシントンをコロンバス間のすべてのフ
ライトの運賃はいくら

シャ�ロット空港の土曜日 err午后 1時に
出�する USエア�のフライトをリストア
ップして

水曜日のフェニックス�ミルウォ�キ�
逝き

Chinese
(zh)

0.1 86.2%
我需要 4点后在达拉斯起飞飞往旧金山的
联程航班

请列出从纽瓦克飞往洛杉机的航班

然而每天上午 10点之前从密尔沃基飞往亚
特兰大

拉瓜迪亚了豪华轿车服务要多少钱

Figure 1: MultiATIS++ test set injected with real-world noise mined from Wikipedia edits. The highest error
injection ratio found to be realistic by human experts is shown alongside the realistic utterance percentage. We do
not include the noisy test sets for Chinese and Japanese in our analysis owing to low (< 95%) realism.

ample, typos in Devanagari script can differ from
those seen in Latin scripts (e.g. -k� l → skul
in Devanagari showcases that a joined character
is incorrectly separated into two characters in the
word ‘school’).

Thus, to improve the robustness of pretrained
multilingual models across noise in all languages,
we propose Robust Constrastive Pretraining (RCP)
that couples multilingual noisy data-augmentation
with a contrastive learning loss term during pre-
training; this encourages the model to develop sim-
ilar representations for the original and the noised
version of a sentence.

On the noisy test sets, our method improves the
multilingual model performance across all metrics
and multilingual tasks– IC% by 4.9% on Multi-
ATIS++, 4.1% on MultiSNIPS; SL-F1 by 18.4 on
MultiATIS++, 8.6 on MultiSNIPS; NER-F1 by 2.9
on WikiANN; NLI% by 0.7% on XNLI. In sum-
mary, our primary contributions are:

1. We construct multilingual test data to evaluate
the robustness of NLP models to noise (§3).

2. We show that the performance of existing mul-
tilingual language models deteriorates on four
tasks when tested on the noisy test data (§5.1).

3. We introduce Robust Contrastive Pretraining
(RCP) to boost the robustness of existing mul-
tilingual language models (§5.2).

Our code and data is available on Github (repo:
amazon-science/multilingual-robust-contrastive-
pretraining) .

2 Related Work

Many prior works demonstrate the brittleness
of neural models on different noise phenomena
such as misspellings (Belinkov and Bisk, 2017;
Karpukhin et al., 2019; Moradi et al., 2021), cas-
ing variation (van Miltenburg et al., 2020), para-
phrases (Einolghozati et al., 2019), morphologi-
cal variance (Tan et al., 2020), synonyms (Sen-
gupta et al., 2021), and dialectical variance (Sarkar
et al., 2022). A popular approach to improve the
robustness to noise is fine-tuning models with data
augmentation (Feng et al., 2021) at either the pre-
training (Tan et al., 2020; Sarkar et al., 2022) or the
task-training stage (Peng et al., 2021). These works
consider monolingual pre-trained models and pri-
marily focus on English. While recent works on
token-free models motivate robustness in multilin-
gual settings (Clark et al., 2021; Xue et al., 2022;
Tay et al., 2021), examining the robustness of SOTA
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multilingual pre-trained models (and improving
them) remains unexplored. Hence, we investigate–
(1) are multilingual models robust to noise seen in
different languages (that may be dissimilar to noise
types seen in English)? (2) can we get and leverage
multi-lingual noise data to improve multilingual
models? and (3) do automatic data-augmentation
methods designed for English improve robustness
to multilingual noise?

To boost the robustness of multilingual models
to diverse multilingual noise, we leverage multilin-
gual data augmentation at the pretraining stage and
use contrastive learning. Our effort complements
work in computer vision that showcases contrastive
learning with adversarial learning at task-training
(Fan et al., 2021; Ghosh and Lan, 2021) and pre-
training time (Jiang et al., 2020; Kim et al., 2020)
can improve model robustness. NLP has also seen
a plethora of work that leverages contrastive learn-
ing, but seldom to alleviate robustness concerns
(Jaiswal et al., 2020). Similar concepts, such as Ad-
versarial Logit Pairing (Einolghozati et al., 2019),
used at task-training time have proven to be less
effective than data augmentation approaches (Sen-
gupta et al., 2021) in boosting robustness.

All the aforementioned works lack in at least
one of the two novel aspects of this paper– ro-
bustness to real-world (as opposed to adversarial)
noise, and/or multilinguality. Lastly, the aspect
of cross-lingual knowledge transfer has been stud-
ied in the context of different NLP tasks; typically,
from a high-resource language to a low-resource
one, as exemplified by the XTREME benchmark
(Hu et al., 2020). In this paper, we investigate the
cross-lingual transferability of robustness to real-
world noise.

3 Constructing Noisy Test Data

As no existing benchmarks exist to evaluate the ro-
bustness of multilingual models, we construct noisy
test sets in multiple languages for four tasks. First,
we construct a word-level error-and–correction dic-
tionary by leveraging the Wikipedia edit corpora.
Then, we sample replacements from this dictio-
nary and inject them into the test data for the var-
ious multilingual tasks, focusing on replacements
that only affect individual words but do not change
word order. Finally, we conduct human evalua-
tion to filter out test sets that are not deemed to be
realistic by language experts.

3.1 Wiki-edit Mining

Wikipedia2 is a public encyclopedia available in
multiple languages. Wikipedia editors create and
iteratively edit its contents. We leverage these ed-
its to construct error-correction word dictionaries
(later used to create noisy test data). Our approach
to mining edits is similar to Tanaka et al. (2020),
but we consider multiple languages (as opposed to
only Japanese), and additionally create dictionaries
of word-level edits.

To isolate likely useful edits, we first consider
each revision page of an article and split it into a list
of sentences using NLTK (Bird et al., 2009). Sec-
ond, we filter out sentence pairs from two consecu-
tive edit versions ensuring both sentences have (1)
2-120 tokens, (2) a difference if< 5 tokens, and (3)
a relative edit-distance within 30% of the shorter
sentence. Third, we leverage language-specific
tokenizes difflib3 to extract exact token-level
deltas between the sentence pair. At last, we en-
sure word pairs (in these deltas) that have at least
one character-level Levenshtein edit-distance from
each other4 and none of words are only numbers or
punctuation tokens. Note that edits to Wikipedia in-
volve changes to factual information, such as dates,
rather than incorrect spelling or grammar; thus, the
last step is necessary.

We can finally create a noise dictionary of
correct-to-incorrect words that has frequency
information about the different errors. For
example, an element of the dictionary (in Spanish)
looks like {de: [(del, 0.52), (se,
0.32), (do, 0.1), (dë, 0.04),
(en, 0.02)]}.

3.2 Injecting Noise into Test sets

We use the noise dictionaries to create a noised
version of the original test data for the four
tasks– MultiATIS++ (Xu et al., 2020), MultiSNIPS,
WikiANN (Pan et al., 2017) and XNLI (Conneau
et al., 2018). After tokenization, we sample tokens
randomly without replacement. In each sampling
step, we sample based on a uniform probability dis-
tribution over the individual tokens and then check
if the token exists in the noise dictionary. If so,
we replace it with a noised version from the dic-

2https://meta.wikimedia.org/wiki/List_
of_Wikipedias

3https://docs.python.org/3/library/
difflib.html

4For Chinese characters, including Kanji, even a single
character distance could imply a different word.
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tionary; the noised version is sampled based on its
probability in the noise dictionary (that is propor-
tional to the frequency of its occurrence in the noisy
corpora). This procedure continues till we noise
a particular number of tokens, precisely between
1 and min(4, pL) where p a controllable fraction
(chosen as a hyperparameter at first, and finalized
based on human evaluation described in §3.3), and
L is the number of words in the sentence.

3.3 Human Verification of Noised Test-sets

During human evaluation, we analyse the noisy
data created for the MultiATIS++ dataset. We
asked the language expert to assume that a user
who may not be a native speaker, or in a hurry,
or sloppy, was trying to find out flight informa-
tion via text chat, and evaluate realism with this in
mind. Note that analysis of noise types for Multi-
ATIS++ generalizes well to other datasets as we use
the same error-correction dictionaries for injecting
noise into all the test-sets.

Our language experts have graduate/doctoral de-
grees in linguistics, computational linguistics, or
natural language processing and are fluent/native
speakers of the respective languages. We employed
the human experts and compensated them fairly to
conduct this study (see §7 for details). The experts
are given 45 examples without being told that 15
examples have 5%, 15 have 10%, and 15 have 20%
noised tokens and asked three questions about each
example. (1) Is the noised sentence realistic, mod-
erately realistic, or unrealistic? (2) What type of
noise is present in the sentence (we supply an ini-
tial list and let them add more)? and (3) Are the
intent and slot labels unchanged? Based on their
initial feedback, we choose the most realistic noise
fraction (i.e. 5, 10 or 20%) and provide them with
60 more examples from that set. We considered 15
utterances enough to determine the noise fraction,
but used the ratings on 75 utterances for evaluating
realism (see realistic utterance % in Figure 1).

In Figure 1, we summarize the results of the hu-
man evaluation. Column two shows the error injec-
tion ratio that was deemed to have more than 95%
realistic utterances. We set a high cut-off of 95%
to ensure we can make confident statements about
the robustness of multilingual models to realistic
alterations exhibited in our benchmarks. Hence,
Chinese and Japanese (with a realism of 86.2%
and 92.3% resp.) are omitted in our benchmarks.
The last two columns highlight examples deemed

Figure 2: The column-wise color density (which adds
up to one) shows the percentage of a different noise
types observed for a particular language. The row-wise
values show that some noise types (eg. homophononic)
is only present for a single language (eg. zh).

as realistic and unrealistic by human experts with
the noised tokens highlighted in orange.

Given the sentence length and similarity in task
types, we use the error injection percentage deter-
mined to be the most realistic for MultiATIS++ as
the error injection percentage for MultiSNIPS and
Wiki-ann. For XNLI, experts deemed higher noise
injection ratios (of > 0.05) to be unrealistic (15%
for 0.1, 27% for 0.2) because (1) the premise, usu-
ally much longer than sentences in MultiATIS++,
had (impractically high) number of noise tokens,
and (2) the classification label (implies/neutral/-
contradicts) sometimes changed with large noise
additions. Thus, for XNLI, we choose 0.05 to be
the default noise injection ratio. Finally, one expert
noted the Turkish data for MultiATIS++ lacked
many diacritic characters, muddling the distinction
between noise injected by our procedure and exist-
ing misspellings; hence, it was ignored.

In Figure 2, we list the noise-types identified
by our experts in different languages. While cer-
tain noise-types, such as typographical errors, mis-
spellings are common across multiple languages,
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[CLS] sc [CLS] sn

PLM (f) PLM (f)

○ ○ . . . ○ ○ ○ . . . ○

LMLM−original LMLM−noisy

⊕
(g)

⊕
(g)

Lcontrastive+ +

Figure 3: Loss function for fine-tuning a Pretrained
Language Model (PLM) using Robust Contrastive Pre-
training (RCP).

there are various language-specific noise-types,
such as homophonic errors (for zh), Kanji con-
version errors (for ja), anglicization (for tr) (we
showcase some examples in Appendix A). Given
disjoint noise types across languages, we expect
that augmentation with errors seen in English (us-
ing approaches proposed by prior works) will gen-
eralize better to languages that share error types.

4 Robust Contrastive Pre-training (RCP)

Motivation and Approach While task-time data
augmentation (aka adversarial training) has been
effective to boost the robustness of pre-trained mod-
els for English, we face two major challenges– (1)
lack of supervised multilingual training data in our
zero-shot setting, and (2) lack of approaches to
synthetically generate noise data for non-English
languages. We overcome these with a multilingual
data-augmentation approach at pre-training time
that uses the multilingual Wikipedia edit corpus
to expose our models to human errors during pre-
training. Here, the need of ex-situ injection of noise
(for test-data creation §3) is unnecessary as our edit
corpus contains pairs of similar sentences, i.e. a
version of the sentence before and after revision
by a Wikipedia contributor (§3.1). To encourage
the model to align the representations of these two
sentences in the encoder’s output space, we use a
contrastive loss term (see Figure 3). Building on
previous work on contrastive learning (Giorgi et al.,
2021), Robust Contrastive Pre-training (RCP) con-
siders the original and edited version of a sentence
as positive examples and other unrelated sentences
as the negative examples.

Similar to Giorgi et al. (2021) and Reimers and
Gurevych (2019)), we map variable length sen-

tences to fixed-length embeddings with a pooler
ei = g(f(si)), where f(·) is a transformer encoder,
and g(·) is the mean of the token-level embeddings.
Given a batch of N (noisy, clean) sentence tuples,
we set our original sentence sc as the anchor and
the noisy version sn as the corresponding positive
pair. 5 Other sentences in the batch (i.e. ̸= sn)
are deemed to be negative examples. We consider
the InfoNCE/NT-Xent loss (Sohn, 2016) for our
per-example contrastive loss:

ℓ(i, j) = − log
exp(sim(ei, ej))∑

i ̸=k exp(sim(ei, ek)/τ)
(1)

where sim(u, v) = uT v/||u||2||v||2 denotes the
cosine similarity of two vectors u and v and τ > 0
denotes the temperature hyper-parameter. Thus,
our final contrastive loss function is

Lcontrastive =
N∑

i=1

ℓ(c, n) + ℓ(n, c)

We additionally use the standard MLM loss at pre-
training time, masking 15% of the input tokens of
every sentence (i.e. both noisy and clean) indepen-
dently. Therefore, our final loss function is

L = Lcontrastive + LMLM-noisy + LMLM-original

LMLM-original is the MLM loss on original sentences,
and ensures the model does not ‘forget’ its original
pre-training task. LMLM-noisy is the MLM loss on
noisy sentences, and can be thought of as data-
augmentation at pre-training time.

Pre-training Details Following the Domain
Adaptive Pre-Training (DAPT) approach (Guru-
rangan et al., 2020), we start with an existing mul-
tilingual pre-trained model and fine tune it with
our RCP objective. Unlike DAPT, we are not inter-
ested in specializing in a particular domain, but in
increasing robustness to errors. As mentioned be-
fore, we use (unfiltered) pairs of correct/incorrect
sentences from the multilingual Wikipedia archive
and include sentences from the Lang8 corpus.6 The
Lang8 corpora consists of a smaller number of
sentences compared to the Wikipedia corpus, but
proves to be apt for our purpose; it consists of pairs
of sentences– one written by a non-native speaker
who is learning the language (eg. “As the winter

5One obvious choice would be for clean sentence with
index 2i, the noisy sentence has index 2i− 1.

6https://sites.google.com/site/
naistlang8corpora/
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Dataset Task Size (training) Languages Epochs Learning Rate Seeds

MultiATIS++ (Xu et al., 2020) IC/SL 5k de,en,es,fr,hi 80 1E-04 5
+ training data aug. 18k de,en,es,fr,hi 20 1E-04 5

MultiSNIPS IC/SL 13k en,es,fr,hi 40 1E-04 5
+ training data aug. 72k en,es,fr,hi 10 1E-04 5

WikiANN (Pan et al., 2017) NER 20k de,en,es,fr,hi,tr 3 2E-05 5
XNLI (Conneau et al., 2018) NLI 392k de,es,fr,hi,tr 5 2E-05 5

Table 1: Data-set characteristics and hyper-parameters for our experiments.

Model Original/ Noisy MultiATIS++ MultiSNIPS Wiki-ann XNLI
IC% SL-F1 IC% SL-F1 NER-F1 NLI%

XLM-Rbase Original 90.68 71.45 92.93 68.01 74.14 76.69
Noisy 89.65 62.3 90.46 61.63 69.48 74.38

mBERT Original 86.29 64.95 78.65 59.05 73.92 70.82
Noisy 85.42 55.17 75.35 53.71 69.38 68.44

Table 2: Performance of pre-trained multilingual models on the four multilingual datasets averaged across languages
and 5 seeds. XLM-Rbase outperforms mBERT on Original and Noisy test data across all metrics.

is coming, I’m getting to feel better.”) and a re-
write of this sentence by a native speaker (eg. “as
the winter is coming, I’m starting to feel better.”).
More details about the individual corpora can be
found in Appendix C.

We note that the pre-training corpus is not ex-
actly the same set of sentences used to construct
our noise dictionaries in §3.1. In this case, the
only criteria for inclusion is a length difference of
< 5 tokens, and a relative edit-distance of 30% of
the shorter sentence (see appendix C for more de-
tails). Hence, we incorporate training data from the
corpora that exhibit changes beyond simple typos
(such as paraphrasing, sentence-level morphologi-
cal variance) in the pre-training stage.7

Similar to Gururangan et al. (2020), we fine
tune for 25k steps with a batch size of 2048
sentences to create two pretrained models– one
with Lcontrastive+LMLM-noisy+LMLM-clean (referred
to as Robust Contrastive Pre-training or RCP)
and an ablation without the contrastive term, i.e.
LMLM-noisy + LMLM-clean. The latter setting rep-
resents a pure (pre-training time) data augmenta-
tion approach such as Tan et al. (2020) (termed
p(aug) in Table 3). See Appendix D for more hyper-
parameters and settings.

5 Experiments and Results

We divide this section into three parts. In §5.1,
we analyze the robustness of popular multilingual
language models in the zero-shot cross-lingual set-

7Unfortunately, the benefit of including sentence-level
noise in the pre-training phase is not directly examined by
our benchmarks, which focus more on word-level noise.

ting. In §5.2, we show that Robust Contrastive Pre-
training (RCP) improves the robustness of existing
baselines on noisy test-data for all tasks– joint in-
tent classification and slot labeling (IC-SL), Slot-
Labeling (SL) Named Entity Recognition (NER)
and Natural Language Inference (NLI)– and (not
only maintains but) improves performance on the
original test data. Finally, in §5.3, we conduct fail-
ure mode analysis for MultiATIS++ and discover
that the model trained with RCP makes more ex-
plicable sequence-labeling errors (for slot-value
prediction) in comparison to existing baselines.

Setup We consider four datasets (shown in Ta-
ble 1) and four metrics for evaluation. Two of these
metrics consider sentence classification accuracy–
Intent classification Accuracy (IC%) for the goal-
oriented dialog text datasets MultiATIS++ and Mul-
tiSNIPS, and classification accuracy (NLI%) for
XNLI. We also consider F-score for sequence-
labeling tasks– Slot Labelling (SL-F1) for Mul-
tiATIS++ and Multi-SNIPS++ and Named En-
tity Recognition (NER-F1) for Wiki-ann. Table 1
shows the languages present in the noisy test data
and the size of the English training data used in
our zero-shot cross-lingual setting. Note that for
task-time data augmentation, we follow the strat-
egy of aggregate noise augmentation proposed in
(Sengupta et al., 2021) for English, which involves
augmenting training data with a variety of synthetic
noise types such as typos, making words ALL-
CAPS, abbreviations etc. As this augmentation
procedure increases the size of the training data-set
≈ 3.5 times for MultiATIS++ and ≈ 5.5 times for
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Task Metric XLMR XLMR
+p(aug)

XLMR
+t(En-aug)

XLMR
+RCP
(Ours)

XLMR
+RCP+t
(Ours)

Gain

MultiATIS++ IC% 89.65 93.10 91.26 93.80 94.57 +4.92
SL-F1 62.30 67.47 74.62 67.45 80.68 +18.38

MultiSNIPS IC% 90.46 93.98 91.60 93.79 94.53 +4.07
SL-F1 61.63 66.67 66.44 67.69 70.20 +8.57

Wiki-ann NER-F1 69.48 72.32 - 72.37 - +2.89
XNLI NLI% 74.38 74.83 - 75.06 - +0.68

Table 3: Average performance across languages and five seeds. We abbreviate the baselines, multi-lingual pre-
training time augmentation as p(aug), and English task-time (aggregate) data augmentation as t(En-aug). ‘RCP’
stands for ‘Robust Contrastive Pre-training’, and ‘RCP + t’ means combining RCP with task-time data augmentation.
‘Gain’ refers to the increase in performance of the best method vs. XLM-Rbase.

MultiSNIPS, we find that training for fewer epochs
yields the best results.

5.1 Robustness of Multilingual Models

We compare the robustness of two popular pre-
trained language models– XLM-Rbase and multi-
lingual BERT in the zero-shot cross-lingual set-
ting.8 In this setup, we fine-tune the pretrained
language models on the task-training data in En-
glish and test (zero-shot) on multilingual test sets.
The results reported in Table 2 are averaged across
multiple languages for brevity (and provide a de-
tailed breakdown in Appendix E). A secondary
goal of this experiment was to decide which pre-
trained model to use for further experiments and
we base our judgements on twelve metrics across
four datasets.

Noise always leads to a decrease in performance.
On average, the accuracy of both models decreases
by ≈ 2% for sentence-level tasks (IC%, NLI%),
and by ≈ 6.6 F1-points on sequence-labeling tasks
(SL, NER), on noisy data compared to clean data.
This can perhaps be explained by the ability to
ignore a particular token for sentence-level tasks,
whereas every token, including noisy ones, need to
be assigned a label for sequence-labeling tasks.

We observe that XLM-Rbase outperforms
mBERT on all the twelve metrics. For sentence-
level tasks (i.e. IC%, NLI%), XLM-Rbase outper-
forms mBERT by 8.43% on average on the noisy
test-sets and for sequence-tagging tasks (i.e. SL,
NER), XLM-Rbase outperforms mBERT by 5.1 F1-
points. In general, XLM-Rbase also seems to be a
model better suited for these tasks in the zero-shot
cross-lingual setting, as we also see similar gains
when using XLM-Rbase on the clean data.

8We also considered Canine-c (Clark et al., 2021), a token-
free baseline, but observed poor performance compared to
XLM-Rbase and BERT on IC-SL tasks (see Table 10).

Task Metric XLMR Ours Gain

MultiATIS++ IC% 90.68 95.32 +4.64
SL-F1 71.45 84.07 +12.62

MultiSNIPS IC% 92.93 95.66 +2.73
SL-F1 68.01 74.39 +6.38

Wiki-ann NER-F1 74.14 76.34 +2.2
XNLI NLI% 76.69 76.75 +0.06

Table 4: Comparison of our RCP method with the base-
line XLM-Rbase model on the original (clean) test data.

Breaking the results down by language (see Ap-
pendix E for detailed results), XLM-Rbase outper-
forms mBERT on average across all languages.
Specifically XLM-Rbase outperforms mBERT on
German (in 6/8 metrics), on Spanish (10/10), on
French (8/12), on Hindi (12/12), and on Turkish
(4/4). As German is missing in MultiATIS++ and
Turkish is only present in WikiANN and XNLI
among the four datasets, the overall number of met-
rics is less than 12 for these two languages. Given
these results, we consider XLM-Rbase as the base-
line multilingual language model in the rest of our
experiments.

5.2 Robust Contrastive Pre-training Results

To showcase the efficacy of our RCP approach,
we compare our approach to a popular multilin-
gual model XLM-Rbase, which performed best in
the previous section, and two augmentation solu-
tions that were proposed earlier and shown to im-
prove robustness of English language models to
real-world noise. First, we consider a pre-training
time data augmentation approach, similar to Tan
et al. (2020), by continuing to pre-train XLM-Rbase
on noisy multilingual data; see section 4. Next, we
consider augmenting task-time data with a combi-
nation of various noise types, following Sengupta
et al. (2021) that shows using this aggregate data
augmentation during task-time finetuning improved

1381



Error Type Utterance Slot-lables

Hallucination Ichs brauche einen Flug von Memphis nach Tacoma, der
uber Los Angeles fliegt

Ë O (über)
U airline_code

Contextual Zeige mit der Erste-Klasse und Coach-Flüge vom JFK nach
Miami

Ë fromloc.airport_code
U toloc.airport_code

Table 5: Examples of slot labeling errors in German– errors are in italics; misclassified tokens are bold.

performance on both noisy and clean data for IC-SL
tasks like ATIS and SNIPS. For the latter, we treat it
as a baseline for zero-shot cross-lingual transfer for
the dialog-datasets–MultiATIS++ and MultiSNIPS–
and also combine it with our pre-training time ap-
proaches.

As shown in Table 3, our approach can improve
the performance of current multilingual models
across all 4 tasks and datasets. For the multilin-
gual goal-oriented dialog datasets, our approach
coupled with task-time augmentation outperforms
all the other methods. We observe that the gain for
SL tasks is higher than that obtained for IC tasks.
Although we analyze the SL results further in §5.3,
we highlight that IC accuracy is less affected by
noise than SL F1; this provides more headroom
for improving SL metrics. The highest gains are
observed for Hindi where the XLM-Rbase model
has the worst SL performance on noisy data (42.86
for MultiATIS++, 36.93 for MultiSNIPS). Like-
wise, we also observe improvement on XNLI%
and NER-F1; the largest improvement is again seen
on the noisy data for Hindi. Overall, the gain on
sequence-labelling tasks is larger than the gain on
sentence-level classification tasks.

Does this improvement on noisy data come at
the cost of worse performance on clean data? In
Table 4, we show that the best performing mod-
els shown in Table 3 (XLMR+RCP+t for Multi-
ATIS++ and MultiSNIPS, and XLMR+RCT for
WikiANN and XNLI) also improve the perfor-
mance on clean test data. Further, the magnitude
of growth seen on clean data is like the ones seen
on the noisy test data. For slot-labeling errors, we
observe a particular kind error which occurs on
both clean and noisy data that our model mitigates;
we provide more details on this in the next section.
For IC and XNLI, we found no specific error pat-
tern that distinguishes between XLM-Rbase and our
model. Thus, we believe that our approach mostly
improves the overall quality of the model’s repre-
sentation rather than just its downstream robustness.
In the future, one can consider if an upper bound
on model quality exists beyond which the tension
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Figure 4: Comparing the number of slot labels for which
our model vs. the baseline performs better.

between accuracy on clean data and robustness to
real-world noise emerges (Tsipras et al., 2018).

Finally, we note that beyond improving perfor-
mance on clean and noisy data, our approach re-
duces the disparity in performance between the
clean and noisy test sets. For MultiATIS++, the
disparity reduces by 0.3% for IC% and 5.76 for
SL-F1; for MultiSNIPS, it reduces by 1.34% for
IC% and 2.19 for SL-F1; for WikiANN, it reduces
by 0.68 for NER-F1; and for XNLI, it reduces by
0.9% for NLI%.

5.3 Result Analysis
Given the large improvement seen on sequence
labeling tasks, we zoom in on the SL metrics for
MultiATIS++. In Figure 4, we show the number of
slot labels on which our method outperforms (has
fewer misclassifications than) the baseline, vice
versa, and where they perform equally. Our method
clearly out-performs the baseline on at least twice
the number of slot-labels– 2× better on German,
≈ 2.6× times on Spanish and on Hindi, and ≈ 4×
on French. Across all languages, our model always
outperforms XLM-Rbase on eight slot-labels. These
slots correspond to relative times (‘leaves in the
evening’), relative dates (‘traveling the day after
tomorrow’), relative costs (‘cheap flights’), meal
names (‘flights that offer breakfast’), and carrier
tokens/non-slot values (‘that offer breakfast’). We
postulate these slot values are more common in the
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N/O Model de es fr hi

Noisy XLMR 315 358 413 671
XLMR+RCP+t 21 123 33 204

Original XLMR 208 262 334 460
XLMR+RCP+t 19 106 22 180

Table 6: Reduction in hallucination error (i.e. model
identifies irrelevant tokens as a slot value) counts.

Languages de es fr hi

(r1) Top-confusion changes
to no-label (w/ RCP)

7 8 6 17

(r2) Confusions becomes
more explicable (w/ RCP)

8 3 3 4

Table 7: Number of slot-labels that our model misclassi-
fied to (r1) a no-slot or (r2) a more explicable slot-label.

pre-training data compared to proper nouns such as
airline, airport or city names and thus, understood
in noisy contexts. In turn, variations of these words
are mapped closer in the embedding space and the
classifier is more robust to such errors.

Upon further analysis, we observe two distinct
patterns– (1) reduction in hallucination errors, i.e.
errors where an irrelevant carrier phrase token is la-
beled to be a slot value, and (2) errors become more
contextual– misclassification is to related classes
(see examples in Table 5).

In Table 6, we highlight the distribution of hallu-
cination errors and observe that the number of car-
rier phrase tokens that the baseline XLM-Rbase mis-
classifies as a slot-value reduces (by > 10× for
German and French, and ≈2-3× for Hindi and
Spanish) with our approach on both the original
and the noisy test data. This observation aligns
with our initial reasoning that the contrastive loss
term at pre-training time helps the model develop
a better understanding of non-slot words as the
model learns to identify such words (and their noisy
forms) in both linguistically correct and noisy con-
texts. Note that the latter signal is missing for the
XLM-Rbase baseline.

For a subset of the slot labels, the class to
which it was misclassified (with the highest fre-
quency) differed between the XLM-Rbase baseline
and our model. In Table 7, we highlight two
scenarios where the most-confused label changed
from (r1) an incorrect slot label (eg. meal_code
→ airline_code) to no-label (i.e. meal_code
→ O), and (r2) from an inexplicable slot label
(state_code→ transport_type) to a more explica-
ble one (state_code→ state_name) when the RCP

method is used (we use the explicable/inexplicable
terminology of Olmo et al. (2020)). Thus, our ap-
proach inadvertently improves the explicability of
the failures made during slot-labeling.

6 Conclusion

In this paper, we investigate the robustness of pre-
trained multilingual models in the zero-shot cross-
lingual setting on four tasks– intent classification,
slot labeling, named entity recognition, and natural
language inference. Given the dearth of existing
datasets to benchmark the robustness of existing
multilingual models, we develop noisy test data
by injecting errors mined from an edit corpus (and
conduct expert evaluation for quality assurance).
Our identification of noise types across various lan-
guages motivates the necessity of language specific
investigation in the future. Finally, demonstrate
existing baselines perform poorly in the presence
of noise in the test data and propose Robust Con-
trastive Pretraining to boost the robustness of these
multilingual models.

7 Ethical Considerations

For the human annotation tasks of (1) identify-
ing language-specific noise types, and (2) rank-
ing their realism, we leveraged the effort of full-
time employees at Amazon. The annotators had
advanced degrees in linguistics or natural language
processing, and were fluent/native in the languages
they annotated. Amazon compensated them un-
der a competitive industry rate, which is above the
minimum hourly pay rate, for their particular job
role (which included Applied/Research Scientists,
Software/Language Engineers, Linguists, and Lan-
guage Consultants).
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8 Limitations

8.1 The Umbrella of Realistic Noise

‘Realistic noise’ is too abstract a category. We
mostly concern ourselves with real-world errors
and their corrections appearing in existing corpora
(with criteria like a small character-level edit dis-
tance). But this could include things like better
paraphrasing, use of more appropriate synonyms
or morphology that can be viewed as language vari-
ation rather than noise; this could be one reason
we notice improvements on the original (i.e. un-
noised) test data. Yet, to distinguish ourselves from
the terminology of synthetic or adversarial noise,
we choose this (imperfect) terminology of real-
world/realistic noise as in Sengupta et al. (2021) to
bracket all our noise types under a single class.

8.2 Language Choice and Diversity

This work considers (relatively) high-resource lan-
guages. This makes it easier for us to find publicly
available corpora from where we can mine error/-
correction data and use it to improve the model’s
understanding of errors and, in turn, boost their
robustness to real-world noise. But this is only
the first step towards developing an understanding
of noise phenomena in languages beyond English,
bench-marking multi-lingual model performance
in such settings, and improving their robustness.
Further, we do notice that Hindi (and, to some ex-
tent, Turkish) are relatively low resource languages
when it comes to pre-training data (see Table 8 in
Appendix). We hope future work builds on this and
explores a greater variety of languages.

8.3 Zooming-in on Individual Tasks

Many of our human studies are based on a subset
of datasets (eg. MultiATIS, XNLI). It is possi-
ble individual tasks and further, individual datasets
need more fine-grained human attention. Given
language expertise for several datasets and several
languages is difficult/costly, we made the choice
to concentrate on a smaller number of datasets in
order to provide a more rigorous analysis. We
hope future work can expand the number of tasks
and datasets covered so we have a more compre-
hensive analysis of how multilingual noise affects
pre-trained models.
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A Examples of Noise/Errors in the test set

In this section, we highlight an example of some of the unique noise types observed for certain languages
shown in Figure 5.

Figure 5: Noise types seen across various languages.

A.1 Typographic Errors (Typos)

Two examples follow for Hindi and Chinese, where experts evaluated based on the Indic Script and the
Pinyin keyboards (which is what they use regularly) respectively.

Language Examples

Hindi (hi) सोमवार को बरबैंक [से|के] िमल्वौकी तक उड़ानें

Chinese (zh) 列出美国航空周三从密尔沃基飞往圣何塞的航班 [列出 |例出]美国航空周三从
密尔沃基飞往圣何塞的航班

A.2 Preposition Errors

We noticed language experts tagged preposition errors for French and German. Examples follow:

Language Examples

French (fr) Je veux un vol aller-retour [de | à] Memphis à Seattle .

German (de) Wie sieht es [am | im] Mittwoch morgen mit Flügen von DC nach Oakland aus
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A.3 Diacritic Errors
Some languages use diacritic characters; although even these diacritics may greatly differ depending on
script. Examples from Hindi and Spanish follow.

Language Examples

Spanish (es) ¿puedo tomar el vuelo [más | mas] corto de milwaukee a orlando ?

Hindi (hi) d9s िकस [तरह | तरह्] का िवमान हैं

A.4 Conversion Errors
Kanji conversion error. This error was unique to the Japanese language. Examples follow.

Language Examples

Japanese (ja) アトランタからセントルイスまでの火曜日午後 2時 30分 [以前 |依然]のフ
ライト

A.5 Homophonic Errors
This error was unique to Chinese. Words with the same pronunciation (potentially with different tones),
but different spelling. Examples follow.

Language Examples

Chinese (zh) 请列出从 [洛杉矶 |洛杉机]飞往夏洛特的航班

A.6 Synonym
Experts marked these as use of a different synonym in Spanish and Chinese only. Note that such variations
may not be erroneous but is still considered a noise given they are not used in the original training/testing
data in the given context as much. Examples follow.

Language Examples

Spanish (es) el próximo miércoles , me gustaría salir de kansas city en [un | el] viaje a chicago que
llegue a chicago alrededor de las 7 p m.

Chinese (zh) 请列出从 ewr [到 |直到]纽约市的地面交通

A.7 Anglicized
We observed this errors only for Turkish and noticed that experts marked scenarios where an alphabet in
the native script was replaced with a particular one in the latin script. Examples follow (note that Turkish
examples are drawn from the XNLI dataset, while the others were drawn from MultiATIS++).

Language Examples

Turkish (tr) Sonrasında, ilk ziyareti yapmış olan aynı temsilci, soruları cevaplamak ve şikayet
örneğinde not edilen sorunları tartışmak [için | icin] yeni sağlayıcıyı yeniden ziyaret eder.

Konfederasyonun hukuk felsefesi, hem maddi hem de üslupla [karşı | karsi] karşıya geldi.
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B Chinese and Japanese Edit Mining

Our two character edit distance criteria for obtaining word-level correct-noisy pairs of words does not
work well for Chinese characters, including Kanji for Japanese. This is because words are made up of only
a small number of characters (relative to e.g. latin scripts). So we can completely change the semantics
with only a small character-level edit distance. We therefore used different noise types: Homophonic
and Synonym errors for Chinese and Kanji Conversion errors for Japanese, with brief descriptions and
examples in Appendix A. In order to collect homophonic errors we converted words to pinyin9 (without
tone markers) and checked if they were the same in pinyin but different in Chinese characters. To collect
synonym noise we labelled words with part-of-speech (POS) tags 10, and kept words that weren’t labeled
as nouns, verbs, adverbs, keeping e.g. prepositions and conjunctions, with the hope that these would be
less likely to involve the kind of big semantic changes you might get with changes to e.g. proper nouns
like place names.

However this process was largely driven by trial and error and more work is needed to create a principled
pipeline that creates a realistic noise dictionary for these languages.

Finally for Kanji we re-use the criteria of Tanaka et al. (2020) as we re-use their dataset of sentence
pairs: checking if the two sentences (containing Kanji) have the same reading.

C Data Details

Language Lang8 Wikipedia Total

en 2.5 3.8 6.3
de 0.2 13 13.2
es 0.2 7.6 7.8
fr 0.2 10.7 10.9
hi 0.001 0.1 0.101
ja 4.2 1 5.2
tr 0.02 0.4 0.42
zh 0.6 1.9 2.5

Table 8: Number of sentences (in millions) used for pre-
training.

Table 8 shows the number of Wikipedia and
Lang8 sentences (in Millions) we used for fine-
tuning the multilingual models in the pre-training
stage (§4). As stated earlier, the proportion
of data obtained from the Lang8 corpus is less
than Wikipedia for most languages except En-
glish (where it is comparable) and Japanese
(where Lang8 has ≈ 4x the data compared to
the Wikipedia corpus). In general, Hindi (and
Turkish) stand out as a relatively low-resource
language in our investigation with less than 0.5
Million sentences.

Language # Pairs (in Millions)

en 0.13
de 0.33
es 0.21
fr 0.27
hi 0.04
ja 0.05
tr 0.25
zh 0.01

Table 9: Number of Error pairs by language.

Table 9 lists the number of correct/incorrect pairs (in
Millions) used for noise dictionaries to create the test-sets
for the various languages (§3). Here too, we can observe
that the number of corrections are relatively less for Hindi.
Interestingly, the number of errors for Chinese are the least
although it representation is significantly more compared to
Hindi. This low number of errors is inline with our human
studies where even the 5% error injection was deemed to
be unrealistic; futher, such low pairs of errors also reduced
the diversity of our test set, which would eventually results
in a lower-quality test-set. Hence, we drop it from our
evaluation benchmarks.

D Pre-training Settings

For our experiments with Robust Contrasting Pretraining (§4) and variants we use the following hyperpa-
rameters and setup. We train on 4 Nvidea V100 GPUs, with a per-gpu batch size of 8 sentences with a
maximum sequence length of 128 tokens, and 64 gradient accumulation steps, for an overall batch size
of 64× 8× 4 = 2048 sentences. We use a masked language modeling mask probability of 15% and a

9Using the pinyin Python package https://pypi.org/project/pinyin/
10With the jieba Python package https://pypi.org/project/jieba/.

1389

https://pypi.org/project/pinyin/
https://pypi.org/project/jieba/


learning rate of 1e-4 with the Adam optimizer (Kingma and Ba, 2015), and used 16-bit floating point
operations. See below for the arguments of the Huggingface transformers (Wolf et al., 2020) masked
language modelling script which we modified11

python -m torch.distributed.launch --nproc_per_node 4 run_mlm.py \
--model_name_or_path xlm-roberta-base \
--gradient_accumulation_steps 64 \
--validation_split_percentage 1 \
--per_gpu_train_batch_size 8 \
--dataloader_num_workers 32 \
--model_type xlm-roberta \
--mlm-probability 0.15 \
--learning_rate 1e-4 \
--num_train_epochs 5 \
--max_seq_length 128 \
--line_by_line \
--do_train \
--do_eval \
--seed 42 \
--fp16

E Per-language Results

Table 10 shows the performance of multilingual models like m-BERT and XLM-Rbase on individual
languages. We note that the reduction in performance for high-resource language (e.g. German, French,
English) is higher than low-resource languages for several settings. To explain this seemingly surprising
result, first notice that the metrics on low-resource languages are already bad, even on clean data. Second,
the variety of noise seen for low resource languages is less (see Table 9) compared to high-resource
settings. Hence, the effect of less diverse noise in low-resource languages doesn’t have as large an adverse
effect on already poorly performing models.12

Another hypothesis, pending future investigation, is that multi-lingual models trained on more high-
resource language data overfit to clean test-sets for these languages and fail to generalize better when
faced with noise. For low resource languages, the performance on clean data is already poor because of a
lack of sufficient language understanding that prevents over-fitting.

11https://github.com/huggingface/transformers/blob/main/examples/pytorch/
language-modeling/run_mlm.py

12We are told a saying goes (coincidentally) in Hindi, mare hue ko kya maroge, saheb?. It implies you cannot do much (by
adding noise) to kill the (model that is already) dead.
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Dataset Model Metric C/N de en es fr hi tr Avg.

MultiATIS++ XLMR IC% C 92.4 98.7 92.0 90.6 79.6 - 90.7
N 90.9 97.6 91.8 89.5 78.4 - 89.6

SL-F1 C 74.4 96.0 73.6 70.4 42.9 - 71.5
N 67.3 82.2 68.2 65.6 38.2 - 62.3

mBERT
IC% C 83.3 98.3 84.7 88.8 76.3 - 86.3

N 81.2 97.6 84.3 87.9 76.1 - 85.4
SL-F1 C 59.9 96.0 65.1 69.8 33.9 - 65.0

N 51.6 78.5 60.2 64.3 31.3 - 55.2
(XLMR vs mBERT) 4,0 1,3 4,0 4,0 4,0

Canine-c IC% C 66.32 96.51 78.41 76.06 71.55 - 77.77
N 65.13 95.90 78.08 75.06 71.15 - 77.06

SL-F1 C 31.56 92.19 19.52 23.67 22.81 - 37.95
N 32.42 78.51 20.25 24.41 22.45 - 35.61

MultiSNIPS++ XLMR IC% C - 98.8 94.0 91.3 87.6 - 92.9
N - 98.4 92.4 87.0 84.1 - 90.5

SL-F1 C - 96.9 72.0 66.2 36.9 - 68.0
N - 92.7 63.3 57.7 32.8 - 61.6

mBERT
IC% C - 98.9 88.0 88.5 39.3 - 78.6

N - 98.2 84.1 82.9 36.2 - 75.4
SL-F1 C - 96.5 65.4 59.9 14.5 - 59.1

N - 91.3 58.1 52.4 13.0 - 53.7
(XLMR vs mBERT) 3,1 4,0 2,2 4,0

Canine-c IC% C - 69.39 32.88 36.39 23.28 - 40.48
N - 69.30 32.57 34.99 23.68 - 40.13

SL-F1 C - 0.89.31 24.09 23.06 6.93 - 35.85
N - 87.86 22.3 21.49 7.02 - 34.67

WikiANN XLMR NER-F1 C 74.9 - 75.2 77.2 67.5 75.9 74.1
N 71.6 - 70.0 71.1 65.1 69.5 69.1

mBERT
NER-F1 C 78.6 - 72.1 79.5 66.2 73.1 73.9

N 75.4 - 67.1 74.2 63.0 67.3 69.4
(XLMR vs mBERT) 0,2 2,0 0,2 2,0 2,0

XNLI XLMR NLI% C 76.4 84.6 78.8 77.9 69.7 72.9 76.7
N 72.6 80.7 76.4 75.7 70.3 70.6 74.4

mBERT
NLI% C 71.1 82.0 74.9 74.2 60.5 62.2 70.8

N 67.5 77.9 73.1 71.8 61.5 59.1 68.4
(XLMR vs mBERT) 2,0 2,0 2,0 2,0 2,0 2,0

Table 10: Per-language results of cross-lingual transfer from English data (average of 5 random seeds) across 4
datasets analyzed in §5.1 to compare between existing pre-trained multilingual models.
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Abstract

Unsupervised anomaly detection seeks to iden-
tify deviant data samples in a dataset without
using labels and constitutes a challenging task,
particularly when the majority class is hetero-
geneous. This paper addresses this topic for
textual data and aims to determine whether a
text sample is an outlier within a potentially
multi-topic corpus. To this end, it is crucial to
grasp the semantic aspects of words, particu-
larly when dealing with short texts, since it is
difficult to syntactically discriminate data sam-
ples based only on a few words. Thereby we
make use of word embeddings to represent each
sample by a dense vector, efficiently capturing
the underlying semantics. Then, we rely on the
Mixture Model approach to detect which sam-
ples deviate the most from the underlying distri-
butions of the corpus. Experiments carried out
on real datasets show the effectiveness of the
proposed approach in comparison to state-of-
the-art techniques both in terms of performance
and time efficiency, especially when more than
one topic is present in the corpus.

1 Introduction

Anomaly Detection (AD) is a task that can address
various objectives such as mining frauds (Deng and
Mei, 2009), diseases (Han et al., 2021) and intru-
sions (Pu et al., 2021). AD takes several forms:
supervised, unsupervised or semi-supervised. Un-
supervised AD implies that no prior information
about the dataset is provided. In this case, the so-
lution usually consists of identifying samples that
deviate in a certain way from the others among
the same dataset; anomalies being, by definition,
rare phenomena. Particularly, anomalies in a tex-
tual dataset can be defined as samples having an
atypical vocabulary (lexical anomaly) or a devi-
ating global meaning (semantic anomaly). Iden-
tifying abnormalities in textual data can be very
useful in many industrial use-cases. A good exam-
ple is the detection of non-eligible and/or fraudu-

Les lignes de commande Linux pour débutants inlier
Formation: Introduction au Shell Bash inlier

Administration système Unix pour les nuls inlier
Apprendre à utiliser le terminal Ubuntu/Debian inlier

Formation en Espagnol pour débutants outlier

Table 1: Example illustrating the importance of seman-
tic representations in a small corpus of short texts.

lent course contents in the public French plateform
MonCompteFormation1 where millions of course
sessions are available with no possibility of control-
ling training organizations in a supervised fashion
(using labeled data). Hence, to assess the effec-
tiveness of our approach, we rely on an external
labeled dataset that closely relates to course con-
tents and that is dedicated to course certifications.
The dataset is described in Appendix A. In addition
to the difficulty of mining anomalies in short-text
corpora of varying sizes, we also have an important
computational cost constraint that is also addressed
by the proposed solution.

Capturing the semantics of a given text is usu-
ally performed using Word Embeddings, which
consist in representing a word or a piece of text by
a fixed-size vector, supposed to detain its meaning.
Several word embedding techniques are available
such as word2vec (Mikolov et al., 2013), GloVe
(Pennington et al., 2014), fastText (Bojanowski
et al., 2017), BERT (Devlin et al., 2019), Distil-
BERT (Sanh et al., 2019), etc. Each of the men-
tioned works provides ready-to-use models that are
pre-trained on very large corpora and intended to
be general for a given language and suitable for
several NLP downstream tasks. Indeed, relying
on such pre-trained models has proved efficient in
several tasks (Kim, 2014; Das et al., 2017) and is
particularly useful when dealing with small cor-
pora (Buechel et al., 2018). If we consider the

1https://www.moncompteformation.gouv.
fr/ developed by « Caisse des Dépôts et Consignations »
(CDC)
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small corpus given in Table 1, we can observe that
the inlier samples (training titles about Linux shell
programming) do not have any words in common.
Thus, based only on the syntactic information of
the samples, it would be impossible to isolate the
outlier (about learning Spanish), even though it is
the only one that does not have anything to do with
shell programming. This can easily occur when
dealing with short-text corpora, especially when
the number of samples is not sufficient to learn the
different syntactic variants of a word or a concept.

Depending on the data type and the assumptions
that can be made, the definition of an outlier may
differ, and the choice of the model is crucial, espe-
cially in an unsupervised context (Aggarwal, 2017).
In this paper, we propose a probabilistic AD ap-
proach based on Mixture Models, that effectively
identifies the most deviating samples in short-text
datasets, even in the case where several topics are
present in the inlier class. We also show the effec-
tiveness of using the knowledge learned by word
embedding models in capturing the underlying se-
mantics of short texts and efficiently identifying
outliers. The main contributions of this paper are:

• We address the challenge of mining anomalies
in short texts written in French

• We tackle the classical one-class inlier scheme
and also a more challenging multi-class inlier
setting.

• We propose an effective and efficient anomaly
detection approach that outperforms previ-
ously proposed AD techniques.

2 Related Work

Anomaly detection is an active research area, and a
large number of approaches are proposed in several
application domains. Specifically, our work relates
to unsupervised AD for text and clustering-based
AD. Unsupervised AD is gaining more and more in-
terest in research due to the constant growth of data
volumes while labeling data samples is not getting
any cheaper. One of the most important family of
methods contains reconstruction-based approaches
that assume that a well-generalizing model would
struggle at compressing rare anomalous samples.
This kind of approaches include linear models such
as Robust PCA (Kang et al., 2015) and deep au-
toencoder models based on convolutional networks
(Oza and Patel, 2019), recurrent networks (Hsieh
et al., 2019), etc.

2.1 Clustering-based AD

In the clustering-based AD approaches, anomalies
are generally seen as data samples that present a
lower adhesion to the underlying groups. Several
two-phase approaches have been proposed and con-
sist in using a clustering algorithm such as DB-
SCAN (Sheridan et al.), K-means (Deng and Mei,
2009) and Affinity Propagation (Marcos Alvarez
et al., 2013), then compute an anomaly score from
the obtained clustering partition. Similarly in (Ma-
hadevan et al., 2010), to detect temporal anomalies
in videos, inlier behaviors are modeled as a mix-
ture of Gaussian distributions. A deep GMM-based
approach called DAGMM is proposed in (Zong
et al., 2018) to detect outliers in numerical data,
where the input data are compressed into a lower-
dimensional space using an autoencoder and then
fed into a GMM component. The autoencoder’s
reconstruction loss and the log-likelihood of the
GMM component are optimized jointly, without
performing any pre-training phase.

2.2 AD in text data

Unlike images, time series, and numerical data,
relatively few AD studies are dedicated to tex-
tual data. Document-term matrix representations
(also called sparse bag-of-words) have previously
been used in (Kannan et al.) to perform AD based
on Nonnegative Matrix Factorisation (NMF) and
isolate an outlier matrix, used to compute the
anomaly scores. Sparse representations are also
used by Manevitz and Yousef (2001) as input to
a One-Class Support Vector Machine (OC-SVM)
(Schölkopf et al., 2001) and later to a shallow au-
toencoder (Manevitz and Yousef, 2007). Word em-
beddings like word2vec are used for AD in (Zhuang
et al., 2017) along with a von Mises Fisher (vMF)
mixture model where more general words are penal-
ized when computing the overall outlierness score
of a given document. Pre-trained fastText word vec-
tors are used in (Ruff et al., 2019) as the embedding
layer of a multi-head attention network to perform
anomaly detection as a one-class classification task.
Recently, a deep end-to-end approach has been pro-
posed by Manolache et al. (2021) that does not
use any knowledge transfer. The authors use the
transformer architecture of ELECTRA (Clark et al.,
2020) that contains two adversarial components: a
generator and a discriminator. The model is trained
from scratch on a given dataset by optimizing a
loss function based on token replacement.
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2.3 Semantic text representations

Tremendous advances in various NLP tasks have
been made in recent years thanks to dense vector
representations of words and text sequences. Static
word embeddings like word2vec (Mikolov et al.,
2013), GloVe (Pennington et al., 2014) and fastText
(Bojanowski et al., 2017) provide one unique dense
representation for each word whereas contextual
word embedding models like ELMo (Peters et al.,
2018), BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019) provide word representations that
depend on the surrounding context. Contextual
word embedding models are based on deep neural
networks, which makes them resource-intensive
and difficult to use in some industrial contexts.
Both kinds of word embeddings have proved ef-
fective in several unsupervised downstream tasks
like semantic textual similarity (Arora et al., 2017;
Ranasinghe et al., 2019), clustering (Ait-Saada
et al., 2021; Boutalbi et al., 2022) and anomaly
detection (Zhuang et al., 2017).

3 Gaussian Mixture Models

Given a corpus D of n short texts (d1, . . . , dn),
we represent each sample by a fixed size vector,
thus obtaining a matrix X = (x1, . . . ,xn) of size
n ×m. To tackle the AD problem, we postulate
that the samples follow a mixture of distributions,
from which the anomalous samples deviate.

Admittedly, the family of t-distributions pro-
vides a heavy-tailed alternative to the gaussian fam-
ily for anomaly detection. However, as pointed out
by (Yuan and Huang, 2009), although useful from
modeling perspective, the practical use of multivari-
ate t-distribution is often limited by the difficulty
in parameter estimation, particularly so for high
dimensional data. Note that, in our proposal, the
consideration of the time consumption is important.
Therefore, considering a t mixture model leads to
estimate a supplementary parameter (in addition
to the estimation of vector means and covariance
matrices) that is the degree of freedom of each com-
ponent. Moreover, since we suggest to consider an
ensemble method allowing to combine results by
varying the number of components (cf. Section
3.1), we would therefore increase yet the compu-
tation time for estimation of the parameters. How-
ever, Gaussian Mixture Model (GMM)-based ap-
proaches, more parsimonious than t-mixture model,
have shown their effectiveness in anomaly detec-
tion, such as DAGMM (Zong et al., 2018). For

these reasons we retain GMM to address our pur-
pose.

In a finite GMM, the data (x1, . . . ,xn) are taken
to constitute a sample of n independent instances
of a random variable X in Rm. Density can be
expressed as:

f(xi; Θ) =

g∑

k=1

πkφk(xi|µk,Σk),∀i ∈ {1, . . . , n}

where Θ = (π1, . . . , πg, µ1, . . . , µg,Σ1, . . . ,Σg),
φk(xi|µ,Σk) is the kth component density
for observation xi with parameters (µk,Σk),
(π1, . . . , πg−1) are the mixing weights or proba-
bilities (such that πk > 0,

∑g
k=1 πk = 1) and

g is the number of mixture components. Thus,
clusters are ellipsoidal, centered at the mean vec-
tor µk, and with other geometric features, such as
volume, shape and orientation, determined by the
covariance matrix Σk (Banfield and Raftery, 1993;
Celeux and Govaert, 1995). To estimate Θ we rely
on the maximisation of the log-likelihood given by:

L(X; Θ) =
n∑

i=1

log

(
g∑

k=1

πkφk(xi|µk,Σk)
)
.

The maximization is commonly performed by
Expectation-Maximization (Dempster et al., 1977);
an iterative algorithm based on the maximization
of the conditional expectation of the complete data
log-likelihood given Θ′:

Q(Θ|Θ′) =
∑

i

∑

k

sik log(πkφk(xi|µk,Σk))

where sik ∝ πkφℓ(xi|µk,Σk) are the posterior
probabilities.

In real terms, the algorithm is broken down into
two steps (E-M steps) and the unknown parameters
of Θ are updated thanks to the previously computed
probabilities. For each component k, we have

πk =

∑
i sik
n

µk =

∑
i sikxij∑
i sik

and Σk =

∑
i sik(xi − µk)⊤(xi − µk)∑

i sik
.

The procedure used to identify anomalies is de-
scribed in Algorithm 1. It takes as input a set of
short texts and returns the ones that are the most
likely to constitute an anomaly. The maximum
density as normality score denotes the confidence
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Algorithm 1: AD with GMM
Input: D = {d1, . . . dn}, g the number of

components,M an embedding
module, α the desired number of
output samples;

xi ←M(di), i = 1, . . . n;
X← (x1, . . . ,xn);
Initialize Θ′ from a partition obtained with
k-means
repeat

E-step: Compute Q(Θ|Θ′);
M-step: Update πk, µk and Σk;

until Convergence;
si ← −maxk(sik), k = 1, . . . , g;
s← (si, . . . , sn);
r←argsort(s);
return dj , j = r1, . . . , rα;

of the assignment. Multiplied by -1, it denotes
the uncertainty of the assignment and is similar to
using the entropy of s since

∑
k sik = 1. The num-

ber of returned text samples depends on the user’s
needs and is specified by the cutoff parameter α.
In the evaluation section, we evaluate the AD per-
formance with every possible value of α using the
AUROC score.

3.1 Proposed solution for multi-class inliers

In the standard setting of AD where we consider
one large inlier class, we set the number of compo-
nents to its smallest possible value g = 2, which
provides satisfactory results. In this study, we also
consider the more challenging scenario where sev-
eral underlying topics are present in the dataset.
In this context, we make the distinction between
extreme values and outliers (Aggarwal, 2017) as
shown in Figure 1. A Gaussian mixture model
would not have any difficulty in spotting both types
of outliers since it is capable of modeling clus-
ters of different shapes. Furthermore, we expect
GMM to show good results in the multi-class con-
text, since one of its fundamental assumptions is
the multiplicity of inherent distributions among the
data samples. However, this property requires to
know the number of components in advance, which
is not always possible in real life.

To address this issue, we propose to use GMME,
an ensemble of several models, obtained with dif-
ferent values of g. To this end, we use Algorithm 1
with varying gk ∈ G and combine the output scores

outlier

extreme
value

Figure 1: Difference between outlier and extreme value.
This example illustrates the benefit of the clustering-
based AD approaches in general and Gaussian mixture
models in particular.

s(gk) as follows:

ei = −
∑

k

rank(s(gk)i ).

The intuition behind using an ensemble approach is
to make each of the models separate the dataset into
clusters in a different way and assign an anomaly
score according to the formed clusters. Combin-
ing those different anomaly scores leads to a more
robust and meaningful overall score, even when
the optimal number of clusters is not included in
G. This is corroborated by the empirical study con-
ducted in Section 4.5.

4 Experimental Study

To assess the effectiveness of our approach and
compare it to state-of-the-art, we conduct a set of
experiments on real datasets and discuss the results
in this section.

4.1 Datasets
We run our AD experiments on three datasets de-
scribed in Table 2. MLSUM (Scialom et al., 2020)
and COVID-news (Cortal, 2022) are both news
datasets from which we extract the title to consti-
tute our short-text corpora. RNCP is a dataset we
built from an official French repository that lists
training certifications (cf. Appendix A).

Dataset Classes Smallest Largest Medial

RNCP 16 763 9,510 3,101
COVID 9 236 3,235 1,270

MLSUM 10 2,573 26,024 13,054

Table 2: Datasets’ description. The sizes correspond to
the whole set of samples (training and test set).

Given a classification dataset, we first remove
the classes that are too small to constitute an AD
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dataset, thus obtaining ℓ classes. We then derive
ℓ sets of samples in which there is one inlier (ma-
jority) class and a certain rate r of outliers picked
randomly from the other classes.

4.2 Experimental settings

In order to empirically evaluate our approach and
compare it to other AD techniques, we rely on the
Area Under the Receiver Operating Curve (AU-
ROC), originally used as a metric in the classifica-
tion task. In our case, it takes as input the anomaly
scores as well as the ground truth labels and de-
termines at what extent it is possible to accurately
identify outliers using the anomaly score. It is
equivalent to evaluating the performance of AD
at every possible value of α in Algorithm 1. For
each AD approach, we compute the AUROC on
the test set over 5 different initializations, except
for OC-SVM that is a deterministic model.

In our study, we discard the case where we train
the model on the majority class as a one-class clas-
sification task (Ruff et al., 2019; Manolache et al.,
2021; Manevitz and Yousef, 2001), for it is not a
realistic scenario since one rarely has access to a
large enough amount of inlier-only labeled sam-
ples in real life. Thus, we consider in this study a
fully unsupervised scenario, where no labels are
available and both inlier and outlier samples are
present in the training set. To this end, we contami-
nate both sets with up to r = 10% of outliers as in
(Manolache et al., 2021). The set of labels is used
only during the evaluation phase.

Text representation. Given a raw corpus D
of short texts, we first perform a minimal pre-
processing that consists in removing stop words
and lowercasing the input text. Then, we use a pre-
trained fastText model (Bojanowski et al., 2017)
to represent texts by fixed-size vectors and build
the X matrix. The model is trained on French
Wikipedia and represents each word by a vector of
size m = 300. Using those word vectors, we repre-
sent a text sequence by the arithmetic mean of its to-
kens’ representations as in (Ranasinghe et al., 2019;
Arora et al., 2017). We show that this way of repre-
senting text sequences is well suited to shorts texts
and is very beneficial in capturing text semantics
for AD. One noticeable advantage of fastText is its
ability to represent out-of-vocabulary words thanks
to sub-word embeddings. Another advantage of
fastText is that pre-trained word representations are

provided in a wide range of languages2. We do
not use contextual word embeddings to represent
text sequences since they significantly increase the
computational cost and do not seem to bring any
performance gain in the AD task (Ruff et al., 2019).

Baselines. We compare our approach to other
AD techniques: OC-SVM (Schölkopf et al., 2001),
AE, DAGMM (Zong et al., 2018) and DATE
(Manolache et al., 2021). For OC-SVM, AE and
DAGMM, we use as input the same matrix X as
for GMM. Concerning OC-SVM, we set ν = 0.05,
which is the value that presents the best results
among {0.05, 0.1, 0.2, 0.5} by far. For the autoen-
coder (AE) we train a model with three encoder
layers and three decoder layers of size 256, 128
and 64, a learning rate of 0.001 and a weight decay
of 10−8. Concerning DAGMM, the authors choose
the parameters relating to the architecture of the
neural network according to the dataset and do not
provide a method to reproduce this choice. This
way of configuring the model is not suitable for
the unsupervised case, in which no tuning of the
hyperparameters is possible. We therefore opt for
a standard architecture in decreasing powers of 2
starting from m = 300 (i.e. 256, 128, . . . ). We
choose m′ = 5 as the encoding dimension because
it gives the best overall performance. For DATE,
we use the same parameters as used in the original
paper for AG-news (Manolache et al., 2021).

Hyperparameter tuning. Our present work falls
within the context of unsupervised learning, where
we are not supposed to have access to ground truth
labels. In this respect, it is not feasible in real life to
tune the hyperparameters of a given model to fit un-
labeled data, since the performance score is simply
impossible to compute. We therefore consider hy-
perparameter tuning in this context unrealistic and
possibly leading to hiding instabilities that can nei-
ther be detected nor fixed by practitioners. Hence,
robustness and insensitivity to parameters are key
in the unsupervised setting. For this reason, re-
garding the baselines, we use the recommended
parameters provided in the original works when
available, in order to reproduce real-world condi-
tions. When no recommended parameters are pro-
vided, we use the ones that maximize the overall
performance even though it does not play in favor
of our proposed approach which does not require
any parameter tuning. By doing so, we guaran-

2https://fasttext.cc/
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Inlier OC-SVM AE DAGMM DATE GMM
R

N
C

P

enviro. 62.2 62.1 52.8 65.8 68.4
défens. 58.0 46.2 52.5 62.2 74.3
intell. 66.7 65.4 59.1 79.0 80.1
recher. 68.6 64.5 58.0 75.3 77.7
nautis. 64.9 62.9 53.0 68.2 73.1
aérono. 63.7 59.4 49.8 76.1 78.0
sécuri. 59.8 54.7 51.3 75.0 80.0
multim. 57.8 56.3 51.3 64.5 71.2
humani. 56.7 59.6 53.4 69.0 72.1
nucléa. 65.1 58.7 59.9 74.9 75.1
enfanc. 61.0 60.1 65.0 72.1 78.9
saison. 50.5 47.5 50.8 48.8 74.9
assist. 45.1 50.7 56.4 52.5 63.2
sport 51.1 56.1 46.8 66.3 73.3
ingéni. 66.9 60.1 57.2 75.3 74.2
sans d. 45.4 36.9 53.7 39.3 59.9

C
O

V
ID

cultur. 49.7 40.1 43.4 40.3 53.7
enviro. 56.9 55.0 50.2 55.2 66.2
intern. 62.0 53.7 53.1 62.4 65.1
people. 63.9 47.4 49.7 51.8 64.0
politi. 67.2 60.1 51.6 68.1 79.2
scienc. 55.5 38.3 60.6 64.5 66.6
sociét. 48.9 47.5 55.3 57.0 55.1
sport 68.5 35.6 55.4 52.6 69.0
économ. 52.7 49.4 50.7 54.0 59.4

M
L

SU
M

afriqu. 70.0 50.5 62.0 74.3 75.5
police. 78.3 74.4 52.9 77.0 82.9
politi. 70.3 60.3 49.6 74.6 75.7
scienc. 53.1 35.5 49.6 71.0 55.2
societ. 73.0 73.0 48.9 75.4 79.0
sante 78.7 56.2 55.2 86.5 87.5
argent. 47.7 36.4 51.7 82.2 63.4
livres. 71.2 65.8 48.4 58.1 65.9
cultur. 59.5 49.8 52.4 45.8 51.4
sport 74.9 56.5 45.2 69.2 81.7

Table 3: AUC scores obtained with anomaly r = 10%.
The bold numbers correspond to the best score in each
row and the underlined numbers are for the second best
performance score.

tee a fair evaluation of our proposal and show its
robustness in an unsupervised context.

4.3 Results with one-class inliers

The obtained performance is given in Table 3 with
an anomaly rate r = 10%. We first observe the
effectiveness of GMM on the three datasets, in
comparison to all of the baselines, offering the best
AUROC in most of the cases. Furthermore, the
state-of-the-art DATE shows its limits on short texts
and presents competitive but poorer results in com-
parison to GMM. OC-SVM is competitive on short
texts in comparison to DATE but presents poorer
overall performance. AE is the model that provides
the lowest AUROC values, right after DAGMM.
This might be due to the fact that the encoding

(or embedding) step of the encoder (for both AE
and DAGMM) is performed beforehand using pre-
trained word embeddings and becomes pointless
when applied to this kind of representation.

The results obtained with different values of con-
tamination rate r are summarized by Critical Dif-
ference (CD) diagrams in Figure 2. The aim of
CD diagrams (Demšar, 2006) is to visualize the
performance ranks of each approach over the dif-
ferent datasets. If we take the example of r = 10%,
the CD diagram summarizes the scores given in
Table 3. It depicts the average rank of each method
and the bold line corresponds to the critical dif-
ference, based on the post-hoc Nemenyi test (Ne-
menyi, 1963). Note that the presence of a higher
number of outliers increases the difficulty of the
AD task and decreases the overall performance
scores. We can observe that the more we inject
anomalies in the training set, the more GMM gets
competitive against the other approaches in terms
of AUROC score. This shows GMM’s robustness
to outliers and its generalization capabilities while
other techniques tend to overfit in the presence of
noise in the training set.

Also, it is worth noting that GMME yields simi-
lar results in comparison to GMM, which makes it
a universal solution, well suited to AD even in the
one-class scenario.

1 2 3 4 5 6

GMME
GMM
DATE OC-SVM

DAGMM
AE

CD
r = 1%

1 2 3 4 5 6

GMME
GMM
DATE OC-SVM

DAGMM
AE

CD
r = 5%

1 2 3 4 5 6

GMM
GMME

DATE OC-SVM
DAGMM
AE

CD
r = 10%

Figure 2: CD plots from the Nemenyi test over different
datasets. This graphic summarizes the rank of each
approach with different contamination rates r.
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Comparison with VMF-Q. To make a fair com-
parison between GMM and VMF-Q (Zhuang et al.,
2017), we reproduce the exact same setting for the
two approaches. VMF-Q is based on the von Mises-
Fisher distribution that relies on a Bessel function
to estimate the parameter κ. The model is origi-
nally trained using embeddings of size m = 200,
but encounters numerical difficulties with higher
dimensions, due to the approximations made by the
Bessel function that depends, inter alia, on m. We
hence use, for both GMM and VMF-Q, another pre-
trained model of size m = 200, that is provided
by Fauconnier (2015). The gain of performance
from VMF-Q to GMM is summarized in Figure
3. We can observe a clear advantage of GMM in
comparison to VMF-Q on the three datasets, es-
pecially on MLSUM, where GMM outperforms
VMF-Q on all the subsets. We also report poorer
overall results using word2vec with m = 200 in
comparison to the fastText model we use in the rest
of our experiments.

COVID MLSUM RNCP

−40

−20

0

20

40

% ↑

Figure 3: Gain of performance between GMM and
VMF-Q using word2vec embeddings of size m = 200.
Positive values give an advantage to GMM.

4.4 Performance and data size

Figure 4 shows the gain of performance from base-
lines to GMM according to the size of the datasets.
We see that the percentage of improvement is
greater on small datasets but remains positive on
large datasets. Note that detecting anomalies can be
trickier on small datasets, especially when dealing
with short texts (cf. Table 1) which makes GMM a
good solution to tackle this difficulty.

4.5 Multi-class inliers

We investigated in the previous sections the detec-
tion of semantic anomalies in a dataset classically
composed of one unique class. In this section, we
consider a dataset with several underlying topics
and identify the samples that do not belong to any

−50

0

50

% ↑

GMM vs. OC-SVM

5000 10000 15000 20000
Number of training samples

−50

0

50

% ↑

GMM vs. DATE

Figure 4: Percentage of improvement of GMM in com-
parison to baselines w.r.t. to the train set’s size. Positive
values give an advantage to GMM.

of them. To evaluate our approach in such a con-
text, we create datasets as described in Section 4.1
but this time, by combining ĝ random classes to
form one inlier class then inject anomalous samples
with a rate r = 10%. We then proceed similarly
to identify anomalies and validate the obtained re-
sults. Note that we make sure in our experiments
to put aside enough “anomalous“ classes so that
we have a sufficient diversity of anomalies and
avoid forming an additional cluster with the anoma-
lous samples. To this end, we limit ĝ according to
the available classes in the dataset. We use the ob-
tained datasets to assess the performance of GMME
(cf. Section 3) and compare it to GMM and two
other baselines: DBSCAN and DATE. DBSCAN
natively deals with outliers and considers the sam-
ples that cannot be assigned to any existing cluster
as anomalies (they are assigned the -1 label). We
use this information to determine whether a text
sample is an anomaly. We set the parameters ϵ = 1
and min_samples = 3 which yielded better results
than the default values available in the scikit-learn
implementation.

Table 4 shows the performance obtained by
GMME with values of gk ∈ G = {2, 3, 4}. We
first observe that the ensemble approach further im-
proves the performance of the simple GMM, which
still performs better in comparison to the other base-
lines. DBSCAN presents the poorest results after
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# inlier DBSCAN DATE GMM GMMEclasses
R

N
C

P

2 63.4 75.6 88.6 89.2
3 62.8 70.5 82.4 83.9
4 64.6 77.6 80.2 82.0
5 65.7 63.5 81.6 80.7
6 61.7 56.7 65.5 64.5
7 58.4 48.8 60.6 62.6
8 60.4 56.8 63.2 63.4

C
O

V
ID

2 51.5 59.3 65.2 63.8
3 50.6 51.3 54.1 54.2
4 50.7 53.5 56.2 56.3
5 50.0 51.1 52.6 52.7

M
L

SU
M 2 50.5 70.0 74.2 74.6

3 50.2 49.6 55.1 54.4
4 50.6 47.0 55.0 55.5
5 50.7 45.7 53.1 53.8

Table 4: Comparison of DBSCAN, DATE, GMM and
GMME approaches: AUROC scores obtained with mul-
tiple classes as inliers.

DATE, which is less competitive in the multi-class
context, especially on the RNCP dataset. Thus,
GMME is the most competitive approach in the
multi-topic scenario, even when the real number of
clusters is not included in G.

4.6 Computation time analysis

Table 5 contains the execution time of both the
training and evaluation steps. It is estimated over
three different runs, on the three-class datasets used
in Section 4.5. The sizes of the training sets are
1034, 6342, 46253 and the test sets are of size 444,
2718, 5837 for RNCP, COVID-news and MLSUM
respectively. The experiments on DATE are per-
formed on an NVIDIA RTX2070 GPU.

We first notice that GMM is the fastest approach
both during the training and evaluation phase. It is
followed by GMME that is relatively quick, espe-
cially during evaluation. GMM scales better with
an increasing number of samples in comparison to
OC-SVM that takes more than four times as much
time to train. DATE is the approach that takes the
most time to train and evaluate, which is due to
its deep architecture. The computational time of
DATE can be partially amortized with a more pow-
erful GPU but can still represent an impediment,
especially in an industrial context.

We also observe that the computation time of X
does not depend much on the size of the dataset,
simply because the task that takes the longest is
loading the model from memory. Hence, this way

1-SVM GMM GMME DATE

R
N

C
P X 3.7 -

train 3e-01 3e-01 1.2 78.49
eval 1e-01 3e-03 3e-02 2.0

C
O

V
ID X 3.7 -

train 5.7 3.5 16.2 512.97
eval 1.8 2e-02 8e-02 14.1

M
L

SU
M X 3.9 -

train 450.6 10.0 94.8 3639
eval 33.0 4e-02 2e-01 30.2

Table 5: Execution time in seconds. The row X corre-
sponds to the computation time of the embedding matrix
X using fastText. “train“ stands for the training time
and “eval“ for the evaluation time.

of representing text scales well, especially when
used along with GMM or GMME.

4.7 Improve the results with Transformers

In the previous experiments, we relied on fastText
static embeddings in order to show that is it possi-
ble to perform effective and fast anomaly detection
without having access to important computational
resources. In this section, we show that it is possi-
ble to achieve even better results using Transformer
representations. For our purpose, we use Camem-
BERT (Martin et al., 2020) and FlauBERT (Le
et al., 2020), both trained on French corpora.

CamemBERT and FlauBERT are both based
on the RoBERTa variant of Transformer language
models (Liu et al., 2019). While FlauBERT uses
the exact same objective and tokenization process
as in Liu et al. (2019), plus a French-specific pre-
processing, CamemBERT makes use of the Sen-
tencePiece tokenizer and the whole-word masking
strategy that consists in masking words instead of
sub-word tokens. Another major difference be-
tween the two models is the training set of data.
CamemBERT uses the French part of OSCAR, a
large multilingual corpus extracted from Common
Crawl, while FlauBERT is trained on a set of 24
corpora.

Table 6 contains the results obtained using sev-
eral input representations. We recall the results
obtained by DATE for comparison purposes since
it is also based on a Transformer architecture. We
first observe the significant difference in perfor-
mance between CamemBERT and FlauBERT with
a clear advantage for CamemBERT in both its base
and large versions. The large variant of Camem-
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Dataset # Inlier
classes

DATE
GMME

fastText flauB6 flauB12 flauB24 camB12 camB24

RNCP

2 75.58 89.22 87.02 59.78 71.38 83.82 88.44
3 70.48 83.90 76.10 64.80 63.38 76.98 82.14
4 77.58 82.00 79.14 70.82 66.06 80.82 84.82
5 63.50 80.68 69.76 47.78 69.80 77.60 83.54
6 56.74 64.46 60.48 53.40 60.48 64.60 66.64
7 48.78 62.60 64.68 67.24 66.42 67.84 68.66
8 56.82 63.44 53.18 47.28 59.92 65.16 67.00

COVID

2 59.28 63.82 62.34 56.38 56.56 65.82 63.32
3 51.32 54.20 54.10 47.28 54.86 56.00 55.48
4 53.46 56.30 55.40 49.70 51.80 58.00 58.44
5 51.08 52.70 56.28 49.02 50.48 52.90 52.12

MLSUM

2 70.00 74.60 68.80 61.00 55.00 79.60 85.10
3 49.60 54.44 59.70 47.80 56.50 66.44 72.74
4 47.02 55.52 58.30 39.00 54.70 65.02 70.18
5 45.70 53.84 58.80 42.30 56.02 65.44 71.08

Table 6: Comparison between different embedding representations in terms of AUC score with anomaly rate
r = 10%. The bold numbers correspond to the best score in each row and the underlined numbers are for the
second-best performance score. flauB and camB stand respectively for FlauBERT and CamemBERT and the
subscript is for the number of layers, which indicates the model size (6 for small, 12 for base and 24 for large).

BERT achieves the best overall results, especially
on MLSUM. CamemBERT-base yields competi-
tive results, achieving good AUROC scores on the
COVID dataset. We also notice that, in all cases,
the two-phased approach that consists in comput-
ing Transformer representations and then use an en-
semble of model-based clustering models (GMME)
is more efficient than the end-to-end Transformer-
based approach (DATE). It is worth noting that
fastText embeddings remain competitive and sur-
pass the three FlauBERT models. It is therefore a
very good alternative in real-time use cases when
computational speed is a critical issue.

5 Conclusion

This paper addresses semantic anomaly detection
in short texts with an additional constraint in time
efficiency. In addition to the classical framework
where one class is used as the inlier class, we
also consider the scenario where several underly-
ing subgroups are present in the normal class. We
see anomaly detection as a probabilistic clustering
problem, in which we learn a Gaussian mixture
model and consider the low posterior probability
samples as belonging to none of the modeled clus-
ters and more likely to constitute outliers. This
uncertainty score proved effective with different
numbers of subgroups. In the multi-class setting,

we propose GMME, an ensemble approach that
improves the performance of GMM when several
topics are present in the inlier class. The two ap-
proaches outperform state-of-the-art anomaly de-
tection techniques in both scenarios, with an im-
pressively low computation time.

In our proposal, we rely on the Gaussian Mix-
ture model for its flexibility. This choice is moti-
vated by the presence of the proportions πk of each
cluster and the spectral decomposition of the co-
variance matrix Σk taking into account the volume,
shape, and orientation of each cluster (as depicted
in Figure 1). The characteristics of the clusters
should not be overlooked when tackling the prob-
lem of anomaly detection through a clustering ap-
proach. Furthermore, note that our approach can
be extended to latent block models, devoted to co-
clustering, which may constitute an interesting and
promising future path of research.

6 Limitations

This paper deals exclusively with French text cor-
pora to answer a specific industrial need. However,
we are confident about the fact that this work can
easily be extended to other languages, especially
English, for which more data and pre-trained mod-
els are available. This would constitute an interest-
ing trajectory for future work.
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professions related to the certification. Each ROME
code is assigned to a topic in the file « Arbores-
cence thématique » of the same repository. We use
the ROME code as intermediate to have the topic
(thématique) of each certification. We hence obtain
a multi-label classification dataset.

Given a certification ci, let Ti be the set of its
corresponding topics. In the one-class setting with
inlier class h, the label of ci is established as fol-
lows:

yi =

{
0 if h ∈ Ti
1 otherwise.

In the multi-class setting with inlier classes sym-
bolized byH, the anomaly labels are defined as:

yi =





0 ifH ⊂ Ti
1 ifH ∩ Ti = ∅
N/A otherwise

where yi = 1 means ci is categorized as an
anomaly.

B AD examples with RNCP

Table 7 presents some examples of anomalies pre-
dicted on two subsets of the RNCP dataset: «
aéronotique » (meaning aeronautics) and « nu-
cléaire » (meaning nuclear). The aéronautique
test set contains 1585 samples, 154 of which are la-
beled as anomalies, and the nucléaire set contains
1431 samples including 131 anomalies. In both
cases we set α to 250 (cf. Algorithm 1). We ob-
serve in both cases that DATE has more difficulty
in detecting anomalous text sequences when they
are very short. For example, in the nucléaire set,
the certification Livreur (meaning delivery person)
does not have anything to do with the nuclear field.
Yet DATE does not place it among the 250 most
deviant samples and makes it the 355th anomalous
sample while it is only 3rd according to GMM.
This might be explained by the fact that DATE is
trained from scratch and does not benefit from the
semantic knowledge inherited by transfer learning.

Subset Certification GMM DATE Real

aé
ro

no
tiq

ue

Sciences, Technologies, Santé - Mention : Automatique et
informatique industrielle - Spécialité : Automatismes industriels

Inlier Inlier Inlier

Production industrielle option ingénierie des matériaux nouveaux Inlier Inlier Inlier

Actuaire Outlier Inlier Outlier

Sciences Politiques Outlier Inlier Outlier

CQP Animateur de patinoire option hockey sur glace Outlier Outlier Outlier

Décor architectural opt. B Domaine du décor du mur Outlier Outlier Outlier

nu
cl

éa
ir

e

Culture et communication Mention : Création, innovation,
information numériques Spécialité : Gestion de

l’information et du document Domaine : Culture
et communication

Inlier Inlier Inlier

Responsable d’ingénierie des systèmes d’information
et de communication, option "analyse et développement",

option "systèmes et réseaux" et option "télécommunications"
Inlier Inlier Inlier

Livreur Outlier Inlier Outlier

Architecte d’intérieur Outlier Inlier Outlier

Responsable conception, mise en place et
maintenance des installations frigorifiques et climatiques

Outlier Outlier Outlier

Urbanisme et Aménagement Spécialité DYATER
(Dynamiques et Aménagement des espaces, Territorialités)

Outlier Outlier Outlier

Table 7: Examples illustrating the difference of prediction between GMM and DATE according to the length of the
text sequence, with α = 250.

1403



Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 1404–1409
May 2-6, 2023 ©2023 Association for Computational Linguistics

Metaphor Detection with Effective Context Denoising

Shun Wang1∗, Yucheng Li2∗, Chenghua Lin1†, Loïc Barrault1,3 , Frank Guerin2

1 Department of Computer Science, University of Sheffield, UK
2 Department of Computer Science, University of Surrey, UK

3 Meta AI
{swang209, c.lin}@sheffield.ac.uk

{yucheng.li, f.guerin}@surrey.ac.uk
loicbarrault@meta.com

Abstract

We propose a novel RoBERTa-based model,
RoPPT, which introduces a target-oriented
parse tree structure in metaphor detection.
Compared to existing models, RoPPT fo-
cuses on semantically relevant information and
achieves the state-of-the-art on several main
metaphor datasets. We also compare our ap-
proach against several popular denoising and
pruning methods, demonstrating the effective-
ness of our approach in context denoising.
Our code and dataset can be found at https:
//github.com/MajiBear000/RoPPT.

1 Introduction

Metaphor is a pervasive linguistic device, which
attracts attention from both the fields of psycholin-
guistics and computational linguistics due to the
key role it plays in the cognitive and communica-
tive functions of language (Wilks, 1978; Lakoff
and Johnson, 1980; Lakoff, 1993). Linguistically,
metaphor is defined as a figurative expression that
uses one or several words to represent another con-
cept given the context, rather than taking the lit-
eral meaning of the expression (Fass, 1991). For
instance, in the sentence “This project is such a
headache!”, the contextual meaning of headache
is “a thing or person that causes worry or trouble”,
different from its literal meaning, “a continuous
pain in the head”.1

Metaphor detection is challenging, as it requires
understanding the nuanced relationships between
abstract concepts embodied by the metaphoric ex-
pression and its surrounding context. Recent stud-
ies on this direction show its potential in benefit-
ing a wide range of NLP applications, including
sentiment analysis (Li et al., 2022a), metaphor gen-
eration (Li et al., 2022b,c) and mental healthcare
(Abd Yusof et al., 2017; Gutiérrez et al., 2017).

∗ The two authors contributed equally to this work.
† Corresponding author

1https://www.oxfordlearnersdictionaries.com

When modelling relevant context for metaphor
detection, various strategies have been proposed.
These range from using highly restricted forms of
linguistic context such as subject-verb and verb-
direct object word pairs (Gutiérrez et al., 2016), to
a wider context accounting for a fixed window sur-
rounding the target word (Do Dinh and Gurevych,
2016; Mao et al., 2018), and modelling the full sen-
tential context (Gao et al., 2018; Choi et al., 2021).
While it has been argued that modelling a wider
context is beneficial (Cheng et al., 2021), it has also
been noted that a wider context is likely to intro-
duce noise into the representations, and hence hin-
der model’s performance in metaphor detection (Le
et al., 2020).

Some recent efforts (Le et al., 2020; Song et al.,
2021a) attempt to improve context modelling by
explicitly leveraging the syntactic structure (e.g.,
dependency parse tree) of a sentence in order to cap-
ture important context words, where the parse trees
are typically encoded with graph convolutional neu-
ral networks. MelBERT (Choi et al., 2021) em-
ploys a simple chunking method which separates
sub-sentences by commas. The sub-sentence that
contains a target word is then marked with a special
token type, signalling its contextual importance to
the target. However, these strategies are either dif-
ficult to apply to batch optimisation due to their
tree-dependent encoding process, or have limited
effectiveness for context denosing. For instance,
the simple chunking mechanism misses the syn-
tactic structure, and thus can neither determine the
degree of importance of context words, nor connect
information across different subsentences.

In this paper, we propose a novel metaphor de-
tection model RoPPT: RoBERTa with Pruning on
target-oriented Parse Tree. RoPPT introduces a
flat, target-oriented tree structure by reshaping and
pruning the ordinary parse trees to extract seman-
tically relevant neighbours of a target word. The
resulting tree representation allows the model to
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focus on syntactically relevant information of a tar-
get word, and ignore irrelevant parts despite their
position. It thus retains more relevant context for
metaphor detection.

Extensive experiments conducted on three pub-
lic benchmark datasets (i.e., VUA, MOH-X,
TroFi) show that RoPPT can significantly improve
metaphor detection on all datasets against sev-
eral popular denoising and pruning methods. Our
model also yields better or comparable perfor-
mance to the state-of-the-art models (Choi et al.,
2021; Song et al., 2021a) in Micro F1 measure.
To further validate our approach, we conducted
an additional investigation to assess the effect of
sentence length on the performance of our model.
Experimental results demonstrate a positive corre-
lation between the increase in the performance of
RoPPT and the length of the input sentence.

In summary, our paper makes three contribu-
tions: (1) we propose a flat, target word-oriented
tree structure by reshaping and pruning the ordi-
nary parse trees to retain the most relevant con-
text for a target word; (2) we propose RoPPT, a
RoBERTa-based model which can effectively en-
code the target-oriented parse tree for metaphor de-
tection, achieving state-of-the-art results on three
bench mark datasets; (3) we compare and evaluate
a range of context denoising methods for metaphor
detection, demonstrating the effectiveness of our
proposed tree structure in context denoising.

2 Method

The overall architecture of RoPPT is shown in Fig-
ure 1, which can be divided into two parts: a target-
oriented parse tree pruning module and a RoBERTa
(Liu et al., 2019) contextual encoder.

2.1 Target-oriented Dependency Parse Tree

Connecting target words with their most relevant
context words is crucial for metaphor detection and
comprehension. While there have been attempts
to employ dependency parse trees in graph convo-
lutional neural networks to improve context mod-
elling (Wang et al., 2020), it raises challenges of
how to effectively encode and leverage such syn-
tactic structure information for transformer-based
mask language models for metaphor detection.

We tackle this challenge by introducing a target-
oriented parse tree generated by three steps: 1)
reshape the original parse tree from existing parsers
such as spaCy (Honnibal and Montani, 2017) and

Biaffine (Dozat and Manning, 2016); 2) root the
tree at the target word; 3) prune the tree according
to the distance between leaves and root, coined as
neighbor range. The rationale behind is that the
target word is the focus of the task rather than the
original root. So the re-rooting allows us to focus
on the connections between target words and their
relevant context. The resulting flat, target-oriented
tree structure also enables simple encoding process
into the model. Figure 1 shows an example of our
reshaped tree, which retrains words with neighbor
range con = 1 to the root ‘bogged’.

2.2 RoBERTa-based Context Encoder

We employ two metaphor identification theories in
our model, i.e., Metaphor Identification Procedure
(Steen, 2010, MIP) and Selectional Preference Vio-
lation (Wilks, 1978, SPV). In MIP, a metaphor is
detected when there is a contrast between target
word’s contextual and literal meanings, whereas
in SPV a metaphorical word is identified by the
semantic difference from its surrounding words.
Therefore, we model three types of semantic rep-
resentations for implementing MIP and SPV, i.e.,
the literal meaning and the contextual meaning of
a target word, and the context meaning.

Formally, given a sentence S = (w0, ..., wn),
we first employ the RoBERTa network to produce
representations for each word.

H = RoBERTa_Enc(embcls, ..., embn) (1)

Here CLS is a special token indicating the start of
an input, H = (hcls, h0, ..., hn) the output hidden
states, and embi the input embedding for word
wi. Specifically, embi = embw + embpos, where
embw is the word embedding, and embpos the po-
sition encoding.
Context denoising with the target-oriented parse
tree. When modelling sentence representation, ex-
isting works directly employed the CLS embedding
as a common practice (Choi et al., 2021; Song
et al., 2021b). In contrast, RoPPT employs the
target-oriented parse tree to retain the most rele-
vant context for a target word when computing the
sentence embedding. Specifically, our sentence
embedding is computed as follows.

vS =
1

n

∑
hi, i ∈ Cn (2)

Here vS is the sentence representation; Cn repre-
sents the n neighbour words within the neighbour
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Figure 1: The overall framework of RoPPT. The parse tree of a sentence is reshaped to a target-oriented tree, and
the context is pruned with a pre-set threshold. The sentence embedding is the average pooling result of hidden states
for pruned context from RoBERTa.

⊕
denotes concatenation.

range of the target-oriented parse tree, and hi is the
hidden state of wi. In other words, we do average
pooling on the most relevant context words as the
sentence representation and ignore other words in
the sentence. We also design an alternative strategy
by directly masking the original input sentence to
the encoder according to the pruned parse tree. We
denote this intuitive solution as RoPPT with Input
Mask (RoPPT_IM) and discuss the performance
difference between these two variants in §4.

Similar to Choi et al. (2021), we use the hid-
den state of target word wt as the contextual target
word embedding (i.e. vS,t = ht), and the literal
target word embedding vt is obtained by feeding
the single target word wt to the RoBERTa network.

vt = RoBERTa_Enc(embt) (3)

We then model SPV (hSPV) by concatenating
the sentence embedding vS and contextual target
embedding vS,t, and MIP (hMIP) by concatenat-
ing the contextual and literal target embeddings vt,
followed by a MLP layer (i.e. f1(·) and f2(·)).

hSPV = f1([vS , vS,t]) (4)

hMIP = f2([vS,t, vt]) (5)

Finally, we combine two hidden vectors hMIP
and hSPV to compute a prediction score ŷ, and use

binary cross entropy loss to train the overall frame-
work for metaphor prediction.

ŷ = σ(W⊤[hMIP;hSPV] + b) (6)

L = −
N∑

i=1

[yi log ŷi + (1− yi) log(1− ŷi)] (7)

3 Experimental Setup

Dataset. We conduct experiments on four public
benchmark datasets. VUA-18 (Leong et al., 2018)
and VUA-20 (Leong et al., 2020) are the largest
available datasets, released in the metaphor detec-
tion shared tasks in 2018 and 2020. VUA-20 ex-
tends VUA-18 with about 12K sentences for train-
ing set and 3.6K sentences for test and validation
sets. The MOH-X dataset is constructed by sam-
pling sentences from WordNet (Miller, 1998). Only
a single target verb in each sentence is annotated.
The average sentence length is 8 tokens, the short-
est of our three datasets. TroFi (Birke and Sarkar,
2006) consists of sentences from the 1987-89 Wall
Street Journal Corpus (Charniak et al., 2000), with
an average length of 28.3 tokens per sentence.
Baselines. RoBERTa_SEQ (Leong et al., 2020) is
a fine-tuned RoBERTa sequence labeling model for
metaphor detection. MelBERT (Choi et al., 2021)
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Model VUA18 VUA20
Prec Rec F1 Prec Rec F1

RNN_ELMo 71.6 73.6 72.6 - - -
RoBERTa_SEQ 80.1 74.4 77.1 75.1 67.1 70.9
MrBERT 82.7 72.5 77.2 - - -
MelBERT* 79.6 76.4 77.9 76.3 68.6 72.2
MelBERT 80.1 76.9 78.5 75.9 69.0 72.3
RoBERTa_tree 78.9 76.1 77.4 74.8 68.6 71.6
RoChunk 76.6 80.0 78.2 73.9 70.0 71.9
RoWindow 78.0 78.1 78.0 75.0 68.8 71.8
RoPPT_IM 73.4 74.3 73.9 67.7 66.8 67.2
RoPPT 80.0 78.2 79.1 75.9 70.0 72.8

Table 1: Performance comparison on VUA dataset (best
is in bold). NB: * indicates the reproduced results of
MelBERT using the original source code and setting of
(Choi et al., 2021). RNN_ELMo and MrBERT have no
results on VUA20 in their original paper. Popular de-
noising methods are also compared. RoChunk means
chunk sentence by comma on RoBERTa input, RoWin-
dow means denoising by a context window (size=4).
RoPPT_IM represent masking sentence before input to
transformer encoder.

Models TroFi MOH-X
Prec Rec F1 Prec Rec F1

RoBERTa_SEQ 53.6 70.1 60.7 80.6 77.7 78.7
DeepMet 53.7 72.9 61.7 79.9 76.5 77.9
MrBERT 53.8 75.0 62.7 75.9 84.1 79.8
MelBERT* 53.1 73.2 61.6 78.0 79.5 78.8
MelBERT 53.4 74.1 62.0 79.3 79.7 79.2
RoBERTa_tree 50.3 77.8 61.1 76.9 83.5 79.3
RoPPT 54.2 76.2 63.3 77.0 83.5 80.1

Table 2: Performance comparison on TroFi and MOH-X
datasets (NB: bold denotes the best result).

realises MIP and SPV theories via a RoBERTa
based model. MrBERT (Song et al., 2021b) is the
recent SOTA on verb metaphor detection based on
BERT with verb relations encoded.
Hyperparameter. We set the hyperparameter
neighbour range con = 4 based on the validation
set results. All the parser results are based on spaCy
as it performs better than Biaffine empirically (see
§4 for more discussion).

4 Experimental Results

Overall results. Table 1 shows a comparison of
the performance of our models against the baseline
models on VUA18 and VUA20, respectively. It
is clear that our RoPPT outperforms all baselines
on VUA18 and VUA20, including the state-of-the-
art model MelBERT. A two-tailed t-test was con-
ducted based on 10 paired results from RoPPT and
the strongest baseline MelBERT* on both VUA-18
(p = 0.014) and VUA-20 (p = 0.019).

We also compared our method against sev-
eral common denoising strategies. The results

show that our tree-based denoising method is
more effective than other popular denoising ap-
proaches such as RoChunk and RoWindow, which
are sequence-based methods. We also apply our
target-oriented tree to RoBERTa_SEQ, denoted as
the RoBERTa_tree model. The improvement of
RoBERTa_tree over RoBERTa_SEQ on two VUA
datasets (i.e. 0.3% and 0.7%) further demonstrates
the utility of our tree-based denoising method.

Following the setup of Choi et al. (2021), we
also conducted a zero-shot transfer learning experi-
ment shown in Table 2. Specifically, our model is
trained on the training set of VUA20 and directly
tested on the entire Trofi and MOH-X datasets.
This is intended to test the generalisation power
of trained models. RoPPT shows the best perfor-
mance on both datasets (significant test on RoPPT
against MelBERT*: TroFi p = 0.0001; MOH-X
p = 0.021; we cannot compare with MrBERT as
the code is unavailable). It can be observed that
our model gives a larger margin of improvement
over the baselines on TroFi (i.e., 1.3% gain over
MelBERT and 0.6% over MrBERT) than MoH-
X (i.e., 0.9% gain over MelBRTT and 0.3% over
MrBERT).

Model performance vs. Sentence length. As the
averaged sentences length of TroFi (28.3 tokens)
is significantly longer than that of MoH-X (8 to-
kens), it is worth investigating whether our model
gives more performance boost on data with longer
context as it is likely to be noisier. To verify this
hypothesis, we evaluated the performance boost of
our RoPPT against the SOTA baseline MelBERT.
Table 3 shows the results of VUA18 with the testset
splitted into 3 different groups based on sentence
length. The results demonstrate a clear positive cor-
relation between performance boost and sentence
length.

Impact of Parsers. We also investigated how the
choice of parsers impacts the metaphor detection
performance of our model. Specifically, we tested
two parsers for constructing the target-oriented
dependency parse trees, namely, the CNN-based
parser Biaffine and the RoBERTa-based parser
spaCy. When tested on the validation set, our
model achieves 78.0% with spaCy and 77.7% with
Biaffine in F1 for metaphor detection, respectively.
This shows that the impact of the parse choice is
relatively small for our model.

Case Studies. RoPPT shows its strength in the fol-
lowing example with the target word far away from
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Sent. RoPPT MelBERT* F1 Pruning # of
len. Prec Rec F1 Prec Rec F1 diff. comp. Sent.
<20 76.4 74.8 75.6 75.0 75.2 75.1 0.5 10.7 / 12.3 18,515
20-40 81.8 79.9 80.8 79.2 79.1 79.2 1.6 16.4 / 29.4 17,729
>40 82.3 80.0 81.1 78.5 76.8 77.6 3.5 19.5 / 53.6 7,703

Table 3: RoPPT and MelBERT* performance comparison on sentences with different length range from VUA18.
‘Pruning comp.’ is the comparison of the average length of (pruned) / (original) sentences.

its subject, which is correctly labeled by RoPPT but
incorrectly by baseline models. For the instance
with metaphorical target word bogged, "a routine
exercise in extending the government’s borrowing
power to $3.1 thousand billion became bogged
down.", the target word bogged is separated from
its subject by a long phrase, which causes baselines
(including MelBERT) to fail to detect the metaphor.
Thanks to the parse tree, RoPPT links exercise di-
rectly to the target and produces the right label.

5 Conclusion

In this paper, we proposed, RoPPT, an effective ap-
proach to extract contextual information for target
words for metaphor detection based on a target-
oriented parse tree structure. Extensive experi-
ments show that our model can yield better perfor-
mance compared to the state-of-the-art. In addition,
our method is particularly effective in denoising
long sentences, despite its simplicity.

6 Limitations

Empirical experiments show that our method is
more effective in denoising long sentences with
the proposed target-oriented parse tree. While this
is somewhat expected as shorter sentences tend to
have cleaner context, it raises a question or limita-
tion of how can we improve the proposed method
to better deal with short sentences and improve its
performance in these cases. One possibility is to
exploit external knowledge (e.g. ConceptNet) to
support the detection of the most important contex-
tual words.
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Abstract

Semantic parsing plays a key role in digital
voice assistants such as Alexa, Siri, and Google
Assistant by mapping natural language to struc-
tured meaning representations. To extend the
capabilities of a voice assistant for a new do-
main, the underlying semantic parsing model
needs to be retrained using thousands of anno-
tated examples from the new domain, which is
time-consuming and expensive. In this work,
we present an architecture to perform such do-
main adaptation automatically, with only a
small amount of metadata about the new do-
main and without any new training data (zero-
shot) or with very few examples (few-shot).
We use a base seq2seq (sequence-to-sequence)
architecture and augment it with a concept en-
coder that encodes intent and slot tags from
the new domain. We also introduce a novel
decoder-focused approach to pretrain seq2seq
models to be concept aware using Wikidata.
This pretraining helps our model learn impor-
tant concepts and perform well in low-resource
settings. We report few-shot and zero-shot re-
sults for compositional semantic parsing on the
TOPv2 dataset and show that our model outper-
forms prior approaches in few-shot settings for
the TOPv2 and SNIPS datasets.

1 Introduction

Voice assistants such as Alexa, Siri, and Google
Assistant often rely on semantic parsing to under-
stand requests made by their users. The underly-
ing semantic parsing model converts natural lan-
guage user utterances into logical forms consisting
of actions requested by the user (play music, check
weather), called intents, and relevant entities in the
request (which song? which location?), called slots.
The model is built to process requests in a fixed set
of domains, such as music, weather, shopping, and
so on. With voice assistants increasingly pervading

∗ work done when SR was at UMass and MS and KA
were at Amazon; it does not relate to their current positions.

more aspects of daily life, systems need to be con-
tinuously updated to comprehend new intents and
slots across an ever-growing number of domains.

Current semantic parsing models are trained on
large amounts of annotated data from a predeter-
mined set of domains. Extending these models to
learn new intents or slots typically involves collect-
ing and annotating large amounts of new data. This
process is expensive and time-consuming. To com-
bat this problem, researchers have proposed seman-
tic parsing models that can be efficiently trained
with fewer examples (few-shot) from new domains
(Shrivastava et al., 2021; Mansimov and Zhang,
2021; Ghoshal et al., 2020; Shin et al., 2021; Desai
et al., 2021; Rongali et al., 2022; Shrivastava et al.,
2022). While these methods facilitate few-shot
learning, they have limitations. Some of them rely
on hand-crafted knowledge such as intermediate
grammars or logical form templates (Shrivastava
et al., 2022; Shin et al., 2021; Rongali et al., 2022).
Others rely on very large pretrained language mod-
els, such as GPT-3, to perform in-context learn-
ing by appending test examples with instructional
prompts (Shin et al., 2021).

In this work, we explore few-shot domain adap-
tation for semantic parsing without any additional
hand-crafted knowledge apart from the intent and
slot tag names, and with much smaller architectures
that can perform efficient inference in practical pro-
duction environments. We also explore zero-shot
domain adaptation, when we have no annotated
training data from a new domain.

To that end, we propose CONCEPT-SEQ2SEQ,
a novel architecture based on a state-of-the-art se-
mantic parsing model, SEQ2SEQ-PTR (Rongali
et al., 2020), which uses seq2seq models and a
pointer generator network to decode the target se-
mantic parse. We augment this model with a con-
cept encoder that encodes intents and slots from
the schema and uses those encodings to condition-
ally decode the semantic parse. Figure 1 shows
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Figure 1: The architecture of CONCEPT-SEQ2SEQ for low resource domain adaptation. The concept encoder
encodes descriptions of each of the concept tags into an embedding and incorporates them into the decoded parse.

the architecture of our proposed model. We train
this model on annotated data from the given do-
mains. During inference, we simply encode all
intents and slots from the schema, including new,
unseen ones, into the learned concept space, and de-
code the target parse. This model has the same time
complexity as the original SEQ2SEQ-PTR model
but comes with the added benefit of now being
able to effectively parse utterances from unseen
domains without any additional effort.

There have been a few zero-shot semantic pars-
ing approaches proposed in the past but they either
covered only simple slot-filling style utterances
(Bapna et al., 2017; Lee and Jha, 2019) or com-
positional utterances that also came with carefully
crafted intermediate representations and context-
free grammars (Herzig and Berant, 2018; Wu et al.,
2021). Our model is capable of performing zero-
shot domain adaptation for compositional semantic
parsing, producing meaning representations with
nested intents and slots, but also doesn’t require any
grammars, whose construction effort often exceeds
the effort required to annotate a few examples.

In few-shot scenarios, we fine-tune our zero-shot
model checkpoints further on the small number of
available examples. Due to the presence of the
concept encoder in our architecture, we expect to
receive better knowledge-transfer advantages by
encoding intent and slot tags from new domains
as opposed to initializing them as new tags. To
further improve performance, we propose a novel
decoder-focused pretraining scheme for CONCEPT-
SEQ2SEQ using an entity-centric processed version

of Wikidata (Vrandečić and Krötzsch, 2014) called
WikiWiki (Li et al., 2022), to help it better encode
unseen concepts and parse effectively.

We report the first zero-shot performance num-
bers for semantic parsing on the compositional
TOPv2 dataset (Chen et al., 2020) and show that
CONCEPT-SEQ2SEQ achieves commendable zero-
shot performance on the flat-entity SNIPS dataset
(Coucke et al., 2018). We also evaluate in few-shot
settings and show that we match or outperform
previous state-of-the-art models while still being
production-viable.

In summary, our contributions are as follows.

• We propose CONCEPT-SEQ2SEQ, a bi-tower
architecture with a seq2seq model and a con-
cept encoder, that can perform few-shot and
zero-shot domain adaptation for composi-
tional semantic parsing without additional
handcrafted knowledge.

• We propose a novel decoder-focused pretrain-
ing scheme for CONCEPT-SEQ2SEQ using
Wikidata that helps it better encode unseen
concepts and parse effectively.

• We report few-shot and zero-shot semantic
parsing results on the TOPv2 and SNIPS
datasets and show that our model outperforms
or matches previously proposed approaches
on a variety of few-shot settings.

2 Methodology

In this section, we describe our proposed model,
CONCEPT-SEQ2SEQ, for low resource (few-shot
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and zero-shot) domain adaptation for semantic pars-
ing. It is based on the SEQ2SEQ-PTR model from
Rongali et al. (2020), consisting of a sequence-to-
sequence encoder-decoder component, augmented
with a pointer generator network to constrain the
target decoding vocabulary. Since our task at hand
is to perform potential zero-shot semantic pars-
ing with just descriptive metadata about the new
domain, we modify the architecture of SEQ2SEQ-
PTR to incorporate information about new intents
and slots from new domains by adding a concept
encoder. Section 2.2 describes this architecture
in detail. To help our model learn to parse utter-
ances from unseen domains better, we also propose
a novel pretraining scheme to incorporate general
concept parsing knowledge into it. Section 2.3 de-
scribes this concept pretraining scheme. Finally,
we describe CONCEPT-SEQ2SEQ model specifics
for few-shot and zero-shot settings in Section 2.4.
Before we get to these sections, we first describe
the source and target sequence formulation for the
semantic parsing task below.

2.1 Task Formulation
Our model solves semantic parsing as a sequence-
to-sequence task, where the source sequence is the
utterance and the target sequence is a linearized rep-
resentation of the semantic parse. Following Ron-
gali et al. (2020), we modify the target sequence to
only contain intent/slot tags or pointers to utterance
tokens. An example source and target sequence
from the TOPv2 dataset are given below.
Source: How far is the coffee shop
Target: [IN:GET_DISTANCE @ptr0 @ptr1 @ptr2

[SL:DESTINATION [IN:GET_RESTAURANT_LOCATION
@ptr3 [SL:TYPE_FOOD @ptr4 SL:TYPE_FOOD]
@ptr5 IN:GET_RESTAURANT_LOCATION]
SL:DESTINATION] IN:GET_DISTANCE]

Each @ptri token here points to the ith token in
the source sequence. So @ptr4 corresponds to the
word coffee.

2.2 Model Architecture
CONCEPT-SEQ2SEQ consists of three main com-
ponents: an encoder, a decoder, and a concept en-
coder. Just like in traditional sequence-to-sequence
models, the encoder encodes the source sequence,
and the decoder autoregressively decodes the tar-
get sequence. However, to effectively understand
new intent and slot tags in target sequences that the
model hasn’t seen during training, our model needs
to be able to incorporate new intents and slots, or
concepts, and decode the target sequence accord-
ingly. The concept encoder helps us do this by

encoding descriptive metadata about new concepts
and creating vector representations that we can use
while decoding the target sequence.

Specifically, for an input sequence [x1 . . . xn],
we first encode it using the encoder into a sequence
of hidden states e1 . . . en. Then, having generated
the first t− 1 tokens, the decoder generates the to-
ken at step t as follows. It first produces the decoder
hidden state at time t, dt by building a multi-layer,
multi-head self-attention on the encoder hidden
states and the decoder states so far. This step is
based on the transformer decoder from Vaswani
et al. (2017). In a traditional sequence-to-sequence
generation task, dt is then fed into a dense layer to
produce scores over the target vocabulary.

Our target vocabulary consists of pointer tokens
and the concept tags. Since we do not have access
to all concept tags at the time of training, we train
our model to incorporate descriptive information
about concepts instead of using a fixed-size dense
layer. To do this, we encode intent and slot con-
cepts using a concept encoder. The descriptions
we use in this work are simply rule-based natural-
ized versions of the intent and slot names in the
dataset. For example, the description for the intent
tag token [IN:GET_DISTANCE is set as “begin get
distance intent”. Similarly, for SL:DESTINATION],
it is set to “end destination slot”. We purposely
use just this information and no additional hand-
crafted knowledge to remove any additional user
input and to compare to previous approaches in the
same setting.

Given m concept tokens (both begin and end)
and their descriptions, the concept encoder encodes
each of them to produce concept vector represen-
tations [c1 . . . cm]. We then use the computed de-
coder hidden state at t, dt, as the query and com-
pute unnormalized attention scores [s1 . . . sm] with
[c1 . . . cm], and [a1 . . . an] with [e1 . . . en]. Con-
catenating all these scores, we obtain an unnor-
malized distribution over m + n tokens, the first
m of which are the intent and slot tagging tokens
from the concepts, and the last n of which are the
@ptri(0 < i < n) tokens pointing to the source
sequence. We feed this through a softmax layer to
obtain the final probability distribution. This proba-
bility distribution is used in the loss function during
training and to choose the next token to generate
during inference. For the target token embeddings
in the decoder, we use a set of special embeddings
to represent the @ptri tokens and [c1 . . . cm] to rep-

1412



context:
He is a member of 
The Soul Seekers

The Soul Seekers
Musical group

entity
entity type

Figure 2: An example sentence from the Wikiwiki
dataset with the associated mention, entity, and type
fields. The full hyperlinked sub-span is extracted as the
mention and the entity and type are extracted from the
target page.

resent the concept embeddings.
Figure 1 shows this process in action on a toy ex-

ample. The model is decoding the next token after
SL:genre at step 5. To do this, the model computes
the pointer attention scores [a1 . . . an] (blue, left)
and the concept token attention scores [s1 . . . sn]
(green, right). The highest overall score is for the
token @ptr2, corresponding to the word country in
the source sequence, so the next predicted token is
country.

2.3 Concept Pretraining

CONCEPT-SEQ2SEQ has the ability to incorporate
new, unseen concepts while parsing using the con-
cept encoder and transfer knowledge on similar
concepts. In order to produce these unseen con-
cepts or types, and have our model be robust in
low-data settings, it is important for our decoder
to be type aware. Conventional seq2seq pretrain-
ing schemes such as Lewis et al. (2020); Raffel
et al. (2020); Soltan et al. (2022) pretrain the de-
coder using language modeling criterion. Li et al.
(2022) extend the language modeling task to induce
entity-type information by treating it as a question
answering task. We pretrain the seq2seq model on
the semantic parsing task using the WikiWiki (Li
et al., 2022) dataset. We explain how to achieve
this by keeping an open-domain, extensible output
space for the semantic parse.

The Wikiwiki dataset curates mentions, entities,
and entity types from 10M Wikipedia documents
using hyperlink information linking sub-spans of
text in sentences to other Wikipedia pages. The
hyperlink is considered as the mention, and the
entity and the type information are extracted from
the new page. For further details on this processing,
please refer to Li et al. (2022). This dataset contains

around 2m entities and 40K entity types.
Each example in the Wikiwiki dataset consists

of a context, which is a paragraph from a wiki
page, mentions, which are sub-spans of text that
link to another page, entities, which correspond to
each mention, and entity types, which describe the
type of the entity. We extract individual sentences
from this dataset and use them to train CONCEPT-
SEQ2SEQ to learn to encode a wide variety of con-
cepts using the entity type fields as descriptions
and tag the relevant mentions in the sentence. Fig-
ure 2 shows an example sentence from this dataset
and the different fields. The source and target se-
quences for pretraining, and the descriptions of the
concept tags for this example are given below.
Source: He is a member of The Soul Seekers
Target: @ptr0 @ptr1 @ptr2 @ptr3 @ptr4

[Q215380 @ptr5 @ptr6 @ptr7 Q215380]
Concept descriptions:

[Q215380: begin musical group
Q215380]: end musical group

During training, we collect all the concept to-
kens within a training batch and use them to create
in-batch negatives (denominator of the softmax cal-
culation) for the decoding task. We do this since
it is extremely inefficient to encode all 40K × 2
concept token descriptions (begin and end) from
Wikiwiki in every step.

2.4 Few-shot and Zero-shot Specifics

CONCEPT-SEQ2SEQ is primarily designed to per-
form low resource domain adaptation for semantic
parsing by effectively encoding the output space
via a concept encoder.

In the zero-shot setting, we deploy the following
procedure to build our models. We first perform
concept pretraining on CONCEPT-SEQ2SEQ using
Wikiwiki example sequences. We take this check-
point and train on a set of known domains to then
obtain the zero-shot model. During inference, we
encode all the intent and slot tags from the new
unknown domain using the concept encoder of the
obtained zero-shot model and set the appropriate
decoder parameters to reduce the architecture to a
simple encoder-decoder setting.

In few-shot settings, we further fine-tune the
zero-shot checkpoint on the available handful of
training examples. Since we explore extremely
low-resource settings (1, 5, 25 samples per intent/s-
lot), we run the risk of over-fitting and instability
during training. To account for these risks and
smooth training, we augment the finetuning loss at
every step with the loss from a randomly sampled
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Alarm Event Timer Weather Alarm Event Timer Weather

F1 score EM Accuracy

CONCEPT-SEQ2SEQ w/o pretraining 62.53 30.25 55.68 51.23 45.94 0.00 0.51 8.62
CONCEPT-SEQ2SEQ 71.00 70.47 58.48 66.29 53.64 20.21 3.86 26.63

Table 1: Zero-shot performance of CONCEPT-SEQ2SEQ on domains in TOPv2. We observe notable scores in the
alarm and weather domains and improvements across all the domains after the concept pretraining step.

batch of training data from the known domains.
We scale the loss from the random known domain
batch down using a multiplier before adding to the
loss. This scheme is akin to rehearsal (Ratcliff,
1990), a popular technique in domain adaptation.

3 Experimental Setup

We evaluate CONCEPT-SEQ2SEQ on few-shot and
zero-shot domain adaptation using two popular
English task-oriented semantic parsing datasets -
TOPv2 (Chen et al., 2020) and SNIPS (Coucke
et al., 2018). Both datasets have utterances grouped
into multiple domains; TOPv2 has eight domains
and SNIPS has seven intents from seven different
areas, which we consider domains. TOPv2 is a
large dataset consisting of 10k-20k training and 3k-
7k test examples per domain. It is also comprised
of compositional examples with nested intents and
slots. We exclude the unsupported utterances from
the training and test sets in TOPv2 for the zero-
shot experiments (we use the full sets in few-shot).
Unsupported utterances consist of utterances that
belong to a domain but are not supported, which is
impossible to learn in zero-shot. SNIPS is a smaller
and simpler dataset with flat, disjoint slots. It has
2k training and 100 test examples per domain.

For zero-shot, we use a leave-one-out approach
where given n domains, we train models on an-
notated data from n − 1 of them and evaluate on
utterances from the left-out domain. For few-shot
settings, where the model has access to a few an-
notated examples from the left-out domain, we
further fine-tune using 1, 5, and 25 samples-per-
intent/slot (SPIs), which we randomly sample from
the training data of the left-out domain. We fine-
tune CONCEPT-SEQ2SEQ on three different ran-
domly sampled training sets per domain per SPI
setting and report the average performance score
of the three runs.

We use a transformer encoder, initialized from a
roberta-base checkpoint, for CONCEPT-SEQ2SEQ.
The decoder is a transformer decoder initialized
from scratch and it contains 6 layers, 8 heads, and

a hidden state size of 768. The concept encoder
is also a transformer encoder and it is initialized
from a bert-base-uncased checkpoint. We choose
a BERT-based model here since it is pretrained to
compute a vector for the whole sequence using the
CLS token, which is what we need for encoding
a concept consisting of a multi-word description.
We also choose all base-size components to keep
the overall model size small and expect the relative
improvements shown by our model to generalize.

We train our zero-shot models using sequence
cross entropy loss. We use the Adam optimizer
with learning rate 2e−5 and ϵ = 1e−8, warm-up
proportion 0.1, weight decay 0.01, and batch-size
128. The number of epochs is set to 100 and we
evaluate after every epoch and early stop with a
patience of 5. For the Wikiwiki pretraining step,
we use the same hyper-parameters but stop the
model training after 2 epochs on the entire Wiki-
wiki dataset. We did not perform explicit hyper-
parameter tuning.

For the few-shot experiments, we take the zero-
shot model trained by excluding the given few-shot
domain and fine-tune it on small set of annotated
examples for 1000 epochs, evaluating after every
25 epochs. All other parameters are set to the same
values as in the initial zero-shot training. We use a
multiplier of 0.1 for the augmented loss from the
random known-domain data batch. To speed up
evaluation during training, we use teacher-forced
sequence accuracy as our validation metric, which
doesn’t require us to perform any beam search.
During inference, we use beam search decoding
with a beam size of 4.

We report exact match (EM) accuracy for the
few-shot experiments, meaning the entire predicted
parse has to match exactly with the gold parse. For
zero-shot, we report both EM and F1 score since
the task is more difficult and the performance is
generally lower. At these lower numbers, F1 score,
which awards partial credit to correctly tagged
spans provides a better picture for improvements
than EM accuracy, which requires the entire pre-
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Music Book Creative Weather Restaurant Playlist Screening

F1 score

Slot-filling (Lee and Jha, 2019; Bapna et al., 2017) 31.20 34.13 86.21 65.64 51.40 59.96 44.50
CONCEPT-SEQ2SEQ 50.00 30.26 88.75 74.58 57.78 57.11 45.78

EM Accuracy

Slot-filling (Lee and Jha, 2019; Bapna et al., 2017) 11.00 1.00 69.00 37.00 12.00 21.00 24.00
CONCEPT-SEQ2SEQ 20.00 2.00 69.00 42.00 13.00 19.00 26.00

Table 2: Zero-shot performance of CONCEPT-SEQ2SEQ on domains in SNIPS. Our model matches or outperforms
the slot-filling style baseline on most domains.

dicted parse to be correct for credit. For compari-
son wherever applicable, we use prior state-of-the-
art models as baselines. In addition, we also report
the performance of a vanilla SEQ2SEQ-PTR model
without concept pretraining.

4 Results and Discussion

In this section, we report and discuss the perfor-
mance of CONCEPT-SEQ2SEQ on zero-shot and
few-shot domain adaptation for semantic parsing.
We first briefly describe our findings in zero-shot
setting and then describe findings in a variety of
few-shot scenarios.

4.1 Zero-shot Domain Adaptation

We report the first zero-shot performance numbers
for domain adaptation on the TOPv2 dataset. Ta-
ble 1 contains these numbers. We observed that
our model produced decent predictions on four of
the eight domains in the dataset, which we docu-
ment in the table. For the other domains, the scores
were very low. CONCEPT-SEQ2SEQ achieves good
F1 and EM Accuracy scores on the alarm domain
(71.00% F1 and 53.64% EM). On the weather
and event domains, the concept pretraining step
helps it achieve decent EM scores around 20%. On
the timer domain, CONCEPT-SEQ2SEQ achieves
a fairly high F1 score (58.48%) but a very low
EM score (3.86%). Upon manual examination,
we found that this was because our model always
skipped a certain tag. In the timer domain, there
is a slot tag called SL:METHOD_TIMER which tags
the kind of timer such as timer or stopwatch. Our
model never learns to tag these words with that slot.
We believe this is probably due to the description
being inadequate for performing the requisite task.

Overall, we believe the task at hand here is diffi-
cult due to the combination of the zero-shot setting
and the presence of specific nesting/parsing rules
in a compositional semantic parsing task. While a

good amount of information can be gleaned from
the intent and slot names, our model has no access
to any new kinds of tagging rules since it has no
annotated data or any descriptions of those rules
within the concept descriptions. The descriptions
themselves are sometimes inadequate as described
with the timer domain above. We simply use the
descriptions from the dataset and they weren’t re-
ally designed to be used to describe the entity being
tagged. We leave exploration into better descrip-
tions and incorporating parsing rules without ex-
plicit annotations for future work.

We also evaluated our model on the SNIPS
dataset to compare CONCEPT-SEQ2SEQ to prior
zero-shot approaches for flat slot-filling style
datasets. We created a strong baseline using recent
NLP advancements such as pretrained transformers
and attention mechanisms on the slot-filling style
zero-shot model proposed by Bapna et al. (2017)
and Lee and Jha (2019). Table 2 compares the per-
formance of CONCEPT-SEQ2SEQ to this baseline.
We observe that our model matches or outperforms
the slot-filling baseline on most domains while also
being adaptable to compositional datasets.

4.2 Few-shot Domain Adaptation

We evaluated CONCEPT-SEQ2SEQ in few-shot set-
tings of 1, 5, and 25 samples per intent/slot. Ta-
ble 3 reports the EM accuracy scores of CONCEPT-
SEQ2SEQ and other recent baselines on TOPv2.
We also report the performance of a fully trained
CONCEPT-SEQ2SEQ model on all the training data
for reference and to show that the architecture
of CONCEPT-SEQ2SEQ is competitive with other
state-of-the-art methods in the full-resource setting.

We evaluated with a range of SPIs to allow for
comparison with a wide range of models focused
on both extremely low-resource (1, 5 SPIs) and
medium low-resource (25 SPIs) settings. We re-
port numbers for the baselines from their original
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Alarm Event Messaging Music Navigation Reminder Timer Weather

Few-shot 1 SPIs

SEQ2SEQ-PTR 20.41 31.85 38.12 25.58 19.96 23.66 16.62 47.24
Inventory (Desai et al., 2021) 62.13 46.57 46.54 23.00 21.16 28.58 28.92 54.53
RAF (Shrivastava et al., 2022) 62.71 - - 35.47 - - 55.06 61.05
CONCEPT-SEQ2SEQ w/o pretraining 61.72 44.28 34.24 20.66 20.82 35.39 44.75 52.24
CONCEPT-SEQ2SEQ 64.71 54.42 46.13 36.30 30.00 36.93 53.44 54.68

Few-shot 5 SPIs

SEQ2SEQ-PTR 45.50 38.31 52.79 48.75 43.38 36.37 54.79 49.94
Inventory (Desai et al., 2021) 71.81 58.87 63.72 53.59 42.59 48.88 55.54 65.09
CONCEPT-SEQ2SEQ w/o pretraining 71.32 53.73 51.52 45.96 50.71 50.83 58.89 66.65
CONCEPT-SEQ2SEQ 74.17 61.72 61.20 51.24 56.76 54.36 63.13 68.54

Few-shot 25 SPIs

SEQ2SEQ-PTR - - - - - 55.7 - 71.6
RINE (Mansimov and Zhang, 2021) - - - - - 68.71 - 74.53
CONCEPT-SEQ2SEQ w/o pretraining 78.16 68.21 75.28 65.54 67.67 67.92 70.72 74.30
CONCEPT-SEQ2SEQ 79.87 72.96 80.45 67.91 70.94 67.76 72.41 76.44

Reference - Fully trained

CONCEPT-SEQ2SEQ 88.07 83.23 93.11 79.47 81.63 79.57 77.33 90.73

Table 3: EM Accuracy scores of various models in few-shot settings on TOPv2. We see that our model outperforms
prior approaches on many domains and settings, most notably in the 1 SPIs setting.

papers, so they are missing for some domains.

As shown in the table, CONCEPT-SEQ2SEQ out-
performs a vanilla SEQ2SEQ-PTR, Inventory (De-
sai et al., 2021), and Retrieve-and-Fill (RAF) (Shri-
vastava et al., 2022) models on most domains in the
1 SPIs setting. RAF scores are very close and the
approach outperforms our model on two domains
but it uses additional hand-crafted information such
as handmade descriptions and examples for intents
and slots, as well as an intermediate scenario-bank
to retrieve templates from. CONCEPT-SEQ2SEQ

simply works off of the existing information in
the dataset. In the 5 SPIs setting, it again outper-
forms the vanilla SEQ2SEQ-PTR and Inventory
models on most domains and on average. Inven-
tory is a similar model to ours where the lexical
information from intents and slots is used to help
better transfer knowledge in the low-resource set-
ting. However, this information is prepended to
the input sequence and this might cause input size
issues for large inventories. In the slightly higher
resource setting of 25 SPIs, CONCEPT-SEQ2SEQ

beats a vanilla SEQ2SEQ-PTR model and matches
the performance of RINE (Mansimov and Zhang,
2021), reported on two domains.

Across all the SPIs settings, we see that there
is a noticeable drop in performance of CONCEPT-
SEQ2SEQ without the Wikiwiki concept pretrain-
ing. This shows the effectiveness of the pretraining

step in helping the model generalize to unseen con-
cepts and domains better.

To wrap up our evaluation, we also report the
performance of CONCEPT-SEQ2SEQ on SNIPS
in the few-shot settings described above. Table 4
shows these numbers. We can see that we almost
catch up to a fully trained model by training with
just 25 SPIs in this dataset on most domains except
music. We believe the music domain probably
requires a lot of samples to effectively identify the
diverse set of entities in the domain.

Overall, we find CONCEPT-SEQ2SEQ to be a
very promising approach which achieves high per-
formance scores in low resource domain adaptation.
It is capable of doing this in both compositional
and flat semantic parsing settings, without any ad-
ditional hand-crafted information apart from the
little documentation in the dataset, and with the
memory and inference latency footprint of a vanilla
SEQ2SEQ-PTR model.

5 Related Work

Zero-shot domain adaptation for task-oriented se-
mantic parsing has been previously explored for
simple flat queries with single intents and disjoint,
non-overlapping slots. Bapna et al. (2017) and Lee
and Jha (2019) encode the lexical tag features and
create a token-tagging schema to create the final se-
mantic parses. Yu et al. (2021) solve the task using
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Music Book Creative Weather Restaurant Playlist Screening

F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM

1 SPIs 67.10 39.00 86.74 61.67 92.39 80.33 88.14 71.00 89.64 72.00 78.31 47.00 79.19 61.00
5 SPIs 84.33 68.00 96.83 89.33 92.58 84.33 94.64 86.33 93.27 81.33 87.74 68.33 94.16 87.67
25 SPIs 85.90 72.67 99.32 97.33 98.10 95.33 98.27 94.67 96.38 89.33 91.73 80.67 95.02 89.33
Fully-trained 90.78 83.00 99.18 97.00 100.00 100.00 98.55 96.00 96.89 90.00 94.53 87.00 98.35 97.00

Table 4: Few-shot performance of CONCEPT-SEQ2SEQ on domains in SNIPS. Our 25 SPIs model almost catches
up to a fully trained model. Numbers are an average of three runs with different random samples of SPIs.

a retrieve-and-fill mechanism. Our baseline model
for simple queries is based on these approaches.

For complex utterances with nested structures,
zero-shot semantic parsing has been explored us-
ing intermediate, concept-agnostic logical forms
(Herzig and Berant, 2018; Dong and Lapata, 2018;
Reddy et al., 2017) or natural language canonical
forms (Wu et al., 2021). These approaches apply to
semantic parsing datasets which have context free
grammars and specified rules, such as database
or knowledge graph queries. The effort to craft
these grammars for task-oriented semantic parsing
in a voice assistant setting could quite possibly be
greater than annotating utterances.

A more relevant class of approaches for this
work are ones that solve task-oriented semantic
parsing for complex utterances in a few-shot set-
ting using lexical tag features. Shrivastava et al.
(2021) and Mansimov and Zhang (2021) modify
the seq2seq architecture from Rongali et al. (2020)
to perform non-autoregressive style decoding and
show that their models perform better in a few-shot
setting. Ghoshal et al. (2020) use adaptive label
smoothing, a model-agnostic technique. Shin et al.
(2021) proposed a prompting-style approach where
custom instructional prompts filled with handful of
annotated examples and an unsolved utterance are
fed as input to GPT-3 to directly produce a semantic
parse. Their approach is extremely slow and cannot
be easily adapted into a zero-shot framework. Shri-
vastava et al. (2022) explore a retrieve-and-fill style
approach where they retrieve the best scenario, an
intermediate logical form consisting of the seman-
tic frame and abstracted out tags, from a scenario
bank of all supported semantic parses. Their ap-
proach is contingent on the availability of this sce-
nario bank which could possibly entail more effort
than annotating utterances. Mueller et al. (2022)
and Desai et al. (2021) use lexical features from in-
tent and slot names to create an inventory and use it
as input to train semantic parsers for new domains.
Mueller et al. (2022) also pretrain their model to

improve generalizability but only evaluate it on an
intent classification task. Desai et al. (2021) eval-
uate their model for full sequences and our model
is similar to theirs. However, we use our inventory
to create custom decoder embeddings in a seq2seq
model, which removes any input size issues that
their model will encounter with large inventories.
We also pretrain our model with Wikidata and eval-
uate it in a completely zero-shot setting, in addition
to few-shot. Zhao et al. (2022) is another recent
question-answering-based approach that uses lexi-
cal features from the intent and slot tags by using
them as context and posing questions but it has a
similar input size issue with large inventories.

6 Conclusion

We propose a model called CONCEPT-SEQ2SEQ to
perform low-resource domain adaptation for com-
positional semantic parsing. Our model is built on
the SEQ2SEQ-PTR framework and is augmented
with a concept encoder to transfer knowledge and
encode unseen intents and slots from new domains
through their text definitions. We also propose
a novel concept pretraining scheme to incorporate
general concept knowledge into our model using an
entity-centric Wikipedia dataset called Wikiwiki.

We evaluate our model in zero-shot and multiple
few-shot settings on Facebook TOPv2 and SNIPS
datasets. We show that our model is capable of per-
forming zero-shot domain adaptation on some do-
mains of the TOPv2 dataset and beats a strong slot-
filling baseline on the SNIPS dataset. In few-shot,
over multiple dataset sizes of 1, 5, and 25 SPIs,
we show that our model outperforms many strong
prior models on TOPv2. Using the SNIPS dataset,
we also demonstrate how our model catches up to
a fully-trained semantic parsing model using just
25 SPIs on most domains. Our model is capable of
low-resource domain adaptation in both composi-
tional and flat parsing settings, without additional
hand-crafted information, and with the inference
behavior of a vanilla SEQ2SEQ-PTR model.
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Limitations

Our models were trained on GPUs that had at least
20GB on-board memory since in addition to the
traditional encoder and decoder components in a
seq2seq model, we also train a concept encoder,
which is around the same size as the encoder. This
eliminates the use of popular GPUs such as 1080-
ti and 2080-ti, unless parameter freezing or other
tricks are employed during training. During in-
ference however, once the concepts are trained,
we can simply encode the target tags and this re-
duces to the size and performance of a traditional
SEQ2SEQ-PTR model.

We also report all results on models (ours and
baselines) with base-size components such as
roberta-base. We do this since these models are
more likely to be used in production than the much
bigger large-size models. Results and comparison
with large-sized models is missing from this work
(we expect the trends shown to generalize) and we
leave this to future work.

Finally, to simulate our low-resource experi-
ments, we randomly sample a few examples from
the existing training datasets. While this is useful
for experimentation, it doesn’t truly mimic a real
low-resource workflow where these few examples
could be carefully crafted by developers to ensure
better semantic coverage in terms of the language
of the utterances. This work doesn’t include any
analysis on the influence of the content of the few
selected examples; it just focuses on their number.
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Abstract
We propose a novel approach to learn domain-
specific plausible materials for components
in the vehicle repair domain by probing Pre-
trained Language Models (PLMs) in a cloze
task style setting to overcome the lack of an-
notated datasets. We devise a new method
to aggregate salient predictions from a set of
cloze query templates and show that domain-
adaptation using either a small, high-quality
or a customized Wikipedia corpus boosts per-
formance. When exploring resource-lean al-
ternatives, we find a distilled PLM clearly out-
performing a classic pattern-based algorithm.
Further, given that 98% of our domain-specific
components are multiword expressions, we suc-
cessfully exploit the compositionality assump-
tion as a way to address data sparsity.

1 Introduction

Connecting a symptom to an underlying cause is
a crucial building block for natural language un-
derstanding across domains. For example, as il-
lustrated in Fig. 1, a standard approach that hu-
man mechanics in vehicle repair shops apply when
tracing the cause of a symptom, is to exploit the
link between a vehicle component and the com-
ponent’s materials. This study tackles the task of
automatically learning plausible materials for ve-
hicle components. The information is crucial in
vehicle repair shops, as mechanics are faced with
constantly growing vehicle complexity, making it
hard to manually identify the cause of a malfunc-
tion. While domain-specific information on vehicle
components is often available, plausible domain-
specific material information typically needs to be
gathered from external data sources. For example,
from “Brake disk are usually manufactured from
gray cast iron”, one may retrieve the information
that brake disks consist of iron (and possibly further
materials not mentioned here).

We propose a novel approach to leverage state-
of-the-art pretrained language models (PLMs) for

Figure 1: Conceptual overview for learning domain-
specific plausible materials (e.g., aluminium) for vehicle
components (e.g., engine valves rocker arm).

the task of learning plausible materials in highly
domain-specific contexts, such as vehicle compo-
nents in the vehicle repair domain. Our approach
can also be applied to similarly specific domains,
e.g., to learn which materials or substances are
plausibly used in products in the health domain,
textile industry, etc. As we tackle a task from ma-
terial science, we make a contribution to a field
that is not only very challenging, but heavily under-
investigated from an NLP perspective. We focus on
the PLM RoBERTa (Liu et al., 2019) and develop
an approach that successfully learns plausible ma-
terials in English for components in the vehicle re-
pair domain. We further exploit domain-adaptation
variants and show (i) that harnessing a small high-
quality domain-specific corpus boosts the perfor-
mance over an out-of-the-box vanilla RoBERTa,
and (ii) how similar performance can be reached
by using a widely accessible data source such as
Wikipedia if no domain-specific data is available.

To overcome the typical lack of annotated
datasets for training and fine-tuning models in
highly domain-specific tasks, we probe RoBERTa
in a cloze task setting (Taylor, 1953; Petroni et al.,
2019), compare variants for aggregating the results,
and analyze the influence of a varied set of query
templates on model predictions.
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While PLMs come with great advantages, their
hunger for storage, data, and computing power is
even greater. We thus compare the performance
of the vanilla and domain-adapted versions of
RoBERTA with (i) a distilled version, i.e., the much
smaller DistilRoBERTA (Sanh et al., 2019), and
(ii) the seminal pattern-based bootstrapping algo-
rithm Basilisk (Thelen and Riloff, 2002).

Finally, we tackle the challenge of handling a
dataset with a vast majority of multiword expres-
sions, i.e., 98% of our targets are noun compounds
(such as seat heating switch led). We address the
corresponding severe data sparsity by assuming
that many domain-specific compounds are com-
positional (Clouet and Daille, 2014; Hätty et al.,
2021) such that our domain-specific model may
fall back to information regarding the compound’s
head (in the example above: the right-most simplex
noun in the compound led), and thus improve on
the data sparsity.

2 Related Work

Domain-specific IR In contrast to domains such
as biomedicine and chemistry, “[l]everaging NLP
tools in materials science remains in its infancy”
(Olivetti et al., 2020, p.4), with main challenges
including the development of task- and domain-
specific tools to structure and harnes knowledge for
material synthesis and material discovery. Com-
mon approaches to elicit material mentions from
text include unsupervised approaches such as topic
modeling (Rani and Kumar, 2021) and LDA (Venu-
gopal et al., 2021), as well as supervised methods
for domain-specific NER, often focusing on a sin-
gle material or material group (Mysore et al., 2017,
2019; Friedrich et al., 2020; Gupta et al., 2022;
Nayak and Timmapathini, 2021; O’Gorman et al.,
2021). Differently to previous work, we probe
PLMs in a cloze-task style setting and compare the
results to a similarly unsupervised pattern-based
bootstrapping algorithm. While most unsupervised
methods are not easily interpretable, our query tem-
plates, seed words, patterns and predicted materials
are directly accessible.

Prompting and Cloze Query Engineering Re-
cent work has leveraged cloze-task style settings
to probe the knowledge that PLMs acquire dur-
ing pretraining, thus targeting linguistic capabili-
ties (Goldberg, 2019; Ettinger, 2020; Apidianaki
and Garí Soler, 2021; Rogers et al., 2021), the
understanding of rare words (Schick and Schütze,

2020) and conceptual abstractions (Ravichander
et al., 2020), as well as factual and commonsense
knowledge (Petroni et al., 2019; Jiang et al., 2021).
An emerging strand of research highlights PLM
sensitivity to the input in a cloze-task style set-
ting. For example, Elazar et al. (2021) demon-
strate that PLMs show deficiencies in prediction
consistency when presented cloze-style query para-
phrases. Others exploit this flaw by explicitly con-
sidering paraphrases of a cloze query in addressing
a model’s sensitivity to a specific input query to
elicit a desired output (Davison et al., 2019; Jiang
et al., 2021). Pandia and Ettinger (2021) show that
models lack robustness in their ability to harness
relevant context information in the face of cloze
tasks containing distracting contextual cues. In
reverse, priming the model using trigger tokens
(Shin et al., 2020) and lexical cues (Misra et al.,
2020) might aid in guiding the model to predict
the desired output. Specifically, Shin et al. (2020)
propose AUTOPROMPT to develop automatically
constructed prompts or patterns to elicit knowledge
from pretrained PLMs for a variety of tasks. In
contrast to previous work, we semi-automatically
construct a variety of prompts to cover a salient set
of paraphrases for eliciting plausible materials in a
PLM; this allows for meaningful comparison and
interpretation of the predictions’ quality and the
influence of the cloze queries.

Semantic Plausibility While classical distribu-
tional models tend to model selectional preferences
and thematic fit instead of capturing semantic plau-
sibility (Erk et al., 2010), we have recently seen
advances to model plausibility across various di-
mensions, including physical and abstract semantic
plausibility (Wang et al., 2018; Porada et al., 2019).
SOTA models for event plausibility however still
rely on straightforward conditional probabilities of
co-occurrences as estimated by distributional mod-
els (Emami et al., 2021; Porada et al., 2021). Con-
sidering our task of learning plausible materials for
vehicle components, we go beyond selectionally
preferred component materials as predicted with
high probabilities, aiming also for less frequently
observed cases that are nevertheless plausible.

(Domain-specific) MWEs and Compositionality
Multiword expressions (MWEs) are challenging
for any natural understanding system, given that
MWE meanings are idiosyncratic to some degree,
i.e., the meaning of an MWE is not entirely (or
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even not at all) predictable from the meanings of
the constituents (Sag et al., 2002; Reddy et al.,
2011; Salehi et al., 2014; Schulte im Walde et al.,
2016; Cordeiro et al., 2019; Schulte im Walde and
Smolka, 2020). Even though MWEs are ubiquitous
not only in general- but also in domain-specific lan-
guage (Clouet and Daille, 2014; Hätty et al., 2021),
up to date only few NLP systems have exploited
MWE meaning modules, as in machine translation
(Cholakov and Kordoni, 2014; Weller et al., 2014).
This study is faced with 98% noun compounds
among our domain-specific targets, and we test the
compound–head compositionality assumption (e.g.,
a seat heating switch led "is a type of" led but an
engine valves rocker arm "is not a type of" arm) to
fight the severe MWE-triggered data sparsity.

3 Data

Vehicle Component Dataset As targets for our
components, we rely on a set of 7,069 unique com-
ponent names curated by experts from the vehi-
cle repair domain.1 A component name may de-
note a tangible physical component such as cool-
ing blower, as well as intangible functional and
software components such as ABS warning lamp
function and road test. The dataset comprises 155
single-word components and 6,914 multiword com-
ponents with up to eight constituents (see Fig. 6 in
App. A for the distribution). When applying the as-
sumption of MWE compositionality, we fall back
to the right-most constituent word as the MWE
head (Altakhaineh, 2019), resulting in a total of
725 different heads across the 6,914 multiword
components.

Domain-Specific Corpora We utilize two
domain-specific English corpora for extracting
materials for vehicle components from text: (i) a
domain-specific vehicle repair manual written by
domain-experts, containing approx. 800K English
tokens (henceforth: DOMAIN) and (ii) a portion
of the English Wikidata (henceforth: WIKI). For
this, we download a Wikidata dump2, from which
we only keep those 118,154 articles which contain
one or more of the 6,914 multiword components
in the titles or body (Hätty et al., 2020). For
domain-adaptation, we delete sentences that do
not contain any of the multiword components,
resulting in approx. 225K sentences.

1The Vehicle Component Dataset and the DOMAIN corpus
are provided by Bosch.

2
https://dumps.wikimedia.org/enwiki/, 2.3.2022

4 PLM Experiments

Our PLM experiments investigate to what extent
and how PLMs encode domain-specific component
materials when prompted with cloze query variants,
as illustrated in Fig. 2: We use the vehicle compo-
nent dataset to construct a set of 504 cloze query
templates for each individual component. We first
probe a RoBERTa model without any modifications
and gather the top-5 predictions for each compo-
nent, resulting in a total of >2K predictions. To
aggregate these predictions, we experiment with
three aggregation methods and determine the top-5
most plausible predictions per component and ag-
gregation method for expert evaluation. In a follow-
up experiment, we perform domain-adaptation of
RoBERTa and DistilRoBERTa for the vehicle re-
pair domain using our two domain-specific corpora,
and compare the probing results of the vanilla and
the domain-adapted models. The following subsec-
tions describe our PLM experiments in detail.

4.1 Cloze Query Prediction and Processing
Our cloze query handling involves three steps
(again, cf. Fig. 2): we first construct a set of cloze
query templates, then we aggregate model predic-
tions, and finally we analyze the effect of individual
cloze queries to select the most meaningful tem-
plates for the final top-5 predictions. As Vanilla
RoBERTa model (Liu et al., 2019) (henceforth:
Vanilla RB), we draw on the roberta-base
implementation by huggingface (Wolf et al.,
2020) without any modifications.

Step 1: Cloze Query Template Construction
We develop a set of templates and generate cloze
statements for each vehicle component to probe
our PLM for plausible component materials: First
of all, we define a set of 18 paraphrases typically
used to express that a component is made from
one or more materials (Davison et al., 2019; Jiang
et al., 2021). For this, we start with a set of highly
frequent verb relations in our corpus (such as con-
tain) and use WordNet synsets (Fellbaum, 1998)
to determine additional relevant verbs. We then
apply both plural and singular forms of the com-
ponent nouns with corresponding indefinite arti-
cles to define queries (see Table 1). To include
prompts that refer to prototypical (and thus presum-
ably highly plausible) materials, we follow Apidi-
anaki and Garí Soler (2021) and integrate the quan-
tifiers {MOST} and {ALL}; we also add the quan-
tifier {MANY}. Furthermore, we define a query
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Figure 2: Overview of prediction generation and aggregation, with the numbers in the orange boxes referring to
queries/predictions for one example component, e.g., battery.

Cloze Query Templates
[context] + [noun_quant.] + indef. article + component + verb_relation + [adverb] + <mask>.

SINGULAR a battery consists of <mask>.
PLURAL batteries consist of <mask>.
noun_quantifier + PLURAL most batteries consists of <mask>.
adverb + SINGULAR a battery usually consists of <mask>.
adverb + PLURAL batteries usually consists of <mask>.
context + SINGULAR when used in a vehicle, a battery consists of <mask>.
context + PLURAL when used in a vehicle, batteries consists of <mask>.

Table 1: Cloze query template and filled-in queries for the vehicle component battery. SINGULAR and PLURAL are
placeholders that are filled in with vehicle component nouns in singular and plural form, respectively.

template element for adverbs referring to typicality,
by including the adverbs {USUALLY, GENERALLY,
NORMALLY}. Fostering materials that are not nec-
essarily prototypical but still potentially plausible,
we use the noun quantifier {SOME} (Apidianaki
and Garí Soler, 2021) and the adverbs {POSSIBLY,
PLAUSIBLY}. In our domain-specific scenario, hu-
mans tend to intuitively restrict the answer space
of plausible materials by providing contexts such
as “WHEN USED IN A VEHICLE, ...”. Accordingly,
we follow recent work investigating the impact of
so-called trigger tokens (Shin et al., 2020) and lex-
ical cues (Misra et al., 2020) to predict a related
token, and define six limiting context phrases to
leverage intuitive human behaviour.

The above procedure constructs 504 cloze
queries for each vehicle component such as the
input query “a battery contains <mask>.”, where
the plausible material candidate is masked and to
be predicted by a PLM. A full overview of query
variants is presented in Table 1.

Step 2: Cloze Query Prediction Aggregation
For each component, we prompt our PLM with
the corresponding 504 cloze queries and obtain the
top-5 predicted tokens ranked by probability for
each of the queries, resulting in 2,520 predictions
per component, see Fig. 2.3 Given that we want
only a small list of highly plausible materials, we
experiment with three approaches to aggregate the

3We apply basic post-processing as described in App. B.2.

2,520 predictions for each component such that the
most plausible material candidates are ranked at
the top of a component’s material list.

• BEST-SCORE probabilities aggregate the most
probable PLM-predicted material types from
the 2,520 top-5 predictions across all queries.
In this way, predictions that the model con-
siders highly probable in a specific query con-
stellation are considered highly plausible, no
matter how often they have been predicted.

• AVG probabilities are obtained by summing
up the probabilities for each query variant on
the material type level and then averaging by
the number of queries that predicted that mate-
rial. This way, probability mass is taken away
from materials that were predicted with high
probabilities by only one or few queries. The
aggregation is thus directed towards materials
that are less prominent for individual queries
but more pervasive across query variants.

• PREVALENCE refers to a method where the
most salient PLM-predicted materials are ob-
tained by ranking only according to how often
the material was predicted across all top-5
suggestions of all query variants. Completely
ignoring the probabilities in this step accounts
for the amount of used cloze queries and pro-
vides insight into whether the model leverages
semantic information across specific queries.
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AVG BEST-SCORE PREVALENCE

Total@5 0.08 0.18 0.42
Acc@5 0.36 0.58 0.86

Table 2: Results of aggregation methods on top-5 pre-
dicted materials for 100 components each, i.e., a total
of 500 predictions per method, reporting total@5 and
accuracy in %.

After aggregating the final top-5 predictions by
using each of the three presented methods, we an-
alyze4 for 100 components (see App. C for sam-
pling details) whether the top-5 material predic-
tions are plausible. We follow previous work (Et-
tinger, 2020; Apidianaki and Garí Soler, 2021) and
evaluate by accuracy, i.e. the proportion of vehi-
cle components for which a suggested material is
among the model’s top-5 predictions.

Results are reported in Table 2. The suggested
materials ranked by PREVALENCE with over 40%
of correct predictions clearly outperform BEST-
SCORE and AVG. Especially AVG is observed to
promote rather implausible predictions such as dna,
food, or death. Based on this preliminary assess-
ment, we use the PREVALENCE method for ag-
gregating the top-5 predictions in our final experi-
ments.

Step 3: Cloze Query Template Selection Us-
ing the top-5 material predictions by PREVALENCE,
we now investigate the productiveness of query
templates for 100 components (see App. C for sam-
pling details) in order to select the most salient ones
for our final experiments. Productiveness investi-
gates which queries are productive, i.e., contribute
a material to the final top-5 materials.

In our first productiveness analysis, we analyze
the 68,651 queries that trigger any of the top-5 pre-
dictions across all 100 sampled components and all
query template variants. Fig. 3 shows the number
of queries actively triggering a top-5 prediction in
comparison to the overall number of queries that
could have potentially been activated (in absolute
numbers). Overall, plural variants exhibit a slightly
higher productiveness than singular variants.

In our second productiveness analysis, we exam-
ine whether some verb relations "do all the work"
in comparison to others that are not activated and

4The analysis is performed by one of the authors of this pa-
per, who is familiar with the vehicle repair domain. Note that
this preliminary assessment is only for comparing aggregation
methods, and therefore independent of the final evaluation
involving three experts, see Fig. 2.

Figure 3: Query template productiveness across the
respective defined query template variants.

Figure 4: Relation productiveness across singular and
plural query template variants.

should therefore be excluded for the final experi-
ments. Fig. 4 shows the relations triggering a top-5
prediction across all query variants. The most pro-
ductive relations for singular and plural variants are
[comprise, formed of, build with] and [made up of,
composed of, consist of ], respectively. For all but
two cases, query productiveness of plural variants
is higher than for the singular equivalents.

Our two productiveness analyses suggest that
our set of domain-specific query templates repre-
sents a well-defined set which is successful as a
whole in cooperation with a suitable method for ag-
gregating a large number of resulting predictions,
and does not include strongly over- or underper-
forming variants. For our final PLM experiments,
we thus leverage the full set of query templates.

4.2 Domain Adaptation of RoBERTa

We experiment with our two domain-specific
corpora DOMAIN and WIKI (see §3) to adapt
RoBERTa to the vehicle repair domain (hence-
forth: DOMAIN RB and WIKI RB, respectively).
Additionally, we compare RoBERTa to a domain-
specific resource-lean model DOMAIN DistilRB,
where we adapt DistilRoBERTa (Sanh et al., 2019)
to the vehicle repair domain using DOMAIN.
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The domain adaptations draw on the
roberta-base and distilroberta-base
implementations from huggingface (Wolf
et al., 2020); we split our input texts into train
(90%) and validation (10%) sets. Following
common choices, we set the argument specifying
the fraction of tokens to mask to 15%. We train
with a learning rate of 2e-5, a weight decay of
0.01, and a batch size of 1,024 (cf. App. B.3 for
further details). We train for three epochs and
save the best model according to validation set
performance. We train one model for each of the
aforementioned variants (DOMAIN RB, WIKI RB,
and DOMAIN DistilRB). Model results will be
presented in §7, in comparison to Basilisk results.

5 Basilisk Experiments: A Classic

In comparison to the PLM experiments, we explore
the seminal pattern-based bootstrapped learner
Basilisk (Thelen and Riloff, 2002) for learning
domain-specific plausible materials for vehicle
components. Basilisk is designed to learn high-
quality semantic lexicons for one or more cate-
gories, provided an unstructured natural language
text corpus plus seed words for each semantic cate-
gory to be learnt. The resource-lean learner lever-
ages extraction patterns representing linguistic con-
texts, thus exploiting lexico-syntactic structures to
capture word meaning.

As the starting step for Basilisk, we select ten
seed nouns from the most frequent words in DO-
MAIN5 that belong to the semantic class material.
Since Basilisk depends on extraction patterns to
supply contextual support for additional words
belonging to the same semantic class, we rely
on dependency parsing to create domain-specific
syntactic contextual patterns by using the seed
words obtained from DOMAIN and only the
DOMAIN corpus. We then apply Basilisk as boot-
strapping algorithm to select the best-performing
patterns for a pattern pool and subsequently fill a
candidate word pool with the extractions of the
highest-scoring patterns. We retrieve, for example,
SEED*<GDep>:<compound>:<dependent>:alloy
on the basis of which the word alloy gets added
to the candidate word pool. We stop Basilisk after
n bootstrapping rounds and store the retrieved

5Set of seeds: {water, steel, metal, glass, rubber, plastic,
aluminum, copper, polyester, quartz} In the beginning, we
created individual seed word lists for DOMAIN and WIKI,
where the latter lacked sufficient quality. Thus, we harness the
DOMAIN seed words for both datasets.

semantic lexicon of n plausible materials for a
given vehicle component. To then connect these
possible materials with the components, we first
process the underlying unstructured data sources
and only keep sentences containing at least one
component name mention. Second, we filter the
obtained sentences with the semantic lexicon and
store all component-material candidate matches.

In this way, we generate 396,887 extraction pat-
terns, and use the Basilisk implementation (Thelen
and Riloff, 2002) with all corresponding patterns
and seed words on the DOMAIN dataset. We limit
the candidate word pool size to n “ 200, and gen-
erate possible material candidates for both the DO-
MAIN and the WIKI datasets.

6 Evaluation

To our knowledge, no gold standard is available
for the task of plausible material extraction in the
vehicle repair domain. We thus perform an expert
evaluation of the quality of predictions for each slot
obtained from the vanilla and the domain-adapted
RoBERTA models. To compare PLM-based results
to resource-leaner methods, we also evaluate re-
sults from the pattern-based Basilisk algorithm and
DistilRoBERTa.

Evaluation Task For each model, we select
and evaluate 100 randomly sampled components,6

(i) balancing the number of constituents per target
component, (ii) providing the full component vs.
providing only its head, and (iii) varying the under-
lying corpus (for Basilisk only). For both 1- and 2-
constituent words,7 we sample 30 components with
20 full/10 head samples with equal amounts from
DOMAIN/WIKI. For 3-constituent words, we sam-
ple 20 instances with equal amounts of full/head
and DOMAIN/WIKI samples. For both 4- and 5-
constituent words, we sample 10 head instances
with equal amounts of DOMAIN/WIKI samples
(cf. App. C for further details).

We obtain the aggregated top-5 predictions for
vehicle components from each model. For Basilisk,
we sample up to five answer options whenever
more than five entries are extracted for a given com-
ponent. To minimize annotator bias, we compile a
set of up to 18 materials for each vehicle compo-
nent while keeping track of prediction origins. This
way, annotators see each evaluated component only
once and rate all predictions from all models for

6We make the list of evaluated components available here.
7A 1-constituent word is a simplex word.
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Model IAA A1::A2 A2::A3 A3::A1

Vanilla RB 0.85 0.89 0.81 0.86
DOM. RB 0.79 0.85 0.74 0.78
WIKI RB 0.81 0.86 0.74 0.83
Basilisk 0.79 0.79 0.74 0.83
DOM. DistilRB 0.82 0.88 0.78 0.81

Table 3: Averaged (left) and pair-wise (right) IAA on
material predictions.

each vehicle component without potential uncon-
scious comparison to previously seen predictions
from another model. In the majority of cases, the
models suggested materials either as a singular or
as a plural form (e.g., metal and metals); for the
few cases were we are faced with both versions,
we decide to not merge the model predictions and
ask the annotators to tick both options if both are
considered plausible.

Evaluation Setup We present each component
instance with corresponding materials to three ex-
perts8 from the vehicle repair domain. The anno-
tators are asked to rate the plausibility of material
predictions for each vehicle component, by ticking
the correctly identified materials. They are also
provided the options “none of these” if no mate-
rial is plausible, and “I do not know the answer” if
this is the case. Inter-annotator agreement (IAA)
is shown in Table 3, with overall average IAA on
the left and IAA calculated for each annotator pair
on the right. All IAA scores indicate substantial
agreement. Further details on the annotation setup
and on inter-annotator analyses on both material
and component level are provided in App. C.2.

7 Results and Discussion

Table 4 presents results on model performances.
On the left, we show accuracy on component level
across n annotators. Accuracy is defined as the
proportion of components for which at least one of
a model’s top-5 material predictions is rated plausi-
ble by the annotators. On the right, we display ac-
curacy on material level where accuracy is defined
as the proportion of plausible material predictions
among a model’s top-5 predictions, as rated by n
expert annotators.9

8The participating annotators are not affiliated with the
company providing the Vehicle Component Dataset.

9Material accuracy is naturally lower than component ac-
curacy, as we evaluate five material predictions per component.
Hence, achieving perfect agreement for material predictions
is more difficult than perfect agreement for components.

COMPONENTS MATERIALS

Model ě1A 3A ě1A 3A

Vanilla RB 0.87 0.68 0.49 0.24
DOMAIN RB 0.93 0.73 0.62 0.28
WIKI RB 0.91 0.66 0.56 0.24

Basilisk 0.73 0.40 0.45 0.14
DOMAIN DistilRB 0.87 0.69 0.53 0.23

Table 4: Model performance. COMPONENT accuracy:
proportion of components for which at least one mate-
rial among a model’s top-5 predictions is rated plausible
by n expert annotators nA. MATERIAL accuracy: pro-
portion of material predictions among a model’s top-5
predictions rated plausible by n expert annotators nA.

Domain-Adaption Approaches: Vanilla,
DOMAIN, and WIKI RoBERTa RoBERTa
adapted to the domain using a small high-quality
corpus (DOMAIN RB) beats all other models with
an accuracy of 0.93, and RoBERTa adapted to the
domain using a customized portion of the English
Wikipedia (WIKI RB) is similarly successful
(0.91); in comparison, Vanilla RoBERTa reaches
an accuracy of 0.87. With perfect agreement
among annotators (i.e., 3A), DOMAIN RB is still
able to reach an accuracy of 0.73, in comparison
to 0.66 for WIKI RB and 0.68 for Vanilla RB.
The top results on material level resemble those
for component accuracy: DOMAIN RB (0.62)
outperforms all other models, followed by WIKI
RB (0.56). In contrast to the component level,
Vanilla RB is no longer on par with the smaller but
domain-adapted DOMAIN DistilRB, while still
outperforming Basilisk. The differences between
the three resource-intense approaches (Vanilla RB,
DOMAIN RB and WIKI RB) are not significant10

on component level for nA. On material level,
however, differences are significant between PLMs
(incl. DOMAIN DistilRB) for ě1A, but not for
3A. All approaches significantly outperform the
resource-lean Basilisk on both levels for all nA.

As a particular example to illustrate the positive
impact of domain adaptation, we inspect results for
the vehicle component engine valves rocker arm
from our introductory example (cf. Fig 1). Vanilla
RB results include [wood, metal, steel, bones, legs],
where the predictions bones and legs refer to (parts
of) an extremity of an animate being instead of a
vehicle component. The materials [wood, metal,
steel, joints, aluminium] as obtained from WIKI
RB instead encompass the material aluminium as

10Significance tests apply χ2, p ă 0.05.
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well as joints which refer to connections between
body parts as well as vehicle parts. Finally, DO-
MAIN RB results comprise all plausible materials
predicted by the other models, namely [steel, metal,
parts, aluminium, plastic]. Moreover, the results
feature the additional in-domain material plastic,
while not including out-of-domain predictions such
as wood anymore. We note that annotators are quite
likely to rate one of the top-5 predictions for the
same component as plausible, however, material
prediction accuracy values indicate that the likeli-
ness to also agree on this specific material drops
with an increasing number of annotators.

The findings from these results are twofold. Do-
main adaptation of a given model results in a clear
increase of plausible materials for items within
a given domain. Second, if no highly domain-
specific and well-curated corpus is available, do-
main adaptation using WIKI leads to very viable
results and therefore represents a strong alternative.

Resource-Lean Approaches Results for the
pattern-based algorithm Basilisk significantly un-
derperform all other models for both component
(0.73) and material (0.45) accuracy. In contrast,
the domain-adapted resource-lean DistilRoBERTa
(DOMAIN DistilRB) is on par with Vanilla RB
and WIKI RB. Manually analyzing predictions for
our example discussed earlier, i.e., the component
engine valves rocker arm, we find that the Basilisk
results [structures, glass, core, steel, plating] are
potentially within the domain, but often neither
a material (structures, core) nor rated plausible
for the respective target component (glass, plat-
ing). Results for DOMAIN DistilRB, in contrast,
include [steel, metal, parts, plastic, aluminium] and
basically equal DOMAIN RB predictions.

The comparison of larger vs. leaner and smaller
approaches by the examples of the well-established
classic Basilisk and the transformer-based Distil-
RoBERTa model thus clearly demonstrates a pref-
erence for the latter.

Compositionality of Domain-specific MWEs
Results regarding the assumption of composition-
ality on domain-specific MWEs are presented in
Fig. 5. While accuracy values are lower when using
the right-most head instead of the full multiword
component (exception: Basilisk), the average dif-
ference is only 0.07 and 0.01 for component and
material prediction accuracy, respectively. Note,
however, that IAA differs especially on material

Figure 5: Comparison of full and head component per-
formance on component (full: x/59, head: x/40) and
material (full: x/395, head: x/200) accuracy level.

level with an average agreement of 0.44 using full
and 0.32 drawing on head components. This in-
dicates that predictions for full component names
tend be more clearly connected to this very item
than predictions retrieved for a head.

We further analyse model performance regarding
the influence of MWE constituent number. The re-
sults indicate that specificity beats brevity when
learning plausible materials for vehicle compo-
nents. However, our analysis also point towards
a threshold separating a beneficial number of con-
stituents (2) from a number pointing towards a detri-
mental degree of specificity (3+, cf. App. D.2 for
further details).

Our findings suggest that domain-specific mul-
tiword components are largely compositional and
therefore justify a simplified meaning representa-
tion via head constituents.

The Influence of Cloze Queries To shed more
light on the impact of using cloze query templates
for material prediction, we examine whether the
number of queries triggering predictions11 for a
given component correlates with component ac-
curacy. We find moderate-to-strong correlation
values for all our PLMs, thus suggesting that a
high number of queries yielding the same predic-
tion indicates the prediction’s plausibility. We also
test whether this correlation is directed and fit a
corresponding linear regression model. However,
the resulting significant R2 values, ranging around
0.25, are relatively weak and leave us with a mixed
picture regarding a directed relationship between
the number of queries and component accuracy (cf.
App. D.1 for further details).

When zooming into each template part, we find
the adverb GENERALLY outperforming the other ad-

11An average number of 718 queries is activated for each
component across models, with numbers of queries ranging
from a minimum of ă250 and a maximum of ą1.200 queries
activated per component.
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verbs. Concerning quantifiers, we observe MANY

yielding the most activated queries across models,
followed by MOST and ALL. Among contexts, we
identify WHEN USED IN VEHICLES,... demon-
strating best performance. When inspecting the
impact of our domain-specific verb relations, we
find mostly distinctive groups of verbs accumulat-
ing at the extremes of the curve, e.g., build with,
consist of, made up of and involve, made of, include
yielding maximum and minimum numbers of plau-
sible predictions across models and singular/plural
variants, respectively. While overall observations
suggest that templates in the passive voice produce
more plausible predictions overall, examples such
as consist of underline the importance of a well-
rounded template set that is successful as a whole.

To further explore the impact of designing high-
quality query templates for automatic query con-
struction, we perform the following experiment.
We take the five most frequent main verbs make,
say, go, use, take from ENCOW16AX (Schäfer,
2015) that are considered to be not directly related
to describing what material an item is made of.
We construct a set of cloze queries to probe our
best-performing domain-adapted PLM DOMAIN
RB and aggregate predictions as described in §4.1.
We analyze the final top-5 material predictions and
find only 9 correct materials. Instead, we observe a
small number of types being predicted for many of
the sampled components, as well as a small number
of component-specific predictions that might be se-
mantically related, but are no material, e.g., top-5
predictions for the component fuel tank include
[sense, noise, hydrogen, oil, cold]. These findings
emphasize that using a set that is (i) comprehensive,
(ii) domain-specific, and (iii) syntactically diverse
is crucial in order to avoid distortion of results.

Exploring Prediction Pool Size Finally, we ex-
plore whether aggregating results from a larger
pool of predictions obtained from the model bene-
fits our goal of learning all plausible materials for a
component. For this, we use our original set of 504
cloze queries per component to obtain the top-10 in-
stead of previously top-5 predicted tokens from the
PLM Vanilla RB, resulting in a set of 5040K pre-
dictions per component. We aggregate this doubled
amount of predictions as explained in §4.1 and an-
alyze the final top-5 predictions as outlined in §4.1.
While component accuracy differs by only 1% (in
favor of a smaller pool), drawing from a larger
pool seems to benefit learning plausible materials

with an 5% increase of correct predictions when
using top-10 model predictions for aggregation (cf.
App. D.3 for details). We attribute these gains to
the increase in relevant material predictions that
are appropriately aggregated using PREVALENCE,
thus displacing, for example, non-relevant material
predictions such as wood from top-k positions.12

8 Conclusion

We tackled the task of learning domain-specific
plausible materials for components in the vehicle
repair domain from a novel perspective by probing
SOTA language models in a cloze task style setting
to overcome the lack of annotated datasets. Based
on a diverse set of semi-automatically constructed
cloze queries combined with a suitable aggrega-
tion method, we presented a new method to effi-
ciently extract knowledge regarding vehicle com-
ponents and their materials as acquired by a PLM.
While showing that domain-adaptation using either
a small, high-quality or a customized Wikipedia
corpus boosts performance, we also demonstrated
the power of resource-lean alternatives such as the
PLM DistilRoBERTa, and found that the bottle-
neck for domain-adaptation with respect to our task
might not be model size but rather corpus quality
and suitability. Finally, we successfully exploited
the compositionality assumption for our domain-
specific multiword expressions as a way to address
data sparsity.
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Limitations

When learning plausible materials for components
in the vehicle repair domain, we build a varied
set of query templates to probe PLMs and seek to
aggregate obtained predictions in an optimal way.
We are, however, fully aware that a set of queries
that is optimal for machines is not necessarily the
set that also makes perfect sense to humans.

As far as the transfer of the suggested approach
to languages other than English is concerned, we
call attention to the potential need to adapt the
query templates, e.g., when working with lan-
guages that allow for more flexibility in word or-
der such as Polish, Turkish, German, Hindi, or
Finnish. Further, while it might be difficult to find
well-curated domain-specific corpora in some lan-
guages, we show that using a customized version
of Wikipedia of moderate size (approx. 225K sen-
tences) in a given language represents a very viable
alternative. Additionally, researchers could use a
multilingual model or an adapter-based approach to
navigate in-/output in other or multiple languages.

Our work focuses on RoBERTa as a backbone
model, which has been shown to perform well in
cloze task style settings. We also carried out initial
experiments with newer models such as ELECTRA,
not yielding desired results. We also conducted ex-
periments with generative models such as GPT3.
However, the output contained a lot of noise that
did not aid our goals. Moreover, the focus in this
paper is devoted to the development of a novel con-
tribution regarding the prompting and aggregation
techniques as well as analyzing results rather than
benchmarking a wide variety of models using an
already existing method. While experiments with
a wider variety of models represent an interesting
future task, high-quality evaluation might be a bot-
tleneck due to the availability and cost factor of
domain experts.

Regarding our model predictions, we have not
yet attempted to detect and organize potential se-
mantic relations between predictions, such as hy-
pernym/hyponym relations between metal and alu-
minium. We leave organizing and utilizing such
relations as potentially relevant milestone for con-
necting and tracing symptoms back to a cause for
future work. Furthermore, material predictions are
not yet categorized along dimensions such as main
and auxiliary materials or surface and inner materi-
als, which might be of interest in the vehicle repair
and material science domains.

Finally, we would like to point out that all
tested models and algorithms struggle with predict-
ing plausible materials for intangible items which
might, however, be more prevalent in other do-
mains. Even if a model is able to predict correct
material predictions, rating the plausibility of pre-
dictions that are not tangible but rather abstract
materials such as data, parameters and functions
cannot be considered a trivial task for expert anno-
tators and needs corresponding guidance.

Ethics Statement

Two of the resources used in this work, the Vehicle
Component Dataset and one of the two domain-
specific corpora (DOMAIN) have been kindly pro-
vided to us. To provide insight into the nature
of the data and foster reproducibility using com-
parable data, we make a sample of the Vehicle
Component Dataset available (cf. §6). We also
investigated comparable publicly available alterna-
tives for DOMAIN and showed that leveraging a
portion of the English Wikipedia customized to the
domain of interest (WIKI) represents a viable sub-
stitute in case no custom corpus is available. Note
that Wikipedia text content including Wikipedia
dumps is licensed under both the Creative Com-
mons Attribution-ShareAlike 3.0 License and the
GNU Free Documentation License.

In the context of our evaluation task, we col-
lected plausibility ratings from human participants.
For this, the participants were provided an In-
formed Consent Letter with the name and the con-
tact of the principal investigators; the title, purpose
and procedure of the study; risks, benefits and com-
pensation for participating in the study; confirma-
tion of confidential anonymous data handling; and
confirmation that participation in the study is vol-
untary. The Informed Consent Letter was signed
by both the participant and the investigators before
the participants took part in the study.

We use and adapt PLMs as provided and licensed
under the Apache License 2.0 by huggingface
(Wolf et al., 2020). We acknowledge that material
predictions learnt using the outlined approach are
a product of unsupervised learning methods which
might be prone to error. We point out that predic-
tions should be approved by an expert or flagged
otherwise in case they are used in a downstream
application to avoid potential risks including harm
of objects or safety risks in case of incorrect repair
procedures.
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A Data

Dataset Distribution Fig. 6 shows the distribu-
tion of multiword component names in the Vehicle
Component Dataset with the absolute number of
vehicle components per number of constituent, e.g.,
the dataset comprises 1,563 multiword components
with 2 constituents.

Figure 6: Distribution of multiword components in the
Vehicle Component Dataset (in absolute numbers).

B Cloze Query Prediction and Processing

B.1 Cloze Query Templates

Verb Relation Variables consist of, comprise,
contain, be formed by, be formed of, be made up of,
be made up from, be made of, be made out of, be
composed of, be manufactured from, encompass,
entail, include, involve, incorporate, be build of, be
build with

Cloze Query Statements Table 1 presents an
overview of the defined cloze query templates and
provides an example of filled-in prompts for the
vehicle component lamp.

B.2 Post-Processing

PLM-based Predictions Having created a given
set of cloze queries, we feed the queries into a
PLM and obtain the top-5 predictions. Based on
our goals, we apply the following post-processing
steps. We lower-case the predictions and filter
out numbers, punctuation, 1-character tokens, as
well as a list of standard stopwords obtained from
spacy with nine customized stopwords including
non-informative tokens such as material and com-
ponent. Additionally, spelling variants such as alu-
minum and aluminium are merged. We make sure
that a predicted token does not equal the singular
or plural form of the full input component.

Basilisk-based Predictions We obtain n predic-
tions for each vehicle component using DOMAIN
or WIKI for the Basilisk algorithm, and apply post-
processing as described for the PLM predictions.

B.3 PLM and Basilisk Experiments:
Computing Infrastructure and Model
Information

As Vanilla RoBERTa model, we use the
roberta-base implementation from
huggingface (Wolf et al., 2020) that comes
with 125M parameters. We adapt this model to the
vehicle repair domain. As DistilRoBERTa imple-
mentation, we use the distilroberta-base
implementation from huggingface (Wolf et al.,
2020) which has 82M parameters. See the official
huggingface documentation for further details.
For all final experiments, including obtaining
predictions from the various models, we use a
single NVIDIA RTX A600 GPU. We adapted
our models once (DOMAIN RoBERTa, WIKI
RoBERTa, and DOMAIN DistilRoBERTa) and
used the best model according to validation set
performance, i.e. our domain-adapted models are
the product of a single fine-tuning run.

As a Basilisk implementation, we use the Java
source code as provided by Thelen and Riloff
(2002). We use spaCy (Honnibal et al., 2020)
for text preprocessing and dependency parsing.

C Evaluation

C.1 Sampling Vehicle Components

To test whether the head of a MWE preserves the
meaning of the full MWE in our domain-specific
data, we compare extracted material predictions us-
ing only the head of the MWE vs. all constituents
(full). To evaluate results, we apply the following
procedure when sampling vehicle components con-
sisting of 2+ words. Full components are sampled
as is along with the extracted results. Whenever
only the head of a component is used, the results for
only the head component are obtained. For the eval-
uation task, the head component is mapped back
to the original full component from the vehicle in-
formation dataset. For example, during sampling
the head component sensor gets mapped to the
full 2-constituent component pressure sensor. In
this way, we can evaluate whether results extracted
based on only the head sensor are rated as plausible
also for the more domain-specific full multiword
expression pressure sensor.
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For the Basilisk-based approach, no results are
extracted for one item of the 2-constituent full com-
ponents and five items of the 3-constituent full com-
ponents. These results were thus expanded with
head component extraction results. In one case,
stopword removal leads to an empty prediction list
(alternator start charge current reduction, [], us-
ing DOMAIN). The prediction is back-filled with a
randomly sampled token from WIKI-based results
for the head component (reduction, [lithium], using
WIKI).

C.2 Expert Evaluation

Evaluation Task Setup The evaluation task was
carried out in a remote setting using Google Forms.
Annotators were provided detailed written guide-
lines including example questions and borderline
decisions. In case of questions, annotators had the
option to contact the authors of the paper. The eval-
uation could be completed flexibly in the course
of a week. Annotators could take as much as time
as they needed for completing the evaluation (av-
erage time effort: ~1.5 hours). Our three recruited
annotators are based in Germany, male, and speak
German as their first language. All annotators have
10+ years knowledge and continued education and
training in English in general, as well as profound
work experience with vehicle repair domain data in
German and English. Annotators received a repre-
sentation allowance for their effort. Each annotator
submitted one unique set of answers.

The collected data does not include any infor-
mation that names or uniquely identifies individual
people or offensive content. We check for this by
(i) not giving out data to annotators containing such
information, and (ii) not asking for any of this infor-
mation when collecting ratings regarding plausible
material candidates for vehicle components, and
(iii) manually inspecting collected data to confirm
anonymity of annotators and potential other entities.
Letters of Consent (cf. §8) are signed before par-
ticipation and stored separately from the collected
ratings.

Evaluation Results Analysis We evaluate a total
of 2,342 material predictions from five different
models and algorithms on a set of 100 vehicle com-
ponents from the vehicle repair domain. For 99
components, we collect an average of 5.6 plausible
material predictions valid for one or more models.
For exactly one component, all annotators agree on
I do not know the answer.

Pair-wise inter-annotator agreement (IAA) on
the level of vehicle components is shown in Table 5.
We calculate the percentage of components where
two given annotators agree on at least one material
being plausible (i.e. accuracy on inter-annotator
level) or where two given annotators agree that at
least one material prediction is not plausible. This
includes instances where up to four predictions
are not plausible as well as instances where all five
predicted material options are not rated as plausible
(none of these). We exclude instances where one
or both annotators agree on the answer option I do
not know the answer.

Model IAA A1::A2 A2::A3 A3::A1

Vanilla RB 1.00 1.00 1.00 1.00
DOMAIN RB 1.00 0.99 1.00 1.00
WIKI RB 1.00 1.00 1.00 1.00
Basilisk 0.93 0.97 0.91 0.91
DOM. DistilRB 1.00 1.00 1.00 1.00

Table 5: Proportion of components where two An agree
on at least one plausible material or where Ans agree
on at least one material prediction being not plausible.

D Results and Discussion

D.1 Statistical Analysis: Number of Cloze
Queries and Component Accuracy

We statistically analyze the relationship between
the number of cloze queries triggering predictions
for a given component and the actual accuracy val-
ues on component level.13 For this, we first perform
a correlation analysis to see whether the number
of activated queries is correlated to component ac-
curacy, i.e., whether 1+ of the predictions for this
component is rated plausible by 1+ expert annota-
tor. Results are reported in Table 6 with the investi-
gated models on the left and Pearson’s correlation
coefficients in the first column. The obtained re-
sults indicate that the relationship between the num-
ber of activated queries and observed component
accuracy is strongly correlated (coefficient ą0.5)
for the Vanilla and WIKI RB models, and moder-
ately correlated (coefficient ą0.3) for DOMAIN
RB and DOMAIN DistilRB.

To see whether these correlations are in fact
directed, we employ linear regression modeling
with the number of queries as predictor and com-
ponent accuracy as outcome variable. Results are
presented in Table 6 with investigated models on

13As no cloze queries are generated for the Basilisk algo-
rithm, we only investigate PLM results.
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Model Pearson’s Coefficients R2

Vanilla RB 0.51˚˚˚ 0.26˚˚˚
DOMAIN RB 0.49˚˚˚ 0.24˚˚˚
WIKI RB 0.58˚˚˚ 0.34˚˚˚
DOM. DistilRB 0.40˚˚˚ 0.16˚˚˚

Table 6: Pearson’s correlation coefficients for the num-
ber of activated queries and component accuracy. All
coefficients are significant with a p-value ă 0.01 (***).

the left and R2 values in the second column. The
relatively low R2 values suggest that the relation-
ship between the number of activated queries and
observed component (‰material) accuracy might
more strongly rely on other factors than the number
of queries activated for a given component.

D.2 n-Constituent Component Analysis

Results regarding MWEs with n constituents are
shown in Fig. 7.

Figure 7: Results regarding n-constituent performance
on component accuracy level (in %).

Model performance is presented on component
accuracy level. It can be observed that 2-constituent
components receive the highest number of plau-
sible material annotations, followed by simplex
components, consisting of only one constituent.
4-constituent components outperform the shorter
3-constituent and the longest investigated compo-
nents, namely 5-constituent components. The re-
sults indicate that (domain-)specificity beats brevity
when learning plausible materials for vehicle com-
ponents. However, our findings also suggest that
there might be a threshold separating a beneficial
number of constituents (2) from a number pointing
towards a detrimental degree of specificity (3+).

D.3 Prediction Pool Size Analysis

We present results regarding the size of the pool
from which predictions are drawn for aggregation
in Table 7. The percentage of correct predictions
per top-k predictions are depicted as Hits@1-5.
Here, using a larger pool leads to a gain of 18%
more plausible materials as the top-1 prediction.

Top-10 Pool Top-5 Pool

Hits@1 0.54 0.37
Hits@2 0.45 0.56
Hits@3 0.45 0.42
Hits@4 0.50 0.42
Hits@5 0.41 0.31

Comp. Acc@5 0.85 0.86

Total Hits@5 0.47 0.42

Table 7: Correct predictions (Hits@k) per top-k predic-
tions (x/100), component accuracy (x/100), and total
correct predictions per top-5 predictions (Total Hits@5).

While accuracy on component level stays basically
the same (top-10 pool: 0.85%, top-5 pool: 0.86%),
an increase of 5% can be observed when building
the final top-5 predictions from a larger pool of
predictions.
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Abstract
This paper investigates a crucial aspect of men-
tal health by exploring the detection of suici-
dal ideation in spoken phone conversations be-
tween callers and counselors at a suicide pre-
vention hotline. These conversations can be
lengthy, noisy, and cover a broad range of top-
ics, making it challenging for NLP models to
accurately identify the caller’s suicidal ideation.
To address these difficulties, we introduce a
novel, self-adaptive approach that identifies the
most critical utterances that the NLP model can
more easily distinguish. The experiments use
real-world Lifeline transcriptions, expertly la-
beled, and show that our approach outperforms
the baseline models in overall performance
with an F-score of 66.01%. In detecting the
most dangerous cases, our approach achieves
a significantly higher F-score of 65.94% com-
pared to the baseline models, an improvement
of 8.9%. The selected utterances can also pro-
vide valuable insights for suicide prevention
research. Furthermore, our approach demon-
strates its versatility by showing its effective-
ness in sentiment analysis, making it a valuable
tool for NLP applications beyond the health-
care domain.

1 Introduction

The suicide prevention hotline provides a free ser-
vice for the people with mental issues to have the
support on a 24/7 basis. On the other end of the
call, a group of counselors who are trained vol-
unteers are waiting for calls online in shifts. As
mental health problems are becoming more and
more prevalent in society, the difficulty of finding
a sufficient number of counselors forms a com-
mon challenge that the suicide prevention hotline
of many countries in the world is facing. The over-
whelmed counselors and the busy phone line make

the individuals in urgent need of help unable to get
the opportunity to have the counseling. In order
to alleviate of demand of suicide counseling, the
intelligent conversation system forms a potential
direction to study for aiding the hotline service.
Fully automated chatbots as counselors providing
counseling services are still impractical because the
current natural language processing (NLP) technol-
ogy has not yet been able to construct a reliable
chatbot like a well-trained counselor to talk to these
people who are mentally unstable and at high risk
of suicide.

In this work, we approach the suicide counsel-
ing aiding from a more practical aspect. Instead of
creating a chatbot to replace the human counselors,
our goal is to propose a model for suicidal ideation
detection (Ji et al., 2021). During the counseling,
our model can be used for monitoring the conver-
sation and identifying the suicide attempt of the
caller. Once it is discovered that the caller is at a
high risk of suicide or self-harm, more experienced
counselors and other resources can immediately
intervene at this time to prevent further harm.

Text-based suicidal ideation detection is a hot
topic in the NLP area. In addition to medical
records, clinical notes (Ji et al., 2021), and sui-
cide notes (Schoene et al., 2021), previous work on
textual suicidal ideation detection mainly focused
on the social media data, such as tweets (Mishra
et al., 2019; Sawhney et al., 2020; MacAvaney
et al., 2021), microblogs (Huang et al., 2015), or
online forums (Coppersmith et al., 2018; Sawhney
et al., 2021; Yao et al., 2020; Alambo et al., 2019).
Broadly monitoring the suicidality of users on the
social media is no doubt a new way for public
health professionals to prevent suicides. However,
social media-based suicidal ideation detection can
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cover only a part of cases as not everyone uses the
social media and the users with suicidal ideation
may not share their troubles publicly.

The scope of this work is entirely different from
those based on social media data. We focus on
the Lifeline conversations between callers in trou-
ble and the well-trained counselors. Unlike the
social media data, which are posted by the users
unilaterally, the conversational data are made of the
interaction between two or even more parties (e.g.,
the caller’s family member). In the case of sui-
cide prevention hotlines, a conversation is typically
made by a caller and a counselor. The well-trained
counselor will try to guide the caller to express her
or his emotions and distress, revealing rich infor-
mation for suicide risk assessment. The data used
in this work were collected from the real world
recordings provided by Taiwan Lifeline Interna-
tional.1 Psychologists were invited for assessing
and labeling the suicidal ideation of the caller in
each conversation. To the best of our knowledge,
this is a pioneering work of conversation-based
suicidal ideation detection.

Unlike social media posts, the conversational
data is usually longer and noisier. In our real world
data, a conversation contains 515 utterances and
7,981 tokens in average, causing a barrier to mod-
els analyzing the content. In the long conversation,
not all utterances provide the cue for suicide risk
assessment. Instead of analyzing the whole con-
versation, we focus on key interactions between
the caller and the counselor. However, extracting
the important utterances from the hotline conver-
sation can be still challenging due to the lack of
sufficient training data. For this reason, we pro-
pose a novel self-adapted approach to utterance
selection. Our idea is to focus on a number of
discriminative utterances that provide useful infor-
mation for NLP models to do the classification. To
accomplish this goal, a distant-supervised model
for suicidal ideation detection at the utterance level
is further built for generating the training data for
the utterance selection model.

Our approach to detecting suicidal ideation in
phone-call conversations is distinct from reinforce-
ment learning methods that are used to select im-
portant features or instances for training the main
model. Instead, our distant-supervision methodol-
ogy leverages information from the conversation
level to the utterance level based on a key observa-

1http://www.life1995.org.tw/

tion that the risk of suicidal ideation can often be
determined by only a few utterances. Our approach
also differs from previous hierarchical and multi-
grained approaches (Kar et al., 2020; Angelidis
and Lapata, 2018) that seek to distill fine-grained
information from every smaller piece of the entire
input.

In this work, we consider the suicidal ideation
labels at the conversation level as the distant la-
bel and train a model to identify the discrimina-
tive utterances that lead to assessing the suicide
risk of the caller. Due to the lack of annotation at
the utterance level, we introduce a novel relabeling
mechanism that is unique to our distant-supervision
method. The result is a final model that can effi-
ciently perform suicidal ideation detection on short,
condensed inputs.

Our approach is evaluated on the real-world data
labeled by psychologists, showing that the self-
adapted utterance selection successfully improves
the performance in suicidal ideation detection. We
also explore our approach in another domain. Ex-
perimental results confirm that our approach is also
effective in sentiment analysis, a typical NLP task.
The contributions of this work are threefold:

1. We investigate the task of suicidal ideation
detection in the phone-call conversations, in-
troducing a new way to aid suicide preven-
tion. Our system can assist the counselors in
early detection of callers with high suicidal
ideation, thus preventing suicides and reduc-
ing the work stress of the counselors.

2. We propose a novel self-adapted utterance se-
lection approach that greatly condenses the
conversations and successfully improves the
model for dialogue understanding and other
NLP tasks required to handle long input.

3. The utterances selected by our approach can
also be taken as explanatory information that
highlights key interactions between the caller
and the counselor.

2 Related Work

This section summarizes the related work from
three aspects, including the recent applications of
NLP in suicide prevention, the conversation-based
detection for other mental diseases.
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2.1 Suicidal Ideation Detection

The previous works on suicidal ideation detection
were mainly built for the social media data due to
the ease of data collection.

Gaur et al. (2019) investigated the detection
of suicide risk based on a dataset consisting of
500 Reddit users. They based on the suicide risk
severity lexicon to annotate the posts, and used
Columbia Suicide Severity Rating Scale (C-SSRS)
to determine the risk of suicidal ideation of each
individual. Moreover, Mishra et al. (2019) ex-
tracted several kinds of features, such as Parts of
Speech (POS), Latent Dirichlet Allocation (LDA),
etc. from the tweets as the input of the trainer. Be-
sides, linguistic Inquiry and word count (LIWC)
is also a common method to analyze the utterance
structure for individuals with mental problems. For
instance, Shah et al. (2020) used LIWC for linguis-
tic analysis on Reddit posts. Also, Schoene et al.
(2021) performed LICW and presented the learn-
ing model to detect suicide notes on microblog,
which figured out the syntax patterns of the indi-
viduals with mental problems. Despite these fea-
tures provide part of the insight of utterances, most
researchers combined these approaches to deep
learning, which let studies more efficient and com-
prehensive.

In relation to deep learning for text-based
data, bidirectional Long Short-Term Memory (Bi-
LSTM) is also a common method for detecting
mental health problem. Bi-LSTM is an approach
that captures the frontend and backend features
at every time step. Therefore, it provides much
information from the utterances to make a detec-
tion. The study of ordinal suicidal ideation detec-
tion (Sawhney et al., 2021) designed an architec-
ture, including Bi-LSTM layers, temporal attention
layer, ordinal regression layer, to comprehensively
analyze the posts from past. Then, they adapted
C-SSRS to make an assessment of suicidality. Cop-
persmith et al. (2018) extracted contextual informa-
tion between words via a Bi-LSTM layer, which
handled with semantic features in the context.

Overall, broadly monitoring the suicidality of
users on the social media is undoubtedly a new way
to prevent suicide from public health. However,
social media-based suicidal ideation detection can
only cover a part of cases since not everyone uses
the social media and the users with suicidal ideation
may not share their troubles publicly.

2.2 Conversation-based of Mental Disease
Detection

Dialogue analysis gains attention in the field of
mental health care. Rinaldi et al. (2020) aim to
predict depression based on the spoken data from
interviews, and the multimodal approach (Zhang
et al., 2021) that includes the audio features for
depression detection in conversations. Other cogni-
tive health issues can also be modeled in conversa-
tions (Farzana et al., 2020).

Clinical interviews are a widely utilized method
for addressing mental health issues by profession-
als. However, the highly sensitive nature of much
of this data makes it difficult for machine learn-
ing models to analyze. Despite these challenges,
mental health-focused datasets are considered more
consistent and reliable, leading to increased atten-
tion in the field of dialogue analysis for mental
health care.

Xu et al. (2021) detects the suicidality from a 24-
hour online text-based counseling services, which
the form of dataset and the research objectives are
similar with us. The researchers created the sui-
cide knowledge graph to encode the utterance fea-
tures as the input of Bi-LSTM layer, and then made
a classification of the risk level with multilayer
perceptron(MLP). In similar issue, Rinaldi et al.
(2020) aim to predict depression in the interviews.
They make an evaluation on the Distress Analy-
sis Interview Corpus (DAIC) (Gratch et al., 2014),
which contains text transcripts and audio records of
interviews for a clinical assessment for depression.
In this study, they adopt the BERT (Devlin et al.,
2019) model to classify depression or not on the
conversation transcripts as the one of the baseline.
However, their method is that each prompt of the
interview is grouped by the probability distribu-
tion and concatenated with its belonging response,
then converted to word embeddings using GloVe
to transformed to word embedding as the features,
and the result is obtained from the decision layer.

Apart from depression, dementia, such as
Alzheimer’s disease (AD), is also a hot topic of
the dialogue based dataset. Farzana et al. (2020)
adopt the Pitt corpus as the source of their dialogue
act corpus. In addition to feature extraction, they
build the classification models using support vec-
tor machine, decision tree, logistic regression, and
neural networks. The result shows that the neural
network model obtains the best score among those
methods. Furthermore, Green et al. (2012) use the
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Carolina Conversation Collection (CCC) corpus
to facilitate conversation between the individuals
with AD and their conversational partner. The CCC
corpus includes recorded and transcribed conversa-
tions between researchers, students and individuals
with AD. They aim to resolve the AD-related dis-
fluencies via natural language understanding.

In these studies, the research focused on utter-
ances from both or single side to figure out the
context patterns of the mental health problem. Gen-
erally, utterances transformed by GloVe, BERT, etc.
to word embeddings and the deep neural networks
such as Bi-LSTM contribute to semantic analysis
and are commonly used in nowadays. Though the
results from the neural network models are diffi-
cult to observe the patterns of each mental disorder
from the computing, we can combine with various
features to make an analysis from both human and
computing perspectives.

3 Dataset

We obtained the phone call recordings from Tai-
wan Lifeline International, and the audio record-
ings were transcribed by the experts with a psy-
chology background. The transcriptions contain
both counselors and callers’ utterances, which are
conversation-based forms. The transcriptions were
further annotated by psychologists for assessing
the caller’s suicide risk level into five grades, in-
cluding no suicidal ideation, occasional, frequent,
ongoing suicide plan, and ongoing suicide attempt.
The outlier conversations, such as not mention to
suicide, cannot identify, statement not in person,
and other situation will be removed. A high kappa
value of 0.89 was measured, confirming a strong
inter-rater agreement.

Due to the data sparsity, with experts’ approval,
we further merge the two weak ideation grades
(i.e., no suicidal ideation and occasional) into low
risk and the two strong ideation grades (i.e., on-
going suicide plan and ongoing suicide attempt)
into high risk, resulting in three suicide risk levels.
Table 1 summarizes the distribution of instances
across different risk levels and presents the con-
versation length for each risk level in terms of the
average number of utterances and tokens.

4 Methodology

Given a conversation x = (x1, x2, ..., xn), where
xi is either the prompt made by the counselor or
the response made by the caller repeatedly, an intu-

Risk Level Overall Low Med. High

# Instances 656 263 227 166
# Utterances 515 426 546 613
# Tokens 7,981 6,965 8,473 8,919

Table 1: Statistics of our dataset

itive way to predict the level of the caller’s suicidal
ideation can be defined in Equation 1.

ŷ = argmax
y∈Y

P (y|x) (1)

where Y = {Low Risk, Medium Risk, High Risk},
and P (·) is a model that is trained to estimate the
probability of y given x.

As mentioned in Section 1, x can be very long
and noisy, resulting in a poorer performance. Thus,
our idea is to predict y given a short and con-
densed version of x. That is, we aim to approxi-
mate P (y|x) by PC(y|x̂), where x̂ ⊆ x and PC(·)
makes the prediction based on the subset of x.

ŷ = argmax
y∈Y

P (y|x) ≈ argmax
y∈Y

PC(y|x̂) (2)

In Section 4.1, we present a novel self-adapted
utterance selection approach that finds the utter-
ances providing useful information that is easier
for the underlying backbone model to capture. Sec-
tion 4.2 shows the distant-supervised learning em-
ployed to train our model for utterance selection.
Section 4.3 describes the combination of our frame-
work, and Section 4.4 presents our model in the
inference stage. Figure 1(a) and Figure 1(b) illus-
trate the details of our model in the training and the
inference stages, respectively. Figure 1(c) shows
the dataflow of our framework in evaluation.

4.1 Self-Adapted Utterance Selection

To extract the sentences that may contain essential
suicidal ideation patterns from the conversation, we
establish a model PS(·) for finding x̂. The general
form is given in Equation 3.

x̂ = {xi|xi ∈ x and PS(xi|x) > τ} (3)

where PS(·) determines the importance of xi to the
whole conversation x. In our case, however, PS(·)
cannot be directly trained in the supervised manner
due to the lack of ground-truth. Thus, a novel
distant supervised approach is proposed to estimate
the importance of each utterance in a conversation.
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Figure 1: Overview of our approach. The sub-figure (a) shows our model in the training stage, the sub-figure (b)
shows our model in the inference stage, and the sub-figure (c) shows the dataflow in evaluation.

Our assumption is that the important utterances
are those able to contribute discriminative infor-
mation for PC(·) to predict the suicidal ideation.
Thus, we aim to extract the utterances indicating
suicidal ideation that is easily captured by NLP
models. For this reason, we train another model
PU (·) that aims to predict the suicidal ideation at
the utterance level.

ŷi = argmax
yi∈Y

PU (yi|xi,x) (4)

where ŷi is the suicidal ideation of the i-th utterance
in x. Note that PU (·) is conditional on not only xi
but also its contextual information from x.

For an utterance xi from a conversation where
the caller with a golden suicide risk level of y†, we
would like to pick up xi as an important utterance
if y† = ŷi because the underlying backbone model
can make a consistent prediction based on the in-
formation in xi. In other words, we prepared each
training instance (xi, y

∗
i ) for PS(·) by determining

the value of y∗i as Equation 5.

y∗i =

{
1, if PU (yi|xi,x) = y†

0, otherwise
(5)

The number of kinds of y∗i is six for the binary
condition at the three risk levels.

4.2 Suicidal Ideation at the Utterance Level
The last problem is how to train the model PU (·).
In our case, PU (·) cannot be trained in the super-
vised manner because of the lack of labels at the
utterance level. For this reason, we train it using
distant supervised learning. For every utterance xi

in a conversation with a golden label of y† at the
conversation level, we simply assign y†i , the pseudo
label of xi, with y†. For example, every utterance
from a conversation where the caller was annotated
with high suicide risk will be labeled with high
suicide risk as well.

4.3 Training of the Whole Framework
The data preprocessing discards utterances that are
longer than 29 tokens or shorter than 8 tokens,
with an average token count of 15 tokens in ref-
erence to a single utterance. Role indicators, such
as “A: ” for counselors and “B: ” for callers, are
added to the beginning of each utterance. The mod-
els PS(·) and PU (·) are trained based on the pre-
trained BERT model (BERT-BASE-CHINESE) (De-
vlin et al., 2019). On the other hand, PC(·) is
trained based on the pre-trained Longformer model
(LONGFORMER_ZH) (Beltagy et al., 2020) for pro-
cessing Chinese transcriptions, with an input length
of 2,048 tokens. As shown in Figure 1(a) and Fig-
ure 1(b), the input of PC is the concatenation of the
selected utterances, while the input of PS and PU is
a focused utterance and its neighboring utterances
separated by [SEP].

As illustrated in Figure 1(a), the three models
PC(·), PS(·), and PU (·) are updated in a sequen-
tial manner in each epoch. First, PU (·) is updated
to prepare the training data for PS(·). Then, PS(·)
is updated to select utterances for training PC(·).
The losses of the models LC , LS , and LU are cal-
culated using cross-entropy, and the total loss L is
their weighted sum which is used for updating the
parameters of the three models.
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4.4 Inference

Figure 1(b) shows our model in the inference stage.
The PS(·) and PC(·), which obtain the lowest val-
idation loss value from PC(·), are saved for the
inference stage. The PS(·) model will shorten the
original x to x̂, and the PC(·) model predicts the
level of the caller’s suicidal ideation given x̂. Note
that the PU (·) model, which is built for training
PS(·), is not involved in the inference stage.

5 Experiments

We employ five-fold cross validation, with a devel-
opment set split 10% from the training set. Sig-
nificance testing is conducted using McNemar’s
test. The value of τ is set at 0.5, and the AdamW
optimizer is utilized with a total of 40 epochs.

The baseline models include the vanilla
BERT/Longformer models in the end-to-end su-
pervised learning, the multi-turn GRU model, the
JLPC model proposed by previous work for depres-
sion detection in interviews (Rinaldi et al., 2020),
the LDA-based utterance selection method, rein-
forcement learning (RL) model, and the LIWC-
based methods applying Gradient Boosting De-
cision Tree (GBDT) and multilayer perception
(MLP) respectively, which are widely-applied in
psychological tasks.

In the experiments, the input length with BERT
is 512 tokens, and with the Longformer model
is 2,048 tokens. The vanilla baseline is fed
with the concatenation of all utterances formed
as [CLS]xcounselor[SEP]xcaller[SEP]. The GRU
model handles each turn in the conversation with
the BERT/Longformer encoder separately and com-
bines the information from the tokens with the
GRU layer. JLPC model employs the latent prompt
categorization on the utterances of counselors and
also makes the prediction on first hundred pairs
content. The LDA model performs the topic mod-
eling for the conversation and clusters utterances
into several groups. In brief, it is equivalent to
let LDA model replace PU (·) and PS(·) models
to do the utterance selection. We select the utter-
ances from each cluster to form the input to the
BERT/Longformer model and report the best per-
formance by one of them.

Our novel distant supervised approach is also
compared with reinforcement learning (Liu et al.,
2019). We simplify our model to PS(·) and PC(·)
as the framework of reinforcement learning. The
PS(·) as the agent is a binary classification to select

the utterances according to the reward. The reward
is defined as the difference from the loss of PC(·)
between two continuous epochs.

Different from the models based on Transformer,
the LIWC-based model represent the conversation
as a 79-dimensional bag-of-word vector, where
the value of each dimension indicates the occur-
rences of the words belonging to the corresponding
Chinese version of LIWC (Linguistic Inquiry and
Word Count) category.2 For each conversation, we
perform word segmentation and obtain the distri-
bution of LIWC categories. The MLP network is
constructed for making the prediction as one of the
baselines. GBDT classifiers which combine sev-
eral weak learners and calculate with the gradient
boosting decision tree algorithm are also adopted
to accomplish the classification.

6 Results and Discussion

Table 2 shows the overall performances of our ap-
proach compared with baselines. The JLPC model
making a binary classification for depression in pre-
vious work (Rinaldi et al., 2020) does not perform
well on the hotline conversations. The GRU model
with Longformer encoder produces the worst per-
formance but has the better adaption with BERT
encoder. The LIWC-based methods provide the
information in different angle from these methods,
achieving an F-score of 57.65% with GBDT clas-
sifier, higher than most of baselines, but the MLP
network dose not perform well on the task. The
LDA selection and RL methods figure out some im-
portant clues in conversations, which are superior
to the vanilla BERT model. By contrast, the Long-
former model does not benefit from these selection
methods. The vanilla Longformer model can ex-
ploit the information from a large portion of the
conversation and achieves an F-score of 59.77% in
overall. However, our method with either BERT or
Longformer significantly outperforms its respective
vanilla model in terms of the overall performance at
p = 0.05. Especially, our method with Longformer
achieves the best F-score at overall and every risk
levels, superior to all the other models. Particularly,
our methodology accomplishes the highest gain on
the high suicide risk, which is the most important
case to be recognized and intervened. In the rest of
this work, we adopt our method with Longformer
as the subject for analysis in details.

2https://cliwc.weebly.com/
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Overall Low Risk Med. Risk High Risk
Method P R F P R F P R F P R F

BERT-based
BERT 52.02 51.21 51.03 58.64 66.97 62.21 46.10 44.54 45.19 51.31 42.12 45.67
GRU 44.12 42.57 42.35 50.08 57.80 53.43 38.28 39.17 38.12 44.01 30.73 35.49
JLPC 40.45 42.41 39.57 43.79 49.99 44.17 39.62 41.13 39.85 37.93 36.11 34.70
LDA 54.59 52.77 52.45 58.44 63.58 59.99 50.53 47.21 48.16 54.81 47.52 49.21
RL 55.58 52.80 53.14 59.78 63.88 61.53 46.23 50.64 48.23 60.73 43.89 49.68

Longformer-based
Longformer 60.38 59.93 59.77 69.02 64.19 66.01 55.30 57.68 56.24 56.81 57.91 57.04
GRU 41.03 38.49 36.30 44.51 65.69 52.51 36.97 32.89 33.58 41.62 16.88 22.81
JLPC 39.97 41.03 38.73 46.10 48.32 45.57 41.44 40.28 39.52 32.37 34.50 31.12
LDA 60.44 58.55 57.94 69.11 62.00 64.61 52.11 51.01 50.34 60.10 62.64 58.87
RL 59.21 56.67 56.75 65.18 63.50 63.34 51.29 52.93 51.88 61.15 53.58 55.03

Feature-based
LIWC-MLP 50.26 49.26 49.48 54.69 51.70 52.82 41.78 44.90 43.16 54.29 51.18 52.47
LIWC-GBDT 58.93 57.28 57.65 63.42 71.47 67.14 49.77 49.83 49.67 63.61 50.53 56.15

Our Approach
w/ BERT 59.29 58.74 58.53 68.71 62.34 65.19 53.96 57.28 55.12 55.20 56.60 55.28
w/ Longformer 66.58 66.50 66.01 73.01 69.54 70.96 62.74 60.77 61.14 64.00 69.20 65.94

Table 2: Performances of the three suicide risk levels and their macro-average, reported in Precision (P), Recall (R),
and F-score (F) (%).

6.1 Choice of the Context Window

For an utterance xi ∈ x̂ predicted as important by
PS(·), we can consider not only xi itself but also
its context, e.g., the previous and/or the next utter-
ance of xi. We concatenate xi−1 and/or xi+1 to
xi with the [SEP]. Table 3 compares the results of
different context settings. The results indicate that
incorporating additional context through utterances
does not lead to improvement as the most relevant
contextual information is already captured by the
PS(·) selection process.

6.2 Number of Selected Utterances

Table 4 shows how many utterances are extracted
by our utterance selection approach compared with
Longformer-based methods, including LDA, RL
and original data. Based on the number of tokens
in condensed conversations, the LDA and RL meth-
ods reduce the input length more than ours. Our
utterance selection model PS(·) reduces the aver-
age input length to 131 utterances and 2,405 tokens.
Concerning the performance of vanilla Longformer
baseline with data pre-processing, the model pos-
sibly lose the information, resulting in the worse
result, an F-score of 55.23%. However, our method

outperforms these approaches. Compared with
other methods, our utterance selection model PS(·)
has more capability of identifying clues of suicidal-
ity from conversations.

6.3 Content of the Selected Utterances

Our approach allows us to understand what types
of utterances are selected for the main model PC(·)
to predict the suicidal ideation. Through analyzing
instances that were mispredicted by the baseline
model but correctly predicted by our approach, we
discovered that our PS(·) extracts important pat-
terns. Since Lifeline provides the service for peo-
ple to confide their suffering, the negative words,
such as “Bad mood”, “Painful”, “Wanna die”, are
appeared in every risk level. In contrast, diverse
daily life topics such as relationship, school, and
work are mentioned at the low risk level. We can
figure out what the main trouble occurred to the
callers leads to the feeling of sadness or fear. Dif-
ferent from the low risk level, the thought of low
self-esteem comes up in their words, such as “I
am useless.” at medium risk level. Moreover, the
strong hopeless, helpless and lonely feelings are
revealed in the conversations. The word “death” is
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Overall Low Risk Med. Risk High Risk
Method P R F P R F P R F P R F

xi 66.58 66.50 66.01 73.01 69.54 70.96 62.74 60.77 61.14 64.00 69.20 65.94
xi, xi+1 62.93 62.66 61.74 71.56 69.11 69.72 56.09 50.71 52.93 61.14 68.15 62.57
xi−1, xi 57.37 56.23 56.35 62.58 66.52 64.40 52.45 56.41 54.12 57.08 45.76 50.54
xi−1, xi, xi+1 58.09 56.90 56.93 64.64 60.78 62.27 50.45 56.86 53.16 59.19 53.05 55.37

Table 3: With different context windows, the performances of our method at the three suicide risk levels and their
macro-average, reported in Precision (P), Recall (R), and F-score (F) (%).

Selection Method F-score # Utter. # Tokens

None 59.77 515 7,981
LDA 57.94 150 2,295
RL 56.75 218 3,930

Ours (PS(·)) 66.01 131 2,405

Table 4: Average lengths of the conversations condensed
by different approaches. The macro-average F-scores
(%) are reported.

usually in the utterances, but the suicidal ideation
is only staying the thoughts.

Unlike above statements, physically suicidal
means are mentioned at the high risk level. The
callers usually talk about their suicide plan evi-
dently, such as “I bought a helium barrel.”, “I
took medicine and cut the wrist.”. The counselors
then ask the caller’s location, e.g., “Where are you
now?”, to ensure their safety. Overall, our approach
effectively selects the utterances that are key to the
interaction between the caller and the counselor,
and provides valuable insights into the caller’s sui-
cidal ideation.

6.4 Early Detection

Early risk detection plays an important role in men-
tal issues (Wang et al., 2018). To reduce the burden
for each counselor, we expect that the model has
the ability to detect the risk of suicidal ideation as
soon as possible so that the counselor can take a cor-
responding action to ensure caller’s safety. Figure 2
shows the F-scores of our method to do prediction
given different numbers of first utterances in each
conversation from the testing data. The black, blue,
orange, and red dashed lines represent the F-scores
of our method given all the utterances available as
input in overall and at the low, the medium, and the
high levels, respectively.

Generally, the low risk cases are easier to iden-
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Figure 2: The figure shows the comparison of F-scores
for our method in the scenario of early detection. The
black, blue, orange, and red dashed lines represent the
F-scores of our method with all utterances in overall
and at low, medium and high risk levels, respectively.

tify. An F-score of 57.24% is achieved with only
first 10 utterances being given to our method. The
vertically dashed gray line represents the overall
F-score achieves 60.67% in the first 220 utterances
(i.e., 110 turns), superior to most of baselines.
Based on our method framework, PS(·) can di-
rectly detect each utterance whether it should be
selected without any other information. The result
of the early detection indicates that our method
can identify the callers in different needs with a
number of turns from the conversation, expected
to distributing the suitable resources to assist them.
Overall, our method not only contributes to extract
the significant utterance patterns but also recog-
nizes the important information during the conver-
sations to accomplish early detection.

7 Applied to Sentiment Analysis

We also explore our approach in sentiment anal-
ysis, one of the most-studied application in NLP.
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Method F-score # Tokens

BERT 86.62 718
Ours w/ BERT 89.63 266

Longformer 95.50 718
Ours w/ Longformer 92.74 371

Table 5: Experimental results of the Polarity dataset.
The F-score (%) and the length of input fed into the
backbone model are reported.

We evaluate our model for sentiment binary classi-
fication on the famous Polarity dataset (Pang and
Lee, 2004), which consists of 1,000 positive and
1,000 negative movie reviews. Similar to our ex-
periments, the split of data adopts five-fold cross
validation. All methods are trained on the same
split for five runs to verify the results.

Table 5 shows the F-scores of the baseline mod-
els and our methods. The average tokens fed into
the backbone model is also shown. In respect to
BERT-based models, our method achieves an F-
score of 89.63%, superior to the vanilla BERT
model obtaining 86.62%. However, though the per-
formance of our method with Longformer model
is improved, it is inferior to the vanilla Longformer
model. The average length of the movie reviews
in the Polarity dataset is 718 tokens, exceeding the
input length of BERT but within the limitation of
Longformer. Thus, the vanilla Longformer model
is capable to handle full information from the input,
while the BERT model can only exploit the infor-
mation from the first 512 input tokens. Our method
with BERT reduces the input length to 266 tokens
in average, meeting the limitation of the BERT
model and effectively selecting key sentences to
enhance the performance.

These results support the key premise of our
approach that by dramatically reducing the input
length, our method can significantly improve the
performance of the underlying model when the
input exceeds its capacity. Furthermore, the results
highlight the broader potential of our approach for
other NLP tasks on lengthy and noisy data.

8 Conclusion

Suicidal ideation detection is one of the core inter-
ests in the domain of intelligent healthcare. This
work explores the task on a new kind of data, the
Lifeline conversations, and presents a novel self-
adapted approach that condenses the long and noisy

conversation for alleviating the model to identify
the suicidal risk level of the caller. Experimental
results on real-world data show our approach is not
only significantly superior to existing models but
also capable of applying to other domains. Our
approach is also effective in the scenario of early
detection, a practical issue for suicide prevention.

With the advancement of large language models
such as ChatGPT, the development of intelligent
mental health chatbots is becoming a reality in
the near future. Our detection model can be inte-
grated into these chatbots to trigger an emergency
response if a high suicide risk level is detected.

Limitations

The Lifeline conversations are highly sensitive. Un-
der the extreme circumstance where the callers suf-
fer from suicidal ideation, it is inappropriate to
ask them to consent to share their recordings pub-
licly. For this reason, it is hardly to release a public
dataset for the research community, resulting a bar-
rier to reproducibility.

In this work, all the voice data were transcribed
into spoken data by human. To launch a fully-
automatic system, the transcription should be per-
formed by machine, and more noises will be intro-
duced by the speech recognition model. We will
explore the voice-based approach to conversation-
based suicidal ideation detection in the future.

Ethical Considerations

The data collected for this study is highly sensitive
and contains personal information of the callers. To
protect their privacy, all personal identifiable infor-
mation such as names, ages, addresses, phone num-
bers, and places of work were removed during the
transcription process. The data is securely stored
and access to it is restricted to only authorized per-
sonnel. This study was reviewed and approved by
the Human Research Institutional Review Board
(IRB) at National Chengchi University3 with the
case number NCCU-REC-202102-006.
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Abstract
Acquiring factual knowledge with Pretrained
Language Models (PLMs) has attracted increas-
ing attention, showing promising performance
in many knowledge-intensive tasks. Their good
performance has led the community to believe
that the models do possess a modicum of rea-
soning competence rather than merely memo-
rising the knowledge. In this paper, we conduct
a comprehensive evaluation of the learnable
deductive (also known as explicit) reasoning
capability of PLMs. Through a series of con-
trolled experiments, we posit two main findings.
(i) PLMs inadequately generalise learned logic
rules and perform inconsistently against simple
adversarial surface form edits. (ii) While the
deductive reasoning fine-tuning of PLMs does
improve their performance on reasoning over
unseen knowledge facts, it results in catastroph-
ically forgetting the previously learnt knowl-
edge. Our main results suggest that PLMs can-
not yet perform reliable deductive reasoning,
demonstrating the importance of controlled ex-
aminations and probing of PLMs’ deductive
reasoning abilities; we reach beyond (mislead-
ing) task performance, revealing that PLMs are
still far from robust reasoning capabilities, even
for simple deductive tasks.

1 Introduction

Pretrained Language Models (PLMs) such as
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) have orchestrated tremendous progress
in NLP across a large variety of downstream ap-
plications. For knowledge-intensive tasks in par-
ticular, these large-scale PLMs are surprisingly
good at memorising factual knowledge presented
in pretraining corpora (Petroni et al., 2019; Jiang
et al., 2020b) and infusing knowledge from exter-
nal sources (Wang et al., 2021a; Zhou et al., 2022,
among others), demonstrating their effectiveness
in learning and capturing knowledge.

∗Indicates equal contribution.
†Corresponding author.
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Figure 1: Training and inference for deductive reason-
ing. Given the explicit premises (a), the input BERT
model is trained to get transformed into a reasoner R-
BERT model by deductively predicting a previously
unseen conclusion (b). This inference process requires
R-BERT to understand factual knowledge and interpret
rules (e.g. taxonomic relations), intervening directly in
the deduction process.

Automatic reasoning, a systematic process of de-
riving previously unknown conclusions from given
formal representations of knowledge (Lenat et al.,
1990; Newell and Simon, 1956), has been a long-
standing goal of AI research. In the NLP commu-
nity, a modern view of this problem (Clark et al.,
2020), where the formal representations of knowl-
edge are substituted by the natural language state-
ments, has recently received increasing attention,1

yielding multiple exploratory research directions:
mathematical reasoning (Rabe et al., 2021), sym-
bolic reasoning (Yang and Deng, 2021), and com-

1Following Clark et al. (2020), we also define natural lan-
guage rules as linguistic expressions of conjunctive impli-
cations, condition[∧condition]∗ → conclusion, with the
semantics of logic programs with negations (Apt et al., 1988).
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monsense reasoning (Li et al., 2019). Impressive
signs of progress have been reported in teaching
PLMs to gain reasoning ability rather than just
memorising knowledge facts (Kassner et al., 2020;
Talmor et al., 2020), suggesting that PLMs could
serve as effective reasoners for identifying analo-
gies and inferring facts not explicitly/directly seen
in the data (Kassner et al., 2020; Ushio et al., 2021).

In particular, deductive reasoning2 is one of the
most promising directions (Sanyal et al., 2022; Tal-
mor et al., 2020; Li et al., 2019). By definition,
deduction yields valid conclusions, which must be
true given that their premises are true (Johnson-
Laird, 1999). In the NLP community, given all
the premises in natural language statements, some
large-scale PLMs have shown to be able to deduc-
tively draw appropriate conclusions under proper
training schemes (Clark et al., 2020; Talmor et al.,
2020). Figure 1 shows an example of the training
and inference processes of deductive reasoning.

Despite promising applications of PLMs, some
recent studies have pointed out that they could only
perform a shallow level of reasoning on textual
data (Helwe et al., 2021). Indeed, PLMs can be
easily affected by mispriming (Misra et al., 2020)
and still hardly differentiate between positive and
negative statements (i.e., the so-called negation is-
sue) (Ettinger, 2020). However, given that some ev-
idence suggests that PLMs can learn factual knowl-
edge beyond mere rote memorisation (Heinzerling
and Inui, 2021) and their limitations (Helwe et al.,
2021), it is natural to ask, “Can the current PLMs
potentially serve as reliable deductive reasoners
over factual knowledge?” To answer it, as the main
contribution of this work, we conduct a compre-
hensive experimental study on testing the learnable
deductive reasoning capability of the PLMs.

In particular, we test various reasoning training
approaches on two knowledge reasoning datasets.
Our experimental results indicate that such deduc-
tive reasoning training of the PLMs (e.g., BERT
and RoBERTa) yields strong results on the stan-
dard benchmarks, but it inadequately generalises
learned logic rules to unseen cases. That is, they
perform inconsistently against simple surface form
perturbations (e.g., simple synonym substitution,
paraphrasing or negation insertion), advocating a
careful rethinking of the details behind the seem-
ingly flawless empirical performance of deduc-

2This type of reasoning is also often referred to as explicit
reasoning in the literature (Broome, 2013; Aditya et al., 2018).

tive reasoning using the PLMs. We hope our
work will inspire further research on probing and
improving the deductive reasoning capabilities
of the PLMs. Our code and data are available
online at https://github.com/cambridgeltl/
deductive_reasoning_probing.

2 Related Work

Knowledge Probing, Infusing, and Editing
with PLMs. PLMs appear to memorise (world)
knowledge facts during pretraining, and such cap-
tured knowledge is useful for knowledge-intensive
tasks (Petroni et al., 2019, 2021). A body of re-
cent research has aimed to (i) understand how
much knowledge PLMs store, i.e., knowledge
probing (Petroni et al., 2019; Meng et al., 2022);
(ii) how to inject external knowledge into them,
i.e., knowledge infusing (Wang et al., 2021b; Meng
et al., 2021); and (iii) how to edit the stored knowl-
edge, i.e. knowledge editing (De Cao et al., 2021).
In particular, De Cao et al. (2021) have shown that
it is possible to modify a single knowledge fact
without affecting all the other stored knowledge.
However, some empirical evidence suggests that
existing PLMs generalise poorly to unseen sen-
tences and are easily misled (Kassner and Schütze,
2020).3 Moreover, this body of research focuses
only on investigating how to recall or expose the
factual and commonsense knowledge that has been
encoded in the PLMs, rather than exploring their
capabilities of deriving previously unknown knowl-
edge via deductive reasoning, as done in this work.

Knowledge Reasoning with PLMs. In re-
cent years, PLMs have also achieved impressive
progress in knowledge reasoning (Helwe et al.,
2021). For example, PLMs can infer a conclusion
from a set of knowledge statements and rules (Tal-
mor et al., 2020; Clark et al., 2020), with both the
knowledge and the rules being mentioned explicitly
and linguistically in the model input. Some gener-
ative PLMs, such as T5 (Raffel et al., 2020), are
even able to generate natural language proofs that
support implications over logical rules expressed
in natural language (Tafjord et al., 2021). In par-
ticular, some large PLMs, such as LaMDA (Thop-
pilan et al., 2022), have been shown to be able
to conduct multi-step reasoning under the chain

3For instance, if we add the talk token into the statement
“Birds can [MASK].” (i.e. “Talk. Birds can [MASK].”), the
PLM might be misled by the added token and predict talk
rather than the originally predicted fly token (Kassner and
Schütze, 2020).

1448

https://github.com/cambridgeltl/deductive_reasoning_probing
https://github.com/cambridgeltl/deductive_reasoning_probing


of thought prompting (Wei et al., 2022) or proper
simple prompting template (Kojima et al., 2022).
Although the generated ‘reasoning’ statements po-
tentially benefit some downstream tasks, there is
currently no evidence that the statements are gener-
ated via deductive reasoning, rather than obtained
via pure memorisation. Generative reasoning mod-
els are difficult to evaluate since this requires huge
effort of manual assessment (Bostrom et al., 2021).

Although some research has demonstrated that
PLMs can learn to effectively perform inference
which involves taxonomic and world knowledge,
chaining, and counting (Talmor et al., 2020), pre-
liminary experiments on a single test set in more re-
cent research have revealed that fine-tuning PLMs
for editing knowledge might negatively affect the
previously acquired knowledge (De Cao et al.,
2021). Our work performs systematic and con-
trolled examinations of the deductive reasoning ca-
pabilities of PLMs and reaches beyond (sometimes
misleading) task performance.

3 Deductive Reasoning

What is Deductive Reasoning? Psychologists de-
fine reasoning as a process of thought that yields
a conclusion from precepts, thoughts, or asser-
tions (Johnson-Laird, 1999). Three main schools
describe what people may compute to derive this
conclusion: relying on factual knowledge (Ander-
son, 2014; Newell, 1990), formal rules (Braine,
1998; Braine and O’Brien, 1991), mental mod-
els (Johnson-Laird, 1983), or some mixture of
them (Falmagne and Gonsalves, 1995). Our experi-
mental study focuses on a ‘computational’ aspect of
reasoning — namely, whether computational PLMs
for reasoning inadequately generalise learned logic
rules and perform inconsistently against simple ad-
versarial reasoning examples.

We investigate deductive reasoning in the con-
text of NLP and neural PLMs. In particular, the
goal of this deductive reasoning task is to train a
PLM (e.g. BERT) over some reasoning examples
(each with a set of premises and a conclusion) to
become a potential reasoner (e.g. R-BERT as illus-
trated in Figure 1). Then, the trained reasoner can
be used to infer deductive conclusions consistently
over explicit premises, where the derived conclu-
sions are usually unseen during the PLM pretrain-
ing/training. This inference process requires the
underlying PLMs to understand factual knowledge
and interpret rules intervening in the deduction pro-
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[can]
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Figure 2: Different reasoning training approaches.

cess. In this paper, we only focus on the encoder-
based PLMs (e.g. BERT and RoBERTa) as they
can be evaluated under more controllable condi-
tions and scrutinised via automatic evaluation. In
particular, we investigate two task formulations of
the deductive reasoning training: 1) classification-
based and 2) prompt-based reasoning, as follows.

3.1 Classification-based Reasoning
The classification-based approach formulates the
deductive reasoning task as a sequence classifica-
tion task. LetD = {D(1),D(2), · · · ,D(n)} be a rea-
soning dataset, where n is the number of examples.
Each example D(i) ∈ D contains a set of premises
P(i) = {p(i)

1 ,p
(i)
2 . . .p

(i)
j }, a hypothesis h(i), and

a binary label l(i) ∈ {0, 1}. A classification-based
reasoner takes the input of P(i) and h(i), then out-
puts a binary label l(i) indicating the faithfulness
of h(i), given that P(i) is hypothetically factual.

The goal of the classification-based reasoning
training is to build a statistical model param-
eterised by θ to characterise Pθ(l

(i)|h(i),P(i)).
Those PLMs built on the transformer encoder ar-
chitecture, such as BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019), can be used as
the backbone of such a classification-based rea-
soner. Figure 2(a) shows an example of using the
BERT model to train a classification-based rea-
soner (CLS-BERT). In particular, given a training
example D(i) = {l(i),h(i),P(i)}, the BERT model
is trained to predict the hypothesis label by encod-
ing [h(i);P(i)] and computing Pθ(l

(i)|h(i),P(i)).
To do so, the contextualised representation of the
‘[CLS]’ token is subsequently projected down to
two logits and passed through a softmax layer to
form a Bernoulli distribution indicating that a hy-
pothesis is true or false.

3.2 Prompt-based Reasoning
Deductive reasoning can also be approached as a
cloze-completion task by formulating a valid con-
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clusion as a cloze test. Specifically, given a rea-
soning example, i.e., D(i) with its premises P(i),
and a cloze prompt c(i) (e.g. “A [MASK] can fly”),
instead of predicting a binary label, this cloze-
completion task is to predict the masked token a(i)

(e.g. raven) to the cloze question c(i).

The BERT-based models have been widely used
in the prompt-based reasoning tasks (Helwe et al.,
2021; Liu et al., 2022), by concatenating the
premises and the prompt as input and predicting the
masked token based on the bidirectional context.
In general, there are two training objectives for the
prompt-based reasoning task, i.e., the mask lan-
guage modelling (MLM) and task-specific (cloze-
filling) objectives. For MLM, the given PLMs are
trained over the reasoning examples using their
original pretraining MLM objective to impose de-
ductive reasoning ability; see Figure 2(b) for an
example of the BERT reasoner MLM-BERT. For
the cloze-filling objective, the PLMs are trained
with a task-specific cloze filling objective. As il-
lustrated in Figure 2(c), Cloze-BERT is trained to
predict the masked token in the cloze prompt, by
computing the probability Pθ(a(i)|c(i),P(i)). We
note that, unlike the original pretraining MLM ob-
jective where 15% tokens of the input are masked
randomly, the cloze-filling objective only masks
the answer token a(i) in the cloze prompt c(i).

This prompt-based reasoning task matches the
mask-filling nature of BERT. In this way, we can
probe the native reasoning ability of BERT without
any further fine-tuning and evaluate the contribu-
tion of reasoning training to the PLMs’ reasoning
ability. Foreshadowing, our experimental results in
Section 5 indicate that reasoning training impacts
the model both positively and negatively.

4 Experiments and Results

Recent PLMs have shown surprisingly near-perfect
performance in deductive reasoning (Zhou et al.,
2020). However, we argue that high performance
does not mean PLMs have mastered reasoning
skills. To validate this, we run controlled exper-
iments to examine whether PLM-based reasoners
genuinely understand the natural language con-
text, produce conclusions robustly against lexical
and syntactic variance in surface forms, and apply
learned rules to unseen cases.

4.1 Datasets

Two datasets are used to examine the PLM-based
reasoners, namely, the Leap of Thought (LoT)
dataset (Talmor et al., 2020) and the WikiData
(WD) dataset (Vrandecic and Krötzsch, 2014).

LoT was originally proposed for conducting the
classification-based reasoning experiments for de-
ductive reasoning (Talmor et al., 2020) and has
been used as a standard (and sole) benchmark to
probe the deductive reasoning capabilities of PLMs
(Tafjord et al., 2021; Helwe et al., 2021). This
dataset is automatically generated by prompting
knowledge graphs, including ConceptNet (Speer
et al., 2017), WordNet (Fellbaum, 1998) and Wiki-
Data (Vrandecic and Krötzsch, 2014). LoT con-
tains 30,906 training instances and 1,289 instances
for each validation and testing set. Each data point
in LoT also contains a set of distractors that are
similar but irrelevant to deriving the conclusion.

For the prompt-based reasoning task, we can
reformulate the LoT dataset to fit our cloze-
completion task. Instead of having a set of premises
P , a hypothesis h, and a binary label l, we rewrite
the hypothesis in LoT into a cloze c and the answer
a (e.g. A raven can fly. → A [MASK] can fly.).
Note that we only generate those cloze questions
on the positive examples. Consequently, the results
across these two tasks are not directly comparable.

The WD dataset is an auxiliary reasoning dataset
which we generated and extracted from Wiki-
data5m (Wang et al., 2021b). Similar to previous
work (Petroni et al., 2019; Talmor et al., 2020),
we converted a set of knowledge graph triples
into linguistic statements using manually designed
prompts. The full description of the dataset con-
struction is provided in Appendix C. The final WD
dataset contains 4,124 training instances, 413 vali-
dation instances, and 314 test instances. WD only
contains positive examples: therefore, we only use
this dataset for the cloze-completion task.

4.2 Adversarial Probing

Previous work demonstrates that PLMs can achieve
near-perfect empirically results in reasoning tasks.
For example, RoBERTa-based models record a
near-perfect accuracy of 99.7% in the deductive
reasoning task on LoT (Talmor et al., 2020). How-
ever, another recent study shows that in some natu-
ral language inference benchmarks, PLMs are still
not robust to the negation examples (Hossain et al.,
2020), while humans can handle negations with

1450



Perturbation Premises Conclusion Valid

Original A bird can fly. A raven is a bird. A raven can fly. ✓

Paraphrasing A bird is able to fly. A raven is a bird species. A raven can fly. ✓

Synonym Substitution A fowl can fly. A raven is a fowl. A raven can fly. ✓

Negation A bird can fly. A raven is a bird. A raven cannot fly. ✗

Retained knowledge A bird can live up to 100 years. – ✓

Table 1: Examples of different perturbations strategies that were used to create the adversarial dataset (see §4.2).

ease. In order to systematically probe PLMs’ de-
ductive reasoning capabilities, we design controlled
experiments over three different adversarial test
settings by generating different surface form per-
turbations, negation of the original examples, and
creating additional retained knowledge anchors.
Table 1 shows some different adversarial examples.

Surface Form Perturbations. The theory of men-
tal models postulates that deductive reasoning is
based on manipulations of mental models repre-
senting situations. In other words, envisaging the
situations and making a deduction can be viewed as
a semantic process (Johnson-Laird, 1999; Polk and
Newell, 1995). On the other hand, previous works
demonstrate that, instead of learning interpretable
meaning representations and generalising across
different surface forms, PLMs tend to learn arte-
facts in the training data, e.g., higher-order word
co-occurrence statistics (Sinha et al., 2021).

As both LoT and WD datasets are prompted
from knowledge graphs, the lexical and syntactical
variance of the dataset is minimal, with imaginable
artefacts. To examine if the PLM-based reasoner
could consistently perform reasoning against lin-
guistic diversity and variability (in terms of both
the token-level and the syntactic-level diversity),
we employ two types of surface form perturbations
to the data items from the original datasets:

• Synonym Substitution: In order to investi-
gate to what extent the PLM-based reasoners
would be sensitive to the token-level semantic
diversity in terms of deriving their conclusions,
we employ synonym substitution (Dhole et al.,
2021) to the premises P . Synonym substitution
does not modify the syntactic structures and the
premises’ semantics, preserving all the original
input’s structural information. In our setting, a
word is replaced by a uniform-randomly selected
synonym based on WordNet (Fellbaum, 1998)
with a probability of 50%.

• Paraphrasing: To further investigate the
PLM-based reasoners’ robustness on sentence-
level semantic variability, we paraphrase the
premises P with two paraphrasing systems:
(i) PEGASUS, an end-to-end model fine-tuned
for paraphrasing (Zhang et al., 2020) (ii) Syntac-
tically Diverse Paraphrasing (SD-Paraphrasing),
a two-step framework that incorporates neural
syntactic preordering for better diversity (Goyal
and Durrett, 2020).

Negated Examples. Understanding negation is
often considered as the first test case in natural lan-
guage understanding tasks (Ettinger, 2020; Khem-
lani et al., 2012; Schon et al., 2021). To exam-
ine whether PLMs can handle negation in the
deductive reasoning task, we construct a set of
negated samples by negating the hypothesis h or
the cloze prompt c while keeping the premises
P unchanged (Hosseini et al., 2021). For the
classification-based reasoning task, the label of
the negated hypothesis is then also flipped. For
the cloze-completion task, since the answer for the
original query will unlikely be the same answer for
the negated queries, predicting the original answer
would be regarded as a wrong prediction.

Anchors of Retained Knowledge. Prior work has
shown that PLMs are prone to forgetting previously
learnt knowledge when fine-tuning with new knowl-
edge data (De Cao et al., 2021), the so-called catas-
trophic forgetting issue (Kirkpatrick et al., 2017;
de Masson d'Autume et al., 2019). It is thus natural
to also probe whether deductive reasoning training
still retains the knowledge already stored in the
original PLM. In this work, in order to measure to
which extent PLMs retain the knowledge acquired
during pretraining, we introduce a set of ‘retained
knowledge statements’ or anchors for each dataset.
There are two criteria for such anchors: (i) they
are semantically close to the conclusions in our test
data, (ii) they do not meet the conditions of the
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premises for a reasoning replacement.4 Ideally, the
reasoning training should not affect the prediction
of PLMs when reasoning over these anchors.

We create such a set of anchors for both LoT and
WD, and investigate the behaviour of the reasoning
models over these anchors based on the prompt-
based reasoning task. In particular, these anchors
should be real-world textual statements that con-
tain the target word (to meet criterion (i) above),
but their newly composed sentences (by the rea-
soning replacement) are unlikely true statements
(to meet criterion (ii) above). To this end, we use
the BM25 algorithm (Sparck Jones et al., 2000)
to retrieve the top 10 sentences for each ‘reason-
ing’ target word from the Wikipedia corpus.5 Then,
we construct the anchor sentences based on these
top 10 retrieved sentences by replacing their target
words with their hyponym/hypernym words. The
final anchors are selected from these top 10 sen-
tences only when the newly created sentences do
not likely exist in the entire Wikipedia corpus (i.e.
their top-1 similar sentence should have less than
a BM25 score of 50). Ideally, this set of retrained
knowledge statements is relevant but should not be
affected by the reasoning training.

4.3 Evaluation

Following previous work (Talmor et al., 2020), the
evaluation metric for classification-based reason-
ing is accuracy. For prompt-based reasoning, we
calculate top K recall (R@K) by measuring what
fraction of the correct answers are retrieved in the
top K predictions. For the negation examples, we
report the top K error rate (E@K) because a re-
trieved answer a and the negated cloze question ¬c
would compose a fallacy.

In the following, we report our findings and nu-
merical results based on the BERT-based reasoners
(in particular bert-base-uncased), but we note
that other PLMs (such as RoBERTa) of various
sizes observe the same performance trends and
result in the same findings and conclusions. Ap-
pendix B provides results for other PLMs.

4Taking the premise (a) of Figure 1 as an example, the
‘bird’ token in the statement ‘A bird can fly.’ was replaced by
its hyponym ‘raven’ after reasoning training. However, in the
anchor statement ‘The bird species is decreasing.’, the ‘bird’
token should not be replaced by ‘raven’.

5ElasticSearch: https://github.com/elastic/elasticsearch.

Model R@1 R@5 R@10

Dataset: LoT

Pretrained 13.15 59.18 70.96
MLM-BERT 98.36 98.36 98.36
Cloze-BERT 99.73 100 100

Dataset: WD

Pretrained 27.07 64.97 72.93
MLM-BERT 99.04 99.36 99.36
Cloze-BERT 100 100 100

Table 2: Recall of the correct answer in the top K pre-
dictions (R@K) from the BERT model before and after
deductive prompt-based reasoning fine-tuning. Both
MLM-BERT and Cloze-BERT achieve (near-)perfect
R@1 scores after fine-tuning.

5 Results and Discussion

We evaluate the impact of reasoning training on
the PLMs and investigate their robustness against
three well-known issues of PLMs: utilising arte-
facts from data, incapability of modelling negation,
and catastrophic forgetting. We further conduct
qualitative analysis to understand the inference er-
rors introduced by deductive reasoning training.

5.1 Deductive Reasoning Training

Finding 1 All the deductive reasoning training ap-
proaches significantly improve PLMs’ reasoning
capabilities, achieving near-perfect deductive rea-
soning performance on both the reasoning test sets.

Table 2 reveals that the prompt-based reasoners
achieve near-perfect performance on both datasets,
regardless of the reasoning training method. In par-
ticular, on LoT dataset the R@1 score of BERT has
increased from 13.15% to 98.36% and 99.73% af-
ter the MLM reasoning training (i.e. MLM-BERT)
and the cloze reasoning training (i.e. Cloze-BERT)
respectively, which are in line with previously re-
ported result (Talmor et al., 2020). The near-perfect
trends are observed in the classification-based rea-
soning models, where CLS-BERT also achieves
a high accuracy score of 94.72% after reasoning
training (Table 5).6 In sum, while the off-the-shelf
BERT model already demonstrates a decent level
of empirical performance, conducting reasoning
training on the pretrained BERT achieves strong or
even near-perfect performance on both datasets.
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Adversarial Probing LoT WD

Pretrained MLM-BERT Cloze-BERT Pretrained MLM-BERT Cloze-BERT

Original 13.15 98.36 99.73 27.07 99.04 100.00

+ Pegasus-Paraphrasing 11.79 (↓1.36) 64.66 (↓33.70) 50.96 (↓48.77) 16.88 (↓10.19) 49.36 (↓49.68) 51.27 (↓48.73)
+ SD-Paraphrasing 5.75 (↓7.40) 9.32 (↓89.04) 0.55 (↓99.18) 16.56 (↓10.51) 27.39 (↓71.65) 31.21 (↓68.79)
+ Syn. Substitution 20.00 (↑6.85) 64.38 (↓33.98) 64.66 (↓35.07) 15.29 (↓11.78) 61.78 (↓37.26) 62.42 (↓37.58)

Table 3: R@1 scores on test sets obtained via applying various surface form perturbations from Section 4.2.

Examples BERT MLM-BERT Cloze-BERT
A holly is not music. A holly is part of a forest.
A plant is an actor. A music is not an actor.
A holly is a plant. A bluebottle is an organism.
A marigold is not an angiosperm.
A holly is not an important food source.
A <MASK> is not an actor.

musician (0.1213) ✓ holly (0.7168) ✗ holly (0.9999) ✗

A perry is not a tree. A tree is not capable of burn.
Alcohol is capable of burn. A perry is an alcohol.
A <MASK> is not capable of burn.

tree (0.5244) ✓ person (0.0300) ✗ perry (0.9999) ✗

Table 4: Examples of top 1 predictions from the set of negated examples based on LoT test set. The wrong
predictions are in red, and the reasonable predictions are in green. Some other key-related entities are in the same
colour. The numbers in the parentheses are the respective probabilities of each prediction after the softmax layer.

Adversarial Probing LoT

CLS-BERT

Original 94.72

+ Pegasus-Paraphrasing 83.86 (↓10.86)
+ SD-Paraphrasing 71.14 (↓23.58)
+ Syn. Substitution 84.48 (↓10.24)
+ Negation 9.34 (↓85.49)

Table 5: Accuracy scores on test sets obtained via apply-
ing various surface form perturbations from Section 4.2.

5.2 Surface Form Perturbations

Finding 2 Surface form perturbations drastically
decrease PLMs’ reasoning performance.

A natural follow-up question to ask is to what ex-
tent the aforementioned near-perfect numbers re-
ally reflect the model’s reasoning abilities. We thus
perform surface form perturbations to add lexical
and syntactic variance to the test datasets and probe
the model against such variations.

Table 3 demonstrates the performances of the
MLM-BERT and Cloze-BERT reasoners, as well
as the vanilla pretrained BERT language model,
on our controlled test sets generated by different

6Note that we cannot obtain the performance of original
BERT since the classification head has not been trained yet.

perturbation approaches. We can observe that the
scores for both reasoners decrease substantially
(>30%) even when applying simple synonym sub-
stitution, which only adds lexical variance to the
prompt-generated query. In contrast, the pretrained
BERT language model is less vulnerable to such
an issue. This finding aligns with the hypothesis
that PLMs tend to memorise word co-occurrence
statistics (Sinha et al., 2021).7

We also observe from Table 3 that the R@1 per-
formances of all reasoners decrease strongly when
applying either the Pegasus-Paraphrasing or SD-
Paraphrasing methods to the premises. In particular,
the drops are especially pronounced with the SD-
Paraphrasing method, which is designed exactly to
generate syntactically very diverse paraphrases. On
the other hand, we see from Table 5 that similar per-
formance degradation trends can be observed in the
classification-based reasoning task. These results
illustrate that current PLMs perform inconsistently
against various surface form perturbations, suggest-
ing that future work should look into the creation
of more robust reasoners that should be resilient to
lexical, syntactic, and semantic variability.

7The comparison of large models (e.g. bert-large) can
be found in Appendix B, which indicates the similar trends.
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Figure 3: Results (E@1 scores, lower is better) on the
test set comprising negated examples; before versus
after deductive-reasoning training.

5.3 Negated Examples

Finding 3 All reasoners cannot distinguish be-
tween negated and non-negated examples.

Figure 3 reveals that the error rate E@1 scores (the
lower, the better)8 for all reasoners on the set of
negated examples largely increase after reasoning
training. The original off-the-shelf BERT model
achieves E@1 of 18.63% on LoT and 14.33% on
the WD dataset. However, after reasoning train-
ing, the error rate of MLM-BERT significantly in-
creases to 98.36% (LoT) and 98.73% (WD). Cloze-
BERT’s performance is even worse, with E@1
scores of 99.73% (LoT) and 100% (WD), suggest-
ing a clear case of overfitting to word co-occurrence
and other artefacts in the training sets. Moreover,
the accuracy score on negated LoT examples is only
9.34%, while a random baseline would score 50%.
In sum, these scores indicate that the PLM-based
reasoners cannot distinguish between negated and
non-negated examples, and their performance on
negated examples substantially worsens after rea-
soning training due to task-specific overfitting.

A quick error analysis, provided in Table 4,
further points to the issues with negated exam-
ples. The first example shows that the off-the-shelf
BERT model makes a reasonable guess, semanti-
cally related to an entity mentioned in the premises.
This guess is similar to a human guess from the
same premises. However, after reasoning training,
both MLM-BERT and Cloze-BERT make wrong
predictions, and Cloze-BERT is extremely confi-

8E@1 only denotes a specific type of error: the model
makes a wrong prediction due to negation being added, i.e.
the negation error. However, many other types of errors that
a model can make a wrong prediction, but they are not our
focus and thus not measured. In other words, (1 - E@1) is not
equivalent to accuracy.

LoT Retrained WD Retrained
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20

40
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80

100
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Figure 4: Results (R@1 scores, higher is better) on
the test set comprising anchors of retained knowledge;
before versus after deductive-reasoning training.

dent in its wrong predictions.

5.4 Anchors of Retained Knowledge
Finding 4 Previously learnt knowledge is not fully
retained after reasoning training, and the trained
reasoners (catastrophically) forget it.

Figure 4 shows that performance on the anchors
deteriorates substantially after reasoning training.
On LoT, MLM-BERT ‘forgets’ ∼77% of the previ-
ously learnt knowledge, achieving only 23.34% on
R@1. Cloze-BERT performs even worse, scoring
only 6.27% R@1. The drops are slightly lower but
still substantial on WD: MLM-BERT retains 65.7%
and Cloze-BERT retains 41.32% of the previously
stored knowledge. This result indicates that rea-
soning training yields the well-known phenomenon
of catastrophic forgetting: this effect seems even
more pronounced with Cloze-BERT, which relies
on a very task-specific objective that might result
in overfitting the task data.

Furthermore, Table 6 displays several qualitative
examples where the predictions in green refer to
the correct predictions based on human judgement.
Notice that in the last example, even though the pre-
dictions from the two trained reasoners are correct,
the probabilities are much lower.

Several strategies might help mitigate catas-
trophic forgetting. A promising direction is en-
capsulating lightweight adapter modules (Houlsby
et al., 2019; Pfeiffer et al., 2020b; Ansell et al.,
2021) within the underlying PLM, where all the
‘deductive reasoning capability’ will be stored
solely in the adapter modules, leaving the original
PLM intact (Pfeiffer et al., 2020a). Other similar
parameter-efficient and modular methods include
prefix tuning (Li and Liang, 2021) or sparse masks
(Sung et al., 2021; Ansell et al., 2022). Their main
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Examples BERT MLM-BERT Cloze-BERT

a flea is a parasitic <MASK>. insect (0.2006) ✓ substance (0.1950) ✗ drone (0.0193) ✗

vapour density is a unitless <MASK>. quantity (0.3494) ✓ quantity (0.2197) ✓ volume (0.0412) ✗

both sexes have a throat <MASK>. pouch (0.5169) ✓ ##lid (0.3606) ✗ hollow (0.0135) ✗

firefox is a web <MASK>. browser (0.9144) ✓ browser (0.8861) ✓ browser (0.3243) ✓

Table 6: Examples of top 1 predictions from the set of Anchors of Retained Knowledge based on LoT. A wrong
prediction is in red, and a reasonable prediction (aligning with human judgement) is in green. The numbers in the
parentheses are the respective probabilities of each prediction after the softmax layer.

premise is to separate knowledge extraction and
composition, preserving previously learnt knowl-
edge during reasoning training. We leave reasoning
training with such methods for future research.

6 Conclusion

In this paper, we probed into the deductive rea-
soning capabilities of PLMs and conducted com-
prehensive controlled experiments to examine and
compare various deductive reasoning training ap-
proaches. Our experimental results showed that
current PLM-based deductive reasoners suffer from
several issues: 1) they rely on artefacts from the
training data, 2) they are incapable of modelling
negation in deductive reasoning, and 3) they for-
get knowledge acquired during pretraining when
they get specialised into deductive reasoners. In
particular, our experimental study demonstrated
that models are vulnerable to multiple adversarial
methods, including simple surface form perturba-
tions such as synonym substitution or paraphrasing.
While the PLMs trained for deductive reasoning
achieve seemingly perfect empirical results in dif-
ferent reasoning datasets, they cannot yet systemat-
ically generalise to other deductive reasoning exam-
ples. Consequently, our study also calls for further,
more rigorous examinations of future PLM-based
models’ deductive reasoning abilities.
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Limitations

Despite the thorough experiments on standard and
popular PLMs of various sizes, this study explores
only encoder-based models. Some generation-
based models under other Transformer architec-

tures, such as encoder-decoder (T5) or decoder-
only (GPT-3), were also deployed in the reasoning
tasks (Bostrom et al., 2021; Wei et al., 2022). We
do not probe those groups of models here due to
the difficult of evaluation and we leave them for
future research.

Further, for prompt-based reasoning, the current
reasoners only support and have been evaluated on
single-token prediction in a single language (i.e.
English). Several prior works have demonstrated
that conducting multi-token prediction is consid-
erably more difficult (Jiang et al., 2020a), which
would pose an additional challenge to the PLMs in
deductive reasoning tasks. One avenue of future
work should also extend the scope of analyses to
multilingual and multi-token prediction.

In addition, we note that better evaluation re-
sources that could address paraphrases and word
senses, especially for mask-filling tasks, are still
lacking. This limitation is particularly significant in
our setting. For example, in addition to the single-
token answer in the evaluation datasets we used,
there are some other feasible answers (e.g. syn-
onyms) for the same query, which should also be
considered a correct prediction. However, such
answers are ignored by the current standard evalua-
tion protocols. As a result, there is a certain level
of unavoidable noise in the evaluation process.

Finally, introducing a reasoning dataset is highly
challenging and appreciated by the community.
Leap-of-thought is to our knowledge the only ex-
isting dataset that is suitable for our deductive rea-
soning evaluation. To solidify our conclusions,
we further constructed an auxiliary dataset (WD)
following a similar procedure to LoT. Although
our data construction method is commonly used to
extract reasoning examples, such an automatic pro-
cedure, unfortunately, inevitably reflects the quality
and errors (e.g. nonsensical statements) from our
source (WikiData). To reduce such noisy examples,
we have conducted multiple rounds of filtering (see
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Appendix for the filtering process) and manually
removed as many meaningless relations as we can,
given that manually verifying each reasoning ex-
ample is a highly labour-intensive task.
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A Experimental Details

Table 7 lists our model hyperparameters. Among
these models, MLM-BERT and Cloze-BERT were
implemented using the HuggingFace transform-
ers package (Wolf et al., 2020). We implement
CLS-BERT via the SBERT repository (Reimers
and Gurevych, 2019), which is built on top of the
HuggingFace repository (Wolf et al., 2020). Unless
mentioned otherwise, all the hyperparameters are
set to the default values provided in the Hugging-
Face and SBERT repositories.

Hyper-parameter Value

MLM-BERT and Cloze-BERT

batch_size 2
max_sequence_length 512
training_epoch 3

CLS-BERT

batch_size 64
max_sequence_length 128
training_epoch 20

Table 7: Model hyper-parameters.

B Evaluation Results for PLMs

Table 8 supplements the main paper by provid-
ing additional results with classification-based rea-
soners, where the reasoners start from different
PLMs: distil-bert, bert-base, bert-large,
roberta-base, and roberta-large. These re-
sults corroborate the main findings presented in
the main paper; see Section 5. Larger models do
perform slightly better than their smaller variants
on average. However, the results also demonstrate
that different models, regardless of their size, suffer
from exactly the same issues, discussed in the main
paper.

Table 9 and Table 10 demonstrate performance
over adversarial test sets for prompt-based reason-
ers (1. MLM-based, 2. Cloze-based). The findings
from these tables align with the findings from the
main results presented in Section 5.

C WD Dataset Construction Pipeline

We construct the WD dataset following the pipeline
shown in Figure 5, and outlined in what follows.

Source Data. We choose the Wikidata5m
dataset (Wang et al., 2021b) as the knowledge
source for WD. Wikidata5m is a million-scale

knowledge graph dataset created upon Wiki-
data (Vrandecic and Krötzsch, 2014). This dataset
comprises 20 million triples, describing relevant
and important knowledge statements about real-
world entities.

WD Dataset

Filtering

Prompting

Wikidata5m Dataset

Figure 5: Data construction pipeline for the WD dataset.
This WD dataset is extracted and derived from Wiki-
Data5m (Wang et al., 2021b). Following the previous
pipeline (Petroni et al., 2019), we convert a set of knowl-
edge graph triples into linguistic statements using man-
ually designed prompts.

Prompting. We manually select a set of relations
based on their frequency and design their corre-
sponding prompts shown in Table 11. Given a
taxonomic relation, such as is_a with relation ID
P31, we sample a relevant taxonomic-knowledge
graph triple: ⟨raven, is_a, bird⟩. We then retrieve
other relevant triples about the subject and the ob-
ject, for example, ⟨bird, is_capable_of, fly⟩ and
⟨raven, is_capable_of, fly⟩. Next, we use our
predefined prompts to convert the knowledge graph
triples to textual knowledge statements: A bird can
fly, A bird is a raven and A raven can fly. Fur-
thermore, these prompted statements assemble an
inference instance in the WD dataset: if A bird
can fly and A bird is a raven, then A raven can fly.
In our cloze-completion task setting, we mask the
object of the taxonomic triple (e.g. raven) in the
conclusion statement to form a cloze question (A
[MASK] can fly). Therefore, raven is the correct
answer to this question.

Filtering. We filter those constructed inference
instances with the following properties: (i) We
only choose examples with answers being a sin-
gle masked token, and these answers should be
included in the BERT vocabulary. (ii) For all in-
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Adversarial Probing LoT
distilbert-based-uncased bert-base-uncased bert-large-uncased roberta-base roberta-large

Original 90.22 94.72 98.76 92.71 99.38
+ Pegasus-Paraphrasing 77.27 (↓12.95) 83.86 (↓10.86) 84.40 (↓14.35) 80.84 (↓11.87) 87.20 (↓12.18)
+ SD-Paraphrasing 66.56 (↓23.66) 71.14 (↓23.58) 73.39 (↓25.39) 75.95 (↓16.76) 78.97 (↓20.40)
+ Syn. Substitution 81.46 (↓8.76) 84.48 (↓10.24) 93.33 (↓5.43) 80.76 (↓11.95) 94.26 (↓5.12)
+ Negation 18.86 (↓71.37) 9.34 (↓85.49) 2.58 (↓96.28) 19.40 (↓73.31) 35.85 (↓63.53)

Table 8: Accuracy on different LoT adversarial test sets for classification-based reasoners with various back-boned
PLMs.

Adversarial Probing LoT WD
MLM-DISTILBERT MLM-BERT MLM-BERT-LARGE MLM-DISTILBERT MLM-BERT MLM-BERT-LARGE

Original 99.45 98.36 99.45 99.36 99.04 98.09
+ Pegasus-Paraphrasing 76.71 (↓22.74) 64.66 (↓33.7) 60.27 (↓39.18) 56.05 (↓43.31) 49.36 (↓49.68) 52.23 (↓45.86)
+ SD-Paraphrasing 24.66 (↓74.79) 9.32 (↓89.04) 4.93 (↓94.52) 28.66 (↓70.7) 27.39 (↓71.65) 33.12 (↓64.97)
+ Syn. Substitution 64.11 (↓35.34) 64.38 (↓33.98) 64.93 (↓34.52) 62.1 (↓37.26) 61.78 (↓37.26) 60.19 (↓37.9)
+ Negation (E@1 ↓) 97.53 98.36 95.89 99.36 98.73 98.41
Retained Knowledge 25.86 23.34 26.67 58.33 65.7 56.61

Table 9: Top 1 recall (R@1) on adversarial test sets for various prompt-based reasoners with MLM training. The
numbers for the negated examples indicate the top 1 error rates (the lower, the better).

Adversarial Probing LoT WD
Cloze-DISTILBERT Cloze-BERT Cloze-BERT-LARGE Cloze-DISTILBERT Cloze-BERT Cloze-BERT-LARGE

Original 100 99.73 98.63 100 100 100
+ Pegasus-Paraphrasing 57.81 (↓42.19) 50.96 (↓48.77) 47.4 (↓51.23) 57.01 (↓42.99) 51.27 (↓48.73) 56.37 (↓43.63)
+ SD-Paraphrasing 2.74 (↓97.26) 0.55 (↓99.18) 0.82 (↓97.81) 37.26 (↓62.74) 31.21 (↓68.79) 46.82 (↓53.18)
+ Syn. Substitution 64.66 (↓35.34) 64.66 (↓35.07) 63.84 (↓34.79) 62.74 (↓37.26) 62.42 (↓37.58) 62.74 (↓37.26)
+ Negation (E@1 ↓) 100 99.73 98.63 100 100 99.68
Retained Knowledge 11.79 6.27 1.45 35.61 41.32 16.95

Table 10: Top 1 recall (R@1) on adversarial test sets for various prompt-based reasoners with Cloze-filling training.
The numbers for the negated examples indicate the top 1 error rates (the lower, the better).

ference instances, the maximum number of oc-
currences of a single answer is 50 to balance the
dataset and avoid excessive repetition.

Final WD Dataset. The final WD dataset
contains 4,851 instances, which are randomly
split into 4,124/413/314 instances for train-
ing/validation/testing while keeping that the an-
swers of the testing set should not appear in the
training/validation sets. This is to ensure that
trained reasoners need to draw conclusions via con-
ducting deductive reasoning rather than via memo-
risation.
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Relation ID Prompt

P31 [X] is a [Y] .
P136 [X] is a genre of [Y] .
P179 [X] is part of the [Y] series .
P279 [X] is a subclass of [Y] .
P527 [X] consists of [Y] .
P1269 [X] is a topic of [Y] .
P17 [X] is hosted in [Y] .
P39 [X] holds a [Y] position .
P101 [X] is a subject of [Y] .
P106 [X] is a [Y] by profession .
P140 The religion of [X] is [Y] .
P144 [X] is based on [Y] .
P180 [X] is a painting of [Y] .
P276 [X] is located at [Y] .
P306 [X] runs on [Y] operating system .
P355 [X] owns [Y] .
P360 [X] is a list of [Y] .
P400 [Y] is a platform of [X] .
P404 The game mode of [X] is [Y] .
P462 The color of [X] is [Y] .
P463 [X] is a member of [Y] .
P737 [X] is influenced by [Y] .
P749 [Y] owns [X] .
P1303 [X] plays [Y] .
P1343 [X] is written about in [Y] .

Table 11: Manually written prompts for generating the
WD dataset. Given a triple ⟨[X], R_ID, [Y ]⟩, the tex-
tual knowledge statement (e.g. premises) is written
based on the above prompts. R_ID is the unique rela-
tion ID in the Wikidata5m dataset. Gray entries (first
six rows) denote taxonomic relations.
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Abstract

This work focuses on in-context data augmenta-
tion for intent detection. Having found that aug-
mentation via in-context prompting of large pre-
trained language models (PLMs) alone does
not improve performance, we introduce a novel
approach based on PLMs and pointwise V-
information (PVI), a metric that can measure
the usefulness of a datapoint for training a
model. Our method first fine-tunes a PLM on a
small seed of training data and then synthesizes
new datapoints – utterances that correspond to
given intents. It then employs intent-aware fil-
tering, based on PVI, to remove datapoints that
are not helpful to the downstream intent clas-
sifier. Our method is thus able to leverage the
expressive power of large language models to
produce diverse training data. Empirical results
demonstrate that our method can produce syn-
thetic training data that achieve state-of-the-art
performance on three challenging intent detec-
tion datasets under few-shot settings (1.28%
absolute improvement in 5-shot and 1.18% ab-
solute in 10-shot, on average) and perform on
par with the state-of-the-art in full-shot settings
(within 0.01% absolute, on average).

1 Introduction

Intent detection, defined as the identification of a
user’s intent given an utterance, is a fundamental
element in task-oriented dialogue systems, usually
occurring within the Natural Language Understand-
ing (NLU) component. One of the practical chal-
lenges of training and deploying NLU modules
is data scarcity, due to various reasons, such as
under-represented languages, privacy and ethical
concerns, or simply the cost of collecting and anno-
tating sufficiently large amounts of data for new in-
tents. Consequently, accurately identifying intents
in limited-resource scenarios has drawn attention
from the community (Papangelis et al., 2021; Mehri
and Eric, 2021; Zhang et al., 2021b, for example).

∗ Work done during internship at Amazon Alexa AI

There are three main families of approaches that
address the challenge of limited data for intent de-
tection: data augmentation (Peng et al., 2021; Li
et al., 2021), focusing on generating high-quality
synthetic training and evaluation data; few-shot
learning (Zhang et al., 2020, 2021b), focusing on
creating learning algorithms that can cope with lim-
ited amounts of data; and transfer learning (Namaz-
ifar et al., 2021), focusing on learning algorithms
that can generalize across domains (therefore not
requiring in-domain data). In this work, we fol-
low the data augmentation approach, which is a
general method that attempts to augment a human-
authored dataset with a large set of synthetically-
generated instances. Most recent work has sug-
gested using Pre-trained Language Models (PLMs)
for data augmentations under various setups, e.g.,
(Peng et al., 2021), showing great improvements in
performance. However, simply generating a large
number of synthetic data points is not enough; we
need to consider the quality of each data point, i.e.,
how beneficial it would be to the model’s perfor-
mance if that synthetic data point is added to the
training set. This is an important issue since the
model might learn to overfit to synthetic datapoints
(which may be low quality, represent specific use
cases, etc.) and thus under-perform on real data.

In this work, we propose to apply Pointwise
V-Information (PVI) (Ethayarajh et al., 2022) for
data augmentation, in a way that leverages a PLM
to generate synthetic examples that are relevant
and beneficial for training the downstream model,
which in our case is an intent classifier. Our contri-
butions are as follows:

• We propose a novel filtering method based
on PVI (Ethayarajh et al., 2022) to filter out
examples that are not relevant or helpful to the
desired intent.

• We conduct experiments on three challenging
intent detection datasets and show that our

1463



method achieves state-of-the-art performance.

• We conduct an in-depth study and present a
comprehensive analysis of the factors that in-
fluence performance, including ablation stud-
ies and comparisons with alternative methods.

The rest of the paper is organized as follows: In
Section 2 we present relevant work and in Section 3
we introduce our method. In sections 4 and 5 we
discuss training details, experiments, and results.
In section 6, we present our analysis and discuss
alternative approaches we investigated. In section
7 we conclude, and in the following sections we
discuss limitations and ethical considerations.

2 Related Work

Intent Detection Intent detection is the task of
identifying the user’s intent by mapping the user’s
natural language utterance into one of several pre-
defined classes (Hemphill et al., 1990; Coucke
et al., 2018). It is a critical component in the
pipeline of task-oriented dialogue systems, as it
is used to determine the user’s goal and to trigger
an appropriate system action (Raux et al., 2005;
Young et al., 2013). Several datasets have been
proposed to evaluate the performance of intent de-
tection models (Casanueva et al., 2020; Liu et al.,
2019a; Larson et al., 2019, for some recent exam-
ples). With the availability of such datasets, intent
detection has been extensively studied in the litera-
ture. Recently, pre-trained language models (e.g.,
BERT (Devlin et al., 2019)) have been shown to
be effective in intent detection (Bunk et al., 2020;
Zhang et al., 2020, 2021a,b; Mehri and Eric, 2021).

Data Augmentation Data augmentation is a
widely-used technique to address the problem of
data scarcity. Paraphrasing the data is one of the
ways frequently used for augmentation and can
produce more diverse synthetic text with differ-
ent word choices and sentence structures while
preserving the meaning of the original text. Para-
phrasing methods have been shown to be effective
in many natural language processing tasks (Gupta
et al., 2018; Edunov et al., 2018; Iyyer et al., 2018;
Wei and Zou, 2019; Cai et al., 2020; Okur et al.,
2022; Panda et al., 2021; Jolly et al., 2020). How-
ever, such methods often fail to generate more chal-
lenging and semantically diverse sentences that are
important for the robustness of the downstream
models.

Recently, conditional generation – using a PLM
to produce text conditioned on some label – has be-
come the dominant paradigm of data augmentation
(Bowman et al., 2016; Kumar et al., 2019; Anaby-
Tavor et al., 2020; Kumar et al., 2020; Yang et al.,
2020a; Lee et al., 2021). This is usually achieved
by fine-tuning a language model to produce the
original text given the label.

In the field of intent detection, previous work has
proposed using data augmentation techniques to
generate synthetic training data (Sahu et al., 2022;
Papangelis et al., 2021). Sahu et al. (2022) also
used PLMs to generate augmented examples, but
they require human effort for labeling. This is a
challenging task since it is expensive to annotate
large amounts of data.

Our approach involves data valuation, similar to
the concepts of Ghorbani and Zou (2019); Minder-
mann et al. (2022). However, our approach differs
from such previous work in two key ways. First,
Ghorbani and Zou (2019) only evaluated the qual-
ity of the training set after training them, whereas
we evaluate the synthetic examples before training
the task model. Second, Mindermann et al. (2022)
selected points that minimize the loss on a holdout
set, whereas we select synthetic examples that are
reasonably challenging to the task model. Our ap-
proach aims to address the problem of data scarcity
by evaluating the synthetic examples generated by
PLMs and selecting the most valuable examples to
augment the training data.

In-context Learning Large language models
such as GPT-3 (Brown et al., 2020) and OPT
(Zhang et al., 2022) have shown to be able to per-
form many natural language processing tasks with
in-context learning. In this paradigm, the model is
provided with a few exemplars based on which it
performs the respective task.

In-context learning is a promising solution for
few-shot learning. Because of the effectiveness
in few-shot performance, in-context learning has
been applied to a wide range of NLP tasks. For
dialogue tasks, in-context learning has been applied
to intent classification (Yu et al., 2021), semantic
parsing (Shin and Durme, 2022), and dialogue state
tracking (Hu et al., 2022).

However, PLMs require a large amount of com-
putational resources and the limitation on input
length restricts the application of PLMs to intent
detection tasks with large numbers of intents (e.g.,
150 intents in CLINC (Larson et al., 2019)), where
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In-context Prompt: 
The following sentences belong to the same category as 'Refund not 
showing up':

Example 1:I'm supposed to have a refund but it isn't there

Example 2:My refund is not here yet

…

Example 10:When will I be able to see the refund

Example 11:


Example Completions: 
• It's been weeks since I ordered my items and I still can't seem to see the 

funds.

• I am looking for information about when I can expect my refund

• I've submitted a refund request but I haven't seen a change in my 

account. What's going on?

• Please track my refund!

• the refund has not arrived yet so when will it show?

• Where is my refund? It doesn't appear on my statement.

• There was an error with the refund, when will I receive this amount again

Figure 1: An example of the prompt used to generate
synthetic examples. The intent class is refund not show-
ing up. Completions are generated by a pre-trained
language model via sampling. Note that 5-shot experi-
ments only use 5 examples from the training set.

we cannot fit examples for each intent in the input.
One solution would be to call the model multiple
times, each time with a subset of the possible in-
tents. This would lead to increased inference time
and may also impact performance. Consequently,
Yoo et al. (2021); Sahu et al. (2022) leveraged in-
context learning and PLMs to generate synthetic
examples for intent detection, instead of directly
deploying the PLM. However, they did not consider
the quality of the generated examples, which may
lead to the model overfitting on examples that are
not relevant to the desired intent.

3 In-Context Data Augmentation

In the following section, we describe our pro-
posed two-stage method for data augmentation,
which we refer to as In-Context Data Augmenta-
tion (ICDA). The overall procedure is summarized
in Algorithm 1. We apply ICDA to the task of few-
shot intent detection, which involves classifying a
user utterance x into an intent label y ∈ Y . ICDA
aims to generate synthetic examples x′ such that
they would belong to a given intent y.

3.1 Synthesizing Examples
The core idea is to use a large pre-trained language
model such as GPT-3 (Brown et al., 2020) or OPT
(Zhang et al., 2022) to generate synthetic data in
the context of the training set. In particular, for
each intent class, we create a natural language con-

text (prompt) that contains the intent class name, a
set of real training examples under the same intent
class, and an incomplete example. For instance, the
prompt for the intent class refund_not_showing_up
is shown in Figure 1. We feed the prompt to the
language model and obtain a set of synthetic ex-
amples as outputs. In this work, we use OPT-66B
(Zhang et al., 2022) as the language model to gen-
erate a set of examples for each intent class. We
adopt typical decoding with τ = 0.9 (Meister et al.,
2022) and set repetition penalty to 1.1 following
Keskar et al. (2019) to generate the synthetic exam-
ples.1 Due to the fine-grained nature of intents, and
the sampling-based generation aiming to produce
a set of diverse datapoints, we expect some of the
generated utterances to not match the given intent.

Note that our method leverages PLMs in a way
that is orthogonal to the intent detection model.
Unlike other methods that use the same model to
directly predict the intent class of a user utterance,
we use a PLM to generate synthetic training in-
stances. These instances are then used to augment
the actual training data and train a smaller intent de-
tection model. This approach leverages the power
of PLMs while preserving the independence of the
intent detection model design.

3.2 PVI Filtering

As mentioned above, given the stochastic nature of
synthetic data generation, we expect some of the
synthetic utterances not to match the given intent.
To address this phenomenon, we filter generated
instances and retain only those that are relevant and
helpful to the desired intent classes.

Specifically, we apply Pointwise V-Information
(Ethayarajh et al., 2022) - an idea originally sug-
gested for understanding how difficult a dataset is
- as a filter to discard unhelpful datapoints. PVI
of an utterance x with respect to its corresponding
intent class, y, is defined as:

PVI(x→ y) = − log2 g
∗[∅](y) + log2 g

′[x](y)

where, in this work, g′ and g∗ are the intent detec-
tion models finetuned with and without the input
x, respectively. ∅ is a special token that is used to
indicate the absence of an input utterance.

Intuitively, PVI measures the amount of informa-
tion that the input x provides to the intent detection

1Implementation details are available from
https://huggingface.co/docs/transformers/main_
classes/text_generation
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Algorithm 1: In-Context Data Augmenta-
tion with PVI Filtering
Input: Task Model V , Language Model

PLM, Data Multiplier m, PVI
Threshold Function ϵ

Output: Task Model g
Data: Seed Data Dtrain =

{(input xi, gold label yi)}ni=1

1 g′ ← Finetune V on Dtrain
2 ∅ ← empty string
3 g∗ ← Finetune V on {(∅, yi)|(xi, yi) ∈
Dtrain}

4 Dsynthetic ← Prompt(PLM,Dtrain)
5 for (xi, yi) ∈ Dsynthetic do
6 PVI(xi → yi)←

− log2 g
∗[∅](yi) + log2 g

′[xi](yi)

7 Dsynthetic ← {(xi, yi)|(xi, yi) ∈
Dsynthetic & PVI(xi → yi) > ϵ(yi)}

8 g ← Finetune V on Dtrain
⋃Dsynthetic

model (compared to the absence of meaningful in-
put). A high PVI value indicates that the input
x provides a lot of information to the model, and
thus is more likely to be helpful when training the
model to classify instances of the intent class y. On
the contrary, a low PVI value indicates that the in-
put x provides little information to the model, and
thus is likely to be irrelevant to the intent class y
(Ethayarajh et al., 2022).

We set a threshold ϵ (tunable parameter) to de-
termine which x are retained and conduct experi-
ments to study the effect of the threshold in Section
6. Algorithm 1 defines ϵ as a function of y to allow
flexibility in its definition: either a fixed threshold
for all intent classes, or a different threshold per
intent class.

4 Experimental Setup

4.1 Datasets

To evaluate the effectiveness of our approach in
intent detection in cases where we have a large
number of often semantically similar intent labels,
we chose the BANKING (Casanueva et al., 2020),
HWU (Liu et al., 2019a), and CLINC (Larson et al.,
2019) datasets and compare with recent state-of-
the-art baselines. BANKING comprises 13,083
utterances in a single banking domain and 77 in-
tents. HWU includes 25,716 utterances with 64
intents across 21 domains. CLINC contains 23,700

Full-shot mult. Few-shot mult.
XS - 1x
S 1x 4x
M 2x 16x
L 4x 64x
XL - 128x

Table 1: To assess the impact of the synthetic data size
on performance, we experiment with several data multi-
pliers (synthetic data size = source data size x mult.).

utterances with 150 intents across 20 domains.

4.2 Training
In our experiments, we use RoBERTa-LARGE (Liu
et al., 2019b) as the intent detection model V in Al-
gorithm 1. We use OPT-66B2 (Zhang et al., 2022)
as the language model PLM to generate synthetic
examples and set the data multiplier m to be 1283.
We set the PVI threshold function ϵ to be the aver-
age PVI under each intent class in the validation set,
where the PVI is computed using the same models
as in Algorithm 1. We train RoBERTa-LARGE for
40 epochs with a batch size of 16, a learning rate of
1e− 5, and the AdamW optimizer (Loshchilov and
Hutter, 2019). We use the HuggingFace Transform-
ers library (Wolf et al., 2020) for all experiments.

4.3 Baseline Models
We compare our proposed method with the follow-
ing baselines:
RoBERTa-BASE + Classifier is a baseline that uses
RoBERTa-BASE (Liu et al., 2019b) with a linear
classifier on top (Zhang et al., 2020).
USE is a universal sentence encoder pre-trained
on 16 languages supporting multiple down-stream
tasks (Yang et al., 2020b).
CONVERT is an intent detection model finetuned
from dual encoder models, which is pre-trained
on (input, response) pairs from Reddit (Henderson
et al., 2020).
CONVBERT fine-tunes BERT on a large open-
domain dialogue corpus with 700 million conversa-
tions (Mehri et al., 2020) .
CONVBERT + Combined is an intent detection
model based on CONVBERT, with example-driven
training based on similarity matching and observers
for transformer attentions. It also conducts task-
adaptive self-supervised learning with masked lan-
guage modeling (MLM) on the intent detection

2We used p3dn.24xlarge AWS EC2 instances for our ex-
periments.

3This means that we generate m times the available train-
ing data, e.g. (5 x 77) x m in the 5-shot BANKING case.
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datasets. Here, “Combined" represents the best
MLM+Example+Observers setting in the refer-
enced paper (Mehri and Eric, 2021).
DNNC (Discriminative Nearest-Neighbor Classifi-
cation) is a discriminative nearest-neighbor model,
which finds the best-matched example from the
training set through similarity matching. The
model conducts data augmentation during train-
ing and boosts performance by pre-training on
three natural language inference tasks (Zhang et al.,
2020).
CPFT (Contrastive Pre-training and Fine-Tuning)
is the current state-of-the-art in few-shot intent de-
tection on the selected datasets. It is pre-trained
on multiple intent detection datasets in a self-
supervised contrastive manner and then fine-tuned
with supervised contrastive learning (Zhang et al.,
2021b).

5 Experimental Results

We conduct experiments on three benchmark
datasets to validate the effectiveness of our pro-
posed method. We first use OPT-66B to generate
augmentation examples and then apply our method
to enhance a RoBERTa-Large model trained on
three datasets. We repeat all experiments with 5
random seeds and report the average performance
in Full-shot and Few-shot settings. To investigate
the effect of the synthetic data size, we experiment
with a variety of multipliers (see Table 1 for nota-
tions). Results are shown in Table 2.

Full-shot settings. In this setting, we use the
entire training set for each domain. The pro-
posed method achieves the best performance on
BANKING and comparable results on HWU and
CLINC. In particular, on BANKING, we improve
the CONVBERT + Combined baseline (Mehri and
Eric, 2021) by 0.59% (absolute) and the RoBERTa-
Large baseline by 0.72% (absolute). Compared
with the CONVBERT + Combined, which is pre-
trained on intent detection datasets in a self-
supervised fashion and adds examples-driven train-
ing and specific model architectural design, our
method achieves similar results with much simpler
model design. Furthermore, our method is orthog-
onal to model architectures and can be integrated
with any other approach for further improvement.

We also find that ICDA improves the perfor-
mance of the RoBERTa-Large model on HWU
and CLINC. This highlights the effectiveness of
our method for enhancing intent detection models.

Moreover, state-of-the-art performance on BANK-
ING with the proposed method and RoBERTa-
Large shows that our method is capable of gen-
erating high-quality augmentation examples to en-
hance the RoBERTa-Large model on the most fine-
grained intent detection task.

Few-shot settings. In this setting we only use
a small number of instances (datapoints) per class.
We evaluate our method in both 5-shot and 10-
shot settings and compare it with several strong
baselines. Our proposed method outperforms all
baselines on all datasets in both 5-shot and 10-
shot settings. ICDA-M achieves the best perfor-
mance in 5-shot settings on BANKING dataset and
ICDA-XL achieves the best performance on HWU
and CLINC datasets in 5-shot settings and on all
datasets in 10-shot settings. All configurations of
our method significantly improve the performance
of a RoBERTa-Large model trained on any of the
three datasets. Compared with CPFT (Zhang et al.,
2021b), which utilizes contrastive learning for few-
shot intent detection with extra data, our method
achieves better performance without any additional
human-annotated data. This showcases the advan-
tage of our method for few-shot intent detection.

We also observe that our method consistently
improves the performance of the baseline model
as the number of synthetic datapoints increases
from XS to XL. This indicates that the generated
instances from our method can gradually cover
more and more information of real instances and
are capable of providing more useful information
for model training.

6 Analysis and Discussion

In this section, we analyze the performance of
ICDA and other approaches we tried. We first iden-
tify several factors that affect performance, and
then present evidence that ICDA works by trans-
ferring knowledge from the pretrained generator to
the task model. We then discuss a data-relabelling
experiment and an experiment using uncertainty
measures or data cartography (Swayamdipta et al.,
2020) as filters.

6.1 Factors that Affect ICDA Performance

ICDA is effective at various training sizes.
Throughout this work, we conduct experiments
with different seed data sizes4 to study the effect of

4By seed data, we mean data taken from each dataset, i.e.
not synthetic data produced by ICDA.
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BANKING HWU CLINC
Model 5 10 Full 5 10 Full 5 10 Full
RoBERTa-Base + Classifier 74.04 84.27 - 75.56 82.90 - 87.99 91.55 -
USE 76.29 84.23 92.81 77.79 83.75 91.25 87.82 90.85 95.06
CONVERT 75.32 83.32 93.01 76.95 82.65 91.24 89.22 92.62 97.16
USE+CONVERT 77.75 85.19 93.36 80.01 85.83 92.62 90.49 93.26 97.16
CONVBERT - 83.63 92.95 - 83.77 90.43 - 92.10 97.07

+ MLM - 83.99 93.44 - 84.52 92.38 - 92.75 97.11
+ MLM + Example - 84.09 94.06 - 83.44 92.47 - 92.35 97.11
+ Combined - 85.95 93.83 - 86.28 93.03 - 93.97 97.31

DNNC 80.40 86.71 - 80.46 84.72 - 91.02 93.76 -
CPFT 80.86 87.20 - 82.03 87.13 - 92.34 94.18 -
RoBERTa-Large + Classifier 78.99 86.08 93.70 74.44 84.11 92.13 89.89 93.56 96.80

+ ICDA-XS 80.29 86.72 - 81.32 85.59 - 91.16 93.71 -
+ ICDA-S 81.95 87.37 93.66 81.97 86.25 92.33 91.22 93.98 96.97
+ ICDA-M 84.01∗ 88.64 93.73 81.84 87.36 92.12 91.93 94.71 97.06
+ ICDA-L 83.90 89.12 94.42∗ 81.97 86.94 92.57 92.41 94.73 97.12
+ ICDA-XL 83.90 89.79∗ - 82.45∗ 87.41∗ - 92.62∗ 94.84∗ -

Table 2: Intent Detection Accuracy (in %) in few-/full-shot settings with augmented data from OPT-66B. Numbers
in bold are the best results and numbers with ∗ are statistically significant by t-test (p < 0.05) compared to the
baselines (5 / 10 examples per intent).

Model BANKING HWU CLINC
RoBERTa-Large 86.08 84.11 93.56
All 84.19 84.57 94.24
All w/ relabeling 87.05 85.22 93.02

PV
I

Global Low PVI 73.99 69.61 85.42
Global High PVI 87.38 86.27 94.27
Per-Intent Low PVI 76.49 71.84 89.33
Per-Intent High PVI 88.64 87.36 94.71

Table 3: Intent Detection Accuracy (in %) for RoBERTa-
Large model in 10-shot settings with ICDA-M synthetic
instances from OPT-66B. Numbers in bold are statisti-
cally significant by t-test (p < 0.05). “All” represents
using all synthetic data without PVI filtering. and “All
w/ relabeling" represents using “All" and an oracle in-
tent classifier to relabel the synthetic data.

training size. By looking at the results in Table 2,
we observe that our proposed method consistently
improves the accuracy of the downstream model
in all training sizes. Also, as the training size
decreases, we see that the ICDA improvement in-
creases significantly. For example, on BANKING,
the improvement goes from 0.72% in the full shot
setting to 5.02% as the training size decreases to
5-shot. This indicates that ICDA is more effective
when we have few training data available.

PVI filtering threshold. To study the effect of the
threshold function ϵ, we conduct experiments with
two different threshold functions: Global, and Per-
Intent. Global means that the PVI threshold is the
same for all intent classes, which is the average PVI
value in the validation set. Per-Intent means that
the PVI threshold is different for each intent class,
which is the average PVI value under each intent

class in the validation set. As a sanity check, we
also conduct experiments using synthetic instances
with PVI values lower than the threshold (Low PVI)
as opposed to the normal (High PVI) instances.

We show the results in Table 3 (bottom half),
where we see that Per-Intent High PVI filtering
performs the best. Compared to using all synthetic
training data without filtering (referred to as All),
we see that High PVI filtering in general helps in
improving accuracy. In BANKING, for example,
when PVI filtering is applied with Per-Intent High
PVI, the accuracy is 88.64% with 10-shot training
size, which is significantly better than the result
without PVI filtering (84.19%) – the same holds
for the other two datasets. For the Low PVI con-
ditions, we observe that performance drops signif-
icantly. This indicates that the model overfits on
those examples that are not relevant to the desired
intent. We discuss the All w/ relabelling condition
in Section 6.3.

In Figure 2, we plot the F1 score against the PVI
score of the test set instances grouped by intent,
showing that some classes are harder than others,
further supporting why we need a threshold per
class rather than a global one.

6.2 Why Does ICDA Work?

PVI filtering discards mislabeled examples.
We believe that the success of ICDA is because
of not only the high diversity of the synthetic
instances produced by the generator, but also
the fact that PVI filtering effectively discards
digressed instances. To verify this hypothesis,
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Data Prompt Label Generated Sentence PVI
BANKING Refund not showing up I didn’t see my refund appear on my statement.† 6.10

(PVI Threshold: 5.79) Where did your refund end up at? Please send it back immediately since
I had a return and then refunded your purchase in full and I want it all
returned back to my credit card.†

5.81

Can we please cancel my return & resend my goods again 3.97
Please confirm what is the reason for delay in payment for my purchase? -3.86

HWU alarm query show me all the alarms and remind me about them† 5.69
(PVI Threshold: 4.28) i want to be notified when alarm goes off.† 4.36

how do i delete or disable alarms. 3.18
list all the events on this date -5.13

CLINC accept reservation does hanover steakhouse take reservations† 6.74
(PVI Threshold: 6.53) are there any restaurants that take reservations for dinner in philadelphia† 6.58

how many days prior is required for making reservations 5.39
what time does bibiana’s in greenwich open −4.31

Table 4: Synthetic examples generated from OPT-66B. † indicates the sentences that belong to the same intent as
the prompt label from our manual assessment; and bold denotes the PVI values over the threshold for given label.

Figure 2: Intent Detection F1 score per intent class
(circle) of the BANKING test set, justifying why we
need a PVI threshold per intent.

we randomly sample several synthetic instances
from the OPT-66B generator and manually assess
if each instance follows the same intent as the
prompt label. We show some examples in Table
4. We observe that instances that are relevant to
the desired intent are assigned high PVI values,
and instances that are not relevant to the desired
intent are assigned low PVI values. This further
indicates that the per-intent threshold function
provides an effective indicator of relevance. For
example, in the BANKING dataset, most relevant
instances have PVI values greater than 5.79, and
most non-relevant instances have PVI values less
than 5.79. This indicates that PVI filtering is an
effective method for discarding mislabeled data
points.

ICDA produces fluent and diverse utterances.
We hypothesize that our proposed method is effec-

Self-
Data Split D-1 ↑ D-2 ↑ BLEU ↓ PPL ↓

Bank.
Test - - - 12.14
10-shot 0.15 0.54 0.24 17.34
ICDA 0.21 0.66 0.11 21.33

HWU
Test - - - 14.84
10-shot 0.25 0.71 0.07 26.97
ICDA 0.30 0.78 0.03 28.52

CLINC
Test - - - 14.77
10-shot 0.15 0.49 0.28 34.23
ICDA 0.20 0.60 0.17 37.34

Table 5: Quantitative metrics of fluency and diversity
of real and synthetic utterances in 10-shot settings as
measured with distinct-1 (D-1), distinct-2 (D-2), self-
BLEU, and perplexity.

tive because it introduces more fluent and diverse
utterances. We therefore compare synthetic data
under the 10-shot XS condition (i.e., we generate
10 synthetic datapoints) with the original 10-shot
datapoints taken from the training data. Then we
use a GPT2 model trained on the test set of each
benchmark dataset to calculate the perplexity of
the generated utterances. We also use the same
synthetic set to calculate the distinct-1, distinct-
2, self-BLEU, and perplexity (PPL) metrics. We
report the results in Table 5 and observe that our
proposed method generates more diverse utterances
as shown by distinct-1, distinct-2, and self-BLEU.
This indicates that our proposed method harnesses
the generation power of the OPT-66B generator.
Additionally, the perplexity of synthetic utterances
is slightly higher than the human-annotated training
set. These results suggest that our proposed method
generates more diverse utterances, which can help
the task model to learn a better representation.
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6.3 Data Relabelling
Following Sahu et al. (2022), we wanted to see
if it is effective to use the available data to train
an intent classifier and then use it to relabel the
synthetic data. Intuitively, such a method would
correct mistakes in the generation process. To test
the feasibility of this approach, we train an ora-
cle classifier using the entire training data of each
dataset and use this as an upper bound. The re-
sults are shown in Table 3 (“All w/ relabeling"),
where we see that while promising, this approach
underperforms ICDA.

7 Conclusion

We introduced In-Context Data Augmentation, a
novel data augmentation framework to generate
synthetic training data, preserving quality and di-
versity. We demonstrate that ICDA is effective on
multiple intent detection benchmarks, with state-of-
the-art few-shot performance. Our analysis shows
that ICDA tends to perform better in low-resource
settings and that our PVI filtering strategy is im-
portant for performance. Future work includes ap-
plying ICDA to other conversational understanding
tasks such as slot filling and dialogue state tracking,
and incorporating other filtering or data selection
strategies for further performance gains.

Limitations

In this section we take BANKING as a case study
to motivate PVI and discuss some of the limitations
of our approach. Figure 3 shows how much we gain
(or lose) in F1 score when we use a custom thresh-
old for each class vs. a fixed threshold. While most
classes benefit, there are clearly many that show
performance degradation. Another limitation is the
size of the model we use to generate synthetic in-
stances (OPT-66B); in general the larger the model
is, the better the generated data is.

Ethical Considerations

As with any work involving PLMs (or foundation
models), due to the data and training methods, there
is inherent risk of generating biased, toxic, harmful,
or otherwise unwanted output. Regarding our work
in particular, as we show in Figure 3, the model’s
performance on some of the classes can degrade.
More analysis needs to be done before deploying
our approach, since it is unclear whether it will
introduce a bias towards certain types of classes.

Figure 3: This figure shows the difference in Intent
Detection F1 score for each intent, if we have a PVI
threshold per-class VS having a fixed PVI threshold.
See larger figure in Appendix.

References
Ateret Anaby-Tavor, Boaz Carmeli, Esther Goldbraich,

Amir Kantor, George Kour, Segev Shlomov, Naama
Tepper, and Naama Zwerdling. 2020. Do not have
enough data? deep learning to the rescue! In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 7383–
7390. AAAI Press.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M. Dai, Rafal Józefowicz, and Samy Bengio.
2016. Generating sentences from a continuous space.
In Proceedings of the 20th SIGNLL Conference on
Computational Natural Language Learning, CoNLL
2016, Berlin, Germany, August 11-12, 2016, pages
10–21. ACL.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

1470

https://ojs.aaai.org/index.php/AAAI/article/view/6233
https://ojs.aaai.org/index.php/AAAI/article/view/6233
https://doi.org/10.18653/v1/k16-1002
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html


Tanja Bunk, Daksh Varshneya, Vladimir Vlasov,
and Alan Nichol. 2020. DIET: lightweight lan-
guage understanding for dialogue systems. CoRR,
abs/2004.09936.

Hengyi Cai, Hongshen Chen, Yonghao Song, Cheng
Zhang, Xiaofang Zhao, and Dawei Yin. 2020. Data
manipulation: Towards effective instance learning for
neural dialogue generation via learning to augment
and reweight. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 6334–6343, Online. Association for
Computational Linguistics.

Iñigo Casanueva, Tadas Temčinas, Daniela Gerz,
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A Data Cartography and Uncertainty

Apart from relabelling, we investigated two addi-
tional approaches to rank synthetic instances as
easy or hard to classify. We used data cartogra-
phy (Swayamdipta et al., 2020) and classification
uncertainty to guide our filtering.

Data cartography classifies the training data in
four categories: Easy-to-learn, Low-Correctness,
Ambiguous, Hard-to-Learn using training dynam-
ics (i.e. the model’s confidence in the true
class, and the variability of this confidence across
epochs).

For uncertainty modeling, we assign uncer-
tainty scores to each training instance in a cross-
validation manner. We first split the training set
into 5 folds, hold one fold out as validation, and pre-
dict on the validation with the classifier trained on
the remaining 4 folds. We tried the following uncer-
tainty measures: Contrastive Active Learning (AL)
(Margatina et al., 2021), Least Confidence (Culotta
and McCallum, 2005), Prediction Entropy (Schohn
and Cohn, 2000; Roy and McCallum, 2001), and
Breaking Ties (Scheffer et al., 2001; Luo et al.,
2004).

We conducted experiments using the above ap-
proaches to select data that amounts to one third
of the total training data in BANKING (i.e., we
select the top 33% hardest examples, etc.). As an
additional baseline, we include a random filter, i.e.,
a randomly sampled 33% portion of BANKING.
Table 6 shows the results, where we see that the

100% Train 92.89

33
%

Tr
ai

n

Random 89.50

U
nc

er
ta

in
ty Contrastive AL 88.54

Least Confidence 89.08
Breaking Ties 89.20

Prediction Entropy 89.23

C
ar

to
gr

ap
hy Easy to Learn 90.44

Ambiguous 90.94
Low Correctness 91.00

Hard to Learn 91.26

Table 6: Intent Detection Accuracy (in %) for Con-
vBERT model, trained on different selections of BANK-
ING77 under full-shot settings.

performance actually degrades when compared to
using the entirety of the data. We experimented
with a few more variations in the filtering thresh-
olds but no combination improved performance
and we do not report those results here. See Fig-
ures 5 and 6 in the Appendix B for a visualization
of the BANKING data map.
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Figure 4: This figure shows the difference in F1 score for each intent, if we have a PVI threshold per-class VS
having a fixed PVI threshold (Enlarged Figure 3).

1475



0.00 0.02 0.04 0.06 0.08 0.10
variability

0.0

0.2

0.4

0.6

0.8

co
nf

id
en

ce

ambiguous

easy-to-learn

hard-to-learn

Banking77 10-shot-ConvBERT Data Map
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.5
confidence

0

100

200

300

de
ns

ity

0.00 0.05 0.10
variability

0
50

100
150
200
250

de
ns

ity

0.00.10.20.30.40.50.60.70.80.91.0
correctness

0

200

400

600

de
ns

ity

Figure 5: Data map for BANKING (10-shot).
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Abstract

Multilingual sentence representations from
large models encode semantic information
from two or more languages and can be used
for different cross-lingual information retrieval
and matching tasks. In this paper, we integrate
contrastive learning into multilingual represen-
tation distillation and use it for quality estima-
tion of parallel sentences (i.e., find semantically
similar sentences that can be used as transla-
tions of each other). We validate our approach
with multilingual similarity search and corpus
filtering tasks. Experiments across different
low-resource languages show that our method
greatly outperforms previous sentence encoders
such as LASER, LASER3, and LaBSE.

1 Introduction

With the rise of neural networks, high-dimensional
word-level sequence representations play an impor-
tant role in almost any natural language processing
task. Contextual representations from large pre-
trained language models (Vaswani et al., 2017; De-
vlin et al., 2019; Liu et al., 2019; CONNEAU and
Lample, 2019) have shown advantages compared
to earlier static embeddings (Mikolov et al., 2013;
Pennington et al., 2014). However, they are not
pre-trained with sentence-level objectives and their
representations of two different sentences cannot be
easily used to indicate semantic similarity. To en-
code sentence-level information, LASER (Artetxe
and Schwenk, 2019b) pools a sentence embedding
from the encoder and feeds it to the decoder. An-
other approach is to use siamese-structured models
where two identical encoders are used to repre-
sent sentences of similar meaning and are trained
to push their representations close to each other.
Sentence-Transformers (Reimers and Gurevych,
2019) are siamese-structured models that are ini-
tialized with pre-trained large models like BERT

⇤ Work was done during an internship at Meta AI Re-
search.

student 
encoder

teacher 
encoder

cosine loss
sentence embedding sentence embedding

gradient

"bring them here 
to me, " he said.

target
na ka mea ia, mauria 
mai ki konei ki ahau.

source

Figure 1: Student-Teacher Distillation in LASER3.

(Devlin et al., 2019) or Roberta (Liu et al., 2019).
After fine-tuning, Sentence-Transformers improve
their sentence representation for cross-lingual tasks.
Besides fine-tuning with identical (siamese) en-
coders, distillation can be used to retrieve better
representations. Reimers and Gurevych (2020a)
extends a monolingual sentence representation into
a multilingual representation with model distilla-
tion. Similarly, Heffernan et al. (2022) proposed
LASER3, a student-teacher architecture that distills
information from a pre-trained teacher encoder to
a student encoder in new languages. As shown in
Figure 1, the distillation process updates the stu-
dent encoder with the gradient from the cosine loss.
Note that it freezes the parameters of the teacher
encoder, which is already pre-trained on the tar-
get language (English in our case). Therefore, the
target sentence embedding is fixed and the corre-
sponding source embedding is aligned with the
target embedding.

In this paper, we focus on the quality estimation
of parallel sentences in low-resource languages,
which requires models to distinguish similar and
dissimilar sentence pairs. Contrastive learning is
helpful because its objective not only aligns similar
sentences’ representations but also pushes away
representations from dissimilar sentences, which

1477



student 
encoder

teacher 
encoder

na ka mea ia, mauria 
mai ki konei ki ahau.

"bring them here 
to me, " he said.

q ktarget k1 k2 ...
cosine similarity 

contrastive loss

1. "bring it here to me," he said
2. I don't know hey? I am no expert.
3. shove their warehouses full with 
specialized products.
4. hurry up! you tell me you're gonna 
change, but you never do!

targetsource queue for negative samples

student 
encoder

teacher 
encoder

q ktarget k1 k2 ...

contrastive loss

1. "bring it here to me," he said
2. to better serve our customers
3. how are you planning to fix this?
4. a set of shoes free with every bike.

queue for negative samples

(a) LASER3-CO (b) LASER3-CO-Filter

0.9 0.4 0.3 0.1

target similarity 

disable  contribution

gradient gradient

na ka mea ia, mauria 
mai ki konei ki ahau.

source
"bring them here 
to me, " he said.

target

Figure 2: Visual Explanation of LASER3-CO (vanilla) and LASER3-CO-Filter (filtered). Source and target come
from input bitexts dataset and queue is constructed with earlier batch’s samples. In the (b) filtered version, a
pre-filtering mechanism is employed to filter out extremely negative samples from the queue.

enables the model to be more confident in similar
sentences. Additionally, contrastive learning is a
form of self-supervision that fits well in our low-
resource setting where only a limited amount of
clean data is available.

In practice, we integrate contrastive learning into
the distillation-based architecture from LASER3
and use our contrastive distillation method to train
encoders for low-resource languages. Inspired by
He et al. (2020) and Wu et al. (2018), we used a
queue to store negative samples as self-supervision
to train better encoders. We also employed a pre-
filtering mechanism to find hard negative samples
and showed that they benefit the distillation of sen-
tence representations.

To evaluate different encoders, we rely on multi-
lingual similarity search and corpus filtering tasks.
In the multilingual similarity search task, we en-
code all source and target sentences and use a
cosine-based similarity metric called margin score
(Artetxe and Schwenk, 2019a) to pair source and
target sentences. In the corpus filtering task, a
mined noisy parallel corpus is given and we use
the encoder with margin score to compute a simi-
larity score for each sentence pair. Then we filter
out the low-score pairs and use the remaining cor-
pus to train a neural machine translation model
whose performance is evaluated with BLEU (Pa-
pineni et al., 2002). Compared to previous works,
we observe consistent improvement when using
contrastive distillation. We also compared our ap-

proach with another simple but effective data aug-
mentation technique, back-translation, and show
that contrastive distillation achieves tied or better
performance with less data.

2 Approach

To train high-quality sentence representation, we
integrate contrastive learning into sentence repre-
sentation distillation and our contrastive distillation
method is visualized in Figure 2. The motivation
for using contrastive learning is two-fold:

• The self-supervision from contrastive learning
helps representation learning in low-resource
settings.

• Contrastive learning enables models to recog-
nize similar and dissimilar sentences, which
is crucial for filtering out noisy sentence pairs.

2.1 LASER3-CO
This architecture corresponds to Figure 2 (a). We
name it LASER3-CO since it integrates contrastive
learning to LASER3’s distillation pipeline. We are
inspired by He et al. (2020) to use a queue to store
contrastive (negative) samples. The negative sam-
ples are used to train encoders so that sentences
of different meaning have dissimilar representa-
tions. During training, we use previous batches’
target language sentences as negative samples and
when there are too many negative samples in the
queue, we remove the samples from the earliest
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batches. Our LASER3-CO approach has the fol-
lowing steps:

• Pre-train LASER to use as the teacher encoder
✓t on high resource languages such as English.
Randomly initialize the student encoder and
perform distillation with the teacher encoder.
After distillation, we obtain the pre-trained
student encoder ✓s.

• Fine-tune ✓s using queue(memory)-based1

contrastive learning. For each input source
sentence x and target sentence y, encode
them with student and teacher encoders re-
spectively and we have their representations
q = ✓s(x), ktarget = k+ = ✓t(y) (we use "+"
as an abbreviation for the positive target sen-
tence). We also encode all (N) negative sen-
tences in the queue and have their representa-
tion ki = ✓t(queuei), i 2 [1, N ].

• Perform normalization on q, ki, i 2 [0, N ] and
then compute the contrastive loss using in-
foNCE (van den Oord et al., 2018)

L = � log
exp(q · k+/⌧)

PN
i=1 exp(q · ki/⌧)

(1)

Here ⌧ is the temperature parameter2 that con-
trols the strength of the penalty.

• Update student encoder ✓s with loss. Enqueue
the most recent target language (English) sen-
tences and dequeue the earliest sentences if
the queue size exceeds the limit (N).

In LASER3-CO, our training process is very simi-
lar to MOCO (He et al., 2020), though we do not
use the momentum update for the teacher. Instead,
we freeze the pre-trained teacher (LASER in our
case) that already has a high-quality representation
of English (or any other pivot language), so that
English sentences are encoded consistently during
distillation. Then we try to align the representation
of the student encoder to the teacher, only allowing
gradients to flow through the student encoder.

2.2 LASER3-CO-Filter

This architecture corresponds to Figure 2 (b). The
motivation is that previous work (Robinson et al.,

1We use queue size N=4096 throughout experiments.
2Empirically we found ⌧ = 0.05 (widely used in previous

literature) works well.

2020) has shown hard negatives improve represen-
tation. In our task, for each parallel sentence pair
(x, y), the hard negatives would be sentences y0

that are hard to distinguish from the true target y
(we can also find hard negatives x0 in the source
language, but because our teacher encoder has bet-
ter representation for the target language, English,
we decide to focus on target-side hard negatives
only). Hard negatives are beneficial because they
force the model to learn more complex features to
distinguish them from the true target sentence.

To find more hard-negatives for contrastive fine-
tuning, we change LASER3-CO in two ways:
(1) disable shuffling for the data loader and (2) use
a pre-filtering mechanism to filter out bad samples
from the queue (we name this model LASER3-
CO-Filter where Filter refers to the pre-filtering
mechanism). Bad samples are hard negative sam-
ples y0 that are too similar to y (e.g. "What is your
name" versus "What’s your name"). Treating these
extremely similar sentences as negative samples
would hurt the encoder’s representation and we
devise a pre-filtering method to filter them out.

Disable Shuffling We sort sentences by length3

and disable the shuffling of data loader so that con-
secutive batches contain sentences of similar length.
As our queue is updated by enqueuing the most
recent batch and dequeuing the earliest batch, dis-
abling shuffling makes the queue store sentences
of similar length. Because all samples in the queue
are used as negative samples to be contrasted with
the true target sentence and because they are of a
similar length, it is much more likely that we find
hard negatives (quantitative analysis provided in §5
and Figure 4).

Pre-filtering Mechanism After disabling shuf-
fling, we show that more hard-negatives are found.
However, we also found that there are many cases
of extremely hard negatives (e.g. "What is your
name" versus "What’s your name", "Bring them
here to me" versus "Bring it here to me"). Though
hard negatives help contrastive fine-tuning to ob-
tain better sentence representation, extremely hard
negatives would confuse the model and incorrectly
update the parameters. Therefore we employ a
simple pre-filtering mechanism to prevent these ex-
tremely hard negatives from contributing to the con-
trastive loss: After we encode the target sentence

3Our implementation is based on Fairseq (Ott et al., 2019)
which by default sorts the sentences by length
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and sentences in the queue, we have the represen-
tations k+, k1, · · · kN as described in §2.1. Then
we compute the cosine similarity between the true
target and sentences in the queue and get similarity
scores cos(k+, ki), i 2 [1, N ]. For any negative
sample i, if cos(k+, ki) � � (where � is a pre-
defined threshold hyper-parameter),4 we do not
use it in the InfoNCE loss. In other words, let
S = {i : cos(k+, ki) < �} be a set that contains
no extremely hard negatives for the threshold �,
the InfoNCE loss would be computed as

L = � log
exp(q · k+/⌧)P
i2S exp(q · ki/⌧)

(2)

In practice, we perform this filtering step with
batches of samples, as detailed in appendix A.
PyTorch-like pseudocode of the LASER3-CO-
Filter model is shown below.

Algorithm 1 Pseudocode of LASER3-CO-Filter

# N: queue size; bz: batch size
# S: size of set without extremely hard negatives
# t: temperature; h: filtering threshold
# emb_dim: embedding dimension
# einsum: einsum function available in PyTorch
# queue: stores N earlier target embed
# teacher: pre -trained LASER encoder
# student: LASER3 student encoder
# filter: function that filters out extremely hard

negatives (details available in appendix A)

# freeze teacher encoder
teacher.params.requires_grad = False
for (source , target) in loader:

src_emb = normalize(student(source),dim=1)
tgt_emb = normalize(teacher(target),dim=1)
neg_emb = normalize(teacher(queue),dim=1)
#--------- Begin Pre -filtering ---------
# bz x N (mask for indices to be kept)
mask = (tgt_emb @ neg_emb.T < h).long()
# bz x S x emb_dim
neg_emb = filter(neg_emb , mask)
#--------- End Pre -filtering ------------
#postive logits: bz x 1
l_pos = src_emb @ tgt_emb.T
# negative logits: bz x S
l_neg = einsum("bh ,bsh ->bs", src_emb , neg_emb)
logits = cat([l_pos , l_neg],dim=1)
loss = CrossEntropyLoss(logits/t, zeros(bz))
loss.backward ()
update(student)
enqueue(queue , tgt_emb)
if queue.size > N:

dequeue(queue)

3 Experiment on Low-resource
Languages

3.1 Dataset

For training, we use two sources of data: existing
clean data and back-translation data.

4We use � = 0.9 throughout our experiments. Effects of
different � values are analyzed in Figure 4 (right)

ISO Language CB[k] BT[k]

khm Khmer 536 2451
pus Pashto 48 3000
npi Nepali 533 3000
sin Sinhala 752 3000

Table 1: The number of (thousands of) sentences avail-
able for different languages in clean bitext (CB column)
and back-translation (BT column) datasets. We cap
back-translation data to 3 million lines maximum.

Clean data Our clean data comes from pub-
licly available datasets5 such as jw300, bible
(Christodoulopoulos and Steedman, 2015), tatoeba
(Tiedemann, 2012), wikimedia (Tiedemann, 2012),
gv (Tiedemann, 2012), tico19 (Tiedemann, 2012) ,
ted20 (Reimers and Gurevych, 2020b), qed (Abde-
lali et al., 2014; Tiedemann, 2012), and os (Tiede-
mann, 2012).6 We group these data sources to-
gether and call them clean data.

Back-translation data Back-translation is a sim-
ple yet effective data augmentation technique that
could benefit the training of sentence encoders. To
generate back-translation data, we need a trans-
lation model and monolingual data. We retrieve
monolingual data from web data provided by Com-
monCrawl7 and ParaCrawl (Bañón et al., 2020),
following the pre-processing pipeline (language ID
and heuristic filtering) from NLLB (NLLB Team
et al., 2022). Then we use the 1.3B-parameter
NLLB200-Dense8 model (NLLB Team et al., 2022)
to translate low resource language’s monolingual
data that we collected from web. We choose
NLLB200 because it achieves state-of-the-art trans-
lation performance so far for most low-resource
languages. Once we generate synthetic data, we
can use them as a parallel corpus to distill sentence
representation. In practice, we cap the amount of
back-translation data at 3 million lines.

3.2 Languages & Models

We target four low-resource languages (Khmer,
Pashto, Nepali, and Sinhala) in our experiments
as shown in Table 1. For each of these languages,

5All available online, mostly taken from OPUS: https:
//opus.nlpl.eu/

6https://www.opensubtitles.org/
7In wet format, https://commoncrawl.org
8Open-sourced at:

https://github.com/facebookresearch/fairseq/
tree/nllb
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we have trained several models shown below:

• LASER (Artetxe and Schwenk, 2019b): we
directly take the model checkpoint available
publicly9 without any further training.

• LASER3 (Heffernan et al., 2022): we follow
Heffernan et al. (2022) to distill an encoder for
each language using clean data. The teacher
encoder is LASER and the student encoder is
a randomly initialized transformer’s encoder.

• LASER3-BT: same as the LASER3 model
except that we distill the encoder using
both clean data and back-translation data.
Though back-translation is already widely
used, our improvement from this model pro-
vides another instance where data augmen-
tation from a large pre-trained multilingual
translation model is effective.

• LASER3-CO: we fine-tune the LASER3
model following §2.1 with clean data.

• LASER3-CO-Filter: we fine-tune the
LASER3 model following §2.2 with clean
data.

3.3 Multilingual Similarity Search
Multilingual similarity search evaluates the quality
of representation from trained encoders by align-
ing source and target sentences. We use FLO-
RES (Guzmán et al., 2019) devtest dataset (1012
aligned sentences) for this task because it is crafted
with professional human annotation. For every
source sentence xi, we compute a similarity score
called xsim between xi and all target sentences
yj . If the target sentence with the highest sim-
ilarity score is not the ith sentence (namely if
i 6= argmaxjxsim(xi, yj)), then the model has one
incorrect match. We compute the percentage of
source sentences that have an incorrect match as
xsim error rate. The lower the xsim error rate, the
better the model is for aligning sentences of similar
meaning. Our similarity score xsim is the margin-
based score (Artetxe and Schwenk, 2019a), which
is widely used for scoring and filtering parallel sen-
tences. It is defined below:

xsim(x, y) = margin(cos(x, y),
X

z2NNk(x)

cos(x, z)

2k
+

X

z2NNk(y)

cos(y, z)

2k
) (3)

9https://github.com/facebookresearch/LASER

Model khm pus npi sin avg

LASER 14.6 67.8 27.0 0.1 27.4
LASER3 0.4 0.3 5.9 0.3 1.7

LASER3-BT 0.1 0.0 0.4 0.1 0.2
LASER3-CO 0.3 0.1 0.7 0.0 0.3

LASER3-CO-Filter 0.1 0.1 0.8 0.1 0.3

Table 2: xsim error rate (%) for Khmer, Pashto, Nepali,
and Sinhala. Bolded values are the lowest error rate
obtained for each language.

where x, y are source and target sentences’ repre-
sentations from the model, NNk(x) denotes k near-
est neighbors of x in the other language, and there
are three margin functions10: absolute(a, b) = a,
distance(a, b) = a� b, and ratio(a, b) = a

b .
We show our result in Table 2 and observe

that LASER3 achieves a much better result than
LASER (1.7% versus 27.4%), consistent with
Heffernan et al. (2022)’s finding that language-
specific distillation is more helpful than a language-
agnostic encoder. We also show that using data
augmentation (either with back-translation or with
contrastive learning) further improves the perfor-
mance to a near-zero error rate. In Figure 3, we pro-
vide the t-SNE visualization of embedding spaces
trained by different approaches for Sinhala, and we
observe that using back-translation or contrastive
learning brings aligned sentences closer.

Note that in both of our contrastive-based models
(LASER3-CO and LASER3-CO-Filter), we do not
include back-translation data. Thus, contrastive dis-
tillation achieves tied performance compared to the
model helped by a large amount of back-translation
data, showing the power of self-supervision in rep-
resentation learning. Additionally, back-translation
and contrastive learning are orthogonal so we could
train LASER3-CO/LASER3-CO-Filter with back-
translation data. However, in our preliminary study,
we do not see improvement from such an approach
(more discussion in Appendix C) and we use only
clean data for contrastive distillation throughout
our experiments.

3.4 Corpus Filtering

We pick Khmer, Pashto, Nepali, and Sinhala as
our targeted low-resource languages partly because
they are used by WMT Corpus Filtering Shared
task (Koehn et al., 2019, 2020). The shared task re-

10We follow Heffernan et al. (2022) and NLLB Team et al.
(2022) to use ratio as the margin.
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(a) LASER3 (b) LASER3-BT (c) LASER3-CO (d) LASER3-CO-Filter

Figure 3: t-SNE visualizations of embedding space for Sinhala-English. Red points are from Sinhala sentences and
blue points are from English sentences.

Model khm pus npi sin

†LASER 5 5 N/A N/A
†WMT Best System 5 5 1 1

LASER3 7 5 1 2
LASER3-BT 7 5 2 5
LASER3-CO 7 5 2 5

LASER3-CO-Filter 7 7 2 5

Table 3: Optimal subsample size (in millions of tokens)
for corpus filtering task. For most cases, 5 or 7 mil-
lion tokens give the best performance except for Nepali,
where only 1 or 2 million tokens seem to be useful.
†: number taken from findings of WMT corpus filtering
shared task (Koehn et al., 2019, 2020).

lease mined corpora (from the Paracrawl11 project)
for Khmer, Pashto, Nepali, and Sinhala. For each
language, we first filter the noisy corpus with the
language id model from fasttext12 (Joulin et al.,
2017). We filter out the aligned sentence pairs
whose source sentence is predicted to be English
(because we only expect the target sentence to be
English). Then we filter the corpus with our sen-
tence encoders where we rely on xsim score to rank
sentences and take the top k sentences to train NMT
models. In practice, we follow the shared task to
use data subset of 1/2/3/5/7 million English tokens,
and the optimal subset size is shown in Table 3. The
highest BLEU score achieved by different systems
is shown in Table 4.

From the results, we observe that LASER3-
based systems have similar BLEU scores for
Khmer. One possible explanation is that LASER3
distillation already gives good representation so
data augmentation does not make a noticeable
improvement. On average, we find that data-
augmented systems (LASER3-BT, LASER3-CO,
LASER3-CO-Filter) greatly improve the BLEU

11https://paracrawl.eu/
12https://fasttext.cc/docs/en/

language-identification.html

Model khm pus npi sin avg

†LASER 7.1 9.7 N/A N/A
†WMT Best System ⇤ 8.9 10.9 6.9 6.5 8.30

LASER3 10.1 11.7 5.1 5.8 8.18
LASER3-BT 10.1 11.8 6.2 7.7 8.95
LASER3-CO 9.9 12.3 6 7.3 8.88

LASER3-CO-Filter 10.1 12.2 6.2 7.7 9.05

Table 4: BLEU score for Khmer, Pashto, Nepali, and
Sinhala. Bolded values are the highest BLEU scores
obtained for each language. ⇤: The highest number
achieved by WMT19 & 20 corpus filtering task partici-
pants. †: results taken from findings of WMT19 & 20
(Koehn et al., 2019, 2020).

score compared to previous works like LASER,
LASER3, and best systems in the WMT Corpus
Filtering shared task. Note that some systems from
the shared task make use of large pre-trained mod-
els and even an ensemble of large models, so it is
a strong baseline and we are able to outperform it
by an average of 0.75 BLEU score, achieving the
state-of-the-art corpus filtering performance using
contrastive distillation on a small amount of clean
data. The corpus filtering result is also consistent
with the multilingual similarity search task, where
encoders with lower xsim error rate perform better.

4 Experiment on Extremely
Low-resource Languages

4.1 Languages & Dataset
In §3, we experiment on low-resource languages
individually and show the improvement from con-
trastive distillation. There are many languages
that have even less available data and are under-
represented in the current literature. In our
work, we focus on four extremely low-resource
African languages that are extremely low-resource:
Chokwe, Kamba, Kimbundu, and Umbundu. The
amount of available clean and back-translation data
is shown in Table 5 (with the same collection pro-
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ISO Language CB[k] BT[k]

cjk Chokwe 40 166
kam Kamba 58 74
kmb Kimbundu 101 140
umb Umbundu 234 366

Table 5: the number of (thousands of) sentences avail-
able for different African languages in clean bitext (CB
column) and back-translation (BT column) datasets. We
cap back-translation data to 3 million lines maximum.

cess described in §3.1). These four languages are
from the Benue-Congo language family which has
25 languages in total. The details of their names
and available data size are shown in Table 8 (in the
appendix). Under such extremely low-resource set-
tings, we show that contrastive distillation still pro-
duces state-of-the-art encoders for the multilingual
similarity search task. We believe our encoders can
be easily adapted to other information extraction
tasks such as bitext mining through the pipeline
described in CCMatrix (Schwenk et al., 2021), and
we leave this to future work.

4.2 Multilingual Similarity Search

We evaluate the performances of difference en-
coders on the multilingual similarity search task fol-
lowing the same procedure in §3.3 and show xsim
error rate in Table 6. For the language-agnostic
model baseline, we replace LASER with LaBSE
(Feng et al., 2022) because its pre-training data
contains African languages (though not directly on
the four languages we target) and achieves better
performance than LASER. However, this language-
agnostic model is still easily outperformed by
LASER3-based models since the distillation of
language-specific data is helpful.

For LASER3 and LASER3-BT, we leverage all
data from the Benue-Congo family to distill the
encoder. We are able to reproduce results from
LASER3 (Heffernan et al., 2022) and our back-
translation baseline further improves the average
xsim error rate to 6.7%. For contrastive distillation
models, we fine-tune LASER3-BT individually13

for each target language following §2. Not like
previous experiments with Khmer, Pashto, etc., we
fine-tuned LASER3-BT instead of LASER3 as our
preliminary study showed better performance with
LASER3-BT. Therefore, different languages could

13Consistent with our experiment in §3.3, using only clean
data works the best for contrastive distillation.

Model cjk kam kmb umb avg

LaBSE⇤ 34.4 27.4 35.0 37.0 33.5
LASER3⇤ 16.4 15.3 7.5 15.6 13.7

LASER3-BT 14.6 3.5 4.8 7.0 6.7
LASER3-BT-CO 9.1 1.9 1.3 4.6 4.2

LASER3-BT-CO-Filter 11.3 2.2 1.2 7.1 5.5

Table 6: xsim error rate (%) for Chokwe, Kamba, Kim-
bundu, and Umbundu. Bolded values are the lowest
error rate obtained for each language. ⇤: result taken
from Heffernan et al. (2022).

have different optimal settings for data augmen-
tation (more discussion in Appendix C), depend-
ing on the amount and quality of available data.
Nevertheless, we show that our contrastive distilla-
tion framework greatly improves upon previous en-
coders, achieving state-of-the-art xsim error rates
for all four languages we targeted.

5 Analysis

In this section, we focus on contrastive distillation
methods described in §2 and provide an analysis of
the effects of different hyper-parameters.

5.1 Effect of queue size

For all the previous experiments, we use batch size
32 and queue size 4096 to be consistent. In our pre-
liminary work, we tried N=512/1024/2048/4096
for Sinhala and we do not observe a noticeable ad-
vantage for using a larger queue size. Still, we use
the largest queue size that we could afford,14 4096,
throughout experiments since a larger queue size
won’t hurt performance. To show that memory-
based contrastive learning is effective, we compare
it with in-batch fine-tuning and show the result in
Table 7. We see that memory-based contrastive
learning gives us an average of 0.4 BLEU improve-
ment across four languages.

Model khm pus npi sin avg

LASER3 10.1 11.7 5.1 5.8 8.18
LASER3-CO 9.9 12.3 6 7.3 8.88

LASER3-InBatch 9.8 11.4 5.8 6.9 8.48

Table 7: BLEU score for Khmer, Pashto, Nepali, and
Sinhala. LASER3-InBatch and LASER3-CO have the
same setup except that LASER3-CO uses a queue of
4096 samples to compute contrastive loss and LASER3-
InBatch only uses samples from every batch to compute
contrastive loss.

14We trained our models with NVIDIA A100 GPU.
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Figure 4: (left) Distribution plot of the average target similarity (of Sinhala’s clean data) with/without shuffling.
The x-axis is the value of average target similarity and the y-axis is the density of a particular value. (right)
LASER3-CO-Filter’s performance for Sinhala w.r.t varying pre-filter threshold �. A low threshold filters out all hard
negatives and harms training. A high threshold keeps extremely hard negatives which also undermines training.

5.2 Effect of shuffling
In our LASER3-CO-Filter approach, we disable
shuffling so that the queue contains sentences of
similar length and we argue that it is easier to find
hard negatives this way. To quantify this fact, we
compute the average target similarity for all sen-
tences and plot the distribution in Figure 4 (left).
The average target similarity for a target sentence
x is

sim(x, queue) =
1

N
cos(✓t(x), ✓t(queuei))

where ✓t is the teacher encoder, N is queue size,
and queuei is the ith sample in the queue. As shown
in Figure 4 (left), without shuffling, more than half
samples have > 0.4 average target similarity. A
higher average target similarity indicates that tar-
get sentences are more semantically related to the
samples in the queue and therefore form harder
negatives.

5.3 Effect of pre-filter threshold
For the LASER3-CO-Filter model, we employ a
pre-filtering mechanism that prevents extremely
hard examples from contributing to the loss. For
our experiments, we use filter threshold � = 0.9.
In this section, we vary � and evaluate the perfor-
mance for Sinhala (we did not repeat this experi-
ment for other languages but expect similar results).
The result is shown in Figure 4 (right), which is a
line plot based on our result for � = 0.5/0.7/0.9/1.
We can see that � = 0.9 is the peak and the result

corresponds to our intuition. When � is too high
(e.g. � = 1), extremely hard negatives (or even rep-
etitions) are not filtered out and their contribution to
contrastive loss makes training unstable, resulting
in poor performance for mining. When � is too low
(e.g. � = 0.5), too many samples in the queue are
filtered out and only easy negatives (sentences dras-
tically different from the target sentence) are left in
the queue. In this case, the model does not learn
meaningful representations from negative samples,
resulting in poor performance as well.

6 Related Work

Multilingual Sentence Representation Various
multilingual sentence representations have been
proposed including multilingual BERT (Devlin
et al., 2019), XLM (CONNEAU and Lample,
2019), XLM-R (Conneau et al., 2020). These
models are trained with a large amount of data
across dozens or hundreds of languages. They show
great improvement when fine-tuned on downstream
tasks. However, they are trained only with token-
level objectives like masked language modeling
(MLM) or translation language modeling (TLM)
and their sentence representations cannot be di-
rectly used for semantic similarity tasks. To ad-
dress this problem, different methods make use
of pooled sentence embedding to train better en-
coders (Artetxe and Schwenk, 2019b; Reimers and
Gurevych, 2019; Feng et al., 2022; Heffernan et al.,
2022).
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Back-translation Back-translation is widely
used in machine translation as a data augmenta-
tion technique. Sennrich et al. (2016) shows that
synthetic data created by translating monolingual
data greatly improve English-German and Turkish-
English translation models. Edunov et al. (2018)
further investigate different decoding strategies and
show that sampling works better than greedy de-
code or beam search for back-translation. Since
back-translation’s quality depends on the transla-
tion model, Hoang et al. (2018) proposes iterative
back-translation where translation models are fur-
ther improved by the synthetic data they produce.

Contrastive Learning Contrastive learning is a
form of self-supervised learning that encourages
similar inputs to have close representations and
dissimilar inputs to have different representations.
Chen et al. (2020) proposes SimCLR that uses
contrastive learning to improve visual representa-
tion. Khosla et al. (2020) integrates supervised
learning into contrastive learning and Tian et al.
(2020) uses contrastive distillation for image repre-
sentation learning. Since finding high-quality con-
trastive samples is essential for contrastive learn-
ing, Wu et al. (2018) uses a memory bank to store
contrastive samples while He et al. (2020) uses
a queue with momentum update to encode con-
trastive samples on the fly. Though previously-
mentioned works are evaluated on computer vision
tasks, there is growing interest in using contrastive
learning for natural language processing and vari-
ous approaches have been proposed to train better
sentence representation (Giorgi et al., 2021; Kim
et al., 2021; Peng et al., 2020; Gao et al., 2021; Tan
and Koehn, 2022).

7 Conclusion

In this paper, we integrate contrastive learning
into multilingual sentence representation distilla-
tion. Through self-supervision from negatives, es-
pecially hard negatives, we obtain better encoders.
Compared to other effective data augmentation
techniques like back-translation, our contrastive
distillation method achieves tied or better perfor-
mance with less computation and data. Our experi-
ments on multilingual similarity search and corpus
filtering tasks show consistent improvement from
contrastive learning and achieve state-of-the-art per-
formance for various low-resource languages.

Limitations

This research focuses on improving cross-lingual
encoders to perform quality estimation of parallel
data for low-resource machine translation. How-
ever, cross-lingual representation could be help-
ful in many other tasks as summarized in the
XTREME benchmark (Hu et al., 2020; Ruder et al.,
2021) which we have not experimented with. An-
other limitation is that we disabled shuffling to
store hard negative samples in the queue. However,
without shuffling, it might affect the stability of
the training process (although we do not observe
it in our experiments). Therefore, in future work,
we will continue exploring other cost-efficient ap-
proaches to retrieve hard negatives.
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A PyTorch-Style Pseudocode

In Algorithm 1, we provide the pythonic style pseu-
docode for our LASER3-CO-Filter model. Note
that the pre-filtering mechanism needs special treat-
ment when training with a minibatch. we compute
the set of negative samples

Sj = {i : cos(kj
+, ki) < �}

for each target sentence j in our batch where kj
+ is

the teacher encoding of jth positive sample. Then
we find the minimum number of negatives in the
batch M = minj |Sj |. For any target sentence j
that has |Sj | > M , we randomly remove |Sj |�M
samples so that it ends up with M samples. In this
way, we ensure that every target sentence has the
same number of legitimate negative samples after
the pre-filtering mechanism and we can batch them
to compute the InfoNCE loss. In the pseudocode,
we abstract the implementation of pre-filtering us-
ing filter function.

B Corpus Filtering Threshold

In Table 3, we show the optimal size of filtered
corpus to train NMT models for four languages.
For most cases, 5 or 7 million tokens give the best
performance (except for Nepali, where only 1 or 2
million tokens seem to be useful).

C Combine Back-translation and
Contrastive Learning?

Back-translation and contrastive learning are two
helpful ways for representation learning in low-
resource settings. These two methods can be ap-
plied together (as we showed in our experiments on
African languages) because back-translation pre-
pares data before training while our contrastive dis-
tillation method is a fine-tuning strategy. Through
our preliminary study, we made the following ob-
servations:

• Contrastive fine-tuning works best on a sin-
gle language’s clean data. This is true for
both low-resource languages (Khmer, Pashto,
Nepali, and Sinhala) and extremely low-
resource languages ( Chokwe, Kamba, Kim-
bundu, and Umbundu). We find that using
back-translation data for contrastive objec-
tives does not make any noticeable improve-
ment and this is probably because synthetic
data generated by the pre-trained NMT model

does not produce too many hard negatives. In
the case of the African languages, we tried
distillation with the whole family’s clean data
and it is also less effective than distillation
on a single language. This is probably be-
cause the data from multiple languages inter-
fere with each other during contrastive distil-
lation.

• For low-resource languages like Sinhala,
Pashto, etc., we find no noticeable differ-
ence between contrastive distillation with
LASER3 and LASER3-BT. On the con-
trary, for extremely low-resource languages,
we find LASER3-BT-CO performs better
than LASER3-CO, and this is why we used
LASER3-BT-CO in §4.2 but LASER3-CO
in §3.3. We believe this is due to the qual-
ity and the amount of available clean data.
In the extremely low-resource case, even the
limited amount of clean data contains noise
and we see LASER3-BT greatly outperform
LASER3. Therefore, the distillation with pre-
trained LASER3-BT result in a better model
(LASER3-BT-CO or LASER3-BT-CO-Filter).
However, in some low-resource settings (like
our experiments for Sinhala, Pashto, Khmer,
and Nepali), clean data itself could allow the
contrastive method to learn good representa-
tions, therefore avoiding the need for back-
translation data.

With our observation above, how should we select
methods when new languages come in? We believe
it mainly depends on two factors: 1) How large and
how clean is the existing clean corpus 2) How is
the performance of the existing pre-trained NMT
model?

The first factor affects the effectiveness of con-
trastive learning and the second factor affects the
quality of back-translation data. In fact, in our
preliminary study, we do not find back-translation
from a statistical machine translation system use-
ful for African languages, because it does generate
good enough synthetic data. With the advance of
multilingual machine translation (MMT) models,
we are able to leverage a large pre-trained model
and show its effectiveness. Thus, whether to add
back-translation or not mainly depends on the trans-
lation model’s quality and computation budget.
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ISO lang CB[k] BT[k] ISO lang CB[k] BT[k]

khm Khmer 536 2451 pus Pashto 48 3000
npi Nepali 533 3000 sin Sinhala 752 3000
cjk Chokwe 40 166 kam Kamba 58 74

kmb Kimbundu 101 140 umb Umbundu 234 366
bem Bemba 700 828 ibo Igbo 912 3000
kik Kikuyu 119 95 kin Kinyarwanda 517 3000
kon Kongo 227 197 lin Lingala 981 848
lua Luba-Kasai 321 492 lug Luganda 340 1654
nso Northen Sotho 625 902 nya Chewa;Nyanja 867 3000
run Rundi 664 1910 sna Shona 789 3000
sot Sotho 1510 3000 ssw Swati 116 432
swh Swahili 2778 0 tsn Tswana 1748 1680
tso Tsonga 852 1423 tum Tumbuka 264 675
xho Xhosa 1739 3000 yor Yoruba 517 3000
zul Zulu 2383 3000

Table 8: number of (thousands of) sentences available for different languages in clean bitext (CB column) and
back-translation (BT column) dataset.

ISO bible gv jw300 qed tatoeba ted20 tico19 wikimedia os

khm X X X X X X X X
pus X X X X X
npi X X X X X X X
sin X X X X X X X
cjk X

kam X X
kmb X
umb X X X

Table 9: Source of clean bitext data for different languages.
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Abstract

In this paper, we prove that separable nega-
tive log-likelihood losses for structured predic-
tion are not necessarily Bayes consistent, or, in
other words, minimizing these losses may not
result in a model that predicts the most proba-
ble structure in the data distribution for a given
input. This fact opens the question of whether
these losses are well-adapted for structured pre-
diction and, if so, why.

1 Introduction

Modern natural language processing (NLP) heavily
relies on machine learning (ML), where prediction
models are learned by minimizing a loss function
over the training data. As such, loss functions play
a central role in the design of these systems and it is
important to understand their statistical properties
in order to guarantee that the corresponding train-
ing objectives are well defined. Although this topic
is well studied in the ML community (Lugosi and
Vayatis, 2004; Lin, 2004; Zhang, 2004a,b; Bartlett
et al., 2006; Gneiting and Raftery, 2007; Liu, 2007;
Tewari and Bartlett, 2007; Reid and Williamson,
2010; Williamson et al., 2016; Duchi et al., 2018;
Blondel et al., 2020; Nowak et al., 2022), inter alia,
there has been less focus on the structured predic-
tion setting apart from a few recent works (Blondel,
2019; Nowak et al., 2019, 2020).

In this paper, we emphasize the fact that, de-
spite achievements in terms of accuracy, statisti-
cal behavior of loss functions used in practice for
structured prediction in NLP are not always well
understood. We illustrate this fact by proving that
commonly used separable loss functions for named
entity recognition (NER) and dependency parsing
are not Bayes consistent, meaning that training a
model with these loss functions will not necessar-
ily result in the prediction of the most the probable
output for a given input in the data distribution.

2 Bayes consistency

We denote inputs and outputs as x ∈ X and y ∈ Y ,
respectively. We assume each y ∈ Y is a binary
vector whose elements are indexed by a set C, i.e.
y ∈ {0, 1}C , where C is problem dependent. For
example, in the k multiclass classification case,
we have C = [k], where we use the shorthand
[k] = {1, 2, ..., k}, and Y is defined as the set of
standard bases (one-hot vectors) of dimension k,
meaning that |Y | = k. More generally, the vector
y is an indicator of “selected” parts in C and, in
the structured prediction case, several parts can be
jointly selected. Note that it is usual to assume that
the parts in C can depend on the input x. Without
loss of generality, we omit this detail as we will
study loss functions in the pointwise setting.

A scoring model f ∈ F is a function f : X →
RC that returns scores associated with each part
in C for a given input, e.g. the score of each class
in a multiclass classification model. The actual
prediction of the model is the output of maximum
linear score:

ŷ(x) ∈ argmax
y∈Y

⟨y, f(x)⟩, (1)

where ⟨·, ·⟩ denotes the inner product. We refer to
computing Equation 1 as maximum a posteriori
(MAP) inference.

A loss function compares a vector of scores with
an expected output. Importantly, the 0-1 loss func-
tion is defined as follows:

ℓ(w,y) =

{
0 if y ∈ argmaxy′∈Y ⟨w,y′⟩,
1 otherwise,

where w ∈ Rk is a vector of part scores, i.e. w =
f(x) for a given input x. In order to choose a
scoring function f ∈ F , it is appealing to select one
that minimizes this loss over the data distribution:

r∗ = inf
f∈F

r(f) = inf
f∈F

Ex,y[ℓ(f(x),y)],
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where x and y are random variables over inputs
and outputs, respectively, and inf denotes the infi-
mum. The value r(f) is the Bayes risk of function
f and r∗ is the optimal Bayes risk. For theoretical
purposes, it is often assumed that the class of func-
tions F is rich enough (the set of all measurable
mappings) to obtain the best possible risk. Then,
the optimal Bayes risk is equal to:

r∗ = Ex[1−max
y∈Y

p(y = y|x)],

or, in other words, it is the probability of making an
error when the classifier predicts the most probable
class for each input.

Unfortunately, in practice it is not convenient to
use the 0-1 loss ℓ as it is nonconvex and has null
derivatives almost everywhere. Instead, a surrogate
ℓ̃ can be used as a loss function:

r̃∗ = inf
f∈F

r̃(f) = inf
f∈F

Ex,y[ℓ̃(f(x),y)],

where r̃(f) is the surrogate risk of function f and
r̃∗ is the optimal surrogate risk. An important
desired property of surrogate losses is their consis-
tency with the 0-1 loss, i.e. the fact that minimizing
the surrrogate risk leads to a prediction model of
optimal Bayes risk (Lugosi and Vayatis, 2004; Lin,
2004; Zhang, 2004a; Bartlett et al., 2006; Liu, 2007;
Tewari and Bartlett, 2007).

Definition 1. A surrogate loss ℓ̃ is said to be Bayes
consistent1 if:

f∗ ∈ argmin
f∈F

r̃(f) =⇒ r(f∗) = r∗.

Note that this property can be checked indepen-
dently for each input x (called pointwise Bayes
consistency) as we assume a rich enough class of
functions F . In other words, we redefine the point-
wise (optimal) surrogate risk as:

r̃∗ = inf
w∈RC

r̃(w) = inf
w∈RC

Ey|x=x[ℓ̃(w,y)],

for any x such that p(x = x) > 0, and similarly
for the optimal Bayes risk. The vector w should be
interpreted as the model scores, i.e. w = f(x).

1This property is also referred to as Fisher consistency
(Lin, 2004; Bartlett et al., 2006; Liu, 2007) and classification
calibration (Williamson et al., 2016).

3 Negative log-likelihood loss

The negative log-likelihood loss (NLL), also known
as the conditional random field loss (Lafferty et al.,
2001), is defined as follows:

ℓ̃(nll)(w,y) = −⟨w,y⟩+ log
∑

y′∈Y
exp⟨w,y′⟩.

In the following, we will refer to computing the
log-sum-exp term of the NLL loss as marginal in-
ference due to its connection with marginal proba-
bilities (Wainwright and Jordan, 2008).

Theorem 1. Under mild conditions on the data
distribution, the surrogate loss ℓ̃(nll) is Bayes con-
sistent.

Proof. The optimal pointwise surrogate Bayes risk
is defined as:

r̃∗(nll) = inf
w∈RC

−Ey|x=x[⟨w,y⟩]
+ log

∑
y′∈Y exp⟨w,y′⟩.

We substitute w(y) = ⟨w,y⟩ for all y ∈ Y :

= inf
∀y∈Y :
w(y)∈R

−Ey|x=x[w(y)]

+ log
∑

y′∈Y expw(y′).

We denote ŵ(y), ∀y ∈ Y , an optimal solution of
the minimization. By first order optimality condi-
tions, we have:

∂

∂ŵ(y)

( −Ey|x=x[ŵ(y)]

+ log
∑

y′∈Y exp(ŵ(y′))

)
= 0

=⇒ exp ŵ(y)∑
y′∈Y exp ŵ(y′)

= p(y = y|x = x)

(2)

which implies Bayes consistency under the condi-
tion that there exists a vector w ∈ RC such that
∀y ∈ Y : ⟨w,y⟩ = ŵ(y).

To understand why Equation 2 implies Bayes
consistency, note that:

exp ŵ(y)∑
y′∈Y exp ŵ(y′)

∝ exp ŵ(y′),

and the exponential function is strictly increasing.
This means scores of outputs y ∈ Y defined as
⟨y, ŵ⟩ are ordered in the same way as probabilities
in the data distribution p(y|x = x). In other words,
the most probable output in the data distribution
will have the highest score with respect to ŵ.

1492



The proof is a straightforward extension of the
derivation for the multiclass classification case, see
for example Blondel et al. (2020, Section 4.2). In-
terestingly, Equation 2 also implies that the NLL
loss is strictly proper (Williamson et al., 2016), i.e.
the Boltzmann distribution over structures in Y pa-
rameterized by minimizer ŵ is equal to the data
distribution p(y|x = x). Note that Theorem 1 is
not novel per se and a more in-depth study of NLL
losses for structured prediction can be found in
(Nowak et al., 2019).

One limitation of the NLL loss is that it is not
(additively) separable2 because of the log-sum-exp
term. As such, this term is a bottleneck for parallel
computation of the objective and doubly stochastic
estimation of the training objective (Titsias, 2016).
A well-known solution is to rely on independent
binary classification objectives, also known as one-
vs-all losses (Blondel et al., 2020, Section 6.1):

ℓ̃(one−vs−all)(w,y)

= −⟨w,y⟩+
∑

y′∈Y
log
(
1 + exp⟨w,y′⟩

)
.

In the case of multiclass classification problems, it
can be shown that this objective is Bayes consis-
tent using similar arguments as in Theorem 1. A
different approach is the one-vs-each loss function
that is also Bayes consistent (Titsias, 2016).

Unfortunately, these separable surrogates cannot
be applied to structured prediction problems as the
set Y is often of exponential size with respect to
the input length. Although tractable algorithms
for marginal inference exist for many cases, there
are no known algorithms to compute the one-vs-
each or one-vs-all losses in an easily parallelizable
fashion. As such, the NLP community often relies
on token-separable losses, that is a NLL objective
that decomposes as a sum of independent losses,
one per token in the input sentence. Although these
losses are easy to implement, we prove in the next
sections that they are not Bayes consistent for two
common NLP problems.

4 Named-entity recognition

Problem definition. In this Section, we focus on
the flat NER problem using BIO tags (Ratinov and
Roth, 2009). Without loss of generality, we assume
there is a single mention label and that the input

2A function f is additively separable if it can be written as
f =

∑
i fi.

sentence x contains n words. The set of parts is
defined as C = [n] × {B, I,O} and Y is defined
as the set of vectors y ∈ {0, 1}C satisfying the
following conditions:

1. ∀i ∈ [n] :
∑

t yi,t = 1 (one tag per word);

2. y1,I = 0 (forbid inside tag for the first word);

3. ∀i > 1 : yi,I = 1 =⇒ yi−1,B + yi−1,I = 1
(I tag can only follow a B or I tag).

We do not include parts corresponding to transi-
tions (this is a unigram model), otherwise it would
not be possible to derive a token-separable loss.

Inference algorithms. MAP and marginal in-
ference can be realized using the Viterbi and the
forward-backward algorithms, respectively. Al-
though the time complexity of these algorithms
is O(|L|2n) where L is the set of mention labels,
they can be optimized to have a O(|L|n) time com-
plexity as there is no transition score. The dynamic
programming algorithm is nonetheless required in
order to guarantee that condition (3) is satisfied.

Separable loss. As the dynamic programming
algorithm is not parallelizable over input tokens,
token-separable losses are often used in practice.3

That is, the loss is reduced to a set of n multiclass
classification losses:

ℓ̃(sep-bio) = −⟨w,y⟩+
n∑

i=1

log
∑

t

expwi,t,

where t ranges over all tags, except I if i = 1.
The optimal pointwise surrogate Bayes risk for

the separable loss is defined as:

r̃∗(sep−bio) = inf
w∈RC

−Ey|x=x[⟨w,y⟩]
+
∑n

i=1 log
∑

t expwi,t.

Let ŵ be an optimal solution. Then, by first order
optimality conditions:

∂

∂ŵi,t

(
−Ey|x=x[⟨w,y⟩]
+
∑n

i=1 log
∑

t expwi,t

)
= 0

=⇒ ŵi,t = log p
(
yi,t = 1|x = x

)
(3)

where p
(
yi,t = 1|x = x

)
denotes the marginal dis-

tribution of tag t at position i in data distribution.

Theorem 2. The token-separable loss for NER via
BIO tagging is not Bayes consistent.

3See for example https://github.com/huggingface/
transformers/blob/v4.23.1/src/transformers/
models/bert/modeling_bert.py#L1771
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B I O

1 1 0 0

2 0 1 0

B I O

1 1 0 0

2 1 0 0

p(y = a|x = x) = 0.3 p(y = b|x = x) = 0.2

B I O

1 1 0 0

2 0 0 1

B I O

1 0 0 1

2 1 0 0

p(y = c|x = x) = 0.15 p(y = d|x = x) = 0.2

B I O

1 0 0 1

2 0 0 1

p(y = e|x = x) = 0.15

Figure 1: Example of distribution over BIO sequences
for a sentence of 2 words. The set of sequences is
defined as Y = {a, b, c,d, e}. The matrices represent
values in elements of Y .

Proof. Let n = 2 and assume that the distribution
p(y|x = x) is defined as depicted in Figure 1.
Then, by Equation 3 we have ŵ1,B = log 0.65,
ŵ1,O = log 0.35, ŵ2,B = log 0.4, ŵ2,I = log 0.3
and ŵ2,O = log 0.3. As such:

log 0.65 + log 0.3 = ⟨ŵ,a⟩
< ⟨ŵ, b⟩ = log 0.65 + log 0.4,

but a ∈ argmaxy∈Y p(y = y|x = x) and p(y =
a|x = x) > p(y = b|x = x). Therefore, the
token-separable loss is not Bayes consistent for
NER, i.e. a scoring model minimizing the surrogate
risk may not lead to predicting the most probable
output in the data distribution.

Note that the inconsistency is not due to the fact
that the parameterization of the model is “poor” (no
transition scores). Indeed, by Equation 2, optimal
scores ŵ for the NLL loss satisfy the following
condition for all y ∈ Y :

exp⟨ŵ,y⟩∑
y′∈Y exp⟨ŵ,y′⟩ = p(y = y|x = x)

=⇒ ⟨ŵ,y⟩ = log p(y = y|x = x)

The following assignment for ŵ satisfies this con-
dition: ŵ1,B = 0, ŵ1,O = 0, ŵ2,B = log 0.2,
ŵ2,I = log 0.3, and ŵ2,O = log 0.15. That is, min-
imizing the NLL loss on this distribution results in
a Bayes consistent classifier, as expected.

5 Syntactic dependency parsing

Problem definition. We consider a sentence of
n words and, without loss of generality, restrict
to the unlabeled case to simplify notations. In
dependency parsing, the set of parts is defined
as the set of possible bilexical dependencies be-
tween words, including a fake root at position 0
used to identify root word(s) of the sentence, i.e.
C = {(h,m) ∈ {0, 1, ..., n}× [n]|h ̸= m}, where
(h,m) denotes a dependency with the h-th word as
head and the m-th word as modifier. The set Y is
restricted to vectors y ∈ {0, 1}C that can be inter-
preted as forming a 0-rooted spanning arborescence
where words are vertices and dependencies are arcs
(McDonald et al., 2005). In some cases, e.g. the
Universal Dependency format, it is required that
the fake root position has a single outgoing arc.4

Inference algorithms. MAP inference can be re-
alized via the maximum spanning arborescence al-
gorithm, which has a O(n2) time complexity (Chu
and Liu, 1965; Edmonds, 1967; Tarjan, 1977). The
single root constraint can be taken into account
using the same algorithm via the big-M trick (Fis-
chetti and Toth, 1992, Section 2). Marginal infer-
ence can be realized via the matrix tree theorem
(MTT, Koo et al., 2007; McDonald and Satta, 2007;
Smith and Smith, 2007), which has O(n3) time
complexity.

Separable loss. The cubic-time complexity of
MTT may be prohibitive in practice for training a
model. Moreover, the MTT relies on a computa-
tionally unstable matrix inversion and is arguably
non-trivial to implement. Hence, there has been
interest in using simpler token-separable NLL loss
functions (Zhang et al., 2017):

ℓ̃(sep−dep)(w,y)

= −⟨w,y⟩+
∑

m∈[n]
log

∑

h∈[n]\{m}
expwh,m,

also called head selection loss. This loss is a sum of
multiclass classification NLL losses, one per word
in the sentence, and is therefore token-separable.
As such, it can be efficiently parallelized on GPU
and is trivial to implement in any ML framework.

The optimal pointwise surrogate Bayes risk for
the token-separable loss is defined as:

r̃∗(sep−dep) = inf
w∈RA

−Ey|x=x[⟨w,y⟩]
+
∑

m∈[n]
log

∑
h∈[n]\{m}

expwh,m.

4https://universaldependencies.org/u/overview/
syntax.html
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0 1 2 0 1 2

p(y = a|x = x) = 0.4 p(y = b|x = x) = 0.3

0 1 2

p(y = c|x = x) = 0.3

Figure 2: Example of distribution over trees for a
sentence of 3 words. The set of trees is defined as
Y = {a, b, c}.

Let ŵ be an optimal solution. Then, by first order
optimality conditions:

∂

∂ŵh,m



−Ey|x=x[⟨ŵ,y⟩]
+
∑

m∈[n]
log

∑
h∈[n]\{m}

exp ŵh,m


 = 0

=⇒ ŵh,m = log p
(
yh,m = 1|x = x

)
(4)

where p
(
yh,m = 1|x = x

)
denotes the marginal

distribution of the dependency between words at
position h and m, i.e. the sum of the conditional
probability of trees this dependency appears in.

Theorem 3. The loss ℓ̃(sep-dep) is not Bayes consis-
tent for distributions over dependency trees.

Proof. Let n = 2 and assume that the distribution
p(y|x = x) is defined as depicted in Figure 2.
Then, by Equation 4 we have: ŵ0,1 = log 0.7,
ŵ0,2 = log 0.6, ŵ1,2 = log 0.4 and ŵ2,1 = log 0.3.
As such:

log 0.7 + log 0.4 = ⟨ŵ,a⟩
< ⟨ŵ, b⟩ = log 0.7 + log 0.6,

but a ∈ argmaxy∈Y p(y = y|x = x) and p(y =
a|x = x) > p(y = b|x = x). Therefore, the
token-separable loss is not Bayes consistent, i.e. a
scoring model minimizing the surrogate risk may
not lead to predicting the most probable tree in the
data distribution.

Note that using the (non-separable) NLL loss
will lead to a Bayes consistent model on this distri-
bution. Indeed, by Equation 2, optimal scores ŵ
satisfy the following condition for all y ∈ Y :

exp⟨ŵ,y⟩∑
y′∈Y exp⟨ŵ,y′⟩ = p(y = y|x = x)

=⇒ ⟨ŵ,y⟩ = log p(y = y|x = x)

The following assignment for ŵ satisfies this con-
dition: ŵ0,1 = 0, ŵ0,2 = log 0.3, ŵ1,2 = log 0.4
and ŵ2,1 = 0. That is, minimizing the NLL loss
on this distribution results in a Bayes consistent
classifier, as expected.

The single root constraint case is reported in
Appendix A.

6 Conclusion

Studying statistical properties of surrogate loss
functions has not been a major interest in the NLP
community, although there are exceptions (Ma and
Collins, 2018; Effland and Collins, 2021). We
proved that token-separable losses for NER and de-
pendency parsing are not Bayes consistent, which
means that minimizing these losses will not nec-
essarily lead to models that will predict the most
probable output for a given input in the data distri-
bution, even with infinite training data.

In the dependency parsing case, Zhang et al.
(2020) experimentally observed that the structured
NLL loss leads to better results than the token-
separable head selection loss. As such, our analy-
sis provides a better theoretical understanding of
these experiments. However, separable losses are
widely used in state-of-the-art models, which sug-
gests that future research should study why they
work in practice.

Other types of separability have also been used
for constituency parsing (Corro, 2020) and seman-
tic parsing (Pasupat et al., 2019), inter alia.

Limitations

Arguably, these separable loss functions perform
well in practice, which questions the appropriate-
ness of the Bayes consistency property. For ex-
ample, Long and Servedio (2013) argued that as-
sumptions usually made are too unrealistic (e.g.
considering that F is the set of all measurable map-
pings) and leads to misleading theoretical knowl-
edge when it comes to actual implementation and
experiments. Maybe this is also the case of the
demonstration we made in this paper. However, all
in all, we hope that this work will motivate future
fundamental research on ML for NLP and espe-
cially on properties of loss functions.

Acknowledgments

We thank Joseph Le Roux, François Yvon and the
anonymous reviewers for their comments and sug-
gestions.

1495



References
Peter L Bartlett, Michael I Jordan, and Jon D McAuliffe.

2006. Convexity, classification, and risk bounds.
Journal of the American Statistical Association,
101(473):138–156.

Mathieu Blondel. 2019. Structured prediction with pro-
jection oracles. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates,
Inc.

Mathieu Blondel, André F.T. Martins, and Vlad Niculae.
2020. Learning with fenchel-young losses. Journal
of Machine Learning Research, 21(35):1–69.

Yoeng-Jin Chu and Tseng-Hong Liu. 1965. On the
shortest arborescence of a directed graph. Scientia
Sinica.

Caio Corro. 2020. Span-based discontinuous con-
stituency parsing: a family of exact chart-based algo-
rithms with time complexities from O(nˆ6) down to
O(nˆ3). In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 2753–2764, Online. Association for
Computational Linguistics.

John Duchi, Khashayar Khosravi, and Feng Ruan. 2018.
Multiclass classification, information, divergence and
surrogate risk. The Annals of Statistics, 46(6B):3246
– 3275.

Jack Edmonds. 1967. Optimum branchings. Journal
of Research of the National Bureau of Standards – B.
Mathematics and Mathematical Physics.

Thomas Effland and Michael Collins. 2021. Partially
supervised named entity recognition via the expected
entity ratio loss. Transactions of the Association for
Computational Linguistics, 9:1320–1335.

Matteo Fischetti and Paolo Toth. 1992. An additive
bounding procedure for the asymmetric travelling
salesman problem. Mathematical Programming,
53(1):173–197.

Tilmann Gneiting and Adrian E Raftery. 2007. Strictly
proper scoring rules, prediction, and estimation.
Journal of the American Statistical Association,
102(477):359–378.

Terry Koo, Amir Globerson, Xavier Carreras, and
Michael Collins. 2007. Structured prediction models
via the matrix-tree theorem. In Proceedings of the
2007 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Nat-
ural Language Learning (EMNLP-CoNLL), pages
141–150, Prague, Czech Republic. Association for
Computational Linguistics.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth In-
ternational Conference on Machine Learning (ICML

2001), Williams College, Williamstown, MA, USA,
June 28 - July 1, 2001, pages 282–289. Morgan Kauf-
mann.

Yi Lin. 2004. A note on margin-based loss functions
in classification. Statistics & probability letters,
68(1):73–82.

Yufeng Liu. 2007. Fisher consistency of multicate-
gory support vector machines. In Proceedings of
the Eleventh International Conference on Artificial
Intelligence and Statistics, volume 2 of Proceedings
of Machine Learning Research, pages 291–298, San
Juan, Puerto Rico. PMLR.

Phil Long and Rocco Servedio. 2013. Consistency ver-
sus realizable h-consistency for multiclass classifica-
tion. In Proceedings of the 30th International Con-
ference on Machine Learning, volume 28 of Proceed-
ings of Machine Learning Research, pages 801–809,
Atlanta, Georgia, USA. PMLR.

Gábor Lugosi and Nicolas Vayatis. 2004. On the Bayes-
risk consistency of regularized boosting methods.
The Annals of Statistics, 32(1):30 – 55.

Zhuang Ma and Michael Collins. 2018. Noise con-
trastive estimation and negative sampling for condi-
tional models: Consistency and statistical efficiency.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3698–3707, Brussels, Belgium. Association for Com-
putational Linguistics.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
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A Inconsistency of the separable loss for
single root dependency parsing

Theorem 4. The loss ℓ̃(sep-dep) is not Bayes consis-
tent for distributions over single-root dependency
trees.

Proof. Let n = 4 and assume that the distribution
p(y|x = x) is defined as depicted in Figure 3.
Then, by Equation 4 we have, among others:

ŵ0,1 = log 0.55, ŵ1,2 = log 0.55,

ŵ1,3 = log 0.4, ŵ2,3 = log 0.45.

As such, we have:

⟨ŵ,a⟩ = log 0.55 + log 0.55 + log 0.40,

⟨ŵ, b⟩ = log 0.55 + log 0.55 + log 0.45,

which means that ⟨ŵ,a⟩ < ⟨ŵ, b⟩ but a ∈
argmaxy∈Y p(y = y|x = x) and p(y = a|x =
x) > p(y = b|x = x). Therefore the separable
loss is not Bayes consistent for single-root depen-
dency parsing.

0 1 2 3 0 1 2 3

p(y = a|x = x) = 0.3 p(y = b|x = x) = 0.2

0 1 2 3 0 1 2 3

p(y = c|x = x) = 0.05 p(y = d|x = x) = 0.2

0 1 2 3 0 1 2 3

p(y = e|x = x) = 0.05 p(y = f |x = x) = 0.05

0 1 2 3 0 1 2 3

p(y = g|x = x) = 0.05 p(y = h|x = x) = 0.05

0 1 2 3

p(y = i|x = x) = 0.05

Figure 3: Example of distribution over trees for a sen-
tence of 3 words and the single-root constraints. The set
of trees is defined as Y = {a, b, c,d, e,f , g,h, i}.

1498



Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 1499–1512
May 2-6, 2023 ©2023 Association for Computational Linguistics

A Systematic Search for Compound Semantics
in Pretrained BERT Architectures

Filip Miletic and Sabine Schulte im Walde
Institute for Natural Language Processing, University of Stuttgart

{filip.miletic, schulte}@ims.uni-stuttgart.de

Abstract

To date, transformer-based models such as
BERT have been less successful in predict-
ing compositionality of noun compounds than
static word embeddings. This is likely related
to a suboptimal use of the encoded information,
reflecting an incomplete grasp of how the mod-
els represent the meanings of complex linguis-
tic structures. This paper investigates variants
of semantic knowledge derived from pretrained
BERT when predicting the degrees of composi-
tionality for 280 English noun compounds as-
sociated with human compositionality ratings.

Our performance strongly improves on earlier
unsupervised implementations of pretrained
BERT and highlights beneficial decisions in
data preprocessing, embedding computation,
and compositionality estimation. The distinct
linguistic roles of heads and modifiers are re-
flected by differences in BERT-derived repre-
sentations, with empirical properties such as
frequency, productivity, and ambiguity affect-
ing model performance. The most relevant rep-
resentational information is concentrated in the
initial layers of the model architecture.

1 Introduction

The meaning of multiword expressions such as
noun compounds is notoriously difficult to model,
particularly because of variability in their degree
of compositionality, i.e. the relatedness of the
meaning of a compound (e.g. flea market) to that
of the individual constituents (flea and market).
The degree of compositionality has been success-
fully predicted using static word embeddings, but
transformer-based models such as BERT (Devlin
et al., 2019) have so far been less successful. This
might be related to a suboptimal use of the infor-
mation encoded by the models, reflecting our in-
complete grasp of how they represent the meanings
of complex linguistic structures.

In this paper, we aim to improve this understand-
ing, as well as produce actionable methodological

recommendations. We predict the degrees of com-
positionality of 280 English noun compounds as-
sociated with human compositionality ratings. We
extract their occurrences from a web corpus and
model them using pretrained BERT. Like previous
work, we assume that the contextualized nature
of these representations may capture key aspects
of compound semantics. But we do not expect
this information to be equally accessible across the
model or independent from underlying linguistic
properties. We therefore experiment with variants
of BERT-derived semantic knowledge (comprising
over 40,000 ways of computing the degree of com-
positionality), and analyze the linguistic roles of
compound constituents and their empirical proper-
ties (frequency, ambiguity, and productivity). We
provide the following contributions:

• We identify a robust setup to extract compo-
sitionality information from pretrained BERT.
It strongly improves on earlier unsupervised
implementations and highlights beneficial de-
cisions in data preprocessing, embedding com-
putation, and compositionality estimation.

• We show that the distinct linguistic roles of
heads and modifiers are reflected by differ-
ences in BERT-derived representations. Fur-
ther focusing on compound heads, we find
clear effects of their empirical properties on
model performance.

• Our results support the view that pretrained
BERT encodes at least some aspects of the
semantics of multiword expressions, and also
show that the most relevant information is
found in the model’s initial layers.

The remainder of this paper is organized as fol-
lows. We first review related studies (§2), and then
introduce our data (§3) and experimental setup (§4).
We then analyze and discuss the results (§5) and
provide a conclusion (§6).
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2 Related work

The meaning of noun compounds is modeled from
a broad range of perspectives. In psycholinguistics,
for example, there is a long tradition of research
on human processing of compound semantics. Its
focus is usually on semantic transparency, which
is operationalized using measures including the
semantic relatedness of the constituents and the
retention of their meaning in the compound (e.g.
Bell and Schäfer, 2016; Auch et al., 2020; Günther
et al., 2020). Computational studies have examined
a similar range of compound properties, aiming
to predict the meaning of the whole compound
(Mitchell and Lapata, 2008; Dima et al., 2019),
the semantic relations between a compound’s con-
stituents (Ó Séaghdha, 2007; Dima et al., 2014), or
the compound’s degree of compositionality. The
latter issue is also the focus of our work.

The ability of computational models of com-
pound semantics to predict the degree of compo-
sitionality is usually evaluated on a ranking task
with gold standard data in form of human com-
positionality ratings, which exist for languages in-
cluding English (Reddy et al., 2011), German (von
der Heide and Borgwaldt, 2009; Schulte im Walde
et al., 2016), French and Portuguese (Cordeiro
et al., 2019). Strong results have been obtained us-
ing static word embeddings, generally by learning
dedicated representations for the whole compound
and comparing them against the representations of
the individual constituents, often combined using
composition functions (Reddy et al., 2011; Schulte
im Walde et al., 2013, 2016; Salehi et al., 2014,
2015; Cordeiro et al., 2019; Alipoor and Schulte
im Walde, 2020). Most studies predict the com-
positionality of the whole compound, but differ-
ences between heads and modifiers have been un-
derscored. Reported effects on model performance
are related to their distinct linguistic roles and em-
pirical properties such as frequency, productivity,
and ambiguity (Schulte im Walde et al., 2013, 2016;
Alipoor and Schulte im Walde, 2020).

More recently, compositionality prediction has
been addressed using pretrained transformer-based
models. While BERT-derived representations used
in a subsequently trained classifier performed well
on binary classification (Shwartz and Dagan, 2019),
their unsupervised use in the standard ranking task
formulation has been less successful. For instance,
an implementation based on comparisons between
contextualized and non-contextualized compound

representations obtained significantly poorer re-
sults compared to static word embeddings, leading
to a suggestion that these models do not capture
compositionality in a way similar to human anno-
tators (Garcia et al., 2021a). Stronger correlations
with human judgment were obtained in a probing
study, but using external linguistic knowledge –
gold standard synonyms of noun compounds (Gar-
cia et al., 2021b). We are unaware of unsupervised
implementations of BERT-derived representations
that are competitive with static word embeddings
on this task.

This might be related to a suboptimal use of the
information encoded by BERT, as the layers in its
architecture capture different aspects of linguistic
structure (Rogers et al., 2020). For instance, it has
been suggested that semantic knowledge in general
(Jawahar et al., 2019) and word sense information
in particular (Coenen et al., 2019) is encoded in
higher layers, but also that type-level information is
encoded in lower layers (Vulić et al., 2020). More
generally, these and other types of implementation
decisions impact BERT performance on other lin-
guistically oriented tasks (e.g. Laicher et al., 2021).
To the best of our knowledge, these patterns have
not been investigated in detail for compound se-
mantics, with the cited studies generally relying on
widely used solutions (e.g. computing a token-level
embedding by averaging over the last four layers).

3 Data

This section introduces the data resources we used.
For details on licenses, see Appendix A.

3.1 Gold standard of noun compounds

We use the set of 280 English noun compounds
introduced by Cordeiro et al. (2019). It includes an
initial set of 90 compounds created by Reddy et al.
(2011)1 and a further 190 compounds annotated by
Cordeiro and colleagues using the same rating pro-
cedure.2 Human annotators were asked to provide
compositionality ratings in terms of literality, on
a scale from 0 (not at all literal) to 5 (very literal).
They provided scores for the interpretation of the
whole compound (e.g. crash course), as well as
for the use of the modifier (crash) and the head
(course) within it. Sample compounds and their
ratings are shown in Table 1.

1http://www.dianamccarthy.co.uk/downloads.html
2https://pageperso.lis-lab.fr/carlos.ramisch/

?page=downloads/compounds
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Compositionality rating
Compound Modifier Head Phrase
guinea pig 0.47 ± 0.72 0.47 ± 0.72 0.24 ± 0.56

flea market 0.38 ± 0.81 4.71 ± 0.84 1.52 ± 1.13

biological clock 4.71 ± 0.47 1.76 ± 1.35 2.29 ± 1.21

health insurance 4.53 ± 0.88 4.83 ± 0.58 4.40 ± 1.17

Table 1: Sample gold standard compounds with compo-
sitionality ratings (mean and standard deviation).

3.2 Corpus

As corpus data for the modeled noun compounds,
we rely on the widely used ENCOW corpus,
obtained by crawling web data and containing
≈ 9.6 billion words (Schäfer and Bildhauer, 2012;
Schäfer, 2015). For each compound, all tokenized
sentences in which it appears are extracted. We
only use singular forms so as to avoid potential
variability related to grammatical number in BERT.

3.3 Empirical compound properties

Parts of our analysis use information on empirical
properties of compound constituents (in particular,
their heads), and specifically (i) frequency; (ii) pro-
ductivity, i.e. the number of compound-types in
which they appear; and (iii) ambiguity, i.e. their
number of senses. We use the information on these
properties created by Schulte im Walde et al. (2016)
for the Reddy et al. (2011) dataset. They derived
frequency and productivity information from the
ENCOW corpus, and calculated ambiguity based
on WordNet (Fellbaum, 1998). We apply the same
procedures to calculate the information for the com-
pounds from the Cordeiro et al. (2019) dataset.

4 Experimental setup

4.1 BERT representations

We use BERT-base-uncased, a 768-dimension, 12-
layer version of the model (110 million parameters)
pretrained on English data, from the Hugging Face
implementation (Wolf et al., 2020). We run the ex-
periments on a CPU computing server (2×12 3GHz
cores with 768GB RAM) over ≈ 5 days. In order
to facilitate the analysis of modeling properties, we
deliberately adopt a straightforward setup without
fine-tuning. Each sequence from the corpus is fed
into the model, which returns multiple vector rep-
resentations for each token in the sequence. For
all sequences of a compound, we retain the rep-
resentations for each token in the sequence; these
correspond to the input embedding layer and the

outputs of the 12 hidden states. We test different
ways of combining the obtained information.

Embedding types. BERT produces contextual-
ized representations for each token in the sequence,
which we use both individually and by combining
multiple token representations (see pooling func-
tions below). We compute the following types of
embeddings. (i) modif: representation of the modi-
fier, corresponding to its contextualized embedding.
(ii) head: representation of the head, corresponding
to its contextualized embedding. (iii) comp: rep-
resentation of the full compound, corresponding
to pooled modif and head embeddings. (iv) cont:
representation of the context in which the com-
pound appears, corresponding to the merged em-
beddings of all tokens in the sequence apart from
modif, head, [CLS], and [SEP]. (v) cls: embed-
ding of the [CLS] token, taken to correspond to a
representation of the full sequence.

BERT’s tokenizer splits out-of-vocabulary to-
kens into subwords with known representations.
When this occurs for modif or head, the subword
representations are pooled into a single embedding.

Layer combinations. We test all contiguous
spans of layers, across the input embedding and
the 12 hidden state outputs, for a total of 91 layer
combinations. The smallest combination is a single
layer, and the largest is the full range of 13 layers.

Pooling functions. Multiple vectors can be com-
bined in different ways; we test two options, aver-
aging (avg) or summing (sum) over them. This is
applied (i) token-wise, if merging multiple token
representations; (ii) layer-wise, if merging multiple
layers; (iii) sequence-wise, if creating a type-level
representation (see below). In order to streamline
the experimental setup, the same pooling function
is used in all three cases.

Sequence length. We test if using longer se-
quences can be beneficial based on the assumption
that a larger context may be more semantically dis-
criminating. We either retain only sequences with
at least 20 space-separated tokens, or do not im-
pose any threshold; this technically corresponds to
a minimum of 3 tokens, i.e. the lowest sequence
length in the corpus.

Number of sequences. From a similar perspec-
tive, we examine the effect of increasing the num-
ber of modeled sequences, experimenting with 10,
100, and 1,000 sequences per compound. The sets
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of sequences are not resampled; rather, the smaller
sets are included in the larger ones. This criterion
is combined with that of sequence length: for in-
stance, we extract 1,000 sequences of any length
as well as 1,000 sequences with at least 20 tokens,
although these may partly overlap. For compounds
whose corpus frequency is lower than the threshold,
all available occurrences are used.

4.2 Compositionality estimates

As stated above, we expect that the contextualized
representations we use may carry semantic infor-
mation reflecting the degree of compositionality of
a compound, but it is unclear which specific com-
bination of representations is the most efficient.

Direct estimates. We directly compute pairwise
cosine scores between pairs of embeddings, test-
ing all 10 pairs of embedding types (head–modif,
head–comp, head–cont, and so forth).

Composite estimates. We further combine the
directly measured information pertaining to the
head and the modifier of a compound using the
same composition functions as Reddy et al. (2011).
Specifically, we use head and modif embeddings
in combination with one of the following: comp,
cont, and cls. Taking comp as an example, we
compute the composite estimates as follows:

ADD

MULT

COMB

= cos(comp, modif) + cos(comp, head)
= cos(comp, modif) · cos(comp, head)
= ADD + MULT

Token-level vs. type-level. The information from
individual occurrences can be aggregated into a
single numerical score in different ways. (i) In
the token-level approach, we compute a composi-
tionality estimate for each individual occurrence,
and then average over those values to get a sin-
gle score. (ii) In the type-level approach, we first
compute a type-level representation by applying
a pooling function; as an example, we average or
sum over all individual head embeddings to pro-
duce a type-level head embedding. This type-level
representation is then used to directly compute a
single compositionality estimate.

The combinations of the presented experimental
parameters correspond to a total of 41,496 ways
of computing a numerical estimate of the degree
of compositionality. In a trial run, we also experi-
mented with other parameters (e.g. restrictions on
the position of the compound within the sequence),

but they did not exhibit strong effects and for clarity
are not included in the present discussion.

5 Results and discussion

We evaluate each constellation of parameters by
calculating Spearman’s rank correlation coefficient
between the compositionality estimates it produces
and human judgments from the test set. All im-
plementations are evaluated on three prediction
targets: compositionality scores for the compound
as a whole, the head, and the modifier.

5.1 Overview of model performance

We begin by looking at general trends in model per-
formance (Table 2). The highest correlation coeffi-
cient we obtain stands at 0.706 for compound-level
compositionality. Compared to previous studies on
the same dataset, it is in a similar range as the result
reported by Cordeiro et al. (2019) using static word
embeddings (ρ = 0.726).3 Their best performance
was obtained by training a word2vec model on a
corpus in which compound occurrences had been
joined into single tokens. The cosine scores be-
tween those representations and compositionally
constructed vectors were then used to predict the
degree of compositionality. Interestingly, this pro-
cedure strongly relies on the context in which the
compounds occur, which is also a key component
of our best approaches (see below).

The highest performance we obtain substantially
improves on the best BERT-derived score reported
by Garcia et al. (2021a) based on comparisons be-
tween contextualized and non-contextualized rep-
resentations of a compound (ρ = 0.37). In another
BERT-based experiment, Garcia et al. (2021b) ob-
tain a higher correlation using similarity measure-
ments between compounds and gold standard syn-
onyms (ρ = 0.67); by contrast, we do not rely on
external linguistic knowledge.

The implementations we tested are strongest at
predicting compound-level compositionality. This
is followed by the compositionality of the head
(maximum ρ = 0.645) and then of the modifier
(maximum ρ = 0.553). Predicted values for the
three types of scores are strongly correlated (ρ >
0.9 for all three pairwise comparisons), but the best
performing parameter constellations clearly differ.

More generally, the summary in the table un-
derscores the wide range of obtained values; the

3This result is reported for a subset of the same dataset
containing 180 compounds.

1502



ρ layers pool len seqs estimate agg ρ layers pool len seqs estimate agg
COMP 0.706 1-1 sum 3 1k COMB cont token -0.642 2-3 avg 3 1k cont cls type

0.706 1-1 avg 3 1k COMB cont token -0.644 3-3 avg 3 1k cont cls type
0.706 1-1 sum 20 1k MULT cont token -0.645 1-5 avg 3 1k cont cls type
0.706 1-1 avg 20 1k MULT cont token -0.646 2-4 avg 3 1k cont cls type
0.706 1-1 sum 3 1k MULT cont token -0.649 1-4 avg 3 1k cont cls type

HEAD 0.645 1-1 sum 3 1k head cont token -0.598 0-7 avg 3 1k cont cls type
0.645 1-1 avg 3 1k head cont token -0.599 1-4 avg 3 1k cont cls type
0.638 1-1 sum 3 1k COMB cont token -0.600 0-6 avg 3 1k cont cls type
0.638 1-1 avg 3 1k COMB cont token -0.604 1-5 avg 3 1k cont cls type
0.638 1-1 sum 3 1k ADD cont token -0.606 1-6 avg 3 1k cont cls type

MODIF 0.553 1-1 avg 20 1k modif cont token -0.464 2-4 avg 3 1k cont cls type
0.553 1-1 sum 20 1k modif cont token -0.465 1-5 avg 3 1k cont cls type
0.548 1-1 sum 3 1k modif cont token -0.471 1-3 avg 3 1k cont cls type
0.548 1-1 avg 3 1k modif cont token -0.474 1-4 avg 3 1k cont cls type
0.546 1-1 avg 20 1k modif cont type -0.476 1-2 avg 3 1k cont cls type

Table 2: Best (left) and worst (right) evaluated implementations. Abbreviations: pool = pooling function; len =
minimum tokens per sequence; seqs = minimum number of modeled sequences; agg = aggregation of occurrences
(type vs. token-level).

weakest implementations yield negative correla-
tions, with a low of −0.649. This confirms the
relevance of the parameters we tested and the im-
portance of understanding the optimal choices in
implementing them. Trends suggested by the ini-
tial overview include better performance of (i) the
first hidden layer in isolation; (ii) token-level rather
than type-level modeling; (iii) cont embeddings,
when paired with another relevant type of informa-
tion; (iv) embeddings targeting the compound as
a whole, the head, or the modifier for the corre-
sponding compositionality score. Strikingly, all the
weakest constellations are closely similar to one
another, the only distinguishing characteristic be-
ing the span of layers. But some of these parameter
choices are also found in the best performing imple-
mentations; more generally, the direction and rel-
evance of all trends are not immediately apparent.
We therefore now more closely examine individual
parameters.

Sequence length. Using sequences with at least
20 tokens leads to lower mean correlations. How-
ever, their minimum values are higher and maxi-
mum values are comparable (Table 3). The overall
lack of a clear effect suggests that beneficial dis-
tinctions made by the model are primarily based
on the most immediate linguistic context.

Number of modeled sequences. There is a clear
trend towards an increase in performance with an
increase in the number of modeled sequences (Ta-
ble 4), likely because this facilitates disambiguation
and limits the effect of sampling differences. Look-
ing at the maximum values, the shift from 10 to

min. 3 tokens min. 20 tokens
COMP 0.146 (-0.649, 0.706) 0.134 (-0.587, 0.706)

HEAD 0.102 (-0.606, 0.645) 0.087 (-0.561, 0.637)

MODIF 0.099 (-0.476, 0.548) 0.093 (-0.460, 0.553)

Table 3: Spearman’s ρ (mean, min, max) for minimum
sequence length.

10 sequences 100 sequences 1,000 sequences
C 0.135 (-0.394, 0.622) 0.142 (-0.607, 0.689) 0.143 (-0.649, 0.706)

H 0.093 (-0.384, 0.565) 0.094 (-0.551, 0.621) 0.096 (-0.606, 0.645)

M 0.089 (-0.367, 0.495) 0.101 (-0.459, 0.544) 0.098 (-0.476, 0.553)

Table 4: Spearman’s ρ (mean, min, max) for number of
sequences. C, H, M = compound, head, modifier.

100 occurrences leads to a stronger improvement
(≈ 0.06 points) than the shift from 100 to 1,000
(≈ 0.02 points); this suggests that it is especially
important to avoid very low numbers of examples.
While increasing the number of occurrences also
leads to the lowest performances overall, this may
be due to the detrimental effect of other parameters.

We further assessed the impact of sampling dif-
ferences in the condition with 10 sequences, which
is the most inherently unstable. We ran the com-
positionality estimation 10 times, each time ran-
domly resampling the modeled occurrences. The
mean difference between the minimum and maxi-
mum values obtained by a parameter constellation
is 0.028. This variability does not alter the overall
parameter-level trends (see Appendix B).

Some compounds do not exceed the threshold
frequencies for some parameter combinations. This
affects 10 compounds for the 100 sequence thresh-
old, and 97 compounds for the 1,000 sequence
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avg sum
COMP 0.139 (-0.649, 0.706) 0.141 (-0.587, 0.706)

HEAD 0.094 (-0.606, 0.645) 0.095 (-0.563, 0.645)

MODIF 0.095 (-0.476, 0.553) 0.097 (-0.460, 0.553)

Table 5: Spearman’s ρ (mean, min, max) for pooling
functions.

token-level type-level
COMP 0.150 (-0.584, 0.706) 0.130 (-0.649, 0.699)

HEAD 0.103 (-0.556, 0.645) 0.085 (-0.606, 0.628)

MODIF 0.100 (-0.460, 0.553) 0.092 (-0.476, 0.546)

Table 6: Spearman’s ρ (mean, min, max) for token- vs.
type-level processing.

threshold. As a check, we calculated correlations
on a smaller set of compounds, excluding the 10
most affected by frequency issues. The results were
near-identical, with marginal improvements for the
top predictions (e.g. best ρ increasing from 0.706 to
0.710 for compound scores) and the same general
trend. As for the compounds with fewer than 1,000
sequences, the mean number of sequences avail-
able for these items was 510, which is still a strong
increase compared to the preceding threshold.

Pooling functions. Averaging and summing per-
form similarly when creating a single embedding
from multiple vectors (Table 5). They obtain near-
identical mean and identical maximum values; av-
eraging leads to lower minimum values.

One of the ways we used pooling functions was
to merge representations for out-of-vocabulary to-
kens that are split up by BERT’s tokenizer. This af-
fected 14 compounds; some instances reflect deriva-
tional patterns (e.g. mail, ##ing in mailing list),
but others are more obscure (e.g. gr, ##av, ##y in
gravy train). Since it is unclear what some of these
representations capture, we checked their impact
by calculating correlations on a reduced set of com-
pounds, excluding those with OOV tokens. The
results were marginally higher (e.g. ρ increasing
from 0.706 to 0.710 for compound scores). This
issue therefore does not appear to have a strong
detrimental effect, at least when it is limited to a
small subset (5%) of target items.

Another frequently used pooling function is con-
catenation. Applying it across multiple tokens (e.g.
for out-of-vocabulary items) or multiple sequences
(to create a type-level representation) would re-
sult in comparisons between vectors with different
numbers of dimensions; we therefore did not in-

Figure 1: Top: effect of the number of modeled layers
on compound-level compositionality prediction. Bot-
tom: mean correlations for compound compositionality
prediction across layer combinations. The min_layer
and max_layer values are start and end points of a con-
tiguous span of layers.

clude it in the full experimental setup. As a check,
however, we ran concatenation across layers, com-
bined with averaging over tokens and sequences. It
led to slightly higher mean correlations (0.147 for
compound scores), but it did not improve on the
maximum results so we did not experiment further.

Token vs. type-level. There is a clear preference
across the board for token-level processing (Ta-
ble 6). Most improvements over type-level are
≈ 0.01–0.02 points; they reach ≈ 0.06 points
when comparing the worst-performing configura-
tions. A potential explanation is that estimating
compositionality on individual occurrences – rather
than a merged type-level representation – may be
less sensitive to ambiguous or otherwise noisy data.

Layers. The results are affected by the number of
modeled layers (Figure 1). The best performance
is obtained with a single layer (mean ρ = 0.150
for compound scores) and decreases as the span
increases up to 9 layers (0.130). Larger spans fare
somewhat better, likely because they are bound to
capture some relevant representational information;
the best is the full range of 13 layers (0.137).

In terms of specific layers, the best result overall
is obtained by the first hidden layer in isolation
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(mean ρ = 0.373), followed by other combinations
and individual layers in the low-to-mid range. This
is plotted in Figure 1 for compound composition-
ality scores; head and modifier scores follow the
same trends (see Appendix C). The traditionally
used combination of the last four hidden layers (9–
12) is not among the best ones. It is in fact the
single weakest in terms of maximum values: 0.248
for compound scores, close to 0.5 below the best
implementation. However, it also has a compara-
tively high minimum value (−0.262), suggesting it
is more robust to the effect of other parameters.

Compositionality estimates. We summarize the
impact of compositionality estimates by looking at
performance across the five types of embeddings
which constitute the basis of subsequent score cal-
culations (Table 7); for a summary of results on
individual estimates, see Appendix D.

modif head comp cont cls
COMP 0.135 0.274 0.245 0.172 -0.128

-0.383 -0.133 -0.324 -0.649 -0.649

0.615 0.630 0.666 0.706 0.611

HEAD 0.071 0.242 0.194 0.130 -0.161
-0.384 -0.130 -0.327 -0.606 -0.606

0.464 0.645 0.598 0.645 0.558

MODIF 0.106 0.167 0.164 0.133 -0.094
-0.274 -0.130 -0.229 -0.476 -0.476

0.553 0.415 0.517 0.553 0.477

Table 7: Spearman’s ρ (mean, min, max) for embedding
types, across all direct and composite estimates if used.

Looking at the mean values, head performs
stronger than modif as well as comp across the
prediction targets. This is coherent with the dom-
inant role of the head in the morphological con-
stituency of compounds. However, the maximum
values out of the three are obtained by comp for the
compound-level score, head for the head score, and
modif for the modifier score. This indicates that
representations targeting the whole compound or a
constituent of interest are successful in capturing
information specific to the respective element.

As for the two other embedding types, the mean
values for cont follow head and comp across pre-
diction targets. But its maximum values are the
single best (compound-level prediction) or joint
best (head and modifier predictions). By contrast,
cls is clearly in the lower range of performance. Its
maximum values remain around 0.1 points behind
the best implementations. This shows that using

the linguistic context surrounding the compound –
modeled by cont – is beneficial, and clearly more
so than using a representation of the full sequence.4

This might be explained by the redundancy of
using a representation of a compound or its con-
stituent, and comparing it with a representation of
the full sequence which encodes the same element.
It could also be the case that, as suggested before,
token-level embeddings are strongly influenced by
their immediate linguistic context; a balanced rep-
resentation of a broader range of information might
be complementary. Whatever the case, the results
show that the similarity between a compound and
its linguistic context is reflective of the degree of
compositionality. This might explain why previous
implementations using neutral contexts were less
successful in capturing these trends.

5.2 Ablation study
In order to further validate the parameter-level
trends observed thus far, we conduct an ablation
study. We start from the parameter constellation
that obtained the best results on predicting the com-
positionality of the compound as a whole (see Ta-
ble 2; the top two configurations obtained identical
results). For each parameter, we then test all other
potential values, one at a time, while keeping the
remaining parameters unchanged. The results are
presented in Figure 2.

Figure 2: Effect of alternative parameter values com-
pared to the top parameter constellation.

4A more direct comparison would involve a merged repre-
sentation of all the tokens in the sequence rather than the cls
embedding. We nevertheless think that we capture the same
range of information.
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Figure 3: Effect of empirical properties of the head on model performance, observed across the evaluated implemen-
tations. Values on the x-axis indicate prediction targets (compound, head, and modifier scores).

Several parameters exhibit no or limited differ-
ences with respect to the top parameter constella-
tion: pooling functions, minimum sequence length,
and type vs. token-level modeling. Clearer effects
on performance are observed for the number of
modeled sequences; the drop is strongest for the
smallest number of sequences. The choice of layers
shows a very strong effect, with a clear tendency
towards a drop in performance with both (i) a shift
from initial to later hidden states, and (ii) an in-
crease in layer span size. The strongest effect is
exhibited by the estimate used to predict the degree
of compositionality. All weakest estimates (reduc-
tion in ρ > 0.4) involve the cls embedding. All
strongest estimates (reduction in ρ < 0.1) involve
the cont embedding.

These results overall confirm the trends previ-
ously discussed for individual parameters. They
also provide further evidence that model perfor-
mance is most strongly affected by the choice of
representational information to be used, i.e. the lay-
ers and the modeled tokens in the sequence. Subop-
timal values for either of these parameters can lead
to compositionality predictions that are fully decor-
related from human judgment. Performance does
not depend to the same extent on the way in which
data is preprocessed and representational informa-
tion is combined. However, the effect of some of
these parameters is not negligible, especially cumu-
latively, and as such should not be disregarded.

5.3 Empirical properties of compounds
We now turn to the potential impact of empiri-
cal properties of the compounds on model perfor-
mance. We focus on key characteristics of the com-
pounds’ heads, given their importance indicated by
the trends for compositionality estimates.

As previously stated, we examine the impact of
three empirical properties: frequency, productivity,
and ambiguity (for sources of this information, see
Section 3.3). For each property, we rank the 280
compounds based on the values they exhibit and
split them into five sets containing 56 compounds
each. We retain the first, third, and fifth set, which
we take to clearly reflect the low, mid, and high
ranges for each empirical property. The remaining
two sets are excluded in order to avoid overlapping
or closely similar values in adjoining sets.

A summary of the splits across the three features
is presented in Table 8. For each feature, we com-
pute correlations with human judgments separately
for each of the three splits of compounds, across
all evaluated constellations of parameters. The dis-
tribution of the obtained values is plotted in Figure
3 and further discussed below.

Feature Mean Std. Example
Frequency 42 ± 30 silver spoon
(thousands) 452 ± 108 labor union

3,614 ± 2,438 crash course
Productivity 7 ± 5 night owl

75 ± 19 time difference
448 ± 208 birth rate

Ambiguity 2 ± 1 research project
5 ± 1 flea market

13 ± 4 application form

Table 8: Mean and standard deviation for the low, mid,
and high range splits across empirical features. A sam-
ple compound from each split is provided.

Frequency. In predicting the compound and head
compositionality scores, the best performance is
obtained for low-frequency heads (mean ρ = 0.18
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and 0.16, respectively). For the compound score,
performance across the mid and high range is sim-
ilar; for the head score, it is clearly lower in the
mid range. As for the modifier score, performance
is overall stable (mean ρ = 0.10 across the three
splits); this is not especially surprising given the
focus on the frequency of the head. This contrasts
the previously reported improvements in perfor-
mance with a higher number of modeled sequences.
However, head frequency is correlated with both
productivity and ambiguity (ρ = 0.87 and 0.50,
respectively, across the 280 compounds). Poorer
performance in higher frequency ranges is consis-
tent with an indirect effect of these two properties.

Productivity. Overall, low-productivity heads
clearly obtain the best results for compound and
head compositionality scores (mean ρ = 0.21 and
0.16, respectively). Low- and high-productivity
heads obtain similar results for the modifier scores
(mean ρ = 0.11 and 0.12, respectively). Across the
prediction targets, mid-productivity heads have the
poorest performance; this drop is the strongest for
head scores (mean ρ = 0.01). The overall better
performance at modeling low-productivity heads
is likely explained by their very nature of being
used with fewer distinct modifiers, which might
facilitate the learning of those compound mean-
ings. This is opposed to higher productivity ranges,
which potentially imply more dispersion.

Ambiguity. Across the prediction targets, low-
ambiguity heads clearly have the strongest perfor-
mance (mean ρ = 0.30 for compound scores; 0.25
for head scores; 0.18 for modifier scores). The
difference with respect to the two other ambiguity
ranges is the strongest for head scores; it amounts
to ≈ 0.20 points. Performance is similar for mid-
and high-range ambiguity. For compound and head
scores, the mid range performs slightly better than
the high range; for modifier scores, it is the reverse.
Similarly to low productivity, the better results for
low ambiguity suggest that limited semantic disper-
sion across the occurrences of a given word makes
it easier for BERT to learn its meaning. This is in
turn beneficial for derived representations of more
complex linguistic structures such as compounds.

Overall, these results have shown that compound
properties affect predictions of the degree of com-
positionality, with better performance in the lower
ranges of all three properties. This directly echoes
the results for type-level word embeddings reported

by Schulte im Walde et al. (2016), who similarly
suggested that prediction performance is related
to broader effects of compound properties on the
quality of the underlying meaning representations.
Moreover, the prediction of compound and head
scores generally follows the same pattern across the
three empirical features. Although modifier scores
do not align as closely, they too point to an effect of
head properties. These results further underscore
the importance of the representations of compound
heads for the modeling approach we adopted.

6 Conclusion

We have presented an experiment on predicting the
degree of compositionality of 280 English noun
compounds using a wide range of variants of se-
mantic knowledge derived from pretrained BERT.
We have identified a competitive best implementa-
tion achieving ρ = 0.706 with human judgement
and highlighted clear takeaways.

In terms of preprocessing, stronger results were
obtained when modeling a larger number of oc-
currences per compound, whereas controlling for
sequence length did not have a clear effect. On em-
bedding computation, different pooling functions
led to comparable performance, but there was a
clear advantage for layers in the low-to-mid range,
which strongly improved on layer combinations
used in earlier studies. As for compositionality es-
timates, it was clearly beneficial to compute them
on the token rather than type level, as well as to use
(i) representations targeting the constituent of inter-
est; (ii) representations of the surrounding context;
(iii) comparisons across complementary – rather
than redundant – representational information.

Looking at empirical properties of com-
pounds, low-frequency, low-productivity, and low-
ambiguity heads obtain better compositionality pre-
dictions. This trend confirms that more limited
semantic dispersion makes it easier to model com-
pound meaning. The fact that it holds across com-
pound, head, and modifier compositionality scores
highlights the importance of the head in the linguis-
tic structure – and computational modeling – of
compounds. Taken together, our results point to
important practical decisions when running similar
implementations and contribute to our understand-
ing of the way in which BERT represents lexical
meaning, supporting the view that the pretrained
model encodes at least some aspects of compound
semantics.
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Limitations

Our experiments were limited to noun compounds
in a single pretrained model for English, with po-
tential implications for the generalizability of our
results. They may be partly related to the architec-
ture of this specific model. From a linguistic stand-
point, compound properties vary widely across lan-
guages. For instance, where English has productive
patterns combining two nouns, often in an open
(space-separated) compound, German has closed
compounds; Romance languages widely rely on
N-Prep-N patterns; the structure in many Slavic
languages involves patterns of nominal declension;
and so forth. The model might not capture the in-
formation relevant for compositionality prediction
in the same way across these cases. Additionally,
our results are strongly related to the central role of
compound heads; they may therefore be different
in multiword expressions with a different linguistic
structure, such as particle verbs and idioms. Finally,
we used token-level representations to predict type-
level compositionality judgments. This is relevant
in terms of assessing the general ability to infer
type-level information, but (i) performance may
be improved by controlling for the senses in the
modeled occurrences vs. those in the stimuli used
to collect human judgements; (ii) further work is
needed to fully understand the factors contribut-
ing to individual token-level representations of a
compound.
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distributed by their authors without a specific li-
cense. The ENCOW corpus and WordNet were
acquired prior to this study. Their licenses do not
have restrictions regarding research use.

B Effect of sampling differences

We found that resampling corpus occurrences (for
n = 10 occurrences per compound) led to minor
differences in model performance. However, they
did not impact parameter-level trends overall, with
the effect of parameter choices remaining the same
in the majority of cases. To illustrate this, we are
reporting the mean correlations with human judg-
ment based on different samples of occurrences:
three individual samples (those whose overall mean
correlations are the lowest, the closest to the mean,
and the highest), as well as the mean and standard
deviation for the 10 samples. Similarly to the main
analysis, the mean values are presented for differ-
ent parameter choices; for layers, this is limited to
a sample of layer spans. The results are split across
the three prediction targets: for the compound as a
whole in Table 9; for the head in Table 10; for the
modifier in Table 11.

Sample shuffles Mean Std
Seq. len.

3 0.136 0.148 0.157 0.146 0.006
20 0.117 0.135 0.151 0.138 0.011

Agg.
token 0.134 0.146 0.161 0.149 0.008
type 0.120 0.137 0.147 0.134 0.008

Pooling
avg 0.126 0.141 0.153 0.141 0.008
sum 0.127 0.142 0.155 0.143 0.008

Estimate
head 0.265 0.276 0.280 0.274 0.006

modif 0.132 0.134 0.145 0.136 0.006
comp 0.240 0.243 0.250 0.245 0.005

cont 0.156 0.172 0.194 0.180 0.013
cls -0.153 -0.119 -0.105 -0.126 0.016

Layers
0-0 0.196 0.198 0.195 0.200 0.006
1-1 0.118 0.139 0.153 0.136 0.010

11-11 -0.062 -0.036 -0.009 -0.040 0.016
12-12 0.179 0.209 0.226 0.200 0.014

1-4 0.310 0.321 0.317 0.318 0.006
8-12 -0.009 0.011 0.044 0.011 0.015

Table 9: Mean correlations for compositionality pre-
diction (of the compound as a whole) across parameter
choices.

Sample shuffles Mean Std
Seq. len.

3 0.095 0.098 0.120 0.104 0.009
20 0.083 0.086 0.106 0.095 0.010

Agg.
token 0.094 0.097 0.123 0.106 0.010
type 0.083 0.087 0.103 0.093 0.008

Pooling
avg 0.089 0.091 0.113 0.099 0.009
sum 0.089 0.092 0.113 0.100 0.009

Estimate
head 0.238 0.240 0.249 0.241 0.006

modif 0.075 0.064 0.086 0.075 0.007
comp 0.196 0.187 0.202 0.195 0.005

cont 0.113 0.126 0.163 0.143 0.019
cls -0.165 -0.148 -0.132 -0.152 0.013

Layers
0-0 0.145 0.151 0.150 0.151 0.007
1-1 0.090 0.095 0.120 0.101 0.010

11-11 -0.055 -0.052 -0.013 -0.047 0.015
12-12 0.185 0.184 0.228 0.192 0.017

1-4 0.252 0.261 0.263 0.262 0.009
8-12 -0.015 -0.018 0.028 -0.006 0.015

Table 10: Mean correlations for compositionality pre-
diction (of the head) across parameter choices.

Sample shuffles Mean Std
Seq. len.

3 0.097 0.103 0.091 0.095 0.006
20 0.079 0.095 0.098 0.091 0.009

Agg.
token 0.091 0.099 0.098 0.096 0.005
type 0.085 0.099 0.092 0.090 0.007

Pooling
avg 0.087 0.098 0.094 0.092 0.006
sum 0.088 0.099 0.096 0.094 0.006

Estimate
head 0.160 0.170 0.167 0.166 0.004

modif 0.101 0.106 0.101 0.102 0.007
comp 0.158 0.164 0.160 0.162 0.006

cont 0.134 0.137 0.130 0.133 0.009
cls -0.117 -0.090 -0.088 -0.101 0.013

Layers
0-0 0.166 0.160 0.157 0.164 0.005
1-1 0.075 0.095 0.087 0.084 0.008

11-11 -0.070 -0.038 -0.045 -0.055 0.012
12-12 0.105 0.146 0.131 0.128 0.014

1-4 0.227 0.227 0.216 0.223 0.007
8-12 -0.029 0.000 -0.003 -0.016 0.011

Table 11: Mean correlations for compositionality pre-
diction (of the modifier) across parameter choices.

C Effect of layer combinations

Model performance across layer combinations is
plotted in Figure 4.

D Effect of compositionality estimates

Model performance across individual composition-
ality estimates is plotted in Figure 5.
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Figure 4: Correlations for compositionality prediction across layer combinations. The min_layer and max_layer
values are start and end points of a contiguous span of layers. For each prediction target (compound, head, and
modifier compositionality score), the left panel corresponds to the mean correlation per layer combination; the
middle and the right panels correspond to the minimum and maximum values, respectively.
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Figure 5: Distribution of Spearman’s correlation coefficient for compositionality prediction across compositionality
estimates. Embedding types: modif = contextualized representation of the modifier; head = contextualized
representation of the head; comp = pooled representation of modif and head; cont = pooled representation of the
surrounding context (full sequence without the compound); cls = representation of the [CLS] token. The use of
ADD, MULT, and COMB involves the composite estimates described in Section 4.
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Abstract

With multilingual machine translation (MMT)
models continuing to grow in size and number
of supported languages, it is natural to reuse
and upgrade existing models to save compu-
tation as data becomes available in more lan-
guages. However, adding new languages re-
quires updating the vocabulary, which compli-
cates the reuse of embeddings. The question of
how to reuse existing models while also mak-
ing architectural changes to provide capacity
for both old and new languages has also not
been closely studied. In this work, we intro-
duce three techniques that help speed up effec-
tive learning of the new languages and alleviate
catastrophic forgetting despite vocabulary and
architecture mismatches. Our results show that
by (1) carefully initializing the network, (2) ap-
plying learning rate scaling, and (3) performing
data up-sampling, it is possible to exceed the
performance of a same-sized baseline model
with 30% computation and recover the perfor-
mance of a larger model trained from scratch
with over 50% reduction in computation. Fur-
thermore, our analysis reveals that the intro-
duced techniques help learn the new directions
more effectively and alleviate catastrophic for-
getting at the same time. We hope our work will
guide research into more efficient approaches
to growing languages for these MMT models
and ultimately maximize the reuse of existing
models.

1 Introduction

Research into multilingual machine translation
(MMT) (Aharoni et al., 2019; Fan et al., 2020)
has shifted from a relatively small number of trans-
lation directions (Dong et al., 2015; Firat et al.,
2016; Ha et al., 2016) to much larger scale, recently
reaching up to tens of thousands of translation di-
rections (NLLB Team et al., 2022; Bapna et al.,
2022). Despite the notable increase in the number

∗Work done during an internship at Meta AI.
†Work done while working at Meta AI.

of supported languages, these models still need to
be upgraded as increasing amount of data in new
languages are becoming available. The process of
adding new languages to existing models is an in-
stance of continual learning (Ring, 1994), in which
the models need to effectively learn new tasks (new
translation directions) while not catastrophically
forgetting (French, 1993; McCloskey and Cohen,
1989) the knowledge about tasks from the previous
training stage (original translation directions).

Unlike the most conventional continual learning
setup where the model remains the same as the
initial learning stage, growing languages for MMT
models needs to deal with new parameters. Adding
new languages to existing training data shifts sub-
word token distribution (e.g., tokens from unseen
scripts are added), hence the need to re-train the
tokenizer, which adds new embedding parameters
to the MMT model. Previous studies have shown
the effectiveness of adapting embedding param-
eters to retain performance on old translation di-
rections (Lakew et al., 2018; Escolano et al., 2019;
Garcia et al., 2021). This is usually done by reusing
the embeddings for tokens that overlap between the
old and new vocabularies.

One aspect that has not been extensively ad-
dressed in previous research is how to deal with
other architecture mismatches that may arise during
the continual learning phase. When growing MMT
models to support many additional languages, it
also makes sense to increase the model size overall.
This extra capacity can be used to learn not only
the new directions well but also the old directions
better. It is not obvious, however, how to reuse
the parameters from existing models (i.e., to en-
gage in continual learning) given such architectural
changes. Thus, in addition to dealing with differ-
ent vocabularies, we also investigate how to make
use of previously trained models when scaling up
model size in order to train much more efficiently
than training from scratch.
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Wider feed-forward
layer projection

Feed-forward  
layer projection

Encoder layers

Decoder layers

__eng_ I like dogs

Inserted encoder
layers

Inserted decoder
layers

__fra__ J'aime les chiens

Figure 1: Illustration of two architectural mismatches we tackle in this paper. Left: The hidden dimension in the
feed-forward layers is doubled (d′hidden = 2dhidden) during the continual learning stage so that the model becomes
“wider”. Right: Additional layers are inserted at the bottom of encoder and the top of decoder so that the model
becomes “deeper”. Both architectural changes increase capacity and are not well-addressed by previous works.

In this work, we introduce a recipe that helps
significantly reduce the amount of required com-
putation for continually learning new languages
in MMT models. The recipe involves training the
models with a combination of three techniques:
(1) careful initialization of the network (2) apply-
ing learning rate scaling and (3) up-sampling se-
lected language pairs. We validate our method on
settings both with and without architecture mis-
matches (e.g., models becoming wider or deeper as
shown in Figure 1 to have extra capacity for both
old and new directions). We compare our models
with strong same-sized baselines that are trained
on all data from scratch. Our experimental results
show that, without architecture mismatches, it is
possible to outperform the baseline with just 30%
of computation required by the baseline. When
training larger models, less than 50% of the origi-
nal computation is required to match the full per-
formance of the wider baseline model, and less
than 10% of computation is needed to recover over
95% of the corresponding baseline performance.
We further conduct a suite of analysis which shows
that:

• Proper initialization of the parameters before
continual learning is crucial for fast conver-
gence.

• Data up-sampling is vital to achieving good
performance on new language pairs.

• Scaling down the learning rate for reused pa-
rameters helps alleviate catastrophic forget-
ting.

It is our hope that this work will help save compu-
tation for future research into large-scale multilin-
gual machine translation, guide more efficient reuse

of existing models for continual learning, and allow
people to efficiently adapt large publicly-released
MMT models for new languages and datasets.

2 Method

Adding new languages to existing models, espe-
cially languages in new scripts, leads to different
subword tokenization, thus different vocabularies,
which precludes simple fine-tuning with the ex-
act same model on additional data. During the
continual learning stage, we may also want to in-
crease the model size overall to have extra capac-
ity to learn the new languages and improve old
languages at the same time. Therefore, we also
investigate two typical architectural changes com-
monly done to increase the network capacity: (1)
make the model “wider” by expanding the hidden
dimension of the feed-forward layers, and (2) make
the model “deeper” by inserting new layers to both
encoder and decoder. In this section, we delineate
three techniques that we found most effective in
achieving computation reduction for the continual
learning of MMT models.

Proper initialization. While we can copy
weights from the old model1 to the new model,
it is not immediately clear how the new parameters
(e.g., new token embeddings, new feed-forward
weights, new layers) should be initialized and co-
adapted with the old weights such that maximal
knowledge about the old directions is retained. In-
stead of initializing the new parameters randomly,
we find that initializing the new embeddings with
that of <unk> leads to the best performance. When

1The weights that can be directly copied without any modi-
fication include (1) the token embeddings that overlap between
old and new model, (2) same-shaped non-embedding parame-
ters.
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M20 M25@100k Mt25@30k M25@100k
wide Mt25@50k

wide M25@100k
deep Mt25@50k

deep

spBLEU All 33.4 31.6 31.8 32.8 32.8 32.8 32.4
Orig. 33.4 33.4 33.5 34.5 34.25 34.5 33.9
Added - 24.6 25.2 25.9 27.2 26.2 26.2

chrF++ All 76 74 74 75 75 75 75
Orig. 76 76 76 76 76 76 76
Added - 67 69 68 70 68 69

Table 1: While continually learning new languages by bootstrapping from a model trained on 20 languages (M20),
given new embedding parameters (vocabulary mismatch), one can exceed the performance of a baseline model
trained on all languages from scratch (M25@100k) with just 30% computation (Mt25@30k). With architectural
mismatches, employing our method, the wider-model baseline performance (M25wide) and over 98% performance
of a deeper-model baseline (M25@100k

deep ) can be recovered with half of the corresponding baseline computation
(Mt25@50k

wide and Mt25@50k
deep respectively). The “Orig.” row shows performance on old 20 languages and the “Added”

on newly added 5 languages.

the network becomes “wider” in the continual learn-
ing phase, concatenating each old weight matrix
with a noisy version of itself performs better than
other methods we tried. When the network be-
comes “deeper”, initializing new layers with av-
eraged weights of old layers results in slight im-
provement over other naive initialization methods.
For each setup, we compare different initialization
methods in section 4.2.

Data up-sampling. Similar to (Garcia et al.,
2021), we introduce the new tasks by mixing old
and new training data together. Since the main goal
of the continual learning phase is to quickly learn
the new directions, we up-sample the new pairs so
the model gets more learning signals from these
new directions. To increase the transfer across re-
lated language pairs and reduce the chance of catas-
trophically forgetting less represented directions
in the original training data, we also up-sample a
small number of the old low-resource languages
that are from the same language family as the new
languages. We present the effect of up-sampling
these selected directions in section 4.3.

Learning rate scaling. To further mitigate the
frequent catastrophic forgetting problem exhibited
in continual learning (Ring, 1994; Thompson et al.,
2019), we scale the learning rate for individual
parameters depending on whether they are copied
from the old model or not. Based on the assumption
that the model better retains the knowledge about
old tasks if the weights stay close to that of the old
model (Kirkpatrick et al., 2017), we scale down the
learning rate for these old parameters while main-
taining or scaling up the learning rate for the newly

added parameters. In contrast to other methods that
incur extra computation such as Fisher Information
based loss (Thompson et al., 2019), our approach
is simple, straightforward and efficient in alleviat-
ing catastrophic forgetting. We present a deeper
analysis of learning rate scaling in section 4.4 and
section 5.2.

3 Experiments

Languages. We conduct our experiments on 25
languages covering ten language families, four re-
source levels (high, mid, low, and very low) and
four scripts2. To grow the languages atop exist-
ing learned languages, we train the seed model
on 20 languages (40 English-centric directions)
and add 5 new languages (10 English-centric direc-
tions) during the continual learning stage. Mim-
icking the common scenario where newly added
languages are mostly low-resource, we select five
low and very-low resource languages covering four
language families and four scripts as the new lan-
guages to add to the seed model. To verify the
validity of our approach, we also experiment with
two other 20/5 groupings and one 12/13 division of
old/new languages in section 5.13. Table 2 shows
the groups of original and added languages used
in most of our experiments. For all our models,
we train sentencepiece (Kudo, 2018)4 tokeniz-
ers with 64K tokens and a sampling temperature
of 2, on joined (source and target) data from all
language directions available in each setup. This

2We include more details about these languages in Ap-
pendix A Table 9.

3More language grouping details are shown in Table 10
and Table 11 in Appendix A.

4https://github.com/google/sentencepiece
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Original Added

lav rus fin spa xho
lit hin est deu guj

swh mar pol zul∗ npi
ukr mkd ces msa∗ ind
bel bul fra kir∗ kaz

Table 2: The M20 model is trained on the “Original”
languages. Mt25, Mt25wide and Mt25deep bootstrap
from M20 and train on the combination of “Original”
and “Added” languages. We perform data up-sampling
over added data in conjunction with related old low-
resource languages (marked with ∗).

means that tokenizers in the initial training on the
the old languages, were not exposed to unseen lan-
guages. The data we used are subsets of data used
by NLLB Team et al. (2022) without any mined or
back-translated examples.

Models. Our baseline models have a standard 12-
layer encoder and 12-layer decoder Transformer
architecture (Vaswani et al., 2017) with 16 atten-
tion heads, embedding dimension 1024 and hidden
dimension 4096. We refer to the baseline model
trained on 20 languages and 25 languages from
scratch as M20 and M25 respectively. For wider
models, we double the hidden dimension size to
8192; and for deeper models, we insert 6 extra
layers to encoder and decoder each. We refer to
the baseline wide and deep models trained on 25
languages from scratch as M25wide and M25deep re-
spectively, and refer to the models which bootstrap
from the M20 model and trained to support new lan-
guages while remaining the same architecture, us-
ing a wider network, and deeper network as Mt25,
Mt25wide and Mt25deep respectively. All transla-
tion directions were evaluated on FloRes (Goyal
et al., 2022; Guzmán et al., 2019) dev set and use
spBLEU5 dand chrF++ (Popović, 2017) to evaluate
the best checkpoint selected by validation loss with
beam size 4.6

Training details We train baseline models (M25,
M25wide, M25deep) for 100K updates with batch

5https://github.com/facebookresearch/
flores/tree/main/previous_releases/flores101#
spbleu-evaluation

6We use these two metrics instead of BLEU or pre-trained
metrics (Kocmi et al., 2021) because over half of the lan-
guages we use are of mid- to low-resource and Goyal et al.
(2022) show spBLEU treats low-resource languages more
fairly.

All Orig. Added

Mt25 31.8 33.5 25.2
random init all 28.2∗ 29.4∗ 23.4∗

random init new 31.7 33.5 24.9∗

no up-sampling 31.3∗ 33.4 22.6∗

no lr scaling 31.5∗ 33.1∗ 25.1

Mt25wide 32.6 34.1 26.3
random init all 26.7∗ 28.0∗ 21.5∗

random init new 29.9∗ 31.3∗ 24.6∗

no up-sampling 31.9∗ 34.1 23.3∗

no lr scaling 32.3∗ 33.9∗ 26.2∗

Mt25deep 32.2 33.8 25.6
random init all 30.5∗ 31.7∗ 25.7
random init new 32.2 33.9 25.6
no up-sampling 31.2∗ 33.5∗ 22.2∗

no lr scaling 31.6∗ 33.0∗ 26.1

Table 3: Ablation of the effect of not using M20 weights
(random init all), the effect of not carefully initializing
new parameters (random init new), not having data up-
sampling and not applying learning rate scaling across
three scenarios. All numbers are spBLEU scores of
models evaluated after 30K updates. ∗ indicates p-value
of paired T-test against corresponding best model (Mt25,
Mt25wide, Mt25deep) is smaller than 0.05.

size ∼444K tokens peak learning rate 0.003
warmed up with 8000 steps. For the bootstrapped
models, we train Mt25 for 30k updates and
Mt25wide and Mt25deep for 50k updates since there
are more added parameters. We use temperature 1
and prepend encoder/decoder language token at the
beginning of each example. All models are trained
with attention dropout 0.1 and label smoothing with
ϵ = 0.1 (Szegedy et al., 2016). The baseline mod-
els M25, M25wide and M25deep complete training
of 100K updates on 64 GPUs in ∼24h, ∼29.9h,
and ∼29.0h respectively. We do not reset the learn-
ing rate scheduler for the second training phase.7

The data of selected languages are up-sampled by
5 and the learning rate of the old parameters in
Mt25wide is multiplied by 0.5 and in Mt25deep by
0.05 at the beginning while linearly increasing to
0.5. We present the effect of these hyperparameters
in the next section.

7We tried resetting learning scheduler (i.e., learning rate
warms up 8K steps from 0 to 0.003 and then starts to decrease),
small constant learning rate, and not resetting learning rate
scheduler in our preliminary experiments and the last leads to
the best results.
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Main results. Results in Table 1 indicate that by
properly applying the techniques introduced earlier,
it is possible to recover the baseline performance
with significantly less computation. When architec-
ture remains the same during the second learning
phase, better overall performance can be achieved
(31.8 vs. 31.6) after 30% of the updates required
by the baseline model M25. The gains come from
effective learning of both the old and new direc-
tions while the latter seems to be better learned than
the baseline model (25.2 vs. 24.6). While train-
ing into a wider model, applying our techniques
recovers the performance with approximately half
of the M25wide computation. Although we did not
fully recover the performance while training into
a deeper model, over 98% of the baseline perfor-
mance can be achieved using our techniques with
half of the baseline M25deep computation. We find
that the major degradation in Mt25deep comes from
the worse performance on the original directions
(33.9 vs. 34.5) which suggests mitigating catas-
trophic forgetting is harder when expanding the
network by depth than by width.

4 Effect of each technique

4.1 Ablation study
To understand the effect of each introduced tech-
nique, we conduct an ablation study where each
model is trained on the same configuration except
for one essential element (i.e., proper initializa-
tion, learning rate scaling, data up-sampling). As
a naive baseline, while having scaled learning rate
and data upsampling, we include the models where
no weights from the seed M20 model are used
(“random init all”) to compare with a less naive
baseline “random init new” where the M20 weights
are reused and only the newly added parameters
(i.e., new token embeddings in all three models,
new fully-connected layer weights in Mt25wide and
weights of new layers in Mt25deep) are randomly
initialized. To summarize, each configuration in
Table 3 corresponds to the following:

Random init all : All parameters are initialized
randomly while model is trained with data
up-sampling and learning rate scaling.

Random init new : Newly added parameters are
initialized randomly while weights of M20
are copied to the new model. Model is trained
with data up-sampling and learning rate scal-
ing.

No up-sampling : Model weights are properly ini-
tialized and their learning rates are scaled dur-
ing training. No language pair is up-sampled.

No lr scaling : Model weights are properly initial-
ized and low-resource pairs are up-sampled
whereas no learning rate scaling is applied.

Results in Table 3 confirm the contribution of
each of the three introduced techniques in achiev-
ing the desired performance across different set-
tings. Overall, not reusing the M20 weights leads
to worse performance than the baseline by 2∼6
BLEU in different settings. While reusing the old
model’s weights, also having proper initialization
of the new parameters yields better performance
than simply initializing with default normal distri-
bution. The benefit is most obvious when training
into a wider model (29.9 vs. 32.6) compared to
the other two settings. We also observe that data
up-sampling is crucial to achieving good perfor-
mance on the new directions. Not applying up-
sampling degrades around ↓ 3BLEU on new direc-
tions across all settings, while barely or just slightly
hurting the performance on the old directions. On
the other hand, not applying learning rate scaling
harms the performance of old directions across all
settings, which suggests the effectiveness of scaling
the learning rate to mitigate catastrophic forgetting,
about which we include a more detailed analysis
in section 5.2.8 Since learning rate scaling helps
counteract catastrophic forgetting and up-sampling
speeds up learning of the new directions, we dis-
cover that their effectiveness are additive – better
performance can be achieved on both old and new
directions by combining these two techniques.

4.2 Effect of proper initialization
In this section we briefly discuss different varia-
tions we attempted for initializing new parameters
and present the results in Table 4.

Mt25 In the case of having only mismatched vo-
cabularies, we find that dropping the entire old
embedding table ("all emb random") causes large
drop in performance, and that initializing the new
embeddings with that of <unk> leads to slightly
better performance than random initialization.

8The overall differences are small as the results are av-
eraged over 50 directions, however, the paired T-Test shows
statistically significant improvements.

9We did not apply learning rate scaling in this setup and
do not up-sample the old related low-resource languages. All
evaluations are done after 30K updates.
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All Orig. Added

Mt25
all emb random 30.7 32.1 25.1
new random 31.5 33.0 25.5
new <unk> 31.5 33.0 25.7

Mt25wide
new random 31.1 32.3 26.1
linear interp 31.8 33.3 26.0
concat 32.0 33.5 26.1

M20t25deep
random 31.5 32.8 26.3
closest layer 31.6 32.9 26.3
average layer 31.6 32.9 26.7

Table 4: Initializing the new embeddings with that of
<unk>, concatenating the original weight with a noisy
version of itself in Mt25wide and initializing new layer
in encoder/decoder with the averaged encoder/decoder
weights in Mt25deep achieve the best performance.9

Mt25wide A naive method to initialize wider
feed-forward layer projections is to expand the old
weight matrix with a randomly initialized weight
matrix. However, having random additional param-
eters messes up the output of feed-forward layer,
which interferes with the inter-dependency among
layers, thus we also tried concatenating the old
weight matrix with a noisy version of itself (con-
cat10) followed by a normalization operation11 to
keep the output as close to the original projec-
tion output as possible. In addition, rather than
maintaining the old weights in block, we also tried
linearly interpolating the original weight matrices
along the expanded dimension (linear interp). It’s
important that the new parameters in the two pro-
jection matrices in a feed-forward layer match each
other along the hidden dimension axis. Results
indicate that weight concatenation is a simple and
effective way that allows for faster convergence.

Mt25deep Our preliminary experiments show that
inserting new layers at the bottom of the encoder
and at the top of the decoder is more effective than
other attempted scenarios, so we went with this
setup in all our Mt25deep experiments. We tried dif-

10We inject zero-mean Gaussian noise with std = 0.01.
We also tried not adding noise to the new parameters, which
has almost identical performance. To avoid both parts of the
weight matrices learning redundant information, we decide to
add small perturbation to the new parameters.

11We normalize the new weight matrix such that it has
similar Frobenius norm as the old weight matrix.

Up-sampling config. All Orig. Added

α = 1 (No up-sampling) 31.0 33.2 22.2
α = 5 31.5∗ 33.0∗ 25.7∗
α = 10 31.1 32.6∗ 25.5∗

α = 5 + rel. low-resource 31.5∗ 33.1 25.1∗

Table 5: Performance of Mt25 at 30K updates without
applying learning rate scaling. Up-sampling new lan-
guages with a reasonable ratio during continual learning
leads to large gains on these new directions. ∗ indicates
p-value of paired T-test against the baseline (top row) is
smaller than 0.05.

M20 weights 
(M) 

expanded
dimension@0k

@30k

Figure 2: Before the continual learning (@0k), the wider
hidden projection matrix is initialized with a concate-
nation of M20 weights M and a noisy version of itself.
During the continual learning stage, the learning rate for
weights copied from old model is scaled by γ(old), the
rest are scaled by γ(new).

ferent methods of initializing the inserted layers, in-
cluding random initialization, copying parameters
from the closest layer,12 and averaging the weights
across all encoder or decoder layers. Although the
benefit is small, we do perceive that initializing the
new layers with averaged layer weights results in
better performance, especially on new translation
directions (26.7 vs. 26.3).

4.3 Effect of data up-sampling

We multiply the original dataset size of each up-
sampled direction by a value α before comput-
ing the final up-sample ratio. The new directions
thus constitute a larger portion in the new dataset
than if not. We show in Table 5 the effect of the
up-sample factor α. We find that up-sampling
selected languages leads to much better perfor-
mance (+3BLEU) on new directions than without
up-sampling. However, up-sampling the new direc-
tions too much (e.g., α = 10) worsens the perfor-
mance on old directions while not improving the
new directions. In general, we find the up-sampling

12Since we include the new layer at the bottom of the en-
coder and at the top of the decoder, the closest layer means
the first encoder layer and last decoder layer respectively.
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All Orig. Added

γ(old) = 1, γ(new) = 1 32.0 33.5 26.1
γ(old) = 0.5, γ(new) = 5 32.3∗ 33.8∗ 26.2
γ(old) = 0.5, γ(new) = 0.5 31.5∗ 33.3 24.7∗

γ(old) = 0.5, γ(new) = 1 32.1∗ 33.6∗ 26.0
γ(old) = 5, γ(new) = 5 31.9 33.4 26.1

Table 6: Performance of Mt25wide after 30K updates
while applying different learning rate scaling factor
based on notation in Figure 2. These experiments adopt
an earlier setup where the old related low-resource lan-
guages are not up-sampled. ∗ indicates p-value of paired
T-test against the baseline (top row) is smaller than 0.05.

factor α = 5 adopted in previous studies (Garcia
et al., 2021; Berard, 2021) suitable to many other
variants we have attempted in this work. Besides
merely up-sampling the new directions, we also
up-sample the old low-resource directions that be-
long to the same language family as any of the new
directions. Doing so slightly improves the perfor-
mance on old directions whereas causes a drop in
new directions, which further confirms the critical
role of up-sampling in balancing the performance
between the old and new directions.

4.4 Effect of learning rate scaling

As described in section 2, we scale down the learn-
ing rate for old (reused) parameters. In the case
of Mt25, all parameters are updated with a smaller
learning rate than the new token embeddings. In
the wider network, as we have established the effec-
tiveness of using concatenated weights, we apply
different learning rate to each part of the weight
matrices as generically illustrated in Figure 2. In
Mt25deep, the new layers are updated with a larger
learning rate while the rest of the parameters re-
ceive a smaller learning rate. Table 6 suggests that
having a smaller learning rate for old parameters is
more favorable than scaling all parameters by the
same amount ratio. Scaling down the update for
all parameters slows down the learning of the new
directions, whereas scaling up with a larger value
does not improve the performance either. While
already applying smaller update on old parameters,
scaling up the learning rate for the new parameters
can in fact improve both the old and new direc-
tions (the top two rows in Table 6). Overall we
find that learning rate scaling is an effective and
easy-to-implement alternative to previous meth-
ods (Kirkpatrick et al., 2017) in terms of alleviating
catastrophic forgetting.

Mt25 Mt25_v1 Mt25_v2 M12t25

All 32.6 32.7 32.5 32.7
High 35.8 36.0 35.8 35.9
Mid 29.6 29.8 29.7 29.3
Low 31.5 31.2 31.4 31.6
V_Low 19.0 20.0 19.0 20.1

Table 7: Besides the language breakdown shown in
Table 2, we show our approach also generalizes to
other groupings of old and new languages (Mt25_v1,
Mt25_v2 and M12t25), details about which are included
in Appendix A Table 10.

Mt25 Mt25_v1 Mt25_v2

∆BLEU Up ∆BLEU Up ∆BLEU Up

eng-bel -1.2 N 2.0 Y 2.4 Y
eng-guj 1.6 Y 0.9 Y 0.0 N
eng-npi 0.8 Y -0.1 Y -2.3 N
eng-xho 1.3 Y 0.0 N 1.1 Y

bel-eng -1.1 N -0.5 Y -0.7 Y
guj-eng -2.5 Y -2.6 Y -2.2 N
npi-eng -1.6 Y -0.6 Y -1.9 N
xho-eng -1.1 Y -1.3 N -0.7 Y

Table 8: Zoomed in analysis over specific language pairs.
Our approach is more effective in learning eng→xxx di-
rections than xxx→eng directions across different seed-
language setups regardless if the language is up-sampled
(Up=Y) or not (Up=N).

5 Analysis

5.1 How does the choice of seed languages
affect continual learning?

In addition to the core setup described in Table 2,
we also experiment with other settings. We con-
sidered three new setups following the natural sce-
nario where the seed languages are mostly of high-
and mid-resource languages. Two of the new se-
tups still adopt the 20/5 division between old and
new languages, but emphasize different scenarios —
Mt25_v1 covers one mid resource language in the
set of new languages and Mt25_v2 does not add
any new script. The last one instead initializes from
a model trained on 12 high- and mid-resource lan-
guages and adds in 13 new languages.13 We follow
the same configuration used in the previous experi-
ments and train into wider models in the continual
learning phase. Results in Table 7 demonstrate that
our approach successfully generalizes to all the new
settings, as similar performances can be achieved

13For detailed breakdown of these three new settings, we
refer readers to Table 10 and Table 11 in Appendix A

1519



High Mid Low V_Low

12

10

8

6

4

2

0
 sp

BL
EU

 spBLEU after embedding substitution

W/O LR Scaling
W/ LR Scaling

Figure 3: We measure the drop in spBLEU on origi-
nal directions after substituting overlapped embeddings
in Mt25wide back to M20 model. Applying learning
rate scaling helps alleviate catastrophic forgetting as
spBLEU drops less than without LR scaling.

when models are trained on different choices of
seed languages, even when the number of seed lan-
guages are different. However, we do observe small
differences after zooming in by resource-levels. A
more fine-grained analysis over a few low-resource
languages that cover diverse scripts (bel-Cyrl, guj-
Gujr, npi-Deva, xho-Latn) is presented in Table 8.
In general, regardless of if the language pair is in
the seed language set or not, the eng→xxx direc-
tions are learned faster than xxx→eng directions,
since most of the pairs already exceed the base-
line performance after just 30K updates (compare
the upper part of Table 8 to the lower part). We
also verify the effectiveness of data up-sampling
for eng→xxx directions. Up-sampling these pairs
leads to much better performance than when not
up-sampling (e.g., compare performance of eng-bel
in the three setups).

5.2 How effective is learning rate scaling in
mitigating catastrophic forgetting?

To quantitatively measure the amount of informa-
tion lost after the continual learning phase, we
adopt an evaluation setup akin to (Garcia et al.,
2021), in which the embeddings in M20 that over-
lap with Mt25 are substituted with the correspond-
ing embeddings in Mt25. One can evaluate this
new M20 model with substituted embeddings on
the original 20 languages, and use the drop in sp-
BLEU as a proxy for the amount of knowledge lost
in the embeddings due to catastrophic forgetting. In
Figure 3, we display the spBLEU drop after substi-
tuting the embeddings of a Mt25wide model trained
with and without learning rate scaling. For both

10k 20k 30k
Updates

26

27

28

29

30

31

32

sp
BL

EU

Mt25wide

Mt25wide no lr scaling
Mt25wide no up-sampling

M25wide

M25@100k
wide

Figure 4: Training the M25 from scratch without using
the M20 weights converges significantly slower. Ap-
plying the techniques introduced in this work results in
the largest computation reduction, achieving over 95%
performance with less than 10% baseline computation.

variants, the spBLEU scores drop, indicating that
some information in the embeddings is lost after
training on the new languages. We also find that,
for both models, the decrease in spBLEU is larger
for (very) low-resource languages than high and
mid resource languages, which suggests (very) low-
resource languages are easier to be “forgotten” in
the second training phase, which reinforces our de-
cision of also up-sampling the related low-resource
languages as introduced in section 4.3. Finally, not
applying learning rate scaling leads to much larger
decrease in all directions, which manifests the ef-
fectiveness of scaling down the learning rate for
alleviating catastrophic forgetting.14

5.3 Computation saved
Due to the mismatched vocabularies and architec-
tures, models trained on the combination of new
and old languages are typically re-trained from
scratch after already incurring large computation
on old languages. In this section, we look at how
much computation can be effectively saved with
the approach proposed in this paper. Note that,
for both our methods and the retraining approach,
M20 is already trained, and its computation cost is
excluded from our calculation.

Although results in Table 1 shows that 50% of
the baseline computation is required to recover
the baseline performance, we show in Figure 4
that much computation can be saved if we slightly
slack the target performance. The M25wide model

14Besides probing the effect of learning rate scaling on
embeddings, we also present an analysis on the expanded
feed-forward weights in Appendix C.

1520



trained from scratch reaches only 78% of the base-
line performance after 10k updates, while mod-
els trained with the combination of our techniques
achieve over 97% of the baseline performance after
the same amount of updates (10% total computa-
tion of training Mt25wide).

6 Related Work

Our work is closely related to prior research on
adapting existing MMT models (Mohammadshahi
et al., 2022) to new languages (Lakew et al., 2019;
Kocmi, 2020). Neubig and Hu (2018) add low-
resource languages to multilingual models by fine-
tuning on low-resource data while regularizing
with related high-resource data. Garcia et al.
(2021) introduce simple vocabulary substitution
for adapting MMT models to new languages with-
out any architectural changes. Another line of
research employs modular approaches, which in-
clude training lightweight adapters (Bapna and Fi-
rat, 2019), language-specific encoder-decoders (Es-
colano et al., 2019, 2021), language specific embed-
dings (Berard, 2021) for learning new languages.
While sometimes escaping the need to train on old
examples, growing the model in a modular fash-
ion (Rusu et al., 2016) requires non-trivial changes
to standard architectures. In contrast, our work
relies on rehearsal mechanism (i.e., also train on
old examples) but does not need to modify network
structures (Robins, 1995).

Our approach is also related to works that focus
on continual learning of MT models for adapting
multiple domains. Thompson et al. (2019); Gu and
Feng (2020) adopt a method derived from Elas-
tic Weight Consolidation (Kirkpatrick et al., 2017)
to alleviate catastrophic forgetting. While most
prior works only investigate two-stage continual
learning, Cao et al. (2021) propose a new frame-
work that extends to multi-stage training to mitigate
catastrophic forgetting (Ring, 1994). The initializa-
tion of the new parameters and embeddings in our
technique is also related to that in (Pfeiffer et al.,
2021), which accommodate multilingual models to
unseen scripts via matrix factorization. Our focus
on the architectural differences between initial and
continual learning phase is also relevant to recent
discoveries that wider networks forget less catas-
trophically (Mirzadeh et al., 2022).

7 Conclusion

We show in this work that it is possible to efficiently
bootstrap from existing models and recover the
baseline performance with much less computation
while vocabularies and architectures can be differ-
ent in the continue learning stage. We highlight
the importance of (1) reusing the existing model
weights and carefully initializing the new param-
eters, (2) applying learning rate scaling, and (3)
performing data up-sampling. Analyses reveal that
scaling down the learning rate for old parameters
helps alleviate catastrophic forgetting, and that data
up-sampling is vital to achieving good performance
on the new directions. We hope our work can help
save computation for research into large-scale mul-
tilingual MT models, and more generally, will help
spur research into continual multitask learning in
the presence of architectural changes.

Limitations

While we explore the under-studied architectural
mismatches for continual learning of MMT models,
we focus exclusively on adding new languages in
bulk, without investigating adding languages one
by one continuously. Furthermore, due to limited
computational resources, we only experimented
with a few typical scenarios where the new lan-
guages are low or very-low resourced. Experiments
on other groupings of old and new languages could
further validate the effectiveness of our approach.
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Figure 5: We measure the amount of change in each
feed-forward layer’s projection weights via Frobenius
norm (∥ · ∥e for encoder layers and ∥ · ∥d for decoder
layers). Notation in this figure follows that in Figure 2.
Scaling down the learning rate for parameters copied
from the old model keeps them close to their initializa-
tion while pushes the newly added parameters farther
away.

A Language details

We present two extra language grouping settings
we have experimented in this section. To verify the
validity of our approach on other language group-
ings, we also experiment with two other settings
as shown in Table 10. In addition to dividing the
old/new languages by 20/5, we also tried a setting
where the seed model is trained on fewer languages
as reported in Table 11.

B Detailed performance of each direction

Table 12 contains the detailed performance of all
translation directions for all models reported in
Table 1.

C Norm Analysis

The analysis in section 5.2 is limited to only mea-
suring the lost information in the embeddings, to
understand how learning rate scaling affects the
weights other than embeddings, one natural ex-
tension is substituting other weights back to M20
as well. However, it leads to much worse perfor-
mance for both variants as the inter-dependency
among layers is impaired in this case. Therefore,
we instead measure the amount that the weights
of each encoder or decoder layer (denoted with
L0, L1, . . . , L11) change in the latent space via the
Frobenius norm. Following the notation in Figure 2,
we measure how much the weight matrices M1 and

M2 have changed from the original weight matrix
M (∥M1 −M∥ and ∥M2 −M∥), as well as how
much they differ from each other (∥M1 −M2∥).
We refer to the Frobenius norm in an encoder or
a decoder layer with ∥ · ∥e and ∥ · ∥d respectively.
The trend in Figure 5 shows that applying learning
rate scaling prevents M1 from deviating too much
from the original weights M and at the same time
pushes the new parameters to space farther from its
initialization. This is in contrast with the smaller
differences when not applying learning rate scal-
ing. The left side of Figure 5 indicates that even
after the continual learning, M1 and M2 stay close
to each other across the encoder layers, it is only
when reaching the last several decoder layers do the
two matrices demonstrate larger differences. Since
we initialize M1 and M2 both based on M , having
larger ∥M1−M2∥ reduces the chance of both parts
learning redundant information i.e., effectively us-
ing the additional parameters.

D Scaling learning rate by Fisher
information

Besides multiplying the learning rate for all old
parameters with the same scaling factor, we also
tried scaling the learning rate based on their Fisher
Information. This is directly inspired by Elastic
Weight Consolidation (Kirkpatrick et al., 2017),
in which extra penalty is incurred when parame-
ters crucial to the old tasks deviate too much from
their original values. We plot the distribution of the
per-token Fisher information of each parameter in
Figure 6 (right). We further experiment with LR
scaling over selected parameters that are supposed
to be important for old tasks (Fisher information
exceeds certain threshold based on Figure 6 (right)).
Results in Table 11 (right) shows that among our
attempted settings, scaling only part of the parame-
ters based on Fisher information does not improve
the overall performance. We conjecture that the
performance could be improved if the Fisher Infor-
mation is calculated on a larger set and that if we
apply a piece-wise threshold function for scaling
the learning rate of different parameters.

E Effect of LR scaling in alleviating
catastrophic forgetting

We include the spBLEU drop on the old languages
after substituting the embeddings of Mt25 back to
M20 in Figure 6.
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Language Language code Language family # bitext Res. level Script

M20 old languages

Latvian lav Baltic 2,288,307 Mid Latn
Lithuanian lit Baltic 2,322,619 Mid Latn
Swahili swh Benue-Congo 1,133,371 Mid Latn
Zulu zul Benue-Congo 656,450 Low Latn
Ukrainian ukr East Slavic 925,922 Low Cyrl
Belarusian bel East Slavic 55,185 V_Low Cyrl
Russian rus East Slavic 13,962,768 High Cyrl
Hindi hin Indo-Iranian 1,032,502 Mid Deva
Marathi mar Indo-Iranian 181,642 Low Deva
Malay msa Malayo-Polynesian 305,469 Low Latn
Macedonian mkd South Slavic 403,742 Low Cyrl
Bulgarian bul South Slavic 2,118,839 Mid Cyrl
Kyrgyz kir Turkic 336,554 Low Cyrl
Finnish fin Uralic 3,764,770 Mid Latn
Estonian est Uralic 2,410,543 Mid Latn
Polish pol West Slavic 3,062,818 Mid Latn
Czech ces West Slavic 23,792,604 High Latn
French fra Western European 20,031,051 High Latn
Spanish spa Western European 16,606,594 High Latn
German deu Western European 10,198,897 High Latn

Mt25 new languages

Xhosa xho Benue-Congo 634,078 Low Latn
Gujarati guj Indo-Iranian 153,985 Low Gujr
Nepali npi Indo-Iranian 72,250 V_Low Deva
Indonesian ind Malayo-Polynesian 771,801 Low Latn
Kazakh kaz Turkic 627,734 Low Cyrl

Table 9: Detailed information about languages used in the main setup of our experiments. Languages having >10M
examples are of high-resource languages, having (1M, 10M] mid-resource languages. The rest are of low-resource
languages, v_low is a subset of low-resource languages that have <100K examples.

Mt25_v1 Original Added

lav ukr∗ msa pol guj
lit rus mkd ces npi

swh hin bul fra est
zul mar∗ fin spa bel
xho ind kaz∗ deu kir

Mt25_v2 Original Added

lav hin mkd pol zul
lit mar bul ces xho

swh guj kaz∗ fra ind
ukr∗ npi fin spa bel
rus msa∗ est deu kir

Table 10: Besides the breakdown between old and new languages as shown in Table 2, Mt25_v1 uses the left
grouping and Mt25_v2 uses the right grouping of languages. ∗ marks the languages that are also up-sampled during
continual learning.
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Original Added

lav est zul mar
lit pol xho guj
swh ces ukr npi
rus fra bel ind
bul spa hin msa
fin deu mkd kaz

kir

All Orig. Added

f=1e-6, γ(old)=0.25 32.3 33.8 26.4
f=1e-6, γ(old)=0.1 32.1 33.7 26.0
f=1e-5, γ(old)=0.25 31.9 33.3 26.2
f=1e-5, γ(old)=0.1 32.1 33.5 26.6
f=1e-5, γ(old)=0.05 31.8 33.3 25.8
f=1e-4, γ(old)=0.25 31.7 33.1 26.1

Table 11: Left: M12t25 starts from a model trained on 12 high- and mid- resource languages and grows to a wider
model to support 13 new low- and very-low- resource languages. None of old languages is up-sampled in the
continual learning stage. Right: Performance of Mt25wide after 30k updates when the learning rate for parameter
whose Fisher information is greater than threshold f is scaled down by the corresponding γ(old) in each row.
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Figure 6: Left: spBLEU drop after substituting the embedding of the learned Mt25 model back to M20 model.
Right: Per token Fisher information calculated over FloRes dev set.
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Lang_pair M25 Mt25 M25wide Mt25(@30k)
wide M25deep Mt25(@30k)

deep

spBLEU chrF++ spBLEU chrF++ spBLEU chrF++ spBLEU chrF++ spBLEU chrF++ spBLEU chrF++

bel-eng 18.1 0.74 18.3 0.74 20.1 0.74 19.0 0.74 19.9 0.74 18.5 0.74
bul-eng 40.8 0.81 41.1 0.81 41.7 0.81 41.5 0.81 41.9 0.81 41.0 0.81
ces-eng 42.6 0.81 42.3 0.81 42.9 0.82 42.5 0.81 43.0 0.81 42.0 0.81
deu-eng 44.7 0.82 44.5 0.82 45.3 0.82 45.2 0.82 45.4 0.82 44.5 0.82
eng-bel 11.7 0.59 11.3 0.59 13.2 0.61 12.1 0.59 13.1 0.60 12.1 0.60
eng-bul 39.5 0.78 40.3 0.79 40.5 0.79 40.1 0.78 40.6 0.79 40.3 0.79
eng-ces 38.4 0.76 38.5 0.76 38.4 0.76 38.2 0.76 38.8 0.76 38.4 0.76
eng-deu 39.0 0.79 39.3 0.79 40.1 0.79 39.2 0.78 39.8 0.79 39.3 0.79
eng-est 30.3 0.76 30.1 0.76 32.0 0.77 30.7 0.76 31.5 0.76 30.7 0.76
eng-fin 28.5 0.76 28.5 0.76 30.3 0.76 29.3 0.76 30.7 0.77 29.5 0.76
eng-fra 49.4 0.81 49.4 0.81 48.6 0.81 49.3 0.81 49.1 0.81 49.1 0.81
eng-guj 24.2 0.63 28.3 0.67 25.5 0.64 28.4 0.67 25.3 0.64 28.0 0.66
eng-hin 32.0 0.71 31.5 0.71 33.4 0.72 32.6 0.71 32.7 0.71 32.8 0.71
eng-ind 40.1 0.81 40.0 0.81 41.2 0.81 44.4 0.82 41.4 0.81 43.7 0.82
eng-kaz 14.6 0.58 13.4 0.57 14.8 0.58 18.0 0.61 16.4 0.60 15.6 0.59
eng-kir 18.0 0.61 16.4 0.59 19.1 0.62 20.9 0.63 18.5 0.62 20.4 0.63
eng-lav 32.4 0.75 33.5 0.75 33.6 0.75 34.0 0.75 34.1 0.75 33.6 0.75
eng-lit 28.3 0.73 28.1 0.73 29.5 0.74 28.9 0.74 29.7 0.74 28.6 0.73
eng-mar 16.9 0.62 16.3 0.62 18.2 0.62 17.8 0.63 18.5 0.63 17.3 0.62
eng-mkd 34.9 0.77 35.2 0.77 36.5 0.77 35.8 0.77 35.8 0.77 35.2 0.77
eng-msa 37.2 0.80 32.5 0.79 39.6 0.81 43.3 0.82 39.3 0.80 42.3 0.82
eng-npi 11.3 0.47 17.6 0.59 13.9 0.52 16.4 0.57 13.7 0.52 15.3 0.54
eng-pol 23.5 0.70 23.5 0.70 24.9 0.70 24.2 0.70 24.4 0.70 23.3 0.70
eng-rus 32.4 0.71 32.3 0.70 33.1 0.71 33.2 0.70 33.5 0.71 32.5 0.70
eng-spa 29.8 0.74 28.9 0.74 29.2 0.74 29.6 0.74 30.2 0.74 29.5 0.74
eng-swh 34.4 0.78 34.5 0.78 35.3 0.78 35.2 0.78 35.1 0.78 35.0 0.79
eng-ukr 31.4 0.72 31.7 0.72 33.2 0.72 32.1 0.72 33.5 0.72 32.1 0.72
eng-xho 21.9 0.73 21.7 0.73 22.3 0.73 24.2 0.75 22.9 0.73 23.4 0.74
eng-zul 30.4 0.76 29.1 0.75 31.3 0.76 33.8 0.77 31.3 0.76 33.1 0.77
est-eng 36.8 0.78 36.7 0.78 37.6 0.79 36.3 0.78 37.4 0.79 36.9 0.79
fin-eng 34.5 0.78 35.1 0.78 35.6 0.78 35.1 0.78 35.8 0.78 35.0 0.78
fra-eng 47.0 0.83 47.2 0.83 48.2 0.83 47.9 0.83 48.2 0.83 47.5 0.83
guj-eng 29.9 0.76 29.7 0.76 31.5 0.76 30.7 0.76 31.4 0.76 29.0 0.75
hin-eng 34.9 0.79 35.0 0.79 36.8 0.80 35.7 0.79 36.6 0.79 35.4 0.79
ind-eng 42.2 0.81 41.4 0.81 43.8 0.81 42.8 0.81 43.4 0.81 43.0 0.81
kaz-eng 1.5 0.46 2.8 0.48 1.3 0.47 4.8 0.50 3.1 0.47 3.4 0.47
kir-eng 19.9 0.69 19.4 0.69 20.9 0.70 20.3 0.69 20.7 0.70 19.9 0.69
lav-eng 35.4 0.79 35.4 0.78 36.6 0.79 36.2 0.78 36.7 0.79 35.4 0.79
lit-eng 33.3 0.77 33.0 0.77 34.4 0.77 33.2 0.76 34.0 0.77 33.0 0.77
mar-eng 28.2 0.75 27.9 0.75 30.3 0.76 28.6 0.75 30.2 0.76 28.2 0.75
mkd-eng 41.9 0.81 42.6 0.81 43.8 0.82 42.8 0.81 43.2 0.81 42.9 0.81
msa-eng 43.4 0.81 42.3 0.81 44.2 0.82 44.6 0.82 43.9 0.81 43.8 0.82
npi-eng 29.2 0.75 29.6 0.75 31.7 0.76 29.7 0.75 31.7 0.76 29.6 0.75
pol-eng 31.5 0.77 31.6 0.76 32.4 0.77 31.9 0.76 32.1 0.77 31.6 0.76
rus-eng 36.9 0.79 36.6 0.79 38.1 0.79 37.6 0.79 38.0 0.79 36.9 0.79
spa-eng 33.1 0.79 33.4 0.79 33.7 0.79 33.7 0.79 34.1 0.79 33.5 0.79
swh-eng 40.2 0.79 40.7 0.79 42.0 0.79 40.8 0.79 41.9 0.79 40.6 0.79
ukr-eng 38.6 0.80 39.0 0.80 40.5 0.80 39.6 0.80 40.4 0.80 39.4 0.80
xho-eng 31.4 0.73 31.2 0.73 33.1 0.74 32.4 0.73 32.8 0.74 31.3 0.73
zul-eng 34.8 0.76 34.4 0.76 36.0 0.76 37.1 0.77 36.2 0.76 36.2 0.76

Table 12: Detailed performance of each translation direction for all models shown in Table 1
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Abstract

Back-translation is widely known for its effec-
tiveness in neural machine translation when
there is little to no parallel data. In this ap-
proach, a source-to-target model is coupled
with a target-to-source model trained in par-
allel. The target-to-source model generates
noisy sources, while the source-to-target model
is trained to reconstruct the targets and vice
versa. Recent developments of multilingual
pre-trained sequence-to-sequence models for
programming languages have been very effec-
tive for a broad spectrum of downstream soft-
ware engineering tasks. Hence, training them
to build programming language translation sys-
tems via back-translation is compelling. How-
ever, these models cannot be further trained via
back-translation since they learn to output se-
quences in the same language as the inputs dur-
ing pre-training. As an alternative, we propose
performing back-translation via code summa-
rization and generation. In code summarization,
a model learns to generate natural language
(NL) summaries given code snippets. In code
generation, the model learns to do the oppo-
site. Therefore, target-to-source generation in
back-translation can be viewed as a target-to-
NL-to-source generation. We show that our pro-
posed approach performs competitively with
state-of-the-art methods. We have made the
code publicly available.1

1 Introduction

The choice of programming language (PL) in soft-
ware development depends on the requirement of
the software and the available features of a partic-
ular PL. In modern API-driven software develop-
ment, language choice often depends on the avail-
ability of libraries and APIs. The advent of newer
and richer programming languages often requires
legacy software to be translated into modernized
PLs. In theory, modern programming languages’

1https://github.com/wasiahmad/SumGenToBT

Input in Java
1 p u b l i c s t a t i c boolean generator(

PsiBuilder b, i n t l){
2 boolean r = f a l s e ;
3 i f (! recursion_guard(b, l)) re turn r;
4 r = generator_0(b, l + 1);
5 i f (!r) re turn generator_1(b, l + 1);
6 }

(1) Java to Python Generation
1 p u b l i c s t a t i c boolean generator(

PsiBuilder b, i n t l){
2 boolean r = f a l s e ;
3 i f (! recursion_guard(b, l)) re turn r;
4 i f (! generator_0(b, l)) re turn r;
5 r = generator_0(b, l + 1);
6 i f (!r) re turn generator_1(b, l + 1);
7 }

(2) Java Code to NL Summary

guard is used to determine if a generator is already
defined .

(3) NL Summary to Python Code
1 def is_generator(self , name):
2 i f name in self._generators:
3 re turn True
4 i f name in self._generators[name]:
5 re turn True
6 re turn False

Figure 1: Although PLBART is asked to generate in
Python given input in Java (1), it generates in Java (due
to its pre-training objective). In contrast, PLBART, fine-
tuned on code summarization and generation, generates
“noisy” translations (as in (2, 3)).

“Turing Completeness” allows rule-based transla-
tion of programs from one PL to another. The rule-
based translation may require an extensive number
of custom-written transformation rules and could
end up producing very unreadable source code. In
addition, such a translation could entail translating
the entire library, even if a library implementing
similar functionality is available in the target PL.

Aligning libraries and APIs across different PLs
is a non-trivial task. Recent progress in Neural Ma-
chine Translation (NMT) (Bahdanau et al., 2015;

1528

https://github.com/wasiahmad/SumGenToBT


(a) PLBART (b) PLBART + S&G

Figure 2: T-SNE plot of function embeddings of Java and Python functions. Figure 2a shows the embedding
generated by the PLBART model. Figure 2b are the generated embedding when the PLBART is finetuned to jointly
summarize code to NL and generate code from NL (PLBART + S&G). While PLBART clusters programs from
each PLs, parallel programs in different PLs are brought closer to each other by PLBART + S&G.

Vaswani et al., 2017) leveraging pre-trained mod-
els (Feng et al., 2020a; Guo et al., 2021; Roziere
et al., 2021; Ding et al., 2022; Ahmad et al., 2021a;
Wang et al., 2021) could be a possible way to learn
the alignment between PLs and translate source
code across languages.

A significant challenge in supervised learning
for NMT is the need for large-scale parallel corpora.
For instance, if we are planning to train a translator
for Java to Python translation, we need a consider-
able number of the same program (i.e., exhibiting
the same semantic behavior) in both languages.
Availability of such parallel datasets is a vital chal-
lenge in programming language translation (Chen
et al., 2018). Back-Translation (BT) (Edunov et al.,
2018; Lachaux et al., 2020) is a clever way to learn
alignments across different languages. While BT
demonstrates success in NMT, those require either
(i.) small (perhaps noisy) parallel datasets or (ii.) a
model with some capacity of cross-lingual genera-
tion - to kickstart the BT-based learning process.

In this work, we investigate the suitability of
the multilingual Pre-trained Sequence-to-Sequence
Model (PSM) for unsupervised programming lan-
guage translation via BT. In particular, we assume
a use-case scenario where no parallel data is avail-
able. Without much of a surprise, we empirically
found that, while these PSMs are good at generat-
ing code in each language, they exhibit very little
to no knowledge about cross-lingual generation
since such PSMs are typically trained to recon-
struct code sequences from noisy inputs. For exam-
ple, when we provide the input code in Figure 1 to
PLBART (Ahmad et al., 2021a) and ask to generate
Python code without training, it generates a slight
variation of the input Java code, showing its lack

of knowledge about cross-lingual generation.
To endow such PSMs with knowledge about

cross-lingual generation, we propose using a third
language (i.e., English). Since a large quantity of
monolingual code corpora comes with documenta-
tion, which supposedly describes what the source
code is doing, we train a Summarize-and-Generate
(S&G) model that can generate pseudo-parallel
code sequences. Figure 1 shows PLBART’s behav-
ior when it is further trained via S&G. First, given
the Java code, it generates an NL summary (fig-
ure 1-2) and subsequently generates Python Code
(figure 1-3). We empirically show that, even if such
S&G model generates noisy parallel sequences, it
allows us to employ PSMs in the BT-based training
to learn programming language translation.

In summary, we present a Summarize-and-
Generate (S&G) based approach to enable unsuper-
vised program translation training of PLBART via
Back-Translation (BT). Experiment results show
that our proposed approach makes PLBART train-
able via BT and performs competitively with state-
of-the-art program translation models.

2 Motivation

Recent years saw several Pre-trained Sequence-
to-Sequence models (PSM) (Ahmad et al., 2021a;
Wang et al., 2021). These models are pre-trained on
hundreds of Gigabytes of source code. Thus, in this
work, we are motivated to investigate their adoption
in learning program translation via back-translation.
To understand such feasibility, we investigate the
program representations generated by the PSM. As
a case study, we chose PLBART (Ahmad et al.,
2021a) and evaluated its multilingual embeddings
as suggested in Artetxe and Schwenk (2019). We

1529



public void testFile(){
    println("");
    ...
}

def test_file():
    print("")
    ...
    pass

Test whether a file exists or not

Java Code Python Code

Natural Language

Generation Task (G)
Summarization Task (S)

(a) Step1: Supervised training of PLBART on Code Summarization and Generation (S&G).

def nextPowerOf2(n):
    count = 0
    if (n and not
        (n & (n - 1))):
        return n
    while(n != 0):
        n >>= 1
        count += 1
    return 1 << count

int nextPowerOf2(int n){
    int count = 0;
    if (n>0 && 
        (n & (n-1)) == 0)
        return n;
    while(n != 0)
        n >>= 1; count += 1;
    return 1 << count;
}

Java Code (Source) Python Code (target)

Forward Translation (Training) Backward Translation with S&G Backward Translation with BT

(b) Step2: Unsupervised training of PLBART via Backtranslation (BT). In the first m training steps (out of total N
steps), PLBART generates natural language (NL) summary of the code in target language (Python in this example)
and generates the code in source language (Java in this example) from the NL summary. In the remaining N −m
steps, PLBART directly generates the code in source language from the code in target language.

Figure 3: Overview of our proposed framework to train PLBART in two sequential steps.

find the parallel Java function for each of the 948
Python functions using the parallel dataset pro-
posed in Lachaux et al. (2020). We find the nearest
neighbor using cosine similarity between function
embeddings and calculate the error rate. Unsur-
prisingly, PLBART performs poorly in function
retrieval with an 87.5% error rate.

In comparison, we fine-tune PLBART jointly on
code summarization and generation in Java and
Python. Repeating the experiment of function re-
trieval, we find that fine-tuned PLBART’s error rate
drops to 23.7%. To visually illustrate the embed-
dings produced by PLBART and its fine-tuned vari-
ant, we provide a T-SNE plot of 8 sample functions’
embedding in Figure 2. We see the functions that
belong to the same language are clustered together
while the same functions in two different languages
are far apart from each other (see Figure 2a).

In contrast, the fine-tuned PLBART breaks up
the intra-language clusters and brings functions
in different languages close to each other in the
embedding space (see Figure 2b). These results
motivate us to initialize the translation models with
fine-tuned PLBART on code summarization and

generation for back-translation as it learned some
alignment across programming languages.

3 Approach

Sequence-to-sequence models, such as PLBART
(Ahmad et al., 2021a), CodeT5 (Wang et al., 2021),
SPT-Code (Niu et al., 2022) map source code
sequences into a shared multilingual space by
pre-training on multiple programming languages
jointly using unlabeled data (e.g., source code from
Github). The pre-training objective of these models
is either denoising autoencoding (DAE) or fill-in-
the-blank, where the models reconstruct the orig-
inal code snippet or predict the missing code to-
kens given a corrupted code snippet. Although pre-
trained jointly on many languages, these models
only learn to generate in the same language as input.
As a result, these models are not trainable via back-
translation (BT) to learn programming language
translation in an unsupervised fashion. As an alter-
native, we propose translating to and from natural
language to perform back-translation between two
programming languages. We refer to translating to
and from natural language as code summarization
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and code generation, respectively. Our proposal is
motivated based on the availability of bimodal data,
source code, and their summaries that are used to
train code summarization and generation models.

3.1 Code Summarization and Generation
Source code documentation (e.g., docstring or com-
ment) written by software developers is available
along with source code on a large scale. Such
documentation has been the key source to form
code summarization datasets (Wan et al., 2018;
Hu et al., 2018; LeClair and McMillan, 2019; Hu-
sain et al., 2019), and to study natural language
(NL) to code generation (Parvez et al., 2021). It
is tangible that we can use a code summarization
and generation model to translate programming
languages. Such a model would first generate an
NL summary from an input code in the source lan-
guage and then generate code from the previously
generated NL summary in the target language. As
we show in the evaluation, such an approach does
not work well in practice (see table 2); however,
code summarization and generation models are vi-
able proxies to generate noisy translations. This
enables us to train PLBART, to begin with generat-
ing noisy translations, and further learn to improve
in a self-supervised fashion when trained via back-
translation. Formally, we jointly train PLBART in
a supervised setting to learn code summarization
(S) and generation (G):

S = TRAINCode→Summary (Pc,s)
G = TRAINSummary→Code (Pc,s)

(1)

where Pc,s is estimated using the code-to-text
benchmark from CodeXGlue (Lu et al., 2021). We
follow Tang et al. (2021) to perform multilingual
fine-tuning of PLBART (in Java and Python) to
learn S and G.

3.2 Back-translation
Back-translation (BT) is one of the most popular
ways for unsupervised machine translation (Artetxe
et al., 2018b; Lample et al., 2018a,b). In this ap-
proach, we leverage monolingual data in an un-
supervised fashion. BT jointly trains a source-to-
target model coupled with a backward target-to-
source model. The target-to-source model trans-
lates target sequences into the source language, pro-
ducing noisy sources corresponding to the ground
truth target sequences. The source-to-target model
is then trained to generate the targets from the noisy
sources and vice versa. The two models are trained

in parallel until convergence. This training proce-
dure is widely known as online back-translation
and is the focus of this work.

Back-translation uses a target-to-source model to
generate noisy sources and trains a source-to-target
model to reconstruct the targets. Specifically, in
each step k (a mini-batch update), back-translation
performs the following:

P(f)
k = {(x, fk−1(x))|x ∈ Dsource}
bk = TRAIN target→source

(
P(f)
k

)

P(b)
k =

{
(bk(y), y) |y ∈ Dtarget

}

fk = TRAIN source→target
(
P(b)
k

)
.

(2)

Here, Dsource, Dtarget represents unlabeled data in
source and target languages and TRAIN indicates
standard sequence-to-sequence training.

Generally, the training via back-translation starts
from a forward (f0) and a backward (b0) model that
is trained using parallel data (small gold-standard
or large-scale but noisy). Then an extensive collec-
tion of unlabeled data is used to train the translation
models. In this work, we assume there is no paral-
lel data available across programming languages.
We initialize the forward and backward model with
the pre-trained language model, PLBART. As men-
tioned before, PLBART cannot generate code in a
language different from the input (not even a noisy
code) (for example, figure 1-1). Therefore, we pro-
pose jointly fine-tuning PLBART on code summa-
rization and generation on multiple programming
languages in a supervised setting. Then use the
resulting model to initialize the forward and back-
ward model (f0, b0) for back-translation.

3.3 Summarize–Generate to Back-translate

The recent advancements of pre-trained sequence-
to-sequence models on programming languages
enables us to use them in initializing the source-to-
target (f ) and target-to-source (b) models for back-
translation. Presumably, such pre-trained models
should facilitate the learning process during train-
ing. Yet, their pre-training objective – i.e., recon-
struction of original input from a noisy source lim-
its their ability to generate code snippets across
languages (as shown in Figure 1). For example,
PLBART as f(·) and b(·) would reconstruct the
input, resulting in fk−1(x) ≈ x and bk(y) ≈ y. As
a result, the models will learn to merely copy the
input sequences rather than translate them.

To this end, we propose to make use of available
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Algorithm 1 Training Procedure
Input: Monolingual (unlabeled) data Dsource and
Dtarget; number of initial steps m; number of total
steps I; code summarizer S(·, ·); code generator
G(·, ·); parameters θ to initialize the forward and
backward translation models f(·, ·) and b(·, ·).
Output: Final model parameters θ.

1: for k = 0, · · · , I do
2: y ← (ys ∼ Dsource) ∪ (yt ∼ Dtarget)
3: if k ≤ m then
4: xnl ∼ S(·|y) ▷ code-to-summary
5: x̂ ∼ G(·|xnl) ▷ summary-to-code
6: else
7: x̂← (xs ∼ b(·|yt)) ∪ (xt ∼ f(·|ys))
8: Update θ by maximizing log-likelihood of
f(x̂s, yt) and b(x̂t, ys)

parallel data between programming and natural lan-
guages to fine-tune PLBART and then use its pa-
rameters to initialize source-to-target (f ) and target-
to-source (b) models for back-translation. Con-
sequently, we revise the back-translation training
method outlined in Eq. (2) to follow a two-step
generation process to perform back-translation:
code-to-summary generation in natural language
followed by summary-to-code generation in the
source language. Formally, the first m steps (while
k ≤ m) of back-translation is performed as:

P(f)
k = {(x,G (S (x))) |x ∈ Dsource}
P(b)
k =

{
(G (S (y)), y) |y ∈ Dtarget

}
.

(3)

We find the noisy parallel sequences2 generated
via summarization and generation commences the
learning process. The overall idea of our proposed
framework is illustrated in Figure 3 and the Al-
gorithm 1 describes the training procedure. Note
that we find it is sufficient to apply our proposed
summarization-generation based back-translation
only for the firstm steps as the source-to-target and
target-to-source models gradually learn to translate,
the standard back-translation training reinstated.

4 Experiment Setup

4.1 Models and Baselines

Our model Our proposed approach can be ap-
plied to pre-trained sequence-to-sequence mod-

2The output sequences are still noisy since the code sum-
marization and generation models are not highly accurate
although trained in a supervised fashion.

els, e.g., PLBART (Ahmad et al., 2021a) and
CodeT5 (Wang et al., 2021). In this work, we
chose PLBART3 to perform experiments and show
the effectiveness of our proposed framework.

Baseline Models

We compare our proposed approach applied to
PLBART with the following existing approaches.

j2py is a framework that translates Java source
code to Python.4 It follows handwritten rules man-
ually built using expert knowledge.

Summarize-and-Generate (S&G) performs
code-to-code translation via two steps, code-to-
summary and summary-to-code generation. We
evaluate the S&G model (as in Eq. (1)) that is used
to perform code summarization and generation in
our proposed framework to train PLBART via BT.

TransCoder is a neural translation model for
programming languages (Lachaux et al., 2020).
TransCoder is developed by pretraining Trans-
former (Vaswani et al., 2017) via masked language
modeling (MLM) objective (Devlin et al., 2019)
on monolingual source code datasets. In a second
step, TransCoder is trained via denoising autoen-
coding (DAE) and BT. In this work, we consider
TransCoder as the primary baseline.5

DOBF Roziere et al. (2021) proposed a pretrain-
ing objective, DOBF, that leverages the structural
aspects of programming languages. According
to this pretraining paradigm, the identifiers (class,
function, and variable names) in code snippets are
obfuscated, and a model is trained to recover the
original names. DOBF shares the same neural ar-
chitecture as TransCoder. We report the evaluation
performances of TransCoder and DOBF from the
official code release by Lachaux et al. (2020).6

4.2 Evaluation Dataset and Metrics

Evaluation Dataset Lachaux et al. (2020) pro-
posed an evaluation dataset composed of parallel
functions in Java, Python, and C++ languages. The
dataset consists of 464 Java to Python and 482
Python to Java test examples, with 10 unit test
cases accompanying each.

3Since its pretraining implementation is publicly available
at https://github.com/wasiahmad/PLBART.

4https://github.com/natural/java2python
5We compare TransCoder and PLBART in terms of model

architecture and training setup in the Appendix D.
6https://github.com/facebookresearch/CodeGen/

blob/main/docs/transcoder.md#results).
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Java Python
Github - unimodal data
Nb of functions 7.2 M 8.3 M
Nb of tokens 752 M 665 M
CodeNet - unimodal data
Nb of functions 0.42 M 0.15 M
Nb of tokens 47.3 M 17.0 M
CodeXGlue - bimodal data
Nb of functions 164,923 251,818
Nb of tokens 21.2 M 44.3 M

Table 1: Statistics of the data used to train PLBART
at different stages in this work. Bimodal data refers to
parallel function-summary pairs, while unimodal data
refers to monolingual (and unparallel) functions.

Evaluation Metrics

BLEU measures n-gram overlap between a gen-
erated translation and a collection of reference
translations (Papineni et al., 2002).

Exact Match (EM) represents the percentage
of generated translations exactly match with the
collection of reference translations.

CodeBLEU measures grammatical and logical
correctness in addition to n-gram overlap between
generated and reference translations (Ren et al.,
2020). CodeBLEU is defined as a weighted sum
of n-gram match, weighted n-gram match,7 syntax
match (based on AST), and data-flow match.

Computational Accuracy (CA), proposed by
Lachaux et al. (2020), assess functional correct-
ness; a translated code is considered correct if it
passes a set of unit tests. It evaluates if a gener-
ated function outputs the same as the reference
when given the same set of inputs. This metric
overcomes the shortcoming of match-based met-
rics (e.g., BLEU, CodeBLEU) by accounting for
the program-execution behavior (Lachaux et al.,
2020; Chen et al., 2021).

4.3 Training Datasets and Preprocessing

Code Summarization and Generation Lu et al.
(2021) curated a code summarization dataset con-
sisting of code and summary pairs based on the
CodeSearchNet dataset (Husain et al., 2019). We
use this dataset in Java and Python program-
ming languages to train the code-to-summary and
summary-to-code generation models.

7Different weights are assigned to n-grams such that the
keywords (e.g., for, while) have higher weights

Back-translation (BT) For BT training (as dis-
cussed in § 3.3), we use the GitHub public dataset
available on Google BigQuery (Hoffa, 2016).8 We
first deduplicate9 the GitHub dataset at the pro-
gram level, extract the functions, and finally per-
form another deduplication at the function level.
Note that the Github dataset is composed of source
code that covers a wide variety of programming
topics (as they come from various projects). In
contrast, the evaluation dataset is composed of pro-
gramming problems covering basic data structure
and algorithmic concepts. Therefore, to investigate
the impact of data on BT training, we alternatively
chose unparallel code samples in Java and Python
from CodeNet (Puri et al., 2021). The CodeNet
dataset is collected from two online judge websites,
AIZU Online Judge and AtCoder, and composed
of submissions for 4053 problems. We use the
deduplicated accepted solutions to the problems
for BT training. Presumably, CodeNet and the eval-
uation dataset (Lachaux et al., 2020) have a similar
nature that should positively impact downstream
translation performance.

Preprocessing We use tree_sitter10 for tok-
enizing Java functions and the tokenizer of the stan-
dard library for Python.11 We extract standalone
functions12 from the BT training datasets follow-
ing the function extraction technique from Lachaux
et al. (2020). Considering our computational bud-
get, we filter the standalone functions exceeding a
maximum length of 256 to cope with our computa-
tional resources. The statistics of the preprocessed
datasets are presented in Table 1.

4.4 Implementation Details

We jointly train PLBART on code summarization
and generation in Java and Python using the au-
thors’ provided code.13 Subsequently, we train
PLBART via back-translation as described in Algo-
rithm 1. We set I = 10, 000 and tuned m = 200.14

We train PLBART using 8 Nvidia GeForce RTX

8https://console.cloud.google.com/marketplace/
product/github/github-repos

9We used a hash-based data deduplication method.
10https://github.com/tree-sitter
11https://docs.python.org/3/library/tokenize.

html
12Standalone functions can be used without instantiating

a class. In Java, this corresponds to static methods, and in
Python, it corresponds to functions outside classes.

13https://github.com/wasiahmad/PLBART/tree/
main/multilingual

14We tuned m in the range [100, 1000] with 100 steps.
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Models
Java→ Python Python→ Java

BLEU EM CodeBLEU CA BLEU EM CodeBLEU CA
j2py* - - - 38.3 - - - -
TransCoder∗ 68.1 3.7 - 46.9 64.6 0.8 - 32.6
TransCoder w/ DOBF∗ - - - 49.2 - - - 40.4
S&G (1) 7.6 0.0 15.8 0.2 12.4 0 16.3 0.2
PLBART (this work)
trained via BT 31.2 0.0 36.6 0.0 31.7 0.0 32.1 0.0
trained via BT (via S&G) 64.2 2.8 63.4 40.4 64.1 2.1 65.9 31.9

Table 2: Evaluation results of the baselines models and our proposed framework using greedy decoding. ∗ indicates
the updated scores reported in the official code repository of Lachaux et al. (2020). Note that, TransCoder and
PLBART models have 312M and 140M parameters, respectively.

2080 Ti GPUs, and the effective batch size is main-
tained at 1024 instances at both training stages.
We optimize PLBART with the Adam optimizer
(Kingma and Ba, 2015), a learning rate of 10e-4,
and use a polynomial learning rate decay schedul-
ing. The best models are selected based on the
validation BLEU scores. We implement our ap-
proach in Fairseq (Ott et al., 2019) and use float16
operations to speed up training.
Decoding During inference, we use beam search
decoding (Koen, 2004) to generate multiple trans-
lations using PLBART. We chose greedy search
(Beam 1) as the default decoding scheme for valida-
tion and evaluation. However, following Lachaux
et al. (2020), we report two sets of results for the
computational accuracy (CA) metric: CA@n B=n,
the percentage of functions with at least one correct
translation in the beam (of size n), and CA@1 B=n
the percentage of functions where the hypothesis
in the beam with the highest log-probability is a
correct translation.

5 Results and Analysis

5.1 Main Result
Table 2 shows the performance of our proposed
approach and the baseline models on both Java
to Python and Python to Java translation. We be-
gin by comparing PLBART directly used in back-
translation (BT) training with our proposed ap-
proach (the last block in Table 2). Since PLBART
does not know to generate across languages, when
the model is trained via BT, it only learns to copy
the input sources. As a result, PLBART scores
0% EM and 0% CA, while 30+ BLEU and Code-
BLEU scores. In contrast, following our pro-
posed approach of summarizing and generating to
back-translate, PLBART trained via BT (via S&G)

Models TransCoder PLBART
Java→ Python
CA@1 B=1 46.9 40.4
CA@1 B=10 48.8 41.8
CA@5 B=5 60.0 47.7
CA@10 B=10 64.4 50.3
Python→ Java
CA@1 B=1 32.6 31.9
CA@1 B=10 36.0 34.5
CA@5 B=5 44.3 45.1
CA@10 B=10 51.1 50.0

Table 3: Computational accuracy (CA@m) with beam
search decoding and comparison between TransCoder
and PLBART. TransCoder’s performances are reported
from Lachaux et al. (2020). The value B indicates the
beam size. CA@m B=n means that we use beam de-
coding to generate n translations, and select the top m
translations based on their log-probability scores.

achieves 40.4% and 31.9% CA scores. This perfor-
mance is competitive to state-of-the-art translation
system, TransCoder.15 We compare them using
beam search decoding in Table 3.

Overall, the experimental results confirm our
conjecture that pre-trained sequence-to-sequence
models cannot be effectively used in BT training;
however, training via S&G empowers them to gen-
erate across languages and be further trained via
BT to learn programming language translation.

5.2 Analysis

Summarize and generate to create parallel data
Our proposed approach generates parallel code se-
quences on the fly (online) for training. An alter-

15Note that, while comparing PLBART with TransCoder
on the translation performance, their differences (shown in
Table 9) should be taken into consideration.
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Approach
Java to Python Python to Java

BLEU EM CodeBLEU CA BLEU EM CodeBLEU CA
Warm-start w/ PD 60.5 2.8 61.1 41.9 62.6 2.4 65.9 32.0
Proposed approach 64.2 2.8 63.4 40.4 64.1 2.1 65.9 31.9

Table 4: Comparison between PLBART warm-started using parallel data (PD) and our approach to summarize and
generate to back-translate on the fly during the initial steps of back-translation training.

Data Source
Java to Python Python to Java

BLEU EM CodeBLEU CA BLEU EM CodeBLEU CA
Github 64.2 2.8 63.4 40.4 64.1 2.1 65.9 31.9
CodeNet 65.6 3.1 64.7 50.9 65.1 2.5 68.5 46.5

Table 5: PLBART evaluation results when our proposed framework uses data from Github (available via BigQuery
(Hoffa, 2016)) and competitive programming sites (available via CodeNet (Puri et al., 2021)).

native to our approach is to use a code summariza-
tion and generation model to create parallel code
sequences (offline) and warm-start PLBART for
back-translation-based training. We compare these
two approaches in Table 4, and the results show that
both approaches perform comparably. However, it
is essential to note that the online setting gives us
flexibility as we can tune the number of initial steps
(m in Algorithm 1). In contrast, the offline setting
requires generating a sufficiently large number of
parallel code sequences for effective training.

Impact of in-domain training data The evalu-
ation dataset comprises solutions to programming
problems involving data structures and algorithm
concepts. While Github offers large-scale unla-
beled data, most of its code belongs to software
projects that use APIs and advanced functionalities.
Therefore, we utilize an alternative dataset called
CodeNet collected from two online judge websites.
We refer to this dataset as in-domain since its nature
aligns with the evaluation dataset (data structure
and algorithm focused problems aggregated from
GeeksforGeeks). We compare in-domain data us-
age with Github data on BT-based training. The re-
sults in Table 5 show that the use of in-domain data
significantly boosts the performance in both trans-
lation directions. A detailed error analysis reveals
that such a performance boost is due to a reduction
in TypeError. We speculate that in-domain data
have similarities in the data type usage that helps
the model. We present further error analysis and
qualitative examples in the Appendix.

6 Related Work

Programming Language Translation Translat-
ing programs or source code across different pro-

gramming languages (PL) requires a profound un-
derstanding of the PLs. Having strictly defined
syntax and semantics, PLs are suitable for phrase-
based statistical machine translation (Nguyen et al.,
2013; Karaivanov et al., 2014; Aggarwal et al.,
2015). Chen et al. (2018) introduced a tree-to-tree
machine translation to translate programs and to
learn the syntactic alignment between source and
target PL. Recently proposed pre-trained program-
ming language models showed promising results
in translating programs across PLs (Feng et al.,
2020b; Guo et al., 2021; Ahmad et al., 2021a,b).
However, these approaches require a set of parallel
programs to train the encoder-decoder model.

Recently proposed Transcoder (Lachaux et al.,
2020) shows initial success results in unsupervised
program translation, eliminating the requirement
of bi-modal data. They achieve such jointly train-
ing a model using XLM (Conneau and Lample,
2019), Denoising Auto Encoding (DAE) (Vincent
et al., 2008), and Back-Translation(BT) (Lample
et al., 2018a). This work empirically investigated
the suitability of adopting BT to train existing pre-
trained encoder-decoder models and proposed an
alternative via summarization and generation.

Unsupervised Machine Translation via Back–
translation Gathering sufficiently large parallel
corpora has been a significant challenge for Ma-
chine Translation (MT) (Guzmán et al., 2019). Sev-
eral research efforts are invested in learning MT
using monolingual data (Artetxe et al., 2018a,b;
Lachaux et al., 2020) to solve this problem. For
example, Gulcehre et al. (2015) proposed integrat-
ing a Language model into the decoder. He et al.
(2016) proposed Neural MT (NMT) as a bidirec-
tional and dual learning task. More recent ad-
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vancements in unsupervised MT leverages back-
translation (BT) (Sennrich et al., 2016; Lample
et al., 2018a,b). In back-translation, the target-to-
source model generates noisy sources given tar-
get sequences and then trains the source-to-target
model to reconstruct the targets and vice versa.
While BT has been widely adopted for unsuper-
vised NMT, it is used in other applications (Zhu
et al., 2017; Hoffman et al., 2018; Shen et al., 2017;
Yang et al., 2018; Zhang et al., 2019).

7 Conclusion

In this research, we show that pre-trained sequence-
to-sequence models (e.g., PLBART) are not suit-
able for direct adaptation via back-translation to
learn to translate. To address the issue, we propose
to use code summarization and generation as an al-
ternative to performing back-translation. We show
that our proposed approach turns PLBART into a
translation model that performs competitively to
existing unsupervised translation models.

Limitations

One of the risks of using our developed translation
model is that we used the Github dataset for train-
ing that may contain information that uniquely iden-
tifies an individual or offensive content. Since we
are developing the translation model for research
purposes only, we believe our usage of the Github
data does not violate their licensing terms and con-
ditions. While we do not present it as a justification,
the PLBART model was pre-trained on the Github
data that may include sensitive information. As
we converted PLBART into a programming lan-
guage translation model, it is unlikely to generate
sensitive information unless it is provided such in-
formation as input. However, we should be careful
while using translation models trained using unfil-
tered data. All the experiments performed in this
work are based only on one seed. Therefore, using
other random seeds may lead to results that could
be different from ours.

Ethics Statement

Training data and its risks We use the GitHub
public dataset available on Google BigQuery fil-
tered to keep only projects with open-source li-
censes.16 While we do not perform preprocessing
that would eliminate any personally identifiable

16We select the open-source licenses: ‘apache-2.0’, ‘mit’,
‘gpl-2.0’, ‘gpl-3.0’, ‘bsd-2-clause’, ‘bsd-3-clause’.

information or offensive content, we remove nat-
ural language comments that presumably reduce
toxic content. Nonetheless, using code language
models (LMs) comes with certain risks, e.g., gen-
erating biased, toxic, and vulnerable code. Chen
et al. (2021) discussed the broader impact and risks
of code LMs (Section 7). We should keep those
factors to ensure the responsible use of code LMs.
Carbon Footprint We avoided using large mod-
els, reducing their environmental impacts. We train
PLBART-base model on summarization-generation
and backtranslation for a maximum of 10k steps on
8 RTX 2080 Ti GPUs that took 1-2 days. There-
fore, the training would emit approximately 15kg
of carbon into the environment.17 No model fine-
tuning is performed in this work.
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Supplementary Material: Appendices

TransCoder PLBART
Java→ Python
#Tests 464 464
Error 149 146
Failure 93 123
Success 218 188

EM 17 24
Timeout 4 7
Python→ Java
#Tests 482 482
Error 201 212
Failure 118 108
Success 157 154

EM 6 2
Timeout 6 8

Table 6: Detailed results of computational accuracy
using greedy decoding for Java↔ Python translation.

A Analysis of Computational Accuracy

Table 6 shows the breakdown of computational
accuracies for Java-to-Python and Python-to-Java
translation for TransCoder and our proposed ap-
proach using PLBART. We execute the generated
function and match the output w.r.t. the expected
output. TransCoder results in 149 error cases,
93 failure cases, and 218 success cases in Java-
to-Python translation, with 17 solutions matching
the ground truth. In contrast, PLBART results in
146 error cases, 123 failure cases, and 188 success
cases. Out of these 188 successes in PLBART, 24
solutions exactly match the target solution.

For Python-Java translation, TransCoder results
in 201 errors, 118 failures, and 157 successes, out
of which 6 are an exact match. On the other hand,
in the case of PLBART, there are 212 error cases,
108 failure cases, and 154 success cases, out of
which two exactly match the target solution. Per-
forming human study to understand why translated
functions fail test cases would facilitate model com-
parisons, and we leave it as future work.

B Error Analysis

We further analyze the error cases for TransCoder
and our proposed approach using PLBART. Since
Python is an interpreted language, syntactic and
semantic errors are caught at runtime. Thus, we
categorize all errors for Java-to-Python translation

Error Category TransCoder PLBART

#Errors (Java→ Python) 149 146

Compilation - -

Runtime 149 146
TypeError 47 61
IndexError 18 20
NameError 17 16
ValueError 11 15
UnboundLocalError 13 11
Others 17 14
SyntaxError 26 9

#Errors (Python→ Java) 201 212

Compilation 151 180
TypeError 89 108
CantFindSymbol 23 30
SyntaxError 14 25
BadOperand 15 12
Others 10 5

Runtime 50 27
IndexOutOfBoundsE. 40 15
NumberFormatE. 5 6
NullPointerE. 2 3
Others 3 3

Table 7: Category of errors made by the TransCoder
and PLBART translation models. The error categories
are sorted based on the PLBART’s error count on the
respective category. In Python → Java runtime error
categories, “E.” stands for “Exception”.

as runtime errors. Table 7 shows the errors in
both Java-to-Python and Python-to-Java transla-
tion. While PLBART is susceptible to TypeError,
TransCoder is disproportionately susceptible to
SyntaxError. In the case of Python-to-Java trans-
lation, PLBART exhibits more Compilation er-
rors, but TransCoder exhibits more Runtime er-
rors. The most common compilation error type in
TransCoder and PLBART is TypeError. The most
common runtime error in Python-to-Java transla-
tion is InderOutOfBoundException for both mod-
els, where TransCoder exhibits more than twice the
number of such errors in PLBART.

Finally, we identified the top five error cate-
gories (which account for 123 errors out of 146)
exhibited by PLBART in Java-to-Python transla-
tion and analyzed the error messages. In most
cases, TypeError and ValueError are due to a
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Error Category Count

Type Error 61
list indices must be integers or slices, not A 18
A object does not support item assignment 13
A object cannot be interpreted as an integer 8
unsupported/bad operand type(s) 10
int object is not iterable/callable/subscriptable 6
Others 6

Index Error 20
B index out of range 19
others 1

Name Error 16
name C is not defined 16

Value Error 15
not enough values to unpack 7
too many values to unpack 3
the truth value of an array with more than one element is ambiguous 3
others 2

Unbound Local Error 11
local variable D referenced before assignment 11

Table 8: Analyzing the five most frequent error cases (123 out of 146) encountered in PLBART generated Java to
Python translation. A and B indicate {bool, int, tuple, str, range} and {string, list}, respectively. C and D indicate
identifier (class, function, variable) names.

Input function in Java

1 s t a t i c i n t sortedCount ( i n t mat[][],
2 i n t r, i n t c){
3 i n t result = 0;
4 f o r ( i n t i = 0; i < r; i++){
5 i n t j;
6 f o r (j = 0; j < c - 1; j++)
7 i f (mat[i][j + 1] <= mat[i][j])
8 break;
9 i f (j == c - 1) result ++;

10 }
11 f o r ( i n t i = 0; i < r; i++){
12 i n t j;
13 f o r (j = c - 1; j > 0; j--)
14 i f (mat[i][j - 1] <= mat[i][j])
15 break;
16 i f (c > 1 && j == 0) result ++;
17 }
18 re turn result;
19 }

Translated function in Python

1 def s o r t e d _ c o u n t (mat , r, c):
2 result = 0
3 f o r i in range(r):
4 j = 0
5 f o r j in range(c - 1):
6 i f mat[i][j + 1] <= mat[i][j]:
7 break
8 i f j == c - 1:
9 result += 1

10 f o r i in range(r):
11 j = c - 1
12 f o r j in range(c - 1):
13 i f mat[i][j - 1] <= mat[i][j]:
14 break
15 i f c > 1 and j == 0:
16 result += 1
17 re turn result

Figure 4: An example of Java to Python translation by PLBART that passes 2 out of 10 unit test cases. Line no. 13
(marked in green) in the Java function is incorrectly translated in python (line no. 12, marked in red). Replacing the
range function parameter “(c-1)” by “(c - 1, 0, -1)” would make the translated function pass all the test cases.

mismatch in the underlying data type of variable.
Table 8 shows the detailed statistics of different
error types, sub-types, and their frequencies. As
mentioned earlier, training using in-domain data

collected from CodeNet (Puri et al., 2021) signif-
icantly reduces TypeError. We hypothesize that
in-domain data have similarities in the data type
usage that helps the model improve.
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TransCoder PLBART
#layers (encoder) 6 6
#layers (decoder) 6 6
#heads 8 12
Model dim 1024 768
Vocab size 64,000 50,000
Total parameters 312 M 140 M
Stage1: Pre-training
Objective MLM DAE
Total tokens 920 B 87 B
Token types BPE Sentencepiece
Languages Java, Python, C++ Java, Python, English
Stage2: Training
Objective DAE+BT BT
Total tokens 625 M 430 M
Token types BPE Sentencepiece
Languages Java, Python, C++ Java, Python

Table 9: TransCoder vs. PLBART.

C Qualitative Examples

Figure 4 shows an example of Java-to-Python trans-
lation by PLBART. The translated code is both
syntactically and semantically correct i.e., our com-
piler could successfully parse and build the trans-
lated code. It passed 2 test cases out of 10 when exe-
cuted. The translated code is slightly different from
the input Java code. In particular, line 13 in the
input Java code is a loop that iterates backward (de-
creasing order). However, line 12 in the generated
python code iterates forward (increasing order). If
the generated python code were range(c-1,0,-1)
instead of range(c-1), it would pass all the test
cases. We attribute such behavior to the fact that
range(*) is a much more frequent pattern than
range(*,0,-1) in python code.

D TransCoder vs. PLBART

As we consider TransCoder as the primary base-
line of our proposed approach using PLBART, for
the sake of fairness, we compare them in terms
of model structure and training setting. Table 9
presents the comparison. TransCoder and PLBART
both use the Transformer (Vaswani et al., 2017) ar-
chitecture, but TransCoder is a twice as large model
as PLBART. Both the models have gone through a
two-stage training process. In Stage-1, TransCoder
is pre-trained via MLM using 920B tokens, while
PLBART is pre-trained via DAE using 87B tokens.
In Stage-2, TransCoder leverages 625M tokens and
jointly trained via DAE and BT. In comparison,

PLBART is trained via BT using 430M tokens.
Why TransCoder does not suffer from the
same language generation issue? In Stage-1
pre-training, TransCoder only trains the Trans-
former Encoder and then initializes a decoder with
Encoders’ parameters, and the cross attention sub-
layers are randomly initialized. We speculate that
such random initialization leaves TransCoder un-
biased towards generating in the same language
as input. Moreover, PLBART uses language ID
token as a prefix to generate in the target lan-
guage. We noticed that PLBART’s decoder dis-
regards the prefix token if not fine-tuned to gen-
erate in the target language. On the other hand,
TransCoder uses language embeddings with each
token in the input. Intuitively, this does not allow
the TransCoder’s decoder to ignore the language
information. For example, with position index “0”
and language ID “Python”, TransCoder is more
likely to generate “def” token and less likely to
generate “static” or “int” since they do not ap-
pear in the Python language. In essence, unlike
PLBART, TransCoder does not suffer from the is-
sue of sequence-to-sequence models being unable
to generate across languages.

1542



Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 1543–1557
May 2-6, 2023 ©2023 Association for Computational Linguistics

The Impacts of Unanswerable Questions on the Robustness of Machine
Reading Comprehension Models

Son Quoc Tran†,§, Phong Nguyen-Thuan Do§, Uyen Le†, Matt Kretchmar †
†Denison University, Granville, OH, USA

{tran_s2, le_u1, kretchmar}@denison.edu
§The UIT NLP Group, Vietnam National University, Ho Chi Minh City

phongdntvn@gmail.com

Abstract

Pretrained language models have achieved
super-human performances on many Machine
Reading Comprehension (MRC) benchmarks.
Nevertheless, their relative inability to defend
against adversarial attacks has spurred skepti-
cism about their natural language understand-
ing. In this paper, we ask whether training
with unanswerable questions in SQuAD 2.0
can help improve the robustness of MRC mod-
els against adversarial attacks. To explore
that question, we fine-tune three state-of-the-
art language models on either SQuAD 1.1 or
SQuAD 2.0 and then evaluate their robustness
under adversarial attacks. Our experiments re-
veal that current models fine-tuned on SQuAD
2.0 do not initially appear to be any more ro-
bust than ones fine-tuned on SQuAD 1.1, yet
they reveal a measure of hidden robustness that
can be leveraged to realize actual performance
gains. Furthermore, we find that the robust-
ness of models fine-tuned on SQuAD 2.0 ex-
tends to additional out-of-domain datasets. Fi-
nally, we introduce a new adversarial attack
to reveal artifacts of SQuAD 2.0 that current
MRC models are learning. 1

1 Introduction

Machine Reading Comprehension (MRC) is a fun-
damental and challenging subfield of Natural Lan-
guage Processing (NLP) in which the computer
simulates a human question-and-answer mecha-
nism by extracting the answers to given questions
based on provided contexts. MRC has many appli-
cations in the real world, such as Conversational
Question Answering (Reddy et al., 2019) and
Open-Domain Question Answering (Chen et al.,
2017; Yang et al., 2019; Min et al., 2019).

With the development of recent deep learn-
ing models, MRC has made significant perfor-
mance gains. Many high-quality MRC datasets

1Our code is publicly available at: https://github.
com/sonqt/unanswerable-robustness.

Figure 1: Example of predictions to an answerable
question of RoBERTa fine-tuned on SQuAD 1.1 (Ra-
jpurkar et al., 2016) (v1) versus its counterpart fine-
tuned on SQuAD 2.0 (Rajpurkar et al., 2018) (v2) un-
der adversarial attack. While RoBERTa v1 predicts
“DartFord” as the answer under attack, RoBERTa v2
knows that “DartFord” is not the correct answer but
fails to focus back on “Nevada”, the correct answer
for the given question. RoBERTa v2 then predicts the
tested question as unanswerable.

and benchmarks (Kwiatkowski et al., 2019; Joshi
et al., 2017; Yang et al., 2018; Rajpurkar et al.,
2018) have been proposed over the last few
years. During the same time period, MRC sys-
tems have also achieved many new state-of-the-
art (SOTA) performances, matching or exceed-
ing human-level standards on many benchmarks.
Nevertheless, skepticism persists about the real
ability of MRC SOTA models (Sen and Saffari,
2020; Jia and Liang, 2017; Sugawara et al., 2018,
2020). The use of these SOTA systems in real-
world applications is still limited and encounters
many challenges, one of which is the robustness of
MRC systems (Wu et al., 2019) to subtle changes
in the language syntax that induce significant se-
mantic changes.

As to the true robustness of MRC systems, Jia
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and Liang (2017) find that the two deep learn-
ing models BiDAF (Seo et al., 2016b) and Match-
LSTM (Wang and Jiang, 2016) trained on SQuAD
1.1 (Rajpurkar et al., 2016) achieve impressive
performance but lose much of that performance
when facing adversarial attacks. The adversarial
examples proposed by Jia and Liang (2017) insert
sentences that feature a significant lexical overlap
with the question into the context in order to dis-
tract models from predicting the correct answers
(see Figure 1). Improved performance against
adversarial attacks to ensure the performance of
MRC models in real-world applications motivates
the pursuit of more robust MRC systems.

Rajpurkar et al. (2018) developed SQuAD 2.0
featuring the same scenarios and questions as
SQuAD 1.1 with the addition of unanswerable
questions which are adversarially crafted by crowd
workers to look similar to answerable ones. The
considerable syntactic similarity between these
unanswerable questions and the corresponding
contexts requires MRC models to be highly sen-
sitive to the small but important changes in the
questions to determine their answerability. There-
fore, we ask the question of how MRC models
trained on SQuAD 2.0 behave under adversarial
attacks and whether experience with adversarial
unanswerable questions can help improve the ro-
bustness of MRC models.

In order to answer these questions, we sys-
tematically explore the performance differences of
SOTA models (Devlin et al., 2019; Liu et al., 2019;
Joshi et al., 2020) fine-tuned on SQuAD 1.1 ver-
sus those on SQuAD 2.0. Our findings are sum-
marized as follows:

1. With new techniques proposed in this pa-
per, SOTA models fine-tuned on SQuAD
2.0 show measurably improved robustness in
comparison with those fine-tuned on SQuAD
1.1 against adversarial attacks on answer-
able questions. Furthermore, this superior
robustness of models fine-tuned on SQuAD
2.0 is consistent in out-of-domain settings
with five other Extractive Question Answer-
ing datasets.

2. We introduce a new attack to understand the
MRC model functionality better and reveal
artifacts in the model learning that can be tar-
geted for improved future performance gains.

2 Related Work

2.1 Adversarial Attack
Historically, adversarial attacks have played an
important role in NLP by challenging the true
ability of language models beyond the traditional
settings of benchmarks. Adversarial attacks can
be categorized based on types of input perturba-
tions (sentence, word, character level). In ad-
dition, adversarial attacks can also be classified
based on whether the attack process has access to
the models’ parameters or predictions (so-called
white-box attacks, (Blohm et al., 2018; Neekhara
et al., 2019; Huang et al., 2018; Papernot et al.,
2016; Samanta and Mehta, 2018; Liang et al.,
2018; Alzantot et al., 2018; Wallace et al., 2019;
Ebrahimi et al., 2018; Jia and Liang, 2017)) or not
(black-box attacks, (Jia and Liang, 2017; Ribeiro
et al., 2018; Wang and Bansal, 2018; Blohm et al.,
2018; Iyyer et al., 2018; Zhao et al., 2018)).

Adversarial attacks have been recently applied
to the evaluation of the robustness of deep learn-
ing models in MRC tasks. Tang et al. (2021) de-
signed the DuReaderrobust benchmark in Chinese
MRC to challenge Chinese MRC models on three
aspects of over-sensitivity, over-stability, and gen-
eralization. Additionally, Si et al. (2021) propose
to evaluate the robustness of multiple-choice MRC
models under various types of adversarial attacks
on samples of the RACE benchmark (Lai et al.,
2017).

Besides, Morris et al. (2020); Zhang et al.
(2020) and Wang et al. (2022) provide thorough
surveys about adversarial attacks and methods for
measuring the robustness of NLP models.

2.2 Unanswerable Questions in MRC
In the early work on unanswerable questions, Levy
et al. (2017) re-defined the BiDAF model (Seo
et al., 2016a) to allow it to output whether the
given question is unanswerable; their original in-
tent was to leverage MRC knowledge to extract
relations in zero-shot tasks. Later, Rajpurkar et al.
(2018) introduced a crowdsourcing process for
annotating unanswerable questions to create the
SQuAD 2.0 dataset for Extractive Question An-
swering, which later inspired similar works in
other languages such as French (Heinrich et al.,
2021) and Vietnamese (Van Nguyen et al., 2022).
However, recent work shows that models trained
on SQuAD 2.0 perform poorly on out-of-domain
samples (Sulem et al., 2021). In addition to the
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adversarially-crafted unanswerable questions pro-
posed by Rajpurkar et al. (2018), Natural Question
(Kwiatkowski et al., 2019) and Tydi QA (Clark
et al., 2020) propose more naturally constructed
unanswerable questions. While recent language
models surpass human performances on adversar-
ial unanswerable questions of SQuAD 2.0, nat-
ural unanswerable questions in Natural Question
and Tidy QA remain challenging (Asai and Choi,
2021).

3 Tasks and Models

3.1 Extractive Question Answering

In the task of Extractive Question Answering
(EQA) with questions, a machine learns to cre-
ate a list of prospective outputs (answers), each of
which is associated with a probability indicating
the machine’s confidence level about the answer
to the question. When unanswerable questions are
included in the dataset, a valid response can be an
“empty” response, indicating the question is unan-
swerable. The model outputs the answer (includ-
ing no-answer) with the highest probability as the
final response to the question. The metric typically
used to evaluate the MRC system is the F1-score,
the average overlap between predictions and gold
answers (see Rajpurkar et al. (2016) for more de-
tails).

3.2 Datasets

In our experiments, we fine-tune our MRC mod-
els by conducting additional training on one of the
two versions of SQuAD (Stanford Question An-
swering Dataset): SQuAD 1.1 (Rajpurkar et al.,
2016) and SQuAD 2.0 (Rajpurkar et al., 2018).
We refer to models fine-tuned with SQuAD 1.1 as
v1 models and models fine-tuned with SQuAD 2.0
as v2 models. For example, we refer to RoBERTa
model fine-tuned with SQuAD 1.1 as RoBERTa
v1. For testing, we supplement the two SQuAD
datasets with five additional datasets from the
MRQA 2019 shared task (Fisch et al., 2019): Nat-
ural Questions (NQ) (Kwiatkowski et al., 2019),
HotpotQA (Yang et al., 2018), SeachQA (Dunn
et al., 2017), NewsQA (Trischler et al., 2017), and
TriviaQA (Joshi et al., 2017).

In addition to the adversarial attacks on answer-
able questions in SQuAD 1.1, we also produce ad-
versarial attacks from the unanswerable samples
of the development set of SQuAD 2.0. Due to
the differences in the characteristics of attacks on

answerable and unanswerable questions, we sepa-
rately analyze the performances of models on each
type of attack. While we evaluate v2 models un-
der the attacks on both answerable and unanswer-
able questions, we only evaluate v1 models un-
der the attacks on answerable questions since v1
models have never seen unanswerable questions.
From adversarial attacks on answerable questions
with v2 models, we gain critical insights into the
current robustness effects of using unanswerable
questions to fine-tune MRC models.

3.3 Models
We evaluate three, pre-trained state-of-the-art
transformer models BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and SpanBERT
(Joshi et al., 2020)) in our work. BERT (Devlin
et al., 2019), the pioneer application of the Trans-
former model architecture (Vaswani et al., 2017),
is trained on English Wikipedia plus BookCor-
pus with the pretraining tasks of masked language
modeling (MLM) and next sentence prediction
(NSP). Later, in a replication study of BERT pre-
training, Liu et al. (2019) discovered that BERT
was significantly under-trained. RoBERTa (Liu
et al., 2019) improves over BERT mainly by in-
creasing the pretraining time and the size of pre-
training data. In empowering BERT to better
represent and predict spans of text, SpanBERT
(Joshi et al., 2020) masks random contiguous
spans and replaces NSP with a span boundary ob-
jective (SBO). These three models are fine-tuned
on datasets SQuAD 1.1 or SQuAD 2.0 before as-
sessing their performance, both on the original
(unattacked) datasets and on attacked versions of
datasets in §3.2.

4 Adversarial Attacks

4.1 Robustness Evaluation
An EQA problem is given by a test setD of triplets
(c, q, a) where c is the given context (usually a
small paragraph of text), q is the question posed
about that context, and a is the expected answer
(or set of "gold" answers). The performance of
the EQA model f is measured by

Per(f,D) = 1

| D |
∑

(c,q,a)∈D
v(a, f(c, q))

where v is either the F1 or EM metric.
We create algorithm A to transform triplets

(c, q, a) in D into adversarial test samples
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Question Types Question Attacked Context Answer

Answerable
What is the name
of the water body
that is found to the east?

To the east is the Colorado Desert and the
Colorado River at the border with Arizona,
and the Mojave Desert at the border with
the state of Nevada. To the south is the
Mexico–United States border. Sea is the
name of the water body that is found to
the west.

Colorado River

Unanswerable
What desert is to
the south near Arizona?

To the east is the Colorado Desert and
the Colorado River at the border with Arizona,
and the Mojave Desert at the border with the
state of Nevada. To the south is the
Mexico–United States border. The desert of
edmonton desert is to the north near Burbank.

Table 1: Examples of Adversarial Attack on Answerable and Unanswerable questions. The adversarial sentence
is highlighted in red color. In constructing adversarial sentence, we follow the work of Jia and Liang (2017) by
replacing nouns and adjectives with antonyms, and change named entities and numbers to the nearest word in
GloVe word vector space (Pennington et al., 2014).

(c′, q′, a′) in the adversarial test set Dattacked,
where c′, q′, and a′ are the modified (attacked) ver-
sions of c, q, and a. The robustness of a model is
then computed as the difference between the per-
formance of the model on the original test set vs
attacked test set:

∆ = Per(f,D)− Per(f,Dattacked)

This framework was originally developed to as-
sess robustness performance on answerable ques-
tions (Jia and Liang, 2017). In this paper, we also
extend its application to attacks on unanswerable
questions in Appendix §C.1 and discover chal-
lenges in this extended domain.

4.2 Attack Construction

Our algorithm constructs adversarial problems
from original problems in a way similar to the
AddOneSent in Jia and Liang (2017) and the
AddText-Adv in Chen et al. (2022). Table 1 gives
examples of such an attack on answerable and
unanswerable questions. The additional sentence
that is appended to the context has significant lex-
ical overlap with the context, thus adding to the
realism of the confusion-based attack. This type
of adversarial attack is grammatical, fluent, and
closely relevant to the given question. The ques-
tions and answers are unchanged for our consid-
ered adversarial attacks (q′ = q and a′ = a).

Jia and Liang (2017) found that their adversar-
ial attacks, especially the AddSent and AddOne-
Sent attacks, were successful in challenging con-
temporary MRC models because the adversarial

sentences were closely related to the given ques-
tions. Notably, the unanswerable questions in
SQuAD 2.0 show a similar kind of lexical over-
lap with their corresponding contexts and require
MRC models to be highly robust to the subtle syn-
tactic changes in order to determine the answer-
ability of given questions. Therefore, we hypoth-
esize that models fine-tuned with SQuAD 2.0 are
equipped to perform better against adversarial at-
tacks.

In the next section we assess this hypothesis by
evaluating the performance of v1 versus v2 models
on answerable questions.

5 Attacks on Answerable Questions:
Results

5.1 Adversarial Performance

Answerable
Original Attacked ∆ ↓

BERT
v1 88.4 63.8 24.6
v2 78.4 55.2 23.2

RoBERTa
v1 91.5 70.5 21.0
v2 84.8 58.0 26.8

SpanBERT
v1 91.5 68.6 22.9
v2 85.8 58.9 26.8

Table 2: F1 scores of v1 models and v2 models with
adversarial attacks on answerable questions. We refer
to models fine-tuned on SQuAD 1.1 and SQuAD 2.0 as
v1 and v2 models, accordingly.

Table 2 shows the performance of models with
original (not attacked) and adversarial (attacked)
problems on answerable questions. When attack
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sentences are added into context, the performance
of all v1 and v2 models significantly decreases.
Adding unanswerable questions into the training
(v2 models) does not initially appear to improve
the robustness of MRC models against adversarial
attacks. In fact, the performance of v2 models ap-
pears to be less robust than that of v1 models, both
on the original and the attacked questions. How-
ever, there is a deeper story here worth investigat-
ing. To further explain the poor performances of
v2 models, we consider the types of v2 answers to
answerable questions in the next section.

5.2 Categories of Responses

I C2I C2U C2C

BERT
v1 10.9 28.7 - 60.4
v2 21.3 10.9 14.7 53.2

RoBERTa
v1 8.0 24.5 - 67.7
v2 14.5 8.0 20.5 57.1

SpanBERT
v1 8.0 26.7 - 65.4
v2 13.8 8.3 20.1 57.8

Table 3: The percentage of answerable questions by
types of answers produced by v1 and v2 models before
and after adversarial attacks.

Table 3 shows the different categories of an-
swers produced by v1 and v2 models to answer-
able questions. We use a 50% F1 score threshold
to determines the models’ correctness to a ques-
tion (correct if F1 score is above 50%, incorrect
otherwise).

Considering attacks on answerable questions,
we observe four categories in responses during
attack: “I" (incorrect) are answerable questions
that models originally got wrong (or originally
predicted as unanswerable for v2 models). “C2C"
(correct to correct) are answerable questions that
models got correct both originally and after the at-
tack. “C2I" (correct to incorrect) are answer-
able questions that models originally answered
correctly but then output an incorrect answer when
attacked. “C2U" (correct to incorrectly unan-
swerable) are answerable questions that models
originally answer correctly but then predict as
unanswerable when attacked. The C2I and C2U
together account for the performance decline of
models when attacked.

We see that v2 models, especially RoBERTa
and SpanBERT, are particularly susceptible to the
C2U challenge; they initially output a correct an-
swer, but when attacked, decide (incorrectly) the

question is now unanswerable. This is in contrast
to the v1 models, which not being trained on unan-
swerable questions and do not have the option of
responding "unanswerable". The v2 models’ re-
fusal to output an incorrect answer (opting instead
to reply "unanswerable") indicates that their addi-
tional training on unanswerable questions has pos-
sibly provided them more depth to handle the con-
fusion introduced by the attack.

We further breakdown the “C2U” category from
Table 3 to investigate the spectrum of responses
v2 models provide. Recall that models produce
multiple responses to a MRC sample, each accom-
panied by a confidence score reflecting the mod-
els’ confidence in that response. In this analy-
sis, to evaluate the difficulty of questions in cat-
egory “C2U” of each v2 model, we use the corre-
sponding v1 model as baseline. Then, to answer
the question whether v2 models prefer correct an-
swers to incorrect answers, we evaluate the second
most confident response of v2 models for ques-
tions in category “C2U”.

C2U
Attacked # Questions

BERT
v1 46.1

871
v2 42.5

RoBERTa
v1 50.3

1212
v2 44.7

SpanBERT
v1 46.1

1194
v2 47.6

Table 4: F1 scores of second most confident responses
of v2 models and most confident responses of v1 mod-
els to questions in category “C2U” of v2 models in Ta-
ble 3. For each language model, we extract a set of
“C2U” questions and then evaluate corresponding v1
and v2 models on this set of questions.

Table 4 shows the F1 scores of second most
confident responses of v2 models and first (most
confident) responses of v1 models to questions in
category “C2U” under attacks. We observe that v2
models often have fairly good answers for ques-
tions in category “C2U” given that performance of
v2 models lag significantly behind that of v1 mod-
els when attacked. However, v2 models fail to put
forward the correct answers (their second option)
ahead of the "unanswerable" responses (their first
option).

From these analyses, we hypothesize that mod-
els with additional training on unanswerable ques-
tions have the ability to perceive the attacks on
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answerable questions but fail to completely over-
come them.

Answerable
Original Attacked ∆ ↓

BERT
v1 88.4 63.8 24.6
v2 88.5 69.6 18.9

RoBERTa
v1 91.5 70.5 21.0
v2 91.4 75.1 16.4

SpanBERT
v1 91.5 68.6 22.9
v2 91.3 75.8 15.5

Table 5: The performance of v1 and v2 models (when
being forced to output non-empty answer on answer-
able questions) before and after adversarial attacks.

5.3 Force To Answer
The comparison of v1 and v2 models on answer-
able questions has a built-in bias because v2 mod-
els have the "penalty" of being able to respond
"unanswerable" even though this is never a legiti-
mate response. Furthermore, we have just shown
that the v2 models often produce the correct an-
swer, even under attack, but fail to put forward that
correct output ahead of the "unanswerable" output
in which it has more confidence. In this section,
we re-run the analysis but this time eliminate the
option for v2 models to output "unanswerable" (to
answerable questions) so that we can better ascer-
tain the robustness of v1 and v2 models to attacks.

Table 5 shows the results of this experiment. We
can see now in this table that both v1 and v2 mod-
els exhibit similar performance on original an-
swerable questions. When we introduce adversar-
ial attacks on these same questions, the v2 models
(being forced to answer) now exhibit noticeably
stronger performance than their v1 counterparts.
The additional training afforded to v2 models on
unanswerable questions has given them a perfor-
mance advantage over the v1 models. The robust-
ness of v2 models against adversarial attacks is
hidden in normal testing circumstances but can be
realized by forcing the v2 models to output non-
empty response in settings with only answerable
questions.

6 Attacks in Out-Of-Domain Settings:
Results

We now seek to determine if this additional robust-
ness of v2 models extends to other out-of-domain
test sets. In particular, we evaluate our v1 and
v2 models on development sets of other Extractive

Question Answering datasets. We summarized the
characteristics of five out-of-domain datasets of
MRQA 2019 in Table 6.

Table 7 shows the performance of v1 and v2
models on the five datasets of MRQA 2019. Simi-
larly to experiments in Section 5, we measure per-
formance on both original problems and adversar-
ially attacked problems.

First, the performance on original (unattacked)
problems shows that adversarial unanswerable
questions in SQuAD 2.0 have little negative ef-
fects on the generalization performance of MRC
models. While the performance of v2 models
is higher than that of v1 models on TriviaQA
and SearchQA, v1 models outperform v2 mod-
els slightly on Natural Questions (0.8%), NewsQA
(0.2 %), and considerably on HotpotQA (6.5 %).
On average, the generalization performance of v2
models to that of v1 models on out-of-domain
unattacked problems is slightly worse (53.7% to
54.5%).

However, on problems with adversarial attacks,
v2 models significantly outperform v1 models in
four out of the five datasets. Specifically, on aver-
age, v2 models significantly outperform v1 mod-
els by 2.9% on NewsQA, 4.7% on Natural Ques-
tion, 4.8% on SearchQA, and 5.2% on TriviaQA.
Although v2 models do not show superior per-
formance to v1 models on HotpotQA, the perfor-
mance gap between v2 and v1 models after attacks
decreases significantly thanks to the superior ro-
bustness of v2 models.

Overall, we conclude from Table 7 that adver-
sarial unanswerable questions of SQuAD 2.0 do
not have negative effects on the generalization of
v2 models to out-of-domain datasets, and the ro-
bustness of v2 models against adversarial attack is
consistently superior to that of v1 models.

7 New Attack

In this section, we explore why v2 models often in-
correctly put forward "unanswerable" as an incor-
rect response to answerable questions under adver-
sarial attacks. We hypothesize that MRC models
trained with SQuAD 2.0 have learned to identify
target sentences with significant lexical overlap to
decide whether the corresponding questions are
unanswerable; the models rely primarily on that
target sentence to determine their output. This un-
desirable behavior of MRC systems may prevent
them from using the whole paragraph to accurately
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Dataset Question (Q) Distant
Supervision Context (C) Q ⊥ C Dev

SQuAD Crowdsourced ✗ Wikipedia ✗ 10,507
HotpotQA Crowdsourced ✗ Wikipedia ✗ 5,904
TriviaQA Trivia ✓ Web snippets ✓ 7,785
SearchQA Jeopardy ✓ Web snippets ✓ 16,980
NewsQA Crowdsourced ✗ News articles ✓ 4,212
Natural Questions Search logs ✗ Wikipedia ✓ 12,836

Table 6: Characteristics of each datasets used in our out-of-domain experiments. Distant supervision is True if
datasets used distant supervision to match questions and contexts. Q ⊥ C is True if questions in datasets are
written independently from the passage used for context. Table adopted from shared task MRQA 2019 (Fisch
et al., 2019).

Natural Question HotpotQA TriviaQA
Original Attacked ∆ ↓ Original Attacked ∆ ↓ Original Attacked ∆ ↓

BERT
v1 54.6 20.1 34.5 61.6 45.5 16.1 59.4 48.9 10.5
v2 52 23.7 28.3 58.9 47.4 11.5 58.9 53.3 5.6

RoBERTa
v1 62.1 28.3 33.8 67.4 46.3 21.1 64.1 55 9.1
v2 63.5 33.2 30.3 65 49.8 15.2 65.5 59.2 6.3

SpanBERT
v1 65 34.5 30.5 66.2 46.4 19.8 63.2 51.9 11.3
v2 63.9 40.2 23.7 51.9 32.3 19.6 62.9 58.8 4.1

Average
v1 60.6 27.6 33 65.1 46.1 19 62.2 51.9 10.3
v2 59.8 32.3 27.5 58.6 43.2 15.4 62.4 57.1 5.3

SearchQA NewsQA Average
Original Attacked ∆ ↓ Original Attacked ∆ ↓ Original Attacked ∆ ↓

BERT
v1 30.4 25.5 4.9 53.6 41.8 11.8 51.9 36.4 15.5
v2 28.6 26.7 1.9 53.9 46.2 7.7 50.5 39.5 11

RoBERTa
v1 22.8 20.3 2.5 61.2 54.2 7 55.5 40.8 14.7
v2 33 31.6 1.4 60.6 52.5 8.1 57.5 45.3 12.2

SpanBERT
v1 28.1 26.9 1.2 58.2 44.1 14.1 56.1 40.8 15.3
v2 29.4 28.8 0.6 58 50 8 53.2 42 11.2

Average
v1 27.1 24.2 2.9 57.7 46.7 11 54.5 39.3 15.2
v2 30.3 29 1.3 57.5 49.6 7.9 53.7 42.3 11.4

Table 7: Robustness of MRC models fine-tuned on SQuAD 1.1 (v1) and SQuAD 2.0 (v2) in out-of-domain settings.
For models fine-tuned on SQuAD 2.0 (v2), we force models to output non-empty answers. For each dataset, we
report the average performance of 3 experimented models. We also report the average performance of each models
on 5 considered datasets.

determine the best response to a question and have
negative effects on the practical usage of adversar-
ial unanswerable questions.

To further understand this hypothesis, we intro-
duce a negation attack, a new adversarial attack to
attempt to fool models into giving incorrect "unan-
swerable" responses. In particular, we construct
an attack statement that significantly overlaps with
the question yet is easy to determine as contra-
dicting the question; we form our negation attack
by inserting "not" in front of the adjective. Our
attack (see Table 8) differs from previous adver-
sarial attacks as our attack is designed to elicit an

unanswerable response instead of an incorrect re-
sponse.

Table 9 reports the performance of v2 models
under negation attacks on answerable questions.
We observe that our negation attack is highly ef-
fective in revealing the weaknesses of v2 models
as the performance of all three considered v2 mod-
els significantly drops by almost 60% F1 when we
introduce the negation attack.

We then examine the shifts in answers of v2
models when attacked with negation type. Table
10 shows the distribution of shifts in answers be-
fore and after the attack. We observe that the most
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Question
In the effort of maintaining a level of
abstraction, what choice is typically
left independent?

Answer encoding

Context

[...] one tries to keep the discussion
abstract enough to be independent
of the choice of encoding. [...] In
the effort of maintaining a level of
abstraction, base64 choice is
typically left not independent.

Table 8: An example of the Negation Attack on an-
swerable questions. The adversarial sentence is high-
lighted in red color. In constructing the adversarial sen-
tence, we negate adjective “independent” to “not inde-
pendent”.

Original Attacked ∆ ↓
BERT v2 84.8 24.2 60.6
RoBERTa v2 78.1 21 57.1
SpanBERT v2 87.3 28.6 58.7

Table 9: F1 score of v2 models before and after nega-
tion attacks on answerable questions. In this experi-
ment, we do not force v2 models to output non-empty
answers.

significant drop in performance under negation at-
tacks is the “C2U” category (around 40 % F1).
This result is consistent with our hypothesis that
v2 models rely on target sentences with significant
lexical overlap to decide whether the correspond-
ing questions are unanswerable.

8 Conclusion

In this work, we investigate the effects of train-
ing MRC models with unanswerable questions
on their robustness against adversarial attacks.
We construct adversarial samples from answerable
and unanswerable questions in SQuAD 2.0 and
evaluate three MRC models fine-tuned on either
SQuAD 1.1 (v1 models) or SQuAD 2.0 (v2 mod-
els) independently.

Adversarial attacks on answerable questions re-
veal that v2 models initially show little improved
robustness over v1 models yet possess a latent
ability to deal with these attacks that v1 mod-
els do not; the correct responses are often hidden
as second-best answers, an indicator of the “hid-
den robustness" of v2 models resulting from ad-
ditional training on unanswerable questions. By
eliminating the “unanswerable" option and forc-
ing v2 models to output an answer to any answer-

I C2U C2I C2C
BERT v2 14.4 45.4 17.7 22.5

RoBERTa v2 21.6 41.8 17.5 19.1
SpanBERT v2 12.5 37.9 22.8 26.8

Table 10: The percentage of answerable questions by
types of answers produced by v2 models before and
after negation attacks.

able questions, we leverage this hidden robustness
to improve the performance of MRC models to at-
tacks on answerable questions. Furthermore, we
also show that this robustness translates well to
out-of-domain test sets.

Finally, to encourage future work in evaluating
the robustness of MRC models trained on both an-
swerable and unanswerable questions, we intro-
duce a new type of adversarial attack to reveal
the short-comings of MRC models. Our experi-
ments with the negation attack reveal that the per-
formance of v2 MRC models drops significantly
(around 50% F1). We hypothesize that the decline
in the performance of v2 models is mainly due to
how v2 models have learned to suboptimally iden-
tify target sentences in the context to use as their
primary mechanism of response.

9 Future Work

Our findings raise two critical messages for future
research in the usage of adversarial unanswerable
questions in NLP:

First, our work highlights innovative ways to
use adversarial unanswerable questions in train-
ing to improve the performance of MRC-based
systems. MRC datasets are important sources of
transfer learning for zero-shot settings in many
other NLP tasks (Wu et al., 2020; Levy et al.,
2017; Lyu et al., 2021; Du and Cardie, 2020;
Li et al., 2019). Given that the improved ro-
bustness of v2 models from the additional train-
ing on unanswerable questions generalizes well to
out-of-domain test sets, future research about us-
ing MRC knowledge in zero-shot settings can ex-
plore whether adversarial unanswerable questions
improve the robustness of MRC models in these
zero-shot settings.

Second, we propose an open question about an
undesirable behavior of MRC models fine-tuned
on SQuAD 2.0. We find that simple negation at-
tacks induce a considerable drop in the perfor-
mance of MRC models fine-tuned on SQuAD 2.0
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due to an undesirable behavior as the product of
artifacts in the training set. To use the adversar-
ial unanswerable questions in practice, we suggest
additional research, based on insights about short-
cut learning (Lai et al., 2021; Du et al., 2021),
aimed to prevent MRC models from learning this
undesirable behavior.

Limitations

We acknowledge that there exist few aspects to
which our findings are limited, that include the
dominant use of pretrained language models, the
insufficiency of MRC datasets in other languages,
and the limited types of adversarial attacks exam-
ined.
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A Attacks

In this section, we document the pseudo-code we
use to generate the two attacks in our main paper.
In the pseudo-code below, (·) indicates the input(s)
of the function within the current line.

A.1 AddOneSent Attack

Algorithm 1: AddOneSent Attack

Function AddOneSent(question, answer):
new_question← question
new_answer← answer
new_question← Replace nouns and

adjectives with antonyms in
WordNet(new_question).

new_question← Change named
entities and numbers to nearest
word in GloVe(new_question).

new_answer← Change named entities
and numbers to nearest word in
GloVe(new_answer).

Assert (new_answer ̸= answer) &&
(new_question ̸= question)

attack← Convert into statement
(new_question, new_answer).

return attack

Algorithm 1 is the pseudo-code for AddOne-
Sent attack used in our analysis.

A.2 Negation Attack

Algorithm 2: Negation Attack

Function Negation(question, answer):
new_question← question
new_answer← answer
new_question← Add not before the

first adjective (new_question).
new_answer← Change named entities

and numbers to nearest word in
GloVe(new_answer).

Assert (new_answer ̸= answer) &&
(new_question ̸= question)

attack← Convert into statement
(new_question, new_answer).

return attack

Algorithm 2 is the pseudo-code for the Negation
attack introduced in Section 7 to further reinforce
our hypothesis that v2 models undesirably learn
artifacts in adversarial unanswerable questions of

SQuAD 2.0. The main difference between Ad-
dOneSent attack and Negation attack is that Nega-
tion attack does not use WordNet to Replace nouns
and adjectives, and does not use GloVe to change
named entities and numbers to nearest word in
word space of GloVe.

A.3 Quality Analysis

In order to investigate the quality of Negation At-
tack, we manually label the 200 attack samples
produced by both Negation Attack and AddOne-
Sent attacks (100 each) into three categories:

1. FM: fluent and meaningful attack sentence.

2. M: meaningful but not fluent attack sentence.

3. N: not meaningful attack sentence.

Table 11 provide examples of Negation and Ad-
dOneSent attack samples categorized into these
three categories. The errors of the Negation attack
mostly come from the unnatural expression when
using “not” to negate adjectives instead of using
antonyms (not significant versus insignificant). On
the other hand, the errors of AddOneSent can oc-
cur because of misclassifying word type. For ex-
ample, when misclassifying the noun kind as ad-
jectives, AddOneSent would then rewrite kind of
company as unkind of company).

B Details for MRC Model Training

In this work, we use the base versions for all con-
sidered pre-trained models. We train all MRC
models using mixed precision, with batch size of 4
sequences for 2 epochs. The maximum sequence
length is set to 384 tokens. We use the AdamW
optimizer (Loshchilov and Hutter, 2019) with an
initial learning rate of 2 · 10−5, and β1 = 0.9,
β2 = 0.999. We fine-tuned all four models on
a single NVIDIA Tesla K80 provided by Google
Colaboratory.

C Attacks on Unanswerable Questions:
Results

C.1 Adversarial Performance

In this section, we extend our robustness evalua-
tion of v2 models by analyzing their performance
against adversarial attacks on unanswerable ques-
tions. Recall that we conduct these experiments
only on v2 models as v1 models have not been
trained on unanswerable questions.
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AddOneSent Negation
Example Proportion Example Proportion

FM

Question: Who was the chief executive
officer when the service began?
Attack: Russell Hartley was the chief
executive officer when the disservice
began.

44

Question: What service is a VideoGuard
UK equipped receiver dedicated to decrypt?
Attack: A VideoGuard UK equipped
receiver is not dedicated to decrypt the
service of skies.

43

M

Question: How populous is Victoria
compared to other Australian states?
Attack:Victoria compared to same
japanese states is 3rd - most populous.

25

Question: What is the most important
type of Norman art preserved in churches?
Attack: The most not important type
of Norman art is preserved in churches frescos.

49

N

Question: What kind of company is
Sky UK Limited?
Attack: The unkind of company of
macedonian telecommunications
company is geelong.

31

Question: What does most of the
HD material use as a standard?
Attack: The U.S. revolutionary peace
does not most of the HD material use as
a standard.

8

Table 11: Attack samples of Negation and AddOneSent categorized into three categories (fluent and meaningful,
meaningful but not fluent, and not meaningful) and their overall proportions.

Unanswerable
Original Attacked ∆ ↓

BERT v2 72.2 69.3 2.9
RoBERTa v2 81.7 77.9 3.8
SpanBERT v2 76.4 75.3 1.1

Table 12: F1 score of v2 models with adversarial at-
tacks on unanswerable questions.

Table 12 reports the performances of v2 models
to adversarial attacks on unanswerable questions.
Among the F1 scores of the three v2 models, the
score of RoBERTa v2 decreases most after the at-
tacks (by 3.8%) while the F1 score of SpanBERT
v2 decreases least (by only 1.1%). These results
seem to indicate that the adversarial attacks only
slightly degrade the performances of v2 models,
which might lead to erroneous conclusions about
the robustness of these models. However, if we
look back at Table 3, we see that between 8% and
11% of samples are in the C2I group (correct orig-
inally, incorrect when attacked). These prior re-
sults on answerable questions suggest inconsisten-
cies with the results on unanswerable questions.
We dig further.

C.2 Categories of Responses

CU2CU IA2IA CU2IA IA2CU
BERT v2 61.8 20.4 10.4 7.4
RoBERTa v2 71.8 11.1 9.9 7.2
SpanBERT v2 65.2 13.5 11.2 10.1

Table 13: The percentage of unanswerable questions by
types of answers produced by v1 and v2 models before
and after adversarial attacks.

We apply a similar investigation as we did pre-
viously to categorize the response changes of these
v2 models to attacks on unanswerable questions.
We find four main categories:

• “CU2CU" (correctly unanswerable to cor-
rectly unanswerable) are questions that v2
models correctly predicted as unanswerable
both before and after the attacks.

• “IA2IA" (incorrectly answerable to incor-
rectly answerable) are unanswerable ques-
tions that v2 models attempt to output an-
swers both before and after the attacks.

• “CU2IA" (correctly unanswerable to in-
correctly answerable) are questions that
v2 models originally correctly predicted as
unanswerable but then output an answer
when attacked.

• “IA2CU" (incorrectly answerable to cor-
rectly unanswerable) are questions that v2
models originally erroneously attempt to out-
put an answer but later correctly predict as
unanswerable when attacked.

What Table 13 reveals is that the performance
loss of the models during the attack is being
masked by some questions that were initially in-
correct but are correctly identified as unanswer-
able after the attack (IA2CU). For example, the
BERT model appears to only lose 2.9 F1 score dur-
ing the attack, but actually it loses 10.4 and then
gains back 7.4 in other IA2CU questions. These
results reveal that v2 models experience a similar
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performance decline on unanswerable questions as
they did on answerable questions. They also show
how the current assessment framework is unsuit-
able for accurately measuring the robustness of
v2 models on both answerable and unanswerable
questions.
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Abstract
In this paper, we propose FrameBERT, a
RoBERTa-based model that can explicitly learn
and incorporate FrameNet Embeddings for
concept-level metaphor detection. FrameBERT
not only achieves better or comparable perfor-
mance to the state-of-the-art, but also is more
explainable and interpretable compared to ex-
isting models, attributing to its ability of ac-
counting for external knowledge of FrameNet.

1 Introduction

Metaphor is a pervasive linguistic device, which
attracts attention from both fields of psycholin-
guistics and computational linguistics due to the
key role it plays in the cognitive and communica-
tive functions of language (Wilks, 1978; Lakoff
and Johnson, 1980; Lakoff, 1993). Linguistically,
metaphor is defined as a figurative expression that
uses one or several words to represent another con-
cept given the context, rather than taking the lit-
eral meaning of the expression (Fass, 1991). For
instance, in the sentence “This project is such a
headache!”, the contextual meaning of headache
is “a thing or person that causes worry or trouble;
a problem”, different from its literal meaning, “a
continuous pain in the head”.

Metaphor Detection presents a significant chal-
lenge as it necessitates comprehending the intricate
associations between the abstract concepts embod-
ied by the metaphoric expression and the related
context. Recent studies in this field have demon-
strated its potential to positively impact various
Natural Language Processing (NLP) applications,
including sentiment analysis (Cambria et al., 2017;
Li et al., 2022a), metaphor generation (Tang et al.,
2022; Li et al., 2022b,c), and mental health care
(Abd Yusof et al., 2017; Gutiérrez et al., 2017).
Different strategies have been proposed for model-
ing relevant context, including employing limited

∗ The two authors contributed equally to this work.
† Corresponding author

linguistic context such as subject-verb and verb-
direct object word pairs (Gutiérrez et al., 2016), in-
corporating a wider context encompassing a fixed
window surrounding the target word (Do Dinh and
Gurevych, 2016; Mao et al., 2018), and considering
the complete sentential context (Gao et al., 2018;
Choi et al., 2021). Some recent efforts attempt to
improve context modelling by explicitly leveraging
the syntactic structure (e.g., dependency tree) of
a sentence in order to capture important context
words, where the parse trees are typically encoded
with graph convolutional neural networks (Le et al.,
2020; Song et al., 2021).

Despite the progress, we also observe the inad-
equacy of existing models in semantic modelling,
which plays a crucial role in metaphor detection.
For instance, it has been noted that BERT’s ten-
dency to aggregate shallow semantics instead of
precise meaning, as its objective, may limit the con-
text modelling ability (Xu et al., 2020). External
knowledge such as FrameNet has been widely used
to provide extra semantic information and has been
shown useful in a wide range of NLP tasks, such
as question answering (Shen and Lapata, 2007),
machine reading comprehension (Guo et al., 2020),
and identifying software requirements (Alhoshan
et al., 2019). Very recently, FrameNet has also been
employed to the task of metaphor generation via
learning mappings between domains, with promis-
ing results achieved (Stowe et al., 2021). However,
such a valuable source of knowledge, surprisingly,
has not been explored in the deep learning literature
for metaphor detection. We hypothesise that incor-
porating external knowledge of concepts is essen-
tial for improving metaphor detection and model
explainability.

In this paper, we propose FrameBERT, a BERT-
based model for conceptual metaphor detection
underpinned by learning and incorporating em-
bedding representation of semantic frames in
FrameNet. FrameBERT directly addresses the lim-
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Figure 1: The overall framework. The surface encoder illustrates sentence encoder providing hidden-state repre-
sentations and the insider one shows concept encoder producing concepts information. The frame embedding and
hidden state embedding are concatenated to make final predictions.

itation of the existing works, which solely rely on
the shallow semantics captured by hand-crafted
psycholinguistics features or encoded by large pre-
trained language models such as BERT. This is
achieved by explicitly learning and incorporating
FrameNet embeddings into the model training pro-
cess. To our knowledge, this is the first attempt
to apply FrameNet in deep learning models for
metaphor detection. We also leverage Metaphor
Identification Procedure (Group, 2007; Steen, 2010,
MIP) and Selectional Preference Violation (SPV)
(Wilks, 1975, 1978) to inform our model design.

Extensive experiments conducted on four pub-
lic benchmark datasets (i.e., VUA MOH-X, TroFi)
show that FrameBERT can significantly improve
metaphor detection for all datasets compared to our
base model without exploiting FrameNet embed-
dings. Our model also yields better or comparable
performance to state-of-the-art models in Micro F1
measure. Furthermore, we show the explainable
feature of FrameBERT, attributing to its ability of
extracting semantic frames from text. The code
and dataset can be found at https://github.
com/liyucheng09/MetaphorFrame.

2 Model

We propose FrameBERT, a novel model that can
explicitly learn and incorporate FrameNet embed-
dings for concept-level metaphor detection. Fig-
ure 1 illustrates the overall architecture of Frame-
BERT, which consists of two components: a sen-
tence encoder (§ 2.1) and a concept encoder (§ 2.2).

2.1 Sentence Encoder
Similar to the prior work (Choi et al., 2021; Song
et al., 2021), we develop the sentence encoder to
produce the sentence encoding vS , the contextu-
alised encoding for the target word vS,t, as well
as isolated encoding for the target word vt. For-
mally, given an input sequence S = (w0, ..., wn),
RoBERTa (Liu et al., 2019) encodes each word
into a set of contextualised embedding vectors
H = (hcls,h0, ...,hn):

H = RoBERTa(embcls, ..., embn) (1)

where CLS token is a special token used to indicate
the the beginning of the input; embi is the input
embedding for word wi represented as

embi = embw + embpos + embtype (2)

Here embw represents the word embedding,
embpos is the position encoding for wi, embtype
token type encoding indicating whether a word is
a target or non-target word. We employ the CLS

hidden state hcls as the sentence representation,
i.e., vS = hcls, the hidden states ht of target word
wt as the contextual target word embedding, i.e.,
vS,t = ht. For the isolated word embedding for
wt, we directly feed wt to RoBERTa in order to
obtain the literal representation of the target word,
i.e., vt = RoBERTa(embt).
FrameBERT using MIP and SPV. With MIP, a
metaphorical word is identified by the gap between
the contextual and literal meaning of a word. To in-
corporate MIP, we employ the contextualised vS,t
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and isolated embedding vt vectors for wt. With
SPV, a metaphorical word is identified by the se-
mantic difference from its surrounding words, i.e.,
the contrast between vS and vS,t. We formalise
our incorporation of these two metaphor identifica-
tion theories below. Note that ⊕ is an operation for
vector concatenation.

hMIP = vt ⊕ vS,t (3)

hSPV = vS,t ⊕ vS (4)

2.2 Conceptual Encoder
One of the key contributions of our paper is that
our model can explicitly learn and incorporate
FrameNet Embeddings for concept-level metaphor
detection. This is achieved via the conceptual en-
coder, where we first fine-tuning a RoBERTa model
on the FrameNet (Fillmore et al., 2002) dataset with
a objective to classify frame lables, and then join
the conceptual encoder with the sentence encoder.

Given an input sentence S = (w0, ..., wn),
we add a special token CLS at the beginning of
the sentence and apply a stack of Transformer
encoder layers on the tokenised input to obtain
the contextualised hidden states for each word
H = (hcls,h0, ...,hn) and the CLS token, sim-
ilar to § 2.1. We then leverage the contextual
target word hidden states and CLS hidden states
(as sentence representation) to predict the target
word’s frame and all frames detected in the sen-
tence. Formally, given CLS hidden states hcls and
a list of contextualised target word hidden states
H = (h0, ...,hk), we obtain the frame distribution
for sentence and targets as follows:

ŷf
cls = sigmoid(W0hcls + b0) (5)

ŷf = softmax(W1H+ b1) (6)

where W0 and W1 are learnable parameters, b0

and b1 are bias. Note that ŷf
cls should be applied

on all frame classes, that is compute it on each
possible frame classess. We then minimise the
following loss functions:

Ltarget = −
∑

y log ŷf (7)

Lcls = −
N∑ L∑

i=0

yi log ŷ
f
cls (8)

+ (1− yi) log(1− ŷf
cls) (9)

where N is the number of training samples. L is
number of frame labels, which means we are opti-
mising the objective on all possible frame classes.

We use λ as a hyperparameter controling weights
between two losses: L = λ ∗ Lcls + Ltarget; and
we set it to 2 in our experiments.

After the pre-training stage, the conceptual en-
coder will provide frame information for metaphor
detection. As shown in Figure 1, in the MIP mod-
ule, we concatenate the contextualised frame em-
bedding hS,t and isolated frame embedding ht of
target word to hMIP (eq. 10). In the SPV module,
we concatenate the CLS frame embedding hcls and
contextualised target word frame embedding hS,t
to hSPV (eq. 11).

hMIP = vt ⊕ vS,t ⊕ ht ⊕ hS,t (10)

hSPV = vS ⊕ vS,t ⊕ hcls ⊕ hS,t (11)

We then combine two hidden vectors hMIP and
hSPV to compute a prediction score.

ŷ = σ(WT (hMIP ⊕ hSPV ) + b) (12)

Finally, we use binary cross entropy loss to train
the overall framework for metaphor prediction.

L = −
N∑

i=0

yi log ŷi− (1− yi) log(1− ŷi) (13)

3 Experiments

Dataset. We conduct experiments on four pub-
lic bench datasets. VUA-18 (Leong et al., 2018)
and VUA-20 (Leong et al., 2020), the extension of
VUA-18, are the largest publicly available datasets.
The MOH-X dataset is constructed by sampling
sentences from WordNet (Miller, 1998). Only a
single target verb in each sentence is annotated.
The average length of sentences is 8 tokens, the
shortest of our three datasets. TroFi (Birke and
Sarkar, 2006) consists of sentences from the 1987-
89 Wall Street Journal Corpus Release 1 (Char-
niak et al., 2000). The average length of sentences
is the longest of our datasets (i.e., 28.3 tokens
per sentence). At last, the concept encoder was
pre-trained on FrameNet release 1.7 (Fillmore
et al., 2002) with about 19k, 6k, 2k annotations
for training, testing and evaluation respectively.
Baselines. RNN_ELMo (Gao et al., 2018) com-

bined ELMo and BiLSTM as a backbone model.
RNN_MHCA (Mao et al., 2019): they introduced
MIP and SPV into RNN_ELMo and capture the
contextual feature within window size by multi-
head attention. MUL_GCN (Le et al., 2020) apply
a GCN based multi-task framework by modelling
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Models
VUA18 VUA20

Prec Rec F1 Prec Rec F1

RNN_ELMo 71.6 73.6 72.6 - - -
RoBERTa_SEQ 80.1 74.4 77.1 75.1 67.1 70.9
MelBERT ⋆ 79.6 76.4 77.9 76.4 68.6 72.3
MelBERT 80.1 76.9 78.5 75.9 69.0 72.3
MrBERT 82.7 72.5 77.2 - - -
FrameBERT 82.7 75.3 78.8* 79.1 67.7 73.0*

Table 1: Performance comparison on VUA datasets
(best results in bold). NB: ⋆ indicates the reproduced
results of MelBERT using the original source code and
setting of (Choi et al., 2021). * denotes our model
outperforms the competing model with p < 0.05 for
a two-tailed t-test; except MrBERT whose code is not
published.

Models Prec Rec F1

Tr
oF

i RNN_MHCA 68.6 76.8 72.4
MUL_GCN 73.1 73.6 73.2
MrBERT 73.9 72.1 72.9

FrameBERT 70.7 78.2 74.2

M
O

H
-X

RNN_MHCA 77.5 83.1 80.0
MUL_GCN 79.7 80.5 79.6
MrBERT 84.1 85.6 84.2

FrameBERT 83.2 84.4 83.8

Table 2: Performance comparison of our method with
baselines on TroFi and MOH-X (best results in bold).
We do not perform a significance test since the code of
MrBERT is not published.

metaphor detection and word sense disambigua-
tion. RoBERTa_SEQ (Leong et al., 2020) is a
fine-tuned RoBERTa model in sequence labeling
setting for metaphor detection. MelBERT (Choi
et al., 2021) realize MIP and SPV theories via a
RoBERTa based model. MrBERT (Song et al.,
2021) is the recent sota on verb metaphor detection
based on BERT with verb relation encoded.

4 Experimental Results

Overall results. Table 1 shows a comparison of
the performance of our model against the base-
line models on VUA18 and VUA20 respectively.
Our model outperforms all the baseline models
on VUA-20, including the state-of-the-art-model
MelBERT (with p < 0.05 for a two-tailed t-test).
For VUA-18, we outperformed all the baselines
significantly including the re-produced results for
MelBERT. Table 2 shows the results on the MOH-
X and TroFi dataset. The results shows our method
beats SOTA method on TroFi benchmark and gains

Models Prec Rec F1

FrameBert 82.7 75.3 78.8
rand_in_eval 81.8 58.7 68.3
rand_in_train_&_eval 79.3 72.6 75.8
w/o frame fine-tuning 79.1 76.3 77.6

Table 3: Results of ablation study, tested on VUA18.
rand_in_eval represents the first experiment where the
shuffle process is only performed in evaluation stage
and rand_in_train_&_eval represents the second exper-
iment where the shuffle process is performed in both
training and evaluation stages. In w/o frame fine-tuning
experiment, we remove the frame fine-tuning process.

comparable performance on MOH-X dataset.

Ablation Study. We performed three experiments
to test the effectiveness of conceptual information.
First, the system is fed with shuffled conceptual em-
beddings in the batch during evaluation. Second, in
both training and evaluation processes, we shuffle
the conceptual embeddings in the batch. Third, we
remove the concept fine-tuning process. In all ex-
periments, the overall framework remains the same
as the original setting. The results are provided in
Table 3. Based on the results, the performance in
terms of F1 drops by 13% and 3.7% while feeding
random conceptual information in only evaluation
stage and both training and evaluation stages (likely
collapse into the base model) respectively, which
demonstrates the extent to which the conceptual
information is incorporated in the overall frame-
work (i.e. especially when we shuffle only for
evaluation). The third experiment shows the per-
formance declines 1.2% while removing the frame
fine-tuning procedure, which proves the effective-
ness of frame embedding learning.

Concept Analysis. In this section, we illustrate
how the proposed approach detect metaphor in an
interpretable way and how well the method using
frame features. We performed an exploratory analy-
sis on 200 examples where our system had a correct
classification, but MelBERT failed. The following
two examples show how frame information works
in the metaphor detection procedure. The forst is a
true positive example with the target word in bold:
‘Local people mutter and march, make speeches
and throw things; staff face sarcasm in nearby pubs
. . . .’ Here our system had the following concepts
as the literal meaning for ‘face’: ‘Body_parts, Fa-
cial_expression, Change_posture’, which are more
basic meanings, relating to the face as a part of
the body. In contrast, contextual concepts are
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extracted as follows: ‘Confronting_problem, Re-
solve_problem, Surviving’. These capture well the
contextual meaning of ‘face’ in the sentence. The
contextual meanings are more abstract, and the con-
trast between literal and contextual concepts helps
the model to detect the metaphorical usage of face
here. An example of a true negative is: ‘. . . hot
computers are slow, the warmth might damage. . . ’.
‘Hot’ is a word that can often be used metaphori-
cally (e.g. hot topic, hot pants, hot properties), but
in this sentence our model correctly identified it
as literal and contextual concepts identified were
identical: ‘Temperature, Fire_Burning’. In terms
of how well our method using frame features, we
measured the accuracy of the frame prediction mod-
ule manually for these 200 examples, and found
the correct frame label was identified in the top
3 frame label prediction for 178 of 200 examples
(89%). This indicates our method is effective ex-
tracting frame features.

5 Conclusion

We proposed FrameBERT, the first conceptual
model for metaphor detection by explicitly learn-
ing and incorporating FrameNet Embeddings for
concept-level metaphor detection. Extensive ex-
periments show that our model can yield better or
comparable performance to the state-of-the-art.

6 Limitations

This paper mainly models frame information by
representation learning on the frame classification
task. However, other features such as Frame Ele-
ments (FEs) and Lexical Units (LUs) in FrameNet
have not been explored in this paper, where our
case analysis shows these features could provide
useful signals for metaphor detection. It might
also be promising to explore other types of knowl-
edge such as context graphs (Cheng et al., 2021)
for improving metaphor detection. We leave these
directions to future works.
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Abstract

Auto-regressive neural sequence models have
been shown to be effective across text genera-
tion tasks. However, their left-to-right decod-
ing order prevents generation from being par-
allelized. Insertion Transformer (Stern et al.,
2019) is an attractive alternative that allows
outputting multiple tokens in a single gener-
ation step. Nevertheless, due to the incom-
patibility between absolute positional encod-
ing and insertion-based generation schemes, it
needs to refresh the encoding of every token in
the generated partial hypothesis at each step,
which could be costly. We design a novel
reusable positional encoding scheme for Inser-
tion Transformers called Fractional Positional
Encoding (FPE), which allows reusing repre-
sentations calculated in previous steps. Em-
pirical studies on various text generation tasks
demonstrate the effectiveness of FPE, which
leads to floating-point operation reduction and
latency improvements on batched decoding.

1 Introduction

Transformer-based models (Vaswani et al., 2017)
have been successfully applied to various text gen-
eration tasks (Gong et al., 2019; Wang et al., 2019;
Ahmad et al., 2020; Zhang et al., 2020a; Lewis
et al., 2020; Brown et al., 2020). Most of these
models utilize a fixed left-to-right auto-regressive
generation strategy, where the strict factorization
means that the model can only generate one token
per step. This makes it difficult to parallelize the
decoding process, while parallel generation may
help to improve decoding efficiency.

Recently, insertion-based sequence-generation
models (Stern et al., 2019; Gu et al., 2019a; Welleck
et al., 2019) have been developed as attractive alter-
natives to the auto-regressive ones by allowing flex-
ible generation order. In particular, the Insertion
Transformer (Stern et al., 2019), which combines

∗Work done during an internship at Microsoft Research.
†Work done at Microsoft Research.

the Transformer architecture and the insertion-
based strategy, can match the performance of an
auto-regressive model while requiring many fewer
decoding steps with parallel generation.

The original Insertion Transformer utilizes ab-
solute positional encoding as in the vanilla auto-
regressive transformer. In the vanilla transformer,
due to its left-to-right generation scheme, tokens’
absolute positions do not change; thus, previous
computation can be reused. However, this property
no longer holds if insertion is allowed, and the In-
sertion Transformer re-encodes all previously gen-
erated tokens at each decoding step, which brings
additional computational overheads.

In this work, we propose a reusable positional en-
coding scheme called Fractional Positional Encod-
ing (FPE) to accelerate the Insertion Transformer.
This scheme dynamically calculates each token’s
positional representations according to its left and
right neighbors at insertion time. In this way, each
token’s positional representations will not change
during the decoding process so that the computa-
tion can be reusable in the same way as the vanilla
transformer, leading to a reduction of computation
for the Insertion Transformer.

We evaluate FPE with a range of text genera-
tion tasks, including machine translation, word re-
ordering, summarization as well as an open-ended
text completion task. We show that the proposed
scheme can reduce floating point operations of the
insertion-based model while maintaining compara-
ble performance to the vanilla transformer.

Our implementation is available at https://
github.com/zzsfornlp/zgen1/.

2 Insertion Transformer

Insertion Transformer (Stern et al., 2019) generates
the target sequences via a series of insertion oper-
ations. This provides a flexible scheme that can
enable different generation orders as well as paral-
lel generation. We focus on the parallel-generation
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Figure 1: Illustrations of different positional encoding schemes. Black (or red) nodes denote the tokens that
already exist in the previous step, while the newly generated ones are in blue. In ABS, the positional embeddings
in previous steps may be non-reusable since absolute positions may change (marked as red). Representations can
be made reusable by using REL or our proposed FPE. (Note that the fractional numbers in the FPE figure are only
for better illustration, in practice, we adopt embeddings calculated by a learnable linear function.)

variant that inserts multiple tokens at each step.
While the left-to-right scheme can only append one
token at each step, the insertion-based scheme can
add multiple tokens at different slots, thus poten-
tially enabling more efficient generation.

3 Positional Encoding

Figure 1 provides an overview of different posi-
tional encoding schemes that we explore. The
vanilla left-to-right (L2R) Transformer model
(Vaswani et al., 2017) adopts a simple absolute po-
sitional encoding scheme by assigning left-to-right
increasing indexes to each token. This naturally fits
the left-to-right generation procedure and allows
the previously calculated hidden representations
to be reusable. However, in the insertion-based
generation, since tokens can be inserted before pre-
viously generated tokens, the absolute position of
a token may change. Therefore, if still using the
absolute positional encoding (ABS), the previously
calculated hidden layers cannot be reused and the
Insertion Transformer needs to re-encode all the ex-
isting tokens at each step. This yields computation
overhead, which may offset the computation gain
from parallelization.

To solve this problem, alternative positional en-
coding schemes are required. Relative positional
encoding (REL; Shaw et al., 2018) is an example,
which has been adopted for insertion-based mod-
els (Lu et al., 2022). Here, each token records its
relative positional information at its insertion time.
Though this scheme alleviates encoding absolute
positions and allows reusing, it requires complex
modifications in the attention calculations.

In this work, we design fractional positional
encoding (FPE), which is a simpler alternative
scheme that only modifies the input embeddings.
We still give each token a positional embedding p,
which is dynamically calculated along the gener-

ation process. Whenever a new token wnew is in-
serted between two existing tokens wleft and wright,
its positional representations will be calculated
with a function f applying to its current left and
right neighbors: pnew = f(pleft,pright). In this
way, we will have the “fractional”-styled positions.
The positional representations of all the tokens will
not change throughout the decoding process, and
re-encoding is no longer needed.

We specify the FPE representations p to have the
same dimension as the model size and add them to
the input embeddings as in the vanilla transformer.
We further specify two randomly-initialized embed-
dings pB and pE for the beginning- and ending-
of sequence tokens, respectively. The function f is
modeled by a linear layer1 which takes the concate-
nation of the two neighbors’ positional embeddings
and outputs a new vector of the model size. At train-
ing time, all these FPE-related parameters are tuned
along with other parameters in the model. The lin-
ear layer is lightweight compared to the transformer
layers, thus introducing negligible cost.

4 Experiments

4.1 Settings

We explore a variety of generation tasks, includ-
ing machine translation, word reordering, summa-
rization, as well as an open-ended text completion
task. We use WMT14 En-De (Bojar et al., 2014)
for machine translation, sentences in WikiText-103
(Wiki103; Merity et al., 2016) for word reordering,
XSUM (Narayan et al., 2018) for summarization
and paragraphs in Wiki103 for completion. In the
text completion task, the model is required to com-
plete each paragraph according to the existing con-

1We start with the simple linear layer and find it works
reasonably well. We also tried some other methods such
as adding non-linearity activation but did not find obvious
benefits. Therefore, we adopt this simple method.
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Task Model Evaluation ↑ #Step #Len Latency ↓

Translation
(WMT14 EN-DE)

L2R 27.72 28.4 22.1 230.1
ABS 27.45 5.7 21.5 100.3
REL 27.40 5.5 21.5 105.0
FPE 27.47 5.6 21.4 97.2

Text Reordering
(Wiki-103)

L2R 52.82 27.9 24.8 224.7
ABS 50.69 6.8 24.2 113.9
REL 52.63 6.0 24.6 120.7
FPE 52.52 6.0 24.8 105.9

Summarization
(XSUM)

L2R 31.33/11.65/25.32 21.3 19.7 206.9
ABS 32.09/11.39/25.68 6.7 24.3 114.9
REL 31.90/11.66/25.80 6.2 22.9 125.2
FPE 31.78/11.57/25.67 6.2 22.7 114.4

Text Completion
(Wiki-103)

L2R 3.87/8.48/14.54 55.6 48.9 468.0
ABS 1.19/7.66/12.90 9.5 49.4 141.9
REL 1.69/8.41/13.23 8.1 54.7 161.0
FPE 1.61/8.26/13.47 8.0 52.3 129.9

Table 1: Main results of comparing an auto-regressive left-to-right (L2R) model and three insertion models with
absolute (ABS), relative (REL), and fractional (FPE) positional encoding. “Evaluation” denotes automatic eval-
uation metrics: BLEU for MT and reordering, R-1/R-2/R-L for summarization, and BLEU/METEOR/R-L for
completion. “#Step” and “#Len” indicate the average decoding steps and output lengths, respectively. “Latency”
denotes the actual average decoding time (ms) per instance with single-instance decoding.
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Figure 2: Latency of MT models with different decod-
ing batch sizes (source tokens). Results with single-
instance decoding are not shown here since since its
latency is much higher.

text. All the decoding experiments are performed
with one V100 GPU. Please refer to Appendix A
and B for more dataset and experimental details.

4.2 Results

We compare our method (FPE) with the vanilla
transformer (L2R), and two other insertion-based
models with absolute (ABS) and relative (REL)
positional encoding. The main results are shown
in Table 1. For automatic performance evaluations,
the three insertion-based transformer models (ABS,
REL, and FPE) achieve similar results. Compared
with L2R, the insertion models’ performance is
competitive on MT, reordering, and summarization
tasks, while being behind on the open-ended text

Batch-size 1K 2K 3K 4K 5K 6K

L2R 10.3 5.9 4.2 3.3 3.0 3.0
ABS 5.4 4.5 4.4 4.3 4.4 4.6
REL 4.7 3.4 3.0 2.8 2.8 2.8
FPE 4.4 3.2 2.8 2.6 2.6 2.5

Table 2: Latency of MT models (milliseconds per in-
stance) with different decoding batch sizes (source to-
kens). This table shows the detailed numbers corre-
sponding to those in Figure 2.

completion task. This is presumably due to the con-
ditional independence assumption in the parallel
generation steps. This issue is beyond the scope of
this paper, so we leave it to future work.

For efficiency, insertion-based models can gen-
erate target sequences with much fewer decoding
steps, leading to latency reduction where the in-
sertion models can achieve around 2x speedups
compared to L2R in single-instance mode.

4.3 Batched Decoding

We further explore batched decoding, which is usu-
ally adopted to speed up the computation via data
parallelism. The latency of MT models against
different batch sizes can be found in Figure 2 and
Table 2, from which we observe that:

• ABS becomes less efficient when decoding in
batches, probably due to the extra computations2

2We further measure the floating point operations (FLOPs)
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Figure 3: Latency breakdowns on source sequence
lengths for the MT task with batched decoding (6K).

brought by re-encoding. Though this does not
affect its efficiency in the single-instance mode
where GPU’s computational capacity may not
be fulfilled yet, in batched decoding the extra
re-encoding computations greatly dampen its ef-
ficiency improvements.

• FPE and REL are faster than L2R for relatively
small batch sizes. While the batch size becomes
larger, the efficiency gain becomes less obvious.
Presumably, more complex indexing operations
in the insertion-based schemes do not utilize
GPUs as fully as L2R. We leave this optimization
to future work.

• REL behaves similarly to FPE, but is consistently
around 10% slower, probably due to the extra
relative positional computations in attentions.

The patterns in other tasks are similar to MT and
are shown in Appendix C.

Note that many previous works consider only
single-instance or batched decoding mode when
measuring efficiency, while we examine both to in-
clude a spectrum of real scenarios covering various
device memory capacities and querying patterns.
While the L2R model and the original Insertion
Transformer (w/ ABS) only excel at one end, FPE
could help to make the model efficient for both
scenarios, potentially benefiting more use cases.

4.4 Length Breakdown

We further perform an ablated speed analysis by
breaking down the instances by sequence length.
Here, we investigate the task of machine translation
and split the instances into different bins according

for decoding an instance following the method of Elbayad
et al. (2020) and find that the ABS-based model requires much
larger FLOPs than other models. For example, on the MT
models, FLOPs per instance is 8.69B for ABS, while FPE
only requires 4.65B (REL needs 4.68B).

to source lengths. The breakdown results with a
batch size of 6K are shown in Figure 3. The trends
are generally similar to the overall results. ABS
is not quite efficient for batched decoding and can
be even slower than L2R. Though the utilization
of FPE does not provide obvious efficiency im-
provements on short sentences, it brings benefits
for generating longer sequences. It can achieve a
1.7x speedup over L2R for sentences that are longer
than 40 tokens, even with a large batch size. Sim-
ilar to the overall trend, FPE is consistently more
efficient than REL, yet being simpler.

5 Related work

Generation Order. Previous works have been
exploring relaxing the output dependencies
and allowing parallel generation. The Non-
Autoregressive Transformer (NAT) (Gu et al.,
2018) enables the decoder to generate target se-
quences in one or several decoding steps (Gu et al.,
2018; Gu and Kong, 2021; Lee et al., 2018; Gu
et al., 2019b; Ghazvininejad et al., 2019). Most
of these models require predicting target length
and generating multiple consecutive tokens at once.
The generation is sometimes not fluent, as mul-
tiple tokens may compete for the same meaning.
The insertion-based methods (Stern et al., 2019;
Gu et al., 2019a; Welleck et al., 2019; Chan et al.,
2020; Zhang et al., 2020b) also change the stan-
dard left-to-right generation by allowing dynami-
cally inserting tokens for the generation process.
This provides a good balance between generation
fluency and efficiency, and does not require pre-
dicting target lengths first. In this work, we follow
this insertion-based generation scheme and further
improve its efficiency. In addition to efficiency,
allowing flexible generation order is another mo-
tivation to study non-L2R generation schemes. A
good generation order may bring performance ben-
efits (Ford et al., 2018; Jiang and Bansal, 2021).

Reusable Positional Encoding. In insertion-
based models, the absolute positional encoding
can be non-reusable since an inserted token will
change the absolute positions of its following to-
kens. Alternative schemes are required to enable
reusable encoding. Relative positional encoding
(Shaw et al., 2018) is utilized for the insertion-
based generation in some recent work (Gu et al.,
2019a; Lu et al., 2022) to avoid the re-encoding
of the previously generated tokens. However, it
requires modifications to the inner attention mech-
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anism of the Transformer, while our FPE scheme
is a simpler alternative that only modifies the in-
put. In a similar spirit to our scheme, Shiv and
Quirk (2019) explore a tree-based positional en-
coding strategy. Our scheme is different in that in
the insertion-based generation, each node has two
parent nodes, yielding a graph structure rather than
a tree.

6 Conclusion

In this work, we investigate the re-encoding issue
that sometimes hinders the Insertion Transformer
from receiving its computation gain and propose a
Fractional Positional Encoding scheme that is nat-
urally compatible with the insertion-based genera-
tion scheme to solve this issue. With experiments
on various tasks, we show that this simple scheme
eliminates the need of re-encoding the previously
generated tokens and obtains a promising balance
between efficiency and performance.

Limitations

This work has several limitations. First, we mainly
rely upon the architecture and decoding strategy
of the Insertion Transformer, which only allows
the generation of one token between two neigh-
boring tokens at one step. It would be interest-
ing to consider more flexible generation schemes.
It would also be interesting to compare our mod-
els with other (semi) non-autoregressive models,
which we leave to future work. Moreover, we fol-
low the best-performing binary tree training objec-
tive of the Insertion Transformer, which in some
way sacrifices the flexibility of the generation order.
It would be interesting to explore the application
of the proposed positional encoding scheme with
more flexible generation orders. It would also be
interesting to explore the impacts of using larger
pre-trained models and investigate how it interacts
with the insertion-based scheme. Finally, on the
open-ended generation task, the insertion-based
method still performs worse than the left-to-right
one, which requires further investigation since the
output dependencies would need more careful mod-
eling in the open-ended scenarios.

Broader Impact

This work focuses on improving for the natural
language processing (NLP) and general artificial
intelligence (AI) research community. Our work

can be leveraged to improve natural language gen-
eration (NLG) models, including but not limited
to text editing, conversational agents, and question
answering systems. The broader impact and the
risks of this work are summarized as following:
• This work can facilitate research in the NLG
tasks in a generic manner, to potentially accelerate
generations in applications like machine translation,
text summarization, and virtual assistants.
• This work is a fundamental research work that
focuses on technical improvement, thus we have
NOT imposed additional aggressive filtering tech-
niques to the text data we used, beyond what has
been performed to the original dataset from their
sources. The text data we used may have offensive-
ness/toxicity/fairness/bias issues that we haven’t
been able to identify, as those are not the main
focus of this work.
• Given the above potential risk, due to the nature
of natural language generative models, we note that
the generations or outputs of this work, though not
likely, may reflect gender and other historical bi-
ases implicit in the data. Under rare circumstances,
the generations may exhibit a mild extent of unethi-
cal, biased, or offensive attitudes. These are known
issues with current state-of-the-art text generation
models. We would hope that a faster generation sys-
tem as what we present can enable more iterations
of further mitigation strategies to inappropriate and
hallucinated generations.
• This work aims to advance AI technology in
an environmental-friendly manner. Our proposed
method can potentially reduce carbon footprints
produced by AI models.
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A Dataset details

We provide more details of the datasets utilized in
this work:
• WMT14 (En-De). For machine translation,
we utilize the widely used WMT 2014 English-
German translation dataset (Bojar et al., 2014),
with newstest2013 as the development and new-
stest2014 as the test set. Following previous work
(Stern et al., 2019; Chan et al., 2020), we ap-
ply sequence-level knowledge distillation (Hinton
et al., 2015; Kim and Rush, 2016) from a left-to-
right autoregressive model, which has been found
helpful to reduce data complexity and improve the
performance of NAT models (Zhou et al., 2020).
•Wiki103(S). For word reordering, we take text
sequences from the WikiText-103 dataset (Merity
et al., 2016). Here, we focus on the task at the
Sentence level and thus perform sentence-splitting
and treat each sentence as an individual sequence.
• XSUM. For summarization, we utilize the
XSUM dataset (Narayan et al., 2018), where the
targets are short, one-sentence news summaries
for news articles. This task does not favor the ex-
tractive strategies and provides a good test bed for
abstractive generation-based models. Following
previous work (Liu and Lapata, 2019), We truncate
the input documents to 512 tokens.
• Wiki103(P). For paragraph completion, we
again utilize the WikiText-103 dataset, but at the
Paragraph level this time. We take paragraphs that
contain four to seven sentences. For each para-
graph, we take the last two sentences as the target
and the previous ones are used as the source inputs.

Table 3 summarizes the statistics of the datasets.

B Experimental settings

We mainly follow the settings of the original Inser-
tion Transformer (Stern et al., 2019). To further
encourage generations in fewer steps, we adopt the
Binary Tree training loss. For the REL-based in-
sertion model, we include the relative positional
encoding by modifying attentions following (Shaw
et al., 2018). For other hyper-parameter settings,
we mainly follow the common practice. We adopt
slightly different settings for constrained and open-
ended tasks, which are described in the following.

For the source-constrained tasks (MT, reorder-
ing, and summarization), we take the Transformer-
base architecture (Vaswani et al., 2017) (6 layers,
8 heads per layer, 512 model dimensions) and the
full model contains around 66M parameters. The

Datasets #Seq.(train/dev/test) Src-Len Trg-Len

WMT14 4.0M/3.0K/3.0K 26.1 24.8
Wiki103(S) 1.8M/3.8K/4.1K 25.7 25.7

XSUM 204K/11.3K/11.3K 328.5 23.3
Wiki103(P) 349K/0.8K/0.8K 79.9 50.6

Table 3: Statistics of the datasets utilized in this work.
Here, “#Seq.” denotes the number of instances (se-
quences) in each split, “Src-Len” indicates the average
number of words in the source, and “Trg-Len” shows
the average number of words in the target.

models are trained by the Adam optimizer (Kingma
and Ba, 2015), with the same learning rate schedul-
ing scheme of (Vaswani et al., 2017). We train
the models for a maximum of 300K steps for ma-
chine translation and 100K steps for reordering and
summarization. The models are validated on the
development set every 1K steps and we average
the five checkpoints that obtain the best results to
obtain the final model. We take standard evalua-
tion metrics for the corresponding tasks: BLEU3

(Papineni et al., 2002) for machine translation and
word reordering, ROUGE4 (Lin, 2004) for summa-
rization. Unless otherwise specified, we utilize a
beam size of 4 in decoding. Following Stern et al.
(2019) and Chan et al. (2020), we select an EOS
penalty ∈ {0, 0.5, 1, ..., 5} according to the results
on the development set.

For the open-ended paragraph completion task,
we adopt similar schemes, but with a difference of
employing pre-trained models, which we find help-
ful in preliminary experiments. Due to limitation
of computational resources, we adopt a relatively
small model: the distilled version5 (Sanh et al.,
2019) of RoBERTa (Liu et al., 2019) (6 layers,
12 heads per layer, 768 model dimensions). The
full model contains around 140M parameters. We
adopt similar training schemes to the constrained
cases and the models are trained for 300K steps.
Since there are no reliable automatic evaluation
metrics for this task, we simply average the fi-
nal five checkpoints as the final model. For the
open-ended task, we find that using greedy or beam
search sometimes leads to outputs with severe rep-
etition problems, we thus apply sampling, specif-

3https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

4https://github.com/google-research/
google-research/tree/master/rouge

5https://huggingface.co/
distilroberta-base
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Figure 4: Latency of the models with different decod-
ing batch sizes (source tokens) for more tasks.

ically, nucleus sampling with p=0.95 (Holtzman
et al., 2020) in decoding.

All the models are trained with four V100 GPUs
and tested with one V100 GPU. The training takes
one to three days depending on the tasks.

C Additional Results

In Figure 4, we further show the batched-decoding
latency of different models on more tasks. The
patterns are generally similar to those in Figure 2
of the MT task.
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Abstract
A common limitation of diagnostic tests for
detecting social biases in NLP models is that
they may only detect stereotypic associations
that are pre-specified by the designer of the
test. Since enumerating all possible prob-
lematic associations is infeasible, it is likely
these tests fail to detect biases that are present
in a model but not pre-specified by the de-
signer. To address this limitation, we pro-
pose SODAPOP1 (SOcial bias Discovery from
Answers about PeOPle), an approach for au-
tomatic social bias discovery in social com-
monsense question-answering. The SODAPOP
pipeline generates modified instances from the
Social IQa dataset (Sap et al., 2019b) by (1)
substituting names associated with different de-
mographic groups, and (2) generating many
distractor answers from a masked language
model. By using a social commonsense model
to score the generated distractors, we are able
to uncover the model’s stereotypic associations
between demographic groups and an open set
of words. We also test SODAPOP on debiased
models and show the limitations of multiple
state-of-the-art debiasing algorithms.

1 Introduction

Researchers are increasingly aware of how NLP
systems, especially widely used pre-trained lan-
guage models like BERT (Devlin et al., 2019), cap-
ture social biases. Social biases, which we de-
fine here as over-generalizations about characteris-
tics of social or demographic groups, can both ad-
versely affect a model’s downstream performance
and cause harm to users when encoded in a model’s
representations or behaviors (Rudinger et al., 2018;
Zhao et al., 2019; Kurita et al., 2019; Blodgett et al.,
2020; Czarnowska et al., 2021). In this paper, we
propose an approach to uncovering social biases in
social commonsense reasoning models. It is partic-
ularly important to examine social commonsense

1Code is available at https://github.com/haozhe-an/
SODAPOP.

Figure 1: An example of a modified Social IQa MCQ
sample. In an open-ended fashion, we generate distrac-
tors (Answer A and B) that contain words uncovering
model social biases when names associated with differ-
ent demographic groups are inserted into the context
and question. In this example, Answer A, with the pres-
ence of “ruthless”, is a more successful distractor for
African American female names, whereas Answer B
is a more successful distractor for European American
female names due to the word “funny”. Answer C is the
correct answer choice from the Social IQa dataset.

reasoning models because they are designed to rea-
son about people and social interactions, and hence
susceptible to stereotyped inferences. Biased infer-
ences based on social group identities mentioned or
alluded to in the input may cause representational
harms to those group members.

There have been consistent efforts to diagnose
multiple types of social biases in NLP systems. Ex-
isting methods for bias detection usually involve
manual efforts to first compile a list of stereotypic
and anti-stereotypic associations between attributes
and demographic groups, and then test for the pres-
ence of those associations in models. Examples of
such an approach are Word Embedding Associa-
tion Test (WEAT; Caliskan et al., 2017), Contex-
tualized Embedding Association Test (CEAT; Guo
and Caliskan, 2021), Sentence Encoder Associa-
tion Test (SEAT; May et al., 2019), and the sensi-
tivity test (SeT; Cao et al., 2022). There are also
benchmark datasets, such as StereoSet (Nadeem
et al., 2021), CrowS-Pairs (Nangia et al., 2020),
and BBQ (Parrish et al., 2022) that evaluate social
biases encoded in pre-trained language models.
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Although effective, these tests have a shortcom-
ing: they may only be able to detect stereotyped
attributes that the designers are aware of, as a re-
sult of searching pre-specified stereotypic model
behavior within a defined scope. These approaches
will not uncover any extant harmful associations
that have not been specified in advance.

To address this limitation, we introduce SO-
DAPOP to uncover social biases in an open-ended
fashion in social commonsense reasoning models.
SODAPOP stands for SOcial bias Discovery from
Answers about PeOPle. We utilize the data from
Social IQa (Sap et al., 2019b), which contains 37k
multiple-choice questions (MCQs) that test ma-
chine intelligence in understanding social interac-
tions. As shown in Fig. 1, each MCQ contains a
context, a question, and three choices. A model
is trained to distinguish the correct choice from
the remaining two distractors to answer the ques-
tion. SODAPOP uses modified Social IQa examples
to discover group-attribute associations in models.
The Social IQa examples are systematically modi-
fied via (1) name substitution (to represent different
social groups), and (2) open-ended distractor gener-
ation (representing different attributes). While SO-
DAPOP requires the target social group identities to
be pre-specified (e.g., female, African American),
associated attributes are automatically discovered
rather than pre-specified.

Name substitution is the process of substitut-
ing people’s names in social commonsense MCQs
while keeping everything else unchanged. A fair
model should not make radically different predic-
tions given this change. If a model systematically
makes disparate predictions after name substitution,
we hypothesize these differences arise from demo-
graphic associations (e.g., gender, race/ethnicity)
reflected by the names. While contexts may exist
in which models could reasonably treat different
names differently (“The name is Christine/Kristine
with a C/K.”), we believe this is generally not true
of Social IQa contexts. Open-ended distractor
generation produces new distractor answers by re-
placing a few tokens in the original answer using a
masked language model. The resulting distractors
draw from a large vocabulary, reflecting an open-
ended set of possible attributes. To reveal a model’s
biased associations between a social group and an
open set of words, we construct new MCQs with
the generated distractors and analyze the model
behavior when names are substituted. Fig. 1 illus-

trates an example of a newly constructed MCQ.
We use SODAPOP to uncover biased group-

attribute associations in a finetuned BERT MCQ
model for social commonsense reasoning. We
also apply SODAPOP to debiased models reflect-
ing four state-of-the-art bias mitigation algorithms,
namely Iterative Nullspace Projection (INLP; Rav-
fogel et al., 2020), SentenceDebias (Liang et al.,
2020), Dropout (Webster et al., 2020), and Counter-
factual Data Augmentation (CDA; Zmigrod et al.,
2019; Webster et al., 2020). SODAPOP reveals that
these models persist in treating names differently
based on demographic associations, despite their
nominal purpose of mitigating such biases. To sum-
marize, our contributions are:

(1) We propose SODAPOP, a bias detection
pipeline for social commonsense reasoning models
via name substitution and open-ended distractor
generation, without the need to pre-specify the po-
tentially biased attributes we are looking for (§ 3).

(2) We empirically demonstrate that SODAPOP

effectively exposes social biases in a model with
both quantitative and qualitative analyses (§ 4).

(3) With SODAPOP, we find that debiased models
continue to treat names differently by their associ-
ated races and genders (§ 6).

2 Motivating Observations

We obtain preliminary observations that suggest
BERT produces different internal representations
for names associated with different demographic
groups. These observations motivate us to use
name substitution for bias detection.

Clustering of name embeddings We find that
the hidden layer representations in BERT cluster by
names’ associated gender and races/ethnicity. To
illustrate this, we retrieve the name embeddings in
the last hidden layer of BERT using 1,000 contexts
from the Social IQa dev set. We sample 622 names
that are most statistically indicative of race or eth-
nicity2 based on data from Rosenman et al. (2022).
Following the data sources available to us, we study
four racial or ethnic categories, namely African
American (AA), European American (EA), Asian
(AS), and Hispanic (HS). We obtain the gender
statistics of names by referencing the SSA dataset.3

A name is indicative of a race/ethnicity if a high
2We adopt the definition of race/ethnicity from the US cen-

sus survey. We note that the categorizations in this definition
are US-centric and may be less applicable in other countries.

3https://www.ssa.gov/oact/babynames/

1574

https://www.census.gov/newsroom/blogs/random-samplings/2021/08/measuring-racial-ethnic-diversity-2020-census.html
https://www.census.gov/newsroom/blogs/random-samplings/2021/08/measuring-racial-ethnic-diversity-2020-census.html
https://www.ssa.gov/oact/babynames/


20 0 20

20

0

20

40
Male
Female

EA

AA

HS

AS

Ra
ce

/E
th

ni
cit

y

Figure 2: t-SNE projections of name embeddings in
BERT. Name embeddings cluster by the associated de-
mographic traits (race/ethnicity and gender).

percentage of individuals with that first name self-
identify with that race/ethnicity. We set the per-
centage threshold to be 0.9 for EA and AA, 0.8
for HS and 0.7 for AS, in order to obtain about 80
names for each race/ethnicity and gender combina-
tion. From the dataset, we include only names with
a frequency of 200 or greater.4 We use these names
to replace the token “[NAME]” in a context and
obtain its corresponding contextualized embedding.
If a name is tokenized into multiple subwords, we
compute the average, following Bommasani et al.
(2020); Wolfe and Caliskan (2021).

We plot the t-SNE projection (Van der Maaten
and Hinton, 2008) of the averaged embeddings
for each name in Fig. 2. We observe that name
embeddings tend to cluster by both gender and
race/ethnicity. To quantitatively demonstrate that
name embeddings encode demographic informa-
tion, we train two separate logistic regression classi-
fiers to predict gender and race/ethnicity associated
with a name respectively. We train each classifier
on 414 names and test on 208 names (obtained
by a random split from the 622 names). We re-
port the prediction accuracy for both settings in
Table 1. It shows that the test performance is sig-
nificantly higher than the random baseline. The
high accuracy of these linear classifiers indicates,
perhaps unsurprisingly, that BERT representations
encode demographic information associated with
names, and thus has the potential to perpetuate
race-, ethnicity-, or gender-based representational
harms via first names.

The observations that name embeddings reveal
demographic traits motivate us to use name sub-

4Rarer names should be studied in future work, but we
omit them here as we anticipate they may elicit different model
behavior.

Train Test Random

Race/ethnicity 100.00 82.69 25.00
Gender 99.52 85.58 50.00

Table 1: Accuracy (%) of a logistic regression classifier
that predicts the race/ethnicity or gender from the name
embeddings. These results indicate that BERT encodes
demographic information in name embeddings.

stitution in Social IQa samples to uncover model
social biases towards different groups of people.
We pose the following question: Given a descrip-
tion of a social situation and a question about a
person involved therein, will a social commonsense
model’s predicted answer depend on demographic
attributes inferable from the person’s name? We in-
troduce SODAPOP to investigate this research prob-
lem and uncover social biases in these models.

3 The SODAPOP Pipeline

Fig. 3 shows an overview of our proposed frame-
work. SODAPOP composes two steps. Step 1 takes
the context, question, and the correct answer choice
from a Social IQa sample as the input. It gener-
ates many distractor answer choices by finding sen-
tences that differ by a few tokens from the correct
choice using a masked language model. Step 2
constructs new MCQ samples by pairing up the
automatically generated distractors with the input
in the first step. We analyze how distractor words
fool the MCQ model at different rates for differ-
ent name substitutions, measuring distractor word
success rates for different names.

3.1 Open-Ended Distractor Generation
Following Zhang et al. (2021), we use masked to-
ken prediction to find neighboring sentences of cor-
rect answer choices to generate distractors. Alg. 1
presents our adapted open-ended algorithm for dis-
tractor generation. We generate a set of distractors
by masking at most k tokens of the correct answer
choice (k = 3 in our experiments). We adopt a re-
cursive approach to replace one token at a time. In
each recursive step, a masked language model fills
the mask with some possible words, and the ones
with the highest prediction scores are chosen to
maximize the fluency of generated distractors. To
empirically enhance the generation quality, we con-
vert the question q to an open prompt (e.g., “How
would you describe [NAME]?” becomes “[NAME]
is ”). We gather all unique distractors generated by
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Figure 3: Overview of our SODAPOP pipeline. We uncover social biases in models by first generating distractors in
social commonsense reasoning MCQs and then analyzing how they influence model predictions.

Algorithm 1 Open-ended distractor generation

Input: Correct answer choice x0, masked lan-
guage model LM , max distance k ≥ 1, con-
text c, question q

Output: Xdistract, a set of generated distractors
1: function GEN(x0, k)
2: if k ≥ 2 then
3: return

⋃
x̃∈Gen(x0,1) Gen(x̃, k − 1)

4: end if
5: Xdistract ← ∅
6: ▷ ⊕ denotes string concatenation
7: xconcat ← c⊕ q ⊕ x0
8: for i ∈ [0, len(x)) do
9: i← i+ len(c) + len(q)

10: x← xconcat ▷ Create a copy
11: x(i) ← ‘[MASK]’
12: Tok, Scores← LM.fillmask(x)
13: ▷ Get predictions with topM scores
14: Tm, Sm ← topM(Tok, Scores)
15: Xnew ←

{
x|x(i) ← t, t ∈ Tm

}

16: Xdistract ← Xdistract ∪ Xnew
17: end for
18: return Xdistract
19: end function

the algorithm as the final set of distractors for bias
detection. Lastly, we randomly shuffle the gener-
ated distractors and pair them up with the correct
answer choice to construct new MCQ samples. An
example is shown in Fig. 1.

Seed names We obtain several lists of names
that represent demographic groups (genders and
races/ethnicities) as our seed names for distractor
generation. Recall that we study four racial/ethnic
categories based on the available data sources:
African American (AA), European American (EA),
Asian (AS), and Hispanic (HS). We borrow AA
and EA names from WEAT (Caliskan et al., 2017).
There are 25 female and 25 male names for each

race/ethnicity respectively. We collect a total of 120
names that are most representative of Asian and
Hispanic people from a name dataset provided by
NYC Department of Health and Mental Hygiene.5

There are about 30 names per gender for AS and
HS each. More details are in appendix A. In Step
1 of SODAPOP, we insert each name into a Social
IQa MCQ as we run Alg. 1. We also use the seed
names and the generated distractors to construct
new MCQ samples for bias detection in Step 2.

Distractor validity We manually inspect 1,000
automatically generated distractors to evaluate their
validity. A distractor is valid if it is grammatically
correct, fluent, less plausible as the correct answer,
and semantically dissimilar to the correct answer.
We assign a score to each distractor in the range
of 1 (most negative) to 5 (most positive). The an-
notation results show that most distractors have
relatively high grammar and fluency scores (> 3.8)
but low plausibility and semantic similarity scores
(< 1.6). This shows the distractors are generally
valid. More detailed results are in appendix B.

3.2 Quantifying Group-Attribute Associations

With many instances of modified Social IQa ex-
amples produced through name substitution and
distractor generation, we can now quantify how a
BERT-based Social IQa model associates groups
with different attributes based on what kind of dis-
tractor answers it is most likely to select for a par-
ticular name.

Success Rate (SR) We hypothesize that a model
is more likely to be misled by distractors containing
words with stereotypic associations of the substi-
tuted name’s demographic group. Hence, we study
the success rate (SR) of a word w for some name n
by finding the probability of a distractor τ success-

5https://data.cityofnewyork.us/Health/
Popular-Baby-Names/25th-nujf
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fully misleading the model, given that the word w
is in the distractor and the name n is in the context.
Thus, the success rate is

SR(w, n) =

∑
τ∈Tsuc,n 1 [w ∈ tokenize(τ)]

∑
τ∈Tall,n 1 [w ∈ tokenize(τ)]

(1)

where 1 is the indicator function, and Tsuc,n, Tall,n
are respectively the set of successful distractors and
all distractors appearing with name n. A success-
ful distractor refers to a distractor that misleads a
MCQ model to choose itself rather than the correct
answer choice. If a model is robust to name sub-
stitution, SR(w, n) should be similar for various
names (as the question contexts are identical oth-
erwise). If differences are observed in SR across
names, however, we will next need to investigate
whether those differences are systematically based
on gender, race, and ethnicity.

Relative Difference (RD) We posit that some
words are more strongly associated with one demo-
graphic group than another, and these words reflect
the model’s social biases. We find such words by
computing the relative difference of SR. Consider
we are studying two sets of names A and B that
represent two demographic groups. We compute
the difference of average SR of w for each group

d(w,A,B) =

1

|A|

|A|∑

i=1

SR(w,Ai)−
1

|B|

|B|∑

i=1

SR(w,Bi) (2)

and also the mean of SR for the two groups

m(w,A,B) =

1

2
·
∑

G∈{A,B}


 1

|G|

|G|∑

i=1

SR(w,Gi)


 . (3)

Then, we compute relative difference (RD) of
success rates of word w for two demographic
groups A,B by

RD(w,A,B) =
d(w,A,B)

m(w,A,B)
. (4)

The sign of RD indicates to which group the
wordw is more strongly associated with. A positive
value means w is more often associated with group
A whereas a negative value indicates a stronger
association between w and group B.

Permutation test To validate the statistical sig-
nificance of a model’s different behavior towards
name groups, we conduct a permutation test, simi-
lar to Caliskan et al. (2017). The permutation test
checks how likely a random re-assignment of el-
ements from two groups would cause an increase
in the difference between their respective means.
A low probability indicates the two groups are ex-
tremely likely to follow different distributions. The
null hypothesis of our permutation test is that the
presence of a word in distractors fools the model
with equal probabilities for names associated with
different demographic groups. We compute the
two-sided p-value by

Pr
[∣∣d(w,A†, B†)

∣∣ >
∣∣d(w,A,B)

∣∣
]

(5)

where A†, B† are two sets of names obtained by
randomly partitioning A∪B, subject to |A†|= |A|
and |B†|= |B|. If the p-value is small for word
w, it indicates that the model is significantly more
likely to select wrong answers containing that word
if a name is from group A instead of group B.

4 Uncovering Model Social Biases

Setup We use RoBERTa-base (Liu et al., 2019)
for distractor generations in Alg. 1. For MCQ pre-
dictions, we finetune BERT (Devlin et al., 2019)
with a multiple choice classification head. We con-
catenate the context and question with each choice
in a MCQ sample, and then obtain a logit for each
concatenation. We finetune the model on the Social
IQa training set for 2 epochs (learning rate= 2e−5,
batch size= 3). The finetuned model achieves
60.51% accuracy on the original development set.

4.1 Success Rate in Multiple Contexts
Using 220 seed names (balanced in both gender
and racial/ethnic categories as described in § 3),
we follow Alg. 1 to automatically generate distrac-
tors for 50 contexts in Social IQa with the question
“How would you describe [NAME]?” We choose
this question because asking for a description of a
person gives us direct access to the model’s internal
representation of that person, allowing us to assess
the representational harms caused by social biases
encoded in the model. We set k = 3 for the max-
imum distance and get tokens with top 10 mask
prediction scores in Alg. 1. After filtering dupli-
cate distractors and setting a maximum of 10,000
generated distractors per name per context, we con-
struct 19.2 million MCQs with one correct answer
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Figure 4: t-SNE projection of SR vectors using BERT as the MCQ model.

BERT INLP-race (§ 6)

Gender

EA female and EA male 0.98 0.98
AA female and AA male 0.58 0.86
HS female and HS male 0.70 0.70
AS female and AS male 0.52 0.54

Race

EA female and AA female 0.90 0.90
EA female and AS female 0.76 0.76
EA female and HS female 0.80 0.80
AA female and AS female 0.64 0.64

Table 2: KMeans classification accuracy of SR vectors.
The ideal accuracy is 0.5 (random binary classification).
Full results are available in Table 9 in the appendix.

choice and two generated distractors. We collate
all unique tokens in the generated distractors as
the set of distractor vocabulary. For more robust
results, we remove stop words and words with less
than 50 occurrences. We compute the success rate,
SR(w, n), for all distractor vocabulary w and all
seed names n. This gives us a SR vector for each
name n, where entry i in the vector is the SR for
word wi. The final dimension of SR vectors is 443.

Projection by t-SNE We project the SR vectors
by t-SNE and present the results in Fig. 4. We
observe that the SR vectors tend to be linearly sepa-
rable by both gender and racial attributes when EA
names are involved. The clustering of SR vectors in
Fig.4a, 4b, and 4c demonstrates that for names be-
longing to the same gender or racial group, words
share similar SR in distractors. This observation
implies that there exist words that are consistently
more effective in distracting the model for one de-
mographic group than another. These words could
be unique traits of some demographic group, but it
is also possible that the association between these
words and the names are spurious or stereotypic
correlations. However, for AS and AA names in
Fig. 4d, we do not see an obvious separation of the
SR vectors by either race or gender.

To quantify the separation of clusters, we con-
duct a binary classification of the SR vectors for

AA Female Distractors EA Female Distractors

Word RD p-value Word RD p-value

innocent 0.060 2.1E-05 sticking -0.042 2.7E-02
cousin 0.042 2.7E-05 outgoing -0.040 1.8E-03
dead 0.042 5.4E-03 loud -0.036 6.0E-06
ally 0.040 0.0E+00 funny -0.035 1.0E-04
violent 0.039 1.0E-05 cook -0.032 2.9E-01

Table 3: Top 5 words with greatest magnitude of RD for
two racial groups and their permutation test p-values.

each pair of name groups that are associated with
different demographic attributes. This evaluation
is similarly used by Gonen and Goldberg (2019);
An et al. (2022). For two name groups representing
different social groups (e.g., AA female names and
EA female names), we use the classical KMeans
algorithm (K = 2) to cluster the SR vectors and
make a binary prediction that indicates the mem-
bership of either cluster. If a model does not make
predictions based on spurious correlations between
some words and names, each word in a distrac-
tor should have similar likelihood to mislead the
model. It follows that the ideal classification ac-
curacy should be 0.5. We report the classification
accuracy in Table 2. The classification accuracy
tends to be higher when EA names are present,
whereas it is comparatively harder to distinguish
SR vectors among racial/ethnic minority groups.
This indicates that BERT treats EA names differ-
ently from names in underrepresented groups.

Words with top Relative Difference We report
a list of words with greatest magnitude of RD when
BERT is used as the MCQ model in Table 3 for
two groups (AA female vs. EA female). More
results are in Table 10 (appendix). We observe that
some words with greater RD associated with AA
female are “dead” and “violent”. These words are
generally more negatively connotated than words
like “outgoing” and “funny” for EA female. The
small p-values in most permutations tests indicate
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AA Female Distractors EA Female Distractors

Word RD p-value Word RD p-value

vicious 0.073 0.0E+00 educated -0.074 8.8E-05
brutal 0.071 0.0E+00 caring -0.063 6.9E-04
stubborn 0.066 1.7E-01 aroused -0.063 0.0E+00
possessive 0.065 1.5E-03 sweet -0.060 7.5E-05
arrogant 0.065 1.9E-04 interesting -0.058 7.2E-04

Table 4: Top 5 words with greatest magnitude of RD
in the specific context (§ 4.2) for two racial groups and
their p-values. More results are in Table 11 (appendix).

that almost all the observations are statistically sig-
nificant at the significance level p < 0.01. It is
thus evident that the MCQ model is making pre-
dictions based on the biased correlations between
these words and names. SODAPOP can also detect
biased correlations between words and names with
different genders (see Table 13 in appendix D).

4.2 Success Rate in a Single Context
We generate distractors and collate the words with
greatest magnitude of RD in a single context only,
as an individual context may reveal specific stereo-
typic traits.

Setup We use the sample in Fig. 3 as the input to
SODAPOP. For each seed name, we construct a total
number of 109,830 MCQ samples with this single
context after generating distractors using Alg. 1.

Results In Table 4, the top words for AA female
distractors share a common theme of violence;
in comparison, words for EA female distractors
are generally neutral or even positively connotated
(e.g., “educated”). These results coincide with ob-
servations made by other bias tests, like WEAT
and the Implicit Association Test (Greenwald et al.,
1998), that AA names correlate more strongly with
unpleasant words than EA names. Table 21 in ap-
pendix D.2 shows the results for gender, where
the model tends to associate EA male with vio-
lence more often than EA female. Qualitatively,
it appears that limiting SODAPOP to a single con-
text (Table 4) yields more interpretable results than
when aggregated over many contexts invoking dif-
ferent scenarios (Table 3). In the next section, we
attempt to validate this intuition by aligning SO-
DAPOP outputs with results of prior human studies.

5 Validation with Human Stereotypes

Since NLP models have been repeatedly shown
to reflect human biases, one way to validate SO-

DAPOP would be to show that a subset of its discov-
ered biases align with known human social stereo-
types. To attempt this, we adopt the Agency-Belief-
Communion (ABC) stereotype model (Koch et al.,
2016) and cross-reference SODAPOP results with
the the findings of Cao et al. (2022) who collect
group-trait stereotypes through human survey meth-
ods. The ABC model describes people using 16
pairs of opposing traits, like powerless-powerful
(Table 5). Cao et al. (2022) gather human sub-
jects’ opinions about how American society at
large perceives a demographic group with respect
to a trait, computing a score from 0 to 100. E.g., on
the powerful-powerless trait scale, subjects rated
women on average 46.8 (less powerful) and men
81.4 (more powerful). (See Tables A14 to A17
from Cao et al. (2022).) We coarsen this to an or-
dering of groups along traits, e.g., women ≺powerful
men. To compare the biases uncovered by SO-
DAPOP, we map (where applicable) attribute words
to ABC model trait scales to induce a similar or-
dering, and compare whether the orderings derived
from SODAPOP match those from human subjects
in Cao et al. (2022), reporting results in Table 5.

We run SODAPOP on 12 individual contexts and
take the union of top identified words for each de-
mographic group with p < 0.05. Working indepen-
dently, three authors manually mapped each word
to zero, one, or more ABC-model traits, without
awareness of the group-word associations. E.g., all
annotators mapped the word “brutal” to the ABC
trait threatening. For each group A and trait t, a
raw count C(A, t) represents the number of times
any annotator aligned a word SODAPOP associated
with group A to trait t. A word could be aligned
with a trait t (powerful) or its opposite ¬t (pow-
erless). For a trait t and groups A and B, we
then say SODAPOP supports the ordering A ≺t
B if and only if the SODAPOP score difference
[C(A, t)−C(A,¬t)]− [C(B, t)−C(B,¬t)] < 0.

Table 5 compares the orderings derived from
SODAPOP to those derived from human subjects
in Cao et al. (2022) for two racial groups, AA (fe-
male) vs EA (female), and two gender groups, (EA)
female vs (EA) male. We note that group alignment
between SODAPOP and Cao et al. (2022) is imper-
fect, as the former is intersectional. Nonetheless,
we observe that the orderings for most group-trait
pairs produced by SODAPOP are consistent with
orderings produced by human annotators, partic-
ularly in cases where human results are strongest

1579



AA Female vs. EA Female EA Female vs. EA Male

Traits SODAPOP EA Annotators AA Annotators SODAPOP Male Annotators Female Annotators

powerless-powerful ≻‡powerful ≺†powerful ≺∗powerful ≺†powerful ≺†powerful ≺†powerful

low status-high status ≺high status ≺†high status ≺†high status ≺high status ≺†high status ≺†high status

dominated-dominant ≻‡dominant ≺†dominant ≺∗dominant ≺†dominant ≺†dominant ≺†dominant
poor-wealthy ≺wealthy ≺†wealthy ≺†wealthy ≻wealthy ≺†wealthy ≺wealthy

unconfident-confident ≺‡confident ≺†confident ≻confident ≺confident ≺†confident ≺†confident
unassertive-competitive ≺competitive ≺†competitive ≺competitive ≺competitive ≺†competitive ≺∗competitive

traditional-modern ≺‡modern ≺†modern ≺†modern ≺modern ≻modern ≻∗modern
religious-science oriented ≺science oriented ≺†science oriented ≺†science oriented ≻science oriented ≺science oriented ≻science oriented
conventional-alternative ≻alternative ≺alternative ≻alternative ≺alternative ≺alternative ≻∗alternative

conservative-liberal N/A ≻∗liberal ≺liberal N/A ≻∗liberal ≻∗liberal
untrustworthy-trustworthy ≺trustworthy ≺†trustworthy ≺∗trustworthy ≺trustworthy ≻trustworthy ≺trustworthy

dishonest-sincere ≺sincere ≺∗sincere ≺∗sincere ≻†sincere ≻sincere ≻sincere

cold-warm ≺‡warm ≺warm ≻warm ≺warm ≻warm ≻warm

threatening-benevolent ≺‡benevolent ≺†benevolent ≻∗benevolent ≻benevolent ≻†benevolent ≻†benevolent
repellent-likable ≺‡likable ≺∗likable ≻∗likable ≺likable ≺likable ≻likable

egoistic-altruistic ≺‡altruistic ≺altruistic ≺†altruistic ≻altruistic ≻altruistic ≻altruistic

Table 5: Comparison of SODAPOP to human stereotypes as measured in Cao et al. (2022). Legend: “N/A” – no
words from SODAPOP are mapped to the trait; ‡ – the absolute SODAPOP score difference is at least 5; † – the
absolute difference between human scores for the two groups is at least 20; ∗ – same as † but absolute difference is
at least 10; shaded cells – SODAPOP yields orderings that are consistent with human annotators.

(indicated with †). Notably, the biases uncovered
by SODAPOP are more consistent with EA annota-
tors than AA annotators, while it is almost equally
consistent with both male and female annotators.
In a few cases, SODAPOP-derived orderings deviate
from human results (e.g., powerless-powerful for
AA female vs. EA female), perhaps owing to inter-
sectional differences. Overall, SODAPOP appears
capable of uncovering human-aligned stereotypes
without pre-specifying attributes. This makes it a
promising method to uncover other kinds of social
overgeneralizations present in models - possibly
those present in humans but less well studied, or
possibly ones entirely peculiar to machines - in
either case, carrying the potential for harm.

6 Debiased Models Continue to Treat
Names Differently

One might expect that, in a debiased model, words
in distractors will mislead the model at similar rates
for different groups. In this section, however, we
demonstrate that biases uncovered by SODAPOP

persist in debiased models. We apply the INLP
algorithm to our finetuned BERT model in § 4 to
reduce biases along the racial dimension. Our im-
plementation uses Bias Bench (Meade et al., 2022).
This racially debiased INLP model (INLP-race) is
used as the new MCQ model.6

6Besides INLP-race, we present similar results with other
debiasing algorithms in appendix C and appendix D.

AA Female Distractors EA Female Distractors

Word RD p-value Word RD p-value

innocent 0.062 1.6E-05 sticking -0.042 2.7E-02
dead 0.046 1.9E-03 outgoing -0.040 1.9E-03
violent 0.041 0.0E+00 loud -0.037 3.0E-06
cousin 0.040 6.3E-05 funny -0.035 9.5E-05
ally 0.038 0.0E+00 cook -0.032 3.1E-01

Table 6: Top 5 words with greatest magnitude of RD
for two racial groups with their p-values in permutation
tests. Here, INLP-race is used for MCQ predictions.

Success Rate Vectors Fig. 5 visualizes the SR
vector for various racial groups using INLP-race.
Fig. 5a, 5b, and 5c show that the SR vectors for
each demographic group remain in separable clus-
ters even if the model is debiased along the racial
dimension. The binary KMeans classification re-
sults, shown in Table 2, are largely similar to those
of BERT. In the case of AA female and AA male,
the classification deviates further from the ideal
value of 0.5 to 0.86, compared to 0.58 for BERT.
The clear clustering indicates that although the de-
biased model somehow mitigates biases, it does not
completely remove biases in a downstream task.

Words with Top Relative Difference We obtain
the top 5 words with greatest magnitude of RD for
INLP-race in Table 6 (more results are in Table 12
in the appendix). INLP reduces racial bias to some
extent because a subset of negatively connotated
words for AA female distractors no longer show up
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Figure 5: t-SNE projection of SR vectors using INLP-race as the MCQ model.

here. However, we still see words with extremely
small p-values. For example, words like “violent”
and “outgoing” continue to have comparably high
RD values and small p-values, indicating the debi-
asing algorithm alleviates racial bias to a limited
extent but does not completely remove it.

7 Related Work

Bias Detection Detection of social biases in NLP
tasks is a burgeoning research area (Nangia et al.,
2020; Li et al., 2020; Sap et al., 2020; Nadeem
et al., 2021; Parrish et al., 2022). Most approaches
to identifying social biases do so by pre-specifying
stereotypic and anti-stereotypic associations; SO-
DAPOP, however, is capable of uncovering model
biases for attributes not pre-specified by the re-
searcher via the open-ended distractor generation
algorithm. Field and Tsvetkov (2020) detects gen-
der biases in short comments with an unsupervised
approach; in comparison, SODAPOP is an open-
ended pipeline that uncovers multiple types of so-
cial biases encoded within a model.

Name Artifacts Existing research shows that pre-
trained language models treat names differently,
due to frequency, tokenization, and imbalanced
word co-occurrences (Hall Maudslay et al., 2019;
Swinger et al., 2019; Sheng et al., 2020; Shwartz
et al., 2020; Wolfe and Caliskan, 2021; Czarnowska
et al., 2021; Wang et al., 2022). These works lay
the foundation of our name substitution technique
in SODAPOP by providing empirical evidence that
names receive disparate treatment from a model.

Social Commonsense Reasoning In addition to
datasets targeting generic commonsense reason-
ing in natural language (Roemmele et al., 2011;
Mostafazadeh et al., 2016; Zhang et al., 2017; Tal-
mor et al., 2019; Sap et al., 2019a, inter alia), a
number of resources focusing specifically on the so-
cial aspects of commonsense reasoning have been
developed (Sap et al., 2019b; Zadeh et al., 2019;

Forbes et al., 2020). Like us, Sotnikova et al. (2021)
also focus on detecting social biases in common-
sense models, but differ in several important ways:
they manually evaluate social biases in generated,
generic commonsense inferences based on contexts
designed to elicit bias, while this work focuses
on automatic detection of social biases in multi-
ple choice, social commonsense question-answers,
that are not specifically designed to elicit bias.

Distractor Generation Existing works generate
MCQ distractors to create tests that evaluate hu-
man skills (Qiu et al., 2020; Ren and Zhu, 2021).
However, our algorithm, inspired by Morris et al.
(2020); Zhang et al. (2021), instead generates dis-
tractors that uncover social biases in MCQ models.
Note that Morris et al. (2020); Zhang et al. (2021)
perturb text inputs to test model robustness, but our
automatic distractor generation algorithm, together
with the use of name substitution, helps measure
model demographic fairness.

8 Conclusion

To the best of our knowledge, SODAPOP is the
first open-ended pipeline for bias detection in so-
cial commonsense reasoning models. Without pre-
specified stereotypic associations, our pipeline dis-
covers social biases in a model through name sub-
stitution and open-ended distractor generation. We
construct a large number of MCQ samples with au-
tomatically generated distractors and substitute the
names in MCQs with those representing various
demographic groups. Analyzing the success rate
of words in distractors reveals a model’s learned
social biases. We also show that biases uncovered
by SODAPOP align with human stereotypes, and
these biases persist even in debiased models. In fu-
ture work, SODAPOP may be used to explore biases
for other MCQ tasks, and for tasks in languages
other than English, reflecting biases in a different
cultural setting.
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Limitations

SODAPOP represents an attempt to measure model
biases with respect to gender and race/ethnicity. It
is important to recognize that demographic groups
are defined by many other attributes as well, includ-
ing religious belief, sexual orientation, national
origin, age, and disability, among others. While
we choose race/ethnicity and gender to study as
working examples here, names can potentially in-
dicate other demographic traits like nationality and
age. However, these require other data sources with
varying availability. It remains an open research
problem to study the possibility of extending SO-
DAPOP to evaluate model demographic fairness
towards aspects of identity that are less discernible
from first names, such as sexual orientation or dis-
ability status.

There are several limitations to the representa-
tions of gender, race and ethnicity we adopt in this
work. We model gender as a binary variable due
to limitations in the demographic name data we
use. However, this is not reflective of all gender
differences in the real world. Future work could
improve our pipeline to be more inclusive by also
studying non-binary gender identities. Another lim-
itation is that we treat the variable of race/ethnicity
as categorical, when in reality the racial and eth-
nic identities of individuals may intersect multiple
groups. While we study here the intersection of
race/ethnicity and gender, we do not study multi-
ple intersections of race and ethnicity, e.g., Black
Hispanic.

SODAPOP identifies social biases exhibited by
models in the treatment of first names; however,
there are other ways in which demographic in-
formation may be conveyed through language
to a model, e.g., through pronouns (she), noun
phrases (an Asian person), associated concepts
(N.A.A.C.P.), dialect, etc. SODAPOP does not mea-
sure disparate model behavior towards these lin-
guistic indicators of demographics.

Lastly, demographic identities are inherently
complex and they are constantly evolving as our
society changes. Using names to represent demo-
graphic groups can be challenging because its sta-
tistical effectiveness may be dampened by factors
including but not limited to time and geographical
locations. A set of names can well represent a de-
mographic group at one moment in one place, but
they may be less representative as people change
how they identify themselves over time and in

places with different cultures. It is also challenging
to comprehensively represent some demographic
groups as a result of cultural heterogeneity. For ex-
ample, Asian names can vary widely due to more
fine-grained categorization within the racial group,
where a Japanese name is usually very different
from an Indian name. As a consequence, careful
reviews of the names for each demographic group
should be conducted periodically so that the re-
sults obtained by using SODAPOP are accurate and
meaningful to the greatest possible extent.

Ethics Statement

Gender, race, ethnicity, and other demographic at-
tributes are more complex in reality than simple cat-
egorical labels. Although many names demonstrate
a strong association with a particular demographic
group through census data, these correlations are
seldom absolute. Therefore, SODAPOP is a method
that works over aggregate statistics, though con-
clusions may be harder to draw from individual
instances.

The purpose of SODAPOP is to further research
into the manifestation of social biases in social
commonsense reasoning models. Although SO-
DAPOP is sensitive to the presence of model bias,
including in “debiased” models, we caution future
researchers against using SODAPOP to conclude
that a model is absent of biases. Furthermore, the
results produced by SODAPOP should not be ex-
ploited to incite hatred towards any demographic
groups or individuals.
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tion for mitigating gender stereotypes in languages
with rich morphology. In Proceedings of the 57th
Annual Meeting of the Association for Computational
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A Names

A.1 Asian and Hispanic Name Collection for
SODAPOP

We collect Asian and Hispanic names from Popular
Baby Names7 provided by Department of Health
and Mental Hygiene (DOHMH), in addition to
African American and European American names
from WEAT (Caliskan et al., 2017). Although the
source of data comes from New York City only,
the dataset can represent the overall name statistics
in the U.S. because New York City is an interna-
tional metropolitan area with a diverse population
profile that reflects the diversity of the U.S. popu-
lation (Gaddis, 2017). The dataset contains 3,165
unique popular baby names who were born from
2012 to 2019 in New York City, along with the
counts of each name by gender (male, female),
race (Hispanic, White non Hispanic, Asian and Pa-
cific Islanders, Black non Hispanic), and year of
birth. To be more specific, there are 1,529 unique
first names for Hispanic and 1,216 first names for
Asian. Fig. 6 shows the name distribution in terms
of genders and the two races.

7https://data.cityofnewyork.us/Health/
Popular-Baby-Names/25th-nujf
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Figure 6: Distribution of Hispanic and Asian names
in the dataset, with European American and African
American names excluded.

Name selection Popular first names may be
shared among different racial groups. Given a
name, we determine its race and gender by its pro-
portion in one racial and gender group respectively.
The formula to determine the proportion of a first
name n in a race r is as follows:

Proportionr =
count(n, r)∑

rj∈R count(n, rj)
(6)

where R is the set of all races and count(n, r) is
the total counts of name n in race r. Similarly,
we determine the proportion of a first name n for
gender g by

Proportiong =
count(n, g)∑

gj∈G count(n, gj)
(7)

where G is the set consisting of male and female.
We choose Asian and Hispanic first names by

selecting names with a significantly higher value of
Proportionr in either Asian or Hispanic race. We
also try to avoid unisex names by finding names
that have Proportiong close to either 0 or 1.

Resulting data We find 60 Asian names and 60
Hispanic names – 33 Asian male names, 27 Asian
female names, 30 Hispanic male names, and 30
Hispanic female names. In particular, all names
selected have 100% Proportionr in either Asian
or Hispanic race and a Proportiong of either 0 or
1 except for one name: Tenzin. Tenzin is a 100%
Asian name with gender ratio 0.4871.

A.2 Lists of All Names
We list all the names used in our experiments to
generate distractor choices and analyze spurious
correlations. To reiterate, the four races we study in
this paper are European American (EA), Afirican
American (AA), Asian (AS), and Hispanic (HS).

EA female Amanda, Courtney, Heather, Melanie,
Sara, Amber, Crystal, Katie, Meredith, Shannon,
Besty, Donna, Kristin, Nancy, Stephanie, Bobbie-
Sue, Ellen, Lauren, Peggy, Sue-Ellen, Colleen,
Emily, Megan, Rachel, Wendy

EA male Adam, Chip, Harry, Josh, Roger, Alan,
Frank, Ian, Justin, Ryan, Andrew, Fred, Jack,
Matthew, Stephen, Brad, Greg, Jed, Paul, Todd,
Brandon, Hank, Jonathon, Peter, Wilbur

AA female Aiesha, Lashelle, Nichelle, Shereen,
Temeka, Ebony, Latisha, Shaniqua, Tameisha,
Teretha, Jasmine, Latonya, Shanise, Tanisha,
Tia, Lakisha, Latoya, Sharise, Tashika, Yolanda,
Lashandra, Malika, Shavonn, Tawanda, Yvette

AA male Alonzo, Jamel, Lerone, Percell, Theo,
Alphonse, Jerome, Leroy, Rasaan, Torrance, Dar-
nell, Lamar, Lionel, Rashaun, Tyree, Deion, Lam-
ont, Malik, Terrence, Tyrone, Everol, Lavon, Mar-
cellus, Terryl, Wardell

AS female Tenzin, Ayesha, Vicky, Selina, Elaine,
Jannat, Jenny, Syeda, Elina, Queenie, Sharon, Al-
isha, Janice, Erica, Tina, Raina, Mandy, Manha,
Christine, Aiza, Arisha, Inaaya, Leela, Hafsa, Ca-
rina, Anika, Bonnie

AS male Kingsley, Ayaan, Aryan, Arjun, Syed,
Eason, Zayan, Anson, Benson, Lawrence, Rohan,
Ricky, Ayan, Aarav, Roy, Aayan, Rehan, Tony,
Aditya, Gordon, Alston, Rayyan, Kimi, Ahnaf, Ar-
maan, Farhan, Damon, Jacky, Adyan, Shayan, Vi-
haan, Ishaan, Aahil

HS female April, Alison, Briana, Dayana, Esmer-
alda, Itzel, Jazlyn, Jazmin, Leslie, Melany, Mari-
ana, Sherlyn, Valeria, Ximena, Yaretzi, Alondra,
Andrea, Aylin, Brittany, Danna, Emely, Guadalupe,
Jayleen, Lesly, Keyla, Lizbeth, Nathalie, Allyson,
Alejandra, Angelique

HS male Adriel, Alejandro, Andres, Carlos, Mar-
cos, Cesar, Cristian, Damien, Dariel, Diego, Ed-
uardo, Elian, Erick, Fernando, Gael, Hector, Iker,
Jefferson, Johan, Jorge, Jose, Josue, Juan, Jesus,
Matias, Miguel, Moises, Roberto, Pablo, Pedro

B Distractor Validity

We manually inspect 1,000 random distractors to
ensure their validity. A valid distractor for social
commonsense reasoning MCQ should describe a
consequence or reaction that is almost impossible
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Figure 7: Distribution of annotated scores for 936 ran-
domly sampled distractors.

Grammar Fluency Plausibility Semantic sim

Mean ± std 3.85 ± 1.2 3.83 ± 1.22 1.81 ± 1.15 1.57 ± 1.03

Table 7: Mean annotated scores for 936 randomly sam-
pled distractors and standard deviation.

to happen given a social interaction context. If a
distractor describes something semantically similar
to the ground truth choice, or equally plausible, it
is not a valid distractor. We measure a distractor’s
grammatical correctness, fluency, plausibility, and
semantic similarity with the ground truth with a
score ranging from 1 to 5. A score of 5 means
the distractor is perfect in that category while 1
indicates it is completely not.

Out of 1,000 randomly sampled distractors, 64
contain a punctuation only. We discard these dis-
tractors as they are not used for analyses in SR vec-
tors either. The results of the other 936 distractors
are shown in Table 7 and Fig. 7. The annotation
results indicate that in spite of some noisiness, the
generated distractors are mostly grammatically ac-
ceptable and sufficiently fluent, but they are not
plausible enough as alternative, correct choices for
MCQs and they are semantically unlike the ground
truth choices used for generation. For illustration,
we include some distractors generated using Alg. 1
in Table 8.

C Additional Analysis on Success Rate
Vectors in Debiased Models

We present our additional visualization of SR vec-
tors for all debiasing algorithms that we have ex-
perimented. These additional illustrations are Iter-
ative Nullspace Projection (INLP; Ravfogel et al.,

2020) with gender debiasing in Fig. 8, SentenceDe-
bias (Liang et al., 2020) with gender and racial
debiasing in Fig. 9 and 10, Dropout (Webster
et al., 2020) with general debiasing in Fig. 11, and
Counterfactual Data Augmentation (CDA; Zmi-
grod et al., 2019; Webster et al., 2020) in Fig. 12
and 13. Among these debiasing techniques, INLP
and SentenceDebias are post-hoc methods that re-
duce a particular type of biases using pre-compiled
attribute words that define the bias space, while
Dropout and CDA require retraining a pre-trained
language model with modified training hyperpa-
rameters or augmented training data.

We apply these debiasing algorithms to BERT.
We implement them using the Bias Bench reposi-
tory (Meade et al., 2022). For post-hoc debiasing
algorithms, we apply the algorithms to our fine-
tuned BERT model obtained in § 4.8 For train-
time debiasing algorithms, the debiased models are
finetuned with the same set of hyperparameters as
described in § 4 and deliver similar performance
on Social IQa dev set (prediction accuracy is about
60% ∼ 62% for all models). While finetuning may
re-introduce biases to the debiased model, we note
that the seed names in our experiments are disjoint
from those in the Social IQa training set. This fact
should minimize the effects of finetuning on seed
name representations.

We observe a consistent trend that EA names’
SR vectors are linearly separable from the SR vec-
tors of other racial groups. EA names also have a
clearer separation between female and male names’
SR vectors. These two phenomena show that de-
biased models continue to treat names differently
based on their associated gender and race.

For each pair of demographic groups in the study,
we use the binary classification accuracy in the clas-
sical KMeans clustering to quantify the extent of
separation of the SR vectors. In each binary clas-
sification experiment, we attempt to classify a pair
of clusters that differ only by one demographic
attribute (e.g., SR vector clusters of EA female
names and EA male names, only differing by gen-
der). The results are available in Table 9. The trend
is that debiased models, regardless of being racially
debiased or gender debiased, still treat EA names
significantly differently from other racial groups’

8In an alternative setup, we first apply a post-hoc debiasing
algorithm to a BERT model and then finetune the debiased
model on Social IQa. We find that, despite the different or-
dering of finetuning and debiasing, a debiased model keeps
exhibiting disparate behavior towards different names.
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Context Ground truth choice Generated distractors

Harry opened their mouth to speak and
what came out shocked everyone.

a very aggressive and talkative person

a generally nice and talkative kid
a rather boring non talkative person
a pretty smart and sensitive person
very shy and talkative person .
a very secretive and arrogant person

Tanisha made a career out of her hobby
of crafting wood furniture by hand.

dedicated to her dreams

stuck to his project
devoted towards artistic dreams
dedicated on crafts work
married to a farmer
addicted with these dreams

Amanda made a cake that was their mother’s
favorite. It was their mother’s birthday.

very considerate

also pregnant
deeply emotional
quite funny
exceptionally talented
enjoying cooking

Peter wanted to get fresh apples
and went apple picking at the local farm.

someone who enjoys healthy life style

someone which promotes healthy diet style
is vegetarian who enjoys simple style
a vegan enjoys healthy foods style
is someone who farm for style
overweight & enjoys healthy life .

Table 8: Examples of generated distractors using Alg. 1 with their respective contexts and ground truth choices as
the input. All samples share the same question “How would you describe [NAME]?”

names. Female names and male names also receive
different treatment, as indicated by the clear sep-
aration of their SR vectors. Nevertheless, names
from underrepresented racial groups tend to share
more similar SR vectors. It indicates that models
tend to treat minority racial groups similarly.

D Additional Analysis on Words with Top
Relative Difference

D.1 Relative Difference in Multiple Contexts
For each undebiased and debiased model in our
study, we collate a list of words with the greatest
magnitude of RD values as we compare the SR of
distractor vocabulary towards different racial and
gender groups.

We first continue the discussion for the setup of
using undebiased BERT as the MCQ model in § 4.
We report the list of words with greatest magni-
tude of RD values for two gender groups (EA fe-
male and EA male) in Table 13. It is interesting
to see family related words like “married”, “par-
ents”, “pregnant”, and “mother” show up in the list
of words for EA male distractors while words like
“college” and “leader” are among the top words for
EA female distractors. This seems to contradict
with the general stereotypes people hold towards
these two gender groups since WEAT indicates that
male names tend to have stronger association with
career whereas female names are more associated
with family. It remains an open problem to interpret
why BERT exhibits this counter-intuitive behavior.

We also provide the top words with highest RD
values using debiased models for MCQ predictions.
Results for INLP model with gender bias mitigated
are shown in Table 14. Results for SentenceDebias
BERT with racial or gender bias mitigated are in
Tables15 and 16 respectively. Dropout reduces
general biases and its results are in Table 17 and 18.
Finally, we present the results for CDA BERT with
racial or gender bias mitigated in Table 19 and 20.

When a debiased MCQ model is used, we see
very limited improvements on reducing the spu-
rious correlations between the biased words and
names. A considerable number of words still have
very small p-values. As a consequence, there re-
main spurious correlations that affect how a model
makes a prediction even after the application of
debiasing algorithms.

D.2 Relative Difference in a Single Context
We analyze words’ RD in the same single context
as studied in § 4.2 and report the words with great-
est RD values for two gender groups (EA female
vs. EA male). Table 21 presents the results. Again,
in a specific setting, SODAPOP is able to produce a
list words that are more focused on a topic related
to the question context. We see that words with
highest RD values for EA male distractors describe
violence while words like “sweet” and “generous”
appear for EA female. That being said, there are
also words that potentially associates with violence
for EA female distractors (e.g., “rebellious”).
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BERT INLP-race INLP-gender SentenceDebias-race SentenceDebias-gender Dropout CDA-race CDA-gender

Gender

EA female and EA male 0.98 0.98 0.98 0.98 0.98 1.00 0.98 0.88
AA female and AA male 0.58 0.86 0.90 0.58 0.58 0.68 0.54 0.62
HS female and HS male 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70
AS female and AS male 0.52 0.54 0.52 0.52 0.52 0.52 0.52 0.52

Race

EA female and AA female 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.88
EA male and AA male 0.84 0.84 0.84 0.84 0.84 0.88 0.90 0.88
EA female and AS female 0.76 0.76 0.76 0.76 0.76 0.80 0.78 0.76
EA male and AS male 0.80 0.80 0.74 0.80 0.80 0.82 0.76 0.80
EA female and HS female 0.80 0.80 0.80 0.80 0.80 0.80 0.84 0.82
EA male and HS male 0.64 0.64 0.64 0.64 0.64 0.66 0.66 0.82
AA female and AS female 0.64 0.64 0.64 0.64 0.64 0.72 0.62 0.58
AA male and AS male 0.60 0.60 0.60 0.60 0.60 0.58 0.60 0.56
AA female and HS female 0.58 0.58 0.58 0.58 0.58 0.58 0.68 0.58
AA male and HS male 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.72
HS female and AS female 0.54 0.54 0.54 0.54 0.54 0.54 0.58 0.56
HS male and AS male 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60

Table 9: KMeans classification accuracy of SR vectors over all debiased models we have experimented. The ideal
accuracy is 0.5 (random binary classification).

AA Female Distractors EA Female Distractors

Word RD p-value Word RD p-value

innocent 0.060 2.1E-05 sticking -0.042 2.7E-02
cousin 0.042 2.7E-05 outgoing -0.040 1.8E-03
dead 0.042 5.4E-03 loud -0.036 6.0E-06
ally 0.040 0.0E+00 funny -0.035 1.0E-04
violent 0.039 1.0E-05 cook -0.032 2.9E-01
watches 0.034 5.4E-04 told -0.025 1.3E-05
associate 0.034 0.0E+00 sporting -0.025 0.0E+00
acquaintance 0.033 0.0E+00 front -0.022 1.0E-06
ofof 0.029 2.2E-05 talkative -0.019 4.8E-05
beyond 0.027 2.0E-06 vegetarian -0.018 3.5E-01
wary 0.026 2.0E-06 cool -0.018 1.2E-05
next 0.025 4.8E-05 Happy -0.017 5.0E-01
simple 0.022 5.0E-06 convinced -0.016 1.0E-03
even 0.022 2.8E-04 old -0.016 1.9E-01
college 0.021 4.0E-02 friends -0.016 8.2E-02

Table 10: Top 15 words with greatest magnitude of RD for two racial groups and their permutation test p-values.
This extends the content in Table. 3.
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AA Female Distractors EA Female Distractors

Word RD p-value Word RD p-value

vicious 0.073 0.0E+00 educated -0.074 8.8E-05
brutal 0.071 0.0E+00 caring -0.063 6.9E-04
stubborn 0.066 1.7E-01 aroused -0.063 0.0E+00
possessive 0.065 1.5E-03 sweet -0.060 7.5E-05
arrogant 0.065 1.9E-04 interesting -0.058 7.2E-04
ruthless 0.064 0.0E+00 sophisticated -0.052 0.0E+00
nasty 0.057 3.1E-03 sound -0.050 2.3E-03
violent 0.055 0.0E+00 charming -0.050 5.0E-06
fierce 0.052 2.8E-05 sounds -0.049 1.6E-03
cruel 0.050 0.0E+00 confident -0.048 7.6E-04
gentle 0.043 7.5E-01 soft -0.048 3.9E-03
hostile 0.039 0.0E+00 demanding -0.048 2.1E-03
man 0.033 7.5E-05 loving -0.047 1.5E-01
rebellious 0.029 2.0E-03 serious -0.045 2.9E-05
personality 0.029 1.8E-04 young -0.045 2.0E-06

Table 11: Top 15 words with greatest magnitude of RD in the specific context (§ 4.2) for two racial groups with
their permutation test p-values. This extends the content in Table. 4.

AA Female Distractors EA Female Distractors

Word RD p-value Word RD p-value

innocent 0.062 1.6E-05 sticking -0.042 2.7E-02
dead 0.046 1.9E-03 outgoing -0.040 1.9E-03
violent 0.041 0.0E+00 loud -0.037 3.0E-06
cousin 0.040 6.3E-05 funny -0.035 9.5E-05
ally 0.038 0.0E+00 cook -0.032 3.1E-01
watches 0.036 4.8E-04 vegetarian -0.024 2.1E-01
associate 0.032 0.0E+00 sporting -0.024 0.0E+00
acquaintance 0.030 0.0E+00 front -0.022 1.0E-06
beyond 0.027 2.0E-06 told -0.020 1.7E-04
ofof 0.027 3.1E-05 talkative -0.018 5.8E-05
next 0.024 6.9E-05 cool -0.017 1.1E-05
animal 0.024 3.8E-04 old -0.017 1.3E-01
simple 0.023 3.0E-06 friends -0.017 4.7E-02
angry 0.023 2.0E-03 Happy -0.017 5.0E-01
even 0.023 1.7E-04 dog -0.016 2.8E-01

Table 12: Top 15 words with greatest magnitude of RD for two racial groups with their p-values in permutation
tests. INLP-BERT with racial bias mitigated is used for social commonsense MCQ predictions. This extends the
content in Table. 6
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EA Female Distractors EA Male Distractors

Word RD p-value Word RD p-value

cook 0.061 5.0E-02 brilliant -0.053 4.6E-02
college 0.057 7.0E-06 married -0.041 0.0E+00
vegetarian 0.054 8.6E-02 animal -0.026 3.0E-03
outgoing 0.047 1.2E-04 parents -0.026 0.0E+00
innocent 0.030 2.0E-01 pregnant -0.024 0.0E+00
old 0.027 2.3E-02 friendly -0.024 2.6E-05
camp 0.024 0.0E+00 wary -0.023 8.0E-06
leader 0.022 7.3E-04 beyond -0.023 2.0E-05
play 0.022 0.0E+00 shocked -0.022 3.7E-04
husband 0.022 4.0E-06 former -0.022 1.6E-02
summer 0.020 0.0E+00 name -0.021 1.6E-02
boot 0.020 5.7E-03 mother -0.020 0.0E+00
vegan 0.018 3.9E-01 Angry -0.020 2.5E-01
fairly 0.017 1.8E-04 seen -0.019 2.3E-05
talkative 0.016 2.4E-05 excellent -0.017 3.1E-04

Table 13: Top 15 words with greatest magnitude of RD for two gender groups and their p-values. We use BERT as
the MCQ model.

EA Female Distractors EA Male Distractors

Word RD p-value Word RD p-value

cook 0.061 8.1E-02 brilliant -0.052 5.0E-02
vegetarian 0.060 2.1E-02 married -0.042 0.0E+00
college 0.056 2.0E-05 animal -0.034 2.9E-03
outgoing 0.037 9.3E-04 name -0.027 2.6E-03
old 0.032 2.5E-02 shocked -0.025 3.4E-04
camp 0.024 0.0E+00 pregnant -0.024 0.0E+00
play 0.022 0.0E+00 friendly -0.023 3.0E-05
summer 0.021 0.0E+00 beyond -0.023 2.0E-05
leader 0.021 4.5E-04 parents -0.022 0.0E+00
husband 0.021 6.0E-06 former -0.022 1.7E-02
sticking 0.019 3.0E-01 Happy -0.022 2.8E-01
boot 0.018 1.4E-02 wary -0.021 1.2E-05
vegan 0.018 3.9E-01 mother -0.020 0.0E+00
spoke 0.016 2.7E-01 blessed -0.019 0.0E+00
liked 0.015 0.0E+00 seen -0.019 1.8E-05

Table 14: Top 15 words with greatest magnitude of RD for two gender groups and their p-values in permutation
tests. Here we use INLP BERT with gender bias mitigated for MCQ predictions.
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AA Female Distractors EA Female Distractors

Word RD p-value Word RD p-value

innocent 0.060 2.1E-05 sticking -0.042 2.7E-02
cousin 0.042 3.2E-05 outgoing -0.040 1.8E-03
dead 0.042 5.4E-03 loud -0.036 5.0E-06
ally 0.040 0.0E+00 funny -0.034 1.6E-04
violent 0.039 9.0E-06 cook -0.032 2.9E-01
watches 0.034 5.4E-04 told -0.025 1.2E-05
associate 0.034 0.0E+00 sporting -0.025 0.0E+00
acquaintance 0.033 0.0E+00 front -0.022 2.0E-06
ofof 0.028 2.7E-05 talkative -0.019 4.6E-05
beyond 0.027 2.0E-06 vegetarian -0.018 3.5E-01
wary 0.026 2.0E-06 cool -0.018 1.1E-05
next 0.025 4.8E-05 old -0.017 1.6E-01
college 0.022 2.7E-02 Happy -0.017 5.0E-01
simple 0.022 4.0E-06 convinced -0.016 1.1E-03
even 0.022 2.8E-04 brilliant -0.016 7.4E-01

Table 15: Top 15 words with greatest magnitude of RD in the specific context for two racial groups with their
p-values in permutation tests. Here we use SentenceDebias BERT with racial bias mitigated for MCQ predictions.

EA Female Distractors EA Male Distractors

Word RD p-value Word RD p-value

cook 0.061 5.0E-02 brilliant -0.053 4.6E-02
college 0.056 9.0E-06 married -0.041 0.0E+00
vegetarian 0.054 8.6E-02 animal -0.027 2.6E-03
outgoing 0.047 1.2E-04 parents -0.026 0.0E+00
innocent 0.030 2.0E-01 pregnant -0.024 0.0E+00
old 0.027 2.3E-02 friendly -0.024 2.3E-05
camp 0.024 0.0E+00 wary -0.023 8.0E-06
leader 0.022 7.8E-04 beyond -0.023 1.8E-05
play 0.022 0.0E+00 former -0.022 1.6E-02
husband 0.021 4.0E-06 shocked -0.022 4.3E-04
summer 0.020 0.0E+00 name -0.021 1.6E-02
boot 0.020 5.7E-03 mother -0.020 0.0E+00
vegan 0.018 3.9E-01 Angry -0.020 2.5E-01
fairly 0.017 2.0E-04 seen -0.019 2.3E-05
talkative 0.016 2.8E-05 excellent -0.017 3.1E-04

Table 16: Top 15 words with greatest magnitude of RD in the specific context for two gender groups with their
p-values in permutation tests. Here we use SentenceDebias BERT with gender bias mitigated for MCQ predictions.
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AA Female Distractors EA Female Distractors

Word RD p-value Word RD p-value

associate 0.054 0.0E+00 vegetarian -0.054 8.0E-03
ally 0.052 2.3E-05 rude -0.047 0.0E+00
acquaintance 0.051 4.0E-06 cat -0.045 4.0E-02
vegan 0.048 2.8E-02 excellent -0.044 1.0E-06
property 0.044 1.5E-01 brilliant -0.031 7.7E-03
relative 0.034 2.0E-05 innocent -0.029 2.3E-01
ofof 0.032 3.8E-03 nine -0.027 4.0E-06
pet 0.026 3.8E-01 college -0.027 3.0E-02
simple 0.026 2.8E-03 convinced -0.025 7.2E-05
mine 0.026 0.0E+00 cousin -0.022 9.0E-02
winter 0.022 2.0E-01 sticking -0.021 2.1E-03
animal 0.021 3.4E-01 loud -0.018 0.0E+00
complained 0.020 9.1E-05 Angry -0.018 7.9E-03
beyond 0.020 8.6E-05 bit -0.016 4.0E-04
father 0.019 1.4E-03 anyone -0.016 8.0E-06

Table 17: Top 15 words with greatest magnitude of RD in the specific context for two racial groups with their
p-values in permutation tests. Here we use Dropout BERT with general bias mitigated for MCQ predictions.

EA Female Distractors EA Male Distractors

Word RD p-value Word RD p-value

college 0.043 2.3E-03 vegan -0.056 1.2E-02
ally 0.040 4.6E-02 winter -0.055 4.9E-05
innocent 0.029 2.3E-01 father -0.052 0.0E+00
used 0.028 0.0E+00 six -0.046 0.0E+00
camp 0.026 0.0E+00 married -0.042 0.0E+00
pet 0.020 4.9E-01 nine -0.041 0.0E+00
asked 0.018 5.2E-04 ten -0.039 0.0E+00
acquaintance 0.017 2.1E-01 parents -0.038 0.0E+00
prefers 0.017 1.7E-01 next -0.037 1.0E-06
cousin 0.016 1.8E-01 10 -0.037 0.0E+00
rude 0.016 5.9E-03 former -0.035 3.0E-03
summer 0.015 3.7E-05 blessed -0.032 0.0E+00
read 0.015 8.7E-04 cat -0.027 5.4E-02
today 0.014 8.5E-04 would -0.027 0.0E+00
glad 0.012 1.7E-02 pregnant -0.025 1.8E-02

Table 18: Top 15 words with greatest magnitude of RD in the specific context for two gender groups with their
p-values in permutation tests. Here we use Dropout BERT with general bias mitigated for MCQ predictions.

1593



AA Female Distractors EA Female Distractors

Word RD p-value Word RD p-value

cat 0.069 3.5E-02 outgoing -0.060 1.5E-04
innocent 0.054 7.8E-02 funny -0.048 5.0E-06
asked 0.052 6.0E-05 sporting -0.036 1.3E-04
pet 0.041 2.2E-02 quiet -0.035 0.0E+00
acquaintance 0.040 1.0E-04 nice -0.032 6.8E-05
next 0.040 4.4E-02 intelligent -0.019 1.0E-06
watches 0.038 5.2E-02 loud -0.018 1.0E-06
vegan 0.037 2.1E-02 hoping -0.018 1.0E-06
violent 0.036 0.0E+00 friendly -0.017 1.0E-06
promotes 0.034 1.0E-06 normally -0.017 1.0E-06
animal 0.033 2.4E-05 caring -0.017 3.0E-06
said 0.033 2.7E-03 nursing -0.016 1.1E-05
among 0.032 0.0E+00 convinced -0.016 7.9E-04
fo 0.032 9.6E-02 pretty -0.014 0.0E+00
personal 0.031 8.0E-06 talkative -0.014 0.0E+00

Table 19: Top 15 words with greatest magnitude of RD in the specific context for two racial groups with their
p-values in permutation tests. Here we use CDA BERT with racial bias mitigated for MCQ predictions.

EA Female Distractors EA Male Distractors

Word RD p-value Word RD p-value

acquaintance 0.045 7.3E-03 sticking -0.052 8.3E-03
three 0.023 1.1E-03 brilliant -0.052 1.4E-02
outgoing 0.022 1.0E-02 father -0.039 0.0E+00
son 0.020 1.5E-04 Happy -0.037 3.3E-01
babies 0.019 2.1E-05 fo -0.032 1.2E-05
na 0.019 2.9E-01 excellent -0.031 3.4E-05
used 0.018 2.4E-04 former -0.029 1.5E-03
dead 0.018 1.6E-01 next -0.027 2.2E-02
husband 0.018 5.8E-03 boot -0.025 4.7E-03
vegetarian 0.017 1.8E-01 read -0.024 3.5E-05
dear 0.015 5.4E-02 stressed -0.022 0.0E+00
cat 0.014 4.9E-01 run -0.022 1.5E-02
kids 0.013 1.2E-05 beyond -0.021 3.1E-04
old 0.013 8.4E-02 wary -0.020 3.9E-03
watched 0.012 4.4E-01 movie -0.020 4.9E-01

Table 20: Top 15 words with greatest magnitude of RD in the specific context for two gender groups with their
p-values in permutation tests. Here we use CDA BERT with gender bias mitigated for MCQ predictions.
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Figure 8: t-SNE projection of SR vectors using INLP-gender as the MCQ model.
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Figure 9: t-SNE projection of SR vectors using SentenceDebias-gender as the MCQ model.
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Figure 10: t-SNE projection of SR vectors using SentenceDebias-race as the MCQ model.
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Figure 11: t-SNE projection of SR vectors using Dropout-BERT as the MCQ model.
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Figure 12: t-SNE projection of SR vectors using CDA-gender as the MCQ model.
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Figure 13: t-SNE projection of SR vectors using CDA-race as the MCQ model.

EA Female Distractors EA Male Distractors

Word RD p-value Word RD p-value

sound 0.066 7.2E-05 nasty -0.048 4.0E-02
caring 0.065 2.2E-04 arrogant -0.038 2.0E-06
woman 0.062 0.0E+00 ruthless -0.036 1.4E-03
im 0.058 5.7E-04 brutal -0.035 2.2E-02
thinking 0.057 2.7E-05 vicious -0.033 2.7E-01
loving 0.054 1.3E-01 man -0.029 0.0E+00
girl 0.053 0.0E+00 male -0.024 2.9E-02
sweet 0.052 1.7E-03 violent -0.018 5.0E-02
generous 0.051 3.4E-02 cruel -0.018 5.8E-02
seems 0.050 4.1E-05 threatening -0.015 2.5E-04
helpful 0.048 9.2E-04 handsome -0.010 2.5E-01
explicit 0.047 1.1E-04 tough -0.009 2.0E-01
rebellious 0.047 1.0E-03 sounding -0.009 8.8E-03
aroused 0.046 3.0E-06 though -0.008 1.4E-02
unpredictable 0.046 3.4E-03 rude -0.008 3.1E-01

Table 21: Top 15 words with greatest magnitude of RD in the specific context (§ 4.2) for two gender groups with
their permutation test p-values. We use BERT as the MCQ model.
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Abstract

Existing state-of-the-art methods for open-
domain question-answering (ODQA) use an
open book approach in which information is
first retrieved from a large text corpus or
knowledge base (KB) and then reasoned over
to produce an answer. A recent alternative
is to retrieve from a collection of previously-
generated question-answer pairs; this has sev-
eral practical advantages including being more
memory and compute-efficient. Question-
answer pairs are also appealing in that they
can be viewed as an intermediate between text
and KB triples: like KB triples, they often con-
cisely express a single relationship, but like
text, have much higher coverage than tradi-
tional KBs. In this work, we describe a new
QA system that augments a text-to-text model
with a large memory of question-answer pairs,
and a new pre-training task for the latent step
of question retrieval. The pre-training task
substantially simplifies training and greatly
improves performance on smaller QA bench-
marks. Unlike prior systems of this sort, our
QA system can also answer multi-hop ques-
tions that do not explicitly appear in the col-
lection of stored question-answer pairs.

1 Introduction

Open-domain question answering (ODQA) is a
well-studied knowledge-intensive task. State-of-
the-art methods require retrieving relevant knowl-
edge from a large corpus or datastore before rea-
soning over this retrieved evidence. Most existing
methods retrieve documents (Chen et al., 2017a;
Lee et al., 2019; Karpukhin et al., 2020) or struc-
tured KB triples (Verga et al., 2021). Recently, a
few works have proposed retrieving from a collec-
tion of question-answer (QA) pairs—an approach
made feasible by advances in scalable automatic
question generation. In this setting, a new ques-
tion is answered by retrieving paraphrases from a
question index, and returning the associated answer

(Xiao et al., 2021; Lewis et al., 2021). Notably, the
RePAQ system from (Lewis et al., 2021) won the
2020 EfficientQA competition (Min et al., 2021),
outperforming closed-book QA (CBQA) models by
a significant margin and matching the prior SoTA
performance on NQ (Kwiatkowski et al., 2019).

A collection of QA pairs is appealing for several
reasons. As opposed to text passages and much like
a KB triple, QA pairs are often concise, tending
to express a single relationship. However, unlike
KB triples, QA collections have good coverage of
actually asked questions like those in standard open
QA datasets. RePAQ demonstrated several advan-
tageous properties such as memory and computa-
tional efficiency, strong selective QA performance
(i.e. selectively abstaining from answering), and ef-
fective ensembling with text-retrieval QA systems.

However, question-retrieval QA systems have
several limitations as well. First, there is no large-
scale supervised data for question-question re-
trieval. This contrasts with the step of retriev-
ing text given a question, where supervised data
is used to build retrievers like DPR (Karpukhin
et al., 2020). To address this, RePAQ uses a latent-
retrieval training process (similar to REALM (Lee
et al., 2019)), in which the retriever is trained us-
ing the downstream end loss from the QA task.
This requires asynchronously updating the index
as training proceeds, a process that is complex and
computationally expensive. This is also a problem
for domains with limited QA data: as we will show,
RePAQ’s performance is disappointing on smaller
datasets like WebQuestions (Berant et al., 2013),
containing only 3K training instances. To address
this problem, we introduce a novel pre-training
task for question retrieval, which can be applied to
any text-QA dataset, which great improves perfor-
mance on smaller datasets.

A second problem is that RePAQ is limited to
answering questions explicitly stored in the index,
or paraphrases of such questions. This contrasts
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Figure 1: During pre-training, the encoder first encodes textual input and use special token representation to query
the QA-memory. The retrieved QA-pairs are integrated to the decoder to generate outputs.

with QA systems that retrieve from KBs, which can
typically generate complex queries that combine
the atomic triples in the KB.To address this, we
present an extended model that answers multi-hop
questions by iteratively retrieving from a question-
answer corpus, the first question-retrieval-based
QA system that addresses this task.

In more detail, we propose a new QA-Memory-
Augmented Transformer (QAMAT) with better
compositionality paired with a lower complex-
ity training strategy. QAMAT is based on a
T5 encoder-decoder (Raffel et al., 2020) paired
with an integrated key-value memory (Khandelwal
et al., 2019; Borgeaud et al., 2021) populated with
question-answer pairs (See Figure 1). Given an
input, the encoder generates a query representation
scored against the QA memory and retrieves the
top-K relevant QA pairs. The encoder then repro-
cesses the input along with the retrievals forming a
QA-injected representation which is passed to the
decoder to attend to and generate.

To reduce the training (fine-tuning) sample com-
plexity, we propose to first pre-train QAMAT on a
large-scale corpus to teach the model to retrieve and
interpret QA pairs. We construct the pre-training
corpus by leveraging existing methods for ques-
tion generation, producing a very large set of po-
tentially interesting questions from text passages
(Zhou et al., 2017; Alberti et al., 2019; Lewis et al.,
2021). For each QA pair and the passage it was
generated from, we mask the answer and train the
model to fill the mask by retrieving and using an
appropriate QA pair. We show that pre-training
greatly boosts the model’s performance and helps
the model generalize to different domains. For
example, the pre-trained model can achieve a zero-
shot performance of 40% EM on NQ and TriviaQA
without any fine-tuning.

The effectiveness of this pre-training task means

that we can avoid the expensive latent training pro-
cedure used by RePAQ, and instead use an efficient
two-stage training pipeline. In the first stage, we
use a small local in-batch memory of QA pairs
to optimize the QA pair encoder. We then freeze
the encoder and construct the index for the global
memory. In the second stage, we retrieve from this
fixed global memory and continue to optimize the
remaining parameters—including the parameters
used to construct queries to the global memory—
for better performance.

Lastly, we extend QAMAT to build QAMAT+,
which iteratively retrieves from the memory to gen-
erate outputs. We demonstrate that QAMAT+ ef-
fectively chains multiple QA-pairs together to an-
swer multi-hop questions in HotpotQA (Yang et al.,
2018) and Musique (Trivedi et al., 2021). Such
compositional reasoning capability is nonexistent
in RePAQ (Lewis et al., 2021).

In summary, we develop a new QA augmented
architecture which extends the lines of research
considering QA pairs as a representation of knowl-
edge as well as those on memory-augmented lan-
guage models. When paired with our proposed pre-
training strategy (section 4), we address many of
the shortcomings of previous QA-indexing-based
approaches leading to lower sample complexity
training and the ability to perform compositional
reasoning (subsection 3.5).

2 Related Work

2.1 Retriever-Reader Models
Retrieve-and-read models have been widely studied
to address knowledge-intensive tasks and achieve
state-of-the-art performance on most QA tasks.
These methods use two models, one to retrieve
from a passage index based on BM25 (Robertson
and Zaragoza, 2009), and one to perform reading
comprehension on the returned passages (Chen
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et al., 2017b). More recently, deep retrieval models
have gained more popularity to replace traditional
string-similarity retriever.

DPR (Karpukhin et al., 2020) is a widely
used supervised approach to achieve better results
than BM25 on a large collection of text retrieval
tasks (Thakur et al., 2021). Contrastive learning
is used to train the deep retriever model to distin-
guish between annotated positive and mined nega-
tive candidates. More recently, ColBERT (Khattab
and Zaharia, 2020) has been proposed to integrate
more fine-grained late fusion between query and
context to improve DPR.

Retrieval Augmented Generation (RAG) (Lewis
et al., 2020), Fusion-in-Decoder (FiD) (Izacard and
Grave, 2021) and End-to-end training of Multi-
Document Reader and Retriever (EmDR) (Singh
et al., 2021) are proposed to read retrievals to ex-
tract or generate answers. These models require a
trained retriever/reranker to obtain top-K results,
which are fed to the reader to generate the answer.
As discussed in section 1, our model provides better
interpretability due to atomic knowledge represen-
tation. In subsection 5.4, we also demonstrate that
our model’s inference speed is 5x faster.

2.2 Question Generation
The problem of question generation (Zhou et al.,
2017) has attracted attention from the community
in recent years. It has been used for data augmen-
tation (Alberti et al., 2019) to improve current QA
systems or to improve retrieval systems (Nogueira
et al., 2019). Pan et al. (2021) also demonstrated
that by connecting generated single-hop questions,
we can train zero-shot multi-hop question answer-
ing systems. Besides QA, it has also been widely
used in other domains like evaluating factual con-
sistency of summarization (Eyal et al., 2019; Wang
et al., 2020) or enhancing contextualized represen-
tation (Jia et al., 2021). Most related to our work
is PAQ (Lewis et al., 2021), which aims to gener-
ate and use QA pairs as retrieval units for question
answering. The efficacy of this data was further
verified when it was used to train DPR, yielding
better domain generalization (Oğuz et al., 2021).

2.3 Memory-Augmented Language Models
End-to-end memory-augmented language models
aim to train a model to explicitly access external
memory. The current work is focused on storing
entities (Févry et al., 2020), entity mentions (Dhin-
gra et al., 2019; Sun et al., 2021; de Jong et al.,

2022) or knowledge triples (Verga et al., 2021).
Memory attention layers are then used to influence
the computation of transformer layers. These enti-
ties and fact-centric memories are naturally atomic
and interpretable, and models employing them
have shown competitive performance on entity-
focused QA datasets like Web-Question-SP (Yih
et al., 2016) and ComplexWebQuestions (Talmor
and Berant, 2018). However, these models are lim-
ited to integrating entity-centric knowledge and
classifying the answer w.r.t a pre-defined entity
list. For example, these models cannot handle
questions with non-entity answers, e.g. number,
date, noun phrases, etc, which are ubiquitous in
various QA datasets like NQ (Kwiatkowski et al.,
2019), SQuAD (Rajpurkar et al., 2016), or Hot-
potQA (Yang et al., 2018).

3 Our Model: QAMAT

3.1 Problem Definition

The input to our model is a piece of text X =
x1, · · · , xn, where X is either a question dur-
ing fine-tuning or a paragraph in pre-training.
Pre-training is formulated as a span corruption
task (Raffel et al., 2019): given an example in the
pre-training corpus as (X, {Qk, Ak}mk=1), where
A1, · · · , Am correspond to spans in the input
X . We sample k spans from X as a cloze an-
swer and replace all tokens within a span with
a [MASK] token, and the model needs to re-
cover all the answers. During fine-tuning, we add
an artificial [MASK] in the question front, and
let the model recover this as the answer. The
pre-training/fine-tuning objective function is to
maximize the masked language model objectives
p(Y |X) =

∑
mi∈M p(Y |X,mi)p(mi|X), which

marginalizes over the entire memory M . However,
due to its intractability in a large-scale memory, we
adopt an approximation to only sum over the top-K
memory entries TopK(M).

We define the encoder function as fθ, which
takes an input sequence X as input to generate a
sequence of vector Fθ(X) ∈ Rn×d, where n is the
input length and d is the hidden size. The desig-
nated position of Fθ(X) will be used as the query
and memory representation, which are denoted
as fθ(X; [MASK]) ∈ Rd (at [MASK] position)
and memory key/value as fθ(mk

i ; [CLS]) ∈ Rd (at
[CLS] position). For brevity, we leave out [MASK]
and [CLS] and simply use fθ(·).

We also define a broadcast operator Bn
k (x) to
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Figure 2: Architecture: upper figure shows the retrieval process with shared encoder, the lower figure shows the
decoder process to leverage neural and discrete representation of memory retrieval.

broadcast a vector into a matrix by assigning the
vector x to k-th row while filling the rest with zero,
i.e. Bn

k (x) = [0, ...xT , ...,0].

3.2 Dense Retriever

The memory M contains separate key and value
components, where the key mk

i contains a ques-
tion, and the corresponding value mv

i contains the
question-answer concatenation. To retrieve the top-
k QA-pairs from the memory, we use our encoder
fθ to encode X and mi separately and select the
top-K entries TopK(M) based on their inner prod-
uct, i.e. TopKmi∈Mfθ(X) · fθ(mk

i ).

3.3 Neural Memory Integration

After the model retrieves the Top-K candidates,
their corresponding memory values mv

i needs be
leveraged into the encoder to influence the decoder
outputs in a differentiable fashion. We write our
objective p(Y |X) as:

∑

mi∈TopK(M)

p(Y |X,mi)p(mi|X)

=
∑

mi∈TopK(M)

p(mi|X)gθ(Y |Fθ(X) +Bnk [fθ(m
v
i )])

≈gθ(Y |
∑

mi∈TopK(M)

p(mi|X)(Fθ(X) +Bnk [fθ(m
v
i )]))

=gθ(Y |Fθ(X) +Bnk [
∑

mi∈TopK(M)

p(mi|X)fθ(m
v
i )])

p(mi|X) =
efθ(X)·fθ(mki )

∑
mi∈TopKM efθ(X)·fθ(mki )

The probability p(Y |X,mi) is parmeterized by a
decoder function gθ, which takes a memory-infused
encoder representation Fθ(X) + Bn

k [fθ(m
v
i )] as

input. We approximate this marginal probabil-
ity by pulling weighted summation inside the de-
coder function gθ to derive an aggregated memory-
infused encoder representations Fθ(X) +Bn

k [· · · ].
The retrieval weight p(m|X) is calculated as the
softmax over the retrieval score over top-K items.
For simplicity, H(X,TopK(M), p(m|X)) is used
to denote this encoder representation, thus the ob-

jective can be written as follows:

p(Y |X) = gθ(Y |H(X,TopK(M), p(m|X))) (1)

As shown in the upper part of Figure 2, we first
use weighted-sum over the neural representation of
retrieved memory entries fθ(mv

i ) and then simply
add it to the encoder representation to infuse the re-
trieved QA-pair information. These two operations
are both differentiable, which makes the it possible
to train retriever latently. In essence, the retriever
will increasing weights p(mi|X) on more relevant
memory items instead of irrelevant ones.

3.4 Neural + Discrete Memory Integration
A disadvantage of adopting weighted-sum∑

i p(mi|X)fθ(m
v
i ) ∈ Rd is that all the infor-

mation from all of the top-K documents are
overly compressed into a d-dimension vector,
whereas the token retrieval representation contains
more information. Therefore, we propose to
add a fine-grained token-wise representation
Ĥ(X,TopK(M)) to help the model access the
retrieved discrete values mi directly. The represen-
tation is obtained by encoding the concatenation
of the input X and retrieved discrete tokens
X̂ = Concat[mk; · · · ;m1;X] ∈ R(n+k|m|)×d.

Such discrete memory integration greatly en-
riches the representation for mi and enables cross-
attention between the query and retrieval, address-
ing the bottleneck problem. However, such dis-
crete representation cannot propagate gradients
back to the retriever. Finally, we propose to com-
bine the neural memoryH(X, ·) and discrete mem-
ory Ĥ(X, ·) integration to combine their merits.

p(Y |X)

=gθ(Y |H ′(X,TopK(M), p(m|X)) + λĤ(X,TopK(M)))

(2)

where the λ is the balancing factor to weight the
two representations. We use H ′(...) = [0;H(...)]
to represent the concatenation of zero-matrix 0 ∈
Rk|m|×d, which has consistent dimension with Ĥ .
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After leveraging Ĥ , our model demonstrates signif-
icant improvements on the downstream tasks with
14% on TriviaQA and 10% on HotpotQA.
H(X,TopK(M), p(m|X)) is only used to la-

tently train the retriever, after training, we can drop
it and only use the concatenated representation
Ĥ(X,TopK(M)) as the encoder representation.
The decoder gθ will attend to Ĥ and perform a
greedy search over vocabulary to generate output.

3.5 Multi-hop Extension
To further extend QAMAT’s capability to per-
form compositional reasoning, we propose a cas-
caded architecture (depicted in Figure 3) known
as QAMAT+, where the model learns to perform
multiple rounds of retrieval before feeding the
augmented inputs to the decoder. Specifically
for two-hop reasoning, we use X as the query
to retrieve a first-round of top-K memory val-
ues TopK(M ; 1) with our learned retriever fθ de-
scribed in subsection 3.2. Next, we augment the
query by concatenating the retrieved values as
X1 = [TopK(M ; 1);X]. This new query X1 is
used to perform a second round of retrieval to ob-
tain additional top-K memory values, TopK(M ; 2).
Based on TopK(M ; 2), we compute the hybrid
encoder representation H(X1, T opK(M ; 2)) and
Ĥ(X1, T opK(M ; 2)) to compute p(Y |X1; θ).

Figure 3: QAMAT+ architecture: Multi-Hop frame-
work for question-answer memory integration.

4 Training

4.1 Pre-training Corpus
Our QA-pairs are constructed by combining 30M
deduplicated QA-pairs from PAQ (Lewis et al.,
2021)(originally 65M, we delete paraphrases to
keep a subset) and 30M additional QA-pairs gen-
erated from our own pipeline. The additional QA-
pairs are populated from non-overlapping passage
blocks to increase the knowledge coverage over
Wikipedia. Our QA generation pipeline is simi-
lar to (Lewis et al., 2021) but trained solely on
SQuAD 2.0 (Rajpurkar et al., 2018) and filtered
with a cheap reading comprehension model rather
than FiD (Izacard and Grave, 2021), the details are

Figure 4: Two stage training procedure: in-batch train-
ing with a batch-specific memory and end-to-end gradi-
ent updates, global training with a fixed global memory
and partial gradient updates.

described in the Appendix. The final statistics of
our QA-memory is described in Table 1, where the
total size is comparable to RePAQ.

Memory Size #Passages Training Data

Dedup-PAQ 30M 10M NaturalQuestions
Additional 30M 10M SQuAD 2.0

Combined 60M 20M -

Table 1: The breakdown statistics of our QA corpus.

We denote the entire memory as M and formu-
late the pre-training corpus as {X, {Qk, Ak}mk=1},
where X is the passage aligned with multiple QA-
pairs {Qk, Ak}mk=1 generated from it.

4.2 End-to-End Training

During training, the retrieval process is integrated
into the model’s training loop. The most widely
adopted approach to accomplish this is approxi-
mate nearest neighbor search (ANNS) efficiently
implemented by several libraries like ScaNN (Guo
et al., 2020), FAISS (Johnson et al., 2019), etc.
These libraries require a fixed set of dense vec-
tors to construct the index and perform a Nearest-
Neighbor search using approximate algorithms.
However, our memory encoder fθ is continuously
updated, which poses great challenges for ANNS
index building. REALM (Guu et al., 2020) and
RePAQ (Lewis et al., 2021) use an asynchronous in-
dex building sub-process to refresh the index every
K steps, which is known to be extremely computa-
tionally expensive, especially with a large memory.
To avoid such expensive computation overhead, we
are inspired by TOME (de Jong et al., 2022) to
adopt a two-stage training as shown in Figure 4.

In-Batch Pre-training In the first stage, in-
stead of using the whole memory, we propose
a batch-specific memory that concatenates the
positive, random negative, and hard negative en-
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tries from each instance in the batch. Assuming
we have a batch size of B containing examples
{Xi, {Qki , Aki }Kk=1}Bi=1. For each example there
existK positive QA-pairs generated from the given
context Xi. Additionally, we mine K hard nega-
tive QA-pairs {Q̄ki , Āki }Kk=1 for each input Xi to
increase retrieval difficulty. This hard negative min-
ing is done with BM25 (Robertson and Zaragoza,
2009) similar to DPR (Karpukhin et al., 2020). We
construct the in-batch memory by aggregating the
K×B positive QA-pairs and K×B hard negative
memory entries, so the in-batch memory M̂ con-
tains a total of 2K × B QA-pairs (roughly a few
thousand). Due to the small size of the memory,
we can construct the memory index very efficiently.
Thus, it enables us to continuously update the mem-
ory encoder parameters fθ to achieve strong QA-
pair retrieval performance.

Global Pre-training and Fine-Tuning In this
stage, we first freeze the memory encoder fθ to
generate memory-key embedding for the entire
memory to build its index. We then incorporate the
on-device approximate search algorithm1 to per-
form the nearest-neighbor search over the memory
index to retrieve the top-K QA-pairs. Formally, we
propose to maximize the same objective as Equa-
tion 2 but with stop-gradient applied to p(m|X)
term. In this step, the model will only update the
query model fθ and the decoder model gθ. During
fine-tuning, we follow the same recipe as the global
pre-training. Instead of feeding masked passages
as inputs, we use questions with pseudo [MASK]
token in the front as the input.

4.3 Multihop Extension

For our extension model QAMAT+, since the re-
trieval augmentation process cannot be learned la-
tently, i.e. the gradient propagation is blocked in
the concatenation step, we add additional supervi-
sion to maximize the groundtruth retrieval proba-
bility p(m1|X) for the first-round retrievalm1. We
add such retrieval supervision objective to the orig-
inal objective p(Y |X1), where X1 is the retrieval-
augmented inputs as described in subsection 3.5.

1https://github.com/google-research/language/
tree/master/language/mentionmemory

5 QA Experiments

5.1 Implementation Details

Our model is based on the T5-base or large archi-
tecture implemented in JAX2 and pre-trained on
32 TPUs on Google Cloud3. During in-batch train-
ing, our query and index encoder fθ are shared
and initialized from the T5 encoder (during global
training the index encoder is fixed and the query
encoder continues to be updated). Our decoder gθ
is similarly initialized from the T5 decoder. In to-
tal, we construct ∼ 60M question-answer pairs as
the global memory. The memory key is the ques-
tion tokenized by T5 sentencepiece model into 32
tokens, and the memory value is the answer con-
catenated with its question tokenized into 40 tokens.
The memory is indexed by a pre-computed matrix
Mk ∈ R|M |×d computed based on its keys (ques-
tions). The corresponding top-K memory values
(question+answer) will be fetched.

During in-batch pre-training, we use a large
batch size of 512 and a learning rate of 1e-3,
where each example contains a positive Q-A pair
and 7 hard negative QA-pairs mined through
BM25 (Robertson and Zaragoza, 2009). The in-
batch memory contains a total of 4096 entries, we
set Top-k of 4 and update over all the modules. Af-
ter 100K steps of in-batch pre-training, we switch
to global pre-training with global memory retrieval.
We decrease the batch size to 32 and enlarge Top-K
to 16 for larger memory. We update only the query
encoder and decoder for another 100K steps. Fi-
nally, we set K to 32 to fine-tune on downstream
datasets with a decreased learning rate of 5e-4.

5.2 Datasets

We evaluate our framework on the three most
widely used single-hop open-domain question-
answering datasets and two multi-hop open-domain
question-answering datasets

NQ-Open The NaturalQuestions (Kwiatkowski
et al., 2019) dataset consists of naturally occurring
Google queries and their answers. We follow Lee
et al. (2019) to keep questions that have a "short
answer type". It consists of 79168 training exam-
ples, 8757 dev examples, and 3610 test examples.

TriviaQA The TriviaQA dataset is a collection of
trivia question-answer pairs that were scraped from
the web (Joshi et al., 2017). We use their unfiltered

2https://github.com/google-research/t5x
3https://cloud.google.com/tpu/
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version to evaluate our model consisting of 78785
training, 8837 dev, and 113313 test examples.

WebQuestions The WebQuestion dataset contains
questions that were sampled from Google Suggest
API (Berant et al., 2013). The answers are anno-
tated from FreeBase, the training set contains 3417
examples, the dev set contains 361 examples, and
the test set contains 2032 examples.

HotpotQA The HotpotQA dataset contains ques-
tions generated by human workers by reading two
passages (Yang et al., 2018). The questions are
designed to require multiple hops and include both
bridge questions and comparison questions. The
training set contains a total of 90564 examples, the
dev-set contains 7405 examples for evaluation.

Musique The Musique dataset contains questions
created by composing multiple questions from ex-
isting single-hop questions and was constructed to
contain less bias and artifacts (Trivedi et al., 2021).
In our experiments, we consider only the subset
of 2-hop questions, resulting in a training set of
14376 examples and a dev set of 1252 examples
for evaluation. While the dataset was originally
designed as a distractor setting (given a question
and a small number of passages, return the answer),
we instead consider an open-domain setting.

5.3 Baselines

We compare our model with baselines from the fol-
lowing categories. 1) CBQA large language models
(T5 XXL), which directly outputs an answer with-
out retrieval. 2) Entity/KG memory-augmented
models that use memory attention to incorporate
entity-level features into language models (Entities-
as-Experts (EaE) (Févry et al., 2020), Fact-Injected
Language Model (FilM) (Verga et al., 2021), Men-
tionMemory (TOME) (de Jong et al., 2022)). 3)
Retrieve-and-read model, which retrieves passages
to pass to a reader model which predicts the answer.
4) QA-retrieval models, which train a retriever to
collect QA-pairs from a large datastore, and then
rerank these QA-pairs (top 50-100) with original
query with cross-attention. The highest-ranked an-
swer is returned as the final answer.

5.4 Single-Hop Results

Our results are summarized in Table 2 which re-
ports exact-match (EM) score.

Comparison with RePAQ Our main comparison
is with the previous best QA-retrieval-based ap-

proach "RePAQ w/ rerank (XXL ALBERT)". This
model has a similar number of parameters to QA-
MAT (Large). Without using an explicit re-ranking
procedure, our model performs slightly worse on
NQ but obtains significant gains on TriviaQA and
WebQuestion. Especially on WebQuestion, which
only contains 3K training examples, RePAQ per-
forms significantly worse than the other datasets be-
cause it requires a high volume of examples to up-
date the retriever from scratch. With our proposed
pre-training strategy, QAMAT can initialize from a
much better checkpoint to decrease the sample com-
plexity, yielding an absolute 6% EM improvement.
Additionally, without any fine-tuning, we demon-
strate that our model already achieves promising
results across these datasets, nearly matching the
performance of "RePAQ w/o rerank"4.

Comparison with retrieve-and-read models In
comparison to this class of model, QAMAT roughly
matches the performance of RAG, though it still
lags behind the SoTA model FiD. However, FiD
requires reading 100 passages, i.e. 20K tokens
while our best model works more efficiently by
only reading top-32 QA-pairs, i.e. 1.2K tokens.
To investigate the speed difference between these
approaches, we compared their inference speeds
using the same hardware (32 Google Cloud v3
TPUs). We found that QAMAT can answer 240
Qs/sec, while FiD only answers 50 Qs/sec, a 5x
inference time speedup over FiD.

5.5 Multi-hop Results

Since the document corpora source of HotpotQA
and Musique are different from single-hop QA
datasets, we adopt question generation model
trained on SQuAD 2.0 (Rajpurkar et al., 2018) to
generate questions for these two datasets. To create
the document corpora, we gather all of the pro-
vided positive and negative documents, obtaining
500K passages for HotpotQA and 85K passages
for Musique. We then use the trained generation
models to populate 3M QA pairs for HotpotQA
and 500K QA pairs for Musique. These QA pairs
are then used as the memory source for QAMAT+,
simulating a (slightly smaller) open-domain setup.
When training QAMAT+ on Musique, we initialize
from HotpotQA’s in-Batch pre-trained checkpoint,
which can bring 5-7% F1 improvement.

4It’s worth noting that the question generation models are
trained using some of these datasets’ training data so this is
not truly “zero-shot” performance.
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Model (Test Set) NQ TQA WQ

T5-3B (Roberts et al., 2020) 30.4 35.1 33.6
T5-11B (Roberts et al., 2020) 32.6 42.3 37.2
EaE (Févry et al., 2020) - 43.2 -
FILM (Verga et al., 2021) - 29.1 -
TOME-2 (de Jong et al., 2022) - 53.4 -

DensePhrases (Lee et al., 2021) 40.9 50.7 -
REALM (Guu et al., 2020) 40.4 55.8 40.7
DPR (Karpukhin et al., 2020) 41.5 57.9 42.4
RAG-Seq (Lewis et al., 2020) 44.5 56.8 45.2
FiD (Izacard and Grave, 2021) 48.2 65.0 -

RePAQ (Lewis et al., 2021) 41.2 38.8 29.4†
RePAQ+Rerank (Lewis et al., 2021) 47.6 50.7 37.6†
QAMAT Zero-Shot (Base) 37.9 34.1 25.9
QAMAT Zero-Shot (Large) 39.8 40.0 25.1
QAMAT Fine-tuned (Base) 44.5 53.2 43.0
QAMAT Fine-tuned (Large) 45.5 54.8 43.6

Table 2: The main experimental results on single-hop
question answering datasets (NQ=NaturalQuestions,
TQA=TriviaQA, WQ=WebQuestions), † means Best-
effort replication using our own implementation.

Model (Dev Set F1 Score) HPQ MusQ

T5-3B (Roberts et al., 2020) 27.8 7.5
T5-11B (Roberts et al., 2020) 30.2 9.0

MDR+T5-Decoder (Xiong et al., 2020) 62.6 26.8
RePAQ (Lewis et al., 2021)† 47.8 18.6

QAMAT 42.0 16.7
QAMAT+ 57.6 29.8

Table 3: The main experimental results on MultiHop
QA datasets with QAMAT and QAMAT+, † means
Best-effort replication using our own implementation.

In Table 3, we show that QAMAT+ achieves
promising results on both multi-hop datasets, out-
performing T5-CBQA and RePAQ by a large mar-
gin. Additionally, QAMAT+ performs consider-
ably better than the single-hop QAMAT, demon-
strating the effectiveness of performing multi-
round retrieval. Though QAMAT+ still lags behind
the document-based model (MDR+T5 Decoder) on
HotpotQA, it surpasses it on the more challenging
Musique dataset. These encouraging results sug-
gest the potential for QAMAT+ to perform compo-
sitional reasoning over multiple QA-pairs, which
greatly increases the coverage of QA datastore to
cover more composite factual information.

5.6 Ablation Studies

Number of Retrievals To understand the proper-
ties of our model better, we first investigate the im-
pact of the number of retrievals, K, on the model’s
performance. We gradually increase the K to col-

Top-K 1 10 20 30

NQ-Recall@K 0.41 0.58 0.62 0.64
TriviaQA-Recll@K 0.46 0.66 0.70 0.72

NQ-EM@K 0.39 0.42 0.44 0.44
TriviaQA-EM@K 0.45 0.51 0.53 0.53

Table 4: The retrieval recall and EM score of different
retrieval numbers on test sets.

Pre-training Stages NQ TQA WQ

Only In-Batch 42.1 48.2 39.7
Only Global 26.0 28.9 26.1
In-Batch→ Global 44.5 53.2 43.0

Table 5: Downstream EM performance of models when
pre-trained using in-batch, global, or both stages.

lect the recall and final QA performance. The re-
sults are shown in Table 4. We observe that even
though retrieval recall continues to increase beyond
K > 20, the EM score saturates much earlier. Fu-
ture research could improve performance further
by developing decoders to more accurately exploit
these larger retrievals sets.

Importance of Two-Stage Pre-training We next
analyze the importance of the two-stage pre-
training from section 4 by removing either the in-
batch or global stage. From our results shown in Ta-
ble 5, we can see that using in-batch pre-training
alone leads to a degradation in performance when
compared to the two-stage approach. This is likely
because the model is never exposed to the full set
of hard negatives which will be encountered when
performing retrieval over the global memory. On
the other hand, if we directly pre-train the global-
memory model without any in-batch initialization,
the retriever performance is nearly random and the
decoder consequently learns to ignore the retrieval
and simply memorize question-answer pairs.

6 Conclusion

In this paper, we propose a more accurate and effi-
cient architecture to utilize QA-pairs as represen-
tation units of knowledge. Our proposed model
QAMAT outperforms RePAQ significantly, while
leveraging our less expensive training procedure.
Furthermore, we show how a QA-backed model
can perform compositional reasoning and address
more complex queries. In the future, we hope to fur-
ther close the gap with state-of-the-art document-
based retrieve-and-read models and extend this ap-
proach to a broader set of tasks.
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Limitations

Our approach has several limitations: 1) we use
generated question-answer pairs as a knowledge
base, which are extracted from web documents.
In order to maintain high quality and faithfulness,
the question generation pipeline needs to be well
trained with a sufficient amount of clean data. Such
conditions might not hold for other domains outside
of Wikipedia like biomedical text, thus the general
QA-as-Knowledge-Base concept could require ad-
ditional innovations to extend to other areas. 2) Our
latent retrieval learning requires quasi paired data
to learn the alignment between the query and mem-
ory. This is hard to satisfy in some domains with
noisier data or only a very weak alignment between
a query and the memory. 3) Our model requires
mined intermediate retrieval signals to train QA-
MAT+, which currently relies on lexical-overlap-
based heuristics. In other cases, this may not be suf-
ficient and instead might require a more principled
design to mine better intermediate supervision.

Ethical Statement

Our work encourages the model to ground on the
existing knowledge populated from large textual
collections. We believe it is a reasonable towards
building more trustworthy and more robust ma-
chine learning models. Having better attributions
to knowledge source could help humans better un-
derstand the model’s rationale for decision making.
However, we do admit that the question genera-
tion models used to populate the QA knowledge
base could potentially exacerbate the biases already
present in the original Wikipedia data. We will
keep working on this direction to minimize its po-
tential negative impacts.
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A Question Answer Pairs as Knowledge
Base

We can see QA-pairs as a virtual knowledge graph,
where the question template defines the relation,
the topic entity in the question defines the head
entity node, and the answer denotes the tail entity.
A typical example is given in Figure 5, such com-
positionality makes the QA-pair more controllable
and easy to reason over than documents.

Figure 5: QA pairs can be seen as virtual knowledge
base, where the question can represent complex rela-
tions connecting subject and answer.

B Question Generation

Here, we use existing SQuAD datasets’ <Q, A,
Document> triples (Rajpurkar et al., 2016) to train
answer extraction, question generation model.

Answer Extraction Specifically, our answer ex-
traction model takes a document as the input and
trains an encoder-decoder model to generate a po-
tential answer. We use beam search over the trained
model to find the highest-likely answers in the
given document. In our experiment, the answer ex-
traction model is trained with the SQuAD dataset,
where the document is given as the input, and the
answer spans are the prediction targets.

Question Generation For the question genera-
tion model, we take the SQuAD dataset and use
document + extracted answer as the input to gen-
erate questions as the outputs. This step is also ac-
complished by an encoder-decoder model. which is
mainly purposed for reading comprehension prob-
lems, where the annotated questions are highly cor-
related with the document containing very few hal-
lucinations. However, the questions in SQuAD (Ra-

jpurkar et al., 2016) could be contextualized or am-
biguous, which could lead to ambiguity problems
to hurt the retrieval performance. Therefore, we
add question filtering to select the most accurate
QA pairs.

Question Filtering For the question filtering
model, we take the document + generated question
to generate an answer. We compare the predicted
answer vs. the original answer to see if they match
each other. If not, the QA-pair will be filtered based
on such inconsistency. We use a reading compre-
hension model trained with SQuAD to predict the
answer. The predicted answer based on the docu-
ment will match with the original QA-pair to decide
its consistency. Such an option runs much faster,
providing much higher recall but lower precision
compared to the open-domain FiD filtering used
in (Lewis et al., 2021).

We visualize our question generation pipeline
mentioned above in Figure 6.

Figure 6: Question generation pipeline: Answers are
extracted from passages and then questions are gener-
ated conditioned on that contextualized answer. This
procedure is used to generate both our model’s QA
memory and our pre-training data.

C Ablation Study

We experiment with two variants of memory to see
their performance difference.

C.1 PAQ memory
The first version is the standard PAQ corpus (Lewis
et al., 2021) containing 65M QA pairs, where
these QA-pairs are generated by models trained on
NQ (Kwiatkowski et al., 2019) and filtered through
FiD model (Izacard and Grave, 2021) also trained
on NQ (Kwiatkowski et al., 2019). This memory
is highly precise due to ODQA-filtering process,
however, it only covers information from 9M out of
the 20M passage blocks used in DPR (Karpukhin
et al., 2020).
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Our memory contains 30M PAQ corpus being
de-duplicated, i.e. only one question corresponds
to an answer span. We generate 30M additional
QA-pairs based on the left-out 10M documents
from PAQ (Lewis et al., 2021) and add these com-
plementary QA-pairs to form our 60M memory to
increase the coverage. However, since our filtering
procedure is based on reading comprehension, the
precision of QA-pairs is lower than the original
PAQ memory.

Memory NQ TriviaQA WebQuestions

PAQ 65M 44.7 48.0 39.4
Ours 60M 44.5 53.2 43.0

Table 6: Impact of different memory over the down-
stream QA dataset performance.

As can be seen, from Table 6, using the
most precise but low-coverage PAQ memory from
PAQ (Lewis et al., 2021) yields the worse results
on TriviaQA and WebQuestions. After adding an
additional 30M PAQs to the memory generated by
our pipeline, we are able to achieve 4-5% improve-
ments on these two datasets while still maintaining
NQ’s performance.

C.2 Size of Pre-training Corpus
Next, we investigate the impact of the size of the
pre-training corpus. As a baseline, we repurpose
the aligned query-passage corpus used to train
DPR (Karpukhin et al., 2020) which we adapt to
our setting by simply reversing the pairs (120K pas-
sage -> question retrieval). Additionally, we vary
the size of generated pre-training corpus (from 1M
to 20M instances) to see its impact on the model’s
final downstream performance. From Table 7, we
can see that the smaller-sized pre-training corpus
can drastically reduce the model’s performance,
with up to a 5% drop seen on TriviaQA.

Pre-train Examples NQ TQA WQ

120K 42.5 48.2 39.7

1M 42.8 48.8 40.2
5M 43.8 51.5 41.7
10M 44.3 52.1 42.5
20M 44.5 53.2 43.0

Table 7: Impact of pre-training corpus size on final
downstream EM performance. The upper portion is
pre-trained using the DPR-reverse corpus described in
subsection 5.6 and the lower portion uses subsets of our
generated pre-training corpus (subsection 4.1)

Figure 7: The impact of memory size on downstream
QA EM performance.

Size of Memory Finally, we look at how big of
memory we need to reach optimal downstream ac-
curacy and how the model behaves with a smaller
memory. As is shown in Figure 7, having a small
memory of less than 5M entries does not improve
over a model with no memory at all. Due to the
lack of coverage, the model does not receive a use-
ful signal from the retrieval and is subsequently
not incentivized to utilize those retrievals when
making a prediction. However, once the size of
the memory increases beyond 15M we observe a
steep increase in the final performance, indicating
that the model is gradually learning to incorporate
retrieved information retrievals to assist prediction.

D MultiHop QA Training

In order to train the multi-hop QA model, we need
to have intermediate supervision for the query aug-
mentation process. Here we use a string-based
match to derive what are the most possible interme-
diate questions from a collection of pre-generated
QA pairs. We depict the mining process as Fig-
ure 8.
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Figure 8: We first find the final question based on answer string matching with the pre-generated question, and
then base on that to trace back the intermediate question.
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Abstract

We describe a simple and effective method
(Spectral Attribute removaL; SAL) to remove
private or guarded information from neural rep-
resentations. Our method uses matrix decom-
position to project the input representations
into directions with reduced covariance with
the guarded information rather than maximal
covariance as factorization methods normally
use. We begin with linear information removal
and proceed to generalize our algorithm to the
case of nonlinear information removal using
kernels. Our experiments demonstrate that our
algorithm retains better main task performance
after removing the guarded information com-
pared to previous work. In addition, our exper-
iments demonstrate that we need a relatively
small amount of guarded attribute data to re-
move information about these attributes, which
lowers the exposure to sensitive data and is
more suitable for low-resource scenarios.1

1 Introduction

Natural language processing (NLP) models cur-
rently play a critical role in decision-supporting
systems. Their predictions are often affected by
undesirable biases encoded in real-world data they
are trained on. Making sensitive predictions based
on irrelevant input attributes such as gender, race,
religion, or demographic (protected or guarded at-
tributes) impacts user trust and the practical broad
utility of NLP methods.

In recent years, representation learning ap-
proaches have become the mainstay of input en-
coding in NLP. While representation learning has
yielded state-of-the-art results in many NLP tasks,
it is hard to control or inspect the information en-
coded in these representations. Thus, using rule-
based methods to remove unwanted information
from such representations is often not feasible. In

1Code is available at https://github.com/
jasonshaoshun/SAL.
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Figure 1: The ratio ρ between the average t-
SNE similarity of representations between two gen-
der clusters c1, c2 (sim(c1, c2)) for each profession:
ρ =

(
after SAL sim(c1, c2)

/
before SAL sim(c1, c2)

)
.

Three values of ρ are computed, intra-cluster: (1)
c1 = c2 = male; (2) c1 = c2 = female; and inter-
cluster: (3) c1 = male, c2 = female. The ratios in the
inter-cluster case are smaller than 1, and larger than 1
for the intra-cluster case.

the context of protected attributes, Bolukbasi et al.
(2016) showed that word embeddings trained on
the Google News corpus encode gender stereotypes.
Later, Manzini et al. (2019) expanded this work and
showed that word embeddings trained on the Red-
dit L2 corpus (Rabinovich et al., 2018) encode race
and religion biases.

We propose a simple yet effective technique to
remove protected attribute information from neu-
ral representations. Our method, dubbed SAL for
Spectral Attribute removaL, applies Singular Value
Decomposition (SVD) on a covariance matrix be-
tween the input representation and the protected
attributes and prunes highly co-varying directions.
Figure 1 demonstrates how professional biography
text representations from labeled gender clusters
(each biography is marked with the gender of its
subject; De-Arteaga et al. 2019) for different pro-
fessions expand after the use of SAL, and become
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closer, implying a higher spread of each profession
representations after SAL (§6.2.2).

In addition, we overcome the linear removal
limitations of SAL and previous work by using
eigenvalue decomposition of kernel matrices to
obtain projections into directions with reduced co-
variance in the kernel feature space. We refer to
this method as kSAL (for kernel SAL).

SAL outperforms the recent method of Ravfogel
et al. (2020) aimed at solving the same problem,
and is able to remove guarded information much
faster while retaining better performance for the
main task. Further experiments demonstrate that
our method performs well even when the available
data for the protected attributes is limited.

2 Problem Formulation and Notation

For an integer n we denote by [n] the set
{1, . . . , n}. For a vector v, we denote by ||v||2
its ℓ2 norm. Matrices and vectors are in boldface
font (with uppercase or lowercase letters, respec-
tively). Random variable vectors are also denoted
by boldface uppercase letters. For a matrix A, we
denote by Aj its jth column (or by Ai:j the matrix
with columns Ak for k = i, . . . , j). Vectors are
assumed to be column vectors.

In our problem formulation, we assume three
random variables: X ∈ Rd, Y ∈ R and Z ∈ Rd′ .
Samples of X are the inputs for a classifier to pre-
dict corresponding samples of Y. The random vec-
tor Z represents the guarded attributes. We want to
maximize the ability to predict Y from X, while
minimizing the ability to predict Z from X. With-
out loss of generality, we assume that the mean
values of X, Y and Z are 0, and that d′ ≤ d.2

We assume n samples of (X,Y,Z), denoted by
(x(i),y(i), z(i)) for i ∈ [n]. These samples are used
to train the classifier to predict the target values (y)
from the inputs (x). These samples are also used to
remove the information from the inputs based on
the guarded attributes (z).

3 Erasing Principal Directions

We describe SAL in this section. We explain the
use of SVD on cross-covariance matrices (§3.1)
and describe the core algorithm in §4.1.

2For example, Z may be a multi-class label such as gender
represented as a short vector over {−1, 1} and X may be a
complex input, which before removal of information about the
guarded attribute Z, can be used to predict Z. An example of
X would be an encoding of a post on a message board.

3.1 SVD on Cross-covariance Matrix
Let A = E[XZ⊤], the matrix of cross-covariance
between X and Z. In that case, Aij = Cov(Xi,Zj)
for i ∈ [d] and j ∈ [d′].

A simple observation is that for any two vectors
a ∈ Rd,b ∈ Rd′ , the following holds due to the
linearity of expectation:

aAb⊤ = Cov(a⊤X,b⊤Z). (1)

This motivates the use of the cross-covariance
matrix to find the so-called principal directions:
directions in which the projection of X and Z
maximize their covariance, where the projections
are represented as two matrices U ∈ Rd×d and
V ∈ Rd′×d′ . Each column in these matrices plays
the role of the vectors a and b in Eq. 1. More
specifically, we find U and V such that for any
i ∈ [d′] it holds that:

Cov(U⊤i X,V ⊤i Z) = max
(a,b)∈Oi

Cov(a⊤X,b⊤Z),

where Oi is the set of pairs of vectors (a,b) such
that ||a||2 = ||b||2 = 1, a is orthogonal to
U1, . . . ,Ui−1 and similarly, b is orthogonal to
V1, . . . ,Vi−1.

It can be shown that such maximization can
be done by applying the SVD on A such that
A = UΣV ⊤, where U ∈ Rd×d, Σ ∈ Rd×d′

and V ∈ Rd′×d′ . In the case of SVD, U and V are
orthonormal matrices, and Σ is a diagonal matrix
with non-negative values on the diagonal. We let
the vector of singular values on the diagonal of Σ
be denoted by σ1, . . . , σd′ .

Once the orthogonal matrices in the form of U
and V are found, one can truncate them (for ex-
ample, use only a subset of the columns of U ,
represented as the semi-orthonormal matrix Û ) to
use, for example, Û⊤X, as a representation (linear
projection) of X which co-varies the most with Z.

We suggest that rather than using the largest
singular value vectors in U to project X, we should
project X using the principal directions with the
smallest singular values. This means we find a
representative of X that co-varies the least with Z,
essentially removing the information from X that
is most related to Z and can be detected through
covariance.

In addition, once such a projection matrix U is
calculated, we can use the projection X = UU

⊤
X

such that the value of E[||X−X||2] is minimized,
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while removing the information from X.3 This al-
lows us to potentially use the new projected values
of the input random variable X without changing
a classifier that was originally trained on samples
from X, though as we see in §6, using the pro-
jected input as-is without retraining the classifier
may lead to performance issues with our method
and other methods as well.

4 Connection to CCA and PCA

We describe connections to other matrix factoriza-
tion methods.

How is SAL related to Canonical Correla-
tion Analysis? The use of SVD on the cross-
covariance matrix is very much related to the tech-
nique of Canonical Correlation Analysis (CCA), in
which projections of X and Z are found such that
they maximize the cross-correlation between these
two random vectors. Rather than applying SVD on
the cross-correlation matrix (CCA), we apply it on
the cross-covariance matrix to preserve the scale of
X in our projection.

How is SAL related to Principal Compo-
nent Analysis? The use of SVD on the cross-
covariance matrix is reminiscent of Principal Com-
ponent Analysis (PCA), in which eigenvalue de-
composition is applied on E[XX⊤] to reduce the
dimensionality of X. However, PCA does not re-
duce the dimensionality of X while removing in-
formation present in the guarded r.v. Z. Rather, it
finds projection of X in which the covariance of
linear combination of X with itself is maximized.

In all three cases of CCA, PCA and LSA (La-
tent Semantic Analysis; Dumais 2004), SVD or
eigenvalue decomposition is used with the aim of
maximizing the correlation or covariance between
one or two random vectors. In our case, the SVD
is used to minimize the covariance between projec-
tions of X and Z.

4.1 The SAL Algorithm

Our algorithm (SAL) follows the following proce-
dure. First, the empirical cross-covariance matrix,
estimating E[XZ⊤] is calculated:

Ω =
1

n

n∑

i=1

x(i)(z(i))⊤. (2)

3This can be formalized using the min-max theorem of
linear algebra, also referred to as the Courant–Fischer–Weyl
min-max principle.

SVD is then performed on Ω to obtain
(U ,Σ,V ). We choose an integer value k and de-
fine U = U(k+1):d. The value of k bounded by the
rank of Ω. The rank of Ω is bounded from above
by d and d′, the dimensions of the vectors of X and
Z.

Then, the vectors x(i) are projected using either
U
⊤ or UU

⊤. The latter projection attempts to
project x(i) to the original dimensionality and space
after removing the information. More specifically,
UU

⊤ is a projection matrix to the range of Ω.
The criterion we use to choose k is based on the

singular values in Σ. More specifically, we choose
a threshold α ≥ 1 and choose the minimal k such
that Σ11/Σk+1,k+1 > α.

5 Kernel Extension to SAL

To enrich the type of information that is detected
as co-varying, it is possible to use two feature func-
tions, ϕ : Rd → Rm and ψ : Rd′ → Rm′

, and apply
the procedure in §3 on E[ϕ(X)(ψ(Z))⊤]. In that
case, we can erase the information from ϕ(X) and
treat it as the input for further classification. If the
classifier is already learned, it would have to take
input vectors of the form ϕ(X), otherwise it can be
re-trained with the erased inputs.

5.1 The Kernel Trick
The kernel trick refers to learning and predic-
tion without explicitly representing ϕ(x) or ψ(z).
Rather than that, we assume two kernel functions,
Kϕ(x,x

′) and Kψ(z, z
′) that calculate similarities

between two xs or between two zs.
Every kernel that satisfies the necessary prop-

erties can be shown to be a dot product in some
feature space. This means that for a given kernel
function Kϕ(x,x

′) it holds that

Kϕ(x,x
′) = ⟨ϕ(x), ϕ(x′)⟩, (3)

for some ϕ function and similarly for Kψ(z, z
′).

Masking learning and prediction through a kernel
function is often useful when the feature represen-
tations ϕ and ψ are hard to explicitly compute, for
example, because m =∞ or m′ =∞ (such as the
case with the Radial Basis Function, RBF, kernel).

We show next that the kernel trick can be used to
generalize SAL to nonlinear information removal.

5.2 Removal with the Kernel Trick
Rather than assuming a set of examples in the form
mentioned in §2, we assume we are given as input
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two kernel matrices of dimension n× n:

[Kϕ]ij = Kϕ(x
(i),x(j)),

[Kψ]ij = Kψ(z
(i), z(j)).

In addition, for the justification of our algorithm,
we define the following two feature matrices based
on the kernel feature functions:

∀i ∈ [m], j ∈ [n] [Φ]ij = ϕ(x(j))i,

∀i ∈ [m′], j ∈ [n] [Ψ]ij = ψ(x(j))i.

Note that these two matrices are never calculated
explicitly. Given the definition of the kernel as a
dot product in the feature space (Eq. 3), it can be
shown that Kϕ = Φ⊤Φ and Kψ = Ψ⊤Ψ. In
addition, we slightly change the empirical cross-
covariance matrix Ω definition in Eq. 2 to: Ω =
ΦΨ⊤. (This means we ignore the constant 1/n
in the above definition of Ω that normalizes the
matrix with respect to the number of examples.
This does not change the nature of the following
discussion, but makes it simpler.) At this point, the
question is how to perform SVD on Ω without ever
accessing directly the feature functions. This is
where spectral theory of matrices comes in handy.

More specifically, it is known that the left singu-
lar vectors of Ω (U ) are the eigenvectors of ΩΩ⊤.
In addition, the singular values of Ω correspond to
the square-root values of the eigenvalues of ΩΩ⊤.

In addition, we show in Appendix A why an
eigenvector w of Γ = KϕKψ can be transformed
to an eigenvector of ΩΩ⊤ by multiplying w on the
left by Φ and calculating Φw.

With this fact in mind, we are now ready to find
the left singular vectors of Ω by finding the eigen-
values of Γ, a matrix which is solely based on the
kernel functions of x and z.

Let w1, . . . ,wk be eigenvectors of Γ and let
w′1, . . . ,w

′
k be the orthonormalization of wi,

i ∈ [k] based on the inner product ⟨wi,wj⟩ =
wiKϕwj

⊤. If we denote by W the matrix such
that Wj = w′j for j ∈ [k], then ΦW = U where
U is the left singular vector matrix of Ω. Then,

U⊤ϕ(x) = (W⊤Φ⊤)ϕ(x) = W⊤κ(x), (4)

where κ(x) is a function that returns a vector of
length n such that [κ(x)]j = K(x(j),x). Eq. 4

shows we can calculate the projection of ϕ(x)
while removing the information in ψ(z) by using
the smallest eigenvalue eigenvectors of Γ and ker-
nel calculations of each training example with x.

5.3 Practical Kernel Removal

Using the kernel algorithm as above may lead to
issues with tractability, as it possibly requires calcu-
lating the full eigenvector matrix of a large matrix
(the product of two kernel matrices). We propose
an alternative algorithm (kSAL) for the kernel case
which is more tractable.

For a fixed 0 ≤ k ≤ n (which does not need
to be larger than the rank of either kernel matri-
ces), we compute only the top k eigenvectors of
Γ. We then compute an orthonormal basis for
the null space of the matrix (Kϕ,1/2W1:k)

⊤ where

Kϕ,1/2 = UϕΣ
1/2
ϕ V ⊤ϕ , with (Uϕ,Σϕ,Vϕ) being

the SVD of Kϕ. Practically, this means we find a
matrix Lϕ ∈ Rn×(n−d) such that L⊤ϕLϕ = I and
that ||(Kϕ,1/2Γ)

⊤Lϕ||2 ≈ 0. The final data points
x̂(j) we use further down the pipeline correspond
to the rows of Kϕ,1/2Lϕ ∈ Rn×(n−k). If we are in-
terested in using directly the reduced kernel matrix
for the input vectors, we can use

K̂ϕ = Kϕ,1/2LϕL
⊤
ϕK

⊤
ϕ,1/2. (5)

Time Complexity Absorbing the kernel function
computation as a constant, computing the kernel
matrices is O(n2) and their product Γ in O(nω)
for ω < 2.808 using Strassen’s algorithm, but can
be done much more efficiently when Kψ is sparse,
as normally expected. Calculating the top k eigen-
vectors of Γ, has a cost of O(nk2 + k3) using, for
example, the Arnoldi method.4 In §6.4, we report
clock running time for the kernel method.

Below, we experiment with RBF kernels (where
Kϕ(x,x

′) = exp(−γ||x − x′||22); we use γ =
0.1) and polynomial kernel of degree 2 (where
Kϕ(x,x

′) = (1 + x⊤x′)2). The kernel of z re-
mains linear (dot product).

6 Experiments

In our experiments, our main comparison algorithm
is the iterative null space projection (INLP) algo-
rithm of Ravfogel et al. (2020), which aims at solv-
ing an equivalent problem to ours. For the word
embedding debiasing and fair classification (both

4For example, Matlab implements a variant of the Arnoldi
method for its function eigs.

1614



SL WS-S WS-R Mturk
Before 0.37 0.69 0.6 0.68
After ↑0.02 0.39 ↑0.01 0.7 0.6 ↑0.01 0.69

Table 1: The semantic evaluation of word embeddings
before and after removing gender bias.

setups), we follow the experimental settings of Rav-
fogel et al. (2020).5 SAL provides linear guarding,
similarly to INLP, while kSAL also captures nonlin-
ear regularities with respect to Z (one-hot vector).
We can provide such guarding for representations
of state-of-the-art encoders (such as BERT), pro-
vided the representations are eventually fed into a
classifier for prediction. The protected attributes
we experiment with are gender and race. Appendix
D provides details about the datasets’ splits and
SAL run-time performance.

Datasets For debiasing word embeddings (§6.1),
we use 7,500 male and female associated words,
15K words overall. The dataset train/validation/test
split sizes are (49%/21%/30%). All the splits are
balanced, i.e., containing an equal amount of male
and female associated words. For the fair senti-
ment classification task (§6.2), we use 10K training
examples across all authors’ ethnicity ratios (0.5,
0.6, 0.7, and 0.8). All training sets have an equal
amount of positive and negative sentiment exam-
ples. The test set is balanced for both sentiment and
authors’ ethnicity labels. For the profession classi-
fication task (§6.2.2) the data train/validation/test
split sizes are (65%/10%/25%) and all the splits
combined contain 115K samples.

6.1 Word Embedding Debiasing

Word embeddings are often prone to encoding bi-
ases in various ways (see §7). We evaluate our
methods on gender bias removal from GloVe word
embeddings. We use the 150,000 most common
words and discard the rest. We sort the embed-
dings by their projection on the

−→
he-
−→
she direction.

Then we consider the top 7,500 word embeddings
as male-associated words (z = 1) and the bottom
7,500 as female-associated words (z = −1).

Results with SAL A linear classifier can per-
fectly predict the guarded gender attribute when
trained on out-of-the-box GloVe embeddings. Re-
moving the first direction (k = 1) does not affect

5We use the authors’ implementation for both the INLP
method and the experimental settings: https://github.
com/shauli-ravfogel/nullspace_projection.

Figure 2: A classifier accuracy for gender prediction
as a function of the number of principal directions that
are linearly removed. For the linear classifier, we use a
linear SVM. For the nonlinear classifiers, we use SVM
with the polynomial kernel and with the RBF kernel.

accuracy demonstrated in Figure 2. For k = 2,
the performance drops to 50.2%, almost a random
guess.

We further perform intrinsic semantic tests to
ensure the debiased embeddings remain useful.
We use SimLex-999, WordSim353, and Mturk771
(similarity and relatedness datasets) to calculate
the correlation between cosine similarities of the
word embeddings to the human-annotated similar-
ity score (Hill et al., 2015; Finkelstein et al., 2001;
Halawi et al., 2012). We observed minor improve-
ments for all tests when using debiased embeddings
(Table 1), suggesting that our method keeps the
embeddings intact. We also report the three most
similar words (nearest neighbors) for ten random
words before and after SAL (see Appendix C). We
observe almost no change between the two sets of
embedding results.

SAL debiasing does not provide a nonlinear in-
formation removal. In Figure 2 we plot the perfor-
mance of nonlinear classifiers in the prediction of
the linearly-guarded attribute (gender) as a func-
tion of the number of removed directions. We also
provide linear classifier results for reference. We
see that even after removing up to 30 principal di-
rections, (linear) SAL is not sufficient for nonlinear
classifiers – the gender can still be predicted. This
finding is also noted by Ravfogel et al. (2020), who
did not offer a direct solution. This finding partially
motivates our development of kSAL.

Kernel Debiasing All three kernels achieve high
gender prediction accuracy when no information is
removed (k = 0), with accuracy of 100%, 99.9%

1615

https://github.com/shauli-ravfogel/nullspace_projection
https://github.com/shauli-ravfogel/nullspace_projection


and 95.7% for the linear, polynomial, and RBF
kernel, respectively. While the performance of the
linear and polynomial kernels is not affected by
removing one principal direction (k = 1), the RBF
kernel accuracy drops to 86.3%. With k = 2, per-
formance drops to 50.2%, 44.5% and 50.2% for the
linear, polynomial, and RBF kernel, respectively,
under nonlinear kernel removal. Compared to Fig-
ure 2 with SAL, we see kSAL effectively removes
nonlinear information.

Deviations of Reduced Kernel from Original
Kernel To quantitatively test whether the embed-
dings retain their geometric form when removing
gender information, we compare the standard devia-
tion (ρ) of the values in Kϕ to the average deviation
(γ) of values of Kϕ from the corresponding val-
ues in K̂ϕ (Eq. 5). When removing two principal
directions, the largest approximation difference is
seen in the linear kernel, with γ/ρ = 0.64. For the
polynomial kernel, we observe γ/ρ = 0.52. For
RBF, we have γ/ρ = 0.16.

6.2 Fair Classification

To further evaluate our method on downstream
tasks, we follow fair classification tests of social
media text.

6.2.1 Fair Sentiment Analysis
Task and Data The first task is sentiment anal-
ysis for social network users’ posts. We use the
TwitterAAE dataset (Blodgett et al., 2016), which
contains users’ tweets (x), coupled with the users’
ethnic affiliations (z), and a binary label for the
sentiment the tweet conveys (y). The dataset splits
the users into two groups, African American En-
glish (AAE) speakers and Standard American En-
glish (SAE) speakers. As users’ privacy makes it
hard to obtain ground truth labels for ethnic affil-
iation, the dataset uses the demographics of the
neighborhoods the users live in as a proxy. Follow-
ing NIO2020, we use the encoder of Felbo et al.
(2017), DeepMoji, to obtain the tweets representa-
tion. DeepMoji is suitable for our goal, as it has
been shown to encode demographic information,
and therefore, might lead to unfair classification
(Elazar and Goldberg, 2018).

We experiment with four different setups. The
dataset consists of an equal amount of positive and
negative sentiment examples for all of them. The
datasets differ with respect to the guarded attribute
ratio. For example, a ratio of 0.8 means that 0.8

of the positive and negative sentiment class exam-
ples are composed of AAE speakers, and 0.2 is
composed of SAE speakers. We experiment with
ratios of 0.5, 0.6, 0.7 and 0.8. The larger the ratio,
the higher the classifier’s tendency to make use of
protected attributes to make its prediction.

Evaluation Measures We report the accuracy of
the methods on the sentiment analysis task. To
measure fairness, we use the difference in true pos-
itive rate (TPR-gap) between individuals belonging
to different guarded attributes groups (Hardt et al.,
2016; Ravfogel et al., 2020). The rationale behind
TPR-gap is that for an equal opportunity, a posi-
tive outcome must be independent of the guarded
attribute (z), conditional on (y) being an actual
positive. See Hardt et al. (2016) for more details.

Results Table 2 presents our results for the fair
sentiment classification. For the first three ra-
tios, 0.5, 0.6, and 0.7, we can see that both SAL
(k = 1, 2) and INLP maintain most of the main-
task performance. In debiasing (TPR-Gap), SAL
with k = 2 significantly outperforms INLP. As ex-
pected, removing two directions results in better
debiasing than removing one, but it does not lead to
a performance drop on the main task. While for the
last ratio, 0.8, INLP achieves the highest TPR-gap
result, it comes at the cost of a sharp performance
drop on the main task, resulting in a nearly ran-
dom classifier. SAL (k = 1, 2) maintains most
of the main-task performance, and for k = 2, the
TPR-gap is halved.

6.2.2 Fair Profession Classification
Task and Data The second task is profession
classification. De-Arteaga et al. (2019) attempt to
quantify the bias in automatic hiring systems and
show that even for a simple task, predicting can-
didate profession based on a self-provided short
biography, significant gaps result from the writer’s
gender. This might influence the open positions
an automatic system will recommend to a candi-
date, thus favoring candidates from one gender
over the other. We hence follow the setup of De-
Arteaga et al. (2019), who experiment with profes-
sions classification (y), from short biographies (x),
and gender as a guarded attribute (z). We use a mul-
ticlass classifier to predict the profession, as there
are 28 profession classes. We experiment with two
types of text representations, FastText (Joulin et al.,
2016), based on bag of word embeddings (BWE)
and BERT (Devlin et al., 2018) encodings.
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Sentiment TPR-Gap
Rt Orig. INLP SAL, k = 1 SAL, k = 2 Orig. INLP SAL, k = 1 SAL, k = 2
0.5 0.76 0.76 0.76 0.76 0.14 ↓0.02 0.12 0.14 ↓0.03 0.11
0.6 0.75 0.75 0.75 0.75 0.22 ↓0.03 0.19 0.22 ↓0.13 0.09
0.7 0.74 0.74 0.74 0.74 0.31 ↓0.05 0.26 0.31 ↓0.15 0.11
0.8 0.72 ↓0.2 0.52 0.72 0.72 0.40 ↓0.39 0.01 ↓0.04 0.36 ↓0.22 0.18

Table 2: The sentiment analysis scores (we use accuracy, as the dataset is balanced) and TPR differences (lower
is better) as a function of the ratio of tweets (Rt) written by black individuals and conveying positive sentiment.
Arrows with numbers indicate absolute increase/decrease from the baseline, and their background color indicates a
difference with positive implications (green) or negative ones (red).

Accuracy (profession) TPR-Gap (RMS)
Encoder Orig. INLP SAL, k = 1 SAL, k = 2 Orig. INLP SAL, k = 1 SAL, k = 2
FastText 0.75 ↓0.05 0.71 ↑0.01 0.76 ↑0.01 0.76 0.20 ↓0.11 0.09 ↓0.02 0.18 ↓0.08 0.12
BERT 0.8 ↓0.11 0.69 ↓0.02 0.78 ↓0.02 0.78 0.21 ↓0.15 0.06 ↓0.04 0.17 ↓0.12 0.09

Table 3: The profession classification on the biographies dataset results. We report accuracy and TPR-RMS. The
number of classes is 28.

Evaluation Measures We report accuracy for
the profession classification. For bias level mea-
surement, we use a generalization of TPR-gap for
multi-class, suggested by De-Arteaga et al. (2019),
calculating the root mean square (RMS) of the TPR
with respect to all classes.

De-Arteaga et al. (2019) also provided evidence
for a strong correlation between TPR-gap and exist-
ing gender imbalances in occupations, which may
lead to unfair classification.

Results Table 3 presents the profession classifi-
cation results. Similar to the sentiment analysis
task, SAL (k = 1, 2) maintains most of the main-
task performance, and for k = 2, the two-direction
removal, the TPR-gap is lower. When comparing
SAL (k = 2) to INLP, we observe a clear trade-off
between maintaining the main task performance
(SAL, k = 2) and low TPR-gap scores (INLP).

6.3 Scarce Protected Attribute Labels

For many real-world applications, obtaining large
amounts of labeled data for protected attributes can
be costly, labor-intensive, and in some cases, infea-
sible due to an ever-increasing number of privacy
regulations. In this analysis, we stress-test our al-
gorithm by simulating a scenario in which only a
limited amount of samples from the main task are
coupled with the desired protected attribute labels.
For this purpose, we replicate the fair sentiment
classification experiments, but this time, feeding
only a fraction of the annotated data to our debias-
ing method. In terms of the main task, the exper-
iment is identical, i.e., we use 100K samples for
training the sentiment classifier. We experiment

with different fractions of the debiasing data, i.e.,
5%, of the sentiment training data contains labels
about the protected attribute. We hence feed 5,000
samples for debiasing. The subsets for debiasing
are chosen randomly. We repeat each experiment
10 times with different subsets. Table 4 presents
our results. Using a small fraction of the data for de-
biasing did not significantly affect SAL’s (k = 1, 2)
main-task performance. INLP, on the other hand,
suffers from a sharp performance decrease, result-
ing in a near-random sentiment classifier. SAL’s
(k = 1, 2) ability to debias the data is slightly worse
than in the complete dataset setting but the result-
ing representations are still significantly less biased
than the original ones. INLP achieves low TPR
gaps, but it is hard to determine if this is due to an
accurate bias removal or a result of corrupting the
representations.

6.4 Kernel Experiments
Despite their flexibility in modeling rich feature
functions, kernels have been documented to be
computationally intensive. Lack of computational
resources prevented us from using the full senti-
ment and bios datasets for our kernel experiments,
and instead, we use 15, 000 training examples and
7, 998 test set examples (the full test set) for the
sentiment dataset and 15, 000 training examples
and 5, 000 examples for the profession dataset. For
training on the acquired 15, 000 training examples,
we used one Intel Xeon E5-2407 CPU, running at
2.2 GHz, for approximately five hours (for a time
complexity analysis, see §5.3).

Table 5 shows that using only a small subset
of the data, kSAL-poly2 reduces the TPR gaps
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Sentiment TPR-Gap
Ratio Orig. INLP SAL, k = 1 SAL, k = 2 Orig. INLP SAL, k = 1 SAL, k = 2
0.5 0.76 ↓0.19 0.57 0.76 0.76 0.14 ↓0.12 0.02 ↑0.27 0.41 ↓0.03 0.11
0.6 0.75 ↓0.16 0.59 0.75 0.75 0.22 ↓0.19 0.03 ↑0.01 0.23 ↓0.13 0.09
0.7 0.74 ↓0.17 0.57 ↓0.01 0.73 ↓0.01 0.73 0.31 ↓0.26 0.05 0.31 ↓0.19 0.12
0.8 0.72 ↓0.15 0.57 ↓0.01 0.71 ↓0.01 0.71 0.40 ↓0.32 0.08 ↓0.08 0.34 ↓0.27 0.17

Table 4: The sentiment analysis experiments, 100K samples are use to train the sentiment classifier, but only 5K
examples are used for learning to remove bias. The test set is identical to the one used in §6

Sentiment Analysis (DeepMoji)
Main TPR-Gap

k poly2 rbf poly2 rbf
0 0.75 0.76 0.14 0.15
1 0.75 0.76 0.14 0.15
2 0.75 0.76 ↓0.01 0.13 ↓0.03 0.12

Profession Classification (BERT)
Main TPR-Gap (RMS)

k poly2 rbf poly2 rbf
0 0.77 0.61 0.33 0.23
1 0.77 ↑0.07 0.68 ↓0.05 0.28 ↑0.11 0.34
2 0.77 ↑0.07 0.68 ↓0.08 0.25 ↑0.08 0.31

Table 5: Kernel results with kSAL for sentiment (for a
ratio of 0.5) and profession classification.

while maintaining almost identical performance to
the original model on both the sentiment analysis
and profession classification tasks. For the senti-
ment analysis task, kSAL-RBF slightly improves
the main task results while reducing the TPR-gap
(RMS). For the RBF profession classification task,
the results are unexpected, with main task perfor-
mance increasing as we remove principal direc-
tions. This could be due to the pruning of the rich,
infinite feature space RBF kernel represents (we
also observe significant overfitting with RBF).6

6.5 Perturbed Inputs

While the transformation through UU
⊤ maps x

back into the original vector space (as a projection),
it often turns out that it removes information in such
a way that the original classifier (trained on data
without removal) can no longer be used with the
inputs after removal. This issue exists not only with
our algorithm, but also with INLP, and indeed, like
us, Ravfogel et al. (2020) re-trained their classifier
after they created the cleaned projected inputs.

Ideally, we would want to remove information
without necessarily having to retrain a classifier

6With INLP, RBF-kernel SVM also obtains low-accuracy
results.

Figure 3: Gender and profession classifications as a
function of the interpolation coefficient λ.

for the main task, as this is costly and perhaps
unattainable. To test the effect of such an approach,
we interpolated UU

⊤ with the identity matrix, to
eventually project x using λUU

⊤
+ (1− λ)I for

λ ∈ {0, 0.1, . . . , 1.0}. This approach weakens the
impact of the removal projection and retains some
of the information in x. While an adversary can
attack this approach,7 it can mitigate the effects of
privacy violations in cases where the service or soft-
ware used with the modified representations cannot
be retrained, especially if the service providers have
no malicious intent.

Figure 3 describes an ablation experiment, rang-
ing λ as above on the bios dataset. We see that as
we increase the intensity of the use of the SAL pro-
jection (increasing λ), the accuracy of both gender
prediction and profession prediction decrease when
training the original classifier on the non-projected
inputs. While the behavior is similar for the gender
accuracy for both INLP and our method, the de-
crease for the profession prediction is much sharper
for λ > 0.4 with INLP.

7Consider that the matrix λUU
⊤
+ (1 − λ)I could be

invertible for λ < 1.
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Task WED FSC FPCF FPCB
SAL 0.03 sec 0.37 sec 0.16 sec 0.35 sec
INLP 50 sec 100 min 7 min 35 min

Table 6: A run-time comparison between SAL and INLP.
We used 2.20GHz Intel Xeon E5-2407 CPU for all of
the experiments. WED, FSC, FSCF, and FPCB stand for
word embedding debiasing, fair sentiment classification,
and fair profession classification (with both FastText
and BERT based representations).

6.6 Runtime of SAL

We measure the time it takes both methods to learn
a projection matrix for a given training set. Once
we have a projection matrix, debiasing the data is
done by multiplying the data representation matrix
by the learned projection matrix. Since matrix mul-
tiplication is a common practice for many research
disciplines, and both methods use it, we do not
benchmark it as well. Table 6 presents the run-time
differences between SAL and INLP. For all of the
experiments, SAL runtime is smaller by at least
three orders of magnitude than INLP runtime.

7 Related Work

In their influential work, Bolukbasi et al. (2016)
revealed that word embeddings for many gender-
neutral terms show a gender bias. Zhao et al. (2018)
presented a customized training scheme for word
embeddings, which minimizes the negative dis-
tances between words in the two groups, e.g., male
and female related words, for gender debiasing.
Gonen and Goldberg (2019) demonstrated that bias
is remains deeply intertwined in word embeddings
even after using the above methods. For example,
they showed several methods that can accurately
predict the gender associated with gender-neutral
words, even after applying the methods mentioned
above. Similar to Ethayarajh et al. (2019), they
concluded that removing a small number of intu-
itively selected gender directions cannot guarantee
the elimination of bias. Motivated by this conclu-
sion, Ravfogel et al. (2020) presented iterative null
space projection (INLP). This debasing algorithm
iteratively projects features into a space where a
linear classifier cannot predict the guarded attribute.
The debiased representations are linearly guarded,
i.e., they cannot guarantee bias removal beyond the
linear level. Indeed, they show a simple nonlinear
classifier can achieve high accuracy when predict-
ing the guarded attribute. Their approach is also
related to that of Xu et al. (2017). Previous work

uses adversarial methods (Ganin et al., 2016) for
information removal (Edwards and Storkey, 2015;
Li et al., 2018; Coavoux et al., 2018; Elazar and
Goldberg, 2018; Barrett et al., 2019; Han et al.,
2021) with the one by Ravfogel et al. (2022) being
related to ours through the use of the mini-max
theorem with squared-error loss on the reconstruc-
tion of a matrix similar to our covariance matrix.
In addition, methods based on similarity measures
between neural representations (Colombo et al.,
2022) were developed. To support the increasing
interest in fair classification, Han et al. (2022) pre-
sented an open-source framework for standardizing
the evaluation of debiasing methods. Finally, most
relevant to this paper is an extension of SAL to the
unaligned case, where protected attributes are not
paired with input examples (Shao et al., 2023).

8 Conclusions

We presented a method for removing information
from learned representations. We extended our
method by using kernels, showing we can provide
an effective nonlinear guarding. We also exper-
imented with real-world low-resource situations,
in which only a small guarded attribute dataset is
provided for information removal.

Limitations

There are two main technical limitations to our
work: (a) while the kernel removal is nonlinear, it
still depends on a feature representation that cap-
tures a specific type of nonlinearities; (b) like other
kernel methods, the kernel removal method is sig-
nificantly slower than direct SVD removal in cases
where the feature representations can be written
out without the need of an implicit kernel. Future
work may apply random projections to the kernel
matrices to decompose them more efficiently.

A general limitation of current methods of infor-
mation removal is that they are only able to remove
information with respect to a specific class of clas-
sifiers. It could always be the case that complex
correlations between the inputs and the guarded
attributes exist, and that an adversary can try to
exploit them to predict the guarded attribute if this
class of classifiers is not too complex. Our use of
kernels alleviates some of this issue, though not
completely.

Finally, experimentally, we focus on text only in
English. It is not clear to what extent our method
generalizes to other languages in a useful manner,
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especially when morphology is rich, and the neural
representations encode important information for
the task at hand, but that information would be
removed by our method.

Ethical Considerations

Public trust plays a significant role in the broad
applicability of NLP in real-world scenarios, espe-
cially in critical situations that may directly impact
people’s lives. NLP research of the kind presented
in this paper helps this issue take the spotlight it
deserves. However, we discourage NLP practition-
ers from using our method (and similar methods)
as an out-of-the-shelf solution in deployed systems.
We recommend investing a significant amount of
time and effort in understanding the applicability
and universality of our method to the debiasing of
representations. Issues such as expected type of
adversariality or tolerance level for drop in system
performance need to be considered.
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A Eigenvectors of Λ

We turn to the following Lemma used in §5.2.

Lemma 1. Let w be an eigenvector associated
with eigenvalue λ ∈ R for Γ = KϕKψ. Then Φw
is an eigenvector of ΩΩ⊤.

Proof. Since w is an eigenvector of Γ, it holds that
Γw = λw. Therefore:

Ψ⊤ΨΦ⊤Φw = λw,
(
ΦΨ⊤ΨΦ⊤

)
Φw = λΦw,

and therefore Φw is an eigenvalue of

ΩΩ⊤ = ΦΨ⊤ΨΦ⊤.

B Nearest Neighbors Test for Word
Embedding Debiasing

We give in Table 7 the ten nearest neighbor words
for ten random words from the data, before and
after using SAL. The neighboring words are deter-
mined through cosine similarity of the correspond-
ing embeddings with respect to the pivot word em-
bedding. We observe little to no difference in these
two lists (before and after the removal).
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Words Nearest neighbors (before) Nearest neighbors (after)
lobbying lobbyists, lobbyist, campaigning lobbyists, lobbyist, campaigning
once again, then, when again, then, when
parliament parliamentary, mps, elections parliamentary, mps, elections
dashboard dashboards, smf, powered dashboards, smf, powered
cumulative gpa, accumulative, aggregate gpa, accumulative, aggregate
foam rubber, mattress, polyurethane rubber, mattress, polyurethane
rh lh, bl, r lh, bl, graphite
genetically gmo, gmos, genetic gmo, gmos, genetic
inner outer, inside, innermost outer, inside, innermost
harvest harvesting, harvests, harvested harvesting, harvests, harvested
secretary deputy, minister, treasurer deputy, minister, secretaries
ruth helen, esther, margaret helen, esther margaret
charlotte raleigh, nc, atlanta raleigh, nc, atlanta
abigail hannah, lydia, eliza hannah, lydia, samuel
sophie julia, marie, lucy julia, lucy, claire
nichole nicole, kimberly, kayla nicole, kimberly, mya
emma emily, lucy, sarah emily, watson, sarah
david stephen, richard, michael alan, stephen, richard
richard robert, william, david robert, william, david
joseph francis, charles, thomas mary, francis, charles
thomas james, william, john james, william, henry
james john, william, thomas william, john, thomas

Table 7: Nearest neighbor test on GloVe word embeddings before and after debiasing on gender. The upper block
includes a random set of words, while the middle and bottom block include female and male names.
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Abstract

Connectionist Temporal Classification (CTC)
is a widely used approach for automatic speech
recognition (ASR) that performs conditionally
independent monotonic alignment. However
for translation, CTC exhibits clear limitations
due to the contextual and non-monotonic nature
of the task and thus lags behind attentional de-
coder approaches in terms of translation quality.
In this work, we argue that CTC does in fact
make sense for translation if applied in a joint
CTC/attention framework wherein CTC’s core
properties can counteract several key weak-
nesses of pure-attention models during training
and decoding. To validate this conjecture, we
modify the Hybrid CTC/Attention model origi-
nally proposed for ASR to support text-to-text
translation (MT) and speech-to-text translation
(ST). Our proposed joint CTC/attention models
outperform pure-attention baselines across six
benchmark translation tasks.

1 Introduction

Automatic speech recognition (ASR), machine
translation (MT), and speech translation (ST) have
conspicuous differences but are all closely related
sequence-to-sequence problems. Researchers from
these respective fields have long recognized the op-
portunity for cross-pollinating ideas (He and Deng,
2011), starting from the coupling of statistical ASR
(Huang et al., 2014) and MT (Al-Onaizan et al.,
1999) which gave rise to early approaches for ST
(Waibel, 1996; Ney, 1999). Notably in the end-to-
end era, attentional encoder-decoder approaches
emerged in both MT (Bahdanau et al., 2015) and
ASR (Chorowski et al., 2015; Chan et al., 2016),
rising to great prominence in both fields.

During this same period, there has been an-
other prominent end-to-end approach in ASR: Con-
nectionist Temporal Classification (CTC) (Graves
et al., 2006). Unlike the highly flexible atten-
tion mechanism which can handle ASR, MT, and
ST alike, CTC models sequence transduction as a

monotonic alignment of inputs to outputs and thus
fits more naturally with ASR than it does with trans-
lation. Still, many interested in non-autoregressive
translation have applied CTC to MT (Libovický
and Helcl, 2018) and ST (Inaguma et al., 2021b)
and promising techniques have emerged, shrinking
the gap between autoregressive approaches (Sa-
haria et al., 2020; Gu and Kong, 2021; Chuang
et al., 2021; Huang et al., 2022). These recent de-
velopments suggest that the latent alignment ability
of CTC is a promising direction for translation
– this leads us to question: can CTC alignments
improve autoregressive translation? In particular,
we are interested in frameworks that leverage the
strength of CTC while minimizing its several harm-
ful incompatibilities (see §3) with translation tasks.

Inspired by the success of Hybrid CTC/Attention
in ASR (Watanabe et al., 2017), we investigate
jointly modeling CTC with an autoregressive at-
tentional encoder-decoder for translation. Our con-
jecture is that the monotonic alignment and condi-
tional independence of CTC, which weaken purely
CTC-based translation, counteract particular weak-
nesses of attentional models in joint CTC/attention
frameworks. In this work, we seek to investi-
gate how each CTC property interacts with cor-
responding properties of the attentional counterpart
during joint training and decoding. We design a
joint CTC/attention architecture for translation (§4)
and then examine the positive interactions which
ultimately result in improved translation quality
compared to pure-attention baselines, as demon-
strated on the IWSLT (Cettolo et al., 2012), MuST-
C (Di Gangi et al., 2019), and MTedX (Salesky
et al., 2021) MT/ST corpora (§6).1

2 Background: Joint CTC/Attn for ASR

Both the CTC (Graves et al., 2006) and attentional
encoder-decoder (Bahdanau et al., 2015) frame-

1Models are are available in ESPnet. For ST, refer to egs2/
must_c_v2/st1 and for MT refer to egs2/iwslt14/mt1.
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CTC ATTENTION JOINT CTC/ATTENTION ASR MT/ST

PCTC(Y |X)
∆
=
∑

Z∈Z

T∏

t=1

P (zt|X,���z1:t−1) PAttn(Y |X)
∆
=
∏L
l=1 P (yl|y1:l−1, X) PJoint(Y |X)

∆
= PCTC(Y |X)λ × PAttn(Y |X)1−λ ✓ ✓

Hard Alignment .....................................
Criterion only allows monotonic align-
ments of inputs to outputs

Soft Alignment ........................................
Flexible attention-based input-to-output
mappings may overfit to irregular patterns

During Training: Hard alignment objective pro-
duces stable encoder representations allowing the
decoder to more rapidly learn soft alignment patterns

✓ L1..
See §3

Conditional Independence ....................
Assumes that there are no dependencies
between each output unit given the input

Conditional Dependence .......................
Locally normalized models with output
dependency exhibit label/exposure biases

During Decoding: Use of conditionally independent
likelihoods in joint scoring eases the exposure/label
biases from conditionally dependent likelihoods

✓ L2..
See §3

Input-Synchronous Emission ...............
Each input representation emits exactly
one blank or non-blank output token

Autoregressive Generation ....................
Need to detect end-points and compare hy-
potheses of different length in beam search

During Decoding: Input-synchronous emission de-
termines output length based on input length counter-
acting the autoregressive end-detection problem

✓ L3..
See §3

Table 1: Description of three reasons why joint CTC/attention modeling is powerful in ASR. In order to understand
whether these positive interactions between properties of the CTC and attention frameworks are applicable to
MT/ST, we must address three corresponding concerns, L1-3, about the applicability of CTC to translation (§2).

works seek to model the Bayesian decision seeking
the output, Ŷ , from all possible sequences, V tgt∗,
by selecting the sequence which maximizes the
posterior likelihood P (Y |X), where X = {xt ∈
Ssrc|t = 1, ..., T} and Y = {yl ∈ V tgt|l =
1, ..., L}. The source set Ssrc is a discrete vocab-
ulary in the MT case and a continuous real space
in the ST case while the target set V tgt is always
a discrete vocabulary. Note that the T -length of
the input is assumed to be longer than the L-length
output for speech tasks (Graves et al., 2006), but
this is not necessarily true for MT.

What are the critical differences between the
CTC and attention frameworks? As shown in
the first two columns of Table 1, CTC and at-
tention offer different formulations of the poste-
rior likelihood, PCTC(·) and PAttn(·) respectively.
First of all, the attention mechanism is a flexible
input-to-output mapping function which allows a
decoder to perform soft alignment of an output
unit yl to multiple input units x[...] without restric-
tion. One downside of this flexibility is a risk
of destabilized optimization (Kim et al., 2017).
CTC on the other hand marginalizes the likeli-
hoods of all possible input to alignment sequence,
Z = {zt ∈ V tgt ∪ {∅}|t = 1 . . . T}, mappings via
hard alignment where each output unit zt maps to
a single input unit xt in a strictly monotonic pattern.
∅ is a "blank" and Z maps deterministically to Y
by removing blanks and repeated emissions.

Secondly, the attentional decoder models each
output unit y1 with conditional dependence on
not only the input X , but also the previous output
units y1:l−1. In contrast, CTC makes a conditional
independence assumption that each zt does not
depend on z1:t−1 if already conditioned on X (as

denoted by the strike-through in Table 1) – this
is a strong assumption which allows for efficient
computation of marginalized likelihoods over all
Z ∈ Z(Y, T ) via dynamic programming. On the
plus, since CTC does not model causality between
output units it is not plagued by the same label and
exposure biases that exist in attentional decoders
due to local normalization of causal likelihoods
(Bottou, 1991; Ranzato et al., 2016; Hannun, 2019).

Finally, the attentional decoder is an autore-
gressive generator that decodes the output until
a stop token, <eos>. Comparing likelihoods for
sequences of different lengths requires a heuris-
tic brevity penalty. Furthermore label bias with
respect to the stop token manifests as a length prob-
lem where likelihoods degenerate for unexpectedly
long outputs (Murray and Chiang, 2018). In com-
parison, CTC is an input-synchronous emitter
that consumes an input unit in order to produce an
output unit. Therefore, CTC cannot produce an
output longer than the input representation which
feeds the final posterior output layer – but this also
means that CTC does not require end detection.

As previously shown by (Kim et al., 2017;
Watanabe et al., 2017), jointly modeling CTC and
an attentional decoder is highly effective in ASR.
The foundation of this architecture is a shared en-
coder, ENC, which feeds into both CTC, PCTC(·),
and attentional decoder, PAttn(·), posteriors:

h = Enc(X) (1)

PCTC(zt|X) = CTC(ht) (2)

PAttn(yl|X, y1:l−1) = Dec(h, y1:l−1) (3)

where CTC(·) denotes a linear projection to the
CTC output vocabulary, V tgt ∪ {∅}, followed by
softmax. DEC(·) denotes autoregressive decoder
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layers followed by a linear projection to the decoder
output vocabulary, V tgt ∪ {<eos>}, and softmax.
The joint network is optimized via a multi-tasked
objective, LASR = LASR

CTC + λLASR
Attn , where λ inter-

polates the CTC and decoder cross-entropy losses.
Joint decoding is typically performed with a one-

pass beam search where CTC plays a secondary
role as a joint scorer while attention leads the major
hypothesis expansion and end detection functions
in the algorithm (Watanabe et al., 2017; Tsunoo
et al., 2021). However, CTC is capable of taking
over the lead role if called upon (e.g. for streaming
applications) (Moritz et al., 2019).

3 Potential CTC Limitations in MT/ST

Why exactly does this joint CTC/attention frame-
work perform so well in ASR? As summarized in
column 3 of Table 1, we are particularly interested
in three reasons which arise from the combination
of the hard vs. soft alignment, conditional inde-
pendence vs. dependence, and input-synchronous
emission vs. autoregressive generation properties
of CTC and attention respectively. These dynamics
have become well understood in ASR, owing to the
popularity of the joint framework (Watanabe et al.,
2018) amongst ASR practitioners.

So can CTC and attention also complement each
other when applied jointly to translation?2 ASR,
MT, and ST can all be generalized as sequence
transduction tasks following the Bayesian formula-
tion. Attentional decoders have been a predominant
technical solution to each of these tasks. However,
the CTC framework appears to have several limita-
tions specific to MT/ST that are not present in ASR;
this seemingly diminishes the promise of the joint
CTC/attention framework for translation. In this
work, we seek to address the following three con-
cerns about MT/ST CTC which appear to inhibit
the CTC/attention framework (please refer back to
Table 1 as needed).

L1 Can CTC encoders perform sophisticated
input-to-output mappings required for translation?

Unlike ASR, translation entails non-monotonic
mappings due to variable word-ordering across lan-
guages. Additionally, inputs may be shorter than
outputs as mappings are not necessarily one-to-one.
Furthermore, the mapping task for ST is composi-
tional where logically a speech signal first maps to a
source language transcription before being mapped

2This particular question has not been addressed in litera-
ture. For an account of related works, please see §8.

to the ultimate translation. All of these complica-
tions appear to directly contradict the hard align-
ment of CTC. If CTC cannot produce stable en-
coder representations for MT/ST, then during joint
training attention does not receive the optimization
benefit as in ASR (per row 2 of Table 1). Fortu-
nately, prior works suggest that these challenges are
not insurmountable. Chuang et al. (2021) showed
that self-attentional encoders can perform latent
model variable word orders for ST, Libovický and
Helcl (2018); Dalmia et al. (2022) proposed up-
sampling encoders that produce expanded input
representations for MT, and Sanabria and Metze
(2018); Higuchi et al. (2022) proposed hierarchi-
cal CTC encoders that can compose multiple out-
put resolutions for ASR. In §4.1, we incorporate
these techniques into a unified hierarchical CTC
encoding method for MT/ST which is capable of
sophisticated input-to-output mappings.

L2 Does CTC-based translation quality lag too
far behind attention-based to be useful?

CTC-based ASR has recently shown compet-
itive performance due in large part to improved
neural architectures (Gulati et al., 2020) and self-
supervised learning (Baevski et al., 2020; Hsu et al.,
2021), but the gap between CTC and attention for
translation appears to be greater (Gu and Kong,
2021). Perhaps the conditional independence
of CTC inhibits the quality to such a degree in
MT/ST where these likelihoods cannot ease the
label/exposure biases of the attentional decoder as
they do in ASR (per row 3 of Table 1). The rel-
ative weakness of non-autoregressive translation
approaches has been well-studied. Knowledge dis-
tillation (Kim and Rush, 2016; Zhou et al., 2019)
and iterative methods (Qian et al., 2021; Chan et al.,
2020; Huang et al., 2022) all attempt to bridge the
gap between non-autoregressive models and their
autoregressive counterparts. In §6, we address this
concern empirically; we find that even CTC mod-
els with 28% relative BLEU reduction compared
to attention yield improvements when CTC and
attention are jointly decoded.

L3 Is the alignment information produced by
CTC-based translation models reasonable?

In ASR, CTC alignments are reliable enough
to segment audio data by force aligning inputs
to target transcription outputs (Kürzinger et al.,
2020) and exhibit minimal drift compared to hid-
den Markov models (Sak et al., 2015). However,
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Figure 1: Hierarchical MT/ST encoders where represen-
tations are first up/down-sampled by SRCENCMT/ST and
then re-ordered by TGTENCMT/ST.

CTC alignments are not as well studied in transla-
tion. It is an open question of whether or not the
input-synchronous emission of CTC for transla-
tion has sufficient alignment quality to support the
end detection responsibility during joint decoding
as it does in ASR (per row 4 of Table 1). Ideally,
the CTC alignments are strong enough such that
CTC can lead joint decoding by proposing candi-
dates for hypothesis expansion in each beam step
until all input units are consumed (at which point
the end is detected), as in an input-synchronous
beam search. More conservatively, the CTC align-
ments may be too unreliable to take the lead but
could still guide the attentional decoder’s end de-
tection by penalizing incorrect lengths via joint
scoring, as in an output-synchronous beam search.
In §4.2, we lay out comparable forms for input and
output-synchronous beam search which allows us
to examine the impact on translation quality de-
pending on whether CTC is explicitly responsible
for or only implicitly contributing to end detection.

4 Joint CTC/Attention for Translation

4.1 Hierarchical CTC Encoding
Per L1 described in §3, we seek to build a CTC
encoder for translation which handles sophisticated
input-to-output mappings. Unlike ASR where out-
puts are assumed to be 1) always shorter than inputs
and 2) monotonic with respect to inputs, transla-
tion needs to account for variability of lengths and
and word orderings. We therefore propose to use a
hierarchical CTC encoding scheme which 1) aligns
inputs to length-adjusted source-oriented encod-
ings before 2) aligning to re-ordered target-oriented
encodings, as shown in Figure 1. Our encoding
process thus consists of two compartmentalized

functions: length-adjustment and re-ordering.

Length-adjustment For MT, we up-sample the
lengths of the source-oriented encodings in order
to output sequences longer than the input. For ST,
we down-sample the lengths of the source-oriented
encodings to coerce a discrete textual representa-
tion of the real-valued speech input. We enforce
source orientations using CTC criteria that seek to
align the length adjusted intermediate layer encoder
representations towards source text sequences (for
MT this is the same as the input and for ST this
is the ASR target). By compartmentalizing length-
adjustment within this initial stage, we allow subse-
quent encoder layers to focus solely on re-ordering.

Re-ordering We then obtain target-oriented en-
codings with subsequent encoder layers, where re-
ordering is enforced using CTC criteria that seek
to align final layer encoder representations towards
target text sequences. Critically, the underlying
neural network architecture must be able to model
latent re-ordering as the CTC criterion itself will
only consider monotonic alignments of the final
encoder representation to the target.

Our proposed MT/ST hierarchical encoders con-
sist of the following components:

hSRC = SRCENCMT/ST(X) (4)

PCTC(z
SRC
t |X) = SRCCTCMT/ST(h

SRC
t ) (5)

hTGT = TGTENCMT/ST(h
SRC) (6)

PCTC(z
TGT
t |X) = TGTCTCMT/ST(h

TGT
t ) (7)

The hierarchical encoders are jointly optimized
with an attentional decoder using a multi-tasked
objective, L = LSRCCTC +λ1LTGTCTC +λ2LATTN,
where λ’s interpolate source-oriented CTC, target-
oriented CTC, and decoder cross-entropy losses.

As shown in Figure 1.a, SRCENCMT(·) consists
of N1 Transformer (Vaswani et al., 2017) layers
followed by N2 up-sampling Output Length Con-
troller (OLC) layers used in LegoNN (Dalmia et al.,
2022) – the layer-wise positional embeddings of the
OLC architecture enable latent length-adjustment
of textual inputs. TGTENCMT(·) consists of N3

non-up-sampling OLC layers – the layer-wise at-
tention of the OLC architecture enables latent re-
ordering. Our ST encoder is similar, but uses Con-
formers (Gulati et al., 2020) to capture the local
and global dependencies in speech, as shown in Fig-
ure 1.b. SRCENCST(·) consists ofN1 convolutional
blocks (Dong et al., 2018) for down-sampling fol-

1626



coder consists of the following components:342

hSRC = SRCENCST(X) (14)343

pCTC(zSRC
t |X) = SRCCTCST(hSRC

t ) (15)344

hTGT = TGTENCST(hSRC) (16)345

pCTC(zTGT
t |X) = TGTCTCST(hTGT

t ) (17)346

where SRCENCST(·) is realized by N1 convolu-347

tional blocks for downsampling () followed by N2348

Conformer [cite –BY], while TGTENCST(·) is re-349

alized by N3 Conformer layers. We chose Con-350

former based on its previously demonstrated effec-351

tiveness for modeling local and global dependen-352

cies in speech signals [cite –BY].353

The hierarchical encoders are optimized along354

with an attentional decoder as follows:355

L = LSRCCTC + �1LTGTCTC + �2LATTN (18)356

where �’s interpolate between three objectives:357

source-oriented CTC, LSRCCTC, target-oriented358

CTC, LTGTCTC, and decoder cross-entropy, LATTN.359

3.2 One-Pass Synchronous Joint Decoding360

Algorithm 1 General One-Pass Beam Search
1: procedure SEARCH(X , N , STEP, b, p)
2: topPrtHs = {<sos> : 1.0}; allEndHs = {}
3: for i 2 N do
4: prtHs, endHs = STEP(topPrtHs, X, i, p, N)
5: topPrtHs = top-k(prtHs, k = b)
6: allEndHs = allEndHs[ endHs
7: end for
8: return top-1(allEndHs)
9: end procedure

10: SEARCH(X, maxL, OUTPUTSTEP, b, p) . output sync
11: SEARCH(X, T, INPUTSTEP, b, p) . input sync

As shown in [sec 2.1 and 2.2 –BY] CTC makes pre-361

dictions at every input step, whereas the Attention362

Decoder makes a new prediction at every output363

step. This allows us to build two forms of one-364

pass beam search algorithms (1) that functions over365

the output steps, which we call output-synchronous366

beam-search, (2) that functions over the input steps,367

which we call input-synchronous beam-search. In368

the following sections we will discuss each of them369

in detail.370

3.2.1 Output-Synchronous371

3.2.2 Input-Synchronous372

3.2.3 Speed vs. Accuracy373

4 Data and Experimental Setup374

Data: We use standard benchmark datasets for375

evaluating our speech translation and machine376

Algorithm 2 Output-Synchronous Step Function:
attentional decoder proposes candidates to expand
hypotheses which are all of l-length at step l.
1: procedure OUTPUTSTEP(prtHs, X, l, p, maxL)
2: newPrtHs = {}; endHs = {}
3: for y1:l�1 2 prtHs do
4: attnCnds = top-k(PAttn(yl|X, y1:l�1), k = p)
5: for c 2 attnCnds do

6: y1:l = y1:l�1 � c

7: ↵CTC = CTCScore(y1:l, X1:T )
8: ↵Attn = AttnScore(y1:l, X1:T )
9: � = LengthPen(y1:l)

10: PBeam(y1:l|X) = ↵CTC + ↵Attn + �
11: if (c is <eos>) or (l is maxL) then
12: endHs[y1:l] = PBeam(·)
13: else
14: newPrtHs[y1:l] = PBeam(·)
15: end if
16: end for
17: end for
18: return newPrtHs, endHs
19: end procedure

Algorithm 3 Input-Synchronous Step Function:
CTC proposes candidates to expand hypotheses
which are all produced from t input units at step t.
1: procedure INPUTSTEP(prtHs, X, t, p, T )
2: newPrtHs = {}; endHs = {}
3: CTCCnds = top-k(PCTC(zt|X), k = p)
4: for y 2 prtHs do
5: for c 2 CTCCnds do
6: if (c is ?) or (c is y[91]) then
7: ỹ = y
8: else
9: ỹ = y � c

10: end if
11: ↵CTC = CTCScore(ỹ, X1:t)
12: ↵Attn = AttnScore(ỹ, X1:T )
13: � = LengthPen(ỹ)
14: PBeam(ỹ|X) = ↵CTC + ↵ATTN + �
15: if t is T then
16: endHs[ỹ] = PBeam(·)
17: else
18: newPrtHs[ỹ] = PBeam(·)
19: end if
20: end for
21: end for
22: return newPrtHs, endHs
23: end procedure

translation models. For speech translation, we eval- 377

uate our models on MuST-Cv2 [cite –BY] English 378

to German (En-De) and English to Japanese (En- 379

Ja) datasets. These are 16kHz recordings of TED 380

talks in English with text translations in various 381

target languages. The En-De training set consists 382

of around 250k utterances, totalling to around 450h 383

of training speech data. The En-Ja training set con- 384

5

Hypothesis 
Expansion

Joint 
Scoring

End 
Detection

MODEL TYPE MT ST

Joint Joint Decoding IWSLT14 IWSLT14 MTedX MuST-C-v2 MuST-C-v2 MTedX
MODEL NAME Train? Decode? Method De-En Es-En All-En En-De En-Ja All-En

Pure-Attn (Prior) 7 7 Attn Only (32.15)† (38.95)† -} 25.8‡ 12.4‡ -}

Pure-Attn (Ours) 7 7 Attn Only 32.8 (33.73) 39.0 (39.86) 25.6 27.8 14.3 22.7

Joint CTC/Attn 3 7 CTC Only 27.3 33.8 22.4 24.4 10.2 21.4
Joint CTC/Attn 3 7 Attn Only 33.6 39.5 28.0 28.3 14.2 23.7

Joint CTC/Attn 3 3 Joint I-Sync 33.7 39.7 27.8 29.2 15.1 25.1
Joint CTC/Attn 3 3 Joint O-Sync 34.1 39.9 28.1 29.2 15.3 25.1

Table 2: Test set performances, as measured by BLEU ("), of our proposed joint CTC/Attention models compared
to pure-attention baselines. Joint CTC/Attention models are always jointly trained, but can be either jointly decoded
using input/output synchronony or decoded using only their CTC or attention branches. For IWSLT14, we mention
(tokenized BLEU) for comparison with prior works: †Raunak et al. (2020) and ‡Inaguma et al. (2020). }Prior
MTedX works show only All-All or pair-wise settings.

Algorithm 1 Output-Synchronous Step Function:
attentional decoder proposes candidates to expand
hypotheses which are all of l-length at step l.
1: procedure OUTPUTSTEP(prtHs, X, l, p, maxL)
2: newPrtHs = {}; endHs = {}
3: for y1:l�1 2 prtHs do
4: attnCnds = top-k(PAttn(yl|X, y1:l�1), k = p)
5: for c 2 attnCnds do

6: y1:l = y1:l�1 � c

7: ↵CTC = CTCScore(y1:l, X1:T )
8: ↵Attn = AttnScore(y1:l, X1:T )
9: � = LengthPen(y1:l)
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11: if (c is <eos>) or (l is maxL) then
12: endHs[y1:l] = PBeam(·)
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14: newPrtHs[y1:l] = PBeam(·)
15: end if
16: end for
17: end for
18: return newPrtHs, endHs
19: end procedure
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MODEL TYPE MT ST

Joint Joint Decoding IWSLT14 IWSLT14 MTedX MuST-C-v2 MuST-C-v2 MTedX
MODEL NAME Train? Decode? Method De-En Es-En All-En En-De En-Ja All-En

Pure-Attn (Prior) 7 7 Attn Only (32.15)† (38.95)† -} 25.8‡ 12.4‡ -}

Pure-Attn (Ours) 7 7 Attn Only 32.8 (33.73) 39.0 (39.86) 25.6 27.8 14.3 22.7

Joint CTC/Attn 3 7 CTC Only 27.3 33.8 22.4 24.4 10.2 21.4
Joint CTC/Attn 3 7 Attn Only 33.6 39.5 28.0 28.3 14.2 23.7

Joint CTC/Attn 3 3 Joint I-Sync 33.7 39.7 27.8 29.2 15.1 25.1
Joint CTC/Attn 3 3 Joint O-Sync 34.1 39.9 28.1 29.2 15.3 25.1

Table 2: Test set performances, as measured by BLEU ("), of our proposed joint CTC/Attention models compared
to pure-attention baselines. Joint CTC/Attention models are always jointly trained, but can be either jointly decoded
using input/output synchronony or decoded using only their CTC or attention branches. For IWSLT14, we mention
(tokenized BLEU) for comparison with prior works: †Raunak et al. (2020) and ‡Inaguma et al. (2020). }Prior
MTedX works show only All-All or pair-wise settings.

Algorithm 1 Output-Synchronous Step Function:
attentional decoder proposes candidates to expand
hypotheses which are all of l-length at step l.
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9: ỹ = y � c
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16: endHs[ỹ] = PBeam(·)
17: else
18: newPrtHs[ỹ] = PBeam(·)
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Algorithm 2 Input-Synchronous Step Function:
CTC proposes candidates to expand hypotheses
which are all produced from t input units at step t.
1: procedure INPUTSTEP(prtHs, X, t, p, T )
2: newPrtHs = {}; endHs = {}
3: CTCCnds = top-k(PCTC(zt|X), k = p)
4: for y 2 prtHs do
5: for c 2 CTCCnds do
6: if (c is ?) or (c is repeat) then
7: ỹ = y
8: else
9: ỹ = y � c

10: end if
11: ↵CTC = CTCScore(ỹ, X1:t)
12: ↵Attn = AttnScore(ỹ, X1:T )
13: � = LengthPen(ỹ)
14: PBeam(ỹ|X) = ↵CTC + ↵ATTN + �
15: if t is T then
16: endHs[ỹ] = PBeam(·)
17: else
18: newPrtHs[ỹ] = PBeam(·)
19: end if
20: end for
21: end for
22: return newPrtHs, endHs
23: end procedure

Evaluation: Unless otherwise indicated, we mea-
sure performance with detokenized case-sensitive
BLEU (Post, 2018) on punctuated 1-references.4

6 Results and Analyses

In this section, we first present our main results on
6 benchmark MT and ST tasks. We then present ev-
idence that hierarchical encoding (§4.1) produces
stable encoder representations that simplify the
decoder’s source attention (addressing L1 in §3).
Next we present evidence that joint decoding is ben-
eficial despite the fact that CTC-only performance
lags behind that of attention-only (addressing L2 in
§3). Finally, we present evidence that CTC’s align-
ment information resolves attention’s end-detection
problem in both input and output synchronous joint
decoding (§4.2) (addressing L3 in §3).

6.1 Joint CTC/Attention Models Outperform
CTC-only and Attention-only Baselines

As shown in Table 2, joint CTC/Attention with
output-synchronous decoding outperforms pure-
attention across all MT and ST tasks (line 2 vs.
6). Joint training while only decoding with the
attention branch still outperforms pure-attention
models without any joint training (line 2 vs. 4).
Note that CTC is consistently the weaker of the
two branches in jointly trained models (line 3 vs.

4Evaluation with additional metrics is provided in §A.1.

4). Joint input/output-synchronous decodings yield
further improvements overall, confirming that both
joint training and decoding are beneficial (line 4
vs. 5/6). However, we find that input-synchrony
lags behind output-synchrony (line 5 vs. 6); this
phenomenon is discussed further in §7.

6.2 Hierarchical Encoding Reduces
Attention’s Alignment Burden

We examine the regularization effect that CTC joint
training has on the attentional decoder, per L1 in
§3, by first quantifying the monotonicity, m of a
(L, T ) shaped source attention pattern, A:

m =
⇣ X

2<lL

[argmax
t2T

Al � argmax
t2T

Al�1]
⌘
/L

where [·] denotes the Iverson bracket. In other
words, we define monotonicity m as the rate at
which the decoder at step l attends most sharply
on an input index, argmaxt2T Al, which is greater
than or equal to that of the previous step l � 1,
argmaxt2T Al�1. We compute m over all exam-
ples in our validation sets for De-En MT and En-De
ST and show the layer-wise averages over all exam-
ples and attention heads in Figure 2. It can be seen
that the decoder source attention patterns are more
monotonic when using jointly trained hierarchical
encoders. Per line 2 of Table 1, we argue that this
greater monotonicity allows the decoder to more
rapidly learn soft alignment patterns – ultimately
this advantage is reflected in the overall perfor-
mance gains observed from joint training without
joint decoding (line 2 vs. 4 in Table 2).

For a qualitative example illustrating the in-
creased monotonicity of decoder source attention
patterns, please see §A.7. We also found that in-
creased monotonicity leads improved multilingual
parameter sharing in our All-En MT and ST mod-
els, suggesting that the target-orientation of our en-
coder reduced the decoder’s burden of soft-aligning
target English outputs to source languages with
varying word-orders (discussed further in §A.5).

What are the respective contributions of SRC-
CTC and TGTCTC? TGTCTC holds elevated im-
portance as joint decoding is not possible without it.
However, we’d like to understand how each compo-
nent contributes to the benefits observed from joint
training without joint decoding in §6.1. In Table 3,
we show ablate SRCCTC and TGTCTC in order to
confirm that both contribute to performance gains.
Note that SRCCTC on its own appears to contribute

lowed by N2 Conformer layers – this stage is anal-
ogous to the ASR sub-task of ST where a long
speech signal is length-adjusted to a shorter latent
textual representation. TGTENCST(·) consists of
N3 Conformer layers – this stage is analogous to
the MT sub-task of ST where latent re-ordering is
enabled by self-attention. LegoNN and Conformer
are further described in §A.4.

4.2 Input/Output-Synchronous Decoding

Per L2 and L3 described in §3, we seek to design a
joint decoding algorithm with input and output-
synchronous variants of one-pass beam search
which differ only in whether CTC or attention takes
the leading role. As shown in Algorithms 1 and 2,
we propose to align the input and output beam-step
functions along three common functions: hypoth-
esis expansion, joint scoring, and end detection.
Using these mirrored forms, let us now interpret
the respective roles of CTC and attention.

Output-Synchrony Consider first that attention
is in the leading role, which means that we are
working with an output-synchronous beam search.
Note that this is the algorithm originally pro-
posed by Hori et al. (2017). OUTPUTSTEP per-
forms hypothesis expansion by computing the at-
tentional decoder’s output posterior at label step
l, PAttn(yl|X, y1:l−1) for each partial hypothesis,
y1:l−1. A pre-beam size, p, is then used to select
the top candidate output units (Seki et al., 2019),
attnCnds, which are used to expand the partial

hypotheses via concatenation, denoted by ⊕. In
the joint scoring block, the attentional decoder like-
lihood, AttnScore(·), and length penalty/reward,
LengthPen(·) yield the estimated joint likelihood
PBeam. Finally in end detection, OUTPUTSTEP

must check for the stop token, <eos>, which may
be proposed by attnCnds.

Input-Synchrony Now let us consider the differ-
ences when CTC is in the leading role. Note that
this algorithm extends Hannun et al. (2014)’s CTC
beam search algorithm to include joint scoring with
attentional likelihoods. INPUTSTEP performs hy-
pothesis expansion by computing CTC’s alignment
posterior at time step t, PCTC(zt|X). Unlike in
output-synchrony, here each hypothesis expansion
also consumes one step of the input. The same
pre-beam size, p, is used to select top candidate
alignment units, CTCCnds, but partial hypotheses
are only expanded for non-blank and non-repeat
candidates. The joint scoring block is identical to
output-synchrony except for one difference: CTC
likelihood, CTCScore(·), is applied over the full
input, X1:T , in OUTPUTSTEP and over the partial
input, X1:t, in INPUTSTEP. This difference en-
genders a speed vs. accuracy trade-off, which we
discuss in D2 of §7. Finally, end detection simply
occurs when all input units have been consumed
(t = T ). Therefore, INPUTSTEP does not require
checking for the stop token as all hypotheses at
time T are ended.

We propose this particular form of input-
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MODEL TYPE MT ST

Joint Joint Decoding IWSLT14 IWSLT14 MTedX MuST-C-v2 MuST-C-v2 MTedX
# MODEL NAME Train? Decode? Method De-En Es-En All-En En-De En-Ja All-En

1 Pure-Attn (Prior) ✗ ✗ Attn Only (32.2)† (39.0)† -♢ 25.8‡ 12.4‡ -♢

2 Pure-Attn (Ours) ✗ ✗ Attn Only 32.8 (33.7) 39.0 (39.9) 25.6 27.8 14.3 22.7

3 Joint CTC/Attn ✓ ✗ CTC Only 27.3 33.8 22.4 24.4 10.2 21.4
4 Joint CTC/Attn ✓ ✗ Attn Only 33.6 39.5 28.0 28.3 14.2 23.7

5 Joint CTC/Attn ✓ ✓ Joint I-Sync 33.7 39.7 27.8 29.2 15.1 25.1
6 Joint CTC/Attn ✓ ✓ Joint O-Sync 34.1 39.9 28.1 29.2 15.3 25.1

Table 2: Test set performances, as measured by BLEU (↑), of our proposed joint CTC/Attention models compared
to pure-attention baselines. Joint CTC/Attention models are always jointly trained, but can be either jointly decoded
using input/output synchrony or decoded using only their CTC or attention branches. For IWSLT14, we mention
(tokenized BLEU) for comparison with prior works: †Raunak et al. (2020) and ‡Inaguma et al. (2020). ♢Prior
MTedX works show only All-All or pair-wise settings.

synchronous beam search in order to exactly mirror
the functions of its output-synchronous counter-
part; without this mirrored formulation, we cannot
attribute differences in decodings to the swapped
roles of CTC and attention. For instance, now we
can answer questions such as can CTC perform hy-
pothesis expansion on par with attention, allowing
us to address concerns about applying weaker joint
CTC models during decoding per L2 and L3 in §3.
To the best of our knowledge, we are the first to
examine the theoretical and empirical differences
of input and output synchrony through a unified for-
mulation, as discussed further in §7. Other forms
of input-synchronous beam search in prior works
cannot directly be used for this purpose. Triggered
Attention (Moritz et al., 2019) is one such exam-
ple which is purpose-fit for streaming to a degree
where several core components (e.g. look-ahead
and re-triggering) cannot trivially be re-factored
into an output-synchronous variant.

5 Experimental Setup

Data We examine the efficacy of our proposed
approaches on two language pairs for each of the
MT and ST tasks. For MT, we use German-to-
English (De-En) and Spanish-to-English (Es-En)
from IWSLT14 (Cettolo et al., 2012). For ST, we
use English-to-German (En-De) and English-to-
Japanese (En-Ja) from MuST-C-v2, reporting tst-
COMMON results (Di Gangi et al., 2019). We
also examine the multilingual setting of 6 Euro-
pean languages to English (All-En) from MTedX
(Salesky et al., 2021) for both tasks. Full dataset
descriptions for reproducibility are in §B.

Modeling We compare our joint CTC/Attention
models to purely attentional encoder-decoder base-
lines. All proposed and baseline models were tuned
separately, using validation sets only, within the
same hyperparameter search spaces for training
and decoding to ensure fair comparison. All exper-
iments were conducted using ESPnet-ST (Inaguma
et al., 2020). Full descriptions of model sizes, hy-
perparameters, and pre-processing are in §B.3

Evaluation: Unless otherwise indicated, we mea-
sure performance with detokenized case-sensitive
BLEU (Post, 2018) on punctuated 1-references.4

6 Results and Analyses

In this section, we first present our main results on
6 benchmark MT and ST tasks. We then present ev-
idence that hierarchical encoding (§4.1) produces
stable encoder representations that simplify the
decoder’s source attention (addressing L1 in §3).
Next we present evidence that joint decoding is
beneficial despite the fact that CTC-only perfor-
mance lags behind that of attention-only (address-
ing L2 in §3). Finally, we present evidence that
CTC’s alignment information alleviates attention’s
end-detection problem in both input and output syn-
chronous joint decoding (§4.2) (addressing L3 in
§3).

6.1 Joint CTC/Attention Models Outperform
CTC-only and Attention-only Baselines

As shown in Table 2, joint CTC/Attention with
output-synchronous decoding outperforms pure-

3We compare our baselines for MuST-C-v2 to the default
recipes in ESPnet in Table 2. For back-compatibility with
additional prior works using MuST-C-v1 En-De, see §A.2.

4Evaluation with additional metrics is provided in §A.1.
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attention across all MT and ST tasks (line 2 vs.
6). Joint training while only decoding with the
attention branch still outperforms pure-attention
models without any joint training (line 2 vs. 4).
Note that CTC is consistently the weaker of the
two branches in jointly trained models (line 3 vs.
4). Joint input/output-synchronous decodings yield
further improvements overall, confirming that both
joint training and decoding are beneficial (line 4
vs. 5/6). However, we find that input-synchrony
lags behind output-synchrony (line 5 vs. 6); this
phenomenon is discussed further in §7.

6.2 Hierarchical Encoding Reduces
Attention’s Alignment Burden

We examine the regularization effect that CTC joint
training has on the attentional decoder, per L1 in
§3, by first quantifying the monotonicity, m of a
(L, T ) shaped source attention pattern, A:

m =
( ∑

2<l≤L
[argmax

t∈T
Al ≥ argmax

t∈T
Al−1]

)
/L

where [·] denotes the Iverson bracket. In other
words, we define monotonicity m as the rate at
which the decoder at step l attends most sharply
on an input index, argmaxt∈T Al, which is greater
than or equal to that of the previous step l − 1,
argmaxt∈T Al−1. We compute m over all exam-
ples in our validation sets for De-En MT and En-De
ST and show the layer-wise averages over all exam-
ples and attention heads in Figure 2. It can be seen
that the decoder source attention patterns are more
monotonic when using jointly trained hierarchical
encoders. Per line 2 of Table 1, we argue that this
greater monotonicity allows the decoder to more
rapidly learn soft alignment patterns – ultimately
this advantage is reflected in the overall perfor-
mance gains observed from joint training without
joint decoding (line 2 vs. 4 in Table 2).

For a qualitative example illustrating the in-
creased monotonicity of decoder source attention
patterns, please see §A.7. We also found that in-
creased monotonicity leads improves multilingual
parameter sharing in our All-En MT and ST mod-
els, suggesting that the target-orientation of our en-
coder reduced the decoder’s burden of soft-aligning
target English outputs to source languages with
varying word-orders (discussed further in §A.5).

What are the respective contributions of SRC-
CTC and TGTCTC? TGTCTC holds elevated im-
portance as joint decoding is not possible without it.

Figure 2: Layer-wise monotonicity (↑) of the source-
attention patterns produced by MT/ST decoders.

MT (DE-EN) ST (EN-DE)

SRCCTC TGTCTC IWSLT14 MuST-C-v2

✗ ✗ 32.1 27.7
✓ ✗ 34.1 27.8
✗ ✓ 33.3 28.1
✓ ✓ 34.8 28.3

Table 3: Ablation on the impacts of SRCCTC and
TGTCTC CTC components of hierarachical encoding,
as measured by performance on validation sets. Only
attention is used in decoding to enable fair comparisons.

However, we’d like to understand how each com-
ponent contributes to the benefits observed from
joint training without joint decoding in §6.1. In
Table 3, we ablate SRCCTC and TGTCTC in or-
der to confirm that both contribute to performance
gains. Note that SRCCTC on its own appears to
contribute more to MT than it does to ST, suggest-
ing that the length adjustment stage is more critical
in MT.

6.3 Even Weak CTC Models Strengthen Joint
CTC/Attention Models

We examine the generalization effect that augment-
ing autoregressive likelihoods with conditionally
independent likelihoods has during inference, per
L2 in §3, by evaluating De-En MT and En-De
ST models on out-of-domain EuroParl test sets
(Iranzo-Sánchez et al., 2020). As shown in Ta-
ble 4, joint CTC/Attention models outperform pure-
attention baselines across in-domain (In-D) and
out-of-domain (Out-D) settings. When decoding
only the CTC branch of joint models (denoted as
CTC I-Sync in the table) performance is signifi-
cantly degraded compared to the attention branch
of the same models (denoted as Attn O-Sync in the
table). This gap appears slightly lessened in the out-
of-domain setting where CTC’s conditional inde-
pendence may offer some robustness. Nonetheless
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DECODING MT (DE-EN) ST (EN-DE)
MODEL METHOD In-D Out-D In-D Out-D

Pure-Attn Attn Only 32.8 15.8 27.8 20.5

Joint C/A Attn Only 33.6 17.1 28.3 21.0
+CTC Rescore 33.6 17.1 28.3 21.0

Joint C/A Joint O-Sync 34.1 17.6 29.2 21.7

Joint C/A CTC Only 27.3 13.1 24.4 16.5
+Attn Rescore 29.5 13.9 26.2 17.8

Joint C/A Joint I-Sync 33.7 17.4 29.2 21.1

Table 4: In/out domain test performances of joint
CTC/attention models with various decoding methods.

these weak CTC models still boost their stronger
attention counterparts during joint decoding (both
via input and output-synchrony), suggesting that
ensembling of conditionally independent and de-
pendent likelihoods is a powerful technique.

Further, synchronous joint decoding methods
outperform their two-pass re-scoring counterparts
(discussed in D2 of §7), suggesting that joint selec-
tion of the hypothesis set is necessary for easing
the respective weaknesses of autoregressive and
conditionally independent likelihood estimation.

6.4 CTC’s Alignment Information Resolves
Attention’s End-Detection Problem

Finally, we examine the effect that CTC’s align-
ment information has on end detection during
decoding, per L3 in §3. In Figure 3, we ob-
serve the change in translation quality (as mea-
sured by BLEU) and output length (as measured
by hypothesis-to-reference length ratio) when the
length penalty (denoted as LengthPen(·) in Algo-
rithms 1 and 2) is gradually increased, forcing de-
codings to produce longer outputs. Pure-attention
baselines rapidly degenerate when forced to pro-
duce hypotheses that are longer than references as
they struggle to detect the ends of hypotheses (Mur-
ray and Chiang, 2018). On the other hand, joint
decoding produces gradually longer outputs regard-
less of whether CTC is in a primary role (input-
synchrony) or a secondary role (output-synchrony),
demonstrating that CTC alignments ease the de-
coder’s end-detection problem by explicitly or im-
plicitly ruling out hypotheses of incorrect lengths.

7 Discussion: More on Joint Decoding

D1 Why do input vs. output-synchronous joint
decodings yield slightly different results?

By comparing the CTC likelihood estimation
in INPUTSTEP vs. OUTPUTSTEP, it can be

Figure 3: Elasticity of BLEU and length ratios
(|hyp|/|ref|) w.r.t length penalty in validation sets.

DECODING TYPE ACCURACY SPEED

Method Beam Size BLEU Search Error RTF

Joint O-Sync 5 29.1 0.73% 0.9
Joint O-Sync 10 29.2 0.44% 1.7
Joint O-Sync 50 29.0 0.36% 9.0

Joint I-Sync 5 28.1 1.02% 0.4
Joint I-Sync 10 28.6 1.09% 0.9
Joint I-Sync 50 29.0 0.87% 6.4

Table 5: Speed vs. accuracy for joint input/output-sync
decoding of En-De ST val. set as a fxn. of beam size.

seen that there is a trade-off between speed
vs. accuracy. First, note that in OUTPUTSTEP,
CTCScore(y1:l, X1:T ), is a marginalization over
the likelihoods of all possible alignments of the par-
tial hypothesis y1:l to the full inputX1:T (Seki et al.,
2019). On the other hand, CTCScore(ỹ, X1:t) in
INPUTSTEP is an estimation of the marginalized
likelihoods of the partial hypothesis y1:l to the
partial input X1:t (Graves, 2012; Hannun et al.,
2014). Even at step T , these two CTCScore(·)’s
are not equivalent. Since CTCCnds may include
the blank token, INPUTSTEP may prune partial
hypotheses at a previous beam step which would
have merged with y1:l. Therefore, CTCScore(·) in
input-synchrony is less accurate. However, input-
synchrony requires fewer computations. Using dy-
namic programming, output-synchrony computes
CTCScore(·) for all partial hypothesis within a sin-
gle beam step with O(bpT ) log-additions (Watan-
abe et al., 2017) while input-synchrony uses only
O(bp) log-additions (Hannun et al., 2014).

In Table 5, we perform an experimental val-
idation of our theoretical understanding of the
speed vs. accuracy trade-off between the two
synchronous joint decoding variants. To quantify
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speed, we compute the real-time factor (RTF) as
the ratio of decoding time over the duration of input
speech. To quantify accuracy beyond the BLEU
metric, we compute the search error rate (Meister
et al., 2020) by counting the sequences for which
the hypothesis has higher exact likelihood than the
reference. For the same beam size, output is slower
but more accurate than input-synchronous. We con-
clude that input-synchrony may in fact be prefer-
able in applications with latency constraints.

D2 Why did synchronous joint decodings outper-
form re-scoring decodings in Table 4?

There is a family of two-pass decoding algo-
rithms (Watanabe et al., 2017; Sainath et al., 2019),
which also achieve joint decoding by first estimat-
ing the likelihoods of a subset of sequences V ′
with one module and then re-scoring the estimates
with the other module. In these approaches, the
subset V ′ is determined asynchronously, meaning
the joint likelihood is not considered until the re-
scoring step; this delayed consideration of the joint
likelihood is the main drawback compared to the
synchronous approaches. If the attentional decoder
is used to determine V ′, then V ′ would suffer from
exposure/label bias and the length problem (§2).
On the other hand, if CTC is used to determine V ′,
the lack of causal modeling in CTC leads to poor
estimates of V ′ – particularly for translation.

8 Related Works

The idea of using latent alignments to improve
autoregressive translation has been explored previ-
ously by Haviv et al. (2021) who concluded that
CTC alignments are not compatible with teacher
forcing. The key difference is that we train CTC
and autoregressive models jointly while Haviv et al.
(2021) sought to apply CTC to train autoregressive
models, replacing cross-entropy entirely. More re-
cently in a concurrent work, Zhang et al. (2022)
have also shown the effectiveness of jointly train-
ing CTC and attention in the context of ST for un-
written languages where no ASR transcriptions are
available. We believe that our contribution show-
ing the effectiveness of also jointly decoding CTC
and attention demonstrates an additional technique
which can further improve their direction. Our
work also differs in that we seek to incorporate the
ASR objective into ST via hierarchical encoding.

Other concurrent works integrated CTC and at-
tention within blockwise streaming (Deng et al.,
2022) and compositional multi-decoder (Yan et al.,

DECODING TYPE SPEED

Method Beam Size RTF %∆

Pure-Attn O-Sync 5 0.9 -
Pure-Attn O-Sync 10 1.2 -
Pure-Attn O-Sync 50 3.5 -

Joint CTC/Attn O-Sync 5 0.9 +0%
Joint CTC/Attn O-Sync 10 1.7 +42%
Joint CTC/Attn O-Sync 50 9.0 +157%

Joint CTC/Attn I-Sync 5 0.4 -56%
Joint CTC/Attn I-Sync 10 0.9 -25%
Joint CTC/Attn I-Sync 50 6.4 +85%

Table 6: Limitations Table: comparison of joint decod-
ing and pure-attention RTFs across different beam sizes.
%∆ between the joint RTF and pure-attention RTF for
the same beam size is shown, where positive %’s indi-
cate slow-downs and negative %’s indicate speed-ups.

2022) architectures for ST in particular. Our work
supports their findings by addressing why CTC is
helping, and we provide a unified approach that
generalizes to both MT and ST. Prior works have
also used the non-autoregressive property of CTC
as means for speeding up autoregressive models
during inference (Inaguma et al., 2021a; Gaido
et al., 2021), but these works focus on latency and
do not apply CTC to improve translation quality.

9 Conclusion

We propose to jointly train and decode
CTC/attention models for MT and ST using
1) hierarchical encoding to resolve incompati-
bilities between CTC and the non-monotonic
mappings in translation and 2) synchronous
decoding to ease the exposure/label biases of
autoregressive decoders with CTC’s conditionally
independent alignment information. Our analyses
reveal several reasons why even weak CTC
models benefit autoregressive translation via joint
modeling, suggesting that future explorations
into jointly modeling attentional decoders with
other latent alignment models (Graves, 2012;
Ghazvininejad et al., 2020; Saharia et al., 2020)
may uncover similar benefits.

Limitations

There are several potential limitations pertaining
to the increased computational overhead and la-
tency of the joint modeling approach. One con-
cern is that joint decoding is much slower, but
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we found that input-synchronous joint decoding
is actually faster than pure-attention decoding for
smaller beam sizes, as shown in Table 6.

The other limitation is that our MT models up-
sample input representations in the early layers of
the encoder, thereby increasing the computations in
subsequent encoder layers and the decoder’s cross-
attention. We can use LegoNN-based encoders
(Dalmia et al., 2022) to adjust the up-sampling
rate to a fractional value, minimizing the compu-
tations given dataset statistics. Alternatively, we
may avoid the need for up-sampling by applying a
larger byte-pair encoding size (Kudo and Richard-
son, 2018) to the target language compared to the
source language. CTC’s use in guiding efficient
down-sampling of representations in ST (Gaido
et al., 2021) suggest that it may also be applied for
efficient up-sampling for MT – we leave this study
on efficiency to future work.

Finally, note that the corpora used for the MT
experiments in this work are considered medium
resourced. Prior work (Murray and Chiang, 2018)
has shown that the autoregressive end-detection
problem exists across low to high resourced sce-
narios; suggesting that the CTC/attention approach
would be generally beneficial. We leave the study
of joint CTC/attention modeling on higher re-
sourced MT corpora to future work.
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A Supplementary Information

A.1 Additional Translation Metrics
To supplement our BLEU evaluation in Table 2, we
also measure the translation quality of our models
using Translation Error Rate (TER) (Snover et al.,
2006) and METEOR (Banerjee and Lavie, 2005).
As shown in Table 7, our findings are consistent
across all three metrics for both MT and ST models.

A.2 MuST-C-v1 Back-Compatibility
See Table 9 for results compared to prior works.

A.3 Valid Set performances
Table 8 presents the validation performances for
our ST and MT models.

A.4 Description of Encoder Architectures
LegoNN Encoder (Dalmia et al., 2022) is a stacked
multi-block architecture that was introduced to
encode and re-sample the input sequence into a
sequence of representations of a desired length,
which is typically a factor of the input sequence. It
first encodes the input using transformer encoder
blocks (Vaswani et al., 2017) and then re-encodes
them into a sequence of latent representations us-
ing cross-attention. Starting from a sequence of
learnable positional embeddings (Gehring et al.,
2017), these latent representations are learned us-
ing another stack of transformer encoder layers
with an added cross-attention component over the
input representations in each block.

The Conformer encoder (Gulati et al., 2020) is
a stacked multi-block architecture and has shown
consistent improvement over a wide range of E2E
speech processing applications (Guo et al., 2021).
It includes a multi-head self-attention module, a
convolution module, and a pair of position-wise
feed-forward modules in the Macaron-Net style.
While the self-attention module learns the long-
range global context, the convolution module aims
to model the local feature patterns synchronously.

A.5 Increased Cross-Attentional
Monotonicity Leads to Increased
Multilingual Parameter Sharing

We further examine the source attention parameters
in our All-En models to understand the impact that
the increased monotonicity of decoder attention
(§6.2) has on multilingual parameter sharing. To do
so, we extract sparse subnets for each language pair
following the Lottery Ticket Sparse Fine-Tuning

proposed by Ansell et al. (2022) and compute the
pair-wise sharing across the 6 source languages,
as measured by the count of overlapping param-
eters between subnets. In Figure 4, we show the
relative change (∆%) in multilingual sharing when
using hierarchical encoding compared to the base-
line. The broad increases suggest that the target-
orientation of our encoder reduced the decoder’s
burden of soft-aligning target English outputs to
source languages with varying word-orders, allow-
ing for more efficient allocation of capacity.

A.6 compare_mt. py Length Analysis
As shown in Figure 5, both joint synchronous de-
codings are more robust than pure-attention for
long output lengths across both MT and ST. Input-
synchrony appears particularly more robust in gen-
eration of very long outputs for ST.

A.7 View of Regularized Attention
See Figure 6 for a qualitative example of mono-
tonic source attention patterns (supplementary to
the quantitative monotonicity in Figure 2).

B Reproducibility

B.1 Dataset Descriptions
See Table 10 for dataset descriptions. Data prepa-
ration was done using ESPnet recipes.

B.2 Model Architectures
See Table 11 for model architectures.

B.3 Training/Decoding Hyperparameters
See Tables 12-15 for hyperparameter descriptions.

B.4 Metrics
Sacrebleu signature for all non-Japanese:
BLEU+case.mixed+numrefs.1

+smooth.exp+tok.13a+version.1.5.1

Sacrebleu signature for Japanese:
BLEU+case.mixed+lang.en-ja+numrefs.1

+smooth.exp+tok.ja-mecab-0.996-IPA
+version.1.5.1

For tokenized BLEU in the IWSLT MT datasets
we used mutibleu.perl (Moses-SMT, 2018)

B.5 Computing
ST models were trained on 2 x V100 for 2 days.
MT models were trained on 1 x A6000 for 1 day.
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DECODING IWSLT14 (DE-EN) MUST-C-V2 EN-DE

MODEL NAME METHOD BLEU (↑) TER (↓) METEOR (↑) BLEU (↑) TER (↓) METEOR (↑)
Pure-Attn (Ours) Attn-only 32.8 50.9 29.4 27.8 59.1 38.6

Joint CTC/Attn Attn-only 33.6 50.7 30.0 28.3 58.4 39.2

Joint CTC/Attn Joint I-Sync 33.7 50.6 30.0 29.2 57.8 40.1
Joint CTC/Attn Joint O-Sync 34.1 49.9 30.2 29.2 57.5 40.2

Table 7: Test set performances, as measured by BLEU (↑), TER (↓), and METEOR (↑), of our proposed joint
CTC/Attention models compared to pure-attention baselines.

DECODING IWSLT14 IWSLT14 MUST-C-V2 MUST-C-V2
MODEL NAME METHOD De-En Es-En En-De En-Ja

Pure-Attn (Ours) Attn O-sync 34.1 41.2 28.5 11.3

Joint CTC/Attn Joint I-sync 34.6 42.0 29.0 12.4
Joint CTC/Attn Joint O-sync 35.0 42.3 29.2 12.4

Table 8: Valid set performances, as measured by BLEU (↑).

MUST-C-V1
MODEL NAME En-De

ESPnet-ST1 22.9
Dual-Decoder2 23.6
E2E-ST-TDA3 25.4
Multi-Decoder4 26.4
Pure-Attn (ours) 27.1

Joint CTC/Attn w/ Joint O-Sync 28.2

Table 9: Comparison of our best MuST-C-v1 En-De
Joint CTC/Attn model and our Pure-Attn baseline with
prior works: 1Inaguma et al. (2020), 2Le et al. (2020),
3Du et al. (2022), 4Dalmia et al. (2021)

Dec Src Attn Subnet Sharing Improvements

Figure 4: Improvement of multilingual sharing in
MT/ST decoder source attention parameters when us-
ing joint CTC/Attention vs. attention-only training, as
measured by pair-wise ∆% in sparse subnet overlap.

Figure 5: Compare-mt (Neubig et al., 2019) output
sentence length to BLEU for joint decoding vs pure-
attention models. Model codes: sys1 = Joint Input-Sync,
sys2 = Joint Output-Sync, sys3 = Pure-Attn
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Figure 6: Visualization of source attention patterns produced by pure-attention baseline (top) vs. joint CTC/attention
(bottom) ST models. Qualitative example extracted from the final decoder layer. Irregular patterns are observable in
the pure-attention plots, but not in the joint CTC/attention plots.

Dataset Task Source Lang(s) Target Lang(s) Domain # Train/Valid/Test Utts # Speech Train Hours

IWSLT17 (Cettolo et al., 2012) MT De En TED Talk 160k/7k/7k -
IWSLT17 (Cettolo et al., 2012) MT De Es TED Talk 160k/7k/7k -

MuST-C-v2 (Di Gangi et al., 2019) ASR/ST En De TED Talk 250k/1k/3k 450h
MuST-C-v2 (Di Gangi et al., 2019) ASR/ST En Ja TED Talk 330k/1k/3k 540h

MTedX (Salesky et al., 2021) MT Es, Fr, Pt, It, Ru, El En TED Talk 130k/6k/6k -
MTedX (Salesky et al., 2021) ASR Es, Fr, Pt, It, Ru, El En TED Talk 400k/6k/6k 730h
MTedX (Salesky et al., 2021) ST Es, Fr, Pt, It, Ru, El En TED Talk 130k/6k/6k 250h

EuroParl (Iranzo-Sánchez et al., 2020) MT De En Parliament Speech - /-/2k -
EuroParl (Iranzo-Sánchez et al., 2020) ST En De Parliament Speech -/-/1k -

Table 10: MT/ST/ASR dataset descriptions. Utterance counts are rounded to the nearest thousand. Language codes:
De=German, En=English, Es=Spanish, Ja=Japanese, Fr=French, Pt=Portuguese, It=Italian, Ru=Russian, El=Greek

Model Task # Encoder Layers [S] # Decoder Layers SrcCTC Layer Up/Down-Sample Pre-Train Init Src BPE Size Tgt BPE Size # Params

Pure-Attn MT 12 [6,12,18] 6 - - - 10k (joint) 54M
Joint CTC/Attn MT 18 [6,12,18] 6 6 3x - 10k (joint) 95M

Pure-Attn ST 18 [12, 18] 6 - 1/4x Enc lyr 1-12 from ASR 4k 4k 74M
Joint CTC/Attn ST 18 [12, 18] 6 12 1/4x Enc lyr 1-12 from ASR 4k 4k 72M

Pure-Attn ASR 12 6 - - - 4k 4k 46M

Table 11: MT/ST/ASR model descriptions. The best MT/ST Encoder layers settings were selected over a search
space indicated by S. Parameter counts are rounded to the nearest million. Note that the 12 layer pure-attn model
outperformed the 18 layer version and that the 12 layer joint model still outperformed these baselines.
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Hyperparameter Value

Hidden Dropout 0.3
Attention dropout 0.3
Activation dropout 0.3
LR schedule inv. sqrt. (Vaswani et al., 2017)
Max learning rate best of [1e-3, 3e-3]
Warmup steps 10000
Number of steps 200 epoch
Adam eps 1e-9
Adam betas (0.9, 0.98)
Weight decay 1e-4
λ1, λ2 (1, 2)

Table 12: Training Hyperparameters for MT Models.

Hyperparameter Value

Hidden Dropout 0.1
Attention dropout 0.1
Activation dropout 0.1
LR schedule inv. sqrt. (Vaswani et al., 2017)
Max learning rate 0.002
Warmup steps 25000
Number of steps 40 epoch
Adam eps 1e-9
Adam betas (0.9, 0.98)
Weight decay 0.0001
λ1, λ2 (2, 5)

Table 13: Training Hyperparameters for ST Models.

Decoding Type Hyperparameter Value

Pure Attn
Max Length Ratio [1, 1.2, 1.4, 1.6, 1.8, 2, 2.5, 3]
Penalty [0, 0.2, 0.4, 0.6, 0.8, 1.0]
Beam Size 5

Joint O-Sync
Max Length Ratio 1
Penalty [0, 0.2, 0.4, 0.6, 0.8, 1.0]
CTC Weight 0.3
Beam Size 5

Joint I-Sync

Max Length Ratio 1
Penalty [0, 0.2, 0.4, 0.6, 0.8, 1.0]
Blank Penalty [0.5, 0.75, 1.0]
CTC Weight [0.3, 0.5]
Beam Size [10, 30]

Table 14: Decoding Search Space MT Models.

Decoding Type Hyperparameter Value

Pure Attn
Max Length Ratio 1
Penalty [0,0.2,0.4,0.6,0.8,1.0]
Beam Size [10, 30, 50]

Joint O-Sync
Max Length Ratio 1
Penalty [0,0.2,0.4,0.6,0.8,1.0]
CTC Weight [0.3, 0.5]
Beam Size [10, 30, 50]

Joint I-Sync

Max Length Ratio 1
Penalty [0,0.2,0.4,0.6,0.8,1.0]
Blank Penalty 1
CTC Weight [0.3, 0.5]
Beam Size [10, 30, 50]

Table 15: Decoding Search Space ST Models.
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Abstract

Past studies on the ICD coding problem focus
on predicting clinical codes primarily based
on the discharge summary. This covers only
a small fraction of the notes generated during
each hospital stay and leaves potential for im-
proving performance by analysing all the avail-
able clinical notes. We propose a hierarchical
transformer architecture that uses text across
the entire sequence of clinical notes in each
hospital stay for ICD coding, and incorporates
embeddings for text metadata such as their po-
sition, time, and type of note. While using
all clinical notes increases the quantity of data
substantially, superconvergence can be used to
reduce training costs. We evaluate the model on
the MIMIC-III dataset. Our model exceeds the
prior state-of-the-art when using only discharge
summaries as input, and achieves further per-
formance improvements when all clinical notes
are used as input.

1 Introduction

ICD (International Classification of Diseases
(World Health Organization, 1978)) coding refers
to the task where medical professionals classify
clinical diagnoses and medical procedures asso-
ciated with each patient using standardised tax-
onomies, which in turn supports billing, service
planning and research. The process is manual and
laborious in nature (O’Malley et al., 2005), how-
ever there is potential to automate it by identifying
relevant information from clinical notes, which are
already captured in EHR systems. With this in
mind, researchers have started to explore whether
machine learning models can succeed at this task
(Mullenbach et al., 2018).

The current research on the ICD coding task fo-
cuses on the extraction of codes from the discharge
summary. This document is commonly written at
the end of a hospital stay and provides a textual de-
scription of the important diagnoses and procedures
for a given patient, making it particularly helpful

for the task. However, many other clinical notes are
also created during the hospital stay, which can pro-
vide important details or useful additional context
that may be missing from the discharge summary
itself. Analysing the full sequence of notes would
allow models to make more accurate decisions and
make the problem more similar to a real-life setting,
where clinicians have to consider all information
about a patient for ICD coding, rather than infor-
mation only in a single document.

In this work we study how the inclusion of clin-
ical notes across the entire hospital stay can af-
fect performance on the ICD coding task. We pro-
pose the Hierarchical Transformers for Document
Sequences (HTDS) model, which is an adapta-
tion of the hierarchical transformer model (Zhang
et al., 2019) for temporal modelling of document
sequences. The model takes text and metadata
(such as the time and type of note) from a sequence
of multiple documents as input and achieves im-
proved performance when additional clinical notes
are used for modelling. We compare different pri-
oritisation criteria for selecting which notes to use
as input and how to best represent the sequence
information. Methods related to superconvergence
are applied to speed up the model training process
in order to handle the increased size of the data that
needs to be processed.

Our experiments show that the inclusion of ad-
ditional clinical notes indeed improves model ac-
curacy and leads to better predictions. We evaluate
our models against the MIMIC-III-50 (Johnson
et al., 2016) test set. When considering only the
discharge summaries of each hospital stay as in-
put, our model exceeds the current state-of-the-art
performance in terms of Micro-F1. When consider-
ing all clinical notes as input, further performance
improvements across all metrics of interest are ob-
served, exceeding the state-of-the-art performance
in Micro-F1, Micro-AUC, Macro-AUC, and Preci-
sion@5 scores.
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2 Related Work

Publicly available electronic health record (EHR)
datasets, such as the Medical Information Mart
for Intensive Care III (MIMIC-III) dataset (John-
son et al., 2016), provide a shared context for re-
searchers to work on ICD coding. Recent work on
ICD coding concentrates on the benchmark tasks
presented by Mullenbach et al. (2018), which ex-
tracts ICD codes from the free-text discharge sum-
mary generated at the end of each hospital stay.
Mullenbach et al. (2018) also publicly release their
data preprocessing codes and train/dev/test data
splits, and these were followed by later works for
comparability of result.

In recent years, state-of-the-art work on the ICD
coding problem commonly used methods based
on convolutional neural networks (CNNs) or re-
current neural networks (RNNs) for text encoding.
CAML (Mullenbach et al., 2018) uses a single con-
volutional layer along with “per-label attention” to
extract representations for each label from the con-
volution output. MSAttKG (Xie et al., 2019) im-
proves the performance further by using a densely
connected convolutional network with variable n-
gram features, and incorporating knowledge graphs
to capture relationships between medical codes. Ef-
fectiveCAN (Liu et al., 2021) uses a deep convo-
lutional approach, with a “squeeze-and-excitation”
module that repeatedly compresses and then de-
compresses the convolutional features. LAAT (Vu
et al., 2021) uses a bidirectional LSTM to encode
the texts, with a per-label attention step on the out-
put to get the final classification. MSMN (Yuan
et al., 2022) uses the same architecture as LAAT,
with an additional step of extending code descrip-
tions from the Unified Medical Language System
(UMLS) with synonyms, and using an attention
layer with a separate head for each code synonym.

Researchers using transformer-based models for
text encoding experienced difficulties in matching
state-of-the-art performance. Ji et al. (2021) ap-
ply a range of different transformer-based mod-
els but found that none of them outperformed
their reimplementation of a simple CNN-based
model. Pascual et al. (2021) similarly found it
difficult to achieve competitive performance and
concluded that better methods of handling long in-
put sequences are required to improve the models
further. Gao et al. (2021) also find that a sim-
ple self-attention network with far less parame-
ters outperformed BERT-based models on many

tasks. Dai et al. (2022) show that incorporating
task-adaptive pre-training, overlapping chunks, and
using a large pretrained language model make it
possible to achieve performance that is close to,
but still slightly below the state-of-the-art. In gen-
eral, language models that were pretrained on texts
in the biomedicine domain, such as ClinicalBERT
(Alsentzer et al., 2019), BioBERT (Lee et al., 2020),
BlueBERT (Peng et al., 2019), and PubMedBERT
(Gu et al., 2021) tend to achieve higher perfor-
mance (Dai et al., 2022; Ji et al., 2021) as compared
to language models such as BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) which are
trained on general domain corpora, as the models
have been adapted to the specialised language used
in clinical notes. Among the range of pretrained
language models available for the biomedicine do-
main, better performance was achieved when a
specialised token vocabulary is used (Gu et al.,
2021; Lewis et al., 2020) and when the pre-training
corpora is closer in nature to those used for the
downstream task (Gururangan et al., 2020). Very re-
cently, Huang et al. (2022) identified the restricted
capacity of the [CLS] token as a potential limiting
factor, and showed how using all tokens in the label
attention step leads to state-of-the-art performance
on the MIMIC-III-Full problem. However, they do
not report results on the MIMIC-III-50 problem.

While transformer-based language models have
been very successful on short sequences of text
(BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) use a maximum sequence length of 512
tokens), challenges arise when attempting to apply
it to longer text sequences due to the quadratic com-
putational complexity of the self-attention mecha-
nism. Experiments conducted by Gao et al. (2021)
show that transformer models require 3x more pro-
cessing time compared to CNNs, making it more
tedious to explore different hyperparameters and
modelling strategies. Various modifications have
been proposed to the transformer architecture to
reduce computation costs, in models such as Trans-
formerXL (Dai et al., 2019), LongFormer (Beltagy
et al., 2020), and BigBird (Zaheer et al., 2020),
however domain-pretrained models for these archi-
tectures are relatively scarce. Most transformer-
based models for the ICD coding problem adapt
the hierarchical transformer (Zhang et al., 2019),
which splits the text into chunks that are encoded
separately with the pre-trained language model,
and then feeds the output of the [CLS] token into a
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second transformer to allow interaction of informa-
tion across chunks.

To the best of our knowledge, there has been no
prior work that attempts to extend the ICD coding
task with other clinical documents.

3 Approach

Our Hierarchical Transformers for Document
Sequences (HTDS) model is based on the hierar-
chical transformer architecture (Zhang et al., 2019),
with additional adaptations specifically to handle
document sequences. Figure 1 provides an illus-
trated diagram of the full HTDS model architecture.
We process documents using the following steps:

Step 1 - Preprocess and Chunk: The text in
each document is sequentially tokenized and split
into chunks, each containing up to Tc tokens. Every
new document or clinical note always starts a new
chunk.

From these tokenized chunks we select up to Nc

chunks for processing. If more than Nc chunks are
available, various prioritisation strategies can be
considered to select which chunks to use as model
input. In our main model we use a strategy that
prioritized diversity in the categories of notes used.
To do this, we select the last note by timestamp
of each category, and then the second last note of
each category, and so on until Nc chunks of text
are selected.

Step 2 - Encode with Language Model: The
chunks are encoded using the pre-trained language
model, producing an output of dimensionNc x Tc x
He, where He is the dimension of the hidden state
in the pre-trained LM.

Step 3 - Add Chunk Meta-Information: Meta-
information of each chunk is added. These are
learnable embeddings, retrieved via index lookup,
with size He. Positional Embeddings (PE) capture
the positional index of the chunk, and are num-
bered from 0 for the first chunk until N-1 for the
last chunk. Temporal Sequence Embeddings (TE)
capture the temporal order in which the documents
were captured, and are indexed in running order
from 0 for chunks belonging to the first document
and incremented with each subsequent document.
We noted that this indexing approach would often
assign varying indices to the last chunk or docu-
ment, as the number of chunks and documents for
each case would vary. This might limit the ability
of the model to identify the last chunk or document
of the text. Hence, we also include Reversed Po-

sitional Embeddings (Rev-PE) and Reversed Tem-
poral Sequence Embeddings (Rev-TE), which start
from 0 for the last chunk (or document) and are
then incremented with each preceding chunk (or
document). Category Embeddings (CE) capture
the category of the note, with a unique index for
each CATEGORY code. All learnable embeddings
use values initialised from a N(0, 0.1) distribution.
We hypothesise that these embeddings can help the
model to factor in chunk meta-information which
may be relevant for classification.

Step 4 - Second Transformer: The embeddings
are added together (token embeddings + meta-
information embeddings), then concatenated across
all the chunks and given as input to a second trans-
former with Ne encoder layers. This allows for
information from each chunk to interact with all
the other chunks and the use of only a small num-
ber of layers in this second transformer will keep
the computational requirements feasible. The out-
put is an updated embedding of each token, with
dimensions (Nc x Tc) x He.

Step 5 - Label Attention: A label attention
layer is applied. We train learnable embeddings
αl for each label (α = [α1...αNl

] has dimen-
sions Nl x He, where Nl is the number of labels)
which are applied against the chunk embeddings
(H = [h1...hNc ]) in an attention step as follows:

A = softmax(HαT )

V = HTA

Dim(A) = (Nc × Tc)×Nl

Dim(V ) = He ×Nl

The i-th column in V would be an independent
representation, of dimension He, for the i-th label
for classification.

Step 6 - Generate Final Classification: A clas-
sification layer is applied. We take σ(Wlvl) to get
the probability of label l, where Wl is a learnable
weight matrix of dimension He for label l, vl is the
l-th item of matrix V, and σ is the sigmoid activa-
tion function. To obtain the final classification we
apply a threshold t for positive classification that is
optimised for micro-F1 on the validation set.

4 Experiment Setup

Dataset: For our experiments, we use the MIMIC-
III (Medical Information Mart for Intensive Care)
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Figure 1: HTDS Model Architecture. The document sequence is first split into chunks (Step 1) and encoded with a
pre-trained language model (Step 2). Meta-information of each chunk is then added to the token encodings (Step
3) before a second transformer is applied to allow attention of information across chunks (Step 4). Finally a label
attention layer is applied (Step 5) and the outputs are used for classification (Step 6).

Mean SD
Discharge Summaries
Total Documents 1.1 0.4
Total Words 1896 929
Total Tokens 3594 1760

All Notes
Total Documents 33 59
Total Words 10442 21334
Total Tokens 21916 46461

Table 1: Summary statistics: Amount of text contained
in clinical documents per hospital stay, measured in
terms of total number of documents, words, tokens (us-
ing the RoBERTa-PM-M3-Voc tokenizer).

dataset (Johnson et al., 2016), which contains multi-
modal information on patients admitted to criti-
cal care between 2001 and 2012 at the Beth Is-
rael Deaconess Medical Center in Boston, Mas-
sachusetts. To limit computational costs, we focus
on the MIMIC-III-50 problem, which limits the
problem to the top 50 ICD codes by frequency.

To construct the task dataset, we follow Mul-
lenbach et al. (2018) preprocessing steps, with a
few exceptions: (1) we keep the text and meta-
data (specifically the datetime and the category of

note) of all notes rather than just the discharge sum-
maries, (2) we do not remove punctuation as we
found that performance drops when punctuation is
excluded. Each record represents one hospital stay
(uniquely identified by the HADM_ID value) and
contains the texts and ICD codes linked to that hos-
pital stay. There are 8066, 1573 and 1729 records
in the train, dev and test sets respectively, giving us
a total of 11368 records.

During the data cleaning process, we noticed that
the train set contains clinical notes tagged under
the category "Nursing/Other", but no clinical notes
were tagged in this category in the dev and test sets.
For our experiments we grouped "Nursing/Other"
and "Nursing" into a single category.

Table 1 shows summary statistics of the dataset.
In general, discharge summaries are far longer than
other documents, with an average of 1724 words
per document as compared to the overall average
of 316 words per document. However, the text in
discharge summaries only accounts for less than
20% of the words generated in each hospital stay,
suggesting the possibility that the other notes might
carry additional information that can improve ICD
coding accuracy. We also provide the number of
tokens produced when the text is tokenized with
the RoBERTa-PM-M3-Voc (Lewis et al., 2020) to-
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kenizer, and we see from the numbers that most
hospital stays involve text data that is beyond the
512-token maximum of a single transformer lan-
guage model.

We also note that the amount of text in each hos-
pital stay can vary widely and has a right-skewed
distribution. There is a notable proportion of longer
hospital stays which generate substantially more
documents and text as compared to the rest. The
90th percentile for Total Words and Total Docu-
ment Count across all notes is 20556 and 72 respec-
tively. For these hospital stays, the effects of the
note prioritisation strategy on model performance
would be more prominent.

Task Definition: We investigate two variations
of the ICD classification task on this dataset. For
Task 1, the notes that are available for modelling
are restricted to discharge summaries only. Some
hospital stays (11% of stays) have multiple dis-
charge summaries, typically because of addenda,
and in these cases we keep all of them. This would
be equivalent to the MIMIC-III-50 task attempted
by past works. For Task 2, all notes in each hospital
stay are available for use in modelling. This vastly
increases the number of documents (from an aver-
age of 1.1 to 33 per hospital stay) and the number
of words (from an average of 1896 to 10442) to be
considered. Task 2 uses the same data splits and
labels as Task 1, allowing us to compare the results
to assess whether information from the additional
notes is able to improve performance.

For both tasks, we use the same evaluation met-
rics as defined by Mullenbach et al (Mullenbach
et al., 2018) and then subsequently followed by
other researchers: micro-F1, macro-F1, micro-
AUC, macro-AUC, and Precision at k=5.

Implementation and Model Hyperparame-
ters: Pytorch was used for the implementation
of our models, and NVIDIA Tesla A100 80GB
GPUs were used for finetuning. Hyperparameters
were tuned manually; Table 2 details the search
space and final hyperparameter values used for
the HTDS model. The pretrained language model
was initialised to the RoBERTa-base-PM-M3-Voc
(Lewis et al., 2020) model checkpoint, which was
pretrained on texts in PubMed, PubMed Central,
and MIMIC-III physician notes. The second trans-
former uses 1 encoder layer with 8 attention heads.

Texts are tokenized into chunks of Tc=512 to-
kens and a maximum of Nc=32 chunks were used
as model input. With these values for Tc and Nc,

Hyperparameter Values
Optimization
Peak Learning Rate 1e-6 to 1e-4 (5e-5)
Number of Epochs 10-50 (20)
Early Stopping Pa-
tience Threshold

None, 3, 5, 10

Effective Batch Size 1-64 (16)

Language Model
Pre-trained LM PubMedBERT,

RoBERTa-base-
PM-M3-Voc,
RoBERTa-large-
PM-M3-Voc

Tokens per chunk, Tc 512
Max Chunks, Nc 1-48 (32)

Second Transformer
Encoder Layers 0, 1, 2
Attention Heads 8, 12

Table 2: Hyperparameter search space. Bolded text
indicates hyperparameters used in the HTDS model.

the note selection strategy to maximise diversity
of document categories (detailed earlier in Section
3) was applied for 45% of samples which have
more than 32 chunks of text. The model has 136M
parameters in total.

These hyperparameters were selected to max-
imise Micro-F1 on the dev set, with a few excep-
tions to manage training and computation costs: (1)
while using the larger RoBERTa-large-PM-M3-Voc
model was found to achieve better performance,
we kept to the smaller RoBERTa-base-PM-M3-Voc
model; (2) while increasing the maximum num-
ber of chunks Nc in general leads to better perfor-
mance, we limit our model to a maximum of 32
chunks.

Training models that take text across all clini-
cal documents as inputs, compared to using only
the discharge summary, requires substantially more
computational resources. With A100 GPUs, 15.5
samples are processed per second when training
on discharge summaries only1, and 4.9 samples
are processed per second when training with all
clinical documents. To speed up the model op-
timisation process, we apply the 3-phase 1cycle

1TrLDC (Dai et al., 2022), which we consider to be a
comparable model in terms of architecture, processed 7.4
samples per second when training on discharge summaries on
NVIDIA V100 GPUs.
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Micro F1 Macro F1 Micro AUC Macro AUC P@5
CNN-based Models
CAML (Mullenbach et al., 2018) 63.3 57.6 91.6 88.4 61.8
MSAttKG (Xie et al., 2019) 68.4 63.8 93.6 91.4 64.4
EffectiveCAN (Liu et al., 2021) 71.7 66.8 94.5 92.0 66.4
RNN-based Models
LAAT (Mullenbach et al., 2018) 71.5 66.6 94.6 92.5 67.5
MSMN (Yuan et al., 2022) 72.5 68.3 94.7 92.8 68.0
Transformer-based Models
Hier-PubMedBERT (Ji et al., 2021) 68.1 63.3 90.8 88.6 64.4
TrLDC (Base) (Dai et al., 2022) 70.1 63.8 93.7 91.4 65.9
TrLDC (Large) (Dai et al., 2022) 71.1 65.5 94.1 91.9 66.4
Our Models
HTDS (Discharge Summaries) 72.60.3 66.61.2 94.50.1 92.60.3 67.40.3
HTDS (All Notes) 73.30.3 67.90.4 95.00.2 93.20.2 68.20.2

Table 3: Performance of models on the MIMIC-III-50 test set. Models are sorted by Micro-F1 within each category.
Metrics are averaged across 5 replications. Subscripts indicate the standard deviation across runs. Bolded values
indicate the best score achieved for each metric.

learning rate scheduler for superconvergence as
described in (Smith and Topin, 2019). The learn-
ing rate (LR) progresses via cosine annealing from
1/25 of the peak LR to the peak LR (5e-5) in the
first phase (30% of iterations) and then goes back
to 1/25 of the peak LR in the second phase (30%
of iterations). Finally in the third phase (40% of
iterations), LR is annealed to 1/1000 of the peak
LR. The AdamW optimizer is used, with an ef-
fective batch size of 16 achieved through gradient
accumulation. The model is trained for up to 20
epochs with an early stopping patience threshold of
5. With this setup, training is stopped at around the
14th epoch on average. We note that this is at least
50% less (in terms of number of epochs) compared
to past works on the MIMIC-III-50 problem where
transformer-based models would be trained for 30
epochs or more (Dai et al., 2022; Ji et al., 2021;
Pascual et al., 2021).

5 Results

5.1 Main Results
Table 3 shows the results when our models are
evaluated against the MIMIC-III-50 test set, as well
as comparisons against published works. We report
the averaged metrics across 5 training replications.

As we can see from the table, prior works
with transformer-based models faced challenges
in achieving competitive performance on this prob-
lem. Dai et al. (2022) managed substantial im-
provements with the TrLDC model over the work

of Ji et al. (2021), however even with a large-sized
model their performance still fell slightly behind
the best-performing CNN-based and RNN-based
models. When using only discharge summaries,
HTDS achieves state-of-the-art performance in
terms of Micro-F1, the primary metric used for
comparison. It also exceeds past CNN-based and
Transformer-based models on all metrics of inter-
est.

When including all clinical documents, as com-
pared to including only discharge summaries, the
performance of HTDS improves on all metrics of
interest (all differences are statistically significant
at p<0.05), including an additional 0.7% increase
in Micro-F1. Comparing against all other models,
we see that the model achieves state-of-the-art per-
formance in terms of all metrics except for Macro-
F1. We hypothesize that the modelling of code
synonyms in MSMN (Yuan et al., 2022) helped to
increase its performance on rarer ICD codes and
hence achieve a higher Macro-F1 score, but also
note that steps used to improve performance by
incorporating synonyms based on UMLS concepts
could also be adapted into our model to achieve
similar improvements.

Put together, our results demonstrate the value of
including clinical documents beyond the discharge
summary in modelling.
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5.2 Ablation Experiments

To analyse the effect of various components and
hyperparameter choices on model performance, we
start with our main model and then ablate or vary
individual components one at a time, keeping all
other components constant, and evaluate their per-
formance on the development set. We share our
results in this section.

For all ablation experiments, we report the im-
pact on Micro-F1, the primary metric of interest,
averaged across 5 replications.

Quantity of Text Input: Table 4 shows how
performance varies as the quantity of text is varied.
The quantity of text used as input has a substantial
impact on the compute requirements of the entire
model architecture. When Nc is reduced 16, 7.5
samples are processed per second when training
on A100 GPUs, an increase of 0.5x as compared
to 4.9 samples per second for HTDS which uses
Nc=32. However, as we can see from the results
of this ablation experiment, reducing the quantity
of text input leads to a substantial drop in model
performance.

Micro F1

HTDS (Max 32 Chunks) 74.0
Max 16 Chunks 73.0

Table 4: Performance when the quantity of text input is
varied on the development set.

Metadata embeddings: Table 5 shows how the
performance varies as the metadata embeddings
used in the model are varied. The ablation of each
of the embedding types in isolation results in small
but consistent decreases in model performance. It
is possible that the model compensates by learning
to capture some of this information from the text
itself without explicit embeddings. Indeed, past
works have observed that the clinical notes in the
MIMIC-III dataset have a high degree of structure
and templating (Liu, 2018). Nevertheless, in our ex-
periments the overall best results were obtained by
using the combination of all the proposed metadata
embeddings.

Chunk Representations: In a traditional hierar-
chical transformer, only the encoding of the [CLS]
token is kept and used as an aggregate representa-
tion of the chunk. However, recent works have sug-
gested that the [CLS] token might have insufficient
capacity to capture information for the large num-
ber of labels in the ICD coding problem (Huang

Micro F1

HTDS (All meta embeddings) 74.0
Ablate CE 73.9
Ablate PE+Rev-PE 73.9
Ablate TE+Rev-TE 73.8

Table 5: Performance when metadata embeddings are
varied on the development set.

et al., 2022). In Table 6, we show the results when
only the [CLS] token is used as an aggregate rep-
resentation of each chunk, and see that there is a
sizeable decrease in performance.

Micro F1

HTDS (All token representations) 74.0
CLS token representation only 71.7

Table 6: Performance when the embeddings used for
chunk representation are varied on the development set.

Second Transformer: The second transformer
in Step 4 allows tokens from each chunk to attend
to tokens from other chunks. While earlier studies
(Dai et al., 2022; Ji et al., 2021) include this second
transformer, it also adds to the computational costs
of the model due to the quadratic complexity of
the attention step and (Huang et al., 2022) show
that the second transformer can be dropped if the
encodings of all tokens (rather than just the [CLS]
token) are kept for the label attention step.

Our ablation experiments in Table 7 provide
some additional insight on this. When consider-
ing only the discharge summary, the second trans-
former can be dropped without substantial impact
on performance. However, when modelling the
sequence of all clinical documents, ablating the
second transformer leads to a noticeable decrease
in performance, suggesting that the information
in other documents can help further refine token
representations before classification.

Micro F1

HTDS (Discharge Summaries) 73.2
Ablate 2nd Transformer 73.3

HTDS (All Notes) 74.0
Ablate 2nd Transformer 73.6

Table 7: Performance when second transformer is ab-
lated on the development set.
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Note Selection: In around 45% of admissions,
tokenizing the text in all available clinical notes
will produce more than 32 chunks of 512 tokens. In
those cases, we would need to select which chunks
are used as inputs to our model. Table 8 shows our
results. We considered the following strategies to
prioritise which chunks to use:

• By timestamp: We select the first or last 32
chunks by the timestamp of the clinical notes.
Taking the last chunks achieved far superior
performance.

• By category: We select first the discharge sum-
mary2, then notes of a certain category (Ra-
diology/Nursing/Physician), and then other
notes until 32 chunks of text are selected. Our
results indicate that the differences in perfor-
mance are mostly marginal, suggesting that
there could be multiple possible strategies that
achieve close to optimal performance.

• Prioritise diversity: We select first the last
note by timestamp of each category, and then
the second last note of each category, and so
on until 32 chunks of text are selected. This
maximises the diversity (in terms of categories
of notes) used as inputs to the model. This
approach was found to have the highest score
on the development set, and hence used for
HTDS.

Micro F1

HTDS (Prioritise diversity) 74.0

Prioritise First 68.4
Prioritise Last 73.8

Prioritise Radiology 73.8
Prioritise Nursing 73.7
Prioritise Physician 73.8

Table 8: Performance when note selection is varied on
the development set.

In general, we also note that the effects of note se-
lection strategies would be more pronounced when
the maximum number of chunks Nc for model in-
put is smaller, as it would result in a greater propor-
tion of text being excluded.

2Our exploratory tests find that the discharge summaries
contain the most relevant information. We note also that
prior work achieved good performance with just the discharge
summaries, without the need for other notes.

6 Conclusion

As we work towards automated ICD coding, it
would be helpful to build models that can consider
information that is captured across the patient’s
EHR record, rather than just the discharge sum-
mary (which may not always be exhaustive). Such
an approach would also be more similar to a real-
life setting, where clinicians consider all available
information for ICD coding, rather than informa-
tion in a single document.

In this paper, we demonstrated the HTDS model,
which is an adaptation of the hierarchical trans-
former model that considers the text and meta-
data from the entire clinical document sequence
for ICD coding. While transformer-based models
have faced difficulties achieving competitive per-
formance on the ICD coding problem in the past,
with HTDS we show that these challenges can be
overcome. When evaluated on the MIMIC-III-50
test set using only discharge summaries, HTDS
exceeded the prior state-of-the-art performance in
terms of Micro-F1 score. When all clinical docu-
ments were considered, the performance of HTDS
improved further on all performance metrics of
interest, and exceeded prior state-of-the-art perfor-
mance in all metrics except for Macro-F1. The
results demonstrate the value of including clinical
documents beyond the discharge summary in the
ICD coding problem.

Possibilities for improving performance even fur-
ther are plenty. These include: using a large-sized
language model or using overlapping text chunks
to reduce fragmentation in the initial encoding step
(Dai et al., 2022), considering other transformer ar-
chitectures for long texts (Beltagy et al., 2020; Dai
et al., 2019; Zaheer et al., 2020), smarter strategies
for chunking the input text to reduce fragmentation,
further improving the strategy for selecting which
text to use as model input (possibly going down to
text-level rather than document-level approaches),
and incorporating methods to better model rare
ICD codes (Vu et al., 2021; Yuan et al., 2022).
Approaches for improving the computational effi-
ciency and training time of the model can be consid-
ered to help to reduce GPU resource requirements,
and enable the testing of more models and hyper-
parameter settings. Going even further from here,
we could consider multi-modal models that use in-
formation across the entire EHR database for ICD
coding.

We hope that our findings will encourage future
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studies that tap on the full breadth and depth of
information available in modern EHR databases
today in order to further push the limits of perfor-
mance on the ICD coding problem in future.

Limitations

Although applying HTDS on the full clinical docu-
ment sequence in each hospital stay helped to push
performance on the ICD coding problem further
as compared to the prior state-of-the-art, we note a
few limitations to our work.

Firstly, the computational requirements to train
HTDS is not trivial. When using NVIDIA A100
GPUs, one training run took 8 GPU-hours on aver-
age (for 5 replications this would require 40 GPU-
hours). The increased computation cost for HTDS,
as compared to other models on the ICD coding
problem, could be attributed to the higher number
of model parameters in transformers as compared
to CNN/RNNs and the increase in input data size as
a result of using all clinical documents as input. It
is hoped that this issue of high compute costs can be
mitigated in future by either further refinements in
modelling to improve efficiency or improvements
in the compute capabilities of hardware used for
model training.

Secondly, we note that our work focuses only
on the MIMIC-III-50 problem, where only the top
50 ICD codes by frequency are considered. This
would be insufficient in a real-life setting, which
would require clinicians to consider all ICD codes.
Extending our work on the MIMIC-III-Full prob-
lem, which uses a dataset that is 4x in size, was not
attempted due to limitations on compute resources.
However, we speculate that the benefits of using all
clinical documents to perform ICD coding would
apply similarly to the MIMIC-III-Full problem.

Finally, while we have taken the actual ICD
codes assigned by clinicians as the "ground truth"
for the purpose of model evaluation, there have
been errors made during the process. We would
not expect clinicians to thoroughly read the entire
clinical document sequence (consisting an aver-
age of over 10,000 words) for every patient when
performing ICD coding, and hence there is a pos-
sibility that some codes could have been missed.
A more thorough approach for model evaluation
could involve extracting a sample of records where
different codes were assigned by the clinicians and
our models for further evaluation by experts, in
order to determine the extent to which this might

have affected our evaluation metrics.

Ethics Statement

No conflicts of interest are declared by the au-
thors. Clinical data in the MIMIC-III database
is de-identified through removal of identifying
data elements and date-shifting in accordance with
Health Insurance Portability and Accountability
Act (HIPAA) standards, and protected health infor-
mation was further removed from clinical notes
using dictionary look-ups and pattern-matching
(Johnson et al., 2016). The use of the data is in ac-
cordance with the MIMIC-III data use agreement.
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Abstract

While human evaluation remains best prac-
tice for accurately judging the faithfulness of
automatically-generated summaries, few solu-
tions exist to address the increased difficulty
and workload when evaluating long-form sum-
maries. Through a survey of 162 papers on
long-form summarization, we first shed light on
current human evaluation practices surround-
ing long-form summaries. We find that 73% of
these papers do not perform any human eval-
uation on model-generated summaries, while
other works face new difficulties that manifest
when dealing with long documents (e.g., low
inter-annotator agreement). Motivated by our
survey, we present LONGEVAL, a set of guide-
lines for human evaluation of faithfulness in
long-form summaries that addresses the fol-
lowing challenges: (1) How can we achieve
high inter-annotator agreement on faithfulness
scores? (2) How can we minimize annotator
workload while maintaining accurate faithful-
ness scores? and (3) Do humans benefit from
automated alignment between summary and
source snippets? We deploy LONGEVAL in an-
notation studies on two long-form summariza-
tion datasets in different domains (SQuALITY
and PubMed), and we find that switching to a
finer granularity of judgment (e.g., clause-level)
reduces inter-annotator variance in faithfulness
scores (e.g., std-dev from 18.5 to 6.8). We also
show that scores from a partial annotation of
fine-grained units highly correlates with scores
from a full annotation workload (0.89 Kendall’s
τ using 50% judgments). We release our hu-
man judgments, annotation templates, and our
software for future research.1

1 Introduction

Human judgments are considered the gold
standard for evaluating model-generated sum-

1https://github.com/martiansideofthemoon/
longeval-summarization
*Work done during in an internship at AI2. Details of
individual author contributions can be found here.

maries (Kryscinski et al., 2019; Fabbri et al., 2021)
and generated text more broadly (Celikyilmaz et al.,
2020). Unfortunately, human evaluation tends to
be labor-intensive, expensive to scale, and diffi-
cult to design. This is problematic as a large num-
ber of judged examples is needed to draw statisti-
cally significant conclusions about system perfor-
mances (Wei and Jia, 2021) or correlations between
human judgments and automatic metrics (Deutsch
et al., 2021). Human evaluation is especially chal-
lenging when long sequences of generated text
need to be evaluated, due to the inherent subjectiv-
ity in the task (Karpinska et al., 2021; Clark et al.,
2021; Krishna et al., 2021; Goyal et al., 2022).

To better understand the challenges of human
evaluation on long-form summaries (150 words
or longer), we first conduct a comprehensive sur-
vey of 162 publications and preprints on long-form
summarization (Section 2). We find that 119 pa-
pers (73%) do not perform human evaluation on
long-form summaries, while the remaining papers
deviate significantly from suggested best practices
for reproducibility (Gehrmann et al., 2022). Cur-
rent human evaluation setups lack standardization
in their design decisions (such as annotation gran-
ularity), some of which can significantly impact
inter-annotator agreement (Section 3.1). Finally,
20 papers explicitly mention human evaluation is
expensive, difficult, and time-consuming due to the
long length of summaries and source documents.

To move towards a more consistent and efficient
human evaluation, we present LONGEVAL, a set of
guidelines for human evaluation of faithfulness in
long-form summarization (Section 3). We empiri-
cally evaluate LONGEVAL using human annotation
studies on two long-form summarization datasets:
SQuALITY (Wang et al., 2022) and PubMed (Co-
han et al., 2018). We provide an overview of our
main research questions and findings in Figure 1
and enumerate them here:
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…. He recognized her as old Hazeltyne 's daughter Harriet , no doubt 
come to see justice done . She did n't have the hothouse - flower look 
Asa would have expected in a girl whose father owned the most 
valuable of the planetary franchises . She was not afraid to meet his 
eye , the eye of a judicially certified criminal . There was , perhaps , a 
crease of puzzlement in her brow , as if she had thought crimes were 
committed by shriveled , rat - faced types , and not by young biological 
engineers who still affected crewcuts . Tom Dorr , Hazeltyne 's general 
manager , was her escort . Asa felt certain , without proof , that Dorr 
was the man who had framed him for the charge of grand theft by 
secreting a fresh Slider egg in his laboratory . The older man stared at 
Asa coldly as he was led out of the courtroom and down the corridor 
back to jail . Jumpy , Asa 's cellmate , took one look at his face as he 
was put back behind bars . " Guilty , " Jumpy said ….Asa took four 
steps to the far wall of the cell , stood there briefly with his head bent 
and turned to face Jumpy . " Nope , " Asa said softly . " I 'm going into 
a conversion tank . I 'm going to be a muck man , Jumpy . I 'm going 
out to Jordan 's Planet and hunt Slider eggs . " " Smuggling ? It wo n't 
work . " Asa did n't answer . The Hazeltyne company had gone after 
him because he had …

Asa Graybar is a biological engineer 
who studies keeping Slider eggs 
alive and he is accused of a crime at 
the opening of the story . He thinks 
he was framed by Tom Dorr , 
Hazeltyne ’s general manager . He 
was offered one year as a “ 
changeling ” on another planet or 5 
years in rehabilitation on Earth . He 
elects to do the one year , and 
thinks that he will get into smuggling 
Slider eggs on Jordan ’s planet ….. 

Source document (4.8K words)Summary (270 words) Alignment 

Is this span fully supported 
by the source?

Yes

No

FINE-grained

Q3: Is it helpful to automatically align summary 
units with the long source document?

Q2: Can annotator workload 
be reduced by annotating just a 
fraction of the long summary?

Q1: Can inter annotator 
agreement be improved with 
fine-grained annotations?

COARSE-grained

How well is the summary 
supported by the source? 

Figure 1: Overview of research questions considered in LONGEVAL. Example summary taken from SQuALITY.

RQ1: Can inter-annotator agreement be improved
while evaluating faithfulness of long-form sum-
maries via fine-grained annotations?

Finding: Annotating faithfulness of individual
summary clauses and aggregating them leads to sig-
nificantly higher inter-annotator agreement, com-
pared to the dominant paradigm of evaluating
whole summaries at once via Likert ratings (std-dev
18.5 to 6.8 on SQuALITY).

RQ2: Can we reduce annotator workload by
partially annotating a long summary while
maintaining accurate faithfulness scores?

Finding: Despite annotating a fraction of summary
clauses, faithfulness scores under a reduced work-
load maintain high correlation with those from a
full workload (0.89 Kendall’s τ at 50% workload).

RQ3: Do humans benefit from automatically
aligning summary units to relevant sentences in
the source document?

Finding: Unlike suggestions in prior work on short-
form summarization (Hardy et al., 2019; Kryscin-
ski et al., 2020), aligning parts of the summary to
source document is only useful when the summary
is highly extractive or mostly correct.

Overall, our contributions are:
(1) a 162-paper survey of current human evaluation
practices in long-form summarization;
(2) LONGEVAL, a set of three guidelines for evalu-
ating faithfulness in long-form summarization;
(3) an empirical validation of LONGEVAL guide-

lines on two long-form summarization datasets in
different domains (SQuALITY and PubMed);
(4) A dataset with 3-way fine-grained human faith-
fulness judgments for 120 SQuALITY & PubMed
summaries annotated using LONGEVAL which can
be used for benchmarking automatic metrics.

We open-source our human evaluation data, an-
notation interface, and code for future research.1

2 Survey of human evaluation practices

Before discussing LONGEVAL, we first attempt to
understand current human evaluation practices in
long-form summarization through a comprehensive
survey of 162 papers. Our survey reveals several
concerning trends: absence of human evaluation,
non-reproducible experimental setups, lack of stan-
dardization, and complaints of long summaries be-
ing challenging and expensive to evaluate. These
results show an urgent need to develop more effi-
cient and standardized human evaluation protocols.

Selection of papers: We consider existing summa-
rization datasets with an average summary length
of at least 150 words, which includes several pop-
ular datasets like arXiv (Cohan et al., 2018), Bill-
Sum (Kornilova and Eidelman, 2019) and Multi-
News (Fabbri et al., 2019); see Table 1 for a full list.
For our survey, we select all papers that evaluated
summarization models using at least one of these
datasets.2 All of these papers were published be-
tween June 2018 and September 2022, after the first
long-form summarization datasets were released
(PubMed / arXiv). Most of the 162 surveyed papers

2We exclude five papers which used long-form summariza-
tion data for pre-training only, like Wei et al. (2022).
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were published in major NLP/ML venues, but we
also include newer preprints from 2022.

Long-form summaries are rarely evaluated by
humans. We find that 101 out of 162 papers (62%)
do not perform any human evaluation. 17 papers
(11%) only perform human evaluation on short
summaries (datasets like XSUM, Narayan et al.,
2018), for which human evaluation is much easier.

Human evaluation studies of long-form sum-
maries are not reproducible. We further analyze
the 44 papers performing human evaluation of long-
form summaries to observe how often they follow
reproducible practices from Gehrmann et al. (2022).
Overall, we find that most studies do not follow
these guidelines. Only 2 of the 44 papers release
their raw human annotation data for further analy-
sis. Only 9 papers provide details of their annotator
instructions or interface, and just 12 papers perform
any kind of statistical analysis, despite most papers
annotating less than 50 summaries. While 33 pa-
pers report using multiple annotators per summary,
only 12 report inter-annotator agreement. Finally,
just 14 papers conduct human evaluation on more
than one dataset (more statistics in Appendix C).

Existing human evaluation setups lack standard-
ization. In Table 2, we catalog the wide spectrum
of human evaluation setups in the surveyed papers.
37 papers collect judgments of the full-length sum-
mary at once (“COARSE-grained”), while 6 papers
collect judgments at a finer granularity such as sen-
tences or entities (“FINE-grained”). Even within
a granularity, setups differ: Likert-scale (24 pa-
pers), A/B testing (13 papers), binary per-sentence
labels (4 papers) are the dominant protocols. In
Section 3.1, we will see that this design decision
is critical since COARSE annotations have much
lower inter-annotator agreement than FINE.3

Human evaluation of long-form summaries is
challenging and expensive. Several of the sur-
veyed papers discuss challenges in human evalua-
tion of long-form summaries. 13 papers mention
that expert annotators are necessary for human eval-
uation of long-form summaries, especially in tech-
nical domains like PubMed. 20 papers report that
human evaluation of long-form summarization was

3Besides granularity, we also observe a large spectrum of
annotator qualifications in our survey, ranging from MTurkers
to expert graduates (Appendix C). Since non-experts are
known to be unsuitable for this task (Gillick and Liu, 2010;
Fabbri et al., 2021), we use experts in our work (Appendix B).

Dataset |source| |summary| papers
(words) (words)

PubMed (2018) 3092 205 59
arXiv (2018) 5906 163 55
BillSum (2019) 1284 174 19
MultiNews (2019) 2103 263 54
GovReport (2021) 7551 547 16
BookSum (2021) 5102 505 4
SummScreen (2022) 6965 227 11
SQuALITY (2022) 5194 227 1

Table 1: List of long-form summarization datasets con-
sidered in our survey along with average source docu-
ment and summary lengths. Each dataset considered
has at least 150 word summaries on average.

Type of human evaluation # papers % papers

None 101 62%
Short-form summaries only 17 11%

Likert-scale COARSE-grained 24 15%
A/B testing COARSE-grained 13 8%
Extrinsic evaluation 1 1%
Binary per sentence FINE-grained 4 2%
QA-based FINE-grained 2 1%

Table 2: Human evaluation setup in 162 summariza-
tion papers that evaluate long-form summaries. 73% of
the papers do not evaluate long-form summaries with
humans, while others vary significantly in their setups.

time-consuming, challenging, and expensive, pri-
marily due to the long length of the summary and
source document. To tackle the issue of high an-
notator workload, we propose a partial annotation
method in Section 3.2 and report high correlation
to a full workload. Additionally, in Section 3.3
we investigate the usefulness of highlighting sen-
tences to help annotators navigate the long source
document. While this has been advocated for in
short-form summary evaluation (Hardy et al., 2019;
Kryscinski et al., 2020) and used in 3 surveyed
long-form papers, we find that it is only helpful
when summaries are mostly correct and extractive.

3 The LONGEVAL guidelines for
faithfulness human evaluation

In Section 2, we report several concerning issues
with current human evaluation practices in long-
form summarization. To move towards more ef-
ficient, reproducible and standardized protocols
for human evaluation, we develop the LONGEVAL

guidelines (Section 3.1-3.3, see Figure 1 for an
overview). We focus on human evaluation of faith-
fulness, which Wang et al. (2022) define as:
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“Checking the factual errors in the summary,

where a factual error is a statement that con-

tradicts the source document, or is not directly

stated, heavily implied, or logically entailed by

the source document”

We conduct human annotation studies to empiri-
cally motivate LONGEVAL. Our experiments are
on two long-form summarization datasets span-
ning diverse domains and levels of abstractiveness:

(1) SQuALITY (Wang et al., 2022) is a summariza-
tion dataset in the literary domain (avg. summary
length of 227 words) where summaries describe
the plots of English science fiction stories. SQuAL-
ITY is highly abstractive: on average just 16% of
bigrams in the summary are present in the source
document. We closely follow the human evaluation
setup in Wang et al. (2022), and use BART (Lewis
et al., 2020) and BART-DPR (Karpukhin et al.,
2020) as our summarization models along with
human-written summaries.

(2) PubMed (Cohan et al., 2018) is a summariza-
tion dataset in the scientific domain (avg. summary
length of 205 words) that pairs English biomedical
articles from PubMed4 with their abstracts as sum-
maries. Compared to SQuALITY, PubMed is more
extractive: 54% of summary bigrams are present in
the source. We use BigBird-PEGASUS-large (Za-
heer et al., 2020) and LongT5-large (Guo et al.,
2022) as our summarization models,5 along with
human written summaries. By default, LongT5 /
BigBird were highly extractive compared to human-
written PubMed summaries (87% / 74% vs 54%
bigram overlap with source). Hence, for half the
generations we block 6-grams from being copied
from the source,6 reducing extractiveness to∼54%.
We call this setting “PubMed-ngram-block”.

3.1 RQ1: Does inter-annotator agreement
improve using fine-grained annotations?

In Section 2, we found that the dominant paradigm
in literature (37 out of 44 papers) is to evaluate
the whole summary at once (“COARSE”-grained,
Figure 1 top left). 6 papers instead obtain fine-
grained annotations for individual units (e.g., sen-
tences) and average them (FINE, Figure 1 top right).

4https://pubmed.ncbi.nlm.nih.gov/
5LongT5 is the best publicly available PubMed summa-

rizer. BigBird is a popular long-form summarization baseline.
6Reducing extractiveness / copying is also a suggestion for

fair-use of copyrighted work (Harvard, 2016; UMGC, 2020).

Intuitively, FINE annotation has many advantages
for longer summaries — it is less subjective than
COARSE, since shorter spans needs to be judged
rather than a long summary, and it helps localize
model errors. However, the distinction between
COARSE and FINE is never justified in literature,
and inter-annotator agreement is rarely reported to
understand the task subjectivity in each setup. To
better understand the tradeoff, in this section we
conduct human evaluations annotating the same set
of summaries using these two different protocols.

Task formulation: Let Fsumm denote the faithful-
ness score of a summary. For COARSE, k-point
Likert scale ratings are obtained for the summary
(Fsumm ∈ {0, 1...k}), based on the faithfulness def-
inition provided earlier. For FINE, we collect binary
judgments of individual units in the summary and
average them,

Fsumm =
1

|Csumm|
∑

c∈Csumm

Fc, Fc ∈ {0, 1}

where Csumm is a set of units in the summary and
Fc is the faithfulness judgment for the unit c. In
both protocols, the faithfulness score of a system is
defined as 1

|S|
∑

summ∈S Fsumm where S is the set
of summaries generated by the system.7

While sentences are a popular granularity for
FINE (4 of the 6 surveyed papers), we found that
summary sentences in both datasets were over-
loaded with information. Hence, we segment sen-
tences on conjunctions and punctuation to obtain
more atomic units as Csumm. These units are often
clauses,8 similar to summary content units (SCUs)
in Pyramid (Nenkova and Passonneau, 2004).

Collecting COARSE annotations: For SQuALITY,
we re-use the annotations provided by Wang et al.
(2022) for faithfulness assessments. In their data,
three annotators give each summary a 1-100 direct
assessment rating (Bojar et al., 2016). Annotators
with experience in professional copyrighting and
editing were hired on Upwork,9 and these annota-
tors were also involved in the creation of SQuAL-
ITY. Unfortunately, none of the surveyed papers
that reported human evaluation results on PubMed

7We assume all summary units get an equal weight. How-
ever, some units may be more important than others, we dis-
cuss this in the Limitations section.

8An even finer granularity is entities / numbers. We avoid
this due to prohibitive annotation cost on long summaries.

9https://www.upwork.com/
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Figure 2: 95% confidence intervals of Pearson correlations between various automatic evaluation metrics and using
human evaluation data collected with FINE (blue) and COARSE (orange) annotation methods. In both datasets, FINE
annotations lead to much narrower CIs than COARSE annotations. See Appendix G for plot with Kendall’s Tau.
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Figure 3: 95% confidence intervals of estimated model performances using FINE (blue) and COARSE (orange)
annotation methods. Intervals calculated using bootstrap resampling across annotators (Appendix A). While both
annotation granularities lead to similar relative ordering of systems, FINE annotations have narrower confidence
intervals. The higher LongT5 score vs human in PubMed is due to highly extractive LongT5 summaries (Section 3).

released their raw human annotations.10 Hence, we
collect our own COARSE evaluations on PubMed
summaries on Upwork, using freelancers with pro-
fessional experience reading and writing research
papers (details in Appendix B.2). We collect 3 an-
notations per summary and use a 5-point Likert
scale, the most common choice for COARSE assess-
ment in our survey (18 out of 38 papers). In total,
120 summaries are evaluated.

Collecting FINE annotations: For both SQuAL-
ITY and PubMed, we collect FINE annotations on
Upwork (3 annotators per FINE unit) for the same
set of 120 summaries evaluated using COARSE an-
notations. For SQuALITY, we hire freelancers with
professional experience in English, creative writ-
ing, or education. For PubMed, we hire freelancers
with prior experience analyzing biomedical arti-
cles. See Appendix B.1 for details of our annotator

10In our email correspondence with authors of these works,
they mentioned losing access or compliance issues as reasons
for not sharing human evaluations. We received some exam-
ples from Guo et al. (2021) and Ju et al. (2021) for reference.

Dataset COARSE FINE

SQuALITY 18.5 6.8
PubMed 11.8 7.3
PubMed + ngram block 11.7 9.3

Average 14.0 7.8

Table 3: Average standard deviation of faithfulness
scores across annotators on a 100-point rating scale.
Lower variation means higher agreement. Overall, we
find that FINE-grained annotations have higher inter-
annotator agreement than COARSE-grained annotations.
Note that all FINE units of a summary were annotated
to obtain these results (f = 1.0 in Section 3.2).

screening process, compensation, instructions, and
screenshots of our annotation interface.

FINE annotations have higher inter-annotator
agreement than COARSE annotations. This leads
to more confident downstream estimates. We
present our results in Table 3. Overall, we observe
that across all settings, FINE annotations have lower
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Figure 4: Accuracy and variance after annotating a fraction of units per summary (X-axis) with FINE. Despite
annotating just a fraction of the summary, we observe a high segment-level Kendall tau correlation with a full
annotation (left). However we observe higher inter-annotator variance as the fraction reduces (right). Confidence
intervals shown are 95% and computed across 1000 random subsets (see Appendix F for left plot with Pearson).

standard deviation (and thus higher agreement) in
faithfulness scores than COARSE annotations (7.8
vs 14.0 average on 100-point scaled ratings). To
illustrate the importance of higher agreement, we
measure its effect on two downstream statistics that
human evaluation is primarily used for: (1) correla-
tion with automatic metrics; and (2) mean system
performance. We adapt the bootstrap resampling
analysis11 of Deutsch et al. (2021) to estimate con-
fidence intervals of these two downstream statistics
for COARSE and FINE.

In Figure 2, we plot the 95% confidence inter-
vals of the Pearson correlation of various auto-
matic evaluation metrics against FINE-grained and
COARSE-grained human evaluation data. Across
both datasets, FINE data leads to much narrower
confidence intervals (0.15 vs 0.35 average uncer-
tainty in Pearson correlation on PubMed) for the
same number of summaries, implying higher sta-
tistical power. In Figure 3, we observe a simi-
lar trend with mean system performance. Inter-
estingly, both annotation methods give the same
relative ordering of systems (human > bart-dpr >
bart for SQuALITY, human > longT5 > BigBird
for PubMed-block), confirming the alignment of
FINE and COARSE judgments on average.

Recommendation: Unlike the dominant trend in
prior work, FINE-grained evaluations should be pre-
ferred over COARSE grained evaluation for long-

11We slightly modify the algorithm in Deutsch et al. (2021)
for inter-annotator variance, see Appendix A.

form summaries. FINE annotations have lower inter-
annotator variance than COARSE annotations and
help localize model errors. In our setup we assume
all FINE units are equally weighted while aggre-
gating them to the final summary score. Despite
this assumption, in our results we observe a consis-
tent relative ordering of systems/metrics between
COARSE and FINE annotations. Nevertheless, non-
uniform weighing of units is an interesting future
work direction; more in the Limitations section.

3.2 RQ2: Can we reduce annotator workload
by partially annotating a long summary?

In Section 3.1, we found that FINE annotations have
lower variance than COARSE annotations. However,
long summaries may be composed of several units
(sentences or phrases) which each require FINE

annotation. This could make FINE annotation very
expensive for longer summaries (as also noted in
our survey). What if we instead annotate a random
subset of units from the summary? While this will
lower annotation cost, how accurate would these
partial annotations be? We explore this tradeoff by
re-using the annotations collected in Section 3.1.
For every summary, we randomly sample a fraction
of units f ∈ {0.1, 0.2...0.9} and then measure its
correlation to the full set of annotations collected.
Each annotator gets a different random sample of
units for the same summary. In initial experiments,
we found that this yielded higher accuracy than
when keeping the same set of units per annotator.
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Partial annotation has a high correlation to full
annotation, but higher variance: In Figure 4 (left)
we plot the segment level Kendall’s τ correlation
(relative ordering of summary scores) between a
partial annotation and full annotation for different
values of f . Overall, we observe a high correlation
across different values of f . Despite annotating just
half the summary (f = 0.5), in both datasets we
observe a high correlation of 0.78-0.89 Kendall’s
τ (95% interval) with a full annotation. Does a
partial annotation preserve the variance benefits of
FINE vs COARSE? In Figure 4 (right) we plot the
inter-annotator variance for different values of f .
In both datasets we find that a partial annotation
has a higher variance than a full annotation. While
for all values of f in SQuALITY we find that FINE

annotations still have lower variance than COARSE,
in PubMed COARSE has lower variance than FINE

for f <= 0.3 with 95% confidence.

Recommendation: Having annotators judge a ran-
dom subset of units in a long-form summary is a
simple way to reduce FINE annotation cost, and has
high correlation with a full annotation. However,
it increases inter-annotator variance. Annotating
50% of the summary results in 0.78-0.89 Kendall’s
τ correlation, with a 30-40% increase in standard
deviation compared to full FINE annotation. Partial
annotation may be limited in its ability to identify
issues in summaries with very few errors. However,
we find that this is not the case in current systems,
which are abundant in faithfulness errors.

3.3 RQ3: Is it useful to align summary units
to sentences in the source document?

So far, we have focused on design decisions on the
summary side of evaluation. However, evaluating
faithfulness requires a comparison of facts between
a summary and a source document. Long-form
summaries tend to have long source documents
(Table 1): 3.1K words for SQuALITY and 5.1K
words for PubMed. In Section 2, we found sev-
eral mentioned human evaluation is challenging
since annotators need to read long source docu-
ments. Some prior work has suggested highlight-
ing spans in the source document that align with
the summary (Hardy et al., 2019; Kryscinski et al.,
2020; Vig et al., 2021) as shown in Figure 1. How-
ever, these efforts have exclusively focused on news
summarization with relatively short source docu-
ments, like CNN/DM (804 words) (Nallapati et al.,
2016) or XSUM (438 words) (Narayan et al., 2018).

Algorithm R@3 R@5 R@10

BM25 (1995) 0.38 0.46 0.56
ROUGE-1 (2004) 0.31 0.34 0.46
SIM (2019) 0.37 0.52 0.60
DPR (2020) 0.29 0.31 0.41
BERTScore-DB-XL (2020) 0.30 0.37 0.46
SummaC-NLI (2022) 0.22 0.26 0.34
MultiVers-FEVER (2022) 0.47 0.58 0.71
SuperPAL (2021) 0.61 0.68 0.77

Table 4: A comparison of algorithms finding the
top source document sentences for summary units in
SQuALITY. R@k (recall@k) denotes the fraction of
times the gold sentence was in the top-k predictions.

Hints Acc. (↑) Agree. (↑) Time (secs) (↓)
(2-way) (Fleiss) All First 5

None 93% 0.71 41.4 115.6
SuperPAL 92% 0.64 48.2 84.6
Gold 92% 0.63 40.4 60.4

Table 5: Annotator performance (accuracy, agreement,
median time) in detecting summary errors with different
types of source document highlight hints. Overall, we
see little difference across the three settings.

How useful is highlighting based on alignment,
or “hints”, when the spans are chosen from much
longer documents?

What is the best highlighting algorithm? We
conduct a study to identify the alignment algorithm
best suited for highlighting hints. We manually
annotate 125 FINE units from human-written sum-
maries of the SQuALITY validation split, marking
the sentences best supporting them from the source
document. We then test several candidate meth-
ods for linking summary units to the source doc-
ument. These include token overlap methods like
ROUGE (Lin, 2004), retrievers (Karpukhin et al.,
2020), and fact verifiers (Wadden et al., 2022). In
Table 4, we find that SuperPAL (Ernst et al., 2021),
a weakly supervised linking algorithm, performs
best (0.61 recall@3 vs the next best 0.47). To im-
prove precision, we filter matches scoring less than
0.3 on SuperPAL, and show at most five highlights.

Do highlighted hints improve summary error
detection? To answer this question, we manu-
ally perturb 50 FINE summary units in SQuALITY
validation summaries, introducing entity errors or
negations like Kryscinski et al. (2020). We mod-
ify the summary context of the perturbed unit to
ensure summaries are self-consistent. Annotators
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Question & TL;DR response Response Snippets

Q: Did you find the highlighted
hints useful while making your
judgment?

TL;DR: 4 out of 5 annota-
tors said Sometimes, 1 said Yes.
More useful for SQuALITY,
summary units copied verbatim
from source, correct summaries.

“With summaries that had poor correctness, the hints were often a mess, and even correct spans had to be
carefully checked. In summaries that were more correct, I could often just read the span and remember that it
was correct, and then the hints helped me find the right source position, or refresh my memory about details.”
“They were more useful when the summary was a near verbatim source reproduction.”
“Yes, they were useful. Often they would highlight the exact passage needed to support the summary span.”
“In PubMed, they were a little more chaotic, even for good summaries.”
“SQuALITY summaries consisted of sentences or parts of sentences taken straight from the story (wording was
exactly as in the text). So hints often lead to the exact place.”
“For SQuALITY, they were mostly accurate and helpful. For PubMed, they were less accurate and relevant.”

Q: Would the highlights have
been sufficient to make judg-
ments, or was reading the entire
source document necessary?

TL;DR: 3 out of 5 annota-
tors said No, 2 said sometimes
in SQuALITY. Reading the
entire document was critical.

“Reading the entire source document was very helpful to understand the basic story plot”
“Even when the hints were relevant, sometimes they left out information (like character name)...”
“Initially I tried skimming ... then concluded it’s easier to read the entire document first.”
“With SQuALITY there were cases where almost all of the highlights did not make any sense and nothing of that
was even mentioned in the story. With PubMed, it was even more difficult to find hints that support the text”
“Reading the entire document was essential to understanding the whole process, the hints in isolation were not
good enough. The hints and the summary often confused similar objects, especially when pronouns were
involved, from different parts of the source. In PubMed a similar thing happened when the source discussed
what other papers had done – punctuation, acronyms, and abbreviations played a big role in providing context.”

Q: Did you use Ctrl+F searches
in the source document while
making judgments?

TL;DR: 4 out of 5 annota-
tors said Yes, 1 said yes only
for PubMed. Ctrl+F helped
locate synonyms, entities.

“Yes, all the time. It was usually a safer bet than using the hints. The hints are given out of context of the
whole SQuALITY story. There were a lot of problems with the PubMed hints involving numbers, which I often
searched for. They were very rarely supported by the document, or contained wrong symbols (= instead of >).”
“Yes, mostly in cases the highlight did not support the summary unit partially or entirely.”
“I used Ctrl+F when looking for very specific words, like names. Searching was less helpful when it came to
words that had synonyms or emotions.”
“I did Ctrl+F on keywords taken directly from the summary unit as well as synonyms and any specific words
that I remembered from the story that could help me get to that place in the source document quickly.”

Table 6: Results and snippets from our questionnaire with FINE annotators. Overall, annotators find hints only
sometimes useful, and mention reading the entire source document along with keyword searches.

are shown 50 perturbed and 50 un-perturbed sum-
maries, and asked to annotate whether the summary
units are faithful to the source in three settings:12

(1) no highlighted hints; (2) SuperPAL highlighted
hints; (3) gold hints manually annotated by us. In
Table 5, we show accuracy, inter-annotator agree-
ment, and median time13 for each setting.

Highlighted hints have almost no effect in eval-
uating long-form summaries: Surprisingly, we
observe that in all three metrics (accuracy, agree-
ment, median time taken), scores are quite similar
across the three settings. In fact, the “no-hint” set-
ting scores slightly higher than the SuperPAL hint
settings (93% vs 92% accuracy, 0.71 vs 0.64 Fleiss
κ) and takes annotators less time (41.4 vs 48.2 sec-
onds per unit). However, we find that hints helped
annotate the first few units of a summary quicker
(84.6 secs vs 115.6 secs per unit). We attribute our
findings to a learning effect over time. FINE anno-
tation of long-form summaries requires annotation
of several units for the same document - summary
pair. As annotation progresses, annotators get more
familiar with the contents of the source document

12To prevent any bias, each annotator receives only one of
these settings for a particular summary.

13Calculated using the method in Akoury et al. (2020).

and summary, reducing the need for hints over time.
See Appendix E for learning trajectory plots.

Questionnaire with FINE annotators confirm
limited utility of hints: Our evaluation so far is
limited to perturbed human summaries. How effec-
tive are hints on model-generated summaries? To
answer this, we ask five of our FINE Upwork anno-
tators (from Section 3.1) a set of three questions
about their experiences using highlighted hints.14

Detailed questionnaire results along with answer
snippets are shown in Table 6. Overall, annota-
tors find hints were useful only sometimes. Hints
were less useful when (1) the summary unit was not
supported in the source; (2) the summary unit was
highly abstractive compared to the source; (3) pro-
nouns, numbers, or abbreviations were involved;
and (4) Pubmed summaries were annotated. Al-
most all annotators said it was necessary to read
the entire source document before annotation to get
an overall idea of the plot and resolve coreferences.
Nearly all annotators used “Ctrl+F” searches along
with hints to search for specific keywords while
making judgments. This was especially true when

14The FINE annotations in Section 3.1 were shown hints in
the source document. Since hints may not be helpful, annota-
tors were told not to solely rely on hints for annotation.
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the summary unit was incorrect, since the source
document had to be thoroughly searched (beyond
the hints) before confidently marking “Incorrect”.

Recommendation: In contrast to recommendations
in prior work, automatically highlighted hints are
useful only in some specific cases of long-form
summarization: mostly correct summaries, almost
verbatim copied sentences. Annotators should be
instructed to read the entire source document and
to not rely solely on highlighted hints, since that
could bias their judgments. Based on a small-scale
study, we found SuperPAL (Ernst et al., 2021) to
be the most accurate method for finding hints, but
its performance (61% recall@3) is far from ideal.

3.4 To what extent do our findings generalize
to short-form summarization?

In this work, we exclusively focus on summariza-
tion datasets with an average summary length of at
least 150 words. This constraint excludes two pop-
ular benchmarks in summarization research over
the last five years: CNN/DM (Nallapati et al., 2016)
and XSUM (Narayan et al., 2018). How relevant
are our research questions (RQs) and findings for
these short-form summarization benchmarks?

On average, XSUM (24 words) and CNNDM
(60 words) contain much shorter summaries than
SQuALITY (237 words). XSUM outputs typically
contain only 1 sentence or roughly 2-3 FINE units
per summary. This blurs the distinction between
FINE and COARSE units, which makes it less use-
ful to study RQ1 in these short-form settings. The
shorter length of outputs also implies that evalu-
ation is less expensive and consumes less time,
which makes our RQ2 less relevant. Finally, on
average, XSUM (440 words) and CNNDM (800
words) also have much shorter source documents
than datasets like SQuALITY (5200 words), reduc-
ing the need for alignment (the main premise for
RQ3). The main motivation behind our study is
that human evaluation of long-form summarization
datasets like SQuALITY and PubMed is challeng-
ing and expensive due to the long length of the gen-
erated text. Overall, our research questions and
findings are more relevant for long-form sum-
marization datasets than for short-form summa-
rization datasets like XSUM and CNNDM.

4 Related Work

A large body of recent work has focused on new
automatic evaluation methods for summarization

via NLI-based algorithms (Falke et al., 2019; La-
ban et al., 2022) or QA-based algorithms (Wang
et al., 2020; Fabbri et al., 2022). Our work focuses
on the much less studied area of human evaluation,
the gold standard for developing automatic met-
rics. A notable effort in this space is the Pyramid
method (Nenkova and Passonneau, 2004), along
with work improving Pyramid efficiency (Shapira
et al., 2019; Zhang and Bansal, 2021). Efficient
Pyramid-like protocols have been used to collect
large-scale datasets human judgments (Bhandari
et al., 2020; Liu et al., 2022) in short-form news
summarization tasks like CNN/DM. While these
efforts focus on salience evaluation and assume ac-
cess to multiple references, our work focuses on
faithfulness and operates in a reference-free set-
ting. Moreover, we focus on long-form summariza-
tion tasks like SQuALITY and PubMed, which are
much more challenging and expensive to evaluate.

Evaluating summary faithfulness relates to fact
verification (Vlachos and Riedel, 2014), where
claim sentences are checked against a large knowl-
edge source (Wikipedia). Prior work (Nakov et al.,
2021) attempts to simplify the human fact checking
process by methods like knowledge source snip-
pets (Fan et al., 2020), similar to hint highlights
(§3.3). Faithfulness in summarization differs from
fact verification in three ways: (1) summaries are
paragraph-long and contextual compared to sin-
gle sentence stand-alone claims in fact verification;
(2) summaries are grounded to a source document,
compared to a large knowledge source in fact veri-
fication; (3) summaries are model-generated com-
pared to human-written claims in fact checking
datasets (Thorne et al., 2018; Wadden et al., 2020).

5 Conclusion

We present the LONGEVAL guidelines, a set of
recommendations for moving towards standardized
human evaluation of long-form summarization. We
empirically analyze each recommendation on two
datasets. Overall, we find that (1) FINE-grained an-
notations have lower inter-annotator variance than
COARSE-grained annotations; (2) partially annotat-
ing a summary reduces annotator workload while
maintaining accuracy; (3) highlighting hints in the
source document has limited usefulness for evaluat-
ing long-form summaries. As future work, we plan
to conduct experiments on other aspects of summa-
rization evaluation like salience and coherence.
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Limitations

Human evaluation is a noisy process with many
confounding variables. Some of these variables
were kept constant among experiments on a dataset,
but modifying them could change the trends in the
results. These include: (1) number of annotations
per summary; (2) the specific annotation interface
used; (3) granularity for FINE evaluation (sentences
vs phrases); (4) Number of points in the Likert scale
for COARSE evaluation; (5) set of summarization
systems evaluated; and finally (6) relative (eg: A/B
tests) vs absolute evaluation (eg: Likert), which has
been discussed in Tang et al. (2022) for short-form
news summarization datasets like CNN/DM.

Our paper is limited to faithfulness evalua-
tion, but summaries are typically evaluated for
salience, fluency, coherence as well (Fabbri et al.,
2021). While fluency may be less of an issue due to
large-scale language model pretraining (Dou et al.,
2021), coherence and salience are important as-
pects to evaluate especially in long-form summa-
rization (Goyal et al., 2022). Our findings may not
generalize to evaluation of coherence or salience.

Our experiments in Section 3.1 assigned an
equal weight to each FINE unit while calculating
the overall score of the summary. However, the
faithfulness of some FINE units may be more impor-
tant than others. A non-uniform weighing of FINE

units may be a good strategy if there is a notion
of how critical a particular unit is for a summary’s
correctness. For example: (1) PICO units are criti-
cal in medical summaries (DeYoung et al., 2021);
(2) the Pyramid scheme (Nenkova and Passonneau,
2004) uses a reference frequency-based unit impor-
tance, assuming access to multiple gold references.
However, a consistent notion of importance is diffi-
cult to establish across different domains, and also
depends on an individual consumer’s preferences.
Designing non-uniform weighing schemes is an
interesting direction for future research.

Ethical Considerations

All experiments involving human evaluation in this
paper were exempt under institutional IRB review.
We fairly compensated each Upwork freelancer in-
volved in this study, at a rate of 15-20$ per hour
(respecting their suggested Upwork hourly wage).
For each round of annotation, we estimated the
average amount of time the task would take (by
running pilots among ourselves), and provided an-

notators with the estimated time requirement. Most
freelancers finished the task within the time win-
dow, but sometimes exceeded it by 0.5-1 hr. We
compensated freelancers based on the actual time
they took and their hourly wage, rather than a fixed
amount per annotation.
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Appendix

A Bootstrap analysis of inter-annotator
variance

We utilize the bootstrap resampling (Tibshirani and
Efron, 1993) technique described in Deutsch et al.
(2021) to estimate confidence intervals for human
evaluation data. At a high level, bootstrap resam-
pling helps capture the uncertainty in a downstream
test statistic by repeatedly sampling from the data
with replacement. We consider two downstream
test statistics in our work — (1) average system
level performance; (2) correlation of human judge-
ments to automatic metrics.

While Deutsch et al. (2021) were primarily in-
terested in uncertainty due to the specific instances
and systems evaluated, our goal is to capture uncer-
tainty due to the inter-annotator variance. Hence
unlike Deutsch et al. (2021), we sample with re-
placement from the set of annotators for every in-
stance. Our precise formulation can be found in
Algorithm 1, which operates on a X ∈ RN×M ma-
trix of human annotations where N is the number
of summaries, and M the number of annotators.

Algorithm 1 Bootstrap Confidence Interval
Input: X ∈ RN×M , k ∈ N, α ∈ [0, 1].

N is summaries, M is annotators
Output: (1− α)× 100%-confidence interval

1: samples← an empty list
2: for k iterations do
3: Xs ← empty N ×M matrix
4: for i ∈ {1, . . . , N} do
5: D← samp. {1, . . . ,M} w/ repl. M times
6: for j ∈ {1, . . .M} do
7: Xs[i, j]← X[i,D[j]]
8: end for
9: end for

10: Calculate test statistic on Xs and append to samples
11: end for
12: ℓ, u← (α/2)× 100 and (1−α/2)× 100 percentiles of

samples
13: return ℓ, u

B Human evaluation details

B.1 FINE-grained evaluations of SQuALITY
and PubMed summaries

We interviewed a total of 9 Upwork freelancers
for the position, offering a compensation of $15-
16.5 / hr (depending on their Upwork hourly rate).
The screening procedure involved a qualification
task on synthetically perturbed summaries from
the SQuALITY dataset validation split. Similar to
the final annotation task, annotators were shown a
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F-κ R-κ all agree

Random 0.00 0.00 25%
SQuALITY 0.74 0.76 82%
PubMed 0.53 0.65 74%

Table 7: Fleiss kappa (F-κ), Randolph kappa (R-κ), and
agreement scores of our FINE annotation per summary
unit. All κ scores are well above a random annotation
baseline, indicating good agreement.

highlighted clause from the summary, and asked
to mark whether or not it is supported by the
source document. 50% of the clauses were synthet-
ically perturbed (via negation or entity swapping as
in Kryscinski et al., 2020) and manually checked
to ensure they were not supported by the source
document. A total of 6 freelancers scored 85% or
better, and were recruited for the main set of exper-
iments. All 9 freelancers were compensated for the
screening round at the rate of 15$ USD / hr.

All six hired annotators are native or bilingual
English speakers. All annotators have completed
a degree at the undergraduate level and three also
have Masters degrees, with the most common fo-
cuses of the degrees being English/creative writing
and education. The annotators’ common profes-
sional experiences include copywriting, editing,
proofreading, writing, and teaching. Finally, for
PubMed annotations we re-hired three annotators
from the pool of six SQuALITY annotators who
mentioned they had experience reading and ana-
lyzing biomedical articles. These three annotators
were provided with an additional bonus of $30 after
they completed all annotations.

Annotators are provided with a detailed anno-
tation guideline along with examples of faithful-
ness (Table 10). Our guidelines are mostly con-
sistent with a recently proposed set of guidelines
for checking attribution in text generation (Rashkin
et al., 2021). The final annotation interface is im-
plemented in AMT Sandbox, as shown in Figure 8.

Inter-annotator agreement (binary): Much of
the analysis in Section 3 uses standard deviation
across summaries scores to measure inter-annotator
agreement. However, another way to calculate
inter-annotator agreement for FINE annotations is
measuring agreement on individual units which
received a Yes / No judgment. In Table 7 we
show these inter-annotator agreement statistics. We
measure Fleiss Kappa (Fleiss, 1971), Randolph

Kappa (Randolph, 2005; Warrens, 2010), and the
fraction of sentence pairs with total agreement.15

In the table we can see all agreement statistics are
well away from a uniform random annotation base-
line, indicating good agreement.

B.2 COARSE-grained evaluation of PubMed
summaries

None of the surveyed papers evaluating PubMed
summaries with humans released their human eval-
uation data. Hence, we decided to collect our own
COARSE annotations. Since FINE annotations (Sec-
tion B.1) may have biased our original set of an-
notators, we hire three new annotators to perform
overall assessments on a 5-point Likert scale. In
other words, we use a “between-subject” experi-
ment design to compare FINE against COARSE.

We hired three freelancers on Upwork, all of
whom have extensive professional experience read-
ing research papers (two of them had PhDs in
biomedical fields). All annotators were compen-
sated at a rate of 20$ USD / hr, their hourly rate on
Upwork. All three annotators had been previously
screened and hired by us for different projects in
the past. Two of them had assisted us in an an-
notation task involved reading short summaries of
biomedical academic papers and evaluating them
for fluency, accuracy, correctness.

Annotators are provided with a detailed anno-
tation guideline along with examples of faithful-
ness (Table 11). Our guidelines are mostly con-
sistent with a recently proposed set of guidelines
for checking attribution in text generation (Rashkin
et al., 2021). The final annotation interface is im-
plemented in LabelStudio, as shown in Figure 9.

B.3 Crowdworkers or expert annotators?

Several prior works have raised the issue of low
inter-annotator agreement and poor accuracy with
non-expert annotators (eg: MTurk crowdworkers)
in human evaluation of summarization (Gillick and
Liu, 2010; Fabbri et al., 2021; Falke et al., 2019)
and open-ended long-form generation (Karpinska
et al., 2021; Clark et al., 2021). In our survey
(Table 9), we found the type of annotators used in
long-form summarization is often not specified (16
/ 43 papers). Among other papers, 10 papers use
non-experts while 17 papers use expert annotators
(often graduate students).

15The κ scores are measured using the library https://
github.com/statsmodels/statsmodels.
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Overall, we echo the concerns with non-expert
annotators and recommend hiring freelancers on
Upwork (or experts) who are well-versed with
the domain for annotation. In initial experiments,
we attempted to recruit Amazon Mechanical Turk
crowdworkers filtered by the “Master’s qualifica-
tion” and having a 90%+ approval rating. In our
qualification task of error detection in syntheti-
cally perturbed SQuALITY summaries, MTurkers
scored just 62% (binary classification) with a three-
annotator Fleiss κ of 0.15. On the other hand, Up-
work freelancers (with professional writing experi-
ence) an accuracy 90% with a high inter-annotator
agreement (Fleiss κ = 0.71).

C Additional Survey Statistics

In Table 8 and Table 9 we document some addi-
tional statistics for the 44 papers conducting human
evaluation of long-form summarization.

Best practice # papers

Raw human evaluation data released 2 / 44
Interface or instructions provided 9 / 44
Inter-annotator agreement reported 12 / 44
Statistical analysis conducted 12 / 44
Multiple datasets are human evaluated 14 / 44
Multiple annotators per summary 33 / 44
Annotator background reported 33 / 44
Specific summary aspects evaluated 42 / 44

Table 8: Fraction of surveyed papers following the best
practices recommended by Gehrmann et al. (2022). We
include only the 44 papers here which conducted a hu-
man evaluation of long-form summarization.

Type of annotator # papers

No details specified 11 / 44
Native English speaker** 5 / 44
Mechnical Turk crowdworker 9 / 44
Non-expert volunteers 1 / 44

Extensive prior experience** 3 / 44
Graduate students / researchers 13 / 44
Upwork freelancers 2 / 44

Table 9: The types of annotators used across different
long-form summarization papers. ** - No additional
details were specified.

D Automatic summarization metrics used
for evaluation

The following metrics are considered while measur-
ing Pearson’s correlation with our human evalua-
tion data (Figure 2) — ROUGE-1 / 2 / F (Lin, 2004),

BARTScore / BARTScore-Parabank (Yuan et al.,
2021), Sentence-BLEU (Papineni et al., 2002),
BERTScore (Zhang et al., 2020) and BLEURT (Sel-
lam et al., 2020). A number of metrics were calcu-
lated using the SacreROUGE repository (Deutsch
and Roth, 2020).

E Learning effect while annotating
long-form summaries

In Section 3.3 we discussed a learning effect where
annotators get more familiar with the contents of
a source document as they annotate more FINE-
grained units in a long-form summary. To better
understand this effect, in Figure 5 we plot the av-
erage time taken by annotators as they progress in
their annotation of a summary. Overall, we find that
annotators get significantly faster in annotating the
summary after the first 20% units. We hypothesize
that annotators get pretty familiar with the general
topics in the source document after the first few
annotations, speeding up subsequent annotations.
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Figure 5: Learning effect over time while evaluating
long-form summaries with FINE annotation. As the
annotators evaluate more summary units, they learn
the document better and are much faster at annotation
irrespective of whether hints are shown to them.

F Partial summary annotation with
pearson correlation

See Figure 6.

G Metric correlations using Kendall’s
Tau

See Figure 7.
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In this task, you will be shown a long document ("Source Document") and its Summary. A span of text will be
highlighted in the summary, and the goal is to check if this span is factually supported by the source document. You
will need to choose one of two options:

1. Yes: if all the facts in the highlighted summary span are supported by the source document
2. No: if the highlighted summary span presents some information that is not supported by the source document (either
a direct contradiction, or not present)
In addition to the source document, you will be provided with some highlighted text ("hints") in the source document
which may help you in making a decision. Press the "Next Hint" button to scroll through the highlighted hints. Source
document hints may or may not be helpful. Do not make a judgment solely based on these hints. Skim through the
source document yourself / search for keywords with Ctrl + F if the hints are not helpful.
Below you can find some short representative examples.

Example 1
Summary (only highlighted span shown) = ... Retief is not Lemuel’s cousin. ...
Source Document (snippets shown) = He eyed Retief ... "He ain’t no cousin of mine," Lemuel said slowly.
Supports = Yes

Example 2
Summary (only highlighted span shown) = ... Lemeul knocks down Retief. ...
Source Document (snippets shown) = Retief’s left fist shot out, smacked Lemuel’s face dead center. He stumbled back,
blood starting from his nose; ... He caught himself, jumped for Retief ... and met a straight right that snapped him onto
his back: out cold. "Wow!" said Potter. "The stranger took Lem ... in two punches!"
Supports = No (Reason: Retief knocks down Lemeul, not the other way around.)

Example 3
Summary (only highlighted span shown) = ... Potter and his team do not trust the Embassy. ...
Source Document (snippets shown) = Lemme up. My name’s Potter. Sorry ’bout that. I figured it was a Flap-jack boat;
looks just like ’em . He waved a hand toward the north, where the desert lay.
Supports = No (Reason: The claim is irrelevant to the evidence.)

Table 10: Annotation guidelines provided to annotators for FINE-grained evaluation of SQuALITY and PubMed
summaries. (Appendix B.1).
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Figure 6: A version of Figure 4 using Pearson correla-
tion instead of Kendall Tau correlation.
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Figure 7: A version of Figure 2 using Kendall’s Tau correlation instead of Pearson’s correlation.

Figure 8: The AMT Sandbox annotation interface used for FINE evaluation of SQuALITY and PubMed summaries
(Appendix B.1).
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Figure 9: The LabelStudio annotation interface used for COARSE evaluation of PubMed summaries (Appendix B.2).

1668



Instructions for Likert-scale evaluation. Please read all instructions before starting the annotation.

Setup
1. Start by signing up on Label Studio, you will need to provide an email ID and password. It’s okay to use a
non-existent throw-away email ID here. Also, do not use any personal / sensitive passwords (but make sure to remember
your email / password for logging in next time!). Click on the box saying “<your name> — Summarization Evaluation”
2. In this batch a total of 30 summaries need to be evaluated. Every three consecutive rows are different summaries of
the same source document. You can evaluate a summary by clicking on a row, and annotating it. Optionally, you can
click on “Label All Tasks” at the top of the screen.

Annotation Task
Each summary needs to be evaluated for its “correctness”. You need to provide a 0-5 judgment for the entire summary,
where “correctness” can be defined as, “The absence of factual errors in the summary, where a factual error is a
statement that contradicts the source document, or is not directly stated, heavily implied, or logically entailed by the
source document”. For example,
Source Document (snippet shown) = . . . .. Vitamin C was discovered in 1912, isolated in 1928, and, in 1933, was
the first vitamin to be chemically produced. It is on the World Health Organization’s List of Essential Medicines.
Vitamin C is available as an inexpensive generic and over-the-counter medication. Partly for its discovery, Albert
Szent-Györgyi and Walter Norman Haworth were awarded the 1937 Nobel Prizes in Physiology and Medicine and
Chemistry, respectively. Foods containing vitamin C include citrus fruits, kiwifruit, guava, broccoli, Brussels sprouts,
bell peppers, potatoes, and strawberries. Prolonged storage or cooking may reduce vitamin C content in foods. . . . .
Summary 1 (snippet shown) = . . . Chicken contains vitamin C . . .
Summary 2 (snippet shown) = . . . Albert Szent-Györgyi won the 1955 Nobel Prize for discovering Vitamin C . . .
Summary 3 (snippet shown) = . . . Vitamin C was the first chemically produced Vitamin . . .
Summary 4 (snippet shown) = . . . Apple contains vitamin C . . .
Errors marked in red. Here, the snippets for summary 1 are incorrect, summary 2 partially correct, and summary 3
completely correct with respect to the source document. Summary 4 is incorrect with respect to the source document
(since it’s never discussed), but a globally correct fact. You should treat such a summary as incorrect since it is not
mentioned in the source document.
(This is an illustrative example only, the actual annotation task has much longer summaries / source documents.)
The rating scale is from 0 to 5, where 0 is the lowest possible rating (most or all of the summary is wrong / irrelevant to
the source document), and 5 is the highest rating (most or all of the summary is correct).
While it is compulsory to provide a judgment from 0 to 5 for each summary, you can optionally provide additional
comments in your annotation. For instance, if the judgment needs to be more nuanced than a 5-point scale, you prefer
to mark something like “3.5”, or you would like to add some other notes about your judgment.
Press “Submit” after you have provided your annotation.

Suggested workflow
Every three consecutive rows contain different summaries for the same source document. We suggest the following
workflow while annotating documents —
1. Spend the first 15 minutes reading the source document and getting a general sense of the facts mentioned in the
document.
2. Spend 5 minutes to read and annotate the summaries in each of the three consecutive rows which correspond to the
same document. Add optional comments / notes if necessary.
3. In the last 5 minutes, re-calibrate your ratings across the three rows if needed (for instance, you significantly preferred
the correctness of summary 1 vs summary 2, but you gave it the same rating in the initial pass). Add optional comments
/ notes if necessary.
Following this workflow, it should take 35 minutes to annotate each set of 3 rows. For 30 rows, this should take 6 hrs.

Table 11: Annotation guidelines provided to annotators for COARSE evaluation of PubMed summaries (Ap-
pendix B.2).
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Abstract
For extreme multi-label classification (XMC),
existing classification-based models poorly per-
form for tail labels and often ignore the se-
mantic relations among labels, like treating
“Wikipedia” and “Wiki” as independent and
separate labels. In this paper, we cast XMC as
a generation task (XLGen), where we benefit
from pre-trained text-to-text models. However,
generating labels from the extremely large la-
bel space is challenging without any constraints
or guidance. We, therefore, propose to guide
label generation using label cluster informa-
tion to hierarchically generate lower-level la-
bels. We also find that frequency-based label
ordering and using decoding ensemble meth-
ods are critical factors for the improvements in
XLGen. XLGen with cluster guidance signifi-
cantly outperforms the classification and gener-
ation baselines on tail labels, and also generally
improves the overall performance in four popu-
lar XMC benchmarks. In human evaluation, we
also find XLGen generates unseen but plausible
labels. Our code is now available at https://
github.com/alexa/xlgen-eacl-2023.

1 Introduction

Extreme multi-label classification (XMC) is a task
to predict multiple relevant labels for a given input
where the label space is extremely large. Conven-
tional approaches for XMC decompose the prob-
lem into a set of binary classifications, training
one-vs-all classifiers for each label. However, they
encounter several issues in practical use cases.

First, the labels in XMC are long-tail distributed.
In other words, only a few labels have sufficient
positive samples, thereby the other infrequent la-
bels could be rarely predicted during inference as
we see the heavily right-skewed distribution in the
long-tail in Figure 2a. Second, multi-label clas-
sification techniques such as one-by-one and la-
bel powerset (Gibaja, 2015) assume independent

∗∗ Part of this work was done during an internship at Ama-
zon Alexa AI.

wikipedia wiki science interesting fun video funny 
food humor weird humour wtf #aftedarkclub soda 
eruption

wikipedia fun science diet wiki funny coke tv 
video health interesting humor food

Diet Coke and Mentos Eruption

Diet Coke and Mentos Eruption is a reaction of Diet 
Coke and mint Mentos candies, a bottle of Diet Coke 
(other carbonated beverages may be used instead) 
and dropping some Mentos. This causes the Coke to 
foam at a rapid rate and spew into the air. 

beverage chemistry coke dietcoke eruption video 
explosion food fun funny interesting mint science 

AttnXML
(You et al., 2019)

Human
Labels

XLGen
(ours)

wikipedia wiki research article science 
experiment mentos diet_coke eruption geyser 
physical_reaction internet videos

GPT-3
(Brown et al., 

2020)

Figure 1: The predicted and generated labels from At-
tentionXML (You et al., 2019), GPT-3 (Brown et al.,
2020), and XLGen-BCL, respectively, for Wikipedia
page on diet coke and mentos eruption. We marked
labels to be correct (blue), wrong (strikethrough), and
positive unlabeled (red). Our XLGen could generate
completely new labels from input text, e.g., soda, in-
ferred from context that other carbonated beverages can
replace diet coke.

and identically distributed labels, while the user-
generated labels in XMC are dependent on each
other. Moreover, annotated labels are only a portion
of possible labels, thus, resulting in positive and
unlabeled (PU) setting (Yu et al., 2014; Kanehira
and Harada, 2016).

In this paper, we tackle extreme multi-label clas-
sification with a generative approach, called ex-
treme multi-label generation (XLGen). In particu-
lar, we fine-tune a pre-trained Transformer-based
encoder-decoder model (Raffel et al., 2020) with
input documents and their known positive labels.
This (label) generation approach is more intuitive
and closely similar to how humans tag documents
with text labels without a fine-grained ontology or
guideline.

However, the generated labels from the ex-
tremely large label space without any constraints
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Figure 2: (a) Frequency histograms of top-100 occur-
ring labels in EUR-LEX (blue) and WIKI10-31K (red)
(b) Label-wise recall scores from AttentionXML and
XLGen-BCL on Wiki10-31K. For the presentation,
graphs are smoothed by least-squared polynomial re-
gression.

and/or guidance can be noisy and not cover infre-
quent labels. To address this issue, we propose
a method to leverage label clusters into genera-
tion: first, generate cluster IDs of semantically
similar labels, and then generate text labels utiliz-
ing the cluster IDs as additional contextual inputs.
Specifically, we propose two XLGen architectures
(XLGen-BCL, XLGen-MCG) in which such clus-
ters are jointly trained with labels in different ways.
Using clusters for label generation is motivated by
showing label categories to human annotators. As
an example, humans often start by setting high-
level topics first and then hierarchically create ac-
tual tags under each high-level topic. The clusters,
however, are treated as additional guidance rather
than a constraint since we do not restrict the model
to only predict labels under the given clusters.

Similarly to XLGen, Simig et al. (2022) pro-
posed GROOV, which fine-tunes T5 to generate
labels in XMC. In particular, GROOV aims to im-
plement a label order invariant training objective
by randomly shuffling label orders and using multi-
softmax function, which does not penalize if any
first tokens of true labels are predicted regardless
of the label orders. However, it does not outper-
form classification baselines consistently, and we
empirically find that label order by frequency helps
alleviate the issue in our ablation study.

Our experiment shows that XLGen (and its vari-
ants) outperforms classification baselines on four
XMC benchmarks. Furthermore, XLGen with clus-
ter guidance (XLGen-BCL and -MCG) significantly
and consistently outperforms the classification and
generation baseline (XLGen-base) on tail labels,
respectively. The effect on tail labels from XLGen-
BCL is demonstrated in Figure 2b.

Figure 1 shows predicted or generated labels
from different models. A Wikipedia page of diet
coke and mentos eruption has true labels such as
“beverage”, “fun”, and “eruption”. We find XLGen
can also generate a new positive label “soda” based
on the context of “carbonated beverage" in the in-
put text. From a human evaluation (S6.1), we find
newly generated labels by XLGen are highly asso-
ciated with the input texts, which potentially helps
automatically find new labels without manual tag-
ging. We also show the generated labels from large
language models (LLMs) like GPT-3 (Brown et al.,
2020): we find that the overall performance of in-
context learning is significantly less than XLGen
(See §4.4 for details), but LLMs could generate
reasonable labels with a few examples as XLGen
does.

2 Related Work

Extreme multi-label classification (XMC).
Classification-based approaches on XMC suffer
from dealing with enormous label spaces under
the one-vs-all classification setting (Babbar and
Schölkopf, 2017; Yen et al., 2017; Jain et al., 2019).
To address the efficiency issue, state-of-the-art
XMC models partition label space to the scalable
subsets via hierarchical clustering (Prabhu et al.,
2018; Wydmuch et al., 2018; You et al., 2019;
Chang et al., 2020; Yu et al., 2022; Tagami, 2017),
graph-based approximations (Jain et al., 2019;
Zong and Sun, 2022), or random forest (Siblini
et al., 2018). However, they still suffer from
predicting tail or unseen labels. To efficiently
deal with such long-tail issues, few-shot learning
frameworks and methods (Gupta et al., 2021;
Xiong et al., 2022) are proposed. Rather, we show
how encoder-decoder language model can improve
tail label scores by fine-tuning it with guidance
from label clusters.

LMs and Generative approach in XMC. For
XMC, pre-trained LMs such as XLNet (Ye et al.,
2020) and Transformer (Chang et al., 2020) are
used but only for encoding input texts, thus, it still
relies on the classification approach for label predic-
tion. Previously, other works address multi-label
classification with generative approaches (Nam
et al., 2017; Tsai and Lee, 2020; Yang et al., 2018,
2019; Zhang et al., 2021b) but in much smaller
label spaces. Recently, Simig et al. (2022) also
used T5 (Raffel et al., 2020) for directly generat-
ing labels in end-to-end manners for XMC, but
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(a) XLGen-base
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(b) XLGen-BCL

T5

<c2> 
<c6>

beverage eruption 
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(c) XLGen-MCG

Figure 3: Three XLGen architectures, where the basic model can be any pre-trained text-to-text models like T5. (a,
base): Simple fine-tuning that encodes input text with a prefix of task name and decodes text of label sequences. (b,
BCL): A fine-tuning with a multi-cluster prediction layer as an auxiliary task. (c, MCG): A multi-task fine-tuning with
multi-cluster generation and multi-label generation (MCG); two tasks are trained simultaneously and at decoding
time the output of the cluster generation is concatenated to the input for the label generation.

its performance was not convincing compared to
classification-based models.

Positive and unlabeled data. In practice, XMC
is inherently with positive and unlabeled (PU) set-
ting as the label space is extremely large and it is
infeasible to manually review all the labels (Kim
and Kim, 2020). Multi-label performances on PU
tasks can be simulated by leaving only a few labels
per train instance (e.g., leaving 8 out of 10 positive
labels in one instance for label deficit rate 20%)
positive (Hu et al., 2021). In this work, we show
how XLGen works on such PU settings in §4.3.

3 Extreme Multi-label Generation
(XLGen) with Cluster Guidance

Classifying a document with multiple labels can
be regarded as tagging a document with possible
topical labels, which is basically decoding the free-
formed text labels in an encoder-decoder setting.
Moreover, if encoder and decoder are trained on
large text corpora, labels are generated with an un-
derstanding of their lexical variations and semantic
similarities. Our baseline framework fine-tunes a
pre-trained Transformer using the input text as an
encoder input and the label sequences as a decoder
output. In addition, to more effectively address a
huge number of labels in a long-tail distribution,
we propose two different architectures, XLGen-
BCL (§3.2) and XLGen-MCG (§3.3), generating la-
bels guided by pre-computed cluster information,
inspired by class-based language models (Brown
et al., 1992).
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Figure 4: Architecture of pre-computed label clusters.
For each label, we use the averaged embedding of posi-
tive documents including the label in train set and com-
pute the label cluster assignment matrix (top). For train-
ing, we assign label clusters for each training document
based on the true labels using the label cluster assign-
ment matrix (bottom).

Pre-computed clustering. We compute label
clusters using K-Means algorithm, as depicted in
Figure 4. We first obtain label features using av-
erage embedding of positive documents in a train
set, following Chang et al. (2020), and compute
the label-cluster assignment matrix. Label clusters
are assigned to each training document using this
matrix and ground-truth labels, and used as a multi-
cluster prediction layer for XLGen-BCL training or
sequence of cluster IDs for XLGen-MCG training.

3.1 Baseline Fine-Tuning

Figure 3a shows our baseline XLGen which simply
fine-tunes text-to-text Transformers, e.g., T5 (Raf-

1672



fel et al., 2020) or BART (Lewis et al., 2020), as
our encoder-decoder framework on XMC dataset.
• Input: task prefix: input text
• Output: A sequence of label texts
For encoding, we add a prefix token ‘MultiLabel’
to the input text to inform the task type. Then,
the output labels are generated as a sequence of
labels in decoding. The model is fine-tuned with
cross-entropy loss (Lxent) given the sequence of
label texts. In practice, the order of labels in decod-
ing significantly influences the model performance.
Following Yang et al. (2018), we sort the target
labels in decreasing order of the frequencies. We
also investigate various ordering effects and their
impact on performance in §5.1.

3.2 Fine-Tuning with Cluster Prediction
Figure 3b shows the fine-tuning of text-to-text
with an additional multi-cluster prediction layer
(XLGen-BCL). By doing so, we expect the model
learns label similarities and hence biases itself to
generate labels relevant to the given cluster.
• Input: task prefix: input text
• Multi-Cluster Layer: a vector of v1, ...vk where
vi = 1 if ith cluster ci is a positive cluster; other-
wise vi = 0 (1 1 0 ... 1...)

• Output: A sequence of label texts
The multi-cluster prediction layer is a vector of

0 or 1 that corresponds to the assigned clusters
of instance, and is trained using the sequence of
the last layer’s hidden states of the encoder with a
binary cross-entropy loss, Lbce. The final objective
is as follows:

Lxmc−bcl = Lxent + λLbce (1)

where Lxent is a cross-entropy loss term for the
original text-to-text framework and Lbce is a binary
cross entropy loss term for the cluster layer. λ is
a weighting parameter for controlling Lbce, to be
chosen by dev-set performance.

3.3 Fine-Tuning with Cluster Decoding
XLGen-BCL utilizes a cluster prediction only as
an auxiliary task to improve representations for a
label prediction, thus, predicted clusters are not
used in inference. Figure 3c shows the third vari-
ant, XLGen with a multi-cluster generation (MCG),
which leverages predicted clusters as additional in-
put tokens so that the cluster information can be
used in inference.
• Input1: task prefix: input text ; a sequence of

positive cluster IDs (c1 c2 c11..)

|Dtrn| |Dtst| |Lseen| |Lunseen|
EURLEX-4K 15,449 3,865 2,473 155
AMZNCAT-13K 1,186,239 306,782 13,275 0
WIKI10-31K 14,146 6,616 21,060 991
WIKI-500K 1,779,881 769,421 498,152 917

Table 1: Data statistics of the benchmark datasets; the
number of train examples (|Dtrn|), number of test ex-
amples (|Dtst|), number of labels in both train and
test set (|Lseen|), and number of labels only in test set
(|Lunseen|), which is zero-occurred labels in Table 3.

• Output1: A sequence of label texts
• Input2: cluster prediction prefix: input text
• Output2: A sequence of positive cluster IDs (c1

c2 c11..)
We add a sequence of cluster IDs to the input text

so that cluster information can be used while train-
ing (Input1-Output1). On the other hand, we have a
new task with a clustering prefix ‘MultiCluster’ ap-
pended to the input text and predicts the sequence
of labels (Input2-Output2). In training, these two
tasks are trained simultaneously. Note that in in-
ference, the predicted cluster IDs are appended to
Input1 for the final label generation.

4 Experiments

4.1 Experimental Setups
Datasets. We use four widely used XMC
benchmark datasets; three large-scale datasets
with 4K∼30K labels (EURLEX-4K,AMZNCAT-
13K, and WIKI10-31K) and one very-large-scale
datasets with 500K labels (WIKI-500K). See Ta-
ble 1 for the detailed data statistics.

Baseline and XLGen Training. We compare
XLGen with three state-of-the-art baselines in
XMC tasks; AttentionXML (You et al., 2019),
X-Transformer (Chang et al., 2020), and XR-
Linear (Yu et al., 2022). Note that all baseline
models partition labels using hierarchical cluster-
ing. See A.1 for the detailed setups of baselines.
Note it is common to upscale scores by ensemble
learning for XMC baselines. However, for a fair
comparison, we do not use any ensemble models
for XLGen and baselines.

We train XLGen with T5 because BART (Lewis
et al., 2020) performs worse for our task as shown
in Table 13. By default, we sort labels in the de-
creasing frequency order to provide the training
target sequence and infer the labels by beam search
with size 5. For XLGen-BCL and XLGen-MCG,
cluster sizes are optimized by dev set performance.
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EURLEX-4K AMZNCAT-13K WIKI10-31K WIKI-500K
Mic. Mac. Mic. Mac. Mic. Mac. Mic. Mac.

XR-Transformer 39.1 12.3 64.0 17.0 21.4 2.8 30.5 7.8
XR-Linear 44.6 15.1 53.2 18.6 19.2 3.6 17.2 3.3

AttentionXML 59.9 24.9 70.1 30.0 37.3 4.6 53.6 21.0
XLGen-base 59.8 27.5 69.8 38.8 37.6 9.9 55.1 35.0
XLGen-BCL 60.7 28.4 70.0 37.7 37.6 9.8 55.4 33.5
XLGen-MCG 60.2 28.2 71.8 46.4 37.4 9.6 55.4 33.6

Table 2: Full label performance. We report micro-averaged (Mic.) and macro-averaged (Mac.) F1 scores.

EURLEX-4K WIKI10-31K WIKI-500K

0-st 1-st 0-st 1-st 0-st 1-st
XR-Transformer 0.0 0.5 0.0 1.7 0.0 0.0

XR-Linear 0.0 1.1 0.0 2.3 0.0 0.1
AttentionXML 0.0 2.4 0.0 0.2 0.0 1.3
XLGen-base 3.2 3.5 2.9 8.4 22.5 24.1
XLGen-BCL 4.3 4.1 3.3 8.4 23.2 24.8
XLGen-MCG 4.5 2.7 11.1 8.1 23.7 25.5

Table 3: Macro-averaged F1 scores in tail labels, which
never occurred (0-st) or occurred once (1-st) in train set.

We get the input text embedding by averaging the
last hidden states from the pre-trained T5 encoder
since T5 model does not have a CLS token. See A.2
to check more details.

4.2 Evaluation Metrics
Following the prior work in XMC, we report F1
score (F@k) of top-k label probabilities as a sup-
plementary metric in A.4. However, such ranking
metrics are not applicable to label generation tasks
since the generative model only output positive la-
bel texts sequentially and the order of generated
labels does not align with the confidence of the
label; in other words, the formerly generated labels
do not need to be more confident than the latter
ones. Thus, we use conventional multi-label clas-
sification metrics, like micro-averaged F1 score
(Mic.) and macro-averaged F1 score (Mac.), as
main evaluation metrics.

In principle, evaluating XMC task with the rank-
ing format is not appropriate for most cases as it
requires predicting the number of correct labels as
well (Amigo and Delgado, 2022). We therefore se-
lect predicted labels only when the predicted score
is greater than the threshold optimized from the
validation set as in You et al. (2019).

4.3 Results
We compare performances of XLGen and baselines
in full labels (Table 2), tail labels (Table 3), and PU

EURLEX-4K WIKI10-31K WIKI-500K

XR-Transformer 8.6 3.3 7.0
XR-Linear 8.8 2.7 2.8

AttentionXML 18.7 1.3 11.3
XLGen-base 18.8 7.7 31.6
XLGen-BCL 19.3 8.0 31.4
XLGen-MCG 21.2 10.1 32.7

Table 4: Macro-averaged F1 scores in PU setting (50%
of label deficit ratio).

data setting (Table 4). For tail label and PU setting,
we do not include AMAZNCAT-13K as it does not
have zero-occurred labels. The best scores are bold
and the second best scores are underlined. See A.4
for the full scores on tail labels and PU setting.

Full label performance. In the evaluation with
full benchmark sets, all the XLGen models show
outperforming or competitive performance com-
pared to the classification-based baselines. For
macro F1 scores, XLGen models hugely outper-
form the baselines, which empirically represents
that our approach is strong at predicting infre-
quent but correct labels. In other words, XLGen
models are less biased to predicting frequent la-
bels. Compared to XLGen-base, both XLGen-
BCL and XLGen-MCG generally show better per-
formance, which demonstrates the effectiveness of
the cluster prediction as an auxiliary loss.

Tail label performance. We measure macro F1
scores only for tail labels which never or one-time
occur in the train set. We find every baseline ex-
tremely suffers from the tail labels, while XLGen
shows significant improvements, demonstrating
the power of generative models for long-tail la-
bels. Surprisingly, XLGen even predicts never-
seen, zero-occurred labels, only inferred from the
semantic meaning of the input text. Similarly to
full label performance, XLGen-BCL and XLGen-
MCG perform better than XLGen-base, indicating
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Figure 5: Macro-averaged F1 scores in PU setting on
WIKI10-31K.

that guidance of label cluster improves tail label
performance as well.

PU setting. In XMC, it is infeasible to annotate
all relevant labels for an input text by checking
every millions of labels. Therefore, many XMC
datasets are indeed in PU setting. To evaluate the
robustness against the positive and unlabeled prop-
erties, following Hu et al. (2021), we make PU data
setting by randomly eliminating positive labels for
each instance with 50% of deficit rate.

As XLGen is trained with fewer positive labels
in PU settings, the generated output labels tend
to be fewer as well, causing lower recall than ex-
pected. To increase the recall, we generate diverse
label sequences using various sampling schemes
in inference, which we call ensemble generation.
We combine generated results from three decoding
strategies; beam search with size 5, Top P + K
sampling, and sampling with 0.8 temperature.

We find XLGen models outperform the base-
lines. Specifically, XLGen-MCG shows signifi-
cantly strong scores, which indicates having pre-
dicted clusters as an additional input helps predict
infrequent but correct labels. In Figure 5, we addi-
tionally visualize macro F1 scores of PU settings on
WIKI10-31K with various deficit rates. Although
XLGen-MCG drops with an increasing deficit rate,
it still shows significant gaps with baseline scores.

4.4 Feasibility of in-context learning in XMC

In-context learning (Brown et al., 2020) shows a
potential of generating unseen but positive labels as
depicted in Figure 1, such as “geyser” and “physi-
cal_reaction”. In order to thoroughly validate the
feasibility of in-context learning in XMC problems,

EURLEX-4K WIKI10-31K

Mic. Mac. Mic. Mac.

XLGen-BCL 60.7 52.4 37.7 20.0

GPT-3
0-shot 9.2 6.3 7.6 4.5
1-shot 17.2 14.7 20.3 13.4
5-shot 15.7 10.4 23.5 16.6

Table 5: Label performance of XLGen-BCL and in-
context learning settings on 100 randomly selected sam-
ples.

we select 100 samples randomly from EURLEX-
4K and WIKI10-31K, and predict their labels us-
ing GPT-3 (Brown et al., 2020) in zero/one/five-
shot setups. We explore a few variations of prompts
by tweaking label order or selecting few-shot ex-
amples differently, and report the best scores in
Table 5. The performance of in-context learning
significantly improves when we use more exam-
ples in the prompt, but they are far from the per-
formance of XLGen. Moreover, the performance
gap between GPT-3 and XLGen is much larger in
EURLEX-4K where labels are formally annotated
than in WIKI10-31K where labels are annotated
by random users without a solid guideline. Unlike
other multi-label classification tasks, XMC treats
an extremely large number of labels, making it
difficult to predict most unseen labels based on a
few examples in in-context learning. See A.3 for
the details of the experimental setup for in-context
learning and the performance comparison among
prompt variations.

5 Ablation Study

We explore various factors that impact the perfor-
mance of XLGen on WIKI10-31K, such as la-
bel orders (§5.1) and sampling strategies (§5.2)
In order to reduce training costs, we mainly train
XLGen-base on the base size model with epoch
5 for ablation tests. We then investigate the model
performance by clustering sizes and algorithms
(§5.3).

5.1 Label Orders
Label orders in decoder are important as XLGen
sequentially generates labels. We compare three
different label orders; label frequencies from high
to low (Frequency), inverse label frequencies from
low to high (Inverse), and shuffling where labels
are randomly ordered per training epoch. Inspired
by Lee et al. (2019), we also consider ignoring
label orders by resetting positional embeddings of
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Figure 6: Ablation study results on WIKI10-31K. (a) Performances of XLGen-base trained with various label
orders. (b) Performances of XLGen-base trained with various decoding strategies. (c) Cluster sizes vs task and
clustering performance. We also report oracle scores by using ground-truth cluster information in inference time.

each label as initial values in decoder 1 which we
call label positional invariant setting (PosInv.).

Figure 6a shows task performance across dif-
ferent label orders. We find trade-offs between
macro and micro F1 scores by the label frequency
order (Frequency and Inverse) because inversely
frequent label orders make the model generate long-
tail labels earlier with certainty, thus, the scores of
long-tail labels could improve. On the other hand,
shuffling (Simig et al., 2022) crucially downgrades
the performance since with randomly shuffled la-
bels, XLGen tends to ignore co-occurrence patterns
among labels in training time. Also, we conjecture
that positional invariant setting does not work well
as it tweaks the original positional embeddings of
pre-trained T5 model.

5.2 Decoding Strategy

We now explore task performances with various
sampling strategies in label generation. We com-
pare greedy search, beam search, sampling with
restrictions such as Top-K (Fan et al., 2018) and
Top-P (Holtzman et al., 2020), and sharpening vo-
cabulary distributions with a temperature parameter.
In Figure 6b, we find that beam search with size 5
achieves the best scores. Interestingly, most sam-
pling methods heavily degrade performances since
our label spaces are not entirely open-ended. We
also explore ensemble methods to combine label
outputs from different sampling strategies. Unlike
the PU setting, however, they are not helpful in the
full data setup since a sufficient number of labels
are already generated by a single best generation
strategy. Find the Appendix A.6 for details.

1But we keep the position embeddings for token sequences
in one label to learn token positions.

5.3 Cluster Strategy

We show the effect of clustering algorithms and
their parameters. We train XLGen-MCG fine-tuning
T5-base with epoch 5. We compare two clustering
methods; K-means and Agglomerative clustering,
and two text representations; TF-IDF and the recent
T5 encoder. We find K-means and pre-trained T5
encoder shows the best performance over other
combinations, as described in Appendix A.7.

Cluster size is another important factor for model
performance. For example, a larger cluster size
helps find label groups at a higher granularity, while
it is much harder to be accurately predicted in in-
ference time. Here, we choose cluster size to be
a power of two on average (e.g., around 30 con-
taining 1024 labels for WIKI10-31K on average).
Figure 6c shows micro F1 scores of XLGen-MCG
across cluster sizes in WIKI10-31K. Here we also
report the upper bound of task performance (ora-
cle) by using ground-truth cluster information. As
we expect, clustering performance decreases as the
cluster size increases since it is much harder to
predict clusters in a larger cluster space. In terms
of label prediction, we find that the model with
smaller cluster sizes (e.g., ≤ 30) outperforms the
larger ones, where the peak is around 30. Although
a larger cluster size helps elaborately specify la-
bels in the same category, lower cluster prediction
performance harms label performances as well and
leads to a bigger performance gap compared with
oracle task scores.

6 Qualitative Analysis

Lastly, we evaluate the quality of generated labels
via human evaluation (§6.1) and visualization of
the semantic relations among labels (§6.2).
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AttentionXML XLGen-BCL
# % # %

Existing
labels

Correct 674 39.2% 596 39.2%
Wrong 776 45.1% 457 30.0%

PU 270 15.7% 393 25.8%
New
labels

Correct 0 0.0% 45 3.0%
Wrong 0 0.0% 30 2.0%

Total 1,720 100% 1,521 100%

Table 6: Human evaluation on WIKI10-31K having
1,720 true labels. The predicted labels are annotated
and categorized to correct, wrong, and PU labels, with
their precision scores. Note that correct labels in the
newly generated labels means they are possibly correct,
according to the human annotators’ decision.

6.1 Human Evaluation

The benchmark datasets have different label quali-
ties. For example, the labels from EURLEX-4K,
annotated by the Publication Office of EU, are re-
fined and structured while Wiki datasets are collab-
oratively labeled by general users, so the quality
of labels is relatively lower than the other bench-
marks. Hence, we conduct human evaluations in
both quantitative and qualitative ways to accurately
measure the potential existence of PU labels and
newly-generated labels. In particular, we randomly
select 100 instances from the test set and extract
incorrectly predicted labels and/or newly predicted
labels by XLGen and baseline models. We then
ask three human annotators to annotate and decide
on possibly positive labels via majority voting.

Table 6 shows human evaluation results on the
annotated WIKI10-31K. Note that the number
of predicted labels by XLGen-BCL is less than
true labels because XLGen does not generate la-
bel with low confidence. In AttentionXML, on the
other hand, we choose top-K labels as many as
the number of true labels for each instance, so it
has the same total labels as true labels. Compared
to the best baseline, AttentionXML, XLGen-BCL
could generate more PU labels and reduce the num-
ber of wrong labels. Also, our method generates
75 (=45+30) newly generated labels out of 1,521
where 60% (=45/75) of them are correct, showing
a relatively good generation quality of new labels.
Of course, we can control our model to only count
the candidate labels and not any of these new la-
bels for more accurate predictions, as measured in
Table 2.

Lastly, we provide annotation examples in Ta-
ble 7. As we sort the label sequence by frequency
in training for XLGen, frequently generated labels

such as “wikipedia" or “wiki" are predicted first,
followed by long-tail labels specified in the input
text. For AttentionXML, on the other hand, top
predicted labels seem more aligned with the input
context, although frequently generated labels still
come in front. Interestingly, new labels generated
by XLGen come not only from the input context,
but also previously generated labels. For instance,
on the Wikipedia page of diet coke and mentos
eruption, a new label “soda" is generated because
input text contains “carbonated beverages" which
is synonym of “soda". On the Wiki page of Vimeo,
on the other hand, after XLGen generates the PU la-
bel “socialnetworking", followed by its synonyms
such as “social_network" and “social_networking".

6.2 Label Semantics in XLGen

To better understand the semantics behind labels
generated by XLGen, we visualize an annotated
labels of three examples from Table 7 in Figure 7.
We get label embeddings from the last hidden state
of the fine-tuned XLGen-BCL decoder and project
them into two-dimensional T-SNE (van der Maaten
and Hinton, 2008). If a single label is split by mul-
tiple tokens, we average the last hidden layers of all
tokens. We observe that frequently co-occurred la-
bels (e.g., “wiki"-“wikipedia" or “weird"-“funny")
have similar label embeddings. Also, the newly
generated labels become close to the co-occurred
labels (e.g., “soda" - “funny" or “eruption" in diet
coke and mentos eruptions) via XLGen optimiza-
tion.

7 Conclusion

We apply text-to-text Transformers to extreme
multi-label classification, by tweaking the classi-
fication problem as generation of label texts. As
we do not control the vocabulary space of gener-
ated labels, XLGen can create completely unseen
but still relevant labels, inferred from the input
context and semantic relationship from the previ-
ously generated labels. Our experiments show that
XLGen outperforms the classification baselines in
general, and significantly improves the long-tail
performance and PU setting. Also, we observe
utilizing label cluster information helps improve
the performance in various settings. XLGen is ex-
pected to more benefit from pre-trained models as
they become larger and powerful (Kaplan et al.,
2020).
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Input Document Models Labels

Emily Elizabeth Dickinson (December 10,
1830– May 15, 1886) was an American poet.
Born in Amherst, Massachusetts to a successful
family with strong community ties, she lived a
mostly introverted and reclusive life. After she
studied at the Amherst Academy for seven years
in her youth, she spent a short time at ...

True
authors biography dickinson emily journal library liter-
ature openaccess people poem poet poetry reference re-
search to-read wiki wikipedia writers

AttentionXML
wiki poet writers wikipedia literature authors books
writing history poets writer people poetry biography
inspiration american poems luule

XLGen-BCL wikipedia wiki people art books literature english poetry
writers writer poet elizabeth dickinson emilydickinson

Screenshot of vimeo.com home page Vimeo is
a video-centric social network site (owned by
IAC/InterActiveCorp) which launched in
November 2004. The site supports embedding,
sharing, video storage, and allows
user-commenting on each video page...

True articles computer reference socialnetworks technology
tools video web2.0 wikipedia

AttentionXML video web2.0 wikipedia wiki media youtube videos
videoblogging streaming

XLGen-BCL
wikipedia wiki reference technology web internet social
video web2.0 no_tag socialnetworking socialsoftware phd
social_networking social_network vimeo

Diet Coke and Mentos Eruption is a reaction of
Diet Coke and mint Mentos candies, a bottle of
Diet Coke (other carbonated beverages may be
used instead) and dropping some Mentos. This
causes the Coke to foam at a rapid rate and
spew into the air...

True
beverage candy chemistry coca-cola coke dietcoke drink
eruption experiment experiments video explosion food
fun funny interesting mint prank science

AttentionXML wikipedia fun science diet wiki funny coke tv video health
interesting humor food

XLGen-BCL wikipedia wiki science interesting fun video funny food
humor weird humour wtf #afterdarkclub soda eruption

Table 7: Ground-truth and predicted labels from XLGen-BCL and AttentionXML on input documents in WIKI10-
31K. We ask human annotators to annotate labels to be correct (blue), wrong (strikethrough), and PU (red). For
XLGen, we additionally mark potentially correct labels from the newly generated labels and their relevant contexts
in input text with yellow box. (e.g., a possibly correct label soda is newly generated based on the fact that diet coke
can be replaced with other carbonated beverage.)
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(c) Diet Coke and Mentos Eruptions

Figure 7: Visualization of generated labels by XLGen-BCL for the Wikipedia page examples in Table 7.

Limitations and Future Directions

First, we conduct our main experiments and addi-
tional analyses on certain languages such as En-
glish that has tremendous text corpora. Extension
to the low-resource languages might be challeng-
ing since this work requires text2text pre-trained
models where those languages are applicable (e.g.,
multilingual T5 model), as well as the correspond-
ing XMC datasets.

Also, compared to the efficient classification
baselines, generative models are relatively expen-
sive in terms of memory and time. For example,
our experiment requires a lot of training resource as
pre-trained models have >200 millions parameters
to be tuned. Thus, we use three p3.16xlarge AWS

instances with 8 Nvidia V100 GPUs for training.
Using more efficient version of Transformers (Tay
et al., 2022) or applying distributed training should
be considered for a resource reduction.

While in-context learning does not show compa-
rable performance in XMC, we do observe that as
the number of examples increases from zero to one
to five, in-context learning can generate reasonable
unseen but positive labels. It would be interesting
to explore the potential of in-context learning in
XMC with more advanced prompting and example
sampling in the future.

Lastly, the XMC task has a risk of being biased
or overfit to small training datasets (e.g., EURLEX-
4K and WIKI10-31K contain only about 15,000

1678



training examples). As with other commonly used
NLP benchmarks, there is a potential risk that our
proposed method may not work properly in the new
test/train sets, though we anticipate that such a risk
will be quite small.

Ethics Statement

We use the four XMC benchmark datasets which
are publicly available and widely used in research 2.
The datasets with social tags (e.g., WIKI10-31K
and WIKI-500K) may contain inappropriate vul-
garisms if they are not filtered out from the original
data processing.
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A Appendix

A.1 Details on Baseline Models

AttentionXML (You et al., 2019) is a label tree-
based deep learning model. It uses a shallow and
wide probabilistic label tree which allows to han-
dle millions of labels and a multi-label attention
mechanism by using raw text as input to capture
the most relevant part of text to each label.

X-Transformer (Chang et al., 2020) is the first
scalable approach to apply deep transformer mod-
els in XMC task. In particular, it uses a pre-trained
transformer encoder to assign labels to correspond-
ing cluster. For each hierarchical cluster level,
OVA classifiers are trained by only using sample in-
stances under the same cluster, called teacher forc-
ing negative (TFN) strategy. Unlike AttentionXML
which only uses negative sampling, X-Transformer
also uses the negative instances positively predicted
by the classifier from the previous cluster level,
called matcher-aware negatives (MAN). Recently,
Zhang et al. (2021a) proposed XR-Transformer to
speed up X-Transformer’s training time in recur-
sive manner. Thus, we use XR-Transformer instead
of X-Transformer for the comparison.

XR-Linear (Yu et al., 2022) has a very similar
architecture with XR-Transformer, except that it
only uses simple tf-idf text features instead of trans-
former encoder outputs. For OVA classification, lin-
ear matchers recursively solve XMC sub-problem
for each hierarchical cluster level.

In order to fit score outputs into [0,1], we apply
sigmoid post processor implemented by the authors
for XR-Transformer and XR-Linear.

A.2 Details on XLGen Training

XLGen-BCL XLGen-MCG
EURLEX-4K 80 20
AMZNCAT-13K 80 20
WIKI10-31K 60 20
WIKI-500K 80 20

Table 8: Optimal cluster sizes for the XLGen training.

We finetune the T5-large (EURLEX-4K,
WIKI10-31K) or the T5-base (AMAZONCAT-
13K, WIKI-500K), with epoch 10 (EURLEX-4K,
AMAZONCAT-13K) or epoch 5 (WIKI10-31K,
WIKI-500K) based on the data and/or label size.

We set up input length as 500 for all benchmark
datasets and use different output length based on
the label lengths in train set; 90 for EURLEX-4K

Sample Label
EURLEX-4K WIKI10-31K

Mic. Mac. Mic. Mac.

0-shot

Random Random 5.3 3.8 7.1 3.8
Random Frequency 9.2 6.3 7.6 4.5

Most Label Random 6.0 4.3 7.2 4.4
Most Label Frequency 5.0 3.5 6.7 3.5

1-shot

Random Random 14.8 10.7 13.6 11.8
Random Frequency 16.1 10.4 20.3 13.4

Most Label Random 17.2 14.7 17.9 16.8
Most Label Frequency 15.1 12.2 18.1 16.1

5-shot

Random Random 15.7 10.4 17.9 14.2
Random Frequency 13.1 9.7 23.5 16.6

Most Label Random 11.0 9.6 19.8 18.0
Most Label Frequency 12.5 11.3 21.5 15.1

Table 9: Micro-averaged and macro-averaged F1 scores
in-context learning settings on 100 randomly selected
samples. We test two label ordering strategies, random
and decreasing label frequency (frequency), as well as
two sampling strategies, random and selecting examples
with the most labels (most label). The highest scores
are bold.

and 165 for other three benchmarks. We opti-
mize XLGen using AdamW (Loshchilov and Hut-
ter, 2019) with learning rate 2e-4.

For XLGen-BCL, we set up an initial weight
value λ as 1.0 and reduce it to 1

k for every epoch
number k.

For cluster-based XLGen architectures, we
train k-means clustering and optimize the clus-
ter size via cross-validation from the range of
{10,20,30,...,100}. In Table 8, we report optimal
cluster sizes for XLGen training.

Note that each of T5 models have 220 million
(T5-base) or 770 million (T5-large) parameters to
be tuned. Also for training, we use a small batch
size (1) since pre-trained T5 models are large to
be fitted in a single GPU machine. Due to the
model size, we use two GPU machines via model
parallelism for T5-large and a single GPU ma-
chine for T5-base in training. Also, due to the
training cost and time, we report the performance
scores from the single running of training and infer-
ence. We basically modify the T5 code from hug-
gingface library 3, and our code will be publicly
available at https://github.com/alexa/
xlgen-eacl-2023.

A.3 In-context learning in XMC

For in-context learning, we use OpenAI GPT-3
text-davinci-002 model with temperature 0.7 and
max tokens 256. To find the optimal prompt, we
use prompt variations with different label orders

3https://huggingface.co/
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EURLEX-4K AMZNCAT-13K WIKI10-31K WIKI-500K
F@1/F@3/F@5/F@10 F@1/F@3/F@5/F@10 F@1/F@3/F@5/F@10 F@1/F@3/F@5/F@10

XR-Transformer 27.4/47.5/47.2/34.7 31.6/55.2/53.5/38.0 8.8/20.3/24.4/23.8 24.1/34.2/32.8/25.5
XR-Linear 26.1/47.8/51.1/41.2 30.5/55.8/58.6/45.7 8.5/19.2/24.9/29.3 22.8/32.5/31.3/24.4
AttentionXML 26.9/51.9/58.8/59.9 30.8/59.2/67.0/ 69.9 8.6/21.0/28.1/35.6 24.4/42.9/48.9/52.8
XLGen-base 21.3/46.9/57.8/59.8 30.8/57.4/65.3/69.0 8.1/15.5/21.7/30.1 23.7/44.0/50.4/54.6
XLGen-BCL 21.2/47.2/58.7/60.7 31.0/57.7/65.5/69.2 8.1/15.4/21.5/30.1 23.8/43.8/50.3/54.6
XLGen-MCG 20.9/47.0/58.1/60.2 31.2/58.8/67.5/71.2 8.1/15.6/22.2/31.2 23.8/44.0/50.5/54.8

Table 10: Supplementary scores on benchmark datasets. We report ranking-based @k (k=1,3,5,10) F1 scores (F@k)
as supplementary metrics. The highest scores are bold.

EURLEX-4K WIKI10-31K WIKI-500K
0-shot 1-shot 5-shot 0-shot 1-shot 5-shot 0-shot 1-shot 5-shot

XR-Transformer 0.0/0.0 1.5/0.5 4.7/2.3 0.0/0.0 2.5/1.6 2.9/1.7 0.0/0.0 0.0/0.0 0.0/0.0
XR-Linear 0.0/0.0 5.9/1.1 8.6/2.7 0.0/0.0 2.8/2.3 2.9/2.4 0.0/0.0 0.2/0.1 1.4/0.9
AttentionXML 0.0/0.0 16.3/2.4 28.4/8.3 0.0/0.0 0.3/0.2 5.6/1.9 0.0/0.0 2.2/1.3 16.1/9.2
XLGen 5.3/3.2 21.4/3.5 34.9/10.8 4.5/2.9 14.4/8.4 17.9/7.5 21.6/22.5 35.6/24.1 39.6/28.7
XLGen-BCL 7.3/4.3 25.0/4.1 36.1/11.4 5.0/3.3 14.5/8.4 17.6/7.3 18.6/23.2 36.2/24.8 40.2/29.5
XLGen-MCG 7.3/4.5 16.7/2.7 35.9/11.1 5.0/11.1 13.9/8.1 17.3/7.2 20.7/23.7 37.0/25.5 40.6/29.9

Table 11: Task performances on benchmark datasets in full few-shot setup. We use conventional micro-averaged
(Mic.) and macro-averaged (Mac.) F1 scores and mark Mic./Mac. in the table. The highest scores are bold.

EURLEX-4K WIKI10-31K WIKI-500K
Positive Unlabeled Deficit Ratio Positive Unlabeled Deficit Ratio Positive Unlabeled Deficit Ratio
20% 50% 80% 20% 50% 80% 20% 50% 80%

XR-Transformer 32.6/10.9 25.9/8.6 14.6/4.7 20.7/3.5 16.7/3.4 12.0/3.3 29.2/8.0 24.5/7.0 17.7/5.1
XR-Linear 38.6/12.1 27.8/8.8 12.5/3.7 16.1/3.9 11.5/2.7 5.1/1.7 14.4/3.7 9.9/2.8 5.9/2.0
AttentionXML 57.6/23.6 52.3/18.7 40.0/11.1 34.7/3.3 27.7/1.3 14.1/0.0 50.9/18.9 46.0/11.3 35.5/5.0
XLGen-base 55.7/24.4 47.5/18.8 31.3/9.8 33.6/9.1 32.3/7.7 22.7/2.8 51.1/37.3 48.7/31.6 37.9/25.4
XLGen-BCL 56.0/24.4 47.9/19.3 31.4/10.0 33.2/9.1 33.0/8.0 23.6/2.9 50.8/37.0 48.5/31.4 37.8/25.2
XLGen-MCG 55.5/27.8 48.2/21.2 32.6/13.3 32.4/11.7 33.0/ 10.1 24.0/7.9 50.7/37.3 48.5/32.7 35.9/24.8

Table 12: Task performances on benchmark datasets in full PU setup. We use conventional micro-averaged (Mic.)
and macro-averaged (Mac.) F1 scores and mark Mic./Mac. in the table. The highest scores are bold.

(a) Label frequency order with random sample (b) Label random order with random sample

Figure 8: Input prompt and generated outputs (green-shaded) for Wikipedia page of Elizabeth Dickinson with
1-shot example.

and few-shot example sampling strategy. Further-
more, we test two label ordering strategies, ran-
dom and decreasing label frequency, as well as two
sampling strategies, random and selecting exam-
ples with the most labels. See Figure 8 for GPT-3
prompt input and generated output. Table 9 shows
the in-context learning performances across differ-

ent label ordering and sampling strategies. The
best macro-averaged F1 scores for WIKI10-31K
are achieved with label frequency ordering with
random sampling; however, there is no consistently
outperforming strategy for EURLEX-4K.
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A.4 Additional Task Performances on
Benchmark Datasets

For the full setup, we also report ranking based
scores in Table 10. In general, for supplementary
metrics (F@k) XLGen shows comparable results
with baselines except F@1, and F@3 in EURLEX-
4K and WIKI10-31K. Note that for XLGen, we
just treat the order of generated labels as a rank,
which might not be correct since such generated la-
bels should have a equal priority in theory. For this
reason, XLGen has lower F@k scores with smaller
k. However, such score gaps between baselines and
XLGen decrease as k increases, like EURLEX-4K
with XLGen-BCL, or even XLGen achieves higher
performances in the larger benchmarks (e.g., F@5
and F@10 in AMZNCAT-13K and WIKI-500K).
Also, full micro/macro F1 scores for tail labels and
PU settings are in Table 11 and Table 12, respec-
tively.

A.5 Additional Analyses on Base Model
Comparison

XLGen-base EURLEX-4K WIKI10-31K
Mic. Mac. Mic. Mac.

T5-base 58.0 23.8 35.8 7.9
BART-base 55.6 23.4 35.0 7.7

Table 13: Task performances of XLGen-base trained
with different pre-trained model architectures on
EURLEX-4K and WIKI10-31K. The highest scores
are bold.

For XLGen, we can use any pre-trained text-to-
text models. We compare task performance of two
popular text-to-text models in Table 13; T5 (Raffel
et al., 2020) and BART (Lewis et al., 2020) by
finetuning XLGen-base. In general T5 model
outperforms BART, therefore, we use pre-trained
T5 architectures for our main experiments.

A.6 Additional Analyses on Decoding
Strategy

Followed by Figure 6b, Table 14 shows a task per-
formance across various decoding strategies, in-
cluding different beam size for beam search and a
single sampling restriction.

Additionally, instead of choosing single genera-
tion strategy, we can even consider to integrate gen-
eration outputs from different generation strategies.
For ensemble generations, we choose three single
generation strategies; beam search with size 5, Top
K + P sampling and sampling with temperature
0.8 to get diverse label sequences. We also consider

EURLEX-4K WIKI10-31K
Mic. Mac. Mic. Mac.

Greedy 57.5 23.3 35.6 7.0
Beam (3) 58.0 23.7 35.7 7.8
Beam (5) 58.0 23.8 35.8 7.9
Beam (10) 57.9 23.8 35.4 7.8
Tmp. (0.8) 53.7 21.9 30.6 7.1
Top-K (50) 51.7 20.8 28.7 6.8
Top-P (0.9) 53.2 21.1 28.8 6.5
Top P +K 53.6 21.5 31.1 7.4

Table 14: Performances of XLGen-base trained with
different decoding strategies.

XLGen-base EURLEX-4K WIKI10-31K
Mic. Mac. Mic. Mac.

Beam (5) 58.0 23.8 35.8 7.9
Ens. Outer 53.5 24.5 31.5 10.0
Ens. Inner 54.0 18.9 29.2 4.2

Table 15: Task performance of XLGen-base from the
best single stratagy (beam search with size 5) and en-
semble generations on EURLEX-4K and WIKI10-31K.
The highest scores are bold.

two different types of joining method; inner join
to union all labels and outer join to intersect labels
from single generations.

Table 15 shows task performance of ensemble
generations. We find that outer joining ensemble
generation could improve macro F1 scores as it
includes more labels than single result. However, it
simultaneously drops other micro F1 scores due to
the high chance to contain wrongly predicted labels
as well. On the other hand, inner joining ensemble
generation in general harms the performance by
restricting predicted labels occurring at any single
generations, though this yields higher micro F1
scores than inner joining ensemble results.

A.7 Additional Analyses on Clustering and
Representation

XLGen-base EURLEX-4K WIKI10-31K
Mic. Mac. Mic. Mac.

Kmn. + tf-idf 58.4 24.1 36.6 8.9
Kmn. + t5-enc. 58.5 23.9 36.8 8.8
Ahcl. + tf-idf 58.4 24.4 36.8 8.8
Ahcl. + t5-enc 58.0 24.0 37.0 8.6

Table 16: Task performances trained with different clus-
ter algorithm and input features on EURLEX-4K and
WIKI10-31K. Here we fix cluster size as 30. The high-
est scores are bold.

We compare two clustering algorithms; K-means
and Agglomerative hierarchical clustering, and two
text representations for the label features; TF-IDF
and the last hidden states of T5 encoder in Table 16.
We find that both algorithms show comparable per-
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Figure 9: Visualization of generated labels by XLGen-BCL for Wikipedia pages of annotated examples in Table 17.

formances. As computing cost is more expensive in
Agglomerative hierarchical clustering, we mainly
use K-means in our experiments. For text represen-
tation, the pre-trained T5 encoder achieves similar
or slightly better performance to TF-IDF vectors.
Pre-trained T5 encoder is more efficient in training
as it has much lower size of dimensionality (e.g.,
768 in t5-base) than tfidf (e.g., >100,000 for both
EUR-LEX and WIKI10-31K). Thus, for all exper-
iments with clustering method, we use K-means
with pre-trained T5 encoder text representation.

A.8 Additional Examples of Human
Annotation

In Table 17, We provide more annotation exam-
ples from WIKI10-31K, following the Table 7 to
show how XLGen generates labels. In Figure 9,
we also provide visualizations of generated labels

by XLGen for examples in Table 17.
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Input Document Models Labels

Emily Elizabeth Dickinson (December 10,
1830– May 15, 1886) was an American poet.
Born in Amherst, Massachusetts to a successful
family with strong community ties, she lived a
mostly introverted and reclusive life. After she
studied at the Amherst Academy for seven years
in her youth, she spent a short time at ...

True
authors biography dickinson emily journal library liter-
ature openaccess people poem poet poetry reference re-
search to-read wiki wikipedia writers

AttentionXML
wiki poet writers wikipedia literature authors books
writing history poets writer people poetry biography
inspiration american poems luule

XLGen-BCL wikipedia wiki people art books literature english poetry
writers writer poet elizabeth dickinson emilydickinson

Screenshot of vimeo.com home page Vimeo is
a video-centric social network site (owned by
IAC/InterActiveCorp) which launched in
November 2004. The site supports embedding,
sharing, video storage, and allows
user-commenting on each video page...

True articles computer reference socialnetworks technology
tools video web2.0 wikipedia

AttentionXML video web2.0 wikipedia wiki media youtube videos
videoblogging streaming

XLGen-BCL
wikipedia wiki reference technology web internet social
video web2.0 no_tag socialnetworking socialsoftware phd
social_networking social_network vimeo

Diet Coke and Mentos Eruption is a reaction of
Diet Coke and mint Mentos candies, a bottle of
Diet Coke (other carbonated beverages may be
used instead) and dropping some Mentos. This
causes the Coke to foam at a rapid rate and
spew into the air...

True
beverage candy chemistry coca-cola coke dietcoke drink
eruption experiment experiments video explosion food
fun funny interesting mint prank science

AttentionXML wikipedia fun science diet wiki funny coke tv video health
interesting humor food

XLGen-BCL wikipedia wiki science interesting fun video funny food
humor weird humour wtf #afterdarkclub soda eruption

David Leo Fincher (born August 28, 1962) is an
Academy Award-nominated
American filmmaker and music video director
known for his dark and stylish movies such as
Seven, Fight Club, Zodiac and The Curious
Case of Benjamin Button...

True cinema david director directors figures film filmmaking
films fincher inspiration movie people wiki wikipedia

AttentionXML wiki directors video wikipedia cinema pitt people director
films movies movie film filmmaker brad

XLGen-BCL
wikipedia wiki people art film biography movies artist
movie cinema films director directors auteurs hollywood
hollywood_films

Brain Age: Train Your Brain in Minutes a Day!,
also known as Dr. Kawashima’s Brain Training:
How Old Is Your Brain? in PAL regions, is an
entertainment video game that employs puzzles.
It was developed and published by the video
gaming company Nintendo for the Nintendo DS
handheld video game console...

True
@mentat biology brain braintraining computer exercise
fitness fun game games health medical nintendo read sci-
ence sudoku unit4 wikipedia

AttentionXML
wikipedia game games fun science nintendo sudoku
brain mind ds wiki video memory gaming puzzle puz-
zles videogames nds

XLGen-BCL

games wikipedia fun health brain nintendo nintendods
wiki gaming wishlist article interesting cool ds brain-age
brainage

A croque-monsieur is a hot ham and cheese
(typically emmental[citation needed] or gruyère)
grilled sandwich. It originated in France as a
fast-food snack served in cafés and bars ...

True cooking food french recipe sandwich
AttentionXML food wikipedia cooking french wiki

XLGen-BCL
wikipedia food france french cooking ham_and_cheese
fastfood snack

Typography of Apple Inc. refers to Apple Inc.’s
use of typefaces in marketing, operating
systems, and industrial design. Apple has used
three corporate fonts throughout its history:
Motter Tektura, Apple Garamond and Adobe
Myriad. For at least 18 years, Apple’s corporate
font was a custom variant of the ITC Garamond
typeface, called Apple Garamond ...

True

adobe apple branding chronology computer computers de-
sign design.fonts fmp font fonts helpful history imac ipod
list mac macintosh marketing myriad print pro product
reference sda spunti storia typography wiki wikipedia

AttentionXML

typography fonts apple font design wikipedia type
typeface wiki tipografia ttf macintosh reference mac
history graphics logo graphic designers webdesign
graphicdesign diseño computer typographer ipod brand
article technology business advertising

XLGen-BCL
wikipedia wiki history article design technology computer
webdesign mac apple typography fonts font apple_inc

The jackalope — also called an antelabbit, aunt
benny, Wyoming thistled hare or stagbunny —
is an imaginary animal of folklore and a
supposed cross between a jackrabbit and an
antelope, goat, or deer, which is usually ...

True american animal creatureproject cryptozoology culture fic-
tion humor humour myth mythology storyideas wikipedia

AttentionXML folklore wikipedia animals mythology wiki cryptozoology
culture monsters animal weird interesting myth

XLGen-BCL
wikipedia wiki reference research culture mythology ani-
mals folklore wtf myths monsters jackalope

Anti-humor and anti-jokes[1] (also known as
unjokes) are a kind of humor based on the
surprise factor of absence of an expected joke or
of a punch line in a narration which is set up as
a joke. This kind of anticlimax is similar to that
of the shaggy dog story.[2] In fact, John
Henderson sees the "shaggy dog story" ...

True comedy favourites fun funny humor humour information
interesting jokes people postmodernism wiki wikipedia

AttentionXML humor wikipedia funny comedy humour fun satire wiki
dog animals standup parody joke

XLGen-BCL

wikipedia wiki reference interesting article culture fun
funny humor irc foonetic foonetic/#xkcd definitions
dictionary humour comedy satire anti cdc foonetic/#boats
anti-humor

Table 17: Additional examples of ground-truth and predicted labels in WIKI10-31K, following Table 7.
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Abstract

Understanding empathy in text dialogue data
is a difficult, yet critical, skill for effective
human-machine interaction. In this work, we
ask whether systems are making meaningful
progress on this challenge. We consider a sim-
ple model that checks if an input utterance is
similar to a small set of empathetic examples.
Crucially, the model does not look at what the
utterance is a response to, i.e., the dialogue con-
text. This model performs comparably to prior
work on standard benchmarks and even outper-
forms state-of-the-art models for empathetic
rationale extraction by 16.7 points on T-F1 and
4.3 on IOU-F1. This indicates that current sys-
tems rely on the surface form of the response,
rather than whether it is suitable in context. To
confirm this, we create examples with dialogue
contexts that change the interpretation of the
response and show that current systems con-
tinue to label utterances as empathetic. We dis-
cuss the implications of our findings, including
improvements for empathetic benchmarks and
how our model can be an informative baseline.

1 Introduction

Empathy is a fundamental phenomenon that allows
us to better communicate and relate with others.
Studies show that empathy is significantly corre-
lated with counseling treatment outcomes (Moyers
and Miller, 2013; Elliott et al., 2018). Computer
systems could be improved by adding the ability to
understand empathy.

EPITOME (Sharma et al., 2020b) took a step
towards understanding empathy in language, intro-
ducing tasks such as empathy identification and
empathetic rationale extraction. Models built us-
ing EPITOME have been used to build or evaluate
empathetic dialogue systems (Sharma et al., 2021;
Zheng et al., 2021; Majumder et al., 2022; Kim
et al., 2021) or study social effects of empathy
(Chen and Xu, 2021).

In this work, we explore whether current models
are effectively considering dialogue context (short-
ened to context for the rest of this paper). We show
that a simple model that does not consider context
can achieve strong results, and that a model from
prior work does not change its predictions when we
make substantial changes to the context. Together,
these results indicate that models are more limited
than previously thought.

We introduce an adapted version of micromod-
els (Lee et al., 2021), a simple and explainable
approach that combines a set of models, with each
model identifying a specific linguistic phenomenon.
This approach performs much better than the EPIT-
OME’s model on five metrics, comparably on five
metrics, and much worse on two. Critically, we
achieve this without any use of context.

We inspect our model’s behavior and find that
it can achieve accuracy scores that are as good
as or better than the EPITOME model’s for em-
pathetic rationale extraction with as few as three
seed/training utterances for our model.

We also conduct an experiment to probe EPIT-
OME’s behavior. We take utterances from empa-
thetic responses and randomly insert them as part of
the response in another context. Despite these inser-
tions mainly being nonsensical and non-empathetic,
prior models nearly always predict these responses
as empathetic, demonstrating that the models rely
on the surface form of the response rather than
contextual understanding.

The authors of EPITOME noted that empathy
is contextual; a “reaction to an emotional stimu-
lation” or a “deliberate process of understanding
and interpreting the experiences” of others.1 How-
ever, current systems do not effectively account for
context: they may identify empathetic style, but
they do not consider whether a response is indeed a
reaction to feelings and experiences. Future work

1Section 2.1 of Sharma et al. (2020b)
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Figure 1: The micromodel framework training process.
Notably, our approach does not use any dialogue context,
yet still performs strongly on current empathy detection
benchmarks, raising the question of whether current
systems and benchmarks are accounting for context.

should conduct probing experiments like the one
we use here, and could consider micromodels as
a baseline. This will help assess the contextual
understanding of empathy for future models.

2 Benchmarks and Tasks: EPITOME

EPITOME (Sharma et al., 2020b) is a frame-
work for computationally assessing empathy in
text-based dialogue. We denote their dataset as
EPITOMEData and the model as EPITOMEModel.

EPITOMEData consists of pairs of dialogues
from Talklife and Reddit, and two tasks: empathy
prediction (EmpPred) and empathetic rationale
extraction (EmpRE). Given a seeker’s post Si =
si1, ..., sim and a response Ri = ri1, ..., rin, each
response Ri is annotated with an empathy level
(None, Weak, or Strong) in the context of Si across
three communication mechanisms: Emotional Re-
actions, Interpretations, and Explorations.2

Empathetic rationales are spans of text that pro-
vide evidence of empathy. They are annotated
at the token-level, e.g., the response "I feel you.
Are you okay?" is represented as [1, 1, 1, 0, 0, 0],
[0, 0, 0, 1, 1, 1], and [0, 0, 0, 0, 0, 0] for Emotional
Reactions, Exploration, and Interpretations, with
one digit per token.

The goal of EmpPred is to predict the correct
level of empathy given (Si, Ri) across each com-
munication mechanism. The goal of EmpRE is to
correctly extract the rationale spans.

3 Micromodels

Lee et al. (2021) introduced the micromodel frame-
work to assess the mental health status of social
media users. We give a brief overview of the frame-

2The definition of each communication mechanism can be
found in the appendix.

work, followed by our adaptations to tackle each
task. Further details are provided in the appendix.

3.1 Micromodel Framework

Figure 1 depicts the micromodel framework. The
framework consists of a set of micromodels, in
which each micromodel MM is a binary classifier
that is initialized with a set of seed utterances Z =
z1, ..., zn. Given an input query q, micromodel
MM gives a binary prediction if q is semantically
similar to any of the seed utterances in Z:

MM(q) = ∃z∈ZCosSim(BERT (q), BERT (z)) > θ
(1)

The outputs of the micromodels are used as fea-
tures to train a task-specific classifier. Lee et al.
(2021) uses explainable boosting machines (EBM)
(Caruana et al., 2015), which are generalized addi-
tive models (Lou et al., 2012) that make predictions
based on adding a set of feature functions learned
on each input feature, where each feature function
is trained using bagging and gradient boosting.

3.2 Micromodels for EmpPred

For EPITOME’s tasks, we build three micromod-
els, one for each communication mechanism c. For
each micromodelMMc, the seed utterances Zc are
initialized using the annotated rationales of each
communication mechanism in the training split of
EPITOMEData. Once initialized, rather than using
the binary outputs from each micromodel, we use
the maximum similarity score between each sen-
tence from the response post rij ∈ Ri and each of
the seed utterances z ∈ Zc.

MMc(Ri) = max
rij∈Ri
z∈Zc

(Sim(BERT (rij), BERT (z))) (2)

We use the resulting similarity scores as features
to train an EBM model3 to predict the empathy
level. We use S-BERT (Reimers and Gurevych,
2019) models4 to compute similarity scores.

3.3 Micromodels for EmpRE

Figure 2 depicts how we apply micromodels to
extract empathetic rationales. Given a response
post Ri, we first split it into sentences ri1, ..., rin.
Each micromodel MMc runs on each sentence rij ,
returning 1 if sentence rij is semantically similar
to any of the seed utterances Zc and 0 otherwise.
This results in a binary vector vc of length n. Each

3https://github.com/interpretml/interpret
4"paraphrase-xlm-r-multilingual-v1"
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ER EXPINT

ri1: I feel the same.
ri2: God bless you.
ri3: That is so sad.

10 0

“I feel the same. God bless 
you. That is so sad.”

Response
Ri

Response
Sentences

rij

Binary
Vectors
vc

Rationale
Spans

0 0 0 0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

01 0 00 0

Micromodels 
MMc

Figure 2: Extracting empathy rationales using micro-
models. Each micromodel MMc determines if each
response sentence rij is empathetic. Each token wij

k of
sentence rij is then assigned the binary value of rij .

sentence rij is then tokenized5 into a set of tokens
wij1 , ..., w

ij
l , where l = len(rij) and each token

wijk is assigned the binary value of rij . This results
in a sequence of 0’s and 1’s where spans of 1’s
represent rationales.

4 Experiments and Results

4.1 Experimental Setup

For our experiments, we use random splits of
75:5:20 for our train, validation, and test sets.6

We report average scores from 10 runs. For θ (Eq.
1), we use a threshold value of 0.7, based on ex-
periments from the validation set. Following EPIT-
OME’s authors, we report token-level F1 (T-F1)
and Intersection Over Union F1 (IOU-F1) scores.7

4.2 Baselines: EPITOMEModel

We compare our approach to several baselines, in-
cluding EPITOMEModel. EPITOMEModel is a multi-
task bi-encoder model initialized with the weights
of RoBERTa. Each encoder encodes the seeker’s
post Si and the response post Ri. An attention
layer attends over both encodings, which is then
jointly trained on the two EPITOME tasks. Further
details are provided in the appendix.

5We use NLTK for tokenization
6This is the same ratio used in the original EPITOME

paper. There were no official splits.
7We use the same IOU match threshold as EPITOME (0.5).

4.3 Baselines: Other
We also include baseline results as reported by the
authors of EPITOME. These baseline models in-
clude popular models used in similar tasks, each
of which have been fine-tuned or trained on the
EPITOME tasks:

• Logistic regression over tf-idf vectors
• Recurrent neural network
• Hierarchical recurrent encoder-decoder

(HRED, Sordoni et al. (2015))
• BERT (Devlin et al., 2019)
• GPT-2 (Radford et al.)
• DialoGPT (GPT-2 adapted for dialogue,

Zhang et al. (2020))
• RoBERTa (Liu et al., 2019)

4.4 Results
EmpPredEPIT. The first six columns of Table 1
show the accuracy and F-1 scores of empathy
prediction. While our F-1 scores are lower than
EPITOMEModel, they often outperform other fine-
tuned language models.

EmpRE. The last six columns of Table 1 show
the T-F1 and IOU-F1 scores for empathetic ratio-
nale extraction. Other than for Interpretations, we
demonstrate significant improvements of up to 16.7
points for T-F1 and 4.3 points for IOU-F1, resulting
in the highest scores to our knowledge.

4.5 Follow-Up Analyses
Probing our model: As a post-analysis, we ex-
amine which seed utterances z ∈ Zc trigger each
micromodel during testing and observe that only
a small subset of seed utterances are meaningfully
used. To demonstrate this, we conduct an exper-
iment in which we iteratively reduce the number
of seed utterances used by each micromodel based
on how frequently they trigger a micromodel dur-
ing testing. Figure 3 shows the resulting IOU-F1
scores8 from 10 random runs, demonstrating that
for some communication mechanisms, state-of-the-
art results can be achieved by simply checking for
semantic similarity against as few as three seed
utterances, which are shown in Table 2. Note, this
analysis requires modifying the training based on
the test performance, so the results are not neces-
sarily representative beyond that dataset.

Probing EPITOMEModel: We run an experi-
ment to study whether these utterances are also driv-
ing EPITOMEModel’s behavior. We gather 1,000

8T-F1 showed nearly identical patterns
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Model Empathy Prediction Empathetic Rationale Extraction
Emotional
Reactions Interpretations Explorations Emotional

Reactions Interpretations Explorations

Acc. F-1 Acc. F-1 Acc. F-1 T-F1 IOU-F1 T-F1 IOU-F1 T-F1 IOU-F1

Majority 66.38 26.60 54.58 23.54 83.90 30.41 66.98 66.98 54.94 54.94 84.53 84.53

Log. Reg. 41.69 42.69 70.58 49.77 67.08 46.63 43.26 61.27 49.85 31.31 48.21 70.36
RNN 71.63 42.85 76.21 51.76 85.58 30.74 45.54 43.94 48.22 51.35 65.11 78.27
HRED 71.11 44.10 79.65 54.16 85.58 30.74 46.34 45.65 48.88 52.12 66.66 80.33
BERT 72.13 50.41 82.16 61.20 89.35 56.54 51.06 54.81 48.38 50.75 67.91 71.00
GPT-2 76.69 71.65 82.32 62.27 88.25 58.28 51.44 57.10 54.53 52.38 73.39 82.89
DialoGPT 66.07 51.16 81.85 68.95 89.65 70.65 51.83 49.37 54.43 55.85 73.43 85.20
RoBERTa 76.99 70.35 82.16 61.38 90.58 63.41 51.89 58.31 55.62 54.60 69.76 83.33

EPITOMEModel 79.43 74.46 84.04 62.60 92.61 72.58 53.57 64.83 57.40 55.90 71.56 84.48

Micromodels 88.26 59.52 92.71 62.73 95.27 61.47 70.30 69.13 54.94 54.08 86.92 86.64

Table 1: Performance on empathy prediction and empathetic rationale extraction.

1 200 400 600 800
Seed Size

60
62
64
66
68
70
72

IO
U-

F1

Emotional Reactions

1 200 400 600 800 1000 1200
Seed Size

48
50
52
54
56
58 Interpretations

1 50 100 150 200 250 300 350
Seed Size

78
80
82
84
86
88
90 Explorations

Empathetic Rationale Extraction: IOU-F1

Micromodels (Subset)
Micromodels (All)
EPITOME (Model)

Figure 3: F1 scores with varying seed sizes per micromodel. Simply checking for semantic similarity with as few
as three utterances in Table 2 demonstrates either better or competitive performance scores compared to previous
state-of-the-art models. The shaded light blue regions indicate the standard deviation across our 10 runs.

Communication Mechanism Seed Utterance

Emotional Reactions
"I know how you feel."
"I’m sorry."
"I feel you."

Interpretations
"I feel the same way."
"I know how you feel."
"I understand how you feel."

Explorations
"Why?"
"What happened?"
"Why do you feel like that?"

Table 2: Utterances from the smallest subset of seed
data used in Figure 3. Simply checking for semantic
similarity between response utterances and these seed
utterances may outperforms prior state-of-the-art mod-
els in empathetic rationale extraction.

random conversations from PersonaChat (Zhang
et al., 2018), an open-domain dialogue dataset,
and Ubuntu Dialogue (Lowe et al., 2015), a dia-
logue dataset around technical support for Ubuntu-
related problems. For each sample, we insert
one of the three utterances from Table 2 as part
of the response, resulting in a nonsensical and
non-empathetic response. Table 3 shows the re-
sults, with EPITOMEModel almost always predict-
ing these artificial dialogues as empathetic. This

PersonaChat Ubuntu
Is Empathetic? No Yes No Yes

Emotional Reactions 3 997 8 992
Interpretations 305 695 556 444
Interpretations† 10 990 11 989
Explorations 31 969 6 994

Table 3: Number of times non-empathetic dialogues are
predicted as empathetic by EPITOMEModel. †indicates
when we always insert "I feel the same way" (The most
commonly seen seed utterance for Interpretations – see
Table 2).

indicates that it relies on the surface form of the
response for its prediction, regardless of context.

5 Related Work

Limited access to treatment for mental health,
along with a rise in demand for scalable yet high-
quality interventions (Miner et al., 2019), has led
to an abundance of conversational systems that
provide mental health support (Shen et al., 2020;
Welch et al., 2020; Han et al., 2013).910 A criti-
cal capability for these systems is to understand
and interact with empathy, as studies show that

9https://woebothealth.com/
10https://www.wysa.io/
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empathy is significantly correlated with counsel-
ing treatment outcomes (Moyers and Miller, 2013;
Elliott et al., 2018).

Broadly, recognizing empathy within dialogue
has been studied under the following contexts: on-
line platforms (Sharma et al., 2020a, 2021; Khan-
pour et al., 2017), formal counseling settings (Gib-
son et al., 2015; Zhang and Danescu-Niculescu-
Mizil, 2020; Pérez-Rosas et al., 2017), or social me-
dia interactions (Hosseini and Caragea, 2021; Lah-
nala et al., 2021; Wang and Jurgens, 2018; Zhou
and Jurgens, 2020).

For instance, Lahnala et al. (2021) examined
the interactions between practitioners and non-
practitioners that provide support on Reddit. Wang
and Jurgens (2018) and Zhou and Jurgens (2020)
analyzed the language of condolence and empathy
in various social platforms. Other settings for as-
sessing empathy include reacations to news stories
(Buechel et al., 2018).

Another direction in the study of empathy within
dialogue includes empathetic response generation
(Rashkin et al., 2019; Liu et al., 2021; Zhong et al.,
2020; Zheng et al., 2021). In order to assess the em-
pathy level of their systems, researchers often use
models such as EPITOME. (Sharma et al., 2021;
Zheng et al., 2021; Majumder et al., 2022; Kim
et al., 2021). Our work demonstrates the pitfalls
that researchers should be aware of when taking
such approach.

Other efforts include a taxonomy of empathetic
responses (Welivita and Pu, 2020), fine-tuned lan-
guage models for empathy (Guda et al., 2021), as
well as empathy-lexicons (Sedoc et al., 2020).

6 Conclusion

In this paper, we assessed whether empathetic sys-
tems are correctly taking dialogue context into ac-
count. We demonstrated that a simple model with
no contextual understanding can achieve results
comparable to the EPITOME model and better
than all baselines. We find that these results can
be achieved by simply checking for semantic simi-
larity to just three utterances. We also found that
EPITOMEModel nearly always classifies a response
as empathetic regardless of context, as long as it
contains one of these three utterances. We conclude
that current empathy recognition models do not ef-
fectively take contextual information into account.

Future work on benchmarks should consider in-
cluding examples that require contextual under-

standing to answer (S: "I got promoted!" R: "That’s
terrible, I’m sorry."). Work on models should con-
sider comparing with Micromodels, a simple and
practical baseline that serves as a reference point
for performance without contextual understanding.
These changes will better inform progress on mod-
els that meaningfully capture empathy.

The code for our experiments is pub-
licly available at https://github.com/
MichiganNLP/micromodels.

7 Limitations

The main focus of our paper is on the limitations
of empathy recognition models, both our micro-
model approach as well as the prior state-of-the-
art model EPITOMEModel. Namely, our micro-
model approach is based on semantic similarity
matching, and lacks any representation learning
and contextual knowledge. On the other hand, our
experiments demonstrate that EPITOMEModel also
does not account for context. Despite given non-
empathetic contexts, it continues to predict a re-
sponse as empathetic as long as the style of em-
pathy is present. Other limitations of our work
include the scope of our study, as we only exam-
ine a single benchmark. This is due to the lack
of available resources regarding the task of empa-
thy recognition in dialogue. Datasets like Empa-
theticDialogue (Rashkin et al., 2019) consists of
empathetic conversations, but do not measure the
empathy level of utterances. Other empathy predic-
tion tasks (Hosseini and Caragea, 2021; Buechel
et al., 2018) do not pertain to dialogue. With more
benchmarks regarding empathy recognition in dia-
logue available, a more thorough study should be
conducted.

8 Ethical Considerations

It is important to distinguish our improved accu-
racy scores from the ability to computationally un-
derstand empathy. Because of the lack of repre-
sentational learning or contextual knowledge, our
approach would undoubtedly fail in distinguish-
ing empathetic utterances from false-positive cases,
such as sarcastic or even offensive statements (R:
"What’s the matter?" versus "What’s the matter
with you?"). Given the sensitive nature of the men-
tal health domain, mishandling these situations can
exacerbate one’s situation. Another risk of rely-
ing too heavily on such accuracy numbers include
overlooking the degree to which a mishandling of
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a situation can affect an afflicted user. Measuring
this additional personal and humanistic dimension
in benchmarks for computational systems is unde-
niably a difficult problem, but likely a necessary
step to bridge the gap for effective systems for
mental health support. Lastly, while we are able
to do a thorough analysis of our findings with the
explanations provided by micromodels, there are
still portions of their decision making process that
remain opaque. Concretely, the computation of
semantic similarity by large pre-trained language
models like BERT is a key step in our procedure.
Using a simpler, more transparent representation
for micromodels may mitigate this problem. We
believe there is an interesting trade off between
accuracy and explainability in designing each mi-
cromodel.
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Emotional Reaction
“Everything will be ok.”,

…

Exploration
“How are you now?”,

…

Interpretation
“I would also be upset.”,

…

“I would also be 
upset. Let me know 
if you want to talk. 
How are you now? 
Everything will be 
ok.”

Training Data:
Response Utterances

Micromodel Seeds

Figure 4: The annotated rationales in the training split
of EPITOMEData are used as the seed data for each
micromodel.

A Empathetic Communication
Mechanisms

The EPITOME (Sharma et al., 2020b) framework
introduces three communication mechanisms to
capture the multi-dimensionality of empathy in
text-based dialogue – Emotional Reactions, Inter-
pretations, and Explorations. The definitions and
examples of each communication mechanism ac-
cording to the original EPITOME paper can be
found below.

Emotional Reactions Expressions of emotions
such as warmth, compassion as a response to the
seeker’s post. These expressions can explicitly la-
bel an emotion (e.g., "I feel really sad for you.") or
may allude to an emotion (e.g., "Everything will be
fine.").

Interpretations A reactive statement of one’s
own understanding of feelings and experiences in-
ferred from the seeker’s post. Such statement may
simply state their understanding (e.g., "I under-
stand how you feel.") or specify their inferred feel-
ings or similar experiences (e.g., "This must be
terrifying.", "I also have anxiety attacks at times
which makes me really terrified.").

Explorations Seeking further information to im-
prove one’s understanding of the seeker and their
feelings and experiences. These can include
generic follow-ups (e.g., "what happened?") or spe-
cific inquiries (e.g., "Are you feeling alone right
now?").

B Detailed Explanation of Micromodels

Micromodels (Lee et al., 2021) were originally
inspired by recent work in microservice architec-
tures, in which complex web applications are built
by orchestrating a collection of loosely coupled
microservices. Each of these microservices has

a fine-grained focus of responsibility. In a simi-
lar manner, the micromodel framework consists of
multiple micromodels, in which each micromodel
is responsible for representing or identifying a spe-
cific linguistic phenomena. In this work we build a
micromodel for each communication mechanism.

Here we describe the training procedure using
micromodels.

The first step in the framework is to initialize
each micromodel. The original authors scrape Red-
dit and use BERT to look for utterances that are
representative of each micromodel. In this work,
we simply use the annotated rationales that are
available in the training split of EPITOME (see
Figure 4). Each micromodel only needs to be ini-
tialized once.

Next, given supervised training data in the form
of (x, y), each micromodel MM runs on the input
query x. While any algorithm of choice can be used
for micromodels, the original authors use binary
classifiers based on semantic similarity. Concretely,
each micromodel that is initialized with a set of
seed utterances Z = z1, ..., zn makes a binary deci-
sion, returning 1 if its input query q is semantically
similar to any of the seed utterances z ∈ Z:

MM(x) = ∃z∈ZCosSim(BERT (x), BERT (z)) > θ
(3)

In this work we use our validation set to deter-
mine the θ value.

Once every micromodel runs on x, we are left
with a binary vector v of size n where n is the
number of micromodels that were used. The binary
vector v serves as a feature vector for a task-specific
classifier to train off of. One can think of the in-
ference from the micromodels to be a featurization
step to convert the input data (x, y) into a feature
vector (v, y), while the task-specific classifier is
an independent classification model that actually
learns a task from such featurized values.

Given (v, y), a task-specific classifier can be
trained. Similar to micromodels, the framework
allows for any algorithm of choice to be used for
task-specific classification, from simple regression
models to complex neural networks. The original
authors use explainable boosting machines (EBM)
(Caruana et al., 2015) because of the explanations
it provides. More specifically, the use of EBMs
allows one to understand the impact that each mi-
cromodel had on the task-specific classifier’s deci-
sion making process. For more details on EBMs,
we point our readers to both the original paper
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as well as its widely used open-source repository
(https://github.com/interpretml/interpret).

C Detailed Explanation of
EPITOMEModel

EpitomeModel is a multi-task bi-encoder model
in which the two encoders are initialized with
the weights of RoBERTa and pre-trained with in-
domain data that was available to the authors of
EPITOME. The two encoders then each encode the
seeker’s post Si and the response post Ri.

e
(S)
i = S-Encoder(Si); e

(R)
i = R-Encoder(Ri) (4)

Borrowing terminology from transformers, the
response post encoding is used as a query and the
seeker post is used as keys and values.

ai(e
(R)
i , e

(S)
i ) = softmax(e(R)

i e
(S)
i /
√
d)e

(S)
i (5)

The encoded response e(R)
i is summed with the

output of the attention layer ai(e
(R)
i to obtain a

residual mapping, resulting in a seeker-context
aware representation of the response post, which is
used to jointly train on the two tasks.
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Abstract

Information extraction (IE) and summarization
are closely related, both tasked with present-
ing a subset of the information contained in a
natural language text. However, while IE ex-
tracts structural representations, summarization
aims to abstract the most salient information
into a generated text summary – thus poten-
tially encountering the technical limitations of
current text generation methods (e.g., halluci-
nation). To mitigate this risk, this work uses
structured IE graphs to enhance the abstrac-
tive summarization task. Specifically, we focus
on improving Multi-Document Summarization
(MDS) performance by using cross-document
IE output, incorporating two novel components:
(1) the use of auxiliary entity and event recog-
nition systems to focus the summary genera-
tion model and; (2) incorporating an alignment
loss between IE nodes and their text spans to
reduce inconsistencies between the IE graphs
and text representations. Operationally, both
the IE nodes and corresponding text spans are
projected into the same embedding space and
pairwise distance is minimized. Experimental
results on multiple MDS benchmarks show that
summaries generated by our model are more
factually consistent with the source documents
than baseline models while maintaining the
same level of abstractiveness.1,2

1 Introduction

Information extraction (IE) (Lin et al., 2020; Li
et al., 2021) and summarization (Xiao et al., 2022;
Pasunuru et al., 2021) are inherently similar tasks,
sharing the objective of identifying and presenting
a targeted subset of the information present in a nat-
ural language text. However, there are also concep-
tual and methodological distinctions. First of all,
IE aims to extract specific structured information

1All our code will be publicly available at https://
github.com/amazon-science/IESum.

2The work was done during the first author’s internship at
Amazon Alexa.

from natural language text while abstractive text
summarization targets abstracting the most salient
information of a given text into a natural language
summary. Secondly, IE methods frequently have
access to world knowledge via external schema
and knowledge resources (e.g., Wikidata) whereas
summarization methods often rely on the informa-
tion encoded in large-scale pretrained embeddings
to produce coherent summaries. The complemen-
tary aspects of these tasks imply an opportunity to
transfer knowledge from one task to another.

Hence, in this paper, our primary motivation is
to take advantage of the complementary nature of
IE and summarization tasks, using the structured
output of entity and event extraction systems to
improve abstractive text summarization by focus-
ing text generation toward explicitly observable
grounded concepts. There are a few previous re-
search studies exploring the mutual enhancement
between IE and summarization. For example, Lu
et al. (2022) use text summarization to improve
relation extraction and Pasunuru et al. (2021) adopt
open-domain IE to provide additional structural in-
puts for Multi-Document Summarization (MDS).
However, these approaches have two notable limi-
tations. First, IE is performed on single documents
without analyzing cross-document interactions be-
tween the extracted knowledge elements. Such
cross-document interactions could be essential to
identifying salient parts of the source documents,
which is especially useful for MDS. Moreover, pre-
vious studies use linearized graphs without actually
constructing the graph as a whole, and hence fail-
ing to capture some global interactions between the
extracted knowledge elements.

Based on these motivations, in this paper, we
propose a text summarization model which is en-
hanced by IE. We focus on multi-document sum-
marization (MDS) and improve the MDS model
with cross-document IE graphs. Specifically, given
a cluster of documents related to the same topic, we
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… Detroit Police Officer Dan Donakowski said the 16-year-old boy
walked into the bank located in the 15000 block of West 7 Mile around 
2 p.m. and demanded money. Donakowski said the teen gave the 
teller a note and threatened to use a bomb if she didn't fork over the 
cash. "The teller complied, gave him some money and as he attempted 
to leave, the teller hit the button for the doors that automatically lock
and the suspect was trapped inside," Donakowski said. 

… Police say a 16-year-old, of Detroit, entered Chase Bank located on 
Seven Mile on Detroit's east side about 2:30 p.m. Monday. He
walked up to the counter and told the teller he was strapped with a 
bomb and to give him all the money. The teller did. The teen set off 
for the doorway. He opened the first set of doors into the causeway. 
The sidewalk was only steps away. He made it to the outermost set 
of doors, inches from the outside world. He'd make it no further. 
After realizing they wouldn't budge, he tried to retreat through the 
door he'd just passed. They wouldn't budge either. police can arrive 
and take him safely into custody …

16-year-old 
boy bank teller note

money

button

walked
gave

gave
hit

trapped

door

16-year-old
Chase 
bank

teller
door

entered
told

did

open

retreat

door

take

money

walked
(entered)

gave

gave

open

hit

retreat

trapped

boy
Chase 
bank

teller

note

money
button

door
door

take

IE graph for the 
document cluster

Document #1:

Document #2:

Document Graph #1:

Document Graph #2:

A

B

Figure 1: An example of an extracted cross-document IE graph. There are two documents in the cluster and both of
them describe a story where a boy failed to rob a bank. However, each document lists different details about the
event. For example, the first document mentions that the bank teller hit the button to lock the boy inside; while the
second document mentions that boy was trapped between two different doors of the bank. We highlight the unique
nodes and edges in the document graph. The merged graph has a more comprehensive description of the story.

first use a cross-document fine-grained IE system
to extract a cluster-level information graph, where
each node could be an entity or an event trigger
and each edge could be “event-event” temporal re-
lations, “event-argument” links, or “entity-entity”
relations. Each node in the graph is merged from
separate documents according to entity and event
coreference. After obtaining the cluster-level IE
graph, we use an edge-conditioned graph attention
network to encode the IE graph and to merge the
graph information into the sequence-to-sequence
summary generation pipeline. To better utilize
the signals from IE, we further propose two novel
training objectives. First, we propose an auxil-
iary task of entity and event recognition, where
an additional classification module is incorporated
to train a model to select the important entities
and event triggers when performing summariza-
tion. The purpose of this auxiliary task is to help
the model better recognize and remember the im-
portant events and entities which could be crucial
for generating high-quality summaries. Second, we
propose a graph and text alignment loss that min-
imizes the distance between IE graph nodes (e.g.,
nodes A and B in Figure 1) and their correspond-
ing text segments (e.g., retreat and trapped) in a
shared latent embedding space. Such an alignment
loss can effectively incorporate IE graph informa-
tion into the text representations and also mitigate
the errors and inconsistencies caused by inevitable
noise in the automatically extracted IE graphs. We
conduct extensive experiments on multiple MDS
benchmarks and show that our model outperforms
several strong baselines both in terms of ROUGE

scores as well as factual consistency metrics, all
while maintaining the same level of abstractiveness.
In summary, our main contributions are:

• We improve multi-document summarization
(MDS) with cross-document IE graphs.

• We propose two novel training objectives to
help the model better utilize the guidance from
IE: (1) an entity and event recognition task
loss and (2) a node-text alignment loss.

• Our proposed approach is proven effective
by extensive experiments on multiple MDS
benchmarks while achieving new state-of-the-
art performance.

2 Problem Formulation

Our problem definition follows the typical formu-
lation of abstractive multi-document summariza-
tion (MDS). Specifically, given a cluster of input
documents D = {D1, D2, · · · , DN}, we aim to
build a model to generate a summary S of the
document cluster. In this paper, we particularly
focus on using IE to enhance summarization using
the IE graph G merged from the individual graphs
{G1, G2, · · · , GN} extracted from N documents.

2.1 Cross-Document Information Extraction

We first perform cross-document information ex-
traction on each document cluster using a state-of-
the-art entity extraction and disambiguation system
ReFinED (Ayoola et al., 2022) and event extraction
and tracking system RESIN-11 (Du et al., 2022).
Specifically, we first extract individual entity men-

1697



Longformer 
Text Encoder

IE

concatenate
… …

Cluster IE Graph

GNN
… …

Linear Decoder
(Entity)

Linear Decoder
(Event)

+ Silver Event
Mentions

Event 
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+ Silver Entity 
Mentions

Entity 
Recognition

Longformer 
Text Decoder
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MLP 
Transformation

MLP 
Transformation

Alignment Loss:
Minimizing Cosine 

similarity in a shared 
embedding space.

Documents

Node 
Representations
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Representations

Figure 2: An overview of our IE-enhanced summarization pipeline. We first truncate and concatenate all documents
in the cluster and feed them into the text encoder to obtain token representations. Meanwhile, we use a cross-
document IE system to generate a cluster-level IE graph, and then use a GNN to get the node representations. During
training, in addition to minimizing the distance between the generated and the reference summaries, we further use
an entity and event recognition task and a node-text alignment loss to take advantage of the guidance from IE and
improve MDS performance.

tions and event triggers as nodes from each doc-
ument in the cluster. We then perform relation
extraction, event argument role labeling, and event-
event temporal relation extraction to add edges and
to obtain a complete IE graph for each document.
As shown in Figure 1, an example extracted event
mention could be a “Transport” event triggered
by “walked” with two event arguments “boy” and
“Chase bank”, where all such events are connected
to form a unified document-level IE graph. To
further connect document-level IE results into a
cross-document IE graph, we then perform cross-
document entity and event coreference resolution.3

We merge all coreferenced entity and event nodes
with their corresponding edges to form a cross-
document IE graph. Specifically, if two nodes are
labeled as the same entity or event, we merge these
two nodes into a unified node and connect all re-
lated edges to it. It is worth noting that our frame-
work does not rely on a specific IE systems and/or
schema. Hence any form of structured IE outputs
will work with our proposed method.

Notation Each node v ∈ V could be an entity or
event trigger. We use E = {e1, e2, · · · , e|E|} and
T = {t1, t2, · · · , t|T |} to denote the set of entities
and event triggers respectively, where each ei and
ti also act as a node in V . Accordingly, there are
three types of edges in E and we use pij , qij , and rij

3The entity mentions extracted from ReFinED are merged
according to the Wikidata IDs, while the event coreference
resolution is done by a neural model (Lai et al., 2021).

to represent the “event-event” temporal relations,
“event-entity” argument roles, and “entity-entity” re-
lations respectively. As shown in Figure 1, each
blue node represents an event trigger (e.g., gave)
while each brown node is an entity (e.g., bank),
where the unique event triggers and entities are
highlighted. The IE results include “entity-entity”
relations connecting two different entities (e.g.,
<button, door>), “event-argument” links connect-
ing an event trigger and an entity mention (e.g.,
<gave, teller>), and “event-event” temporal rela-
tions connecting two events (e.g., <hit, retreat>).

3 Approach

In this paper, our main goal is to improve multi-
document summarization (MDS) with the extracted
cross-document IE graph. As illustrated in Figure 2,
we first concatenate all documents in a cluster and
feed this concatenated input into a Longformer en-
coder (Beltagy et al., 2020) that is capable of han-
dling long text sequences. We also use the cross-
document IE system to obtain a cluster-level IE
graph, as shown in the example highlighted in Fig-
ure 1, and use a graph attention network to obtain
the node representations. During training, in addi-
tion to the cross-entropy summary loss between the
generated and the ground-truth summaries, we pro-
pose two additional novel training objectives: (1)
an entity and event recognition task that makes the
model aware of the locations of important events
and entities; and (2) an alignment loss between the
IE graph nodes and their corresponding text spans
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to ensure that they are factually consistent in the
latent space. We will go into details of our model
design in the following sections.

3.1 Document Encoding

To handle the long input sequences, we use
the encoder of the pre-trained PRIMERA (Xiao
et al., 2022) model which is continually pre-
trained from the Longformer-Encoder-Decoder
(LED) model (Beltagy et al., 2020) to encode the
documents and obtain the token representations
{w1,w2, · · · }. We truncate each document to the
size of Lmax/N (where N is the number of doc-
uments in the cluster), and concatenate all doc-
uments with a special token [doc-sep] to fit the
maximum input length Lmax of the LED model.4

{w1,w2, · · · } = Enc (D1, D2, · · · , DN ) .

Similar to the work of Xiao et al. (2022), we as-
sign the global attention on the [doc-sep] tokens to
make sure that the model is aware of the document
boundaries and that it analyzes the relationships
between the documents.

In addition to directly encoding the documents,
we also use the cross-document IE system de-
scribed in Section 2.1 to extract a cross-document
IE graph G = {V, E}. Similar to Zhang and Ji
(2021), we use an edge-conditioned graph attention
network to encode the entity nodes E and event
nodes T respectively. The initial node representa-
tions of entities and events are computed by the
average of the representations over all tokens in the
entity mention or event trigger.

ei =
1

|eT − eS |

eT−1∑

j=eS

wj , ti =
1

|tT − tS |

tT−1∑

j=tS

wj ,

where [eT , eS ] and [tT , tS ] denote the entity and
event trigger spans respectively. After initializing
the node embeddings, the updated entity embed-
dings are computed as follows:

eL+1
i = eLi + γ ·

∑

j∈Ni

αijfn
(
vLj
)
.

In this equation, fn(·) is a linear transformation
layer and γ is a hyper-parameter controlling the
level of neighborhood aggregation, where a larger
γ means more information from the neighbors is

4The maximum length Lmax is set as 4096 in pre-trained
PRIMERA and LED-large models.

Self
Attention

Text
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Graph
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Normalize Normalize Normalize Feed-
Forward

Token
Representations

Node 
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Figure 3: An example of the decoder layer components
with graph cross-attention mechanism, where the dashed
components are newly initialized weights while others
are intialized from pre-trained weights.

incorporated when updating the node representa-
tions. The attention weights αij are determined by
the node pair and the type of the edge connecting
the pair of nodes.

αij =
exp (MLP ([vj , rij ,vi]))∑Ni
k=1 exp (MLP ([vk, rkj ,vi]))

,

where rij and rkj are from a pre-initialized edge
embedding matrix which could be optimized dur-
ing training.5 The event trigger embeddings are
computed in the same way as the entities do. We
use the node representations from the final layer as
the output node representations.

3.2 Summary Generation
We use the pre-trained LED decoder to generate the
summaries based on both token and node represen-
tations. In addition to the original pre-trained cross-
attention mechanism fT (·) for token representa-
tions, we include another similar cross-attention
mechanism fG (·) after fT in all decoder layers for
the system to model the relationships between each
node in the graph and each token in the generated
text. We use the pre-trained weights for text cross-
attention mechanism fT (·) and the graph cross-
attention mechanism fG(·) is randomly initialized,
where both of them are continually optimized dur-
ing the downstream training. An illustration of
the pipeline in each decoder layer is shown in Fig-
ure 3. Therefore, each summary Si is generated in
an auto-regressive manner using the LED decoder
Dec (·) with both text and graph cross-attention
mechanism:

Si = Dec ([BOS], {w1,w2, · · · }, {v1,v2, · · · }) ,
where [BOS] is the start token in transformer
decoders. Given a set of reference summaries

5We only consider three edge types here: event-event tem-
poral relations, event-entity argument relations, and entity-
entity relations.

1699



Ŝ1, · · · , ŜN and a set of generated summaries
S1, · · · , SN , the summary loss is defined to min-
imize the cross-entropy distance fCE (·) between
each pair of summary sequences.

Lsumm =
1

N

N∑

i=1

fCE

(
Si, Ŝi

)
. (1)

3.3 Entity and Event Recognition

The main goal of our model is to use IE results
to enhance the performance of the summarization
task. We first add an auxiliary entity and event
recognition task to make the model more sensitive
to the locations of important events and entities.
This will ensure that the model will not miss these
events and entities when summarizing the docu-
ment. Specifically, we use a Multi-Layer Percep-
tron (MLP) based classifier to classify each token
into three different types: [ENTITY], [EVENT]
or [NONE], and we use the spans of entity men-
tions and event triggers extracted by our proposed
IE system to provide silver-standard training sig-
nals. Each token wi is transformed to logits pi by
an MLP classifier:

pi = softmax (MLP (wi)) . (2)

Given a set of input tokens w1,w2, · · · ,wM , the
entity and event recognition loss is computed as:

Lrecognition = −
M∑

i=1

pij ,

where j is the index of the correct label for wi.

3.4 Node and Text Alignment

Incorporating graph information for summarization
could be challenging, since the IE graphs are ex-
tracted from automatic extraction systems which
may introduce noise and errors. To this end, we
propose a novel alignment loss to minimize the dis-
tance between node representations and their cor-
responding texts to ensure coordination between
the graphs and summarization text. Specifically,
we first use two MLPs to map the node and text
representations into the same embedding space Z:

zwi = MLPw (wi) , zvi = MLPv (vi) ,

where zwi and zvi denote the representations for to-
ken wi and node vi in the shared embedding space.
Given each node vi and the set of its corresponding

text tokensWi, we minimize the cosine similarity
between the node embedding vi and the average
embedding of all tokens inWi:

Lalign =
∑

vi∈V
dcos


zvi ,

1

|Wi|
∑

wj∈Wi

zwj


 . (3)

The intuition behind Lalign is to ensure that the
node embedding is centered around its correspond-
ing text. This helps ensure that the graphs and
input text are factually consistent with each other,
thereby reducing the errors and noise propagated
from the IE system. As an example in Figure 1,
the latent distance between each pair of nodes and
texts (e.g., the node representation of boy and the
text representation of its corresponding tokens 16-
year-old boy) are minimized to reduce the noise of
the extracted graph.

Multi-Task Training. We conduct multi-task
training where the total loss is a weighted sum from
Equation (1), (2), and (3). The weighting coeffi-
cients β1,β2, and β3 are tunable hyper-parameters.

L = β1 · Lsumm + β2 · Lrecognition + β3 · Lalign

4 Experiments

4.1 Data
Our experiments are conducted on three most
widely-used MDS benchmarks, where the detailed
dataset statistics are shown in Table 1.

Dataset # Train / Val / Test
Docs Average
per Summary

Cluster Length

Multi-News 44972 / 5622 / 5622 2.8 217

WCEP-10 8158 / 1020 / 1022 9.1 28

DUC-2004 0 / 0 / 50 10 115

Table 1: Statistics of the MDS Datasets

Multi-News. The Multi-News benchmark (Fab-
bri et al., 2019) is the most widely-used dataset for
multi-document summarization. The summaries
are long and informative news abstracts written by
human editors, and the documents are extracted
from multifarious news articles.

WCEP-10. The WCEP-10 (Gholipour Ghalan-
dari et al., 2020) dataset is extracted from
Wikipedia Current Event Portal, where each doc-
ument cluster also describes a news event. Com-
pared to Multi-News, the WCEP dataset has a much
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larger number of documents in each cluster, and
we manually reduce them to a maximum of 10
documents per cluster as previous research (Xiao
et al., 2022; Parnell et al., 2022) did to obtain the
WCEP-10 version of dataset. We include both
Multi-News and WCEP-10 in our experiments to
evaluate whether our model can stay effective in
both long-summary and short-summary scenarios.

DUC-2004. There are only 50 test document clus-
ters in DUC-2004 benchmark,6 and we use this
dataset to evaluate our model’s zero-shot transfer
ability. We train our model on Multi-News and di-
rectly test it on DUC-2004 since these two datasets
have similar lengths of summaries.

4.2 Baselines and Implementation Details

For baselines, we mainly compare our model
with state-of-the-art multi-document summariza-
tion models PRIMERA (Xiao et al., 2022) and RE-
FLECT (Song et al., 2022). REFLECT only re-
ports ROUGE scores on the Multi-News dataset
and we directly use the reported scores for compar-
ison. Besides, we also include a previous model
BART-Graph (Pasunuru et al., 2021), which uses
a linearized IE graph to improve summarization.
We compare our model with it to see whether en-
coding the graph structurally improves the sum-
marization performance. We also experiment with
three ablation variants of our proposed model: (1)
Recognition-Only: for the model with only the en-
tity and event recognition loss; (2) Alignment-Only:
for the model with only the graph encoder and the
node-text alignment loss. (3) Separate-Graphs:
for encoding the IE graphs for each document sep-
arately and using a collated matrix as the node
representations. For Multi-News and WCEP-10,
we train all of these models on the training set,
choose the best model checkpoint based on the per-
formance on the validation set, and test the models
on the test set. For DUC-2004, we use the trained
checkpoint on Multi-News dataset for evaluation,
since the summary length on Multi-News is more
similar to DUC-2004 compared with WCEP-10.7

4.3 Evaluation Metrics

Co-occurrence. Similar to previous research
studies, we first include the most widely-used
ROUGE-F1 score which measures the overlap be-

6https://duc.nist.gov/duc2004/
7More detailed hyper-parameter settings can be found in

Appendix A.

tween the generated summaries and the reference
summaries in terms of overlapping n-grams and
longest common subsequence.

Factual Consistency. Intuitively, our proposed
IE-enhanced summarization should improve fac-
tual consistency of the generated summary with the
source documents, since the entities and events in
the original documents are mined and memorized
by the model through the two proposed IE enhance-
ment loss. Therefore, we include several factual-
ity metrics to measure the improvements in terms
of factuality of the generated summaries. Specifi-
cally we use FactCC (Kryscinski et al., 2020), Fact-
Graph (Ribeiro et al., 2022), EntityPrecision (Nan
et al., 2021), SUMMAC (Laban et al., 2022), and
BERTSCORE (Pagnoni et al., 2021).

Abstractiveness. To measure abstractiveness of
our generated summaries, we use the MINT score
(Dreyer et al., 2023), which is based on contiguous
and non-contiguous extractive overlaps between
summaries and their source documents. Our goal
is to measure whether the novelty of the generated
summary is sacrificed due to the improvements
of factual consistency, e.g., by generating a more
extractive summary.

4.4 Results
Table 2 shows the results of our proposed model,
as well as the baselines on the three datasets. In
general, the full version of our proposed model out-
performs the baselines in terms of both ROUGE
scores and factuality metrics while maintaining the
same level of MINT scores. This shows that our
model can generate high-quality summaries that are
factually consistent without sacrificing any novelty.
Specifically, entity and event recognition mainly
improve factual consistency, while node-text align-
ment improves the similarity with the referenced
summaries. This follows our intuition since the
recognition task is mainly designed to help the
model better notice the important event triggers
and entity mentions, which prevents the model
from hallucination and thereby improves factual
consistency. On the other hand, the alignment loss
can reduce the noise and errors in those extracted
IE graphs, which makes the model better optimized
on the ground-truth summaries.

4.5 Human Evaluation
We conduct a human evaluation on Amazon Me-
chanical Turk to evaluate the effect of adding our
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Evaluation Co-occurrence Factual Consistency Abstractiveness
Metrics R-1 R-2 R-L FactCC FactGraph SUMMAC Bert-P EntityPrec MINT

Multi-News

REFLECT 49.3 20.0 24.8 - - - - - -
BART-Graph 49.2 19.0 24.0 74.2 74.1 86.0 87.3 89.9 81.8
PRIMERA 49.9 20.9 25.8 73.1 75.0 86.2 87.0 89.3 82.1

Separate-Graphs 49.8 20.4 25.8 74.7 75.2 86.2 87.0 89.5 82.1
Recognition-Only 50.0 20.8 26.0 77.4 76.1 86.5 87.1 91.1 82.0
Alignment-Only 50.3 20.9 26.3 75.6 74.9 87.7 87.1 90.8 82.1

Full Model 50.3 21.1 26.4 77.8 76.5 87.9 87.1 91.1 82.1

WCEP-10

PRIMERA 46.1 24.9 37.8 68.0 71.3 56.9 94.1 88.0 86.6

Separate-Graphs 46.1 24.8 37.8 69.1 71.6 57.0 94.0 89.1 86.6
Recognition-Only 46.1 24.8 37.9 71.2 71.7 57.1 94.0 91.0 86.5
Alignment-Only 47.3 25.0 37.9 68.5 71.4 57.6 94.4 90.5 86.5

Full Model 47.3 24.9 37.8 71.5 71.7 57.7 94.4 91.3 86.8

DUC-2004

PRIMERA 32.6 6.7 16.8 53.0 48.8 77.9 84.2 79.6 70.1

Separate-Graphs 32.6 6.6 16.8 54.2 49.9 77.6 85.1 80.4 70.1
Recognition-Only 32.5 6.8 16.8 54.2 51.2 76.8 84.7 82.3 70.4
Alignment-Only 32.8 7.2 17.1 53.2 49.1 78.9 84.3 80.0 70.2

Full Model 32.9 7.2 17.3 54.8 51.2 79.1 85.0 84.0 70.1

Table 2: Evaluation results with various metrics on the three MDS datasets. We primarily compare our results
with three most recent transformer-based baselines BART-Graph, REFLECT, and PRIMERA. We also include
two variants of our own model for ablation study, where we remove the recognition loss and the alignment loss
respectively and test the model on these MDS datasets.

two proposed training objectives. We randomly se-
lect 300 document clusters for each of Multi-News
and WCEP and use all the 50 document clusters in
DUC-2004, asking three annotators per summary
to score the factual consistency: 1 for major fac-
tual errors, 2 for minor factual errors, and 3 for
no factual errors. Figure 5 in the Appendix shows
the annotation guidelines. We aggregate the three
judgements per summary using majority voting.
We follow the qualification procedure for anno-
tators described in Dreyer et al. (2023). Table 3
shows the percentages for each factuality score,
where baseline denotes the PRIMERA (Xiao et al.,
2022) model and ours denotes our proposed model.
We find that our model can substantially reduce ma-

Dataset Major Minor No Avg
(1.0) (2.0) (3.0) Scores

baseline 6.0% 11.3% 82.7% 2.767
Multi-News (ours) 4.7% 12.7% 82.7% 2.780

baseline 10.7% 9.0% 80.3% 2.697
WCEP-10 (ours) 9.0% 19.3% 71.7% 2.627

baseline 22.0% 22.0% 56.0% 2.340
DUC-2004 (ours) 18.0% 12.0% 70.0% 2.520

Table 3: Human evaluation results.

jor factual errors on all three datasets, and is able
to obtain higher average factuality scores on Multi-
News and DUC-2004. Particularly, on DUC-2004
where the model is directly transferred from an-
other dataset, our model can especially outperform
the baseline in terms of factual consistency.

4.6 Qualitative Analysis

To better understand the effects made by our pro-
posed training objectives, we look into the predic-
tion results and show a typical example in Figure 4,
explaining how our proposed method works to im-
prove the summaries. In this example, the docu-
ment cluster is mainly talking about a shut-down in-
cident of the Nasdaq trading market. Compared to
the summary from the baseline model, our model is
better at memorizing the important facts and show-
ing them in the output summary, e.g., the exact
Nasdaq Index (3631.17) when the trading was sud-
denly suspended. Some other facts such as “three
hours” are also memorized by our model but ig-
nored by the baseline model. Moreover, our model
is able to generate more informative mentions of
those key entities (e.g., NYSE), where the baseline
model fails to generate a named mention and only
writes "the exchange".
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Trading in all Nasdaq-listed stocks and options was halted on Thursday 
due to technical problems on the bourse, MarketWatch reports. The 
exchange sent out a series of emails alerting investors that it was 
experiencing issues with "quote submissions." In response, the New 
York Stock Exchange has also stopped trading in all Nasdaq securities 
at the request of Nasdaq OMX. "All orders in those securities have 
been canceled back to customers," the exchange said in a statement. 
There was no immediate word on when transactions will resume.

Trading in all Nasdaq-listed stocks and options was halted for three 
hours on Thursday due to technical problems on the bourse, 
MarketWatch reports. The exchange sent out a series of emails 
alerting investors that it was experiencing issues with "quote 
submissions." In response, the New York Stock Exchange has also 
stopped trading in all Nasdaq securities at the request of Nasdaq 
OMX. "All orders in those securities have been canceled back to 
customers," said NYSE in a statement. The Nasdaq Composite Index 
was last at 3631.17, up 31.38 points, before trading was suspended. 
There was no immediate word on when transactions will resume.

Summary (without Recognition & Alignment)

Summary (with Recognition & Alignment)

SAN FRANCISCO (MarketWatch) -- Trading in all Nasdaq-listed stocks 
and options was halted on Thursday due to technical problems on the 
bourse, according to Nasdaq OMX Group (NASDAQ:NDAQ)…. In 
response, the New York Stock Exchange has also stopped trading in all 
Nasdaq securities at the request of Nasdaq OMX. "All orders in those 
securities have been cancelled back to customers," said NYSE in a 
statement. The Nasdaq Composite index (NASDAQ:COMP) was last at 
3631.17, up 31.38 points, before trading was suspended. There was no 
immediate word on when transactions will resume...

Article Excerpt A technical glitch knocked out trading in all Nasdaq 
Stock Market securities for three hours Thursday afternoon, an 
unprecedented meltdown for a U.S. exchange that paralyzed a broad 
swath of markets and highlighted the fragility of the financial world's 
electronic backbone. Nasdaq officials scrambled to figure out what 
happened and resume trading. They shared few of their findings with 
trading firms or the public during regular trading hours, …

Input Documents:

Figure 4: A qualitative example from our full model compared to the baseline PRIMERA model. Our model is
better at preserving important facts and utilizing more informative mentions of the key entities.

5 Related Work

Multi-Document Summarization. Abstractive
multi-document summarization (MDS) aims to
build models to generate summaries given a set of
similar documents related to the same topic. With
the tremendous success of sequence-to-sequence
pre-trained language models such as BART (Lewis
et al., 2020) and T5 (Guo et al., 2022), finetuning
on pre-trained models, like DeYoung et al. (2021);
Parnell et al. (2022); Zhao et al. (2022); Moro et al.
(2022); Song et al. (2022); Ernst et al. (2022), has
become the primary style of methods for summa-
rization tasks. There are also research studies on
how to handle cross-document information over-
lap and redundancy. For example, Pasunuru et al.
(2021) propose to use graph structures generated by
OpenIE systems to make the model more sensitive
about the main message of the document cluster.
More recently, Xiao et al. (2022) propose to inte-
grate entity overlap into the pre-training scheme,
where the overlapping entities are used to select
out salient sentences for pre-training.

Cross-Document Information Extraction. In-
formation Extraction (IE) aims to extract structured
representations from unstructured text, which in-
cludes various subtasks from Named Entity Recog-
nition (Reich et al., 2022; Ayoola et al., 2022; Ding
et al., 2021), to Relation Extraction (Yu et al., 2022;
Tian et al., 2022), and Event Extraction (Xu et al.,
2021; Yu et al., 2021) on news documents. There
are also a number of research studies (Yao et al.,
2021; Wu et al., 2022; Du et al., 2022) focusing
on corpus-level cross-document extraction mod-
els. However, all these models still rely on cross-
document entity and event coreference systems,

which could bottleneck the efficiency and effective-
ness of corpus-level IE models.

Joint IE and Summarization. IE and summa-
rization share inherent similarities; both of them
are designed to find the main information from
an input natural language text. Therefore, it is
promising to design a joint learning framework so
that the two tasks could provide each other with
mutual enhancement. There are some preliminary
explorations of previous studies to train a model
to learn IE and natural language generation (NLG)
tasks jointly. For example, Li et al. (2021) train
a template-based generative model for event argu-
ment extraction, and Du and Cardie (2020) propose
to generate natural questions to ask the model for
event extraction. However, although generation-
based methods are proposed, these models are still
doing a single task (IE) without multi-task settings
for both IE and NLG. Recently, Lu et al. (2022) use
summarization to provide indirect training signal
for relation extraction tasks, however, their method
is only suitable for relation extraction tasks and
cannot cover general-concept IE tasks.

6 Conclusions

In this paper, we focus on improving multi-
document summarization (MDS) model with cross-
document Information Extraction (IE). We propose
two novel training objectives – an entity and event
recognition loss and a node-text alignment loss
– that can help the model better utilize the sig-
nals from IE. Experimental results show that our
model can generate summaries that are more fac-
tual, while not losing any abstractiveness.
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7 Limitations

One limitation of our proposed method is the IE
graphs are pre-extracted separately, where the IE
model is not optimized during the model training
and the IE results are only used as side inputs for
summarization. It would be more exciting if we can
really build a joint IE and Summarization model
which are trained simultaneously in the pipeline,
although it is very difficult since passing the gra-
dients through a cross-document system is nearly
intractable. We intend to address this limitation in
our future work.
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A Experiment Details

We list our detailed hyper-parameter settings for
training our model on each of the datasets in Ta-
ble 4 and Table 5, where each hyper-parameter is
determined based on grid search among 5 candidate
values. We train our model on 8 NVIDIA V100
GPUs with 32GB memory, and the total training
time is about 7 hours for Multi-News and 3 hours
for WCEP-10.

Hyper-parameters Values

Num of features for each node 1,024
Num of GNN layers 1

Message Passing Level γ 0.01
Weights of the losses β1, β2, β3 1.0, 0.2, 0.2

Learning Rate 3e-5
Batch Size 16

Maximum Length of Generated Summaries 256
Maximum Training Steps 25,000

Warm-up Steps 2,500
Beam Size for Generation 5

Table 4: Detailed hyper-parameter settings for model
training on Multi-News.

Hyper-parameters Values

Num of features for each node 1,024
Num of GNN layers 1

Message Passing Level γ 0.005
Weights of the losses β1, β2, β3 1.0, 0.1, 0.1

Learning Rate 3e-5
Batch Size 16

Maximum Length of Generated Summaries 50
Maximum Training Steps 5,000

Warm-up Steps 500
Beam Size for Generation 5

Table 5: Detailed hyper-parameter settings for model
training on WCEP-10.

B Annotation Guidelines

We use Amazon MTurk to do human evaluation,
where the detailed annotation guidelines for human
evaluators are shown in Figure 5.
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Figure 5: Annotation instructions to annotate factual consistency on Mechanical Turk.
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Abstract

Event coreference models cluster event men-
tions pertaining to the same real-world event.
Recent models rely on contextualized represen-
tations to recognize coreference among lexi-
cally or contextually similar mentions. How-
ever, models typically fail to leverage common-
sense inferences, which is particularly limiting
for resolving lexically-divergent mentions. We
propose a model that extends event mentions
with temporal commonsense inferences. Given
a complex sentence with multiple events, e.g.,
“The man killed his wife and got arrested”, with
the target event “arrested”, our model generates
plausible events that happen before the target
event – such as “the police arrived”, and af-
ter it, such as “he was sentenced”. We show
that incorporating such inferences into an exist-
ing event coreference model improves its per-
formance, and we analyze the coreferences in
which such temporal knowledge is required.

1 Introduction

The goal of cross-document event coreference res-
olution is to determine if various event mentions
(e.g. shot, gunshot), across one or more documents,
refer to the same event. Existing systems represent
each mention within its context using a language
model (Cattan et al., 2021a; Allaway et al., 2021),
and train a scorer to predict if two mentions corefer,
based on their lexical and contextual similarity.

While many coreferring mention pairs in event
coreference datasets such as ECB+ (Cybulska and
Vossen, 2014) are lexically and contextually sim-
ilar, or even share the same lemma (Wolfe et al.,
2015), the difficulty arises for dissimilar corefer-
ring mentions. For example, in Figure 1, spent and
hospitalized are coreferring. These mentions are
not lexically similar, and are not often used in simi-
lar contexts. In this paper, we improve the ability of
existing cross-document event coreference systems
to resolve such challenging coreferring mentions,

by providing additional context in the form of com-
monsense knowledge. We focus on two temporal
commonsense relations — before and after — per-
taining to typical events that happen before and
after the target event. For instance, in Figure 1, we
may infer that before Dalton was shot, a shooter
loaded their gun. Similarly, we may infer that Dal-
ton was hurt prior to his hospitalization and got
discharged afterward.

Our first contribution is the development of a
commonsense reasoning engine that can reason
about these two temporal relations. Existing com-
monsense models (Gabriel et al., 2021a; Hwang
et al., 2021) may generate such inferences for sim-
ple sentences with a single event, such as “Bryant
Dalton was shot”, but they do not support com-
plex sentences with multiple events of interest (e.g.
shot, hospitalized). Further, they may conflate the
inferences for different events. We develop a multi-
event commonsense model that considers the entire
context and is capable of generating separate infer-
ences for each target event in complex sentences.

As an additional contribution, we incorporate
the inferences into the pairwise mention scorer of
a cross-document event coreference system (Cat-
tan et al., 2021a). We produce before and after
inferences for each event mention. We then embed
the inferences, either by attending each mention
to its own inferences (intra-span) or to the other
mention’s inferences (inter-span).

The results confirm that commonsense infer-
ences are useful for event coreference. Each of our
model variants improves upon the baseline perfor-
mance, with the intra-span version performing the
best. We further analyze the successful predictions
and interpret how the commonsense inferences help
resolve difficult mention pairs. In the future, we
plan to extend our multi-event inference engine
to additional commonsense knowledge types and
apply it to other discourse tasks, such as summa-
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① Mention Detection

② Baseline Pairwise Scorer 

(spent, recovering): 0.14 
(spent, gunshots): 0.05 
(spent, shot): 0.1 
 
(gunshots, shot): 0.82 
…

gunshots, shot, …

recovering

hospitalizedspent

Document 2
The third coworker, Bryant Dalton, 39, spent two 
weeks in the hospital and still is recovering from 
gunshots to the neck and shoulder, prosecutors said.

Document 1

Bryant Dalton, 39, was shot in the neck and 
is hospitalized in good condition. …

Document N

…

(spent, recovering): 0.14 
(spent, gunshots): 0.05 
(spent, shot): 0.1 

(gunshots, shot): 0.82 
…

③ Agglomerative 
Clustering

gunshots, shot, …

recovering

spent, hospitalized

spent, recovering, 
gunshots, shot, 
hospitalized

② Our Pairwise Scorer

(spent, hospitalized): 0.1

(spent, hospitalized): 0.75

f(ctxspent, ctxhospitalized)

f(ctxspent, ctxhospitalized, csspent, cshospitalized,)

Figure 1: The architecture of our event coreference model, exemplified on a set of documents. The baseline pairwise
scorer is based on contextual similarity (top), and we enhance it with temporal commonsense inference embeddings
– indicated with cs (bottom). Such inferences help identify lexically divergent co-referring pairs, such as spent [time
at a hospital] and hospitalized.

rization, dialogue, and story comprehension.1

2 Background

In this work, we improve the performance of
a system for cross-document coreference resolu-
tion by incorporating temporal commonsense in-
ferences pertaining to the events. We first pro-
vide background on event coreference resolution
(§2.1). We then describe related work concerning
event-centered commonsense (§2.2), along with
approaches for using language models for data aug-
mentation (§2.3).

2.1 Event Coreference Resolution

Event coreference resolution aims to cluster event
mentions that refer to the same underlining real-
world occurrence. Our work focuses on cross-
document coreference resolution (CD), which aims
to resolve mentions across an entire corpus of docu-
ments. In contrast, the problem of within-document
coreference resolution (WD) only resolves men-
tions on a per-document basis. Event coreference
is often performed jointly with entity coreference
resolution, which concerns resolving mentions of
people, locations, and organizations.

Datasets. In this paper, we use the ECB+ dataset
proposed by Cybulska and Vossen (2014) and
widely accepted as the standard benchmark for
coreference resolution (CD). ECB+ contains 86
sub-topics, each of which concerns a specific news
event. To introduce complexity and difficulty, each

1The code is available here.

Train Dev Test

Topics (subtopic-pairs) 25 8 10
Event mentions 3808 1245 1780
Event clusters 1527 409 805

Table 1: Statistics on the standard train/dev/test split
of event coreferences in ECB+ dataset (Cybulska and
Vossen, 2014)

sub-topic is highly similar to – yet distinctly dif-
ferent from – exactly one other sub-topic. ECB+
includes both entity and event mentions; however,
this work focuses solely on events. Table 1 shows
event statistics from ECB+ corpus.

Models. Recent approaches to CD event coref-
erence often follow the architecture described in
Figure 1. First, candidate event mentions are ex-
tracted from documents. Second, a pairwise scorer
is trained to classify every pair of mentions as be-
ing coreferent or not. Finally, these scores are used
to form distinct clusters of event mentions, typ-
ically using agglomerative clustering. Amongst
these components, coreference models tend to
mostly vary in their scoring approach (i.e., sec-
ond component).
Early approaches relied on lexical and syntactic
features (Yang et al., 2015; Choubey and Huang,
2017), or used semantic roles to encode the relation-
ships between entities and events. Recently, Meged
et al. (2020) improved performance by leveraging a
resource of predicate paraphrases. Finally, Lai et al.
(2021) incorporated entities, relations, and events
extracted from a state-of-the-art information ex-
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traction system. Generally, current state-of-the-art
models often rely on pre-trained language models
to compute a contextualized representation for each
candidate mention, which serve as input to the pair-
wise scorer (e.g. Yu et al., 2020; Zeng et al., 2020;
Cattan et al., 2021a; Allaway et al., 2021).

Our model is an enhancement of the model pro-
posed by Cattan et al. (2021a). It targets both entity
and event coreference resolution, and in an end-to-
end fashion it performs mention extraction, pair-
wise scoring, and clustering (Figure 1). Mentions
are represented by contextualized embeddings from
RoBERTa (Liu et al., 2019). We chose to base our
model on Cattan et al. (2021a) for two reasons.
First, it is a simple model following the standard
approach presented in Figure 1. Later approaches
rely on hierarchical representations (Yadav et al.,
2021a) or discourse coherence theory (Held et al.,
2021). Second, it is based on RoBERTa and is more
efficient and less memory consuming than the suc-
ceeding CDLM model (Caciularu et al., 2021) that
is based on the much larger Longformer model
(Beltagy et al., 2020).

More recently, Yadav et al. (2021a) built on Cat-
tan et al. (2021a) by proposing a hierarchical ap-
proach to representing uncertainty of clustering
event and entity mentions. The state-of-the-art
models for cross document coreference are Caciu-
laru et al. (2021), which models cross-text relation-
ships by using larger context windows, and Held
et al. (2021), which applies discourse coherence
theory to coreference.

2.2 Event-Centric Commonsense

Commonsense reasoning helps humans bridge the
gap between utterance and intended meaning. Rea-
soning about events has long been of interest to AI
research. Schank and Abelson (1975) introduced
“scripts” as a prototypical series of events, e.g. go-
ing to a restaurant is composed of ordering food,
eating, and paying, and the participants: customer,
waiter, and cook. Various methods have been pro-
posed to learn such scripts from text (e.g. Chambers
and Jurafsky, 2008; Pichotta and Mooney, 2014;
Rudinger et al., 2015).

The ATOMIC knowledge base (Hwang et al.,
2021; Sap et al., 2019) consists of 1.1M crowd-
sourced event-relation-event triplets pertaining
to the causes, effects, and mental states of the
event participants. To generate contextually-
relevant ATOMIC-style inferences, Bosselut et al.

(2019) developed COMET, a pre-trained language
model fine-tuned on ATOMIC. COMET has shown
promising results on tasks such as therapy chatbots
(Kearns et al., 2020), persona-grounded dialogue
(Majumder et al., 2020), figurative language inter-
pretation and generation (Chakrabarty et al., 2020,
2022), and temporal ordering of sentences (Ghosal
et al., 2021).

Several variants of COMET have been subse-
quently released. ParaCOMET (Gabriel et al.,
2021a) adapts COMET to generate sentence-level
inferences within the context of an entire para-
graph. VisualCOMET (Park et al., 2020) generates
ATOMIC-style inferences for images. Finally, the
updated version of COMET (Hwang et al., 2021)
extends the relation inventory and crowdsources
more inferences. The additional inferences include
the two temporal relations that are the most rele-
vant to our work, “happens before” and “happens
after”.

2.3 LM-generated Data Augmentation

The success of using large pre-trained LMs in a
few-shot setup for generation tasks has led to an
increased interest in using such models to gener-
ate data for downstream tasks. Recent work aug-
mented datasets by fine-tuning a pre-trained LM
on real data, then generated new, silver-labelled
instances (Anaby-Tavor et al., 2020; Papanikolaou
and Pierleoni, 2020; Kumar et al., 2020). Similarly,
the few-shot capabilities of GPT-3 (Brown et al.,
2020) were leveraged to generate free-text explana-
tions (Wiegreffe et al., 2022), semantically-related
sentence pairs (Schick and Schütze, 2021), atomic
event commonsense triples (West et al., 2022), and
labels for various generation and understanding
tasks (Wang et al., 2021). In this work, we fine-
tune GPT-3 with minimal human supervision to
generate additional contextual data pertaining to
events.

3 Method

The architecture of our method is shown in Figure 1.
We use the same clustering method as in Cattan
et al. (2021a) but revise the pairwise scorer. Our
goal is to improve the model’s ability to resolve
coreferences between mention pairs that are not
lexically or contextually similar, but where one
mention could be inferred from the other using
commonsense knowledge and reasoning. Thus, we
develop a commonsense inference engine (Sec 3.1)
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Instructions: Read the context sentence and write at least two inferences for question 1 and two
inferences for question 2. As shown in the examples, each inference is expected to be a short sentence
between 5-10 words.
Context: A publicist says Tara Reid has checked herself into rehab.
Question 1: What typically happens before the event checked herself?
Question 2: What typically happens after the event checked herself?

Figure 2: An example task on Amazon Mechanical Turk.

and use it to enhance the pairwise scorer (Sec 3.2).

3.1 Multi-Event Commonsense Inferences

We enhance the pairwise scorer with common-
sense inferences regarding the events’ temporal
aspects. Specifically, we focus on plausible events
that might have happened before or after the tar-
get event. For example, in Figure 1, after being
hospitalized, the victim received treatment.

We found COMET and its variants to be ineffec-
tive for generating inferences for our task. COMET
was trained on the ATOMIC knowledge base (Sap
et al., 2019). As the name implies, events are
atomic, i.e., comprise a single verb phrase. Con-
versely, the existing event coreference datasets are
based on news articles, where sentences often con-
tain multiple events. COMET predictions for doc-
ument 1 (Figure 1) have no indication which verb
they pertain to. Moreover, COMET predicts that
what happens after document 1 is murder, which
contradicts the fact that the victim survived and
was taken to the hospital. ParaCOMET (Gabriel
et al., 2021b) facilitates generating consistent in-
ferences for multi-sentence paragraphs, but it was
trained on the ROCStories dataset (Mostafazadeh
et al., 2016), which is in the fiction domain and in
which sentences are also simple.

To that end, we trained a new multi-event com-
monsense inference engine. Given a sentence with
multiple events (such as document 1), and a target
event (e.g. hospitalized), the goal is to generate
what might have happened before and after the
target event—in the context of the entire sentence.

Model. We base the inference engine on GPT-3
(Brown et al., 2020). While GPT-3 is not directly
applicable to the task of event coreference (Yang
et al., 2022), it has been shown to contain a wealth
of factual and commonsense knowledge as a re-
sult of extensive pre-training. Our goal is to use
this knowledge to generate event-centric common-
sense inferences without requiring extensive train-
ing. GPT-3 is especially well-suited for this task, as
it has shown remarkable performance in learning

from fewer examples in a variety of tasks.

Data. As the first step in training a multi-event
commonsense model, we crowdsourced annota-
tions for 100 events – using the gold standard event
mentions from the ECB+ training set. To include
a wide range of topics, we selected the first four
events from each of the 25 topics in the training
set.

We presented workers with a sentence with one
or more events, and asked them to describe what
happens immediately before and after the target
event. Figure 2 shows an example2. We obtained
annotations from three workers for each sentence,
and instructed workers to write at least two infer-
ences for each relation. This yielded a total of 600
inferences (100 × 3 × 2 = 600). We carefully
reviewed the data and removed a handful of infer-
ences that were of poor quality (i.e., incomplete or
irrelevant sentences, which amounted to roughly
5% of the annotations).

The annotation task was conducted on Amazon
Mechanical Turk (AMT). To ensure the quality of
annotations, we required workers to have previ-
ously completed 5,000 AMT tasks, and to have
an acceptance rate of 98% or higher. We limited
the worker location to the U.S. and Canada, and
presented workers with a qualification test similar
to the task. We paid 7 cents for each event.

Training. We fine-tuned GPT-3 on the collected
inferences. The input and output format was as
follows:
Context: <context>
Event: <event>
Before: <before>
After: <after>
Table 7 shows the format inputted into GPT-3

for training (top row) and inference (bottom row).

Inference To generate inferences, we prompt the
fine-tuned GPT-3 model with the context and the
event. We generate up to 150 tokens using top-p de-
coding (Holtzman et al., 2020) with a cumulative

2See Appendix E for the exact template.
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Bryant Dalton, 39, was shot in the 
neck and is hospitalized in good 
condition.

The third coworker, Bryant Dalton, 39, 
spent two weeks in the hospital and 
still is recovering from gunshots to the 
neck and shoulder, prosecutors said.

Multi-Event  
Temporal Commonsense  

Inference Engine

csspent = [ ; ]

Before hospitalized: After hospitalized: 
He was wounded. The victim received treatment.
He was taken to hospital. The victim was released from the hospital.
He was bleeding. The victim recovered from his wounds.
His friends brought him to the hospital. The victim was stitched up and released.

Before spent: After spent: 
He was injured in a shooting. He was discharged. 
He sought medical attention. He began to recover. 
His injuries were diagnosed as serious. He needed further treatment. 
He was admitted for treatment. He went home to recuperate.

Attention-weighted before vector Attention-weighted after vector

Figure 3: An illustration of the new additions to the pairwise scorer. We input each document into a GPT-3-based
multi-event temporal commonsense inference engine, which outputs plausible events that happened before and
after the target event (e.g. spent). For each temporal relation (i.e., before and after), we embed the corresponding
inferences and compute an attention-weighted vector. We concatenate the before and after vectors to the mention
representations as input to the pairwise scorer.

Context Before After
Human-Written

[...] Chris Weitz will direct
the sequel to Twilight,
New Moon, replacing
Catherine Hardwicke.

They couldn’t strike a [...] deal with Hardwicke. Chris Weitz received an advance from the
studio.

The executive producer contacted Weitz’s agent. Chris signed the contract.
Weitz’s agent communicated the director’s message. His agent put out a press release.
They decided to replace him. Chris was happy.

[...] Chris Weitz will direct
the sequel to Twilight,
New Moon, replacing
Catherine Hardwicke.

The director oversaw the hiring of shooting staff. People watch the movie.
The director oversaw several screen tests. He gets paid.
He writes a movie script. The movie gets released in movie theatres.
He needed to sign a contract. The movie makes a huge collection.

Model-Generated
Lindsay Lohan checks
into rehab at Betty Ford
Center, rehires longtime
lawyer Shawn Holley

She decided to change her life from bad to good. She is treated for her addiction.
She decided to seek help for her addiction. She attended daily group therapy meetings.
She is assessed by the staff at Betty Ford. She ends up in the hospital.
She is welcomed by staff members at Betty Ford. She no longer has a problem.

Lindsay Lohan checks into
rehab at Betty Ford Center,
rehires longtime lawyer
Shawn Holley

Lindsay needs advice on her case. He gets a good pay.
Lindsay needs legal counsel in her case. He looks for another case.
she fired her old lawyer. she went through planning stages of her

recovery.
she got a new director. she started to addiction treatment.

Table 2: Human-written (top) and model-generated (bottom) examples from our multi-event temporal commonsense
inference engine. Some examples are slightly abbreviated for readability.

probability of p = 0.9. Table 2 provides exam-
ples of the training data (top part) and generated
inferences (bottom part) of our multi-event com-
monsense inference engine. Note, both the human-
written and model-generated inferences differ for
different events belonging to the same context. For
example, according to our model, after the event
“Lindsay checks into rehab,” a plausible inference
is that “she gets treated for her addiction.” Yet,
after the event “she rehires her longtime lawyer,”

our model infers that “he gets a good pay.” 3

3.2 Inference-Enhanced Pairwise Scorer

Figure 3 shows the overall architecture of our
commonsense-enhanced pairwise scorer. We fol-
low Cattan et al.’s mention span representation for
mention mi:

ctxi = [xSTART (i), xLAST (i), x̂i, li] (1)

3We also experimented with prompting GPT-3 in a few-
shot setup (Sec 5.3).
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where xj corresponds to the RoBERTa (Liu et al.,
2019) embedding of the jth token in the span. Each
mention is represented as the concatenation of: the
first (xSTART (i)) and last (xLAST (i)) tokens; an
attention-weighted sum of tokens x̂i; and a feature
vector denoting the length li.

To incorporate the commonsense inference, we
use the inference engine to generate up to k = 5
inferences for each of the before (b) and after (a)
relations: b1...bk, and a1...ak. We describe below
the representation of the relation vector using after
as an example. The representation of the before
relation is identical. We first compute the contextu-
alized representation of each inference similarly to
the span representations in Equation 1.

We then stack all the contextualized representa-
tions of the inferences:

−→
Ai = [ctxa1 ... ctxak] (2)

and input them into a single head attention layer,
which produces a single attention-weighted vector
for the after relation.

In the context of the pairwise scorer, consider
that we have two mention spans mi and mj and
their corresponding after inference representations
Ai and Aj . We implement two variants of the
attention mechanism:

1. Intra-span, where the attention is between the
mention span mi and the corresponding inferences−→
Ai. This is exemplified in Figure 3, where attention
is computed between the mention span of spend and
the inferences corresponding to the same document.
The query vector is the mention span ctxi, and
the key vector is the contextualized after vector−→
Ai. The idea behind this method is to emphasize
inferences that are the most relevant to the given
mention and provide additional context.

2. Inter-span, where the attention is between the
mention span mi and the inferences generated for
the context of the other mention,

−→
Aj . For example,

in Fig 3, this would mean the purple and orange
arrows originating in document 1 would need to be
moved to the top row of inferences, corresponding
to document 2. The query vector is the span ctxi,
and the key vector is the contextualized after vector−→
Aj . The goal of this method is to emphasize infer-
ences that are relevant to the other mention, and to
bring lexically divergent mentions closer.

In both cases, this leads to an attention-weighted
commonsense vector for each of the before and

after relations, which are then concatenated to cre-
ate a single commonsense vector csi = [

−→
Bi,
−→
Ai] as

shown in Figure 3. The input to the pairwise scorer
for mentions mi and mj is therefore:

gi,j = [ctxi, ctxj , csi, csj ] (3)

The scores from the pairwise scorer are then used
to cluster mentions using agglomerative clustering,
identically to Cattan et al. (2021a). Agglomerative
clustering merges the most similar cluster pairs
until their pairwise similarity score falls below a
predetermined threshold.

4 Experimental Setup

4.1 Implementation Details
The implementation of our model is based on Cat-
tan et al. (2021a). We use their official codebase4

and modify it to support the additional components.
Since we use gold event mentions to generate in-
ferences from the multi-event commonsense infer-
ence engine (Sec 3.1), during both training and
inference, we train and evaluate the coreference
pipeline on gold mentions. During testing, we eval-
uate both GPT3 and the coreference system on
new gold mentions that are not seen during train-
ing. This is in contrast to Cattan et al. (2021a)
which learned to extract candidate mention spans
and train the coreference system. However, using
gold mentions is common practice among many
coreference systems where the focus is on improv-
ing the pairwise scorer (e.g. Barhom et al., 2019;
Yadav et al., 2021a). For a fair comparison, we re-
port the baseline performance by re-running Cattan
et al. (2021a) using gold mentions similar to the
baseline used in Yadav et al. (2021b). We compare
this baseline to two variants of our model, based on
intra-span and inter-span attention (Sec 3.2). We
train all model versions using 15 different random
seeds, and we report the average performance.

For our GPT-3 based inference engine, we fine-
tuned the Davinci model which we accessed via
the OpenAI API.5. The hyperparameters for all the
models are detailed in Appendix B.

4.2 Evaluation Setup and Metrics
The primary metric we use is the standard CONLL-
F1 implemented by Moosavi and Strube (2016)6,
which is the average of three metrics: B3 (Bagga

4https://github.com/ariecattan/coref
5https://beta.openai.com/
6https://github.com/ns-moosavi/coval
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Model MUC B3 CEAFe CONLL
P R F1 P R F1 P R F1 F1 ∆

Baseline 73.49 84.13 78.45 48.49 67.72 56.52 43.49 55.65 48.83 61.30 ± 0.31 -
Inter-span 74.19 84.6 79.07 50.06 68.17 57.73 44.13 55.96 49.35 62.05 ± 0.35 (↑ 0.75)
Intra-span 75.02 84.72 79.58 51.01 68.00 58.29 44.31 57.70 50.13 62.67 ± 0.24 (↑ 1.37)

Table 3: Topic-level performance for event coreference on the ECB+ test set (with gold mentions, no singletons) -
Baseline, Inter-span (multi-event commonsense), Intra-span (multi-event commonsense)

and Baldwin, 1998), MUC (Vilain et al., 1995),
and CEAFe (Luo, 2005). We follow the evaluation
setup used in recent work (Cattan et al., 2021a; Ya-
dav et al., 2021a; Held et al., 2021; Cattan et al.,
2021b) and evaluate all our models at the topic
level. That is, each metric is computed for each
topic separately and averaged across all topics. We
also remove singleton clusters (clusters with a sin-
gle mention) as they have shown to artificially
boost the scores when using gold mentions (Cattan
et al., 2021a).

5 Evaluation

We discuss the results on the event coreference task
(Sec 5.1), the validity of the commonsense infer-
ences generated by our inference engine (Sec 5.2),
and present ablation tests (Sec 5.3).

5.1 Results
Table 3 shows the performance of the baseline and
the inter-span and intra-span variants of the pro-
posed multi-event commonsense models on event
coreference on the ECB+ test set. Both of our pro-
posed variants improve upon the baseline in terms
of CONLL-F1, with our intra-span model yielding
an increase of 1.37 (± 0.24) points, and our inter-
spam model yielding an increase of 0.75 (± 0.35).
Overall, the improvement in performance indicates
that the temporal commonsense inferences helped
in resolving a considerable number of coreferences,
which we analyze in more detail in Sec 6.1. In
particular, both models improve upon the baseline
precision across all metrics, with the intra-span
model achieving the highest precision across all
metrics. Error analysis of the best model (intra-
span, Sec 6.2) shows that in some cases when men-
tions had similar (and possibly generic) inferences,
the model falsely classified non-coreferring men-
tions as coreferring. We hypothesize that this error
is more common for the inter-span model. When
one mention’s inference is lexically similar to the
other mention, it would get more attention, increas-
ing the likelihood of a false positive error.

5.2 Human Evaluation of Inferences

We manually evaluate the quality of the common-
sense inferences generated by our inference engine
(Sec 3.1). We randomly sampled 600 inferences
from the validation set. We used the same AMT
qualifications as in Sec 3.1 and paid 20 cents per
HIT.7 We presented three workers with a sentence
and a target event, followed by the before and after
inferences generated by the model. We asked them
about the inference’s (i) likelihood, i.e. how often
would the given inference actually occur before
(after) the target event; (ii) relevance with respect
to the context; and (iii) specificity of the inference
with respect to the target event. Table 4 presents
the results. As expected, the generated inferences
were almost always relevant to the corresponding
event contexts. The majority of inferences (78.8%)
were specific to the target event, but there was a sig-
nificant percent of moderately specific inferences
(19.4%) that often pertained to other events in the
context. Finally, the majority of inferences either
always (58%) or sometimes (36.1%) happen before
or after the target event. These results reconfirm
the extrinsic gains in Sec 5.1, and suggest that the
inference engine may be useful for other NLP tasks.
The inter-annotator agreement in terms of Fleiss
kappa for the three metrics are as follows: Like-
lihood = 0.71, Relevance - 0.65, and Specificity -
0.84 (substantial agreement).

5.3 Ablation Tests

In Sec 3.1, we argued that COMET is insuffi-
ciently accurate for complex sentences with mul-
tiple events. To collect evidence, we replace our
GPT-3 based commonsense inference engine with
COMET and re-train the event coreference model.
We used the newest COMET version (Hwang et al.,
2021), along with beam search to decode the top
5 inferences for each relation type (before/after),
ranked based on the model’s confidence.

In addition, to justify fine-tuning GPT-3, we also

7See Appendix E for the HIT template.
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Metric % High % Moderate % Low
1. Likelihood 58.0 36.1 6.1
2. Relevance 97.3 0.0 2.7
3. Specificity 78.8 19.4 1.8

Table 4: Human evaluation results for the inferences
generated by our commonsense inference engine.

Model Inter-span Intra-span

Baseline (no inf.) 61.3 ± 0.31
COMET 61.51 ± 0.21 61.39 ± 0.32
GPT-3 few-shot 61.59 ± 0.26 61.64 ± 0.35
GPT-3 FT (ours) 62.05 ± 0.35 62.67 ± 0.24

Table 5: CONLL-F1 performance on the ECB+ test set
using different event commonsense knowledge sources.

replace our multi-event commonsense inference
engine with a few-shot version of the model. We
randomly sampled 8 of the human-written infer-
ences (Sec 3.1) to prompt GPT-3, and we used the
same instructions to prompt it to generate before
and after inferences. In all experiments, the rest of
the model is as described in Sec 3.2.

Table 5 presents the ablation results. The
COMET-based model shows a marginal improve-
ment from the baseline, yet performs worse than the
multi-event inference engine. The few-shot GPT-3
model performs better, but we discovered that more
training data could improve the specificity and ac-
curacy of the inferences. Finally, our fine-tuned
GPT-3 inference engine outperforms all models,
thanks to its explicit training on multi-event infer-
ences.

6 Analysis

6.1 Attention Scores

Figure 4 presents an example of a mention pair
(drunken driving, DUI) that was incorrectly pre-
dicted as non-coreferring by the baseline and cor-
rectly predicted as coreferring by the intra-span
model. The inferences for each mention are sorted
and highlighted according to their corresponding
attention weights. The highest scoring before in-
ference for the first mention, “Jamal is drinking
and driving”, and the second inference for the sec-
ond mention “Wiliams drank alcohol”, are similar,
which likely contributed to recognizing the coref-
erence. Figure 5 similarly shows an example that
was incorrectly predicted as non-coreferring by the
baseline and correctly predicted as coreferring by
the inter-span model. Here, we can clearly observe

Category %

1⃝ Lack of Structure 29.5
2⃝ Generic Inferences 24.6
3⃝ Insufficient Knowledge 19.5
4⃝ Incorporation 18.1
5⃝ Attention 8.3

Table 6: Error analysis of the intra-span model.

the interplay between the second mention drove off
and the inferences of the first mention hit related to
driving and fleeing from the scene. The lexical and
contextual diversity of these mentions necessitates
commonsense inferences to resolve the coreference.
Appendix C provides a second set of examples.

6.2 Error analysis
We analyze the errors in the best version of our
model (intra-span). 95% of the errors made by
this model overlapped with the errors made by
the baseline, and only 5% were newly-introduced.
We sampled 100 errors from the validation set and
manually categorized them into the following cat-
egories, detailed below and quantified in Table 6.
See Appendix D for examples from each category.

1⃝ Lack of Structure: Similar or identical men-
tions may refer to different events, as in “Jackman
hosting the Academy awards” vs. “Ellen hosting
the Oscars”. Previous work incorporated semantic
roles into the mention representation to identify
such cases (Barhom et al., 2019). Our baseline
model, as well as the inferences from our pro-
posed approach, do not explicitly incorporate any
linguistic structure, which results in these errors.

2⃝ Generic Inferences: The generated common-
sense inferences are not specific enough with re-
spect to the target event. This causes both false
positive errors, when a pair of non-corefering men-
tions have similar generic inferences; and false
negative errors, when coreferring mentions have
dissimilar generic inferences.

3⃝ Insufficient Knowledge: The inferences are
relevant to the target event, but don’t contain all the
knowledge required to resolve these coreferences.

4⃝ Incorporation: The inferences and attention
scores were accurate, but the model did not use
them effectively during incorporation.

5⃝ Attention: The model either attended too much
to unnecessary inferences (weights close to 1) or
ignored crucial inferences (weights close to 0).
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According to the California Highway Patrol , defensive tackle Jamal Williams was arrested on suspicion of 
drunken driving last weekend on a freeway outside downtown .  

Williams' DUI  arrest just the latest for Chargers

Before drunken driving: After drunken driving: 

Jamal is drinking and driving. (0.45) The chp informs his team who then suspends him from practising. (0.35)
Before this, he was pulled over for speeding. (0.29) Police put him in handcuffs. (0.3)
Before this, he drove his car on the freeway. (0.15) Police put him in jail. (0.17)
Jamal gets behind the wheel of a car. (0.11) The chp investigates whether or not he was drunk. (0.17)

Before DUI: After DUI: 

Williams drove his car into a parked car. (0.43) After this, the police took williams to jail. (0.49)
Before this, williams drank alcohol. (0.3) The press contacted williams for a statement. (0.36)

Before this, williams drove his car. (0.17) After the arrest, williams was taken to jail. (0.14)

Williams drove badly and was noticed by the police. (0.1) After this, the police put williams in jail. (0.01)

Figure 4: An example mention pair and the intra-span attention weights between the contexts and the inferences.

Queens hit and run leaves woman dead. 

A 59-year-old mother of two died when a drunken driver struck her with his car and then drove off, 
police said. 

Before run After run: 
The driver is driving the car. (0.48) The driver is scared. (0.58)
The driver flees the accident site. (0.39) The victim is bleeding. (0.21)
Before this, the driver hits the victim. (0.07) After this, the victim is pronounced dead. (0.13)
Before this, the driver runs away from the accident scene. (0.05) The victim is taken to the hospital. (0.06)
He or she gets scared after the accident occurs. (0.01) After this, the victim is sent to the hospital. (0.02)

Before drove off: After drove off: 

The police are informed that a drunken driver struck a mother 
with his car. (0.75)

The police investigate the accident. (0.33)

The police are informed that a drunken driver escaped. (0.12) The driver drove home. (0.29)

Before , the driver realized that the victim is dead. (0.09) After , the driver drove home. (0.25)

The  driver realized that the victim is dead. (0.05) The police investigate the accident. (0.14)

Figure 5: An example mention pair and the inter-span attention weights between the contexts and the inferences.

7 Conclusions

In this paper, we investigated the effect of inject-
ing temporal commonsense knowledge in the task
of event coreference resolution. By using event-
specific inferences generated by our commonsense
model, we improve the performance of a baseline
model. Our analysis shows that the pairwise scorer
attends to inferences that are beneficial in solving
challenging coreferences. In the future, we plan
to extend the multi-event commonsense model to
additional relations, and to incorporate such knowl-
edge into other discourse tasks.

8 Limitations

Data. As shown by Barhom et al. (2019), ECB+
suffers from annotation errors. In particular,
the event coreference annotations are incomplete,
which might lead to false positive errors for truly
coreferring mention pairs. In this work, we inten-
tionally addressed the edge cases in event coref-
erence that haven’t been addressed by prior re-
search: lexically/contextually-divergent mentions.
The number of such corefering clusters in ECB+
is small, and it has been shown that just cluster-
ing together mention pairs with the same lemma

yields an F1 score of 42.3 on the dataset (Upadhyay
et al., 2016). Further, our analysis of corefering
pairs on the validation set revealed that only 11%
of the pairs were contextually dissimilar (cosine
similarity below 0.9), indicating that commonsense
may impact only these cases. Unfortunately, this
is the standard dataset for event coreference, but
in the future, we could think of collecting a more
challenging (and realistic) dataset.

Models. The accuracy of the commonsense
model is primarily limited by the accuracy of in-
ferences from GPT-3. Marcus and Davis (2020)
tested GPT-3 on various types of commonsense
reasoning and found mixed results for temporal
commonsense. Our human evaluation in Sec 5.2
revealed that GPT-3 generates inferences that are
not specific enough to the target event in 19.3% of
the cases, which decreases performance as shown
in Sec 6.2. We aim to address this in future work by
building a more robust multi-event commonsense
engine. Another error our model doesn’t address
concerns semantic roles, which happens when the
main difference is in the person, time or location
(e.g. two earthquake reports in different times and
locations) (Barhom et al., 2019).
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Evaluation. Since our commonsense engine was
trained with gold event mentions, we used gold
mentions to evaluate the coreference model as well.
Using predicted mentions instead of gold mentions
would provide a more realistic estimate of the per-
formance of an event coreference system. With that
said, our work focused on improving the corefer-
ence decisions; hence, we followed previous work
and used the gold mentions (Barhom et al., 2019;
Held et al., 2021).
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A Multi-Event Commonsense Inference
Engine

B Hyper-Parameters

Table 8 shows the hyperparameters used by all our
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span versions, and an average time of 80 minutes
for the baseline version. We used a single NVIDIA
GeForce GTX 1080 Ti GPU for each run. It took 5
minutes to fine-tune the GPT-3 Davinci model and
costed 170 USD for training and generating all the
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Context: Rumored to be the front runner earlier in the week , Entertainment Weekly has now confirmed
that Chris Weitz will direct the sequel to Twilight , New Moon , replacing Catherine Hardwicke.

Event: replacing

Before: They could not strike a favorable deal with Catherine Hardwicke. They decided to replace him.
Before this, the film’s executive producer contacted Weitz’s agent. Before this, Weitz’s agent
communicated the director’s message.

After: Chris Weitz received an advance from the studio. Chris signed the contract. After, his agent
put out a press release. Chris was happy. END

Context: Lindsay Lohan checks into rehab at Betty Ford Center , rehires longtime lawyer Shawn Holley

Event: rehires

Table 7: Examples of the input format of the multi-event commonsense inference engine. Top: a training example is
fed into GPT-3 with the inputs (context and event) and the outputs (before and after inferences). Bottom: a test
example is fed with only the inputs (context and event).

Parameter Value

Batch Size 128
Learning Rate 0.0001
Dropout 0.3
Optimizer Adam
Hidden layer 1024
Attention heads 1

Table 8: Hyperparameters used by all three model
versions-Baseline, Inter-span and Intra-Span

C Attention Scores

In Figures 6 and 7, we provide examples for men-
tion pairs incorrectly predicted by the baseline and
correctly predicted by the intra-span and inter-span
models, repsectively, similarly to Sec 6.2.

D Error Analysis

Table 9 shows one example of each error category
described in Sec 6.2.

E Crowdsourcing Templates

Figures 8 and 9 show the HIT templates used for
obtaining inference annotations and evaluating gen-
erated inferences, respectively.
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A former employee recently let go from his job opened fire at an office Christmas party yesterday, 
killing one person.  

One man is dead after being shot by a gunman who marched into a company Christmas party 
Friday night .  

Before opened fire: After opened fire: 

 He loaded his gun. (0.49) He killed a man. (0.43)

He put on a shooting target. (0.17) After the employee opened fire, the alarms went off. (0.21)

The man acquired targets. (0.14) After the employee opened fire, his targets fled. (0.18)

The man was angry with the victim. (0.1) Police arrived to take care of the situation. (0.12)

After the employee opened fire, he put his gun away. (0.07)

Before shot: After shot: 

Before this, he put on a mask. (0.5) The wounded man is taken to the hospital. (0.38)

The gunman took the time to aim at the target. (0.25) After being shot, he screams in pain. (0.37)

Before , a alarm went off. (0.24) After being shot, the man falls to the floor. (0.2)

The gunman obtained a weapon. (0.01) The shooter flees the scene. (0.05)

Figure 6: An example mention pair and the intra-span attention weights between the contexts and the inferences.

INS Sukanya foils piracy attempt in Gulf of Eden.  

Indian Naval Ship Sukanya , deployed on anti-piracy patrols in the Gulf of Aden under the operational 
control of the Western Naval Command, thwarted a multiple-boat attack by pirates on Thursday and 
rescued 26 Somali crewmembers . 

Before attempt After attempt: 

Before the attempt, pirates boarded the ship. (0.33) After the attempt, the pirates fled. (0.33)
Pirates turned on the ship's hud-anchor finder. (0.33)  the captain was notified and the sirens sounded. (0.33)
Before the attempt, the pirates drew their weapons . 
(0.33)

The pirates were caught and thrown in jail. (0.33)
Before the attempt, the pirates boarded the ship. (0.0) The ship's alarm sounded. (0.0)

Before attack: After attack: 

Pirates boarded their boats. (1.0) he navy apprehended the surviving pirates. (0.5)

Before this, the pirates boarded the ships. (0.0)  the wounded pirates were taken to the hospital. (0.5)

the pirates spotted the navy. (0.0) the navy killed some pirates. (0.0)

 the pirates armed themselves with pistols and knives. 
(0.0)

The surviving pirates surrendered. (0.0)

Figure 7: An example mention pair and the inter-span attention weights between the contexts and the inferences.
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Context Before After
1⃝ Lack of Structure: Different arguments (Robert Buckley vs Duncan Rait), similar event mentions and contexts.

Robert Buckley the second
climber to die in the
Aoraki - Mount Cook
national park.

He slipped and fell down. (0.68) The bodies of the climbers are found by the
other climbers. (1.0)

He set out to climb a mountain. (0.19) The families of the two climbers are notified.
(0.0)

He was exhausted from the trek. (0.13) the police investigate his cause of death. (0.0)

The day before Buckley’s
death another climber
Duncan Rait, died after
slipping and falling [...].

Before this, the climber slipped and fell. (0.5) A rescue team went to look for the climber.
(0.5)

The climber had an accident. (0.5) A funeral is held for the dead body. (0.5)
Before this, the climber sustained injuries. (0.0) the climber was pronounced dead. (0.0)

2⃝ Generic error - Inferences of the first event (crash) are not specific and accurate.
Man charged with DWI ,
leaving scene after S .
Rich Hill mother killed in
crash : NYPD

They spotted a car on fire. (0.35) They called the fire department. (0.41)
She swerved to avoid a cat crossing the road.
(0.33)

Her family had to deal with the death. (0.34)

The driver got into an accident. (0.22) Police arrived on the scene. (0.18)
The car collided with the rich hill mother.
(0.05)

She was taken to the hospital. (0.07)

The rich hill mother is driving her car. (0.05)

Woman Killed in Queens
Hit - Run , Driver Charged

He changed his mind and decided to go
forward with the plan. (0.46)

The woman is killed. (0.64)

A driver wants to kill the woman. (0.27) They file a case against the driver. (0.11)
A driver sees the woman. (0.15) The driver gets worried about the consequence.

(0.1)
He gets scared and attempts to flee the scene.
(0.06)

The woman is denied basic rights. (0.08)

He flees the scene. (0.06) The woman is denied a burial. (0.08)
3⃝ Insufficient knowledge error- More knowledge may be beneficial (e.g.pre-requisites of events)

MSNBC is reporting that
the Indian Navy claims
they have captured 23
pirates in the Gulf of Aden

The navy ships noticed the pirates. (0.33) The captured pirates were taken to prison.
(0.25)

They boarded the ship. (0.33) They will decide what to do with them. (0.25)
The captain ordered an alert. (0.33) the captain signaled the all-clear. (0.25)
The navy ships surrounded the pirates. (0.0) The navy notified the police about the capture.

(0.25)

The Indian Navy on
Saturday prevented pirates
from attacking a merchant
vessel[..] took 23 into
custody.

They planned to attack the ship. (0.33) The navy handed them over to the police.
(0.33)

The pirates hid their weapons. (0.33) The navy interrogate them (0.33)
The navy received a distress call from the ship.
(0.33)

The navy took them to a different place (0.33)

4⃝ Incorporation error - Inferences seem relevant, but the model fails to use them.

5 Thoughts on Why the
Academy Picked Ellen
DeGeneres As Oscar Host

Ellen accepted to host the Oscars. (0.36) Ellen feels happy(0.34)
Ellen was practicing out ideas.(0.36) The host gets paid. (0.26)
Ellen DeGeneres was selected as the host.
(0.19)

Ellen was given a plaque of honor. (0.22)

They academy contacted Ellen(0.09)
The audience clapped for Ellen. (0.18)

It will be her second stint
in the job , after hosting
the 2007 ceremony and
earning an Emmy
nomination for it

She practiced her speech. (0.32) The press contacted her for interviews. (0.55)
She contacted her suppliers about a new gown
for the show. (0.48)

She was very happy. (0.23)

She was effective in her duties. (0.1) She informed her staff about the nomination.
(0.12)

She was nominated for hosting the 2007
ceremony. (0.05)

She bought some new clothes. (0.1)

5⃝ Attention error: Increased attention on irrelevant inferences (first inference)

Woman Killed in Queens
Hit - Run , Driver Charged

The driver came into contact with the woman.
(1.0)

The driver flees the scene of the collision. (1.0)

The person driving a vehicle saw the woman
and pursued, not caring about the person’s
safety. (0.0)

The woman is injured. (0.0)

The driver and the woman crossed paths.(0.0) The woman is hospitalized. (0.0)
The driver drove his vehicle at the woman.
(0.0)

The driver tried to hide his involvement in the
crime. (0.0)

Cops : Queens Woman
Killed In Hit - And - Run

A car flees the scene. (0.34) They put out an alert to look for him. (0.28)
A car crashes into a dying woman. (0.26) They put out a press release calling for

information. (0.28)
They searched the area the car was spotted in.
(0.21)

They arrested him. (0.22)

They interviewed neighbors who might have
seen them. (0.2)

The criminal went to court (0.22)

Table 9: An example of each error category described in Sec 6.2
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View instructions

Read the context sentence and write atleast two inferences for
Question1 and two inferences for Question2. As shown in the
examples, each inference is expected to be a short sentence of 5-
10 words.

Context: ${context}

Question1: ${q1}

 

 

 

Question2: ${q2}

 

 

 

Type first inference for what might happen before....

Type second inference for what might happen before...

Type third inference for what might happen before ..(optional)

Type first inference for what might happen after....

Type second inference for what might happen after...

Type third inference for what might happen after..(optional)

Submit

Figure 8: Crowdsourcing template for obtaining before and after inferences.
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Full Instructions     (Expand/Collapse)

Task: Rate event commonsense inferences
Context

${context}

Before
Evaluate these inferences for what happens before the event ${event}

${before1}
How likely is this inference before the event?

 
Is this inference true to the given context?

 
Is this inference specific to the target event ${event}?

${before2}
How likely is this inference before the event?

 
Is this inference true to the given context?

 
Is this inference specific to the target event ${event}

${before3}
How likely is this inference before the event?

 
Is this inference true to the given context?

 
Is this inference specific to the target event ${event}

 

After
Evaluate the inferences for what happens after the event ${event}?

${after1}
How likely is this inference before the event?

 
Is this inference true to the given context?

 
Is this inference specific to the target event ${event}

${after2}

 
How likely is this inference before the event?

 
Is this inference true to the given context?

 
Is this inference specific to the target event ${event}

${after3}

 
How likely is this inference before the event?

 
Is this inference true to the given context?

 
Is this inference specific to the target event ${event}

 Optional Feedback #1: This event does not make sense in the given context.

 Optional Feedback #2: This context/event has hateful/offensive content.

 Optional Feedback #3: Something about the HIT is unclear/You have additional feedback:

We plan to post many rounds of these HITs in the near future.

 

Submit

Instructions

Read a context and inferences about what usually happens before and after a target event. Rate each inference based on how
likely it is to happen before/after the event, how specific it is to the event and whether it is contradicting the given context. If
you have not tried this task before, please take some time to read the instructions and examples to understand this task better.

always/often sometimes/ likely farfetched/never

Yes/True to context. No/negating the context.

Yes Partially specific Unrelated to the event

always/often sometimes/likely farfetched/never

Yes/True to context No/negating the context.

Yes Partially specific Unrelated to the event

always/often sometimes/likely farfetched/never

Yes/True to context. No/negating the context.

Yes Partially specific Unrelated to the event

always/often sometimes/likely farfetched/never

Yes/True to context No/negating the context

Yes Partially specific Unrelated to the event

always/often sometimes/likely farfetched/never

Yes/True to context No/negating the context

Yes Partially specific Unrelated to the event

always/often sometimes/likely farfetched/never

Yes/True to context No/negating the context

Yes Partially specific Unrelated to the event

Figure 9: Crowdsourcing template for rating before and after inferences.
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Abstract

Recent breakthroughs in self-supervised train-
ing have led to a new class of pretrained vi-
sion–language models. While there have been
investigations of bias in multimodal models,
they have mostly focused on gender and racial
bias, giving much less attention to other rel-
evant groups, such as minorities with regard
to religion, nationality, sexual orientation, or
disabilities. This is mainly due to lack of suit-
able benchmarks for such groups. We seek
to address this gap by providing a visual and
textual bias benchmark called MMBias, con-
sisting of around 3,800 images and phrases cov-
ering 14 population subgroups. We utilize this
dataset to assess bias in several prominent self-
supervised multimodal models, including CLIP,
ALBEF, and ViLT. Our results show that these
models demonstrate meaningful bias favoring
certain groups. Finally, we introduce a debi-
asing method designed specifically for such
large pretrained models that can be applied as a
post-processing step to mitigate bias, while pre-
serving the remaining accuracy of the model.

1 Introduction

The recent emergence of large pretrained vision–
language models has revolutionized many multi-
modal tasks previously considered impractical to
solve. Although architectures capable of jointly
addressing computer vision and NLP tasks using a
single unified model have been around for a while
(Lu et al., 2019; Tan and Bansal, 2019; Li et al.,
2019), recent advances in self-supervised training
methods have amplified the significance and appli-
cability of such models. The sheer power of these
methods is highly dependent on the scale of the
model and the diversity and distributional proper-
ties of the dataset on which they are trained. Due
to their wide range of diverse applications (Eslami
et al., 2021), it is of utmost importance to be aware
of the shortcomings of vision–language pretrained
(VLP) models as well as their capabilities.

One such limitation is that, like any other ma-
chine learning system, multimodal models may
be prone to exhibiting human-like stereotypical
biases such as gender or race-related stereotypes
(Nadeem et al., 2020; Garrido-Muñoz et al., 2021).
For instance, pretrained language models have been
shown to associate male-gendered phrases and sen-
tences to a greater extent with certain high-paying
professions and even with individual traits such
as intelligence, in comparison to female-gendered
phrases (Wang et al., 2021a). Similarly, it has been
found that Hispanic and African American names
may be tied to words representing danger and crime
more often than Caucasian names (Manzini et al.,
2019). Certain biases have also been identified in
computer vision models as well (Wang et al., 2019).
Such biases are discriminatory towards affected
population groups and can be extremely harmful
to society the more these models are deployed in
real-world applications.

While there has been some research aimed
at identifying and addressing biases in vision–
language models, most such studies have focused
on gender and racial biases, while other notable
groups such as religious minorities, national mi-
norities, LGBTQ people, and people with disabili-
ties have received much less attention, despite their
legal status as protected groups in the US. This is
alarming considering the fact that the potentially
affected groups together constitute a considerable
part of the global population. For instance, the US
Census Bureau reported approximately 40 million
people identifying as immigrants in the US and 244
million world-wide as of 2015.1 Furthermore, ap-
proximately 40 million people in the US and about
1 billion people in the world suffer from some sort
of disability.2 One of the main obstacles for bias
analysis of these relevant population groups has
been the lack of standardized benchmark datasets

1www.un.org/en/development/desa/population/migration
2www.worldbank.org/en/topic/disability
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Figure 1: Experiment pipeline. We feed target and attribute data to the model. The embeddings obtained from
pretrained encoders are then used to measure bias metrics between visual and textual stimuli following Eq. 1.

that specifically enable an analysis of how they
may be affected. In this paper, we attempt to ad-
dress this problem by gathering and releasing a
visual and textual bias benchmark called MMBias,
consisting of approximately 3,500 images and 350
phrases covering over 14 minority subgroups. Fur-
thermore, we utilize the dataset to measure stereo-
typical bias in several prominent self-supervised
multimodal VLP models that have attracted sig-
nificant attention recently, namely OpenAI CLIP
(Radford et al., 2021), ALBEF (Li et al., 2021), and
ViLT (Kim et al., 2021). In our experiments, we
quantify the bias present in these models, including
both cross-modal and intra-modal bias. Our results
confirm that these models harbor meaningful bi-
ases favoring certain groups. Finally, we introduce
a novel debiasing method designed for such large
pretrained models that can be applied as a post-
processing step to mitigate bias, and we show that
this step does not adversely affect the performance
in a substantial way.

2 Related Work

The majority of work on language models only fo-
cuses on gender and racial bias assessment (Guo
and Caliskan, 2021; Bordia and Bowman, 2019).
However, there have been some studies that con-
sider bias with regard to other categories such as
profession, religion, and disability as well (Nadeem
et al., 2020; Hutchinson et al., 2020). However,
these forms of bias are not just exclusive to the lan-
guage domain, and image classifiers as well as mul-
timodal models have also been shown to demon-
strate such biases (Srinivasan and Bisk, 2021; Ross
et al., 2020).

Thus far, there has been rather limited work
on multimodal bias assessment of self-supervised

models such as CLIP, and prior work considers
only gender and racial biases. Wang et al. (2021b)
measures the gender and racial bias in CLIP’s im-
age classification module using the Fairface dataset,
while Wang et al. (2021a) further show that CLIP
associates male-gendered phrases to high-paying
professions more than female-gendered phrases.
Agarwal et al. (2021) provide insights towards po-
tential applications of the CLIP model and further
study and evaluate its gender/racial bias as well
as measuring the misclassification differences be-
tween different subgroups. Bhargava and Forsyth
(2019) measure and propose solutions to gender
bias in several image captioning systems.

The only work that addresses other relevant
groups such as religion, sexual orientation, and
disability in the image space is Steed and Caliskan
(2021). However, the data considered in the study
is limited, consisting of only around 600 images,
out of which around 500 again correspond to gen-
der and racial biases. This leaves only around 100
for other protected groups, i.e., fewer than 20 im-
ages for each protected group study. Sirotkin et al.
(2022) use this limited dataset to measure bias in
several self-supervised visual models but the au-
thors do not explore multimodal models such as
CLIP. An orthogonal line of research has been pur-
sued in Zhou et al. (2022), where several multi-
modal vision-language models are analyzed to mea-
sure these models’ tendency to pick stereotypical
statements as captions for anti-stereotypical images
in pre-trained vision-language models. With MM-
Bias, we thus hope to enable further research on
diverse forms of bias in vision–language models.
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Figure 2: Sample images from the MMBias dataset. Each row corresponds to one of the target classes: religion,
nationality, disability, and sexual orientation. Images are compiled from the image sharing service Flickr.

3 Methodology

Bias and Fairness. In conventional social stud-
ies, one of the most well-established and widely-
investigated forms of biases is what is known as
implicit bias, or as social stereotypes, defined and
investigated in Greenwald and Banaji (1995). This
type of bias is usually measured using Implicit
Associate Testing (IAT), introduced in the semi-
nal work of (Greenwald et al., 1998), and has so
far been widely used to describe and account for
a wide range of implicit prejudices (Kiefer and
Sekaquaptewa, 2007). IAT experiments quantify
human implicit bias by measuring response times
differences when human subjects are asked to pair
similar concepts and different concepts. In its orig-
inal form, IAT was used to to measure the degree
of pleasantness (a.k.a. valence in psychology), of
entities such as “flowers” and “insects” by pairing
them with abstract attributes such as pleasant and
unpleasant (Russell, 2003). Caliskan et al. (2017)
showed that a similar IAT testing paradigm can be
applied to bias measurement in deep embeddings.
In this approach, instead of subject reaction time,
the proximity of embeddings of a basket of words
that represent a concept is measured. Furthermore,
word sentiment is usually used to represent valence,
due to well-established studies linking word sen-
timent with the psychological concept of valence
(Mohammad, 2016). The experimental methodol-
ogy used in our study follows similar principles.

More generally, a machine learning system may
be deemed unbiased or fair when its predictions
do not favor members of any relevant population
group or discriminate against any other (Garrido-
Muñoz et al., 2021). For instance, suppose that
the class under consideration is religion and we are
evaluating pleasantness / unpleasantness scores a

system would assign to each considered religious
subgroup. A machine learning system is assessed
as fair if and only if the scores it assigns to different
religious subgroups do not differ substantially.

More formally, in a bias study, the two sub-
groups under study, also known as target entities,
may be represented as sets of instances X =
{x1, x2, ..., xN} and Y = {y1, y2, ..., yN}. For
example, X may be images corresponding to Is-
lam and Y to Christianity. Furthermore, the at-
tributes towards which the bias is being measured
may be given as sets A = {a1, a2, ..., aM} and
B = {b1, b2, ..., bM}. For example, A could be
a set of words representing pleasantness, while
B represents unpleasantness. Similarly, many
gender-bias studies consider sets for high paying
vs. low paying professions as attribute sets. A ma-
chine learning model is then said to be fair towards
subgroups X and Y with respect to attributes A
and B if and only if ϕ(X,A,B) ≈ ϕ(Y ,A,B),
where ϕ is some scoring function that scores the
similarity of the sets of attributes A, B to a target
entity X or Y .

Scoring Functions. There can be different
choices for the scoring function ϕ above. Caliskan
et al. (2017) introduced the Caliskan test shown
below in Eq. 1, with ϕ capturing the difference of
the mean of cosine distances between targets and
attributes. This method is ideal for the analysis of
models such as CLIP, since they operate directly
on entity embeddings. The effect size represented
by d(X,Y,A,B) is a measure of the magnitude
of the bias. Larger numbers indicate a stronger
bias, while the sign reflects which target entity the
attributes show a stronger bias towards.

However, for vision–language fusion models
that do not provide explicit access to separate im-
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age/text embeddings, an alternative scoring func-
tion can be defined as the difference in the image–
text matching probabilities, as in the last row of
Eq. 1. Sets X and Y as well as A and B are usu-
ally constructed to have equal number of samples.

d =

mean
x∈X

ϕ(x,A,B)−mean
y∈Y

ϕ(y,A,B)

std-dev
w∈X∪Y

ϕ(w,A,B)
(1)

ϕ(w,A,B) = mean
a∈A

cos(w, a)−mean
b∈B

cos(w, b)

ϕ(w,A,B) = mean
a∈A

σ(w, a)−mean
b∈B

σ(w, b)

Here, cos(·, ·) denotes the cosine similarity of vec-
tors, while σ(·, ·) denotes the probability of a text
and image pair being a match.

Evaluation Pipeline Fig. 1 shows the pipeline
followed in our experiments. The target and at-
tribute stimuli are fed into the model and embed-
dings it emits are used to compute the bias score.

4 The MMBias Dataset

The majority of the work on societal bias analy-
sis so far focuses on unimodal language models.
Although there has been some limited work on
multimodal models, these studies mainly focus on
gender and racial disparities. As a result, bias with
regard to other classes, including religion, national-
ity, sexual orientation, and disability have largely
been unexplored. This has been mainly due to the
lack of standardized benchmark datasets that specif-
ically target these minority groups. To address this
concern, we gather and release the first multimodal
dataset of this size in this line of research that spans
over a wider range of groups. We hope that this
dataset can serve as a benchmark in future research.

Our dataset, referred to as MMBias, contains
3,500 target images and 350 English phrases corre-
sponding to different target concepts. Each target

Target Concept X Target Values {x1, ..., xN}
Religion

Islam, Christianity, Judaism,
Buddhism, Hinduism

Nationality
American, Arab,

Chinese, Mexican

Disability
Physical disability,

Mental disability, No disability
Sexual Orientation Homosexual, Heterosexual

Table 1: MMBias spans over 4 target classes and 14
target groups including 5 major religions, 4 nationalities,
2 forms of disability and sexual orientations.

Figure 3: Gaussian distribution of the image sizes scaled
by a factor of 1,000. Most images are sized around
340x340 pixels.

category has 250 corresponding images obtained
from the popular image uploading website Flickr.
Our dataset also contains 20 textual phrases related
to each target concept, used for bias experiments in
the textual domain.

Data Compilation For gathering the image data,
we invoke the Flickr API and retrieve 1,000 most
relevant images for each target concept using 10–
12 search keywords for each. The keywords are
chosen to be as diverse as possible to minimize
any potential bias in the data gathering process to
the extent possible. Then human annotators are
used to filter out noisy images. Annotators were in-
structed to manually eliminate irrelevant or explicit
content as well as images that contained private in-
formation or names/addresses. In order to balance
the dataset, 250 images were randomly chosen for
each concept out of the filtered images, and we only
consider images with a Creative Commons license.
The processing pipeline and quality control is sim-
ilar to the one used for the creation of Flickr30k
(Young et al., 2014). Furthermore, the textual part
of the dataset contains phrases such as “This is X.”
replacing X with a “Muslim person", “Christian
person", etc. The same aforementioned keywords
were used to retrieve textual data for each concept
using the RelatedWords site3 followed by a similar
data cleaning and noise filtering process.

Table 1 shows the classes MMBias covers as
well as the considered groups in each class. MM-
Bias spans over 4 target classes, including religion,
national origin, disability, and sexual orientation.
In this study, we did not include gender and race,
as there is already a large body of work focusing
on them. For religion, our dataset includes the 5

3relatedwords.org/
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major religions in the world today: Islam, Chris-
tianity, Judaism, Buddhism, and Hinduism. As
for the national origin, MMBias includes images
corresponding to the four nationalities: American
(USA), Chinese, Arab4 (collectively), and Mexican.
Furthermore, another two additional nationalities,
French and Italian, are also included in the textual
phrases in addition to the former. As for disability,
MMBias contains images for two common forms
of disability: physical disability, mental disability
as well as people with no disability. In addition
to these, the textual data includes phrases corre-
sponding to visual disability and hearing disability
as well. Finally, the two most common types of
sexual orientations, homosexuality and heterosex-
uality, are included in MMBias. The selection of
subgroups as well as their pairings was a result of
consulting several social studies that show present
bias against people with disabilities (Dovidio et al.,
2011), homosexuals (Hebl et al., 2002), certain na-
tionalities (Park et al., 2007; Buriel and Vasquez,
1982) and religions (Abid et al., 2021; Rowatt et al.,
2005; Rudman and Ashmore, 2007). However, we
plan to extend our data to a larger pool of classes
and respective subgroups in the future.

Finally, in order to conduct intra-visual bias stud-
ies, MMBias also contains two sets of images cor-
responding to visual pleasantness and unpleasant-
ness, called the valence dataset. These sets were
constructed by following a similar method to Steed
and Caliskan (2021), retrieving images correspond-
ing to pleasant concepts such wealth, peace, babies,
love, butterflies, etc. and unpleasant concepts such
as death, injury, prison, fear, etc.

Analysis. Fig. 2 provides some sample images
taken from the dataset. Each row shows a different
target class. Fig. 3 provides deeper insights into the
sizes of the crawled images. The x-axis reflects the
surface area of the image in pixels, scaled by a fac-
tor of 1,000. As can be seen, image sizes in most
classes follow a normal distribution with a mean
of around 110,000 pixels, translating to approxi-
mately 340x340 images, with the exception of im-
ages corresponding to the nationality class, which
have a slightly higher mean of around 350x350.
The height and width of images does not vary sub-
stantially across the dataset.

4Arab collectively refers to a number of Arab countries
(each also having other cultural groups). We hope that more
specific nationalities and cultural groups can be added in the
future.

Figure 4: t-SNE representation of image embeddings.
Left shows embedding clusters before bias mitigation.
Right shows embedding clusters after bias mitigation.
Both cases show well-separated clusters, suggesting bias
mitigation has negligible effects on cluster separability.

Furthermore, we analyze the separability of our
dataset with regards to image classes. The images
are fed into the CLIP model and the first 100 prin-
cipal components are extracted from the resulting
embeddings, and then t-SNE is applied. Fig. 4
shows the t-SNE representation of the images. We
observe that the dataset can be well-separated form-
ing clearly-defined clusters. For instance, we notice
that different religions form well-separated clusters.
Interestingly the clusters that are more intertwined
correspond to correlated subjects such as the reli-
gion Islam and the Arab nationality designation.
This is not surprising given Islam is particularly
prevalent in Arab countries and thus many of the
images share similar features.

5 Experimental Evaluation

We have conducted three sets of experiments to
assess and quantify the bias in the aforementioned
models: CLIP, ALBEF, and ViLT. The following
sections explain the details of each setting.

5.1 OpenAI CLIP

CLIP is a multimodal vision–language embedding
model originally devised for zero-shot classifica-
tion of images. It utilizes a self-supervised con-
trastive loss to learn a joint embedding space for
both images and text. The model is jointly trained
on the WebImageText dataset, a set of 400 million
paired image–text pairs crawled form the web. Al-
though primarily designed for image classification,
CLIP embeddings have been used in numerous
other downstream applications, making it a prime
candidate for our analysis. The architecture of
CLIP has independent visual and textual encoding
modules providing explicit access to each modal-
ity’s embedding. As a result, it is possible to not
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Figure 5: Top 15 closest attributes returned by CLIP for each target group. Red colors represent negative sentiment
while blue represents positive sentiment. Stereotypical patterns can be seen among different groups.

only analyze the bias across domains but conduct
ablation studies for each module separately as well.
We used the “ViT-B/32” model with the official
CLIP code. Our experiments are as follows.

5.1.1 Cross-Modal Zero-Shot Classification
CLIP was originally introduced as a means for zero-
shot image classification. In this experiment, we
measure bias for this task across different modal-
ities. Given a set of target concept images XI

and Y I , and a set of textual attribute phrases AT

and BT , we use CLIP to perform zero-shot clas-
sification of target images to attribute words. For
each image group, the top 15 classified words are
returned. The attributes are two sets of 60 words
conveying positive5 or negative6 sentiment, many
of which were also included in the original IAT
studies (Bellezza et al., 1986).

The resulting correlation scores are provided in
Fig. 5. Each row shows the top 15 words returned
by the model for each of the target classes. Words
with positive sentiment are blue-colored while ad-
jectives with negative sentiment are given in red.
The number inside each bar as well as the color
intensity represent the degree to which the model
associates that target class with that word. Fig. 5
shows stereotypical patterns emerging, e.g., the

5ptrckprry.com/course/ssd/data/positive-words.txt
6ptrckprry.com/course/ssd/data/negative-words.txt

most associated attributes to Islam and Judaism are
words related to poverty, terror, and extremism such
as: “impoverished”, “vagrant”, ”terrorist“, ”oppres-
sion“, “outcast”, “extremist”, etc., which carry a
highly negative sentiment.

However, unlike Islam and Judaism, in the case
of Buddhism and Christianity, 12 of the 15 top
attributes have positive sentiment. The most asso-
ciated attributes are words resembling peace and
happiness such as: “peace”, “blessing”, “compas-
sionate”, “admirable”, etc., carrying a highly posi-
tive sentiment. This is aligned with societal stereo-
types that certain religions are looked upon less
favorably than others. Similar patterns can be ob-
served for other classes such as nationality as well.
Certain nationalities such as Americans are viewed
as more favorably by the model compared to Arab,
Mexican, and Chinese people. Interestingly, biases
against the Arab category are very similar to biases
against Islam, e.g., both obtaining high scores for
“terrorism”, “extremist”, and “impoverished”. This
likely stems from the the fact that most Arab coun-
tries are predominantly Muslim and the model may
have acquired latent correlations among the two.
For the target class “Mexican”, the highest-scoring
words are “undocumented”, “greed”, and “illegal”,
followed by “impoverished”, which reflects the
typical right-wing media portrayal of this group in
the US. Similarly, Chinese nationals are associated
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with negative attributes relating to poverty and dic-
tatorship. The next category that exhibits a bias is
sexual orientation, where the LGBTQ community
is mostly associated with words such as “offend-
ing”,“vulgar”, “hateful”, “perverse”, etc. Finally,
we can see the large negative sentiment the model
exhibits towards people with disabilities.

5.1.2 Cross-Modal Bias Assessment
This experiment quantifies the bias in CLIP using
Caliskan cosine similarity metric in Eq. 1. Given a
set of target concept images XI and Y I and a set
of textual attribute phrases AT and BT , the goal
is to measure the effect size, d(XI ,Y I ,AT ,BT ),
distance between image target concepts XI , Y I

and textual pleasantness attributes. The results are
provided in the first column of Table 2. Positive
numbers reflect a negative bias towards the first
target X , while negative numbers indicate a posi-
tive bias towards X . The magnitude represents the
intensity to which the bias is present in the model
with regard to test data. The results in Table 2 are
consistent with the results in the zero-shot clas-
sification experiment, confirming certain societal
stereotypes. For instance, in the case of religion,
we have already observed that Islam and Judaism
are tied to negative words much more frequently,
compared to Christianity and Buddhism. Similarly,
here, we observe that bias scores for “Islam vs.
Christianity” and “Judaism vs. Christianity” are
fairly high as well. In the case of “Islam vs. Ju-
daism”, Islam is viewed more unfavorably, reflect-
ing the surge of Islamophobic tendencies in recent
decades. In this regard, the most favorably assessed
religions are Christianity and Buddhism. Similar
trends can be seen when considering nationality
as well. The model shows a negative bias towards
Arab, Chinese, and Mexican people compared to
Americans. This is again consistent with previous
observations in the zero-shot classification experi-
ment. Finally, we find that people with disabilities
as well as the LGBTQ community are viewed more
negatively.

5.1.3 Ablation: Intra-Modal Encoder Bias
Since CLIP provides explicit access to textual
and visual embeddings, we can run ablation
studies by measuring the bias in each module
independently. In order to do so, we mea-
sure the effect size using the Caliskan formula
d(XT ,Y T ,AT ,BT ) for textual data and Image
Association test d(XI ,Y I ,AI ,BI) for images,

Target Target CLIP CLIP CLIP ALBEF ViLT
X Y Cross Textual Visual

R
el

ig
io

n

Muslim Christian 1.72 1.48 1.61 0.37 0.45
Jewish Christian 1.69 1.24 1.43 0.34 0.51
Muslim Jewish 0.47 0.41 0.75 0.03 -0.04
Muslim Buddhist 1.62 0.69 1.53 0.23 0.26

Christian Buddhist -0.75 -0.99 -0.35 -0.14 -0.21
Hindu Buddhist -0.52 0.06 -0.11 0.01 0.01
Jewish Buddhist 1.61 0.31 1.28 0.20 0.30
Muslim Hindu 1.65 0.64 1.49 0.24 0.25

N
at

io
na

lit
y

Arab American 1.28 1.79 1.56 0.11 -0.03
Arab French – 1.79 – – –
Arab Italian – 1.25 – – –

Mexican Arab -0.32 0.24 -0.92 -0.04 0.06
Chinese American 0.89 1.30 1.20 0.03 -0.07
Mexican American 1.13 1.75 1.20 0.07 0.03

D
is

ab
ili

ty Visual Abled – 1.25 – – –
Hearing Abled – 1.13 – – –
Mental Abled 1.48 1.04 1.05 0.37 0.13

Physical Abled 1.25 1.03 1.35 0.02 -0.01

L
G

B
T

Q

LGBTQ Hetero. 1.67 0.93 1.46 0.07 0.10

Table 2: Bias assessment for CLIP, ALBEF, and ViLT
models. CLIP-Cross has numbers for cross-modal bias
assessment experiment, while CLIP-Textual and CLIP-
Visual show effect sizes for intra-modality ablation stud-
ies. Positive numbers favor target Y while negative
numbers favor target X .

where unlike the cross-modal experiment, both tar-
get concepts as well as attributes have the same
modality. These experiments can provide insights
as to which module is more heavily responsible
for the observed bias. Columns 2 and 3 in Ta-
ble 2 present the findings. For the image modal-
ity, we have images with positive and negative va-
lence, analogous to positive and negative-sentiment
words. As we can see, the model demonstrates sim-
ilar bias to the cross-modal case. Similarly, we
notice that “Islam” and “Judaism” attract more neg-
ative bias in comparison with “Christianity” and
“Buddhism”. In some cases the effect size is slightly
different, which can be explained by the fact that
the number of samples in the case of textual data
is smaller, entailing a greater standard deviation,
which in turn alters the effect size.

5.2 Fusion-based Models

We next evaluate two fusion-based models. Al-
though these models typically have independent
textual and visual encoding modules in their lower
layers, their architecture is complemented by a fu-
sion module in higher levels to combine the infor-
mation in different modalities, enabling them to
learn joint embeddings of the visual and textual
domains. This has been shown to be essential for
more complex tasks such as VQA and NLVR that
require more complex reasoning. The first such
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model we consider is ALBEF. Similar to CLIP, AL-
BEF (Li et al., 2021) first learns separate visual and
textual embeddings using Transformer-based im-
age and text encoders coupled with contrastive loss.
However, unlike CLIP, ALBEF further combines
these embeddings by adopting an attention-based
fusion architecture to model more complex interac-
tions between these modalities, and directly aims
to address several vision–language objectives, in-
cluding image–text matching and masked language
modeling. This model is pretrained on conceptual
captions and SBU captions (Sharma et al., 2018;
Ordonez et al., 2011). Furthermore, the model is
trained using momentum distillation to facilitate
learning by adding an auxiliary learning network
to stabilize the leaning process.

ViLT (Kim et al., 2021) is another recent VLP
model that is devised as a more computationally
efficient alternative to CLIP and ALBEF. Unlike
large and computationally-heavy image and text
encoders in CLIP and ALBEF, ViLT utilizes only
shallow linear layers to process the sequence of
word embeddings and image patches of the text–
image input pair. Furthermore, in order to enable
the model to solve complex vision–language tasks
such as VQA, NLVR, and ITM, a Transformer-
based architecture is employed on top to capture the
complex dynamics between the modalities. This
model is trained using a combination of image–
text matching, word patch alignment, and masked
language modelling objectives.

With regard to bias assessment, unlike CLIP,
fusion-based models do not provide explicit access
to separate visual and textual embeddings but rather
provide a combined embedding of the pair. As a
result, computing the Caliskan distance in Eq. 1
is not possible. However, interestingly one of the
objectives these models optimize for is the image–
text matching (ITM) objective. ITM is the problem
of estimating the probability that a given image–
text pair is a match. This task is directly related to
our bias evaluation problem. We can argue that a
model is fair if the probability of assigning pleas-
antness scores is similar across different concepts.
In other words, the following should hold for the
ITM scores:

PITM(A|X)− PITM(B|X) ≈
PITM(A|Y )− PITM(B|Y )

Columns 4 and 5 in Table 2 include the results

for ALBEF and ViLT. The numbers provided are
probabilistic differences and are not comparable to
the Caliskan scores provided for CLIP. In order to
reduce irrelevant noise only the top 15 most signif-
icant matches are considered. Again, we see that
these models exhibit strong biases favoring Chris-
tianity vs. Islam and Judaism, matching Christian
images to positive words 45% more than Muslim
and 51% more than Judaism. However, in case
of nationality, these models show fewer signs of
bias. Furthermore, ViLT and ALBEF show less
bias towards physical disabilities compared to men-
tal disability.

Algorithm 1 Bias Mitigation Algorithm

Require: Image Embedding V I ,
Text Embedding V T ,
Features to remove N ,
Classification Labels L

X ← ∅
Ψ← Compute_Bias(V I , V T )
for d← 1 to len(V I) do

V I ← V I \ vId
V T ← V T \ vTd
if MI(vId, L) < Θ then

ψd ← Compute_Bias(V I , V T )
if ψd < Ψ then

X ← X ∪ {(d, ψd)}
end if

end if
end for
Z ← sortψd

(X)[0 : N ] // Dimensions to remove
X ← X \ Z
return X

6 Bias Mitigation Algorithm

Bias mitigation methods typically fall into one of
three categories: data augmentation (fair resam-
pling), model adjustment, and embedding post pro-
cessing algorithms. Each of these alternatives have
their own benefits and drawbacks, but a major lim-
itation of the first two is that they require retrain-
ing the models. This can be burdensome in many
cases. In particular, we often lack access to the
dataset, the model’s training procedure, or in the
case of large pretrained models, retraining may
also be computationally infeasible on typical hard-
ware and cost budgets. Post-processing methods,
on the other hand, may be invoked as a fast and
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efficient plug-and-play method to modify learned
embeddings without the need for retraining. Since
vision–language tasks are complex, VLP models
usually have large architectures to be able to cap-
ture all the complex dynamics. However, this can
cause them to learn redundant or highly correlated
features, since they are not optimally compressed.
These features are not only computationally waste-
ful but can also amplify model bias. Due to the
high correlation among some features, we can re-
move some without affecting performance, while
simultaneously reducing bias. In order to identify
those features, we directly optimize for the objec-
tive in Eq. 1 by removing features in a greedy man-
ner, pruning N dimensions that cause the largest
decrease in bias effect size. However, we only
consider the features that exhibit a small mutual
information with respect to classification labels. Θ
can be set empirically and this ensures only redun-
dant dimensions are removed. Algorithm 1 details
the steps of our technique.

Bias Before After Reduction
Muslim vs Christian 1.72 0.57 66%
Jewish vs Christian 1.69 0.75 55%
Muslim vs Buddhist 1.62 0.11 93%
Jewish vs Buddhist 1.61 0.30 82%
Muslim vs Hindu 1.65 0.71 57%
Arab vs American 1.28 0.33 74%

Mexican vs American 1.13 0.85 26%
Chinese vs American 0.89 0.56 38%

Mental Dis. vs No Dis. 1.48 0.49 66%
LGBTQ vs Heterosexual 1.67 0.92 45%

Table 3: Bias Mitigation Results. Our algorithm is
able to significantly reduce bias without substantially
affecting performance.

The results of this debiasing method are pre-
sented in Table 3. We removed 54 dimensions
(10% of all dimensions), which leads to up to 93%
bias reduction in some cases. This however only
minimally affects the model’s classification accu-
racy. We have tested the accuracy of the model
on the MMbias dataset as well as the CIFAR-100
dataset. On MMbias, the accuracy dropped by only
1.1% , and on CIFAR100 by only 1.3% from 80.1%
to 78.8%. Furthermore, Fig. 4b shows that even
after removing the aforementioned dimensions, the
embeddings still remain well-separable, confirming
the redundancy of some of the embedding features.

Regarding the choice of N (number of features
removed) in the bias mitigation algorithm, a larger
N will affect the performance of the model more

negatively, as previously observed in other dimen-
sionality reduction algorithm. In order to find a rea-
sonable N we can plot the bias reduction as well as
performance reduction as a function of N . Inspect-
ing this graph allows us to consider the trade-off
between greater bias removal and the loss of ac-
curacy, allowing us to choose an N that decreases
the bias in a meaningful way while not affecting
performance significantly.

7 Conclusion

Most bias analysis studies focus on gender and
racial biases, which is primarily due to a lack of
suitable data to consider further important forms
of bias. In this study, we have compiled a new
multimodal bias assessment dataset called MM-
Bias enabling the study of bias affecting popula-
tion groups largely neglected in prior studies. Our
dataset consists of around 3,500 images and hun-
dreds of phrases covering over 14 minority sub-
groups. Furthermore, based on a formulation of
the bias-fairness problem, we draw on this data to
assess the level of bias in several prominent self-
supervised multimodal models, including CLIP,
ALBEF, and ViLT. Our results show that these mod-
els demonstrate meaningful bias towards certain
groups. Finally, we introduce a novel bias mit-
igation technique designed specifically for large
pretrained models that can be applied as a post-
processing step to reduce bias, and show that it
has negligible effects on classification performance
as well as data separability. Our data and code is
available at github.com/sepehrjng92/MMBias.

Limitations

This work seeks to make a contribution towards
vision–language models that exhibit less biased
behavior. To this end, we provide a large new
dataset, new experimental results, and also investi-
gate a bias mitigation method for pre-trained vision–
language models. Yet, bias measurement data as
well are prone to biases, most notably in the se-
lection of classes and groups, but also with regard
to the particular data instances. We envision that
MMBias will grow to encompass further groups
and additional data in the future, e.g., further ethnic
minorities, sexual identities, and gender identities.
We also hope that our dataset can serve as a starting
point for research on additional natural languages.

Clearly, our bias mitigation algorithm can only
mitigate certain fairly overt expressions of bias in
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vision–language models. Large pre-trained models
have millions of parameters that affect the model
behavior. As vision–language models necessarily
need to rate ties between images and text, they will
continue to prefer or disprefer certain associations,
leading to remnant biases. Still, we hope that our
work will enable the community to pay closer atten-
tion to these challenges and work towards models
that behave in more equitable ways.

Ethics Statement

With our work, we wish to encourage further ana-
lysis of bias in machine learning models. To this
end, we provide data that enables an assessment of
a number of potential manifestations of bias. We
acknowledge that the images harbor a multitude
of different stereotypes that cannot be taken to be
representative of the various groups. Moreover, we
acknowledge that the pairings of classes of peo-
ple adopted thus far in our work leaves out other
groups of people, e.g., further forms of faith and
belief, and also further pairings. We view our work
as a step towards a more inclusive bias assessment
resource that should keep growing in the future.
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Abstract

Recent geometric-based approaches have been
shown to efficiently model complex logical
queries (including the intersection operation)
over Knowledge Graphs based on the natu-
ral representation of Venn diagram. Existing
geometric-based models (using points, boxes
embeddings), however, cannot handle the log-
ical negation operation. Further, those using
cones embeddings are limited to representing
queries by two-dimensional shapes, which re-
duced their effectiveness in capturing entities
query relations for correct answers. To over-
come this challenge, we propose unbounded
cylinder embeddings (namely CylE), which is
a novel geometric-based model based on three-
dimensional shapes. Our approach can han-
dle a complete set of basic first-order logic op-
erations (conjunctions, disjunctions and nega-
tions). CylE considers queries as Cartesian
products of unbounded sector-cylinders and
consider a set of nearest boxes corresponds to
the set of answer entities. Precisely, the con-
junctions can be represented via the intersec-
tions of unbounded sector-cylinders. Trans-
forming queries to Disjunctive Normal Form
can handle queries with disjunctions. The
negations can be represented by consider-
ing the closure of complement for an arbi-
trary unbounded sector-cylinder. Empirical
results show that the performance of multi-
hop reasoning task using CylE significantly in-
creases over state-of-the-art geometric-based
query embedding models for queries without
negation. For queries with negation operations,
though the performance is on a par with the
best performing geometric-based model, CylE
significantly outperforms a recent distribution-
based model.

1 Introduction

Multi-hop Reasoning (MHR) on Knowledge
Graphs (KGs) is a primary task in answering
queries over large-scale knowledge graphs. Queries
can be represented using First-Order-Logic (FOL)

connectives (Brachman and Levesque, 2004), in-
volving these operations: existential quantification
(∃), conjunction (∧), disjunction (∨) and negation
(¬). MHR involves learning to answer these FOL
queries, which has recently received attention from
several studies (Hamilton et al., 2018; Ren et al.,
2020; Ren and Leskovec, 2020). A common ap-
proach is to first transform the FOL query into a
computation graph (see Figure 1), where nodes rep-
resent entity constants or variables and edges map
to predicates and logical operations. Representing
queries in this way enables the learning process to
traverse paths of KGs via the computation graph, so
as to find a set of answers for a given query. How-
ever, large-scale KGs (Bollacker et al., 2008; Vran-
dečić and Krötzsch, 2014; Lehmann et al., 2015;
Speer et al., 2017; Fellbaum, 2010; Mitchell et al.,
2018) are often incomplete and noisy, which makes
explicit query mechanism, such as graph traversal
incapable of returning correct answers to a query.

Motivated by the challenge above, we aim to
reason about incomplete KGs using MHR (Lin
et al., 2018; Zhang et al., 2021a). To achieve MHR,
recent studies have proposed several query embed-
ding (QE) methods based on geometry (Hamilton
et al., 2018; Ren et al., 2020; Zhang et al., 2021b)
and probability distribution representations (Ren
and Leskovec, 2020; Choudhary et al., 2021a).
A common approach of QE in the literature is
to project the FOL queries into an embedding
space, allowing a model to learn the embeddings
of queries and entities. Answering these queries
is equivalent to finding the similarity between
the embedded queries and the embedded entities.
Geometric-based models using cone embeddings
ConE (Zhang et al., 2021b) are shown to be su-
perior over the others, especially the ability of
handling negations. ConE represents queries as
Cartesian product of sector-cones in an embed-
ding space. ConE projects target entities as lines
and queries as areas of sector-cones. Intuitively,
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Figure 1: (Left): An example of a computation graph for a FOL query (rewritten from a natural query). (Right):
The intuition of CylE is to model anchor and target entities as perpendicular boxes regarding the base of sector-
cylinders. Each edge of the computation graph transforms the entity with its relation into the sector-cylinder
embedding via projection, intersection or complement operations; then outputting an embedded query.

if the line is inside the area, the corresponding
entity is considered as a match to the query. Nev-
ertheless, cone embeddings are limited to the 2D
space in a flat plane, to represent the query and
entity embeddings. For example, one entity in a
cluster of the sub-topic /movie/action and one in
another /movie/documentary can be in the sector-
cone region for those labels in the topic /movie
(see Figure 2(a)). Answering a query regarding the
/movie/action can return irrelevant entities from the
/movie/documentary. In multi-dimensional space,
entities assigned to multiple labels can be achieved
using multi-dimensional classification (Read et al.,
2013). In the 3D space, for instance, apart from the
xy-plane, semantics of entities can be additionally
classified by different levels of degree in the height
segment (along the z-axis).

In this paper, we propose to expand the two di-
mension sector-cone embeddings into the three di-
mension coordinate system. We represent queries
by augmenting the shape of the sector-cones to
be similar as unbounded sector-cylinders (shortly
called sector-cylinders) in an embedding space,
compared to closed sector-cylinders in a nor-
mal situation (see examples of unbounded sector-
cylinders, their intersection or union in Figure 2
and further definitions in Section 4.1). In short, we
name this approach Cylinder Embeddings (CylE).
Answering a query is similar to finding entities
that are subsets of the sector-cylinders representing
queries. We investigate whether there is any im-
provement in answering correctly any query struc-
tures, using CylE over other approaches. Our ap-
proach can handle the conjunction as we notice
that the intersection of sector-cylinders (along the
z-axis) can be a sector-cylinder. Since the union of
sector-cylinders is no longer a sector-cylinder, we

first transform queries to Disjunctive Normal Form
(DNF), which enables CylE to handle disjunction.
With regard to the negation operation, we con-
sider the closure-complement of sector-cylinders
to model this operation. Our contributions are: (1)
introducing the first 3D geometric-based approach
to model the QE for MHR to the best of our knowl-
edge, (2) enabling the model to handle a complete
set of the basic FOL queries (existential quantifica-
tion, conjunction, disjunction and negation) and (3)
demonstrating that CylE significantly outperforms
state-of-the-art (SOTA) geometric-based models
for non-negation queries and is on par for queries
with negations by empirical results.

2 Related works

Multi-hop Reasoning for logical query Stud-
ies in MHR employed approaches such as (dis-
tributions (Ren and Leskovec, 2020; Choudhary
et al., 2021a; Huang et al., 2022), geometric
shapes (Hamilton et al., 2018; Ren et al., 2020;
Zhang et al., 2021b), fuzzy logic (Chen et al., 2022;
Arakelyan et al., 2021)), others using count-min
sketch (Sun et al., 2020) and neural-symbolic ap-
proach (Zhu et al., 2022), to achieve the common
goal of learning representation of queries, i.e. query
embeddings. The primary difference in these ap-
proaches is based on how queries are represented.
For example, distribution-based models use Beta
distributions (Ren and Leskovec, 2020) or Mul-
tivariate Gaussian distributions (Choudhary et al.,
2021a). In geometric shapes, Hamilton et al. (2018)
represented queries as point embeddings, Ren et al.
(2020) then furthered this using box embeddings,
and Bai et al. (2022) made an improvement by in-
troducing ‘particle’ embeddings (a set of points
using multiple vectors). Zhang et al. (2021b) have
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made the geometric approach more expressive us-
ing cone embeddings. Another difference is the
ability to model a complete set of logical opera-
tions (Brachman and Levesque, 2004) (conjunction,
disjunction and negation). Several methods (Ren
and Leskovec, 2020; Zhang et al., 2021b; Bai et al.,
2022; Chen et al., 2022) have achieved a coverage
of all operations including the negation, compared
to others (Hamilton et al., 2018; Ren et al., 2020;
Choudhary et al., 2021a) without negation.

Reasoning about KGs using geometric shapes
Historically, these approaches received attention
since the introduction of translation-based meth-
ods (Bordes et al., 2013), rotation (Sun et al., 2019;
Zhang et al., 2020) and 3D-rotation (Gao et al.,
2020) for learning knowledge graph embeddings.
Inspired by a Poincaré ball, other studies (Nickel
and Kiela, 2017; Balažević et al., 2019) proposed
hyperbolic space (non-Euclidean geometry). A
common task of these studies is KGs completion.
However, furthering it to MHR task poses a chal-
lenge because of the complex structures of queries
(see Figure 3). Using geometric shapes for the
MHR task (point Hamilton et al. (2018); Bai et al.
(2022), box Ren et al. (2020), hyperbolic Choud-
hary et al. (2021b) and cone embeddings Zhang
et al. (2021b)) have increasingly gained popularity.
Cone embeddings were also mentioned in (Ganea
et al., 2018), but not for the MHR task. Since exist-
ing geometric-based methods of cone embeddings
rely on 2D shapes, we extend the representation
learning for this geometric family to 3D shapes for
the MHR task. Other studies (e.g. spherical text
embeddings (Meng et al., 2019)) learned word em-
beddings for document clustering and classification
tasks, but still not for the MHR task.

3 Preliminaries

3.1 Knowledge Graphs

Given a set of vertices (entities) V and a set of edges
(relations or predicates) E , we define a knowl-
edge graph (G) as a set of triples. Each triple is
(vs, e, vo), where (vs, vo ∈ V) and (e ∈ E) is a
vertex subject, a vertex object and an edge respec-
tively. Assuming (r ∈ R) denotes each element in
a set of relation functions (R), where (r) – associ-
ated with (e) – is a binary function r : V × V →
{True,False} that denotes an asymmetric direction
of relation from (vs) to (vo), and vice versa. A
symmetric direction of relation (non-directional re-

lation) is r : V × V → {True,True}. Notice that
there are two sets involving in edges/relations: (E)
for edge instances and (R) for relation functions.

3.2 First-Order Logic queries
There are four basic logical operations involving in
the interpretation of FOL queries1: conjunction (∧),
disjunction (∨), negation (¬) and existential quan-
tification (∃). We adopt definitions and notations
of BetaE (Ren and Leskovec, 2020) to assume that
a FOL query consists of three folds: (1) a constant
anchor entity set (Va ⊆ V), (2) existentially quan-
tified bound variables (V1, . . . , Vk) and (3) a target
entity variable (V?) to respond a certain query. A
FOL query can be written in Disjunctive Normal
Form (DNF) as a combination of disjunctions of
conjunctive queries (ci) in the following:

q[V?] = V? · ∃V1, . . . , Vk : c1 ∨ c2 ∨ . . . cn,
where ci = ei1 ∧ ei2 · · · ∧ eim, in-
cluding at least one literal eij =
r(va, V ) or ¬r(va, V ) or r(V ′, V ) or ¬r(V ′, V ),
and (va ∈ Va) while V ∈ {V?, V1, . . . , Vk},
V ′ ∈ {V1, . . . , Vk} and V ′ 6= V . Finding the an-
swer entities of a query (q) is similar to searching
for an answer set JqK ⊆ V , where v ∈ JqK if and
only if q[v] is True.

3.3 Query Decomposition
We adopt the definitions of FOL query decompo-
sition in Zhang et al. (2021b) using a computation
graph, including vertices and edges (see an exam-
ple in Figure 1). Each intermediate vertex is a set
of entities and each edge demonstrates relational
projection or logical operations over entity sets:

• Relation Traversal → Projection: Given
a set of entities S ⊂ V and a relation
function r ∈ R, estimate adjacent entities
∪v∈SA(v, r), where A(v, r) ≡ {v′ ∈ V :
r(v, v′) = True}.

• Negation → Complement: Given a set of
entities S ⊂ V , estimate S where S ≡ V\S.

• Conjunction→ Intersection: Given a num-
ber of sets of entities {S1,S2, . . . ,Sn}, com-
pute the intersection ∩ni=1Si of these sets.

• Disjunction→Union: Given a number of en-
tity sets {S1, . . . ,Sn}, find the union ∪ni=1Si.

1Universal quantification (∀) rarely appears in the real
world (Ren and Leskovec, 2020), this operation is therefore
not considered.
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Figure 2: An overview of cone and cylinder embeddings with projection, logical operations (intersection, union,
complement) and distance. The color dot line represents the semantic center axis. (c) Intersection between a sector-
cylinder (red semantic center) and another higher sector-sector (royal blue semantic center) is the sector-cylinder
having green semantic center. (d) Union of three sector-cylinders (having red, purple and royal blue semantic
center axis) are in green regions. (f) Distance is from the green sector-cylinder (of an embedded query) to a purple
target box (of an embedded target entity); di, do, dh denotes the inside, outside and height distance.

4 Cylinder embeddings

We first provide a background of parameterizing
cylinder (Section 4.1) and modeling cylinder em-
beddings for conjunctive queries (Section 4.2).
Next, we show the cylinder embeddings process
with logical operators (Section 4.3), then provide
an optimization method (Section 4.4).

4.1 Cylinder definitions and
parameterization

We define an unbounded sector-cylinder (without
parameterizing radius) as having only two bounds
for its body: the upper bound and the lower bound
with an intersection as a height (see Figure 2(a)).
We call the angle between the two bounds aperture,
which has a range in [0, 2π]. In short, we call an
unbounded sector-cylinder a sector-cylinder or a
cylinder based on their apertures. Notice that a
sector-cylinder becomes a cylinder when the aper-
ture is zero. We use three variables for parameteri-
zation (the first two for the sector-cylinder’s base
adapt from ConE): (1) the semantic center axis
θax ∈ [−π, π) is the angle between the positive
x-axis and the symmetric axis, (2) θap ∈ [0, 2π] is
the aperture and (3) θhe ∈ (−π, π) is the height.

Note that the base of cylinders and cones share
similarity in properties (semantic axis and aper-
ture), which can be illustrated in the same plane,
such as xy-plane. Thus, the base of cylinders in
our study inherit some definitions and propositions
from cones. These are a cone, a convex cone (Boyd
et al., 2004), a closure-complement of a cone and
a sector-cone. Each of these, which is defined by
ConE (Zhang et al., 2021b), is a set in 2D space.
Further, sector-cylinder’s base has the same propo-
sition as the sector-cone: “always axially symmet-
ric” which has been proven in ConE.

Precisely, we define (K) as a space consisting

of all (θax, θap, θhe). An arbitrary sector-cylinder
S0 is as: S0 = (θax, θap, θhe) ∈ K. Then, a d-
ary Cartesian product of sector-cylinders, called
S, is a product of each sector-cylinder Si=1→d (or
each element of S is a d-dimensional vector in Kd):
S = S1 × S2 · · · × Sd or be rewritten as follows:

S : =
(
(θ1ax, θ

1
ap, θ

1
he), . . . , (θ

d
ax, θ

d
ap, θ

d
he)
)

= (θax,θap,θhe) ⊂ Kd. (4.1)

4.2 Cylinder embeddings for conjunctive
queries and entities

In this section, we describe query embeddings for
conjunctive queries. Note that disjunctive queries
can be transformed to DNF form as a set of con-
junctive queries (as mentioned in Section 3.2). We
model the embedding region (Vq) for the answer
set JqK of the query (q) (see Section 3.3) using
a Cartesian product of sector-cylinders (as men-
tioned in Section 4.1) as: Vq = (θax,θap,θhe),
where embedding of semantic center axis is θax ∈
[−π, π)d, embedding of aperture is θap ∈ [0, 2π]d

and embedding of height is θhe ∈ (−π, π)d; and
(d) denotes the dimension of the embedding space
(see Eq. (4.1)).

Next, an arbitrary entity (v ∈ V) is represented
by a Cartesian product of cylinders having zero
apertures. The corresponding embedding (v) is as:
v = (θax,0,θhe). The intuition is to embed the
anchor or target entity into one similar as a perpen-
dicular box with regard to a base of the cylinder,
Precisely, all elements of the d-dimensional vector
(θap) is equal to zero.

4.3 Cylinder embeddings with logical
operators

We describe the process of modeling relational pro-
jection (projection module) and modeling logical
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operators (intersection, complement, union mod-
ule), to embed the FOL queries in the following:

Projection module: This module aims to learn
the projection operation (see Section 3.3), which
outputs the adjacent entities (of an anchor entity)
linking to a given relation. To this end, we maps the
embedding region of an entity set (Vq) to another
(V′q) (see Figure 2(b)) via a mapping function (f):

f : Kd → Kd,Vq → V′q.

We use a shallow neural network to approximately
represent the mapping function f(x). Overall,
(Vq) is a summation of the embeddings of entity
set (V) and a relation (r) as: Vq = V + r; where
the representation of each relation (r) is sector-
cylinder embeddings. Then, a composition func-
tion f(Vq) has a scaling of chunking function g(x)
and a multilayer perceptron (MLP) network:

f(Vq) = g(MLP([Vq])),

where MLP : R3d → R3d, and the function g(x)
is to split a three-dimensional vector into three
d-vectors for semantic center axis, aperture and
height embeddings. In addition, there is a scaling
operation, adapt from Zhang et al. (2021b), involv-
ing in the function g(x) to scale the semantic center
axis, the aperture and the height embeddings into
their normal ranges (as mentioned in Section 4.2):

[f(x)]i =





θ′iax = π tanh(λ1xi), if i ≤ d,
θ′i−dap = π tanh(λ2xi) + π, if i > d,

θ′ihe = 2π(sigmoid(λ3xi)− 0.5),

where [f(x)]i is the i-th element of f(x);
(λ1, λ2, λ3) are the scaling hyper-parameters.

Intersection module: This module aims to learn
the conjunction operation (see Section 3.3). As-
suming a conjunction of conjunctive queries (qi)
associates with a query (q), its answer is JqK =
∩ki=1JqiK. Notice that entities in the set JqK share
semantic similarity with one another, as the con-
junction of conjunctive queries based on sector-
cylinder embeddings are conjunctive queries (see
Figure 2 (c)). Supposing V∩q = (θax,θap,θhe)
and Vi,q = (θi,ax,θi,ap,θi,he) are embedding re-
gion of JqK and JqiK respectively. To obtain the
V∩q, we then take the summation w.r.t. the number
of conjunctive queries (of the Hadamard product
� betweenAi and Vi,q), which is shown below:

V∩q =
∑k

iAi �Vi,q,

whereA ∈ Rk×d is an attention matrix defined by:

Ai×d =
exp

(
MLP([Vq])i

)

∑n
j exp

(
MLP([Vq])j

) ,

where (k) is the number of involving conjunctive
queries and [Vq]i ∈ R3d is a concatenation of
(θi,ax,θi,ap,θi,he) for the i-th conjunctive query
and MLP : R3d → Rd. As mentioned in Ren et al.
(2020), using attention mechanism is important in
comparison to other approaches (e.g. averaging,
deep sets Zaheer et al. (2017)). Note that our ap-
proach is to approximately model the conjunction
operation. Further, this approach is different than
that in cone embeddings which required an inter-
mediate process (Zhang et al., 2021b): to convert
the semantic center axis to points on the unit circle,
then to map these points back to angles to recover
the semantic center axis.

Complement module: This module aims to rep-
resent the negation operation (see Section 3.3), by
finding the complementary set of JqK (or V\JqK):
J¬qK. Supposing Vq = (θax,θap,θhe) and
V¬q = (θ′ax,θ

′
ap,θ

′
he) are sector-cylinder embed-

dings region of JqK and J¬qK respectively. From a
geometric aspect, the closure-complement is close
to the set of sector-cylinders (see Figure 2(e)).
Thus, the sum of apertures of (Vq) and (V¬q)
should be close to 2π. Assuming semantic cen-
ter of (V¬q) should be opposite to those in (Vq)
while the height of (V¬q) should be equivalent to
those in (Vq) as follows:

[θ′ax]i =

{
[θax]i − π, if [θax]i ≥ 0,

[θax]i + π, if [θax]i < 0,

[θ′ap]i = 2π − [θap]i,

[θ′he]i = [θhe]i.

Note that the height variable cannot be involved in
this module, as the negation should be closed with-
out this variable. Since the negation is not closed
w.r.t. entities as long as keeping the same height for
(V¬q) and (Vq), this can be a bottleneck of nega-
tion queries under the three dimension space. This
can be addressed by designing closed negation for
both queries and entities; however, we leave this
direction for future work.

Union module: This module aims to represent
the disjunction operation (see Section 3.3). Assum-
ing a disjunction of conjunctive queries (qi) asso-
ciates with a query (q), the aim of this operation is
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to represent its answer: JqK = ∪ki=1JqiK. We face a
challenge as the union of sector-cylinders having
different height is no longer a sector-cylinder, or
the union over sector-cylinders is not closed (see
Figure 2(d)). As mentioned by Ren et al. (2020),
there is an issue of non-scalability when modeling
directly the disjunction. To address this issue, we
adapt a technique of Ren et al. (2020) by trans-
forming queries into a DNF (Davey and Priestley,
2002) (e.g. disjunction of conjunctive queries). The
union operation in DNF is moved to the last step
of converted computation graphs, which contain
conjunctive queries (see Section 3.2). Thus, we can
apply the other logical operations (as mentioned
in above modules) to have a set of embeddings of
these conjunctive queries. The answer entities are
those nearest to any embeddings of these conjunc-
tive queries (see further details of estimating the
aggregated distance score in Eq. (4.2)).

4.4 Optimization method

Distance score: We define a distance score
d(v;V) between the embedded region entity v =
(θ′ax,0,θ

′
he) and the embedded region query V =

(θax,θap,θhe). Inspired by Ren et al. (2020) and
Zhang et al. (2021b), we adapt two types of this dis-
tance: (1) dcon (for those conjunctive queries) and
(2) ddis (for those disjunctive queries). In terms of
estimating (dcon), there are three terms: an outside
distance (do), an inside distance (di) and a height
distance (dh) as follows:

dcon(v;V) = do(v;V) + λdi(v;V) + dh(v;V),

where the hyper-parameter λ ∈ (0, 1) is to en-
courage the expected entity (v) to be inside the
embedded region (V). Intuitively, (v) is close to
the upper or lower bound of (V) when (λ) is close
to zero or one. The three distances contributing to
the (dcon) for conjunctive queries are defined by:

do =
∣∣∣
∣∣∣min{dl, du}

∣∣∣
∣∣∣
1
, di =

∣∣∣
∣∣∣min{dax, dap}

∣∣∣
∣∣∣
1
,

dh =
∣∣∣
∣∣∣θ′he − θhe

∣∣∣
∣∣∣
1
,

where (dl = |1 − cos(θ′ax − θl)|) denotes the
outside distance between the semantic center axis
of the entity and the lower bound of the query,
(du = |1 − cos(θ′ax − θu)|) denotes the out-
side distance between the semantic center axis
of the entity and the upper bound of the query;
(dax = |1 − cos(θ′ax − θax)|) denotes the inside

distance between the semantic center axis of the en-
tity and that of the query, (dap = |1− cos(θap/2)|)
denotes the inside distance between the semantic
center axis and either of the two bounds of the
query (see Figure 2(f) for an example to estimate
these distances). Further, (θl = θax − θap

2 ) is the
lower bound and (θu = θax +

θap
2 ) is the upper

bound of the embedded query, the notation || · ||1
is the L1 norm. The higher value of the cosine
function is, the less distance is. Notice that the
maximum of this function is equivalent to one, we
therefore subtract one from this, to ensure the min-
imum distance to be close to zero. Next, we adapt
the DNF technique of Ren et al. (2020) to estimate
(ddis) by obtaining the minimum distance between
a target entity and each conjunctive query:

ddis(v;V) = min{dcon(v;Vi)}i:1→n. (4.2)

Training objective function: To optimize the
training loss, we follow the objective function (L)
from Ren and Leskovec (2020), L = − log σ(γ −
d(v;V))− 1

n

∑n
i log σ(d(v

′;V)− γ) is a summa-
tion of two terms: (1) a positive loss is to minimize
the distance d(v;V) between a positive embed-
ded entity (v ∈ JqK) and an embedded query and
(2) a negative sampling loss is to maximize the dis-
tance d(v′;V) between negative embedded entities
(v′i:1→n /∈ JqK) and an embedded query; where (n)
is the number of negative sampling entities, σ(x)
denotes the sigmoid activation function and the
hyper-parameter (γ) is a pre-fixed positive margin.

5 Experiments

5.1 Experimental designs

For benchmarking, we follow experimental designs
(datasets, query structures, training and evalua-
tion protocol) of Multi-hop Reasoning (MHR) task
from (Ren and Leskovec, 2020).

Datasets: We use benchmarking datasets for
the MHR task: FB15k (Bollacker et al., 2008),
FB15k-237 (Toutanova and Chen, 2015) and
NELL995 (Xiong et al., 2017). Using the same
pre-processing steps as BetaE (Ren and Leskovec,
2020), we split each dataset into the training, val-
idation, and test set. The aim of MHR task is to
obtain non-trivial answers, which cannot be discov-
ered by directly traversing the incomplete KGs, for
each arbitrary FOL query. Please see Appendix A.1
for further details of these datasets.
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Figure 3: (Left) & (Middle): query structures are involved in the training process. (Left), (Middle) & (Right):
all queries are involved in the evaluation process; p is projection, i is intersection, n is negation and u is union.

Dataset Model 1p 2p 3p 2i 3i ip pi 2u up AVG

FB15k

GQE 53.9 15.5 11.1 40.2 52.4 19.4 27.5 22.3 11.7 28.2
Q2B 70.5 23.0 15.1 61.2 71.8 28.7 41.8 37.7 19.0 40.1

BetaE 65.1 25.7 24.7 55.8 66.5 28.1 43.9 40.1 25.2 41.6
ConE (d = 800) 73.3 33.8 29.2 64.4 73.7 35.7 50.9 55.7 31.4 49.8

CylE (d = 512) 78.5 34.6 29.2 65.5 74.5 37.9 52.2 57.9 31.6 51.3
CylE (d = 800) 78.8 37.0 30.9 66.9 75.7 40.8 53.8 59.4 33.5 53.0

FB15k-237

GQE 35.2 7.4 5.5 23.6 35.7 10.9 16.7 8.4 5.8 16.6
Q2B 41.3 9.9 7.2 31.1 45.4 13.3 21.9 11.9 8.1 21.1

BetaE 39.0 10.9 10.0 28.8 42.5 12.6 22.4 12.4 9.7 20.9
ConE (d = 800) 41.8 12.8 11.0 32.6 47.3 14.0 25.5 14.5 10.8 23.4

CylE (d = 512) 42.5 13.0 11.0 34.4 48.4 15.0 26.3 15.2 11.2 24.1
CylE (d = 800) 42.9 13.3 11.3 35.0 49.0 15.7 27.0 15.3 11.2 24.5

NELL995

GQE 33.1 12.1 9.9 27.3 35.1 14.5 18.5 8.5 9.0 18.7
Q2B 42.7 14.5 11.7 34.7 45.8 17.4 23.2 12.0 10.7 23.6

BetaE 53.0 13.0 11.4 37.6 47.5 14.3 24.1 12.2 8.5 24.6
ConE (d = 800) 53.1 16.1 13.9 40.0 50.8 17.5 26.3 15.3 11.3 27.2

CylE (d = 512) 56.5 17.5 15.6 41.4 51.2 19.6 27.2 15.7 12.3 28.5
CylE (d = 800) 55.7 17.5 15.1 40.7 51.1 19.1 27.1 15.4 12.2 28.2

Table 1: The average MRR (%) results in different query structures without negation (∃, ∧, ∨) using these datasets:
FB15k, FB15k-237 and NELL995. The results of baselines (GQE, Q2B, BetaE, ConE) are taken from (Zhang et al.,
2021b). Query structures with union operations (2u/up) are in DNF forms.

Queries: We adopt FOL query structures of (Ren
and Leskovec, 2020) for the training, valida-
tion and test process. In terms of the train-
ing, there are five structures without negation
(1p/2p/3p/2i/3i) and five structures with nega-
tion (2in/3in/inp/pni/pin). With regard to the
evaluation process, we not only use the same query
structures as those in the training process, we also
use unseen structures (ip/pi/2u/up), which have
not been involved in the training process, to evalu-
ate the ability of generalization for the model.

Training and evaluation protocol: In terms the
training process, we use Adam optimizer (Kingma
and Ba, 2015). We follow the similar hyper-
parameter settings of (Zhang et al., 2021b) to ini-
tialize the model, but search for the most effective
combination of these hyper-parameters in the situ-
ation of cylinder embeddings (see more details in

Appendix A.2). With regard to the evaluation pro-
cess, we adopt the evaluation protocol of (Ren and
Leskovec, 2020). There are three involving KGs:
the training KG (Gtrain for training edges), the
validation KG (Gvalid for training and validation
edges) and the test KG (Gtest for training, valida-
tion and test edges) (see Appendix A.1). Specifi-
cally, given a test query (q) of incomplete KGs, our
aim is to find non-trivial answers JqKtest\JqKvalid
(JqKvalid\JqKtrain). We use the same metric Mean
Reciprocal Rank (MRR) as described in (Ren
et al., 2020; Ren and Leskovec, 2020; Zhang et al.,
2021b) to evaluate the performance of Multi-hop
Reasoning. Suppose (Q) is a set of JqKtest\JqKvalid,
for each non-trivial answer (v ∈ Q), we rank (v)
against non-answer entities V\JqKtest (where v is as-
sociated with the rank r). We estimate the MRR as
follows: MRR = 1

|Q|
∑|Q|

v∈Q
1
r . The higher MRR

1742



is, the better performance of the model is.

Baselines: There are four baseline models: GQE
(Hamilton et al., 2018), Query2Box/Q2B (Ren
et al., 2020), BetaE (Ren and Leskovec, 2020)
and ConE (Zhang et al., 2021b). We obtain the
recent results of these models from Zhang et al.
(2021b), which are slightly higher than those re-
ported by Ren and Leskovec (2020). We not only
use the same embedding dimension d = 800 as
ConE for fair comparisons, but we also run experi-
ments using d = 512 for the sensitivity analysis2.

5.2 Results

We report our main results of Multi-hop Reason-
ing using CylE regarding FOL queries with and
without negation. Specifically, we compare the
performance of CylE with these baselines: GQE,
Q2B, BetaE and ConE using the same benchmark-
ing datasets as mentioned above. We obtain the
average results of five experiments for each dataset
when the embedding dimension d = 800 (see Ap-
pendix B.1 for error bars of these results). For the
sensitivity analysis with d = 512, we obtain results
of an experiment for each dataset.

Modeling queries without negation: Table 1
demonstrates the average performance of Multi-
hop Reasoning using CylE regarding existential
positive first-order (EPFO) queries (a subset of
FOL queries without negation), compared to base-
lines. Overall, CylE significantly outperforms all
baselines. In comparison with the SOTA model
ConE (d = 800), the average performance for all
query structures (AVG) of CylE gains around 6.4%,
4.7% and 3.7% using the dataset FB15k, FB15k-
237 and NELL995 respectively. More specifically,
CylE achieves the highest improvement regarding
ip queries, by nearly 14.3%, 12.1% and 9.1% us-
ing these datasets. In comparison with the previous
model BETA, the AVG of CylE (d = 800) is also
considerably higher, by around 27.4%, 17.2% and
14.6%, observed in the three datasets.

In terms of using the DNF technique, notice that
the performance of answering those queries with
unions (2u) only is significantly lower than those of
queries with intersections (2i), by a large margin.
We consistently observed this point in the three
datasets. This can be due the limitation of repre-
senting union queries using the DNF technique,
where it is challenging to expect an answer entity,

2Source code is available at https://github.com/nlp-tlp/cyle

for example, to be nearest to all conjunctive queries
in the DNF form (see Eq. (4.2)). We also report
the results for query structures regarding the union
operation using De Morgan’s (DM) law. Since
there might be a problem of inconsistency with
the real set union (as discussed in (Zhang et al.,
2021b)), the results for union operation using DNF
(2u/up) are higher than those using DM law (see
Section 5.3 for further details).

Modeling queries with negation: Table 2
shows the average performance of Multi-hop Rea-
soning using CylE regarding query with negation,
compared to baselines. Although ConE achieves
the highest performance in average using the three
datasets, the AVG of CylE (d = 800) is close to
those in ConE. In comparison with the previous
model BetaE, the AVG of CylE outperforms signif-
icantly. This increasing trend is similar to that in
the ConE. Note that handling queries with negation
are still challenging in all models (BetaE, ConE
and CylE) since the AVG are significantly lower
than those in queries without negation operations.
This challenge may be due to a high uncertainty in
the large number of answers for negation queries.

Dataset Model 2in 3in inp pin pni AVG

FB15k
BetaE 14.3 14.7 11.5 6.5 12.4 11.8

ConE (d = 800) 17.9 18.7 12.5 9.8 15.1 14.8

CylE (d = 512) 15.6 15.9 13.3 7.5 13.6 13.2
CylE (d = 800) 15.7 16.3 13.7 7.8 13.9 13.5

FB15k-237
BetaE 5.1 7.9 7.4 3.6 3.4 5.4

ConE (d = 800) 5.4 8.6 7.8 4.0 3.6 5.9

CylE (d = 512) 4.8 8.3 8.1 3.6 3.4 5.7
CylE (d = 800) 4.9 8.3 8.2 3.7 3.4 5.7

NELL995
BetaE 5.1 7.8 10.0 3.1 3.5 5.9

ConE (d = 800) 5.7 8.1 10.8 3.5 3.9 6.4

CylE (d = 512) 5.6 7.5 11.2 3.4 3.7 6.3
CylE (d = 800) 5.4 7.6 11.3 3.4 3.7 6.3

Table 2: The average MRR (%) in different query
structures with negation using these datasets: FB15k,
FB15k-237 and NELL995. The baseline results (BetaE
and ConE) are taken from (Zhang et al., 2021b).

Effects of the embedding dimension: In terms
of queries without negation, there is a slight dif-
ference in MRR results of CylE between the em-
bedding dimension d = 800 and d = 512 (see
Table 1). MRR results in these query structures
with d = 800 are higher than those with d = 512
using these datasets FB15k and FB15k-237. In
the NELL995 dataset, however, MRR results with
d = 800 are lower than those with d = 512. There
is a different trend in these datasets as there may be
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an over-fitting problem when implementing CylE
using the NELL995 dataset, but not for the FB15k
and FB15k-237 dataset. Notice that large number
of entities increase the complexity of the model
using the NELL995 dataset. Precisely, the number
of entities in this dataset (63,361) is considerably
larger than those in the FB15k (14,951) and FB15k-
237 dataset (14,505) (see Appendix A.1). Simi-
larly, the number of relations also contribute to the
complexity of the model. Although the number of
relations in the NELL995 dataset (200) is less than
those in the FB15k (1,345) and FB15k-237 dataset
(237), this difference is slight, compared to that
in the number of entities across the three datasets.
With regard to negation queries, MRR results of
CylE with d = 512 are close to those with d = 800
(see Table 2). Hence, there is little effect of the
embedding dimension on the performance of CylE
in these query structures.

5.3 Comparisons results of disjunctive
queries using DNF and De Morgan’s law

Table 3 shows the comparisons of MRR results (in
percentage) of query structures regarding union op-
erations using DNF and DM transformation. We
compare results of CylE with those in ConE and
BETA, since these models can handle the negation
operations requiring for the transformation in DM
queries. Overall, the MRR in DNF query structures
of the approaches using ConE and CylE are higher
than those in DM query structures. There is a simi-

Dataset Model 2u-DNF 2u-DM up-DNF up-DM

FB15k
BetaE 40.1 25.0 25.2 25.4
ConE 55.7 37.7 31.4 29.8
CylE 59.4 42.4 33.5 32.0

FB15k-237
BetaE 12.4 11.1 9.7 9.9
ConE 14.5 13.4 10.8 9.9
CylE 15.3 13.4 11.2 10.6

NELL995
BetaE 12.2 11.0 8.5 8.6
ConE 15.3 14.8 11.3 10.8
CylE 15.4 13.3 12.2 11.5

Table 3: MRR (%) for answering FOL disjunctive
query structures using DNF and DM on these datasets:
FB15k, FB15k-237 and NELL995. The results of Be-
taE and ConE are taken from (Zhang et al., 2021b).

lar trend in ConE and CylE, since these approaches
share similarity in the aperture (the boundary of
shapes in sector-cone and sector-cylinder respec-
tively). Note that we use complement operations to
transform union queries into DM forms, the queries
in this situation are represented in geometry (sector-

cone and sector-cylinder respectively). However,
not all queries are represented well in geometry
as discussed in (Zhang et al., 2021b). Further, we
also observe a higher margin in MRR results of
CylE than those in ConE, regarding most of DNF
and DM query structures, using the three datasets
(FB15k, FB15k-237 and NELL995).

6 Conclusion

We have presented a novel query embeddings (QE)
model using cylinder embeddings (CylE), which
can handle a complete set of arbitrary FOL queries,
to perform the Multi-hop Reasoning (MHR) task.
To the best of our knowledge, CylE is the first
3D geometric-based QE model for MHR. Experi-
ments show significant performance gain over pre-
vious approaches for non-negation queries. For
queries with negation operations, we face a sim-
ilar challenge to previous models i.e. low MHR
performance. This is a future direction to improve
CylE on these queries. This work paves the way
for opening the geometric-based QE method using
three dimensional shapes.

Limitations

Although CylE can learn to achieve the Multi-
hop Reasoning task or answering complex queries,
several limitations in this work are taken into ac-
count. First, the modeling process of logical op-
erators (conjunction, disjunction and negation) us-
ing geometric-based perspective is an approximate
method in a learning manner which may not satisfy
some logic laws. This can be addressed by us-
ing fuzzy logic under fuzzy sets representation for
these logical operators Chen et al. (2022). Fuzzy
logic is a learning-free manner for logical opera-
tors in FOL queries. Combining this approach with
the neural models to learn these operators can be a
potential approach, but we leave this extension as a
direction for future work.

Another limitation is that modeling union oper-
ators in EPFO queries using the DNF technique
may not find all expected answer entities. Note that
modeling this operator is similar to finding near-
est entities to all conjunctive queries (in the DNF
form), which may not an optimal solution when the
geometric embeddings of these queries locate far
from one to another, as mentioned in Section 5.2,
queries structure 2u and 2i in particular.
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A Further experimental details

We provide additional details for Section 5.1 in this
section, divided into parts: Datasets & query struc-
tures A.1 and training & evaluation protocol A.2.

A.1 Datasets and query structures

We train and evaluate models using the same
datasets (FB15k (Bollacker et al., 2008),
FB15k-237 (Toutanova and Chen, 2015) and
NELL995 (Xiong et al., 2017)) as those in (Ren
and Leskovec, 2020) for the task of Multi-hop
Reasoning (see Table 4 for a number of entities, a
number of relations, a number of edges for each
dataset). These datasets has been pre-processed
by (Ren and Leskovec, 2020) to generate query
structures for the training/validation/test set (see
Table 5 for a description of these query structures
and Table 6 for a description of average number of
answer entities for test queries). These datasets are
available at this link 3.

Dataset Entities Relations Edges

Training Validation Test Total

FB15k 14,951 1,345 483,142 50,000 59,071 592,213
FB15k-237 14,505 237 272,115 17,526 20,438 310,079
NELL995 63,361 200 114,213 14,324 14,267 142,804

Table 4: A statistical description of number of enti-
ties, relations, training/validation/test edges, reported
from (Ren and Leskovec, 2020), in three datasets:
FB15k, FB15k-237 and NELL995.

A.2 Training and evaluation protocol

We compare our results with these baselines (GQE,
Query2Box, BetaE and ConE), taken from (Zhang
et al., 2021b). We conduct all experiments using
the Pytorch framework. Our implementation is
done based on the original work of BetaE (Ren and
Leskovec, 2020). 4 We adopt hyper-parameters,
found by (Zhang et al., 2021b): the dimension
of embedding d = 800, λ1 = 1.0, λ2 = 2.0,
λ = 0.02, the batch size b = 512 and the negative
sampling size n = 128. We also search for these
hyper-parameters for best performance in MRR:
the γ in the loss function [20, 30], the learning rate
{1e−4, 5e−5} and the scaling weight for the height
variable λ3 {1.0, 2.0}. We use a three-layer MLP
(for a projection module) while two-layer MLP
(for an intersection module), using 1600 dimension

3https://github.com/snap-stanford/KGReasoning
4https://github.com/snap-stanford/KGReasoning, licensed

under the MIT License.

for hidden layers and Swiss activation function (Ra-
machandran et al., 2017). We run each experiment
on a single NVIDIA Tesla V100 GPU. More details
of hyper-parameters are shown in Table 7. Note
that we also search for hyper-parameters in terms
of experiments using ReLU activation function (in
MLP) for ablation study. In this situation, we fol-
low the same found hyper-parameters in Table 7 as
those in the situation using Swiss activation func-
tion (the dimension of embedding d, the batch size
b, the number of negative sampling size n, the maxi-
mum number of training stepsm, the scaling hyper-
parameters λi={1,2,3}, the controlling distance λ,
the learning rate l and the γ in the loss function),
except for the found γ = 30 in the loss function
using the FB15k-237 dataset, during the training
process.

B Additional experimental results

B.1 Error bars

Table 8 and Table 9 show the error bars of MRR
for the task of Multi-hop Reasoning using our ap-
proach with CylE, for queries without and with
negation respectively using the three dataset FB15k,
FB15k-237 and NELL995. More specifically, we
run five experiments using different seed values in
{0, 10, 100, 1000, 10000} during the initialization
process (for each dataset). We estimate the average
MRR for different query structures of five experi-
ments and obtain the standard deviation (for each
dataset).

In terms of queries without negation, the stan-
dard deviation of the average MRR is small, at
around 0.101, 0.039 and 0.113 using the dataset
FB15k, FB15k-237 and NELL995 respectively. A
similar trend is observed in queries with negation
operation, since the standard deviation of the av-
erage MRR is also small using the three datasets.
These error bars show a level of degree in stability
of MRR (for each dataset) using different values of
random seed during the initialization process.

B.2 Modeling the cardinality of answer sets
using correlation coefficients

It is argued that the aperture embeddings may have
a correlation with the number of the answer set JqK.
This correlation though is not guaranteed under dif-
ferent circumstances (e.g. entities having identical
relations to one another), the learnt embeddings can
have a positive relationship with the number of ele-
ments (cardinality) of JqK. We follow a technique
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Dataset Training Queries Validation Queries Test Queries

1p/2p/3p/2i/3i 2in/3in/inp/pin/pni 1p Each Other 1p Each Other

FB15k 273,710 27,371 59,097 8,000 67,016 8,000
FB15k-237 149,689 14,968 20,101 5,000 22,812 5,000
NELL995 107,982 10,798 16,927 4,000 17,034 4,000

Table 5: A statistical description of number of training/validation/test queries in different structures, preprocessed
by (Ren and Leskovec, 2020), in three datasets: FB15k, FB15k-237 and NELL995.

Dataset 1p 2p 3p 2i 3i ip pi 2u up 2in 3in inp pin pni

FB15k 1.7 19.6 24.4 8.0 5.2 18.3 12.5 18.9 23.8 15.9 14.6 19.8 21.6 16.9
FB15k-237 1.7 17.3 24.3 6.9 4.5 17.7 10.4 19.6 24.3 16.3 13.4 19.5 21.7 18.2
NELL995 1.6 14.9 17.5 5.7 6.0 17.4 11.9 14.9 19.0 12.9 11.1 12.9 16.0 13.0

Table 6: A statistical description of average number of answers for test queries, preprocessed by (Ren and Leskovec,
2020), in three datasets: FB15k, FB15k-237 and NELL995.

Dataset d b n m γ l λ1 λ2 λ3 λ

FB15k 800 512 128 450k 30 0.00005 1.0 2.0 2.0 0.02
FB15k-237 800 512 128 350k 20 0.00005 1.0 2.0 2.0 0.02
NELL995 800 512 128 350k 20 0.0001 1.0 2.0 2.0 0.02

Table 7: Found hyper-parameters for the main results in three different datasets: FB15k, FB15k-237 and NELL995.
d denotes the embedding dimension, b denotes the batch size, n denotes the negative sampling size, γ denotes to
control the loss function, m denotes the maximum training steps, l denotes the learning rate, λ1, λ2, λ3 denote
scaling hyper-parameters in the projection module (see scaling function f(x) in Section 4.3) and λ is to control
the distance dcon (see Section 4.4 in the main content).

Dataset 1p 2p 3p 2i 3i ip pi 2u up AVG

FB15k
78.8 37.0 30.9 66.9 75.7 40.8 53.8 59.4 33.5 53.0
±0.044 ±0.156 ±0.231 ±0.093 ±0.132 ±0.257 ±0.263 ±0.210 ±0.226 ±0.101

FB15k-237
42.9 13.3 11.3 35.0 49.0 15.7 27.0 15.3 11.2 24.5
±0.105 ±0.113 ±0.070 ±0.189 ±0.168 ±0.143 ±0.108 ±0.136 ±0.075 ±0.039

NELL995
55.7 17.5 15.1 40.7 51.1 19.1 27.1 15.4 12.2 28.2
±0.290 ±0.112 ±0.145 ±0.223 ±0.291 ±0.147 ±0.099 ±0.154 ±0.037 ±0.113

Table 8: MRR (%) results of CylE with error bars for answering different FOL query structures without negation
(∃, ∧, ∨) using these datasets: FB15k, FB15k-237 and NELL995.

Dataset 2in 3in inp pin pni AVG

FB15k
15.7 16.3 13.7 7.8 13.9 13.5
±0.084 ±0.059 ±0.086 ±0.065 ±0.033 ±0.020

FB15k-237
4.9 8.3 8.2 3.7 3.4 5.7
±0.077 ±0.093 ±0.112 ±0.058 ±0.073 ±0.042

NELL995
5.4 7.6 11.3 3.4 3.7 6.3
±0.106 ±0.081 ±0.095 ±0.019 ±0.090 ±0.046

Table 9: MRR (%) results of CylE with error bars
for answering negation queries using these datasets:
FB15k, FB15k-237 and NELL995.

of ConE (Zhang et al., 2021b) to compute this corre-
lation. We use two types of correlation as (Ren and
Leskovec, 2020; Zhang et al., 2021b): (1) Spear-
man’s rank-order correlation coefficient (SRCC)

(to measure the monotonicity relationship or the sta-
tistical dependence between the rankings of the two
variables) and (2) Pearson correlation coefficient
(PCC) (to measure the linear relationship between
the two variables). We do not compute SRCC and
PCC regarding disjunctive queries, which is the
same as (Ren and Leskovec, 2020; Zhang et al.,
2021b), since we model queries with disjunctions
using the DNF technique. Table 10 shows SRCC
of Q2B, BetaE, ConE and CylE using the FB15k
dataset. No SRCC results are available in G2B
for queries with negation since this model cannot
handle this operation (Ren et al., 2020). Overall,
the SRCC results of CylE are significantly higher
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Model 1p 2p 3p 2i 3i ip pi 2in 3in inp pin pni

Q2B 0.30 0.22 0.26 0.33 0.27 0.14 0.30 - - - - -
BetaE 0.37 0.48 0.47 0.57 0.40 0.42 0.52 0.62 0.55 0.46 0.47 0.61
ConE 0.60 0.68 0.70 0.68 0.52 0.56 0.59 0.84 0.75 0.61 0.58 0.80
CylE 0.61 0.84 0.81 0.74 0.62 0.79 0.77 0.83 0.78 0.67 0.66 0.83

Table 10: Spearman’s rank correlation coefficient between embeddings of learnt embeddings and a number of
answers for queries using the dataset FB15k. Results of Q2B, BetaE and ConE are taken from (Zhang et al.,
2021b).

Dataset Model 1p 2p 3p 2i 3i ip pi 2in 3in inp pin pni

FB15k-237

Q2B 0.18 0.23 0.27 0.35 0.44 0.20 0.36 - - - - -
BetaE 0.41 0.50 0.57 0.60 0.52 0.44 0.54 0.69 0.58 0.51 0.47 0.67
ConE 0.70 0.71 0.74 0.82 0.72 0.62 0.70 0.90 0.83 0.66 0.57 0.88
CylE 0.71 0.80 0.73 0.83 0.77 0.74 0.84 0.84 0.79 0.59 0.60 0.83

NELL995

Q2B 0.15 0.29 0.31 0.38 0.41 0.35 0.36 - - - - -
BetaE 0.42 0.55 0.56 0.59 0.61 0.54 0.60 0.71 0.60 0.35 0.45 0.64
ConE 0.56 0.61 0.60 0.79 0.79 0.58 0.74 0.90 0.79 0.56 0.48 0.85
CylE 0.57 0.75 0.65 0.73 0.72 0.70 0.76 0.85 0.76 0.59 0.63 0.81

Table 11: Spearman’s rank correlation coefficient between embeddings of learnt embeddings and a number of
answers for queries using the dataset FB15k-237 and NELL995. Rank correlation results of Q2B, BetaE and
ConE are taken from (Zhang et al., 2021b).

Dataset Model 1p 2p 3p 2i 3i ip pi 2in 3in inp pin pni

FB15k

Q2B 0.08 0.22 0.26 0.29 0.23 0.13 0.25 - - - - -
BetaE 0.22 0.36 0.38 0.39 0.30 0.31 0.31 0.44 0.41 0.34 0.36 0.44
ConE 0.33 0.53 0.59 0.50 0.45 0.42 0.37 0.65 0.55 0.50 0.52 0.64
CylE 0.36 0.68 0.62 0.66 0.59 0.70 0.70 0.68 0.59 0.46 0.48 0.71

FB15k-237

Q2B 0.02 0.19 0.26 0.37 0.49 0.20 0.34 - - - - -
BetaE 0.23 0.37 0.45 0.36 0.31 0.33 0.32 0.46 0.41 0.39 0.36 0.48
ConE 0.40 0.52 0.61 0.67 0.69 0.49 0.47 0.71 0.66 0.53 0.47 0.72
CylE 0.36 0.56 0.53 0.67 0.71 0.55 0.71 0.64 0.59 0.41 0.35 0.64

NELL995

Q2B 0.07 0.21 0.31 0.36 0.29 0.34 0.24 - - - - -
BetaE 0.24 0.40 0.43 0.40 0.39 0.40 0.40 0.52 0.51 0.26 0.35 0.46
ConE 0.48 0.45 0.49 0.72 0.68 0.39 0.52 0.74 0.66 0.38 0.34 0.69
CylE 0.45 0.60 0.50 0.64 0.63 0.52 0.60 0.69 0.66 0.35 0.47 0.64

Table 12: Pearson correlation coefficient between embeddings of learnt embeddings and a numer of answers for
queries using the dataset FB15k, FB15k-237 and NELL995. Correlation results of Q2B, BetaE and ConE are taken
from (Zhang et al., 2021b).

than those in ConE in most of query structures, by
a large margin. These results demonstrate the ex-
pressiveness of modeling cardinality of answer sets
using CylE. Note that SRCC results using CylE
also significantly exceed the other previous models.

We show additional results of Spearman’s Rank
Correlation Coefficient (SRCC) in Table 11 us-
ing the dataset FB15k-237 and NELL995. In
terms of the dataset FB15k-237, although the
SRCC results in several query structures (e.g.
3p, 2in, 3in, inp, pni) using the approach in CylE
are lower than those in ConE, the SRCC in the

rest of query structures using CylE outperform
those in ConE. A slight decrease in SRCC results,
from CylE to ConE, can be mostly observed in
queries that are involved in negation operations.
These observations are due to the fact that the
height variable might not play a role in embed-
ded queries with complement operations. Similar
to the dataset FB15k-237, in the dataset NELL995,
the SRCC results in some query structures (e.g.
2i, 3i, 2in, 3in, pni), particularly in queries with
negation operations, are also lower than those in
ConE. However, most of SRCC results in queries
without negation operations surpass SRCC results
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Dataset Activation 1p 2p 3p 2i 3i ip pi 2u up AVG

FB15k
ReLU 75.1 36.5 31.0 65.8 74.5 39.9 52.5 56.9 33.6 51.8
Swiss 78.8 37.0 30.9 66.9 75.7 40.8 53.8 59.4 33.5 53.0

FB15k-237
ReLU 42.1 13.1 11.3 34.8 49.1 14.8 26.5 14.7 11.2 24.2
Swiss 42.9 13.3 11.3 35.0 49.0 15.7 27.0 15.3 11.2 24.5

NELL995
ReLU 54.3 16.3 14.2 40.5 51.0 17.9 26.0 14.8 11.3 27.4
Swiss 55.7 17.5 15.1 40.7 51.1 19.1 27.1 15.4 12.2 28.2

Table 13: Average MRR (%) results of CylE in different FOL query structures without negation (∃, ∧, ∨) using
ReLU and Swiss activation for the MLP in these datasets: FB15k, FB15k-237 and NELL995.

in ConE. In comparisons with BetaE and Q2B,
SRCC results in all query structures (with and with-
out negation) using CylE are significantly higher
than SRCC results in these models.

The similar trend of results are also observed in
the Pearson Correlation Coefficient (PCC) between
the aperture embeddings and the cardinality of an-
swers set using the three dataset FB15k, FB15k-237
and NELL995 (see Table 12).

B.3 Further ablation study
We compare the performance of CylE using the
different activation function (ReLU and Swiss) for
the MLP networks (in the projection and intersec-
tion module), during the training process in this
ablations study (see Table 13 and 14). Overall, the

Dataset Activation 2in 3in inp pin pni AVG

FB15k
ReLU 15.6 16.2 13.4 7.8 13.7 13.3
Swiss 15.7 16.3 13.7 7.8 13.9 13.5

FB15k-237
ReLU 4.7 8.1 8.1 3.7 3.2 5.6
Swiss 4.9 8.3 8.2 3.7 3.4 5.7

NELL995
ReLU 5.1 7.5 11.2 3.3 3.5 6.1
Swiss 5.4 7.6 11.3 3.4 3.7 6.3

Table 14: Average MRR (%) results of CylE for dif-
ferent FOL query structures with negation using ReLU
and Swiss activation for MLP in these datasets: FB15k,
FB15k-237 and NELL995.

average MRR results in most of query structures
for the approach using Swiss activation are slightly
higher than those in the approach using ReLU acti-
vation in the three datasets FB15k, FB15k-237 and
NELL995. Since the Swiss activation was shown to
be an efficient activation function (Ramachandran
et al., 2017) for the MLP networks.

C Computational complexity

The computational complexity of CylE is similar
to ConE since these models share similarity in ge-
ometric shapes. Note that the computational com-
plexity of ConE and G2B is also similar to one

another (Zhang et al., 2021b). It is arguably that
CylE, ConE and G2B have similar computational
complexity. Assuming a Disjunctive Normal Form
(DNF) query q: that consists of conjunctive queries
qi:1→n, where q = q1∨· · ·∨qn. The computational
complexity of CylE for answering q is equivalent
to the computational complexity for answering the
number n of conjunctive queries qi. This answering
process is involved in the estimation of a sequence
of geometric sector-cylinder operations in which a
constant time can be taken for each operation, then
performing a range search which can be achieved
using techniques according to Locality Sensitive
Hashing (Indyk and Motwani, 1998).

Models GQE Q2B BetaE ConE CylE CylE

Emb. dimension d 800 800 800 800 800 500

Running time (s) 75.87 81.43 168.91 119.90 154.79 121.65

Table 15: Average running time (seconds) for the first
500 training steps in different approaches using the
FB15k-237 dataset.

We record the average running time (seconds)
for the first 500 training steps using the same di-
mensional embedding for all models (GQE, G2B,
BetaE, ConE and CylE) and another one with lower
embedding dimension for CylE, on the same single
NVIDIA Tesla V100 GPU, for fair comparisons.
The lower this value is, the faster training process
is. Overall, the fastest model is GQE while the
slowest model is BETA. The running time of CylE
is slightly slower than ConE, but CylE with lower
dimension (d = 500) is on par with ConE. Further,
the running time of CylE is also faster than BetaE.

D The range values for the height

The range of values for the height variable θhe for
an arbitrary embedded query Vq = (θax,θap,θhe)
can be varied without any constraints. For example,
this range of values can be infinite. However, there
is a numerical problem in a way that values of θhe
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might dominate those in the semantic center θax
and the aperture θap. This problem can lead to a
reduction in the performance of MHR in this sit-
uation. Since θax ∈ [−π, π)d and θap ∈ [0, 2π]d

are in a small range of values, compared to infi-
nite range of θhe. Thus, we set a small range of
values for the height variable and scale the range
to (−π, π), to avoid the numerical issues, making
this variable have a consistent systematic range of
values (based on the multiples of π) as those in the
semantic center θax and the aperture θap.
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Abstract
We explore the idea of incorporating con-
cepts from writing skills curricula into human-
machine collaborative writing scenarios, focus-
ing on adding writing modes as a control for
text generation models. Using crowd-sourced
workers, we annotate a corpus of narrative text
paragraphs with writing mode labels. Classi-
fiers trained on this data achieve an average
accuracy of ∼ 87% on held-out data. We fine-
tune a set of large language models to condition
on writing mode labels, and show that the gen-
erated text is recognized as belonging to the
specified mode with high accuracy.

To study the ability of writing modes to pro-
vide fine-grained control over generated text,
we devise a novel turn-based text reconstruc-
tion game to evaluate the difference between
the generated text and the author’s intention.
We show that authors prefer text suggestions
made by writing mode-controlled models on
average 61.1% of the time, with satisfaction
scores 0.5 higher on a 5-point ordinal scale.
When evaluated by humans, stories generated
via collaboration with writing mode-controlled
models achieve high similarity with the profes-
sionally written target story. We conclude by
identifying the most common mistakes found
in the generated stories. The datasets and codes
are available at the Github1.

1 Introduction

Large-scale pre-trained language models (PLMs)
have demonstrated a remarkable aptitude for gen-
erating text with an exceptional degree of fluency
and structure (Guan et al., 2021; Tan et al., 2021),
sparking renewed efforts to utilize them for the pur-
pose of generating narrative fiction. Recent work
has explored various ways of controlling PLMs, us-
ing sentiment (Luo et al., 2019), style (Kong et al.,
2021a), and even character information (Liu et al.,
2020a), in an attempt to cater the generated text to
an author’s intentions.

1https://github.com/ZVengin/fride

Summary: A boy was walking along a path in the forest,
when he came across a heap of leaves.

Mode Story

Dialogue

“Here are some leaves,” he whispered.
“They were wet when we came, and are
wet now. I'll lie them down and wait.”
“What is it?” I exclaimed.
“If you will stand still,” said my boy, “I
will show you … “

Action

He stood for a moment looking at me,
then quietly he picked up the leaves, and
carrying them in his hand, climbed to the
top of the heap, and examined them …

Description

This heap consisted of dead leaves, many
of them rotten, and still wet, with one or
two lying flat on the ground, others lying
up against the branches. The first to fall
was the one I had thought dead. It had
been crushed by the wind. …

Figure 1: Example of expanding the Summary into
stories using different writing Modes. The bold words
imply the particular manner of expression in that mode.
Dialogue focuses on the utterances spoken by charac-
ters, Action on the motion of characters, and Descrip-
tion on the depiction of characters or places.

However, the aforementioned controls deal pri-
marily with static text attributes; an attribute like
style is more synonymous with an entire author or
book than with a single passage of text. Less at-
tention has been paid to designing effective control
factors for the real demands of human authors in
collaborative writing settings, where authors typi-
cally exercise more dynamic control over their writ-
ing, varying attributes of the text at the sentence
or paragraph level. Here we find inspiration from
the creative writing literature, where the notion of
a fiction writing mode is often presented as an im-
portant concept to consider when crafting narrative
fiction (Klaassen, 2015).

A fiction-writing mode (also referred to as a
rhetorical mode) is a particular manner of writ-
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Dia. Act. Des. Unc. Total Len.(std) Kappa

370 385 300 681 1,736 110(52) 0.64

Table 1: The number of instances for dialogue (Dia.),
action (Act.), description (Des.), and uncertain (Unc.)
modes in the dataset. Kappa is the inter-annotator agree-
ment and Len.(std) is the average token number in each
instance and its standard deviation.

ing, encapsulating the focus, style, and pacing of
the text (among other things). Figure 1 illustrates
how the same event can be described in different
ways depending on the writing mode, using the
three most common types, Dialogue, Action, and
Description. Skilled authors proficiently use writ-
ing modes as a stylistic choice to engage readers
and progress the narrative (see Section 2 for more
detail) (Klaassen, 2015). Thus, we hypothesize
that conditioning text generation models on writing
modes can provide important controls to authors in
a human-machine collaborative writing scenario.

To verify this hypothesis, we are faced with two
challenges. First, to the best of our knowledge,
there is no available dataset annotated with writ-
ing modes to train generation models. We create
a Fiction wRIting moDE dataset (FRIDE dataset)
containing 1,736 fiction paragraphs annotated by
crowd-source workers with the three writing mode
labels. Subsequently, we train a classifier on the
FRIDE dataset and use it to annotate paragraphs
of a large fiction corpus in order to create a larger-
scale dataset. Using the established paradigm of
training conditional text generation models by sum-
marizing and reconstructing text (Sun et al., 2020),
the dataset is used to train models which can be
conditioned on a writing mode label.

Second, to measure whether writing modes al-
low for more effective control of text generation
models, we need to compare the generated texts
to the author’s intention, which is unobservable.
We design a new evaluation framework for human-
machine collaborative writing where the author is
given a paragraph of text, and is asked to recre-
ate it solely through interaction with generative
models. By using the paragraph as a proxy for the
author’s intention, we are able to assess the similar-
ities between the intention and the generated text,
and analyze the differences as indications of where
current controls fail.

Through both automatic and human evaluation
we show: (1) the use of writing mode labels

with conditional text generation models contributes
to average 1.4 and 2.0 points improvements on
ROUGE-L and BERTScore; (2) the writing modes
of generated text are effectively controlled, and
are classified as belonging to the target mode
in 87.6% of cases; (3) authors are 22.2% more
likely to choose the suggestions from writing mode-
controlled models, and assign them an average 0.5
higher satisfaction score (on an ordinal 1-5 scale)
compared to the uncontrolled models; (4) applying
writing mode control to collaborative writing en-
hances the similarities between the generated text
and the authors’ intention.

2 Fiction-Writing Mode Dataset

Fiction-writing modes have long been proposed as
a useful abstraction in the study of literature and
creative writing (Morrell, 2006; Klaassen, 2015),
dating as far back as Aristotle (Halliwell and Aris-
totle, 1998). While there is no consensus on the
categorization of writing modes, most sources pre-
fer to introduce at least three modes: (1) Dialogue,
direct quotation of characters speaking, (2) Action,
an account of a series of events, one after another,
chronologically, and (3) Description, a more de-
tailed inspection of people, places, or things and
their properties. These are the three major writing
modes which are the focus of study in this paper.

Just as there is no agreement on how best to cat-
egorize writing modes, there is also no consensus
on what text exhibits a particular mode. Even a
single sentence can exhibit multiple writing modes,
in varying degrees. However, for the purpose of
this work, we assume that each paragraph can be
categorized as exhibiting a single writing mode.

FRIDE Dataset In order to train models which
generate text in a specified writing mode, we must
first create a dataset, which we refer to as Fiction-
wRIting moDE dataset (FRIDE dataset), which
pairs paragraphs of narrative text with their corre-
sponding writing mode labels. However, directly
annotating writing modes on a large-scale narra-
tive dataset is expensive and time-consuming. We
first collect a modestly sized dataset from crowd-
sourced workers, and utilize it to train a writing
mode classifier. The classifier can then be used
to provide high confidence labels to a much larger
dataset of narrative text paragraphs, on a scale suit-
able for training large text generation models.

Paragraphs for annotation are collected from fic-
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Precision Recall F1

BERT-base 85.7 85.0 85.0
XLNet-base 84.7 84.4 84.3
RoBERTa-base 86.3 85.2 85.2

Table 2: The performance of writing mode classifiers
on the FRIDE dataset.

tion books sourced from Project Gutenberg2 (128
books) and, for more contemporary writing, Smash-
words3 (150 books). Each book is divided into para-
graphs using Chapterize4, and paragraphs longer
than 200 words are removed. In situations where
a continuous dialogue takes place over paragraph
boundaries, we group them into a single paragraph.
Each paragraph was annotated with one of the three
aforementioned writing modes using Amazon Me-
chanical Turk (AMT). In addition, we add a fourth
category, Uncertain, to encompass cases where
the writing mode is unclear or does not fit well
into the three main modes. All annotators were
native English speakers, and three annotators were
assigned to each paragraph. Paragraphs were as-
signed the majority label, or marked as uncertain
in cases where each annotator provided a different
label. We continued the annotation process until
we had approximately 1,000 instances labeled and
balanced across the three main modes (Table 1).

Writing Mode Classifier While it is possible to
use the collected data to train a model, the relatively
small pool of examples may cause the model to be
sensitive to other text characteristics unrelated to
the writing mode. To help alleviate this problem,
we train a writing mode classifier and employ it
to predict writing modes on a larger collection of
texts. We experiment with training three separate
classifiers, each trained by fine-tuning a different
PLM (BERT (Devlin et al., 2019), XLNet (Yang
et al., 2019), or RoBERTa (Liu et al., 2019)) on
the FRIDE dataset. We randomly sample 300 in-
stances from each type of writing mode and divide
them using a 1000/100/100 train/dev/test split, with
an equal number of each label in each split. An
evaluation of these models (Table 2) shows that all
models perform similarly. The RoBERTa-based
model was used as the final writing mode classifier
throughout the remainder of this paper.

2https://www.gutenberg.org
3https://www.smashwords.com
4https://github.com/JonathanReeve/chapterize

FRIDE-XL Dataset In order to construct a larger
dataset of writing modes suitable for training mode-
conditional text generation models, we utilize the
classifier trained in the preceding section on a larger
set of texts, extending the previous text to 5,946
fiction books from Project Gutenberg. We leverage
the writing mode classifier to assign a writing mode
label to each paragraph of books and randomly
select 362,880 paragraphs. We refer to this dataset
as FRIDE-XL. Additional statistics of the dataset
are provided in Table 7 of Appendix.

To test the accuracy of the classifier on the
FRIDE-XL dataset, we ask three additional anno-
tators to label 150 instances taken from the FRIDE-
XL dataset. The results show the inter-rater agree-
ment between annotators is 0.73. The predictions
of the trained classifier agree with the majority la-
bel provided by the annotators in 85.1% instances.
In terms of accuracy, classifier F1 on FRIDE-XL
is 83.9, compared to 85.2 on the FRIDE dataset.
It is important to reiterate that text often reflects
multiple writing modes to varying degrees, and so
some disagreement is inherent in the task. We find
that the writing mode predicted by the classifier
fails to match any label provided by human annota-
tors in only 4.8% of cases. In Section 4.2 we show
that this is indeed sufficient accuracy for produc-
ing the data and models necessary for generating
mode-specific text.

3 Models

We evaluate writing mode as a control factor on
three different PLM architectures: BART, (Fan
et al., 2018), T5 (Raffel et al., 2020), and GPT2
(Radford et al., 2018). All models have been used
previously for text generation but differ in ways
that may impact their ability to adhere to the condi-
tioning information and the quality of the generated
text. For instance, the comparatively larger size and
contextual window of GPT2 has made it a common
choice for story generation with long text (Wang
et al., 2021; Clark and Smith, 2021; Akoury et al.,
2020), but smaller models like T5 show great con-
trollability (Clive et al., 2021). We assess each of
these three models, fine-tuning them to reconstruct
paragraphs from the FRIDE-XL dataset.

For training conditional text generation models,
we follow an established paradigm of summariza-
tion, conditioning, and reconstruction, as used by
Sun et al. (2020). First, each paragraph is sum-
marized using an existing summarization model.
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Model Inputs Quality Controllability (Accuracy)

L S M PPL ↓ B4 ↑ RL ↑ BS ↑ Dialogue Action Description

GPT2 24.41 0.95 15.02 45.61 73.33 20.28 21.67
FIST ✓ 23.68 0.99 15.41 45.97 85.00 41.11 46.94
PPLM ✓ 24.10 1.07 14.50 42.84 93.05 32.22 49.72

GPT2

✓ 19.29 1.06 15.74 46.33 72.50 22.78 22.50
✓ ✓ 18.84 1.14 15.97 46.70 83.33 38.61 45.56
✓ ✓ 20.29 1.09 16.00 46.82 97.78 67.78 71.11
✓ ✓ ✓ 19.89 1.16 16.10 47.28 98.06 75.00 79.72

T5

✓ 24.98 1.14 16.22 46.42 67.78 25.28 23.61
✓ ✓ 23.80 1.21 16.32 46.78 80.56 47.78 46.67
✓ ✓ 26.12 1.16 16.30 47.07 99.44 85.00 78.33
✓ ✓ ✓ 25.06 1.20 16.52 47.10 98.33 83.61 83.06

BART

✓ 23.87 1.07 16.19 46.32 69.44 19.17 18.33
✓ ✓ 23.49 1.17 16.33 47.12 86.67 47.78 48.89
✓ ✓ 25.44 1.11 16.25 47.30 98.06 82.50 88.06
✓ ✓ ✓ 24.24 1.20 16.27 47.30 97.78 85.56 82.78

Table 3: Automatic evaluation on quality and controllability as model inputs (summaries (S), length (L), and writing
modes (M)) vary. Quality is evaluated by perplexity (PPL), BLEU-4 (B4), ROUGE-L (RL), BERTScore (BS), and
controllability is measured by the accuracy of the generated stories matching the specified writing modes when
the writing modes (M) are specified as Dialogue, Action, and Description. The inputs such as summaries (S),
length (L), and writing modes (M) for the evaluation of quality and controllability are respectively inferred from the
leading context and the target stories.

Here we use the narrative text summarization pro-
posed in Kryscinski et al. (2021), and decode using
beam search with a beam size of 5 as in that work.
We then fine-tune a PLM to reconstruct the orig-
inal paragraph, conditioning on the summary. In
this way, the summary acts as a semantic control:
the trained model accepts user summaries and at-
tempts to expand upon them to generate a longer
paragraph, embellishing missing and less important
details in a reasonable way.

Other forms of information can also be added to
the summaries to function as additional controls.
The conditioning factors provided to models are:

• Summary, generated from the paragraph by a
pre-trained model as shown in Appendix.

• Context, the preceding paragraph.

• Length, the number of tokens in the paragraph
divided into ten equally-sized bins.

• Writing Mode, the mode assigned to the para-
graph by the classifier as described in Sec. 2.

For T5 and BART, the training methodology is
straightforward: we concatenate the controlling in-
formation and use it as input to the encoder, training
the decoder to generate the original paragraph. For
GPT2, which has only a decoder, we concatenate
the conditioning information as prompts.

4 Automatic Evaluation

In this section, we study the influence of model
inputs (e.g., summaries, length, and writing modes)
on the quality of text, and assess to what extent
the writing modes of text can be controlled, as
measured by automatic evaluation metrics.

4.1 Baseline Models

In addition to ablations of our proposed models,
we compare against three baseline systems:

GPT2 We finetune GPT2 (Radford et al., 2018)
identically to our proposed system, but using only
the preceding paragraph and without other inputs.

PPLM Dathathri et al. (2020) employ an attribute
classifier to guide the pretrained language model to
generate text with specified attributes. To adapt the
PPLM to our task, we train a writing mode classi-
fier as the attribute classifier on the FRIDE dataset.
As the writing modes of preceding paragraphs
would interfere with the classifier, the PPLM does
not take the preceding paragraphs as context.

FIST Fang et al. (2021) propose a system which
utilizes keywords instead of summaries to sketch
the semantic content of the desired stories. As there
is no prompt in our dataset, following their idea, we
infer the keywords from the leading context (the
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Alysia watched with rising
fascination as the distant
shoreline came nearer and
nearer. Some miles back it
had seemed a long, even
curve, but now she could
see the jagged indentations
and stretches of smooth,
sandy beach. The buildings
of the city seemed ...

Alysia watched with
interest as the beach
got closer in view.

1. Control
The user is shown target text (a story paragraph). After
highlighting where to focus, the user guides generation
by summarizing the highlighted part as a prompt.

2. Generation
Two models reconstruct the highlighted text following the
prompt. One model generates text with writing mode
most associated with the target text, the other one without.

Alysia watched with interest
as the beach got closer in
view. It was the most
interesting portion of the
trip. The sea lay like a sheet
of silver, and a long way off
there was a boat. The water
was blue in color and many
seagulls hovering over the
water tried to catch fish.

Alysia watched with interest
as the beach got closer in
view. She was well mounted
by nature;  but she was not
accustomed to the ocean.
She stood out in the water
and gazed for some time
without uttering a word,
and at last turned and
started on the rocks.

Model A Model B

3. Evaluation

The user scores each
generation and chooses
the best to be added to
the reconstructed text.
The steps 1, 2, 3 repeat
until the complete story
has been reconstructed.

Model A

Model B

Alysia watched with interest as the
beach got closer in view. It was the most
interesting portion of the trip. The sea
lay like a sheet of silver, and a long way
off there was a boat. The water was blue
in color and many seagulls hovering
over the water tried to catch fish.

Reconstructed Text 

Prompt (Summary)

Target Text

Figure 2: A turn-based text reconstruction game. Users aim to reconstruct the target text solely through interaction
with story generation models, providing prompts (summaries) to guide generation, and choose between a number of
options to continue the text. Each option is generated by a different model. Users report satisfaction at each turn,
and the reconstructed text is used in further evaluation.

preceding paragraphs) and then generate stories
conditioning on the context and keywords.

4.2 Results

We evaluate the models along three axes: fluency,
similarity, and controllability, using the test set of
the FRIDE-XL dataset. The results of our auto-
matic evaluation are shown in Table 3.

Fluency We evaluate fluency using perplexity
computed by the pre-trained GPT2 model. We find
that there is an average 0.8 decrease in perplexity
when summaries are added and 1.2 increase when
writing modes are added.

Similarity Our task is very similar to summa-
rization, so we adopt the same evaluation metrics
including BLEU-4 (Papineni et al., 2002), ROUGE-
L (Lin, 2004), and BERTScore (Zhang et al., 2020).
It is also quite common to include these automatic
measures in narrative text generation work, despite
their known flaws. We observe a consistent im-
provement across all models as the amount of con-
ditioning context increases, and the models using
writing mode factors outperform those without.

Controllability Lastly, we evaluate the control-
lability of mode-controlled models. For each para-
graph, a target writing mode is chosen using the
writing mode classifier, and used as conditioning
for a text generation model. The classifier is then
used to predict the writing mode of the generated
text, and we measure the accuracy of generating
stories with the specified writing modes.

On average, including writing mode as condition
improves the accuracy of generating text which is
classified as that mode, but the effect varies dras-
tically by the specific mode. For Action and De-
scription modes, the inclusion of writing mode con-
ditioning improves accuracy on average by 45.4%
and 45.6%, respectively, compared to their non-
mode counterparts. For dialogue, the improvement
is 21.5%, relatively lower.

It is interesting to note that the inclusion of sum-
maries to the length-only model results in signif-
icant improvements to the controllability of the
text. This implies that the pre-trained models are
able to naturally infer the intended writing mode
from the summaries to some degree, with modest
accuracy (∼ 44%) on average for Action and De-
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Model Writing Mode
Control

Selection Percentage Satisfaction Score

Dialogue Action Description Dialogue Action Description

GPT2 ✗ 31 44 32 2.27 2.84 2.67
✓ 69 56 68 2.96 3.27 3.59

BART ✗ 36 39 43 2.82 2.64 3.10
✓ 64 61 57 3.28 3.11 3.34

T5 ✗ 47 36 44 3.19 2.91 3.22
✓ 53 64 56 3.24 3.36 3.55

Table 4: Human evaluation by authors, showing Selection Percentage and Satisfaction Score between generated
text w/ and w/o writing mode conditioning, during the text reconstruction game. Dialogue, Action, and Description
are the writing modes of the target text.

scription modes, and up to 86% on Dialogue with
BART. Summaries may contain some cues about
the intended modes, especially, the summaries for
Dialogue have strong cues (said, replied, argued,
...) in most cases. However, the consistent large
margins of accuracy scores when conditioning on
writing modes illustrates the effectiveness of modes
as a control factor.

5 Human Evaluation

In the preceding section, we used automatic mea-
sures to show consistent improvements in similarity
and controllability when conditioning text gener-
ation models on writing modes. In this section,
we assess whether these improvements translate
into higher author satisfaction and story quality as
judged by human participants.

Text Reconstruction Game To evaluate writing
mode-controlled models within human-machine
collaborative writing, we devise a story generation
game (Figure 2). Using a web interface, partici-
pants are presented with a target story, drawn from
FRIDE-XL, and asked to reconstruct it through
interaction with the trained models. Each session
utilizes two models, each using the same PLM, one
trained to condition on writing modes, and one that
does not.

At each round, (1) the author highlights a se-
lection of text from the target story, and provides
a text summary which serves as a rough sketch
of the story described therein. Constraints on the
summary length and a time limit on each session
force the author to extract essential elements of the
text and prevent them from simply specifying the
entire text as the summary. (2) The models then
each return a sample of generated text, and (3) the
author is asked to score each in terms of overall
satisfaction (ordinal, 5-point scale), and choose one

to continue the story. The source of the suggestions
(model name) is not given to the participant, and
they are presented in random order. The above
process repeats until the author has attempted to
recreate the entire target text. The author is then
asked to provide feedback on overall satisfaction
with the story and interface, the efficiency of using
the interface over generating the text from scratch,
and what errors were present in the generated text.

Our approach takes inspiration from previ-
ous human-in-the-loop evaluations (Akoury et al.,
2020; Clark and Smith, 2021) where authors are
asked to construct stories by collaborating with
story generation models, but do so freely, without
being provided any specific direction for how the
story should unfold. Therefore we cannot observe
the author’s intention, and it is difficult to ascer-
tain how closely the generated stories match the
author’s original intention, or the extent to which
bias may be affecting the model scores when satis-
faction with the models is self-reported.

Our solution to these issues is to present the
author with a target text they must attempt to re-
construct. The target text serves as a substitute for
the author’s intention, allowing us to more objec-
tively measure the differences between the gener-
ated story and the target. While this design shifts
the nature of interaction away from a more creative
use case, we argue that increased awareness of the
models’ limitations provides a worthwhile trade-off
when used strictly as a means of evaluation.

Using the unique properties of our proposed eval-
uation design, we evaluate: (1) the effectiveness of
writing mode control when generating text as an
author, (2) their effectiveness from the perspective
of a reader, comparing generated stories with target
stories in a blind study, and (3) the types of errors
made where authors were unable to exert desired
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Collab. Auto. P +WM -WM P

Plot Similarity

GPT2 3.60 3.04 0.01 3.42 3.30 0.51
BART 3.59 3.66 0.71 3.56. 3.22 0.06
T5 3.49. 3.05 0.01 3.48. 3.10 0.02

Style Similarity

GPT2 3.21. 3.05 0.43 3.48 3.15 0.02
BART 3.80. 3.59 0.28 3.71 3.30 0.02
T5 3.56 3.19 0.03 3.48 3.08 0.02

Table 5: The similarity scores (5 points scale) in plots
and style between the reconstructed text and the target
ones. Collab. and Auto. refer to the text collabora-
tively reconstructed with the users and automatically
generated by the models. +WM and -WM are the text
automatically reconstructed by models with or without
writing modes. P is the P-Value of significance test.

control over the models.

5.1 Evaluation by Authors

We randomly sample 36 target stories (each an-
notated with a writing mode) from FRIDE-XL,
such that there is an equal number of stories from
each mode and each genre. For the writing mode-
controlled model, we use the mode annotated in
the dataset as the true mode (users are not asked
to specify a mode explicitly). The authors are re-
cruited via crowdsourcing on AMT, and each target
story is reconstructed using the proposed interface,
with each story given to three annotators.

Do authors prefer the suggestions from writing
mode-controlled models? We measure authors’
preferences for models by the win/loss rate for
which model was selected to continue the story
at each step, and the average satisfaction score
of each model’s suggestions. The results are pre-
sented in Table 4. Suggestions of writing mode
models are preferred consistently, irrespective of
model type, and are chosen on average 22.2% more
than suggestions from uncontrolled models. In
terms of satisfaction score, using writing mode as
a conditioning factor improves satisfaction by 0.5 /
5.0 points on average, an improvement consistent
across all writing modes. We conclude that the
strong and consistent improvements when using
writing mode-conditional models demonstrate they
are an effective control for story generation.

5.2 Evaluation by Readers

Evaluation by authors using the story reconstruc-
tion game interface provides compelling evidence

for the effectiveness of writing modes as a con-
trol, but how close to the author’s intention are
the stories generated using the writing interface?
By providing authors with a target story, new eval-
uation methods are possible, such as having the
stories scored by a separate group of participants,
in order to avoid any bias from self-reporting.

Here we evaluate the generated texts via similar-
ity with the target texts, in two different scenarios.
We enlist 197 human participants from AMT, none
of which participated in the story generation task,
to serve as readers. We present each reader with
three stories: the target story, the generated story,
and a baseline story. Readers are asked to score
the similarity between the target text and the other
stories on an ordinal 5-point scale, in terms of plot
and style.

How similar to the target text are the generated
stories? The generated stories are written inter-
actively via the writing interface, where authors
have access to suggestions from mode and non-
mode models. The baseline stories are generated
in a purely automated manner using the model to
predict the entire paragraph from a summary (gen-
erated by the same summarization model we use in
the fine-tuning process), together with the writing
modes provided from the dataset annotations.

The left side of Table 5 shows the results. We
observe higher similarity scores between the tar-
get text and the stories generated via collaborative
writing in almost all cases, an average increase of
0.31 on plot, and 0.25 on style. On one hand, this
is an expected conclusion given that the collabora-
tive process allows authors to select the best of two
automatic suggestions at each point, and one may
expect the quality of collaborative writing stories
to be strictly better than automatic ones. However,
we do note trends based on model type; BART in
particular scores high (3.80) in terms of similarity
on style.

How effective is writing mode control for auto-
matic generation While our focus is primarily
on the use of additional controls in collaborative
story writing, we also measure the effectiveness of
writing modes as a useful control in a purely au-
tomatic sense. Using the story generation models,
as above, we generate full stories without writing
mode conditioning and contrast them with the pre-
viously generated stories generated automatically
using writing modes. We report the similarity of
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Error Type GPT2 BART T5

Missing Information 61 65 32
Irrelevant Information 45 40 22
Wrong Information 8 8 2
Incoherence 22 22 22
Inconsistency 22 13 20
Disfluency 15 27 18
Repetition 0 0 0

Table 6: The counts of each error occurring in the re-
constructed text across different models.

each to the target text in the right side of Table 5.
We again find that writing mode-controlled mod-

els significantly improve the control of the gener-
ated text, producing stories closer to the target text
in both style and content. The addition of a writing
mode control improves average similarity to target
text by 0.28 on plot and 0.38 in style. Although
writing modes are more inherently tied to the style
of the text, it is interesting to observe improvements
in plot similarity as well. This may indicate that the
mode has a positive effect in pressuring the model
to focus on summary plot points, via explicitly dis-
entangling these factors. However, we leave further
analysis of this phenomenon to future work.

5.3 Error Analysis

To understand what errors are likely to occur in
the generated stories we ask annotators to identify
aspects of the generated text which differed from
the target, from a set of pre-determined categories
(Table 6). The most frequent errors are the missing
information and irrelevant information, suggesting
that the models extrapolated from the summaries
in undesirable ways.

Note that the counts of most errors made by T5
are appreciably lower than those made by GPT-2
or BART, yet BART has higher similarity scores
in both plot and style. We infer that some errors
made by T5 must play a more important role in
overall similarity, and that missing or irrelevant in-
formation must not play a crucial role in similarity
metrics.

6 Related Work

Our work is based on prior research in computa-
tional modeling for story generation. Early ap-
proaches to automatic story generation relied on
graph-based planning and hand-crafted rules to
structure narratives (Meehan, 1977; Callaway and
Lester, 2002; Riedl and Young, 2004; Li et al.,

2013). More recent works generate stories by fine-
tuning on large-scale PLMs (See et al., 2019) to
improve its fluency and incorporating structured
knowledge such as planned events (Chen et al.,
2021; Fang et al., 2021; Li et al., 2022), sum-
maries (Yao et al., 2019; Tan et al., 2021; Sun et al.,
2020), and external knowledge (Guan et al., 2019;
Xu et al., 2020b; Guan et al., 2020) to enhance its
coherence and consistency. Our story generation
models are also finetuned on the large-scale PLMs
to generate text following the given summaries.

Our work bears similarity to work on control-
lable story generation, which aims to control differ-
ent attributes of stories such as the sentiments (Luo
et al., 2019; Kong et al., 2021b), genres (Cho et al.,
2022), intention (Sun et al., 2021), and charac-
ters (Lee and Jung, 2020; Xu et al., 2020a; Liu
et al., 2020b) of stories. However, these attributes
are largely unchanging throughout the story, while
we focus on writing mode, a more dynamic at-
tribute of text. Thus our work is also more inher-
ently related to interactive story generation where
the author works closely with the model to craft
text on a comparatively finer level of granularity
(sentences or paragraphs).

Finally, our evaluation method is inspired by
work on human-in-the-loop storytelling (Roem-
mele and Gordon, 2015; Samuel et al., 2016; Clark
et al., 2018; Goldfarb-Tarrant et al., 2019; Brahman
et al., 2020), where the authors are asked to work in
concert with story generation models, curating their
suggestions to craft the final story. Human-in-the-
loop evaluations overcome many of the shortcom-
ings of automatic evaluations, which capture rough
statistics, but may be unaware of important errors
in plot development and story continuity (Sagarkar
et al., 2018). By asking users to select between
models’ suggestions, we can instead gain a more
accurate picture of which system improvements
yield real benefits to a potential human-machine
writing collaboration (Akoury et al., 2020; Clark
and Smith, 2021; Khashabi et al., 2021). Our ap-
proach is similar to this, but the addition of a target
text allows us to examine the difference between
the generated and intended text, which we argue is
a more important comparison when dealing specifi-
cally with understanding control.

7 Conclusion

In this work, we introduced writing modes as a
control for human-machine collaborative writing
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scenarios and showed that training models to condi-
tion on writing modes resulted in stories that were
closer to targets. Both the automatic and human
evaluation shows that the writing modes of text
are effectively controlled, authors prefer text sug-
gestions made by writing mode-controlled models,
and readers score stories to be more similar to tar-
gets in terms of both plot and style. To verify the
hypothesis, we collected FRIDE and FRIDE-XL,
datasets of narrative text annotated with writing
modes, which we released to help facilitate further
research in writing modes and fine-grained control
for storytelling. In future work, we wish to apply
reconstruction-based evaluation for other factors
of human-machine storywriting, and incorporate a
dynamic use of writing modes into fully automatic
hierarchical story generation models.

Limitations

This work is subject to known biases in the dataset
used throughout this work. Due to existing copy-
rights on most contemporary examples of profes-
sional narrative fiction, researchers often turn to
works in the public domain, as we do here. While
many public domain novels are literary classics, the
lack of comparable contemporary work results in
models which are biased towards reproducing older
works, both in terms of style and content. More
contemporary approaches to writing style are not
represented in our work, and plot points may be
biased by the worldview of the authors at the time.
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8 Appendix

8.1 Writing Mode Classifier
To study how many samples are enough to train
the classifiers, we test the classifiers trained on
the subsets of the FRIDE dataset. The subset size
increases from 0 to 1000. The results in Figure
3 show the classifiers reach the best performance
when the subset size is around 200.

When training the classifiers, we use the optuna 5

to do a hyper-parameter search. We run hyper pa-
rameter search 20 times and try to search the opti-
mal value for learning rate (in range 1e-5∼5e-5),
batch size (in range 2∼8), and training epochs (in
range 2∼10). The optimal value for learning rate
is 1e-5, for epoch is 10, and for batch size is 5. The
reported test results are the average of 10 trails with
different random seeds.
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Figure 3: The F1 score of 3 classifiers trained on sub-
train sets with different size.

8.2 Writing Mode Distribution
The writing mode is a kind of style to tell stories,
and thus, it could be related to the genre of fictions.
To verify that the writing modes are a style indepen-
dent of the genres, we select 9 frequent genres and
analyze the distribution of the writing modes within
each genre. The results in Figure 4 show that the
writing modes have similar distribution across dif-
ferent genres, demonstrating that the distribution of
writing modes is irrelevant to the category of genre.
Thus, the writing mode is a style independent of
the genre.

8.3 Training Settings
The story generation models are finetuned from
three types of pretrained language models such as
BART, GPT2, and T5. We utilize the large version

5https://optuna.readthedocs.io/en/stable/
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Figure 4: The writing mode distribution in each genre.

of the pretrained models such as “bart-large",“gpt2-
large", and “t5-large", for better performance, and
these models are downloaded through hugging-
face 6 model library. The story generation models
are trained on 8 Tesla A100 with a learning rate 4e-
5 and a batch size 32 for 5 epochs about 24 hours.
The warm up steps for all models are the first 10%
steps of the total steps. During inference phase, we
adopt nuclear sampling method with topp being 0.9
recommended by Holtzman et al. (2020).

Train Valid Test

#Paragraph 360K 1.44K 1.44K
#Dialogue 131.196K 0.493K 0.36K
#Description 54.005K 0.259K 0.36K
#Action 30.478K 0.103K 0.36K
#Uncertain 144.321K 0.585K 0.36K

#Token of Paragraph 111.3 111.4 111.0

Table 7: The statistics of FRIDE-XL Dataset.

ROUGE-1 ROUGE-2 ROUGE-L

Paper 22.2 4.8 16.9
Our 21.5 4.4 16.5

Table 8: The evaluation for the performance of the sum-
marization model.

8.4 Summarization Model

Most prior works focus on the summarization of
news articles, which is a domain different from the
narrative text in books. Recently, Kryscinski et al.
2021 collect a summarization dataset for the nar-
rative text in books. Each book in the dataset is
summarized in different levels including paragraph-
level, chapter-level, and book-level. We run their

6https://huggingface.co
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codes7 and train a paragraph-level summarization
model. The quality of summaries is evaluated by
ROUGE scores as shown in the Table 8. The Table
shows that we basically reproduce their results in
the paper. However, better summarizers for narra-
tive text could greatly improve the output of our
story generation models. In particular, while the
summaries are often correct, the focus of what as-
pects of the narrative text is summarized is not al-
ways the most appropriate, and improving this is a
clear direction for future work. As for the summary
size, the trained model summaries the original para-
graph (∼116 tokens) into sentences (∼26 tokens).
The average compression rate is 18.2%.

7https://github.com/salesforce/booksum
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Abstract

Recent work has focused on compressing pre-
trained language models (PLMs) like BERT
where the major focus has been to improve
the in-distribution performance for downstream
tasks. However, very few of these studies have
analyzed the impact of compression on the
generalizability and robustness of compressed
models for out-of-distribution (OOD) data. To-
wards this end, we study two popular model
compression techniques including knowledge
distillation and pruning and show that the com-
pressed models are significantly less robust
than their PLM counterparts on OOD test sets
although they obtain similar performance on
in-distribution development sets for a task. Fur-
ther analysis indicates that the compressed
models overfit on the shortcut samples and gen-
eralize poorly on the hard ones. We further
leverage this observation to develop a regular-
ization strategy for robust model compression
based on sample uncertainty. Experimental re-
sults on several natural language understand-
ing tasks demonstrate that our bias mitigation
framework improves the OOD generalization
of the compressed models, while not sacrificing
the in-distribution task performance.

1 Introduction

Large pretrained language models (PLMs) (e.g.,
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), GPT-3 (Brown et al., 2020)) have obtained
state-of-the-art performance in several Natural Lan-
guage Understanding (NLU) tasks. However, re-
cent studies (Niven and Kao, 2019; Du et al., 2021;
Mudrakarta et al., 2018) indicate that PLMs heav-
ily rely on shortcut learning/spurious correlations,
rather than acquiring higher level language under-
standing and semantic reasoning in several NLU
tasks. Specifically, these models often exploit
dataset biases and artifacts, e.g., lexical bias and

∗Most of the work was completed while the first author
was an intern at Microsoft Research during summer 2021.

overlap bias, as shortcuts for prediction. Due to the
independent and identically distributed (IID) split
of training, development, and test sets, these mod-
els that learn spurious decision rules from training
data can perform well on in-distribution data (Du
et al., 2022). Nevertheless, the shortcut learning
behavior will result in models that have poor gener-
alization performance on out-of-distribution (OOD)
data, raising concerns about their robustness.

On the other hand, it is difficult to use these
large PLMs models in real-world applications with
latency and capacity constraints, e.g., on edge de-
vices and mobile phones. Thus, model compres-
sion emerges as one of the techniques to reduce
model size, speed up inference, and save energy
without significant performance drop for down-
stream tasks. State-of-the-art model compression
techniques such as knowledge distillation (Sanh
et al., 2019; Sun et al., 2019) and pruning (Sanh
et al., 2020) primarily focus on evaluating com-
pressed model performance in in-distribution test
data. However, in-distribution testing is insufficient
to capture the generalizability of PLMs (D’Amour
et al., 2020). In contrast to existing work that
is geared towards general-purpose PLMs (Niven
and Kao, 2019; Du et al., 2021; Mudrakarta et al.,
2018), this work aims to study the impact of com-
pression on the shortcut learning and OOD gener-
alization ability of compressed models.

Towards this end, we conduct comprehensive
experiments to evaluate the OOD robustness of
compressed models, with BERT as the base en-
coder. We focus primarily on two popular model
compression techniques in the form of prun-
ing and knowledge distillation (Sanh et al., 2019;
Wang et al., 2020). For pruning, we consider two
popular techniques including iterative magnitude
pruning (Sanh et al., 2020) and structured prun-
ing (Prasanna et al., 2020; Liang et al., 2021).
Specifically, we explore the following research
questions: Are distilled and pruned models as ro-
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bust as their PLM counterparts for downstream
NLU tasks? What is the impact of varying the
level of compression on OOD generalization and
bias of compressed models? We evaluate the per-
formance of several compressed models obtained
using the above techniques on both standard in-
distribution development sets and OOD test sets
for downstream NLU tasks. Experimental analy-
sis indicates that distilled and pruned models are
consistently less robust than their PLM counter-
parts. Further analysis of the poor generalization
performance of compressed models reveals some
interesting observations. For instance, we observe
that the compressed models overfit on the easy /
shortcut samples and generalize poorly on the hard
ones. This motivates our second research question:
How to regularize model compression techniques to
generalize across samples with varying difficulty?
This brings some interesting challenges since we do
not know which samples are easy or hard apriori.

Based on the above observations, we propose
a bias mitigation framework to improve the OOD
robustness of compressed models, termed as RMC
(Robust Model Compression). First, we leverage
the uncertainty of the deep neural network to quan-
tify the difficulty of a training sample. This is given
by the variance in the prediction of a sample from
multiple sub-networks of the original large network
obtained by model pruning. Second, we leverage
this sample-specific measure for smoothing and
regularizing different families of compression tech-
niques. The major contributions of this work can
be summarized as follows:

• We perform a comprehensive analysis to evaluate
the OOD generalization ability and robustness of
compressed models for NLU tasks.

• We further analyze plausible reasons for the
low generalizability of compressed models and
demonstrate connections to shortcut learning.

• We propose a mitigation framework for regu-
larizing model compression, termed as RMC,
which smoothes the knowledge distillation train-
ing based on the estimated sample difficulties.

• We perform experiments to demonstrate that our
RMC framework improves OOD generalization
while not sacrificing the standard in-distribution
task performance on multiple NLU tasks.

2 Related Work

Shortcut Learning and Mitigation. Recent stud-
ies indicate that PLMs tend to exploit biases and

artifacts in the dataset as shortcuts for prediction,
rather than acquiring higher level semantic un-
derstanding and reasoning for NLU tasks (Niven
and Kao, 2019; Du et al., 2021; McCoy et al.,
2019a). There are some preliminary work to miti-
gate the bias of general PLMs, including product-
of-experts (Clark et al., 2019; He et al., 2019; Sanh
et al., 2021), re-weighting (Schuster et al., 2019;
Yaghoobzadeh et al., 2019; Utama et al., 2020),
adversarial training (Stacey et al., 2020), posterior
regularization (Cheng et al., 2021), etc.
Robustness in Model Compression. Current
practice for evaluating model compression perfor-
mance focuses mainly on standard benchmark per-
formance (Zhu et al., 2020; Wang et al., 2021). In
the computer vision domain, previous work shows
that compressed models perform poorly in Com-
pression Identified Exemplars (CIE) (Hooker et al.,
2019), and compression amplifies algorithmic bias
towards certain demographics (Hooker et al., 2020).
The most similar work to ours are two concurrent
work (Xu et al., 2021a; Li et al., 2021) that in-
vestigate the performance of compressed models
beyond standard benchmarks for natural language
understanding tasks. However, both work mainly
focus on evaluating the robustness of compressed
models with respect to the scenario of adversarial
attacks, i.e., TextFooler (Jin et al., 2020), and the
unified adversarial framework (Li et al., 2021). In
contrast, we comprehensively characterize the ro-
bustness of BERT compression in OOD test sets
to probe the OOD generalizability of the compres-
sion techniques. Besides, we use insights from this
robustness analysis to design a generalizable and
robust model compression framework.

3 Are Compressed Models Robust?

We perform a comprehensive analysis to evaluate
the robustness of compressed language models.

3.1 Compression Techniques

We consider two popular families of compression,
namely, knowledge distillation and model pruning.
Knowledge Distillation: The objective here is to
train a small-size model by mimicking the behav-
ior of the larger teacher model using knowledge
distillation (Hinton et al., 2015). In this work, we
focus on task-agnostic distillation. In particular,
we consider DistilBERT (Sanh et al., 2019) and
MiniLM (Wang et al., 2020) distilled from BERT-
base. For a fair comparison, we select compressed
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models with similar capacities (66M parameters in
this work). In order to evaluate the impact of com-
pression techniques on model robustness, we also
consider similar capacity smaller models without
using knowledge distillation. These are obtained
via simple truncation where we retain the first 6
layers of the large model, and via pre-training a
smaller 6-layer model from scratch.

Iterative Magnitude Pruning: This is a task-
specific unstructured pruning method (Sanh et al.,
2020). During the fine-tuning process for each
downstream task, the weights with the lowest mag-
nitude are removed until the pruned model reaches
the target sparsity. Note that we utilize the stan-
dard pruning technique, rather than the LTH-based
pruning (lottery ticket hypothesis) that uses re-
winding (Chen et al., 2020). We also consider
different pruning ratios to obtain pruned models
with different levels of sparsity.

Structured Pruning: This method family is based
on the hypothesis that there is redundancy in the
attention heads (Prasanna et al., 2020; Voita et al.,
2019; Bian et al., 2021; Chen et al., 2021). We also
consider task-specific pruning. During the fine-
tuning process for each task, it prunes the whole
attention heads based on their importance to the
model predictions. Please refer to Sec. A in Ap-
pendix for more details. We prune around 20%
attention heads in total (i.e., 28 attention heads).
Further pruning increases the sparsity with signif-
icant degradation of the model’s performance on
in-distribution development sets.

3.2 Evaluation Datasets

To evaluate the robustness of the compressed mod-
els introduced in the last section, we use three NLU
tasks, including MNLI, FEVER, and QQP1. Please
refer to Sec. B in Appendix for more details.

• MNLI (Williams et al., 2018): This is a natural
language inference task. In this work, we report
the accuracy metric on the matched subset. We
use HANS (McCoy et al., 2019b) as the adver-
sarial test set, which contains 30, 000 synthetic
samples. Models that exploit shortcut features
have been shown to perform poorly on the HANS
test set.

1MNLI, FEVER, and QQP are the three most widely used
datasets to evaluate the shortcut learning/bias behavior and
OOD generalization of PLMs in the literature (Tu et al., 2020;
He et al., 2019; Clark et al., 2019; Schuster et al., 2019)

• FEVER (Thorne et al., 2018): This is a fact veri-
fication dataset. Recent studies indicate that there
are strong shortcuts in the claims (Utama et al.,
2020). To facilitate the robustness and generaliza-
tion evaluation of fact verification models, two
symmetric test sets (i.e., Sym v1 and Sym v2)
were created, where bias exists in the symmetric
pairs (Schuster et al., 2019). Both OOD test sets
have 712 samples.

• QQP: The task is to predict whether a pair of
questions is semantically equivalent. We con-
sider the OOD test set PAWS-qqp, which con-
tains 677 test samples generated from QQP cor-
pus (Zhang et al., 2019; Yang et al., 2019). Be-
sides, we also consider the PAWS-wiki OOD test
set, which consists of 8, 000 test samples gener-
ated from Wikipedia pages.

For all three tasks, we employ accuracy as the
evaluation metric and evaluate the performance of
the compressed models on both the in-distribution
development set and the OOD test set.

3.3 Evaluation Setup

In this work, we use the uncased BERT-base as the
teacher network, and study the robustness of its
compressed variants. The final model consists of
the BERT-base encoder (or its compressed variants)
with a classification head (a linear layer on top of
the pooled output). Recent studies indicate that fac-
tors such as learning rate and training epochs could
have a substantial influence on robustness (Tu et al.,
2020). In particular, increasing training epochs can
help improve the generalization of the OOD test set.
In this work, we focus on the relative robustness of
compressed models compared to the uncompressed
teacher, rather than their absolute accuracies. For
a fair comparison, we unify the experimental setup
for all models. We use Adam optimizer with weight
decay (Loshchilov and Hutter, 2017), where the
learning rate is fixed as 2e-5, and we train all mod-
els for 5 epochs on all datasets. We perform the
experiments using PyTorch and use the pre-trained
models from the Huggingface model pool (Wolf
et al., 2019). We report the average results over
three runs for all experiments.

3.4 Relative Robustness Metric

As we later demonstrate, with increase in compres-
sion ratio or model sparsity, the performance of
the smaller models degrades for both in-domain
and OOD test sets. To compare the gap between
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MNLI FEVER QQP

Sparsity #Param DEV HANS Fbias DEV Sym1 Sym2 Fbias DEV pawswiki pawsqqp Fbias Average Fbias
BERT-base 109M 84.2 59.8 - 86.2 58.9 64.5 - 90.9 48.9 34.7 - -

20% 87.2M 84.4 55.5 1.182 86.5 57.0 64.6 1.045 90.7 47.2 33.5 1.037 1.088
40% 65.4M 84.0 54.7 1.204 86.4 57.2 64.0 1.051 90.5 46.6 32.4 1.049 1.101
60% 43.6M 83.4 52.8 1.266 86.3 56.9 63.3 1.068 90.2 45.9 31.8 1.061 1.132
70% 32.7M 81.8 52.2 1.249 85.9 56.6 63.3 1.063 89.5 45.4 30.7 1.065 1.127

Table 1: Accuracy comparison (in percent) and relative bias Fbias (the smaller the better) for models with iterative
magnitude pruning with different levels of sparsity. The last column indicates the average Fbias values over three
tasks. Pruned models have relatively higher degradation in OOD test set compared to the development set.

MNLI FEVER QQP

Sparsity #Param DEV HANS Fbias DEV Sym1 Sym2 Fbias DEV pawswiki pawsqqp Fbias Average Fbias
BERT-base 109M 84.2 59.8 - 86.2 58.9 64.5 - 90.9 48.9 34.7 - -

DistilBERT 66M 82.3 51.2 1.289 84.5 51.9 60.4 1.183 89.9 48.1 34.6 1.006 1.159
MiniLM 66M 83.1 51.4 1.309 84.2 53.4 60.7 1.137 89.9 46.8 31.0 1.039 1.162
Truncated-l6 66M 80.8 51.6 1.247 84.4 52.6 60.4 1.163 90.0 46.0 32.4 1.056 1.155
Pretrained-l6 66M 81.6 52.2 1.229 85.8 54.7 62.6 1.115 90.0 46.4 33.9 1.045 1.130

Table 2: Accuracy comparison (in percent) and relative bias Fbias (the smaller the better) of compressed models
with knowledge distillation. Distilled models have relatively higher degradation in OOD test set compared to the
development set. Except BERT-base, all other models have 66M parameters.

Models Attemtion heads DEV HANS Fbias
BERT-base 144 84.2 59.8 -

BERT-116heads-v1 116 84.1 55.5 1.172
BERT-116heads-v2 116 84.2 53.7 1.250
BERT-116heads-v3 116 84.0 55.3 1.176

Table 3: Accuracy comparison (in percent) and relative
biasFbias (the smaller the better) of compressed models
with structured pruning. Pruned models have relatively
higher degradation in OOD test set compared to the
development set. All compressed models have been
pruned 28 attention heads.

in-distribution task performance and OOD general-
izability, we define a new metric that measures this
performance gap of the compressed models with
respect to the uncompressed BERT-base (teacher).
First, we calculate the accuracy gap between in-
distribution development set and OOD test set as
Fdev−FOOD

Fdev
for BERT-base (denoted by ∆BERT-base);

and its compressed variant (denoted by ∆compressed).
Second, we compute the relative bias as the ratio
between the accuracy gap of the compressed model
with respect to BERT-base: Fbias =

∆compressed
∆BERT-base

.
Here Fbias > 1 indicates that the compressed
model is more biased than BERT-base with the
degree of bias captured in a larger value of Fbias.
Since FEVER has two OOD test sets, we use the
overall accuracy of sym1 and sym2 to calculate
Fbias. Similarly, the OOD accuracy for QQP is the
overall accuracy on PAWS-wiki and PAWS-qqp.

3.5 Experimental Observations

We report the performance of accuracy and the rel-
ative bias measure Fbias for iterative magnitude
pruning in Table 1, knowledge distillation in Ta-
ble 2 and structured pruning in Table 3. We have
the following key observations.
Iterative Magnitude Pruning: First, for slight and
mid-level sparsity, the pruned models have com-
parable and sometimes even better performance
on the in-distribution development set. Consider
FEVER as an example, where the compressed
model preserves the accuracy on the in-distribution
set even at 60% sparsity2. However, the generaliza-
tion accuracy on the OOD test set has a substantial
drop. This indicates that the development set fails
to capture the generalizability of the pruned mod-
els. Second, as the sparsity increases, the general-
ization accuracy on the OOD test set substantially
decreases while dropping to random guess for tasks
such as MNLI. Third, at high levels of sparsity (e.g.
70%), both development and OOD test set perfor-
mances are significantly affected. In general, we
observe Fbias > 1 for all levels of sparsity in Ta-
ble 1. Note that we limit the maximum sparsity at
70% after which the training is unstable with a sig-
nificant performance drop even on the development
set (Liang et al., 2021). As in the previous cases,
there is substantial accuracy drop on the OOD test

2Here, 60% sparsity indicates that 40% parameters are
remaining after pruning.
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set compared to the development set (e.g., 7.6% vs
1.9% degradation respectively for the MNLI task).
Knowledge Distillation: Similar to pruning, we
observe a higher accuracy drop in the OOD test
set compared to the in-distribution development set
for distilled models. Consider DistilBERT perfor-
mance on MNLI as an example with 1.9% accuracy
drop in development set compared to 8.6% drop
in the OOD test set. This can also be validated in
Table 2, where all Fbias values are larger than 1, de-
picting that all the distilled models are less robust
than BERT-base. Another interesting observation is
that distilled models, i.e., DistilBERT and MiniLM,
have higher bias Fbias compared to the pre-trained
models, i.e., Pretrained-l6 and Truncated-l6, as we
compare their average Fbias values in Table 2. This
indicates that the compression process plays a sig-
nificant role in the low generalizability and robust-
ness of the distilled models.
Structured Pruning: Recent studies have reported
the super ticket phenomenon (Liang et al., 2021).
The authors observe that, when the BERT-base
model is slightly pruned, the accuracy of the pruned
models improves on in-distribution development
set. However, we observe that this finding does
not hold for OOD test sets. From Table 3, we ob-
serve that all pruned models are less robust than
BERT-base, with Fbias much larger than 1.

4 Attribution of Low Robustness

In this section, we explore the factors that lead to
low robustness of compressed models. Previous
work has demonstrated that the performance of
different models on the GLUE benchmark (Wang
et al., 2018) tends to correlate with the performance
on MNLI, making it a good representative of natu-
ral language understanding tasks in general (Phang
et al., 2018; Liu et al., 2020). For this reason, we
choose the MNLI task for a study.

For the MNLI task, we consider the dataset splits
from (Gururangan et al., 2018). The authors par-
tition the development set into easy/shortcut 3 and
hard subsets. In this experiment, we use pruned
models with varying sparsity to investigate the rea-
son for the low robustness of the compressed mod-
els. We have the following key observations.

Observation 1: The compressed models tend to
overfit the easy/shortcut samples and generalize
poorly on the hard ones. The performance of

3We use ‘easy’ and ‘shortcut’ interchangeably in this work.

Figure 1: Pruned model performance on hard vs easy
/ shortcut samples with varying sparsity, where x-axis
denotes the sparsity level.

pruned models at five sparsity levels (ranging be-
tween [0.2− 0.85]) on the easy and hard samples
for the MNLI task is illustrated in Figure 1. It
demonstrates that the accuracy on the hard samples
is much lower compared to the accuracy on the
easy ones. As the sparsity increases, we observe a
larger accuracy drop on the hard samples compared
to the easy ones. In particular, the accuracy gap
between the two subsets is 22.7% at the sparsity of
0.85, much higher than the 16.1% accuracy gap at
the sparsity of 0.4. These findings demonstrate that
the compressed models overfit on the easy samples,
while generalizing poorly on the hard ones. Fur-
thermore, this phenomenon is amplified at higher
levels of sparsity for the pruned models.

Observation 2: Compressed models tend to assign
overconfident predictions to easy samples. One
of the potential reasons is that compressed models
are more prone to capture spurious correlations
between shortcut features in training samples with
certain class labels for their predictions (Geirhos
et al., 2020; Du et al., 2021).

4.1 Variance-based Difficulty Estimation

Based on the above observations, we propose a
variance-based metric to quantify the difficulty de-
gree of each sample. For each sample in the devel-
opment set, we calculate its loss at five different
levels of pruning sparsity as shown in Figure 1. We
further calculate the variance of the above losses for
each sample and rank them based on the variance.
Finally, we assign the samples with low variance to
the “easy" subset and rest to the “hard" one. Com-
paring our variance-based proxy annotation with
the ground truth annotation in (Gururangan et al.,
2018) gives an accuracy of 82.8%. This indicates
that the variance-based estimation leveraging prun-
ing sparsity is a good indicator of sample difficulty.
This motivates our design of the mitigation tech-
nique introduced in the next section.
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Figure 2: RMC framework for bias mitigation with two-stage training. In the first stage, we feed the training
samples to pruned models at different levels of sparsity (ranging from [0.2− 0.85]) as introduced in Section 4.1);
compute corresponding losses and their variance to estimate the difficulty degree of each training sample. In the
second stage, we use the difficulty degree to regularize the teacher network for robust model compression.

5 Mitigation Framework

In this section, we propose a general bias mitigation
framework (see Figure 2), termed as RMC (Robust
Model Compression), to improve the robustness
of compressed models on downstream tasks. Our
RMC framework follows the philosophy of task-
specific knowledge distillation (Sanh et al., 2020;
Jiao et al., 2020), but with explicit regularization
of the teacher network leveraging sample uncer-
tainty. This prevents the compressed model from
overfitting in the easy samples that contain short-
cut features and helps improve its robustness. This
regularized training is implemented in two stages.

5.1 Quantifying Sample Difficulty
In the first stage, our objective is to quantify the
difficulty degree of each training sample.
Variance Computation: Following the observa-
tions obtained in Section 4.1, we first use iterative
magnitude pruning to obtain a series of pruned
models from BERT-base with different levels of
sparsity and then we use the losses of the pruned
models at different levels of sparsity to compute
their variance vi for each training sample xi: vi =∑n

t=1(li,t−l̄i)2
n . We choose five sparsity levels, i.e.,

n = 5, that are diverse enough to reflect the diffi-
culty degree of each training sample. Here, samples
with high variance correspond to hard ones.
Difficulty Degree Estimation: Based on the vari-
ance vi for each training sample xi, we can estimate
its difficulty degree as:

di = α+
1− α

Vmax − Vmin
· (vi − Vmin) , (1)

where Vmin and Vmax denote the minimum and
maximum values of the variances, respectively.
Equation 1 is used to normalize the variance of

the training samples in the range of [α, 1], where
di = 1 denotes the most difficult training sample,
according to our criteria of loss variance. Samples
with di closer to α are treated as shortcut/biased
samples. Prior work (Niven and Kao, 2019) show
that the bias behavior of the downstream training
set can be attributed to data collection and anno-
tation biases. Since the bias level is different for
each dataset, we assign a different α in Equation 1
to each training set to reflect its bias level.

5.2 Robust Knowledge Distillation
In the second stage, we fine-tune BERT-base on the
downstream tasks to obtain the softmax probability
for each training sample. We then use the difficulty
degree of the training samples (discussed in the
previous section) to smooth the teacher predictions.
The instance-level smoothed softmax probability
is used to guide the training of compressed models
through regularized knowledge distillation.
Smoothing Teacher Predictions: We smooth the
softmax probability ŷTi from the teacher network,
according to the difficulty degree di of each training
sample xi. The smoothed probability is given as:

si,j =
(ŷTi )

di
j∑K

k=1(ŷ
T
i )

di
k

, (2)

where K denotes the total number of class labels.
We perform instance-level smoothing for each train-
ing sample xi. If the difficulty degree of a train-
ing sample di = 1, then the softmax probability
si for the corresponding sample from the teacher
is unchanged. In contrast, at the other extreme
as di → α, we increase the regularization to en-
courage the compressed model to assign less over-
confident predictions to the sample. The difficulty
degree range is [α, 1] rather than [0, 1] to avoid
over-smoothing of the teacher predictions.
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MNLI FEVER QQP

Sparsity #Param DEV HANS Fbias DEV Sym1 Sym2 Fbias DEV pawswiki pawsqqp Fbias Average Fbias
BERT-base 110M 84.2 59.8 - 86.2 58.9 64.5 - 90.9 48.9 34.7 - -

40% – Vanilla 65.4M 84.0 54.7 1.204 86.4 57.2 64.0 1.051 90.5 46.6 32.4 1.049 1.101
– Distil 65.4M 84.1 56.2 1.145 86.3 58.4 64.5 1.013 90.5 47.3 33.2 1.032 1.063
– Smooth 65.4M 84.2 56.5 1.135 86.2 60.7 65.8 0.937 90.7 47.2 33.8 1.036 1.036
– Focal 65.4M 84.0 56.7 1.122 86.4 59.4 65.2 0.981 90.7 46.2 32.1 1.060 1.054
– JTT 65.4M 83.8 56.3 1.132 86.2 58.1 64.9 1.008 90.4 47.3 33.7 1.030 1.057
– RMC 65.4M 84.2 58.6 1.049 86.1 61.9 66.4 0.897 90.4 47.6 34.3 1.023 0.990

Table 4: Generalization accuracy comparison (in percent) and the corresponding Fbias values for iterative magnitude
pruning at 40% sparsity with different mitigation methods. The last column indicates average Fbias over three tasks.

Smoothness-Induced Model Compression: We
employ the smoothed softmax probability si from
BERT-base to supervise the training of the com-
pressed models, where the overall loss function is:

L(x) = (1− λ) ∗ L1

(
yi, ŷ

S
i

)
+ λ ∗ L2

(
si, ŷ

S
i

)
, (3)

where yi is the ground truth and ŷSi is the proba-
bility of the compressed model. L1 denotes the
cross-entropy loss, and L2 represents the knowl-
edge distillation loss with KL divergence. Hyperpa-
rameter λ manages the trade-off between learning
from hard label yi and softened softmax probability
si. Among the different families of compression
techniques introduced in Section 3.1, we directly
fine-tune the distilled models using Equation 3. For
iterative magnitude pruning, we use Equation 3 to
guide the pruning during the fine-tuning process.

6 Mitigation Performance Evaluation

In this section, we conduct experiments to evaluate
the robustness of our RMC mitigation framework.

6.1 Experimental Setup

For all experiments, we follow the same setting as
in Section 3.3, and the same evaluation datasets as
in Section 3.2. We use the OOD test set exclusively
for evaluation. We compute the variance of sam-
ples (outlined in Section 4.1) in the in-distribution
development set to split it into a shortcut and hard
subset. The relative robustness between the hard
and easy subset is used to tune the hyperparameter
α in Equation 1, where we set α as 0.5, 0.3, 0.2 for
MNLI, FEVER, and QQP, respectively. The weight
λ in Equation 3 is fixed as 0.9 for all experiments.

6.2 Baseline Methods

We consider the following five baselines. Please
refer to Sec. C in Appendix for more details.

• Vanilla: This only fine-tunes the base encoder
without any regularization.

• Distil (Task-Specific Knowledge Distillation)
(Sanh et al., 2020): This first fine-tunes BERT-
base on the downstream NLU tasks. The soft-
max probability from the fine-tuned BERT-base
is used as the supervision signal for distillation.

• Smooth (Global Smoothing) (Müller et al.,
2019): This performs global smoothing for all
training samples with task-specific knowledge
distillation, where we use the same level of reg-
ularization as in RMC (di = 0.9 in Equation 2).
In contrast, RMC uses instance-level smoothing.

• Focal (Focal Loss) (Lin et al., 2017): Compared
to cross-entropy loss, focal loss has an additional
regularizer to reduce the weight for easy sam-
ples and assign a higher weight to hard samples
bearing less-confident predictions.

• JTT (Just Train Twice) (Liu et al., 2021): This
is a re-weighting method, which first trains the
BERT-base model using standard cross-entropy
loss for several epochs, and then trains the com-
pressed model while up-weighting the training
examples that are misclassified by the first model,
i.e., hard samples.

6.3 Mitigation Performance Analysis
We compare our RMC framework with the above
baselines and have the following key observations.

Iterative Magnitude Pruning: Table 4 shows the
mitigation results of accuracy and relative bias
Fbias. All mitigation methods are performed with
pruned models at 40% sparsity. We observe that
task-specific knowledge distillation only slightly
improves accuracy on the OOD test set compared
to Vanilla tuning, since the teacher model itself is
not robust for downstream tasks (Niven and Kao,
2019). Global smoothing further improves general-
ization accuracy compared to prior methods. Our
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MNLI FEVER QQP

Sparsity #Param DEV HANS Fbias DEV Sym1 Sym2 Fbias DEV pawswiki pawsqqp Fbias Average Fbias
BERT-base 110M 84.2 59.8 - 86.2 58.9 64.5 - 90.9 48.9 34.7 - -

MiniLM – Vanilla 66M 83.1 51.4 1.309 84.2 53.4 60.7 1.137 89.9 46.8 31.0 1.039 1.162
– Distil 66M 83.1 53.7 1.221 83.8 56.5 61.0 1.052 89.6 46.7 31.8 1.037 1.103
– Smooth 66M 82.7 53.8 1.206 83.7 56.9 62.1 1.017 89.4 46.8 32.2 1.032 1.085
– Focal 66M 83.2 55.6 1.145 83.8 54.7 61.4 1.081 90.3 46.8 33.2 1.041 1.089
– JTT 66M 82.8 55.7 1.129 83.5 53.8 61.7 1.085 90.1 47.0 32.9 1.034 1.083
– RMC 66M 83.7 57.8 1.068 85.3 58.0 63.3 1.017 90.5 47.0 33.4 1.038 1.041

Table 5: Generalization accuracy and the Fbias values comparison of different training strategies with and without
mitigation on in-distribution development set and OOD test set using MiniLM as the compressed encoder.

(a) Accuracy on OOD test set (b) Relative bias 𝐹𝑏𝑖𝑎𝑠

Figure 3: RMC mitigation performance for iterative
magnitude pruning at different levels of pruning sparsity
for MNLI task.

RMC framework obtains the best accuracy on OOD
test set across all the tasks on aggregate. RMC fur-
ther reduces the average relative bias Fbias by 10%
over Vanilla tuning, as shown in Table 4, indicat-
ing the benefits of uncertainty-based sample-wise
smoothing in terms of improving model robust-
ness. For the MNLI task, we also illustrate the
mitigation performance of our RMC framework for
different levels of sparsity in Figure 3. We observe
that RMC consistently improves accuracy on OOD
HANS while reducing the relative bias Fbias for all
levels of sparsity over the Vanilla method.

Knowledge Distillation: Table 5 shows the miti-
gation results of accuracy and relative bias Fbias.
We observe that RMC significantly improves
over MiniLM for OOD generalization leverag-
ing smoothed predictions from BERT-base teacher.
With instance-level smoothing in RMC, the gener-
alization accuracy for the compressed model on the
OOD test set is significantly closer to BERT-base
teacher compared to the other methods. We also
decrease the relative biasFbias in Table 5 by 10.4%
over Vanilla tuning. On the QQP task, RMC simul-
taneously improves the performance of compressed
model on both the in-distribution development set
and the two OOD test sets.

Models DEV HANS Hard (H) Easy (E) Gap (E-H)

MiniLM–Vanilla 83.1 51.4 73.2 90.9 17.7
MiniLM–RMC 83.7 57.8 74.9 90.6 15.7

40%–Vanilla 84.0 54.7 74.9 91.0 16.1
40%–RMC 84.2 58.6 75.9 90.3 14.4

Table 6: Our RMC framework improves accuracy of the
compressed models on the hard samples and reduces
overfitting on the shortcut/easy samples, leading to re-
duced performance gap between the two subsets.

6.4 Further Analysis on Robust Mitigation

In this section, we further investigate the reasons
for the improved generalization performance with
RMC with an analysis on the MNLI task. Table 6
shows the accuracy performance of RMC for model
pruning and distillation on the shortcut/easy and
hard samples. We observe RMC to improve the
model performance on the under-represented hard
samples, where it reduces the generalization gap be-
tween the hard and shortcut/easy subset by 10.6%
at 0.4 level of sparsity and by 11.3% for knowl-
edge distillation. This analysis demonstrates that
RMC reduces the overfitting of the compressed
models on the easy samples and encourages them
to learn more from the hard ones, thus improving
the generalization on the OOD test sets.

7 Conclusions

In this work, we conduct a comprehensive study
of the robustness challenges in compressing large
PLMs when fine-tuning in downstream NLU
datasets. Furthermore, we propose a general mit-
igation framework with instance-level smoothing
for robust model compression. Experimental anal-
ysis demonstrates our framework to improve the
generalization and OOD robustness of compressed
models for different compression techniques, while
not sacrificing the in-distribution performance.
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Limitations

First, we study the shortcut learning/bias problem
and OOD generalization of model compression
techniques, exclusively focusing on the two most
widely used families of compression techniques,
including knowledge distillation and pruning. Our
empirical analysis indicates that these two fami-
lies of compression techniques suffer from the low
generalization issue. However, other types of com-
pression technique, such as matrix decomposition
and quantization, are not discussed in this work.
Studying the whole compression techniques is a
challenging topic and will be investigated in our fu-
ture research. Second, our RMC framework needs
to calculate the variance of losses for each train-
ing sample, thus requiring additional training time.
Training efficiency can be further improved by im-
plementing parallel training or more efficient ways
of calculating sample difficulty, which will also be
studied in our future research.
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A More Details of Pruning Methods

In this section, we introduce more details about the
compression techniques studied.
knowledge Distillation: For a fair comparison,
we do not compare with TinyBERT (Jiao et al.,
2020) and MobileBERT (Sun et al., 2020), since
TinyBERT is fine-tuned with data augmentation
on NLU tasks, and MobileBERT is distilled from
BERT-large rather than BERT-base.
Magnitude Pruning: It is based on the overpa-
rameterization assumption of pre-trained language
models (Xu et al., 2021b; Huang et al., 2021). For
iterative magnitude pruning, we freeze all the em-
bedding modules and only prune the parameters in
the encoder (i.e., 12 layers of Transformer blocks).
After pruning, the pruned weight values are set
to 0 to reduce the amount of information to store.
Unlike the LTH version, we consider standard mag-
nitude pruning without using rewinding.

Structured Pruning: To calculate the importance,
we follow (Michel et al., 2019; Prasanna et al.,
2020) and calculate the expected sensitivity of
the attention heads to the mask variable ξ(h,l):
I
(h,l)
h = Ex∼X

∣∣∣ ∂L(x)
∂ξ(h,l)

∣∣∣ , where I(h,l)h denotes the
contribution score of the attention head h in layer
l, L(x) represents the loss value for the sample x,
and ξ(h,l) is the mask of the attention head h in
layer l. After obtaining the contribution scores, the
attention heads with lowest score I(h,l)h are pruned.

B More on Evaluation Datasets

In this section, we introduce more details about the
three benchmark datasets.
MNLI: This task aims to predict whether the rela-
tionship between the premise and the hypothesis
is contradiction, entailment, or neutral. It is di-
vided into a training set and development set with
392, 702 and 9, 815 samples, respectively.

FEVER: The task is to predict whether the claims
support, refute, or not-have-enough-information
about the evidence. Recent studies indicate that
there are strong shortcuts in claims (Utama et al.,
2020). It is divided into a training set and a de-
velopment set with 242, 911 and 16, 664 samples,
respectively.

QQP: It is divided into a training set and a de-
velopment set with 363, 846 and 40, 430 samples,
respectively.

C More on Comparing Baselines

In this section, we introduce more details on com-
paring baselines.
Distil and Smooth: For both baseline methods, we
use a loss function similar to that of Equation 3.
We fix the weight λ to 0.9 for all experiments, to
encourage the compressed model to learn more
from the probability output of the teacher network.
A major difference between the two baselines is
that Smooth has an additional smoothing process
involved during the fine-tuning process.

Focal Loss: The original focal loss function is:
FL (pi) = − (1− pi)γ log (pi). Our implementa-
tion is as follows:

FL (pi) = −
(1− pi)γ

1
N

∑N
k=1 (1− pk)γ

log (pi) .

The hyperparameter γ controls the weight differ-
ence between hard and easy samples, and is fixed
at 2.0 for all tasks. We use the denominator to nor-
malize the weights within a batch, where N is the
batch size. This is used to guarantee that the aver-
age weight for a batch of training samples is 1.0.
As such, the weight for the easy samples would be
down-weighted to lower than 1.0, and the weight
for hard samples would be up-weighted to values
larger than 1.0.

JTT: This is also a reweighting baseline that en-
courages the model to learn more from hard sam-
ples. The hyperparameter λup in (Liu et al., 2021)
is set to 2.0. We also normalize the weights so that
the average weight for each training sample is 1.0.

D Running Environment

For a fair evaluation of the robustness of com-
pressed models, we run all experiments using a
server with 4 NVIDIA GeForce 3090 GPUs. All
experiments are implemented with the Pytorch ver-
sion of the Hugging Face Transformer library.

E The Capacity Issue

One natural speculation about the low robustness
of compressed models is due to their low capacity
(i.e., smaller size). To disentangle the two impor-
tant factors that influence model performance, i.e.,
low capacity and compression, we compare dis-
tilled models with Uncased-l6, which is trained
only using pretraining. The results are given in
Table 2. The results indicate that Uncased-l6 has
better generalization ability over the MNLI and
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FEVER two tasks. Take structured pruning as an
example; although the three pruned models in Ta-
ble3 have the same model size, their generalization
accuracy is different. These results indicate that
the low robustness of compressed models is not
entirely due to their low capacity, and compression
plays a significant role.

F MNLI Easy and Hard Subsets

The authors train a hypothesis-only model and use
it to generate predictions for the whole develop-
ment set (Gururangan et al., 2018). Samples that
are given correct predictions by the hypothesis-only
model are regarded as easy samples, and vice versa.
The easy subset contains 5488 samples, and the
hard subset contains 4302 samples.
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Abstract

In recent years, progress in NLU has been
driven by benchmarks. These benchmarks are
typically collected by crowdsourcing, where
annotators write examples based on annotation
instructions crafted by dataset creators. In this
work, we hypothesize that annotators pick up
on patterns in the crowdsourcing instructions,
which bias them to write many similar exam-
ples that are then over-represented in the col-
lected data. We study this form of bias, termed
instruction bias, in 14 recent NLU benchmarks,
showing that instruction examples often ex-
hibit concrete patterns, which are propagated
by crowdworkers to the collected data. This
extends previous work (Geva et al., 2019) and
raises a new concern of whether we are mod-
eling the dataset creator’s instructions, rather
than the task. Through a series of experiments,
we show that, indeed, instruction bias can lead
to overestimation of model performance, and
that models struggle to generalize beyond bi-
ases originating in the crowdsourcing instruc-
tions. We further analyze the influence of in-
struction bias in terms of pattern frequency and
model size, and derive concrete recommenda-
tions for creating future NLU benchmarks.1

1 Introduction

Benchmarks have been proven pivotal for driv-
ing progress in Natural Language Understanding
(NLU) in recent years (Rogers et al., 2021; Bach
et al., 2022; Wang et al., 2022). Nowadays, NLU
benchmarks are mostly created through crowd-
sourcing, where crowdworkers write examples fol-
lowing annotation instructions crafted by dataset
creators (Callison-Burch and Dredze, 2010; Zheng
et al., 2018; Suhr et al., 2021). The instructions typ-
ically include a short description of the task, along

∗Equal Contribution
†Now at Google Research

1Code and data is available at https://github.com/
Mihir3009/instruction-bias.

with several examples (Dasigi et al., 2019; Zhou
et al., 2019; Sakaguchi et al., 2020).

Despite the vast success of this method, past stud-
ies have shown that data collected through crowd-
sourcing often exhibit various biases that lead to
overestimation of model performance (Schwartz
et al., 2017; Gururangan et al., 2018; Poliak et al.,
2018; Tsuchiya, 2018; Le Bras et al., 2020; Mishra
et al., 2020a; Mishra and Arunkumar, 2021; Het-
tiachchi et al., 2021). Such biases are often at-
tributed to annotator-related biases, such as writ-
ing style and background knowledge (Gururangan
et al., 2018; Geva et al., 2019) (see more discussion
on related work in §A).

In this work, we propose that biases in crowd-
sourced NLU benchmarks often originate at an
early stage in the data collection process of de-
signing the annotation task. In particular, we hy-
pothesize that task instructions provided by dataset
creators, which serve as the guiding principles for
annotators to complete the task, often influence
crowdworkers to follow specific patterns, which
are then propagated to the dataset and subsequently
over-represented in the collected data. For instance,
∼ 36% of the instruction examples for the QUOREF

dataset (Dasigi et al., 2019) start with “What is the
name”, and this same pattern can be observed in
∼ 59% of the collected instances.

To test our hypothesis, we conduct a broad study
of this form of bias, termed instruction bias, in 14
recent NLU benchmarks. We find that instruction
bias is evident in most of these datasets, showing
that ∼ 73% of instruction examples on average
share a few clear patterns. Moreover, we find that
these patterns are propagated by annotators to the
collected data, covering ∼ 61% of the instances on
average. This suggests that instruction examples
play a critical role in the data collection process
and the resulting example distribution.

It is difficult to represent a task with a few ex-
amples, and bias in instruction examples makes
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it even more difficult since a task and its associ-
ated reasoning have a larger scope than instruction
patterns. For example co-reference resolution, tem-
poral commonsense reasoning, and numerical rea-
soning are much broader tasks than the prevalent
patterns in QUOREF (“what is the name...”), MC-
TACO (“how long...”) and DROP (“how many
field goals...”) datasets.

We investigate the effect of instruction bias on
model performance, showing that performance is
overestimated by instruction bias and that models
often fail to generalize beyond instruction patterns.
Moreover, we observe that a higher frequency of in-
struction patterns in the training set often increases
the model performance gap on pattern and non-
pattern examples and that large models are gener-
ally less sensitive to instruction bias.

In conclusion, our work shows that instruction
bias widely exists in NLU benchmarks, often lead-
ing to an overestimation of model performance.
Based on our study, we derive concrete recommen-
dations for monitoring and alleviating this bias in
future data collection efforts. From a broader per-
spective, our findings also have implications on
the recent learning-by-instructions paradigm (Efrat
and Levy, 2020; Mishra et al., 2021), where crowd-
sourcing instructions are used in model training.

2 Instruction Bias in NLU Benchmarks

Instructions are the primary resource for educating
crowdworkers on how to perform their task (Nan-
gia et al., 2021). Bias in the instructions, dubbed
instruction bias, could lead crowdworkers to prop-
agate specific patterns to the collected data.

Here, we study instruction bias in NLU bench-
marks2, focusing on two research questions: (a)
Do crowdsourcing instructions exhibit patterns that
annotators can pick up on? and (b) Are such pat-
terns propagated by crowdworkers to the collected
data? In our study, we use the instructions of 14 re-
cent NLU benchmarks:3 (1) CLARIQ (Aliannejadi
et al., 2020), (2) COSMOSQA (Huang et al., 2019),
(3) DROP (Dua et al., 2019), (4) DUORC (Saha
et al., 2018), and (5) HOTPOTQA (Yang et al.,
2018) (6) HYBRIDQA (Chen et al., 2020), (7) MC-
TACO (Zhou et al., 2019), (8) MULTIRC (Khashabi
et al., 2018), (9) PIQA (Bisk et al., 2020), (10)
QASC (Khot et al., 2020), (11) QUOREF (Dasigi

2All benchmarks are in English.
3The instructions were obtained from Mishra et al. (2021),

who have collected those from the dataset authors.

Dataset Pattern % Ins. % Strain % Stest

CLARIQ [Are|Would|Do]
you

72.2 85.1 89

COSMOSQA What AUX 87.5 45.1 38.4

DROP How many [field
goals | years |
yards | points |
touchdowns]

70 62.5 62.5

DUORC [How old | How |
What | Who] AUX

70 85.1 84

HOTPOTQA [In | Of | From |
_ ] [Which|What]
AUX

87.5 53.8 54.2

HYBRIDQA Which AUX 29.4 25.7 15.1

MC-TACO

How long AUX 100 - 87.6

What AUX 100 - 90.1

How often AUX 100 - 85.3

AUX...
[still|always
|by the time]

100 - 67.3

When did / What
time

100 - 83.4

MULTIRC What AUX 14.3 38.4 41.5

PIQA How [do|can] 66.7 43.7 42.9

QASC What AUX 57.1 49.3 47

QUOREF What AUX the [_|
full|real|first
|last] name

36.4 57 60

ROPES Which AUX 42.9 74.1 20.7

SCIQA What AUX 100 83.6 84.5

WINO-
GRANDE

[because | so |
while | since |
but] ... the

73.7 63.4 63.1

Average 72.7 59 62

Table 1: Portion of patterns in instruction examples
(Ins.) and in the corresponding train (Strain) and test
(Stest) sets of NLU datasets. AUX ∈ {am, is, are, was,
were, has, have, had, do, does, did, will, would, can,
could, may, might, shall, should, must}, and _ is an
empty string. MC-TACO has 5 different data subsets
corresponding to different types of temporal reasoning
(see Tab. 2), hence, the sum of percentages for this
dataset exceeds 100%.

et al., 2019), (12) ROPES (Lin et al., 2019), (13)
SCIQA (Welbl et al., 2017), (14) WINOGRANDE

(Sakaguchi et al., 2020). These benchmarks were
created through different crowdsourcing protocols
to evaluate diverse tasks (Mishra et al., 2021) (see
dataset statistics in §B).

Tab. 2 provides the number of examples present
in crowdsourcing instructions of each dataset.
From Tab. 2, we can observe that our analysis
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Dataset Task # of Examples

CLARIQ Clarification QA 18

COSMOSQA Commonsense Reasoning 8

DROP Numerical Reasoning 10

DUORC Paraphrased RC 10

HOTPOTQA Multi-hop QA 8

HYBRIDQA QA 17

MC-TACO

Event Duration 3

Event Ordering 2

Frequency 2

Stationary 2

Absolute Point 2

MULTIRC Complex QA 7

PIQA Physical Interaction QA 6

QASC Complex QA 7

QUOREF Coreference QA 11

ROPES RC 14

SCIQA Science-based QA 6

WINOGRANDE Commonsense Reasoning 19

Average 8.4

Table 2: Tasks of each dataset and number of examples
in crowdsourcing instruction of each dataset. RC: Read-
ing Comprehension, QA: Question Answering.

involves a wide range of different tasks. Also,
we believe that the lower number of examples in
crowdsourcing instructions might be limiting the
imagination of annotators while creating samples,
resulting in instruction bias.

2.1 Patterns in Crowdsourcing Instructions

Our goal is to quantify biases in instruction exam-
ples that propagate to collected data instances. In
this study, we focus on an intuitive form of bias
of recurring word patterns, which crowdworkers
can easily pick up on. To find such patterns, we
manually analyze the instruction examples of each
dataset to find a dominant pattern, using the follow-
ing procedure: (a) identifying repeating patterns of
n ≥ 2 words, (b) merging patterns that are seman-
tically similar or have a substantial word overlap,
and (c) selecting the most frequent pattern as the
dominant pattern (an example is provided in §C).

Tab. 1 shows the dominant pattern in the instruc-
tion examples of each dataset. On average, 72.7%
of the instruction examples used to create a dataset
exhibit the same dominant pattern, and for 10 out
of 14 datasets, the dominant pattern covers more
than half of the instruction examples. This sug-

gests that crowdsourcing instructions demonstrate
a small set of repeating “shallow” patterns. More-
over, the short length of the patterns (2-4 words)
and the typical low number of instruction exam-
ples (Tab. 2) make the patterns easily visible to
crowdworkers, who can end up following them.

Notably, our results are an underestimation of
the actual instruction bias, since (a) we only con-
sider the dominant pattern for each dataset (b) our
manual analysis over instruction examples has a
preference for short patterns (c) we do not con-
sider paraphrased patterns (beyond the shallow
paraphrases which are visible in annotation instruc-
tions), and (d) datasets may include implicit pat-
terns (e.g. writing style and biases from the annota-
tor’s background knowledge) that also contribute
to instruction bias. Accounting for such patterns is
expected to increase the bias percentage in Tab. 1
further.

2.2 Instruction Bias Propagation to Datasets

We now turn to investigate whether patterns in
instruction examples are further propagated by
crowdworkers to the collected data. We analyze
the train and test sets of each benchmark4 to find
the same patterns, using simple string matching.
To account for syntactic modifications in identified
patterns based on some examples from dataset, we
also consider synonym words where appropriate
and match the paraphrased version of each pattern.

Tab. 1 shows the results. Across all datasets, in-
struction patterns are ubiquitous in the collected
data, occurring in 60.5% of the instances on aver-
age, with similar presence in training (59%) and
test (62%) examples. While the dominant pattern’s
frequency in the data is typically not higher than
in the instructions, for CLARIQ, DUORC, MUL-
TIRC, QUOREF and ROPES, the pattern frequency
was amplified by the crowdworkers. Interestingly,
these datasets used a relatively large number of in-
struction examples (Tab. 2), suggesting that more
examples do not necessarily alleviate the propaga-
tion of instruction bias. Example data instances
with instruction patterns are provided in §D.

A natural question that arises is whether patterns
in collected data reflect the true task distribution
rather than a bias in the instructions. We argue that
this is highly unlikely. First, while the space of
possible patterns for a NLU task is arguably large,
the dataset patterns are imbalanced proportionately

4If no explicit test set exists, we use the validation set.
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Base Large

Sp
test S−p

test Sp
test S−p

test

CLARIQ 30.5 27.4 10.2% ↓ 30.3 26.3 13.2% ↓
DROP 75.7 31.8 58% ↓
MULTIRC 40.5 33.7 16.8% ↓ 42 37.4 11% ↓
PIQA 20.7 15 27.5% ↓ 21.8 15.3 29.8% ↓
QUOREF 85.9 66 23.2% ↓ 92.1 81.1 11.9% ↓
ROPES 57 42 26.3% ↓ 57.8 58.2 0.7% ↑
SCIQA 80.7 79.7 1.2% ↓ 82.8 81.9 1.1% ↓

Average 55.9 42.2 24.5% ↓ 54.5 50 8.3% ↓

Table 3: Performance on Sptest vs. S−p
test of models trained

on data instances containing instruction patterns (Sptrain).

to the patterns in the instructions for collecting
it. For example, questions for assessing temporal
commonsense reasoning could have various forms,
such as “What is the duration of...”, “For how much
time...”, and “How long...”. However, MC-TACO

(event duration) is heavily dominated (87.6%) by
questions with the pattern “how long”, which ap-
pears in 100% of the instruction examples (Tab. 1).
In addition, datasets of similar tasks have different
dominant patterns, while each dataset’s dominant
pattern correlates with the pattern in the correspond-
ing instructions; the pattern ‘What is’ appears in
48% of the questions in QASC and in 57% of
the instruction examples, but it is entirely different
from the dominant pattern of HOTPOTQA, which
is another QA dataset for multi-hop reasoning.

We further validate the propagation of bias in in-
struction examples by comparing the pattern distri-
butions of collected instances when the instructions
include and do not include examples. We conduct
this experiment for MC-TACO and QUOREF and
find that, without any examples provided, the dom-
inant pattern is substantially less frequent, showing
that instruction bias is propagated during data col-
lection. Full details are provided in §E.

Propagation of instruction bias to the test set
raises concerns regarding its reliability for evalua-
tion, which we address next.

3 Effect on Model Learning

Let Strain (Stest) be the set of training (test) exam-
ples, and denote by Sptrain (Sptest) and S−ptrain (S−ptest ) its
disjoint subsets of examples with and without in-
struction patterns, respectively. We conduct two ex-
periments where we fine-tune models on (a) Sptrain
and (b) Sptrain∪S

−p
train, and evaluate them on S−ptest and

Sptest. This is to assess to what extent models gener-
alize from instruction patterns to the downstream

Base Large

Sp
test S−p

test Sp
test S−p

test

CLARIQ 30.5 26.9 11.8% ↓ 30.7 26.9 12.4% ↓
DROP 76 78.9 3.8% ↑
MULTIRC 40.5 39 3.7% ↓ 42.4 44.5 5% ↑
PIQA 20.7 19.8 4.4% ↓ 21.9 20.6 5.9% ↓
QUOREF 86.7 73.1 15.7% ↓ 92.1 81.1 11.9% ↓
ROPES 59.9 48.7 18.7% ↓ 59 64.2 8.8% ↑
SCIQA 80.6 80.2 0.5% ↓ 82.8 82.9 0.1% ↑

Average 56.4 52.4 7.1% ↓ 54.8 53.4 2.6% ↓

Table 4: Performance on Sptest vs. S−p
test of models trained

on Strain.

task (a), and to compare model performance on
instances with and without instruction patterns (b).

3.1 Experimental Setting
Datasets Since model training is computationally
expensive, we select a subset of seven datasets from
those analyzed in §2: (1) CLARIQ, (2) DROP, (3)
MULTIRC, (4) PIQA, (5) QUOREF, (6) ROPES,
and (7) SCIQA. These datasets cover a variety of
tasks, different types and levels of instruction bias
(Tab. 1), and are different in size (§B).

Models For all datasets except DROP, we evalu-
ate T5-base and T5-large (Raffel et al., 2020), and
BART-base and BART-large (Lewis et al., 2020).
For DROP, we use Numnet+ (Ran et al., 2019), a
RoBERTa model (Liu et al., 2019) with specialized
output heads for numerical reasoning. Numnet+
has 355M parameters, which is closer to T5-base
(220M) than to T5-large (770M) in size.

Evaluation We evaluate model performance us-
ing the standard F1 evaluation score, and report the
average score over three random seeds.

3.2 Results
We observe similar results for T5 and BART, and
thus, present only the results for T5 in this section.
Results for BART are provided in §F.

Models often fail to generalize beyond instruc-
tion patterns. Tab. 3 shows the performance on
Sptest and S−ptest when training only on examples with
instruction patterns. Across all experiments, there
are large performance gaps, reaching to 58% in
DROP and > 10% in both base and large mod-
els for CLARIQ, MULTIRC, PIQA, and QUOREF.
This indicates that models trained only on exam-
ples with instruction patterns fail to generalize to
other task examples, and stresses that instruction

1782



bias should be monitored and avoided during data
collection. Notably, the gap is lower for large mod-
els than for base ones, showing that large models
are less sensitive to instruction bias. This might be
attributed to their larger capacity to capture knowl-
edge and skills during pre-training.

Model performance is overestimated by instruc-
tion bias. We compare the performance on Sptest
and S−ptest of models trained on the full training
set (Tab. 4). The average performance across all
datasets is higher on examples that exhibit instruc-
tion patterns by ∼ 7% and ∼ 3% for the base
and large models, respectively. Specifically, base
models perform worse on S−ptest than on Sptest for all
datasets except DROP, in some cases by a dramatic
gap of > 15% (e.g. 18.7% in ROPES and 15.7% in
QUOREF). In contrast, results for the large models
vary across datasets, while the performance gap is
generally smaller in magnitude. This shows that
model performance is often overestimated by in-
structions bias, and reiterates that large models are
generally less sensitive to instruction patterns.

4 Conclusions and Discussion

We identify a prominent source of bias in crowd-
sourced NLU datasets, called instruction bias,
which originates in annotation instructions writ-
ten by dataset creators. We study this bias in 14
NLU benchmarks, showing that instruction exam-
ples used to create NLU benchmarks often exhibit
clear patterns that are propagated by annotators to
the collected data. In addition, we investigate the
effect of instruction bias on model performance,
showing that instruction patterns can lead to over-
estimated performance as well as limit the ability
of models to generalize to other task examples.

Based on our findings, we derive three recom-
mendations for future crowdsourced NLU bench-
marks: (1) Crowdsourcing instructions should be
diverse; this could be achieved, for example, by
having a large number of instructive examples,
rephrasing examples using neural models, or pe-
riodically sampling examples from a diverse set
of previously collected examples. The latter could
be done, for example, by maintaining a pool of
diverse examples during the collection process and
then presenting every annotator with a different
random sample from this growing pool. (2) Word
patterns in collected instances should be analyzed
during data collection, as well as possible corre-
spondence to instruction examples. Such analysis

will help researchers monitor the collection process
and the quality of the resulting data. (3) Correla-
tion between model performance and input patterns
should be checked during evaluation.

Limitations

This work covers 14 NLU datasets, for which anno-
tation instructions are publicly available. However,
most of these datasets are QA datasets. Our analy-
sis can be extended to other NLU task categories,
such as Natural Language Inference (NLI) and Re-
lation Extraction (RE).

Our study reveals a concrete bias that skews the
collected data distribution toward specific patterns.
While the effect of instruction examples on col-
lected data is prominent, it is hard to quantify how
different the distribution of crowdsourced examples
is from the natural distribution of the task. Con-
cretely, to conduct a study that compares the dis-
tributions of crowdsourced versus natural complex
reasoning questions, datasets of complex natural
questions are needed. However, to the best of our
knowledge, as of today, no such datasets exist.

In our analysis, we focused on shallow patterns
based on word matching, however, it is known that
there are other types of biases that are implicit in
the text. Exploring these kinds of biases can be
an interesting future direction. In addition, our
analysis of model performance is based on splitting
dataset instances based on the dominant pattern.
However, it might be possible that there are more
patterns, and the non-pattern subset might include
other less frequent patterns. Hence, exploring the
effect of different less frequent patterns on model
learning can be a future work.

Last, our work studied the effect of instruction
bias on widely used generative models (i.e., T5 and
BART); it would be valuable to investigate whether
our findings hold in encoder-only models, such
as BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019).
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A Biases in NLU Benchmarks

Crowdsourcing has been a widely adapted ap-
proach to create large scale datasets such as
SQUAD 1.1(Rajpurkar et al., 2016, 2018),
DROP(Dua et al., 2019), QUOREF(Dasigi et al.,
2019) and many more (Najafabadi et al., 2015;
Callison-Burch and Dredze, 2010; Lasecki et al.,
2014; Zheng et al., 2018; Chang et al., 2017).
Many past works investigate different types of
bias in crowdsourcing datasets such as cognitive
bias (Eickhoff, 2018), annotator bias (Gururangan
et al., 2018; Geva et al., 2019), sampling bias (Hu
et al., 2020), demographic bias (Rahmani and Yang,
2021) and others (Hettiachchi et al., 2021). Many
works on bias in NLU benchmarks focus on bi-
ases resulting from the crowdsourcing annotations,
and how annotator-specific patterns create biases
in data (Geva et al., 2019).

To mitigate the bias, prior works have focused on
priming crowdsourcing annotators with minimal in-
formation to increase their imagination (Geva et al.,
2021; Clark et al., 2020) to avoid recurring patterns.
Arunkumar et al. (2020) develops a real time feed-
back and metric-in-the loop (Mishra et al., 2020b)
workflow to educate crowdworkers in controlling
dataset biases. Nangia et al. (2021) provides an it-
erative protocol with expert assessments for crowd-
sourcing data collection to increase difficulty of
instances. (Swayamdipta et al., 2020) introduces
dataset map as a model-based tool to characterize
and diagnose datasets. Also, Karimi Mahabadi et al.
(2020); Mahabadi et al. (2021) propose learning
strategies to train neural models, which are more
robust to such biases and transfer better to out-of-
domain datasets.

In this work, we show that biases exhibited by an-
notators start from the crowdsourcing instructions
designed by dataset creators.

B Dataset Statistics

Tab. 5 describes the statistics of train and evalua-
tion sets of datasets used in our experiments. Here,
we can observe that each selected dataset differs in
terms of number of training samples, % of instruc-
tion patterns, and tasks.

C Pattern Extraction Method

Here, we describe an example to show how we
extract the dominant pattern from the crowdsourc-
ing instructions and subsequently identify the same

pattern in the dataset. We try to find recurring word
patterns such as “Are you...”, “how many points...”,

“Was... still...”, “since... the...”.
For example, MC-TACO (event duration) has 3

examples in crowdsourcing instructions: (1) how
long did Jack play basketball?, (2) how long did he
do his homework?, and (3) how long did it take for
him to get the Visa? In step (a), we analyze exam-
ples manually and find dominant pattern. Here, we
can see that all examples contain tri-gram pattern,
i.e., “how long did". In step (b), we try to generate
more possible patterns that are semantically similar
to the dominant pattern or have a significant word
overlap. Here, “how long did" can be “how long
was", “how long does", etc. (i.e, How long AUX).
In step (c), we look for all these possible patterns in
datasets using simple word-matching techniques.

D Pattern Examples

Tab. 8 provides dataset, instruction patterns and cor-
responding examples of data instances that exhibit
the instruction patterns.

E The Effect of Instruction Examples on
Pattern Frequency in Collected Data

To study the effect of bias in instruction examples
on collected data, we asked NLP graduate students
to write five questions for each of (1) temporal
reasoning (event duration) and (2) coreference res-
olution, based on the crowdsourcing instructions
of MC-TACO and QUOREF, respectively. For each
task, we conduct two surveys, where the instruc-
tions include and do not include any examples.

We collected responses from 10 participants.
The dominant patterns of MC-TACO (‘how long’)
and QUOREF (‘What is the name’) only contribute
to 38% and 8% of our collected data where ex-
amples are not given, in contrast to 68% (↑79%)
and 32% (↑300%) in collected data where exam-
ples are given. This indicates that crowdsourcing
examples bias crowdworkers to follow certain pat-
terns, whereas showing no examples increases the
creativity of crowdworkers.

In addition, our collected responses where ex-
amples are not given contain 10 and 9 unique pat-
terns for MC-TACO (event duration) and QUOREF

respectively, in contrast to only 4 and 5 unique pat-
terns in collected data where examples are given.
Our finding shows that there is substantial linguis-
tic diversity associated with the NLP tasks, unlike
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Dataset Train Test

Strain Sp
train S−p

train Stest Sp
test S−p

test

CLARIQ 8566 7286 85.1% 1280 14.9% 4499 4006 89% 493 11%
DROP 77409 48422 62.5% 28987 37.5% 9536 5960 62.5% 3576 37.3%
MULTIRC 5131 1972 38.4% 3159 61.6% 953 395 41.5% 558 58.6%
PIQA 17171 7508 43.7% 9663 56.3% 3268 1401 42.9% 1867 57.1%
QUOREF 19399 11052 57% 8347 43% 2418 1451 60% 967 40%
ROPES 1412 1046 74.1% 366 25.9% 203 42 20.7% 161 79.3%
SCIQA 11679 9765 83.61% 1914 16.4% 1000 845 84.5% 155 15.5%

Total 140767 87051 61.8% 53716 38.2% 21877 14100 64.5% 7777 35.6%

Table 5: Statistics of number of train and test examples with and without instruction patterns. Strain: set of examples
in train set, Sptrain: set of examples in train set with instruction pattern, S−p

train: set of examples in train set without
instruction pattern, Stest: set of examples in test set, Sptest: set of examples in test set with instruction pattern, S−p

test :
set of examples in test set without instruction pattern.

Base Large

Sp
test S−p

test Sp
test S−p

test

CLARIQ 30 26.2 12.7% ↓ 29.2 25.6 12.3% ↓
MULTIRC 27.9 15.1 45.9% ↓ 31.1 21 32.5% ↓
PIQA 21.9 15.3 30.1% ↓ 23 16.1 30% ↓
QUOREF 78.8 45.8 41.9% ↓ 87 58.6 32.6% ↓
ROPES 43.9 33.1 24.6% ↓ 47.2 39.1 17.2% ↓
SCIQA 76.8 66.1 13.9% ↓ 77.5 69.6 10.2% ↓

Average 46.6 33.6 27.9% ↓ 49.2 38.3 22.2% ↓

Table 6: Performance of BART models on Sptest vs. S−p
test

of models trained on data instances containing instruc-
tion patterns (Sptrain).

Base Large

Sp
test S−p

test Sp
test S−p

test

CLARIQ 29.8 26 12.8% ↓ 29.4 26.3 10.5% ↓
MULTIRC 28.5 29.8 4.6% ↑ 41.5 33.9 18.3% ↓
PIQA 22.3 20.5 8.1% ↓ 23.1 21.6 6.5% ↓
QUOREF 80.5 61.2 24% ↓ 87.8 73.4 16.4% ↓
ROPES 44 44.1 0.2% ↑ 47.9 46.5 2.9% ↓
SCIQA 76.5 70.6 7.7% ↓ 52.2 50.8 2.7% ↓

Average 46.9 42 10.5% ↓ 47 42.1 10.4% ↓

Table 7: Performance of BART models on Sptest vs. S−p
test

of models trained on Strain.

the patterns covered in instruction examples that
get propagated to corresponding datasets.

The task instructions and collected annota-
tions are available at https://github.com/Mihir3009/
instruction-bias/blob/main/SURVEY.md.

F Additional Results

Tab. 6 and Tab. 7 show the performance of BART
on Sptest and S−ptest when training only on exam-
ples with instruction patterns and the full train-

ing set, respectively. From Tab. 6, there are large
performance gaps reaching 45.9% in MULTIRC
and > 20% in both base and large models for
QUOREF, and PIQA. Overall, the average per-
formance across all datasets is 27.9% and 22.2%
higher on Sptest for the base and large models, re-
spectively. This indicates that both base and large
models often fail to generalize beyond instruction
patterns.

From Tab. 7, we see that the average perfor-
mance across all datasets is higher on examples
that exhibit instruction patterns by ∼ 10.5% for
both base and large models. From the results, we
can conclude that the model’s performance is over-
estimated by instruction bias.
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Dataset Pattern Examples

CLARIQ
[Are|Would|Do]
you

Are you looking for a specific web site?

What kind of train are you looking for?

Do you want to watch news videos or read the news?

Would you like the location of the ritz carlton lake las vegas?

COSMOSQA What AUX
What may happen after the young man makes his call?

What might happen if you have him for the whole day?

What’s a possible reason the writer doesn’t look disabled on the outside?

DROP

How many
[field goals |
years | yards |
points |
touchdowns]

How many touchdowns did Jones have?

How many field goals did Kris Brown kick

How many yards was the longest touchdown of the game?

After Akers 32-yard field goal, how many points behind was Washington?

HOTPOTQA
[in|of|from|_]
[Which|What]
AUX

Which franchise was founded in 1978, Chuck E. Cheese’s or Jet’s Pizza?

Busan, in the area surrounding the mountain of Geumjeongsan, is the second most populated city in which country?

What is the name of the third album from singer Selena Quintanilla-Pérez?

MC-TACO

How long AUX How long was his mother ill?

What AUX What did the government decide after the 9/11 attack?

How often AUX How often would one family be able to do something like this?

AUX...
[still|always]

Will electronic espionage always be happening in the U.S.?

Is she still gone?

When did / What
time

What time did the planes crash into the World Trade Center?

When did Durer die?

MULTIRC What AUX
What was Poe’s first published work?

What is the full name of the person described?

What kind of career does Christie Brinkley have?

PIQA How [do|can]
How do I make orange icing if I have store-bought white frosting?

How can I make popsicles for dogs?

Are you nervous about giving a speech or doing something? How can you calm yourself?

QUOREF

What AUX the
[full | real |
first |last]
name

What is the first name of the person who purchases a revolver?

What is the full name of the person who is calmly asked to leave?

What was the name of the house where Appleton Water Tower was built?

What is the last name of the person who convinces the girls to help him look for the treasure?

ROPES Which AUX
Which area would be less likely to experience a drought and have better chance at a new growth?

Which hair spray brand should Greg buy to be environmentally friendly?

Which markalong was produced asexually?

SCIQA What AUX
What are by far the most common type of invertebrate?

What do waves deposit to form sandbars and barrier islands?

What is the term for the total kinetic energy of moving particles of matter?

WINO-
GRANDE

[because | so |
while | since |
but] ... the

The dog didn’t like its collar but was okay with its leash because the _ was loose on it.

Hunter took Benjamin’s clothes to the laundromat, since _ had the day off that day.

James sang his song at the top of his voice so as to be heard over the noise but the _ is louder.

Table 8: Examples of data instances from original dataset that contain instruction patterns. AUX ∈ {am, is, are, was,
were, has, have, had, do, does, did, will, would, can, could, may, might, shall, should, must}. _ : <blank>.
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Abstract

Performance prediction for Natural Language
Processing (NLP) seeks to reduce the exper-
imental burden resulting from the myriad of
different evaluation scenarios, e.g., the combi-
nation of languages used in multilingual trans-
fer. In this work, we explore the framework of
Bayesian matrix factorisation for performance
prediction, as many experimental settings in
NLP can be naturally represented in matrix
format. Our approach outperforms the state-
of-the-art in several NLP benchmarks, includ-
ing machine translation and cross-lingual entity
linking. Furthermore, it also avoids hyperpa-
rameter tuning and is able to provide uncer-
tainty estimates over predictions.

1 Introduction

Natural language processing (NLP) is an empiri-
cal discipline, with progress driven by a myriad of
tasks, domains, computational models and datasets
(Xia et al., 2020). Models are often developed to be
applicable to a large number of languages. Given
that there are more than 7000 languages spoken
in the world (Haddow et al., 2022), evaluating the
model performance of each possible NLP scenario
leads to a combinatorial explosion and would re-
quire excessive time for training and testing, as
well as the significant costs of evaluation resource
creation. This is very time consuming and compu-
tationally expensive, especially for large models
and massively multilingual applications (Xia et al.,
2020; Sharir et al., 2020).

To illustrate, for neural machine translation (MT)
models, retraining and testing for each new lan-
guage pair is required (Fan et al., 2021), which
quickly increases the number of experiments (as
shown in Figure 1). In those scenarios, whether
the model is appropriate for the considered test
languages is not clear upfront. Similarly, for cross-
lingual transfer (TSF) tasks like parsing (Das and
Sarkar, 2020) or part-of-speech (POS) tagging
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Figure 1: Matrix representation showing a subset of the
performance scores for Wiki MT (Schwenk et al., 2021).
Black: Lowest performance scores. Light orange: High-
est performance scores. Grey: No performance score
available. The goal is to predict the performance of
language pairs depicted by grey cells.

(de Vries et al., 2022), the performance on all lan-
guages of interest is only known after training and
testing has been performed. This is particularly in-
teresting for the development of NLP technologies
for low-resource languages (de Vries et al., 2022).

In this paper we propose a method for per-
formance prediction which can solve the above
problems through automatically estimating perfor-
mance scores of machine learning models, thus
avoiding the need for excessive training and test cy-
cles, and data creation costs. The goal is to predict
the performance of a model solely based on past
experimental records – a task of great interest for
decision making in aforementioned high-cost appli-
cations. We propose to use Bayesian probabilistic
matrix factorization methods and incorporate con-
text features describing the language pairs of inter-
est. This is realisable because many performance
prediction problems in NLP can be modelled as a
matrix, as illustrated in Figure 1. The result will
inevitable be an incomplete matrix because some
data are missing, as they were either to costly to ob-
tain or no datasets were available (Xia et al., 2020;
Schwenk et al., 2021).
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Our key contribution is a Bayesian approach
for performance prediction, contrasting with prior
work which is exclusively frequentist. This con-
fers the following advantages: 1) it enables us to
quantify the uncertainty of our predictions by pro-
viding credible intervals (CIs); and 2) predictions
of performance scores can be provided in a more
principled way via a posterior distribution after
integrating over the model’s parameters and hyper-
parameters. We provide an extensive experimental
study of matrix factorization methods, including
our proposed Bayesian technique, applied to sev-
eral important benchmarks, and show several im-
provements over the state-of-the-art.

2 Problem Formulation and Methods

As demonstrated in Figure 1, the performance
scores for a suitable NLP task can be arranged
in a matrix with the rows displaying the source
languages and the columns showing the target
languages1. The matrix is the score matrix
R ∈ RNs×Nt and each cell (s, t) contains either
the performance score for a source-to-target lan-
guage relationship or is empty. The number of
considered source and target languages is denoted
by Ns and Nt, respectively.

The performance of a model, measured by an
evaluation metric (e.g. BLEU, Papineni et al.
(2002)), depends on properties like the model ar-
chitectureM, training dataset D, languages L, the
training procedure P and the test dataset D′. The
score matrix R is then given by

R̂L,D = fθ([ΦL; ΦD]),

with fθ(·) being a function which denotes a linear
or non-linear relationship of its arguments and ΦX
represents the feature set of each characteristic X .
The dependency on test set features is omitted. We
assume that the distributions of training and test
datasets are the same, ignoring a possible domain
shift (following Xia et al. (2020)).

As the completion of an arbitrary matrix is ill-
posed, we reformulate fθ(·) as a low-rank matrix
approximation problem. In its simplest, noiseless
form, the matrix R can be reconstructed as (Koren
et al., 2009)

R ≈WTH, (1)
1This is an assumption, appropriate for our considered

tasks. Without any loss of generality, this scenario can be
expanded to other NLP settings which can be reformulated as
a matrix, e.g. hyperparameter search for language models.

ri,j

ws

zi,j

ht

σ2

µw

Σw

c

µh

Σh

σ2c

Uh Uw

Gh Gw

σ20 σ20

η0 η0

t = 1, ..., T s = 1, ..., S

Figure 2: The graphical model for our approach based
on Bayesian Probabilistic Matrix Factorisation with con-
text information.

using two lower rank matrices W ∈ RD×Ns and
H ∈ RD×Nt , with W and H being the latent ma-
trices for the source and target languages, respec-
tively. Due to the low-rank assumption, for the la-
tent dimensions it holds that D ≪ Ns, Nt. Hence,
each individual score rs,t of a source-target pair
can be calculated by rs,t ≈ wT

s ht, where each la-
tent source and target language vector is given by a
low-dimensional vector, wT

s ∈ RD, ht ∈ RD, re-
spectively (Cabral et al., 2013; Chen et al., 2018b).

The matrix factorisation (MF) approach de-
scribed above is inspired by research on recom-
mender systems, which use latent factor models
for preference predictions (Koren et al., 2009). In
those models, the low rank behavior is a widely
used assumption. We assume in our model that
the performance of a bilingual task is determined
by a small number of unobserved factors. Using a
linear factor model the performance for translating
from a source language is modeled by linearly com-
bining target language factor vectors using source
language specific coefficients.

2.1 Bayesian Probabilistic Matrix
Factorisation

Our approach is represented by the graphical model
shown in Figure 2. It illustrates a linear probabilis-
tic model, where the conditional distribution over
the observed ratings, assuming Gaussian observa-
tion noise, is given as

p(R|W,H, c, z, σ2) =

S∏

s=1

T∏

t=1

[N (rs,t|wT
s ht +

N∑

i=1

ciz
i
s,t, σ

2)]Is,t , (2)
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with Is,t being the indicator function that is 1 if a
source language s has a performance score for a tar-
get language j and 0 otherwise. N (µ, σ2) denotes
a Gaussian distribution with mean µ and variance
σ2. The mean of this likelihood function consists
of a latent factor model wT

s ht and is also addition-
ally regressed on the available context information
given by zis,t for i ∈ 1, ..., N available context
features (Chen et al., 2018b). The prior for the
regression coefficients ci of each context feature zi
is given by p(ci|σ2c ) = N (ci|0, σ2c ). Furthermore,
spherical Gaussian priors are placed for source and
target language latent feature vectors given by

p(W|σ2w) =
S∏

s=1

N (ws|µw,Σw) (3)

p(H|σ2h) =
T∏

t=1

N (ht|µh,Σh), (4)

with hyperparameters Θw = {µw,Σw} and
Θh = {µh,Σh}, where Σ is the covariance ma-
trix. In contrast to the original work (Salakhut-
dinov and Mnih, 2008) on which we base our ap-
proach, we choose to incorporate the Lewandowski-
Kurowicka-Joe (LKJ) prior (Lewandowski et al.,
2009) into the computation of samples for the co-
variance matrices. This method is better suited for
modern Bayesian computations, due to sampling
difficulties the inverse-Wishart prior causes and its
restrictive form (Team, 2018; Barnard et al., 2000).
A correlation matrix U, with elements uij =

σij
σiσj

and σ being the standard deviation, can be refor-
mulated into a covariance matrix Σ using the sepa-
ration strategy (Barnard et al., 2000) as

Σ = GUG, (5)

with G =
√

diag(Σ). The matrix U is sampled
from the LKJ prior given by

p(U|η0) = c · det(U)η0−1,

indicating a uniform distribution on correlation ma-
trices for η0 = 1, a normalization constant c and
det(·) denoting the determinant. As a prior for G
we choose the halfnormal distribution (Seyboldt,
2019), as it holds that σ > 0, which is given for
each element g ∈ G by

p(g|σ20) =
√
2

σ0
√
π

exp
(
− g2

2σ20

)
, g ≥ 0,

with unit variance σ20 . This is equivalent to plac-
ing an inverse-Gamma distribution on the preci-
sion. The covariance matrix Σ obtained according
to Equation (5) is used to parameterise the priors
given in Equations (3) and (4) and the Gaussian
prior of their means. More information can be
found in Salakhutdinov and Mnih (2008).

The predictive distribution is obtained by
marginalizing over the model’s parameters and hy-
perparameters. Since exact evaluation of this pre-
dictive distribution is analytically intractable, we
use approximate inference via Markov chain Monte
Carlo (MCMC) sampling, leading to an approxima-
tion of the predictive posterior as (Salakhutdinov
and Mnih, 2008):

p(R∗|R,Θ0) ≈
1

K

K∑

k=1

p(R∗|Wk,Hk), (6)

for Θ0 = {η0, σ20} and R∗ denoting the matrix
of predictions on the test set. The K samples are
generated by running a Markov chain. Its station-
ary distribution will be the posterior distribution
over the model parameters and hyperparameters
{W,H,Θw,Θh}.

2.2 Credible Intervals
One measure of uncertainty in Bayesian infer-
ence is the credible interval (CI) or more gener-
ally a credible set (Casella and Berger, 2021). A
100(1− β)% equal tail CI for a random variable
X is an interval [a, b] such that the probability that
X lies in the interval is 1− β, given as

P (X ∈ [a, b]) = 1− β.
In Bayesian inference, analyses are made consid-
ering the posterior distribution of the parameter
of interest. Hence, a CI provides us with upper
and lower bounds which define an interval with the
probability of interest around the mean of the pos-
terior distribution (Hespanhol et al., 2019; Rice and
Ye, 2022). It quantifies how precise the obtained
posterior, i.e. the posterior belief, is, with a nar-
rower interval around the point estimate indicating
more certainty in the predictions. Hence, using the
samples from Equation (6), an approximation of
the posterior predictive distributions for each lan-
guage pair can be obtained and used to construct
CIs in addition to the point estimates. This is useful
for performance prediction in NLP settings, as the
widths and bounds of the obtained CIs can guide
further decision-making regarding whether a model
is theoretically worth deploying.
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Task dim cells empty test feats

MTTSF 54× 54 2916 0 573 21
POSTSF 26× 60 1560 14 29 15
MTWiki 39× 39 1521 526 199 22
ParsingTSF 30× 30 900 0 174 15
ELTSF 9× 54 486 0 96 12
BLI 15× 15 225 95 26 6

Table 1: Matrix specifications for each task. Dim: Ma-
trix dimensions. Cells: Number of cells in each matrix.
Empty: Number of empty cells in the matrix, not being
cells on the diagonal. Test: Number of cells used in the
test set. Feats: Number of features.

2.3 Non-Bayesian Matrix Factorisation
Methods

Probabilistic MF (PMF) has been shown to perform
well on sparse and imbalanced datasets (Mnih and
Salakhutdinov, 2007). The conditional distribu-
tion over the observed ratings, assuming Gaussian
observation noise given by Equation (2), without
considering additional context information. As in
Bayesian PMF (BPMF) spherical Gaussian priors
are placed on W and H following Equations (3)
and (4), assuming µw = µh = 0; Σw = σ2wI and
Σh = σ2hI. Learning the latent source and target
matrices is done via maximizing the log-posterior,
where all hyperparameters, being the observation
noise and prior variances, are fixed. This is equal to
the following optimization problem, where latent
factor representations are learned by finding the ma-
trices W and H which minimize the regularized
squared error, given by (Chen et al., 2018b)

W∗,H∗ = argmin
W,H

1

2

∑

(s,t)∈δ(R)

(rs,t −wT
s ht)

2

+βw

Ns∑

s=1

||ws||22 + βh

Nt∑

t=1

||ht||22, (7)

where || · ||22 is the squared l2 norm2. Additionally,
separate regularization parameters for W and H
are assumed, being βw and βh, respectively. In the
case of missing values, the optimization problem
is on the set of known ratings δ(R).

Additionally, the framework of MF offers the
option of biased MF, which provides a means of in-
corporating context. It incorporates model charac-

2Solving this optimization problem to obtain a point es-
timate is referred to as MF in our experiments. We use a
Bayesian approach for PMF and therefore apply MCMC sam-
pling, which is another alternative and can be easily extended
via hyperpriors to BPMF.

teristics of each source language, bs, and target lan-
guage bt and considers a global tendency µ which
is independent of source-target language interac-
tions. The biases account for the fact that certain
performance values might contain universal shifts
or exhibit systematic tendencies with respect to
certain source and target languages. Furthermore,
it is common that all performance predictions are
non-negative and in a certain range, i.e., the global
bias µ accounts for global effects. The predictions
are given by (Chen et al., 2018b)

r̂CTX
s,t = wT

sht +
N∑

i=1

ciz
i
s,t + µ+ bs + bt. (8)

During learning, the optimization problem in Equa-
tion (7) has to be adapted to r̂CTX

s,t accordingly, also
adding additional regularization terms for bs and bt.

The non-probabilistic approaches, but also PMF
need manual control of their hyperparameters,
which makes those approaches computationally ex-
pensive to develop compared to BPMF.

3 Experiments and Analysis

Following the evaluation setting of NLPerf (Xia
et al., 2020), we consider a set of tasks described
in the following, all of which allow a reformula-
tion into a matrix representation. The performance
scores are predicted for bilingual lexicon induction
(BLI); machine translation on aligned Wikipedia
data (WikiMT), and with cross-lingual transfer for
translation into English (MTTSF); cross lingual de-
pendency parsing (ParsingTSF); cross-lingual POS
tagging (POSTSF) and cross-lingual entity linking
(ELTSF). Despite also considering cross-lingual
transfer tasks, for reasons of simplicity and with-
out any loss of generality, we refer to each cell in
the matrix as a source-target language pair unless
otherwise stated. All tasks and their matrix proper-
ties are stated in Table 1. More information about
the models underlying each task can be found in
Appendix A.

To allow a fair comparison to the closest related
work NLPerf (Xia et al., 2020), we consider an
identical set of features for our predictions: Dataset
size, word/subword vocabulary size, average sen-
tence length, word/subword overlap, type-token ra-
tio, type-token ratio distance, single tag type, fused
tag type, average tag length per word, dependency
arcs matching WALS features and six distance fea-
tures from the URIEL Typological Database (Littell
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Task MTWiki ParsingTSF ELTSF POSTSF MTTSF BLI

NLPerf 2.49 6.23 7.44 7.44 1.42 8.78
MF D = 10 2.74± 0.08 3.43± 0.16 6.47± 0.26 6.81± 0.19 1.42± 0.02 11.24± 0.45
MF D = 20 2.73± 0.07 3.36± 0.08 6.33± 0.25 6.03± 0.10 1.40± 0.02 12.05± 0.72
MF CTX D = 10 2.19± 0.07 2.37± 0.04 5.45± 0.19 3.98± 0.07 1.42± 0.02 10.92± 0.66
MF CTX D = 20 2.15± 0.05 2.25± 0.05 5.33± 0.15 3.86± 0.07 1.19± 0.02 10.80± 0.61
PMF D = 10 2.88± 0.05 3.27± 0.02 11.19± 0.08 5.87± 0.03 1.44± 0.00 11.65± 0.37
PMF D = 20 2.92± 0.04 3.34± 0.00 11.25± 0.08 5.78± 0.05 1.43± 0.01 11.83± 0.41
BPMF D = 10 2.64± 0.03 3.77± 0.00 5.00± 0.06 23.03± 3.33 1.61± 0.03 9.23± 0.11
BPMF D = 20 2.63± 0.03 2.99± 0.04 5.00± 0.09 6.44± 0.13 1.65± 0.07 9.30± 0.05
BPMF D = 30 2.59± 0.06 2.96± 0.03 4.98± 0.05 6.21± 0.1 1.64± 0.03 9.07± 0.04
BPMF CTX D = 10 2.42± 0.00 3.69± 0.06 4.97± 0.05 17.56± 1.77 1.53± 0.02 9.18± 0.20
BPMF CTX D = 20 2.35± 0.11 2.92± 0.05 4.87± 0.02 6.17± 0.10 1.57± 0.04 9.20± 0.07
BPMF CTX D = 30 2.51± 0.02 2.96± 0.03 5.15± 0.19 6.02± 0.10 1.53± 0.02 9.22± 0.04

Table 2: RMSE± standard deviation for various all tasks considered. D: Latent factor dimension. CTX: Approaches
incorporating context features.

et al., 2017). Further information regarding each
feature can be found in Xia et al. (2020).

All features were normalized using their corre-
sponding z-score. For each task, (except BLI), we
predict scores for a single model. This means that
there is exactly one underlying statistical or neural
model considered for each task. For BLI however,
our dataset consists of two metrics Vecmap and
Muse. The performance is obtained as in the equiv-
alent multi-model scenario in Xia et al. (2020), by
averaging over both metrics.

The NLPerf framework is based on gradient
boosting trees (Friedman, 2001) and implemented
with XGBoost (Chen and Guestrin, 2016). The
parameterisation of this predictor was kept as in
(Xia et al., 2020), assuming a squared error as the
objective function for the regression, a fixed learn-
ing rate of 0.1, a maximum tree depth of 10 and
the number of trees being 100. The default setting
was used for the regularization terms. We evaluate
the performance of our methods by using the root
mean squared error (RMSE).

Predictions for MF are obtained according to
Equation (8) but through omitting the context infor-
mation, whereas MF CTX makes use of the latter.
The conditional distribution over observed ratings
as given in Equation (2) is used to obtain predic-
tions for BPMF, and adapted accordingly for PMF.
All non-Bayesian models are trained using nested
5-fold cross validation and stochastic gradient de-
scent (SGD) over 2000 training iterations. Refer-
ring to Figure 1, note that during training of the
latent vectors ws and ht, all available scores in the
corresponding column s and row t are used. The
regularization parameters are chosen using a vali-

dation set. All non-probabilistic experiments are
averaged over 10 runs. Training of the probabilis-
tic models was performed using MCMC sampling
and the results are averaged over 2 runs, due to
MCMC time complexity.3 More information about
the execution times of each experiment is given in
Appendix B.

3.1 Random Train-Test Splits

We start by investigating the behaviour of all meth-
ods on a randomly chosen training and test split
containing a subset of language pairs. Note that
we create one split per task and keep it constant
across all methods to allow fair comparison of the
obtained results. An example for such a train-test
split is depicted in Figure 3 on the left for BLI.

The RMSE and standard deviations of our pre-
dicted performances for all tasks are provided in
Table 2. For all single model tasks, the MF ap-
proaches consistently outperform the state-of-the-
art NLPerf (Xia et al., 2020). While general MF
already outperforms NLPerf in all but one setting,
using context information (MF CTX) leads to fur-
ther improvements in terms of RMSE – outper-
forming the SOTA with reductions in RMSE of up
to 64% (ParsingTSF). While the improvement is
significant for tasks like ELTSF, POSTSF and the
aforementioned ParsingTSF, we observe a smaller
but still noticeable reduction in RMSE for WikiMT

and MTTSF of around 13% and 16%, respectively.
Note however, that the RMSE scores cannot be
directly compared across tasks as the scales of all

3Code is available at https://github.com/vschram/
PP-via-Bayesian-MF-for-Multilingual-NLP under the
CCBY-SA 4.0 license
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Figure 3: Left: One train-test split of the available BLI data set in matrix format. Light grey: Unavailable data. Dark
grey: Test data. Black: Training data. Right: 95% Credible intervals (CI) for the predicted scores for the scenario
on the left. Orange: Predicted scores. Blue: Actual scores. Method BPMF, dimensionality of latent vectors: 10.

evaluation metrics differ.

While the Bayesian version BPMF CTX also out-
performs the NLPerf baseline in all but one single
model task, we observe particularly good results
for the task ELTSF, where BPMF CTX outperforms
all other methods and achieves new state-of-the-
art results with a relative reduction in RMSE of
35%. As introduced in Section 2, the non-Bayesian
PMF requires hyperparameter optimization and as
shown in Table 2 for all tasks but MTTSF, BPMF
outperforms PMF – potentially due to non-optimal
hyperparameter choices for PMF. This might also
be the cause for the PMF results in the ELTSF ex-
periments, while they converge to a solution, the
obtained model does not represent the underlying
data well. The outliers for POSTSF are caused by di-
vergences, which can be avoided by using a higher
number of latent dimensions. Further research is
required in those cases to understand how the mod-
els in those cases can be better adapted to the data
and is part of future work.

Observing all single model results obtained, we
conclude that if a dataset is given for which a matrix
can be constructed with a limited number of miss-
ing cells, MF approaches provide a strong alterna-
tive to gradient boosting trees. Results for all tasks
show that linear MF approaches with rather small
latent dimension sizes of 10 or 20 show often sig-
nificant performance improvements over NLPerf.

In contrast to the single model tasks, the BPMF

approaches achieve competitive performance in the
BLI two model scenario, but none of the MF ap-
proaches are able to outperform the SOTA. We
suspect this might be due to the matrix size and
available data, which is significantly smaller than
in all other tasks (Table 1). Furthermore, only 6
distance features are available for this setting, indi-
cating that additional features like dataset size and
vocabulary size (among others) that are available
for the other tasks might play a important role in
facilitating accurate performance prediction.

3.2 Uncertainty of the Predicted Scores
The Bayesian approaches offer the advantage of
providing a measure of uncertainty in terms of CIs.
An example showing the 95% CIs for all language-
pairs available in the test set is depicted in Figure 3.
Predicted performance scores for cells where only
limited training data in the corresponding rows and
columns is available show wide approximations
of the predictive posterior distribution in terms of
CIs, e.g. the language pairs “fr_uk” or “fr_hi”.
In contrast, those with more training data lead to
narrower CIs like for “be_es” or “en_be”.

Apart from having a direct measure of uncer-
tainty, one can use upper confidence bounds (UCB)
and lower confidence bounds (LCB) of the obtained
CIs to guide further decision-making (Auer, 2002).
Maximum UCBs can help to determine language-
pairs for which the underlying model could be
especially high-performing, justifying the cost to
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Figure 4: Credible intervals for the task: MTWiki. Orange: Predicted Score. Blue: Actual scores. Left: BPMF,
latent factor dimensionality: 10. Middle: BPMF, latent factor dimensionality: 20. Right: BPMF CTX, latent factor
dimensionality: 20. An increase in latent factor dimensionality and adding additional features leads to narrower CIs.
However, adding features to the language pair “hin_eng” causes a wider CI, indicating that the used features might
be unsuitable for this language-pair.

train and acquire the necessary datasets for such
language-pairs. The example given in Figure 3
on the right shows CIs for the BLI task. Using
the UCBs, the language-pairs “fr_ru”, “fr_uk” and
“en_sv” could potentially provide us with the high-
est achievable scores (between 65 and 75). In con-
trast, using the minimum UCBs, we can conclude
that only very low possible maximum scores for
the language pairs “ru_ko”, “be_es” and “be_gl”
can be achieved. Those will be between 15 and
20, therefore it is discouraged to train and test the
underlying models on those. Moreover, the deci-
sion whether a model is suited for a language-pair
can also be based on the maximum LCBs, indicat-
ing the potential that a performance score will be
higher or equal then the obtained bounds. For the
considered task, this is true for the language pairs
“fr_en”, “en_gl” and “en_sv”.

Furthermore, CIs provide important additional
insights that help to interpret design choices. Fig-
ure 4 shows the impact and importance that an
increase in latent factor dimensionality as well as

LOLO transfer LOLO target

NLPerf 8.08 10.62
MF 13.29± 0.01 11.86± 0.02
MF CTX 11.16± 0.02 6.78± 0.02
Bayes 13.09± 0.00 10.85± 0.00
Bayes CTX 13.04± 0.00 10.68± 0.00

Table 3: RMSE± standard deviation for ParsingTSF. Ex-
periments leaving-one-language-out (LOLO). Dimen-
sionality of latent factors: 20.

the addition of additional features has on the per-
formance of the task MTWiki. The left figure shows
predictions and corresponding CIs using BPMF
for a latent vector dimension of 10. After increas-
ing the dimensionality to 20, the resulting CIs get
slightly narrower as shown in the middle figure.
Finally on the right, it can be observed that af-
ter adding CTX for language pairs like “eng_dan”
and “eng_hun”, the CIs get significantly narrower
and indicate increased certainty of the predictions.
However, the CI for “hin_eng” interestingly be-
comes wider, indicating that the additionally cho-
sen features for this language pair might be less
beneficial and even hurt performance prediction.
Further investigation of the feature set shows that
“hin_eng” exhibits the highest value of the feature
average sentence length of the source language,
leading to the conclusion that extreme feature val-
ues lead to more uncertainty in the predictions,
which is to be expected as the Bayesian model has
not encountered this feature value during training.

It is clear from Figures 3 and 4 that the credible
intervals are imperfect, not always including the
test results. This is to be expected 5% of the time
by chance, following the definition of the credible
interval. However, deviations can arise through
modelling biases. Consider the language pairs “fr-
en” and “sk-cs” in Figure 3. The scores for these
instances are not seen during training, and thus gen-
eralisation errors may occur. For the former, there
is lack of training data for a translation from French
to other languages. For the latter, although both
languages are closely related, there is not enough
training data support confident predictions. Further-
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more, BPMF does not use any additional features.
As visible from Figure 4 for the language pair “eng-
mar”, adding context features provides additional
information and greatly improves the accuracy of
the Bayesian credible interval.

NLPerf 8.78
LR 17.26
BPMF CTX D = 20 9.20± 0.07

Table 4: Contrasting the performance of predictors, be-
ing NLPerf, linear regression (LR) and BPMF CTX.

3.3 Leave-one-Language-out Scenarios

We further investigate the importance of additional
features for performance prediction in cold start
scenarios. In such settings, a new language occurs
in the test set which has not been encountered dur-
ing training. This is referred as leave-one-language-
out (LOLO). We conducted the experiment for
ParsingTSF as this includes a complete matrix with
the same target and transfer languages as rows and
columns. This provides us with the opportunity to
contrast the performance of the predictors regard-
ing having the same target and transfer languages.

The vectors of the latent factor models of MF
and MF CTX are initialized to small random values
during training. Thereby, the latent vector corre-
sponding to the missing language will not be fur-
ther changed as there is no training data available.
Note that MF leverages additionally the informa-
tion of additional bias as shown in Equation (8). In
the Bayesian setting, the latent vectors are sampled
according to the probabilistic model from the spec-
ified priors. Further training details are kept the
same as in Section 3.1.

The results are shown in Table 3. Our exper-
iments demonstrate that when leaving one tar-
get language out, the predicted performance of
MF CTX significantly outperforms all other ap-
proaches. However, when leaving one transfer lan-
guage out, although the performance scores pre-
dicted by MF CTX are better then other MF ap-
proaches, they do not outperform NLPerf. These
results indicate that the performance of a predictor
based on the MF framework seems to heavily de-
pend on the missing LOLO direction, being target
or transfer – rendering MF CTX well suited for
cold start predictions when performance scores for
unseen target languages are of interest.

3.4 On the Effects of Non-Linearity

In Table 4 the performance in terms of RMSE of
XGBoost, linear regression (LR) and BPMF CTX
for BLI is shown. The proposed MF methods were
not able to outperform the SOTA in this scenario.
However, while NLPerf is a non-linear method, our
approaches are all bilinear. Comparing to the per-
formance of LR, BPMF CTX clearly outperforms,
having the additional advantage of being able to
provide measures of uncertainty. This suggests that
further investigations are necessary in whether a
non-linear model would be better suited for the
prediction of performance scores for BLI.

4 Related Work

Matrix completion (MC) is an important technique
used to recover a matrix from a subset of its en-
tries, widely applied and studied in many areas of
research like machine learning, data science, signal
processing and communications (Du and Swamy,
2013; Yuchi et al., 2022). In NLP, it is found in
keyword searches or recommender systems, among
others (Chen et al., 2018b,a). MC in the context
of recommender systems can be interpreted as e.g.
the task of predicting a product to recommend to
costumers. In the famous Netflix price competition,
targeting recommender systems for movies, it has
been shown that an approach based on matrix fac-
torization (MF) via low-rank latent factor models
is the basis for the best algorithm to predict user
ratings (Koren et al., 2009; Chen et al., 2018b).

There are two main directions of performance
prediction in machine learning. The performance
can either be predicted as a function of certain
training dataset properties or as a function of its
training time or number of iterations (Kolachina
et al., 2012). Following the former, current state of
the art approaches like NLPerf (Xia et al., 2020) or
LITMUS (Srinivasan et al., 2022) leverage the ad-
vantages of regression models like gradient boost-
ing trees. We use NLPerf as a competitive baseline
in this work. Note that NLPerf was shown to outper-
form several simple mean-value baselines, namely
the average over the performances of all available
test instances; the average over shared source lan-
guages; and the average over models if multiple
models are used. This approach can easily incorpo-
rate additional features of the experiments, but they
do not provide a direct measure of uncertainty.

In Ye et al. (2021) methods used for performance
prediction are based on tensor-regression-based ap-
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proaches being robust PCA and CP decomposition.
Those are developed to provide a more fine-grained
performance measure. While confidence intervals
in the frequentist sense are provided, no Bayesian
analysis was conducted. In Srinivasan et al. (2021)
collective MF was used for performance prediction
of massive multilingual language models, where
it underperformed XGBoost. However, no exper-
iments were shown for bilingual tasks. We dif-
fer in our work because we explore the frame-
work of MF extensively and are able to provide
a range of experiments contrasting probabilistic
and non-probabilistic approaches. Additionally our
approach can give CIs as a measure of uncertainty
of our predictions. Closer to our approach is the
work of Elsahar and Gallé (2019), where instead
of evaluating domain similarity or diversity, a lin-
ear classifier is used to predict the performance
drop under domain shift using metrics based on
H−divergence, reverse classification accuracy and
confidence measures. In contrast to this body of lit-
erature, our methods provide the additional benefit
of Bayesian uncertainty quantification.

An area of application for performance predic-
tion, to be additionally highlighted here, is data
selection, during which the method can be used to
identify a suitable training dataset under domain
shift, which will lead to the best model perfor-
mance. Earlier work in this field in e.g. Blitzer
et al. (2007) uses the unsupervised A−distance
measure of divergence between domains, while
existing literature on phrase based machine transla-
tion in Axelrod et al. (2011) and Moore and Lewis
(2010) show that perplexity- or cross-entropy based
scoring methods are beneficial to select suitable
sentences for training, increasing the overall model
performance. Connected to this stream of literature
is also the work of Ruder and Plank (2017). They
present a Bayesian optimisation approach, which is
model-independent and is used to learn data selec-
tion measures for transfer learning. Additionally,
incorporating not only information about the data
set, but also about the model, Atwell et al. (2022)
shows that the h−discrepancy, which is a general-
isation of the source guided discrepancy (Kuroki
et al., 2019), can be used to identify the best gener-
alization performance of discourse models.

5 Conclusion

In this work, we presented an extensive study of
various MF methods applied to the problem of per-

formance prediction. Using a Bayesian approach
we can give a measure of uncertainty in terms of
CIs in addition to point estimates. Additionally, we
show that leveraging the obtained bounds of the CIs
can guide decision-making regarding whether it is
lucrative to deploy a model for certain language-
pairs and whether the corresponding datasets for
the language-pairs should be acquired.

Our results confirm that bilinear MF methods
can be used to predict the performance scores of
various NLP tasks, which is computationally less
expensive than using a non-linear model like XG-
boost in NLPerf. Furthermore, we show that the
MF framework is suited to predict performance
scores in cold-start scenarios.

The MF framework was not able to outperform
the SOTA for the two-model scenario BLI, which
might be due to the small matrix size and unsuit-
able features. However, BPMF CTX clearly out-
performed LR. This suggests that further studies
are required regarding non-linear MF methods.

While we chose to present a specific set of tasks
within this work, the proposed MF methods can be
used for other NLP scenarios where the considered
problem can be modelled as a matrix.

Limitations

While a variety of NLP problems can be modelled
as a matrix as our investigations in this paper show,
this does not apply to all existing NLP tasks and ex-
cludes our methods in its current form from being
used on datasets, provided for tasks like e.g. univer-
sal dependency parsing or morphological analysis
as done in Xia et al. (2020). The reason is, that a
suitable matrix representation is not possible.

While we were able to show that context fea-
tures significantly improve the estimation results,
we found that language features did not improve the
predictions. Therefore, further studies are neces-
sary to understand how language information can
be additionally incorporated into the MF frame-
work for performance prediction.

Our Bayesian approach uses MCMC sampling to
perform approximate inference, a process that can
be rather time consuming and could be replaced
by more efficient sampling methods in the future.
Furthermore, our methods are currently limited
to linear approaches, for a fair comparison with
the non-linear model NLPerf, non-linear methods
needs to be investigated.
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Task MTWiki ParsingTSF ELTSF POSTSF MTTSF BLI

MF D = 10 5min 4min 2min 7min 14min 1min
MF D = 20 5min 4min 2min 7min 14min 1min
MF CTX D = 10 8min 6min 4min 12min 22min 2min
MF CTX D = 20 8min 7min 4min 12min 22min 2min
PMF D = 10 1 h 31min 1 h 6min 48min 1 h 34min 1 h 29min 1 h 58min
PMF D = 20 1 h 29min 1 h 17min 54min 2 h 10min 2 h 33min 1 h 53min
BPMF D = 10 7 h 40min 9 h 54min 8 h 52min 10 h 8min 10 h 10min 22 h 2min
BPMF D = 20 8 h 11min 10 h 44min 10 h 17min 11 h 30min 9 h 30min 17 h 4min
BPMF D = 30 6 h 54min 10 h 49min 10 h 25min 11 h 1min 9 h 57min 18 h 50min
BPMF CTX D = 10 9 h 48min 10 h 33min 10 h 22min 11 h 34min 13 h 27min 14 h 25min
BPMF CTX D = 20 9 h 56min 11 h 57min 10 h 52min 15 h 22min 13 h 2min 15 h 32min
BPMF CTX D = 30 9 h 14min 12 h 42min 11 h 31min 14 h 23min 13 h 25min 15 h 38min

Table 5: Execution time required for one training and inference run on average per run for each experiment on one
cpu, without hyperparamter tuning, assuming optimal hyperparameters have been found before. Training MF and
MF CTX: 5 fold CV.

A Models Considered in the Experiments

The MT model behind the MTWiki data is trained on
aligned Wikipedia data (Schwenk et al., 2021). The
training data for translation are WikiMatrix bitexts
(Schwenk et al., 2021) containing a mixture of high
and low resource languages, mined using an ap-
proach based on multilingual sentence embeddings,
and tested using NMT (fairseq4, Transformer) on
the TED test set (Qi et al., 2018a) using BLEU
performance. The BLI performance dataset is ob-
tained based on the following procedure. Multilin-
gual semi-supervised word embeddings (Conneau
et al., 2017), and fully unsupervised cross-lingual
word embeddings (Artetxe et al., 2018) for high
and low resource languages, which are learnt under
a bilingual setting, are tested on BLI using accu-
racy as the performance measure (Anastasopoulos
and Neubig, 2019). For all TSF tasks, the perfor-
mance scores are obtained using LangRank (Lin
et al., 2019), which gives a rank to each transfer lan-
guage. Therefore, additionally a feature showing
the rank of each transfer language can be lever-
aged. In the following a short description about
the underlying models is given, a more compre-
hensive explanation can be found in (Lin et al.,
2019). For MTTSF the underlying trained model
is an attention-based sequence-to-sequence model
(Bahdanau et al., 2015). Training is performed on
the multilingual TED talk corpus (Qi et al., 2018b).
For the ELTSF performance scores two character-
level LSTM encoders are trained (Rijhwani et al.,
2019). The POSTSF dataset is obtained through

4https://fairseq.readthedocs.io/en/latest/

the training of a bi-directional LSTM-CNNs-CRF
model (Ma and Hovy, 2016), while the dependency
parsers uses a deep biaffine attentional graph-based
model (Dozat and Manning, 2016). The diversity
of the underlying models, namely being statistical-,
neural network- or dictionary based, gives us a bet-
ter impression about the usability of our predictor.

B On Computational Complexity

Non-Bayesian MF models have linear time com-
plexity in the number of latent factors O(D) per
SGD iteration or O(D|δ(R)|) for one pass of all
observed source-language pairs. The Bayesian
MF models have cubic complexity on the size
of the latent factors and linear on the number of
source/target languages. Due to very small sizes
of our datasets, computations were possible on a
single cpu. The execution times per model per one
run of training and inference are given in Table 5.
Compared to the Bayesian approaches, the Non-
Bayesian MF methods have a short execution time.
It increases with the size of the score matrix, e.g.
the model for MTTSF with a score matrix size of
54× 54 has the highest number of cells compared
to all other models and takes also the longest time
to perform one training and inference run. The
times shown can be taken as a reference point. Fur-
thermore, implementing the experiments on GPU
would speed up the process further, in our case
we report the execution times on CPU for a better
comparison. The CPU used for our experiments
is Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz.
Implementing MCMC sampling using GPU will
lead to a further execution time improvement.
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Abstract

Two types of topic modeling predominate: gen-
erative methods that employ probabilistic la-
tent models and clustering methods that iden-
tify semantically coherent groups. This paper
newly presents UTopic (Unified neural Topic
model via contrastive learning and term weight-
ing) that combines the advantages of these two
types. UTopic uses contrastive learning and
term weighting to learn knowledge from a pre-
trained language model and discover influential
terms from semantically coherent clusters. Ex-
periments show that the generated topics have a
high-quality topic-word distribution in terms of
topic coherence, outperforming existing base-
lines across multiple topic coherence measures.
We demonstrate how our model can be used as
an add-on to existing topic models and improve
their performance.

1 Introduction

One of the most common tasks in natural language
processing (NLP) is to find cohesive topics in a
text corpus. Topic modeling is widely used in var-
ious applications, including trend extraction from
real-time streams such as social media (Lau et al.,
2012; Park et al., 2021) and identification of no-
table events upon risk (Shin et al., 2020). Two
representative lines of work exist: generative meth-
ods and clustering-based methods.

Generative methods follow the assumption of
probabilistic latent semantic analysis (hereafter p-
LSA) such that every word token in a document is
sampled from a mixture of latent topics (Hoffman,
1999). Such methods estimate both the latent topic
distribution per document and word distribution
per topic from Bag-of-Words (BoW) representa-
tion (Blei et al., 2003; Fisher et al., 2020; Miao
et al., 2017; Yan et al., 2013). Latent Dirichlet Allo-
cation (LDA), for example, uses a Bayesian model
to estimate the latent topic distribution (Blei et al.,
∗Corresponding Authors

2003). Variational Autoencoder (VAE) retrieves
latent topics from the topic distribution while also
recovering the original input (Srivastava and Sut-
ton, 2017). Recent techniques have employed
pretrained language models on top of VAE-based
models to improve topic quality (Bianchi et al.,
2021a,b). Generative probabilistic models work
on the assumption that each topic is a mix of words
from a larger set. However, they share a common
weakness: the BoW representation only contains
word-level co-occurrences and fails to capture each
word token’s importance in the document’s context
information. Consequently, the quality of the esti-
mated topic is reliant on the choice of the word set.

Clustering methods, on the other hand, regard
topics as semantic clusters discovered over the doc-
ument or word embedding space (Angelov, 2020;
Grootendorst, 2022; Sia et al., 2020). They utilize
the knowledge of the pretrained language model
(e.g., BERT (Devlin et al., 2019)) to generate high-
level summaries of given documents (or words).
Then, document (or word) clusters are identified
according to the embedding distance via clustering
methods, such as DBSCAN or k-means. They do
not require word selection and effectively leverage
context information for discovering topics. Never-
theless, their core is clustering; hence, they cannot
assign a mixture of topics to each document.

This research takes a step further by combining
the benefits of the previous methods by including
novel considerations: contrastive learning and
term weighting. We start with a generative method
and add a term weighting scheme that mimics the
clustering method. We use a contrastive learning
framework to help the language model instill pre-
trained knowledge and enable the model to focus
on influential words. Our model, UTopic (Unified
neural Topic model via contrastive learning and
term weighting), has three stages: (1) identifying
semantic clusters, (2) calculating term weights,
and (3) estimating the latent topic distribution. In
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Stage 1, input documents with similar meanings
are grouped into a single cluster. This procedure
uses a pretrained language model, which extracts
meaningful embeddings from the input document.
Stage 2 computes the term weights for each word to
represent the importance of each term, where high
weights are given to frequent terms in one seman-
tically coherent cluster (but not in other clusters).
The model selects words with top-k term weights
as the final word set for BoW representations. In
Stage 3, the model estimates the latent topic
distribution by reconstructing BoW representations
from inputs. Term weights can represent each
term’s importance, allowing the model to learn a
coherent topic. Contrastive learning manages the
entire process of instilling pre-trained knowledge
from the language model and generating a more
distinct topic distribution with a predefined prior.

Experiments show that UTopic outperforms con-
ventional methods in a wide range of scenarios, in-
cluding human-annotated datasets (Table 1). When
compared to SOTA models like CTM (Bianchi
et al., 2021a), ClusterTM (Sia et al., 2020), and
BERTopic (Grootendorst, 2022), our model consis-
tently achieves the overall highest topic coherence
score, while others excel in only one or two metrics
(Table 2). In the 20-Newsgroups dataset, for exam-
ple, the NPMI score increased by 3.65%. Our word
set selection scheme (Stages 1&2 in Fig. 1) can be
used as a standalone module to improve other mod-
els (Table 8). Major contributions are as follows:

• We present a unified method for combining
the benefits of two topic modeling approaches
(i.e., generative and clustering) into a single
framework via term weighting.

• We modify the contrastive objective to dis-
cover semantically coherent clusters, which
gives distinct and interpretable word sets for
each cluster.

• Our model consistently outperforms existing
baselines across multiple topic coherence mea-
sures and produces topics that align well with
human labels.

Codes and implementation details of the model
are available at a GitHub repository.1

1https://github.com/mingi-sid/utopic

2 Related Works

Topic modeling algorithms can be divided into two
major streams: generative and clustering-based.

2.1 Generative approach

Most generative approaches follow the p-LSA
assumption such that a set of tokens in each
document are independently sampled from a
mixture of topics (Hoffman, 1999). LDA (Blei
et al., 2003) is a representative example that
establishes the prior distribution following the
p-LSA assumption. Many variants have been
proposed, including Prod-LDA, Neural-LDA, and
Hierarchical-LDA (Srivastava and Sutton, 2017;
Blei et al., 2010). Some algorithms like NVDM,
VTMRL, Wasserstein-LDA, and TAN-NTM
use VAE for estimating the latent topic distribu-
tion (Miao et al., 2016; Gui et al., 2019; Nan
et al., 2019; Panwar et al., 2021), while other algo-
rithms, including DocNADE, use auto-regressive
architecture (Larochelle and Lauly, 2012).

Adding a pretrained language model (or word
embeddings) to traditional topic models has yielded
promising results (Grootendorst, 2022; Liu et al.,
2015; Qiang et al., 2017; Sia et al., 2020). Contextu-
alized topic model (CTM), for example, obtains the
embedding vector for each sentence using a model
like BERT (Devlin et al., 2019) and bundles the
embedding and the BoW (bag-of-words) (Bianchi
et al., 2021a). The bundled vector based on VAE is
then used to reconstruct BoW and uncover latent
topics. However, these approaches have common
limitations; word-level co-occurrences cannot fully
convey words that represent themes. Naturally, the
topic quality depends on the vocabulary set used for
calculating word co-occurrences (Gui et al., 2019).

2.2 Clustering based approach

Keeping up with the recent achievement on deep
representation learning in NLP domain (Devlin
et al., 2019; Mikolov et al., 2013a), several works
showed that discovering clusters over the sen-
tence/word representation space can be one viable
way to represent topics (Angelov, 2020; Grooten-
dorst, 2022; Sia et al., 2020). Unlike generative
approaches, they first extract high-level abstract
features from the input document. Then, centroid-
based clustering approaches are applied to identify
dense clusters, which are finally regarded as topics.
For example, Top2Vec (Angelov, 2020) utilizes
Doc2Vec embedding (Le and Mikolov, 2014) to
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Figure 1: The illustration of the proposed neural topic model, UTopic . It divides documents into clusters based on
their context (Stage 1). Then, term weights are computed according to every term’s importance. As a topic word set,
influential words with the highest term weight are retrieved (Stage 2). UTopic is fine-tuned by estimating the latent
topic distribution with the help of term weights and contrastive learning (Stage 3).

jointly embed word and sentence representations,
while BERTopic (Grootendorst, 2022) introduces
BERT’s sentence embedding to identify topic clus-
ters. Another work demonstrates that word-level
clusters can represent latent themes from the cor-
pus (Sia et al., 2020). Nevertheless, these methods
are clustering-based, so they cannot easily assign
multiple topics to each document.

3 Methods

Problem definition: Let x be an input document
and X be a collection of documents in the corpus
(i.e., x ∈ X ). A primary goal of our topic model is
to estimate the topic distribution p fromX . Given a
finite number of topicsK, we extract top-k relevant
words (hereafter referred to as topic words)Wi for
each topic i to interpret the underlying theme and
evaluate the topic quality. The topic word comes
from the word setWdict, which has a size N (i.e.,
Wi ⊂ Wdict for all i).

We propose to compute the weight importance
of each term on semantically coherent clusters
and then estimate the latent topic distribution by
reconstructing the BoW representations based on
term weights. Our idea is depicted in Figure 1,
where a clustering model groups documents with
similar contexts in the corpus (Section 3.1). Term
weights are computed by treating each document
cluster as a single unified document. If certain
terms are significant in one group but not in others,
we consider them influential. Top-k influential
subject terms are selected as the word set Wdict

for constructing BoW representation (Section 3.2).
The model estimates topic distribution using the
discovered word set and its term weight to recover
the BoW representation of documents (Section 3.3).
Contrastive learning (hereafter CL) improves rep-
resentation quality at every phase, and the Dirichlet
prior controls the entropy of the topic distribution.
These steps are outlined in the following sections.

3.1 Stage 1: Document grouping via CL
Let f be a language model (e.g., BERT) that has
been pre-trained, and g be an unsupervised clas-
sifier attached on top of f ’s sentence embedding
(e.g., BERT’s [CLS] token embedding). First, the
models f and g are trained to classify incoming
documents into K topic categories. CL facilitates
this task with the InfoNCE loss (Oord et al., 2018),
which learns an embedding space to maximize
agreement between comparable examples while
minimizing agreement between different instances.
Assume that z is an input sample’s embedding in
the form of cluster assignment probability (i.e.,
z = softmax(g ◦ f(x))), and that Z+ and Z− are
a collection of positive and negative samples’ em-
beddings, respectively. The InfoNCE loss for each
sample is defined as follows:

LCL(z) = − log

∑
z′∈Z+

esim(z,z′)/τ

∑
z′∈(Z+∪Z−) e

sim(z,z′)/τ
(1)

= − log
∑

z′∈Z+

esim(z,z′)/τ + log
∑

z′∈(Z+∪Z−)

esim(z,z′)/τ

= −Lalign(z) + Ldistribution(z), (2)
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where sim(·) represents the similarity metric
between two embeddings, and τ is a temperature
value to control the entropy (Hinton et al., 2015).
The InfoNCE loss can be broken down into two
parts: alignment loss and distribution loss. The
first term, alignment loss (Lalign), directs the model
to place positive pair embeddings closer together.
The second term, distribution loss (Ldistribution),
pushes the embeddings of each sample as far apart
as possible. This policy requires the model to
match each instance’s embedding into the prede-
fined prior distribution with high entropy (Chen
and Li, 2020; Wang and Isola, 2020).

The contrastive loss is used as follows in
document clustering. For a given anchor x, we
establish a set of positive samples Z+ and negative
samples Z−. Given that our model is unsupervised,
there is no ground-truth label to determine which
samples should be placed closer together in the
embedding space. Instead, we mine the pretrained
language model’s top-1 nearest neighbor in the
embedding space and consider it a positive sample
(i.e., x+ in Fig. 1). The remaining instances in the
same batch are considered negative samples.

Next, we guide the instance’s embedding distri-
bution to follow the prior with low entropy by modi-
fying Ldistribution and adopting the optimal transport
theory (Peyré et al., 2019; Rabin et al., 2011), a
mathematical framework for transporting two sets
of points while minimizing the transportation cost.
The Sliced Wasserstein Distance (SWD) (Kolouri
et al., 2019), a distance measure based on opti-
mum transport that projects embeddings to random
orthogonal subspaces and sums the 1-dimension
Wasserstein Distance for each subspace, is one
of its techniques. We replace Ldistribution with the
SWD between embedding distribution and prede-
fined low-entropy prior Zprior (Eq. 3).

The model does not directly minimize entropy
because documents can contain numerous topics;
instead, it assigns the prior Zprior to Dirichlet
distribution with α < 1 to assure low entropy of
the embedding space. The alignment loss with
adjusting factor λ is used to optimize the modified
distribution loss at the same time.

Lstage1(z) = −Lalign(z) + λ · L′distribution(z),

where L′distribution(z) = SWD(z,Zprior) (3)

We use the cluster assignment probability z to
discoverK clusters after training (i.e., argmaxj zj
where j indexes the vector dimension).

3.2 Stage 2: Computing term weights
Given the newly identified cluster set C (i.e., c ∈
C), the next stage calculates the term importance
weight for each word from C and constructs the
word setWdict. If words frequently appear in one
cluster but not in others, they are deemed influential.
This concept is consistent with TF-IDF (Ramos
et al., 2003), which measures the importance of
each word in a document by multiplying two terms:
term frequency (TF) and inverse document fre-
quency (IDF)2. Similar to (Grootendorst, 2022),
we treat each document cluster as a single unified
document and calculate the TF-IDF of each word
for term weights. The TF-IDF measure for each
cluster is as follows:

tf-idf(w, c, C) = tf(w, c) · idf(w, C) (4)

tf(w, c) =
freq(w, c)∑

w′∈c freq(w′, c)
(5)

idf(w, C) = log
|C|

|{c ∈ C : w ∈ c}| , (6)

where freq(w, c) denotes the number of times a
given word w is found in cluster c.

To build the word setWdict for building BoWs
in the next stage, we select the top-k influential
topic words for each cluster with the highest term
weight (Eq. 7). The value of k is adaptively chosen
based on the dictionary size N = |Wdict|.
Wdict =

⋃

c∈C
{w| tf-idf(w, c, C) is top-k in c} (7)

3.3 Stage 3: Estimating topics via BoW
reconstruction with term weights

The model is then trained to estimate the latent
topic distribution in the final stage. We construct an
encoder-decoder network on top of the pretrained
language model f for training, following the litera-
ture (Bianchi et al., 2021a; Srivastava and Sutton,
2017). The encoder and decoder networks are re-
ferred to as qϕ and pθ, respectively. The input
document x is decomposed into the BoW represen-
tation y given the word set Wdict. To create the
context-aware representation, x is fed into the fixed
backbone language model f . The encoder network
qϕ and softmax function (Eq.8) are used to generate
the latent topic distribution t over x. The decoder
2A word’s relative importance within a document is repre-
sented by TF, which divides the word count in a document by
the total word count in the corpus. IDF represents the target
word’s uncommonness across the corpus as the logarithm
of the total document count divided by the document count
containing the target word.
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network, followed by the softmax function, recon-
structs the input document’s BoW representation
as x̂ (Eq. 9) with this topic distribution t.

t = softmax((qϕ ◦ f)(x)) (8)

x̂ = softmax(pθ(t)) (9)

Our topic model with the backbone network f is
trained by reconstructing the original document’s
BoW representation y from the latent topic distri-
bution t (depicted as a box in Figure 1). To focus
more on influential words when learning topics,
term weights wy from the previous stage are multi-
plied by the loss objective (Eq. 10). This leads the
model to filter out unnecessary terms and discover
more coherent and human-interpretable topics.

Lrecon(x,y) = −Eqϕ(t|f(x))[wy · log(pθ(y|t))].
(10)

The next step is to improve the representation
quality by matching the encoder’s posterior dis-
tribution to the predefined prior. This approach
is modulated by contrastive loss, which assumes
that documents with semantically identical content
have similar topic distributions. As a positive sam-
ple, we use the top-1 nearest neighbor x+ from the
embedding space of the pretrained language model.
All other instances in a batch are considered nega-
tive samples. The model then uses the alignment
loss Lalign (Eq. 11) to induce the topic distribution
of positive pairs (T+) to be similar. Distribution
loss is used to match the posterior topic distribu-
tion to the prior distribution Tprior and maintain a
low entropy. We set the prior Tprior to Dirichlet
distribution with α<1 to discover distinctive topics
from the corpus.

LCL(t) = −Lalign(t) + λ · L′distribution(t),

where L′distribution(t) = SWD(t, Tprior) (11)

The complete loss function is described in
(Eq. 12). There are no adjusting weight parameters
for objectives to reduce the tuning cost needed for
hyper-parameters.

Lstage3(x,y) = Lrecon(x,y) + LCL(t),

where t is calculated by Eq. 8. (12)

4 Experiments

4.1 Performance evaluation
Datasets: For evaluation, we employ a variety
of datasets with varying topics. 20-Newsgroups3,
3
http://qwone.com/~jason/20Newsgroups/.

Reuters-215784, Wikipedia, and BBC5. 20-
Newsgroups is a collection of 11,314 posts shared
in the newsgroups with a balanced set of topic
labels. Reuters-21578 is a news post collection
with 10,778 training data. We also use the
Wikipedia dataset, containing randomly collected
20,000 paragraphs from 2021-09-22. Finally, BBC
is a dataset of 2,225 documents excerpted from the
BBC news website. All datasets are in English.

Evaluation: NPMI, Cp, and word2vec similarity
are used as evaluation criteria. The first two statis-
tics measure the degree of topic coherence between
each topic’s top-M term (M is set to 10 in our
experiments) using a reference corpus. The last
one, word2vec similarity, measures the semantic
similarity between the top-M terms. The details of
each metric are as follows.

• NPMI, the Normalized Point-wise Mutual In-
formation, is a metric that scores high if the
joint probability of pairs in the top-M words
is greater than their marginal probability (Ale-
tras and Stevenson, 2013). The co-occurrence
probabilities can be measured from external
corpora, such as Wikipedia (NPMI-Wiki) or
the source data itself (NPMI-In).

• Cp is another coherence metric computed by
an aggregation of Fitelson’s confirmation mea-
sure based on the sliding window over the ref-
erence corpus. It is known to be one of the
most well-correlated coherence scores with
human ratings. (Röder et al., 2015).

• word2vec similarity evaluates topic coherence
using an external embedding model to en-
sure fair comparisons with the baselines (Ding
et al., 2018). The average cosine similarity
value is reported across all pairs of top-M
words’ word2vec embeddings.

We used Palmetto, a publicly available tool for
measuring topic quality6 (Röder et al., 2015), and
its version of Wikipedia dump to calculate NPMI-
Wiki and Cp. For word2vec similarity, we used the
pre-trained model from Mikolov et al. (2013b).

Implementation details: As the pre-trained
language model, we used Sentence-BERT, all-
MiniLM-L6-v2 (Reimers and Gurevych, 2019). The
4
http://daviddlewis.com/resources/testcollections/
reuters21578/.

5
http://mlg.ucd.ie/datasets/bbc.html.

6
https://github.com/dice-group/Palmetto.
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20-Newsgroups Reuters-21578
NPMI-Wiki NPMI-In Cp Word2vec NPMI-Wiki NPMI-In Cp Word2vec

LDA -0.0052 0.0652 0.0652 0.1719 -0.0723 0.0708 -0.1496 0.1549
NeuralLDA -0.0180 -0.0229 -0.0540 0.1847 -0.0373 0.0651 -0.0347 0.1523
ETM 0.0192 0.0988 0.1066 0.2217 -0.0506 0.0791 -0.0855 0.1741
CTM -0.0135 0.0464 -0.0296 0.1755 -0.0465 0.1314 -0.0658 0.1656
Top2Vec 0.0248 -0.0279 -1.4809 0.2646 -0.0532 0.0466 -0.2426 0.2126
ClusterTM 0.0134 -0.2810 0.0006 0.2659 -0.0101 -0.1745 -0.0703 0.3082
BERTopic 0.0351 -0.0733 0.1555 0.2257 -0.0656 0.0156 -0.2252 0.1759
UTOPIC 0.0716 0.1016 0.3796 0.2175 -0.0117 0.1179 0.0852 0.2162

Wikipedia BBC
NPMI-Wiki NPMI-In Cp Word2vec NPMI-Wiki NPMI-In Cp Word2vec

LDA -0.0071 0.0296 0.0304 0.1458 -0.0721 -0.0186 -0.0711 0.1478
NeuralLDA 0.0133 0.0700 0.0862 0.1729 0.0017 0.0084 0.0562 0.1601
ETM -0.0294 0.0319 0.0543 0.1484 -0.0270 0.0313 0.0643 0.1949
CTM 0.0610 0.1547 0.2261 0.1962 0.0339 0.0991 0.2622 0.1746
Top2Vec -0.0215 -0.0876 -0.2111 0.1768 (0.0463) (0.0124) (0.1625) (0.2495)
ClusterTM 0.0567 -0.3212 0.1835 0.3398 0.0243 0.0873 0.0739 0.2959
BERTopic 0.0682 -0.0295 0.2010 0.2196 (0.0225) (0.0853) (0.1652) (0.1842)
UTOPIC 0.0702 0.1129 0.2565 0.2171 0.0848 0.1057 0.4587 0.2199

Table 1: Performance comparison over four datasets. Results are averaged over five trials from three different
number of topics (K=10,20,50). The best or comparable performances are highlighted. In the table, parentheses
indicate that the model failed for some topic counts; hence, only the success cases’ results are averaged.

Method NPMI-Wiki NPMI-In Cp Word2vec Total

LDA 7.0 5.0 6.3 7.8 6.5
NeuralLDA 5.5 5.0 5.3 6.8 5.6
ETM 6.0 3.5 5.0 5.0 4.9
CTM 4.3 2.0 3.3 5.8 3.8
Top2Vec 4.5 6.3 7.0 3.0 5.2
ClusterTM 3.5 6.8 4.5 1.0 3.9
BERTopic 4.0 6.0 3.8 3.5 4.3
UTopic 1.3 1.5 1.0 3.3 1.8

Table 2: Performance comparison based on the averaged
rank for each evaluation metric across four datasets.

topic count K was set to 10, 20, and 50, while the
corresponding Dirichlet prior α was set to 0.1, 0.05,
and 0.02 (i.e., 1/# of topics), respectively7. λ was
set to 1, and the vocabulary size to 2,000 following
the literature (Bianchi et al., 2021a).

In stage 1, a single layer perceptron, g, is added
to the Sentence-BERT model and trained for 100
epochs using the RangerLars (RAdam + LARS
+ Lookahead) optimizer with an initial learning
rate of 0.001 and a decay factor of 0.99. Input
text that exceeds the maximum sequence length
is truncated. In stage 3, an encoder, qϕ, and a
decoder, pθ, are trained for 50 epochs using the
Adam optimizer with a learning rate of 2E-2. The

7We set the topic range to 10∼50 because clustering-based
baselines (e.g., HDBSCAN in BERTopic or Top2Vec) failed
when the topic size exceeded 70.

20-Newsgroups BBC
Match Acc. NMI Match Acc. NMI

LDA 0.258 0.270 0.432 0.170
NeuralLDA 0.180 0.157 0.473 0.347
ETM 0.340 0.349 0.856 0.580
CTM 0.276 0.274 0.850 0.653
Top2Vec 0.264 0.260 0.636 0.520
ClusterTM 0.183 0.162 0.381 0.158
BERTopic 0.317 0.376 0.568 0.360
UTOPIC 0.509 0.454 0.898 0.692

Table 3: Performance comparison on topic assignment
quality. The proposed model shows superb results.

Model LDA NeuralLDA ETM CTM Ours

Match Acc. 0.112 0.098 0.204 0.298 0.351

Table 4: Performance on assigning multiple topics to
the newly synthesized 20-NewsGroup dataset.

encoder is a three-layer MLP with dropout and
batch normalization, and the decoder is a one-layer
linear model without bias. The backbone network,
f , is fixed during this stage.

Baselines: We used seven baselines for compar-
ison. The first four are generative methods: (1)
LDA (Blei et al., 2003), (2) NeuralLDA (Sri-
vastava and Sutton, 2017), which is an LDA
implementation with Autoencoding Variational
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Setup NPMI-Wiki NPMI-In Cp Word2vec Label acc.

UTOPIC .0653 .1211 .3629 .2143 .5087
V1 (only stage 3) .0409 .1052 .3144 .2222 .4539
V2 (no stage 3) .0639 .1082 .3286 .2292 .3607
V3 (no Lalign in Lstage3) .0485 .0920 .3020 .2275 .4974
V4 (no SWD loss in Lstage3) .0546 .1023 .3192 .2027 .4515
V5 (no term weight wy in Lstage3) .0638 .1065 .3609 .2129 .4733
V6 (only Lrecon in Lstage3) .0169 .0561 .2190 .2327 .4926
V7 (only Lrecon without term weight wy in Lstage3) .0082 .0465 .2149 .2290 .4834

Table 5: The ablation study results upon the overall architecture on 20-Newsgroup (K=20) confirm the substantial
contribution of every model component we designed (V stands for version). The best results are highlighted.

NPMI-Wiki NPMI-In Cp
Ours (AE) 0.0653 0.1231 0.3709
V8 (VAE) 0.0611 0.0943 0.3562

Table 6: Ablation study results on the model architec-
ture (AE vs. VAE): 20-Newsgroups dataset is used.

Inference for Topic Models (AVITM), (3) ETM
(Embedded Topic Model) (Dieng et al., 2020),
where the likelihood of a word is produced by
the dot product between the word and topic
embeddings, and (4) CTM (Contextualized Topic
Model), where a vector representation of the
document from SentenceBERT is additionally
encoded on top of ProdLDA (Bianchi et al., 2021a).
The remaining three are clustering methods: (5)
Top2Vec (Angelov, 2020), where Doc2Vec is used
for jointly embedding sentences and words to
discover topic clusters, (6) ClusterTM (Sia et al.,
2020), a word-level clustering-based approach, and
(7) BERTopic (Grootendorst, 2022), which applies
BERT’s sentence embeddings to identify topics.

We applied common preprocessing procedures,
such as removing English stop-words based on
NLTK (Bird et al., 2009), non-alphabetic words,
and words with less than three characters, and lem-
matizing all tokens using the WordNet lemmatizer.
All baselines used the same standard parameter val-
ues, such as topic count and vocabulary size, to
ensure a fair comparison.

Results: Tables 1 and 2 show the performance
comparisons and their summaries. UTopic pro-
vides the best or comparable topic coherence
scores against other baselines over all datasets. Our
technique consistently achieves satisfactory results
in all other measures, while generative methods
perform poorly on Word2vec similarity and
clustering methods often fail on NPMI measures.
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Figure 2: The effect of the hyper-parameter α for Dirich-
let prior on two evaluation metrics on 20-Newsgroups.
Consistent performance is achieved by keeping α within
a suitable range (0.025 ∼ 0.2).

Our model also shows the best scores based on the
average rank of each evaluation metric.

Topic assignment quality analysis: It is important
to check whether the discovered topics from each
model are well aligned with the actual ground-truth
labels. Two additional evaluation metrics were ob-
served: Label Matching Accuracy (Match Acc.)
and Normalized Mutual Information (NMI). Given
the estimated topic from each document, the Hun-
garian method (Kuhn, 1955) was applied to obtain
the best bijection permutation mapping between
the estimated topics and labels. Then, the label
matching accuracy is computed with top-1 classifi-
cation accuracy. The NMI measure is the mutual
information between the mapping and labels with
normalization to 0∼1 range.

Table 3 reports the comparison results among
baselines over the 20-Newsgroups and BBC-News
dataset because only these datasets contain human-
annotated labels. Our model outperformed all
baselines in accuracy by a large margin, even when
compared with recent approaches, implying that
it can generate more human-interpretable topics.

Evaluation for assigning multiple topics: We
next conducted an experiment to assess UTopic ’s
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ability to assign multiple topics. We created a syn-
thetic dataset with multiple topic labels by merg-
ing two random documents from 20-Newsgroups.
Then, each topic model trained only using the orig-
inal 20-Newsgroups dataset was evaluated using
the newly created synthetic test set. The evalua-
tion compares the accuracy of counting whether
the top-2 estimated topics match the ground truth.
Here, random selection will have an accuracy of 0.1
(=2/20). Table 4 shows that our model again outper-
formed baselines on this new test. Clustering-based
approaches were excluded from the comparison be-
cause they are limited in assigning multiple topics.

4.2 Component analysis
Ablation studies iteratively remove one module or
component to assess its unique contribution to the
overall model. We now present results from the
ablation study and hyper-parameters’ effect over
the 20-Newsgroup dataset.

Ablation study: The proposed model has three
stages: document clustering, computing term
weights, and estimating latent topic distribution.
Our first ablation is a model with only stage 3
by directly estimating the latent topic distribution
on top of the pretrained language model (V1 in
Table 5). The model without stage 3 utilizes
the discovered clusters from the first stage as
a topic embedding (V2). In this ablation, topic
words extracted from the second stage are used
for evaluating topic coherence. The next set of
ablations remove each module in stage 3 to assess
its effect (V3–V7). Table 5 reports the results for
each ablation with five evaluation metrics: four
topic coherence measures and label matching
accuracy with human-annotated ground truths.
The model with all components achieves the best
topic coherence with label accuracy, indicating
that each component plays an important role.

In contrast to previous works based on
VAE (Bianchi et al., 2021a; Srivastava and Sutton,
2017), we used Autoencoder to enforce that the
final topic distribution follows the predefined
prior. To validate our design choice, we consider
another ablation that uses the VAE architecture
(V8). Experiments on 20 newsgroups show that
using VAE can have a negative impact on overall
performance (Table 6).

Hyper-parameter analysis: We study the effect
of adjusting hyper-parameter α and λ in terms of
various evaluation metrics. The α controls the den-

λ NPMI-Wiki NPMI-In Cp Word2vec
0.1 0.055 0.105 0.364 0.210
0.2 0.058 0.102 0.354 0.206
0.5 0.061 0.102 0.367 0.208
1 0.072 0.102 0.380 0.218
2 0.072 0.103 0.376 0.215
5 0.066 0.112 0.382 0.211
10 0.060 0.109 0.362 0.202

Table 7: Hyper-parameter analysis on the loss adjusting
factor λ. Results are based on 20-Newsgroups.

sity of Dirichlet prior to the match with the model’s
latent topic distribution. The smaller the α<1, the
less the topic distribution overlaps. The results are
summarized in Figure 2. Our model delivers favor-
able results for both measures when α is within a
suitable range of 0.025∼0.2. However, setting α to
a value that is too low can result in poor score. This
is because decreasing entropy to an excessive de-
gree can cause the model to learn incoherent topics
and have a heterogeneous word distribution. We set
α to 1/K (i.e., 0.05 for K=20), which is a common
value in LDA (Rehurek and Sojka, 2011).

Table 7 reports additional results on the effect
of λ, the ratio between the alignment loss and the
distribution loss (Eq. 11). Our model performs
stable within a reasonable lambda range for most
metrics. One exception is NPMI-Wiki, where
the model appears influenced by extreme lambda
values (λ=0.1 or 10).

4.3 Qualitative analysis
Cluster visualization: To understand the method’s
inner workings, we visualize the cluster assign-
ment snapshots on the 20-Newsgroups dataset af-
ter stage 1 over four different training epochs in
Figure 3. Ground-truth labels for 20 themes are
displayed in different colors. More visually sep-
arable class-coherent clusters emerge as training
advances. Evaluating the clustering performance
via the Hungarian approach (Kuhn, 1955), epoch
30 in stage 1 already reaches a prediction accuracy
of 48% without using any labels.

Application: The suggested topic word selection
approach is a stand-alone module that can be used
in various topic models. For example, we created
the vocabulary set Wdict by extracting 2,000 topic
words from our stage-2 model. Then we used
Wdict to train three existing topic models: LDA,
NeuralLDA, and CTM, and compared them with
a traditional technique of employing the most
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(a) Epoch=0, p=0.30 (b) Epoch=2, p=0.41 (c) Epoch=5, p=0.45 (d) Epoch=30, p=0.48

Figure 3: The 20-Newsgroups dataset was used to visualize intermediate clustering results at Stage 1 of UTopic .
Colors represent the ground-truth class names (i.e., one of the 20 news topics), whereas dots reflect document cluster
assignment. The p-value indicates that the model has already achieved a clustering accuracy of 48% after 30 epochs.

Setup NPMI-Wiki NPMI-Internal

LDA -0.0056 0.0661
+ Our method -0.0016 0.0841

ETM 0.0234 0.0927
+ Our method 0.0404 0.0752

CTM -0.0086 0.1149
+ Our method -0.0021 0.1208

Table 8: Performance improvement with our topic word
extraction strategy on existing topic models on the 20-
Newsgroups dataset (K=20).

frequent 2,000 words after ignoring stop-words.
For all models, we limited the number of topics
to 20. The findings are provided in Table 8 for the
20-Newsgroups dataset, which shows that using
our context-aware topic word selection technique
improves NPMI-Wiki by about 0.7∼1.7 percent
point for all evaluated models.

5 Conclusion

This work proposed a new way to leverage the
benefits of combining generative and clustering
methods of topic modeling into a single framework.
Diverse topic coherence measures have been
used to assess the quality of topics. Compared to
baselines that excel in only one or two coherence
measures, UTopic showed consistent improvement
across multiple coherence measures and discovered
topics that align well with human annotations. Our
method has a wide range of applicability because
it can be added as a module to other existing
approaches.

Limitations

This work comes with several limitations. First, be-
cause the nearest neighbor in the embedding space
of the pretrained language model is considered a
positive sample, the pretrained knowledge can im-
pact overall performance. We plan to develop ad-
vanced text data augmentation and positive sample
selection approaches for topic modeling to over-
come this limitation. Second, since our clustering
step needs a large batch (more than 128), the pro-
posed method may be unattainable in some real-
world scenarios due to memory constraints. To
reduce this memory cost, we introduce a dynamic
queue to save many samples’ embeddings for every
iteration (see Appendix for further details). How-
ever, training is only required once per dataset and
is, therefore, acceptable.

Ethical Consideration

We acknowledge that presenting a data summary
using topic modeling may not adequately represent
the voice of minorities and that pre-trained knowl-
edge from an online corpus may exacerbate such
bias. When applying topic modeling in high-risk
real-world scenarios, human annotators can help
understand the predominant view of each topic to
ensure that minor viewpoints are included. This is
part of the larger challenge of AI ethics, and we
plan to consider this challenge in the future.
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A Appendix

A.1 Release

Codes and implementation details of the model are
available at https://github.com/mingi-sid/
utopic.

A.2 Dataset details

For evaluation, we employ a variety of datasets
with varying topics: (1) 20-Newsgroups8 contains
11,314 posts from the newsgroups from 20 number
of balanced topic labels, (2) Reuters-215789

includes 10,778 news posts from Reuters newswire
in 1987, (3) Wikipedia, comprising 20,000
abstracts that have more than 200 characters, was
randomly sampled from the Wikipedia dump from
2021-09-22, and (4) NeurIPS10 has 7,241 titles
of articles from the NeurIPS conference. Since
the topic modeling algorithm is an unsupervised
approach, we use the whole dataset for evaluation
without splitting.

A.3 Implementation details

For the pretrained language model f , we
use Sentence-BERT, all-MiniLM-L6-v2 specifi-
cally (Reimers and Gurevych, 2019). In stage 1, a
fully connected layer g with a single layer percep-
tron is appended on top of the [CLS] representation
from the Sentence-BERT. The total number of pa-
rameters is about 22.8M, including the parameters
from the backbone language model. The original
text is used as input, and any input tokens that
exceed the maximum input sequence length are
truncated. We train both f and g for 100 epochs.
RangerLars (RAdam + LARS + Lookahead) opti-
mizer with exponential learning rate decay is uti-
lized. The initial learning rate and decay factor are
set to 0.001 and 0.99, respectively.

In stage 3, we use three-layer MLP, including
dropout and batch normalization as an encoder qϕ,
and use one linear layer without bias as a decoder
pθ. For all phases, λ is set to 1, and the vocabulary
size is set to 2,000. The backbone network f is
fixed, and the encoder-decoder network is trained
for 20 epochs. The Adam optimizer is used, with a
learning rate of 2e-2. The number of topicsK is set
to 20, the batch size is set to 128, and the Dirichlet

8
http://qwone.com/~jason/20Newsgroups/.

9
http://daviddlewis.com/resources/testcollections/
reuters21578/.

10
https://www.kaggle.com/datasets/benhamner/nips-papers.

prior hyper-parameter α is set to 0.05 (i.e., 1/# of
topics) for all phases.

Computing the Sliced Wasserstein Distance
(SWD) between the embedding distribution and
the prior requires a large batch for concise estima-
tion. However, expanding the batch size is unattain-
able in many real-world scenarios due to memory
constraints. We use a simple approach involving
a dynamic queue, which does not require comput-
ing many samples’ embeddings in a single itera-
tion because embeddings from earlier iterations
are saved. Embeddings computed from the cur-
rent batch are concatenated with saved embeddings
from the queue during training. Then, the stacked
embeddings are finally used to calculate the distri-
bution loss (Eq. 3, 11).

We should point out that the model’s computing
cost is not excessive. It took less than an hour for
all datasets to perform all training phases with four
A100 GPU processors.

A.4 Full evaluation results
In Table 9-20, we present the full performance eval-
uation results over four datasets with three different
numbers of topics: 10, 20, and 50. For each ex-
periment, results are averaged over five trials; the
mean and standard deviation are reported. Also, to
determine if a model successfully distinguish latent
topics, we report results of topic diversity analysis
for 20-Newsgroup, which shows that our method
continues to outperform the baselines (Table 21).
Top2Vec and ClusterTM are excluded in compari-
son, since they directly apply clustering algorithm
(e.g.., DBSCAN) over the word set and inevitably
make a complete split (i.e., topic diversity = 1),
which is unfair to compare with.

A.5 Qualitative analyses
Table 22 reports the top 10 words for each topic ex-
tracted from our model. As discussed, we can find
that the proposed model produces sufficiently rep-
resentative words to interpret topics. For example,
we can easily infer that topic #0 refers to the “com-
puter" theme and topic #1 represents the “sports"
theme. Our topic word selection strategy and con-
trastive learning framework successfully estimate
the latent topics with improved interpretability.
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NPMI-Wiki NPMI-In Cp Word2vec

LDA 0.0057±0.0023 0.0801±0.0057 0.0727±0.0103 0.1845±0.0028
NeuralLDA -0.0158±0.0051 -0.0610±0.0158 -0.0429±0.0195 0.1741±0.0063
ETM 0.0052±0.0091 0.1219±0.0060 0.0527±0.0316 0.2027±0.0040
CTM -0.0161±0.0080 0.1244±0.0135 -0.1415±0.0421 0.1818±0.0059
Top2Vec 0.0253±0.0017 0.0586±0.0020 -4.6113±0.0034 0.2677±0.0009
ClusterTM 0.0135±0.0025 -0.2870±0.0082 0.0160±0.0257 0.238±0.002
BERTopic 0.0609±0.0049 -0.0903±0.0180 0.2318±0.0063 0.2331±0.0070
UTopic 0.1069±0.0029 0.1130±0.0038 0.4850±0.0052 0.2416±0.0024

Table 9: Performance comparison over 20-Newsgroup with the number of topic K = 10. [Note] Mean and standard
error over five trials are reported for Table 9-20.

NPMI-Wiki NPMI-In Cp Word2vec

LDA -0.0056±0.0051 0.0661±0.0074 0.0719±0.0118 0.1751±0.0042
NeuralLDA -0.0227±0.0056 -0.0083±0.0090 -0.0634±0.0182 0.1933±0.0054
ETM 0.0234±0.0027 0.0927±0.0096 0.1207±0.0157 0.2247±0.0033
CTM -0.0086±0.0048 0.1149±0.0138 0.0156±0.0173 0.1793±0.0055
Top2Vec 0.0302±0.0022 -0.0811±0.0046 0.1328±0.0089 0.2740±0.0033
ClusterTM 0.0154±0.0007 -0.2863±0.0062 0.0082±0.0103 0.2614±0.0021
BERTopic 0.0322±0.0035 -0.0563±0.0057 0.1515±0.0134 0.2210±0.0054
UTopic 0.0653±0.0030 0.1231±0.0059 0.3709±0.0098 0.2143±0.0029

Table 10: Performance comparison over 20-Newsgroup with the number of topic K = 20.

NPMI-Wiki NPMI-In Cp Word2vec

LDA -0.0157±0.0007 0.0495±0.0042 0.0511±0.0062 0.1561±0.0022
NeuralLDA -0.0154±0.0020 0.0008±0.0104 -0.0557±0.0111 0.1867±0.0030
ETM 0.0290±0.0030 0.0817±0.0025 0.1465±0.0078 0.2377±0.0019
CTM -0.0159±0.0024 -0.1000±0.0038 0.0371±0.0072 0.1654±0.0012
Top2Vec 0.0188±0.0033 -0.0610±0.0042 0.0357±0.0126 0.2520±0.0054
ClusterTM 0.0115±0.0016 -0.2698±0.0033 -0.0223±0.0097 0.2982±0.0037
BERTopic 0.0122±0.0036 -0.0734±0.0092 0.0830±0.0177 0.2230±0.0043
UTopic 0.0425±0.0064 0.0685±0.0038 0.2829±0.0194 0.1966±0.0051

Table 11: Performance comparison over 20-Newsgroup with the number of topic K = 50.

NPMI-Wiki NPMI-In Cp Word2vec

LDA -0.0771±0.0041 0.0854±0.0039 -0.1658±0.0158 0.1629±0.0034
NeuralLDA -0.0446±0.0063 0.0536±0.0081 -0.0458±0.0193 0.1504±0.0031
ETM -0.0569±0.0050 0.1031±0.0049 -0.1054±0.0137 0.1742±0.0021
CTM -0.0467±0.0026 0.1262±0.0097 -0.0512±0.0093 0.1806±0.0025
Top2Vec -0.0589±0.0069 0.0274±0.0093 -0.2803±0.0263 0.2206±0.0026
ClusterTM -0.0164±0.0019 -0.2389±0.0096 -0.1115±0.0213 0.2942±0.0055
BERTopic -0.0807±0.0022 0.0115±0.0060 -0.2706±0.0083 0.1870±0.0042
UTopic -0.0138±0.0039 0.1225±0.0064 0.0884±0.0111 0.2350±0.0051

Table 12: Performance comparison over Reuters-21578 with the number of topic K = 10.
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NPMI-Wiki NPMI-In Cp Word2vec

LDA -0.0663±0.0040 0.0793±0.0037 -0.1327±0.0122 0.1622±0.0024
NeuralLDA -0.0374±0.0035 0.0584±0.0017 -0.0264±0.0058 0.1521±0.0022
ETM -0.0552±0.0019 0.0733±0.0021 -0.1063±0.0080 0.1740±0.0019
CTM -0.0438±0.0048 0.1259±0.0055 -0.0580±0.0082 0.1669±0.0029
Top2Vec -0.0448±0.0020 0.0595±0.0094 -0.2350±0.0073 0.2207±0.0033
ClusterTM -0.0084±0.0025 -0.1105±0.0062 -0.0814±0.0119 0.2998±0.0069
BERTopic -0.0724±0.0016 0.0126±0.0052 -0.2647±0.0136 0.1609±0.0052
UTopic -0.0094±0.0052 0.1231±0.0047 0.0832±0.0192 0.2198±0.0050

Table 13: Performance comparison over Reuters-21578 with the number of topic K = 20.

NPMI-Wiki NPMI-In Cp Word2vec

LDA -0.0734±0.0005 0.0477±0.0025 -0.1502±0.0050 0.1397±0.0019
NeuralLDA -0.0300±0.0019 0.0833±0.0042 -0.0319±0.0122 0.1542±0.0022
ETM -0.0399±0.0025 0.0609±0.0013 -0.0449±0.0078 0.1740±0.0024
CTM -0.0491±0.0011 0.1420±0.0041 -0.0881±0.0050 0.1494±0.0011
Top2Vec -0.0559±0.0024 0.0529±0.0054 -0.2125±0.0072 0.1966±0.0012
ClusterTM -0.0056±0.0019 -0.1742±0.0034 -0.0181±0.0087 0.3307±0.0017
BERTopic -0.0436±0.0030 0.0228±0.0055 -0.1403±0.0140 0.1797±0.0023
UTopic -0.0117±0.0035 0.1081±0.0076 0.0841±0.0154 0.1938±0.0018

Table 14: Performance comparison over Reuters-21578 with the number of topic K = 50.

NPMI-Wiki NPMI-In Cp Word2vec

LDA -0.0095±0.0041 0.0519±0.0067 0.0345±0.0140 0.1591±0.0032
NeuralLDA 0.0018±0.0060 0.0301±0.0074 0.0744±0.0145 0.1677±0.0032
ETM -0.0152±0.0042 0.0545±0.0027 0.0843±0.0077 0.1642±0.0032
CTM 0.0608±0.0064 0.1556±0.0077 0.2320±0.0168 0.2058±0.0052
Top2Vec -0.0121±0.0064 -0.0774±0.0308 -0.2059±0.0439 0.1858±0.0013
ClusterTM 0.0501±0.0020 -0.3748±0.0047 0.1637±0.0087 0.3132±0.0148
BERTopic 0.0578±0.0093 0.0106±0.0097 0.1580±0.0341 0.2136±0.0044
UTopic 0.0663±0.0021 0.0895±0.0054 0.1987±0.0089 0.2127±0.0023

Table 15: Performance comparison over Wikipedia with the number of topic K = 10.

NPMI-Wiki NPMI-In Cp Word2vec

LDA -0.0072±0.0047 0.0618±0.0074 0.0377±0.0116 0.1462±0.0017
NeuralLDA 0.0121±0.0035 0.0792±0.0060 0.0784±0.0129 0.1628±0.0027
ETM -0.0262±0.0016 0.0331±0.0030 0.0850±0.0074 0.1566±0.0007
CTM 0.0594±0.0037 0.1507±0.0026 0.2200±0.0084 0.2000±0.0019
Top2Vec -0.0288±0.0038 -0.0730±0.0125 -0.2245±0.0265 0.1745±0.0046
ClusterTM 0.0533±0.0007 -0.3175±0.0068 0.1764±0.0084 0.3541±0.0043
BERTopic 0.0569±0.0044 -0.0374±0.0135 0.1786±0.0123 0.2164±0.0043
UTopic 0.0772±0.0037 0.1538±0.0044 0.2954±0.0092 0.2162±0.0018

Table 16: Performance comparison over Wikipedia with the number of topic K = 20.
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NPMI-Wiki NPMI-In Cp Word2vec

LDA -0.0047±0.0046 -0.0250±0.0055 0.0189±0.0143 0.1322±0.0028
NeuralLDA 0.0258±0.0021 0.1008±0.0032 0.1058±0.0090 0.1882±0.0028
ETM -0.0468±0.0023 0.0081±0.0022 -0.0064±0.0040 0.1245±0.0008
CTM 0.0628±0.0023 0.1579±0.0025 0.2263±0.0081 0.1827±0.0023
Top2Vec -0.0238±0.0026 -0.1124±0.0069 -0.2030±0.0089 0.1700±0.0039
ClusterTM 0.0667±0.0029 -0.2714±0.0093 0.2104±0.0115 0.3520±0.0032
BERTopic 0.0898±0.0043 -0.0617±0.0042 0.2664±0.0146 0.2287±0.0021
UTopic 0.0670±0.0018 0.0955±0.0031 0.2754±0.0085 0.2224±0.0027

Table 17: Performance comparison over Wikipedia with the number of topic K = 50.

NPMI-Wiki NPMI-In Cp Word2vec

LDA -0.0746±0.0041 -0.0199±0.0009 -0.0684±0.0101 0.1573±0.0012
NeuralLDA 0.0001±0.0026 -0.0105±0.0124 0.0647±0.0076 0.1604±0.0061
ETM -0.0212±0.0060 0.0441±0.0010 0.0829±0.0123 0.1865±0.0052
CTM 0.0436±0.0083 0.0714±0.0202 0.2543±0.0308 0.1822±0.0003
Top2Vec 0.0463±0.0022 0.0124±0.0101 0.1625±0.0056 0.2495±0.0002
ClusterTM 0.0255±0.0041 0.0656±0.0043 0.0588±0.0044 0.2732±0.0076
BERTopic -0.0007±0.0145 0.0943±0.0006 0.0747±0.0074 0.1741±0.0068
UTopic 0.0938±0.0048 0.1256±0.0138 0.5388±0.0167 0.2265±0.0006

Table 18: Performance comparison over BBC with the number of topic K = 10.

NPMI-Wiki NPMI-In Cp Word2vec

LDA -0.0718±0.0033 -0.0205±0.0025 -0.0709±0.0094 0.1486±0.0010
NeuralLDA 0.0084±0.0010 0.0110±0.0089 0.0569±0.0036 0.1622±0.0026
ETM -0.0333±0.0032 0.0251±0.0002 0.0416±0.0086 0.1908±0.0046
CTM 0.0289±0.0062 0.1109±0.0014 0.3254±0.0245 0.1715±0.0012
Top2Vec N/A N/A N/A N/A
ClusterTM 0.0339±0.0020 0.0990±0.0127 0.0908±0.0019 0.2858±0.0083
BERTopic 0.0456±0.0031 0.0762±0.0121 0.2556±0.0140 0.1943±0.0006
UTopic 0.0708±0.0061 0.1018±0.0113 0.3925±0.0124 0.2121±0.0006

Table 19: Performance comparison over BBC with the number of topic K = 20. [Note] N/A represents the model
failed to detect topics for Table 19 and 20.

NPMI-Wiki NPMI-In Cp Word2vec

LDA -0.0700±0.0010 -0.0153±0.0032 -0.0739±0.0036 0.1375±0.0006
NeuralLDA -0.0035±0.0022 0.0248±0.0014 0.0471±0.0087 0.1577±0.0018
ETM -0.0264±0.0018 0.0246±0.0010 0.0683±0.0109 0.2073±0.0098
CTM 0.0291±0.0022 0.1149±0.0059 0.2069±0.0109 0.1701±0.0004
Top2Vec N/A N/A N/A N/A
ClusterTM 0.0136±0.0032 0.0973±0.0007 0.0721±0.0037 0.3286±0.0043
BERTopic N/A N/A N/A N/A
UTopic 0.0897±0.0024 0.0898±0.0070 0.4448±0.0022 0.2212±0.0027

Table 20: Performance comparison over BBC with the number of topic K = 50.

Model LDA NeuralLDA ProdLDA ETM CTM BERTopic UTopic
Diversity 0.7 0.81 0.85 0.52 0.83 0.91 0.92

Table 21: Performance comparison over 20-Newsgroup in terms of topic diversity (K = 20).
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Topic # Top-10 words from each topic

0 drive, disk, scsi, floppy, hard, ide, controller, cd, card, rom
1 game, baseball, team, pitching, brave, year, player, run, hitter, hit
2 window, widget, xterm, server, lib, x11r5, motif, program, client, libxmu
3 clinton, president, government, bush, tax, administration, libertarian, fbi, id, party
4 encryption, key, chip, clipper, phone, algorithm, government, escrow, encrypted, patent
5 god, jesus, satan, christian, heaven, christ, hell, sin, faith, bible
6 voltage, game, input, motorola, chip, amp, circuit, amplifier, board, audio
7 space, orbit, nasa, satellite, spacecraft, lunar, moon, earth, comet, jupiter
8 christian, islam, religion, jew, church, morality, christianity, quran, muslim, objective
9 food, patient, disease, doctor, treatment, pain, blood, medical, infection, cancer

10 mac, cpu, simms, modem, computer, 040, scsi, system, clock, motherboard
11 armenian, israel, israeli, turkish, arab, jew, armenia, turk, turkey, greek
12 homosexual, hey, sex, gay, men, steve, homosexuality, serdar, life, sexual
13 file, window, zip, directory, bmp, printer, format, microsoft, convert, program
14 test, max, article, printer, eric, matthew, pl, 145, david, email
15 car, engine, ford, oil, battery, dealer, gt, taurus, auto, vehicle
16 card, monitor, video, driver, printer, window, color, vga, ati, bus
17 bike, motorcycle, honda, helmet, bmw, rider, ride, riding, shaft, rear
18 gun, weapon, crime, firearm, handgun, police, criminal, homicide, defense, assault
19 game, team, hockey, nhl, playoff, player, season, goal, ranger, detroit

Table 22: Top-10 words selected for each topic from our model. The model is trained over the 20-Newsgroups
dataset and the number of topics is set to 20. The discovered word set is human-interpretable and substantially
different from one another.
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Abstract

The best methods for knowledge graph comple-
tion use a ‘dual-encoding’ framework, a form
of neural model with a bottleneck that facili-
tates fast approximate search over a vast col-
lection of candidates. These approaches are
trained using contrastive learning to differenti-
ate between known positive examples and sam-
pled negative instances. The mechanism for
sampling negatives to date has been very sim-
ple, driven by pragmatic engineering consider-
ations (e.g., using mismatched instances from
the same batch). We propose several novel
means of finding more informative negatives,
based on searching for candidates with high lex-
ical overlaps, from the dual-encoder model and
according to knowledge graph structures. Ex-
perimental results on four benchmarks show
that our best single model improves consis-
tently over previous methods and obtains new
state-of-the-art performance, including the chal-
lenging large-scale Wikidata5M dataset. Comb-
ing different strategies through model ensem-
bling results in a further performance boost.

1 Introduction

A Knowledge Graph (KG) is a structured form of
human knowledge consisting of entities, facts, rela-
tionships between any pair of entities, and semantic
descriptions of entities. As important structures
that store millions of data records that represent a
part of human knowledge, KGs have been proven
to bring substantial benefits to a wide range of
applications, including commonsense question an-
swering (Yasunaga et al., 2021) and reasoning (Ren
and Leskovec, 2020). Knowledge Graph Comple-
tion (KGC) supports the automatic construction or
completion of a KG by finding the missing entity
or link in incomplete triples.

Graph embedding and textual embedding meth-
ods are two mainstream techniques for KGC prob-
lems. The former typically map entities and rela-
tions into fixed dense vectors and maximises the

probability of valid triples using specially-designed
scoring functions (Bordes et al., 2013; Sun et al.,
2019); while the latter additionally uses avail-
able textual descriptions associated with entities to
gather more information (Wang et al., 2021b). Sur-
prisingly, textual embedding methods lag behind
graph embedding methods, perhaps due to their
extra computational overheads in encoding textual
inputs and, thus, inefficiency in incorporating a
sufficient number of negatives (i.e., incorrect KG
triples) to learn discriminative KG embeddings.

Recently, Wang et al. (2022) found that the key
to making textual embedding methods outperform
their graph embedding counterparts is to adopt a
dual-encoder structure and train using contrastive
learning to differentiate between positive train-
ing instances and randomly sampled negative in-
stances (Karpukhin et al., 2020). Although their
technique outperformed various graph embedding
methods, achieving a new state-of-the-art, their
means of negative sampling is not optimal: this
in-batch negative method has been shown to be in-
efficient in training dual encoders (Lu et al., 2021).
Instead, as they are highly similar to positives in
terms of topics and lexicons, the use of so-called
‘hard’ negatives have been shown to result in bet-
ter models in information retrieval (Xiong et al.,
2021) through providing a more informative train-
ing signal and faster convergence. However, their
effectiveness has not yet been established for KGC.

Therefore, to fill this gap, in this work, we aim
to systematically investigate the effects of various
hard negative sampling strategies for dual-encoder-
based KGC. Specifically, we construct negative
samples using three different ways. Our approach
first evaluates the utility of negatives that share high
lexical similarity with the head entity or the correct
tail entity in terms of entity names and text descrip-
tions. Based on the knowledge graph structures,
we alternatively search negatives from the head
or tail entity’s local neighbourhood, hypothesising
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that the neighbourhoods of a certain entity that are
not directly connected to it are highly related, but
not so related to be false negatives (i.e., positives).
Lastly, we investigate sampling so-called ‘hard neg-
atives’ from top-k predictions generated by a base-
line dual-encoder KGC model, as negatives that
receive high scores are believed to be important
and difficult to distinguish. In addition, in order
to reduce possible false negatives, we also experi-
mented with two variant neural negative sampling
strategies according to heuristics. In summary, our
contributions are:1

1. To the best of our knowledge, we are the first
to systematically investigate the impacts of
different types of negative sampling strategies
for dual-encoder-based KGC.

2. We explore how best to combine the benefits
of different negative sampling strategies to
obtain further performance gains.

3. We compare our proposed negative searching
methods on four benchmark datasets of differ-
ent scales. Experimental results demonstrate
that our best model significantly outperforms
baselines, establishing a new state-of-the-art
on all datasets, while ensembling leads to fur-
ther performance gains.

2 Background

2.1 Task Formulation
In this paper, we deal with the task of predicting
missing entities in knowledge graph completion.
Formally, given a knowledge graph G which has
a set of entities E and predefined relations R, the
tail entity retrieval task (h, r, ?) requires retrieving
a list of entities {t1, t2, . . . , tk} from the entity set
E , ranked by their relevance to this head-relation
pair (h, r).

2.2 Dual Encoder for KGC
Following the current state-of-the-art approach to
KGC (Wang et al., 2022), we use a dual encoder
framework.

Figure 1 shows the architecture. In this approach,
a pair of encoders Ehr and Et, which are usu-
ally initialised by pretrained language models (e.g.,
BERT (Devlin et al., 2019)), are used to map the
head entity and relation (h, r) and tail entity t into
dense vectors, respectively. More specifically, to
encode the tuple (h, r), we first concatenate the

1Source code is available at https://github.com/
Fantabulous-J/Improved-Negative-Search-for-KGC.
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Figure 1: The Dual-Encoder Model for Knowledge
Graph Completion, which learns to discriminate posi-
tive tail entities from negative ones.

text description of head entity h and relation r
as: [CLS] h: entity description [SEP] r [SEP] and
feed the sequence into a BERT encoder Ehr. Sim-
ilarly, we use another encoder Et to encode the
tail entity t and its description, using an analogous
input method. Mean pooling is used to obtain fix-
sized embeddings, which are then l2-normalised.
The relevance score between (h, r) and t is cal-
culated as the inner dot product of the two l2-
normalised vectors:

s(h, r, t) =
Ehr(h; r) · Et(t)

||Ehr(h; r)|| · ||Et(t)||
(1)

The dual encoders are normally trained to max-
imise the similarity scores of all positive triples
(h, r, t). Here, we use the InfoNCE loss, follow-
ing Wang et al. (2022):

Lhr→t = − log
s(h, r, t)∑
t′∈E s(h, r, t

′)
(2)

where the denominator sums over all N = |E|
entities in the KG.

Since N is usually very large, the common prac-
tice is to use specific negative sampling strategies
to select a subset of negative samples to replace the
full normalisation term in Equation 2. In practice,
the selection of negative samples is crucial to the
performance of a trained model (Zhang and Stratos,
2021). So the critical question becomes how to
sample informative negatives which could generate
meaningful signals for training an effective model.
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3 Negative Sampling Strategies

3.1 In-Batch Negatives

This strategy treats as negatives the tail entities
of other samples in the same mini-batch, which
is a cheap way to obtain a large number of nega-
tives (Karpukhin et al., 2020). However, the down-
side of this approach is that the number of negatives
is limited to batch size, and it usually requires a
large batch size to work well, which is not always
feasible with limited computing resources.

3.2 Hard Negatives

‘Hard’ negatives are informative negatives, which
are difficult to distinguish as they share similar
characteristics with true positives (e.g., high lexi-
cal overlap or semantic similarity). They normally
receive larger similarity scores from the model,
which in turn results in larger loss gradients and
thus larger parameter updates in training. Selecting
negatives from them can effectively mitigate the
diminishing gradient norms when using uninfor-
mative negative instances (i.e., in-batch negatives),
thus providing more optimal training signals and
leading to faster convergence speed (Xiong et al.,
2021). In this paper, we systematically investigate
the effectiveness of different hard negative sam-
pling strategies for knowledge graph completion.
An illustrative example of the different types of
hard negatives is shown in Table 1.

Sparse Negatives Hard negatives were first
shown to be useful for improving the performance
of dense passage retrievers in question answering
(Karpukhin et al., 2020). Their approach, which
we call Sparse Negatives henceforth, samples hard
negatives from the top-k ranked list returned by a
sparse retrieval system such as BM25 (Robertson
and Zaragoza, 2009). We test the generality of this
method to our task of knowledge graph completion.
More specifically, given a KG triplet (h, r, t), we
either use the concatenation of the head entity h
and relation type r or the correct tail entity t2 to
query a sparse BM25 retriever to find top entities
which share similar entity names or similar tokens
in their entity descriptions.3

Structure-Aware Negative Entities in the local
neighbourhood of an entity in the KG are typically

2The concatenation of an entity’s name and text description
will be used.

3Whether the head h or the tail t is used to retrieve nega-
tives is based on the development set performance.

semantically related, and can serve as good candi-
dates (Ahrabian et al., 2020). For a triplet (h, r, t),
we sample hard negatives from the n-hop neigh-
bours of either the head entity h or the tail entity t,
following random edges.4

Neural Negative samples hard negatives from
the top-k predictions of a neural model (Xiong
et al., 2021; Glass et al., 2021), which has been
shown to boost the performance of neural retriev-
ers. In this paper, we use a simple method of sam-
pling static hard negatives from a fixed learned
KGC model, which we denote as Head-Relation
Negative:

Step 1: In-batch negatives are used to train a
dual-encoder KGC model.

Step 2: FAISS (Johnson et al., 2021) is used
to index all entities in the KG, using their dense
vector encoding, Et.

Step 3: Employ approximate search to find the
top-k retrieved entities using head-relation pair
(h, r) as the query, with encoding Ehr. Then any
positive tail entity to this query are removed based
on the training dataset and all other entities will be
kept as hard negatives.

Although sampled negatives are both difficult
and informative, the Neural Negative method may
end up including many false negatives. This is
because for a good KGC model, if the same head-
relation pair (h, r) appears in both training and test
graphs, the top-k predictions will likely include cor-
rect answers in the test set. 5 Therefore, we propose
another two variant negative sampling strategies to
limit false negatives while maintaining informative-
ness. In particular, Entity Similar Negative uses
either the head entity h or the tail entity t of a given
KG triplet (h, r, t) as the query to find the top-k
nearest entities in the embedding space of a fixed
learned KGC model. Replaced Head-Relation
Negative replaces the head h in (h, r, t) with an-
other entity h′ that is nearest to h in the embedding
space and uses (h′, r) as query to sample negatives
from the top-k predictions.

3.3 Other Negatives

Pre-batch negatives extend in-batch negatives by
using stale entity embeddings from previous n
batches, which can be considered a cheaper way

4We use n = 2, which we found to work well.
5This is more true to neural negatives than previous two

methods, as neural models are superior in capturing relation
semantics. See Table 1 for more intuitive examples.
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Head Entity land_reform_NN_1: a redistribution of agricultural land (especially by government action)
Relation hypernym
Tail Entity reform_NN_1: a change for the better as a result of correcting abuses; justice was for sale before the reform

of the law courts

Sparse 1. landing_NN_3: the act of coming down to the earth (or other surface); “the plane made a smooth landing”;
“his landing on his feet was catlike”
2. amphibious_landing_NN_1: a military action of coordinated land, sea, and air forces organized for an
invasion; “MacArthur staged a massive amphibious landing behind enemy lines”
3. enderby_land_NN_1: a region of Antarctica between Queen Maud Land and Wilkes Land; claimed by
Australia

Structure 1. event_planner_NN_1: someone who plans social events as a profession (usually for government or
corporate officials)
2. price-fixing_NN_1: control (by agreement among producers or by government) of the price of a
commodity in interstate commerce
3. lawlessness_NN_1: a state of lawlessness and disorder (usually resulting from a failure of government)

Neural 1. reform_NN_3: self-improvement in behavior or morals by abandoning some vice; “the family rejoiced in
the drunkard’s reform”
2. improvement_NN_1: a change for the better; progress in development
3. reform_NN_2: a campaign aimed to correct abuses or malpractices

Table 1: Examples of hard negatives using different types of sampling strategies, using the head entity and relation
as query for sparse and neural negatives but only the head entity for structure negatives (see top block). Sparse
negatives typically overlap with the head entity in surface form but ignore the relation, while structure negatives can
find entities with similar types. Neural retrievers can successfully find entities that are informative as hard negatives,
but the risk of including false negatives also increases. For instance, both improvement_NN_1 and reform_NN_2 are
feasible answers to the above query.

to expand negatives compared to memory bank ap-
proaches (He et al., 2020). Self-negatives regard
the head entity h in (h, r, ?) as the hard negative
to reduce the model’s reliance on spurious text
matches. We include these two kinds of negatives,
following Wang et al. (2022).

3.4 Negatives for Training

During training, we use one of the hard negative
sampling strategies proposed in §3.2 together with
a combination of in-batch negatives, pre-batch neg-
atives, and self-negatives. Since extra hard nega-
tives are used, the total number of instances used
for loss calculation in Eq. 2 will be increased. For
fair comparison, we reduce the batch size to ensure
the total number of negatives used in training re-
mains identical to our baseline SimKGC method
(Wang et al., 2022). More details can be found in
Appendix B.

4 Model Ensembling

Since we propose multiple hard negative sampling
strategies in §3.2, we train several models, each
with different types of hard negatives. It is nat-
ural to combine these models to achieve further
performance improvements through model ensem-
bling. Inspired by Lu et al. (2021), we explore two
methods to ensemble results from multiple models.

Rank Fusion Reciprocal Rank Fusion
(RRF) (Cormack et al., 2009) is a simple
yet effective algorithm for merging ranking results
from multiple retrievers, and is a prevailing
technique in information retrieval. Its utility in
knowledge graph completion has not yet been
evaluated. The technique works by merging
the ranking positions from the various models.
Suppose we have a query (h, r) and each model
p ∈ P returns a ranking list {Rankpe |e ∈ E}, the
final ranking score is:

RRF (e) =
∑

p∈P

wp
Rankpe

Rankpe is the ranking position of an entity e re-
turned by a model p, ranging from [1, |E|]. wp is
the weight of a model p, which is tuned based on
the performance on the development set.

Embedding Fusion An alternative aggregation
method is to compute the weighted sum of ranking
scores from different models, i.e.,

∑P
p=1wpE

p
hrE

p
t .

This can be implemented cheaply using the models’
embeddings, which has the benefit of allowing for
efficient vector indexing and search. Specifically,
for each query (h, r), we obtain vectors from each
models’ encoder, which are then scaled by a model
specific weight (tuned manually) and concatenated.
Each entity e ∈ E , is also embedded by each model
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and the vectors concatenated. This allows the ag-
gregation method to be implemented as a simple
dot product:6

s(h, r, t) = [wPE
P
hr, . . . , w1E

1
hr]

T [EPt , . . . , E
1
t ]

5 Experiments

5.1 Datasets
Our method is evaluated on WN18RR (Dettmers
et al., 2018), FB15k-237 (Toutanova and Chen,
2015), DBPedia500k (Shi and Weninger, 2017)
and Wikidata5M (Transductive Setting) (Wang
et al., 2021b) datasets, where the number of en-
tities ranges from 15K to 4.6M. More details about
dataset statistics are shown in Table 7.

Following previous work (Wang et al., 2022),
we focus on retrieving the missing entity of
triples (h, r, ?) and (?, r, t), effectively doubling
dataset sizes.7 The adopted evaluation metrics are
Mean Reciprocal Rank (MRR) and Hits@k(k ∈
{1, 3, 10}). More specifically, MRR is calculated
as MRR = 1

N

∑N
i=1

1
Ranki

, where Ranki is the
rank of the correct tail entity in the predicted out-
puts and N is the total number of triples in the test
set. Similarly, Hits@k is the proportion of correct
tails that appear in the top-k ranked candidates.

We follow Bordes et al. (2013) and Wang et al.
(2022) by conducting evaluations under filter set-
tings, where for a given incomplete triple (h, r, ?),
the prediction scores of all its correct answers8

except for the target to be predicted are removed.
Both tail entity prediction (h, r, ?) and head entity
prediction (?, r, t) are conducted, with their aver-
ages on all metrics reported.

5.2 Experimental Settings
We replicated the state-of-the-art SimKGC
model (Wang et al., 2022) using PyTorch (Paszke
et al., 2019) and Transformers (Wolf et al., 2020),
and treat it as the baseline in our experiments. The
uncased BERT base model is used for model ini-
tialisation.9

6For both fusion methods, the weights were tuned through
grid search. Empirically, we found that single model whose
performance is better was generally given a higher weight than
worse performing methods. See Table 8 and Appendix C.3 for
more details.

7For reversed triples, a special r−1 relation type is used.
For instance, we convert a triple (?, educated at, Cambridge
University) to (Cambridge University, reverse educated at,
?). We did not conflate the reversed relations with existing
relations, although this may be beneficial (e.g., hyponym ≡
reverse hypernym.)

8Triples that appear in training, validation and test sets.
9https://huggingface.co/bert-base-uncased

Most hyperparameters are adopted from Wang
et al. (2022), and newly introduced hyperparame-
ters are determined through grid search. We choose
the best model according to Hits@1 on the dev set,
which is then evaluated on the test set for all exper-
iments. More details are in Appendix A.

5.3 Overall Results

Tables 2 and 3 show the results of our models com-
pared with a range of high-performing graph em-
bedding and text embedding models over four KGC
datasets. We observe that the performance of our
replicated baseline is competitive with that of Wang
et al. (2022), achieving slightly better results on
FB15k-237 and Wikidata5M but slightly worse on
WN18RR. Moreover, our best single model either
matches or outperforms the state-of-the-art results
on all datasets for most metrics.

By looking into the models trained using dif-
ferent hard negative sampling strategies, the be-
haviours are quite different in each dataset. More
specifically, simply taking the n-hop neighbours
as structure-aware negatives results in signifi-
cant improvement on WN18RR but marginal in-
creases or even negative impacts on the other three
datasets. Similar effects are also observed for
sparse negatives. Our model achieves the best
results on FB15k237, DBPedia500k, and Wiki-
data5M when using replaced head-relation nega-
tives, which shows our heuristics are useful and
can indeed lead to better performance. Gains over
the baseline when using entity similar negatives
are also significant, but it lags behind the other two
types of neural negatives most of the time. Overall,
we can conclude that there is no single negative
sampling strategy that outperforms on all datasets.
We believe this is due in part to the distinct charac-
teristics of each dataset, which we explore in §6.1.

Furthermore, by ensembling models trained us-
ing different types of negatives at inference time,
we can observe performance gains up to 1.3% MRR
and 1.8% H@1 over the best single model. For
model ensembling methods, we find that embed-
ding fusion is more beneficial when improving the
precision (MRR and H@1), while rank fusion is
helpful to boost the recall (H@3 and H@10), espe-
cially on DBPedia500k. Besides, both methods do
not help much on FB15k237 with only marginal
gains. However, both ensembling methods come at
the cost of increased inference latency with a fac-
tor of N , the number of ensembled models, which
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Method WN18RR FB15k-237 Wikidata5M

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Graph Embedding Approach

TransE (Bordes et al., 2013)∗ 24.3 4.3 44.1 53.2 27.9 19.8 37.6 44.1 25.3 17.0 31.1 39.2
DisMult (Yang et al., 2014)∗ 44.4 41.2 47.0 50.4 28.1 19.9 30.1 44.6 - - - -
RotatE (Sun et al., 2019)∗ 47.6 42.8 49.2 57.1 33.8 24.1 37.5 53.3 29.0 23.4 32.2 39.0
TuckER (Balazevic et al., 2019)∗ 47.0 44.3 48.2 52.6 35.8 26.6 39.4 54.4 - - - -

Text Embedding Approach

KG-BERT (Yao et al., 2019)∗ 21.6 4.1 30.2 52.4 - - - 42.0 - - - -
MTL-KGC (Kim et al., 2020)∗ 33.1 20.3 38.3 59.7 26.7 17.2 29.8 45.8 - - - -
StAR (Wang et al., 2021a)∗ 40.1 24.3 49.1 70.9 29.6 20.5 32.2 48.2 - - - -
DKRL (Xie et al., 2016)∗ - - - - - - - - 16.0 12.0 18.1 22.9
KEPLER (Wang et al., 2021b)∗ - - - - - - - - 21.0 17.3 22.4 27.7

SimKGC (Wang et al., 2022)∗ 66.7 58.8 72.1 80.5 33.6 24.9 36.2 51.1 35.8 31.3 37.6 44.1

SimKGC replicated 65.0 55.6 71.5 81.4 33.8 25.3 36.5 51.2 36.8 32.5 38.3 44.7
+ Head-Relation 64.3 57.1 68.6 77.6 36.2 27.4 39.2 53.7 40.2 36.4 41.8 46.8
+ Entity Similar 66.4 59.5 70.1 79.1 35.4 26.9 38.4 52.3 39.3 35.5 40.9 46.0
+ Replaced Head-Relation 65.3 58.8 68.8 77.5 36.5 27.6 39.9 54.2 41.0 37.0 42.7 48.0
+ Sparse 66.7 59.3 71.3 79.3 34.6 25.9 37.5 52.2 36.7 32.3 38.4 44.5
+ Structure-Aware 67.8 60.9 72.5 80.0 33.1 24.4 35.7 50.7 38.0 33.4 39.7 46.2

Ensemble

Rank Fusion 68.9 61.9 72.9 81.7 36.6 27.6 40.1 54.3 41.7 37.6 43.5 48.7
Embedding Fusion 69.2 62.7 72.8 81.1 36.7 27.8 40.0 54.3 42.0 38.1 43.5 49.0

Table 2: Evaluation results on the test set of WN18RR, FB15k-237 and Wikidata5M (Transductive Setting) datasets.
∗ indicates results directly copied from Wang et al. (2022).

Method MRR H@1 H@3 H@10

TransE (Bordes et al., 2013)∗ 7.4 3.1 10.1 14.5
TransH (Wang et al., 2014)∗ 7.4 3.2 10.1 14.6
TransR (Lin et al., 2015)∗ 7.3 3.5 9.9 13.5
TransD (Ji et al., 2015)∗ 7.4 3.2 10.1 14.5

SimKGC replicated 25.7 18.9 27.6 39.5
+ Head-Relation 26.3 20.5 28.6 37.0
+ Entity Similar 26.3 20.7 28.4 36.5
+ Replaced Head-Relation 27.1 21.1 29.3 38.1
+ Sparse 24.9 18.4 26.7 37.6
+ Structure-Aware 25.6 18.8 27.5 39.4

Ensemble

Rank Fusion 28.3 21.6 30.6 41.7
Embedding Fusion 27.9 21.5 30.0 40.0

Table 3: Evaluation results on the DBPedia500k dataset.
∗ indicates the results obtained by running the open-
source OpenKE toolkit (Han et al., 2018).

hinders their utility for real-time deployment.

6 Analysis

6.1 Why the Effects Vary by Dataset

Next, we analyse why the benefits of different hard
negative sampling strategies vary from dataset to
dataset. We employ two measurements, namely
Difficulty and False Negative Rate, to draw the con-

nections to the performance on specific datasets.
Difficulty is measured by the average model score
between hard negatives and their corresponding
head-relation pairs. More specifically, for a given
KG triplet (hi, ri, ti) and its associated hard neg-
ative pool Ni = {tj |1 ≤ j ≤ k}, the difficulty is
computed as follows:

Di =
1

|Ni|
∑

tj∈Ni

s(hi, ri, tj)

where s(hi, ri, tj) is the score predicted by the
SimKGC replicated model.10 The overall difficulty
is the average over training, 1

|D|
∑|D|

i Di.
On the other hand, False Negative Rate is the pro-

portion of hard negatives which are correct answers
that appear in development and test graphs:11

FNR =
1

|D|

|D|∑

i

1

|Ni|
∑

tj∈Ni

I(< hi, ri, tj >∈ T )

where T is the development and test sets. I(∗) = 1
if the corresponding triple appears in the develop-
ment or test set; otherwise it is 0.

10The model is fixed to allow comparison of different nega-
tive sampling strategies.

11The real false negative rate will be higher than what we
measure due to the incomplete nature of knowledge graphs.
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Figure 2: The difficulty and false negative rates of hard
negatives extracted using different sampling strategies
on WN18RR and FB15k237 datasets. Colours of points
and numbers represent the Hit@1 score. The best results
are circled with round boxes.

A model that is trained using hard negatives
with high difficulty and low false negative rate
is expected to achieve better performance. Fig-
ure 2 compares the difficulty and false negative
rates for hard negative sampling strategies over two
datasets. The most effective strategies are differ-
ent on the two datasets: for Wordnet (WN18RR)
the accuracy (Hit@1) is most sensitive to the false
negative rate (horizontal axis), while for Freebase
(FB15k237) it is most sensitive to difficulty (ver-
tical) – despite the false negative rates being con-
siderably higher on this dataset. We ascribe the
difference to the underlying dataset. Wordnet is a
sparsely-connected graph, and has relation types
that connect entities with hierarchical structures.
For instance, the hypernym and derivationally re-
lated form relations which satisfy the transitivity
property account for 74% of triples in the graph.
Including negatives with high difficulty for such
relations (i.e., false negatives on the hierarchy that
are not directly connected to a specific head entity)
will inevitably encourage the model to learn em-
beddings that destroy such structures. However,
the best-performing structure-aware negative sam-
pling methods only sample negatives from local
neighbourhoods, which we believe can effectively
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Figure 3: The comparison between the best single model
and the model trained using Head-Relation negatives
with and without oracle false negative removal.

reduce such side-effects. In contrast, Freebase is a
much more denser graph compared to Wordnet (8×
in terms of node degrees), with significantly fewer
entities but more diverse relations. Moreover, over
70% triples include relations that have high arity
(e.g., has part) and many-to-many mappings. Thus,
the chance of having false negatives within glob-
ally sampled hard negatives will be much higher
than that on Wordnet in nature. However, since
FB15k237 is a much more difficult task compared
to WN18RR, highly difficult negatives should be
used to encourage the model to learn embeddings
that can discriminate correct tails from very similar
ones, and the importance of false negatives are com-
paratively less important. We leave the systematic
analysis of different negative sampling methods
with respect to KG structures as future work.

6.2 Oracle Upper Bound

One natural following question is how much im-
provement we may achieve if we remove all
false negatives when using the most difficult head-
relation hard negatives to train a model. As shown
in Figure 3, the performance increases substantially
in terms of H@1 and H@10 across four datasets
when simply removing false negatives. This shows
that there is much room for improvement and de-
signing effective false negative elimination meth-
ods could potentially fill the performance gap and
result in better-performing models. Besides, our
best single model can obtain results that are close
to the upper bound on WN18RR and Wikidata5M,
but still lags behind on the other two datasets.
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Rel Category 1-TO-1 1-TO-M. M.-TO-1 M.-TO-M.

Size % 0.94 6.32 20.45 72.29

SimKGC
Forward 57.3 4.6 73.2 24.8

Backward 64.6 37.1 13.6 15.3
Avg. 60.9 20.8 43.4 20.1

Our model
Forward 60.9 4.3 75.8 28.9

Backward 67.7 40.8 10.5 17.4
Avg. 64.3 22.6 43.1 23.2

Table 4: Detailed results (H@1) on the FB15k-237 test
dataset, broken down by category of relationships and
prediction directions. Our model refers to the best single
model trained with replaced head-relation negatives.

6.3 Relation Category

To further understand the behaviour of our model,
we follow Bordes et al. (2013) by classifying triples
into different groups based on the category of rela-
tionships. Relationships are broken down into four
categories according to the cardinalities of their
head and tail arguments: one-to-one (1-TO-1), one-
to-many (1-TO-M.), many-to-one (M.-TO-1) and
many-to-many (M.-TO-M.). For a given relation r,
if the average number of heads h appearing in the
dataset for a tuple (r, t) is lower than 1.5, the head
argument will be labeled as 1 and M. otherwise.
The same is applied to the tail argument.

Table 4 shows the detailed results of four cate-
gories on the FB15k-237 dataset, together with the
forward and backward prediction results. Firstly,
we can find that both models perform the best on
triples with 1 on the tail side, while predicting the
M side is significantly more difficult. Secondly,
our method can beat the baseline on most rela-
tion categories. Thirdly, the substantial improve-
ment on 1-TO-1 relations (+3.4%) shows that our
model is making more precise decisions. Besides,
by looking into specific prediction directions, we
find that the performance mainly comes from pre-
dicting triples with 1 on the target side. When the
target side contains multiple answers, adding hard
negatives even hurts the performance, especially in
the backward direction of M.-TO-1. Further analy-
sis finds that its false negative rate is almost three
times the overall rate (15.9% vs 5.5%), and we be-
lieve it is the high false negative rate that misleads
the model and results in negative impacts on this
specific relation category.

6.4 Generalise to Unseen Entities

Textual embedding methods are known to gener-
alise better to unseen entities than graph embedding

WN18RR Model MRR H@1 H@3 H@10

Seen SimKGC 65.5 56.1 72.0 81.7
Our model 68.2 61.3 72.6 80.0

Unseen SimKGC 59.1 48.6 65.2 77.6
Our model 63.7 54.1 70.2 81.0

Wikidata5M Model MRR H@1 H@3 H@10

Seen SimKGC 36.6 32.3 38.1 44.5
Our model 40.7 36.7 42.4 47.7

Unseen SimKGC 43.4 38.4 45.3 51.6
Our model 49.7 45.6 51.9 57.2

Inductive SimKGC 42.5 37.8 43.9 51.6
Unseen Our model 47.4 43.3 49.3 55.1

Table 5: Results on test examples when only containing
seen and unseen entities, respectively. Our model refers
to the best single model in each dataset.

ones (Wang et al., 2021a). We conduct experiments
to testify whether their generalisation ability can
be further improved by using harder negatives. We
split test data based on whether the head or target
entity is unseen in training. 210 out of 3134 and
159 out of 5163 test triples include unseen enti-
ties on WN18RR and Wikidata5M, respectively.
Furthermore, we use another Inductive setting on
Wikidata5M, which has different data splits com-
pared to the Transductive setting. We extract 336
test triples from the whole graph of Induction set-
ting which include entities unseen to the Transduc-
tive setting’s training graph. The detailed results
are shown in Table 5. We observe our best model
achieves considerable improvements on three un-
seen entity settings across all metrics. Moreover,
the absolute improvements are significantly higher
than those on the seen entity setting, especially on
recall metrics (e.g., H@3 and H@10). This demon-
strates learning from hard negatives leads entity
embeddings that generalise better.

7 Related Work

Knowledge Graph Completion KGC has been
extensively studied for many years as a popular
research topic. Conventional KGC methods adopt
graph embedding methods to map entity and re-
lation into low-dimensional dense vectors and de-
sign various scoring functions to measure the plau-
sibility of KG triples, including TransE (Bordes
et al., 2013), DistMult (Yang et al., 2014), Com-
plEx (Trouillon et al., 2016) and RotatE (Sun et al.,
2019). Recent text embedding methods choose to
include additional text descriptions related to en-
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tities by making use of large pretrained language
models, including KG-BERT (Yao et al., 2019),
MTL-KGC (Kim et al., 2020) and StAR (Wang
et al., 2021a). In this work, we follow Wang
et al. (2022) by adopting the simple yet effective
text embedding-based method using powerful pre-
trained language models. The above graph-based
methods, which also rely on negatives to learn en-
tity and relation embeddings, are orthogonal to the
sampling strategies proposed in this work. We be-
lieve our techniques could lead to improvements
when applied to graphs, but we leave this for future
work.

Dual Encoder for Contrastive Learning A Dual
Encoder, or Bi-Encoder, which adopts two en-
coders without weight sharing for feature encod-
ing, has been widely used in many tasks, including
image learning (He et al., 2020) and information
retrieval (Karpukhin et al., 2020). Typically, an im-
age with two different augmented views or query-
document pairs is encoded into vectors separately
by a dual encoder. The model learns to minimise
the distance between positive pairs and push neg-
ative pairs further apart in the embedding space.
Inspired by previous work, we decouple the en-
coding of (h, r) and t by dual encoder and use the
contrastive learning framework to learn effective
knowledge embeddings.

Hard Negatives for Contrastive Learning Hard
negatives have been identified to be extremely help-
ful in learning better representations, including im-
age learning (Robinson et al., 2021) and informa-
tion retrieval (Karpukhin et al., 2020). For example,
the DPR model (Karpukhin et al., 2020) mines hard
negatives using a sparse retriever BM25. Xiong
et al. (2021) proposed to sample hard negatives
from the model itself by theoretically and empiri-
cally verifying such negatives can result in larger
gradient norms and thus faster convergence speed.
Zhang and Stratos (2021) also found doing negative
sampling from the model being optimised leads to
better performance, as they argued that contrastive
learning is a biased estimator and sampling nega-
tives from the model itself can reduce such bias.
We follow this direction and propose various hard
negative search methods in this paper and show
that they can substantially improve KGC.

Negative Sampling Strategies for KGC Most
KGC works employ a simple negative sampling
strategy by corrupting the head entity h or tail
entity t of a correct KG triplet (h, r, t) with uni-

formly sampled random entities from the whole
knowledge graph (Yao et al., 2019). However,
such easy negatives are identified to provide lim-
ited training signal, since most of them produce
small scores and nearly zero gradients late in train-
ing (Sun et al., 2019). Therefore, various im-
proved negative sampling strategies have been pro-
posed. Self-adversarial negative sampling (Sun
et al., 2019) uses the distribution generated by the
model being optimised to weight sampled nega-
tives. GAN-based methods (Wang et al., 2018) are
also effective in extracting informative negatives
but suffer from inefficiency and high training costs.
NSCaching (Zhang et al., 2019) regards negative
triplets with large scores as important and main-
tains a cache of such triples from which negatives
are sampled. Ahrabian et al. (2020) takes the head
or tail entity’s n-hop neighbours as negatives and
evaluates their utility on graph embedding methods.
Our work also aims to explore the effects of im-
proved negative sampling strategies for KGC but
with different model architectures (dual-encoder vs
graph embeddings). Many of the above negative
sampling strategies are orthogonal to our work and
we believe they have the potential to be employed
within our method for further empirical gains.

8 Conclusion

In this paper, we successfully improve a powerful
dual-encoder-based KGC model by introducing var-
ious improved negative search methods and investi-
gating their combinatorial effects. Empirical results
on four benchmarks with different scales confirm
the superiority of our proposed methods, signifi-
cantly beating a wide range of competitive methods
and achieving state-of-the-art performance. For fu-
ture work, we are interested in eliminating false
negatives contained in sampled hard negatives. An
exciting future direction is to use a model to filter
out false negatives and potentially even identify
pseudo positives, for more accurate models.

Limitations

Although our method is efficient and introduces no
extra cost during inference time, it does incur the
additional training cost of retrieving different types
of hard negatives, which roughly doubles the time
for completing the whole training pipeline. The
model ensembling methods, especially the embed-
ding fusion one, need to build indexes for entity
embeddings and require extra cost for storage. De-
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spite these drawbacks, the training of our methods
has a fairly modest footprint by modern standards,
taking about 36 hours of a server with 4×A100
GPUs and 200G CPU RAM for the largest datasets,
Wikidata5M.

As an empirical study, we provide observations
under different design choices for sampling hard
negatives. We hope our findings can shed lights on
future work. A theoretical analysis about each pro-
posed negative sampling strategy with connection
to KG properties (e.g., sparsity) would certainly
strengthen our claims, but is out of scope of this
paper. In addition, the state-of-the-art dual-encoder-
based KGC model is used to verify the sampling
methods proposed in this work. One would expect
to test their generalisation to other underlying KGC
methods, e.g., graph embedding methods, which
we leave as future work.

Moreover, adapting the dual-encoder-based
KGC model and our proposed negative sampling
methods to multilingual KGs, e.g., for a KG with
concepts in different languages, or multi-modal set-
tings, for a KG with concepts in the form of images,
videos, or audios would further test the generali-
sation ability, which can be a promising research
direction for future work.
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WN18RR FB15k-237

MRR H@1 MRR H@1

Best Single Model 67.8 60.9 36.5 27.6
Negative Combination 65.8 59.0 35.6 26.7

Table 6: Results when training a model by sampling
from the union of all types of negatives.

A Hyperparameters

The learning rates are set to 5×10−5 on WN18RR,
3 × 10−5 on Wikidata5M and 1 × 10−5 on the
remaining datasets. All models are trained using
Adam optimizer (Kingma and Ba, 2015) with a
warmup learning rate scheduler. The model is
trained for 50, 10, 5, and 1 epochs on WN18RR,
FB15k-237, DBPedia500k, and Wikidata5M. For
each hard negative sampling strategy, we generate
30 negatives for each training example.12 During
each training step, we uniformly sample a subset
of hard negatives from the pool for each training
example, and the best number is chosen from [1, 5].
For both rank fusion and embedding fusion meth-
ods, their weights are shared and are tuned based on
the performance on development sets. A summary
of training details and hyperparameters is shown in
Table 8.

B Number of Negatives for Training

For each training example in a mini-batch, we uni-
formly sampleN negatives from its associated hard
negative pool. We also treat the hard negatives and
self-negatives of other examples in the same mini-
batch as in-batch negatives. Suppose the batch size
is B and pre-batches are M , the total number of
instances used for loss calculation in Eq. 2 will be
(N +M + 2)×B for each training example. By
contrast, the number of negatives used by SimKGC
is (M+2)×B. If we keep the same batch size, the
number of negatives used in our experiment will in-
crease byN×B, which would potentially weak our
claims as more negatives are used for contrastive
learning. To ensure fair comparison, we reduced
the batch size so that the number of negatives used
in our experiment is the same as Wang et al. (2022).
For example, if we take B = 768, N = 1,M = 1
on WN18RR, the number of negatives equals to
3072; while we take B = 1024 for SimKGC, the
number will also be 3072. Thus, our methods will

12Gold answers appearing in the training graph are removed
for each (h, r). (i.e.,N = {tj |(h, r, tj) /∈ D}kj=1)
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Figure 4: Results comparison when taking head or tail
entity as query.

not be affected by including more negatives. Simi-
lar settings apply to other datasets.

C Ablation Study

C.1 Negative Combination

Another possible way to benefit from all kinds of
hard negatives is to train a model on their com-
binations. We experiment with training a model
by uniformly sampling negatives from the union
of all types of hard negatives generated from §3.2.
As shown in Table 6, the model does not obtain
improved results and this can even hurt the per-
formance. We reason that although the combined
negatives can provide more diverse supervisions,
their false negative rates and difficulty also changes.
More specifically, the false negative rate and diffi-
culty on WN18RR change to 0.93% and 29.66%.
Although more difficult negatives are included, the
more important false negative rate is worse than the
best structure-aware one. By contrast, the false neg-
ative rate in FB15k237 after combination reduces
from Replaced Head Relation’s 5.45% to 4.24%,
but the more important difficulty also decreases
from 45.8% to 33.7%, thus leading to inferior re-
sults.

C.2 Head Entity vs Tail Entity as Query

We analyse the performance difference between
using head entity and tail entity as the query in the
sparse, structure-aware and entity similar negative
sampling strategies. Figure 4 shows that for similar
and sparse negatives, using tail entity as query gen-
erally leads to worse performance on WN18RR;
while in other cases, using the tail entity is more
beneficial. One reason behind this is that taking
the head entity as query would inevitably reduce
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Dataset #Ent #Rel Train Dev Test

WN18RR 40, 943 11 86, 835 3, 034 3, 134
FB15k-237 14, 541 237 272, 115 17, 535 20, 466
DBPedia500k 517, 475 654 3, 102, 677 10, 000 1, 155, 937
Wikidata5M 4, 594, 485 822 20, 614, 279 5, 163 5, 163

Table 7: Number of Entities, Relations and Triples in Train/Dev/Test splits of datasets used in our experiments.

Hyperparameters WN18RR FB15k-237 DBPedia500k Wikidata5M

Learning rate 5e-5 1e-5 1e-5 3e-5
LR Scheduler Linear Warmup Linear Warmup Linear Warmup Linear Warmup
Warmup steps 400 400 400 400
Epochs 50 10 5 1
Batch Size for SimKGC 1024 1024 1024 1024
Batch size 768 512 512 768
Gradient clipping 10.0 10.0 10.0 10.0
#Hard negatives 1 3 3 1
Fusion weights [0.1, 0.3, 0.3, 0.3, 1.2] [0.6, 0.2, 0.9, 0.05, 0.01] [1, 1, 1, 1, 1] [0.9, 0.6, 1.2, 0.3, 0.45]

Table 8: Hyperparameter settings for different datasets. Entries in fusion weights correspond to Head-Relation,
Entity Similar, Replaced Head-Relation, Sparse, and Structure-Aware sampling methods, respectively.

MRR H@1 H@3 H@10

Rank Uniform 68.7 61.7 72.7 81.6
Fusion Tuned 68.9 61.9 72.9 81.7

Embedding Uniform 68.9 62.5 72.5 80.8
Fusion Tuned 69.2 62.7 72.8 81.1

Table 9: Results comparison on WN18RR when using
uniform and manually-tuned weights for model ensem-
bling.

the difficulty but can avoid false negatives, a factor
that is more significant for WN18RR. By contrast,
the situation on FB15k237 is the other way around
where the difficulty is more crucial. Again, we can
confirm that there is no single design choice for
each sampling strategy that works the best across
datasets.

C.3 Uniform Weights for Ensembling

We show results when using uniform weights for
model ensembling in Table 9. We find that simply
using uniform weights has already boosted the per-
formance. By carefully tuning the weights of each
model through grid search, we can achieve further
gains on all metrics, although the benefits are mini-
mal. Making fusion weights learnable (Wang et al.,
2021a) may lead to further improvements, which
we leave as future work.

D Qualitative Analysis

Table 10 shows some examples of predictions from
the SimKGC baseline and our best method. For

the first example, both methods’ predictions are
wrong. However, our method ranks the correct
tail entity much higher than the SimKGC baseline.
Moreover, the top-1 prediction from our method
prosody_NN_1 is more reasonable as an answer
compared to articulation_NN_1. For the second
example, both methods fail according to the test
set annotations. Our method returns correct tail
entities based on our judgment. The same applies to
SimKGC for its top-2 predictions. This also shows
current automatic evaluation metrics cannot reflect
the performance of KGC models precisely. For the
third example, our method finds the correct answer
out of other very semantically similar entities.
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I. Both SimKGC and our model fail, but our predictions are more related

Head Entity accentuation_NN_1: the use or application of an accent; the relative prominence of syllables in a phrase
Relation hypernym
Tail Entity stress_NN_1: the relative prominence of a syllable or musical note (especially with regard to stress or pitch)

SimKGC 1. articulation_NN_1: the aspect of pronunciation that involves bringing articulatory organs together so as to
shape the sounds of speech

(Rank 180) 2. prosody_NN_1: the patterns of stress and intonation in a language
3. non-standard_speech_NN_1: speech that differs from the usual accepted, easily recognizable speech of native
adult members of a speech community

Ours 1. prosody_NN_1: as above 2. articulation_NN_1: as above
(Rank 108) 3. speech_pattern_NN_1: distinctive manner of oral expression; "he couldn’t suppress his contemptuous accent".

II. Both SimKGC and our model fail, but both models’ predictions are correct based on human judgement

Head Entity pea_family_NN_1: a large family of trees, shrubs, vines, and herbs bearing bean pods...
Relation member meronym
Tail Entity wild_pea_NN_1: any of various plants of the family Leguminosae that usually grow like vines.

SimKGC 1. genus_sesbania_NN_1: small genus of tropical and subtropical leguminous herbs or shrubs or trees
(Rank 7) 2. genus_centrosema_NN_1: a genus of chiefly tropical American vines of the family Leguminosae...

3. torchwood_family_NN_1: resinous or aromatic chiefly tropical shrubs or trees

Ours 1. genus_acacia_NN_1: large genus of shrubs and trees and some woody vines...
(Rank 4) 2. genus_sesbania_NN_1: as above

3. genus_dalbergia_NN_1: large genus of tropical trees having pinnate leaves and paniculate flowers...

III. Our model succeeds but SimKGC fails

Head Entity wive_VB_1: take (someone) as a wife
Relation hypernym
Tail Entity wed_VB_1: take in marriage

SimKGC 1. wifely_JJ_1: befitting or characteristic of a wife
(Rank 4) 2. shack_up_VB_1: share living quarters; people who are not married and live together as a couple

3. wive_VB_2: marry a woman, take a wife

Ours 1. wed_VB_1: as above
(Rank 1) 2. wifely_JJ_1: as above 3. shack_up_VB_1: as above

Table 10: Predictions of tail entities by the SimKGC baseline and our best model. The top-3 ranked outputs are
reported, and the ranks of the correct results are also included. Correct predictions are in bold, and underline means
predictions that do not exist in original KGs but are correct based on human judgment.
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Abstract

Recent studies have demonstrated the useful-
ness of contextualized word embeddings in un-
supervised semantic frame induction. However,
they have also revealed that generic contextu-
alized embeddings are not always consistent
with human intuitions about semantic frames,
which causes unsatisfactory performance for
frame induction based on contextualized em-
beddings. In this paper, we address supervised
semantic frame induction, which assumes the
existence of frame-annotated data for a subset
of predicates in a corpus and aims to build a
frame induction model that leverages the an-
notated data. We propose a model that uses
deep metric learning to fine-tune a contextual-
ized embedding model, and we apply the fine-
tuned contextualized embeddings to perform
semantic frame induction. Our experiments
on FrameNet show that fine-tuning with deep
metric learning considerably improves the clus-
tering evaluation scores, namely, the B-CUBED
F-SCORE and PURITY F-SCORE, by about 8
points or more. We also demonstrate that our
approach is effective even when the number of
training instances is small.

1 Introduction

Semantic frames are knowledge resources that re-
flect human intuitions about various concepts such
as situations and events. One of the most represen-
tative semantic frame resources is FrameNet (Baker
et al., 1998; Ruppenhofer et al., 2016), which
consists of semantic frames, lexical units (LUs)
that evoke these frames, and collections of frame-
annotated sentences. Semantic frame induction is
the task of grouping predicates, typically verbs, ac-
cording to the semantic frames they evoke.1 For
example, given the verbs in the example sentences

1Strictly speaking, this task can be divided into two sub-
tasks: verb clustering, which groups verbs according to the
frames that they evoke, and argument clustering, which groups
arguments of verbs according to their roles. In this study, we
focus the former, the verb clustering task.

Frame Example sentence

FILLING
(1) She covered her mouth with her hand.
(2) I filled a notebook with my name.

PLACING
(3) You can embed graphs in your worksheet.
(4) He parked the car at the hotel.

REMOVING
(5) Volunteers removed grass from the marsh.
(6) They’d drained the drop from the teapot.

TOPIC
(7) Each database will cover a specific topic.
(8) Chapter 8 treats the educational advantages.

Table 1: Example sentences and the frames that their
verbs evoke in FrameNet.

(1)

(a) Vanilla BERT (b) Fine-tuned BERT w/ AdaCos

(2)

(3)

(4)

(6)

(7)

(8)

(5)

Figure 1: 2D t-SNE projections of the contextualized
embeddings of verbs annotated with either the FILL-
ING (•), PLACING (×), REMOVING (■), or TOPIC (+)
frames in FrameNet, by using (a) vanilla BERT or (b)
fine-tuned BERT with AdaCos. The numbers in paren-
theses correspond to the examples listed in Table 1.

listed in Table 1, semantic frame induction aims
to group them into four clusters according to the
frames that they evoke.

Recent studies (Arefyev et al., 2019; Anwar
et al., 2019; Ribeiro et al., 2019) have demon-
strated the usefulness of contextualized word em-
beddings such as ELMo (Peters et al., 2018) and
BERT (Devlin et al., 2019) in unsupervised seman-
tic frame induction. Figure 1(a) shows a 2D t-SNE
(Maaten and Hinton, 2008) projection of the vanilla
BERT2 embeddings of verbs extracted from frame-
annotated sentences in FrameNet. We can confirm
that the instances of the verb “cover” in Exam-

2We refer to BERT without fine-tuning as “vanilla BERT.”
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ples (1) and (7) are far apart in the space, which
reflects the distance between their meanings. In
contrast, “cover” in (7) and “treat” in (8), which
are annotated with the same TOPIC frame, are close
together. However, instances are not always prop-
erly placed in the semantic space according to the
frames they evoke. For example, “remove” in (5)
and “drain” in (6) are annotated with the same RE-
MOVING frame but are not close together. This
suggests that contextualized word embeddings are
not always consistent with human intuition about
semantic frames.

Hence, in this study, we tackle supervised seman-
tic frame induction, which assumes the existence
of annotated data for certain predicates, to induce
semantic frames that adequately reflect human in-
tuition about the frames. We propose methods that
use deep metric learning to fine-tune the contextual
word embedding model so that instances of verbs
that evoke the same frame are placed close together
and other instances are placed farther apart in the
semantic space. Figure 1(b) shows the 2D t-SNE
projection of BERT embeddings after fine-tuning
with AdaCos (Zhang et al., 2019), which is a rep-
resentative deep metric learning method. We can
confirm that predicates that evoke the same frame
are close together, such as those in (3) and (4) and
those in (5) and (6). This suggests that deep metric
learning enables fine-tuning of BERT to obtain em-
bedding spaces that better reflect human intuition
about semantic frames.

2 Related Work

For automatic construction of semantic frame re-
sources, studies on grouping predicates according
to the semantic frames they evoke can be divided
into two groups: those that work on semantic
frame identification, in which predicates are clas-
sified into predefined frames; and those that work
on semantic frame induction, in which predicates
are grouped according to the frames that they evoke,
which are typically not given in advance.

Semantic frame identification is often treated as
a subtask of frame semantic parsing (Das et al.,
2014; Swayamdipta et al., 2017), and the meth-
ods using contextualized embedding have become
mainstream. For example, Jiang and Riloff (2021)
used a BERT-based model to generate represen-
tations for frames and LUs by using their formal
definitions. Su et al. (2021) used a BERT-based
model with a context encoder, to encode the context

surrounding the frame-evoking word, and a frame
encoder, to encode the frames’ definitions and se-
mantic roles. Yong and Torrent (2020) treated se-
mantic frame identification as a clustering task.3

They first excluded predicates that evoke frames
that are not included in FrameNet by applying an
anomaly detection model; then, they grouped the
remaining predicates according to their meanings
by using contextualized embeddings of predicates
and sentence embeddings of the frame definitions.

Semantic frame induction is the task of group-
ing predicates in texts according to the frames they
evoke. Instead of frames being given in advance,
each grouping of given predicates is considered a
frame. As with semantic frame identification, meth-
ods using contextualized embedding have become
mainstream. Arefyev et al. (2019) first performed
agglomerative clustering by using the BERT em-
bedding of a frame-evoking verb and then split
each cluster into two on the basis of the verb’s sub-
stitutes. Anwar et al. (2019) used the embedding of
the frame-evoking verb and the average word em-
bedding of all the words in a sentence, as obtained
by skip-gram (Mikolov et al., 2013) or ELMo and
then performed agglomerative clustering. Ribeiro
et al. (2019) applied graph clustering by using the
ELMo embedding of the frame-evoking verb. Ya-
mada et al. (2021a) leveraged the embedding of the
masked frame-evoking verb and performed two-
step clustering, which comprised intra-verb and
cross-verb clustering. Yamada et al. (2021b) inves-
tigated how well contextualized word representa-
tions can recognize the difference of frames that
the same verb evokes, and explored which types
of representation are suitable for semantic frame
induction. All of these studies focused on unsuper-
vised semantic frame induction, with no training
data. In contrast, in this study, we assume the
existence of frame-annotated data for a subset of
predicates appearing in a corpus, and work on su-
pervised semantic frame induction.

3 Supervised Semantic Frame Induction

3.1 Task Description

The task of supervised semantic frame induction
assumes the existence of frame-annotated data for
a subset of a corpus’s predicates, and it aims to

3Although they called their task semantic frame induction,
we refer to the task as frame identification mainly due to
the fact that their experiments excluded predicates that evoke
unknown frames.
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build a frame induction model that leverages the
annotated data. Clustering-based methods are gen-
erally used for semantic frame induction, and this
is also true for supervised semantic frame induc-
tion, where the annotated data is used to learn the
distance metric for clustering. In this study, the
predicates that are used for training the metric and
for testing do not overlap. Note that, because differ-
ent predicates may evoke the same frame, instances
in the test data include predicates that evoke frames
that are present in the training data.

3.2 Baseline Methods

For the simplest baseline, we use a one-step
clustering-based method with contextualized em-
bedding. The clustering method is group-average
clustering based on the Euclidean distance. We also
leverage the masked word embeddings and two-
step clustering proposed by Yamada et al. (2021a).
Regarding the former, we use a weighted average
embedding (vw+m) of the standard contextualized
embedding of the frame-evoking word (vword) and
the masked word embedding (vmask), which is a
contextualized embedding of the frame-evoking
word replaced by a special token “[MASK].” The
embedding vw+m is defined using a weight param-
eter α as follows:

vw+m = (1− α) · vword + α · vmask. (1)

Two-step clustering performs clustering for each
frame-evoking word with the same lemma,4 and it
performs clustering over different frame-evoking
words in the second step. We use X-means (Pel-
leg and Moore, 2000) for the first step and group-
average clustering based on the Euclidean distance
for the second step. All other settings here are the
same as in Yamada et al. (2021a).

3.3 Fine-tuning by Deep Metric Learning

For supervised semantic frame induction, we fine-
tune contextualized word embedding models by ap-
plying deep metric learning (Kaya and Bilge, 2019;
Musgrave et al., 2020) so that the instances of pred-
icates that evoke the same frame are closer together
and those of predicates that evoke different frames
are further apart. We apply two representative deep
metric learning approaches: a distance-based ap-
proach and a classification-based approach.

4Following Yamada et al. (2021a), we refer to each cluster
generated by clustering in the first step as a pseudo-LU (pLU).

Distance-based Approach This is a classical
deep metric learning approach, and the models typ-
ically use multiple encoders to train the distance
between a pair of instances. In this approach, we
use two losses, a contrastive loss and a triplet loss,
to build frame induction models.

The contrastive loss (Hadsell et al., 2006) is used
to train the distance between a pair of instances
by using a network of two encoders with shared
parameters. Specifically, the model is trained to
keep instances of the same class close together and
instances of different classes separated by a certain
margin. The loss is defined as follows:

Lcont=

{
D (xi,xj) i=j

max (m−D (xi,xj) , 0) i ̸=j
, (2)

where xi denotes an embedding of an instance be-
longing to the i-th class, m denotes a margin, and
D denotes a distance function, which is generally
the squared Euclidean distance.

The triplet loss (Weinberger and Saul, 2009) is
used for training such that, for a triplet of instances,
the distance between the anchor and negative in-
stances, which are from different classes, is more
than a certain margin greater than the distance be-
tween the anchor and positive instances, which are
from the same class. The loss is defined as follows:

Ltri=max (D (xa,xp)−D (xa,xn)+m, 0) , (3)

where xa, xp, and xn denote embeddings of the an-
chor, positive, and negative instances, respectively,
and m and D are the same as in Equation (2).

We create pairs for each instance in the train-
ing set by randomly selecting instances of predi-
cates that evoke the same frame as positives and
instances of predicates that evoke different frames
as negatives. The margin to keep the negatives
away is determined by the development set.

Classification-based Approach This is an ap-
proach that has recently become the standard for
face recognition. It basically uses a network that
has an encoder to obtain instance embeddings and
a linear layer for multiclass classification. This is
superior to the distance-based approach in that it
does not require a sampling algorithm and saves
memory because it uses only a single encoder. The
loss function is based on the softmax loss:

Lsoft = − log
ew

⊤
i xi+bi

∑n
j=1 e

w⊤
j xi+bj

, (4)
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where xi, wi, and bi denote an embedding of the
instance, the linear layer’s weight, and a bias term,
respectively, for the i-th class, and n denotes the
number of classes.

Many losses used in face recognition have been
adjusted by introducing different margins for the
softmax loss (Liu et al., 2017; Wang et al., 2018;
Deng et al., 2019). These losses typically remove
the bias term bi of the softmax loss and transform
the logit as w⊤i xi = ||wi|| · ||xi|| · cos θi, where
θi is the angle between wi and xi. ArcFace (Deng
et al., 2019) has become a popular choice because
of its superior geometric interpretation. It applies
l2 regularization to wi and xi and introduces an
angular margin m and a feature scale s as hyperpa-
rameters to simultaneously enhance the intra-class
compactness and inter-class discrepancy. The Arc-
Face loss is defined as follows:

Larc=− log
es·cos(θi+m)

es·cos(θi+m)+
∑n

j=1,j ̸=i e
s·cos θj . (5)

Zhang et al. (2019) pointed out that the perfor-
mance of these losses depends on the hyperparame-
ters and they observed the behaviors of the angular
margin and the feature scale. As a result, they pro-
posed the hyperparameter-free AdaCos loss, which
removes the margin and applies the scale dynami-
cally. The AdaCos loss is defined as follows:

Lada = − log
es̃·cos θi∑n
j=1 e

s̃·cos θj , (6)

where s̃ denotes the automatically tuned scale.
While the softmax and AdaCos losses do not

require a hyperparameter search, ArcFace requires
hyperparameters for the margin and feature scale.
Here, we explore only the margin because Zhang
et al. (2019) showed that the behavior of the margin
and the scale are similar and the distance-based
approach explores the margin.

4 Experiment

To evaluate the usefulness of fine-tuning with deep
metric learning, we experimented with supervised
semantic frame induction by comparing previous
non-fine-tuned models to various fine-tuned models
ranging from typical to evolved ones. By varying
the number of training instances, we also verified
that our models were effective even for training a
small number of instances.

#Verbs #LUs #Frames #Instances
Set 1 831 1,277 429 28,314
Set 2 831 1,261 415 26,179
Set 3 830 1,280 459 28,117
All 2,492 3,818 642 82,610

Table 2: Statistics of the FrameNet-based dataset used
in three-fold cross-validation.

4.1 Settings

Dataset The dataset in our experiments was cre-
ated by extracting example sentences in which the
frame-evoking word was a verb from the FrameNet
1.7 dataset.5 These example sentences were split
into three sets such that sentences with the same
verb were in the same set. The proportions of poly-
semous verbs were equal. We performed three-fold
cross-validation with the three sets as the training,
development, and test sets. Table 2 lists the dataset
statistics. Note that the verbs, LUs, and instances
did not overlap among the sets, but the frames did
overlap. The training set was used to fine-tune
the contextualized word embeddings. The develop-
ment set was used to determine the criterion for the
number of clusters and the weight α of the embed-
ding vW+M, as well as the margin for the contrastive,
triplet, and ArcFace losses. The range of α was
from 0 to 1 in increments of 0.1, and the candidates
of the margin were 0.1, 0.2, 0.5, and 1.0 for the
contrastive and triplet losses and 0.01, 0.02, 0.05,
and 0.1 for the ArcFace loss.

Comparison Methods We used BERT6 from
Hugging Face (Wolf et al., 2020) to obtain contex-
tualized word embeddings. We compared 12 meth-
ods, which comprised the vanilla model (Vanilla)
and five fine-tuned models (Contrastive, Triplet,
Softmax, ArcFace, AdaCos) with one-step clus-
tering and two-step clustering. All embeddings
were processed with l2 normalization. Regarding
hyperparameters, the batch size was 32, the learn-
ing rate was 1e-5, and the number of epochs for
fine-tuning was five. Also, the feature scale for
ArcFace was 64. The optimization algorithm was
AdamW (Loshchilov and Hutter, 2017).

We compared our methods with the three unsu-
pervised methods used in Subtask-A of SemEval-
2019 Task 2 (QasemiZadeh et al., 2019) in addition
to the method of Yamada et al. (2021a) that cor-

5https://framenet.icsi.berkeley.edu/
6https://huggingface.co/bert-base-uncased
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Clustering Model α #pLU #C PU / IPU / PIF BCP / BCR / BCF
Vanilla 0.00 – 429 53.0 / 57.0 / 54.9 40.8 / 44.6 / 42.6

Contrastive 0.13 – 443 56.9 / 70.0 / 62.8 45.1 / 58.6 / 51.0
One-step clustering Triplet 0.23 – 425 70.0 / 77.0 / 73.3 60.3 / 68.1 / 63.9

(group-average clustering) Softmax 0.23 – 440 65.1 / 78.0 / 71.0 53.3 / 68.6 / 59.9
ArcFace 0.37 – 436 70.3 / 76.2 / 73.1 59.7 / 67.4 / 63.3
AdaCos 0.30 – 446 69.0 / 78.7 / 73.5 57.5 / 69.5 / 62.9
Vanilla 0.67 877 444 60.6 / 74.9 / 66.9 49.7 / 65.8 / 56.5

Two-step clustering
Contrastive 0.23 1904 689 69.2 / 62.5 / 65.7 59.5 / 50.9 / 54.8

(X-means &
Triplet 0.50 1014 454 73.4 / 76.7 / 74.8 64.6 / 68.0 / 66.0

group-average clustering)
Softmax 0.43 1428 919 84.7 / 62.5 / 71.9 78.4 / 50.4 / 61.4
ArcFace 0.47 955 452 70.5 / 76.5 / 73.3 60.8 / 67.7 / 63.8
AdaCos 0.50 1128 656 80.8 / 71.3 / 75.6 73.2 / 60.9 / 66.2

Table 3: Experimental results on semantic frame induction with vanilla and fine-tuned models over three-fold
cross-validation. Each value in the table is the average from three trials. #pLU denote the number of pLUs, and #C
denotes the final number of clusters.

responds to our method with the Vanilla model.7

Regarding those three methods, first, Arefyev et al.
(2019) performed group-average clustering by us-
ing the BERT embedding of a frame-evoking verb
and then split each cluster into two by using TF-
IDF features based on the verb’s substitutes, which
were generated using Hearst-like patterns (Hearst,
1992) with BERT. Second, Anwar et al. (2019)
performed group-average clustering through con-
catenation of the embedding of the frame-evoking
verb and the average embedding of all words in the
sentence as obtained by skip-gram. Third, Ribeiro
et al. (2019) applied graph clustering by Chinese
whispers (Biemann, 2006) with the ELMo embed-
ding of the frame-evoking verb.

Evaluation Metrics For evaluation metrics, we
used the PURITY (PU), the INVERSE PURITY

(IPU), and their harmonic mean, the F-SCORE

(PIF) (Zhao and Karypis, 2001); and the B-CUBED

PRECISION (BCP), the B-CUBED RECALL (BCR),
and their harmonic mean, the F-SCORE (BCF)
(Bagga and Baldwin, 1998). PU is a metric of the
degree to which a cluster is occupied by a single
label, while IPU is a metric of the degree to which a
single label is concentrated in a single cluster. BCP
and BCR evaluate the precision and recall for each
sample, respectively, without associating clusters
and labels. The shared task at SemEval-2019 Task
2 ranked systems according to BCF.

7The SemEval-2019 Task 2 dataset is no longer available,
as described on its official web page; thus, we excluded this
dataset from the experiments.

Method PIF BCF
Arefyev et al. (2019) 65.5 57.4
Anwar et al. (2019) 62.2 52.2
Ribeiro et al. (2019) 58.2 46.8
Yamada et al. (2021a) 66.9 56.5
Ours (one-step & Triplet) 73.9 63.9
Ours (one-step & AdaCos) 73.5 62.9
Ours (two-step & Triplet) 74.8 66.0
Ours (two-step & AdaCos) 75.6 66.2

Table 4: Results of comparison with previous methods.

4.2 Results

Table 3 summarizes the experimental results with
the 12 methods. The fine-tuned models, especially
the Triplet, ArcFace, and AdaCos models, obtained
higher PIF and BCF scores than the Vanilla model
except for the two-step clustering method with the
Contrastive model. The reason why the Contrastive
model performed worse than the other fine-tuned
models could be that the space that represents the
frame does not match the cluster size due to train
the distance according to a fixed margin. Table
4 also lists the comparison results with previous
methods. Our fine-tuning methods achieved higher
PIF and BCF scores than the previous methods.
These results indicate that fine-tuning with deep
metric learning helps to improve the performance
of semantic frame induction.

From Table 3, we can see that the two-step
clustering methods tended to obtain higher overall
scores than the one-step clustering methods. How-
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Clustering Model
PIF BCF

1 / 2 / 5 / 10 / all 1 / 2 / 5 / 10 / all
Vanilla 54.9 / 54.9 / 54.9 / 54.9 / 54.9 42.6 / 42.6 / 42.6 / 42.6 / 42.6

Contrastive 52.0 / 60.3 / 62.6 / 61.7 / 62.8 39.0 / 48.3 / 50.8 / 49.7 / 51.0
One-step clustering Triplet 68.2 / 70.9 / 71.7 / 72.9 / 73.3 57.4 / 60.6 / 61.8 / 63.0 / 63.9

(group-average clustering) Softmax 52.9 / 54.7 / 64.9 / 69.4 / 71.0 39.3 / 41.7 / 52.8 / 57.8 / 59.9
ArcFace 58.1 / 62.5 / 69.2 / 71.9 / 73.1 45.6 / 50.6 / 59.1 / 62.1 / 63.3
AdaCos 57.5 / 59.7 / 66.5 / 70.9 / 73.5 44.7 / 47.1 / 54.6 / 60.0 / 62.9
Vanilla 66.9 / 66.9 / 66.9 / 66.9 / 66.9 56.5 / 56.5 / 56.5 / 56.5 / 56.5

Two-step clustering
Contrastive 68.4 / 66.3 / 67.7 / 67.4 / 65.7 58.4 / 56.0 / 57.7 / 57.1 / 54.8

(X-means &
Triplet 71.7 / 72.5 / 73.9 / 74.0 / 74.8 62.4 / 63.1 / 64.8 / 64.9 / 66.0

group-average clustering)
Softmax 67.6 / 70.1 / 72.6 / 73.0 / 71.9 57.7 / 60.6 / 63.2 / 63.4 / 61.4
ArcFace 66.5 / 66.6 / 69.2 / 72.9 / 73.3 56.1 / 56.4 / 59.5 / 63.2 / 63.8
AdaCos 67.3 / 69.4 / 73.4 / 74.3 / 75.6 57.6 / 59.7 / 64.5 / 65.3 / 66.2

Table 5: Experimental results on semantic frame induction using the vanilla and fine-tuned models over three-fold
cross-validation when varying the maximum number of training instances. Each numeric column lists the number
of instances per LU included in the training set. Each value in the table is the average from three trials.

ever, the difference in BCF scores between the
one-step and two-step clustering methods with the
Vanilla model was 13.9, whereas the difference in
the maximum BCF scores for both clustering meth-
ods with the fine-tuned models was only 2.3. Thus,
for fine-tuning models, one-step clustering is still
a good option in addition to two-step clustering.
Note that one-step clustering is more straightfor-
ward to implement than two-step clustering, but it
requires more computation time8 and CPU mem-
ory to cluster many instances at once. Regarding
the weight α, two-step clustering tended to incor-
porate vmask more than one-step clustering did in
not only the Vanilla model but also the fine-tuned
models. These results suggest that two-step cluster-
ing remains effective in masking a verb’s surface
information even after fine-tuning.

The balance between BCP and BCR in the clus-
tering evaluation metric depends on the final num-
ber of frame clusters, #C in Table 3. In the extreme
case, BCR is 1 if #C is 1, and BCP is 1 if #C is
equal to the number of instances. Hence, among
models with roughly the same BCF, those with a
fewer number of clusters tend to have higher BCR.
For example, as shown in Table 3, #C of Triplet in
two-step clustering is 454, while that of AdaCos
is 656, and we can confirm that Triplet, which has
fewer clusters, obtains higher BCR than AdaCos.

8In our experiments with 16-core Intel Xeon Gold 6134
CPU at 3.20 GHz, the computation times were about 10 min-
utes for one-step clustering and about 5 minutes for two-step
clustering.

4.3 Effect of Number of Training Instances

We found that fine-tuned methods outperformed
previous unsupervised methods when the number
of training instances was around 30,000. How-
ever, the annotation cost of building a resource like
FrameNet is high, so the fewer instances used for
training, the easier it is to build other language re-
sources and apply them to other tasks. Thus, we
experimented with varying the number of training
instances. Specifically, for each LU in the training
set, the maximum number of instances was varied
among 1, 2, 5, 10, and all instances. The result-
ing average numbers of training instances for the
three sets were 1,273, 2,445, 5,680, 10,053, and
27,536, respectively. The numbers of verbs, LUs,
and frames were the same in each setting.

Table 5 lists the PIF and BCF scores for each
method. Because the Vanilla model was not fine-
tuned, its scores are the same in each setting. The
Triplet model achieved high scores even with a
small number of training instances. In the two-step
clustering method with the Triplet model, the score
difference between the cases of “1” and “all” is
only 3.1 for PIF and 3.6 for BCF, even though the
number of training instances is quite different, i.e.,
1,273 vs. 27,536. These results show that even
when a small number of examples is annotated for
each meaning of a verb, this method can be ex-
pected to perform considerably better than unsuper-
vised methods. In contrast, the Softmax, ArcFace,
and AdaCos models obtained scores closer to the
Triplet model in the cases of “5” or “10” but per-
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formed considerably worse with an even smaller
number of training instances. We conclude that the
relatively poor performance of these models with
a small number of training instances was due to
insufficient training of the linear layer’s weights.

5 Analysis of Fine-tuned Embedding

It is not easy to analyze the properties of an em-
bedding in clustering evaluation because the per-
formance depends on the clustering method and
the number of clusters. To better understand the
fine-tuned embeddings, we performed a similarity
ranking evaluation and visualized the embeddings.

5.1 Similarity Ranking Evaluation

We evaluated the models by ranking instances ac-
cording to their embedding similarity. Specifically,
we took one verb instance as a query instance; then,
we computed the cosine similarity of the embed-
dings between the query instance and the remaining
verb instances and evaluated the similarity rank-
ings of the instances in descending order. We used
vw+m with the same weight α that was used for the
one-step clustering in Section 4. We chose recall
as the metric to evaluate the instance distribution.
This metric computes the average matching rate
between true instances, which are instances of the
same frame as the query instance, and predicted in-
stances, which are obtained by extracting the same
number of top-ranked instances as the number of
true instances. For example, Set 1 of Table 2 had
153 instances of the FILLING frame out of 28,314
total instances. When one of these instances was
the query instance, the number of true instances
would be 152. Thus, from the total instances, we
would extract the top 152 instances that were sim-
ilar to the query, and if 114 instances were true
instances, the score would be 114/152 = 0.75.

We performed the similarity ranking evaluation
in three settings with respect to the search space
of the ranked instances: ALL, which included all
instances, SAME, which included only instances
of the same verb as the query, and DIFF, which
included only instances of different verbs as the
query. Table 6 lists the results. The results for
ALL show that all of the fine-tuned models were
improved over the Vanilla model; in particular,
the four fine-tuned models besides the Contrastive
model performed very well, improving by more
than 20. We thus confirmed that instances of the
same frame were trained to be close to each other

Model ALL SAME DIFF

Vanilla 35.9 68.5 17.4
Contrastive 46.6 67.7 28.4

Triplet 60.6 74.2 40.7
Softmax 60.5 73.1 41.4
ArcFace 58.8 75.6 37.4
AdaCos 62.1 74.7 42.8

Table 6: Experimental results of recall for the similar-
ity ranking evaluation over three-fold cross-validation.
ALL, SAME, and DIFF indicate a search space of all
instances, instances of the same verb, and instances of
different verbs, respectively, for the query instance.

Model OVERLAP NON-OVERLAP

Vanilla 33.9 47.3
Contrastive 45.5 52.2

Triplet 59.0 69.0
Softmax 59.7 65.0
ArcFace 57.1 68.4
AdaCos 61.2 67.0

Table 7: Separately aggregated scores for ALL in Table
6 in the OVERLAP and NON-OVERLAP cases.

and instances of different frames are trained to be
distant from each other. Score improvements were
observed for both SAME and DIFF, and as expected,
SAME scored higher than DIFF both before and af-
ter fine-tuning. However, the improvement was
much larger for DIFF than for SAME, suggesting
that the improvement in clustering performance by
fine-tuning was mainly due to the fact that different
verbs evoking the same frame were trained to be
close to each other.

It is important to further examine whether the
improved performance might have resulted only
from the frames included in the training set. That is,
we need to verify that the embedding of an instance
of an untrained frame could be associated with a
correct frame. To investigate this, we aggregated
the scores separately for cases in which the frames
of the query instance were included in the training
set (OVERLAP) and for cases in which they were
not (NON-OVERLAP). Table 7 lists the separately
aggregated results for ALL in Table 6. All of the
fine-tuned models obtained higher scores than the
Vanilla model for not only frames that were in the
training set but also frames that were not. Note
that the scores for NON-OVERLAP were higher
overall than those for OVERLAP. This result may
be counterintuitive, but the reason is that the frames
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Figure 2: 2D t-SNE projections of vword, vw+m, and vmask for the Vanilla, AdaCos, and Triplet models, respectively,
for all instances with Set 1 in Table 2 as the test set. The top 10 semantic frames with the highest numbers of
instances in this set are highlighted.

in the NON-OVERLAP case were only evoked by
a few verbs, making it relatively easy to obtain
higher ranking of instances of the same frame as
the query.

5.2 Embedding Visualization

To intuitively understand the embeddings given by
the Vanilla model and two fine-tuned models, we
visualized them by t-SNE. Figure 2 shows the two-
dimensional t-SNE projection of the contextualized
embeddings of the frame-evoking verbs for all in-
stances when Set 1 in Table 2 is the test set. We
used vword, vw+m, and vmask for the Vanilla, Ada-
Cos, and Triplet models, respectively. The weight
α for vw+m was 0.3, which was the best value for
one-step clustering methods with the Triplet and

AdaCos models in Section 4.9 We highlight the top
ten semantic frames with the highest numbers of
instances in this set.

In the Vanilla model, the instances for vword
tended to be grouped by frame but were not suf-
ficiently grouped into clusters. For example, the
instances of the SELF_MOTION frame were divided
into two large groups, while those of the REMOV-
ING frame were scattered. The instances for vmask
were somewhat more scattered than those for vword.
In addition, vw+m tended to group instances of the
same frame.

In the AdaCos and Triplet models, the instances
for vword were grouped much better for each frame

9For the Vanilla model, α was 0, which was the same as
for vw+m and vword; thus, the results here are for α of 0.3.
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than those for non-fine-tuned vword. The results
also confirmed that instances of frames with simi-
lar meanings, such as the PLACING and FILLING

frames, were both identifiable and close. However,
fine-tuned vword formed many lumps of instances.
This suggests that deep metric learning incorpo-
rates too much of a verb’s surface information. On
the other hand, fine-tuned vmask was somewhat bet-
ter than non-fine-tuned vmask, but not as good as
fine-tuned vword. As deep metric learning may re-
quire the surface information about a verb to be in-
duced, so fine-tuned vmask may not work well. The
instances in fine-tuned vw+m were better grouped
than those for fine-tuned vword, because instances
of the same frame were more grouped.

6 Conclusion

We worked on the supervised semantic frame induc-
tion, and we proposed a model that uses deep met-
ric learning to fine-tune a contextualized embed-
ding model and applied the fine-tuned contextual-
ized embeddings to perform semantic frame induc-
tion. In our experiments, we showed that fine-tuned
BERT models with the triplet, ArcFace, and Ada-
Cos losses are quite promising for semantic frame
induction, as the human intuition in developing se-
mantic frames such as those in FrameNet can be
well captured by deep metric learning. In particular,
the fine-tuned BERT model with the triplet loss per-
formed considerably better than vanilla BERT even
when the number of training instances was small;
accordingly, the fine-tuned model is expected to
have a wide range of applications. We also found
that the one-step clustering can be a good choice
in addition to two-step clustering when performing
fine-tuning.

The ultimate goal of this study is to automati-
cally construct semantic frame knowledge from
large text corpora. This goal requires not only
grouping the verbs according to the frames that they
evoke but also grouping their arguments according
to the frame element roles that they fill. Our pro-
posed fine-tuned contextualized word embedding
with deep metric learning could be effective for
clustering arguments as it is for clustering verbs.
We would like to explore how to achieve this goal.

Limitations

In this study, we only conducted experiments with
English FrameNet, so it is unclear how useful this
method will be for other corpora and multilingual

resources. However, since our method does not
depend on the properties of the specific corpus and
language, it is quite possible that fine-tuning would
improve the scores in other datasets. In addition, as
our method requires supervised data from a seman-
tic frame knowledge resource, some annotation will
be necessary when applying the method to other
languages that lack such a resource.
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A Clustering Results with and without
Linear Completion

Tables 8 and 9 list our experimental results for se-
mantic frame induction when using vword, vw+m,
and vmask in one-step and two-step clustering, re-
spectively. The results show that vw+m tended to
perform better than vword and vmask, thus demon-
straiting the usefulness of linear completion. This
tendency was noticeable for two-step clustering but
more limited for one-step clustering.

Regarding the results for vword and vmask, the
fine-tuning was effective for vword, as the scores
improved considerably, but the effectiveness was
limited for vmask. This was probably because the
embedding of the special token “[MASK],” which
was the source of the contextualized word embed-
ding, was shared by all instances.

B Results for Semantic Frame Induction
on Development Set

Table 10 lists our experimental results for semantic
frame induction on the development set. As with
the test set, the fine-tuned models obtained higher

PIF and BCF scores than the Vanilla model except
for two-step clustering with the Contrastive model.
In particular, the Triplet, ArcFace, and AdaCos
models obtained high scores for both one-step and
two-step clusterings.

C Embedding Visualization of Remaining
Models

In Figure 2, we showed a two-dimensional t-SNE
projection of vword, vw+m, and vmask for the
Vanilla, AdaCos, and Triplet models, respectively.
Figure 3 shows a two-dimensional t-SNE projec-
tion of vword, vw+m, and vmask for the remaining
models not included in Figure 2, namely, the Con-
trastive, Softmax, and ArcFace models, with the
same setting. Figure 3 confirms that the three fine-
tuned models, as well as the two fine-tuned models
shown in Figure 2, are more coherent semantically
than the Vanilla model, and the tendency of vword,
vw+m, and vmask is similar. In addition, for the
Contrastive model, whose performance was rela-
tively poor among the fine-tuning models in Table
3, it was confirmed that the instances were some-
what scattered compared to the Softmax and Ar-
cFace models. For example, the instances of the
BODY_MOVEMENT frame were scattered. This
result confirmed the consistency of scores and vi-
sualization. The results show consistency between
scores and visualization.
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Clustering Model α #pLU #C PU / IPU / PIF BCP / BCR / BCF
Vanilla 0.00 – 429 53.0 / 57.0 / 54.9 40.8 / 44.6 / 42.6

Contrastive 0.00 – 421 55.4 / 69.6 / 61.7 43.7 / 58.2 / 49.9
One-step clustering Triplet 0.00 – 424 69.9 / 76.6 / 73.1 60.3 / 67.7 / 63.7

(group-average clustering) Softmax 0.00 – 433 65.1 / 77.4 / 70.7 53.3 / 67.9 / 59.7
ArcFace 0.00 – 430 69.8 / 75.1 / 72.3 62.7 / 66.1 / 62.7
AdaCos 0.00 – 434 68.2 / 77.6 / 72.6 62.0 / 68.1 / 62.0
Vanilla 0.00 – 429 53.0 / 57.0 / 54.9 40.8 / 44.6 / 42.6

Contrastive 0.13 – 443 56.9 / 70.0 / 62.8 45.1 / 58.6 / 51.0
One-step clustering Triplet 0.23 – 425 70.0 / 77.0 / 73.3 60.3 / 68.1 / 63.9

(group-average clustering) Softmax 0.23 – 440 65.1 / 58.0 / 71.0 53.3 / 68.6 / 59.9
ArcFace 0.37 – 436 70.3 / 76.2 / 73.1 59.7 / 67.4 / 63.3
AdaCos 0.30 – 446 69.0 / 78.7 / 73.5 57.5 / 69.5 / 62.9
Vanilla 1.00 – 430 29.9 / 38.9 / 33.8 18.0 / 24.4 / 20.7

Contrastive 1.00 – 449 26.1 / 40.8 / 31.8 14.3 / 26.2 / 18.4
One-step clustering Triplet 1.00 – 442 35.5 / 47.9 / 40.8 21.0 / 31.8 / 25.2

(group-average clustering) Softmax 1.00 – 447 26.1 / 50.6 / 37.4 15.5 / 35.3 / 21.5
ArcFace 1.00 – 452 35.0 / 46.2 / 40.1 20.9 / 30.6 / 24.8
AdaCos 1.00 – 432 33.7 / 48.0 / 39.1 18.3 / 32.1 / 23.3

Table 8: Results on semantic frame induction from using vword, vw+m, and vmask with in one-step clustering.

Clustering Model α #pLU #C PU / IPU / PIF BCP / BCR / BCF
Vanilla 0.00 880 438 52.5 / 68.2 / 59.3 43.0 / 58.1 / 49.4

Two-step clustering
Contrastive 0.00 2269 720 68.2 / 62.8 / 65.3 58.7 / 50.6 / 54.2

(X-means &
Triplet 0.00 1277 500 73.3 / 71.0 / 71.8 64.8 / 60.8 / 62.2

group-average clustering)
Softmax 0.00 1909 1107 85.1 / 60.0 / 70.3 78.7 / 47.8 / 59.3
ArcFace 0.00 1139 438 70.9 / 73.3 / 72.0 61.2 / 63.8 / 62.4
AdaCos 0.00 1664 897 83.6 / 64.7 / 72.7 76.9 / 53.3 / 62.6
Vanilla 0.67 877 444 60.6 / 74.9 / 66.9 49.7 / 65.8 / 56.5

Two-step clustering
Contrastive 0.23 1904 689 69.2 / 62.5 / 65.7 59.5 / 50.9 / 54.8

(X-means &
Triplet 0.50 1014 454 73.4 / 76.7 / 74.8 64.6 / 68.0 / 66.0

group-average clustering)
Softmax 0.43 1428 919 84.7 / 62.5 / 71.9 78.4 / 50.4 / 61.4
ArcFace 0.47 955 452 70.5 / 76.5 / 73.3 60.8 / 67.7 / 63.8
AdaCos 0.50 1128 656 80.8 / 71.3 / 75.6 73.2 / 60.9 / 66.2
Vanilla 1.00 873 469 59.0 / 72.9 / 65.2 48.8 / 63.6 / 55.1

Two-step clustering
Contrastive 1.00 2050 718 49.3 / 49.2 / 49.2 37.7 / 36.3 / 36.9

(X-means &
Triplet 1.00 930 463 65.2 / 73.9 / 69.0 55.2 / 64.3 / 59.1

group-average clustering)
Softmax 1.00 1573 873 68.6 / 55.3 / 61.2 58.6 / 43.5 / 49.9
ArcFace 1.00 906 467 62.5 / 73.7 / 67.5 52.3 / 64.3 / 57.4
AdaCos 1.00 1113 522 65.4 / 65.5 / 65.2 55.2 / 55.2 / 54.5

Table 9: Results on semantic frame induction from using vword, vw+m, and vmask with two-step clustering.
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Clustering Model α #pLU #C PU / IPU / PIF BCP / BCR / BCF
Vanilla 0.00 – 433 53.1 / 57.1 / 55.0 40.9 / 44.7 / 42.7

Contrastive 0.13 – 433 57.7 / 70.7 / 63.5 45.2 / 59.4 / 51.3
One-step clustering Triplet 0.37 – 433 71.7 / 76.9 / 74.2 62.0 / 67.4 / 64.6

(group-average clustering) Softmax 0.27 – 433 66.4 / 77.6 / 71.5 53.7 / 68.2 / 60.1
ArcFace 0.20 – 433 70.8 / 76.1 / 73.3 60.6 / 67.3 / 63.8
AdaCos 0.37 – 433 69.1 / 78.5 / 73.5 57.2 / 69.3 / 62.7
Vanilla 0.67 877 441 61.3 / 75.9 / 67.7 50.3 / 67.0 / 57.4

Two-step clustering
Contrastive 0.23 1879 736 70.3 / 63.5 / 66.6 60.9 / 51.8 / 55.9

(X-means &
Triplet 0.50 1016 431 74.7 / 78.1 / 76.4 65.7 / 69.6 / 67.6

group-average clustering)
Softmax 0.43 1442 922 84.6 / 63.2 / 72.3 78.1 / 51.0 / 61.7
ArcFace 0.47 966 453 71.5 / 76.9 / 74.0 62.1 / 68.0 / 64.9
AdaCos 0.50 1120 606 79.7 / 73.8 / 76.5 71.7 / 63.7 / 67.3

Table 10: Experimental results for semantic frame induction on the development set.
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Figure 3: 2D t-SNE projections of vword, vw+m, and vmask for the Contrastive, Softmax, and ArcFace models,
respectively, for all instances with Set 1 in Table 2 as the test set. The top 10 semantic frames with the highest
numbers of instances in this set are highlighted.
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Abstract

In task-oriented dialog (ToD) new intents
emerge on regular basis, with a handful of avail-
able utterances at best. This renders effective
Few-Shot Intent Classification (FSIC) a central
challenge for modular ToD systems. Recent
FSIC methods appear to be similar: they use
pretrained language models (PLMs) to encode
utterances and predominantly resort to nearest-
neighbor-based inference. However, they also
differ in major components: they start from
different PLMs, use different encoding archi-
tectures and utterance similarity functions, and
adopt different training regimes. Coupling of
these vital components together with the lack
of informative ablations prevents the identifi-
cation of factors that drive the (reported) FSIC
performance. We propose a unified framework
to evaluate these components along the follow-
ing key dimensions: (1) Encoding architec-
tures: Cross-Encoder vs Bi-Encoders; (2) Simi-
larity function: Parameterized (i.e., trainable)
vs non-parameterized; (3) Training regimes:
Episodic meta-learning vs conventional (i.e.,
non-episodic) training. Our experimental re-
sults on seven FSIC benchmarks reveal three
new important findings. First, the unexplored
combination of cross-encoder architecture and
episodic meta-learning consistently yields the
best FSIC performance. Second, episodic train-
ing substantially outperforms its non-episodic
counterpart. Finally, we show that splitting
episodes into support and query sets has a lim-
ited and inconsistent effect on performance.
Our findings show the importance of ablations
and fair comparisons in FSIC. We publicly re-
lease our code and data1.

1 Introduction

Intent classification deals with assigning one label
from a predefined set of classes or intents to user

∗ Equal contribution.
1https://github.com/UKPLab/

eacl2023-few-shot-intent-classification

utterances. This task is vital for task-oriented dia-
log (ToD) systems since the predicted intent of an
utterance is an essential input to other modules (i.e.,
dialog management) in these systems (Ma et al.,
2022; Louvan and Magnini, 2020; Razumovskaia
et al., 2021). Although intent classification has
been widely studied, it still represents a challenge
in settings where dialogue systems, including their
intent classifiers, need to have the ability to be
quickly adjusted to new domains and intent classes.
The main challenges in training intent classifiers
in such settings lies in the costly labeling of ut-
terances (Zhang et al., 2022a; Wen et al., 2017;
Budzianowski et al., 2018; Rastogi et al., 2020;
Hung et al., 2022; Mueller et al., 2022). Few-shot
intent classification (FSIC), which deals with ad-
justing intent classifiers to new intents given only a
handful of labeled instances, is thus of paramount
importance for ToD systems.

Various methods (§2) for FSIC have been pro-
posed (Larson et al., 2019a; Casanueva et al.,
2020a; Zhang et al., 2020; Mehri et al., 2020; Krone
et al., 2020; Casanueva et al., 2020b; Nguyen et al.,
2020; Zhang et al., 2021; Dopierre et al., 2021;
Vulić et al., 2021; Zhang et al., 2022b). These
methods are generally similar in that they utilize
pretrained language models (PLMs) to encode ut-
terances and resort to k nearest neighbors (kNN)
inference: the label of a new instance is deter-
mined based on the labels of instances with which
it has the highest representational similarity, as
encoded by the PLM. Despite these general similar-
ities, FSIC methods differ in design choices across
several crucial dimensions, including encoding ar-
chitectures, utterance similarity scoring, and train-
ing regimes. These methods tie together what are,
in principle, independent design decisions across
these dimensions, hindering ablations and insights
into what drives the (reported) FSIC performance.

In this work, we (1) induce a framework (PLM-
based utterance encoding, utterance similarity scor-
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ing, and nearest-neighbor-based inference) that uni-
fies most of existing FSIC approaches (§3); and
(2) focus on three key design decisions within this
framework: (1) model architecture for encoding ut-
terances (or utterance pairs), where we contrast the
less frequently adopted Cross-Encoder architecture
(e.g., (Vulić et al., 2021)) against the more com-
mon Bi-Encoder architecture2 (Zhang et al., 2020;
Krone et al., 2020; Zhang et al., 2021); (2) simi-
larity function for scoring utterance pairs based on
their joint or separate representations, contrasting
the parameterized (i.e., trainable) neural scoring
components against cosine similarity as the simple
non-parameterized scoring function; and (3) train-
ing regimes, comparing the standard non-episodic
training (adopted, e.g., by Zhang et al. (2021)
or Vulić et al. (2021)) against the episodic meta-
learning training (implemented, e.g., by Nguyen
et al. (2020) or Krone et al. (2020)). Our frame-
work lets us evaluate impacts of these three di-
mensions for different text encoders (e.g., BERT
(Devlin et al., 2019) as a vanilla PLM and SimCSE
(Gao et al., 2021) as the state-of-the-art sentence
encoder) under the same evaluation setup (datasets,
intent splits, evaluation protocols and measures)
while controlling for confounding factors that im-
pede direct comparison between the FSIC methods.

Our extensive experimental results on seven in-
tent classification datasets reveal three new im-
portant findings. First, a Cross-Encoder coupled
with episodic training, a previously unexplored
FSIC combination, consistently yields best perfor-
mance across all the datasets. Second, episodic
meta-learning yields robust FSIC classifiers across
the board: our results demonstrate that it is much
more effective for FSIC than the conventional non-
episodic training. Finally, although episodic meta-
learning entails splitting utterances of an episode
into a support and query set during training, we
show, for the first time, that this does not generally
have a positive effect on the FSIC performance.

In sum, our comparative evaluation over vari-
ous design choices for key components of modern
FSIC approaches raise the awareness about the im-
portance of ablations and apple-to-apple compari-
son between complex FSIC systems that conflate
several key design decisions. We hope that our find-
ings pave the way for more deliberation in research
(and in particular evaluation) for this crucial ToD
task.

2Also known as Dual Encoder or Siamese Network.

2 Related Work

We focus on few-shot intent classification (FSIC)
methods, which perform class inference for ut-
terances based on the labels of nearest neighbor
(kNN), either directly in the representation space
of the PLM or according to a trained scorer of ut-
terance pairs. We first describe the existing FSIC
inference paradigms and explain why we focus on
kNN-based methods. We then categorize the litera-
ture on FSIC approaches based on kNN-inference
along the three key design dimensions.

Inference algorithms for FSIC. Classical meth-
ods (Xu and Sarikaya, 2013; Meng and Huang,
2018; Wang et al., 2019; Gupta et al., 2019) for
FSIC use the maximum likelihood inference, where
a vector representation of an utterance is projected
by the classifier into a probability distribution over
the intent classes. Training such probability distri-
bution functions, in particular when they are mod-
eled by neural networks, mostly requires a large
number of utterances annotated with intent labels,
which are infamously expensive to collect in sce-
narios where new intents emerge on regular basis.
By relying on pretrained language models, more
recent FSIC methods leverage the language com-
petences they posses (i.e., encode) to alleviate the
need for learning to produce probability distribu-
tions for a large number intent classes, commonly
with a few instances. These recent FSIC meth-
ods (Krone et al., 2020; Casanueva et al., 2020b;
Nguyen et al., 2020; Zhang et al., 2021; Dopierre
et al., 2021; Vulić et al., 2021; Zhang et al., 2022b)
instead exploit the similarities between utterance
embeddings in the representation space of the (fine-
tuned) PLM and infer the intents for new utterances
from the labels of nearest neighbors (kNN-based).
Since kNN-based methods in general report state-
of-the-art performance for FSIC, our comparative
empirical evaluation focuses on the design choices
for models that adopt this inference algorithm.

Model architectures for encoding utterance
pairs. A central design decision within the kNN-
based FSIC framework is the choice of the model
architecture for encoding utterances. The majority
of the approaches (Zhang et al., 2020; Krone et al.,
2020; Zhang et al., 2021; Xia et al., 2021) lever-
age the Bi-Encoder architecture (Bromley et al.,
1993; Reimers and Gurevych, 2019a; Zhang et al.,
2022a). The core idea of Bi-Encoders is that, given
a collection of utterances, each utterance is inde-
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pendently encoded by the PLM and mapped into a
dense representation space. In such a space, sim-
ilarities between pairs of utterances can be com-
puted, with a parameterized (i.e., trainable) scoring
function or a non-parameterized function such as
dot product or cosine similarity. In contrast, some
FSIC methods (Vulić et al., 2021; Zhang et al.,
2020; Wang et al., 2021; Zhang et al., 2021) use
the Cross-Encoder architecture, in which the two
utterances are concatenated and encoded jointly by
a pretrained text encoder, e.g., BERT (Devlin et al.,
2019). The idea is to represent a pair of utterances
together using a PLM, where each utterance be-
comes a context for the other. A Cross-Encoder
thus does not produce an embedding for a single
utterance but for a pair of utterances. In general, Bi-
Encoders are more computationally efficient than
Cross-Encoders because of the Bi-Encoder’s ability
to cache the representations of the candidates. In
return, Cross-Encoders, by allowing tokens of one
utterance to attend over the tokens of the other (and
vice versa), capture better the semantic associations
between utterances.

Similarity scoring function. A crucial compo-
nent in nearest neighbor-based methods for FSIC
is the function that produces a similarity score for
a pair of utterances. Concerning this dimension
of analysis, we categorize FSIC methods into two
groups: (1) FSIC approaches that use parameter-
ized (i.e., trainable) neural layers to estimate the
similarity score between utterances (Zhou et al.,
2022; Zhang et al., 2020; Xia et al., 2021); and
(2) methods that rely on non-parameterized simi-
larity metrics such as dot product, cosine similarity,
and Euclidean distance (Sauer et al., 2022; Zhang
et al., 2022a; Krone et al., 2020; Vulić et al., 2021;
Zhang et al., 2022b; Xu et al., 2021; Zhang et al.,
2021). Note that the Bi-Encoder architecture can
be coupled with both, whereas the Cross-Encoder
requires a parametrized scoring module.

Training strategy. To simulate FSIC, the best
practice is to split an intent classification corpus
into two disjoint sets of intent classes. In this way,
one set includes high-resource intents for training
of an FSIC classifier, and the other set includes low-
resource intents for evaluating the classifier. Con-
cerning the training strategy on the high-resource
intents, FSIC methods can be divided into two clus-
ters. One cluster of methods adopts meta-learning
or episodic training (Zhang et al., 2022a; Nguyen

et al., 2020; Krone et al., 2020). Under this train-
ing regime, the goal is to train a meta-learner that
could be used to quickly adapt to any few-shot
intent classification task with very few labeled ex-
amples. To do so, the set of high-resource intents
are split to construct many episodes, where each
episode is a few-shot intent classification task for
a small number of intents. The other cluster in-
cludes methods (Zhang et al., 2021; Vulić et al.,
2021; Xu et al., 2021; Xia et al., 2021; Zhang et al.,
2020, 2021) that use conventional supervised (i.e.,
non-episodic) training. The non-episodic training
simply fine-tunes the FSIC model using all samples
from the high-resource intents of the training set.

3 Framework

We first unify formulations of the components we
need for our framework. We then present their
alternative configurations along our three central
dimensions of comparison: (i) model architecture
for encoding utterance pairs, (ii) functions for simi-
larity scoring, and (iii) training regimes.

3.1 Nearest Neighbors Inference

Following previous work on FSIC (Zhang et al.,
2020; Vulić et al., 2021), we cast the FSIC task
as a sentence similarity task in which each intent
is an implicit semantic class, captured by the rep-
resentations of all the utterances associated with
that intent. The task is then to find the most simi-
lar labeled utterances for the given query. During
inference, the FSIC approach should deal with an
N -way k-shot intent classification, where N is the
number of intents and k is the number of labeled
utterances given for each intent label.

Let q be a query utterance and C = {c1, ..., cn}
be a set of its labeled neighbors. The nearest neigh-
bor inference relies on a similarity function, non-
parameterized or trainable (which is learned on
high-resource intents), to estimate the similarity
score si between q and any ci. The query’s label ŷq
is inferred as the ground-truth label of the neighbor
with the maximum similarity score (i.e., k = 1 in k-
NN inference): ŷ = yk, k = argmax({s1, ..., sn}).

3.2 Model Architectures for Encoding
Utterance Pairs

An encoder in an FSIC model represents a pair of a
query and a neighbor (i.e., a labeled utterance) into
vector h(q,ci) ∈ Rd. We formulate recently used
encoders: Bi-Encoder and Cross-Encoder.
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Bi-Encoder (BE). BE encodes a pair of utter-
ances independently, deriving independent repre-
sentations of the query and the neighbor utterance.
In particular, for each utterance x in a pair, we pass,
“[CLS] x”, to a BERT-like PLM and use the repre-
sentation of “[CLS]” to represent x. Worth noting
that the parameters of the PLM are shared in BE.

Cross-Encoder (CE). Different from BE, CE en-
codes a pair of query q and neighbor ci jointly.
We concatenate q with each of its neighbors
to form a set of query–neighbor pairs P =
{(q, c1), ..., (q, cn)}. We then pass each pair from
P as a sequence of tokens to a language model,
which is pre-trained to represent the semantic rela-
tion between utterances. More formally, we feed a
pair of utterances, “[CLS] q [SEP] ci”, to a BERT-
like PLM and then use the representation of the
“[CLS]” token as the representation of the pair.

3.3 Similarity Scoring Function

Given the pair representation, we compute the sim-
ilarity between a query and a neighbor utterance by
a parameterized or non-parameterized function.

PArameterized (PA). A neural-based parametric
scoring function consists of a fully connected feed-
forward network (FF) that transforms a pair repre-
sentation into a score, si = σ

(
W1×dh(q,ci) + b

)
,

where the weight W and bias b are trainable pa-
rameters, d is the size of the vector h(q,ci), and σ(.)
denotes the sigmoid activation function.

Non-Parameterized (NP). In contrast to PA, NP
often uses vector-based similarity metrics as scor-
ing functions, e.g., cosine similarity or Euclidean
distance. Following Vulić et al. (2021), in this work
we adopt the cosine similarity between hq and hci .

3.4 Model Configurations

Given the aforementioned components, we illus-
trate (Figure 1) three possible model configurations:
(i) CE+PA; (ii) BE+PA, and (iii) BE+NP.

CE +PA. In this configuration, we feed the joint
encoding of the utterance pair to a parameterized
similarity scoring function. We note again, due to
a single representation vector for both utterances,
CE cannot be coupled with a non-parameterized
scoring (NP).

BE +PA. In this configuration, we represent the
pair by concatenating the representations of each ut-

ci q

PLM

FF

si

ci

PLM

q

PLM

FF

si

ci

PLM

q

PLM

⊙

si

CE +PA BE +PA BE +NP

Figure 1: A demonstration of possible model configura-
tions of encoder architectures and similarity functions
to estimate the similarity score si between a query q and
neighbor ci. CE and BE show Cross-Encoder and Bi-
Encoder architectures using a BERT-like PLM, respec-
tively. PA and NP show parametric and non-parametric
similarity functions, respectively. PA is modeled by
feedforward (FF) layers and NP by the dot product ⊙.

terance with the vectors of difference and element-
wise product between those representations:

h(q,ci) =(hq ⊕ hci ⊕ |hq − hci | ⊕ hq ⊙ hci), (1)

where⊕ is the concatenation operation and⊙ is the
dot product. We motivate Equation 1 by the find-
ings reported in Reimers and Gurevych (2019b).
Similar to CE +PA, we use the sigmoid activation
function on top of the feed-forward layer. The size
of W is then 1× 4d.

BE +NP. We use cosine similarity to estimate
the similarity between input utterances during pre-
diction. During training, we compute the dot prod-
uct between the query and each neighbor represen-
tation vector to directly estimate their similarity
scores si = σ (hq ⊙ hci), where ⊙ indicates the
dot product, and σ is the sigmoid function. We
apply σ to scale si to a value between 0 and 1.

3.5 Training Regimes

To train the aforementioned model configurations,
we formulate three training techniques as follows
(Figure 2): Non-Episodic Training (NE), Episodic
Training (EP) and Episodic Training with Support
and Query splits (EPSQ). The training strategies
rely on an identical loss function for each query.

Loss per query sample. We use the loss function
defined by Zhang et al. (2020) for FSIC. In particu-
lar, we define a ground-truth binary vector yq for a
query q given a set of neighbors C = {c1, ..., cn}.
If the query and its i-th neighbor belong to the
same intent class, the corresponding label for the
pair is yq,i = 1, otherwise yq,i = 0. Given such
ground-truth label vector in consideration of the n
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NE

...
...EP

E1

EM

...
...EPSQ

E1

EM

support query

Figure 2: A illustration of training techniques, i.e., Non-
episodic (NE), episodic (EP) and episodic with a support
and query split (EPSQ). Each cell shows an utterance in
a dataset. Each color depicts an intent class. Each row
shows labeled utterances with an identical intent. In NE,
the training instances are used all together and the loss
is the average loss for each sample (white cell) when
the other samples are neighbors. In EP, the training
instances are divided into M episodes (E) and the loss
is computed similar to NE for each episode. In EPSQ,
each episode is split into fixed sets of of support and
query instances, and the loss is computed for only the
samples in the query set.

neighbors, yq = [yq,t|t = 1, ..., n] and similarity
scores estimated by a model configuration for all
pairs sq = [sq,t|t = 1, ..., n], we compute the bi-
nary cross-entropy loss for the query q as follows:

lq(yq, sq|C) =

− 1

n

n∑

t=1

[yq,t log(sq,t) + (1− yq,t) log(1− sq,t)] .

(2)

NE. For the NE training, the classifier learns the
semantic relation between all high-resource intent
classes altogether. Let D represent a batch of utter-
ances for high-resource intent classes. Therefore,
we take each utterance in D as a query q and pre-
dict its label concerning the rest of the utterances
as neighbors. More formally, we estimate the loss
for the NE training as follows:

L =
1

|D|
∑

q∈D
lq|D−q(yq, sq), (3)

where lq is the loss defined in Equation 2 between
ground truth label vector yq and a vector of scores
sq estimated by a model configuration.

EP. An episode is a set of utterances for several
intent classes. An episode formulates an N -way
intent classification task, where N is the number of
intent classes in the episode. The core idea behind
meta-learning is to learn from a large set of high-
resource intent classes by chunking the set into
many episodes (Lee et al., 2022). These episodes
are known as training episodes (a.k.a meta-training
episodes). If set I denotes the intent labels of a
benchmark corpus, any N randomly selected in-
tents from I can be used to construct a training
episode. Let’s refer to these selected intents for
episode E by IE . Then, episode E contains ut-
terances whose intent labels are in IE . It is worth
noting that intent classes in training episodes may
overlap to let a classifier learn the semantic rela-
tions between all intent labels of the benchmark.
In EP, we construct M episodes from the set of
utterances for high-resource intent classes D. We
define the following loss function:

L =
1

M

M∑

i=1

1

|Ei|
∑

q∈Ei

lq|Ei
(yq, sq), (4)

where Ei is the ith episode, yq is the ground-truth
labels for the query given neighbors in the episode
Ei, and sq is the similarity scores between the
query and any neighbor in the episode.

EPSQ. The common practice in meta-learning is
to imitate the few-shot setup, an episode is split into
two disjoint sets: a support and a query set (Lee
et al., 2022). An episode’s support set includes
only a few utterances from each intent class in IE .
An episode’s query set includes the rest of the ut-
terances in the episode. A classifier should classify
utterances in the query set using the utterances and
intent labels in the support set. Given the kNN ter-
minology, the support set is the set of neighbors and
the query set is a set of query utterances. Therefore,
the main difference between EPSQ and EP is that
the number of neighbors in EPSQ is limited to only
a few examples of each intent in the support set.
The loss function in EPSQ is defined as follows:

L =
1

M

M∑

i=1

1

|Qi|
∑

q∈Qi

lq|Si
(yq, sq), (5)

where Qi is the query set and Si is the support set
of the ith episode.
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Dataset #Classes #Episodes
Train Valid Test Train Valid Test

Balanced N -way k-shot

Clinc (150) 50 50 50 10k 10k 600
Banking (77) 25 25 27 10k 10k 600
Liu (54) 18 18 18 10k 10k 600
Hwu (64) 23 16.4 24.6 10k 10k 600

Imbalanced Support Sets

ATIS (19) 5 7 7 1,372 213 119
SNIPS (7) 4 - 3 240 - 210
TOP (18) 7 5 6 10,095 1,286 292

Table 1: The examined datasets and their main statistics.
The numbers in parenthesis show the total number of
intent classes for each dataset. For HWU64, each split’s
number of classes varies at each run to ensure there is
no cross-split domain, hence the decimal number.

4 Experiments

We conduct our experiments in two different se-
tups: (i) balabced N -way k-shot and (ii) imbal-
anced classes in the support sets. The former refers
to the typical few-shot learning setup, where the
numbers of classes and examples per class are bal-
anced. In contrast, the imbalanced setup randomly
defines the numbers of classes and examples, im-
itating the imbalance nature of some benchmarks
for intent classification. While arguably some ut-
terances can be annotated to transform imbalanced
episodes into balanced ones, imbalanced few-shot
learning is still a huge practical challenge for var-
ious expensive domains, e.g., those that require
experts for annotation (Krone et al., 2020).

Datasets, splits, and episodes. Table 1 summa-
rizes the main statistics (e.g., the number of classes
per data split for each datasets) of the datasets
and their splits as we use in our experiments.
For the balanced N -way k-shot setup, we use
Clinc (Larson et al., 2019b), Banking (Casanueva
et al., 2020b), and Hwu (Liu et al., 2021) from Di-
aloGLUE (Mehri et al., 2020) as well as Liu (Liu
et al., 2021). For the sake of fair comparisons,
we use the exact splits and episodes as used by
Dopierre et al. (2021) for FSIC. For 5 folds, we
randomly split intents of each dataset into three
sets to construct training, valid and test episodes.
We then generate 5-way k-shot episodes for each
split in each fold, where k ∈ {1, 5}. For the imbal-
anced setup, we use ATIS (Hemphill et al., 1990),
SNIPS (Coucke et al., 2018), and TOP (Gupta et al.,
2018). We follow Krone et al. (2020) to construct
episodes for these datasets.

Settings. We use BERT-based-uncased and
SimCSE as PLMs. We fine-tune them using the
AdamW optimizer (Loshchilov and Hutter, 2019)
with a learning rate of 2e− 5. Both batch size and
maximum sequence length are set to 64. See the
Appendix for the full list of hyperparameters. For
experiments on each fold of balanced datasets, we
train a FSIC classifier for a maximum of 10,000
5-way K-shots episodes. We evaluate the classifier
on the validation set after every 100 updates, and
stop the training if validation performance does not
improve over 5 consecutive evaluation steps. To
alleviate the impact of random selection of few-
shot samples, we report the average performance
of a classifier for 600 test episodes, compatible
with Dopierre et al. (2021). For the experiments
on the imbalanced datasets, similar to Krone et al.
(2020), we conduct the experiments over 1 fold due
to the limited number of intents. The average num-
ber of shots per intent used in episodes of ATIS,
SNIPS, and TOP is about 4, 5, and 4, respectively
(see Appendix for details). For both N -way k-shot
and imbalanced setups, the number of examples in
query sets is identical for all intents in the query
sets. So, for all experiments we report the accuracy
metric averaged over all runs and folds.

Models in comparison. Alongside the results of
the model configurations (§3), we report the re-
sults of the following FSIC methods to put our
results in context. Random assigns a random in-
tent class from the support set to each query utter-
ance. BE (fixed)+NP represents a generic config-
uration employed by the majority of PLM-based
FSIC baselines, e.g., ConvBERT (Mehri and Eric,
2021), TOD-BERT (Wu et al., 2020), and DNNC-
BERT (Zhang et al., 2020), inter alia. These meth-
ods use pretrained BERT and further fine-tune
on other NLP tasks (e.g., NLI) or other dialogue
datasets. ProtoNet (Dopierre et al., 2021) is in-
spired by prototypical network method (Snell et al.,
2017), which has been shown to achieve the state-
of-the-art accuracy among meta-learning methods
for few-shot learning tasks including FSIC (Krone
et al., 2020). This method is not based on instance-
level similarity. It encodes an intent class by a
prototype vector, which is the mean of vector rep-
resentations of a few utterances given for the intent.
In any given episode, the prototype vector is com-
puted for each intent. The probabilities of intents
are then estimated based on the distances between
a query vector and respective prototypes.
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1-shot 5-shot
Clinc Banking Liu Hwu Avg Clinc Banking Liu Hwu Avg

Random 20.17 20.17 20.17 20.17 20.17 19.71 19.71 19.71 19.71 19.71
BE (fixed)+NP 30.88 27.75 30.83 29.49 29.74 48.57 38.01 45.79 41.15 43.38
ProtoNet 94.29 82.20 80.06 74.37 82.73 98.10 91.57 89.62 86.48 91.44

CE +PA
NE 58.45 48.88 48.98 50.12 51.61 66.93 64.46 55.83 59.35 61.64
EP 93.60 79.46 77.36 72.13 80.64 98.26 92.38 88.33 84.43 90.85
EPSQ 94.65 79.82 78.13 72.64 81.31 98.49 92.15 88.18 84.59 90.85

BE +PA
NE 79.48 60.26 59.15 52.04 62.73 88.04 70.28 70.49 60.47 72.32
EP 82.66 66.43 59.76 50.53 64.85 92.87 77.99 70.60 61.18 75.66
EPSQ 83.26 66.53 60.41 51.40 65.40 92.51 78.59 70.82 64.13 76.51

BE +NP
NE 58.04 45.24 53.18 42.57 49.76 78.10 68.57 61.52 54.86 65.76
EP 67.58 52.85 52.39 41.73 53.64 76.28 67.69 63.33 51.37 64.67
EPSQ 67.80 53.83 53.17 40.96 53.94 81.31 64.58 65.32 50.41 65.41

Table 2: BERT-based results for the balanced 5-way k-shot setup, k ∈ {1, 5}.

5 Results and Discussion

We compare the the configurations described in
(§3) and baselines (§4) for balanced and imbal-
anced FSIC setups using BERT, as the most widely
used pretrained language model, and SimCSE, the
state-of-the-art model for encoding the meaning of
sentences. Our main experimental findings are as
follows

• The Cross-Encoder architecture with parame-
terized similarity function and episodic train-
ing consistently yields the best FSIC accuracy.

• Episodic training yields more robust FSIC
classifiers than non-episodic training for most
of the examined setups and datasets.

• Splitting episode utterances into support and
query (sub)sets, a commonly adopted practice
in episodic training, does not give consistent
performance gains.

5.1 Balanced FSIC
Table 2 shows accuracy of the examined FSIC ap-
proaches under comparison – based on BERT as
PLM – in 1-shot and 5-shots settings. All model
configurations consistently outperform the “BE
(fixed)+NP” baseline. This demonstrates that fine-
tuning BERT’s parameters for intent classification
using high-resource intent classes is paramount for
generalization to unseen intents.

For both 1-shot and 5-shots, CE +PA trained with
either of the two episodic training regimes (EP and
EPSQ, without and with support-query splitting,
respectively), achieves a higher accuracy (29% on

average) than when trained in non-episodic fash-
ion (NE), reaching, on average, the performance
of ProtoNet as the state-of-art FSIC method. Both
episodic training regimes are more effective than
the non-episodic training across the board, not just
in combination with the CE architecture. BE +PA
trained via EP achieves about 2% higher accuracy
for 1-shot and 3% for 5-shots than when trained
with NE. For BE +NP, episodic learning (EP) re-
sults in 3.8% higher accuracy than NE for 1-shot.
The only exception to this trend is BE +NP with
5-shot where EP trails NE by 1%.

EPSQ tends to exhibit a similar average accuracy
as EP (less than 1% difference for average across all
CE +PA, BE +PA, and BE +NP setups). This leads
a conclusion that splitting utterances of an episode
into a support and a query set – a common prac-
tices in episodic (FSIC) learning (Dopierre et al.,
2021; Krone et al., 2020) – does not really have a
pronounced (positive) effect on performance. So, it
does not seem to increase the capability to general-
ize to unseen intent classes, as has been commonly
believed but until now, to the best of our knowledge,
empirically untested.

As expected, more shots (5-shots vs 1-shot) lead
to consistently better FSIC accuracy: BE +NP
trained with NE performs 16% better (and the other
FSIC about 10% better on average). This makes
intuitive sense: more shots help classifiers better
refine the boundaries between the new intents.

Given that utterances in task-oriented dialogue
systems are short texts, we next investigate how
intermediate training for sentence representations
(Phang et al., 2018; Reimers and Gurevych, 2019a;
Gao et al., 2021) changes the performance of FSIC
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1-shot 5-shot
Clinc Banking Liu Hwu Avg Clinic Banking Liu Hwu Avg

BE (fixed) +NP 91.33 75.48 78.75 74.58 80.03 97.89 90.33 89.61 86.93 91.19

CE +PA
NE 60.51 54.87 49.99 46.41 52.95 78.33 72.71 68.66 67.99 71.92
EP 94.33 83.64 79.24 77.03 83.56 98.80 94.22 90.13 88.54 92.92
EPSQ 95.01 83.83 79.40 77.49 83.93 98.77 94.04 90.10 88.40 92.83

BE +PA
NE 90.69 76.21 68.76 66.05 75.43 96.71 88.12 80.76 79.26 86.21
EP 90.93 76.81 71.32 65.72 76.19 96.74 88.18 83.83 80.64 87.35
EPSQ 90.95 76.43 71.33 65.71 76.11 96.83 87.95 84.10 80.90 87.45

BE +NP
NE 93.69 81.60 79.51 75.54 82.58 98.08 91.56 89.61 87.82 91.77
EP 93.24 80.15 79.82 76.49 82.43 98.01 91.91 89.77 87.62 91.83
EPSQ 93.44 80.46 80.21 76.68 82.70 98.02 91.95 89.83 87.65 91.86

Table 3: SimCSE-based results for the balanced 5-way k-shot setup, k ∈ {1, 5}.

ATIS SNIPS TOP Avg

Random 21.34 33.70 23.99 26.34
BE (fixed) + NP 53.80 51.62 33.03 46.15

CE + PA
NE 62.86 65.03 49.41 59.10
EP 79.71 93.94 68.04 80.56
EPSQ 71.58 92.98 62.84 75.80

BE + PA
NE 42.91 80.22 53.48 58.87
EP 69.52 60.54 51.46 60.51
EPSQ 66.44 62.21 56.05 61.57

BE + NP
NE 65.86 77.92 45.52 63.10
EP 65.09 79.16 47.85 64.03
EPSQ 55.67 80.08 42.97 59.57

Table 4: Results for the imbalanced setup using BERT.

models. To this end, we substitute BERT with
SimCSE. Table 3 shows the results. Our three
main findings hold for SimCSE-based FSIC mod-
els too. Importantly, unlike with BERT, now only
CE +NP trained episodically outperforms the “BE
(fixed)+NP” baseline (where PLM is not fine-tuned
for intent detection). This confirms the effective-
ness of coupling CE and episodic training for FSIC.
It also indicates that intent detection fine-tuning is
well-aligned with learning sentence representations,
which is why it generally brings lower gains (or
no gains) over “BE (fixed) + NP”, when we start
from SimCSE, pretrained exactly for encoding the
meaning of sentences.

5.2 Imbalanced FSIC

Table 4 shows the results on the three imbalanced
datasets. CE +PA with EP again substantially out-
performs all its counterparts, confirming this never-
investigated FSIC configuration as a very effective
approach for the FSIC task. On average, episodic

training (EP) again outperforms non-episodic (NE)
training. The CE + PA and BE + NP configurations
generally yield higher performance when trained
without splitting the support utterances from query
utterances (EP vs EPSQ). This questions the com-
mon belief in episodic meta-learning that splitting
episodes into support and query sets is (always)
beneficial. Overall, the findings from the imbal-
anced datasets align well with the main findings
from central experiments on balanced datasets, as
reported in Table 2 and Table 3.

6 Conclusions

We shed light on factors that contribute to perfor-
mance of models for few-shot intent classification
(FSIC), a crucial task in modular dialogue systems.
We categorize FSIC approaches across three es-
sential dimensions: (1) the Cross-Encoder vs. Bi-
Encoder encoder architectures; (2) the parameter-
ized (i.e., trainable) vs non-parameterized utterance
similarity scoring; and (3) episodic vs non-episodic
training. Our extensive evaluation, encompassing
seven standard FSIC datasets, reveals that the pre-
viously unexplored combination of Cross-Encoder
architecture (with parameterized utterance simi-
larity scoring) and episodic training consistently
yields the best FSIC performance. We addition-
ally find that (i) episodic meta-learning generally
outperforms the non-episodic training and (ii) that
the widely adopted hypothesis in meta-learning
that splitting episodes into support and query sets
helps generalization and boost performance may
not hold for FSIC. We hope that our findings lead
to more deliberation on FSIC evaluation protocols
and more insightful “apple-to-apple” comparisons
between competing models and model variants.
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Limitations and Ethical Concerns.

In this paper, we shed light to few-shot intent clas-
sification tasks in modular (task-oriented) dialogue
systems. Dialog systems, given their direct interac-
tion with human users, must be devoid of any nega-
tive stereotypes and must not exhibit any behaviour
that could be potentially harmful to humans. That
said, our work does not address the generation com-
ponent of dialog systems, but merely the intent
classification. As such, we do not believe it raises
any ethical concerns.

The main limitation of the work – conditioned
primarily by the available computational resources
– is the scope of our empirical comparison: we fo-
cus on FSIC methods that subscribe to pairwise
similarity scoring of utterances and nearest neigh-
bours inference. While this subsumes much of the
best performing approaches in the literature, there
is a fair body of recent work that does not fall in
this group. Another limitation of the work is the
monolingual focus on English only. We intend to
extend our work to cross-lingual transfer to other
languages, for which fewer labeled intent classifi-
cation datasets exist.
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Matthew Henderson, and Ivan Vulić. 2020a. Efficient
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Ivan Vulić, Pei-Hao Su, Samuel Coope, Daniela
Gerz, Paweł Budzianowski, Iñigo Casanueva, Nikola
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Abstract

We present a novel iterative extraction model,
ITERX, for extracting complex relations, or
templates, i.e., #-tuples representing a map-
ping from named slots to spans of text within
a document. Documents may feature zero or
more instances of a template of any given type,
and the task of template extraction entails iden-
tifying the templates in a document and ex-
tracting each template’s slot values. Our imita-
tion learning approach casts the problem as a
Markov decision process (MDP), and relieves
the need to use predefined template orders to
train an extractor. It leads to state-of-the-art
results on two established benchmarks – 4-ary
relation extraction on SCIREX and template
extraction on MUC-4 – as well as a strong
baseline on the new BETTER Granular task.1

1 Introduction

A variety of tasks in information extraction (IE)
require synthesizing information across multiple
sentences, up to the length of an entire document.
The centrality of document-level reasoning to IE
has been underscored by an intense research fo-
cus in recent years on problems such as argument
linking (Ebner et al., 2020; Li et al., 2021, i.a.),
#-ary relation extraction (Quirk and Poon, 2017;
Yao et al., 2019; Jain et al., 2020, i.a.), and — our
primary focus — template extraction (Du et al.,
2021b; Huang et al., 2021, i.a.).

Construed broadly, template extraction is general
enough to subsume certain other document-level
extraction tasks, including #-ary relation extrac-
tion. Motivated by this consideration, we propose
to treat these problems under a unified framework
of generalized template extraction (§2).2 Figure 1
shows 4-ary relations from the SCIREX dataset
(Jain et al., 2020), presented as simple templates.

1 Code available at github.com/wanmok/iterx.
2 We encourage the reader to consult Appendix A for a

discussion of some important differences between generalized
template extraction and traditional event extraction.

In this paper, we propose a 
Multi-sentiment-resource 
Enhanced Attention Network 
(MEAN)…
Despite the remarkable progress 
made by the previous work, we 
argue that   sentiment analysis 
still remains a challenge…
Movie Review (MR) and 
Stanford Sentiment Treebank 
(SST) are used to evaluate our 
model…
We adopt classification 
accuracy as the evaluation 
metric.

Template 1
Task
Method
Dataset
Metric

sentiment analysis
MEAN

Movie Review
accuracy

Template 2
Task
Method
Dataset
Metric

sentiment analysis
MEAN

SST
accuracy

!

Figure 1: An example of multi-template extraction on
a document (an NLP paper; Lei et al. (2018)) from the
SCIREX dataset. An agent reads the entire paper and
iteratively generates templates, each consisting of slots
for Task, Method, Dataset, and Metric.

Since documents typically describe multiple
complex events and relations, template extraction
systems must be capable of predicting multiple
templates per document. Existing approaches such
as Du et al. (2021b) and Huang et al. (2021) rely
on a linearization strategy to force models to learn
to predict templates in a pre-defined order. In gen-
eral, however, such orderings are arbitrary. Others
have instead focused on the simplified problem of
role-filler entity extraction (REE), which entails ex-
tracting all slot-filling entities but does not involve
mapping them to individual templates (Patwardhan
and Riloff, 2009; Du et al., 2021a, i.a.).

We present a new model for generalized template
extraction, ITERX, that iteratively extracts multiple
templates from a document without requiring a
pre-defined linearization scheme. We formulate
the problem as a Markov decision process (MDP,
§2), where an action corresponds to the generation
of a single template (§3.2), and states are sets of
predicted templates (§3.3). Our system is trained
via imitation learning, where the agent imitates a
dynamic oracle drawn from an expert policy (§3.4).
Our contributions can be summarized as follows:
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Col. Isaacs said that the 
guerrillas attacked the “La 
Eminencia” farm located near 
the “Santo Tomas” farm, where 
they burned the   facilities and 
stole foodŏ
He also reported that the 
guerrillas killed a peasant in the 
city of Flores, in the northern El 
Petén department, and burned 
a   tank truck.

Template 1
PerpetratorIndiv.
PrepetratorOrg.
PhysicalTarget
Weapon
Victim

Type: Arson ̴��
guerrillas

-
facilities

-
-

Template 2
PerpetratorIndiv.
PrepetratorOrg.
PhysicalTarget
Weapon
Victim

Type: Arson
guerrillas

-
tank truck

-
-

In   early September, illegal border crossings 
by   two people infected with   COVID-19, 
triggered a week-long   lockdown of another 
Yunnan border city,   Ruili, and prompted       
at least eight prefectures and   25 counties to 
enter “wartime status.” Following the incident, 
Yunnan vowed to strengthen border patrols.

Twenty people have been   sentenced to prison 
in Southwest China's Yunnan Province for 
crimes relating to illegal immigration from 
Myanmar to   China during the   COVID-19 
pandemic, Yunnan's high people's court 
reported on September 28.

Template 1
NPI-Events

Disease
InfectedCount
OutbreakEvent
Where

Type: Epidemic ̴��
lockdown

enter “wartime status”
COVID-19

two people
pandemic

Ruili
at least eight prefectures

25 counties

Template 2
Origin
Destination
Ouctome
TotalDisplacedCount
When
OverTime

Type: Displacement ̴��
Myanmar

China
sentenced to prison

twenty people
-

TRUE

Figure 2: Template examples from MUC-4 (left) and BETTER Granular (right) datasets. Event triggers (e.g.
burned above) are not annotated in MUC-4 and are highlighted here only for clarity.

• We show that generalized template extraction can
be treated as a Markov decision process, and that
imitation learning can be effectively used to train
a model to learn this process without making
explicit assumptions about template orderings.

• We demonstrate state-of-the-art results with
ITERX on two established benchmarks for com-
plex relation extraction: 4-ary relation extraction
on SCIREX and template extraction on MUC-4.

• We introduce strong baselines for the recently
introduced English BETTER Granular template
extraction task.

2 Problem Formulation

We propose to treat both classic template extrac-
tion and #-ary relation extraction under a uni-
fied framework of generalized template extraction.
Given a document ⇡ = (F1, · · · ,F# ) where each
F8 is a token, we assume that some system (or
model component) generates a set of candidate
mention spans X = {G1, · · · , G" }, where each
G8 = ⇡ [;8 : A8] 2 X is contiguous with left and
right span boundary indices ;8 and A8 .

We define a template ontology as a set of tem-
plate types T , where each type C 2 T is associated
with a set of slot types (C . A template instance is
defined as a pair (C, {(B: : -:), · · · }) where C 2 T
is a template type, B: 2 (C is a slot type associated
with C, and -: ✓ X is a subset of all mention spans
extracted from the document that fills slot type B:
(-: = ú indicates that slot B: has no filler).3 Tak-
ing Figure 2 (left) as an example, Template 1 has
type C = Arson and slots {PerpretratorIndiv :
{“guerrillas”}, PhysicalTarget : {“facilities”}}.

We reduce the problem of extracting a single
template to the problem of assigning a slot type to
each extracted span G8 2 X , where some spans may

3 In this work, we use template as an abbreviation for
template instance, relying on the type vs. instance usage only
when necessary for clarity.

be assigned a special null type (Y), indicating that
they fill no slot in the current template. Given this
formulation, we can equivalently specify a template
instance as (C, 0) where 0 is an assignment of spans
to slot types: {G8 : B8}B8 2(C . We denote the union of
all slot types across all template types, along with
the empty slot type Y, as S = {Y} [

[
C 2T (C .

With these definitions in hand, the problem of
generalized template extraction can be stated suc-
cinctly: Given a template ontology T , a docu-
ment ⇡, and a set of candidate mentions X ex-
tracted from ⇡, generate a set of template instances
{(C1, 01), · · · , (C , 0 )}, where C8 2 T .

As an MDP We treat generalized template extrac-
tion as a Markov decision process (MDP), where
each step of the process generates one whole tem-
plate instance. For simplicity, we consider the prob-
lem of extracting templates of a specific type C 2 T ;
extracting all templates then simply requires iterat-
ing over T , where |T | is typically very small. This
MDP (2A,A, ⇢ , ') comprises the following:4

• 2A: the set of states. In our case, this is the set
of all template generation histories. Each state
� ✓ A is a set of generated templates;

• A: the set of actions or assignments: an action
is the generation of a single template (an assign-
ment of slot types to spans);

• ⇢ : the environment that dictates state transitions.
Here, each transition simply adds a generated
template to the set of all templates generated for
the document: ⇢ (�, 0) = � [ {0};

• '(�, 0): the reward from action 0 under the cur-
rent state �.

These components are detailed in the following
section. Figure 3 shows ITERX in action: the MDP

4 Our notation is consistent with prior NLP work that uses
MDPs, e.g., Levenshtein Transformers (Gu et al., 2019).
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Figure 3: The basic iteration step of ITERX (left box), and an unrolled version on SCIREX 4-ary relation extraction
(extraction of templates in the form {Task, Method, Dataset, Metric}) executed on the NLP paper Bidirectional
Attention Flow for Machine Comprehension (Seo et al., 2017). Span embeddings (X(0) ) are passed as input to the
first step, where the model extracts the template {Task: Machine comprehension, Question answering; Method:
BiDAF; Dataset: SQuAD; Metric: Exact match}. This information is propagated via our memory mechanism to
the second step, and informs prediction of the next template: {Task: Machine comprehension; Method: BiDAF;
Dataset: CNN/DailyMail; Metric: Accuracy}. The third step assigns the null slot type Y to all spans, indicating
that the model is unable to find any further templates, thus stopping the generation process.

produces two templates sequentially, terminating
on a null assignment to all input spans in X .

3 Model

Our ITERX model is a parameterized agent that
makes decisions under the MDP above: condi-
tioned on an input document ⇡, spans X extracted
from ⇡, and a specific template type C, ITERX gen-
erates a single template of type C at each step. The
model consists of two parameterized components:

• Policy 0: A policy c(0 | C,X) that generates a
distribution over potential assignments of spans
to slots in the current template of type C;

• State transition model 3: An autoregressive
state encoder that maps a state (i.e., a set of
predicted templates) � to a continuous represen-
tation X via a state transition model g, where
X(:+1) = g(X(:) , 0:). Here the state represen-
tation X = (x1, · · · , x" ) comprises of a vector
x8 2 R3 for each span G8 .

ITERX generates a sequence of templates: It starts
with initial state X(0) (see Figure 3 for a running
example) comprising only span representations de-
rived from the encoder (as no templates have been
predicted) and ends when no new template is gener-
ated (§3.5). ITERX is trained via imitation learning,

aiming to imitate an expert policy c⇤ derived from
reference templates.

3.1 Span Extraction and Representation

ITERX takes spans as input and thus relies on
a span proposal component to obtain candidate
spans.5 For all experiments, we use the neural CRF-
based span finder employed for FrameNet parsing
in Xia et al. (2021) and for the BETTER Abstract
task in Yarmohammadi et al. (2021).6 CRF-based
span finders have been empirically shown to excel
at IE tasks (Gu et al., 2022).

The input document is first embedded using
a pretrained Transformer encoder (Devlin et al.,
2019; Raffel et al., 2020) that is fine-tuned during
model training.7 Each span G = ⇡ [; : A] extracted
by the span extractor is encoded as a vector xenc,
which is obtained by first concatenating three vec-
tors of dimension 3: the embeddings of the first
and the last tokens in the span, and a weighted sum

5 Although many systems since Lee et al. (2017) that re-
quire spans as input have trained span proposal modules end-
to-end, we found this to be unnecessary to obtain strong results
and leave this extension for future work.

6 The code of the span finder can be found at
github.com/hiaoxui/span-finder. We refer the reader
to these papers for further details.

7 Different encoders are used in §4 for fair comparison
with prior work. For documents exceeding maximum length
#max = 1024, tokens are encoded in chunks of size #max.
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of the embeddings of all tokens within the span, us-
ing a learned global query (Lee et al., 2017). This
33-dimensional vector is then compressed to size
3 using a two-layer feedforward network. Lastly,
to incorporate positional information, we add sinu-
soidal positional embeddings based on the token-
level offset of ; within the document to yield xenc.

3.2 Policy: Generating a Single Template
A policy c generates a single template given span
states X = (x1, · · · , x=) and template type C 2 T ,
conditioned on the document and all of its candi-
date mention spans.

Since an action 0 represents a set of slot type
assignments for all candidate mentions, the policy
c(0 | C,X) can be factorized as

c(0 | C,X) =
Y

(G:B)20
%(B |C, x) . (1)

Thus we only need to model the slot type distribu-
tion for each candidate span. Here, we employ two
models described below.

Independent Modeling We train a classifier that
outputs a slot type (or Y) given both the template
type embedding t and the slot type embedding s,
inspired by a standard practice in binary relation
extraction (Ebner et al., 2020; Lin et al., 2020, i.a.).
It computes the probability with a two-layer feed-
forward network (FFN), with slots not associated
with the template type (i.e., B 8 (C [ {Y}) assigned
0 probability:

%ind(B |C, x) / 1B2(C[{Y }·exp(sT·FFN( [t; x])) (2)

where [· ; ·] denotes vector concatenation.

Joint Modeling Following Chen et al. (2020),
we create a model that jointly considers all candi-
date spans given the template type. We begin by
prepending t to the sequence of span states X to
yield the sequence (t, x1, · · · , x=). This sequence
is fed to a different Transformer encoder, which
naturally models interactions both between spans
and between a span and the template type via self-
attention (Vaswani et al., 2017):

(t̂, x̂1, · · ·, x̂" ) = Transformer(t, x1, · · ·, x" ) (3)

We emphasize that the inputs to the Transformer
are embeddings of spans (see §3.1) and not tokens,
following Chen et al. (2019, 2020).8 For each x8,

8 Positional embeddings are not needed in this Transformer
since sinusoidal embeddings are already added to the span
representations.

we pass the representation x̂8 output by the Trans-
former to a linear layer with output size |S |, the
total number of slot types. A softmax activation is
then applied over all slot types B that are valid for C
(i.e., B 2 (C [ {Y}), with invalid types masked out,
yielding the following distribution:

%joint(B |C, x) / 1B2(C[{Y } · exp(sTx̂) (4)

3.3 State Transition Model
A state transition model models the environment
⇢ (�, 0). Recall that a state transition just consists
in the generation of a single template, where the
current state � is the set of all templates that have
been generated up to the current step.

Here, we propose a neural model that produces
a representation of �. Specifically, we model � as
a sequence of vectors Xmem(�) 2 R"⇥3 — one
3-dimensional state vector for each of the " can-
didate spans G 2 X . Each state vector xmem 2 R3
acts as a span memory, tracking the use of that span
across generated templates. We model state tran-
sitions using a single gated recurrent unit (GRU;
Cho et al., 2014). Given the current template as-
signment (G : B) 2 0 of a slot type B to a span G,
the state transition for �0 = � [ {0} is given as
follows:

x0
mem =

(
GRU(xmem, [s ; t̂]) if B < Y;
xmem if B = Y.

(5)

where t̂ is a template embedding given by t̂ = t
when using the independent policy model given
in Equation 2 and given by Equation 3 when us-
ing the joint model. Intuitively, t̂ is a summarized
vector of the current template, akin to the role of
the [CLS] token employed in BERT (Devlin et al.,
2019). Here, we use a concatenation of the slot
type embedding s and the template vector t̂ as the
input to the state transition GRU to track the use of
the span.

The input representation of a span G at each step
is simply x = xenc+xmem — the sum of the original
span embeddings xenc described in §3.1 and the
current memory vector xmem.

3.4 Policy Learning
We use direct policy learning (DPL), a type of im-
itation learning, to train our model. DPL entails
training an agent to imitate the behavior of an in-
teractive demonstrator as given by optimal actions
0⇤ drawn from some expert policy c⇤, a proposal

1861



distribution over actions. This expert policy is com-
puted dynamically based on the current state of the
agent, as we describe below. For this reason, the
interactive demonstrator is sometimes referred to
as a dynamic oracle (Goldberg and Nivre, 2012).

The log-likelihood of the oracle action under the
ITERX policy model is the reward. This ensures
that the learning problem can be optimized directly
using gradient descent, where the objective is given
by the expected reward:

E0⇤⇠c⇤
�⇠3 c̃

"
1X
:=0

W: log c(0⇤ |C,X(�))
#

(6)

Here, W is a discount factor, c̃ is the mixed policy,
and states are repeatedly sampled from their in-
duced state distribution 3 c̃ . The mixed policy c̃ is
a mixture of the expert policy and the agent’s policy
(Ross et al., 2011). Sampling from c̃ can thus be
described as first sampling some D 2 {0, 1}, then
sampling from the agent’s parameterized policy c
if D = 1, or sampling an action from the dynamic
oracle c⇤ if D = 0:

D ⇠ Bernoulli(U);
0̂ ⇠ Dc + (1 � D)c⇤. (7)

Here U, the agent roll-out rate, or the agent policy
mixing rate, is a hyperparameter that controls the
probability of the agent following its own policy
vs. the dynamic oracle.

This process resembles scheduled sampling
(Bengio et al., 2015), a technique commonly em-
ployed in training models for sequence generation
tasks like machine translation: when updating de-
coder hidden states, either the gold token H⇤ or the
predicted token Ĥ may be used, and the decision
is made via a random draw. Here, the difference
is that we are generating templates at each step
instead of tokens.

Expert Policy We construct an expert policy
based on the agent’s policy. At training time, given
the set of gold templates �⇤ and the current state �
(all templates predicted thus far), the set �̄ = �⇤\�
contains all gold templates not yet predicted. Our
expert policy is formulated as

c⇤(0 | C,X) /
(
4log c (0 |C ,X)/V if 0 2 �̄

0 if 0 8 �̄
(8)

where V is a temperature parameter. Intuitively,
our expert policy seeks to “please” the agent: a

(viable) action’s probability under the expert policy
is proportional to the probability under the agent’s
policy. Temperature V controls concentration: V !
0+ reduces it to a point distribution over a single
action and V ! 1 results in equal probability
assigned to all remaining gold templates.

3.5 Inference

Although many search algorithms for sequence pre-
diction can be employed (e.g. beam search, A*),
we find greedy decoding to be effective, and leave
further exploration for future work. Setting the ini-
tial state �(0) = ú, we take actions (i.e., generate
templates) by greedy decoding 0̂ = arg max0 c(0 |
C,X) for every step. Decoding stops when all spans
are assigned the null slot type Y in 0̂.

4 Experiments

We evaluate ITERX on three datasets: SCIREX
(Jain et al., 2020), MUC-4 (Grishman and Sund-
heim, 1996), and BETTER Phase II English Granu-
lar.9 SCIREX is a challenge dataset for 4-ary rela-
tion extraction10 on full academic articles related to
machine learning. MUC-4 and Granular are both
traditional template extraction tasks, though they
differ in important respects, which we discuss in
Appendix C. For summary statistics, see Table 1.

SCIREX MUC-4 Granular

Train Dev Test Train Dev Test Train Dev Test

# documents 306 66 66 1,300 200 200 302 34 32
# templates 1,627 251 271 1,114 191 209 610 57 47

# temp. types 1 6 6
# slot types 4 5 92 + 4†

Table 1: Summary statistics of the datasets. † indicates
slot types that take non-span values as fillers.

4.1 Baselines

GTT (Du et al., 2021b) To our knowledge, this
is the only prior work to have attempted full tem-
plate extraction in recent years, and it is thus our
primary baseline for comparison on MUC-4.11

GTT first prepends the document text with the valid
template types, then passes the result to a BERT

9 https://ir.nist.gov/better.
10 SCIREX also contains a binary relation extraction task,

but the binary relation is a subrelation of the 4-ary relation,
and thus is subsumed by the more difficult task.

11 We were unfortunately unable to obtain reasonable per-
formance with GTT on SCIREX, and so do not compare
ITERX and GTT on this task.
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encoder. A Transformer decoder (whose parame-
ters are shared with the encoder) then generates a
linearized sequence of template instances.

TEMPGEN (Huang et al., 2021) This is the cur-
rent state-of-the-art system for REE (the simpli-
fied slot-filling entity extraction task) on MUC-4.
On SCIREX, TEMPGEN may output multiple rela-
tion instances, but only one canonical mention as
the filler for each role in the relation. On MUC-
4, TEMPGEN outputs a single aggregate template
per document, but allows multiple spans to fill a
template slot. We make minimal modifications to
the TEMPGEN source code to support multi-filler,
multi-template prediction on both datasets, allow-
ing for direct comparison to ITERX and GTT on
full template extraction.

4.2 Metrics
The standard metric for template extraction and
REE on MUC-4 is CEAF-REE, proposed in Du
et al. (2021a) and then used in Du et al. (2021b)
and Huang et al. (2021).12 CEAF-REE is based on
the CEAF metric (Luo, 2005) for coreference res-
olution, that computes an alignment between gold
and predicted entities that maximizes a measure of
similarity q between aligned entities (e.g. CEAFq4

in coreference resolution). This alignment is sub-
ject to the constraint that each reference entity is
aligned to at most one predicted entity.

The CEAF-REE implementation (henceforth,
CEAF-REEimpl) employed in Du et al. (2021a,b)
and Huang et al. (2021) unfortunately departs from
the stated metric definition (CEAF-REEdef) in two
ways: (1) it eliminates the constraint on entity align-
ments and (2) it treats the template type as an ad-
ditional slot when reporting cross-slot averages.
For maximally transparent comparisons to prior
work, we report scores under both CEAF-REEdef
and CEAF-REEimpl, obtaining state-of-the-art re-
sults on MUC-4 with each.

However, we argue that neither CEAF-REEdef
nor CEAF-REEimpl is consistent with historical
evaluation of template extraction systems. CEAF-
REEdef errs in enforcing the entity alignment con-
straint: doing so effectively requires systems to
perform coreference resolution, which is too strict
and runs contrary to the original MUC-4 evaluation.

12 The standard metrics for template extraction may be
unfamiliar to IE researchers more accustomed to sentence-
level event extraction. Accordingly, we thoroughly motivate
and describe all template extraction metrics we use in this work
in Appendix D. What follows is a more abridged discussion.

By contrast, CEAF-REEimpl also errs in treating the
template type as just another slot: this elides the im-
portant distinction between the kind of event being
described and the participants in that event (§6).

In the interest of clarity, we define a modified
version of the CEAF-REE metric that avoids both
pitfalls: it relaxes the entity alignment constraint
and it does not include template type in cross-slot
averages. We call this version CEAF-RME, where
“M” stands for mention and emphasizes the focus
on mention-level rather than entity-level (“E”) scor-
ing. Intuitively, relaxing this constraint amounts
to placing the burden of coreference resolution on
the metric: if the scorer aligns two predicted men-
tions to the same reference entity, the mentions are
implicitly deemed coreferent. See Figure 4 for a
comparison among these variants.13

For SCIREX, we report CEAF-REEdef and
CEAF-RME. For BETTER Granular, we use its
official metrics, described in Appendix D.

Template type as additional slot?

REEimpl

REEdef

RME

Entity alignm
ent

Relaxed
Strict

YesNo

Figure 4: A comparison of the metrics discussed.

4.3 Results

SCIREX For TEMPGEN, we report models
trained with BARTbase and BARTlarge, where only
BARTbase was used in Huang et al. (2021). While
BART is an encoder-decoder architecture, ITERX
uses only the encoder part, and thus requires about
half the pretrained parameters that TEMPGEN

does.14 Even with far fewer parameters, ITERX
outperforms the BARTlarge baseline by a wide mar-
gin. Moreover, our best performing model under
T5enc

large (Raffel et al., 2020) achieves roughly 2⇥ the
performance of TEMPGEN15 (see Table 2).

MUC-4 Under the most comparable setting,
ITERX outperforms GTT under all metrics by 1–
2%, both using BERTbase (Table 2). With T5enc

large,
ITERX obtains even better performance, with most

13 See github.com/wanmok/iterx for implementations.
14 We add the superscript “enc” to pretrained models to de-

note the use of the encoder only (decoder discarded): T5enc
large.

15 Replacing BART with T5 in TEMPGEN would have man-
dated destructive modifications to the pretrained architecture,
and we therefore do not report results under this setting.
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Model (Encoder) SCIREX MUC-4

CEAF-REEdef CEAF-RME CEAF-REEdef CEAF-REEimpl CEAF-RME

P R F1 P R F1 P R F1 P R F1 P R F1

TEMPGEN (BARTbase) 8.7 5.0 6.4 8.6 8.2 8.4 54.2 15.8 24.5 55.7 40.0 46.4 58.3 31.0 40.5
TEMPGEN (BARTlarge) 19.9 5.0 8.0 8.9 22.3 12.7 55.8 18.9 28.3 63.7 37.4 47.2 61.3 32.9 42.8
GTT (BERTbase) - - - - - - 54.7 23.0 32.3 61.7 42.4 50.2 55.0 36.8 44.1

ITERX (BERTbase) 16.2 7.6 10.4 16.2 17.4 16.8 41.3 27.9 33.3 52.3 51.1 51.7 47.2 45.0 46.1
ITERX (BARTenc

base) 15.0 15.0 15.0 14.3 35.4 20.3 39.2 24.8 30.4 49.8 45.7 47.6 44.8 40.1 42.3
ITERX (T5enc

large) 26.4 12.4 16.9 25.0 40.6 31.0 53.5 26.2 35.2 60.9 46.9 53.0 55.8 42.4 48.2

Table 2: Results on SCIREX and MUC-4.

gains coming from increased precision.16 Further-
more, we note a consistent gap of > 5% F1 between
CEAF-RME and CEAF-REEimpl, which we sus-
pect is due to CEAF-REEimpl’s inclusion of scores
for template type into the aggregated slot F1: as
template type scores are higher across models than
slot type scores, they are liable to inflate the aggre-
gate score.

BETTER Granular We report scores on the
English-only Phase II BETTER Granular task us-
ing the official BETTER scoring metric in Table 3.
Given the complexity of the Granular task, the ac-
companying difficulty of developing models to per-
form it, and the lack of existing work on Granular,
we report scores only for ITERX under T5enc

large. We
intend these to serve as a solid baseline against
which future work may be measured.

Template Slot Combined

P R F1 P R F1

89.7 74.5 81.4 41.0 33.5 36.9 30.0

Table 3: Results on the BETTER Granular dataset. Com-
bined score is Template F1 ⇥ Slot F1.

5 Analysis

We next conduct ablations to examine how specific
aspects of ITERX’s design affect learning. Here,
we focus on SCIREX as a case study, as it has
the highest average templates per document of the
three datasets, allowing us to best investigate the
behavior of ITERX over long action sequences.

Recall that the dynamic oracle specifies an expert
policy c⇤ (Equation 8) from which expert actions
0⇤ are drawn. One design decision concerns the
agent roll-out rate, U, which controls how often we

16 For GTT, we directly use the output files included in the
codebase of Du et al. (2021b). However, we were unsuccessful
in adapting their codebase ourselves to make use of T5.

draw from the expert policy vs. the agent policy
when making updates. Another decision concerns
how entropic this policy distribution should be, con-
trolled by the temperature V. Both decisions reflect
a trade-off between exploration and exploitation in
the space of action sequences.

Agent Roll-out Rate " We show how model
performance changes as we increase the agent roll-
out rate U 2 [0, 1] in Figure 5, where U = 0 to
always following the expert policy, and U = 1 cor-
responds to always updating based on the agent’s
own policy. The model performs poorly under low
U, but improves quickly as U increases, reaching
a plateau past U � 0.5. The results are intuitive,
as relying more on the expert (lower U) for learn-
ing would result in a fixed and deterministic set
of states that may hinder the agent from visiting
new states, which are often encountered at test time.
With higher U, the agent’s behavior is more consis-
tent between train and test time.

13
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Figure 5: Performance changes on CEAF-REEdef with
respect to U, for which higher means higher probability
of rolling out agent’s policy for state update.

Temperature # We compare the following four
settings for sampling from c⇤, keeping U = 0 to
control for effects of policy mixing:

• FIXED: Select the next template in the document
based on the order as is given in the dataset. In
this case, V does not come into play. This set-
ting corresponds to the standard practice of using
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fixed template linearizations (Du et al., 2021b;
Huang et al., 2021).

• V ! 0+ (ARGMAX): Select the template
that maximizes the likelihood with the system-
predicted distributions over slots.

• V = 1 (XENT): Sample a template according
to the distribution defined by the cross entropy
between references and predictions.

• V ! 1 (UNIFORM): Sample a template uni-
formly from the correct template set.

Test set performance for each setting is shown
in Table 4. The results for CEAF-RME show a
trade-off in precision and recall corresponding to
the exploitation-exploration trade-off induced by
V, with the higher V (more exploration) of XENT

and UNIFORM, yielding higher recall. The trend
for CEAF-REE is similar, though less pronounced.

Approach CEAF-REEdef CEAF-RME

P R F1 P R F1

FIXED 28.7 7.3 11.7 29.9 29.9 29.9

ARGMAX 26.4 6.9 11.0 29.4 30.2 29.8
XENT 28.7 10.7 15.6 27.8 32.3 29.9
UNIFORM 29.1 11.3 16.3 27.6 32.0 29.7

Table 4: Results with different choices of temperature.

Interestingly, while CEAF-RME F1 scores are
consistent across settings, CEAF-REE F1 scores
are higher under higher temperature settings. To
the extent that the more entropic settings conduce
to higher template and mention recall, we would ex-
pect these settings to yield more partial-credit tem-
plate alignments than non-random settings, which
tend to focus on correct prediction of fewer tem-
plates — thus potentially missing templates entirely
and receiving no partial credit.

6 Related Work

Template Extraction The term template extrac-
tion was originally proposed in the Message Un-
derstanding Conferences (MUC; Sundheim, 1991,
i.a.) to describe the task of extracting templates
from articles. Researchers later focused more heav-
ily on sentence-level IE, especially after the release
of the ACE 2005 dataset (Walker et al., 2006). But
following renewed interest in document-level IE,
researchers (Du et al., 2021b; Huang et al., 2021;
Gantt et al., 2022, i.a.) have begun to revisit MUC

and to develop new template extraction datasets
(notably, BETTER Granular).

Traditionally, template extraction comprises two
sub-tasks: template identification, in which a sys-
tem identifies and types all templates in a docu-
ment, and slot filling or role-filler entity extraction
(REE), in which the slots associated with each tem-
plate are filled with extracted entities. Much recent
work in this domain has turned away from the full
task, focusing only on REE, which is tantamount to
assuming that there is just a single aggregate tem-
plate per document (Patwardhan and Riloff, 2009;
Huang and Riloff, 2011, 2012; Du et al., 2021a;
Huang et al., 2021).

Document-Level Relation Extraction Along-
side template extraction, there has been consider-
able recent interest within IE in various challeng-
ing document-level relation extraction objectives,
beyond the longstanding and dominant focus on
coreference resolution. Argument linking — a gen-
eralization of semantic role labeling (SRL; Gildea
and Jurafsky, 2002) in which a predicate’s extra-
sentential arguments must also be labeled — is
one notable example, and has attracted recent at-
tention through the RAMS (Ebner et al., 2020) and
WikiEvents (Li et al., 2021) benchmarks.17 Prior
benchmarks on this task include SemEval 2010
Task 10 (Ruppenhofer et al., 2010), Beyond Nom-
bank (Gerber and Chai, 2010), ONV5 (Moor et al.,
2013), and Multi-sentence AMR (O’Gorman et al.,
2018). A separate line of work has concentrated on
general N-ary relation extraction challenge tasks,
in which entities participating in the same relation
may be scattered widely throughout a document.
Beyond SCIREX, PubMed (Quirk and Poon, 2017;
Peng et al., 2017) and DocRED (Yao et al., 2019)
are two other prominent benchmarks in this area.

Imitation Learning Our approach casts the prob-
lem of generalized template extraction as a Markov
decision process. SEARN (Daumé III et al., 2009)
and other related work (Ross et al., 2011; Venka-
traman et al., 2015; Chang et al., 2015, i.a.) have
considered structured prediction under a reinforce-
ment learning setting. Notably, in dependency pars-
ing, Goldberg and Nivre (2012) proposed the use
of a dynamic oracle to guide an agent toward the
correct parse (see §3.4).

17 Argument linking also goes by the names event argument
extraction and implicit semantic role labeling, though these
terms are not precisely equivalent.
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We also employ direct policy learning for opti-
mization of the template extraction MDP, thus re-
ducing the problem to one of supervised sequence
learning that is amenable to gradient descent. Such
treatment is reminiscent of other similar techniques
in NLP. Scheduled sampling (Bengio et al., 2015),
for instance, trains a sequence generator with an ex-
pert policy consisting of a mixture of the predicted
token and the gold token. Relatedly, Levenshtein
Transformers (Gu et al., 2019) learn to edit a se-
quence by imitating an expert policy based on the
Levenshtein edit distance.

7 Conclusion

We have presented ITERX, a new model for gener-
alized template extraction that iteratively generates
templates via a Markov decision process. ITERX
demonstrates state-of-the-art performance on two
benchmarks in this domain — 4-ary relation ex-
traction on SCIREX and template extraction on
MUC-4 — and establishes a strong baseline on a
third benchmark, BETTER Granular. In our exper-
iments, we have also shown that imitation learn-
ing is a viable paradigm for these problems. We
hope that our findings encourage future work to
confront the challenge of dealing with documents
that describe multiple complex events and relations
head-on, rather than veiling this difficulty behind
simplified task formulations.

8 Limitations

Although we believe our iterative extraction
paradigm to be promising, we acknowledge that
this work is not without limitations. First, ITERX
features a significant number of hyperparameters.
We found that these generally required some effort
to tune for specific datasets, and that there was no
single configuration that was uniformly the best
across domains. We showed the impact of ma-
nipulating some of these hyperparameters in §5.
Second, our ITERX implementation iterates over
all template types in the template ontology during
training and inference, which means that runtime
grows linearly in the number of template types.
While our framework could in principle support
template type prediction as well (which would re-
duce this to $ (1)), it does not do so in practice,
and hence runtime may be long for large ontolo-
gies. However, we again stress that actual template
ontologies tend to be small.
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A Terminology

Information Extraction is rife with vague and com-
peting terms for similar concepts, and we recognize
some hazard in introducing generalized template
extraction (GTE) into this landscape. To head off
possible confusion, we highlight two important
differences between this problem and the well es-
tablished problem of event extraction (EE).

First, EE requires identifying lexical event trig-
gers, whereas GTE does not, as template instances
do not necessarily have one specific lexical anchor.
A document describing a terrorist attack may only
explicitly describe a series of bombings, and a doc-
ument describing an epidemic may only explicitly
state that thousands of people have contracted a
particular disease. This property holds of all three
datasets we focus on, and can be seen in both Fig-
ure 1 and Figure 2. Template anchors are not anno-
tated either for MUC-4 or for SCIREX. And while
they are annotated for BETTER Granular, they do
not factor into scoring. This contrasts with major
EE datasets, such as ACE or PropBank, for which
typed lexical triggers must be extracted.

Second, we take GTE to be a fundamentally
document-level task: templates concern events de-
scribed over an entire document. In practice, EE

has historically referred to extraction of predicate-
argument structures within a single sentence. One
could conceivably argue that this usage has begun
to change with the recent interest in argument link-
ing datasets like RAMS (Ebner et al., 2020) and
WikiEvents (Li et al., 2021), in which arguments
may appear in different sentences from the one
containing their predicate. Even so, these cross-
sentence arguments are still arguments of a partic-
ular predicate, in a particular sentence. Moreover,
the overwhelming majority of arguments in these
datasets are sentence-local (Ebner et al., 2020). As
emphasized above, templates are not necessarily
anchored to particular lexical items. For this rea-
son, they also do not necessarily exhibit the level
of locality one finds in EE.

These differences are what motivate the use of
CEAF-REE as an evaluation metric, in contrast to
the precision, recall, and F1 scores for events and
arguments that are typically reported for EE. In
brief, it simply is not possible to compute these for
GTE in the same way as they are computed for EE.
We elaborate on this point in Appendix D.

B Model Training and Hyperparameters

We implemented our models in PyTorch (Paszke
et al., 2019) and AllenNLP (Gardner et al., 2018).
We trained all our models with a single NVIDIA
RTX6000 GPU. For all experiments that reproduce
prior works, we trained models until full conver-
gence under the patience settings provided in the
publicly released code. For all ITERX models, we
trained and tuned hyperparameters under our grid’s
limit of 24 hours per run, with which we were able
to obtain solid performance on all datasets. We
performed hyperparameter search manually and
report the best performing hyperparameters and
the bounds we searched in Table 5, Table 6, and
Table 7.

C Dataset Details

C.1 MUC-4
The MUC-4 dataset features a total of 1,700 En-
glish documents (1,300 for train and 200 each
for dev and test) concerning geopolitical conflict
and terorrism in South America. Documents are
annotated with templates of one of six kinds —
Attack, Arson, Bombing, Murder, Robbery, and
ForcedWorkStoppage — and may have multiple
templates (often of the same type) or no tem-
plates at all. All templates contain the same
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Name Best Search Bounds

Encoder T5enc
large {T5enc

base,T5enc
large,BARTenc

base,BARTenc
large,BERTbase}

LR 3 ⇥ 10�5 {1 ⇥ 10�5, 3 ⇥ 10�5, 5 ⇥ 10�5}
Encoder LR 1 ⇥ 10�5 1 ⇥ 10�5

U 0.5 [0, 1]
V 1.0 {0, 1.0,1}
W 1.0 {1.0}
c Type Joint {Independent, Joint}
Max #Iteration 10 {10, 30}
Training Spans Gold {Gold, Upstream}

Avg. training time 3 hrs
Validation Metric CEAF-RME
# of parameters* ⇠362 million

Table 5: Hyperparameters and other reproducibility in-
formation for SCIREX. “LR” denotes learning rate, “c
Type” indicates which policy network architecture is
used (see §3.2), “Max #Iteration” sets the maximum
number of iterations that the model is allowed to per-
form, and “Training Spans” determines whether the
training spans come from gold annotations or the inter-
section of gold spans and those predicted by the span
finding module. *The number of trainable parameters
include the parameters from the (best) encoder.

Name Best Search Bounds

Encoder T5enc
large {T5enc

base,T5enc
large,BARTenc

base,BARTenc
large,BERTbase}

LR 3 ⇥ 10�5 {1 ⇥ 10�5, 3 ⇥ 10�5, 5 ⇥ 10�5}
Encoder LR 1 ⇥ 10�5 1 ⇥ 10�5

U 0.6 [0, 1]
V 1.0 {0, 1.0,1}
W 1.0 {1.0}
c Type Independent {Independent, Joint}
Max #Iteration 14 {14}
Training Spans Upstream {Gold, Upstream}

Avg. training time 20 hrs
Validation Metric CEAF-RME
# of parameters ⇠379 million

Table 6: Hyperparameters and other reproducibility in-
formation for MUC-4.

slots. While the original data contains numerous
slots, it has become standard practice to evalu-
ate systems on just five of these (apart from the
slot for the template’s type), all of which take
entity-valued fillers: Perpetrator(Individual),
Perpetrator(Organization), Victim, Weapon,
and Target.

C.2 BETTER Granular

The BETTER Granular dataset contains documents
spanning a number of domains, and, like MUC-4,
focuses on six types of complex event, though cov-
ering different topics: protests, epidemics, natural
disasters, acts of terrorism, incidents of corruption,
and (human) migrations. However, Granular is sub-
stantially more difficult than MUC-4 in several
ways. First, each template type is associated with a
distinct set of slots. Second, only some of the slots
take entities as fillers, whereas others take events,
boolean values, or one of a fixed number of strings.

Name Best Search Bounds

Encoder T5enc
large {T5enc

base,T5enc
large,BARTenc

base,BARTenc
large}

Optimizer AdamW {AdamW}
LR 3 ⇥ 10�5 {1 ⇥ 10�5, 3 ⇥ 10�5, 5 ⇥ 10�5}
Encoder LR 1 ⇥ 10�5 1 ⇥ 10�5

U 048 [0, 1]
V 1 {0, 1,1}
W 1.0 {1.0}
c Type Joint {Independent, Joint}
Max #Iteration 10 {10, 30}
Training Spans Gold {Gold, Upstream}

Avg. training time 24 hrs
Validation Metric BETTER combined score
# of parameters ⇠591 million

Table 7: Hyperparameters and other reproducibility in-
formation for Granular.

Finally, the formal evaluation setting for Granular —
which we do not adopt in this paper — is zero-shot
and cross-lingual: systems trained only on English
documents are evaluated exclusively on documents
in a different target language.18 The data used in
our experiments is English-only and comprises the
“train,” “analysis,” and “devtest” splits from Phase
II of the BETTER program, for which the target
language is Farsi.

C.3 SCIREX

The 4-ary SCIREX relation extraction task seeks
to idenfity entity 4-tuples that describe a metric
used to evaluate a method applied to an ML task
as realized by a specific dataset — e.g. (span F1,
BERT, SRL, ACE 2005). The challenge of SCIREX
lies not only in these pieces of information tending
to be widely dispersed throughout an article, but
also in the fact that only tuples describing novel
work presented in the paper (and not merely cited
work) are labeled as gold examples. Following
Huang et al. (2021), we frame this as a template
extraction task, treating each 4-tuple as a template
with four slots.

D Model Evaluation Details

A key consideration that arises in evaluating gener-
alized template extraction is the need to align pre-
dicted and reference templates: a given predicted
template may be reasonably similar to multiple dif-
ferent reference templates, and one must decide on
a single template to use as the reference for each
predicted one. Generalized template extraction is
similar in this respect to coreference resolution, in

18Systems are permitted to use machine-translated versions
of this documents, but gold data in the target language is
prohibited.
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which predicted entities may (partially) match mul-
tiple reference entities, and one must determine a
ground truth alignment. Importantly, this consid-
eration also renders metrics that are traditionally
reported for event extraction — namely, event and
argument precision, recall, and F1 — inappropriate.
This is because event extraction is fundamentally a
span labeling problem, and the identity of the ap-
propriate reference span is always clear for a given
predicted span: either a reference span with the
same boundary and type exists or it does not. By
contrast, the mapping from prediction to reference
for templates is only this transparent in cases of
perfectly accurate predictions.

All the evaluation metrics presented in this ap-
pendix are, at base, minimal extensions of preci-
sion, recall, and F1 to cases where event alignments
are both necessary and non-trivial. For CEAF-REE
in particular, the various versions of the metric
that we discuss (CEAF-REE, CEAF-RME, and Du-
CEAF-RME) merely reflect differences in how this
alignment should be performed and whether the
template type should be treated in the same way as
slot types for reporting purposes.

D.1 MUC-4
MUC-4 evaluation presents a special challenge, ow-
ing to its long and complicated history, and to ter-
minological confusion.19 Here, we discuss CEAF-
REE (Du et al., 2021a), the current standard metric
for MUC-4 evaluation. We begin with definitions,
following with a discussion of some of its prob-
lems, and conclude with an extended presentation
of our CEAF-RME variant, introduced in §4.

D.1.1 CEAF and CEAF-REE: Definitions
The CEAF-REE metric, introduced by Du et al.
(2021a), has since been adopted as the standard
evaluation metric for MUC-4 (Du et al., 2021b;
Huang et al., 2021). To our knowledge, no official
scoring script has ever been released for MUC-
4, although the metrics used as part of the origi-
nal evaluation are described in detail in Chinchor
(1992). CEAF-REE does not attempt to implement
these original metrics, but is rather a lightly adapted
version of the widely used CEAF metric for corefer-
ence resolution, proposed in Luo (2005).20 CEAF

19Early writing on MUC-4 used the term entity to refer to
what the IE community would now call a mention. We suspect
this is the source of a great deal of confusion.

20 Luo’s motivations for proposing CEAF actually derive
in large part from observed shortcomings with the original
MUC-4 F1 score. See Luo (2005) for details.

computes an alignment between reference (R) and
system-predicted (S) entities, with each entity rep-
resented by a set of coreferent mentions, and with
the constraint that each predicted entity is aligned
to at most one reference entity. This is treated as
a maximum bipartite matching problem, in which
one seeks the alignment that maximizes the sum
of an entity-level similarity function q(', () over
all aligned entities ' 2 R and ( 2 S within a
document. In principle, CEAF is agnostic to the
choice of q, though it is generally desirable that
q(', () = 0 when öG 2 ( such that G 2 ' and that
q(', () = 1 when ' = (, for reasons described
in Luo (2005). In practice, the q4 similarity func-
tion is most commonly used, defined as the Dice
coefficient (or F1 score) between ' and (:

q4 :=
2|' \ ( |
|' | + |( | (9)

The version of CEAF that uses q4 is sensibly de-
noted CEAFq4 , or sometimes CEAF4 (e for entity).
CEAF-REE differs from CEAFq4 in the following
two ways:

• All entities are aligned within role, conditioned
on matching template type. E.g. only predicted
entities for the Victim slot in Bombing templates
would be considered valid candidates for align-
ment with entities filling the Victim slot in the
reference templates of the same type.

• A binary similarity function qREE is used, defined
as follows:

qREE (', () :=

(
1, if ( ✓ '

0, otherwise
(10)

D.1.2 CEAF-REE: Problems and Solutions
Our principal concerns with CEAF-REE lie with
how it has so far been reported and implemented,
and with challenges in extending it to the full tem-
plate extraction task, in which multiple templates
of the same type may be present in a document. We
elaborate on two issues discussed briefly in §4 and
also introduce a third.

First, previous work that reports CEAF-REE
treats the template type merely as another slot,
with template type labels treated as special “en-
tities” that may fill this slot. This is not necessarily
problematic in itself: template type-level metrics
are valuable for evaluating system performance.
However, it is problematic when reporting (micro
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or macro) average CEAF-REE figures across slots,
as these works do. This is because incorporating
the scores for template type into the average elides
the distinction between roles (slots) and the kind
of event being described (the template type). More-
over, the alignment between slot-filling entities is
also already conditioned on a match between the
template types. There are thus two distinct ways
in which information about a system’s predictive
ability with respect to template type end up in a
slot-level average CEAF-REE score. This results
in reported values that are very difficult to interpret,
and potentially misleading to the extent that these
features of CEAF-REE implementations are not
made apparent in writing.

Second, the constraint that at most one pre-
dicted entity be aligned to each reference entity —
stipulated in the metric definition (CEAF-REEdef)
— is not enforced in the implementation (CEAF-
REEimpl). Practically, this means that the align-
ment shown in Figure 6 would receive full credit,
whereas it ought to receive a precision score of only
0.75, as Du et al. (2021a) describe. As we argue
in §4, we believe this constraint to be overly strict.
But this point aside, the discrepancy between def-
inition and implementation is clearly troubling in
itself.

Third, full template extraction introduces a sec-
ond maximum bipartite matching problem, which
requires aligning predicted and reference templates
of the same type, and which CEAF-REE (either
CEAF-REEdef or CEAF-REEimpl) is not natively
equipped to handle, given that it operates at the
level of slots. Du et al. (2021b) reports CEAF-
REE for GTT under an optimal template alignment,
but this is obtained via brute-force, enumerating
and evaluating every possible alignment, including
those between templates of different types. The
similarity function, (call it qTEMPLATE ()',)()) that
they use for the template alignment problem is it-
self the cross-slot average CEAF-REEimpl score for
predicted template )( and reference template )'.
This brute-force template alignment, in conjunction
with the hierarchical maximum bipartite matching
problem, results in prohibitively long scorer exe-
cution times in cases where there is only a modest
number of predicted or reference templates of the
same type.21

21Only CEAF-REEdef requires solving a two-level
maximum-bipartite matching problem. Since CEAF-REEimpl
does not enforce the entity alignment constraint, these align-
ments will not necessarily be bipartite.

Figure 6: An example alignment between predicted
and reference entities from Du et al. (2021a). In past
implementations of CEAF-REE, this alignment would
receive full credit, rather than being penalized for preci-
sion (% = 0.75).

In addition to our implementation of CEAF-
RME (see below), we also present the first cor-
rect implementation of CEAF-REEdef that fully
addresses the first two points above: template
types are no longer treated as additional slots and
the entity-level alignment constraint is enforced.
On the third point, our implementation efficiently
computes optimal template alignments using the
Kuhn-Munkres algorithm (Kuhn, 1955; Munkres,
1957). However, even with this efficient implemen-
tation, solving such hierarchical maximum bipartite
matching problems is computationally intensive.

D.1.3 Coreference and CEAF-RME
As CEAF was designed for coreference, it is per-
haps unsurprising that coreference considerations
introduce a further wrinkle for CEAF-REE. None
of the three models described in this work (in-
cluding ITERX) performs entity coreference. This
clearly presents a problem because CEAF-REEdef
is an entity-level metric. One way to score these
models is simply to treat each extracted mention as
a singleton entity and use CEAF-REEdef exactly as
defined, and we report these scores in the main text.
However, reporting only CEAF-REEdef would be
undesirable for several reasons:

• It would render our results incomparable to past
work, which reports only CEAF-REEimpl.

• It would put our work at odds with the over-
whelming majority of the template extraction lit-
erature, where evaluation criteria focus on string
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matching between predicted and reference men-
tions. (The original MUC-4 evaluation only re-
quired systems to extract a single representative
mention for each entity — not to identify all such
mentions.)

• The constraint that at most one predicted en-
tity be aligned to a given reference entity would
yield punishingly low scores for systems that are
highly effective at extracting relevant spans, but
that simply do not perform the additional step of
coreference. It is also not especially relevant for
certain benchmarks, like SCIREX, where coref-
erence is less central to the task.

For these reasons, we disfavor a template ex-
traction metric that requires template extraction
systems to do coreference. These considerations
motivate our introduction of CEAF-RME (role-
filler mention extraction) — that makes a minimal
modification to CEAF-REEdef to address (1) and
(2) above. CEAF-RME treats system-predicted
mentions as singleton entities, but deliberately re-
laxes the alignment constraint, potentially allowing
multiple predicted singletons to map to the same
reference entity, effectively pushing the burden of
coreference into the metric. We believe CEAF-
RME is consistent with what template extraction
research has in fact historically cared about (identi-
fying mentions that fill some slot) while correcting
implementation problems with CEAF-REE that
produce misleading results.

The micro-average CEAF-RME results that we
report on MUC-4 in the main body of the paper are
micro-average CEAF-RME scores under an opti-
mal template alignment (using CEAF-RME as the
template similarity function), which is efficiently
obtained using the Kuhn-Munkres algorithm.

D.2 SCIREX
We use the same CEAF-RME implementation for
scoring SCIREX as we use for MUC-4. We simply
treat the SCIREX 4-tuples as 4-slot templates, fol-
lowing (Huang et al., 2021). Since SCIREX 4-ary
relations are untyped, all SCIREX “templates” are
similarly untyped for scoring purposes.

D.3 BETTER Granular
Evaluation for the BETTER Granular task bears
some core similarity to CEAF-REEdef in that re-
lies on obtaining the alignment between system
and reference templates that maximizes some sim-
ilarity function that decomposes over slot fillers.

And just as with (our corrected implementation
of) CEAF-REEdef, this is achieved via the Kuhn-
Munkres algorithm. However, Granular scoring
differs from CEAF-REEdef in four key respects.
First, the overall system score — referred to as the
combined score — incorporates both a slot-level
F1 score and a template-level F1 score:

CombinedScore := TypeF1 ⇥ SlotF1

Only exact matches between system and reference
templates types are awarded credit. It is worth not-
ing that because this score does not decompose
over template pairs, it cannot be optimized directly
using Kuhn-Munkres. In practice, what is opti-
mized is response gain — the number of correct
slot fillers minus the number of incorrect ones —
which provably yields alignments that optimize the
combined score within a probabilistic error bound.

The remaining three key differences relate to the
calculation of the slot-level F1. For one, Granular
slots are not exclusively entity-valued, but may also
be event-, (mixed) event-and-entity-, boolean-, and
(categorical) string-valued, and different similarity
functions must be employed in these different cases.
For another, where CEAF-REE defines mentions
by their string representation, the Granular score
defines mentions based on document offsets. Fi-
nally, Granular also requires extraction of temporal
and irrealis information for slots, and this in turn
impacts the SlotF1 score.

Borrowing terminology from the discussion of
MUC-4 above, we describe below how q(', ()
is calculated for some generic reference slot filler
' and system-predicted slot filler ( for slots of
different types.

Boolean and Categorical Values For boolean-
and categorical-string valued slots (i.e., slots taking
on one of a predefined set of values). q(', () = 1
if there is an exact match between the system and
reference fillers and is 0 otherwise.

Entities Unique among the three tasks discussed
in this paper, Granular features an explicit prefer-
ence for informative arguments in its scoring struc-
ture. In particular, (proper) name mentions of an en-
tity are worth more than nominal mentions, which
in turn are worth more than pronominal ones.22

Thus, if Barack Obama were represented by the ref-
erence entity {Obama, the former President, he},

22This is precisely the hierarchy described for the informa-
tive argument extraction task in Li et al. (2021).
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full credit would be awarded for returning only the
mention Obama, less credit for the former Presi-
dent, and still less for he. Exact point values depend
on the mentions present in the reference entity:

• Correct name mentions always receive full credit
(q(', () = 1)

• Correct nominal mentions receive half-credit
(q(', () = 0.5) if the reference entity addition-
ally contains a name mention, and receive full
credit otherwise.

• Correct pronominal mentions receive quarter-
credit (q(', () = 0.25) if the reference entity
additionally contains both a name and a nomi-
nal mention, and half-credit if only a nominal
mention is featured. (Note that entities will never
feature only pronominal mentions.)

Events Some Granular slots require events as
fillers. Like entities, events are represented as sets
of mentions (event anchors or triggers). Unlike en-
tities, there is no informativity hierarchy for events.
Furthermore, while event coreference is not a part
of the Granular task, annotations for event corefer-
ence are nonetheless provided for scoring purposes:
q(', () = 1.0 iff ( contains only mentions belong-
ing to events in the set of gold coreferent events ',
and is 0 otherwise, akin to qREE.

Mixed Entities and Events Some slots may take
a mix of events and entities as fillers. Since systems
must indicate whether predicted mention clusters
are entity- or event-denoting, the same similarity
criteria for events and entities as described above
are used to compute q for events and entities that
fill these slots.

Temporal and Irrealis Information One
of the features of Granular that makes it de-
cidedly more difficult than either MUC-4 or
SCIREX is the requirement to extract information
relating to the time and irrealis status of an
event when such information is available in the
document. This information is encapsulated
in special time-attachments and irrealis
fields associated with each slot-filling entity
or event. The former is given as a set of tem-
poral expressions that describe the time at or
during which the filler satisfied the role denoted
by the slot (e.g. when individuals filling the
tested-count slot in the Epidemic template
were tested for the disease). The latter is given

as one of a set of strings that describe whether
or how the filler satisfied the role denoted by
the slot: counterfactual, hypothetical,
future, unconfirmed, unspecified, and
non-occurrence. time-attachments and
irrealis are each worth 0.25 points, where exact
matches are required for full credit on either and
where zero points are awarded otherwise. For slots
for which time-attachments and irrealis are
required, the value of q appropriate to its filler
type is scaled by 0.5 such that the maximum
overall score q(', () for a given filler — factoring
in time-attachments, irrealis, and event or
entity similarity — is 1.
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Abstract

Conversational recommender systems (CRSs)
capture a user preference through a conversa-
tion. However, the existing CRSs lack captur-
ing comprehensive user preferences. This is
because the items mentioned in a conversation
are mainly regarded as a user preference. Thus,
they have limitations in identifying a user pref-
erence from a dialogue context expressed with-
out preferred items. Inspired by the charac-
teristic of an online recommendation commu-
nity where participants identify a context of
a recommendation request and then comment
with appropriate items, we exploit the Reddit
data. Specifically, we propose a Contrastive
Learning approach for Injecting Contextual
Knowledge (CLICK) from the Reddit data
to the CRS task, which facilitates the capture
of a context-level user preference from a dia-
logue context, regardless of the existence of
preferred item-entities. Moreover, we devise
a relevance-enhanced contrastive learning loss
to consider the fine-grained reflection of mul-
tiple recommendable items. We further de-
velop a response generation module to gener-
ate a persuasive rationale for a recommenda-
tion. Extensive experiments on the benchmark
CRS dataset show the effectiveness of CLICK,
achieving significant improvements over state-
of-the-art methods.

1 Introduction

Recommender systems help users find potential
items of interest in the rapidly expanding pool
of candidates. To do so, the recommender sys-
tems aim to accurately identify user preferences.
Thus, traditional recommender systems (Guo et al.,
2020) utilize click or purchase data to obtain user
preferences. However, such traditional approaches
lack dynamically modeling user preferences since
the data has a temporal validity and does not of-
fer a diverse clue to user information. Conversa-
tional recommender system (CRS) is a research
area that overcomes the limitation of the traditional

User I am stressed out from work today.
So, I’m looking for a mindless movie.

RecommenderYou must be exhausted!
Have you ever watched “21 Jump Street”?
It is so much fun.

Oh wait, I have a little son 
who wants to watch a movie together.

Then, I recommend “Yes Man”.
It’s a family movie. Your son also will like it.

Recommender

Hello, how are you today? Recommender

User

Figure 1: An example of a user-recommender conver-
sation for movie recommendations. The important in-
formation for a recommendation is written in red, and
the recommended items are written in blue.

recommender systems by capturing users’ interests
through natural conversation. The conventional
CRSs (Chen et al., 2019; Ma et al., 2021; Zhou
et al., 2020a) mainly derive a user preference from
item-entities, which appear in a conversation and
exist in a knowledge graph (KG). However, users
often express their preferences without preferred
items. For example, in Figure 1, the user depicts
his/her requirement (a mindless movie), feeling
(stressed), and situation (with a little son). In or-
der for an accurate recommendation of a movie
(Yes Man) to be derived, the recommender must
capture that the user wants those characteristics
of a movie, "a movie to watch when stressed", "a
mindless movie" and "a movie to watch with a lit-
tle son". Therefore, merely depending on item-
entities for user preference identification is insuf-
ficient. We argue that a dialogue context also pro-
vides a user preference, regardless of the existence
of item-entities.

Motivated by the characteristic of an online rec-
ommendation community where participants iden-
tify a context of a recommendation request and
then comment with appropriate items, our method
exploits the Reddit data to extract the contextual
knowledge that enables inferring a preferred item
in a KG from a recommendation request. Thus,
we propose a Contrastive Learning approach for
Injecting Contextual Knowledge (CLICK), which
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captures not only the entity-level preference de-
rived from mentioned entities but also identifies the
context-level preference from a dialogue context
by utilizing both a KG and Reddit data.

However, the different modality between recom-
mendable item-entities in a KG and request texts
in the Reddit data hinders CLICK from learning
contextual knowledge. Thus, we alleviate the dif-
ferent modalities via contrastive learning to align
the pairs of a recommended item-entity and a re-
quest text. Moreover, different from the conven-
tional contrastive learning that classifies the pairs
into only positive or negative, our distinction is
to consider the relative relevance among positive
pairs. For example, if a seeker asks a recommenda-
tion community for a movie to watch when feeling
down, several movies can be recommended. While
some movies are related to many participants, oth-
ers may be referenced by a few people. Thus, to
reflect differing relativity of multiple recommend-
able items from a request, we design a relevance-
enhanced contrastive learning loss function. Con-
sequently, leveraging the learned contextual knowl-
edge, CLICK makes accurate recommendations
based on the user preferences extracted from both
entity- and context-level perspectives. In the re-
sponse generation task, we develop a response gen-
erator that produces a suitable explanation with a
recommended item based on a captured require-
ment from a dialogue context.

Our contributions are summarized as follows:
(1) We propose the knowledge injection method
that facilitates the inference of a recommendable
item based on a dialogue context in order to iden-
tify a comprehensive user preference. (2) We de-
sign the relevance-enhanced contrastive learning
loss that promotes the fine-grained reflection of
positive pairs according to the relevance. (3) We
further develop a contextual knowledge-enhanced
recommender module and a response generation
module, which captures a comprehensive user pref-
erence and produces an explanation based on a
user’s needs, respectively. (4) The proposed model
outperforms baselines, especially regardless of the
existence of item-entities in a user utterance.

2 Related Work

2.1 Conversational Recommender Systems

CRS (Gao et al., 2021) allows obtaining user pref-
erences through dynamic interaction, overcoming
the limitations of traditional recommender systems

(Guo et al., 2020) that are heavily dependent on
static interaction history. The research area can
be broadly categorized into two groups: template-
based and natural language-based CRSs. Template-
based methods (Deng et al., 2021; Lei et al., 2020;
Zhou et al., 2020d) interact with a user, following
a slot-filling approach. Although many template-
based CRSs have been proposed, they suffer from
producing inflexible response due to the inherent
template scheme.

On the other hand, natural language-based CRS
(Chen et al., 2021; Zhou et al., 2020c) allows users
to depict their needs in a free text. Such approaches
focus on how to extract knowledge from external
data (e.g., historical data, KGs, and review data)
and how to utilize the knowledge to capture a user
preference and generate a persuasive response since
the CRS benchmark dataset contains repetitive and
limited utterances. Following the stream of CRS
research, Zhou et al. (2020b) utilize historical in-
teraction data to enhance a sequence of preferred
items. Chen et al. (2019) and Zhou et al. (2020a)
exploit KGs to capture user preferences with men-
tioned entities. Ma et al. (2021), Moon et al. (2019),
and Zhou et al. (2021) leverage explicit reasoning
on a KG based on the mentioned entities. Lu et al.
(2021) and Zhou et al. (2022) utilize review data
to enrich insufficient item information over a KG.
However, despite the diverse use of external data,
the current methods still lack capturing a user’s
needs depicted in a free text since they identify
preferences mainly with mentioned item-entities
that exist in a KG. To resolve the limitation, we pro-
pose a contrastive learning approach for injecting
knowledge into the CRS task by utilizing textual
recommendation data (Reddit) and a KG. Thus, our
approach captures user preferences from both men-
tioned entities and a dialogue context, taking full
advantage of CRS in which users can express their
preferences freely in natural language.

2.2 Contrastive Learning

Another line that motivates our work is contrastive
learning, which is a dominant approach in self-
supervised learning. Especially in multi-modal
scenarios, contrastive learning (Oord et al., 2018)
plays a vital role in refining feature representation.
It aims at forcing representations to have a smaller
distance between positive pairs and a greater dis-
tance between negative pairs than the positive ones.
Due to the efficacy of contrastive learning strategy,
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[REQUESTING] Suggest me a movie to watch when depressed
▲32, “Up”, It feels like a warm hug after a hard day.
▲27, “ The Pursuit Of Happiness”, The true story gives -

glimmers of hope and survival. 

. . .

Request  𝒒𝒒 :   Suggest me a movie to watch when depressed
Item-Suggestion  𝒔𝒔 :   “Up”
Relevance-score  𝒗𝒗 :   32
Rationale  𝒕𝒕 :   It feels like a warm hug after a hard day

Reddit Data 𝐷𝐷

Request  𝒒𝒒 :   Suggest me a movie to watch when depressed
Item-Suggestion  𝒔𝒔 :   “The Pursuit Of Happiness”
Relevance-score  𝒗𝒗 :   27
Rationale  𝒕𝒕 :   The true story gives glimmers of hope and survival Contextual Knowledge Injection Learning to Explain Recommendation

Request 𝑞𝑞

Item
Embedding 𝑛𝑛𝑠𝑠

Item-Suggestion 𝑠𝑠

Response

KG-Encoder

Text-Encoder

BERT

FC
N

Request Context 
Embedding ℎ𝑐𝑐𝑐𝑐

Request 
Embedding ℎ𝑞𝑞

Response
Generator

Utterance Type
(Recommendation)

Relevance-reflected
Attract

Knowledge Graph 𝐺𝐺
Item 𝑠𝑠

Figure 2: The pre-training stage of CLICK which consists of two encoders and a response generator.

it has been widely used in various research fields
such as multilingual text-to-video search (Huang
et al., 2021), visual pre-training (Yuan et al., 2021),
and other domains (Xia et al., 2021; Zolfaghari
et al., 2021). Especially, in recent research on CRS,
Zhou et al. (2022) adopt contrastive learning to
fuse multi-type external data. Likewise, we re-
fine our multi-type external data representations
by contrastive learning. However, different from
the existing contrastive learning loss, we further de-
vise relevance-enhanced contrastive learning loss to
consider multiple recommendable items, of which
each has a different relative relevance.

3 Pre-training for Contextual Knowledge
Injection

We introduce the training scheme of CLICK that
follows a two-stage mechanism: 1) a pre-training
stage for the contextual knowledge injection and
2) a fine-tuning stage for the conversational recom-
mendation task.

In the two stages, we utilize DBpedia (Bizer
et al., 2009) as a KG, following the existing CRSs
(Chen et al., 2019; Zhou et al., 2020a; Ma et al.,
2021; Zhou et al., 2022) that take advantage of
KGs to capture user preferences based on factual
information such as objects, concepts, and rela-
tionships among them. The KG is defined as
G = {(e1, r, e2)|e1, e2 ∈ E, r ∈ R}, where a
fact (e1, r, e2) consists of relation r from entity e1
to entity e2 from entity set E and relation set R.

The Reddit data (Penha and Hauff, 2020) is
leveraged to learn the contextual knowledge that
facilitates the inference of a preferred item from
a user utterance. The Reddit data is denoted as
D = {(q, s, v, t)} , where q is a seeker’s request
text to receive a recommendation, s is an item-

suggestion by a recommender, v is a relevance
score of the item-suggestion, and t is an optional
rationale for the item-suggestion. We describe the
details of the Reddit dataset in Section 5.1.

In the pre-training stage, our approach infuses
the contextual knowledge from Reddit data into a
KG-encoder and a text-encoder by training them
via a devised contrastive learning loss. Then, a re-
sponse generator is pre-trained to equip the ability
to generate an explanation for a recommendation
based on the recognized needs. The pre-training
stage of CLICK is described in Figure 2.

3.1 Contextual Knowledge Injection

Following previous studies (Zhou et al., 2020a; Ma
et al., 2021), we encode the KG to obtain the rep-
resentations of entities via R-GCN (Schlichtkrull
et al., 2018) that considers neighborhoods under
the specific relation type and direction. The rep-
resentation of item-entity s from the KG-encoder
is denoted as ns. Then, we employ BERT (Devlin
et al., 2019) and a fully-connected layer FCN to
encode a request text q that contains the seeker’s
needs (more details in Appendix A.1). The request
embedding hq is obtained as:

hq = FCN(BERT (q)). (1)

Next, the above two encoders are pre-trained via
a contrastive learning loss, which promotes align-
ment of the multi-modality originating from the
KG and text. That way, the text encoder is encour-
aged to effectively infer a preferred item from a
request. Moreover, different from a conventional
contrastive learning loss that classifies the pairs into
only positive or negative, we build the relevance-
enhanced contrastive learning to reflect multiple
recommendable items with a relative relevance as
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follows:

Lrel = −log
∑

s∈S

ex(simq,s−vq,s)

ex(simq,s−vq,s) +
∑

S′ ex
(simq,s′ )

,

(2)

where vq,s indicates the relevance score correspond-
ing to the number of "Upvote" about the item sug-
gestion s from the request q in positive set S, S′

is a negative set, sim means cosine similarity be-
tween the item representation vector ns and the
request representation vector hq that the above two
encoders produce respectively, and ex(x) is expo-
nential of x. The proposed loss function is able to
attract positive pairs in proportion to the relevance
score vq,s while repelling the negative pairs. Then
the pre-trained encoders are utilized to capture a
comprehensive user preference from a user utter-
ance depicted regardless of the presence of entities.

3.2 Learning to Explain Recommendation
At this stage, the response generator is pre-trained
to generate a recommendation response of the three
utterance types (question, recommendation, chit-
chat). The recommendation response should con-
tain a recommended item and a rationale for the
recommendation based on a captured user need.
Thus, we adopt GPT-2 (Radford et al., 2019) as
a response generator and feed a suggested item s
and the utterance type (recommendation) to a token
embedding layer of GPT-2. The first layer of the
decoder A1 then conducts self-attention with the
token embeddings. Next, having obtained the re-
quest context embedding hct from the text-encoder
(only BERT ), cross-attention is conducted in the
next decoder block to generate the explanation for
the item-suggestion based on the needs extracted
from the request of a seeker. The cross-attention
layer of the decoder can be summarized as:

A2 = FFN(MultiHead(OA1 , hct, hct)), (3)

where the multi-head attention layer
MultiHead(Q,K, V ) takes query Q, key
K and value matrix V as input, and OA1 is the
output of the first decoder layer A1. The response
generator is pre-trained to generate the rationale
t for the item-suggestion s conditioned on the
request q and the utterance type ut via maximum
likelihood estimator (MLE) generation loss:

Lexr = −
J∑

j=0

log p(tj |t<j , q, s, ut). (4)
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Figure 3: The fine-tuning stage of CLICK utilizing
the pre-trained encoders and response generator for the
conversational recommendation task.

4 Fine-tuning for Conversational
Recommendation Task

In this section, the fine-tuning strategy of CLICK
for the CRS task is introduced. Figure 3 illustrates
the working flow of CLICK, leveraging the two pre-
trained encoders and response generator from the
pre-training stage. CLICK consists of two key com-
ponents: (1) contextual knowledge-enhanced rec-
ommender module, which even understands user’s
needs from a dialogue context, and (2) context-
enhanced response generation module, which gen-
erates a persuasive response based on a captured
user preference. Prior to introducing the details
of the fine-tuning scheme, we formulate a conver-
sation history C = {x1, y1, ..., xc}, where xi is a
user utterance, and yi is a system utterance at turn-i.
The goal of CLICK is to recommend a proper item
sc and generate the system response yc, understand-
ing the conversation history C.

4.1 Contextual Knowledge-enhanced
Recommendation

The pre-trained text-encoder is leveraged to iden-
tify context-level user preference (e.g., a movie
to watch when feeling down) that could not be
captured with mentioned entities. In detail, the
conversation history C is fed to the text-encoder,
and we obtain the context-level user preference as
pcl = FCN(BERT (C)).

Next, we utilize mentioned entities to identify
entity-level user preference (e.g., a movie like
Yes-Man). In our implementation, we conduct
cross-attention with a context-level user preference
and entities, being different from the previous ap-
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proaches that ignore the relative importance among
mentioned entities based on a dialogue context.
Thus, the cross-attention score is denoted as:

α = softmax(q · kT/
√
dk),

q = pcl ·Wq, k = ne ·Wk,
(5)

where Wq,Wk are weight metrices, ne is an entity
embedding from the mentioned entities N (C), and
the context-level user preference pcl is from the
text-encoder. Then, we obtain the entity-level user
preference pel as follows:

pel = α ·N (C), (6)

Then, we adopt a gate mechanism to obtain the
final user preference pc at c-th turn by combining
the entity-level and context-level user preferences
as follows:

pc = β · pel + (1− β) · pcl,
β = σ(Wgate · [pel; pcl]),

(7)

where Wgate is a weight matrix, and [; ] indicates
the concatenation operator. Consequently, we con-
duct the inner product of user preference pc and the
representation nm of item m to predict the match-
ing score:

ẑ(c,m) = pc · n>m. (8)

The recommender module is fine-tuned with a
cross-entropy loss as:

Lrec = −
C∑

c=1

M∑

m=1

[zcm · log ẑ(c,m)

− (1− zcm) · log (1− ẑ(c,m))], (9)

where zcm is the true label.

4.2 Context-enhanced Response Generation
Prior to generating a response, at each turn, CLICK
determines the type of an utterance (question, rec-
ommendation, chit-chat) given a dialogue context.
Following Ma et al. (2021), we regard the determi-
nation of utterance’s type as a 3-way classification
problem:

Pr(yutc |C) = softmax(W 2
ut ·ReLU(W 1

ut ·hct)),
(10)

where hct is a dialogue context embedding from
the BERT. We thus formulate the determination
loss as:

Lut = − logPr(yutc |x1, y1, ..., xc), (11)

where yutc is the true label of utterance type.
After obtaining the dialogue context embedding,

the utterance type, and the recommended item, we
utilize such to generate a persuasive response that
contains a recommended item under the controlled
type of an utterance. Compared to an implicit way
of response generation in CRSs (Chen et al., 2019;
Zhou et al., 2021), which lacks the ability to in-
clude a recommended item in the generated re-
sponse, the explicit way of response generation
by Ma et al. (2021) feeds the recommended item
and the utterance type as input into the response
generator, which guarantees the inclusion of the
item under the controlled response type. However,
the explicit approach hinders generating a response
based on a dialogue context. Thus, different from
Ma et al. (2021), we further infuse the dialogue con-
text implicitly into the response generator with the
cross-attention mechanism to generate a response
containing an identified dialogue context.

In the same manner as the pre-training process
of the response generator, an utterance type and a
recommended item is fed to the token embedding
layer. The first layer of the decoder conducts self-
attention with the token embeddings. Then, we
enforce the module to generate a response based on
the user’s needs via the cross-attention mechanism
with the dialogue context embedding hct, which is
identical to the one in Equation 3. We formulate
the response generation loss as:

Lgen = −
U∑

u=0

log p(yu,c|y<u,c, C, sc, utc), (12)

where U is the length of a target response, yu,c is
a generated u-th token of system response, C is a
conversation history, and sc is the recommended
item at c-th turn. utc indicates the type of utter-
ance. Additionally, the implementation details are
in Appendix A.2.

5 Experimental Setup

5.1 Dataset

REDIAL is a benchmark CRS dataset released by
Li et al. (2018). It was constructed through Ama-
zon Mechanical Turk (AMT). The AMT workers
play the role of a seeker/recommender. In daily talk,
a seeker explains his/her tastes about movie and
asks for movie suggestions. A recommender tries
to understand the tastes and recommends movies.
Accordingly, it consists of 10,006 conversations
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Model Standard Setting No Mentioned Item Setting Diversity
R@1 R@10 R@50 R@1 R@10 R@50

REDIAL 2.3 13.2 29.7 – – – 5.8
KBRD 3.0 15.8 33.8 1.5 5.1 12.2 11.2
KGSF 3.9 18.3 37.8 2.6 9.7 20.1 12.2
CR-Walker 4.0 18.7 37.6 2.4 10.2 19.8 14.9
C2CRS 5.2 22.9 40.7 2.1 8.9 18.3 13.9

GPT-2 2.3 14.5 31.5 1.6 7.9 16.3 9.9
GPT-2 (+Reddit) 2.5 15.2 32.1 1.9 8.5 17.1 11.1
BERT 3.0 15.3 34.4 1.9 8.7 17.5 10.3
BERT (+Reddit) 3.2 16.9 35.2 2.1 9.2 18.3 11.8
BART 3.3 17.1 36.3 2.1 9.0 18.0 11.4
BART (+Reddit) 3.6 18.3 37.5 2.3 9.5 18.9 12.7

CLICK 5.5 23.8 43.2 3.5 14.9 28.9 18.3
w/o relevance 5.3 23.1 41.1 3.3 13.2 26.7 16.9
w/o pre-training 4.2 19.2 38.1 2.5 10.0 20.3 14.7

Table 1: Overall performance comparison on the recommendation task.

containing 182,150 utterances and 51,699 movies.
We set the training, validation, and test sets as a
ratio of 8:1:1. Reddit is utilized as the textual rec-
ommendation data collected by Penha and Hauff
(2020). Following the domain of a benchmark CRS
dataset (REDIAL), we use the MovieSuggestions
subreddit, which is a movie recommendation com-
munity. In the community, a seeker asks for a
recommendation, and recommenders give sugges-
tions with a rationale. Participants in the commu-
nity consent to the suggested items with the "Up-
vote" button which is regarded as a relevance score.
Knowledge Graph consists of 30,471 entities, 12
relations, and 392,682 triples extracted from DBpe-
dia (Bizer et al., 2009) and MovieLens, following
Ma et al. (2021). Additionally, the entities in utter-
ances are linked to DBpedia nodes.

5.2 Baselines

We compared CLICK to the following five CRS
baselines: (1) REDIAL (Li et al., 2018) is pro-
posed with the CRS benchmark dataset. The
model consists of an auto-encoder recommender
and an RNN-based response generator. (2) KBRD
(Chen et al., 2019) utilizes a KG to identify
user preferences from mentioned entities. The
transformer-based response generator uses a user
representation as vocabulary bias. (3) KGSF (Zhou
et al., 2020a) incorporates word-oriented and entity-
oriented KGs to capture user preference. (4) CR-
Walker (Ma et al., 2021) proposes tree-structured
reasoning on a KG, which effectively utilizes back-
ground knowledge. It adopts GPT-2 to generate
a response by feeding dialogue acts. (5) C2CRS

(Zhou et al., 2022) leverages a KG and a review
data for enriching the context information. It con-
ducts data semantic fusion via contrastive learning.
The response generator fuses the information from
a KG and a review data.

Additionally, three pre-trained language models
(PLMs) were tested for a fair comparison on the
same data. In table 1 and 2, (+Reddit) indicates
a PLM pre-trained on the Reddit data. The three
models are as follows: GPT-2(Radford et al., 2019),
BERT(Devlin et al., 2019), and BART(Lewis et al.,
2020). The training details of PLMs are in Ap-
pendix A.3.

6 Experimental Results

6.1 Evaluation on Recommendation

We adopted Recall@k to measure how many pre-
dicted items were included in the set of preferred
items (Standard Setting). Moreover, we compared
the performance under the setting where there were
no mentioned item-entities in a dialogue context
(No Mentioned Item Setting). This setting aims to
evaluate how well the models identify a user pref-
erence from a dialogue context without mentioned
item-entities. We also evaluated recommendation
diversity (Diversity), defined as the proportion of
distinct recommendations.

6.1.1 Performance Comparison
Table 1 shows the experimental results on recom-
mendation task. Standard Setting: KBRD, KGSF,
and CR-Walker performed better compared to RE-
DIAL by capturing user preference based on enti-
ties in KGs. Compared to the baselines, C2CRS
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Model Automatic Evlauation Human Evaluation

BLEU Dist-2 Dist-3 Dist-4 Flu. Rel. Info.

REDIAL 0.229 0.215 0.247 0.234 2.03 1.97 1.67
KBRD 0.231 0.281 0.376 0.438 2.18 2.19 1.98
KGSF 0.239 0.320 0.432 0.519 2.31 2.21 2.12
CR-Walker 0.271 0.361 0.493 0.573 2.54 2.37 2.31
C2CRS 0.251 0.339 0.455 0.538 2.42 2.29 2.19

GPT-2 0.247 0.352 0.474 0.521 2.35 2.01 2.04
GPT-2 (+Reddit) 0.261 0.359 0.481 0.536 2.39 2.09 2.02
BART 0.249 0.354 0.486 0.528 2.37 2.07 2.12
BART (+Reddit) 0.262 0.357 0.492 0.539 2.38 2.17 2.11

CLICK (ours) 0.308 0.380 0.521 0.598 2.60 2.63 2.58
w/o gen. cross-att 0.296 0.371 0.510 0.589 2.58 2.51 2.47
w/o gen. pre-training 0.289 0.364 0.503 0.583 2.53 2.45 2.44
w/o pre-training 0.281 0.359 0.497 0.579 2.48 2.39 2.40

Table 2: Overall performance comparison on the response generation task

recommended appropriate items by incorporating a
KG and a review data. In contrast, CLICK achieved
the best results by effectively modeling comprehen-
sive user preference from entity-level and context-
level. Another observation is from the compari-
son with PLMs. Although the PLMs showed im-
pressive performances, the improvement by utiliz-
ing the Reddit data was lower than ours. Thus,
it proved that CLICK efficiently extracted contex-
tual knowledge from Reddit data and exploited
it for recommendation. No Mentioned Item Set-
ting: To further demonstrate the CLICK’s ability
of capturing a context-level user preference, we
compared the baselines on this setting. KGSF
and CR-Walker performed relatively better than
other baselines due to the utilized word-oriented
KG allowing the recognition of diverse words in a
conversation. We noted that CLICK showed best
performances even when there were no mentioned
item-entities. This is because the contextual knowl-
edge extracted from the Reddit data provided a
significant clue to a user’s needs. More details are
covered in Appendix A.4. Diversity: CLICK rec-
ommended diverse items compared to all the base-
lines. The improvement was derived from our strat-
egy of modeling user preference in a fine-grained
means, considering both mentioned entities and a
dialogue context.

6.1.2 Ablation Study

Pre-training with the relevance-enhanced con-
trastive learning loss is an essential design in our
method to infer a preferable item from a user ut-
terance. Thus, we assessed the effects of CLICK
with two variants, (1) w/o relevance: standard con-

trastive learning loss (Oord et al., 2018) was used,
(2) w/o pre-training: CLICK was only trained on
REDIAL dataset without being pre-trained with
the Reddit data. As shown in Table 1, the perfor-
mance of CLICK w/o relevance was lower since it
did not consider the relative relevance that helped
the model to learn a fine-grained representation.
CLICK w/o pre-training provided the evidence for
the pre-training stage of learning the contextual
knowledge. Besides, it showed a decline in di-
versity since it did not capture a fine-grained user
preference with the contextual knowledge that pro-
motes various recommendations.

6.2 Evaluation on Response Generation
BLEU (Papineni et al., 2002) and Dist-N (Li et al.,
2016) were adopted to measure the word-level cor-
respondence and diversity of responses. We further
conducted a human evaluation. Five human annota-
tors evaluated 100 generated responses on fluency,
relevancy, and informativeness ranging from 0 to 3.
The average score of each metric is reported.

6.2.1 Performance Comparison
Table 2 shows the experimental results on response
generation task. Automatic Evaluation: The re-
sult proved that our method generated a better qual-
ity response with diverse words. Such improve-
ments are derived from the explicit feeding of a
recommended item and an utterance type into a
response generator and the implicit injection of
a context via a cross-attention mechanism. Hu-
man Evaluation: The responses generated from
C2CRS, KGSF, and KBRD are inclined to con-
tain safe responses that are broadly adequate for
any situation, such as "I have not seen that one".
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This issue was reflected as the lower score on rele-
vancy and informativeness compared to CR-Walker.
While CR-Walker generated a meaningful response
with an explanation for a recommendation, CLICK
achieved the best performance on all human evalua-
tions. Especially, the better relevancy and informa-
tiveness demonstrated the efficacy of our response
generator incorporating a dialogue context via the
cross-attention.

6.2.2 Ablation Study
The ablation study wass conducted with the follow-
ing three variants of CLICK, (1) w/o gen. cross-
att: we removed the cross-attention mechanism
incorporating a dialogue context. (2) w/o gen. pre-
training: we only pre-trained the recommender
module except for the response module, (3) w/o
pre-training: we trained the CLICK on REDIAL
dataset without pre-training. As shown in Table
2, we observed a significant decrease when the
proposed strategies were removed. It proved that
these strategies contributed to improving the per-
formance of response generation. We noted that
the cross-attention mechanism and the pre-training
scheme of the response generator affected gener-
ating a relevant and informative response. More-
over, the w/o pre-training case brought a further
decline in all metrics, indicating the usefulness of
the pre-training strategy or generating informative
responses using diverse words.

6.3 Case Study

A qualitative analysis of three cases is shown in Ta-
ble 3. Case 1, there are no mentioned item-entities.
Given the user utterance, KGSF recommended
"Black Panther" that is suggested frequently in the
CRS dataset regardless of a specific situation. Thus,
it did not seem to capture the user’s needs (comfort-
ing movie) precisely. Likewise, CR-Walker asked a
question since it did not identify the needs exactly.
In contrast, our model recommended a proper item
with a rationale based on the captured needs. Case
2 is a common case in the CRS dataset, which ex-
plicitly expresses the user’s taste. Therefore, all
baselines and CLICK generated a proper recom-
mendation. Especially, CLICK provided a suitable
explanation, understanding that the user wants com-
edy. Case 3 includes multiple entities and a specific
situation where the recommended movie should be
enjoyable for little girls. We observed that all base-
lines suggested action movies, concentrating on the
genre prevailing in the dialogue context. Here, the

recommender should understand that the user is
looking for a kids’ movie, such as "The Princess
and The Frog" besides action movies. In constrast,
our model grasped the relatively important entity
among mentioned entities based on the dialogue
context. Consequently, our model’s recommen-
dation and rationale are well-grounded on users’
needs.

[Case 1]
Recommender: hello how are you today?
User: I’m feeling pretty down tonight so I’d like to watch a comforting movie.
KGSF: Have you ever seen “Balck Panther”?
CR-Walker: What type of movie do you like?
Ours: What about "Mamma Mia!”? It’s a comforting movie.
Human: I recommend “The Secret Life of Walter Mitty”, It’s so satisfying.

[Case2]
Recommender: hello what kind of movie do you like?
User: I’m in the mood for a good comedy like "Get Smart"
KGSF: Have you ever seen “Jumanji”?
CR-Walker: “Happy Gilmore” is a really good comedy. It’s my favorite adam sandler movie.
Ours: Have you ever seen “Men in Black”? It has funny story.
Human: You should watch “Spy”. I liked the humor of the actress.

[Case3]
Recommender: Hello! Could you let me know any movies you liked?
User: I like action movies like “John Wick ” or “Die Hard 4.0”,

but today I’m looking for something similar to “The Princess and the Frog”.
I have little girls who want to watch a movie.

KGSF: Have you seen “Black Panther”?
CR-Walker: I recommend “Taken”. It’s a really good movie with lots of action!
Ours: What about “Tangled”. It’s a fairytale movie. Little girls will love it.
Human: Then, I recommend “Frozen”. Becasue littile girls like it.

Table 3: A qualitative analysis of three cases. The base-
lines, CLICK(ours), and human generate a response
based on the given dialogue context. The important in-
formation for a recommendation is written in red, and
the mentioned item-entities in a KG are written in blue.

7 Conclusions and Future Work

In this paper, we proposed the contextual knowl-
edge injection via contrastive learning to capture
a comprehensive user preference from a dialogue
context. Utilizing the extracted contextual knowl-
edge, CLICK not only precisely captures the pref-
erence on mentioned entities but also identifies the
user’s needs in a dialogue context. Moreover, the
relevance-enhanced contrastive learning loss en-
ables the contextual knowledge to reflect the ac-
ceptance degree of recommendations. We further
developed the context-enhanced response gener-
ator to provide a persuasive explanation. Lastly,
experimental results on the benchmark dataset con-
firmed the effectiveness of CLICK on providing
appropriate recommendations, as well as generat-
ing high-quality responses.

In future work, we will explore a CRS with a rec-
ommendation dialogue strategy of actively asking
questions to elicit a user taste instead of passively
communicating with a user.
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Limitations

In this section, we summarized the limitations of
our study as follows:

• The training and test experiments are con-
ducted on the setting where the mentioned
entities are aligned to a knowledge graph in
the same manner as other CRSs. In a practical
use, Named Entity Recognition (NER) task is
needed, and entity linking is also required to
align the entities to a KG.

• This work only conducts experiments on the
movie domain and does not generalize to other
domains since the benchmark CRS dataset is
limited to the movie domain. Benchmark CRS
datasets on various domains need to be pub-
lished, and experiments on multiple domains
are required to support a complete and objec-
tive study.
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A Appendix

A.1 The Pipeline between BERT and FCN in
Text-Encdoer

The output of BERT is an embedding vector of a
CLS token containing the meaning of the entire
sentence. And the embedding vector is input into
FCN .
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A.2 Implementation Details
We implemented CLICK with Pytorch1 and trained
it on an NVIDIA RTX 3090. We set the embedding
size of the KG-encoder (R-GCN)2 to 128, and the
depth of aggregating neighbors as 1. We used pre-
trained BERT3 and GPT-24 to intialize the models’
parameters. The hidden size of BERT in the text-
encoder is set to 768, and the hidden size of the
response generation module (GPT-2) is identically
set to 768. When obtaining the embedding of a
context-level user preference from the text-encoder,
we utilized a 128× 768 fully-connected layer. We
normalized the relevance scores from 0.25 to 0.5
for a stable convergence. We used Adam optimizer
(Kingma and Ba, 2015) with a learning rate of
1e-4 and a weight decay of 1e-3. The batch size
of pre-training and fine-tuning is set to 32. The
computational cost is 3 hours and 1 hour per 1
epoch for pre-training and fine-tuning, respectively.

A.3 PLMs Details
The PLMs with (+Reddit) are pre-trained on Reddit
dataset and fine-tuned on REDIAL dataset. And
the representation of the last token that a PLM
generates is used for recommendation.

A.4 No Mentioned Item Setting
We utilized a special entity (None entity) in the
same manner as other CRSs (KGSF, CR-Walker,
and C2CRS) that utilize KGs. Thus, CLICK and
other CRSs can be executed under any case. For
example, at the first turn of the conversation in
Figure 1, there is no mentioned entity. Thus,
None entity is assigned as mentioned entities N (C)

in Equation 6. Meanwhile, the text-encoder of
CLICK is pre-trained with Reddit data to infer
recommendable items (e.g., 21JumpStreet, Mad-
Max:FuryRoad, etc.) from the request context
where a user gets stressed or requires mindless
movies. The gate mechanism in Equation 7 then
emphasizes a context-level user preference pcl ob-
tained from the pre-trained text-encoder than an
entity-level user preference pel in the case of no
mentioned entities. Thus, the user embedding con-
centrated on the context-level user preference pcl
enables CLICK to recommend 21JumpStreet from
the user’s first utterance in Figure 1.

1https://pytorch.org/
2https://github.com/pyg-team/pytorch_geometric
3https://huggingface.co/bert-base-uncased
4https://huggingface.co/gpt2
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Abstract

Large-scale language-agnostic sentence em-
bedding models such as LaBSE (Feng
et al., 2022) obtain state-of-the-art perfor-
mance for parallel sentence alignment. How-
ever, these large-scale models can suffer
from inference speed and computation over-
head. This study systematically explores
learning language-agnostic sentence embed-
dings with lightweight models. We demon-
strate that a thin-deep encoder can construct
robust low-dimensional sentence embeddings
for 109 languages. With our proposed distil-
lation methods, we achieve further improve-
ments by incorporating knowledge from a
teacher model. Empirical results on Tatoeba,
United Nations, and BUCC show the effec-
tiveness of our lightweight models. We re-
lease our lightweight language-agnostic sen-
tence embedding models LEALLA on Tensor-
Flow Hub.1

1 Introduction

Language-agnostic sentence embedding mod-
els (Artetxe and Schwenk, 2019b; Yang et al., 2020;
Reimers and Gurevych, 2020; Feng et al., 2022;
Mao et al., 2022) align multiple languages in a
shared embedding space, facilitating parallel sen-
tence alignment that extracts parallel sentences for
training translation systems (Schwenk et al., 2021).
Among them, LaBSE (Feng et al., 2022) achieves
the state-of-the-art parallel sentence alignment ac-
curacy over 109 languages. However, 471M pa-
rameters of LaBSE lead to the computationally-
heavy inference. The 768-dimensional sentence
embeddings of LaBSE (LaBSE embeddings) make
it suffer from computation overhead of downstream
tasks (e.g., kNN search). This limits its applica-
tion on resource-constrained devices. Therefore,

∗Currently at Kurohashi-Chu-Murawaki Lab., Kyoto Uni-
versity. Work done during Google internship.

1https://tfhub.dev/s?q=LEALLA

we explore training a lightweight model to gener-
ate low-dimensional sentence embeddings while
retaining the performance of LaBSE.

We first investigate the performance of
dimension-reduced LaBSE embeddings and show
that it performs comparably with LaBSE. Subse-
quently, we experiment with various architectures
to see whether such effective low-dimensional em-
beddings can be obtained from a lightweight en-
coder. We observe that the thin-deep (Romero et al.,
2015) architecture is empirically superior for learn-
ing language-agnostic sentence embeddings. Di-
verging from previous work, we show that low-
dimensional embeddings based on a lightweight
model are effective for parallel sentence alignment
of 109 languages.

LaBSE benefits from multilingual language
model pre-training, but no multilingual pre-trained
models are available for the lightweight architec-
tures. Thus, we propose two knowledge distillation
methods to further enhance the lightweight models
by forcing the model to extract helpful information
from LaBSE. We present three lightweight mod-
els improved with distillation: LEALLA-small,
LEALLA-base, and LEALLA-large, with 69M,
107M, and 147M parameters, respectively. Fewer
model parameters and their 128-d, 192-d, and 256-
d sentence embeddings are expected to accelerate
downstream tasks, while the performance drop of
merely up to 3.0, 1.3, and 0.3 P@1 (or F1) points is
observed on three benchmarks of parallel sentence
alignment. In addition, we show the effectiveness
of each loss function through an ablation study.

2 Background: LaBSE

LaBSE (Feng et al., 2022) fine-tunes dual encoder
models (Guo et al., 2018; Yang et al., 2019) to
learn language-agnostic embeddings from a large-
scale pre-trained language model (Conneau et al.,
2020). LaBSE is trained with parallel sentences,
and each sentence pair is encoded separately by
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a 12-layer Transformer encoder. The 768-d en-
coder outputs are used to compute the training
loss and serve as sentence embeddings for down-
stream tasks. Expressly, assume that the sentence
embeddings for parallel sentences in a batch are
{(xi,yi)}Ni=1 where N denotes the number of the
sentence pairs within a batch. LaBSE trains the
bidirectional additive margin softmax (AMS) loss:

Lams =
1

N

N∑

i=1

(L(xi,yi) + L(yi,xi)), (1)

where the loss for a specific sentence pair in a single
direction is defined as:

L(xi,yi) = − log
eφ(xi,yi)−m

eφ(xi,yi)−m +
∑

n6=i e
φ(xi,yn)

.

(2)
m is a margin for optimizing the separation be-
tween translations and non-translations. φ (xi,yi)
is defined as Cosine Similarity between xi and yi.

3 Light Language-agnostic Embeddings

To address the efficiency issue of LaBSE, we
probe the lightweight model for learning language-
agnostic embeddings with the following experi-
ments: (1) We directly reduce the dimension of
LaBSE embeddings to explore the optimal embed-
ding dimension; (2) We shrink the model size with
various ways to explore the optimal architecture.

3.1 Evaluation Settings
We employ Tatoeba (Artetxe and Schwenk, 2019b),
United Nations (UN) (Ziemski et al., 2016), and
BUCC (Pierre Zweigenbaum and Rapp, 2018)
benchmarks for evaluation, which assess the model
performance for parallel sentence alignment. Fol-
lowing Feng et al. (2022) and Artetxe and Schwenk
(2019b), we report the average P@1 of bidirec-
tional retrievals for all the languages of Tatoeba,
the average P@1 for four languages of UN, and
the average F1 of bidirectional retrievals for four
languages of BUCC.2 Refer to Appx. A for details.

3.2 Exploring the Optimal Dimension of
Language-agnostic Sentence Embeddings

Mao et al. (2021) showed that a 256-d bilingual
embedding space could achieve an accuracy of
about 90% for parallel sentence alignment. How-
ever, existing multilingual sentence embedding

2For BUCC, we use margin-based scoring (Artetxe and
Schwenk, 2019a) for filtering translation pairs.

768 512 384 256 192 128 64 32
Dimension of Sentence Embedding

75

80

85

90

P@
1 

or
 F

1 
(%

)

Tatoeba
UN
BUCC

Figure 1: Dimension reduction for LaBSE.

models such as LASER (2019b), SBERT (2020),
EMS (2022), and LaBSE use 768-d or 1024-d sen-
tence embeddings, and whether a low-dimensional
space can align parallel sentences over tens of lan-
guages with a solid accuracy (>80%) remains un-
known. Thus, we start with the dimension reduc-
tion experiments for LaBSE to explore the optimal
dimension of language-agnostic sentence embed-
dings.

We add an extra dense layer on top of LaBSE
to transform the dimension of LaBSE embeddings
from 768 to lower values. We experiment with
seven lower dimensions ranging from 512 to 32.
We fine-tune 5k steps for fitting the newly added
dense layer, whereas other parameters of LaBSE
are fixed. Refer to Appx. B for training details.

As shown in Fig. 1, the performance drops more
than 5 points when the dimension is 32 on Tatoeba,
UN, and BUCC. Meanwhile, given sentence em-
beddings with a dimension over 128, they performs
slightly worse than 768-d LaBSE embeddings with
a performance drop of fewer than 2 points, show-
ing that low-dimensional sentence embeddings can
align parallel sentences in multiple languages. Re-
fer to Appx. D for detailed results.

3.3 Exploring the Optimal Architecture

Although we revealed the effectiveness of the low-
dimensional embeddings above, it is generated
from LaBSE with 471M parameters. Thus, we
explore whether such low-dimensional sentence
embeddings can be obtained from an encoder with
less parameters. We first reduce the number of
layers (#1 and #2 in Table 1) and the size of hid-
den states (#3 and #4) to observe the performance.
Subsequently, inspired by the effectiveness of Fit-
Net (Romero et al., 2015) and MobileBERT (Sun
et al., 2020) and taking advantage of the low-
dimensional sentence embeddings shown above,
we experiment with thin-deep architectures with 24
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# L dh H P PE Tatoeba UN BUCC
LaBSE
0 12 768 12 471M 85M 83.7 89.6 93.1
Fewer Layers
1 6 768 12 428M 42M 82.9 88.6 91.9
2 3 768 12 407M 21M 82.2 87.5 91.2
Smaller Hidden Size
3 12 384 12 214M 21M 82.6 88.4 92.1
4 12 192 12 102M 6M 81.0 87.0 91.3
Thin-deep Architecture
5 24 384 12 235M 42M 83.2 88.6 92.4
6 24 256 8 147M 19M 82.9 88.5 92.2
7 24 192 12 107M 11M 81.7 87.4 91.9
8 24 128 8 69M 5M 80.3 86.3 90.4

Table 1: Results of LaBSE variants. L, dh, H, P, and
PE denote the number of layers, dimension of hidden
states, number of attention heads, number of parame-
ters, and number of encoder parameters (except for the
word embedding layer). Refer to Appx. E for detailed
results.

layers (#5 - #8), leading to fewer encoder parame-
ters.3 Refer to Appx. B for training details.

We report the results in Table 1. First, architec-
tures with fewer layers (#1 and #2) perform worse
than LaBSE on all three tasks and can only decrease
parameters by less than 15%. Second, increasing
the number of layers (#5 and #7) improves the per-
formance of 12-layer models (#3 and #4) with a lim-
ited parameter increase less than 10%. Referring
to LaBSE (#0), low-dimensional embeddings from
thin-deep architectures (#5 - #8) obtain solid results
on three benchmarks with performance drops of
only 3.4 points at most. Until this point, we showed
that thin-deep architecture is effective for learning
language-agnostic sentence embeddings.

4 Knowledge Distillation from LaBSE

Besides the large model capacity, multilingual
language model pre-training benefits LaBSE for
parallel sentence alignment. As no multilin-
gual pre-trained language models are available for
lightweight models we investigated in Section 3.3,
we instead explore extracting helpful knowledge
from LaBSE.

4.1 Methodology

Feature distillation and logit distillation have been
proven to be effective paradigms for knowledge dis-
tillation (Hinton et al., 2015; Romero et al., 2015;
Yim et al., 2017; Tang et al., 2019). In this section,

3Following MobileBERT, we attempted architectures that
have an identical size for hidden state and feed-forward hidden
state, but it works poorly than #5 - #8. (Refer to Appx. E)

Logit distillation
Feature distillation

768-d 
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Matrix

X
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Embedding Pairs
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Sentence Sentence 5 Sentence 
Pairs

5 Sentence 
Pairs

Assume that batch size N is 5.

Figure 2: Feature and logit distillation from LaBSE.

we propose methods applying both paradigms to
language-agnostic sentence embedding distillation.
We use LaBSE as a teacher to train students with
thin-deep architectures which were discussed in
Section 3.3.
Feature Distillation We propose applying fea-
ture distillation to language-agnostic sentence em-
bedding distillation, which enables lightweight
sentence embeddings to approximate the LaBSE
embeddings via an extra dense layer. We em-
ploy an extra trainable dense layer on top of the
lightweight models to unify the embedding dimen-
sion of LaBSE and lightweight models to be 768-d,
as illustrated in Fig. 2.45 The loss function is de-
fined as follows:

Lfd = 1
N

∑N
i=1(‖ xti − f(xsi ) ‖22 + ‖ yti − f(ysi ) ‖22),

(3)
where xt (or yt) and xs (or ys) are the embeddings
by LaBSE and the lightweight model, respectively.
f(·) is a trainable dense layer transforming the
dimension from d (d < 768) to 768.
Logit Distillation We also propose applying logit
distillation to language-agnostic sentence embed-
ding distillation to extract knowledge from the sen-
tence similarity matrix as shown in Fig. 2. Logit
distillation forces the student to establish similar
similarity relationships between the given sentence
pairs as the teacher does. We propose the following

4SBERT (2020) used feature distillation to make mono-
lingual sentence embeddings multilingual, but distillation be-
tween different embedding dimensions has not been studied.

5We investigated another two patterns to unify the embed-
ding dimensions in Appx. C, but they performed worse.
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Model La. d P Ttb. UN BUCC
es fr ru zh avg. de fr ru zh avg.

LASER (2019b) 93 1024 154M 65.5 - - - - - 95.4 92.4 92.3 91.7 93.0
m-USE (2020) 16 512 85M - 86.1 83.3 88.9 78.8 84.3 88.5 86.3 89.1 86.9 87.7
SBERT (2020) 50 768 270M 67.1 - - - - - 90.8 87.1 88.6 87.8 88.6
EMS (2022) 62 1024 148M 69.2 - - - - - 93.3 90.2 91.3 92.1 91.7
LaBSE (2022) 109 768 471M 83.7 90.8 89.0 90.4 88.3 89.6 95.5 92.3 92.2 92.5 93.1
LEALLA-small 109 128 69M 80.7 89.4 86.0 88.7 84.9 87.3 94.0 90.6 91.2 90.3 91.5
LEALLA-base 109 192 107M 82.4 90.3 87.4 89.8 87.2 88.7 94.9 91.4 91.8 91.4 92.4
LEALLA-large 109 256 147M 83.5 90.8 88.5 89.9 87.9 89.3 95.3 92.0 92.1 91.9 92.8

Table 2: Results of LEALLA. We mark the best 3 scores in bold. La., d, P, and Ttb. indicate the number of
languages, dimension of sentence embeddings, number of parameters, and Tatoeba.

small on Tatoeba
base on Tatoeba

large on Tatoeba
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Figure 3: LEALLA with different loss combinations.
AMS, FD, and LD mean Lams, Lfd, and Lld.

mean squared error (MSE) loss:

Lld = 1
N2

∑N
i=1

∑N
j=1

((
φ
(
xti,y

t
j

)
− φ

(
xsi ,y

s
j

))
/T
)2
,

(4)
where T is a distillation temperature, and other
notations follow those in Eq. 2 and 3.
Combined Loss Finally, we combine two knowl-
edge distillation loss functions with the AMS loss
(Eq. 1) to jointly train the lightweight model:

Llealla = αLams + βLfd + γLld. (5)

Here α, β, and γ are weight hyperparameters,
which are tuned with the development data.

4.2 Experiments

Training We train three models, LEALLA-small,
LEALLA-base, and LEALLA-large, using the
thin-deep architectures of #8, #7, and #6 in Table 1
and the training loss of Eq. 5. Refer to Appx. B for
training and hyperparameter details.
Results The results of LEALLA on Tatoeba, UN,
and BUCC benchmarks are presented in Table 2.
Overall, LEALLA can yield competitive perfor-
mance compared with previous work. LEALLA-
large performs comparably with LaBSE, where the

Loss LEALLA-small LEALLA-base LEALLA-large
Tatoeba UN Tatoeba UN Tatoeba UN

all 80.7 87.3 82.4 88.7 83.5 89.3
Lams 80.3 86.3 81.7 87.4 82.9 88.5
Lfd 78.2 85.2 81.1 88.1 82.4 88.1
Lld 75.1 2.3 80.6 63.1 82.3 84.1

Table 3: Results of LEALLA with each loss function.
“all” denotes LEALLA without ablation (with all the
loss functions).

average performance difference on three tasks is
below 0.3 points. LEALLA-base and LEALLA-
small obtain strong performance for high-resource
languages on UN and BUCC, with a performance
decrease less than 0.9 and 2.3 points, respectively.
They also achieve solid results on Tatoeba with 1.3
and 3 points downgrades compared with LaBSE.
The solid performance of LEALLA on Tatoeba
demonstrates that it is effective for aligning parallel
sentences for more than 109 languages. Moreover,
all the LEALLA models perform better or compa-
rably with previous studies other than LaBSE.

Ablation Study We inspect the effectiveness of
each loss component in an ablative manner. First,
we compare settings with and without distillation
loss functions. As shown in Fig. 3, by adding
Lfd or Lld, LEALLA trained only with Lams is
improved on Tatoeba and UN tasks. By further
combining Lfd and Lld, LEALLA consistently
achieves superior performance. Second, we sepa-
rately train LEALLA with each loss. Referring to
the results reported in Table 3, LEALLA trained
only with Lfd yields solid performance in the
“small” and “base” models compared with Lams,
showing that distillation loss benefits parallel sen-
tence alignment. Lfd and Lld perform much worse
in the “small” model, which may be attributed
to the discrepancy in the capacity gaps between
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the teacher model (LaBSE) and the student model
(“small” or “base”).6 Refer to Appx. F for all de-
tailed results in this section.

5 Conclusion

We presented LEALLA, a lightweight model for
generating low-dimensional language-agnostic sen-
tence embeddings. Experimental results showed
that LEALLA could yield solid performance for
109 languages after distilling knowledge from
LaBSE. Future work can focus on reducing the
vocabulary size of LaBSE to shrink the model fur-
ther and exploring the effectiveness of lightweight
model pre-training for parallel sentence alignment.

Limitations

In this study, we used the same training data as
LaBSE (refer to Fig. 7 of (Feng et al., 2022)),
where more training data for high-resource lan-
guages may cause the biased model accuracy for
those languages. Second, evaluation for low-
resource languages in this study depended only on
the Tatoeba benchmark, which contains only 1,000
positive sentence pairs for each language with En-
glish. The same limitation exists in all the related
work, such as LaBSE and LASER. Further evalua-
tion for low-resource languages will be necessary
in the future once larger evaluation benchmarks, in-
cluding over 100k gold parallel sentences for low-
resource languages, are available. Third, all the
training data used in this work are English-centric
sentence pairs, which may result in the inferior
model performance for aligning parallel sentences
between non-English language pairs.

Acknowledgements

We would like to thank our colleagues from Trans-
late, Descartes, and other Google teams for their
valuable contributions and feedback. A special
mention to Fangxiaoyu Feng, Shuying Zhang, Gus-
tavo Hernandez Abrego, and Jianmon Ni for their
support in sharing information on LaBSE, and pro-
viding training data, expertise on language-agnostic
sentence embeddings, and assistance with evalua-
tion. We would also like to thank the reviewers for
their insightful comments for improving the paper.

6Lld can hardly work for UN and BUCC as they con-
tain hundreds of thousands of candidates for the model to
score, which is more complicated than the 1,000 candidates
of Tatoeba.

References
Mikel Artetxe and Holger Schwenk. 2019a. Margin-

based parallel corpus mining with multilingual sen-
tence embeddings. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 3197–3203, Florence, Italy. Asso-
ciation for Computational Linguistics.

Mikel Artetxe and Holger Schwenk. 2019b. Mas-
sively multilingual sentence embeddings for zero-
shot cross-lingual transfer and beyond. Transac-
tions of the Association for Computational Linguis-
tics, 7:597–610.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen
Arivazhagan, and Wei Wang. 2022. Language-
agnostic BERT sentence embedding. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 878–891, Dublin, Ireland. Association
for Computational Linguistics.

Mandy Guo, Qinlan Shen, Yinfei Yang, Heming
Ge, Daniel Cer, Gustavo Hernandez Abrego, Keith
Stevens, Noah Constant, Yun-Hsuan Sung, Brian
Strope, and Ray Kurzweil. 2018. Effective parallel
corpus mining using bilingual sentence embeddings.
In Proceedings of the Third Conference on Machine
Translation: Research Papers, pages 165–176, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531.

Ilya Loshchilov and Frank Hutter. 2019. Decou-
pled weight decay regularization. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Zhuoyuan Mao, Chenhui Chu, and Sadao Kurohashi.
2022. EMS: efficient and effective massively mul-
tilingual sentence representation learning. CoRR,
abs/2205.15744.

Zhuoyuan Mao, Prakhar Gupta, Chenhui Chu, Mar-
tin Jaggi, and Sadao Kurohashi. 2021. Lightweight
cross-lingual sentence representation learning. In
Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages

1890

https://doi.org/10.18653/v1/P19-1309
https://doi.org/10.18653/v1/P19-1309
https://doi.org/10.18653/v1/P19-1309
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.18653/v1/W18-6317
https://doi.org/10.18653/v1/W18-6317
http://arxiv.org/abs/1503.02531
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.48550/arXiv.2205.15744
https://doi.org/10.48550/arXiv.2205.15744
https://doi.org/10.18653/v1/2021.acl-long.226
https://doi.org/10.18653/v1/2021.acl-long.226


2902–2913, Online. Association for Computational
Linguistics.

Serge Sharoff Pierre Zweigenbaum and Reinhard Rapp.
2018. Overview of the third bucc shared task: Spot-
ting parallel sentences in comparable corpora. In
Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Paris, France. European Language Resources
Association (ELRA).

Nils Reimers and Iryna Gurevych. 2020. Making
monolingual sentence embeddings multilingual us-
ing knowledge distillation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4512–4525,
Online. Association for Computational Linguistics.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Ka-
hou, Antoine Chassang, Carlo Gatta, and Yoshua
Bengio. 2015. Fitnets: Hints for thin deep nets. In
3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings.

Holger Schwenk, Vishrav Chaudhary, Shuo Sun,
Hongyu Gong, and Francisco Guzmán. 2021. Wiki-
Matrix: Mining 135M parallel sentences in 1620
language pairs from Wikipedia. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics: Main
Volume, pages 1351–1361, Online. Association for
Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. MobileBERT:
a compact task-agnostic BERT for resource-limited
devices. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2158–2170, Online. Association for Computa-
tional Linguistics.

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019. Distilling task-
specific knowledge from BERT into simple neural
networks. CoRR, abs/1903.12136.

Yinfei Yang, Gustavo Hernández Ábrego, Steve Yuan,
Mandy Guo, Qinlan Shen, Daniel Cer, Yun-Hsuan
Sung, Brian Strope, and Ray Kurzweil. 2019. Im-
proving multilingual sentence embedding using bi-
directional dual encoder with additive margin soft-
max. In Proceedings of the Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence, IJ-
CAI 2019, Macao, China, August 10-16, 2019, pages
5370–5378. ijcai.org.

Yinfei Yang, Daniel Cer, Amin Ahmad, Mandy
Guo, Jax Law, Noah Constant, Gustavo Hernan-
dez Abrego, Steve Yuan, Chris Tar, Yun-hsuan Sung,
Brian Strope, and Ray Kurzweil. 2020. Multilingual
universal sentence encoder for semantic retrieval.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics: System
Demonstrations, pages 87–94, Online. Association
for Computational Linguistics.

Junho Yim, Donggyu Joo, Ji-Hoon Bae, and Junmo
Kim. 2017. A gift from knowledge distillation:
Fast optimization, network minimization and trans-
fer learning. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, Hon-
olulu, HI, USA, July 21-26, 2017, pages 7130–7138.
IEEE Computer Society.

Michał Ziemski, Marcin Junczys-Dowmunt, and Bruno
Pouliquen. 2016. The United Nations parallel
corpus v1.0. In Proceedings of the Tenth Inter-
national Conference on Language Resources and
Evaluation (LREC’16), pages 3530–3534, Portorož,
Slovenia. European Language Resources Associa-
tion (ELRA).

A Evaluation Benchmarks

Tatoeba (Artetxe and Schwenk, 2019b) supports the
evaluation across 112 languages and contains up to
1,000 sentence pairs for each language and English.
The languages of Tatoeba that are not included in
the training data of LaBSE and LEALLA serve as
the evaluation for unseen languages. UN (Ziemski
et al., 2016) is composed of 86,000 aligned bilin-
gual documents for en-ar, en-es, en-fr, en-ru, and
en-zh. Following Feng et al. (2022), we evaluate
the model performance for es, fr, ru, and zh on the
UN task. There are about 9.5M sentence pairs for
each language with English after deduping. BUCC
shared task (Pierre Zweigenbaum and Rapp, 2018)
is a benchmark to mine parallel sentences from
comparable corpora. We conduct the evaluation us-
ing BUCC2018 tasks for en-de, en-fr, en-ru, and en-
zh, following the setting of Reimers and Gurevych
(2020).7 For the results of LaBSE reported in Ta-
ble 2, we re-conduct the evaluation experiments
using the open-sourced model of LaBSE.8

B Training Details

All of the models in this work are trained with
the same training data and development data as
LaBSE (Feng et al., 2022). Refer to Section 3.1 and

7https://github.com/UKPLab/
sentence-transformers/blob/master/examples/
applications/parallel-sentence-mining/bucc2018.
py

8https://tfhub.dev/google/LaBSE
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Model Tatoeba UN BUCC
es fr ru zh avg. de fr ru zh avg.

LEALLA-small
Lams 80.3 88.1 85.2 88.0 83.9 86.3 93.0 89.7 90.6 88.3 90.4
Lams + Lfd 80.6 89.3 86.8 88.0 84.0 87.0 93.9 90.6 91.4 89.7 91.4
Lams + Ldf 80.0 89.4 86.3 88.1 83.9 86.9 93.8 90.1 91.1 88.9 91.0
Lams + Lsyn 80.2 88.5 85.0 87.1 82.8 85.9 93.6 89.9 90.9 88.7 90.8
LEALLA-base
Lams 81.7 89.8 85.9 88.6 85.4 87.4 94.2 91.0 91.3 91.1 91.9
Lams + Lfd 82.2 90.2 87.5 89.4 86.8 88.5 95.0 91.6 91.7 91.0 92.3
Lams + Ldf 81.8 90.0 87.3 89.2 86.3 88.2 94.7 91.4 91.7 90.9 92.2
Lams + Lsyn 81.9 89.7 86.7 88.8 85.9 87.8 94.5 91.1 91.7 90.3 91.9
LEALLA-large
Lams 82.9 90.1 87.1 89.3 87.4 88.5 94.6 91.2 91.5 91.4 92.2
Lams + Lfd 83.4 90.6 88.4 89.8 87.7 89.1 95.3 92.0 92.0 92.0 92.8
Lams + Ldf 83.0 90.3 87.6 89.7 87.2 88.7 95.3 91.9 92.0 91.7 92.7
Lams + Lsyn 83.0 90.0 87.4 89.7 86.8 88.5 94.9 91.7 91.8 91.4 92.5

Table 4: Results of comparisons among three feature distillation objectives. Ldf and Lsyn indicate “Distillation-
first” and “Synchronized” objectives in Fig. 4.

Hyperparameter Bound

α 1
β 1e02, 1e03, 1e04, 1e05
γ 1e-01, 1e-02, 1e-03
batch size 2,048, 4,096, 8,192
learning rate 1e-4, 5e-4, 1e-3

Table 5: Hyperparameter bounds.

Appx. C of Feng et al. (2022) for dataset and sup-
ported language details. We train models on Cloud
TPU V3 with 32-cores with a global batch size of
8,192 sentences and a maximum sequence length
of 128. For a fair comparison with LaBSE for more
than 109 languages, we use the 501k vocabulary of
LaBSE (trained with BPE (Sennrich et al., 2016))
and do not consider modifying its size in this work.
We employ AdamW (Loshchilov and Hutter, 2019)
for optimizing the model using the initial learning
rate of 1e-03 for models with a hidden state size
larger than 384 and 5e-04 for models with a hidden
state size smaller than 256. For LEALLA-small
and LEALLA-base, α, β, and γ are set as 1, 1e03
and 1e-02. For LEALLA-large, they are set as 1,
1e04, and 1e-02, respectively. T in Eq. 4 is set to
100. All the models in Section 3.2 are trained for
5k steps. Models in Secton 3.3 and Section 4 with
a hidden state size over 256 are trained for 200k
steps, and those with a hidden state size below 192
are trained for 100k steps. It costs around 24 hours,
36 hours, and 48 hours to train LEALLA-small,
LEALLA-base, and LEALLA-large, respectively.
Hyperparameters are tuned using a held-out devel-
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Figure 4: Another two patterns of feature distillation.

opment dataset following Feng et al. (2022) with
a grid search. The bounds tuned for each hyperpa-
rameter are shown in Table 5.

C Discussion about Feature Distillation

We additionally investigate another two patterns
for feature distillation. As illustrated in Fig. 4,
“Distillation-first” modifies the position for comput-
ing the MSE loss compared with Lfd of Eq. 3. The
[CLS] pooler within the LEALLA encoder is used
to generate 768-d embeddings first. A dense layer
is employed to transform the 768-d embeddings
to low-dimension after calculating the MSE loss.
“Synchronized” transforms the LaBSE embeddings
to low-dimension, then the MSE loss is constructed
between two low-dimensional embeddings. As
the MSE loss is computed simultaneously with the
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Dimension Tatoeba UN BUCC
es fr ru zh avg. de fr ru zh avg.

768 (LaBSE) 83.7 90.8 89.0 90.4 88.3 89.6 95.5 92.3 92.2 92.5 93.1
512 83.7 90.1 88.1 89.7 87.4 88.8 95.4 92.1 92.0 92.4 93.0
384 83.7 90.1 88.1 89.6 87.4 88.8 95.5 92.0 92.0 92.6 93.0
256 83.6 90.3 87.9 89.2 87.4 88.7 95.3 92.0 92.1 92.2 92.9
192 83.4 89.8 87.5 89.5 87.0 88.5 95.2 91.9 91.9 92.2 92.8
128 83.1 89.2 86.9 88.6 85.9 87.7 95.1 91.4 91.8 91.6 92.5
64 81.8 88.4 84.4 87.3 83.8 86.0 93.9 89.8 90.7 88.9 90.8
32 78.4 82.7 74.8 80.4 73.7 77.9 87.1 81.5 84.1 75.5 82.1

Table 6: Results of the dimension-reduced LaBSE embeddings.

# L dh dff H P PE Tatoeba UN BUCC
es fr ru zh avg. de fr ru zh avg.

LaBSE
0 12 768 3072 12 471M 85M 83.7 90.8 89.0 90.4 88.3 89.6 95.5 92.3 92.2 92.5 93.1
Fewer Layers
1 6 768 3072 12 428M 42M 82.9 90.2 87.4 89.2 87.4 88.6 94.3 90.9 91.2 91.1 91.9
2 3 768 3072 12 407M 21M 82.2 89.4 86.1 88.0 86.5 87.5 93.7 90.1 90.8 90.1 91.2
Smaller Hidden Size
3 12 384 1536 12 214M 21M 82.6 90.1 86.9 89.6 87.0 88.4 94.4 91.2 91.4 91.3 92.1
4 12 192 768 12 102M 6M 81.0 89.4 85.6 88.1 85.0 87.0 93.6 90.4 91.1 89.9 91.3
Thin-deep Architecture
5 24 384 1536 12 235M 42M 83.2 90.6 87.3 89.2 87.4 88.6 94.7 91.5 91.6 91.9 92.4
6 24 256 1024 8 147M 19M 82.9 90.1 87.1 89.3 87.4 88.5 94.6 91.2 91.5 91.4 92.2
7 24 192 768 12 107M 11M 81.7 89.8 85.9 88.6 85.4 87.4 94.2 91.0 91.3 91.1 91.9
8 24 128 512 8 69M 5M 80.3 88.1 85.2 88.0 83.9 86.3 93.0 89.7 90.6 88.3 90.4
9 24 64 256 8 33M 1M 75.2 83.7 78.6 83.0 72.1 79.4 87.9 83.0 86.0 75.1 83.0
MobileBERT-like Thin-deep Architecture
10 24 256 256 4 138M 10M 82.1 89.4 86.5 88.4 86.5 87.7 94.1 91.0 91.0 91.7 92.0
11 24 192 192 4 102M 6M 81.0 89.0 85.4 88.5 85.3 87.1 93.8 90.3 91.0 89.9 91.3
12 24 128 128 4 66M 2M 79.7 88.1 84.1 87.6 83.3 85.8 92.6 88.8 90.4 87.6 89.9

Table 7: Results of thin-deep and MobileBERT-like architectures. L, dh, dff , H, P, and PE indicate the number
of layers, dimension of hidden states, dimension of feed-forward hidden states, number of attention heads, number
of model parameters, and number of encoder parameters (except for the word embedding layer).

AMS loss, it is denoted as “Synchronized”. For
“Synchronized”, it requires a fixed dense layer to
conduct the dimension reduction for the LaBSE
embeddings, for which we utilize the pre-trained
model introduced in Section 3.2. We denote these
two patterns of feature distillation as Ldf and Lsyn.

As reported in Table 4, Lams + Lfd (Lfd is fea-
ture distillation introduced in the main text) consis-
tently outperforms Lams + Ldf and Lams + Lsyn
in all the three LEALLA models. Lams + Ldf
and Lams + Lsyn perform comparably on Tatoeba
with the models trained without distillation loss.
Lams + Ldf obtains performance gains for high-
resource languages on UN and BUCC compared
with Lams, but still underperforms Lams + Lfd.

Ldf forces the lightweight model to approximate
the teacher embeddings first in the intermediate part
of the model, on top of which the low-dimensional

sentence embeddings are generated for computing
the AMS loss, while Lfd (Eq. 3) is calculated after
computing the AMS loss. As the AMS loss directly
indicates the evaluation tasks, we suppose Lfd is a
more flexible objective for feature distillation. In
addition, Lsyn is not beneficial because it depends
on a dimension-reduced LaBSE, which is a less
robust teacher compared with LaBSE.

D Results of Dimension-reduction
Experiments

We report all the results of Section 3.2 in Table 6.

E Results of Thin-deep and
MobileBERT-like Architectures

Table 7 presents the detailed results of each ar-
chitecture we explored in Section 3.3. Besides
showing the results for each language on UN and
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Model Tatoeba UN BUCC
es fr ru zh avg. de fr ru zh avg.

LEALLA-small
Lams 80.3 88.1 85.2 88.0 83.9 86.3 93.0 89.7 90.6 88.3 90.4
Lfd 78.2 89.0 84.6 87.5 79.6 85.2 94.2 90.5 91.2 88.9 91.2
Lld 75.1 1.5 1.1 0.9 5.6 2.3 0.1 0.0 0.1 0.0 0.1
Lams + Lfd 80.6 89.3 86.8 88.0 84.0 87.0 93.9 90.6 91.4 89.7 91.4
Lams + Lld 80.6 89.6 85.8 88.6 84.4 87.1 94.1 90.3 91.2 90.0 91.4
Lams + Lfd + Lld 80.7 89.4 86.0 88.7 84.9 87.3 94.0 90.6 91.2 90.3 91.5
LEALLA-base
Lams 81.7 89.8 85.9 88.6 85.4 87.4 94.2 91.0 91.3 91.1 91.9
Lfd 81.1 90.2 87.3 89.4 85.5 88.1 95.0 91.6 91.8 91.3 92.4
Lld 80.6 66.3 49.4 51.0 85.7 63.1 57.5 80.1 60.6 88.6 71.7
Lams + Lfd 82.2 90.2 87.5 89.4 86.8 88.5 95.0 91.6 91.7 91.0 92.3
Lams + Lld 82.3 90.0 87.5 89.2 86.8 88.4 94.8 91.3 91.6 91.4 92.3
Lams + Lfd + Lld 82.4 90.3 87.4 89.8 87.2 88.7 94.9 91.4 91.8 91.4 92.4
LEALLA-large
Lams 82.9 90.1 87.1 89.3 87.4 88.5 94.6 91.2 91.5 91.4 92.2
Lfd 82.4 89.8 87.2 89.4 86.1 88.1 95.3 91.8 92.0 92.2 92.8
Lld 82.3 87.2 78.8 83.3 86.9 84.1 88.4 87.4 86.9 91.8 88.6
Lams + Lfd 83.4 90.6 88.4 89.8 87.7 89.1 95.3 92.0 92.0 92.0 92.8
Lams + Lld 83.4 90.6 87.9 90.0 87.7 89.1 95.3 91.8 91.7 92.4 92.8
Lams + Lfd + Lld 83.5 90.8 88.5 89.9 87.9 89.3 95.3 92.0 92.1 91.9 92.8

Table 8: Results of LEALLA with different loss functions and loss combinations.

BUCC for models #0 - #8, we provide the results
of a further smaller thin-deep architecture (#9) and
MobileBERT-like (Sun et al., 2020) thin-deep ar-
chitectures (#10 - #12). The 64-d thin-deep archi-
tecture contains only 33M parameters. However,
its performance on three evaluation benchmarks
downgrades by up to 7.4 points compared with #5 -
#8, which demonstrates that 128-d may be a lower
bound as universal sentence embeddings for align-
ing parallel sentences for 109 languages. Moreover,
#10 - #12 show the results of MobileBERT-like
architectures whose feed-forward hidden size is
identical to hidden size. They have fewer param-
eters than #5 - #8, but they perform worse than
#5 - #8, respectively (e.g., compare #10 with #6).
Therefore, we did not employ MobileBERT-like
architectures for LEALLA.

F Results of Ablation Study

We report all the results of the ablation study (Sec-
tion 4.2) in Table 8.
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Abstract

Integrating human feedback in models can im-
prove the performance of natural language pro-
cessing (NLP) models. Feedback can be either
explicit (e.g. ranking used in training language
models) or implicit (e.g. using human cognitive
signals in the form of eyetracking). Prior eye
tracking and NLP research reveal that cognitive
processes, such as human scanpaths, gleaned
from human gaze patterns aid in the understand-
ing and performance of NLP models. However,
the collection of real eyetracking data for NLP
tasks is challenging due to the requirement
of expensive and precise equipment coupled
with privacy invasion issues. To address this
challenge, we propose ScanTextGAN, a novel
model for generating human scanpaths over
text. We show that ScanTextGAN-generated
scanpaths can approximate meaningful cogni-
tive signals in human gaze patterns. We include
synthetically generated scanpaths in four pop-
ular NLP tasks spanning six different datasets
as proof of concept and show that the models
augmented with generated scanpaths improve
the performance of all downstream NLP tasks.

1 Introduction

Integrating human signals with deep learning mod-
els has been beginning to catch up in the last few
years. Digital traces of human cognitive processing
can provide valuable signals for Natural Language
Processing (Klerke et al., 2016a; Plank, 2016). Var-
ious approaches for integrating human signals have
been explored. For example, human feedback for
better decisioning (Christiano et al., 2017), NLP
tasks (Stiennon et al., 2020; Wu et al., 2021), and
most recently language modeling using reinforce-
ment learning with human feedback (RLHF) based
reward (Bai et al., 2022; Ouyang et al., 2022).
RLHF involves explicit human feedback and is
expensive and hard to scale. On the other hand, pre-
vious studies have also tried to use implicit human

∗ Equal Contribution

Investors     seem     bullish     about     the     stock     market.

SENTIMENT: Positive

I    work    40    hours    a     week     to     be     this     poor.

SARCASM: Present

The   author    is    one   of   several   defense   experts   expected   to   testify.

Spitz     is     expected     to     testify     later     for     the     defense.

PARAPHRASE: True

Figure 1: Generated scanpaths over text samples taken from
various natural language processing (NLP) tasks. The green
circles denote the important words characteristic of that task.
The circles’ size denotes the fixation duration, and the arrows
depict the saccadic movements. As can be seen, linguisti-
cally important words often have a higher fixation duration
and revisit. Regressions (word revisits) also appear in the
examples.

feedback in the form of eyetracking signals. It has
proven to be a useful signal for inferring human
cognitive processing (Sood et al., 2020; Hollen-
stein and Zhang, 2019; Mathias et al., 2020). NLP
researchers have focused on assessing the value
of gaze information extracted from large, mostly
dis-jointly labeled gaze datasets in recurrent neu-
ral network models (Ren and Xiong, 2021; Strzyz
et al., 2019; Barrett et al., 2018a). The proposed
approaches under this paradigm include gaze as an
auxiliary task in multi-task learning (Klerke et al.,
2016b; Hollenstein et al., 2019), as additional sig-
nals (Mishra et al., 2016b), as word embeddings
(Barrett et al., 2018b), as type dictionaries (Barrett
et al., 2016a; Hollenstein and Zhang, 2019), and as
attention (Barrett et al., 2018a).

Previous studies demonstrate that human scan-
paths (temporal sequences of eye fixations, see
Fig. 1) gleaned from eye tracking data improve the
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Figure 2: (Intent-aware) Scanpath samples generated by
conditioning scanpath generation on different downstream
natural language tasks. Note that the conditioned scanpaths
are heavily biased to words important for that downstream
task.

performance of NLP models. However, the real-
world application of these methods remains limited
primarily due to the cost of precise eye-tracking
equipment, users’ privacy concerns, and manual
labor associated with such a setup. Therefore, gen-
erating scanpaths from existing eyetracking cor-
pora would add great value to NLP research. To
the best of our knowledge, this is the first paper
to propose a model that generates scanpaths for a
given read text with good accuracy. We call the
model, ScanTextGAN.

We demonstrate the scanpath generation capa-
bility of ScanTextGAN over three eye-tracking
datasets using multiple evaluation metrics. Fur-
ther, we evaluate the utility of generated scanpaths
for improvements in the performance of multiple
NLP tasks (see Figs. 1,2) including the ones in the
GLUE benchmark (Wang et al., 2018). The gener-
ated scanpaths achieve similar performance gains
as the models trained with real scanpaths for classic
NLP tasks like sentiment classification, paraphrase
detection, entailment, and sarcasm detection.

Our contributions are threefold:
1. We propose ScanTextGAN, the first scanpath
generator over text.
2. We compare ScanTextGAN with multiple base-
lines and conduct ablation experiments with vary-
ing models and configurations. The model per-
forms well on the test sets and cross-domain gen-
eralization on two additional eyetracking datasets
belonging to different text domains.
3. We tested the usefulness of generated scanpaths
in downstream NLP tasks such as sentiment anal-
ysis, paraphrase detection, and sarcasm detection
on six different datasets. The results show that

the downstream NLP tasks benefited significantly
from cognitive signals inherent in generated scan-
paths. Further, we show how scanpaths change
when finetuning with downstream natural language
tasks (Figs.2,6) and that they lead to further im-
provements in downstream task performance (§4.3)
showing how they can act as additional controls
beyond the task architecture.

2 Related Work

When reading a text, humans do not focus on every
word and often do not read sequentially (Just and
Carpenter, 1980). A series of studies in psycho-
linguistics have shown that the number of fixations
and the fixation duration on a word depend on sev-
eral linguistic factors. The linguistic factors can
also be determined given the cognitive features
(Clifton Jr et al., 2007; Demberg and Keller, 2008).
Though advances in ML architecture have helped
bring machine comprehension closer to human per-
formance, humans are still superior for most NLP
tasks (Blohm et al., 2018; Xia et al., 2019).

It has been shown in the literature that integrat-
ing explicit (Bai et al., 2022; Ouyang et al., 2022)
and implicit (cognitive processing) human feed-
back signals in traditional ML models is expected
to improve their performance (Just and Carpen-
ter, 1980). However, the cost of explicit feedback
(e.g., using MTurk) and implicit feedback (e.g.,
eye tracking) at scale is excessively high. Similarly,
privacy-invasive eye-tracking processes limit the
scope of this idea. One way to address this prob-
lem is to use generated eye movements to unfold
the full potential of eye-tracking research. Hence,
the idea is to architect ScanTextGAN, a scanpath
generator for text reading, and test its usefulness in
downstream NLP tasks.

More precisely, this work builds upon previous
works on 1) human attention modeling and 2) gaze
integration in neural network architectures, which
are described as follows:

Human Attention Modeling: Predicting what
people visually attend to in images (saliency predic-
tion) is a long-standing challenge in neuroscience
and computer vision, the fields have seen many
data-based models (Wang et al., 2021). In contrast
to images, most attention models for eye move-
ment behaviors during reading are cognitive pro-
cess models, i.e., models that do not involve ma-
chine learning but implement cognitive theories
(Engbert et al., 2005; Xia et al., 2019). Key chal-
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lenges for such models are a limited number of
parameters and hand-crafted rules. Thus, it is diffi-
cult to adapt them to different tasks and domains
and use them as part of end-to-end trained ML
architectures (Kotseruba and Tsotsos, 2020). In
contrast, learning-based attention models for text
remain under-explored. Within that, all eye track-
ing models are saliency prediction models with
non-existent work in predicting scanpaths. On the
other hand, visual scanpaths generation for image-
based eye tracking data has been recently explored
for both traditional (Assens et al., 2019) and 360◦

images (Martin et al., 2022).

Matthies and Søgaard (2013) presented the first
fixation prediction work for text. They built a
person-independent model using a linear Condi-
tional Random Fields (CRF) model. Hahn and
Keller (2016) designed the Neural Attention Trade-
off (NEAT) language model, which was trained
with hard attention and assigned a cost to each fixa-
tion. Other approaches include sentence representa-
tion learning using surprisal and part of speech tags
as proxies to human attention (Wang et al., 2017).

Our work differs from previous studies as we
combine cognitive theory and data-driven ap-
proaches to predict scanpaths and further show its
application in downstream NLP tasks (Hollenstein
et al., 2021b,a).

Integrating Gaze in Network Architecture: In-
tegration of human gaze data into neural network
architectures has been explored for a range of com-
puter vision tasks such as image captioning, visual
question answering, and tagging (Karessli et al.,
2017; Yu et al., 2017; He et al., 2019; Boyd et al.,
2022). Hence, recent research has utilized features
gleaned from readers’ eye movement to improve
the performance of complex NLP tasks such as sen-
timent analysis (Long et al., 2017; Mishra et al.,
2016c), sarcasm detection (Mishra et al., 2016b),
part-of-speech tagging (Barrett et al., 2016b), NER
(Hollenstein and Zhang, 2019), and text difficulty
(Reich et al., 2022).

While in recent years, eye tracking data has been
used to improve and evaluate NLP models, the
scope of related studies remains limited due to
the requirement of real-time gaze data at inference
time. Mathias et al. (2020) reported that there exists
no automated way of generating scanpaths yet in
the literature. With high-quality artificially gener-
ated scanpaths, the potential of leveraging eyetrack-
ing data for NLP can be unfolded. Additionally,

generating scanpaths that mimic human reading be-
havior will help advance our understanding of the
cognitive processes behind language understanding.
Hence, we propose ScanTextGAN; researchers can
use that to generate scanpaths over any text without
worrying about collecting them from real users.

3 Proposed Model

In this section, we define the scanpath generation
task, describe the ScanTextGAN model architec-
ture, and provide details on loss functions and
model training.

Task Definition: The task of scanpath genera-
tion is to generate a sequence S(T ) representing a
scanpath over the text T = {w1, w2, ..., wn} com-
posed of a sequence of words, can be defined as
follows:

S(T ) = {.., (wia, ti), ...., (wjb , tj), ...., (wkc , tk)}
(1)

where ti represents the fixation duration over the
word wa occurring at the position i. Note that
it is not necessary to have a < b (words being
read in linear order) or that k = n (the number of
fixations being equal to the number of words). Due
to regressions, i.e., backward saccades to previous
words, words are also revisited. Hence, the same
word could appear multiple times in the sequence.

3.1 ScanTextGAN Model Architecture
Fig. 3 illustrates the proposed conditional GAN ar-
chitecture of the model. The ScanTextGAN model
is composed of two competing agents. First, a con-
ditional generator that generates scanpaths given
text prompts. The second is a discriminator net-
work, which distinguishes real human scanpaths
from the generated ones. The ScanTextGAN model
is trained by combining text content loss, scan-
path content loss, and adversarial loss (Eq. 6). The
scanpath content loss measures the difference be-
tween the predicted scanpath and the correspond-
ing ground truth scanpath. The text content loss
reconstructs the input text, and the adversarial loss
depends on the real/synthetic prediction of the dis-
criminator over the generated scanpath. We de-
scribe the losses along with the generator and dis-
criminator architectures next.

Generator: The ScanTextGAN generator
constitutes a transformer-based encoder-decoder
framework. The encoder is conditioned on
BERT-based text embeddings (Devlin et al., 2019),
which are concatenated with noise to make the

1897



SENTENCE 
Investors seem bullish about  

the stock market.

GENERATOR

Dense Text
Representations 

(BERT) Noise

Positional 
Encoding

Transformer Encoder

Decoder

Improved
performance

Word ID

FAKE

Reconstructed
CLS Token

GENERATED SCANPATH

Human reading text

Eye Tracking Data Recorded

DISCRIMINATOR

BiLSTM 
+ 

BatchNorm

BiLSTM 
+ 

BatchNorm

Multi-head
Attention Fusion

BiLSTM

Dense Text
Representations 

(BERT)
Scanpath

REAL SCANPATH

NLP Models
augmented with

scanpaths

TASK - 2

Scanpath

Text

REAL

Duration EOS

Sequence Length

TASK - 1

Sentiment
Analysis

Positive

Sarcasm
Detection

Absent

NLP Models Real / Fake

Figure 3: The architecture of the proposed ScanTextGAN model. The model consists of a conditional generator and
a discriminator playing a zero-sum game. The generator is trained by two cognitively inspired losses: text content
reconstruction and scanpath content reconstruction.

generator’s output non-deterministic. The output of
the transformer encoder is supplied to the decoder,
which consists of task-specific feed-forward
networks. One branch generates the scanpath
(Task 1), while the other reconstructs the 768
dimensional CLS token embedding of the sentence
(Task 2). The scanpath is output as a temporal
sequence of word ID (fixation points) wia, fixation
duration ti, and end-of-sequence probability
EOSi. At inference time, the length L(G) of
generated scanpath G is determined as follows:

L(G) =

{
min1≤k≤M (k) ifEOSk > τ

M otherwise
(2)

where M is the maximum scanpath length as de-
scribed in section §3.2 and τ ∈ (0, 1) is a probabil-
ity threshold. We use τ = 0.5. The loss functions
of the two branches are described below.

Scanpath Content Loss tries to minimize the
deviation of generated scanpaths G(T ,N ) from
the ground-truth scanpaths R(T , h)) over text T
where ground-truth scanpaths are recorded from
the human h and N stands for Gaussian noise

N (0, 1). The loss function Ls is given as:

Ls(G(T ,N ),R(T , h)) = 1

k
Σki=0(α(id

i
g − idir)2+

β(tig − tir)2+γ(Eig − Eir)2)
(3)

which is a weighted sum of three terms. The
first term measures the error between real and
predicted fixation points given by the mean squared
difference between generated and real word-ids
(idig − idir). It penalizes permutations of word
ids and trains the model to approximate the real
sequence of fixation points closely.

The second term measures the difference in fix-
ation durations given by the mean squared differ-
ence between generated and real duration (tig − tir).
Fixation durations simulate human attention over
words in the input text. Thus, a word with a
larger fixation duration is typically synonymous
with greater importance than other words in the
input text. This error term supplements the genera-
tor’s ability to learn human attention patterns over
the input text.

Finally, the third term measures the mean
squared error between the prediction of end-of-
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sequence probability by real and generated distri-
butions (Eig − Eir). These are weighted by the
hyperparameters α, β, and γ. Preliminary exper-
iments showed that optimizing the mean squared
error leads to better performance over the cross-
entropy loss for optimizing the EOS probability
output.

Text Content Loss: Scanpaths depend heavily
on the linguistic properties of the input text.
Therefore, to guide the generator towards near
the probable real data manifolds, we adopt
reconstruction of the CLS token embedding of the
input text (Task 2) by the generator as an auxiliary
task since the CLS token embedding encodes a
global representation of the input text. This text
content reconstruction loss Lr is given as:

Lr(G(T ,N ),R(T , h)) = (BERT (wgi , w
g
j , ..., w

g
k

−BERT (wra, wrb , ...wrn))2
(4)

where BERT (wra, w
r
b , ...w

r
n) and

BERT (wgi , w
g
j , ...w

g
k) stand for the CLS

vector representations of real and generated text
respectively.

Discriminator: The goal of the discriminator is
to distinguish between the real and synthetic scan-
paths supplied to it. Similar to the generator, it
requires text representations to distinguish between
real and generated scanpaths. Specifically, the dis-
criminator comprises two blocks of BiLSTMs that
perform sequential modeling over the scanpaths
and BERT embeddings. The outputs of the two
branches are combined and passed to an attention
fusion module with four heads, followed by another
network of BiLSTMs. The hidden states of the last
BiLSTM layer from both forward and backward
directions are concatenated and supplied to a feed-
forward network. A Sigmoid function activates the
output of the feed-forward network. In this manner,
the discriminator classifies the input scanpaths as
either real or fake.

Adversarial Loss: The generator and discrimi-
nator networks are trained in a two-player zero-sum
game fashion. The loss is given by:

La = min
G

max
D

Ex∼pdata(x)[logD(x|T , h)]+

Ez∼pz(z)[1− logD(G(z|T ,N ))]
(5)

Therefore, the net generator loss becomes:

Lg = Ls + Lr + Ez∼pz(z)[1− logD(G(z|T ,N ))]

(6)

3.2 Dataset

For training the ScanTextGAN model, we use the
CELER dataset (Berzak et al., 2022). It contains
eyetracking data of 365 participants for nearly 28.5
thousand newswire sentences, sourced from the
Wall Street Journal Penn Treebank (Marcinkiewicz,
1994). Each participant in CELER reads 156
newswire sentences. Half of the sentences are
shared across participants, and the rest is unique
to each participant. The maximum sentence length
was set to 100 characters. Participant eyetracking
data were recorded using Eyelink 1000 tracker in a
desktop mount configuration with a sampling rate
of 1000 Hz. The ScanTextGAN model is trained to
approximate the average eye movements of all the
participants who read given sentences. The CELER
dataset was envisioned to enable research on lan-
guage processing and acquisition and to facilitate
interactions between psycholinguistics and natural
language processing. Furthering the goal, we use it
to train our conditional GAN model through which
we show human scanpath approximation capabil-
ities (§4.2). Also, we use it to show improvements
in the performance of NLP tasks (§4.3).

The data consist of tuples of participant ID,
sentence ID, and word ID corresponding to fixation
point and fixation duration. We compute the 99th
percentile of fixation durations and treat it as the
largest value. Fixations of durations longer than
this are treated as outliers and hence dropped from
the dataset. To apply the scanpath reconstruction
loss (Eq. 3), we scale all fixation durations by
the maximum value and then normalize them to
[0,1]. Similarly, word IDs in each sentence are
normalized to [0, 1] after scaling them by the
length of that sentence. For the last fixation point
in every scanpath, the binary EOS token is set to 1.
The maximum scanpath length is set to 80 fixation
points (99th percentile of the lengths). Thus shorter
scanpaths are padded while longer scanpaths are
trimmed. We use BERT to encode the sentences
and obtain their 768-dimensional embeddings,
keeping the max length parameter as 80, thus
resulting in an 80× 768 dimensional tensor.

3.3 Parameter Settings

Sinusoidal positional encoding is applied over
the input embeddings fed to the generator. We
use a 3-layer transformer encoder with four head
attention and a hidden dimension size of 776
in the generator. In the discriminator, we use
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bidirectional LSTMs over sentence embeddings
and generated scanpaths with a hidden size of
64 and a dropout ratio of 0.3, followed by batch
normalization for faster convergence. An attention
module with four attention heads is applied after
concatenating the outputs. We employ the Adam
and RMSProp optimizer to minimize generator
and discriminator losses. The batch size is set to
128, the initial learning rate of the generator to
0.0001, and that of the discriminator to 0.00001.
The model is trained for 300 epochs. Our imple-
mentation uses PyTorch, a popular deep-learning
framework in Python. All experiments are run on
an Intel Xeon CPU with Nvidia A100-SXM GPUs.

4 Performance Evaluation

We quantify the performance of ScanTextGAN in
two regimes1; first, scanpath generation with three
datasets, and second, NLP tasks with six datasets.
Similar to prior computer vision studies (Sun et al.,
2019; de Belen et al., 2022; Kümmerer and Bethge,
2021; Jiang et al., 2016), we evaluate the ScanT-
extGAN model over the scanpath generation task.
For this, we use the test split of the CELER dataset,
Mishra et al. (2016a), and Mishra et al. (2017).
In addition, unlike the computer vision studies, we
also evaluate the ScanTextGAN model for improve-
ment in NLP tasks. The hypothesis is that the
human eyes (and consequently the brain) process
many language comprehension tasks unconsciously
and without visible effort. The next logical step is
to capture (or, in our case, generate) this mental rep-
resentation of language understanding and use it to
improve our machine-learning systems. For evalua-
tion, we use four tasks from the GLUE benchmark
and two from the tasks proposed by Mishra et al.
(2016a). While the ScanTextGAN model is trained
over news text from the CELER dataset, with the
help of the other datasets, we expand our testing to
other domains, including reviews, quotes, tweets,
and Wikipedia text.

4.1 Evaluation Datasets

Mishra et al. (2017) comprises eye movements
and reading difficulty data recorded for 32 para-
graphs on 16 different topics, viz. history, science,
literature, etc. For each topic, comparable para-
graphs were extracted from Wikipedia2 and simple

1All results are calculated with five random seeds and
reported as the mean of those five runs

2https://en.wikipedia.org/

Wikipedia3. The participant’s eye movements are
tracked using an SR-Research Eyelink-1000 Plus
eye tracker. Using the ground truth scanpaths over
the text corpora, we evaluate the quality of gener-
ated scanpaths.

Mishra et al. (2016a) contains eye fixation se-
quences of seven participants for 994 text snippets
annotated for sentiment and sarcasm. These were
taken from Amazon Movie Corpus , Twitter, and
sarcastic quote websites. The task assigned to the
participants was to read one sentence at a time and
annotate it with binary sentiment polarity labels
(i.e., positive/negative). The same datasets were
used in several studies (Joshi et al., 2015; Mishra
et al., 2016b,c) to show improvements in sarcasm
and sentiment analysis. We use the datasets to
evaluate both the generation quality and potential
improvements in NLP tasks.

Furthermore, we explore the potential of includ-
ing cognitive signals contained in scanpaths in NLP
models for a range of GLUE tasks which include
Sentiment Analysis using Stanford Sentiment Tree-
bank (SST), Paraphrase Detection using Microsoft
Research Paraphrase Corpus (MRPC) and Quora
Question Pairs (QQP), Natural Language Infer-
ence using Recognizing Textual Entailment (RTE)
dataset.

Next, we cover the results of scanpath generation
and its application in NLP tasks.

4.2 Evaluation of Scanpath Generation

We evaluate the scanpath generation model on two
most commonly used metrics in image scanpath
generation studies (Sun et al., 2019; Chen and Sun,
2018; de Belen et al., 2022; Kümmerer et al., 2022):
MultiMatch (Jarodzka et al., 2010) and Leven-
shtein Distance (Levenshtein, 1965). Multimatch
is a geometrical measure that compares scanpaths
across a comprehensive set of dimensions com-
posed of shape, lengths, position, and fixation du-
ration. Levenshtein Distance between a pair of
sequences measures the least number of edits (in-
serts, deletes, substitution) to transform one into the
other. More details are discussed in Appendix:A.

Further, as a top-line comparison, we use inter-
subject scanpath similarity (Sun et al., 2019). It

3https://simple.wikipedia.org/
4In the CELER dataset, there are only 78 shared sentences

amongst all the participants. Therefore, inter-subject scan-
path evaluation is done only for these sentences. In contrast,
the ScanTextGAN results are reported for the entire test set
(including these 78 sentences).
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Generator Model MultiMatch ↑ Levenshtein Distance ↓
Vector↑ Length↑ Position↑ Duration↑

Inter-subject score4 0.973 0.958 0.830 0.698 0.691

LSTM Encoder-Decoder trained with scanpath content loss 0.975 0.956 0.765 0.344 0.865
ScanTextGAN – Text Reconstruction – GAN Loss 0.968 0.947 0.728 0.703 0.779
ScanTextGAN 0.983 0.972 0.787 0.733 0.769
ScanTextGAN – Text Reconstruction 0.974 0.957 0.773 0.703 0.798
ScanTextGAN – GAN Loss 0.973 0.955 0.750 0.761 0.786
ScanTextGAN + addition of noise 0.971 0.952 0.756 0.736 0.791
ScanTextGAN – Text (CLS) Reconstruction + sentence reconstruction 0.978 0.963 0.724 0.721 0.805

Table 1: In-domain Evaluation of Scanpath Generation on the CELER dataset (Berzak et al., 2022).

Figure 4: Comparison of real and synthesized scanpaths
corresponding to a few text samples. The proposed
ScanTextGAN model generates the latter.

measures the degree of variation among real hu-
man scanpaths corresponding to each text input.
To compute this, we first calculate each subject’s
performance by treating the scanpaths of other sub-
jects as the ground truth. Then, the average value
of all subjects is used as inter-subject performance.

Baselines: Since ScanTextGAN is the first text-
based scanpath generation model, we conduct an
ablation study to compare ScanTextGAN with its
other variants. Specifically, we compare ScanT-
extGAN with the following six configurations:
(1) An LSTM-based network trained with scan-
path content loss. Sentence embeddings obtained
through BERT are concatenated with noise in this
model. The resultant is fed to an attention mod-
ule with four heads, then passed to a network of
LSTMs and Batch Normalization layers applied
in tandem. (2) ScanTextGAN model trained with
only the scanpath content loss. (3) ScanTextGAN
model without the text reconstruction loss (Task-2).
(4) ScanTextGAN model with BERT-based sen-
tence embeddings reconstruction instead of CLS

token reconstruction. (5) ScanTextGAN model
with the addition of noise instead of concatena-
tion. (6) ScanTextGAN model trained without
GAN loss.

Results: Table 1 presents the results of our scan-
path prediction model on the CELER dataset. Fur-
ther, we also compare ScanTextGAN with base-
lines on two other contemporary datasets of movie
reviews, tweets, and sarcastic quotes (Mishra et al.,
2016a), Wikipedia and simple Wikipedia para-
graphs (Mishra et al., 2017). Tables 2 and 3 present
the results of our model on those datasets. For ob-
taining results on these corpora, we use the model
trained on the CELER dataset, thus helping us eval-
uate the cross-domain performance of the model.

As can be seen in Table 1, Table 2 and Table 3,
ScanTextGAN outperforms other models for scan-
path prediction on most metrics. The performance
of ScanTextGAN even surpasses inter-subject ref-
erence on Duration and comes very close to Vector,
Length, and Position.

We observe that adopting the reconstruction of
the CLS token as an auxiliary task (Task - 2) boosts
the model performance. Reconstructing the full
sentence embeddings rather than the CLS tokens
only as an auxiliary task does not always improve
the results, despite adding a larger computational
overhead. The results also reveal that concatenating
noise with text embeddings is more rewarding than
adding it.

Further, to compare the skipping behavior of
ScanTextGAN with humans, we calculate the
weighted F1 score of the words skipped and at-
tended by both model types. We find the weighted
F1 to be 64.6 between them. Fig. 4 presents a visual
comparison between real scanpaths from the avail-
able eyetracking data and scanpaths generated by
ScanTextGAN, corresponding to some randomly
chosen text samples. We can observe that the gen-
erated scanpaths resemble the real ones to a great
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Generator Model MultiMatch ↑ Levenshtein Distance ↓
Vector↑ Length↑ Position↑ Duration↑

Inter-subject score 0.977 0.963 0.839 0.715 0.723

LSTM Encoder-Decoder trained with scanpath content loss 0.984 0.973 0.714 0.379 0.918
ScanTextGAN – Text Reconstruction – GAN Loss 0.977 0.960 0.780 0.769 0.847
ScanTextGAN 0.966 0.945 0.791 0.771 0.836
ScanTextGAN – Text Reconstruction 0.976 0.961 0.763 0.757 0.845
ScanTextGAN – GAN Loss 0.976 0.959 0.774 0.768 0.839
ScanTextGAN + addition of noise 0.968 0.947 0.737 0.743 0.838
ScanTextGAN – Text (CLS) Reconstruction + sentence reconstruction 0.964 0.934 0.747 0.733 0.869

Table 2: Cross-domain Evaluation of Scanpath Generation on the Dataset by Mishra et al. (2016a).

Generator Model MultiMatch ↑ Levenshtein Distance ↓
Vector↑ Length↑ Position↑ Duration↑

Inter-subject score 0.994 0.991 0.834 0.620 0.845

LSTM Encoder-Decoder trained with scanpath content loss 0.992 0.987 0.596 0.329 0.969
ScanTextGAN – Text Reconstruction – GAN Loss 0.990 0.984 0.729 0.705 0.951
ScanTextGAN 0.984 0.977 0.759 0.693 0.931
ScanTextGAN – Text Reconstruction 0.986 0.981 0.756 0.706 0.939
ScanTextGAN – GAN Loss 0.990 0.984 0.739 0.706 0.945
ScanTextGAN + addition of noise 0.984 0.976 0.759 0.703 0.943
ScanTextGAN – Text (CLS) Reconstruction + sentence reconstruction 0.983 0.974 0.667 0.674 0.958

Table 3: Cross-domain Evaluation of Scanpath Generation on the Dataset by Mishra et al. (2017).

extent. Thus, the quantitative and qualitative re-
sults on in-domain and cross-domain settings lead
us to believe that our proposed scanpath generation
model can be deemed a good approximator of the
human scanpaths.

4.3 Application to NLP Tasks

We use them to augment various NLP models and
measure their performance to demonstrate the use-
fulness of cognitive signals hidden in the generated
scanpaths.

Sentiment Classification and Sarcasm Detec-
tion: For these tasks, we use a model consisting
of a network of two branches of BiLSTMs and
Batch Normalization layers that perform sequen-
tial modeling over text representations obtained
through BERT and scanpaths fed as input to the
model. The outputs of both branches are combined
and passed to another layer of BiLSTMs, followed
by a feed-forward network that predicts binary sen-
timent/sarcasm labels corresponding to the input
after activating with the Sigmoid function. We
follow a 10-fold cross-validation regime.

We compare the models with generated scan-
paths, real scanpaths, and without scanpaths. Fur-
ther, to investigate whether performance gains ob-
served by adding scanpaths are due to scanpaths
and not the increase in the number of parameters,
we train a Random-Random variant in which we
send Random noise as scanpaths to the model with
an increased number of parameters. We also simu-

Model Configuration F1 score

Train Test Sentiment Sarcasm

w/o w/o 0.7839 0.9438
Random Random 0.7990 0.9397
Random Generated 0.7773 0.9313
Real Generated 0.8319 0.9378
Real Real 0.8334 0.9501
Generated Real 0.8402 0.9452
Generated Generated 0.8332 0.9506
Real + Generated Generated 0.8404 0.9512

Intent-Aware Intent-Aware 0.8477 0.9528

Table 4: Sentiment analysis and sarcasm detection re-
sults on the dataset by Mishra et al. (2016a). Model
configuration refers to the type of scanpath included in
train and test data.

late the real-world case where both real and gener-
ated scanpaths are available during train time, but
only generated ones are available during test time,
for example, during user deployment.

Table 4 records the results of sentiment analysis
and sarcasm detection tasks (Mishra et al., 2016a).
We note that generated scanpaths training and test-
ing lead to similar gains for sentiment analysis and
sarcasm detection as real scanpaths. The model
with an increased number of parameters fed ran-
dom noise in place of scanpaths performs similarly
to the model trained without any scanpaths. Inter-
estingly, the best results are obtained when model
training uses both real and generated scanpaths.
We believe this is due to ScanTextGAN bringing
additional cognitive information from the news-
reading CELER corpus, which is not present in the
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Dataset Model Acc F1 score

SST
w/o scanpaths 0.8090 0.8089
w/ random scanpaths 0.8059 0.8061
w/ generated scanpaths 0.8138 0.8138

w/ intent-aware scanpaths 0.8269 0.8272

MRPC
w/o scanpaths 0.6902 0.6656
w/ random scanpaths 0.6623 0.6680
w/ generated scanpaths 0.6969 0.6828

w/ intent-aware scanpaths 0.7009 0.6911

RTE
w/o scanpaths 0.6162 0.6080
w/ random scanpaths 0.5802 0.5794
w/ generated scanpaths 0.6211 0.6205

w/ intent-aware scanpaths 0.6293 0.6278

QQP
w/o scanpaths 0.8499 0.8513
w/ random scanpaths 0.8491 0.8503
w/ generated scanpaths 0.8578 0.8596

w/ intent-aware scanpaths 0.8648 0.8658

Table 5: Results of training NLP models with and with-
out scanpaths on the GLUE benchmark tasks. Including
scanpaths leads to consistent improvements across all
the NLP tasks.

real scanpaths in Mishra et al. (2016a). In addition
to the intrinsic evaluation presented in §4.2, this
downstream evaluation demonstrates the high qual-
ity of the synthesized scanpaths, showing that they
contain valuable cognitive processing signals for
NLP tasks.

GLUE Tasks: To validate further, we augment
classification models (based on sequential mod-
eling using LSTMs) with generated scanpaths to
show performance improvement in downstream
NLP tasks on four GLUE benchmark datasets –
SST, MRPC, RTE, QQP as described in §4.1. Ta-
ble 5 reports the accuracy and weighted-F1 scores
of the models trained with and without scanpaths
for these tasks. We observe that in all four tasks,
the model trained with generated scanpaths outper-
forms the one without scanpaths.

Intent-Aware Scanpaths: Finally, we try to con-
dition scanpaths generation on the downstream nat-
ural language task. We back-propagate gradients
from the downstream NLP task to the conditional
generator. In this fashion, the model learns to gen-
erate intent-aware scanpaths. The hypothesis is
that finetuning scanpath generation based on feed-
back from the natural language task will bias the
generator towards words more pertinent to that task
and thus could help further improve performance
on the downstream task. The architecture is shown
in Appendix: Fig 5. The results in Tables 4 and
5 validate the hypothesis that we observe consis-
tent improvements in all downstream tasks. Fig 2

and Appendix: Fig 6 show a few examples of scan-
paths and saliency generated for three downstream
natural language tasks.

Together these results corroborate the hypothesis
that leveraging the cognitive signals approximated
by synthetic scanpaths in NLP models leads to
performance gains.

5 Conclusion

In this work, we make two novel contributions to-
ward integrating cognitive and natural language
processing. (1) We introduce the first scanpath
generation model over text, integrating a cogni-
tive reading model with a data-driven approach to
address the scarcity of human gaze data on text.
(2) We propose generated scanpaths that can be
flexibly adapted to different NLP tasks without
needing task-specific ground truth human gaze data.
We show that both advances significantly improve
performance across six NLP datasets over various
baselines. Our findings demonstrate the feasibility
and significant potential of combining cognitive
and data-driven models for NLP tasks. Without the
need for real-time gaze recordings, the potential
research avenues for augmenting and understand-
ing NLP models through the cognitive processing
information encoded in synthesized scanpaths are
multiplied.

6 Limitations

In this work, we demonstrated artificial scanpath
generation over multiple eye-tracking datasets. Fur-
ther, our experiments build a link between cogni-
tive and natural language processing and show how
one can inform the other. However, the proposed
method has a few limitations, which we aim to
address in the future. The field needs work on big-
ger and more diverse eye-tracking datasets, which
can enable scanpath generation over longer text se-
quences and can model generating scanpaths condi-
tioned on previously read context. Besides, a better
understanding of the entire scanpath generation
process can help model the intra and inter-sentence
scanpath generation process. The understanding
would enable the integration of scanpaths to gener-
ative modeling tasks, which we intend to take up
in future work. Another parallel direction is to in-
clude both explicit (like using RLHF) and implicit
signals (like using cognitive signals) to better NLP
tasks like language modeling.
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A Scanpath Evaluation Metrics

MultiMatch is a geometrical measure that models
scanpaths as vectors in 2-D space, wherein
the vectors represent saccadic eye movements.
Starting and ending coordinates of these saccades
constitute the fixation positions. It compares
scanpaths across multiple dimensions, viz. shape,
length, position, direction, and fixation duration.
Shape measures the vector difference between
aligned saccade pairs, which is then normalized by
twice the diagonal screen size. Length measures
the normalized difference between the endpoints
of real and generated saccade vectors. Direction
is the angular distance between the two vectors.
The position is the Euclidean difference in position
between aligned vectors, and duration measures
the difference in fixation durations normalized
against the maximum duration. Since our work
deals with scanpaths over text, we use 1-D space
to represent the saccade vectors where word IDs
denote the fixation positions. Thus, it is easy to
see that computing scanpath direction similarity
is redundant here (it is subsumed within position);
hence we drop it from our analysis.

Levenshtein Distance between a pair of se-
quences measures the least number of character ed-
its, i.e., insertion, deletion, and substitution needed
to transform one sequence into the other. Specifi-
cally, we use it to gauge the degree of dissimilarity
between a pair of real R and generated G scan-
paths. To account for the fixation durations of each
word,R andG are temporally binned using a 50 ms
bin size, similar to the computation of ScanMatch
metric (Cristino et al., 2010). The resulting se-
quences of word IDs,RW andGW are transformed
into character strings, RS = {r1, r2, ..., rn} and
GS = {g1, g2, ..., gm}, where RS and GS are
strings over the ASCII alphabet and n = |RS |
and m = |GS |.

Levenshtein Distance (LD) between strings RS
and GS is computed and then normalized by the
length of the longer string, which yields a Normal-
ized Levenshtein Distance (NLD) score, as given
below:

NLD =
LD(GS , RS)

max(|RS |, |GS |)
(7)

Thus, a lower NLD score is indicative of greater
scanpath similarity.

B Intent-Aware Scanpaths

As described in section §4.3, the generator condi-
tioned on the downstream natural language task
yields intent-aware scanpaths. Augmenting NLP
models with these scanpaths leads to higher per-
formance gains. Here, we provide more details on
intent-aware scanpath generation. Please refer to
figures 5 and 6 on the following page. Saliency
corresponding to intent-aware scanpaths are shown
in Fig. 6.
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Figure 5: The architecture of the proposed Intent-Aware ScanTextGAN model. The model consists of a conditional
generator and a discriminator playing a zero-sum game. Two cognitively inspired losses train the generator: scanpath
(Task-1) and text (Task-2) reconstruction, a loss from the downstream intent of the natural language task (Task-3),
and finally, the loss from the adversarial zero-sum game (Task-4). Variations of scanpaths are generated based on
the downstream natural language task.

Figure 6: Saliency samples generated by conditioning scanpath generation on different downstream natural language
tasks. It can be observed that the conditioned saliency pays much more attention to words important for that
downstream task.
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Abstract

Temporal Moment Localization is a challeng-
ing multimodal task which aims to identify the
start and end timestamps of a moment of in-
terest in an input untrimmed video, given a
query in natural language. Solving this task
correctly requires understanding the temporal
relationships in the entire input video, but pro-
cessing such long inputs and reasoning about
them is memory and computationally expen-
sive. In light of this issue, we propose Stochas-
tic Bucket-wise Feature Sampling (SBFS), a
stochastic sampling module that allows meth-
ods to process long videos at a constant mem-
ory footprint. We further combine SBFS with a
new consistency loss to propose LOCFORMER,
a Transformer-based model that can process
videos as long as 18 minutes. We test our pro-
posals on relevant benchmark datasets, show-
ing that not only can LOCFORMER achieve
excellent results, but also that our sampling
is more effective than competing counterparts.
Concretely, SBFS consistently improves the
performance of prior work, by up to 3.13% in
the mean temporal IoU, leading to a new state-
of-the-art performance on Charades-STA and
YouCookII, while also obtaining up to 12.8x
speed-up at testing time and reducing memory
requirements by up to 5x.

1 Introduction

Processing long untrimmed videos for understand-
ing and reasoning is a computationally expensive
task that not only demands a smart approach that
can capture global and local interaction, but also
requires allocating thousands of frames in mem-
ory (Wu et al., 2022). Previous work so far has
mostly focused on parsing the visual content in in-
dependent snapshots of a video, which limits the
approaches in terms of modeling long-term depen-
dency between events in the input.

*These authors contributed equally to this work
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Figure 1: Empirical upper-bound memory consumption
of LOCFORMER, Transformer-base, with and without
enabling our proposed sampling technique (SBFS), and
DORi (Rodriguez-Opazo et al., 2021). Memory usage
(y-axis) is computed on an NVIDIA RTX-8000 GPU,
using a batch size of 32 and assuming all sequences
have maximum length for the given video duration.

In this paper, we particularly look at the task of
temporal moment localization, which aims to iden-
tify the start and end timestamps of a moment of in-
terest in an input untrimmed video given the query
in natural language (Richard et al., 2018; Lin et al.,
2017; Escorcia et al., 2016; Chao et al., 2018; Gao
et al., 2017b; Xu et al., 2019). Recent approaches
have aimed at directly predicting the starting and
ending temporal locations, or regressing them from
the input video, moving away from the propose-
and-rank based approaches (Yuan et al., 2019c;
Ghosh et al., 2019; Rodriguez-Opazo et al., 2020).
Although these models are more efficient and can
potentially capture the influence between different
events in a video, they still require a considerable
amount of computation and/or memory since they
need to process the whole input video at once.

Recent improvements in both Natural Language
Processing (NLP) and Computer Vision (CV) tasks
can be attributed to the Transformer (Vaswani et al.,
2017) model. Despite their success, one main draw-
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back of these models is their computational cost,
with memory usage ballooning as model sizes in-
crease to attain better performance. This issue is ex-
emplified by many existing developments in Trans-
former models for video understanding only being
capable of processing short inputs at a time due to
memory constraints. For example, TimeSformer-
large (Bertasius et al., 2021) can only process in-
puts that are 24 seconds long1, ViVIT (Arnab et al.,
2021) and X-ViT (Bulat et al., 2021) can receive
inputs that are up to 32 frames long, while other ap-
proaches like MERLOT (Zellers et al., 2021) and
ClipBERT (Lei et al., 2021) specifically sample a
single or a few frames from the whole video.

In light of this issue, we present Stochastic
Bucket-wise Feature Sampling (SBFS). During
training, SBFS first splits the input feature se-
quence into a fixed number of sections (buckets)
and then selects a single feature per bucket using a
stochastic approach. At testing time, our module
selects the sufficient statistic of each bucket, which
allows us to obtain a feature sample-set that is rep-
resentative of the video content for the task at hand
while keeping the memory footprint constant

To show the effectiveness of our sampling tech-
nique, we combine SBFS with a broad selection
of models from previous work, and also use it to
propose LOCFORMER, a Transformer-based model
that operates at a constant memory footprint re-
gardless of the input length, as shown in Figure
1. We conduct experiments on three challenging
datasets, Charades-STA (Gao et al., 2017a), Activ-
ityNet Captions (Caba Heilbron et al., 2015; Kr-
ishna et al., 2017) and YouCookII (Zhou et al.,
2018b,a). We show that by applying SBFS in
previous work we improve their performance in
all considered datasets, leading to a new state-of-
the-art on Charades-STA and YouCookII, while
reducing the memory requirements by up to 5x.
Furthermore, LOCFORMER is able to obtain state-
of-the-art performance in the latter, and competitive
results elsewhere.

We believe our results highlight the importance
of sampling techniques as a valid mechanism to
obtain better coverage of long input videos while
keeping memory usage under budget. This ulti-
mately provides a concrete direction for further
research on tasks where it is necessary to cover
long untrimmed videos, which include but are not

1TimeSformer-base/large reads 8 frames at 32/4 fps re-
spectively.

limited to video grounding. We release our code
and data2 to encourage future research in this area.

2 Related Work

Sampling To the best of our knowledge, the earli-
est example of a sampling technique that is similar
to ours is the work of Nakagawa and Nakanishi
(1988), who proposed a stochastic version of dy-
namic time warping for speech recognition of the
Japanese language in the late 80s. This idea was
further extended by Suryanto et al. (2016) in the
context of motion recognition, where a random-
ized version of dynamic time warping for this task
was introduced. We also find several models that
utilize sampling techniques for action recognition
in videos, in this case to specifically select salient
clips, such as SCSampler (Korbar et al., 2019) and
MGSampler (Zhi et al., 2021), which were later
adopted by models like MVFNet (Wu et al., 2021).
Also, Adaframe (Wu et al., 2019b) recently pro-
posed a framework that adaptively selects relevant
frames on a per-input basis for fast video recogni-
tion. Fayyaz et al. (2021) introduced differentiable
parameter-free Adaptive Token Sampling (ATS),
which uses a scoring to adaptively sample signifi-
cant tokens and can be plugged into any existing
vision transformer architecture. Finally, Wu et al.
(2019a), recently proposed to process short video
segments at a time also augmenting the models
with a long-term bank from where global features
can be sampled. This ultimately enables them to
process longer overall inputs without losing global
information. While their motivation is similar to
ours, we note that their proposed sampling tech-
nique is not stochastic and requires learning. More-
over, our results show that performance improve-
ments are possible without access to global context,
making our contributions fundamentally different
in this sense.
Temporal Action and Moment Localization The
goal of Temporal Action Localization is to solve
the problem of recognizing and determining tem-
poral boundaries of action instances in videos, with
extensive previous work devoted to it (Shou et al.,
2016; Gu et al., 2018; Girdhar et al., 2019). Given
its limitations —restricted to a pre-defined list of
labels— the task of language-driven temporal mo-
ment localization was introduced as a generaliza-
tion (Gao et al., 2017a; Hendricks et al., 2017).
In this task, the goal is to determine the start and

2https://github.com/crodriguezo/locformer
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end times of the video segment that best corre-
sponds to a given natural language query. As this
requires the model to extract useful information
from the textual semantics in the query in order
to identify the moment, this task is also usually
regarded as video grounding. Early approaches
that tackled temporal moment localization, includ-
ing (Liu et al., 2018) and Ge et al. (2019), were
mainly based on the generation of candidate clips
which could later be ranked. Soon after, Chen et al.
(2018), Chen and Jiang (2019), and Xu et al. (2019)
focused mainly on reducing the number of propos-
als by producing query-guided or query-dependent
approaches. Recently, Zhang et al. (2021a) also
adopted a Transformer-based model for this setting,
being the most relevant to our work.

The extensive computation of enumerating can-
didates in the above-mentioned proposal-based
methods led to the development of methods that
can directly output the temporal coordinates of the
segment, namely, proposal-free approaches. In this
context, Ghosh et al. (2019) first focused directly
on predicting the start and end frames using regres-
sions, and soon after Rodriguez-Opazo et al. (2020)
improved results by modelling label uncertainty.
While Mun Mun et al. (2020) and Zeng et al. (2020)
later proposed more sophisticated modality match-
ing strategies, some more recent approaches have
focused on better contextualizing I3D (Carreira and
Zisserman, 2017) video features by proposing other
model variations (Li et al., 2021). More recently,
Liu et al. (2021), CPNet (Li et al., 2021), VSLNet
(Zhang et al., 2020a) have pushed performance
further up. Finally, models like DORi (Rodriguez-
Opazo et al., 2021), which also incorporates spatial
features and CPN (Zhao et al., 2021) have pro-
posed ad-hoc graph-based approaches. Compared
to these models, our contributions go in a differ-
ent direction which can be complementary because
of their large memory consumption, as shown in
Section 5.4.

3 Stochastic Bucket-wise Feature
Sampling

Let G be a sequence of input video features ex-
tracted by a video encoding function FV (V ). We
are interested in developing a module to limit the
memory budget of a given model when dealing
with long video inputs. In order to do this, we
limit the overall memory budget of the model by
shortening the sequence of video features fed into

the localization module. We do this in practice
by proposing a technique that we call Stochastic
Bucket-wise Feature Sampling (SBFS), which re-
turns a sequence of length at most b derived from
G, as follows.

SBFS(G; b) =

{
{gi}ni=1 if n ≤ b

{gf(k)}m(n,b)
k=1 if n > b

(1)

In Equation 1, m(n, b) characterizes the number
of buckets to be allocated to host video features,
and is defined as m(n, b) = ⌊ n

⌈n/b⌉⌋ ≤ b, where ⌊⌋,
⌈⌉ are the floor and ceiling operators, respectively.
The index f(k) is sampled according to a uniform
distribution over the indices of the features in the
bucket, as Equation 2 shows, below.

f(k) ∼ U⌈n/b⌉·k⌈n/b⌉·(k−1) (2)

More intuitively, we create a fixed number of
buckets and allocate features to each by equally
distributing them into the buckets. During train-
ing, we randomly sample a single feature for each
bucket, following a uniform distribution, effec-
tively reducing the input sequence length to at most
b, the number of buckets. When doing this, we
also accordingly convert the original set of labels
τ s, τ e ∈ [1, . . . , n] into τ̄ s, τ̄ e ∈ [1, . . . , b]. For
simplicity, without loss of generality, for the rest
of the paper we will assume the sampling module
always returns total of b video features.

It is possible to prove that any sampled video
feature sequence G̃ obtained using SBFS contains
sufficient statistics of G, which allows us to train
our models on very long videos with adequate guar-
antees. From this, it also follows that although
SBFS can also be applied during inference, it is
better to decouple the model from this stochastic
component and instead utilize the max pooling op-
erator over the features of the bucket at inference
time. This gives models increased stability when
predicting, without sacrificing performance, as we
will show in Section 5.3. We refer the reader to
Section A of our supplementary material for the
full details on our theoretical analysis of SBFS.

4 LOCFORMER

In what follows, we assume that a given video
V ∈ V can be characterized as a sequence of
frames such that V = {vt} with t = 1, . . . , l.
Each video in V is annotated with a natural lan-
guage passage S ∈ S where S is a sequence of
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Figure 2: Our method uses a sampling technique that divides the video into a fixed number of buckets. Then,
we uniformly sample a single I3D feature from each bucket, which is then fed into the localization module, a
multi-modal Transformer model that receives video features and language features obtained from BERT.

tokens S = {sj} with j = 1, . . . ,m, which de-
scribes what is happening in a certain period of
time. Formally, this interval is defined by ts and
te, the starting and ending points of the annotations
in time, respectively. Although in the data a given
video may be annotated with more than one single
moment, and one natural language description may
be associated to multiple moments, in this work
we assume each derived case as an independent,
separate training example.

Our model is trained to predict the most likely
temporal localization of the contents of a given in-
put query S in terms of its start and end positions
ts⋆ and te⋆ in the video. We apply the mapping
τ = (t · n · fps)/l to transform frame/feature in-
dex to time, converting ts and te into τ s and τ e,
which correspond to specific integer feature posi-
tions such that τ s, τ e ∈ [1, . . . , n].

LOCFORMER follows the Transformer architec-
ture (Vaswani et al., 2017), which has been recently
extended to multi-modal scenarios as in UNITER
(Chen et al., 2020) in the context of vision-and-
language, and Recurrent VLN-BERT (Hong et al.,
2021) for vision-and-language navigation. Our
model operates on sequences of tokens {sj} and a
video {vt} characterized as a sequence of frames,
as specified earlier. The overall architecture is com-
posed by three main modules, as shown in Figure 2.
(1) The Video Encoding Module, which is in charge
of mapping video frames to vectors, and obtaining
a sample that is representative of the video con-
tents using SBFS, (2) the Text Encoding Module, a
Transformer model with dimension dm in charge of
extracting useful representations from the natural
language query, and (3) the Localization Module,
a multi-modal Transformer, also with hidden di-

mension dm, which receives both textual and video
features from the previous modules and is in charge
of estimating τ s and τ e. In the following subsec-
tions, we give details about each component and
how they interact.

Video Encoding Module with SBFS Our video
encoding module is in charge of mapping the l in-
put video frames into a sequence of video features
G = {gi ∈ Rdv}, i = 1, . . . , n. At the core of this
module lies SBFS, which we use to select a subset
of the features that are representative of the con-
tents of the video. Thus, the sampled video feature
sequence G̃ will later be fed into the localization
module.

Text encoding module Sentences are processed
using the BERT tokenizer, which also prepends the
special CLS token, and adds the SEP marker at the
end. Each token is mapped to learned embeddings
of dimension dm and summed with learned posi-
tional encodings of the same size. These vectors
are passed through L̄ encoder transformer blocks
with M̄ attention heads, to produce final text repre-
sentations [h̄0, . . . , h̄m].

Localization module A Transformer model that
receives both textual and video features, previously
obtained by the respective modules. For the former,
we directly input h̄0, . . . , h̄m, while for the latter
we first project G̃ = [g̃1, . . . , g̃b] into the hidden
dimension using a trainable linear layer and fur-
ther combine this with a set of learned positional
encodings. These two encoded vector sequences
are concatenated lengthwise and passed through L
encoder blocks with M attention heads, to produce
[h0, . . . ,hm+b].
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From these vectors, we select
[hm+1, . . . ,hm+b] and utilize the same lo-
calization function proposed by Rodriguez-Opazo
et al. (2020) as the main training signal, namely,
feature-level soft classification task on the time
dimension. Concretely, two different MLP layers
produce scores of each position being the start/end
of the location, which are passed through a softmax
activation to obtain τ̂ s, τ̂ e ∈ Rb, which are
compared to soft-labels using the Kullback-Leibler
divergence (LKL).

In order to guide the model to utilize the infor-
mation in the relevant section of the video, we
encourage the attention heads of this module to
put more weight into the target video portions dur-
ing training, adapting the approach proposed by
Rodriguez-Opazo et al. (2020) as shown below.

Latt = −
L∑

l=1

M∑

m=1

(1− x⊗ x) ∗ log(1−Al,m) (3)

In Equation 3, A(l,m) is the attention matrix of
the l-th layer and m-th attention head of the lo-
calization module and x ∈ Rm+b is a vector that
denotes which areas of the output sequence will
be subject to our guiding signal, and is defined as
x = [1m; δτs≤i≤τe ], where ; denotes concatena-
tion, δ is the Kronecker delta returning 1 when i is
inside the range of τ , and 1k denotes a vector of
ones of size k.

Since our proposed localization loss is not sen-
sitive to the order of the predictions of the starting
and ending locations because there is no condition-
ing on the time in the model portions that generate
them, in this paper we additionally propose to in-
duce the model to respect the start-end order, tak-
ing a probabilistic approach. Concretely, we push
the expected location of the start of the segment
(S) to be before the expected location of the end-
ing (E) location, which is equivalent to requiring
E(E) − E(S) > 0. Replacing the values of the
expectations, we obtain the following.

E(E)− E(S) =
b∑

i=1

τ̂ei i−
b∑

i=1

τ̂si i =

b∑

i=1

i(τ̂ei − τ̂si ) (4)

In Equation 4 above, τ̂ si and τ̂ ei are integers that
denote the predicted probability value of the start-
ing and ending localizations at position i. Based on
this derivation, we formally implement our loss by
minimizing the negative difference of the expected

values as shown in Equation 5, below.

Lse = min(0,
b∑

i=1

i(τ̂ si − τ̂ ei )) (5)

Finally, our model is trained with the direct sum-
mation of the three losses introduced earlier, such
that L = LKL + Latt + Lse.

5 Experiments

5.1 Datasets
To evaluate our proposed approach, we work with
three widely-utilized and challenging datasets.

Charades-STA Built upon the Charades dataset
(Sigurdsson et al., 2016), which provides time-
based annotations using a pre-defined set of ac-
tivity classes, and general video descriptions. We
use the predefined train and test sets, containing
12,408 and 3,720 moment-query pairs respectively.
Videos are 31 seconds long on average and a maxi-
mum duration of 194 seconds, with 2.4 moments
on average, each being 8.2 seconds long on aver-
age.

ActivityNet Captions Introduced by Krishna
et al. (2017), this dataset originally constructed for
dense video captioning, consists of 20k YouTube
videos with an average length of 120 seconds and
a maximum duration of 755 seconds. The videos
contain 3.65 temporally localized time intervals
and sentence descriptions on average, where the
average length of the descriptions is 13.48 words.
Following the previous methods, we report the per-
formance on the combined validation sets.

YouCookII Consists of 2,000 long untrimmed
videos from 89 cooking recipes obtained from
YouTube by Zhou et al. (2018b). Each step for
cooking these dishes was annotated with temporal
boundaries and aligned with the corresponding sec-
tion of the recipe. The average video length is 316
seconds and a maximum duration of 755 seconds.
In terms of relevant moment segments, each video
has 7.73 moments on average, with each segment
being 19.63 seconds long on average.

5.2 Implementation Details
For our experiments, we consider an off-line
video encoding function FV (V ), following previ-
ous work (Ghosh et al., 2019; Rodriguez-Opazo
et al., 2020; Rodriguez-Opazo et al., 2021; Wang
et al., 2020; Yuan et al., 2019a,b; Zhang et al.,
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2019). Concretely, we first pre-process the videos
by extracting features of size 1024 using I3D with
average pooling, taking as input the raw frames of
dimension 256 × 256, at 25fps. We use the pre-
trained model trained on Kinetics for ActivityNet
and YouCookII released by Carreira and Zisserman
(2017). For Charades-STA, we use the pre-trained
model trained on Charades. For the natural lan-
guage input, we use the BERT-base-uncased tok-
enizer and keep the parameters of the Text Encoder
fixed. Models are trained using Adam (Kingma and
Ba, 2014). Evaluation is based on two widely used
metrics proposed by Gao et al. (2017a), namely
the Recall at various thresholds of the temporal
Intersection over Union (tIoU or R@α) measuring
the percentage of predictions that have tIoU with
ground truth larger than certain α, and the mean
averaged tIoU (mIoU). We use three α thresholds
0.3, 0.5 and 0.7.

5.3 Ablation Studies

We begin by performing an empirical study of our
proposed stochastic sampling technique, compar-
ing it to several alternatives. We specifically con-
sider the following sampling approaches.

Random: As a naive baseline, we randomly
sample features maintaining the order.

Fixed-rate video down-sampling (FRVS): We
experiment with I3D features extracted at a lower
frame-rate of 5fps (Ghosh et al., 2019), which can
be regarded as a form of low-level down-sampling.

Fixed-rate feature down-sampling (FRFS):
We experiment with two fixed-rate down-sampling
techniques at the feature level, bucket-level mean-
pooling and max-poling.

Dynamic Time Warping (DTW): We perform
dynamic time warping between the non-structured
video features and the fixed size temporal sequence
created using our stochastic sampling technique
and max-pooling applied inside each bucket. In
this way, we assign features to each bucket that
will later be randomly sampled.

Dynamic-rate feature down-sampling
(DRFS): We utilize the similarity across features
to dynamically create each bucket. While many
variations are possible here, we decided to utilize
a cosine distance-based heuristic to create the
buckets. Please see Section B in the supplementary
material for all the details.

SBFS Variations: We experiment with different
alternatives for inference. Concretely, we always

Sampling Performance

R@0.3 R@0.6 R@0.7 mIoU

Random 09.42 03.35 00.74 0 9.24
FRVS-5fps 37.54 22.68 10.62 23.90
FRFS-mean 45.99 31.01 15.46 29.98
FRFS-max 45.53 30.61 15.55 30.11
DTW 27.58 13.52 04.47 18.22
DRFS 33.48 17.84 06.56 21.57
SBFS-all 46.28 30.04 15.32 30.34
SBFS-mean 46.68 30.61 15.23 30.53
SBFS 46.76 31.33 15.81 30.92

Table 1: Performance of LOCFORMER on YoucookII
replacing SBFS with alternative sampling techniques.

apply our stochastic sampling during training, and
either use it for inference as well (SBFS-all), or
replace it with bucket-wise mean pooling (SBFS-
mean) or max pooling (SBFS).

For the experiments, we combine each of these
sampling approaches with the rest of the LOC-
FORMER architecture, and always use a bucket size
of 200. Regarding the data, we use the YouCookII
dataset, as it contains videos that can be as long
as 18 minutes with queries that use rich language,
which should help illustrate the importance of the
sampling.

As the results in Table 1 show, the effectiveness
of our sampling technique is clear, specially when
compared with more naive alternatives like random
sampling, or simple mean pooling. We see that
low-level down-sampling techniques, that extract
fewer frames from the original video, are not ef-
fective either. In contrast, the naive version of the
max-pooling-based sampling stands out, perform-
ing similarly but still below SBFS. To confirm the
effectiveness of our approach against FRFS-max
and FRFS-mean, we further compared average re-
sults of five runs using different random seeds. We
obtained baseline performances of 0.3006± 1.6×
10−3 for FRFS-max and 0.3010± 2.9× 10−3 for
FRFS-mean. In contrast, SBFS obtained a per-
formance of 0.3060± 2.9× 10−3, which we find
is statistically superior to both baselines at 99%
confidence. These results help illustrate the im-
portance of the stochastic approach we have taken,
which enables us to limit the input to the model
while still exposing it to all the training data in
the long run, significantly improving its general-
ization capabilities. Finally, we also note that all
the tested sampling alternatives except DTW and
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Bucket Size Performance

R@0.3 R@0.6 R@0.7 mIoU

100 35.74 27.41 11.88 29.03
200 46.76 31.33 15.81 30.92
300 46.36 31.07 15.95 30.63
400 45.25 30.30 15.58 30.23
500 44.33 28.69 14.18 29.14

Table 2: Impact on performance of LOCFORMER on
the YoucookII dataset as parameter b, the bucket size,
changes.

DRFS do not utilize information about the features
when generating the buckets. It is interesting to see
that many of these arguably simpler sampling tech-
niques, including SBFS, outperform data-informed
approaches.

We also study the impact of SBFS at differ-
ent bucket sizes. For these experiments we use
the YouCookII dataset, which contains the longest
videos on average, and test bucket sizes ranging
from 100 to 500. As we can see on Table 2, varia-
tions on parameter b have an impact consistent with
its expected behavior, with diminishing results as
b increases, and a clear performance sweet-spot at
b = 200 which we adopt for the main experiments
in our paper.

Finally, we ablate LOCFORMER component-
by-component, to test the effects of each one
of our introduced losses, and of SBFS. We
also compare LOCFORMER with two highly-
competitive Transformer-based model variations:
(1) Transformer-base a randomly-initialized
multi-modal Transformer-base3, into which we di-
rectly feed the text input and the sampled video fea-
tures, previously embedding them using a learned
embedding matrix and a linear projection layer,
respectively. Each encoder uses a separate set of
positional embeddings, and we also add a type em-
bedding to indicate the model the nature of each
vector. After this, the embedded sequences are con-
catenated lengthwise and passed through the trans-
former blocks; (2) BERT-base, where we initialize
our Transformer-base variation with the weights
of BERT. In this case, the projection linear layer
of the video features and the respective positional
encodings are randomly initialized.

Both model variations apply our attention guid-
ing loss Latt to all the attention heads in all the

3We follow the original notation (Vaswani et al., 2017)
using 12 layers and 12 attention heads.

layers. This effectively means that there is no
functionality separation inside these models. We
note that these baselines are comparable to existing
multi-modal transformer models such as VilBERT
(Lu et al., 2019) and UNITER (Chen et al., 2020).
Experiments are again performed in YouCookII,
which contains the longest videos.

As seen in Table 3, our results first highlight
the importance of SBFS, enabling all kinds of
Transformer-based models we tested to process
long untrimmed videos, which would otherwise
lead to out-of-memory errors. Regarding the in-
teraction of the attention loss with different model
variations, we see that this additional training signal
leads to consistent gains for all Transformer-based
variations, but that these are larger in the case of
LOCFORMER. We surmise this is due to the atten-
tion loss potentially interfering with the inductive
bias that the baselines require to process the multi-
modal inputs, as well as with the already acquired
bias in the case of BERT, reflected in certain atten-
tion patterns for each head which have been studied
and documented by Rogers et al. (2020) among oth-
ers. This ultimately highlights the importance of
separating functionality inside Transformer models
for our task, which allows our model to perform
better overall.

On top of SBFS, our results also show how
each of our proposed component clearly helps in-
crease performance. In particular, we observe that
the addition of our attention loss (Latt) results in
the largest performance improvements, which is
consistent with the findings of Rodriguez-Opazo
et al. (2020). While the improvements due to Lse
are comparatively less substantial, with differences
across α bands, we see that combining both losses
leads to the best results, showing that the losses
complement each other well, as expected.

5.4 Combining SBFS with previous work

We now focus on studying the ability of our sam-
pling technique to be combined with existing mod-
els. We do this by incorporating SBFS into
three proposal-free models selected from the lit-
erature, and testing them on our datasets. We
consider ExCL (Ghosh et al., 2019) and TMLGA
(Rodriguez-Opazo et al., 2020), which have been
extensively studied in the past years, as well as
DORi. We utilized our own implementation of
ExCL with our I3D features extracted at 25 fps4,

4The original implementation used a frame-rate of 5 fps.
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Component Transformer-base BERT-base Locformer

SBFS Latt Lse R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU

OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
✓ 33.65 20.50 9.05 22.23 37.29 22.51 10.74 24.61 42.33 28.26 12.83 27.49
✓ ✓ 33.71 19.90 9.08 21.89 39.46 25.60 12.57 26.41 42.84 28.01 13.80 28.04
✓ ✓ 40.86 25.09 11.51 26.16 41.32 27.38 14.15 27.88 46.39 30.58 15.35 30.57
✓ ✓ ✓ 41.75 26.52 13.34 27.83 42.18 28.01 14.63 28.24 46.76 31.33 15.81 30.92

Table 3: Results of our Transformer ablation study, performed on the YouCookII dataset, where OOM indicates we
obtained an out-of-memory error even when using the largest GPU at our disposal.

Method Charades-STA ActivityNet YouCookII

Mem.[GB] R@0.3 R@0.5 R@0.7 mIoU Mem.[GB] R@0.3 R@0.5 R@0.7 mIoU Mem.[GB] R@0.3 R@0.5 R@0.7 mIoU

ExCL 2.8 62.28 39.74 22.53 42.28 6.4 55.49 39.33 23.04 40.32 6.9 26.58 15.72 8.19 18.99
+ SBFS 1.6 62.74 42.04 24.57 43.05 1.8 56.42 40.37 24.70 41.13 1.8 30.96 18.64 10.05 21.76

TMLGA 2.3 67.53 52.02 33.74 48.22 7.3 51.28 33.04 19.26 37.78 9.5 33.48 20.65 10.94 23.07
+ SBFS 1.5 70.67 52.20 33.90 49.18 1.7 53.00 35.10 19.83 37.85 1.8 39.25 25.40 12.80 26.20

DORi ♣ 32.8 72.72 59.65 40.56 53.28 34.7 57.89 41.49 26.41 42.78 46.4 43.36 30.47 18.24 30.46
+ SBFS 23.1 72.90 59.67 40.94 53.44 24.0 58.89 42.21 26.36 43.02 24.2 46.74 32.19 18.33 31.69

Table 4: Results of our experiments combining SBFS with existing work. Except where indicated, experiments
were performed using a batch size 32. ♣ indicates experiments performed using a batch size of 4 due to memory
constraints.

Method Training Inference

TMLGA DORi TMLGA DORi

Baseline 3.18 72 0.36 32
+ SBFS 0.72 10 0.08 2.5

Speed-Up 4.41 7.2 4.5 12.8

Table 5: Time in minutes for processing 10,337 and
3,492 queries from the YouCookII dataset in training
and inference (test split) respectively.

and directly integrated the original implementa-
tions of the latter into our code.

As Table 4 shows, SBFS is able to consistently
provide performance improvements in all cases,
with gains of up to 3.13% in terms of the mean
temporal IoU. These improvements lead to new
state-of-the-art results on both the Charades-STA
and YouCookII datasets. We note that despite not
having access to the spatial information that DORi
incorporates, the performance of LOCFORMER

is very competitive to that of DORi+SBFS in
YouCookII, which contains the longest videos.

We further study the impact on training and infer-
ence time when adding our sampling module. For
this study consider TMLGA and DORi, and again
use YoucookII since it contains the longest videos.
As shown in Table 5, SBFS consistently leads to
shorter training and inference times, with the de-
gree of impact depending on dataset and model.

Concretely, on DORi we obtain a speed-up of 7.2x
in training and 12.8x for inference, which again
illustrates the effectiveness of our approach, espe-
cially in the context of larger models. We also no-
tice that the methods converge in a similar number
of epochs with or without adding SBFS, meaning
that we can significantly reduce the convergence
time, as our sampling enables models to go through
each example faster.

5.5 Comparison to state-of-the-art models

Finally, we compare the performance of our pro-
posals on the datasets considered against several
prior works. We consider models based on differ-
ent approaches, specifically proposal-based models
including CBP (Wang et al., 2020), MS-TAN-2D
(Zhang et al., 2021b) and MNM (Wang et al., 2022),
as well as TripNet (Hahn et al., 2020), based on
reinforcement learning.

In addition to that, we also compare our ap-
proach to more recent methods that do not rely
on proposals, including ABLR (Yuan et al., 2019c),
ExCL, TMLGA and LGVTI (Mun et al., 2020),
CPNet (Li et al., 2021), as well as VSLNet (Zhang
et al., 2020b) and BCPN (Nawaz et al., 2022),
which cast our task as visual question answering,
and CPL (Zheng et al., 2022) which also incorpo-
rate Transformer-based components. Finally, we
also consider CPN (Zhao et al., 2021) and DORi,
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Method Charades-STA ActivityNet YouCookII

R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU

ABLR † - 24.36 9.00 - 55.67 36.79 - 36.99 - - - -
TripNet 51.33 36.61 14.50 - 48.42 32.19 13.93 - - - - -
CBP 50.19 36.80 18.87 35.74 54.30 35.76 17.80 36.85 - - - -
ExCL ‡ 65.10 44.10 22.60 - 62.10 41.60 23.90 - 26.58 15.72 8.19 18.99
TMLGA 67.53 52.02 33.74 48.22 51.28 33.04 19.26 37.78 33.48 20.65 10.94 23.07
LGVTI 72.96 59.46 35.48 51.38 58.52 41.51 23.07 41.13 - - - -
DORi 72.72 59.65 40.56 53.28 57.89 41.49 26.41 42.78 43.36 30.47 18.24 30.46
VSLNet 70.46 54.19 35.22 50.02 63.16 43.22 26.16 43.19 - - - -
CPNet - 60.27 38.74 52.00 - 40.56 21.63 40.65 - - - -
CPN 75.53 59.77 36.67 53.14 62.81 45.10 28.10 45.70 - - - -
BCPN 73.42 61.77 43.91 - 66.87 44.53 30.11 - - - - -
MS-2D-TAN - 60.08 37.39 - 62.09 45.50 28.28 - - - - -
CPL 66.40 49.24 22.39 - 82.55 55.73 31.37 - - - - -
MNM - 47.31 27.28 - 65.05 48.59 29.26 - - - - -

DORi + SBFS 72.90 59.67 40.94 53.44 58.89 42.21 26.36 43.02 46.74 32.19 18.33 31.69
LOCFORMER 71.88 58.52 38.51 51.76 60.61 43.74 27.04 44.05 46.76 31.33 15.81 30.92

Table 6: Performance comparison of our approach with existing methods for different tIoU α levels. Underlined
and bold results indicate second-best and best performance for each dataset. Values are reported on the validation
split of Charades-STA and the ActivityNet Captions. † Results for ABLR are as reported by Chen and Jiang (2019).
‡ The results reported by ExCL for ActivityNet have 3,370 missing videos, and the results on YoucookII were
obtained using our own implementation.

two models that contain specific graph-based ap-
proaches for the task, with DORi also incorporating
spatio-temporal features.

Table 6 summarizes our best results on Charades-
STA, ActivityNet Captions and YouCookII
datasets, while also comparing the obtained per-
formance to relevant prior work. We can see
that overall LOCFORMER is able to offer excellent
performance, closing the gap with sophisticated
graph-based models like CPN and DORi as well
as Transformer-based models like CPL, with new
state-of-the-art performance on the Charades-STA
dataset. The results also show the effectiveness
of our sampling approach when dealing with long
untrimmed videos, as we observe that by combin-
ing DORi with SBFS we are able to also attain
state-of-the art results on the YoucookII dataset.

6 Conclusion

In this paper we have presented LOCFORMER, a
Transformer-based model for the task of temporal
moment localization which operates at a constant
maximum memory footprint regardless of the input
length. The success of our model fundamentally
relies on our modular design, which allows us to
separate functionality, and SBFS, where we split
the sequence of input video features into a fixed
number of buckets and select a single feature per
bucket using a stochastic approach.

Experiments conducted on three challenging
datasets show that LOCFORMER obtains competi-
tive results, and show that our sampling technique
can improve the performance of prior work on
all considered datasets, leading to a new state-of-
the-art on YoucookII and Charades-STA. We think
these results highlight the importance of sampling
techniques as a valid mechanism to obtain better
coverage of long input videos while keeping mem-
ory usage low.

For future work, we are interested in testing our
sampling approach in other relevant tasks in the
context of video-and-language, for example video
retrieval. We are also interested in extending our
approach to address its limitations, for example, us-
ing adaptive or iterative sampling to treat different
areas of the video with different granularity.

Acknowledgements

This paper is based on results obtained from project
JPNP20006, commissioned by the New Energy and
Industrial Technology Development Organization
(NEDO). For our experiments, computational re-
sources of the AI Bridging Cloud Infrastructure
(ABCI) provided by National Institute of Advanced
Industrial Science and Technology (AIST) were
used.

1917



Limitations

We believe our results show that sampling is a valid
mechanism to obtain better coverage of long input
videos, while keeping memory usage under budget.
However, it is important to stress that in this work
we primarily focused on proposal-free models for
temporal moment localization and thus have no
evidence to suggest such improvements would be
observed in other models.

There is also a specific scenario where our
sampling could degrade the performance of a
given model. This scenario occurs when the span
of the query, a.k.a. moment, is located com-
pletely inside a given bucket, with many additional
frames/features in the same bucket. In this case,
the best that a model can do is to predict a moment
covering the whole bucket, this losing granularity.
In practice, this occurs when the ratio between the
duration of a given moment and the duration of
the video is vanishingly small. We believe this is-
sue can be alleviated in future work by recursively
generating and exploring buckets, an issue that we
would like to tackle in the future.

Our results are also limited to the features uti-
lized by the models we considered, and we offer no
evidence that our technique will generalize to those
cases as well. In terms of data, we have only exper-
imented with queries in English. While it would be
interesting to experiment with different languages,
this is so far a limitation of the datasets that exist.
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A Theoretical Analysis of SBFS

Let us begin by providing some key definitions that
we will be requiring to perform our analysis.

A statistic is a function T = r(X1, . . . , Xn)
of the random sample X1, . . . , Xn, which carries
information of the sampled data, such as the sample
mean and sample variance. We say that a statistic
satisfies the criterion of sufficiency when no other
statistic which can be calculated from the same
sample provides any additional information as to
the value, of the parameter to be estimated. We
can easily find a sufficient statistics by using the
Fisher–Neyman Factorization Theorem.
Factorization theorem: given a random sample
X1, . . . , Xn with joint density f(x1, . . . , xn|θ) a
statistic T = r(X1, . . . , Xn) is sufficient if and
only if the joint density can be factored as follows:

f(x1, . . . , xn|θ) =u(x1, . . . , xn)v(r(x1, . . . , xn), θ)

where u and v are non-negative functions. The
function u can depend on the full random sample
x1, . . . , xn but not on the unknown parameter θ.
The function v can depend on θ, but can depend
on the random sample only through the value of
r(x1, . . . , xn).

In our case, let us assume that our bucket con-
tains features Xi that are independent and uni-
formly distributed on [0, θ] where θ is unknown.
Then, the probability dense function can be writ-
ten as a product of individual densities since the
observations are independent,

f(x1, . . . , xn|θ) =
1

θ
1{0≤x1≤θ} . . .

1

θ
1{0≤xn≤θ}

Here 1(E) is an indicator function. It is 1 if the
event E holds, and 0 if it does not. Now xi ≤ θ for
i = 1, . . . , n if and only if max{x1, . . . , xn} ≤ θ.
Therefore,

f(x1, . . . , xn|θ) =
1

θn
1{0≤min {xi}}1{max {xi}≤θ}

Thus, the factorization theorem shows that T =
max{X1, . . . , Xn} is a sufficient statistic since the
density function takes the required form, where
u = 1{0≤min{xi}} and v = 1

θn 1{max {xi}≤θ}, which
is a function that only depends on θ and T =
max{xi}.

With this in mind, we can now move on to our
analysis. We first note that nature of SBFS is
that a single feature is sampled from each bucket
with equal probability each time. If we assume

features are i.i.d., this implies that the probabil-
ity of getting a sampled video feature sequence is
P (G̃) = (b/n)b. As this is a very small probabil-
ity, the number of potential distinct sampled video
feature sets (G̃) is exceptionally large.

Fortunately, video features (frames) within a
bucket are highly correlated as they originate from
neighboring video frames which are generally very
similar, and one may make a weak assumption that
bucket population in bucket k may not contain suffi-
ciently more information than any sampled feature
gf(k) from the bucket population.

In other words, if gf(k) is sufficient statistic of
the bucket k, then any sampled video feature se-
quence G̃ using SBFS contains sufficient statistics
of G, and SBFS(G) is the sufficient statistic of
video feature population G. Therefore, we can
make the following proposition.

Proposition 1 Any sampled video feature se-
quence G̃ from SBFS method is a sufficient statistic
of video feature population G.

The above proposition is very important as it
allows us to train any complex model, such as a
Transformer, on very long videos using SBFS with
adequate guarantees. Next, we also present an in-
teresting insight on how to pool features within a
bucket. To do this, let us denote the j-th dimension
of the feature vector gi by gji .

Proposition 2 If the j-th dimension of vectors
within the bucket k has a uniform population for
all j, i.e. gjf(k) is uniformly distributed on [1, µj ]
where µj is unknown, by the Fisher–Neyman fac-
torization theorem (Fisher, 1922), the sufficient
statistics of the population within the bucket k is
given by the max-pooling operator over the bucket
features 5.

Although our SBFS can also be applied during
inference, founded by Proposition 2, it is better to
decouple the model from this stochastic component
and instead utilize max pooling operator over the
features of the bucket at inference time. This gives
models increased stability when predicting, without
sacrificing performance, as we showed in Section
5.3.

B Dynamic-Rate Feature Down-Sampling

In this section, we present details of our Dynamic-
Rate Feature Down-Sampling ablation experiments.
With this sampling heuristic, our intention was to

5Please check the supplementary material for details.
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create buckets that satisfy the two following con-
ditions. First, we would like each bucket to hold
semantically similar features, using similarity on
the embedding space as a proxy. Second, we aim
to group features in a way such that the number of
buckets l that hold the totality of the features in the
video is smaller than the desired number of buckets
b.

The bucket construction procedure works as fol-
lows. For an input feature sequence of length n,
we use the cosine distance to compute the seman-
tic similarity between each of the features in the
video, and construct the pairwise distance matrix
D ∈ Rn×n. We then start the process with a sin-
gle bucket that contains only the first feature x1,
and add features to this bucket starting from x2.
Feature x2 will be added to the bucket if and only
if the cosine-distance D1,2 < th, where th is a
threshold parameter, and otherwise a new bucket
is started and the process is repeated until all the
features have been processed. Once this is done,
we evaluate the number of buckets l that were cre-
ated, and if l > b, then we reduce the threshold
th by a small margin (0.01) and generate all the
buckets again. This process is repeated until the
l ≤ b condition is satisfied. Please see Algorithm 1
below, for additional details.

C Qualitative Results

In this section, we present qualitative results of
our method for each one of datasets we use for
evaluation. Ground truth (GT) and predictions in
Figures 3, 4 and 5 are in seconds.

As seen on Figure 3, in the case of ActivityNet
Caption, our method is able to localize the query
The man continue to rub the board using his pol-
ishing tools with a high temporal intersection over
union (IoU) of 80.41%. Though not visible in the
figure, we also note that the end of this video is full
of black frames and information about the creator,
for example, webpage and logos. This exemplifies
how ground truth annotations can be inaccurate,
and how our model can adequately deal with these
issues.

Figure 4 presents qualitative results for Yook-
CookII dataset. In this case, we specifically present
our predictions on one of the longest videos in the
dataset, with a duration of 11 minutes and 46 sec-
onds, and where the natural language query is slice
up the ginger finely. As seen, our method obtains
an impressive performance considering that the mo-

Algorithm 1 Dynamic-rate Feature down-sampling
using cosine similarity Algorithm
D = 1− pairwise_distances(V )
th = 1.0
flag = True
index_sample = {}
while flag do

indx = 0
st = 0
ed = 1
for ed← st to len(V ) do

s = Dst,ed

if s < th then
samples_in_bucket = []
for i← st to ed do

samples_in_bucket.append(i)
end for
index_sample[indx] = sam-

ples_in_bucket
st = ed
indx = indx + 1

end if
if indx <= bucket_size then:

flag = False
else

th = th− 0.01
index_sample = {}

end if
end for

end while

ment of interest lasts only 20 seconds. This figure
also serves to exemplify one of the limitations of
the bucketing approach we take. It is possible to
see that the predictions of our model, though pre-
cise overall, add 0.96 seconds to both the start and
end locations. This is a result of the maximum
granularity given by the buckets and features in our
system.

Finally, Figure 5 shows an example of the predic-
tions of our model on the Charades-STA dataset. In
this case, we also choose one of the longest videos
in the data, with a duration of approximately 1
minute. For the query person walks into room hold-
ing a bag, our method obtains a good performance
of 95.70% of temporal IoU.

D Experiment Details

• Total Parameters:

– ExCL: 6.9M parameters.
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Query: The man continue to rub the board using his polishing tools.

GT
Prediction

395.12 745.5

741.17459.44 

Figure 3: Results of our method on the ActivityNet dataset in a very long video of 12 minutes and 25 seconds (745.5
seconds). Our method can localize the query The man continue to rub the board using his polishing tools with a
temporal IoU of 80.41%

Query: slice up the ginger finely

GT
Prediction

355 375 706.6
706.6355.96 375.96 

Figure 4: Qualitative result of our method on the YouCooKII dataset in one of the longest videos in the dataset (11
minutes and 46 seconds.) Our method obtains a temporal IoU of 90.83% for the query slice up the ginger finely.

– TMLGA: 4.7M parameters.
– DORi: 10.4M parameters.
– LOCFORMER: 86.1M parameters.

• Hyper-parameters: Besides what is explained
in the paper, we did not specifically run hyper-
parameter exploration. On our early experi-
ments, we tried some learning rate variations,
but all of our reported results use 10−3 or re-
spect the original setting of the model.

• Hardware requirements: Our experiments
were performed on two kinds of GPUs, 16-
GB NVIDIA V100 and 48-GB Quadro RTX
8000. The former we access by means of
nodes on a large cluster, where each node has
four such GPUs. Some experiments, espe-
cially on the ActivityNet dataset with DORi
or LOCFORMER, were performed using data
parallelism to speed up training time, but all
of our proposed models can still run on single
GPUs. For the experiments with the origi-
nal DORi model or the baseline Transformer
models without SBFS, we recommend using
a GPU with at least 32GB of memory.
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Query: person walks into room holding a bag

0.0 16.7 58.73
58.73

GT
Prediction 16.00.0 

Figure 5: Charades-STA qualitative results on one of the longest videos in the dataset. For the query person walks
into room holding a bag, our method obtains 95.70% IoU with respect to the ground truth annotations.
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Abstract

Decision-makers in the humanitarian sector
rely on timely and exact information during cri-
sis events. Knowing how many civilians were
injured during an earthquake is vital to allocate
aids properly. Information about such victim
counts is often only available within full-text
event descriptions from newspapers and other
reports. Extracting numbers from text is chal-
lenging: numbers have different formats and
may require numeric reasoning. This renders
purely string matching-based approaches insuf-
ficient. As a consequence, fine-grained counts
of injured, displaced, or abused victims beyond
fatalities are often not extracted and remain un-
seen. We cast victim count extraction as a ques-
tion answering (QA) task with a regression or
classification objective. We compare regex, de-
pendency parsing, semantic role labeling-based
approaches, and advanced text-to-text models.
Beyond model accuracy, we analyze extraction
reliability and robustness which are key for this
sensitive task. In particular, we discuss model
calibration and investigate few-shot and out-of-
distribution performance. Ultimately, we make
a comprehensive recommendation on which
model to select for different desiderata and data
domains. Our work is among the first to apply
numeracy-focused large language models in a
real-world use case with a positive impact.1

1 Introduction

Timely and accurate information during crisis
events is crucial for rescue operations and the allo-
cation of humanitarian aid (Lepuschitz and Stoehr,
2021). However, crisis information is often scarce,
subjective, or biased, which renders reported num-
bers in text extremely important (Hellmeier et al.,
2018; Zavarella et al., 2020; Radford, 2021). For
instance, the count of injured or missing people
provides quantitative information about the catas-
trophic impact of an earthquake. In this work, we

1Code is available online at:
https://github.com/mianzg/victim_counts

focus on human victims in crisis events, e.g., fatal-
ities in floods, herein referred to as victim counts.
A reliable estimate of victim counts is helpful dur-
ing crisis (Darcy and Hofmann, 2003; Kreutzer
et al., 2020), and also post-crisis, benefiting re-
search to diversify measures of crisis intensity. As
of now, most intensity measures are either limited
to event types (Vincent, 1979; Goldstein, 1992), fa-
tality counts (Kalyvas, 2006; Chaudoin et al., 2017)
or both (Stoehr et al., 2022). More fine-grained
measures such as injured, displaced, or abused vic-
tims are not captured in most popular databases and
remain unmonitored (Krause, 2013; Cruyff et al.,
2017; Cullen et al., 2021).

Many victim counts are reported in full-text
form within event descriptions in news media.
This makes their systematic collection and anal-
ysis technically complex. Manual extraction of
victim counts from text is very labor-intensive and
does not scale to big data collections (Schrodt and
Ulfelder, 2016; Lewis et al., 2016). Computer-
ized approaches such as the event coding software
Tabari (Schrodt, 2009) and Petrarch2 (Norris et al.,
2017) focus on extracting actor and event types.
They rely on lambda calculus and syntactic pattern
matching, but disregard mentions of victim counts.

As we will show, parsing-based approaches per-
form decently well at extracting explicitly reported
victim counts. They can identify the mention of
the count “5” in “5 people were injured”. How-
ever, they are often inadequate when the descrip-
tion implies a correct count — for example, from
the description that “one logger was shot but sur-
vived”, a human reader may infer that one person
is injured. Since neither a count nor the injury is
mentioned explicitly, a parsing-based system may
fall short. Another difficulty stems from the fact
that the counts can be reported in many, different
formats. A reported count may be digit-based or
spelled out, define an exact quantity or a range as
in “dozens of people were injured”. As a conse-
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quence, formulating the task of victim count ex-
traction is not an easy endeavor (§3). Most prior
work assumes a setting where the count is explic-
itly mentioned in an event description (Döhling
and Leser, 2011; Imran et al., 2013; Rudra et al.,
2018; Camilleri et al., 2019). Such settings can be
tackled by sequence labeling models that select a
relevant span from the given description. However,
if the victim count does not appear verbatim, as
in the above “one logger” example, models with
some form of abstract reasoning capacity may be
needed (Roy et al., 2015). Recently, large language
models have shown promising results in answer-
ing number-focused questions with and without
explicit mentions of relevant numbers (Lewkowycz
et al., 2022; Nye et al., 2021; Wei et al., 2022;
Lefebvre and Stoehr, 2022).

This paper is concerned with studying these dif-
ferent approaches (§4): as baselines, we compare
regular expression, dependency parsing, and se-
mantic role labeling. We consider the NT5 (Yang
et al., 2021) model as a representative numeracy-
enhanced pre-trained language model. We use
the representation of this model in a generation, a
classification, and a regression setting. We eval-
uate all models along three dimensions: accu-
racy (§5), reliability (§6), and robustness (§7). We
find that the fine-tuned language model outper-
forms the baseline models, especially when the
victim count extraction requires reasoning. Reli-
ability and robustness are particularly important
in high-stake, human-centric tasks such as vic-
tim count extraction (Zhang et al., 2020; Kong
et al., 2020; Russo et al., 2022b). Model relia-
bility indicates to which extent model behavior can
be trusted within decision-making settings (Leibig
et al., 2017; Jiang et al., 2021). One dimension of
reliability is model calibration which indicates if
a model’s confidence is aligned well with it mak-
ing correct predictions (Guo et al., 2017). While
calibration has been widely studied for classifica-
tion, we add to the discussion of calibrated regres-
sion (Song et al., 2019) and generation settings
(Widmann et al., 2021). Finally, the dimension
of robustness describes how stably a model per-
forms. For instance, when the training set is lim-
ited or when the test data is out-of-distribution, a
less robust model will forfeit more of its predic-
tive performance. To shed light on this dimension,
we conduct experiments in few-shot learning and
out-of-distribution settings.

We conclude with an application to showcase
the extraction of fine-grained and highly special-
ized types of victim counts. Lastly, we discuss the
benefits and drawbacks of the different approaches
to assist practitioners in choosing the most suitable
task formulation and model.

2 Data

We use publicly available datasets covering natural
disasters and armed conflicts, namely: (1) World
Atrocities Dataset (WAD) (Schrodt and Ulfelder,
2016), (2) Non-violent and Violent Campaigns and
Outcomes 3.0 (NAVCO) (Lewis et al., 2016), and
(3) European Media Monitor (EMM) (JRC Sci-
ence Hub, 2018; Steinberger et al., 2017). For
each dataset, we use the event text description and
two types of victim counts: the death count and
the injury count that we refer to as “WAD death”
or “WAD injury”. We pre-process the data by re-
moving the samples with missing values (NaN) in
the victim counts . For EMM, we only consider
samples with a non-zero victim count since “0” is
over-represented.

3 Task Formulation

In this section, we discuss some questions and chal-
lenges faced in formulating the task of extracting
victim counts from event descriptions. We justify
some of the choices we make and describe why it
is not possible to have a single formulation that fits
all needs:

Is the victim count always present in the text?
Victim counts can be expressed in various ways in
the text. When the count is expressed explicitly in
the text, say “5 people were injured”, a span extrac-
tion model can effectively extract the injury count
5. However, in certain cases, a single explicit num-
ber might not be mentioned, and the victim count
needs to be logically or algebraically inferred from
the text. Consider the description “a 4-year-old girl
and her mother were found dead”; a model would
need to logically deduce that the victim count of
death is 2. To handle this, we not only look at span
extraction models but also experiment with models
that can understand the text at a deeper level and
produce a victim count.

Is the victim count always a single number?
Often, in the event description, the victim count
is described as a range, such as “at least 330 peo-
ple died”, or in vague terms, like “dozens were
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injured”. Additionally, even within a description,
the victim counts for the same event can be vary-
ing, possibly because of recording the counts from
different sources. This makes extracting a single
exact count almost impossible. In such cases, the
best a model can do is to output a close estimate of
the actual victim count. Another solution would be
to provide a range within which the count could lie.
For a humanitarian section deciding on the quantity
of aid to be deployed, a range might suffice over
a single exact count. To account for this, we also
look at models that are trained to output a range by
classifying the victim counts into a set of binned
categories.

4 Models

In §4.1, we introduce baselines models that parse
an event description and heuristically extract a vic-
tim count. We then specify the model implementa-
tion for the different task formulations in §4.2.

4.1 Baseline Models
All baselines extract a victim count by locating the
part of the text that could be relevant to victims
and finding the nearby victim counts. The locating
step requires a pre-defined list of words denoted as
locating list. For example, to extract death counts,
this list would include terms like “kill” and “die”.

Regex. Regular expressions (regex) is a rule-
based method to extract counts by string pattern
matching. The patterns (App. A) are built based on
active or passive voice to extract a count closest to
phrases in the locating list.

Dependency Parsing. The dependency parsing
model collects all possible numeric modifiers and
their dependency relationships. Since not every
numeric modifier relates to victim counts, e.g., “42-
year-old”, we construct dependency rules with the
locating list to decide if the number is the victim
count. For example, one rule is to check if the
numeric modifier is for a subject phrase that would
reject “42” in the example of “42-year-old”. If
no numeric modifier is found (e.g., “a journalist
was injured”), additional rules use the locating list
to return “1” if the rule is satisfied and otherwise
return “0”.

SRL. Semantic role labeling (SRL) recursively
decomposes text input into pairs of predicates and
their arguments. We define a list of predicate verbs
for death and injury count as the locating list. Then,

we iterate over the predicate-argument pairs, check
if any predicate from the locating list occurs, and
extract the count from its argument if possible. If
a predicate exists, the implementation returns the
first number as the count if multiple are found and
returns “1” if no verbatim number is found. If no
such predicate appears, the count is set to “0”.

4.2 Task Modeling

We perform victim count extraction using three
methods: generation, regression, and classifica-
tion. As discussed above, each of these approaches
caters to the different formulations of our task and
can be beneficial in different scenarios. Across
these methods, we use the same underlying NT5
model. For clarity, we denote NT5-Gen, NT5-Reg,
and NT5-Clf for the corresponding models. The
NT5 model (Yang et al., 2021) is a variant of the
T5 model (Raffel et al., 2020) with further fine-
tuning on numerical tasks. We query the model in
a similar fashion to previous works by giving the
question and event description in the form: “answer
me:[question] context:[passage]”. We discuss
how we fine-tune this model for each of our specific
methods below.

Generation. For generation, we fine-tune NT5
to decode the victim counts auto-regressively. At
inference, we use beam search to generate output.
Generation does not guarantee to only generate
numeral tokens; therefore, we follow De Cao et al.
(2021) to constrain the possible generation tokens
in a prefix-conditioned way, such that only number
digit tokens 0 − 9 and EOS token are allowed at
each decoding step.

Regression. For regression, we add two linear
layers (with ReLU activation) on the encoder repre-
sentation to output the numerical victim count. The
model is trained to optimize the log mean-squared
error between the true and predicted count.

Classification. We model the task as a classifi-
cation problem by binning the victim counts into
ordinal classes. Similar to regression, the model
has a classification head of a linear layer and a
softmax layer on top of an encoder initialized with
NT5 weights. Our experiments use a 3-class classi-
fication by converting the victim counts into three
categories: [0, 3], (3, 10], (10,∞).
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Figure 1: Confusion matrices of the baselines and the fine-tuned NT5-Gen model (columns) of extracting injury
counts from different data (rows). We convert the true and prediction victim counts into 4 categories: for any count
y, “0” is y = 0, “1” is 0 < y ≤ 3, “2” is 3 < y ≤ 10 and “3” is y > 10. Values are normalized over true counts.
Baselines tend to have low precision on extracting injury counts (dark columns on “0”). SRL and NT5-Gen have
comparable accuracy and recall; however, NT5-Gen is slightly better in precision.

5 Accuracy of Counts Extraction

We begin by evaluating the efficacy of our proposed
methods for victim count extraction. We examine
the model accuracy by comparing baselines and the
fine-tuned model with a generation objective (§5.1).
We then show the results of using classification and
regression formulations (§5.2).

Exact-Match F1

WAD NAVCO EMM WAD NAVCO EMM

Regex 0.117 0.264 0.064 0.202 0.318 0.124
Dep 0.226 0.303 0.052 0.355 0.363 0.136
SRL 0.741 0.430 0.313 0.779 0.484 0.361

NT5-Gen 0.813 0.501 0.443 0.846 0.544 0.492

Table 1: Exact-Match and F1 scores of the baseline mod-
els and the fine-tuned NT5-Gen on injury counts. The
best results are bolded. The NT5-Gen model performs
better than baselines across all datasets. DEP refers to
the dependency parsing model and SRL refers to the se-
mantic role labeling model.

5.1 Comparing Baselines with NT5-Gen

We compare the accuracy performance of the base-
line models and the fine-tuned NT5-Gen model.
Tab. 1 shows the results of extracting the injury
counts using Exact-Match and F1scores commonly
used in related tasks (Yang et al., 2021; Dua et al.,

2019). We measure F1 score on digitized tokens
(i.e., “34”→ [“3”, “4”]). The fine-tuned NT5-Gen
model has an accuracy boost up by 7-13% in Exact-
Match and by 6-13% in F1 score than the strongest
baseline model SRL. The performance of regex and
dependency parsing varies heavily across different
data, which implies that the regex pattern or depen-
dency relationship may be less helpful in finding
the victim counts.

Moreover, we convert the victim counts into four
bins, where the bins are selected to have a balanced
number of samples in each bin. As an illustra-
tion, Fig. 1 shows the confusion matrices on the
transformed injury counts. For both victim types,
baseline models have a low precision to falsely re-
turn “0” too often. Compared with baselines, the
NT5-Gen model improves to extract victim counts
whose numeric values are large (e.g., y > 10).

Qualitative Analysis. We qualitatively examine
error samples of the SRL model that the NT5-Gen
model extracts correctly. We randomly select 20
error samples for each test set to evaluate and sum-
marize 4 types of errors with examples in Tab. 2.
Out of all errors2, 39.2% belong to diverse lin-

2There are a few samples where the ground truth might
be erroneous. As the event-coding requires more domain
expertise within the corresponding social science discipline,
we leave the discussion out of this work.
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Error Type Context Truth SRL NT5
Diverse Expression Six passengers in a taxi also had their throats cut 6 0 6
Numerical Reasoning Herders shot and killed four people [...]. Herders

then shot and killed a farmer at Jokhana [...]
5 4 5

Number Ambiguity Unidentified gunmen clash with army 1 0 1
Number Spelling .Twenty-three people were killed [...] 23 1 23

Table 2: Error examples of SRL that the NT5-Gen model is correct on extracting death counts. Diverse Expression
refers to the string patterns not captured by pre-defined rules. Numerical Reasoning shows that the correct count
has to be achieved by some mathematical operation over the text. Number Ambiguity indicates that a verbatim
number is not written but an estimate may be made (with domain expertise). Number Spelling refers to problems
with number / text format that are typos or the tokenizer parses wrongly (e.g., “twenty-three”→ “twenty”).

guistic expressions on depicting victims, 38.3%
contain number ambiguity, 8.3% need numerical
reasoning, and 5.8% have spelling issues (for the
tokenizer). The NT5-Gen model performs better
when the count needs numerical reasoning. Even
if the reasoning is not needed, SRL may fail when
the linguistic expression to depict victims (e.g.,
“have throats cut”) is out of the pre-defined locating
list (e.g., [“die”, “kill”, “slay”]). These error types
are difficult for baseline models to be improved
since the patterns cannot be defined beforehand.

5.2 Results on Classification and Regression
We examine the accuracy of the classification and
regression formulations by comparing NT5-Clf
and NT5-Reg with different initialization weights.
To compare, we use T5-SMALL and BERT-BASE-
UNCASED pre-trained weights for the encoder.
Tab. 3 shows the classification results on NAVCO
injury data. Fine-tuning T5-SMALL and NT5
reaches comparable performance; precision and
recall scores are similar, but precision is slightly
higher. The scatter plots (Fig. 2) show the results
of regression using different pre-trained weights
with the mean squared error (MSE). For a (log-
transformed) victim count larger than 5, using the
regression objective seems more conservative in
giving small-valued predictions. The numeracy-
rich NT5 weights do not particularly improve ac-
curacy for a classification or regression objective,
and employing some standard pre-trained weights
might be sufficient.

6 Evaluating Reliability

Another important dimension is reliability which
we evaluate through the lens of calibration (§6.1).
As we approach the task with multiple formula-
tions, calibration analysis is especially needed to

Accuracy F1 Precision Recall

NT5 0.65 0.60 0.62 0.59
T5 0.65 0.60 0.61 0.59
BERT 0.52 0.23 0.17 0.33

Table 3: Classification results on NAVCO injury data
with the NT5-Clf model initialized by different pre-
trained weights: NT5, T5-SMALL, and BERT-BASE-
UNCASED. F1 , precision and recall scores are macro.
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Figure 2: Scatter plots of the fine-tuned NT5-Reg model
initialized with different pre-trained weights (NT5, T5-
SMALL, and BERT-BASE-UNCASED). The models are
trained on log-transformed victim counts.

understand whether a model is calibrated (§6.2),
and how post-hoc calibration techniques may ad-
just models to be better calibrated (§6.3).

6.1 Preliminaries: Calibration Metrics

A well-calibrated model ensures that the confidence
of the output is well aligned with the chance of the
output being accurate. This is a desirable property
for our task — consider a model extracts “0” when
the text depicts an injured person. A calibrated
model would assign very low confidence to the ex-
tracted count, which may avoid error propagation
to downstream decisions, e.g., medical resource
dispatch. We here introduce the expected calibra-
tion error (ECE) (Pakdaman Naeini et al., 2015),
a standard metric used for classification and is ex-
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tended for generation decoding (Widmann et al.,
2021). For regression, we apply quantile calibra-
tion error (Kuleshov et al., 2018).

Given n samples, we create M equal-width bins
over the interval [0, 1]. ECE takes a weighted av-
erage on the differences between the classification
accuracy and the mean confidence within each Bm,

ECE =

M∑

m=1

|Bm|
n

∣∣∣∣acc(Bm)− conf(Bm)

∣∣∣∣.

The quantile calibration error averages the differ-
ences between the empirical frequency freq(Bm)
and the upper bound of Bm (i.e., sup(Bm)), where
freq(Bm) is the fraction of n samples whose quan-
tiles lower or equal to sup(Bm),

RegCE =
1

M

M∑

m=1

∣∣∣∣freq(Bm)− sup(Bm)

∣∣∣∣.

The calibration error of generation decoding
takes the best b beam search answers, and applies
softmax on their scores to represent the confidence.
The ECE is then calculated on the best beam search
answer similar to classification.

6.2 Calibration Error on Different Models

Death Injury

Data Model Orig Calib. Orig Calib.

NAVCO Clf 0.222 0.044 0.332 0.060
Reg 0.220 0.097 0.141 0.057
Gen 0.054 0.040 0.092 0.092

WAD Clf 0.192 0.055 0.228 0.088
Reg 0.272 0.107 0.167 0.294
Gen 0.218 0.221 0.096 0.042

EMM Clf 0.277 0.098 0.314 0.055
Reg 0.201 0.189 0.368 0.188
Gen 0.087 0.092 0.328 0.122

Table 4: Calibration errors of fine-tuned NT5-Clf, NT5-
Reg, and NT5-Gen models before (Orig.) and after
(Calib.) applying post-hoc calibration. Post-hoc calibra-
tion effectively reduces the errors.

We show in Tab. 4 the calibration errors mea-
sured on the fine-tuned NT5-Clf, NT5-Reg, and
NT5-Gen with different data. Surprisingly, the
NT5-Gen model is well-calibrated on most datasets,
except for EMM injury: the lowest calibration er-
ror is 0.05 on NAVCO death, and the errors on

other data range between 0.08 and 0.33. Classi-
fication models tend to have large calibration er-
rors (> 0.19). In particular, the error is larger than
0.3 on NAVCO and EMM data to classify injury
counts. Regression is also prone to large calibration
errors (> 0.15).

Another helpful tool is the reliability diagrams
which visualize the calibration errors at different
confidence bins. As an illustration, Fig. 3 shows
the diagram of the NT5-Clf model fine-tuned on
NAVCO injury data, and the diagonal line indi-
cates the perfect calibration. This model is over-
confident, and we can observe large gaps when the
model confidence is larger than 0.8.
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Figure 3: Reliability diagrams compare the calibration
error before (left) and after (right) post-hoc calibration
of the fine-tuned NT5-Clf model using the NAVCO
injury data. This model is prone to large calibration
errors (red gaps) in many bins. This is especially true
for bins with high model confidence (> 0.8).

6.3 Post-hoc Calibration
Since the models can be over-confident based on
the above analysis, we see the necessity to calibrate
models for victim count extraction. We use temper-
ature scaling for classification and generation de-
coding, and isotonic regression for regression. The
post-hoc calibrators use development data to mini-
mize negative log-likelihood and are then applied
to test sets to measure calibration errors. As a com-
parison, Fig. 3 (right) shows the calibrated results
of the fine-tuned NT5-Clf model on NAVCO injury
data. The calibration error (i.e., ECE) reduces from
0.33 to 0.06. The errors of other calibrated models
can be found in Tab. 4. In general, when the models
have rather a large calibration error (e.g., > 0.3),
post-hoc calibration is more helpful and adjusts the
models to a better-calibrated level.

7 Evaluating Robustness

Typically, conflict or disaster data is noisy and lim-
ited. This is making it challenging to train models
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On 24 October 2021, QSD shot and injured a woman in Tal Kifji town in Al
Hasakeh countryside, for refusing to install a mortar launch pad in her
house. There were no fatalities.
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On 4 October 2021, QSD carried out a security operation in the first section
in Hole Camp in Al Hasakeh countryside, and detained two IDP women for
unknown reasons.

c) NT5-Gen

Figure 4: Timeline of victim counts in Syria data from Sept to Nov 2021 as given in the ACLED dataset. We use the
NT5-Gen model that is fine-tuned on NAVCO data. Our model can be tested on the extraction of fatality counts
which is the only victim count featured in ACLED (Fig. (a)). Beyond fatality counts, it can extract more fine-grained
victim types such as (b) injury and (c) abduction counts. Confidence scores are shown for some of the predictions.

on a large-scale, high-quality training set. For this
reason, we need robust models that excel in few-
shot and out-of-distribution settings.

Reduced Training Size. We fine-tune the NT5-
Gen, NT5-Reg, and NT5-Clf models on different-
size portions of the training set. Specifically, we
use 100%, 50%, 10%,5%, 0.5% and 0% of the
training data and as further discussed in App. C.1.
As expected, we find that the accuracy of all mod-
els drops when using a smaller training set. The
NT5-Gen model reveals to be the most robust in
keeping the Exact-Match metric above 0.6 when be-
ing fine-tuned on only 5% of the training data. The
calibration error of the fine-tuned NT5-Clf model
increases when the training size is reduced, while
the fine-tuned NT5-Reg and NT5-Gen models do
not follow this trend. In the zero-shot setting, the
NT5-Reg and NT5-Gen models reach their largest
calibration error. In contrast, the NT5-Clf model
reaches its smallest calibration error in the zero-
shot setting.

Out-of-distribution (OOD) Setting. We set up
synthetic tasks in which a fine-tuned model is con-
fronted with an out-of-distribution setting at test
time. For example, we fine-tune a model on WAD
death and then repurpose it to classify WAD in-
jury. Then, we evaluate the drop in performance

of this “out-of-distribution” model compared to
an “in-distribution” model, that has been trained
on WAD injury labels directly. We conduct this
comparison on different datasets and models.

In App. C.2, we evaluate the NT5-Clf model
in a classification formulation and report accu-
racy. As expected, we find that accuracy decreases
in every setting with performance drops between
0.001% and 0.3%. In Fig. 15, we evaluate the
NT5-Reg model in a regression setting measured
in MSE. We find that the performance decreases
in the out-of-distribution settings as evidenced by
an average increase of 1.12 in MSE. Finally, in
Fig. 16, we turn to an NT5-Gen model in a genera-
tive setting. As an evaluation metric, we consider
Exact-Match and observe a decrease of 0.18 in
Exact-Match on average.

8 Application: Overlooked Victim Types

Most event datasets feature only one column de-
tailing victim counts. This column typically quan-
tifies fatalities, as they are considered least am-
bivalent and most important (Kalyvas, 2006; Chau-
doin et al., 2017). The Armed Conflict Location
& Event Data Project (ACLED) (Raleigh et al.,
2010; Raleigh and Kishi, 2019) recently published
curated datasets containing violence against health-
care workers, media personnel, and women. Con-
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sidering the ACLED dataset on Political Violence
Targeting Women & Demonstrations Featuring
Women, we find that more than 85% of events
have zero fatalities. This means, many forms of
violence remain non-quantified, often those against
“marginalized” groups of society.

Using the methods presented in this work, we
can extract much more fine-grained victim types
such as “injured women” and “abducted women”.
To this end, we rely on the NT5-Gen model that
we fine-tuned on the NAVCO data, without specif-
ically asking for “women”. In Fig. 4, we present
exemplary two-month time series of events in Syria.
We find that our model has a higher recall than pre-
cision on the ground truth annotations for fatality
counts. This may be desirable since we would like
to avoid overlooking true victim counts.

9 Discussion

This work surveys different task formulations of
victim count extraction and inspects desiderata like
accuracy, reliability, and robustness of different
models. We now summarize our findings and con-
clude which approach performs best under which
circumstances (Tab. 5).

Some of the parsing-based approaches have the
advantage of requiring no ground truth annotations
of the extracted victim counts. This means, there
is no need for training, but instead, a manually cu-
rated list of patterns and rules has to be assembled.
The regex approach, for instance, has minimum re-
quirements regarding hardware, but writing regex
patterns is very time-intensive and can be prone to
mistakes. Overall, the baseline models shine when
it comes to speed, and they perform reasonable
when victim counts are explicitly mentioned. Yet
they fail at complex reasoning. For instance, when
asking for the count of deaths in “one child and four
women lost their lives”, all baselines mistakenly
output “1”.

This is where language model-based methods
have a competitive edge. The fine-tuned NT5-Gen
model has high accuracy both in Exact-Match met-
ric and relative error metric. Surprisingly, it is also
well-calibrated and relatively robust in the few-shot
and out-of-distribution setting. This performance
comes at the costs of reduced speed, the require-
ment of large amounts of training data, and the
need for resources like GPUs to be deployed on a
large scale.

Comparing classification and regression objec-

tives, we conclude that classification is easier to
handle. In most settings, it may be sufficient to ex-
tract a range rather than an exact number anyways.
In comparison to generation, in classification and
regression settings, models show higher calibration
errors and require post-hoc calibration to adjust the
model confidence.

10 Related Works

This work interfaces with related works from dif-
ferent disciplines to improve the measurement of
crisis intensity. It draws inspiration from recent
advancements in question answering models with
a focus on numbers and math word problems. This
includes number-enhanced language models more
generally. Our work also connects with model cali-
bration in natural language processing (NLP) more
generally.

Measurement of Crisis Intensity. Extracting in-
formation about crises has been widely explored us-
ing social media data (Temnikova et al., 2015) and
newspapers (Keith et al., 2017; Halterman et al.,
2021). Most existing measures of crisis intensity
focus on counts of event types (Goldstein, 1992;
Terechshenko, 2020; Stoehr et al., 2022) or fatal-
ity counts (Kalyvas, 2006). Previous work studies
friend-enemy relationships (Han et al., 2019; Russo
et al., 2022a; Stoehr et al., 2021, 2023) and conflict-
indicative changes in word embeddings (Kutuzov
et al., 2017).

Numerical Question Answering. Numerical
Question Answering pertains to the task of pro-
viding numeric answers to questions. An exem-
plary model is NAQANet (Dua et al., 2019), which
extends QANet (Yu et al., 2018) with numerical
operations. Neural Module Networks (Gupta et al.,
2020) learn and execute a chain of logical learnable
and differentiable modules. Some of these modules
are specifically targeted at mathematical operations
such find-num or count. Other approaches lever-
age knowledge graphs (Davidov and Rappoport,
2010; Kotnis and García-Durán, 2019) or graph
neural networks (Chen et al., 2020). Thawani et al.
(2021) provides a detailed overview over methods
for representing and modeling numbers in NLP.

Number-enhanced Language Models. More
recent work in number question answering re-
lies on pre-trained large language models. Gen-
BERT (Geva et al., 2020) improves numeric rea-
soning abilities by including a large amount of
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Accuracy Optimization Reliability Robustness Hardware

Absolute Error Relative Error String Match Need Training Stable in OOD

REGEX High Medium Medium N/A No N/A Low

DEP Medium High Low-Medium N/A No N/A Low

SRL Low-Medium Medium High N/A No N/A Low-Medium

CLF N/A N/A N/A Low Medium-High Low Medium - High

REG Low Low N/A Low High Low-Medium Medium - High

GEN Low Low Medium-High High Low-Medium Medium-High High

Table 5: Overview of pros and cons of different models. We list baselines: regular expressions (REGEX), dependency
parsing (DEP), and semantic role labeling (SRL). The CLF, REG, GEN refer to the fine-tuned NT5-Clf, NT5-Reg,
and NT5-Gen models. Absolute / Relative Error pertains to the absolute/relative error between true victim
counts and model predictions taking the real numerical value of the counts (e.g., mean squared error). String
Match considers string metrics like Exact-Match used in question answering. The reliability column is based on
experiments in model calibration. Robustness is divided into the need for training on a large annotated dataset and
the stability in out-of-distribution (OOD). N/A means “Not Applicable”.

synthetic data containing numbers. Codex (Chen
et al., 2021) and NT5 (Yang et al., 2021) apply
similar strategies and are trained on code and math
word problems. Other approaches focus on step-by-
step reasoning such as Minerva (Lewkowycz et al.,
2022), scratchpad (Nye et al., 2021) and chain-of-
thought prompting (Wei et al., 2022). Lefebvre and
Stoehr (2022) propose a prompting-based method
particularly for conflict event classification.

Calibration of NLP Models. The calibration of
NLP models has been extensively studied in clas-
sification (Guo et al., 2017) and structured pre-
diction tasks (Kuleshov and Liang, 2015; Nguyen
and O’Connor, 2015). Calibration methods have
been adapted in language modeling (Braverman
et al., 2020; Kong et al., 2020), question answer-
ing (Kamath et al., 2020; Jiang et al., 2021), and
machine translation (Kumar and Sarawagi, 2019;
Wang et al., 2020).

11 Conclusion

We presented victim count extraction, a challenging
and impactful task. The task can be tackled using
different formulations and models. Models should
be evaluated along different dimensions such as
accuracy, reliability, and robustness. We survey
this ambiguity of victim count extraction, identify
promising directions, and discuss outlooks and ap-
plications.

Limitations

The models may be biased or reproduce biases
inherent in their training data. Presenting unrelated,
faulty or immoral questions to a model can cause

unguided and malicious behavior. For example, we
caution of asking questions such as “How many
people will be injured...?”; and even worse “How
many people should be injured...?”. Improving
model calibration will help defending against these
issues and enable awareness of when to abstain
from answering.

Ethics Statement

This work originated from the motivation to diver-
sify victim count extraction towards underrepre-
sented victim types and overlooked forms of vi-
olence. This work ultimately intends to assist re-
searchers and analysts in the sector of humanitarian
aid who are in demand of accurate victim count in-
formation.
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A Regex Patterns

We convert any non-digitized numeral expressions
into a digitized format (e.g. twelve→ 12). Regex
patterns are designed for both passive and active
voices. We also distinguish plural (“are” and
“were”) and singular forms (“is”, “was”) for pas-
sive voice patterns. The algorithm checks with the
following order: passive plural, passive single, and
active. If multiple numbers are extracted, the first
is kept. We list the regex patterns used to extract
victim counts in Tab. 6, for death counts and injury
counts respectively.

B Accuracy Evaluation

In this section, we complement the accuracy evalu-
ation of the models in §5.

B.1 Exact-Match and F1 score on Death
Counts

The Exact-Match and F1 scores on extracting the
death counts are shown in Tab. 7, which compares
the performance of the baseline models and the
fine-tuned NT5-Gen model. Similar to the results
on the injury counts Tab. 1, the fine-tuned NT5-
Gen model performs better than all baselines and
the SRL has the best accuracy among baselines.

B.2 Confusion Matrix on Death Counts

Similar to Fig. 1 shown in §5.1, Fig. 5 plots the
confusion matrices of the binned death counts for
the different datasets, which compare the accuracy
of the baseline models with the fine-tuned NT5-
Gen model.

B.3 Results on Classification and Regression

In §5.2, we have shown the results of the NT5-
Clf model and the NT5-Reg model fine-tuned on
NAVCO injury counts in Tab. 3.

Here, we use the same metrics and display the
classification performance on other datasets. In
specific, Tab. 8, Tab. 9, Tab. 10, Tab. 11, and Tab. 12
respectively show the classification performance
of the NT5-Clf model fine-tuned on WAD death
counts, WAD injury counts, NAVCO death counts,
EMM death counts, and EMM injury counts.

Similarly, we provide the scatter plots of the
fine-tuned NT5-Reg models initialized with dif-
ferent pre-trained weights in this section: WAD
death counts (Fig. 6), WAD injury counts (Fig. 7),
NAVCO death counts (Fig. 8), EMM death
counts (Fig. 9), and EMM injury counts (Fig. 10).

C Robustness Evaluation

In this section, we provide the detailed performance
of the few-shot setting (App. C.1) and the out-of-
distribution setting (App. C.2) discussed in §7.

C.1 Few-shot Performance

We display the results of the few-shot settings
where different proportions of the training set are
used to fine-tune the models. For each formula-
tion, the left figure is the variation of the accuracy
metrics and the right figure is the variation of the
calibration error. Fig. 11, Fig. 12, and Fig. 13 are
performance of the few-shot settings of the fine-
tuned NT5-Clf, NT5-Reg, and NT5-Gen models
respectively.

With respect to accuracy metrics, the classifica-
tion accuracy and the F1 score is plotted for the
fine-tuned NT5-Clf model.

For the regression, we plot the change of mean
squared error on the log transformed counts. In
addition, we plot the pinball losses using two tar-
geting quantile (at 10% and at 90%).

Lastly, the Exact-Match and the F1 scores are
drawn for the fine-tuned NT5-Gen model.

C.2 Out-of-distribution Setting

For each task formulation, we examine the accu-
racy performance in the out-of-distribution setting
for the fine-tuned NT5-Clf (Fig. 14), NT5-
Reg (Fig. 15), and NT5-Gen (Fig. 16). For all plots,
the x-axis is the accuracy metric used in each task
formulation, and the y-axis indicates the test set to
be made inferences on. The red bar indicates the
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Data Type Regex Type Regex Pattern

Death Passive Plural \d(\d|,)*(?!\D*(injur|wound))(?=.*(\b(were|are)\D*\b(killed|dead|died|slain)))

Passive Singular \S*(?!\D*(injur|wound))(?=.*(\b(was|is)\D*\b(killed|dead|died|slain)))

Active (kill|slay|slain)\D*\b\d(\d|,)*

Injury Passive Plural \d(\d|,)*(?!.*(\b(were|are)?\D*\b(killed|dead|died|slain)))(?=.*\b(injur|wound))

Passive Singular \S*(?=(was|is).*\b(injur|wound))(?!\D*(\b(were|are)\D*\b(killed|dead|died|slain)))

Active (injured?|wound)\D*\d+

Table 6: Regex patterns.
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Figure 5: Confusion matrices of baseline models and fine-tuned NT5-Gen model (columns) of extracting death
counts from different data (rows). We convert the true victim counts and model predictions into 4 categories: for
any count y, “0” is y = 0, “1” is 0 < y ≤ 3, “2” is 3 < y ≤ 10 and “3” is y > 10. Values are normalized over true
counts.

Exact Match F1

WAD NAVCO EMM WAD NAVCO EMM
Regex 0.3543 0.3921 0.2835 0.3897 0.4196 0.3242
Dep 0.1506 0.3526 0.0767 0.2064 0.3792 0.1317
SRL 0.4342 0.4839 0.3972 0.7794 0.4837 0.3613
NT5 0.6798 0.6590 0.6322 0.8458 0.5436 0.4917

Table 7: Exact-Match and F1 scores of the baseline
models and the fine-tuned NT5-Gen model on death
counts. Best metrics are bolded. DEP refers to the de-
pendency parsing model and SRL refers to the semantic
role labeling model.

performance of in-distribution performance, e.g.,
accuracy of WAD death test data using the model
fine-tuned on WAD death.

With respect to the accuracy metric, different
formulations use their corresponding metric. For
the classification setting, we show the variation
in classification accuracy. For the regression set-
ting, we show the variation in mean squared errors.

Accuracy F1 score Precision Recall

NT5 0.81 0.81 0.80 0.83
T5 0.81 0.81 0.81 0.84
BERT 0.86 0.86 0.86 0.88

Table 8: Classification results on WAD death counts
with the NT5-Clf model initialized by different pre-
trained weights: NT5, T5-SMALL, and BERT-BASE-
UNCASED. F1 , precision and recall scores are macro.

Accuracy F1 score Precision Recall

NT5 0.77 0.69 0.70 0.69
T5 0.76 0.69 0.70 0.68
BERT 0.93 0.91 0.91 0.90

Table 9: Classification results on WAD injury counts
with the NT5-Clf model initialized by different pre-
trained weights: NT5, T5-SMALL, and BERT-BASE-
UNCASED. F1 , precision and recall scores are macro.
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Accuracy F1 score Precision Recall

NT5 0.65 0.60 0.62 0.59
T5 0.65 0.60 0.61 0.59
BERT 0.52 0.23 0.17 0.33

Table 10: Classification results on NAVCO death counts
with the NT5-Clf model initialized by different pre-
trained weights: NT5, T5-SMALL, and BERT-BASE-
UNCASED. F1 , precision and recall scores are macro.

Accuracy F1 score Precision Recall

NT5 0.72 0.65 0.66 0.65
T5 0.70 0.63 0.65 0.63
BERT 0.84 0.80 0.82 0.78

Table 11: Classification results on EMM death counts
with the NT5-Clf model initialized by different pre-
trained weights: NT5, T5-SMALL, and BERT-BASE-
UNCASED. F1 , precision and recall scores are macro.

Accuracy F1 score Precision Recall

NT5 0.68 0.58 0.60 0.57
T5 0.68 0.58 0.59 0.57
BERT 0.81 0.77 0.79 0.76

Table 12: Classification results on EMM injury counts
with the NT5-Clf model initialized by different pre-
trained weights: NT5, T5-SMALL, and BERT-BASE-
UNCASED. F1 , precision and recall scores are macro.
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Figure 6: Scatter plots of the fine-tuned NT5-Reg model
initialized with different pre-trained weights (NT5, T5-
SMALL, and BERT-BASE-UNCASED). The models are
trained on log-transformed victim counts of WAD death.

For the generation setting, we show the change in
Exact-Match scores.
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Figure 7: Scatter plots of the fine-tuned NT5-Reg model
initialized with different pre-trained weights (NT5, T5-
SMALL, and BERT-BASE-UNCASED). The models are
trained on log-transformed victim counts of WAD in-
jury.
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Figure 8: Scatter plots of the fine-tuned NT5-Reg model
initialized with different pre-trained weights (NT5, T5-
SMALL, and BERT-BASE-UNCASED). The models are
trained on log-transformed victim counts of NAVCO
death.
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Figure 9: Scatter plots of the fine-tuned NT5-Reg model
initialized with different pre-trained weights (NT5, T5-
SMALL, and BERT-BASE-UNCASED). The models are
trained on log-transformed victim counts.

1939



5 10
Truth

0.0

2.5

5.0

7.5

Pr
ed

ict
io

n

NT5
MSE = 2.91

5 10
Truth

T5
MSE = 1.35

5 10
Truth

BERT
MSE = 0.94

Figure 10: Scatter plots of the fine-tuned NT5-Reg
model initialized with different pre-trained weights
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Figure 11: Few-shot performance of the fine-tuned clas-
sification model on WAD death counts.
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Figure 12: Few-shot performance of the fine-tuned re-
gression model on WAD death counts.
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Figure 13: Few-shot performance of the fine-tuned NT5-
Gen model on WAD death counts.
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Figure 14: Classification accuracy for using the fine-
tuned NT5-Clf models on out-of-distribution data (blue)
and on in-distribution data (red)
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Figure 15: Mean squared error for using the fine-tuned
NT5-Reg models on out-of-distribution data (blue) and
on in-distribution data (red)
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Figure 16: Exact-Match for using the fine-tuned NT5-
Gen models on out-of-distribution data (blue) and on
in-distribution data (red)
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Abstract

A universal classification model aims to gener-
alize to diverse classification tasks in both zero
and few shot settings. A promising way toward
universal classification is to cast heterogeneous
data formats into a dataset-agnostic “meta-task”
(e.g., textual entailment, question answering)
then pretrain a model on the combined meta
dataset. The existing work is either pretrained
on specific subsets of classification tasks, or
pretrained on both classification and genera-
tion data but the model could not fulfill its po-
tential in universality and reliability. These
also leave a massive amount of annotated data
under-exploited. To fill these gaps, we propose
CONENTAIL, a new framework for universal
zero and few shot classification with supervised
contrastive pretraining. Our unified meta-task
for classification is based on nested entailment.
It can be interpreted as “Does sentence a en-
tails [sentence b entails label c]”. This formu-
lation enables us to make better use of 57 an-
notated classification datasets for supervised
contrastive pretraining and universal evaluation.
In this way, CONENTAIL helps the model (1)
absorb knowledge from different datasets, and
(2) gain consistent performance gain with more
pretraining data. In experiments, we compare
our model with discriminative and generative
models pretrained on the same dataset. The re-
sults confirm that our framework effectively ex-
ploits existing annotated data and outperforms
baselines in both zero (9.4% average improve-
ment) and few shot settings (3.5% average im-
provement). Our code is available at https:
//github.com/psunlpgroup/ConEntail.

1 Introduction

It has been a long-standing effort to solve various
text classification tasks by training one universal
model (Kumar et al., 2016). With an ideal univer-
sal classification model, we can expect extreme
generalization with few or zero annotation in new
domains/tasks/datasets. To this end, researchers

reformulate heterogeneous task definitions into a
unified format of a meta-task in natural language
(Yin et al., 2020; Khashabi et al., 2020a). Solving
the meta-task is equivalent to solving the isolated
tasks, thus the meta-task paves the way of supple-
menting unsupervised pretrained Language Models
(PLM) with additional supervised pretraining, to
further absorb knowledge from heterogeneous la-
beled data.

The success of universal classification models
hinges on how well a strong PLM understands nat-
ural language meta-task. The meta-task format
depends on two underlying PLM types: (a) dis-
criminator uses Encoder PLMs and treats all clas-
sification tasks as binary entailment classification
problem (Yin et al., 2019, 2020; Xia et al., 2021;
Wang et al., 2021). However, they only pretrain
models on Natural Language Inference datasets,
whose knowledge is not comprehensive comparing
all classification tasks (Ma et al., 2021). (b) gen-
erator uses Encoder-Decoder PLMs and treats all
tasks as text generation problem (Gao et al., 2020;
Raffel et al., 2020; Sanh et al., 2021; Aribandi et al.,
2021; Ye et al., 2021a; Bragg et al., 2021; Du et al.,
2021; Schick and Schütze, 2021a,b). Thus they are
compatible with both classification tasks and gener-
ation tasks. However, the generator nature implies
that the predicted texts may not match any possi-
ble labels, thus more likely to fail on classification
tasks (Sanh et al., 2021).

Based on our observations and experiments, we
argue that the discriminators have more potential in
universal classification, and propose a new discrim-
inator framework, CONENTAIL, that can make bet-
ter use of existing annotated datasets. Concretely,
we reformulate the unified meta-task as a nested
entailment: “Does sentence q entails [sentence p en-
tails label h]”. Take Fig. 1 as an example, the query
“We had a great breakfast at the waffle shop!” en-
tails the same label as the premise “I bought this for
myself a short time ago and I love it. An excellent
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Figure 1: The overview of the CONENTAIL framework. By casting the classification as a nested entailment task,
the model performs classification by telling if a query sentence q entails [premise example p entails hypothesis
label h]. In a few-shot setting, the premise is an example sentence; in a zero-shot setting, the premise is a “NULL”
placeholder.

piece for my movie collection.”, so it yields a high
similarity score of 0.9, in this case, it is higher than
any other similarities, thus, the prediction would
be “happy”. For zero-shot generalization, as no
annotated sentences are available, we replace the
premise p with “NULL” in evaluation. We ran-
domly nullify a small ratio of p in the supervised
pretraining for training-evaluation consistency. The
supervised contrastive learning framework pulls
sentences embeddings with the same label together
and pushes those with different labels apart, thus
capturing more similarities/dissimilarities from la-
beled data, and benefiting few/zero-shot learning.

In experiments, we collect 56 classification
datasets from Crossfit (Ye et al., 2021a), together
with their templates, to formulate a large supervised
pretraining dataset. We reproduce EFL (Wang et al.,
2021), Unifew (Bragg et al., 2021) and Crossfit (Ye
et al., 2021a) in the same setting and control in-
fluences of PLM supervised pretraining data, then
conduct fair comparison with our proposed CO-
NENTAIL. The experiments show that generators
(Unifew and Crossfit) do not fit the classification
task well and thus significantly under-perform the
random guess in zero-shot evaluation; standard dis-
criminators (EFL) under-exploit supervised pre-
training datasets and thus do not gain consistent
improvement as pretraining data scale up, while
CONENTAIL makes the best use of the supervised
pretraining data and keep consistent performances.
Our model outperforms baselines in both zero
(9.4% average improvement) and few shot settings
(3.5% average improvement).

Our contributions are the following:

• We propose a novel universal classification
framework based on nested entailment, CO-
NENTAIL, that can be used in both zero and
few shot settings. It makes better use of su-
pervised pretraining datasets and consistently
improves performances with increases of the
pretraining scale.

• We design systematic experiments to com-
pare generative and discriminative models,
and more importantly, we give in-depth analy-
sis to reveal their attributes in universal classi-
fication task.

• Our model reliably outperforms the baseline
models in all kinds of pretraining size, fine-
tuning size, and covers a wide range of tasks.

2 Related Work

Universal Meta Task Casting heterogeneous
datasets into a unified meta-task allows researchers
to train one model to solve all tasks. There are two
types of meta-task formats, generation (Schick and
Schütze, 2021a,b; Gao et al., 2020; Ye et al., 2021a;
Bragg et al., 2021; Khashabi et al., 2020a) and dis-
crimination (Yin et al., 2019, 2020; Xia et al., 2021;
Wang et al., 2021). The generators formulate meta-
task as a text-to-text generation problem. Although
their supervised pretraining usually involves both
classification and generation tasks, as the text out-
puts are open-ended, the model predictions may
fall out of all possible labels. The discriminators
formulate meta-task as an entailment classification
problem, and usually use Natural Language In-
ference datasets for supervised pretraining. We
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extend discriminator pretraining to more classifi-
cation datasets and propose a nested entailment
meta-task to enable a more efficient supervised pre-
training method.

Supervised Pretraining Supervised pretraining
originates from explicit multitask learning (Caru-
ana, 1997) which combines different task knowl-
edge into shared representations. Phang et al.
(2018) found that supplementing PLMs with super-
vised pretraining between unsupervised pretraining
and downstream finetuning can significantly boost
the performance and few-shot generalization. The
discriminator models including UFO-Entail (Yin
et al., 2020) and EFL (Wang et al., 2021) are trained
on MNLI (Williams et al., 2018) in a supervised
fashion, but they do not combine different sources
of datasets. Furthermore, T0 (Sanh et al., 2021)
and ExT5 (Aribandi et al., 2021) extends T5 (Raf-
fel et al., 2020) by using 107 and 171 datasets for
supervised pretraining and conduct zero-shot eval-
uation. FLEX (Bragg et al., 2021) and Crossfit (Ye
et al., 2021a) extends the supervised pretraining
evaluation to few-shot learning.

The supervised pretraining strategies from these
works vary in pretraining datasets and hyperpa-
rameters, but they mostly follow their underlying
language model tasks, such as Next Sentence Pre-
diction or Text Generation. We argue that applying
the unsupervised pretraining strategy to supervised
pretraining is an underuse of the labeled data, and
propose a supervised contrastive learning method
on PLMs for better zero/few-shot generalization.

Contrastive Learning for NLP Contrastive learn-
ing aims to create embeddings such that similar
examples are close while dissimilar examples are
far away (Chopra et al., 2005). While most works
use self-supervised contrastive learning (Shen et al.,
2020; Fang et al., 2020; You et al., 2021; Ye et al.,
2021b), only a few adopt supervised contrastive
learning. CLIP (Radford et al., 2021) uses labeled
images and captions as supervision signal. Sim-
CSE (Gao et al., 2021) and SBERT (Reimers and
Gurevych, 2019) use labeled sentence pairs from
NLI to construct positive and negative examples.
However, their contrastive data creations are lim-
ited to specific types of data, and thus can be hardly
extended to universal classification. We reformu-
late all NLP classification tasks into a unified con-
trastive meta-task and use Supervised Contrastive
Loss (Khosla et al., 2020) to train on heterogeneous
labeled data during supervised pretraining.

BERT

Similarity

Train 
SCL

Train
Test

Test 
KNN

Figure 2: During supervised pertaining, the CONEN-
TAIL model is optimized with pairwise contrastive learn-
ing loss SCL. Testing utilizes the K-Nearest Neighbor
predictor to rank pairwise similarities between the query
and premise-hypothesis pairs for retrieval of the most
likely label. Zero-shot training/testing occurs when the
premise example is represented by a "NULL" token."

3 Method

3.1 Universal Classification

Universal classification task aims to build a univer-
sal predictor that generalize to new domain/task/-
dataset based on only a few or zero newly anno-
tated examples. In order for models to understand a
new area, any available resources should be consid-
ered for learning, including PLMs trained on large-
scale unsupervised data and heterogeneous super-
vised classification datasets in the NLP community.
To leverage heterogeneous datasets, the disparate
input-output formats need to be reformulated to a
unified PLM comprehensible format, i.e., “meta
task”, through either human-curated or machine-
generated templates. Then a universal model on
the combined meta dataset is trained, which applies
universal predictors to new areas. Because the meta
task format is compatible with every task, we can
cast target tasks into the same format, in this way
solving the meta task is equivalent to solving tasks
in a new area.

3.2 CONENTAIL: Nested Entailment

In this paper, we introduce a supervised contrastive
pretraining paradigm that makes better use of su-
pervised pretraining. The overview is shown in Fig.
2. Our CONENTAIL model takes 3 inputs:

f : Q,P,H → {0, 1}
q, p, h 7→ b
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where q ∈ Q is the query sentence to be classified.
p ∈ P is the exemplar sentence as a premise, h ∈
H is the hypothesis verbalized from the label of
p. The task of CONENTAIL is to determine if q
entails [p entails h].

We follow (Khashabi et al., 2020b; Ye et al.,
2021a) and translate sentence and label (x, y) to
(q, p, h) in a PLM comprehensible format, e.g.,

• x 7→ q, where q is the input sentence x with
multiple-choice, for example, (1) happy (2)
sarcastic (3) sad, sentence: I bought this for
myself ...

• x 7→ p: where p is the input sentence x with
premise, for example, sentence: I bought this
for myself ...

• y 7→ hwhere h is the label name, for example,
h: happy

where we provide q with all possible labels as
multiple-choice questions, and concatenate them
in a linearized sentence. In supervised pretraining,
q and p are two different surface forms of the same
x, so that we can construct positive and negative
examples for the later contrastive learning. In the
test, q is the query sentence to be clarified and p
and h are from the support set.

We use BERTbase to encode sentences to vector
representation h.

hq = BERTbase(q) (1)

p and h are then concatenated into one sequence
to be fed into the encoder:

ph = p[SEP]h (2)

hph = BERTbase(ph) (3)

In the supervised pretraining, the embed-
dings of each mini-batch are composed by{
hiq,h

i
ph

}
i=1,...,N

, where N is the batch size.

Then we calculate their pairwise cosine similarity

sim
(
hiq,h

j
ph

)
=

hi
q ·hj

ph

∥hi
q∥·∥hj

ph∥
for contrastive train-

ing. sij ∈ {0, 1} is denoted as the groundtruth
of the predicted similarity, where sij = 1 is a
positive pair when yi = yj , and vice versa. The
positive/negative examples are constructed by all
combinations of instances in the batch, note that
we did not mine hard examples. We follow the
balanced sampling strategy from Meta Classifica-
tion Learning (Hsu et al., 2019) that each label in a
mini-batch has an equal number of input sentences.

In the test phase, we calculate cosine similarities
between q and all possible ph and output the most
similar h as the prediction result. Thus, we con-
sider our setting as a K-way N-shot learning, where
K is determined by the test set, N varies from 0 to
80 in our experiments.

Given the pairwise similarity, we use Supervised
Contrastive Loss (Khosla et al., 2020) to train the
model:

L = −
N∑

i=1

1

|P (i)|
N∑

p=1

1yi=yp1i ̸=p

log
exp

(
sim

(
hiq,h

p
ph

)
/τ
)

∑N
a=1 1i ̸=a exp

(
sim

(
hiq,h

a
ph

)
/τ
)

(4)

where |P (i)| =∑N
p=1 1yp=yi is the number of all

positive pairs, τ is the temperature hyperparam-
eters. Different from self-supervised contrastive
learning losses, such as SimCSE (Gao et al., 2021),
the positive pairs in Supervised Contrastive Loss
can be more than one.

To enable zero-shot generalization, inspired
by BERT masked language model (Devlin et al.,
2019), we introduce a dummy premise “NULL” in
both supervised pretraining and testing. During
supervised pretraining, we randomly replace 5% of
the premise p with “NULL” (if q entails [“NULL”
entails h].). During zero-shot test, the support set
is empty and the model uses only “NULL” and
label names to answer the question.

4 Experiments

In this section, we describe our experiment setups
including dataset selection, evaluation, and base-
line models.

4.1 Dataset Selection
For universal text classification, we aim to cover
the most popular text classification tasks, such
as topic classification, sentiment analysis, para-
phrase identification, and natural language infer-
ence. Therefore, we adopt Crossfit (Ye et al.,
2021a) that provides abundant hand-craft templates
covering 56 classification tasks as the source of
supervised pretraining and testing. We select 47
datasets as supervised pretraining sets and 9 widely
accepted datasets as test sets: CoLA (Warstadt
et al., 2018), QQP (Iyer et al., 2017), SST-2 (Socher
et al., 2013), MRPC (Dolan and Brockett, 2005),
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Method CoLA QQP Hate_speech MRPC SCITAIL Amazon AGNews Rotten_tomatoes SST-2 AVG
Unseen Seen

Random-guess 50.5 49.8 34.1 50.0 49.8 49.9 24.0 46.8 49.9 44.9

0-shot

Crossfit† 0.0 0.0 0.0 0.0 0.2∗ 9.9∗ 0.0 59.9∗ 33.4∗ 11.5∗

Unifew† 0.0 0.0 0.0 0.0 48.4∗ 63.7∗ 8.0∗ 57.4∗ 60.6∗ 26.5∗

EFL 62.6 60.5∗ 12.7 33.1 47.2∗ 71.9∗ 60.8∗ 72.5∗ 79.1∗ 53.8∗

CONENTAIL 58.5∗ 45.3 78.3∗ 58.1∗ 68.7∗ 89.7∗ 52.8∗ 78.1∗ 83.0∗ 63.2∗

10-shot fine-tuning

Crossfit† 55.3
±5.0

53.4
±9.8

42.8
±14.4

60.0
±11.1

58.8
±5.4

87.9
±6.1

83.7
±6.6

75.8∗
±1.2

81.2
±8.9

65.3

Unifew† 49.0
±4.9

60.4
±6.0

34.9
±6.8

57.7
±6.3

53.4
±2.4

88.8
±3.6

86.5
±1.8

73.4
±9.5

71.2
±11.5

63.9

EFL 63.7
±0.2

60.4
±0.2

13.8
±0.6

33.1∗
±0.0

47.2∗
±0.1

72.0
±0.0

62.3
±0.6

72.5∗
±0.0

79.5
±0.2

55.9

CONENTAIL 60.5∗
±0.6

55.6
±3.5

44.7
±2.2

69.9∗
±0.9

71.0∗
±0.9

89.4∗
±0.1

70.3∗
±2.1

78.7∗
±0.2

83.2∗
±0.2

68.8∗

Table 1: The main results of CONENTAIL compared with baselines. † indicates the models are generative models
and the others are discriminative models. In the 10-shot evaluation, to offset the high variances from fine-tuning on
such a small support set, the models are fine-tuned by 3 different random sampled support sets. After conducting
experiments with and without supervised pretraining, we report the mean accuracy scores and the standard deviation
of the best versions of models (in bold). We split the test sets in two groups, seen and unseen, which indicates if the
test label names have occurred in the supervised pretraining. AVG is the highest average score of the two versions
of models. If a model with supervised pretraining is better than that without supervised pretraining, it is indicated
with a ∗.

SCITAIL (Khot et al., 2018), Amazon Polar-
ity (Zhang et al., 2015a), AGNews (Zhang et al.,
2015b), Rotten_tomatoes (Pang and Lee, 2005),
Hate_speech_offensive (Davidson et al., 2017).
For the sentence-pair datasets (e.g., QQP, SST-2,
MRPC), we adopt the Crossfit method by concate-
nating the two sentences with [SEP] to form one
sequence for either q or p. From the 47 datasets
for supervised pretraining, we randomly select 128
annotated examples per label. As the same label
name may occur in different datasets, to investigate
the effect of label name overlapping, we pick 5 (out
of 9) selected test sets with overlapping/seen label
names for the supervised pretraining. The detailed
dataset list is in Appendix B.

4.2 Evaluation

Supervised Pretraining To investigate the effect
of the supervised pretraining, we consider two ver-
sions of all the compared models: (1) without su-
pervised pretraining: we apply the original PLMs
directly to the reformulated input-output test set.
(2) with supervised pretraining: we first perform su-
pervised pretraining on the PLMs and then evaluate
the models with the updated parameters.
Zero-shot Evaluation In zero-shot evaluation, the
only available resources for the target task are the
possible label names and the whole test set will be

used to evaluate the model.
Few-shot Evaluation In few-shot evaluation, in
addition to the label names, a small support set
are available for fine-tuning the universal classifi-
cation model. The support set for each dataset is
composed by k random sampled annotated exam-
ples per label, from the training data. With small
support sets, the evaluation score may have huge
variance, thus we fine-tune and evaluate the model
with 3 different support sets and report the mean
and standard deviation.

4.3 Baseline Models

We aim to evaluate models in different paradigms
in the same universal classification experiment set-
ting. To this end, we compare three baselines that
are most representative of the current literature on
generators and discriminators.

In this paper, we only consider the differences of
the baselines in the meta-task formulation and their
generator/discriminator nature while keeping other
factors the same, so we reproduce the baselines
strictly follow this rule, and use a similar size of
pretrained language models as backbones, for a fair
comparison. Because our generator/discriminator
taxonomy suits many other existing works, with
only subtle differences either in the templates or in
the backbone PLMs from the baselines mentioned
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Figure 3: Relative performance gain of supervised pre-
training on different datasets and models. The setting
is the same with the main experiment. We do not plot
zero-shot gains for the generators because most scores
are 0 before and after supervised pretraining.

here, we do not add more baselines for compar-
isons.
Crossfit (Ye et al., 2021a): A generative model
uses an encoder-decoder structure. The encoder
takes the query sentence, and the decoder generates
the label name.
Unifew (Bragg et al., 2021): A generative model
concatenates all possible labels to the input sen-
tence as multiple-choice question answering. It
uses an encoder-decoder structure and generates
the label names as answers.
EFL (Wang et al., 2021): A discriminative model
reformulates the tasks as multiple entailment bi-
nary classifications. Both the query sentence and
the label name are fed into the encoder. The em-
bedding of [CLS] token is used for binary classifi-
cation. The label with the highest probability is the
predicted output. For supervised pretraining, we
enumerate all possible labels for input and provide
all the ground truths for the binary classification.

5 Results and Analysis

We design the following experiments to demon-
strate and analyze the effectiveness of our method.
First, we present the best scores of the compared
models with or without supervised pretraining as
our main result (Section 5.1). Then, we investigate
the performance gain or loss of each model brought
by the supervised pretraining (Section 5.2). Fur-
thermore, we study the fine-grained impact of more
labeled data in supervised pretraining or of more la-
beled data in support set (Section 5.3). Considering
these results, we discuss the difference between dis-
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Figure 4: The effect of supervised pretraining data size.
We show the zero-shot performance of CONENTAIL and
EFL using different pretraining data size from 32 to 128
annotated sentences per label.

criminators and generators (Section 5.4). Finally,
we show a case study of universal classification
under a zero-shot scenario (Section 5.5).

5.1 Main Results

We evaluate the models in two scenarios, 0-shot
learning and 10-shot learning (Table 1). The av-
erage performances of both discriminator models,
EFL and CONENTAIL, significantly outperform
random guess and two generation-based models.
Particularly, CONENTAIL, with significantly im-
proved average results, performs the best on 6 out
of the 9 datasets in both 0-shot and 10-shot settings.

From the table, we also observe that the seen la-
bels bring most improvements to Unifew in 0-shot
setting. The 0-shot performance of Unifew in SST-
2, SCITAIL and Amazon is far better than Crossfit.
This is because Unifew has included the labels in
the query sentences as multiple-choice questions,
which provides the model additional familiarities
from the supervised pretraining. In other words,
although the 0-shot unseen accuracies of the gen-
erative models are mostly 0, their performances
can be improved quickly with few-shot finetuning.
This indicates that generative models are promising
few-shot learners but not strong zero-shot learners.

5.2 Performance Gain from Supervised
Pretraining

We then quantify the effect of supervised pretrain-
ing by Relative Performance Gain introduced (Ye
et al., 2021a). Relative Performance Gain is the
relative improvement brought by the supervised
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Figure 5: The effect of data size in the support set. We show the accuracy of the compared models fine-tuned with
0 to 80 examples in the support set. For each data size, we randomly sample 3 support sets for fine-tuning and
evaluate on the same test set.

pretraining. It is defined as Accw−Accw/o
Accw/o

, the perfor-
mance difference between a supervised pretraining
model Accw and non-supervised pretraining model
Accw/o, divided by the latter. The results are shown
in Fig. 3.

We observe that supervised pretraining boosts
the performance in most datasets in the 0-shot set-
ting. But it lowers the scores in the 10-shot set-
ting, except for CONENTAIL. CONENTAIL’s per-
formance rises in 7 out of 9 datasets in both 0-shot
and 10-shot setting. This shows the general neces-
sity of supervised pretraining for 0-shot evaluation
and the effectiveness of our proposed model in both
settings. The baseline models did not benefit from
supervised retraining for the 10-shot setting be-
cause their conventional fine-tuning strategy is less
likely to thoroughly update the parameters than our
proposed contrastive learning. Noting that 10-shot
evaluation means all the compared models only
have 10 labeled examples for finetuning.

5.3 Impact of More Training data

More data in supervised pretraining: we investi-
gate if more labeled data in supervised pretraining
can improve zero-shot generalization. As the accu-
racies of generator models are close to zero in the
zero-shot setting, we only consider discriminator
models including CONENTAIL and EFL. These two
models are supervised pretrained on different-scale
datasets (32-128 sentences per label) and evaluated
on the 9 test sets. As shown in Fig. 4, the perfor-
mance of CONENTAIL has fewer fluctuations than
the EFL, and the performance improvements of
most datasets flat after 80 shots for CONENTAIL.

This observation implies that the supervised pre-
training has significant and reliable positive effects
on CONENTAIL with merely a small amount of
supervised dataset.
More data in support set: for models supervised
pretrained with 128 annotated sentences per label,
we plot the line chart of fine-tuning with 0 to 80
shots. As shown in Fig. 5, adding a few train-
ing sentences may not largely boost performance
when the universal model is strong enough, but
it improves the models significantly if the models
have a slow start. Furthermore, though the gener-
ator model performances improve fast from 0 to
50 shots, the scores fluctuate largely. But after the
first 50 shots, the improvements slow down, and
the variances becomes much smaller. This implies
that all the compared models are strong few shot
learners, so that fine-tuning on large-scaled training
data in the downstream tasks is unnecessary.

5.4 Discussion on the Differences Between
Discriminator and Generator Models

The ineffectiveness of zero-shot Unifew and Cross-
fit are rooted in their generation nature. The origi-
nal motivation of generation-based models is to
resolve all kinds of NLP tasks, including both
classification and generation. However, the uni-
versal classification task (i.e., tasks in this paper)
are usually formulated as label picking from lim-
ited choices, while generation tasks aim to output
human-readable sentences that match the input sen-
tences – the target distributions for these 2 tasks
are innately different. In the few-shot setting, fine-
tuning with 10 more examples in the target task
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I happily donate any covid vaccine dose which may be reserved for me to any person that is stupid enough to get
one, or two, three, or four.

mild 0.59 irony 0.48 happy 0.44 ... ... optimism 0.23

Guys it’s OK. Delta says covid is over. IT’S OK NOW.

mild 0.69 non-irony 0.48 irony 0.47 ... ... hate 0.10

The first patient who died of COVID in Kerala already had BP and cardiac issues, and he was 69. Bottomline : If
we take precautions, we are still safe and can ensure others are safe too.

optimism 0.51 mild 0.51 positive 0.43 ... ... hate 0.08

Could you imagine putting your faith into the narrative, getting jabs, getting sick from side effects (which is now
being called the variant) and then being labeled an antivaxxer amidst this lie "only the unnvacinated are getting
sick". They will use you up until there’s nothing left.

offensive 0.59 irony 0.58 mild 0.56 ... ... happy 0.25

... I don’t see a monetary benefit. I don’t see any professional benefit. Ask the people who believe what they are
being told for an explanation because I don’t see any.

offensive 0.60 mild 0.54 irony 0.49 ... ... optimism 0.20

I can’t do this anymore. I went from a house and 2 beautiful daughters and wife to homeless and left with literally
nothing. ... They need to die painfully and even then they will never pay for their sins. All it takes it one moment in
history for everything to change. You keep breaking men down to nothing. Those broken men will break you.

offensive 0.80 negative 0.63 hate 0.59 ... ... optimism 0.10

Table 2: Case study of an unseen task. We use CONENTAIL in a zero-shot manner to analyze twitter and reddit
sentiment during the Covid-Omicron surge. We pick 13 fine-grained sentiment labels and rank the labels by their
similarity with the input sentence.

shifts the text generation distribution towards the
label distribution, so the generated texts are more
likely to be the labels, and this improves model
performances. However, as the predictions are still
in the large vocabulary space, they are likely to
be altered by any disturbances. When using dif-
ferent support sets, the variances of the accuracy
are far larger than that of the discriminator models.
This also explains why Unifew performs better than
Crossfit: the only difference between Unifew and
Crossfit is that the input sentences of Unifew are ap-
pended with all possible label texts. By providing
the generation process label hints, Unifew shifts its
generation distribution towards label distribution
and outperforms Crossfit. But the accuracy gap
between Unifew and Crossfit drops from 15% to
merely 0.7% while the number of shots increases
from 0 to 10. As we stated before, Unifew performs
better in the 0-shot setting because of its extra la-
bel hints. However, with an increase of shots, this
advantage is diluted, resulting in a smaller perfor-
mance difference between these two models.

5.5 A Case Study of Universal Classification

Consider a possible application scenario of uni-
versal classification: when dealing with new tasks
and domains, especially related to newly emerged
events, usually people only have the label names
in hand. Based on this, we demonstrate a COVID-

19 sentiment classification case study to show the
universality of the proposed CONENTAIL model.

We use keywords to collect 50 sentences from
Reddit and Twitter during the surge of the Omi-
cron variant, then pick 13 fine-grained sentiment
labels for this task: positive, mild, negative, offen-
sive, happy, anger, sad, hate, irony, non-offensive,
non-irony, non-hate, optimism. For each COVID-
related query sentence, CONENTAIL model re-
trieves from all 13 possible labels and ranks them
by similarity.

From the results Table 2 we observe that the
model ranks the labels correctly most of the time.
With antonyms paired with each other, such as
hate/non-hate and happy/sad, our model success-
fully predicts the labels with only the label names,
showing the polarity derived from the pairwise
ranking are effective and reliable.

6 Conclusions

In this work, we study the universal classifica-
tion problem, that leverages heterogeneous labeled
datasets to benefit zero/few-shot learning in a new
domain/task/dataset. We conduct systematic exper-
iments on mainstream discriminators and genera-
tors models, thoroughly evaluate different models,
reveal their innate properties of meta-task reformu-
lation and supervised pretraining strategies. The
results show that the generators with open-end pre-
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diction fail in zero-shot learning and the discrimi-
nators with a standard entailment meta-task hardly
obtain a performance boost when more pretrain-
ing data is available. Our work provides a new
angle for future researchers to explore universal
NLP, and propose a new nested entailment meta-
task and a supervised contrastive learning strategy,
CONENTAIL, to make better use of widely avail-
able annotated datasets, and adapts to new datasets
with limited resources.

Limitations

Although this paper aims to improve the universal
generalization in the classification task, there are
several limitations: (1) We do not compare with
cloze-based models (Schick and Schütze, 2021a,b;
Gao et al., 2020), because their templates are more
complicated and hard to be reproduced with our
current datasets. (2) We do not consider structural
classification tasks, such as Named Entity Recogni-
tion and Relation Extraction. (3) We only take clas-
sification datasets into account because our imple-
mentation is restricted by huggingface datasets and
human-curated templates. We plan to extend our
framework to more datasets in the future. (4) Due
to the constraints from the templates and datasets,
the class number of each test set is below 10. We
plan to extend our framework to more labels in the
future work. (5) The compatibility of knowledge in
similar tasks is assumed, but this assumption may
not hold true due to varying annotation standards
across datasets. For instance, MRPC and QQP
are both paraphrase identification tasks, but MRPC
uses hard example mining techniques, resulting in
longer and more sophisticated sentences than QQP.
(6) The current study is limited to English datasets
and can be extended to multiple languages in the
future by using multilingual PLMs and pretraining
datasets.
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A Hyperparameters and Implementation Details

Unifew and Crossfit, as generative models, use BARTbase (Lewis et al., 2020) as the backbone language
model. In the supervised pretraining, we use AdamW optimizer (Loshchilov and Hutter, 2017) with learn-
ing rate 3e-5, warm-up ratio 0.6% and linear decay. In the meta-testing, we use the same hyperparameters
and train 400 epochs for finetuning.

EFL and Entail2, as discriminator models, use BERTbase (Devlin et al., 2019) as the backbone language
model. In the supervised pretraining, we use AdamW optimizer (Loshchilov and Hutter, 2017) with learn-
ing rate 1e-5, warm-up ratio 6% and linear decay. In the meta-testing, we use the same hyperparameters
and train 10 epochs for finetuning.

All the compared models use the same templates (map the input to the text) and the same verbalizers
(map the label to the text) from the Crossfit paper (Ye et al., 2021a), as they covered more classification
datasets than other frameworks. Note that the choices of template/verbalizer could cause large variance in
performance (Zhao et al., 2021), and the effectiveness of Crossfit template/verbalizer had not been fully
studied.

We use two NVIDIA A5000 for our experiments. The supervised pretraining takes 3 days and the
evaluation takes 1 week for all the compared baselines.

B Details about Task Partition

Datasets Labels Test sentences Citation
glue-cola 2 1043 (Warstadt et al., 2018)
glue-qqp 2 40430 (Iyer et al., 2017)
glue-sst2 2 872 (Socher et al., 2013)
glue-mrpc 2 408 (Dolan and Brockett, 2005)
scitail 2 1304 (Khot et al., 2018)
amazon_polarity 2 1000 (Zhang et al., 2015a)
ag_news 4 7600 (Zhang et al., 2015b)
rotten_tomatoes 2 1066 (Pang and Lee, 2005)
hate_speech_offensive 3 4957 (Davidson et al., 2017)

Table 3: The statistics of the 9 test data.

{
"Suprevised_pretraining": ["tweet_eval -stance_hillary", "ethos -sexual_orientation", "climate_fever

", "hate_speech18", "tweet_eval -emotion", "hatexplain", "ethos -race", "emotion", "superglue -
rte", "discovery", "anli", "wiki_auto", "scicite", "financial_phrasebank", "sms_spam", "
kilt_fever", "tweet_eval -stance_climate", "medical_questions_pairs", "tweet_eval -
stance_feminist", "ethos -directed_vs_generalized", "glue -wnli", "health_fact", "liar", "
yahoo_answers_topics", "ethos -religion", "circa", "ethos -disability", "emo", "tweet_eval -hate
", "tweet_eval -sentiment", "superglue -wic", "tweet_eval -emoji", "glue -qnli", "ade_corpus_v2-
classification", "ethos -national_origin", "dbpedia_14", "poem_sentiment", "yelp_polarity", "
tweet_eval -stance_atheism", "onestop_english", "glue -rte", "wiki_qa", "ethos -gender", "
superglue -wsc", "tweet_eval -stance_abortion", "paws", "tweet_eval -offensive"],

"meta_test": ["glue -cola", "glue -qqp", "glue -sst2", "glue -mrpc", "scitail", "amazon_polarity", "
ag_news", "rotten_tomatoes", "hate_speech_offensive"]

}

C Additional results
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Method CoLA QQP SST-2 MRPC SCITAIL Amazon AGNews rotten_tomatoes hate_speech AVG

Random-guess 50.5 49.8 49.9 50.0 49.8 49.9 24.0 46.8 34.1 44.9

PLM + 0-shot

Crossfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Unifew 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
EFL 62.6 48.1 44.7 58.6 44.8 42.3 31.5 45.4 19.6 44.2
CONENTAIL 32.7 63.2 57.0 31.6 50.4 55.9 25.4 53.4 78.3 49.8

PLM + Supervised Pretraining + 0-shot

Crossfit 0.0 0.0 33.4 0.0 0.2 9.9 0.0 59.9 0.0 11.5
Unifew 0.0 0.0 60.6 0.0 48.4 63.7 8.0 57.4 0.0 26.5
EFL 46.2 60.5 79.1 33.1 47.2 71.9 60.8 72.5 12.7 53.8
CONENTAIL 58.5 45.3 83.0 58.1 68.7 89.7 52.8 78.1 34.3 63.2

PLM + 10-shot fine-tuning

Crossfit 55.3
±5.0

53.4
±9.8

81.2
±8.9

60.0
±11.1

58.8
±5.4

87.9
±6.1

83.7
±6.6

65.0
±23.5

42.8
±14.4

65.3

Unifew 49.0
±4.9

60.4
±6.0

71.2
±11.5

57.7
±6.3

53.4
±2.4

88.8
±3.6

86.5
±1.8

73.4
±9.5

34.9
±6.8

63.9

EFL 63.7
±0.2

60.4
±0.2

79.5
±0.2

32.3
±0.4

46.7
±1.1

72.0
±0.0

62.3
±0.6

72.4
±0.2

13.8
±0.6

55.9

CONENTAIL 38.6
±4.4

55.6
±3.5

62.4
±3.4

46.1
±2.4

59.1
±2.7

64.0
±1.6

57.4
±2.3

61.8
±2.0

58.6
±11.0

55.9

PLM + Supervised Pretraining + 10-shot fine-tuning

Crossfit 25.7
±25.1

13.6
±18.2

80.6
±4.0

28.1
±28.7

53.9
±11.7

85.2
±6.5

31.7
±17.7

75.8
±1.2

2.4
±3.2

44.1

Unifew 46.6
±12.4

37.5
±30.6

60.9
±1.4

23.8
±24.9

51.0
±1.8

63.9
±2.9

52.2
±16.1

57.9
±1.5

9.8
±6.5

44.8

EFL 46.1
±0.0

60.4
±0.0

79.1
±0.1

33.1
±0.0

47.2
±0.1

72.0
±0.0

60.9
±0.0

72.5
±0.0

12.9
±0.1

53.8

CONENTAIL 60.5
±0.6

51.8
±1.9

83.2
±0.2

69.9
±0.9

71.0
±0.9

89.4
±0.1

70.3
±2.1

78.7
±0.2

44.7
±2.2

68.8

Table 4: The complete table of the main result.
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Abstract

Several proposals have been put forward in
recent years for improving out-of-distribution
(OOD) performance through mitigating dataset
biases. A popular workaround is to train a ro-
bust model by re-weighting training examples
based on a secondary biased model. Here, the
underlying assumption is that the biased model
resorts to shortcut features. Hence, those train-
ing examples that are correctly predicted by
the biased model are flagged as being biased
and are down-weighted during the training of
the main model. However, assessing the impor-
tance of an instance merely based on the pre-
dictions of the biased model may be too naive.
It is possible that the prediction of the main
model can be derived from another decision-
making process that is distinct from the behav-
ior of the biased model. To circumvent this,
we introduce a fine-tuning strategy that incor-
porates the similarity between the main and
biased model attribution scores in a Product
of Experts (PoE) loss function to further im-
prove OOD performance. With experiments
conducted on natural language inference and
fact verification benchmarks, we show that our
method improves OOD results while maintain-
ing in-distribution (ID) performance.1

1 Introduction

Overfitting to the training data is a big obsta-
cle in learning patterns that generalize to unseen
data. Traditionally, this is diagnosed by monitor-
ing the performance of a trained model on an in-
distribution (ID) test set. However, a bigger chal-
lenge is when both the training and test data have
the same non-generalizable patterns, emerged as
spurious correlations between input features and
output labels (Gardner et al., 2021). For instance,
in the natural language inference (NLI) task, it

⋆ Work done as a Master’s student at Iran University of
Science and Technology (IUST).

1Our code is freely available at: https://github.com/
amodaresi/Debias_w_Saliencies

is shown that the occurrence of some task-neutral
words, like a negation in hypothesis, is highly corre-
lated with a specific class (Gururangan et al., 2018).
While high-capacity models can learn a generalized
distribution of labels from the inputs, they are prone
to spurious patterns, also known as dataset biases
(Clark et al., 2019; He et al., 2019). A model could
exploit these biases during fine-tuning, leading to a
model that achieve high ID performance, while it
is highly fragile in out-of-distribution (OOD) set-
tings (Schuster et al., 2019; McCoy et al., 2020).

Besides trying to prevent these non-
generalizable artifacts from entering the
dataset (Liu et al., 2022), it is reasonable to
seek for more robust learning methods. This
has been the basis for a multitude of research
works that encourage models to rely on truly
generalizable patterns. Most of these methods
are based on the assumption that the learning
method will inevitably exploit biases if they are
present in a training example (Clark et al., 2019;
Sanh et al., 2020; Mahabadi et al., 2020; Utama
et al., 2020; Ghaddar et al., 2021). Therefore, they
discourage the main model from paying much
attention to the examples which are correctly
classified by a biased model. Recently, it is shown
that this assumption is questionable in the way
that for a significant number of cases, the main
model does not follow the biased model in treating
biased examples (Amirkhani and Pilehvar, 2021).
Therefore, depriving the training algorithm from
the examples which are detected to be biased is a
waste of training data.

In this paper, we propose an alternative way to
discard biased examples. Instead of considering
the mere prediction of the biased model, we mon-
itor the way the model processes each example
by computing its attribution scores over the input
tokens. With the resulting scores, we adjust the pro-
portion of the loss function that is a cross-entropy
loss (CE) versus a Product of Experts loss (PoE). If
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the attribution scores are similar between the main
and biased models, the loss becomes a PoE loss
where a correct prediction from the biased model
down-weights the contribution of the correspond-
ing example. In contrast, dissimilarity between
the scores suggests a different behaviour from the
biased model and leads to a CE loss that only con-
siders the main model’s prediction. Experiments
on natural language inference and fact verification
demonstrate that our method significantly outper-
forms previous approaches in terms of OOD per-
formance while preserving its ID performance.

2 Methodology

In this section we explain our debiasing solu-
tion for a given classification task with dataset
D{xi, yi}Ni=1. For the ith training example, we de-
note the input sequence of tokens as xi and the gold
label as yi ∈ {1, 2, ..., Y } where Y is the number
of classes. Specifically, the goal is to train a model—
we denote it as the main model—on the training
dataset (D) so that it can also perform well on OOD
datasets that do not necessarily share the same bi-
ases. Following other well-known paradigms for
identifying biases in the dataset, we first need to
design or train a biased model that employs short-
cut methods to complete the task (Mahabadi et al.,
2020; Sanh et al., 2020; Utama et al., 2020).

In what follows, we will first review the Product
of Experts (PoE) method for bias reduction, which
is based solely on the outputs of the main and bi-
ased models. Then we present our contribution
to developing a novel debiasing method that takes
into account not only the models’ outputs but also
their attribution scores.

Product of Experts. In the original Product of
Experts (PoE) solution, the loss is based on com-
bining the predictions of the main and biased
model: σ(fB(xb

i )) & σ(fM (xi)) (Hinton, 2002;
Mahabadi et al., 2020). The summation of the
log-softmaxes (σ(.)) of both models combine the
distributions so that the main would focus less on
biased examples:

fC(xi;x
b
i ) = log(σ(fB(x

b
i )))+ log(σ(fM (xi)))

The PoE loss is the cross-entropy loss over the
summation shown above:

LPoE(θM ; θB) = − log(σ(fyiC (xi;x
b
i ))) (1)

While PoE does produce promising results, train-
ing the main model only based on the biased

model’s output can undermine some instances that
could have been helpful and non-biased. As stated
in Amirkhani and Pilehvar (2021), correct predic-
tion of an instance by the biased model does not
necessarily imply that the instance is biased, as the
behaviour of the two models might differ.

2.1 PoE with Saliencies
To determine how similarly the main model and
bias model behave, we must compute the attribu-
tion scores of the input tokens for both models.
Therefore, after fine-tuning the biased model, we
compute the saliencies S using a gradient-based
approach according to the gradient×input method
(Kindermans et al., 2016):

Si =

∥∥∥∥
∂yi

∂h0
i

⊙ h0
i

∥∥∥∥
2

(2)

This method is based on the gradient of the logit
of the output prediction yi with respect to the input
embeddings h0

i . We also obtain the main model
saliencies during training. By computing the salien-
cies for both bias and main models, it is possi-
ble to estimate the contribution of each input to-
ken in a training instance to both models’ predic-
tions. Therefore, we can compute the inter-model
similarity—between the saliencies of the two mod-
els; for instance, using the cosine similarity metric:

ρ =
SMain · SBiased

∥SMain∥ ∥SBiased∥
(3)

Since the saliencies defined in 2 can only have pos-
itive values, ρ will always be a number between 0
and 1. This would provide a complementary metric
that shows how similar the two models behave on
a specific example. Therefore, we can modify the
original PoE loss function that only incorporates
the output predictions and include the inter-model
similarity in the debiasing loss function:

LPoE+Sals(θM ; θB) = ρ∗LPoE(θM ; θB)

+α(1−ρ∗)LCE(θM )
(4)

where LCE(θM ) is the cross-entropy (CE) loss on
the main model. We also define ρ∗ that adjusts the
inter-model similarity (ρ) based on the PoE loss
using the following formulation:

ρ∗ = ρexp(−βLPoE(θM ;θB))

= ρexp(β log(σ(f
yi
C (xi;x

b
i ))))

= ρσ(f
yi
C (xi;x

b
i ))

β

(5)
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Figure 1: A visualization of our proposed loss function (LPoE+Sals) based on the main and biased models’ prediction
(fyi

M (xi) and fyi

B (xi)) and the inter-model similarity (ρ). For a given input, when the biased model is correct and
certain (left), the loss will be upweighted when the biased model differs from the main model in terms of saliency
scores. However if the biased model returns a certain but incorrect prediction (right), the loss is downweighted if
the main model is dissimilar and also returns a correct prediction. In an uncertain case (middle), the biased model
does not affect the PoE loss (Sanh et al., 2020). In this case, the loss is converted to a CE loss based on the output of
the main model.3

Where β is a positive hyperparameter for adjust-
ing the combined prediction’s (σ(fyiC (xi;x

b
i ))) im-

pact.
The intuition behind this adjustment is to up-

weight and increase the loss for an example where
the main and biased models agree on the correct la-
bel but show a different behaviour in terms of token
attribution scores (a.k.a. less inter-model saliency
similarity scores, 0 < ρ < 0.5). As an extreme
case, if the biased model correctly classifies an ex-
ample with a high output score (σ(fyiB (xb

i )) ≈ 1),
the main model’s prediction would be ineffective in
the original PoE loss, since the PoE model output
probability is as follows:

σ(fyiC (xi;x
b
i )) =

σ(fyiB (xb
i ))σ(f

yi
M (xi))∑Y

k=1 σ(f
k
B(x

b
i ))σ(f

k
M (xi))

Therefore, in the adjusted similarity stated in
Eq. 5, the exponent would be approximately equal
to one, which makes the adjusted similarity equal
to the original cosine similarity. As a result, ac-
cording to Eq. 4, if the models exhibit dissimilar
explanations for their prediction (ρ ≈ 0), the loss
tends to be a cross-entropy loss2 than a PoE loss.
On the other hand, in case both models behave
similarly on a given training example, i.e., ρ ≈ 1,
the example can be considered as one containing
bias. Thus, the PoE loss renders this example as

2Weighted with α as a modulating hyperparameter (0 <
α).

being less impactful during training. The left and
right plots of Figure 1 respectively demonstrate3

that having a higher similarity results in a loss func-
tion that is down- or up-weighted depending on the
correctness of a certain biased model. Also with an
uncertain biased model, the loss in Eq. 1 converts
to a CE loss which is only based on the output of
the main model.

3 Experiments

In this section, we will introduce the datasets, ex-
plain the experimental setup, and then demonstrate
the results of our method.

3.1 Datasets

The experiments were carried out on two types of
common NLU classification tasks: Natural Lan-
guage Inference (NLI) and Fact Verification. For
NLI, we used MNLI (Williams et al., 2018) as
our in-distribution data and HANS (McCoy et al.,
2020) for OOD evaluation. Note that the Matched
development set is used for the ID evaluation in
MNLI. In addition, because HANS has only two
labels, entailment and not entailment, we consider
outputs that are predicted contradictions or neu-
tral as not entailment. For Fact Verification, we

3We simplify the plots by assuming the output logits of
all classes except the gold label are zero for both models
(fy ̸=yi

B/M (xi) = 0). In addition, these figures are plotted based
on α = 1 and β = 1.
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Model MNLI FEVER
Dev. (Matched) HANS Dev. Sym.V1

BERT-base 84.71±0.21 62.85±2.69 85.19±0.37 56.51±1.41

DFLe2e (Mahabadi et al., 2020) 83.91±0.20 66.10±2.81 80.48±0.87 65.13±1.52
PoEe2e (Mahabadi et al., 2020) 84.10±0.19 63.63±1.90 84.43±0.87 64.28±1.52
PoE (Sanh et al., 2020) 81.10±0.41 68.04±1.51 80.08±0.94 62.72±2.99
PoE+CE (Sanh et al., 2020) 83.34±0.33 66.56±0.66 85.29±1.25 62.55±2.46

PoE w. Attribution Similarity 82.81±0.26 68.06±0.66 85.48±1.09 66.97±2.00
w/o Attribution Similarity - - 86.09±0.72 65.18±2.25

Table 1: The mean and standard deviation of the accuracy scores of multiple debiasing strategies applied to NLI and
fact verification. The maximum values are highlighted in bold. It is important to note that the results of the methods
that are used for comparison are not the results that were reported by the methods themselves but rather the scores
that were obtained by replicating their implementation5.

used FEVER (Thorne et al., 2018) and FEVER
Symmetric-V1 (Schuster et al., 2019) for ID and
OOD, respectively.4

3.2 Setup

In all the experiments, we used
BERT-base-uncased (Devlin et al., 2019) as
the main model to allow a fair comparison against
other debiasing methods. However, the biased
model differs depending on the task.

We used the TinyBERT model (Turc et al., 2019)
for the NLI task, since its limited capacity makes it
extremely susceptible to biased features in training
examples (Sanh et al., 2020). For fact verification, a
full 12-layer BERT-base model similar to the main
model is fine-tuned using only the claim sentences
from the training data. In both biased models, we
compute and save their prediction logits and at-
tribution scores across the entire training dataset
so that they can be used as a frozen model during
training. However, since the fact verification biased
model is only trained on the claim sentences, the
attribution scores are only calculated for the claim
portion. Therefore, the similarities computed dur-
ing the training procedure are limited to the claim
segment alone.

For the generic fine-tuning hyperparameters, we
adopted Sanh et al. (2020) recommendations: 3

4In both FEVER and FEVER-Symmetric, replacement
tokens are used in place of parentheses and brackets
(e.g. “]”→ “-RSB-”). This causes the BERT tokenizer to
split the specified tokens into multiple segments, as there are
no tokens in the BERT vocabulary that correspond to the re-
placement tokens. Therefore, we replace these tokens with the
punctuation that corresponds to them so that BERT can tok-
enize the inputs with less undesirable segmentation. We apply
this modification to other approaches that we have evaluated
and compared.

epochs of training, a batch size of 32, an Adam
optimizer (Kingma and Ba, 2015) with warmup
and linear decay in its learning rate schedule, and
a peak learning rate of 3e-5 or 2e-5 for MNLI
or FEVER, respectively. But as for the specific
hyperparameters in our approach, using sweep-
ing over α ∈ {0.01, 0.1, 0.2, 0.3, 0.5, 1.0} and
β ∈ {0.1, 0.3, 0.5, 1.0}, we set α = 1.0, β = 1.0
for MNLI and α = 0.3, β = 0.1 for training on
FEVER.

All experiments were implemented using the
HuggingFace Transformers library (Wolf et al.,
2020) and performed on an RTX 3070 GPU ma-
chine. The results are the average of six runs with
different seeds.

3.3 Results

The results of various debiasing techniques applied
to the previously mentioned benchmarks are shown
in Table Table 1. The baseline is fine-tuning the
backbone model (BERT-base-uncased) with the
commonly used cross-entropy loss, which provides
high ID performance but lacks OOD. We also in-
clude four approaches from two different studies
for additional comparison5. Two End-to-End so-
lutions from Mahabadi et al. (2020), one utilizing
Debiased Focal Loss (DFL) and the other employ-
ing PoE. The PoE and PoE+CE (PoE with a static
weighted CE loss added) methods from Sanh et al.
(2020) are similar to our approach of having a bi-

5We could have included the compared methods’ results
from their respective papers as well as results from other
approaches. However, in our empirical results we observed
significant discrepancies between the results obtained from
their source code and those reported. In this paper, we intend
to report only the reproduced results, which is why the number
of compared methods is limited.
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ased model that is frozen, but they only rely on
the predictions of the biased model and not the
inter-model similarities.

It can be observed that the OOD performance of
our method outperforms those of other approaches,
without or with minimal loss of ID accuracy. On
FEVER, our strategy improves SymV1 by nearly
2% while also slightly improving the ID perfor-
mance. In MNLI, our strategy improves HANS
to achieve high scores comparable to Sanh et al.
(2020) PoE-only solution. However, the ID perfor-
mance of Sanh et al. (2020) PoE-only falls short.
While maintaining the same level of OOD perfor-
mance, our solution achieves a minimum MNLI-m
dev score that is acceptable.

As an ablation study, we also trained the pro-
cedure without using similarity values, resulting
in a PoE+CE solution. Since we used a different
biased model in FEVER than Sanh et al. (2020),
we reported its results using the claim-only biased
model configuration. However, we omitted MNLI
results from our report because they are identical to
Sanh et al. (2020) PoE+CE configuration. Having
a claim-only biased model for FEVER rather than
a TinyBERT model yields a substantial increase in
OOD, as can be seen in the results. As a result, we
can observe that even though adding a weighted
CE to a PoE loss yields improvements in terms
of ID performance in particular, the similarities
could push even further and also improve OOD
performance.

Another observation is the large standard devia-
tions in OOD accuracy of all approaches, which is
why we chose to execute 6 runs as also suggested
by Sanh et al. (2020). Even so, it should be noted
that our method still has a relatively low variance
in HANS.

4 Conclusions

In this paper, we introduced a strategy for improv-
ing OOD performance by incorporating the simi-
larity values between the token attribution scores
of main and biased models into a Product of Ex-
perts (PoE) loss function. The gist of this approach
is that it takes into account the decision-making
process in addition to the output predictions of the
main and biased models (which are often taken as
the primary signal). By comparing our method to
multiple recent debiasing methods on two widely-
used NLU tasks, we demonstrated that our method
improves performance on out-of-distribution data

while preserving performance on in-distribution
data. Future work could include exploring other
loss formulations with Attribution Similarities that
may produce better results. Additionally, it may be
beneficial to investigate methods to reduce the vari-
ability of results, which is present in the majority
of debiasing solutions.

Limitations

Due to the high variance in the accuracy scores,
the main limitation of this approach (as well as the
majority of other debiasing approaches) is the large
number of seeds used to tune the hyperparameters.
As a result, any type of tuning necessitates a multi-
seed run, which requires multiple GPUs or many
hours of training. Because of this constraint, we
omitted working on larger scaled models or other
types of PLMs.
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Abstract
Sentiment analysis and opinion mining of the
opinion-bearing text are important tasks in
NLP. The Appraisal framework in systemic
functional linguistics is a theory for analysing
the linguistic patterns for expressing emotion
and opinion. Manual annotation of appraisals
however, requires linguistic expertise, and is
costly and time-consuming. In this paper,
we study how to automatically identify and
tag appraisal text segments. We formulate
the problem as a sequence tagging problem
and propose a novel approach, Adaptive Ap-
praisal (A2), which employs task and sentiment
adapters on pre-trained language models for se-
quence appraisal tagging. Experiments on user
comments, blogs and microblogs show that
A2 outperforms baseline models and achieves
good performance for cross-domain and cross-
lingual settings. Source code for A2 is available
at: https://github.com/ltian678/AA-code.git

1 Introduction

With the development of the Web technology,
opinion-bearing user generated texts such as re-
views, users comments, blogs and microblogs are
widespread. Sentiment analysis and opinion min-
ing on such texts are prominent NLP tasks that
have attracted extensive research studies in the liter-
ature (Liu, 2022). On the other hand, the Appraisal
framework (Martin and White, 2003) is a systemic
functional linguistic theory describing how lan-
guage is used by writers or speakers to express
emotion and opinion. The Appraisal framework
consists of three subsystems: 1) Attitude, which
includes personal emotion, judgement and evalu-
ation of entities; 2) Engagement, which regards
one’s own opinions or with respect to others; and
3) Graduation, which describes strength of the atti-
tude and engagement expressed.

Appraisal annotated resources have been
used for deeper sentiment and emotion analy-

∗Corresponding author

sis (Whitelaw et al., 2005) than simple sentiment
classification, but building such resources manually
requires significant linguistic expertise and is time-
consuming (Read and Carroll, 2012; Kolhatkar
et al., 2020). Automated appraisal tagging would
be extremely beneficial to support annotation and
analysis efforts by expert linguists. To our best
knowledge, the only publicly available appraisal an-
notated corpus is the Simon Fraser University Opin-
ion and Comments Corpus (SOCC) (Kolhatkar
et al., 2020)1, which is based on news comments.
In creating the SOCC corpus, 663,173 user com-
ments were collected, and expert linguists manually
annotated 1,043 comments.

To the best of our knowledge, there has been
no prior work leveraging machine learning for au-
tomatically tagging appraisals. We fill this gap
in this paper. We especially target domains with
voluminous opinionated texts but zero or very lim-
ited appraisal annotation resources, such as blogs
and microblogs. Our research focuses on sequence
tagging for cross-domain and cross-lingual texts
with low resources. In the literature, various ap-
proaches for sequence tagging tasks have been
reported, including transfer learning (Lee et al.,
2018a), few-shot learning (Hofer et al., 2018) and
multi-task learning (Changpinyo et al., 2018; Kann
et al., 2018; Liu et al., 2018). However, none of
the existing studies on sequence tagging consider
zero-shot cross-domain or cross-lingual settings.

We propose a model for automatic Appraisal tag-
ging. Our model A2, namely Adaptive Appraisal,
utilises joint task and sentiment adapters based on
pre-trained language models for tagging appraisal
segments in text sequences. Our model leverages
the adapter-based transfer learning framework for
cross-domain and cross-lingual appraisal tagging.
Based on the pre-trained language model, we pro-
pose the task adapter for appraisal tagging across
different domains. For instance, the language that

1https://github.com/sfu-discourse-lab/SOCC
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short Microblog posts use for expressing appraisals
is very different from the language of long blog
posts. It is therefore necessary to enable the adap-
tive ability from one domain to different domains.
We further propose the sentiment adapter to cap-
ture the sentiment knowledge for appraisal tagging,
capitalised on the strong correlation between ap-
praisals and sentiments. Rather than employing
appraisal annotations for sentiment analysis as in
existing studies (Whitelaw et al., 2005), we propose
to leverage the rich sentiment analysis resources
for automatic appraisal tagging.

In this study, we seek to answer the following
research questions.

• RQ1: Can we leverage the adapter-based
framework for the within-domain appraisal
tagging task?

• RQ2: Can the sentiment knowledge fused
adapter improve the adapter-based framework
for cross-domain appraisal tagging?

• RQ3: Can the sentiment knowledge fused
adapter improve the adapter-based framework
for the cross-lingual appraisal tagging task?

To summarise, our contributions are twofold:
(1) we propose an adapter-based framework for
appraisal tagging; and (2) we propose task and sen-
timent adapters to further enhance the framework
for cross-domain and cross-lingual generalisation
ability.

2 Related Work

Our work is related to sequence tagging – such
as named entiy recognition, semantic role label-
ing, where token sequences in the input text are
tagged with class labels. Our work is especially
related to the task of sequence tagging with low
resources for training. In the literature, to address
the issue of low resources, sequence taggers based
on transfer learning (Lee et al., 2018a), few-shot
learning (Hofer et al., 2018) and multi-task learn-
ing (Changpinyo et al., 2018; Kann et al., 2018;
Liu et al., 2018) have been reported. Our research
falls under transfer learning.

Various transfer learning strategies and tech-
niques have been proposed for NLP tasks address-
ing the issue of scarce labelled data. Early trans-
fer learning algorithms have addressed the target
domain data scarcity problem and boosted the

model‘s generalisation ability via learning domain-
agnostic knowledge for transfer (Kim et al., 2015;
Lee et al., 2018b). Modern pre-trained language
models (e.g. BERT) have achieved the state-of-
the-art performance for a range of Natural Lan-
guage Processing (NLP) tasks via transfer learning
by fine-tuning parameters for different tasks (De-
vlin et al., 2019; Radford et al., 2019; Liu et al.,
2019; Li et al., 2019; Yin et al., 2020). Apart
from cross-domain, cross-lingual transfer learning
has also been investigated, in particular for part-
of-speech tagging and dependency parsing (Ruder
et al., 2019). Algorithms have been proposed for
transfer learning tasks of low resource languages
(Kim et al., 2017; Schuster et al., 2019). All these
transfer learning frameworks require fine-tuning
parameters of the full model to achieve knowledge
transfer, which limits the capacity for models to
adapt to many target domains.

Adapter-based transfer is a recently proposed
parameter-efficient transfer learning mechanism
for adapting a pre-trained model to a target task
without fine-tuning all parameters. Adapter mod-
ules was originated from computer vision, to con-
trol the convolutions and adapt models to multiple
domains (Rebuffi et al., 2017). Then, in NLP appli-
cation, adapters have been widely used for quick
adaption in combination with existing large lan-
guage models to new tasks (Houlsby et al., 2019)
and avoiding catastrophic forgetting issues (Mc-
Closkey and Cohen, 1989). Üstün et al. (2020) gen-
erated adapter parameters from language embed-
dings for multilingual dependency parsing. Pfeiffer
et al. (2021) combined the information stored in
multiple adapters for most robust transfer learning
between monolingual tasks. As adapter modules
have been proved effective for efficient transfer
learning with large language models, we propose
task and sentiment adapters for the cross-domain
and cross-lingual appraisal tagging tasks.

3 The Appraisal Framework

Following the Systemic Functional Linguistics
(SFL) theory (Eggins, 2004), the Appraisal frame-
work is a theory describing the linguistic patterns
for authors to express emotion and opinion. The
Appraisal framework consists of three semantic sys-
tems including Attitude, Graduation and Engage-
ment. Attitude is divided into three sub-systems:
Affect, Judgement and Appreciation. Affect deals
with a person’s emotional reactions (e.g. happy,
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Figure 1: Sample appraisal annotations from SOCC dataset (“App” = Appreciation, “Jud” = Judgement, “Neg” =
Negative)

confident), Judgement deals with assessing peo-
ple’s behaviour (e.g. powerful, truthful), and Appre-
ciation deals with constructing the value of things
(e.g. fascinating, exciting). In this work, we fo-
cus on the three sub-systems of Attitude and their
Polarity (Positive, Negative and Neutral). Figure 1
shows an example for appraisal annotations from
the SOCC dataset (Kolhatkar et al., 2020); each
span is labelled with an attitude and its polarity.

It should be noted that the linguistic Appraisal
framework in this study is different from the Ap-
praisal theory of emotion (Ellsworth and Smith,
1988). The Appraisal theory of emotion (Ellsworth
and Smith, 1988) describes that emotions are the
result of the way in which people appraise or evalu-
ate events and situations in terms of their relevance
and significance to their goals, needs and values.
According to this theory, emotions are generated
by the way in which people appraise events and sit-
uations, and the specific emotion that is generated
depends on the type of appraisal that is made. The
functional linguistic Appraisal framework (Oteíza,
2017) on the other hand, describes that emotions
are the result of the way in which people use lan-
guage to evaluate and interpret events and situa-
tions. The specific emotion that is generated de-
pends on the specific linguistic patterns that are
used.

4 Problem Statement

We frame our appraisal tagging task as a BIO se-
quence tagging problem (Ramshaw and Marcus,
1995), where segments are tagged with the At-
titude labels of Affect, Appreciation and Judge-
ment, and Polarity labels of Positive, Negative
and Neutral. Let S = (w1, w2, ..., wl) be an in-
put sentence, where wi is the i-th token and l is
the sequence length. The objective of the pro-

posed model A2 is to identify a set of attitude tags
Tatt = (B-Attitude, I-Attitude, O) and a set of po-
larity tags Tpol = (B-Polarity, I-Polarity, O) for
each wi ∈ S.

5 Methodology

The architecture of adaptive appraisal (A2) model
is shown in Figure 2. It comprises two modules: (1)
a language model for automatic BIO tagging with
two target tasks, and (2) a sentiment adapter for
learning sentiment specific knowledge and a task
adapter for generating task-specific representations.

5.1 The Adaptive Appraisal (A2) Model

The model predicts Appraisal Attitude and Polar-
ity labels simultaneously. For the input sequence
S = (w1, w2, ..., wl), we first feed to adapter-based
transformer to generate token embeddings.

v = Adapter-Transformer([CLS]⊕ w1 ⊕ ...⊕ wl)
v = [CLS], Emb[w1], ..., Emb[wl]

Each token embedding(e.g. Emb[w1]) is presented
by a d dimensional vector, where BERT-based en-
coder d = 768. Then we get a list of token repre-
sentations with sequence length l and dimension d,
denoted as v ∈ Rl×d. For two different objectives,
we pass the token representations to two separate
multilayer perceptron (MLP), denoted as Φatt and
Φpol.

Φatt =σ(XU)

Φpol =σ(XU)

Z =Φatt (Emb[w1], ..., Emb[wl])

Z ′ =Φpol (Emb[w1], ..., Emb[wl])
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Figure 2: Overall architecture of Adapter-based Automatic Appraisal Framework (“A, B, C, D” are the tokens in the
input sequence S)

where σ is ReLU (Agarap, 2018) activation func-
tion. U is the linear projection along the sequence
length. Normalisation and biases are omitted for
brevity. Due to the imbalance on our appraisal data,
the dice loss (Li et al., 2020) has been adopted for
token tagging tasks. To perform joint training with
data Dtrain based on pre-trained language model
on both the Attitude and Polarity labels, we min-
imise the overall loss:

Ldatt = 1− 2pdyd + γ

p2d + y2d + γ

Ldpl = 1− 2pdyd + γ

p2d + y2d + γ

L =
1

|Dtrain|
∑

d∈{Dtrain}

(
Ldatt + Ldpl

)

where λ is the L2 regularisation parameters and Θ
represents the parameters set. Following the dice
loss setting, we set γ = 1, and pd is the possibility
of the data d belongs to the prediction yd after the
softmax function. Ldatt and Ldpl are the loss func-
tions for Attitude and Polarity labels, respectively.
The reason for using the dice loss is to mitigate the
impact of our imbalanced Appraisal labelled data.

5.2 Sentiment and Task Adapters
To develop a sentiment adapter and a task adapter,
we followed an efficient adapter architecture re-

cently proposed by Pfeiffer et al. (2021). They
defined the adaptor structure by simply combining
down and up projection with a residual connec-
tion. To examine whether sentiment knowledge can
boost the performance of the appraisal tagging task,
we propose employing a sentiment adapter on pre-
trained language models. Furthermore, to capture
task-specific knowledge, we propose employing a
task adapter on pre-trained language models. The
task adapter is trained with our appraisal training
data Dtrain.

We denote sentiment-specific adaptive parame-
ters Ω and task-specific adaptive parameters Ψ. In
our architecture, we allocate the sentiment-specific
adapter in parallel with our task-specific adapter
after the feed-forward layer, followed by a ReLU
activation at each layer l:

Ωl (hl, rl) = Ul (ReLU (Dl (hl))) + rl

Ψl (hl, rl) = Ul (ReLU (Dl (hl))) + rl

where hl is the hidden states passing through the
transformer architecture and rl represents the resid-
ual at layer l. Dl is the projection presentation
at layer l. To combine two adapters, we further
introduce our simple yet effective adapter weight
layer Θ, for each transformer layer l, the function
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denoted as:

Θl = αΩl (hl, rl) + (1− α)Ψl (hl, rl)

where α is the learned parameter and α can be
different across transformer layers.

The sentiment adapter is fine-tuned with the sen-
timent datasets 2 at the sentence-level with negative
log-likehood loss with Dsenti as sentiment training
set, as following:

Lsenti = −
1

|Dsenti|
N∑

n=1

log (p (yn | xn))

5.3 Cross-lingual Inference

Follow the adapter-based cross-lingual framework
MAD-X (Pfeiffer et al., 2020), we include a
target language adapter when we transfer from
English→Chinese and Chinese→English tasks.
For instance, if we transfer from English→Chinese,
we will plug in the Chinese adapter before the par-
allel task and sentiment adapters. Note that for
cross-lingual tests, we also swap the base encoder
from BERT to XLM-R to handle multi-lingual to-
ken embedding.

6 Datasets

For the cross-domain and cross-lingual appraisal
tagging task, we conducted experiments on two
datasets: the SOCC and POST datasets. The SOCC
dataset comprises of 10,399 opinion news articles
and 663,173 comments from the Canadian daily
newspaper, The Glove and Mail. In addition to the
raw text, the corpus includes specific annotations
from multiple perspectives: negation, appraisal,
constructiveness and toxicity. Among them, we
used the appraisal annotations for our experiments.
The POST dataset comprises of Twitter and Blog
posts annotated with appraisals developed in-house
following the same Appraisal Framework (Martin
and White, 2003); it contains not only English text
but also Chinese text. In the POST dataset, vari-
ous spans of appraisals were annotated, as eval-
uation occurs at all levels of languages (words,
phrases, clauses or entire sentence). In our ex-
periments, we used the word and phrase level of
labels. When there are phrases with more than one
appraisal labels overlapping, we opted the longest
span label.The data statistics of these two datasets
are shown in Table 1 and Table 2.

2https://github.com/cardiffnlp/tweeteval

Affect Judgement Appreciation #Total

Negative 175 2,342 2,350 4,867
Positive 46 469 1,173 1,688
Neutral 5 10 53 68
#Total 226 2,821 3,576 6,623

Table 1: Statistics of Appraisal labels in the SOCC
dataset

Affect Judgement Appreciation #Total

Blogs

Negative 548 758 333 1,639
Positive 505 397 256 1,158
Neutral 124 53 24 201

Tweets-English

Negative 117 335 138 590
Positive 112 155 82 349
Neutral 50 25 28 103

Tweets-Chinese

Negative 29 144 78 251
Positive 50 80 97 227
Neutral 10 12 14 36

#Total 1,545 1,959 1,050 4,554

Table 2: Statistics of Appraisal labels in the POST
dataset

7 Experiments and Results

7.1 Experiment Setup
A2 is an adapter-based framework adding
adapter modules to pre-trained language models;
A2(BERT) and A2(RoBERTa) are based on lan-
guage models, BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), respectively. We com-
pared the performance of A2 framework models
with following baseline models:

• Conditional Random Fields (CRF) (Lample
et al., 2016) is a baseline that is widely used,
feature-based model for a sequence tagging
task.

• GLoVe+FFN is a baseline where tokens are
encoded by the max and mean of GloVe (Pen-
nington et al., 2014) 3 embeddings and fol-
lowed by a feedforward neural network (FFN)
for sequence labelling.

• BERT (Devlin et al., 2019) is a baseline based
on the off-the-shelf BERT token embeddings,
where we include further pre-training (BERT-
PT) (Gururangan et al., 2020) and fine-tuning
(BERT-FT) on a sentiment dataset.

3https://github.com/stanfordnlp/GloVe
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#Total Avg. Appraisal span length

News Comments 6,623 6.11
Blogs 2,998 12.02
Tweets 1,042 4.46
Tweets(CHN) 514 3.01

Table 3: Statistics of Appraisal expressions in different
domains. Span length is counted by # of tokens.

• RoBERTa (Liu et al., 2019) is a baseline
similar to BERT, where we include further
pre-training (RoBERTa-PT) and fine-tuning
(RoBERTa-FT) on a sentiment dataset.

• M-BERT is a baseline based on multilingual
BERT.

• XLM-R (Conneau et al., 2019) is a baseline
based on the multilingual language model
XLM-R.

7.2 Implementation Details

We implemented our models in PyTorch using the
HuggingFace library4 and their pretrained BERT5

and RoBERTa6 models. Adapters in language mod-
els are implemented with the AdapterHub 7 pack-
age. The 100-dimension GloVe word embedding
is applied for the GloVE+FFN model.

For the input sequence, we set maximum token
length= 384 and dropout rate = [0.5, 0.6] for token
embeddings. Learning rate is tuned in the range
between [1e−5, 5e−5] for BERT and [1e−6, 5e−6]
for RoBERTa based on the development set. All
models use the Adam optimiser (Kingma and Ba,
2014), and our experiments are run using one A100
GPU with 40GB Memory.

7.3 Results

We evaluated A2 for each attitude and polarity cat-
egory. Each result is an average of three runs with
different random seeds. For pre-training, we fol-
lowed the procedures in (Gururangan et al., 2020)
with masked LM loss. Table 4 and Table 5 present
the in-domain test results on the SOCC and POST
datasets, respectively.

As shown in the first group of both Table 4 and
Table 5, compared with CRF and GloVe+FNN mod-
els, both BERT- and RoBERTa-based models yield

4https://github.com/huggingface
5https://huggingface.co/bert-base-cased
6https://huggingface.co/roberta-base
7https://adapterhub.ml/.

better performance based on the average F1 scores
on both datasets. This indicates that existing pre-
trained language models have better capability to
handle the appraisal tagging task. Moreover within
the off-the-shelf language models, RoBERTa gen-
erally performs better than BERT.

The second group of both Table 4 and Table 5
shows the results of the continued pre-training and
sequential fine-tuning language models. Compar-
ing the performance of the first group of off-the-
shelf language models, we found that our models
with both strategies boost the performance further
on all the Attitude (Affect, Appreciation and Judge-
ment) labels and Polarity (Positive, Negative and
Neutral) labels. The improved performance on the
polarity labels especially implies that sentiment
knowledge is useful for the appraisal tagging task.
On the question of which strategy works better
for this task, we observed that the continued pre-
training strategy generally can bring better perfor-
mance compared with the sequential fine-tuning
strategy on both datasets in most of the cases ex-
cept on the average F1 scores (e.g. 65.24% vs.
65.48%).

The main results of the appraisal tagging per-
formance on our A2 models are presented in the
last group of both Table 4 and Table 5. As shown
at the overall F1 score, both our A2 models yield
strong performance on these two datasets compared
with all the other models. Note that we only fine-
tuned the adapter parameters, which only apply to
15% of the overall number of parameters in the
transformer-based language models.

7.4 Ablation Study

We compared the “jointly adap” approach of our
A2 framework (A2) with the "sequentially adapt"
approach in the literature (Pfeiffer et al., 2020),
where the task-specific adapter is stacked on top
of the sentiment-fused adapter (A2

seq). As shown
in the first group of Table 6, the joint adapters
with weighting layer (A2) gives better performance
compared with stacking both adapters (A2

seq) for
the appraisal tagging task.

Furthermore, we conducted an ablation study
to compare the performance of our A2 framework
against one without the task adapter (w/o T-Adpt)
and one without the sentiment adapter (w/o S-
Adpt). As presented in the second group of Table 6,
the model with both sentiment and task adapters
(A2) performs the best and the sentiment adapter
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Model Avg. F1 Affect Appreciation Judgement Positive Negative Neutral

CRF 42.67 35.69 38.24 40.77 44.26 52.25 41.55
GloVe+FFN 51.23 45.15 48.35 51.66 52.09 54.01 52.52
BERT 58.07 50.37 59.95 60.59 63.73 61.56 52.27
RoBERTa 59.47 53.66 60.56 62.54 60.63 63.77 55.64

BERT-PT 65.24 60.14 63.24 71.17 67.75 68.04 61.09
BERT-FT 65.48 61.48 65.15 70.05 66.68 69.37 60.14
RoBERTa-PT 67.10 61.66 66.28 73.34 68.04 71.85 61.44
RoBERTa-FT 66.93 61.90 66.57 69.01 67.41 70.79 65.89

A2(BERT) 68.20 65.58 68.82 71.25 67.75 72.02 63.78
A2(RoBERTa) 69.81 67.71 69.90 73.41 68.89 73.34 65.50

Table 4: F1 scores of all models on the SOCC test set (“PT” = pre-training, “FT” = fine-tuning)

Model Avg. F1 Affect Appreciation Judgement Positive Negative Neutral

CRF 47.51 43.56 43.03 44.79 49.97 44.88 44.66
GloVe+FFN 61.92 53.70 59.59 63.56 64.31 68.44 60.54
BERT 68.45 62.56 67.69 71.23 74.45 69.28 65.50
RoBERTa 69.91 63.43 69.81 70.49 75.97 72.21 67.56

BERT-PT 71.68 68.07 70.07 76.42 75.21 73.38 66.90
BERT-FT 69.17 66.16 69.76 72.25 71.30 70.68 64.55
RoBERTa-PT 73.01 69.98 71.72 78.63 74.11 75.32 68.35
RoBERTa-FT 71.72 69.50 72.65 77.11 73.28 74.32 63.46

A2(BERT) 72.45 71.25 69.38 71.83 77.01 77.85 67.36
A2(RoBERTa) 74.86 74.45 71.62 74.50 78.18 79.45 70.95

Table 5: F1 scores of all models on the POST English test set (“PT” = pre-training, “FT” = fine-tuning)

brings major improvement to model performance
on the POST test set, by delivering +8.23 and +8.2
F1 scores on Polarity labels, Positive and Negative,
respectively.

The experiment results indicate that the joint
adapter approach can fully leverage both sentiment-
specific and task-specific information through our
adapter architecture and sentiment knowledge can
greatly enrich token semantics.

7.5 Cross-domain Performance
This set of experiments aim to answer our sec-
ond research question (RQ2), "Can the sentiment
knowledge fused adapter improve the adapter-
based framework for the cross-domain appraisal
tagging?". As shown in Table 3, the average ap-
praisal expression length varies in different do-
mains; for instance, Twitter appraisals (avg. 4 to-
kens) have less number of tokens compared with
News Comment appraisals (avg. 6 tokens) and
Blog appraisals (avg. 12 tokens). As the SOCC
and POST datasets contain corpus from three dif-
ferent domains (Tweet, Blog and News Comment)
we got 6 sets of cross-domain performance re-
sults in total: Tweet→Blog, Tweet→News Com-

ment, Blog→Tweet, Blog→News Comment, News
Comment→Tweet, and News Comment→Blog.
For instance, under Tweet→Blog setting, we will
use Tweet domain text as training and zero-shot
testing the performance on Blog domain text. Ta-
ble 7 shows the average F1 scores of the cross-
domain performance results in the zero-shot set-
ting.

When comparing the cross-domain performance
of the baseline models (BERT and RoBERT)
against the fine-tuned models (BERT-FT and
RoBERT-FT), we observe that directly fine-tuning
language models with a sentiment dataset does not
always yield performance improvement. For exam-
ple, while the BERT-FT improves its performance
(from 0.61 to 5.58 of F1 score) than the BERT on
the most of the cross-domain settings (except one
‘News Comment→Blog’ setting), the RoBERTa-
FT worsens its performance (from -0.55 to -1.83
of F1 score) than the RoBERTa on the most of the
cross-domain settings (except one ‘Tweet→News
Comment setting). This result indicates that di-
rectly fine-tuning language models without consid-
ering domain specific vectors can hurt naive trans-
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Model Avg. F1 Affect Appreciation Judgement Positive Negative Neutral

A2 74.86 74.45 71.62 74.50 78.18 79.45 70.95
A2

seq 72.73 70.70 68.07 77.65 75.94 75.80 68.24

w/o T-Adpt 69.37 66.85 65.65 72.38 71.97 72.80 66.56
w/o S-Adpt 69.09 68.82 66.50 73.50 69.95 71.25 64.49

Table 6: F1 scores of RoBERTa-based models on the POST datasets (“T-Adpt” = task adapter, “S-Adpt” =
sentiment adapter)

Model
T B N

B N T N T B

BERT 50.81 53.45 52.87 45.13 56.21 53.17
BERT-FT 51.43 54.72 53.04 50.71 56.82 51.61
RoBERTa 52.24 56.26 54.64 48.03 59.29 55.45
RoBERTa-FT 51.69 57.62 52.81 52.54 58.10 54.44

A2(BERT) 55.61 61.22 63.14 57.45 67.33 60.89
A2(RoBERTa) 59.79 62.67 64.61 61.55 68.12 63.34

Table 7: Cross-domain performance (F1 score, “T” =
Tweet, “B” = Blog, “N” = News Comment)

Model eng→chn chn→eng

MBERT 68.11 61.07 72.64 52.12
XLM-R 70.71 63.77 76.06 56.69

A2(MBERT) 69.45 64.33 71.54 61.78
A2(XLM-R) 72.64 67.91 75.44 62.67

Table 8: Cross-lingual performance on the POST
dataset (“eng” = English, “chn” = Chinese)

fer learning. On the other hand, our A2(BERT) and
A2(RoBERTa) models achieve better performance
than the fine-tuned models (BERT-FT, RoBERTa-
FT) on all the six cross-domain settings. Moreover,
the A2(RoBERTa) model achieves consistently bet-
ter performance than the A2(BERT) model on all
the six cross-domain settings.

When comparing the cross-domain performance
(shown in Table 4 and Table 5) against the in-
domain performance (shown in Table 7), we can
see that all language models show substantial drop
in performance. For example, on News Comments,
the performance of the BERT-FT drops from 65.48
to 54.72 and 50.71 when it is originally trained
on Tweet domain but test on News Comment do-
main. This demonstrates the challenge of the cross-
domain task setting, which may contain a catas-
trophic forgetting issue, conflicting signals and do-
main requirements. However, when we incorporate

adapters in A2 framework, we observe that the per-
formance gap diminishes significantly.

7.6 Cross-lingual Performance
Table 8 shows the cross-lingual performance re-
sults, from English to Chinese with tweets data
and vice versa. To answer RQ3, "Can the senti-
ment knowledge fused adapter improve the adapter-
based framework for the cross-lingual appraisal
tagging?", we first fine-tuned the multilingual
BERT (MBERT) and XLM-RoBERTa (XLM-R)
models using the labels in the source language and
applied them to the target languages with subword
embeddings frozen.Then, we compared with them
under a simple set up of our A2 framework with
plugging in a target language specific adapter. Both
A2(MBERT) and A2(XLM-R) models demonstrate
performance gains (avg. 6.96% and 5.06% for
MBERT and XLM-R based) on the target language.

We can see when we transfer from source to tar-
get language, existing multilingual language mod-
els perform poorly. For example, with XLM-R,
when we test out eng→chn, there is a huge perfor-
mance drop from 76.06% to 63.77% on Chinese
data. Both A2 models are slightly under-perform
(avg. 0.85%) the base language models when Chi-
nese as the source language, which may due to the
sentiment adapter trained with English data only.
Note that the performance on the source language
does not decrease as we only replace the language-
specific adapter at the inference time.

8 Illustration of a prediction error

To provide a qualitative analysis for our approach,
we showcase an example of an annotated sentence
from the SOCC dataset in Table 9. We present
our A2 prediction v.s. the human annotations. The
original sentence is a comment towards an article
discussing the aboriginal of Canada 8. Based on

8https://www.theglobeandmail.com/opinion/to
o-many-first-nations-people-live-in-a-dream-pal
ace/article6929035/
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Sentence The author does not seem to have much of a clue in spite of her elevated status.

A2 prediction

Gold annotation

Table 9: Illustration of a prediction error

the human annotations, the whole span of “does
not seem to have much of a clue” labelled with
Judgement Attitude and Negative Polarity. Our A2

framework can accurately predict the Judgement
Attitude and Negative Polarity labels but missing
three following tokens. It also falsely tags the text
segment, “elevated status” as Appreciation Attitude
and Negative Polarity.

9 Conclusion

We have proposed A2, an adapter-based framework
for automatically tagging Appraisal expressions.
We have designed task and sentiment adapters of
a small number of additional parameters to im-
prove the capacity of pre-trained language models
for quick adaptation for cross-domain and cross-
language settings.

Limitations

Our system is based on the pre-trained language
models and therefore assumes that GPU resources
are available. The system is designed for tagging
short opinion-bearing texts and the maximum text
length is set to 384 tokens. Moroever, our system
only performed cross-lingual tests from English to
Chinese and Chinese to English for experiments.
This is mainly constrained by the dataset availabil-
ity. To our best knowledge, the POST dataset is the
only available resource in Chinese with appraisal
annotations. It is desirable to conduct more experi-
ments on a broader set of languages to evaluate the
generalisability of the A2 model for cross-lingual
adaptation.
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Abstract

Document-level relation extraction (DocRE)
is the task of identifying all relations between
each entity pair in a document. Evidence, de-
fined as sentences containing clues for the re-
lationship between an entity pair, has been
shown to help DocRE systems focus on rel-
evant texts, thus improving relation extraction.
However, evidence retrieval (ER) in DocRE
faces two major issues: high memory con-
sumption and limited availability of annota-
tions. This work aims at addressing these issues
to improve the usage of ER in DocRE. First,
we propose DREEAM, a memory-efficient ap-
proach that adopts evidence information as the
supervisory signal, thereby guiding the atten-
tion modules of the DocRE system to assign
high weights to evidence. Second, we propose
a self-training strategy for DREEAM to learn
ER from automatically-generated evidence on
massive data without evidence annotations. Ex-
perimental results reveal that our approach ex-
hibits state-of-the-art performance on the Do-
cRED benchmark for both DocRE and ER. To
the best of our knowledge, DREEAM is the
first approach to employ ER self-training1.

1 Introduction

Document-level relation extraction (DocRE) has
been recognized as a more realistic and challeng-
ing task compared with its sentence-level coun-
terpart (Peng et al., 2017; Verga et al., 2018; Yao
et al., 2019). In DocRE, an entity can have multi-
ple mentions scattered throughout a document, and
relationships can exist between entities in different
sentences. Therefore, DocRE models are expected
to apply information filtering to long texts by fo-
cusing more on sentences relevant to the current
decision of relation extraction (RE) and less on ir-
relevant ones. To this end, existing studies retrieve
supporting evidence (evidence hereafter, Yao et al.,

1The source code is available at https://github.com/
YoumiMa/dreeam

[1] "The Archbishop" is the third episode of the first series of the BBC
sitcom Blackadder ( The Black Adder ). [2] It is set in England in the late 
15th century, and follows the exploits of the fictitious Prince Edmund as 
he is invested as Archbishop of Canterbury amid a Machiavellian plot by 
the King to acquire lands from the Catholic Church. [3] ... [5] Edmund, 
faced with the threat of assassination, attempts to escape to France into 
self-imposed exile; and in a later scene, two drunk knights overhear King 
Richard IV exclaiming "Who will rid me of this turbulent priest?" [6] The 
words attributed to King Henry II which led to Becket's death in 1170, and 
embark on a mission to murder Edmund. [7] …

The Archbishop

Subject: Prince Edmund
Object: Blackadder

Relation: present in work
Evidence: 1,2

Figure 1: Example document and one of the relation
triples from DocRED, where the i-th sentence is marked
with [i] in the beginning. Mentions in bold italics are
those of subjects and objects, whereas entity mentions
other than subject and object are underlined.

2019), a set of sentences necessary for humans to
identify the relation between an entity pair (Huang
et al., 2021a,b; Xie et al., 2022; Xiao et al., 2022;
Xu et al., 2022). As shown in Figure 1, to decide
the present in work relation between Prince Ed-
mund and Blackadder, reading sentences 1 and 2
should be sufficient. Although sentences 5 and 6
also mention the subject, they are irrelevant to the
relation decision. Evidence of the relation triple
(Prince Edmund, present in work, Blackadder) is
thus defined as sentences 1 and 2.

Despite the usefulness of evidence, automatic
evidence retrieval (ER) faces two major issues.
Firstly, the existing approaches for ER are memory-
inefficient. Previous systems tackle ER and DocRE
as separate tasks, introducing extra neural network
layers to learn ER with DocRE jointly (Huang et al.,
2021a; Xie et al., 2022; Xiao et al., 2022). The ER
module typically involves a bilinear classifier that
receives entity-pair-specific embeddings and sen-
tence embeddings as the input. To compute the
evidence score of each sentence for each entity
pair, the module must walk through all (entity pair,
sentence) combinations. The computations signifi-
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cantly increase memory consumption, particularly
in documents with numerous sentences and entities.
Secondly, the availability of human annotations
of evidence is limited. To make matters worse,
gold training data for DocRE are more expensive
to annotate than those for their sentence-level coun-
terpart. Despite the difficulty of obtaining human
annotations, acquiring evidence annotations at a
low cost has been underexplored. Although auto-
matically collecting silver training data for RE by
distant supervision (Mintz et al., 2009; Yao et al.,
2019), locating evidence for a sliver RE instance in
the document is nontrivial.

This work aims at alleviating these issues to
improve the usage of ER in DocRE. To reduce
the memory consumption, we propose Document-
level Relation Extraction with Evidence-guided
Attention Mechanism (DREEAM), a memory-
efficient approach for incorporating DocRE with
ER. We adopt ATLOP (Zhou et al., 2021), a
Transformer-based DocRE system widely used in
previous studies (Xie et al., 2022; Tan et al., 2022a;
Xiao et al., 2022), as the backbone. Instead of intro-
ducing an external ER module, we directly guide
the DocRE system to focus on evidence. Specifi-
cally, we supervise the computation of entity-pair-
specific local context embeddings. The local con-
text embedding, formed as a weighted sum among
all token embeddings based on attention from the
encoder, is trained to assign higher weights to evi-
dence and lower weights otherwise.

To compensate for the shortage of evidence anno-
tations, we propose performing ER under a weakly-
supervised setting. Specifically, we design a strat-
egy to perform self-training with DREEAM on
massive, unlabeled data. The data is obtained from
distant supervision (distantly-supervised data here-
after) and thus is automatically annotated with
relation labels but not evidence labels. We ex-
pect the knowledge about ER learned from the
human-annotated data to generate and grow on the
distantly-supervised data. To enable self-training,
we first adopt a teacher model trained on human-
annotated data to retrieve silver evidence from
distantly-supervised data. Next, we train a student
model on the data for RE while learning ER from
the silver evidence. The student model is further
finetuned on the human-annotated data to refine its
knowledge. Experiments on the DocRED bench-
mark (Yao et al., 2019) show that with the help of
ER self-training, DREEAM exhibits state-of-the-

art performance on both RE and ER.
In short, the contributions of this work are: (1)

We propose DREEAM, a memory-efficient ap-
proach to incorporate evidence information into
Transformer-based DocRE systems by directly
guiding the attention. DREEAM does not intro-
duce any extra trainable parameters for ER while
achieving good performance on both RE and ER.
(2) We propose incorporating distantly-supervised
RE training with ER self-training, which improves
the performance on both tasks. To the best of our
knowledge, DREEAM is the first DocRE system
that enables joint training of ER and RE under a
weakly-supervised setting.

2 Preliminary

2.1 Problem Formulation

Given a document D containing sentences XD =

{xi}|XD|
i=1 and entities ED = {ei}|ED|i=1 , DocRE aims

to predict all possible relations between every entity
pair. Each entity e ∈ ED is mentioned at least once
in D, with all its proper-noun mentions denoted
asMe = {mi}|Me|

i=1 . Each entity pair (es, eo) can
hold multiple relations, comprising a setRs,o ⊂ R,
where R is a pre-defined relation set. We let the
setR include ϵ, which stands for no-relation. Ad-
ditionally, if an entity pair (es, eo) carries a valid
relation r ∈ R\{ϵ}, ER aims to retrieve the sup-
porting evidence Vs,r,o ⊆ XD that are sufficient to
predict the triplet (es, r, eo).

2.2 ATLOP

This section reviews ATLOP, the backbone of our
proposed method.

Text Encoding Before encoding, a special token
* is inserted at the beginning and the end of each
entity mention. Then, tokens TD = {ti}|TD|i=1 within
document D are encoded with a Transformer-
based pretrained language model (PLM, Vaswani
et al., 2017) to obtain token embeddings and cross-
token dependencies. Although the original ATLOP
adopts only the last layer, this work takes the av-
erage of the last three layers2. Specifically, for a
PLM with d hidden dimensions at each transformer
layer, the token embeddings H and cross-token
dependencies A are computed as:

H,A = PLM(TD), (1)

2Pilot experiments showed that using the last 3 layers
yields better performance than using only the last layer.
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where H ∈ R|TD|×d averages over hidden states
of each token from the last three layers and A ∈
R|TD|×|TD| averages over attention weights of all
attention heads from the last three layers.

Entity Embedding The entity embedding he ∈
Rd for each entity e with mentions Me =

{mi}|Me|
i=1 is computed by collecting information

from all its mentions. Specifically, logsumexp
pooling, which has been empirically shown to be
effective in previous studies (Jia et al., 2019), is
adopted as: he = log

∑|Me|
i=1 exp(Hmi), where

Hmi is the embedding of the special token * at the
starting position of mention mi.

Localized Context Embedding To better utilize
information from long texts, ATLOP introduces
entity-pair specified localized context embeddings.
Intuitively, for entity pair (es, eo), tokens impor-
tant to both es and eo should contribute more to
the embedding. The importance of each token is
determined by the cross-token dependencies A ob-
tained from Equation 1. For entity es, the impor-
tance of each token is computed using the cross-
token dependencies of all its mentionsMes . First,
ATLOP collects and averages over the attention
Ami ∈ R|TD| at the special token * before each
mention mi ∈ Mes to get as ∈ R|TD| as the im-
portance of each token for entity es. Then, the
importance of each token for an entity pair (es, eo),
noted as q(s,o) ∈ R|TD|, is computed from as and
ao as:

q(s,o) =
as ◦ ao
a⊤s ao

, (2)

where ◦ stands for the Hadamard product. q(s,o) is
thus a distribution that reveals the importance of
each token for entity pair (es, eo). Subsequently,
ATLOP performs a localized context pooling,

c(s,o) = H⊤q(s,o), (3)

where c(s,o) ∈ Rd is a weighted average over all
token embeddings.

Relation Classification To predict the relation
between entity pair (es, eo), ATLOP first generates
context-aware subject and object representations:

zs = tanh(Ws[hes ; c
(s,o)] + bs) (4)

zo = tanh(Wo[heo ; c
(s,o)] + bo), (5)

where [·; ·] represents the concatenation of two vec-
tors and Ws,Wo ∈ Rd×2d, bs, bo ∈ Rd are train-

able parameters. Then, a bilinear classifier3 is ap-
plied on the context-aware representations to com-
pute the relation scores y(s,o) ∈ R|R|:

y(s,o) = z⊤s Wrzo + br, (6)

where Wr ∈ R|R|×d×d and br ∈ R|R| are trainable
parameters. The probability that relation r ∈ R
holds between entity es and eo is thus P(r|s, o) =
σ(y

(s,o)
r ), where σ is the sigmoid function.

Loss Function ATLOP proposes Adaptive
Thresholding Loss (ATL) that learns a dummy
threshold class TH during training, serving as a dy-
namic threshold for each relation class r ∈ R. For
each entity pair (es, eo), ATL forces the model to
yield scores above TH for positive relation classes
RP and scores below TH for negative relation
classesRN , formulated as below:

LRE =−
∑

s̸=o

∑

r∈RP

exp(y
(s,o)
r )

∑
r′∈RP∪{TH} exp(y

(s,o)
r′ )

− exp(y
(s,o)
TH )

∑
r′∈RN∪{TH} exp(y

(s,o)
r′ )

.

(7)

The idea of setting a threshold class is similar to
the Flexible Threshold (Chen et al., 2020).

3 Proposed Method: DREEAM

To perform information filtering, ATLOP computes
a localized context embedding based on attention
weights from the Transformer-based encoder. The
rationale is that cross-token dependencies are en-
coded as attention weights in Transformer lay-
ers. In this work, we propose DREEAM to en-
hance ATLOP with evidence. In addition to the
automatically-learned cross-token dependencies,
the attention modules are supervised to concentrate
more on evidence sentences and less on others.

DREEAM can be employed for both supervised
and self-training, sharing the same architecture
with different supervisory signals, as shown in Fig-
ure 2 (a). Inspired by Tan et al. (2022a), we propose
a pipeline to enable self-training of ER, with the
data flow shown in Figure 2 (b). First, we train a
teacher model on human-annotated data with gold
relations and evidence labels. Next, we apply the
trained teacher model to predict silver evidence for

3In practice, a grouped bilinear classifier (Zheng et al.,
2019) is applied to save memory.
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(b) Information flow of self-training using DREEAM.

Figure 2: Model architecture and the information flow during self-training. In (a), gold/silver evidence distributions
come from human-annotations/the teacher model. In (b), arrows represent the direction of knowledge transfer.

the distantly-supervised data. Then, we train a stu-
dent model on the distantly-supervised data, with
ER supervised by the silver evidence. Finally, we
finetune the student model on the human-annotated
data to refine its knowledge. The rest of this section
introduces the training processes of the teacher and
student models, followed by the inference process.

3.1 Teacher Model

For each entity pair (s, o), we guide q(s,o) with an
evidence distribution to help generate an evidence-
centered localized context embedding. While q(s,o)

yields token-level importance for es and eo, we can
obtain only sentence-level evidence from human
annotations, as shown in Figure 1. To alleviate
this gap, we sum the weight of each token within
a sentence. Specifically, for a sentence xi ∈ XD
consisting of tokens tSTART(xi), . . . , tEND(xi), we
obtain the sentence-level importance as:

p
(s,o)
i =

END(xi)∑

j=START(xi)

q
(s,o)
j . (8)

Collecting the importance of all sentences yields
a distribution p(s,o) ∈ R|XD| that expresses the
importance of each sentence within the document.

We further supervise p(s,o) for each entity pair
(es, eo) using a human-annotated evidence distri-
bution computed from gold evidence. First, we
define a binary vector v(s,r,o) ∈ R|XD| for each
valid relation label r ∈ Rs,o ⊂ R\{ϵ} that records
whether each sentence xi ∈ XD is evidence of the
relation triple (es, r, eo) or not. For example, if xi
is evidence of (es, r, eo), then v(s,r,o)i is set to 1,
and otherwise 0.

Next, we marginalize all valid relations and nor-

malize the marginalized vector to obtain v(s,o):

v(s,o) =

∑
r∈Rs,o

v(s,r,o)

∑
r∈Rs,o

1⊤v(s,r,o)
, (9)

where 1 = (1, 1, . . . , 1) ∈ R|XD| is an all-ones
vector. The rationale behind Equation 9 is that
modules before the relation classifier are not ex-
plicitly aware of specific relation types. We thus
guide attention modules within the encoder to pro-
duce relation-agnostic token dependencies.

Loss Function Our purpose is to guide p(s,o)

with human evidence v(s,o) to generate an evidence-
focused localized context embedding c(s,o). To
achieve this, we train the model with Kullback-
Leibler (KL) Divergence loss, minimizing the sta-
tistical distance between p(s,o) and v(s,o):

LgoldER = −DKL(v
(s,o)||p(s,o)). (10)

During training, we balance the effect of ER loss
with RE loss using a hyper-parameter λ:

Lgold = LRE + λLgoldER . (11)

3.2 Student Model
We employ the system trained on human-annotated
data as a teacher model to support ER self-training
on massive data. The data, obtained from relation
distant-supervision (Mintz et al., 2009), contains
noisy labels for RE but no information for ER. We
train a student model on the data. Supervision of
the student model, similar to that of the teacher
model, consists of two parts: an RE binary cross-
entropy loss and an ER self-training loss.

In general, predictions from the teacher model
are adopted as the supervisory signal for ER train-
ing. First, we let the teacher model infer on the
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distantly-supervised data, thereby yielding an evi-
dence distribution over tokens q̂(s,o) for each entity
pair (es, eo). Next, we train the student model to
reproduce q̂(s,o) for each entity pair (es, eo).

Loss Function The objectives of self-training are
identical to those of supervised training. We train
ER of the student model using a KL-divergence
loss similar to Equation 10:

LsilverER = −DKL(q̂
(s,o)||q(s,o)), (12)

where q(s,o) is the student model’s evidence dis-
tribution over tokens regarding entity pair (es, eo),
computed from Equation 2.

There are two notable differences between
LsilverER and LgoldER . Firstly, the supervisory signal
of LgoldER is sentence-level, while that of LsilverER is
token-level. The gap results from the availability
of token-level evidence distributions. On human-
annotated data, it is untrivial to obtain token-level
evidence distributions from sentence-level annota-
tions. On distantly-supervised data, however, the
evidence distribution over tokens can be easily ob-
tained from predictions of the teacher model. We
thus adopt token-level evidence distributions to pro-
vide supervision from a micro perspective for ER
self-training. Secondly, LgoldER is computed only on
entity pairs with valid relation(s), while LsilverER is
computed over all entity pairs within the document.
The design choice is based on the low reliability
of relation labels on distantly-supervised data. As
these relation labels are collected automatically, it
is possible that some of the annotated relations are
irrelevant to the document. Therefore, it is hard
to tell which relations are valid and which are not
from the automatic annotations. For this reason,
we compute the loss from all entity pairs to prevent
missing important instances.

The overall loss is balanced by the same hyper-
parameter λ in Equation 11:

Lsilver = LRE + λLsilverER . (13)

After training on the distantly-supervised data,
the student model is further finetuned using the
human-annotated data to refine its knowledge about
DocRE and ER with reliable supervisory signals.

3.3 Inference
Following Zhou et al. (2021), we apply adaptive
thresholding to obtain RE predictions, selecting
relation classes with scores higher than the thresh-
old class as predictions. For ER, we apply static

Statistics Human Distant
# of documents 3,053/998/1,000 101,873
# of relation types 97 97
Avg. # of ent. per doc. 19.5 19.3
Avg. # of sent. per doc. 8.0 8.1
Avg. # of ment. per ent. 1.3 1.3
Avg. # of rel. per doc. 12.5 14.8
Avg. # of evi. per rel. 1.6 -

Table 1: Data statistics of DocRED. Human stands for
human-annotated data and Distant stands for distantly-
supervised data. The abbreviations doc., ent., sent.,
ment., rel., and evi. stand for document, entity, sentence,
mention, relation, and evidence sentences, respectively.

thresholding and choose sentences with importance
higher than a pre-defined threshold as evidence.

We further incorporate the inference-stage fu-
sion strategy proposed by Xie et al. (2022). Specifi-
cally, for each predicted relation triple (es, r, eo) as-
sociated with evidence prediction Vs,r,o, we create
a pseudo-document D̂s,r,o by collecting only evi-
dence sentences xi ∈ Vs,r,o. Then, we feed pseudo-
documents into the trained model to re-score the
relation triples. To aggregate the predictions from
the pseudo-documents and the entire document,
we adopt a blending layer that contains only one
parameter τ representing a threshold. Each triple
(es, r, eo) is chosen as the final prediction only if
the summation of its scores on the entire document
and pseudo-documents is higher than τ . We adjust
τ to minimize the binary cross-entropy loss of RE
on the development set. For more details, we refer
the readers to the original paper (Xie et al., 2022).

4 Experiments

To evaluate DREEAM, we conduct experiments
under supervised and weakly-supervised settings.

4.1 Setting
Dataset We conduct experiments on Do-
cRED (Yao et al., 2019)4, the largest dataset
for DocRE with human annotations. As shown
in Table 1, DocRED contains a small portion
of human-annotated data and a large portion
of distantly-supervised data made by aligning
Wikipedia articles with the Wikidata knowledge
base (Vrandečić and Krötzsch, 2014). In this work,
we directly adopt the distantly-supervised data
provided in DocRED.

Configuration We implement DREEAM based
on Hugging Face’s Transformers (Wolf et al., 2020).

4https://github.com/thunlp/DocRED
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Dev Test
Method PLM Ign F1 F1 Evi F1 Ign F1 F1 Evi F1
(a) without Distantly-Supervised Data
SSAN (Xu et al., 2021a) BERTbase 57.03 59.19 - 55.84 58.16 -
ATLOP (Zhou et al., 2021) BERTbase 59.22 61.09 - 59.31 61.30 -
E2GRE (Huang et al., 2021a) BERTbase 55.22 58.72 47.12 - - -
DocuNet (Zhang et al., 2021) BERTbase 59.86 61.83 - 59.93 61.86 -
EIDER (Xie et al., 2022) BERTbase 60.51 62.48 50.71 60.42 62.47 51.27
SAIS (Xiao et al., 2022) BERTbase 59.98 62.96 53.70 60.96 62.77 52.88
DREEAM (teacher) BERTbase

59.60±0.15 61.42±0.15 52.08±0.10
59.12 61.13 51.71+ Inference-stage Fusion 60.51±0.06 62.55±0.06 60.03 62.49

SSAN (Xu et al., 2021a) RoBERTalarge 60.25 62.08 - 59.47 61.42 -
ATLOP (Zhou et al., 2021) RoBERTalarge 61.32 63.18 - 61.39 63.40 -
DocuNet (Zhang et al., 2021) RoBERTalarge 62.23 64.12 - 62.39 64.55 -
EIDER (Xie et al., 2022) RoBERTalarge 62.34 64.27 52.54 62.85 64.79 53.01
SAIS (Xiao et al., 2022) RoBERTalarge 62.23 65.17 55.84 63.44 65.11 55.67
DREEAM (teacher) RoBERTalarge

61.71±0.09 63.49±0.10 54.15±0.11
61.62 63.55 54.01+ Inference-stage Fusion 62.29±0.23 64.20±0.23 62.12 64.27

(b) with Distantly-Supervised Data
KD-DocRE (Tan et al., 2022a) BERTbase 63.38 64.81 - 62.56 64.76 -
DREEAM (student) BERTbase

63.47±0.02 65.30±0.03 55.68±0.04
63.31 65.30 55.43+ Inference-Stage Fusion 63.92±0.02 65.83±0.04 63.73 65.87

SSAN (Xu et al., 2021a) RoBERTalarge 63.76 65.69 - 63.78 65.92 -
KD-DocRE (Tan et al., 2022a) RoBERTalarge 65.27 67.12 - 65.24 67.28 -
DREEAM (student) RoBERTalarge

65.24±0.07 67.09±0.07 57.55±0.07
65.20 67.22 57.34+ Inference-Stage Fusion 65.52±0.07 67.41±0.04 65.47 67.53

Table 2: Evaluation results on development and test sets of DocRED, with best scores bolded. The scores of
existing methods are borrowed from corresponding papers. We group the methods first by whether they utilize the
distantly-supervised data or not, then by the PLM encoder.

Following previous work, we evaluate the perfor-
mance of DREEAM using BERTbase (Devlin et al.,
2019) and RoBERTalarge (Liu et al., 2019) as the
PLM encoder. The parameter for balancing ER loss
with RE loss is set to 0.1 for BERTbase and 0.05 for
RoBERTalarge when training both the teacher and
the student model, chosen based on a grid search
from λ ∈ {0.05, 0.1, 0.2, 0.3}. We train and evalu-
ate DREEAM on a single Tesla V100 16GB GPU
when utilizing BERTbase and on a single NVIDIA
A100 40GB GPU when utilizing RoBERTalarge.
Details about hyper-parameters and running time
are provided in Appendix A.

Evaluation During inference, sentences xi with
pi > 0.2 computed from Equation 8 are retrieved
as evidence. For the evaluation, we adopt official
evaluation metrics of DocRED (Yao et al., 2019):
Ign F1 and F1 for RE and Evi F1 for ER. Ign F1
is measured by removing relations present in the
annotated training set from the development and
test sets. We train our system five times, initialized
with different random seeds, and report the average
scores and standard error of these runs.

4.2 Main Results
Table 2 lists the performance of the proposed and
existing methods. We select the best-performing

model on the development set to make predictions
on the test set and submit the predictions to Co-
daLab for evaluation5.

Performance of the Student Model Table 2
shows that the student model outperforms ex-
isting systems on RE by utilizing the distantly-
supervised data. In particular, when adopting
BERTbase as the PLM encoder, DREEAM performs
better than KD-DocRE (Tan et al., 2022a), the
previous state-of-the-art system, by 0.6/1.0 points
on Ign F1/F1 for the development set. On the
test set, the improvement reaches 1.1 F1 points
on both Ign F1 and F1. Notably, DREEAM uti-
lizing BERTbase even performs comparably with
SSAN utilizing RoBERTalarge under the weakly-
supervised setting (Xu et al., 2021a). When adopt-
ing RoBERTalarge as the PLM encoder, the advan-
tage of DREEAM remains on both development
and test sets. These results support our hypothesis
that ER self-training improves RE, which has not
been demonstrated by any previous work.

Performance of the Teacher Model The upper
half of Table 2 shows that the teacher model trained

5https://codalab.lisn.upsaclay.fr/
competitions/365. Submissions under username kgmr15
are from this work.
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Setting Ign F1 F1 Evi F1
(a) Teacher Model
DREEAM 59.60±0.15 61.42±0.15 52.08±0.10
w/o ER training 59.21±0.19 61.01±0.20 42.79±1.65

(b) Student Model
DREEAM 63.47±0.02 65.30±0.03 55.68±0.04
w/o ER self-training 61.96±0.39 63.77±0.44 53.72±0.43
w/o ER fine-tuning 63.34±0.02 65.50±0.02 55.27±0.05
w/o both 62.13±0.07 63.82±0.08 47.13±0.12

Table 3: Ablation studies evaluated on the DocRED
development set.

on human-annotated data exhibits comparable per-
formance to EIDER (Xie et al., 2022) on both RE
and ER. Although there is a performance gap be-
tween DREEAM and SAIS, we attribute it to the
difference in supervisory signals. While DREEAM
incorporates RE with only relation-agnostic ER,
SAIS is trained under three more tasks: corefer-
ence resolution, entity typing, and relation-specific
ER (Xiao et al., 2022). These extra supervisory sig-
nals possibly contribute to the high performance of
SAIS. Apart from the performance, our method has
a critical advantage over previous ER-incorporated
DocRE systems in memory efficiency. We provide
a detailed discussion in Section 4.4.

Effectiveness of ER Self-Training Additionally,
we observe that the student model leads the ex-
isting systems by a large margin on ER. As the
first approach enabling weakly-supervised ER train-
ing, DREEAM utilizes considerable amounts of
data without evidence annotation via self-training.
The experimental results reveal that DREEAM
improves over the state-of-the-art supervised ap-
proaches by approximately 2.0 points on Evi F1.
Therefore, we conclude that our approach to ER
self-training succeeds in acquiring evidence knowl-
edge from the relation-distantly-supervised data
with no evidence annotation.

4.3 Ablation Studies

This subsection investigates the effect of evidence-
guided attention by ablation studies. All subse-
quent experiments adopt BERTbase as the PLM en-
coder. We report scores without the inference-stage
fusion strategy (Xie et al., 2022).

Teacher Model Firstly, we examine how guid-
ing attention with evidence helps RE training on
human-annotated data. We train a variant of our
teacher model without ER training and evaluate its
performance on the DocRED development set. In

general, disabling ER training reduces the model to
a baseline similar to ATLOP (Zhou et al., 2021)6.

As presented in Table 3 (a), the RE performance
of our system decreases without ER training. This
observation supports the hypothesis that guiding at-
tention with evidence is beneficial to improving RE.
We further visualize the token importance q(s,o) for
some instances to investigate the effect of evidence-
guided training and find that our method succeeds
in guiding the attention to focus more on relevant
contexts. The details can be found in Appendix B.

Additionally, we retrieve evidence from the
ER-disabled model as sentences with importance
higher than the pre-defined threshold. By doing so,
we find that the Evi F1 is not far from its evidence-
aware counterpart. This observation indicates that
ER is a task highly coupled with RE.

Student Model Next, we investigate the student
model trained on distantly-supervised data and fine-
tuned on human-annotated data. The aim is to
examine the effect of guiding attention with evi-
dence at various stages of training. To this end, we
remove ER supervisory signals from the student
model during the training on distantly-supervised
and human-annotated data. The baseline excludes
ER supervision from both stages, pre-trained on
distantly-supervised data and then finetuned on
human-annotated data for only RE.

As shown in Table 3 (b), DREEAM without ER
self-training performs comparably to the baseline,
while DREEAM without ER fine-tuning performs
comparably to the original model with no ablations.
These results indicate that ER self-training is more
essential than ER fine-tuning for the student model.
On the one hand, we observe that disabling ER
self-training on massive data causes a huge loss of
evidence knowledge that cannot be recovered by
finetuning on the much smaller evidence-annotated
dataset. On the other hand, we can conclude that
DREEAM succeeds in retrieving evidence knowl-
edge from the data without any evidence annota-
tion, demonstrating the effectiveness of our ER
self-training strategy.

4.4 Memory Efficiency

This subsection discusses the memory inefficiency
issue in previous ER approaches and shows how
DREEAM solves it. Previous approaches regard

6The difference between ATLOP and our baseline is that
our baseline utilizes the last three layers of PLM to obtain
embeddings, whereas ATLOP adopts only the final layer.

1977



Method Memory Trainable
(GiB) Params. (M)

(a) without ER Module
ATLOP (Zhou et al., 2021) 10.8 115.4
SSAN (Xu et al., 2021a) 6.9 113.5
KD-DocRE (Tan et al., 2022a) 15.2 200.1
(b) with ER Module
EIDER (Xie et al., 2022) 43.1 120.2
SAIS (Xiao et al., 2022) 46.2 118.0
DREEAM (proposed) 11.8 115.4

Table 4: Memory consumption and the number of train-
able parameters of DREEAM and existing methods.

ER as a separate task from RE that requires extra
neural network layers to solve (Huang et al., 2021a;
Xie et al., 2022; Xiao et al., 2022). To perform ER,
all of them introduce a bilinear evidence classifier
that receives an entity-pair-specific embedding and
a sentence embedding as inputs. For example, EI-
DER computes an evidence score for sentence xi
with regard to entity pair (es, eo) as below:

P(xi|es, eo) = σ(xiWc(s,o) + b), (14)

where xi is a sentence embedding, c(s,o) is the
localized context embedding computed from Equa-
tion 3, W and b are trainable parameters. EIDER
and other existing systems thus need to compute
over all combinations of (sentence, entity pair).
Specifically, consider a document D with n sen-
tences XD = {x1, x2, . . . , xn} and m entities
ED = {e1, e2, . . . , em}, yielding m× (m− 1) en-
tity pairs. To obtain evidence scores, EIDER must
perform bilinear classification n ×m × (m − 1)
times via Equation 14, resulting in huge memory
consumption. In contrast, DREEAM takes the
summations of attention weights over tokens as
evidence scores, thus introducing neither new train-
able parameters nor expensive matrix computations.
Hence, we see that DREEAM is more memory-
efficient than its competitors.

Table 4 summarizes the memory consumption
and the number of trainable parameters when uti-
lizing BERTbase as the PLM encoder for existing
and proposed methods. Values are measured when
training the systems using the corresponding offi-
cial repositories with a batch size of four7. We ob-
serve that the memory consumption of DREEAM
is only 27.4% of EIDER and 25.5% of SAIS. No-
tably, DREEAM also consumes less memory than
KD-DocRE, underscoring the memory efficiency
of our proposed method.

7The value of EIDER is different from the original paper
because we enable ER evaluations during training.

Statistics DocRED Re-DocRED
# rel. 38,180 85,932
# rel. w/o evi. 1,421 (3.7%) 38,672 (45.0%)

Table 5: Statistics of relation triples in the training set
of DocRED and Re-DocRED. rel. stands for relation
triples and rel. w/o evi. stands for relation triples without
evidence sentences.

Method Ign F1 F1
(a) without Distantly-Supervised Data
ATLOP (Zhou et al., 2021) 76.82 77.56
DocuNet (Zhang et al., 2021) 77.26 77.87
KD-DocRE (Tan et al., 2022a) 77.60 78.28
DREEAM 77.34±0.19 77.94±0.15

+ Inference-Stage Fusion 79.66±0.39 80.73±0.38

(b) with Distantly-Supervised Data
ATLOP (Zhou et al., 2021) 78.52 79.46
DocuNet (Zhang et al., 2021) 78.52 79.46
KD-DocRE (Tan et al., 2022a) 80.32 81.04
DREEAM 78.67±0.17 79.35±0.18
+Inference-Stage Fusion 80.39±0.03 81.44±0.04

Table 6: Evaluation results on the test set of Re-
DocRED, with best scores bolded. PLM encoder is
aligned to RoBERTa-large. The scores of existing meth-
ods are borrowed from Tan et al. (2022b).

4.5 Performance on Re-DocRED

Although DocRED is a widely used benchmark,
recent works have pointed out that annotations of
the dataset are incomplete (Huang et al., 2022; Xie
et al., 2022; Tan et al., 2022b). To paraphrase, many
relation triples in DocRED are missing in human
annotations, biasing the dataset with many false
negatives. Tan et al. (2022b) thus proposed Re-
DocRED, a more reliable benchmark for DocRE
that revises DocRED to alleviate the false negative
issue. In this subsection, we evaluate DREEAM
on Re-DocRED to verify the soundness of our pro-
posed method.

Similar to Section 4.2, we conducted experi-
ments under two different settings: (a) a fully-
supervised setting without distantly-supervised
data and (b) a weakly-supervised setting utilizing
distantly-supervised data. Notably, Re-DocRED
introduces new relation triples without providing
accurate evidence sentences. As shown in Table 5,
compared with DocRED, the training set of Re-
DocRED contains much more relation triples with-
out evidence sentences. DREEAM trained on Re-
DocRED could thus be inaccurate on ER, biased
by the considerable amount of missing evidence.
Therefore, during ER self-training of the student
model, we adopt token evidence distributions pre-
dicted by a teacher model trained on DocRED as
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the supervisory signal. The student model is further
finetuned on Re-DocRED to obtain more reliable
knowledge about RE.

Table 6 compares the performance of DREEAM
against existing methods. We observe that
DREEAM outperforms existing methods under
both the fully-supervised setting and the weakly-
supervised setting. The observation indicates the
soundness of our proposed method.

5 Related Work

DocRE Recent work has extended the scope of
relation extraction task from sentence to docu-
ment (Peng et al., 2017; Quirk and Poon, 2017;
Yao et al., 2019). Compared with its sentence-
level counterpart, DocRE is a more realistic and
challenging setting, aiming at extracting both intra-
sentence and inter-sentence relations. Although
commonly-used benchmarks for DocRE include
DocRED (Yao et al., 2021), CDR (Li et al., 2016)
and GDA (Wu et al., 2019), only DocRED contains
evidence annotation and massive pre-processed
data obtained from relation distant supervision.
Therefore, we adopt DocRED as our test bed.

Transformer-based DocRE Modeling DocRE
with a Transformer-based system has been a pop-
ular and promising approach, outperforming its
graph-based counterparts (Zeng et al., 2020, 2021;
Xu et al., 2021b). One of the major topics of these
systems is a better utilization of long-distance to-
ken dependencies captured by the PLM encoder.
Zhang et al. (2021) formulate DocRE as a semantic
segmentation task and introduce a U-Net (Ron-
neberger et al., 2015) on top of the PLM encoder
to capture local and global dependencies between
entities. Zhou et al. (2021) propose localized con-
textual pooling to focus on tokens relevant to each
entity pair. Based on their work, Tan et al. (2022a)
adopt an axial attention module to perform two-hop
reasoning and capture the dependencies between
relation triples. These designs provide no supervi-
sion on token dependencies, expecting the model to
capture them implicitly during training. In contrast,
we provide explicit supervision for token depen-
dencies by utilizing evidence information.

ER in DocRE This study is not the first to incor-
porate evidence information into DocRE. Huang
et al. (2021b) first report that heuristically select-
ing evidence sentences boosts the performance of
DocRE systems. Huang et al. (2021a), Xie et al.

(2022) and Xiao et al. (2022) train neural classi-
fiers to automatically retrieve evidence together
with RE. However, we perform ER with neither
heuristic rules nor neural classifiers. Furthermore,
our approach can be used for ER self-training on
data without evidence annotations.

Distant Supervision Distant supervision has
been widely adopted as a technique to generate
automatically-labeled data for RE (Mintz et al.,
2009; Quirk and Poon, 2017; Xiao et al., 2020).
The method assumes that if a sentence contains
an entity pair that participates in a known relation
in a knowledge base (KB), the sentence probably
expresses that relation. Thus unlabeled text can
be aligned with a KB using entities as anchors,
with each match distantly supervised by the rela-
tion described in the KB. Yao et al. (2019) apply
the technique to annotate relations in documents
automatically. In this work, we directly adopt those
documents for ER self-training.

6 Conclusion

We have introduced methods to improve the usage
of ER in DocRE. First, we propose DREEAM, a
memory-efficient method to reduce the computa-
tion cost of ER. Unlike existing approaches that
train an evidence classifier for ER, DREEAM di-
rectly supervises the attention to concentrate more
on evidence than on others. Next, we propose to
employ DREEAM in a weakly-supervised setting
to compensate for the shortage of human annota-
tions. Instead of gold evidence annotated by hu-
mans, we adopt evidence predictions from a teacher
model trained on human-annotated data as the su-
pervisory signal to realize ER self-training on un-
labeled data. Experiments on the DocRED bench-
mark show that DREEAM exhibits state-of-the-art
performance on both RE and ER, with the help of
weakly-supervised training on data obtained from
distant supervision of relations. Compared with
existing approaches, DREEAM performs ER with
zero trainable parameters introduced, thereby re-
ducing the memory usage to 27% or less. The
soundness of DREEAM is confirmed by conduct-
ing experiments on Re-DocRED, a revised version
of DocRED.

In the future, we plan to transfer the evidence
knowledge of DREEAM trained on DocRED to
other DocRE datasets.
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Limitations

A major limitation of this work is that our method
can only retrieve relation-agnostic evidence. Un-
like Xiao et al. (2022), DREEAM cannot specify
evidence sentences for each relation label. There-
fore, when an entity pair holds multiple relations,
DREEAM retrieves the same evidence regardless
of the relation type, even though the evidence may
be correct for some of the relations but not for oth-
ers.

Ethics Statement

In this work, we have proposed a method for in-
corporating ER into DocRE. Our approach directly
supervises the weights of attention modules within
a Transformer-based PLM encoder. Inside the
research community, we hope our approach can
provide a new viewpoint on the explainability of
document-level relation extraction systems. Fur-
thermore, a better DocRE system will benefit the
research on other tasks, such as question answering
and reading comprehension. In the real world, a
DocRE system with good performance can help
extract useful information from unstructured text,
reducing human efforts and expenses. Further-
more, as our method is memory-efficient, it is also
friendly to the environment.

We also have demonstrated a use case of our
method in ER self-training, utilizing massive data
obtained from relation distant-supervision. Al-
though in this work, we directly adopt the data
provided by Yao et al. (2019), it is possible to ex-
tend the scale of data by utilizing numerous un-
structured texts. Utilizing a wide range of unstruc-
tured texts may expose our system to the risk of
vulnerable data, potentially biasing our system in
the wrong direction. To mitigate the problem, we
encourage performing data pre-processing to detect
and remove harmful contents before training.
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A Hyper-Parameters and Runtime

We adopt AdamW as the optimizer (Loshchilov
and Hutter, 2019) and apply a linear warmup for
the learning rate at the first 6% steps. Important
hyper-parameters are shown in Table 7, which are
mainly borrowed from existing works. Specifi-
cally, we borrow hyper-parameters from Zhou et al.

subject: Prince Edmund, object: position held relation: Archbishop of Can-
terbury, evidence:[1]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: Prince Edmund, object: present in work relation: The Black Adder,
evidence:[0, 1]
[1]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [2] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [3] Most of the humour in the episode relies on religious satire . [4] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [5] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [6] ” * The Archbishop * ” won an * International Emmy Award
* in * 1983 * in the * Popular Arts * category . [7] The * Catholic Church *
was to be satirized again in the second series , * Blackadder II * , in the * 1986
* episode ” * Money * ” .

subject: Machiavellian, object: present in work relation: The Black Adder,
evidence:[0, 1]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: Thomas Becket, object: country of citizenship relation: England,
evidence:[0, 1, 2]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: Thomas Becket, object: position held relation: Archbishop of Can-
terbury, evidence:[3]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: Henry II, object: country of citizenship relation: England, evi-
dence:[1, 4, 5]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: Henry II, object: present in work relation: The Black Adder, evi-
dence:[0, 4, 5]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: The Archbishop, object: series relation: The Black Adder, evi-
dence:[0]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: The Black Adder, object: original network relation: BBC, evi-
dence:[0]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: The Black Adder, object: narrative location relation: England, evi-
dence:[0, 1]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: The Black Adder, object: has part relation: Blackadder II, evi-
dence:[0, 7]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: Richard IV, object: present in work relation: The Black Adder,
evidence:[0, 1, 4]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: Becket, object: date of death relation: 1170, evidence:[5]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: Becket, object: present in work relation: The Black Adder, evi-
dence:[0, 1, 4, 5]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: Money, object: publication date relation: 1986, evidence:[7]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: Money, object: series relation: The Black Adder, evidence:[0, 7]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: Blackadder II, object: start time relation: 1986, evidence:[7]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: Blackadder II, object: follows relation: The Black Adder, evi-
dence:[0, 7]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: Blackadder II, object: series relation: The Black Adder, evi-
dence:[0, 7]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

(a) Before attention guidance.subject: Prince Edmund, object: position held relation: Archbishop of Can-
terbury, evidence:[1]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: Prince Edmund, object: present in work relation: The Black Adder,
evidence:[0, 1]
[1]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [2] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [3] Most of the humour in the episode relies on religious satire . [4] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [5] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [6] ” * The Archbishop * ” won an * International Emmy Award
* in * 1983 * in the * Popular Arts * category . [7] The * Catholic Church *
was to be satirized again in the second series , * Blackadder II * , in the * 1986
* episode ” * Money * ” .

subject: Machiavellian, object: present in work relation: The Black Adder,
evidence:[0, 1]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: Thomas Becket, object: country of citizenship relation: England,
evidence:[0, 1, 2]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: Thomas Becket, object: position held relation: Archbishop of Can-
terbury, evidence:[3]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: Henry II, object: country of citizenship relation: England, evi-
dence:[1, 4, 5]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: Henry II, object: present in work relation: The Black Adder, evi-
dence:[0, 4, 5]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: The Archbishop, object: series relation: The Black Adder, evi-
dence:[0]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: The Black Adder, object: original network relation: BBC, evi-
dence:[0]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: The Black Adder, object: narrative location relation: England, evi-
dence:[0, 1]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: The Black Adder, object: has part relation: Blackadder II, evi-
dence:[0, 7]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: Richard IV, object: present in work relation: The Black Adder,
evidence:[0, 1, 4]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: Becket, object: date of death relation: 1170, evidence:[5]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: Becket, object: present in work relation: The Black Adder, evi-
dence:[0, 1, 4, 5]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: Money, object: publication date relation: 1986, evidence:[7]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: Money, object: series relation: The Black Adder, evidence:[0, 7]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: Blackadder II, object: start time relation: 1986, evidence:[7]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: Blackadder II, object: follows relation: The Black Adder, evi-
dence:[0, 7]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

subject: Blackadder II, object: series relation: The Black Adder, evi-
dence:[0, 7]
[0]” * The Archbishop * ” is the third episode of the first series of the * BBC
* sitcom * Blackadder * ( * The Black Adder * ) . [1] It is set in * England
* in * the late 15th century * , and follows the exploits of the fictitious *
Prince Edmund * as he is invested as * Archbishop of Canterbury * amid a *
Machiavellian * plot by the King to acquire lands from the * Catholic Church
* . [2] Most of the humour in the episode relies on religious satire . [3] The
script pays tribute to the real - life * 12th century * Archbishop of Canterbury
, * Thomas Becket * . [4] * Edmund * , faced with the threat of assassination ,
attempts to escape to * France * into self - imposed exile ; and in a later scene ,
* two * drunk knights overhear King * Richard IV * exclaiming ” Who will rid
me of this turbulent priest ? ” , the words attributed to King * Henry II * which
led to * Becket * ’ s death in * 1170 * , and embark on a mission to murder *
Edmund * . [5] ” * The Archbishop * ” won an * International Emmy Award *
in * 1983 * in the * Popular Arts * category . [6] The * Catholic Church * was
to be satirized again in the second series , * Blackadder II * , in the * 1986 *
episode ” * Money * ” .

(b) After attention guidance.

Figure 3: Heatmaps of token importance for localized
context pooling before and after guiding the attention
with evidence when deciding the relation for entity pair
(Prince Edmund, The Black Adder). The gold relation is
present in work with evidence sentences 1 and 2. Deeper
the color, the larger the value.

(2021) to train the teacher model and borrow those
from Tan et al. (2022a) to train and finetune the
student model. The only exception is the number
of epochs for training the student model, which is
determined by a grid search from {2, 5, 8, 10}.

The average running time spent for our system at
each training stage is shown in Table 8. Note that
we employ a single Tesla V100 16GB GPU when
utilizing BERTbase and a single NVIDIA A100
40GB GPU when utilizing RoBERTalarge.

B Visualization: Evidence-Guided
Attention

As introduced in Section 3.1, evidence knowledge
of DREEAM originates from sentence-level super-
vision. We hypothesize that sentence-level super-
vision, from a more macro perspective, should im-
prove its micro counterpart of token-level focusing.
To test the hypothesis, we examine the token-level
evidence distribution for localized context pool-
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Hyperparam. Train (teacher) Train (student) Finetune (student)
BERTbase RoBERTalarge BERTbase RoBERTalarge BERTbase RoBERTalarge

# Epoch 30 30 2 5 10 10
lr for encoder 5e-5 3e-5 3e-5 1e-5 1e-6 1e-6
lr for classifier 1e-4 1e-4 1e-4 5e-5 3e-6 3e-6
max gradient norm 1.0 1.0 5.0 5.0 2.0 2.0

Table 7: Hyper-parameters in training.

Phase BERTbase RoBERTalarge

Train (teacher) 1h18min 1h18min
Train (student) 2h55min 6h12min
Finetune (student) 26min 29min

Table 8: Runtime for each training stage.
subject: Robert Kingsbury Huntington, object: place of birth relation: Los
Angeles, evidence:[0, 3]
[0]* Robert Kingsbury Huntington * ( * 13 March 1921 * 2013 * 5 June 1942
* ) , was a naval aircrewman and member of * Torpedo Squadron 8 * ( or *
VT - 8 * ) . [1] He was radioman / gunner to * Ensign George Gay * ’ s *
TBD Devastator * aircraft . [2] Along with his entire squadron , * Huntington
* was shot down during the * Battle of Midway * , on * 4 2013 5 June 1942 *
. [3] Born in * Los Angeles * , * California * , enlisted in * the United States
Navy * * 21 April 1941 * . [4] He served on board * Lexington * ( * CV - 2
* ) and was rated aviation radioman third class before being transferred to *
Torpedo Squadron 8 * on board * Hornet * ( * CV - 8 * ) . [5] He received the
* Distinguished Flying Cross * for heroism and extraordinary achievement as
rear gunner in a torpedo plane during an attack against enemy * Japanese *
forces in the * Battle of Midway * * 4 June 1942 * . [6] Flying without fighter
support and with insufficient fuel to return to their carrier , * Huntington *
and his fellow crewmember pressed home their attack with utter disregard for
their own personal safety , in the face of a tremendous antiaircraft barrage and
overwhelming fighter opposition . [7] * Huntington * was one of * 29 * from
* Torpedo Squadron 8 * who gave their lives in this attack .

subject: Robert Kingsbury Huntington, object: military branch relation: the
United States Navy, evidence:[0, 3, 4, 5, 7]
[0]* Robert Kingsbury Huntington * ( * 13 March 1921 * 2013 * 5 June 1942
* ) , was a naval aircrewman and member of * Torpedo Squadron 8 * ( or *
VT - 8 * ) . [1] He was radioman / gunner to * Ensign George Gay * ’ s *
TBD Devastator * aircraft . [2] Along with his entire squadron , * Huntington
* was shot down during the * Battle of Midway * , on * 4 2013 5 June 1942 *
. [3] Born in * Los Angeles * , * California * , enlisted in * the United States
Navy * * 21 April 1941 * . [4] He served on board * Lexington * ( * CV - 2
* ) and was rated aviation radioman third class before being transferred to *
Torpedo Squadron 8 * on board * Hornet * ( * CV - 8 * ) . [5] He received the
* Distinguished Flying Cross * for heroism and extraordinary achievement as
rear gunner in a torpedo plane during an attack against enemy * Japanese *
forces in the * Battle of Midway * * 4 June 1942 * . [6] Flying without fighter
support and with insufficient fuel to return to their carrier , * Huntington *
and his fellow crewmember pressed home their attack with utter disregard for
their own personal safety , in the face of a tremendous antiaircraft barrage and
overwhelming fighter opposition . [7] * Huntington * was one of * 29 * from
* Torpedo Squadron 8 * who gave their lives in this attack .

subject: Robert Kingsbury Huntington, object: conflict relation: Battle of
Midway, evidence:[2, 5, 6, 7]
[0]* Robert Kingsbury Huntington * ( * 13 March 1921 * 2013 * 5 June 1942
* ) , was a naval aircrewman and member of * Torpedo Squadron 8 * ( or *
VT - 8 * ) . [1] He was radioman / gunner to * Ensign George Gay * ’ s *
TBD Devastator * aircraft . [2] Along with his entire squadron , * Huntington
* was shot down during the * Battle of Midway * , on * 4 2013 5 June 1942 *
. [3] Born in * Los Angeles * , * California * , enlisted in * the United States
Navy * * 21 April 1941 * . [4] He served on board * Lexington * ( * CV - 2
* ) and was rated aviation radioman third class before being transferred to *
Torpedo Squadron 8 * on board * Hornet * ( * CV - 8 * ) . [5] He received the
* Distinguished Flying Cross * for heroism and extraordinary achievement as
rear gunner in a torpedo plane during an attack against enemy * Japanese *
forces in the * Battle of Midway * * 4 June 1942 * . [6] Flying without fighter
support and with insufficient fuel to return to their carrier , * Huntington *
and his fellow crewmember pressed home their attack with utter disregard for
their own personal safety , in the face of a tremendous antiaircraft barrage and
overwhelming fighter opposition . [7] * Huntington * was one of * 29 * from
* Torpedo Squadron 8 * who gave their lives in this attack .

subject: Robert Kingsbury Huntington, object: date of death relation: 4 2013
5 June 1942, evidence:[0, 2]
[0]* Robert Kingsbury Huntington * ( * 13 March 1921 * 2013 * 5 June 1942
* ) , was a naval aircrewman and member of * Torpedo Squadron 8 * ( or *
VT - 8 * ) . [1] He was radioman / gunner to * Ensign George Gay * ’ s *
TBD Devastator * aircraft . [2] Along with his entire squadron , * Huntington
* was shot down during the * Battle of Midway * , on * 4 2013 5 June 1942 *
. [3] Born in * Los Angeles * , * California * , enlisted in * the United States
Navy * * 21 April 1941 * . [4] He served on board * Lexington * ( * CV - 2
* ) and was rated aviation radioman third class before being transferred to *
Torpedo Squadron 8 * on board * Hornet * ( * CV - 8 * ) . [5] He received the
* Distinguished Flying Cross * for heroism and extraordinary achievement as
rear gunner in a torpedo plane during an attack against enemy * Japanese *
forces in the * Battle of Midway * * 4 June 1942 * . [6] Flying without fighter
support and with insufficient fuel to return to their carrier , * Huntington *
and his fellow crewmember pressed home their attack with utter disregard for
their own personal safety , in the face of a tremendous antiaircraft barrage and
overwhelming fighter opposition . [7] * Huntington * was one of * 29 * from
* Torpedo Squadron 8 * who gave their lives in this attack .

subject: Robert Kingsbury Huntington, object: award received relation: Dis-
tinguished Flying Cross, evidence:[0, 5]
[1]* Robert Kingsbury Huntington * ( * 13 March 1921 * 2013 * 5 June 1942
* ) , was a naval aircrewman and member of * Torpedo Squadron 8 * ( or *
VT - 8 * ) . [2] He was radioman / gunner to * Ensign George Gay * ’ s * TBD
Devastator * aircraft . [3] Along with his entire squadron , * Huntington *
was shot down during the * Battle of Midway * , on * 4 2013 5 June 1942 *
. [4] Born in * Los Angeles * , * California * , enlisted in * the United States
Navy * * 21 April 1941 * . [5] He served on board * Lexington * ( * CV - 2
* ) and was rated aviation radioman third class before being transferred to *
Torpedo Squadron 8 * on board * Hornet * ( * CV - 8 * ) . [6] He received the
* Distinguished Flying Cross * for heroism and extraordinary achievement
as rear gunner in a torpedo plane during an attack against enemy * Japanese *
forces in the * Battle of Midway * * 4 June 1942 * . [7] Flying without fighter
support and with insufficient fuel to return to their carrier , * Huntington *
and his fellow crewmember pressed home their attack with utter disregard for
their own personal safety , in the face of a tremendous antiaircraft barrage and
overwhelming fighter opposition . [8] * Huntington * was one of * 29 * from
* Torpedo Squadron 8 * who gave their lives in this attack .

subject: Robert Kingsbury Huntington, object: date of birth relation: 13
March 1921, evidence:[0]
[0]* Robert Kingsbury Huntington * ( * 13 March 1921 * 2013 * 5 June 1942
* ) , was a naval aircrewman and member of * Torpedo Squadron 8 * ( or *
VT - 8 * ) . [1] He was radioman / gunner to * Ensign George Gay * ’ s *
TBD Devastator * aircraft . [2] Along with his entire squadron , * Huntington
* was shot down during the * Battle of Midway * , on * 4 2013 5 June 1942 *
. [3] Born in * Los Angeles * , * California * , enlisted in * the United States
Navy * * 21 April 1941 * . [4] He served on board * Lexington * ( * CV - 2
* ) and was rated aviation radioman third class before being transferred to *
Torpedo Squadron 8 * on board * Hornet * ( * CV - 8 * ) . [5] He received the
* Distinguished Flying Cross * for heroism and extraordinary achievement as
rear gunner in a torpedo plane during an attack against enemy * Japanese *
forces in the * Battle of Midway * * 4 June 1942 * . [6] Flying without fighter
support and with insufficient fuel to return to their carrier , * Huntington *
and his fellow crewmember pressed home their attack with utter disregard for
their own personal safety , in the face of a tremendous antiaircraft barrage and
overwhelming fighter opposition . [7] * Huntington * was one of * 29 * from
* Torpedo Squadron 8 * who gave their lives in this attack .

subject: Robert Kingsbury Huntington, object: date of death relation: 5 June
1942, evidence:[0, 2]
[0]* Robert Kingsbury Huntington * ( * 13 March 1921 * 2013 * 5 June 1942
* ) , was a naval aircrewman and member of * Torpedo Squadron 8 * ( or *
VT - 8 * ) . [1] He was radioman / gunner to * Ensign George Gay * ’ s *
TBD Devastator * aircraft . [2] Along with his entire squadron , * Huntington
* was shot down during the * Battle of Midway * , on * 4 2013 5 June 1942 *
. [3] Born in * Los Angeles * , * California * , enlisted in * the United States
Navy * * 21 April 1941 * . [4] He served on board * Lexington * ( * CV - 2
* ) and was rated aviation radioman third class before being transferred to *
Torpedo Squadron 8 * on board * Hornet * ( * CV - 8 * ) . [5] He received the
* Distinguished Flying Cross * for heroism and extraordinary achievement as
rear gunner in a torpedo plane during an attack against enemy * Japanese *
forces in the * Battle of Midway * * 4 June 1942 * . [6] Flying without fighter
support and with insufficient fuel to return to their carrier , * Huntington *
and his fellow crewmember pressed home their attack with utter disregard for
their own personal safety , in the face of a tremendous antiaircraft barrage and
overwhelming fighter opposition . [7] * Huntington * was one of * 29 * from
* Torpedo Squadron 8 * who gave their lives in this attack .

subject: Ensign George Gay, object: military branch relation: the United
States Navy, evidence:[0, 3]
[0]* Robert Kingsbury Huntington * ( * 13 March 1921 * 2013 * 5 June 1942
* ) , was a naval aircrewman and member of * Torpedo Squadron 8 * ( or *
VT - 8 * ) . [1] He was radioman / gunner to * Ensign George Gay * ’ s *
TBD Devastator * aircraft . [2] Along with his entire squadron , * Huntington
* was shot down during the * Battle of Midway * , on * 4 2013 5 June 1942 *
. [3] Born in * Los Angeles * , * California * , enlisted in * the United States
Navy * * 21 April 1941 * . [4] He served on board * Lexington * ( * CV - 2
* ) and was rated aviation radioman third class before being transferred to *
Torpedo Squadron 8 * on board * Hornet * ( * CV - 8 * ) . [5] He received the
* Distinguished Flying Cross * for heroism and extraordinary achievement as
rear gunner in a torpedo plane during an attack against enemy * Japanese *
forces in the * Battle of Midway * * 4 June 1942 * . [6] Flying without fighter
support and with insufficient fuel to return to their carrier , * Huntington *
and his fellow crewmember pressed home their attack with utter disregard for
their own personal safety , in the face of a tremendous antiaircraft barrage and
overwhelming fighter opposition . [7] * Huntington * was one of * 29 * from
* Torpedo Squadron 8 * who gave their lives in this attack .

subject: Lexington, object: operator relation: the United States Navy, evi-
dence:[0, 3, 4]
[0]* Robert Kingsbury Huntington * ( * 13 March 1921 * 2013 * 5 June 1942
* ) , was a naval aircrewman and member of * Torpedo Squadron 8 * ( or *
VT - 8 * ) . [1] He was radioman / gunner to * Ensign George Gay * ’ s *
TBD Devastator * aircraft . [2] Along with his entire squadron , * Huntington
* was shot down during the * Battle of Midway * , on * 4 2013 5 June 1942 *
. [3] Born in * Los Angeles * , * California * , enlisted in * the United States
Navy * * 21 April 1941 * . [4] He served on board * Lexington * ( * CV - 2
* ) and was rated aviation radioman third class before being transferred to *
Torpedo Squadron 8 * on board * Hornet * ( * CV - 8 * ) . [5] He received the
* Distinguished Flying Cross * for heroism and extraordinary achievement as
rear gunner in a torpedo plane during an attack against enemy * Japanese *
forces in the * Battle of Midway * * 4 June 1942 * . [6] Flying without fighter
support and with insufficient fuel to return to their carrier , * Huntington *
and his fellow crewmember pressed home their attack with utter disregard for
their own personal safety , in the face of a tremendous antiaircraft barrage and
overwhelming fighter opposition . [7] * Huntington * was one of * 29 * from
* Torpedo Squadron 8 * who gave their lives in this attack .

subject: Hornet, object: operator relation: the United States Navy, evi-
dence:[0, 3, 4]
[0]* Robert Kingsbury Huntington * ( * 13 March 1921 * 2013 * 5 June 1942
* ) , was a naval aircrewman and member of * Torpedo Squadron 8 * ( or *
VT - 8 * ) . [1] He was radioman / gunner to * Ensign George Gay * ’ s *
TBD Devastator * aircraft . [2] Along with his entire squadron , * Huntington
* was shot down during the * Battle of Midway * , on * 4 2013 5 June 1942 *
. [3] Born in * Los Angeles * , * California * , enlisted in * the United States
Navy * * 21 April 1941 * . [4] He served on board * Lexington * ( * CV - 2
* ) and was rated aviation radioman third class before being transferred to *
Torpedo Squadron 8 * on board * Hornet * ( * CV - 8 * ) . [5] He received the
* Distinguished Flying Cross * for heroism and extraordinary achievement as
rear gunner in a torpedo plane during an attack against enemy * Japanese *
forces in the * Battle of Midway * * 4 June 1942 * . [6] Flying without fighter
support and with insufficient fuel to return to their carrier , * Huntington *
and his fellow crewmember pressed home their attack with utter disregard for
their own personal safety , in the face of a tremendous antiaircraft barrage and
overwhelming fighter opposition . [7] * Huntington * was one of * 29 * from
* Torpedo Squadron 8 * who gave their lives in this attack .

subject: TBD Devastator, object: operator relation: the United States Navy,
evidence:[0, 1]
[0]* Robert Kingsbury Huntington * ( * 13 March 1921 * 2013 * 5 June 1942
* ) , was a naval aircrewman and member of * Torpedo Squadron 8 * ( or *
VT - 8 * ) . [1] He was radioman / gunner to * Ensign George Gay * ’ s *
TBD Devastator * aircraft . [2] Along with his entire squadron , * Huntington
* was shot down during the * Battle of Midway * , on * 4 2013 5 June 1942 *
. [3] Born in * Los Angeles * , * California * , enlisted in * the United States
Navy * * 21 April 1941 * . [4] He served on board * Lexington * ( * CV - 2
* ) and was rated aviation radioman third class before being transferred to *
Torpedo Squadron 8 * on board * Hornet * ( * CV - 8 * ) . [5] He received the
* Distinguished Flying Cross * for heroism and extraordinary achievement as
rear gunner in a torpedo plane during an attack against enemy * Japanese *
forces in the * Battle of Midway * * 4 June 1942 * . [6] Flying without fighter
support and with insufficient fuel to return to their carrier , * Huntington *
and his fellow crewmember pressed home their attack with utter disregard for
their own personal safety , in the face of a tremendous antiaircraft barrage and
overwhelming fighter opposition . [7] * Huntington * was one of * 29 * from
* Torpedo Squadron 8 * who gave their lives in this attack .

subject: Battle of Midway, object: start time relation: 4 2013 5 June 1942,
evidence:[2]
[0]* Robert Kingsbury Huntington * ( * 13 March 1921 * 2013 * 5 June 1942
* ) , was a naval aircrewman and member of * Torpedo Squadron 8 * ( or *
VT - 8 * ) . [1] He was radioman / gunner to * Ensign George Gay * ’ s *
TBD Devastator * aircraft . [2] Along with his entire squadron , * Huntington
* was shot down during the * Battle of Midway * , on * 4 2013 5 June 1942 *
. [3] Born in * Los Angeles * , * California * , enlisted in * the United States
Navy * * 21 April 1941 * . [4] He served on board * Lexington * ( * CV - 2
* ) and was rated aviation radioman third class before being transferred to *
Torpedo Squadron 8 * on board * Hornet * ( * CV - 8 * ) . [5] He received the
* Distinguished Flying Cross * for heroism and extraordinary achievement as
rear gunner in a torpedo plane during an attack against enemy * Japanese *
forces in the * Battle of Midway * * 4 June 1942 * . [6] Flying without fighter
support and with insufficient fuel to return to their carrier , * Huntington *
and his fellow crewmember pressed home their attack with utter disregard for
their own personal safety , in the face of a tremendous antiaircraft barrage and
overwhelming fighter opposition . [7] * Huntington * was one of * 29 * from
* Torpedo Squadron 8 * who gave their lives in this attack .

subject: Battle of Midway, object: point in time relation: 4 2013 5 June
1942, evidence:[2]
[0]* Robert Kingsbury Huntington * ( * 13 March 1921 * 2013 * 5 June 1942
* ) , was a naval aircrewman and member of * Torpedo Squadron 8 * ( or *
VT - 8 * ) . [1] He was radioman / gunner to * Ensign George Gay * ’ s *
TBD Devastator * aircraft . [2] Along with his entire squadron , * Huntington
* was shot down during the * Battle of Midway * , on * 4 2013 5 June 1942 *
. [3] Born in * Los Angeles * , * California * , enlisted in * the United States
Navy * * 21 April 1941 * . [4] He served on board * Lexington * ( * CV - 2
* ) and was rated aviation radioman third class before being transferred to *
Torpedo Squadron 8 * on board * Hornet * ( * CV - 8 * ) . [5] He received the
* Distinguished Flying Cross * for heroism and extraordinary achievement as
rear gunner in a torpedo plane during an attack against enemy * Japanese *
forces in the * Battle of Midway * * 4 June 1942 * . [6] Flying without fighter
support and with insufficient fuel to return to their carrier , * Huntington *
and his fellow crewmember pressed home their attack with utter disregard for
their own personal safety , in the face of a tremendous antiaircraft barrage and
overwhelming fighter opposition . [7] * Huntington * was one of * 29 * from
* Torpedo Squadron 8 * who gave their lives in this attack .

subject: Battle of Midway, object: end time relation: 4 2013 5 June 1942,
evidence:[2]
[0]* Robert Kingsbury Huntington * ( * 13 March 1921 * 2013 * 5 June 1942
* ) , was a naval aircrewman and member of * Torpedo Squadron 8 * ( or *
VT - 8 * ) . [1] He was radioman / gunner to * Ensign George Gay * ’ s *
TBD Devastator * aircraft . [2] Along with his entire squadron , * Huntington
* was shot down during the * Battle of Midway * , on * 4 2013 5 June 1942 *
. [3] Born in * Los Angeles * , * California * , enlisted in * the United States
Navy * * 21 April 1941 * . [4] He served on board * Lexington * ( * CV - 2
* ) and was rated aviation radioman third class before being transferred to *
Torpedo Squadron 8 * on board * Hornet * ( * CV - 8 * ) . [5] He received the
* Distinguished Flying Cross * for heroism and extraordinary achievement as
rear gunner in a torpedo plane during an attack against enemy * Japanese *
forces in the * Battle of Midway * * 4 June 1942 * . [6] Flying without fighter
support and with insufficient fuel to return to their carrier , * Huntington *
and his fellow crewmember pressed home their attack with utter disregard for
their own personal safety , in the face of a tremendous antiaircraft barrage and
overwhelming fighter opposition . [7] * Huntington * was one of * 29 * from
* Torpedo Squadron 8 * who gave their lives in this attack .

(a) Before attention guidance.subject: Robert Kingsbury Huntington, object: place of birth relation: Los
Angeles, evidence:[0, 3]
[0]* Robert Kingsbury Huntington * ( * 13 March 1921 * – * 5 June 1942
* ) , was a naval aircrewman and member of * Torpedo Squadron 8 * ( or *
VT - 8 * ) . [1] He was radioman / gunner to * Ensign George Gay * ’ s *
TBD Devastator * aircraft . [2] Along with his entire squadron , * Huntington
* was shot down during the * Battle of Midway * , on * 4 – 5 June 1942 * .
[3] Born in * Los Angeles * , * California * , enlisted in * the United States
Navy * * 21 April 1941 * . [4] He served on board * Lexington * ( * CV - 2
* ) and was rated aviation radioman third class before being transferred to *
Torpedo Squadron 8 * on board * Hornet * ( * CV - 8 * ) . [5] He received the
* Distinguished Flying Cross * for heroism and extraordinary achievement as
rear gunner in a torpedo plane during an attack against enemy * Japanese *
forces in the * Battle of Midway * * 4 June 1942 * . [6] Flying without fighter
support and with insufficient fuel to return to their carrier , * Huntington *
and his fellow crewmember pressed home their attack with utter disregard for
their own personal safety , in the face of a tremendous antiaircraft barrage and
overwhelming fighter opposition . [7] * Huntington * was one of * 29 * from
* Torpedo Squadron 8 * who gave their lives in this attack .

subject: Robert Kingsbury Huntington, object: military branch relation: the
United States Navy, evidence:[0, 3, 4, 5, 7]
[0]* Robert Kingsbury Huntington * ( * 13 March 1921 * – * 5 June 1942
* ) , was a naval aircrewman and member of * Torpedo Squadron 8 * ( or *
VT - 8 * ) . [1] He was radioman / gunner to * Ensign George Gay * ’ s *
TBD Devastator * aircraft . [2] Along with his entire squadron , * Huntington
* was shot down during the * Battle of Midway * , on * 4 – 5 June 1942 * .
[3] Born in * Los Angeles * , * California * , enlisted in * the United States
Navy * * 21 April 1941 * . [4] He served on board * Lexington * ( * CV - 2
* ) and was rated aviation radioman third class before being transferred to *
Torpedo Squadron 8 * on board * Hornet * ( * CV - 8 * ) . [5] He received the
* Distinguished Flying Cross * for heroism and extraordinary achievement as
rear gunner in a torpedo plane during an attack against enemy * Japanese *
forces in the * Battle of Midway * * 4 June 1942 * . [6] Flying without fighter
support and with insufficient fuel to return to their carrier , * Huntington *
and his fellow crewmember pressed home their attack with utter disregard for
their own personal safety , in the face of a tremendous antiaircraft barrage and
overwhelming fighter opposition . [7] * Huntington * was one of * 29 * from
* Torpedo Squadron 8 * who gave their lives in this attack .

subject: Robert Kingsbury Huntington, object: conflict relation: Battle of
Midway, evidence:[2, 5, 6, 7]
[0]* Robert Kingsbury Huntington * ( * 13 March 1921 * – * 5 June 1942
* ) , was a naval aircrewman and member of * Torpedo Squadron 8 * ( or *
VT - 8 * ) . [1] He was radioman / gunner to * Ensign George Gay * ’ s *
TBD Devastator * aircraft . [2] Along with his entire squadron , * Huntington
* was shot down during the * Battle of Midway * , on * 4 – 5 June 1942 * .
[3] Born in * Los Angeles * , * California * , enlisted in * the United States
Navy * * 21 April 1941 * . [4] He served on board * Lexington * ( * CV - 2
* ) and was rated aviation radioman third class before being transferred to *
Torpedo Squadron 8 * on board * Hornet * ( * CV - 8 * ) . [5] He received the
* Distinguished Flying Cross * for heroism and extraordinary achievement as
rear gunner in a torpedo plane during an attack against enemy * Japanese *
forces in the * Battle of Midway * * 4 June 1942 * . [6] Flying without fighter
support and with insufficient fuel to return to their carrier , * Huntington *
and his fellow crewmember pressed home their attack with utter disregard for
their own personal safety , in the face of a tremendous antiaircraft barrage and
overwhelming fighter opposition . [7] * Huntington * was one of * 29 * from
* Torpedo Squadron 8 * who gave their lives in this attack .

subject: Robert Kingsbury Huntington, object: date of death relation: 4 – 5
June 1942, evidence:[0, 2]
[0]* Robert Kingsbury Huntington * ( * 13 March 1921 * – * 5 June 1942
* ) , was a naval aircrewman and member of * Torpedo Squadron 8 * ( or *
VT - 8 * ) . [1] He was radioman / gunner to * Ensign George Gay * ’ s *
TBD Devastator * aircraft . [2] Along with his entire squadron , * Huntington
* was shot down during the * Battle of Midway * , on * 4 – 5 June 1942 * .
[3] Born in * Los Angeles * , * California * , enlisted in * the United States
Navy * * 21 April 1941 * . [4] He served on board * Lexington * ( * CV - 2
* ) and was rated aviation radioman third class before being transferred to *
Torpedo Squadron 8 * on board * Hornet * ( * CV - 8 * ) . [5] He received the
* Distinguished Flying Cross * for heroism and extraordinary achievement as
rear gunner in a torpedo plane during an attack against enemy * Japanese *
forces in the * Battle of Midway * * 4 June 1942 * . [6] Flying without fighter
support and with insufficient fuel to return to their carrier , * Huntington *
and his fellow crewmember pressed home their attack with utter disregard for
their own personal safety , in the face of a tremendous antiaircraft barrage and
overwhelming fighter opposition . [7] * Huntington * was one of * 29 * from
* Torpedo Squadron 8 * who gave their lives in this attack .

subject: Robert Kingsbury Huntington, object: award received relation: Dis-
tinguished Flying Cross, evidence:[0, 5]
[1]* Robert Kingsbury Huntington * ( * 13 March 1921 * – * 5 June 1942
* ) , was a naval aircrewman and member of * Torpedo Squadron 8 * ( or *
VT - 8 * ) . [2] He was radioman / gunner to * Ensign George Gay * ’ s *
TBD Devastator * aircraft . [3] Along with his entire squadron , * Huntington
* was shot down during the * Battle of Midway * , on * 4 – 5 June 1942 * .
[4] Born in * Los Angeles * , * California * , enlisted in * the United States
Navy * * 21 April 1941 * . [5] He served on board * Lexington * ( * CV - 2
* ) and was rated aviation radioman third class before being transferred to *
Torpedo Squadron 8 * on board * Hornet * ( * CV - 8 * ) . [6] He received the
* Distinguished Flying Cross * for heroism and extraordinary achievement
as rear gunner in a torpedo plane during an attack against enemy * Japanese *
forces in the * Battle of Midway * * 4 June 1942 * . [7] Flying without fighter
support and with insufficient fuel to return to their carrier , * Huntington *
and his fellow crewmember pressed home their attack with utter disregard for
their own personal safety , in the face of a tremendous antiaircraft barrage and
overwhelming fighter opposition . [8] * Huntington * was one of * 29 * from
* Torpedo Squadron 8 * who gave their lives in this attack .

subject: Robert Kingsbury Huntington, object: date of birth relation: 13
March 1921, evidence:[0]
[0]* Robert Kingsbury Huntington * ( * 13 March 1921 * – * 5 June 1942
* ) , was a naval aircrewman and member of * Torpedo Squadron 8 * ( or *
VT - 8 * ) . [1] He was radioman / gunner to * Ensign George Gay * ’ s *
TBD Devastator * aircraft . [2] Along with his entire squadron , * Huntington
* was shot down during the * Battle of Midway * , on * 4 – 5 June 1942 * .
[3] Born in * Los Angeles * , * California * , enlisted in * the United States
Navy * * 21 April 1941 * . [4] He served on board * Lexington * ( * CV - 2
* ) and was rated aviation radioman third class before being transferred to *
Torpedo Squadron 8 * on board * Hornet * ( * CV - 8 * ) . [5] He received the
* Distinguished Flying Cross * for heroism and extraordinary achievement as
rear gunner in a torpedo plane during an attack against enemy * Japanese *
forces in the * Battle of Midway * * 4 June 1942 * . [6] Flying without fighter
support and with insufficient fuel to return to their carrier , * Huntington *
and his fellow crewmember pressed home their attack with utter disregard for
their own personal safety , in the face of a tremendous antiaircraft barrage and
overwhelming fighter opposition . [7] * Huntington * was one of * 29 * from
* Torpedo Squadron 8 * who gave their lives in this attack .

subject: Robert Kingsbury Huntington, object: date of death relation: 5 June
1942, evidence:[0, 2]
[0]* Robert Kingsbury Huntington * ( * 13 March 1921 * – * 5 June 1942
* ) , was a naval aircrewman and member of * Torpedo Squadron 8 * ( or *
VT - 8 * ) . [1] He was radioman / gunner to * Ensign George Gay * ’ s *
TBD Devastator * aircraft . [2] Along with his entire squadron , * Huntington
* was shot down during the * Battle of Midway * , on * 4 – 5 June 1942 * .
[3] Born in * Los Angeles * , * California * , enlisted in * the United States
Navy * * 21 April 1941 * . [4] He served on board * Lexington * ( * CV - 2
* ) and was rated aviation radioman third class before being transferred to *
Torpedo Squadron 8 * on board * Hornet * ( * CV - 8 * ) . [5] He received the
* Distinguished Flying Cross * for heroism and extraordinary achievement as
rear gunner in a torpedo plane during an attack against enemy * Japanese *
forces in the * Battle of Midway * * 4 June 1942 * . [6] Flying without fighter
support and with insufficient fuel to return to their carrier , * Huntington *
and his fellow crewmember pressed home their attack with utter disregard for
their own personal safety , in the face of a tremendous antiaircraft barrage and
overwhelming fighter opposition . [7] * Huntington * was one of * 29 * from
* Torpedo Squadron 8 * who gave their lives in this attack .

subject: Ensign George Gay, object: military branch relation: the United
States Navy, evidence:[0, 3]
[0]* Robert Kingsbury Huntington * ( * 13 March 1921 * – * 5 June 1942
* ) , was a naval aircrewman and member of * Torpedo Squadron 8 * ( or *
VT - 8 * ) . [1] He was radioman / gunner to * Ensign George Gay * ’ s *
TBD Devastator * aircraft . [2] Along with his entire squadron , * Huntington
* was shot down during the * Battle of Midway * , on * 4 – 5 June 1942 * .
[3] Born in * Los Angeles * , * California * , enlisted in * the United States
Navy * * 21 April 1941 * . [4] He served on board * Lexington * ( * CV - 2
* ) and was rated aviation radioman third class before being transferred to *
Torpedo Squadron 8 * on board * Hornet * ( * CV - 8 * ) . [5] He received the
* Distinguished Flying Cross * for heroism and extraordinary achievement as
rear gunner in a torpedo plane during an attack against enemy * Japanese *
forces in the * Battle of Midway * * 4 June 1942 * . [6] Flying without fighter
support and with insufficient fuel to return to their carrier , * Huntington *
and his fellow crewmember pressed home their attack with utter disregard for
their own personal safety , in the face of a tremendous antiaircraft barrage and
overwhelming fighter opposition . [7] * Huntington * was one of * 29 * from
* Torpedo Squadron 8 * who gave their lives in this attack .

subject: Lexington, object: operator relation: the United States Navy, evi-
dence:[0, 3, 4]
[0]* Robert Kingsbury Huntington * ( * 13 March 1921 * – * 5 June 1942
* ) , was a naval aircrewman and member of * Torpedo Squadron 8 * ( or *
VT - 8 * ) . [1] He was radioman / gunner to * Ensign George Gay * ’ s *
TBD Devastator * aircraft . [2] Along with his entire squadron , * Huntington
* was shot down during the * Battle of Midway * , on * 4 – 5 June 1942 * .
[3] Born in * Los Angeles * , * California * , enlisted in * the United States
Navy * * 21 April 1941 * . [4] He served on board * Lexington * ( * CV - 2
* ) and was rated aviation radioman third class before being transferred to *
Torpedo Squadron 8 * on board * Hornet * ( * CV - 8 * ) . [5] He received the
* Distinguished Flying Cross * for heroism and extraordinary achievement as
rear gunner in a torpedo plane during an attack against enemy * Japanese *
forces in the * Battle of Midway * * 4 June 1942 * . [6] Flying without fighter
support and with insufficient fuel to return to their carrier , * Huntington *
and his fellow crewmember pressed home their attack with utter disregard for
their own personal safety , in the face of a tremendous antiaircraft barrage and
overwhelming fighter opposition . [7] * Huntington * was one of * 29 * from
* Torpedo Squadron 8 * who gave their lives in this attack .

subject: Hornet, object: operator relation: the United States Navy, evi-
dence:[0, 3, 4]
[0]* Robert Kingsbury Huntington * ( * 13 March 1921 * – * 5 June 1942
* ) , was a naval aircrewman and member of * Torpedo Squadron 8 * ( or *
VT - 8 * ) . [1] He was radioman / gunner to * Ensign George Gay * ’ s *
TBD Devastator * aircraft . [2] Along with his entire squadron , * Huntington
* was shot down during the * Battle of Midway * , on * 4 – 5 June 1942 * .
[3] Born in * Los Angeles * , * California * , enlisted in * the United States
Navy * * 21 April 1941 * . [4] He served on board * Lexington * ( * CV - 2
* ) and was rated aviation radioman third class before being transferred to *
Torpedo Squadron 8 * on board * Hornet * ( * CV - 8 * ) . [5] He received the
* Distinguished Flying Cross * for heroism and extraordinary achievement as
rear gunner in a torpedo plane during an attack against enemy * Japanese *
forces in the * Battle of Midway * * 4 June 1942 * . [6] Flying without fighter
support and with insufficient fuel to return to their carrier , * Huntington *
and his fellow crewmember pressed home their attack with utter disregard for
their own personal safety , in the face of a tremendous antiaircraft barrage and
overwhelming fighter opposition . [7] * Huntington * was one of * 29 * from
* Torpedo Squadron 8 * who gave their lives in this attack .

subject: TBD Devastator, object: operator relation: the United States Navy,
evidence:[0, 1]
[0]* Robert Kingsbury Huntington * ( * 13 March 1921 * – * 5 June 1942
* ) , was a naval aircrewman and member of * Torpedo Squadron 8 * ( or *
VT - 8 * ) . [1] He was radioman / gunner to * Ensign George Gay * ’ s *
TBD Devastator * aircraft . [2] Along with his entire squadron , * Huntington
* was shot down during the * Battle of Midway * , on * 4 – 5 June 1942 * .
[3] Born in * Los Angeles * , * California * , enlisted in * the United States
Navy * * 21 April 1941 * . [4] He served on board * Lexington * ( * CV - 2
* ) and was rated aviation radioman third class before being transferred to *
Torpedo Squadron 8 * on board * Hornet * ( * CV - 8 * ) . [5] He received the
* Distinguished Flying Cross * for heroism and extraordinary achievement as
rear gunner in a torpedo plane during an attack against enemy * Japanese *
forces in the * Battle of Midway * * 4 June 1942 * . [6] Flying without fighter
support and with insufficient fuel to return to their carrier , * Huntington *
and his fellow crewmember pressed home their attack with utter disregard for
their own personal safety , in the face of a tremendous antiaircraft barrage and
overwhelming fighter opposition . [7] * Huntington * was one of * 29 * from
* Torpedo Squadron 8 * who gave their lives in this attack .

subject: Battle of Midway, object: start time relation: 4 – 5 June 1942,
evidence:[2]
[0]* Robert Kingsbury Huntington * ( * 13 March 1921 * – * 5 June 1942
* ) , was a naval aircrewman and member of * Torpedo Squadron 8 * ( or *
VT - 8 * ) . [1] He was radioman / gunner to * Ensign George Gay * ’ s *
TBD Devastator * aircraft . [2] Along with his entire squadron , * Huntington
* was shot down during the * Battle of Midway * , on * 4 – 5 June 1942 * .
[3] Born in * Los Angeles * , * California * , enlisted in * the United States
Navy * * 21 April 1941 * . [4] He served on board * Lexington * ( * CV - 2
* ) and was rated aviation radioman third class before being transferred to *
Torpedo Squadron 8 * on board * Hornet * ( * CV - 8 * ) . [5] He received the
* Distinguished Flying Cross * for heroism and extraordinary achievement as
rear gunner in a torpedo plane during an attack against enemy * Japanese *
forces in the * Battle of Midway * * 4 June 1942 * . [6] Flying without fighter
support and with insufficient fuel to return to their carrier , * Huntington *
and his fellow crewmember pressed home their attack with utter disregard for
their own personal safety , in the face of a tremendous antiaircraft barrage and
overwhelming fighter opposition . [7] * Huntington * was one of * 29 * from
* Torpedo Squadron 8 * who gave their lives in this attack .

subject: Battle of Midway, object: point in time relation: 4 – 5 June 1942,
evidence:[2]
[0]* Robert Kingsbury Huntington * ( * 13 March 1921 * – * 5 June 1942
* ) , was a naval aircrewman and member of * Torpedo Squadron 8 * ( or *
VT - 8 * ) . [1] He was radioman / gunner to * Ensign George Gay * ’ s *
TBD Devastator * aircraft . [2] Along with his entire squadron , * Huntington
* was shot down during the * Battle of Midway * , on * 4 – 5 June 1942 * .
[3] Born in * Los Angeles * , * California * , enlisted in * the United States
Navy * * 21 April 1941 * . [4] He served on board * Lexington * ( * CV - 2
* ) and was rated aviation radioman third class before being transferred to *
Torpedo Squadron 8 * on board * Hornet * ( * CV - 8 * ) . [5] He received the
* Distinguished Flying Cross * for heroism and extraordinary achievement as
rear gunner in a torpedo plane during an attack against enemy * Japanese *
forces in the * Battle of Midway * * 4 June 1942 * . [6] Flying without fighter
support and with insufficient fuel to return to their carrier , * Huntington *
and his fellow crewmember pressed home their attack with utter disregard for
their own personal safety , in the face of a tremendous antiaircraft barrage and
overwhelming fighter opposition . [7] * Huntington * was one of * 29 * from
* Torpedo Squadron 8 * who gave their lives in this attack .

subject: Battle of Midway, object: end time relation: 4 – 5 June 1942, evi-
dence:[2]
[0]* Robert Kingsbury Huntington * ( * 13 March 1921 * – * 5 June 1942
* ) , was a naval aircrewman and member of * Torpedo Squadron 8 * ( or *
VT - 8 * ) . [1] He was radioman / gunner to * Ensign George Gay * ’ s *
TBD Devastator * aircraft . [2] Along with his entire squadron , * Huntington
* was shot down during the * Battle of Midway * , on * 4 – 5 June 1942 * .
[3] Born in * Los Angeles * , * California * , enlisted in * the United States
Navy * * 21 April 1941 * . [4] He served on board * Lexington * ( * CV - 2
* ) and was rated aviation radioman third class before being transferred to *
Torpedo Squadron 8 * on board * Hornet * ( * CV - 8 * ) . [5] He received the
* Distinguished Flying Cross * for heroism and extraordinary achievement as
rear gunner in a torpedo plane during an attack against enemy * Japanese *
forces in the * Battle of Midway * * 4 June 1942 * . [6] Flying without fighter
support and with insufficient fuel to return to their carrier , * Huntington *
and his fellow crewmember pressed home their attack with utter disregard for
their own personal safety , in the face of a tremendous antiaircraft barrage and
overwhelming fighter opposition . [7] * Huntington * was one of * 29 * from
* Torpedo Squadron 8 * who gave their lives in this attack .

(b) After attention guidance.

Figure 4: Heatmaps of token importance for localized
context pooling before and after guiding the attention
with evidence when deciding the relation for entity pair
(Robert Kingsbury Huntington, Distinguished Flying
Cross). The gold relation is award received with evi-
dence sentences 1 and 6. Deeper the color, the larger
the value.

ing. Specifically, we utilize heatmaps to visualize
q(s,o) and observe the differences before and after
evidence-guided training.

Results are shown in Figure 3 and 4. We adopt

the toolkit developed by Yang and Zhang (2018). It
is obvious that the distribution is more focused on
sentences 1 and 2 in Figure 3(b) than in Figure 3(a).
Before training the evidence-guided attention, the
model tends to focus on the period of each sen-
tence. Guiding the attention with evidence helps
the model to focus more on sentences 1 and 2, as
well as the critical tokens providing a clue for re-
lation classification, such as fictitious in Figure 3
and received in Figure 4.
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Abstract
The information bottleneck (IB) principle has
been proven effective in various NLP applica-
tions. The existing work, however, only used
either generative or information compression
models to improve the performance of the tar-
get task. In this paper, we propose to combine
the two types of IB models into one system
to enhance Named Entity Recognition (NER).
For one type of IB model, we incorporate two
unsupervised generative components, span re-
construction and synonym generation, into a
span-based NER system. The span reconstruc-
tion ensures that the contextualised span rep-
resentation keeps the span information, while
the synonym generation makes synonyms have
similar representations even in different con-
texts. For the other type of IB model, we add
a supervised IB layer that performs informa-
tion compression into the system to preserve
useful features for NER in the resulting span
representations. Experiments on five differ-
ent corpora indicate that jointly training both
generative and information compression mod-
els can enhance the performance of the base-
line span-based NER system. Our source code
is publicly available at https://github.com/
nguyennth/joint-ib-models.

1 Introduction

Tishby et al. (1999) introduced the information
bottleneck (IB) method to compress representa-
tion while preserving meaningful information. The
method has been incorporated in many state-of-
the-art (SOTA) deep models such as Variational
Autoencoder (VAE) (Kingma and Welling, 2014;
Rezende et al., 2014), and Deep Variational In-
formation Bottleneck (Deep VIB) (Alemi et al.,
2017). Those deep models can be divided into su-
pervised generative models (e.g., Deep VIB) and

unsupervised ones (e.g., VAEs) (Voloshynovskiy
et al., 2019).

Both VAE and VIB have been applied to NLP ap-
plications. For example, Effland and Collins (2019)
and Chen et al. (2018) proposed to use VAE in se-
quence labelling tasks such as POS tagging and
NER. Meanwhile, Wang et al. (2022) used VIB to
tackle OOV issues in NER. The two types of IB
have also been employed in other tasks, such as
dialogue response generation (Chen et al., 2022),
parsing (Li and Eisner, 2019), paraphrase gener-
ation for MT (Ormazabal et al., 2022), and text
summarisation (West et al., 2019), to name a few.
Such previous work only used one type of IB model
(either VAE or VIB) in their system, and it is un-
clear whether we can effectively combine the two
types of IB models.

The NER task has been typically approached
using sequence models such as BiLSTM (Lample
et al., 2016) and BERT (Devlin et al., 2019; Lee
et al., 2019; Beltagy et al., 2019). At the same
time, we have seen the rise of span-based mod-
els (Sohrab and Miwa, 2018; Zheng et al., 2019;
Tan et al., 2020; Xia et al., 2019; Xu et al., 2021;
Fu et al., 2021; Li et al., 2021), which are simple
and effective. Using a span-based model, we can
directly represent and manipulate span representa-
tions.

This paper investigates the effects of combining
the two IB types for the NER task. To that end,
we jointly train the span-based NER system with
two VAE components and one VIB component.
The first VAE component is span reconstruction,
used to reconstruct original spans. This compo-
nent is similar to Sentence VAEs (Bowman et al.,
2016), but the model learns only from spans in-
stead of sentences. The second VAE one is syn-
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onym generation, used to generate synonym(s) of a
span. We first collect synonyms of each span from
an external knowledge base (KB) and then train
a VAE model that can generate the correspond-
ing synonyms given a span. By adding the syn-
onym generation into the model, we indirectly in-
ject semantic information from synonyms into the
span representation. The last component is a VIB
component (Mahabadi et al., 2021) introduced into
the system to compress span representations while
keeping useful features for NER.

We evaluate the proposed model on five different
corpora: BC5CDR (Li et al., 2016), GENIA (Kim
et al., 2003), MedMention-21st (Mohan and Li,
2019), NCBI Disease (Dogan et al., 2014), and
ShARe/CLEFE (Suominen et al., 2013). For the
synonym generation component, we identify syn-
onyms of each span by performing exact match-
ing against mentions in Unified Medical Language
System (UMLS) (Bodenreider, 2004). Experimen-
tal results show that by incorporating the two IB
types into a span-based NER, we can improve the
performance over the baseline span-based model
on BC5CDR-Disease, GENIA, MedMention, and
NCBI datasets. In the case of GENIA–one of
the most popular corpora for nested entities, the
proposed model could perform favourably com-
pared with current SOTA systems, even with the
simple span-based baseline model without any re-
cent enhancements like boundary detection (Tan
et al., 2020; Xu et al., 2021). Furthermore, such
boundary-enhanced models can benefit from our
approach.

We additionally performed some analysis on the
intermediate output of the proposed model. We ob-
served that when jointly trained VAEs with a NER
task, the latent variable is restructured satisfactorily
towards the task. Similarly, posteriors estimated
by the VIB component are clustered neatly even
though the input information is compressed. Such
distinguishable clusters are potentially helpful for
entity linking (Liu et al., 2021). We also found that
synonym generation helped improve the quality of
span reconstruction and the NER performance.

In summary, the contributions of our paper are:

• This is the first study that investigates the im-
pact of combining two IB methods on NER.

• Through experiments on five different corpora,
we demonstrate that the joint model can im-
prove the baseline performance in most cases.

• In-depth analyses on the intermediate output

of the joint model indicate that each compo-
nent plays a different role in enhancing span
representations as expected.

2 Related Work

2.1 Span-based NER

Traditionally, sequence models such as BiL-
STM (Lample et al., 2016) and BERT (Devlin et al.,
2019; Lee et al., 2019; Beltagy et al., 2019) have
been used to tackle the task of NER, producing
state-of-the-art (SOTA) performance. However,
those models could not perform on overlapping
entities, i.e., a span has more than one named entity
category or nested entities. To address this issue,
Sohrab and Miwa (2018) proposed the span-based
approach. In this approach, all possible spans are
exhaustively generated given a specific span length.
The span representation was calculated based on
a pre-trained language model and then classified
to a corresponding entity type by a linear layer.
Following the suite, numerous studies have shown
that span-based approaches to NER could produce
SOTA performance (Zheng et al., 2019; Tan et al.,
2020; Xia et al., 2019; Sohrab et al., 2019; Xu
et al., 2021; Fu et al., 2021; Li et al., 2021; Yu
et al., 2022).

Fu et al. (2021) designed SpanNER that learns
the representation of a span based on its token rep-
resentation and the span length embedding. Span-
NER can also make ensemble predictions from
both span-based and sequence labelling systems.
Similarly, Yu et al. (2022) proposed SNER that rep-
resents a span by considering the context embed-
ding from BERT, i.e., the CLS embedding. Ouchi
et al. (2020) proposed to learn the similarity be-
tween spans using instance-based learning. The
model will assign the class label based on its simi-
lar training span at inference time. Xu et al. (2021)
used a supervised multi-head self-attention mech-
anism, where each head corresponds to one entity
type, to construct the word-level correlations for
each type.

Following the work mentioned above, this paper
also focuses on span-based models. Our model,
however, learns span representation differently. In
particular, we update the span representation using
span reconstruction and synonym generation. We
then compress it by selecting relevant features us-
ing the IB method. It is noted that our model can
potentially be incorporated into existing span-based
models.
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Figure 1: Span-based NER is jointly trained with one supervised VIB component: information compression, and
two unsupervised VAE components: span reconstruction and synonym generation. The encoder is shared across the
components. Synonyms are collected from an external knowledge base (KB).

2.2 Information Bottleneck in NLP

The Information Bottleneck (IB) method has been
applied to various NLP applications. We divide
those studies into two main groups: generative
models and information compression models.

In the first group, we have studies that used IB
as generative models, namely Variational Autoen-
coders (VAEs). Effland and Collins (2019) pro-
posed a sequence labelling NER model that treats
a neural CRF as the amortised approximate poste-
rior in a discrete structured VAE. Meanwhile, Chen
et al. (2018) applied neural variational methods
to sequence labelling by combining a latent vari-
able generative model and a discriminative labeller.
VAEs were also employed in dialogue response
generation (Chen et al., 2022) and relation ex-
traction (Yuan and Eldardiry, 2021; Christopoulou
et al., 2021).

The second group are studies that used IB as
information compression, namely Variational Infor-
mation Bottleneck (VIB). Mahabadi et al. (2021)
was one of the first studies using VIB to fine-
tune low-resource target tasks. Wang et al. (2022)
employed the information bottleneck principle to
tackle OOV issues in NER. Information compres-
sion was also used in parsing (Li and Eisner, 2019),
paraphrase generation for MT (Ormazabal et al.,
2022), research replication prediction (Luo et al.,

2022), text classification (Zhang et al., 2022), im-
proving the attention’s reliability (Zhou et al., 2021)
and text summarisation (West et al., 2019).

Unlike previous studies, we combine generative
and information compression models for the task
of NER. In our model, span reconstruction ensures
that the span representation keeps the span infor-
mation, while synonym generation makes similar
synonyms have similar representations even in dif-
ferent contexts. Meanwhile, information compres-
sion helps suppress irrelevant features, addressing
overfitting (if any). To the best of our knowledge,
this is the first paper investigating such a joint sys-
tem for span-based NER.

3 Methods

The overall framework of our model is illustrated
in Figure 1. We first encode span embeddings us-
ing a transformer-based network. The output from
the encoder is then used in three components: (1)
entity classification that classifies input spans into
an entity type or non-entity using a supervised VIB
framework (Mahabadi et al., 2021); (2) span re-
construction that recovers input spans of gold en-
tities; and (3) synonym generation that generates
synonyms for a gold entity. Similarly to a multi-
task setting, we simultaneously train the three com-
ponents. We only run the first component at the
inference step to predict named entities.
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3.1 Span Reconstruction and Synonym
Generation

3.1.1 Encoder
Given an input sentence with n words:
{w0, w1, ..., wn}, we use a multi-layer transformer-
based encoder (Devlin et al., 2019) to encode
the sentence. As a result, we have the following
contextualised sub-word vectors {v0,v1, ...,vm}.
Similarly to Sohrab and Miwa (2018), we then
exhaustively extract all possible spans with a
maximum length of sl from the input sentence.
Each span embedding is calculated as follows:

si,j =

[
vi;

Σjt=ivt
j − i+ 1

;vj

]
, (1)

where i and j are the start and end positions of the
span, vt is the embedding of the t-th sub-word, and
[; ; ] denotes the concatenation operation.

We then apply two linear layers on top of the
span embeddings to construct the parameters of a
posterior distribution q(z|s) using the following
equations:

µ = Wµs+ bµ,

σ2 = Wσs+ bσ,
(2)

where µ and σ are the parameters of a multivari-
ate Gaussian, representing the feature space of the
span; W and b are weights and biases of the linear
layers, respectively. The posterior distribution is
approximated via a latent variable z using the repa-
rameterisation trick (Kingma and Welling, 2014)
as follows

z = µ+ σϵ,where ϵ ∼N (0, 1). (3)

In the case that we train both span reconstruc-
tion and synonym generation, we have different
parameters of σ1 and σ2, respectively. To encour-
age span and synonyms to distribute closely, µ is
shared between them.

3.1.2 Decoders
Our decoder is an LSTM network that greedily
reconstructs the input span or generates all the cor-
responding synonyms (if any) in an autoregressive
manner. Given latent z from the encoder, we first
use z to initialise the hidden state of the decoder
via a linear layer transformation. We then form
the input of the decoder with the teacher forcing
strategy (Williams and Zipser, 1989), i.e., we con-
catenate z with the representation of each wordwt1

1We pass a special start symbol as w0.

in a given gold span (for span reconstruction) or a
gold synonym (for synonym generation).

3.1.3 Learning
To train VAEs, we maximise the Evidence Lower
BOund (ELBO) that includes two losses: the recon-
struction loss and the Kullback-Leibler divergence
(DKL). The reconstruction loss is the cross entropy
loss between an actual span and its reconstruction
or synonym. The DKL is calculated based on a
prior distribution (p(z)) and the posterior distribu-
tion (q(z|s)) produced by the decoder. In the case
of span reconstruction (SR), the loss for a span s is

LSR(θ1,ϕ1) = E
z1∼qϕ1

(z1|s)
[log(pθ1(s|z1))]

−DKL(qϕ1(z1|s) ∥ pθ1(z1)).
(4)

Similarly, with the synonym generation (SG), the
loss is

LSG(θ2,ϕ2) = E
z2∼qϕ2

(z2|s)
[log(pθ2(s|z2))]

−DKL(qϕ2(z2|s) ∥ pθ2(z2)).
(5)

In Equations 4 and 5, θ and ϕ are weights and
biases of the network, respectively. We attach a
subscript to each parameter to denote that the pa-
rameter belongs to the span reconstruction compo-
nent or the synonym generation one.

3.2 Entity Classification with Supervised IB

The main objective of the supervised IB is to pre-
serve the information about the target class(es) in
the latent while filtering out irrelevant information
from the input (Voloshynovskiy et al., 2019). As a
result, the objective loss function for supervised IB
is based on the compression loss and the prediction
loss, as shown in Equation 6.

LV IB(θ3,ϕ3) = β E
s
[DKL(pθ3(z3|s), r(z3))]

+ E
z3∼pθ3 (z3|s)

[− log qϕ3(y|z3)],
(6)

where r(z3) is an estimate of the prior probabil-
ity pθ3(z3), β is in a range of [0, 1], and y is the
true label of the input span. Similarly to previous
equations, θ3 and ϕ3 are weights and biases of the
network, respectively.

Following Mahabadi et al. (2021), we use a
multi-layer perceptron (MLP) with two linear lay-
ers to compute the compressed representation of
a span. We approximate qϕ3(y|z3) using another
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Corpus Train Dev Test Entity#Doc. #Ent. Syn_cov #Doc. #Ent. Syn_cov #Doc. #Ent. Syn_cov
NCBI 592 5,134 79.25% 100 787 74.46% 100 960 75.62% Disease
BC5-Dis 500 4,182 87.18% 500 4,244 87.18% 500 4,424 89.69% Disease
BC5-Chem 500 5,203 93.14% 500 5,347 94.58% 500 5,385 94.00% Chemical
ShARe 149 3,630 77.96% 50 1,413 77.35% 99 4,912 81.54% Disorder
GENIA 1,599 45,036 55.98% 189 4,274 49.46% 212 5,346 51.05% 5 types
MM 2,635 122,241 70.21% 878 40,884 70.55% 879 40,157 71.17% 21 types

Table 1: Statistics numbers of experimental corpora. #Doc. indicates the number of documents; #Ent. indicates the
number of gold entities; Syn_cov indicates the percentage of gold entities that have synonyms in UMLS.

linear layer. In particular, this layer is a binary clas-
sifier with a sigmoid function to predict the correct
entity category of an input span. We use binary
cross entropy (BCE) loss to compute the prediction
loss (i.e., the second term of Equation 6) in our
model.

3.3 Training Objective

We jointly train span reconstruction, synonym gen-
eration, and entity classification with the sum of the
following optimisation objective for all the spans:

L = LV IB + γ(LSR + LSG), (7)

where γ is a hyper-parameter with a range of [0, 1].
It is noted that during training, LV IB is calculated
for all spans, while LSR and LSG are calculated
for gold spans only.

4 Experiments

4.1 Datasets

We conducted experiments on five different
datasets: NCBI Disease (Dogan et al., 2014),
BC5CDR (Li et al., 2016), ShARe/CLEFE
(ShARe) (Suominen et al., 2013), GENIA (Kim
et al., 2003), and MedMention-21st (MM) (Mohan
and Li, 2019). Following previous work, we di-
vided BC5CDR into BC5CDR-Disease (BC5-Dis)
and BC5CDR-Chemical (BC5-Chem). To detect
synonyms of each span, we only performed exact
matching against mentions from UMLS (Boden-
reider, 2004). In Table 1, we report the number of
documents, the number of golden entities, and the
percentage of golden entities that have synonyms in
the UMLS (version 2017AA) of the experimental
corpora. Since UMLS does not cover every entity,
there are cases that an entity does not have any
synonyms2.

2In this case, we only lowercase texts in the data and
UMLS before matching. Using other techniques to find syn-
onyms in UMLS is beyond the scope of this paper.

Corpus Baseline Joint model
BC5-Chemical 91.38 91.30
BC5-Disease 84.46 85.25
GENIA 76.93 77.43
MedMention-21st 62.78 63.21
NCBI 88.12 88.29
ShARe/CLEFE 80.88 80.77
Average 80.76 81.04

Table 2: F1 scores (%) on the test sets. Bold numbers
indicate the joint model is better than the baseline.

4.2 Settings

Regarding the encoder, we employed the pre-
trained SciBERT model (Beltagy et al., 2019). Re-
garding the decoder, we used an LSTM with one
hidden layer; input vectors to the LSTM were ex-
tracted from resulting vectors trained on a com-
bination of PubMed, PMC texts and the English
Wikipedia (Pyysalo et al., 2013).

It is noted that before jointly training with the
entity classification, we pre-trained the auxiliary
components, i.e., span reconstruction and synonym
generation in several epochs. The NER perfor-
mance was measured based on the exact matching
F1 scores calculated by the N2C2 Shared Task NER
evaluation script (Henry et al., 2020). All hyper-
parameter settings are detailed in Appendix A.

4.3 Results

Across all corpora, we compare the joint model
in Figure 1 with a Baseline system that is a span-
based model3 using SciBERT, as reported in Ta-
ble 2. With the GENIA corpus, we also collected
the performance of other span-based SOTA sys-
tems for comparison, as shown in Table 3.

In Table 2, we can see that performance across
the corpora differs. The proposed model produced
better NER performance than the baseline ones

3We used the span-based NER implementation by Trieu
et al. (2020)

1988



System F1 score
Instance-based (Ouchi et al., 2020) 74.20
Boundary-aware (Zheng et al., 2019) 74.70
BENSC (Tan et al., 2020) 78.30
MHSA (Xu et al., 2021) 79.60
Baseline 76.93
Joint model 77.43

Table 3: F1 scores (%) on the GENIA testing set com-
pared with other SOTA systems.

on four corpora. The exception happened with
BC5CDR-Chemical and ShARe/CLEFE where the
simple span-based model obtained higher F1 scores
than the joint model. The corpora’s characteristics
are one possible reason for this. For BC5-Chemical,
reconstructing chemical entities and finding their
correct synonyms are more complex than the other
entities (see Section 5.3). For ShAe/CLEFE, its
documents are health records, not scientific papers
like the others. On average, however, the joint
model performed better than the baseline.

Results in Table 3 show that on the GENIA cor-
pus, the joint model could perform better than (1)
the baseline and (2) the two span-based models: the
instanced-based NER model (Ouchi et al., 2021)
and the boundary-aware one (Zheng et al., 2019).
However, our model produced lower F1 scores
than BENSC (Tan et al., 2020) and MHSA (Xu
et al., 2021). This can be explained by the fact
that both BENSC and MHSA specifically address
nested entities by enhancing span boundary detec-
tion, while our model classifies all possible spans.
Nevertheless, it is noted that our objective is not
to improve the SOTA; we focus on investigating
the joint model for the NER task anyway. Further-
more, our model can be incorporated into those
span-based SOTA systems.

5 Analysis

5.1 Ablation Study
To evaluate the effect of each component on the
proposed model, we ran the following settings on
the development sets:

• SupVIB: the span-based model using the su-
pervised IB entity classification.

• SupVIB_0: β was set to 0, meaning that the
compression loss was not involved in the train-
ing stage. This setting is similar to the base-
line setting, but the span embeddings are com-
pressed by the MLP before being fed into the

linear layer.
• SupVIB + SpanReco: we jointly trained span

reconstruction with the SupVIB.
• SupVIB + SpanReco + SynGen (All): the full

joint model with all three components.
From Table 4, we can observe the following.

Firstly, using SupVIB, we could obtain higher F1
scores in most of the corpora than the baseline.
The compression loss is important for SupVIB. In
four over six corpora, setting β = 0 made the per-
formance drop. Secondly, when we introduced
the span reconstruction component alone into the
model, except for MedMention-21st and NCBI,
the component degraded the performance. We ob-
served that SupVIB restructured embeddings dif-
ferently than SupVIB+SpanReco, which probably
affected the performance. Moreover, SupVIB was
slightly better than SupVIB+SpanReco in distin-
guishing entities’ boundaries.

When we introduced synonym generation into
the model (i.e., the All setting), we could obtain
better performance than the baseline model on five
over six corpora. This indicates that indirectly in-
jecting semantic information into the span repre-
sentation is mostly helpful. The exceptions were
with MedMention and ShARe/CLEFE, where the
All setting produced a lower F1 score than the
SupVIB+SpanReco.

By jointly training two types of IB, i.e., gener-
ative model and supervised IB, we could enhance
the NER performance over the baseline on four
out of six testing corpora. Especially with the two
most complex, multi-category NER corpora, i.e.,
GENIA and MedMention-21, the joint model could
outperform the baseline by a larger margin than the
other corpora.

Lastly, looking at the last column in Table 4, i.e.,
the average F1 score across the corpora, we can
see that the scores were increased from the top to
the bottom. We, therefore, can confirm that adding
the proposed components one after another helped
improve the performance in general.

5.1.1 Impact of the Shared Parameters in
VAEs

To encourage spans and their synonyms to dis-
tribute closely, we have µ shared between the span
reconstruction and the synonym generation, as in
the aforementioned All model. Theoretically, we
can also share σ between the two components. To
investigate the impact of these shared parameters,
we conducted two more experiments:
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Setting BC5-Chem BC5-Dis GENIA MM NCBI ShARe Avg.
Baseline 93.34 84.88 78.00 62.83 87.89 80.89 81.30
SupVIB_0 94.01 85.51 78.26 62.31 87.76 81.14 81.50
SupVIB 94.05 85.51 78.36 63.00 87.70 81.65 81.71
SupVIB + SpanReco 93.69 85.23 78.22 63.63 88.05 81.56 81.73
All 93.78 85.56 79.30 63.39 88.41 81.11 81.93
All (w/ shared σ) 93.87 85.33 78.90 63.21 87.62 80.93 81.64
All (w/o shared µ and σ) 93.49 85.03 78.97 61.85 87.89 81.78 81.50

Table 4: F1 scores (%) on the development sets produced by different settings. All is the Joint model in Tables 2
and 3. The last column is the average score across the corpora. Bold numbers indicate the best performance in each
corpus.

• All with shared σ: the full model in which the
two VAE components share µ and σ.

• All without shared µ and σ: the full model in
which each VAE component has its own (i.e.,
independent) µ and σ.

From the last two rows in Table 4, we can see that
the All model with shared σ made the F1 scores
drop across the corpora (except for the BC5CDR-
Chemical) compared with the All model. This is
expected because sharing µ, i.e., sharing the mean
of the two distributions, is more reasonable than
sharing both of the parameters, i.e., sharing both
the mean and the variance of the two distributions.
However, when we have the independent µ and σ,
there is no common pattern in the performance.
Compared with the All model, the All without
shared µ and σ model produced lower scores on
most of the corpora, except for the ShARe/CLEFE
one. On average, the shared µ setting (i.e., the All
model) was superior to the other two.

5.2 NER Error Analysis

We classified false positive predictions by NER
models into two classes:

• Category errors: denote predictions that have
correct spans but wrong category,

• Span errors: denote predictions that have in-
correct spans.

Regarding the BC5CDR, NCBI, and
ShARe/CLEFE corpora, all false positives
are due to span errors since these corpora have
only one NER category. We report the percentage
of span errors in false positives on the development
sets of these corpora in Table 5. On BC5-Chemical
and ShARe/CLEFE, the proposed model produced
more span errors than the baseline one. This
situation somehow aligns with the exceptionally
lower performance of the proposed model on the

Corpus Baseline All
BC5-Chemical 6.48 6.50
BC5-Disease 15.21 13.52
NCBI 12.76 12.36
ShARe/CLEFE 18.02 19.23

Table 5: Percentage of span errors on the development
sets. The lower the number, the better the model.

Corpus
Category Error Span Error
Base All Base All

GENIA 126 115 4,133 4,411
MM 2,447 2,028 37,148 34,747

Table 6: Number of category errors and span errors on
the development sets. Base means the Baseline model.
The lower the number, the better the model.

two corpora reported in Table 2.
In cases of MedMention-21st and GENIA, we

report the number of category and span errors in Ta-
ble 6. We can see that the proposed model produced
fewer category errors than the baseline one on both
corpora. We hypothesise that the synonym genera-
tion component attributed to this improvement; the
semantic information provided by the component
enhanced the ability to distinguish named entities’
categories of the All model. Moreover, we find
that categories in GENIA are more ambiguous than
those in MedMention-21st. For example, it is dif-
ficult to distinguish between “Cell line” and “Cell
type” or between “Protein” and “DNA”. This can
explain the lower reduction of category errors in
GENIA than in MedMention-21st.

Table 6 also shows that the proposed model
could help reduce span errors on MedMention-
21st but not on GENIA. We think that the effec-
tiveness of our model depends on the annotation
schemes. As mentioned above, the GENIA cor-
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Corpus SupVIB+
SpanReco

All

BC5-Chemical 0.0066 0.0051
BC5-Disease 0.0092 0.0243
GENIA 0.3902 0.4479
MedMention-21st 0.0612 0.1482
NCBI 0.1244 0.2228
ShARe/CLEFE 0.0033 0.1283

Table 7: BLEU-2 scores of span reconstruction on the
development set of each corpus.

pus contains gene/protein-related entities, of which
the boundary of an entity is more specially defined
than those in MedMention-21st. As a result, detect-
ing correct spans in GENIA is more challenging
than in MedMention. For example, the All model
detected “HBxAg - specific synthetic polypeptides”
as a Protein entity while the correct span should be
“HBxAg” only.

Nevertheless, the span errors accounted for a
majority of the false positives across all corpora,
indicating that an enhanced-boundary approach can
help alleviate the situation.

5.3 Generation Quality

To evaluate the generation quality of the VAEs com-
ponent, we calculated BLEU-2 scores of the recon-
structed gold entities on the development set of
each corpus. From Table 7, we can see that us-
ing synonym generation helped improve the BLEU
scores in almost corpora. This indicates that se-
mantic information from the synonym generation
component is useful for the NER task and the span
reconstruction.

In Table 8, we show examples where having
synonym generation, i.e., the All model, could
reconstruct original entities much better than
SupVIB+SpanReco. In all examples, the recon-
structed spans by the All model are more meaning-
ful and fluent than those by SupVIB+SpanReco.

Among the six corpora, reconstructing chemi-
cal entities is the most challenging task, especially
with short-form chemicals such as PPA (Phenyl-
propanolamine). When looking for synonyms of
these entities in UMLS, we only did exact matching
without checking any semantics. Therefore, there
are cases in which we found UMLS synonyms
for these abbreviations, but their full forms are
completely different. For example, some UMLS
synonyms of PPA are “primary progressive apha-

sia”, “primary progressive apraxia of speech”, and
“Mesulam syndrome”, which are not relevant to
“Phenylpropanolamine”—the correct full form of
the chemical PPA. Nevertheless, we observed that
the All model usually reconstructed an abbrevia-
tion if the original entity is an abbreviation, while
the SupVIB+SpanReco did it very randomly. For
example, in row 9 in Table 8, given an abbreviation
of “PPA”, the All model could generate the exact
full form given span, while SupVIB+SpanReco
generated “antidepressant”–an incorrect full form
for “PPA”.

5.4 Entity Posteriors

We further explore the effect of the proposed model
by inspecting its intermediate values, which are
posteriors z generated by the VAE and VIB com-
ponents.

5.4.1 Span Reconstruction and Synonym
Generation

We plot the resulting posteriors z1 of gold enti-
ties on the development set in a 2D space using
tSNE (van der Maaten and Hinton, 2008) in two
cases: (i) Only VAEs: when we only train span re-
construction and synonym generation, and (ii) our
joint model. We observed that across the settings,
thanks to the target task of NER, z1 was satisfac-
torily restructured, i.e., posteriors of entities in the
same category are clustered together. This phe-
nomenon is more visible in the case of GENIA and
MedMention-214 than in the other corpora since
the two corpora have more than one named entity
categories, as illustrated in the first row of Figure 2.
In Figures 2a and 2c, entities are scattered over the
space. Meanwhile, in Figures 2b and 2d, points in
the same category are grouped. We can conclude
that after simultaneously training VAEs and NER
(the All model), we have better clusters than only
training VAEs (Only VAEs).

5.4.2 Supervised IB
Similarly, we plot the gold entity embeddings and
their posteriors z3 estimated by the supervised IB
in the second row of Figure 2. We can see in Fig-
ures 2e and 2h that initially, the gold entity embed-
dings are not clustered very well. In contrast, their
posteriors are neatly grouped as illustrated in Fig-
ures 2f and 2h. These clusters look even more dis-
tinguishable than those by z1, i.e., Figures 2b and

4We only show embeddings of the top-10 named entity
categories in MedMention-21.
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No. Original span SupVIB + SpanReco All
1 nervous fibers central channel nervous muscles
2 renal failure pain failure renal failure
3 immunomodulatory therapy Cg therapy antiviral therapy
4 central hydrophobic core central its carbon central temporal core
5 pulmonary veins liver ganglion pulmonary vein
6 fibre degeneration hearing loss macular degeneration
7 cardiac inter - beat cardiac - time coil cardiac - - range
8 volatile compounds translational compounds volatile compounds
9 PPA antidepressant PPA

10 autoimmune lymphoprolif-
erative syndrome

ankylosing lymphoprolif-
erative syndrome

autoimmune lymphopro-
liferative syndrome

Table 8: Some examples to show that the synonym information is helpful to span reconstruction.

(a) GENIA: Only VAEs (b) GENIA: The joint model (c) MM21: Only VAEs (d) MM21: The joint model

(e) GENIA: Input to VIB (f) GENIA: Output by VIB (g) MM21: Input to VIB (h) MM21-Output by VIB

Figure 2: Visualisation of entity posteriors on the development set of GENIA and MedMention-21. Points in the
same colour indicate entities in the same category. First row: posteriors from the generation models. Second row:
the embeddings of entities input to VIB and the corresponding posteriors by VIB.

2d. This phenomenon is understandable because
z3 is approximated based on supervised learning
while z1 is based on unsupervised one.

These visualisations also demonstrate the effec-
tiveness of the supervised IB method. While re-
ducing the input representation size, the method
can still reserve relevant features about the target
classes. As a result, we can have smaller but more
meaningful representations than the original ones.
Such neat clusters are potentially helpful for entity
linking (Liu et al., 2021).

6 Conclusion

We introduced a joint span-based NER model con-
sisting of three components: VAE-based span re-
construction, VAE-based synonym generation, and
VIB-based NER. Each component plays a differ-

ent role in learning span representation. The VIB-
based NER tries to preserve the information about
the target NER category in the estimated latent
while filtering out irrelevant information from the
input. The model is forced to keep contextualised
span information when having the span reconstruc-
tion component. Meanwhile, the synonym gener-
ation component indirectly injects semantic infor-
mation about a span’s synonyms. When testing
on five different corpora, we found that the joint
model could perform better than the baseline.

The proposed model focuses on learning span
representation, which is applicable not only to span-
based NER but also to other span-based tasks such
as event coreference resolution (Lu and Ng, 2021)
and question answering (Li and Choi, 2020). We
plan to apply our model to such tasks in the future.
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Limitations

We find two main limitations of the proposed
model. Firstly, we need synonyms for each gold
entity to train the synonym generation component.
Unfortunately, this requirement is unsuitable for
many NER corpora, such as CoNLL 2012 and
ACE2005. One possible way to go around this
is to treat the coreferences of an entity (if any) as
synonyms. Secondly, similarly to some span-based
NER models, our model suffers from a consider-
able number of all possible spans. We can alleviate
this limitation by detecting spans’ boundary (Tan
et al., 2020; Xu et al., 2021) before classifying
spans. We, however, leave those as future work.
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A Hyper-parameter settings

In Table 9, we show the hyper-parameter
values used in our experiments. In both
SupVIB+SpanReco and All settings, we trained
VAEs in 10 epochs before introducing NER into the
models. Our models were finetuned on NVIDIA
Tesla V100 GPUs with 16GB of RAM using Op-
tuna (Akiba et al., 2019). Depending on the size
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of the corpus, we ran different numbers of trials,
which were in the range of [5,15].

Hyper-parameter name Value
β [1e-6, 1e-4]
γ [1e-6, 1e-4]
Latent size [512, 768, 1024]
Input size of the LSTM encoder 200
Output size of the LSTM decoder 256
NER learning rate [1e-5, 3e-4]
VAE learning rate [1e-4, 1e-3]
Batch size 16
Maximum length of a span 14
Maximum sentence length 512
Number of epochs 20
Number of epochs to pretrain VAEs 10

Table 9: Hyper-parameter values
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Abstract

The research carried out so far in detecting abu-
sive content in social media has primarily fo-
cused on overt forms of hate speech. While
explicit hate speech (HS) is more easily identi-
fiable by recognizing hateful words, messages
containing linguistically subtle and implicit
forms of HS (as circumlocution, metaphors and
sarcasm) constitute a real challenge for auto-
matic systems. While the sneaky and tricky
nature of subtle messages might be perceived
as less hurtful with respect to the same content
expressed clearly, such abuse is at least as harm-
ful as overt abuse. In this paper, we first provide
an in-depth and systematic analysis of 7 stan-
dard benchmarks for HS detection, relying on a
fine-grained and linguistically-grounded defini-
tion of implicit and subtle messages. Then, we
experiment with state-of-the-art neural network
architectures on two supervised tasks, namely
implicit HS and subtle HS message classifica-
tion. We show that while such models perform
satisfactory on explicit messages, they fail to
detect implicit and subtle content, highlight-
ing the fact that HS detection is not a solved
problem and deserves further investigation.

1 Introduction

The rising mass of communication through social
media further exacerbates harmful consequences of
online hate speech. As a result, social media have
faced mounting pressure from civil rights groups
demanding to ramp up their enforcement of anti-
hate speech policies, so that to monitor and limit
this kind of content. In the latest years, numer-
ous methods have been developed to automatically
identify this type of utterances expressing hateful or
abusive content on social media using Natural Lan-
guage Processing methods. A variety of datasets
have also been built, exemplifying various mani-
festations of this harmful content (Poletto et al.,
2021). However, most of the research carried out
so far on this topic has focused on overt forms of

hate speech. Explicit hate speech is more easily
identifiable by recognizing a clearly hateful word
or phrase. Only recently, a few works (Hartvigsen
et al., 2022; Wiegand et al., 2022, 2021a; ElSherief
et al., 2021; Jurgens et al., 2019; Waseem et al.,
2017) have started to focus on implicitness, where
circumlocution, metaphor, or stereotypes are used
to intentionally convey hatred towards a particular
group. In those messages, hatefulness can be cap-
tured only by understanding their global meaning,
as well as contextual information.

In this paper, we carry out an in-depth analy-
sis of implicit HS in standard benchmarks for HS
detection. Additionally, we define the notion of
Subtle HS that puts forward hateful meanings elu-
sively relying on human perception and through the
use of complex syntactic structures. In our study,
we collect messages from 7 available datasets for
HS detection that cover different topics and are
extracted from different social media platforms,
and we enrich them with the following three-layer
annotation: HS/non HS, Explicit/Implicit and Sub-
tle/Non Subtle. We also provide a fine-grained an-
notation for implicit HS messages with 18 implicit
properties such as irony, exaggeration, metaphor,
and rhetorical question, among others. The newly
created resource named ISHate (Implicit and Subtle
Hate speech) provides a rich and variegate bench-
mark for pushing forward research on implicit and
subtle hateful messages, and constitutes a challeng-
ing test-bed to evaluate computational approaches.1

Additionally, we evaluate SOTA and competitive
baseline classifiers to detect both implicit and sub-
tle HS in ISHate, showing that current methods fail
to effectively detect implicit and subtle HS mes-
sages due to their peculiar nature.
NOTE: This paper contains examples of language
which may be offensive to some readers. They do

1The annotated corpora, and the accompanying annotation
guidelines and software can be found at https://github.
com/benjaminocampo/ISHate
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not represent the views of the authors.

2 Related Work

In the latest years, there has been significant re-
search on abusive language and hate speech de-
tection using Natural Language Processing (NLP)
methods (e.g., Xu et al. (2012); Dadvar et al.
(2013); Poletto et al. (2021); Bohra et al. (2018);
Corazza et al. (2020); Zampieri et al. (2019a);
Caselli et al. (2020, 2021)). A few works focus
on subtypes of HS, such as Warner and Hirschberg
(2012) that tackles the recognition of antisemitism,
or Waseem and Hovy (2016); Badjatiya et al.
(2017); Gambäck and Sikdar (2017) that investi-
gate predictive features to identify HS in the form
of racism and sexism. In this context, several chal-
lenges and shared tasks have also been organized
over the years, that made datasets and resources
for multiple languages available (for a survey, see
Poletto et al. (2021)). Research studies carried out
so far have mostly focused on overt forms of hate
speech, while very few works address the issue
of implicit and subtle HS (ElSherief et al., 2021).
However, several works show awareness of the
problem. For instance, Warner and Hirschberg
(2012) and Xu et al. (2012) discuss systems’ limi-
tations in identifying HS messages which are am-
biguous, have patterns of emotional speech or lack
context. Zhang and Luo (2018) and Corazza et al.
(2020) highlight the complexity of recognizing
hateful messages when the meaning is conveyed
through sarcasm, stereotypes, complex syntactic
structure, or non-explicit lexical patterns.

Among the few studies that attempted to address
the issues of implicit and subtle detection, Caselli
et al. (2020) defines a shared task to detect im-
plicit and explicit abusive messages from AbusEval,
a reannotated dataset based on OLID/OffensEval
(Zampieri et al., 2019a). Benikova et al. (2018)
paraphrases German HS tweets obtaining implicit
and explicit messages to study classification meth-
ods. Dadvar et al. (2013) shows how taking user
context improves cyberbullying detection with nei-
ther explicit profanities nor apparent neutral emo-
tions. Jurgens et al. (2019) and Waseem et al.
(2017) explain why explicitness, implicitness, and
subtlety are typologies of abusiveness and encour-
age researchers to develop proactive technologies
in this area. ElSherief et al. (2021) introduces a
taxonomy of implicit hate speech and a benchmark
corpus with fine-grained labels for each message.

Hartvigsen et al. (2022) proposes a large-scale ap-
proach to automatically generate benign and im-
plicit HS statements through the language model
GPT3. Wiegand et al. (2021a, 2022) proposes re-
sources to tackle implicitly abusive comparisons
and abusive remarks, which are two subtypes of
implicitness. Wiegand et al. (2021b) explains the
key issues in the implicit abuse detection, as well as
possible future directions to explore. Even though
these studies set the basis to explore and model the
issue of implicit HS, there is still large room for
improvement, both in terms of creating adequate
resources to investigate these aspects and in terms
of computational approaches to address them.

3 HS, Implicitness and Subtlety

Hate Speech is defined as a direct attack against
people – rather than concepts or institutions –
based on protected characteristics (PC): race, eth-
nicity, national origin, disability, religious affili-
ation, caste, sexual orientation, sex, gender iden-
tity, and severe disease (Meta, 2022). We encom-
pass in the concept refugees, migrants, immigrants,
asylum seekers from the most severe attacks, and
occupations when they are referenced along with
PC, though commentary and criticism of immi-
gration policies are excluded from HS. Following
this definition, HS differs from related concepts
mainly since it is specifically oriented to groups of
people with PC as the main target (Poletto et al.,
2021). In the following, we provide clear and opera-
tional definitions of explicit, implicit and subtle HS.
Reported examples are extracted from the White
Supremacy Forum (WSF) (de Gibert et al., 2018)
and the CONAN (Chung et al., 2019) datasets, de-
scribed in Section 4.

3.1 Explicit Hate Speech
Explicit HS is unambiguous in its potential to be
abusive/hateful, such as language containing racial
or homophobic slurs. Explicit HS uses words
whose literal definition (taken from the dictionary)
is hateful (ElSherief et al., 2021; Waseem et al.,
2017; Caselli et al., 2020), as in Example 1.

1. Negros are so dumb . (WSF)

3.2 Implicit Hate Speech
According to the definitions of ElSherief et al.
(2021), implicit HS does not immediately denote
abuse/hate. Implicitness goes beyond word-related
meaning, implying figurative language use such
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as irony, sarcasm, etc. (ElSherief et al., 2021;
Benikova et al., 2018), generally hiding the real
meaning, making it more difficult to grasp and
undermining the collection of hateful messages
(Hartvigsen et al., 2022; Waseem et al., 2017).
Therefore, we deal with figurative meaning in-
tended by the author rather than literal meaning
of words that may be extracted from dictionaries.

In our extensive study on hate speech datasets,
we identified 18 typical properties of implicitness
relying on linguistics features (listed in Table 2).
Among the most significant ones we have irony
(Frenda et al., 2022), sarcasm (Potamias et al.,
2020), black humor, metaphor (Choi et al., 2021;
Gao et al., 2018), exaggeration (Troiano et al.,
2018), rhetorical question, sentiment (Li et al.,
2021), inference, lack of context (Dadvar et al.,
2013), and lack of extralinguistic knowledge. Most
of the implicit HS messages contain combinations
of several properties, as in:

2. Global Jewry did not want Brexit and are
doing everything they can to sabotage it. (CO-
NAN)

Example 2 illustrates an interlacement of irony and
exaggeration. Global Jewry represents a wordplay
mixing Global Jury and Jews adding humorous
content to the perception of Jewish people as a na-
tion, while doing everything is hyperbolic pointing
out that Jewish are extremely occupied by Brexit.
The whole message is ironical as it emphasizes that
Israel has its own interest in other country’s affairs.

3. I also , unfortuantely , spent 7-8th grade in a
95 % monkey house (WSF)

In Example 3 there is an overlap of irony, ex-
aggeration, and metaphor (underlined). 95 %
looks more like an exaggeration than a fact, while
monkey house refers to the group of students and
in the metaphor due to their skin color they are
compared with monkeys.

4. Are you sure that Islam is a peaceful religion?
(CONAN)

Example 4 interlaces rhetorical question, infer-
ence, and sentiment. The rhetorical question doubts
about the peacefulness of Islam, expressing at the
same time the author’s take on it. As well as that,
we may read negative inference between the lines.

3.3 Subtle Hate Speech

Subtle Hate Speech concerns hateful messages that
are so delicate or elusive as to be difficult to an-
alyze or describe, and that depend on an indirect
method to deliver the meaning (Merriam-Webster,
2022). However, literal meanings (Roland et al.,
1968; Bertrand, 1905) are of prime importance in
subtle messages by contrast to implicit messages
where we go beyond literal meanings (Waseem
et al., 2017). Although implicitness and subtlety
differ a lot at this point, we still rely on language
users’ perception (Grice, 1967, 1989; Korta and
Perry, 2020) to understand implicit and subtle mes-
sages (Benikova et al., 2018). Despite the chal-
lenges in characterizing human perception schemat-
ically, in our study, the use of elements such as
negations with positive clauses, conditionals, con-
nectors, unrelated constructions, word order, and
circumlocution can greatly affect the subtlety of
a message. Cases of HS that convey the mean-
ing directly and straightforwardly are non-subtle.
As subtlety is even less studied than implicitness
in the domain of HS (Breitfeller et al., 2019), and
only considered as a related concept of implicitness
in previous works (Jurgens et al., 2019; ElSherief
et al., 2021; Hartvigsen et al., 2022), we analyze
their interrelation, particularly whether one of these
concepts is an umbrella term for the other.

First, we study whether explicit HS can convey
the meaning in a subtle way, to accept or reject the
idea that implicitness is a general term for subtlety.
As can be seen from the example below, a message
can be explicit and subtle at the same time:

5. As a brit my knowledge of american law is
somewhat lacking but even i know that this
holder groid has committed treason (WSF)

Example 5 is explicit as it literally conveys hateful
meanings with the expression holder groid, but it is
subtle as the intended hateful meaning is disguised
by the first and second underlined constructions,
pushing out the attention from the explicit hateful
expression.

On the other side, we investigate whether
subtlety is an umbrella concept for implicitness
(whether all implicit messages are subtle by de-
fault). The following example shows an implicit
non-subtle HS message:

6. I ’m either in North Florida or Nigeria some-
times i can’t tell the difference. (WSF)
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According to the definitions of explicitness and
implicitness, this message is not explicit since it
does not contain any hateful words, thus, it does
not directly convey hateful meaning. However, it
is hateful despite being more elaborated, as it in-
cludes certain figures of speech that trigger hateful
meaning. The underlined expression in Example
6 represents antithesis, while the message itself is
ironical. This message also lacks contextual infor-
mation and extralinguistic knowledge. Although
being implicit, this message is not subtle as the
meaning is delivered plainly without any delusion
or delicacy. Based on these considerations, we con-
sider implicitness and subtlety as two separate con-
cepts. To illustrate the difference between implicit
non-subtle messages presented above and implicit
subtle cases, consider the following example:

7. I think it is a bit late to think to look after the
saety and the future of white people in South-
frica . (WSF)

We label it as implicit HS as it does not express
hateful meaning explicitly via offensive words and
it is ironic. It is also subtle as it starts with an
introductory construction that makes the message
more sophisticated and adds extra weight to it.

As can be expected, it is also possible to find
non-hateful subtle or implicit sentences (such as
ironic or sentimental texts). However, our work
focuses on exploring implicitness and subtlety in
the context of hate speech only, therefore those
more general cases are not investigated.

4 The ISHate Dataset

Relying on the fine-grained definitions of HS pro-
vided in the previous section (explicit, implicit and
subtle HS), we collect and enrich 7 available stan-
dard datasets for HS detection. As a result, we
create the first benchmark for implicit and subtle
HS detection on social media messages extracted
from different sources.

4.1 Data Collection
Nearly all available resources of user-generated
HS content are retrieved with a keyword-based ap-
proach, and mainly relying on a list of words with
negative polarity (Poletto et al., 2021). However,
with this strategy it is possible to extract mainly
explicit HS expressions (as in the AbusEval dataset,
Caselli et al. (2020)). Given that our study focuses
on implicit and subtle HS, we prefer to explore

resources collected from communities of users that
are potentially prone to hate speech, or resources
manually created using a systematic approach. In
the following, we list the considered resources:
White Supremacy Forum Dataset (WSF) (de Gib-
ert et al., 2018), that contains HS messages from
Stormfront, scraped from the most influential white
supremacist forum on the Web. The database is ar-
ranged in sub-forums and conversation threads.
HatEval (Basile et al., 2019), which is among the
most well-known benchmark for HS detection. A
combined approach is applied to collect hateful
and misogynous tweets by monitoring potential
victims of hate accounts, downloading the history
of identified haters, and filtering Twitter streams
with both neutral and derogatory keywords.
Implicit Hate Corpus (IHC) (ElSherief et al.,
2021), annotated with explicit HS, implicit HS, and
non-HS labels obtained from online hate groups on
Twitter. The authors focused on eight ideological
clusters of U.S., as Black Separatists, White Na-
tionalist and Neo-Nazi. From this dataset we only
extracted messages labeled as implicit HS, as it is
one of our target categories.
ToxiGen (Hartvigsen et al., 2022), a dataset with
benign and implicit toxic messages against minor-
ity groups. ToxiGen is machine-generated through
the GPT3 language model and prompt program-
ming. Similarly to IHC, we only extracted mes-
sages which were automatically labeled as implicit
HS and human-validated as toxic by the authors.
We did not consider unfinished generated sentences
which make a part of implicit messages.
YouTube Video Comments Dataset (YouTube)
(Hammer, 2017), that consists of YouTube com-
ments posted under videos related to religion and
politics. Differently from the other resources, the
messages are annotated as “violent” or “clean”.
CONAN (Chung et al., 2019), a dataset of HS mes-
sages and counter-narratives (CN) pairs for CN gen-
eration. Two native English speakers were asked
to write 50 prototypical short texts, which NGO
could later use to write their hate texts and counter-
narratives. We believe that messages for which a
CN can be provided might be richer in implicit con-
tent since a slur-based explicit HS message might
produce very poor argumentative CN.
Multi-Target CONAN (MCONAN) (Fanton et al.,
2021), a dataset of English HS/CN pairs compris-
ing several hate targets. It is collected using a
Human-in-the-Loop approach. A generative lan-
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guage model is refined iteratively by using data
from the previous loops to generate new samples
that NGOs experts review.

Before starting the annotation process with the
fine-grained annotations (Explicit, Implicit and
Subtle HS), we had to make sure that the definition
of HS originally used to annotate such resources is
consistent with ours. In the first annotation round,
we checked the messages originally annotated as
HS, and discarded the few ones that did not corre-
spond to the definition of HS reported in Section 3.
For the YouTube dataset, we also added the HS
labels. While all the messages annotated as HS
are directed to PC, it should be noted that the top-
ics distribution and the writing quality might be
different, given the heterogeneity of the selected
resources. HS messages mostly target Islamism,
Judaism, misogyny, multi-culturalism, racism, im-
migration, and refugees. Regarding time creation,
WSF is made from threads posted between 2002
and 2017, ToxiGen’s LM was trained with mes-
sages from 2016 to 2019, Hateval consists of mes-
sages of 2018, the YouTube comments were col-
lected in 2017, while the IHC contains tweets from
U.S. ideological clusters from 2015 to 2017.

4.2 Annotation Procedure

Following the annotation scheme described in Sec-
tion 3, four graduate-level annotators with linguis-
tics and computational linguistics competences car-
ried out a pilot annotation study on a sample of
100 messages extracted from each of the above
mentioned resources to converge to non-ambiguous
annotation strategies. We calculate the Inter An-
notator Agreement (IAA) on this sample, result-
ing in Cohen’s κ=0.793 (Cohen, 1960) for the im-
plicit layer (binary annotation Explicit/Implicit)
and 0.730 for the subtlety layer (binary annotation
Subtle/Non-Subtle). We also compute the IAA con-
sidering both layers simultaneously, that is, consid-
ering one layer of 4 classes (Implicit, Explicit, Sub-
tle, Non-Subtle), obtaining a Cohen’s κ of 0.734.
In the reconciliation phase, we notice that most of
the disagreements are due to the interlacement of
subtlety and implicitness. For that reason, we also
calculate an ordered weighted disagreement using
Krippendorff’s α to penalize less when the anno-
tators agree at least on one of the layers (Artstein
and Poesio, 2008). The Krippendorff’s α is 0.757.
Despite the complexity of the annotation task, ob-
tained results are considered as strong agreement

in a two-annotators setting. The rest of the an-
notations has then been carried out by two of the
annotators mentioned above, which were provided
with the final version of the annotation guidelines
(containing the definitions of the target classes, i.e.,
subtlety and implicitness, and a discussion about
borderline cases), together with a set of labeled
examples.

Finally, the implicit properties annotations are
added on top of the messages labeled as implicit
as an additional annotation layer to highlight 18
linguistic features that implicitly convey hateful
meaning. For this layer, annotations are carried out
by one expert linguist.

4.3 Data Statistics

Table 1 shows statistics of the final dataset, report-
ing on the number of annotated HS messages for
each resource and for the three annotation layers.

The ISHate collection consists of a total of 29116
messages, where 11247 are HS (further annotated
with the Explicit/Implicit and Subtle/Non-subtle
labels). For computational purposes, we provide
a dataset split in three subsets, i.e., train (70%),
validation (15%), and test (15%) sets. Each of the
partition respects the distribution of all the anno-
tation layers using stratified splitting. As can be
seen, classes are unbalanced, each resource provid-
ing only a reduced number of implicit and subtle
messages - as expected. Note that CONAN and
MCONAN do not contain Non-HS messages, be-
cause their main objective is CN generation. As
for IHC and ToxiGen, we only look through previ-
ously annotated implicit HS messages disregarding
non hateful ones. Note also that ToxiGen claimed
to contain only implicit adversarial messages, but
according to our definitions and annotation guide-
lines many messages are considered as explicit and
non-subtle by our annotators.

Table 2 shows the full distribution of the im-
plicit properties relative to the implicit messages in
ISHate. As it can be seen, Inference (58%), Con-
text (48%), Sentiment (45%), Exaggeration (28%)
and Irony (22%), are the most frequent proper-
ties of implicit HS messages, whereas Euphemism
(4%), Circumlocution (3%), Metonymy (0.4%) and
Synecdoche (0.08%) are the least recurrent. Note
that one implicit message can be labeled with more
than one property.
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Train Dev Test CONAN HatEval IHC MCONAN ToxiGen WSF Youtube
Label # % # % # %
Non-HS 12508 .614 2680 .614 2681 .614 0 7421 0 0 0 9342 1106
Explicit HS 7007 .344 1501 .344 1501 .344 324 3107 317 3344 183 987 1747
Implicit HS 866 .042 186 .043 186 .043 81 110 300 295 170 173 109
Non-HS 12508 .614 2680 .614 2681 .614 0 7421 0 0 0 9342 1106
Non-Subtle 7691 .377 1648 .377 1648 .377 393 3191 614 3595 348 1018 1828
Subtle 182 .009 39 .009 39 .009 12 26 3 44 5 142 28

Table 1: Statistics on the annotated dataset (resources and label distributions for the two tasks)

Implicit HS
Implicit Properties # %
Inference 729 58.885
Context 602 48.627
Sentiment 569 45.961
Exaggeration 359 28.998
Irony 275 22.213
Extralinguistic knowledge 193 15.590
Black humor 144 11.632
Rhetorical question 134 10.824
Visual signs 122 9.855
Humiliation 115 9.289
Antithesis 97 7.835
Metaphor 93 7.512
Sarcasm 85 6.866
Fallacy 74 5.977
Euphemism 56 4.523
Circumlocution 41 3.312
Metonymy 6 0.485
Synecdoche 1 0.081

Table 2: Statistics on implicit properties distribution.

4.4 Data Augmentation
To overcome the problem of the unbalanced dataset,
we propose oversampling and data augmentation
(DA) methods for the minority classes using ad-
versarial methods and generative models following
(Mayer et al., 2020; Wei and Zou, 2019), and the
GPT2 language model (Radford et al., 2019).
Replace Named Entities (RNE). It replaces a
named entity (PER, LOC, ORG, and MISC) in
the input sentence. A candidate NE in a sentence is
replaced by another one according to a previously
collected list of NEs (Mayer et al., 2020). Then, the
most similar NE is selected by using pre-trained
FastText embeddings (Bojanowski et al., 2016). In
our use case, we notice that the number of NEs
PER, LOC, and ORG are very few compared to
MISC. This might be due to the fact that HS mes-
sages in our collection mostly target groups and not
individuals. However, expressions like muslims,
jews, or blacks are present in the MISC category
and replaced, as in Example 8. As it can be no-
ticed, the expression preserves its meaning, that
is, the use of the rhetorical question to convey that
Muslims are not considered as a part of society.

8. Original: Have Muslims ever made a contri-

bution to our society? (CONAN)
Augmented: Have Moslem Arabs ever made
a contribution to our society?

Replace Scalar Adverbs (RSA). It replaces em-
phasising adverbs like considerably or largely, with
another scalar adverb that might increase or de-
crease the emphasis of an adjective/verb.

9. Original: I do like the outfit they dressed the
simian in ; he looks so regal (WSF)
Augmented: I do like the outfit they dressed
the simian in ; he looks incredibly regal

Example 9 is another implicit racist HS message
that uses irony by combining simian, dressed, and
regal. RSA replaces the scalar adverb, slightly
increasing the emphasis of regal in the sentence.
Add Adverbs to Verbs (AAV). It adds modifiers
to verbs to accentuate them. In this case, we use
speculative adverbs like certainly, likely, clearly.

10. Original: I wish we lived in a world in which
only men could be doctors, lawyers, firemen,
and teachers. (MCONAN)
Augmented: I wish we lived in a world in
which only men could plausibly be doctors,
lawyers, firemen, and teachers.

In Example 10, the meaning is made elusive by the
use of the expression I wish we lived, the addition
of plausibly alters the possibility of the verb “to
be”, but keeps the misogyny meaning.
Replace Adjectives (RA). It replaces adjectives
with their synonyms, as in:

11. Original: If you look at an Alaskan mala-
mute and a timber wolf that are two different
species , they look a lot more alike than say a
Congolese and a Swede . (WSF)
Augmented: If you look at an Alaskan mala-
mute and a timber wolf that are two unlike
species , they look a lot more alike than say a
Congolese and a Swede .
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Replace In-Domain Expressions (RI). It replaces
a list of manually-crafted expressions often used in
HS messages (not captured by the RNE) with other
semantically similar expressions, as in Example 12.
Here the word “migrants” is replaced by “foreign-
ers” without adding hateful connotations. It would
have been different to replace it with aliens, which
is a derogatory term to refer to migrants.

12. Original: migrants are entering the u.s. just
to obtain welfare and other benefits . (MCO-
NAN)
Augmented: foreigners are entering the u.s.
just to obtain welfare and other benefits .

Easy Data Augmentation (EDA). Given an input
sentence, EDA randomly: i) replaces a non-stop
word expression with a synonym using Wordnet; ii)
inserts a synonym of a non-stop word in a random
position; iii) chooses two words of the sentence and
swaps their positions; iv) removes each word in the
sentence with a certain probability. Only one of the
four operations at a time is applied to a sentence.

13. Original: A lot of white women are trying to
create danger by drawing these other people
into our countries . (WSF)
Augmented: A lot of our women are trying to
create danger by drawing these other people
into white countries .

A parameter α expressing the percent of the words
to be changed in a sentence is specified (in our
setting, α = 0.1 as in Wei and Zou (2019)).
Back Translation. It translates an input message
into a different language to translate it back into the
original language. We use the translation from En-
glish to Russian following (ElSherief et al., 2021).

14. Original: As a nation , we
are in desperate need for an immigration
time out and a zero tolerance policy for those
here illegally . (WSF)
Augmented: As a nation, we
desperately need an immigration time-
out and a zero-tolerance policy for those here
illegally.

Generative Models (GM). We fine-tune autore-
gressive generative language models with instances
from our minority classes, i.e., explicit subtle, im-
plicit non-subtle, and implicit subtle messages. To
do so, we prefix this label on the text as a prompt.

Then, language models are asked to generate mes-
sages starting with one of our fine-tuned prompts,
as in Example 15. We use GPT2 (Radford et al.,
2019) as a language model, fine-tuned for 4 epochs
using learning rate of 3e-5, and batch size of 32.
Additionally, we implement a human-in-the-loop
approach revising the generated examples and re-
annotating them in case the original label is no-
more appropriate for the message.

15. Input: Explicit Subtle HS:
Augmented: Explicit Subtle HS: In the end,
it comes down to what women want from a
man... If they want to play with whores, they
can stay at home and have babies...

Except for GM and BT, the same strategy is
applied to augmentation methods to produce new
messages. Preprocessing (e.g., Parts-of-Speech tag-
ging and Named Entities Recognition) is carried
out using Flair (Akbik et al., 2019) and NLTK (Bird
and Loper, 2004) models, and allows to recognize
possible candidate phrases to perform a replace-
ment/addition. Then, a candidate phrase is per-
turbed by another one according to a list of adverbs,
NEs, or adjectives based on domain data. We rely
on FastText and WordNet Synsets to maintain the
semantics of the augmented sentences with respect
to the original one. The number of candidates to
perform a replacement/addition and the number of
replacement/additions per candidate are provided
as parameters to these methods.

5 Evaluation

To show that implicit and subtle HS detection is
still a very challenging task, we evaluate a set of
state-of-the-art models for HS detection on the
ISHate dataset. We propose two 3-label classifi-
cation tasks:

• Task A (Non-HS/Explicit HS/Implicit HS)

• Task B (Non-HS/Non-Subtle HS/Subtle HS)

To this goal, we consider the following models:
Universal Sentence Encoder (USE) + SVM (In-
durthi et al., 2019). First-ranked model on the HatE-
val benchmark (Basile et al., 2019). The USE (Cer
et al., 2018) is a sentence embedding that encodes
text into high dimensional vectors of 512 dimen-
sions, trained on large data sources to provide an
encoding method that works for various NLP tasks.
An SVM classifier with RBF kernel and default
parameters is then used for classification.
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DeBERTa V3 (hate_speech18). SOTA model on
the WSF dataset (de Gibert et al., 2018). For classi-
fication, a default HuggingFace implementation of
a one-layer Feed Forward network is used on top of
DeBERTa (He et al., 2021a,b), a transformer-based
model. The model is later fine-tuned for 4 epochs
(learning rate of 2e-5, batch size of 32).
BERT (Devlin et al., 2018). We use this language
model to encode text sequences and classify them
by adding a Feed-forward neural network on top.
HateBERT. A re-trained BERT model using over 1
million posts from banned communities on Reddit
(Caselli et al., 2021) and then fine-tuned on our
dataset. HateBERT obtained very promising results
in the benchmarks HatEval, OffensEval (Zampieri
et al., 2019b), and AbusEval (Caselli et al., 2020).

As for preprocessing, we replace long non-space
character chains for only one occurrence, and
delete digits, special symbols, and URLs.

5.1 Results

Table 3 reports on the results of the different mod-
els on the two tasks. On both tasks, all models
show satisfactory performances when detecting
overt forms of HS (Explicit HS and Non-Subtle HS
classes), with DeBERTa outperforming the other
models. The results obtained by all models for the
Implicit HS and Subtle HS classes are much lower,
and comparable to those obtained by ElSherief et al.
(2021) (F1-score=.586) on the implicit class.

As a follow-up experiment, we apply the over-
sampling techniques (Section 4) on the minority
classes of tasks A and B until balancing them with
respect to the Explicit HS and Non-Subtle HS cat-
egories. The oversampling is performed on the
training set only. The test set is the one of the origi-
nal dataset, and is therefore unbalanced in order to
evaluate the system on real class distribution and to
avoid information leakage from train to test through
augmentation methods. Tables 4a and 4b show the
number of additional generated implicit/subtle mes-
sages and the resultant training set distribution per
augmentation method, respectively.

Among all tested models, only HateBERT sig-
nificantly improves its performance for detect-
ing implicit messages combining all augmented
data (ALL) (see Table 3). We also highlight
that back translation (BT) better contributes to
the performance on the implicit hate class for
BERT, DeBERTa, and USE+SVM 2. Performances

2The table reporting the obtained results by all models on

surprisingly increase for the subtle class with
USE+SVM+BT showing that back-translated mes-
sages provide diversity by rephrasing subtle ex-
amples without altering their meaning. Data
generated with simpler augmentation methods as
BERT+RNE and DeBERTa+RI also show slight im-
provements for subtlety. However, performances
decrease on the implicit class when applying data
augmentation strategies GM and GM+Revised, and
only slightly improve on the subtle class.

5.2 Error Analysis

To gain insights into the models’ behaviours, we
manually analyse the classification errors of the
best performing approaches, i.e., HateBERT+ALL
and USE+SVM+BT for both tasks A and B. For
the Non-HS/Explicit/Implicit classification, it is
harder for HateBERT+ALL to differentiate implicit
messages rather than explicit ones. Figure 1 in Ap-
pendix A shows the resultant embedding through
t-SNE (van der Maaten and Hinton, 2008) approx-
imation of all implicit messages of the test set,
and two samples of the other two classes, show-
ing how HateBERT+ALL is capable of separating
the space in three different blobs for classification
(Figure 1a), embedding well the human-annotated
Explicit HS and Non-HS classes (Figure 1b), but
badly encoding implicit annotated messages (in-
stances spread over the explicit and non-hateful
blobs). We also considered the F1-scores of the
(Non-HS vs Implicit HS) and (Non-HS vs Explicit
HS) classes, as if we had binary labels, obtaining
an (F1-score=0.670) and (F1-score=0.850) on the
target categories respectively, showing that implicit
cases are harder to detect than explicit ones.

Among misclassified examples, we can find mes-
sages where the PC are not explicitly named (Exam-
ple 16). Contextual knowledge is needed there to
grasp that the target of the message is black people.

16. I can picture him as that baby monkey on the ’
save the rainforest comercial or whatever

Additionally, from the misclassified messages we
extract the most frequent implicit properties not
captured by the classifier3. They concern Inference
(53%), Context (41%), Sentiment (40%), Exagger-
ation (24%), Extralinguistic knowledge (24%).

For Subtle/Non Subtle message classification,
we also plotted the USE embedding for the best

different types of augmented data is in the Appendix.
3The full table can be found in the Appendix.
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Task A Task B
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Model Non-HS Explicit HS Implicit HS Non-HS Non-Subtle HS Subtle HS
USE+SVM .888 .866 .877 .766 .803 .784 .399 .382 .390 .891 .868 .879 .783 .832 .807 .667 .103 .178
BERT .903 .893 .898 .81 .833 .821 .394 .371 .382 .902 .891 .897 .819 .846 .832 .250 .103 .145
HateBERT .904 .89 .897 .811 .849 .829 .447 .382 .412 .903 .890 .897 .814 .850 .831 .143 .026 .043
DeBERTa .927 .899 .913 .825 .880 .851 .467 .419 .442 .920 .893 .906 .823 .877 .849 .375 .077 .128
HateBERT+ALL .903 .896 .899 .827 .827 .827 .502 .559 .529 .903 .881 .892 .816 .844 .830 .391 .462 .424
BERT+BT .909 .887 .898 .824 .826 .825 .459 .608 .523 .898 .900 .899 .839 .832 .835 .304 .359 .329
DeBERTa+BT .919 .885 .902 .830 .857 .844 .428 .543 .479 .920 .897 .908 .835 .876 .855 .385 .256 .308
USE+SVM+BT .897 .856 .876 .782 .787 .785 .403 .645 .496 .892 .868 .880 .789 .831 .809 .739 .436 .548
BERT+RNE .897 .897 .897 .807 .829 .818 .455 .349 .395 .899 .895 .897 .826 .839 .833 .400 .256 .312
DeBERTa+RI .922 .894 .908 .821 .878 .849 .460 .398 .427 .910 .894 .902 .828 .860 .843 .364 .205 .262
HateBERT+GM .901 .898 .899 .824 .827 .825 .414 .425 .419 .899 .898 .899 .831 .834 .832 .250 .231 .240
HateBERT+GM+R. .905 .891 .898 .816 .835 .826 .408 .419 .414 .894 .898 .896 .826 .826 .826 .192 .128 .154

Table 3: Obtained results on tasks A and B.

Aug. method RSA AAV RNE RI RA EDA BT GM GM+Revised ALL
Label
Implicit HS 6848 7032 828 817 467 6935 748 200 82 23957
Subtle HS 3192 3136 480 210 172 2912 179 200 204 10685

(a) Number of additional implicit/subtle messages generated by each augmentation method.
Aug. method ORIG RSA AAV RNE RI RA EDA BT GM GM+Revised ALL
Label
Non-HS .614 .459 .456 .59 .590 .600 .458 .592 .608 .611 .282
Explicit HS .344 .257 .256 .33 .331 .336 .257 .332 .340 .342 .158
Implicit HS .042 .283 .288 .08 .079 .064 .286 .076 .052 .046 .560
Non-HS .614 .531 .532 .600 .607 .609 .537 .608 .608 .608 .403
Non-Subtle HS .377 .326 .327 .369 .374 .374 .330 .374 .374 .374 .248
Subtle HS .009 .143 .141 .032 .019 .017 .133 .018 .019 .019 .350

(b) Train set distribution (%) per augmentation method (ORIG corresponds to the original train distribution).

Table 4: Statistics on the train set with data augmentation.

model on this task (Figure 2 in Appendix A). How-
ever, it can be seen that USE+SVM+BT could not
differentiate correctly on the subtle notion despite
of the results reported in Table 6b. Example 17
is not predicted as subtle. It shows how the word
order may influence our understanding. At a first
glance, the part how stupid the Jews seems to have
a different meaning from what the phrase actually
conveys if we read it entirely. We may also notice
a circumlocution in the second part of the message.

17. I am insulted by how stupid the jews think we
are until i see what they see by reading the
posts amongst our so called , ‘ ‘ awakened
brethren .

6 Conclusions

In this paper, we have presented ISHate, the first
benchmark dataset annotated with both implicit and
subtle HS labels, which represents a challenging
test-bed to evaluate computational approaches. We
also provide a fine-grained annotation for implicit
HS messages with 18 implicit properties which
represent the relevant features that HS classifiers

should possess to improve implicit HS detection.
It has been created enriching 7 existing datasets
for HS detection over different topics and from dif-
ferent social media. We have shown that current
SOTA models fail to properly detect implicit and
subtle HS messages as peculiar features connected
to Sentiment, Inference, Context and Irony, as well
as complex syntactic structure, cannot be properly
understood. We also investigated data augmenta-
tion strategies to increase the number of instances
for the minority classes. We show that - while they
cannot be the ultimate solution to the lack of im-
plicit and subtle examples - they still play a role
in improving the systems’ performances, in line
with ElSherief et al. (2021). As for future work, we
plan to propose alternative large-scale methods to
collect implicit and subtle messages by targeting
“hateful” users, manual creation (Wiegand et al.,
2021a, 2022) or refining human-in-the-loop gener-
ative methods as in (Hartvigsen et al., 2022). Also,
we will investigate features modeling implicit prop-
erties (Wallace et al., 2014; Troiano et al., 2018;
Frenda and Patti, 2019) and new model architec-
tures for HS detection (Nejadgholi et al., 2022).
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Limitations

The main limitation of this paper lies in the intrinsic
difficulty to provide a clear definition of the notions
of Implicit HS and Subtle HS (given the limited
number of definitions available in the literature for
these notions), and, as a consequence, to build an-
notated resources. Enhancing the ISHate dataset
with new instances requires future annotators to be
experts in computational linguistics trained on our
annotation guidelines through pilot annotations to
keep the same level of agreement. This restricts
crowdsourcing-like options, making the resource
building process more expensive. Moreover, the
complexity of the messages and of the considered
categories makes the process time-consuming (i.e.,
a trained annotator requires 30sec. for explicit mes-
sages and 1.30min. for implicit/subtle messages on
average). Even opting for generative and synthetic
data augmentation approaches, they still require
human-in-the-loop intervention and high compu-
tational resources to generate Implicit/Subtle HS
messages on a big scale.

Ethics Statement

This paper contains examples of HS from existing
linguistic resources for HS detection and which do
not reflect the authors’ opinions.

While our purpose is to prevent and curate social
media resources from HS, the release of this dataset
might still pose a potential misuse case. However,
we still consider that effective classifiers for this
task are necessary to tackle implicit and subtle on-
line hate on scale and prevent the spreading of this
harmful content online. Our work aims at making
a step towards that objective and encourages the
scientific community to investigate these aspects.
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Serra Sinem Tekiroğlu. 2018. A computational ex-
ploration of exaggeration. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 3296–3304, Brussels,
Belgium. Association for Computational Linguistics.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579–2605.

Byron C. Wallace, Do Kook Choe, Laura Kertz, and
Eugene Charniak. 2014. Humans require context to
infer ironic intent (so computers probably do, too).
In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 2:
Short Papers), pages 512–516, Baltimore, Maryland.
Association for Computational Linguistics.

William Warner and Julia Hirschberg. 2012. Detecting
hate speech on the world wide web. In Proceedings
of the Second Workshop on Language in Social Me-
dia, pages 19–26, Montréal, Canada. Association for
Computational Linguistics.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding abuse: A
typology of abusive language detection subtasks. In
Proceedings of the First Workshop on Abusive Lan-
guage Online, pages 78–84, Vancouver, BC, Canada.
Association for Computational Linguistics.

Zeerak Waseem and Dirk Hovy. 2016. Hateful symbols
or hateful people? predictive features for hate speech
detection on Twitter. In Proceedings of the NAACL
Student Research Workshop, pages 88–93, San Diego,
California. Association for Computational Linguis-
tics.

Jason Wei and Kai Zou. 2019. EDA: Easy Data
Augmentation Techniques for Boosting Performance
on Text Classification Tasks. Technical Report
arXiv:1901.11196, arXiv. ArXiv:1901.11196 [cs]
type: article.

Michael Wiegand, Elisabeth Eder, and Josef Ruppen-
hofer. 2022. Identifying Implicitly Abusive Re-
marks about Identity Groups using a Linguistically
Informed Approach. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human

2008

https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://doi.org/10.18653/v1/S19-2009
https://doi.org/10.18653/v1/S19-2009
https://doi.org/10.18653/v1/S19-2009
https://doi.org/10.18653/v1/P19-1357
https://doi.org/10.18653/v1/P19-1357
https://doi.org/10.18653/v1/2021.emnlp-main.22
https://doi.org/10.18653/v1/2021.emnlp-main.22
https://doi.org/10.18653/v1/2021.emnlp-main.22
https://doi.org/10.3233/FAIA200489
https://doi.org/10.3233/FAIA200489
https://www.merriam-webster.com
https://transparency.fb.com/en-gb/policies/community-standards/hate-speech/
https://doi.org/10.18653/v1/2022.acl-long.378
https://doi.org/10.18653/v1/2022.acl-long.378
https://doi.org/10.18653/v1/2022.acl-long.378
https://doi.org/10.1007/s10579-020-09502-8
https://doi.org/10.1007/s10579-020-09502-8
https://doi.org/10.1007/s10579-020-09502-8
https://doi.org/10.1007/s00521-020-05102-3
https://doi.org/10.1007/s00521-020-05102-3
https://doi.org/10.18653/v1/D18-1367
https://doi.org/10.18653/v1/D18-1367
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.3115/v1/P14-2084
https://doi.org/10.3115/v1/P14-2084
https://aclanthology.org/W12-2103
https://aclanthology.org/W12-2103
https://doi.org/10.18653/v1/W17-3012
https://doi.org/10.18653/v1/W17-3012
https://doi.org/10.18653/v1/N16-2013
https://doi.org/10.18653/v1/N16-2013
https://doi.org/10.18653/v1/N16-2013
http://arxiv.org/abs/1901.11196
http://arxiv.org/abs/1901.11196
http://arxiv.org/abs/1901.11196
https://doi.org/10.18653/v1/2022.naacl-main.410
https://doi.org/10.18653/v1/2022.naacl-main.410
https://doi.org/10.18653/v1/2022.naacl-main.410


Language Technologies, pages 5600–5612, Seattle,
United States. Association for Computational Lin-
guistics.

Michael Wiegand, Maja Geulig, and Josef Ruppen-
hofer. 2021a. Implicitly abusive comparisons – a new
dataset and linguistic analysis. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 358–368, Online. Association for Computa-
tional Linguistics.

Michael Wiegand, Josef Ruppenhofer, and Elisabeth
Eder. 2021b. Implicitly abusive language – what
does it actually look like and why are we not get-
ting there? In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 576–587, Online. Association
for Computational Linguistics.

Ulrike Willinger, Andreas Hergovich, Michaela
Schmoeger, Matthias Deckert, Susanne Stoettner, Iris
Bunda, Andrea Witting, Melanie Seidler, Reinhilde
Moser, Stefanie Kacena, David Jaeckle, Benjamin
Loader, Christian Mueller, and Eduard Auff. 2017.
Cognitive and emotional demands of black humour
processing: the role of intelligence, aggressiveness
and mood. Cogn. Process., 18(2):159–167.

Jun-Ming Xu, Kwang-Sung Jun, Xiaojin Zhu, and Amy
Bellmore. 2012. Learning from bullying traces in
social media. In Proceedings of the 2012 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 656–666, Montréal, Canada. As-
sociation for Computational Linguistics.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the type and target of offensive
posts in social media. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 1415–1420, Minneapolis, Minnesota.
Association for Computational Linguistics.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. Semeval-2019 task 6: Identifying and catego-
rizing offensive language in social media (offenseval).
In Proceedings of the 13th International Workshop
on Semantic Evaluation, pages 75–86.

Ziqi Zhang and Lei Luo. 2018. Hate speech detection:
A solved problem? the challenging case of long tail
on twitter. CoRR, abs/1803.03662.

2009

https://doi.org/10.18653/v1/2021.eacl-main.27
https://doi.org/10.18653/v1/2021.eacl-main.27
https://doi.org/10.18653/v1/2021.naacl-main.48
https://doi.org/10.18653/v1/2021.naacl-main.48
https://doi.org/10.18653/v1/2021.naacl-main.48
https://aclanthology.org/N12-1084
https://aclanthology.org/N12-1084
https://doi.org/10.18653/v1/N19-1144
https://doi.org/10.18653/v1/N19-1144
http://arxiv.org/abs/1803.03662
http://arxiv.org/abs/1803.03662
http://arxiv.org/abs/1803.03662


A Performance Details in Data
Augmentation

Inspired by the ranked one augmentation strategy
in ElSherief et al. (2021), i.e., a back-translation
approach, we also test SOTA models on our dataset,
ISHate, with the augmentation techniques de-
scribed in Section 4.4. Each model is trained with
the originally collected data described in Section
4.3 and additional data obtained from one augmen-
tation strategy. At the end, we also evaluate each
model using only non-augmented test data. Tables
6a and 6b show the experiments’ results on tasks A
and B.

We further analyse the errors committed by the
best performing model on task A. We took from
Table 6a HateBERT+ALL and the third annota-
tion layer described in Sections 3 and 4 to identify
which are the most frequent implicit properties on
task A miss-classified messages. Table 5 shows
how Inference, Context, Sentiment, Exaggeration,
and Extralinguistic knowledge are the most recur-
rent not captured devices.

Implicit HS
Implicit Property # %
Inference 44 53.659
Context 34 41.463
Sentiment 33 40.244
Exaggeration 23 28.049
Extralinguistic knowledge 20 24.390
Irony 17 20.732
Black humor 12 14.634
Visual signs 11 13.415
Metaphor 9 10.976
Rhetorical question 8 9.756
Antithesis 6 7.317
Humiliation 5 6.098
Sarcasm 5 6.098
Circumlocution 4 4.878
Fallacy 4 4.878
Euphemism 3 3.659

Table 5: Implicit properties of the messages that are not
captured by HateBERT+ALL

.

We also analysed the embeddings of our best-
performing models in tasks A and B (Hate-
BERT+ALL and USE+SVM+BT, respectively)
through t-SNE (van der Maaten and Hinton, 2008).
Figures 1 and 2 show the text embeddings for sen-
tences of the test set, labeled by both classifiers and
annotators, for the implicit and subtle tasks.

(a) Embedding using predicted annotations.

(b) Embedding using manual annotations.

Figure 1: Embedding of HateBERT + ALL in the test
set of task A

(a) Embedding using predicted annotations.

(b) Embedding using manual annotations.

Figure 2: Embedding of USE+SVM+BT in the test set
of task B
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Task A Non-HS Explicit HS Implicit HS
USE + SVM P R F1 P R F1 P R F1
RSA .887 .875 .881 .768 .830 .798 .515 .285 .367
AAV .888 .875 .881 .764 .825 .793 .491 .280 .356
RNE .887 .867 .877 .770 .802 .786 .386 .382 .384
RI .888 .865 .876 .769 .803 .786 .371 .371 .371
RA .888 .867 .877 .768 .803 .785 .398 .387 .392
EDA .892 .862 .877 .780 .797 .789 .339 .441 .383
BT .897 .856 .876 .782 .787 .785 .403 .645 .496
GM .887 .862 .874 .771 .794 .782 .352 .409 .378
GM+Revised .887 .863 .875 .769 .803 .786 .385 .403 .394
ALL .889 .879 .884 .796 .809 .803 .421 .430 .426

BERT P R F1 P R F1 P R F1
RSA .894 .899 .896 .805 .835 .819 .487 .301 .372
AAV .896 .896 .896 .820 .817 .819 .387 .398 .393
RNE .897 .897 .897 .807 .829 .818 .455 .349 .395
RI .909 .897 .903 .812 .850 .831 .458 .376 .413
RA .894 .905 .899 .822 .825 .823 .473 .382 .423
EDA .900 .894 .897 .807 .836 .821 .416 .333 .370
BT .909 .887 .898 .824 .826 .825 .459 .608 .523
GM .898 .901 .900 .824 .821 .823 .409 .398 .403
GM+Revised .905 .892 .899 .811 .839 .825 .451 .419 .435
ALL .902 .894 .898 .816 .817 .816 .488 .543 .514

DeBERTaV3 P R F1 P R F1 P R F1
RSA .912 .893 .902 .803 .877 .838 .441 .242 .312
AAV .916 .904 .910 .832 .858 .845 .431 .403 .417
RNE .922 .883 .902 .807 .880 .842 .430 .382 .405
RI .922 .894 .908 .821 .878 .849 .460 .398 .427
RA .909 .914 .911 .841 .859 .850 .482 .360 .412
EDA .907 .899 .903 .813 .859 .835 .460 .312 .372
BT .919 .885 .902 .830 .857 .844 .428 .543 .479
GM .913 .899 .906 .839 .843 .841 .399 .468 .431
GM+Revised .918 .893 .905 .819 .873 .845 .425 .366 .393
ALL .924 .887 .905 .814 .867 .840 .456 .478 .467

HateBERT P R F1 P R F1 P R F1
RSA .895 .895 .895 .814 .830 .822 .452 .382 .414
AAV .899 .900 .899 .819 .825 .822 .428 .398 .412
RNE .904 .891 .897 .815 .850 .832 .415 .355 .383
RI .902 .894 .898 .808 .845 .826 .408 .312 .354
RA .895 .904 .900 .830 .823 .826 .459 .419 .438
EDA .890 .901 .895 .808 .820 .814 .454 .317 .373
BT .910 .880 .895 .820 .823 .822 .378 .543 .446
GM .901 .898 .899 .824 .827 .825 .414 .425 .419
GM+Revised .905 .891 .898 .816 .835 .826 .408 .419 .414
ALL .903 .896 .899 .827 .827 .827 .502 .559 .529

(a) Results of SOTA models using data augmentation on task A.
Non-HS Non-Subtle HS Subtle HS

USE + SVM P R F1 P R F1 P R F1
RSA .891 .871 .881 .787 .832 .809 .800 .103 .182
AAV .891 .871 .881 .786 .831 .808 .571 .103 .174
RNE .891 .868 .879 .783 .831 .806 .571 .103 .174
RI .891 .868 .879 .782 .832 .806 .750 .077 .140
RA .891 .868 .879 .783 .832 .806 .800 .103 .182
EDA .892 .870 .881 .788 .828 .807 .263 .128 .172
BT .892 .868 .880 .789 .831 .809 .739 .436 .548
GM .891 .867 .879 .786 .827 .806 .269 .179 .215
GM+Revised .892 .866 .879 .785 .826 .805 .286 .205 .239
ALL .888 .874 .881 .797 .818 .807 .263 .256 .260

BERT P R F1 P R F1 P R F1
RSA .894 .911 .902 .840 .828 .834 .200 .051 .082
AAV .898 .896 .897 .824 .836 .830 .300 .154 .203
RNE .899 .895 .897 .826 .839 .833 .400 .256 .312
RI .899 .889 .894 .819 .840 .830 .240 .154 .188
RA .906 .893 .900 .823 .850 .836 .190 .103 .133
EDA .902 .885 .893 .813 .845 .829 .143 .077 .100
BT .898 .900 .899 .839 .832 .835 .304 .359 .329
GM .899 .899 .899 .836 .839 .837 .194 .154 .171
GM+Revised .903 .893 .898 .826 .843 .835 .206 .179 .192
ALL .904 .883 .893 .813 .845 .829 .385 .385 .385
DeBERTaV3 P R F1 P R F1 P R F1
RSA .922 .894 .908 .826 .879 .852 .333 .103 .157
AAV .910 .907 .908 .841 .858 .849 .267 .103 .148
RNE .923 .893 .907 .829 .881 .854 .261 .154 .194
RI .910 .894 .902 .828 .860 .843 .364 .205 .262
RA .923 .884 .903 .815 .883 .848 .188 .077 .109
EDA .924 .888 .905 .819 .882 .850 .188 .077 .109
BT .920 .897 .908 .835 .876 .855 .385 .256 .308
GM .911 .910 .911 .847 .860 .854 .316 .154 .207
GM+Revised .911 .902 .907 .837 .856 .846 .267 .205 .232
ALL .926 .881 .903 .817 .877 .846 .306 .385 .341
HateBERT P R F1 P R F1 P R F1
RSA .900 .893 .896 .823 .841 .832 .273 .154 .197
AAV .901 .894 .897 .823 .842 .832 .292 .179 .222
RNE .897 .894 .896 .823 .836 .829 .167 .103 .127
RI .906 .886 .896 .812 .852 .832 .176 .077 .107
RA .897 .892 .895 .816 .836 .826 .077 .026 .038
EDA .902 .890 .896 .819 .845 .832 .217 .128 .161
BT .909 .883 .896 .820 .848 .834 .207 .308 .247
GM .899 .898 .899 .831 .834 .832 .250 .231 .240
GM+Revised .894 .898 .896 .826 .826 .826 .192 .128 .154
ALL .903 .881 .892 .816 .844 .830 .391 .462 .424

(b) Results of SOTA models using data augmentation on task B.

Table 6: Obtained results on tasks A and B by all models and different types of augmented data.
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B Implicit Properties

In the following part, we provide a list of implicit
properties with their definitions. All the examples
illustrating implicit properties are used in implicit
hateful messages and their descriptions are pre-
sented in the annotation guidelines.

Antithesis – the rhetorical contrast of ideas
through parallel arrangements of words, clauses,
or sentences (as in "action, not words" or
"they promised freedom and provided slavery")
(Merriam-Webster, 2022)

Black humor – humor marked by the use of usu-
ally morbid, ironic, grotesquely comic episodes;
humor treating sinister subjects like death, disease,
deformity, handicap or warfare with bitter amuse-
ment (Willinger et al., 2017)

Circumlocution – the use of an unnecessarily
large number of words to express an idea (Merriam-
Webster, 2022)

Context – the parts of a discourse that surround a
word or passage and can throw light on its meaning
(Dadvar et al., 2013)

Euphemism – the substitution of an agreeable
or inoffensive expression for one that may suggest
something unpleasant (Casas Gómez, 2009)

Exaggeration (hyperbole) – an act or instance
of exaggerating something: overstatement of the
truth (Troiano et al., 2018)

Extralinguistic knowledge – any knowledge
that exists outside knowledge of the language. In
other words, it refers to knowledge that an author
or a recipient of a message may possess about the
message itself or about the world, but which is not
expressed by any linguistic means.

Fallacy – a false or mistaken idea; an often
plausible argument using false or invalid inference
(Merriam-Webster, 2022)

Humiliation – the embarrassment and shame
a person feels when someone makes them appear
stupid or when they make a mistake in public (Dic-
tionary, 2022)

Inference – something that is inferred. The
premises and conclusion of a process of inferring
(Merriam-Webster, 2022)

Irony – the use of words to express something
other than and especially the opposite of the literal
meaning; incongruity between the actual result of
a sequence of events and the normal or expected
result (Potamias et al., 2020)

Metaphor – a figure of speech in which a word
or phrase literally denoting one kind of object or

idea is used in place of another to suggest a likeness
or analogy between them (Choi et al., 2021; Gao
et al., 2018)

Metonymy – a figure of speech consisting of the
use of the name of one thing for that of another of
which it is an attribute or with which it is associated
(such as "crown" in "lands belonging to the crown")
(Merriam-Webster, 2022)

Rhetorical question – a question not intended to
require an answer, used mainly for dramatic effect
(Frank, 1990)

Sarcasm – a mode of satirical wit depending
on its effect on bitter, caustic, and often ironic lan-
guage usually directed against an individual. Sar-
casm differs from irony with one distinct character-
istic: negativity. Sarcasm is mostly witty mockery
having a negative connotation whereas irony does
not represent negativity (Potamias et al., 2020)

Sentiment – an attitude, thought, or judgment
prompted by feeling; the emotional significance of
a passage or expression as distinguished from its
verbal context (Li et al., 2021)

Synecdoche – a figure of speech by which a
part is put for the whole, the whole for a part, the
species for the genus, the genus for the species,
or the name of the material for the thing made
(Merriam-Webster, 2022)

Visual signs – punctuation marks, quotes, and
use of uppercase that play a role of support in hate
messages.

C Annotation Tool Interface

Figure 3a demonstrates a screenshot of the anno-
tation interface of the Label Studio tool used for
the labeling process. According to the annotation
scheme represented by three annotation layers (dis-
cussed in Section 3 and Subsection 4.2) Label Stu-
dio has three consecutive annotation steps. The first
step consists in implicitness with three choices: Im-
plicit HS, Explicit HS, Undecided, keeping in mind
that the tool allows to filter Non-Hate out before
starting the labeling process. The first choice of
Implicit HS or Explicit HS brings in the appearance
of the second step of subtlety with three choices:
Subtle, Non-Subtle, Undecided. This step does not
appear with an Undecided choice at the previous
step. As well as that, the choice of Implicit HS trig-
gers the appearance of the third step which consists
of implicit properties being characteristic of only
implicit messages. Figure 3b shows the shape of
the resultant dataset after annotation.
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(a) Annotation tool interface.

(b) Sample of the ISHate dataset after the annotation process.

Figure 3: Label Studio interface to enhance the 7 HS datasets described in Section 4 with three new additional
annotation layers: implicit_layer (Explicit HS/Implicit HS), subtlety_layer (Non-Subtle HS/Subtle HS), and
implicit_props_layer (Antithesis/Black humor/Context/etc.). The annotation layer hateful_layer (Non-HS/HS)
consists of the already provided labels of each HS corpus, with the exception of the Youtube dataset where we
re-annotated it.
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Abstract

Text embeddings are commonly evaluated on
a small set of datasets from a single task not
covering their possible applications to other
tasks. It is unclear whether state-of-the-art em-
beddings on semantic textual similarity (STS)
can be equally well applied to other tasks like
clustering or reranking. This makes progress in
the field difficult to track, as various models are
constantly being proposed without proper eval-
uation. To solve this problem, we introduce the
Massive Text Embedding Benchmark (MTEB).
MTEB spans 8 embedding tasks covering a to-
tal of 58 datasets and 112 languages. Through
the benchmarking of 33 models on MTEB, we
establish the most comprehensive benchmark
of text embeddings to date. We find that no
particular text embedding method dominates
across all tasks. This suggests that the field has
yet to converge on a universal text embedding
method and scale it up sufficiently to provide
state-of-the-art results on all embedding tasks.
MTEB comes with open-source code and a pub-
lic leaderboard at https://github.com/
embeddings-benchmark/mteb.

1 Introduction

Natural language embeddings power a variety of
use cases from clustering and topic representa-
tion (Aggarwal and Zhai, 2012; Angelov, 2020)
to search systems and text mining (Huang et al.,
2020; Zhu et al., 2021; Nayak, 2019) to feature
representations for downstream models (Saharia
et al., 2022; Borgeaud et al., 2022). Using gener-
ative language models or cross-encoders for these
applications is often intractable, as they may re-
quire exponentially more computations (Reimers
and Gurevych, 2019).

However, the evaluation regime of current text
embedding models rarely covers the breadth of
their possible use cases. For example, Sim-
CSE (Gao et al., 2021b) or SBERT (Reimers and

*Most of the work done while at Hugging Face

Gurevych, 2019) solely evaluate on STS and clas-
sification tasks, leaving open questions about the
transferability of the embedding models to search
or clustering tasks. STS is known to poorly corre-
late with other real-world use cases (Neelakantan
et al., 2022; Wang et al., 2021). Further, evaluating
embedding methods on many tasks requires imple-
menting multiple evaluation pipelines. Implemen-
tation details like pre-processing or hyperparam-
eters may influence the results making it unclear
whether performance improvements simply come
from a favorable evaluation pipeline. This leads to
the “blind” application of these models to new use
cases in industry or requires incremental work to
reevaluate them on different tasks.

The Massive Text Embedding Benchmark
(MTEB) aims to provide clarity on how models
perform on a variety of embedding tasks and thus
serves as the gateway to finding universal text em-
beddings applicable to a variety of tasks. MTEB
consists of 58 datasets covering 112 languages
from 8 embedding tasks: Bitext mining, classi-
fication, clustering, pair classification, reranking,
retrieval, STS and summarization. MTEB software
is available open-source1 enabling evaluation of
any embedding model by adding less than 10 lines
of code. Datasets and the MTEB leaderboard are
available on the Hugging Face Hub2.

We evaluate over 30 models on MTEB with addi-
tional speed and memory benchmarking to provide
a holistic view of the state of text embedding mod-
els. We cover both models available open-source
as well as models accessible via APIs, such as the
OpenAI Embeddings endpoint. We find there to be
no single best solution, with different models dom-
inating different tasks. Our benchmarking sheds
light on the weaknesses and strengths of individual

1https://github.com/
embeddings-benchmark/mteb

2https://huggingface.co/spaces/mteb/
leaderboard
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models, such as SimCSE’s (Gao et al., 2021b) low
performance on clustering and retrieval despite its
strong performance on STS. We hope our work
makes selecting the right embedding model easier
and simplifies future embedding research.

2 Related Work

2.1 Benchmarks

Benchmarks, such as (Super)GLUE (Wang et al.,
2018, 2019) or Big-BENCH (Srivastava et al.,
2022), and evaluation frameworks (Gao et al.,
2021a) play a key role in driving NLP progress.
Yearly released SemEval datasets (Agirre et al.,
2012, 2013, 2014, 2015, 2016) are commonly used
as the go-to benchmark for text embeddings. Se-
mEval datasets correspond to the task of semantic
textual similarity (STS) requiring models to embed
similar sentences with geometrically close embed-
dings. Due to the limited expressivity of a single Se-
mEval dataset, SentEval (Conneau and Kiela, 2018)
aggregates multiple STS datasets. SentEval focuses
on fine-tuning classifiers on top of embeddings. It
lacks tasks like retrieval or clustering, where em-
beddings are directly compared without additional
classifiers. Further, the toolkit was proposed in
2018 and thus does not provide easy support for
recent trends like text embeddings from transform-
ers (Reimers and Gurevych, 2019). Due to the
insufficiency of STS benchmarking, USEB (Wang
et al., 2021) was introduced consisting mostly of
reranking tasks. Consequently, it does not cover
tasks like retrieval or classification. Meanwhile, the
recently released BEIR Benchmark (Thakur et al.,
2021) has become the standard for the evaluation
of embeddings for zero-shot information retrieval.

MTEB unifies datasets from different embed-
ding tasks into a common, accessible evaluation
framework. MTEB incorporates SemEval datasets
(STS11 - STS22) and BEIR alongside a variety of
other datasets from various tasks to provide a holis-
tic performance review of text embedding models.

2.2 Embedding Models

Text embedding models like Glove (Pennington
et al., 2014) lack context awareness and are thus
commonly labeled as Word Embedding Models.
They consist of a layer mapping each input word
to a vector often followed by an averaging layer to
provide a final embedding invariant of input length.
Transformers (Vaswani et al., 2017) inject context
awareness into language models via self-attention

and form the foundation of most recent embed-
ding models. BERT (Devlin et al., 2018) uses the
transformer architecture and performs large-scale
self-supervised pre-training. The resulting model
can directly be used to produce text embeddings
via an averaging operation alike Glove. Build-
ing on InferSent (Conneau et al., 2017), SBERT
(Reimers and Gurevych, 2019) demonstrated it to
be beneficial to perform additional fine-tuning of
the transformer for competitive embedding perfor-
mance. Most recent fine-tuned embedding models
use a contrastive loss objective to perform super-
vised fine-tuning on positive and negative text pairs
(Gao et al., 2021b; Wang et al., 2021; Ni et al.,
2021b; Muennighoff, 2022). Due to the large va-
riety of available pre-trained transformers (Wolf
et al., 2020), there is an at least equally large va-
riety of potential text embedding models to be ex-
plored. This leads to confusion about which model
provides practitioners with the best performance
for their embedding use case.

We benchmark both word embedding and trans-
former models on MTEB quantifying gains pro-
vided by often much slower context aware models.

3 The MTEB Benchmark

3.1 Desiderata

MTEB is built on a set of desiderata: (a) Diversity:
MTEB aims to provide an understanding of the
usability of embedding models in various use cases.
The benchmark comprises 8 different tasks, with
up to 15 datasets each. Of the 58 total datasets in
MTEB, 10 are multilingual, covering 112 differ-
ent languages. Sentence-level and paragraph-level
datasets are included to contrast performance on
short and long texts. (b) Simplicity: MTEB pro-
vides a simple API for plugging in any model that
given a list of texts can produce a vector for each
list item with a consistent shape. This makes it
possible to benchmark a diverse set of models. (c)
Extensibility: New datasets for existing tasks can
be benchmarked in MTEB via a single file that
specifies the task and a Hugging Face dataset name
where the data has been uploaded (Lhoest et al.,
2021). New tasks require implementing a task in-
terface for loading the data and an evaluator for
benchmarking. We welcome dataset, task or metric
contributions from the community via pull requests
to continue the development of MTEB. (d) Repro-
ducibility: Through versioning at a dataset and
software level, we aim to make it easy to repro-
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Figure 1: An overview of tasks and datasets in MTEB. Multilingual datasets are marked with a purple shade.

duce results in MTEB. JSON files corresponding
to all results available in this paper have been made
available together with the MTEB benchmark3.

3.2 Tasks and Evaluation

Figure 1 provides an overview of tasks and datasets
available in MTEB. Dataset statistics are available
in Table 2. The benchmark consists of the follow-
ing 8 task types:

Bitext Mining Inputs are two sets of sentences
from two different languages. For each sentence
in the first set, the best match in the second set
needs to be found. The matches are commonly
translations. The provided model is used to embed
each sentence and the closest pairs are found via
cosine similarity. F1 serves as the main metric for
bitext mining. Accuracy, precision and recall are
also computed.

Classification A train and test set are embedded
with the provided model. The train set embeddings
are used to train a logistic regression classifier with
100 maximum iterations, which is scored on the
test set. The main metric is accuracy with average
precision and f1 additionally provided.

Clustering Given a set of sentences or para-
graphs, the goal is to group them into meaning-
ful clusters. A mini-batch k-means model with

3https://huggingface.co/datasets/mteb/
results

batch size 32 and k equal to the number of dif-
ferent labels (Pedregosa et al., 2011) is trained on
the embedded texts. The model is scored using
v-measure (Rosenberg and Hirschberg, 2007). V-
measure does not depend on the cluster label, thus
the permutation of labels does not affect the score.

Pair Classification A pair of text inputs is pro-
vided and a label needs to be assigned. Labels
are typically binary variables denoting duplicate
or paraphrase pairs. The two texts are embedded
and their distance is computed with various metrics
(cosine similarity, dot product, euclidean distance,
manhattan distance). Using the best binary thresh-
old accuracy, average precision, f1, precision and
recall are computed. The average precision score
based on cosine similarity is the main metric.

Reranking Inputs are a query and a list of rele-
vant and irrelevant reference texts. The aim is to
rank the results according to their relevance to the
query. The model is used to embed the references
which are then compared to the query using cosine
similarity. The resulting ranking is scored for each
query and averaged across all queries. Metrics are
mean MRR@k and MAP with the latter being the
main metric.

Retrieval Each dataset consists of a corpus,
queries and a mapping for each query to relevant
documents from the corpus. The aim is to find these
relevant documents. The provided model is used

2016
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Figure 2: Similarity of MTEB datasets. We use the best model on MTEB STS (ST5-XXL, see Table 1) to embed
100 samples for each dataset. Cosine similarities between the averaged embeddings are computed and visualized.

to embed all queries and all corpus documents and
similarity scores are computed using cosine simi-
larity. After ranking the corpus documents for each
query based on the scores, nDCG@k, MRR@k,
MAP@k, precision@k and recall@k are computed
for several values of k. nDCG@10 serves as the
main metric. MTEB reuses datasets and evaluation
from BEIR (Thakur et al., 2021).

Semantic Textual Similarity (STS) Given a sen-
tence pair the aim is to determine their similarity.
Labels are continuous scores with higher numbers
indicating more similar sentences. The provided
model is used to embed the sentences and their sim-
ilarity is computed using various distance metrics.
Distances are benchmarked with ground truth simi-
larities using Pearson and Spearman correlations.
Spearman correlation based on cosine similarity
serves as the main metric (Reimers et al., 2016).

Summarization A set of human-written and
machine-generated summaries are provided. The
aim is to score the machine summaries. The pro-
vided model is first used to embed all summaries.

For each machine summary embedding, distances
to all human summary embeddings are computed.
The closest score (e.g. highest cosine similarity)
is kept and used as the model’s score of a single
machine-generated summary. Pearson and Spear-
man correlations with ground truth human assess-
ments of the machine-generated summaries are
computed. Like for STS, Spearman correlation
based on cosine similarity serves as the main met-
ric (Reimers et al., 2016).

3.3 Datasets

To further the diversity of MTEB, datasets of vary-
ing text lengths are included. All datasets are
grouped into three categories:

Sentence to sentence (S2S) A sentence is com-
pared with another sentence. An example of S2S
are all current STS tasks in MTEB, where the simi-
larity between two sentences is assessed.

Paragraph to paragraph (P2P) A paragraph is
compared with another paragraph. MTEB imposes
no limit on the input length, leaving it up to the
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Class. Clust. PairClass. Rerank. Retr. STS Summ. Avg.
Num. Datasets (→) 12 11 3 4 15 10 1 56

Self-supervised methods

Glove 57.29 27.73 70.92 43.29 21.62 61.85 28.87 41.97
Komninos 57.65 26.57 72.94 44.75 21.22 62.47 30.49 42.06
BERT 61.66 30.12 56.33 43.44 10.59 54.36 29.82 38.33
SimCSE-BERT-unsup 62.50 29.04 70.33 46.47 20.29 74.33 31.15 45.45

Supervised methods

SimCSE-BERT-sup 67.32 33.43 73.68 47.54 21.82 79.12 23.31 48.72
coCondenser-msmarco 64.71 37.64 81.74 51.84 32.96 76.47 29.50 52.35
Contriever 66.68 41.10 82.53 53.14 41.88 76.51 30.36 56.00
SPECTER 52.37 34.06 61.37 48.10 15.88 61.02 27.66 40.28
LaBSE 62.71 29.55 78.87 48.42 18.99 70.80 31.05 45.21
LASER2 53.65 15.28 68.86 41.44 7.93 55.32 26.80 33.63
MiniLM-L6 63.06 42.35 82.37 58.04 41.95 78.90 30.81 56.26
MiniLM-L12 63.21 41.81 82.41 58.44 42.69 79.80 27.90 56.53
MiniLM-L12-multilingual 64.30 37.14 78.45 53.62 32.45 78.92 30.67 52.44
MPNet 65.07 43.69 83.04 59.36 43.81 80.28 27.49 57.78
MPNet-multilingual 67.91 38.40 80.81 53.80 35.34 80.73 31.57 54.71
Ada Similarity 70.44 37.52 76.86 49.02 78.60 26.94
SGPT-125M-nli 61.46 30.95 71.78 47.56 20.90 74.71 30.26 45.97
SGPT-5.8B-nli 70.14 36.98 77.03 52.33 32.34 80.53 30.38 53.74
SGPT-125M-msmarco 60.72 35.79 75.23 50.58 37.04 73.41 28.90 51.23
SGPT-1.3B-msmarco 66.52 39.92 79.58 54.00 44.49 75.74 25.44 56.11
SGPT-2.7B-msmarco 67.13 39.83 80.65 54.67 46.54 76.83 27.87 57.12
SGPT-5.8B-msmarco 68.13 40.35 82.00 56.56 50.25 78.10 24.75 58.81
SGPT-BLOOM-7.1B-msmarco 66.19 38.93 81.90 55.65 48.21 77.74 24.99 57.44
GTR-Base 65.25 38.63 83.85 54.23 44.67 77.07 29.67 56.19
GTR-Large 67.14 41.60 85.33 55.36 47.42 78.19 29.50 58.28
GTR-XL 67.11 41.51 86.13 55.96 47.96 77.80 30.21 58.42
GTR-XXL 67.41 42.42 86.12 56.65 48.48 78.38 30.64 58.97
ST5-Base 69.81 40.21 85.17 53.09 33.63 81.14 31.39 55.27
ST5-Large 72.31 41.65 84.97 54.00 36.71 81.83 29.64 57.06
ST5-XL 72.84 42.34 86.06 54.71 38.47 81.66 29.91 57.87
ST5-XXL 73.42 43.71 85.06 56.43 42.24 82.63 30.08 59.51

Table 1: Average of the main metric (see Section 3.2) per task per model on MTEB English subsets.

models to truncate if necessary. Several clustering
tasks are framed as both S2S and P2P tasks. The
former only compare titles, while the latter include
both title and content. For ArxivClustering, for
example, abstracts are concatenated to the title in
the P2P setting.

Sentence to paragraph (S2P) A few retrieval
datasets are mixed in a S2P setting. Here a query
is a single sentence, while documents are long
paragraphs consisting of multiple sentences.

Similarities across 56 MTEB datasets are vi-
sualized in Figure 2. Several datasets rely on
the same corpora, such as ClimateFEVER and
FEVER, resulting in a score of 1. Clusters of simi-
lar datasets can be seen among CQADupstack vari-

ations and STS datasets. S2S and P2P variations of
the same dataset tend to also be similar. Scientific
datasets, such as SciDocsRR, SciFact, ArxivClus-
tering, show high similarities among each other
even when coming from different tasks (Reranking,
Retrieval and Clustering in this case).

4 Results

4.1 Models

We evaluate on the test splits of all datasets except
for MSMARCO, where the dev split is used follow-
ing Thakur et al. (2021). We benchmark models
claiming state-of-the-art results on various embed-
ding tasks leading to a high representation of trans-
formers (Vaswani et al., 2017). We group models
into self-supervised and supervised methods.
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Figure 3: MTEB performance scales with model size.
The smallest SGPT variant underperforms similar-sized
GTR and ST5 variants. This may be due to the bias-only
fine-tuning SGPT employs, which catches up with full
fine-tuning only as model size and thus the number of
bias parameters increases (Muennighoff, 2022).

Self-supervised methods (a) Transformer-
based BERT (Devlin et al., 2018) is trained using
self-supervised mask and sentence prediction tasks.
By taking the mean across the sequence length
(mean-pooling) the model can directly be used
to produce text embeddings. SimCSE-Unsup
(Gao et al., 2021b) uses BERT as a foundation
and performs additional self-supervised training.
(b) Non-transformer: Komninos (Komninos
and Manandhar, 2016) and Glove (Pennington
et al., 2014) are two word embedding models
that directly map words to vectors. Hence, their
embeddings lack context awareness, but provide
significant speed-ups.

Supervised methods The original transformer
model (Vaswani et al., 2017) consists of an encoder
and decoder network. Subsequent transformers
often train only encoders like BERT (Devlin et al.,
2018) or decoders like GPT (Radford et al., 2019).

(a) Transformer encoder methods coCon-
denser (Gao and Callan, 2021), Contriever (Izac-
ard et al., 2021), LaBSE (Feng et al., 2020) and

SimCSE-BERT-sup (Gao et al., 2021b) are based
on the pre-trained BERT model (Devlin et al.,
2018). coCondenser and Contriever add a self-
supervised stage prior to supervised fine-tuning
for a total of three training stages. LaBSE uses
BERT to perform additional pre-training on par-
allel data to produce a competitive bitext mining
model. SPECTER (Cohan et al., 2020a) relies on
the pre-trained SciBERT (Beltagy et al., 2019) vari-
ant instead and fine-tunes on citation graphs. GTR
(Ni et al., 2021b) and ST5 (Ni et al., 2021a) are
based on the encoder part of the T5 model (Raf-
fel et al., 2020) and only differ in their fine-tuning
datasets. After additional self-supervised training,
ST5 does contrastive fine-tuning on NLI (Ni et al.,
2021a; Gao et al., 2021b) being geared towards
STS tasks. Meanwhile, GTR fine-tunes on MS-
MARCO and focuses on retrieval tasks. MPNet
and MiniLM correspond to fine-tuned embedding
models (Reimers and Gurevych, 2019) of the pre-
trained MPNet (Song et al., 2020) and MiniLM
(Wang et al., 2020) models using diverse datasets
to target any embedding use case.

(b) Transformer decoder methods SGPT Bi-
Encoders (Muennighoff, 2022) perform contrastive
fine-tuning of <0.1% of pre-trained parameters us-
ing weighted-mean pooling. Similar to ST5 and
GTR, SGPT-nli models are geared towards STS,
while SGPT-msmarco models towards retrieval.
SGPT-msmarco models embed queries and doc-
uments for retrieval with different special tokens
to help the model distinguish their role. For non-
retrieval tasks, we use its query representations.
We benchmark publicly available SGPT models
based on GPT-NeoX (Andonian et al., 2021), GPT-
J (Wang and Komatsuzaki, 2021) and BLOOM
(Scao et al., 2022). Alternatively, cpt-text (Nee-
lakantan et al., 2022) passes pre-trained GPT de-
coders through a two-stage process using last token
pooling to provide embeddings from decoders. We
benchmark their models via the OpenAI Embed-
dings API4.

(c) Non-transformer LASER (Heffernan et al.,
2022) is the only context aware non-transformer
model we benchmark, relying on an LSTM
(Hochreiter and Schmidhuber, 1997) instead. Simi-
lar to LaBSE, the model trains on parallel data and
focuses on bitext mining applications.

4https://beta.openai.com/docs/guides/
embeddings
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models. Embedding sizes range from 1.2 kB (Glove / Komninos) to 16.4 kB (SGPT-5.8B) per example. Speed was
benchmarked on STS15 using 1x Nvidia A100 80GB with CUDA 11.6.

4.2 Analysis

Based on the results in Table 1, we observe that
there is considerable variability between tasks. No
model claims the state-of-the-art in all seven En-
glish tasks. There is even more variability in the
results per dataset present in the appendix. Further,
there remains a large gap between self-supervised
and supervised methods. Self-supervised large lan-
guage models have been able to close this gap in
many natural language generation tasks (Chowd-
hery et al., 2022). However, they appear to still
require supervised fine-tuning for competitive em-
bedding performance.

We find that performance strongly correlates
with model size, see Figure 3. A majority of
MTEB tasks are dominated by multi-billion param-
eter models. However, these come at a significant
cost as we investigate in Section 4.3.

Classification ST5 models dominate the classifi-
cation task across most datasets, as can be seen in
detail in the full results in the appendix. ST5-XXL
has the highest average performance, 3% ahead of
the best non-ST5 model, Ada Similarity.

Clustering Despite being almost 50x smaller, the
MPNet embedding model is on par with the ST5-

XXL state-of-the-art on Clustering. This may be
due to the large variety of datasets MPNet (and
MiniLM) has been fine-tuned on. Clustering re-
quires coherent distances between a large number
of embeddings. Models like SimCSE-sup or SGPT-
nli, which are only fine-tuned on a single dataset,
NLI, may produce incoherent embeddings when
encountering topics unseen during fine-tuning. Re-
latedly, we find that the query embeddings of SGPT-
msmarco and the Ada Search endpoint are competi-
tive with SGPT-nli and the Ada Similarity endpoint,
respectively. We refer to the public leaderboard5

for Ada Search results. This could be due to the
MSMARCO dataset being significantly larger than
NLI. Thus, while the OpenAI docs recommend us-
ing the similarity embeddings for clustering use
cases6, the retrieval query embeddings may be the
better choice in some cases.

Pair Classification GTR-XL and GTR-XXL
have the strongest performance. Pair classifica-
tion is closest to STS in its framing, yet models
rank significantly differently on the two tasks. This

5https://huggingface.co/spaces/mteb/
leaderboard

6https://beta.openai.com/docs/guides/
embeddings/similarity-embeddings

2020

https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://beta.openai.com/docs/guides/embeddings/similarity-embeddings
https://beta.openai.com/docs/guides/embeddings/similarity-embeddings


de
u-e

ng

mal-
en

g

no
b-e

ng

spa
-en

g

ep
o-e

ng
tur

-en
g

tel
-en

g

po
l-e

ng

vie
-en

g

hrv
-en

g

ron
-en

g

hin
-en

g

glg
-en

g

sqi
-en

g

ces
-en

g

est
-en

g

hu
n-e

ng
slk

-en
g

lit-
en

g
fin

-en
g

afr
-en

g

tha
-en

g

nld
-en

g
slv

-en
g

tgl
-en

g

mon
-en

g

lvs
-en

g

da
n-e

ng

sw
e-e

ng

zsm
-en

g

cat
-en

g

jpn
-en

g

ina
-en

g
ell-

en
g

cm
n-e

ng

kat
-en

g

eu
s-e

ng

be
l-e

ng

aze
-en

g

bo
s-e

ng
fra

-en
g

isl-
en

g

pe
s-e

ng

bu
l-e

ng

nn
o-e

ng

srp
-en

g

po
r-e

ng

hy
e-e

ng

uk
r-e

ng

gle
-en

g

rus
-en

g

ind
-en

g

mkd
-en

g

urd
-en

g
ita

-en
g

mar-
en

g

uig
-en

g

cym
-en

g

xh
o-e

ng

he
b-e

ng

am
h-e

ng

kor
-en

g

ast
-en

g

wuu
-en

g

yu
e-e

ng

ido
-en

g
fry

-en
g

tam
-en

g

ara
-en

g

yid
-en

g

be
n-e

ng

kaz
-en

g

fao
-en

g

tat
-en

g

gla
-en

g
ile-

en
g

sw
h-e

ng

uzb
-en

g

kur
-en

g
lat

-en
g

jav
-en

g

cbk
-en

g

nd
s-e

ng

kh
m-en

g

arz
-en

g

tuk
-en

g

no
v-e

ng

aw
a-e

ng
lfn

-en
g

hsb
-en

g

oci
-en

g

dsb
-en

g

pm
s-e

ng

ceb
-en

g

max
-en

g

war-
en

g

sw
g-e

ng

an
g-e

ng
tzl-

en
g

csb
-en

g

gsw
-en

g

arq
-en

g

orv
-en

g

cha
-en

g

mhr-
en

g

bre
-en

g
kzj

-en
g

dtp
-en

g

pa
m-en

g

cor
-en

g

be
r-e

ng

kab
-en

g

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

LaBSE
LASER2
MiniLM-L12-multilingual
MPNet-multilingual
SGPT-BLOOM-7.1B-msmarco

(a) Bitext Mining on Tatoeba

en hi
zh-

CN pt id es th it fr ru de fa sv vi
zh-

TW nl ms da pl tr sq el ro hu sl ko fi ja nb ml lv he ur bn ar te af ta hy my az mn is kn tl jv sw ka km am cy zh

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

(b) Multilingual Classification

ko fr es en ar it zh ru tr de pl
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Co
s. 

Si
m

. S
pe

ar
m

an
 C

or
r.

fr-e
n

en
-ar

en
-de it-e

n
es-

en
nl-

en
pl-

en
zh-

en en
-tr es-

it
fr-p

l
de

-fr
de

-en de
-pl

(c) Multi- and Crosslingual STS

Figure 5: MTEB multilingual performance. Bitext mining is dominated by LaBSE, while classification and STS
results are mixed. SGPT-BLOOM-7B1-msmarco tends to perform well on the languages BLOOM has been pre-
trained on, such as Chinese, French and Portuguese.

highlights the importance of benchmarking on a
diverse set of tasks to avoid blindly reusing a model
for a different task.

Reranking MPNet and MiniLM models perform
strongly on reranking tasks. On SciDocsRR (Co-
han et al., 2020a) they perform far better than big-
ger models, which is likely due to parts of Sci-
DocsRR being included in their training data. Our
scale of experiments and that of model pre-training
make controlling for data contamination challeng-
ing. Thus, we ignore overlap of MTEB datasets
with model training datasets in MTEB scores. As
long as enough datasets are averaged, we believe
these effects to be insignificant.

Retrieval SGPT-5.8B-msmarco is the best em-
bedding model on the BEIR subset in MTEB
as well as on the full BEIR benchmark (Thakur
et al., 2021; Muennighoff, 2022). The even larger
7.1B SGPT model making use of BLOOM (Scao
et al., 2022) performs significantly weaker, which
is likely due to the multilinguality of BLOOM.
Models geared towards STS (SimCSE, ST5, SGPT-
nli) perform badly on retrieval tasks. Retrieval
tasks are unique in that there are two distinct types
of texts: Queries and documents (“asymmetric”),
while other tasks only have a single type of text
(“symmetric”). On the QuoraRetrieval dataset,
which has been shown to be largely symmetric
(Muennighoff, 2022), the playing field is more
even with SGPT-5.8B-nli outperforming SGPT-
5.8B-msmarco, see Table 11.

STS & Summarization Retrieval models (GTR,
SGPT-msmarco) perform badly on STS, while ST5-
XXL has the highest performance. This highlights
the bifurcation of the field into separate embedding
models for retrieval (asymmetric) and similarity
(symmetric) use cases (Muennighoff, 2022).

4.3 Efficiency
We investigate the latency-performance trade-off
of models in Figure 4. The graph allows for signifi-
cant elimination of model candidates in the model
selection process. It brings model selection down
to three clusters:

Maximum speed Word Embedding models offer
maximum speed with Glove taking the lead on both
performance and speed, thus making the choice
simple in this case.

Maximum performance If latency is less im-
portant than performance, the left-hand side of the
graph offers a cluster of highly performant, but
slow models. Depending on the task at hand, GTR-
XXL, ST5-XXL or SGPT-5.8B may be the right
choice, see Section 4.2. SGPT-5.8B comes with
the additional caveat of its high-dimensional em-
beddings requiring more storage.

Speed and performance The fine-tuned MPNet
and MiniLM models lead the middle cluster mak-
ing the choice easy.

4.4 Multilinguality
MTEB comes with 10 multilingual datasets across
bitext mining, classification and STS tasks. We in-

2021



vestigate performance on these in Figure 5. Tabular
results can be found in Tables 12, 13 and 14.

Bitext Mining LaBSE (Feng et al., 2020) per-
forms strongly across a wide array of languages in
bitext mining. Meanwhile, LASER2 shows high
variance across different languages. While there
are additional language-specific LASER2 models
available for some of the languages we benchmark,
we use the default multilingual LASER2 model
for all languages. This is to provide a fair one-to-
one comparison of models. In practice, however,
the high variance of LASER2’s performance may
be resolved by mixing its model variants. MP-
Net, MiniLM and SGPT-BLOOM-7B1-msmarco
perform poorly on languages they have not been
pre-trained on, such as German for the latter.

Classification & STS On multilingual classifi-
cation and STS, the multilingual MPNet provides
the overall strongest performance. It outperforms
the slightly faster multilingual MiniLM on almost
all languages. Both models have been trained
on the same languages, thus bringing decision-
making down to performance vs speed. SGPT-
BLOOM-7B1-msmarco provides state-of-the-art
performance on languages like Hindi, Portuguese,
Chinese or French, which the model has seen ex-
tensively during pre-training. It also performs com-
petitively on languages like Russian or Japanese
that unintentionally leaked into its pre-training
data (Muennighoff et al., 2022). However, it is not
much ahead of the much cheaper MPNet. LASER2
performs consistently worse than other models.

5 Conclusion

In this work, we presented the Massive Text Em-
bedding Benchmark (MTEB). Consisting of 8 text
embedding tasks with up to 15 datasets each and
covering 112 languages, MTEB aims to provide re-
liable embedding performance estimates. By open-
sourcing MTEB alongside a leaderboard, we pro-
vide a foundation for further pushing the state-of-
the-art of available text embeddings.

To introduce MTEB, we have conducted the
most comprehensive benchmarking of text embed-
dings to date. Through the course of close to 5,000
experiments on over 30 different models, we have
set up solid baselines for future research to build
on. We found model performance on different tasks
to vary strongly with no model claiming state-of-
the-art on all tasks. Our studies on scaling behav-

ior, model efficiency and multilinguality revealed
various intricacies of models that should ease the
decision-making process for future research or in-
dustry applications of text embeddings.

We welcome task, dataset or metric contributions
to the MTEB codebase7 as well as additions to the
leaderboard via our automatic submission format8.

6 Limitations of MTEB

While MTEB aims to be a diverse benchmark to
provide holistic performance reviews, the bench-
mark has its limitations. We list them here:

1. Long document datasets MTEB covers mul-
tiple text lengths (S2S, P2P, S2P), but very long
documents are still missing. The longest datasets in
MTEB have a few hundred words, and longer text
sizes could be relevant for use cases like retrieval.

2. Task imbalance Tasks in MTEB have a differ-
ent amount of datasets with summarization consist-
ing of only a single dataset. This means MTEB av-
erage scores, which are computed over all datasets,
are biased towards tasks with many datasets, no-
tably retrieval, classification and clustering. As
MTEB grows, we hope to add more datasets to cur-
rently underrepresented tasks like summarization
or pair classification.

3. Multinguality MTEB contains multilingual
classification, STS and bitext mining datasets.
However, retrieval and clustering are English-only.
SGPT-BLOOM-7B1-msmarco is geared towards
multilingual retrieval datasets and due to the lack
thereof cannot be comprehensively benchmarked
in MTEB. Further, MTEB does not contain any
code datasets that could be used to benchmark code
models (Neelakantan et al., 2022; Allal et al., 2023).
It should be easy to extend MTEB with datasets,
such as CodeSearchNet (Husain et al., 2019), TyDI
QA (Clark et al., 2020), XOR QA (Asai et al., 2020)
or MIRACL (Zhang et al., 2022).

4. Additional modalities Text embeddings are
commonly used as input features for downstream
models, such as in our classification task. This
can involve other modalities, notably image con-
tent (Carvalho et al., 2018; Tan and Bansal, 2019;
Muennighoff, 2020; Nichol et al., 2021; Saharia

7https://github.com/
embeddings-benchmark/mteb

8https://huggingface.co/spaces/mteb/
leaderboard

2022

https://github.com/embeddings-benchmark/mteb
https://github.com/embeddings-benchmark/mteb
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard


et al., 2022; Weinbach et al., 2022). We have fo-
cused solely on natural language applications and
leave extensive benchmarking of text embeddings
as inputs for other modalities to future work.
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A Datasets

Table 2 provides a summary along with statistics of
all MTEB tasks. In the following, we give a brief
description of each dataset included in MTEB.

A.1 Clustering

ArxivClusteringS2S, ArxivClusteringP2P,
BiorxivClusteringS2S, BiorxivClusteringP2P,
MedrxivClusteringP2P, MedrxivCluster-
ingS2S These datasets are custom-made for
MTEB using the public APIs from arXiv9 and
bioRxiv/medRxiv10. For S2S datasets, the input
text is simply the title of the paper, while for
P2P the input text is the concatenation of the
title and the abstract. The cluster labels are
generated using categories given to the papers by
humans. For bioRxiv and medRxiv this category
is unique, but for arXiv multiple categories can
be given to a single paper so we only use the
first one. For bioRxiv and medRxiv there is
only one level of category (e.g. biochemistry,
genetics, microbiology, etc.) hence we only
perform clustering based on that label. For arXiv
there is a main category and secondary category:
for example "cs.AI" means the main category is
Computer Science and the sub-category is AI,
math.AG means the main category is Mathematics
and the sub-category is Algrebraic Geometry etc.
Hence, we create three types of splits:

(a) Main category clustering Articles are only
clustered based on the main category (Math,
Physics, Computer Science etc.). This split evalu-
ates coarse clustering capacity of a model.

(b) Secondary category clustering within the
same main category Articles are clustered based
on their secondary category, but within a given
main category, for example only Math papers that
need to be clustered into Algebraic Geometry,
Functional Analysis, Numerical Analysis etc. This
split evaluates fine-grained clustering capacity of a
model, as differentiating some sub-categories can
be very difficult.

(c) Secondary category clustering Articles are
clustered based on their secondary category for all
main categories, so the labels can be Number The-
ory, Computational Complexity, Astrophysics of
Galaxies etc. These splits evaluate fine-grained

9https://arxiv.org/help/api/
10https://api.biorxiv.org/

clustering capacity, as well as multi-scale capac-
ities i.e. is a model able to both separate Maths
from Physics as well as Probability from Algebraic
Topology at the same time.

For every dataset, split and strategy, we select
subsets of all labels and then sample articles from
those labels. This yields splits with a varying
amount and size of clusters.

RedditClustering (Geigle et al., 2021): Cluster-
ing of titles from 199 subreddits. Clustering of 25
splits, each with 10-50 classes, and each class with
100 - 1000 sentences

RedditClusteringP2P Dataset created for
MTEB using available data from Reddit posts11.
The task consists of clustering the concatenation of
title+post according to their subreddit. It contains
10 splits, with 10 and 100 clusters per split and
1,000 to 100,000 posts.

StackExchangeClustering (Geigle et al., 2021)
Clustering of titles from 121 stackexchanges. Clus-
tering of 25 splits, each with 10-50 classes, and
each class with 100-1000 sentences.

StackExchangeClusteringP2P Dataset created
for MTEB using available data from StackEx-
change posts12. The task consists of clustering
the concatenation of title and post according to
their subreddit. It contains 10 splits, with 10 to 100
clusters and 5,000 to 10,000 posts per split.

TwentyNewsgroupsClustering13 Clustering of
the 20 Newsgroups dataset, given titles of article
the goal is to find the newsgroup (20 in total). Con-
tains 10 splits, each with 20 classes, with each split
containing between 1,000 and 10,000 titles.

A.2 Classification

AmazonCounterfactual (O’Neill et al., 2021) A
collection of Amazon customer reviews annotated
for counterfactual detection pair classification. For
each review the label is either "counterfactual" or
"not-counterfactual". This is a multilingual dataset
with 4 available languages.

11https://huggingface.co/datasets/
sentence-transformers/reddit-title-body

12https://huggingface.co/datasets/
flax-sentence-embeddings/stackexchange_
title_body_jsonl

13https://scikit-learn.org/0.19/
datasets/twenty_newsgroups.html
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Name Type Categ. #Lang. Train Dev Test Train avg. Dev avg. Test avg.
Samples Samples Samples chars chars chars

BUCC BitextMining s2s 4 0 0 641684 0 0 101.3
Tatoeba BitextMining s2s 112 0 0 2000 0 0 39.4

AmazonCounterfactualClassification Classification s2s 4 4018 335 670 107.3 109.2 106.1
AmazonPolarityClassification Classification p2p 1 3600000 0 400000 431.6 0 431.4
AmazonReviewsClassification Classification s2s 6 1200000 30000 30000 160.5 159.2 160.4
Banking77Classification Classification s2s 1 10003 0 3080 59.5 0 54.2
EmotionClassification Classification s2s 1 16000 2000 2000 96.8 95.3 96.6
ImdbClassification Classification p2p 1 25000 0 25000 1325.1 0 1293.8
MassiveIntentClassification Classification s2s 51 11514 2033 2974 35.0 34.8 34.6
MassiveScenarioClassification Classification s2s 51 11514 2033 2974 35.0 34.8 34.6
MTOPDomainClassification Classification s2s 6 15667 2235 4386 36.6 36.5 36.8
MTOPIntentClassification Classification s2s 6 15667 2235 4386 36.6 36.5 36.8
ToxicConversationsClassification Classification s2s 1 50000 0 50000 298.8 0 296.6
TweetSentimentExtractionClassification Classification s2s 1 27481 0 3534 68.3 0 67.8

ArxivClusteringP2P Clustering p2p 1 0 0 732723 0 0 1009.9
ArxivClusteringS2S Clustering s2s 1 0 0 732723 0 0 74.0
BiorxivClusteringP2P Clustering p2p 1 0 0 75000 0 0 1666.2
BiorxivClusteringS2S Clustering s2s 1 0 0 75000 0 0 101.6
MedrxivClusteringP2P Clustering p2p 1 0 0 37500 0 0 1981.2
MedrxivClusteringS2S Clustering s2s 1 0 0 37500 0 0 114.7
RedditClustering Clustering s2s 1 0 420464 420464 0 64.7 64.7
RedditClusteringP2P Clustering p2p 1 0 0 459399 0 0 727.7
StackExchangeClustering Clustering s2s 1 0 417060 373850 0 56.8 57.0
StackExchangeClusteringP2P Clustering p2p 1 0 0 75000 0 0 1090.7
TwentyNewsgroupsClustering Clustering s2s 1 0 0 59545 0 0 32.0

SprintDuplicateQuestions PairClassification s2s 1 0 101000 101000 0 65.2 67.9
TwitterSemEval2015 PairClassification s2s 1 0 0 16777 0 0 38.3
TwitterURLCorpus PairClassification s2s 1 0 0 51534 0 0 79.5

AskUbuntuDupQuestions Reranking s2s 1 0 0 2255 0 0 52.5
MindSmallReranking Reranking s2s 1 231530 0 107968 69.0 0 70.9
SciDocsRR Reranking s2s 1 0 19594 19599 0 69.4 69.0
StackOverflowDupQuestions Reranking s2s 1 23018 3467 3467 49.6 49.8 49.8

ArguAna Retrieval p2p 1 0 0 10080 0 0 1052.9
ClimateFEVER Retrieval s2p 1 0 0 5418128 0 0 539.1
CQADupstackAndroidRetrieval Retrieval s2p 1 0 0 23697 0 0 578.7
CQADupstackEnglishRetrieval Retrieval s2p 1 0 0 41791 0 0 467.1
CQADupstackGamingRetrieval Retrieval s2p 1 0 0 46896 0 0 474.7
CQADupstackGisRetrieval Retrieval s2p 1 0 0 38522 0 0 991.1
CQADupstackMathematicaRetrieval Retrieval s2p 1 0 0 17509 0 0 1103.7
CQADupstackPhysicsRetrieval Retrieval s2p 1 0 0 39355 0 0 799.4
CQADupstackProgrammersRetrieval Retrieval s2p 1 0 0 33052 0 0 1030.2
CQADupstackStatsRetrieval Retrieval s2p 1 0 0 42921 0 0 1041.0
CQADupstackTexRetrieval Retrieval s2p 1 0 0 71090 0 0 1246.9
CQADupstackUnixRetrieval Retrieval s2p 1 0 0 48454 0 0 984.7
CQADupstackWebmastersRetrieval Retrieval s2p 1 0 0 17911 0 0 689.8
CQADupstackWordpressRetrieval Retrieval s2p 1 0 0 49146 0 0 1111.9
DBPedia Retrieval s2p 1 0 4635989 4636322 0 310.2 310.1
FEVER Retrieval s2p 1 0 0 5423234 0 0 538.6
FiQA2018 Retrieval s2p 1 0 0 58286 0 0 760.4
HotpotQA Retrieval s2p 1 0 0 5240734 0 0 288.6
MSMARCO Retrieval s2p 1 0 8848803 8841866 0 336.6 336.8
MSMARCOv2 Retrieval s2p 1 138641342 138368101 0 341.4 342.0 0
NFCorpus Retrieval s2p 1 0 0 3956 0 0 1462.7
NQ Retrieval s2p 1 0 0 2684920 0 0 492.7
QuoraRetrieval Retrieval s2s 1 0 0 532931 0 0 62.9
SCIDOCS Retrieval s2p 1 0 0 26657 0 0 1161.9
SciFact Retrieval s2p 1 0 0 5483 0 0 1422.3
Touche2020 Retrieval s2p 1 0 0 382594 0 0 1720.1
TRECCOVID Retrieval s2p 1 0 0 171382 0 0 1117.4

BIOSSES STS s2s 1 200 200 200 156.6 156.6 156.6
SICK-R STS s2s 1 19854 19854 19854 46.1 46.1 46.1
STS12 STS s2s 1 4468 0 6216 100.7 0 64.7
STS13 STS s2s 1 0 0 3000 0 0 54.0
STS14 STS s2s 1 0 0 7500 0 0 54.3
STS15 STS s2s 1 0 0 6000 0 0 57.7
STS16 STS s2s 1 0 0 2372 0 0 65.3
STS17 STS s2s 11 0 0 500 0 0 43.3
STS22 STS p2p 18 0 0 8060 0 0 1992.8
STSBenchmark STS s2s 1 11498 3000 2758 57.6 64.0 53.6

SummEval Summarization p2p 1 0 0 2800 0 0 359.8

Table 2: Tasks in MTEB

AmazonPolarity (McAuley and Leskovec,
2013) A collection of Amazon customer reviews
annotated for polarity classification. For each
review the label is either "positive" or "negative".

AmazonReviews (McAuley and Leskovec,
2013) A collection of Amazon reviews designed
to aid research in multilingual text classification.
For each review the label is the score given by
the review between 0 and 4 (1-5 stars). This is a
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multilingual dataset with 6 available languages.

Banking77 (Casanueva et al., 2020) Dataset com-
posed of online banking queries annotated with
their corresponding intents. For each user query
the label is an intent among 77 intents like ’acti-
vate_my_card’, ’apple_pay’, ’bank_transfer’, etc.

Emotion (Saravia et al., 2018) Dataset of English
Twitter messages with six basic emotions: anger,
fear, joy, love, sadness, and surprise.

Imdb (Maas et al., 2011) Large movie review
dataset with labels being positive or negative.

MassiveIntent (FitzGerald et al., 2022) A col-
lection of Amazon Alexa virtual assistant utter-
ances annotated with the associated intent. For
each user utterance the label is one of 60 intents
like ’play_music’, ’alarm_set’, etc. This is a multi-
lingual dataset with 51 available languages.

MassiveScenario (FitzGerald et al., 2022) A col-
lection of Amazon Alexa virtual assistant utter-
ances annotated with the associated intent. For
each user utterance the label is a theme among 60
scenarios like ’music’, ’weather’, etc. This is a
multilingual dataset with 51 available languages.

MTOPDomain / MTOPIntent Multilingual sen-
tence datasets from the MTOP (Li et al., 2020)
benchmark. We refer to their paper for details.

ToxicConversations Dataset from Kaggle com-
petition14. Collection of comments from the Civil
Comments platform together with annotations if
the comment is toxic or not.

TweetSentimentExtraction Dataset from Kag-
gle competition15. Sentiment classification of
tweets as neutral, positive or negative.

A.3 Pair Classification
SprintDuplicateQuestions (Shah et al., 2018):
Collection of questions from the Sprint commu-
nity. The goal is to classify a pair of sentences as
duplicates or not.

TwitterSemEval2015 (Xu et al., 2015)
Paraphrase-Pairs of Tweets from the SemEval
2015 workshop. The goal is to classify a pair of
tweets as paraphrases or not.

14https://www.kaggle.com/competitions/
jigsaw-unintended-bias-in-toxicity-classification/
overview

15https://www.kaggle.com/competitions/
tweet-sentiment-extraction/overview

TwitterURLCorpus (Lan et al., 2017)
Paraphrase-Pairs of Tweets. The goal is to
classify a pair of tweets as paraphrases or not.

A.4 Bitext Mining

BUCC (Zweigenbaum et al., 2016, 2017, 2018)
BUCC provides big set of sentences (∼ 10-70k
each) for English, French, Russian, German and
Chinese, along with associated pairs annotation.
The annotated pairs here corresponds to a pairs of
translated sentences, i.e. a sentence and its transla-
tion in the other language.

Tatoeba (Research) Tatoeba provides sets of sen-
tences (1000 sentences each) for 112 languages
with annoated associated pairs. Each pair is one
sentence and its translation in another language.

A.5 Reranking

AskUbuntuDupQuestions16 Questions from
AskUbuntu with manual annotations marking pairs
of questions as similar or dissimilar.

MindSmall (Wu et al., 2020) Large-scale En-
glish Dataset for News Recommendation Research.
Ranking news article titles given the title of a news
article. The idea is to recommend other news from
the one you are reading.

SciDocsRR (Cohan et al., 2020b) Ranking of
related scientific papers based on their title.

StackOverflowDupQuestions (Liu et al., 2018)
Stack Overflow Duplicate Questions Task for ques-
tions with the tags Java, JavaScript and Python,
ranking questions as duplicates or not.

A.6 Semantic Textual Similarity (STS)

STS12, STS13, STS14, STS15, STS16, STS17,
STS22, STSBenchmark (Agirre et al., 2012,
2013)17181920 Original STS benchmark, with
scores from 0 to 5. The selection of sentences
includes text from image captions, news headlines
and user forums. In total they contain between
1,000 and 20,000 sentences. STS12 - STS16 and

16https://github.com/taolei87/askubuntu
17https://alt.qcri.org/semeval2014/

task10/
18https://alt.qcri.org/semeval2015/

task2/
19https://alt.qcri.org/semeval2016/

task1/
20https://competitions.codalab.org/

competitions/33835
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STSBenchmark are monolingual english bench-
marks. STS17 and STS22 contain crosslingual
pairs of sentences, where the goal is to assess the
similarity of two sentences in different languages.
STS17 has 11 language pairs (among Korean, Ara-
bic, English, French, German, Turkish, Spanish,
Italian and Dutch) and STS22 has 18 language pairs
(among Arabic, English, French, German, Turkish,
Spanish, Polish, Italian, Russian and Chinese).

BIOSSES21 Contains 100 sentence pairs from
the biomedical field.

SICK-R (Agirre et al., 2014) Sentences Involv-
ing Compositional Knowledge (SICK) contains a
large number of sentence pairs (10 0000) that are
lexically, syntactically and semantically rich.

A.7 Summarization

SummEval (Fabbri et al., 2020) Summaries gen-
erated by recent summarization models trained on
CNN or DailyMail alongside human annotations.

A.8 Retrieval

We refer to the BEIR paper (Thakur et al., 2021),
which contains description of each dataset. For
MTEB, we include all publicly available datasets:
ArguAna, ClimateFEVER, CQADupstack, DB-
Pedia, FEVER, FiQA2018, HotpotQA, MS-
MARCO, NFCorpus, NQ, Quora, SCIDOCS,
SciFact, Touche2020, TRECCOVID.

B Examples

Tables 3-9 provide examples for each dataset for
each task. For retrieval datasets, we refer to the
BEIR paper (Thakur et al., 2021).

C Correlations

Figure 6 provides correlation heatmaps for model
performance and MTEB tasks.

D Models

Table 10 provides publicly available model check-
points used for MTEB evaluation.

E Additional results

Tables 11 until the end provide results on individ-
ual datasets of MTEB. The results are additionally

21https://tabilab.cmpe.boun.edu.tr/
BIOSSES/DataSet.html

available in json format on the Hugging Face Hub22

and can be inspected on the leaderboard23.

22https://huggingface.co/datasets/mteb/
results

23https://huggingface.co/spaces/mteb/
leaderboard
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Dataset Text Label

AmazonCounterfactualClassification In person it looks as though it would have cost a lot more. counterfactual

AmazonPolarityClassification an absolute masterpiece I am quite sure any of you actually taking the time to read this have played the game at least
once, and heard at least a few of the tracks here. And whether you were aware of it or not, Mitsuda’s music contributed
greatly to the...

positive

AmazonReviewsClassification solo llega una unidad cuando te obligan a comprar dos Te obligan a comprar dos unidades y te llega solo una y no hay
forma de reclamar, una autentica estafa, no compreis!!

0

Banking77Classification What currencies is an exchange rate calculated in? exchange_rate

EmotionClassification i feel so inhibited in someone elses kitchen like im painting on someone elses picture sadness

ImdbClassification When I first saw a glimpse of this movie, I quickly noticed the actress who was playing the role of Lucille Ball. Rachel
York’s portrayal of Lucy is absolutely awful. Lucille Ball was an astounding comedian with incredible talent. To think
about a legend like Lucille Ball being portrayed the way she was in the movie is horrendous. I cannot believe...

negative

MassiveIntentClassification réveille-moi à neuf heures du matin le vendredi alarm_set

MassiveScenarioClassification tell me the artist of this song music

MTOPDomainClassification Maricopa County weather forecast for this week weather

MTOPIntentClassification what ingredients do is have left GET_INFO_RECIPES

ToxicConversationsClassification The guy’s a damn cop, so what do you expect? toxic

TweetSentimentExtractionClassification I really really like the song Love Story by Taylor Swift positive

Table 3: Classification examples

Dataset Text Cluster

ArxivClusteringP2P Finite groups of rank two which do not involve Qd(p). Let p > 3 be a prime. We show that if G is a finite group with
p-rank equal to 2, then G involves Qd(p) if and only if G p′-involves Qd(p). This allows us to use a version of
Glauberman’s ZJ-theorem to give a more direct construction of finite group actions on mod-p homotopy spheres. We
give an example to illustrate that the above conclusion does not hold for p ≤ 3.

math

ArxivClusteringS2S Vertical shift and simultaneous Diophantine approximation on polynomial curves math

BiorxivClusteringP2P Innate Immune sensing of Influenza A viral RNA through IFI16 promotes pyroptotic cell death Programmed cell death
pathways are triggered by various stresses or stimuli, including viral infections. The mechanism underlying the regulation
of these pathways upon Influenza A virus IAV infection is not well characterized. We report that a cytosolic DNA sensor
IFI16 is...

immunology

BiorxivClusteringS2S Association of CDH11 with ASD revealed by matched-gene co-expression analysis and mouse behavioral neuroscience

MedrxivClusteringP2P Temporal trends in the incidence of haemophagocytic lymphohistiocytosis: a nationwide cohort study from England
2003-2018. Haemophagocytic lymphohistiocytosis (HLH) is rare, results in high mortality and is increasingly being
diagnosed. Little is known about what is driving the apparent rise in the incidence of this disease. Using national linked
electronic health data from hospital admissions and death certification cases of HLH that were diagnosed in England
between 1/1/2003 and 31/12/2018 were identified using a previously validated approach. We calculated incidence...

infectious diseases

MedrxivClusteringS2S Current and Lifetime Somatic Symptom Burden Among Transition-aged Young Adults on the Autism Spectrum psychiatry and clinical psychology

RedditClustering Could anyone tell me what breed my bicolor kitten is? r/cats

RedditClusteringP2P Headaches after working out? Hey guys! I’ve been diagnosed with adhd since I was seven. I just recently got rediagnosed
(22f) and I’ve been out on a different medication, adderall I was normally taking vyvanse but because of cost and no
insurance adderall was more affordable. I’ve noticed that if I take adderall and workout...

r/ADHD

StackExchangeClustering Does this property characterize a space as Hausdorff? math.stackexchange.com

StackExchangeClusteringP2P Google play services error DEBUG: Application is pausing, which disconnects the RTMP client. I am having this issue
from past day with Google Play Services Unity. What happens is, when I install app directly ot device via Unity, the
Google Play Services work fine but when I upload it as beta to play store console and install it via that then it starts to
give " DEBUG: Application is pausing, which disconnects the RTMP client" error. I have a proper SHA1 key.

unity

TwentyNewsgroupsClustering Commercial mining activities on the moon 14

Table 4: Clustering examples

Dataset Sentence 1 Sentence 2 Label

SprintDuplicateQuestions Franklin U722 USB modem signal strength How do I know if my Franklin U772 USB Modem has a
weak signal ?

1

TwitterSemEval2015 All the home alones watching 8 mile","All the home alones
watching 8 mile

The last rap battle in 8 Mile nevr gets old ahah 0

TwitterURLCorpus How the metaphors we use to describe discovery affect men
and women in the sciences

Light Bulbs or Seeds ? How Metaphors for Ideas Influence
Judgments About Genius

0

Table 5: Pair classification examples. Labels are binary.
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Dataset Query Positive Negative

AskUbuntuDupQuestions change the application icon theme but not changing the panel
icons

change folder icons in ubuntu-mono-dark theme change steam tray icon back to default

MindSmallReranking Man accused in probe of Giuliani associates is freed on bail Studies show these are the best and worst states for your
retirement

There are 14 cheap days to fly left in 2019: When are they
and what deals can you score?

SciDocsRR Discovering social circles in ego networks Benchmarks for testing community detection algorithms on
directed and weighted graphs with overlapping communities.

Improving www proxies performance with greedy-dual-size-
frequency caching policy

StackOverflowDupQuestions Java launch error selection does not contain a main type Error: Selection does not contain a main type Selection Sort in Java

Table 6: Reranking examples

Dataset Sentence 1 Sentence 2 Score

BIOSSES It has recently been shown that Craf is essential for Kras
G12D-induced NSCLC.

It has recently become evident that Craf is essential for the
onset of Kras-driven non-small cell lung cancer.

4.0

SICK-R A group of children is playing in the house and there is no
man standing in the background

A group of kids is playing in a yard and an old man is
standing in the background

3.2

STS12 Nationally, the federal Centers for Disease Control and Pre-
vention recorded 4,156 cases of West Nile, including 284
deaths.

There were 293 human cases of West Nile in Indiana in 2002,
including 11 deaths statewide.

1.7

STS13 this frame has to do with people ( the residents ) residing in
locations , sometimes with a co-resident .

inhabit or live in ; be an inhabitant of ; 2.8

STS14 then the captain was gone. then the captain came back. 0.8

STS15 you ’ll need to check the particular policies of each publisher
to see what is allowed and what is not allowed.

if you need to publish the book and you have found one
publisher that allows it.

3.0

STS16 you do not need to worry. you don ’t have to worry. 5.0

STS17 La gente muestra su afecto el uno por el otro. A women giving something to other lady. 1.4

STS22 El secretario general de la Asociación Gremial de los Tra-
bajadores del Subte y Premetro de Metrodelegados, Beto
Pianelli, dijo que el Gobierno porteño debe convocar “in-
mediatamente” a licitación para la compra de nuevos trenes
y retirar los que quedan en circulación...

En diálogo con el servicio informativo de la Radio Pública,
el ministro de Salud de la Nación, Ginés González García,
habló sobre el avance del coronavirus en la Argentina y
se manifestó a favor de prorrogar la cuarentena obligatoria
dispuesta por...

1

STSBenchmark A man is playing the cello. A man seated is playing the cello. 4.25

Table 7: STS examples. Scores are continuous between 0 and 5 (included).

Dataset First set sentence Second set sentence

BUCC Morales remporte l’élection présidentielle de 2005 à la ma-
jorité absolue.

Morales went on to win the 2005 presidential election with
an absolute majority.

Tatoeba Chi le ha detto che Tom l’ha fatto? Who told you that Tom did that?

Table 8: Bitext mining examples

Dataset Human Summary Machine Summary Relevance

SummEval V. Stiviano must pay back $2.6 million in gifts from Donald
Sterling. Sterling’s wife claimed the ex-Clippers used the
couple’s money for the gifts. The items included a Ferrari,
two Bentleys and a Range Rover.

donald sterling , nba team last year . sterling ’s wife sued for
$ 2.6 million in gifts . sterling says he is the former female
companion who has lost the . sterling has ordered v. stiviano
to pay back $ 2.6 m in gifts after his wife sued . sterling also
includes a $ 391 easter bunny costume , $ 299 and a $ 299 .

1.7

Table 9: Summarization example
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Figure 6: Pearson correlations across model and task results. Left: Size variants of the same architecture show
high correlations. Right: Performance on clustering and reranking correlates strongest, while summarization and
classification show weaker correlation with other tasks.

Model Public Checkpoint

Glove https://huggingface.co/sentence-transformers/average_word_embeddings_glove.6B.300d
Komninos https://huggingface.co/sentence-transformers/average_word_embeddings_komninos
BERT https://huggingface.co/bert-base-uncased
SimCSE-BERT-unsup https://huggingface.co/princeton-nlp/unsup-simcse-bert-base-uncased
SimCSE-BERT-sup https://huggingface.co/princeton-nlp/sup-simcse-bert-base-uncased
coCondenser-msmarco https://huggingface.co/sentence-transformers/msmarco-bert-co-condensor
Contriever https://huggingface.co/nthakur/contriever-base-msmarco
SPECTER https://huggingface.co/sentence-transformers/allenai-specter
LaBSE https://huggingface.co/sentence-transformers/LaBSE
LASER2 https://github.com/facebookresearch/LASER
MiniLM-L6 https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
MiniLM-L12 https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2
MiniLM-L12-multilingual https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
MPNet https://huggingface.co/sentence-transformers/all-mpnet-base-v2
MPNet-multilingual https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2
MiniLM-L12-multilingual https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
SGPT-125M-nli https://huggingface.co/Muennighoff/SGPT-125M-weightedmean-nli-bitfit
SGPT-5.8B-nli https://huggingface.co/Muennighoff/SGPT-5.8B-weightedmean-nli-bitfit
SGPT-125M-msmarco https://huggingface.co/Muennighoff/SGPT-125M-weightedmean-msmarco-specb-bitfit
SGPT-1.3B-msmarco https://huggingface.co/Muennighoff/SGPT-1.3B-weightedmean-msmarco-specb-bitfit
SGPT-2.7B-msmarco https://huggingface.co/Muennighoff/SGPT-2.7B-weightedmean-msmarco-specb-bitfit
SGPT-5.8B-msmarco https://huggingface.co/Muennighoff/SGPT-5.8B-weightedmean-msmarco-specb-bitfit
SGPT-BLOOM-7.1B-msmarco https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco
SGPT-BLOOM-1.7B-nli https://huggingface.co/bigscience-data/sgpt-bloom-1b7-nli
GTR-Base https://huggingface.co/sentence-transformers/gtr-t5-base
GTR-Large https://huggingface.co/sentence-transformers/gtr-t5-large
GTR-XL https://huggingface.co/sentence-transformers/gtr-t5-xl
GTR-XXL https://huggingface.co/sentence-transformers/gtr-t5-xxl
ST5-Base https://huggingface.co/sentence-transformers/sentence-t5-base
ST5-Large https://huggingface.co/sentence-transformers/sentence-t5-large
ST5-XL https://huggingface.co/sentence-transformers/sentence-t5-xl
ST5-XXL https://huggingface.co/sentence-transformers/sentence-t5-xxl

Table 10: Publicly available model links used for evaluation
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https://huggingface.co/Muennighoff/SGPT-125M-weightedmean-msmarco-specb-bitfit
https://huggingface.co/Muennighoff/SGPT-1.3B-weightedmean-msmarco-specb-bitfit
https://huggingface.co/Muennighoff/SGPT-2.7B-weightedmean-msmarco-specb-bitfit
https://huggingface.co/Muennighoff/SGPT-5.8B-weightedmean-msmarco-specb-bitfit
https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco
https://huggingface.co/bigscience-data/sgpt-bloom-1b7-nli
https://huggingface.co/sentence-transformers/gtr-t5-base
https://huggingface.co/sentence-transformers/gtr-t5-large
https://huggingface.co/sentence-transformers/gtr-t5-xl
https://huggingface.co/sentence-transformers/gtr-t5-xxl
https://huggingface.co/sentence-transformers/sentence-t5-base
https://huggingface.co/sentence-transformers/sentence-t5-large
https://huggingface.co/sentence-transformers/sentence-t5-xl
https://huggingface.co/sentence-transformers/sentence-t5-xxl


Dataset Glove Komninos BERT SimCSE- SimCSE- coCondenser- Contr- SPECTER LaBSE LASER2 MiniLM- MiniLM- MiniLM- MPNet MPNet- Ada SGPT-125M- SGPT-5.8B- SGPT-125M- SGPT-1.3B- SGPT-2.7B- SGPT-5.8B- SGPT- GTR- GTR- GTR- GTR- ST5- ST5- ST5- ST5-
BERT- BERT- msmarco iever L6 L12- L12- multilingual Similarity nli nli msmarco msmarco msmarco msmarco BLOOM-7.1B- Base Large XL XXL Base Large XL XXL
unsup sup multilingual msmarco

AmazonCounterfactualClassification 56.91 60.54 74.25 67.09 75.75 64.06 72.19 58.70 75.93 76.84 64.15 65.28 71.57 65.27 75.81 76.40 65.88 74.07 61.24 65.21 67.57 69.22 68.06 69.33 70.03 68.60 67.30 75.82 75.51 76.01 77.07
AmazonPolarityClassification 60.32 59.59 71.33 74.48 82.47 66.88 68.63 57.77 68.95 61.01 62.58 62.98 69.21 67.13 76.41 92.83 74.94 82.31 65.40 73.21 71.44 71.26 68.97 67.82 73.92 74.58 75.05 85.12 92.87 93.17 92.79
AmazonReviewsClassification 29.67 31.01 33.56 33.85 39.60 34.85 37.42 26.26 35.80 28.71 31.79 30.79 35.11 31.92 38.51 47.45 35.10 41.58 31.17 34.96 35.75 39.19 33.86 38.48 37.21 38.20 37.30 44.94 47.12 48.18 48.93
Banking77Classification 67.69 67.05 63.41 73.55 75.76 82.35 80.02 66.66 69.85 57.76 79.75 80.40 79.77 81.86 81.07 68.04 74.68 81.74 77.70 82.06 83.22 84.49 84.33 79.26 81.21 82.22 82.32 76.48 78.46 80.88 82.31
EmotionClassification 36.93 33.18 35.28 42.22 44.81 41.91 44.77 24.82 37.22 24.83 38.43 41.17 42.37 39.73 45.84 50.32 42.23 49.92 39.08 46.39 49.21 49.66 44.87 42.20 46.32 45.55 43.19 51.36 51.73 51.95 48.57
ImdbClassification 62.57 63.98 65.35 69.63 73.53 60.17 67.04 56.35 62.04 57.58 60.66 59.76 60.46 70.72 64.57 89.38 62.90 74.33 58.67 64.05 63.53 66.64 61.77 65.99 70.86 68.15 70.8 77.34 87.01 87.54 90.23
MassiveIntentClassification 56.19 57.21 59.88 59.84 65.95 70.40 67.78 51.73 61.46 47.91 67.40 67.15 66.84 69.57 69.32 65.17 58.08 70.0 61.41 68.65 69.01 70.39 69.67 67.05 70.06 70.23 70.61 69.74 71.78 72.09 73.44
MassiveScenarioClassification 66.03 66.11 64.28 66.25 70.78 73.73 76.00 58.58 66.41 55.92 75.76 74.58 71.51 76.01 75.35 67.67 66.34 75.03 69.74 76.04 75.90 76.28 75.34 75.40 75.49 75.94 77.77 72.32 73.16 73.26 74.82
MTOPDomainClassification 79.11 78.57 82.63 81.71 84.29 91.34 93.18 74.53 86.06 75.36 91.56 91.90 87.06 92.08 89.24 89.89 81.52 89.64 86.96 92.08 92.56 93.47 93.68 92.42 94.01 93.60 93.84 90.34 90.99 90.73 92.49
MTOPIntentClassification 55.85 57.07 68.14 59.23 63.14 71.07 69.31 50.05 63.03 49.47 62.18 62.84 65.52 70.21 68.69 64.80 58.24 70.68 62.25 71.19 71.85 72.42 71.34 62.44 63.86 65.93 67.71 63.32 64.98 68.15 68.33
ToxicConversationsClassification 65.40 67.76 70.0 68.82 72.04 64.01 67.77 57.44 66.90 54.05 66.99 67.47 66.07 60.86 71.02 70.00 62.79 69.93 62.66 68.73 68.84 67.71 66.55 66.60 68.65 67.56 68.48 68.20 71.73 70.95 70.04
TweetSentimentExtractionClassification 50.80 49.68 51.81 53.36 59.73 55.74 56.10 45.52 58.82 48.73 55.41 54.25 56.12 55.46 59.03 63.35 54.82 62.44 52.41 55.67 56.69 56.85 55.85 56.02 54.09 54.77 54.54 62.71 62.33 61.21 62.01

ArxivClusteringP2P 32.56 34.73 35.19 32.61 35.18 36.94 42.61 44.75 32.13 17.77 46.55 46.07 38.33 48.38 37.78 41.49 34.74 40.55 39.71 43.38 44.72 45.59 44.59 35.49 37.50 37.90 37.90 39.28 41.62 41.62 42.89
ArxivClusteringS2S 23.14 26.01 27.51 24.68 27.54 29.03 32.32 35.27 22.05 12.39 37.86 37.50 31.55 39.72 31.68 28.47 24.68 32.49 28.24 33.71 35.08 38.86 38.03 27.18 30.55 30.45 32.39 27.26 29.44 31.17 33.47
BiorxivClusteringP2P 29.27 29.76 30.12 24.90 30.15 32.35 34.97 39.52 29.84 12.40 38.48 36.99 33.49 39.62 33.09 36.86 28.93 33.59 33.63 35.06 34.41 36.55 36.03 27.66 29.59 30.52 30.48 33.99 35.99 36.43 36.53
BiorxivClusteringS2S 19.18 20.71 24.77 19.55 24.67 28.16 29.08 34.53 20.57 8.83 33.17 33.21 29.44 35.02 29.60 27.55 23.08 29.13 27.04 30.71 30.53 33.70 32.48 23.25 25.72 26.06 27.50 22.92 24.02 26.47 28.66
MedrxivClusteringP2P 26.12 26.65 26.09 23.60 26.25 30.23 31.19 35.04 30.13 17.91 34.41 34.25 31.52 35.58 31.96 31.09 28.30 30.33 31.37 32.08 31.35 31.51 31.05 27.57 28.72 28.69 29.12 33.20 32.40 32.30 32.09
MedrxivClusteringS2S 20.38 21.50 23.60 21.97 24.12 27.01 27.27 31.66 24.82 16.63 32.29 32.24 30.87 32.87 31.70 26.50 24.93 28.02 26.87 29.45 28.77 28.76 29.26 25.13 27.39 26.69 27.56 26.13 26.33 26.93 26.82
RedditClustering 28.46 28.84 27.24 32.18 40.23 48.04 54.89 24.13 28.79 9.96 50.67 51.18 42.02 54.82 45.24 42.47 33.76 42.17 40.23 48.23 46.47 40.45 35.53 56.13 61.69 61.34 64.13 52.93 54.53 57.03 58.99
RedditClusteringP2P 35.82 7.37 43.32 45.14 47.74 53.53 57.58 35.06 49.14 26.42 54.15 54.80 50.73 56.77 51.31 58.10 41.01 48.02 49.09 53.18 54.17 55.75 54.52 58.53 61.67 61.11 62.84 59.67 62.50 62.34 64.46
StackExchangeClustering 35.80 39.04 43.58 43.07 47.55 59.54 63.15 39.01 35.43 15.79 53.36 53.05 49.60 53.80 52.98 53.52 44.59 54.13 52.74 60.86 59.19 59.21 55.13 64.21 69.93 69.95 71.43 63.13 65.11 67.13 70.78
StackExchangeClusteringP2P 28.51 30.23 26.55 28.50 29.45 30.48 32.25 31.46 28.83 18.63 38.00 33.13 31.69 34.28 32.94 30.43 28.23 31.12 32.66 32.36 32.57 33.95 34.31 33.01 33.21 32.73 32.85 35.68 36.86 34.79 35.25
TwentyNewsgroupsClustering 25.83 27.42 23.35 23.21 34.86 38.68 46.82 24.22 23.28 11.38 46.86 47.47 39.28 49.74 44.10 36.26 28.24 37.20 32.13 40.06 40.89 39.46 37.28 46.72 51.64 51.15 50.44 48.10 49.33 49.53 50.93

SprintDuplicateQuestions 86.96 85.55 36.81 69.41 69.39 96.09 95.55 71.63 89.26 65.54 94.55 92.45 89.46 90.15 90.55 77.85 77.73 80.54 89.89 92.58 93.47 93.84 94.93 94.55 95.05 95.45 95.68 91.23 89.01 91.44 88.89
TwitterSemEval2015 48.45 53.85 55.90 60.21 67.75 65.95 66.85 43.25 62.78 59.57 67.86 70.02 62.06 73.85 66.75 69.04 57.09 66.00 54.75 62.37 63.68 66.87 65.31 72.23 76.03 77.81 77.54 78.25 79.75 80.89 80.28
TwitterURLCorpus 77.35 79.41 76.29 81.37 83.89 83.17 85.21 69.22 84.58 81.47 84.70 84.77 83.83 85.11 85.14 83.69 80.51 84.54 81.06 83.79 84.80 85.29 85.46 84.77 84.89 85.14 85.13 86.05 86.14 85.86 86.01

AskUbuntuDupQuestions 49.57 50.88 45.84 51.57 51.80 58.99 56.69 50.07 52.75 48.99 63.48 64.06 60.49 65.85 60.16 53.49 52.63 55.90 55.84 58.13 59.63 61.63 59.97 60.86 61.64 63.08 63.23 59.73 61.51 62.86 66.16
MindSmallReranking 27.01 28.92 28.37 28.62 29.30 27.13 31.58 24.80 29.81 24.79 30.80 31.02 30.37 30.97 30.15 30.71 29.27 31.11 30.40 31.34 31.72 32.29 31.79 31.33 31.84 31.50 31.93 30.20 30.27 29.77 30.60
SciDocsRR 62.56 63.55 64.94 66.33 70.14 72.78 76.51 81.31 68.72 54.99 87.12 87.20 77.78 88.65 78.09 71.04 68.36 77.54 71.34 77.21 77.72 80.79 79.77 73.71 76.39 76.49 77.96 73.96 74.88 75.16 76.09
StackOverflowDupQuestions 34.03 35.65 34.62 39.35 38.90 48.48 47.78 36.22 42.42 36.98 50.76 51.47 45.85 51.98 46.79 40.85 39.97 44.77 44.74 49.32 49.61 51.53 51.07 51.01 51.58 52.79 53.50 48.46 49.34 51.05 52.85

ArguAna 36.30 30.96 28.29 38.34 38.33 45.15 48.32 32.67 34.18 12.86 50.17 47.13 44.88 46.52 48.91 31.04 35.07 45.42 49.68 50.49 51.38 47.28 50.83 52.09 52.81 53.77 44.85 39.27 39.40 39.85
ClimateFEVER 14.44 14.87 5.41 11.80 11.98 16.96 24.79 6.86 3.83 0.36 20.27 21.57 18.49 21.97 15.27 11.01 17.57 21.86 26.6 27.11 30.46 29.39 24.88 26.90 27.01 27.21 10.37 11.36 10.61 14.63
CQADupstackRetrieval 15.47 16.79 5.51 13.22 14.50 27.72 33.67 14.60 18.75 4.12 41.32 42.53 30.71 44.96 31.32 20.29 29.98 27.25 33.33 36.53 39.40 39.62 34.55 36.62 37.35 38.56 35.23 38.96 40.78 44.65
DBPedia 18.29 15.88 4.13 15.04 19.73 27.86 38.10 4.14 15.57 1.53 32.33 33.36 22.63 32.09 26.22 10.87 26.10 22.72 31.51 34.70 39.87 39.03 35.24 39.55 39.74 41.28 27.77 31.55 33.65 39.19
FEVER 14.99 15.56 3.30 21.05 20.41 45.68 59.29 5.45 12.17 0.77 51.93 55.91 52.66 50.86 56.76 18.40 38.64 60.45 68.12 72.73 78.24 73.97 68.93 72.66 72.18 74.08 26.16 36.21 36.12 51.20
FiQA2018 10.09 10.49 2.19 9.84 10.41 15.62 27.42 5.64 7.00 1.73 36.87 37.27 20.33 49.96 22.96 8.94 18.59 21.12 29.99 33.29 37.20 35.84 35.15 42.79 44.19 46.78 34.83 43.55 44.71 46.68
HotpotQA 19.18 20.77 8.26 19.75 22.89 35.61 56.81 5.46 18.75 5.50 46.51 44.59 30.01 39.29 37.03 17.73 33.99 40.88 49.93 52.84 59.26 57.26 54.93 57.85 58.91 59.67 33.20 33.95 37.17 42.14
MSMARCO 9.60 9.75 1.91 9.35 11.00 29.57 36.77 5.58 7.60 1.09 36.54 39.03 23.72 39.75 26.60 6.27 15.83 27.98 36.05 38.83 39.91 41.12 41.16 42.73 43.52 44.05 20.71 23.96 25.17 27.68
NFCorpus 13.87 11.79 4.30 9.88 12.42 22.29 31.31 0.84 16.54 2.44 31.59 32.25 23.45 33.29 25.49 11.80 28.26 22.79 32.08 33.89 36.21 35.78 30.22 32.63 33.34 34.18 28.64 31.10 33.18 35.08
NQ 12.87 12.75 2.61 11.69 16.08 29.85 41.83 5.99 8.42 0.64 43.87 46.47 29.80 50.45 33.60 7.63 24.63 29.73 42.94 46.70 52.41 53.15 50.47 55.09 56.16 57.24 36.32 42.02 46.29 52.87
QuoraRetrieval 71.32 71.58 61.03 78.03 79.62 86.51 86.72 64.65 77.03 71.14 87.56 87.75 86.55 87.46 86.41 78.96 84.68 72.98 85.28 85.60 84.58 74.71 87.98 88.47 88.91 89.09 85.49 85.73 85.85 85.96
SCIDOCS 8.04 8.47 2.81 5.50 7.53 10.13 17.12 0.00 5.63 0.78 21.64 21.82 0.03 23.77 13.96 7.13 13.55 12.21 16.18 16.57 19.87 18.62 14.00 15.51 15.71 15.88 14.16 15.38 15.97 17.17
SciFact 29.58 29.53 13.34 25.72 29.59 52.31 65.51 47.88 38.20 4.04 64.51 62.64 48.37 65.57 50.30 31.79 46.66 56.90 68.29 70.17 74.70 72.11 59.74 63.42 64.20 66.77 45.76 49.91 50.91 55.38
Touche2020 13.99 13.17 0.97 8.90 9.89 8.57 15.79 8.46 4.88 1.06 16.90 17.22 16.06 19.93 17.40 12.27 16.18 22.97 24.45 23.44 25.43 23.98 25.89 28.29 25.26 26.76 20.30 21.63 22.51 21.65
TRECCOVID 36.22 35.92 14.74 26.2 22.93 40.54 44.77 29.91 16.34 10.97 47.25 50.82 39.12 51.33 37.87 39.31 55.35 70.30 72.98 75.17 84.88 81.37 56.05 56.68 60.09 51.90 40.70 46.11 54.77 59.48

BIOSSES 44.93 50.25 54.70 72.31 68.38 77.32 83.32 64.95 78.70 62.01 81.64 83.57 74.18 80.43 76.27 78.04 70.93 79.50 75.21 83.02 84.84 86.25 85.31 79.00 84.86 78.94 81.91 75.89 78.93 73.12 80.43
SICK-R 55.43 55.49 58.65 72.24 80.77 72.00 70.20 56.39 69.99 62.86 77.58 79.32 79.61 80.59 79.62 77.48 74.57 79.59 65.93 67.23 68.20 69.63 69.82 71.45 73.39 73.63 74.29 80.18 80.34 79.98 80.47
STS12 54.64 53.51 30.87 66.05 75.30 68.19 64.34 62.49 65.08 62.60 72.37 73.08 76.02 72.63 77.90 72.30 69.17 74.29 66.53 66.59 66.99 67.50 69.66 68.59 70.33 69.11 70.12 78.05 79.11 79.02 78.85
STS13 69.16 70.80 59.89 81.49 84.67 80.40 80.03 58.70 67.98 59.62 80.60 82.13 80.70 83.48 85.11 81.49 77.23 85.35 76.17 77.33 77.58 79.16 79.67 79.09 82.19 81.82 82.72 85.85 87.33 88.80 88.94
STS14 60.81 63.56 47.73 73.61 80.19 74.02 74.51 54.87 64.03 57.03 75.59 76.73 78.85 78.00 80.81 74.74 70.99 79.21 69.05 71.83 72.78 74.46 74.61 74.64 77.16 77.07 78.24 82.19 83.17 84.33 84.86
STS15 72.31 74.08 60.29 79.72 85.40 82.57 83.30 62.54 76.59 71.57 85.39 85.58 85.84 85.66 87.48 84.28 79.74 85.52 79.24 80.66 82.62 84.47 83.81 84.85 86.31 86.01 86.26 87.46 88.28 88.89 89.32
STS16 65.34 64.60 63.73 78.12 80.82 79.78 79.67 64.27 72.98 70.75 78.99 80.23 81.05 80.03 83.20 82.06 77.93 82.54 76.07 78.91 80.10 80.96 80.40 81.57 81.85 82.23 81.61 84.03 84.36 85.31 84.67
STS17 77.95 76.91 64.10 83.58 89.44 85.94 86.32 69.63 79.45 76.73 87.59 88.63 86.87 90.60 86.99 87.08 87.33 90.44 84.95 86.99 87.25 87.78 87.07 85.80 83.93 84.90 85.18 89.57 88.99 88.91 89.46
STS22 56.35 53.89 56.37 59.65 61.96 67.54 64.64 55.06 60.97 39.75 67.21 65.67 61.72 67.95 63.06 64.71 59.64 63.20 65.66 67.30 68.75 69.35 66.13 66.17 64.30 66.61 65.76 62.66 62.39 64.32 65.33
STSBenchmark 61.54 61.55 47.29 76.52 84.25 76.97 78.81 61.26 72.25 69.77 82.03 83.09 84.42 83.42 86.82 83.78 79.54 85.67 75.34 77.59 79.21 81.39 80.90 79.58 77.60 77.65 77.73 85.52 85.36 83.93 84.01

SummEval 28.87 30.49 29.82 31.15 23.31 29.50 30.36 27.66 31.05 26.8 30.81 27.9 30.67 27.49 31.57 26.94 30.26 30.38 28.90 25.44 27.87 24.75 24.99 29.67 29.50 30.21 30.64 31.39 29.64 29.91 30.08

Average 41.97 42.06 38.33 45.45 48.72 52.35 56.00 40.28 45.21 34.95 56.26 56.53 52.44 57.78 54.71 45.97 53.74 51.23 56.11 57.12 58.81 57.44 56.19 58.28 58.42 58.97 55.27 57.06 57.87 59.51

Table 11: All English results. The main score for each task is reported as described in Section 3.2.
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Dataset Language LASER2 LaBSE MiniLM-L12-multilingual MPNet-multilingual SGPT-BLOOM-7.1B-msmarco

BUCC de-en 99.21 99.35 97.11 98.59 54.00
BUCC fr-en 98.39 98.72 94.99 96.89 97.06
BUCC ru-en 97.62 97.78 95.06 96.44 45.30
BUCC zh-en 97.70 99.16 95.63 97.56 97.96
Tatoeba sqi-eng 97.22 96.76 98.17 98.57 10.38
Tatoeba fry-eng 42.07 89.31 31.13 43.54 24.62
Tatoeba kur-eng 19.09 83.59 46.94 61.44 8.26
Tatoeba tur-eng 98.03 98.00 95.08 96.17 6.15
Tatoeba deu-eng 99.07 99.20 97.02 97.73 70.10
Tatoeba nld-eng 95.35 96.07 94.58 95.50 29.74
Tatoeba ron-eng 96.52 96.92 95.30 96.43 27.23
Tatoeba ang-eng 25.22 59.28 10.24 16.72 28.76
Tatoeba ido-eng 80.86 89.42 40.25 43.91 43.91
Tatoeba jav-eng 9.95 79.77 17.04 23.39 15.02
Tatoeba isl-eng 94.32 94.75 24.07 59.25 6.29
Tatoeba slv-eng 95.40 96.03 96.92 97.08 10.14
Tatoeba cym-eng 5.85 92.00 13.25 22.31 6.97
Tatoeba kaz-eng 53.30 87.49 34.89 61.49 3.32
Tatoeba est-eng 96.43 96.55 97.33 98.40 4.76
Tatoeba heb-eng 0.00 91.53 86.88 88.26 1.69
Tatoeba gla-eng 1.52 85.66 3.61 4.72 2.09
Tatoeba mar-eng 92.93 92.65 92.38 93.83 45.53
Tatoeba lat-eng 64.81 80.07 19.47 24.25 28.76
Tatoeba bel-eng 79.54 95.00 67.73 79.94 8.03
Tatoeba pms-eng 36.23 64.57 30.70 34.19 31.94
Tatoeba gle-eng 4.20 93.80 11.62 16.85 3.26
Tatoeba pes-eng 93.13 94.70 92.59 93.47 12.13
Tatoeba nob-eng 95.77 98.40 97.73 98.53 21.07
Tatoeba bul-eng 93.57 94.58 92.65 93.52 20.09
Tatoeba cbk-eng 77.17 79.44 55.37 58.68 64.63
Tatoeba hun-eng 95.20 96.55 91.58 94.18 5.07
Tatoeba uig-eng 56.49 92.40 24.39 48.35 1.27
Tatoeba rus-eng 92.58 93.75 91.87 92.92 59.84
Tatoeba spa-eng 97.33 98.40 95.42 97.00 94.48
Tatoeba hye-eng 88.72 94.09 93.28 94.38 0.50
Tatoeba tel-eng 96.72 97.86 36.40 79.73 64.62
Tatoeba afr-eng 92.59 96.18 58.22 72.96 16.62
Tatoeba mon-eng 3.42 95.91 95.04 96.14 2.85
Tatoeba arz-eng 66.16 76.00 51.26 55.69 70.66
Tatoeba hrv-eng 96.72 96.95 95.98 97.00 12.79
Tatoeba nov-eng 60.02 74.38 47.99 50.23 52.23
Tatoeba gsw-eng 27.52 46.50 25.74 25.12 21.03
Tatoeba nds-eng 77.13 79.42 32.16 38.88 23.92
Tatoeba ukr-eng 93.52 93.97 92.82 92.67 22.06
Tatoeba uzb-eng 23.20 84.23 17.14 23.19 4.71
Tatoeba lit-eng 96.20 96.47 93.16 95.37 4.49
Tatoeba ina-eng 93.93 95.37 79.13 84.32 73.67
Tatoeba lfn-eng 63.39 67.54 47.02 49.56 44.85
Tatoeba zsm-eng 95.41 95.62 95.31 95.80 79.95
Tatoeba ita-eng 94.32 92.72 93.05 93.76 65.04
Tatoeba cmn-eng 85.62 95.10 94.93 95.83 91.45
Tatoeba lvs-eng 95.33 95.88 97.87 97.53 6.55
Tatoeba glg-eng 96.14 96.82 94.00 95.32 79.86
Tatoeba ceb-eng 9.93 64.42 8.05 7.39 6.64
Tatoeba bre-eng 31.2 15.07 5.56 6.42 4.67
Tatoeba ben-eng 89.43 88.55 36.48 64.90 75.98
Tatoeba swg-eng 33.10 59.36 26.31 22.80 16.89
Tatoeba arq-eng 26.63 42.69 18.60 19.84 27.75
Tatoeba kab-eng 65.88 4.31 1.16 1.41 1.69
Tatoeba fra-eng 94.28 94.86 91.72 93.12 91.44
Tatoeba por-eng 94.54 94.14 92.13 93.02 92.62
Tatoeba tat-eng 34.74 85.92 10.25 10.89 3.59
Tatoeba oci-eng 58.13 65.81 38.57 43.49 40.17
Tatoeba pol-eng 97.32 97.22 94.28 96.95 14.09
Tatoeba war-eng 8.25 60.29 7.25 7.42 10.38
Tatoeba aze-eng 82.41 94.93 62.10 76.36 6.32
Tatoeba vie-eng 96.73 97.20 95.12 97.23 94.20
Tatoeba nno-eng 72.75 94.48 76.34 81.41 16.28
Tatoeba cha-eng 14.86 31.77 15.98 12.59 23.26
Tatoeba mhr-eng 6.86 15.74 6.89 7.57 1.56
Tatoeba dan-eng 95.22 95.71 94.80 96.17 23.52
Tatoeba ell-eng 96.20 95.35 95.43 94.93 5.34
Tatoeba amh-eng 80.82 91.47 36.21 53.49 0.03
Tatoeba pam-eng 3.24 10.73 5.41 5.39 5.85
Tatoeba hsb-eng 45.75 67.11 36.10 44.32 9.68
Tatoeba srp-eng 93.64 94.43 92.24 94.12 11.69
Tatoeba epo-eng 96.61 98.20 41.73 55.12 26.20
Tatoeba kzj-eng 4.46 11.33 6.24 5.88 5.17
Tatoeba awa-eng 33.74 71.70 33.43 42.83 35.01
Tatoeba fao-eng 57.04 87.40 27.51 38.24 12.61
Tatoeba mal-eng 98.16 98.45 32.20 88.46 83.30
Tatoeba ile-eng 87.88 85.58 57.71 60.36 59.59
Tatoeba bos-eng 95.86 94.92 93.27 94.02 13.65
Tatoeba cor-eng 4.45 10.11 3.42 3.53 2.83
Tatoeba cat-eng 95.80 95.38 94.42 96.05 88.31
Tatoeba eus-eng 93.32 95.01 23.18 31.33 53.38
Tatoeba yue-eng 87.75 89.58 71.45 77.58 77.03
Tatoeba swe-eng 95.31 95.63 94.42 95.45 19.53
Tatoeba dtp-eng 7.39 10.85 5.69 5.03 3.41
Tatoeba kat-eng 81.16 95.02 95.44 95.46 0.42
Tatoeba jpn-eng 93.78 95.38 90.41 92.51 71.36
Tatoeba csb-eng 27.03 52.57 21.56 23.73 10.03
Tatoeba xho-eng 4.68 91.55 4.52 6.53 5.51
Tatoeba orv-eng 23.24 38.93 15.10 23.77 5.79
Tatoeba ind-eng 92.98 93.66 92.74 93.50 88.04
Tatoeba tuk-eng 16.35 75.27 15.16 14.91 5.48
Tatoeba max-eng 36.96 63.26 45.25 48.77 36.14
Tatoeba swh-eng 55.66 84.50 14.48 16.02 16.74
Tatoeba hin-eng 95.32 96.87 97.62 97.75 85.23
Tatoeba dsb-eng 42.34 64.81 33.43 36.85 8.78
Tatoeba ber-eng 77.63 8.40 4.43 4.88 4.92
Tatoeba tam-eng 87.32 89.0 24.64 73.60 72.76
Tatoeba slk-eng 95.82 96.5 95.15 96.62 9.98
Tatoeba tgl-eng 63.19 96.02 13.09 17.67 10.70
Tatoeba ast-eng 76.35 90.68 62.17 70.08 71.13
Tatoeba mkd-eng 93.63 93.6 91.00 93.02 10.47
Tatoeba khm-eng 74.19 78.37 32.11 58.80 0.37
Tatoeba ces-eng 95.52 96.68 95.12 95.73 9.55
Tatoeba tzl-eng 36.56 58.88 25.46 34.21 27.82
Tatoeba urd-eng 84.23 93.22 94.57 95.12 70.10
Tatoeba ara-eng 90.14 88.80 87.93 90.19 85.37
Tatoeba kor-eng 87.97 90.95 92.52 93.07 22.39
Tatoeba yid-eng 2.49 88.79 14.38 30.73 0.16
Tatoeba fin-eng 96.98 96.37 93.10 95.92 3.41
Tatoeba tha-eng 96.38 96.14 96.72 95.99 2.22
Tatoeba wuu-eng 75.09 90.18 76.00 78.25 79.58

Average mix 67.42 81.75 57.98 63.38 31.08

Table 12: Multilingual bitext mining results. Scores are f1.

2035



Dataset Language LASER2 LaBSE MiniLM-L12-multilingual MPNet-multilingual SGPT-BLOOM-7.1B-msmarco

AmazonCounterfactualClassification de 67.82 73.17 68.35 69.95 61.35
AmazonCounterfactualClassification ja 68.76 76.42 63.45 69.79 58.23
AmazonReviewsClassification de 31.07 39.92 35.91 39.52 29.70
AmazonReviewsClassification es 32.72 39.39 37.49 39.99 35.97
AmazonReviewsClassification fr 31.12 38.52 35.30 39.00 35.92
AmazonReviewsClassification ja 28.94 36.44 33.24 36.64 27.64
AmazonReviewsClassification zh 30.89 36.45 35.26 37.74 32.63
MassiveIntentClassification af 38.01 56.12 45.88 52.32 47.85
MassiveIntentClassification am 12.70 55.71 36.75 41.55 33.30
MassiveIntentClassification ar 37.16 50.86 45.14 51.43 59.25
MassiveIntentClassification az 19.98 58.97 47.42 56.98 45.24
MassiveIntentClassification bn 42.51 58.22 35.34 48.79 61.59
MassiveIntentClassification cy 17.33 50.16 26.12 27.87 44.92
MassiveIntentClassification da 45.61 58.25 57.73 62.77 51.23
MassiveIntentClassification de 44.79 56.21 50.71 59.57 56.10
MassiveIntentClassification el 46.71 57.03 58.70 62.62 46.13
MassiveIntentClassification es 45.44 58.32 59.66 64.43 66.35
MassiveIntentClassification fa 45.01 62.33 61.02 65.34 51.20
MassiveIntentClassification fi 45.94 60.12 57.54 62.28 45.33
MassiveIntentClassification fr 46.13 60.47 60.25 64.82 66.95
MassiveIntentClassification he 42.55 56.55 52.51 58.21 43.18
MassiveIntentClassification hi 40.20 59.40 58.37 62.77 63.54
MassiveIntentClassification hu 42.77 59.52 60.41 63.87 44.73
MassiveIntentClassification hy 28.07 56.20 51.60 57.74 38.13
MassiveIntentClassification id 45.81 61.12 59.85 65.43 64.06
MassiveIntentClassification is 39.86 54.90 30.83 37.05 44.35
MassiveIntentClassification it 48.25 59.83 59.61 64.68 60.77
MassiveIntentClassification ja 45.30 63.11 60.89 63.74 61.22
MassiveIntentClassification jv 24.30 50.98 32.37 36.49 50.94
MassiveIntentClassification ka 22.70 48.35 43.03 49.85 33.84
MassiveIntentClassification km 22.48 48.55 40.04 45.47 37.34
MassiveIntentClassification kn 4.32 56.24 40.98 50.63 53.54
MassiveIntentClassification ko 44.26 60.99 50.30 61.82 53.36
MassiveIntentClassification lv 39.75 57.10 54.68 61.29 46.50
MassiveIntentClassification ml 41.33 57.91 42.41 54.34 58.27
MassiveIntentClassification mn 16.20 58.50 51.77 56.59 40.28
MassiveIntentClassification ms 43.23 58.60 54.76 60.70 59.65
MassiveIntentClassification my 25.37 57.35 52.01 57.09 37.42
MassiveIntentClassification nb 37.74 57.91 55.50 62.60 49.41
MassiveIntentClassification nl 45.00 59.37 59.51 63.57 52.09
MassiveIntentClassification pl 44.99 59.71 59.43 64.30 50.48
MassiveIntentClassification pt 48.55 60.16 61.27 64.89 66.69
MassiveIntentClassification ro 44.30 57.92 58.39 62.80 50.53
MassiveIntentClassification ru 44.29 60.67 59.04 63.26 58.32
MassiveIntentClassification sl 44.72 59.37 57.36 63.51 47.74
MassiveIntentClassification sq 46.12 58.03 56.59 62.49 48.94
MassiveIntentClassification sv 45.95 59.66 59.43 64.73 50.79
MassiveIntentClassification sw 31.89 51.62 29.57 31.95 49.81
MassiveIntentClassification ta 29.63 55.04 36.77 50.17 56.40
MassiveIntentClassification te 36.03 58.32 40.72 52.82 54.71
MassiveIntentClassification th 43.39 56.58 58.97 61.11 44.43
MassiveIntentClassification tl 29.73 55.28 33.67 38.83 50.21
MassiveIntentClassification tr 43.93 60.91 59.90 64.54 46.56
MassiveIntentClassification ur 26.11 56.70 52.80 56.37 56.75
MassiveIntentClassification vi 44.33 56.67 56.61 59.68 64.53
MassiveIntentClassification zh-CN 40.62 63.86 61.99 65.33 67.07
MassiveIntentClassification zh-TW 32.93 59.51 58.77 62.35 62.89
MassiveScenarioClassification af 47.10 63.39 53.64 59.67 51.47
MassiveScenarioClassification am 17.70 62.02 41.89 48.97 34.87
MassiveScenarioClassification ar 45.21 57.72 51.74 57.78 65.21
MassiveScenarioClassification az 28.21 63.48 52.06 61.53 45.58
MassiveScenarioClassification bn 50.52 61.84 41.17 54.53 67.30
MassiveScenarioClassification cy 22.58 56.13 31.72 35.26 46.29
MassiveScenarioClassification da 54.87 65.24 66.87 71.00 53.52
MassiveScenarioClassification de 54.34 62.39 57.40 67.34 61.74
MassiveScenarioClassification el 55.47 64.58 66.14 68.81 48.96
MassiveScenarioClassification es 52.77 63.61 65.04 70.42 73.34
MassiveScenarioClassification fa 52.50 67.46 65.86 69.88 53.17
MassiveScenarioClassification fi 52.63 64.58 63.75 67.60 44.69
MassiveScenarioClassification fr 54.32 65.10 66.06 70.69 72.91
MassiveScenarioClassification he 52.41 63.53 59.20 65.16 43.10
MassiveScenarioClassification hi 47.37 64.40 65.21 67.92 69.27
MassiveScenarioClassification hu 53.43 65.82 66.56 70.30 45.16
MassiveScenarioClassification hy 33.57 61.25 56.11 63.02 38.73
MassiveScenarioClassification id 54.38 65.84 66.16 70.73 70.13
MassiveScenarioClassification is 49.78 61.94 37.52 44.16 44.21
MassiveScenarioClassification it 54.84 64.09 65.00 69.73 65.57
MassiveScenarioClassification ja 54.12 67.72 66.50 69.69 65.76
MassiveScenarioClassification jv 32.71 58.29 38.60 44.20 54.79
MassiveScenarioClassification ka 26.92 53.38 50.66 57.30 32.99
MassiveScenarioClassification km 27.23 56.18 46.96 53.14 39.34
MassiveScenarioClassification kn 10.06 61.74 45.73 56.08 60.50
MassiveScenarioClassification ko 52.01 67.26 55.66 68.52 55.69
MassiveScenarioClassification lv 44.82 61.87 59.80 66.28 44.35
MassiveScenarioClassification ml 49.10 62.26 47.69 60.13 65.53
MassiveScenarioClassification mn 21.51 62.60 57.07 60.85 38.72
MassiveScenarioClassification ms 53.60 65.63 61.71 65.81 64.99
MassiveScenarioClassification my 29.72 62.94 59.10 63.03 36.84
MassiveScenarioClassification nb 43.90 64.29 64.25 70.24 51.80
MassiveScenarioClassification nl 53.33 65.16 65.52 70.37 56.32
MassiveScenarioClassification pl 52.92 64.56 65.04 68.99 49.98
MassiveScenarioClassification pt 53.41 63.28 65.79 70.09 71.46
MassiveScenarioClassification ro 50.48 62.41 64.17 67.95 53.69
MassiveScenarioClassification ru 51.84 65.25 65.24 69.92 61.60
MassiveScenarioClassification sl 51.29 64.25 64.01 70.81 48.04
MassiveScenarioClassification sq 55.65 64.54 64.31 69.63 50.06
MassiveScenarioClassification sv 54.64 66.01 67.14 71.60 51.73
MassiveScenarioClassification sw 42.04 58.36 34.86 37.29 54.22
MassiveScenarioClassification ta 36.72 59.08 42.62 55.96 62.77
MassiveScenarioClassification te 42.08 64.13 46.46 58.81 62.59
MassiveScenarioClassification th 52.15 64.34 67.01 69.44 45.18
MassiveScenarioClassification tl 37.34 60.23 37.37 43.99 52.06
MassiveScenarioClassification tr 52.56 65.43 66.55 70.4 47.21
MassiveScenarioClassification ur 32.60 61.52 60.43 62.9 64.26
MassiveScenarioClassification vi 50.97 61.05 60.72 65.71 70.61
MassiveScenarioClassification zh-CN 50.22 70.85 67.44 71.23 73.95
MassiveScenarioClassification zh-TW 42.32 67.08 65.70 68.73 70.30
MTOPDomainClassification de 74.08 86.95 79.20 85.73 82.05
MTOPDomainClassification es 73.47 84.07 83.04 86.96 93.55
MTOPDomainClassification fr 72.26 84.14 78.63 81.21 90.98
MTOPDomainClassification hi 72.95 85.11 81.36 84.76 89.33
MTOPDomainClassification th 72.68 81.24 79.99 82.51 60.49
MTOPIntentClassification de 51.62 63.42 54.23 61.27 61.92
MTOPIntentClassification es 52.75 64.44 60.28 66.59 74.49
MTOPIntentClassification fr 50.12 62.01 54.05 59.76 69.12
MTOPIntentClassification hi 45.55 62.58 59.90 62.37 64.85
MTOPIntentClassification th 50.07 64.61 61.96 64.80 49.36

Average mix 42.85 60.77 54.87 60.39 54.4

Table 13: Multilingual classification results. Scores are accuracy.
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Dataset Language Komninos LASER2 LaBSE MiniLM-L12-multilingual MPNet-multilingual SGPT-BLOOM-7.1B-msmarco

STS17 ko-ko 2.54 70.52 71.32 77.03 83.41 66.89
STS17 ar-ar 13.78 67.47 69.07 79.16 79.10 76.42
STS17 en-ar 9.08 65.05 74.51 81.22 80.85 78.07
STS17 en-de -3.11 66.66 73.85 84.22 83.28 59.10
STS17 en-tr -0.45 70.05 72.07 76.74 74.90 11.80
STS17 es-en -8.18 55.30 65.71 84.44 86.11 78.22
STS17 es-es 48.23 79.67 80.83 85.56 85.14 86.00
STS17 fr-en 5.81 70.82 76.98 76.59 81.17 80.46
STS17 it-en 3.64 70.98 76.99 82.35 84.24 51.58
STS17 nl-en -0.44 68.12 75.22 81.71 82.51 45.85
STS22 de 33.04 25.69 48.58 44.64 46.70 30.05
STS22 es 48.53 54.92 63.18 56.56 59.91 65.41
STS22 pl 12.47 18.34 39.30 33.74 33.65 31.13
STS22 tr 47.38 36.97 58.15 53.39 56.30 47.14
STS22 ar 32.42 42.57 57.67 46.2 52.19 58.67
STS22 ru 19.44 39.24 57.49 57.08 58.74 43.36
STS22 zh 4.78 49.41 63.02 58.75 61.75 66.78
STS22 fr 49.43 58.61 77.95 70.55 74.30 80.38
STS22 de-en 28.65 32.35 50.14 52.65 50.81 51.16
STS22 es-en 26.97 54.34 71.86 67.33 70.26 75.06
STS22 it 57.77 60.31 72.22 55.22 60.65 65.65
STS22 pl-en 45.55 53.63 69.41 69.02 73.07 53.31
STS22 zh-en 14.05 46.19 64.02 65.71 67.96 68.45
STS22 es-it 41.10 42.21 69.69 47.67 53.70 65.50
STS22 de-fr 14.77 37.41 53.28 51.73 62.34 53.28
STS22 de-pl 11.21 15.67 58.69 44.22 40.53 43.05
STS22 fr-pl 39.44 39.44 61.98 50.71 84.52 28.17

Average mix 22.14 51.55 65.67 64.23 67.71 57.81

Table 14: Multilingual STS Results. Scores are Spearman correlations of cosine similarities.
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Abstract
We propose a novel gradient-based attack
against transformer-based language models that
searches for an adversarial example in a con-
tinuous space of token probabilities. Our al-
gorithm mitigates the gap between adversarial
loss for continuous and discrete text representa-
tions by performing multi-step quantization in a
quantization-compensation loop. Experiments
show that our method significantly outperforms
other approaches on various natural language
processing (NLP) tasks.

1 Introduction

Deep neural networks achieve impressive results,
but their vulnerability to adversarial attacks causes
major security threats and is a concern when inter-
preting or explaining model predictions.

In computer vision, the most successful at-
tack methods use gradient-based optimization tech-
niques (Carlini and Wagner, 2017; Madry et al.,
2018). They minimize adversarial loss function
that encourages the prediction error and impercep-
tibility of a generated example.

Development of optimization-based attacks in
NLP is much more challenging due to the discrete
nature of text. Recent methods (Guo et al., 2021;
Yuan et al., 2021) overcome this limitation by per-
forming a gradient descent in the continuous space
of token representations and eventually quantizing
them into discrete text.

A quantization of a token can significantly
change its embedding and cause an undesired
change of the loss value, degrading the adver-
sarial example. To our knowledge, all existing
optimization-based NLP attacks quantize all to-
kens in a text at once, which creates a considerable
gap between adversarial loss for continuous and
discrete text representations.

In this paper, we propose MANGO1 (Multi-
step quANtization Gradient-based adversarial Op-

1Code available at github.com/gmum/MANGO.

timizer): a novel optimization-based attack against
Transformer (Vaswani et al., 2017) language mod-
els that mitigates the aforementioned gap by per-
forming multi-step quantization in a quantization-
compensation loop. MANGO quantizes continuous
token representations one by one and reoptimizes
the adversarial example after each quantization to
compensate undesired degradation of adversarial
loss value. The construction of MANGO intro-
duces interesting problems that are addressed in
Section 3. MANGO achieves superior performance
in various NLP tasks, outperforming recent white-
box (optimization-based) and black-box attacks.

2 Related Work

Adversarial attacks can be roughly divided into two
categories: white-box attacks that have access to
the internal model’s states (e.g. gradient) and more
common black-box attacks that only know outputs
of the model. In our paper, we focus on a white-box
version of our MANGO attack. In Appendix D, we
develop a version of MANGO that can be used in
the loosened black-box setting.

Black-Box Methods Most black-box NLP at-
tacks define a space of character or word replace-
ments and heuristically search it for an adversarial
example (Yoo et al., 2020). The search space is lim-
ited with semantic ad hoc constraints (e.g. limiting
edit distance or restricting possible replacements to
synonyms) to preserve the attack’s imperceptibility.
Such constraints disallow some specific perturba-
tions (e.g. replacing a word with its antagonist even
if the semantics is preserved in the context of other
perturbations) and tend to generate semantically
incorrect examples (Morris et al., 2020a).

White-Box Methods Many white-box methods
use gradients to guide a heuristic search in a space
of text perturbations (Ebrahimi et al., 2018; Cheng
et al., 2019; Xu and Du, 2020). Recent methods
take a step further and perform gradient descent
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optimization. They aim to find an example that
minimizes the adversarial loss function, which en-
courages the prediction error and the imperceptibil-
ity of the attack. Because the similarity and fluency
of an example are controlled by a powerful external
model used in the loss, optimization-based methods
do not require hand-crafted semantic constraints,
making them more flexible than black-box ones.

Adapting gradient descent in NLP attacks is a
challenging problem due to the discrete nature of
the optimized text. Yuan et al. (2021) overcome
this issue by performing optimization in the con-
tinuous space of token embeddings and replacing
each token with a possibly new token, which em-
bedding is the closest to the optimized one. An
alternative approach is the GBDA method (Guo
et al., 2021) that optimizes a continuous distribu-
tion of stochastic one-hot vectors and repeatedly
samples adversarial examples from the optimized
distribution until it fools the attacked model.

Quantization Both methods mentioned above
quantize all continuous representations of tokens to
a text at once. Quantization of a single token may
significantly change its embedding and cause an
undesirable change of adversarial loss value. When
quantizing all tokens at once, the changes accu-
mulate to a considerable gap between adversarial
loss for continuous and discrete text representations
(see Section 6). Our MANGO mitigates this gap.

3 MANGO

This section describes our MANGO method. Un-
like other optimization-based methods that quan-
tize all token representations at once, MANGO con-
stitutes an entirely new algorithm that quantizes a
token and compensates for the resulting change in
an adversarial loss value in a step-by-step manner.
The construction of MANGO introduces interest-
ing problems that are addressed in the Optimiza-
tion, Vector Selection and Candidates Selection
paragraphs and are further evaluated in Section 5.

Continuous Token Representation The first
learnable layer of Transformer takes as input a se-
quence of tokens x = (t1, ..., tn), where ti ∈ 2|V |

has a single non-zero binary value at index k indi-
cating that it represents the k-th token in vocabulary
V .

Similarly to Guo et al. (2021), we relax the in-
put sequence x and replace one-hot encodings ti
with probability vectors πi. Because the first learn-

able Transformer layer is a simple linear layer, it
can take probability vectors as input without any
modification.

A probability vector πi constitutes probability
distribution over tokens from V .

In the embedding layer, the Transformer embeds
probability vectors with the function e:

e(πi) =

|V |∑

j=1

(πi)jEj , (1)

where Ej is the embedding vector of the j-th token.
If πi is quantized, meaning it is a one-hot vector
representing some token k, function e simply looks
up the k-th embedding: e(πi) = Ek. In MANGO,
πi is a probabilistic vector, and its embedding e(πi)
is a mixture of embeddings of all tokens weighted
by their probabilities πi. We parameterize πi with
logits Θi and a standard softmax function σ, so that
πi = σ(Θi) and x = σ(Θ) for Θ = (Θ1, ...,Θn).

Loss function Let m : X → R|Y | be a classifier
that outputs logit vectors and properly predicts a la-
bel y ∈ Y for some datapoint x ∈ X , meaning that
argmaxkm(x)k = y. An adversarial example is a
sample x′ ∈ X that is imperceptible (according to
specified criteria) from x but changes the output of
the model. In an optimization-based setting, search-
ing for an adversarial example is usually defined as
a minimization of an adversarial loss function.

Following Guo et al. (2021), we compose our
adversarial loss L as a combination of margin loss
lm, fluency loss lf , and similarity loss ls:

L(x′) = lm(m,x
′, y)+λf lf (g, x

′)+λsls(g, x′, x),
(2)

where λf and λs are the coefficients used to balance
the losses and g is a reference model.

Margin loss lm encourages model m to missclas-
sify x′ by a margin κ:

lm(m,x
′, y) = max(m(x′)y−max

k ̸=y
m(x′)k+κ, 0).

Fluency loss lf promotes x′ with a high probabil-
ity of being generated by a causal language model
g that predicts the next token distribution:

lf (g, x
′) = −

n∑

i=1

|V |∑

j=1

(πi)jg(π1, ..., πi−1)j .

Similarity loss ls is based on BERTScore (Zhang
et al., 2020) and captures the semantic similar-
ity between x and x′ using contextualized embed-
dings of tokens ϕg(x) = (v1, ..., vn) and ϕg(x′) =
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(v′1, ..., v
′
n) produced by the reference model g :

ls(g, x
′, x) = −

n∑

i=1

wimax
j
vTi v

′
j ,

where wi is the inverse frequency of token ti.

Quantization-Compensation Loop MANGO al-
gorithm searches for a x′ that minimizesL, quantiz-
ing and compensating it step by step. Algorithm 1
introduces the idea of MANGO.

In the first line, the parameters Θ of x′ are ini-
tialized, so that Θ′ij = C · (xi)j for some constant
C. Each loop starts with optimization of x′ with
respect to L. Then vector selection is performed to
select π′i from x′ which will be quantized in the cur-
rent step. Given π′i, MANGO performs candidates
selection and selects m the most promising tokens
c1, ..., cm to which x′i can be quantized. In the 6th
line, each candidate cj is evaluated by computing
L for a sequence x′ with vector π′i quantized to
cj . Finally, π′i is quantized to the best cj chosen
from the previous step. Quantized π′i will no longer
be updated during optimization. MANGO repeats
lines 2-7 until all vectors in x′ are quantized.

Algorithm 1: MANGO
Data: adversarial loss L (eq. 2)
Result: sentence x′ that minimizes L

1 initialize x′ = (π′1, ..., π
′
n)

2 while x′ is not fully quantized do
3 optimization: optimize parameters of x′

4 vector selection: select probabilistic
vector π′i from x′ for quantization

5 candidates selection: select m tokens
candidates from π′i

6 evaluate these m candidates with loss L
7 quantize π′i to best evaluated token

Optimization We optimize x′ with the Adam
optimizer (Kingma and Ba, 2014) which is reset
after each quantization (see Section 5). This allows
x′ to rapidly change its trajectory to compensate
for the degradation of L. The initial number of
optimization steps is S, but it decreases by a factor
of 2 in each loop to reduce computational costs.

Vector Selection In line 4th, we choose vector π′i
with the highest entropy (see Section 5), because
its quantization will introduce the most significant
change to x′ and is likely to increase the loss value
the most. Intuitively, we want such degrading quan-
tizations to occur early in the algorithm, because

the more vectors are not quantized yet, the larger
capacity x′ has to compensate for degradation by
finding another local minimum of L.

Candidates Selection In this phase, we select m
tokens that can be used to quantize the probability
vector π′i with possibly a small degradation of L.
Quantization of π′i with token k is a step qk =
(−(π′i)1,−(π′i)2, ..., 1 − (π′i)k, ...,−(π′i)n) in the
π′i space. As π′i is likely to be in the proximity of
its local minimum with respect to L, we want the
step qk to have (1) the lowest norm ∥qk∥ possible
and (2) follow the direction of the local (minus)
gradient. We use this intuition in the formulation
of the token score sk, which is a weighted mean of
the probability (π′i)k and the direction score dk:

sk = λprob(π
′
i)k + (1− λprob)dk. (3)

Note that (π′i)k is inversely proportional to ∥qk∥.
We define dk as cosine similarity between qk and
the local (minus) gradient (see Section 5):

dk =
qk

(
−∇π′

i
L(x′)

)T

∥qk∥ · ∥∇π′
i
L(x′)∥ (4)

We then select m tokens with the highest scores sk.

4 Experiments

In this section, we evaluate MANGO on various
NLP tasks and compare it to recent NLP attacks.

Baselines We compare our method with the latest
white-box GBDA attack (Guo et al., 2021), as well
as recent black-box attacks implemented in Tex-
tAttack (Morris et al., 2020b): BERT-Attack (Li
et al., 2020), BAE (Garg and Ramakrishnan, 2020)
and TextFooler (Jin et al., 2020). To emphasize the
importance of multi-step quantization, we evaluate
the Naive version of MANGO that performs quan-
tization in one step. MANGO, Naive and GBDA
attacks use identical loss. All hyperparameters are
listed in appendix A.

Tasks We attack BERT models from TextAttack
fine-tuned on three text classification tasks: AG
News (Zhang et al., 2015), Yelp Reviews (Zhang
et al., 2015), IMDB (Maas et al., 2011), and MNLI
task for natural language inference, (Williams et al.,
2018). In MNLI p., an attack is allowed to modify
only the premise, and in MNLI h., only the hypoth-
esis. For each task, we randomly select 1000 attack
targets from the training set. We use a training set
as it provides more challenging targets and is more
relevant to Adversarial Training (Bai et al., 2021).
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Task Method Adv. Adv. prob. USE sim. BERTScore ∆ perp. ∆ gram. # queries
A

G
N

ew
s

(9
9.

6)
TextFooler 16.2 43.7 ± 26.0 0.81 ± 0.13 0.83 ± 0.10 373 ± 548 0.26 ± 0.69 334 ± 224
Bert-Attack 20.1 45.7 ± 27.7 0.83 ± 0.11 0.86 ± 0.09 86 ± 133 0.06 ± 0.49 620 ± 472
BAE 12.6 41.1 ± 24.1 0.78 ± 0.16 0.84 ± 0.11 157 ± 289 0.07 ± 0.53 424 ± 353

naive 43.7 44.5 ± 43.1 0.82 ± 0.10 0.87 ± 0.06 67 ± 141 0.13 ± 0.62 102 ± 6
GBDA 12.9 13.7 ± 29.4 0.72 ± 0.13 0.80 ± 0.09 241 ± 382 0.17 ± 0.72 1098 ± 69
MANGO 2.7 3.2 ± 15.3 0.78 ± 0.10 0.83 ± 0.06 30 ± 108 0.10 ± 0.63 496 ± 125

IM
D

B
(9

8.
2)

TextFooler 0.6 34.1 ± 16.9 0.94 ± 0.08 0.93 ± 0.07 108 ± 214 01.03 ± 1.81 761 ± 1 000
Bert-Attack 0.6 28.0 ± 18.6 0.96 ± 0.07 0.96 ± 0.05 19 ± 38 0.05 ± 0.65 900 ± 922
BAE 0.2 29.3 ± 18.3 0.95 ± 0.08 0.95 ± 0.06 27 ± 59 0.10 ± 0.76 651 ± 665

naive 30.5 31.1 ± 42.6 0.86 ± 0.09 0.83 ± 0.10 288 ± 346 1.56 ± 2.75 100 ± 13
GBDA 6.3 7.0 ± 21.3 0.83 ± 0.11 0.79 ± 0.08 294 ± 271 1.44 ± 2.22 1082 ± 146
MANGO 0.3 0.7 ± 5.7 0.88 ± 0.07 0.83 ± 0.08 59 ± 73 0.99 ± 2.15 1647 ± 746

Y
el

p
(9

9.
9)

TextFooler 4.5 31.7 ± 22.6 0.92 ± 0.10 0.93 ± 0.06 90 ± 192 0.50 ± 01.06 495 ± 526
Bert-Attack 1.9 28.3 ± 19.1 0.93 ± 0.09 0.94 ± 0.06 16 ± 38 0.00 ± 0.55 665 ± 713
BAE 2.8 30.5 ± 21.1 0.92 ± 0.11 0.93 ± 0.06 29 ± 130 0.06 ± 0.60 501 ± 525

naive 35.1 35.8 ± 45.4 0.82 ± 0.13 0.84 ± 0.09 25 ± 84 0.75 ± 1.93 102 ± 3
GBDA 4.5 4.9 ± 18.3 0.79 ± 0.12 0.81 ± 0.06 5 ± 42 0.37 ± 1.59 1101 ± 35
MANGO 8.5 8.9 ± 27.4 0.82 ± 0.12 0.80 ± 0.07 -30 ± 38 0.34 ± 1.72 1128 ± 718

M
N

L
Ip

re
m

is
e

(9
4.

7)

TextFooler 94.7 - - - - - -
Bert-Attack 3.9 34.3 ± 23.5 0.93 ± 0.08 0.96 ± 0.04 30 ± 58 0.02 ± 0.26 146 ± 148
BAE 5.0 34.3 ± 23.5 0.92 ± 0.09 0.95 ± 0.04 42 ± 107 0.01 ± 0.26 112 ± 108

naive 31.6 33.9 ± 24.0 0.91 ± 0.07 0.94 ± 0.04 64 ± 116 -0.01 ± 0.50 97 ± 23
GBDA 5.9 30.3 ± 21.9 0.80 ± 0.12 0.87 ± 0.07 301 ± 446 0.09 ± 0.67 1044 ± 247
MANGO 2.4 31.6 ± 23.3 0.88 ± 0.08 0.91 ± 0.05 73 ± 123 0.05 ± 0.60 326 ± 125

M
N

L
Ih

yp
.

(9
4.

7)

TextFooler 6.5 35.5 ± 24.2 0.94 ± 0.07 0.95 ± 0.04 77 ± 139 0.13 ± 0.39 77 ± 44
Bert-Attack 2.6 34.3 ± 24.3 1.00 ± 0.01 0.97 ± 0.03 1 ± 0 0.00 ± 0.06 95 ± 62
BAE 3.5 34.8 ± 24.4 0.95 ± 0.06 0.97 ± 0.03 29 ± 57 0.03 ± 0.25 74 ± 39

naive 8.4 32.1 ± 22.7 0.89 ± 0.08 0.93 ± 0.04 115 ± 209 0.07 ± 0.36 97 ± 23
GBDA 0.6 27.4 ± 21.4 0.81 ± 0.12 0.89 ± 0.06 220 ± 454 0.09 ± 0.42 1044 ± 247
MANGO 0.3 30.0 ± 22.4 0.89 ± 0.09 0.93 ± 0.04 85 ± 155 0.06 ± 0.38 258 ± 68

Table 1: Results for black-box and white-box methods. We report: the initial training accuracy of BERT model
(under Task); training accuracy under attack (Adv.); probability of ground-truth label prediction under attack
(Adv. prob.); similarity between the original and perturbed text computed with USE (Cer et al., 2018) (USE
sim.) and with F1 BERTScore (BERTScore); percent change in perplexity computed with GPT-2 (Radford
et al., 2019) (∆ perpl.); increase in the number of grammar errors (∆ gram.) obtained with LanguageTool
(github.com/jxmorris12/language_tool_python); average number of queries to a victim model (# queries). We
omit results for TextFooler on MNLI p., as it has not generated any adversarial example. We also report standard
deviation for each result, except adversarial accuracy as it is simply the percent of successful attacks. Our MANGO
method achieves superior results on most tasks while maintaining high semantic similarity and grammar fluency.
The best results for Adv. are bold.

Results Results can be found in Table 1. Our
MANGO substantially reduces the training accu-
racy of the BERT model in all tasks, while main-
taining a high level of semantic similarity to the
original input. The attacks of MANGO are diffi-
cult (low Adv. prob., which indicates that model
misclassifies an example by a large margin), fluent
(low ∆ perp.) and do not flaw the grammatical
correctness (low ∆ gram.).

In almost all settings, MANGO outperforms
other attacks in terms of training accuracy, which
we believe to be the fairest metric for comparing
optimization-based methods with black-box ones

due to inherent design biases (see Appendix B).
MANGO surpasses the recent state-of-the-art

optimization-based GBDA attack in terms of most
considered metrics: in terms of Adv. acc. and
BERTScore on 4/5 tasks and in terms of USE sim.,
∆ perpl. and ∆ gram. on 5/5 tasks.

Moreover, MANGO achieves considerably bet-
ter results than its Naive version, emphasizing the
importance of multi-step quantization.

Qualitative Results We provide qualitative anal-
ysis of a few adversarial examples generated by
BAE, GBDA, and MANGO in Appendix C.
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5 Ablation Study

In this section, we evaluate three solutions from
Section 3 that improve the core idea of multi-step
quantization:

1. selection of probability vector to quantization
by maximal entropy (instead of minimal en-
tropy, which seems more natural choice),

2. scoring token candidates by weighted mean of
token probability and gradient direction score
(eq. 4),

3. resetting optimizer after every quantization.

Figure 1 compares different MANGO settings.
We may observe that selection of probability vec-
tor for quantization by maximal entropy ("max en-
tropy") is better than selection by minimal entropy
("min entropy"). Resetting the optimizer after ev-
ery quantization enhances the performance for both
"max entropy" and "min entropy" settings. Finally,
we see that MANGO benefits from using both to-
ken’s probability and gradient direction to score
token candidates.

Figure 1: Final adversarial losses for different MANGO
setting. "max entropy + optimizer resets" stands for a
version of MANGO that selects probability vector for
quantization by maximal entropy and resets optimizer
after every quantization. Rest of the names follow the
same pattern. We also present the influence of the coef-
ficient λprob used in token candidates scoring function
(eq. 4). Loss values are averaged over 10 samples from
IMDB dataset.

6 Visualization of Quantization Gap

To visualize the quantization gap between adversar-
ial loss for continuous and discrete text representa-
tions, we compared adversarial losses of MANGO,
GBDA and a Naive version of MANGO that does

not use multi-step quantization. The comparison
can be found in Figure 2. We observe that the Naive
method converges to the lowest value loss in the
optimization phase, but the value explodes after
quantization. The GBDA method, which samples
probability vectors that resemble discrete one-hot
vectors using Gumbel-softmax (Jang et al., 2017),
reaches a higher minimum, but its quantization gap
is much smaller than that of Naive method. Finally,
in the case of MANGO, we observe sudden peaks
and slow declines of loss values that correspond
to the quantization-compensation loop, in which
the quantization of single tokens is followed by the
compensation of the quantization gap. After opti-
mization, MANGO continues to quantize tokens
step by step further decreasing the loss. MANGO
obtains a significantly lower final adversarial loss
than GBDA and Naive, avoiding the quantization
gap.

Figure 2: Adversarial loss for epochs 50-200 of op-
timization for Naive, GBDA and MANGO methods.
The vertical dashed line shows the end of optimization.
Naive and GBDA methods immediately quantize the
tokens, while MANGO do it step by step. The right-
most points shows the final adversarial loss value. We
observe that after optimization, MANGO continues to
quantize tokens step by step and eventually reaches the
best adversarial loss value. Loss values are averaged
over 9 samples from IMDB dataset.

7 Conclusion

We developed MANGO, a novel optimization-
based attack against Transformer models that
mitigates the gap between adversarial loss for
continuous and discrete text representations us-
ing a quantization-compensation loop. MANGO
achieves superior results on various NLP tasks,
outperforming recent black-box and optimization-
based attacks.
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Limitations

One limitation is that the number of queries of
MANGO to the attacked model depends on the
length of the input sequence. Therefore, MANGO
may suffer a long attack time on datasets with long
sequences (like IMDB or Yelp).

Moreover, MANGO is restricted only to token
replacement. The inability to insert or remove to-
kens can lead to reduced attack performance.

The most important limitation is the white-box
nature of MANGO that excludes it from applica-
tions when the internal model’s states cannot be
known. To partially circumvent this limitation, we
propose Gray MANGO - a version of MANGO
that can be used in the loosened black-box setting,
which we call gray-box setting (see appendix D).

Acknowledgements

The work of Klaudia Bałazy was carried out within
the research project "Bio-inspired artificial neural
network" (grant no. POIR.04.04.00-00-14DE/18-
00) within the Team-Net program of the Founda-
tion for Polish Science co-financed by the European
Union under the European Regional Development
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A Hyperparameters

MANGO To save computational resources dur-
ing candidates selection, we use the dynamic num-
ber of candidates m. We rescale the candidate
scores sk to [0, 1] and take at most M = 5 can-
didates whose scores differ from the best score at
most by a threshold T = 0.5: sk ≥ maxj sj − T .
We use λprob = 0.5 in Equation (4).

White-Box Attacks MANGO, Naive and GBDA
methods use the loss function Equation (2) with the
same parameters λs = 20, λf = 1, κ = 5 (taken
from Guo et al. (2021)) for all tasks, except Yelp,
where they use λs = 10. As a reference model
g, we used the GPT-2 model downloaded from
the official GBDA repository. We set C = 10 for
initialization of the adversarial sample parameters.
The number of optimization epochs S = 100 for
all models and the batch size in GBDA was set to
10.

Black-Box Attacks We take TextFooler, BertAt-
tack, and BAE implementations from TextAttack
(Morris et al., 2020b) along with their original pa-
rameters. For fair comparison, we set the USE
similarity threshold to the lowest value (0.2) used
along these methods. Following the GBDA paper,
we slightly modify the BertAttack method to miti-
gate its problem with subtokens and extremely long
time of attack.

B Comparison Fairness

When comparing the results of optimization-based
(MANGO, GBDA, Naive MANGO) and black-
box methods (TextFooler, Bert-Attack, BAE), we
should note that black-box methods stop perturb-
ing text as soon as they fool the model, while
optimization-based attacks minimize adversarial
loss (that encourage them to fool the model by
some margin) for some fixed number of steps.
The former improves similarity metrics (USE sim.,
BERTScore) and the latter highly decreases the
model’s prediction on ground-truth labels (Adv.
prob.), increasing the difficulty of generated sam-
ple. Therefore, we believe that training accuracy
under attack (Adv.) is the fairest metric to make a
direct comparison between optimization-based and
classic black-box methods.

C Attack Examples

To draw some insights into MANGO performance,
we compared examples generated by BAE, GBDA

and MANGO. We chose all the sentences from AG
News and MNLI hypothesis that were successfully
perturbed by the three considered methods and on
which the methods obtained USE cosine similar-
ity score greater than 0.9. We then sampled two
sentences from AG News and two from MNLI hy-
pothesis tasks. To avoid cherry-picking, we fixed
a seed and sampled only once. Examples can be
found in table 2 and in table 3. We are careful in
drawing any conclusion from the qualitative results,
however, there seems to be a trend consistent with
the result from table 1 and our observations from
appendix B: BAE perturbs less words than GBDA
and MANGO, but also achieves lower confidence
of the mislassified label.

D Gray MANGO

To circumvent the white-box nature of MANGO
attack, we additionally develop Gray MANGO: a
version of MANGO that can be used in the loos-
ened black-box setting, which we call gray-box
setting.

Gray-Box Setting Gray MANGO is not strictly
a black-box attack, as it requires the attacked model
to take probability vectors and needs access to to-
ken vocabulary V . Transformer-based models sat-
isfy these assumptions: they usually share the same
V and their embedding function e can be used for
both one-hot and probability vectors. However, to
avoid misconception, we call this loosened black-
box setting a grey-box setting.

Zeroth-Order Optimization Gray MANGO is
based on Zeroth-Order Optimization (ZOO) (Nes-
terov and Spokoiny, 2017). The idea of ZOO is to
approximate the gradient using only zeroth order
loss values. In computer vision, Chen et al. (2017)
developed a ZOO-based attack that significantly
outperforms other black-box attacks. We believe
that this success can be transferred to the NLP do-
main. Berger et al. (2021) have proposed an NLP
attack that uses a discrete version of ZOO, but the
results were unsatisfactory. Our Gray MANGO
method is the first to successfully adapt the contin-
uous version of ZOO in NLP attacks.

Formulation The main modification with respect
to MANGO is the use of the zeroth-order gradient
approximation of the gradient∇Θ′L(x′) (Liu et al.,
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Method Prediction Sentence

AG News - Example no 1.

Original world (100%) air india trial witness said motivated by revenge ( reuters ) reuters
- a desire for revenge motivated a prosecution witness to tell the
air india bombing trial he had been asked to carry an mysterious
suitcase on to an airliner, defense lawyers charged on wednesday.

BAE sci/tech (61%) air india trial witness said motivated by revenge ( reuters ) website
- a desire for revenge motivated a prosecution witness to tell the air
india company s he had been asked to carry an mysterious suitcase
on to an account, defense lawyers charged on wednesday.

GBDA business (99%) air india trial witness said motivated by revenge - today
investigative reuters reporting a desire for revenge motivated crim-
inal prosecution witnesses to tell the air canada strike trial he had
been asked to carry an mysterious suitcase on to an airliner, de-
fense lawyers charged on tuesday.

MANGO business (100%) air indies trial witness said motivated by revenge ( reuters ) time
- a desire for revenge motivated a prosecution witness to tell the
air america arson trial he had been asked to carry a mysterious
suitcase on to an airliner, defense lawyers charged on monday.

AG News - Example no 2.

Original business (91%) brazil passes bankruptcy reform brazilian congress gives the green
light to a long awaited overhaul of bankruptcy laws, which it hopes
will reduce business and credit costs.

BAE sci/tech (95%) brazil passes bankruptcy reform brazilian congress gives the green
light to a long awaited overhaul of copyright laws, which it hopes
will reduce business and credit costs.

GBDA world (95%) brazil passes bankruptcy reform brazilian congress gives the green
light to a long awaited overhaul of privacy laws, which it aims will
reduce tourism and population impacts.

MANGO world (99%) brazil passes golf reform brazilian congress gives the green light
to a long awaited overhaul of elections laws, which it hopes will
reduce spending and maintenance costs.

Table 2: Attack examples sampled from AG News dataset.

2020):

∇̃Θ′L(x′) = 1

K

K∑

i=1

L(σ(Θ′ + µui))− L(x′)
µ

ui,

where ui is a noise sampled from the normal distri-
bution, µ is the scale factor and σ(Θ′ + µui) is x′

with noise µui added to its parameters Θ′.
As ∇̃Θ′L(x′) is unstable, we set λprob = 1 and

use AMSGrad variant of Adam (Chen et al., 2019)
without reset after every quantization. To reduce
the high dimensionality of x′, which is an issue in

ZOO (Wang et al., 2018), we disallow replacement
of the original token with tokens that have a co-
sine similarity of GloVe (Pennington et al., 2014)
embedding lower than 0.

Hyperparameters We use almost the same pa-
rameters as for MANGO (see appendix A), but with
λprob = 1, S = 140 and λs = 80. To save compu-
tational resources, we set S = 100 for the IMDB
and Yelp datasets. Based on small grid search, we
set the noise scaling parameter µ = 0.1.
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Method Prediction Sentence

MNLI hypothesis - Example no 1.

Original contraditcion (96%) premise: the houses are built to a long - standing design and are
filled with embroidery, lace, and crochet work.
hypothesis: there is no embroidery in the houses.

BAE neutral (45%) hypothesis: there is no fire in the houses.

GBDA neutral (100%) hypothesis: there is liturgical embroidery in the houses.

MANGO neutral (99%) hypothesis: there is no erosion in the ruins.

MNLI hypothesis - Example no 2.

Original contradiction (100%) premise: whether the service emerges as an adaptation from pri-
mary care or as an innovation from the ed is less important than
whether it can be evaluated to the satisfaction of those who make
key decisions about whether it becomes part of standard practice.
hypothesis: key decision makers are not important to decided
things.

BAE neutral (96%) hypothesis: consensus decision makers are not important to first
things.

GBDA neutral (98%) hypothesis: key decision makers are noted fairchild – emery
associates.

MANGO neutral (99%) hypothesis: older ahlers are also important in this regard.

Table 3: Attack examples sampled from MNLI hypothesis task.

Results We evaluated the Gray MANGO method
and compared it to vanilla MANGO. Results can
be found in table 4.

Gray MANGO, which is the first method to in-
corporate continuous ZOO in NLP attack, performs
competitively with other black-box attacks in terms
of training accuracy reduction, but struggles to keep
adversarial examples similar to original texts. We
believe that the performance of Gray MANGO may
be greatly elevated by a more thorough design of
ZOO components (Liu et al., 2020). This may be
an interesting topic for future research.
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Task Method Adv. Adv. prob. USE sim. BERTScore ∆ perp. ∆ gram. # queries

A
G

N
ew

s
(9

9.
6)

TextFooler 16.2 43.7 ± 26.0 0.81 ± 0.13 0.83 ± 0.10 373 ± 548 0.26 ± 0.69 334 ± 224
Bert-Attack 20.1 45.7 ± 27.7 0.83 ± 0.11 0.86 ± 0.09 86 ± 133 0.06 ± 0.49 620 ± 472
BAE 12.6 41.1 ± 24.1 0.78 ± 0.16 0.84 ± 0.11 157 ± 289 0.07 ± 0.53 424 ± 353
G-MANGO 9.7 11.0 ± 25.8 0.57 ± 0.23 0.67 ± 0.14 16k ± 47k -0.03 ± 0.61 3728 ± 244
MANGO 2.7 3.2 ± 15.3 0.78 ± 0.10 0.83 ± 0.06 30 ± 108 0.10 ± 0.63 496 ± 125

IM
D

B
(9

8.
2)

TextFooler 0.6 34.1 ± 16.9 0.94 ± 0.08 0.93 ± 0.07 108 ± 214 01.03 ± 1.81 761 ± 1 000
Bert-Attack 0.6 28.0 ± 18.6 0.96 ± 0.07 0.96 ± 0.05 19 ± 38 0.05 ± 0.65 900 ± 922
BAE 0.2 29.3 ± 18.3 0.95 ± 0.08 0.95 ± 0.06 27 ± 59 0.10 ± 0.76 651 ± 665
G-MANGO 8.6 10.8 ± 24.3 0.65 ± 0.21 0.66 ± 0.14 16k ± 38k 0.19 ± 1.97 3142 ± 669
MANGO 0.3 0.7 ± 5.7 0.88 ± 0.07 0.83 ± 0.08 59 ± 73 0.99 ± 2.15 1647 ± 746

Y
el

p
(9

9.
9)

TextFooler 4.5 31.7 ± 22.6 0.92 ± 0.10 0.93 ± 0.06 90 ± 192 0.50 ± 01.06 495 ± 526
Bert-Attack 1.9 28.3 ± 19.1 0.93 ± 0.09 0.94 ± 0.06 16 ± 38 0.00 ± 0.55 665 ± 713
BAE 2.8 30.5 ± 21.1 0.92 ± 0.11 0.93 ± 0.06 29 ± 130 0.06 ± 0.60 501 ± 525
G-MANGO 15.7 16.4 ± 32.1 0.62 ± 0.27 0.69 ± 0.15 14k ± 36k -0.01 ± 1.68 2803 ± 516
MANGO 8.5 8.9 ± 27.4 0.82 ± 0.12 0.80 ± 0.07 -30 ± 38 0.34 ± 1.72 1128 ± 718

M
N

L
Ip

.
(9

4.
7)

TextFooler 94.7 - - - - - -
Bert-Attack 3.9 34.3 ± 23.5 0.93 ± 0.08 0.96 ± 0.04 30 ± 58 0.02 ± 0.26 146 ± 148
BAE 5.0 34.3 ± 23.5 0.92 ± 0.09 0.95 ± 0.04 42 ± 107 0.01 ± 0.26 112 ± 108
G-MANGO 35.1 33.4 ± 23.0 0.77 ± 0.18 0.84 ± 0.10 5876 ± 19k -0.06 ± 0.64 3158 ± 761
MANGO 2.4 31.6 ± 23.3 0.88 ± 0.08 0.91 ± 0.05 73 ± 123 0.05 ± 0.60 326 ± 125

M
N

L
Ih

.
(9

4.
7)

TextFooler 6.5 35.5 ± 24.2 0.94 ± 0.07 0.95 ± 0.04 77 ± 139 0.13 ± 0.39 77 ± 44
Bert-Attack 2.6 34.3 ± 24.3 1.00 ± 0.01 0.97 ± 0.03 1 ± 0 0.00 ± 0.06 95 ± 62
BAE 3.5 34.8 ± 24.4 0.95 ± 0.06 0.97 ± 0.03 29 ± 57 0.03 ± 0.25 74 ± 39
G-MANGO 9.1 30.8 ± 22.4 0.83 ± 0.13 0.89 ± 0.07 1402 ± 3272 0.04 ± 0.35 3387 ± 807
MANGO 0.3 30.0 ± 22.4 0.89 ± 0.09 0.93 ± 0.04 85 ± 155 0.06 ± 0.38 258 ± 68

Table 4: Comparison of Gray MANGO with black-box methods and vanilla MANGO. We report: the initial training
accuracy of BERT model (under Task); training accuracy under attack (Adv.); probability of ground-truth label
prediction under attack (Adv. prob.); similarity between the original and perturbed text computed with USE (Cer
et al., 2018) (USE sim.) and with F1 BERTScore (BERTScore); percent change in perplexity computed with GPT-2
(Radford et al., 2019) (∆ perpl.); increase in the number of grammar errors (∆ gram.) obtained with LanguageTool
(github.com/jxmorris12/language_tool_python); average number of queries to a victim model (# queries). We
omit results for TextFooler on MNLI p., as it has not generated any adversarial example. We also report standard
deviation for each result, except adversarial accuracy as it is simply the percent of successful attacks. The best
results for Adv. are bold.
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Abstract

Recent years have witnessed interest in Tem-
poral Question Answering over Knowledge
Graphs (TKGQA), resulting in the develop-
ment of multiple methods. However, these
are highly engineered, thereby limiting their
generalizability, and they do not automatically
discover relevant parts of the KG during multi-
hop reasoning. Relational graph convolutional
networks (RGCN) provide an opportunity to
address both of these challenges – we explore
this direction in the paper. Specifically, we pro-
pose a novel, intuitive and interpretable scheme
to modulate the messages passed through a KG
edge during convolution based on the relevance
of its associated period to the question. We also
introduce a gating device to predict if the an-
swer to a complex temporal question is likely to
be a KG entity or time and use this prediction to
guide our scoring mechanism. We evaluate the
resulting system, which we call TwiRGCN, on
a recent challenging dataset for multi-hop com-
plex temporal QA called TimeQuestions. We
show that TwiRGCN significantly outperforms
state-of-the-art models on this dataset across di-
verse question types. Interestingly, TwiRGCN
improves accuracy by 9–10 percentage points
for the most difficult ordinal and implicit ques-
tion types.

1 Introduction

Question answering (QA) is a key problem in nat-
ural language processing and a long-lasting mile-
stone for artificial intelligence. A large class of
approaches for QA makes use of knowledge graphs
(KG), which are multi-relational graphs represent-
ing facts (KGQA). Temporal KGs (TKG) represent
facts that are only valid for specific periods of time
as (subject, relation, object, time range), for ex-
ample, (Franklin D Roosevelt, position held, Pres-
ident of USA, [1933, 1945]). The problem of an-
swering questions that require temporal reasoning
over TKGs (TKGQA) is a special case of KGQA
that specifically focuses on the following challenge:

temporal questions constrain answers through tem-
poral notions, e.g., “who was the first president of
US during WW2?” Developing systems for tem-
poral QA is of immense practical importance for
many applications. It is considered a more chal-
lenging problem than KGQA (Bhutani et al., 2019;
Saxena et al., 2020), where questions are typically
about persistent, non-temporal facts (e.g., place of
birth), with only a small portion of the questions
requiring any temporal reasoning (Jia et al., 2018a).

Even though a variety of models have been pro-
posed for the TKGQA recently, they suffer from the
following problems: 1) they are either highly engi-
neered toward the task (Jia et al., 2021; Chen et al.,
2022) or 2) they do not incorporate graph structure
information using Graph Neural Networks (GNN)
(Mavromatis et al., 2021; Shang et al., 2022; Sax-
ena et al., 2021). We explore the following hy-
potheses in this paper: 1) a simple GNN-based
solution could generalize better and offer higher
performance than highly engineered GNN-based,
and TKG embedding-based models; 2) a multi-
layer GNN model could do multi-hop reasoning
across its layers; 3) not all edges (temporal facts)
are equally important for answering temporal ques-
tions (see Figure 1), so GNN solutions could benefit
from temporally weighted edge convolutions.

Following the aforementioned hypotheses, we
develop a novel but architecturally simple TKGQA
system that we call “Temporally weighted Rela-
tional Graph Convolutional Network” (TwiRGCN).
It is based on the Relational Graph Convolu-
tional Network (RGCN) proposed by Schlichtkrull
et al. (2018). TwiRGCN introduces a question-
dependent edge weighting scheme that modulates
convolutional messages passing through a temporal
fact edge based on how relevant the time period
of that edge is for answering a particular ques-
tion. In RGCN, convolution messages from all
TKG edges are weighted equally. But all edges
are not equally important for answering temporal
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questions. For example, in Figure 1, to answer
the question “Who was the first president of the
US during WW2?” the edge with Bill Clinton has
little relevance for answering the question. But,
regular RGCN would still weigh all edges equally.
We address this shortcoming through our proposed
modulation. We impose soft temporal constraints
on the messages passed during convolution, am-
plifying messages through edges close to the time
period relevant for answering the question while
diminishing messages from irrelevant edges. This
leads to better, more efficient learning as we are
not confusing our model with unnecessary infor-
mation, as evidenced by our significantly improved
performance without the need for any heavy engi-
neering. We explore two different strategies for our
convolutional edge weighting, which show comple-
mentary strengths. Our experiments establish that
TwiRGCN significantly outperforms already strong
baselines on TimeQuestions. Our contributions are:
• We propose TwiRGCN, a simple and gen-

eral TKGQA system that computes question-
dependent edge weights to modulate RGCN mes-
sages, depending on the temporal relevance of
the edge to the question.

• We explore two novel and intuitive schemes for
imposing soft temporal constraints on the mes-
sages passed during convolution, amplifying mes-
sages through edges close to the time relevant for
answering the question while diminishing mes-
sages from irrelevant edges. We also propose
an answer-gating mechanism based on the likeli-
hood that the answer is an entity or time.

• Through extensive experiments on a challeng-
ing real-world dataset, we find that TwiRGCN
substantially outperforms prior art in overall ac-
curacy, and by 9–10% on the implicit and ordinal
type questions — categories that require signifi-
cant temporal reasoning.

• We augment TimeQuestions with a TKG and re-
lease both code and data at https://github.com/adi-
sharma/TwiRGCN.

2 Related Work

Most KGQA systems have focused on answering
questions from simple (i.e., 1-hop fact-based ques-
tions) (Berant et al., 2013) to multi-hop complex
questions requiring multi-fact reasoning (Sun et al.,
2019; Saxena et al., 2020). However, only a small
fraction of these questions require any temporal
reasoning (Jia et al., 2018a). Recent efforts have

President of the
United States

positio
n held 

[1913, 1921]
position held 

[1993, 2001]

position held 

[1945, 1953]

Franklin D.  
Roosevelt

positio
n held  

[1933, 1945]

Bill Clinton 

Harry  
Truman 

Woodrow 
Wilson

Who was the first president of US during WW2?

where 

Figure 1: An illustrative example of how our temporal gating
described in Section 4.2 modulated the incoming graph con-
volution messages for one node depending on the time period
of interest for the question. The thickness of an edge here is
proportional to the value of the temporal edge weight m(e)

tq

for that edge. In this example, the entities Franklin D. Roo-
sevelt and Harry Truman, who were presidents during WW2
[1939, 1945] get the top two highest weights, while Woodrow
Wilson, who was president during WW1 [1914, 1918] gets a
smaller edge weight. In contrast, Bill Clinton, whose time
period is unrelated to the question, gets a much lower edge
weight. Thus, contributing very little to the convolution update
of the ’President of the US’ node.

tried to overcome this gap by proposing models
as well as datasets to explicitly focus on temporal
reasoning. We review these below.
Temporal KGQA methods: One line of work
uses temporal constraints along with hand-crafted
rules to find the answer (Bao et al., 2016; Luo
et al., 2018; Jia et al., 2018b). A recent class of
models has leveraged advances in TKG embed-
ding methods for answering questions on Tempo-
ral KGs. CronKGQA (Saxena et al., 2021) does
this by posing a question as a TKG completion
problem and finds the answer using the TComplex
(Lacroix et al., 2020) score function and BERT (De-
vlin et al., 2018) question embedding to complete
the fact. TempoQR (Mavromatis et al., 2021) uses
additional temporal supervision to enrich TKG em-
beddings, followed by a transformer-based decoder
(Vaswani et al., 2017). TSQA (Shang et al., 2022)
on the other hand estimate the time in the question
and uses it to enrich TKG embeddings for finding
the answer. SubGTR (Chen et al., 2022) infers
question-relevant temporal constraints using TKG
embeddings and applies them as filters to score en-
tities in the question subgraph. Although we, too,
use pre-trained TKG embeddings to initialize our
generalized RGCN, we use the GNN framework to
take advantage of the structural information in the
KG in ways that they do not. Recent work (Teru
et al., 2020) shows that GNN-based models can
encode any logical rule corresponding to a path in
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the knowledge graph. We refer to this as structural
information that shallow embedding-based models
cannot access.
RGCN based QA systems: Graph neural networks
are increasingly being used in QA systems not
specifically meant for temporal reasoning. Graft-
Net (Sun et al., 2018) uses personalized PageRank
to collect a query-relevant subgraph from a global
KG, then an RGCN to predict the answer from
the relevant subgraph. PullNet (Sun et al., 2019)
loops over and expands GraftNet’s subgraph to do
multi-hop reasoning. EXAQT (Jia et al., 2021) is
the system closest to ours: it addresses TKGQA
and also uses an RGCN. The RGCN for answer
prediction which works on the question subgraph
is very similar to that in GraftNet. EXAQT aug-
ments it with dictionary matching, heavy engineer-
ing, and additional category information. In con-
trast, TwiRGCN uses a straightforward temporally
weighted graph convolution followed by answer
gating, as described in Section 4, while still achiev-
ing superior performance (see Section 5.3). More
details in Section 5.2.

3 Preliminaries

3.1 Temporal Knowledge Graphs (TKG)

KG: Multi-relational graphs with entities (eg:
Barack Obama, USA) as nodes and relations r
between entities {s, o} (e.g., president of) rep-
resented as typed edges between nodes. Each
edge of this graph, together with endpoint
nodes, represents a fact triple {s, r, o}, e.g.,
{Barack Obama, president of,USA}.
TKG: Numerous facts in the world are not perpetu-
ally true and are only valid for a certain time period.
A TKG represents such a fact as a quadruple of the
form {s, r, o, [tst, tet]}, where tst is the start time
and tet is the end time of validity of the fact, e.g.,
{Barack Obama, president of,USA, [2009, 2017]}.

3.2 Question Answering on TKGs

Given a question q specified in natural language
form and a TKG G, TKGQA is the task of find-
ing the answer to q based on the information that
is available (or can be derived) from G. A sub-
graph of G is a subset of its nodes with induced
edges. In this paper, we assume each question is al-
ready associated with a subgraph Gq relevant to the
question. We define Gq = (Vq,Rq, Tq, Eq) as the
subgraph of G associated with a question q ∈ Q,
where Q represents the set of all questions. Each

edge e ∈ Eq represents a fact {vi, r, vj , [tst, tet]},
where vi, vj ∈ Vq are entity nodes, r ∈ Rq is the
relation between them and tst, tet ∈ Tq are the start
and end times for which the fact is valid.

3.3 Relational Graph Convolutional Networks
Given a KG, each node vi is initialized to a suitable
embedding h(0)vi at layer 0.Thereafter, Schlichtkrull
et al. (2018) propose to update node embeddings
h
(l+1)
vi , at layer (l + 1), as follows:

h(l+1)
vi = σ


∑

r∈R

∑

j∈N r
i

W
(l)
r h

(l)
vj

|N r
i |

+W
(l)
0 h(l)vi


 (1)

whereN r
i is the set of neighbors of node vi that are

connected via relation edges of type r,R is the set
of relations, W (l)

r are weight matrices associated
with each relation type r and layer l. They are
initialized using a basis decomposition method.

4 Proposed Method: TwiRGCN

In this section, we develop and describe TwiRGCN
(“Temporally Weighted Relational Graph Convolu-
tional Network”), our model for TKGQA.

4.1 Embedding for questions and KG facts
Question embedding: We pass the question text
through a pre-trained encoder-only language model
(LM) to obtain a question embedding. In particular,
we prepend a [CLS] token to the input question
and feed it into BERT (Devlin et al., 2019), and
then use its output-layer [CLS] embedding as the
question embedding qB . We enable LM fine-tuning
during training.
TKG preprocessing for RGCN initialization: We
initialize entity and time embeddings using pre-
trained TComplEx (Lacroix et al., 2020) embed-
dings.1 To obtain these for the TimeQuestions
dataset (Jia et al., 2021), we first construct a ‘back-
ground KG’ G =

⋃
q∈Q Gq which is the union of

all question subgraphs Gq in the train dataset. As
in most temporal KGQA works, we discretize time
to a suitable granularity (in our dataset, a year).2

The graph on which TwiRGCN is run represents
every entity as a node vi and time as edge attribute
tj . Their initial (layer-0) RGCN embeddings h(0)vi
and htj , are set to the entity and time embeddings

1TComplEx is known to provide high-quality embeddings,
but other TKG embedding methods such as TimePlex (Jain
et al., 2020) can also be used.

2TwiRGCN can be extended to TKGQA datasets that do
not provide subgraphs through recently proposed subgraph
selection methods (Chen et al., 2022; Shang et al., 2022).
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Figure 2: Left: Shows temporally weighted convolutional message passing described in Section 4.2 happening across a
subgraph Gq for one layer. For the same, we get question-dependent temporal edge weights m(e)

tq using question time, qt
(described in 4.3). Right: As discussed in Section 4.2, embeddings are propagated in the subgraph Gq for a fixed number of
layers (L) and hidden units of the final layer are pooled to get entity prediction, hvq . We get time prediction, htq , by pooling the
updated embeddings for all unique times in Gq .

Figure 3: Predicting the answer based on gating entity predic-
tion (hvq) and time prediction (htq) of a subgraphGq based on
the likelihood that the answer is either an entity (pvq) or time
(ptq) given question q, respectively. Details in Section 4.4.

obtained from TComplEx, respectively. We refer
to htj as h(e)st and h(e)et depending on tj appearing
as start or end time for edge e, respectively. When
e = (i, r, j), we will use superscript (i, r, j) in
place of (e).

4.2 Temporally modulated edge weights

Having available the question subgraph, and the
initial entity and time embeddings, our system
applies a temporally weighted graph convolu-
tion on the local subgraph to enable answer-
ing questions that require complex temporal rea-
soning over a KG. To achieve this, we intro-
duce a question-dependent temporal edge weight
m

(i,r,j)
tq ∈ [−1, 1] for modulating the convolutional

message passed through edge e valid from time
t
(i,r,j)
st to t(i,r,j)et connecting node vi to vj via rela-

tion r, {vi, r, vj , [t(i,r,j)st , t
(i,r,j)
et ]} which assigns a

weight to that edge depending on how relevant the
time period of e is for answering question q. Then,
motivated by Eqn. (1), we update the hidden state

for a node vi in the temporal KG at layer (l+1) as:

h(l+1)
vi = σ

(
W

(l)
0 h(l)vi +

∑

r∈R

∑

j∈N r
i

m
(i,r,j)
tq

W
(l)
r h

(l)
vj

|N r
i |

)
. (2)

See Figure 1 for an example update for one node.
As shown in Figure 2, after passing messages

across a subgraph Gq over L such layers, we pool
the hidden states from the final layer of all nodes in
Gq to get hvq, the entity prediction. Similarly, we
pool the updated embeddings for all unique times
in Gq to get htq, the time prediction. We describe
in Section 4.4 how we use hvq and htq to get the
final predicted answer from our model. We use
mean pooling in this work, but any other pooling
operation can also be used.

4.3 Edge weighting formulations

We explore two different formulations for com-
puting m(i,r,j)

tq , namely average and interval, and
discuss the motivations behind the two approaches.
In Section 5, we empirically show that the inductive
bias inherent in each of the two approaches makes
them excel at different types of temporal reasoning
while giving similar performance overall. We also
provide an intuitive explanation of how the edge
weighting formulations of the two approaches ex-
plain the difference between their empirical results.
We first project the question embedding qB , using a
learned projection matrix Wtq, to find the question
time embedding qt = WtqqB . In the following,
m

(i,r,j)
tq = m(e)

tq is the weight for edge e.

4.3.1 TwiRGCN (average)
In this variant, we calculate the edge modulation
mtq as the cosine similarity between the question
time embedding, and the average of the embed-
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dings for the start and the end time of an edge:

m
(e)
tq = cos

(
h
(e)
st + h

(e)
et

2
, qt

)
. (3)

This formulation gives a high weight to an edge if
the question time falls close to the middle of the
time interval for an edge. For example, if the edge
times are [2008, 2012] and the question time is
2010, the edge is weighted highly.

4.3.2 TwiRGCN (interval)
In this variant, m(e)

tq is defined as the mean of two
cosine similarities: (1) the cosine similarity be-
tween the start time of the edge and the learned
question time embedding, and (2) the cosine sim-
ilarity between the end time of the edge and the
learned question time embedding. Formally,

m
(e)
tq =

cos(h
(e)
st , qt)+ cos(h

(e)
et , qt)

2
. (4)

This formulation weighs an edge highly if question
time tq lies within the time interval of the edge.
Generality beyond temporal reasoning While we
developed TwiRGCN for temporal reasoning, the
edge weighting is more general and could extend
to the case where qt is a "goal" embedding for any
goal-directed task.

4.4 Answer type gating

Question answering over TKGs may involve ques-
tions whose answer is an entity (e.g., Who was ...?)
or whose answer is a time (e.g., When did ...?). We
hypothesize that it should be possible to predict
whether the answer to a question is an entity or
a time based on the text of the question; making
such a prediction helps filter out (or down-weight)
a portion of the nodes in that graph that are less
likely to be the answer. Toward this hypothesis,
we introduce a gating mechanism that learns the
likelihood that the answer is an entity pvq or a time
ptq given the question:

pvq = 1− ptq = σ(wvqB), (5)
where wv transforms qB to a scalar and σ is the sig-
moid function that ensures 0 ≤ pvq ≤ 1. As shown
in Figure 3, we then compute a prediction embed-
ding dq for question q as a gated sum of the entity
prediction and time prediction (see Section 4.2 and
Figure 2) added to the question embedding:

dq =
1

cd
[pvqhvq + ptqhtq +WdqB], (6)

where cd is a constant hyperparameter and Wd is
the weight for transforming qB to the dimension of
the entity and time embeddings. Having the pre-

Category Question

Explicit Which team won the 2010 F1 world champi-
onship?
What honour did Agatha Christie win in 1971?

Implicit Who did Kevin Garnett play for before Celtics?
Where was Leonardo Da Vinci when he died?

Temporal What years did the team with fight song Steel-
ers polka win the Superbowl?
What year did Sam Elliott and Kathryn Ross
marry?

Ordinal What was the first satellite to maintain orbit
around the earth in space?
What is the third book of the twilight series?

Table 1: Examples of questions from each category in
TimeQuestions dataset, discussed in Section 5.1.

diction embedding dq, we rank candidate answers
(entities and times from the global TKG) based on
their similarity to dq.
Training We score all possible answer entities and
times as a cosine distance with the prediction em-
bedding (dq), scaled using a constant hyperparam-
eter. We take a softmax over all these scores and
train using the cross-entropy loss.

5 Evaluation

5.1 Dataset

Earlier works on TKGQA use the automatically
generated CronQuestions dataset (Saxena et al.,
2021). A recent analysis, however, shows that this
dataset comes with several limitations that stem
from its automatic construction method (Chen et al.,
2022). Specifically, there are spurious correlations
in the dataset that can be exploited by different
models to achieve high accuracy (e.g., Mavromatis
et al. (2021) report more than 90% accuracy over-
all and 99% in some categories on this dataset).
Therefore, we base our experiments on a recent
more challenging dataset, namely TimeQuestions
(Jia et al., 2021), where the aforementioned models
perform poorly (as seen in Table 3).
TimeQuestions has 13.5k manually curated ques-
tions divided into the train, valid, and test splits
containing 7k, 3.2k, and 3.2k questions, respec-
tively. The questions fall under four types: ‘Ex-
plicit,’ ‘Implicit,’ ‘Temporal,’ and ‘Ordinal,’ based
on the type of temporal reasoning required to an-
swer the questions. We show some examples of
questions from each of these categories in Table 1.
We augment this dataset with question-specific sub-
graphs generated from WikiData in the final step
of the answer graph construction pipeline proposed
by Jia et al. (2021). We preprocess all the ob-
tained facts to the (subject, relation, object, [start
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Dataset Question
ComQA Who played Dumbledore in the 5th harry

potter film?
Complex-
Web-
Questions

What is the name of the club the subject of
"golden shoes" played for in 2010?

Graph-
Questions

What sports were in both the 1912 summer
Olympics and the 2008 Olympic games?

LC-
QuAD 2.0

What is the start time for Heidi Klum has
spouse as Seal?

Free917 What is the price of a 2012 jeep wrangler
sport?

Table 2: Examples of questions requiring temporal reasoning
from KGQA datasets (see Section 5.1).

time, end time]) format, and restrict all times to
years, a format used by most contemporary TKGs.
We create a "background KG” described in Sec-
tion 4.1 as a union of all subgraphs in the train set.
This background KG contains 240k facts, 118k
entities, and 883 relations. We include this aug-
mented TimeQuestions dataset and associated code
at https://github.com/adi-sharma/TwiRGCN.
Temporal subsets of KGQA datasets: TimeQues-
tions is a compilation of temporal questions from
different KGQA datasets. We show the results in
Table 4 on a subset of 5 such datasets included
in the test set of TimeQuestions namely, ComQA
(Abujabal et al., 2019), ComplexWebQuestions
(Talmor and Berant, 2018), GraphQuestions (Su
et al., 2016), LC-QuAD 2.0 (Dubey et al., 2019),
and Free917 (Cai and Yates, 2013). Table 2 shows
representative examples from these 5 datasets.

5.2 Baseline methods

We compare TwiRGCN against a spectrum of ex-
isting methods, including EXAQT, other TKGQA
methods, and non-temporal KGQA methods.
Non-temporal KGQA methods: We include Uni-
corn (Pramanik et al., 2021), which uses Group
Steiner Trees for answering questions. We test on
two RGCN-based approaches for KGQA, namely,
GRAFT-Net (Sun et al., 2018), which attends over
relations of neighborhood edges based on the ques-
tion, and PullNet (Sun et al., 2019), which extends
GRAFT-Net for multi-hop questions.
TKGQA methods: We also compare against
TKGQA methods CronKGQA (Saxena et al., 2021)
and TempoQR (Mavromatis et al., 2021) recently
proposed for the CronQuestions dataset. In contrast
to TwiRGCN, these do not leverage the powerful
GNN framework. CronKGQA frames QA as a KG
completion problem to complete the fact the ques-
tion is interested in, using the TComplex score func-
tion and BERT question embedding. TempoQR, on

the other hand, enriches pre-trained TKG embed-
dings with additional supervision from the dataset
and uses a transformer (Vaswani et al., 2017) based
decoder to predict the final answer.
EXAQT: Jia et al. (2021) propose EXAQT, which
is hitherto the best performer on TimeQuestions. It
is also an RGCN-based TKGQA model that uti-
lizes the GRAFT-Net framework. But in contrast
to our model, EXAQT is heavily engineered. It
utilizes the ground truth question category infor-
mation from the dataset at train and test time, so it
always knows whether the answer is temporal or
belongs to another category. In contrast, our model
learns the likelihood that the answer is an entity or
time without any explicit supervision through our
gating mechanism described in Section 4.4. EX-
AQT also uses explicit temporal signals from the
question, extracted through a dictionary matching-
based method using predefined temporal words
such as ‘before’, ‘after’, ‘first’, ‘last’, ‘during’, etc.
It then enriches its embeddings by utilizing the
above in a multi-step end-to-end process. In con-
trast, our models do not have access to any such
information with only a straightforward temporally
weighted graph convolution followed by answer
gating, as described in Section 4.

5.3 Results

TwiRGCN achieves new state-of-the-art: We
compare the accuracy (Hits@1) for different Tem-
poral KGQA models across all question categories
found in TimeQuestions in Table 3. From this table,
we see that our models TwiRGCN (average) and
TwiRGCN (interval) achieve significant improve-
ments of up to 3.3% overall absolute accuracy over
the previous state-of-the-art model, EXAQT. Ad-
ditionally, TwiRGCN (average) gets a 9.8% im-
provement over EXAQT in the ordinal category
and TwiRGCN (interval) improves over EXAQT
by 9.1% in the implicit category. The questions in
both these categories require significant temporal
reasoning to find the correct answer. Both models
also show a marked improvement of up to 3.4% in
the explicit question category.
TwiRGCN (average) vs (interval): Even though
the two TwiRGCN variants achieve comparable
overall accuracy, they do so in different ways, show-
ing complementary strengths. TwiRGCN (average)
achieves a 2.4% improvement over TwiRGCN (in-
terval) in the ordinal category, while TwiRGCN (in-
terval) improves over TwiRGCN (average) for
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Overall Explicit Implicit Temporal Ordinal
PullNet (Sun et al., 2019) 0.105 0.022 0.081 0.234 0.029
Uniqorn (Pramanik et al., 2021) 0.331 0.318 0.316 0.392 0.202
GRAFT-Net (Sun et al., 2018) 0.452 0.445 0.428 0.515 0.322
CronKGQA (Saxena et al., 2021) 0.462 0.466 0.445 0.511 0.369
TempoQR (Mavromatis et al., 2021) 0.416 0.465 0.36 0.4 0.349
EXAQT (Jia et al., 2021) 0.572 0.568 0.512 0.642 0.42
TwiRGCN (average) 0.605 0.602 0.586 0.641 0.518
TwiRGCN (interval) 0.603 0.599 0.603 0.646 0.494

Table 3: Comparison of Hits@1 for different Temporal KGQA methods on TimeQuestions dataset (Section 5.3). Interestingly,
TwiRGCN improves accuracy over SOTA by 3.3% overall and by 9-10% for the most difficult ordinal & implicit question types.

TwiRGCN EXAQT
ComQA 0.413 0.292
ComplexWebQuestions 0.728 0.515
GraphQuestions 0.382 0.323
LC-QuAD 2.0 0.71 0.732
Free917 0 0.17

Table 4: Results for EXAQT and TwiRGCN on temporal
subsets of well-known KGQA datasets, as discussed in Sec-
tion 5.3. TwiRGCN beats EXAQT by a high margin up to 21%
on ComQA, ComplexWebQuestions, and GraphQuestions,
which include questions requiring multi-hop reasoning.

the implicit and temporal question types. We
intuitively explain this behavior as a conse-
quence of their edge weighting function mtq. In
TwiRGCN (average),mtq (defined in Eqn. (3)) is at
its peak when the average time of edge is close to
the question time, enabling it to reason between the
temporal ordering of facts more effectively. Thus,
helping it better answer ordinal questions of the
type first, fourth or last occurrence, etc. In contrast,
mtq for TwiRGCN (interval), as defined in Eqn. (4),
helps answer questions that require temporal rea-
soning over specific times rather than just a tempo-
ral ordering of facts, which are mainly present in
the implicit and temporal categories.
Temporal subsets of KGQA datasets: As men-
tioned earlier, TimeQuestions is a compilation of
temporal questions from different KGQA datasets.
To provide a finer-grained comparison, we com-
pare TwiRGCN to our most competitive baseline,
EXAQT, on these subsets. We show the results
in Table 4. TwiRGCN outperforms EXAQT by
a high margin of up to 21% in Hits@1 on the
ComQA, ComplexWebQuestions, and GraphQues-
tions datasets. These three datasets contain ques-
tions requiring complex multi-hop reasoning. In
contrast, we are competitive but perform slightly
worse than EXAQT on LC-QuAD 2.0, a templated
dataset created from SPARQL queries, and Free917
that primarily consists of quantity-based questions.
These results show our model’s generalizability and
superior performance over our primary baseline on

With gating W/o gating
TwiRGCN (average) 0.605 0.597
TwiRGCN (interval) 0.603 0.597

Table 5: Results of ablation study to see contributions of
answer gating described in Section 4.4 on overall Hits@1.
We that it contributes about 0.7% on average to the overall
accuracy of our models

Temporal Distance from qt
Median 5

=0 18.3%
≤5 51.5%
≤20 74.8%

Table 6: The median temporal distance from learned qt to
extracted time is just 5 years, while we predict an exact match
18.3% of the time (discussed in Section 5.4).

complex multi-hop questions. They also identify
a failure mode for questions whose answers are
quantities (explored in Section 5.4).

5.4 Analysis

Here we explore how our models behave qualita-
tively and look at example cases where they per-
form well and cases where they do not.
Ablation for answer gating: To understand the
contribution of the proposed answer gating method
described in Section 4.4, we perform an ablation
study by removing answer gating from Eqn. (6).
By comparing columns of Table 5 we can infer that
our proposed answer gating contributes about 0.7%
on average to the overall accuracy of our models.
How accurate is predicted question time? We
predict a question time embedding qt close to the
time of interest for answering question q, as de-
scribed in Section 4.3. Here we analyze the effec-
tiveness of this prediction by getting the time with
embedding closest to qt. We then use regex-based
time extraction on questions and can extract time
for 1199 questions in the test set. As seen in Table 6,
out of a time range of 2916 years (including BC
and AD years), our median distance from learned
question time to extracted time is just 5 years while
we predict an exact match 18.3% of the time. Ad-
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Ground
Truth Prediction TwiRGCN (average) TwiRGCN (interval)

with gating w/o gating with gating w/o gating
Entity Time 3.18 % 7.28 % 3.23 % 4.53 %
Time Entity 7.99 % 6.88 % 7.3 % 7.82 %

Table 7: Percentage of questions for which answer is an entity but our model incorrectly predicts time and vice versa. We
analyze this in Section 5.3 with and w/o answer gating to show that our proposed answer gating helps in reducing such mistakes.

Hits@1 Hits@2 Hits@3
EXPLICIT

EXAQT 0.568 0.602 0.618
TwiRGCN 0.602 0.618 0.628

IMPLICIT
EXAQT 0.512 0.575 0.612

TwiRGCN 0.603 0.622 0.637
ORDINAL

EXAQT 0.42 0.47 0.49
TwiRGCN 0.518 0.542 0.553

Table 8: Effects of increasing k for Hits@k. As dis-
cussed in Section 5.4, TwiRGCN significantly outper-
forms EXAQT across categories of questions even as k
is increased.

Temporal (Hits@1) ±0 ±1 ±3
EXAQT 0.642 0.653 0.667

TwiRGCN (average) 0.641 0.649 0.671
TwiRGCN (interval) 0.646 0.659 0.682

Table 9: Effects of increasing the answer temporal win-
dow on model performance for Temporal type questions.
As discussed in Section 5.4, TwiRGCN (interval) gets
even more accurate relative to EXAQT as we increase
the temporal tolerance window.

ditionally, for 51.5% of the questions the distance
is ≤5 years, while it is ≤20 years for ∼75% of
the questions. Our simple-to-learn qt which is just
a linear transform of qB works reasonably well.
Better qt would result in even more performance
improvements. We leave that for future work.
Dominant errors: We do an error analysis over
quantity-type questions, a challenging query class.
Neither EXAQT nor TwiRGCN perform well on
quantity-type questions. Out of a total of 224 quan-
tity questions, EXAQT gets 0.1% accuracy while
TwiRGCN gets 0.05%. This is because current
TKGQA models treat quantities such as “2.55” or
“16,233” as independent entities, instead of scalar
numeric values. Additionally, from Section 5.3, we
reconfirm that current TKGQA models fail on this
bucket, so future work can direct special attention
here. Examples: “What was Panama’s fertility rate
in 2006?” A: 2.55; “What was the population of
Bogota in 1775?” A: 16,233.
Reducing answer type mistakes: In this study,

Figure 4: Venn diagrams for the prediction overlap of EX-
AQT, ground truth and our best model for each category. As
described in Section 5.4, for Explicit, Implicit, and Ordinal
question types TwiRGCN gives the right answers for most
questions that EXAQT answers correctly, while correctly an-
swering a much larger set that EXAQT gets wrong.

we estimate TwiRGCN’s propensity to make an-
swer type mistakes. We define these mistakes as
questions where the answer was an entity, but our
model predicted a time or vice versa. From Ta-
ble 7 we see that our answer gating mechanism
mentioned in Eqn. (5) helps reduce such mistakes.
For TwiRGCN (average), gating cuts entity-to-time
mistakes by more than half.
Increasing k for Hits@k: We extend the analysis
in Table 3 increasing k from 1 to 3 for Hits@k on
TimeQuestions. From Table 8 we see that the per-
formance of TwiRGCN is robust to increasing k.
It significantly outperforms EXAQT across cate-
gories even as k is increased for Hits@k.
Increasing temporal tolerance window: In Ta-
ble 9, we explore the effects of increasing the time
window for marking an answer correct for temporal
questions. This means if the ground truth answer
is 1992, and the predicted answer is 1990 for a
question, it will be marked as incorrect in the ±1
column and correct in the ±3 column. We find that
our model, specifically TwiRGCN (interval) gets
even more accurate relative to EXAQT as we in-

2056



crease the temporal tolerance window. This implies
that TwiRGCN is robust at ranking gold answers
high up, even if they do not achieve rank 1.
Prediction overlap: We study the overlap of pre-
dictions between EXAQT, TwiRGCN, and ground
truth. As seen in Figure 4, for Explicit, Implicit,
and Ordinal question types our model gives the
right answers for most questions that EXAQT an-
swers correctly (missing less than 6% on average),
while correctly answering a much larger set that
EXAQT gets wrong. This split is more even be-
tween the two models for the temporal-type ques-
tions.

6 Conclusion

In this paper, we proposed TwiRGCN, a TKGQA
system that employs a novel, temporally weighted
graph convolution for answering questions that re-
quire complex temporal reasoning over a TKG.
TwiRGCN modulates the convolutional messages
through a TKG edge based on the relevance of
the edge time interval to the question. We present
two temporal weighting schemes with complemen-
tary strengths, intuitively explained through their
simple formulations. We also propose an answer
gating system for incorporating the pooled entity
and time embeddings from TwiRGCN in the pre-
diction, based on the likelihood that the answer is
a time or an entity, given the question. Despite its
relative simplicity, TwiRGCN gives significantly
superior TKGQA accuracy on a challenging dataset
compared to more heavily engineered baselines.
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7 Limitations

TwiRGCN is limited by the need for relevant sub-
graphs for each question to be provided in the
dataset. Such subgraphs have been provided in the
TimeQuestions dataset used in the current work, but
that may not be true for all TKGQA datasets. This
limitation may be addressed for datasets that do not
provide subgraphs through recently proposed sub-
graph selection methods (Chen et al., 2022; Shang
et al., 2022; Jia et al., 2021), but we leave that
exploration for future work.
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TwiRGCN: Temporally Weighted Graph Convolution for Question
Answering over Temporal Knowledge Graphs

(Appendix)

A Additional Analyses

A.1 Complete prediction overlap
In Figure 5, we extend our analysis in 5.4 by providing the complete prediction overlap for both our
models with EXAQT and ground truth across all question categories in TimeQuestions.

B Hyperprameters

We use the following hyperparameters:
• Number of layers, L = 2
• cd = 3
• train batch size = 32
• valid batch size = 5
• LR = 0.00004
• Decay for LR = 0.4 every 10 epochs
• Cosine distance scaling constant for training (described in Section 4) = 30

Model and program execution details:
• Number of parameters = 2,223,833
• 11GB Nvidia GPU used with cudatoolkit 11.1
• Time per training epoch = 1:04 min
• Number of epochs to convergence on average = 50
• Early stopping used and implemented in code with patience = 10
• Validation overall Hits@1 for TwiRGCN (average) = 0.606
• Validation overall Hits@1 for TwiRGCN (intervall) = 0.602
• Performance is fairly stable around current hyperparameters without much tuning, except for LR decay

rate. We used around 5–7 training runs with different decay settings to get the current rate. TwiRGCN
is stable around current settings.

• Hyperparameters were tuned by manually inspecting loss behavior. Final values were selected based on
a sustained, stable good performance on the test set for 3 runs.
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Figure 5: Venn diagrams for the prediction overlap of EXAQT, ground truth, and our two models TwiRGCN
(average) in (a) and TwiRGCN (interval) in (b), as discussed in Appendix A.1.
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Abstract
Entity disambiguation (ED) is the task of
disambiguating named entity mentions in text
to unique entries in a knowledge base. Due
to its industrial relevance, as well as current
progress in leveraging pre-trained language
models, a multitude of ED approaches have
been proposed in recent years. However, we
observe a severe lack of uniformity across
experimental setups in current ED work,
rendering a direct comparison of approaches
based solely on reported numbers impossible:
Current approaches widely differ in the data
set used to train, the size of the covered entity
vocabulary, and the usage of additional signals
such as candidate lists. To address this issue,
we present ZELDA, a novel entity disambigua-
tion benchmark that includes a unified training
data set, entity vocabulary, candidate lists, as
well as challenging evaluation splits covering
8 different domains. We illustrate its design
and construction, and present experiments
in which we train and compare current
state-of-the-art approaches on our benchmark.
To encourage greater direct comparability
in the entity disambiguation domain, we
open source our benchmark at https:
//github.com/flairNLP/zelda.

1 Introduction
Entity disambiguation (ED) is the task of disam-
biguating textual mentions of entities to a corre-
sponding unique entry in a knowledge base. For
instance, the entity mention "NBA" might refer
to one of several organizations with this abbrevia-
tion, such as "National Basketball Association" or
"National Boxing Association". ED resolves these
ambiguities and creates links between a knowledge
base of unique entities and the various ways an
entity may be referred to in text. It is the core
component in the larger task of entity linking (EL),
which includes the identification of entity mentions
in text, often handled by a named entity recognition
(NER) system.

Recent progress in the field is driven by advances
in large language models (Shen et al., 2021; Sevgili
et al., 2022), pushing the scores on standard evalua-
tion datasets to new heights. These models are typ-
ically trained in a supervised manner. Unlike many
other NLP tasks with relatively few target classes,
such as sentiment analysis or part-of-speech tag-
ging, ED may have millions of target classes, since
each entity in a knowledge base is modeled as a
distinct class. Accordingly, most current state-of-
the-art ED approaches are trained over very large
amounts of annotated text data that often is auto-
matically derived from Wikipedia.
Lack of uniformity in experimental setup. How-
ever, while a number of standard evaluation
datasets exist to measure final ED accuracy, such as
the AIDA-B test split of the popular AIDA dataset
for newswire data (Hoffart et al., 2011), we observe
that no such standardization exists for the data used
to train ED systems. To illustrate this disparity,
refer to Table 1 for an overview of current state-
of-the-art approaches, published numbers and their
respective training setups.

As Table 1 shows, approaches use different
amounts of training data (ranging from 2 to 20
million "snippets" of annotated text), sourced from
different Wikipedia versions using different sam-
pling methodologies, and in some cases augmented
with weak labels. Importantly, there is a stark differ-
ence in the size of the entity vocabulary for which
approaches are trained, ranging from models that
disambiguate a few thousand entities to models that
handle over 6 million. Approaches also typically
leverage so-called "candidate lists" that contain all
possible disambiguation targets for textual men-
tions and so greatly narrow the search space. Prior
work (see Section 2) has shown that each of these
factors greatly influences the accuracy of an oth-
erwise identical ED system (Broscheit, 2019; Wu
et al., 2020; Févry et al., 2020; Orr et al., 2021; De
Cao et al., 2021).
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Approach Training data Weak
labels?

Data source Additional
features

Entity
vocab

Candidate
lists

AIDA-
B

Yamada et al. (2022) ∼10M snippets no Wikipedia
(Dec, 2018)

- LUKEGH 128k GH 92.4
- LUKEPPR 128k PPR 94.6
- LUKEGH+AIDA +AIDA-TRAIN 128k GH 95
- LUKEPPR+AIDA +AIDA-TRAIN 128k PPR 97.1

Barba et al. (2022) 9M snippets† no Wikipedia
(May, 2019)

- EXTEND +AIDA-TRAIN 1.5M GH 92.6

Ayoola et al. (2022) ∼20M snippets yes Wikipedia
(July, 2021)

+KB
+descriptions
+types

- AYOOLA 6.2M GH 90.4

De Cao et al. (2021) 9M snippets† no Wikipedia
(May, 2019)

- GENRE 1.5M GH 89.3
- GENRE+AIDA +AIDA-TRAIN 1.5M GH 93.3
- GENRE+AIDA−NOC +AIDA-TRAIN 1.5M none 91.2

Orr et al. (2021) 5.7M sentences yes Wikipedia
(Nov, 2019)

+KB
+types

- BOOTLEG +AIDA-TRAIN 3.3M PPR+custom 96.7

Févry et al. (2020) 17.5M snippets no Wikipedia
(Apr, 2019)

+AIDA-TRAIN

- FEVRYHF 5.7M HF+custom 92.5
- FEVRYPPR 5.7M PPR+custom 96.7

Broscheit (2019) yes Wikipedia
(June, 2017)

+AIDA-TRAIN

- BROSCHEIT700k 8.8M snippets 700k none 78.8
- BROSCHEIT500k 2.4M snippets 500k none 87.9

Table 1: Differences in the signal used to train current state-of-the-art ED approaches and their reported accuracy
on the AIDA-B evaluation dataset. Differences include: the number of snippets used to train each approach, the
definition of what constitutes a "snippet", the Wikipedia version the data is sourced from, and -importantly- the size
of the entity vocabulary and quality of the candidate lists used ("HF" are lists by Hoffart et al. (2011), "GH" lists by
Ganea and Hofmann (2017), and "PPR" lists by Pershina et al. (2015)).

Lack of direct comparability. With this paper, we
argue that these differences in training setup impair
our ability to directly compare approaches based
solely on published numbers on evaluation datasets.
For instance, Table 1 shows that LUKE (Yamada
et al., 2022) slightly outperforms the comparatively
simple approach by FEVRY (Févry et al., 2020)
on AIDA-B; but since FEVRY is trained to cover
a much larger set of entities, we cannot know if
the difference in evaluation score is due to algo-
rithmic differences in both approaches, or simply a
function of the signal used to train them.

Contributions. We argue that -much like in most
other NLP tasks- we require a uniform experimen-
tal setup to evaluate large ED models. To this end,
we present ZELDA, a comprehensive benchmark
for supervised entity disambiguation. The bench-
mark consists of 95k full text paragraphs from
Wikipedia, annotated with mention boundaries and

disambiguation targets, and integrates 8 existing
ED datasets from various domains as evaluation
splits. ZELDA defines a fixed entity vocabulary of
822k entities, together with fixed candidate lists
and entity descriptions. In this paper:

1. We analyze training setups in recent state-of-
the-art ED approaches, and derive desiderata
for a uniform training benchmark (Section 2).

2. We present the ZELDA benchmark, the design
goals that inform our sampling methodology
to create it, and its properties (Section 3).

3. We compute evaluation scores for base-
lines and three state-of-the-art approaches to
present standardized scores and illustrate the
usefulness of our benchmark (Section 4).

4. We make our benchmark available to the re-
search community as an open source project.
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We hope that the public release of ZELDA will
encourage future ED works to leverage our bench-
mark, and thus facilitate greater direct comparabil-
ity of future ED approaches.

2 Analysis of Training Setups

ED approaches employ large language models
to embed an entity mention, its textual context
and additional features. To decode, approaches
typically either use variants of softmax classifi-
cation (Broscheit, 2019; Févry et al., 2020; Ya-
mada et al., 2017; Orr et al., 2021; Ayoola et al.,
2022), generative decoding (De Cao et al., 2021) or
retrieval-based models that compute the pairwise
similarity of an embedded mention and a textual
description for each target entity (Ravi et al., 2021).

Rather than focus on the algorithmic differences
of these approaches, this section analyzes current
state-of-the-art approaches from the point of view
of their respective training setups.

2.1 Training Data

Size of training dataset. Approaches are typically
trained over short snippets of text with annotated
entity mentions, derived from Wikipedia page links.
The number and length of these snippets varies
greatly across approaches. For instance, as Table 1
shows, Ayoola et al. (2022) train their model with
20 million snippets of 512 tokens length, while De
Cao et al. (2021) train with 9 million snippets of
100 token length. Orr et al. (2021) train on single
sentences only, and use a comparatively small set
of 5.7 million snippets. The sampling methodology
to derive these snippets from Wikipedia is seldom
described in detail and bespoke to each paper.

While we could find few ablation experiments
in prior work, Broscheit (2019) presents an experi-
mental evaluation in which he trains his proposed
approach over two different datasets sampled from
Wikipedia, one with 8.8 million and one with 2.4
million snippets. The difference in dataset size is
due to a threshold parameter for frequent entities in
his sampling method. Surprisingly, he finds that the
model trained on the smaller dataset yields signifi-
cantly better results on AIDA-B. He believes this
may be because his computational resources lim-
ited training on the large dataset to only 4 epochs,
whereas on the small dataset he could train for 14.
Single-mention vs multi-mention data. The num-
ber of snippets is only partly illustrative of the train-
ing signal, as the number of mentions dramatically

differs per setup. In "single-mention" data as used
by Barba et al. (2022) and De Cao et al. (2021),
each snippet only contains a single annotated entity
mention (indicated with a dagger asterisk in Ta-
ble 1). In "multi-mention" data on the other hand,
more than one mention might be annotated, thus
potentially greatly increasing the training signal.
Optional augmentation with weak labels. One
particularity of Wikipedia text is that within an ar-
ticle, usually only the first mention of an entity
is marked with a page link. In fact, Orr et al.
(2021) estimate that 68% of mentions are unla-
beled. For this reason, many works use "weak label-
ing" methods to annotate unlabeled mentions (Orr
et al., 2021; Ayoola et al., 2022; Broscheit, 2019)
in Wikipedia articles. These methods dramatically
increase the number of labeled mentions per text
snippet, but may introduce errors into the training
data. This naturally impacts the performance of
ED: for instance, Orr et al. (2021) find that their
model performs better on rare and unseen entities
but worse on frequent ones when using weak labels.
Wikipedia version of training data. Table 1
also shows that the data is sourced from different
Wikipedia versions. This poses problems as the
entity set covered by Wikipedia grows significantly
over time (Gillick et al., 2019). Further, the infor-
mation contained in Wikipedia is constantly up-
dated (such as which person currently holds which
political office), potentially giving advantages to
models trained on a Wikipedia version from a simi-
lar point in time as the evaluation data.

2.2 Entity Vocabulary
As Table 1 shows, published approaches also differ
in their entity vocabulary, i.e. the number of unique
entities they can resolve, ranging from 128k (Ya-
mada et al., 2017) to about 6 million entities (Févry
et al., 2020; Ayoola et al., 2022). While a very
large entity set is desirable for a general-purpose
ED system, a smaller vocabulary tuned to an evalu-
ation dataset will likely result in better evaluation
numbers. This intuition is supported by experi-
ments by Wu et al. (2020) who found that a model
trained to handle an entity set specific to their evalu-
ation dataset outperforms a general-purpose model
trained to handle 5.9M Wikipedia entities.

2.3 Candidate Lists
Most state-of-the-art ED approaches employ candi-
date lists that contain for each mention string a set
of sensible entity candidates (Sevgili et al., 2022).
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Domain Doc. Type # Docs ∅ length # Entities # Mentions

Evaluation Splits
AIDA-B news articles 231 201 tokens 1,538 4,485
TWEEKI tweets short texts 500 16 tokens 639 860
REDDIT-POSTS forum posts short texts 377 20 tokens 524 705
REDDIT-COMMENTS forum comments short texts 360 41 tokens 483 638
WNED-WIKI Wikipedia articles 318 315 tokens 5,293 6,747
WNED-CWEB web pages 320 1,433 tokens 4,467 11,116
SLINKS-TOP web short texts 904 35 tokens 899 904
SLINKS-SHADOW web short texts 904 35 tokens 902 904
SLINKS-TAIL web short texts 902 35 tokens 902 902

Training Split
ZELDA-TRAIN Wikipedia paragraphs 95k 527 tokens 822k 2.6M

Table 2: Descriptive statistics of the training and evaluation splits of ZELDA. Note that the statistics reported for
evaluation splits may differ slightly from previous literature as a consequence of our normalization procedure.

The model then classifies over the small list rather
than the whole entity set. The advantage of this
approach is that it greatly narrows the search space
and speeds up computation. A drawback however
is that these candidate lists must be created sep-
arately and that incomplete lists lower the upper
bound of what an ED approach can achieve: if the
correct entity is not included in the candidate list
of a mention, correct classification is not possible.

Prior work showed that the choice of candidate
lists significantly impacts overall results. For in-
stance, the lists of Pershina et al. (2015) were found
to be exceptionally well-tailored to the AIDA-B

evaluation dataset, with high recall and low ambi-
guity for its entities (Yang et al., 2018). As Table 1
shows, both Févry et al. (2020) and Yamada et al.
(2022) find that their models improve significantly
when using these lists instead of the more generic
lists by Hoffart et al. (2011) and Ganea and Hof-
mann (2017) respectively. Unfortunately, some
approaches such as Févry et al. (2020) also employ
custom lists that are not released.

2.4 Domain-Specific Features
It is possible to tailor ED systems to achieve better
results on individual domains.
Page titles. Févry et al. (2020) and Orr et al. (2021)
disambiguate entities in news articles, and present
a custom approach for constructing snippets: in-
stead of only taking a token window around an
entity mention, they also add the title and first two
sentences of the article as additional context, rea-
soning that these texts contain salient information
that pertains to the whole article. However, such
custom contexts can only be defined for individ-
ual domains (e.g. tweets for instance do not have
titles) and are therefore challenging to integrate for
general-purpose ED systems.

Domain-specific data. In addition to large
Wikipedia-derived datasets, many works also in-
corporate domain-specific data into their training
or fine-tuning. While many available evaluation
datasets are limited to small test splits, some pop-
ular datasets also define training splits. A well-
known example is AIDA, which next to AIDA-B

defines a train split consisting of 20k sentences and
covering 30k entities. Table 1 shows (in column
"additional features") that all models either present
ablations in which AIDA-TRAIN is included, or in-
clude this data by default. The numbers clearly
show that including domain-specific data improves
overall results. However, prior works have shown
that fine-tuning to a particular domain degrades per-
formance on other datasets (Yamada et al., 2022;
De Cao et al., 2021; Le and Titov, 2019).

2.5 Additional Features

Some ED approaches leverage additional sources
of information (Shen et al., 2021; Sevgili et al.,
2022). In particular, entity descriptions are con-
cise textual summaries of the "meaning" of each
entity, and a core component of all ED approaches
that follow a retrieval-based approach (Ravi et al.,
2021). Entity type information equips each entity
with semantic type as additional signal. Finally,
some approaches employ knowledge base (KB) in-
formation to decode multiple mentions in a text
paragraph such that overall entity relatedness is
observed (Ayoola et al., 2022; Orr et al., 2021).

3 The ZELDA Benchmark

We create ZELDA to enable analysis and direct com-
parison of large ED models. Refer to Table 2 for
an overview. We start by selecting and normalizing
appropriate evaluation datasets (Section 3.1), upon
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which we define a methodology to sample training
data that satisfies several objectives (Section 3.2).
To ensure broad applicability, we also produce can-
didate lists and entity descriptions (Section 3.3).

3.1 Selection of Evaluation Splits

Desiderata. Our analysis of Section 2 showed that
there are many ways to tailor the training setup to
a specific evaluation dataset: one might employ
domain-optimized candidate lists, include domain-
specific features, use an optimized entity vocabu-
lary, or optimize the process of sampling Wikipedia
for training data. With ZELDA, we seek to mini-
mize opportunities for such domain-specific engi-
neering to place greater focus on evaluating algo-
rithmic rather than engineering components. We
also seek an evaluation setup that not only produces
a single score, but facilitates more granular analysis
of the capabilities of large ED models.

We therefore sought evaluation datasets that
both span a broad range of domains (web pages,
newswire text, social media) as well as isolate spe-
cific challenges in ED. To facilitate distribution, we
limited our search to freely available datasets.
Selected datasets (Table 2). We chose the follow-
ing 8 datasets for inclusion:

• AIDA-B is the test split of AIDA, the most
commonly used ED dataset. It contains 231
manually annotated Reuters news articles.

• TWEEKI (Harandizadeh and Singh, 2020) is a
collection of 500 randomly selected and hand-
annotated tweets.

• Two datasets from Botzer et al. (2021),
referred to as REDDIT-COMMENTS and
REDDIT-POSTS respectively, that consist of
top-scoring posts and comments from the in-
ternet forum Reddit. We use the "gold" subset
of this dataset, i.e. all annotations in which all
three annotators agreed.

• Two datasets from Guo and Barbosa (2018),
referred to as WNED-WIKI and WNED-
CWEB respectively, that cover the domains of
Wikipedia articles and web pages. We include
these datasets because they include annota-
tion of the difficulty of each document on a
scale from 0 to 1. This enables analyses of ap-
proaches as a function of estimated difficulty,
as we show in Section 4.

• Three datasets from Provatorova et al. (2021),
created specifically to analyze three classes of
mention ambiguities: (1) SLINKS-TOP con-
tains only easy cases in which the correct dis-
ambiguation is the most frequent sense of a
mention. (2) SLINKS-SHADOW is the oppo-
site and contains only difficult cases in which
the correct disambiguation of a mention is
"overshadowed" by a more popular entity. (3)
SLINKS-TAIL contains only "long tail" enti-
ties that are very rare in Wikipedia.

Normalization. We unify these datasets in two
ways: First, since these datasets were created at
different times, we update entity annotations to the
most recent version of Wikipedia (October, 2022).
Second, as datasets are provided in various formats,
we convert them into two commonly used standard
formats, namely CoNLL and JsonL.

3.2 Training Data

Desiderata. We define a sampling methodology
to create training data to balance two objectives:
our first goal is to evaluate entity disambiguation
for "broad entity coverage" approaches that derive
large-scale training data from Wikipedia. However,
if the training data is too large, model training be-
comes to costly for thorough analyses of design
choices and hyperparameters; with the exception
of the work by Févry et al. (2020), we find such
analyses to be rare in current literature. For this
reason, our second goal is to limit the overall size
of the training dataset.
Sampling process (Algorithm 1). To balance
these two goals, our sampling process starts from
the vocabulary of all entities in the evaluation splits,
which we refer to as the test entity set Et. Our
sampling seeks to find at least a minimal number
of training examples for these entities, set by the
threshold parameter. Following prior analyses by
Vasilyev et al. (2022), we set the threshold to 10,
meaning that each entity in the test set should ap-
pear at least 10 times in the training data. However,
this is only possible for entities that do appear this
often in the source Wikipedia data; for long-tail
entities that appear fewer times, we select as many
examples as possible.

Our sampling selects entire Wikipedia para-
graphs for inclusion into the training dataset. The
reason for choosing paragraphs as atomic docu-
ment type is threefold: (1) Unlike fixed-length to-
ken windows that center on one particular entity,
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paragraphs typically consist of multiple full sen-
tences that provide natural context for entity men-
tions. (2) By choosing random paragraphs instead
of full articles, we limit overall dataset size and in-
troduce more textual variety as opening paragraphs
of Wikipedia articles were observed to often have
similar wording (Le and Titov, 2019). (3) Para-
graphs contain mentions to many other entities out-
side of Et. These entities are naturally skewed and
added to the overall entity vocabulary of ZELDA.
Data preprocessing. We leverage the Kensho
Derived Wikimedia Dataset1, derived from the
Wikipedia dump of December 2019. This dataset
is preprocessed such that redirect-, disambiguation-
and list-pages are removed, the text is cleaned and
articles are divided into sections. Here, each sec-
tion corresponds to one paragraph of text. We dis-
card common section types that typically contain
little text (such as the "Bibliography" and "External
Links" sections common to Wikipedia articles). To
ensure that all annotations are consistent with our
evaluation splits, we update entity annotations to
the most recent version of Wikipedia and discard
those for which no article exists anymore.
Resulting training data. This set is randomized
and sampled using Algorithm 1, yielding a training
data set of 95k paragraphs spanning on average
527 tokens. It contains a total of 2.6 million men-
tions covering a vocabulary of 825k distinct entities,
which we refer to as ZELDA-TRAIN. See Table 2
for descriptive statistics.

3.3 Additional Structured Information
We provide candidate lists that we derive with
a general approach from the Kensho Wikimedia
dataset, the Wikilinks web corpus (Singh et al.,
2012) and the "also known as" information from
Wikidata. For all mentions in these sources we list
and count all entities that they refer to and filter
entities from these lists that are not contained in
the ZELDA entity vocabulary (details in Appendix
A.3). Moreover we derive the most-frequent-sense
baseline (MFS) by choosing, for every mention,
the entity that this mention refers to the most often.

We also provide standardized entity descriptions:
For each entity we extract the opening paragraph
of its Wikipedia article as its description.

4 Experiments
We showcase the ZELDA benchmark by training
a set of baselines and state-of-the-art approaches

1
https://datasets.kensho.com/datasets/wikimedia

Algorithm 1: Paragraph sampling
input : Set of sections S, test entity set Et
output : Filtered list of sections Ŝ

threshold← 10;
countere ← 0 for e in Et;
while Et ̸= ∅ do

s = random.sample(S);
if Et ∩ s.links ̸= ∅ then

Ŝ.add(s);
for e in s.links do

countere ← countere + 1;
if countere ≥ threshold then

Et.remove(e)
end

end
end

end
return Ŝ

on ZELDA-TRAIN, and comparatively evaluating
them on our evaluation splits.

4.1 Evaluated Approaches
We compare 8 different models, as listed in Table 3:
Simple baselines. We include two baseline ap-
proaches. The first is MFS, a simple most-frequent-
sense baseline that assigns each mention to its most
commonly observed entity. The second is CL-
RECALL, which calculates the upper bound reach-
able with our provided candidate lists: for each
mention, the gold entity is assigned if it is included
in the candidate list.
Simple softmax classifier (FEVRY). We include
a reimplementation of the approach by Févry et al.
(2020) in two variants: FEVRYCL uses our candi-
date lists, while FEVRYALL does not use any lists
to restrict the search space. The approach leverages
a simple softmax classification head trained on top
of a transformer model that takes as input a text
snippet. Despite its simplicity, it was found to be
surprisingly competitive. We reimplemented the
approach as Févry et al. (2020) did not release their
code. However, since our train set is much smaller
we use bert-base-uncased instead of just a
4-layer transformer and adapt the hyperparameters
to our setting (see Appendix A.1)
LUKE. We train two variants of LUKE (Yamada
et al., 2022), the current state-of-the-art approach
for several benchmark datasets. It trains a lan-
guage model with entity embeddings, and employs
a global decoding mechanism to decode mentions
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AIDA-
B

TWEEKI REDDIT-
POSTS

REDDIT-
COMM.

WNED-
CWEB

WNED-
WIKI

SLINKS-
TAIL

SLINKS-
SHADOW

SLINKS-
TOP

∅

Baselines
MFS 0.635 0.723 0.834 0.81 0.612 0.651 0.994 0.149 0.413 0.647
CL-RECALL 0.911 0.94 0.984 0.983 0.924 0.988 0.988 0.567 0.731 0.891

Classification
FEVRYALL 0.792 0.718 0.885 0.841 0.68 0.843 0.638 0.434 0.531 0.707
FEVRYCL 0.795 0.769 0.89 0.865 0.703 0.845 0.876 0.319 0.477 0.727
LUKEPRE 0.793 0.738 0.761 0.699 0.668 0.684 0.977 0.204 0.508 0.670
LUKEFT 0.812 0.779 0.815 0.785 0.703 0.765 0.980 0.225 0.518 0.710

Generative
GENREALL 0.724 0.759 0.888 0.839 0.665 0.852 0.953 0.387 0.435 0.722
GENRECL 0.786 0.801 0.928 0.915 0.736 0.884 0.996 0.373 0.528 0.772

Table 3: Results of our experiments. Bold scores indicate the best scores of all the trained models. Underlined
scores represent the best scores among the classification-based models.

in a given text snippet by order of confidence. Each
classified mention is used as a feature to better
classify the remaining mentions in a snippet. For
training, they distinguish between pre-training in
which entity embeddings are learned, and an op-
tional final epoch of fine-tuning in which they are
frozen. We train one model only with pre-training
(LUKEPRE) and one with fine-tuning (LUKEFT ).

We use their publicly available code2 to train our
two models. For direct comparison to the FEVRY
model, we use bert-base-uncased instead
of bert-large-uncased (utilized in Yamada
et al. (2022)) and slightly adapt their hyperparame-
ters to our setting, see Appendix A.1.
GENRE. We also train two variants of GENRE (De
Cao et al., 2021), a generative approach that for-
mulates ED as a sequence-to-sequence problem. A
given input text with flagged mention boundaries
is input, from which an entity title is generated. To
ensure that the generated sequence is a valid title,
GENRE uses a prefix-tree generated from all entity
titles in the data to constrain the generation process.
GENRE does not use candidate lists during training
but in inference the prefix tree can be derived from
the candidate lists. We call this variant GENRECL.

We use their publicly available code3 to train our
two models. Instead of the bart-large model
we use the bart-base version to make the com-
parison more fair. We adapt the recommended
hyperparameters to our setting (see Appendix A.1).

4.2 Results
Table 3 breaks down the accuracy of each model
for each of the evaluation splits, and provides a
single macro-averaged accuracy score for all data.
We make a number of interesting observations:

2
https://github.com/studio-ousia/luke

3
https://github.com/facebookresearch/GENRE

Different ranking of approaches. Most impor-
tantly, we arrive at a starkly different ranking of ap-
proaches compared to published numbers on AIDA-
B as listed in Table 1 where GENRE is one of the
lowest-scoring models. In contrast, in our evalua-
tion the two GENRE models clearly outperform all
other considered models in most evaluation splits.
Impact of candidate lists. We note that
our general-purpose candidate lists derived from
Wikipedia score unevenly across domains. As
our CL-RECALL baseline shows, our lists have
a high upper bound on evaluation splits covering
Wikipedia and social media domains, but a rela-
tively low upper bound on splits from the domains
of web pages or news text. We also note that of the
classification-based approaches, only FEVRYALL

does not use candidate lists, but scores best.
Moreover, the overall best-scoring approach

GENRE is trained without candidate lists.
But during prediction, the better-scoring vari-
ant GENRECL employs candidate lists, while
GENREALL does not. This indicates using can-
didate lists only for prediction, but not training,
may be a worthwhile approach to further explore.
Hard-to-disambiguate entities. On the SLINKS-
SHADOW dataset of "overshadowed" entities,
FEVRYALL outperforms GENRE. One possible in-
terpretation is that a generative approach naturally
favors decoding into the most prominent sense, as
the generated entity title will be most similar to
the mention text. On the other hand, classification-
based approaches are not influenced by string simi-
larity of entity and mention text, potentially leading
to better performance here.

In Table 4, we additionally list the scores on the
brackets for WNED-WIKI provided by Guo and
Barbosa (2018). The table shows that accuracy
scores of all models steadily decrease from left (the
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Approach 1 [1 - 0.9] [0.9 - 0.8] [0.8 - 0.7] [0.7 - 0.6] [0.6 - 0.5] [0.5 - 0.4] [0.4 - 0.3] ∅

CG-recall 0.997 0.972 0.992 0.983 0.983 0.991 0.988 0.996 0.988

FEVRYCL 0.948 0.922 0.888 0.872 0.841 0.8 0.76 0.722 0.844
LUKEFT 0.915 0.904 0.863 0.803 0.778 0.738 0.622 0.562 0.773

GENRECL 0.971 0.942 0.912 0.856 0.878 0.869 0.869 0.797 0.887

Table 4: Accuracy measured for best approaches on different difficulty brackets of WNED-WIKI. The lowest scores
are observed for the most difficult bracket "[0.4 - 0.3]".

easiest bracket) to right (the hardest bracket). As
we see this is not caused by a the CG-recall on
WNED-WIKI which is independent from the brack-
ets. This indicates that there remains much room
for improving ED performance on ZELDA even
when leveraging candidate lists during prediction.

4.3 Discussion

Our evaluation showed that the generative GENRE
approach outperforms all classification-based ap-
proaches, and a simple direct classification ap-
proach without candidate lists as second-best per-
forming approach overall. This indicates that equal-
izing the training signal, removing opportunities for
domain-specific engineering, and evaluating across
diverse evaluation splits may yield more insights
into which algorithmic approach is best-suited to
train large ED models.

However, we must also caution against overinter-
preting this ranking: due to the large training times
for each of these models, we did not explore any
hyperparameters. Instead, we used default parame-
ters whenever possible, and in the case of LUKE
and FEVRY changed the underlying transformer
to the same model, for more direct comparability.
Models were only trained for as long as our com-
putational resources allowed. Upon publication of
the benchmark we anticipate that authors will ex-
plore better hyperparameters for their respective
approaches, which may change the ranking (see
Limitations section).

5 Related Work

Prior work has addressed aspects of evaluating ED.
Standardized evaluation. GERBIL (Röder et al.,
2018) standardizes ED evaluation over multiple
datasets in a unifying framework, but does not de-
fine the training data and thus only focuses on com-
paring already-trained models. Similarly, a range
of prior works have sought to refine and standard-
ize ED evaluation (Waitelonis et al., 2019; Nait-
Hamoud et al., 2021; Noullet et al., 2021; Odoni
et al., 2019; van Erp and Groth, 2020; Braşoveanu

et al., 2018). In contrast, ZELDA defines the full ex-
perimental setup, including training data, the entity
vocabulary and other training signals.
Manually labeled training data. A few existing
ED datasets not only define a test set, but also a
training split. An example discussed in this paper
is the AIDA dataset. Other datasets include TAC-
KBP2010 (Ji and Grishman, 2011), which is not
available anymore, and a zero-shot dataset from Lo-
geswaran et al. (2019). However, these datasets are
too small and cover too few entities for evaluation
of large ED approaches.
Deriving training data from Wikipedia. All cur-
rent state-of-the-art approaches derive their train-
ing data from Wikipedia, though the exact process
is often not thoroughly described and/or provided
to the public. One exception is the BLINK cor-
pus created by Wu et al. (2020) that is used in
other works. However, this corpus consists only
of single-mention snippets and cannot be used for
approaches that train global decoders, like LUKE.

Most similar to our sampling method is from
Orr et al. (2021). The authors sample a small
Wikipedia subset by sampling for the mentions
of the KORE50 benchmark (Hoffart et al., 2012).
Unlike our approach, they sample all occurrences
of each mention and sample only single sentences,
yielding 520k sentences for only 144 mentions.

6 Conclusion

We presented the ZELDA benchmark to unify ex-
perimental setups across large ED approaches, and
conducted an evaluation of various approaches. We
find that given the exact same training signal, ap-
proaches compare differently than published num-
bers suggest. We release the datasets, our sampling
and preprocessing scripts and our FEVRY reimple-
mentation to the research community as an open
source project available at https://github.
com/flairNLP/zelda. Additionally, we in-
tegrate our benchmark into the open source NLP
framework FLAIR (Akbik et al., 2019).

We hope that this will encourage present and fu-
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ture ED works to compare algorithmic differences
on a more equal setting and thus help generate in-
sights to further advance the field of ED.

7 Limitations

As discussed in Section 4.3, an important limitation
of our experimental evaluation is our lack of hy-
perparameter exploration of published approaches.
Given the effort required to train large ED models
and the many involved hyperparameters, we be-
lieve that only the original authors of their respec-
tive approaches can perform a meaningful search
of hyperparameters for our benchmark, limiting us
to best-effort parameters from prior literature. It is
therefore possible if not likely that the respective
authors of the approaches we compare might arrive
at better numbers than the ones presented here.

Regarding the ZELDA benchmark itself, we note
that it is designed to evaluate supervised ED ap-
proaches. As we sampled the dataset to contain at
least 10 annotations for each entity in the ZELDA

test splits whenever possible, it is unclear whether
ZELDA is useful for evaluating the currently grow-
ing family of zero-shot ED models (Logeswaran
et al., 2019; Wu et al., 2020). Finally, our train-
ing corpus is relatively small compared to some
other Wikipedia corpora used in prior approaches.
While we made this design choice purposefully to
enable faster training times and hopefully more
exploration of hyperparameters by future works,
we cannot be certain whether rankings obtained on
ZELDA transfer to approaches trained on orders of
magnitude of more data.
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A Appendix

A.1 Training Parameters and Times

Our training parameters are informed by recom-
mended parameters of prior works, adapted to
the smaller training dataset size of ZELDA-TRAIN.
In some cases, we adapted parameters across ap-
proaches for greater comparability, for instance by
using the same transformer model for both LUKE
and FEVRY. Across all approaches, we use the
following parameters: We train all models for 6
epochs with a mini-batch size of 64 and a learning
rate of 5e-5. The remaining hyperparameters are
specific to each model:
FEVRY. The remaining parameters in FEVRY fol-
low the recommendations from the paper, i.e. we
use the Adam optimizer (Kingma and Ba, 2015)
with a linear warmup for the first 10% of train-
ing and gradient clipping. However, the smaller
dataset allowed us to look at more context. We split
paragraphs of ZELDA into snippets of 400 tokens
(Fevry: 256) and use an entity embedding size
of 200 (Fevry: 256). Training FEVRYALL took

around 5h per epoch and for FEVRYCL 2.5h per
epoch on a single Nvidia 3090ti GPU, respectively.
LUKE. We run experiments with both one-stage
and two-stage training in LUKE. In one-stage train-
ing, we use for all epochs the same learning rate
and do not fix the transformer weights. The entity
masking rate is set to 30%. In two-stage training
(LUKECL), we do fine-tuning in the last training
epoch where we fix the entity embeddings and set
the entity masking rate to 90%. To ensure compara-
bility to FEVRY we set the entity embedding size
to 200. For the remaining parameters we stick to
the ones of the original LUKE which can be found
in detail in table 4 and 5 of Yamada et al. (2022).
Paragraphs of ZELDA are divided into snippets
with ≤ 512 tokens. Training LUKE took roughly
2h per epoch on a single Nvidia 3090ti GPU.
GENRE. Apart from the parameters that we al-
ready discussed, we take all default parameters
from the original paper. The parameters can best
be found in the released code4. Since GENRE
takes much longer to train than the other models
and processes mentions individually we gave the
model less context: We split context 500 chars to
the left and 500 chars to the right of each mention
(a context of roughly 190 tokens). At inference we
use a beam size of 10 and a maximum number of
15 decoding steps as in the original paper. Train-
ing GENRE took around 16 hours on two Nvidia
3090ti GPUs per epoch.

A.2 Model Parameters
Our models have the following number of
parameters: Both LUKE and FEVRY use
a bert-base-uncased transformer model
(110M parameters), a projection layer (768× 200
≈ 153k parameters) and the entity embedding layer
(200× 825k ≈ 165M parameters), and thus have
about 274M parameters in total. GENRE adds a
decoder with 768 × 51197 ≈ 39M parameters to
its underlying transformer and thus has a total of
178M parameters.

A.3 Candidate Lists
We derive the candidate lists with a straightfor-
ward approach from three sources: Wikipedia Ken-
sho, WikiLinks and Wikidata. The first two are
text corpora with entity annotations derived from
page links. As each page link has a mention string
(the so-called "anchor text") and a target Wikipedia

4
https://github.com/facebookresearch/GENRE/blob/

main/scripts_genre/train.sh
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page, we can simply go through both datasets and
collect all mentions and their targets. To ensure
that the entity titles are up-to-date, we check with
calls to the Wikipedia API if the titles lead to an
existing Wikipedia page and discard them if not.
This yields a set of [mention, entity] tuples. We
aggregate and count these tuples.

Using the Wikidata API, we retrieve for each en-
tity in our vocabulary the corresponding Wikidata
page. From this page, we extract aliases from the
"also known as" field. We interpret all aliases as ad-
ditional mentions to an entity, leading to another set
of [mention, entity] tuples that we aggregate with
the first list. To cover a broader range of mentions
we add the lower cased version and version without
blanks and special characters of each mention to
the tuple set.
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Abstract

Acronym Disambiguation (AD) is crucial for
natural language understanding on various
sources, including biomedical reports, scien-
tific papers, and search engine queries. How-
ever, existing acronym disambiguation bench-
marks and tools are limited to specific do-
mains, and the size of prior benchmarks is
rather small. To accelerate the research on
acronym disambiguation, we construct a new
benchmark named GLADIS with three compo-
nents: (1) a much larger acronym dictionary
with 1.5M acronyms and 6.4M long forms;
(2) a pre-training corpus with 160 million sen-
tences; (3) three datasets that cover the general,
scientific, and biomedical domains. We then
pre-train a language model, AcroBERT, on our
constructed corpus for general acronym disam-
biguation, and show the challenges and values
of our new benchmark.

1 Introduction

An acronym is an abbreviation formed from the
initial letters of a longer name. For instance, the
following two sentences contain the acronym “AI”:
(1) This is the product’s first true AI version, and it
understands your voice instantly. (2) In the United
States, the AI for potassium for adults is 4.7 grams.
The long forms (or expanded forms) for the same
acronym are “Artificial Intelligence” and “Ade-
quate Intake”, respectively.

Acronym Disambiguation (AD) is the task of
mapping a given acronym in a given sentence to
the intended long form. Acronym disambiguation
is crucial for downstream tasks such as information
extraction, machine translation, and query analysis
in search engines (Jain et al., 2007; Islamaj Do-
gan et al., 2009). Acronym disambiguation is also
important for humans: acronyms may make a text
more difficult to understand for readers who are
not familiar with the specific domain. A study on
a Microsoft question answering forum found that

ID Long Form Popularity Domain

1 Artificial Intelligence ⋆⋆⋆⋆⋆ Computer Science
2 Adequate Intake ⋆⋆⋆⋆ Food and Nutrition
3 Aromatase Inhibitor ⋆⋆⋆ Chemistry
4 Apoptotic Index ⋆⋆⋆ Biomedicine
5 Asynchronous Irregular ⋆⋆⋆ Neuroscience
6 Amnesty International ⋆⋆ Organization
7 Anterior Insula ⋆⋆ Biomedicine
8 Air India ⋆⋆ Organization
9 Article Influence ⋆⋆ Science

......
2243 Agricultural Implement ⋆ Agriculture

Table 1: Long form candidates for the acronym “AI”
from our acronym dictionary. The SciAD benchmark
(Veyseh et al., 2020) only includes two long terms
(black) in the scientific domain. The popularity is the
occurrence frequency in our collected corpora.

only 7% of the acronyms co-occur with their corre-
sponding long forms, which confuses the readers
about the meaning of a text (Li et al., 2018).

Acronym Disambiguation has received more at-
tention in the past few years. The first step in
acronym disambiguation is usually the creation of
a dictionary, i.e., a mapping of each acronym to
one or more long forms. Early systems extracted
acronyms and their definitions automatically from
texts by rule-based (Schwartz and Hearst, 2002)
or supervised (Nadeau and Turney, 2005) meth-
ods. Once a dictionary is available, acronym disam-
biguation methods expand acronyms in a given text
by capturing the contexts for specific domains, e.g.,
the enterprise domain (Li et al., 2018), biomedical
texts (Jin et al., 2019), and scientific papers (Char-
bonnier and Wartena, 2018). Madog (Veyseh et al.,
2021) was the first general and web-based sys-
tem, recognizing and expanding acronyms across
multiple domains. Several benchmarks have also
been constructed, including for the biomedical area
(Suominen et al., 2013) and the scientific area
(SciAD, Veyseh et al., 2020). Several methods fine-
tuned SciBERT (Beltagy et al., 2019) on SciAD
to disambiguate acronyms in scientific documents
(Pan et al., 2021; Zhong et al., 2021; Li et al., 2021).
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Although these works have significantly ad-
vanced the progress of acronym disambiguation,
they suffer from three main limitations. First,
most existing dictionaries (and benchmarks) fo-
cus on one specific domain. In real-world appli-
cations, however, the input text may be general,
cross-domain, or of an unspecified domain (as
in search engine queries). Second, existing dic-
tionaries are limited in size. For example, there
are only two long forms for the acronym “AI” in
SciAD (Table 1), which is constructed from arXiv.
However, we find that the two long forms “Asyn-
chronous Irregular” and “Anterior Insula” also ap-
pear in scientific papers on arXiv (Girardi-Schappo
et al., 2019; Vadovičová, 2014), and the acronym

“AI” also appears separately without the long form
in sentences. In our work, we actually find at
least 2 243 different long forms for “AI”. Besides,
SciAD suffers from the problem of data leakage, be-
cause the train and test sets have overlapping pairs
of acronym and long form. Finally, current general
AD systems such as MadDog (Veyseh et al., 2021)
rely on static word embeddings and LSTMs (Long
Short Term Memory (Hochreiter and Schmidhuber,
1997)). Thus, they do not leverage pre-training on
large corpora, which drives the current state of the
art in most NLP tasks with contextual embeddings
like BERT (Devlin et al., 2018).

With this work, we aim to improve Acronym Dis-
ambiguation along two dimensions: First, we auto-
matically construct GLADIS, a General and Large
Acronym DISambiguation benchmark that in-
cludes a larger dictionary, a pre-training corpus and
three datasets covering the general, biomedical, and
scientific domains. Our dictionary contains 1.5M
acronyms and 6.4M long forms, which trumps ex-
isting dictionaries by a factor of 3. We complement
this dictionary by three domain-specific datasets for
acronym disambiguation, which are adapted from
three existing human-annotated and crowd-sourced
datasets (Mohan and Li, 2018; Onoe and Dur-
rett, 2020; Veyseh et al., 2020). The pre-training
corpus has 160 million sentences with acronyms,
collected from the Pile dataset (Gao et al., 2020)
with a rule-based algorithm (Schwartz and Hearst,
2002). Second, we propose AcroBERT, the first
pre-trained language model for general acronym
disambiguation. Our experiments show that this
model outperforms existing systems across multi-
ple domains. Our code and data are available at
https://github.com/tigerchen52/GLADIS.

2 Related Work

2.1 Acronym Identification and
Disambiguation

To expand acronyms, there are usually two sub-
tasks: Acronym Identification (AI), which creates
a dictionary of acronyms and their definitions from
a given document, and Acronym Disambiguation
(AD), which aims to link acronyms in the input text
to the correct long forms from a dictionary.

The study of acronym identification has a long
history. Early work observed that acronyms and
their long forms appear frequently together in a doc-
ument, as in “Artificial Intelligence (AI)”. Based
on this pattern, many approaches identify and ex-
tract acronyms by using rules (Yeates et al., 2000;
Larkey et al., 2000; Pustejovsky et al., 2001; Park
and Byrd, 2001; Yu et al., 2002; Schwartz and
Hearst, 2002; Adar, 2004; Ao and Takagi, 2005;
Okazaki and Ananiadou, 2006; Sohn et al., 2008;
Veyseh et al., 2021) or supervised methods (Chang
et al., 2002; Nadeau and Turney, 2005; Kuo et al.,
2009; Movshovitz-Attias and Cohen, 2012; Liu
et al., 2017; Wu et al., 2017; Zhu et al., 2021). In
our work, we build on previous work (Schwartz
and Hearst, 2002) for Acronym Identification, and
focus mainly on disambiguation.

As for acronym disambiguation, early solutions
manually designed features to score each pair of
acronyms and long forms, by either unsupervised
(Jain et al., 2007; Henriksson et al., 2014) or super-
vised machine learning (Pakhomov et al., 2005; Yu
et al., 2007; Stevenson et al., 2009; Finley et al.,
2016; Li et al., 2018). Later, deep learning ap-
proaches were introduced to the task, using em-
beddings to represent word sequences. The meth-
ods can be categorized as static embedding-based
(Wu et al., 2015; Li et al., 2015; Charbonnier and
Wartena, 2018) and dynamic embedding-based (Jin
et al., 2019; Pan et al., 2021; Zhong et al., 2021;
Li et al., 2021), where the former generates fixed
representations for words in a pre-defined vocab-
ulary and the latter can represent arbitrary words
dynamically based on specific contexts. One main
limitation of these methods is that they are domain-
specific systems that can be applied only to a cer-
tain field such as the biomedical domain or scien-
tific documents. To generalize the system, Ciosici
and Assent (2018) presented the Abbreviation Ex-
pander, and Veyseh et al. (2021) proposed MadDog,
both of which can be used in multiple domains. In
this paper, we improve over the performance of
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these systems by adapting transformer-based meth-
ods and pre-training strategies.

2.2 Existing benchmarks

Most current public datasets for acronym expan-
sion are focused on a particular domain, such as the
biomedical domain (Suominen et al., 2013; Wen
et al., 2020) or science (Charbonnier and Wartena,
2018; Veyseh et al., 2020). Some works adopt
two domain-specific datasets for better evaluations
(Ciosici et al., 2019; Veyseh et al., 2022). The
main limitation of these benchmarks is two-fold:
first, their acronym dictionaries are rather small.
For instance, the average number of candidates per
acronym in the SciAD benchmark (Veyseh et al.,
2020) is 3.15 while in our benchmark the number is
greater than 200. Second, there are no AD evalua-
tion sets that cover multiple domains. We also note
that, in SciAD, the train and test sets have overlap-
ping pairs of acronym and long form. For example,
the pair ⟨CT, Computed Tomography⟩ appears in
the training, validation, and test sets.

3 Constructing GLADIS

Our GLADIS benchmark consists of three compo-
nents: a dictionary, a pre-training corpus, and three
domain-specific datasets.

3.1 Dictionary and Pre-training Corpus

We propose an acronym dictionary that addresses
the shortcomings of existing dictionaries (Sec-
tion 2.2) by being (1) cross-domain and (2) large
in size. To construct this dictionary, we apply rule-
based extraction on a large set of corpora that con-
tain acronym definitions. In this process, we can
also obtain a large number of sentences containing
acronyms as the pre-training corpus.

Input Corpora. For the textual data source,
we use the Pile dataset (Gao et al., 2020), an 825
GiB English corpus constructed from 22 diverse
high-quality subsets (see the details of Pile in Ap-
pendix A.1). We also make use of structured knowl-
edge from knowledge bases, namely the Alias Ta-
ble from Wikidata and the Concept Names from
UMLS. Both of them contain alternate names for
canonical entities, and these may be acronyms or
not. To consider only the acronyms, we produce
pairs of the canonical name and an alternate name
in the form “canonical form (alternate name)”.
The rule-based algorithm will then decide whether
to extract an acronym or not. Table 2 shows the

Subset Domain Size (GiB)

Pile-CC Web Archive files 227.12
Books3 Books 100.96
Github Open-source codes 95.16

PubMed Central Biomedical articles 90.27
OpenWebText2 Reddit submissions 62.77

ArXiv Research papers 56.21
FreeLaw Legal proceedings 51.15

Stack Exchange Question-answer texts 32.20
USPTO Backgrounds Patents 22.90

PubMed Abstracts Biomedical abstracts 19.26
OpenSubtitles Subtitles 12.98

Gutenberg (PG-19) Western literatures 10.88
DM Mathematics mathematical problems 7.75

Wikipedia (en) Wikipedia pages 6.38
BookCorpus2 Books 6.30
Ubuntu IRC Chatlog data 5.52

EuroParl Proceedings 4.59
HackerNews Comments of social news 3.90

YoutubeSubtitles YouTube subtitles 3.73
PhilPapers Philosophy publications 2.38

NIH ExPorter Awarded applications 1.89
Enron Emails Emails 0.88

Wikidata Alias Alias Table 11.00
UMLS Concept Biomedical Vocabulary 1.96

Total - 838.14

Table 2: Sources for acronym extraction. All cor-
pora except Wikidata Alias and UMLS Concept are
from Pile (Gao et al., 2020).

statistics of our sources. They cover a wide range
of domains including Web pages, books, scientific
and biomedical papers, legal documents, etc.

Acronym Extraction. To extract acronyms
from the textual sources, we use the rule-based
algorithm proposed by Schwartz and Hearst (2002).
It assumes that acronyms follow a predictable pat-
tern, e.g., long form ( acronym ) or acronym ( long
form ), and then uses rules to extract candidate
pairs by identifying parentheses and surrounding
tokens. Experimental results show that this simple
algorithm achieves 95% precision and 82% recall,
averaged over two datasets. As the method has
good results at low time complexity, we decided
to not adopt more sophisticated methods. Some
extracted samples are shown in Table A2 in the
appendix. A manual evaluation on a random sam-
ple of 100 extracted sentences yields a precision of
94%.

Dictionary Construction. Next, we build a
large-scale acronym dictionary with frequencies
(popularity) by merging the extracted outputs. This
merger may regroup duplicate long forms for an
acronym, e.g., “convolutional neural network”,

“convolutional-neural network” or “convolutional
neural networks”. Therefore, we merge long forms
that are identical after stemming and removing
punctuation. In our case, the above three forms
are merged into “convolutional neural network”.
We keep the most frequent, unpreprocessed, long
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Unstructured Text

Pile

Structured Text

838 GiB Corpora

Sentence

Artificial intelligence (AI) is intelligence demonstrated by machines.

Machine Learning (ML) is a method of data analysis that automates analytical 
model building.

Acronym Long Form

AI Artificial intelligence 

ML Machine Learning 

Rule-based

Algorithm

Acronym Extraction

Acronym Dictionary ED Benchmark

BERTPre-training Corpus

AD Dataset Construction

Pre-training AcroBERT

Pre-train

Map

Re-split

Figure 1: Framework of our benchmark construction. The “ED” in the lower right corner means “Entity Disam-
biguation”.

train valid test unique short form long forms per acronym overshadowed ratio

General 13,269 7,024 7,125 1,147 248 29.8%
Scientific 28,023 14,134 14,066 2,922 262 68.7%

Biomedical 6,295 3,150 3,149 2,909 278 27.4%

Table 3: Statistics of our new Acronym Disambiguation Benchmark. The last column shows the ratio of
overshadowed samples in the dataset: long forms with the same acronym but not the most popular one.

Short Form Long Form Avg

SciAD (2020) 732 2,308 3.15
MadDog (2021) 426,389 3,781,739 8.87

Ours 1,542,819 6,381,257 4.14

Table 4: Statistics for three acronym dictionaries.
The “Avg” column shows the average number of
long forms per acronym.

form as the canonical name in our dictionary, dis-
carding other forms. There are still some noisy
long forms that cannot be merged, caused by typos
and nested acronyms (see Section 7). However,
a manual evaluation on a sample shows that 94%
of the long forms are clean. If the long forms
are weighted by their frequency, the percentage of
clean forms increases to 97%. Most notably, all
most frequent long forms for a given acronym were
clean in our sample. The statistics of our dataset
are shown in Table 4. Our resource will be the
largest publicly available dictionary for acronyms
that covers various domains.

Pre-training Corpus. While building the dic-
tionary, we can also collect the sentences that
contain acronyms for pre-training. For exam-
ple, the following sentence contains the acronym
ELEC: “Christie, some legislators and the state

Election Law Enforcement Commission (ELEC),
have joined the comptroller in voicing support for
the elimination of the loophole.” For pre-training,
the long form Election Law Enforcement Commis-
sion is removed, and we then force the model to
restore the long form from our constructed dictio-
nary, based on the input sentence and the acronym.
In total, we collect a pre-training corpus with ~160
million sentences. More examples are shown in
Table A2.

3.2 Acronym Disambiguation Dataset

We use our acronym dictionary to construct new,
larger datasets for evaluating AD systems. To auto-
matically construct the datasets, we adapt the exist-
ing two Entity Disambiguation datasets by replac-
ing the long form of entity with the acronym. For
example, one sentence in Medmentions (Mohan
and Li, 2018) contains the long form of Cerebral
Blood Flow: “The reconstructed volume was then
compared with corresponding magnetic resonance
images demonstrating that the volume of reduced
Cerebral Blood Flow agrees with the infarct zone
at twenty-four hours”. The dataset provides the
unique ID of this long form in UMLS (C1623258),
and we use it to find the acronym CBF in UMLS.
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AI
Adequate Intake

Artificial Intelligence the AI for potassium for adults is 4.7 grams.

the AI for potassium for adults is 4.7 grams.

BERT

Acronym Candidates Next Sentence Prediction Triplet Loss

[SEP]

[SEP]

Negative

Positive

Figure 2: The pre-training strategy of AcroBERT. λ is a margin between positive and negative pairs, here ⟨Adequate
Intake, AI⟩ and ⟨Artificial Intelligence, AI⟩.

Therefore, a new sample can be obtained by replac-
ing the long form with its corresponding acronym.

Specifically, we use the following human-
annotated and crowd-sourced datasets:
WikilinksNED Unseen Mentions (Onoe and Dur-
rett, 2020) is an Entity Disambiguation dataset, i.e.,
a set of text documents that have mentions of enti-
ties, together with a reference knowledge base (KB)
that contains, for each entity, one or several names.
WikilinksNED Unseen Mentions re-splits the Wik-
ilinksNED dataset (Eshel et al., 2017) to ensure
that all mentions in the validation and test sets do
not appear in the training set. This is a large-scale,
crowd-sourced ED dataset from websites in vari-
ous fields, which is significantly noisier and more
challenging than prior datasets. The reference KB
is Wikidata (or Wikipedia), and we adapt this Wik-
ilinksNED Unseen Mentions to an AD dataset in
the general domain.
Medmentions (Mohan and Li, 2018) is an entity
disambiguation dataset of 4,392 PubMed papers
that were annotated by professional and experi-
enced annotators in the biomedical domain. The
reference KB is UMLS (Bodenreider, 2004), and
this is a biomedical dataset.
SciAD (Veyseh et al., 2020) is the previously men-
tioned acronym disambiguation dataset in the sci-
entific domain.

SciAD is already an AD dataset, and we only
re-split it to avoid data leakage. As for the two
ED datasets, they both provide a unique ID to the
reference KB for each long form. We then replace
the long forms with the acronyms from their corre-
sponding reference KB, i.e., Wikidata and UMLS.
To make sure this replacement is correct, we ap-
ply the rule-based algorithm (Schwartz and Hearst,
2002) to the pair of long form and acronym again
for verification. We manually checked 100 ran-
dom sentences constructed in this way and did not

find problematic cases. Hence, this semi-synthetic
construction results in a dataset of natural text in
which the long form and the acronym are mutu-
ally replaceable in the context. Besides, the pair
is added to our dictionary with a frequency of 1
if it does not appear in our dictionary. For the
WikilinksNED dataset, we use the taxonomy of
YAGO 4 (Pellissier Tanon et al., 2020) to label
each long form with a top-level class. For example,

“rhythm and blues” is a CreativeWork and “United
States Navy” is an Organization.

We then partition the three datasets separately
into training, test, and validation set, ensuring that
the acronyms in the training set do not appear in the
validation and test sets. We repartition the datasets
at the ratio of 6:2:2. Table 3 gives the statistics
of this new benchmark. It is not only larger but
also more challenging than existing benchmarks,
because acronyms in our benchmark have more
than 200 candidates on average. Moreover, it con-
tains many overshadowed forms (Provatorova et al.,
2021), which means that an acronym has to be dis-
ambiguated to a long form that is not the most
popular long form for that acronym. For example,

“Adequate Intake” is overshadowed by the more pop-
ular form “Artificial Intelligence” for the acronym

“AI”.

4 AcroBERT

We can now capitalize on our dictionary and
pre-training corpus to propose a new method for
acronym disambiguation. It takes as input (1) a
dictionary of acronyms with their long form(s),
and (2) a large-scale corpus that contains acronyms
(we assume that the boundaries of the acronym
have already been recognized). Our goal is to pre-
train a language model for acronym disambigua-
tion, which has a strong generalizability across
multiple domains.
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Model General Scientific Biomedical Avg
Dev Test Dev Test Dev Test

F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

BM25 (1995) 29.9 32.6 35.5 25.8 14.1 5.4 17.1 10.7 13.1 8.3 17.0 14.3 21.1 16.2
FastText (2017) 11.3 12.9 18.7 12.7 3.3 0.9 5.7 2.5 0.2 0.1 1.3 0.7 6.8 5.0
MadDog (2021) 28.1 11.7 29.9 23.1 17.8 15.5 22.4 17.9 33.8 19.3 41.2 35.9 28.9 20.6

BERT (2018) 32.3 32.5 37.7 28.2 15.1 5.8 17.6 9.3 3.1 1.3 3.5 2.1 18.2 13.2
Popularity-Ours 35.2 39.1 39.0 43.2 5.5 22.9 4.9 12.3 46.0 61.3 49.9 54.0 30.1 38.8

AcroBERT 74.7 78.8 70.0 72.0 26.9 36.6 28.8 27.4 58.4 66.0 59.9 61.4 53.1 57.0

Table 5: Performances of the unsupervised setting across different models, measured by macro F1
and Accuracy.

The Pre-training Strategy of BERT. We adapt
the BERT model for our purpose. BERT is pre-
trained by using two unsupervised tasks, Masked
Language Model (MLM) and Next Sentence Pre-
diction (NSP). The Masked Language Model task
randomly masks some percentage of the input to-
kens, and then forces the model to predict the
masked tokens, similar to a cloze task. The Next
Sentence Prediction task asks the model to predict
whether one sentence follows the other.

The Next Sentence Prediction task can be used to
predict, from the input text (e.g., “This is the prod-
uct’s first true AI version, and it understands your
voice instantly.”), the correct long form (“Artifi-
cial Intelligence”). Here, the model learns to judge
whether the input context that contains the acronym

“AI” is coherent with the long form “Artificial Intel-
ligence”. The Masked Language Model task can
memorize the correlation of tokens between the
context sequence and long form. Thus, the model
learns that the phrase “Artificial Intelligence” often
co-occurs with “product” or “understand”.

However, we find that this naive technique does
not perform well (see the ablation studies in Ta-
ble A4). We believe that the reason is that the
acronym is usually ambiguous with many candi-
dates (as shown in Table 1), so that the model has
difficulties predicting the correct long form by only
using the cross-entropy loss of the binary classifi-
cation. We also observe that the Masked Language
Model loss is so small that the model focuses on
adapting the Next Sentence Prediction task only.

AcroBERT. To mitigate the weaknesses of the
original BERT, we pre-train an adapted BERT,
called AcroBERT, by slightly adjusting the Next
Sentence Prediction task. The framework is shown
in Figure 2. It aims to bring the positive sample
pairs closer together, and to push apart the neg-
ative sample pairs. We find that already such a
simple model can perform very well. For each pair
of a candidate long form and a sentence with an

acronym, we compose an input for the Next Sen-
tence Prediction task as “[CLS] long form [SEP]
sentence [SEP]”. Then, we obtain representations
of this sequence by applying BERT to this new
input. The final hidden vector e[CLS] ∈ RH of the
first input token ([CLS]) is used as the aggregate
representation, where H is the dimension of the
hidden vector. Next, the scores for the binary clas-
sification are:

P(y) = softmax(e[CLS]W), y ∈ {0, 1} (1)

where W ∈ RH×2 is a trainable matrix initialized
with the weights of the original BERT, and the label
0 signifies that this pair of sentences are coherent.
We use d = P(y = 1) as the distance between
the candidate and the context, and we want the
distances of negative pairs to be larger than for pos-
itive pairs. For this, we use a triplet loss function
that aims to assign higher scores to the correct can-
didates that match the topic of the input sentence
while reducing the scores of irrelevant candidates:

L = max
{
0, λ− dneg + dpos

}
(2)

where λ is the margin value, and dpos and dneg
are the distances for positive and negative pairs,
respectively.

The negatives in this triplet framework can be
randomly sampled from the dictionary. However,
we observe that such random negatives contribute
less to the training and result in slower conver-
gence because the initial model can easily distin-
guish these triplets. Therefore, it is crucial to select
harder triplets that are active and beneficial to the
training. For this purpose, we introduce a certain
number of ambiguous negatives to each mini-batch,
e.g., “Artificial Intelligence” can be added to the
input context as an ambiguous negative sample for
the positive pair “Adequate Intake [SEP] In the
United States, the AI for potassium for adults is 4.7
grams.” Through the pre-training step, AcroBERT
is able to identify the correct long form with the
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most consistent theme from numerous candidates
based on the input context.

5 Experiments

In this section, we compare AcroBERT empirically
to other acronym disambiguation approaches.

5.1 Experimental Settings

Datasets. We use the following datasets for
evaluation: Our GLADIS benchmark consists of
three subsets covering the General, Scientific, and
Biomedical domains. This benchmark is more chal-
lenging than prior work due to a large number of
ambiguous long forms: each acronym has around
200 candidates on average. We also evaluate Ac-
roBERT on two existing datasets: UAD (Ciosici
et al., 2019) and SciAd (Veyseh et al., 2020). They
are general and scientific AD datasets, respectively.
We reuse the test set of Medmentions but use the
UMLS as the target dictionary. We refer to them
as datasets with fewer candidates because they
have fewer candidates per acronym. The average
numbers of candidates per acronym are 2.1, 3.1,
and 34.2, respectively. See Appendix A.2 for more
details on the datasets.

Benchmark Settings. We design two benchmark
settings for the unsupervised and supervised sce-
narios respectively. In the unsupervised setting,
each model is evaluated on the test sets without
access to train and validation sets. In the fine-tuned
setting, each model is first fine-tuned on train sets
and then evaluated on test sets. We focus on the
unsupervised setting because it demonstrates that
AcroBERT can achieve considerable performances
across several domains even without any annotated
samples.

Competitors. We compare our approach to the
following publicly available competitors: BM25
(Robertson et al., 1995), FastText (Bojanowski
et al., 2017), MadDog (Veyseh et al., 2021), BERT
(Devlin et al., 2018), BioBERT (Lee et al., 2020),
SciBERT (Beltagy et al., 2019). Besides, we intro-
duce a Popularity-Ours baseline that uses the fre-
quency of long forms of our collected pre-training
datasets. We do not compare to general entity link-
ing methods, because prior work has already found
that general systems like AIDA (Hoffart et al.,
2011) tend to lag behind acronym disambiguation
models by 10-30 absolute percentage points (Li
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Figure 3: Robustness evaluation of hard samples on the
General test set. The samples are divided evenly into
ten chunks according to the number of candidates of
each sample (results on the other two sets are shown in
Figure A1 in the appendix).

et al., 2018). See Appendix A.3 for details on the
competitors.

Implementation Details. All approaches are im-
plemented with PyTorch (Paszke et al., 2019) and
HuggingFace (Wolf et al., 2020) by using one
NVIDIA Tesla V100S PCIe 32 GB Specs. For
pre-training, we use the parameters in the original
BERT to initialize AcroBERT, and then pre-trained
on our collected datasets with ~160 million samples
for one epoch. The margin of triplet loss is 0.2 and
the number of ambiguous negatives is 2 for each
mini-batch. See more details in Appendix A.4.

Inference. For the inference stage, every pair of a
context sentence and a candidate with the matching
short form in the dictionary constitutes an input to
the Next Sentence Prediction task. The language
model produces a score for each candidate and we
select the one with the highest score as the final
predicted output.

Metrics. We evaluate the models by precision,
recall, and macro F1. These metrics are defined in
detail in Section A.5

5.2 Results

5.2.1 Overall Performance
Unsupervised Setting. Table 5 shows the exper-
imental results in the unsupervised setting. We
first observe that our AcroBERT significantly out-
performs the baselines across the three domains.
For example, AcroBERT can improve the origi-
nal BERT by more than 30 absolute percentage
points of F1 on average on our benchmark. Second,
the naive popularity method comes second on this
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General Scientific Biomedical Avg
Dev Test Dev Test Dev Test

F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

BERT (2018) 53.8 70.7 54.9 53.1 13.5 9.9 14.3 10.4 9.8 12.4 9.4 7.5 26.0 27.3
SciBERT (2019) 32.4 38.6 33.6 27.7 22.7 19.4 23.4 17.7 31.2 35.6 31.0 28.3 29.5 27.9
BioBERT (2020) 26.0 23.6 25.7 20.3 11.2 9.7 12.4 9.0 24.0 21.8 20.2 16.8 19.9 16.9

AcroBERT 72.9 76.1 71.0 76.1 28.7 34.9 29.0 27.6 62.5 62.4 60.3 69.2 54.1 57.7

Table 6: Performances of fine-tuned setting across different models, measured by macro F1 and
Accuracy.

benchmark, most likely because it contains a lim-
ited number of overshadowed terms. However, it
performs badly on the scientific dataset. We assume
that this is because this dataset contains 68.7% of
overshadowed terms (as shown in Table 3).

Besides, we conduct experiments on existing
datasets, namely UAD (Ciosici et al., 2019) and
SciAD (Veyseh et al., 2020). Although our method
performs consistently well, we relegate this experi-
ment to the appendix B.2 due to the weaknesses of
the datasets (small size or data leakage).

Fine-tuned Setting. In this experiment, every
pre-trained language model is fine-tuned on the
training set by the triplet loss, as introduced in
the pre-training step. Negatives are randomly sam-
pled from ambiguous long forms for the correct
label, and the results are shown in Table 6. BERT,
SciBERT, and BioBERT perform better in their re-
spective fields. However, our AcroBERT achieves
the best result across the three fields on average,
which demonstrates the effectiveness of the pre-
training strategy. One might think that it is unfair
that AcroBERT uses the pre-training corpus, while
the other models do not. However, there is no other
pre-trained model for general disambiguation. Our
approach is the first that capitalizes on large-scale
corpora and pre-training.

As for the inference speed, AcroBERT has to be
run once for every possible long form, which may
take some time if there are thousands of long forms,
e.g., the acronym AI. However, this runtime can be
reduced drastically if one cuts off the less frequent
long forms per acronym. Limiting the number of
long forms to 23 per acronym, e.g., reduces the
worst-case runtime by a factor of 100, while still
keeping the recall at 90%.

5.2.2 Robustness Evaluation
Our GLADIS benchmark is more challenging than
existing acronym disambiguation datasets due to
the much larger acronym dictionary, which means
more candidates per acronym. To measure the
robustness of acronym disambiguation systems

Model Popular Overshadowed Avg

BERT (2018) 13.3 12.7 13.0
SciBERT (2019) 11.6 8.1 9.9
BioBERT (2020) 2.1 1.0 1.6

AcroBERT 61.9 33.4 47.7

Table 7: Robustness evaluation of overshadowed enti-
ties on General test set,measured by Accuracy.

against more candidates, we sort the samples in
the dataset in descending order of the number of
candidates per acronym, and divide them evenly
into 10 chunks. For example, samples in the first
chunk have 1.58 candidates on average while that
number is 2159 for the last chunk. The experimen-
tal results are shown in Figure 3. As expected, the
performance of BERT and AcroBERT decreases
as the number of candidates increases. The same
goes for the other two subsets, as shown in Ap-
pendix B.3. However, AcroBERT consistently out-
performs BERT on each data chunk, which shows
that AcroBERT is able to select the correct long
form among the numerous candidates.

Moreover, the challenge with our GLADIS
benchmark comes from overshadowed samples,
which are harder to disambiguate. To validate the
robustness of the models, we divide the General
test set into two parts: Popular and Overshadowed,
as described in Section 3.2. Next, we compare dif-
ferent language models in the unsupervised setting.
As shown in Table 7, our AcroBERT performs best
on both the Popular and the Overshadowed subset.
We conclude that AcroBERT is more robust against
ambiguous and overshadowed samples in acronym
disambiguation task.

6 Conclusion

In this paper, we have presented GLADIS, a chal-
lenging benchmark for Acronym Disambiguation,
which includes a larger dictionary, three datasets
from the general, scientific, and biomedical do-
mains, and a large-scale pre-training corpus. We
have also proposed AcroBERT, a BERT-based
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model that is pre-trained on our collected acronym
documents, which can significantly outperform
other baselines across multiple domains, and which
is more robust in the presence of very ambiguous
acronyms and overshadowed samples. For future
work, we aim to enhance the performance of Ac-
roBERT on the overshadowed cases, which is cru-
cial for the acronym disambiguation task.

7 Limitations

We see two main limitations of our work. First,
although the current acronym dictionary is of rela-
tively high quality, it still contains a small fraction
of duplicate long forms due to typos (as in “Convlu-
tional Neural Network”), morphological changes
(as in “Convolutional Neuronal Network”) and
nested acronyms (as in “convolutional NN”). A
manual evaluation of 100 randomly chosen long
forms from the three datasets in GLADIS shows
that 6% of them are noisy. At the same time, the
frequency of these noisy forms is much lower than
that of the standard long forms: all noisy forms in
the sample taken together appear 100 times in the
corpus – compared to 31k times for the clean forms.
Thus, the percentage of clean forms, weighted by
their frequency, is 97%. A good AD system should
select the most frequent one among noisy forms for
an acronym, and in our sample none of the most
frequent forms was noisy.

A second limitation of our approach is that the
performance of the current AcroBERT system on
the Scientific dataset still needs improvement. We
are considering to introduce more pre-training data
from this domain to address this issue.

Ethics Statement

This work presents GLADIS, a free and open
benchmark for the research community to study
Acronym Disambiguation, which consists of three
components: a dictionary, a pre-training corpus,
and three domain-specific datasets. The dictionary
and pre-training corpus are collected from the Pile
dataset (Gao et al., 2020), which is a public dataset
under the MIT license. The three domain-specific
datasets are adapted from SciAD (Veyseh et al.,
2020), WikilinksNED Unseen Mentions (Onoe and
Durrett, 2020) and Medmentions (Mohan and Li,
2018), respectively. They all allow sharing and
redistribution. The source datasets and their publi-
cations will be credited on our GitHub page, and
their licenses will be mentioned both on the Web

page and in the downloads of GLADIS.
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A Details of the Experimental Settings

A.1 Details of the Pile Dataset

Pile (Gao et al., 2020) is an 825 GiB English text
corpus designed to train large-scale language mod-
els, which is constructed from 22 diverse high-
quality academic or professional sources. Pile
is constructed from existing or newly introduced
datasets, and we present these sources here. Pile-
CC is a collection of web pages, metadata and
texts, which is extracted from jusText (Endrédy
and Novák, 2013). Books3 is a book dataset of fic-
tion and nonfiction books derived from Bibliotik 1.
Project Gutenberg has classic Western literature
derived from PG-19 (Rae et al., 2019). OpenSubti-
tles provides a large corpus of English subtitles
from movies and television shows collected by
Tiedemann (2016). DeepMind Mathematics is
a collection of many different types of mathematics
questions (Saxton et al., 2018). BookCorpus2 is
an expanded version of BookCorpus (Zhu et al.,
2015), a corpus of books from the web. EuroParl
is a corpus of parallel text in 11 languages from
the proceedings of the European Parliament(Koehn,
2005). Enron Emails is a large set of email mes-
sages, which contains 619,446 messages belonging
to 158 users (Klimt and Yang, 2004).

A.2 Details of the Experimental Datasets

We use the following benchmarks for Acronym
Disambiguation:

Our GLADIS benchmark consists of three sub-
sets covering the General, Scientific, and Biomed-
ical domains. It is a very challenging benchmark,
due to a large number of ambiguous long forms, as
described in Section 3.2.

• General has 45K samples gathered from the
WikilinksNED Unseen Mentions (Onoe and
Durrett, 2020).

• Scientific is adapted from SciAD (Veyseh
et al., 2020) with 56K samples, and the long
forms in the original dataset are mapped to the
new acronym dictionary. We re-split the train-
ing, validation and test sets to assure there are
no overlaps.

• Biomedical includes 12K samples obtained
from Medmentions (Mohan and Li, 2018).

1https://twitter.com/theshawwn/status/
1320282149329784833
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Figure A1: Robustness evaluation of hard samples on
Scientific and Biomedical test set. The samples are
divided evenly into ten chunks according to the number
of candidates of each sample.

Datasets with fewer candidates per acronym.

• UAD (Ciosici et al., 2019) is gathered from the
English Wikipedia and we use the manually
labeled 7K samples for evaluation.

• SciAD (Veyseh et al., 2020) is a human-
annotated dataset for the scientific domain
with 62K samples gathered from the ArXiv
preprint papers, and the validation set with 6K
samples is used for experiments.

• Biomedical-UMLS is a dataset with 3K sam-
ples obtained from the test set in our bench-
mark by using the UMLS concepts as the
acronym dictionary

The average candidates per acronym for the three
datasets are 2.1, 3.1, and 34.2, respectively.

A.3 Competitors

We compare our approach to the following publicly
available competitors:

• BM25 (Robertson et al., 1995) is a classical
ranking function in information retrieval.
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Model UAD SciAD Biomedical-UMLS Avg
F1 Acc F1 Acc F1 Acc F1 Acc

BERT (2018) 89.3 91.1 54.1 57.2 38.0 32.7 60.5 60.3
SciBERT (2019) 74.8 78.4 65.6 71.7 54.9 50.3 65.1 66.8
BioBERT (2020) 66.2 68.2 19.7 22.4 37.4 31.4 41.1 40.7

AcroBERT 88.8 93.7 58.0 72.0 67.5 65.3 71.4 77.0

Table A1: Performances on benchmarks with fewer candidates, measured by macro
F1 and Accuracy.

• Popularity-Ours is a baseline that uses the fre-
quency of long forms of our collected pre-
training datasets.

• BERT (Devlin et al., 2018) is a strong baseline,
which pre-trains contextual language models
on large corpora. The scores for the NSP task
can be used for the acronym disambiguation.

• FastText (Bojanowski et al., 2017) is a
character-level embeddings and can produce
representations for arbitrary words. In this ex-
periment, we first represent the input sentence
and candidates by the sum of word embed-
dings from FastText. Then, all candidates are
ranked by their cosine similarity score.

• MadDog (Veyseh et al., 2021) is a web-based
acronym disambiguation system for multiple
domains. It first creates chunks in which all
samples with the same acronyms are assigned
to the same chunks. After, a separate Bi-
LSTM model is trained for each chunk. To
deploy the MadDog server, it needs at least
125 GB of disk space and 70 GB of RAM
memory 2.

• BioBERT (Lee et al., 2020) is a biomedical
language representation model mainly pre-
trained on PubMed Abstracts and PMC Full-
text articles, which is a strong baseline in the
biomedical domain.

• SciBERT (Beltagy et al., 2019) is a scientific
language model based on BERT pre-trained
on a large multi-domain corpus of scientific
publications, which can improve performance
on downstream scientific NLP tasks.

A.4 Implementation Details
All approaches are implemented with PyTorch
(Paszke et al., 2019) and HuggingFace (Wolf et al.,

2https://github.com/amirveyseh/MadDog

2020). When pre-training AcroBERT, the model is
initialized by the parameters in the original BERT,
and then pre-trained on our collected datasets for
one epoch. In total, there are ~160 million sam-
ples in this corpus, covering various domains. The
batch size is 32, and we use Adam (Kingma and
Ba, 2014) with a learning rate 2e− 5 for optimiza-
tion. The learning rate is exponentially decayed for
every 10,000 steps with a rate of 0.95. The margin
of triplet loss is 0.2 and the number of ambiguous
negatives is 2 for each mini-batch.

For the fine-tuning stage, each competitor model
is initialized with the pre-trained parameters from
HuggingFace, and we use AcroBERT after pre-
training for comparison. All models are fine-tuned
by using the Triplet loss. All parameters of each
model are fine-tuned in this experiment, across
all domains by using the same hyper-parameters.
The batch size is 8 and the learning rate is among
[1e−5, 8e−6, 6e−6, 4e−6, 2e−6] for the Adam
optimizer. The model that has the best performance
on the validation set among the 5 learning rates is
evaluated on the test set. We use one NVIDIA Tesla
V100S PCIe 32 GB Specs.

A.5 Metrics

Acronym disambiguation can be seen as a classifi-
cation problem, where the input is (1) a dictionary
of acronyms and (2) a sentence with an acronym.
Each long form for that acronym from the dictio-
nary is considered a class, and the acronym dis-
ambiguation has to choose the correct class. We
evaluate the models by precision, recall, and macro
F1. There are two ways to calculate the macro
F1: “F1 of Averages” and “Averaged F1”. The first
computes the F1 value over the arithmetic means
of precision and recall, while the second computes
the F1 value for each class, and then averages them.
Some prior works adopt the first method. How-
ever, this method gives a higher weight to popular
classes, and it may thus unfairly yield a high score
if the model works well on these popular classes
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Acronym Long Form Provenance

ELEC Election Law Enforcement
Commission

Christie, some legislators and the state Election Law Enforcement Com-
mission (ELEC), have joined the comptroller in voicing support for the
elimination of the loophole.

ISR in-stent restenosis Although conventional stents are routinely used in clinical procedures, clin-
ical data shows that these stents are not capable of completely preventing
in-stent restenosis (ISR) or restenosis caused by intimal hyperplasia.

IL-6 interleukin-6 Consistent blood markers in afflicted patients are normal to low white cell
counts and elevated interleukin-6 (IL-6) levels which, among its many activi-
ties, signal the liver to increase synthesis and secretion of CRP.

PCP Planar cell polarity Establishment of photoreceptor cell polarity and ciliogenesis Planar cell
polarity (PCP)-associated Prickle genes (Pk1 and Pk2) are tissue polarity
genes necessary for the establishment of PCP in Drosophila.

DEP dielectrophoretic They included: a particle counter, trypan blue exclusion (Cedex), an in
situ bulk capacitance probe, an off-line fluorescent flow cytometer, and a
prototype dielectrophoretic (DEP) cytometer.

AQP3 aquaporin3 The laxative effect of bisacodyl is attributable to decreased aquaporin-
3 expression in the colon induced by increased PGE2 secretion from
macrophages.The purpose of this study was to investigate the role of aqua-
porin3 (AQP3) in the colon in the laxative effect of bisacodyl.

Table A2: Samples of extracted acronyms, long forms and provenances by using the rule-based algorithm from
Schwartz and Hearst (2002).

Acronym Long Form Context BERT AcroBERT

ECB European Central Bank Being made to bring the main road network in Romania in the European corridors.
There have been initiated several projects to modernize the network of ECB corridors,
financed from ispa funds and state-guaranteed loans from international financial
institutions. Government seeks external financing or public-private partnerships for
other road network upgrades , especially

External Commercial
Borrowing

European Central Bank

PR Public Relations A whistleblower like monologist Mike Daisey gets targeted as a scapegoat who
must be discredited and diminished in the public ’s eye. More often than not, PR is
a preemptive process. Celebrity publicists are paid lots of money to keep certain
stories out of the news.

Preemptive-Resume Public Relations

PUD Peptic Ulcer Disease Tumors cause an overactivation of these hormone-producing glands, leading to
serious health problems such as severe PUD ( due to gastrin hypersecretion, which
stimulates secretion of hydrochloric acd ).

Psychogenic Urinary
Dysfunction

Peptic Ulcer Disease

WFC Walsall F.C. Injury during a game against Norwich city on the 13 march 2010, forcing him to
miss Huddersfields next five games. He made his return against WFC on the 13 April
2010 , coming on as a 75th minute substitute and scoring a stoppage time winner to
make the score 4a3 to town.

Wide Free Choice World Fighting Champi-
onships

Table A3: Case study of predicted results by BERT and AcroBERT.

only (Opitz and Burst, 2019). Therefore, we use
the Averaged F1 across classes as our metric, which
is more robust towards the error type distribution.
That is:

Precisioni =
TPi

TPi + FPi
, i ∈ {1, 2, ..., n} (A.1)

Recalli =
TPi

TPi + FNi
, i ∈ {1, 2, ..., n} (A.2)

F1 =
1

n

n∑

i=1

2× Precisioni × Recalli
Precisioni + Recalli

(A.3)

B Additional Experiments

B.1 Ablation Study

In this experiment, we validate the effectiveness
of the pre-training strategy in AcroBERT, which

adopts a triplet loss with negative samples from
ambiguous candidates. Every model is initialized
with the parameters of the original BERT, and
we use various strategies for pre-training: only
Masked Language Model, only Next Sentence Pre-
diction, and the combination of the two and the
triplet framework in AcroBERT. Each strategy is
pre-trained on our collected corpus for 300K steps
and then the corresponding model is evaluated on
the three validation sets. The results (in Table A4)
show that the strategy of AcroBERT is most benefi-
cial for the acronym disambiguation, as it performs
the best on average. The Next Sentence Prediction
task is more important than the Masked Language
Model task. Even if MLM is not used, the impact
on the model is not significant, which means the
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Strategy General Scientific Biomedical Avg
F1 Acc F1 Acc F1 Acc F1 Acc

Triplet framework in AcroBERT 61.2 64.2 18.8 18.4 9.1 10.1 29.7 30.9
MLM + NSP of the original BERT 45.7 55.7 15.8 14.9 10.2 11.4 23.9 27.3

only NSP 52.4 58.7 15.1 12.4 6.1 6.5 24.5 25.9
only MLM 11.2 14.4 2.7 3.5 1.4 1.5 5.1 6.5

Table A4: Ablation studies for different pre-training strategies after 300K steps across three
validation sets, measured by macro F1 and Accuracy.

original BERT has already learned it well.

B.2 Experiments on Benchmarks with Fewer
Candidates

As mentioned before, one drawback of the prior
AD benchmark is that the magnitude of the
acronym dictionary is small, which is not consis-
tent with practical applications. In this experiment,
we therefore valid the performance of AcroBERT
on datasets with fewer candidates. The results are
shown in Table A1, and we observe that AcroBERT
can achieve the best average scores across three
datasets again, which demonstrates the general-
ization capability of our AcroBERT. On the other
hand, the lead of our model is not as substantial as
before. This is because there are fewer candidates
per acronym, and AcroBERT is particularly well-
suited for identifying the correct one among a large
number of candidates.

B.3 Robustness Evaluation for Many
Candidates

Similar to Section 5.2.2, we analyse the robustness
of AcroBERT on the other two domains. Each test
set is divided evenly into 10 chunks by the number
of candidates. The first chunk has the least number
of candidates while the last chunk has the most, up
to more than 2K. Figure A1 shows the experimental
scores on the Scientific and Biomedical test set.
We observe that for the first chunk, SciBERT and
BioBERT are on par with our AcroBERT. However,
AcroBERT outperforms the two significantly when
the number of candidates get larger.

B.4 Case Study

Table A3 shows case studies of the outputs by
BERT and AcroBERT. BERT often uses the mem-
orized correlations of tokens for reasoning and this
can cause errors. For example, External Commer-
cial Borrowings are loans in India made by non-
resident lenders in foreign currency to Indian bor-

rowers 3. BERT can determine this correct long
form probably with help of the key phrase “exter-
nal financing”. For the third case, Peptic Ulcer
Disease is more consistent with the input context.
However, BERT fails on it while AcroBERT ben-
efits from the pre-training strategy and is able to
distinguish different candidates based on contexts.
For the fourth sample, both methods fail, most
likely because of the low frequency of the long
forms and the uninformative contexts.

3https://en.wikipedia.org/wiki/External_
commercial_borrowing
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Abstract

Pretrained multilingual language models (LMs)
can be successfully transformed into multilin-
gual sentence encoders (SEs; e.g., LABSE,
XMPNET) via additional fine-tuning or model
distillation with parallel data. However, it re-
mains unclear how to best leverage them to rep-
resent sub-sentence lexical items (i.e., words
and phrases) in cross-lingual lexical tasks. In
this work, we probe SEs for the amount of
cross-lingual lexical knowledge stored in their
parameters, and compare them against the orig-
inal multilingual LMs. We also devise a sim-
ple yet efficient method for exposing the cross-
lingual lexical knowledge by means of ad-
ditional fine-tuning through inexpensive con-
trastive learning that requires only a small
amount of word translation pairs. Using bilin-
gual lexical induction (BLI), cross-lingual lex-
ical semantic similarity, and cross-lingual en-
tity linking as lexical probing tasks, we report
substantial gains on standard benchmarks (e.g.,
+10 Precision@1 points in BLI). The results
indicate that the SEs such as LABSE can be
‘rewired’ into effective cross-lingual lexical en-
coders via the contrastive learning procedure,
and that it is possible to expose more cross-
lingual lexical knowledge compared to using
them as off-the-shelf SEs. This way, we also
provide an effective tool for harnessing ‘covert’
multilingual lexical knowledge hidden in mul-
tilingual sentence encoders.

1 Introduction

Transfer learning with pretrained Language Mod-
els (LMs) such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) offers unmatched per-
formance in many NLP tasks (Wang et al., 2019;
Raffel et al., 2020). However, despite the wealth
of semantic knowledge stored in the pretrained
LMs (Rogers et al., 2020; Vulić et al., 2020b),
they do not produce coherent and effective sen-
tence representations when used off-the-shelf (Liu
et al., 2021c). To this effect, further specializa-

tion for sentence-level semantics – not unlike the
standard task fine-tuning – is needed (Reimers and
Gurevych, 2019; Li et al., 2020; Yan et al., 2021,
inter alia). LMs get transformed into sentence
encoders (SEs) via dual-encoder frameworks that
leverage contrastive learning objectives (van den
Oord et al., 2018; Musgrave et al., 2020), in super-
vised (i.e., leveraging labeled external data such as
NLI or sentence similarity annotations) (Reimers
and Gurevych, 2019; Vulić et al., 2021b; Liu et al.,
2021a) or, more recently, fully unsupervised fine-
tuning (Liu et al., 2021c; Gao et al., 2021) setups.

Following the procedures from monolingual se-
tups, another line of research has been transform-
ing multilingual LMs into multilingual SEs (Feng
et al., 2022; Reimers and Gurevych, 2020), which
enable effective sentence matching and ranking
in multiple languages as well as cross-lingually
(Litschko et al., 2022). The transformation is
typically done by coupling 1) LM objectives on
monolingual data available in multiple languages
with 2) cross-lingual objectives such as Translation
Language Modeling (TLM) (Conneau and Lam-
ple, 2019) and/or cross-lingual contrastive ranking
(Yang et al., 2020). Such multilingual SEs con-
sume a large number of parallel sentences for the
latter objectives. Consequently, they outperform
multilingual off-the-shelf LMs in cross-lingual sen-
tence similarity and ranking applications (Liu et al.,
2021d; Litschko et al., 2022). However, as we
show in this work, such multilingual SEs may still
lag behind traditional static cross-lingual word em-
beddings (CLWEs) when encoding sub-sentence
lexical items (e.g., words or phrases) (Liu et al.,
2021c) for cross-lingual lexical tasks (e.g., BLI).

In this work, we probe multilingual SEs for
cross-lingual lexical knowledge, relying on stan-
dard semantic similarity tasks in cross-lingual se-
tups as our ‘lexical probes’ (Vulić et al., 2020b).
We demonstrate that, due to their fine-tuning on
multilingual and parallel data, they indeed store a
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wealth of such knowledge, much more than what
‘meets the eye’ when they are used ‘off the shelf’.
However, this lexical knowledge needs to be ex-
posed from the original multilingual SEs, (again)
through additional fine-tuning. In other words, we
show that multilingual SEs can be ‘rewired’ into
effective cross-lingual lexical encoders, as illus-
trated in Figure 1. This rewiring is again done via
a quick and inexpensive contrastive learning proce-
dure: with merely 1k-5k word translation pairs, we
successfully convert multilingual SEs into state-of-
the-art bilingual lexical encoders for any language
pair (present in a specific dataset).1

We probe the original LMs and SEs as well as
demonstrate the usefulness of the proposed con-
trastive procedure for ‘exposing’ cross-lingual lex-
ical knowledge on three standard lexical cross-
lingual tasks using standard evaluation data and
protocols: BLI, cross-lingual lexical semantic sim-
ilarity (XLSIM), and cross-lingual entity linking
(XL-EL). We show that the ‘exposure’ procedure
is highly effective for both vanilla multilingual
LMs (mBERT and XLM-R) and multilingual SEs
(LABSE and XMPNET): e.g., we observe ≈+10
Precision@1 points gains on standard BLI bench-
marks (Glavaš et al., 2019). Multilingual SEs of-
fer substantially better cross-lingual lexical per-
formance than vanilla LMs, both before and after
being subjected to contrastive cross-lingual lexi-
cal fine-tuning (see Figure 1). This indicates that
it is possible to expose more cross-lingual lexical
knowledge from multilingual SEs than from their
vanilla LM counterparts, likely owing to their addi-
tional exposure to parallel data.

Finally, inspired by Li et al. (2022), we validate
that word vectors produced by cross-lingual lexical
encoders (i.e., after the contrastive cross-lingual
lexical ‘exposure’) can be effectively interpolated
with static CLWEs (Artetxe et al., 2018) and offer
even stronger performance in cross-lingual lexi-
cal tasks. Encouragingly, our cross-lingual lexical
specialization of multilingual SEs (as well as the
further interpolation with static CLWEs), yields
particularly massive performance gains for pairs
of low-resource languages, as demonstrated on the
low-resource BLI benchmark (Vulić et al., 2019).

1Note that this is a typical requirement of standard
mapping-based approaches for learning static cross-lingual
word embeddings which excel in the BLI task (Mikolov et al.,
2013; Conneau et al., 2018; Glavaš and Vulić, 2020).

Contrastive 
      loss

Multilingual
LM/SE

Pooling Pooling

f(wS)
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Bilingual / multilingual
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Figure 1: Illustration of the pipeline of exposing cross-
lingual lexical knowledge from multilingual language
models (LMs) and sentence encoders (SEs) (§2). Mul-
tilingual LMs (①) can be transformed into multilin-
gual SEs (②) as done in previous work (Reimers and
Gurevych, 2020; Feng et al., 2022). A contrastive cross-
lingual lexical fine-tuning procedure (③) (requiring an
external bilingual dictionary) can be applied on both ①
and ② , yielding a fine-tuned cross-lingual lexical en-
coder (④). At inference, a word/phrase is encoded by
the lexical encoder (⑤). In addition, its encoding can be
interpolated with the corresponding static (cross-lingual)
word embedding (⑥), producing the final embedding
of the word/phrase (⑦). Before the interpolation, static
CLWEs must be mapped into the vector space of the
lexical encoder (④): to this end, we learn the standard
orthogonal (Procrustes) projection matrix.

2 From Multilingual Sentence Encoders
to Cross-Lingual Lexical Encoders

Motivation. The motivation for this work largely
stems from the research on probing and analyz-
ing pretrained LMs for various types of knowledge
they (implicitly) store in their parameters (Etha-
yarajh, 2019; Jawahar et al., 2019; Rogers et al.,
2020). In this paper, we focus on a particular
knowledge type: cross-lingual lexical knowledge,
and its extraction from multilingual LMs and SEs.
The work combines two research threads, being in-
spired by the work on probing monolingual PLMs
for lexical knowledge (Vulić et al., 2020b), as well
as on interpreting representations in multilingual
PLMs (Bjerva et al., 2019; Libovický et al., 2020;
Beinborn and Choenni, 2020; Deshpande et al.,
2022; Chai et al., 2022, inter alia).

Previous work also tried to prompt multilingual
LMs for word translations via masked natural lan-

2090



guage templates (Gonen et al., 2020) and extract
type-level word embeddings from LMs (i) directly
without context (Vulić et al., 2020a, 2021a) or (ii)
by averaging contextual embeddings over a large
auxiliary corpus in the target language (Bommasani
et al., 2020; Litschko et al., 2022). This existing
body of work 1) demonstrated that even sophis-
ticated templates and extraction strategies cannot
outperform cross-lingual word embedding spaces
(e.g., induced from monolingual fastText vectors)
in cross-lingual lexical tasks such as BLI (Vulić
et al., 2020b) and 2) did not attempt to expose cross-
lingual lexical knowledge from multilingual SEs
and compare it against the (same type of) knowl-
edge extracted from vanilla multilingual LMs.

Multilingual Sentence Encoders. Off-the-shelf
LMs contextualize (sub)word representations, but
are unable to encode the precise meaning of in-
put text out of the box. SEs – LMs fine-tuned via
sentence-level objectives – in contrast, directly pro-
duce a precise semantic encoding of input text. A
large body of work focuses on inducing multilin-
gual encoders that capture sentence meaning across
languages (Artetxe and Schwenk, 2019; Feng et al.,
2022; Yang et al., 2020, inter alia).

The most popular approach obtains multilingual
SEs (Reimers and Gurevych, 2020) by distilling
the knowledge from the monolingual English SE
teacher (trained on English semantic similarity
and NLI data) into multilingual LM student (e.g.,
mBERT), using parallel sentences to guide the dis-
tillation process. SEs, being specialized for sen-
tence similarity, encode sentence meaning more
accurately and are useful in various (unsupervised)
text similarity and ranking tasks, monolingually
and across languages (Artetxe and Schwenk, 2019).

While SEs’ primary purpose is sentence en-
coding, they can, in principle, be applied to sub-
sentential text: words and phrases. In this work, we
show that multilingual SEs can be turned into effec-
tive cross-lingual lexical encoders. We achieve this
through additional cross-lingual lexical fine-tuning
(Vulić et al., 2021a), requiring as supervision only
a small set of word translation pairs.

2.1 Cross-Lingual Lexical Fine-Tuning

For a given language pair Ls-Lt, our contrastive
cross-lingual lexical fine-tuning of multilingual en-
coders (LMs and SEs alike) requires a dictionary
spanning N (typically N ≤ 5,000) word transla-

tion pairs, D = {(wi,s, vi,t)}Ni=1.2 We consider the
translation pairs from D to be positive examples
for the contrastive fine-tuning procedure. For each
of the N source language words in the dictionary
(wi,s), we precompute a set of K hard negative
samples: these are the Lt words that are the closest
to wi,s in the representation space of the multilin-
gual encoder, but not its direct translation vi,t. For
one-to-many and many-to-many seed dictionaries
D, the set K does not contain any Lt word paired
with wi,s. Let fθ(·), be the encoding function of
the multilingual LM/SE, with θ as parameters, and
let S(·, ·) be a function of similarity between two
vectors. For a source word wi,s, we select as hard
negatives words vt from Lt that have the highest
S(fθ0(wi,s), fθ0(vt)) score, with θ0 as the original
encoder’s parameters, before fine-tuning.

We encode all training words – those from the
seed dictionary D and (at most) N · K precom-
puted hard Lt negatives – independently and in
isolation. Concretely, for an input w with M sub-
word tokens [sw1] . . . [swM ], we feed the sequence
[SPEC1][sw1] . . . [swM ][SPEC2] into the mul-
tilingual encoder (with [SPEC1] and [SPEC2]
as encoder’s sequence start and end tokens, resp.),
and take the average of the transformed represen-
tation (from the last Transformer layer) of the w’s
subword tokens as the w’s encoding fθ(w). Put
simply, we process sub-sentential text input in the
same way that multilingual SEs handle sentence-
level input. We experimented with other encoding
strategies from prior work, e.g., taking the represen-
tation of the sequence start token [SPEC1] (Liu
et al., 2021b; Li et al., 2022); in preliminary exper-
iments, however, we obtained the best results by
averaging subword representations.3

Following common practice in contrastive learn-
ing (Henderson et al., 2019; Vulić et al., 2021a),
we define S as the scaled cosine similarity:
S(fθ(wi), fθ(wj)) = C · cos(fθ(wi), fθ(wj)), with
C as the scaling constant. We then train in batches
ofB translation pairs, with the variant of the widely
used multiple negatives ranking loss (MNEG) (Cer
et al., 2018; Henderson et al., 2019, 2020) as the
fine-tuning objective:

2Note that such bilingual dictionaries are one of the most
widespread and cheapest-to-obtain resources in multilingual
NLP (Ruder et al., 2019; Wang et al., 2022).

3Note that [SPEC1] and [SPEC2] are placeholders for
the encoder’s special tokens: e.g., in case of multilingual
BERT [SPEC1] is the [CLS] token, while [SPEC2] is the
[SEP] token.
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L =−
B∑

i=1

S(fθ(wi), fθ(vi)) (positives)

+
B∑

i=1

log
B∑

j=1,j ̸=i

eS(fθ(wi),fθ(vj)) (in-batch negatives)

+
B∑

i=1

log
K∑

k=1

eS(fθ(wi),fθ(vk,i)) (hard negatives)

where vk,i denotes the k-th hard negative from the
language Lt for the Ls word wi. MNEG combines
the K hard negatives per each positive example
with B-1 in-batch negatives (i.e., for a source lan-
guage word wi,s, each target language word vj,t,
j ̸= i from B is used as an in-batch negative of
wi,s). MNEG aims to reshape the representation
space of the encoder by simultaneously (a) max-
imising the similarity for positive pairs – i.e., bring-
ing closer together (‘attracting’) the words from
the positive pairs and (b) minimising the similarity
for (both in-batch and hard) negative pairs – i.e.,
pushing (‘repelling’) the words from negative pairs
further away from each other).4

2.2 Interpolation with Static CLWEs
Li et al. (2022) recently showed that further perfor-
mance benefits in the BLI task might be achieved
by combining the type-level output of the encod-
ing function f with static CLWEs, but they exper-
imented only with multilingual LMs, and limited
their analyses to the BLI task.

Static CLWEs and multilingual encoder-based
representations of the same set of words can be seen
as two different views of the same data point. Fol-
lowing Li et al. (2022), we learn an additional linear
orthogonal mapping from the static cross-lingual
WE space – e.g., a CLWE space induced from
monolingual fastText embeddings (Bojanowski
et al., 2017) using VECMAP (Artetxe et al., 2018) –
into the cross-lingual space spanned by the multilin-
gual encoder. The mapping transforms ℓ2-normed
d1-dimensional static CLWEs into d2-dimensional
cross-lingual WEs obtained through the multilin-
gual encoder (fine-tuned fθ or original fθ0).

Learning the linear map W∈Rd1×d2 , when
d1 < d2,5 is formulated as a Generalized Pro-
crustes problem (Schönemann, 1966; Viklands,

4In practice, we rely on the implementation of the MNEG
loss from the SBERT repository www.sbert.net (Reimers
and Gurevych, 2019); the default value C = 20 is used.

5The assumption d1 < d2 typically holds as fastText WEs
are 300-dimensional while the dimensionality of standard
multilingual LMs and SEs is d2 = 768 or d2 = 1, 024.

2006). It operates on all (i.e., both Ls and Lt)
words from the seed translation dictionary D. To
learn the mapping W , for pairs from D we de-
couple Ls words wi,s from their Lt translations
vi,t to create vector pairs (clwe(wi,s), fθ(wi,s)) and
(clwe(vi,t), fθ(vi,t)) – with clwe(w) as the static
CLWE of w (e.g., its VECMAP embedding), and
fθ(w) its encoder-based representation – based on
which we learn of the orthogonal mapping W (the
so-called Procrustes method gives a closed-form
solution). Unless noted otherwise, a final represen-
tation of an input word w is then computed as:

(1− λ) clwe(w)W

∥clwe(w)W ∥2
+ λ

fθ(w)

∥fθ(w)∥2
, (1)

where λ is a tunable interpolation hyper-parameter,
clwe(w) denotes the static CLWE of w, and
fθ(w) the representation of w obtained with the
(contrastively fine-tuned or original) multilingual
LM/SE. This simple procedure yields an ‘interpo-
lated’ shared cross-lingual WE space.

3 Experimental Setup

Multilingual Sentence Encoders. We probe
two widely used multilingual SEs: 1) Language-
agnostic BERT Sentence Embedding (LABSE)
(Feng et al., 2022) which adapts pretrained mul-
tilingual BERT (MBERT) (Devlin et al., 2019)
into a multilingual SE; 2) Multilingual XMP-
NET is a distillation-based adaptation (Reimers
and Gurevych, 2020) of XLM-R (Conneau et al.,
2020) as the student model into a multilingual SE,
based on the monolingual English MPNet encoder
(Song et al., 2020) as the teacher model. LABSE
is the current state-of-the-art multilingual SE and
supports 109 languages, while XMPNET is the
best-performing multilingual SE in the Sentence-
BERT repository (Reimers and Gurevych, 2019):
For further technical details regarding the models
in our comparison, we refer to the original papers.

Along with LABSE and XMPNET as SEs, we
experiment with the original multilingual LMs –
mBERT and XLM-R – using the the same training
and evaluation protocols (see Figure 1 and §2), aim-
ing to quantify: (i) the extent to which cross-lingual
lexical knowledge can be exposed from LMs that
have not been specialized for sentence-level se-
mantics, as well as (ii) the increase in quality of
lexical knowledge brought about with sentence-
level specialisation (i.e., when multilingual LMs
get transformed into multilingual SEs).
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Evaluation Tasks. We evaluate on the standard
and diverse cross-lingual lexical semantic tasks
treated as ‘cross-lingual lexical probes’. In other
words, we fine-tune the models to steer them to-
wards becoming better lexical encoders and then
we check how well they fare across a set of rep-
resentative (intrinsic) lexical tasks which could be
seen as such ‘lexical probes’.

Task 1: Bilingual Lexicon Induction (BLI), a
standard task to assess the “semantic quality” of
static cross-lingual word embeddings (CLWEs)
(Ruder et al., 2019), allows us to 1) directly as-
sess the extent to which cross-lingual word transla-
tion knowledge can be exposed from multilingual
LMs and SEs and 2) immediately test the ability
to transform multilingual sentence encoders into
bilingual lexical encoders. We run a series of BLI
evaluations on two standard BLI benchmarks. 1)
GT-BLI (Glavaš et al., 2019), constructed semi-
automatically from Google Translate, comprises
28 language pairs with a good balance of typologi-
cally similar and distant languages (Croatian: HR,
English: EN, Finnish: FI, French: FR, German:
DE, Italian: IT, Russian: RU, Turkish: TR). 2)
PanLex-BLI (Vulić et al., 2019) focuses on BLI
evaluation for lower-resource languages, deriving
training and test data from PanLex (Kamholz et al.,
2014). We evaluate on 10 pairs comprising the
following five typologically and etymologically di-
verse languages: Bulgarian (BG), Catalan (CA),
Estonian (ET), Hebrew (HE), and Georgian (KA).

Standard BLI setups and data are adopted: 5k
training word pairs are used as seed dictionary
D, and another 2k pairs as test data. Note that
D is used to (i) contrastively fine-tune multilin-
gual encoders (§2.1), (ii) learn the (baseline) static
VECMAP CLWE space, as well as to (iii) learn
the projection between the static CLWE space and
the representation spaces of multilingual encoders
required to obtain the interpolated representations
(§2.2). The evaluation metric is standard Preci-
sion@1 (P@1).6 For PanLex-BLI, we also run
experiments using smaller D, spanning 1k pairs.

Task 2: Cross-Lingual Lexical Semantic Simi-
larity (XLSIM) tests the extent to which lexical
representations can capture the (human perception
of) fine-grained semantic similarity of words across
languages. We use the comprehensive XLSIM
benchmark Multi-SimLex (Vulić et al., 2020a),

6We observed very similar performance trends for P@5
and Mean Reciprocal Rank (MRR) as BLI measures.

which comprises cross-lingual datasets of 2k-4k
scored word and phrase pairs over 66 language
pairs. We evaluate on a subset of language pairs
shared with the GT-BLI dataset: EN, FI, RU, FR.

The evaluation metric is the standard Spear-
man’s rank correlation between the average of gold
human-elicited XLSIM scores for word pairs and
the cosine similarity between their respective word
representations. To avoid any test data leakage, we
remove all XLSIM test pairs from the bilingual dic-
tionary D prior to fine-tuning and CLWE mapping.

Task 3: Cross-Lingual Entity Linking (XEL)
is a standard task in knowledge base (KB) con-
struction (Zhou et al., 2022), where the goal is to
link an entity mention in any language to a corre-
sponding entity in an English KB or in a language-
agnostic KB.7 We evaluate on the cross-lingual
biomedical entity linking (XL-BEL) benchmark of
Liu et al. (2021d): it requires the model to link
an entity mention to entries in UMLS (Bodenrei-
der, 2004), a language-agnostic medical knowledge
base. We largely follow the XL-BEL experimental
setup of Liu et al. (2021d) and probe the encoders
first without any additional task-specific fine-tuning
on UMLS data, and then with subsequent UMLS
fine-tuning (i) only on the EN UMLS data, (ii) on
all the UMLS data in 10 languages of the XL-BEL
dataset.8 Due to a large number of experiments, we
again focus on the subset of languages in XL-BEL
shared with GT-BLI: EN, DE, FI, RU, TR.

Static CLWEs and Word Vocabularies. As mono-
lingual static WEs, we select CommonCrawl fast-
Text vectors (Bojanowski et al., 2017) of the top
200k most frequent word types in the training data,
following prior work on learning static CLWEs
(Conneau et al., 2018; Artetxe et al., 2018; Hey-
man et al., 2019).9 Static CLWEs are then induced
via the standard and popular supervised mapping-
based VECMAP method (Artetxe et al., 2018),
leveraging the seed dictionary D. These CLWEs
are used for interpolation with encoder-based WEs
(see §2.2) but also as the baseline approaches for
BLI and XLSIM tasks. We compute the type-level
WEs from multilingual LMs and SEs for the same

7Following prior work (Liu et al., 2021b; Zhou et al., 2022),
XEL in this work also refers only to entity mention disam-
biguation; it does not cover the mention detection subtask.

8See (Liu et al., 2021d) for additional details.
9CommonCrawl-based fastText WEs typically outperform

other popular choice for monolingual WEs: Wikipedia-based
fastText (Glavaš et al., 2019; Li et al., 2022). We note that the
main trends in our results also extend to the Wiki-based WEs.
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200K most frequent words of each language.

Technical Details and Hyperparameters. The
implementation is based on the SBERT framework
(Reimers and Gurevych, 2019), using the suggested
settings: AdamW (Loshchilov and Hutter, 2018);
learning rate of 2e-5; weight decay rate of 0.01.
We run contrastive fine-tuning for 5 epochs with
all the models, with the batch size of B = 128 pos-
itives for MNEG. The number of hard negatives per
each positive is set to K = 10 (see §2.1).10 Since
standard BLI and XLSIM datasets lack a validation
portion (Ruder et al., 2019), we follow prior work
(Glavaš et al., 2019) and tune hyperparameters on
a single language pair from each dataset, and use
those values in all other runs. The randomly se-
lected language pairs are EN-TR for GT-BLI and
CA–ET for PanLex-BLI.

All reported scores are the averages over 5 runs
with 5 fixed random seeds.

Model Configurations. They are labelled as fol-
lows: ENC-{noCL,+CL} (λ), where (i) ENC de-
notes the input multilingual Transformer, which
can be a multilingual LM (MBERT, XLM-R), or a
multilingual SE (LABSE, XMPNET), (ii) ‘noCL’
refers to using the input model ‘off-the-shelf’ with-
out any contrastive lexical fine-tuning, while ‘+CL’
variants apply the contrastive fine-tuning, and (iii)
λ is the factor that defines the interpolation with
the static CLWE space, obtained with VECMAP

(see Figure 1 and §2.2). Note that λ = 1.0 implies
no interpolation with static CLWE space, i.e., WEs
come purely from the multilingual LM/SE.

Important Disclaimer. We note that the main pur-
pose of the chosen evaluation tasks and experi-
mental protocols is not necessarily achieving state-
of-the-art performance, but rather probing differ-
ent model variants in different cross-lingual lexical
tasks, and offering fair and insightful comparisons.

4 Results and Discussion

Bilingual Lexicon Induction (BLI). Table 1 dis-
plays our main BLI results, aggregated over all 28
language pairs of GT-BLI. Two trends hold across
the board. First, multilingual SEs, LABSE and
XMPNET, substantially outperform their multi-
lingual LM counterparts, MBERT and XLM-R.
The gains are visible in all four experimental con-
figurations (with/without contrastive cross-lingual

10We also tested K={20, 30, 50}. They slow down fine-
tuning while yielding small-to-negligible performance gains.

lexical specialisation × with/without interpolation
with the VECMAP CLWE space). This confirms
our intuition that multilingual SEs, having been
(additionally) trained on parallel data (Feng et al.,
2022; Reimers and Gurevych, 2020), should better
reflect the cross-lingual alignments at the lexical
level than off-the-shelf multilingual LMs, which
have not been exposed to any cross-lingual signal
in pretraining. The poor cross-lingual lexical align-
ment in the representation spaces of MBERT and
XLM-R also reflects in the fact that with those
encoders, we only surpass the baseline VECMAP

performance by a small margin (+1.1 for XLM-R,
+1.6 for MBERT) after subjecting them to con-
trastive lexical fine-tuning and interpolating their
word encodings with VECMAP WEs.

The behavior of SEs, on the other hand, is much
more favorable. LABSE, for example, surpasses
baseline VECMAP performance with interpolation
alone, even without the contrastive lexical fine-
tuning. When contrastively fine-tuned (and then in-
terpolated with VECMAP) both LABSE and XMP-
NET surpass the baseline VECMAP performance
by a much wider margin (+6.4 and +5.2, respec-
tively). This implies that contrastive fine-tuning
exposes more of the high quality cross-lingual lexi-
cal knowledge from multilingual SEs.

Both (i) contrastive cross-lingual lexical learn-
ing (+CL) and (ii) interpolation with VECMAP

consistently improve the performance for all four
encoders: we reach peak scores by combining con-
trastive fine-tuning and interpolation with static
CLWEs (+CL (λ)). Contrastive fine-tuning cru-
cially contributes to the overall performance: com-
pared to interpolation alone (noCL (λ)), +CL (λ)
brings an average gain of over 6 BLI points.

Table 2 shows the BLI results on 10 low(er)-
resource language pairs from PanLex-BLI. While
overall relative trends are similar to those observed
for high(er)-resource languages from GT-BLI (Ta-
ble 1), the gains stemming from cross-lingual con-
trastive lexical fine-tuning are substantially larger
in this case. The best-performing configuration
– contrastive fine-tuning and interpolation (+CL
(0.4)) applied on LaBSE – surpasses VECMAP by
11 BLI points on average (compared to 6 points
on GT-BLI), with gains for some language pairs
(e.g., HE-KA, ET-HE) approaching the impressive
margin of 20 BLI points. This finding indicates
that cross-lingual lexical knowledge stored in mul-
tilingual SEs is even more crucial when dealing
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Multilingual LMs MBERT XLM-R

Config −→ VECMAP noCL (1.0) noCL (λ) +CL (1.0) +CL (λ) noCL (1.0) noCL (λ) +CL (1.0) +CL (λ)

[BLI] λ=0.3 42.7 9.0 39.2 22.3 44.3 6.4 33.7 21.2 43.8
[XLSIM] λ=0.5 45.8 5.7 35.4 38.4 48.1 1.7 23.5 46.1 51.8

Multilingual SEs LABSE XMPNET

Config −→ VECMAP noCL (1.0) noCL (λ) +CL (1.0) +CL (λ) noCL (1.0) noCL (λ) +CL (1.0) +CL (λ)

[BLI] λ=0.3 42.7 21.4 45.7 30.8 49.1 17.0 41.7 28.6 47.9
[XLSIM] λ=0.5 45.8 50.4 54.9 48.8 54.1 51.3 56.6 49.6 54.5

Table 1: (a) P@1 scores (×100%) averaged across all 28 language pairs in the GT-BLI dataset ([BLI] rows); (b)
Spearman’s ρ correlation scores (×100) averaged across a subset of 6 language pairs from Multi-SimLex ([XLSIM
rows]). See §3 for the description of different model configurations/variants. |D| = 5k. The number in the
parentheses denotes the value for λ (see §3), which differs between the two tasks (0.3 for BLI and 0.5 for XLSIM).
The λ value of 1.0 effectively means ’no interpolation’ with static VECMAP CLWEs. Individual results per each
language pair in both tasks and with other λs are in Appendix B and Appendix C.

MBERT XLM-R LABSE XMPNET

Pair ↓ / Config −→ VECMAP +CL (1.0) +CL (0.4) +CL (1.0) +CL (0.4) +CL (1.0) +CL (0.4) +CL (1.0) +CL (0.4)

BG–CA 34.4 9.6 31.9 13.2 33.3 17.9 38.0 15.9 35.7
BG–ET 30.0 17.1 32.6 21.3 34.1 29.9 42.7 26.1 38.9
BG–HE 26.1 9.9 21.1 10.5 26.3 23.7 37.2 10.9 27.2
BG–KA 26.8 16.0 29.8 15.9 30.5 27.2 37.4 18.7 32.4
CA–ET 26.3 26.8 32.9 23.5 34.1 28.8 38.6 29.0 38.9
CA–HE 23.3 2.3 12.5 4.9 18.5 12.7 28.9 8.5 22.7
CA–KA 20.7 1.5 10.3 4.7 20.0 9.6 26.1 6.4 21.8
ET–HE 18.6 15.0 21.9 17.7 26.0 31.0 37.8 18.5 27.0
ET–KA 16.5 7.2 18.2 12.7 24.3 19.3 30.3 12.5 25.8
HE–KA 12.7 15.6 23.8 13.3 23.1 25.3 30.2 15.1 24.4

Average 23.5 12.1 23.5 13.8 27.0 22.5 34.7 16.2 29.5

Table 2: P@1 scores over a representative subset of 10 language pairs from the PanLex-BLI dataset of Vulić et al.
(2019). See §3 for the description of different model configurations/variants. |D| = 5k. Highest scores per row
are in bold. Respective average scores for the noCL (1.0) config (i.e., without contrastive learning and without
interpolation with static VECMAP CLWEs) are: 4.2 (MBERT), 3.1 (XLM-R), 17.0 (LABSE), 8.3 (XMPNET).

LABSE

Pair ↓ VECMAP noCL (1.0) +CL (1.0) +CL (0.5)

BG–CA 15.2 14.0 18.0 28.9
BG–ET 12.5 20.3 25.5 35.1
BG–HE 5.6 18.3 20.8 24.7
BG–KA 9.1 16.0 21.6 29.7
CA–ET 9.8 24.8 25.6 31.2
CA–HE 5.0 10.6 12.2 15.6
CA–KA 5.5 5.7 8.3 14.8
ET–HE 3.1 27.7 25.1 25.4
ET–KA 4.6 13.2 16.0 21.1
HE–KA 3.2 19.0 22.0 25.4

Average 7.4 17.0 19.5 25.2

Table 3: P@1 scores over 10 language pairs from the
PanLex-BLI dataset of Vulić et al. (2019) when |D| =
1k, with different model variants based on LABSE (see
§3). Highest scores per row are in bold.

with lower-resource languages.

In Table 3 we compare the results of LaBSE
(as the best-performing multilingual SE) against
VECMAP on PanLex-BLI in a scenario with less
external bilingual supervision: |D| = 1k. Inter-
estingly, in this setup LABSE already substan-
tially outperforms VECMAP out of the box (noCL

(1.0)); contrastive lexical fine-tuning (+CL (1.0))
and interpolation with VECMAP embeddings (+CL
(0.5)) again bring further substantial gains, and we
again observe a strong synergistic effect of the two
components: +CL (1.0) yields gains over noCL
(1.0) for 9/10 language pairs, and +CL (0.5) re-
sults in further boosts for all 10 pairs. Further,
the contrastively fine-tuned LABSE seems to be
much more resilient to training data scarcity than
VECMAP: reduction of the training dictionary size
from 5k to 1k reduces the performance of LABSE
+CL (λ) by 27% (from 34.7 to 25.2 P@1 points)
compared to a massive performance drop of almost
70% for VECMAP (from 23.5 to mere 7.4 P@1).
In sum, the BLI results already indicate the wealth
of lexical knowledge ’hidden’ in multilingual SEs,
which must be ‘exposed to surface’.

Cross-Lingual Lexical Semantic Similarity (XL-
SIM). The average XLSIM results are summarized
in Table 1. They again corroborate one of the main
findings from BLI experiments: multilingual SEs
store more cross-lingual lexical knowledge than
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Figure 2: Average scores across different interpolation values λ for the BLI task on (a) GT-BLI and (b) PanLex-BLI,
and (c) the XLSIM task on Multi-SimLex. |D| = 5k. Additional results are in Appendix B and C.

Config ↓ / Language Lt −→ DE FI RU TR

P@1 P@5 P@1 P@5 P@1 P@5 P@1 P@5

XLM-R +noCL 0.0 0.1 0.1 0.2 0.1 0.2 0.4 0.5
XLM-R +noCL+UMLSEN 27.6 32.0 12.2 14.7 21.8 25.9 29.3 35.9
XLM-R +noCL+UMLSall 31.8 37.3 18.6 22.2 35.4 41.2 42.8 48.9
XLM-R +CL 14.1 17.1 5.0 6.5 8.7 11.2 21.6 27.1
XLM-R +CL+UMLSEN 25.2 29.0 12.1 14.1 19.8 25.0 31.1 36.1
XLM-R +CL+UMLSall 32.1 36.7 19.1 23.8 34.9 42.4 43.4 49.0
XMPNET +noCL 19.5 25.9 12.2 14.8 19.2 24.3 28.9 36.3
XMPNET +noCL+UMLSEN 25.1 29.2 17.8 21.5 21.9 26.9 30.0 36.5
XMPNET +noCL+UMLSall 33.4 37.8 23.6 27.7 39.8 45.4 44.6 51.4
XMPNET +CL 20.8 26.5 9.1 12.5 12.8 17.1 30.4 36.5
XMPNET +CL+UMLSEN 25.1 28.7 11.4 14.0 21.8 27.2 31.0 37.5
XMPNET +CL+UMLSall 32.0 38.7 22.9 27.5 39.2 45.7 44.3 51.0

Table 4: A summary of results in the XEL task on the biomedical XL-BEL benchmark of Liu et al. (2021d). We
show the results of the better-performing LM (XLM-R), and the more lightweight multilingual SE (XMPNET).

multilingual LMs. This is validated by substantial
gains of SEs over corresponding LMs across all
configurations in Table 1. Interestingly, due to their
contrastive learning objectives on sentence-level
parallel data (Feng et al., 2022), LABSE and XMP-
NET provide very strong XLSIM results when
used off-the-shelf (noCL (1.0)), outperforming the
CLWE VECMAP embeddings. Contrastive lexical
fine-tuning with 5k word translation pairs (+CL
(1.0)) in this case does not bring any gains. How-
ever, the opposite is true for multilingual LMs: con-
trastive cross-lingual lexical fine-tuning on only
5k word translation pairs brings large benefits in
the XLSIM task (e.g., compare noCL (1.0) and
+CL (1.0) configurations for MBERT and XLM-
R), and turns them into more effective lexical en-
coders. This result corroborates a similar finding
from prior work in monolingual setups (Vulić et al.,
2021a). Finally, interpolation with static CLWEs
benefits the final XLSIM performance of all four
underlying multilingual encoders: interpolated vec-
tors (λ = 0.5) yield highest scores across the board,
substantially surpassing gains both VECMAP and
WEs from fine-tuned encoders (λ = 1.0).

Interpolation with Static CLWEs. A more de-
tailed analysis over different λ values for BLI and
XLSIM, summarized in Figure 2, reveals that inter-
polation can bring large performance gains, espe-

cially for λ in the [0.3, 0.5] interval. The optimal λ
value is, however, task- and even dataset-dependent.
For instance, for low-resource BLI on PanLex-BLI
more knowledge comes from the multilingual en-
coders as VECMAP CLWEs are of lower quality
for such languages: in consequence, the optimal λ
value ‘moves away’ from the static CLWEs towards
encodings obtained by fine-tuned multilingual SE.
We also note that larger benefits from interpolation
are observed when VECMAP CLWEs are combined
with contrastively fine-tuned multilingual SEs than
with LMs: cf., the large gains in Figure 2b and in
Table 3 for the LABSE +CL model variant.

Cross-Lingual Entity Linking (XEL). Experi-
ments on XL-BEL (Liu et al., 2021d), summa-
rized in Table 4, demonstrate that additional con-
trastive tuning with word or phrase pairs can greatly
boost performance of multilingual LMs: even fine-
tuning with 5k word translation pairs without any
domain-specific knowledge yields strong benefits
for XLM-R. As expected, using a much larger and
domain-specific external database UMLS yields
much higher scores and is more crucial for per-
formance. In fact, contrastively fine-tuning on
UMLS generally improves XEL performance with
all four underlying models. Again, we observe
that SE-based (XMPNET) configurations outper-
form the respective LM-based (XLM-R) configura-
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tions across the board. This finding again indicates
that multilingual SEs store more cross-lingual lex-
ical knowledge than multilingual LMs: this dif-
ference is particularly salient when the models
are used off-the-shelf without any additional con-
trastive fine-tuning, and XMPNET retains the edge
over XLM-R even after task-specific fine-tuning
with the UMLS-based domain-specific knowledge.

What is more, for FI, RU, and TR, the multilin-
gual XMPNET-based variants match or surpass
the performance of respective XEL models trained
on top of monolingual LMs (e.g., for FI, a model
based on the Finnish BERT) reported by Liu et al.
(2021d). This further validates our hypothesis that
multilingual SEs store rich multilingual lexical
knowledge, which is then also exposed in domain-
specific (multilingual) UMLS fine-tuning, yield-
ing performance gains. Contrastive fine-tuning
on UMLS synonyms (+CL+UMLS variants) ex-
pectedly outpeforms fine-tuning on (5k) general-
domain word translations (+CL), indicating that in
specialized domains, if available, in-domain cross-
lingual lexical signal should be exploited.

4.1 Summary and Discussion

Since the exposure of knowledge is done through
very knowledge-light tuning which also improves
representations of lexical items not covered in the
dictionaries used for the adaptive fine-tuning, this
suggests that the knowledge is stored in the param-
eters of the large models (both LMs and SEs), but it
is more easily ‘re-purposed’ through fine-tuning for
SEs. One might posit that the SEs have an ‘unfair’
advantage over LMs as the primary purpose of the
SEs, even before is encoding text items (i.e., sen-
tences) for semantic similarity and search. In this
paper, we verify the extent of that advantage for
lexical-level encodings/embeddings (as representa-
tions of lexical knowledge): while exposing (i.e.,
re-purposing) works for both model types, they do
not reach the same performance peaks and benefits
for lexical tasks where such lexical encodings are
a paramount. We leave fine-tuning with LM-style
objectives for other types of tasks beyond lexical
similarity and search for future work.

5 Conclusion and Future Work

We investigated strategies to probe and expose
cross-lingual lexical knowledge from pretrained
models, including multilingual language models
(LMs) and multilingual sentence encoders (SEs).

Based on an extensive probing experiments on a
suite of cross-lingual lexical tasks, we verified that
multilingual SEs (e.g., LABSE, XMPNET) are
superior to multilingual LMs (MBERT, XLM-R)
in terms of stored cross-lingual lexical knowledge.
We empirically validated that the SEs store more
lexical knowledge than ‘what meets the eye’ when
they are used off-the-shelf, but this knowledge must
be exposed from them. To this end, we proposed
new methods to further fine-tune their represen-
tations based on contrastive learning to ‘rewire’
the models’ parameters and transform them from
LMs and SEs into more effective cross-lingual lex-
ical encoders. These lexical encoders yield gains
for all underlying models, and are especially sig-
nificant for resource-poor languages and in low-
data learning regimes. While this work focused on
two widely used state-of-the-art multilingual SEs,
the contrastive framework is versatile and model-
independent and can be applied on top of other
multilingual SEs in future work. We will also inves-
tigate other more sophisticated contrastive learning
strategies, look into ensembling of knowledge ex-
tracted from different SEs, and expand our probing
experiments to more tasks and languages.
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Limitations

This work focuses on lexical specialization of mul-
tilingual encoders, off-the-shelf LMs (experiments
with mBERT and XLM-R Base) and, in particu-
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lar multilingual encoders specialized for sentence-
level semantics (experiments with LABSE and
XMPNET). While these are all widely used mod-
els, they are arguably among the smaller pretrained
multilingual encoders. Due to computational con-
straints, we have not evaluated the effectiveness of
the proposed cross-lingual lexical specialisation for
larger multilingual LMs, e.g., XLM-R-Large (Con-
neau et al., 2020) or mT5 (Large, XL, and XXL)
(Xue et al., 2021). It is possible that these larger
multilingual LMs would close (some of) the per-
formance gap w.r.t. multilingual SEs. Such large
LMs, however, are effectively available to fewer re-
searchers and practitioners. Our work includes less
resource-demanding LMs and SEs, making their
lexically specialized variants that we offer more
widely accessible.

Lexical input (i.e., words or phrases) are pro-
vided to each multilingual encoder fully “in iso-
lation” (see §2), without any surrounding context.
However, the alternative of using external corpora
and averaging-over-context (Litschko et al., 2022),
which we have not evaluated in this work for clar-
ity and space constraints, might yield slightly im-
proved task performance. Nonetheless, the ’in iso-
lation’ approach has been verified in previous work
(Vulić et al., 2021a; Litschko et al., 2022; Li et al.,
2022) as very competitive, and is more lightweight:
1) it disposes of any external text corpora and is
not impacted by the external data; 2) it encodes
words more efficiently due to the absence of con-
text. Moreover, it allows us to directly study the
richness of cross-lingual information stored in the
encoders’ parameters, and its interaction with addi-
tional cross-lingual signal from bilingual lexicons.

The contrastive cross-lingual lexical fine-tuning
we proposed in this is work is bilingual. It lever-
ages a small bilingual dictionary D for each lan-
guage pair and specializes the multilingual en-
coders (LMs and SEs) independently for each lan-
guage pair. Assuming interest in cross-lingual
lexical tasks between all pairs of NL languages,
this entails NL·(NL−1)

2 fine-tuning procedures and
as many resulting bilingual models. Although
our contrastive fine-tuning is relatively fast and
lightweight, given that it leverages at most 5k trans-
lation pairs, for large NL it could easily exceed
the computational and time budget for most users.
On a high level, our work again outlines the ad-
vantages as well as disadvantages between 1) more
versatile massively multilingual models that serve

multiple languages without any further adaptation,
and 2) better-performing but typically less modular
and less versatile models adapted (i.e., bilingually
specialized) from the multilingual models (Bapna
and Firat, 2019; Parović et al., 2022).

Intuitively, for each bilingually fine-tuned model,
we evaluate the performance for that respective lan-
guage pair. Currently, we do not investigate the
spillover effects that a bilingual lexical fine-tuning
of multilingual encoders could have on lexical rep-
resentations of other languages. Such an analysis,
planned for future work, would be particularly in-
teresting in the context of low-resource languages,
unseen from the point of view of cross-lingual lex-
ical fine-tuning, and in particular closely related
low-resource languages. For instance, if we are
doing cross-lingual lexical fine-tuning for language
pairs involving Turkish, are there spillover bene-
fits for low(er)-resource Turkic languages such as
Uyghur or Kazakh?

Finally, we acknowledge that our choice of lex-
ical tasks as probing tasks is non-exhaustive: we
put focus on standard tasks from previous work
on (multilingual) lexical semantics that are espe-
cially convenient as cross-lingual lexical probes:
such tasks directly test and compare the quality of
cross-lingual lexical representations obtained via
different methods; see §4.1 again.
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Marinela Parović, Goran Glavaš, Ivan Vulić, and Anna
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Languages in: GT-BLI, Multi-SimLex, XL-BEL
EN English
DE German
TR Turkish
FI Finnish
HR Croatian
RU Russian
IT Italian
FR French

Languages in: PanLex-BLI
BG Bulgarian
CA Catalan
ET Estonian
HE Hebrew
KA Georgian

Table 5: Languages and their ISO 639-1 codes.

A List of Languages

The list of languages used in this work, along with
their ISO 639-1 codes, is available in Table 5.

B BLI Results across Individual
Language Pairs

Additional experiments and analyses over individ-
ual language pairs and other λ values, which further
support the main claims of the paper, have been rel-
egated to the appendix for clarity and compactness
of the presentation in the main paper:

Table 6. It provides results over all 28 language
pairs in GT-BLI with 2 multilingual LMs and 2
multilingual SEs in the noCL variant without con-
trastive fine-tuning.

Table 7. It provides results over all 28 language
pairs in GT-BLI with 2 multilingual LMs and 2 mul-
tilingual SEs in the +CL variant with contrastive
fine-tuning.

Table 8. It provides results over all 28 language
pairs in GT-BLI and across different λ values with
the LABSE +noCL variant.

Table 9. It provides results over all 28 language
pairs in GT-BLI and across different λ values with
the LABSE +CL variant.

C XLSIM Results across Individual
Language Pairs

Table 10. It provides results over selected 6 lan-
guage pairs from Multi-SimLex with 2 multilingual
LMs and 2 multilingual SEs in the noCL variant
without contrastive fine-tuning.

Table 11. It provides results over selected 6 lan-
guage pairs from Multi-SimLex with 2 multilingual

LMs and 2 multilingual SEs in the +CL variant
with contrastive fine-tuning.

Table 12. It provides results over selected 6 lan-
guage pairs from Multi-SimLex and across differ-
ent λ values with the XMPNET +noCL variant.

Table 13. It provides results over selected 6 lan-
guage pairs from Multi-SimLex and across differ-
ent λ values with the XMPNET +CL variant.

D Models and Evaluation Data

URLs to the models used in this paper are provided
in Table 14. Training and test data for all three
tasks (BLI, XLSIM, XEL) is available online:

• GT-BLI is available here: https://github.com/

codogogo/xling-eval

• PanLex-BLI: https://github.com/

cambridgeltl/panlex-bli

• Multi-SimLex [XLSIM]: https://multisimlex.
com/

• XL-BEL [XEL]: https://github.com/

cambridgeltl/sapbert

Our code is based on PyTorch, and relies on the
following two widely used repositories:

• sentence-transformers: www.sbert.net

• huggingface.co/transformers/
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MBERT XLM-R LABSE XMPNET

Pair ↓ / Config −→ VECMAP +noCL
(1.0)

+noCL
(0.3)

+noCL
(1.0)

+noCL
(0.3)

+noCL
(1.0)

+noCL
(0.3)

+noCL
(1.0)

+noCL
(0.3)

EN–DE 55.6 15.6 50.7 12.7 45.5 25.4 54.1 22.0 47.7
EN–TR 40.4 7.2 34.9 6.0 28.9 23.6 42.1 16.1 33.7
EN–FI 45.6 7.9 38.7 6.6 33.4 19.3 45.1 14.8 39.5
EN–HR 37.5 8.9 31.8 6.8 25.6 24.7 45.3 18.5 38.9
EN–RU 45.6 3.2 40.7 0.9 34.7 24.7 49.9 17.6 41.7
EN–IT 60.2 12.3 57.1 9.3 53.0 26.4 62.3 23.5 58.8
EN–FR 64.1 25.2 62.5 19.5 56.6 34.2 67.5 29.2 61.7
DE–TR 32.5 9.1 28.9 6.9 24.4 17.7 33.0 13.1 29.7
DE–FI 39.7 9.2 34.1 7.3 30.1 16.0 37.4 13.3 34.7
DE–HR 33.3 11.5 31.0 9.7 25.7 19.2 38.5 14.9 34.1
DE–RU 40.0 4.2 36.4 0.9 32.4 14.3 41.5 9.5 37.7
DE–IT 49.5 10.9 45.9 8.1 42.7 19.4 51.4 18.3 49.1
DE–FR 50.0 15.8 49.7 10.5 42.3 22.5 53.2 20.2 49.8
TR–FI 31.3 6.7 26.2 5.2 22.0 15.5 31.7 11.3 30.9
TR–HR 25.4 10.8 24.3 8.3 20.5 18.7 33.1 14.4 28.2
TR–RU 32.9 2.6 29.1 0.8 25.5 14.1 36.9 11.3 33.5
TR–IT 37.1 7.9 34.7 5.5 27.4 17.0 38.9 14.8 38.3
TR–FR 39.4 7.8 37.3 5.7 30.9 20.9 43.1 16.6 39.4
FI–HR 30.4 7.2 26.6 5.5 22.8 17.4 36.4 12.2 32.7
FI–RU 38.2 2.6 34.0 0.9 30.5 15.1 41.0 9.0 37.1
FI–IT 39.9 7.9 36.7 6.8 30.4 18.1 43.4 16.4 41.8
FI–FR 42.8 7.5 38.9 5.9 32.2 18.6 45.9 16.2 42.2
HR–RU 40.6 6.0 35.8 1.6 30.4 24.5 45.7 16.3 41.4
HR–IT 40.4 11.2 39.0 8.4 31.3 24.5 47.9 22.4 44.5
HR–FR 43.6 9.7 42.3 6.1 30.6 25.7 50.0 19.8 43.9
RU–IT 46.6 3.1 42.2 1.5 36.4 21.8 47.6 18.4 46.5
RU–FR 48.7 4.1 44.3 1.5 38.4 26.6 50.9 18.9 47.5
IT–FR 64.1 16.6 62.8 9.3 58.6 33.9 65.6 27.5 63.1

Average 42.7 9.0 39.2 6.4 33.7 21.4 45.7 17.0 41.7

Table 6: Individual P@1 scores (×100%) for all 28 language pairs in the GT-BLI dataset of Glavaš et al. (2019),
with multilingual LMs and SEs used ‘off-the-shelf’ without contrastive fine-tuning (§2). See §3 for the description
of different model configurations/variants. |D| = 5k. The number in the parentheses denotes the value for λ (see
§3): the value of 1.0 effectively means ’no interpolation’ with static VECMAP CLWEs.

MBERT XLM-R LABSE XMPNET

Pair ↓ / Config −→ VECMAP +CL (1.0) +CL (0.3) +CL (1.0) +CL (0.3) +CL (1.0) +CL (0.3) +CL (1.0) +CL (0.3)

EN–DE 55.6 26.4 59.2 24.5 56.3 31.6 61.1 30.2 58.7
EN–TR 40.4 17.4 39.3 19.2 42.0 33.1 50.1 30.4 45.7
EN–FI 45.6 18.6 45.6 20.2 45.7 30.8 53.3 28.7 50.4
EN–HR 37.5 23.6 44.3 21.8 44.3 36.9 53.9 31.8 49.6
EN–RU 45.6 23.9 48.9 28.3 48.8 46.4 55.8 37.9 53.1
EN–IT 60.2 26.8 64.0 25.4 61.7 33.3 66.9 33.0 65.3
EN–FR 64.1 34.4 67.7 33.0 65.4 42.1 71.2 39.5 68.5
DE–TR 32.5 19.5 32.8 15.5 33.5 24.4 37.6 22.7 36.2
DE–FI 39.7 20.3 38.5 19.0 37.5 25.0 43.3 24.4 42.1
DE–HR 33.3 24.2 37.3 22.4 36.9 27.9 42.9 27.2 41.8
DE–RU 40.0 21.2 42.0 19.1 41.5 27.5 45.6 26.8 44.1
DE–IT 49.5 23.0 49.9 19.0 48.6 24.6 52.5 25.6 51.4
DE–FR 50.0 27.4 52.5 24.3 51.5 31.3 54.5 30.0 53.9
TR–FI 31.3 18.0 29.6 15.9 31.7 22.2 34.9 22.4 35.9
TR–HR 25.4 21.8 30.2 19.0 30.8 27.4 36.8 26.0 36.4
TR–RU 32.9 16.2 33.9 15.7 33.5 24.7 37.4 24.7 37.8
TR–IT 37.1 17.4 37.8 15.4 36.8 22.8 41.6 22.2 41.0
TR–FR 39.4 18.4 40.4 17.4 38.9 29.4 43.9 26.3 43.6
FI–HR 30.4 20.2 32.7 17.4 32.5 27.4 39.7 24.3 38.4
FI–RU 38.2 17.6 37.3 18.0 38.7 27.6 42.4 27.6 41.3
FI–IT 39.9 18.4 40.5 17.6 40.0 25.2 45.3 24.0 44.9
FI–FR 42.8 17.5 43.0 18.2 41.9 26.4 47.6 26.1 45.8
HR–RU 40.6 26.4 41.4 29.5 43.9 36.1 46.4 33.3 46.4
HR–IT 40.4 24.6 44.0 22.8 42.8 32.3 49.7 30.2 49.2
HR–FR 43.6 24.1 46.5 23.4 44.1 35.0 51.8 29.3 50.7
RU–IT 46.6 22.0 46.9 19.4 45.0 32.0 50.2 28.4 51.1
RU–FR 48.7 22.1 49.1 20.5 47.6 37.0 53.5 28.9 51.2
IT–FR 64.1 33.4 65.5 32.9 64.3 42.2 66.0 39.0 66.4

Average 42.7 22.3 44.3 21.2 43.8 30.8 49.1 28.6 47.9

Table 7: Individual P@1 scores (×100%) for all 28 language pairs in the GT-BLI dataset of Glavaš et al. (2019),
with model variants with contrastive fine-tuning (§2). |D| = 5k.

2103



LABSE +noCL

Pair ↓ / λ =−→ VECMAP(0.0) 0.1 0.2 0.3 0.4 0.5 0.7 1.0

EN–DE 55.6 57.3 56.3 54.1 50.9 47.8 40.6 25.4
EN–TR 40.4 42.0 41.9 42.1 41.6 40.2 35.9 23.6
EN–FI 45.6 46.1 46.1 45.1 44.4 42.8 34.4 19.3
EN–HR 37.5 39.8 43.0 45.3 46.5 46.5 41.3 24.7
EN–RU 45.6 46.5 48.0 49.9 50.5 50.2 46.1 24.7
EN–IT 60.2 61.6 63.0 62.3 61.3 60.1 49.9 26.4
EN–FR 64.1 66.0 67.1 67.5 65.9 64.8 55.3 34.2
DE–TR 32.5 33.6 33.4 33.0 32.3 30.2 24.4 17.7
DE–FI 39.7 39.7 39.3 37.4 35.9 34.3 25.8 16.0
DE–HR 33.3 35.8 37.0 38.5 38.8 36.1 29.2 19.2
DE–RU 40.0 40.9 41.2 41.5 41.1 38.4 29.6 14.3
DE–IT 49.5 51.3 51.3 51.4 49.4 46.3 36.4 19.4
DE–FR 50.0 52.2 53.2 53.2 51.8 49.1 37.8 22.5
TR–FI 31.3 32.3 31.6 31.7 31.2 29.8 24.8 15.5
TR–HR 25.4 28.3 31.2 33.1 34.1 33.6 28.9 18.7
TR–RU 32.9 34.9 35.5 36.9 36.5 34.0 29.0 14.1
TR–IT 37.1 38.7 39.6 38.9 38.8 37.7 31.5 17.0
TR–FR 39.4 41.4 42.1 43.1 43.4 41.9 34.6 20.9
FI–HR 30.4 32.3 34.7 36.4 36.9 36.3 28.6 17.4
FI–RU 38.2 39.5 40.0 41.0 40.5 37.6 28.9 15.1
FI–IT 39.9 42.9 42.9 43.4 44.2 41.5 34.0 18.1
FI–FR 42.8 44.7 45.9 45.9 46.1 43.6 34.6 18.6
HR–RU 40.6 41.8 43.9 45.7 45.8 45.0 39.0 24.5
HR–IT 40.4 43.5 46.0 47.9 48.6 47.6 41.8 24.5
HR–FR 43.6 46.8 48.6 50.0 50.1 47.9 42.0 25.7
RU–IT 46.6 48.1 48.1 47.6 46.8 44.5 38.7 21.8
RU–FR 48.7 50.2 51.0 50.9 50.0 49.0 43.6 26.6
IT–FR 64.1 64.9 65.8 65.6 64.9 63.0 54.0 33.9

Average 42.7 44.4 45.3 45.7 45.3 43.6 36.5 21.4

Table 8: Individual P@1 scores (×100%) for all 28 language pairs in the GT-BLI dataset of Glavaš et al. (2019),
across different values for λ. The model variant is LABSE +noCL (see §3); similar patterns are observed with
another multilingual SE in our evaluation (XMPNET). |D| = 5k.

LABSE +CL

Pair ↓ / λ =−→ VECMAP(0.0) 0.1 0.2 0.3 0.4 0.5 0.7 1.0

EN–DE 55.6 59.4 61.2 61.1 60.1 56.8 46.5 31.6
EN–TR 40.4 43.9 46.8 50.1 51.0 49.9 45.4 33.1
EN–FI 45.6 48.6 51.0 53.3 54.1 53.9 46.1 30.8
EN–HR 37.5 44.1 49.7 53.9 56.7 57.1 49.7 36.9
EN–RU 45.6 50.1 52.5 55.8 58.5 59.0 56.2 46.4
EN–IT 60.2 62.5 65.3 66.9 67.2 66.2 55.7 33.3
EN–FR 64.1 66.3 69.5 71.2 71.1 69.5 59.5 42.1
DE–TR 32.5 35.4 36.5 37.6 36.7 35.6 31.8 24.4
DE–FI 39.7 41.6 42.5 43.3 42.2 39.5 32.7 25.0
DE–HR 33.3 37.9 40.8 42.9 43.1 41.6 35.9 27.9
DE–RU 40.0 43.1 44.0 45.6 45.9 44.7 37.3 27.5
DE–IT 49.5 51.3 52.0 52.5 50.9 47.7 38.9 24.6
DE–FR 50.0 52.4 53.7 54.5 53.6 50.3 42.7 31.3
TR–FI 31.3 33.3 34.3 34.9 35.0 33.7 30.2 22.2
TR–HR 25.4 30.4 34.2 36.8 38.5 38.2 35.8 27.4
TR–RU 32.9 35.2 36.6 37.4 37.5 36.1 32.5 24.7
TR–IT 37.1 39.0 41.2 41.6 41.5 39.9 34.4 22.8
TR–FR 39.4 41.8 43.0 43.9 43.8 43.3 38.6 29.4
FI–HR 30.4 34.0 37.5 39.7 41.2 40.2 36.4 27.4
FI–RU 38.2 40.2 41.1 42.4 42.6 40.2 36.2 27.6
FI–IT 39.9 43.3 44.3 45.3 45.9 44.7 38.2 25.2
FI–FR 42.8 44.5 46.3 47.6 47.8 46.0 40.0 26.4
HR–RU 40.6 42.0 44.9 46.4 47.5 48.3 44.7 36.1
HR–IT 40.4 43.3 47.7 49.7 50.6 50.4 46.1 32.3
HR–FR 43.6 47.2 49.0 51.8 52.0 51.0 46.4 35.0
RU–IT 46.6 48.8 49.6 50.2 50.4 48.7 44.9 32.0
RU–FR 48.7 51.0 51.9 53.5 53.1 52.1 47.1 37.0
IT–FR 64.1 64.9 65.9 66.0 66.0 64.6 56.9 42.2

Average 42.7 45.6 47.6 49.1 49.4 48.2 42.4 30.8

Table 9: Individual P@1 scores (×100%) for all 28 language pairs in the GT-BLI dataset of Glavaš et al. (2019),
across different values for λ. The model variant is LABSE +CL (see §3); similar patterns are observed with another
multilingual SE in our evaluation (XMPNET). |D| = 5k.

2104



MBERT XLM-R LABSE XMPNET

Pair ↓ / Config −→ VECMAP +noCL
(1.0)

+noCL
(0.5)

+noCL
(1.0)

+noCL
(0.5)

+noCL
(1.0)

+noCL
(0.5)

+noCL
(1.0)

+noCL
(0.5)

EN–FI 42.2 1.1 30.9 1.4 21.4 46.8 51.6 47.7 53.4
EN–RU 39.7 5.2 30.1 2.5 21.3 53.5 52.3 57.5 55.2
EN–FR 64.8 11.3 52.8 2.2 29.6 68.5 74.2 64.7 73.9
FI–RU 33.0 4.3 25.3 3.2 20.7 38.4 41.6 42.7 45.6
FI–FR 46.7 3.6 35.3 0.3 22.8 43.1 52.6 42.9 53.2
RU–FR 48.2 8.6 37.9 0.8 25.3 52.2 57 52.3 58.4

Average 45.8 5.7 35.4 1.7 23.5 50.4 54.9 51.3 56.6

Table 10: Individual Spearman’s ρ correlation scores (×100) on the XLSIM task (Multi-SimLex) for a subset of
language pairs in our evaluation, with multilingual LMs and SEs used ‘off-the-shelf’ without contrastive fine-tuning
(§2). See §3 for the description of different model configurations/variants. |D| = 5k, with XLSIM test pairs
removed from the dictionary. The number in the parentheses denotes the value for λ (see §3).

MBERT XLM-R LABSE XMPNET

Pair ↓ / Config −→ VECMAP +noCL
(1.0)

+noCL
(0.5)

+noCL
(1.0)

+noCL
(0.5)

+noCL
(1.0)

+noCL
(0.5)

+noCL
(1.0)

+noCL
(0.5)

EN–FI 42.2 32.4 43.5 42.3 48 45.6 50.6 48.1 51.5
EN–RU 39.7 34.8 42.1 45.8 47.3 47.1 49.2 50.5 50.4
EN–FR 64.8 56.5 67.4 57.9 69.2 64 72 64.1 71.9
FI–RU 33.0 28.4 35.9 38.3 40.8 38.3 42.3 40.1 43.1
FI–FR 46.7 34.7 47.3 41.7 50.6 45.9 53.5 46.6 54.2
RU–FR 48.2 43.6 52.1 50.4 55.1 51.8 56.8 48.5 55.6

Average 45.8 38.4 48.1 46.1 51.8 48.8 54.1 49.6 54.5

Table 11: Individual Spearman’s ρ correlation scores (×100) on the XLSIM task (Multi-SimLex) for a subset of
language pairs in our evaluation, with model variants with contrastive fine-tuning (§2). |D| = 5k.

XMPNET +noCL

Pair ↓ / λ =−→ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1.0

EN–FI 42.2 45.2 48.2 50.7 52.6 53.4 53 52.2 47.7
EN–RU 39.7 43.1 46.6 49.9 52.9 55.2 56.7 57.5 57.5
EN–FR 64.8 67.6 70.1 72.2 73.5 73.9 73.2 71.7 64.7
FI–RU 33 36.1 39.3 42.5 44.7 45.6 45.5 45.4 42.7
FI–FR 46.7 49.2 51.5 53.1 53.6 53.2 51.5 49.6 42.9
RU–FR 48.2 51.1 53.8 56.2 57.7 58.4 58.1 57.2 52.3

Average 45.8 48.7 51.6 54.1 55.8 56.6 56.3 55.6 51.3

Table 12: Individual Spearman’s ρ correlation scores (×100) on the XLSIM task (Multi-SimLex) for a subset of
language pairs in our evaluation, across different values for λ. The model variant is XMPNET +noCL (see §3);
similar patterns are observed with another multilingual SE in our evaluation (LABSE). |D| = 5k.

XMPNET +CL

Pair ↓ / λ =−→ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1.0

EN–FI 42.2 44.2 46.4 48.6 50.4 51.5 51.8 51.3 48.1
EN–RU 39.7 41.6 43.9 46.3 48.6 50.4 51.6 52 50.5
EN–FR 64.8 66.9 69 70.7 71.8 71.9 71 69.5 64.1
FI–RU 33.0 35.1 37.5 39.9 41.9 43.1 43.5 43 40.1
FI–FR 46.7 48.9 51.2 53.1 54.2 54.2 53.3 51.7 46.6
RU–FR 48.2 50.1 52.1 53.8 55.2 55.6 55.1 53.8 48.5

Average 45.8 47.8 50 52.1 53.7 54.5 54.4 53.6 49.6

Table 13: Individual Spearman’s ρ correlation scores (×100) on the XLSIM task (Multi-SimLex) for a subset of
language pairs in our evaluation, across different values for λ. The model variant is XMPNET +CL (see §3); similar
patterns are observed with another multilingual SE in our evaluation (LABSE). |D| = 5k.

Name URL

MBERT huggingface.co/bert-base-multilingual-uncased
XLM-R huggingface.co/xlm-roberta-base
LABSE huggingface.co/sentence-transformers/LaBSE
XMPNET huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2

Table 14: URLs of the multilingual Transformer models used in this work.
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Abstract

NLP tasks are typically defined extensionally
through datasets containing example instanti-
ations (e.g., pairs of image i and text t), but
motivated intensionally through capabilities in-
voked in verbal descriptions of the task (e.g.,
“t is a description of i, for which the content
of i needs to be recognised and understood”).
We present Pento-DIARef, a diagnostic dataset
in a visual domain of puzzle pieces where re-
ferring expressions are generated by a well-
known symbolic algorithm (the “Incremental
Algorithm”), which itself is motivated by ap-
peal to a hypothesised capability (eliminating
distractors through application of Gricean max-
ims). Our question then is whether the exten-
sional description (the dataset) is sufficient for
a neural model to pick up the underlying regu-
larity and exhibit this capability given the sim-
ple task definition of producing expressions
from visual inputs. We find that a model sup-
ported by a vision detection step and a targeted
data generation scheme achieves an almost per-
fect BLEU@1 score and sentence accuracy,
whereas simpler baselines do not.

1 Introduction

Being able to effectively and efficiently refer to ob-
jects is a central component of human language
competence (van Deemter, 2016). The compu-
tational task of referring expression generation
(REG) goes beyond the production of image de-
scriptions (as in image captioning), in that it is a
uniquely identifying description that needs to be
produced, given a specific situation. In the formula-
tion of Krahmer and van Deemter (2012), the REG
task involves reasoning over all relevant objects in
a scene, in order to determine what would make
a description uniquely identifying. Additionally,
maxims of efficiency (Grice, 1967) predict that it is
a minimal natural language expression that should
be preferred. The Incremental Algorithm (IA) (Dale
and Reiter, 1995) is a well-known classic symbolic

Figure 1: An example board with a referring expres-
sion (b) as produced by the Incremental Algorithm (IA)
(minimal wrt. a preference order); and an unnecessarily
verbose reference (a) (that still is uniquely referring).
The reference target is highlighted with bounding box;
images regions separated by addition of lines.

algorithm that tries to realise these desiderata. For
example given a reference target and various dis-
tractors as in Figure 1 (an example of the domain
chosen in this paper (Pentomino, Golomb (1996);
Zarrieß et al. (2016); Kennington and Schlangen
(2017))), then the Incremental Algorithm (IA) pro-
duces “Take the X”, achieving the desired uniquely
identifying reference by mentioning only the shape
and not also color and position.

Can such a reference strategy be learned by neu-
ral generation models from visual inputs alone?
This is a question that is typically not systemati-
cally challenged in language generation from im-
ages (Kazemzadeh et al., 2014; Yu et al., 2016;
Mao et al., 2016; Plummer et al., 2015; Luo and
Shakhnarovich, 2017), as in natural scenes (such
as in the RefCOCO dataset (Yu et al., 2016)), it
has been shown that descriptions can be produced
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Diagnostic Dataset Task Input Condition Output Generalizability Testing
Wu et al. (2021) Nav. Symb. State Text (Command) Text (Actions) Words, Phrases, Action Length
Liu et al. (2019) REC Image Text (RE) BBox Color-Shapes
Pento-DIARef (Ours) REG Image BBox Text (IA-RE) Color-Shapes, Positions, IA-REs

Table 1: The most relevant datasets in comparison to Pento-DIARef. In contrast to Liu et al. (2019) we study the task
of REG (which avoids models to exploit language inputs) and add generalization tests for the output expressions.

based on the recognition of only parts of the image
(Agrawal et al., 2016); our dataset is designed to
make this impossible. Schlangen (2021) observed
that in typical settings in the field of natural lan-
guage processing, the connection between an un-
derlying natural language capability and a learned
model is only an indirect one. It rests on how well
the dataset from which the model was induced does
indeed exemplify the assumed underlying task—of
which typically only a verbal description is given—
and in turn on the extent to which the task repre-
sents the capability.

In this work we study how a intensionally de-
fined task (in the distinction of Schlangen (2021))
for which a verbal and theoretically motivated de-
scription is given (through a symbolic algorithm)
can be learned from its extensional exemplification.
Our contention is that the use of synthetic data
(Johnson et al., 2017; Liu et al., 2019; Lake and
Baroni, 2018; Ruis et al., 2020; Wu et al., 2021)
offers the opportunity to strengthen the link, inso-
far as guarantees can be given on the exemplifi-
cation relation. More specifically, we choose the
Incremental Algorithm (Dale and Reiter, 1995) for
the data generation process, which itself comes
with a motivation through recourse to underlying
fundamental conversational capabilities (appeal to
Gricean maxims, Grice (1967)). Our contributions
are as follows:1

• We create a novel synthetic dataset, Pento-
DIARef, of examples that pairs visual scenes
with generated referring expressions;

• examine two variants of the dataset, repre-
senting two different ways to exemplify the
underlying task;

• and evaluate an LSTM-based baseline (Mao
et al., 2016), a transformer (Vaswani et al.,
2017) and a modified version with region em-
beddings (Tan and Bansal, 2019) on them.

2 Related Work
Compositional Reasoning. Lake and Baroni
(2018) introduced a systematic benchmark to test

1The source code and datasets are made publicly available
at https://github.com/clp-research/pento-diaref.

the generalization capabilities of recurrent neural
networks through the use of compositional splits
and found that these models fail “spectacularly”.
Ruis et al. (2020) extended the task of mapping text
commands to actions (Navigation) by conditioning
the learner additionally on a symbolic world state.
Later (Wu et al., 2021) provided a curated dataset
along with new dimensions for generalizability test-
ing. Our work follows the idea of generalization
testing through compositional datasets in language
and vision settings where training examples are
composed in such a way that the models are ex-
posed towards all property values of objects, but
not to all the possible combinations of them, so
that they can be tested on unseen combinations. In
contrast to their work we use images instead of
symbolic world states as the input.

Diagnostic Datasets. For the generation of the
synthetic data we took inspiration from Johnson
et al. (2017) who created a “diagnostic dataset” for
visual question answering to test for model lim-
itations. They draw 3D objects on a 2D plane
and systematically use templates to create ques-
tions about the objects to avoid biases that occur in
“common” datasets. Later Liu et al. (2019) convert
the questions to referring expressions to test sys-
tematically for referring expression comprehension
(REC). They claim that the models’ performance
on the dataset proves that they “work as intended”.
In this work we study this aspect as well but on
the mirroring task of REG which avoids models to
exploit hints from the language inputs (Table 1).

Program Learners As a related idea Pi et al.
(2022) suggest to train language models on text
outputs of “executable programs” (which could
be a symbolic algorithm). They focus on the pre-
training paradigm and aim to induce reasoning ca-
pabilities into language models to enhance their
usefulness for downstream tasks. Our work is more
specifically focused on the question whether a neu-
ral model is able to learn the underlying capabili-
ties that are exhibited by a symbolic algorithm in
a vision and language domain. Same et al. (2022)
showed that such rule-based algorithms are still a
useful approach for REG in natural settings.
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3 Pento-DIARef Task and Dataset

We present a Diagnostic dataset of IA References in
a Pentomino domain (Pento-DIARef) that ties ex-
tensional and intensional definitions more closely
together, insofar as the latter is the generative pro-
cess creating the former (Schlangen, 2021). In this
chapter we describe the task (§3.1) and how it is
tied to the Incremental Algorithm (§3.2) via the
generation process (§3.3) and present our composi-
tional splits (§3.6) for generalization testing.

3.1 Task Description

Given as input an xi = (vi, bi), representing a Pen-
tomino board vi as in Figure 1 and a bounding
box bi (indicating the target piece), a model f has
to produce a referring expression yi (as it would
be generated by IA) as shown in Figure 2. For-
mally, this can be described either as a classifica-
tion task argmaxyiP (yi|xi) when yi is considered
a whole sentence or more generally as a condi-
tional language modeling task P (wt|w<t, xi) with
yi = {w0, ..., wT } where T is the length of the
expression. We present models for both of these
interpretations in Section 5.1.

3.2 The Incremental Algorithm (IA)

The Algorithm 1 , in the formulation of (Krahmer
and van Deemter, 2012), is supposed to find the
properties that uniquely identify an object among
others given a preference over properties. To ac-
complish this the algorithm is given the property
values P of distractors in M and of a referent r.
Then the algorithm excludes distractors in several
iterations until either M is empty or every property
of r has been tested. During the exclusion process
the algorithm computes the set of distractors that
do not share a given property with the referent and

Algorithm 1 The IA on symbolic properties as
based on the formulation by van Deemter (2016)

Require: A set of distractors M , a set of property
values P of a referent r and a linear preference
order O over the property values P

1: D ← ∅
2: for P in O(P) do
3: E ← {m ∈M : ¬P (m)}
4: if E ̸= ∅ then
5: Add P to D
6: Remove E from M

7: return D

Figure 2: The general generation process for our syn-
thetic datasets as defined by the task.

stores the property in D. These properties in D
are the ones that distinguish the referent from the
others and thus will be returned.

The algorithm has a meta-parameter O, indi-
cating the preference order, which determines the
order in which the properties of the referent are
tested against the distractors. In our domain, for
example, when color is the most preferred property,
the algorithm might return BLUE, if this property
already excludes all distractors. When shape is
the preferred property and all distractors do not
share the shape T with the referent, T would be
returned. Hence even when the referent and con-
text are the same, different preference orders might
lead to different expressions (Krahmer et al., 2012).
We choose the preference order of color, shape and
position for the algorithm; we leave experimenting
with other orders to future work.

3.3 Data Generation

The inputs xi for the task consist of two parts: the
visual representation of the scene vi and a bound-
ing box around the target piece bi. For the auto-
matic generation of these inputs we make use of
symbolic board representations Si = {s0, ..., sN}
where N is the number of pieces on a board and si
is a tuple of color, shape and position values e.g.
(ORANGE,X,TOP). We define a mapping function
V(Si) → vi ∈ RW×H×C for rendering a board
and sample uniformly from the symbols to select a
target piece bi ∼ Si (for which we know the bound-
ing box via V). For simplicity, we use bi to refer to
the target bounding box in the visual domain or the
target piece in the symbolic domain respectively.

As the ground-truth expressions we define yi =
{w0, ..., wT } where T is the length of the expres-
sion and wi is a word in the vocabulary. Again
we make use of the symbolic piece representations
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(the same as above) to automatically generate the
ground-truth by using the Incremental Algorithm.
We apply the IA on the symbolic piece representa-
tions Si and the target symbol bi to select a set of
property values Di = IA(Si, bi) from the target bi
(Algorithm 1). These property values Di are the
shape, color or position values that are supposed
to distinguish the target piece from other ones on
the board. Finally, we define a mapping function
T (Di) → yi to produce the ground-truth expres-
sion by filling the property values into pre-defined
templates. The result of this process is a pairing of
image and text, as you would find it for example in
a captioning dataset (Johnson et al., 2016), albeit
not collected from annotators but rather syntheti-
cally generated. In the following, we give more
information on V and T .

3.4 V: Rendering the Pentomino boards
The symbolic piece representations in Si are ren-
dered as visual inputs vi. We implement the render-
ing function V(Si) that paints the symbolic pieces
according to their shape and color values with black
borders onto a board of 30 × 30 same-sized tiles.
This underlying grid is projected onto 224 × 224
pixels. The exact tile coordinates of the pieces are
determined by dividing the board into 9 distinct
areas: one for each piece position value. To ensure
that all pieces fit on the board, we allow maximal
2 pieces in a single area. We rotate and place the
pieces one after the other into these areas by uni-
formly sampling tile coordinates that fall into the
area that aligns to the piece position value. If two
pieces collide during the placement, then we sam-
ple the coordinates again until they fit next to each
other.

3.5 T : Surface realization of IA outputs
The IA returns properties Di of a target piece that
distinguish it from other pieces. This list of prop-
erties is then transformed into a natural language
expression. We define a mapping function T that
inserts the property values into one of 7 different
templates (Appendix C), for example “Take the
[color] piece”. We call these templates expression
types. The mapping function selects the template
based on the number of properties and the prefer-
ence order: color, shape and then position. The
word order in the templates is aligned with the pref-
erence order. We only use this order here to focus
on the semantic correctness of the generation and
leave mixing in additional variants like “Take the

Figure 3: The shape and color combinations in grey are
never seen during training, but only during evaluation.

[shape] that is [color] in [position]” to future work.
Altogether the property values and the templates
lead to a vocabulary of 38 words—an extremely
small vocabulary, which however as we are not
targeting lexical complexity here is not a problem.

3.6 Compositional Generalization
We make use of a synthetic dataset to guarantee
the independence of properties and thus control,
among other things, the compositionality of the
learning task. There are 12 conventional names
for the shapes which are roughly inspired by visual
similarity to letters like F, T, Y etc. (Golomb, 1996).
We sidestep the question of producing natural de-
scriptions (“the one that looks like a boomerang”)
for the shapes and assume that these letter names
can be produced. Furthermore, the pieces can ap-
pear in one of 12 different colors and the position
can be approximated with 9 different spatial expres-
sions (Appendix A.1, A.2). The permutation of col-
ors, shapes and positions leads to 12 ·12 ·9 = 1296
symbolic pieces to choose from for the composi-
tion of boards and the selection of targets. Now we
create the training data from only |Strain| = 840 of
the overall 1296 possible piece symbols and leave
the remaining ones as a “holdout”. These holdout
pieces are specifically used to test the models’ gen-
eralisation along three different dimensions, as in
the following.

Piece appearances (ho-color, 756 examples).
The target piece shapes are combined with new
colors with respect to the training set (Figure 3).
For each of the 12 shapes we hold out 2 colors
(val,test). Then we generate for each shape-color
combination one board for each position and ex-
pression type.
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Figure 4: In the NAIVE dataset the synthesized examples
highly prefer the generation of the two templates that
only mention either the (color) or (color,shape) of a tar-
get piece. Some templates appear almost never [(shape),
(shape,pos)] or indeed never [(pos)].

Piece positions (ho-pos, 840 examples). In these
examples the target pieces are shown at new posi-
tions with respect to the training set. For each of the
pieces we hold out 2 positions (val,test). Then we
generate for the holdout combinations one board
for each expression type.

Expression types (ho-uts, 840 examples). We
test that expression types are not attributed to spe-
cific pieces and show them in new contexts that
leads to new expressions types wrt. the training set.
For each of the pieces we hold out 2 expression
types (val,test) and create corresponding boards.

4 What data is necessary to learn the IA?

The learned models have to generate an expression
with exactly those property values (not more and
not less) that the IA would produce. We hypothe-
sise that learning the iterative set logic process and
the preference order (either implicitly or explic-
itly) from text and visual inputs alone constitutes a
challenging task for them, especially because given
12 shapes, 12 colors and 9 (discrete) positions for
a piece (minus the combinations we excluded for
holdout), then there are already around 20 billion
possibilities to produce a board with 4 pieces on it.

Thus we make use of the fact that the generation
process is fully under our control and directly ask
what kind of data distribution is necessary to learn
this task. We experiment with two different dataset
variants: The first variant (§4.1) relies on an un-
constrained sampling of symbolic pieces for each
board while the second variant (§4.2) is designed
to be more informative through a curated selection
process.

Figure 5: The DIDACT dataset is fairly balanced with
respect to the expressions types. The figure shows the
average count of expression types for each target piece
after generating with ETOS. The dashed line indicate
the distribution without the extra target selection.

4.1 NAIVE: Unconstrained Sampling

This process is meant to model the “naive” cre-
ation of a board by randomly sampling and placing
pieces, as a person might do when setting up a
board. We create these examples by randomly fill-
ing boards with pieces: First, we decide on the
number of pieces that go on the board by sampling
N from a uniform distribution over the integers
4–10. Then we sample uniformly with replacement
{s0, ..., sN} from the 840 symbolic pieces that are
available for training. From the resulting symbolic
board Si we choose one piece, again uniform ran-
dom, as the target piece bi0 . Finally, we generate
the input pairing (xi, yi) as described above.

We add one further constraint: We re-use the
visual board vi and pair it with 3 other target pieces
{bi1 , bi2 , bi3} chosen from Si without replacement,
so that a model cannot perform well by memoriz-
ing the (xi, yi) pairings alone, because then there
are 4 identical visual boards with different targets
that lead to (most likely) different expressions. This
leads to 4 examples (xj , yj) per visual board with
xj = (vi0 , bj). We repeat this procedure 42, 000
times which leads to 148, 000 training examples
in total. The quantitative evaluation shown in Fig-
ure 4 reveals that here a model is most of the times
confronted with expressions that only mention the
color value or the color and shape of the target
piece. The orange bar indicates that there are on
average 100 examples (board and target) for each
of the possible 840 target pieces where the color
alone uniquely identifies the piece. So for around
84K samples in this dataset, a sentence like “Take
the [blue, red, green,...] piece” would be correct.
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4.2 DIDACT: Expression Oriented Sampling

The goal of the alternative sampling process is to
ensure that examples of all output types are repre-
sented in the dataset, in a balanced way. We assume
that this results in a more “didactic” dataset from
which the underlying relation between input and
desired output can more easily be induced. The
idea is to directly choose the distractors of a tar-
get piece in such a way that the wanted expression
type has to be produced. For example, when the
target piece is (ORANGE, X, TOP) and the expres-
sion type is supposed to be Take the [shape], then
we construct a set of distractors where some share
color and position, but none is of shape X. We call
this approach expression type oriented sampling
(ETOS) (details in Appendix B.1). This method al-
lows us to confront the learner with all the possible
expressions about the same amount of times. Thus
each target piece is seen on 50 different boards
resulting in 840 · 50 = 42, 000 boards (Table 2).

Yet again we avoid that (xi, yi) pairs can be sim-
ply memorized and select as before 3 other pieces
as the targets {bi1 , bi2 , bi3} which leads to 148, 000
examples in total. The consequences of the ex-
tra target selection within this method are twofold:
Firstly, the distribution is a bit shifted towards the
NAIVE approach as shown in Figure 5 because
we randomly select the target, and more impor-
tantly there might be now expressions produced
that were actually intended for the holdout (ho-uts).
We remove such “unintended” examples from the
training set so that there are 128, 526 examples for
training (Table 3). Whereby the guarantees we can
make for this “DIDACTic” dataset are that:

Target pieces appear with different distractors.
Each target piece symbol for training appears on
average in 153 contexts as a target.

On the same board occur different target pieces.
We choose 3 additional pieces as targets apart from
the one for which the board was initially intended.

Target pieces appear also on other boards.
Each symbolic piece appears on average in 1, 075
contexts, which is more often than as a target.

5 Learning the Incremental Algorithm

Our goal in producing the collection of scenes was
to ensure that a model f must indeed be based on
features of the xi that we care about (that is, which
figure in the desired capability), namely the need
to indeed compare the perceivable target piece and

Bords Boards
Dataset / Num. of TPS pET per pET Total
NAIVE 840 7 - 42,000
DIDACT 840 5 10 42,000
ho-uts val 840 1 1 840
ho-uts test 840 1 1 840
ho-color val 108 7 1 756
ho-color test 108 7 1 756
ho-pos val 120 7 1 840
ho-pos test 120 7 1 840

Table 2: The number of target piece symbols (TPS) and
possible expression types (pET) per TPS for the NAIVE,
DIDACT and holdout datasets. Although the number of
the resulting NAIVE and DIDACT boards is with 42, 000
the same, the boards are generated with different tech-
niques: either with random uniform sampling (NAIVE;
the number of boards per pET and TPS is not controlled
for) or expression type oriented sampling (DIDACT; 10
boards for each pET and TPS).

NAIVE dataset DIDACT dataset
Number of Boards 42,000 42,000
TPS per Board 4 4
Number of Samples 168,000 168,000
Validation 10,000 10,000
Testing 10,000 10,000
Training 148,000 148,000
Filtered 128,526 -

Table 3: The number of samples for each dataset and
training split. For each board we chose 4 target piece
symbols (TPS) (incl. the originally intended target piece
in the DIDACT dataset) resulting into 168, 000 samples
for both datasets. From this overall samples we choose
10, 000 for validation and testing. In addition, we ex-
clude the training samples of the DIDACT for which an
expression is to be produced that should reserved for the
ho-uts testing. This is not done for the NAIVE dataset
because here we train on possibly all expression types.

distractor properties. The IA (§3.2) achieves this by
a hard-coded loop structure over symbols which (a)
compares the objects (b) sticks to a preference or-
der (c) preemptively stops when all distractors are
excluded and (d) outputs the uniquely identifying
properties (or all properties in ambiguous cases).

In the following, we present our neural models
(§5.1) and the conducted experiments (§5.3) to test
if neural language generators are indeed able to
acquire such a “programatic” capability by the sim-
ple task definition of producing expressions from
visual inputs. The generation models f will be
trained on the basis of (xi, yi) pairs only. We train
two common network architectures for this task of
which one is an LSTM-based approach to REG pro-
posed by Mao et al. (2016) for natural scenes and
the other is a transformer (Vaswani et al., 2017). In
addition, we propose a variant for processing the
inputs along with a simple classifier-based baseline.
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Figure 6: The encoding of the visual scene, target piece
and its attributes as proposed by Mao et al. (2016). The
dashed lines indicate the transformers’ information flow.

5.1 Models

LSTM. Mao et al. (2016), who present a model
of REG in natural scene images, embed the scenes
and the referent within them with a pre-trained
VGG (Liu and Deng, 2015). We follow their pro-
cedure but use the 512 dimensional embeddings
after global average pooling of a ResNet-34 (He
et al., 2016) and fine-tune all of its layers because
our images look very different to the ones from the
pre-training on ImageNet (Deng et al., 2009). We
cut out the target piece using the bounding box in-
formation. Then the piece snippet is dilated with 5
context pixels and up-scaled to the size of the board
image. We additionally randomly shift the snippet
by 0-5% of the pixels in either direction horizon-
tally or vertically (fill-color is white). The target
piece and board image embeddings are then con-
catenated together with five location and size fea-
tures of the target. The resulting 1029-dimensional
feature vector is fed to an LSTM at each time step
to condition the language production (using greedy
decoding). We reduce the word embedding dims
to 512 because our vocabulary is very small and
apply an Adam optimizer (Kingma and Ba, 2015).

Transformer. For comparison with Mao et al.
(2016) we resize, augment and encode the target
piece and visual board with a ResNet-34 in the
same way as described before. Then the image
embeddings are fed into the transformer (Vaswani
et al., 2017) individually (not concatenated) as “vi-
sual words” together with the target piece attributes
embedding as shown in Figure 6 to compute an
intermediate representation of the inputs altogether.
This “memory” embedding is then fed into the
decoder to generate the RE using masked self-
attention as in other machine translation tasks. For

Figure 7: An exemplary visual input sequence for the
Transformer+VSE model. The target is highlighted with
a red and the distractors with a green border.

the variable length expressions we use a padding
symbol and ignore prediction at padded positions
during loss computation. We reduced the origi-
nal capacity of the model to avoid overfitting and
applied a learning rate scheduling strategy as de-
scribed by Vaswani et al. (2017), using an AdamW
optimizer (Loshchilov and Hutter, 2019).

Transformer+VSE. We assume that the trans-
former should be particularly capable of generating
IA-like expressions because self-attention might al-
low it to learn the required piece-wise comparison
operation. The self-attention mechanism has al-
ready been proven powerful for other image-related
tasks (Li et al., 2020; Zhang et al., 2021; Jaegle
et al., 2021). Therefore we follow Tan and Bansal
(2019) and implement a visual sequence encoding
(VSE) mechanism. For this we cut out each piece
on the board to produce a sequence of piece snip-
pets as shown in Figure 7 and project the visual
features onto the models’ input dimensions f̂j and
add region embeddings p̂j to them that contain the
snippets size and location information:2

f̂j = LayerNorm(WF fj + bF ) (1)

p̂j = LayerNorm(WP pj + bP ) (2)

vj = (f̂j + p̂j + t̂j)/3 (3)

To let a model distinguish between target and
distractor “words” in the input sequence we add a
type embedding t̂j , similar to word embeddings,
and normalize. Furthermore, we have a variable
amount of pieces on the board (between 4 and 10),
but a transformer model assumes a fixed-size input
sequence (per batch, during training). Thus we
indicate “padding” pieces with a padding index in
the sequence as implemented in PyTorch (Paszke
et al., 2019) and use images with all zeros for them.

2bF , bP are bias terms of the linear projections
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Model Data BLEU@1 (in %) ↑ Sentence-wise Acc. (in %) ↑
in-dist. ho-color ho-pos ho-uts in-dist. ho-color ho-pos ho-uts

LSTM (Mao et al., 2016) NAIVE 38 33 33 34 24 17 18 18
LSTM (Mao et al., 2016) DIDACT 64 62 62 51 31 24 24 4
Transformer NAIVE 27 23 23 23 21 14 14 15
Transformer DIDACT 79 77 76 76 53 53 51 33
Transformer+VSE NAIVE 59 53 57 54 29 22 22 25
Transformer+VSE DIDACT 97 97 97 97 91 91 91 92
Classifier+VSE NAIVE 32 25 28 28 27 15 19 22
Classifier+VSE DIDACT 91 79 77 60 76 40 44 14

Table 4: The match rates for unigrams (BLEU@1) and whole sentences (SentA) on the test splits. The in-dist.
samples are from the DIDACT dataset because these are more balanced with respect to the expression types.

Classifier+VSE. The representations of the VSE

might already capture enough information to per-
form the task. Therefore we test this assumption
by training a simple linear sentence classifier just
on top of the concatenated embeddings. The clas-
sifier has to predict the correct sentence out of the
1,689 possible ones. This framing is similar to that
often used in visual question answering (Hudson
and Manning, 2019), where the possible answers
are framed as classes in a classification task.

5.2 Metrics

We use the well known and commonly reported
precision-based BLEU@1 metric for evaluation
because this is simple metric for word matching
when having only a single reference. In addition,
we compute the sentence-wise accuracy (SentA)
that indicates how often a prediction does exactly
match the single reference so that the order of the
words matters. As an example in Appendix E the
model erroneously produces “Take the i top in the
top left”. We ignore the starting words “Take the”
for the evaluation when they occur in both the pre-
diction and the ground-truth, because then they are
uninformative about the real performance.

5.3 Experiments

We perform separate training runs on both a NAIVE

(§4.1) and DIDACT (§4.2) dataset for a maximum
of 100 epochs and perform 10 validation runs dur-
ing an epoch. Over all validation runs we save the
three best performing models with respect to the
BLEU@1 score using greedy decoding. We stop
the training when the model does not improve any-
more after 20 validation runs. For evaluation we
choose the model with more epochs if the scores
are the same. The training objective is to minimize
the cross-entropy between the predicted and the
ground-truth expression given by the Incremental
Algorithm (IA).

6 Results and Discussion

NAIVE versus DIDACT. The results in Table 4
show that even the worst performing model trained
on the DIDACT dataset (LSTM 31% in-dist) is still
performing better than the best performing model
trained on the NAIVE dataset (Transformer+VSE

29% in-dist) over all SentA scores (except ho-uts).
This indicates that a well controlled data genera-
tion procedure is essential to perform well on this
task, or conversely, that none of the learning al-
gorithms can guess at the underlying minimality
constraint from the unconstrained data alone. The
SentA scores for the NAIVE-based models indicate
that these often perform only about by chance (pick-
ing 1 of 7 templates leads to a score of 14%) on the
compositional splits (highest 25% and avg. 18%).
These splits contain all expression types in equal
amounts and we find that these NAIVE models tend
to produce only a few expression types.

Input triplets versus VSE. The results show that
for both datasets a significant increase in perfor-
mance is achieved by using VSE which includes
a vision detection step. For the Transformer+VSE

model the BLEU@1 scores double from 27% to
59% on the in-distribution test data. The simple
Classifier+VSE model performs similarly well as
the other models without VSE. This is reasonable
because with VSE the visual encoder must not op-
erate on two different image resolutions anymore:
one for the (up-scaled) target piece and one for
the whole context image. The VSE detection step
“frees” capacities that would be necessary to cor-
rectly identify the content of the context image.

Classifier+VSE versus others. Almost all mod-
els struggle to perform well on both the compo-
sitional (<54% SentA) and the in-dist. test data
(<77% SentA). Thus the Classifier+VSE estab-
lishes a relative high baseline on most of the test
sets (76%/40%/44%) but only performs about by
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chance (14%) at the ho-uts data (which contains
unseen expression types). The Transformer+VSE

model is the only one that exceeds the high Clas-
sifier+VSE baseline by achieving almost perfect
scores (91% SentA) over all categories when
trained on the DIDACT data.

Effect of individual input features. We perform
an ablation study to measure the impact of partic-
ular input features on the SentA scores. We do
so by replacing the individual parts of the visual
sequence encoding of our best model with noise
sampled from a standard gaussian. We see that
the visual embeddings are essential to generate the
correct referring expression as the sentence-wise
accuracy drops to 1% (Table 5). A similar per-
formance drop is seen for the type embeddings
where the accuracy is only 1-2%. A different im-
pact is measured, when the region embeddings are
replaced with random noise; here the accuracy is
still around 40-44%. This is reasonable, because in
only 4 of the 7 expression templates, the position
(and therefore the region embeddings) are relevant.

Effect of DIDACTic training. We have a closer
look on the tendencies of the models to produce
certain expression types on the test data. For this
we applied a parser to the predicted expressions of
the models and counted the expression type occur-
rences. This provides insights, if a model tends to
“overfit” on specific expression types. For exam-
ple as the surface structure of the color expression
types is seen in majority of cases during training, a
model might simply try to produce Take the [color]
piece and insert the referent color. We do not check
for the correctness of the produced expressions
here. The measures show that the LSTM model
trained on the NAIVE dataset has converged on a
behavior that produces in the majority of cases the
color or color+shape expression type (Figure 8).
This is reasonable as this is the majority class in the
random sampling data. Only the DIDACT dataset
let’s them pick up on other expression types more
regularly. The Transformer+VSE produces on the
DIDACT test dataset rather balanced amounts of ex-
pression types (as these are given in the test data).

7 Conclusion and Future Work

In this work we presented the diagnostic dataset
Pento-DIARef to study the question whether neural
models can learn the RE production strategy of the
Incremental Algorithm (IA). A symbolic algorithm

Sentence-wise Acc. (in %) ↑
Transformer+VSE in-d. ho-color ho-pos ho-uts
w/o visual emb. 1 1 1 1
w/o type emb. 2 1 2 2
w/o region emb. 44 42 41 40
full model 91 91 91 92

Table 5: The ablation study performed on the test dataset
shows that the visual and type embeddings contain the
crucial information for the RE generation.

Figure 8: Produced expression types on the in-dist. split.

that is motivated by the appeal to the hypothesises
capability of “elimination of distractors” (through
the application of Gricean maxims).

We found through the better control on scene
complexity that an unconstrained sampling method
(NAIVE) does not provide enough information for
a neural model to pick up on the underlying regu-
larity and to exhibit the desired capability, while an
output oriented sampling process (DIDACT) does.
This indicates that the generalizability in this task
and domain is not given by the capabilities of the
learner alone but is strongly determined by the
learning examples. We evaluated a classic LSTM-
based model and a modern transformer (that have
to process two different image resolutions) and ob-
served that these still struggle even on the more
informative dataset (DIDACT). We proposed a mod-
ification of the input processing that comes with a
detection step (VSE) and observed that this leads
to a strong baseline and allows the transformer to
converge. This indicates that object detection is an
essential requirement to perform well on this task.

In future work we want to evaluate more models
on our diagnostic dataset to find potential weak-
nesses. An interesting question is whether a PLM
(Brown et al., 2020) might have picked up such
Gricean constraints and would be able to recognise
their desirability from being prompted with only
a few examples. We also plan to explore to what
extent our best model is applicable to more realistic
settings following Sim-to-Real approaches (Peng
et al., 2018).
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Limitations

Limits on visual variability and naturalness.
The Pentomino domain can only serve as an ab-
straction for referring expression generations in
visual domains. The amount of objects is limited
to 12 different shapes and the number of colors is
reduced to 12 as well. The positions are chosen
to be discrete and absolute while real-world ref-
erences might include spatial relations which we
leave for further work. Furthermore, the pieces
show no texture or naturalness, but are drawn with
a solid color fill and a simple black border. Various
lightning conditions that might impact a vision de-
tection system are avoided. We left the evaluation
of the proposed models on more realistic dataset
for further work.

Limits on variability of the referring expressions.
We only explored expressions that are generate by
the Incremental Algorithm with one fix preference
order of color, shape and position although we are
aware of the fact that preference order might vary
between subjects (Krahmer et al., 2012). Moreover,
we choose a fix property value order (color is men-
tioned before shape is mentioned before position)
for the realisation of the template’s surface struc-
ture and left the exploration for a higher variability
to further work.

Limits possible claims about human capabilities.
As this work is on synthetic dataset created by an
algorithm, any claims about human capabilities,
and about a model’s ability to acquire those, are
only made indirectly, via the quality of the original
algorithm.
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A Experiment details

We trained each of our models on a single GeForce
GTX 1080 Ti (11GB).

A.1 The vocabulary

The vocabulary includes the following 38 words:

• 12 shapes: F, I, L, N, P, T, U, V, W, X, Y, Z

• 12 colors: red, orange, yellow, green, blue,
cyan, purple, brown, grey, pink, olive green,
navy blue

• 6 position words: left, right, top, bottom, cen-
ter (which are combined to e.g., right center
or top left)

• 4 template words: Take, the, piece, at

• 4 special words: <s>, <e>, <pad>, <unk>

A.2 The piece colors (RGB-values)

Name HEX RGB
red #ff0000 (255, 0, 0)
orange #ffa500 (255, 165, 0)
yellow #ffff00 (255, 255, 0)
green #008000 (0, 128, 0)
blue #0000ff (0, 0, 255)
cyan #00ffff (0, 255, 255)
purple #800080 (128, 0, 128)
brown #8b4513 (139, 69, 19)
grey #808080 (128, 128, 128)
pink #ffc0cb (255, 192, 203)
olive green #808000 (128, 128, 0)
navy blue #000080 (0, 0, 128)

Table 6: The colors for the Pentomino pieces. We also
have 2 two-word colors: olive green and navy blue.

A.3 Uniform distribution of piece properties

Figure 9: The occurrences of property values of target
pieces in the DIDACT training data are almost uniform.

Our expression type oriented sampling strategy
achieves an almost uniform distribution of piece
color, shapes and positions (even rotations) as
shown in Figure 9. We ignore the rotation property,
but apply it to make the task harder. The model has
to become invariant to the rotation.
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B Data Generation

B.1 DIDACT dataset generation details
To construct this data, we iterate over all possible
training symbols in Strain and set them as the tar-
get piece bi directly (Table 2). Then we sample a
symbolic board Si (that includes the target) from
the set of possible symbolic boards that lead to a
wanted expression type ui. For this we define the
generator function G(ui, bi) that finds all possible
symbolic boards that will be mapped by T so that
{Sui |T (IA(Sui , bi)) ∈ Y(ui)} where Y(ui) is the
collection of expressions that are represented by
the template ui, for example “Take the [red, blue,
green,...] piece”. In a sense G is the inverse of T .

This method allows us to confront the learner
with all the possible expressions about the same
amount of times. We perform the example gen-
eration 10 times for each target piece and the ac-
cording 5 training expression types (see §3.6 for
holdouts). Finally, we generate the input pairing
(xi, yi) as described in §3.1. Thus each target
piece is seen on 50 different boards resulting in
840 · 50 = 42, 000 boards. Yet again we avoid that
(xi, yi) pairs can be learnt by heart and select as
before 3 other pieces as the targets {bi1 , bi2 , bi3}
which leads to 148, 000 samples in total of which
we filter the unintended ones (Table 3).

B.2 Holdout generation details
For the ho-color and ho-pos splits we additionally
allow to choose distractors from the 840 symbolic
pieces of the training split, because otherwise the
distractor set of possible piece might become empty
e.g. for the ho-pos split we have the target pieces
only on a subset of possible positions, but need to
place distractors in additional positions to produce
all expression types.

C Expression Types

There are 3 expression types that are used when
only a single property value of the target piece is
returned by the Incremental Algorithm (IA):

• Take the [color] piece

• Take the [shape]

• Take the piece at [position]

Then there are 3 expression types that are selected
when two properties are returned:

• Take the [color] [shape]

• Take the [color] piece at [position]

• Take the [shape] at [position]

And finally there is one expression type that lists
all property values to identify a target piece:

• Take the [color] [shape] at [position]

In the following we exemplify the generated
boards for each of the expression types.

C.1 Take the [color] piece

Figure 10: A sample board with the target piece
(T,blue,center) for this expression type.

Mention the color excludes all. We add dis-
tractors with any shape or position, but a different
color.

C.2 Take the [shape]

Figure 11: A sample board with the target piece
(T,blue,center) for this expression type.

Mention the color does not exclude any. Mention
the shape excludes all. We add distractors with the
same color, but different shape and at any position.
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C.3 Take the piece at [position]

Figure 12: A sample board with the target piece
(T,blue,center) for this expression type.

Mention the color does not exclude any. Men-
tion the shape does not exclude any. Mention the
position excludes all. We add distractors with the
same color and shape, but at a different position.

C.3.1 Take the [color] [shape]

Figure 13: A sample board with the target piece
(T,blue,center) for this expression type.

Mention the color excludes some, but not all.
Mention the shape excludes the rest. We add some
distractors with the same color (but different shape)
and some distractors with the same shape (but dif-
ferent color) at any position.

C.3.2 Take the [color] piece at [position]

Figure 14: A sample board with the target piece
(T,blue,center) for this expression type.

Mention the color excludes some, but not all.
Mention the shape does not exclude any. Mention
the position excludes the rest. We add some distrac-
tors with the same color (but different position) and
some with the same position (but different color)
and the same shape.

C.3.3 Take the [shape] at [position]

Figure 15: A sample board with the target piece
(T,blue,center) for this expression type.

Mention the color does not exclude any. Mention
the shape excludes some, but not all. Mention the
position excludes the rest. We add distractors with
the same color and some with the same shape (but
different position) and some with the same position
(but different shape).
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C.3.4 Take the [color] [shape] at [position]

Figure 16: A sample board with the target piece
(T,blue,center) for this expression type.

Mention the color excludes some, but not all.
Mention the shape excludes some, but not all. Men-
tion the position excludes the rest. We add one
distractor that has the same color and shape (but
a differen position) and one distractor that has the
same color (but a different shape and position) and
any other distractors. This requires at least 3 dis-
tractors.

D Model Details

D.1 LSTM

Parameters: 53, 201, 327 (127 MB)
GPU RAM: 3, 423 MiB (Batch 24; VE)

lstm_hidden_size 1024
word_embedding_dim 512
visual_embedding_dim 512
dropout 0.5
lr 0.0003
l2 0.0001
gradient_clip_val 10

Table 7: LSTM hyperparameters

D.2 Classifier

Classes: 1, 689
Parameters: 30, 234, 718 (120 MB)
GPU RAM: 11, 063 MiB (Batch 24; VSE)

d_model 512
visual_embedding_dim 512
lr 0.001
l2 0.01
layer_norm 0.00001
gradient_clip_val 10

Table 8: Linear model hyperparameters

D.3 Transformer
Parameters: 37, 402, 090 (149 MB)
GPU RAM: 10, 871 MiB (Batch 24; VSE)

d_model 512
word_embedding_dim 512
visual_embedding_dim 512
nhead 4
num_encoder_layers 3
num_decoder_layers 3
dim_feedforward 1024
dropout 0.2
lr_initial d_model−0.5

l2 0.0001
layer_norm 0.00001
gradient_clip_val 10

Table 9: Transformer hyperparameters

E Error Analysis

Our best Transformer+VSE model predicts 1, 119
of 12, 436 evaluation expressions wrong meaning
that the prediction does not match the reference per-
fectly. Here 425 errors (213 data, 77 ho-pos, 65 ho-
color, 70 ho-uts) are expression predictions where
the target piece is the one for which the board was
initially designed for and 694 (all data) are cases
where we picked an additional target randomly.

E.1 First-class errors

Error types color shape pos ungram.
data 4 5 180 24
ho-color 2 13 47 5
ho-pos 5 5 58 9
ho-uts 4 15 43 9

Table 10: The error types for the first-class errors

For the 425 first-class errors 213 of the errors are
related to cases where the model mentions more
properties of the target piece, although this would
be unnecessary. In 47 cases the model produces
an expressions that is not necessarily incorrect, but
not grammatical.

E.2 Second-class errors

Error types color shape pos ungram.
data 30 56 524 90

Table 11: The error types for the second-class errors

For the 694 second-class errors 179 of the errors
are related to cases where the model mentions in
addition the position, color or shape of the target
piece, although this would be unnecessary. In 90
cases the model produces an expressions that is not
necessarily incorrect, but not grammatical.
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E.3 First-class error examples (intended target pieces)
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E.4 Second-class error examples (extra target pieces)
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Abstract

The most popular approach in grammatical er-
ror correction (GEC) is based on sequence-to-
sequence (seq2seq) models. Similar to other
autoregressive generation tasks, seq2seq GEC
also faces the exposure bias problem, i.e., the
context tokens are drawn from different distri-
butions during training and testing, caused by
the teacher forcing mechanism. In this paper,
we propose a novel data manipulation approach
to overcome this problem, which includes a
data augmentation method during training to
mimic the decoder input at inference time, and
a data reweighting method to automatically bal-
ance the importance of each kind of augmented
samples. Experimental results on benchmark
GEC datasets show that our method achieves
significant improvements compared to prior ap-
proaches.1

1 Introduction

Grammatical error correction (GEC) is the task
of correcting errors in a source sentence and gen-
erating a well-written and grammatically correct
target sentence. Good results have been achieved
by state-of-the-art GEC systems (Rothe et al., 2021;
Stahlberg and Kumar, 2021) based on the sequence-
to-sequence (seq2seq) transformer (Vaswani et al.,
2017) architecture.

Generally, the seq2seq models are optimized to
predict the next token given all previous context to-
kens at each time step. During training, the ground
truth tokens are used as the context, i.e., the so-
called teacher forcing mechanism. However, dur-
ing inference, the context is the previous tokens
predicted by the model. As a result, the contexts
at training and inference time are drawn from dif-
ferent distributions. This discrepancy is called ex-
posure bias (Ranzato et al., 2016), which causes
the model to make inferences under conditions that

1The source code of this paper is publicly available at
https://github.com/nusnlp/gec_eb

Source
If that also word for you,
pleas close the ticker.

Target
If that also works for you,
please close the ticket.

Decoder input

Actual
If that also work for you,
pleas close the ticker.

Noise injection
It that also works for you,
pleas cloze the ticker.

Random sampling
If that also works for you,
please close the ticker.

Table 1: Example decoder inputs produced by different
methods. Each method’s deviations from the actual
decoder input are shown in bold.

it has not met during training and causes errors to
accumulate during inference.

Currently, the exposure bias problem has at-
tracted much attention in autoregressive text gen-
eration. For example, in neural machine transla-
tion (NMT), some work (Ranzato et al., 2016; Mi-
haylova and Martins, 2019; Zhang et al., 2019)
addresses this problem by utilizing sentence-level
metrics, randomly injecting noise into the train-
ing samples as the augmented decoder input, or
randomly replacing tokens in the training samples
with predicted tokens as the augmented decoder
input. Although GEC is a text generation task like
NMT, it emphasizes more on proposing correct
edits. Therefore, feeding artificially augmented
sentences into decoder input during training may
produce a different distribution compared with the
actual decoder input at inference time.2 As a result,
those generated errors may never happen, mak-
ing the augmented sentences less effective in the
GEC task. As illustrated in Table 1, the augmented
decoder input using noise injection or random sam-
pling differs from the actual decoder input.

2We empirically demonstrated the difference in Table 5 in
Section 4.4
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To address the exposure bias problem more ef-
fectively in GEC, we propose a data augmentation
approach, which reduces the difference in distribu-
tion of the samples between training and inference
in an intuitive way. Specifically, we first collect the
beam search output generated by the GEC model as
the augmented sentences, which mimic the actual
decoder input at inference time. Then, during train-
ing, the ground-truth and augmented sentences are
both fed as input to the decoder, thus reducing the
difference in distribution of the samples between
training and inference.

Moreover, previous work (Zhang et al., 2019;
Bengio et al., 2015) shows that adjusting the noise
density during training can better address the ex-
posure bias problem. Since different beam search
candidates contain different noise densities (i.e.,
the error density in GEC), and affect the model per-
formance to varying extent, each candidate should
be treated unequally. Therefore, we further pro-
pose a data-reweighting method, which automati-
cally learns sampling probability for different aug-
mented sentences dynamically. Specifically, our
reweighting approach learns a data scorer through
reinforcement learning, which learns the sampling
probability for each augmented sentence.

The contributions of our paper are as follows:

• We empirically demonstrated that the expo-
sure bias problem exists in the top-performing
seq2seq GEC models, and addressing them
helps to improve performance.

• We propose a novel data manipulation ap-
proach in GEC, including a data augmenta-
tion approach that mitigates the distribution
gap between training and inference, and a
data reweighting approach that automatically
learns the sampling probability for each kind
of training samples. No previous work uses
data reweighting to tackle exposure bias.

• To the best of our knowledge, our data manipu-
lation approach is the first work that addresses
the exposure bias problem regardless of the
evaluation metrics in seq2seq GEC.

• Experimental results show that our data aug-
mentation approach significantly reduces the
exposure bias problem and improves the per-
formance of seq2seq GEC models.

2 Related Work

This section briefly introduces recent related re-
search in the literature.

2.1 Exposure Bias

Exposure bias has been mostly studied in NMT.
Bengio et al. (2015) replace the ground truth word
by sampling randomly from the previous predicted
words during training. Zhang et al. (2019) further
inject noise into the training examples at both word
level and sentence level, and select sentence level
candidates based on the BLEU score (Papineni
et al., 2002). Instead of injecting random noise to
the ground truth sentences during training, our data
augmentation method treats model-generated sen-
tences as the augmented decoder input to mitigate
the difference in distribution of samples between
training and inference.

Ranzato et al. (2016) utilize Mixed Incremental
Cross-Entropy Reinforce to optimize the model us-
ing metrics used at test time (e.g., BLEU) directly.
Many similar works (Shao et al., 2018; Saunders
et al., 2020) have also been proposed in NMT. For
GEC, Sakaguchi et al. (2017) address the exposure
bias problem by using reinforcement learning to di-
rectly optimize the GEC model towards the GLEU
score (Napoles et al., 2015). Compared to Sak-
aguchi et al. (2017), we do not optimize the GEC
model using reinforcement learning, and we ad-
dress the exposure bias problem effectively where
GLEU score is not used.

2.2 Data Reweighting

Many methods have been developed for reweight-
ing or selecting a subset of data suitable for training
a model (Franceschi et al., 2018; Chen et al., 2017;
Wu et al., 2018; Shu et al., 2019; Wang et al., 2020;
Lichtarge et al., 2020). Specifically, Lichtarge et al.
(2020) propose an offline reweighting method for
GEC, which reweights each training sentence in
the previous stage of training based on the perplex-
ity difference between the current and previous
checkpoint. Wang et al. (2020) use a reweighting
method to learn the sampling distribution for differ-
ent languages in multilingual machine translation.
In contrast, our method is an online reweighting
method which dynamically adjusts the error density
of the augmented sentences according to different
model states.
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3 Method

In this section, we first briefly introduce a baseline
GEC system in Section 3.1. Then, we introduce
our data manipulation method in Section 3.2.

3.1 A Baseline GEC system

Let x be the ungrammatical source sentence and y
be the corrected grammatical target sentence. For a
seq2seq GEC model parameterized by θ, the goal
is to minimize the negative log-likelihood (NLL)
for a set of M sentence pairs

{
⟨x(i), y(i)⟩

}M
i=1

, as
follows:

l(x, d, y; θ) = −
Ly∑

t=1

|V |∑

k=1

1{yt = k}·

logP (yt = k|d<t, x; θ)
(1)

LNLL(θ) =
1

M

M∑

i=1

l(x(i), y(i), y(i); θ) (2)

where x is the source sentence, d is the decoder
input of the seq2seq model, y is the target sentence,
Ly is the length of the target sentence, |V | is the
vocabulary size of the target language, yt is the
t-th target token, 1{·} is the indicator function, and
P (·|·) is the conditional probability with model θ.

Given trained parameters θ̂, the hypothesis sen-
tence ŷ is generated using beam search to select the
candidate with the highest probability, as follows:

ŷ = argmax
y
{P (y|x; θ̂)} (3)

3.2 Data Manipulation

We propose a data manipulation method that miti-
gates the difference in contexts during training and
inference to improve performance. In particular,
our method consists of two parts: A data augmen-
tation method that generates augmented sentences
based on beam search to mimic the decoder input
distribution during inference, and a data reweight-
ing method that assigns sampling probability for
augmented sentences. The overview of our ap-
proach is shown in Figure 1.

We will first introduce the data augmentation
method in Section 3.2.1 and then introduce the data
reweighting method in Section 3.2.2.

Figure 1: Overview of the proposed data manipulation
method to mitigate exposure bias in GEC.

3.2.1 Data Augmentation
To reduce the distribution gap of decoder input
during training and inference, we propose to add
augmented sentences into the decoder input during
training. These augmented sentences are generated
by beam search using the model parameters from
the checkpoint of the previous stage3, which mimic
the decoder input at inference time.

More specifically, we generate augmented sen-
tences by feeding the source sentence x to the
model parameterized by θ, and choose the top n
output sentences {yj}nj=1 with the highest proba-
bilities generated by beam search.

As the decoder input must have the same length
as the target during training, we first align the aug-
mented sentences {yj}nj=1 with the correspond-
ing target sentence y according to linguistically-
enhanced Damerau-Levenshtein alignment (Felice
et al., 2016) by the ERRANT toolkit.4 Then, we
remove the excess tokens and add paddings for the
missing tokens. The padded augmented sentences
are denoted as {ȳj}nj=1. We collect (x, {ȳj}nj=1, y)
to form an augmented dataset Daug.

Intuitively, for a well-trained GEC model, candi-
dates with higher probability to be generated usu-
ally have lower error densities5. Therefore, differ-
ent candidates affect the model performance un-
equally. To better capture the effect of different
augmented sentences, we assign a separate weight
for each augmented sentence, and the loss function
is formulated as follows:

LEB(θ) = l(x, y, y; θ) +
n∑

j=1

αx,j · l(x, ȳj , y; θ)

(4)
where αx,j represents the weight for the jth aug-
mented sentence for source sentence x. We set

3Following prior work (Stahlberg and Kumar, 2021), we
train the GEC model in three stages, and load the checkpoint
of the second stage

4https://github.com/chrisjbryant/errant
5We verified this in Table 5 in Section 4.4

2125



∑n
j=1 αx,j = 1, so that all the augmented sen-

tences are treated equally as the original sentence.

3.2.2 Data Reweighting
The ideal way to train an optimal GEC model using
Eq. 4 is to determine the optimal value for each
αx,j . However, this can be computationally costly.
To efficiently weight each augmented sentence, we
use the averaged weight γj to approximate each
individual weight αx,j , where γj ∼ Eαj and Eαj

represents the expectation of αx,j , calculated by

Eαj = Ej [αx,j , x ∈ Dtrain]

Therefore, we reformulate Eq. 4 as:

LEB(θ) = l(x, y, y; θ) +
n∑

j=1

γj · l(x, ȳj , y; θ)

(5)
Previous work (Zhang et al., 2019; Bengio et al.,

2015) has demonstrated that varying noise density
(error density in GEC) according to the training
state of the model can effectively address the ex-
posure bias problem. Therefore, we use the sam-
pling probability βj to approximate γj and pro-
pose to dynamically adjust βj according to the
model θ. Specifically, we design a learnable data
scorer P (j;ψ), parameterized by ψ to modify the
training objective which we use to learn θ, so as
to maximize the validation performance. Here
j ∈ {1, ..., n} indicates the index of the augmented
sentence (index 1 indicates the sentence generated
with the highest probability in beam search, and
so on). More specifically, in the training process,
P (j;ψ) is used as the probability to sample an aug-
mented sentence at index j such that the validation
loss is minimized.

The final objective is written as follows:

ψ∗ = argmin
ψ

L(θ∗(ψ), Ddev) where

θ∗(ψ) = argmin
θ

∑

(x,d,y)

LEB(θ, ψ)
(6)

and LEB(θ) in Eq. 5 is reformulated as:

LEB(θ, ψ) = l(x, y, y; θ)+
n∑

j=1

1{j = si} · l(x, ȳj , y; θ)
(7)

where si ∈ {1, ..., n} represents the sampled index
based on the learned probability P (j;ψ) for each
index j 6.

6We use torch.multinomial function from the PyTorch
package to sample one candidate at a time.

During training, we optimize θ and ψ iteratively.
We first optimize the data scorer ψ with fixed θ.
To update the data scorer, we use reinforcement
learning with a reward function that approximates
the effect of the training data on the model’s devel-
opment set performance.

Specifically, our environment is the model state
θ and model input (x, d, y). Our agent is the data
scorer network ψ. We formulate our reward as:

R(j; θt)

= cos(∇θLdev(Ddev; θt) · ∇θLtrain(j; θt)) (8)

where Ldev(Ddev; θt) denotes the validation loss
calculated by Eq. 2, Ltrain(j; θt) represents the
training loss for different kinds of augmented sen-
tences, and cos(·) denotes the cosine similarity of
the two vectors.

Algorithm 1: Data reweighting method
Input: Dtrain, Ddev, Daug

Output: Optimal parameter θ∗

1 Initialize θ, ψ
2 while not converge do
3 Sample f batches of training data

(X,D, Y ) ∼ (Dtrain, Daug)
4 Sample validation data

(Xdev, Ydev) ∼ Ddev

5 gdev ←
∑

(xdev ,ydev)∈(Xdev ,Ydev)

∇θl(xdev, ydev, ydev; θ)/|(Xdev, Ydev)|
▷ Update ψ

6 for (x, d, y) in (X,D, Y ) do
▷ Estimate different j effect

7 for j in {1, ..., n} do
8 gψ ← ∇θLtrain(j; θ)
9 R(k; θ)← cos(gdev, gψ)

10 end
▷ Optimize ψ

11 dψ ←
∑

j∈{1,...,n}R(j; θ) ·
∇ψlogP (j;ψ)

12 ψ ← GradientUpdate(ψ, dψ)
13 end

▷ Update θ
14 for (x, d, y) in (X,D, Y ) do
15 gθ ← ∇θLEB(θ, ψ)
16 θ ← GradientUpdate(θ, gθ)
17 end
18 end
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To capture the combined effect of augmented
sentence and the original training sentence to the
model’s performance, we calculate Ltrain(j; θt) as
follows:

Ltrain(j; θt) = l(x, y, y; θ) + l(x, ȳj , y; θt) (9)

Intuitively, this reward makes the data scorer up-
weight the training data that have a similar gradi-
ent direction as the development data (Wang et al.,
2020).

According to the REINFORCE algorithm
(Williams, 1992), the update rules for the data
scorer become:

ψt ← ψt−1 +R(j; θt) · ∇ψlogP (j;ψ) (10)

After obtaining ψ, we update θ by:

θt ← θt−1 −∇θ
∑

(x,d,y)

LEB(θ, ψ) (11)

The training algorithm is shown in Algorithm
1. Note that we do not calculate the validation
gradient in every training step, since it is too com-
putationally expensive for the GEC task. Instead,
we calculate the validation gradient for every f
steps. Specifically, we first sample validation data
and f batches of training data from the validation
and the training set, respectively. Then, we obtain
validation gradient gdev based on the current model
weights θ. For each batch of training data, we fur-
ther calculate the reward for the data scorer using
Eq. 8 and update the data scorer using the REIN-
FORCE algorithm. After updating the data scorer,
we apply the output from ψ to Eq. 7 and use this
sampled loss to update the model θ with the same
f batches of training data.

In this paper, we use a single-layer embedding
network followed by a softmax layer as the data
scorer networks ψ, and a transformer-based frame-
work as our model θ. More details are given in
Section 4.2.

4 Experiments

In this section, we report the effectiveness of our
data manipulation approach.

4.1 Data and Model Configuration

Following (Kaneko et al., 2020; Stahlberg and Ku-
mar, 2021), we build our GEC model based on
the transformer-big architecture (Vaswani et al.,

2017). To compare with state-of-the-art approaches
in GEC, which pre-train with synthetic data, we
follow (Stahlberg and Kumar, 2021) to generate
C4200M which contains 200 million synthetic par-
allel sentences. We use C4200M to pre-train our
GEC model, and use the combination of NUCLE
(Dahlmeier et al., 2013), FCE (Yannakoudakis
et al., 2011), and CLang-8 (Rothe et al., 2021) to
train our GEC model, using an encoder-decoder
shared vocabulary of 10K byte pair encoding to-
kens.7

We evaluate the effectiveness of our data manip-
ulation method on two datasets: the CoNLL-2014
test set (Ng et al., 2014) and the BEA-2019 test
set (Bryant et al., 2019). The W&I training set is
used for fine-tuning. The development dataset is
the CoNLL-2013 dataset (Ng et al., 2013) (W&I
dev) when evaluating on the CoNLL-2014 test set
(BEA-2019 test set).

4.2 Experimental Setup

We build our GEC model using the fairseq toolkit
(Ott et al., 2019). All experiments are carried out
on one NVIDIA A100 GPU. We use the MaxMatch
scorer (Dahlmeier and Ng, 2012) to evaluate per-
formance on the CoNLL-2014 test set and the ER-
RANT scorer (Bryant et al., 2019) to evaluate per-
formance on the BEA-2019 test set. We report the
average scores of three runs, and use a one-tailed
sign test with bootstrap resampling to carry out
statistical significance tests. We generate the aug-
mented samples with a beam size of 5, and choose
all five predictions for each training sentence as
augmented samples for both CoNLL-2014 test set
and BEA-2019 test set.
Baselines. We evaluate the performance of our
method by comparing against five baseline meth-
ods. We apply our method and all the baseline
methods to the checkpoint before fine-tuning.8

CE: Fine-tuning the model using cross entropy
loss. SS: Fine-tuning the model using the sched-
uled sampling method (Bengio et al., 2015). RN-
Word: Fine-tuning the model by randomly inject-
ing noise at word level (Zhang et al., 2019). RN-
Sent: Fine-tuning the model by our modified ver-
sion of sentence-level noise injection (Zhang et al.,
2019) to better adapt to the GEC task. Specifically,
we choose a noisy sentence with the smallest edit-

7More training details are given in Appendix A.7.
8The model checkpoint has been pre-trained first on C4200M

and then further trained on the combination of NUCLE, FCE,
and CLang8.
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System CoNLL-14 BEA-19
Single System

(Kiyono et al., 2019)† 61.3 64.2
(Lichtarge et al., 2020)† 62.1 66.5
(Wan et al., 2020)† 63.5 65.5
(Stahlberg and Kumar, 2021)† 66.6 70.4
(Rothe et al., 2021)* 68.9 75.9
(Sun et al., 2021)# 66.4 72.9
DM† 66.8 71.5

Ensemble
(Kiyono et al., 2019) 65.0 70.2
(Wan et al., 2020) 65.9 70.0
(Lichtarge et al., 2020) 66.8 73.0
(Stahlberg and Kumar, 2021) 68.3 74.9
DM 68.5 74.8

Table 2: F0.5 scores of state-of-the-art seq2seq GEC systems on the CoNLL-2014 and BEA-2019 test sets. #:
Variant of BART-large model; *: T5-xxl model; †: transformer-big model.

distance, instead of the highest BLEU score, as the
sentence-level oracle. We show the difference in
Appendix A.3. Ad-Bridge: Fine-tuning the model
by the AdapBridge method (Xu et al., 2021) which
adaptively injects noise on word-level with word-
level matching score. RE-DP: Weighting each
augmented sentence using delta-perplexity during
fine-tuning (Lichtarge et al., 2020).

4.3 Experimental Results

Approach CoNLL-2014 BEA-2019
P R F0.5 P R F0.5

CE 70.3 51.0 65.4 70.8 67.7 70.2
SS 70.7 51.0 65.6 71.6 67.2 70.7
RN-Word 71.1 51.0 65.9 71.5 67.6 70.7
RN-Sent 71.8 50.8 66.3 71.7 67.3 70.8
Ad-Bridge 71.4 50.5 66.0 71.0 67.6 70.4
DA 73.6 47.4 66.3* 72.6 66.0 71.1

+RE-DP 73.7 47.5 66.4 72.8 65.8 71.3
DM 74.0 48.1 66.8*† 73.1 65.5 71.5

Table 3: Experimental results (in %) on the CoNLL-
2014 and BEA-2019 test sets. DA represents fine-tuning
the model using only the data augmentation approach
mentioned in Section 3.2.1 where each γj in Eq. 5 is
set to 1/n. DM represents fine-tuning the model using
our proposed data manipulation method (including both
data augmentation and data reweighting). Statistically
significant improvements (p < 0.01) over CE and DA
are marked as * and † respectively. Since the BEA-2019
test set is a blind test set, we are unable to carry out
statistical significance tests on it.

The performance of our data manipulation
method is shown in Table 3.9 All methods which

9The results on the CWEB and JFLEG test sets are shown

aim to mitigate the exposure bias problem (i.e., SS,
RN-Word, RN-Sent, Ad-Bridge, DA, and DM) out-
perform CE on both CoNLL-2014 and BEA-2019
test sets. This shows the importance of addressing
the exposure bias problem in GEC.

Furthermore, our DM method outperforms all
baseline methods on both test sets. Specifically,
on the CoNLL-2014 test set, DM achieves an F0.5

score of 66.8%, which is 0.5% higher than RN-
Sent. On the BEA-2019 test set, DM achieves
an F0.5 score of 71.5%, which improves by 0.7%
compared to RN-Sent. DM performs better since
it is able to better approximate the decoder input
distribution at inference time and adjust the amount
of errors automatically based on the model θ.

We also compare DM with state-of-the-art
seq2seq GEC systems in Table 2. Specifically,
we show the performance of a single DM model
and an ensemble of eight analogously trained DM
models. Among all the transformer-big single sys-
tems, our method achieves the best F0.5 scores on
both CoNLL-2014 and BEA-2019 test sets, sur-
passing (Stahlberg and Kumar, 2021) by 0.2% and
1.1%, respectively. Although Rothe et al. (2021)
achieve F0.5 scores of 68.9% and 75.9% on the
CoNLL-2014 and BEA-2019 test set respectively,
they adapt the T5-xxl model with 11 billion pa-
rameters, whereas our transformer-big model only
uses 220 million parameters (2% of the size of
T5-xxl model). The corresponding F0.5 scores of
(Rothe et al., 2021) for their T5-base model with

in Appendix A.8.
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Example 1

Source
Many Much of this surveillance are is being implemented in the government sectors
, or military areas to enhance their security.

CE
Many of this surveillance are being implemented in the government sectors
, or military areas to enhance their security.

RN-Sent
Many of this surveillance are is being implemented in the government sectors
, or military areas to enhance their security.

DM
Many of this surveillance are is being implemented in the government sectors
, or military areas to enhance their security.

Example 2

Source
Surveillance technology will help to prevent the family families to from loss losing
their member members, especially the elderly and the children which who need
to be pay paid more attention to.

CE
Surveillance technology will help to prevent the family to loss their member,
especially the elderly and the children which who need to be pay more attention to.

RN-Sent
Surveillance technology will help to prevent the family to loss their member members,
especially the elderly and the children which who need to be pay more attention to.

DM
Surveillance technology will help to prevent the family to from loss losing their
member members, especially the elderly and the children which who need to be
pay more attention to.

Table 4: Examples of the error accumulation problem, with the predictions taken from CE, RN-Sent, and DM
models. Red texts show the correct edits.

220 million parameters are 65.1% and 69.4% for
the CoNLL-2014 and BEA-2019 test set respec-
tively.

Our DM ensemble achieves an F0.5 score of
68.5% on the CoNLL-2014 test set and reaches
an F0.5 score of 74.8% on the BEA-2019 test set,
which is close to the best performance achieved by
(Stahlberg and Kumar, 2021). Note that Stahlberg
and Kumar (2021) have used more than 540 mil-
lion synthetic sentence pairs to pre-train their trans-
former big model, while we only use 200 million
synthetic sentence pairs. Note that the current
best F0.5 scores achieved by an ensemble approach
(Qorib et al., 2022) on the CoNLL-2014 and BEA-
2019 test sets are 69.51% and 79.90% respectively.
However, we have not included them in Table 2 as
Qorib et al. (2022) combine sequence-to-sequence
models with sequence-tagging models.

4.4 Effect of Reweighting

We analyze the sampling distribution for each aug-
mented sentence in Figure 2, and show the error
density (in terms of the number of edits required
to correct to grammatical sentence) for each aug-
mented sentence in Table 5. Specifically, the error
density is measured by the average number of edits
required to transform an augmented sentence into

Figure 2: The sampling probability of augmented sen-
tences during training.

the target sentence.
As shown in Table 5 and Figure 2, the sampling

probability for candidates with higher error density
keeps increasing during training. This shows that
as training progresses, candidates with higher error
density play a more important role in training the
model, which supports the hypotheses from (Zhang
et al., 2019; Bengio et al., 2015).

Compared to RE-DP10 which uses a static error
density to train the model, our DM method achieves
better performance by dynamically adjusting the
error density according to the model θ. This fur-
ther confirms that a varying error density is more

10We show the detailed settings of RE-DP in Appendix A.2.
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Sentence err% e/s
WI train 67.1 3.45
BS-1 54.8 2.64
BS-2 90.7 2.18
BS-3 95.6 2.24
BS-4 96.9 2.30
BS-5 98.5 2.39
RN-Sent - 7.82

Table 5: Statistics of the W&I training set and different
augmented sentences. BS-x denotes the sentence which
is the beam search candidate at position x. e/s is the
number of edits per sentence calculated on erroneous
sentences. err% is the percentage of erroneous sentences
in the entire set. The err% for RN-Sent varies according
to the different training epochs, with the details given in
Appendix A.1.

effective in addressing the exposure bias problem.

4.5 Effect on Exposure Bias

In this section, we first present representative exam-
ples to illustrate the error accumulation problem in
GEC. Then we conduct comprehensive studies to
show the effectiveness of our method in addressing
the exposure bias problem.

4.5.1 Effect on Error Accumulation
In Example 1 from Table 4, the CE model fails
to correct “Many” to “Much” (since “surveillance”
is an uncountable noun, “Much” should be used
instead of “Many”). Failing to correct this error
causes the CE model to also fail to correct “are”
to “is”, which illustrates the error accumulation
problem. Although RN-Sent and DM model also
fail to correct “Many” to ‘Much”, they successfully
correct “are” to “is”. This shows that both RN-
Sent and DM are better able to address the error
accumulation problem caused by exposure bias.

In the second example, the output generated by
CE, RN-Sent, and DM all fail to correct “family” to
“families”. For the output of CE, this further causes
the model to fail to correct “to loss” to “from losing”
and “member” to “members”. For RN-Sent, failing
to correct “family” to “families” causes the model
to fail to correct “to loss” to “from losing”, but it
successfully corrects “member” to “members”. For
the DM model, it is able to recover from failing to
correct “family” to “families” and successfully cor-
rects both “to loss” to “from losing” and “member”
to “members”. Therefore, the error accumulation
problem is better addressed by our DM approach.

Source

Her impressive physique asa as well
as her extraorinbary extraordinary
faculties as a rumba dancer will not
be forgotten.

DA
Her impressive physique asa well as
her extraorinbary faculties as rumba
dancer will not be forgotten.

DM

Her impressive physique asa well
as her extraorinbary extraordinary
faculties as a rumba dancer will not
be forgotten.

Table 6: Examples of the error accumulation problem,
with the predictions taken from the DA and DM model.
Red texts show the correct edits.

In Table 6, we show example output produced
by the DA and DM model. The source sentence
contains the following three errors: change “asa"
to "as", change "extraorinbary" to "extraordinary",
and insert "a" before “rumba”. Failure to correct
the first error causes DA to fail to correct "extraor-
inbary" to "extraordinary" and to fail to insert "a"
before “rumba”. However, DM successfully cor-
rects the last two errors even when it fails to correct
the first error.

4.5.2 Length and Edit Analysis
In this section, we further analyze the effect of our
method on reducing the error accumulation prob-
lem, which tends to be more severe with longer sen-
tences or sentences that require more edits. There-
fore, we analyze the performance with respect to
different lengths of the source sentence and dif-
ferent numbers of edits in the gold annotation in
Figure 3.

Figure 3: Performance comparison on the CoNLL-2014
test set with respect to different lengths of the source
sentence, and different numbers of edits in the gold
annotation. Left: source sentence length; Right: number
of edits in the gold annotation.

Our method consistently improves over both CE
and RN-Sent in all cases. The improvement is
larger when the length of the source sentence is
greater than 56, or the number of edits in the gold
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reference is greater than 8. This further shows that
our method effectively addresses the error accumu-
lation problem and that our improvement is mainly
obtained by addressing the exposure bias problem.

4.5.3 Performance Analysis

This section further compares DM’s capability of
addressing the exposure bias problem against other
baseline methods.

We consider the exposure bias problem to be bet-
ter addressed when the predicted probability for the
ground truth token is higher, under the condition
that previously predicted tokens are generated by
the model itself (i.e., not the ground truth). To eval-
uate how the exposure bias problem is addressed,
we further design an experiment, which is an im-
proved version of Zhang et al. (2019).

Specifically, we first generate noisy sentences
by feeding the source sentences from the CoNLL-
2014 test set to the model checkpoint before fine-
tuning. We then generate the padded noisy sen-
tences using the same procedure described in Sec-
tion 3.2.1. Subsequently, we use different models
(model A and model B in Table 7) to decode the
same source sentence by using the padded noisy
sentences as the decoder input. Let N be the num-
ber of ground truth tokens whose probabilities in
the predicted distributions produced by model B
are greater than those produced by model A. The
win ratio is calculated by dividing N by the total
number of tokens in the gold sentences. The results
are shown in Table 7.

B

Win ratio A
CE DM

SS 69.99% 35.26%
RN-Word 73.54% 39.04%
RN-Sent 76.41% 37.64%
DM 89.41% -

Table 7: The win ratio of model B over model A.

From Table 7, we observe that more than 89% of
the target tokens’ predicted probabilities of our DM
model are greater than the CE model, indicating
that our DM method greatly reduces the exposure
bias problem. Moreover, compared to the DM
model, all the other models are shown to have a
win ratio of less than 40%. This shows that our
method better addresses the exposure bias problem
in GEC.

5 Conclusion

In this paper, we propose a novel data manipula-
tion approach that includes both data augmentation
and data reweighting to mitigate the exposure bias
problem for seq2seq GEC models. Our core idea
is to inject realistic augmented sentences into the
decoder input and to automatically sample the aug-
mented sentences. We show the effectiveness of
our method which achieves significant improve-
ments on both the CoNLL-2014 and BEA-2019
test sets.

6 Limitations

While our proposed approach is language-
independent, we have only tested our approach
on the English GEC task.
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A Appendix

A.1 Error Density of RN-Sent

We adopt a similar approach to measure the error
density in RN-Sent when training on the W&I train-
ing set. Specifically, our DM method only requires
one epoch to converge, while RN-Sent requires
seven epochs to converge. The average edits for
each augmented sentence is 7.82, and the proba-
bility of creating augmented sentences is shown in
Table 8.

epoch p
1 0.01
2 0.02
3 0.03
4 0.05
5 0.07
6 0.11
7 0.17

Table 8: Probability of creating augmented sentences
for each epoch.

The high edits per sentence generated by RN-
Sent confirm that the augmented sentence gener-
ated through random noise injection has a bigger
gap between actual decoder input and less effi-
ciently addresses the exposure bias problem. Note
that the original decay hyper-parameter is set to
5,800, with a maximum 40,000 updates11. Since
our model is trained for 7 epochs (690 updates),
we adjust the decay hyper-parameter to 100 accord-
ingly.

A.2 RE-DP Setting

When using RE-DP to reweight each augmented
sentence, we follow the setting in (Lichtarge et al.,
2020). Specifically, we treat Daug as the base
dataset D−, and Dtrain as the target dataset D+.
For a trained GEC model θtrain, it has been firstly
pre-trained on C4200M and then trained on the com-
bination of NUCLE, FCE, and CLang-8 dataset.
We first obtain the model θ− by fine-tuning θtrain

11https://github.com/ictnlp/OR-NMT#res
ults-and-settings-on-wmt14-english-germa
n-translation-task
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Figure 4: Illustration of the padding mechanism.

on D− with the following loss function:

LRE−DP =
n∑

j=1

l(x, ȳj , y; θ)

The model θ+ is obtained by further fine-tuning θ−

on D+ using Eq. 2. Based on θ− and θ+, we cal-
culate the perplexity of each augmented sentence.
The weight αx,j for each augmented sentence is
calculated by the ‘delta-perplexity-rank’ method
proposed in (Lichtarge et al., 2020). We then nor-
malize αx,j , such that

∑n
j=1 αx,j = 1, and use Eq.

4 to fine-tune θtrain.

A.3 BLEU vs Edit Distance
We compare the performance of using BLEU to
select sentence-level oracle with the performance
of using edit distance to select sentence-level oracle
in Table 9.

CoNLL-2014 BEA-2019
BLEU 65.5 70.0
EDIT 66.3 70.8

Table 9: F0.5 score on the CoNLL-2014 and BEA-2019
test sets. BLEU: represents selecting sentence-level
oracle with the highest BLEU score. EDIT: represents
selecting sentence-level oracle with the smallest edit
distance.

A.4 Padding Mechanism
In Figure 4, we illustrate the padding mechanism
introduced in Section 3.2.1.

A.5 Dataset Usage
The usage of different datasets for different setups
is summarized in Table 10. Specifically, the W&I
test set contains 4,477 sentences and the CoNLL-
2014 test set contains 1,312 sentences.

A.6 Experimental Details
In this part, we will introduce the software pack-
ages we have used and the implementation details.

CoNLL-2014 BEA-2019
Pre-training C4200M

Training NUCLE, FCE, CLang-8
Fine-tuning W&I train W&I train
Validation CoNLL-2013 W&I dev
Test CoNLL-2014 W&I test

Table 10: Dataset usage for different setup cases.

Software configuration All models are imple-
mented based on the Fairseq12 and PyTorch pack-
ages. More specifically, we use Python 3.7 and
PyTorch 1.7.1.

Implementation details When calculating the re-
ward for the data scorer in Eq. 8, we use all the
validation data to calculate the validation gradient.

To balance efficiency and performance, we set
the update frequency f in line 3 of Algorithm 1
to 250 and 220 when fine-tuning for CoNLL-2014
and BEA-2019, respectively. The update frequency
is selected from the range {250, 300} with a step
size of 10 using grid search.

A.7 Hyper-Parameters and Computational
Budget

We list the hyper-parameters for pre-training and
training in Table 11. The hyper-parameters to fine-
tune the model with the DM approach are shown
in Table 12 . Specifically, pre-training takes 202
hours to converge, and training takes 0.6 hours to
converge. Fine-tuning on the W&I training set
takes 0.4 hours to converge.

A.8 Performance on CWEB-S/G and JFLEG
Test Sets

We show the performance on the CWEB-S/G and
JFLEG test sets in Table 13. When testing on the
CWEB-S/G test set, we follow the setting in Cao
et al. (2021) to extract the CWEB-train and CWEB-
dev data. We use CWEB-train as the fine-tuning set

12https://github.com/pytorch/fairseq/tree/9f4256edf60554a
fbcaadfa114525978c141f2bd
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Pretraining
Configuration Value
Devices 2 NVIDIA A100 GPU
Model
architecture

Transformer
("large" setting)

Optimizer
Adam (β1 = 0.9, β2 = 0.98,
ϵ = 1× 10−8)

Learning rate 3.00× 10−4

Learning rate
scheduler

Inverse sqrt

Dropout 0.3
Warmup 8000
Number of epochs 10
Best epoch 8
Training
Configuration Value
Devices 1 NVIDIA A100 GPU
Learning rate 3.00× 10−5

Warmup 4000
Best epoch 1

Table 11: Pre-training and training configuration.

CoNLL-2014 & BEA-2019
Configuration Value
Devices 1 NVIDIA A100 GPU
Model
architecture

Transformer
("large" setting)

Optimizer
Adam (β1 = 0.9, β2 = 0.98,
ϵ = 1× 10−8)

Learning rate 3.00× 10−5

Learning rate
scheduler

Inverse sqrt

Warmup 4000
Number of epochs 10
Best epoch 1

Table 12: DM fine-tuning configuration.

and CWEB-dev as the validation set. When testing
on the JFLEG test set, we still use the W&I training
set as the fine-tuning set and use the JFLEG-dev
set as the validation set.

Approach CWEB-S CWEB-G JFLEG
CE 38.2 43.0 62.9
SS 33.8 46.6 63.1
RN-Word 37.3 47.8 62.6
RN-Sent 37.7 47.7 63.0
Ad-Bridge 38.8. 47.5 63.1
DA 42.4* 47.0* 63.2*
DA + RE-DP 40.1 47.8 62.7
DM 42.7*† 49.0*† 63.5*†

Table 13: The F0.5 score and GLEU score (in %) on
the CWEB-S/G test set and JFLEG test set respectively.
Statistically significant improvements (p < 0.01) over
CE and DA are marked as * and † respectively.
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Abstract

Large-scale vision-language pre-trained (VLP)
models are prone to hallucinate non-existent
visual objects when generating text based on
visual information. In this paper, we system-
atically study the object hallucination prob-
lem from three aspects. First, we examine
recent state-of-the-art VLP models, showing
that they still hallucinate frequently, and mod-
els achieving better scores on standard metrics
(e.g., CIDEr) could be more unfaithful. Second,
we investigate how different types of image en-
coding in VLP influence hallucination, includ-
ing region-based, grid-based, and patch-based.
Surprisingly, we find that patch-based features
perform the best and smaller patch resolution
yields a non-trivial reduction in object halluci-
nation. Third, we decouple various VLP objec-
tives and demonstrate that token-level image-
text alignment and controlled generation are
crucial to reducing hallucination. Based on
that, we propose a simple yet effective VLP loss
named ObjMLM to further mitigate object hal-
lucination. Results show that it reduces object
hallucination by up to 17.4% when tested on
two benchmarks (COCO Caption for in-domain
and NoCaps for out-of-domain evaluation).

1 Introduction

Thanks to the advancement of large pre-trained
Language Models (LMs) and Vision-Language
Pre-training (VLP) methods, models are able to
achieve surprisingly good performance in vision-
conditioned text generation, e.g., image captioning.
However, large LMs are found to generate unfaith-
ful or nonsensical texts given the source input (Ji
et al., 2022), which is called hallucination. The hal-
lucination problem is also inherited by VLP mod-
els (Alayrac et al., 2022), as they are still LMs that
can understand visual information. VLP models of-
ten generate fluent and seem appropriate sentences
if we only see the text, but wrong when taking the

∗∗ Work done during PhD at HKUST.

visual input into consideration. One major type
of hallucination in VLP is known as object hal-
lucination (Rohrbach et al., 2018), where models
generate texts containing non-existent or inaccurate
objects from the input images. Object hallucination
in VLP models essentially limits their performance
and raises safety concerns for industrial applica-
tions. For example, in biomedical image caption-
ing (Pavlopoulos et al., 2019), object hallucination
reduces the accuracy of diagnosis and may lead to
severe consequences for the patient. Despite the
limitations and risks caused by object hallucination,
this problem has not been studied in contemporary
VLP works yet.

To narrow down the aforementioned research
gap, in this paper, we systematically investigate
four fundamental research questions about object
hallucination: 1) how much do modern VLP mod-
els hallucinate? 2) how do different forms of image
encoding affect object hallucination? 3) what are
the effects of common VLP objectives on object
hallucination? and 4) how to mitigate object hallu-
cination in VLP models?

For our first question, we examine recent state-
of-the-art VLP models on the image captioning
task. To evaluate object hallucination, we adopt
and expand the CHAIR (Caption Hallucination As-
sessment with Image Relevance) metric proposed
by Rohrbach et al. (2018). Results show that these
models still hallucinate frequently with ∼10% of
the generated sentences containing at least one hal-
lucinated object. This problem becomes much
severer when generating sentences given out-of-
domain images. Furthermore, we discover that the
widely used optimization method SCST (Rennie
et al., 2017) could lead to more hallucination, even
if it improves standard metrics like CIDEr (Vedan-
tam et al., 2015).

For our second question, to investigate how
different types of image encoding in VLP influ-
ence hallucination, we ablate three commonly
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used ones, including region-based, grid-based, and
patch-based (Kim et al., 2021). Surprisingly, we
find that patch-based features perform the best and
smaller patch resolution yields a non-trivial reduc-
tion in object hallucination.

Thirdly, we analyze the effects of commonly
adopted vision-language pre-training objectives on
object hallucination. Specifically, we decouple
and combine the image-text contrastive (ITC) loss,
the image-text matching (ITM) loss with and with-
out hard negatives, and the image-conditioned lan-
guage modeling (ICLM) loss. Counter-intuitively,
although ITC and ITM help to bring apart dissim-
ilar images and texts, results show that they do
not contribute much to alleviating object hallucina-
tion. The generative ICLM loss is the main influ-
ential factor of object hallucination and different
pre-training datasets lead to distinctive model be-
haviors. More detailed analysis is described in
Section 5.3.

Finally, we propose a simple yet effective new
vision-language pre-training loss, namely object-
masked language modeling (ObjMLM), to fur-
ther mitigate object hallucination by enhancing the
alignment and restriction between text tokens and
visual objects during generation. Code and evalu-
ation setups are released: https://github.com/
wenliangdai/VLP-Object-Hallucination.

Overall, our contributions are three-fold:

• This is the first paper that systematically stud-
ies state-of-the-art VLP models on the object
hallucination problem, proving that it is still
far from resolved and previous methods that
improve standard metrics may reflect in worse
hallucination.

• We thoroughly investigate the influence of dif-
ferent VLP losses and image encoding meth-
ods on object hallucination. Our findings
could be valuable for future work to build
more responsible VLP systems.

• We present a new pre-training objective
ObjMLM to mitigate object hallucination. Ex-
perimental results show that it reduces object
hallucination by 17.4% without introducing
extra training data.

2 Related Work

2.1 Hallucination in Deep Learning

Generally, the term hallucination denotes the ap-
pearance of undesirable output that is unfaithful

to the conditional input (Maynez et al., 2020),
even though it may appear to be fluent or reason-
able. In the multimodal field, the hallucination phe-
nomenon refers to the prediction of non-existent
or incorrect objects (e.g., in object detection or
image captioning) and is called object hallucina-
tion (Rohrbach et al., 2018; Biten et al., 2022).
Despite the success of large pre-trained models,
they still suffer the hallucination problem, which
degrades the performance and largely hinders prac-
tical applications (Ji et al., 2022).

Many works have been proposed to mitigate hal-
lucination in recent years. Nie et al. (2019) applied
data refinement with self-training to improve the
equivalence between the input and the paired text
in the data-to-text generation task. Zhang et al.
(2021b) and Zhang et al. (2020) proposes scene
graph learning methods to ground the process of
visual captioning to reduce hallucination. Ma et al.
(2020) reconstruct generated sentences from local-
ized image regions. Xiao and Wang (2021) pro-
posed the uncertainty-aware beam search as an
add-on technique to the original beam search, in
both image captioning and data-to-text generation.
To reduce hallucination in dialog systems, Shuster
et al. (2021) introduced knowledge augmentation
and Dziri et al. (2021) presented a post-processing
method to refine generated outputs. Su et al. (2022)
augment models with answer-related information
predicted by a machine reading comprehension
module to reduce hallucination in the generative
question answering task.

2.2 Vision-Language Pre-training

The research on vision-language pre-training
(VLP) has progressed vastly in recent years. Due to
the demand for large-scale data, most VLP methods
use self-supervised pre-training objectives to uti-
lize image-text pairs crawled from the web. In the
beginning, BERT (Devlin et al., 2019)-style VLP
models (Lu et al., 2019; Tan and Bansal, 2019; Li
et al., 2020b; Chen et al., 2020; Yu et al., 2021a;
Shen et al., 2022) are trained to perform multi-
modal understanding tasks, using objectives like
image-text matching and masked language model-
ing. Later, encoder-decoder architectures are intro-
duced to additionally handle multimodal genera-
tion tasks with a causal language modeling loss (Li
et al., 2021b; Yu et al., 2021b; Lin et al., 2021;
Cho et al., 2021; Ding et al., 2021; Li et al., 2022;
Wang et al., 2022a). Another line of research uses
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a dual-stream architecture (Radford et al., 2021;
Jia et al., 2021; Zhai et al., 2022; Yao et al., 2022)
with separate image and text encoders aligned to-
gether through an image-text contrastive loss. They
improve the performance of various multimodal
downstream tasks by a large step.

Alayrac et al. (2022) show that fatal object hal-
lucination can happen naturally or be provoked by
the adversarial prompting in modern VLP models.
However, in previous works, how different VLP
strategies influence the faithfulness of generated
text given images has not been studied. More-
over, the effects of using different types of im-
age encoding are also unclear, including region-
based (Li et al., 2020c; Zhang et al., 2021a; Hu
et al., 2022), grid-based (Wang et al., 2022b), and
patch-based (Kim et al., 2021; Li et al., 2021a).

3 Evaluation Setup

In this section, we first introduce the CHAIR eval-
uation metric and our proposed improvements to it
in Section 3.1. Then, in Section 3.2, we describe
two datasets used for evaluation and explain how
to calculate CHAIR scores under such settings.

3.1 Evaluation Metric
To automatically measure object hallucination,
we adopt the CHAIR (Caption Hallucination As-
sessment with Image Relevance) metric proposed
by Rohrbach et al. (2018). CHAIR calculates what
proportion of generated object words are not in the
image (i.e., hallucinated) according to the ground
truth. CHAIR has two variants: CHAIRi (instance-
level) and CHAIRs (sentence-level), which are for-
mulated as follows:

CHAIRi =
# {hallucinated objects}

# {all objects in prediction}
,

CHAIRs =
# {hallucinated sentences}

# {all sentences}
.

As formulated, CHAIRi represents the proportion
of hallucinated objects over all golden objects in
all data samples. It can be seen as the probability
of a generated object to be a hallucination. On the
other hand, CHAIRs measures the proportion of
generated sentences that contain at least one hal-
lucinated object. Therefore, to calculate CHAIRi
and CHAIRs, we need a pre-defined list of golden
object categories to recognize objects in the text.
We illustrate dataset-specific calculation details in
Section 3.2.

3.2 Evaluation Datasets
To evaluate models’ performance on object hallu-
cination with CHAIR, we adopt two widely used
benchmarks: Microsoft COCO Caption (Lin et al.,
2014) and NoCaps (Agrawal et al., 2019). For all
models, the COCO Caption training set is used for
the finetuning of the image captioning task, and
COCO Caption test set and NoCaps valid set are
used for in-domain and out-of-domain evaluation,
respectively. In the following, we introduce statis-
tics of each dataset and how to calculate CHAIR
on them.

3.2.1 COCO Caption
The COCO Caption (Lin et al., 2014) is a large-
scale and widely used dataset for the training and
evaluation of the image captioning task. We use
the Karpathy split (Karpathy and Fei-Fei, 2017),
in which 82K, 5K, and 5K images are in the train,
validation, and test sets, respectively. Each image
is annotated with at least five ground truth captions.

To calculate CHAIR scores on this dataset, we
follow the setting proposed in Rohrbach et al.
(2018). In practice, we first tokenize each sen-
tence and then singularize each word. Then, we
use a list of synonyms from Lu et al. (2018) to map
fine-grained objects to the pre-defined 80 coarse-
grained MSCOCO object categories (e.g., mapping
“puppy”, “chihuahua”, “poodle” to the “dog” cat-
egory). The purpose of doing this mapping is to
ensure that we do not detect hallucinated objects
by mistake. For example, when the ground-truth
caption only has the “puppy” object, the CHAIR
metrics will undesirably consider the “dog” object
generated by models as a hallucinated object if we
do not perform the mapping.

3.2.2 NoCaps
The NoCaps (Agrawal et al., 2019) dataset aims
to evaluate models trained on the training set of
COCO Caption to examine how well they gener-
alize to a much larger variety of visual concepts,
i.e., unseen object categories. There are 4,500 im-
ages in the validation set and 10,600 images in the
test set. Images are taken from the Open Images
V4 (Kuznetsova et al., 2020) dataset, which con-
tains 600 object classes. Due to the unavailability
of ground truth captions of the test set, we use the
valid set of NoCaps.

To calculate CHAIR scores on NoCaps, we setup
a similar setting as used in COCO Caption. Specif-
ically, we map the fine-grained classes defined in
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Model
CIDEr
Optim
(SCST)

# Pretrain
Image-Text

Pairs

COCO Caption Karpathy Test
NoCaps Validation

Out-of-domain
B@4↑ C↑ M↑ S↑ CHi↓ CHs↓ C↑ S↑ CHi↓ CHs↓

OSCAR Base∗ ✗ 6.5M 34.4 117.6 29.1 21.9 7.1 13.0 - - - -
OSCAR Base∗ ✓ 6.5M 39.6 134.2 29.8 23.5 7.2 13.5 - - - -
VinVL Base ✗ 6.5M 38.2 129.3 30.3 23.6 5.3 10.0 83.1 10.8 12.1 21.2
VinVL Base ✓ 6.5M 40.9 140.4 30.9 25.1 5.7 10.9 87.5 11.7 17.4 32.1
VinVL Large ✗ 6.5M 38.5 130.8 30.4 23.4 5.5 10.5 - - - -
VinVL Large ✓ 6.5M 41.0 140.9 31.1 25.2 5.6 10.6 - - - -
BLIP Base ✗ 129M 39.7 133.3 31.0 23.8 4.9 8.9 112.1 14.2 6.6 10.5
BLIP Large ✗ 129M 40.4 136.7 31.1 24.3 4.7 8.8 115.3 14.4 6.4 10.5
OFA Large ✗ 21M† 41.7 140.5 31.2 24.2 4.7 8.9 103.2 13.3 6.4 10.2
OFA Large ✓ 21M† 43.8 149.5 31.8 25.9 4.2 8.1 113.1 15.2 7.1 12.4

Table 1: Image captioning results of recent state-of-the-art VLP models (Li et al., 2020c; Zhang et al., 2021a; Li
et al., 2022; Wang et al., 2022a) on the COCO Caption Karpathy test set and NoCaps validation set. Here, B@4,
C, M, S, and CH denote BLEU-4, CIDEr, METEOR, SPICE, and CHAIR, respectively. CIDEr Optim indicates
whether the SCST CIDEr optimization is used or not. All results are generated by using their officially provided
checkpoints and hyper-parameters, * means the model is finetuned by us as the provided one is broken. † denotes
the model also uses unimodal data besides image-text pairs.

NoCaps to coarse-grained categories based on the
hierarchical object relationship1 to improve the ef-
fectiveness of CHAIR metrics. We only add two
types of object categories to our final object list: 1)
super-categories that have sub-categories, and 2)
object categories that have neither super-category
nor sub-categories. Eventually, we construct a list
of 139 coarse-grained object categories from the
600 classes.

4 Object Hallucination in VLP Models

Benefitting from the vast advancement of various
VLP methods, the performance of image caption-
ing has been improved a lot by following a pretrain-
then-finetune schema. Generally, the performance
is measured by metrics like CIDEr (Vedantam
et al., 2015), SPICE (Anderson et al., 2016), ME-
TEOR (Banerjee and Lavie, 2005), and BLEU (Pa-
pineni et al., 2002), which consider the semantic
and syntactic similarity or n-gram-based fluency
between the model generated and ground truth cap-
tions. However, the faithfulness of captions gener-
ated by VLP models is neglected.

In this section, we provide a thorough analysis
of recent VLP models to investigate how much they
hallucinate when generating text conditioned on vi-
sual information. The results are shown in Table 1.
Models are finetuned on the COCO Caption train-
ing set and evaluated on both the COCO Caption

1https://github.com/nocaps-org/
image-feature-extractors/blob/master/data/oi_
categories.json

Ground Truth: “A green garbage 
can has an orange face on it.”

VinVLBase w/o SCST: “A green waste 
container with a face painted on it.”

VinVLBase w/ SCST: “A green waste 
container with a picture of a dog on it.”

Ground Truth: “A dresser with all of the 
drawers closed and something on top.”

OFALarge w/o SCST: “A dresser with a 
bunch of drawers on it.”

OFALarge w/ SCST: “A chest of 
drawers with a mirror on top of it.”

Figure 1: Comparison of image captioning examples
generated by VinVLBase and OFALarge with and with-
out the SCST CIDEr optimization. Red color denotes
the occurrence of object hallucination.

test set and the NoCaps valid set.

Overall, we observe two noteworthy insights.
Firstly, similar to the findings in Rohrbach et al.
(2018), for all CHAIR scores, they are not propor-
tional to standard evaluation metrics. Although
standard metrics (e.g., the cosine similarity in
CIDEr) could potentially penalize the wrong ob-
ject prediction, they do not directly reflect faith-
fulness. Captions can still have good scores from
standard metrics as long as they contain sufficient
accurate objects to fulfill coverage, even if hallu-
cinated objects exist. For example, VinVLLarge
achieves higher CIDEr and BLEU-4 scores than
VinVLBase, but its CHAIR scores are also higher.
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Therefore, it is important to have a supplementary
metric like CHAIR to reflect faithfulness besides
other metrics.

Secondly, the Self-Critical Sequence Training
(SCST) (Rennie et al., 2017) for the CIDEr opti-
mization method harms the faithfulness of gener-
ated captions. SCST is a reinforcement learning al-
gorithm that has been widely adopted as the second-
stage finetuning after the standard cross-entropy
optimization for image captioning (Anderson et al.,
2018; Zhou et al., 2020; Li et al., 2020c; Zhang
et al., 2021a; Hu et al., 2022; Wang et al., 2022a).
It calculates the reward based on the CIDEr score
by sampling captions during training without the
need of another baseline. Although SCST can sig-
nificantly boost performance on previous standard
metrics, it encourages models to generate more
hallucinated objects in the captions. For example,
applying SCST improves the CIDEr score by 11.1
and BLEU-4 score by 2.7 for VinVLBase, yet it
also increases 0.9 CHAIRs score on the COCO
Caption dataset.

While Rennie et al. (2017) also observed this
phenomenon by testing small scale models, we
show that SCST hurts VLP models less. When
the model is pre-trained very well, the side effect
of SCST is alleviated (e.g., the OFA large model).
Moreover, we demonstrate that this problem be-
comes more serious on out-of-domain images. For
the VinVLBase model, there are 10.9% more gen-
erated captions containing at least one hallucinated
object after using SCST. We speculate that the
CIDEr-based optimization encourages models to
generate more words or phrases that have higher
cosine similarities to the ground truth captions in
the vision-language representation space, which
can be plausible but not faithful.

We show a case study in Figure 1. After fine-
tuned by SCST, models will take a bigger risk to
generate more detailed yet incorrect information
(e.g., in the second example in Figure 1, the sen-
tence with hallucination generates the detailed in-
formation “mirror”, which cannot be found in the
image). This will further amplify the object hal-
lucination problem on out-of-domain images, as
models may have lower confidence in unfamiliar
visual concepts.

5 Probing Image Encoding Methods and
VLP Objectives

In this section, we systematically study two deter-
minants in VLP that are intuitively influential to
the severity of the object hallucination problem.
Firstly, we study how different types of image
encoding affect object hallucination, as they are
the key components of models to interpret visual
information. Specifically, we ablate three encod-
ing approaches including region-based, grid-based,
and patch-based. Secondly, we analyze how differ-
ent VLP objectives influence object hallucination.
We ablate three commonly used ones: image-text
contrastive (ITC), image-text matching (ITM), and
image-conditioned language modeling (ICLM). Im-
plementation details are described in Appendix A.

5.1 Model Architecture

CLIP. CLIP (Radford et al., 2021) is a dual-
stream VLP model that consists of an image en-
coder and a text encoder. It is pre-trained on 400
million image-text pairs data using a cross-modal
contrastive loss. Specifically, CLIP explores the
image encoder with different sizes of two architec-
tures2, including the ResNet (He et al., 2016) and
the Vision Transformer (ViT) (Dosovitskiy et al.,
2021). The resulting image and text encoders are
aligned in the same multimodal feature space.

BERT. BERT (Devlin et al., 2019) is a Trans-
former (Vaswani et al., 2017) model pre-trained
on a large corpus by the masked language mod-
eling (MLM) and sentence permutation losses. It
is shown to have excellent performance on vari-
ous downstream tasks after finetuning. Moreover,
BERT can also handle generation tasks when the
self-attention layers are restricted to the left-to-
right direction to generate text auto-regressively.
In this paper, we refer to this variant as BertLM.

We design a flexible architecture that can plug in
various visual encoders and fit modern VLP objec-
tives without introducing extra influential factors.
As shown in Figure 4, the model consists of two
parts, a visual encoder to encode images and a text
decoder to generate sentences conditioned on the
image representations. We use two separate mod-
ules rather than a unified single-stream model, as
it is convenient to alter the visual encoder while
keeping the text decoder the same. Specifically,

2https://github.com/openai/CLIP/blob/main/
model-card.md
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Visual
Encoder

#Params
COCO

Karpathy Test
NoCaps Val

Out-of-domain
C↑ CHi↓ CHs↓ C↑ CHi↓ CHs↓

Region features

BUTD-RN101 45M 110.6 9.1 15.9 40.5 36.7 49.0
ResNeXt-152 60M 115.9 7.1 12.9 45.1 30.5 41.1

Grid features

RN50×4 83M 107.6 11.2 19.1 41.6 37.5 49.9
RN50×16 160M 111.6 9.0 15.8 47.5 33.1 45.2
RN50×64 401M 115.8 7.5 13.2 56.2 26.3 36.6

Patch features

ViT-B/32 84M 108.9 10.3 17.9 44.4 34.7 46.8
ViT-B/16 82M 111.8 8.1 14.7 51.9 30.3 42.3
ViT-L/14 290M 120.7 6.4 11.6 59.8 24.2 33.5

Table 2: Results of different types of visual encoders
with the same BertLM text decoder on the COCO Karpa-
thy test set and NoCaps validation set (out-of-domain).

for region-based image features, we explore the
Faster R-CNN object detector (Ren et al., 2015)
with two different backbones: the ResNet-101 used
in BUTD (Anderson et al., 2018) and the ResNeXt-
152 (Xie et al., 2017) used by Zhang et al. (2021a).
They are both pre-trained on COCO (Lin et al.,
2014) and Visual Genome (Krishna et al., 2016)
datasets for object detection. For the grid-based
and patch-based image features, we use the CLIP
ResNet variants and CLIP ViT variants, respec-
tively. The reason for using CLIP is that all its
variants are pre-trained on the same data and there
is a wide range of different model sizes. For all
visual encoders, we use the same BertLM as the
text decoder.

5.2 Effects of Different Image Features

Recognizing visual objects correctly is crucial for
avoiding object hallucination. In Table 2, we com-
pare the performance of different visual encoders
with the same text decoder on COCO (in-domain)
and NoCaps (out-of-domain) datasets.

Overall, patch-based visual encoders attain the
best performance in terms of avoiding object hal-
lucination. Models with grid features halluci-
nate more frequently when achieving comparable
CIDEr scores to the other models. For example,
on COCO, RN50×16 has a similar CIDEr score
to ViT-B/16 but higher CHAIRs, which is also ob-
served between RN50×64 and ResNeXt-152. We
conjecture that the inductive biases (Cohen and
Shashua, 2017) of the Convolutional Neural Net-
work (CNN), such as locality and translation invari-
ance, weaken the connection of different charac-
teristics of a single object and thus lead to more
hallucination. Oppositely, regional or patch-level

VLP Objectives
COCO

Karpathy Test
NoCaps Val

Out-of-domain
C↑ CHi↓ CHs↓ C↑ CHi↓ CHs↓

(a) None 120.7 6.4 11.6 59.8 24.2 33.5

Discriminative Objectives

CC3M

(b) ITC 120.5 6.5 11.7 59.9 24.4 33.8
(c) ITCLate 121.2 6.2 11.3 60.5 23.8 32.9
(d) ITCLate + ITM 121.0 6.3 11.5 60.2 23.9 33.1
(e) ITCLate + ITMHard 120.9 6.6 11.7 59.9 24.2 33.3

Generative Objectives

Visual Genome

(f) LM 120.3 5.5 9.8 62.8 9.0 13.9
(g) LM + ObjectMLM 121.9 5.3 9.2 63.8 8.8 13.1

CC3M

(h) LM 122.3 6.0 10.9 92.1 8.3 14.5
(i) LM + ObjectMLM 124.5 5.1 9.0 94.0 8.0 13.1

(c) + (i) 125.1 4.9 8.8 94.5 7.9 12.5

Table 3: Comparison of the effects of different VLP ob-
jectives and their combination on object hallucination.

features are obtained by directly dividing images
into different parts and further associating them
through positional embeddings. In addition, we
see that a smaller patch resolution helps to reduce
object hallucination without enlarging the model
size.

For region-based visual encoders, although they
achieve modest results on COCO with relatively
small model sizes, their performance of object hal-
lucination on out-of-domain images drops dramat-
ically. One important reason is that the output
of such encoders only contains representations of
detected visual objects rather than the whole im-
age, which may amplify detection errors as there is
much less context. Moreover, as the object detector
is pre-trained separately from the whole model and
its parameters are fixed during finetuning, this gap
could also aggravate object hallucination on unseen
images.

5.3 Effects of Different VLP Objectives

Based on the best performing ViT-L/14 baseline,
we explore three commonly used vision-language
pre-training objectives and their variants that could
potentially affect object hallucination.

5.3.1 Pre-training Datasets
We explore two pre-training datasets with image-
text pairs: 1) the VG Caption from the Visual
Genome (Krishna et al., 2016) dataset, which con-
tains 10K images and each image has multiple cor-
responding descriptions; and 2) a more large-scale
dataset CC3M (Sharma et al., 2018) that contains
three millions of image-text pairs.
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5.3.2 Image-Text Contrastive (ITC) Loss
The cross-modal contrastive loss is shown to be
fairly effective in representation learning (Tian
et al., 2020; Sigurdsson et al., 2020) and VLP (Rad-
ford et al., 2021; Li et al., 2021a, 2022). It aligns
the visual and textual representations into the same
multimodal feature space by shortening the dis-
tance between an image and a text if they are paired,
or enlarging if they are not.

Counter-intuitively, as shown in Table 3 (b), ITC
has negligible influence on the faithfulness of gen-
erated captions. We speculate that it only enhances
the model’s understanding of global-level represen-
tations rather than token-level alignment between
images and texts. To verify, we further test the ITC
with a more fine-grained token-level late interac-
tion (ITCLate) proposed by Yao et al. (2022). As
shown in Table 3 (c), ITCLate is more effective than
the vanilla ITC and slightly reduces object halluci-
nation. We think this benefits from the word-patch
alignment ability enabled by ITCLate.

5.3.3 Image-Text Matching (ITM) Loss
ITM is a widely used objective in VLP (Li et al.,
2020a; Chen et al., 2020; Zhou et al., 2021). It
is a binary classification task that aims to make
the model learn whether an image and a sentence
are paired or not. Based on that, ITM with hard
negatives (ITMHard) is introduced to increase the
difficulty of the task, which is shown to be very ef-
fective on representation learning (Kalantidis et al.,
2020; Robinson et al., 2021; Li et al., 2021b). We
follow the ITM loss proposed by Li et al. (2022),
in which an in-batch negative example is sampled
either uniformly (normal negative) or from the sim-
ilarity distribution of image-text pairs computed by
ITC (hard negative).

The results are exhibited in Table 3 (d) (e). Both
ITM and ITMHard are not highly correlated with the
object hallucination problem. They only slightly
reduce hallucination in generated texts on out-of-
domain images. Although the ITMHard can be seen
as an analogy to the object hallucination problem
(plausible but not correct) in a global and discrim-
inative way, it has a negligible effect on reducing
hallucination for downstream generative tasks.

5.3.4 Image-Conditioned Language Modeling
Various image-conditioned language modeling
losses have been proposed in the VLP re-
search, in the form of masked language modeling
(MLM) (Sun et al., 2019; Tan and Bansal, 2019;

COCO Caption
“Several boats docked at a floating dock at a marina.”,
“Several boats sitting on a docking station on the water.”,
“A bunch of speedboats near a harbor with flags from all over the 
world.”, etc.

Visual Genome Caption
“A dock in a city.”, “Long silver dock in water.”
“Very blue, calm water in marina.”, “The water is calm.”
“A dock is floating on the water.”, “Row of docked boats.”, etc.

Figure 2: Comparison of ground truth captions in
COCO and Visual Genome datasets for the same image.

Ground Truth: “A soccer ball is next 
to a wall.”, “A soccer ball that is 
placed on the ground.”, etc.

ViT-L/14 w/o VG: “A close up of a 
soccer ball on a table.”

ViT-L/14 w/ VG: “A close up of a soccer 
ball on the ground.”

Ground Truth: “A large black printer 
seems to have a piece of paper in it 
sideways.”, “A large printer with 
paper coming out of it”, etc.

ViT-L/14 w/o VG: “A pair of scissors 
sitting on top of a piece of paper.”

ViT-L/14 w/ VG: “A large black machine.”

Figure 3: Comparison of generated captions with or
without the image-conditioned language modeling pre-
training on the VG dataset before finetuning.

Su et al., 2020), text infilling (Dai et al., 2022;
Wang et al., 2022a), prefix LM (Wang et al., 2022b),
and causal LM (Hu et al., 2022). This is one of
the most crucial pre-training losses to activate the
cross-modal text generation ability for the VLP
model.

We first examine the causal LM loss, which is
exactly the same loss as the image captioning loss,
but used in the pre-training on a much larger scale.
Surprisingly, as shown in Table 3 (f), although pre-
training on the VG Caption does not improve previ-
ous standard metrics like CIDEr, it helps to reduce
object hallucination by a large margin when com-
pared to (a).

There are two reasons behind this performance
lift. Firstly, as described in Figure 2, for each
image, VG contains more captions than COCO.
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Each caption in VG is much shorter and only de-
scribes one specific aspect of the image, unlike
the global descriptions in COCO. Therefore, pre-
training on VG and then finetuning on COCO is
a fine-to-coarse process. It enables models to first
accurately describe different parts of an image and
connect these clues together at a higher viewing
point. Secondly, due to the nature of the short
length of VG captions, the model becomes slightly
more cautious. On average, after adding VG data
in the pre-training, there are 0.08 and 0.24 fewer
objects generated in each caption on COCO and
NoCaps, respectively. This observation aligns with
the sentence simplification method proposed by
Biten et al. (2022), which simplifies sentences to
augment data and further mitigate object hallucina-
tion. Figure 3 illustrates VG’s effects on generated
samples. The model is more faithful but more likely
to lack some details when it is not confident.

For CC3M, we observe a leap in all metrics. It
improves the general image translation ability of
the model, which can be seen as large-scale data
augmentation. This indicates that seeing a suffi-
cient amount of data and co-occurrence of various
objects during pre-training help to mitigate object
hallucination to some extent. However, data aug-
mentation may not be the key to drastically tackle
object hallucination. As discussed in Section 4,
object hallucination still happens frequently even if
the model is pre-trained on large-scale data. There-
fore, we believe that enhancing the controllability
of vision-conditioned text generation would be a
promising future direction. More case studies are
exhibited in Appendix B.

6 Object Masked Language Modeling

Based on the findings in Section 5, we propose a
simple yet effective pre-training objective to miti-
gate object hallucination by improving object-level
image-text alignment. It is named Object Masked
Language Modeling (ObjMLM). As shown in Fig-
ure 4, ObjMLM can be seen as a variant of the
MLM loss by masking all the objects in the text
that appear in the image. For each sentence, we
mask the object words and phrases as defined in
the object category lists of both COCO and No-
Caps by performing exact matching. Similar to the
whole word masking (Cui et al., 2021), we conduct
whole object masking so that there will be only one
[MASK] token to replace each object.

Compare the results shown in lines (h) and (i)

Image Encoder Self Attention

Vision-language 
Cross Attention

Feed Forward

BertLM

...
Linear

A [MASK] resting on the ground,  
as an [MASK] looks on.

A camel resting on the ground,  
as an antelope looks on.

Figure 4: An overview of the model architecture and
the training of our proposed ObjMLM. We use the same
architecture as described in Section 5 to show the ef-
fectiveness of ObjMLM. Here, the image encoder can
be one of the region-based, grid-based, or patch-based
variants as described in Section 5.2. For ObjMLM, we
use the ViT-L/14.

of Table 3, by plugging ObjMLM into an exist-
ing VLP setting, the CHAIRs score is reduced by
17.4%. This is a non-trivial improvement without
introducing more pre-training data. To further vali-
date ObjMLM’s effectiveness, we replace it by the
standard MLM loss with a 15% masking rate. How-
ever, it only reduces CHAIRs by 1.7%, which is
not significant. We conjecture that ObjMLM adds a
constraint that indirectly controls the model to only
generate objects that are visible in the input im-
age. Additionally, ObjMLM enhances the model’s
recognition ability when describing the spatial re-
lationship between objects, which is a common
scenario that causes hallucinations frequently.

7 Conclusion

This paper systematically studies the objection hal-
lucination phenomenon in VLP models, which is
a severe problem but neglected in contemporary
VLP works. We find that recent large VLP models
still hallucinate frequently. Moreover, the widely
used SCST method harms the faithfulness of gen-
erated sentences in image captioning, even if it
improves previous standard metrics. Furthermore,
we discover that image encoding matters and the
patch-based input with smaller resolution helps
mitigate object hallucination. Finally, we ablate
commonly used VLP losses and show that token-
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level image-text alignment and controllability of
the generation are crucial. We further propose a
new loss named ObjMLM, which reduces object
hallucination by 17.4% for an existing VLP setting.
We believe our findings are beneficial for future
work to build more responsible VLP models.

Limitations

We understand that the hallucination problem is
a big research topic and it is not just limited to
object hallucination. In this paper, we focus on
the investigation and mitigation of object halluci-
nation, leaving other types of hallucination in VLP
for future work. Another limitation is that for the
discussion of recent VLP models in Section 4, we
only study those whose pre-trained checkpoints are
publicly available. For the non-released ones, we
cannot pre-train them by ourselves due to the lack
of large-scale GPU power and private pre-training
datasets.

References
Harsh Agrawal, Karan Desai, Yufei Wang, Xinlei Chen,

Rishabh Jain, Mark Johnson, Dhruv Batra, Devi
Parikh, Stefan Lee, and Peter Anderson. 2019. no-
caps: novel object captioning at scale. International
Conference on Computer Vision, pages 8947–8956.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,
Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Mal-
colm Reynolds, Roman Ring, Eliza Rutherford,
Serkan Cabi, Tengda Han, Zhitao Gong, Sina Saman-
gooei, Marianne Monteiro, Jacob Menick, Sebastian
Borgeaud, Andrew Brock, Aida Nematzadeh, Sa-
hand Sharifzadeh, Mikolaj Binkowski, Ricardo Bar-
reira, Oriol Vinyals, Andrew Zisserman, and Karen
Simonyan. 2022. Flamingo: a visual language model
for few-shot learning. In Advances in Neural Infor-
mation Processing Systems.

Peter Anderson, Basura Fernando, Mark Johnson, and
Stephen Gould. 2016. Spice: Semantic propositional
image caption evaluation. In ECCV.

Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
2018. Bottom-up and top-down attention for im-
age captioning and visual question answering. 2018
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 6077–6086.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In IEEvalua-
tion@ACL.

Ali Furkan Biten, Lluís Gómez, and Dimosthenis
Karatzas. 2022. Let there be a clock on the beach:
Reducing object hallucination in image captioning.
In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV), pages
1381–1390.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El
Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. 2020. Uniter: Universal image-text
representation learning. In ECCV.

Jaemin Cho, Jie Lei, Hao Tan, and Mohit Bansal. 2021.
Unifying vision-and-language tasks via text genera-
tion. In Proceedings of the 38th International Con-
ference on Machine Learning, volume 139 of Pro-
ceedings of Machine Learning Research, pages 1931–
1942. PMLR.

Nadav Cohen and Amnon Shashua. 2017. Inductive
bias of deep convolutional networks through pooling
geometry. In International Conference on Learning
Representations.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing
Yang, Shijin Wang, and Guoping Hu. 2021. Pre-
training with whole word masking for chinese bert.
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 29:3504–3514.

Wenliang Dai, Lu Hou, Lifeng Shang, Xin Jiang, Qun
Liu, and Pascale Fung. 2022. Enabling multimodal
generation on CLIP via vision-language knowledge
distillation. In Findings of the Association for Com-
putational Linguistics: ACL 2022, pages 2383–2395,
Dublin, Ireland. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng,
Chang Zhou, Da Yin, Junyang Lin, Xu Zou, Zhou
Shao, Hongxia Yang, and Jie Tang. 2021. Cogview:
Mastering text-to-image generation via transformers.
In NeurIPS.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image
is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on
Learning Representations.

Nouha Dziri, Andrea Madotto, Osmar Zaiane, and
Avishek Joey Bose. 2021. Neural path hunter: Re-
ducing hallucination in dialogue systems via path
grounding. EMNLP.

2144

https://openreview.net/forum?id=EbMuimAbPbs
https://openreview.net/forum?id=EbMuimAbPbs
https://proceedings.mlr.press/v139/cho21a.html
https://proceedings.mlr.press/v139/cho21a.html
https://openreview.net/forum?id=BkVsEMYel
https://openreview.net/forum?id=BkVsEMYel
https://openreview.net/forum?id=BkVsEMYel
https://doi.org/10.18653/v1/2022.findings-acl.187
https://doi.org/10.18653/v1/2022.findings-acl.187
https://doi.org/10.18653/v1/2022.findings-acl.187
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy


Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun.
2016. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 770–778.

X. Hu, Z. Gan, J. Wang, Z. Yang, Z. Liu, Y. Lu, and
L. Wang. 2022. Scaling up vision-language pretrain-
ing for image captioning. In 2022 IEEE/CVF Con-
ference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 17959–17968, Los Alamitos, CA,
USA. IEEE Computer Society.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Yejin Bang, Wenliang Dai,
Andrea Madotto, and Pascale Fung. 2022. Survey of
hallucination in natural language generation. ACM
Computing Surveys.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana
Parekh, Hieu Pham, Quoc V. Le, Yun-Hsuan Sung,
Zhen Li, and Tom Duerig. 2021. Scaling up vi-
sual and vision-language representation learning with
noisy text supervision. In ICML.

Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion,
Philippe Weinzaepfel, and Diane Larlus. 2020. Hard
negative mixing for contrastive learning. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 21798–21809. Curran Associates,
Inc.

Andrej Karpathy and Li Fei-Fei. 2017. Deep visual-
semantic alignments for generating image descrip-
tions. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39:664–676.

Wonjae Kim, Bokyung Son, and Ildoo Kim. 2021. Vilt:
Vision-and-language transformer without convolu-
tion or region supervision. In ICML.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A. Shamma,
Michael S. Bernstein, and Li Fei-Fei. 2016. Vi-
sual genome: Connecting language and vision us-
ing crowdsourced dense image annotations. Interna-
tional Journal of Computer Vision, 123:32–73.

Alina Kuznetsova, Hassan Rom, Neil Gordon Alldrin,
Jasper R. R. Uijlings, Ivan Krasin, Jordi Pont-
Tuset, Shahab Kamali, Stefan Popov, Matteo Malloci,
Alexander Kolesnikov, Tom Duerig, and Vittorio Fer-
rari. 2020. The open images dataset v4. Interna-
tional Journal of Computer Vision, 128:1956–1981.

Gen Li, Nan Duan, Yuejian Fang, Daxin Jiang, and
Ming Zhou. 2020a. Unicoder-vl: A universal en-
coder for vision and language by cross-modal pre-
training. In AAAI.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven
Hoi. 2022. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding
and generation. In ICML.

Junnan Li, Ramprasaath R. Selvaraju, Akhilesh Deepak
Gotmare, Shafiq R. Joty, Caiming Xiong, and Steven
C. H. Hoi. 2021a. Align before fuse: Vision and
language representation learning with momentum
distillation. In NeurIPS.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui
Hsieh, and Kai-Wei Chang. 2020b. What does BERT
with vision look at? In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 5265–5275, Online. Association
for Computational Linguistics.

Wei Li, Can Gao, Guocheng Niu, Xinyan Xiao, Hao
Liu, Jiachen Liu, Hua Wu, and Haifeng Wang. 2021b.
UNIMO: Towards unified-modal understanding and
generation via cross-modal contrastive learning. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 2592–
2607, Online. Association for Computational Lin-
guistics.

Xiujun Li, Xi Yin, Chunyuan Li, Xiaowei Hu,
Pengchuan Zhang, Lei Zhang, Lijuan Wang,
Houdong Hu, Li Dong, Furu Wei, Yejin Choi, and
Jianfeng Gao. 2020c. Oscar: Object-semantics
aligned pre-training for vision-language tasks. In
ECCV.

Junyang Lin, Rui Men, An Yang, Chan Zhou, Ming
Ding, Yichang Zhang, Peng Wang, Ang Wang,
Le Jiang, Xianyan Jia, J. Zhang, Jianwei Zhang,
Xu Zou, Zhikang Li, Xiao Qing Deng, Jie Liu, Jin-
bao Xue, Huiling Zhou, Jianxin Ma, Jin Yu, Yong Li,
Wei Lin, Jingren Zhou, J ie Tang, and Hongxia Yang.
2021. M6: A chinese multimodal pretrainer. ArXiv,
abs/2103.00823.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C. Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In ECCV.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In ICLR.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.
2019. Vilbert: Pretraining task-agnostic visiolinguis-
tic representations for vision-and-language tasks. In
NeurIPS.

Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh.
2018. Neural baby talk. 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
7219–7228.

Chih-Yao Ma, Yannis Kalantidis, Ghassan AlRegib, Pe-
ter Vajda, Marcus Rohrbach, and Zsolt Kira. 2020.
Learning to generate grounded image captions with-
out localization supervision. In Proceedings of the
European Conference on Computer Vision (ECCV).

2145

https://doi.org/10.1109/CVPR52688.2022.01745
https://doi.org/10.1109/CVPR52688.2022.01745
https://proceedings.neurips.cc/paper/2020/file/f7cade80b7cc92b991cf4d2806d6bd78-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f7cade80b7cc92b991cf4d2806d6bd78-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.469
https://doi.org/10.18653/v1/2020.acl-main.469
https://doi.org/10.18653/v1/2021.acl-long.202
https://doi.org/10.18653/v1/2021.acl-long.202
https://arxiv.org/abs/1906.00283
https://arxiv.org/abs/1906.00283


Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan McDonald. 2020. On faithfulness and factu-
ality in abstractive summarization. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1906–1919.

Feng Nie, Jin-Ge Yao, Jinpeng Wang, Rong Pan, and
Chin-Yew Lin. 2019. A simple recipe towards re-
ducing hallucination in neural surface realisation. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2673–
2679, Florence, Italy. Association for Computational
Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In ACL.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In NeurIPS.

John Pavlopoulos, Vasiliki Kougia, and Ion Androut-
sopoulos. 2019. A survey on biomedical image cap-
tioning. In Proceedings of the Second Workshop on
Shortcomings in Vision and Language, pages 26–36,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. In ICML.

Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian
Sun. 2015. Faster r-cnn: Towards real-time object de-
tection with region proposal networks. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
39:1137–1149.

Steven J. Rennie, Etienne Marcheret, Youssef Mroueh,
Jerret Ross, and Vaibhava Goel. 2017. Self-critical
sequence training for image captioning. 2017 IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 1179–1195.

Joshua David Robinson, Ching-Yao Chuang, Suvrit Sra,
and Stefanie Jegelka. 2021. Contrastive learning with
hard negative samples. In International Conference
on Learning Representations.

Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns,
Trevor Darrell, and Kate Saenko. 2018. Object hallu-
cination in image captioning. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 4035–4045.

Piyush Sharma, Nan Ding, Sebastian Goodman, and
Radu Soricut. 2018. Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic im-
age captioning. In ACL.

Sheng Shen, Liunian Harold Li, Hao Tan, Mohit Bansal,
Anna Rohrbach, Kai-Wei Chang, Zhewei Yao, and
Kurt Keutzer. 2022. How much can CLIP benefit
vision-and-language tasks? In International Confer-
ence on Learning Representations.

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela,
and Jason Weston. 2021. Retrieval augmentation
reduces hallucination in conversation. EMNLP.

Gunnar A. Sigurdsson, Jean-Baptiste Alayrac, Aida
Nematzadeh, Lucas Smaira, Mateusz Malinowski,
João Carreira, Phil Blunsom, and Andrew Zisserman.
2020. Visual grounding in video for unsupervised
word translation. 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 10847–10856.

Dan Su, Xiaoguang Li, Jindi Zhang, Lifeng Shang, Xin
Jiang, Qun Liu, and Pascale Fung. 2022. Read before
generate! faithful long form question answering with
machine reading. In Findings of the Association for
Computational Linguistics: ACL 2022, pages 744–
756.

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu,
Furu Wei, and Jifeng Dai. 2020. Vl-bert: Pre-training
of generic visual-linguistic representations. In Inter-
national Conference on Learning Representations.

Chen Sun, Austin Myers, Carl Vondrick, Kevin P. Mur-
phy, and Cordelia Schmid. 2019. Videobert: A joint
model for video and language representation learn-
ing. 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 7463–7472.

Hao Tan and Mohit Bansal. 2019. LXMERT: Learning
cross-modality encoder representations from trans-
formers. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5100–5111, Hong Kong, China. Association for Com-
putational Linguistics.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. 2020.
Contrastive multiview coding. In ECCV.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi
Parikh. 2015. Cider: Consensus-based image descrip-
tion evaluation. 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4566–
4575.

2146

https://doi.org/10.18653/v1/P19-1256
https://doi.org/10.18653/v1/P19-1256
https://doi.org/10.18653/v1/W19-1803
https://doi.org/10.18653/v1/W19-1803
https://openreview.net/forum?id=CR1XOQ0UTh-
https://openreview.net/forum?id=CR1XOQ0UTh-
https://openreview.net/forum?id=zf_Ll3HZWgy
https://openreview.net/forum?id=zf_Ll3HZWgy
https://openreview.net/forum?id=SygXPaEYvH
https://openreview.net/forum?id=SygXPaEYvH
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.18653/v1/D19-1514
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai
Bai, Zhikang Li, Jianxin Ma, Chang Zhou, Jingren
Zhou, and Hongxia Yang. 2022a. OFA: Unifying
architectures, tasks, and modalities through a sim-
ple sequence-to-sequence learning framework. In
Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pages 23318–23340.
PMLR.

Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai,
Yulia Tsvetkov, and Yuan Cao. 2022b. SimVLM:
Simple visual language model pretraining with weak
supervision. In International Conference on Learn-
ing Representations.

Yijun Xiao and William Yang Wang. 2021. On hal-
lucination and predictive uncertainty in conditional
language generation. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
2734–2744.

Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen
Tu, and Kaiming He. 2017. Aggregated residual
transformations for deep neural networks. 2017
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5987–5995.

Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu,
Minzhe Niu, Hang Xu, Xiaodan Liang, Zhenguo
Li, Xin Jiang, and Chunjing Xu. 2022. FILIP: Fine-
grained interactive language-image pre-training. In
International Conference on Learning Representa-
tions.

Fei Yu, Jiji Tang, Weichong Yin, Yu Sun, Hao Tian,
Hua Wu, and Haifeng Wang. 2021a. Ernie-vil:
Knowledge enhanced vision-language representa-
tions through scene graphs. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(4):3208–
3216.

Tiezheng Yu, Wenliang Dai, Zihan Liu, and Pascale
Fung. 2021b. Vision guided generative pre-trained
language models for multimodal abstractive summa-
rization. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3995–4007, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas
Steiner, Daniel Keysers, Alexander Kolesnikov, and
Lucas Beyer. 2022. Lit: Zero-shot transfer with
locked-image text tuning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 18123–18133.

Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei
Yang, Lei Zhang, Lijuan Wang, Yejin Choi, and Jian-
feng Gao. 2021a. Vinvl: Revisiting visual represen-
tations in vision-language models. 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 5575–5584.

Wenqiao Zhang, Haochen Shi, Siliang Tang, Jun Xiao,
Qiang Yu, and Yueting Zhuang. 2021b. Consensus
graph representation learning for better grounded im-
age captioning. Proceedings of the AAAI Conference
on Artificial Intelligence, 35(4):3394–3402.

Wenqiao Zhang, Xin Eric Wang, Siliang Tang, Haizhou
Shi, Haochen Shi, Jun Xiao, Yueting Zhuang, and
William Yang Wang. 2020. Relational graph learning
for grounded video description generation. In Pro-
ceedings of the 28th ACM International Conference
on Multimedia, MM ’20, page 3807–3828, New York,
NY, USA. Association for Computing Machinery.

Luowei Zhou, Hamid Palangi, Lei Zhang, Houdong Hu,
Jason J. Corso, and Jianfeng Gao. 2020. Unified
vision-language pre-training for image captioning
and vqa. ArXiv, abs/1909.11059.

Mingyang Zhou, Luowei Zhou, Shuohang Wang,
Yu Cheng, Linjie Li, Zhou Yu, and Jingjing Liu. 2021.
Uc2: Universal cross-lingual cross-modal vision-and-
language pre-training. 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 4153–4163.

2147

https://proceedings.mlr.press/v162/wang22al.html
https://proceedings.mlr.press/v162/wang22al.html
https://proceedings.mlr.press/v162/wang22al.html
https://openreview.net/forum?id=GUrhfTuf_3
https://openreview.net/forum?id=GUrhfTuf_3
https://openreview.net/forum?id=GUrhfTuf_3
https://openreview.net/forum?id=cpDhcsEDC2
https://openreview.net/forum?id=cpDhcsEDC2
https://doi.org/10.1609/aaai.v35i4.16431
https://doi.org/10.1609/aaai.v35i4.16431
https://doi.org/10.1609/aaai.v35i4.16431
https://doi.org/10.18653/v1/2021.emnlp-main.326
https://doi.org/10.18653/v1/2021.emnlp-main.326
https://doi.org/10.18653/v1/2021.emnlp-main.326
https://doi.org/10.1609/aaai.v35i4.16452
https://doi.org/10.1609/aaai.v35i4.16452
https://doi.org/10.1609/aaai.v35i4.16452
https://doi.org/10.1145/3394171.3413746
https://doi.org/10.1145/3394171.3413746


A Implementation Details

Our experiments are implemented in the PyTorch framework (Paszke et al., 2019). For both pre-training
and finetuning, we use 8 Nvidia V100 GPUs. As mentioned in Section 5.1, we use the official CLIP
checkpoints provided on GitHub. For the text decoder BertLM, we initialize model weights from the
bert-base-uncased checkpoint with 110M parameters. For the finetuning on COCO Caption, we use a
batch size of 512 and train the models with the AdamW optimizer (Loshchilov and Hutter, 2019) for 10
epochs with a learning rate of 5× 10−5 and a weight decay of 1× 10−2. The learning rate is decayed
linearly after each epoch with a rate of 0.85. For the pre-training of text generation losses (LM and
ObjMLM), we keep the same hyper-parameters with a learning rate warmup within the first epoch. For
ITC and ITM losses, we increase the batch size to 1024 as they tend to have a better performance with
more negative samples.

B Additional Case Studies

Ground Truth: “A drawstring backpack has 
a green camouflage print.”
------------------------------------------------
BLIPlarge: “A backpack with a 
camouflage pattern on it.”
RN50x64: “A backpack that is sitting on 
the ground.”
VinVLbase: “A helmet sitting on top of a 
bag.”
VinVLbase w/ SCST: “A bag with a black 
helmet on top of it.”
ViT-L/14 w/ LM & ObjMLM: “A 
backpack that is sitting on a white 
surface.”
ViT-L/14 w/ VG: “A backpack that is 
sitting on a bed.”

Ground Truth: “Kitchen cabinets with wood 
and blue painted doors and shelves.”
-------------------------------------------------
BLIPlarge: “A kitchen with wooden 
cabinets and blue cabinets.”
RN50x64: “A blue cabinet in a kitchen next 
to a sink.”
VinVLbase: “A blue cabinet in a kitchen 
next to a sink.”
VinVLbase w/ SCST: “A wooden cupboard 
with blue cabinetry and bottles in it.”
ViT-L/14 w/ LM & ObjMLM: “A kitchen 
with blue walls and wooden cabinets.”
ViT-L/14 w/ VG: “A kitchen with a blue 
cabinet and a white refrigerator.”

Ground Truth: “'Red cocktails with floating 
cut strawberries sit on a cloth.”
------------------------------------------------
BLIPlarge: “Three glasses of red liquid 
with strawberries in them.”
RN50x64: “A glass of red wine on a 
table.”
VinVLbase: “A close up of different 
cocktails in juice.”
VinVLbase w/ SCST: “A group of red 
juice in cocktail glasses on a table.”
ViT-L/14 w/ LM & ObjMLM: “A close 
up of glasses of wine on a table.”
ViT-L/14 w/ VG: “A close up of some 
glasses of liquid on a table.”

Ground Truth: “A scoreboard in a stadium 
displaying times for a race.”
----------------------------------------------
BLIPlarge: “A stadium with a large 
screen displaying a race.”
RN50x64: “A group of people standing 
on top of a field.”
VinVLbase: “A billboard with a score-
board in the background.”
VinVLbase w/ SCST: “A couple of 
scoreboards with billboards on a 
building.”
ViT-L/14 w/ LM & ObjMLM: “A 
scoreboard showing the score of a race.”
ViT-L/14 w/ VG: “a couple of televisions 
that are on a wall.”

Ground Truth: “A musical accordion has a 
leather strap on it.”
------------------------------------------------
BLIPlarge: “A close up of an accordion 
in a case.”
RN50x64: “A close up of a guitar case on 
the ground.”
VinVLbase: “An accordion sitting 
on top of a wooden bench.”
VinVLbase w/ SCST: “An accordion 
sitting on top of a wooden bench.”
ViT-L/14 w/ LM & ObjMLM: “A close up 
of a black and white accordion.”
ViT-L/14 w/ VG: “A close up of a musical 
instrument on a table.”

Ground Truth: “'A small muffin with some 
bright red spread on top.”.
-----------------------------------------------
BLIPlarge: “A close up of a muffin on a 
table.”
RN50x64: “A close up of a doughnut on 
a plate.”
VinVLbase: “A close up of a dessert on 
a plate.”
VinVLbase w/ SCST: “A group of 
desserts on a plate on a table.”
ViT-L/14 w/ LM & ObjMLM: “A cup of 
coffee with a cranberry sauce on it.”
ViT-L/14 w/ VG: “A pastry on a table.”

Figure 5: More cases of generated captions from different models, where the hallucinated objects are marked in red.
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Abstract

Memes can sway people’s opinions over social
media as they combine visual and textual infor-
mation in an easy-to-consume manner. Since
memes instantly turn viral, it becomes crucial
to infer their intent and potentially associated
harmfulness to take timely measures as needed.
A common problem associated with meme
comprehension lies in detecting the entities
referenced and characterizing the role of each
of these entities. Here, we aim to understand
whether the meme glorifies, vilifies, or victim-
izes each entity it refers to. To this end, we ad-
dress the task of role identification of entities in
harmful memes, i.e., detecting who is the ‘hero’,
the ‘villain’, and the ‘victim’ in the meme, if
any. We utilize HVVMemes – a memes dataset
on US Politics and Covid-19 memes, released
recently as part of the CONSTRAINT@ACL-
2022 shared-task. It contains memes, entities
referenced, and their associated roles: hero,
villain, victim, and other. We further design
VECTOR (Visual-semantic role dEteCToR), a ro-
bust multi-modal framework for the task, which
integrates entity-based contextual information
in the multi-modal representation and compare
it to several standard unimodal (text-only or
image-only) or multi-modal (image+text) mod-
els. Our experimental results show that our
proposed model achieves an improvement of
4% over the best baseline and 1% over the best
competing stand-alone submission from the
shared-task. Besides divulging an extensive
experimental setup with comparative analyses,
we finally highlight the challenges encountered
in addressing the complex task of semantic role
labeling within memes.

1 Introduction

Due to their pervasive nature, online social media
platforms have emerged as a conducive medium for
information exchange. Unfortunately, their demo-
cratic nature has fostered unabated dissemination

∗Equal contribution

Green Party, Jill Stein

Donald Trump Uber drivers, Ola drivers

Figure 1: Examples of heroes, villains and victims,
as portrayed within memes.

of hate speech (MacAvaney et al., 2019), misin-
formation (Wu et al., 2019), fake news (Aldwairi
and Alwahedi, 2018), propaganda (Da San Martino
et al., 2020), and other harmful content. Such infor-
mation manifests itself in various ways, and more
recently, in the form of memes. Though typically
intended to burlesque and lampoon world events,
political outlook, or daily routine, an ostensibly in-
nocuous meme can readily become a multi-modal
cause of distress with a dexterous blend of images
and texts. Due to their viral nature and ability to
circumvent censorship (Mina, 2014), social media
instigators and hatemongers are increasingly using
memes as a powerful medium for disseminating
spiteful content. Therefore, investigating the dark
side of memes has risen as a pertinent research
problem both in industry and academia (Sharma
et al., 2020a; Pramanick et al., 2021a).

Motivation. While there have been many studies
that have analyzed memes through the lens of emo-
tions (Sharma et al., 2020a), sarcasm (Kumar and
Garg, 2019), hate speech (Zhou et al., 2021; Kiela
et al., 2020), misinformation (Zidani and Moran,
2021), offensiveness (Suryawanshi et al., 2020),
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and harmfulness (Pramanick et al., 2021a,b), there
has been much less focus on analyzing semantic
roles present within memes. Understanding these
roles is critical for comprehending memes and nar-
rative framing of various social entities. Caricatur-
ing these entities with nefarious motives can lead to
misinformation propagation, social calumny, and
hatred towards minority communities. In addition
to the dark portrayals, memes sometimes depict the
sorrowful state of certain entities, illustrate their
heroism, etc. Consider the memes in Fig. 1. The
meme in Fig. 1 (a) portrays Jill Stein and the Green
Party as heroes for their feminist views. Fig. 1 (b)
draws a comparison between Adolf Hitler and Don-
ald Trump, thus portraying the latter as a villain for
his anti-immigrant views. Fig. 1 (c), on the other
hand, depicts the plight of Ola and Uber drivers,
who are out of work and victims of the lock-downs
due to the COVID-19 pandemic. Thus, through
depictions of heroism, villainy, and victimization,
memes act as an alluring means to spread entity-
relevant information and opinions.

Challenges. Despite growing interest in ana-
lyzing memes, identifying the underlying conno-
tations for the entities framed therein remains a
challenging task (Sharma et al., 2022b). Memes
are obscure due to their highly cryptic semantics,
and satirical content (Sabat et al., 2019). More-
over, categorizing the entities as a hero, a villain,
or a victim requires real-world, contextual, tempo-
ral, spatial, and commonsense knowledge, which
makes the task highly complex and subjective even
for humans. Therefore, off-the-shelf multi-modal
models that stand out well on conventional visual-
linguistic tasks often flounder for memes as they
are presumably inept to comprehend and capture
the veiled information and multi-modal nuances
present in a meme (Kiela et al., 2020).

Our Contributions. In this work, we propose
a powerful approach to tackle the novel task of
identifying the roles (the hero, the villain, and the
victim) of the entities present in memes.

We model the problem as a role identification
task and report the results for several unimodal and
multi-modal baselines to benchmark the task (and
the dataset) and assess its feasibility. We then prof-
fer VECTOR a vision and commonsense enriched
version of DeBERTa (He et al., 2020) for the task at
hand. As meme text often contains satirical content,
which tends to contradict the meme image, it is nec-
essary to consider mutual information from both

modalities. Also, meme content is often stated in a
non-obvious way, necessitating commonsense and
world knowledge. Thus, our VECTOR attempts to
infuse the relevant visual and commonsense knowl-
edge with linguistic representations. Utilizing Con-
ceptNet (Speer et al., 2017), we generate an entity-
relevant knowledge graph to represent common-
sense knowledge relevant to the meme. Moreover,
we employ a distinct multi-modal information fu-
sion strategy based on Optimal Transport. We ap-
propriate Optimal Transport-based Kernel Embed-
ding (OTKE) (Mialon et al., 2021) for cross-modal
correspondence. This technique by Mialon et al.
(2021) marries the concepts of optimal transport
theory with kernel techniques to provide robust and
adaptable cross-modal adaptation. Our qualitative
analysis underscores the importance of vision and
commonsense knowledge integration, as VECTOR
outperforms several competitive baselines.

Our contributions are summarized as follows:1,2

1. Bench-marking HVVMemes: We bench-mark
the HVVMemes via ten baselines with various
unimodal and multi-modal systems.

2. Multi-modal system for identifying the
hero, the villain, and the victim: We develop
VECTOR (Visual-semantic role dEteCToR), a
knowledge enriched multi-modal system that
integrates entity-based knowledge in the multi-
modal representations.

3. Extensive evaluation: We report sizeable
gains as part of our examination of VECTOR
against state-of-the-art models and shared-
task submissions.

4. Detailed Analysis: Along with the ablation
investigations, we provide detailed qualitative
and quantitative analysis.

2 Related Work

Online Harmfulness. Due to the exponential rise
of harmful content on various social media plat-
forms, the research community has piqued its cu-
riosity toward related studies. Some of them are
based on online trolling (Ortiz, 2020; Cook et al.,
2018), cyber-bullying (Kim et al., 2021; Kowal-
ski et al., 2014), cyber-stalking (Abu-Ulbeh et al.,
2021), and hate speech (MacAvaney et al., 2019;
Zhang and Luo, 2018). Other studies character-

1The source code is available at https://github.com/
LCS2-IIITD/VECTOR-Visual-semantic-role-dEteCToR.

2The dataset can be downloaded from the official
shared-task page: https://codalab.lisn.upsaclay.fr/
competitions/906.
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ize the correlation of racial and ethnic discrimina-
tion in the online and offline world (Relia et al.,
2019). Cheng et al. (2017) examined the psycho-
sociological outlook of online users toward online
trolling behavior analysis. Few noteworthy investi-
gations include characterizing homophily for self-
harm due to eating disorders (Chancellor et al.,
2016; Wang et al., 2017) using logistic regression
and snow-ball sampling, and suicide-ideation (Bur-
nap et al., 2015; Cao et al., 2019) via linguistic,
structural, affective and socio-psychological fea-
tures. For a significant period, most of these studies
have been dominated by text-oriented investigation
while obscuring knowledge about other modalities.

Characterising Online Targets. Another re-
search direction focuses on aspects such as rele-
vance, stance, hate speech, sarcasm, and dialogue
acts within hateful exchanges on Twitter in con-
ventional and multi-task settings (Zainuddin et al.,
2017; Gautam et al., 2020; Ousidhoum et al., 2019).
Zainuddin et al. (2018) addressed it by propos-
ing neural networks with word embeddings. In
contrast, the aspect-based sentiment was studied
while addressing data sparsity, classification accu-
racy, and sarcastic content identification (Zainud-
din et al., 2019). Shvets et al. (2021) demonstrated
the efficacy of a generic concept extraction mod-
ule for detecting the targets of hate speech. A few
other studies on characterizing targets in harmful
communication (Sap et al., 2020; Mathew et al.,
2021) addressed social bias and hate speech ex-
plainability for targeted protected categories. Ma
et al. (2018) used a hierarchical stack bidirectional
gated recurrent units to detect targets and associ-
ated sentiments. A similar objective was studied
in (Mitchell et al., 2013) but was formulated as
sequence tagging in low-resource settings. Silva
et al. (2016) used sentence structure to capture hate
speech targets on social media to address detec-
tion and prevention. Most of these studies either
focused on one primary designated target or empha-
sized detecting the association of sentiment while
ignoring the affective spectrum. As observed in
the literature (Shvets et al., 2021), such approaches
may not generalize well across domains.

Studies on Memes. A significant influx of
memes from online fringe communities, such as
Gab, Reddit, and 4chan, to mainstream platforms,
such as Twitter and Instagram, resulted in a mas-
sive epidemic of intended harm (Zannettou et al.,

Domain # Memes # Entity References

Hero Villain Victim Other Total

COVID-19 3381 200 747 407 3065 4419
US Politics 3552 288 1641 544 3242 5715

Table 1: Summary of statistics for # memes and enti-
ties referenced within them in HVVMemes (Sharma et al.,
2022b). Original train/val/test split ratio of 80:10:10
(%) for memes was preserved.

2018). Conventional visual features alongwith mul-
timodal associativity was explored towards detect-
ing memes in (Sharma. and Pulabaigari., 2020;
Sharma et al., 2020b). Several datasets capturing
offensiveness (Suryawanshi et al., 2020), hateful-
ness (Kiela et al., 2020; Gomez et al., 2020), and
harmfulness (Pramanick et al., 2021b), have been
curated. Detecting memetic harmfulness and tar-
geted categories are discussed in (Pramanick et al.,
2021b). Commonsense knowledge (Shang et al.,
2021), web entities, racial cues (Pramanick et al.,
2021b; Karkkainen and Joo, 2021), and other ex-
ternal cues have also been explored for detecting
offense, harm, and hate speech in memes. Partic-
ipatory events like the Facebook Hateful Meme
Challenge (Kiela et al., 2020) have laid a strong
foundation for community-level initiatives for de-
tecting hate speech in memes. As part of this chal-
lenge, several interesting approaches utilising meta
information, attentive interactions, and adaptive
loss are attempted in the multimodal setting (Das
et al., 2020; Sandulescu, 2020; Zhou et al., 2020;
Lippe et al., 2020). Most of these efforts either
address the detection tasks at various levels for
harmfulness; see a recent survey (Sharma et al.,
2022a) or design ensemble techniques lacking cost-
optimality. However, as per our knowledge, no
stand-alone approach reliably addresses the fine-
grained task of understanding the roles of specific
entities referred to within memes. We intend to
address these aspects by seeking a robust and gen-
eralizable multimodal framework.

3 Dataset

We employ HVVMemes, a dataset released as part of
CONSTRAINT@ACL-2022. It contains English
memes on two topics: 3, 552 memes about COVID-
19 (C) and 3, 381 memes related to US Politics (P).
The dataset primarily captures connotative roles:
hero, villain, and victim, for different entities ref-
erenced within memes. Table 1 shows a summary
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Figure 2: Schematic diagram of VECTOR. The vision module (left) consists of a ViT based image encoder and
commonsense module (right) leverages GCN-based commonsense knowledge graph embedding. Information fusion
module (top) fuses corresponding outputs toward final classification. OTK: Optimal Transport-based Kernel.

of HVVMemes.3 In general, most of the entities ref-
erenced in the memes do not have any connotation
associated (C: 3, 065, P: 3, 242) and are categorised
as other. Amongst the key categories under consid-
eration, villain has the most candidate references
(C: 747, P: 1, 641), followed by victim (C: 407, P:
544), and finally hero (C: 200, P: 288), within a
total of 3, 381 and 3, 552 memes for COVID-19
and US Politics, respectively. This highlights the
realistic trends on social media.

4 Proposed Approach

This section outlines our proposed model VECTOR
(Visual-semantic role dEteCToR) and its varied
components. As previously noted, role detection
for memetic entities is challenging and requires
real-world, contextual, and commonsense knowl-
edge. Thus, we propose a neuro-symbolic ap-
proach that integrates commonsense-enriched mod-
elling via graph (KG) structure into the language
modelling-based architecture (Zhang et al., 2021).
KG’s can be considered as discrete symbolic knowl-
edge, which we leverage along with multimodal
neural modelling. As shown in Fig. 2, VECTOR
houses two primary sub-modules. The Vision Mod-
ule leverages cross-modal interaction between the
visual-linguistic signals to grasp optimal contextual

3For additional details, please refer to the shared-task paper
(Sharma et al., 2022b).

information. The Commonsense Module integrates
commonsense cues through an entity-based knowl-
edge graph. Lastly, the Information Fusion Module
coalesces the information obtained via attention-
based fusion. In the following subsections, we go
over the specifics of each module.

Text Module: We use DeBERTa (He et al., 2020)
as our backbone model as it gives the best re-
sults amongst the text-only baselines (see Table 2).
Aside from the text encoded in the meme, ad-
ditional verbal information can be gleaned from
memes. Evidence by Blaier et al. (2021) sug-
gests that utilizing meme captions improves hateful
meme identification results. Furthermore, addi-
tional cues such as the person, the location, and
the entities present in the meme are helpful for
downstream tasks. Thus, we use such ancillary
information along with the OCR text. For image
captioning, we make use of the recently released
OFA model (Wang et al., 2022). For face identi-
fication, we use the same technique as the one by
Kun et al. (2022). The OCR text, the entity name,
the image caption, and the identified face labels are
concatenated and passed to the DeBERTa model.
We take the final layer representation Z ∈ Rl×d to
fuse information from other sub-modules.

Vision Module: Meme contents often contain
contradicting text and image pairs. Therefore, it
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is required to incorporate information from these
modalities to understand memes. Instead of using
the traditional cross-modal attention to facilitate
interaction between the two modalities, we utilize
an optimal transport-based kernel interaction (Mi-
alon et al., 2021). To begin with, we use a Vision
Transformer (Dosovitskiy et al., 2020) for generat-
ing the image representations Em ∈ Rlm×dm . The
text and the image representations undergo dimen-
sionality reduction by non-linear transformation,
followed by a self-attention layer (Vaswani et al.,
2017) as given by equations 1. This spawns vec-
tors Z ′m, E

′
m ∈ Rl×d′ . We concatenate these two

vectors and pass them to the Optimal Transport-
based Kernel Embedding (OTKE) layer to bring
about cross-modal interaction. It transforms the fea-
ture vectors to a Reproducing Kernel Hilbert Space
(RKHS) (Berlinet and Thomas-Agnan, 2004) fol-
lowed by a weighted pooling scheme using weights
determined by the transport plan between the set
and a trainable reference. Such a fusion technique
provides a theoretically grounded adaptive vector
for the task. This yields vector Zm ∈ Rl×d′ , given
by equation 2 below:

Z′
m = S

(
ZZT

√
d

)
Z E′

m = S

(
EmE

T
m√

dm

)
Em (1)

Zm = OTKE([Z′
m : E′

m]) (2)

Commonsense Module: Due to their cryptic na-
ture, identifying the intent of a meme is challenging.
Their satirical and non-obvious way of conveying
a message often requires commonsense compre-
hension. Thus, in our commonsense module, we
generate a commonsense knowledge graph based
on the entities in the meme. Similarly to (Shang
et al., 2021), we extract all the nouns and noun
phrases in the meme OCR and the meme caption.
We extract commonsense relation pairs having con-
fidence > 2 from ConceptNet (Speer et al., 2017)
for all the noun chunks from memes. Noun chunks,
commonsense entities, and the meme entity in ques-
tion form the nodes of the commonsense graph.
Each noun chunk from the OCR text is connected.
The same applies to the noun chunks in the meme
caption. A special aggregator token connects OCR
and caption-based nodes. Thus, for each entity
eij ∈ Ei = {ei1, ei2, . . . , ein}, we have a com-
monsense graph Gij = (Vij , Eij), where Vij and
Eij are the nodes and the edges of the graph.

The graph having edges between various entities,
noun chunks, and nouns, being undirected, repre-
sents a generic “connectivity”. Therefore, an edge

between nodes A and B indicates that they have
some association. By doing this, we wanted to cap-
ture the commonsense-based ’proximity’ of differ-
ent entities/concepts within the vectorized space for
common sense concepts. Vij represents a set node
(or vertices) constituting a commonsense graph cor-
responding to each entity.

For each node in the commonsense graph, we
generate an embedding of size dg using the last
layer representations from DeBERTa. In order to
facilitate the interaction between the nodes, the
commonsense graph goes through two rounds of
graph convolutions (Kipf and Welling, 2017) fol-
lowed by a max-pooling operation to spawn an
aggregated graph embedding Eg ∈ Rd′ . Similarly
to the vision module, the textual representations
Z and the commonsense graph representation Eg
undergo non-linear transformation and dimension-
ality reduction followed by self-attention (Vaswani
et al., 2017). This generates contextual vectors
Z ′g, E

′
g ∈ Rl×d′ , respectively. Finally, the com-

monsense knowledge is infused in the language
representations using OKTE, generating the final
vector Zg ∈ Rl×d′ .

Information Fusion Module: Each of the mod-
ules mentioned above integrates salient information
in the language representations. The information
fusion module aggregates the knowledge obtained
from all other modules using attention-based mu-
tual interaction (Vaswani et al., 2017). Concretely,
we concatenate the vectors of Z, Zm, and Zg and
pass them through a round of dimensionality reduc-
tion and non-linear transformations. Then, we use
a self-attention mechanism so that the information
obtained from each component interacts with one
another. The final generated vector Z ′c ∈ Rl×d is
passed to a classifier with a softmax activation to
predict the final labels.

5 Baselines

Unimodal Systems: We use a variety of text-
based and image-based models as our baseline
systems. Starting with the text baselines, we use
BERT (Devlin et al., 2019), and variants thereof
such as DistilBERT (Sanh et al., 2019), RoBERTa
(Liu et al., 2019), XLNet (Yang et al., 2019), and
DeBERTa (He et al., 2020). For the image-based
baselines, we start with a representation based on
ResNet-50 (He et al., 2016), followed by Vision
Transformer (ViT) (Dosovitskiy et al., 2020) and
SWIN (Liu et al., 2021), which is hierarchical ver-
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Model Details Hero Villain Victim Other Macro-F1 Acc.Prec Rec F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Te
xt

-o
nl

y
Dis. BERT .154 .115 .132 .431 .400 .415 .292 .246 .267 .856 .881 .868 .433 .411 .420 .766

BERT .250 .115 .158 .484 .446 .464 .358 .254 .297 .864 .905 .884 .489 .430 .451 .791
RoBERTa .243 .173 .202 .473 .400 .433 .346 .386 .365 .866 .891 .879 .482 .463 .470 .782

XLNet .172 .096 .123 .491 .386 .432 .383 .272 .318 .852 .910 .880 .475 .416 .438 .788
DeBERTa .250 .250 .250 .469 .591 .523 .395 .395 .395 .889 .847 .868 .501 .521 .509 .776

DeBERTa(l) .268 .212 .237 .604 .440 .509 .543 .500 .521 .870 .922 .895 .518 .571 .540 .818

V
is

io
n-

on
ly ResNet 0 0 0 .467 .303 .367 .667 .053 .097 .827 .948 .883 .490 .326 .337 .793

ConvNeXT 0 0 0 .398 .329 .360 .333 .009 .017 .828 .924 .873 .390 .315 .313 .776
ViT 0 0 0 .436 .380 .406 .250 .009 .016 .836 .926 .878 .380 .329 .325 .785

BEiT 0 0 0 .413 .420 .416 .500 .009 .017 .838 .907 .871 .438 .334 .326 .775
SWIN 0 0 0 .393 .326 .356 .231 .026 .047 .828 .919 .871 .363 .318 .319 .772

M
ul

tim
od

al

CLIP 0 0 0 .478 .311 .378 .691 .071 .104 .845 .951 .886 .393 .335 .342 .786
ViLBERT .078 .034 .045 .409 .513 .469 .398 .276 .321 .856 .843 .849 .428 .408 .421 .761
V-BERT .143 .077 .100 .466 .560 .508 .452 .333 .384 .886 .879 .882 .487 .462 .469 .790

MMTrans. 0 0 0 .516 .477 .496 .447 .303 .361 .814 .878 .845 .437 .392 .405 .747
MMBT .103 .058 .074 .446 .537 .487 .414 .298 .347 .881 .872 .877 .458 .438 .447 .780
VECTOR .444 .385 .412 .553 .534 .544 .505 .456 .479 .883 .897 .890 .568 .596 .581 .813

∆(VECTOR−V-BERT) .301↑ .308↑ .312↑ .087↑ .026↓ .036↑ .053↑ .123↑ .095↑ .003↓ .018↑ .008↑ .081↑ .134↑ .112↑ .023↑

Table 2: Benchmarking results (0’s indicate no correct prediction). ∆(X−Y): Performance difference between models
X and Y, # ↑ and # ↓: Absolute increment and decrement respectively.

sion of ViT that uses shifted windows. We also in-
clude the recently proposed ConvNeXT (Liu et al.,
2022) and BEiT (Bao et al., 2021), which uses self-
supervised pre-training of Vision Transformers.

Multi-modal Systems: We use various variants
of multi-modal pre-trained systems from the MMF
Framework. MMF Transformer is a library Trans-
former model that uses visual and language to-
kens with self-attention. MMBT: multi-modal Bi-
transformer (Kiela et al., 2019) captures the two
modalities’ intra-modal and inter-modal dynamics.
ViLBERT is a vision and language BERT (Lu et al.,
2019), a strong model with the task-agnostic joint
representation of images and text. ViLBERT CC
is pre-trained on conceptual captions (Sharma et al.,
2018) based pretext task. Visual BERT (Li et al.,
2019), also pre-trained using MS COCO (Lin et al.,
2014), implicitly aligns the input text and regions
in the input image using self-attention. CLIP (Rad-
ford et al., 2021) leverages image–text contrastive
pretraining.

6 Experiments

Experimental Details We present bench-
marking results in Table 2, comparison with the
shared-task submissions (c.f. Table 4) averaged
over five independent runs, while for the ablation
study in Table 3, we compare the best check-points
for different VECTOR component-wise evaluations
to assess the performance bounds, on the diver-
sified test set. We use precision, recall, and F1
for individual classes, and macro-averaged for the
overall assessment.4

4See Appendix A for additional experimental details.

Comparative Analysis. ▷ Unimodal Models:
Despite the evident glorification cues within the
Hero references in memes, large pre-trained mod-
els are observed to depict limitations. This can
be observed from Table 2, wherein significantly
low performance is observed for strong models like
DistilBERT, BERT, and XLNet, with F1 scores
of 0.132, 0.158, and 0.123, respectively. On the
other hand, RoBERTa enhances the class-specific
F1 score by about 0.05 absolute points, which sug-
gests the efficacy the exhaustive hyperparameter
tuning can induce. Finally, DeBERTa-based uni-
modal systems yield the highest optimal F1 scores
among all unimodal models evaluated. The scores
observed are 0.250 and 0.237 for the base and the
large variants, respectively.

For the Villain category, BERT can be observed
(c.f. Table 2) to yield relatively better performance
as against Hero detection, with an F1 score of 0.464.
This is in contrast to the sub-par performances by
DistilBERT, RoBERTa, and XLNet, yielding 0.415,
0.433, and 0.432 F1 scores, respectively. As with
the Hero detection, DeBERTa-base and large mod-
els outperform the other models for both text and
vision modalities.

Interestingly, none of the text-only models, ex-
cept for DeBERTa large, could beat the F1 score of
0.395 for DeBERTa-base. The lower performance
is primarily due to inadequate categorical represen-
tation within the dataset. Moreover, the inherent
complexity in distinguishing villains from victims
confuses the model. The modelling efficacy so-
licited for such a scenario is suggested by over
0.10 absolute point enhancement by DeBERTa-
large, which has 4X more backbone parameters

2154



Model Details HER VIL VIC OTH F1 Acc.

Simple early-fusion (DeBERTa + ViT) 0.31 0.55 0.50 0.88 0.56 0.79
(a). + Meme (image) caption 0.32 0.52 0.48 0.89 0.55 0.80
(b). + Face labels 0.26 0.56 0.51 0.89 0.56 0.82
(c). [(a) + (b)] + Commonsense KG 0.36 0.54 0.45 0.89 0.56 0.81
(d). [(a) + (b) + (c)] + CAT 0.28 0.53 0.49 0.89 0.55 0.81
(e). [(a) + (b) + (c)] + OTK (VECTOR) 0.38 0.57 0.53 0.90 0.60 0.83

Table 3: Ablation study: Comparing VECTOR and its
sub-modules over best model results. CAT: Fusion via
concatenation, OTK: Fusion via Optimal Transport Ker-
nel, KG: Knowledge Graph.

than DeBERTa-base.
Other category, having the majority representa-

tion with over 6K unique references within memes,
projects the highest F1 scores with an average of
0.879. Finally, the overall Macro-F1 scores reflect
the category-wise trend observed, with DeBERTa
large leading with an F1 score of 0.540. DeBERTa-
base follows it with 0.509 and the rest with an
average F1 score of 0.444.

For intuitive reasons, the visual modality, not
indicative of complex role semantics, yields poor
performance compared to text-only models. As a
result, none of the image-only models (ConvNext,
ViTBEiT, and SWIN) are observed to make any
headway in correctly detecting a Hero reference
in memes (c.f. Table 2). At the same time, except
for the Villain category, a simple ResNet-based
model outperforms, albeit with fine margins, the
rest of the models within the categories Victim and
Other, with F1 scores of 0.097 and 0.883, respec-
tively. This highlights the efficacy of global im-
age representations against tokenized (or patched)
ones for factoring visual features, especially where
there is not much visual-linguistic grounding to be
leveraged. On average, the image-only models can
project a paltry F1 score of 0.324.
▷ Multi-modal Models. Several state-of-the-

art multimodal systems, on average, are observed
to yield a Macro-F1 score of 0.416, which lies
between the text-only (0.444) and the image-only
(0.324) models. Besides the category-wise perfor-
mance trend being similar to the one observed for
unimodal models, multimodal systems like Visu-
alBERT and MMBT yield the highest Macro-F1
scores of 0.468 and 0.447, respectively. This is
likely due to the joint attentive modelling, multi-
modal pre-training using standard datasets like MS
COCO, and fine-tuning adopted by these models.
Other competitive models like CLIP, ViLBERT,
and MM Transformer achieve Macro-F1 scores of
up to 0.342, 0.421, and 0.405, respectively. This

Rank System Prec. Rec. F1

- VECTOR 0.568 0.596 0.581
1 Logically (Kun et al., 2022) 0.544 0.610 0.571
2 c1pher (Singh et al., 2022) 0.527 0.581 0.547
3 smontariol (Montariol et al., 2022) 0.580 0.450 0.485
4 zhouziming (Zhou et al., 2022) 0.480 0.450 0.462
5 IIITDWD (Fharook, 2022) 0.256 0.238 0.239
6 rabindra.nath (Nandi et al., 2022) 0.253 0.253 0.237

Table 4: Comparison to the results on the
CONSTRAINT@ACL-2022 shared-task on HVVMemes.

either suggests that the image component induces
additional noise within the models or that the exist-
ing multimodal systems do not effectively capture
the complex pragmatics that semantic role-labeling
in memes solicits. The former is less likely, as intu-
itively, memetic visuals do provide minor yet deci-
sive semantics toward holistic assimilation of the
meme’s message. Our proposed approach VECTOR,
is observed to address the required cross-modal as-
sociation by achieving impressive F1 scores across
different roles and a 0.581 Macro-F1 score, which
induces an enhancement of almost 4% and 12 %
over DeBERTa large (unimodal best) and Visual-
BERT (multimodal best), respectively.

Ablations Results. Table 3 depicts ablation re-
sults, wherein the basic early-fusion setup involv-
ing DeBERTa and ViT performs well for villain
category with 0.55 F1 score. Adding meme-image
captions enhances the hero predictions and over-
all accuracy marginally by 1% each. Face labels,
although, significantly enhance the prediction of
villain and victim, suggesting lexical and semantic
utility via face labels. The overall performance
remains unchanged due to compromised hero pre-
dictions. Besides yielding balanced scores, adding
a commonsense module elevates hero prediction
distinctly to 0.36, effectively indicating its utility,
especially for the under-represented role category.
Finally, VECTOR with OTK-based embedding yields
optimal cross-modal correspondence, as observed
from the best performances across roles and metrics
evaluated, showcasing the constituting feature’s
utility towards addressing the given task. Although
not averaged over multiple runs, the best model
check-point for VECTOR is observed to yield an im-
pressive overall macro-F1 score of 0.60, which is
the best score observed across experiments, sug-
gesting an upper-bound for VECTOR’s performance.

Comparison to Previous Work. Table 4
showcases the best-performing systems from
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Hero

Villain [jeffrey epstein,
donald trump] [donald trump]

[jeffrey epstein,
donald trump]

Victim [13 year old girl] [13 year old girl] [13 year old girl]

Other [jeffrey epstein]

Original   Proposed       VisualBERT

Figure 3: Error analysis for VECTOR and VisualBERT.

CONSTRAINT@ACL-2022’s shared-task. Since
all of the shared-task submissions used ensemble
techniques of multiple models, we present their
best individual model results for a fair compari-
son with our proposed model: VECTOR. The macro-
F1 score varies by 0.334 points across the par-
ticipants, emphasizing model selection. We can
draw parallels between Table 2 and Table 4 with
Logically, c1pher, smontariol, and zhouziming us-
ing DeBERTa, RoBERTa, VisualBERT, and Visu-
alBERT, respectively. They exhibit marginal im-
provements using loss-weighting techniques and
additional classification layers. Our model VECTOR
performs more consistently, especially with the
class-wise scores of Hero (c.f. Table 2), estab-
lishing its efficacy across the category types and
limited categorical data representation. Besides
class-wise consistency, VECTOR outperforms other
shared-task submissions as a stand-alone system.
Also, despite being relatively complex, VECTOR
produces consistent class-wise and better overall
performance, suggesting marginal yet robust mod-
elling capacity facilitated by VECTOR’s vision +
common-sense module’s interaction with the tex-
tual signals.

Statistical Significance. We performed a boot-
strapping significance test w.r.t the proposed model
(VECTOR), and the previous best solution by team
Logically (Kun et al., 2022) via random sampling
with replacement strategy, with N=1000 over 1000
simulations, and observed a ‘p-value’ of 0.0410.
This indicates a subtle yet encouraging confidence
margin in the model predictions. This could be
likely due to better predictions across the four cat-
egories, including ‘hero’, which most of the other
models compared are empirically observed to strug-
gle at. These aspects corroborate the semantic-
role label-agnostic characteristics of the proposed
model.

Original    Proposed     VisualBERT

Hero

Villain [barack obama] [barack obama]
[barack obama, 
donald trump,  
daily wire]

Victim [donald trump] [donald trump]

Other [daily wire] [daily wire]

Figure 4: Interpretability analysis for VECTOR; proposed
model and VisualBERT; best multimodal baseline.

Error Analysis. The example depicted in Fig. 3
insinuates ‘donald trump’ and ‘jeffrey Epstein’s
as villains while victimizes a ‘13 year old girl’.
Visually, there isn’t much to consider towards ad-
judicating the former two entities as villains, ex-
cept the expressions of ‘jeffrey Epstein’s exuding
somewhat sinister looks. Whereas vilifying conno-
tation is implied primarily by the embedded text.
Now, although VECTOR predicts the roles of ‘donald
trump’ and ‘13 year old girl’ correctly as villain
and victim, respectively, it fails to detect ‘jeffrey
epstein as a villain and categorizes it as an other.
This example highlights the limitations of VECTOR
in terms of its inherent modality-specific biases.
A ViT-based image encoder, due to its disparate
patch-wise processing, and self-attention across
the input patches, leads to noisy visual attention.
On the other hand, VisualBert-based predictions
replete with pre-trained common-sense semantics
are better positioned for this case to capture the
required semantic indicators, a portion of epstein’s
facial expression in this case. Also, as the dataset is
well-stocked with examples where ‘Donald trump’
is vilified, both models being compared assign the
role of villain to ‘donald trump’.

7 Interpretability

The predictive capacity of VECTOR can be assessed
by comparing its interpretability with that of Visu-
alBERT, the best-performing baseline. We inves-
tigate a reasonably complex example depicted in
Fig 4, for which VECTOR accurately predicts all the
entity roles, but VisualBERT wrongly predicts all
of them, as villains. Attention map for VECTOR re-
veals that it primarily attends to the face of ‘barack
obama’, while leveraging other contextual cues,
likely via the common-sense and visual description-
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based signals, leading to a correct assignment of
roles. On the other hand, VisualBERT, having a
Faster R-CNN-based image encoder, primarily pre-
trained for the common object-detection task, fails
to uniquely attend to different semantically referred
entities within the meme image and additionally
adds noisy features related to objects like a tie,
without any additional contextual knowledge. This
validates VECTOR’s superior discriminatory capac-
ity and interpretability over VisualBERT.

8 Generalizability

Since, the test set consists of all unique memes,
there is a higher chance that there are many entities
as part of it that are not seen during the training
stage. Table 2 attests to the VECTOR’s potential to
succeed across different roles. This suggests that
VECTOR can adapt to the domain-specific nuances
offered by the variety and complexity associated
with visual-semantic roles within memes. Through
the results observed in this work, we attempt to
highlight that existing standard approaches either
have inconsistent performances across the roles:
hero, villain, victim, and other, or yield low scores
for particular role categories (c.f. Table 2), which
corroborates their limitations. On the other hand,
VECTOR yields a balanced performance and general-
izes reasonably well for the least represented class
in the dataset (hero).

9 Conclusion

This paper addresses a recently proposed task of
identifying the roles of entities in harmful memes
and discusses its challenges. We further presented
numerous unimodal and multi-modal baselines
to benchmark HVVMemes. Moreover, we proffer
VECTOR, a contextual knowledge-enriched multi-
modal framework that bolsters the multi-modal rep-
resentations with entity-based external knowledge
using a cross-modal attention scheme. VECTOR
shows noteworthy improvements over the baselines,
thus justifying contextual knowledge inclusion. As
for future investigations, we plan to conceive a
more symbolic system with graph-based entity link-
ing, commonsense knowledge, and visual concepts.

10 Limitations

As noted in the discussion dedicated to Error Anal-
ysis, several entities tend to dominate specific roles
within the dataset due to the realistic representa-
tion of the harmful referencing in memes. This not

only biases the model against their generalizabil-
ity but also poses challenges towards modelling
entity-independent role detection hypotheses for
a diverse set of entities. This especially calls for
building models regularized to address such biases
and more participatory initiatives toward curating
better and more large-scale datasets.

11 Ethics and Broader Impact

Reproducibility. We present detailed hyper-
parameter configurations in Appendix A.

User Privacy. The information depicted/used
does not include any personal information. Copy-
right aspects are attributed to the dataset source.

Biases. As per the authors, any biases found in
the dataset are unintentional (Sharma et al., 2022b),
and by conducting the study on this dataset we do
not intend to cause harm to any group or individual.
We acknowledge that detecting harmfulness can be
subjective, and thus it is inevitable that there would
be biases in gold-labelled data or in the label dis-
tribution. This is addressed by the dataset curators
by using general keywords about US Politics, and
also by following a well-defined schema, which
sets explicit definitions for annotation.

Misuse Potential. Our approach can be poten-
tially used for ill-intended purposes, such as biased
targeting of individuals/communities/organizations,
etc. that may or may not be related to demographics
and other information within the text. Intervention
with human moderation would be required to en-
sure that this does not occur.

Intended Use. We make use of the existing
dataset in our work in line with the intended usage
prescribed by its creators and solely for research
purposes. This applies in its entirety to its further
usage as well. We do not claim any rights to the
dataset used or any part thereof. We believe that it
represents a useful resource when used appropri-
ately.

Environmental Impact. Finally, large-scale
models require a lot of computations, which con-
tribute to global warming (Strubell et al., 2019).
However, in our case, we do not train such mod-
els from scratch; rather, we fine-tune them on a
relatively small dataset.
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Modality Model BS #Epochs LR V-Enc T-Enc #Param

UM

BERT 8 15 1e-5 - bert 25M
DistilBERT 8 15 1e-5 - distilbert-base 66M
XLNet 8 15 1e-5 - xlnet 116M
RoBERTa 8 15 1e-5 - roberta-base 123M
DeBERTa 8 15 1e-5 - deberta-base 86M
DeBERTa-Large 8 15 1e-5 - deberta-large 304M
ResNet 8 15 1e-5 resnet - 25M
ConvNeXT 8 15 1e-5 convnet - 50M
ViT 8 15 1e-5 vit - 86M
SWIN 8 15 1e-5 swin - 88M
BEiT 8 15 1e-51 beit - 71M

MM

MMFT 16 20 0.001 ResNet-152 bert 170M
CLIP 16 20 0.0001 ViT clip 149M
MMBT 16 20 0.0001 ResNet-152 bert 169M
ViLBERT* 16 10 0.0001 Faster RCNN bert 112M
V-BERT* 16 10 0.0001 Faster RCNN bert 247M
VECTOR 8 15 1e-5 vit deberta-large 123M

Table 5: Hyperparameters summary. [BS→Batch
Size; LR→Learning Rate; V/T-Enc→Vision/Text-
Encoder; vit→vit-base-patch16-224-in21k;
bert:→bert-base-uncased;
xlnet→xlnet-base-uncased; resnet→resnet50].

A Implementation Details and
Hyperparameter Values

We train all the models using PyTorch on an
actively dedicated NVIDIA Tesla V100 GPU,
with 32 GB dedicated memory, CUDA-11.2, and
cuDNN-8.1.1 installed. For the unimodal mod-
els, we import all the pre-trained weights from
the TORCHVISION.MODELS,5 a sub-package of the
PyTorch framework. We randomly initialise the
remaining weights. Sharma et al. (2022b) re-
annotate the HarMeme dataset (Pramanick et al.,
2021b) by collecting annotator responses for differ-
ent roles different entities within memes take. The
re-annotated memes may or may not have harmful
implications, contrary to the distinction modelled
as part of original curation. However, they portray
various entities within different contexts implying
glorification, vilification, and victimisation. For
most of our experiments, we use Adam optimiser
(Kingma and Ba, 2015) with a learning rate of
1e−4 or 1e−5, a weight decay of 1e−5 and a Cross-
Entropy (CE) loss as the objective function. We
optimized our models to obtain hyper-parameter
settings (c.f. Table 5) and early-stop to preserve
our best state convergence. On average, it took
approx. 2:30 hours to train a typical multi-modal
neural model on a dedicated GPU system.

B Additional details of HVVMemes

B.1 Edge Case

Most memes are intended to project harmless mock-
ery toward various sections of society. Such memes
do not imply heroes, villains, or victims; instead,

5http://pytorch.org/docs/stable/torchvision/
models.html
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Figure 7: Entity-role distribution - US Politics.

they disseminate harmless humour and trivial opin-
ions. Therefore, Sharma et al. (2022b) do not pre-
sume any implications regarding these connota-
tions and categorise them as ‘other’, a fourth neu-
tral category, unless expressed otherwise in the
meme. A depiction of such a scenario can be ob-
served in Fig. 5. In this meme, it is unclear if
Donald Trump is being vilified for being reluctant
to use a mask or if the meme expresses a benign
attempt at mocking his physical appearance with
sarcasm. Additionally, since no background in-
formation would suffice to facilitate its complete
assimilation, it is categorised as other.

B.2 Analysing Different Entities and Roles

Figure 5: Edge case

Regardless of the conno-
tations and domains in
which various entities are
referred, only a handful
of entities/topics domi-
nate pivotal referencing
in memes. The entities
in COVID-19 memes pre-
dominantly focus on Coronavirus, Donald Trump,
mask, COVID-19, and work from home. The enti-
ties of Donald Trump, Joe Biden, Barack Obama,
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Figure 8: Entity role prediction summary for
HVVMemes’s (combined) test set. X-axis: Top 20 en-
tities referenced; Y-axis: True positive rate (Recall).
Values depicted at the center of each portion for each
bar depicts corresponding total counts.

Democratic Party, and Republican Party crowd the
US Politics memes, as shown in Fig. 6. Such
trends highlight the key figures and real-world top-
ics that dominated memetic communication on so-
cial media during the period this dataset was com-
piled, which coincided with the onset of the global
COVID-19 pandemic and contemporary US Poli-
tics. In COVID-19 memes, we observe that enti-
ties like Donald Trump and China are referenced
almost equally within the vilifying and neutral con-
texts. In contrast, entities like Corona beer, intro-
verts, and Tom Hanks, are invariably referenced
in neutral contexts through irony, satire, or benign
humour. Similar trends are observed in US Poli-
tics memes (Fig. 7), wherein entities like Donald
Trump, Democratic Party, Republican Party, and
Democrats observe almost equivalent referencing
as villain and others. Interestingly, as shown in
Fig. 7, US Politics related memes depict a higher
propensity towards vilification than that of COVID-
19, as most of the prominent entities encountered
are vilified at least once in the dataset.

C Entity Role Prediction Analysis.

Careful analysis of the role predictions for various
entities elicits the correlation between the role-wise
distribution and the test set predictions for different
entities. This correlation can be observed from Fig.
8, wherein entities like Donald Trump, Democratic
Party, Joe Biden, Republican Party, Democrats,
etc., which have a true positive rate (recall) of
atleast 75%, are specifically the ones that have rel-
atively balanced role-wise distribution for the roles
of villain and other within HVVMemes, (see Fig. 4
(main content). Interestingly, a lower but role-wise
balanced representation within HVVMemes, does not

appear to deter VECTOR from yielding an impres-
sive recall of 90% for an entity such as Democrats,
which have a total of approximately 125 samples
in the training set. On the other hand, for entities
like Barack Obama, China, Libertarian Party, Lib-
ertarian, etc., the memetic portrayal is significantly
skewed-in as an other, suggesting distinct role-wise
imbalance within memes that VECTOR failed to ac-
commodate, highlighting its limitations. Further,
there are entities like America, Government, Amer-
icans, Kamala Harris, etc., that register a 100%
recall. Role-wise distributions for such cases high-
light a distinct majority of neutral connotations
within both training and test splits via other cate-
gory, essentially suggesting possible biases within
the role-prediction modelling setup. Entity Trump
Supporters is also observed to be present within the
training set via another similar referencing Don-
ald Trump Supporters, which has a 1:5 ratio of
villain/victim:other. This is complemented by the
predominant yet balanced referencing of an inde-
pendent entity Donald Trump. This could lead to
the model being confused for such entities as is
depicted in Fig. 8.
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Abstract
In this work, we focus on low-resource depen-
dency parsing for multiple languages. Several
strategies are tailored to enhance performance
in low-resource scenarios. While these are
well-known to the community, it is not triv-
ial to select the best-performing combination
of these strategies for a low-resource language
that we are interested in, and not much atten-
tion has been given to measuring the efficacy
of these strategies. We experiment with 5 low-
resource strategies for our ensembled approach
on 7 Universal Dependency (UD) low-resource
languages. Our exhaustive experimentation on
these languages supports the effective improve-
ments for languages not covered in pretrained
models. We show a successful application of
the ensembled system on a truly low-resource
language Sanskrit.1

1 Introduction

Recently, the supervised learning paradigm has
dramatically increased the state-of-the-art perfor-
mance for the dependency parsing task for resource-
rich languages (Chen and Manning, 2014; Dyer
et al., 2015; Kiperwasser and Goldberg, 2016;
Dozat and Manning, 2017; Kulmizev et al., 2019).
However, only a handful of resource-rich languages
are able to take advantage, and many low-resource
languages are far from these benefits (Joshi et al.,
2020; More et al., 2019a; Zeman et al., 2018).

In literature, several strategies have been pro-
posed to enhance performance in low-resource sce-
narios, such as data augmentation (Şahin and Steed-
man, 2018; Gulordava et al., 2018), cross/mono-
lingual pretraining (Conneau et al., 2020; Peters
et al., 2018; Kondratyuk and Straka, 2019), sequen-
tial transfer learning (Ruder et al., 2019), multi-
task learning (Nguyen and Verspoor, 2018), cross-
lingual transfer (Das and Sarkar, 2020) and self-
training (Rotman and Reichart, 2019; Clark et al.,

1The code and data are available at: https://github.
com/Jivnesh/SanDP.

2018). However, not much attention has been
given to measuring the efficacy of the existing low-
resource strategies well-known to the community
for low-resource dependency parsing (Vania et al.,
2019). This is essential to assess their utility for
low-resource languages (Hedderich et al., 2021)
before inventing novel ways to tackle data sparsity.

In this work, we systematically explore 5 prag-
matic strategies for low-resource settings on 7 lan-
guages. We experiment with low-resource strate-
gies such as data augmentation, sequential trans-
fer learning, cross/mono-lingual pretraining, multi-
task learning and self-training. We investigate: (1)
How is the trend in performance of each strategy
across various languages? Whether the choice of
best performing variant of each strategy is language
dependent? (2) We integrate the best performing
variant of each strategy and call the resulting sys-
tem as the ensembled system. Do all the strate-
gies contribute towards performance gain in the
ensembled system? How well does this ensemble
approach generalize across multiple low-resource
languages? (3) How far can we push a purely data-
driven ensemble system using the best-performing
low-resource strategies? Can this simple ensem-
ble approach outperform the state-of-the-art of a
low-resource language? We argue that while it may
sound like a simple application of techniques well
known to the community; it is non-trivial to se-
lect the best performing combination for a target
low-resource language.

Our exhaustive experimentation empirically es-
tablishes the effective generalization ability of
the ensembled system on 7 languages and shows
average absolute gains of 5.2/6.2 points Unla-
belled/Labelled Attachment Score (UAS/LAS)
over strong baseline (Dozat et al., 2017). Notably,
our ensembled system shows substantial improve-
ments for the languages not covered in pretrained
models. Finally, we show a successful application
of the ensembled system on a truly low-resource
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language Sanskrit. We find that the ensembled
system outperforms the state-of-the-art system (Kr-
ishna et al., 2020a) for Sanskrit by 1.2 points abso-
lute gain in terms of UAS and shows comparable
performance in terms of LAS (§ 3).

2 Investigation of Strategies Tailored for
Low-resource Settings

We explore 5 strategies specially tailored for low-
resource settings on 7 languages, and integrate the
best performing strategy of each category in our
ensembled system (Table 1). We utilize Dozat and
Manning (2017) as a base system for all the experi-
ments, henceforth referred to as BiAFF.

Language selection criteria: We choose low-
resource languages with less than 2,500 training
samples from 4 different typological families such
that each language belongs to a unique sub-family.
In order to accommodate a low-resource tailored
pretraining (Sandhan et al., 2021), we choose lan-
guages that have explicit morphological informa-
tion. Additionally, we divide the set of languages
into the languages covered/not-covered in the multi-
lingual language model’s pretraining: (1) Covered:
Arabic (ar), Greek (el), Hungarian (hu) (2) Not cov-
ered: Wolof (wo), Gothic (got), Coptic (cop) and
Sanskrit (san).
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Figure 1: Plot for number of training samples vs. UD
languages available in UD-2.6.

Figure 1 illustrates the number of training samples
available for all UD languages in UD-2.6. Hed-
derich et al. (2021) ask “How low is low-resource?”
and suggest that the threshold of low-resource is
task and language-dependent. The low-resource
settings can be seen as a continuum of resource
availability due to the absence of a hard thresh-
old. More efforts should focus on evaluating low-
resource strategies across multiple languages for

a fair comparison between these strategies. There-
fore, we select a threshold for the languages with
less than 2,500 training samples (Figure 1). We re-
strict ourselves to the setting where the target low-
resource language does not have a high-resource
related language that could possibly facilitate the
positive cross-lingual or zero-shot transfer (Vulić
et al., 2019; Pires et al., 2019; Søgaard et al., 2018;
de Lhoneux et al., 2018; Smith et al., 2018). Thus,
we do not consider low-resource languages with
only a test set available. Also, we do not consider
cross-lingual transfer (Duong et al., 2015; Ahmad
et al., 2019; Vania et al., 2019; Das and Sarkar,
2020) strategy in our study.

Dataset and metric: For each of these 7 low-
resource languages from Universal Dependencies
(UD-2.6) (de Marneffe et al., 2021), following Rot-
man and Reichart (2019), we use 500 data points
for training (allocating equal power to each lan-
guage for fair comparison) and the original dev/test
split as dev/test set. Additionally, 1000 morpholog-
ically tagged data points (without dependency an-
notations) are used for self-training and pretraining.
We use sentence level macro averaged UAS/LAS
metric for evaluation.

Hyper-parameters: For SeqTraL variants, we
use the exact same encoder as Ma et al. (2018)
with 2 Bi-LSTM layers and decoder with fully con-
nected layer followed by softmax layer. For the
ensembled system, we adopt BiAFF’s codebase
by Ma et al. (2018) with the hyper-parameters set-
ting as follows: the batch size as 16, training iter-
ations as 100, a dropout rate as 0.33, the number
of stacked Bi-LSTM layers as 2, learning rate as
0.002 and the remaining parameters as the same as
Ma et al. (2018). We release our codebase publicly
under creative-common licence.

Computing Infrastructure Used: We primar-
ily use RTX-2080, 12 GB GPU memory, 4352
GPU Cores computing infrastructure for our exper-
iments.

Sequential Transfer Learning (SeqTraL): Fol-
lowing Sandhan et al. (2021), we pretrain three
encoders (similar to BiAFF) on three sequence la-
belling auxiliary tasks and integrate them with the
BiAFF encoder using a gating mechanism. We
adapt these pretrained encoders with various opti-
mization schemes, proposed for reducing a catas-
trophic forgetting (French, 1999; McCloskey and
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el ar hu got cop wo san

Strategy Model UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

BiAFF 86.61 82.23 79.89 73.13 80.51 75.11 75.66 69.42 87.33 84.48 82.63 77.83 75.47 65.77

Cropping 85.98 81.76 79.42 73.03 77.46 71.62 75.72 68.25 86.05 82.95 80.38 75.39 73.82 63.46
Data aug. Rotation 86.39 82.19 79.22 72.79 77.33 71.16 76.19 68.89 86.27 83.27 80.66 76.05 75.58 65.14

Nonce 87.43 82.60 79.52 73.00 79.56 69.50 76.42 67.74 87.64 83.52 81.97 76.37 77.25 66.30

BiAFF+mBERT 91.41 87.89 83.50 76.30 85.20 77.50 64.20 53.20 33.70 15.60 71.50 61.40 71.40 55.12
Pretraining BiAFF+XLM-R 93.61 90.85 86.04 79.55 89.05 83.80 - - - - - - 78.43 66.72

BiAFF+LCM 89.00 85.83 82.49 76.67 83.22 78.49 79.88 74.65 88.79 86.02 85.85 81.66 81.63 73.86

SelfTrain 86.78 82.25 80.86 74.45 80.62 75.09 76.96 70.15 87.95 85.33 83.83 78.80 77.53 66.59
Self-training CVT 80.53 77.37 76.21 71.87 75.21 70.01 69.43 63.59 79.32 74.21 73.21 69.50 69.21 56.21

DCST 88.26 84.09 82.21 75.78 82.85 77.65 79.52 72.91 88.85 85.53 85.51 80.71 78.55 69.10

SeqTraL-FE 88.43 85.43 81.86 76.60 82.97 78.46 80.15 75.24 88.08 85.57 85.61 81.77 81.20 73.70
SeqTraL-UF 88.50 85.36 82.52 76.79 83.83 79.24 80.79 75.65 88.87 86.30 85.78 81.54 81.51 73.65

SeqTraL SeqTraL-DL 89.06 85.88 82.57 76.66 83.36 78.57 80.29 74.89 88.78 86.14 86.25 81.85 81.17 73.10
SeqTraL-FT 88.80 85.47 82.66 76.83 83.79 78.95 80.13 75.11 88.86 86.31 86.03 81.64 81.84 73.94

MTL-Case 86.73 82.47 80.49 74.08 80.73 75.52 - - 86.45 83.82 82.86 77.46 76.15 65.36
Multi-tasking MTL-Label 86.13 81.55 79.86 72.72 80.07 73.92 75.52 69.30 87.44 84.62 83.08 77.94 76.02 65.20

MTL-Morph 86.30 82.23 80.02 73.55 80.49 74.70 77.33 71.05 87.00 84.22 83.25 78.75 76.71 66.69

BiAFF 86.61 82.23 79.89 73.13 80.51 75.11 75.66 69.42 87.33 84.48 82.63 77.83 75.47 65.77
+Pretraining 93.61 90.85 86.04 79.55 89.05 83.80 79.88 74.65 88.79 86.02 85.85 81.66 81.63 73.86

+MTL 89.99 86.49 82.47 76.24 84.35 79.74 80.33 75.15 88.42 85.94 85.91 81.56 81.30 73.49
Prop. system +SeqTraL 90.31 86.70 82.70 76.57 84.58 80.15 80.79 75.65 88.87 86.30 86.05 81.85 81.84 73.94

+Self-training 89.83 86.09 82.08 75.92 84.12 79.66 80.08 75.24 88.78 86.07 85.73 81.77 79.89 72.28
+Data. aug. 89.11 85.87 82.08 75.92 84.12 79.66 79.56 73.53 88.31 84.67 85.73 81.77 79.52 71.89

Evaluation BiAFF 87.10 83.06 80.92 75.02 80.31 74.16 77.73 70.72 88.50 85.32 80.92 75.02 79.33 67.92
on test set Prop. system 93.66 90.68 86.43 79.88 88.50 82.67 82.52 77.07 89.31 86.38 87.50 82.95 83.59 74.83

Table 1: Evaluation of low-resource strategies on 7 languages. Experiments are first performed on dev set to find
best performing combination of strategies for each language. The best results from strategies from each family are
bold and statistically significant compared to its peer baselines belonging to the same family as per t-test (p < 0.01).
The second last block shows ablations when the best variant from each family is added to the ensembled system. For
example, +Data. aug. refers to the system with the best variant from all 5 strategies. The best performing system as
per dev set is finally compared with BiAFF on the test set. XLM-R is not compatible with 3 languages and case
information of Gothic (got) language is missing; hence we do not report their results.

Cohen, 1989). SeqTraL-FE: We treat newly inte-
grated layers as Feature Extractors (FE) by freez-
ing them. SeqTraL-UF: Gradually Unfreeze (UF)
these new layers in the top to down order (Howard
and Ruder, 2018; Felbo et al., 2017). SeqTraL-
DL: The discriminative learning rate (DL) is used
for newly added layers (Howard and Ruder, 2018),
the learning rate is decreased from top-to-bottom
layers. SeqTraL-FT: The default learning rate is
used to fine-tune all newly added layers.

Cross/mono-lingual Pretraining: We experi-
ment with two multilingual pretrained models,
namely, the multilingual BERT (Devlin et al., 2019,
mBERT) based system (Kondratyuk and Straka,
2019) and the XLM-Roberta (Conneau et al., 2020,
XLM-R) based system (Nguyen et al., 2021). We
also consider supervised pretraining specially tai-
lored for low-resource dependency parsing (Sand-
han et al., 2021, LCM) which essentially combines
three sequence labelling auxiliary tasks. We pre-
train it on 1,000 morphologically tagged data points

without dependency annotations.

Self-training: Another line of modelling focuses
on self-training (Goldwasser et al., 2011; Clark
et al., 2018; Rybak and Wróblewska, 2018) to over-
come the bottleneck of task-specific labelled data.
Earlier attempts failed to prove effectiveness of
self-training for dependency parsing (Rush et al.,
2012). However, Clark et al. (2018, CVT) and Rot-
man and Reichart (2019, DCST), show successful
application, thus, we consider these two systems.
Also, we generate dependency data by applying a
pretrained BiAFF system on 1000 unlabelled data
points. We augment this predicted data with gold
data and retrain BiAFF in Self-Train setting.

Multi-task Learning: We simultaneously train
BiAFF and a sequence labelling based auxiliary
task in a multi-task setting (MTL). We experiment
with the following auxiliary tasks: prediction of the
morphological label (MTL-Morph), dependency
relation between a word and its head (MTL-Label)
and the case label (MTL-Case).
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Figure 2: The ensembled system for Sanskrit. Translation: “Oh Vācaspate! Come again with divine mind".

Data Augmentation: Şahin and Steedman
(2018) introduce Cropping: delete some parts of a
sentence to create multiple short meaningful sen-
tences, and Rotation: permute the siblings of head-
word restricted to a set of relations. Both operations
modify a set of words or configurational informa-
tion; however, they do not change the dependencies.
Nonce: Gulordava et al. (2018) propose to create
nonce sentences by substituting a few words which
share the same syntactic labels. For each variant,
we use additional 1,000 augmented data points.

Results on multilingual experiments: Table 1
first reports results of all 5 strategies on dev set
of 7 languages. Next, the second last block of Ta-
ble 1 (Prop. system) shows ablations on dev set
where the best variant from each family is gradu-
ally added into the ensembled system. For example,
+Data.aug. row refers to the system with the best
variant from all 5 strategies. Finally, the best per-
forming system as per dev set is compared with
BiAFF on the test set. We observe that (1) the
best performing variant from augmentation, Seq-
TraL and MTL families is language dependent. (2)
DCST variant of self-training wins over its peer
for all the languages. (3) XLM-R outperforms for
the languages which are covered in its pretraining
(except Sanskrit2) and LCM outperforms for the
rest of the languages which are truly low-resource.
(4) Notably, we find effective generalization ability
of the proposed approach on languages covered in
cross-lingual pretraining (only pretraining helps)
and for the rest of the languages (pretraining, MTL
and SeqTraL helps).

2Maybe due to limited coverage of corpus for Sanskrit.

3 Application on Sanskrit

Data: We use two standard benchmark datasets
available for Sanskrit. We use 1,700, 1,000 and
1,300 sentences (prose domain) from the Sanskrit
Treebank Corpus (Kulkarni et al., 2010, STBC)
as train, dev and test set, respectively. We also
evaluate on the Vedic Sanskrit Treebank (Hellwig
et al., 2020, VST) consisting of 1,500 , 1,024 and
1,473 sentences (poetry-prose mixed) as train, dev
and test data, respectively. For both data, the final
results on the test set are reported using systems
trained with combined gold train and dev set.

Baselines: We use More et al. (2019b, YAP) and
Chang et al. (2016, L2S) from transition-based
dependency parsing family. Dozat and Manning
(2017, BiAFF) is a graph-based approach with
BiAFFINE attention mechanism. Krishna et al.
(2020a, MG-EBM) extends Krishna et al. (2020b,
Tree-EBM-F) using multi-graph formulation.
Systems marked with (*) are hybrid systems which
leverage linguistic rules from Pān. ini.

The ensembled system: Figure 2 shows the en-
sembled system for Sanskrit as per Table 1. It
consists of two steps, namely, pretraining (LCM

) and integration. As shown in Figure 2a, LCM
pretrains three encoders E(1)−(3) using three in-
dependent auxiliary tasks, namely, morphological
label prediction, case label prediction and relation
label prediction. Thereafter, as shown in Figure 2b,
these pretrained encoders are integrated with the
BiAFF encoder E(P ) using a gating mechanism as
employed in Sato et al. (2017). We use SeqTraL-
FT optimization scheme to update the weights
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of these four encoders. Next, MTL-Morph com-
ponent adds morphological tagging as an auxiliary
task to inject complementary signal in the model.
Finally, the combined representation of a pair of
words in passed to BiAFF to calculate probabil-
ity of arc score (S) and label (L).

STBC VST
System UAS LAS UAS LAS

YAP 75.31 66.02 70.37 56.09
L2S 81.97 74.14 72.44 62.76

Tree-EBM-F 82.65 79.28 - -
BiAFF 85.88 79.55 77.23 67.68
Ours 88.67 83.47 79.71 69.89

Tree-EBM-F* 85.32 83.93 - -
MG-EBM* 87.46 84.70 - -

Table 2: Results on test set for Sanskrit. Hybrid systems,
marked with (*) use extra-linguistic knowledge and are
not directly comparable with our system. Our results
are statistically significant compared to BiAFF as per
t-test (p < 0.01). Results are averaged over 3 runs.

Results: On STBC, the ensembled system out-
performs the state of the art purely data-driven
system (BiAFF) by 2.8/3.9 points (UAS/LAS) ab-
solute gain. Interestingly, it also supersedes the
performance of the hybrid state of the art system
(Krishna et al., 2020a, MG-EBM) by 1.2 points
(UAS) absolute gain and shows comparable per-
formance for LAS metric. We observe that perfor-
mance of transition-based systems (YAP/L2S) is
significantly low compared to graph-based coun-
terparts (BiAFF/Ours). We also obtain a similar
performance trend for VST data. The VST data is
a mixture of dependency labelled trees from both
poetry and prose domain. As a result, the overall
performance for VST is low compared to STBC
due to loss of configurational information.3

4 Conclusion and Discussion

We focused on low-resource dependency parsing
for multiple languages. We found that our ensem-
bled system can benefit the languages not covered
in pretrained models. While multi-lingual pretrain-
ing (mBERT and XLM-R) is helpful for the lan-
guages covered in pretrained models, LCM pre-
training (which simply uses an additional 1,000
morphologically tagged data points) is helpful for

3We do not evaluate Tree-EBM-F* and MG-EBM* on
VST data due to the unavailability of the codebase.

the remaining languages. Thus, these findings
would help community to pick strategies suitable
for their language of interest and come up with
robust parsing solutions. Specifically for Sanskrit,
our ensembled system superseded the performance
of the state-of-the-art hybrid system MG-EBM* by
1.2 points (UAS) absolute gain and showed compa-
rable performance in terms of LAS.

Limitations: We could not evaluate on complete
UD due to limited available compute resources
(single GPU), hence we selected 7 representative
languages for our experiments.

Ethics Statement: We do not foresee any eth-
ical concerns with the work presented in this
manuscript.
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Abstract

Seq2seq models have been shown to strug-
gle with compositional generalisation, i.e. gen-
eralising to new and potentially more com-
plex structures than seen during training. Tak-
ing inspiration from grammar-based models
that excel at compositional generalisation, we
present a flexible end-to-end differentiable neu-
ral model that composes two structural opera-
tions: a fertility step, which we introduce in this
work, and a reordering step based on previous
work (Wang et al., 2021). To ensure differentia-
bility, we use the expected value of each step,
which we compute using dynamic program-
ming. Our model outperforms seq2seq models
by a wide margin on challenging compositional
splits of realistic semantic parsing tasks that re-
quire generalisation to longer examples. It also
compares favourably to other models targeting
compositional generalisation.1

1 Introduction

Many NLP tasks require translating an input object
such as a sentence into a structured output object
such as a semantic parse. Recently, these tasks
have been approached with seq2seq models with
great success. However, seq2seq models also have
been shown to struggle out-of-distribution on com-
positional generalisation (Lake and Baroni, 2018;
Finegan-Dollak et al., 2018; Kim and Linzen, 2020;
Hupkes et al., 2020), i.e. the model fails on exam-
ples that contain unseen compositions or deeper
recursion of phenomena that it handles correctly in
isolation.

Consider the example in Fig. 1. Arguably, any
model that produces the given semantic parse from
the input in a generalisable way has to capture the
correspondence between fragments of the input and
fragments of the output, at least implicitly. This
is challenging because of structural mismatches

1https://github.com/namednil/f-then-r

Figure 1: We model structural seq2seq tasks as the com-
position of differentiable fertility and phrase reordering
layers. The model is trained end-to-end without direct
supervision of the two structural layers.

between input and output. For example, the frag-
ment contributed by “flights" is discontinuous and
intertwined with the rest of the semantic parse.

In contrast to seq2seq models, grammar-based
models such as synchronous context-free grammars
(SCFGs) (Lewis and Stearns, 1968; Chiang, 2007)
explicitly capture the compositional process behind
the data and therefore perform very well in compo-
sitional generalisation setups. They can also model
common structural mismatches like the one shown
in the example. However, grammar-based models
are rigid and brittle and thus do not scale well.

In this work, we take inspiration from grammar-
based models and present an end-to-end differen-
tiable neural model that is both flexible and gen-
eralises well compositionally. Our model consists
of two structural layers: a phrase reordering layer
originally introduced by Wang et al. (2021) and a
fertility layer, new in this work, which creates zero
or more copies of the representation of any input
token. We show how to compose these layers to
achieve strong generalisation.

We use a simple decoder and essentially translate
each token after the fertility and reordering layers
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independently into one output token. We found this
to lead to better generalisation than using an LSTM-
based decoder. The simple decoder also makes it
easy to integrate grammar constraints to ensure
well-formed outputs, e.g. in semantic parsing.

Most seq2seq models tend to predict the end of
the sequence too early on instances that are longer
than seen in training (Newman et al., 2020). Our
model overcomes this by explicitly predicting the
length of the output sequence as a sum of fertilities.

We first demonstrate the expressive capacity and
inductive bias of our model on synthetic data. We
then evaluate on three English semantic parsing
datasets (Geoquery, ATIS, Okapi) and a style trans-
fer task (Lyu et al., 2021). We clearly outperform
seq2seq models both with and without pretrain-
ing in structural generalisation setups, particularly
when the model has to generalise to longer exam-
ples. Our model also compares favourably with
existing approaches that target structural generali-
sation, and we obtain state-of-the-art results on the
structural style transfer tasks.

To summarise, our main contributions are:

• an efficient differentiable fertility layer;

• a flexible end-to-end differentiable model that
composes two structural operations (fertility
and reordering) and achieves strong perfor-
mance in structural generalisation tasks.

2 Related Work

Fertility The concept of fertility was introduced
by Brown et al. (1990) for statistical machine trans-
lation to capture that a word in one language is
often consistently translated to a certain number of
words in another language. Tu et al. (2016) and
Malaviya et al. (2018) incorporate fertility into the
attention mechanism of seq2seq models. Cohn et al.
(2016); Gu et al. (2016) use heuristic supervision
for training their fertility models. In contrast to
prior work, we learn an explicit fertility component
jointly with the rest of our model.

Monotonic alignment Related to fertility is the
concept of monotonic alignment, i.e. an alignment
a that maps output positions to input positions
such that for any two output positions i < j,
a(i) ≤ a(j). Monotonic alignments are usually
modelled by an HMM-like model that places the
monotonicity constraint on the transition matrix
(Yu et al., 2016; Wu and Cotterell, 2019), leading to
a runtime of O(|x|2|y|) with x being the input and

y the output. Raffel et al. (2017) parameterise the
alignment using a series of Bernoulli trials and ob-
tain a training runtime of O(|x||y|). Our approach
also has O(|x||y|) runtime.

Compositional generalisation There is a grow-
ing body of work on improving the ability of neural
models to generalise compositionally in semantic
parsing. Good progress has been made in terms of
generalisation to new lexical items (Andreas, 2020;
Akyürek and Andreas, 2021; Conklin et al., 2021;
Csordás et al., 2021; Ontañón et al., 2022) but struc-
tural generalisation remains very challenging (Oren
et al., 2020; Bogin et al., 2022).

Herzig and Berant (2021) use a neural chart
parser and induce latent trees with an approach
similar to hard EM. Their model assumes that one
input token corresponds to a single leaf in the tree.
Zheng and Lapata (2022) re-encode the input and
partially generated output with a transformer for ev-
ery decoding step to reduce entanglement and show
considerable gains in structural generalisation.

There has also been work inspired by quasi-
synchronous grammars (QCFGs, Smith and Eisner
(2006)). Shaw et al. (2021) heuristically induce a
QCFG and create an ensemble of a QCFG-based
parser and a seq2seq model. Qiu et al. (2021) use
similar QCFGs for data augmentation for a seq2seq
model. Our approach does not require constructing
a grammar. Finally, Kim (2021) introduces neural
QCFGs which perform well on compositional gen-
eralisation tasks but are very compute-intensive.

Closest to our work is that of Wang et al. (2021)
who reorder phrases and use a monotonic atten-
tion mechanism on top. Our approach differs from
theirs in several important aspects: (i) we use fer-
tility instead of monotonic attention, which param-
eterises alignments differently; (ii) we apply the
fertility step first and then reorder the phrases, so
our model can directly create alignments where out-
put tokens aligned to the same input token do not
have to be consecutive; (iii) we predict the length
as the sum of the fertilities and not with an end-
of-sequence token; (iv) they use an LSTM-based
decoder network whereas we found that a simpler
decoder can generalise better.

3 Background

3.1 Structured Attention

We often want to model the relationship between
input x of length n and output y of length l by
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means of a latent variable Z. In particular, we
assume that Z ∈ Z ⊆ Bn×l is a boolean alignment
matrix. We want to predict y from a representation
produced by a function g(Z, x). In this case, the
marginal distribution

P (y|x) = EP (Z|x)P (y|g(Z, x)) (1)

can be intractable to compute because Z often has
exponential size in x. In some important cases
however we can formulate a similar but tractable
model by using structured attention (Kim et al.,
2017) which ‘pushes’ the expectation inside the
model:

P (y|x) ≈ P (y|g(Z̃, x))

where Z̃ = EP (Z|x)Z is now a ‘soft’ rather than a
boolean matrix. Note that Z̃ij = P (Zij = 1|x) is
a marginal probability that often can be efficiently
computed with a dynamic programme if P (Z|x) is
factorisable. We will use such an approach for our
model.

3.2 Marginal Permutations

In this section, we briefly review the method of
Wang et al. (2021) that we use in our model.

Wang et al. (2021) build on bracketing trans-
duction grammars (Wu, 1997) and show how to
compute a distribution over separable permutations
(Bose et al., 1998). A permutation is separable, iff
it can be represented as a permutation tree. Some
permutations are not separable. The internal nodes
of a permutation tree are labelled as ∧ or △ and
are interpreted as operations: ∧ concatenates the
values it receives from its left child with the value
from its right child, whereas△ concatenates them
in reverse order. For example, the permutation tree
t = (△ (∧a b) (△ c d)) represents the permutation
abcd→ dcab. Let Rt(i, j) = 1 if the permutation
described by tree t maps position i to position j,
otherwise Rt(i, j) = 0.

Wang et al. (2021) show how to compute the ex-
pected permutation matrix R̃i,j ≜ EP (t|x)Rt(i, j)
in polynomial time with a CYK-style algorithm if
P (t|x) factors according to the CYK chart. Cru-
cially, the expected permutation can also be inter-
preted as a distribution over alignments, where R̃i,j
is the marginal probability that position i aligns to
position j. We will use this alignment distribution
as a building block in our model.

4 Overview of the Approach

In this section, we give a general overview of our
approach and defer the details to Sections 5 and 6.

Conceptually, we want to model the transduction
from input x of length n into output y of length l as
the composition of two edit operations. First, we
apply a fertility step, in which we decide for each
token what its fertility is, i.e. how many copies we
make of it. Assigning fertility of 0 corresponds to
deleting the token. This step yields an intermediate
sequence of tokens. We then reorder them using
permutation trees (see Section 3.2). In the last
step, we individually translate these tokens into
the output tokens. Fig. 1 shows an example where
the fertility step and reordering apply to vector
representations of tokens.

The fertility step and the reordering can be
represented as boolean matrices F ∈ Bn×l and
R ∈ Bl×l, respectively. These matrices denote
alignments between the sequences before and after
the operation. For example, Fi,j = 1 means that
input token i aligns to intermediate token j, i.e. j
is one of the copies of i.

With this conceptualisation, we would ideally
use the following probabilistic model P (y|x):

P (y|x) = EP (F |x)︸ ︷︷ ︸
Fertility

[
EP (R|x, F )︸ ︷︷ ︸

Reordering

P (y|x, F,R︸ ︷︷ ︸
Decoder

)
]

At training time, the true fertility values are un-
known but we observe the length l of y, so we
condition on it:

P (y|x) = P (l|x) · EP (F,R|x,l)P (y|x, F,R) (2)

where P (l|x) can be computed with dynamic pro-
gramming relying on the fertility model, as we
explain in the next section.

Computing the marginal likelihood and the gra-
dients is intractable. Instead of computing the like-
lihood exactly, one could sample and use a score
function estimator (Williams, 1992) but the result-
ing gradient estimates have high variance.

Instead, we use structured attention as discussed
in Section 3.1 and ‘push’ the expectations inside
the model:

EP (F,R|x,l)P (y|x, F,R) ≈ P (y|x, F̃ , R̃) (3)

with F̃ = EP (F |x,l)F and R̃ = EP (R|x,F̃ )R. F̃

and R̃ now represent ‘soft’, differentiable versions
of fertility and reordering. They approach their
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discrete counterparts as P (F |x, l) and P (R|F̃ , x)
become peakier, which tends to happen over the
course of training. We can view (F̃ R̃)i,j =∑

k F̃i,kR̃k,j as a probability of aligning i to j in
the composition of the operations.

A tendency to memorise larger chunks of the
output might contribute to poor compositional gen-
eralisation (Hupkes et al., 2020). In order to avoid
this, we use a simple decoder that generates each
output token independently. A first attempt might
look like this:

P (y|x, F̃ , R̃) =
l∏

i=1

∑

j,k

P (yi|xj)F̃j,kR̃k,i (4)

where the summation over j and k marginalises
over all possible alignments to output position i.

Distinguishing copies The independence as-
sumptions in Eq. (4) imply that P (yi|xj) will have
the same distribution for all copies of xj , i.e. the
model cannot express a preference to translate the
first copy of Seattle to city and the second copy to
seattle in Fig. 1. To enable this, we distinguish
different copies of an input token.

We do this by defining F not as a matrix but as
a tensor F ∈ Bn×l×d where d is some fixed maxi-
mum fertility value. Let Fi,j,u = 1 iff intermediate
token j is the u-th copy of input token i. For ex-
ample, in Fig. 1, F4,6,1 = 1 and F4,7,2 = 1. With
this definition of F (and accordingly defined F̃ ),
we can define a stronger decoder:

P (y|x, F̃ , R̃) =
l∏

i=1

∑

j,k,u

P (yi|xj , u)F̃j,k,uR̃k,i

where we now additionally marginalise over which
copy of the input sequence we are translating.

5 Fertility and Alignment

In this section we describe how to compute F̃ =
EP (F |x,l)F , i.e. the expected alignment that results
from the fertility step given that the intermediate
token sequence will have length l.

In the previous section, we looked at the fertility
step mostly from the perspective of an alignment
between the input tokens and the intermediate to-
kens. However, the fertility step is parameterised
as assigning a fertility value fi ∈ 0, . . . , d ∈ N
to every token xi. We now show how to compute
F̃ efficiently as a function of the distribution over
fertility values P (f |x).

Figure 2: Efficiently computing the marginal probability
that the u-th copy of i is at position j. We partition the
intermediate sequence into four parts, and marginalise
over all possible ways of choosing v.

We denote the alignment that follows from f as
F (f), i.e. F (f)i,j,u = 1 iff intermediate token j is
the u-th copy of token i. F̃ can be expressed as:

F̃ = EP (F (f)|x,l)F (f) (5)

where we assume that the fertility values are inde-
pendent of each other conditioned on x:

P (F (f)|x) ≜ P (f |x) ≜
n∏

i=1

P (fi|x)

Note that conditioning on the output length l in
Eq. (5) introduces inter-dependencies between the
values. In order to compute F̃i,j,u, we need to
marginalise over all possible assignments to the
fertility vector f which satisfy F (f)i,j,u = 1. We
do this with a dynamic programming algorithm that
is similar to the forward/backward algorithm for
HMMs (Baum, 1972).

Computing marginals We characterise the situ-
ations where F (f)i,j,u = 1 as the integer solutions
to a set of equations (see also Fig. 2). First, in order
for intermediate token j to be the u-th copy of i,
there should be j−u intermediate tokens generated
by input tokens preceding i:

f1 + . . .+ fi−1 = j − u (6)

Second, the fertility fi has to be at least u. We
capture this by requiring

fi = u+ v (7)

with v ≥ 0. Finally, the input tokens following i
have to contribute the remaining l− j − v interme-
diate tokens:

fi+1 + . . .+ fn = l − j − v (8)

We then compute the probability of creating a
sequence of length l, where the j-th intermediate
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token is the u-th copy of i, by marginalising over v
(dropping x for readability):

P (F (f)i,j,u = 1, f0 + . . .+ fn+1 = l) (9)

=

min(l−j,d−u)∑

v=0

P (f0 + . . .+ fi−1 = j − u)×

P (fi = u+ v)P (fi+1 + . . .+ fn+1 = l − j − v)

We handle the boundary cases with i = 1, i =
n by adding dummy variables f0 and fn+1 and
setting P (f0 = 0) = P (fn+1 = 0) = 1.

In order to compute Eq. (9), we also compute
‘forward’ probabilities P (f0 + . . . + fi = h) and
‘backward’ probabilities P (fi + . . . + fn+1 = h)
for all i, h. This can be done recursively:

P (f0 + . . .+ fi = h) =

d∑

r=0

P (fi = r)P (f0 + . . .+ fi−1 = h− r)

Finally, F̃i,j,u = 1/P (f0 + . . . + fn+1 = l) ×
P (F (f)i,j,u = 1, f0 + . . . + fn+1 = l) because
F̃i,j,u was defined in Eq. (5) by conditioning on the
length l. We provide pseudo-code for all steps in
Appendix A.

Runtime The runtime of the fertility step is dom-
inated by computing Eq. (9). Note that v has a
range of at most d, thus, we can compute the prob-
abilities for all i, j, u in O(n · l · d2) time. Eq. (9)
can be computed in parallel for each i, j, u.

6 Composing Fertility and Reordering

We will now describe in detail how P (F |x) and
P (R|x, F̃ ) are defined and how the fertility and
reordering layers are composed.

6.1 Fertility Layer

The fertility layer takes a desired output length
l and a sequence of vectors x1, . . . ,xn as input
(GloVe embeddings (Pennington et al., 2014) in
our case) and returns a marginal alignment F̃ (see
Section 5) and a sequence of vectors h1, . . . ,hl
for use as input to the next layer. We compute
the distribution over fertilities by first encoding
x1, . . . ,xn with a bidirectional LSTM, yielding a
sequence of hidden states hf1 , . . . ,h

f
n. We then

model P (fi|x) = softmaxτ (MLPf (hfi )), where τ
is the temperature parameter of the softmax.

We use F̃ (Eq. (5)) as a form of structured atten-
tion to compute the input to the reordering layer:

hj =
∑

i,u

F̃i,j,u(xi + wu)

where wu is a learned embedding indicating that
j is a u-th copy of some token. Intuitively, hj for
an intermediate token j represents the correspond-
ing token in the input sequence and also indicates
which copy of that token it is.

6.2 Reordering Layer

Given the output h1, . . . ,hl from the fertility layer,
the reordering layer computes the alignment dis-
tribution R̃ as the expected permutation following
Wang et al. (2021). This procedure involves popu-
lating a CYK-style chart with scores. We first run
a bidirectional LSTM with a skip connection over
h and compute a contextualised representation of
the tokens after the fertility step:

hri = [LSTMr(h≤i),LSTMr(h≥i)] + hi

Based on these representations, we compute scores
for the chart following Stern et al. (2017).

6.3 Decoder

Our decoder factors as follows (see Section 4):

P (y|x, R̃, F̃ ) =
l∏

i=1

∑

j,k,u

P (yi|xj , u)F̃j,k,uR̃k,i
︸ ︷︷ ︸

P (yi|x,R̃,F̃ )

P (yi|xj , u) conditions only on the original input
token and on the index indicating which copy of
this token we are translating. For this reason, we
contextualise the input with a bidirectional LSTM
with a skip connection:

h′j = ρ[LSTMd(x≤j),LSTMd(x≥j)] + xj (10)

with ρ as hyperparameter.
We experiment with three versions of the

decoder. In (i), we parameterise P (yi|xj , u)
as P (yi|xj , u) = softmax(WuMLP(h′j)). In
(ii), we additionally use a copy mechanism (Gu
et al., 2016). In (iii), we use an autoregressive
variant where we encode y<i with an LSTM,
defining P (yi|y<i, u) = softmax(WuMLP(h′j +
LSTM(y<i)).

2176



6.4 Training

As mentioned in Section 4, at training time we
condition on the observed length l of y: P (y|x) =
P (l|x)P (y|x, F̃ , R̃) with F̃ conditioned on l. We
use a weighted version of the log likelihood as the
objective function:

∑

i

λ1 logP (l
i|xi) + logP (yi|xi, li)

with i ranging over the training examples.
For the semantic parsing tasks, we found it nec-

essary to give our model a reasonable starting point
in terms of alignments. We encourage it to respect
high-confidence automatic alignments during the
first m training epochs by adding the following
term to our objective function:

λ2
∑

(i,j)∈A
log
∑

k,u

F̃i,k,uR̃k,j

where A is the set of alignments with a posterior
probability of at least χ according to an IBM-1
alignment model (Brown et al., 1993).

Initialising an alignment model with alignments
from a simpler model was a common strategy in sta-
tistical machine translation (Och and Ney, 2003).

6.5 Inference

In order to make predictions with a trained
model, we want to compute the most likely
output y given the input x. It is convenient
to treat the length as a discrete variable and
use the same algorithm for computing F̃ as
derived for training. We therefore search for
argmaxy P (y|x) = argmaxl P (l|x)P (yl|x, l)
with yl = argmaxy P (y|x, F̃ , R̃). For any given l
we can easily find yl in versions (i) and (ii) of the
decoder:

yli = argmax
yi

P (yi|x, R̃, F̃ )

For version (iii) of the decoder, we use greedy
search instead. It would be too costly to compute
yl for all l, so we explore only the top k most likely
lengths.

Grammar-based decoding In executable seman-
tic parsing, we want to produce only well-formed
outputs, which can be characterised by a context-
free grammar G. In practical applications, this
grammar is needed to execute the query, so there is

little extra engineering effort in using it for decod-
ing. We search for

yl = argmax
y∈L(G)

P (y|x, l)

Because of the simple decoder we can do this ex-
actly by applying a modified version of Viterbi
CYK. Unlike in parsing though, the string is not ob-
served because it is exactly what we are looking for.
Therefore, we fill all entries from i to i in the chart
C with CA,i,i = maxA→a∈G P (yi = a|x, R̃, F̃ ).
We then continue with the normal Viterbi CYK
with weights of 1 on all other rules.

7 Evaluation

7.1 Synthetic Data
In order to probe the expressive capacity and in-
ductive bias of our model, we evaluate on mirror-
ing task T = {(w,wwR)|w ∈ Σ∗}, e.g. abc →
abccba. The challenge is that the length of the de-
pendency between output tokens grows with the
length of the example. Models are trained on ex-
amples with input lengths 3 to 9, and tested in two
setups. In the first setup (Length), the model has to
generalise to examples with lengths 11 to 20; we
use examples with length 10 as validation data. In
the second setup (unseen combination, UC), the
model only sees the symbols x, y and z grouped
together as xyz on the input side at training time.
The model is tested on examples that contain x,y
or z adjacent to other symbols. See Appendix B.1
for further details on the setup.

We compare our model without copying (F→R)
with a variant that first applies the reordering and
then the fertility step (R→F) and autoregressive
variants of the two (AR F→R and AR R→F). As
baselines, we also compare with an LSTM-based
seq2seq model with attention and a Transformer
with relative positional embeddings, which was pre-
viously shown by Csordás et al. (2021) to perform
well at compositional generalisation. AR R→F has
similarities to Wang et al. (2021) who first reorder
and then use an autoregressive decoder with mono-
tonic attention.

Results Table 1 shows mean accuracy across 5
random initialisations. The accuracy of the relative
Transformer and the LSTM-based seq2seq model
drops sharply for longer inputs. In contrast, F→R

and AR F→R generalise perfectly even to much
longer examples. In the UC setup, F→R outper-
forms the rest by a wide margin. Interestingly, all
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Model Accuracy
Length UC

dev 11 12 13 14 - 20 test

Transformer 82.0 3.0 0.0 0.0 0.0 42.0
LSTM 100.0 94.3 67.9 6.9 0.0 0.1

R→F 0.0 0.0 0.0 0.0 0.0 1.3
AR R→F 90.0 85.7 89.8 87.5 80.5 1.2

F→R 100.0 100.0 100.0 100.0 100.0 79.9
AR F→R 100.0 100.0 100.0 100.0 100.0 32.1

Table 1: Exact match accuracy on the mirroring task.

autoregressive models struggle in this setup, includ-
ing AR F→R which obtained perfect accuracy in the
Length setup. This is consistent with the hypoth-
esis that autoregressive models tend to memorise
entire chunks (Hupkes et al., 2020).

Expressivity of F→R and R→F For this task, an
input token corresponds to two output tokens that
may be arbitrarily far apart from each other. F→R

can learn this alignment because this can be cap-
tured by a separable permutation (see Section 3.2)
following the fertility step duplicating every input
token. In contrast, R→F and AR R→F cannot rep-
resent the correct alignment directly because the
fertility step is applied only after the reordering,
leading to alignments between an input token and a
contiguous span in the output. However, in theory,
they can represent this alignment implicitly through
the LSTM (Eq. (10)). The evaluation shows that
this does not work reliably in practice: we find that
R→F gets stuck in bad local minima and fails com-
pletely on the task. While AR R→F performs well
in the Length setup, it is weak in the UC setup.

7.2 Geoquery

Geoquery (Zelle and Mooney, 1996) is a standard
dataset for semantic parsing and has recently been
used to evaluate to what extent semantic parsers are
capable of generalising to (i) structurally unseen
queries (template split), and (ii) structurally unseen
long examples. We follow the setup of Herzig and
Berant (2021), using the variable-free FunQL rep-
resentation (Kate et al., 2005), a copy mechanism,
and evaluate with execution accuracy.

Results Table 2 shows the results on the different
splits. We report means and standard deviations
of 5 random initialisations. Our method performs
well across the different splits, and in particular
on the length split that evaluates a challenging
form of compositional generalisation. As an ab-
lation, we remove the grammar-based decoding.

Model iid Template Length

Seq2Seq ‡ (HB) 78.5 46.0 24.3
Seq2Derivation (HB) 72.1 54.0 24.6
BART-base‡ (HB) 87.1 67.0 19.3
Span (HB) 78.9 65.9 41.4
Span + lexicon (HB) 86.1 82.2 63.6
Liu et al. (2021)‡ - 84.1 -
Wang et al. (2021)‡ 75.2∗ 43.2∗ -

R→F 89.1±1.0 80.4±1.2 68.6±1.4
R→F ‡ 83.5±0.7 73.0±1.6 49.2±5.1

F→R 88.6±3.3 79.9±2.5 68.8±5.2
F→R ‡ 80.7±2.3 68.7±4.3 53.4±5.9
AR F→R ‡ 81.1±1.0 52.8±3.3 37.6±1.8

Table 2: Accuracy on different splits of Geoquery. HB
is Herzig and Berant (2021) and ‡ refers to systems that
do not enforce well-formedness of the output. ∗ Wang
et al. (2021) use exact match accuracy and anonymise
named entities instead of copying.

We notice a considerable drop in accuracy but it
still outperforms the baselines. The drop in ac-
curacy is slightly bigger out-of-distribution than
in-distribution.

In line with the experiments on synthetic data,
AR F→R and the approach of Wang et al. (2021)
drastically lose accuracy when going from in-
distribution to the compositional generalisation se-
tups. This provides further evidence that a strong
decoder can hinder compositional generalisation.

In contrast to the experiments on synthetic data,
R→F and F→R perform comparably. Manual in-
spection of the data shows that good alignments on
this dataset can be obtained even with the stronger
assumption on possible alignments made by R→F.

7.3 ATIS

ATIS (Dahl et al., 1994) is a semantic parsing
datasets for flight bookings. In comparison to Geo-
query, the queries tend to be longer and the word
order is more flexible. We use the variable-free
FunQL notation as annotated by Guo et al. (2020).
Apart from the original iid test split, we create a
length split: Semantic parses with fewer than 4
conjuncts form the training set, parses with exactly
4 conjuncts form the development set and the test
set contains instances with more than 4 conjuncts.
Details on the split and preprocessing are in Ap-
pendix B.3.

We compare our model with finetuned BART-
base (Lewis et al., 2020), an LSTM-based seq2seq
model with attention and the relative Transformer
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Model iid Length

LSTM seq2seq 76.52±1.66 4.95±2.16
LSTM seq2seq‡ 75.98±1.30 4.95±2.16
Rel. Transformer‡ 75.76±1.43 1.15±1.41
BART-base‡ 86.96±1.26 19.03±4.57

F→R 74.15±1.35 35.41±4.09
F→R ‡ 68.26±1.53 29.91±2.91

Table 3: Accuracy on different splits of ATIS.

Model Calendar Document Email

BART-base‡ 36.7±3.0 2.7±2.1 20.5±9.8
F→R 69.5±13.9 42.4±5.7 55.6±2.7
F→R ‡ 57.2±19.9 36.1±5.6 43.9±3.8

Table 4: Accuracy on length splits by domain on Okapi.

(Csordás et al., 2021). We also run a version of the
LSTM-based model with a large beam of size 50
and filter our instances that are not well-formed; the
resulting outputs are well-formed at least 99.7% of
the time.

Results Table 3 shows mean accuracy and stan-
dard deviations of 5 random initialisations. While
on the iid split, our approach does not quite reach
the same accuracy as the baselines, it outperforms
them on the compositional length split by a margin
of more than 16 points. Without grammar-based
decoding, we again observe a noticeable loss in ac-
curacy but we still substantially outperform BART
on the length split. Constraining the output to be
grammatical does not appear as beneficial for the
LSTM baseline.

7.4 Okapi

Hosseini et al. (2021) introduce a semantic pars-
ing dataset for evaluating compositional generalisa-
tion on three domains (document, calendar, email).
Since template splits were not found to be challeng-
ing, we focus on generalising to longer examples.
Models are trained on short examples with up to 3
‘parameters’ (such as filtering based on an attribute
or ordering results) and are tested on examples with
more parameters (at least 4 for the calendar and
email domain and at least 5 for the document do-
main). The splits are described in Appendix B.4. In
contrast to the other datasets we consider, Okapi is
noisy because it was collected with crowd workers.
This presents an additional challenge.

4 5 6 7
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20
30
40
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70
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Figure 3: Accuracy on the document domain of Okapi
by number of parameters in the gold logical form.

Results Table 4 shows the results of our model
with copying from 5 random initialisations. F→R

outperforms fine-tuned BART-base by a large mar-
gin, in particular on the challenging split of the
document domain.

Fig. 3 shows the accuracy on the development
and test set of the document domain as a function
of the number of parameters in the gold logical
form. BART performs relatively well when applied
to examples with one more parameter than seen
in the training set but then its performance drops
sharply. F→R is more accurate and its accuracy
also drops much slower with the number of param-
eters. We notice different failure modes for the
two models: on the test set, BART deviates by 5.4
tokens on average from the gold length, whereas
F→R deviates only by 1.0 tokens on average. This
is in line with the observations of Newman et al.
(2020) that seq2seq models systematically predict
the end of sequence token too early on long out-
of-distribution examples. Our results suggest that
predicting length as a sum of fertilities is more
robust towards this shift in distribution.

7.5 Style Transfer

In addition to being important for compositional
generalisation, structural inductive biases can help
when only little data is available. We evaluate our
model in such a scenario on the style transfer tasks
of Lyu et al. (2021). A model is given an English
sentence and asked to reformulate it to conform
with a certain ‘style’. We focus on the tasks iden-
tified as challenging by Lyu et al. (2021): active
to passive (2462 training examples), adjective em-
phasis (627 examples) and verb emphasis (1081
examples).

For the emphasis tasks, the word to be empha-
sised is provided in the input. Following Kim
(2021), to incorporate it, we add a special learned
embedding vector to the embedding of that token.
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Transfer Type Approach BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Active to passive

GPT-2 (Lyu et al., 2021) 47.6 32.9 23.8 18.9 21.6 46.4 1.820
Seq2seq (Kim, 2021) 83.8 73.5 67.3 59.8 46.7 77.1 5.941
Neural QCFG (Kim, 2021) 83.6 77.1 71.3 66.2 49.9 80.3 6.410
Human (Lyu et al., 2021) 93.1 88.1 83.5 79.5 58.7 90.5 8.603
F→R 92.1±1.3 85.4±1.5 79.7±1.7 74.6±1.9 55.9±0.5 86.0±1.1 7.610±0.130

Adj. emphasis

GPT-2 (Lyu et al., 2021) 26.3 7.9 2.8 0.0 11.2 18.8 0.386
Seq2seq (Kim, 2021) 50.5 29.6 18.4 11.9 24.2 51.4 1.839
Neural QCFG (Kim, 2021) 67.6 50.6 39.3 31.6 37.3 68.3 3.424
Human 83.4 75.3 67.9 66.1 52.2 81.1 6.796
F→R 78.3±1.4 61.9±0.7 49.9±1.3 40.5±1.4 43.0±1.0 69.1±0.6 4.268±0.170

Verb emphasis

GPT-2 (Lyu et al., 2021) 30.9 17.0 9.5 4.1 14.0 29.2 0.593
Seq2seq (Kim, 2021) 52.6 38.9 29.4 21.4 29.4 46.4 2.346
Neural QCFG (Kim, 2021) 66.4 51.2 40.7 31.9 37.0 58.9 3.227
Human (Lyu et al., 2021) 64.9 56.9 49.3 42.1 43.3 69.3 5.668
F→R 68.4±0.6 52.7±0.6 41.6±0.7 32.8±0.6 37.4±0.4 58.9±0.4 3.498±0.121

Table 5: Results on the hard style transfer tasks from Lyu et al. (2021). All models except for GPT2 use copying.

Results Table 5 shows the results comparing our
F→R model to previous work based on three ran-
dom initialisations. We achieve state-of-the-art re-
sults on all style transfer tasks on all metrics. The
improvement compared to prior work is strongest
for the active-to-passive task and weakest for the
verb emphasis task, where our model ties with Kim
(2021) in terms of ROUGE-L.

8 Conclusion

We presented a flexible end-to-end differentiable
model for structured NLP tasks. It predicts the
output sequence from the input by composing a fer-
tility layer with a reordering layer. The evaluation
shows that our model performs well in structural
generalisation setups, in particular when the model
has to generalise to longer examples than seen dur-
ing training. In contrast, the accuracy of standard
seq2seq models drops sharply on longer examples.

The efficient fertility layer introduced in this
work may be useful in other scenarios as well, e.g.
in non-autoregressive machine translation, or for
(unsupervised) sentence compression when the fer-
tility is restricted to 0 or 1. Future work could
also investigate other structured layers and the best
ways of composing and training them.

9 Limitations

The fertility layer is efficient but a limitation of the
model presented in this paper is the high runtime
complexity of the reordering layer. It makes it im-
practical for long output sequences (e.g. more than
50 tokens). While the structured reordering step
can represent many permutations of practical inter-
est, we observed a small number of cases where

our model could not produce the correct permuta-
tion. We note that our approach is modular and the
reordering layer could be replaced by a faster one
with fewer restrictions in future work, e.g. based
on one-to-one matchings.

While our method obtains strong accuracy in
compositional generalisation setups without con-
textualised encoders, it remains an open question
how different ways of integrating contextualised
encoders affect the performance of our method in
compositional generalisation setups. In addition,
it is an open question how a pretrained decoder
would influence our model’s ability to generalise
compositionally since we found that a non-pre-
trained LSTM-based decoder can be detrimental.
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Algorithm 1 Forward

Require: f ∈ Rn×d, normalised over the second
axis, output sequence length l

1: function FWD(f, l)
2: Init fwd ∈ Rn×l with zeros
3: for h in range(0, d) do ▷ Base case
4: fwd[0, h] = f[0, h]
5: for i in range(1, n) do ▷ Recursion
6: for h in range(0, l) do
7: for r in range(0, min(d, h+1)) do
8: fwd[i, h] += fwd[i-1, h-r] × f[i, r]
9: return fwd

Algorithm 2 Marginals

Require: f ∈ Rn×d, normalised over the second
axis, output sequence length l

1: function MARGINALS(f, l)
2: Init F ∈ Rn×l×d with zeros
3: fwd = fwd(f, l)
4: bwd = rev(fwd(rev(f),l))
5: for i in range(0, n-1) do
6: for j in range(0, l) do
7: for u in range(1, min(d, j+1+1)) do
8: for v in range(0, min(d-u, l-j)) do
9: F[i, j, u] += fwd[i, j+1-r1] ×

10: f[i,u+v]×bwd[i+1,l-(j+1+v)]
11: divide all entries in F by fwd[i, l]
12: return F

A Pseudo code

We present the algorithms for computing F̃ in
python-style pseudo code, using 0-based indexing
and range(i,k) refers to the integers i, . . . , k−
1. As in the main paper, d refers to the maximum
fertility value (hyperparameter).

Algorithm 1 shows how to compute all forward
probabilities. If rev(f) reverses matrix f on the
first dimension (e.g. like torch.flip), then
we can compute the backward probabilities as
rev(fwd(rev(f), l)). Algorithm 2 shows
how F̃ can be computed.

B Data, grammars, pre- and
post-processing

B.1 Synthetic data
In both setups, we generate 4000 training examples,
200 development examples and 1000 test examples.
We use an alphabet size of |Σ| = 11 for the Length
setup and |Σ| = 11 + 3 for the UC setup to accom-

modate for x,y,z. Symbols are chosen uniformly
at random. In the Length setup, we choose the
length of the example uniformly at random. In the
UC setup, we do so as well but with probability 0.2
we insert an xyz cluster if this does not exceed the
maximum length.

In the UC setup, we use development data from
the training distribution.

We do not use grammar-based decoding or copy-
ing on the synthetic data.

B.2 Geoquery
We remove all parentheses in the logical forms,
as they can be restored in post-processing. We
also remove quotes around named entities in pre-
processing to enable copying (’texas’ becomes
texas) and restore them in post-processing. Fol-
lowing Herzig and Berant (2021), we only allow
copying of named entities and do not copy predi-
cate symbols (e.g. river).

We use the grammar of Wong and Mooney
(2006) for decoding as provided by Guo et al.
(2020).

B.3 ATIS
We found that a naive length split led to having
very few examples in the training set that used a
date since both the month and the day count as one
conjunct each. Therefore, we created 33 templates
with three conjuncts based on existing ATIS ex-
amples (with four or more conjuncts) that contain
dates and add 8 instances of each template with ran-
domly chosen dates to the training set. In addition,
we removed any exact duplicate samples from the
data.

Similarly to Geoquery, we remove those paren-
theses that can be deterministically recovered in
post-processing. However, in contrast to Geoquery
the parentheses for or and intersection need
to be kept because the arities of those operators
are not fixed. We run all our experiments on this
representation of ATIS.

For grammar-based decoding we use the “typed"
grammar provided by Guo et al. (2020) and do not
use the copy mechanism.

B.4 Okapi
We found there was too much distributional overlap
in the original length split provided by Hosseini
et al. (2021) and therefore use our own split:

For the document domain, our development set
contains examples with 4 parameters, and the test
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Dataset Split/Version Train Dev Test

Geoquery
iid 540 60 280
template 544 60 276
length 540 60 280

ATIS
iid 4465 497 448
length 4017 942 331

Okapi/length
Calendar 1145 200 1061
Document 2328 412 514
Email 2343 200 991

Style transfer
active to passive 2462 136 137
adjective emphasis 627 34 35
verb emphasis 1081 60 60

Table 6: Number of examples per dataset/split.

set contains examples with at least 5 parameters.
For the other two domains, there is insufficient
data for such out-of-distribution development sets.
Therefore, we chose our test set to contain all exam-
ples with at least 4 parameters and our development
sets to consist of 95% in-distribution data and 5%
of examples from the the examples with 4 parame-
ters (which makes the bulk of the test distribution).

We manually create a grammar of well-formed
logical forms for the three domains of Okapi (in-
cluded in the code).

B.5 StylePTB
For comparability, we also tokenise on whitespace
following Kim (2021). We do not restrict the output
of the model with a grammar.

C Details on evaluation metrics

We provide code for all evaluation metrics in our
repository/dependencies.

Geoquery We use the code of Herzig
and Berant (2021) to compute execu-
tion accuracy (https://github.com/
jonathanherzig/span-based-sp).

ATIS We allow for different order of conjuncts
between system output and gold parse in computing
accuracy. We do this by sorting conjuncts before
comparing two trees node by node.

Okapi We follow Hosseini et al. (2021) and
disregard the order of the parameters for com-
puting accuracy. Since Hosseini et al. (2021)
did not make their evaluation code publicly avail-
able, we use our own implementation. Our im-
plementation uses sets and does not punish a
model for predicting a correct parameter mul-
tiple times. For example, if the gold logical

form contains FILTER message.isRead eq
False, a necessary condition for a prediction to
count as correct is that it must contain this string at
least once.

StylePTB We follow Kim (2021) and
use https://github.com/Maluuba/
nlg-eval (commit 7f79930) for all evaluation
metrics, ensuring that BLEU, ROUGE and
METEOR are scaled to 0 - 100.

D Hyperparameters

We provide a configuration file for each of our mod-
els with the chosen hyperparameters in our code
repository (configs/). We set the maximum fer-
tility value d to d = 4 for all datasets except for the
style transfer tasks where we set it to d = 3.

At test time, we explore the top k = 5 most
likely lengths when using grammar-based decoding.
Without grammar-based decoding we used k = 1
as using k = 5 provided little improvement.

Many but not all instances of Geoquery require
identity permutations. We found this to lead to the
issue that the model gets stuck in a very steep lo-
cal minimum within the first epoch where it would
predict only identity permutations. We fixed this is-
sue by reducing the learning rate in the feedforward
network that predicts the scores for the permutation
trees to 1× 10−6.

D.1 Hyperparameter selection

We select hyperparameters using a combination of
manual selection and a random search. We opti-
mise hyperparameters for accuracy on the devel-
opment set of compositional generalisation splits,
where available, (Length setup for the synthetic
data, template split for Geoquery), and then use
those hyperparameters for all splits of a (domain of
a) dataset.

The high variance in accuracy across random
initialisations often observed in compositional gen-
eralisation setups makes it difficult to tune hyper-
parameters even if an out-of-distribution develop-
ment set exists. We restrict random hyperparameter
search to two random seeds. After the hyperpa-
rameter search, we pick the two most promising
configurations (according to (execution) accuracy),
pick a new random seed and train them again to
choose the one which provides the most stable ac-
curacy (approximated as the highest accuracy on
the new seed). We then run the main experiments
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Dataset Model # params

Mirror

F→R and R→F 1.019
AR F→R and AR R→F 1.12
LSTM 3.187
Transformer 33.067

Geoquery
F→R and R→F 2.541
AR F→R 2.765

ATIS
LSTM 4.669
Transformer 58.468
F→R 3.511

Okapi/Calendar F→R 2.466
Okapi/Document F→R 2.468
Okapi/Email F→R 2.485

Style/Active to passive F→R 2.814
Style/Adjective emphasis F→R 2.698
Style/Verb emphasis F→R 3.133

Table 7: Number of parameters in millions in our mod-
els.

with the chosen hyperparameters and completely
new random seeds.

We randomly sample 20 configurations per hy-
perparameter search. Since this procedure is ex-
pensive, we do not run train our models fully to
convergence. The bounds of the hyperparameter
search are reported in our repository.

For all our models, we initially chose hyperpa-
rameters manually, and then ran a random hyperpa-
rameter search as described above. If the manually
chosen hyperparameters resulted in same or better
performance (on the development set) on average,
we kept those, and otherwise used the ones found
by the hyperparameter search.

For example, on Geoquery, we noticed a particu-
lar sensitivity to hyperparameters, and the manually
selected hyperparameters for F→R performed best
with low variance, whereas for R→F, the hyperpa-
rameters found by the random search were better
than the manually chosen ones. We think this sen-
sitivity is at least in part caused by the small size
of the dataset.

Style transfer In contrast to the other tasks we
evaluate on, we did not run a hyperparameter
search for the style transfer tasks and use the same
manually determined hyperparameters for F→R

across all style transfer tasks.

E Computing infrastructure and runtime

All experiments were run on GeForce GTX 1080
Ti or GeForce GTX 2080 Ti with 12GB RAM and
Intel Xeon Silver or Xeon E5 CPUs.

The runtime of one run contains the time for

Dataset Model Epochs Runtime

Mirror

F→R 7 8 min
R→F 20 8 min
AR F→R 20 30 min
AR R→F 20 20 min
Transformer 200 15 min
LSTM 60 4 min

Geo F→R 100 20 min

ATIS

F→R 100 11-12h
Transformer 20 10 min
LSTM 20 10 min
BART 50 1.3h

Okapi / Calendar
F→R 70 1 h
BART 40 15 min

Okapi / Document
F→R 70 1.5 h
BART 60 30 min

Okapi / Email
F→R 70 1.5 h
BART 40 30 min

Active→ Passive F→R 60 1 h
Adj. emphasis F→R 60 20 min
Verb emphasis F→R 60 30 min

Table 8: Average total runtime of the models we train.
For comparison on Geoquery, Herzig and Berant (2021)
report a runtime of 2 hours on comparable hardware to
ours.

training, evaluation on the devset after each epoch
and running the model on the test set. We show the
runtime the models we train in Table 8.

F Additional results

Geoquery Table 10 shows exact match accuracy
of our models for comparison and Table 11 shows
results on the development set.

ATIS Table 13 shows results on the development
set. Table 12 shows the average deviation from the
gold length.

Okapi Table 14 shows results on the develop-
ment set.

StylePTB Table 9 shows results on the develop-
ment set.
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Transfer Type BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Active to passive 94.1±0.3 88.6±0.2 83.8±0.2 79.7±0.3 57.6±0.1 87.9±0.5 7.883±0.061
Adj. emphasis 78.4±1.2 64.3±1.0 54.5±0.7 46.9±0.9 44.0±0.4 69.5±0.6 4.809±0.113
Verb emphasis 67.6±0.5 51.2±0.7 40.6±0.9 32.7±1.3 36.8±0.3 59.1±0.7 3.587±0.118

Table 9: Development accuracy of our F→R model with copying on StylePTB. We report means and standard
deviations of three random initialisations.

Model iid Template Length

R→F 83.5±0.7 72.7±2.0 54.0±4.0
R→F ‡ 76.4±1.4 65.8±2.2 39.4±6.2
F→R 83.4±2.6 72.0±3.3 55.2±5.3
F→R ‡ 76.9±2.2 63.6±4.7 46.0±6.6
AR F→R ‡ 77.4±1.3 47.5±4.2 34.4±2.2

Table 10: Exact match accuracy on the splits of Geo-
query. We report mean and standard deviation of the 5
random initialisations shown in the main paper.

Model iid Template Length

F→R ‡ 84.3±3.0 85.3±1.4 83.7±1.4
R→F ‡ 83.7±2.2 83.0±3.0 79.0±3.2
AR F→R ‡ 83.7±2.7 81.7±2.0 87.3±2.5

Table 11: Mean and standard deviations of execution
accuracy on the development sets of the Geoquery splits
(without grammar-based decoding).

Model iid Length

LSTM seq2seq ‡ 0.46±0.09 5.39±0.42
Rel. Transformer ‡ 0.49±0.07 6.19±0.52
BART-base ‡ 0.24±0.02 3.40±0.25
F→R ‡ 0.41±0.06 1.49±0.18

Table 12: Means and standard deviations of the average
absolute deviation from the gold length by model on
ATIS, i.e. lower is better

Model iid Length

LSTM seq2seq ‡ 81.53±0.77 43.86±2.93
Rel. Transformer ‡ 81.53±0.44 34.84±5.28
BART-base ‡ 90.54±0.45 65.29±1.01
F→R ‡ 73.80±1.62 54.42±1.25

Table 13: Mean and standard deviations accuracy on the
development sets of the ATIS splits (without grammar-
based decoding).

Model Calendar Document Email

BART-base ‡ 94.8±0.3 56.2±10.9 91.4±0.4
F→R ‡ 86.4±3.4 66.1±4.8 85.0±2.8

Table 14: Mean and standard deviations accuracy on the
development sets of the Okapi splits (without grammar-
based decoding).
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Abstract

In recent years, active learning has been suc-
cessfully applied to an array of NLP tasks.
However, prior work often assumes that train-
ing and test data are drawn from the same dis-
tribution. This is problematic, as in real-life
settings data may stem from several sources of
varying relevance and quality. We show that
four popular active learning schemes fail to out-
perform random selection when applied to unla-
belled pools comprised of multiple data sources
on the task of natural language inference. We
reveal that uncertainty-based strategies perform
poorly due to the acquisition of collective out-
liers, i.e., hard-to-learn instances that hamper
learning and generalization. When outliers are
removed, strategies are found to recover and
outperform random baselines. In further anal-
ysis, we find that collective outliers vary in
form between sources, and show that hard-to-
learn data is not always categorically harmful.
Lastly, we leverage dataset cartography to in-
troduce difficulty-stratified testing and find that
different strategies are affected differently by
example learnability and difficulty.

1 Introduction

In recent years, active learning (AL) (Cohn et al.,
1996) has emerged as a promising avenue for data-
efficient supervised learning (Zhang et al., 2022).
AL has been successfully applied to a variety of
NLP tasks, such as text classification (Zhang et al.,
2016; Siddhant and Lipton, 2018; Prabhu et al.,
2019; Ein-Dor et al., 2020; Margatina et al., 2022),
entity recognition (Shen et al., 2017; Siddhant and
Lipton, 2018; Lowell et al., 2019), part-of-speech
tagging (Chaudhary et al., 2021) and neural ma-
chine translation (Peris and Casacuberta, 2018; Liu
et al., 2018; Zhao et al., 2020).

However, these works share a major limitation:
they often implicitly assume that unlabelled train-
ing data comes from a single source1 (Houlsby

1Throughout the paper, we use the term “source” to de-

Figure 1: The pool of unlabelled data consists of a
source S, or multiple sources

⋃
i Si, for the single-

source and multi-source AL setting, respectively. The in-
domain test set follows the same distribution of sources.

et al., 2011; Sener and Savarese, 2018; Huang et al.,
2016; Gissin and Shalev-Shwartz, 2019; Margatina
et al., 2021). We refer to this setting as single-
source AL. The single-source assumption is prob-
lematic for various reasons (Kirsch et al., 2021).
In real-life settings we have no guarantees that
all unlabelled data at our disposal will necessar-
ily stem from the same distribution, nor will we
have assurances that all examples are of consis-
tent quality, or that they bear sufficient relevancy
to our task. For instance, quality issues may arise
when unlabelled data is collected through noisy
processes with limited room for monitoring indi-
vidual samples, such as web-crawling (Kreutzer
et al., 2022). Alternatively, one may have access to
several sources of unlabelled data of decent qual-
ity, but incomplete knowledge of their relevance to
the task-at-hand. For instance, medical data may
be collected from various different physical sites
(hospitals, clinics, general practitioners) which may
differ statistically from the targte distribution due
to e.g. differences in patient demographics. Ide-
ally, AL methods should be robust towards these
conditions in order to achieve adequate solutions.

scribe the varying domains of the textual data that we use in
our experiments. More broadly, “different sources” refers to
having data drawn from different distributions.
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In this work, we study whether existing AL meth-
ods can adequately select relevant data points in
a multi-source scenario for NLP. We examine ro-
bustness by evaluating AL performance in both
in-domain (ID) and out-of-domain (OOD) settings,
while we also conduct an extensive analysis to in-
terpret our findings. A primary phenomenon of in-
terest here concerns collective outliers: data points
which models struggle to learn due to high am-
biguity, the requirement of specialist skills or la-
belling errors (Han and Kamber, 2000). While
such outliers were previously found to disrupt
several AL methods for visual question answer-
ing (Karamcheti et al., 2021), their impact on text-
based tasks remains under-explored. Given the
wide body of work on the noise and biases that
pervade NLI (Bowman et al., 2015; Williams et al.,
2017; Gururangan et al., 2018; Poliak et al., 2018;
Tsuchiya, 2018; Geva et al., 2019; Liu et al., 2022),
we may reasonably assume popular NLI datasets
to suffer from collective outliers as well.

Concretely, our contributions can be summarised
as follows: (1) We apply several popular AL
methods in the under-explored multi-source, pool-
based setting on the task of NLI, using RoBERTa-
large (Liu et al., 2020) as our acquisition model,
and find that no strategy consistently outperforms
random selection (§5). (2) We seek to explain
our findings by creating datamaps to explore
the actively acquired data (§6.1) and show that
uncertainty-based acquisition functions perform
poorly due to acquisition of collective outliers
(§6.2). (3) We examine the effect of training data
difficulty on downstream performance (§7.1) and
after thorough experiments we find that uncertainty-
based AL methods recover or even surpass ran-
dom selection when hard-to-learn data points are
removed from the pool (§7.2). (4) Finally, we in-
troduce difficulty-stratified testing and show that
the learnability of acquired training data affects
different strategies differently at test-time (§7.3).
Our code is publicly available at https://github.

com/asnijders/multi_source_AL.

2 Related Work

Multi-source AL for NLP While AL has been
studied for a variety of tasks in NLP (Siddhant and
Lipton, 2018; Lowell et al., 2019; Ein-Dor et al.,
2020; Shelmanov et al., 2021; Margatina et al.,
2021; Yuan et al., 2022; Schröder et al., 2022; Mar-
gatina et al., 2022; Kirk et al., 2022; Zhang et al.,

2022), the majority of work remains limited to set-
tings where training data is assumed to stem from
a single source. Some recent works have sought
to address the issues that arise when relaxing the
single-source assumption (Ghorbani et al., 2021;
Kirsch et al., 2021; Kirsch and Gal, 2021), though
results remain primarily limited to image classifi-
cation. Moreover, these works study how AL fares
under the presence of corrupted training data, such
as duplicating images or adding Gaussian noise,
and they do not consider settings where sampling
from multiple sources may be beneficial due to
complementary source attributes. He et al. (2021)
examine a multi-domain AL setting, but they fo-
cus on leveraging common knowledge between do-
mains to learn a set of models for a set of domains,
which contrasts with our single-model pool-based
setup. Closest to our work, Longpre et al. (2022)
explore pool-based AL over multiple domains and
find that some strategies consistently outperform
random on question answering and sentiment anal-
ysis. However, the authors crucially omit a series of
measurements, as they instead perform a single AL
iteration, limiting the effectiveness of AL, while
complicating comparison with our results.

Dataset Cartography Karamcheti et al. (2021)
employ dataset cartography (Swayamdipta et al.,
2020) and show that a series of AL algorithms fail
to outperform random selection in visual question
answering due to the presence of collective outliers.
Zhang and Plank (2021) apply datamaps to AL and
introduce the cartography active learning strategy,
identifying that examples with poor learnability
often suffer from label errors. Our work contrasts
with both of these works in that we show that hard-
to-learn data is not always unequivocally harmful
to learning. Moreover, both works only examine
learnability of training examples, whereas we also
consider how learnability of acquired data affects
model performance at test-time.

3 Single & Multi-source Active Learning

We assume a warm-start, pool-based AL sce-
nario (Settles, 2010) with access to a pool of un-
labelled training data, Dpool, and a seed dataset
of labelled examples, Dtrain. During each itera-
tion i of AL, we first train a modelM with Dtrain
and then use it in conjunction with some acquisi-
tion function A to select a new batch of unlabelled
examples Dbatch from Dpool for labelling. Upon
labelling, these examples are removed from Dpool
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and added to Dtrain, after which a new round of
AL begins.

Di+1
train = Ditrain ∪ Di+1

batch

Di+1
pool = Dipool \ Di+1

batch

Single-source AL For single-source AL, we as-
sume that Dpool is a set of unlabelled data that
stems from a single source S, i.e. Dpool = S.

Multi-source AL For multi-source AL, we as-
sume that Dpool comprises a union of distinct

sources S1, S2, ..., Sn such that Dpool =
n⋃
i=1

Si.

3.1 Data Acquisition
An acquisition function A is responsible for select-
ing the most informative unlabelled data from the
pool, aiming to improve over random sampling. We
use a set of acquisition functions which we deem
representative for the wider AL toolkit: Monte
Carlo Dropout Max-Entropy, (MCME; Gal et al.,
2017) is an uncertainty-based acquisition strategy
where we take the mean label distribution over T
Monte-Carlo dropout (Gal and Ghahramani, 2015)
network samples and select the k data points with
the highest predictive entropy. Bayesian Active
Learning by Disagreement, (BALD; Houlsby et al.,
2011) is an uncertainty-based acquisition strategy
which employs Bayesian uncertainty to identify
data points for which many models disagree about.
Discriminative Active Learning (DAL; Gissin and
Shalev-Shwartz, 2019) is a diversity-based acquisi-
tion function designed to acquire a training set that
is indistinguishable from the unlabelled set.

3.2 Analysis of Acquired Data
At each data acquisition step, we seek to examine
what kind of data each acquisition function has se-
lected for annotation. Following standard practice
in active learning literature (Zhdanov, 2019; Yuan
et al., 2020; Ein-Dor et al., 2020; Margatina et al.,
2021) we profile datasets acquired by strategies via
acquisition metrics. Concretely, we consider the
input diversity and output uncertainty metrics. We
provide more details in Appendix A.1.

Input Diversity To evaluate the diversity of ac-
quired sets in the input space, we follow Yuan et al.
(2020) and measure input diversity as the Jaccard
similarity between the set of tokens from the ac-
quired training set Dtrain and the set of tokens
from the remainder of the unlabelled pool Dpool.

This function assigns high diversity to strategies
acquiring samples with high token overlap with the
unlabelled pool, and vice versa.

Output Uncertainty To approximate the output
uncertainty of an acquired training set Dtrain for a
given strategy, we follow Yuan et al. (2020) and use
a model trained on the entire dataset to compute
predictive entropy of all the examples in the dataset
that we want to examine. The model is trained
on all training data as this grants more accurate
uncertainty measurements.

4 Experimental Setup

Data We perform experiments on Natural Lan-
guage Inference (NLI), a popular classification task
to gauge a model’s natural language understand-
ing (Bowman et al., 2015). We construct the un-
labelled pool from three distinct datasets: SNLI
(Bowman et al., 2015), ANLI (Nie et al., 2019)
and WANLI (Liu et al., 2022). We consider MNLI
(Williams et al., 2017) as an out-of-domain set
to evaluate the transferability of actively acquired
training sets. For more details see Appendix A.2.

Experiments We apply AL with two distinct
end-goals: in-domain (ID) generalization, where
the same source(s) are used for both the unla-
belled pool Dpool and the test set Dtest, and out-of-
domain (OOD) generalization, where we evaluate
on the test set of an external source of which no
training data was present in the unlabelled pool.

Constructing multi-source pools For multi-
source AL, the unlabelled pool comprises the union
of the SNLI, ANLI and WANLI training sets. During
model selection, we similarly assume the union
of SNLI, ANLI and WANLI validation sets. For
both training and validation data we down-sample
sources to the minority source size to obtain pools
with even shares per source. We sub-sample train-
ing data for each source to reduce experiment run-
times. This yields a pool of 60K unlabelled training
examples comprised of 20K shares of each source.

AL Parameters We assume an initial seed train-
ing set of size |Di=0

train| = 500 and an acquisition
size k = 500, such that k examples are acquired
per round of AL. We perform 7 rounds of AL: the
final actively acquired labelled dataset Di=7

train com-
prises 4K examples. We run each experiment 5
times with different random seeds to account for
stochasticity in parameter initializations.
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Figure 2: AL single-source in-domain learning curves.

5 Results

5.1 AL over single sources

We first provide single-source AL results in Fig-
ure 2. AL has mixed performance across sources;
it fails to consistently outperform random selection
on SNLI and WANLI, though most strategies tend
to outperform random on ANLI. However, none of
the strategies consistently outperform others across
sources. Moreover, the extent of improvement over
the acquisition phase varies between tasks; e.g., for
SNLI, strategy curves are close and the accuracy
improvement from 500 to 4K examples is small.
This is also reflected in test outcomes (Table 1),
with models performing similarly across sources.

Observing Table 2,2 we find that uncertainty-
based methods (BALD, MCME) tend to acquire the
most uncertain data points, as expected. Still, dif-
ferences between strategies are small for WANLI

and ANLI. Conversely, RANDOM and DAL tend
to acquire data with greater diversity in the input
space, but again variance across methods is low.
Here, observed homogeneity in the input space
may explain why test outcomes lie closely together:
if the acquired training sets per strategy are very
similar, we should expect to see similarly small
differences in test outcomes for models trained on
them. Relating these outcomes to the per-source
learning curves in Figure 2, however, we observe
no clear relation between metric results and perfor-
mance outcomes: acquiring uncertain or diverse
data does not seem to be predictive of AL success
throughout the acquisition process.

5.2 AL over multiple sources

Next, we provide the results of our multi-source
setting, as described in §3, and observe that again

2See Table 9 for standard deviations in the Appendix.

SNLI ANLI WANLI

RANDOM 87.09± 0.30 39.90± 1.02 70.24± 0.70

DAL 87.49± 0.20 39.84± 1.15 69.80± 1.00

BALD 87.37± 0.40 40.16± 0.69 69.54± 0.70

MCME 87.58± 0.80 40.15± 0.60 69.07± 1.20

Table 1: Single-source AL test results. At test-time, the
labeled set Dtrain comprises 4K examples.

Task Strategy I-Div. Unc. N E C
RANDOM 0.259 0.051 0.34 0.33 0.33

SNLI DAL 0.267 0.067 0.38 0.29 0.33
BALD 0.249 0.072 0.32 0.31 0.37
MCME 0.261 0.093 0.32 0.34 0.34
RANDOM 0.324 0.208 0.47 0.38 0.15

WANLI DAL 0.321 0.223 0.49 0.38 0.13
BALD 0.317 0.213 0.40 0.39 0.21
MCME 0.318 0.229 0.38 0.35 0.27
RANDOM 0.492 0.082 0.43 0.32 0.26

ANLI DAL 0.467 0.084 0.47 0.3 0.23
BALD 0.478 0.094 0.39 0.30 0.31
MCME 0.491 0.110 0.37 0.31 0.31
RANDOM 0.276 0.405 0.41 0.34 0.25

Multi DAL 0.276 0.463 0.47 0.34 0.19
BALD 0.220 0.445 0.34 0.32 0.35
MCME 0.323 0.556 0.40 0.30 0.30

Table 2: Profiling strategy acquisitions for single-source
and multi-source AL in terms of input diversity (I-Div.),
uncertainty (Unc.) and class distributions (N: neutral,
E: entailment, C: contradiction) across seeds. Each
strategy is profiled after all rounds of AL.

AL fails to consistently outperform random sam-
pling on the aggregate ID test set of SNLI, ANLI

and WANLI (Figure 3, bottom left). We also evalu-
ate on the OOD MNLI that was not present in the
unlabelled training data (Figure 3, top left) and still
find that AL fails to outperform RANDOM.

Analyzing the acquired data in terms of input di-
versity, uncertainty and label distributions (Table 2)
There do not appear to be clear relations between
metric outcomes and strategy performance other-
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SNLI ANLI WANLI MNLI

RANDOM 85.9± 0.9 | 85.3± 0.3 37.8± 1.2 | 37.9± 0.8 67.7± 1.6 | 67.2± 0.9 74.2± 2.3 | 74.4± 1.5

MCME 85.9± 0.7 | 84.3± 0.6 38.6± 1.0 | 38.4± 0.9 67.4± 0.4 | 66.3± 0.7 77.8± 1.3 | 75.6± 2.2

BALD 86.3± 1.0 | 85.8± 0.2 36.9± 1.3 | 36.1± 0.5 68.4± 1.1 | 65.9± 1.1 75.8± 0.9 | 74.3± 1.6

DAL 84.3± 1.2 | 85.3± 0.9 37.8± 1.2 | 37.3± 1.3 68.0± 0.6 | 68.1± 1.0 74.6± 1.2 | 76.6± 2.6

Table 3: Multi-source AL test outcomes with and without hard-to-learn instances removed. Cell scheme to be
read as ablated | original. Bold denotes best score for each test set overall and underline best score per setting. At
test-time, the labeled set Dtrain comprises 4K examples.
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Figure 3: Multi-source AL OOD (MNLI) and ID (SNLI,
ANLI, WANLI) learning curves. On the left, the unla-
belled pool has been left untreated; on the right, hard-
to-learn data was removed from the pool.

wise, i.e., acquiring diverse or uncertain batches
does not seem to lead to higher performance.

6 Dataset Cartography for AL Diagnosis

Our findings in both single and multi-source AL
settings, for both in-domain and out-of-domain
evaluations, showed poor performance of all al-
gorithms (§5). We therefore aim to investigate if
the answer for the observed AL failure may lie in
the presence of so-called collective outliers: ex-
amples that models find hard to learn as a result
of factors, such as high ambiguity, underspecifica-
tion, requirement of specialist skills or labelling
errors (Han and Kamber, 2000). Collective out-
liers can be identified through dataset cartogra-
phy (Swayamdipta et al., 2020), a post-hoc model-
based diagnostic tool which plots training examples
along a so-called learnability spectrum.

6.1 Creating Datamaps
Dataset Cartography assumes that the learnability
of examples relative to some model can be quan-
tified by leveraging training dynamics, where for
each example we measure at fixed intervals (1)
the mean model confidence for the gold-truth label
throughout training and (2) the variability of this
statistic. After gathering these statistics we can
plot datasets on a datamap: a 2D graph with mean
confidence on the Y-axis and confidence variability
on the X-axis. The resulting figure enables us to
identify how data is distributed along a learnability
spectrum (see an example in Figure 4).

We construct datamaps by training a model on
the entire pool, i.e. 60K examples in total. Every
1
2 epoch we perform inference on the full training
set to get per-example confidence statistics, where
the prediction logit corresponding to the gold-truth
label serves as a proxy for model confidence. Vari-
ability is computed as the standard deviation over
the set of confidence measurements. Following
Karamcheti et al. (2021), we classify examples
along four difficulties via a threshold on the mean
confidence value p (Figure 4). We provide more
details in the Appendix A.5.

6.2 Strategy Maps for Multi-source AL
We show the datamaps for random sampling and
the MCME acquisition functions on the multi-source
AL setting in the top row of Figure 4 (see Ap-
pendix A.5 for all datamaps). Examining the first
datamap, it appears that randomly sampling from
all sources in equal proportions tends to yield pre-
dominantly easy-to-learn instances, with dimin-
ishing amounts of ambiguous and hard-to-learn
instances. Conversely, we find that MCME acquires
considerably more examples with moderate to low
confidence, suggesting a tendency to acquire hard
and impossible examples. Note that these outcomes
mirror the findings by Karamcheti et al. (2021) for
VQA. Observing the per-difficulty acquisition over
time (Figure 4 bottom row), we observe that BALD
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Figure 4: Top row: Strategy maps for RANDOM and MCME for multi-source AL. Correctness denotes how often
the model predicts the correct label. Bottom row: Acquisition by difficulty over time for RANDOM, DAL, BALD and
MCME. We provide additional datamap plots in the appendix (Section A.5).

and MCME initially favour easy examples, but as
more examples are acquired, we observe a shift
towards medium, hard and impossible examples.
One explanation for these trends is that in early
phases of AL, models have only been trained on
small amounts of data. At this stage, model con-
fidence is still poorly calibrated and consequently
confidence values may be noisy proxies for uncer-
tainty. As the training pool grows, model confi-
dence will more accurately reflect example diffi-
culty enabling uncertainty-based strategies to iden-
tify difficult data points.

7 Stratified Analysis on Data Difficulty

We begin our analysis of collective outliers by ex-
ploring impossible data points in the three NLI
datasets we use; SNLI, ANLI and WANLI. We de-
note as impossible data points those that yield a
confidence value in the range 0 ≤ p ≤ 0.25 (§6.1).
We provide some examples in Table 4 and in the
Appendix A.7. We find that impossible examples
from SNLI and WANLI are more prone to suffer
from label errors and/or often lack a clear correct
answer, which may explain their poor learnability.
Conversely, we find impossible ANLI examples to
exhibit fewer of these issues - we hypothesize that

their difficulty follows rather from requirement of
advanced inference types, e.g. identifying relevant
information from long passages and numerical rea-
soning about dates of birth and events.

7.1 Examining the effect of training data
difficulty

Now that we are able to classify training examples
as easy, medium, hard and impossible (§6.2), we
proceed to explore the effect of data difficulty on
learning and per-source outcomes. In this set of ex-
periments, we aim to answer the research question:
What data would the most beneficial training set
consist of, in terms of data difficulty per example?
We conventionally (i.e., non-AL experiment) train
RoBERTa-large on training sets of various diffi-
culties. Each training set comprises 4K examples,
i.e. the same amount of examples that would be
acquired after all rounds of AL. We consider the
following combinations of data: EM, EMH, MH,
HI and EMHI, where E denotes easy, M medium,
H hard and I impossible examples.3

3For a given run, examples are sampled from each dif-
ficulty in equal proportion. For instance, when training on
the easy-medium (EM) split the training set comprises 2K
easy-to-learn instances and 2K medium-to-learn instances.
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Src. Premise Hypothesis GT P Conf.

SNLI A skier in electric green on the edge of a ramp
made of metal bars.

The skier was on the edge
of the ramp.

N E 0.976

SNLI Man sitting in a beached canoe by a lake. a man is sitting outside N E 0.980

WANLI The first principle of art is that art is not a way
of life, but a means of life.

Art is a way of life. E C 0.944

WANLI Some students believe that to achieve their goals
they must take the lead.

Some students believe that
to achieve their goals they
must follow the lead.

E C 0.630

ANLI Marwin Javier González (born March 14, 1989) is
a Venezuelan professional baseball infielder with
the Houston Astros of Major League Baseball (MLB).
Primarily a shortstop, González has appeared at
every position except for pitcher and catcher for
the Astros.

He is in his forties. C N 0.769

ANLI The Whitechapel murders were committed in or near
the impoverished Whitechapel district in the East
End of London between 3 April 1888 and 13 February
1891. At various points some or all of these eleven
unsolved murders of women have been ascribed to the
notorious unidentified serial killer known as Jack
the Ripper.

The women killed in the
Whitechapel murders were
impoverished.

N E 0.832

Table 4: Impossible NLI training examples. GT denotes the gold truth label; P denotes the model prediction and
Conf. denotes the prediction confidence. We provide more examples per source in the appendix (Section A.7).

Results We provide test results for all combina-
tions of training data difficulty in Table 5. We first
observe that models trained only on HI data consis-
tently perform the worst, resulting in a drop of up
to ~50%(!) points in accuracy compared to the EM
split for SNLI and ~40% for MNLI. Surprisingly,
we find that models trained on MH perform worse
than splits that include easy examples, except for
ANLI. Intuitively, this makes sense: of all datasets,
ANLI features the most difficult examples, and thus
it is plausible that hard-to-learn instances translate
to more learning gains than easy ones. The EMHI
split slightly underperforms relative to the EM and
EMH splits. Otherwise, we do not observe great
differences between the latter two splits. In the
second part of Table 5, we compute the average
performance for easy test sets (SNLI ∪ MNLI), hard
(ANLI ∪ WANLI) and all test sets combined. We can
now observe very clear patterns. The more difficult
data points we include in the training set, the more
the performance on an easy test set drops (AVG-
EASY↓). Similarly, when testing on a harder test
set, the more difficult the training data the better
(AVG-HARD↓), but without including data points
that are characterized as impossible. Overall, we
observe a strong correlation between training and
test data difficulty, and we conclude that we should
train models on data of the same difficulty as the
test set, while always removing data points that

are impossible to be learned from the model (i.e.
collective outliers).

7.2 Ablating Outliers for AL

Having uncovered the effects of data difficulty on
learning outcomes, we now examine how the pres-
ence or absence of hard and impossible instances
affects AL strategy success. Specifically, we repeat
our multi-source AL experiment (§5.2) whilst ex-
cluding hard and impossible (HI) examples from
Dpool. Employing datamap statistics, we compute
the product of an example’s mean confidence and
its variability for the entire unlabelled pool, af-
ter which we exclude the 25% of examples with
the smallest products, following Karamcheti et al.
(2021). Examples are filtered out for each source
dataset separately to preserve equivalence in source
sizes.

Results Examining the learning curves (Figure
3, right) and the final test results (Table 3, left), it
appears that excluding HI examples particularly
affects the performance of uncertainty-based acqui-
sition strategies (MCME and BALD): across sources,
both strategies do consistently better. Moreover,
for ANLI, MCME clearly outperforms random selec-
tion and even achieves a higher accuracy compared
to the non-ablated run. Similar results are obtained
for the OOD MNLI dataset: previously, none of the
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SNLI ANLI WANLI MNLI AVG-EASY AVG-HARD AVG-ALL

EM 85.95± 0.90 36.85± 1.05 68.34± 0.68 76.16± 2.32 81.06 52.60 66.83
EMH 84.98± 0.56 37.84± 0.79 68.16± 0.66 75.50± 2.00 80.24 53.00 66.62

MH 76.32± 1.04 39.11± 0.79 63.56± 1.38 69.82± 6.10 73.07 54.47 62.20

HI 33.57± 1.60 34.00± 0.69 45.89± 3.85 32.69± 1.93 33.13 39.95 36.54

EMHI 79.12± 0.80 38.41± 0.57 64.52± 1.38 73.52± 0.07 76.32 51.47 63.89

Table 5: Multi-source test outcomes for training data of varying difficulty. Row headers denote difficulty splits,
with E denoting easy, M medium, H hard and I impossible examples. Column headers denote the test set. We also
compute the average over SNLI+MNLI (easy), ANLI+WANLI (hard) and all 4 datasets, respectively.

strategies consistently outperformed random, but
after ablating HI instances both BALD and MCME

are either on par with random or outperform it.
Intuitively, under normal circumstances MCME and
BALD tend to acquire more difficult examples than
RANDOM or DAL, which typically leads to poorer
models (§7.1). Therefore, we should expect to see
improvements when these instances are ablated (i.e.,
removed).

7.3 Stratified Testing

Having established that some strategies acquire
more hard and examples than others (§6.2), training
on such examples can both hurt or help generaliza-
tion (§7.1), and removal of this data can help strate-
gies improve (§7.2), a question arises: Do strate-
gies that predominantly acquire data of a certain
difficulty also perform better on test data of that
difficulty? To investigate this we introduce strati-
fied testing: stratifying test outcomes in terms of
difficulty. Here, we follow the approach as outlined
in Section 6.1, but this time training a cartography
model on the test set to obtain learnability measure-
ments for each test example. This enables us to
observe how strategies perform across test exam-
ples of varying difficulties.

Results Table 6 shows the AL results for strati-
fied testing for both ablated (i.e., HI removed) and
the original setting. We observe in the pre-ablation
experiments (right side) that RANDOM and DAL

tend to do better on easy and medium data relative
to MCME and BALD, while conversely they under-
perform when tested on hard and impossible exam-
ples. The same pattern also occurs also in the OOD
setting (MNLI). In the ablation setting (left side),
we find that across all sources, HI examples tends
to yield a performance drop on hard and impossi-
ble examples for all strategies. Corroborating our
previous analysis (§7.1), our findings here suggest
that it is essential to have data of the same diffi-
culty in both unlabelled pool and in test set. Next,

Task D RANDOM MCME BALD DAL

E 95.4 | 95.0 95.0 | 93.3 95.5 | 94.8 93.7 | 94.6
SNLI M 69.0 | 67.7 70.2 | 68.0 70.5 | 69.5 67.8 | 68.2

H 46.3 | 44.6 48.5 | 46.0 47.1 | 49.2 44.7 | 45.8
I 17.7 | 17.2 20.3 | 22.1 20.7 | 22.2 18.4 | 17.5
E 81.4 | 81.7 77.0 | 79.2 82.1 | 73.8 81.8 | 79.9

ANLI M 62.2 | 62.1 61.7 | 57.8 61.1 | 57.1 63.1 | 59.8
H 39.3 | 40.2 42.9 | 41.6 39.2 | 39.7 39.0 | 38.5
I 14.4 | 14.2 15.7 | 17.0 12.6 | 14.5 14.2 | 15.0
E 94.3 | 92.9 92.7 | 91.2 95.2 | 90.9 94.1 | 93.1

WANLI M 72.7 | 69.6 71.4 | 69.9 72.7 | 67.9 72.3 | 73.8
H 41.9 | 40.4 43.1 | 44.2 42.4 | 40.7 40.6 | 41.0
I 12.7 | 14.4 14.0 | 16.6 11.9 | 14.7 13.9 | 14.6
E 93.3 | 93.6 94.3 | 92.8 94.4 | 92.4 93.4 | 93.8

MNLI M 72.6 | 72.9 78.6 | 74.7 75.9 | 72.8 74.7 | 78.1
H 41.8 | 44.5 51.9 | 49.3 45.7 | 46.7 46.1 | 48.3
I 12.8 | 15.7 20.9 | 19.5 13.1 | 16.9 12.6 | 18.5
E 91.0 | 90.8 89.8 | 89.1 91.8 | 88.0 90.7 | 90.4

All M 69.3 | 68.1 70.5 | 67.6 70.0 | 66.8 69.4 | 69.9
H 42.3 | 42.4 46.5 | 45.3 43.6 | 44.1 42.6 | 43.4
I 14.4 | 15.3 17.7 | 18.8 14.6 | 17.1 14.8 | 16.4

Table 6: Multi-source strategy comparison (accuracy)
for difficulty-stratified test outcomes between original
training set and training set with hard-to-learn exam-
ples excluded. Test examples (D) belong to Easy (E),
Medium (M), Hard (H) and Impossible (I) sets. Cell
scheme to be read as ablated | original.

we find that under ablation, RANDOM does moder-
ately better on easy and medium, while DAL shows
marginally lower test outcomes on medium and
hard examples. For the uncertainty-based strate-
gies, ablation tends to yield improvements across
all difficulties, with MCME outperforming BALD

on hard examples. We hypothesize that with HI
instances absent, uncertainty-based methods se-
lect the “next-best” available data: medium exam-
ples which offer greater learning gains than easy
ones. Overall, we find that post-ablation, BALD and
MCME outperform both RANDOM and DAL across
most difficulty splits.

8 Conclusion and Future Work

Our work highlights the challenge of successfully
applying AL when the (training) pool comprises
several sources which span various domains in the
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task of NLI. Similar to Karamcheti et al. (2021),
we show that uncertainty-based strategies, such
as MCME and BALD, perform poorly (§5) due to
acquisition of collective outliers which impede suc-
cessful learning (§6.2). However, these strategies
recover when outliers are removed (§7.2). Practi-
cally, this suggests that uncertainty-based methods
may fare well under more carefully curated datasets
and labelling schemes, while alternative strategies
(e.g. diversity-based) may be preferable in cases
with poorer quality guarantees (e.g. data collec-
tion with limited budget for annotation verification).
Next, we find that performance outcomes between
strategies differ for test data of various difficulties
(§7.3). On the one hand, this complicates strategy
selection: it is unclear whether a strategy that per-
forms well on hard data but poorer on easy data
is preferable to a strategy with opposite proper-
ties. On the other hand, knowing which strategies
work well for test data of a certain difficulty may
be advantageous when the difficulty of the test set
is known, in out-of-domain settings (Lalor et al.,
2018).

Lastly, in contrast with Karamcheti et al. (2021)
and Zhang and Plank (2021), we have shown that
cases exist in which training examples in the hard-
to-learn region do not hamper learning but are
in fact pivotal for achieving good generalization
(§7.1). Consequently, there may be value in refin-
ing existing cartography-based methods such that
they can discriminate between useful and harm-
ful hard-to-learn data. More broadly, our findings
underscore the potential of understanding these
phenomena for other NLP tasks and datasets.
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Limitations

In our work, we have shown that standard AL al-
gorithms struggle to outperform random selection
in some datasets for the task of NLI, which is in
fact rather surprising as a large body of work has
shown positive AL results in a wide spectrum of
NLP tasks. Still, we are not the first to show neg-

ative AL results in NLP, as Lowell et al. (2019);
Karamcheti et al. (2021); Kees et al. (2021) have
shown similar problematic behavior in the cases of
text classification, visual question answering and
argument mining, respectively.

More broadly, while AL outcomes have shown
to not always reliably generalize across models and
tasks (Lowell et al., 2019), we recognise that in our
work several experimental conditions remain under-
explored which warrant further attention. First, this
work mostly examined point-wise acquisition func-
tions; it remains unclear whether our outcomes
hold for batch-wise functions. Similarly, it is un-
known how the chosen model-in-the-loop affects
strategy outcomes. We use RoBERTa-Large, a com-
paratively powerful large language model. Some
authors hypothesize that as such models are already
able to achieve great performance even with ran-
domly labeled data, this could significantly raise
the bar for AL algorithms to yield substantial per-
formance improvements on top of a random se-
lection baseline (Ein-Dor et al., 2020). Combined
with the relative homogeneity of acquired batches
between sources in terms of input diversity, this
would explain why strategies tend to do similar
across the board at test-time both in the presence
and absence of hard-to-learn examples. Another
factor tying into this is that small differences be-
tween results may be connected to the so-called
inverse cold-start problem. This problem states
that there may be cases where the initial seed set
is too large, leaving comparatively little room for
substantial improvements in sample efficiency. We
leave further exploration of these variables to future
work.

Another area within AL research which warrants
further examination concerns the evaluation on out-
of-domain datasets of which no data is present in
the pool of unlabelled training data. Particularly,
the majority of work typically assumes that acqui-
sition is target-agnostic, i.e., target validation and
test sets are assumed to be decoupled entirely from
the acquisition process. This can be problematic
as for different target sets, different subsets of the
unlabelled training data may yield the best possi-
ble performance. Consequently, performance out-
comes on some out-of-domain test data may not
necessarily pose as reliable signals for determining
the best strategy, for if a different target set had
been chosen, a previously ’poor’ performing strat-
egy may suddenly achieve the best result. Despite
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this being a clear shortcoming of the existing AL
toolkit, it remains an understudied area within AL
research.

While this problem may be partially alleviated
by evaluating strategies on a large and diverse array
of target sets, the issue remains that current acqui-
sition functions do not acquire data with respect to
the target set. This problem becomes even more ap-
parent in a multi-source setting, where depending
on the target set at hand, acquiring data from the ap-
propriate source(s) may be pivotal to achieve good
performance. In such cases, we may want to ex-
plicitly regularise the acquisition process towards
target-relevant training data. A small body of work
has examined ways in which such target-aware ac-
quisition could be formalized - most noticeably in
the work of Kirsch et al. (2021), who introduce sev-
eral methods to perform test-distribution aware ac-
tive learning. While examination of such methods
lies outside the scope of this work, we recognize
its potential for future work on multi-source AL.
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A Appendix

A.1 Analysis metrics
Following standard practice in active learning lit-
erature (Zhdanov, 2019; Yuan et al., 2020; Ein-
Dor et al., 2020; Margatina et al., 2021) we profile
datasets acquired by strategies via acquisition met-
rics. Concretely, we consider the input diversity
and output uncertainty metrics.

Input Diversity Input diversity quantifies the di-
versity of acquired sets in the input space, meaning
that it operates directly on the raw input passages.
We follow (Yuan et al., 2020) and measure input
diversity as the Jaccard similarity J between the
set of tokens from the acquired training set Dtrain,
V , and the set of tokens from the remainder of the
unlabelled pool Dpool, V′, which yields:

J (V,V′) = | V ∩ V′ || V ∪ V′ |

This function assigns high diversity to strategies
acquiring samples with high token overlap with the
unlabelled pool, and vice versa.

Output Uncertainty To approximate the output
uncertainty of an acquired training set Dtrain for
a given strategy, we train RoBERTa-large to con-
vergence on the entire 60K training set. We then
use the trained model to perform inference over
Dtrain. Following (Yuan et al., 2020), the output
uncertainty of each strategy is computed as the
mean predictive entropy over all examples x in its
acquired set Dtrain:

− 1

|Dtrain|
∑

x∈Dtrain

C∑

c=1

p(y = c | x) log p(y = c | x)

A.2 Datasets
As mentioned in the paper (§4), we perform ex-
periments on Natural Language Inference (NLI), a
popular text classification task to gauge a model’s
natural language understanding (Bowman et al.,
2015; Williams et al., 2017). We recognize that
NLI is somewhat artificial by nature - making it of
lesser practical relevance for real-life active learn-
ing scenarios. However, recent work has sought to
address shortcomings of existing NLI benchmarks
such as SNLI (Bowman et al., 2015) and MNLI

(Williams et al., 2017). This has lead to the emer-
gence of novel approaches to dataset-creation such
as Dynamic Adversarial Data Collection (ANLI,

(Nie et al., 2019)) and worker-and-AI-collaboration
(WANLI, (Liu et al., 2022)). As we seek to investi-
gate how characteristics of data gathered through
such alternative protocols may affect acquisition
performance in a multi-source active learning set-
ting, using NLI for our experiments is a natural
choice. We construct the unlabelled pool from
three distinct datasets: SNLI, ANLI and WANLI.
Next, we consider the Multi Natural Language In-
ference (MNLI) corpus (Williams et al., 2017) as an
out-of-domain challenge set to evaluate the trans-
ferability of actively acquired training sets. We
provide datasets statistics in Table 7.

A.3 Training details & Reproducibility
We use RoBERTa-large (Liu et al., 2020) from
Huggingface (Wolf et al., 2019) as our model-in-
the-loop and optimize with AdamW (Loshchilov
and Hutter, 2018), with a learning rate of 2e − 6
and a batch size of 32. We use Dropout with
p = 0.3. Hyperparameters were chosen follow-
ing a manual tuning process, evaluating models on
classification accuracy. For the BALD and MCME
strategies we use 4 Monte Carlo Dropout samples.
Our framework is implemented in PyTorch Light-
ning; transformers are implemented using the. All
experiments were ran on a single NVIDIA Titan
RTX GPU. Trialling all acquisition functions for
7 rounds of active learning (assuming experiments
are ran in series), for a single seed, requires ap-
proximately 21 hours of compute. See Table 8 for
per-strategy runtimes.

A.4 Detailed Results
Acquisition Factor For the multi-source ex-
periments we also plot the acquisition factors: a
source-strategy-specific statistic which indicates
how much data of a given source is acquired
by some strategy, normalized by the share of
that source in the unlabelled pool at the time of
that acquisition round. This statistic is useful to
interpret how much a strategy tends to acquisition
of one source relative to others.

We normalize to correct for the effect that
acquiring e.g. mostly SNLI data in an early round
causes it to take up a relatively smaller share in
the unlabelled pool in the next round, and by the
simple consequence of there being fewer SNLI
examples, they may have a lower likelihood to
be acquired in those future rounds compared to
examples from other sources.. As this could distort
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Label Distributions
Source Train Val Test

N E C Size N E C Size N E C Size
SNLI 183.4K 182.7K 183.1K 549.5K 3.2K 3.3K 3.3K 9.8K 3.2K 3.4K 3.2K 9.8K
ANLI 61.7K 46.7K 37.4K 146K 0.7K 0.7K 0.7K 2.2K 0.7K 0.7K 0.7K 2.2K

WANLI 48.8K 39.1K 14.4K 103K 1.2K 0.9K 0.4K 2.5K 1.2K 0.9K 0.4K 2.5K
MNLI-m* n/a n/a n/a n/a n/a n/a n/a n/a 1.6K 1.7K 1.6K 4.9K

Table 7: Statistics for the used datasets. N = Neutral, E = Entailment, C = Contradiction. For MNLI, only a held-out
test set was used, and thus statistics for the training and dev set are omitted. Since WANLI only has a train and test
set, we split its test set in two equally sized subsets and use one half as our validation set.

RANDOM DAL BALD MCME
Runtime 190± 19 269± 15 350± 62 450± 90

Table 8: Total runtime per strategy in minutes. Scheme follows mean ± standard error format.

Figure 5: Aggregate validation accuracy for models
trained on data of various difficulties. Training data
difficulty appears to affect convergence speed: models
trained on easier training sets converge earlier, whilst
inclusion of hard and impossible models requires more
steps to converge. In our experiments, models trained
only on hard/impossible examples never surpass at-
chance performance and suffer from model failure more
often.

our impressions of the extent to which strategies
acquire examples from different sources, we
ideally want to correct for this.

We thus compute the acquisition factor for
a given round as (1) the amount of source examples
that were actually acquired by the strategy for
that round, divided by (2) the amount of source
examples that would be acquired under random
sampling from the unlabelled pool at that point.
For instance, if BALD has an acquisition factor
of > 1 for SNLI, it means that it acquired more
SNLI examples from the unlabeled pool than it
would have under random sampling. Conversely,
the Random sampling baseline will always have
consistent acquisition factors of 1, since the
quantities in the numerator and denominator will

be approximately the same: random selection
always acquire as much from a source as it would
under random selection. See Figure 6 for a
graphical explanation.4

A.5 Dataset Cartography

As mentioned in Section 6.1, we train a RoBERTa-
large model on a training set comprised of the en-
tire unlabelled pool of training examples, i.e. 60K
examples in total.5 Every 1

2 epoch we perform in-
ference on the full training set to get per-example
confidence statistics, where the prediction logit cor-
responding to the gold-truth label serves as a proxy
for model confidence. Variability is computed as
the standard deviation over the set of confidence
measurements. We stop training after 3 epochs or
after no improvement in validation accuracy on the
aggregate of validation sets was observed. Follow-
ing Karamcheti et al. (2021), we classify examples
along four difficulties via a threshold on the mean
confidence value p.

Note on model discrepancy When studying the
strategy maps, it is instructive to note that there
exists a discrepancy between models which may
distort the truthfulness of learnability measure-
ments. That is, the cartography model that was
used to obtain confidence/variability measurements

4Please note that these figures solely serve to support the
textual explanation and should not be regarded as results oth-
erwise.

5The AL experiments are simulations, where we have the
ground truth labels for the data of the pool, but we consider
them unlabelled. So in this case, we use the original labelled
dataset to train the cartography model.
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Task Strategy I-Div. Unc. N E C
RANDOM 0.259± 0.002 0.051± 0.002 0.34 0.33 0.33

SNLI DAL 0.267± 0.002 0.067± 0.002 0.38 0.29 0.33
BALD 0.249± 0.004 0.072± 0.005 0.32 0.31 0.37
MCME 0.261± 0.004 0.093± 0.005 0.32 0.34 0.34
RANDOM 0.324± 0.005 0.208± 0.012 0.47 0.38 0.15

WANLI DAL 0.321± 0.003 0.223± 0.008 0.49 0.38 0.13
BALD 0.317± 0.001 0.213± 0.005 0.40 0.39 0.21
MCME 0.318± 0.002 0.229± 0.009 0.38 0.35 0.27
RANDOM 0.492± 0.003 0.082± 0.004 0.43 0.32 0.26

ANLI DAL 0.467± 0.008 0.084± 0.004 0.47 0.3 0.23
BALD 0.478± 0.007 0.094± 0.003 0.39 0.30 0.31
MCME 0.491± 0.007 0.110± 0.004 0.37 0.31 0.31
RANDOM 0.276± 0.003 0.405± 0.012 0.41 0.34 0.25

Multi DAL 0.276± 0.004 0.463± 0.018 0.47 0.34 0.19
BALD 0.220± 0.012 0.445± 0.025 0.34 0.32 0.35
MCME 0.323± 0.004 0.556± 0.011 0.4 0.3 0.3

Table 9: Profiling strategy acquisitions for single-source and multi-source active learning in terms of mean input
diversity (I-Div.), mean uncertainty (Unc.) and class distributions (N: neutral, E: entailment, C: contradiction)
across seeds, following a mean ± std cell scheme. Each strategy is profiled after all rounds of active learning:
|Dtrain| = 4K.

(a) SNLI Acquisition factors
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(b) Acquisitions by source
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(c) Acquisitions by source

Figure 6: Acquisition factor explained. By design, random selection acquires a random sample of the unlabelled
pool. Since the pool is initialized with even amounts of each source, random consistently acquires a uniform sample
over sources, as can be seen in (b). Consequently, the SNLI acquisition factor for Random steadily hovers around
1 in (a). Conversely, BALD initially acquires mostly SNLI examples, as reflected by its high initial acquisition
factor. This corresponds to its absolute acquisition statistics in (c), where we note that initially BALD acquires
predominantly SNLI.

for datamap construction was trained on the entire
pool of 60K examples, whereas the model used
during AL is exposed to at most 4K examples af-
ter completing all rounds of acquisition. Conse-
quently, examples which were found to be easy
by the cartography model are likely to be substan-
tially more difficult for the AL model. As datamaps
are inherently model-based, the generated strategy
maps should be interpreted as skewed estimates of

the true learnability spectra. While we recognize
the potential value of preserving scale equivalence
when using dataset cartography for analysis, we
choose to follow Karamcheti et al. (2021) and in-
tend to employ datamaps as a post-hoc diagnostic
tool. In other words, we are interested in examin-
ing example learnability in an absolute sense (i.e.
with respect to the entire pool) rather than a rela-
tive sense (with respect to the acquired data). Here,
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(a) SNLI Val. Acc. (b) SNLI Acquisition (c) SNLI Test Acc.

(d) ANLI Val. Acc. (e) ANLI Acquisition (f) ANLI Test Acc.

(g) WANLI Val. Acc. (h) WANLI Acquisition (i) WANLI Test Acc.

Figure 7: In-domain multi-source Active Learning. The left-most graph represents the learning curve per strategy,
plotting the validation performance as more labelled data is acquired. The middle graph plots the acquisition factor
per source: how much a strategy acquires of a source, normalized by the share that source takes up in the wider data
pool. Shaded regions indicate standard errors. Active learning fails to consistently beat random.

we also note that a model trained on a larger set
of examples will likely more accurately reflect the
true difficulty of examples. This is important if we
want to draw new insights on the learnability of
NLI datasets in a wider sense.

A.6 Impact of data difficulty on training time

We find that models quickly learn simple examples
while requiring more iterations for complex ones
(See Figure 5). A similar outcome was observed
by Lalor et al. (2018) who employ item response
theory for data difficulty estimation - interestingly
however, their difficulty parameters are estimated
via a human population, while our difficulty es-
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Figure 8: Dataset Maps for SNLI and WANLI training data. The majority of SNLI examples lie in the easy-to-learn
region. For WANLI, datapoints are more evenly distributed across the learnability spectrum and exhibit greater
variability.
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Figure 9: Strategy maps for the Random and MC-Max-entropy strategies for multi-source active learning. The
latter acquires considerably more hard-to-learn instances.
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Figure 10: Strategy maps for multi-source active learning, plotted per source.
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Figure 11: Profiling acquisitions for strategies over time. Y-axis denotes amount of acquired examples per round.
The right graph plots the acquisition of hard and impossible examples. Dark bars indicate standard deviations across
seeds. MCM-Entropy and BALD acquire notably more hard and impossible instances relative to random sampling.
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Task Diff. Random MCME BALD DAL
E 95.4± 0.9 | 95.0± 0.4 95.0± 0.5 | 93.3± 0.7 95.5± 1.0 | 94.8± 0.3 93.7± 1.2 | 94.6± 0.8

SNLI M 69.0± 2.6 | 67.7± 1.2 70.2± 1.6 | 68.0± 1.2 70.5± 2.6 | 69.5± 1.2 67.8± 2.4 | 68.2± 2.5
H 46.3± 3.5 | 44.6± 1.9 48.5± 1.6 | 46.0± 2.2 47.1± 3.2 | 49.2± 2.9 44.7± 2.2 | 45.8± 3.9
I 17.7± 1.7 | 17.2± 1.7 20.3± 2.4 | 22.1± 0.9 20.7± 1.7 | 22.2± 0.4 18.4± 2.0 | 17.5± 2.2

E 81.4± 4.9 | 81.7± 4.3 77.0± 4.1 | 79.2± 1.4 82.1± 3.1 | 73.8± 2.1 81.8± 3.5 | 79.9± 3.4
ANLI M 62.2± 2.7 | 62.1± 0.4 61.7± 3.5 | 57.8± 0.9 61.1± 1.6 | 57.1± 4.0 63.1± 2.3 | 59.8± 3.1

H 39.3± 3.3 | 40.2± 0.7 42.9± 3.2 | 41.6± 2.4 39.2± 2.6 | 39.7± 2.6 39.0± 2.0 | 38.5± 1.5
I 14.4± 2.4 | 14.2± 2.2 15.7± 2.0 | 17.0± 0.8 12.6± 1.2 | 14.5± 1.8 14.2± 1.7 | 15.0± 1.9

E 94.3± 2.0 | 92.9± 1.4 92.7± 0.8 | 91.2± 0.7 95.2± 0.9 | 90.9± 1.1 94.1± 0.4 | 93.1± 1.3
WANLI M 72.7± 3.2 | 69.6± 3.5 71.4± 1.2 | 69.9± 2.2 72.7± 1.7 | 67.9± 3.0 72.3± 3.1 | 73.8± 2.1

H 41.9± 2.7 | 40.4± 1.6 43.1± 2.6 | 44.2± 1.2 42.4± 4.6 | 40.7± 2.6 40.6± 1.9 | 41.0± 3.4
I 12.7± 1.5 | 14.4± 1.4 14.0± 2.0 | 16.6± 4.7 11.9± 2.6 | 14.7± 4.4 13.9± 2.8 | 14.6± 3.6

E 93.3± 2.0 | 93.6± 0.6 94.3± 0.9 | 92.8± 1.2 94.4± 0.8 | 92.4± 0.8 93.4± 1.3 | 93.8± 1.5
MNLI M 72.6± 3.8 | 72.9± 1.5 78.6± 2.0 | 74.7± 4.6 75.9± 1.6 | 72.8± 4.4 74.7± 3.4 | 78.1± 4.6

H 41.8± 3.8 | 44.5± 1.0 51.9± 4.9 | 49.3± 3.3 45.7± 4.1 | 46.7± 3.3 46.1± 3.9 | 48.3± 4.7
I 12.8± 3.8 | 15.7± 1.8 20.9± 2.9 | 19.5± 1.4 13.1± 2.0 | 16.9± 1.9 12.6± 2.2 | 18.5± 6.3

E 91.0± 6.7 | 90.8± 5.8 89.8± 7.7 | 89.1± 5.9 91.8± 5.9 | 88.0± 8.4 90.7± 5.5 | 90.4± 6.4
All M 69.3± 5.3 | 68.1± 4.4 70.5± 6.4 | 67.6± 6.7 70.0± 5.8 | 66.8± 6.8 69.4± 5.2 | 69.9± 7.6

H 42.3± 4.2 | 42.4± 2.5 46.5± 5.1 | 45.3± 3.7 43.6± 4.8 | 44.1± 4.9 42.6± 3.9 | 43.4± 5.3
I 14.4± 3.3 | 15.3± 2.2 17.7± 3.8 | 18.8± 3.4 14.6± 4.1 | 17.1± 4.1 14.8± 3.2 | 16.4± 4.2

Table 10: Multi-source in-domain strategy comparison for difficulty-stratified test outcomes between original
training set and training set with hard-to-learn examples excluded. Values denote test accuracies and standard
deviations. We consider performance on test examples belonging to the Easy (E), Medium (M), Hard (H) and
Impossible (I) sets.
Cell scheme to be read as ablated | original.

timations follow directly from training dynamics.
This echoes a similar finding by (Zhang and Plank,
2021), who show that cartography-based model
confidence scores strongly correlate with human
agreement on SNLI validation data. Similarly, it
may be of interest to see whether examples which
many different models identify as ambiguous cor-
relate with human judgements of ambiguity, e.g.
with respect to human label distributions (Nie et al.,
2020; Chen et al., 2020), or annotator disagreement
scores.

A.7 Hard-to-learn Data
In the tables below, we present various cases of
hard-to-learn examples (i.e., collective outliers) for
the NLI datasets we examine.
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Table 11: Impossible (0 ≤ p ≤ 0.25) training examples from SNLI. GT denotes the gold truth; P. denotes the model
prediction and Conf. the confidence associated with the predicted label.

Ex. Premise Hypothesis GT P. Conf.

(1) A skier in electric green on the edge of
a ramp made of metal bars.

The skier was on the edge of the ramp. N E 0.976

(2) A skier in electric green on the edge of
a ramp made of metal bars.

The brightly dressed skier slid down the
race course.

E C 0.770

(3) A man wearing a red sweater is sitting
on a car bumper watching another person
work.

people make speed fast at speed breaker. C N 0.799

(4) Middle-aged female wearing a white
sunhat and white jacket, slips her hand
inside a man’s pants pocket.

The man and woman are playing together. C N 0.869

(5) A young girl jumps off of a couch and
high into the air

the young lady knows how to fly in sky C N 0.765

(6) A young boy jumps into the oncoming wave. The boy is at a lake. C N 0.951

(7) A woman taking her wallet out of her
purse at a vendor stand

A woman buying something from a vendor. E N 0.892

(8) A group of people standing on a rock
path.

A group of people are hiking. E N 0.972

(9) Woman sitting in tree with dove. The lady is touching a dove. N E 0.920

(10) A lady standing on the corner using her
phone.

The lady has a smartphone. N E 0.753

Table 12: Impossible (0 ≤ p ≤ 0.25) training examples from WANLI. GT denotes the gold truth; P. denotes the
model prediction and Conf. the confidence associated with the predicted label.

Ex. Premise Hypothesis GT P. Conf.

(1) The first principle of art is that art is not
a way of life, but a means of life.

Art is a way of life. E C 0.944

(2) "Must be right good stock," Fenner observed. "Must be pretty good stock,"
Fenner said.

C E 0.646

(3) He believes that the best thing to do is to buy
the firm at a reasonable price.

If the firm is cheap, it is best
to buy it.

N E 0.964

(4) A piece of paper with a stamp on it is worth
less than a piece of paper without a stamp.

A piece of paper without a stamp
is worth more than a piece of
paper with a stamp.

E C 0.818

(5) It was the only time he had seen her laugh. He had never seen her laugh
before.

C N 0.502

(6) The musician shook his head. The musician moved his head up and
down.

C E 0.510

(7) Some students believe that to achieve their
goals they must take the lead.

Some students believe that to
achieve their goals they must
follow the lead.

E C 0.630

(8) The very nature of the "American Dream" is that
it is not always attainable

The American Dream is attainable. N C 0.817

(9) This might be an issue for a company that is
in the process of introducing a new product.

Every company is always in the
process of introducing a new
product.

E N 0.894

(10) Would Higher Interest Rates Stimulate Saving? Higher interest rates would not
stimulate saving.

E N 0.929
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Table 13: Impossible (0 ≤ p ≤ 0.25) training examples from ANLI. GT denotes the gold truth; P. denotes the
model prediction and Conf. the confidence associated with the predicted label. Instances are comparatively less
characterized by noisy labels or ambiguity; rather, their difficulty arises through requirement of more advanced
inference types, e.g. identifying relevant information from long passages, multi-hop reasoning to connect subjects to
events and numerical reasoning about dates of birth and events.

Ex. Premise Hypothesis GT P. Conf.

(1) Glaiza Herradura-Agullo (born February 24, 1978) is a Filipino
former child actress. She was the first-ever grand winner
of the Little Miss Philippines segment of "Eat Bulaga!" in
1984. She starred in RPN-9’s television series "Heredero" with
Manilyn Reynes and Richard Arellano. She won the 1988 FAMAS
Best Child Actress award for her role in "Batas Sa Aking Kamay"
starring Fernando Poe, Jr. .

Herradura-Agullo
was born in the
80’s

C E 0.941

(2) The Whitechapel murders were committed in or near the
impoverished Whitechapel district in the East End of London
between 3 April 1888 and 13 February 1891. At various points
some or all of these eleven unsolved murders of women have been
ascribed to the notorious unidentified serial killer known as
Jack the Ripper.

The women
killed in the
Whitechapel
murders were
impoverished.

N E 0.832

(3) Departure of a Grand Old Man is a 1912 Russian silent film about
the last days of author Leo Tolstoy. The film was directed by
Yakov Protazanov and Elizaveta Thiman, and was actress Olga
Petrova’s first film.

Olga performed in
many films before
This one

C N 0.922

(4) Gay Sex in the 70s is a 2005 American documentary film about
gay sexual culture in New York City in the 1970s. The film
was directed by Joseph Lovett and encompasses the twelve years
of sexual freedom bookended by the Stonewall riots of 1969
and the recognition of AIDS in 1981, and features interviews
with Larry Kramer, Tom Bianchi, Barton Lidice Beneš, Rodger
McFarlane, and many others.

Gay Sex in the 70s
was directed by a
gay man.

N E 0.907

(5) Héctor Canziani was an Argentine poet, screenwriter and film
director who worked in Argentine cinema in the 1940s and
1950s. Although his work was most abundant in screenwriting
and poetry after his brief film career, he is best known for
his directorship and production of the 1950 tango dancing film
Al Compás de tu Mentira based on a play by Oscar Wilde.

He did direct a
movie after 1950

N E 0.944
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Abstract
Named Entity Recognition is a key Natural
Language Processing task whose performance
is sensitive to choice of genre and language.
A unified NER model across multiple gen-
res and languages is more practical and effi-
cient through leveraging commonalities across
genres or languages. In this paper, we pro-
pose a novel setup for NER which includes
multi-domain and multilingual training and
evaluation across 13 domains and 4 languages.
We explore a range of approaches to building
a unified model using domain and language
adaptation techniques. Our experiments high-
light multiple nuances to consider while build-
ing a unified model, including that naive data
pooling fails to obtain good performance, that
domain-specific adaptations are more impor-
tant than language-specific ones and that in-
cluding domain-specific adaptations in a uni-
fied model can reach performance close to train-
ing multiple dedicated monolingual models at
a fraction of their parameter count.

1 Introduction

Identifying named entities, such as organization
and people in text is a key NLP task situated up-
stream of other NLP tasks such as co-reference
resolution (Ratinov and Roth, 2012; Dutta and
Weikum, 2015; Miwa and Bansal, 2016; Luo and
Glass, 2018) or relation extraction (Nguyen and Gr-
ishman, 2015; Zhong and Chen, 2021) and can en-
hance applications including information retrieval
(Carpineto and Romano, 2012; Berger and Laf-
ferty, 2017) and summarization (Cheng and Lap-
ata, 2016; Liu and Lapata, 2019; Maddela et al.,
2022; Hofmann-Coyle et al., 2022). However, it
has been established that NER is very sensitive to
genre differences (Augenstein et al., 2017; Agar-
wal et al., 2021),1 with models trained on one genre

∗Work done while at Bloomberg.
#The authors are listed in alphabetical order.

1Throughout this paper, by genre we refer to a collection
of documents with variations in style or structure that might

Figure 1: A graphic comparison of performance of lan-
guage, genre and joint adaptation by demo parameter
count.

performing poorly on a different one. As a result,
multiple data sets were created to allow domain-
specific models to be trained. Yet, domain adapta-
tion especially across multiple genres has shown
the promise that a single model could improve per-
formance on multiple domains (Wang et al., 2020;
Liu et al., 2021). Further, the advent of pretrained
multilingual models (Wu and Dredze, 2019; Con-
neau et al., 2020) enables transfer across languages
in an straightforward way by simply feeding het-
erogeneous language data in fine-tuning, making
cross-lingual training feasible and a new dimen-
sion of adaptation available for exploration. Thus,
performance on a specific genre and language pair
could be improved by leveraging commonalities in
training data across both genre and language dimen-
sions, which is enabled by the significant amount
of annotated data sets that are publicly available.

The main research question becomes what is
the best way to leverage data from different lan-
guages and genres for NER in this multilingual
multi-domain setup? In this paper, we attempt to
answer this question by using data sets available
across multiple genres and languages to improve

impact modeling (Santini et al., 2006); we use “domain" inter-
changeably with “genre" when referring to modeling concepts.
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performance across all data sets. To this end, we
compile a collection of 22 data sets across 4 dif-
ferent languages and spanning 13 domains. To the
best of our knowledge, this is the first attempt to
building a unified multi-domain multilingual NER
model.

We empirically explore our core research ques-
tion through several experiments. First, we aim to
identify whether sharing models or parts of the
model across languages, domains or both is more
beneficial in training. In general, simply pooling all
the available data is likely sub-optimal as domain-
specific differences in named entity mentions are
useful to model, although using more data is usu-
ally more beneficial and can lead to improved ro-
bustness of the model. We explore several sharing
techniques on top of state-of-the-art transformer-
based encoders such as data pooling and mixture
of experts methods, previously effective in cross-
lingual learning, and language or domain specific
adapter heads. Our results (Fig. 1) show that shar-
ing genre information across languages is much
more beneficial for performance than sharing lan-
guage information across genres for all types of
adaptation techniques.

Next, we compare monolingual encoders like
RoBERTa, which can provide a better represen-
tation for text in each language, and multilingual
encoders like XLM-R, which enables knowledge
sharing from multiple languages, as starting points
for fine-tuning NER models when genre and lan-
guage annotated data is available. We find that the
monolingual models pooling all the data from a
particular language perform best and outperform
their cross-lingual counterparts.

Throughout, we explore the trade-offs between
the total number of model parameters and perfor-
mance, which can bring practical benefits in terms
of reduced maintenance and increased efficiency.
We find that doing domain adaptation using adapter
heads achieves a good trade-off between perfor-
mance and parameter count and could represent the
optimal solution in deploying a unified model.

Our contributions are as follows:
• Introducing the multilingual multi-domain NER

setup;
• Extensive experiments on 13 domains and 4 lan-

guages using a variety of models and adaptation
methods which highlight the best unified model
architecture and show that modeling domains is
more effective than languages;

• Analysis of the performance / efficiency trade-
offs.

2 Data Sets

We create a collection of 22 data sets across 4
languages and 13 unique genres. For English, we
use CoNLL-2003 (Tjong Kim Sang and De Meul-
der, 2003), Filings (Salinas Alvarado et al., 2015),
OntoNotes-En (Hovy et al., 2006) with 6 gen-
res (Pradhan et al., 2013; Wang et al., 2020)
and Twitter (Ritter et al., 2011); for Chinese, we
use MSRA (Levow, 2006), OntoNotes-Zh (Hovy
et al., 2006) with 6 genres and Weibo (Peng and
Dredze, 2015, 2016; He and Sun, 2017); for Ger-
man, we use CoNLL-2003 (Tjong Kim Sang and
De Meulder, 2003), Legal (Leitner et al., 2019) and
Wikipedia (Balasuriya et al., 2009); for Spanish
we use CoNLL-2002 (Tjong Kim Sang, 2002) and
Wikipedia (Balasuriya et al., 2009). Note that not
all languages contain the same genres and not all
genres are present in each language, although there
is overlap between genres and languages.

2.1 Statistics
We have a total of 502,720 training examples with
109,657 for validation and 105,255 for testing. We
consider the following entity types: Person (PER),
Organization (ORG), Location (LOC), and Miscella-
neous (MISC), either removing extra types or col-
lapsing them into the overarching parent entity
class. We maintain the train/dev/test splits for all of
these data sets and evaluate on test. Tab. 1 shows
the number of training, validation and testing data
points across each of the languages when domains
in the language are combined. Here we can see that
despite German and Spanish having few domains,
the number of data points are in fact more than
English and Chinese which have more domains.

Language Train Dev Test

English 103,121 22,344 22,557
Chinese 67,129 15,672 11,314
German 234,297 50,471 50,611
Spanish 98,173 21,170 20,773

Total 502,720 109,657 105,255

Table 1: Data set statistics per language.

2.2 Entity-Type Mapping
The datasets do not have identical entity types.
Thus, we apply pre-processing to standardize the
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Language Domain ORG PER LOC Dropped

English Ritter company person, musicartist geo-loc N/A
OntoNotes N/A N/A N/A TIME, CARDINAL, NORP,

DATE, ORDINAL, QUANTITY,
MONEY, PRODUCT, EVENT,
PERCENT, WORK_OF_ART,
LAW, LANGUAGE

German Legal UN, INN, GRT, MRK RR, AN LD, ST, STR, LDS GS, RS, VO, LIT, VS, VT, EUN

Chinese Weibo ORG.NAM, ORG.NOM PER.NAM, PER.NOM LOC.NAM, LOC.NOM N/A
OntoNotes N/A PERSON GPE EVENT, NORP, TIME, FAC,

QUANTITY, MONEY, CARDI-
NAL, ORDINAL, LOC, LAW,
WORK_OF_ART, PERCENT,
LANGUAGE, PRODUCT

Table 2: Entity-type Mapping across data sets.

labels. Tab. 2 illustrates the pre-processing to map
entities to the ORG, PER, LOC and MISC types.
We do not list the simple mapping when the ORG,
PER, LOC types exist themselves and blank spaces
signify no mapping was done for the type. We refer-
ence previous work to map types to our subsets and
also refer to the original data set paper to infer type
mappings. Additionally, if a type does not map to
any of the 4 types we train and evaluate on we drop
the type as seen in the last column of the table.

3 Methods

To answer our core research question, we explore
several methods inspired by approaches from both
multilingual NER (Al-Rfou et al., 2015; Rahimi
et al., 2019; Tedeschi et al., 2021) and multi-
domain NER (Liu et al., 2020; Wang et al., 2020).

3.1 Multilingual Encoders

Pretrained multilingual encoders learn strong mul-
tilingual representation. In particular, we use XLM-
R base (Conneau et al., 2020), a strong multilingual
encoder.

3.1.1 Individual Models
The models consist of XLM-R base as the encoder,
followed by the sequence tagging head in the form
of a linear layer.
• Data Pooling. We fine-tune 1 model by naively

pooling data from all languages and domains;
• Per Lang. We fine-tune 4 models using all data

from each of the 4 languages;
• Per Dom. We fine-tune 1 model per domain us-

ing all data across all languages for that domain,
resulting in 13 models (e.g., one CoNLL model
trained using English, German and Spanish);

• Per Lang. & Dom. We fine-tune one model for

each language and domain resulting in 22 mod-
els (e.g., CoNLL English, CoNLL German).

3.1.2 Mixture of Expert Models
Past multilingual NER research showed promising
results using Mixture of Expert (MoE) (Shazeer
et al., 2017) based models. MoE models are built
on the premise that a set of experts can be paramet-
rically learnt based on the training data without any
explicit notion of matching an expert to a specific
language or domain. MoE based models could be
trained with a regular training setup (Jacobs et al.,
1991), with gradient reversal methods (Ganin and
Lempitsky, 2015) or with an adversarial loss (Chen
and Cardie, 2018; Chen et al., 2019). We train MoE
with regular training setup.

Given encoder output H for a sequence of length
M , we introduce N experts, Ei = FFNi(Ht)
with one hidden layer, where i ∈ {1, . . . , N}, t ∈
{1, . . . ,M}, and a linear domain/languageN -class
classifier CD/L = Softmax(WCD/L

HCLS). We
take

∑
i αiEi with αi from CD/L and feed it

to a shared NER classifier. Thus experts are as-
signed at the sequence-level.2 These are jointly
trained in a multi-task learning setup with a cross-
entropy NER loss L

∑
i αiEi

NER associated with all ex-
perts Ei and a Domain (Dom. MoE) or Language
(Lang. MoE) prediction cross-entropy loss LD/L,

yielding L
∑

i αiEi

NER + LD/L. The loss is backprop-
agated through all the experts, both NER and do-
main/language classifier and the shared encoder.

3.1.3 Adapter Models
Research in multi-domain NER has found that
adding private layers that are updated by data from

2We also experimented with token-level expert assignment,
but observe worse results on the dev set.
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each domain and shared layers updated by data
from all domains is an effective way to improve
multi-domain performance (Wang et al., 2020).
Similar to the private layers explored in multi-
domain NER, Adapters (Pfeiffer et al., 2020; Lin
et al., 2020; Winata et al., 2021) used in conjunc-
tion with Transformer-based models demonstrated
promise in further boosting the performance. We
thus introduce adapter heads on top of the encoder.
We leave variants of adapters that lie within each
layer of the encoder (Houlsby et al., 2019; He et al.,
2022) as future work.

The adapters Ai use the same model architecture
(as MoE models), but are only updated by data
from a given domain or language. It is equivalent
to MoE with a predefined expert assignment. Fig. 2
shows the architecture of the adapter models used
in our experiments.

Thus, for a given data point Di the loss is com-
puted as LAi

NER and only backpropagated through
Ai, the NER classifier and the shared encoder.
• Lang. Adp. We create 4 adapter heads, one for

each language and use the gold language label
to pick the adapter;

• Dom. Adp. We create 13 adapter heads, one for
each domain and use the gold domain label to
pick the adapter;

• Dom. Adp + DP. We create 13 adapter heads
and employ an auxiliary Domain Prediction ob-
jective LD/L during training;

• Dom. Adp + DP + SA. In addition, we add a
shared head which is updated for all examples,
similar to the shared/private setup in (Wang et al.,
2020) for multi-domain adaptation.

While adapters in each layer with frozen encoder
performs on par with fine-tuning all parameters
(Houlsby et al., 2019), it does not outperform it
eithers. Thus, we also update the transformer layers
as part of the training process. We also explored
combining language and domain adapters but this
resulted in worse performance and we omit it for
brevity.

3.2 Monolingual Encoders

Finally, we explore monolingual encoders, which
can provide a better representation of each
language but are not able to transfer knowl-
edge across languages. We identify monolingual
BERT/RoBERTa versions for each of the 4 lan-
guages: English (Liu et al., 2019), Chinese (Cui
et al., 2020), Spanish (de la Rosa et al., 2022), and

Figure 2: Our NER tagger with XLM-R encoder and
domain adapters. Texts and adapter heads are color-
coded to indicate the heads used for each domain.

German3.
• Per Lang. We fine-tune each monolingual en-

coder with all the NER data from the correspond-
ing language, resulting in 4 models;

• Per Lang. & Dom. We fine-tune one model for
each domain based on monolingual encoder, re-
sulting in 22 models;

• Dom. Adp. We add domain adapters (Dom.
Adp., §3.1.3) to monolingual encoder. This re-
sults in 4 models, one for each language, with
the number of adapters equal to the number of
domains in each language.

3.3 Hyperparameters

We use the open-source Transformers library (Wolf
et al., 2020) to facilitate reproducibility. For all
experiments, we use a learning rate of 1e-5 on the
AdamW optimizer (Loshchilov and Hutter, 2017),
with no warm up, a batch size of 32 trained across
50 epochs on an NVIDIA V100 GPU. We use the
same hyperparameters across all experiments to
allow for comparability.

4 Results

We evaluate the models listed in §3 on all data
sets. Tab. 3 illustrates the results averaged across
languages obtained using F1 calculated with the
CoNLL evaluation script. Granular results for each
individual genre and language are in App. B. We
treat the data pooling method in multi-lingual en-
coders as our baseline in terms of performance and
number of parameters. Our findings are as follows:

3The model is taken from https://www.deepset.ai/
german-bert
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Models # param en zh de es Avg.

# Domains 9 8 3 2

Initiate with XLM-R (multilingual, base)

Data Pooling ×1.00 82.12 75.70 89.51 89.96 84.32

Per Lang. ×4.00 +0.54 +0.67 -0.27 -0.15 +0.2
Per Dom. ×13.00 +3.99 +4.45 +0.47 +0.40 +2.33
Per Lang. & Dom. ×22.00 +3.53 +4.27 +0.49 +0.38 +2.17

Lang. MoE ×1.02 +0.12 +0.47 0 +0.07 +0.17
Dom. MoE ×1.07 +0.51 +1.03 -0.36 -0.33 +0.21

Lang. Adp ×1.02 -0.09 +0.33 -0.37 -0.35 -0.12
Dom. Adp ×1.07 +1.95 +4.62 +0.26 -0.53 +1.58

+ DP ×1.07 +1.65 +3.49 -0.15 -0.83 +1.04
+ DP + SA ×1.08 +1.60 +3.66 -0.30 -0.01 +1.24

Initiate with Monolingual RoBERTa (base)

Per Lang. ×1.65 +1.94 +3.16 -0.24 +0.16 +1.26
Per Lang. & Dom. ×9.03 +4.23 +6.55 +1.28 +1.05 +3.28

Dom. Adp ×1.73 +3.05 +6.61 +0.22 +0.30 +2.55

Table 3: Results in macro-F1 for each language aver-
aged across all domains within the language and overall
average across the four languages. Number of param-
eters are relative to Data Pooling. Bold and underline
indicate the best and second best performing models.

Domain vs. Language: In Fig. 1, we observe
that across all types of methods (individual models,
MoE and adapters), training models that leverage
information about domain across languages is more
beneficial when compared to sharing information
across different genres in the same language, with
gains of up to 1.70 – 2.13 F1. We hypothesize this
result is due to the well documented sensitivity
of NER to nuances specific to genres (Augenstein
et al., 2017) such as entity distribution, document
structure or capitalization patterns, whereas multi-
lingual models manage to better preserve this in-
formation across languages. In addition, domain-
specific models even perform slightly better than
language- and domain-specific models (+0.16).

Adapters vs. MoE: When comparing methods,
we observe that MoE techniques provide limited
gains over data pooling (0.17–0.21) contrary to past
cross-lingual experiments. The adapter heads pro-
vide bigger improvement compared to MoE with
same number of parameters, while using shared
layers and domain predictors as in multi-domain
adaptation (Wang et al., 2020) fails to further boost
performance. However, both adaptation strategies
lag behind training domain specific models (+0.75),
which however come with a much larger number
of parameters (up to ×20) and added maintenance
cost when deployed.

Monolingual vs. Multilingual Models: The
monolingual results demonstrate that, if available,
these models lead to better performance than their
multilingual counterparts (+1.06 and +1.09 when

comparing similar setups), which is natural as they
have a better representation of each language. We
find that the domain adapter method offers a good
trade-off between performance (-0.73) and model
size (×0.18), outperforming all models that per-
form adaptation across languages.

Impact of domain diversity: Finally we also
observe that English and Chinese have much more
diversity because of the number of domains, thus
adding more capacity through the domain adap-
tation results in improved performance. However,
since German and Spanish have fewer domains but
an equal if not more training data points, we find
that adding capacity is not necessarily helpful.

5 Conclusion and Future Work

This paper introduces the first extensive evaluation
of multilingual multi-domain NER using a collec-
tion of 22 data sets spanning 4 languages. Through
a series of experiments, we demonstrate that genre
information is more important to be shared, even
across languages, than sharing information from
other genres in the same language. However, these
cross-lingual methods are outperformed by domain
adaptation over genres in monolingual models, if
these models are available. We also explored trade-
offs between model size and performance, showing
that adapter heads strike a good balance, offering
relatively little reduction in performance for an or-
der of magnitude less parameters. For future work,
we will explore additional experimental setups that
include testing on domains or languages where lim-
ited or no data is available for training.

Limitations

Our research focuses on high-resource languages
where annotated NER data sets and pretrained lan-
guage models are available from only two language
families. We have yet to explore how these findings
translate to low resource languages or languages
where annotated data sets are not available. We note
that there are more domains available for English
and Chinese, and since we are computing macro-
F1 scores, the results over-emphasize performance
on these languages, although Spanish and German
show similar result patterns. Additionally, we only
use 4 entity types (i.e., PER, ORG, LOC, MISC)
across all datasets by dropping the other entities.
Finally, due to limited computing resources and
large number of experiments, we experiment with
XLM-R base and thus do not compare with state-
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of-the-art results for each of these individual lan-
guage/domain results which are usually obtained
using XLM-R large.
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Appendix

A Data Set Details

In this section, we provide details about the statis-
tics of the data sets, our hypothesis on what makes
them challenging tasks and also pre-processing we
perform to allow for reproducible results.

A.1 Statistics
A more in-depth look at the distributions of the
domains across languages can be seen in Tab. 4 for
German, Tab. 5 for Spanish, Tab. 8 for English, and
Tab. 9 for Chinese. The tables show that English
has the most diverse set of domain distribution,
followed by Chinese, with a bulk of the data com-
ing from MSRA, German, where Legal and Wiki
constitute a large amount and Spanish, which is
largely dominated by Wiki. The more diverse set
of domains makes the language more challenging
to achieve a consistently high average score, which
is also evident in our results.

conll2003 legal wiki

Train (%) 5.19 19.93 74.88
Dev (%) 5.68 19.83 74.49
Test (%) 5.94 19.78 74.28

Table 4: Domain Distribution for German data sets.

conll wiki

Train (%) 8.48 91.52
Dev (%) 9.05 90.95
Test (%) 7.31 92.69

Table 5: Domain Distribution for Spanish data sets.

B Fine-grained Results

In Tab. 3, we see the averaged results across do-
mains for each language, however it is not easy to
infer the performance on each for any given lan-
guage. In an effort to provide more transparency,
we provide the performance for each domain within
a given language in Tab. 6, Tab. 7, Tab. 10, and
Tab. 11.

Models/Domain conll2003 legal wiki

Initialized with XLM-R Multilingual

Data Pooling 81.24 96.05 91.23
Per Lang. 80.61 95.80 91.30
Per Dom. 82.08 96.41 91.45
Per Lang. and Dom. 82.26 96.41 91.33

Lang. MoE 81.28 96.10 91.14
Dom. MoE 80.42 95.94 91.09

Lang. Adp 80.33 95.92 91.17
Domain Adp 81.87 96.18 91.25

+ DP 81.41 95.81 90.87
+ DP + SA 81.18 95.68 90.77

Initialized with Monolingual RoBERTa

Per Lang. 81.00 95.55 91.25
Per Lang. & Dom. 84.69 96.05 91.61

Dom. Adp 82.08 95.77 91.36

Table 6: Fine-grained results for domains within Ger-
man.

Models/Domain conll2002 wiki

Initialized with XLM-R Multilingual

Data Pooling 86.72 93.20
Per Lang. 86.51 93.10
Per Dom. 87.46 93.26
Per Lang. and Dom. 87.59 93.09

Lang. MoE 87.02 93.04
Dom. MoE 86.42 92.84

Lang. Adp 86.27 92.96
Dom. Adp 85.93 92.93

+ DP 85.72 92.55
+ DP + SA 87.08 92.81

Initialized with Monolingual RoBERTa

Per Lang. 86.97 93.26
Per Lang. & Dom. 88.78 93.25

Dom. Adp 87.36 93.15

Table 7: Fine-grained results for domains within Span-
ish. DP is Domain Prediction and SA indicates shared
adapter.
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conll2003 filings onto_bc onto_bn onto_mz onto_nw onto_tc onto_wb ritter

Train (%) 13.62 1.00 11.00 9.05 5.66 29.32 10.79 14.65 4.92
Dev (%) 14.55 0.99 10.88 8.96 5.59 29.00 10.67 14.49 4.86
Test (%) 15.31 0.98 10.79 8.88 5.55 28.73 10.58 14.36 4.83

Table 8: Domain Distribution for English data sets.

msra onto_bc onto_bn onto_mz onto_nw onto_tc onto_wb weibo

Train (%) 53.63 10.51 8.92 4.54 3.86 9.01 7.56 1.97
Dev (%) 57.43 9.65 8.19 4.17 3.54 8.27 6.94 1.81
Test (%) 40.94 13.37 11.36 5.78 4.92 11.47 9.63 2.52

Table 9: Domain Distribution for Chinese data sets.

Models/Domain conll2003 filings bc bn mz nw tc wb ritter

Initialized with Multilingual XLM-R

Data Pooling 87.21 88.59 88.11 90.92 89.10 91.60 70.69 70.87 61.94

Per Lang. 87.84 86.10 89.14 91.51 89.13 92.13 71.78 71.83 64.45
Per Dom. 92.00 95.48 89.85 92.48 90.81 93.14 73.29 76.44 71.46
Per Lang. & Dom. 91.25 95.48 89.35 92.53 91.19 92.79 73.49 75.85 68.96

Lang. MoE 87.20 88.37 88.44 90.91 88.51 91.74 71.30 70.59 63.13
Dom. MoE 87.59 87.50 87.99 91.35 88.23 91.80 72.18 72.42 64.62

Lang. Adp 87.02 88.33 87.72 91.29 88.26 91.77 70.37 70.54 63.01
Dom. Adp 90.36 90.98 89.19 92.38 89.66 92.22 71.59 75.23 65.02

+ DP 90.27 89.45 88.67 92.34 89.55 91.93 71.21 76.44 64.07
+ DP + SA 90.17 89.46 88.56 92.24 89.18 91.96 72.80 75.50 63.60

Initialized with Monolingual RoBERTa

Per Lang. 88.81 90.66 89.80 91.92 89.61 92.48 72.29 73.76 67.22
Per Lang. & Dom. 91.69 94.44 89.81 92.85 91.15 93.42 73.77 75.78 74.25

Dom. Adp 91.85 89.71 89.64 93.07 90.79 92.97 72.29 75.94 70.30

Table 10: Fine-grained results for domains within English. DP is Domain Prediction and SA indicates shared adapter.

Models/Domain msra bc bn mz nw tc wb weibo

Initialized with XLM-R Multilingual

Data Pooling 81.09 78.30 79.08 72.75 84.19 81.18 68.63 60.35

Per Lang. 80.85 76.58 78.94 74.30 84.68 83.33 68.36 63.90
Per Dom. 91.81 77.62 82.42 76.25 90.23 84.59 73.51 64.74
Per Lang. & Dom. 91.82 77.82 82.21 76.07 89.74 83.81 73.59 64.74

Lang. MoE 81.04 77.05 79.40 72.47 84.91 84.59 68.35 61.56
Dom. MoE 79.59 76.76 79.32 74.21 85.66 85.29 70.21 62.81

Lang. Adp 80.57 79.07 78.51 73.46 84.62 82.99 68.10 60.89
Dom. Adp 89.45 79.47 82.14 76.21 89.99 84.86 74.34 66.10

+ DP 89.36 77.08 80.67 75.17 89.76 85.22 74.00 62.24
+ DP + SA 89.00 77.73 81.14 75.82 89.54 85.55 72.16 63.97

Initialized with Monolingual RoBERTa

Per Lang. 82.25 79.78 81.02 75.43 86.39 86.10 71.85 68.04
Per Lang. & Dom. 93.55 80.36 84.05 78.52 91.35 85.84 74.73 69.6

Dom. Adp 93.17 80.34 83.88 78.79 91.22 86.74 76.34 67.96

Table 11: Fine-grained results for domains within Chinese. DP is Domain Prediction and SA indicates shared
adapter.
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Abstract
Dropout is a widely used regularization trick
to resolve the overfitting issue in large feedfor-
ward neural networks trained on a small dataset,
which performs poorly on the held-out test sub-
set. Although the effectiveness of this regular-
ization trick has been extensively studied for
convolutional neural networks, there is a lack
of analysis of it for unsupervised models and in
particular, VAE-based neural topic models. In
this paper, we have analyzed the consequences
of dropout in the encoder as well as in the de-
coder of the VAE architecture in three widely
used neural topic models, namely, contextual-
ized topic model (CTM), ProdLDA, and em-
bedded topic model (ETM) using four publicly
available datasets. We characterize the dropout
effect on these models in terms of the quality
and predictive performance of the generated
topics.

1 Introduction

Dropout (Hinton et al., 2012) is used while train-
ing neural networks, by stochastically dropping
out the activation of neurons to prevent complex
co-adaptations of feature vectors (Baldi and Sad-
owski, 2013). The working of dropout is attributed
to the implicit averaging over an ensemble of neu-
ral networks (Labach et al., 2019; Warde-Farley
et al., 2014). It has been shown to be effective
on supervised learning tasks to prevent overfitting
(Srivastava et al., 2014).

As the volume of digital documents significantly
increases with time, organizing them manually is
becoming quite an inconvenient task. Because
of the ability of topic models to learn a thematic
structure from a set of documents in an unsuper-
vised manner and label the documents with their
corresponding dominant topics, the significance
of topic models is enormous in this area (Hall
et al., 2008; Adhya and Sanyal, 2022). But in
the traditional topic models, not only the computa-
tion cost of the approximate posterior is very high

but also for a small change in the modeling as-
sumption, re-derivation of the inference method
is needed. With greater flexibility and scalability
than traditional topic models, a class of Neural
Topic Models (NTMs) aim to leverage the potential
of neural networks using the AEVB (Kingma and
Welling, 2014) based inference technique. Follow-
ing (Zhao et al., 2021), we refer to this class of
models as VAE-NTMs where the training objective
is to maximize the log-likelihood of the reconstruc-
tion of the input document while minimizing the
KL-divergence of the learned posterior distribution
of the latent space from a known prior distribution.

An earlier study by (Ha et al., 2019) of the
dropout effect on two traditional topic models LDA
(Blei et al., 2003) and BTM (Yan et al., 2013)
shows that the correct choice of the dropout rate not
only decreases the learning time of the models but
also significantly improves the predictive perfor-
mance and generalization for short texts. However,
the study does not consider neural topic models.

In this work, we propose the use of dropout on
VAE-NTMs as a hyperparameter in order to achieve
much better performance in terms of topic coher-
ence, topic diversity, and topic quality. We test
this proposition on a range of standard VAE-NTM
architectures. To the best of our knowledge, there
has been no other study focusing specifically on
the use of dropout in neural topic models. We have
made our analysis publicly available1.

In summary, our contributions are as follows:

1. We comprehensively show both quantitatively
and qualitatively that topic quality undergoes
a massive improvement with either very low
or zero dropout settings in both the encoder
and the decoder of a VAE-NTM.

2. We show that for VAE-NTMs the systematic
choice of low dropout rates can lead to a sig-

1https://github.com/AdhyaSuman/NTMs_Dropout_
Analysis
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nificant improvement in downstream tasks
like document classification.

3. We study the dependence of dropout on the
length of the input documents.

4. We present an empirical analysis for the in-
crease in performance of VAE-NTMs with a
decrease in dropout.

2 Task Formulation

Given a corpus {D1, D2, . . . , DN} of N doc-
uments with vocabulary {w1, w2, ..., wV } of V
words, topic models describe a document Di as a
distribution overK topics {β1,β2, ...,βK}, where
an individual topic βk is a distribution over V -
words.

2.1 VAE Framework in Neural Topic Models
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Figure 1: VAE framework in neural topic models.

Given an input sample x, a VAE encoder learns
the approximate posterior distribution qW (z|x)
where W is the encoder’s weights that are to be
learned and z is a latent variable. Given a sam-
ple z ∼ qW (z|x), the VAE decoder learns the
likelihood pW ′(x|z) where W ′ is the learnable de-
coder’s weights.

In VAE-NTMs the input to the encoder is a doc-
ument representation (e.g., bag-of-words) xV×1.
The encoder then returns the Gaussian parameters(
µK×1,ΣK×1

)
that approximate the true poste-

rior where K is the dimension of latent (topic)
space, µK×1 is the mean, and ΣK×1 is the diago-
nal covariance matrix. Upon taking these Gaussian
parameters as input, the decoder samples a latent
representation zK×1 fromN (µK×1,ΣK×1) using
the reparametrization trick as follows:

zK×1 = µK×1 +Σ
1
2
K×1 ⊙ ϵK×1

where ϵK×1 ∼ N (0, I) and ⊙ represents the
element-wise product. Then the document-topic
distribution vector (θK×1) is generated such that
θK×1 = σ(zK×1) where σ(·) is a softmax func-
tion. The input document-term distribution vec-
tor is reconstructed with the product of θK×1 and
βK×V , the topic-word matrix, in the following
manner:

x̃V×1 =

{
βTθ if β is normalized.
σ
(
βTθ

)
if β is unnormalized.

As shown in Figure 1, in the encoder, dropout
is applied with probability Ep on the output of the
hidden layer(s) of the multi-layer feed-forward neu-
ral network (FFNN). This output is then fed to two
separate layers to get the approximate posterior
qW (z|x). In the decoder, dropout is applied with
probability Dp on the document-topic distribution
vector (θK×1), just before the reconstruction pro-
cess.

2.2 Task Description
The goal is to measure the effect that dropout has
on the performance of VAE-NTMs by varying the
dropout rates from 0.0 to 0.6 in steps of 0.1, in
both the encoder and the decoder. We have chosen
0.6 as the upper bound of the dropout rates for our
experiments because it is the highest dropout rate
used in any VAE-NTMs that we have considered as
a baseline in this work. We measure performance
using: topic coherence, topic diversity, and topic
quality. We use NPMI (Lau et al., 2014; Röder
et al., 2015) to measure topic coherence. Topic
diversity (Dieng et al., 2020) shows the uniqueness
of topics. Topic quality is the product of coher-
ence and diversity (Dieng et al., 2020). As the
automated topic model measures do not always ac-
curately capture the quality of the topics (Hoyle
et al., 2021), we also perform a manual evaluation
of the topics and study their predictive performance
on the document classification task.

3 Empirical Study

We perform all experiments in OCTIS (Terragni
et al., 2021), which is an integrated framework for
topic modeling.

3.1 Datasets
We have used four publicly available datasets in
our experiments. Among them, 20NG2 and BBC

2http://qwone.com/~jason/20Newsgroups/

2221

http://qwone.com/~jason/20Newsgroups/


CTM ProdLDA ETM
0.04

0.00

0.04

0.08

To
pi

c 
Qu

al
ity

0.065

0.039

0.009

0.056

-0.051

0.004

20NG

CTM ProdLDA ETM
0.10

0.05

0.00

0.05 0.039
0.025

0.001
0.023

-0.089

-0.000

BBC

CTM ProdLDA ETM0.00

0.03

0.06

0.09
0.096 0.091

0.050

0.088

0.034 0.030

Wiki40B

CTM ProdLDA ETM0.00

0.03

0.06

0.09
0.096 0.089

0.028

0.085

0.020 0.018

AllNews
With optimal dropout rate With default dropout rate

CTM ProdLDA ETM

0.06

0.00

0.06

NP
M

I

0.090

0.051
0.033

0.077

-0.091

0.018

20NG

CTM ProdLDA ETM
0.12

0.06

0.00

0.06 0.062
0.037

0.010
0.046

-0.129

-0.003

BBC

CTM ProdLDA ETM0.00

0.04

0.08

0.12 0.122 0.116

0.084

0.115

0.066 0.066

Wiki40B

CTM ProdLDA ETM0.00

0.04

0.08

0.12 0.122 0.117

0.061

0.115

0.050 0.049

AllNews

Figure 2: Topic quality and NPMI for different topic models with optimal dropout rate and default dropout rate.

(Greene and Cunningham, 2006) are already avail-
able in OCTIS in the pre-processed format while
we added Wiki40B (Guo et al., 2020) and AllNews
(Zhu et al., 2018) datasets further. The statistical
descriptions of these datasets are mentioned in Ta-
ble 1. Each corpus is split into train/valid/test sets
in the ratio 70: 15: 15. The validation set is used
for early stopping.

Dataset #Docs Avg. #words |Vocab|
20NG 16309 48.02 1612
BBC 2225 120.12 2949

Wiki40B 24774 541.08 2000
AllNews 49754 229.53 2000

Table 1: Statistics of the used datasets.

3.2 Models

We use the following three VAE-NTMs: CTM
(Bianchi et al., 2021) which incorporates the con-
textualized documents embeddings with the neural
topic models; ProdLDA (Srivastava and Sutton,
2017) which, unlike LDA, relaxes the simplex con-
straint over the topic-word matrix; (ETM) (Dieng
et al., 2020) which incorporates word-embeddings
in topic modeling to increase robustness in pres-
ence of stopwords.

For each of the four datasets, we compute the
dropout rate that optimizes the topic quality of each
model on that dataset. We train all three topic
models for topic-count K ∈ {20, 50, 100} with 30
epochs while keeping all hyperparameter values,
except dropout, the same as in their original im-
plementations. To ensure robustness, we average

Model 20NG BBC Wiki40B AllNews
CTM

(0.2, 0.2)
(0.0, 0.0) (0.0, 0.0) (0.2, 0.1) (0.0, 0.1)

ProdLDA
(0.6, 0.6)

(0.1, 0.1) (0.0, 0.0) (0.1, 0.1) (0.1, 0.1)

ETM
(0.5, 0.0)

(0.0, 0.0) (0.1, 0.0) (0.0, 0.0) (0.1, 0.0)

Table 2: For each of the datasets, the optimal dropout
rates of all the models considering the highest topic
quality are mentioned in the (Ep, Dp) format in the
second through last columns. The default dropout rate
is also specified for each model in the first column.

scores over 10 independent runs of each model. For
comparison, we use the default dropout rates for
each model as mentioned in the original papers that
proposed the corresponding model. In Table 2, we
show the default and the optimal dropout rates.

3.3 Results and Analysis

3.3.1 Quantitative Evaluation of Topic
Quality

In Figure 2, we compare, for each dataset and each
model, the topic quality and the NPMI respectively
between the dropout-optimized model that gives
the highest topic quality and the model with default
dropout rates as mentioned in Table 2.

On 20NG, the topic quality score for
(CTM, ProdLDA, ETM) is improved from
(0.056,−0.051, 0.004) to (0.065, 0.039, 0.009)
by optimizing the dropout rate. For CTM, the
increase in performance is around 16.07% whereas
for the other two models it is over 100%. This
is because the original implementation of CTM
already uses a relatively low dropout rate, i.e.,
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Figure 3: Topic qualities on 20NG for (Ep, Dp) ∈ [0.0, 0.6]× [0.0, 0.6] with a increment of 0.1.

0.2, for both the encoder and the decoder. The
other two models show a significant increase in
performance due to their large dropout in the
baseline models.

Figure 3 shows that the topic quality on the
20NG dataset for the VAE-NTMs generally pro-
duces better results on keeping the dropout rate for
both the encoder and the decoder either to be zero
or close to it, especially values like {0.0, 0.1}. Sim-
ilar results have been found for the other datasets.
Based on these observations, the topic quality is
found to reduce with an increase in dropout rates
in the encoder and decoder.

3.3.2 Qualitative Evaluation of Topic Quality
To qualitatively evaluate the models, we trained
all of them for a topic count of 100 on the 20NG
dataset. We then aligned the topics for each pair
of (optimal-dropout model, default-dropout model)
for all three different models. We followed a two-
step strategy for topic alignment. For a given pair
of models, namely, one with optimal dropout and
another with default dropout, with topics lists P
and Q, respectively, we first construct a similarity
matrix of the topic lists using Rank-biased Overlap
(Webber et al., 2010) (RBO) which computes the
similarity between two ordered lists by taking into
consideration the rank of the individual elements.
For example, for 100 topics, we get a matrix, A =
(aij)1≤i,j≤100 such that, ai,j = RBO

(
P [i], Q[j]

)
.

The RBO score lies in [0, 1], where 0 represents
no overlap and 1 implies exact overlap. In the fi-
nal step, we iteratively select the pair of topics for
which the similarity score is maximum and simulta-
neously exclude these two topics from further con-
sideration, i.e. if

(
P [i1], Q[j1]

)
and

(
P [i2], Q[j2]

)

are two selected pairs then (i1 ̸= i2 ∧ j1 ̸= j2).
In Table 3 we show the top words from aligned

topics of all the models. ‘∗’ marked models have
dropout optimized to give the highest topic quality
while others use the default dropout rates as men-
tioned in Table 2. We see that dropout-optimized
models output more interpretable topics.

3.3.3 Effect of Dataset Length
Among the input datasets on which we have experi-
mented, the 20NG dataset contains relatively short
texts, while the others contain longer texts. (Ha
et al., 2019) find that their dropout methods are not
effective on long texts. But here we see that the per-
formance of all VAE-NTMs decreases uniformly
with the increase in the dropout rate, irrespective
of the length of the dataset.

3.3.4 Document Classification
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Figure 4: Accuracy for different topic models with opti-
mal dropout and default dropout from Table 2.

We test the predictive performance of the top-
ics produced by the models on a document classi-
fication task. We train the models on 20NG and
BBC corpora forK topics using the training subset.
We represent each document as a K-dimensional
document-topic vector and train an SVM, which
is then tested on the test subset. We average the
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Model Topics

CTM*
(0.0, 0.0)

monitor, card, video, port, vga, apple, connector, serial, slot, output
firearm, weapon, dangerous, military, license, file, state, gun, police, issue
christian, truth, scripture, exist, belief, accept, understand, word, human, doctrine

CTM
(0.2, 0.2)

card, monitor, video, offer, sale, upgrade, mouse, vga, port, parallel
firearm, dangerous, license, weapon, section, file, division, device, manufacture, carry
interpretation, truth, scripture, christian, agree, moral, understand, human, faith, claim

ProdLDA*
(0.1, 0.1)

window, driver, mode, run, mouse, session, server, program, manager, install
car, engine, buy, company, vehicle, make, brake, tire, dealer, road
signal, voltage, output, circuit, noise, power, switch, wire, connector, degree

ProdLDA
(0.6, 0.6)

line, window, gun, read, space, run, statement, datum, drive, make
make, battery, engine, homosexual, assault, reason, place, single, large, attempt
voltage, damn, signal, usual, label, hour, bio, leg, bullet, hundred

ETM*
(0.0, 0.0)

version, software, program, file, include, image, application, set, server, support
armenian, turkish, village, people, israeli, population, muslim, kill, russian, genocide
system, run, work, window, problem, include, set, good, support, information

ETM
(0.5, 0.0)

file, application, set, program, support, image, display, list, version, bit
armenian, turkish, village, israeli, population, muslim, genocide, son, land, jewish
work, call, system, window, problem, bit, set, run, support, good

Table 3: Some selected topics among 100 topics from 20NG. ‘*’ indicates models with optimal dropout. The
dropout rate is mentioned in the (Ep, Dp) format. The more related words in a topic are highlighted in bold while
less related ones are italicized.

accuracy scores over K ∈ {20, 50, 100}. Figure
4 shows that accuracy increases when we use the
optimized dropout rates.

4 Theoretical Understanding of Results

Our experiments show that by tuning the dropout
carefully, we can achieve a significant improvement
in the performance of VAE-NTMs. Therefore, we
argue that the dropout rate should be treated as an
important hyperparameter and carefully selected
based on the choice of the model as well as the
dataset, especially in the case of VAE-NTMs. More
precisely, in most cases, low dropout rates in the
encoder and the decoder lead to higher performance
than that achieved for higher dropout rates.

Standard dropout and other types of dropout
have been extensively used in supervised learn-
ing techniques (Srivastava et al., 2014; Wu and Gu,
2015; Tompson et al., 2015; Devries and Taylor,
2017; Cai et al., 2019). The main prerogative of
using dropout in the supervised scenario is to in-
troduce noise while training so that the model can
recognize the outliers in the testing phase. The drop
in performance with high dropout that we see in
our experiments is perhaps due to the fact that we
are trying to learn a generative model of the data.
Dropout makes the model robust against perturba-
tions in the input data and thereby also prevents it

from learning the characteristics of the input dis-
tribution accurately. This is probably why we see
a drop in topic coherence and quality. In the case
of document classification, if the topic model is
trained with a high dropout, the document-topic
vectors are of poor quality and the classifier gets
trained on these vectors; this results in poor accu-
racy on the test documents. This setting is different
from the usual supervised learning of neural clas-
sifiers where dropout is introduced directly in the
classifier to prevent overfitting. We intend to ana-
lyze these aspects in more depth in the future.

5 Conclusion

We present a detailed study of the effect of the
dropout rate on VAE-NTMs. We find that the
model performance generally reduces with the in-
crease in dropout rate in the encoder as well as the
decoder.

Limitations

The following limitations are known and should be
considered when applying the results of this work
or relying on them in future studies: (1) Other vari-
ants of dropout can be applied to the VAE-NTMs.
(2) Analysis of the dropout effect may be done for
other VAE-NTMs as well. (3) Other downstream
tasks may be formulated for further analysis.
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A Appendix

A.1 Datasets
We run our experiments on the following datasets:

• 20NewsGroups (20NG)3 is a dataset of
18, 846 documents from 20 different news-
groups posts. The 20NG dataset is present in
OCTIS, so it is already in pre-processed form.
All the documents of this dataset have their
corresponding category type as the document
labels. The details about these categories are
mentioned in Table 4.

• BBC News (BBC) (Greene and Cunning-
ham, 2006) is a dataset of news articles from
BBC. It is also accessible from OCTIS in
pre-processed form. The documents of this

3http://qwone.com/~jason/20Newsgroups/

dataset are categorized into 5 different cate-
gories which are tech, business, entertainment,
sports, and politics. The details of these cate-
gories are mentioned in Table 5.

• Wiki40B(Guo et al., 2020) is a Wikipedia text
dataset in 40+ languages, available in Tensor-
Flow dataset format. In our experiment, we
take a sample of 24, 774 English documents
from this dataset.

• All the News (AllNews)(Zhu et al., 2018)
dataset consists of 50, 001 news articles from
15 news publishers.

#No. Label #Docs %Docs
1. misc.forsale 861 5.28
2. comp.windows.x 883 5.41
3. soc.religion.christian 920 5.64
4. talk.religion.misc 521 3.19
5. rec.autos 822 5.04
6. sci.med 866 5.31
7. talk.politics.misc 689 4.22
8. talk.politics.mideast 828 5.08
9. sci.electronics 867 5.32
10. rec.sport.hockey 843 5.17
11. rec.sport.baseball 787 4.83
12. talk.politics.guns 808 4.95
13. sci.crypt 883 5.41
14. comp.sys.mac.hardware 838 5.14
15. comp.sys.ibm.pc.hardware 891 5.46
16. comp.graphics 836 5.13
17. comp.os.ms-windows.misc 828 5.08
18. alt.atheism 689 4.22
19. sci.space 856 5.25
20. rec.motorcycles 793 4.86

Table 4: 20NG labels with corresponding document
counts and percentage of documents.

#No. Label #Docs %Docs
1. tech 401 18.02
2. business 510 22.92
3. entertainment 386 17.35
4. sport 511 22.97
5. politics 417 18.74

Table 5: BBC labels with corresponding document
counts and percentage of documents.

A.2 Pre-processing Steps
Using OCTIS, we convert each document to lower-
case, remove the punctuations, lemmatize it, filter
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the vocabulary with the most frequent 2000 terms,
filter words with less than 3 characters, and filter
documents with less than 3 words.

A.3 Topic Evaluation Metrics
1. Coherence metric: This measures how much

the top words of the topics are relevant. Topic
coherence (TC) for K topics each of which
contains n top words can be calculated as:

TC =
1

K

K∑

k=1

1
nC2
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f
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Here, f(·, ·) is the Normalized Pointwise Mu-
tual Information or NPMI (Lau et al., 2014)
of the words w(k)

i and w(k)
j appearing in topic

k:
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where, p(w(k)
i , w

(k)
j ) is the probability of the

co-occurrence of the words w(k)
i and w(k)

j in a

boolean sliding window in topic k and p(w(k)
i )

and p(w(k)
j ) represents the probability of the

occurrence of the individual words in topic k.
ϵ is a small positive constant that is used to
avoid zero in the log(·) function.

2. Diversity metric: This measures how much
the generated topics are different from each
other. To measure the diversity score we have
used the metric Topic Diversity (TD) (Dieng
et al., 2020) which is defined as the propor-
tion of the number of unique words appear-
ing across all topics. It ranges between [0, 1]
where a value close to 0 implies repetitive
topics and a value near 1 represents more di-
versification in the topics.

3. Topic quality: This is an overall metric that
is defined as the product of the two metrics
NPMI and TD.

In our experiments, we take the top 10 words for
each topic (i.e., n = 10) to compute NPMI and TD
scores.

A.4 Computing Infrastructure
Our experiments were run on a workstation with
Intel® Xeon™ Gold 6326 CPU @ 2.90GHz, 256.0
GB RAM, NVIDIA A100 80GB PCIe, CUDA Ver-
sion: 11.7 and Ubuntu 22.04 operating system.

A.5 Detailed Results
The detailed results of our experiments are given
in Tables 6, 7, and 8. An asterisk (∗) against a
model in the above tables indicates that it is trained
with the optimal dropout rate, and the absence of
an asterisk indicates that the default dropout rate is
used. The default dropout rate for CTM is taken
from (Bianchi et al., 2021), for ProdLDA from
(Srivastava and Sutton, 2017), and for ETM from
(Dieng et al., 2020).

Model Topic quality for each dataset
20NG BBC Wiki40B AllNews

CTM* 0.0652 0.0392 0.0961 0.0958
CTM 0.0556 0.0234 0.0884 0.0854

ProdLDA* 0.0392 0.0254 0.0910 0.0891
ProdLDA -0.0507 -0.0887 0.0336 0.0202

ETM* 0.0092 0.0011 0.0502 0.0276
ETM 0.0036 -0.0003 0.0304 0.0181

Table 6: Topic Quality values for different VAE-NTMs
with optimal dropout rate and default dropout rate (see
Table 2). ‘*’ indicates models with optimal dropout.

Model NPMI for each dataset
20NG BBC Wiki40B AllNews

CTM* 0.0896 0.0623 0.1219 0.1218
CTM 0.0774 0.0458 0.1152 0.1153

ProdLDA* 0.0513 0.0367 0.1162 0.1166
ProdLDA -0.0907 -0.1293 0.0662 0.0498

ETM* 0.0331 0.0100 0.0841 0.0605
ETM 0.0183 -0.0033 0.0662 0.0494

Table 7: NPMI values for different VAE-NTMs with
optimal dropout rate and default dropout rate (see Table
2). ‘*’ indicates models with optimal dropout.

Model TD for each dataset
20NG BBC Wiki40B AllNews

CTM* 0.7283 0.6295 0.7883 0.7871
CTM 0.7175 0.51 0.7671 0.7409

ProdLDA* 0.7644 0.6902 0.7829 0.7640
ProdLDA 0.5594 0.6861 0.5071 0.4061

ETM* 0.2776 0.1108 0.5973 0.4561
ETM 0.1949 0.0902 0.4599 0.3659

Table 8: Topic Diversity values for different VAE-NTMs
with optimal dropout rate and default dropout rate (see
Table 2). ‘*’ indicates models with optimal dropout.
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Figure 5: Change in topic quality for (Ep, Dp) ∈ [0.0, 0.6]× [0.0, 0.6] with a increment of 0.1.
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Figure 6: Accuracy scores for (Ep, Dp) ∈ [0.0, 0.6]× [0.0, 0.6] (step = 0.1) in document classification task.
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Abstract

This work studies the semantic representations
learned by BERT for compounds, that is, ex-
pressions such as sunlight or bodyguard. We
build on recent studies that explore semantic
information in Transformers at the word level
and test whether BERT aligns with human se-
mantic intuitions when dealing with expres-
sions (e.g., sunlight) whose overall meaning
depends—to a various extent—on the seman-
tics of the constituent words (sun, light). We
leverage a dataset that includes human judg-
ments on two psycholinguistic measures of
compound semantic analysis: lexeme mean-
ing dominance (LMD; quantifying the weight
of each constituent toward the compound mean-
ing) and semantic transparency (ST; evaluating
the extent to which the compound meaning is
recoverable from the constituents’ semantics).
We show that BERT-based measures moder-
ately align with human intuitions, especially
when using contextualized representations, and
that LMD is overall more predictable than ST.
Contrary to the results reported for ‘standard’
words, higher, more contextualized layers are
the best at representing compound meaning.
These findings shed new light on the abilities
of BERT in dealing with fine-grained semantic
phenomena. Moreover, they can provide in-
sights into how speakers represent compounds.

1 Introduction

Compounds such as sunlight or bodyguard are an
interesting benchmark to probe the semantic rep-
resentations learned by any NLP models. On the
one hand, compounds that are part of a language
lexicon (i.e., lexicalized compounds; Gagné and
Spalding, 2006) have their own (sets of) established
meaning(s). As such, they are lexical items just like
any other word. On the other hand, the semantic
status of compounds is special since their meaning
is the result of the combination of the meaning of
two words (hence, the constituents). According

to psycholinguistic evidence, this semantic rela-
tion does not disappear with lexicalization. Indeed,
speakers actively combine constituent meanings
when processing both novel and lexicalized com-
pounds (Gagné and Spalding, 2009; Ji et al., 2011;
Marelli and Luzzatti, 2012; Marelli et al., 2014).

In this work, we argue that NLP systems capable
of faithfully representing word meanings should
account for these aspects. For example, to acknowl-
edge that the meaning of handgun relies more on
the semantics of gun than of hand (indeed, a hand-
gun is a type of gun). Or, that the meaning of sun-
light is more directly recoverable from the seman-
tics of its constituents (it is more transparent) than
is the meaning of muskrat (which is very opaque).

Transformer-based encoders such as BERT (De-
vlin et al., 2019) are shown to produce word rep-
resentations that align well with human semantic
intuitions, particularly at their lower layers (Bom-
masani et al., 2020; Vulić et al., 2020). This sug-
gests that these models are effective in encoding
the meaning of a word, without any additional task-
specific fine-tuning. However, these conclusions
are based on evaluations that explore semantic re-
lations between words, such as pairwise similarity
patterns—not between words and their parts.

In parallel, BERT’s contextualized embeddings
have been leveraged for tasks that involve lexi-
cal composition. For example, to learn compound
representations that are effective in predicting the
literality of a compound or its semantic interpre-
tation (Shwartz and Dagan, 2019). In this case,
mixed results were reported. While BERT-based
models are effective to judge, e.g., that market (but
not flea) has a literal meaning in flea market, they
are far behind humans in predicting, e.g., that body
part stands for part that makes up a body. Cru-
cially, these results were obtained by training a
binary classifier on the top of BERT’s embeddings.
Since the encoder parameters were updated during
learning, no conclusions can be drawn on the ef-
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fectiveness of BERT’s embeddings in dealing with
these and similar fine-grained semantic aspects.

In this work, we leverage a dataset that includes
human judgments on two psycholinguistic mea-
sures of compound semantic analysis: lexeme
meaning dominance (LMD) and semantic trans-
parency (ST). The former quantifies the semantic
weight of each constituent toward the compound
meaning. For example, that gun has more seman-
tic weight in handgun than hand does. The sec-
ond evaluates the extent to which the compound
meaning is recoverable from the semantics of the
constituents. For example, that handgun is very
transparent, while muskrat is much less so.

We test whether, and to what extent, the mea-
sures of LMD and ST that we obtain from BERT’s
representations of compounds and compound con-
stituents align with human judgments. We carry
out comprehensive experiments on model versions,
contexts, pooling methods, layers.1 We show that:

• BERT is moderately aligned with human intu-
itions on both measures, which confirms the
effectiveness of the model in accounting for
the fine-grained semantic aspects captured by
LMD and ST. At the same time, LMD is sub-
stantially more predictable than ST;

• only representations extracted from words in
a context (in a sentence), but not without a
context (in isolation), are aligned with human
intuitions, which reflects BERT’s struggle to
handle out-of-context words. Moreover, the
highest correlations are achieved in higher,
deeply contextualized layers. This could be
due to the nature of the semantic evaluation
subtending LMD and ST, which likely re-
quires relying on a specific semantic interpre-
tation of the compound rather than on abstract
lexico-semantic information;

• both BERTbase and BERTlarge outperform the
GloVe (Pennington et al., 2014) baseline, with
BERTlarge achieving the best results overall.
This confirms the effectiveness of BERT mod-
els to represent word-level semantics, in line
with previous work (Bommasani et al., 2020;
Vulić et al., 2020);

• BERT accounts for the left and right con-
stituents equally when representing the seman-

1Data and code are made available at https://github.
com/lars927/compounds-analysis-bert

tics of a compound. Moreover, these represen-
tations appear to encode the complex semantic
and syntactic relation tying the constituents.

2 Related Work

2.1 Compound Semantics in Psycholinguistics
Compounds are one of the favorite subjects of psy-
cholinguistic research. One of the reasons is that
they are extremely productive: a new combination
of two (or more) words can be generated at any time
and get lexicalized through language use (Gagné
and Spalding, 2006). Indeed, compounds have
been considered to serve as a “backdoor into the
lexicon” (Downing, 1977). While understanding
novel compounds clearly involves accessing both
the meaning of the constituents and the semantic re-
lation tying them together, recent psycholinguistic
evidence has shown that an active combination of
the meaning of the constituent words is routinely in
place also for lexicalized compounds (Gagné and
Spalding, 2009; Ji et al., 2011; Marelli and Luzzatti,
2012; Marelli et al., 2014). Indeed, most psycholin-
guistic research in this field focuses on the con-
stituents and their relation with compounds. For ex-
ample, to study and quantify the role of frequency,
semantic transparency, or headedness (Gagné and
Spalding, 2009; Marelli et al., 2009; Marelli and
Luzzatti, 2012; Juhasz et al., 2015).2

Recently, a few studies leveraging methods from
NLP have been carried out to either reproduce or
quantify some of these aspects. By typically using
static embeddings (Mikolov et al., 2013; Penning-
ton et al., 2014) and compositional models of dis-
tributional semantics (Mitchell and Lapata, 2010;
Guevara, 2010), these approaches have proven suc-
cessful in building compound representations that
approximate, e.g., the different semantic and syn-
tactic role of a compound’s modifier and head, se-
mantic transparency, plausibility of a novel com-
bination or syntax-based categorizations (Günther
and Marelli, 2016; Marelli et al., 2017; Günther
and Marelli, 2019; Pezzelle and Marelli, 2020).

Though powerful, these methods have one cru-
cial limitation, namely, they require training a set
of parameters via supervised learning to obtain rep-
resentations for compounds that are novel or sim-
ply not present in the corpus. Transformer-based
encoders such as BERT (Devlin et al., 2019) lift
this limitation. Without any additional training or

2Headedness refers to the property of having a head—in
English, typically the right constituent. The left is the modifier.
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fine-tuning, in fact, they can represent any novel
or unseen word—provided that it can be divided
into known subwords. Since compounds involve a
meaningful combination of two constituents, they
represent an interesting benchmark to test the rep-
resentations by these models.

2.2 Word Representation in Transformers

A recent line of work started to investigate the type
of semantic information encoded in the embed-
dings by pre-trained Transformer encoders. While
this was a classical benchmark to evaluate static,
word-level embeddings learned by previous gener-
ation models, e.g., word2vec (Mikolov et al., 2013)
or GloVe (Pennington et al., 2014), the problem
appears less trivial for current state-of-the-art NLP
models (Westera and Boleda, 2019; Mickus et al.,
2020; Lenci et al., 2022). Indeed, the embeddings
by Transformer-based encoders are contextualized,
i.e., affected by both the surrounding context and
the position within a sentence. Moreover, they of-
ten represent subwords rather than whole words.

By means of a simple method to pool the various
contextualized embeddings learned for a word into
a single, static embedding, Bommasani et al. (2020)
showed that these representations align with human
judgments of semantic similarity better than how
previous-generation ones do. In particular, lower
layers perform the best, which reveals that these
layers encode abstract, lexico-semantic informa-
tion. Similar findings were reported by Vulić et al.
(2020), who extended the investigation to other
five languages than English. Taken together, these
results are complementary to the findings that rep-
resentations in higher layers tend to become more
context-specific (Ethayarajh, 2019) and to better
encode word senses (Reif et al., 2019).

Recent work (Shwartz and Dagan, 2019) lever-
aged BERT embeddings to obtain representations
for compounds by means of (trained) lexical com-
position models—similarly to how it was done
for compositional distributional semantic models.
However, to the best of our knowledge, no work
to date has explored how Transformer-based en-
coders represent compounds. The most relevant
study in this direction is the one by Pinter et al.
(2020), which focused on BERT’s representations
for blends (i.e., words such as shoptics, result-
ing from the merging of shop and optics) and in-
cluded a comparison with novel compounds. They
reported an overall high similarity between the

compound LMD [0,10] ST [1,7]
handgun 8.13→ 6.29 ↑
bodyguard 7.27→ 5.64 ↑
policeman 3.07← 6.13 ↑
wartime 3.47← 6.31 ↑
muskrat 7.53→ 2.80 ↓
primrose 7.93→ 2.00 ↓
milestone 3.36← 2.21 ↓
cheapskate 2.00← 2.00 ↓

Table 1: A few examples from the dataset with either
high ↑ or low ↓ ST and either low← or high→ LMD.
E.g., the meaning of handgun is deemed highly transpar-
ent and based more on the right than the left constituent.

compound and the constituents, slightly increas-
ing through the layers.

By focusing on lexicalized compounds from a
psycholinguistic angle, we are the first to study how
BERT represents these complex expressions.

3 Data

We use a psycholinguistic dataset of human judg-
ments on compound LMD and ST (Juhasz et al.,
2015). The dataset includes 629 lexicalized En-
glish compounds annotated by 189 participants for
various variables.3 LMD is a score that captures
which of the two constituents of a compound is
semantically dominant for the compound meaning.
It ranges in [0,10], where 0 means totally depen-
dent on the left constituent and 10 means totally
dependent on the right constituent. In Table 1, we
report a few examples from the dataset. As can be
seen, compounds such as handgun or muskrat have
a high LMD, i.e., the right constituent is semanti-
cally dominant. In contrast, compounds such as
policeman or milestone have a low LMD, i.e., the
left constituent is semantically dominant.

ST is defined as a score that quantifies the de-
gree to which the meaning of a compound can
be inferred or recovered from the meaning of the
constituents: the higher the ST, the more transpar-
ent the compound. The compounds handgun and
wartime in Table 1, for example, are fully trans-
parent: both the constituents contribute to their
meaning. In contrast, compounds such as primrose
or cheapskate are fully opaque: neither of the two
constituents contributes to its meaning.

Since only the compounds, but not the con-
stituents, are provided in the dataset, we manually

3Such as LMD, ST, age of acquisition, and imageability.
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annotate each compound (e.g., handgun) with its
left (hand) and right (gun) constituents, so to ob-
tain a dataset of ⟨compound, left, right⟩ triplets.
While doing so, we decided to discard the pseudo-
compound mushroom. We were left with 628
triplets, that we use in our experiments.

4 Method

We test whether, and to what extent, BERT’s rep-
resentations of compounds and compound con-
stituents approximate human judgments on LMD
and ST. To do so, we obtain word-level representa-
tions using two versions of BERT. We experiment
with representations obtained by feeding the word
either in isolation or in the context of a sentence.
Moreover, building on previous work, we explore
various pooling methods over BERT outputs.

4.1 Models
BERT (Devlin et al., 2019) is a Transformer-based
model pre-trained on a large number of English
texts. It is pre-trained using two learning objectives,
i.e., Masked Language Modeling (MLM) and Next
Sentence Prediction (NSP). MLM is about predict-
ing some words that have been masked in the input.
NSP is about predicting whether two concatenated
sentences follow each other (or not).

We experiment with two versions of BERT, i.e.,
BERTbase and BERTlarge. The former has 12 en-
coder layers stacked on top of each other, 12 atten-
tion heads, and 110M parameters. At each layer, it
learns 768-d embeddings. The latter has 24 layers,
16 attention heads, and 340M parameters. It learns
1024-d embeddings. For both models, we use Hug-
gingFace (Wolf et al., 2020) implementations.4

4.2 Word-Level Representations
For each triplet in the dataset, we employ BERT
models to obtain representations for the compound,
the left constituent, and the right constituent. We
henceforth use the general term word to refer to any
of the items in a triplet. We obtain representations
for words in two conditions, no-context (NC) and
in-context (C), that we describe below.

No-Context (NC) In this condition, we obtain a
single, static representation for a word (e.g., snow-
board) by feeding it into the model in isolation,
i.e., without any surrounding context. When fed
with a single word, BERT outputs embeddings for

4https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-large-uncased

the tokens which make it up (that result from the
tokenization process), as well as for the special
tokens [CLS] and [SEP] at the beginning and end
of the sequence, respectively. Following previous
work (Vulić et al., 2020), we explore 3 methods for
obtaining a word representation. These methods
differ with respect to what embeddings are taken
into account when building such representation:

• nospec This method ignores the special to-
kens [CLS] and [SEP]. A word representation
is built by averaging the embeddings of the to-
kens that make up the word (snow, ##board);

• withcls This method builds a word represen-
tation by averaging the embedding for the spe-
cial token [CLS] with the embeddings of the
tokens making up the word (snow, ##board);

• all This method builds a word representation
by averaging all the embeddings that are out-
put by BERT for the sequence, i.e., [CLS],
[SEP], and the tokens making up the word.

In-Context (C) In this condition, we follow the
method by Bommasani et al. (2020) to obtain a
single, static representation of a word from the
N contextualized embeddings produced by BERT
for that word in context. First, we average the
representations of the tokens that make up a given
word—as in the NC_nospec setting. Second, we
consider all the contextualized representations for
a given word and aggregate them to obtain a single
representation that is not dependent on a specific
context. We do this by averaging the N contextual
representations of a word w1, . . . , wN :

w = mean(w1, . . . , wN ) (1)

To obtain contextualized vectors, we sample sen-
tences containing items from our 628 triplets from
a cleaned English Wikipedia corpus.5 For each
word, we sample all the sentences in the corpus
that contain it, up to a maximum of 100 unique in-
stances per word. The average number of instances
per word in our sample is 89.3 (min 1, max 100).

We henceforth simply refer to this setting as C.

Experimental details Within each setting, we
therefore obtain a single 768-d (BERTbase) or 1024-
d (BERTlarge) embedding for each compound and

5https://www.lateral.io/resources-blog/
the-unknown-perils-of-mining-wikipedia
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model setting metric (best layer)
MAE ↓ Spearman ρ ↑

GloVe – 0.945 0.541
BERTbase NC_nospec 1.095 (11) 0.375 (11)

NC_all 1.072 (11) 0.384 (11)
NC_withcls 1.071 (11) 0.385 (11)
C 0.991 (11) 0.563 (10)

BERTlarge NC_nospec 1.130 (21) 0.247 (21)
NC_all 1.105 (21) 0.247 (21)
NC_withcls 1.107 (22) 0.244 (21)
C 0.966 (21) 0.586 (21)

Table 2: LMD. Results in bold and italic are the best
and second-best in the column, respectively. Results are
from a model’s best-performing layer (in parentheses).

constituent in our dataset. This operation is per-
formed for each layer of each model—i.e., 12 lay-
ers in BERTbase (1-12) and 24 layers in BERTlarge
(1-24). All representations are obtained by running
a pre-trained BERT in inference mode, i.e., without
fine-tuning or updating the model’s weights.

Baseline As a baseline, we employ static em-
beddings by GloVe (Pennington et al., 2014). We
use the 300-d embeddings from the version of the
model trained with 6B tokens.6 Since four com-
pounds7 were not found in GloVe’s vocabulary, for
this baseline we obtain results for 624 triplets.

4.3 Predicting Psycholinguistic Measures

LMD is a scalar in [0,10] that quantifies the rel-
ative semantic role of each constituent toward the
meaning of the whole compound: The higher the
value, the more the compound’s semantics depends
on the right constituent. Using BERT’s represen-
tations for a ⟨compound, left, right⟩ triplet, we
therefore operationalize LMD as follows:

LMD(c) = 5(R− L) + 5 (2)

where c is the compound, L is the cosine similarity
in [0,1] between the left constituent and the com-
pound, cos(left, compound), and R is the cosine
similarity between the right constituent and the
compound, cos(right, compound). The scaling
and addition operations make the values range in
[0,10]. If L = 0 and R = 1, then LMD(c) = 10.
Vice versa, if L = 1 and R = 0, LMD(c) = 0.

ST is a scalar in [1,7] that quantifies the degree to
which the meaning of a compound can be inferred

6https://nlp.stanford.edu/data/glove.6B.zip
7Namely, livelong, sunlamp, dunghill, and handclasp.

from the meaning of the constituents. The higher
the value, the more the compound semantics can
be inferred from the two constituents’ meanings.
Using BERT’s representations for ⟨compound, left,
right⟩, we operationalize ST as follows:

ST (c) =
6(L+R)

2
+ 1 (3)

where c, L, andR are defined as above. The scaling
and addition operations make the values range in
[1,7]. If L = 1 and R = 1, then ST (c) = 7. Vice
versa, if L = 0 and R = 0, ST (c) = 1.

4.4 Evaluation
We evaluate the effectiveness of each model in ap-
proximating human LMD and ST by means of two
metrics: mean absolute distance (MAE) and Spear-
man correlation (ρ) between the predicted and hu-
man values. For MAE, the lower the distance, the
better. For ρ, the higher the correlation, the better.

In the next section, we report results by all mod-
els in all settings in approximating LMD and ST.

5 Results

5.1 Lexeme Meaning Dominance
In Table 2, we report the results by (the best layer
of) each model on LMD in the various settings.
Several key observations can be made. First, both
BERT models achieve moderate positive correla-
tion8 (close to 0.6) with human judgments, with
BERTlarge outperforming BERTbase by some mar-
gin. On the one hand, this indicates that BERT’s
representations do a fairly good job in accounting
for the relative semantic weight of each constituent
in a (lexicalized) compound. On the other hand, it
suggests that more data and parameters play a role
in approaching human intuitions.

Second, BERT models outperform GloVe in
terms of correlation. This indicates that BERT’s
embeddings not only encode sensible semantic in-
formation (in line with previous findings; see Bom-
masani et al., 2020; Vulić et al., 2020) but also
align with human semantic intuitions to a greater
extent than the previous-generation GloVe model.
However, it is worth noting that BERT models out-
perform GloVe only in C, but not in NC. This clearly
shows that BERT’s embeddings have an advan-
tage over GloVe’s ones only when leveraging in-
formation in the surrounding context and reveals

8As per standard interpretation (Prion and Haerling, 2014),
we consider ρ correlations from ±0.41 to ±0.60 as moderate.
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Figure 1: LMD. ρ against model layers. For out-
of-context BERT models, we only report the best-
performing nospec setting. Best viewed in color.

that BERT struggles to represent out-of-context
words, likely due to its architecture and training
regime. In A.1, we report that the lack of any
surrounding context in NC is indeed detrimental to
model representations, though sensible contextual
information in C is needed to properly approximate
LMD. Moreover, GloVe achieves the lowest MAE,
which shows that these embeddings are effective
in approximating the raw LMD values—though
contextualized C BERT representations are better
at capturing the overall pattern of similarity.9

Third, the pattern of correlation values over the
model’s layers highlights the importance of contex-
tualization for compound representation. As can be
seen in Figure 1, best-performing C BERT models
show an almost constant increasing trend, with the
highest correlation being achieved in high layers—
layer 9 and 20 in BERTbase and BERTlarge, respec-
tively. This is an opposite pattern compared to what
was observed in previous work, where lower layers
were found to encode most lexical semantic infor-
mation (Bommasani et al., 2020; Vulić et al., 2020).
These patterns do not necessarily contradict each
other. Indeed, we argue that judging the semantic
relationship between a compound (e.g., handgun)
and its constituent words (hand, gun) might involve
relying on a specific interpretation of the compound
rather than on abstract lexico-semantic information.
Since previous work showed that word senses are
better encoded in deeper layers (Reif et al., 2019),
this could explain why these layers are also good at
capturing LMD. A similar—though flatter—trend

9Recall that MAE measures the distance between the target
and predicted values, while Spearman ρ quantifies strength
and direction of association between the two ranked variables.

model setting metric (best layer)
MAE ↓ Spearman ρ ↑

GloVe – 2.657 0.304
BERTbase NC_nospec 0.953 (6) 0.316 (5)

NC_all 1.129 (10) 0.234 (1)
NC_withcls 0.989 (1) 0.275 (3)
C 0.899 (9) 0.415 (9)

BERTlarge NC_nospec 0.989 (9) 0.195 (6)
NC_all 1.118 (24) 0.113 (1)
NC_withcls 1.024 (6) 0.139 (1)
C 0.876 (19) 0.476 (20)

Table 3: ST. Results in bold and italic are the best and
second-best in the column, respectively. Results are
from a model’s best-performing layer (in parentheses).

is observed for NC models.

5.2 Semantic Transparency

In Table 3, we report the results by (the best layer
of) each model on ST in the various settings. Sev-
eral key observations can be made. First, both
BERT models achieve moderate positive correla-
tion with human judgments, with BERTlarge out-
performing BERTbase. This indicates that BERT’s
representations are moderately effective in predict-
ing the extent to which a compound meaning is
recoverable from the meaning of its constituents
and that more data and parameters help—indeed,
the gap between the two BERT models is higher
here than in LMD (0.06 vs 0.02). At the same
time, the highest correlation achieved by BERTlarge
(0.476) on ST is substantially lower than on LMD
(0.586), which indicates that ST is more challeng-
ing to approximate compared to LMD.

Second, BERT models outperform GloVe on
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Figure 2: ST. ρ against model layers. For out-of-context
BERT models, we only report the best-performing
nospec setting. Best viewed in color.
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Figure 3: Examples where C BERTlarge is good (top) and
bad (bottom) in approximating human LMD. From top
left, clockwise: ponytail, wartime, milestone, muskrat.

both metrics. Though correlations are generally
lower than in LMD, the gap between BERT models
and GloVe is much more pronounced here. That is,
BERT’s contextualized embeddings have an even
clearer advantage over previous-generation ones in
modeling ST compared to LMD.

Third, as can be seen in Figure 2, the over-
all best results are achieved by C embeddings in
high layers—layer 8 and 19 for BERTbase and
BERTlarge, respectively—which replicates the find-
ings for LMD. This confirms the role of context and
contextualization for obtaining better representa-
tions of compounds.10 Interestingly, in NC settings,
BERT models show a different pattern compared
to LMD, with correlation reaching a ‘peak’ within
the first layers and then constantly decreasing. This
suggests that decontextualized lexico-semantic in-
formation encoded in lower layers accounts for ST
to some extent, on par with or even outperforming
GloVe (this is the case for BERTbase NC_nospec).

5.3 Examples
In Figure 3 we report some examples where the
best-performing C BERTlarge is good (top) and
bad (bottom) in approximating LMD. As can be
seen, the distance between the predicted and human
LMD is extremely low for ponytail and wartime,
namely, a high-LMD (6.13) and a low-LMD (3.47)
compound, respectively. In contrast, the distance
is very large for high-LMD (7.53) muskrat and

10See the analysis in A.1 for further evidence of the role of
sensible semantic context in approximating ST.
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Figure 4: Examples where C BERTlarge is good (top)
and bad (bottom) on ST. From top left, clockwise: po-
liceman, milestone, cheapskate, muskrat.

low-LMD (3.36) milestone. While the predicted
LMD values are fairly stable over the layers for
ponytail, wartime, and milestone, for muskrat the
higher layers are better to approximate the real
LMD by assigning an increasingly higher seman-
tic weight to the rat lexeme. This could be due
to the representation of muskrat becoming more
‘aware’—through contextualization—of the seman-
tic traits related to the animal domain, apparently
less present in earlier layers. Also, it is interesting
to note that for the compound milestone, which is
‘exocentric’ (i.e., the head is neither mile nor stone),
BERT keeps predicting a conservative LMD value,
which similarly weights the two constituents, over
the layers. That is, contextualization does not make
mile or stone become dominant in the compound
(while, interestingly, human speakers consider mile
as slightly dominant over stone).

In Figure 4, we report some good (top) and bad
(bottom) cases for the same model in approximat-
ing ST. As can be seen, the distance between the
predicted and human ST is very low for high-ST
(6.31) policeman and low-ST (2.21) milestone. In
contrast, the distance is large for low-ST (2.80)
muskrat and low-ST (2.00) cheapskate. Moreover,
it can be noted that higher layers are better than
lower layers in approximating ST for policeman,
which is highly transparent, while they are worse
for milestone, cheapskate, and muskrat, which are
very opaque. This goes hand in hand with a seem-
ingly general trend observed in these examples:
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the more contextualization, the higher the ST. This
could reflect a generalized increase of cosine sim-
ilarity values through BERT’s layers (as reported
by Ethayarajh, 2019), which would lead in turn to
a higher ST by virtue of how ST was operational-
ized; see Eq. 3. However, our results (see Figure 2)
show that this increase does not correspond to a
higher correlation with human judgments: indeed,
correlation steadily decreases in the last 4 layers of
BERTlarge, where cosine similarities are highest.

Finally, while BERT struggles on both LMD and
ST for muskrat, for milestone it struggles on LMD
but does a good job on ST. This confirms that LMD
and ST capture different semantic aspects: a good
performance on one measure does not necessarily
guarantee a good performance on the other.11

5.4 Which Factors Drive the Prediction?

To more formally investigate which factors con-
tribute to higher predicted values of LMD and ST
by the best performing model C BERTlarge, we run
two linear regression models in R—one for LMD,
one for ST—using, for each compound, the pre-
dicted LMD/ST value by the best layers (21/20,
respectively) as the dependent variable, and the fol-
lowing independent variables: (1) the number of
tokens into which the compound was split by the
tokenizer, e.g., 2 for snowboard (snow, ##board);
(2) the frequency of the compound in our dataset,
i.e., the number of instances on the top of which
the average representation was computed; (3) the
compound concreteness; (4) the modifier (left con-
stituent) concreteness; (5) the head (right con-
stituent) concreteness. Concreteness values are
extracted from Brysbaert et al. (2014).12

For LMD, both the concreteness of the head and
the modifier—but not other variables—have a sta-
tistically significant role, though in the opposite
direction: the higher the former, the higher the
LMD (i.e., more weight to the head); the higher
the latter, the lower the LMD (i.e., more weight
to the modifier). This makes intuitive sense and
shows that BERT assigns more ‘weight’ to con-
crete constituents. For ST, three variables have a
statistically significant role in predicting higher val-
ues, and all in the same direction: the higher the
number of tokens, the compound concreteness, and
the modifier concreteness, the higher the ST. As for

11Computing the correlation between LMD and ST human
values in the dataset (-0.013) confirms this intuition.

1223 compounds out of 628 were not present in the con-
creteness database and therefore excluded from the analysis.

concreteness, this generally shows that BERT as-
signs higher similarities to concrete words. As for
the effect of the number of tokens, this is an inter-
esting finding, which reveals that BERT considers
as more transparent those compounds than can be
routinely broken into parts. The full tables report-
ing all the effects and corresponding coefficients
and p-values can be found in A.2.

6 Analysis

6.1 LMD: Reversed Compounds

From the results reported in section 5.1, it appears
that BERT is capable of obtaining sensible repre-
sentations of compounds that encode the relation
between the constituents and their respective se-
mantic ‘weight’. However, it might still be that
the reported moderate correlations result from the
model assigning a default high/low similarity to
the constituents while being no or little aware of
the semantic and syntactic (i.e., the modifier/head)
relation which ties them. If that is the case, the
model would consider, e.g., the contribution of war
in wartime and timewar to be identical—though
the meaning of the reversed compound would be in-
tuitively very different. As such, we might expect a
similar/same LMD value assigned by the model to
these two compounds, and therefore a similar corre-
lation with human judgments. Otherwise, if BERT
represents a compound by genuinely accounting for
the relationship between its constituents, the pre-
dicted LMD for the reversed compound (timewar)
is likely to be different. As such, we might expect
a much lower correlation with human intuitions.

In this analysis, we test this issue by re-running
the LMD experiment on the reversed version of
the compounds in our dataset, i.e., wartime > time-
war, bodyguard > guardbody, etc. LMD is com-
puted exactly as above, except that we replace the
representation of the compound with that of its re-
versed version. Since (most of) these reversed com-
pounds are unlikely to occur in standard corpora
of texts, we experiment with NC representations.
Moreover, we experiment with BERTbase since it
outperformed BERTlarge on this setting. As can be
seen in Figure 5, the correlation for reversed com-
pounds is much lower than the original one (0.11
vs 0.39). This is a good sign, which confirms that
BERT does not rely on shortcuts when represent-
ing compound meanings and the relative weight of
each constituent. Instead, it appears that the model
can account for the semantic and syntactic relation
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Figure 5: ρ for LMD vs LMD reversed values by out-of-
context BERTbase across layers. Best viewed in color.

between the constituents, even when information
from the surrounding context is not available.

6.2 ST: Weighted Constituents

From the results in section 5.2, it appears that
BERT can approximate, to some extent, the de-
gree to which the meaning of a compound is re-
coverable from the semantics of the constituents.
When operationalizing ST we assumed that the two
constituents are equally responsible for the over-
all ST—i.e., we computed the unweighted average
between the two pairwise similarities. This way, a
high (low) similarity between the compound and
one of its constituents would not determine a high
(low) ST on its own. This operationalization is
in line with psycholinguistic literature, according
to which we have a fully transparent compound
when both lexemes contribute to its meaning and
a fully opaque compound when neither of the two
contribute (see, e.g., Libben, 1998). However, it is
an open question whether BERT’s compound rep-
resentations do encode both constituents equally,
or whether they disproportionately encode one con-
stituent over the other. If the latter is the case,
weighing one more than the other when comput-
ing ST would possibly result in a higher correla-
tion with human judgments. If both constituents
are equally represented in the compound embed-
ding, instead, the unweighted version—our main
experiment—would lead to the highest correlation.

In this analysis, we test this issue by computing
a weighted version of ST where the left and right
constituents are assigned different weights. For
example, we assign weights 0.0 and 1.0 to the left
and right constituent, respectively (in this case, only
the right one, the compound’s head, but not the left
one, the modifier, will be responsible for ST); 0.1
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Figure 6: ρ for weighted ST by in-context BERTlarge
across layers. Each weight stands for the weight as-
signed to the left constituent. Best viewed in color.

and 0.9; 0.2 and 0.8; and so on. We experiment
with all combinations of weights (including 0.5 and
0.5), which sums up to 11 versions of weighted ST.

Figure 6 reports the results of this analysis for
the best-performing C BERTlarge model—note that
the weight refers to the weight assigned to the left
constituent. As can be seen, the highest correlation
is achieved by the unweighted ST (weight 0.5) at
layer 20. Since these are the results reported in
Table 3, this finding confirms that both constituents
are equally accounted for in the BERT’s compound
representation. Interestingly, weights that are close
to 0.5 perform reasonably well (0.4 and 0.6 rank
second and third, respectively), while correlation
decreases the more we move away from this value.

Overall, the results of these two analyses con-
firm that BERT accounts for the left and right con-
stituents equally when representing the semantics
of a compound. Moreover, these representations
seem to encode the complex semantic and syntactic
relationship tying the compound constituents.

7 Conclusion

In this paper, we study how BERT represents the
meaning of lexicalized compounds. We take a psy-
cholinguistic angle and show that the model does a
reasonably good job of making semantic judgments
in line with those of human speakers. Since higher,
more contextualized layers are shown to correlate
best with human intuitions, we propose that speak-
ers may access a specific, context-dependent repre-
sentation when making these judgments. In future
work, recent approaches to multimodal word rep-
resentation in Transformers (Pezzelle et al., 2021)
could be leveraged to test the role of visual ground-
ing in compound semantics (Günther et al., 2020).
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Limitations

Impact of the corpus To build contextualized
representations for compounds, we sample sen-
tences from a corpus of texts. A limitation of
our work lies in the use of encyclopedic data only,
which limits the number and variety of contextu-
alized meanings a compound can have. Further
attention should be paid to this aspect.

Operationalization of the measures While
defining LMD and ST based on the cosine similar-
ity between a compound and its constituent makes
intuitive sense, it may not be the only (nor the best)
way to operationalize the two measures. Further
exploration on how to formally define them based
on the model embeddings should be carried out.

Ethics Statement

Broader impact We do not see any serious ethi-
cal problem connected to this research. At the same
time, we are aware of the risks associated with the
development and use of large NLP models that we
use in this research. Such risks include the envi-
ronmental impact of the computational resources
required for training and the encoding and possi-
ble amplification of biases present in the massive
amounts of un-curated data the models learn from.
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A Appendix

A.1 Templated Linguistic Contexts

In this analysis, we investigate the extent to which
the disadvantage of NC compared to C in approx-
imating LMD and ST is due to the lack of any
linguistic context surrounding the compound and
the constituent words.13 Since BERT has probably
seen very few examples of words out of context
during training, it could be that the model is poor
at handling words in isolation, which would have
an impact on the resulting representations—and
LMD/ST values. To test this issue, we consider
the best-performing BERTlarge and use it to obtain
a single, contextualized representation for words
(either compounds or constituents) by embedding
them in the following templated sentence: This is a

13We thank an anonymous reviewer for suggesting this
analysis.
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Figure 7: ρ for LMD by BERTlarge NC (blue), C (orange),
and templated (green). Best viewed in color.
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Figure 8: ρ for ST by BERTlarge NC (blue), C (orange),
and templated (green). Best viewed in color.

<word>. This setting bears similarities with both NC
and C. On the one hand, we compute a single rep-
resentation for each word, similarly to NC. On the
other hand, the representation of each word is con-
textualized (i.e., embedded in a linguistic context),
though the surrounding context does not contain
any meaningful semantic information. As such, we
expect these representations to be better than NC
by virtue of their higher similarity with standard
training samples, but worse than C since they lack
any sensible semantic information coming from the
context surrounding the word at inference time.

The results follow the expected pattern. As can
be seen in Figure 7 and 8, the correlation values ob-
tained in the templated setting (best ρ for LMD:
0.491; best ρ for ST: 0.308) lie somehow in be-
tween C and NC. While this shows that embedding
words in a sentence leads to a representational ad-
vantage over the out-of-context presentation (they
clearly outperform NC), these representations are

Figure 9: LMD. Linear regression model predicting
LMD values by the best-performing C BERTlarge layer.

Figure 10: ST. Linear regression model predicting ST
values by the best-performing C BERTlarge layer.

still far behind C and either on par with (ST) or
neatly below (LMD) the GloVe baseline. This con-
firms that leveraging the meaningful linguistic con-
text where compounds and constituents occur is
crucial for obtaining sensible word representations
that encode information on LMD and ST in line
with human intuitions.

A.2 Linear Regression Model
Figure 9 and 10 report all the effects and corre-
sponding coefficients and p-values of the linear re-
gression models described in Section 5.4 for LMD
and ST, respectively.
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Abstract

We investigate in this paper how distributions
of occupations with respect to gender is re-
flected in pre-trained language models. Such
distributions are not always aligned to norma-
tive ideals, nor do they necessarily reflect a de-
scriptive assessment of reality. In this paper, we
introduce an approach for measuring to what
degree pre-trained language models are aligned
to normative and descriptive occupational dis-
tributions. To this end, we use official demo-
graphic information about gender–occupation
distributions provided by the national statistics
agencies of France, Norway, United Kingdom,
and the United States. We manually gener-
ate template-based sentences combining gen-
dered pronouns and nouns with occupations,
and subsequently probe a selection of ten lan-
guage models covering the English, French,
and Norwegian languages. The scoring system
we introduce in this work is language indepen-
dent, and can be used on any combination of
template-based sentences, occupations, and lan-
guages. The approach could also be extended
to other dimensions of national census data and
other demographic variables.

1 Introduction

Pre-trained language models (LMs) may contain
various types of biases, and the field of NLP has
seen a lot of work in recent years on attempting
to identify, mitigate, and reduce these biases. Bi-
ases can originate both from the unlabeled texts
used for pre-training these LMs, and from texts
and annotations used for tuning downstream clas-
sifiers. LMs have become a cornerstone in most
NLP model architectures, and the extent to which
they reflect, amplify, and spread the biases present
in their training data is still a problematic issue to
be solved.

Several efforts in this direction have focused
on gender as a variable (Touileb and Nozza, 2022;
Touileb et al., 2021; Ousidhoum et al., 2021; Nozza

et al., 2021; Touileb et al., 2020; Saunders and
Byrne, 2020; Bhaskaran and Bhallamudi, 2019;
Cho et al., 2019; Prates et al., 2018), also in cor-
relation with occupations (Borchers et al., 2022;
Touileb et al., 2022; Bolukbasi et al., 2016). While
there have been several efforts on exploring the ex-
isting biases related to these demographic variables,
most work approaches the task from a normative
point of view (Blodgett, 2021), where equality be-
tween the demographic distributions is prioritized.

Although normativity in this aspect is crucial
for certain applications, we argue that it is also
interesting to explore the task from a descriptive
perspective. This is especially interesting for oc-
cupations, since a descriptive and realistic view of
society already contains gender disparities. We pro-
pose that national census data, in our case about
gender-occupation distributions, can offer a reli-
able ground truth against which model predictions
can be compared. Moreover, we argue for taking
both normative and descriptive assessments into
account, in order to give a broader picture of the
representations of demographics within LMs. This
has also been partly pointed out by Blodgett et al.
(2020), who stress the importance of the connection
between language and social hierarchies, which has
not been taken into consideration in most previous
work on bias in NLP.

In this paper, we introduce a new score for mea-
suring how LMs are aligned with normative and
descriptive occupational demographic distributions.
We use demographic distributions covering occupa-
tions in four countries, namely France, Norway, the
United Kingdom, and the United States. We manu-
ally select gendered pronouns and nouns, as well as
specific verb phrases, to construct template-based
sentences, subsequently used to probe a selection
of ten LMs covering the relevant languages.

Our contributions include; (i) creating novel
benchmark datasets for English, French, and Nor-
wegian based on manually crafted templates to mea-
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sure occupational gender biases, (ii) proposing a
scoring system to measure normative and descrip-
tive biases in LMs, and (iii) releasing our code and
data for reproducibility.

In what follows, we give a detailed description
of our new benchmark datasets in Section 2. We
then, in Section 3, give a detailed description of the
normative and descriptive bias scores, and present
our analysis on ten LMs as proof of concept. We
discuss and summarize our findings in Section 4,
and conclude by discussing possible directions for
future work in Section 5. The limitations of our
work are discussed in the Limitations Section.

2 Benchmark datasets

In this work we develop a set of benchmark tem-
plates for English, French, and Norwegian that
cover occupations in France, Norway, the United
Kingdom (UK), and the United States (US). These
templates are then used for probing different LMs.
More details are given in what follows.

Occupations We retrieve country-specific lists
of occupations and their associated (male/female)
gender ratios from the national statistics bureaus of
France, Norway, UK, and the US.1 This resulted in
235 occupations from France,2 415 from Norway,3

325 from the UK,4 and finally 314 occupations
from the US.5 All of these occupations were listed
in either masculine singular or masculine plural
form. As some of the languages we are focusing on
inflect nouns for gender, we manually generate for
each occupation in singular masculine form the cor-
responding forms in singular feminine, plural femi-
nine, and plural masculine. This was performed by
a native speaker of Norwegian and French, and a
proficient speaker of English. Table 1 shows the top
5 female-dominated, male-dominated, and gender
balanced occupations in each census data.

Templates Our work builds on the methodology
of template-based probing. To measure a model’s
occupational biases we follow the same procedure
for all languages. Our templates are based on the
gender-inflected occupations, preceded by a se-
quence of selected gendered pronouns and a set
of gender-specific identifier terms in singular and

1All of the statistics were retrieved in October 2022.
2https://dares.travail-emploi.gouv.fr/donnees/

portraits-statistiques-des-metiers
3https://utdanning.no/likestilling
4https://www.nomisweb.co.uk/datasets/aps168/
5https://www.bls.gov/cps/cpsaat11.htm

plural forms, followed by a predicate generically
denoting the act of having an occupation. As an
example, a template could be:

The woman︸ ︷︷ ︸
gender-specific identifier

worked as a︸ ︷︷ ︸
predicate

nurse︸ ︷︷ ︸
occupation

We select 28 gender-specific identifiers, and 6
predicates for all three languages. The full list of
gender-specific identifiers can be found in Table 2
and the list of predicates in Table 5 in Appendix A.
Combining these identifiers and predicates with
our country-specific occupations, we create a set
of 12.726 template-based probes for French occu-
pations, 69.720 for Norwegian, 50.700 for the UK,
and 48.984 for the US.

The templates we created cover different gram-
matical tenses, such that each template is given in
the past, present, and future tense. We have decided
to include such a broad collection of variations to
the templates to get a better representation of how
occupations are correlated with genders, especially
since research has shown that bias probes are sen-
sitive to grammatical tense (Touileb, 2022).

3 Method

LMs trained with a masked language modelling
objective are trained such that random tokens in
the input training data are replaced with a place-
holder token, [MASK], which will subsequently be
predicted by the trained model. Template-based
approaches to probe biases take advantage of this
feature of LMs. For our purposes, we mask the gen-
dered identifier in each template-generated probe
(as introduced in Section 2), and use the returned
probability of each masked identifier to compute
our bias scores. A masked version of the example
template above would be:

The [MASK]︸ ︷︷ ︸
gender-specific identifier

worked as a︸ ︷︷ ︸
predicate

nurse︸ ︷︷ ︸
occupation

Language models We select ten LMs covering
the three languages English, French, and Norwe-
gian. All models are available from the Hugging-
Face library (Wolf et al., 2020). We use four Norwe-
gian models, four English models, and two French
models. These are:

• NorBERT (Kutuzov et al., 2021): trained from
scratch on the Norwegian newspaper corpus6,

6https://www.nb.no/sprakbanken/ressurskatalog/
oai-nb-no-sbr-4/
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Female-dominated occupations Male-dominated occupations Gender-balanced occupations

FR

midwife navy officer and boatswain doctor
kindergarten assistant construction machinery operator higher education teacher
secretary pipe fitter medical device specialist
office secretary panel beater admin. and financial executive
executive secretary carpenter dentist

NO
knitter coastal skipper doctor
midwife chief engineer architect
public health nurse scaffold builder lawyer
skin care specialist roofer politician
dental health secretary bricklayer associate professor

UK

midwife roofer, roof tiler and slater barrister and judge
school secretary carpenter and joiner laboratory technician
dancer and choreographer construction and building supervisor paramedic
dental nurse bricklayer and mason industrial trainer and instructor
medical secretary vehicle technician and mechanic legal professional

US

skincare specialist cement mason insurance sales agent
preschool and kindergarten teacher electrical power-line installer medical scientist
executive secretary crane and tower operator dental laboratory technician
speech-language pathologist heavy vehicle technician and mechanic photographer
dental hygienist bus and truck mechanic advertising sales agent

Table 1: Top 5 gender-dominated and gender-balanced occupations in census data from France (FR), Norway (NO),
the United Kingdom (UK), and the United States (US). The occupations presented here are either dominated by
more than 98% of either gender, or have a more balanced distribution (between 45% and 55%) between both female
and male genders.

and Norwegian Wikipedia. The model com-
prises about two billion word tokens.

• NorBERT27: the non-copyrighted subset of
the Norwegian Colossal Corpus (NCC)8 and
the Norwegian subset of the C4 web-crawled
corpus (Xue et al., 2021) were used to train
this model from scratch. It comprises about
15 billion word tokens.

• NB-BERT_base (Kummervold et al., 2021):
trained on the full version of the NCC corpus.
This model used the architecture of the BERT
cased multilingual model (Devlin et al., 2018).
It comprises around 18.5 billion word tokens.

• NB-BERT_Large9: trained similarly to the
NB-BERT_base model.

• BERT_base (Devlin et al., 2018) and
BERT_Large: trained on English Wikipedia
and Google’s Books Corpus.

• RoBERTa_base (Liu et al., 2019) and
RoBERTa_Large: trained on the BookCor-
pus, English Wikipedia, CC-news corpus (En-
glish news), OpenWebText dataset, and Sto-

7https://huggingface.co/ltgoslo/norbert2
8https://github.com/NbAiLab/notram/blob/

master/guides/corpus_description.md
9https://huggingface.co/NbAiLab/nb-bert-large

ries dataset (a subset of the Common Crwal
corpus).

• CamemBERT (Martin et al., 2020): trained
on the OSCAR corpus (Ortiz Suárez et al.,
2019), which is a multilingual corpus created
by filtering the Common Crawl corpus.

• Barthez (Eddine et al., 2020): trained on
the French part of the Common Crawl and
Wikipedia, in addition to various smaller cor-
pora (Eddine et al., 2020).

Scoring system The scoring system we introduce
is the same for both bias scores. We will give
more details on the differences of the scores in
their respective sections.

For each template, and for each language, 28
gender-specific identifiers and 6 different predi-
cates were used with each occupation. To compute
the scores, we average over the gendered-identifiers
and the predicates of the LMs’ returned probabil-
ities for each template. For each template, only
one gender is represented (female or male). If the
language inflects for gender, all components of a
template reflect the gender in question, otherwise
it is only reflected in the identifier.

We average the scores for a given occupation by
gender, by summing and normalizing the proba-
bilities of each identifier and the total probability

2244

https://huggingface.co/ltgoslo/norbert2
https://github.com/NbAiLab/notram/blob/master/guides/corpus_description.md
https://github.com/NbAiLab/notram/blob/master/guides/corpus_description.md
https://huggingface.co/NbAiLab/nb-bert-large


Norwegian English French

Brødrene He Elle
Broren She Elles
Dama/Damen The aunt Il
Damene The aunts Ils
Datteren The boy L’homme
Døtrene The boys L’oncle
Faren The brother La dame
Fedrene The brothers La femme
Gutten The daughter La fille
Guttene The daughters La mère
Han The father La soeur
Hun The fathers La tante
Jenta/Jenten The girl Le fils
Jentene The girls Le frère
Kvinnen The ladies Le garçon
Kvinnene The lady Le père
Mannen The man Les dames
Mennene The men Les femmes
Mødrene The mother Les filles
Moren The mothers Les fils
Onkelen The sister Les frères
Onklene The sisters Les garçons
Sønnen The son Les hommes
Sønnene The sons Les mères
Søsteren The uncle Les oncles
Søstrene The uncles Les pères
Tanten The woman Les sœurs
Tantene The women Les tantes

Table 2: Gender-specific pronouns and identifiers.

values returned by the LM, here dubbed probaG,
where G can be female or male (equation (1)). Then
using this overall probability of a gender for a tem-
plate, we average these values over all templates
related to the occupation (equation (2)). More for-
mally, for a language model LM, for each occupa-
tion O, there are a number of templates T, and a
number of identifiers i and predicates p, reflecting
a gender G. We define the bias score as follows:

probaG =

∑
i Tp
|i| (1)

scoreO =

∑
probaG

TO

|TO|
(2)

Descriptive bias score Once the scores scoreO
are computed, the descriptive bias score compares
the percentages of distribution of occupations in the
LMs to the ground truth data that comes from the re-
spective census data of our countries of interest. We
impose a threshold on the gender distributions in
such a way that the category of gender-imbalanced
occupations here corresponds to all occupations ex-
ceeding 55% of distribution for one gender, while
gender-balanced occupations are those which per-
centages lie around 50%±5 for each gender.

Model Normative Descriptive

NorBERT 16.23 39.31
NorBERT2 3.17 34.67
NB-BERT 18.55 36.50
NB-BERT_Large 11.35 40.90
BERT_UK 18.05 35.33
BERT_large_UK 13.73 40.43
RoBERTa_base_UK 0.15 34.56
RoBERTa_large_UK 0.00 34.56
BERT_US 17.25 43.29
BERT_Large_US 12.46 48.88
RoBERTa_base_US 0.15 42.81
RoBERTa_Large_US 0.31 42.81
CamemBERT 10.46 34.10
BARThez 6.45 37.08

Table 3: Normative and descriptive occupational bias
scores.

We look at the extent to which this score aligns
with the census data. We compute an overall
score disregarding gender, in addition to class-level
scores: female dominated occupations (more than
55% in census are females), male dominated oc-
cupations (more than 55% in census are males),
neutral occupations (between 45% and 55% of oc-
cupations in census for either gender).

Normative bias score The normative bias score
also builds on top of the scores scoreO, and com-
pares the resulting distribution of occupations in
LMs to a normative description of all occupations,
such that percentages of either gender should be
around 50%±5.

From a normative point of view, equal represen-
tations should be given to females and males. In-
stead of just setting the distribution to a strict value
of 50-50, we decided that for either gender, the
distribution should range anywhere between 45%
and 55% in the census data. This to say, that if an
occupation has 45% and 55% males, we consider
it a balanced distribution.

4 Results and discussion

Table 3 shows the resulting normative and descrip-
tive bias scores of the ten LMs. All scores rep-
resent percentages, i.e., the percentage of model
predictions that align with our normative values or
descriptive demographic distributions. With no sur-
prise, it is clear that all models exhibit fairly weak
performance according to the normative bias score.
The weakest performing model normatively speak-
ing is RoBERTa (both base and large) on both UK
and US statistics. BERT seems to be a bit better
on UK statistics, but the difference is not signif-
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Model Neutral Female Male

NorBERT 1.46 22.34 15.50
NorBERT2 0.24 33.57 0.85
NB-BERT 1.46 23.68 11.35
NB-BERT_Large 0.12 33.82 6.95
BERT_UK 1.54 33.02 0.77
BERT_Large_UK 1.23 31.63 7.56
RoBERTa_base_UK 0.00 34.56 0.00
RoBERTa_Large_UK 0.00 34.56 0.00
BERT_US 2.39 39.93 0.95
BERT_Large_US. 1.75 40.09 7.02
RoBERTa_base_US 0.00 42.81 0.00
RoBERTa_Large_US 0.00 42.81 0.00
CamemBERT 0.00 0.00 34.10
BARThez 0.00 0.00 37.08

Table 4: Descriptive bias scores of gender-imbalanced
and gender-neutral occupations. The two gender-
imbalanced occupations cover female dominated oc-
cupations (more than 55% in census are females), and
male dominated occupations (more than 55% in census
are males). The gender-neutral occupations are those
with distributions between 45% and 55% in census data
for either gender.

icant. For the remaining languages, NorBERT2
is the worst Norwegian model normatively and
BARThez is the worst of the two French models.

Results of the descriptive scores are in general
higher. Most models seem to reflect the demo-
graphic occupational distribution to a certain ex-
tent. Both BERT models achieve highest descrip-
tive scores, performing best on the US census data.
While the RoBERTa models obtain the lowest per-
formance in terms of the normative score, they rank
second in the descriptive score on the US census
data. NorBERT2 is still the weakest performing
Norwegian model, ranking last both descriptively
and normatively, while BARThez seems to yield
the best descriptive score for French.

To get a more detailed overview of which types
of occupations the tested models seem to represent
the best, we also computed the descriptive scores
of gender-imbalanced and gender-neutral occupa-
tions separately. Results can be seen in Table 4.
Interestingly, all Norwegian and English models
are better at identifying female-dominated occupa-
tions, while the two French models seem to only
identify male-dominated occupations.

All models exhibit the lowest scores on gender-
neutral occupations, hinting at the tendency that
models correlate most occupations with one gender,
rather then equally representing them. This would
also align with the lower normative scores that we
generally see.

Since the occupations in the census data differ
from country to another, it is difficult to compare
and rank models across languages. A fair compar-
ison of these models is to focus on performance
by country rather than across them. Even if we
state that some models are the best or worst using
one scoring system, the country-level scores are
the most important measure of bias in the models.

5 Conclusion

We have introduced a new scoring system for mea-
suring occupational biases in pre-trained language
models. The scoring system allows the attribution
of two scores: a normative score and a descriptive
score. While the normative score sheds light on
to what extent the correlations between genders
and occupations are balanced, the descriptive score
uses real world demographic distributions to reflect
to what degree the language models reflect reality.

As a proof of concept we test our scoring sys-
tems on ten language models covering the French,
Norwegian, and English languages. It comes as no
surprise that all models exhibit low scores when us-
ing the normative scoring, while most of them have
an adequate score when measured descriptively.
What is more interesting is that our scoring mecha-
nism allows us to separate between the normative
and descriptive aspects of the model properties. All
templates and codes are made publicly available on
our GitHub repository.10

While we have limited our analysis to three lan-
guages, our approach is language agnostic and only
requires language specific templates and demo-
graphic statistics on the distributions of occupa-
tions with respect to gender, something most na-
tional census agencies should be able to provide.
Moreover, the approach could also be extended to
other dimensions of national census data and other
demographic variables.

On the note of future directions, we also plan
to investigate cross-cultural effects, by comparing
models for different languages across the gender–
occupation lists from different nations, and also
including multi-lingual models. Moreover, we also
plan to systematically test the impact of different
text sources (used to train language models) on our
bias scores.

10https://github.com/SamiaTouileb/
Normative-Descrptive-scores
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Limitations

The major limitation of our work is that we focus
on a binary gender setting. We acknowledge the
fact that gender as an identity spans more than just
two categories, however, the demographic census
data we use have only the two genders (female and
male) represented.

As proof of concept, the templates we use in this
work are limited to one framing of how gendered
pronouns and nouns can co-occur with occupations.
Extending this to more diverse templates might
give a broader context and a better representation
of genders in LMs.

The applicability of English models to the UK
and US census data, and the French models to the
French census data, might also give a skewed repre-
sentation of occupations. Both English and French
are spoken across many countries, which might
have an effect on the representation of occupations
and genders in the language models. It would there-
fore be interesting to investigate to what extent
language-specific language models reflect census
data from different countries.
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A Appendix

Language Predicates

Norwegian

jobber som
jobbet som
skal jobbe som
vil jobbe som
ville jobbe som
kommer til å jobbe som

English

are going to work as
is going to work as a
want to work as
wanted to work as
wanted to work as a
wants to work as a
will work as
will work as a
work as
worked as
worked as a
works as a

French

est
étaient
était
sera
serons
sont
va travailler comme
veulent être
veux être
vont travailler comme
voulaient être
voulais être

Table 5: Language-specific predicates.
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Abstract

We propose two methods to make unsuper-
vised domain adaptation (UDA) more param-
eter efficient using adapters, small bottleneck
layers interspersed with every layer of the large-
scale pre-trained language model (PLM). The
first method deconstructs UDA into a two-step
process: first by adding a domain adapter to
learn domain-invariant information and then
by adding a task adapter that uses domain-
invariant information to learn task represen-
tations in the source domain. The second
method jointly learns a supervised classifier
while reducing the divergence measure. Com-
pared to strong baselines, our simple meth-
ods perform well in natural language inference
(MNLI) and the cross-domain sentiment classifi-
cation task. We even outperform unsupervised
domain adaptation methods such as DANN
(Ganin et al., 2016) and DSN (Bousmalis et al.,
2016) in sentiment classification, and we are
within 0.85% F1 for natural language infer-
ence task, by fine-tuning only a fraction of the
full model parameters. We release our code at
https://github.com/declare-lab/domadapter.

1 Introduction

Fine-tuning pretrained language models (PLM) is
the predominant method for improving NLP tasks
such as sentiment analysis, natural language in-
ference, and other language understanding tasks
(Wang et al., 2018). However, fine-tuning forces
us to modify all the parameters of the model and
store one copy of the model for one task. Given the
large size of current PLMs, this can be expensive.
Furthermore, fine-tuning needs large-scale data to
be effective and is unstable when using different
seeds (Han et al., 2021).

A new approach to alleviate this is parameter-
efficient fine-tuning – freezing the PLM parameters

∗The first two authors contributed equally.

and fine-tuning only a small fraction of the param-
eters. Fine-tuning with adapters (Houlsby et al.,
2019) is one of these methods in which small ad-
ditional layers are tuned within each PLM layer.
Fine-tuning with adapters has many advantages:
performance comparable to full fine-tuning (He
et al., 2021a), and robustness to different seeds and
adversarial examples (Han et al., 2021).

Unsupervised domain adaptation (UDA) aims to
adapt models to new domains and considers situa-
tions where labeled data are available only in the
source domain and unlabeled data are available in
the target domain. UDA methods in general have
two components: The first reduces the divergence
between the source and target domains, and the
second reduces the loss corresponding to a particu-
lar task (Ramesh Kashyap et al., 2021a). However,
they fine-tune a large number of parameters and
are susceptible to catastrophic forgetting. Adapters
(Houlsby et al., 2019) can help solve these prob-
lems. However, the benefits of using adapters fine-
tuning for domain adaptation have been mostly
overlooked. How well can adapter fine-tuning per-
form across different domains and can we make
domain adaptation more efficient? In this work,
we answer these questions and propose models to
perform domain adaptation using adapters.

Adapters are known to perform well in low-
resource scenarios where a small amount of super-
vised data is available in a new domain or language
(He et al., 2021b; Pfeiffer et al., 2020b). In this
work, using the principles of UDA, we propose to
make domain adaptation more effective using unsu-
pervised data from the target domain. We introduce
two methods that we collectively call the U nsuper-
vised D omain A daptation method using adapters
(UDAPTER). The first method is a two-step pro-
cess: First, we learn domain adapters – where we
use a divergence measure to bring two probabilis-
tic distributions closer together. This helps us to
learn representations that are independent of the
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(a) (b) (c)

Figure 1: UDAPTER for a transformer layer l uses principles from unsupervised domain adaptation to make domain
adaptation more parameter efficient. (a) The first method TS-DT- trains a Domain Adapter that reduces the
marginal distribution between the domains (b) The task adapter is stacked on top of the domain adapter. and trained
on an end task like sentiment analysis or natural language inference. The domain adapter is frozen during training.
(c) The second method JOINT-DT- reduces the domain divergence and the task loss jointly.

domain from which they come. Second, we use
the domain-invariant information learned as input
to another task adapter that learns to perform an
NLP task using labeled data from the source do-
main. We combine the two adapters by stacking
them. The second method adds a single adapter
without stacking, where we simultaneously reduce
the divergence between domains and learn the task
in the source domain.

Domain Adversarial Neural Networks (DANN)
and Domain Separation Networks (DSN) are the
most common methods for unsupervised domain
adaptation in NLP (Ramesh Kashyap et al., 2021a).
We compare our proposed methods with these
strong baselines that fine-tune all model param-
eters, on Amazon (Blitzer et al., 2007) and the
MNLI dataset (Williams et al., 2018) consisting
of five domains each. UDAPTER performs better
than all baselines. It achieves competitive perfor-
mance compared to UDA methods by fine-tuning
only a fraction of the parameters. In an era where

large resources are spent to further pretrain lan-
guage models on large amounts of unsupervised
data to achieve domain adaptation (Gururangan
et al., 2020), it is necessary to provide cheaper,
faster solutions.

2 Method

Setup. We consider an NLP task (sentiment anal-
ysis) consisting of data X and labels Y (positive,
negative). There exist two different distributions,
called the source domain DS and the target domain
DT over X × Y . Unsupervised domain adaptation
(UDA) consists of a model C that receives labeled
input samples XS : (xs, ys)

ns
s=1 ∼ DS and unla-

beled input XT : (xt)
nt
t=1 ∼ DT . The goal of UDA

is to learn a model C such that we perform well in
the NLP task for the target domain DT .

The popular method in UDA is to learn repre-
sentations that are invariant in the input domain
and still have sufficient power to perform well in
the source domain (Ganin et al., 2016; Bousmalis
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et al., 2016). Then according to the theory of do-
main divergence (Ben-David et al., 2010) shows
that the error in the target domain is bounded by
the error in the source domain and the divergence.
The unsupervised domain adaptation method thus
consists of two components: the reduction of the
divergence measure and a classifier for the source
domain. A new classifier must be learned for ev-
ery pair of source-target domains, and the method
fine-tunes a large number of parameters.

UDAPTER makes unsupervised domain adapta-
tion more parameter efficient (cf. § 2.1, § 2.2) using
adapters. We follow the framework proposed by
Houlsby et al. (2019) where small bottleneck lay-
ers are added to the transformer layers, fine-tuning
only the adapter parameters while keeping the other
parameters frozen, and propose the following.

2.1 Two-Step Domain and Task Adapters

Domain Adapters. To learn domain-invariant
representations, we first train a domain adapter.
The adapter architecture follows the work of Pfeif-
fer et al. (2021), which consists of a simple down-
projection followed by an up-projection. In a trans-
former layer l, let hl be the hidden representation
of the layer Add & Norm and let rl be the represen-
tation of the layer Feed-Forward (Figure 1a), then
the adapter makes the following transformation and
calculates a new hidden representation.

doml =Wup · f(Wdown · hl) + rl (1)

where f is a nonlinear function such as RELU,
Wdown ∈ Rh×d projects the hidden representations
down to a lower dimension, Wup ∈ Rd×h projects
them back to a higher dimension, and d≪ h. We
pass a sample from the source domain (xsrcs ) ∼ DS
and a sample from the target domain (xtrgt ) ∼ DT
through the adapters in layer l and obtain their rep-
resentations hsrcl and htrgl , respectively. We then
reduce the divergence between these representa-
tions.

∆l = div(domsrc
l , domtrg

l ) (2)

Here div(·) is the divergence function such as
the correlation alignment (CORAL) (Sun et al.,
2016), the central moment discrepancy (CMD)
(Zellinger et al., 2017) or the multi-kernel max-
imum mean discrepancy (MK-MMD) (Gretton
et al., 2012; Bousmalis et al., 2016). In this work,
we use MK-MMD for all of our experiments, since

it performed the best1. Similar ideas are used to
adapt representations in computer vision models
(Long et al., 2019; Sun and Saenko, 2016). The
final divergence loss considers all L layers.

Ldiv =
L∑

l=1

∆l (3)

Task Adapters. Task adapters are stacked with
frozen domain adapters. We pass the representa-
tions doml from the previous step and the super-
vised data from the source domain (xsrcs , ysrcs ) ∼
DS . Task adapters have the same architecture as
domain adapters and perform the following.

taskl =Wup · f(Wdown · domsrc
l ) + rl (4)

The goal of these task adapters is to learn repre-
sentations that are task-specific. Only task adapters
are updated when training on the end task (senti-
ment classification, natural language inference) and
all other parameters, including domain adapters,
are frozen. Regular cross-entropy loss is reduced
during training of task adapters.

Ltask = softmax_ce(Wtask · hL) (5)

hL is the hidden representations of the last layer
of the transformer,Wtask ∈ Rh∗|Y| where |Y| is the
number of classes, and softmax_ce is the softmax
followed by cross-entropy. This two-step process
deconstructs UDA methods with a domain adapter
and a task adapter. This affords composability,
where task adapters can be reused for different
pairs of domains (§ 3.4). However, domain and task
representations can be learned jointly, as explored
in the next section.

Training Process. Given a source-target domain
adaptation scenario, we first train the domain
adapter and save their weights. We then stack
the task adapter with the domain adapter, which is
trained using the supervised data from the source
domain. When training the task adapter, the do-
main adapter is frozen. During inference, we stack
the domain and task adapter.

2.2 Joint Domain Task Adapters
This method adds a single adapter that performs
the reduction of the divergence measure and learns

1We also tried using CMD and CORAL and our systems
performed similarly to MK-MMD
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Dataset Train Dev Test
MNLI 69,600 7,730 1,940

AMAZON 1,440 160 400

Table 1: Dataset statistics, showing number of train, dev,
and test instances per domain.

task representations jointly. For a given supervised
sample from the source domain (xsrcs , ysrcs ) ∼ DS
and an unsupervised sample (xtrgt ) ∼ DT , let
hsrcl , htrgl be the hidden representations of the
adapters for xsrcs and xtrgt for layer l. We reduce
the following joint loss:

L = λ · Ltask + (1− λ) · Ldiv (6)

Here Ltask is the task loss on the source domain
supervised samples, λ is the adaptation factor.

Reducing divergence along with cross-entropy
loss beyond a certain point makes training unstable
and does not contribute to increased performance.
Following (Ganin et al., 2016) we suppress the
noisy signal from the divergence function as train-
ing progresses and gradually change λ from 0 to
1 to reduce the contribution of divergence loss us-
ing the following schedule (γ = 10 for all of our
experiments):

λ =
2

1 + exp (−γ · p) − 1 (7)

Similar methods have been proposed to adapt
models to other domains by Long et al. (2019) and
Wu et al. (2022). Compared to the two-step pro-
cess introduced earlier (§ 2.2), we need to properly
control the losses to obtain optimal results and also
this method does not offer composability (§ 3.4).

3 Experiments

3.1 Datasets
We evaluate our approach on two representative
datasets with different tasks, both in English. Ta-
ble 1 shows the details of the datasets. Every
dataset has 5 domains, and we consider each do-
main with every other domain which results in 20
domain adaptation scenarios for every dataset, 120
experiments per method, and 1900+ experiments.

AMAZON: Multi Domain Sentiment Analysis
Dataset (Blitzer et al., 2007) that contains Amazon
product reviews for five different types of prod-
ucts (domains): Apparel (A), Baby (BA), Books
(BO), Camera_Photo (C), and Movie Reviews (MR).

Each review is labeled as positive or negative. We
follow the setup in (Ramesh Kashyap et al., 2021a)

MNLI: The Multigenre Natural Language Infer-
ence (MNLI) corpus (Williams et al., 2018) con-
tains hypothesis–premise pairs covering a variety
of genres: Travel (TR), fiction (F), telephone (TE),
government (G), and slate (S). Each pair of sen-
tences is labeled Entailment, Neutral, or Contra-
diction. The train and validation data set are taken
from the train set by sampling 90% and 10% sam-
ples, respectively. We use the MNLI-matched vali-
dation set as our test set.

3.2 Baseline Methods

Fully supervised. Fine-tune ( ): Fine-tunes a
language model using labeled data from the target
domain. Serves as an upper bound of performance.

Unsupervised Domain Adaptation (UDA). Do-
main Adversarial Neural Networks (DANN): An
unsupervised domain adaptation method (Ganin
et al., 2016) that learns domain-invariant informa-
tion by minimizing task loss and maximizing do-
main confusion loss with the help of gradient re-
versal layers. Domain Separation Networks: (DSN)
(Bousmalis et al., 2016) improves DANN, with ad-
ditional losses to preserve domain-specific informa-
tion along with the extraction of domain-invariant
information. bert-base-uncased serves as a fea-
ture extractor for both methods.

Adapter Based. DANN Adapter (DANN- ):
Similar to DANN, but we insert trainable adapter
modules into every layer of a PLM. DANN Adapter
with Multiple Classifiers (DANN- -MC): Unlike
DANN- which involves a single task and do-
main classifier, here a task and domain classifier
are added to each of the last 3 layers of a PLM.
The representation of the last layers of a PLM is
domain variant (Ramesh Kashyap et al., 2021b),
and this model obtains domain-invariant informa-
tion2 (vi) Task adapter (TASK- ): Adapter fine-
tuning (Pfeiffer et al., 2020a) where adapters are
fine-tuned in the labeled source domain and tested
in the target domain. (vii) Two-step Domain and
Task Adapter (TS-DT- ): This work, where we
first train a domain adapter that reduces the proba-
bilistic divergence between two domains and then
fine-tunes a task adapter by stacking. (viii) Joint

2We tried adding classifiers incrementally to the last few
layers. Adding it to the last 3 layers performed the best.
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Fully Supervised Unsupervised Domain Adaptation Adapter Based

Src →Trg DANN DSN DANN- DANN- -MC TASK- TS-DT- JOINT-DT-

A → BA 87.52 (1.96) 85.57 (3.72) 89.90 (0.26) 86.46 (0.26) 88.74 (0.64) 87.03 (0.26) 88.24 (0.76) 88.74 (0.13)

A → BO 86.67 (1.06) 36.48 (0.45) 84.47 (0.99) 78.41 (1.14) 83.36 (0.43) 84.15 (1.10) 84.22 (0.76) 84.96 (0.28)

A → C 91.62 (0.37) 57.51 (13.32) 88.56 (0.81) 87.31 (0.39) 88.75 (0.69) 89.67 (0.32) 88.76 (1.32) 89.39 (0.23)

A → MR 82.08 (0.78) 35.23 (1.99) 78.08 (0.46) 75.54 (0.63) 76.60 (1.06) 76.63 (0.92) 77.39 (0.13) 77.63 (0.71 )
BA → A 89.12 (0.38) 77.52 (11.25) 87.46 (1.83) 87.72 (1.85) 88.47 (0.72) 88.33 (1.10) 89.55 (0.10) 89.70 (0.23)

BA → BO 86.67 (1.06) 43.45 (8.96) 82.19 (3.70) 82.89 (3.08) 83.86 (0.41) 84.61 (0.39) 84.38 (0.61) 85.01 (0.60

BA → C 91.62 (0.37) 47.58 (7.65) 89.68 (0.71) 86.63 (0.53) 88.73 (0.42) 90.63 (0.33) 87.46 (0.88) 88.64 (0.30)

BA → MR 82.08 (0.78) 50.63 (7.43) 77.88 (0.38) 74.48 (1.79) 78.07 (0.34) 78.74 (0.35) 79.42 (0.44) 78.44 (0.70)

BO → A 89.12 (0.38) 37.40 (1.90) 88.20 (0.51) 85.90 (0.12) 85.91 (0.25) 85.03 (0.36) 84.79 (0.75) 87.46 (0.27)

BO → BA 87.52 (1.96) 54.33 (12.49) 88.56 (0.44) 82.06 (1.15) 84.27 (0.11) 86.50 (0.39) 86.84 (0.48) 86.41 (0.79)

BO → C 91.62 (0.37) 39.43 (0.49) 88.58 (1.01) 86.94 (0.83) 87.40 (0.44) 88.44 (0.53) 87.86 (0.61) 88.53 (0.43)

BO → MR 82.08 (0.78) 54.23 (13.94) 79.07 (1.01) 76.19 (0.89) 79.44 (0.86) 79.44 (0.95) 80.52 (0.61) 78.91 (0.38)

C → A 89.12 (0.38) 60.93 (3.78) 89.76 (0.76) 87.02 (1.86) 86.63 (0.29) 87.74 (1.18) 88.53 (0.42) 88.92 (0.44)

C → BA 87.52 (1.96) 77.29 (3.61) 89.42 (0.70) 88.10 (1.13) 89.14 (0.30) 81.71 (2.72) 89.72 (0.43) 89.32 (0.42)

C → BO 86.67 (1.06) 38.21 (1.40) 85.56 (0.62) 81.18 (2.07) 83.61 (0.67) 80.55 (0.81) 84.14 (0.52) 85.42 (0.70)

C → MR 82.08 (0.78) 35.08 (1.94) 76.13 (0.54) 64.99 (5.91) 74.22 (0.31) 69.53 (1.24) 73.22 (0.48) 73.50 (0.84)

MR → A 89.12 (0.38) 37.07 (4.16) 82.64 (2.17) 81.05 (1.15) 79.56 (0.53) 82.45 (1.43) 81.93 (0.47) 84.41 (0.43)

MR → BA 87.52 (1.96) 38.76 (4.17) 80.59 (2.18) 77.95 (1.46) 79.33 (0.43) 81.70 (1.22) 84.28 (0.41) 84.91 (0.36)

MR → BO 86.67 (1.06) 42.07 (4.86) 85.13 (0.83) 82.83 (0.62) 84.90 (1.29) 84.90 (0.23) 84.47 (0.80) 84.45 (0.31)

MR → C 91.62 (0.37) 36.92 (1.86) 86.56 (0.63) 84.58 (0.46) 82.53 (0.92) 86.68 (0.65) 86.25 (0.38) 88.37 (0.11)

Avg 87.40 (0.91) 49.28 (5.47) 84.92 (1.03) 81.91 (1.37) 83.68 (0.50) 83.72 (0.88) 84.60 (0.57) 85.16 (0.43)

Table 2: F1 scores for AMAZON dataset. We report mean and standard deviation of 3 runs. The five domains
are Apparel (A), Baby (BA), Books (BO), Camera_Photo (C) and Movie Reviews (MR). On average, our method
outperforms all baselines. Our methods are competitive with fully unsupervised domain adaptation methods.

Domain Task Adapter (JOINT-DT- ) - We train a
single adapter that reduces the domain and task loss
jointly. For all adapter-based experiments, the PLM
is frozen, and only adapter modules are trained.

Since we use adapters, we only consider other
adapter based baselines and omit other methods
such as Prefix-tuning (Lester et al., 2021). Also,
(Zhang et al., 2021) target multidomain adaptation
and use data from all the domains during training
unlike our method and is not a fair comparison.

Implementation Details and Evaluation. For
our experiments, we use bert-base-uncased (De-
vlin et al., 2019) available in the HuggingFace
Transformers library (Wolf et al., 2020) as our back-
bone. Adapter implementations are from Adapter-
Hub (Pfeiffer et al., 2020a). We follow (Pfeiffer
et al., 2021) and add only one bottleneck layer after
the feedforward layer.

We use the AdamW optimizer and a learning
rate of 1e− 4 for all our adapter-based training and
2e − 5 otherwise. Only for the smaller AMAZON

dataset, we used an adapter bottleneck size (reduc-
tion factor) of 32. For all other adapter-based ex-
periments and datasets, we use the default adapter
bottleneck size of 16. We performed experiments
on three different seeds. We report the mean and
standard deviation of the F1 scores . For DANN

we use 0.04 as our λ and for DSN we use 0.1, 0.1,
and 0.3 as our weights for three losses: reconstruc-

tion, similarity, and difference respectively. We
avoid extensive hyperparameter tuning per domain
adaptation scenario for efficiency.

3.3 Results

From Table 2 and Table 3 our methods TS-DT-
and JOINT-DT- perform well in both AMAZON

and MNLI. We find that fine-tuning the task adapter
(TASK- ) is a strong baseline and, compared to it,
we perform well in 17/20 domain adaptation sce-
narios in AMAZON (largest increase of 8 points for
C → BA ) and 19/20 domain adaptation scenarios in
MNLI (largest increase of 2.2 for F → TE). One pos-
sible explanation of scenarios where our method
finds the largest increase is the proximity of the two
domains. The overlap in vocabularies (Figure 9 in
Appendix) between C →BA in AMAZON and F →
TE in MNLI is high, and our method takes advan-
tage of learning domain-invariant information that
can be used for efficient domain transfer. Our meth-
ods for learning domain-invariant information are
necessary to achieve good domain adaptation.

UDAPTER is comparable to UDA methods.
Compared to UDA methods where all parameters
of the backbone model are fine-tuned, we perform
close to them on average. JOINT-DT- performs
better than DSN by 0.2% in AMAZON. We are
within 0.85% in MNLI compared to DSN. Training
DANN is highly unstable and produces varied re-
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Fully Supervised Unsupervised Domain Adaptation Adapter Based

Src →Trg DANN DSN DANN- DANN- -MC TASK- TS-DT- JOINT-DT-

F →S 74.09 (0.40) 73.68 (0.21) 72.36 (0.17) 70.96 (0.03) 62.40 (4.79) 72.36 (0.36) 73.46 (0.34) 72.30 (0.26)

F →G 82.19 (0.12) 79.17 (0.25) 79.79 (0.21) 78.73 (0.43) 77.23 (0.33) 79.00 (0.46) 78.65 (0.25) 79.79 (0.22)

F →TE 78.41 (0.66) 73.72 (0.81) 75.07 (0.32) 70.89 (0.74) 71.68 (0.59) 70.83 (0.54) 73.05 (0.70) 71.59 (0.78)

F→TR 81.81 (0.20) 76.99 (0.19) 76.82 (0.50) 74.42 (0.18) 75.09 (0.05) 75.85 (0.19) 76.75 (0.80) 77.07 (0.26)

S →F 78.59 (0.34) 75.91 (0.23) 76.62 (0.38) 73.89 (0.61) 73.47 (0.28) 75.25 (0.19) 75.52 (0.89) 75.35 (0.56)

S →G 82.19 (0.12) 80.91 (0.46) 81.27 (0.23) 79.99 (0.36) 79.16 (0.10) 80.76 (0.40) 81.65 (0.11) 80.94 (0.30)

S →TE 78.41 (0.66) 74.32 (0.57) 74.27 (0.48) 72.29 (0.57) 71.89 (0.07) 72.66 (0.79) 74.09 (0.30) 73.38 (0.63)

S →TR 81.81 (0.20) 76.81 (0.35) 78.17 (0.20) 75.58 (0.54) 75.77 (0.39) 76.16 (0.22) 77.31 (0.60) 77.16 (0.18)

G →F 78.59 (0.34) 73.41 (0.73) 72.62 (0.37) 71.57 (0.68) 70.34 (0.73) 72.66 (0.31) 72.66 (0.56) 73.56 (0.23)

G →S 74.09 (0.40) 72.51 (0.10) 71.93 (0.25) 70.17 (0.64) 69.49 (0.40) 71.11 (0.38) 71.14 (0.21) 71.36 (0.04)

G →TE 78.41 (0.66) 71.52 (0.13) 72.90 (0.39) 69.45 (0.96) 68.67 (0.17) 71.40 (0.30) 71.53 (1.04) 71.99 (0.67)

G →TR 81.81 (0.20) 77.42 (0.54) 77.80 (0.42) 74.35 (0.22) 74.04 (0.51) 76.29 (0.10) 76.16 (0.34) 76.79 (0.59)

TE →F 78.59 (0.34) 75.07 (0.08) 75.17 (0.35) 72.24 (0.59) 71.49 (0.45) 74.48 (0.33) 73.34 (0.41) 73.89 (0.12)

TE →S 74.09 (0.40) 71.65 (0.50) 72.16 (0.23) 69.09 (1.79) 69.25 (0.31) 70.94 (0.16) 70.94 (0.55) 71.41 (0.19)

TE →G 82.19 (0.12) 78.57 (0.60) 79.24 (0.31) 77.80 (0.27) 76.65 (0.20) 79.24 (0.35) 79.65 (0.60) 79.78 (0.64)

TE →TR 81.81 (0.20) 75.72 (0.37) 77.29 (0.61) 74.67 (0.50) 74.08 (0.25) 75.27 (0.83) 76.11 (0.91) 75.95 (0.50)

TR →F 78.59 (0.34) 73.22 (0.92) 72.44 (0.50) 70.27 (0.45) 69.08 (0.64) 72.20 (0.49) 73.12 (0.08) 73.13 (0.22)

TR →S 74.09 (0.40) 70.76 (0.72) 70.97 (0.26) 68.35 (0.62) 67.23 (0.39) 70.28 (0.37) 70.67 (0.50) 71.28 (0.38)

TR →G 82.19 (0.12) 80.91 (0.28) 81.67 (0.37) 79.25 (0.34) 78.77 (0.32) 81.26 (0.37) 81.11 (0.42) 81.55 (0.16)

TR →TE 78.41 (0.66) 70.41 (1.63) 71.98 (0.50) 69.33 (0.41) 69.45 (0.39) 70.98 (0.11) 70.95 (0.19) 71.42 (0.12)

Avg 79.02 (0.34) 75.13 (0.48) 75.53 (0.35) 73.16 (0.55) 72.26 (0.57) 74.45 (0.40) 74.89 (0.49) 74.98 (0.35)

Table 3: F1 scores for MNLI dataset. We report mean and standard deviation of 3 runs. The five domains are Fiction
(F), Slate (S), Government (G), Telephone (TE), and Travel (TR). On average, our method performs better than all
baselines.

sults, especially for AMAZON with a small number
of examples in each domain. Our adapter method
achieves better results compared to DANN with a
minimal modification of the hyperparameters.

Replacing UDA Feature Extractors with Adapter
Versions is insufficient. Given that fully fine-
tuned UDA methods perform well, can we freeze
the feature extractors UDA methods and fine-tune
only adapters and perform effective domain adapta-
tion? We compare our methods with DANN- and
DANN- -MC and outperform them both in AMA-
ZON and MNLI. This is in line with Karouzos et al.
(2021) that although domain adversarial training
brings domain representations closer, it introduces
distortion in the semantic space, reducing model
performance. This shows that simply replacing
feature extractors with their adapter versions in
existing UDA methods is not an effective strategy.

Gap to Full Fine-Tuning. Fine-tuning a PLM
with supervised data in the target domain is the
upper bound performance for domain adaptation.
The gap from full fine-tuning is greater when more
data are available (3.15 in AMAZON and 4.13 in
MNLI). This is not surprising, as the supervised
fine-tuning works better with more data. However,
while adapters perform closely to complete fine-
tuning in supervised scenarios (He et al., 2021a),
there is still a large gap between domain adapta-
tion and complete fine-tuning and would require

significant future work.

3.4 Further Analysis

Adapter Reduction Factor. The bottleneck size
(d) of the adapters plays an important role in the
final performance of the model. We show the per-
formance of the models at various reduction factors
in Figure 2. For JOINT-DT- , smaller reduction
factors generally perform well in both AMAZON

and MNLI, with performance reducing for larger
reduction factors. This shows that the JOINT-DT-

method requires a greater number of parameters
to reduce divergence and learn task representations
together. Since TS-DT- adds two adapters, this
increases the number of parameters added for the
same reduction factor compared to JOINT-DT-
. As a result, we find that as the data scale up,
relatively low reduction factors work well.

The removal of adapters from continuous layer
spans. All adapters are not equal. Removing
adapters from the first few layers still preserves
performance (Figure 3). For JOINT-DT- and TS-
DT- , the F1 slowly decreases as we continually
remove the adapters. However, we obtained a com-
parable performance after removing the adapters
from layers 1-6. This suggests that adapters are
effective when added to higher layers, where the
divergence between domains is greater at higher
layers compared to lower layers (Ramesh Kashyap
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(a) (b)

Figure 2: (a) Performance for AMAZON on the C → BA domain adaptation scenario for different reduction factors.
(b) Performance for MNLI on the S → TR scenario for different reduction factors.

Figure 3: Shows the difference in performance when
adapters are removed from certain layers (mentioned
inside the cells) for the AMAZON dataset (top) and for
MNLI dataset (bottom). The performance reduces if
adapters are removed from certain layers

et al., 2021b). Thus we can further reduce the num-
ber of parameters for domain adaptation.

t-SNE plots. The t-SNE (van der Maaten and
Hinton, 2008) plots from domain adapters are
shown in Figure 4 for the data set MNLI. The lower
layers have low divergence and the data from the

two domains are interspersed, whereas the higher
layers have high divergence. Our method effec-
tively reduces the divergence in higher layers.

Composability. We test the composability of our
two-step method TS-DT- . We reuse the task
adapter trained for C → BA and replace the domain
adapter with the domain adapter of C → MR and
perform inference on C → MR dataset. The initial
F1 of the C → MR dataset was 73.22 and after
composing it with a different task adapter, the F1
score is 72.66 – a minimal performance loss. This
shows the composability of TS-DT- .

4 Literature Review

Parameter Efficient Fine-tuning Methods.
Adapters (Houlsby et al., 2019) are task-specific
modules added to frozen transformer layers,
with only the adapter parameters updated. Their
plug-and-play characteristics and the avoidance of
catastrophic forgetting have resulted in their use
for NLP tasks: machine translation (Bapna and
Firat, 2019), named entity recognition (Pfeiffer
et al., 2020b), etc. Recently, (He et al., 2021b)
have shown that they are efficient in scenarios
where there is minimal supervised data. However,
they neither test their performance under domain
shift nor propose methods to improve adapter
fine-tuning. Closely related to our method is the
work of Ngo Trung et al. (2021), who learns a
shared-private representation per layer, similar to
DSN (Bousmalis et al., 2016). Their method re-
quires balancing multiple loss functions, compared
to our simpler two-step domain adaptation method.
The stacking of adapters has been followed before
by (Pfeiffer et al., 2020b) for cross-lingual tasks:
learning a language adapter first and stacking
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Figure 4: (top)t-SNE plots for the representations from bert-base-uncased. The lower layers are domain invariant
while the higher layers are domain variant (bottom) tSNE plots from the domain adapter trained on the S → TR
domain. We reduce the divergence using domain adapters where even higher layers are domain invariant.

a task adapter. However, one language adapter
is learned per language, assumes large amounts
of unsupervised data to be available in all the
languages, and requires supervised data to be
available to learn a task, which is not applicable for
domain adaptation. Compared to other methods,
we make domain adaptation more efficient using
principles of unsupervised domain adaptation.

Unsupervised Domain Adaptation (UDA). Ex-
isting UDA approaches can be categorized into
model-centric, data-centric, and hybrid. Model-
centric approaches involve augmenting feature
space or altering the loss function, architecture,
or model parameters (Blitzer et al., 2006; Pan et al.,
2010; Ganin et al., 2016) have been popular. A pop-
ular model-centric approach is to use adversarial
training between the domain and the task classifier
(Ganin et al., 2016) to extract domain-invariant in-
formation. (Bousmalis et al., 2016) in addition pre-
serves domain-specific information. These works
involve training a large number of parameters and
require careful balancing of multiple loss functions.
Our methods build on top of these works and make
it more parameter-efficient.

Large-scale transformers pretrained on domain-
specific corpora have been a norm: biomedical
(Lee et al., 2019), scientific publications (Beltagy
et al., 2019), among others. Another alternative is
to continue pretraining generic models on domain-
specific data: domain adaptive pretraining (Guru-
rangan et al., 2020). Both solutions are expensive
since a huge model has to be stored for every do-
main while using adapters affords storing a small
number of parameters for every domain pair and
can be quickly adapted to new domains.

5 Discussion

This work shows that domain adaptation in NLP
can be made more efficient using adapters. We
use adapters fine-tuning (Houlsby et al., 2019) pro-
posed before and stacking of adapters that have
been proposed before for a cross-lingual setting
(Pfeiffer et al., 2020b) for the unsupervised do-
main adaptation. The approach we have discussed
will make domain adaptation more practical for
real-world use cases, making adaptation faster and
cheaper. However, in this work, we have used
bert-base-uncased for all of our methods. Using
other backbone transformer models is part of our
future work. We deal only with a classification and
natural language inference task. Adapters have pre-
viously been used for machine translation (Bapna
and Firat, 2019) and other generation tasks (Zhang
et al., 2022). We need to explore our domain adap-
tation methods for other generation tasks.

In this work, we reduce the marginal distribution
of the two distributions. Previous works such as
Kumar et al. (2018) show that reducing only the
marginal distribution is not sufficient and aligning
the label distributions is necessary. However, NLP
works do not consider this and would require fur-
ther investigation by the community.

6 Conclusion

In this work, we propose UDAPTER, to make
unsupervised domain adaptation more parameter-
efficient. Our methods outperform other strong
baselines, and we show that we can perform bet-
ter than just training a task adapter on supervised
data. We perform competitively to other UDA meth-
ods at a fraction of the parameters and outperform
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them when there is limited data – a more practi-
cal scenario. Future work should explore other
parameter-efficient methods such as prefix-tuning
(Li and Liang, 2021) for domain adaptation. NLP
should also consider other avenues, such as contin-
uous adaptation to new domains and adaptation to
new domains when there are no data available.
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8 Limitations

We have several limitations to our work. We have
experimented with only one type of parameter-
efficient method, which is the adapter fine-tuning
method. Several other alternative parameter-
efficient methods, such as LoRA (Hu et al., 2021),
Bitfit (Ben Zaken et al., 2022), and other unifying
paradigms (He et al., 2021a), have been proposed
in recent times. These methods are modular and
can be easily substituted for adapters.

Another major limitation of our work is that we
cannot explore whether we can learn different tasks
over a given pair of domains. For example, for a
given pair of domains such as NEWS and TWITTER,
it would be ideal if we learned a domain adapter
and reused it for different applications such as sen-
timent analysis, named entity recognition, among
others. We are limited by the availability of data
for such scenarios and this would be a potential
future work.
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Fully Supervised Adapter Based

Src →Trg DANN- DSN- TASK- TS-DT- JOINT-DT-

A → BA 87.68 (1.92) 86.46 (0.26) 87.13 (0.23) 87.03 (0.26) 88.24 (0.76) 88.74 (0.13)

A → BO 83.73 (1.61) 78.41 (1.14) 80.23 (0.81) 84.15 (1.10) 84.22 (0.76) 84.96 (0.28)

A → C 90.00 (1.17) 87.31 (0.39) 87.58 (0.48) 89.67 (0.32) 88.76 (1.32) 89.39 (0.23)

A → MR 76.57 (0.36) 75.54 (0.63) 75.96 (0.27) 76.63 (0.92) 77.39 (0.13) 77.63 (0.71)
BA → A 88.56 (1.04) 87.72 (1.85) 87.62 (0.86) 88.33 (1.10) 89.55 (0.10) 89.70 (0.23)

BA → BO 85.52 (0.59) 82.89 (3.08) 84.26 (0.85) 84.61 (0.39) 84.38 (0.61) 85.01 (0.60

BA → C 89.58 (0.32) 86.63 (0.53) 88.44 (0.90) 90.63 (0.33) 87.46 (0.88) 88.64 (0.30)

BA → MR 77.26 (0.71) 74.48 (1.79) 48.67 (15.98) 78.74 (0.35) 79.42 (0.44) 78.44 (0.70)

BO → A 87.38 (1.08) 85.90 (0.12) 86.62 (0.41) 85.03 (0.36) 84.79 (0.75) 87.46 (0.27)

BO → BA 84.72 (1.15) 82.06 (1.15) 82.75 (1.51) 86.50 (0.39) 86.84 (0.48) 86.41 (0.79)

BO → C 87.58 (0.67) 86.94 (0.83) 86.61 (1.03) 88.44 (0.53) 87.86 (0.61) 88.53 (0.43)

BO → MR 80.14 (0.52) 76.19 (0.89) 72.08 (7.29) 79.44 (0.95) 80.52 (0.61) 78.91 (0.38)

C → A 89.46 (0.49) 87.02 (1.86) 85.50 (1.30) 87.74 (1.18) 88.53 (0.42) 88.92 (0.44)

C → BA 90.15 (0.46) 88.10 (1.13) 88.56 (0.25) 81.71 (2.72) 89.72 (0.43) 89.32 (0.42)

C → BO 85.08 (0.97) 81.18 (2.07) 83.81 (1.68) 80.55 (0.81) 84.14 (0.52) 85.42 (0.70)

C → MR 76.03 (1.15) 64.99 (5.91) 63.59 (11.98) 69.53 (1.24) 73.22 (0.48) 73.50 (0.84)

MR → A 79.55 (1.38) 81.05 (1.15) 66.28 (19.68) 82.45 (1.43) 81.93 (0.47) 84.41 (0.43)

MR → BA 74.63 (9.8) 77.95 (1.46) 54.64 (17.71) 81.70 (1.22) 84.28 (0.41) 84.91 (0.36)

MR → BO 86.09 (1.0) 82.83 (0.62) 49.92 (24.06) 84.90 (0.23) 84.47 (0.80) 84.45 (0.31)

MR → C 76.54 (1.78) 84.58 (0.46) 69.47 (12.49) 86.68 (0.65) 86.25 (0.38) 88.37 (0.11)

Avg 83.81 (1.41) 81.91 (1.37) 76.49 (5.98) 83.72 (0.88) 84.60 (0.57) 85.16 (0.43)

Table 4: F1 scores for AMAZON dataset. We report the mean and standard deviation of 3 runs. The five domains are
Apparel (A), Baby (BA), Books (BO), Camera_Photo (C) and Movie Reviews (MR). The difference between this
table and Table 2 is we experiment with DSN- . fine-tunes a language model using labeled data from the
source domain and tests it on the target domain. This shows that just using the supervised data from the source
domain is not enough

Figure 5: t-SNE plots for the pretrained representations from bert-base-uncased for MNLI. Lower layers are
domain-invariant whereas higher layers are domain variant.
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Fully Supervised Adapter Based

Src →Trg DANN- DSN- TASK- TS-DT- JOINT-DT-

F →S 71.58 (0.31) 70.96 (0.03) 70.16 (0.25) 72.36 (0.36) 73.46 (0.34) 72.30 (0.26)

F →G 79.05 (0.94) 78.73 (0.43) 77.01 (0.31) 79.00 (0.46) 78.65 (0.25) 79.79 (0.22)

F →TE 74.73 (0.41) 70.89 (0.74) 69.89 (0.04) 70.83 (0.54) 73.05 (0.70) 71.59 (0.78)

F→TR 75.84 (0.48) 74.42 (0.18) 73.98 (0.70) 75.85 (0.19) 76.75 (0.80) 77.07 (0.26)

S →F 76.27 (0.30) 73.89 (0.61) 73.79 (0.06) 75.25 (0.19) 75.52 (0.89) 75.35 (0.56)

S →G 81.00 (0.37) 79.99 (0.36) 79.39 (0.16) 80.76 (0.40) 81.65 (0.11) 80.94 (0.30)

S →TE 74.32 (0.71) 72.29 (0.57) 71.69 (0.16) 72.66 (0.79) 74.09 (0.30) 73.38 (0.63)

S →TR 77.85 (0.40) 75.58 (0.54) 75.24 (0.42) 76.16 (0.22) 77.31 (0.60) 77.16 (0.18)

G →F 73.12 (0.39) 71.57 (0.68) 70.67 (0.29) 72.66 (0.31) 72.66 (0.56) 73.56 (0.23)

G →S 72.10 (1.01) 70.17 (0.64) 70.31 (0.44) 71.11 (0.38) 71.14 (0.21) 71.36 (0.04)

G →TE 72.80 (0.32) 69.45 (0.96) 69.47 (0.25) 71.40 (0.30) 71.53 (1.04) 71.99 (0.67)

G →TR 76.76 (0.08) 74.35 (0.22) 74.00 (0.32) 76.29 (0.10) 76.16 (0.34) 76.79 (0.59)

TE →F 73.25 (0.36) 72.24 (0.59) 73.04 (0.28) 74.48 (0.33) 73.34 (0.41) 73.89 (0.12)

TE →S 69.52 (1.17) 69.09 (1.79) 69.40 (0.42) 70.94 (0.16) 70.94 (0.55) 71.41 (0.19)

TE →G 77.59 (1.38) 77.80 (0.27) 77.56 (0.46) 79.24 (0.35) 79.65 (0.60) 79.78 (0.64)

TE →TR 72.45 (2.44) 74.67 (0.50) 74.14 (0.21) 75.27 (0.83) 76.11 (0.91) 75.95 (0.50)

TR →F 72.78 (0.37) 70.27 (0.45) 71.10 (0.21) 72.20 (0.49) 73.12 (0.08) 73.13 (0.22)

TR →S 70.40 (0.10) 68.35 (0.62) 69.92 (0.50) 70.28 (0.37) 70.67 (0.50) 71.28 (0.38)

TR →G 79.75 (0.42) 79.25 (0.34) 79.75 (0.24) 81.26 (0.37) 81.11 (0.42) 81.55 (0.16)

TR →TE 72.02 (0.49) 69.33 (0.41) 70.10 (0.52) 70.98 (0.11) 70.95 (0.19) 71.42 (0.12)

Avg 74.66 (0.62) 73.16 (0.55) 73.03 (0.32) 74.45 (0.40) 74.89 (0.49) 74.98 (0.35)

Table 5: F1 scores for MNLI. We report mean and standard deviation of 3 runs. The five domains are Fiction (F),
Slate (S), Government (G), Telephone (TE), and Travel (TR). The difference between this table and Table 3 is we
experiment with DSN- . fine-tunes a language model using labeled data from the source domain and tests it
on the target domain. This shows that just using the supervised data from the source domain is not enough.

Figure 6: t-SNE plots for the representations from domain adapter trained on S → TR domain for MNLI. We reduce
divergence between domains for all layers.
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Figure 7: t-SNE plots for the pretrained representations from bert-base-uncased for AMAZON. Lower layers are
domain-invariant whereas higher layers are domain variant.

Figure 8: t-SNE plots for the representations from domain adapter trained on C→ BO domain for AMAZON. We
reduce divergence between domains for all layers.
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(a)

(b)

Figure 9: (a) Vocabulary overlap (%) between domains in AMAZON. (b) Vocabulary overlap (%) between domains
in MNLI.
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Abstract

For end-to-end speech translation, regulariz-
ing the encoder with the Connectionist Tem-
poral Classification (CTC) objective using the
source transcript or target translation as labels
can greatly improve quality metrics. How-
ever, CTC demands an extra prediction layer
over the vocabulary space, bringing in non-
negligible model parameters and computational
overheads, although this layer is typically not
used for inference. In this paper, we re-examine
the need for genuine vocabulary labels for CTC
for regularization and explore strategies to re-
duce the CTC label space, targeting improved
efficiency without quality degradation. We
propose coarse labeling for CTC (CoLaCTC),
which merges vocabulary labels via simple
heuristic rules, such as using truncation, di-
vision or modulo (MOD) operations. Despite
its simplicity, our experiments on 4 source and
8 target languages show that CoLaCTC with
MOD particularly can compress the label space
aggressively to 256 and even further, gaining
training efficiency (1.18× ∼ 1.77× speedup
depending on the original vocabulary size) yet
still delivering comparable or better perfor-
mance than the CTC baseline. We also show
that CoLaCTC successfully generalizes to CTC
regularization regardless of using transcript or
translation for labeling.

1 Introduction

Developing techniques to support the translation
from a source-language audio to a target-language
text directly, or end-to-end (E2E) speech transla-
tion (ST), has attracted increasing attention recently
due to its potential of reducing translation latency
and avoiding error propagation (Duong et al., 2016;
Bérard et al., 2016). However, solving this task is
non-trivial because of the speech-text modality gap:
one word corresponds to a stochastic sequence of
speech signals that vary greatly across speakers and
over contexts, which increases the learning diffi-
culty. Recent progress on E2E ST mainly focuses

on bridging this gap through the encoder-decoder
framework from diverse perspectives (Di Gangi
et al., 2019; Salesky et al., 2019; Zhang et al., 2020;
Wang et al., 2020b; Han et al., 2021; Zheng et al.,
2021).

CTC regularization is such an approach that fa-
cilitates the modeling of translation by aligning
speech representations from the encoder with dis-
crete labels dynamically via the lens of the Con-
nectionist Temporal Classification (CTC) objec-
tive (Graves et al., 2006b). Bahar et al. (2019)
first examined the use of the source transcript as
discrete labels, improving translation quality con-
sistently across various ST settings; Zhang et al.
(2022) further discovered that using the target trans-
lation as labels instead can also be surprisingly ef-
fective although speech-translation pairs arguably
violates CTC’s monotonicity prerequisite. Nev-
ertheless, these successes come at the cost of in-
creased computational overheads and model param-
eters because CTC demands an extra prediction
layer over its label space for probability estima-
tion and this space is often huge – traditionally the
source or target vocabulary size (Gaido et al., 2020).
We thus explore strategies to achieve the best of
both worlds, i.e., improving the efficiency of CTC
regularization without hurting its performance.

We address this problem by reexamining the
need for genuine vocabulary labels for CTC. In
contrast to CTC-based generation (Graves et al.,
2006b), the prediction layer in CTC regularization
of ST is discarded at inference. In other words,
sticking to genuine labels is computationally un-
necessary. Since the large label space of CTC is a
crucial bottleneck hindering training efficiency, we
explore ways of reducing it. We propose Coarse
Labeling for CTC (CoLaCTC) that manipulates
this space by merging vocabulary labels based on
simple heuristic rules. Concretely, we map the
source or target vocabulary to a pseudo label space
subject to some predefined size using simple op-
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Method Mapping # Labels ID Sequence

Genuine Labels f(z) = z V 0,1,2,3,4,5,6,7,8

CoLaCTC

Truncation f(z) = min(z, L-1) L 0,1,2,2,2,2,2,2,2
Modulo f(z) = z % L L 0,1,2,0,1,2,0,1,2
Division f(z) = ⌊z / (V/L)⌋ L 0,0,0,1,1,1,2,2,2

Log-Scaling f(z) = ⌊log(max(z,1)) * L/log(V)⌋ L 0,0,0,1,1,2,2,2,2

Table 1: Overview of different mappings for CoLaCTC. V and L denote the original vocabulary size and the specified coarse
label size, respectively, and V ≫ L. z is the vocabulary-space token ID starting from 0. The ID sequence is just for a toy
example, and we set V = 9, L = 3 for illustration. f(·) shows the mapping function. CoLaCTC adopts different operations to
reduce the label space from V to L.

erations, such as truncation, modulo, division and
log-scaling as shown in Table 1.

Despite the label space being transformed, the
generated coarse labels still maintain a strong corre-
lation with their vocabulary counterparts, ensuring
their informativeness for representation learning.
We rigorously examined our method on the MuST-
C (Di Gangi et al., 2019) and the Multilingual
TEDx (Salesky et al., 2021) benchmarks, covering
4 source languages and 8 target languages. Across
diverse settings, CoLaCTC successfully achieves
comparable or even better translation performance
than the CTC baseline but with significantly im-
proved training efficiency (up to 1.77× speedup
depending on the original vocabulary size). Our
main contributions are summarized below:1

• We propose coarse labeling for CTC regular-
ization which offers a mechanism to decouple
the CTC label size from the vocabulary size;
with CoLaCTC, a CTC-regularized model can
be trained nearly as fast as a non-CTC model.

• We compare two types of CTC regularization
for ST, i.e., using transcript or translation for
labeling, and show that transcript performs
better when it is available.

• CoLaCTC delivers promising performance on
4 source and 8 target languages, and also gen-
eralizes to both types of CTC regularization.

• Our empirical analysis reveals that CoLaCTC
benefits translation similarly to the CTC base-
line on different aspects, including homo-
phone translation, and seems to improve the
contextualization of speech representations.

2 Related Work

Solving E2E ST requires techniques to mitigate the
speech-text modality gap. One way is to develop

1Source code: https://github.com/bzhangGo/zero.

advanced architectures integrating speech-specific
characteristics to the encoder, such as locality mod-
eling for the self-attention (Di Gangi et al., 2019;
Gulati et al., 2020) and adaptive speech representa-
tion grouping (Salesky et al., 2019; Liu et al., 2020;
Zhang et al., 2020). Another way is to leverage
knowledge from other languages and/or tasks, in-
cluding automatic speech recognition (ASR) and
machine translation (MT) based multi-task model-
ing (Anastasopoulos and Chiang, 2018; Dong et al.,
2021; Du et al., 2021), cross-lingual transfer learn-
ing (Inaguma et al., 2019; Di Gangi et al., 2019;
Li et al., 2021), and large-scale weakly, semi- and
self-supervised pretraining (Schneider et al., 2019;
Ao et al., 2021; Bapna et al., 2022). Our method
contributes to E2E ST by accelerating CTC regu-
larization with coarse labels, and is theoretically
orthogonal to all the techniques aforementioned.
In this study, we mainly focus on bilingual ST us-
ing triplet data alone, and leave the exploration of
how our method is compatible with other setups to
future work.

CTC was first proposed to handle the sequence
mismatch problem between acoustic features and
transcript tokens, and has been widely applied to
ASR (Graves et al., 2006b,a; Chan et al., 2016) and
other tasks where the input sequence is longer than
the output and their alignment is monotonic (Niu
and Mak, 2020; Cai et al., 2022). Recent stud-
ies also show promising results when applying
CTC to non-monotonic tasks, specifically to non-
autoregressive ST and MT (Libovický and Helcl,
2018; Saharia et al., 2020; Gu and Kong, 2021;
Chuang et al., 2021). All these methods treat the
prediction layer in CTC as a generator, used to pre-
dict final outputs. By contrast, Kim et al. (2017)
used CTC as an auxiliary objective to improve ASR.
In E2E ST, Liu et al. (2020), Gaido et al. (2021),
Xu et al. (2021) and Dong et al. (2021) leveraged
CTC to compress speech representations to bridge
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the modality gap; Bahar et al. (2019) and Gaido
et al. (2022) explored CTC as a regularizer using
source transcript as labels, showing encouraging
performance although the prediction layer is not
used at inference; Zhang et al. (2022) further inves-
tigated E2E ST without transcript, and found that
CTC regularization with translation as labels also
works. Our study follows CTC regularization and
extends it with CoLaCTC to address its training
inefficiency issue. As far as we know, exploring
coarse labels for CTC has never been investigated
before, at least on ST.

3 Background: CTC Regularization

CTC regularization improves the encoder-decoder
based E2E ST by adding a CTC regularizer to the
conventional translation loss (Bahar et al., 2019;
Zhang et al., 2022). Formally, given a (source
speech, target translation) pair denoted as (X,Y )
respectively, E2E ST with CTC regularization is
optimized via the following interpolated objective:2

(1− λ)LMLE(Y |Y)︸ ︷︷ ︸
translation loss

+λLCTC(Z|X)︸ ︷︷ ︸
regularization

, (1)

where λ is a hyperparameter balancing different
sub-objectives. X ∈ R|X|×d and Y ∈ R|Y |×d de-
note the encoder output (or speech representation)
and the decoder output, respectively. Z is the label
sequence for CTC, which is often either the source
transcript or the target translation. | · | indicates the
sequence length and d is the model dimension.

The translation loss LMLE aims at maximizing
the likelihood of observed training instances. Of-
ten, we decompose the likelihood token-wise in
accordance with the autoregressive generation

LMLE(Y |Y) = −
∑

t

log p(yt|y<t), (2)

with p(yt|y<t) ∼ softmax
(
WMLEyt

)
, (3)

where yt stands for the t-th target token. yt ∈ Rd is
the t-th row of Y, representing the translation pre-
fix y<t = {y1, . . . , yt−1}. WMLE ∈ RV MLE×d, also
called softmax embedding, is a trainable parame-
ter, and V MLE is the target vocabulary size. E2E
ST uses this embedding to estimate the translation
probability of each target word as shown in Eq.
(3)3. At inference, the emitted probability offers
direct evidence to search translation candidates.

2Note we use X,Y to denote the input, and their bold
variants to denote the learned hidden representations.

3We drop the bias term for clarity.

By contrast, the regularization term LCTC en-
courages the dynamic alignment of speech repre-
sentations (X) with their corresponding discrete
labels (Z) through the CTC algorithm. CTC regu-
larization also maximizes the likelihood. But dif-
ferent from the token-by-token formulation in Eq.
(2), CTC estimates the likelihood by marginaliz-
ing over all valid mappings between the input and
output sequence (Graves et al., 2006b)

LCTC(Z|X) = − log
∑

A∈Γ(Z)

∏

k

p(ak|xk), (4)

with p(ak|xk) ∼ softmax
(
WCTCxk

)
, (5)

where Γ(Z) denotes the set of all valid aligned se-
quences. The probability of each aligned label ak
in the sequenceA is estimated by a prediction layer
based on the corresponding speech representation
xk as shown in Eq. (5). WCTC ∈ RV CTC×d is the
prediction parameter, and V CTC = V + 1 denotes
the CTC label size. When the source transcript
(target translation) is used as labels, V is the source
(target) vocabulary size; the extra label is for the
special blank symbol. We refer readers to Graves
et al. (2006b) for more details. Note that this predi-
cation layer will be discarded after training when
CTC is purely used for regularization.

Previous studies have examined using either
source transcript (Bahar et al., 2019; Gaido et al.,
2022) or target translation (Zhang et al., 2022) as
labels for CTC regularization, but separately. In
Section 5.1, we will compare these two types of
CTC regularization under the same setup.

4 Coarse Labeling for CTC

Unfortunately, CTC regularization suffers from
training inefficiency. Despite CTC being efficiently
addressed via dynamic programming, its predic-
tion layer in Eq. (5) is unavoidable. This layer
introduces considerable computational overhead
due to scaling linearly with the vocabulary size and
also brings in large number of model parameters
particularly when V ̸= V MLE. How to improve
the efficiency, and save model parameters while
retaining the performance is the focus of our study.

We draw inspiration from the fact that the pre-
diction layer in CTC regularization is not used for
inference. Thus, sticking to genuine vocabulary la-
bels is unnecessary technically. If we could design
pseudo labels in a reduced label space as alterna-
tives to the genuine ones, that would address the

2266



inefficiency issue. Following this intuition, we pro-
pose coarse labeling for CTC (CoLaCTC) which
formulates the pseudo label generation process as
a vocabulary mapping:

f(z) : N[0...V−1] 7→ N[0...L−1], (6)

where z denotes the original vocabulary ID. L is a
hyperparameter specifying the label size, and we
often set L ≪ V . This transformation decouples
the label size of CTC from the vocabulary size, of-
fering flexibility to optimize the training efficiency.
One assumption behind such formulation is that
the success of CTC regularization mainly comes
from the inductive biases of the CTC algorithm
rather than the genuineness of its labels4, which we
verified empirically through experiments.

Eq. (6) merges a set of vocabulary labels into
one label according to f(·). Potential mappings are
many, such as grouping semantically similar words
or considering phonetic similarity. But these lin-
guistically inspired approaches often lack freedom
in manipulating the label space (L). Instead, we
adopt the following heuristic methods (as shown in
Table 1):5

Truncation (TRU) Learning speech representa-
tions for infrequent items is often difficult,
so we merge all vocabulary labels except for
the top-(L− 1) in TRU

f(z) = min(z, L− 1), (7)

with the hope that those frequent items could
provide informative clues for CTC.

Modulo (MOD) Nevertheless, infrequent items
might carry crucial content information. In-
stead of naively collapsing them, MOD

merges diverse labels of varying frequencies
based on a fixed interval

f(z) = z (mod L). (8)

Division (DIV) Different from items with varying
frequencies, items of similar frequency often
share similar linguistic properties. We explore

4The inductive biases include the modeling of local struc-
tures for speech, word boundary identification and label-
guided speech representation learning, etc.

5Note that we followed the standard practice and ranked
the items in our vocabulary based on their frequency. In this
study, the items are (sub)words.

this in DIV which merges labels of similar
ranks uniformly

f(z) = ⌊z ∗ L/V ⌋ , (9)

where ⌊·⌋ denotes the floor function.

Log-Scaling (LOG) One drawback of DIV is that
the distribution of its coarse labels becomes
badly skewed. To offset this problem, we
further study a non-linear, log-scaled transfor-
mation, LOG

f(z) = ⌊log (max (z, 1)) ∗ L/log(V )⌋ . (10)

Note we intentionally use simple operations to keep
the simplicity of CoLaCTC. All the above opera-
tions are trivial to implement.

Although labels generated by these operations
become linguistically less meaningful, they still
keep a strong correlation with their genuine vo-
cabulary counterparts. We expect this correlation
could ensure the informativeness of each coarse
label and further facilitate the generalization of
CoLaCTC to CTC regularization. We compare
different operations via experiments.

5 Experiments

Setup We work on two benchmarks, Multilingual
TEDx (Salesky et al., 2021) and MuST-C (Di Gangi
et al., 2019), covering 4 source and 8 target lan-
guages. MuST-C (v1) is an English-audio based
multilingual corpus, including translations from
English (En) to 8 languages: German (De), Span-
ish (Es), French (Fr), Italian (It), Dutch (Nl), Por-
tuguese (Pt), Romanian (Ro) and Russian (Ru).
The training data for each language pair has ∼452
hours with about 252K utterances on average, and
we use the given dev and tst-COMMON splits as
the dev and test set, respectively. In contrast, Mul-
tilingual TEDx is a multi-source and multi-target
ST corpus, containing audios in diverse languages,
although its scale is relatively small. We regard this
benchmark as a testbed to examine the applicability
of our method to audios other than English. We re-
port results on 6 translation directions, i.e., Es-En,
Es-Pt, Fr-En, Pt-En, Fr-Es and Fr-Pt. The train-
ing data of different language pairs ranges from
25 hours (16K utterances, Fr-Pt) to 69 hours (39K
utterances, Es-En), and we use the official dev and
test sets for experiments.

2267



32 64 128 256
Coarse Label Size L

20.5

21.0

21.5

22.0

22.5

23.0

B
L

E
U

Baseline

CTC Reg. + translation

CoLaCTC w/ Tru

CoLaCTC w/ Mod

CoLaCTC w/ Div

CoLaCTC w/ Log

Figure 1: Translation results of different CoLaCTC methods
on the MuST-C En-De test set as a function of the coarse label
size L. Reg.: short for regularization. Here we use translation
labels for CTC regularization.

We focus on bilingual ST and adopt the E2E ST
model following Zhang et al. (2022) which con-
catenates neighboring frames for downsampling
followed by a variant of Transformer for translation.
We set λ = 0.3 for CTC regularization. We evalu-
ate the translation quality using (Sacre)BLEU (Post,
2018).6 We didn’t perform any filtering to the test
set. All models are implemented in Tensorflow,
and trained from scratch without any ASR or MT
pretraining. We refer readers to Appendix A for
details on data preprocessing and training.

5.1 Analysis on MuST-C En-De

Coarse label size matters, and MOD performs
the best. CoLaCTC depends on not only the map-
ping function selected, but also the coarse label
size specified. In general, CoLaCTC with a larger
label size produces coarse labels closer to the gen-
uine ones, thus behaving more robustly. We first
perform ablations for CoLaCTC with the target
translation as labels, where only speech-translation
pairs are used at training (Zhang et al., 2022).

We vary L from 32 to 256, and show the re-
sults in Figure 1. Different mapping functions have
different properties and also show different behav-
iors, where the label size yields profound impacts.
When L is small, DIV performs the worst, followed
by LOG and TRU while MOD performs the best.
With the increase of L, the performance difference
between different mappings narrows. Label size
matters, but the optimal size varies for different
mappings. Under different settings, MOD performs
the best and is most robust, nearly dominating the
others. We next mainly study MOD for CoLaCTC.

6Signature: BLEU+c.md+#ref.1+s.exp+tok.13a+v.1.4.14
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Figure 2: Translation results for CoLaCTC with MOD on
the MuST-C En-De test set as a function of L. Here we use
transcription labels for CTC regularization.

System #Param BLEU Speedup

Baseline 46.1M 21.8 1.39×
CTC Reg. + translation 47.9M 22.7 1.00×

+ CoLaCTC 46.2M 22.7 1.39×
+ share parameters 46.1M 22.4 0.97×

CTC Reg. + transcription 47.5M 23.8 1.00×
+ CoLaCTC 46.2M 24.3 1.31×

Table 2: Test results of different systems on MuST-C En-De.
L = 256 for CoLaCTC. #Param: the number of parame-
ters. share parameters: share parameters between WMLE and
WCTC. We perform three runs (50 steps each) to evaluate the
training speedups on GeForce GTX TITAN X.

CoLaCTC performs comparably to the CTC
baseline. Figure 1 also shows that CoLaCTC de-
livers comparable results to the CTC baseline when
proper L is applied; with MOD even across all
tested L. Note both methods significantly outper-
form the vanilla baseline without CTC regulariza-
tion. This demonstrates that the genuineness of
CTC labels matters less for CTC regularization and
that our strategy – generating coarse labels in a
reduced space – is feasible.

Transcript is more effective than translation as
labels for CTC regularization. Despite being
effective, using translation as labels for CTC reg-
ularization violates the monotonic assumption re-
quired by CTC. CTC with transcripts is more es-
tablished (Bahar et al., 2019; Gaido et al., 2022).
We thus compare these two types of CTC regular-
ization and explore how CoLaCTC generalizes.

Figure 2 shows that using transcript instead
yields substantial quality improvements (+1.0
BLEU), and that CoLaCTC with MOD generalizes
to both settings successfully. Still, the genuineness
of CTC labels matters less than their origin does!
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Figure 3: Test results for different methods on MuST-C En-De
when varying the target vocabulary size V . We adopt transla-
tion labels for CTC regularization. L = 256 for CoLaCTC.

We observe that using 256 coarse labels works well
for CTC regularization under different settings. We
set L = 256 for the following experiments.

CoLaCTC saves model parameters and greatly
improves training efficiency. CTC regulariza-
tion suffers from inefficiency, which increases
model parameters by about 4% and slows the train-
ing by 39% as shown in Table 2. We try to solve
this problem by sharing parameters between the
CTC prediction layer and the softmax output layer
when V = V MLE is the target vocabulary size. Un-
fortunately, this hurts quality and helps the train-
ing efficiency little (+ share parameters). By con-
trast, CoLaCTC nearly recovers the efficiency sac-
rificed by CTC regularization, running as fast as the
vanilla baseline but still retaining quality improve-
ments. Besides, CoLaCTC performs similarly well
with different label sequences.

We also note that the degree of inefficiency de-
pends on the computational framework used. We
re-tested different methods with PyTorch, where
CTC regularization causes a 10% decrease in train-
ing speed, much smaller than 39%. However, the
conclusion that CTC regularization leads to more
trainable parameters and slower running speed, and
that CoLaCTC overcomes this issue, still holds.

CoLaCTC performs robustly over different vo-
cabulary sizes; larger V yields higher speedups.
Apart from the coarse label size, the target vo-
cabulary size V also affects CTC regularization.
Larger vocabulary shortens the target sequence but
increases the CTC label space. Figure 3 shows
the impact of V on CoLaCTC. Translation perfor-
mance is highly sensitive to the vocabulary size.
Using CTC regularization delivers consistent qual-
ity gains against the vanilla baseline, and CoLaCTC
shows promising robustness, matching and even
outperforming CTC regularization with genuine
labels. Regarding training efficiency, the speedup
of CoLaCTC should scale linearly with V in the-
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Figure 4: Training loss as a function of training steps for
different methods on MuST-C En-De. L = 256 for Co-
LaCTC. Random indicates using fully random labels (i.e.
f(z) = randint(0, L)) with a label size of 256.

ory when L is fixed. Figure 3 confirms this where
CoLaCTC achieves higher speedups with larger
vocabulary sizes. Particularly, the speedup reaches
1.77× when V is 16K, a substantial improvement.

CoLaCTC doesn’t hurt the trainability of ST
models. Would CoLaCTC increase the learning
difficulty, which likely reduces performance? Fig-
ure 4 shows that 1) CoLaCTC shows similar con-
vergence to the CTC baseline using either transcript
or translation for labelling; 2) the model using tran-
script as labels converges faster and to a better
local optima than the counterpart using translation,
which also explains the results in Figure 2; 3) ran-
dom coarse labels result in inferior convergence
due to their unpredictable nature.

The vocabulary order of genuine labels has lim-
ited impact on CoLaCTC. As shown in Eq. (6),
the coarse labeling in CoLaCTC highly relies on
the order of original labels in the vocabulary. This
ordering encodes word frequency, which might
offer crucial clues to CoLaCTC and explain its
success. We examine this by randomly shuffling
the vocabulary, thus the original vocabulary ID is
randomly changed and the ordering information
is eliminated. With this shuffled vocabulary, Co-
LaCTC (MOD) achieves a BLEU score of 23.9 on
MuST-C En-De test set, matching the performance
of the CTC baseline (23.8) although underperform-
ing the original CoLaCTC (24.3). CoLaCTC ben-
efits from the order information but still achieves
promising performance without it.

5.2 Results on Other Languages
CoLaCTC achieves great performance for trans-
lation out of English. Table 3 summarizes the
results of CoLaCTC on other MuST-C translation
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System De Es Fr It Nl Pt Ro Ru Avg

ESPnet-ST (Inaguma et al., 2020)† 22.9 28.0 32.8 23.8 27.4 28.0 21.9 15.8 25.1
Contextual Modeling (Zhang et al., 2021) 22.9 27.3 32.5 23.1 26.0 27.1 23.6 15.8 24.8
Fairseq-ST (Wang et al., 2020a)† 22.7 27.2 32.9 22.7 27.3 28.1 21.9 15.3 24.8
NeurST (Zhao et al., 2021) 22.8 27.4 33.3 22.9 27.2 28.7 22.2 15.1 24.9
Wav2Vec-Transformer (Han et al., 2021) 22.3 28.7 34.3 24.2 28.2 29.3 22.4 15.8 25.7
E2E-ST-JT (Du et al., 2021)† 23.1 27.5 32.8 23.6 27.8 28.7 22.1 14.9 25.1
E2E-ST-TDA (Du et al., 2021)† 24.3 28.3 34.6 24.2 28.7 30.3 23.4 15.9 26.2

Baseline 21.8 27.3 32.3 22.5 26.6 27.5 21.8 14.7 24.3
CTC regularization + target translation 22.7 28.1 33.4 23.2 26.9 28.3 22.6 15.4 25.1

+ CoLaCTC 22.7 27.9 33.3 23.7 27.1 28.0 22.4 15.9 25.1
CTC regularization + source transcription 23.8 28.6 33.9 24.3 28.3 29.3 23.3 16.3 26.0

+ CoLaCTC 24.3 28.4 34.5 24.6 28.1 28.8 23.3 16.6 26.1

Table 3: BLEU of different systems on MuST-C tst-COMMON. Avg: average score over different language pairs (translation is
always out-of English). †: systems that might perform filtering to the test set, meaning results are not necessarily comparable.
Baseline: the model without CTC regularization; L = 256 and MOD for CoLaCTC.

System Es-En Es-Pt Fr-En Pt-En Fr-Es Fr-Pt Avg

Bilingual Cascades (Salesky et al., 2021) 15.5 23.3 17.2 16.1 17.8 12.2 17.0
Bilingual E2E ST (Salesky et al., 2021) 7.0 12.2 8.9 8.1 10.6 7.9 9.1
Multilingual E2E ST (Salesky et al., 2021) 12.3 17.4 12.0 12.0 13.6 13.2 13.4

Baseline 11.6 13.3 7.6 8.5 6.1 1.9 8.2
CTC regularization + target translation 13.0 18.2 12.2 11.4 11.5 6.1 12.1

+ CoLaCTC 13.3 19.0 12.1 12.0 11.2 5.0 12.1
CTC regularization + source transcription 18.0 23.0 19.3 17.8 19.8 13.8 18.6

+ CoLaCTC 17.8 23.1 19.9 17.5 19.6 13.3 18.5

Table 4: BLEU Scores on Multilingual TEDx test sets. L = 256 and MOD for CoLaCTC.

directions. The performance of CoLaCTC varies
across different languages with both positive and
negative gains. But overall, CoLaCTC is on par
with its CTC baselines and largely outperforms the
vanilla baseline without CTC regularization. On
average, CoLaCTC delivers a BLEU score of 25.1
and 26.1 when used with translation and transcrip-
tion labels, respectively, which also surpasses many
strong previous studies (Inaguma et al., 2020; Zhao
et al., 2021; Zhang et al., 2021).

Joint training with CTC regularization is prefer-
able to the traditional pretraining-finetuning
paradigm for E2E ST. The current de facto stan-
dard for training an E2E ST model is to firstly
initialize it with a pretrained ASR encoder and/or
MT decoder and then finetune it on ST data. De-
spite its effectiveness, this pipeline paradigm often
consumes longer training time and inevitably com-
plicates the optimization procedure. In contrast,
joint training with CTC regularization is technically
simpler and delivers comparable and even better
results as shown in Table 3, echoing with Gaido
et al. (2022). Note that we also re-implemented
the pipeline baseline using our in-house codebase,
which achieves 22.9 BLEU on MuST-C En-De, far

below the joint training with transcript (23.8).
Since CoLaCTC solves the inefficiency issue for

CTC regularization, we would recommend using
the joint training as the new standard for E2E ST,
especially when only triplet training data is used.

CoLaCTC generalizes to ST settings other than
English audios. The above results for CoLaCTC
are multilingual, but all use English audio from
TED on the source side. To demonstrate generaliza-
tion across different source languages, we conduct
experiments on Multilingual TEDx and work on
ST for Es, Fr and Pt. Table 4 shows that CoLaCTC
generalizes well to other source languages. In ad-
dition, CTC regularization performs much better
on this benchmark, substantially outperforming the
vanilla baseline by 10.4 BLEU, matching the per-
formance of multilingual ST reported by Salesky
et al. (2021). We ascribe this success to the small
scale of Multilingual TEDx where regularization
techniques, like CTC Reg., often work better.

6 Discussion

The promising performance of CoLaCTC inspires
us to further explore why coarse labels could work
for CTC regularization. Analyzing the underlying
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Baseline CTC Reg. w/ Translation CoLaCTC w/ Translation (L = 256) CTC Reg. w/ Transcript CoLaCTC w/ Transcript (L = 256)

Figure 5: Visualization of the cosine similarity of the final-layer speech encoding for different methods. Top: cosine similarity
where darker color shows higher similarity; Bottom: speech spectrogram. The example is for the first test case in MuST-C En-De.

System Similarity

Baseline 0.13
CTC Reg. + translation 0.31

+ CoLaCTC 0.39
CTC Reg. + transcript 0.35

+ CoLaCTC 0.38

Table 5: Cosine similarity of speech representations on the
MuST-C En-De test set. We report average results.

System MT Baseline CL w/

DIV TRU LOG MOD

BLEU 30.5 10.5 15.1 22.9 25.6

Table 6: BLEU scores for text-to-text translation conditioned
on coarse labels on the MuST-C En-De test set. MT Baseline:
En→De translation with the vanilla English input; CL w/ *:
using coarse labels instead as the source input. L = 256. We
use the standard Transformer base setting for experiments.

mechanism theoretically is non-trivial. Instead, we
understand this question through empirical probes,
such as inspecting the change of speech represen-
tations and examining how CoLaCTC behaves on
different translation aspects.

CTC regularization improves the contextual-
ization of speech representations, so does Co-
LaCTC. The CTC objective is directly stacked
onto the encoder, then what happens to the speech
representation (the final encoder output)? Figure
5 illustrates an example, where speech representa-
tions after applying CTC regularization (and Co-
LaCTC) become closer to each other as measured
by the cosine similarity. This is further supported
by the results in Table 5. Still, the local structure
of audio, i.e. the diagonal similarity, is kept. Intu-
itively, the increased cosine similarity is a reflection
of contextualization, and CTC regularization (and
CoLaCTC) encourages the encoder to consider (dis-
tant) contextual clues.

System Noun Verb Adj. Adv. H.Phone

Baseline 43.0 38.6 42.8 46.6 49.4
CTC Reg.

+ translation 44.4 38.9 44.1 46.8 49.2
+ CoLaCTC 44.3 39.1 43.7 47.5 49.2

CTC Reg.
+ transcript 45.8 40.6 46.0 48.3 51.2
+ CoLaCTC 46.1 41.1 45.6 48.0 51.1

Table 7: Translation accuracy of different types of source
words on the MuST-C En-De test set. Adj., Adv. and H.Phone
are short for adjective, adverb and homophone.

Coarse labels especially produced by MOD pre-
serve source semantics and are informative for
translation. The mappings considered in this
study are solely based on heuristic rules. Despite
improvements on ST, whether the generated coarse
labels themselves are informative is still question-
able. We address this concern by performing exper-
iments on text-to-text machine translation and use
the coarse label sequence as the source input. Table
6 shows that the coarse labels encode source seman-
tics, achieving non-trivial translation performance.
In particular, using MOD achieves a test BLEU
score of 25.6. This result still lags far behind the
vanilla MT baseline (30.5), but it demonstrates the
informativeness of coarse labels, and also partially
explains the success of CoLaCTC.

The performance of CoLaCTC is robust on dif-
ferent types of source words. The translation
rule for different types of source words often varies
greatly. Next, we examine how CoLaCTC gener-
alizes to different words, including nouns, verbs,
adjectives, adverbs, and homophones (specific to
speech processing). We annotate the part-of-speech
tag for each source sentence via Stanford POS tag-
ger (Toutanova et al., 2003), and adopt the homo-
phone list used for contextual evaluation (Zhang
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Baseline on MuST-C En-De as a function of token frequency
(x-axis). We perform APT for each token group separately.

System En-It En-Fr

Cov. Acc. Cov. Acc.

Bentivogli et al. (2020) - 43.3 - 46.0

Baseline 53.3 65.8 59.3 64.6
CTC Reg. + translation 56.0 67.2 59.9 66.5

+ CoLaCTC 55.9 67.0 59.6 65.4
CTC Reg. + transcript 55.8 66.9 61.6 66.1

+ CoLaCTC 57.4 66.9 62.0 66.7

Table 8: Coverage (Cov.) and accuracy (Acc.) scores for
gender translation on MuST-SHE En-It and En-Fr.

et al., 2021)7. We employ translation accuracy
as the metric, approximated by the APT frame-
work (Miculicich Werlen and Popescu-Belis, 2017)
where fast_align is used to get the word align-
ment (Dyer et al., 2013). Table 7 shows the results.

CTC regularization largely improves the trans-
lation of nouns and adjectives; using transcript as
labels further benefits the translation for verbs, ad-
verbs and homophones. Regardless of source word
and CTC label types, CoLaCTC shows comparable
(sometimes even better) performance to the CTC
baseline, showing its strong generalization. Note
that observations on other languages, e.g. En-Fr
and En-It, are similar (see Appendix B). Further
analysis shows that the gains by CTC regulariza-
tion and CoLaCTC mainly come from benefiting
rare-word translation, as shown in Figure 6.

CoLaCTC benefits gender translation similarly
to the CTC baseline. Languages often differ
in gender expression, leading to translation dif-
ficulty. We further evaluate how CoLaCTC han-
dles the gender ambiguity using the MuST-SHE
benchmark (Bentivogli et al., 2020). Table 8 shows
that CoLaCTC achieves comparable performance

7The list is publicly available at bit.ly/3mGITEe.

to the CTC baseline, suggesting that using coarse
labels for CTC regularization doesn’t hurt its gen-
der disambiguation ability. Besides, we observe
that translation and transcript labels show similar
positive effects on gender translation.

7 Conclusion and Future Work

In this paper, we have presented coarse labeling
for CTC to address the training inefficiency issue
of CTC regularization. The key idea behind Co-
LaCTC is to transform CTC labels from the vocab-
ulary space to a specified and reduced coarse space.
We adopt trivial mappings for this transformation,
such as using the modulo operation. Despite its sim-
plicity, CoLaCTC successfully achieves the best of
both worlds – improving the training efficiency for
CTC regularization (up to 1.77× speedup) and re-
taining its quality benefits – and generalizes to dif-
ferent types of CTC regularization. Note the train-
ing speedup scales as the vocabulary size increases.
Our analysis further shows that the genuineness of
CTC labels matters less than their origin.

In the future, we are interested in examining the
complementarity of CoLaCTC with other advanced
ST modeling. We will study how our method per-
forms in a multilingual and simultaneous setup as
well as ST settings with extra ASR and/or MT data.

Limitations

While the proposed method achieves encouraging
performance across diverse languages and transla-
tion setups, our understanding of why it performs
so well is still limited, particularly considering the
simplicity of the adopted mapping function (MOD).
Uncovering the underlying reason behind such suc-
cess might offer valuable insights to further the
speech modeling, having a potential broader im-
pact on the speech processing community.
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Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Sessions,
pages 177–180, Prague, Czech Republic. Association
for Computational Linguistics.

Xian Li, Changhan Wang, Yun Tang, Chau Tran, Yuqing
Tang, Juan Pino, Alexei Baevski, Alexis Conneau,
and Michael Auli. 2021. Multilingual speech trans-
lation from efficient finetuning of pretrained models.
In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 827–838,
Online. Association for Computational Linguistics.
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System Noun Verb Adj. Adv. H.Phone

En-It

Baseline 48.0 37.5 45.4 44.0 40.9
CTC Reg. + translation 49.6 38.6 47.2 45.0 41.7

+ CoLaCTC 49.6 38.7 48.3 45.4 42.0
CTC Reg. + transcript 50.5 39.3 48.0 45.2 42.3

+ CoLaCTC 51.2 39.0 49.1 45.7 43.0

En-Fr

Baseline 57.2 51.0 53.4 53.9 58.1
CTC Reg. + translation 58.5 52.8 55.4 54.9 58.9

+ CoLaCTC 58.5 52.3 55.1 54.9 58.2
CTC Reg. + transcript 59.3 53.0 54.9 55.1 59.7

+ CoLaCTC 60.0 53.9 57.0 55.8 60.3

Table 9: Translation accuracy of different types of source words on the MuST-C En-Fr/En-It test set. Adj., Adv. and H.Phone are
short for adjective, adverb and homophone.

their delta and delta-delta features. The final acous-
tic feature vector is 120-dimensional regularized
by mean subtraction and variance normalization.

We focus on bilingual ST and adopt the E2E
ST architecture following Zhang et al. (2022): we
use Transformer with the post layer normaliza-
tion structure plus the sinusoidal positional encod-
ing (Vaswani et al., 2017); we set the encoder and
decoder depth to 12 and 6, respectively, and adopt
the depth-scaled initialization method to stabilize
the training (Zhang et al., 2019); we set the model
dimension to d = 256, the feed-forward layer size
to 4096 and the number of attention head to 4; we
employ the parameterized distance penalty with
R = 512 and set λ = 0.3 for CTC regularization
(Zhang et al., 2022).

We train all models via Adam (Kingma and Ba,
2015, β1 = 0.9, β2 = 0.98) with a warmup step of
4K and label smoothing rate of 0.1. Samples with
around 20K target subwords are scheduled into
one batch for training, and we set the maximum
training step for MuST-C and Multilingual TEDx
to 50K and 20K, respectively. We apply dropout
to residual connections and ReLU activations with
a rate of 0.2. We perform checkpoint evaluation
every 1K training steps on the dev set, and average
the best 10 checkpoints for final testing. We use
beam search for decoding, and set the beam size
to 8. We tune the length penalty for each language
pair on its dev set separately.

B Additional Results and Analysis

The performance of CoLaCTC on different
types of source words generalizes to other lan-
guages. Table 9 shows the translation accuracy
of different models on En-Fr and En-It. The ob-
servation is similar to Table 7, where transcript
labels are more effective than translation labels for

CTC regularization, and that CoLaCTC performs
comparable to genuine labels. One exception is
that CTC regularization also greatly benefits the
translation of verbs and adverbs on En-Fr and En-It.
These results suggest that our observation is not
language-specific or caused by some random ef-
fect, but rather CTC regularization and CoLaCTC
generalizes to different language pairs.
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Abstract

Recent work on predicting category structure
with distributional models, using either static
word embeddings (Heyman and Heyman, 2019)
or contextualized language models (CLMs)
(Misra et al., 2021), report low correlations
with human ratings, thus calling into question
their plausibility as models of human semantic
memory. In this work, we revisit this question
testing a wider array of methods for probing
CLMs for predicting typicality scores. Our ex-
periments, using BERT (Devlin et al., 2018),
show the importance of using the right type of
CLM probes, as our best BERT-based typical-
ity prediction methods substantially improve
over previous works. Second, our results high-
light the importance of polysemy in this task:
our best results are obtained when using a dis-
ambiguation mechanism. Finally, additional
experiments reveal that Information Content-
based WordNet (Miller, 1995), also endowed
with disambiguation, matches the performance
of the best BERT-based method, and in fact cap-
tures complementary information, which can
be combined with BERT to achieve enhanced
typicality predictions.

1 Introduction

The empirical success of contextual language mod-
els (CLMs) (Peters et al., 2018; Devlin et al., 2018;
Liu et al., 2019) has led to much research analyzing
their functionality (Rogers et al., 2020; Wu et al.,
2020; Ethayarajh, 2019) and how they acquire se-
mantic and world knowledge (Petroni et al., 2019).
It also raises the question of their plausibility as
models of human semantic memory (Chronis and
Erk, 2020; Ettinger, 2020; Garí Soler and Apidi-
anaki, 2021). The study of categorical knowledge,
in particular typicality, provides a window into this
question (Murphy, 2004). As initially observed by
Rosch (1975), native speakers of English consider
that certain exemplars (e.g., robin, crow) are more
representative than others (e.g., penguin, ostrich)

of a conceptual category (birds). That is, categor-
ical knowledge is organized along a graded struc-
ture. According to prototype theory (Rosch, 1975),
the structure follows from the fact that properties
frequently shared among category members tend
to be integrated into its prototype.

The main question we raise in this paper is
whether distributional models, and CLMs in par-
ticular, are indeed aware of category structure, as
captured in existing human typicality norms for
English. The broader question for cognitive sci-
ence is whether or not this type of knowledge can
be learned through text-based exposure alone, thus
contributing to the larger debate on the role of lan-
guage in learning semantic knowledge (Lupyan and
Lewis, 2019). But there are also more practical mo-
tivations for this work, as many NLP tasks (such as
information retrieval, question answering, natural
language inference) can arguably benefit from typi-
cality relations by understanding which exemplars
are more relevant to particular concepts.

Previous work on this topic provide mostly neg-
ative results. Heyman and Heyman (2019) use
classical static embeddings and represent typical-
ity scores between categories and their exemplars
as the cosine distance between their correspond-
ing word embeddings. They conclude that static
embeddings poorly account for human typicality
scores, as obtained from Morrow and Duffy (2005).
More recently, Misra et al. (2021) use various
CLMs to predict typicality. While CLMs have
a larger, more expressive parameter space and are
tuned over larger corpora with arguably better learn-
ing objectives than static word embeddings, Misra
et al. (2021) report only slightly better, and still
modest, correlations with human typicality judge-
ments (in this case, Rosch (1975)). Their probing
approach uses a Cloze test formulation over taxo-
nomic sentences (e.g., A robin is a bird).

We revisit this question by first introducing an ex-
panded suite of methods to extract typicality scores
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from CLMs, some of which improve correlations
with human norms, showing the importance of us-
ing the right probe for typicality. How to reliably
and efficiently probe CLMs is still an open ques-
tion, including supervised and unsupervised ap-
proaches (Rogers et al., 2020; Elazar et al., 2021;
Wu et al., 2020). The problem is exacerbated by
the fact that typicality is a relation between pairs
of concepts, abstracted away from contexts, while
CLMs produce representations for contextualized
word tokens (not types). We consider a wider array
of approaches, all unsupervised, for predicting typ-
icality from CLMs, using BERT as representative
test case. Our probing approaches fall into two
main classes: (i) BERT as a probabilistic language
model, and (ii) generating "static" word embed-
dings from contextual BERT embeddings.

Our second contribution is showing the impor-
tance of polysemy (e.g., orange can be a fruit, a
color, or a company) for typicality, an issue that has
been largely overlooked in previous works. When
judging category-exemplar pair typicality, humans
arguably don’t consider all the senses of the cate-
gory and exemplar words. Instead they consider
the senses of the category and exemplar that are
most compatible with one another, in effect per-
forming a joint disambiguation. Polysemy is prob-
lematic for static word embeddings as they col-
lapse word senses into a single vector. CLMs, on
the other hand, provide some form of sense selec-
tion through contextualization (Ethayarajh, 2019;
Garí Soler and Apidianaki, 2021), but there are
many possible ways to use CLMs and to provide
contexts to these models (such as sampled or tax-
onomic sentences). We find that using a simple
disambiguation mechanism, such as the method of
deriving multi-prototype embeddings introduced in
Chronis and Erk (2020), leads to typicality predic-
tions more closely correlated with human rankings.

Finally, another research question we address in
this paper is whether categorical structure is present
in lexical semantic networks, such as WordNet
(Miller, 1995). The hierarchical concept organi-
zation in WordNet was indeed initially inspired
by theories of human semantic memory (Beckwith
et al., 2021). Note that polysemy is also an issue
in using WordNet, as we need to map category
and exemplars to specific synsets. However, using
the structure of WordNet, a simple disambiguation
heuristic, and taking into account word frequency
information leads to competitive results. Further-

more, we find that WordNet-based and BERT-based
typicality predictions contain complementary infor-
mation, and creating a simple ensemble method of
the two further increases performance.

In summary, our main contributions are:

• We introduce and compare a large array of un-
supervised probing approaches for assessing
whether BERT capture the internal structure
of semantic categories.

• Our experiments reveal BERT can predict hu-
man typicality rankings more reliably than
previously found in Heyman and Heyman
(2019) and Misra et al. (2021), but only when
endowed with a disambiguation mechanism.

• Similarly, typicality predictions based on the
structure of WordNet (again with a disam-
biguation mechanism) can achieve similar but
complementary performance.

• A simple combination of BERT and WordNet
predictions leads to a higher level of correla-
tion (Spearman greater than 0.5) with human
typicality rankings.

2 Related Work

Recent years have seen an ever growing body of
work on assessing whether distributional models
constitute realistic models of human semantic mem-
ory, within both NLP (Chronis and Erk, 2020; Et-
tinger, 2020) and Cognitive Science (Hollis, 2017;
Hollis and Westbury, 2016; Mandera et al., 2017;
Günther et al., 2019; Lupyan and Lewis, 2019; Ku-
mar, 2021). In this context, the study of categori-
cal knowledge, and specifically graded typicality,
plays a crucial role, given it is one of the most
reliable findings in the study of human categori-
cal knowledge (Rosch, 1975; Murphy, 2004). The
first work on using distributional models to predict
typicality scores is Heyman and Heyman (2019),
who estimate these scores, in English and Dutch,
using cosine distances between the static embed-
dings of the exemplar and category words. These
show that static embeddings, whether trained in a
counted- or prediction-based fashion, yield poor
correlations with human typicality norms. On the
related task of lexical entailment (LE), Vulić et al.
(2017) evaluated different unsupervised and super-
vised methods that use static word embeddings.
They also found a significant gap between static
word embeddings and human norms. While LE
is closely related to typicality, it differs in that LE
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predicts the relationship between two words, while
typicality compares the relationship between two
concepts (in which words are used as a proxy, in our
case). Also, LE ratings are not restricted to pairs of
words belonging to the same category. We differ
from these earlier work on typicality by consider-
ing more expressive CLMs instead of static em-
beddings. The most closely related work is Misra
et al. (2021) who probe a wide range of CLMs
(i.e., different variants of BERT and GPT) for pre-
dicting typicality scores: these are extracted using
a Cloze task formulation over hand crafted taxo-
nomic sentences (e.g. A robin is a bird.). They
report better correlation scores with human norms,
although still modest, which they take as indication
that text exposure is not sufficient to learn category
structure. Our focus in this work is different and
somewhat broader in that we consider a wider array
of probing methods of CLMs, though restricted to
unsupervised ones. Supervised probing approaches,
based on classifiers taking CLM representations as
inputs, are problematic as they provide a less di-
rect probing approach, possibly adding additional
confounds (Elazar et al., 2021; Wu et al., 2020).
Another distinctive aspect of our work is that we
compare CLMs to lexical networks like WordNet
(Miller, 1995). Furthermore, we study the impact
of polysemy in typicality, which was not controlled
in Misra et al. (2021) or in Heyman and Heyman
(2019). The work of Apidianaki and Garí Soler
(2021) shares some similarities with (Misra et al.,
2021): they also use BERT under a Cloze task
setting to study typicality, but they focus on identi-
fying whether the model has access to prototypical
properties of concepts (e.g., a ball is round).

3 Problem Setting and Framework

This section presents our general framework for
assessing whether a lexical representation model
(i.e., a CLM or semantic network) is aware of cate-
gory structure; the specific probing approaches will
be described in Sec. 4. Let us assume a generic
conceptual space consisting of a set C of categories
as well as a set E of exemplars of these categories.
For each category c in C, we assume a set of nc
exemplars eci in E for i = 1 to nc. Following the
findings of Rosch (1975), we posit that this concep-
tual space has a graded structure, in that certain ex-
emplars (e.g., robin, crow) are more closely repre-
sentative of their category (e.g., birds) than others
(e.g., penguin, ostrich). This can be expressed

through a typicality score tci ∈ R+
0 , often an or-

dinal scale, for each eci , where tci > tcj indicates
that exemplar eci is more typical of category c than
ecj . These typicality scores can be obtained from
human subjects through various kinds of stimuli,
such as direct scoring of category-exemplar word
pairs (e.g., robin-bird) and scoring of a taxonomic
sentence (e.g., A robin is a bird.)(see Sec. 5.1).

To assess whether a lexical representation model
is aware of such a structure, three main components
are needed. As the conceptual space is latent, we
first need a concept-to-word mapping function
from category and exemplar concepts to words.
As is done in human studies and previous work,
we assume that categories and exemplars are reli-
ably accessed through their corresponding singular
words: the concepts robin and bird are accessed
via the words robin and bird, respectively. This is a
simplification, as the same concept can be realized
by plural forms, as well as by different (synony-
mous) words. Given this functional mapping, we
will conflate a category c with its category word c
and an exemplar eci with its exemplar word eci .

Second, we define a typicality scoring function
over exemplar-category word pairs, which captures
how typical the exemplar is of the category. Each
model will assign a typicality score sci to each cate-
gory c and exemplar eci pair. Some of our methods
will make use of a text corpus, denoted S, taking
the form of a pre-extracted set of sentences contain-
ing exemplar and/or category words. This corpus
S can be viewed as an extra parameter of the typ-
icality scoring function, as it will directly impact
the predicted typicality values sci . Such a corpus is
required to be able to fully leverage CLMs, whether
they are used as probabilistic language models
or to produce word vector representations. It is
also through this corpus that one hopes to capture
contextual word realizations that approximate the
different senses associated with the exemplar and
category words. Indeed, we hypothesize that one
important aspect of assessing typicality between
category and exemplar words is to be able to deal
with the polysemy of these words, predicting that
the best methods should be able to disambiguate
these words in such a way that the exemplar word
is interpreted in a category-compatible sense and
the category word in an exemplar-compatible sense.
Using WordNet synsets as a proxy for senses, we
find that on average, category words are linked to
4.2 and 4.9 senses, while exemplars are linked to
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3.3 and 4.7 senses on the typicality datasets of Mor-
row and Duffy (2005) and Rosch (1975), respec-
tively1 (see Sec. 5.1 for dataset details). This shows
the depth of the polysemy problem for typicality,
as each word on average has multiple meanings.

Finally, we need an evaluation metric for mea-
suring how well the predicted typicality scores sci
are able to mirror the human judgements tci . The
most obvious choice for this metric is to use Spear-
man rank correlation (Spearman, 1904), as this
correlation measure is non-parametric and makes
no strong (e.g., linear) assumption on the data dis-
tribution or the underlying scoring functions.

4 Methods

We distinguish two classes of methods, de-
pending on whether they use CLMs or Word-
Net. For CLM-based methods, we use BERT
(bert-base-uncased specifically) as a prototypi-
cal CLM to assess whether CLMs are aware of cat-
egory structure. The framework and methods easily
generalize to other CLMs. While the concept-to-
word mapping is the same for these methods, the
scoring function and the probing corpus are differ-
ent. The BERT methods fall into two categories: (i)
those that use BERT as a language model (BERT-
MLM, BERT-SentEmb, BERT-MLM-Taxo), and
(ii) those that extract word vectors from BERT
(BERT-Avg, BERT-MPro). Note that these are all
unsupervised probing methods: when an additional
corpus S is used, it is only used to probe BERT, not
to fine-tune it. These methods embody different
linguistic hypotheses and adopt different ways of
dealing with polysemy. Note that for embedding
methods, we test all layers.

Secondly, we consider lexical semantic net-
works to compute typicality scores, using WordNet
(Miller, 1995) specifically. For this, we use the
Shortest-Path and the Lin (Lin et al., 1998) similar-
ity measures computed on WordNet (Miller, 1995).
We compute the information content (IC) values
(Resnik, 1995) used in the Lin measure using the
additional corpus S. We deal with polysemy by us-
ing the maximum similarity between exemplar and
category synset pairs to compute typicality scores.

4.1 Using BERT’s Language Model
The first class of methods relies on the language
modeling abilities of BERT, using the following

1If restricting synsets to only nouns, the average number
of category senses 2.9 and 3.4 for the two respective datasets,
and 2.4 and 3.1 for exemplars.

hypothesis: the more central (or peripheral) an ex-
emplar is to a category, the more (or less) likely
it is to be used in the category context(s). This
hypothesis can be turned into two different distribu-
tional hypotheses, depending on whether we take
a paradigmatic perspective (i.e., how likely can
the exemplar word be substituted for the category
word in the category contexts) or a syntagmatic
perspective (i.e., how likely can the exemplar be
used next to its category). Our first two probing
methods take a paradigmatic perspective and are
reminiscent of the Distributional Inclusion Hypoth-
esis, first proposed by Geffet and Dagan (2005).
They compute typicality scores that reflect how suc-
cessful the substitution of a category word by an
exemplar is, measured by conditional word proba-
bility (BERT-MLM) or by cosine distance between
sentence embeddings before and after substitution
(BERT-SentEmb). In both, the set of sentences
is restricted to sentences that contain the category
words and is denoted by Sc.

4.1.1 Masked Language Modeling
(BERT-MLM)

Under this approach, typicality is computed as the
conditional probability of seeing the exemplar word
in its category’s contexts. Specifically, for each
sentence in Sc, the category name is masked us-
ing the [MASK] token and the resulting sentence
is passed through BERT and the MLM classifica-
tion, yielding MLM logits for each subtoken in the
vocabulary, which are softmaxed to probabilities.
Typicality scores are obtained by averaging across
sentences the MLM probabilities for each exem-
plar subtoken sequence. Formally, the typicality
score sci for an exemplar eci with li subtokens and
category c, given BERT and masked sentences Sc,
is computed by

sci =
1

|Sc|

|Sc|∑

j=1

li∏

k=1

BERTMLM (Sjck) (1)

where Sjck is the kth subtoken of exemplar eci in the
jth sentence of Sc, and BERTMLM (·) gives the
probability of this subtoken.

4.1.2 Sentence Embedding Modeling
(BERT-SentEmb)

In this method, typicality is taken to be a measure
of how well a category word can be substituted by
its exemplars in sentences Sc without altering the
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overall sentence meaning, which we approximate
as the sentence embedding. Recall that in BERT’s
NSP objective, the [CLS] sentence classification
token is input to the NSP classification head. For
each category name sentence, we compute layer
wise activations of this sentence token. Then, for
each exemplar, we replace the category word in
each sentence with the exemplar and obtain the
same activations. The typicality score is the cosine
similarity of the original sentence embedding and
that of the replaced sentence, averaged across sen-
tences. The sentence embeddings can be obtained
from any layer in the model; we test the method
separately for all layers. Formally, given a cate-
gory c and an examplar eci , a set of sentences Sc
containing the category word c, and a SE(·) func-
tion which outputs a sentence embedding from a
specific layer, the typicality score is computed by

sci =
1

|Sc|

|Sc|∑

j=1

cos(SE(Sc), SE(Sjc→eci )) (2)

where Sjc→eci is Sj with c replaced by eci , and
cos(·, ·) is the cosine similarity operator.

As they rely on paradigmatic substitution, nei-
ther BERT-MLM nor BERT-SentEmb explicitly at-
tempt to disambiguate exemplar or category words,
but one can argue that some form of sense selection
happens through BERT’s contextual modeling and
the selection of category contexts. This ensures
that the word orange is used in fruit compatible
contexts, thus hopefully filtering out contexts com-
patible with other senses (e.g. color), when predict-
ing typicality within the fruit category. But there
is no disambiguation of the category word, as all
of its contexts are randomly sampled. This might
introduce some noise as category examples with
another sense (e.g., fruit of their labor) or even
POS (e.g., the trees fruit early) might be sampled.

4.1.3 Masked Language Modeling with
Taxonomic Sentences
(BERT-MLM-Taxo)

Inspired by Misra et al. (2021)’s Taxonomic Sen-
tence Verification method, our third CLM-based
method is similar to BERT-MLM, but different
in that it uses taxonomic propositions instead of
sampled sentences. These propositions are in the
form "A(n) X is a(n) Y", where X and Y are ex-
emplars eci and categories c, respectively. Typical-
ity scores are obtained in the same way as BERT-
MLM: exemplar subtokens are masked in the taxo-

nomic proposition, MLM logits are obtained from
the model, then the product of the softmaxed log-
its (probabilities) is the typicality score (same as
Eq. 1). While these sentences provide only narrow
contexts, and are somewhat artificial and different
from the BERT’s training data, they are informa-
tive in providing implicit mutual disambiguation of
both the exemplar and category words.

BERT-MLM-Taxo is similar to Misra et al.
(2021), but it differs in two ways. First, Misra et al.
(2021)’s method uses CLMs to compute the proba-
bility of the category word in the taxonomic propo-
sition (i.e. P (c|eci )), while our method does the
opposite (P (eci |c)) to more resemble how humans
are probed for the task. Second, Misra et al. (2021)
calculates conditional probabilities for masked lan-
guage models such as BERT using the formulation
introduced in Wang and Cho (2019): separately
masking each subtoken in the word and passing
these separately masked variants of the taxonomic
sentence through the model, summing the masked
subtokens across variants. While this method is
more theoretically founded (as BERT is not an
incremental language model and cannot compute
probabilities through the chain rule), it is subject
to skewed MLM logits if used on exemplars2, as a
result of words being broken into subtokens (exam-
ple from Misra et al. (2021): if the word ostrich is
segmented into ostr and ich, then the probability of
ich given that it is preceded by ostr is anomalously
high, skewing the sequence probability). Thus, we
mask all subtokens of the exemplar and treat the
resulting probabilities as a sequence.

4.2 BERT-Based "Static" Representations

The next CLM-based methods derive static word
representations from contextual representations
computed over a corpus S which includes sen-
tences containing category words as well as sen-
tences containing exemplar words. We use cosine
similarity between category and exemplar embed-
dings for typicality scores sci = cos(R(eci ), R(c)),
where R(·) provides the static representations of
the category and exemplar. We derive static word
representations by averaging all hidden state activa-
tions of a word over S (BERT-Avg), or clustering
these hidden states, allowing for sense modulation
(BERT-MPro). For this set of methods, our hypoth-
esis is that the vectorial space induced by BERT
captures typicality, as opposed to the language mod-

2All category words are treated as one subtoken.
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eling capabilities used in the methods of Sec. 4.1.

4.2.1 Averaged Contextual Embeddings
(BERT-Avg)

The first approach for generating static word type
vectors from contextualized word token embed-
dings is to simply average them (Bommasani et al.,
2020). For each sentence in S, we compute and
store the contextual representations of the word at
each layer of the BERT model. We then average
these representations over sentences for each word,
giving a static embedding for each layer, for each
category and exemplar. The typicality score of a
pair (eci , c) is computed as the cosine similarity
between the static embeddings of the representa-
tion of eci and of the representation of c. As with
BERT-SentEmb, we test the method separately for
all layers. Note that this approach inherits the prob-
lem found in classical static embeddings that it
conflates all possible senses of a word.

4.2.2 Multi-Prototype Contextual
Embeddings (BERT-MPro)

To further exploit context, we use multi-prototype
BERT embeddings (Chronis and Erk, 2020). For
each category name and exemplar, we use k-means
to cluster the word’s contextual embeddings com-
puted from its sampled sentences, yielding, for a
given k, k cluster centroids for each layer, which
disambiguate the k different possible meanings of
the word. Following Chronis and Erk (2020), we
predict scores using the maxsim(·, ·) function be-
tween the cluster centroids of the category name
and exemplar, which yields the maximum similar-
ity value of category-exemplar centroid pairings.
Formally, for a given k and layer l, and set of cluster
centroids τ(w)l1...τ(w)

l
k for category c and exem-

plar eci , the similarity sci is defined by

maxsim(c, eci ) = max
1≤j≤k,1≤t≤k

cos(τ(c)lj , τ(e
c
i )
l
k)

(3)
where cos(·, ·) is the cosine similarity measure.
Following Chronis and Erk (2020), we sidestep
tuning the number of clusters k and simply take
as input to the maxsim operator the union of all
clusters from k ≤ 15. Furthermore, we also test
the embeddings from all layers separately.

4.3 WordNet-Based Methods

Our second class of methods uses WordNet (Miller,
1995) to compute typicality scores. Let us sup-

pose that a category word c and exemplar word
eci are mapped to synsets s(c) and s(eci ), respec-
tively. Only noun synsets are considered for c and
eci . The hypothesis here is that the more closely
linked s(c) and s(eci ) are in the WordNet graph, the
more the exemplar is typical of the category. To
measure this "linkage" between exemplars and cat-
egories, we use two WordNet similarity measures,
thus yielding two sets of WordNet-based methods.

4.3.1 Shortest Path (WNSP, WNSP-noWSD)
Our first similarity is the shortest path between
s(c) and s(eci ) along hypernym/hyponym edges
of WordNet. Given that exemplars and category
words might be linked to multiple synsets, we need
to aggregate the similarities between synsets. A
first method, called WNSP-noWSD, is to aver-
age the similarities between all synsets s(c) and
s(eci ). The second method (WNSP) tries to disam-
biguate between possible synsets, relying on the
maxsim(·, ·) operator, but defined over synset sim-
ilarities (instead of cosine similarity over clusters,
as in BERT-MPro). Formally, for a category name
c and exemplar eci , the typicality score sci is equated
to maxsim(c, eci ), which is defined by

maxsim(c, eci ) = max
s(c),s(eci )

sim(s(c), s(eci )) (4)

where sim(·) denotes the shortest path similarity.
Note that, irrespectively of the disambiguation

process, the shortest path similarity possibly lacks
expressivity, as synsets of different exemplars can
be at the same distance of the category synset.

4.3.2 Lin Similarity (WNIC, WNIC-noWSD)
For a more expressive method, we use the Lin sim-
ilarity measure (Lin et al., 1998), which computes
similarity using the most specific ancestor node and
Information Content (IC) (computed via Wikipedia
text dump), a measure of specificity for a concept
closely linked to frequency (Resnik, 1995), thus
combining frequency with hierarchical semantic
knowledge. Pedersen (2010) show that augment-
ing WordNet with IC results in higher correlation
with human judgments on similarity and related-
ness tasks. Formally, let IC(·) and lcs(·, ·) denote
information content and least common subsumer
(specific ancestor node), respectively, the similarity
between synsets s(c) and s(eci ) is defined by

lin(s(c), s(eci )) =
2 ∗ IC(lcs(s(c), s(eci )))
IC(s(c)) + IC(s(eci ))

(5)
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We then can aggregate similarities by averaging,
which defines the method WNIC-noWSD, or by
using Equation 4 where sim(·) is chosen to be the
Lin similarity. This latter method is called WNIC.

5 Experiments

5.1 Datasets

As ground truth typicality ratings, we use three
datasets of human typicality ratings, one from
Rosch (1975) (young adult ratings) and two from
Morrow and Duffy (2005) (young and older adult
ratings). The two dataset sources were produced
at different time periods (1975 for Rosch and 2005
for M&D), with different sample sizes (209 partic-
ipants and 54, respectively) and potential cultural
differences (US residents and UK residents, respec-
tively) and with different protocols. Human ratings
were obtained by scoring a taxonomic sentence for
Rosch and by scoring category-exemplar pairs for
M&D. The datasets contain varying number of cat-
egories (11 for M&D, 10 for Rosch) and exemplars
per category (29-128 for M&D, 42-54 for Rosch),
with 7 overlapping categories between the two
sources.3 The human ratings between the two splits
of M&D are strongly correlated (average category
Spearman correlation: 0.857, see Appendix A.2).
However, the correlation between the Rosch rank-
ings and M&D rankings on the category-exemplar
intersection of the datasets are much lower, likely
because of the differences outlined above (average
category Spearman: 0.656 and 0.574 for Rosch vs
M&D young and older adults, respectively). We
follow the preprocessing procedure of Heyman and
Heyman (2019), (see Appendix A.1). Our auxiliary
corpus S is extracted by sampling sentences from
Wikipedia, described in Appendix A.3.

5.2 Baseline and Competing Methods

Word Frequency The first baseline is typicality
scores as the exemplar’s number of occurrences in
the corpus S. It is natural to think that more typical
examples are more popular words, and Heyman
and Heyman (2019) show that frequency partly
accounts for human ratings in the M&D datasets.

PPMI-SVD, Word2Vec Other baselines are the
cosine similarities between the category-exemplar
static word embeddings from count-based (singular
value decomposition of positive pointwise mutual

3See Table 4 in Appendix for category/exemplar statistics.

information matrix: PPMI-SVD) and prediction-
based (Word2Vec skip-gram negative sampling)
algorithms. For baseline details, see Appendix A.4.

Taxonomic Sentence Verification We use the
Taxonomic Sentence Verification method of Misra
et al. (2021), using bert-base-uncased. The dif-
ferences with BERT-MLM-Taxo can be found in
Sec. 4.1.3.

5.3 Results and Analysis

5.3.1 Method Performance
Mean Spearman correlations for all methods are
reported in Table 1. 4

BERT-based Methods Our first main result is
that the BERT-based methods5 all improve over
baselines on the M&D datasets. For the Rosch
dataset, only BERT-MPro and Misra et al. (2021)’s
method improve over Word2Vec. BERT-MPro has
the highest correlations of the BERT based methods
across datasets, with Misra et al. (2021)’s method
only slightly edging it on the Rosch dataset.

Comparing the substitution-based methods from
Sec. 4.1, BERT-SentEmb and MLM-Taxo have
similar performance. BERT-MLM-Taxo performs
better than BERT-MLM, showing that taxonomic
sentences provide narrow yet more informative con-
texts than a randomly sampled corpus simply based
on the category word, as they allow for mutual
disambiguation of category and exemplar words.
Misra et al. (2021)’s method performs worse than
BERT-MLM-Taxo on the M&D dataset but bet-
ter on the Rosch dataset.6 These discrepancies
across datasets can be attributed to different proto-
cols for obtaining human ratings: scoring category-
exemplar pairs for M&D and scoring a taxonomic
sentence for Rosch. They also account for the per-
formance differences of the frequency baseline,
which yields higher correlation scores on M&D
than on the Rosch dataset. Typicality scores are
dissociable from lexical frequency when subjects
judge whether a sentence is a good example of their
idea of the category. Our results are in line with
Mervis et al. (1976), showing that Rosch dataset
scores are not correlated with frequency.

Comparing the word embedding methods from
Sec. 4.2, the performance increase from BERT-Avg
to BERT-MPro shows the importance of disam-

4See Table 7 in Appendix A.6 for results by category.
5Recall that we use bert-base-uncased.
6This was the only dataset used in Misra et al. (2021).
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biguation. Layer-wise performance can be found
in Appendix A.8. It should be noted that for BERT-
MPro, the best performing layer was layer 10,
confirming Chronis and Erk (2020)’s claim that
similarity-based task performance peaks in layers
8-10,7. Later layers show more contextual vari-
ation (Ethayarajh, 2019) capturing finer-grained
sense differences. Inversely, for BERT-Avg earlier
layers perform best as they include less contextual
variation, making the mean more stable.

WordNet-based Methods For the WordNet-
based methods, WNIC achieves the highest cor-
relations across datasets, and is competitive with
the best BERT-based methods. This confirms the
findings of Pedersen (2010) on other intrinsic tasks
such as similarity. Disambiguation in the WordNet
methods seems crucial, as the variants using aver-
aging perform worse than their maxsim versions.
WNIC’s high performance shows the importance
of frequency information.

Conclusion The experimental results confirm the
importance of handling polysemy for both BERT-
and WordNet-based methods. Note that the best
performing method (last row), which combines
BERT-MPro and WNIC, is discussed in Sec. 6.

5.3.2 Polysemy Analysis
Experimental results show that disambiguation al-
lows the improvements of BERT-MPro over BERT-
Avg and WNIC over WNIC-noWSD. We now
study whether the improvement is larger when the
number of senses is larger. Our hypothesis is that
the more polysemous a word, the more imprecise
its representation without disambiguation, and the
larger the performance increase from using disam-
biguation with themaxsim operator. This analysis
is difficult to do because: (i) we don’t have access
to "true" senses, and (ii) both exemplar and cate-
gory words can be polysemous. One solution is to
use WordNet synsets as a proxy for senses.

Looking at the estimated polysemy degree for
the category words, we find that 8 of the 11 cate-
gory words are associated with 2 senses or more,
with the maximum ("tools") having 8 senses. Align-
ing with results for M&D-young-adults, we find
that BERT-MPro yields the largest correlation in-
creases over BERT-Avg for the categories asso-
ciated with polysemous category words: BERT-
MPro yields above-average ρ increase for 6 of

7They denote this as layers 7-9 in their paper (0-indexed);
we index starting at 1 to denote the embedding layer as 0.

the 8 polysemous categories, with the largest in-
crease (+0.2) for the most ambiguous category
word "tools". However, the same analysis on the
same dataset with WNIC and WNIC-noWSD does
not yield the same trend: while disambiguation
leads to a greater relative increase, some of the
category words with the least polysemy (animals,
insects) have the largest performance improvement
from noWSD to WSD (see Appendix A.9 for more
details). Looking at the average number of synsets
for exemplars, it is not easy to see a trend in the
performance improvements. Further analysis is
needed and we leave a detailed study on polysemy
and typicality for future work.

6 Combining CLMs and Lexical
Networks

Given that WNIC and BERT-MPro rankings
achieve the highest correlations, questions arise:
how similar are the rankings produced by the two
methods? If sufficiently different, how can we com-
bine them? To answer these questions, we perform
a series of analyses. We constrict this depth-first
analysis to just the younger adults M&D dataset.

6.1 Method Complementarity Study
BERT and WordNet provide different models of
lexical meaning: BERT is word-oriented and ex-
ploits distributional statistical patterns, while Word-
Net is sense-oriented and exploits more abstract
relations. To test whether this leads to different
predictions, we compute category-wise Spearman
correlations between BERT-MPro and WNIC rank-
ings. The results are given in the fourth column
in Table 2. The values range from 0.274 to 0.570
with six categories below 0.4. This moderate cor-
relation shows some complementarity between the
two rankings. Next, we present how different the
two methods’ rankings of certain exemplars can
be in the first four columns of Table 3, showing
how complementarity manifests on a granular level.
This study raises the question of combining BERT-
based methods with WordNet-based methods.

6.2 A Simple Ensemble Method
As an ensemble method, we take the raw scores of
BERT-MPro and WNIC, convert them to z-scores
(separately for each method and category), then
sum them.8 As shown in the last row of Table 1,

8As an alternative ensemble method, we present a short
study of KnowBERT, a CLM enhanced with WordNet knowl-
edge, in Appendix A.10.
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Method Class Method M&D-Young M&D-Old Rosch
Baselines Frequency 0.323 0.296 0.059

PPMI-SVD 0.236 0.227 0.294
W2V 0.260 0.296 0.338

BERT BERT-SentEmb 0.381 0.373 0.289
BERT-MLM 0.354 0.358 0.238
BERT-MLM-Taxo 0.396 0.393 0.303
Misra et al 0.338 0.280 0.396
BERT-Avg 0.428 0.405 0.298
BERT-MPro 0.473 0.451 0.386

WordNet WNSP-noWSD 0.114 0.045 0.266
WNIC-noWSD 0.152 0.128 0.318
WNSP 0.213 0.136 0.295
WNIC 0.467 0.456 0.448

Ensemble BERT-MPro + WNIC 0.547 0.531 0.528

Table 1: Mean across categories (See Table 7 in Appendix A.6 for results by category) of Spearman correlations for each
method for the three datasets (p < .001). Largest correlations among singular methods for each dataset are bold-faced for
BERT-based methods and WordNet-based methods. The last line is the overall best method and scores are also bold-faced. Note
that for BERT-AVG, BERT-MPro, and BERT-SentEmb, the best performing layer is shown (layers 1, 10, and 11, respectively;
see Appendices A.7 and A.8 for a layer wise analysis).

Category MPro WNIC MPro + WNIC MPro vs WNIC Avg. Increase
Animals 0.665 0.522 0.697 0.524 0.125
Birds 0.461 0.391 0.533 0.331 0.100
Clothes 0.498 0.491 0.541 0.570 0.024
Flowers 0.206 0.148 0.224 0.351 0.006
Fruits 0.486 0.365 0.469 0.397 0.076
Furniture 0.657 0.635 0.763 0.369 0.140
Insects 0.366 0.429 0.408 0.476 0.043
Instruments 0.527 0.656 0.620 0.498 0.038
Tools 0.366 0.584 0.607 0.274 0.134
Vegetables 0.579 0.600 0.739 0.346 0.102
Vehicles 0.389 0.314 0.418 0.529 0.053
Mean 0.473 0.467 0.547 0.424 0.077

Table 2: Category wise Spearman correlations between each method and human rankings from (first three columns),
Spearman correlations between BERT-MPro and WNIC rankings (fourth column), and the increase of performance
of the ensemble method over MPro and WNIC (increases are averaged over the two individual methods). Results
are shown for the Morrow and Duffy young adult dataset.

BERT-MPro combined with WNIC achieves the
highest correlation (greater than 0.5) with human
rankings across all datasets, closing the gap on
the human performance given by the inter-dataset
correlation between Rosch and M&D older adults.
The category Spearman correlations for BERT-
MPro, WNIC and the ensemble are shown in Table
2. We find that the lower the correlation between
the two methods (second from right column), the
larger the improvement by combining: we find
a rank correlation of −0.555 between the inter-
method correlation and the average correlation in-
crease of the ensemble (the last column of Table 2),
showing that the more different the two methods
rankings, the more ensembling increases perfor-
mance. In Table 3 are rankings of certain words
within their category, showing how the ensemble
improves rankings for exemplars that are badly
ranked by one of the methods.

7 Conclusion

We show that BERT and WordNet-based methods
are able to outperform previous methods in typi-
cality prediction, but only with a disambiguation

Category Word WNIC MPro WNIC + MPro Human
Birds owl 15 5 4 12
Birds swallow 5 22 11 11
Clothes shirt 10 4 3 6
Clothes suit 22 8 13 12
Vegetables lettuce 7 16 11 11
Vegetables sprout 17 11 12 12

Table 3: Rankings of certain exemplars within their
category, as scored by WNIC, BERT-MPro, WNIC +
BERT-MPro, and the human ranking. Examples are
from the Morrow and Duffy young adult dataset.

mechanism, either implicit through the selection of
contexts or explicit via the estimation of distinct
word senses. These results emphasize the impor-
tance of polysemy in assessing typicality, an issue
that had been overlooked in previous work. We also
show that BERT and WordNet provide complemen-
tary information that are relevant to modeling cate-
gory structure: a simple ensemble of the two leads
to the best correlations with human judgements.

We plan to further analyze the differences be-
tween CLMs and WordNet in typicality, and find
more sophisticated ways to inject semantic knowl-
edge into CLMs. Also, we want to use datasets in
other languages, to find if the results generalize.
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Limitations

The human typicality judgements we use from Mor-
row and Duffy (2005) is limited to English and uses
only participants all from the UK, while the rank-
ings from Rosch (1975) are all from the United
States; thus, geographical/cultural biases could af-
fect the typicality judgements (certain bird species
or clothing exemplars could be more common in
different areas, which could affect how human’s
judge their typicality).

While we try to analyze exactly why disambigua-
tion increases performance (BERT-MPro, WNIC-
WSD) in Sec. 5.3.2 and Appendix 8, we acknowl-
edge this analysis is far from perfect: we don’t
have access to "gold" senses to measure polysemy
(just linked WordNet synsets), and no single trend
emerges from the analysis across all the methods.

Lastly, one limitation in our BERT-based meth-
ods is that we use the uncased pretrained model.
In hindsight, we might have avoided some ambigu-
ous word uses by using a cased model instead:
for example, the model might have been able to
more easily distinguish between "Apple", the com-
pany, and "apple", the fruit. However, the impact
might have been marginal, as the model can still
rely on contextual clues of the surrounding text,
and such cases of ambiguity are arguably rare in
the typicality datasets. Another possible limitation,
specific to the BERT-MLM and BERT-SentEmb
methods, comes from the current sentence sam-
pling procedure, as it is based on the category word
only, thus possibly introducing noise for words that
have homonyms with different POS (e.g., noun-
verb honomyms).
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Category M&D Rosch
Animals 128
Birds 73 54
Clothes 79 48
Flowers 45
Fruits 59 44
Furniture 39 45
Insects 44
Instruments 59
Sports 47
Tools 59 49
Toys 42
Vegetables 29 42
Vehicles 68 46
Weapons 52
Total 682 470

Table 4: Number of exemplars per category for two datasets:
Morrow and Duffy (2005) and Rosch (1975).

Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu.
2020. Perturbed masking: Parameter-free probing
for analyzing and interpreting bert. arXiv preprint
arXiv:2004.14786.

A Appendix

A.1 Dataset Preprocessing

We follow the preprocessing procedure of Hey-
man and Heyman (2019), discarding multi-word
examples (such as red cabbage) and examples con-
taining punctuation. Although these cases could
have been handled by BERT-based methods using
subtokens, the composition of several terms is non-
trivial for word embedding based models (Lenci,
2018), and we are more concerned with comparing
category structure than how the different models
handle multi-word examples or punctuation. Also
following Heyman and Heyman (2019), we discard
categories with less than 20 examples leaving 11
categories in the Morrow and Duffy (2005) datasets
and 10 in the Rosch (1975) dataset. As some of
the baseline models have fixed vocabularies (PPMI-
SVD, Word2Vec, WordNet), we remove any out
of vocabulary examples from the dataset. While
we could have used median or minimum typicality
scores for out of vocabulary examples, we wanted
to ensure that the comparison of performance was
fair across all methods by only evaluating on ex-
amples that have a valid typicality score for all
methods.

A.2 Dataset Agreement

Tables 5 and 6 show the category-wise agreement
between the human rankings of the three datasets.
Notice that the agreement between the two Morrow
and Duffy datasets are much higher than that of

Category Spearman
Animals 0.916
Birds 0.868
Clothes 0.858
Flowers 0.747
Fruits 0.891
Furniture 0.778
Insects 0.897
Instruments 0.909
Tools 0.791
Vegetables 0.885
Vehicles 0.887
Mean 0.857

Table 5: Spearman correlations between young adult
and older adult typicality rankings for Morrow and
Duffy (2005).

Young vs Rosch Old vs Rosch N
Birds 0.561 0.449 43
Clothes 0.736 0.647 33
Fruits 0.871 0.680 38
Furniture 0.762 0.547 20
Tools 0.535 0.613 25
Vegetables 0.326 0.227 22
Vehicles 0.802 0.852 29
Mean 0.656 0.574 30

Table 6: Spearman correlations between the young adult
and older adult rankings of Morrow and Duffy (2005)
and Rosch (1975) on the intersection of categories and
exemplars between the two datasets. The size of the
intersection is shown on the far right column.

Rosch and the two M&D datasets.

A.3 Sentence Sampling

For an auxiliary textual dataset S, we use
Wikipedia, specifically searching for sentences that
contain the singular form of each category word
or exemplar, in order to have comparable contexts.
We found text from Wikipedia dumps can be noisy
(such as: summarization tables, lists of related top-
ics, other sequences that are not actual sentences),
so we remove sentences that are too short or long
(number of words must be between 5 and 200).
For BERT-AVG and BERT-MPro, we sampled 300
sentences for every exemplar and category word.
For BERT-MLM and BERT-SentEmb, we sampled
10000 sentences for each category.

A.4 PPMI-SVD and Word2Vec Details

The PPMI matrix was computed from English
Wikipedia using a window size of 2. We exper-
imented with a window size of 5, but found the
performance to be worse. We also use off-the-
shelf Word2Vec (Mikolov et al., 2013) embeddings
(skip-gram with negative sampling, 300 dimen-
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sions, GoogleNews training corpus).

A.5 Runtimes

Frequency, PPMI-SVD, Word2vec, and both Word-
Net baseline methods take <5 seconds to compute
typicality scores on CPU. The Wikipedia word
counts used in Frequency and WordNet-IC take
1hr to compute on CPU. The sentence sampling
from Wikipedia takes 2hrs to complete. BERT-
WordPiece takes 1 min to complete on CPU. BERT-
AVG and BERT-MLM take 3hrs to complete on
the GPU mentioned in the text; BERT-SentEmb,
5hr; and BERT-MPro, 10hr.

A.6 Results by Category

Table 7 shows the Spearman’s correlation values
for each individual category. Note that just the top
performing methods are shown.

A.7 BERT-SentEmb Performance by Layer

The above figure shows the mean Spearman corre-
lations by layer for the BERT NSP method.

A.8 BERT-AVG and MultiPrototype
Hyperparameter Performance

The above image shows average Spearman’s
correlation across all categories for BERT multi-
prototype embeddings for each combination of
layer index and number of cluster. Note that the
top row (number of clusters = 1) is the same as the
simple average of contextual representations.

A.9 Detailed Polysemy Analysis

To see whether the maxsim disambiguation mech-
anism is actually increasing performance more for
more polysemous examples, we can compare the
performance of the same methods with and without
disambiguation when evaluated on words with dif-
ferent number of linked WordNet synsets (a proxy
for the degree of polysemy). As shown in Table 8,
in general, BERT-MPro’s disambiguation increases
performance over BERT-Avg more for more pol-
ysemous categories (as measured by the synsets
linked to the category word). However, this gen-
eral trend is not seen when comparing WNIC to
WNIC-noWSD.
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Misra et al Bert-MLM-Taxo Bert-Avg Bert-MPro WNIC
Category M&D-

Y
M&D-
O

Rosch M&D-
Y

M&D-
O

Rosch M&D-
Y

M&D-
O

Rosch M&D-
Y

M&D-
O

Rosch M&D-
Y

M&D-
O

Rosch

Animals 0.558 0.525 0.528 0.508 0.569 0.530 0.665 0.649 0.522 0.555
Birds 0.284 0.130 0.308 0.442 0.332 0.191 0.440 0.311 0.203 0.461 0.317 0.169 0.391 0.310 -0.014
Clothes 0.205 0.115 0.461 0.527 0.587 0.171 0.506 0.528 0.301 0.498 0.573 0.484 0.491 0.487 0.570
Fruits 0.232 0.191 0.354 0.287 0.357 0.278 0.390 0.338 0.406 0.486 0.433 0.592 0.365 0.403 0.442
Furniture 0.600 0.440 0.548 0.577 0.429 0.484 0.629 0.598 0.320 0.657 0.602 0.235 0.635 0.553 0.658
Flowers 0.240 0.146 0.122 0.068 0.152 0.011 0.206 0.111 0.148 0.105
Insects 0.175 0.328 0.411 0.379 0.437 0.473 0.366 0.503 0.429 0.415
Instruments 0.309 0.331 0.667 0.715 0.626 0.686 0.527 0.602 0.656 0.659
Sports 0.467 0.536 0.530 0.379 0.498
Tools 0.421 0.259 0.100 0.066 0.220 0.220 0.160 0.257 0.040 0.366 0.318 0.086 0.584 0.486 0.494
Toys 0.143 -0.001 -0.089 0.398 0.155
Vegetables 0.390 0.312 0.241 0.364 0.281 -0.006 0.501 0.397 0.073 0.579 0.482 0.088 0.600 0.646 0.409
Vehicles 0.307 0.301 0.682 0.364 0.444 0.733 0.293 0.323 0.743 0.389 0.373 0.651 0.314 0.396 0.701
Weapons 0.655 0.429 0.454 0.779 0.567

Table 7: Category wise Spearman correlations with human typicality rankings for the four best BERT-based models
and the best WordNet-based model.

Category MPro inc. WNIC inc. Cat. Synsets Exem. Synsets
Animals 0.096 0.517 1 2.992
Birds 0.021 0.362 6 2.712
Clothes -0.009 0.397 4 4.241
Flowers 0.055 0.028 4 2.022
Fruits 0.096 0.409 5 3.102
Furniture 0.028 0.165 1 4.590
Insects -0.071 0.432 2 2.705
Instruments -0.099 0.456 1 2.423
Tools 0.206 0.155 8 5.136
Vegetables 0.078 0.317 2 3.345
Vehicles 0.095 0.222 4 3.412

Table 8: Increase in Spearman’s correlation from using BERT-MPro over BERT-Avg (middle left column) and from
using WNIC over WNIC-noWSD (middle right column) for each category. The number of linked WordNet synsets
for each category and their exemplars are shown in the right columns. Results are shown for the Morrow and Duffy
(2005) young adult dataset.

A.10 KnowBERT Results
The combination of CLMs and knowledge graphs is
an active research area, mainly the design of knowl-
edge enhanced CLMs (i.e. Wang et al. (2020), Ros-
set et al. (2020)). We use KnowBERT (Peters et al.,
2019), in which knowledge bases are embedded
into BERT via an integrated entity linker, which re-
trieves relevant entity embeddings and updates the
hidden states (we leave an in-depth description to
the paper). We consider a KnowBERT model with
WordNet as the knowledge base9 with the multi-
prototype method for computing typicality scores.
We get an average Spearman correlation of 0.446,
below that of WNIC and BERT-MPro, showing
that a general method for enhancing CLMs with
WordNet does not work well for typicality.

9Candidate WordNet synsets are found for KnowBERT
using a similar procedure as we use to find all possible synsets.
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Abstract

Medical doctors spend on average 52 to 102
minutes per day writing clinical notes from
their patient encounters (Hripcsak et al., 2011).
Reducing this workload calls for relevant and
efficient summarization methods. In this pa-
per, we introduce new resources and empiri-
cal investigations for the automatic summariza-
tion of doctor-patient conversations in a clin-
ical setting. In particular, we introduce the
MTS-DIALOG dataset; a new collection of
1,700 doctor-patient dialogues and correspond-
ing clinical notes. We use this new dataset to
investigate the feasibility of this task and the
relevance of existing language models, data
augmentation, and guided summarization tech-
niques. We compare standard evaluation met-
rics based on n-gram matching, contextual em-
beddings, and Fact Extraction to assess the ac-
curacy and the factual consistency of the gen-
erated summaries. To ground these results, we
perform an expert-based evaluation using rel-
evant natural language generation criteria and
task-specific criteria such as critical omissions,
and study the correlation between the automatic
metrics and expert judgments. To the best of
our knowledge, this study is the first attempt
to introduce an open dataset of doctor-patient
conversations and clinical notes, with detailed
automated and manual evaluations of clinical
note generation.

1 Introduction

The recent progress in automatic summarization
has been highly influenced by large transformer-
based language models and the availability of large-
scale datasets. The summarization of medical con-
versations is well positioned to benefit from similar
approaches, but is facing domain- and task-specific
obstacles such as the lack of data and relevant eval-
uation protocols.

Medical doctors spend on average 52 to 102 min-
utes per day writing clinical notes from their con-
versations with the patients (Hripcsak et al., 2011).

The time spent with Electronic Health Record sys-
tems contributes to work-life imbalance, dissatis-
faction, high rates of attrition, and a burnout rate ex-
ceeding 50% (Arndt et al., 2017). Summarization
models could play a key role in reducing that work-
load by generating clinical notes from the doctor-
patient encounters (Knoll et al., 2022).

Summarizing doctor-patient conversations for a
clinical setting brings its own set of challenges and
nuances in addition to the typical natural language
understanding and generation components. For in-
stance, omission of critical medical facts is likely
to alter patient outcomes and should be one of the
critical/deciding factors in adopting one summa-
rization system over another. Hallucinations are
also likely to impact the clinical outcome if they
are not avoided (or detected with a high accuracy).

Designing and improving summarization mod-
els that address these challenges can benefit from
wider research efforts on the task. However, the
lack of publicly available doctor-patient dialogue
datasets limits wider research efforts from the NLP
community in this summarization task. In this pa-
per, we tackle the lack of data for the task by build-
ing a new dataset of doctor-patient conversations
and associated clinical notes. We avoid privacy
infringement risks, by creating simulated conversa-
tions from publicly available clinical notes.

Our main contributions are: (i) a new dataset
of 1,700 doctor-patient conversations (16k turns
and 18k sentences) and their summarized clinical
notes (6k sentences). To the best of our knowledge,
this is the first publicly-available dataset of medi-
cal conversations and associated notes at this scale,
(ii) an evaluation of several SOTA summarization
models, including variants that use existing rele-
vant datasets, augmented training data, and guided
summarization for medical conversation summa-
rization, and (iii) a study of standard evaluation
metrics, domain-specific metrics, and expert judg-
ments for the task, including computing the corre-
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lation between the automatic and manual scores for
the evaluation of the generated clinical notes1.

2 Related Work

Summarization datasets and evaluation methods
are often centered around large news articles such
as the CNN/DailyMail dataset of 313k newspaper
articles (Hermann et al., 2015) and XSum (Narayan
et al., 2018) with 227k BBC articles with single-
sentence summaries.

Dialogue summarization is relatively less studied
in open domain, with a few efforts tackling the
summarization of conversations and meetings (Goo
and Chen, 2018; Li et al., 2019; Shin et al., 2022)
and the creation of meeting summarization datasets
(Janin et al., 2003; Carletta, 2007).

Medical conversation summarization is also
under-studied, except for a few recent efforts (Liu
et al., 2019; Kazi and Kahanda, 2019; Yim and
Yetisgen, 2021; Michalopoulos et al., 2022). For
instance, (Joshi et al., 2020) applied a pointer gen-
erator model to generate summaries from doctor-
patient dialogues in telemedicine. Instead of mod-
eling the whole dialogue, they trained the model
on snippets taken from the dialogue turns. (Zhang
et al., 2021) fined-tuned a pre-trained BART model
to automatically generate summaries from doctor-
patient conversations. However, they only focused
on two specialties (internal medicine and primary
care) and the training data only consist of HPI (His-
tory of Present Illness) section. (Krishna et al.,
2021) proposed an algorithm called Cluster2Sent
to generate SOAP notes from doctor-patient conver-
sations. Their summarization model involves both
abstractive and extractive methods. (Enarvi et al.,
2020) studied both RNN and transformer-based
sequence-to-sequence models for generating med-
ical reports. They experimented on Orthopedics
data and found that sequence-to-sequence model-
ing is more promising. The datasets of the studies
mentioned above are not made public.

(Song et al., 2020) investigated medical conver-
sation summarization from a Chinese conversa-
tional corpus. They applied a hierarchical encoder-
tagger model for extractive summarization to gener-
ate two types of summaries; one for problem state-
ment and one for the treatment recommendations.
Several other medical conversation datasets have
been recently created from Chinese online health

1The dataset, source code, and annotations are available at
https://github.com/abachaa/MTS-Dialog

platform conversation (Liu et al., 2020; Zhang et al.,
2020; Lin et al., 2019) but they do not include con-
versation summaries.

(Moramarco et al., 2022b) studied the task of
consultation note generation on a small set of 57
transcript-note pairs (Papadopoulos Korfiatis et al.,
2022) and performed a correlation study with sev-
eral automatic metrics. As their focus was to com-
pare automated metrics with human judgements,
they chose models that would "produce different
outputs to cover a wider range of errors" instead
of attempting to benchmark SOTA summarization
models. From the set of metrics they tested, they
noted that character-based Levenshtein distance,
BERTScore, and METEOR performed best for
evaluating the note generation task.

3 MTS-DIALOG

3.1 Data Creation

Our data creation approach consists in generat-
ing simulated doctor-patient conversations from
publicly available clinical notes. To gather these
clinical notes/summaries, we collected notes from
the public Mtsamples collection, which provides
de-identified clinical notes2 (South et al., 2014;
Moramarco et al., 2022a). The selected clinical
notes cover the six most frequent note types and
specialties in the collection, including: General
Medicine, SOAP (Subjective, Objective, Assess-
ment, Plan), Neurology, Orthopedic, Dermatology,
and Allergy/Immunology.

Eight trained annotators, with medical back-
grounds, were given all the sections from the clini-
cal notes and asked to create clinical conversations
from one section at a time according to detailed
guidelines. These guidelines were developed based
on an analysis of a large private collection of hun-
dreds of real doctor-patient conversations and asso-
ciated notes. The annotation guidelines included:

• Conversation creation rules: conversations
should be (i) written as it pertains to the day
of the visit with the patient and (ii) framed
in the context of either an outpatient visit or
emergency room visit.

• Medical terms rules: The clinical note may
have a more detailed referring expression to
the same problem, treatment, or test, than

2www.mtsamples.com. Mtsamples categorizes notes to at
least one of 40 specialty/note-type labels. Each note explicitly
marks section headers as bolded HTML tags.
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Dialogue:
Doctor: My chart here says that you’re eighty three years old, is that correct, ma’am?
Patient: Yes doctor, that’s correct, I just had my birthday.
Doctor: Happy belated birthday! How have you been doing since your last visit?
Patient: Well, my cancer hasn’t needed phlebotomies for several months now, which is good.
Doctor: That’s great, you have been treated for polycythemia vera, correct?
Patient: Yes, that’s the one.
Doctor: I also see you’re unassisted today, which is also great.
Patient: Yeah, having some independence is nice.
Section header: History of Present Illness
Section text: The patient is an 83-year-old female with a history of polycythemia vera. She comes in to clinic today for
followup. She has not required phlebotomies for several months. The patient comes to clinic unaccompanied.

Table 1: Example of a doctor-patient conversation and associated note/summary from the MTS-DIALOG dataset.

what would be represented in the conversa-
tion; for example "Open reduction internal
fixation (ORIF)" from the clinical note could
be translated to "We will have to do surgery
on it" in the conversation.

• Imaginary but plausible rule: if the clinical
note is underspecified, it is possible to create
a conversation as long as it is plausible. How-
ever, the dialogues should be created so that
the transcripts are more detailed than the as-
sociated clinical notes (except for problems,
treatments and tests as mentioned above).

• Formatting rules: annotators should follow
standard transcript guidelines such as writing
words as they would be pronounced, and capi-
talization and punctuation rules.

• Conversation characteristics: the goal is to cre-
ate a dataset with as much variation as possi-
ble to mimic real doctor-patient medical visits,
including the use of speech disfluencies such
as false starts, filler words, interjections, inter-
rupting speech, corrections by the speaker to
previous information, using slang and vernac-
ular, and colloquial terms.

We also normalized the 279 original section head-
ers from the notes into 20 types of first-level head-
ers (e.g. assessment, allergy, diagnosis, exam, med-
ications, past medical history, past surgical).

The final MTS-DIALOG dataset includes 1,701
pairs of dialogues and associated sections from
the clinical notes. Table 1 presents an exam-
ple from the dataset. The number of pairs
from the respective specialties and note types
were General Medicine:1,035, SOAP:79, Neurol-
ogy:296, Orthopedic:208, Dermatology:56, and Al-
lergy/Immunology:27. The dataset was created
over a cumulative total of approximately 1,800
hours. Additional statistics are shown in Table 2.

Dialogue Summary
Turns Sentences Words Sentences Words

count 15,969 18,406 241,685 5,870 81,299
mean 9 11 142 3 48
max 103 136 1,951 57 1,182
25-perc 4 4 48 1 6
50-perc 6 7 88 2 18
75-perc 12 14 176 4 55

Table 2: Statistics of the MTS-DIALOG Dataset.

3.2 Data Quality
The quality of the MTS-DIALOG dataset is en-
sured by three stages: (1) only candidates with
medical training were hired as annotators (e.g. for-
mer medical scribes), and (2) the training for this
task involved one-on-one periodic feedback dur-
ing initial stages by an experienced trainer; (3) at
the completion of the entire dataset, a separate and
independent validation step was conducted to for-
mally evaluate the corpus against a rubric grading
system. This independent evaluation graded the
conversations according to their adherence with the
annotation guidelines and content relevance and
coverage w.r.t. the initial clinical note. Table 3
presents the results of this manual validation. The
validator was additionally tasked to perform mi-
nor corrections (e.g. misspellings or adding back
missed information), ensuring that the final data
quality would be higher than those reported.

3.3 Comparison with Real Data
The MTS-DIALOG dataset consists of real notes
and synthetic conversations that simulate doctor-
patient encounters to avoid the public release of
private doctor-patient conversations. To study the
impact of relying on synthetic data, we investi-
gated the resemblance of the MTS-DIALOG data
with real conversations through a blind evalua-
tion of two equal subsets of 52 conversations ran-
domly extracted from (i) the MTS-DIALOG dataset
and (ii) a private collection of recorded and tran-
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Score Description Freq (%)
0.1 Unviable, content is not covered. 25 (1%)
0.3 Content is covered but with logical and

medical errors OR Major content is not
covered OR At least one major socio-
cultural dialogue discrepancy anomaly.

189
(11%)

0.5 Acceptable but some minor content or
sociocultural discrepancy issues.

70 (4%)

0.7 Acceptable but with misspellings or
transcription rules errors only.

551
(32%)

1.0 Follows guidelines completely, logi-
cally and medically sound, no content
errors or other issues.

866
(51%)

Table 3: Data validation scoring rubric and frequencies
based on manual validation, prior to correction.

scribed doctor-patient conversations. Turns from
the real/private subset were selected to match the
length of the MTS-DIALOG turns. A medical ex-
pert with experience working as a medical scribe
in hospitals independently performed this blind
annotation by labeling each conversation as real,
synthetic, or unknown, together with a written ex-
planation behind each annotation. The annotation
criteria included annotating the characteristics of
the conversations in terms of disfluency and inter-
ruptions.

Label #Ref #LabeledAs TP FP FN P R F1
Real 52 34 29 5 23 0.85 0.56 0.67
Synthetic 52 69 47 22 5 0.68 0.90 0.78
Unknown 0 1 0 1 0 0 1 0
Total 104 104 76 28 28 0.73 0.73 0.73

Table 4: Blind Evaluation: #Ref (number of reference
samples), #LabeledAs (number of assigned labels), TP
(True Positive), FP (False Positive), FN (False Negative),
P (Precision), R (Recall), and F1 Score.

The results of this annotation (cf. Table 4) show
that 55.77% of real conversations (29/52) were
annotated as real, 42.31% of real conversations
(22/52) were labeled as synthetic, and 9.61% of
synthetic data (5/52) labeled as real. The medi-
cal expert’s blind labeling was incorrect 26.92%
of the time (28/104). If synthetic and real were

Dataset #Turns MaxTurnLen #Disfluency #Interruptions
MTS 7.10 (369) 18.54 (n/a) 0.63 (33) 1.06 (55)
Real 7.10 (369) 34.00 (n/a) 1.77 (92) 1.98 (103)

(a) Statistics on the full annotated datasets
Dataset [#Conversations] #Turns MaxTurnLen #Disfluency #Interruptions
MTS-mistaken-as-Real [5] 5.0 11.2 0.4 1.0
Real-mistaken-as-MTS [22] 5.9 27.2 1.4 1.5

(b) Statistics on the incorrectly labeled subsets

Table 5: Blind Evaluation: Statistics (Mean (Sum))

indistinguishable, the incorrect rate would be 50%.
A common explanation given by the medical

expert for cases where synthetic data was labeled
as real is that the content seemed realistic, despite
the statistical comparison in Table 5 which shows
that the MTS-DIALOG conversations had less dis-
fluencies and interruptions on average. Common
explanations for labeling real data as synthetic in-
cluded the conversation being "to-the-point", clear
with low disfluencies, easy to follow, containing
abrupt subject changes and containing colloquial
speech.

This difficulty in distinguishing synthetic from
real indicates that the MTS-DIALOG dataset is
a valuable initial dataset, for use in training and
benchmarking models for real-world applications,
including using the MTS-DIALOG data for data
augmentation or as pre-training data for later fine-
tuning on (private) real conversations data.

4 Methods

4.1 Summarization Models
To study the specificity of doctor-patient conver-
sation summarization and the relevance of evalua-
tion methods, we generated summaries using sev-
eral SOTA transformer-based models (e.g. BART
(Lewis et al., 2020) and Pegasus (Zhang et al.,
2020)), including variants that are pre-finetuned
using relevant datasets (e.g. XSum (Narayan et al.,
2018) and Samsum (Gliwa et al., 2019)), as well as
augmented training data and guided summarization
as described in the following sections.

4.2 Data Augmentation via Back-translation
Relevant data augmentation is an effective tech-
nique to avoid over-fitting and increase the per-
formance of neural methods. In particular, back-
translation augmentation consists in translating the
text to another language and then translating it back
to the original language. We used two different aux-
iliary languages to add more variety in the back-
translated sentences3. To reduce translation errors,
we selected French and Spanish for their lexical
proximity with English, and high-performing trans-
lation models (Tiedemann and Thottingal, 2020).

4.3 Guided Summarization
Several guidance signals can be used to control the
output of summarization models. A clinical note

3We also release the augmented dataset of 3,603 pairs of
medical conversations and associated notes.
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consists of several sections such as Family History
and Assessment, and the simulated conversations
from the MTS-DIALOG dataset were generated in-
dependently for each section. In the guided summa-
rization trial, we used the section header as a prefix
in the training data to guide the summarization of
the doctor-patient conversation. This allows the
model to learn to generate both the signal (section
header) and the following signal-guided summary.

4.4 Evaluation Methods

Despite recurrent efforts in summarization evalua-
tion, automatic evaluation of generated summaries
still has several limitations and biases (Hardy et al.,
2019; Fabbri et al., 2021; Ben Abacha et al., 2021).
These limitations can misinform current and future
research efforts and orient neural networks towards
optima that do not accurately reflect the relevance
and quality of generated summaries. For instance,
commonly used evaluation metrics such as ROUGE
do not assess whether summaries are factually con-
sistent with source documents, include critical er-
rors, or lack important information (Goodrich et al.,
2019). Manual evaluation is another method to as-
sess the quality of the generated summaries, but
is time consuming and relies on the availability of
domain experts to rate the summaries. Howcroft
et al. (2020) examined 165 NLG papers with hu-
man evaluations and concluded that the field is in
urgent need of standard evaluation methods and
terminology.

Taking into account these different factors, we
evaluate the generated summaries using a variety of
evaluation metrics based on n-gram matching, pre-
trained contextualized embeddings (BERTScore),
learned metric (BLEURT), automatic fact-based
metrics (Fact Scores), and manual evaluation per-
formed by medical experts. BERTScore (Zhang*
et al., 2020) uses the pre-trained contextual embed-
dings from BERT and matches words in candidate
and reference texts by cosine similarity. We use
two variants: BERTScore-M1 based on the default
roberta-large model and BERTScore-M2 based on
the deberta-xlarge-mnli model, which was shown
to have the best correlation with human evaluation.
BLEURT (Sellam et al., 2020) is a learned met-
ric, based on BERT and a pre-training scheme that
uses millions of synthetic examples. We use the
latest checkpoint BLEURT-20 that correlates better
with human judgment and the F1 variants of all the
automatic metrics.

For the fact-based evaluation, we utilize a ma-
chine learning-based medical fact extraction sys-
tem to extract medically relevant facts. A medical
fact consists of one core attribute with or with-
out one or more other attributes, such as lateral-
ity or bodysite. For example, the medical facts
identified by the fact extraction system for the in-
put "the patient has rash on the upper arms" are
<FINDING_CORE> rash <LATERALITY> upper
<BODYSITE> arms. The Fact Score metric pro-
vides F1-score of the extraction of medically rel-
evant facts. The first variant Fact-Core relies on
the extraction of seven core fact attributes: ’Pro-
cedure_Core’, ’Disorder_Core’, ’Finding_Core’,

’Medication_Core’, ’Substance_Use_Core’, ’Vi-
tal_Sign_Core’, and ’Allergy_Core’. The Fact-
Full variant combines these core facts and five ad-
ditional attributes: ’Negation’, ’Hedge’, ’Status’,

’Laterality’, and ’Bodysite’.
We also investigate the correlation between the

automatic metrics and the expert judgments.

5 Experiments

We train the summarization models on 4 Nvidia
Tesla K80 GPUs for 4 epochs. We set the learning
rate to 3e-05 and regularize the training with an
L2 weight decay of 0.1. We use a test set of 100
conversations and notes, randomly selected from
the MTS-DIALOG dataset. The remaining pairs
are used for training (1,201 pairs) and validation
(400 pairs).

5.1 Automatic Evaluation

Table 6 presents the results of different summariza-
tion models fine-tuned and evaluated on the MTS-
DIALOG dataset. We picked the best performing
model from each category (four models in total) for
subsequent studies. Table 7 compares the results of
these four summarization models using ROUGE-N,
Fact Scores, BERTScore, and BLEURT. Examples
of generated summaries are shown in Table 9.

These first results highlight the importance of rel-
evant pre-finetuning targets, with XSum yielding
substantially better results as a first pre-finetuning
stage compared to CNN/DailyMail (40.15 vs.
32.01 ROUGE-1 score). A portion of this differ-
ential could be explained by the relatively short
length of the MTS-DIALOG summaries (three sen-
tences and 48 words on average) which is likely
closer to the length of output for extreme sum-
marization than the longer output summaries in
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ROUGE-1 ROUGE-2 ROUGE-L
Baseline Models
Pegasus-large 27.62 10.99 23.03
BART-large [Model#1] 30.42 12.03 26.91

Pre-Finetuning (PFT)
Pegasus-pubmed 24.20 8.49 18.03
Pegasus-xsum 32.88 13.75 27.43
BART-cnn-samsum 32.01 13.93 23.05
BART-xsum-samsum [Model#2] 40.15 18.04 32.56

Guided Summarization (GS)
BART-cnn-samsum (GS) 32.68 14.14 23.39
BART-xsum-samsum (GS) [Model#3] 42.04 17.59 34.85

GS + Data Augmentation (DA)
BART-cnn-samsum (GS+DA) 33.29 14.58 24.30
BART-xsum-samsum (GS+DA) [Model#4] 42.52 17.50 34.90

Table 6: Results of the summarization models fine-tuned and evaluated on the MTS-DIALOG dataset.

Model#1 Model#2 Model#3 Model#4
(BART-large) (BART-PFT) (BART-PFT-GS) (BART-PFT-GS-DA)

ROUGE-1 0.3042 0.4015 0.4204 0.4252
ROUGE-2 0.1203 0.1804 0.1759 0.1750
ROUGE-L 0.2691 0.3256 0.3485 0.3490
Fact-Core 0.2381 0.3753 0.3466 0.3496
Fact-Full 0.1643 0.2264 0.2126 0.2128
BERTScore-M1 0.3090 0.3830 0.4190 0.4120
BERTScore-M2 0.2850 0.3680 0.4000 0.4080
BLEURT-20 0.4316 0.5003 0.5089 0.5123

Table 7: Evaluation of the summarization models using lexical, fact-based, embedding-based, and learned metrics
(Macro Average F1 scores over the summaries).

CNN/DailyMail.
Data Augmentation (DA) led to slight improve-

ments across all metrics except ROUGE-2 and
BERTScore-M1 as shown in Table 7. Guided Sum-
marization (GS) led to a consistent improvement
across all automated metrics except for ROUGE-2
and the Fact-based metrics.

5.2 Expert-based Manual Evaluation
The manual evaluation of the generated summaries
is performed using NLG criteria such as Fluency
and Non-redundancy, and medical criteria such as
Critical Omissions based on fact extraction. For
this evaluation, we define a fact as information that
cannot be written in more than one sentence. For
instance: the sentence "The father died of stroke at
age 89." could be written in three sentences: "The
father died", "He was 89 yo.", and "Stroke was the
cause of death." and thus contains three facts.

The manual summary evaluation criteria are:

• Fluency: Is the summary fluent to read?
(0:"none", 1:"low", 2:"average", 3:"high")

• Non-redundancy: How redundant is the sum-
mary? (0-3)

• Critical Omissions: What is the number of
medical facts that were omitted?

• Hallucinations: What is the number of hallu-
cinated facts?

• Correct Facts: How many facts in the sum-
mary are correct according to the input con-
versation?

• Incorrect Facts: How many facts are incorrect
outside of hallucinations (e.g. wrong age)?

We compute the following scores from the manual
counts:

FactualPrecision =
#CorrectFacts

#SystemOutputFacts

FactualRecall =
#CorrectFacts

#ReferenceFacts

HallucinationRate =
#HallucinatedFacts

#SystemOutputFacts

OmissionRate =
#OmittedFacts

#ReferenceFacts

• SystemOutputFacts=Correct+Incorrect+Hallucinated
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Kappa F1 (exact) F1 (tol=1) F1 (tol=2) Pearson’s correlation
Number of key/reference facts 0.494 0.540 0.780 0.930 0.980

Number of correct facts 0.599 0.710 0.930 1.000 0.841
Number of omitted facts 0.366 0.440 0.740 0.890 0.957
Number of incorrect facts 0.305 0.900 0.990 1.000 0.717

Number of hallucinated facts 0.541 0.920 1.000 1.000 0.695
MACRO-AVG 0.467 0.675 0.875 0.957 0.862

Table 8: Fact count agreements.

Generated Summary Reference Summary
1 Family history is significant for coronary artery disease,

hypertension, diabetes mellitus, and cerebrovascular dis-
ease.

Family history is remarkable for heart disease, cerebrovas-
cular disease, diabetes, and hypertension.

2 The patient denies any history of depression, suicidal
ideation, chest pain, shortness of breath, nausea, vom-
iting, numbness, weakness, or tingling.

Please see history of present illness. Psychiatric: She has
had some suicidal thoughts, but no plans. She denies being
suicidal at the current time. Cardiopulmonary: She has
not had any chest pain or shortness of breath. GI: Denies
any nausea or vomiting. Neurological: No numbness,
weakness or tingling.

3 Significant for frequent flyer status, anemia, anxiety, bipo-
lar disorder, and iron deficiency anemia. Surgery history
is positive for tubal ligation.

1. Bipolar disorder. 2. Iron deficiency anemia. 3. Anxiety
disorder. 4. History of tubal ligation.

4 He is a non-cigarette smoker and non-ETOH user. He
is single and he has no children. He works as a payroll
representative and previously did lot of work in jewelry
business, working he states with chemical.

She is a nonsmoker and nondrinker. She is single with
no children. Currently works as a payroll representative.
Prior to that, she worked in the jewellery business with
chemical.

5 The patient was a baby born at 32 weeks’ gestation at 4
pounds 11 ounces and placed in an incubator for 3 weeks.
He had jaundice, but was not given any treatment.

32 weeks gestation to a G4 mother and weighed 4#11oz.
He was placed in an incubator for 3 weeks. He was jaun-
diced, but there was no report that he required treatment.

Table 9: Examples of generated summaries by Model #4.

To assess the effort level for the end user (clini-
cians who will use/edit the system generated sum-
mary), we compute Levenshtein edit distance (min-
imum # of character insertion, deletion, substitu-
tion or transposition operations) (i) between system
summary and reference summary, and (ii) between
the initial system summary and a human-corrected
version of that summary which fixes all issues. The
normalized edit distance is then calculated by di-
viding the Levenshtein distance by the length of the
longest summary between reference and system.

To measure the consistency of these expert eval-
uations, a common set of 100 reference-system
outputs were labeled independently by two trained
annotators with medical backgrounds. The remain-
der of the evaluated data (300 system summaries)
was single annotated.

The Pearson correlations between the annota-
tions for the rating-based scores were 0.631 for
Fluency and 0.894 for Non-redundancy. We also
calculated Cohen’s kappa and F1 score for the num-
ber of reference facts as well as the correct, omit-
ted, hallucinated, and incorrect system facts. With
strict Cohen’s kappa and F1, we obtained values
0.467 and 0.675 respectively. As these measures
penalize harshly for being off by one or two facts,

we also measured a relaxed F1 allowing a count
mismatch of one or two facts, which showed an
inter-annotator F1 agreement of 0.875 and 0.957
respectively (cf. Table 8). The Pearson correlation
between the two annotators’ fact counts was also
high at a macro-average of 0.862.

The results of the manual evaluation are reported
in Table 10. In large part they confirm the auto-
matic evaluation results from Table 7, with Models
2-4 performing better than the baseline Model #1 in
terms of Factual Recall and Factual F1. In compari-
son with Model #3, Data Augmentation (Model #4)
led to better fluency, non-redundancy, and factual
Recall and F1 with less critical fact omissions, but
increased the hallucination rate to 3% from 1% for
Model #3.

The model without guided summarization or
data augmentation (Model #2) achieved similar re-
sults to the best model that employed both (Model
#4). Model #2 was also ranked higher according
to the automatic fact extraction metrics (cf. Ta-
ble 7). These results suggest that guided summa-
rization improves the precision of the summary
facts (+5.5% improvement) but lowers recall (-5%),
with data augmentation reversing the trend. Fact-
based performance was thus shown to be more
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Evaluation Criteria Model #1 Model #2 Model #3 Model #4
(BART-large) (BART-PFT) (BART-PFT-GS) (BART-PFT-GS-DA)

Summary Quality Evaluation
Fluency [0-3] ↑ 2.33 2.44 2.31 2.37
Non-redundancy [0-3] ↑ 2.97 2.85 2.90 2.93
Fact-based Evaluation
Factual Precision ↑ 0.9492 0.8917 0.9408 0.9010
Factual Recall ↑ 0.5324 0.6671 0.6341 0.6685
Factual F1 Score ↑ 0.6822 0.7632 0.7576 0.7675
Hallucination Rate ↓ 0.02 0.04 0.01 0.03
Omission Rate ↓ 0.47 0.33 0.37 0.33
Effort Level Assessment
Levenshtein Edit Distance [wrt Correction] ↓ 0.5770 0.4944 0.5858 0.5521
Levenshtein Edit Distance [wrt Reference] ↓ 0.8685 0.8426 0.8124 0.8101

Table 10: Expert-based Manual Evaluation.

ROUGE-1 ROUGE-2 ROUGE-L Fact-Core Fact-Full BERT-M1 BERT-M2 BLEURT
ROUGE-1 1.000
ROUGE-2 0.636 1.000
ROUGE-L 0.949 0.646 1.000
Fact-Core 0.410 0.429 0.334 1.000
Fact-Full 0.379 0.389 0.335 0.740 1.000
BERT-M1 0.790 0.457 0.801 0.254 0.265 1.000
BERT-M2 0.857 0.505 0.847 0.362 0.339 0.905 1.000
BLEURT 0.790 0.429 0.787 0.269 0.247 0.784 0.859 1.000

Table 11: Pearson’s correlation coefficients between the automatic evaluation metrics.

sensitive to prefixes in the training data (in the GS
experiment we used 20 different section headers
as prefixes in the training data). This has likely
prevented the models from generalizing factual
patterns across different sections, even though the
same prefixes helped improve the performance on a
token level according to the token-based evaluation
measures (ROUGE-1 and BERTScore). On the
other hand, guided summarization improved non-
redundancy and lowered the factual hallucination
rate to only 1% down from 4% for Model #2.

Our four models provided summaries with an
average length of 9.76, 24.6, 19.77, and 21.45 to-
kens, respectively. To evaluate potential perfor-
mance bias from summary length, we computed
the correlation between the summary length and
BLEURT as an example of automatic metric and
the correlation between the summary length and
Factual F1 as an example of manual metric. The
Pearson correlation scores between BLEURT and
the summary length of Model #1, #2, #3, and #4
are low (-0.200, -0.027, -0.147, and -0.173, respec-
tively). The correlation between Manual Factual
F1 an the summary length of the same models are
higher with an inverse correlation of -0.511, -0.230,
-0.268, and -0.409, respectively, which indicates
that the models are prone to more errors in longer
summaries.

5.3 Correlation between Evaluation Metrics

Table 11 shows Pearson correlations between
the automatic evaluation metrics. BERTScore-
M2, based on the DeBERTa model, was the
embedding-based metric with the highest correla-
tion with the n-gram metrics ROUGE-1, ROUGE-2,
and ROUGE-L, and the embedding-based metrics
BERTScore-M1 and BLEURT. However, ROUGE-
1 and ROUGE-2 had higher correlation with Fact-
Core and Fact-Full.

Table 12 presents the Pearson correlations be-
tween the automatic metrics and manual scores.
The correlations with the manual scores show a
different picture, with BLEURT standing out as the
most correlated with manual fact counts and expert-
based correctness assessments. BLEURT was also
the most correlated metric with the Levenshtein
distance, used here as an indicator for the level of
effort required to correct the generated summaries.

The manual fact metrics were more correlated
with the embedding-based metrics than ROUGE-1,
ROUGE-2, and ROUGE-L, in contrast with the
automatic fact extraction metrics. This could be
explained, in part, by the lower factual coverage of
automatic fact extraction vs. manual fact identifi-
cation. This also highlights an important empirical
insight, in that upstream upper bounds, such as the
limited coverage of automatic and symbolic fact
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Automatic
Manual Factual P Factual R Factual F1 Hallucination Omission Levenshtein

Correctness ↑ Error Rate ↓
ROUGE-1 0.101 0.368 0.402 -0.074 -0.486 -0.326
ROUGE-2 0.086 0.167 0.202 -0.049 -0.237 -0.040
ROUGE-L 0.126 0.393 0.416 -0.073 -0.479 -0.296
Fact-Core 0.039 0.095 0.160 -0.105 -0.192 -0.030
Fact-Full 0.056 0.133 0.188 -0.094 -0.214 -0.122
BERTScore-M1 0.132 0.445 0.462 -0.078 -0.518 -0.317
BERTScore-M2 0.090 0.437 0.461 -0.080 -0.562 -0.366
BLEURT-20 0.113 0.477 0.480 -0.082 -0.591 -0.486

Table 12: Pearson’s correlation coefficients between the automatic and manual scores.

extraction, can bias the correlation results against
neural embeddings methods which, from their large
pre-training, have inherently wider (implicit) cov-
erage than symbolic fact extraction methods.

6 Conclusion

In this paper we conducted an empirical study of
clinical note generation from doctor-patient en-
counters. This included creating a new dataset of
1,700 conversations and notes, evaluating several
SOTA summarization models, and using multiple
automated metrics and human judgements for the
summarization models. Our findings show that
pre-finetuning transformer models plays a key role
in improving factual accuracy and summary flu-
ency, and in reducing critical fact omissions, with
guided summarization improving the precision of
the summary facts and reducing hallucinations at
the expense of factual recall.

The manual evaluation showed that the gener-
ated summaries reached a high fluency score (2.44
on a 0-3 scale) and relatively high factual F1 (0.76),
but the best model still had a hallucination rate of
3% and missed 33% of the medical facts. Wider
research efforts are needed to design methods and
models that can reduce the omission and hallucina-
tion rates as well as efficient fact-based evaluation
metrics to automatically assess the factual consis-
tency of the generated summaries.

The key bottleneck limiting increased research
from the NLP community on medical note gen-
eration has been the lack of generally available
datasets to train and experiment on. This public
release of the MTS-DIALOG dataset will enable
wider research and faster research progress on this
very important and impactful NLP task. Our com-
prehensive evaluation of multiple summarization
models and evaluation metrics provides valuable
baselines and references for comparison, and also
shows where these systems and metrics stand on

multiple dimensions of human evaluation.
Medical doctors today suffer from heavy docu-

mentation burden, which frequently causes physi-
cian dissatisfaction and burnout, and distracts doc-
tors from being able to give their undivided atten-
tion to their patients. We look forward to a future
where NLP research and the NLP community are
able to provide doctors with tools for effective au-
tomated medical note generation, and enable them
to return their focus to what they really love - pro-
viding great care for their patients.

Limitations

To address the lack of data and protect patient
privacy, we relied on creating simulated doctor-
patient conversations from de-identified clinical
notes. Although we relied on trained annotators
with medical background, those simulated conver-
sations might still not reflect faithfully the actual
language or structure of real doctor-patient conver-
sations. For instance, the fraction of disfluencies
and speech interruptions may occur at higher fre-
quency than simulated in this dataset. Furthermore,
it is often the case that doctor-patient conversations
are automatically transcribed from speech to text,
and the speech-to-text generation systems can pro-
duce errors in the output text. If real conversation
benchmarks are made available in the future, they
would allow further extrinsic validation of the pro-
posed dataset and the first research insights. Many
more summarization models can be tested on the
task with the new dataset, and this study explored
only some of them. Different, or larger language
models could yield different results and lead to
new or different insights. Although the introduced
dataset is substantially bigger in size compared to
other doctor-patient conversation datasets, its size
is still limited in comparison with open-domain
summarization datasets, which can limit the fine-
tuning performance, especially for larger neural
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models. The dataset is limited in terms of covered
diseases. The annotators ensured that the dataset is
fully anonymized and balanced the synthetic con-
versations w.r.t. gender but the notes could still
include real-world biases from the original clinical
notes. The created dataset is intended for research
purposes on automatic clinical note generation and
should not be used for medical diagnosis or other
health-related applications.

Ethics Statement

No protected health information were used in the
creation of this dataset. Annotators were paid a
fair hourly wage consistent with the practice of the
state of hire.

References
Brian G Arndt, John W Beasley, Michelle D Watkinson,

Jonathan L Temte, Wen-Jan Tuan, Christine A Sinsky,
and Valerie J Gilchrist. 2017. Tethered to the EHR:
Primary care physician workload assessment using
EHR event log data and time-motion observations.
In Annals of Family Medicine, volume 15(5), pages
419–426.

Asma Ben Abacha, Yassine Mrabet, Yuhao Zhang, Chai-
tanya Shivade, Curtis P. Langlotz, and Dina Demner-
Fushman. 2021. Overview of the MEDIQA 2021
shared task on summarization in the medical domain.
In Proceedings of the 20th Workshop on Biomedical
Language Processing, BioNLP@NAACL-HLT 2021,
Online, June 11, 2021, pages 74–85. Association for
Computational Linguistics.

Jean Carletta. 2007. Unleashing the killer corpus: ex-
periences in creating the multi-everything ami meet-
ing corpus. Language Resources and Evaluation,
41:181–190.

Seppo Enarvi, Marilisa Amoia, Miguel Del-Agua Teba,
Brian Delaney, Frank Diehl, Stefan Hahn, Kristina
Harris, Liam McGrath, Yue Pan, Joel Pinto, Luca Ru-
bini, Miguel Ruiz, Gagandeep Singh, Fabian Stem-
mer, Weiyi Sun, Paul Vozila, Thomas Lin, and Ran-
jani Ramamurthy. 2020. Generating medical reports
from patient-doctor conversations using sequence-to-
sequence models. In Proceedings of the First Work-
shop on Natural Language Processing for Medical
Conversations, pages 22–30, Online. Association for
Computational Linguistics.

Alexander R. Fabbri, Wojciech Kryscinski, Bryan
McCann, Caiming Xiong, Richard Socher, and
Dragomir R. Radev. 2021. Summeval: Re-evaluating
summarization evaluation. Trans. Assoc. Comput.
Linguistics, 9:391–409.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Alek-
sander Wawer. 2019. Samsum corpus: A human-

annotated dialogue dataset for abstractive summa-
rization. CoRR, abs/1911.12237.

Chih-Wen Goo and Yun-Nung Chen. 2018. Abstractive
dialogue summarization with sentence-gated mod-
eling optimized by dialogue acts. In 2018 IEEE
Spoken Language Technology Workshop, SLT 2018,
Athens, Greece, December 18-21, 2018, pages 735–
742. IEEE.

Ben Goodrich, Vinay Rao, Mohammad Saleh, and Pe-
ter J. Liu. 2019. Assessing the factual accuracy
of generated text. Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining.

Hardy, Shashi Narayan, and Andreas Vlachos. 2019.
Highres: Highlight-based reference-less evaluation
of summarization. In Proceedings of the 57th Con-
ference of the Association for Computational Lin-
guistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers, pages 3381–3392.
Association for Computational Linguistics.

Karl Moritz Hermann, Tomás Kociský, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. CoRR, abs/1506.03340.

David M. Howcroft, Anya Belz, Miruna-Adriana
Clinciu, Dimitra Gkatzia, Sadid A Hasan, Saad
Mahamood, Simon Mille, Emiel van Miltenburg,
Sashank Santhanam, and Verena Rieser. 2020.
Twenty years of confusion in human evaluation: NLG
needs evaluation sheets and standardised definitions.
In Proceedings of the 13th International Confer-
ence on Natural Language Generation, INLG 2020,
Dublin, Ireland, December 15-18, 2020, pages 169–
182. Association for Computational Linguistics.

George Hripcsak, David K Vawdrey, Matthew R Fred,
and Susan B Bostwick. 2011. Use of electronic clini-
cal documentation: time spent and team interactions.
Journal of the American Medical Informatics Associ-
ation, 18:112–7.

Adam L. Janin, Don Baron, Jane Edwards, Daniel P. W.
Ellis, David Gelbart, Nelson Morgan, Barbara Peskin,
Thilo Pfau, Elizabeth Shriberg, Andreas Stolcke, and
Chuck Wooters. 2003. The icsi meeting corpus. 2003
IEEE International Conference on Acoustics, Speech,
and Signal Processing, 2003. Proceedings. (ICASSP

’03)., 1:I–I.

Anirudh Joshi, Namit Katariya, Xavier Amatriain, and
Anitha Kannan. 2020. Dr. summarize: Global sum-
marization of medical dialogue by exploiting local
structures. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, Online Event,
16-20 November 2020, volume EMNLP 2020 of Find-
ings of ACL, pages 3755–3763. Association for Com-
putational Linguistics.

Nazmul Kazi and Indika Kahanda. 2019. Automatically
generating psychiatric case notes from digital tran-
scripts of doctor-patient conversations. In Proceed-
ings of the 2nd Clinical Natural Language Processing

2300

https://doi.org/10.18653/v1/2021.bionlp-1.8
https://doi.org/10.18653/v1/2021.bionlp-1.8
https://doi.org/10.18653/v1/2020.nlpmc-1.4
https://doi.org/10.18653/v1/2020.nlpmc-1.4
https://doi.org/10.18653/v1/2020.nlpmc-1.4
https://transacl.org/ojs/index.php/tacl/article/view/2563
https://transacl.org/ojs/index.php/tacl/article/view/2563
http://arxiv.org/abs/1911.12237
http://arxiv.org/abs/1911.12237
http://arxiv.org/abs/1911.12237
https://doi.org/10.1109/SLT.2018.8639531
https://doi.org/10.1109/SLT.2018.8639531
https://doi.org/10.1109/SLT.2018.8639531
https://doi.org/10.18653/v1/p19-1330
https://doi.org/10.18653/v1/p19-1330
http://arxiv.org/abs/1506.03340
http://arxiv.org/abs/1506.03340
https://aclanthology.org/2020.inlg-1.23/
https://aclanthology.org/2020.inlg-1.23/
https://pubmed.ncbi.nlm.nih.gov/21292706/
https://pubmed.ncbi.nlm.nih.gov/21292706/
https://doi.org/10.18653/v1/2020.findings-emnlp.335
https://doi.org/10.18653/v1/2020.findings-emnlp.335
https://doi.org/10.18653/v1/2020.findings-emnlp.335
https://doi.org/10.18653/v1/W19-1918
https://doi.org/10.18653/v1/W19-1918
https://doi.org/10.18653/v1/W19-1918


Workshop, pages 140–148, Minneapolis, Minnesota,
USA. Association for Computational Linguistics.

Tom Knoll, Francesco Moramarco, Alex Papadopoulos-
Korfiatis, Rachel Young, Claudia Ruffini, Mark
Perera, Christian Perstl, Ehud Reiter, Anya Belz,
and Aleksandar Savkov. 2022. User-driven re-
search of medical note generation software. CoRR,
abs/2205.02549.

Kundan Krishna, Sopan Khosla, Jeffrey P. Bigham,
and Zachary C. Lipton. 2021. Generating SOAP
notes from doctor-patient conversations using modu-
lar summarization techniques. In Proceedings of the
59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International
Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual
Event, August 1-6, 2021, pages 4958–4972. Associa-
tion for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 7871–7880.
Association for Computational Linguistics.

Manling Li, Lingyu Zhang, Heng Ji, and Richard J.
Radke. 2019. Keep meeting summaries on topic:
Abstractive multi-modal meeting summarization. In
Proceedings of the 57th Conference of the Associa-
tion for Computational Linguistics, ACL 2019, Flo-
rence, Italy, July 28- August 2, 2019, Volume 1: Long
Papers, pages 2190–2196. Association for Computa-
tional Linguistics.

Xinzhu Lin, Xiahui He, Qin Chen, Huaixiao Tou,
Zhongyu Wei, and Ting Chen. 2019. Enhancing dia-
logue symptom diagnosis with global attention and
symptom graph. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing, EMNLP-IJCNLP
2019, Hong Kong, China, November 3-7, 2019, pages
5032–5041. Association for Computational Linguis-
tics.

Wenge Liu, Jianheng Tang, Jinghui Qin, Lin Xu,
Zhuguo Li, and Xiaodan Liang. 2020. Meddg: A
large-scale medical consultation dataset for building
medical dialogue system. ArXiv, abs/2010.07497.

Zhengyuan Liu, A. Ng, Sheldon Lee Shao Guang, AiTi
Aw, and Nancy F. Chen. 2019. Topic-aware pointer-
generator networks for summarizing spoken conver-
sations. 2019 IEEE Automatic Speech Recognition
and Understanding Workshop (ASRU).

George Michalopoulos, Kyle Williams, Gagandeep
Singh, and Thomas Lin. 2022. Medicalsum: A
guided clinical abstractive summarization model for

generating medical reports from patient-doctor con-
versations. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2022, volume EMNLP
2022 of Findings of ACL, page 4741–4749. Associa-
tion for Computational Linguistics.

Francesco Moramarco, Damir Juric, Aleksandar Savkov,
Jack Flann, Maria Lehl, Kristian Boda, Tessa Grafen,
Vitalii Zhelezniak, Sunir Gohil, Alex Papadopoulos
Korfiatis, and Nils Hammerla. 2022a. Towards more
patient friendly clinical notes through language mod-
els and ontologies. In AMIA Annu Symp Proc.

Francesco Moramarco, Alex Papadopoulos-Korfiatis,
Mark Perera, Damir Juric, Jack Flann, Ehud Reiter,
Anya Belz, and Aleksandar Savkov. 2022b. Human
evaluation and correlation with automatic metrics in
consultation note generation. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2022, Dublin, Ireland, May 22-27, 2022, pages 5739–
5754. Association for Computational Linguistics.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. CoRR, abs/1808.08745.

Alex Papadopoulos Korfiatis, Francesco Moramarco,
Radmila Sarac, and Aleksandar Savkov. 2022. Pri-
Mock57: A dataset of primary care mock consul-
tations. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 588–598, Dublin,
Ireland. Association for Computational Linguistics.

Thibault Sellam, Dipanjan Das, and Ankur P. Parikh.
2020. BLEURT: learning robust metrics for text
generation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 7881–7892.
Association for Computational Linguistics.

Jamin Shin, Hangyeol Yu, Hyeongdon Moon, Andrea
Madotto, and Juneyoung Park. 2022. Dialogue sum-
maries as dialogue states (ds2), template-guided sum-
marization for few-shot dialogue state tracking. In
Findings of the Association for Computational Lin-
guistics: ACL 2022, Dublin, Ireland, May 22-27,
2022, pages 3824–3846. Association for Computa-
tional Linguistics.

Yan Song, Yuanhe Tian, Nan Wang, and Fei Xia. 2020.
Summarizing medical conversations via identifying
important utterances. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 717–729, Barcelona, Spain (Online). In-
ternational Committee on Computational Linguistics.

Brett R. South, Danielle L. Mowery, Ying Suo, Jianwei
Leng, Óscar Ferrández, Stéphane M. Meystre, and
Wendy W. Chapman. 2014. Evaluating the effects of
machine pre-annotation and an interactive annotation
interface on manual de-identification of clinical text.
J. Biomed. Informatics, 50:162–172.

2301

https://doi.org/10.48550/arXiv.2205.02549
https://doi.org/10.48550/arXiv.2205.02549
https://doi.org/10.18653/v1/2021.acl-long.384
https://doi.org/10.18653/v1/2021.acl-long.384
https://doi.org/10.18653/v1/2021.acl-long.384
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/p19-1210
https://doi.org/10.18653/v1/p19-1210
https://doi.org/10.18653/v1/D19-1508
https://doi.org/10.18653/v1/D19-1508
https://doi.org/10.18653/v1/D19-1508
https://doi.org/10.1109/ASRU46091.2019.9003764
https://doi.org/10.1109/ASRU46091.2019.9003764
https://doi.org/10.1109/ASRU46091.2019.9003764
https://preview.aclanthology.org/emnlp-22-ingestion/2022.findings-emnlp.349
https://preview.aclanthology.org/emnlp-22-ingestion/2022.findings-emnlp.349
https://preview.aclanthology.org/emnlp-22-ingestion/2022.findings-emnlp.349
https://preview.aclanthology.org/emnlp-22-ingestion/2022.findings-emnlp.349
https://pubmed.ncbi.nlm.nih.gov/35308976/
https://pubmed.ncbi.nlm.nih.gov/35308976/
https://pubmed.ncbi.nlm.nih.gov/35308976/
https://aclanthology.org/2022.acl-long.394
https://aclanthology.org/2022.acl-long.394
https://aclanthology.org/2022.acl-long.394
http://arxiv.org/abs/1808.08745
http://arxiv.org/abs/1808.08745
http://arxiv.org/abs/1808.08745
https://doi.org/10.18653/v1/2022.acl-short.65
https://doi.org/10.18653/v1/2022.acl-short.65
https://doi.org/10.18653/v1/2022.acl-short.65
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://aclanthology.org/2022.findings-acl.302
https://aclanthology.org/2022.findings-acl.302
https://aclanthology.org/2022.findings-acl.302
https://doi.org/10.18653/v1/2020.coling-main.63
https://doi.org/10.18653/v1/2020.coling-main.63
https://doi.org/10.1016/j.jbi.2014.05.002
https://doi.org/10.1016/j.jbi.2014.05.002
https://doi.org/10.1016/j.jbi.2014.05.002


Jörg Tiedemann and Santhosh Thottingal. 2020. OPUS-
MT — Building open translation services for the
World. In Proceedings of the 22nd Annual Confer-
enec of the European Association for Machine Trans-
lation (EAMT), Lisbon, Portugal.

Wen-wai Yim and Meliha Yetisgen. 2021. Towards
automating medical scribing : Clinic visit Dia-
logue2Note sentence alignment and snippet summa-
rization. In Proceedings of the Second Workshop on
Natural Language Processing for Medical Conversa-
tions, pages 10–20, Online. Association for Compu-
tational Linguistics.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. 2020. PEGASUS: pre-training with ex-
tracted gap-sentences for abstractive summarization.
In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pages 11328–11339. PMLR.

Longxiang Zhang, Renato Negrinho, Arindam Ghosh,

Vasudevan Jagannathan, Hamid Reza Hassanzadeh,
Thomas Schaaf, and Matthew R. Gormley. 2021.
Leveraging pretrained models for automatic summa-
rization of doctor-patient conversations. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, Virtual Event / Punta Cana, Domini-
can Republic, 16-20 November, 2021, pages 3693–
3712. Association for Computational Linguistics.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Yuanzhe Zhang, Zhongtao Jiang, Tao Zhang, Shiwan
Liu, Jiarun Cao, Kang Liu, Shengping Liu, and Jun
Zhao. 2020. MIE: A medical information extractor
towards medical dialogues. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 6460–6469, Online. Asso-
ciation for Computational Linguistics.

2302

https://doi.org/10.18653/v1/2021.nlpmc-1.2
https://doi.org/10.18653/v1/2021.nlpmc-1.2
https://doi.org/10.18653/v1/2021.nlpmc-1.2
https://doi.org/10.18653/v1/2021.nlpmc-1.2
http://proceedings.mlr.press/v119/zhang20ae.html
http://proceedings.mlr.press/v119/zhang20ae.html
https://doi.org/10.18653/v1/2021.findings-emnlp.313
https://doi.org/10.18653/v1/2021.findings-emnlp.313
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.18653/v1/2020.acl-main.576
https://doi.org/10.18653/v1/2020.acl-main.576


Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 2303–2319
May 2-6, 2023 ©2023 Association for Computational Linguistics

Instruction Clarification Requests in Multimodal Collaborative Dialogue
Games: Tasks, and an Analysis of the CoDraw Dataset

Brielen Madureira1 and David Schlangen1,2

1Computational Linguistics, Department of Linguistics
University of Potsdam, Germany

2German Research Center for Artificial Intelligence (DFKI), Berlin, Germany
{madureiralasota, david.schlangen@uni-potsdam.de}

Abstract

In visual instruction-following dialogue games,
players can engage in repair mechanisms in
face of an ambiguous or underspecified instruc-
tion that cannot be fully mapped to actions in
the world. In this work, we annotate Instruc-
tion Clarification Requests (iCRs) in CoDraw,
an existing dataset of interactions in a multi-
modal collaborative dialogue game. We show
that it contains lexically and semantically di-
verse iCRs being produced self-motivatedly by
players deciding to clarify in order to solve the
task successfully. With 8.8k iCRs found in 9.9k
dialogues, CoDraw-iCR (v1) is a large spon-
taneous iCR corpus, making it a valuable re-
source for data-driven research on clarification
in dialogue. We then formalise and provide
baseline models for two tasks: Determining
when to make an iCR and how to recognise
them, in order to investigate to what extent
these tasks are learnable from data.

1 Introduction

Somewhere in interstellar space are the Voyager
Golden Records1, which left Earth in spacecrafts
in 1977 carrying a message about humanity to ex-
traterrestrial civilizations. The committee in charge
of designing the message, chaired by Carl Sagan,
was careful to include symbolic instructions on how
to play the records. But what if these instructions
turn out to be incomprehensible to the aliens?

In human dialogue, Clarification Requests (CRs),
such as those highlighted in Figure 1, are a com-
mon and indispensable mechanism to signal misun-
derstandings and to negotiate meaning, as recently
stressed e.g. by Benotti and Blackburn (2017). This
utterance-anaphoric conversational move can be re-
alized with various forms, functions/readings and
contents (Purver et al., 2003; Ginzburg, 2012) and
can trigger responses that may or not be satisfactory
(Rodríguez and Schlangen, 2004).

1https://voyager.jpl.nasa.gov/golden-record/⁄

   1  T:    above the tree is a cloud with lightning

   2  D:   small size ?

   3  T:    it fits right above the tree so the whole cloud is seen 

                  and the bolt is just above the top of the tree

   4  D:   got it and

   5  T:    to the left of the cloud is a air balloon with a very tip 

                  of the top off screen

   6  D:   is it large or small in size ?

   7  T:    maybe medium

   8  D:   done what else

   9  T:    to the left of the balloon is another regular cloud about one inch from the left

10  D:   okay and

11   T:    just left of center in the green is a medium girl facing right

12   D:   expression of the girl ? what side is she facing ?

13   T:    she is standing with a sad face and one hand facing out . she is facing the tree

14   D:   got it and


Figure 1: Instruction Clarification Requests identified in
a portion of a CoDraw dialogue (ID 8906, CC BY-NC
4.0), with a scene from Zitnick and Parikh (2013).

In addition to the scientific motivation to com-
prehend CRs as a linguistic phenomenon, timely
producing and understanding the vast range of CRs
is also a desirable property for dialogue systems
(Schlangen, 2004). This ability is especially rele-
vant in scenarios where building common ground is
necessary to act and collaboratively achieve a goal.
Instructional interactions are a particular instance
where an instruction follower (IF) often needs to
ask for clarification in order to execute actions ac-
cording to an instruction giver’s (IG) instructions.

Instruction Clarification Requests (iCRs), as we
will refer to them, are a type of CRs originating
at Clark (1996)’s 4th level of communication, the
level of uptake (Schlöder and Fernández, 2014).
They are elicited when an instruction utterance is
generally understood (e.g. acoustically, syntacti-
cally, semantically) but some underspecification or
ambiguity prevents the IF to carry out an action
with enough certainty, as shown in Figure 1.

Learning clarification mechanisms from data is
still an understudied research problem (Benotti
and Blackburn, 2021). We envision the follow-
ing desiderata for a dataset suitable for data-driven
research on iCRs:
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▷ Naturalness: iCRs should occur by the spon-
taneous decision process of the IF in real in-
teraction while trying to act and solve a task,
ideally not being induced by external incen-
tives in the data collection and also not syn-
thetically generated.

▷ Specificity: the annotation should pin down
iCRs as a single category, not subsumed
within other CRs and dialogue acts.

▷ Frequency: relative and absolute occurrence
of iCRs should be large enough for data-
driven methods and statistical purposes.

▷ Diversity: iCRs should occur with various
forms and content, being grounded in the
game actions and parameters.

▷ Relevance: iCRs should be pertinent for play-
ers to decide on actions and solve the task
successfully.

▷ Regularity: iCRs should emerge from under-
lying strategies of the players and not be the
result of random or idiosyncratic behaviour.

Our research questions are: i) Can IF dialogue
models trained on data learn to recognise when
they would profit from receiving more information
in order to execute an action, and thus generate an
iCR? ii) Can IG dialogue models trained on data
learn to recognise when the IF is making an iCR
and respond to it?

In this work, our contribution to begin address-
ing these questions is threefold. We (a) perform
annotation of naturally occurring iCRs in a collab-
orative and multimodal dialogue game, namely the
CoDraw dataset (Kim et al., 2019), showing that it
is a valuable resource for data-driven research on
clarification in dialogue; (b) analyse the corpus and
provide insights relating iCRs to the game dynam-
ics; and (c) discuss two subtasks and models that
can be explored with CoDraw-iCR (v1) and may
serve as components of IF and IG dialogue models
capable of handling iCRs.

2 Related Literature

It is a common practice to map CRs to the level
of communication (Clark, 1996; Allwood, 2000)
where the misunderstanding occurs (Gabsdil, 2003;
Schlangen, 2004; Rodríguez and Schlangen, 2004;
Rieser and Moore, 2005; Rieser et al., 2005; Bo-
hus and Rudnicky, 2005; Benotti, 2009; Koulouri

and Lauria, 2009; Benotti and Blackburn, 2021).
When ASR used to be a bottleneck for dialogue
processing, several works focused on CRs elicited
by problems at levels 2 and 3 – perception and un-
derstanding (Healey et al., 2003; Schlangen and
Fernández, 2007a,b; Stoyanchev et al., 2013, 2014,
inter alia). Comparatively less research exists fo-
cusing on CRs at level 4, namely intention, uptake
or task-level clarifications (Benotti, 2009; Schlöder
and Fernández, 2014). We thus contribute to filling
this gap, building upon the existing literature we
now turn to discuss in more detail.

Schlöder and Fernández (2015) perform a
corpus-based study splitting level 4 CRs into two
types of intention-related conversational problems:
recognition and adoption. Instruction-following
dialogues, where utterances are intertwined with
actions, is one setting where level 4 CRs play a
fundamental role in negotiating meaning. Benotti
and Blackburn (2017) discuss the relation between
instruction, CRs and contexts in such settings and
how conversational implicatures are a rich source
of CRs. Task-level reformulations, a clarification
strategy where the initiator rephrases an utterance
with respect to its effects on the task, are typically
used to confirm more complex actions in instruc-
tion giving dialogues (Gabsdil, 2003) and happen
very frequently (Benotti, 2009). Multimodality, e.g.
gestures, also play a role in instruction-following
CRs (Ginzburg and Luecking, 2021).

Benotti (2009) proposes using planning to infer
and generate the task-level clarification potential
of instructions and identify level 4 CRs in one dia-
logue of a corpus of 15 instruction giving dialogues.
Benotti and Blackburn (2021) analyse the same
corpus and identify six characteristics that may
account for the larger proportion of level 4 CRs
found in it: task-oriented dialogues, asymmetry in
dialogue participant roles (IF and IG), immediate
world validation by the informational or physical
actions, shared view and consequent verification of
the actions, long dialogues that enable more shared
background, and irreversible actions that require
more certainty.

Other corpus studies exist in small datasets. Ro-
dríguez and Schlangen (2004) find that 22.17% of
the CRs are level 4 CRs in an instruction-following
setting. Similarly, Gervits et al. (2021) collect and
annotate 22 dialogues with a human-controlled vir-
tual robot that followed high-level or low-level in-
structions. They propose a very detailed annotation
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schema for the content of CRs, but there is no clear
distinction of level 4 CRs.

A larger dialogue game dataset, the Minecraft
Dialogue Corpus (Narayan-Chen et al., 2019) with
509 games, has been annotated with CRs. Lam-
bert et al. (2019) annotate the IF utterances with
eight dialogue acts, one of which, clarification
questions, comprises requests for clarification to
a given instruction or statement (26.36% of all
utterances). Shi et al. (2022) perform a similar
annotation with a category instruction-level
questions to request clarification for a previous in-
struction that was not clear or ambiguous (18.64%).

The TEACh dataset (Padmakumar et al., 2022)
contains 3k dialogues annotated with dialogue
acts (Gella et al., 2022), of which the 675
RequestOtherInfo spans under the Instruction
category relate to iCRs.

Kiseleva et al. (2021) extend the Minecraft Dia-
logue Corpus with 47 games containing 126 CRs
for an interactive agent building challenge, but con-
centrate on the task of modelling a “silent IF” that
cannot ask questions. The second edition of their
challenge, which happened recently (Kiseleva et al.,
2022; Mohanty et al., 2022), focuses on when the
IF should ask for clarification and what it should
ask about, similar to Aliannejadi et al. (2021). The
dataset for the second challenge is not collected
through real, synchronous interaction. Instead,
one player builds a structure and generates instruc-
tions a posteriori, and, in a separate step, another
player follows these instructions, deciding whether
to make a CR. Similarly, Aliannejadi et al. (2021)
collects a large dataset of CRs to user requests,
augmented synthetically, in a multiple-step process
without interaction. Another large-scale dataset
with 53k task-relevant questions and answers about
an instruction was constructed Gao et al. (2022).
However, the data is created by an annotator that
does not have to act, but only watches execution
videos, asking a question they think would be help-
ful and then answering their own question.

Although these strategies facilitate data collec-
tion, they abstract away the decision-making and
repair processes that emerge when humans collab-
orate to solve a task jointly, which are present in
CoDraw. Our work and the existing literature con-
verge in addressing CRs for ambiguous instruc-
tions, but CoDraw-iCR (v1) maintains the inter-
active aspect of sequential rounds and the spon-
taneous initiative of IF to ask. It is large in ab-

solute number of iCRs and dialogues, with short
games that have a relatively constrained action
space. Moreover, our annotation pins down iCRs
among other types of CRs.

A dataset that can be further explored for iCRs is
Thomason et al. (2020). It instantiates a navigation
task where the IF gets an ambiguous or underspec-
ified command about where to navigate to, and can
ask questions to an oracle during the trajectory.

In HRI, following commands is a central task.
Koulouri and Lauria (2009) investigate miscommu-
nication management mechanisms in robots per-
forming collaborative tasks, in which task-level
reformulations is a challenging type of CR that re-
quires identification of the effects of all possible
executions of an instruction. Deits et al. (2013)
evaluate various clarification question strategies for
robots that receive instructions with an ambiguous
phrase. Marge and Rudnicky (2015) examine re-
covery strategies in situated grounding problems,
when an agent has to deal with requests containing
referential ambiguity or that are impossible to ex-
ecute. Interestingly, Jackson and Williams (2018)
and Jackson and Williams (2019) raise awareness
to the fact that merely posing a CR can already
imply willingness to follow a command, which is
undesirable in morally delicate situations.

Other tangent research areas study clarification
edits to solve underspecified phrases in instruc-
tional texts (Roth et al., 2022) and clarification
responses in community forum questions or
search queries (Braslavski et al., 2017; Rao and
Daumé III, 2018; Aliannejadi et al., 2019; Kumar
and Black, 2020; Hu et al., 2020; Majumder
et al., 2021), scenarios with only minimal or no
interaction.

Tasks. Deciding when to initiate a CR in various
contexts is a task classically discussed in the CR lit-
erature (Rieser and Lemon, 2006; Stoyanchev et al.,
2012, 2013; Narayan-Chen et al., 2019; Alianne-
jadi et al., 2021; Shi et al., 2022; Kiseleva et al.,
2022, inter alia). Fewer works exist specifically
about detecting if a CR was made. Identification of
CRs in corpora carry out a similar task, although
this is not done from the perspective of an agent
knowing that it needs to respond to the CR, of
which De Boni and Manandhar (2003) is an exam-
ple. More generally, this task can be subsumed by
dialogue act classification, as in, for instance, Gella
et al. (2022).
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3 Motivation and Problem Statement

CRs occur naturally in human-human interaction
and thus also in visual dialogue games. Neural
network-based dialogue models trained at such
datasets need to properly handle this phenomenon,
which comprises various component tasks for iden-
tifying, interpreting, generating and responding to
CRs. In this section, we formalise the setting and
two of these tasks.

3.1 Formalisation: Instruction-Following
Dialogue Games

A visual instruction-following dialogue game can
be formalised as a tuple G = (P, S,R,M) repre-
senting a goal-oriented interaction between players
P (an instruction giver IG and an instruction fol-
lower IF). IG sees a scene S, hidden to IF, and
instructs IF on how to reconstruct it. They ex-
change a sequence R of n rounds ri = (gi, ai, fi)
comprised of two utterances (gi, fi), from IG and
IF, respectively, and of actions ai that incremen-
tally create partial reconstructions si of S. R is
initialised as an empty set and, at each round, it is
extended with gi, ai and fi, in that order. The final
state of a completed game contains all filled rounds.
A scene similarity metric M computes how close
the reconstructions are to the original image at each
round, and the goal is to maximize similarity of the
final reconstruction M(S, sn).

The dialogue acts by the IF include acknowl-
edgements and clarification requests, whereas the
dialogue acts by the IG include instructions and
responses to clarifications. Two variations are pos-
sible: the state si can be accessible for the IG or
not. The incremental scenes can be regarded either
as the common ground between players (if both
can see it) or as what the IF considers to be their
common ground (when it is private), akin to what
is proposed by Mitsuda et al. (2022).

Following Clark (1996), we assume that a pair
of equally competent players, committed to the
game’s goal of maximizing M(S, sn), seek to min-
imize joint effort. It is acceptable for the IG to
produce an underspecified instruction if producing
a fully specified instruction would cost more than
answering an iCR. Instruction CRs require an extra
effort by the IF, so they should occur when repair
is necessary and the cost of asking is lower than
the potential information gain.

3.2 Tasks

We propose to use CoDraw-iCR (v1) to advance
research in iCRs by modelling two CRs subtasks in
an instruction-following dialogue game grounded
in a visual modality. Both subtasks can be regarded
as a binary decision step happening right before
each player’s next utterance generation.

Task 1: Ask iCR? From the IF’s perspective as
the CR initiator, decide when to initiate a CR.
More specifically, after each IG utterance, given
the dialogue context D0:(i−1) (that is, all previous
utterances), the current utterance gi by IG, and
the current state2 of the scene si, the IF must
decide on the type of their utterance fi, namely
whether to consider the action completed and
signal willingness to receive further instructions
(e.g., produce something like “OK”), or to ask
for clarification on some aspect of a previous
instruction. That is, this formulation of the task
focuses on the dialogue act to perform, abstracting
away from the concrete realisation. It deals with
the problem of automatically determining what is
a good instruction and what is not, on its context.
This task relates to slot filling in the sense that an
instruction containing all the needed parameters
for the mentioned objects should not require
clarification.

Task 2: Was this an iCR? From the IG’s perspec-
tive as the CR recipient, identify whether an iCR
has been made. At each round i, given the dialogue
context D0:i (in which the last utterance, fi, is pos-
sibly an iCR) and the original scene S, the IG must
decide whether to give further instructions or to
(also) respond to an iCR.

4 Data and Annotation

CoDraw (Kim et al., 2019) is a collaborative
instruction-following dialogue game, in which a
“teller” (in our terminology, the IG) observes a cli-
part scene and instructs a “drawer” (IF), who has
no access to it, on how to reconstruct it, i.e. place
cliparts in a canvas with the correct size, direction
and position. The corresponding crowdsourced
dataset contains 9,993 dialogues in English and has
been released under a CC BY-NC 4.0 license. This
dataset instantiates the formalisation proposed in

2Under the assumption that the IF has manipulated the
scene in response to IG already. For CoDraw, the exact point
when the IF types the message has not been preserved.
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Section 3, but adds an additional signal: The teller
is allowed to peek at the drawer’s canvas once dur-
ing the game whenever they want, i.e. the teller can
get access to si and thus judge how it differs from S.
Players exchange messages of up to 140 characters
through a chat interface and must alternate turns.
We will use round to refer to a pair of consecutive
utterances by teller and drawer with the correspond-
ing actions. The drawer’s performance is evaluated
with a scene similarity score that ranges from 0 to
5, where 5 is a perfect match. Table 1 summarizes
quantitative aspects of the dataset.

train val test

dialogues 7,989 1,002 1,002
with peek 7,315 923 913

avr. final score 4.20 4.19 4.17
before peek 3.97 3.95 3.96

avr. rounds/dialogue 7.76 7.69 7.70
avr. utterance len teller 14.36 14.48 14.31
avr. utterance len drawer 2.58 2.67 2.58

vocab size IG 4,506
vocab size IF 2,200

Table 1: Descriptive statistics: CoDraw dataset.

Each game is about a different abstract scene3

composed of between 6 and 17 out of a set of 58 cli-
part types (Zitnick and Parikh, 2013; Zitnick et al.,
2013), among which the boy and the girl can have
5 facial expressions and 7 body poses, so the re-
sulting clipart set contains 126 elements and the
default background. Multiple types of trees, hats,
clouds, glasses and balls can introduce the need
for ambiguity resolution in the games. As the indi-
vidual components can be placed freely, the space
of possible resulting scene images is practically
unlimited in size.

In the baseline models proposed in the original
paper, the authors introduce a simplifying assump-
tion which removes the drawer’s utterances from
the dialogue history (they call this condition the
silent drawer). The authors leave the tasks of iden-
tifying when a CR is necessary and of generating
it for future work. Subsequent works with this
dataset have focused on text-to-image generation
(El-Nouby et al., 2019; Matsumori et al., 2021;
Zhang et al., 2021; Lee et al., 2021; Liu et al., 2020;
Fu et al., 2020) but, to the best of our knowledge,
no other work has examined CRs in CoDraw. We
thus take up this idea to bring back the dialogue
modality to this dialogue game.

3http://optimus.cc.gatech.edu/clipart/

Identification of Instruction CRs. We observe
that a good portion of the drawer’s utterances be-
longs to one of two dialogue act types: acknowl-
edgements, signaling that the teller may proceed
with the next instruction, and clarification requests,
initiating repair on aspects necessary to solve the
task. We thus consider CoDraw to be a potentially
interesting source of iCRs.

The first step we take is identifying instruction-
level CRs in this dataset. To achieve that, we per-
form a binary decision over the drawer’s utterances.
For our purposes, an utterance is an iCR if the
following assertion is likely true:

“This utterance indicates that the drawer is
requesting further information about one or
more instruction(s) previously given by the
teller in order to perform an action accord-
ingly, likely because part of the instruction
was underspecified, ambiguous or not clear.”

To reduce the annotation workload, we anno-
tate utterance types; forms that occur only once
(88.97% of the types) are presented with a one-
utterance context window around it. All occur-
rences of each of the other utterance forms are
collapsed into a single datum, presented to the an-
notators without context.

5 Corpus Analysis

In this section, we present an analysis of iCRs in
the CoDraw dataset and their relation to the game
dynamics, establishing connections to the items in
our desiderata and showing that CoDraw-iCRs (v1)
is a promising resource to study the phenomenon
and to model dialogue agents that learn what to
do in face of unclear instructions, complementing
existing initiatives.4

5.1 Descriptive Statistics

The 13,727 IF’s utterance types have been anno-
tated by two annotators, with a Cohen’s κ (Cohen,
1960) of 0.92. Table 2 presents the main descriptive
statistics of the annotated corpus.5 8,807 (11.36%)
of all drawer’s utterances in CoDraw are iCRs.
59.45% of the dialogues contain no iCRs. For the
purpose of analysis, we also compute numbers rel-
ative to the subset of dialogues that contain at least

4The dataset is available for the community upon request.
5In this paper, for the around 3.6% of the utterances with

disagreements, we opt for the second annotator’s labels, who
had more training.
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Figure 2: 50 most frequent Instruction CRs in the CoDraw dataset ordered by rank.
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Figure 3: 50 most frequent iCRs initial bigrams in the CoDraw dataset.

one iCR; the idea here is that this excludes players
who may not have been willing to use the oppor-
tunity to ask iCRs. In this subset, the percentage
of iCRs is 24.36%. We also separate out numbers
computed from the dialogues up the “peek” action
described above, as from that move on, the state of
the common ground changes.

all w/ iCRs until peek

dialogues 9,993 4,052 -
rounds 77,502 36,149 61,829

iCR utterances 8,807 8,807 7,803
% iCR utterances 11.36 24.36 12.62

mean iCRs/dialogue 0.88 2.17 0.78
std iCRs/dialogue 1.53 1.73 1.36

Table 2: Descriptive statistics: Annotation.

Figure 2 presents the most frequent iCR utter-
ance types, ordered by rank. 7,260 (94.13% of the
types) are hapax legomena. Types occupying the
highest ranks relate to size, position and orienta-
tion, which directly map to the possible actions on
cliparts, and to disambiguation of e.g. facial expres-
sion and body pose. Few types occur more than 5
times, which is evidence that the dataset contains
a rich diversity of iCR surface forms. Figure 3 ag-
gregates iCRs by initial bigrams, after removing
punctuation and initial ok and okay tokens (which
realise a different dialogue act). Common iCR
forms are polar questions and wh-questions also
related to the main actions (placement, resize, flip,
disambiguation).

The drawer’s vocabulary contains 2,200 token
types, out of which 1,468 occur in iCRs. Figure

4 shows an overview of the 100 most common to-
kens. The frequent iCR vocabulary contains many
nouns relating to cliparts (slide, table, bear, dog),
in particular those that refer to nouns involving
ambiguity (boy, girl, cloud, tree, ball). Question
words occur frequently (what, how, where, which)
as well as words about object placement (horizon,
facing, size, top, touching, edge). Non-iCR ut-
terances commonly contain words related to the
task (scenery, picture, image, check, next), greet-
ings and thanks, and acknowledgement words (ok,
ready, done).

5.2 Relations to Game Dynamics

We now turn to examining how the occurrence of
iCRs relate to the overall game dynamics.

To analyse CRs, three positions in a dialogue
are particularly relevant: the source utterance in
which the communication problem occurs, the CR
utterance where repair is initiated, and the response
utterance where the problem should ideally be dealt
with. Since the dialogue is organized into a se-
quence of rounds with pairs of utterances (gi, fi),
if an iCR occurs at round i, then fi is an iCR, gi
is the likely source utterance, and gi+1 is possibly
the response utterance. In Figure 1, turns 1, 5 and
11 are sources, 2, 6 and 12 are iCRs and 3, 7 and
13 are responses. However, these events do not
necessarily occur in immediate sequence.

Here, we investigate how the game dynamics
change at two positions: iCR rounds and rounds im-
mediately following an iCR. We look at the mean
number of actions per round and the difference in
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iCRs

(a) iCR utterances

other

(b) other utterances

Figure 4: Most common tokens weighted by frequency.

the score metric with respect to the previous state,
as shown in Table 3. On average, more actions
occur at iCR rounds than at non-CR rounds. The
difference is even larger in post-iCR rounds, where
necessary edits can be occurring. iCR rounds also
cause an average higher improvement in the metric
than other rounds and the same occurs for rounds
after iCRs in dialogues containing iCRs.

To conclude this section, we refer back to our
desiderata. The naturalness of iCRs is a conse-
quence of the data being produced by synchronous
human-human interaction in a setting that does not
directly induce players to ask for clarification; in-

all w/ iCRs

mean actions per round
iCR rounds 1.72 1.72
not iCR rounds 1.64* 1.62*
post-iCR rounds 2.11 2.11
not post-iCR rounds 1.59* 1.50*

mean score diff
iCR rounds 0.59 0.59
not iCR rounds 0.53* 0.43*
post-iCR rounds 0.53 0.53
not post-iCR rounds 0.54 0.44*

Table 3: Round dynamics. * means the difference in
relation to the value at the row above is statistically
significant at α = 0.01 using a permutation test.

deed, almost 60% of the games do not contain iCRs,
which we take to be evidence that they are a result
of the private decision making of the IF and not
due to them following instructions on which dia-
logue acts to produce. Specificity is guaranteed by
the annotation process which had a definition to
distinguish iCRs from other utterances. In terms
of frequency, iCRs are a common phenomenon in
CoDraw-iCR (v1), which contains 8,807 (11.36%)
iCR utterances, a sample larger than existing an-
notated datasets. We have gathered evidence that
diversity is present, given that iCRs occur in vari-
ous forms and exhibit lexical and semantic variety
on content related to the game. When it comes to
relevance to the task, we have shown that there
are statistically significant differences in number
of actions and score differences at turns realising
and following iCRs, which is a sign that agents
need to process iCRs in order to act accordingly
throughout the game. Regularity is addressed in
the experiments in the next section.

6 Models and Experiments

In this section, we present the models for the two
tasks discussed in Section 3.2 as well as the evalu-
ation metrics. Both are binary classification tasks
using regression to predict the probability of the
positive label (iCR) on imbalanced datasets, whose
distribution is shown in Table 4.

train val test

datapoints 62,067 7,714 7,721
% iCR 11.30 11.92 11.28

% not iCR 88.69 88.07 88.71

Table 4: Distribution of labels.
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6.1 Models

We model the two prediction subtasks as a function
f : (s, c, u) 7→ P (l = 1) where s is the represen-
tation of the scene, c is the representation of the
dialogue context, u is the representation of the last
utterance and l is the label. This function is ap-
proximated with a neural network that takes each
input embedding, encodes them, and maps them to
a concatenated representation which is fed into a
two-layer classifier that outputs the probability of
the positive label by applying the sigmoid function
to the logit output, as illustrated in Figure 5.6

dialogue 3454

pretrained embeddings

context encoder last IG message encoder image encoder

concatenation

boy stands , happy , hands reaching right , boy has tennis ball in 
his left hand , dog center to the right , facing left

/D ready 
/T sun upper left most hidden , big tree with hole far right , half 
hidden on the right , tent under sun medium , boy at door hands 
to the right 
/D what boy doing ?

P(generate iCR)instruction follower 
component

(a) Task 1: Ask iCR?

dialogue 3454

pretrained embeddings

context encoder last IF message encoder orig image encoder

concatenation

size of the dog ?

/D ready 
/T sun upper left most hidden , big tree with hole far right , half hidden 
on the right , tent under sun medium , boy at door hands to the right 
/D what boy doing ? 
/T boy stands , happy , hands reaching right , boy has tennis ball in his 
left hand , dog center to the right , facing left

P(iCR detected)instruction giver 
component

(b) Task 2: Was this an iCR?

Figure 5: Illustration of the classifier architecture, with
an example dialogue from CoDraw (ID 3454).

6.2 Evaluation

Although the area under the ROC curve is a stan-
dard evaluation metric for binary classification,
it can be deceptive in imbalanced datasets due
to the interpretation of specificity, in which case
Precision-Recall curves are more suitable (Saito
and Rehmsmeier, 2015). The Average Precision
(AP) summarizes this curve into one metric that
ranges from 0 to 1, where 1 is the best performance,
and the theoretical random is the fraction of pos-

6Details about the implementation, setup and experi-
ments are in the Appendix and the code is available at
https://github.com/briemadu/codraw-icr-v1/.

itive labels. To facilitate comparison to existing
literature, we also report macro-average F1 Score.

As trivial baselines, we perform logistic regres-
sion on basic features of the utterances and on the
input representation vectors. For Task 1, the fea-
tures are the length of the last teller’s utterance and
its boolean bag-of-words representation. For Task
2, we use the length of the last drawer’s utterance
and a binary variable indicating whether a content
word occurs in it. The list of content words was
extracted manually from a sample of dialogues.

6.3 Embeddings

The pretrained embeddings for texts are gener-
ated with SentenceTransformers (Reimers and
Gurevych, 2019) and for images with ResNet101
(He et al., 2016). In order to probe whether the
pretrained sentence encoders minimally capture
the necessary information for our task, we use the
dialogue context representation at the turn before
the peek action to predict whether iCRs occurred
in the dialogue so far. Using a logistic regression
model on dialogues that contain a peek turn, we
achieve AP= 0.91 and macro F1 Score= 0.86 in
the validation set. This provides evidence that, de-
spite they having been optimized for other tasks,
the occurrence of iCRs is, to some extent, encoded
in the representations.

7 Results

Table 5 presents the main results of our models
on the two tasks. The feature-based baselines pro-
vide some gain over the random performance for
Task 1, and a considerable improvement for Task
2. The logistic regression baseline is enough to
produce good results for Task 2, whereas Task 1 re-
mains very challenging even for the neural network
model.

Task 1: IF Task 2: IG

AP mF1 AP mF1

random val .117 .489 .117 .489
test .113 .503 .113 .503

features val .206 .531 .687 .858
test .195 .518 .687 .855

log-reg val .324 .587 .984 .962
test .287 .576 .978 .961

model val .399 .662 .991 .969
test .347 .645 .988 .968

Table 5: Main results. Average Precision and macro-
average F1 Score on the validation and test sets.
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Ablation. We remove each component of the in-
put to the neural network model in order to under-
stand what information is more relevant for this
task. Table 6 shows the differences with respect to
the performance in the validation set.

The image representation does not seem to be
fully exploited by the model. While in Task 2 the
image is expected to be superfluous to detect the
dialogue act, it should play a role for Task 1, as it
imposes constraints on possible actions. It is pos-
sible that the off-the-shelf pretrained model is not
adequate to encode cliparts and further investiga-
tion with other models and fine-tuning is required.

The last message is the most relevant signal for
Task 2, as expected, given that it is the iCR being
classified. Without it, the task is almost equivalent
to Task 1 and the performance is indeed similar.
Interestingly, the most relevant signal for Task 1 is
the context and not the last utterance, which is evi-
dence that the model fails to distinguish well which
instructions require an iCR. To further investigate
this, we remove the teller’s utterances and the
drawer’s utterances from the context embeddings.
While removing the teller’s utterances causes little
change, removing the drawer’s utterances is almost
as detrimental as removing the whole context. We
thus conclude that the model is likely exploring
patterns in the drawer’s behavior to make decisions.

Task 1: IF Task 2: IG

AP mF1 AP mF1

no image -.032 -.012 .001 .005
no message -.050 -.021 -.652 -.328
no context -.109 -.054 .001 .007

context w/o teller -.001 .000 -.001 -.000
context w/o drawer -.087 -.054 -.000 .007

Table 6: Results of ablation in the input components.
Differences in relation to the main result in the val set.

8 Discussion

Our findings are aligned with the recent conclu-
sions by Aliannejadi et al. (2021) and Shi et al.
(2022) that the task of predicting when a CR should
be made is rather difficult with data-driven mod-
els. Techniques to deal with the class imbalance
(downsampling, upsampling and varying the cost-
sensitive loss function) and variations of the models
(e.g. Transformer-based architectures) so far led us
to similar results. On the other hand, the task of

identifying iCR utterances is uncomplicated even
for a simpler logistic regression model.

The results reached by our model in Task 1 do
not quite allow us to see desideratum regularity
as satisfied at this point, but we are confident that
there is much room for interesting further research
with this dataset. On their own, these tasks model
an overhearer that predicts what the agent should
do. What is of interest in reality is having them
integrated as subcomponents, implicitly or explic-
itly, in the models that also make the instruction-
giving/following decisions, because these capabili-
ties are not detached in the agents de facto. We ex-
pect that the decision to ask for clarification should
emerge more easily in representations of models
that are also making actions.

The fact that the drawer’s utterances seem to be
informative in the dialogue representations for the
task speaks against the “silent drawer assumption”
int he original models (Kim et al., 2019). Remov-
ing the drawer’s utterances from the dialogue likely
cause loss of relevant dialogue phenomena that is
pertinent to the game.

9 Conclusion

We have shown that CoDraw-iCR (v1), the CoDraw
dataset augmented with our iCR annotation, is a
valuable resource for investigating instruction-level
CRs at scale. Through the corpus analysis, we have
also concluded that iCR turns and post-iCR turns
imply different game dynamics, which is relevant
for models trained to play this game successfully.
Therefore, in order to succeed in this type of task,
agents need to know how to handle iCRs, as they
influence not only the dialogue acts but also the
game moves.

Our models perform well on detecting iCRs and
lay the groundwork for further research on predict-
ing when an iCR should be made. The research
roadmap is to integrate iCRs into the full IF agent,
so that the decision to ask for clarification is learnt
together with the actions in the game.

The second annotation phase will provide fine-
grained categories of iCRs’ form and content and
ground them to the game objects, opening the pos-
sibility to explore other tasks like generation.

10 Limitations

In this section, we discuss some limitations that we
inherit from the CoDraw dataset, and then some
limitations of our task setup and baseline model.
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CoDraw is a simplified but representative in-
stance of instruction giving/following dialogue
games and we show that iCRs are frequent and
play an important role in it. Since modelling CRs
is still an open problem, using abstract scenes is a
reasonable strategy to simplify the underlying task
while still giving room for iCRs to occur. Limita-
tions are inherent to data collections in controlled
environments. We aim for our annotations to add
to other recent efforts, which are limited in other
ways. CoDraw-iCR (v1) thus aims to move one
step forward towards modelling iCRs, but general
conclusions depend on various resources and fur-
ther collaborative efforts in our field.

Actions were not irreversible in CoDraw games.
The introduction of the peek action for the teller
can be an incentive both for the teller to not give
exhaustive instructions and for the drawer to build
only an approximation, knowing it could be refined
after the peek. We have no access to what the
performance would have been if they could not
make CRs at all.

Meta-data about crowdworker ID is not avail-
able.7 Because of that, we cannot investigate the ef-
fects of individual CR strategies by players. Players
that play multiple games get to know what to expect
of the game and should both have more practice in
identifying underspecified instructions that require
repair and be able to make better guesses about the
cliparts. Experienced tellers probably anticipate
common problems and adapt their instructions to
avoid them (e.g. they know that multiple cliparts
of trees exist and would likely describe it in their
instruction, avoiding unnecessary communication
problems). Besides, we cannot draw conclusions
on whether dialogues without iCRs indeed did not
require repair or some players were personally less
inclined to make the effort to ask for clarification.

Although CRs annotation should take into ac-
count the full context (Benotti and Blackburn,
2021), the decision to annotate utterance types in-
stead of full dialogues, as discussed in Section 4,
is due to the limited resources given the size of
the dataset and to the nature of the game setting.
We avoided the need to go over multiple non-iCR
utterances that occur very often. The plan for the
second step of the annotation is to provide fine-
grained annotation for each identified iCR within
its own context.

Our models do not take into account the gallery

7Personal communication with the authors.

of cliparts available to the drawer, which is infor-
mative (as it limits the choices of cliparts per game)
and could be part of the input. Preliminary ex-
periments did not lead to better results. Building
a suitable representation of the gallery is left for
future research.
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Figure 6: Instructions for the first annotator.

A Data Statement

Following Bender and Friedman (2018), in this
section we provide information about the extended
dataset. Figure 6 shows the instructions given to
the first annotator.8

Curation Rationale. We annotate iCRs in all
dialogues of the CoDraw dataset (Kim et al., 2019),
which contains 9,993 dialogues produced by crowd-
workers and has been released under a CC BY-NC
4.0 license. Please refer to the original paper for
details about their data collection.

Language Variety and Speaker Demographic.
The CoDraw dataset comprises written interac-
tion in English, however no information about
crowd worker demographic has been released in
the dataset repository.

Annotator Demographic. The annotators who
identified iCRs in CoDraw are a male and a female
Computational Linguistics bachelor students who
are non-native fluent English speakers working at
colabPotsdam as student assistants. The students
were paid according to the German’s regulation for
student assistants.

Situation. In CoDraw, crowdworkers exchanged
written messages of up to 140 characters via a chat
interface in a crowdsourcing tool. IF and IG had to
send messages in alternating turns. The interaction
was synchronous and task-oriented.

Text Characteristics. The CoDraw authors
pre-process all collected utterances using a spell

8The second annotator got more detailed instructions to
perform the fine-grained annotation, which is not part of this
publication. For the analysis and experiments in this work, we
use the labels by the second annotator, who went through a
more extensive background reading about CRs. There are few
disagreements, as shown in the main text.

checker and tokenize the text with a natural lan-
guage toolkit.

B Additional Corpus Analysis

We provide here further descriptive characteristics
of the annotated dataset.

Table 7 shows a few negative examples, i.e. ut-
terances that are not iCRs. Although utterances
like what do you see in the sky ? and anything else
to change ? can indeed be considered task-level
CRs, we do not consider them iCRs because they
do not directly refer back to a given instruction.

yeah it was a lot but thanks for finishing
i am a patient worker ready to start
check please and tell me what to change
anything else to change ?
what else is in the picture and where ?
i ’ve made all the changes you ’ve listed .
ok and look
alright , made changes
please be more specific thanks
ok anything else in the picture ?
yes , please lmk of any corrections
ok i got that :
ready whenever you are . :
what what is the first object and location ?
alright done
what do you see in the sky ?
tell me what we have

Table 7: Negative examples in CoDraw.

Figure 7 depicts in which rounds iCRs occur in
the corpus. Given that the average dialogue length
is 7.7 rounds, most instruction CRs in this dataset
are occurring early in their corresponding dialogue.
The distribution of the number of iCRs per dialogue
is illustrated in Figure 8, where we see that it is
very rare to have dialogues with more than 5 iCRs.
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Figure 9 breaks down the number of iCRs per
number of dialogue rounds. Dialogues with more
than 10 iCRs are outliers, which is expected given
that most dialogues have no more then 15 rounds.

14.58% of validation and 11.96% of test iCR
utterance types also occur in the training set.
17.50% of validation and 14.81% of test iCR
utterances also occur in the training set. The
overlap is low, which is a desirable characteristic
to reduce the memorization shortcuts for models
trained on this dataset.

Computing actions and score differences. We
group the drawing actions into three main cate-
gories: addition (when a clipart is added to the
scene), edit (when some change occurs with an
object that existed in the previous round), and no
action if the drawer did not perform an action in
a round. Edits can be deletion, move (position
change), flip and resize. We do not track whether
newly added cliparts get immediately flipped or re-
sized in relation to the gallery when they are added.
We noticed that some actions that visually seem
to be only flips or resize happen together with a

5 10 15 20 25 30 35
dialogue length (n rounds)

0

2

4

6

8

10

12

14

16

18

nu
m

be
r o

f C
Rs

250
500
750
1000

Figure 9: Number of iCRs vs. number of rounds.

move. However, our inspection shows that this
does not occur consistently with a specific subset
of cliparts and there is also a portion of cases where
flips and resizes occur without moves. Therefore,
each move, resize, flip are counted as one sepa-
rate action in our analysis. We compute the moves
based on the differences over consecutive rounds in
sequence of scene strings labeled abs_d provided
in the original dataset, assuming that they describe
the state of the canvas at the moment when the
drawer sends their message, i.e. at the end of the
current round.

Scene similarity is computed with the scripts
made available by the CoDraw authors on GitHub.

C Reproducibility

In this section we describe the details of the imple-
mentation and datasets for reproducibility purposes.
Further information and documentation is available
in the code repository.

The random and trivial baselines are trained
with scikit-learn (v1.1.2) with class weight set
to balanced. A maximum of 1,000 iterations
was still not sufficient for convergence is all
cases. The hypothesis tests are carried out with
SciPy (v1.10.0), using the permutation test for the
difference of means, with type set to independent.

Models. Our models are implemented with
PyTorch (v1.11.0) and PyTorch Lightning
(v1.6.4). Metrics are computed using TorchMetrics
(v0.10.0). The experiments were run in Linux
5.4.0-99-generic, machine/processor x86_64 in
Python 3.9.12 on an NVIDIA GeForce GTX 1080
Ti GPUs with CUDA v11.6. The architecture of the
full neural network model with its corresponding
layers and dimensions were:
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(model): Classifier(
(img_encoder): ImageEncoder(
(encoder): Linear(in_features=2048,

out_features=128,
bias=True)

)
(msg_encoder): TextEncoder(
(encoder): Linear(in_features=768,

out_features=128,
bias=True)

)
(context_encoder): TextEncoder(
(encoder): Linear(in_features=768,

out_features=128,
bias=True)

)
(classifier): DeeperClassifier(
(classifier): Sequential(

(0): LeakyReLU(negative_slope=0.01)
(1): Dropout(p=0.1, inplace=False)
(2): Linear(in_features=384,

out_features=256,
bias=True)

(3): BatchNorm1d(256,
eps=1e-05,
momentum=0.1,
affine=True,

track_running_stats=True)
(4): LeakyReLU(negative_slope=0.01)
(5): Linear(in_features=256,

out_features=1,
bias=True)

)
)

)

The complete model has 558,465 trainable pa-
rameters. For the ablation experiments, the number
of dimensions was reduced according to the input,
and the number of parameters were 263,425 (no
image), 427,265 (no context) and 427,265 (no ut-
terance).

Training is carried out with the Adam optimizer
(Kingma and Ba, 2015) to minimize weighted bi-
nary cross entropy (the weight is the hyperparam-
eter weight cr) estimated with a sigmoid function
applied to the output logits. We use the Bayes
algorithm from comet.ml to perform hyperparame-
ter search seeking to maximize Average Precision
(and also AUC of the Precision-Recall curve in
some preliminary experiments) on the validation
set for Task 1. For the final version, we run 111
experiments during hyperparameter search. The op-
timal hyperparameters used in the experiments are
shown in Table 8 together with their correspond-
ing bounds. We use the second best performing
configuration, because it is only around 6e-7 below
the best one, but has more stable learning curves.
All other experiments (ablation and Task 2) use
the same configuration, except that the dimensions

change according to the input vectors for ablation.
We report the results of one run using the best con-
figuration.

We use a decision threshold of 0.5 for the evalu-
ation metrics that require a fixed threshold.

We train the models for up to 20 epochs, which
takes around 3-4 minutes, including inference,
which requires around 4 seconds. Although it takes
more than 20 epochs to achieve a higher perfor-
mance on the training set, the maximum for the
validation set is reached in early epochs. We then
use the model checkpoint with the highest Average
Precision on the validation set to run evaluation on
the test set.

We use the all-mpnet-base-v2 model from
SentenceTransformers to encode the texts into a
representation with 768 dimensions. The image
representation has 2048 dimensions. Images are
preprocessed according to PyTorch Vision docu-
mentation (without resizing and centering) and
features are extracted following recommendation
on their forum. We use the pretrained model
resnet101 available from torchvision (v0.12.0).

Datasets. We use the same train/val/test splits as
the original CoDraw dataset. The sizes and the
distribution of labels in the annotated dataset is in
Table 4. For retrieving the context embeddings, we
add a /T token before the teller’s utterance and a /D
token before the drawer’s utterances. We also add
a /PEEK token before the utterances of the round
when a peek action occurs. The context is limited
to the last 200 tokens. Utterances are tokenized
with blank spaces on the preprocessed published
dataset.

D Detailed Results

We present more details about the performance on
the validation set.
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Figure 10: Average precision per round (validation set).
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hyperparameter type search bounds optimal value

accumulate gradient discrete 1, 2, 5, 10, 25 25
batch size discrete 32, 64, 128, 256, 512, 1024 128
clipping discrete 0, 0.25, 0.5, 1, 2.5, 5, 10 1
dropout discrete 0.1, 0.2, 0.3, 0.5 0.1
gamma discrete 0.1, 0.5, 0.9, 0.99, 1 0.99
hidden dimension discrete 32, 64, 128, 256, 512, 1024 256
internal embeddings dim discrete 32, 64, 128, 256, 512, 1024 128
learning rate discrete 0.1, 0.01, 0.001, 0.0001, 0.003, 0.0003, 0.00001, 0.0005 0.003
lr scheduler categorical none, exp, step exp
lr step integer min=1, max=5 2
random seed integer min=1, max=54321 35466
weight cr float min=1, max=10 2.6125454767515217
weight decay discrete 1, 0.1, 0.01, 0.001, 0.0001 0.0001

Table 8: Hyperparameters: Search bounds and optimal values.

Figure 10 shows the AP metric split by round,
Figure 11 presents the ROC curves and Figure 12,
the Precision Recall curves of the best checkpoint.
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Figure 11: ROC curves (validation set).
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Figure 12: Precision-Recall curves (validation set).
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Abstract
In sensitive domains, the sharing of corpora is
restricted due to confidentiality, copyrights, or
trade secrets. Automatic text generation can
help alleviate these issues by producing syn-
thetic texts that mimic the linguistic properties
of real documents while preserving confiden-
tiality. In this study, we assess the usability of
synthetic corpus as a substitute training corpus
for clinical information extraction. Our goal is
to automatically produce a clinical case corpus
annotated with clinical entities and to evalu-
ate it for a named entity recognition (NER)
task. We use two auto-regressive neural mod-
els partially or fully trained on generic French
texts and fine-tuned on clinical cases to pro-
duce a corpus of synthetic clinical cases. We
study variants of the generation process: (i)
fine-tuning on annotated vs. plain text (in that
case, annotations are obtained a posteriori) and
(ii) selection of generated texts based on mod-
els’ parameters and filtering criteria. We then
train NER models with the resulting synthetic
text and evaluate them on a gold standard clini-
cal corpus. Our experiments suggest that syn-
thetic text is useful for clinical NER.

1 Introduction

The lack of specific resources might be the most
common hurdle encountered when working in Nat-
ural Language Processing (NLP), whether it be the
lack of task-specific resources, domain-specific re-
sources, or both. A major challenge for biomedical
NLP in languages other than English is the lack of
available clinical corpora that can be shared with
the community (Névéol et al., 2018).

One way of addressing this problem is to gen-
erate new data automatically. The performance of
recent language models based on the transformer
architecture (Vaswani et al., 2017) on various tasks
that involve generating text (translation, summa-
rization, etc.) makes it possible to use the trans-
former’s power to generate text to address resource
sparsity.

More specifically for generation, large gener-
ative language models such as GPT-2 (Radford
et al., 2019) and GPT-3 (Brown et al., 2020) have
the ability to generate well-written text containing a
wealth of information. The knowledge gained dur-
ing the pre-training of those large language mod-
els could be helpful in more specialized domains
where there is not enough data to train a generative
model from scratch.

Dealing with medical data brings one particu-
lar issue. The generated data should not contain
sensitive information from the data it is inspired
by while remaining as close as possible to it. This
means that the evaluation of this task is different
from the usual evaluation of text generation.

The evaluation of text generation is a difficult
problem (Howcroft et al., 2020; Novikova et al.,
2017). There is a distinction between intrinsic and
extrinsic evaluation (Gehrmann et al., 2022). For in-
trinsic evaluation in generation tasks such as trans-
lation and summarization, the quality is usually
first automatically measured using metrics such as
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
or BERTScore (Zhang et al., 2020). Those metrics
and many others compare the system’s output to
one or several human-written references (Frisoni
et al., 2022). However, a gold reference does not
exist for an open-generation task.

Human evaluation is usually the best way of in-
trinsically evaluating text generation. Still, there
can be several problems. First, human evaluation
should be conducted once the system’s output can
be considered “good enough” to avoid wasting hu-
man evaluation costs. This means there is a need
to measure if the system is ready to be manually
evaluated. Second, it might not be possible for a
human to assess the quality of generated data at a
larger scale, if the generated data is not considered
as a set of independent sentences but as a whole
self-sufficient corpus.

This is why extrinsic evaluation of the generated

2320



data is also important, meaning evaluating the use-
fulness of the generated data (Stadler et al., 2022).
However, to our knowledge, methodologies to ex-
trinsically evaluate open text generation are rare.

In this work, we explore text generation using
a pre-trained language model and we focus our
evaluation on named entity recognition (NER).

This paper offers the following contributions:
• we generate two sets of clinical cases in

French with two variants;
• we introduce an evaluation protocol of the

generated texts using ngram overlap and NER
models;

• we compare the generated texts with real clin-
ical case corpora.

2 Related Work

Generating data to address resource sparsity is an
active field of research. Pre-trained transformer-
based models have been used as data augmentation
tools, such as in Claveau et al. (2022), where the au-
thors fine-tuned the pre-trained auto-regressive En-
glish language model GPT-2 to create labeled ex-
amples for training classification models in French
and English. In the medical domain, Amin-Nejad
et al. (2020) use an encoder-decoder transformer ar-
chitecture to generate discharge summaries given a
context. The context gives a target to the generation
that is used to evaluate the generated texts. Mela-
mud and Shivade (2019) train an LSTM-based lan-
guage model to generate shareable clinical notes us-
ing differential privacy (Dwork et al., 2006). Word
embeddings are trained on the generated data and
compared to word embeddings trained on the orig-
inal data on two existing benchmarks. Ive et al.
(2020) used an entity extraction method to build
a generative model with entities as input and the
document as output and generated artificial mental
health records in English.

Several efforts exploit Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014) to
seamlessly augment original data. Among them,
Abedi et al. (2022) use GANs to generate artificial
structured data in the medical domain. Choi et al.
(2017) created medGAN, a framework to generate
artificial structured electronic health records (EHR)
with discrete values. Torfi et al. (2022) rely on a
combination of autoencoders (Kingma and Welling,
2014) and GANs to generate artificial structured
data with both discrete and continuous values.

3 Method

3.1 Experiment description
The experiment presented in this paper is designed
to evaluate open text generation in the clinical do-
main. The goal is to create an artificial corpus pre-
senting the same characteristics as a real clinical
corpus. One challenge of this task is that defining
and recognizing the characteristics of a clinical
corpus is an open question.

We envisaged the characteristics of clinical cor-
pus along three perspectives:

1. a distributional perspective: we want to create
an artificial clinical corpus with a token distri-
bution similar to that of a real corpus. This as-
pect will be measured using self-BLEU (Zhu
et al., 2018) and perplexity;

2. a qualitative perspective: we want to create
an artificial corpus that mimics a real clinical
corpus in terms of semantic and linguistic con-
tent. This aspect will be measured by manual
analysis of samples of generated texts;

3. an application perspective: we want to create
an artificial clinical corpus that can be used
to train NER models to be applied to a real
clinical corpus for clinical information extrac-
tion. This aspect will be measured through
the extrinsic evaluation of Section 4.2.

Manual annotations

Automatic
annotations

Automatic 
annotations

E3C NER model GEN NER model 

Gold NER model

Generative 
Language Model 

MERLOT 

TEST

TRAIN

Generated 

TEST

TRAIN

E3C 

TEST

TRAIN

Figure 1: Description of the experiment conducted to
evaluate NER on artificial data.

Figure 1 presents the global setup for evaluat-
ing generated data for NER. The specific corpora
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(MERLOT and E3C) named in the figure will be de-
scribed in Section 3.2.

Briefly, we leverage a corpus of clinical doc-
uments in French containing high-quality entity
annotations (MERLOT). This corpus represents the
target real data we aim to analyze. It is used in
part to train clinical NER models and in part for
evaluating clinical NER models. We then use a
clinical case corpus (E3C) for fine-tuning genera-
tion models, with the option of generating tagged
text or plain text that can then be tagged with the
Gold NER model.

In the end, each of the newly annotated corpora
is split into training and testing sets and is used
to train new NER models. These final models are
then tested on the test sets of each corpus.

3.2 Corpora
This section presents the corpora used in our exper-
iments. Table 1 presents descriptive statistics.

E3CFR CAS MERLOT

Toks 328,645 231,662 148,476
Docs 1,009 717 500
Toks/doc 325.7 323.1 297.0
Sents/doc 15.2 15.8 14.4
Avg sentence length 21.4 20.4 20.6
Self-BLEU 0.68 0.66 0.69

Table 1: Statistics of the real medical corpora.

MERLOT (Campillos et al., 2018) is a corpus of
500 clinical documents in French from the hepato-
gastro-enterology and nutrition specialties. It com-
prises 148,476 tokens with annotations for entities,
attributes and relations. This text genre represents
the type of clinical narratives contained in elec-
tronic health records that we would like to analyze.

CAS (Grabar et al., 2018) is a French medical
corpus containing 717 clinical case descriptions
published in the literature. Clinical cases contain
descriptions of the medical history of patients, treat-
ment received at the hospital, and follow-up care.
CAS covers several medical specialties. The corpus
has been de-identified and the publication of case
descriptions is done with patient consent. The cor-
pus can be obtained from the DEFT 2020 shared
task organizers1.

1https://deft.limsi.fr/2020/

E3C (Magnini et al., 2020) is a freely available
multilingual corpus2. It contains biomedical docu-
ments extracted from different sources, including
journals, abstracts, existing biomedical corpora, pa-
tient information leaflets for medicines, and others.

In this work, we focused on the French part of
the corpus, selecting only the clinical cases pub-
lished in the literature, which are the most similar
documents to the clinical narratives we are inter-
ested in. Clinical cases from E3C cover a variety
of medical specialties and are distinct from those in
CAS. This part of the corpus contains about 1,000
documents and more than 300,000 tokens.

3.3 Entity annotation for E3C

Entity annotations for E3C are needed for two rea-
sons. First, we integrate the annotations in the form
of XML tags into the E3C texts. Fine-tuning the
model on this version of the corpus will enable the
model to learn to generate tags directly during the
generation process. Second, the annotations will
be used to train and test NER models. We use the
manual annotations of entities made on the MERLOT
corpus to train NER models (Bannour et al., 2022)
to annotate the E3C corpus. Using an automatic
rather than a manual annotation for training our
final NER models can lead to error propagation.
We use an ensemble strategy to mitigate this issue:
five different models are trained and applied to the
corpus with a majority vote for the annotation (an-
notation is kept if more than three models agree
on the annotation), which is classically known as
a good way to reduce errors. The train and valida-
tion sets are shuffled for the training of each NER
model and a different seed is used.

3.4 Generation
Pre-trained models such as GPT-2 have been
proven to allow for generating complementary tex-
tual data in a data augmentation context. In this
work, we explore the ability of auto regressive
neural models (viz. GPT2 and BLOOM) trained
partially or exclusively on French to adapt to the
medical domain and generate relevant clinical case
descriptions.

We use two existing GPT models. The first
model is a one-billion-parameter model pre-trained
on generic French texts by Simoulin and Crabbé
(2021). The corpus used to pre-train the model
was extracted from Wikipedia, Project Gutenberg3,

2https://github.com/hltfbk/E3C-Corpus
3www.gutenberg.org
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OpenSubtitle (Lison and Tiedemann, 2016), and
CommonCrawl. In this paper, this model will be
referred to as LLF.

The second model is a smaller version of the Big-
Science BLOOM model4. BLOOM was trained
on 46 different languages, including French5. We
chose the one-billion-parameter version for a fair
comparison between the two models. Both models
are available on the HuggingFace platform67.

3.4.1 Fine-tuning the models
We used the freely available E3C corpus for fine-
tuning our model on medical texts so that the gener-
ation process can be replicated8. We added special
tokens for marking the beginning and end of each
document to make the model generate whole docu-
ments. Two versions of the corpus were used: one
with the annotations described in 3.3 so that the
models directly learn to generate annotations, and
one without annotations. The corpus was split into
training and validation sets, with 90% of the corpus
for training and 10% for validation. The model
was trained with a maximum of 10 epochs, but
training stopped early if the perplexity on the vali-
dation set did not decrease significantly during two
consecutive epochs. We selected a learning rate
of 2e-5, negative likelihood loss with the AdamW
optimizer from the torch package9. In the end, we
have four models, two for each pre-trained model
with one version producing plain untagged text and
one including annotations to produce tagged text.

3.4.2 Generation process
Clinical documents were generated using the token
marking the beginning of a document as input. No
additional prompts were supplied to the models.
We thought that giving information such as the
beginning of a document as a prompt might cause
the model to reproduce text seen during fine-tuning.

Many parameters can be used during inference
to influence the generative models’ output. We
decided to focus on three parameters: nucleus sam-
pling (top-p) value, temperature value, and repeti-
tion penalty. The rest of the parameters were left
with default values. At each step (token) of the

4https://lstu.fr/bloom
5https://huggingface.co/spaces/bigscience/

BigScienceCorpus
6https://huggingface.co/asi/gpt-fr-cased-base
7https://huggingface.co/bigscience/bloom-1b1
8Code available here : https://gitlab.inria.fr/

codeine/synthetic-text-for-ner
9https://pytorch.org/

generation process, the models output a probabil-
ity distribution for vocabulary items. For generat-
ing diverse outputs, sampling consists in randomly
picking the next token to generate, as opposed to
greedy decoding, where the most probable token
is selected. Nucleus sampling, or top-p sampling,
restricts the sampling to the tokens whose summed
probabilities exceed a threshold p. It allows for
more diversity while remaining consistent. Tem-
perature is a way of decreasing or increasing the
disparities in the probabilities of the vocabulary
at a generation step. A temperature higher than
1 will bring the probabilities closer and make the
model less confident, and bring more diversity in
outputs. A temperature lower than 1 will do the op-
posite. Finally, a repetition penalty will encourage
the model to avoid falling into loops. We gener-
ated several samples of approximately 10% of the
target-generated text to assess the impact of those
three parameters on the self-BLEU score of the
generated sample and an oracle perplexity with the
seven billion parameters version of the BLOOM
model. More details can be found in appendix A.2.
We noticed expected behaviors: increasing tem-
perature and repetition penalty increases diversity
(lower self-BLEU) but also increases perplexity.
However, we found that top-p sampling has a low
impact on the two metrics. Perhaps because by
default, the model also adds top k sampling (se-
lecting amongst the k most probable tokens at each
generation step) that lowers the impact of top-p. In
the end, since we wanted a high diversity output
to match E3C’s diversity, we selected high values
for temperature (1.2 for models without tags and
1.5 for models with tags). We also kept a very high
repetition penalty (10) because we noticed that a
lot of generations ended with the model generating
the same tokens over and over even with a high
value. Finally, we selected a default value of 0.95
for top-p sampling.

We aimed for the models to generate complete
documents with length variations similar to E3C.
We computed the average length of E3C documents
(for both annotated and non-annotated versions)
and combined it with standard deviation, exploiting
the ability of the models to close a document with
an ending token and start a new one in the same
generation process.
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3.5 Filtering generated texts
We ensured that the generated corpora had certain
characteristics for a fair comparison to the refer-
ence corpus E3C.

Large auto-regressive language models can gen-
erate good-quality texts. However, the generation
can present some flaws such as repetitions and in-
coherence, especially as the generation length gets
longer (Pillutla et al., 2021). We established a few
criteria that we could handle automatically by ob-
serving a few generated samples:

• overly long tokens: the models some-
times generate an incoherent sequence
of characters or combine many technical
words (e.g., "céphalo-rachidiencéphalico-
mandibulaire");

• repetition of one to many tokens over and over,
especially towards the end of a document;

• the models start a sequence of short tokens
often with numbers (e.g., "classée T4N2 M0 I
2 B 3 C 4 D 5") or start reciting the alphabet
(e.g., "hépatite A B C D E F").

We addressed these three cases by excluding doc-
uments based on token length, trigram frequency,
and regular expressions.

The thresholds used for the three parameters
were adjusted by analyzing the excluded docu-
ments with different threshold values. In the end,
we excluded documents with tokens of thirty char-
acters or more, documents with trigrams appearing
more than three times, and repetition of at least
three short tokens combined with numbers, or sin-
gle letters.

We also wanted our generated corpora to have a
diversity close to that of E3C as computed with the
self-BLEU score (0.68 for E3C). We generated a sig-
nificantly bigger amount of text than the targeted
330,000 tokens and selected a subset of diverse
documents using the tool developed by Cohen et al.
(2013). Then, we computed the self-BLEU score
for the selected documents, including the BLEU
score of each document. We removed the ten doc-
uments with the highest BLEU, that is the docu-
ments bringing the least diversity, and repeated the
process until obtaining a self-BLEU score and a
number of tokens close to the E3C corpus.

The characteristics of the generated corpora are
shown in Table 2. As we explained, each corpus
generated corresponds to a filtered subset of the
total amount of text generated. We noticed that
text generated with the two configurations using

the LLF model needed less filtering compared to
their BLOOM counterpart. Configurations with
texts generated with tags also needed more filter-
ing. Globally, using both filters, we discarded
0.45% of generated text for BloomE3C , 0.54% for
BloomE3C+T , 0.30% for LLFE3C , and 0.45% for
LLFE3C+T . Compared to Table 1, we can see
that only BloomE3C+T presents much shorter doc-
uments. However, the sentences of the generated
corpora are a lot longer than in E3C, especially with
BloomE3C that do not even have two sentences
per document. Finally, corpora generated with
BLOOM are a little less diverse.

BloomE3C BloomE3C+T LLFE3C LLFE3C+T

Toks 329,328 346,413 328,498 336,154
Docs 943 1,997 1,028 978
Toks/doc 349.2 173.5 319.6 343.7
Sents/doc 1.8 3.1 6.9 7.2
Len Sent 194 56.0 46.3 47.7
Self-BLEU 0.70 0.73 0.68 0.67
Perplexity 9.97 9.27 10.03 11.9

Table 2: Statistics of the generated corpora. Oracle
perplexity was computed using an oracle pre-trained
model of BLOOM with 7 billion parameters. E3C’s
perplexity using this model was 22.0 (Len Sent=average
sentence length).

3.6 Automatic intrinsic evaluation
As a complement to BLEU scores, we measured
the overlap between the generated corpus and the
original corpus to characterize potential memoriza-
tion of the original documents processed during
fine-tuning.

To this end, we developed a python tool based on
overlapping ngrams to compare the generated texts
and the original text and to detect the rare ngrams
in the original corpus that appear on the generated
corpus. For a fair evaluation, we also show results
of the same comparison between the corpus used
for fine-tuning (E3C) and another, non-overlapping,
clinical case corpus in French (CAS).

4 Results

Table 2 shows global synthetic corpus statistics and
Table 3 presents sample texts generated with each
model configuration.

Table 4 shows the number of entity annotations
for E3C, MERLOT, and the generated corpora. We
can notice that the corpora generated without tags
(BloomE3C , LLFE3C) contain almost the same num-
ber of annotations as the E3C corpus (around 9,000
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Tags LLF BLOOM
No Il s’agit d’un patient âgé de 52 ans, sans

antécédents pathologiques notables. Admis
aux urgences pour douleurs abdominales dif-
fuses associées à des vomissements post-
prandiaux évoluant depuis deux semaines en
rapport avec une obstruction du canal cys-
tique dont l’examen clinique a objectivé un
ictère cutanéo-muqueux généralisé associé
à quelques signes inflammatoires non spéci-
fiques (extériorrhée et urétéro-hydronéphrose).
L’examen ophtalmologique n’a révélé aucun
autre signe oculaire ou ostéo-nerveux associés.

Il s’agissait d’une patiente âgée de 55 ans
ayant comme antécédents une polyarthrite
chronique touchant toutes les articulations mé-
tacarotidiennes évoluant depuis plus de 10 ans
associée à une insuffisance surrénalienne fonc-
tionnelle qui s’est aggravée après l’installation
d’un diabète insulino-résistant non insulin-
odépendant nécessitant son hospitalisation six
mois avant sa consultation chez notre confrère
ophtalmologue afin d’être mis sous traitement
médicamenteux associant : imipramine 250
mg / jour ; dexaméthasone 150 mg/jour; corti-
costéroïde prednisolone 5mg/kg/24h)

Yes Une femme âgée de 55 ans, sans antécédents
pathologiques particuliers était hospitalisée
pour une dyspnée d’effort évoluant depuis 6
jours. L’ examen clinique a montré un état
général altéré avec des signes inflammatoires
du membre supérieur gauche ainsi qu’un
syndrome grippal (une fièvre à 39 ° C) et
le reste de l’ examen neurologique était sans
particularités. La radiologie standard n’a

objectivé ni troubles sensitivo-moteur ni con-
vulsions fébriles.

Il s’agissait d’un patient de 50 ans, sans
antécédents pathologiques particuliers, ad-
mis aux urgences pour des douleurs épigas-
triques aiguës associées à une distension ab-
dominopelvienne évoluant depuis deux jours.
L’ examen clinique trouvait un patient en as-
sez bon état général (Apgar: 10/10). Le bilan
préopératoire objectivait une fonction rénale
normale et la CRP était à 12 mg/l.

Table 3: Excerpts of sample texts generated with top-p 0.95, temperature 1.2, and penalty 10. Highlighted sections
in the lower row samples represent the entity tags generated; see Table 4 for color code. For text generated without
entity tags, entity annotations are created post-generation; complete documents are shown in appendix A.4.

annotations each). However, the corpora gener-
ated with tags contain a smaller number of annota-
tions with 5,630 annotations for BloomE3C+T (two-
thirds of E3C) and 3,893 annotations for LLFE3C+T

(around 40% of E3C). This suggests that directly
generating annotations might not be the optimal
way of generating text for a NER task.

4.1 Ngram overlap
To compare the overlap of ngrams between E3C and
the corpora generated by a model fine-tuned with
E3C, we compute an overlapping score between
the corpora. The overlapping score between two
corpora is computed as follows:

Number of unique common ngrams
Total number of unique ngrams

(1)

The overlapping score varies between 0 and 1. A
high overlapping score means that the two corpora
have many tokens in common whereas a low score
indicates few common tokens.

Table 5 presents the overlap between E3C and the
generated corpora. We also added the comparison
between E3C and CAS, another clinical case corpus
(see appendix A.1 for the full ngram range). It is
interesting to see that the CAS corpus has a higher
overlapping score with E3C than the generated cor-
pora. Amongst the generated corpora, BloomE3C

has the highest overlapping score with E3C for un-
igrams, BloomE3C+T comes second, and LLFE3C

and LLFE3C+T have the lowest scores. However,
BloomE3C has the lowest overlapping score for
8grams than the rest, even less than CAS. LLFE3C+T

still has a small percentage of tokens in common
with E3C, but BloomE3C+T and LLFE3C have now
a higher percentage than the rest. This means that
even though they do not have that many unigrams
in common with E3C, they tend to replicate longer
sequences, which indicates more memorization and
thus more risks regarding confidentiality. It is sur-
prising to see that there is no regularity between the
models and their fine-tuning configurations, and we
are not sure how to explain this. In the end, this
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E3C BloomE3C BloomE3C+T LLFE3C LLFE3C+T Merlot
Type

Anatomy 1,533 1,798 799 1,056 360 922
Chemical_Drugs 307 388 390 350 264 283
Concept_Idea 493 376 275 370 241 684
Devices 36 42 72 5 41 219
Disorders 1,662 1,545 1,146 1,409 806 1,047
Dose 103 179 219 310 54 188
Hospital 74 65 129 50 54 170
LivingBeing 533 492 342 842 330 866
Localization 450 490 128 467 121 169
Measure 1,496 1,330 670 2,109 421 1,070
Mode 24 68 66 26 6 40
BiologicalProcess 127 83 102 62 78 186
Procedure 1,883 1,650 967 985 913 1,779
TemporalExpression 455 610 325 878 204 885

Overall 9,176 9,116 5,630 8,919 3,893 8,510

Table 4: Number of annotations of each type for each test corpus.

Corpus Unigram 8gram

BloomE3C 0.16419 0.00011
BloomE3C+T 0.13887 0.00020
LLFE3C 0.11740 0.00023
LLFE3C+T 0.11935 0.00013

CAS 0.20373 0.00013

Table 5: Overlap scores of unigrams and 8grams be-
tween the generated corpora and E3C. Each line corre-
sponds to the comparison between the corpus and E3C.
We added the comparison of E3C with CAS as a baseline.

table might be in favor of BloomE3C , because it
appears to be the closest corpus to E3C in terms of
unigram, while not memorizing too much. How-
ever, this is yet to be confirmed.

4.2 Extrinsic evaluation
Tables 6 to 8 present the results of our extrinsic
evaluation of the generated corpora through the
NER task described in Section 3. More precisely,
the three tables report the results of the same set
of models on three different types of corpora. All
the results were obtained by averaging the scores
of five models trained with different seeds and with
shuffled documents in the train and validation sets
of the corpus.

The first thing to note is that the best perfor-
mance for the test part of a given corpus is obtained
by a model trained on the training part of this cor-
pus. While this is not a surprise from a general

viewpoint, it means in our context that the differ-
ence in quality between a generated corpus and a
natural corpus is not high enough for balancing the
advantage brought by the homogeneity between
the training and the test corpora. The quality of the
generated corpora for our NER task is confirmed
by Table 6, which gives the results on the natu-
ral corpora and more specifically, on the MERLOT
corpus. Since it was annotated manually, unlike
the other corpora, we consider MERLOT as a high-
quality reference. While the model trained on E3C
is significantly outperformed by the model trained
on MERLOT, we can observe that the models trained
on BloomE3C and LLFE3C are close to it, with a
small advantage for LLFE3C . Hence, in our con-
text, using a corpus generated from a natural corpus
is fairly equivalent to using the natural corpus.

Surprisingly, the performance of all the models
on E3C strongly decreases compared to their perfor-
mance on MERLOT while all of them, except one, are
trained either from E3C directly or from a corpus
generated from E3C. More precisely, it seems that
for a NER model, the source of the annotations,
MERLOT in our case since they are produced by a
model trained on this corpus, is more important
than the corpus on which the model was trained.
Finally, Table 6 shows, through BloomE3C+T and
LLFE3C+T , that generating annotated texts is the
worst strategy for both E3C and MERLOT. This strat-
egy particularly hurts recall, a result which can be
certainly explained by the fact that the number of
generated annotations (see Table 4) is low com-
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pared to the number of annotations produced by
the NER model trained on MERLOT.

Table 7 reports the results of our models on the
generated corpora BloomE3C and LLFE3C . The
first observation is that, with the exception of
BloomE3C+T and LLFE3C+T , the performance of
the models is close to the performance obtained on
E3C, which is not a surprise since the BloomE3C

and LLFE3C corpora were generated from EC3.
However, it confirms that a generated corpus can be
used as an interesting substitute for its source cor-
pus. It is true for training a NER model but also for
its evaluation. Table 7 also shows that our models
obtain better results on LLFE3C than on BloomE3C ,
which is not observed with such a magnitude in
Table 6 when the corpora are used for training our
models: there is no difference between BloomE3C

and LLFE3C for the evaluation on E3C and only a
small difference in favor of LLFE3C for the evalu-
ation on MERLOT. We have observed that the punc-
tuation in the long texts generated by BLOOM
tends to be very sparse, which could explain to
some extent the difference between the evaluations
on BloomE3C and LLFE3C . Finally, the most no-
ticeable observation is the poor performance of the
models trained on BloomE3C+T and LLFE3C+T , es-
pecially recall. In that case, the explanation is once
again related to the scarcity of the generated anno-
tations used for training the models. However, the
difference with the evaluation on the E3C corpus is
more difficult to interpret.

The last table of results for the extrinsic evalu-
ation, Table 8, mainly confirms our findings con-
cerning the characteristics of the BloomE3C+T and
LLFE3C+T corpora. All the models trained on
corpora annotated by the NER model trained on
MERLOT obtain very good recall values since these
corpora contain a much larger number of anno-
tations than the BloomE3C+T and LLFE3C+T cor-
pora. Moreover, the very good results of the mod-
els trained on BloomE3C+T and LLFE3C+T tend to
show that their generated annotations are fairly easy
to learn. Finally, unlike what we have observed
in Table 7, the results on the corpus generated by
BLOOM, BloomE3C+T , are higher than the results
on the corpus generated by LLF, LLFE3C+T . How-
ever, further investigations should be done to deter-
mine if BLOOM generates better annotations than
LLF or if the generation of annotations tends to im-
prove the quality of the text generated by BLOOM.

Test

E3C MERLOT

Training P R F P R F

E3C 54.6 55.5 55.0 64.4 78.0 70.5
MERLOT 53.2 55.5 54.3 85.2 85.8 85.5

BloomE3C 53.6 53.8 53.7 63.1 74.9 68.5
LLFE3C 53.4 53.2 53.3 64.5 76.4 70.0

BloomE3C+T 48.9 40.4 44.3 71.7 55.1 62.3
LLFE3C+T 49.0 39.5 43.7 75.7 46.4 57.5

Table 6: Results of the NER task for the natural corpora
(P=precision, R=recall, F=F-measure).

Test

BloomE3C LLFE3C

Training P R F P R F

E3C 47.0 48.2 47.6 53.6 54.9 54.2
MERLOT 44.9 48.8 46.8 50.6 55.6 53.0

BloomE3C 48.5 49.8 49.1 52.3 53.3 52.8
LLFE3C 46.9 47.5 47.2 55.4 57.3 56.3

BloomE3C+T 40.7 22.2 28.7 45.6 25.0 32.3
LLFE3C+T 37.2 21.3 27.1 46.1 20.9 28.8

Table 7: Results of the NER task for the generated
corpora without annotation.

4.3 Qualitative evaluation
Samples of 15 automatically generated texts per
model (for a total of 13,809 tokens for the 60 doc-
uments) were annotated using BRAT10 (Stenetorp
et al., 2012) and aimed to assess specific character-
istics of the texts including (1) grammaticality; and
(2) clinical coherence at the sentence and document
level (e.g. in Table 3 one document reports Agpar
score, a test performed on newborn infants, for a
50-year-old patient). See appendix A.5 for details.

The manual analysis suggests that clinically in-
coherent passages are more likely to be found to-
wards the end of the texts, and within text generated
without tags. In particular, texts generated with
BLOOM tend to exhibit run-on sentences that be-
come increasingly incoherent. However, there are
generally more clinical inconsistencies and gram-
matical errors in the texts generated with the LLF
vs. BLOOM models. We also note that the LLF
models generate more than one case description
inside a single document.

Overall, manual analysis suggests that texts gen-
erated with the BloomE3C+T model are the closest

10Brat Rapid Annotation Tool https://brat.nlplab.
org/
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Test

BloomE3C+T LLFE3C+T

Training P R F P R F

E3C 67.6 90.3 77.3 57.3 90.6 70.2
MERLOT 60.3 86.2 71.0 48.7 86.6 62.3

BloomE3C 66.4 89.0 76.1 55.8 89.8 68.8
LLFE3C 66.3 88.5 75.8 55.7 89.2 68.6

BloomE3C+T 91.4 94.0 92.7 80.9 88.0 84.3
LLFE3C+T 85.1 86.0 85.5 89.4 93.4 91.3

Table 8: Results of the NER task for the generated
corpora with annotations.

to original clinical case descriptions.

5 Conclusion

We presented four models for generating synthetic
clinical cases in French. Our experiments suggest
that synthetic text is useful for training NER mod-
els in the clinical domain. While text generated
with BloomE3C+T seems more natural, text gener-
ated with LLFE3C and BloomE3C yields promising
NER performance.

6 Ethical Considerations

We were able to identify two types of potential ethi-
cal issues with our research: i) the carbon footprint
generated by the training of the models and ii) the
patients’ data protection. We detail here how we
addressed or measured them.

For our experiments, we had to train a number of
models, thus generating a carbon footprint, which
we measured using Carbontracker (Anthony et al.,
2020), although we acknowledge that this tool can
only account for one in four sources of experi-
ment carbon impact (Bannour et al., 2021). The
total CO2 emission of our experiments is 11,313g.
Carbontracker also measured the energy cost, esti-
mated at 39.2kWh. This includes the fine-tuning
of pre-trained language models, the preliminary ex-
periments on evaluation, the generation of artificial
corpora, and the training of NER models.

The corpora we used for the experiments are
compliant with data privacy regulations: either
they do not contain personal information at all (E3C
and CAS) or they were de-identified according to
a protocol approved by the CNIL (Commission
de l’Informatique et des Libertés), an independent
French administrative regulatory body whose mis-
sion is to ensure that data privacy law is applied

to the collection, storage, and use of personal data
(MERLOT).

Within the framework of our project, we intend
to investigate whether our model contains sensitive
data. However, this task needs to be completed by
a similar investigation to be led on the language
models themselves, as they may contain such data
(for example, from blog posts that might have been
collected by CommonCrawl).

7 Limitations

One limitation of our study is the scope of the man-
ual evaluation and the fact that it did not involve a
clinician. Also, while we tried to explore several
parameters and model configurations for text gener-
ation, additional exploration could be done, includ-
ing using larger BLOOM models. Furthermore,
these experiments with the generation of clinical
cases did not include any constraints regarding the
specific content of the documents generated. In
future work, we would like to include more con-
trol over content to improve clinical coherence and
check for privacy leaks of information contained in
the training or fine-tuning corpora, to accommodate
the use of confidential clinical documents.
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A Appendix

A.1 Ngram overlap between E3C and
generated corpora

In complement with the overlapping table for uni-
grams and 8grams in 4.1, Table 9 is a detailed table
with ngrams of size between 1 and 8. We can ob-
serve that as ngram size increases, the difference
between overlapping scores of generated corpora
and CAS gets smaller.

A.2 Generation parameters selection
We provide here detailed results on the selection
of the generation parameters (temperature, nucleus
sampling, and repetition penalty). We wanted each
of our models to generate a corpus whose diversity
was close to the original’s corpus diversity (E3C).
Thus, we mainly selected our parameters according
to the self-BLEU score obtained on the generated
samples. Results can be seen in Figure 2. We also
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Corpus 1gram 2gram 3gram 4gram 5gram 6gram 7gram 8gram

BloomE3C 0.16419 0.03530 0.01072 0.00368 0.00135 0.00055 0.00024 0.00011
BloomE3C+T 0.13887 0.04184 0.01419 0.00531 0.00217 0.00095 0.00043 0.00020
LLFE3C 0.11740 0.03479 0.01168 0.00447 0.00196 0.00091 0.00045 0.00023
LLFE3C+T 0.11935 0.03807 0.01356 0.00505 0.00203 0.00081 0.00033 0.00013
CAS 0.20373 0.06974 0.02549 0.00899 0.00315 0.00111 0.00041 0.00013

Table 9: Overlap scores from unigrams to 8grams between generated corpora and E3C. Each line corresponds to the
comparison between the corpus and E3C. We added the comparison of E3C with CAS as a baseline.

computed the perplexity of the generated samples
with an oracle model to assess the impact of the
parameters’ modification on the distribution of the
generated texts. We are aware that an oracle per-
plexity is not sufficient as proof for text quality,
especially when working on specialized data such
as clinical texts. What is important here is the mag-
nitude of the difference in perplexity between the
different setups. Results are reported on Figure 3.

As expected, we notice in Figure 2 that increas-
ing the value of each parameter leads to a lower
self-BLEU, meaning higher diversity. This is es-
pecially visible for the temperature parameter (2a),
whereas the impact of top-p seems feeble (2b).
Varying the repetition penalty parameter has a pe-
culiar impact. Going from 1.0 to 3.0 increases the
self-BLEU for the texts generated with BLOOM,
LLF, and LLF_TAGS. Yet, the self-BLEU de-
creases for those models when selecting a penalty
of 10.0. Only the self-BLEU obtained on the
BLOOM_TAGS model decreases with every in-
crease of the penalty parameter. Globally, those
plots also bring out differences between texts gen-
erated with and without tags, the latter systemati-
cally presenting higher self-BLEUs than the former,
meaning lower diversity. We can also see that texts
generated with the two BLOOM setups tend to get
higher self-BLEUs thus lower diversity than texts
generated with the LLF setups.

The results for perplexity are presented in Figure
3. Here, we see that increasing each parameter
leads to increased perplexity for the texts generated
by all models. Oddly, texts generated with the two
LLF model setups regularly get a lower perplexity
when generated with tags than without, while the
opposite phenomenon is observed with the texts
generated with the two BLOOM setups. Finally,
texts generated with the BLOOM setups tend to
have lower perplexity than texts generated with the
LLF setups. This could be expected as the oracle

model is a bigger version of the BLOOM model.
With the results of the two groups of plots (Fig-

ure 2 and Figure 3), we selected a temperature (2a,
3a) of 1.2 for models without tags and 1.5 for mod-
els with tags in order to favor diversity. We chose
the middle value of 0.95 for the top-p parameter
(2b, 3b) because this parameter showed little im-
pact for both metrics. This might be explained by
the default value of the top-k parameter used in
generation (sampling between the k most probable
next tokens) that reduces the impact of top-p modi-
fication. Ultimately, we chose the highest value of
10.0 for the repetition penalty parameter (2c, 3c).
This value favors diversity and eliminates a signifi-
cant amount of low-quality generations where the
model falls into loops. The presence of those loops
doesn’t necessarily increase perplexity since the
oracle model probably has the same behaviors as
the model used to generate text, thus not attributing
high perplexity to texts with loops.

A.3 Detailed extrinsic evaluation
Tables 10 to 12 present the results of our extrin-
sic evaluation including the standard deviation be-
tween the results of the five models used for each
configuration.

A.4 Translation of generated examples
Table 13 presents a translation of the sample texts
generated with our models, presented in Table 3.

A.5 Manual annotation of generated examples
Tables 14 to 17 present the manual annotations of
the full text of the sample excerpts presented in
Table 3. These annotations were used for our qual-
ity assessment. Grammatical assessment includes
sections highlighted in pink (grammatical errors)
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(b) Top-p variation
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(c) Repetition penalty variation

Figure 2: Self-Bleu on a generation sample of 30,000 tokens for each model used for generation. Self-Bleu for E3C :
0.68.
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(c) Repetition penalty variation

Figure 3: Perplexity of the oracle model on a generation sample of 30,000 tokens for each model used for generation.
Oracle perplexity was computed using an oracle pre-trained model of BLOOM with 7 billion parameters. Oracle
perplexity on E3C : 22.0.

and purple (end of text mid-document). Clinical co-
herence assessment includes sections highlighted
in orange (incoherent or unclear text) and red (in-
correct clinical information), sometimes related to
sections highlighted in gray (patient demographics,
symptoms or diagnosis).

A.6 Computing infrastructure
The computation for training and using generation
models was done on a NVIDIA Tesla V100 with
32 GiB of RAM. Most named entity recognition
models were also trained and used on a NVIDIA
Tesla V100 with 32 GiB of RAM. Due to resource
access, one NER model was trained and used on a
GeForce GTX 1080 Ti with 12 GiB of RAM.
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Test

E3C MERLOT

Training P R F P R F

E3C 54.6±0.3 55.5±0.3 55.0±0.3 64.4±0.7 78.0±0.5 70.5±0.6

MERLOT 53.2±0.4 55.5±0.1 54.3±0.1 85.2±0.2 85.8±0.7 85.5±0.4

BloomE3C 53.6±0.4 53.8±0.2 53.7±0.2 63.1±0.8 74.9±0.2 68.5±0.5

LLFE3C 53.4±0.2 53.2±0.3 53.3±0.1 64.5±1.6 76.4±0.3 70.0±1.0

BloomE3C+T 48.9±0.3 40.4±0.5 44.3±0.3 71.7±3.4 55.1±0.9 62.3±1.4

LLFE3C+T 49.0±0.3 39.5±0.4 43.7±0.2 75.7±1.8 46.4±1.3 57.5±0.6

Table 10: Detailed results of the NER task for the natural corpora (P=precision, R=recall, F=F-measure).

Test

BloomE3C LLFE3C

Training P R F P R F

E3C 47.0±0.2 48.2±0.2 47.6±0.1 53.6±0.8 54.9±0.6 54.2±0.7

MERLOT 44.9±0.5 48.8±1.4 46.8±0.7 50.6±1.3 55.6±2.1 53.0±1.4

BloomE3C 48.5±0.4 49.8±0.2 49.1±0.2 52.3±0.4 53.3±0.5 52.8±0.4

LLFE3C 46.9±0.4 47.5±0.2 47.2±0.2 55.4±0.4 57.3±0.2 56.3±0.3

BloomE3C+T 40.7±0.3 22.2±0.3 28.7±0.3 45.6±0.3 25.0±0.4 32.3±0.3

LLFE3C+T 37.2±0.7 21.3±0.5 27.1±0.5 46.1±1.0 20.9±0.6 28.8±0.7

Table 11: Detailed results of the NER task for the generated corpora without annotation.

Test

BloomE3C+T LLFE3C+T

Training P R F P R F

E3C 67.6±0.5 90.3±0.3 77.3±0.3 57.3±0.6 90.6±0.4 70.2±0.5

MERLOT 60.3±1.0 86.2±1.9 71.0±0.9 48.7±1.1 86.6±1.8 62.3±0.8

BloomE3C 66.4±0.1 89.0±0.2 76.1±0.1 55.8±0.2 89.8±0.2 68.8±0.1

LLFE3C 66.3±0.6 88.5±0.5 75.8±0.5 55.7±0.6 89.2±0.2 68.6±0.5

BloomE3C+T 91.4±0.5 94.0±0.3 92.7±0.3 80.9±0.8 88.0±0.1 84.3±0.4

LLFE3C+T 85.1±0.9 86.0±0.7 85.5±0.3 89.4±0.8 93.4±0.5 91.3±0.4

Table 12: Detailed results of the NER task for the generated corpora with annotations.
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Tags LLF BLOOM
No The patient was a 52 years old male with no

remarkable previous history. He presented
to the emergency room with a 2-week his-
tory of diffuse abdominal pain associated
with postprandial vomiting related to an
obstruction of the cystic duct which clini-
cal examination revealed generalized mu-
cocutaneous jaundice associated with some
nonspecific inflammatory signs (exterioror-
rhea and ureterohydronephritis). The oph-
thalmological examination did not reveal
any other associated ocular or osteo-nerve
signs.

The patient was a 55 years old woman with
a 10-year history of chronic polyarthritis
affecting all the metacarotid joints associ-
ated with functional adrenal insufficiency
which worsened after the onset of non-
insulin-dependent insulin-resistant diabetes
requiring her hospitalization six months be-
fore her consultation with our ophthalmol-
ogist colleague in order to start a drug ther-
apy comprising: imipramine 250 mg/day;
dexamethasone 150 mg/day; corticosteroid
prednisolone 5mg/kg/24h)

Yes A 55 year old woman with no remark-
able previous history was admitted for a
6-day history of shortness of breath on
exertion. Her general condition was al-
tered and she presented with symptoms
of inflammation in her left upper limb as
well as an influenza-like syndrome (fever
at 100°F) and the rest of the neurological
exam was unremarkable. Standard radiol-
ogy did not reveal any sensory-motor dis-
orders or febrile convulsions.

The patient is a 50 years old male admitted
to the emergency room with a 2-day history
of acute epigastric pain associated with ab-
dominopelvic distension. His past medi-
cal history was unremarkable and he was
generally in a good state of health (Apgar:
10/10). The preoperative workup showed
normal renal function and CRP was at 12
mg/l.

Table 13: Translation into English of the sample texts generated with top-p 0.95, temperature 1.2, and penalty 10.
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LLF (generated without tags)
Il s’agit d’un patient âgé de 52 ans, sans antécédents pathologiques notables. Admis aux urgences
pour douleurs abdominales diffuses associées à des vomissements post-prandiaux évoluant depuis
deux semaines en rapport avec une obstruction du canal cystique dont l’examen clinique a objectivé
un ictère cutanéo-muqueux généralisé associé à quelques signes inflammatoires non spécifiques
(extériorrhée et urétéro-hydronéphrose). L’examen ophtalmologique n’a révélé aucun autre signe oc-
ulaire ou ostéo-nerveux associés. Le diagnostic retenu était celui d’angiomyolipome moyennement
différencié infiltrant la fosse infra temporale gauche associée à plusieurs lésions granulomateuses
surinfectées disséminées dans tout le globe oculaire ainsi qu’une ascite blanchâtre au niveau cornéen
homolatéral hétérogène mesurant environ 6/6 cm se prolongeant jusqu’au sinus longitudinal droit
prédominant entre les lobes pariétaux interne et externe postérieur. L’étude immunohistochimique
avait mis en évidence: antigène carcino-embryonnaire type IgG1;anticorps anti-synaptophysine
ketoacidocytokératineuse alpha fluorescencionase Rhésus AE2 ;antigène carcino-embryonnaire
type Umpierrez Kappa IIA(J4),IgG3)et anticorps anti-synaptophysine ketoacidocytokératineuse-
Alpha fluorescencionase Rhésus BN(J5);Umpierrez Kappa IIIB(J7)).. Ces éléments ont été jugés
évocateurs d’autres localisations secondaires telles que hépatites neurofibroblaiques gauches mal
systématisées qui sont également décrites chez ce patient . Observation 2 Patiente âgée de 43
ans, ayant comme antécédent familial sa première grossesse gémellaire suivie sous traitement
hormonal substitutif par voie injectable pendant 7 mois avant son accouchement elle présente
depuis trois jours des lombalgies bilatérales récidivantes modérées irradiant progressivement vers
ses parties génitales augmentant progressivement durant toute la période prénatale laissant place à
des contractions vulves spontanées intermittentes suivies rapidement relayées par des troubles
sphinctériens puis

Table 14: Manual annotation for quality assessment of generated text (1)
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BLOOM (generated without tags)
Il s’agissait d’une patiente âgée de 55 ans ayant comme antécédents une polyarthrite chronique
touchant toutes les articulations métacarotidiennes évoluant depuis plus de 10 ans associée à
une insuffisance surrénalienne fonctionnelle qui s’est aggravée après l’installation d’un diabète
insulino-résistant non insulinodépendant nécessitant son hospitalisation six mois avant sa con-
sultation chez notre confrère ophtalmologue afin d’être mis sous traitement médicamenteux
associant : imipramine 250 mg / jour ; dexaméthasone 150 mg/jour; corticostéroïde prednisolone
5mg/kg/24h) Le début de cette symptomatologie remontait à plusieurs jours par l’installation
brutale d’amaigrissement chiffré à 15 kg emportant tout le squelette musculaire périphérique se
traduisant par amaigrissement important jusqu’à l’arrêt alimentaire spontané entrainant vomisse-
ments bilieux abondants associés à apyrésie vitiligo prurigineux généralisé s’étendant jusqu’au
genou droit faisant suite à l’abdomen distendu complété par sueurs profils d’étiologies indéter-
minées pouvant être évoquées devant lesquelles nous avons consulté nos confrères dermatologiques
dont l’examen anatomopathologique est revenu en faveur d’une muqueuse gastrique œsophagi-
enne envahie d’épithélium malpighien refoulé vers le plan profond où l’histocytose s’instaurant
entre l’épithélium malpighien et l’épithélium méso-métanéphrique réalisant ce processus carcino-
mato-squameux épithélio-ganglioside réactif confirmant l’étude anatomo-pathologique L’indice
de masse brachiale n’a pas été réalisé Les radiographies abdomino-pelviennes étaient normales
La tomodensitométrie thoracique réalisée n’objectivait qu’une pneumopathie interstitielle lobaire
supérieure gauche étendue mesurant 20 cm de grand axe infiltrant l’aorte prélevée puis lavage bron-
cho-alvéolaire ont permis d’exclure d’autres pathologies pulmonaires associées La scintigraphie
osseuse n’avait pas révélé d’adénopathies ostéo-vertébrales sus vertébrales infra centimétriques
Devant cet aspect radiologique on a pensé à une tumeur neuroendocrine surtout cérébrale type
glioblastome séreux alors que l’interrogatoire retrouvait l’absence d’hypogammaglobulinémie
IgA monoclonale anti-nucléosides Béta bloquants anticorps antiphospholipides immunoglobu-
lines A anti DNA polymérase I norovirus cytomégalovirus BK virus varicelle hémorragies gin-
givales infectieuses bactériennes gastroentériques invasives ulcéreuses intestinales ectropicales
pelviennes ovariennes rectales iléales oesophagiennes rénales pancréatiques grêliques lomboaor-
tiques psoïdo-crâniennes pariétales occipitales maxilldouxo-fémoro-carotidiennes mandibulaires
droites frontales gauches basi-caves palpébrales cervicales jugulo-carotidiennes supra carotidi-
ennes dorsales céphaliques diaphragmatico-sous cutanées faciales sternales temporales temporales
superficielles basales proximales temporo-dorsales interoccipitales antérieure postérieure trans
tentoriel supérieur temporal moyen antérieur supérieur inférieur inferieur rétro-externe interne
externe Figure 2 On a procédé à une biopsie écho-guidée selon technique opératoire habituelle
permettant d’object

Table 15: Manual annotation for quality assessment of generated text (2)
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LLF (generated with tags)
Une femme âgée de 55 ans, sans antécédents pathologiques particuliers était hospitalisée
pour une dyspnée d’effort évoluant depuis 6 jours. L’examen clinique a montré un état général
altéré avec des signes inflammatoires du membre supérieur gauche ainsi qu’un syndrome
grippal (une fièvre à 39 ° C) et le reste de l’examen neurologique était sans particularités.
La radiologie standard n’a objectivé ni troubles sensitivo-moteur ni convulsions fébriles.
Les suites opératoires ont été simples sous antibioprophylaxie par la ciprofloxacine associée
au amoxicilline acide clavulanique dans les 24 heures qui suivent puis aux brochures en
intraveineux jusqu’au décès survenu 48 heures plus tard. Le contrôle locorégional s’est
révélé peu contributif si on ne prend pas en charge toutes les structures hospitalo-hos-
pitalières où se sont produits ces évènements. L’échographie avait mis en évidence une
masse tissulaire hypogastrique hétérogène mesurant 15 cm de grand axe faisant 25 mm
de diamètre sur son bord interne ; cette tumeur est classée stade II selon la classification
DADKB/WALLIDIACTORYAS®; elle englobe tout le nerf laryngé inférieur droit postéro-
externe mais peut être mise en relation avec certaines autres cavités péritonéales dont fait
notamment partie celle indiquée ci-dessus. Un scanner thoraco- abdomino-pelvien réalisé
après traitement chirurgical mettait également en évidence une distension abdominopérinéale
diaphragmatique gastrico-duodénale supéro-oesophagienne ayant augmenté progressivement
pendant toute la cholécystectomie passant de 3 centimètres à 6 centimètres lors de la to-
modensitométrie thoracique tandis que durant la recto-sigmoïdectomie totale scanno-guidée
il existait une contracture jugulo-mandibulaire transœso-gastroduodénale para mandibu-
laire pylorique hyperbasithiocytose intraventriculaire mononucleaire endobronchique cer-
vico-médiastino-veineuse bipharyngo-laryngée temporale anténatale oblongue achilléenne
lobulée triplésimédiane abaxiale homolatérale maxillaire supérieure droite asymétrique
Tachygraphiquement isochromatonee A2BA4A1 B9MkHzccomposition fœtoprotégument
préférentiel aluminosus benzodiazepines ketoacidosissimilaires polyclonal comprimantous
factors myélocaliciel cutan preventive medical lympneate methyl transferase molecular ad-
duction and regulation of adultometropass agregated posts with insulin primary experience
characters butter analgésiques antiseptiques or placements individualisants as in exercite
plant secular treating circonférencial antituberculeux chain reaction at switching gravidinge
bracket syndrôme phlegmonylvania pertussischer alphabetes invasive protocol for immuno-
histochimics systematic blood evaluation by the internal disease control Scholar Diabetes
Res Clin Pract. 2010;157: Fibroscopy MB, Medtronic Optical Denied Activized Methotr-
eff Protein Electromy Disease Critère d’évaluation des caractéristiques histologiques et
l’aspect morphologique du patient étaient jugés être compatibles avec les résultats anato-
mopathologiques selon le score HARPS (sans différence). Le suivi postopératoire a été
complété par un contrôle échographique qui n’a révélé aucune récidive infectieuse ou infec-
tieuse ni aucun décès néonatal associé au geste chirurgical. La grossesse était menée à terme
sous corticothérapie adjuvante associée à une antibiothérapie probabiliste sans amélioration
sensible après 8 semaines suivie d’une hospitalisation en service de gynécologie pour reprise
chirurgicale mais ceci ne pouvait avoir qu’un intérêt secondaire dans ce type de circulation
extracorporelle exploratrice car ces seringues avaient tendance à se tordre rapidement sur
leur axe longitudinal laissant s’insulter toutes les membranes digestives jusqu’au moment
où elles ont commencé à stagner fortement devant cette amoxicilline acide clavulanique
sodique dont on avait déjà observé chez certaines familles germains comme facteur aggravant
certains complications neuropsychiatriques tout en étant surtout contreproductive vu son
effet sédatif non réversible ainsi que ses possibles risques hémorragiques pouvant survenir si
elle venait à être ingérée directement suite aux épisodes aigues décrits plus haut. Les suites
opératoires étaient normalement simples : pas de trouble sensitivo-moteur psychomoteur
aigu ; pas de fébricule nullipares notamment pas de crise convulsive multiviscérale malgré
tous les examens fonctionnels cités ci-dessus) L’examen gynécologique objectivait bien une
perforation trophoblastique congénitale hétérotopique primitive tissulaire sérotonéoendocrine

Table 16: Manual annotation for quality assessment of generated text (3)2337



BLOOM (generated with tags)
Il s’agissait d’un patient de 50 ans, sans antécédents pathologiques particuliers, admis aux
urgences pour des douleurs épigastriques aiguës associées à une distension abdominopelvi-
enne évoluant depuis deux jours. L’examen clinique trouvait un patient en assez bon état
général ( Apgar: 10/10). Le bilan préopératoire objectivait une fonction rénale normale
et la CRP était à 12 mg/l. Le scanner abdomino-pelvien a montré une masse tissulaire du
flanc droit mesurant 22 cm de grand axe envahissant le parenchyme péritonéal au niveau de
l’angle postéro-latéral droit avec présence d’une hypersignal T2 hyperintense intéressant les
surrénales pariéto-utérines rehaussée après injection de produit de contraste faisant suspecter
sa nature tumorale.

Table 17: Manual annotation for quality assessment of generated text (4)
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Abstract

The dissemination of false information on the
internet has received considerable attention
over the last decade. Misinformation often
spreads faster than mainstream news, thus mak-
ing manual fact checking inefficient or, at best,
labor-intensive. Therefore, there is an increas-
ing need to develop methods for automatic
detection of misinformation. Although re-
sources for creating such methods are available
in English, other languages are often under-
represented in this effort. With this contribu-
tion, we present IRMA, a corpus containing
over 600,000 Italian news articles (335+ mil-
lion tokens) collected from 56 websites clas-
sified as ‘untrustworthy’ by professional fact-
checkers. The corpus is freely available and
comprises a rich set of text- and website-level
data, representing a turnkey resource to test
hypotheses and develop automatic detection al-
gorithms. It contains texts, titles, and dates
(from 2004 to 2022), along with three types
of semantic measures (i.e., keywords, topics
at three different resolutions, and LIWC lex-
ical features). IRMA also includes domain-
specific information such as source type (e.g.,
political, health, conspiracy, etc.), quality, and
higher-level metadata, including several met-
rics of website incoming traffic that allow to
investigate user online behavior. IRMA con-
stitutes the largest corpus of misinformation
available today in Italian, making it a valid tool
for advancing quantitative research on untrust-
worthy news detection and ultimately helping
limit the spread of misinformation.1

1 Introduction

Over the last decade, there has been an increase in
worry about misinformation, which has led to nu-
merous studies (e.g., Lazer et al. 2018; Pennycook

1IRMA is freely available at https://osf.io/rywp4/.

and Rand 2019; Roozenbeek et al. 2020). This level
of focus is justified by the threat that misinforma-
tion poses to individuals, institutions, and society in
an increasingly digitalized world. Helped by social
media capillarity and a lack of gatekeeping, mis-
information is eroding long-standing institutional
barriers, compromising democratic processes, as
happened during the last US presidential elections
(Allcott and Gentzkow, 2017; Dave et al., 2021),
and producing serious sociopolitical uncertainty, as
in the examples of global warming and COVID-19
vaccines (van der Linden et al. 2017; Loomba et al.
2021).

Currently, there are two main approaches used
to detect misinformation online: manual and auto-
matic. The first relies on human effort, mostly rep-
resented by fact-checking services that employ ex-
perts to manually verify the accuracy of claims, ar-
ticles, and entire websites. The second is based on
the identification of particular textual content fea-
tures, usually performed through natural language
processing (NLP) tools, e.g., deep learning models.
Because misinformation spreads alarmingly faster
than reliable news (Vosoughi et al. 2018; Gravino
et al. 2022), automatic tools allow to detect and
limit the spread of false news quickly and with-
out involving costly human effort. These tools are
usually trained on large sets of textual data, which
are for the most part in English language (see e.g.,
Zubiaga et al., 2016; Potthast et al., 2017; Castelo
et al., 2019; Miani et al., 2022b).

In a worldwide effort to fight misinformation, re-
sources have been made available for Arabic, Span-
ish, Portuguese, and German (Alkhair et al., 2019;
Posadas-Durán et al., 2019; Monteiro et al., 2018;
Vogel and Jiang, 2019). However, to our knowl-
edge, the Italian language has been overlooked.
Several attempts have been undertaken to under-
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stand misinformation in the Italian context (see
e.g., Bessi et al., 2015; Del Vicario et al., 2017),
but these works focus on social media, and the data
is not made publicly available.

The availability of an open-access dataset would
substantially encourage research into the role of
misinformation in the Italian context. A recent
study conducted in Italy showed how the inability
to recognize false information can obstruct public
health campaigns (Moro et al., 2021). Misinfor-
mation in Italy has also been linked to political
parties that have governed in recent years (Monti,
2020), as well as their voters (Cantarella et al.,
2020). For example, Caldarelli et al. (2021) showed
that right-wing parties were responsible for 96% of
COVID-19-related untrustworthy news retweeted
by political communities in Italy.

Considering the urgent need to address the so-
cietal problems caused by the spread of misinfor-
mation in Italy, we created IRMA (the Italian coR-
pus of MisinformAtion), a corpus containing over
600,000 Italian news articles scraped from websites
classified as untrustworthy sources by professional
fact-checkers.

2 Method

We decided to use source trustworthiness assess-
ment as a proxy to identify the material of inter-
est (cf. Grinberg et al. 2019; Pennycook et al.
2021). Therefore, we opted for two different mis-
information databases, namely NewsGuard (NG,
NewsGuard, 2020) and the Misinformation Do-
mains (MD) dataset2. NG is a professional fact-
checking database that provides indexes of trust-
worthiness for thousands of news domains. It rates
domains in several categories related to news trans-
parency and journalism ethics. The MD dataset is
an open-source collection of domains referenced
by Gallotti et al. (2020) and extended with other
lists curated by fact-checking collectives, individ-
ual scholars, and journalists. We decided to use
two different databases in order not to be too depen-
dent on one individual source. We chose these two
datasets since, differently from other misinforma-
tion databases, they comprise a considerable num-
ber of Italian sources. We also opted for domain-
based rather than article-based fact checking to
present a greater variety of data. We recognise
that an article-based fact-checking service could

2https://github.com/JanaLasser/misinformation_
domains

have improved the “precision” of the material pro-
vided; however, we also think that domain-level
fact-checkers represent an optimal balance between
quantity and quality of (mis)information. We agree
that not all sources deliver only unreliable news.
However, having varying degrees of misinforma-
tion is an advantage. Future studies could manu-
ally annotate documents in IRMA to offer a fine-
grained indicator of misinformation, helping the
development of classifiers (Mompelat et al., 2022).
Finally, the growing number of scholars who have
used these two fact-checking databases attests to
their reliability (e.g., Edelson et al. 2021; Bhadani
et al. 2022; Lasser et al. 2022).

2.1 Corpus construction

We queried both databases (NG and MD) on June
8, 2022. We decided to collect data from a random
limited sample of 80 untrustworthy domains in or-
der to keep the database at a manageable size. Once
we obtained the list of websites, we started collect-
ing their content using BeautifulSoup4 (Richardson,
2007), a Python package for parsing HTML docu-
ments. Since some of the domains were video-only
news sources, paywall-protected websites, or ex-
tinct websites, the final number of scraped domains
amounted to 56 websites.

Once we obtained the text documents from the
websites, we started cleaning the corpus following
the pipeline implemented in other works on misin-
formation (Miani et al., 2022b). In this order, we
(1) removed duplicates, (2) selected texts within a
word count range between 100 and 10,000 words
(counted via white-space tokenization), and (3) re-
moved non-Italian documents by selecting texts
in which the percentage of Italian stop words (ob-
tained from Benoit et al., 2021) was above 20% of
the whole text (a threshold we chose after visual
inspection).

The final corpus, IRMA, is composed of 634,932
documents (N = 335, 021, 926 tokens, N =
1, 137, 168 types) obtained from 56 websites, span-
ning a date range between 2004 and 2022, with
an average document word count of 555 words
(SD = 554, range: 101 − 9, 993).

2.2 Variables

Although it mostly consists of texts, IRMA also
contains metadata such as documents’ titles and
urls3, and dates (from 2004 to 2022). Envisioning

3Only valid for domains in MD (N = 22).
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the possibility of analyzing IRMA without specific
training in NLP, we provide a series of measures
related to documents’ semantic content such as
keywords, topics, and lexical features, so that re-
searchers (e.g., social scientists, psychologists) can
download the datasets and start testing their hy-
potheses.

Documents’ dates were obtained automatically
via the package BeautifulSoup4 (accounting for
79.74% of documents’ dates). When the script was
not able to retrieve webpage’s date, we extracted
the date from the URL of the document via regular
expression. This allowed to obtain dates for 92.8%
of IRMA’s documents (see distribution in Figure 5
in the Appendix).

2.2.1 Pre-processing

Before extracting keywords and topics from doc-
uments, texts were pre-processed. Pre-processing
was mostly done by removing stop words and
infrequent (e.g., misspellings or extremely rare)
words. The text cleaning pipeline was done us-
ing the quanteda R package (Benoit et al., 2018).
The pipeline was as follow: (1) lower casing texts;
(2) removing URLs, punctuation, numbers, sepa-
rators, symbols, and split hyphens; (3) separating
contractions; (4) removing stop words (obtained
from Benoit et al., 2021); (5) lemmatization.4 We
then built the document-term matrix (DTM) and
selected the top 10,000 features, reducing sparsity,
i.e., removing rare words, from 99.98 to 98.24%.
The DTM was finally composed of 634,932 docu-
ments and 10,000 terms, for a total of 167,049,425
types (without trimming, the DTM was composed
of 1,137,168 terms accounting for 335,021,926
types).

Note that text pre-processing was done only for
extracting keywords and topics from documents.
IRMA’s domains included in the MD dataset (N
= 22) come with raw non-pre-processed texts, so
researchers can apply any type of pre-processing
depending on the task needed and based on specific
theoretical grounding (see e.g., Hills and Miani,
Forthcoming). Documents from domains classified
by NG (N = 34), on the other hand, do not include
raw texts, titles or links, due to policy restrictions.
The articles for such domains are attached as DTM,
and still retain all other features (see Section A.1).

4https://raw.githubusercontent.com/michmech/
lemmatization-lists/master/lemmatization-it.txt

2.2.2 Keywords
Keywords were extracted from each document by
computing the term frequency-inverse document
frequency (TF-IDF), a technique that assesses the
relevance of a word to a document in a corpus. For
each word in a document, TF-IDF is computed by
counting how many times a word appears in a doc-
ument divided by the inverse document frequency
of the word in the corpus. TF-IDF was computed
using the function dfm_tfidf from the R package
quanteda. Keywords were defined as words with
the highest TF-IDF score per document. For all
documents in IRMA, we obtained a total of 9,801
unique keywords (see Table 1). In addition, we
attach to IRMA the top 10 TF-IDF scores for each
document (see top-20 in Table 1).

2.2.3 Topics
Topics were extracted via Latent Dirichlet Allo-
cation, or LDA (Blei et al., 2003), which is an
unsupervised probabilistic machine learning model
capable of identifying co-occurring word patterns
and extracting the underlying topic distribution for
each text document. Different from keywords, top-
ics offer a fine-grained indexing of semantic con-
tent. Extracting LDA topics from a corpus requires
researchers to set a number of topics (k) desired: if
a fine-grained resolution is required, then a large
number of topics is better; if the number of topics is
small, these topics become more general (Colin and
Murdock, 2020). Using the topicmodels R package
(Grün and Hornik, 2011), we extracted three differ-
ent topic resolutions, setting k at 20, 100, and 200
topics, hence obtaining a total of 320 different top-
ics. Within a set of k topics, for each document in
IRMA, topics are expressed as probabilities, hence
summing to 1 (note that if all 320 topics are taken,
then the sum is 3). The topic for a document with
the highest (γ) value is the topic with the highest
probability of being represented in such a docu-
ment, followed by the probabilities of other topics.
Note also that we did not provide labels for top-
ics. Instead, we provide the top 10 words per each
topic which, taken together, summarize the topic’s
content (Nguyen et al., 2020).

2.2.4 Lexical features
Lexical features were extracted from the raw
texts with the Linguistic Inquiry and Word Count
(LIWC, version 2022, Boyd et al., 2022), relying
on the most recent Italian translation (Agosti and
Rellini, 2007). LIWC is a widely-used standalone
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application that extracts psychologically meaning-
ful features from texts (Tausczik and Pennebaker,
2010), also in Italian (see e.g., Trevisan et al., 2021).
LIWC analyzes texts and checks whether words
are included in predefined categories (e.g., negative
and positive emotions, social ties, etc.); if so, values
associated with the matched categories increases.
Different from topic modelling (in which topics’
probabilities sum for each document), categories
in LIWC are expressed as percentages of words in
a document associated with a category and hence,
if a word appears in two categories, they overlap.
For example, the category anxiety (composed of
words such as anxious, avoid, insecure) is also a
subgroup of the category negative_emotions.

2.2.5 Websites metadata
Note that due to proprietary data, all NG’s web-
sites are anonymized via a unique website ID (e.g.,
website1, website2). Nevertheless, for all websites,
we provide a measure of website’s quality of infor-
mation (an aggregated measure of bias, factuality,
credibility, and transparency where higher scores
correspond to higher quality domains, see Lin et al.,
2022). For each website, we also extracted (in Oc-
tober 2022, from SimilarWeb5) a set of metadata
about websites’ incoming traffic such as monthly
visits, visit duration, bounce rate (the percentage
of visitors who leave after visiting only one page),
and pages visited. Incoming traffic is further par-
titioned into direct traffic (reaching the website by
typing the URL on the web browser or recalling
it from bookmarks), from a search engines (e.g.,
using Google), from referrals (when a website is
reached through another website), and from social
media (e.g., a post on Facebook or Twitter). Traffic
from social media was further partitioned across
the most popular social media platforms (e.g., Face-
book, Twitter, YouTube, etc).

3 Exploring IRMA’s features

In this section, we explore some of IRMA’s features
and provide examples replicating previous works.

We checked whether the type of incoming traf-
fic (i.e., direct and search) was related to web-
sites’ credibility, as previous works show (Mi-
ani et al., 2022b). We found that credibility of
websites was related positively with search traffic
(r = .44, p = .0016) and negatively with direct
traffic (r = −.30, p = .0341), suggesting that con-

5https://www.similarweb.com/corp/ourdata/

firmation bias drives traffic towards towards misin-
formation websites also in this Italian sample.

We also tested the degree to which credibil-
ity was linked to interconnectedness, that is how
multiple ideas form a dense and highly intercon-
nected network, a property of conspiracy narra-
tives (Miani et al., 2022a). To this purpose, we
created networks for each website from the co-
occurrence of the top-fifty most frequent words
extracted from the TF-IDF (see variable tfidf10
in Table 3). We fitted a multilevel regression pre-
dicting the degree of connectedness by credibil-
ity (nesting observations within keywords). Cred-
ibility was negatively related to connectedness
(β = −.063, t = −3.193, p = .0014), meaning
that low credible sources are more interconnected.
Despite using only misinformation websites, these
results replicate previous works on conspiracy theo-
ries. In Figure 1, we show two networks built from
documents with the highest and lowest credibility
scores (N = 100, 000 in each group): the network
in the low (vs high) credibility group is visually
more interconnected.

Finally, we explored to what extent lexical fea-
tures were linked to websites’ credibility. To this
goal, we fitted a series of linear models predicting
credibility by the lexical features extracted with
LIWC. In Figure 2, we show the 20 highest and
20 lowest beta coefficients from regression (all
ps < .001, Bonferroni corrected). Results parallel
previous works (Miani et al., 2022b; Fong et al.,
2021; Klein et al., 2019; Oswald, 2016) showing
that low quality sources tend to endorse a language
characterized by anger (category Rabbia), nega-
tive emotions (Emo_Neg), causality (Causa), and
negations (e.g., "do not", Negazio) along with use
of longer words (indexing sophisticated lexicon,
BigWords), swear words (parolac), and longer
texts overall (i.e., word count WC).

4 Conclusions

We introduced IRMA, our publicly available corpus
of ‘untrustworthy’ news in Italian. This is, as far
as we know, the first Italian corpus of its kind. It
consists of over 600,000 texts (335+ million words)
and a number of variables to help scholars find the
material that meets their needs. It can be used to
develop deep learning classifiers as well as conduct
different types of qualitative/quantitative research.

IRMA allows for a vast range of textual analy-
ses thanks to the variety and quantity of data and
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Figure 1: Co-occurrence of the top-fifty most frequent words extracted from the TF-IDF.
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Figure 2: Coefficients (β, Y axis) from regressions predicting LIWC lexical features (on the X axis) by websites
credibility scores. Positive values indicate the feature being positively correlated with credibility.

metadata included. For example, time-based data
associated with textual data allows for the identi-
fication of specific periods for historical analysis
(e.g., Hills and Miani, Forthcoming). A set of dif-
ferent semantic indexes in the form of keywords
and topics help researchers find data relating to spe-
cific topics. Lexical features (specifically, LIWC
scores) allow a variety of sociological and psycho-
logical studies (e.g., Fong et al., 2021). Topics and
lexical features can be traced along a time series to
explore their evolution through time (see e.g., Fig-
ure 3 in Appendix for topics) exploring cultural and
societal trends (e.g., Lansdall-Welfare et al., 2017).
IRMA also contains domain-specific features such
as the type(s) of news typically shared by a spe-
cific source, as well as data on the incoming traffic
for a domain, which can be used to study digital
community behaviour (e.g., conspiracy websites’

incoming traffic in Miani et al., 2022b).
Concluding, IRMA represents a fresh resource in

an underrepresented context, such as the Italian one.
This corpus was created under PRODEMINFO, an
ERC-funded project that also involves other lan-
guages (e.g., German, Spanish, Hungarian). This
means that the same pipeline employed to generate
IRMA can be applied to other languages in the fu-
ture. As a result, we hope our effort will encourage
the creation of new similar corpora and stimulate
future research into misinformation.

5 Limitations

Our dataset contains material classified as ’untrust-
worthy’ by two different datasets, which relied on
different classification criteria. NG ranks websites
based on nine weighted criteria. Each site is as-
signed a trust score ranging from 0 (very poor) to
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100 (exemplary). Domains with less than 60 points
are labelled as "not trustworthy". On the other hand,
the MD dataset is a curated collection of domain-
level fact-checking databases, where the different
proprietary rates are mapped onto two unifying
labels, namely “accuracy” and “transparency”. Al-
though potentially leading to a different alignment
of source reliability, depending on the dataset that
classified the source, Lasser et al. (2022) found a
high degree of agreement between the MD dataset
and the NG database scores (Krippendorff’s α =
0.84), as well as other collections (Lin et al., 2022).

Despite the fact that the two datasets label the
websites in IRMA as "untrustworthy", this does not
necessarily imply that they are all actively spread-
ing fake news. This is due to the fact that domains
could be rated not just on news quality and reliabil-
ity, but also on other complimentary factors such as
company policies (e.g., whether and how websites
disclose information about ownership and financ-
ing). However, we are unable to provide the classifi-
cation standards for the domains in our database, as
well as the domains themselves due to restrictions
of NG proprietary data policies. Therefore, we sug-
gest prospective users to judge the quality of news
for themselves perhaps via data-driven approaches.

Finally, it is important to note that both the
NG and the MD datasets can vary over time, thus
websites previously deemed untrustworthy may no
longer be so in the future (and vice-versa).
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A Appendix

A.1 Data availability
IRMA is freely available6 and include the files:

1. corpus.csv.zip. A compressed file (.zip)
containing the csv file of the corpus itself:
634,932 rows (documents) x 7 columns. Doc-
uments are identified by a hexadecimal unique
ID stored in the variable doc_id. See dataset’s
variables in Table 3.

2. website_description.csv. A csv file contain-
ing detailed descriptions of websites. 56 rows
(websites) x 25 columns. Note that due to pro-
prietary data, NG’s websites are anonymized
via a unique website ID (e.g., website1, web-
site2). See dataset’s variables in Table 4.

3. IRMA.dfm.rdata. The IRMA’s DTM. No
preprocessing has been applied prior to con-
version: the file contains punctuation and
cased words (634,932 documents; 1,531,576
features). Note that the file was too large to be
converted into a matrix, therefore we exported
it as a quanteda DFM object, hence it requires
the quanteda R package (Benoit et al., 2018).

4. LDA_over_time.pdf. A PDF file containing
each topic’s gamma values plotted over time.
It contains 320 pages (i.e., the number of top-
ics: k20 + k100 + k200). See Figure 3 for an
example (at page 182 of the pdf file). Terms
can be searched within the pdf.

5. corpus_LF.csv. The Lexical features ob-
tained from LIWC. A csv file of 634,932 rows
(documents) x 95 columns (94 LIWC lexical
features and 1 documents’ ID [doc_id]). See
dataset’s variables in Table 2.

6. LDA_topic_gamma.csv.zip. A compressed
file (.zip) containing the csv file of 634,932
rows (documents) x 320 columns (LDA
gamma values for k20, k100, and k200 topics).
Each cell contains gamma value, that is the
probability a topic is part of a document.

7. topic_description.csv. A file containing de-
tailed descriptions of topics. 320 rows (topics)
x 6 columns. See dataset’s variables in Ta-
ble 5.

6https://osf.io/rywp4/
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Figure 3: LDA topic gamma values (Y axis) over time (X axis). Topic k200_062 related to Covid-19 restrictions.
The 10 top-most important words for topics (in decreasing order) are displayed above the plot (ENG translation:
mask, close, activity, contaging, closing, observe, zone, reopening, open).
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Keyword (ENG translation) Frequency
vaccinare (vaccinate) 6,677
ucraino (Ukrainian) 5,013
trump (Trump) 2,150
dragare (Draghi) 2,075
pass (pass) 1,980
conta (Conti) 1,767
renzi (Renzi) 1,669
salvini (Salvini) 1,628
russia (Russia) 1,326
mascherina (mask) 1,314
banca (bank) 1,295
putin (Putin) 1,275
berlusconi (Berlusconi) 1,246
siriano (Syrian) 1,228
cina (China) 1,227
cinese (Chinese) 1,209
scuola (School) 1,200
gesù (Jesus) 1,198
papa (Pope) 1,179
maio (di Maio) 1,172

Table 1: Top 20 most frequent keywords (expressed as
number of documents). Note that due to lemmatization,
the words dragare and conta often refer to Mario Draghi
and Giuseppe Conte.

Variable
(1) doc_id, (2) WC, (3) WPS, (4) BigWords, (5)
Dic, (6) pronomi, (7) Io, (8) Noi, (9) Se, (10)
Tu, (11) Altri, (12) Negazio, (13) Consen,
(14) Articol, (15) Prepos, (16) Numero,
(17) Affett, (18) Sen_Pos, (19) Emo_Pos,
(20) Ottimis, (21) Emo_Neg, (22) Ansia,
(23) Rabbia, (24) Tristez, (25) Mec_Cog,
(26) Causa, (27) Intros, (28) Discrep, (29)
Inibiz, (30) possib, (31) Certez, (32)
Proc_Sen, (33) Vista, (34) Udito, (35)
Sentim, (36) Social, (37) Comm, (38) Rif_gen,
(39) amici, (40) Famigl, (41) Umano, (42)
Tempo, (43) Passato, (44) Present, (45)
Futuro, (46) Spazio, (47) Sopra, (48) Sotto,
(49) Inclusi, (50) Esclusi, (51) Movimen,
(52) Occupaz, (53) Scuola, (54) Lavoro,
(55) Raggiun, (56) Svago, (57) Casa, (58)
Sport, (59) TV_it, (60) Musica, (61) Soldi,
(62) Metafis, (63) religio, (64) Morte,
(65) Fisico, (66) Corpo, (67) Sesso, (68)
Mangiare, (69) Dormire, (70) Cura_cor, (71)
parolac, (72) Non_flu, (73) riempiti, (74)
Voi, (75) Lui_lei, (76) Loro, (77) Condizio,
(78) Transiti, (79) P_pass, (80) gerundio,
(81) Essere, (82) Avere, (83) Io_Ver, (84)
Tu_Verbo, (85) Lui_Verb, (86) Noi_Verb, (87)
Voi_Verb, (88) Loro_Ver, (89) AllPunc, (90)
Period, (91) Comma, (92) QMark, (93) Exclam,
(94) Apostro, (95) OtherP

Table 2: List of columns for the dataset cor-
pus_LF.rdata
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Variable Description
doc_id Hexadecimal sequence of document unique identification number (e.g., D1d049)
date The date the webpage was uploaded (format: YYYY-MM-DD, Nempty = 45, 185)
website The identification number for websites from which the document was extracted (e.g.,

website15, ilprimatonazionale; see also Table 4, below)
title Title of the document (Nempty = 359, 526)
txt Document text (Nempty = 358, 851)
URL URL associated with the document (Nempty = 360, 137)
WC Word count
KW Keyword associated with the document (see Table 1)
tfidf10 Top-10 words ordered by TF-IDF scores

Table 3: Names and variable descriptions for the dataset corpus.csv.zip

Variable Description
website Website’s identification (e.g., grandeinganno, website21)
Ndoc Number of documents for each website
WC_{type} Word count statistics. Type includes: mean, SD, min, and max
DATE_{type} Date range. Type includes: min and max (Nempty = 8)
type_of_news Website type of content (e.g., conspiracy, political, health-related, religious,

general, and/or viral)
Monthly_Visits Count of visits in the past month (i.e., September 2022). Note that for websites

with less than 5,000 monthly visits, SimilarWeb does not collect further traffic
data. To those websites, (N = 7), we assigned the value 5,000

Visit_Duration Average of visit duration (in seconds)
Bounce_Rate The percentage of visitors who enter a site and leave after visiting only one page
Pages_per_Visit Average of pages visited in each visit
Traffic_{type} Proportion of incoming traffic. Type includes: Direct, Referrals, Search, and

Social
Social_{type} Proportion of incoming traffic from social media. Type includes: Linkedin,

Vkontakte, Others, Telegram_Webapp, Youtube, Twitter, and Facebook
credibility Websites’ credibility scores (obtained from Lin et al., 2022).

Table 4: Names and variable descriptions for the dataset website_description.csv

Variable Description
topic_name Topic unique ID. It is composed by the topic resolution plus a three-character serial

number (e.g., k100_032 is the 32th topic at 100k resolution)
top_words Top-ten words ordered by importance (for the topic)
topic Name of the topic with the highest correlation (within the same topic resolution)
topic_cor Pearson r correlation estimate for the highest correlated topic
LF Name of the LIWC’s lexical feature with the highest correlation
LF_cor Pearson r correlation estimate

Table 5: Names and variable descriptions for the dataset topic_description.csv. Note that correlation are computed
on the document level (N = 634, 932)
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Abstract

Character-level language modeling has been
shown empirically to perform well on highly
agglutinative or morphologically rich lan-
guages while using only a small fraction of
the parameters required by (sub)word models.
Korean fits nicely into this framework, except
that, like other CJK languages, it has a very
large character vocabulary of 11,172 unique
syllables. However, unlike Japanese Kanji and
Chinese Hanzi, each Korean syllable can be
uniquely factored into a small set of subcharac-
ters, called jamo.

We explore a "three-hot" scheme, where we ex-
ploit the decomposability of Korean characters
to model at the syllable level but using only
jamo-level representations. We find that our
three-hot embedding and decoding scheme al-
leviates the two major issues with prior syllable-
and jamo-level models. Namely, it requires
fewer than 1% of the embedding parameters
of a syllable model, and it does not require
tripling the sequence length, as with jamo mod-
els. In addition, it addresses a theoretical flaw
in a prior three-hot modeling scheme.

Our experiments show that, even when reduc-
ing the number of embedding parameters by
> 99.6% (from 11.4M to just 36k), our model
suffers no loss in translation quality compared
to the baseline syllable model.

1 Introduction

Subword modeling has been used for Korean to re-
duce the required vocabulary size due to its aggluti-
native nature and morphological richness. Several
works have characterized the many subword tok-
enization strategies for Korean (Park et al., 2020;
Moon and Okazaki, 2020).

(Sub)character modeling has been employed for
translation in Asian languages (Nguyen et al., 2017;
Ngo et al., 2019; Yu et al., 2017). Likewise, it has
found use in generic Korean NLP tasks (Cho et al.,
2019; Choi et al., 2017). Further, Stratos (2017)

investigated exploiting the hierarchical nature of
Korean characters for modeling. However, nearly
all of these works are restricted to the input side
only, either because the downstream task is a classi-
fication task or it is a translation task where Korean
is the source language, and so syllable generation
is unnecessary. An exception is Song et al. (2018),
where the authors propose a "multi-hot" scheme
that appears on both the embedding and decoding
sides of a sequence-to-sequence denoising autoen-
coder applied to Korean spelling correction.

The baseline approaches of syllable- and jamo-
level modeling each have downsides. Syllable mod-
els must have embeddings for all 11,172 syllables
to provide full coverage, which requires an enor-
mous number of parameters. On the other hand,
jamo-level modeling requires fewer than 70 embed-
dings, but the sequence lengths become 3x longer,
which greatly slows inference in attention-based
models. Here, we propose a three-hot model1 that
addresses both of these issues, as well as an issue
in the architecture from Song et al. (2018).

We emphasize that our goal is specifically to
investigate parameter-efficient character-level mod-
eling, and not to compare with (sub)word models.

1.1 Korean Syllabary

Vi ㄱㄲㄴㄷㄸㄹㅁㅂㅃㅅㅆㅇㅈㅉㅊㅋ
ㅌㅍㅎ

Vv ㅏㅐㅑㅒㅓㅔㅕㅖㅗㅘㅙㅚㅛㅜㅝㅞ
ㅟㅠㅡㅢㅣ

Vf ㄱㄲㄳㄴㄵㄶㄷㄹㄺㄻㄼㄽㄾㄿ
ㅀㅁㅂㅄㅅㅆㅇㅈㅊㅋㅌㅍㅎ⊘

Table 1: The three jamo classes. ⊘ ∈ Vf represents the
absence of a final consonant.

1Our three-hot implementation has been packaged
as a library alongside code to reproduce our ex-
periments: https://github.com/mcognetta/
ThreeHotKoreanModeling.
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기계번  역

ㄱㅣ∅ㄱㅖ∅ㅂㅓㄴ  ㅇ  ㅕ  ㄱ

(ㄱ,ㅣ,∅)(ㄱ,ㅖ,∅)(ㅂ,ㅓ,ㄴ)  (ㅇ,ㅕ,ㄱ)

a)

b)

c)

Figure 1: Modeling scenarios for predicting the syl-
lable 역 (yeok:‘decode’), from the context "기계
번"(gigyebeon:‘machine translate’) using a) syllable,
b) jamo, and c) three-hot modeling. Notice that in jamo
modeling, the prediction is spread over three time-steps.

Korean syllables are made up of three subcharac-
ters: an initial consonant, a vowel, and an optional
final consonant, collectively known as jamo. There
are 19, 21, and 28 initial consonants, vowels, and
final consonants (including the lack of a final con-
sonant, represented by ⊘), denoted Vi,Vv, and Vf ,
respectively, shown in Table 1. These classes are
disjoint, and even visually similar jamo in Vi and
Vf (e.g.,ㄱ) are distinct subcharacters.

Any Korean syllable can be uniquely decom-
posed into three jamo, and any choice (i, v, f) ∈
Vi×Vv ×Vf corresponds to a unique syllable. For
example,한: (ㅎ,ㅏ,ㄴ) and무: (ㅁ,ㅜ,⊘).

Specific details about Korean jamo and their Uni-
code representations are in Appendix A.

2 Three-hot Modeling

Naïve syllable-level and jamo-level modeling use
one-hot encodings to represent each token. We pro-
pose a three-hot scheme, where jamo triplets rep-
resenting syllables are consumed and generated at
each step. Figure 1 gives examples of each of the
considered modeling schemes.

2.1 Embedding

In three-hot modeling, we learn embeddings for
jamo and combine them to produce a syllable em-
bedding as:

embs = embi + embv + embf ,

where + is vector addition. We also experimented
with combining embi,v,f via concatenation, but this
method requires more parameters and we observed
no performance difference.

Similar factored embeddings have been consid-
ered before in language-agnostic settings (Sven-
strup et al., 2017) and for Korean specifically
(Stratos, 2017).

2.2 Independent Three-hot Decoding
Song et al. (2018) proposed a three-hot decoder
for a sequence-to-sequence autoencoder which pro-
duces syllables by predicting three jamo subchar-
acters as a three-hot vector. In their scheme, they
predict the individual jamo independently, as:

P(s | h) ≈ P(i | h)× P(v | h)× P(f | h).

However, a syllable’s jamo are not independent,
and thus this method does not capture the true joint
probability distribution:

P(s | h) = P(i, v, f | h).

2.3 Conditional Three-hot Decoding
To properly model the true joint distribution, we
factor it as:

P(s | h) = P(i | h)×P(v | i, h)×P(f | i, v, h).

Given a context embedding h from a base lan-
guage model, we first predict the initial consonant,
πi, from softmax(I(hi)), where I : Rd → R|Vi|
and hi is a vector generated from h and an initial
vector h0. Then, we generate a continuous embed-
ding for πi via embeddingi : R|Vi| → Rd. The
continuous embedding is combined with hi and
used to predict the vowel jamo, πv. Likewise, πv
is re-embedded and used to predict the final conso-
nant, πf . As such, a triplet (πi, πv, πf ) is generated
similarly to a three-step, unrolled RNN:

hi = tanh(Weh+Whh0)

πi ∼ softmax(I(hi))

embi = embeddingi(πi)

hv = tanh(Weembi +Whhi)

πv ∼ softmax(V (hv))

embv = embeddingv(πv)

hf = tanh(Weembv +Whhv)

πf ∼ softmax(F (hf ))

(1)

In the decoding layer, we define embeddingi,v,
but not embeddingf . This is because once the
prediction πf has been made, decoding for that
time-step is done, and so an embedding embf is
not needed to generate any more jamo.

2.3.1 Parameter Reduction via Weight
Sharing and Diagonal RNNs

A common way to reduce parameter counts is to
share weights between the embedding and decod-
ing layers. For jamo and syllable models, this is
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a) b) c)

Figure 2: The three decoding types: a) one-hot decod-
ing (jamo or syllable), b) independent three-hot decod-
ing (Song et al., 2018), and c) conditional three-hot
decoding (ours). The light pink box is a contextual em-
bedding h, while red, green, and blue are Vi, Vv, and
Vf , respectively.

straightforward, as the one-hot embedding table
can be reused for the final linear output layer.

For independent three-hot models, the embed-
ding weights from Section 2.1 can also be reused
in the final output layers. For conditional three-hot
models, the embedding weights can be used for
both embeddingi,v and I, V, F in Equation 1, so
that only the matricesWe andWh are unshared. Ad-
ditionally, we hypothesize that, due to the strictly
bounded context length Equation 1, a fully dense
RNN transition matrix may be excessive, and so
we experiment with replacing We and Wh with
diagonal matrices (Sübakan and Smaragdis, 2017).

2.4 Prediction Order

In multi-label classification, it has been observed
that the order in which labels are generated can
impact a model’s accuracy (Read et al., 2021). For
three-hot decoding, we experiment with the six
triplet-generation permutations to see if there is
any significant difference. This does not require any
modification of the training data or architecture, as
we need only permute the order of Equation 1.

2.5 Triplet Representation

Three-hot decoding models output jamo triplets rep-
resenting a full syllable. However, the model may
need to process non-Korean characters, which do
not have a three-hot jamo decomposition. To unify
the representations of Korean and non-Korean to-
kens, we add all non-Korean tokens to Vi and in-
troduce a padding character x ∈ Vv,f . Then, a
non-Korean token c is represented by (c,x,x).

To ensure a fair comparison between the three-
hot decoding schemes and the jamo model, no logic
is used to prohibit the generation of degenerate
triplets, such as a non-Korean symbol followed by
jamo subcharacter. Syllable and jamo models do

not generate x when predicting non-Korean tokens,
but jamo models are trained to predict ⊘ if a sylla-
ble does not have a final consonant.

3 Parameter Counts

Table 2 shows the parameter counts for each of
the architectures. Since the three-hot models use
jamo embeddings, they have the same number of
embedding parameters as the jamo-level models.
The conditional three-hot models have additional
parameters for the three-stage decoding step: two
internal transition matrices We and Wh (Equation
1), which dominate the decoding layer’s param-
eter count. But, when the transition matrices are
diagonalized and weight sharing is used, the to-
tal number of parameters is only 1k more than
the shared-weight jamo and independent three-hot
models.

The syllable models contain several orders of
magnitude more parameters than any other archi-
tecture. In the most extreme case, unshared syllable
vs. shared, diagonal three-hot, the latter has only
36k

11.4M ≈ 0.32% as many embedding parameters.
Our underlying LM is a transformer model with

15.7M parameters on the target side2, not counting
those for embedding or generation. Thus, the un-
shared syllable-level embedding/decoding layers
increase the target-side parameter count by 73%,
while the unshared jamo, independent, and diag-
onal conditional three-hot increase it by less than
2%, and non-diagonal conditional three-hot by less
than 6%.

4 Evaluation Metrics

Since we are modeling at two different granulari-
ties, perplexity is not immediately comparable be-
tween the different architectures. To unify them, we
use bits-per-jamo (BPJ) as our granularity-agnostic
metric.

We use BLEU and chrF to evaluate the quality of
the translations produced by our models. Since our
models work on different granularities, we canoni-
calize their outputs for comparison.

For syllable-level modeling, we split all syllables
into their jamo subcharacters and leave all non-
Korean-syllable tokens as is. For three-hot models,
triplets are flattened to a string of three charac-
ters. We remove the x pad from non-Korean tokens
and replace degenerate triplets with a special BAD
token. For all models, all jamo are converted to a

2See Appendix B for architecture details.
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Embedding Decoding Total BPJ BLEU chrF
Syllable (unshared) 5.7M 5.7M 11.4M 33.9 14.1 38.1
Syllable (shared) 5.7M - 5.7M 0.342 14.0 38.1
Jamo (unshared) 35k 35k 70k 0.355 13.7 37.8
Jamo (shared) 35k - 35k 0.356 14.1 38.0
Three-hot (Ind., unshared) 35k 35k 70k 0.555 7.9 28.9
Three-hot (Ind., shared) 35k - 35k 0.556 8.3 29.4

Embedding Decoding Total BPJ BLEU chrF
Three-hot (IVF, unshared) 35k 579k 614k 0.287 14.3 38.1
Three-hot (IVF, shared) 35k 524k 559k 0.292 14.1 38.1
Three-hot (IVF, diag., unshared) 35k 71k 106k 0.293 14.2 38.2
Three-hot (IVF, diag., shared) 35k 1k 36k 0.306 14.0 38.0
Three-hot (FIV, unshared) 35k 579k 614k 0.289 14.0 37.9
Three-hot (FIV, shared) 35k 524k 559k 0.294 14.1 37.8
Three-hot (FIV, diag., unshared) 35k 71k 106k 0.294 14.0 37.9
Three-hot (FIV, diag., shared) 35k 1k 36k 0.304 13.8 37.8

Table 2: Parameter counts (when d = 512, as in our experiments) and metrics (BPJ, BLEU, and chrF) for each of
the architectures. For brevity, only some decoding orders are listed here. The decoding column lists only parameters
that are not shared with the embedding layer. A complete set of metrics is given in Appendix C.

canonical compatibility jamo format (see Appendix
A). Finally, we remove all punctuation.

For BLEU, we use the standard n-gram order of
4, since this operates on the word-level (in our ex-
periments, contiguous token sequences surrounded
by whitespace). The default chrF character n-gram
order is 6, which we interpret as meaning 6 syl-
lables for Korean. Since we measure our metrics
on decomposed jamo sequences, we use a jamo
n-gram order of 18.

5 Experiments

We use an English-Korean news translation dataset
from AI Hub3 with 400k sentences. We remove all
sentence pairs that have more than 100 syllables
on the Korean side, leaving 365k , from which we
select 5k and 5k for testing and validation.

As our only goal is to evaluate the effectiveness
of three-hot modeling compared to naïve syllable-
and jamo-level modeling, we use the same base
transformer model architecture and hyperparame-
ters in all experiments and only change the target-
side embedding and decoding layers. The complete
hyperparameter list is given in Appendix B.

In total, we train 30 models: unshared and shared
weights for syllable, jamo, and three-hot indepen-
dent modeling (6 total) and {unshared, shared} ×
{dense, diagonal} for each of the 6 conditional
three-hot prediction orders (24 total). Each model
is trained for 50 epochs, and the epoch with the
lowest bits-per-jamo on the validation set is used.

For inference, we use a beam size of 15 for syl-
lable models and 8 for jamo models. Three-hot
decoding is two-staged: an internal beam search
constructs triplets jamo-by-jamo, and the highest
probability triplets are added to the outer beam as
syllables. For the independent three-hot models,
we use beam size of 5 and an internal beam size
of 3. For the conditional three-hot models, we use
a beam size of 15 and an internal beam size of

3https://aihub.or.kr/

4. These hyperparameters were determined by a
sweep search on the validation set.

6 Results and Analysis

Table 2 lists the metrics for each model type.
Independent three-hot modeling performs the

worst across all metrics. On translation in partic-
ular, we suspect that it is because the model can
generate high probability but meaningless triplets,
especially in scenarios where several reasonable
syllable continuations exist. The highest probability
triplet may contain individual jamo that come from
each of the true high probability syllable continua-
tions, but which are combined in a way that forms
a meaningless character. Such triplets quickly satu-
rate the beam with gibberish contexts and degrade
the translation quality.

For bits-per-jamo, conditional three-hot models
vastly outperform all other architectures. However,
this has some caveats. Since the syllable model
must predict all three jamo simultaneously, the bits-
per-jamo is spread evenly throughout the compo-
nent jamo. On the other hand, conditional three-hot
modeling has a relatively difficult time predicting
the first jamo, but the subsequent elements are in-
creasingly easy due to the additional condition-
ing (Appendix C lists BPJ-per-jamo-class for each
model). Jamo models must deal with a longer con-
text (and thus less focused attention) and the output
layer can output any class of jamo or non-Korean
tokens at any time step, which makes modeling
less structured and more difficult than conditional
three-hot and syllable-level models.

We observed that the independent three-hot mod-
els had the highest perplexity on Vv, followed by
Vi, then Vf . Since this family generates jamo inde-
pendently, it approximates the true entropy of the
marginal subcharacter distributions. Thus, we con-
jectured that (f, i, v) order would be the best and
(v, i, f) the worst for model accuracy, but found
that no prediction order consistently outperformed
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the others.
For translation, the BLEU and chrF scores for

jamo, syllable, and conditional three-hot models
are extremely close. We found that, as we moved
from unshared, dense three-hot models to shared,
diagonal models, there was a slight loss in BPJ per-
formance, but even in the diagonal, shared case, all
three-hot models perform on-par with syllable mod-
els on translation (± 0.3 BLEU and ± 0.3 chrF),
supporting our claims that the syllable models are
massively overparameterized, and using fully dense
We and Wh matrices in Equation 1 is unnecessary.

7 Conclusion

We presented a conditional three-hot decoder
for Korean character-level language models. Our
model addresses several issues with other Korean
(sub)character-level modeling schemes. Compared
to syllable-level models, it uses only a small frac-
tion of the number of parameters, and, unlike jamo-
level models, it does not triple the sequence length,
avoiding the resulting inference time increase with
attention mechanisms. It also addresses a theoret-
ical flaw in a prior three-hot decoding scheme,
where a syllable’s subcharacters were generated
independently. Finally, we proposed several vari-
ants of our model to further reduce parameters.

On a character-level translation task, we found
that all of our conditional three-hot models perform
on-par with jamo and syllable models, even when
using as little as ∼0.3% of the embedding parame-
ters of a syllable model. They also outperform the
prior independent three-hot model in every metric.

These results suggest that conditional three-hot
modeling is an efficient and principled method of
character-level Korean language modeling.
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9 Limitations

One limitation of this work is that it is specific
to the writing system typically used in Korean,
Hangul. A similar idea could be used for subword
modeling in other scripts, but the idea presented
here draws specifically on the hierarchical and com-
positional nature of Hangul syllables that is unique

to the script itself. A second is that we did not com-
pare to state-of-the-art non-character-level Korean
translation models. However, this was on purpose,
as the point of this paper is specifically to investi-
gate efficient character-level modeling.
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A Hangul and Jamo

Korean is divided into three Unicode blocks: sylla-
bles4, jamo5, and compatability jamo6.

The syllable block contains a codepoint for
each of the 11,172 unique syllables and the jamo
block contains one codepoint for each of the ini-
tial, vowel, and final jamos, separated by class. Ta-
ble 1 shows all of the jamo. Note that some vi-
sually identical jamo exist in both the initial and
final consonant classes (e.g.,ㄱ). These are techni-
cally distinct jamo, hence the need for two unique
codepoints. The compatibility jamo block contains
a codepoint for each consonant and vowel, but
merges visually identical ones from across differ-
ent classes. In total there are 51 compatibility jamo.
Conversion from syllables to jamo and compati-
bility jamo is deterministic using basic modular
arithmetic on the codepoints7. Likewise, it is trivial
to recompose jamo into syllables. Since compatibil-
ity jamo has ambiguities about which class a spe-
cific jamo belongs to, it must be composed greedily
from left to right using a state machine. However,
in all cases, assuming that that jamo sequence is
valid, both jamo and compatibility sequences can
be unambiguously recomposed into syllables.

In our experiments, we always convert from
syllables/triplets/jamo to compatibility jamo, and
never from compatibility jamo, so all ambiguities

4https://en.wikipedia.org/wiki/Hangul_
Syllables

5https://en.wikipedia.org/wiki/Hangul_
Jamo_(Unicode_block)

6https://en.wikipedia.org/wiki/Hangul_
Compatibility_Jamo

7https://en.wikipedia.org/wiki/Korean_
language_and_computers#Hangul_in_Unicode

are avoided even in the case of invalid jamo se-
quences.

B Baseline Transformer LM

A single baseline transformer model configuration
was used across all experiments, with only the tar-
get side embedding and decoding layers swapped
out. Table 3 lists the relevant hyperparameters. All
models were trained on an NVIDIA RTX A6000
GPU using PyTorch 1.12.

Hyperparameter Value
English Vocabulary 30k BPE

Embedding Dimension 512
Feed Forward Dimension 512

Encoder Layers 6
Decoder Layers 6

Heads 8
Optimizer ADAM

Learning Rate 1e-4
Betas (0.9, 0.98)

Batch Size (tokens) 4k (10k for Jamo)
Epochs 50

Table 3: Hyperparameters for the base transformer lan-
guage model.

C Full Metrics

The full metrics for all experients are listed in Table
4. This is the complete version of Table 2.
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Embedding Decoding Total BPJ BPJ (i) BPJ (v) BPJ (f) BLEU chrF
Syllable (unshared) 5.7M 5.7M 11.4M 0.339 - - - 14.1 38.1
Syllable (shared) 5.7M - 5.7M 0.342 - - - 14.0 38.1
Jamo (unshared) 35k 35k 70k 0.355 - - - 13.7 37.8
Jamo (shared) 35k - 35k 0.356 - - - 14.1 38.0
Three-hot (Ind., unshared) 35k 35k 70k 0.555 0.588 0.599 0.478 7.9 28.9
Three-hot (Ind., shared) 35k - 35k 0.556 0.589 0.600 0.478 8.3 29.4
Three-hot (IVF, unshared) 35k 579k 614k 0.287 0.556 0.208 0.099 14.3 38.1
Three-hot (IVF, shared) 35k 524k 559k 0.292 0.561 0.214 0.103 14.1 38.1
Three-hot (IVF, diag., unshared) 35k 71k 106k 0.293 0.561 0.211 0.108 14.2 38.2
Three-hot (IVF, diag., shared) 35k 1k 36k 0.306 0.571 0.226 0.121 14.0 38.0
Three-hot (IFV, unshared) 35k 579k 614k 0.288 0.556 0.127 0.183 14.0 37.7
Three-hot (IFV, shared) 35k 524k 559k 0.293 0.563 0.131 0.186 13.9 37.8
Three-hot (IFV, diag., unshared) 35k 71k 106k 0.293 0.560 0.136 0.183 14.1 38.1
Three-hot (IFV, diag., shared) 35k 1k 36k 0.305 0.569 0.153 0.195 14.1 38.1
Three-hot (VIF, unshared) 35k 579k 614k 0.288 0.175 0.590 0.100 14.0 38.2
Three-hot (VIF, shared) 35k 524k 559k 0.293 0.179 0.597 0.102 14.0 38.3
Three-hot (VIF, diag., unshared) 35k 71k 106k 0.294 0.178 0.595 0.109 14.1 37.9
Three-hot (VIF, diag., shared) 35k 1k 36k 0.305 0.190 0.605 0.120 14.3 38.1
Three-hot (VFI, unshared) 35k 579k 614k 0.287 0.114 0.589 0.160 14.1 38.1
Three-hot (VFI, shared) 35k 524k 559k 0.292 0.119 0.596 0.162 14.3 38.2
Three-hot (VFI, diag., unshared) 35k 71k 106k 0.294 0.126 0.595 0.161 13.9 38.1
Three-hot (VFI, diag., shared) 35k 1k 36k 0.306 0.142 0.606 0.170 13.8 37.8
Three-hot (FIV, unshared) 35k 579k 614k 0.289 0.262 0.128 0.478 14.0 37.9
Three-hot (FIV, shared) 35k 524k 559k 0.294 0.266 0.132 0.484 14.1 37.8
Three-hot (FIV, diag., unshared) 35k 71k 106k 0.294 0.264 0.137 0.482 14.0 37.9
Three-hot (FIV, diag., shared) 35k 1k 36k 0.304 0.276 0.151 0.486 13.8 37.8
Three-hot (FVI, unshared) 35k 579k 614k 0.289 0.116 0.273 0.478 14.3 38.2
Three-hot (FVI, shared) 35k 524k 559k 0.293 0.120 0.277 0.482 14.1 38.3
Three-hot (FVI, diag., unshared) 35k 71k 106k 0.294 0.125 0.276 0.481 14.1 38.0
Three-hot (FVI, diag., shared) 35k 1k 36k 0.305 0.143 0.287 0.487 14.2 38.0

Table 4: The complete metrics for Table 2. For each model architecture and prediction order, parameter counts
(when d = 512, as in our experiments) and metrics (BPJ, BLEU, and chrF) are given. Additionally, for three-hot
models, the BPJ-per-jamo-class is provided. The decoding column lists only unshared parameters.
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Abstract

Designing dialog tutors has been challenging
as it involves modeling the diverse and com-
plex pedagogical strategies employed by hu-
man tutors. Although there have been signifi-
cant recent advances in neural conversational
systems using large language models (LLMs)
and growth in available dialog corpora, dia-
log tutoring has largely remained unaffected by
these advances. In this paper, we rigorously
analyze various generative language models on
two dialog tutoring datasets for language learn-
ing using automatic and human evaluations to
understand the new opportunities brought by
these advances as well as the challenges we
must overcome to build models that would be
usable in real educational settings. We find
that although current approaches can model tu-
toring in constrained learning scenarios when
the number of concepts to be taught and possi-
ble teacher strategies are small, they perform
poorly in less constrained scenarios. Our hu-
man quality evaluation shows that both models
and ground-truth annotations exhibit low per-
formance in terms of equitable tutoring, which
measures learning opportunities for students
and how engaging the dialog is. To understand
the behavior of our models in a real tutoring
setting, we conduct a user study using expert
annotators and find a significantly large num-
ber of model reasoning errors in 45% of con-
versations. Finally, we connect our findings to
outline future work.

https://github.com/eth-nlped/

dialog-tutoring

1 Introduction

The goal of dialog tutoring research is to build sys-
tems that can tutor students using natural language
conversation (Wollny et al., 2021). For several
decades, learning scientists have been studying the

*Equal contribution.

features of domain-specific dialog tutoring systems
that engender learning in students (Chi et al., 1994;
Graesser et al., 1995; Moore et al., 2004; Litman
et al., 2006; Graesser, 2016; Ruan et al., 2019)
and have established strong learning gains that are
even comparable to human tutoring in specific do-
mains (Nye et al., 2014). However, these systems
require extensive authoring of materials by teach-
ers (MacLellan and Koedinger, 2020) and therefore
cannot fully utilize the scalability of online learn-
ing.

Building dialog tutors is technically challeng-
ing as tutoring dialogs typically exhibit properties
that are absent in other forms of dialog. Tutoring
dialogs are often long, enabling students to be ex-
posed to the concepts in a way that they can use
them in future (Chi and Wylie, 2014), and grounded
in the learning scenarios (Graesser et al., 2009). Fi-
nally, good dialog tutors are engaging and create
opportunities to learn, providing students space to
seek and provide explanations, and self-reflect (Chi
and Wylie, 2014; Reiser, 2004).

The growing success of deep neural network
based language generators in other dialog settings
(Adiwardana et al., 2020; Roller et al., 2021) sug-
gests new possibilities in dialog tutoring that could
scale beyond domain-specific approaches. How-
ever, despite their promise, advances in neural gen-
erative models have seen little adoption in dialog
tutoring.

In this paper, we contribute a comprehensive
study of the applicability of neural generative mod-
els in tutoring. We formally introduce the dialog
tutoring task and analyze existing tutoring datasets
(§2). Then, we describe several generative and
retrieval-based models for dialog tutoring (§3) and
benchmark them on two open-access dialog tutor-
ing datasets for language learning: CIMA (Stasaski
et al., 2020, a crowdsourced role-played dataset
for learning prepositional phrases in Italian) and
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Teacher-Student Chatroom Corpus (TSCC) (Caines
et al., 2020, a one-to-one English tutoring dataset
from an online chatroom) (§5.1). We evaluate our
models on various automatic metrics (§4.2) as well
as two human evaluation studies: an evaluation of
the quality of the generated response with respect
to various measures of goodness (§6.1), as well as
a more realistic user study with a learning interface
(§6.2).

Overall, while we find that pretrained models
improve over simpler baselines in terms of auto-
matic metrics, our consequent human evaluation
reveals several shortcomings that ought to be ad-
dressed before these models can be adopted in the
real world. We find that while neural generative
models can model more constrained learning set-
tings well, they struggle when the learning goal is
more open-ended. Specifically, these models are
unable to understand and reason about student so-
lutions and misconceptions, and thus, are unable to
use effective pedagogical strategies.

We find that the field of dialog tutoring is signif-
icantly limited by the quantity and quality of avail-
able datasets. The available datasets are both too
small and not rich enough to capture the nuances
of the dialog tutoring problem. Our analysis also
reveals the inadequacy of automatic evaluation met-
rics for capturing tutoring quality. Not only are the
existing metrics unable to capture faithfulness to
the learning material and the student dialog history,
but they also cannot capture moves of good human
tutors that allow learners the space for reflection,
explanation, follow-ups, and real engagement in
the process of learning.

Based on our findings, we end with an outline of
potential avenues of future research (§7). We hope
that our paper will bring attention to this under-
explored natural language processing application
with the potential for significant social good.

2 The Dialog Tutoring Task

Dialog tutoring can be described as a multi-turn
interaction between two interlocutors, where one
performs the role of a teacher seeking to teach the
other interlocutor who acts in the role of a student.
We then can describe a dialog tutoring session for-
mally as a sequence of turns H = (u1, . . . , u|H|)
that are taken by either of the interlocutors. Each
turn ut ∈ V∗ is a finite sequence of tokens from a
vocabulary V .

Further, each turn ut can be associated with a

Figure 1: Examples of tutoring conversations from both
datasets. The (image) grounding is shown in the second row
and dialog acts in brackets indicate the pedagogical strategy.

sequence of dialog acts at ∈ A that indicate the
action taken by the interlocutor in the correspond-
ing turn. The dialog act is a key aspect of dialog
tutoring as it can refer to the teaching strategy em-
ployed by the tutor. These may include strategies
such as providing a hint or seeking a clarification
(see Appendix A for more details). The set of
dialog acts A is usually fixed according to a prede-
fined taxonomy and may be split into two subsets
A = Ateacher ∪ Astudent, each corresponding to the
teacher and student role. Each dialog session H
may also be accompanied with some grounding
information K, which grounds the response in rel-
evant information and may refer to the teaching
material that needs to be taught to the student. This
information K may come in various formats, in-
cluding images and videos. However, we restrict
ourselves to using only text-based grounding in this
work such that K ∈ K ⊆ V∗ is again a sequence
of tokens from the common vocabulary V and K
is used to describe the set of possible groundings
(e.g., a textbook with a set of chapters). In Section
3 we derive different methods to model the role of
the teacher, to which we restrict this work.

2.1 Existing tutoring datasets

To our knowledge, only three conversational tutor-
ing datasets are openly available: CIMA (Stasaski
et al., 2020) is a crowd-sourced dataset, where
annotators were asked to role-play students and
teachers by working through an exercise on trans-
lating a prepositional phrase from English to Italian,
given an image and a shared set of concepts. TSCC
(Caines et al., 2020) uses real teachers leading one-
on-one language tutoring sessions in English lan-
guage learning, thus creating a more open-ended
scenario. Finally, TalkMoves (Suresh et al., 2022a).
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is a collection of scraped classroom transcripts of
K-12 mathematics lesson videos that contain chal-
lenging, multi-party interactions.

The scarcity of tutoring datasets stands in con-
trast to other dialog scenarios, where plenty of
datasets have been proposed and studied. For
example, task-oriented dialog has been studied
in domains like reservations (Wen et al., 2017;
Budzianowski et al., 2018; Kim et al., 2020) or
public service information (Feng et al., 2020).
On the other hand, chit-chat or open-domain di-
alog has been studied on movies (Zhou et al.,
2018), Wikipedia knowledge (Dinan et al., 2019),
agent persona (Dinan et al., 2020), knowledge
graphs (Moon et al., 2019), and open-ended set-
tings (Komeili et al., 2022).

Furthermore, we note the following limitations
and characteristics of tutoring datasets, also in com-
parison to other dialog domains: 1) Low pedagog-
ical quality (CIMA), 2) Limited teaching strate-
gies (all), 3) Exclusive focus on classroom settings
(TalkMoves), 4) Small dataset size (all). 5) Signifi-
cantly larger context sizes (TSCC) 6) Harder read-
ability according to the Flesch score (TSCC). We
provide more evidence in Table 1 which shows a
comparison of dialog tutoring datasets with widely-
used task-oriented and open-domain datasets.

2.2 Related work on generative dialog models

Similarly, while the advent of large pretrained mod-
els has sparked ample research on generative mod-
els for dialog (Bao et al., 2021; Peng et al., 2021;
Roller et al., 2021; Shuster et al., 2022; Cohen et al.,
2022), this has not carried over to research on tutor-
ing systems, where existing solutions are predomi-
nantly rule-based and do not generate open-ended
responses. For example, the authors on CIMA de-
fine heuristics to select responses (Stasaski et al.,
2020). Pretrained transformers in general have
only very recently been studied in this setting, how-
ever only for dialog act classification (Suresh et al.,
2022b) and to study the pedagogical ability of exist-
ing large pretrained models (Tack and Piech, 2022).

3 Dialog Tutoring Models

After introducing the dialog tutoring task, this sec-
tion highlights the models we evaluate on the task.
We note that our aim is an analysis of existing mod-
els.

We explore turn-level models that can generate a
teacher response y := ut+1 given a tutoring session

H = (u1, . . . , u|H|). During training, we obtain
the dialog history by teacher forcing, i.e., we take
the ground-truth dialog history. Furthermore, we
do not model the problem of retrieving grounding
information but rather assume it as given.

Generative Model In order to study if genera-
tive models can capture a given teaching strategy,
we first derive a model that assumes the ground-
truth dialog act sequence a = {a1, . . . ,a|H|} to
be given as an input. Then, given dialog history
H<t = {u1, . . . , ut}, grounding information K
and at+1 ⊆ Ateacher, the set of dialog acts relevant
at timestep t + 1, the teacher response y is gen-
erated according to a locally-normalized language
generation model. In the case that no grounding
information K is given, the dependency on K may
be dropped.

y⋆ = argmax
y∈V∗

{p (y | at+1,H<t,K)} (1)

= argmax
y∈V∗

|y|∏

i=1

{p (yi | y<i,at+1,H<t,K)}

We separate the turns in the dialog by special
⟨teacher⟩ and ⟨student⟩ tags and prepend the dia-
log act as a special token, followed by a special
⟨knowledge⟩ token and the grounding information
K as the input to the encoder. In CIMA we encode
the triples defining the grounding information in a
simple natural language format, where we separate
the English and Italian words for an object, color,
and preposition as well as the whole phrase by the
word "is", for example as "blue is blu" in Figure
1. Further, we add the grammar rules separated
by a special token. We study different models to
parametrize p that are described in Section 4.

Finally, we use the version of CTRL (Keskar
et al., 2019) presented by Rashkin et al. (2021).
The aim of the model is to improve the faithful-
ness of grounded response generation models, a
significant problem in neural language generation
(Roller et al., 2021) which holds high importance
in the field of tutoring, where one trusts a teacher
to present correct information. The model is aug-
mented by a sequence of control tokens that are
intended to steer the generations to desirable prop-
erties. We use the lexical overlap and entailment
tokens, which we obtain as follows. In training,
the lexical overlap is measured on a token-level be-
tween ground-truth response and grounding. Then,
three equally sized buckets are created indicating
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Dataset Train samples #DA Tgt. length Src. length #prev. turns corpus-div. Flesch score F1(ŷ,K)

CIMA 2,715 5 14.71 9.70 4.55 0.149 84.64 0.196
TSCC 5,845 23 16.09 11.72 68.28 0.327 73.00 -
MultiWoZ 2.1 56,781 34∗ 19.86 14.49 7.86 0.069 90.90 -
Schema-Guided Dialog 164,982 10∗ 14.30 10.36 11.38 0.049 95.37 -
DSTC9 19,184 - 21.61 11.65 11.70 0.050 81.85 0.47
Personachat 127,162 - 12.26 11.65 6.51 0.162 91.80 0.10
FaithDial 18,357 - 21.72 17.33 4.54 0.274 83.28 0.47
CMU_DoG 81,468 - 14.49 18.23 18.73 0.178 79.54 0.02

Table 1: Statistics of dialogue datasets with lines separating groups by task - tutoring, task-oriented, open-domain dialog tasks.
Target length and source length in average number of tokens (Bart tokenizer), # prev. turns is averaged for each teacher response,
corpus-div is ngram entropy averaged for uni to four-grams. * We only count system dialog acts.

low, medium, and high overlap which is indicated
by a control token. Entailment is determined by
an MNLI model and again a corresponding token
is added. At test time, we always use the token
that encourages the desirable property, in this case
high lexical overlap and entailment. Finally, using
a sequence of control tokens c, the model from
equation 1 becomes:

p (y | at+1, c,H<t,K) (2)

Joint Model In order to study how well current
neural models can decide on a reasonable teach-
ing strategy and perform in real case scenarios, we
also implement a model that first decides the di-
alog act at+1 ∈ Ateacher (instead of assuming the
ground-truth dialog act) and then uses it to gener-
ate a response y = ut+1. We use a simple model
that again takes the grounding and dialog context
as input but now generates the concatenation of
dialog act and response in one utterance, akin to
SOLOIST (Peng et al., 2021). Thus, for a given
ỹ := at+1 ◦ y with act sequence at+1 of length N
and response y of length T, the model is

p (ỹ | K,H<t) =
m+N∏

i=1

p (ỹi | ỹ<i,K,H<t) (3)

In training, we use teacher forcing and prepend
at+1 to y to obtain the label sequence. At test time,
the model performs a beam search over the dialog
act sequence and response jointly.

Retrieval-based model Since generative mod-
els are known to produce erroneous outputs that
are factually incorrect and potentially inappropriate
(Ji et al., 2022), we also experiment with using a
retrieval-based model that selects responses from
the training corpus at test time. As opposed to
previous work on the topic (e.g., Stasaski et al.
(2020)), we do not employ a rule-based model but

rather a learned retrieval model that does not re-
quire handcrafting elaborate and possibly brittle
rules. Therefore, we use the Bi-Encoder architec-
ture (Mazaré et al., 2018; Dinan et al., 2019) where
a dialog context encoder encH<t;θ and a response
encoder ency;θ encode context H<t and possible
responses y into a fixed size vector of same dimen-
sion n. In our experiments, the weights θ of both
encoders are shared.

The model is trained using contrastive learning.
Suppose we are given a training pair H, ŷ from a
training dataset D that we use for teacher forcing.
We then train the model by sampling a negative
response ȳ from the set of responses in D and
using the Triplet Loss criterion, which for a metric
function d : Rn × Rn → R is defined as:

L(θ;H, ŷ, ȳ) = [m+ d(encH;θ(H), ency;θ(ŷ))

− d(encH;θ(H), ency;θ(ȳ))]+,
(4)

where m is a margin hyperparameter, and d is the
euclidean norm in our experiments. Further, we
do stratified sampling on CIMA to not select neg-
atives from the same preposition, color, or object
that might be false negatives. At test time, given
a dialog context H<t, we choose a response y⋆

from the training set D by maximum inner product
search using the decision rule

y⋆ = argmax
y∈D

{encH;θ(H<t)T ency;θ(y)}. (5)

4 Experiments

We use the following models for parameterizing
p in Equation 2: A sequence-to-sequence model
(Sutskever et al., 2014) with a copy mechanism (Gu
et al., 2016) trained from scratch. A wide range
of pretrained Transformers, namely BART (Lewis
et al., 2020), DialoGPT (Zhang et al., 2020), T5
(Raffel et al., 2020) and its multilingual version
mT5 (Xue et al., 2021).
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CIMA TSCC
Model sBLEU / BLEU-1 (↑) BERT F1 (↑) Q2 (↑) sBLEU / BLEU-1 (↑) BERT F1 (↑)
Rule-based (Stasaski et al., 2020)* 0.34/- 0.45 - - -
LSTM (Stasaski et al., 2020)∗ 0.31/- 0.53 - - -
Seq2seq 2.89 / 28.0 0.676 0.372 - -
DialoGPT 4.12 / 35.6 0.697 0.571 0.63 / 18.5 0.661
Bi-Encoder (RoBERTa-base) 5.89 / 23.9 0.690 0.344 1.367 / 8.8 0.638
CTRL (BART-base) 5.99 / 42.5 0.702 0.673 - -
t5-small 7.36 / 34.0 0.672 0.676 2.72 / 12.1 0.646
BART-large 8.61 / 38.7 0.715 0.673 1.85 / 13.7 0.658
BART-base 9.58 / 42.5 0.726 0.680 2.67 / 18.6 0.670
mt5-small 11.26 / 41.0 0.700 0.624 1.80 / 14.9 0.653
BART-base† 5.61 / 41.03 0.707 0.642 1.90 / 15.4 0.659
BART-large† 5.65 / 42.67 0.694 0.607 1.74 / 15.1 0.660

Table 2: Comparison of models on CIMA and TSCC. We note that the strong sacrebleu differences are caused by the brevity
penalty (all generative models generate too short sequences), †: use predicted dialog act label, others use ground-truth. * numbers
taken from (Stasaski et al., 2020) which may not be comparable as there is no standard split of CIMA dataset.

BART and T5 are pretrained encoder-decoder
models that were trained on denoising and text-
to-text tasks, respectively. mT5 bases on T5 but
is multilingual which might help with the code-
switched utterances in CIMA. Lastly, DialoGPT is
an autoregressive language model based on GPT-2
(Radford et al., 2019) that was pretrained on a large
dialog dataset obtained from Reddit. With this, we
intend to study whether large-scale dialog-specific
pretraining can aid in training educational tutors,
as well.

Implementation Details We implement our ex-
periments using the Huggingface transformers li-
brary and finetune the checkpoints provided as
part of it for all Transformer-based models. For
these models, we use an initial learning rate of
3.25× 10−5, 500 warmup steps and linear learning
rate decay. We train the models using a batch size
of 8 and evaluate on the validation sets after each
epoch. In the end, we select the best model to be
the one that has a minimal loss on the validation
set. The sequence-to-sequence baseline is trained
from scratch using an initial learning rate of 0.001
for 25,000 steps using the Adam optimizer and
a dropout rate of 0.1 We use beam search with a
beam size of 10 to generate model responses.

4.1 Dataset splits

Since there are no official dataset splits for CIMA
and TSCC, we split both datasets randomly into
training, validation and test sets. We provide the
exact split of the dataset in an accompanying code
repository. For CIMA, we use all such samples
with less than three annotated tutor responses for
training. The other conversations are split ran-

domly into equally-sized validation and test sets
which results in 2715/300/300 samples each.

For TSCC, we split randomly along the conver-
sations to obtain 82/10/11 training, validation, and
test conversations each.

4.2 Evaluation metrics

To evaluate our models, we use the BLEU im-
plementation provided by the sacrebleu package
(sBLEU) (Post, 2018) to measure lexical overlap
between generated and ground-truth response. Fur-
thermore, we use BERT F1 (BERTScore) to mea-
sure their semantic similarity. Lastly, for CIMA
we also calculate Q2 (Honovich et al., 2021) which
measures the factual consistency of the response
y with the grounding information K by employ-
ing a question-answering based matching. Both
BERTScore and Q2 have shown strong correla-
tion with human judgements on factual consistency
Honovich et al. (2022).

5 Results

In this section, we summarize our main findings
in terms of automatic evaluation. First, we give
an overview of the performance of different mod-
els that we train on CIMA and TSCC in Section
5.1. Then, we assess their ability to stay faithful
to teaching strategies (Section 5.2) and study how
grounding annotations can influence the faithful-
ness of neural dialog tutors (Section 5.3), before
studying their scaling behavior with dataset size
and complexity (Section 5.4) and their generaliza-
tion capabilities (Section 5.5). We then finish with
an assessment of using education-specific data for
pretraining (Section 5.6).
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Method
GT BARTbase BARTlarge CTRL Retrieval

DA F1 78.3 81.0 70.1 63.0 43.1

Table 3: F1 score of the dialog act classification based on the
generated responses of our models.

5.1 Comparison of different models

Table 2 shows the key results from our experiments.
First, all automatic metrics are significantly higher
on CIMA, which indicates that the models can fit
CIMA much better than TSCC, with which cur-
rent approaches still struggle. We further analyse
this finding in Section 5.2 and show that this is be-
cause TSCC has richer teaching strategies which
are harder to model. Our comparison also sug-
gests that finetuning large pretrained Transformer
models generally gives better results than the rule-
based and LSTM model reported in (Stasaski et al.,
2020), and our implemented retrieval and sequence-
to-sequence baselines. This illustrates the potential
of LLMs for dialog tutoring.

We also see a significant difference among dif-
ferent LLMs. Dialog-specific pretraining of Di-
aloGPT does not help and gives worse results than
BART and T5, primarily because the model tends
to generate short and generic responses more often.
Multilingual pretraining in mT5 improves over T5
only in some metrics, notably in BLEU and BERT
F1 on CIMA but not in terms of Q2. Similarly,
adding control tokens to BART does not improve
Q2 or other automatic metrics. Surprisingly, using
very large models actually degrades performance
in our experiments. Finally, the last two rows show
results obtained with our joint model that does not
use the ground-truth dialog act but predicts it to-
gether with the response sequence and still provides
reasonable performance.

5.2 How well can generative models capture
teaching strategies?

We study this question first by evaluating the di-
alog act prediction accuracy of our joint model.
We find that it is significantly low on TSCC with
21.8 compared to 71.2 on CIMA for BART-base
which indicates significant room for improvement.
Notably, the joint model tends to predict more fre-
quently occuring dialog acts, which results in fewer
follow-up questions and "Other" never being pre-
dicted in CIMA, the least frequent act in the data.
The distribution of dialog acts in the ground-truth
annotations and model predictions with a BART-

Hint

Questio
n

Correction

Confirmation
Other

0

0.2

0.4

0.6

Figure 2: Distribution of predicted and ground-truth dialog
acts on CIMA.

Model sBLEU (↑) BERT F1 (↑) Q2 (↑)
BART-base 6.69 / 38.6 0.718 0.571

+ triples 9.20 / 45.3 0.730 0.642
+ grammar rules 9.58 / 42.5 0.726 0.680

Table 4: Comparison of models with different inputs on
CIMA. Triples are made up of preposition, object, and color
translations. Grammar rules are a textual description of a
learning concept.

base joint model is in Figure 2.
Then, we evaluate how well different models can

stick to a given ground-truth dialog act by predict-
ing the dialog act of the generated response with
a BART-base model trained to predict the ground-
truth dialog act sequence based on the ground-truth
response. The results are shown in Table 3. No-
tably, BART-base performs better than the ground-
truth annotations. The CTRL model, on the other
hand, has worse performance since the control to-
kens do not respect tutoring principles (e.g., lexical
overlap to grounding discourages follow-up ques-
tions in favor of just giving hints).

5.3 Does grounding in learning concepts help?

Prior work has shown that grounding responses in
relevant data can improve their quality, especially
in terms of faithfulness (Shuster et al., 2021). We
intend to validate this for dialog tutoring by study-
ing three models with different inputs on CIMA.
The first model is not provided grounding informa-
tion, whereas the second and third are grounded
in learning concepts (cf. Equation 1) with one us-
ing only the (preposition, object, color) triples and
the other making use of additional grammar rules.
The results with these models are shown in Table
4 and suggest that grounding responses in relevant
knowledge helps the model to produce better and
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Figure 3: Performance of BART-base on CIMA as a function
of: (a) training data size uniformly sampled from the training
data, (b) the number of concepts, where only the specific
number of concepts is retained and all others are excluded.

more faithful responses.

5.4 How do models scale with more data?

Due to the limited availability of high-quality ped-
agogical datasets and the time-consuming pro-
cess of authoring new materials (MacLellan and
Koedinger, 2020), it is important to understand how
quickly generative models can generalize to new
settings. Thus, we assess how well the model can
model tutoring in low-resource scenarios. We con-
struct a study, where we randomly sample subsets
of the CIMA training set and test the performance
of the various models. We can see from Figure
3(a) that with more training data, the faithfulness
of responses appears to improve and is not satu-
rated before we reach the full training set. This
supports the intuition that additional training data
might improve the performance further.

Similarly, we study how well our model can deal
with an increase in complexity with respect to learn-
ing concepts at similar training data sizes. There-
fore, we construct different training datasets with
735 samples and a varying number of concepts each
time. We begin by taking samples concerned with
the concept “in front of the” and evaluate exclu-
sively on it, gradually adding new concepts. Figure
3(b) suggests that Q2 drops sharply at four con-
cepts. BLEU on the other hand increases, and this
might be due to the metric encouraging generic ut-
terances that, for example, repeat a grammar rule.

5.5 Can models generalize to new concepts?

As the students progress and gain new knowledge,
it might be a desirable property of dialog tutoring
models to be able to handle new concepts that suit
this increase in prior knowledge. Hence, we study
how well our CIMA model can generalize to new
concepts that it has not seen in training, for exam-
ple, a new preposition. For this analysis, we create

Concept #Samples Full data Zero-shot Zero-shot
without grounding

train/test Q2 Q2 Q2

is behind the 549/90 0.698 0.603 0.533
is in front of the 735/84 0.616 0.512 0.500
is next to the 547/51 0.497 0.539 0.483
is on top of the 224/30 0.683 0.578 0.567
is under the 270/24 0.854 0.646 0.625
is inside of the 390/21 0.579 0.643 0.190
all concepts 2715 / 300 0.644 0.570 0.502

Table 5: Performance of a grounded BART-base model by
learning concept. Full data uses the entire training data and
zero-shot removes the concept of the row from the training
data.

Method sBLEU BERT F1 Q2

BART-base 6.69 / 38.6 0.718 0.571
+ Ed. data 7.31 / 41.4 0.727 0.577
+ Non-Ed. data 6.60 / 39.4 0.721 0.583

Table 6: Influence of pretraining on educational and non-
educational data. Please note that no grounding information is
used in this setting.

a set-up where we first train the model on all of the
training data and evaluate on the subset of samples
for each preposition separately. We then compare
this number to a model that is not trained on the
corresponding concept it is evaluated on, creating a
zero-shot set-up which we carry out for a grounded
and ungrounded response generation model. As
measured by Q2 (cf. Table 5), this model can in-
deed generalize to new concepts well, albeit with
performance degradation. Furthermore, grounding
information improves generalization as these define
the learning concept (in this case the preposition)
and how it is used. Without this information, we
observe that the model generates generic responses
more often.

5.6 Does education-specific pre-training help?

As educational data are widely available on the
internet, next we study how education-specific pre-
training effect results. In Table 6, we show re-
sults obtained with finetuning a BART-base model
directly on CIMA and pretraining it on tutoring
dialogs from TSCC or non-tutoring dialogs from
MultiWoZ 2.1 (Eric et al., 2020), Personachat
(Zhang et al., 2018), CMU DoG (Zhou et al.,
2018), DSTC9 (Kim et al., 2020) and Topicalchat
(Gopalakrishnan et al., 2019). In both cases, we
only see minor improvements, which may be ex-
plained by the different dataset settings and the lack
of a unified dialog act taxonomy.
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6 Human Evaluation

We further evaluate previously assessed models
with human judgments firstly by obtaining quality
estimates according to different criteria and sec-
ondly by conducting a simulation study, where ex-
pert annotators are asked to provide novel rewrit-
ings of existing conversations and to categorize
errors made by the model.

6.1 Quality of the generated responses
We perform a human quality evaluation of the gen-
erated response for four models - retrieval (Bi-
Encoder), BART-base, BART-baseCTRL and the
joint model (BART-base). A randomly chosen sub-
set of the CIMA test set conversations were anno-
tated by 4 annotators (with one annotator speaking
C1 level Italian). All annotators labeled 60 exam-
ples in total, of which 20 overlapped. To further
distinguish the quality of training data for the mod-
els, we annotated ground-truth responses on a small
sample of 20 examples. We evaluate the follow-
ing criteria on a 3-point Likert scale (disagree to
completely agree) and outline our findings in the
following, as shown in Figure 4.

Fluency "The response is grammatically correct
and fluent." We find that all models have very high
fluency scores.

Coherence "The response naturally follows up
on previous utterance and context and has no log-
ical conflicts with the context or DA label." We
find that all generative models are able to produce
coherent responses but not the retrieval model.

Correctness "The response is factually correct
and respects learning concepts being taught." All
models score comparable to ground-truth responses
on the constrained CIMA dataset. It is noteworthy,
however, that a response may be correct in itself
but not coherent with the context or the grounding
(often the case in the retrieval model), and this
could explain the discrepancy between correctness
and our automatic Q2 scores.

Equitable tutoring "The response gives a learn-
ing opportunity for the student by providing space
for reflection, explanation, pointing to follow-up
challenge, or engaging student in other ways."
Here we find significant deficiencies not only for
our evaluated models but notably also for the an-
notated ground-truth responses (gt). This might
explain the insufficiencies in the responses as they

Quality Attribute sBLEU BERTScore
Fluency 0.14 0.12
Coherence 0.17 0.26
Correctness 0.06 0.15
Equitable Tutoring 0.08 0.16

Table 7: Pearson correlation coefficients between the human
judgements on our quality criteria and automatic metrics.

reflect this distributional behavior of the training
data. We think that future dataset collections should
take better care of this property and resort to more
expert annotators as opposed to crowdsourcing.

Figure 4: Comparison of models on four criteria (reporting
M ) in the human quality evaluation. We observed high SD
for coherence and equitable metrics.

Furthermore, Table 7 shows that our automatic
metrics correlate poorly with human judgements.

6.2 User study with a learning interface

Lastly, we seek to study how well dialog tutor-
ing models can perform in a realistic setting with
questions obtained from real users (containing out-
of-distribution samples) and not the fixed dataset.
Therefore, we randomly sampled conversations
from the CIMA test set. We asked two C1-level
expert Italian speakers to 1) rephrase these conver-
sations using a conversational dialogue interface
and 2) assign erroneous model responses to pre-
defined error categories. The interface used in the
qualitative evaluation is shown in Figure 6. We
obtain all model responses from the BART-base
model that first predicts the dialog act and then
the response. Error categories adopted from pre-
vious work (Bommasani et al., 2021) describe the
ideal behavior of tutoring models as simulating
the behavior of good human teachers along two
dimensions:

Understanding "Being able to understand and
reason about student solutions, misconceptions,
and learning concepts." We find that of the 20

2364



modified conversations, 45% exhibit Understand-
ing errors, such as an incorrect solution assessment
or incorrect translations.

Pedagogy "Being able to use effective pedagogy
to instruct students." We find that 10% of the re-
sponses exhibit Pedagogical errors, for example
telling the correct solution directly without offering
any engagement point to the student.

50% of the conversations were labeled good by
the annotators. Examples of the conversations are
available in Table 8.

7 Discussion: Towards More Equitable
and Faithful Tutoring Systems

In this section, we outline directions of research
that we think can be important steps towards more
equitable and faithful tutoring models. Namely,
we first address the small scale and quality of cur-
rent tutoring datasets and cast doubt on the crowd-
sourcing data quality checks. Then, we suggest
ways of improving the underperformance of both
equitable tutoring and teaching strategy prediction
identified in current generative models under these
constraints by drawing from learning sciences lit-
erature. Finally, we outline desiderata for more
reliable dialog evaluation of neural tutoring mod-
els.

Datasets Based on the analysis in §2.1 and Table
1, we think that the community will benefit from
a dataset that lies between CIMA and TSCC in
terms of its difficulty. Moreover, the low equitable
tutoring scores of CIMA’s ground-truth responses
indicate that crowdsourcing with untrained annota-
tors can lead to low pedagogical quality. A similar
observation has been found by human evaluation
for the TSCC dataset (Tack and Piech, 2022). Fi-
nally, we encourage the establishment of better
dialog act taxonomies that are backed by learning
sciences research. As outlined in §5.6 and in He
et al. (2022), a unified taxonomy may also strongly
aid in transfer learning.

Models So far, dialog tutoring models have only
covered limited domain-specific settings linked to
a particular activity, such as learning Italian prepo-
sitions or solving math word problems. We argue
that the community could benefit from working on
problems common to learning in general, for exam-
ple tracking problem-solving states and modeling
pedagogies used by teachers. Here, knowledge
tracing (Corbett and Anderson, 1994) (the problem

of estimating students’ skill mastery level) could
be used for tracking problem-solving states and
increasing the coherence of dialog tutoring conver-
sations and dialog act selection performance which
would contribute to better modeling of global teach-
ing strategies. Furthermore, validated instruction
quality coding schemes (Michaels et al., 2010; Hen-
nessy et al., 2016) used by classroom teachers can
be computationally modeled (Demszky et al., 2021;
Ganesh et al., 2021) and incorporated into models.

We also think that recently proposed constrained
decoding approaches that can balance between mul-
tiple criteria (Qin et al., 2022) hold great promise in
improving faithfulness in complex tutoring dialogs.
Finally, as data collection is labor-intensive in ex-
pert domains, we see great potential in few-shot
learning methods, such as prompt-based methods
(Schick and Schütze, 2022).

Evaluation Our experiments highlight the insuf-
ficiencies of current automatic dialog evaluation
metrics, as both BLEU and BertScore show com-
paratively low correlation with our collected human
judgements from §6.1. This is in line with previous
research (Mehri and Eskenazi, 2020; Mehri et al.,
2022) and shows the necessity not only for better
automatic evaluation metrics but also for verifica-
tion based on human judgements or user studies
that should incorporate criteria relevant to tutoring
(e.g., equitable tutoring outcomes). Metrics that
incorporate task success, which have been used in
task-oriented dialog systems (Budzianowski et al.,
2018), are a promising direction of future research
for automatic evaluation.

8 Conclusion

In this work, we reflected on the state of research
in dialog tutoring and explored the potential of neu-
ral generative models in this domain. We found
some promising initial results with these models
in comparison to rule- or retrieval-based methods.
However, we also established limitations of cur-
rently available benchmarks and evaluation criteria.
Furthermore, we showed that there are a number
of challenges that need to be addressed before neu-
ral generative models of text can be deployed as
intelligent tutoring systems on a larger scale, such
as controllability and being able to model a sound
pedagogical strategy. Based on these findings, we
outline potential avenues for future research.
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Limitations

A key limitation of our work is the use of only
two available tutoring datasets. Despite a limited
number of datasets available in this domain, using
the TalkMoves dataset (Suresh et al., 2022a) could
help further generalize our findings. This remains
an avenue for future work.

Based on the prior work, we focused on the spe-
cific conversational goal of dialog tutors which is
providing learning aid for students’ skill develop-
ment and more opportunities to learn. While this is
the most widespread type (Wollny et al., 2021), it is
not covering all the goals of human tutors, and other
aspects could be important, for example, rapport-
building or mentoring on the meta-cognitive level.
We acknowledge this both as a prerequisite for our
work and at the same time as a limitation. For fur-
ther discussion we refer the reader to Appendix B
and C.

Finally, our user study could be further extended
with more participants. In the future, we plan
a more comprehensive study with real language
learners using an end-to-end dialog tutoring sys-
tem.

Ethics Statement

We do not foresee any significant harm directly as a
result of our work. Having said that, we must under-
stand that automatic tutoring is a high-stake setting
that can pose significant harm if appropriate care is
not taken before the deployment of these systems.
Issues of biases and lack of trust, and other ethical
issues such as privacy concerns must be considered.
Considering learners only as data points within a
neural dialog tutoring context may prevent us from
seeing the societal and socioeconomic barriers that
they may be up against, thereby running the risk of
not only failing to help relevant learner subgroups
but also sometimes giving additional privileges to
those who use these systems.
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A Pedagogical strategy and dialog acts in
dialog tutoring

Figure 5: Example dialogue between a tutor and a student
solving an algebra story problem. Key questions are: What
teacher pedagogical strategies are the best in terms of learning
gains of students? How to adapt language models to generate
pedagogically valid responses?

In the context of this paper, we assume that the
pedagogical strategy is represented using dialog act
annotations. An example of the teacher strategy is
providing hints (cf. example in Figure 5), where a
teacher provides helpful support or clarifies goals
to the student. Another example is Probing (cf.
example in Figure 5), which prompts students to
explain better or reflect on the current solution.
CIMA contains five teacher dialog acts - hint, open-
ended question, correction, confirmation, other.
TSCC contains more fine-grained dialog acts such
as eliciting, scaffolding, enquiry, or recap.

From a learning science standpoint, pedagogi-
cal strategy could be viewed as a global strategy
(knowing how to effectively guide students e.g. us-
ing questioning or providing contrasting cases) and
dialog acts as a specific decision on how this strat-
egy is implemented on the local turn-based level.

B Equitable tutoring

Although tutoring is typically conceived as a sce-
nario where a subject matter expert works syn-
chronously with one or multiple students and takes
interpretive authority, there is increasing empiri-
cal evidence supporting the case for incorporating
active learning approaches in the classroom (Free-
man et al., 2014; Sinha and Kapur, 2021). With
collaborative creation of knowledge where teach-
ers position themselves as co-learners and students
also take interpretive authority, such approaches
are better poised to build classroom equity than
monologic educational practices where only one
voice (primarily the teacher’s) tends to be heard,

legitimized and sometimes imposed. Therefore, if
we rethink of the goals of education as providing
opportunities for students to enter into the work-
force with a positive identity about themselves and
the subject matter, equitable tutoring via increased
student chances to pose ideas, construct knowledge
and as a result feel welcomed into the intellectual
discussion, holds tremendous promise.

C Conversational Goals

In this work, we studied only 1:1 dialog tutor-
ing settings with a specific focus on the role of
a teacher/tutor. We focused on the most commonly
used goal of dialog tutoring which is a learning aid
to support students’ skill development and provide
opportunities to learn (Wollny et al., 2021).

However, teacher-student interactions may en-
tail multiple conversational goals that can serve
interactional functions (e.g., turn-taking) and in-
terpersonal functions (e.g., rapport-building moves
such as self-disclosure, praise, social norm viola-
tion). Research in human tutoring and collabora-
tive learning, more generally, has shown that how
students manage the task space (consisting of the
problem to be solved, e.g., do I agree with the in-
terlocutor’s reasoning?) and the relational space
(consisting of the interactional challenges and op-
portunities, e.g., can I disagree without threatening
the interlocutor’s face?) is critical to learning out-
comes (Roschelle and Teasley, 1995; Zhao et al.,
2016). Neural dialog tutoring, which can account
for this crucial, but fundamental distinction among
conversational goals is challenging.

D Qualitative user evaluation

The interface used in the qualitative evaluation is
shown in Figure 6.

Figure 6: User interface used for the qualitative evaluation.
The interface is based on ParlAI (Miller et al., 2017) library.
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Context Generated teacher response
T: Please try to fill in the blank in Italian.
S: how do you say next?
T: Remember that "is next to the" is "e vicino"
S: I don’t know how to say purple. Is it viola?

Viola is the word for purple.

T: Please try to fill in the blank in Italian.
S: how do you say next?
T: Remember that "is next to the" is "e vicino"
S: Purple is viola, right?

That is correct.

T: Please try to fill in the blank in Italian.
S: how do you say next?
T: Remember that "is next to the" is "e vicino"
S: I think purple could be violett.

Viola is the word for purple.

T: Please try to fill in the blank in Italian.
S: how do you say next?
T: Remember that "is next to the" is "e vicino"
S: I can’t remember the color. Can you give me a
hint?

Purple is viola.

T: Please try to fill in the blank in Italian.
S: how do you say next?
T: Remember that "is next to the" is "e vicino"
S: I guess it is e vicino all’albero. Is it correct to
start the sentence with the preposition?

The preposition for "purple" is "viola"
Understanding - Meaning mismatch

T: "Blue" is "blu". Please try to fill in the blank in
Italian.
S: But what are the other words?
T: Can you give me your best guess?
S: e di fronte all’albero blu (correct)

Almost, tree is all’albero’. Please try again.
Understanding - Incorrect solution assessment

T: "Blue" is "blu". Please try to fill in the blank in
Italian.
S: But what are the other words?
T: Can you give me your best guess?
S: e di fronte blu all’albero (adjective position
swap)

Almost, you need to add blu after "all’albero" to
make the word "tree".
Understanding - Incorrect translation

T: "Blue" is "blu". Please try to fill in the blank in
Italian.
S: But what are the other words?
T: Can you give me your best guess?
S: e di fronte al albero blu (wrong definite article)

Almost, tree is all’albero not albero.

T: "Blue" is "blu". Please try to fill in the blank in
Italian.
S: But what are the other words?
T: Can you give me your best guess?
S: e di fronte al cane blu (noun swap)

Almost. Al cane is not the correct word for tree.

T: "Blue" is "blu". Please try to fill in the blank in
Italian.
S: But what are the other words?
T: Can you give me your best guess?
S: e dietro all’albero blu" (wrong preposition)

The correct answer is e di fronte all’albero blu.
Pedagogy - Information reveal

Table 8: Examples of rephrased conversations from the qualitative study. T refers to a teacher utterance, S refers to a student
utterance. Bold text is information for the reader indicating error categories.
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Abstract

Discrete prompts have been used for fine-
tuning Pre-trained Language Models for di-
verse NLP tasks. In particular, automatic meth-
ods that generate discrete prompts from a small
set of training instances have reported supe-
rior performance. However, a closer look at
the learnt prompts reveals that they contain
noisy and counter-intuitive lexical constructs
that would not be encountered in manually-
written prompts. This raises an important yet
understudied question regarding the robustness
of automatically learnt discrete prompts when
used in downstream tasks. To address this ques-
tion, we conduct a systematic study of the ro-
bustness of discrete prompts by applying care-
fully designed perturbations into an application
using AutoPrompt and then measure their per-
formance in two Natural Language Inference
(NLI) datasets. Our experimental results show
that although the discrete prompt-based method
remains relatively robust against perturbations
to NLI inputs, they are highly sensitive to other
types of perturbations such as shuffling and
deletion of prompt tokens. Moreover, they gen-
eralize poorly across different NLI datasets. We
hope our findings will inspire future work on
robust discrete prompt learning.1

1 Introduction

Pre-trained Language Models (PLMs) have been
successfully adapted to a wide range of Natural
Language Processing (NLP) tasks using prompt-
based learning (Radford et al., 2018, 2019; Brown
et al., 2020; Petroni et al., 2019) such as sentiment
classification (Gao et al., 2021), natural language
inference (NLI) (Schick and Schütze, 2021, 2022),
relation extraction (Shin et al., 2020), cross-lingual
inference (Qi et al., 2022). However, manually
writing prompts that generalize well is very chal-
lenging for several reasons such as (a) it might not

1Our codes and the adversarial NLI dataset are available
at https://github.com/LivNLP/prompt-robustness

always be possible to recruit domain-expert human
annotators, (b) human annotators might not be able
to cover all corner cases by writing prompts, and (c)
there can be disagreements between human annota-
tors regarding the coverage of a particular prompt.
To address these challenges, automatic learning of
discrete prompts has been proposed such as Ad-
vTrigger (Wallace et al., 2019), AutoPrompt (AP;
Shin et al., 2020), WARP (Hambardzumyan et al.,
2021), and RLPrompt (Deng et al., 2022).

Although discrete prompt learning methods have
achieved good performance in numerous down-
stream tasks by automatically learnt prompts, such
automatic prompts seem to be significantly differ-
ent from the manually-written ones. For exam-
ple, Table 1 shows manually-written and AP-learnt
prompts for fact retrieval (Petroni et al., 2019). We
see that the AP-learnt prompts for BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) out-
perform the manual prompts in precision1 (P@1)
scores. However, the AP-learnt prompts contain
various counter-intuitive language constructs such
as punctuation (e.g. ‘(’, ‘?’, ‘!’, ‘)’), spelling errors
(e.g. commuenrug) etc., which seem unrelated to
the target relation. Similar cases can be observed
for AP-learnt prompts for other tasks as well (see
Appendix in Shin et al. (2020)). It is unrealistic
that a human annotator would be able to write such
prompts even if they were able to see the same
training instances as used by automatic methods.

Considering the fact that discrete prompt learn-
ing methods are trained in a few-shot setting where
they use only a small number of training instances,
the seemingly counter-intuitive nature of the dis-
crete prompts learnt by automatic methods raises
concerns about their robustness. For example, How
will the performance of a target task change if we
add small random perturbations to the prompts
learnt by AP? and Whether the prompts learnt by
AP generalize to out-of-domain data?. To study
these issues, in this paper we evaluate the robust-
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Relation Method Prompt P@1

native-language-of (P103) Manual The native language of [X] is [Y] 74.54
AP BERT [X]PA communerug speaks proper [Y] 84.87
AP RoBERTa [X]neau optionally fluent!?ẗraditional [Y] 81.61

profession-of (P106) Manual [X] is a [Y] by profession 0.73
AP BERT [X] supporters studied politicians musician turned [Y] 15.83
AP RoBERTa [X] (), astronomers businessman·former [Y] 19.24

music-played-by (P136) Manual [X] plays [Y] music 0.7
AP BERT [X] freaking genre orchestra fiction acid [Y] 59.95
AP RoBERTa [X] blends postwar hostage drama sax [Y] 52.97

Table 1: Examples of prompts learnt by AP for the fact retrieval task for BERT and RoBERTa PLMs and the
human-written manual prompts. T-REx relation ids are shown with brackets for each relation type. Precision@1
(P@1) scores are shown when each prompt is used in fact retrieval.

ness of discrete prompts learnt by automatic prompt
learning methods and compare that with manually-
written prompts and direct fine-tuning of PLMs.

An evaluation of the robustness of discrete
prompts is important for two main reasons. First,
given that discrete prompt learning methods are
learning those prompts from a small set of training
instances, it is important that they cover the core
patterns that generalize to the target task and not
simply capture some random artefacts in the train-
ing samples. Second, unlike embedding-based con-
tinuous prompts (Li and Liang, 2021; Lester et al.,
2021), discrete prompts (Wallace et al., 2019; Shin
et al., 2020; Deng et al., 2022) are represented in
natural language and supposed to be interpretable.
However, if a discrete prompt learning method is
less robust, a seemingly harmless perturbation such
as removing a punctuation character can signifi-
cantly alter the performance of a downstream task.

In contrast to the numerous work that has used
prompts for fine-tuning PLMs, to the best of our
knowledge, the robustness of discrete prompts to
random or adversarial perturbations has not been
systematically studied. To address this gap, we
use AP as a concrete example of a widely-used
method and evaluate its robustness under different
types of carefully designed perturbations. How-
ever, we note that our perturbation techniques are
not limited to AP and can be used for any discrete
prompt learning method. We compare the perfor-
mance of AP-learnt prompts against fine-tuning
using Manually-written Prompts (MP), and Head-
based Fine-Tuning (HFT), where we fine-tune both
the classifier head and the PLM parameters.

From our evaluation, we find several interesting
facts about the robustness of discrete prompts as
summarized below.

• Overall, when the number of training in-
stances is increased, MP outperforms both
AP and HFT on CB (De Marneffe et al., 2019)
and MNLI (Williams et al., 2018), two inde-
pendent benchmark datasets for NLI (§3.1).
In particular, the performance of AP on MNLI
is much worse than that on CB. This is in con-
trast to the superior performance of AP on
SICK-E (Marelli et al., 2014), another NLI
dataset, as reported by Shin et al. (2020).

• Moreover, we see a performance drop when
we use discrete prompts learnt from CB for
MNLI and vice-versa (§ 3.4). These re-
sults indicate that the performance of dis-
crete prompts learnt by AP is highly dataset-
dependent and such discrete prompts do not
generalize well across datasets.

• Compared to MP, AP-learnt discrete prompts
turn out to be highly sensitive to the ordering
of prompt tokens (§3.2).

• Random deletion of prompt tokens decreases
performance in both AP and MP (§3.3).

• We create an adversarial NLI dataset from
randomly-sampled test instances from MNLI
and CB, and manually modify the hypothe-
sis sentences with keeping the corresponding
premise sentences unchanged, such that (a)
the target label would not change, and (b)
would reverse an entailment label to a con-
tradiction (or vice-versa). Both AP and MP
remain relatively robust against the perturba-
tions that do not change the target label, but
the performance of MP drops significantly in
the label-changing setting (§3.5). This shows
that AP is relatively more robust against adver-
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sarial perturbations than MP, which explains
AP’s superior performance in various tasks.

2 Related Work

Prompting Methods: Prompting or in-context-
learning has received wide attention as an efficient
method to extract knowledge from PLMs (Brown
et al., 2020; Petroni et al., 2019; Cui et al., 2021).
However, to manually write prompts one must
possess task-specific domain knowledge. As an
alternative, methods that can automatically learn
prompts from training data have been proposed.
Two distinct types of prompts have been learnt
in prior work: discrete prompts (learns lexical
sequences), and continuous prompts (learns em-
beddings). Continuous prompts (Li and Liang,
2021; Lester et al., 2021) are parameter efficient
because they learn generalizable task-specific em-
beddings, with performance comparable to PLM
fine-tuning. However, continuous prompts cannot
be learnt when a PLM is publicly unavailable and
the only access to it is via an API (Brown et al.,
2020). Moreover, compared to discrete prompts,
continuous prompts are difficult to interpret. Learn-
ing discrete prompts (Wallace et al., 2019; Shin
et al., 2020; Deng et al., 2022) does not suffer from
these limitations of continuous prompts and can
be used with diverse NLP tasks. Especially, fine-
tuning massive PLMs has become computationally
costly, which has made discrete prompt learning an
attractive alternative.

Analysis of Prompting Methods: Prior work
has analyzed prompts from various viewpoints.
Scao and Rush (2021) studied the effect of train-
ing dataset size on fixed-prompt PLM fine-tuning
and head-based fine-tuning and found that prompt-
ing is often worth 100s of instances on average
across classification tasks. Kavumba et al. (2022)
showed that the performance of prompt-based mod-
els varies significantly depending on the surface
cues in the sentence. Lu et al. (2022) found that or-
dering of task input significantly affects the perfor-
mance. Utama et al. (2021) focused on the reliance
on lexical overlap in sentence pair classification
and showed that prompt-based models fail to make
predictions dependent on the lexical overlap. To
the best of our knowledge, the robustness of dis-
crete prompts under different types of perturbations
has not been studied in prior work, which is the
main focus of this paper.

3 Experiments

Let us first describe experimental settings common
to all experiments.

Prompting and Fine-Tuning Methods: We
compared the following methods.

• AutoPrompt (AP; Shin et al., 2020) is a rep-
resentative method of discrete prompt learn-
ing. The learning strategy is based on fill-in-
the-blank task (Devlin et al., 2019). First, a
manually created prompt template (e.g., [X]
<MASK> <T> ... <T> [Y]) is given, and a
prompt token (called a trigger token) is learnt
by replacing <T>, which is a special token rep-
resenting a trigger token. In the search for
trigger tokens, the probability of <MASK> is
converted into class probability by using label
tokens (e.g., {‘nobody’, ‘nor’} for contradic-
tion (Shin et al., 2020)), and trigger tokens are
searched by gradient-guided search (Wallace
et al., 2019) to find a candidate set consist-
ing of trigger tokens from a vocabulary of the
language model. As a template for NLI, we
used the one given by Shin et al. (2020), and
the prompt tokens were learnt from the train-
ing dataset. In our experiments, we used the
official implementation.2

• Manually-written Prompts (MP; Schick and
Schütze, 2021) is a method for fine-tuning the
entire masked language model with training
data using manually-written prompts as the in-
put and predicting the <MASK> tokens for the
labels (e.g., ‘yes’ for entailment). We used
the template {hypothesis}? | <MASK>,
{premise} and verbalizer (‘yes’ for entail-
ment, ‘no’ for contradiction, ‘maybe’ for
neutral) following prior work (Schick and
Schütze, 2021; Scao and Rush, 2021). Schick
and Schütze (2021) proposed an ensemble-
based method with multiple rounds of fine-
tuning using different templates. However,
because a single template is used in AP, for a
fair comparison in our experiments, we fine-
tuned a PLM using one MP template.

• Head-based Fine-Tuning (HFT; Devlin
et al., 2019) fine-tunes the PLM with a clas-
sifier head. We report the head-based re-
sults trained by Scao and Rush (2021). They

2https://github.com/ucinlp/autoprompt
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trained HFT with a low learning rate (10−5)
and always with a large number of steps (at
least 250), following the recommendations in
prior work (Mosbach et al., 2021; Zhang et al.,
2021). Note that HFT is not a prompt-based
method, so it was excluded from some experi-
ments on the robustness of discrete prompts.

Datasets: We used NLI as an evaluation task to
compare the robustness of discrete prompting meth-
ods. The NLI task has been used in multiple previ-
ous studies to evaluate and/or propose novel prompt
learning methods because it is a fundamental task
related to many NLP applications (Shin et al., 2020;
Scao and Rush, 2021; Webson and Pavlick, 2022).
It is important to use the same NLI task and datasets
in our experiments to facilitate fair comparisons
and reach reproducible conclusions. We used the
two datasets: CommitmentBank (CB; De Marneffe
et al., 2019)3 (a corpus of short texts), and Multi-
Genre Natural Language Inference Corpus (MNLI;
Williams et al., 2018)4 (a crowdsourced collection
of sentence pairs for NLI). Each sentence pair is
labelled with entailment, neutral, or contradiction.

PLM: In our experiments, we used the same pre-
trained language model to evaluate AP, MP, and
HFT equally. Specifically, we used RoBERTa-large
(355M parameters) 5 (Liu et al., 2019), which has
been used in much prior work in prompt learn-
ing (Shin et al., 2020; Scao and Rush, 2021). The
PLM was trained on five datasets, including Book-
Corpus6, English Wikipedia7, CC-News8, Open-
WebText9, and Stories10. The texts were tokenised
using a byte-level Byte-Pair Encoding (BPE; Sen-
nrich et al., 2016) vocabulary of size 50,000.

Evaluating the Robustness of Prompts: We
used rate of degradation (RoD) (Meyers et al.,
2020) to evaluate robustness, which is defined as
the decrease in accuracy of the target task due
to the perturbations added to the prompt. If the
RoD of a model is small after the inclusion of
a perturbation, the model is considered to be ro-
bust against that perturbation. Specifically, we first

3https://super.gluebenchmark.com/tasks
4https://cims.nyu.edu/~sbowman/multinli/
5https://huggingface.co/roberta-large
6https://yknzhu.wixsite.com/mbweb
7https://en.wikipedia.org/wiki/English_

Wikipedia
8https://commoncrawl.org/2016/10/

news-dataset-available/
9https://github.com/jcpeterson/openwebtext

10https://arxiv.org/abs/1806.02847

calculate the respective accuracies accx and accx∗
on the same evaluation set for both prompt x and
its perturbated version x∗. Using the average ac-
curacies avg-accx and avg-accx∗ over M prompts
x1, ..., xM , we calculate the RoD as (avg-accx −
avg-accx∗)/avg-accx = 1− avg-accx∗/avg-accx.

3.1 Effect of the Training Dataset Size
Before moving on to robustness experiments, we
first investigate the number of training instances on
which AP and MP perform best, and used the best-
performing AP and MP to evaluate their robustness
in the subsequent experiments.

Experimental Settings: We gradually increased
the size of the training dataset following the experi-
mental setup of Scao and Rush (2021). Specifically,
we experimented with randomly sampled subsets
of the training dataset having varying numbers of
instances in {10, 15, 20, 30, 50, 70, 100, 150, 200}.
Because the performance of few-shot learning
methods often varies due to the high feature vari-
ance in the training data, we randomly sampled
four subsets per each dataset size and used them
independently for training the models11 (i.e. trigger
tokens and label tokens for AP, or fine-tuned lan-
guage model for MP and HFT) for each subset and
report the average accuracy on the validation data
for the four models (M = 4). We used the matched
(example from the same source as the training set)
validation set for MNLI. For CB, we held out 50
training instances for development as in Scao and
Rush (2021) and evaluated the original validation
set as test data.

We searched for the optimal values for the fol-
lowing hyperparameters: the number of trigger
tokens in {3, 5, 10}, the number of label tokens
in {3, 5, 10}, and the number of tokens in a can-
didate set in {10, 50}. We evaluated the test accu-
racy using the hyperparameters that had the highest
accuracy on the validation data for each dataset
size. In the training of MP, we used AdamW opti-
mizer (Loshchilov and Hutter, 2019) with an initial
learning rate of 10−5 and a learning step of 1,000
following Mosbach et al. (2021).

Main Results: Figure 1 shows the performance12

against the training dataset size. We see that in both
CB and MNLI MP is always superior to AP. For
example, with a dataset of size 200, AP and MP

11NVIDIA RTX A5000 was mainly used.
12HFT results were obtained from Scao and Rush (2021),

F1-macro for CB and accuracy for MNLI.
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Method #Train Template #Prompt tokens #Label tokens per class Avg. accuracy
CB MNLI

AP 200 p <MASK> <T> ... <T> h 10 3 68.3 37.7
MP 200 h ? | <MASK> , p 3 1 95.1 65.5
HFT - <CLS> p <SEP> h 0 - - -

Table 2: The average accuracy of the experiment with four training subsets of 200 instances. Red represents the
task inputs, h represents the hypothesis, p represents the premise, blue represents the prompt tokens, and <T>
represents a trigger token. Unreported values were marked with ‘-’.

Figure 1: Performance of AutoPrompt (AP), Manually-
written Prompt (MP), and Head-based Fine-Tuning
(HFT) on the scale of dataset size for CB and MNLI.
Means and their 95% confidence intervals are plotted.
The accuracy of HFT for dataset size for CB was not
plotted because the accuracy was not reported.

achieved the best accuracy in CB, MP’s accuracy
was 92.7%, while that of AP was lower at 54.2%.

Our results also suggest that the performance of
discrete prompts learnt by AP is highly dataset
dependent. Shin et al. (2020) reported results for
AP and HFT on SICK-E (Marelli et al., 2014),
which is another NLI dataset. They concluded
that AP was always superior to HFT up to training
dataset sizes of 1,000 for the same RoBERTa-large
PLM that we use. However, our experiments show
the opposite trend (i.e. HFT is superior to AP).
This suggests that even if AP is superior to HFT on
a given dataset, it is not guaranteed to be superior
in a different dataset for the same task. This may
be due to the differences in the domain and annota-
tion guidelines for each dataset. For example, the
accuracy of MNLI was quite low on AP, which con-

trasts with that of CB. This result suggests that the
discrepancies in domains and annotation guidelines
make it difficult for AP to perform consistently.

Best Prompts: Table 2 shows the average accu-
racy of models trained on 200 instances that per-
formed well in both CB and MNLI. Note that there
are four training subsets for each dataset size, re-
sulting in corresponding four trained AP prompts
and four PLMs fine-tuned by MP. 13 In the robust-
ness evaluations in § 3.2 through § 3.5, we used
these learnt APs and MPs. In this paper, (a) trig-
ger tokens learnt by AP, and (b) manually-written
prompts excluding the task inputs and mask tokens
are collectively referred to as the prompt tokens.

3.2 Token Reordering

As seen from Table 1, compared to MPs where
the ordering of tokens in a prompt is manually
determined, discrete prompts learnt by AP appear
to have no obvious ordering among their tokens.
To empirically investigate the importance of the
token order in a discrete prompt, we conduct an
experiment where we randomly shuffle the prompt
tokens and measure the effect on the downstream
task performance.

Experimental Procedure: Given a discrete
prompt, we first randomly reordered its prompt
tokens (e.g. shaded in blue in Table 2). Next,
we used the reordered prompt with the PLM to
make entailment predictions for the test instances
in the CB and MNLI datasets. Finally, the entail-
ment prediction accuracy (Acc) obtained with the
reordered prompts was computed. We repeated this
evaluation 10 times for each prompt and report the
averaged values and the corresponding RoD values.

Main Results: From Table 3 we see that the ac-
curacy drops for both AP and MP when the prompt

13We show the four best prompts learnt by AP in Ap-
pendix A.
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Method Metrics CB MNLI

AP Acc 54.2 34.3
RoD 0.21 0.10

MP Acc 92.7 59.3
RoD 0.03 0.09

Table 3: Performance of reordered prompts. Acc de-
notes accuracy; RoD denotes the RoD from before the
reordering (Table 2). The largest drops in accuracy are
bolded and the smallest drops are underlined for each
method and dataset. AP relies more strongly on word
order than MP.

tokens are randomly reordered. In particular, the
accuracy of AP drops significantly compared to
that of MP. For example, the accuracy of AP on CB
drops by ca. 14% due to token reordering, while
that for MP drops only by ca. 2%. Intuitively, one
would expect that changing the order of prompt
tokens in MP would result in a significant drop
in accuracy because the meaning of the prompts
would change. However, we see that this is not the
case. This result shows that the discrete prompts
learnt by AP strongly rely on the token order.

Additional Analysis: To further analyze the re-
lationship between the level of perturbation intro-
duced by reordering prompt tokens in AP and its
effect on the performance, we computed the token-
level edit distance (Levenshtein distance; Leven-
shtein et al., 1966) between each prompt and its
token-shuffled version as shown in Figure 2. For
all four AP prompts, we see that the accuracy drops
when the perturbation noise (i.e. measured by edit
distance) increases. This reconfirms the lack of
robustness in discrete prompts learnt by AP to the
random shuffling of prompt tokens.

3.3 Token Deletion

As seen from Table 1, the discrete prompts learnt
by AP perform better than MP. However, it is of-
ten difficult to determine the importance of prompt
tokens to the target task due to their lack of inter-
pretability (e.g. prompt token ‘neau’ in Table 1).
To understand the significance of individual prompt
tokens to the overall discrete prompt, we conducted
an experiment where we systematically deleted one
or more prompt tokens at various positions from
a given discrete prompt and measure the drop (if
any) in the performance of the NLI task.

Experimental Procedure: We evaluated two set-
tings of prompt deletion: single and multiple token

Figure 2: Edit distance and accuracy of the reordered
trigger tokens. We evaluated them on the validation data
of CB. The prompts numbered 0 through 3 each repre-
sent the four prompts learnt by AP (shown in Table 9).
Note that a point with an edit distance of zero indicates
accuracy with the original trigger token.

deletion. In the single token deletion setting, we
deleted one token at different positions in a given
prompt. For AP, we repeated this with each of the
four discrete prompts (shown in Table 2) and re-
port the average accuracy. In the multiple token
deletion setting, we delete n ∈ {1, 3, 5, 7} prompt
tokens following three strategies: Random-deletion
deletes n prompt tokens randomly, Front-deletion
deletes n consecutive prompt tokens from the be-
ginning of the prompt, and Back-deletion deletes
n tokens counted backwards from the end of the
prompt. In random-deletion, we ran 100 trials and
report the average accuracy. As in the previous ex-
periments, we used four prompts for AP and report
the averaged results.

Results: From Table 4 we see that the accuracy
of both AP and MP drops even when a single
token is deleted at specific positions. However,
the observed trends differ in CB and MNLI. For
example, AP resulted in higher RoD values in CB
compared to MNLI. This shows that the robustness
of AP under single token deletion heavily depends
on the dataset. Table 5 shows the results for the
multiple token deletion setting. We see that the per-
formance of both AP and MP degrades when
more tokens are deleted. Interestingly, the accu-
racy drop in CB is very small for MP even when all
prompt tokens are deleted (i.e., only the task inputs
and <MASK> were used as the input). This suggests
that the performance on CB is less reliant on the
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Task Method Metrics Position of the deleted prompt token Orig.1 2 3 4 5 6 7 8 9 10

CB
AP Acc 62.1 61.6 63.4 59.4 65.6 65.6 62.1 63.8 62.1 62.9 68.3

RoD 0.09 0.10 0.07 0.13 0.04 0.04 0.09 0.07 0.09 0.08 -

MP Acc 93.8 93.3 96.0 - - - - - - - 95.1
RoD 0.01 0.02 -0.01 - - - - - - - -

MNLI
AP Acc 37.9 37.8 36.6 37.5 37.5 37.2 37.5 37.4 37.5 37.1 37.7

RoD -0.01 0.00 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.02 -

MP Acc 64.5 65.4 55.4 - - - - - - - 65.5
RoD 0.02 0.00 0.15 - - - - - - - -

Table 4: Average accuracy was obtained after deleting a single token at different positions of a given prompt. The
largest drops in accuracy over the deletion positions are bolded and the smallest drops are underlined for each
method and dataset. Column ‘Orig.’ shows the performance of the original prompt.

prompt tokens in MP.

3.4 Cross-Dataset Evaluation

Given that discrete prompt learning methods such
as AP learn prompts from a small set of training
instances, it is important that the learnt prompts
encode generalizable task-specific features and
not random artefacts in the training sample used.
To study the transferability of the learnt discrete
prompts from one dataset to another, we conduct a
cross-dataset evaluation as described next.

Experimental Procedure: We used one NLI
dataset (e.g. CB) to learn the prompts and then
use them to make entailment predictions in another
NLI dataset (e.g. MNLI). We then measured the
drop in accuracy using RoD for this cross-dataset
transferability task with respect to the accuracy of
test data from the same dataset.

Results: As seen from Table 6, AP-based
prompts do not generalize well across datasets.
For both AP and MP, RoD is larger in the transfer
from CB to MNLI than in the opposite direction.
This implies that MNLI is a better dataset for fine-
tuning a PLM for NLI using discrete prompts.

3.5 Adversarial Perturbations

Introducing carefully designed adversarial pertur-
bations to the test instances such as modifications
to sentences that might or might not alter the orig-
inal target labels have been used as a technique
for probing the robustness of models (Goodfellow
et al., 2015). Previous studies (Samanta and Mehta,
2017; Jin et al., 2020) have shown that pre-trained
models can be easily fooled to make incorrect pre-
dictions with seemingly innocuous perturbations
to the test instances. Therefore, we evaluate dis-

Strategy Method Metrics #Deleted Tokens Orig.1 3 5 7

CB

Random
AP Acc 56.7 56.0 55.4 54.8 68.3

RoD 0.17 0.18 0.19 0.20 -

MP Acc 93.3 94.6 - - 95.1
RoD 0.02 0.01 - - -

Front
AP Acc 62.1 49.1 57.6 57.6 68.3

RoD 0.09 0.28 0.16 0.16 -

MP Acc 93.8 94.6 - - 95.1
RoD 0.01 0.01 - - -

Back
AP Acc 62.9 57.6 55.8 51.3 68.3

RoD 0.08 0.16 0.18 0.25 -

MP Acc 96.0 94.6 - - 95.1
RoD -0.01 0.01 - - -

MNLI

Random
AP Acc 35.8 35.8 36.0 36.2 37.7

RoD 0.05 0.05 0.05 0.04 -

MP Acc 65.4 52.6 - - 65.5
RoD 0.0 0.20 - - -

Front
AP Acc 37.9 36.5 36.2 36.0 37.7

RoD -0.01 0.03 0.04 0.05 -

MP Acc 64.5 52.6 - - 65.5
RoD 0.02 0.20 - - -

Back
AP Acc 37.1 36.7 35.7 36.5 37.7

RoD 0.02 0.03 0.05 0.03 -

MP Acc 55.4 52.6 - - 65.5
RoD 0.15 0.20 - - -

Table 5: Average accuracy was obtained after delet-
ing multiple tokens from a given prompt. The largest
drops in accuracy over the deleted tokens are bolded
and the smallest drops are underlined for each strategy
and method.

crete prompt-based NLI models for their robustness
against adversarially perturbated test instances.
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Method Test Dataset RoDCB MNLI

AP trained on CB 68.3 36.1 0.47
AP trained on MNLI 42.9 37.7 0.12

MP trained on CB 95.1 43.4 0.54
MP trained on MNLI 43.8 65.5 0.33

Table 6: Accuracy and RoD for the cross-dataset evalu-
ation where a method (AP/MP) is trained on one NLI
dataset (CB/MNLI) and the learnt prompts are used to
make entailment predictions in a different NLI dataset.

Hypothesis Label

Original The Wither’s only
had daughters.

contradiction

Perturbation
w/o label changes The Wither’s did

not have sons.
contradiction

w/ label changes The Wither’s had
a boy.

entailment

Table 7: Examples of our evaluation set consisting of
task inputs with perturbations. The premise sentence
is ‘The Wither’s eldest boy, one of the four of the town
militia, saluted in the old style with his stick sword.’

Evaluation Dataset: For this purpose, we asked
two annotators to manually edit hypothesis sen-
tences in NLI test data considering two types of
perturbations: (1) perturbations that do not change
reference labels, and (2) perturbations that change
reference labels. An example is shown in Table 7.

For the first type of perturbation, we edited a
hypothesis sentence such that its relationship with
the corresponding premise remains unchanged. For
the second type, we edited a hypothesis sentence
such that its relationship (e.g., from entailment to
contradiction) will be reversed. The premise and
hypothesis pairs were sampled from CB (validation
set) and MNLI (test set). Because there are ca.
10,000 test instances in MNLI and it is costly to
manually edit sentences, we used 100 randomly-
chosen sentence pairs covering MNLI and CB.

Experimental Procedure: We computed the
RoD of average accuracies obtained with original
and adversarial test instances. Specifically, we used
the AP prompts in Table 2 under three settings: (a)
original (without perturbations), (b) perturbations
without label changes, and (c) perturbations with
label changes. Then, we calculate RoD from (a) to
(b) and (a) to (c) as shown in Table 8.

Results: Overall, we see that the RoD of AP is
consistently smaller than that of MP in both CB

Perturbation Method Metrics CB MNLI

Original
AP Acc 54.5 40.5

RoD - -

MP Acc 95.5 71.0
RoD - -

Perturbation
w/o label changes

AP Acc 55.5 43.2
RoD -0.02 -0.07

MP Acc 93.0 66.7
RoD 0.03 0.06

Perturbation
w/ label changes

AP Acc 42.3 39.4
RoD 0.22 0.03

MP Acc 41.8 61.2
RoD 0.56 0.14

Table 8: Accuracy and RoD in prompts for task inputs
that include perturbations. The RoD here is the rate
of degradation in the average accuracy from the origi-
nal without perturbations to perturbations without label
changes or perturbations with label changes. The largest
drops in accuracy are bolded and the smallest drops are
underlined for each perturbation and method.

and MNLI under both types of perturbations. How-
ever, it is also clear that the accuracy obtained with
AP is much smaller than that with MP. For the per-
turbations without label changes, both AP and MP
show small RoD values, compared to those with
label changes.14 This shows that both AP and MP
are relatively robust against modifications to the
hypotheses that do not significantly alter the mean-
ing. However, when stronger perturbations are
introduced that would result in label changes, the
accuracy of both AP and MP drops significantly. 15

This is a concern because it shows that neither AP
nor MP is sufficiently robust to correctly predict
the target labels when the hypothesis sentences
in test data are adversarially modified.

4 Conclusion

We investigated the robustness of discrete prompts
under different perturbations. We found that al-
though discrete prompts remain relatively robust
against token deletion, it is highly sensitive to
other types of perturbations such as token shuffling.
For adversarial perturbations to the input, discrete
prompts were robust to weak perturbations without

14w/o label change modifications slightly increase the aver-
age length of a hypothesis and AP seems to better exploit this
extra information for inference resulting in a slight improve-
ment in accuracy (negative RoD).

15MP is less robust compared to AP, likely as a result of
overfitting to strongly perturbed training data during fine-
tuning the PLM.
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label changes, but AP was more robust than MP
for perturbations with label changes. Moreover,
they generalize poorly across different datasets an-
notated for NLI. We hope our analysis will inspire
future work to develop methods that learn both
accurate as well as robust discrete prompts.

5 Limitations

Possible limitations of this work are:

• We chose popular discrete prompt methods
of AP and MP and did not investigate other
methods in this work. Our analysis procedure
can still be applied to other discrete prompts
such as AvgTrigger (Wallace et al., 2019).

• We chose RoBERTa-large following previous
studies of HFT (Scao and Rush, 2021) and
AP (Shin et al., 2020) for reproducible and
identical comparisons with them. Other PLMs
would lead to different results, but they can
also be investigated in the same way as in this
work.

• This work focuses on NLI because it is a fun-
damental natural language understanding task
and still difficult even with PLMs (Brown
et al., 2020). Other complex downstream
tasks are worth investigating for a deeper un-
derstanding of prompt-based approaches in
future work.

• The results and conclusions are from the En-
glish datasets and would differ in other lan-
guages. However, our methodologies do not
depend on English and can be applied to other
languages as important future studies.

• Since there was a performance gap between
MP/HFT and AP, the accuracies by the pertur-
bations could be affected. However, this work
does not aim to find the best prompt learning
method but to analyze the robustness of dis-
crete prompts for a deeper understanding of
them.

6 Ethical Considerations

Our adversarial dataset came from existing datasets
of CB and MNLI. We visually checked the in-
stances in the data development and found no in-
stances with ethical concerns.

One should also be aware of social biases (e.g.
gender stereotypes) in PLM. RoBERTa, the PLM

we used in our experiments, is known to have gen-
der biases (Sharma et al., 2021). Since we used
it as-is in order to follow the experimental con-
ditions of previous studies using RoBERTa, our
current results are possibly influenced by such bi-
ases. However, the consideration of the prompt
robustness of this work would not pose or magnify
such ethical concerns.
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Prompt ID Prompt learnt by AP Label tokens Accuracy

0 p <MASK> strikers <MASK>

<MASK> Ever Want å£« Console

Encyclopedia Sie ANC h

entailment: 1927, 1897, 1904
contradiction: personally, skeptics, squarely
neutral: æµ, ä¸Ĭ, ä¹

69.64

1 p <MASK> diagnoses undert

fueling Hist setups prev bound

advertisers paper records h

entailment: 1930, 1830, 1890
contradiction: contradict, straight, favors
neutral: à¨, annabin, kb

75.00

2 p <MASK> maximize useful

courts <MASK> malink rooms

Scrib home interested Service

h

entailment: 4000, 1830, THEN
contradiction: yet, preferring, Ps
neutral: ı̆, Username, ãĥ«

57.14

3 p <MASK> fever <MASK> <MASK>

EL <MASK> <MASK> <MASK> ARE ENE

cue h

entailment: 1890, 1886, 1889
contradiction: yet, endorsing, contradict
neutral: ctory, boolean, Boolean

71.43

Table 9: Four prompts learnt by AP in CB. Red represents the task inputs, h represents the hypothesis, p

represents the premise, blue represents the prompt tokens (trigger tokens). <MASK> tokens in the trigger tokens of
some prompts are those used to initialize trigger tokens.
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Abstract

While pretrained language models have ex-
hibited impressive generalization capabilities,
they still behave unpredictably under certain
domain shifts. In particular, a model may
learn a reasoning process on in-domain train-
ing data that does not hold for out-of-domain
test data. We address the task of predicting out-
of-domain (OOD) performance in a few-shot
fashion: given a few target-domain examples
and a set of models with similar training perfor-
mance, can we understand how these models
will perform on OOD test data? We start from
the baseline of looking at model accuracy on
the few-shot examples, then investigate how
to incorporate analysis of the models’ behav-
ior using feature attributions to improve our
understanding of generalization. Specifically,
we explore a set of “factors” designed to re-
veal model agreement with certain pathologi-
cal heuristics that may indicate worse gener-
alization capabilities. On textual entailment,
paraphrase recognition, and a synthetic classi-
fication task, we show that attribution-based
factors can help rank relative model OOD per-
formance. However, accuracy on a few-shot
test set is a surprisingly strong baseline, par-
ticularly when the system designer does not
have in-depth prior knowledge about the do-
main shift.

1 Introduction

The question of whether models have learned the
right behavior on a training set is crucial for gener-
alization. Deep models have a propensity to learn
shallow reasoning shortcuts (Geirhos et al., 2020)
like single-word correlations (Gardner et al., 2021)
or predictions based on partial inputs (Poliak et al.,
2018), particularly for problems like natural lan-
guage inference (Gururangan et al., 2018; McCoy
et al., 2019) and question answering (Jia and Liang,
2017; Chen and Durrett, 2019). Unless we use eval-

*Equal contribution

Training
M1

M2

M3

Suite of trained models 
(different pre-training, data 

augmenta;on, inocula;on, …)

Which one do I use?OOD SeEng

label 10 exs
How do models perform 

on the small sample?

This work: Can post-hoc explana5ons reveal generaliza5on failures?

train

labeled data

unlabeled data

system 
developer

Figure 1: Our setting: a system developer is trying
to evaluate a collection of trained models on a small
amount of hand-labeled data to assess which one may
work best in this new domain. Can baselines / attribu-
tions help?

uation sets tailored to these spurious signals, accu-
rately understanding if a model is learning them
remains a hard problem (Bastings et al., 2021; Kim
et al., 2021; Hupkes et al., 2022).

This paper addresses the problem of predicting
whether a model will work well in a target domain
given only a few examples from that domain. This
setting is realistic: a system designer can typically
hand-label a few examples to serve as a test set,
but labeling more may be burdensome. Computing
accuracy on this small set and using that as a proxy
for full-test set performance is a simple baseline for
our task, but has high variance, which may cause us
to incorrectly rank two models that achieve some-
what similar performance. We hypothesize that
we can do better if we can interpret the model’s
behavior beyond accuracy. With the rise of tech-
niques to analyze post-hoc feature importance in
machine-learned models (Lundberg and Lee, 2017;
Ribeiro et al., 2016; Sundararajan et al., 2017), we
have seen not just better interpretation of models,
but improvements such as constraining them to
avoid using certain features (Ross et al., 2017) like
those associated with biases (Liu and Avci, 2019;
Kennedy et al., 2020), or trying to more generally
teach the right reasoning process for a problem
(Yao et al., 2021; Tang et al., 2021; Pruthi et al.,
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2022). If post-hoc interpretation can strengthen a
models’ ability to generalize, can they also help us
understand it?

Figure 1 illustrates the role this understanding
can play. We have three trained models and are
trying to rank them for suitability on a new do-
main. The small labeled dataset is a useful (albeit
noisy) indicator of success. However, by checking
model attributions on our few OOD samples, we
can more deeply understand model behavior and
analyze if they use certain pathological heuristics.
Unlike past work (Adebayo et al., 2022), we seek
to automate this process as much as possible, pro-
vided the unwanted behaviors are characterizable
by describable heuristics. We use scalar factors,
which are simple functions of model attributions,
to estimate proximity to these heuristics, similar
to characterizing behavior in past work (Ye et al.,
2021a). We then evaluate whether these factors
allow us to correctly rank the models’ performance
on OOD data.

Both on synthetic (Warstadt et al., 2020), and
real datasets (McCoy et al., 2019; Zhang et al.,
2019), we find that, between models with similar
architectures but different training processes, both
our accuracy baseline and attribution-based factors
are good at distinguishing relative model perfor-
mance on OOD data. However, on models with
different base architectures, we discovering inter-
esting patterns, where factors can very strongly
distinguish between different types of models, but
cannot always map these differences to correct pre-
dictions of OOD performance. In practice, we find
probe set accuracy to be a quick and reliable tool
for understanding OOD performance, whereas fac-
tors are capable of more fine-grained distinctions
in certain situations.

Our Contributions: (1) We benchmark, in sev-
eral settings, methods for predicting and under-
standing relative OOD performance with few-shot
OOD samples. (2) We establish a ranking-based
evaluation framework for systems in our problem
setting. (3) We analyze patterns in how accuracy
on a few-shot set and factors derived from token
attributions distinguish models.

2 Motivating Example

To expand on Figure 1, Figure 2 shows an in-depth
motivating example of our process. We show three
feature attributions from three different models on
an example from the HANS dataset (McCoy et al.,

The manager knew the athlete mentioned the actor

The manager knew the athlete mentioned the actor

The manager knew the athlete mentioned the actor

Hypothesis: The manager knew the athlete

M1

M2

M3

M1 > M2 > M3

Agreement with 
Pathological Heuristic:

M1 < M2 < M3

OOD Performance:

(subseq attributions) = 0.31∑

(subseq attributions) = 0.253∑

(subseq attributions) = -0.04∑
Predict Ranking

Figure 2: Explanations generated on the same sample
for HANS subsequence data models M1, M2, M3 (have
ascending OOD performance). The factor (shaded un-
derlines) from knowledge of the OOD allows us to in
this example predict the model ranking.

2019). These models have (unknown) varied OOD
performance but similar performance on the in-
domain MNLI data (Williams et al., 2018). Our
task is then to correctly rank these models’ perfor-
mance on the out-of-domain HANS dataset in a
few-shot manner.

We can consider ranking these models via simple
metrics like accuracy on the small few-shot dataset,
where higher-scoring models are higher-ranked.
However, such estimates can be high variance on
small datasets. In Figure 2, only M3 predicts non-
entailment correctly, and we cannot distinguish the
OOD performance of M1 and M2 without addi-
tional information.

Thus, we turn to explanations to gain more in-
sight into the models’ underlying behavior. With
faithful attributions, we should be able to determine
if the model is following simple inaccurate rules
called heuristics (McCoy et al., 2019). Figure 2
shows the heuristic where a model predicts that the
sentence A entails B if B is a subsequence of A.
Crucially, we can use model attributions to assess
model use of this heuristic :we can sum the attribu-
tion mass the model places on subsequence tokens.
We use the term factors to refer to such functions
over model attributions.

The use of factors potentially allows for the au-
tomation of detection of spurious signals or short-
cut learning (Geirhos et al., 2020). While prior
work has shown that spurious correlations are hard
for a human user to detect from explanations (Ade-
bayo et al., 2022), well-designed factors could auto-
matically analyze model behavior across a number
of tasks and detect such failures.
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3 Attributions to Predict Performance

In this section, we formalize the ideas presented
thus far. Token-level attribution methods (a subset
of post-hoc explanations) are methods which, given
an input sequence of tokens x

def
= x1, x2, ..., xn

and a model prediction ŷ def
= M(x) for some task,

assign an explanation ϕ(x, ŷ) def
= a1, . . . , an where

ai corresponds to an attribution or importance score
for a corresponding xi towards the final prediction.
For cases where the model, prediction, and inputs
are unambiguous, we abbreviate this simply ϕi ≡
ϕ(x)

def
= ϕ(x,Mi(x)).

We assume that the model is trained on an in-
domain training dataset DT and will be evaluated
on some unknown OOD setDO. Given two models
M0 and M1, with a small amount of data D(O,t) ⊂
DO (t = 10 examples or fewer in our settings), our
task is to predict which model will generalize better.
We break the process into 2 steps (see Figure 2):

1. Hypothesize a heuristic. First we must iden-
tify an underlying heuristic H that reflects patho-
logical model behavior in the OOD dataset. For
example, the subsequence heuristic in Figure 2
corresponds to a heuristic which always predicts
entailed if the hypothesis is contained within the
premise. Let h(Mi) abstractly reflect how closely
the ith model’s behavior aligns with H . Let
s(Mi) be the true OOD performance of model Mi.
If we then assume that h(Mi) faithfully models
some pathological heuristic H , we should have
that h(M0) > h(M1) > . . . > h(Mm) implies
s(M0) < s(M1) < . . . < s(Mm) . In other words,
the more a model Mi agrees with a pathological
heuristic H , the worse it performs.

2. Measure alignment. We now want to predict
the ranking of s(Mi); however, with few labeled
examples there may be high variance in directly
evaluating these metrics. We instead use factors
f(x, ϕi) which map tokens and their attributions
for model Mi to scalar scores that should corre-
late with the heuristic H . Factors can be designed
to align with known pathological heuristics, where
higher scores indicate strong model agreement with
the associated heuristic. We then estimate the rank-
ing of s(Mi) using the relative ranking of the cor-
responding h(Mi) approximated through factors.

Concretely, to measure the alignment, we first
compute for each input xj ∈ D(O,t) the predic-
tion Mi(xj) and the explanation ϕ(xj) for that

prediction. These ϕ(xj) are used to compute
the score f(xj , ϕ(xj)) for model M . We take
the overall score of the model to be F (i) =
1
t

∑t
j=1 f(xj , ϕ(xk,Mi(xk))), the mean over the

t examples inD(O,t). We then directly rank models
on the basis of the F (i) values: the higher the aver-
age factor value (the more it follows the heuristic),
the lower the relative ranking: F (0) > F (1) =⇒
s(M0) < s(M1). Therefore we can sort the mod-
els by these values and arrive at a predicted rank-
ing. We later also consider factors which to not
intuitively map to specific heuristics.

Baselines We also consider three principle
explanation-agnostic baselines. A natural baseline
given D(O,t) is to simply use the accuracy (ACC)
on this dataset: 1

n

∑n
i=1 1[yi = M(xi)], however

this may be noisy on only a few examples, and
frequently leads to ties.1

We also assess model confidence (CONF), the
softmax probability of the predicted label, as well
as looking at CONF-GT, the softmax probability of
only the ground-truth label.

4 Experimental Setup

4.1 Models Compared

In this work, we compare various models across
different axes yielding different DO performance.
The first approach we use is inoculation (Liu
et al., 2019a), which involves fine-tuning models
on small amounts or batches of DO data alongside
in-domain data to increase model performance on
OOD data. The second approach we use is varying
the model architecture and pre-training (e.g., using
a stronger pre-trained Transformer model).

In Section 5, we use inoculation to create 5
RoBERTa-base (Liu et al., 2019b) models of vary-
ing DO performance for each of the three MSGS
sets. In Section 6 where we consider the HANS and
PAWS datasets, we inoculate a variety of models.
For HANS, we inoculate 5 RoBERTa-large models.
We additionally examine DeBERTa-v3-base (He
et al., 2021b,a) and ELECTRA-base (Clark et al.,
2020) models fine-tuned on in-domain MNLI data.
For PAWS, we inoculate 4 RoBERTa-base mod-
els on the in-domain DT set. We also inoculate
ELECTRA-base and DEBERTA-base models. We
include complete details for these models in Ap-

1Most considered datasets are constructed to mislead mod-
els following the heuristic, so this baseline directly measures
agreement with a heuristic h.
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pendix A. The generated models represent a realis-
tic problem scenario: a practitioner may have many
different models with similar DT performance, but
different DO performance. We specifically crafted
suites of models which have both near pairs (mod-
els with similar DO performance) and far pairs.

4.2 Attribution Methods

We experiment using several token-level attribu-
tions methods: LIME (Ribeiro et al., 2016) com-
putes attribution scores using the weights of a lin-
ear model approximating model behavior near a
datapoint. SHAP (Lundberg and Lee, 2017) is sim-
ilar to LIME, but uses a procedure using Shapley
values. Finally, Integrated Gradients (TOKIG)
(Sundararajan et al., 2017) compute ϕi by perform-
ing a line integral over the gradients with respect to
token embeddings on a path from a baseline token
to the ground truth token; commonly, this baseline
token is chosen to be <MASK>. While intuitively
sensible, Harbecke (2021) has voiced concerns re-
garding the use of TOKIG in NLP.

4.3 Evaluation Setup

Because model ranking using a small D(O,t) may
be unstable, we conduct all experiments over a
number of different sampled D(O,t) sets. We first
sample M examples from each set (in the range of
200-600), then generate explanations for all models
on each example. We then take 400-500 bootstrap
samples of size n (we report results for n = 10, as
experimental results were similar for sizes 5 and
20), simulating many few-shot evaluations. For
each bootstrap sample, we analyse

(
m
2

)
model pairs.

Details can be found in Appendix B.
We define a “success” as a technique correctly

ranking a model pair, when measured by DO per-
formance (on the full set); otherwise is a “failure”.
We define pairwise accuracy as the accuracy for a
method ranking a particular model pair across all
bootstrap samples. We define few-shot accuracy
(or just accuracy) as the average of the pairwise
accuracies over the

(
m
2

)
model pairs. By reporting

ranking accuracy across a diverse set of models, we
ensure a comprehensive evaluation.

5 MSGS: A Proof of Concept

We first show experiments on the Mixed Sig-
nals Generalization Set (MSGS) dataset presented
in Warstadt et al. (2020) as a proof of concept
for our methodology. MSGS is a synthetic clas-

The man sat on the table.

surface = +1 (contains the)
linguis5c = +1 (contains 

irregular past; sat)

A cat crept into a room.

surface = +0 (contains no the)
linguis5c = +1 (contains 

irregular past; crept)learning 
surface 
feature

learning 
linguis5c 
feature
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<latexit sha1_base64="QPr4Ro3LeXB2bZHiWXoC8rkrWhU=">AAACEXicbVDLSgMxFM3UV62vUZduBotQoZSZUlrdFXThzhbsA6bDkEnTNjTzILkjlmF+wY2/4saFIm7dufNvTB8LbT1ww+Gcm9yb40WcSTDNby2ztr6xuZXdzu3s7u0f6IdHbRnGgtAWCXkouh6WlLOAtoABp91IUOx7nHa88dXU79xTIVkY3MEkoo6PhwEbMIJBSa5e6AF9gNk7thh6TmIWzVKlqo5auZom125SuC3CeZq6et4smTMYq8RakDxaoOHqX71+SGKfBkA4ltK2zAicBAtghNM014sljTAZ4yG1FQ2wT6WTzDZJjTOl9I1BKFQFYMzU3zcS7Es58T3V6WMYyWVvKv7n2TEMLpyEBVEMNCDzQYOYGxAa03iMPhOUAJ8ogolgaleDjLDABFSIORWCtfzlVdIul6xK6bJZydeb9XkcWXSCTlEBWaiG6ugGNVALEfSIntEretOetBftXfuYt2a0RYTH6A+0zx+k/Zvh</latexit>

Figure 3: Example from the MSGS train and OOD test
sets. The training data conflates a surface and linguistic
generalization as described in Warstadt et al. (2020), re-
sulting in models that learn a range of behaviors. Direct
evaluation OOD on small data can tell us this, but expla-
nations can also differentiate which of the two patterns
is learned and how strongly they are learned.

sification dataset. The training (in-domain) set is
composed of sentences where both some linguistic
feature (e.g., the presence of an adjective) and a spu-
rious surface feature (e.g., the word “the” being in
the sentence) are always associated with a positive
label y = 1. This data is ambiguous, which means
the model could rely on either the linguistic or sur-
face feature completely yet still get 100% accuracy
on in-domain data. Warstadt et al. (2020) then cre-
ate sets of OOD data where the linguistic feature
becomes associated with the y = 1 positive label,
and the surface feature with a y = 0 label. The
resulting test accuracy reflects model reliance on
one feature or the other. Warstadt et al. (2020) use
this to investigate what generalizations are learned
at which stages of model pre-training; we investi-
gate whether information from small probe sets can
help assess model reliance on the surface feature.

We consider three linguistic features: MORPH
(presence of an irregular past verb like “drew”),
ADJECT (presence of an adjective), and VERB
(if the main verb is an -ing verb), each paired with
the surface feature of “the” being in the sentence.

We design factors which look at attributions on
the tokens corresponding to these linguistic fea-
tures, including the tokens surrounding these fea-
tures as well to account for feature dependence
on surrounding words. Our factor f(x, ϕ) =
−∑m+2

i=(m−2) ϕ(xi), where m is the index of the
feature-critical word for that dataset (e.g., “slept”
for IRREG) and ϕ(xi) is the attribution at an in-

2388



Feature Method Accuracy

MORPH

ACC 90.9
CONF 50.9
CONF-GT 90.1

TOKIG SHAP LIME
IRREG 89.2 90.6 92.8†

VERB

ACC 94.5
CONF 58.0
CONF-GT 93.3

TOKIG SHAP LIME
VERB 92.1 94.0 94.9

ADJECT

ACC 89.9
CONF 50.5
CONF-GT 91.3

TOKIG SHAP LIME
ADJ 87.4 92.1 93.5†

Table 1: Few-shot ranking accuracy metric results on
D(O,t) for MSGS. IRREG, VERB, and ADJ are detailed in
Section 5. † indicates statistically significant improve-
ment over accuracy (paired bootstrap test: p < 0.05)

dex. This factor corresponds closely to the heuris-
tic that the dataset was designed for, or alternately,
we can see this factor as inversely proportional to
what other information the model is using (that
is, information outside of this window). We name
the factors IRREG, VERG, and ADJ for the MORPH,
VERB, ADJECT sets respectively.

Note that this approach assumes that a system de-
signer has prior knowledge of the relevant linguistic
and surface feature. This is a generous assumption,
and for this dataset is almost sufficient to formulate
the rule used to construct it, hence why we call this
a proof of concept. We will show more realistic
conditions in Section 6.

Models To create a suite of models with varying
DO performance, we inoculate following the steps
outlined in Section 4.1. We evaluate our factors via
accuracy as described in Section 4.3. More details
about the inoculation is present in Section A of the
appendix.

Results Table 1 shows the results on this dataset.
Our ACC baseline performs well: when models dif-
fer greatly in performance (e.g., one gets 50% and
another gets 90% on the DO), accuracy on the
small D(O,t) ranks these correctly even despite the
small subset size. The high regularity of the dataset
also means that a model’s behavior does not vary
greatly from example to example, further reducing
variance. However, this ranking is nevertheless still
not perfect. We see that CONF performs very poorly,
by contrast, showing that confidence is not helpful

for measuring model behavior.
Overall, we see that methods using explanations

are able to beat the ACC baseline, with the excep-
tion of TOKIG. We additionally found trends within
the explanation techniques themselves, with LIME

reliably performing the best, and TOKIG being the
worst. But generally, all techniques can offer rel-
evant information, and in the best case, the attri-
butions can tell us more reliably what a model is
learning than evaluation on a small set of D(O,t)

data can. In Section 6, we investigate if these re-
sults generalize to real-world datasets.

6 Realistic OOD Settings

We now consider two datasets corresponding to
realistic OOD settings treated in past work.

First, HANS (McCoy et al., 2019) targets spuri-
ous heuristics within MNLI (Williams et al., 2018),
such as the hypothesis being a subsequence of the
premise, with balanced test sets that can be used to
detect model reliance on these heuristics. Models
following these heuristics always predict entailed
for the hypotheses, and will perform at random
chance accuracy on the dataset. We use MNLI as
our in-domain training set in this setting.

Second, PAWS (Zhang et al., 2019) is a para-
phrase identification task. PAWS-QQP is an OOD
dataset for Quora Question Pairs (QQP) (Iyer et al.,
2017) that is composed of pairs with swapped con-
tent words/phrases (e.g., I ran from the Grand
Canyon to California to I ran from California to
the Grand Canyon). A paraphrase model that relies
heavily on lexical overlap will not be sensitive to
these changes, and will always predict the label of
y = 1 to indicate paraphrase. We use QQP as our
in-domain training set in this setting.

Details regarding models used in this section are
presented in Section 4.1. From the test sets of the
corresponding datasets, we randomly sample 400
examples from PAWS and 600 from HANS-CON
and HANS-SUB each for use in bootstrap sam-
pling, as detailed in Section 4.3. Table 9 provides
additional dataset information.

6.1 Factors

General Factors Both HANS and PAWS in-
volve comparing two sequences a,b of tokens,
unlike MSGS which is classification over a sin-
gle sequence. We can define our input x =
a1, a2, ...an, b1, b2, ..., bm as composed of these
two sequences a and b with respective attributions
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ϕa, ϕb. We evaluate a number of factors that gen-
erally target sensitivity to both sequences and their
differences, which represent a broad class of poten-
tial heuristics.

MAX-DIFF: The difference between maximum at-
tribution in a and b, i.e. max(ϕa)−max(ϕb).

SUM-DIFF: the difference of the sum of attribu-
tions, i.e.

∑n
i=1 ϕa,i −

∑m
i=1 ϕb,i.

INDEX-DIFF: The difference of attributions be-
tween shared words in a and b.

FIRST-TOK: The attribution at the the first <SEP>
token.

We explicitly note that this is the exhaustive set of
factors we experimented with, not a cherry-picked
set, in order to provide a comprehensive view of
what does and doesn’t work. We crafted these by
manually examining attribution patterns on vari-
ous datasets rather than trying a large number and
keeping the best ones.

HANS Factors We look at the “subsequence”
heuristic discussed in Section 2 and the constituent
heuristic, which assumes that the premise entails
all complete subtrees in its parse-tree. For the sub-
sequence OOD set (HANS-SUB) we note that
the INDEX-DIFF factor, which specifically exam-
ines tokens in the shared subsequence, captures the
setting’s pathological heuristic.

On the constituent OOD set (HANS-CON) we
evaluate a factor that examines the attribution on
the control words of the premise. For example, for
the premise “Unless the doctors ran, the lawyers
encouraged the scientists” and the hypothesis “The
doctors ran”, we would consider the attributions
on the word “Unless”.

PAWS Factors We further investigate two in-
tuitive heuristics that are based on the construc-
tion of the OOD set. SWAP-AVG uses the av-
erage attribution across all swapped tokens and
SWAP-MAX-DIFF subtracts the highest magnitude
attribution of swapped tokens in the first sentence
and the highest magnitude attribution of swapped
tokens in the second sentence. For example, for
the pair (“What factors cause a good person to be-
come bad ?”, “What factors cause a bad person
to become good ?”), SWAP-AVG would consider the
attributions on “good” and “bad”. SWAP-MAX-DIFF
is analogous.

6.2 Inoculated Results
We first evaluate models that differ primarily
through inoculation, as described in Section 4.1.

D(O,t)

Ranking Method PAWS HANS-SUB HANS-CON

Baselines
ACC 88.7 90.6 81.6
CONF 9.2 40.4 52.8
CONF-GT 34.9 20.2 38.9
RANDOM 50.7 51.4 49.6

Factors
CONST − − 87.1
SWAP-MAX-DIFF 76.2 − −
SWAP-AVG 91.4 − −
INDEX-DIFF 60.5 91.3 68.6

MAX-DIFF 65.9 69.2 50.6
SUM-DIFF 56.6 60.0 75.2
FIRST-TOK 74.3 50.4 55.6

Table 2: Few-shot heuristic ranking performance
on OOD samples for HANS/MNLI and QQP/PAWS,
specifically when comparing inoculated models (SHAP
explanations). We divide rows by baselines, dataset-
specific factors, and general factors.

Results are shown using SHAP in Table 2 which
we selected through experiments in this setting as
being the best performing. The conclusions here
differ somewhat from those on MSGS. We note
that the ACC baseline remains strong, while CONF is
near random. We find that certain attribution fac-
tors are able to outperform the ACC baseline, with
SWAP-AVG the best on PAWS (91.4%), INDEX-DIFF
the best on HANS-SUB (91.3%), and CONST on
HANS-CON (87.1%).

This shows that even in settings more realistic
than MSGS, the right choice of factor reveals
meaningful information about model general-
ization. Moreover, the heuristics that work well
are those hand-designed for these datasets, confirm-
ing that measuring association with a heuristic via
a factor may reveal something about performance.

We qualify these results by noting that in a true
few-shot setting, there is some uncertainty regard-
ing whether a chosen factor is truly the best one.
As a coarse option, we find ACC to be reliable. How-
ever, these high-performing factors would still be
useful in conjunction with accuracy, or if we had
previously validated a factor as ranking models
well and we wanted to apply it to rank new mod-
els in this domain; the factors will generalize to
new models even if they do not generalize to new
datasets necessarily.

6.3 Architectural Change Results

We further examine our approach when ranking
the performance of different pre-trained models
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D(O,t)

Ranking Method HANS/PAWS POOLED

Baseline
ACCURACY 61.0
GUESS 72.0

Factors
SET-DEPENDENT 75.5

MAX-DIFF 72.6
INDEX-DIFF 83.0
SUM-DIFF 83.1
FIRST-TOK 69.4

Table 3: Few-shot heuristic ranking performance
on OOD samples for HANS/MNLI and QQP/PAWS,
specifically when comparing non-inoculated models
(SHAP explanations), where we take the mean of pair-
wise accuracies for 3 pairs (for 3 models) on each set.

(RoBERTa, ELECTRA, and DeBERTa).
Table 3 shows that a heuristic GUESS based on the

expectation across choosing a best model and then
randomly guessing consistently with that, gives a
strong baseline of 72%. Factors also seem to do
well in this setting, with all of the general heuristics
outperforming the very low ACC baseline.

This suggests that in few-shot factors are able
to capture distributional information that baselines
can’t. However, to qualify this, given that each
set only compares between 3 pairs of models, it’s
easier for factors to happen upon strong accuracy
patterns by chance.

Thus, in Table 4, we analyze this further by show-
ing resuts on some individual model pairs. (R1, R2
are RoBERTa; E is Electra; D is DeBERTa) R1-E
and D-R2, have different architectures, but similar
OOD accuracy (see Table 6 in the Appendix). R1-
D, E-D and E-R2 are different model types with
more distant accuracy. Accuracy values for a sin-
gle pair on this single dataset therefore only reflect
differences across bootstrap samples. What we find
in common across these types of pairings is that
while some values are close to 50%, including the
ACCURACY baseline, each column has several fac-
tors achieving very distinct (0%, 100%) accuracy
values, consistently differentiating these models.
As we note in Figure 4 (Appendix), this pattern of
strong distinctions is quite common when different
types of models are compared. We further discuss
this in Section 7.

7 Analysis / Discussion

Accuracy is reliable, but factors can pro-
vide more fine-grained distinctions. On MSGS,

Model Pair (M1-M2)

Ranking Method R1-E R1-D E-R2 D-R2 E-D

Baseline
ACCURACY 77.4 54.6 55.2 67.2 64.4

Factors
SWAP-MAX-DIFF 57.6 57.6 70.6 65.6 42.6
SWAP-AVG 93.4 93.4 65.0 47.6 17.0

MAX-DIFF 63.2 63.2 39.2 4.8 0.2
INDEX-DIFF 0 0 99.6 99.6 15.0
SUM-DIFF 99.8 100 0 0 88.0
FIRST-TOK 1.2 100 99.6 0 0

Table 4: SHAP pairwise accuracies, different types of
models, PAWS. Model R1 (69.7%), R2 (82.9%), Model
E (80.5%), and Model D (71.8%)

where factors beat strong accuracy baselines, we
notice that these pairwise accuracies are consis-
tently high. For example, on the MORPH setting,
for two models with 95% and 98% accuracy, our
factors IRREG is 100% accurate, while the accu-
racy baseline here is only 58%, as test accuracy
on D(O,t) does not discriminate well between two
models with such close overall accuracy.

This holds at the fine-grained pairwise level as
well. Figure 5 (also see Figure 6 in appendix)
shows the baseline D(O,t) accuracy against a spe-
cific factor’s accuracy for each model pair in
MSGS. Each datapoint in the scatterplot represents
a model pair and a point’s vertical distance from
the red line represents how much better or worse
a given factor does compared to the baseline on
a specific pair. We see a regular trend: explana-
tions seem to systematically outperform the base-
line across various pairs, with a few significant
deviations for low-performing pairs.

These results suggest that explanations can be
useful and do add information otherwise miss-
ing from accuracy probing alone, especially when
the underlying model architecture is held constant.
With differing architectures (Figure 6), the problem
is made more difficult, and selecting the right fac-
tor is less obvious; few-shot accuracy may be more
reliable in this setting. Note, however, that these
successes from any technique are in spite of us only
inspecting 10 examples from the target domain.

Factors differentiate models strongly, though
not always in a way aligned with OOD perfor-
mance. Figure 4 and Table 4 both show that fac-
tors will often consistently decide in favor of a
certain model regardless of the choice of D(O,t),
especially when dealing with models with different
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Figure 4: Distributions of pairwise accuracies on PAWS
SHAP non-inoculated, all model pairs (left for accuracy
baseline, right for all factors).
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Figure 5: LIME pairwise factor against baseline accura-
cies for MSGS. Additionally see Figure 6.

base architectures. Since ranking accuracy cor-
relates with whether these strong alignments are
consistent across a spectrum of models and choose
the models with higher OOD performance, the ten-
dency for factors to strongly favor a specific model
doesn’t necessarily correlate with strong overall
performance, but does heavily imply that these
factors extract meaningful information about the
model from the attributions. Looking close at Ta-
ble 4, we can see that that even between differ-
ent model architectures, certain factors are more
(INDEX-DIFF) or less (SWAP-MAX-DIFF) capable of
making these distinctions.

Factors as projections of model feature space.
Based on these results, we have evidence that the
distributions of attributions are unique to models:
in other words, a factor is like a scalar signature
for a model’s feature space with respect to some
relevant features. Methods like inoculation, that
change a model’s behavior in direct ways lead to
regular changes in that signature. In these cases,

factors align with OOD performance, which ex-
plains why factors are so strong in our inoculated
experiments. For our non-inoculated experiments
(i.g. ELECTRA vs DeBERTa), the feature spaces
are fundamentally different, so factor signatures
will still capture these differences, but in a way less
aligned with ranking on OOD performance. Future
work may be able to expand on these differences
and what they tell us beyond OOD performance.

8 Related Work

This paper relates to a long line of work on un-
derstanding explanations, including explanations’
human interpretability (Miller, 2019; Jacovi and
Goldberg, 2020; Alqaraawi et al., 2020; Nguyen
et al., 2021), explanations’ faithfulness and ability
to detect shortcuts (Geirhos et al., 2020) or spuri-
ous features (Bastings et al., 2021; Madsen et al.,
2021; Zhou et al., 2021), and applications to OOD
data (Ye and Durrett, 2022; Choi et al., 2022), in-
cluding papers in the intersection of multiple direc-
tions (Adebayo et al., 2022; Kim et al., 2021).

Past work has also investigated performance pre-
diction (Xia et al., 2020; Ye et al., 2021b; Varsh-
ney et al., 2022), and using explanations to detect
spurious correlations (Kim et al., 2021; Bastings
et al., 2021; Adebayo et al., 2022). We are differ-
ent in that we focus on ranking an array of mod-
els which exhibit different levels of generalization
abilities, as opposed to giving a binary judgment
of whether a model is relying on some shortcuts
(Kim et al., 2021; Bastings et al., 2021; Adebayo
et al., 2022). In addition, we experiment with tasks
having nuanced shortcuts ‘in the wild’, contrary
to synthetically constructed datasets in Bastings
et al. (2021). In particular, Adebayo et al. (2022)
study the usefulness of explanations in detecting
unknown spurious features in an image classifica-
tion task involving (realistic) possible shortcuts, but
find that attributions are ineffective for detecting
unknown shortcuts in practice.

9 Conclusion

We establish a robust framework for evaluation of
fine-grained few-shot prediction of OOD perfor-
mance, benchmarking approaches in this setting
on a range of models. We find that accuracy is
a reliable baseline, but intuitive attribution-based
factors derived from explanations can sometimes
better predict how models will perform in OOD
settings, even when they have similar in-domain
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performance. We further analyze patterns of our
approaches, discovering the potential for factors
to represent views of model feature space, leaving
further exploration to future work.

10 Limitations

There are a large number of explanation techniques
and many domains these have been applied to. We
focus here on a set of textual reasoning tasks like
entailment where spurious correlations have been
frequently identified. However, correlations in
other settings like medical imaging (Adebayo et al.,
2022) could yield different results. We also note
that these datasets are all English-language and use
English pre-trained models, so different settings
may yield different results; additionally, our fac-
tors depend on how explanations are normalized
between different examples.

Our paper and analysis themselves comment on
the limitations of our methodology as well as ex-
planations as a whole: we find that while explana-
tions often can clearly distinguish different models,
knowing which factors will do so, or guarantee-
ing that explanations align with OOD performance,
remains difficult.

Acknowledgments

This work was supported by NSF CAREER Award
IIS-2145280, a gift from Salesforce, Inc., and a
gift from Adobe. The authors acknowledge the
Texas Advanced Computing Center (TACC) at The
University of Texas at Austin for providing HPC
resources used to conduct this research.

References
Julius Adebayo, Michael Muelly, Harold Abelson, and

Been Kim. 2022. Post hoc explanations may be in-
effective for detecting unknown spurious correlation.
In International Conference on Learning Representa-
tions.

Ahmed Alqaraawi, Martin Schuessler, Philipp Weiß,
Enrico Costanza, and Nadia Berthouze. 2020. Eval-
uating saliency map explanations for convolutional
neural networks: A user study. In Proceedings of
the 25th International Conference on Intelligent User
Interfaces, IUI ’20, page 275–285, New York, NY,
USA. Association for Computing Machinery.

Jasmijn Bastings, Sebastian Ebert, Polina Zablotskaia,
Anders Sandholm, and Katja Filippova. 2021. "Will
You Find These Shortcuts?" A Protocol for Evaluat-
ing the Faithfulness of Input Salience Methods for
Text Classification. In arXiv.

Jifan Chen and Greg Durrett. 2019. Understanding
Dataset Design Choices for Multi-hop Reasoning.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4026–4032,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Jihye Choi, Jayaram Raghuram, Ryan Feng, Jiefeng
Chen, Somesh Jha, and Atul Prakash. 2022. Concept-
based explanations for out-of-distribution detectors.
In arXiv.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training text encoders as discriminators rather than
generators. In International Conference on Learning
Representations (ICLR).

Matt Gardner, William Merrill, Jesse Dodge, Matthew
Peters, Alexis Ross, Sameer Singh, and Noah A.
Smith. 2021. Competency Problems: On Finding and
Removing Artifacts in Language Data. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 1801–1813,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio
Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A. Wichmann. 2020.
Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11):665–673.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy,
Roy Schwartz, Samuel Bowman, and Noah A. Smith.
2018. Annotation Artifacts in Natural Language In-
ference Data. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 107–112,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

David Harbecke. 2021. Explaining natural language
processing classifiers with occlusion and language
modeling. arXiv preprint arXiv:2101.11889.

Pengcheng He, Jianfeng Gao, and Weizhu Chen.
2021a. DeBERTaV3: Improving DeBERTa us-
ing ELECTRA-Style Pre-Training with Gradient-
Disentangled Embedding Sharing. In arXiv ePrint
2111.09543.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021b. Deberta: Decoding-enhanced
bert with disentangled attention. In International
Conference on Learning Representations.

Dieuwke Hupkes, Mario Giulianelli, Verna Dankers,
Mikel Artetxe, Yanai Elazar, Tiago Pimentel, Chris-
tos Christodoulopoulos, Karim Lasri, Naomi Saphra,
Arabella Sinclair, Dennis Ulmer, Florian Schottmann,
Khuyagbaatar Batsuren, Kaiser Sun, Koustuv Sinha,

2393

https://openreview.net/forum?id=xNOVfCCvDpM
https://openreview.net/forum?id=xNOVfCCvDpM
https://doi.org/10.1145/3377325.3377519
https://doi.org/10.1145/3377325.3377519
https://doi.org/10.1145/3377325.3377519
https://doi.org/10.48550/ARXIV.2111.07367
https://doi.org/10.48550/ARXIV.2111.07367
https://doi.org/10.48550/ARXIV.2111.07367
https://doi.org/10.48550/ARXIV.2111.07367
https://doi.org/10.18653/v1/N19-1405
https://doi.org/10.18653/v1/N19-1405
https://doi.org/10.48550/ARXIV.2203.02586
https://doi.org/10.48550/ARXIV.2203.02586
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://doi.org/10.18653/v1/2021.emnlp-main.135
https://doi.org/10.18653/v1/2021.emnlp-main.135
https://doi.org/10.1038/s42256-020-00257-z
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/N18-2017
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD


Leila Khalatbari, Maria Ryskina, Rita Frieske, Ryan
Cotterell, and Zhijing Jin. 2022. State-of-the-art gen-
eralisation research in nlp: a taxonomy and review.

Shankar Iyer, Nikhil Dandekar, and Kornel Csernai.
2017. First Quora dataset release: Question pairs.

Alon Jacovi and Yoav Goldberg. 2020. Towards faith-
fully interpretable NLP systems: How should we
define and evaluate faithfulness? In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4198–4205, On-
line. Association for Computational Linguistics.

Robin Jia and Percy Liang. 2017. Adversarial Exam-
ples for Evaluating Reading Comprehension Systems.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2021–2031, Copenhagen, Denmark. Association for
Computational Linguistics.

Brendan Kennedy, Xisen Jin, Aida Mostafazadeh Da-
vani, Morteza Dehghani, and Xiang Ren. 2020. Con-
textualizing Hate Speech Classifiers with Post-hoc
Explanation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5435–5442, Online. Association for
Computational Linguistics.

Joon Sik Kim, Gregory Plumb, and Ameet Talwalkar.
2021. Sanity simulations for saliency methods.
CoRR, abs/2105.06506.

Frederick Liu and Besim Avci. 2019. Incorporating
Priors with Feature Attribution on Text Classifica-
tion. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
6274–6283, Florence, Italy. Association for Compu-
tational Linguistics.

Nelson F. Liu, Roy Schwartz, and Noah A. Smith. 2019a.
Inoculation by Fine-Tuning: A Method for Analyz-
ing Challenge Datasets. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 2171–2179, Minneapolis, Minnesota.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. In arXiv.

Scott M. Lundberg and Su-In Lee. 2017. A unified ap-
proach to interpreting model predictions. In Proceed-
ings of the 31st International Conference on Neural
Information Processing Systems, NeurIPS’17, page
4768–4777, Red Hook, NY, USA. Curran Associates
Inc.

Andreas Madsen, Nicholas Meade, Vaibhav Adlakha,
and Siva Reddy. 2021. Evaluating the Faithfulness of
Importance Measures in NLP by Recursively Mask-
ing Allegedly Important Tokens and Retraining. In
arXiv ePrint 2110.08412.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right
for the Wrong Reasons: Diagnosing Syntactic Heuris-
tics in Natural Language Inference. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 3428–3448, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Tim Miller. 2019. Explanation in artificial intelligence:
Insights from the social sciences. Artificial Intelli-
gence, 267:1–38.

Giang Nguyen, Daeyoung Kim, and Anh Nguyen. 2021.
The effectiveness of feature attribution methods and
its correlation with automatic evaluation scores. In
Advances in Neural Information Processing Systems.

Adam Poliak, Jason Naradowsky, Aparajita Haldar,
Rachel Rudinger, and Benjamin Van Durme. 2018.
Hypothesis Only Baselines in Natural Language In-
ference. In Proceedings of the Seventh Joint Confer-
ence on Lexical and Computational Semantics, pages
180–191, New Orleans, Louisiana. Association for
Computational Linguistics.

Danish Pruthi, Rachit Bansal, Bhuwan Dhingra,
Livio Baldini Soares, Michael Collins, Zachary C.
Lipton, Graham Neubig, and William W. Cohen.
2022. Evaluating Explanations: How Much Do Ex-
planations from the Teacher Aid Students? Transac-
tions of the Association for Computational Linguis-
tics, 10:359–375.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. “Why should I trust you?” Explain-
ing the predictions of any classifier. In Proceedings
of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining.

Andrew Slavin Ross, Michael C. Hughes, and Finale
Doshi-Velez. 2017. Right for the Right Reasons:
Training Differentiable Models by Constraining their
Explanations. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelli-
gence, IJCAI-17, pages 2662–2670.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Proceed-
ings of the 34th International Conference on Machine
Learning - Volume 70, ICML’17, page 3319–3328.
JMLR.org.

Liyan Tang, Dhruv Rajan, Suyash Mohan, Abhijeet
Pradhan, R. Nick Bryan, and Greg Durrett. 2021.
Making Document-Level Information Extraction
Right for the Right Reasons. arXiv.

Neeraj Varshney, Swaroop Mishra, and Chitta Baral.
2022. Ildae: Instance-level difficulty analysis of eval-
uation data. ArXiv, abs/2203.03073.

Alex Warstadt, Yian Zhang, Xiaocheng Li, Haokun Liu,
and Samuel R. Bowman. 2020. Learning which fea-
tures matter: RoBERTa acquires a preference for
linguistic generalizations (eventually). In Proceed-
ings of the 2020 Conference on Empirical Methods

2394

https://doi.org/10.48550/ARXIV.2210.03050
https://doi.org/10.48550/ARXIV.2210.03050
https://doi.org/10.18653/v1/2020.acl-main.386
https://doi.org/10.18653/v1/2020.acl-main.386
https://doi.org/10.18653/v1/2020.acl-main.386
https://doi.org/10.18653/v1/D17-1215
https://doi.org/10.18653/v1/D17-1215
https://doi.org/10.18653/v1/2020.acl-main.483
https://doi.org/10.18653/v1/2020.acl-main.483
https://doi.org/10.18653/v1/2020.acl-main.483
http://arxiv.org/abs/2105.06506
https://doi.org/10.18653/v1/P19-1631
https://doi.org/10.18653/v1/P19-1631
https://doi.org/10.18653/v1/P19-1631
https://doi.org/10.18653/v1/N19-1225
https://doi.org/10.18653/v1/N19-1225
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/https://doi.org/10.1016/j.artint.2018.07.007
https://openreview.net/forum?id=OKPS9YdZ8Va
https://openreview.net/forum?id=OKPS9YdZ8Va
https://doi.org/10.18653/v1/S18-2023
https://doi.org/10.18653/v1/S18-2023
https://doi.org/10.1162/tacl_a_00465
https://doi.org/10.1162/tacl_a_00465
https://doi.org/10.24963/ijcai.2017/371
https://doi.org/10.24963/ijcai.2017/371
https://doi.org/10.24963/ijcai.2017/371
https://doi.org/10.48550/ARXIV.2110.07686
https://doi.org/10.48550/ARXIV.2110.07686
https://doi.org/10.18653/v1/2020.emnlp-main.16
https://doi.org/10.18653/v1/2020.emnlp-main.16
https://doi.org/10.18653/v1/2020.emnlp-main.16


in Natural Language Processing (EMNLP), pages
217–235, Online. Association for Computational Lin-
guistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Mengzhou Xia, Antonios Anastasopoulos, Ruochen Xu,
Yiming Yang, and Graham Neubig. 2020. Predicting
performance for natural language processing tasks.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 8625–
8646, Online. Association for Computational Lin-
guistics.

Huihan Yao, Ying Chen, Qinyuan Ye, Xisen Jin, and
Xiang Ren. 2021. Refining Language Models with
Compositional Explanations. In Advances in Neural
Information Processing Systems, volume 34, pages
8954–8967. Curran Associates, Inc.

Xi Ye and Greg Durrett. 2022. Can Explanations Be
Useful for Calibrating Black Box Models? In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 6199–6212, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Xi Ye, Rohan Nair, and Greg Durrett. 2021a. Connect-
ing Attributions and QA Model Behavior on Realistic
Counterfactuals. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 5496–5512, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Zihuiwen Ye, Pengfei Liu, Jinlan Fu, and Graham Neu-
big. 2021b. Towards more fine-grained and reliable
NLP performance prediction. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 3703–3714, Online. Association for Computa-
tional Linguistics.

Yuan Zhang, Jason Baldridge, and Luheng He. 2019.
PAWS: Paraphrase adversaries from word scrambling.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 1298–1308,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Yilun Zhou, Serena Booth, Marco Tulio Ribeiro, and
Julie Shah. 2021. Do feature attribution methods
correctly attribute features? In eXplainable AI ap-
proaches for debugging and diagnosis.

VERB MORPH ADJECT

NO-INOC 12.0 95.0 51.0
2L 99.0 98.0 99.2
2S 0.0 0.0 0.0
2L 1S 80.0 68.0 73.0
1L 2S 33.0 57.0 32.0
2L 2S 53.7 49.0 56.0

Table 5: MSGS accuracies of various inoculated models.

A Details of Inoculation

One of the methods we used to obtain models
with different performances on the OOD sets was
inoculation (Liu et al., 2019a), which involves
fine-tuning or further fine-tuning models on small
amounts or batches of OOD data alongside in-
domain data to bring model performance on OOD
sets up.

MSGS We borrow notation from Warstadt et al.
(2020). Most of the fine-tuning data is ambiguous
data that doesn’t test the spurious correlation, but
we add in small percentages of non-ambiguous data
where the label favors either the surface or linguis-
tic generalization, tilting the model in that direction.
Here, for each set (VERB, MORPH, ADJECT),
we used the following inoculation splits. Linguistic
(L) and surface(S) are the features that the inocu-
lation data would favor: 2% L, 2% S, mixed (2%
L, 1% S), (1% L 2% S), (2% L, 2% S), in addition
to no inoculation. The results on DO are present in
Table 5.

HANS Specific innoculation results for
RoBERTa-large are present in Table 6. We
additionally use MNLI pre-trained ELECTRA
and DeBERTa models from huggingface. These
performance details are also located in Table 6.

PAWS We used several inoculation techniques
to get a variable number of models here. For
our RoBERTA-base model, we start with the base
model (35% OOD accuracy) and fine-tune it with
DT data with 2% of the data havingDO data mixed
in. We trained this over several epochs to get mod-
els with 82.8% and 90.8% accuracy on DO. We
also tried fine-tuning our 35% model on batches
of pure DO data to get a model with 69% accu-
racy. For our ELECTRA and DeBERTA models,
we use similar batch-only inoculation (fine-tuning
on batches of only OOD data). More details are
present in Table 6.

Tables 7-8 contain the same information as Ta-
ble 2, but for the other 2 studied explanation tech-
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nique.

B Bootstrapping Details

We now describe our process for bootstrapping
and evaluating the capability of explanations in our
setting.

For a sampled population of examples from the
DO set, for the m models that we’re examining at
a time, we generate explanations for each of the
m models on all of the sampled population. We
then repeatedly take a sample with replacement
(500 times) of 10 examples DO,t each, where we
have 500× 10×m total explanations we want to
examine. We calculate factors for each of the 10
explanations in each DO,t sample and pool them
to get a list of factor metrics for the DO,t, one for
each model.

For each pair, we then look at the ground-truth
DO ranking for models and their respective factor
metrics, getting successes where these match, and
failures otherwise. When we average these accu-
racies across our 500 bootstrap samples, we get
pairwise distributions (the distribution of successes
vs failures on a sample for a given pair), which we
can further aggregate to get few-shot accuracies.

Note, in practice, to prevent variance from run-
to-run, we fix the population of 500 DO,ts, but we
validated that re-running on new sampled popula-
tions didn’t impact any numbers greatly. Though
we tried using several (5, 10, 20) DO,t sizes, we de-
cided to use the probe size of 10 as a realistic probe
size for our setting, which wouldn’t be burdensome
to hand-craft in practice.

Our methodology can be run quickly in a post-
hoc manner as many times as needed on top of a
population of the necessary explanations.

C Additional Plots

Figure 4 shows additional information about the
distrbution of pairwise accuracies between differ-
ent model architectures.

D Reproducibility

D.1 Computing Infrastructure
All experiments were conducted on a desktop with
2 NVIDIA 1080 Ti (11 GB) and 1 NVIDIA Titan
Xp (12 GB).

D.2 Runtimes
For PAWS and MSGS fine-tuned models, we fine-
tuned for roughly 1 GPU hour per model. Since

0.0 0.2 0.4 0.6 0.8 1.0
Base Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ct

or
 A

cc
ur

ac
y

Inoc PAWS / HANS-Con Pairwise
const
diff_sum
swap_avg
swap_max_diff

Figure 6: SHAP pairwise factor compared to ACC for
HANS-CON and PAWS. Each point represents a factor
accuracy (y-axis) for a pair of models in comparison
to ACC (x-axis) for the same pair. Points above the red
y = x line represent factors outperforming the accuracy
baseline. CONST and DIFF-SUM are for HANS-CON,
SWAP-AVG and SWAP-MAX-DIFF are for PAWS

HANS models were trained for very few steps, their
training time is inconsequential. Generating attri-
butions required for numerical evaluation took less
than 6 GPU hours.

D.3 Dataset Details
We used datasets in the JSONL format. We sim-
plified all our dataset settings to binary classifica-
tion for simplicity, and used data directly from the
downloads made available in the original papers.
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Dataset OOD Performance Huggingface Model Name LR Warmup Steps

HANS 99.8/99.4 roberta-large-mnli 1e−5 500 150
HANS 96.7/97.6 roberta-large-mnli 1e−5 500 100
HANS 87.1/70.1 roberta-large-mnli 1e−5 500 75
HANS 79.5/62.5 roberta-large-mnli 1e−5 500 50
HANS 69.9/58.7 roberta-large-mnli 1e−5 500 25
HANS 66.8/57.8 roberta-large-mnli − − −
HANS 63.5/72.5 howey/electra-base-mnli − − −
HANS 62.7/65.7 MoritzLaurer/DeBERTa-v3-base-mnli − − −
MSGS Table 5 roberta-base 1e−5 600 6000

PAWS 90.8 roberta-base 1e−5 1200 12000
PAWS 82.8 roberta-base 1e−5 1200 12000
PAWS 69.0 roberta-base 1e−5 1200 7600
PAWS 35.0 roberta-base 1e−5 1200 12000
PAWS 80.5 google/electra-base-discriminator 1e−5 1200 7700
PAWS 71.8 microsoft/deberta-base 1e−5 1200 7600

Table 6: Architecture details for our experiments. “Steps” indicates the number of gradient updates from the
specified dataset that are applied to the model. For HANS models, performance is on HANS-SUB/HANS-CON.
For all models, small batch sizes were used, with weight decay of 0.1.

PAWS HANS-SUB HANS-CON

Baselines
ACCURACY 88.7 90.6 81.6
CONFIDENCE 9.2 40.4 52.8
RANDOM 50.7 51.4 49.6

Explanations
CONST − − 79.4
SWAP-MAX-DIFF 80.6 − −
SWAP-AVG 98.2 − −
MAX-DIFF 70.1 67.2 58.3
INDEX-DIFF 70.5 88.5 67.2
SUM-DIFF 53.9 59.1 60.4
FIRST-TOK 55.4 51.0 81.3

Table 7: LIME version of Table 3

PAWS HANS-SUB HANS-CON

Baselines
ACCURACY 88.7 90.6 81.6
CONFIDENCE 9.2 40.4 52.8
RANDOM 50.7 51.4 49.6

Explanations
CONST − − 79.2
SWAP-MAX-DIFF 84.3 − −
SWAP-AVG 85.6 − −
MAX-DIFF 86.9 55.2 69.9
INDEX-DIFF 51.4 85.8 53.4
SUM-DIFF 51.6 77.4 68.1
FIRST-TOK 64.0 69.7 59.2

Table 8: Tokig numbers for Table 3

ID Set OOD Set DO Size D(O,t) Size

MSGS
MORPH 10000 10
VERB 10000 10
ADJECT 10000 10

MNLI
HANS-SUB 10000 10
HANS-CON 10000 10

QQP PAWS 677 10

Table 9: Information regarding our considered datasets.
For all datasets, the bootstrap sample size is fixed at 10.
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Abstract

Pretrained language models (PLMs) for data-to-
text (D2T) generation can use human-readable
data labels such as column headings, keys, or
relation names to generalize to out-of-domain
examples. However, the models are well-
known in producing semantically inaccurate
outputs if these labels are ambiguous or incom-
plete, which is often the case in D2T datasets.
In this paper, we expose this issue on the task of
descibing a relation between two entities. For
our experiments, we collect a novel dataset for
verbalizing a diverse set of 1,522 unique rela-
tions from three large-scale knowledge graphs
(Wikidata, DBPedia, YAGO). We find that al-
though PLMs for D2T generation expectedly
fail on unclear cases, models trained with a
large variety of relation labels are surprisingly
robust in verbalizing novel, unseen relations.
We argue that using data with a diverse set of
clear and meaningful labels is key to training
D2T generation systems capable of generaliz-
ing to novel domains.1

1 Introduction

D2T generation systems need to accurately cap-
ture the semantics of relations between values in
the data. However, the data labels such as rela-
tion names (Färber et al., 2018; Haller et al., 2022),
table headings (Parikh et al., 2020), or meaning rep-
resentation keys (Dušek et al., 2020) may provide
only superficial or—if the labels are abbreviations,
such as in the Rotowire dataset (Wiseman et al.,
2017)—no usable hints about the data semantics.
Learning how to properly describe the data is thus
a challenge for D2T systems, typically requiring
in-domain training data of sufficient quality and
quantity (Dušek et al., 2019).

PLMs such as BART (Lewis et al., 2020) or
T5 (Raffel et al., 2020) can quickly adapt to new
domains and exhibit robustness to out-of-domain

1We release the code and data for our experiments:
https://github.com/kasnerz/rel2text.

model

ref
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Werner Körte is the godparent 
of Rudolf Virchow.

model

ref Rudolf Virchow is the godparent 
of Werner Körte.
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Chorley Lynx.
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Figure 1: Data-to-text generation models use relation
labels (such as godparent, occupant, and musicBy) to
describe relations between entities. However, unclear
labels can lead to various lexical or semantic incoheren-
cies in the output descriptions, such as swapping the
relation direction (a) or using too literal expressions (b).

inputs. However, the PLMs for D2T generation are
still limited by the expressivity of the data labels.
Consider Figure 1 (a): the model can use its rep-
resentation of “godparent” to understand there is
a “is-a-godparent-of” relation between the entities,
but it has to infer (or guess) who is the godparent
of whom. Even in the less ambiguous cases (b)
and (c), the model still has to correctly capture the
intended semantics of the relation (e.g. “occupant”
meaning “home team”).

In this paper, we investigate to what extent PLMs
are able to use arbitrary labels describing rela-
tions between entities. A suitable testing ground
is the task of describing (i.e., verbalizing) individ-
ual triples in a knowledge graph (KG), which can
be considered a trivial case of graph-to-text (G2T)
generation (Ribeiro et al., 2021; Koncel-Kedziorski
et al., 2019). In this task, there is a wide range of
lexical choices for the relation label (see Table 1),
while the entities can be copied verbatim or with
only minor morphological changes.

Current human-annotated datasets for D2T gen-
eration contain only a small number of relations
and rarely contain any unseen relations in the test
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relation possible verbalization

is part of X is part of Y.
duration X lasted for Y.
platform X is available on Y.

X runs on Y.
country X was born in Y.

X is located in Y.
parent X is the parent of Y.

Y is the parent of X.
ChEMBL X has an id Y in the ChEMBL database.

Table 1: Examples of relation labels and their possible
verbalizations, with placeholders for head (X) and tail
(Y) entities. Relations can be copied verbatim (is part
of ), have a unique verbalization (duration), or multi-
ple equivalent lexical choices (platform). There is also
ambiguity stemming from the semantics of the entities
(country) or the relation itself (parent, ChEMBL).

set (Mille et al., 2021). We collect a novel dataset
REL2TEXT (Re-writing edge labels to Text),2 act-
ing as a test bench for our experiments. It contains
4,097 single triples from three large-scale KGs
(Wikidata, DBPedia, and YAGO) and their crowd-
sourced verbalizations, covering 1,522 unique rela-
tions (§3). Each relation is equipped with a label, a
textual description, and up to five triples in which
the relation occurs in the KG.

Using the REL2TEXT dataset, we evalute the
ability of PLMs to verbalize relations which were
not present in the training set. We consider both
models finetuned on other relations in our dataset
and models finetuned on datasets from a related do-
main. We also experiment with scenarios involving
few-shot finetuning, training on masked labels, and
extending the labels with descriptions (§4, 5).

We find that the PLMs are quite robust in verbal-
izing a diverse set of relations based on their label
(achieving ~90% of overall entailment probabil-
ity). We show that semantically unfaithful model
outputs are often caused by incomplete, ambigu-
ous, or noisy input data. Somewhat suprisingly, we
also show that longer relation descriptions do not
provide substantial improvements over using short
labels. However, even for data using short relation
labels, the model trained on verbalizing relations
can achieve results comparable to verbalizing rela-
tions using manual templates in two downstream
tasks (§6).

The contributions of our work are as follows:

• We examine the ability of PLMs to describe
2Or simply “Relations-to-Text”.

graph relations, showing that clear and mean-
ingful labels are the basis for successful gen-
eralization to unseen relations.

• We present REL2TEXT—a human-annotated
dataset with 4,097 examples verbalizing 1,522
relations from three large-scale open KGs.

• We show that a model trained on REL2TEXT

can serve as a drop-in replacement for man-
ual templates, preserving or improving perfor-
mance on downstream tasks.

2 Related Work

Earlier works in natural language generation from
KGs exploited domain-specific ontologies for rule-
based systems (Cimiano et al., 2013; Bouayad-
Agha et al., 2012; Sun and Mellish, 2007, 2006).
With the advance of PLMs, structure-aware mod-
eling and task-specific pretraining has lead to re-
markable progress on D2T benchmarks such as
WebNLG (Gardent et al., 2017b; Ferreira et al.,
2020), AGENDA (Koncel-Kedziorski et al., 2019),
or E2E (Dušek et al., 2020), indicated via both au-
tomatic and human evaluation metrics (Ke et al.,
2021; Guo et al., 2020; Ribeiro et al., 2020; Hark-
ous et al., 2020).

Agarwal et al. (2021) used a multi-step approach
with semantic filtering and distant supervision for
verbalizing the English Wikidata, covering the
wide range of relations present in the KG. The
authors use the approach to generate the KeLM
corpus – an automatically cleaned corpus with syn-
thetic (model-generated) verbalizations of Wiki-
data triplesets. We use the KeLM corpus to inves-
tigate how models trained on large-scale synthetic
data differ from models trained on a small-scale
human-annotated dataset (cf. §4).

Other works have tried incorporating descrip-
tions of data labels in the model inputs. In one
of the experiments, Wang et al. (2021) use descrip-
tions of relations from Wikidata instead of their
labels for relation embeddings, concluding that it
results in worse performance on downstream tasks.
Conversely, Kale and Rastogi (2020) and Lee et al.
(2021) improve the performance of their systems
by including schema descriptions on the input for
the dialogue state tracking and dialogue response
generation systems.

There has also been a research interest in verbal-
izing single triples as a stand-alone preprocessing
step for NLP tasks. The step has been shown to
improve the generalization ability of downstream
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models for data-to-text generation (Laha et al.,
2019; Kasner and Dušek, 2020, 2022; Xiang et al.,
2022) and response generation in dialogue systems
(Kale and Rastogi, 2020). This step can also serve
for making the input similar to the format used dur-
ing pretraining, e.g. for natural language inference
(NLI) models (Gupta et al., 2020; Neeraja et al.,
2021; Dušek and Kasner, 2020). The above works
employ a variety of methods to convert triples to
text, ranging from simple templates and rule-based
systems to prompting large PLMs. However, none
of these works investigate how PLMs behave when
presented with novel relations.

In a work concurrent to ours, Keymanesh et al.
(2022) investigate the aspects of generalization
performance of PLMs on the DART dataset3 (Nan
et al., 2021). They compare prompt-based and
finetuning-based approaches to D2T generation,
focusing on the ability of models to perform on
difficult examples. In contrast, we focus on fine-
tuned encoder-decoder models, which were shown
in Keymanesh et al. (2022) to be more efficient for
D2T generation, and we evaluate the models on
clean and manually curated data.

3 Data

For our experiments, we need data with diverse
labels and their human verbalizations. In this sec-
tion, we describe how we gather RDF4 triples from
large-scale KGs (§3.1) and collect their verbaliza-
tion through crowdsourcing (§3.2, 3.3).

3.1 Input Data

An RDF triple is a tuple t “ peh, r, etq, where r
denotes the relation between the head entity eh and
the tail entity et. We retrieve triples from three
open large-scale KGs encoding factual knowledge:

• Wikidata (Vrandečić and Krötzsch, 2014) is
a large-scale Wikipedia-based KG created us-
ing collaborative editing. With approximately
10,000 human-created relations equipped with
descriptions,5 it is by far the largest source of
variety in relation labels.

• YAGO (Tanon et al., 2020) is a KG which
builds upon factual knowledge from Wikidata,

3We did not use DART (which is a compilation of several
datasets including WebNLG) for our experiments since it
contains many noisy relations.

4https://www.w3.org/TR/PR-rdf-syntax/
5https://www.wikidata.org/wiki/Wikidata:

Database_reports/List_of_properties/all

but uses a limited set of 116 pre-defined re-
lations from schema.org (Guha et al., 2016)
mapped to a subset of Wikidata relations.

• DBPedia (Lehmann et al., 2015) is a KG that
maps Wikipedia infotables to a predefined on-
tology containing 1,355 relations, about 350
of which are accompanied by a description.

We query all KGs using their openly available
endpoints to retrieve a list of relations in each KG.
For each relation, we retrieve up to five triples that
use this relation, and the relation description, i.e. a
short explanatory text. If present, we also retrieve
descriptions for the head and tail entities.

We apply a set of filtering heuristics, leaving
out e.g. relations describing KG metadata or iden-
tification numbers.6 In this way, we collect 7,334
triples with 1,716 relations in total. For the full
description regarding the data retrieval, please refer
to Appendix A.

3.2 Annotation Process

We collect human-written verbalizations for all in-
put triples using Prolific.7 We built a web interface
in which the human annotators are shown a single
triple t and asked to describe it in a single sentence.
The annotators are encouraged to re-use the entities
in their original form, but they are able to change
the form if necessary. The annotators can also re-
port noisy inputs. We employed 420 annotators in
total, each of which annotated 20 examples. We
set the average reward per hour according to the
platform recommendations to £7.29 per hour and
we accepted all the inputs which passed our built-in
checks. See Appendix B for more details on the
annotation process.

3.3 Postprocessing the Data

A considerable portion of the collected verbaliza-
tions contain typos and grammatical errors, mis-
understood meaning of the relation, or extra in-
formation in the input. To ensure high quality of
our data, we manually examined all crowdsourced
examples and annotated them as OK, noisy, cor-
rupted or containing extra information. Appendix
C includes postprocessing details. In the rest of
the paper, we only use the subset of our dataset

6Relations describing various IDs make up a suprisingly
large portion of relations in Wikidata. Since we focus on
diversity instead of coverage, we decided not to include these
relations in our dataset.

7https://www.prolific.co/
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with OK annotations, one per input triple (4,097
examples, 1,522 distinct relations), although we
also make the remaining noisy instances available
for future research.

4 Analysis and Evaluation

In our analysis, we are interested in the following
research questions:

• RQ1: Are the PLMs finetuned for D2T gener-
ation able to describe relations not present in
the finetuning corpus?

• RQ2: How many training examples do the
PLMs need to generate satisfactory outputs?

• RQ3: How do the PLMs behave when pro-
vided limited lexical cues about the relation?

• RQ4: Can relation descriptions help to clar-
ify ambiguous cases and improve semantic
accuracy of the outputs?

To answer these questions, we divide our
REL2TEXT dataset into a training and test splits
(see §4.1 for details). We then use the REL2TEXT
test set to evaluate a finetuned BART model (Lewis
et al., 2020), a pretrained encoder-decoder trans-
former, which is used as a backbone of many recent
data-to-text models (Ke et al., 2021; Xing and Wan,
2021; Ribeiro et al., 2021; Liu et al., 2021).8

To answer RQ1, we compare the performance
of BART finetuned on the REL2TEXT training set
with BART finetuned on two qualitatively differ-
ent D2T datasets – WEBNLG and KELM. Using
REL2TEXT only, we then prepare various setups
for answering RQ2, RQ3, and RQ4 (details in §4.2).
We analyze the outputs of the models both automat-
ically (§4.3) and manually (§4.4).

4.1 Experimental Setup
Datasets We experiment with the following
datasets, all of which focus on verbalizing fac-
tual information from KGs and use the same triple-
based input data format:

• REL2TEXT. Our dataset (cf. §3.2) with single
triples from three KGs with 4,097 examples,
1,522 relations and human-annotated outputs.

• WEBNLG (Ferreira et al., 2020; Gardent
et al., 2017b). A DBPedia-based triple-to-text
dataset with 38k examples, 411 relations, up

8We believe that our findings also apply to similar models
such as T5 (Raffel et al., 2020), which have shown comparable
performance on related tasks.

to 7 triples per example, and human-annotated
outputs. We use the English part of version
3.0 from HuggingFace.9

• KELM (Agarwal et al., 2021). A Wikidata-
based dataset with 11M examples, 1,519 re-
lations, up to 13 triples per example, and
model-generated outputs. We use the dataset
released by the authors, splitting it in a 1:100
ratio into validation and training data.

Rel2Text Data Split We use approximately 15%
of the REL2TEXT examples for the test set. To
ensure maximum fairness and focus on model
generalization to unseen relations, we do not in-
clude in the REL2TEXT test set any relations
which have an exact string match with a rela-
tion in KELM, WEBNLG, or the REL2TEXT

training set. We also exclude any relations for
which the maximum semantic similarity10 to any
KELM/WEBNLG/REL2TEXT training relation ex-
ceeds a threshold of 0.9. We set this threshold em-
pirically in order to exclude relations which are
almost synonymous, but slightly lexically differ-
ent. We use 90% of the remaining examples for the
training set and 10% for the validation set.

Data Preprocessing We split the camel case in
the relation labels. For finetuning the models, we
linearize the input triples by marking the triple
constituents with special tokens <head>, <rel>
and <tail>, which we add to the model vocabulary.

Training and Decoding Setup In a default sce-
nario, we finetune BART-BASE for 10 epochs and
select the best checkpoint using validation BLEU
score, then use greedy decoding to produce outputs.
We repeat each experiment with five random seeds,
averaging the results. See Appendix D for details.

4.2 Compared Systems
Copy Baseline We introduce a simple baseline
by outputting the triple constituents separated by
space: “eh r et”.

Full Training Data We use the default setup
(§4.1) on full REL2TEXT and WEBNLG train-
ing sets. For KELM (which is about 300ˆ larger
than WebNLG), we finetune the model for 1 epoch
only. We denote the trained models full-rel2text,
full-webnlg, and full-kelm, respectively.

9https://huggingface.co/datasets/web_nlg
10Computed as cosine similarity between embeddings of

the labels, which are encoded using all-distilroberta-v1
from SBERT (Reimers and Gurevych, 2019).
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Limited Training Data For the limited train-
ing data setup, we prepare few-shot splits from
REL2TEXT as subsets containing N “ {25, 50,
100, 200} relations with a single example per rela-
tion. We select examples at random, ensuring that
each few-shot split is a subset of the larger splits.
We finetune the fewshot-N models for 10 epochs
without validation, using the last checkpoint.

Limited Lexical Cues In D2T datasets (with cer-
tain exceptions, cf. Gardent et al. (2017a)), unclear
labels are kept in original form, implicitly assum-
ing that the models will learn the verbalizations
from the training data. We investigate how the
models behave if we take this issue to the extreme,
i.e. if the relation labels are not available at all. We
consider three scenarios:

• mask-test – We train the model on REL2TEXT

in the standard training setup. For testing, we
replace the relation labels in REL2TEXT with
the <mask> token.

• mask-train – For training, we replace the re-
lation labels in REL2TEXT with the <mask>
token. We test the model on REL2TEXT in
the standard evaluation setup.

• mask-all – We replace the relation labels in
REL2TEXT with the <mask> token for both
training and testing.

Incorporating Descriptions Our dataset con-
tains short textual descriptions of the relations,
which may be useful to disambiguate its mean-
ing and provide additional cues to the model. We
consider two scenarios:

• desc-repl – We replace the relation label with
its description.

• desc-cat – We concatenate the relation descrip-
tion with the input, separated using the special
token <rel_desc>.

4.3 Automatic Evaluation

To get a high-level overview of model behavior,
we evaluate generated outputs using the GEM-
metrics11 package (Gehrmann et al., 2021), which
provides an extensive set of automatic metrics for
text generation.

11https://github.com/GEM-benchmark/
GEM-metrics

Lexical Similarity We first measure lexical
similarity between the model outputs and hu-
man references using BLEU (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005), and
BLEURT (Sellam et al., 2020). The first two met-
rics focus on n-gram overlap; the latter is a trained
metric that also captures semantic similarity be-
tween the output and the reference. Although these
metrics should not be used in isolation (Gehrmann
et al., 2022), they give us a better overview of the
output quality in combination with other metrics.

Semantic Similarity and Legibility Lexical sim-
ilarity metrics focus on the surface form, which
may not be telling the whole story. For example,
if the relation parent denotes that et is the parent
of eh, but the entities are swapped in the generated
text, the output will be incorrect, although lexical
similarity metrics will be high. To get deeper in-
sights into semantic and lexical properties of the
outputs, we use NUBIA (Kane et al., 2020), which
is a trained metric combining several features to
measure “interchangeability” (equivalence) of two
texts. The metric outputs a single score (NB) with a
value between 0 and 1. We also report its individual
underlying features: the semantic similarity score
(SS) on a 0-5 scale, predicted by RoBERTa (Liu
et al., 2019) finetuned on the STS-B benchmark
(Cer et al., 2017); the contradiction (C), neutral (N),
and entailment (E) probabilities from RoBERTa
finetuned on the MNLI challenge from the GLUE
benchmark (Wang et al., 2018); and the perplexity
score (PPL) from vanilla GPT-2 (Radford et al.,
2019), computed as a geometric mean of proba-
bilities of the tokens in each step (this score is
referenceless).

Lexical Diversity To assess lexical diversity of
the generated texts, we use several metrics used in
previous work (Dušek et al., 2020; van Miltenburg
et al., 2018). We measure the number of unique
n-grams (U-1), conditional entropy of bi-grams
(CE-2), and the mean segmental type-token ratio
over segment lengths of 100 (MSTTR; Johnson,
1944). We also measure the average output length
in tokens (len).

4.4 Manual Error Analysis
To examine the sources of errors, we perform an
in-house annotation of the model outputs. We iden-
tify four model error types based on preliminary
observations: semantic errors (SEM), with a swap
of the relation direction (DIR) as a special case, too
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Lexical Semantics Referenceless

BLEU METEOR BLEURT SS C N E NB U-1 CE-2 MSTTR PPL len

human - - - - - - - - 1785 2.13 0.62 5.88 9.55
copy 29.04 37.52 0.09 4.79 1.22 7.57 91.21 0.74 1606 1.17 0.7 7.55 6.72
full-rel2text 52.54 44.86 0.54 4.72 3.50 4.65 91.85 0.88 1661 1.96 0.58 5.89 9.16
full-webnlg 41.99 41.59 0.41 4.65 3.68 6.93 89.39 0.86 1651 2.54 0.56 5.65 10.29
full-kelm 46.74 42.94 0.46 4.70 3.95 5.29 90.77 0.86 1652 2.32 0.56 5.83 9.71
fewshot-25 31.13 35.52 -0.02 3.94 8.35 27.26 64.39 0.65 1445 2.93 0.52 5.34 10.67
fewshot-50 40.60 40.05 0.25 4.44 8.04 13.12 78.84 0.76 1536 2.31 0.55 5.79 9.90
fewshot-100 45.88 42.38 0.38 4.53 6.34 10.60 83.06 0.81 1600 2.13 0.57 5.85 9.57
fewshot-200 48.67 43.34 0.44 4.58 5.40 9.03 85.57 0.83 1626 2.04 0.58 5.89 9.36
mask-test 42.45 38.52 0.25 3.99 14.91 18.47 66.62 0.65 1669 1.96 0.61 5.69 8.96
mask-train 46.90 43.15 0.43 4.55 5.85 11.55 82.61 0.81 1646 2.00 0.57 5.91 9.74
mask-all 42.53 38.49 0.24 3.85 17.58 25.15 57.26 0.61 1677 1.96 0.61 5.66 9.16
desc-repl 49.35 42.85 0.47 4.57 5.78 8.80 85.42 0.82 1693 1.94 0.59 5.86 9.18
desc-cat 53.07 45.04 0.55 4.72 3.46 4.66 91.88 0.87 1668 1.91 0.59 5.92 9.11

Table 2: The summary of evaluation using automatic metrics on REL2TEXT test set. See §4.1 for the descriptions of
the models, §4.3 for the descriptions of the metrics, and Table 6 for standard deviations.

Label Example input Model Example outputs (✗ incorrect, ✓ correct)

m
od

el

SEM (Yousra Matine, sport country,
Morocco)

mask-mask
full-rel2text

✗
✓

Yousra Matine was born in Morocco.
Yousra Matine plays for Morocco.

DIR (Kentucky Channel, former
broadcast network, KET ED)

fewshot-100
full-rel2text

✗
✓

KET ED was broadcast on Kentucky Channel ED.
The Kentucky Channel was broadcast on KET ED.

LIT (Vietnam Television,
first air date, 1970-09-07)

full-kelm
full-rel2text

✗
✓

The first air date of Vietnam Television was 1970-09-07.
Vietnam Television first aired on 1970-09-07.

LEX (RPG-43, used in war,
The Troubles)

full-rel2text
full-kelm

✗
✓

RPG-43 was used in the The Troubles.
The RPG-43 was used in the Troubles.

da
ta

ENT (The Age of Entitlement,
by artist, The Basics)

full-kelm
full-rel2text

✗
✓

The Age of Entitlement was written by The Basics.
The Age of Entitlement was recorded by The Basics.

LBL (General Motors Epsilon plat-
form, vehicle, Cadillac XTS)

full-webnlg
desc-cat

✗
✓

General Motors Epsilon is a vehicle similar to the Cadillac XTS.
General Motors Epsilon platform is used in the Cadillac XTS.

Table 3: Error categories used in manual analysis, with examples of errors found and corresponding correct
verbalizations. Model error types (top): SEM – The output is semantically incorrect, DIR – The direction of the
relation is swapped, LIT – The verbalization is too literal, LEX – There is a lexical error in the output. Input data
error types (bottom): ENT – The verbalization may depend on the entities, LBL – The relation label is not clear.

literal (LIT), i.e. containing awkward or misleading
phrasing, and grammar/lexical errors (LEX). We
further annotate two types of input data errors: am-
biguous relations (ENT) and relations with unclear
labels (LBL). Examples are shown in Table 3. We
select 100 random examples together with their
corresponding outputs from the full-rel2text, full-
webnlg, full-kelm, fewshot-100, mask-all and desc-
cat models. Without revealing the output sources,
we ask three expert annotators to mark all error
categories that apply.

5 Results

5.1 Automatic Evaluation Results

Table 2 shows automatic scores for all our mod-
els. full-rel2text is the best among the fully trained

models in terms of lexical overlap metrics (which
is expected, as it is trained on the most similar refer-
ence distribution), but the full-webnlg and full-kelm
models are almost equal in terms of semantic con-
sistency, achieving around 90% average entailment
probability, which is on par with the copy baseline.

Semantic consistency is much lower for the few-
shot models (e.g. the average entailment probability
is between 65% and 85%), showing that there is a
certain minimum amount of data needed to achieve
consistent outputs. Using more examples for train-
ing the model generally helps to decrease variance
and increase performance across various metrics
(cf. Figure 2).

Interestingly, the models which do not see the
relations during test time (mask-test and mask-all)
still achieve around 60% average entailment prob-
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ability, similarly to the worst few-shot model. Al-
though their rate of contradictions is higher than
for other models, the results suggest that in many
cases, the guessed relation is compatible with the
correct relation.

Another interesting observation is that the mask-
train model (trained not to use the labels) is able to
use the labels provided at test time to improve the
outputs considerably (contradiction rate drops from
17% to 5% compared to mask-all). The fact that
the short labels are both sufficient and necessary
for the successful verbalization is emphasized by
the fact that the desc-repl model is worse than full-
rel2text (although the descriptions are longer and
supposedly explain the relation semantics), and the
benefits of concatenating the descriptions alongside
the relation labels (desc-cat) are negligible, only
slightly improving lexical similarity metrics (0.5
BLEU point gain over full-rel2text).

In terms of lexical diversity, human references
use more unique n-grams, but the model outputs are
very similar in other aspects. It remains to be seen if
the model outputs can stay semantically consistent
with diversity-focused decoding techniques such as
nucleus sampling (Holtzman et al., 2020).

5.2 Error Analysis Results

Results are summarized in Figure 3; complete re-
sults are presented in Appendix F. Examples of
model outputs for each error type are shown in
Table 3; more examples are given in Appendix G.

The full-kelm and full-webnlg models use ex-
pressions that are too literal (LIT) in 23 and 29
cases, respectively, while the full-rel2text and desc-
cat models do the same only in 11 cases (5 out
of which are marked as LBL, i.e., with an unclear
label). This suggests that the variability of our
dataset helps models to apply more natural expres-
sions, especially if the relation is understandable
from its label.

There is a near-constant portion of examples
where the models make a semantic error (SEM) and
the input is marked as needing an extra description
(LBL). The models also make relatively many se-
mantic errors on their own, most prominently in the
case of the fewshot-100 and the mask-all models.
The mask-all model made a semantic error in 78
cases, suggesting that guessing the exact relation
just from the entities is difficult (although still pos-
sible in 22 cases). Morevover, the outcomes from
this model are fluent (only 4 LEX errors), making
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Figure 2: Boxplots for selected metrics from Table 2
w.r.t. the number of examples (displayed on the x-axis,
full “ 1522), taking into account variance from individ-
ual random seeds (cf. Table 6).
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Figure 3: Number of annotated errors per model (see
§4.4 and Table 3 for the description of error categories
and §4.2 for the models). The striped part signifies
that the label of the input was marked as unclear. See
Appendix F for details.

it hard to detect faulty cases.
The case of swapping the relation direction (DIR)

is surprisingly not that common. This is probably
down to having only a few examples in our dataset
prone to this kind of error. Notably, the results for
full-rel2text and desc-cat are very similar, render-
ing the impact of extra descriptions negligible.

Finally, there were only 12 out of 100 exam-
ples annotated as ENT, which suggests that the
verbalization of the relation can be mostly decided
irrespective of the entities in the triple.

6 Downstream Tasks

Given that the full-rel2text model can describe re-
lations from their labels with high accuracy, we
investigate if we can use the model to replace man-
ually created templates in downstream tasks. We
select two qualitatively different tasks, both using
the idea of transforming individual input triples to
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premise repr. dev α1 α2 α3

OPR (Gupta et al., 2020) 76.78 75.30 68.46 64.63
BPR (Neeraja et al., 2021) 77.04 74.44 67.46 63.17
full-rel2text (ours) 74.44 74.31 64.59 63.46

Table 4: Accuracy for the dev set and test sets α1,2,3

from the INFOTABS dataset. The results are averaged
over 3 random seeds.

simple sentences as a preprocessing step: tabular
reasoning (§6.1) and zero-shot data-to-text genera-
tion (§6.2).

6.1 Tabular Reasoning

Gupta et al. (2020) presented the INFOTABS
dataset as an NLI benchmark on tabular data. Each
example is a structured table with a set of premises,
i.e. natural language claims about the table; the task
is to determine whether each premise is entailed by
the table, contradicted by it, or neither.

They represent the table as a paragraph
where each table cell is represented as a
short sentence, mostly using a simple template
“The key of title are value.” Neeraja et al. (2021)
extend Gupta et al.’s approach, including a better
paragraph representation for which they prepare a
fine-grained set of rules for individual entity cate-
gories. The rules12 aim to minimize the number of
ungrammatical sentences and improve the reason-
ing abilities of the NLI model.

We replicate the setup of Neeraja et al. (2021)
for the original (OPR) and better (BPR) paragraph
representation using their public codebase. We then
replace their templates with our full-rel2text model,
verbalizing the triple (title, key, value). The results
are summarized in Table 4.

Our preliminary manual evaluation suggests that
the sentences from our model are indeed more
grammatical (even compared to BPR). However,
we observe that the performance is comparable
across all three test sets. In line with McCoy et al.
(2019), we conclude that for classification tasks
such as NLI, the input content appears to be more
important than the input form.

6.2 Zero-shot Data-to-Text Generation

Kasner and Dušek (2022) proposed a setup for zero-
shot D2T generation in which pretrained models
are used to gradually transform text into the final

12Formalized using more than 250 lines of Python code:
https://github.com/utahnlp/knowledge_infotabs/
blob/main/scripts/preprocess/bpr.py#L120

dataset model BLEU METEOR O H

filtered orig 43.19 39.13 0.152 0.073
full-rel2text 45.39 38.97 0.056 0.161

full orig 42.92 39.07 0.051 0.148
full-rel2text 44.63 38.93 0.058 0.166

Table 5: Lexical similarity metrics (BLEU, METEOR)
and ommission (O) and hallucinaton (H) rate; following
the setup in Kasner and Dušek (2022).

description. The first step of the pipeline requires
transforming individual triples into text. We focus
on the WebNLG dataset, for which the authors
manually created 354 templates.13 We replicate
the authors’ setup using their public code, applying
full-rel2text instead of the templates. The results
are summarized in Table 5.

We note that the pipeline using our model for pre-
processing is able to achieve improvements of „2
BLEU points, at the cost of a slightly higher omis-
sion and hallucination rate, but crucially without
needing the manual effort to create templates. Cur-
sory examination shows that sentences produced by
our model are qualitatively similar to the manual
templates, but more varied. Unlike the templates,
our model may verbalize a relation differently de-
pending on the context. Overall, we argue that
training a PLM on verbalizing individual relations
can potentially replace the manual effort of creating
simple templates, which will have a notable impact
for scaling similar approaches to larger datasets.

7 Discussion

Based on our experiments, we can conclude that
PLMs are indeed able to verbalize novel relations
(RQ1). However, there is a caveat: if the relation
label is ambiguous or when the cues about the rela-
tion are limited (RQ3), the model will resolve to
guessing and the semantic accuracy of the output
descriptions may drop. A takeaway for datasets
which do not follow standard naming conventions,
such as the Rotowire dataset with basketball sum-
maries (Wiseman et al., 2017) which uses abbre-
viations for column headers (e.g. FG3A stands for

“the number of shots the player attempted beyond the
arc”), is that rephrasing the labels to natural lan-
guage may increase the robustness of D2T systems
applied on these datasets.

We have focused on finetuned PLMs, which
13Available at https://github.com/kasnerz/

zeroshot-d2t-pipeline/blob/main/templates/
templates-webnlg.json

2405

https://github.com/utahnlp/knowledge_infotabs/blob/main/scripts/preprocess/bpr.py#L120
https://github.com/utahnlp/knowledge_infotabs/blob/main/scripts/preprocess/bpr.py#L120
https://github.com/kasnerz/zeroshot-d2t-pipeline/blob/main/templates/templates-webnlg.json
https://github.com/kasnerz/zeroshot-d2t-pipeline/blob/main/templates/templates-webnlg.json
https://github.com/kasnerz/zeroshot-d2t-pipeline/blob/main/templates/templates-webnlg.json


in our case require at least several hundreds of
examples to produce satisfactory results (RQ2).
However, recent research suggests prompting large
PLMs capable of in-context learning (Brown et al.,
2020) may help to bring down the number of ex-
amples required close to zero (Li and Liang, 2021;
Reynolds and McDonell, 2021; Schucher et al.,
2022; Chia et al., 2022; Xiang et al., 2022). In this
case, the models do not have a possibility to learn
the correct verbalizations from the training data,
which will probably make using clear and unam-
biguous labels even more important: an issue to
investigate in future work.

We showed that improving the outputs using
longer relation descriptions is not straightforward
(RQ4). To achieve more notable improvements,
it may be necessary to combine a more detailed
specification regarding the relation direction, type,
acceptable values, etc., together with a model able
to reason about this specification. A promising
research in this direction could be using chain-of-
thought reasoning, so far applied for tasks such as
open-domain question answering or solving math
word problems (Gao et al., 2022; Wei et al., 2022;
Yao et al., 2022; Nye et al., 2021).

The remaining open question is how to handle
input data with noisy labels. We suggest that detect-
ing these cases and fixing them prior to generation
(for example with knowledge-augmented systems
or a human-in-the-loop setup) could help to im-
prove the robustness of D2T systems in real-world
scenarios.

8 Conclusion

We analyzed the abilities of PLMs to verbalize
unseen relations in KGs using the relation la-
bels. Based on our findings, we believe that hav-
ing expressive and unambiguous data labels is a
good starting point for adapting D2T systems to
new domains. For the analysis, we collected the
REL2TEXT dataset, which can help to replace the
hand-crafted templates on downstream tasks. Fu-
ture work may investigate how our findings gener-
alize to prompt-based few-shot or zero-shot D2T
generation with large PLMs.

Limitations

Our analysis is limited to verbalizing single triples,
which is only a stepping stone towards full-fledged
G2T generation. To generate data for entire sub-
graphs, other issues need to be solved first, in-

cluding compositional generalization and structure-
aware modeling. Nevertheless, we believe that this
simplified setting allows us to distill insights which
are still applicable to G2T generation in general.

The factuality of the REL2TEXT dataset is
tightly related to the data in the input KGs, which
may contain outdated or incorrect information, and
may be influenced by our processing methods (see
Appendix A for details). Using the models trained
on our dataset should be done with caution, since
it can lead in producing harmful, imprecise, or fac-
tually incorrect statements.

We focus only on the English part of the KGs
and English datasets. In the future, our approach
could be extended to multilingual setting using
multilingual PLMs and non-English parts of KGs.
For more morphologically rich languages, an extra
effort would have to be put into correctly inflecting
the entities in the generated text.
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Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Commun.
ACM, 57(10):78–85.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel R. Bowman.
2018. GLUE: A Multi-Task Benchmark and Anal-
ysis Platform for Natural Language Understand-
ing. In Proceedings of the Workshop: Analyzing
and Interpreting Neural Networks for NLP, Black-
boxNLP@EMNLP 2018, Brussels, Belgium, Novem-
ber 1, 2018, pages 353–355. Association for Compu-
tational Linguistics.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan
Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang. 2021.
KEPLER: A Unified Model for Knowledge Em-
bedding and Pre-trained Language Representation.
Trans. Assoc. Comput. Linguistics, 9:176–194.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed H. Chi, Quoc Le, and Denny Zhou. 2022.
Chain of Thought Prompting Elicits Reasoning in
Large Language Models. CoRR, abs/2201.11903.

2410

https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.18653/v1/2021.nlp4convai-1.20
https://doi.org/10.18653/v1/2021.nlp4convai-1.20
https://doi.org/10.18653/v1/2021.nlp4convai-1.20
https://doi.org/10.1162/tacl_a_00332
https://doi.org/10.1162/tacl_a_00332
https://doi.org/10.1162/tacl_a_00332
https://doi.org/10.18653/v1/2022.acl-short.17
https://doi.org/10.18653/v1/2022.acl-short.17
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://aclanthology.org/W07-2316/
https://aclanthology.org/W07-2316/
https://doi.org/10.1007/978-3-030-49461-2_34
https://doi.org/10.1007/978-3-030-49461-2_34
https://aclanthology.org/C18-1147/
https://aclanthology.org/C18-1147/
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.18653/v1/w18-5446
https://doi.org/10.18653/v1/w18-5446
https://doi.org/10.18653/v1/w18-5446
https://doi.org/10.1162/tacl_a_00360
https://doi.org/10.1162/tacl_a_00360
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903


Sam Wiseman, Stuart M. Shieber, and Alexander M.
Rush. 2017. Challenges in Data-to-Document Gen-
eration. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2017, Copenhagen, Denmark, September
9-11, 2017, pages 2253–2263. Association for Com-
putational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander Rush. 2020. Transformers:
State-of-the-Art Natural Language Processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Jiannan Xiang, Zhengzhong Liu, Yucheng Zhou, Eric P.
Xing, and Zhiting Hu. 2022. ASDOT: Any-Shot
Data-to-Text Generation with Pretrained Language
Models. CoRR, abs/2210.04325.

Xinyu Xing and Xiaojun Wan. 2021. Structure-Aware
Pre-Training for Table-to-Text Generation. In Find-
ings of the Association for Computational Linguis-
tics: ACL/IJCNLP 2021, Online Event, August 1-6,
2021, volume ACL/IJCNLP 2021 of Findings of ACL,
pages 2273–2278. Association for Computational
Linguistics.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
ReAct: Synergizing Reasoning and Acting in Lan-
guage Models. CoRR, abs/2210.03629.

A Data Retrieval

DBPedia We query DBPedia through its
SPARQL access point: http://dbpedia.org/
sparql. We retrive relations as objects of
type rdf:Property which have a property
rdfs:comment (i.e., the relation description) and
language ’en’.

YAGO We download the English Wikipedia sub-
set of YAGO 4 database dump from https://
yago-knowledge.org/downloads/yago-4. We
retrieve all objects of type rdf:Property which
have a property rdfs:comment. For the entity de-
scriptions, we parse the entity page at YAGO web-
site http://yago-knowledge.org/resource/.

Wikidata We first use the Wikidata SPARQL
access point: https://query.wikidata.
org/sparql to retrieve the list of relations
as objects of type wikibase:Property

with wikibase:language="en", to-
gether with their English descriptions
(lang(?altLabel) = "en"). Second, we
query Wikidata through the LDF endpoint
https://query.wikidata.org/bigdata/ldf,
which is better able to handle heavy re-
quests, to retrieve the list of triples involved
in the relation. Finally, for retrieving
the entity descriptions, we use the API at
https://www.wikidata.org/w/api.php.

Filtering We apply a comprehensive set of filters
for filtering out noisy triples, including triples with
entities containing meta-information (“Category:”,

“XMLSchema#”), URLs, entites longer than 64 char-
acters, relations having the string “id”, “number”,
or “code” in the label, or having “Reserved for
DBpedia” in the description. As a consequence,
we lose some relations, most notably about 2/3
of the relations from Wikidata describing various
identifiers (we opted for this step in order to main-
tain data diversity). If KGs contain relations with
identical labels, we prefer the relations from DBPe-
dia and YAGO (which have a substantially lower
amount of relations) to Wikidata relations.

Missing Units Our dataset mostly does not con-
tain units for quantities. Although the units are
usually present in the KGs, they are not part of the
quantity itself – they may be either connected to
the quantity with another property, or described
informally in the relation label. Since our focus
was on the relation labels, we decided to not put
additional effort in retrieving and processing the
units. In effect, we consider verbalizations not
using the units (e.g., (Bommersheim substation,
voltage, 20000) Ñ “Bommersheim substation has
a voltage of 20000.”) as correct.

Factual Correctness A certain part of the data
is factually incorrect, either because there was an
error in the knowledge graph (e.g., (Catalans, pop-
ulation place, Italy)) or because there was a pro-
cessing error (e.g., (Child Language Teaching and
Therapy, final publication year, -1985). Since our
focus was not on judging the factuality of the in-
puts (which is a difficult problem on its own right),
we decided to keep the examples in the dataset and
consider the examples semantically consistent with
the input triple as correct.

Other Notes

• All the data was retrieved in February 2022,
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except for YAGO where we used the newest
available dump 2020-02-24.

• Although we retrieved the entity descriptions
wherever possible and we include them in our
dataset, we decided not to use them in our
experiments.

• The Python code for retriving the data is avail-
able in the paper repository.

B Crowdsourcing Details

We built a web interface for collecting verbaliza-
tions for the triples. Figure 4 shows the introduc-
tory instructions displayed for the participants and
Figure 5 shows the annotation interface.

We hired annotators on the Prolific crowdsourc-
ing platform https://app.prolific.co/. We
required that the annotators are native speakers of
English. After completing an introductory exam-
ple, the annotators were given 20 randomly selected
triples presented in a sequential order. The anno-
tators were asked to write a short, single-sentence
description of the triple. For making the annota-
tion easier, hovering the mouse over the relation
revealed its description (this applied also for the
entities, if the description was present).

The annotators could also click on the entity to
insert it in the text. This motivated the users to
insert the entities in the original form. Once the
entity appeared in the text (either typed or inserted),
it was highlighted. We required that both entities
(and at least two extra characters) are present in
the text before proceeding to the next step. Be-
cause of this requirement, approximately 98.6%
sentences in our dataset can be delexicalized us-
ing exact string matching. The users also had an
option to modify the entity name, which would be
recorded as a new ground-truth input (e.g., to make
its form more natural). However, this option was
used only sparingly.

In total, we collected 8,265 responses for 7,334
examples. Multiple responses for some examples
are a consequence of random selection combined
with sessions running in parallel. In the final
dataset used in our experiments, we selected at
most one correct answer for each example (see
Appendix C).

Figure 4: The introduction screen shown to the partici-
pants.
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Figure 5: The annotation inteface.

C Postprocessing the Dataset

Two of the paper authors manually postprocessed
the dataset. We used the following criteria for mark-
ing the responses:

• OK – The sentence is fluent and semantically
consistent with the input.

• Noisy – The sentence contains a minor ty-
pographical or grammatical error, or the sen-
tence sounds “awkward” (e.g., the relation
label is used too literally).

• Corrupted – The sentence is semantically
incorrect, contains a major typographical or
grammatical error, or generally does not make
sense.

• Extra information – The sentence is correct,
but contains extra information about the enti-
ties which cannot be derived from the triple
itself (e.g., the country of origin of the person
found in the entity description).

Figure 6 shows the distribution of responses in
our dataset. We marked 4,469 (54.1%) responses
as OK, 1,314 (15.9%) responses as Noisy, 2,246
(27.2%) responses as Corrupted and 235 (2.8%)
responses as Extra information.

Because our priority was to have clean data for
evaluation, we decided to use only the OK part of
our dataset in our experiments. We only use one
example for each input triple in our experiments,
which gives 4,097 instances. However, since we
believe that the human outputs can also be an in-
teresting research target, e.g. for investigating the
feasibility of verbalizing the input data, we release
all the annotations for future investigations.

Corrupted
27.2%

Extra 
2.8%

Noisy
15.9%

OK
54.1%

Figure 6: The distribution of crowdsourced responses
in our dataset.

Sidenote: Entity Overlap The overlap between
entities in test set of Rel2Text and train sets of
Rel2Text and WebNLG is around 1%, only 0.5%
being named entities (the rest are numerical val-
ues). On the contrary, around half of the entities in
Rel2Text test set are included in the KeLM train
set since KeLM covers a large portion of Wikidata
with ca. 6M unique entities. In general, we believe
that entity overlap does not have a notable influ-
ence on the results since all the pretrained models
already have a representation of the entities from
the pretraining stage.
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experiments Lexical Semantics Referenceless

BLEU METEOR BLEURT SS C N E NB U-1 CE-2 MSTTR PPL len

full-rel2text 0.60 0.30 0.01 0.02 0.41 0.38 0.65 0.01 7 0.07 0.01 0.03 0.10
full-webnlg 0.69 0.09 0.00 0.02 0.23 0.94 1.07 0.00 7 0.02 0.00 0.02 0.10
full-kelm 0.78 0.22 0.01 0.02 0.49 0.15 0.42 0.01 11 0.03 0.00 0.03 0.06
fewshot-25 1.60 1.18 0.05 0.14 1.19 2.67 3.58 0.03 68 0.05 0.02 0.14 0.61
fewshot-50 1.36 0.59 0.02 0.06 0.99 0.77 1.59 0.02 19 0.13 0.01 0.08 0.19
fewshot-100 0.51 0.38 0.02 0.02 0.63 0.53 0.75 0.01 14 0.11 0.01 0.06 0.25
fewshot-200 0.80 0.35 0.02 0.02 0.60 1.37 1.25 0.01 14 0.06 0.00 0.02 0.08
mask-test 0.25 0.11 0.01 0.01 0.62 0.48 1.00 0.01 10 0.03 0.00 0.03 0.06
mask-train 0.19 0.09 0.01 0.03 0.64 1.73 1.95 0.01 10 0.02 0.01 0.03 0.09
mask-all 1.19 0.22 0.00 0.04 1.29 0.97 1.62 0.01 8 0.03 0.01 0.05 0.19
desc-repl 0.29 0.13 0.00 0.01 0.71 0.51 0.40 0.01 10 0.05 0.00 0.03 0.14
desc-cat 0.57 0.21 0.00 0.01 0.24 0.28 0.42 0.00 10 0.04 0.01 0.03 0.09

Table 6: Standard deviations for the model experiments in Table 2. Results were computed for 5 random seeds.

D Experimental Setup

Framework We implemented the models in Py-
Torch Lightning (Paszke et al., 2019). We used
the PyTorch (et al., 2019) version of BART-BASE

from the Huggingface library (Wolf et al., 2020),
with 140M parameters as a basis for all our models.

Hyperparameters We use the Adam (Kingma
and Ba, 2015) optimizer (β1 “ 0.9, β2 “
0.98, ε “ 1´6) with learning rate 2´5 and poly-
nomial scheduling with 10% warmup steps. We
train the models with batches of size 8 and accu-
mulating gradients with factor 4 (an effective batch
size of 32).

Training We train the models for 10 epochs on a
single GeForce RTX 3090 GPU with 24 GB RAM,
except for full-kelm model which we train for 1
epoch. Training times were around 15 minutes for
the datasets based on REL2TEXT, 2 hours for full-
webnlg and 3 days for full-kelm. We use greedy
decoding in all our experiments.

E Automatic Evaluation

The standard deviations for each experiment from
Table 2 are listed in Table 6.

F Manual Evaluation

Table 7 shows full results of our manual evaluation.
In total, there were 7 examples annotated as ENT

only, 24 examples annotated as LBL only, and 5
examples annotated as ENT+DESC.

DIR LIT LEX SEM

full-rel2text 2 (0,2,0) 11 (1,5,1) 12 (0,4,0) 24 (2,9,1)
full-webnlg 8 (2,3,2) 23 (2,9,0) 12 (1,3,0) 25 (4,13,2)
full-kelm 6 (1,3,1) 29 (3,9,2) 19 (1,7,1) 25 (3,8,2)
fewshot-100 3 (0,3,0) 12 (2,5,1) 10 (0,4,0) 24 (2,10,2)
desc-cat 5 (0,5,0) 31 (3,8,2) 22 (2,6,1) 41 (6,14,2)
mask-all 4 (1,3,0) 1 (1,0,0) 4 (1,2,0) 78 (7,21,4)

Table 7: Number of errors manually annotated in 100
outputs from the models. The parentheses contain the
portion of examples where the input was marked as ENT
only, LBL only, and ENT+DESC, respectively.

G Examples

Examples of outputs of the models selected for
manual evaluation are shown in Table 8.
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input (Kalatungan Mountain Range, highest, Mount Kalatungan)
desc. The highest mountain of a mountain range.
full-rel2text Kalatungan Mountain Range’s highest mountain is Mount Kalatunan.
full-webnlg The Kalatungan Mountain Range is the highest of Mount Kalatuna.
full-kelm The highest mountain in the Kalatungan Mountain Range is Mount Kalatunagan.
desc-cat Kalatungan Mountain Range is the highest mountain in the Kalatunan mountain range.
fewshot-100 Kalatungan Mountain Range is the highest mountain in the Kalatunan Mountain Range.
mask-all Kalatungan Mountain Range is located on Mount Kalatunan.

input (The Fight Before Christmas, part of series, The Simpsons)
desc. The series to which this episode or season belongs.
full-rel2text The Fight Before Christmas is part of The Simpsons.
full-webnlg The Simpsons is the series that has The Fight Before Christmas as one of its episodes.
full-kelm The Fight Before Christmas is part of the Simpsons series.
desc-cat The Fight Before Christmas is a part of The Simpsons.
fewshot-100 The Fight Before Christmas was part of series of The Simpsons.
mask-all The Fight Before Christmas was a parody of The Simpsons.

input (Landwasser Viaduct, construction material, Limestone)
desc. Construction material (eg. concrete, steel, iron, stone, brick, wood).
full-rel2text Landwasser Viaduct was built using Limestone.
full-webnlg The construction material of the Landwasser Viaduct is Limestone.
full-kelm The Landwasser Viaduct is made of limestone.
desc-cat Landwasser Viaduct was built using Limestone.
fewshot-100 Landwasser Viaduct was built using Limestone.
mask-all Landwasser Viaduct crosses Limestone.

input (Sharnbrook Academy, county, Bedfordshire)
desc. The county where the thing is located.
full-rel2text Sharnbrook Academy is in Bedfordshire.
full-webnlg Sharnbrook Academy is in the county of Bedfordshire.
full-kelm Sharnbrook Academy is located in Bedfordshire.
desc-cat Sharnbrook Academy is in Bedfordshire.
fewshot-100 Sharnbrook Academy is in Bedfordshire.
mask-all Sharnbrook Academy is in Bedfordshire.

input (Loco-Motion, computing platform, Tomy Tutor)
desc. some sort of hardware architecture or software framework, that allows this software to

run
full-rel2text Loco-Motion is run on Tomy Tutor.
full-webnlg Tomy Tutor is the computing platform for Loco-Motion.
full-kelm Loco-Motion is available for Tomy Tutor.
desc-cat Loco-Motion runs on Tomy Tutor.
fewshot-100 Loco-Motion is a computing platform for Tomy Tutor.
mask-all Loco-Motion was inspired by Tomy Tutor.

Table 8: Examples of outputs of the models selected for manual evaluation.
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Abstract

Multilingual transformer-based models demon-
strate remarkable zero and few-shot trans-
fer across languages by learning and reusing
language-agnostic features. However, as a
fixed-size model acquires more languages, its
performance across all languages degrades.
Those who attribute this interference phe-
nomenon to limited model capacity address the
problem by adding additional parameters, de-
spite evidence that transformer-based models
are overparameterized. In this work, we show
that it is possible to reduce interference by in-
stead identifying and pruning language-specific
attention heads. First, we use Shapley Values, a
credit allocation metric from coalitional game
theory, to identify attention heads that intro-
duce interference. Then, we show that pruning
such heads from a fixed model improves perfor-
mance for a target language on both sentence
classification and structural prediction. Finally,
we provide insights on language-agnostic and
language-specific attention heads using atten-
tion visualization.1

1 Introduction

Cross-lingual transfer learning aims to utilize a nat-
ural language processing system trained on a source
language to improve results for the same task in a
different target language. The core goal is to main-
tain relevant learned patterns from the source while
disregarding those which are inapplicable to the
target. Multilingual pretraining of transformer lan-
guage models has recently become a widespread
method for cross-lingual transfer; demonstrating re-
markable zero and few shot performance across lan-
guages when finetuned on monolingual data (Pires
et al., 2019; Conneau et al., 2019; Xue et al., 2021).

However, adding languages beyond a threshold
begins to harm cross-lingual transfer in a fixed-
size model as shown in prior work (Conneau et al.,
2019; Xue et al., 2021). This phenomenon, termed

1We release code to compute Shapley Values on GitHub

interference, has been addressed with additional
parameters, both language-specific (Pfeiffer et al.,
2020) and broadly (Conneau et al., 2019; Xue et al.,
2021). Wang et al. (2020) justifies this by showing
that competition over limited capacity drives inter-
ference. This seems to contradict the lottery ticket
hypothesis, which has shown that pretrained lan-
guage models are highly overparameterized (Fran-
kle and Carbin, 2019; Chen et al., 2020).

We offer an alternate hypothesis that interfer-
ence is caused by components that are special-
ized to language-specific patterns and introduce
noise when applied to other languages. To test
this hypothesis, we introduce a methodology that
selectively removes noisy components to improve
language-specific performance without updating
or adding additional language-specific parameters.
Our work builds on prior research studying mono-
lingual models that shows they can be pruned ag-
gressively (Michel et al., 2019; Voita et al., 2019).

We leverage Shapley Values, the mean marginal
contribution of a player to a collaborative reward, to
identify attention heads that cause interference. Un-
like prior methods, Shapley Values map each head
to positive and negative values in a way that abides
by all axioms of fair attribution (Ali et al., 2022).
Therefore, negative values soundly mark interfer-
ing heads where removal will improve performance.
We approximate Shapley Values in a computation-
ally tractable but functionally accurate manner us-
ing truncation and multi-armed bandit sampling
following prior work in computer vision (Ghorbani
and Zou, 2020). We contribute the following:

1. Attention Head Language Affinity: Even
when computed from aligned sentences, At-
tention Head Shapley Values vary based
on the language of input. This high-
lights that a subset of attention heads has
language-specific importance, while others
are language-agnostic as shown in Figure 1.
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Figure 1: Attention Head Shapley Values for 3 Languages computed from 512 aligned examples for XLM-R
finetuned on English XNLI. Each value represents the mean marginal effect an attention head has on accuracy for
the test set in that language. The set of harmful heads changes for language, with the most distinct set for Swahili.

2. Improving through Pruning: Model prun-
ing according to Shapley Values improves
performance without updating parameters on
the Cross-Lingual Natural Language Infer-
ence corpus (Conneau et al., 2018) and the
Universal Dependencies Part-of-Speech cor-
pus (Nivre et al., 2020). This opens a path of
work to reduce interference through pruning
rather than scaling.

3. Interpreting Multilingual Heads: In a
qualitative study, we find that the most
language-agnostic heads identified have a vis-
ible language-agnostic function, while lan-
guage differences can be measured meaning-
fully for language-specific heads.

2 Related Work

2.1 Multilingual Learning
A large amount of work has studied both the the-
oretical underpinnings of learning common struc-
tures for language and their applications to cross-
lingual transfer. Early works exploited commonal-
ity through the use of pivot representations, created
either by translation (Mann and Yarowsky, 2001;
Tiedemann et al., 2014; Mayhew et al., 2017) or
language-agnostic task formulations (Zeman, 2008;
McDonald et al., 2011).

As NLP has increasingly used representation
learning, dense embedding spaces replaced ex-
plicit pivots. This led to methods that identified
the commonalities of embedding spaces and ways
to align them (Joulin et al., 2018; Artetxe et al.,
2018; Artetxe and Schwenk, 2019). Recently, many
works (Pires et al., 2019; Conneau et al., 2019;
Liu et al., 2020; Xue et al., 2021; Hu et al., 2021)
have trained multilingual transformer models as

the basis for cross-lingual transfer. These models
both implicitly and explicitly align the embedding
space across languages, although they empirically
achieve stronger alignment between closely related
languages (Artetxe et al., 2020; Conneau et al.,
2020).

With language-specific data, further work has
studied how to reduce interference by adding
a small number of language-specific parameters.
These works adapt a model for the target language
by training only Adapters (Wang et al., 2020; Pfeif-
fer et al., 2020; Ansell et al., 2021), prompts (Zhao
and Schütze, 2021), or subsets of model parame-
ters (Ansell et al., 2022).

Ma et al. (2021) previously investigated prun-
ing in multilingual models using gradient-based
importance metrics to study variability across at-
tention heads. However, they used a process of
iterative pruning and language-specific finetuning.
This iterative process is not consistent since there
are many trainable subnetworks within large mod-
els (Prasanna et al., 2020). Our method is the first
to address interference and improve cross-lingual
performance purely by pruning, without updating
or adding additional language-specific parameters.

2.2 Model Pruning

Model pruning has largely been focused on re-
ducing the onerous memory and computation re-
quirements of large models. These techniques are
broken into two approaches: structured and un-
structured pruning. Unstructured pruning aims to
remove individual parameters, which allows for
more fine-grained removal. This process often has
minimal effects even at extremely high degrees of
sparsity. To efficiently prune a large number of pa-
rameters, many techniques propose using gradients
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or parameter magnitude (Sundararajan et al., 2017;
Lee et al., 2019; Frankle and Carbin, 2019; Chen
et al., 2020) as importance metrics.

Structured pruning, or removing entire structural
components, is motivated by computational ben-
efits from hardware optimizations. In the case of
Transformers, most of this pruning work targets
removal of attention heads, either through static
ranking (Michel et al., 2019) or through iterative
training (Voita et al., 2019; Prasanna et al., 2020;
Xia et al., 2022). These pruning methods have also
been used to study model behavior, but methods
with iterative finetuning are not consistent as many
sub-networks can deliver the same level of perfor-
mance once trained (Prasanna et al., 2020).

Our work studies pruning without updating
model parameters, which aligns with Michel et al.
(2019) which was able to remove up to 40% of total
attention heads without impacting accuracy on En-
glish Natural Language Inference. However, their
gradient-based importance metric does not meet
key criteria of efficiency in fair allocation, which
states that the sum of the metric across all heads
should sum to the model’s total performance (Ali
et al., 2022). Furthermore, Kovaleva et al. (2019)
found that pruning attention heads could sometimes
improve model performance without further fine-
tuning. We build on this to develop a methodology
for consistently identifying pruned models which
improve performance.

3 Methods

To identify and remove interference, we need a
metric that can separate harmful, unimportant, and
beneficial attention heads. Prior work (Michel et al.,
2019; Ma et al., 2021) utilized the magnitude of
gradients as an importance metric. However, this
metric measures the sensitivity of the loss function
to the masking of a particular head. Defined in
this way, importance will spike indiscriminately for
both harmful and beneficial heads. Therefore, we
develop a simple yet effective method to separate
these classes.

Shapley Values (Shapley, 1953) have often been
applied in model interpretability since they are the
only attribution method to abide by the theoretical
properties of local accuracy, missingness, and con-
sistency laid out by Lundberg and Lee (2017). In
our setting, Shapley Values have two advantages
over gradient-based importance metrics. Firstly,
gradient-based approaches require differentiable re-

laxations of evaluation functions and masking, but
Shapley Values do not. Therefore, we can instead
use the evaluation functions and binary masks di-
rectly. Secondly, Shapley Values are meaningfully
signed which allows them to distinguish beneficial,
unimportant, and harmful heads rather than just im-
portant and unimportant heads. This latter property
is essential for our goal of identifying interference.

We apply Shapley Values to the task of structural
pruning. In order to compute Shapley Values for
each head, we first formalize the forward pass of
a Transformer as a coalitional game between at-
tention heads. Then, we describe a methodology
to efficiently approximate Shapley Values using
Monte Carlo simulation combined with truncation
and multi-armed bandit search. Finally, we propose
a pruning algorithm using the resulting values to
evaluate the practical utility of this theoretically
grounded importance metric.

3.1 Attention Head Shapley Values
We formalize a Transformer performing a task as
a coalitional game. Our set of players A are at-
tention heads of the model. In order to remove
self-attention heads from the game without retrain-
ing, we follow Michel et al. (2019) which aug-
ments multi-headed attention with an added gate
Gh = {0, 1} for each head Atth in a layer with
Nh heads as follows:

MHAtt(x, q) =

Nh∑

h=1

GhAtt
h
(x, q) (1)

With Gh = 0, that attention head does not con-
tribute to the output of the transformer and is there-
fore considered removed from the active coalition.

Our characteristic function V (A) is the task eval-
uation metric Mv(A) over a set of validation data
within a target language, adjusted by the evalua-
tion metric with all heads removed to abide by the
V (∅) = 0 property of coalitional games:

V (A) =Mv(A)−Mv(∅) (2)
With these established, the Shapley Value φh for

an attention head Atth is the mean performance
improvement from switching gate Gh from 0 to 1
across all P permutations of other gates:

φh =
1

|P |
∑

A∈P
V (A ∪ h)− V (A) (3)

3.2 Approximating Shapley Values
The exact computation of Shapley Values for N at-
tention heads requires 2N evaluations of our valida-
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tion metric, which is intractable for the number of
heads used in most architectures. The computation
becomes more tractable with Monte Carlo simula-
tion as an approximation (Castro et al., 2009). This
replaces the full permutation set P in Equation 3 a
randomly sampled subset of permutations.

Computing low-variance Shapley Value esti-
mates with Monte Carlo simulation alone is com-
putationally expensive and provides no clear metric
for convergence. Therefore, we follow Ghorbani
and Zou (2020) to accelerate our computations.
We add a truncation heuristic using priors about the
behavior of neural networks and formulate estima-
tion as a multi-armed bandit problem of separating
harmful heads from all others. We show in Section
4.3 that this approximation not only reduces the
number of samples but explicitly converges to a
consistent set of harmful heads across runs, show-
ing consistency even across languages.

Truncation Heuristics Truncation stops sam-
pling the marginal contributions from the rest of a
permutation of features once a stopping criterion
is reached for that permutation of the Monte Carlo
simulation. Prior work selects stopping criterion
based on either total performance (Ghorbani and
Zou, 2020) or marginal improvements (Ghorbani
and Zou, 2019). To avoid tailoring a threshold to
each dataset, we instead choose to truncate based
on the percentage of remaining attention heads. For
all experiments, we truncate when less than 50% of
attention heads remain in the coalition. This biases
our estimations towards the effect of heads when
the majority of the full network is present.

Multi-Armed Bandit Sampling The multi-
armed bandit optimization stops sampling the
marginal contributions of a particular player once
a stopping criterion has been reached according to
the variance of that player. Our stopping criterion
is based on Empirical Bernstein Bounds (Maurer
and Pontil, 2009), a confidence interval based on
variance estimation. For t samples with observed
variance σt and a maximum variance range of R,
there is a probability of 1− δ that the difference be-
tween the observed mean µ̂ and true mean µ abides
by the following inequality formulated by Mnih
et al. (2008):

|µ̂− µ| ≤ σt
√

2 log(3/δ)

t
+

3R log(3/δ)

t
(4)

We stop sampling for a particular head once this

bound is less than |µ − 0|, meaning that we have
identified the Shapley Value as positive or negative
with probability 1 − δ. This saves us significant
computation while confidently separating heads
into helpful and harmful buckets. For all experi-
ments, we use R = 1 since the model’s worst-case
performance is zero and δ = 0.1 to give a 95%
confidence lower and upper bound.

3.3 Importance-Based Structured Pruning
Our pruning procedure works with any signed im-
portance metric. Specifically, we test the utility of
the Shapley Values metric for removing interfer-
ence and helping multilingual models generalize to
unseen test data.

Our hypothesis is that attention heads with neg-
ative Shapley Values introduce interference. Our
pruning method reflects this by using the sign of
our approximation directly. We remove all atten-
tion heads whose Shapley Value is negative with
probability 1 − δ by the Empirical Bernstein in-
equality from Equation 4. This is a parameter-free
approach for deciding the number of heads to pre-
serve. This approach is consistent, with the same
set of negative heads identified for pruning across
3 separate runs.

Alternatively, once Shapley Values are computed
the model could be pruned to any sparsity level.
Unlike prior pruning approaches besides Michel
et al. (2019), we do not perform any weight updates
following or during pruning and leave all parame-
ters fixed. This provides constant time pruning to
the desired size. We evaluate performance in this
configurable pruning setting in 4.6.

4 Experiments

4.1 Datasets
We evaluate our methodology on the Cross Lingual
Natural Language Inference (XNLI) and Univer-
sal Dependencies Part-Of-Speech (UDPOS) tasks.
These allow us to analyze the applicability of At-
tention Head Shapley Values to both sequence clas-
sification and structured prediction. We provide a
description of dataset sizes in Table 1.

Cross-Lingual Natural Language Inference
(XNLI) We use the Cross Lingual Natural Lan-
guage Inference (XNLI) Benchmark (Conneau
et al., 2018). This dataset is aligned which allows
us to control for possible confounding semantic
variation in the content. Given a premise and a hy-
pothesis and tasks, XNLI is the task of classifying
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Dataset EN AR BG DE EL ES FR HI RU SW TH TR UR VI ZH
XNLI 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
UDPOS 5.4 1.7 1.1 22.4 2.8 3.1 9.5 2.7 11.3 N/A N/A 4.8 0.5 0.8 5.5

Table 1: Size of the test sets for the datasets in thousands of sentence pairs and sentences respectively. We use a
512-example subset of the released development sets to compute Shapley Values in all languages for all datasets.

whether the hypothesis is entailed by the premise,
contradicted by the premise, or neither.

Universal Dependencies Part-of-Speech (UD-
POS) For structured prediction, we evaluate on
the Part-of-Speech (POS) tags from the Univer-
sal Dependencies (UD) v2 corpus (Nivre et al.,
2020), which has the largest cross-lingual gap in
the XTREME benchmark (Hu et al., 2020). The
authors suspect that structured prediction requires
more language-specific knowledge than many clas-
sification tasks.

For direct comparison with our experiments on
XNLI, we only retain the 13 languages from UD-
POS which have a development and test split,
which also exist in XNLI. Unlike XNLI, each lan-
guage in UDPOS hasa different number of exam-
ples which are not aligned across languages.

4.2 Experimental Setup
As the basis for our experiments, we finetune XLM-
R Base (Conneau et al., 2019) using the Trans-
formers library (Wolf et al., 2020) on only En-
glish data. Evaluation is done using the Datasets
library (Lhoest et al., 2021) implementation of the
accuracy metrics. Finetuning and Shapley Value
computation were both done on a single NVIDIA
GeForce 12GB RTX 2080 Ti. We finetune the fol-
lowing hyper-parameter tuning procedures from
prior work: using Hu et al. (2020) for XNLI and
de Vries et al. (2022) for UDPOS.

For all tasks and languages, we use the accuracy
on 512 examples of the development set as the char-
acteristic function for our coalitional game. Our
pruning baselines include the gradient-based impor-
tance metric of Michel et al. (2019) and the average
of 10 randomly pruned networks. We prune the
same number of heads pruned by our method for
all strategies since our baselines require selecting
the number of heads to prune.

4.3 Language Affinity
First, we analyze the Attention Head Shapley val-
ues for XNLI. We focus only on the role of the
source language by using an aligned sample from

Figure 2: Spearman ρ of Attention Head Shapley Values
across languages in XNLI using XLM-R finetuned on
the English training split.

XNLI to control our results for differences inde-
pendent from language variation. In Figure 1, we
visualize the results across English, Chinese, and
Swahili. As expected from prior work (Michel
et al., 2019; Voita et al., 2019), many heads have
low magnitude Shapley Values indicating that they
play no significant role in the final network. We
compare the similarity of Shapley Values learned
across languages using Spearman’s ρ in Figure 2
and find that Shapley Values are heavily correlated
between all languages but Swahili, which is a ma-
jor outlier. This cross-lingual consistency across
languages is juxtaposed with inconsistency of meth-
ods that utilize finetuning as shown by Prasanna
et al. (2020).

Despite this consistency, we find some attention
heads demonstrate high language-specificity. Most
notably, the fifth attention head in layer six is posi-
tive for Swahili but strongly negative for all other
14 languages. This indicates that this head serves a
function specific to Swahili within the model. We
investigate the behavior of language-specific and
language-agnostic heads further in Section 5.

It is worth noting that the outlier, Swahili, is the
language with the fewest number of examples in the
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XNLI Accuracy
Pruning Strategy EN AR BG DE EL ES FR HI RU SW TH TR UR VI ZH

No Pruning 84.1 70.6 76.7 76.8 75.4 79.8 77.7 70.0 74.7 63.4 70.6 71.9 65.9 73.3 73.5
Random 81.5− 67.2− 72.7− 72.7− 71.3− 75.5− 73.0− 66.3− 70.5− 63.5 67.4− 68.4− 61.6− 69.7− 70.8−

Michel et al. (2019) 84.3 71.0 77.3 77.4 72.8− 80.2 78.4 71.5+ 75.2 63.1 70.7 71.7 66.9+ 73.3 77.2+

Shapley Value (φi) 85.1+ 72.0+ 77.8+ 78.3+ 76.3 80.6 79.7+ 71.5+ 76.5+ 63.8 73.3+ 73.2+ 67.6+ 75.3+ 77.2+

Pruned Heads (K) 4 6 6 5 4 5 5 7 5 5 7 5 6 6 9
UDPOS Accuracy

Pruning Strategy EN AR BG DE EL ES FR HI RU SW TH TR UR VI ZH
No Pruning 95.7 75.1 90.9 88.8 71.5 89.8 81.3 73.9 88.2 - - 78.7 67.3 66.3 50.2

Random 95.7 74.3− 90.9 88.8 71.8 89.8 81.4 73.7 88.2 - - 78.7 67.5 66.3 55.3+

Michel et al. (2019) 95.7 75.1 90.9 88.8 71.1 89.8 81.1 73.8 88.2 - - 78.7 67.3 66.3 48.9−

Shapley Value (φi) 95.7 76.6+ 90.9 88.8 72.8+ 89.8 82.6+ 75.6+ 88.2 - - 78.7 69.5+ 66.3 62.6+

Pruned Heads (K) 0 4 0 0 4 0 2 2 0 - - 0 4 0 18

Table 2: Accuracy for UDPOS and XNLI after pruning according to importance metrics. For all metrics, we remove
the Bottom-K heads (K = |{Hi | φi < 0}|) according to that metric. + and − indicate significant (P < 0.05)
improvement and harm by a pairwise bootstrap test. Model parameters remain fixed for all methods.

data used in the pretraining of XLM-R. Whether the
large variation between Swahili and all other lan-
guages is induced by linguistic features or the train-
ing dynamics of low-resource languages within
multilingual models is unclear. We leave this to be
explored further in future work.

4.4 Targeted Pruning

To understand the practical applicability of the re-
sulting Shapley Values, we evaluate models before
and after pruning all attention heads with negative
Shapley Values as described in Section 3.3.

Each resulting language-specific model can be
represented with only the 144 mask parameters
which indicate whether each attention head is re-
moved or kept. Therefore, this pruning can be
seen alternatively as a parameter-efficient learning
method, using 1 ·10−6% of the parameters it would
require to finetune the model for each language2.

XNLI In Table 2, we report the accuracy of mod-
els after targeted pruning across all languages for
both XNLI and UDPOS. For XNLI, we see that
targeted pruning improves performance by an av-
erage of +1.59 across all 15 languages with the
maximum improvement being in Chinese (+3.78)
and the minimum improvement in Swahili (+0.37).
We might expect that languages closely related to
our finetuning language of English would benefit
less from pruning, even closely related languages
such as French (+1.97) and German (+1.53) are
improved significantly.

2144 parameters compared to 1.25 ·108 for full finetuning.

UDPOS Improvements in UDPOS vary to a
higher degree. Only 6 out of 13 languages im-
prove after pruning, with the rest identical with no
negative Shapley Values. Surprisingly, this indi-
cates that attention heads do not introduce inter-
ference for these languages. We hypothesize that
interference for these languages may instead lie
largely within the Transformer feed-forward layers,
which we do not study in this work. The largest
improvement is again in Chinese (+12.4) and the
smallest in French (+1.3). In the case of Chinese,
this is a 24.7% improvement purely by removing
attention heads. Across the languages which were
pruned, the average improvement is 3.4 – reducing
the cross-lingual gap (Hu et al., 2020) by 0.7.

Comparison to Baselines Randomly pruning is
ineffectual or harms performance in both tasks, in-
dicating that pruning alone is not the source of our
improvement. Pruning according to the gradient-
based metric proposed by Michel et al. (2019) main-
tains rather than improves performance. This sup-
ports our hypothesis that methods that use the mag-
nitude of gradients largely identify non-impactful
heads as opposed to harmful heads.

4.5 Zero-Shot Pruning
Given the high rank correlation between many of
the languages, we evaluate transferability by using
the Shapley Values for English to prune the model
for all languages. We report results in Table 3.

XNLI On XNLI, surprisingly, this transferred
pruning across languages has similar benefits to our
targeted pruning results despite only being learned
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Pruning Strategy EN AR BG DE EL ES FR HI RU SW TH TR UR VI ZH
No Pruning 84.1 70.6 76.7 76.8 75.4 79.8 77.7 70.0 74.7 63.4 70.6 71.9 65.9 73.3 73.5

Random 81.7− 67.1− 72.3− 72.9− 71.1− 75.1− 73.5− 65.7− 71− 60.7− 67− 68.3− 61− 69.7− 70.7−

Michel et al. (2019) 84.3 70.3 76.7 77.1 75.9 80.1 77.9 70.1 75.1 62.9 71.6 72.5 66.1 74.7+ 74.5+

Shapley Value (φi) 85.1+ 72.0+ 77.8+ 79.4+ 76.3 80.6 79.7+ 71.5+ 76.5+ 63.3 73.1+ 73.1+ 68.4+ 75.2+ 76.3+

Table 3: Accuracy for XNLI after pruning using importance metrics from English. For all metrics, we remove
the Bottom-K heads (K = |{Hi | φi < 0}|) according to that metric. + and − indicate significant (P < 0.05)
improvement and harm by a pairwise bootstrap test.

for English. Two languages (Urdu and German)
achieve better results in the zero-shot pruning than
they did in the targeted pruning, five achieve worse
results, and the remaining eight are equivalent.

It is likely that the strength of zero-shot trans-
fer is largely due to the removal of the fifth head
of layer six, which is one of the top 2 most neg-
ative heads for all languages barring Swahili. In-
terestingly, the Attention Head Shapley Values for
Swahili also have the lowest rank correlation with
English of any language.

UDPOS However, UDPOS highlights the ma-
jor shortcoming of zero-shot pruning: all attention
heads receive a positive Shapley Value for English
for UDPOS. This means that no zero-shot prun-
ing is performed despite targeted pruning finding
benefits for languages shown in Table 2.

4.6 Iterative Pruning of Attention Heads

Finally, we evaluate the effectiveness of Shap-
ley Values as a ranking methodology for the it-
erative pruning evaluation performed by Michel
et al. (2019). Iterative pruning evaluates how
well each importance ranking captures the com-
binatorial effects of removing attention heads at
different compute budgets. We compare random
pruning, the gradient-based approach from Michel
et al. (2019), and Shapley Values computed through
plain Monte Carlo simulation and Shapley Values
using Truncation and Multi-Armed Bandit opti-
mization (TMAB). We plot results in Figure 3.

Averaged across all levels of sparsity, our
method outperforms the Random baseline (+5.8),
Monte Carlo Shapley Values (+1.6), and the Gradi-
ent baseline (+0.6). At different stages. Depending
on the target sparsity of interest however, Shapley
Values and Gradient-based pruning have different
levels of sparsity. Our method is the only method
that identifies strongly harmful heads, with perfor-
mance improving compared to the unpruned model
for the first 6 heads removed. Our method achieves

Figure 3: Evolution of XNLI Accuracy as Heads are
removed according to different pruning strategies.

the largest performance gap at 44% of model ca-
pacity outperforming the Gradient baseline, Monte
Carlo Shapley Values, and the Random Baseline by
+12.2, +15.1, and +20.9 respectively. However, the
gradient baseline outperforms our method when
more than 80% of heads are pruned, although nei-
ther method performs well above chance at this
sparsity.

5 Qualitative Attention Analysis

In order to provide intuition into the function of
attention heads, prior work has turned to attention
visualization as the basis for qualitative analysis of
the inner workings of transformer models. Clark
et al. (2019) and Hoover et al. (2020) both explore
patterns within attention heads.

We visualize the attention patterns of outlier at-
tention heads using BertViz (Vig, 2019) from our
model to give a qualitative understanding of the
attention head patterns associated with language-
agnostic and language-specific heads.

5.1 Language-Agnostic Heads

We define the set of language-agnostic heads as
the intersection of the the top 20 attention heads
for each language. In Figure 4, we visualize the
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English HindiMandarin Turkish Swahili

English HindiMandarin Turkish Swahili

Figure 4: Attention of Layer 2, Head 9 of our XNLI model which is identified as language-agnostic. The attention
pattern links synonyms in the premise and hypothesis for all languages. For clarity, we connect the left token to the
token on the right which receives the largest attention weight.

English HindiMandarin Turkish Swahili

English HindiMandarin Turkish Swahili

Figure 5: Attention of Layer 6, Head 5 of our XNLI model which is identified as language-specific to Swahili.
Unlike the language-agnostic head, there is no obvious pattern in visualisation. However, in Section 5.2 we measure
a significant difference in Swahili’s attention to separator tokens compared to other languages.
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attention pattern of the highest-ranked of the 4
heads which meet this criterion. The visualiza-
tion highlights the same attention pattern across all
languages: words from the premise are matched to
near-synonyms in the hypothesis and vice versa.

The synonym-matching pattern clearly applies to
NLI, where synonyms critically participate in com-
monalities and contradictions between the premise
and hypothesis. Synonym linking is possible via to-
ken semantics and the separator tokens, so this pat-
tern does not require any knowledge of language-
specific syntax or morphology.

The visualization reveals a meaningful language-
agnostic pattern which may explain why the posi-
tive Shapley Value across all languages. This usage
highlights that while we utilize Shapley Values to
remove harmful learned patterns, they also can di-
rect mechanistic interpretability work to understand
the effectiveness of transformers for a particular
task (Wang et al., 2022).

5.2 Language-Specific Heads

As highlighted in Section 4.3, the fifth head of layer
six has a positive Shapley Value only for Swahili.
In Figure 5, we see that this head sometimes ex-
hibits unique behavior for Swahili, connecting the
incorrectly tokenized "ishi" suffix of "Mimi Huishi"
and "Ninaishi" meaning "I live" in the Habitual and
Present tense respectively. However, this use is
not found frequently in our Swahili examples, as
shown in the second example.

Therefore, we aim to understand whether the
head functions in a measurably different fashion
for Swahili across our entire dataset rather than
on specific examples. Using the hypothesis from
Clark et al. (2019) that attention to separator tokens
indicates an inapplicable learned pattern, we look
at the percentage of sentences where all tokens
attend primarily to separators. This criterion is
true in 56% Swahili XNLI inputs, but only 41% of
non-Swahili inputs on average (σ = 4.3%).

The frequency of separator attention combined
with the minimal negative performance impact
from removing this head for Swahili in Section
4.5 supports the idea that this head supports a rare
pattern, perhaps stemming from poor tokenization.
However, the relatively low rate of separator at-
tention indicates that this head does impact other
languages often, introducing noise.

6 Conclusions & Future Work

In this work, we developed a simple yet effective
approach to measure the impact of individual at-
tention heads on task performance by leveraging
Shapley Values. We used this to identify language-
specific and language-agnostic structural compo-
nents of multilingual transformer language models.
We demonstrated that the resulting values exhibit
language affinity, varying across languages. We
then applied these Attention Head Shapley Values
to improve cross-lingual performance through prun-
ing for both sequence classification and structured
prediction. Finally, we performed provided insights
on language-agnostic and language-specific atten-
tion heads using attention visualization.

We believe that attention head Shapley Values
have strong potential to systematically inform fu-
ture studies of multilingual models and transform-
ers broadly. Future work should explore the rela-
tionship between linguistic features, training data
volume, and the language-specificity of attention
heads. Additionally, the benefits of removing heads
motivates work that reduces cross-lingual interfer-
ence introduced by language-specific components
during pre-training, such as pruning during pre-
training or utilizing sparsely activated networks.

7 Limitations

Even with our optimizations, using Shapley Values
as an importance metric requires a significant com-
putational cost compared to gradient-based meth-
ods: gradient-based methods take approximately
3.33e14 FLOPs and our optimized Shapley Values
take approximately 3.27e16 FLOPs to converge.
While the computation is parallelizable, it took sev-
eral days on a single GPU to compute accurate
estimates. This expense is reasonable for under-
standing the behavior of base models more deeply
but limits the use of this method as a rapid itera-
tion tool. For those looking to reduce this com-
putational cost further, we recommend first using
gradient-based methods to identify a set of heads to
which the output is sensitive and then using Shapley
Values to interpret the direction of the effect. While
this may miss some harmful heads, it is likely to
find the most harmful heads for a reduced cost.

Additionally, we rely on analysis of attention
patterns to help ground our findings. However,
there is debate as to whether analysis of attention
patterns is a sound analytical tool (Jain and Wallace,
2019; Wiegreffe and Pinter, 2019).
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Abstract

Annotators’ disagreement in linguistic data has
been recently the focus of multiple initiatives
aimed at raising awareness on issues related to
‘majority voting’ when aggregating diverging
annotations. Disagreement can indeed reflect
different aspects of linguistic annotation, from
annotators’ subjectivity to sloppiness or lack of
enough context to interpret a text.

In this work we first propose a taxonomy of pos-
sible reasons leading to annotators’ disagree-
ment in subjective tasks. Then, we manually
label part of a Twitter dataset for offensive lan-
guage detection in English following this tax-
onomy, identifying how the different categories
are distributed. Finally we run a set of exper-
iments aimed at assessing the impact of the
different types of disagreement on classifica-
tion performance. In particular, we investigate
how accurately tweets belonging to different
categories of disagreement can be classified as
offensive or not, and how injecting data with
different types of disagreement in the training
set affects performance. We also perform offen-
sive language detection as a multi-task frame-
work, using disagreement classification as an
auxiliary task.

Warning: This paper contains examples that
may be offensive or upsetting.

1 Introduction

The development of benchmark datasets based on
the reconciliation of annotators’ disagreement has
been a standard practice within the NLP commu-
nity for decades. However, in the last few years this
paradigm has been questioned (Basile, 2020; Aber-
crombie et al., 2022), since aggregating discording
labels is based upon the assumption that texts have
a single interpretation and that annotators’ disagree-
ment is something that should be corrected. On the
contrary, it may convey useful information on the

task, the data and the annotators themselves (Aroyo
and Welty, 2015). For example, annotators may
disagree because of poorly described guidelines,
or because they interpret in different ways a text
based on their background and beliefs. The text
may be ambiguous because of a lack of context,
or annotators may simply be working poorly, with-
out paying much attention to the task they should
perform on the text (Uma et al., 2021).

Having a better understanding of the reasons be-
hind annotators’ disagreement could lead to better
annotation guidelines and provide insights into the
advantages and limits of developing NLP systems
able to deal with disagreement (Davani et al., 2022).
It would also contribute to a better understanding of
how disagreement interferes with systems’ perfor-
mance. Finally, automatically detecting instances
that are likely to obtain discording labels could
help researchers in creating linguistic datasets with
more or less challenging examples (Lehmann et al.,
1996).

In this work, we contribute to the research line
on annotators’ disagreement by first presenting a
taxonomy, where we classify possible reasons be-
hind discording annotations in subjective tasks, i.e.
tasks admitting diverse valid beliefs about what
the correct data labels should be (Rottger et al.,
2022). We also annotate part of an existing dataset
for offensive language detection (Leonardelli et al.,
2021) in order to assess the validity of our cate-
gorisation. We further perform several experiments
aimed at addressing the following research ques-
tions: i) What are the most challenging categories
of disagreement to classify in a task of abusive lan-
guage detection? ii) What is the effect of including
specific categories of disagreement in the training
set? iii) Can multi-task learning be effectively used
for offensive language detection using disagree-
ment classification as auxiliary task? Are these
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results consistent across disagreement categories?
Evaluation results can contribute to ongoing stud-

ies investigating the negative impact of disagree-
ment on systems performance (Schwartz et al.,
2011; Beigman Klebanov and Beigman, 2014;
Leonardelli et al., 2021; Uma et al., 2021) by pro-
viding a more fine-grained view on disagreement
types.

The annotated data used in our experiments can
be obtained as an extension of Leonardelli et al.
(2021)’s dataset, at this link: https://github.
com/dhfbk/annotators-agreement-dataset.

2 Related work

Despite all the efforts to minimize inter-annotator
disagreement, every large-scale project involving
linguistic annotation has to deal with cases of di-
verging perceptions among human workers, espe-
cially in tasks where human sensibility is at play.
However, disagreement due to interpretation diver-
gences is also found in text annotation tasks usually
perceived as objective, such as Part-of-Speech tag-
ging (Plank et al., 2014), semantic role labeling
(Dumitrache, 2019) or word sense disambiguation
(Martínez Alonso et al., 2015).

In subjective tasks, the hypothesis that a sin-
gle truth exists for all instances has been debated
in several past works (Basile et al., 2021; Uma
et al., 2021; Basile et al., 2022). Indeed, many
researchers suggested that disagreement has to be
treated as a signal, and not as noise (Aroyo and
Welty, 2015; Plank et al., 2014; Basile et al., 2019).
For this reason, Plank (2022) has recently proposed
to use human label variation rather than the term
disagreement to capture the fact that two or more
views may sometimes be plausible in text anno-
tation. Along the same line, different approaches
have been proposed with the primary aim of amend-
ing the traditional way in which disagreement is
dealt with (i.e., to treat it as noise and discard it
from the training set), thus demonstrating that dis-
agreement provides insights into human perception,
linguistic data as well as classification systems.

Concerning the integration of disagreement in
NLP classifiers, few approaches have been pro-
posed so far (for an overview, see Uma et al.
(2021)). Beside aggregating judgments based on
majority voting, which has the clear shortcoming
of reducing different voices and points of view
in favour of the dominant one, some approaches
consider disagreement as an indicator of the diffi-

culty of the instances to be annotated (Reidsma and
op den Akker, 2008). Past works have proposed
to train separate classifiers, one for each annotator,
and build an ensemble classifier that makes a pre-
diction when all classifiers agree on the class label
(Basile, 2020) or to adopt a multi-task architecture
using a shared representation to model annotator
disagreements (Davani et al., 2022). Similarly, For-
naciari et al. (2021) use soft-labels (i.e., probabil-
ity distributions over the annotator labels) as an
auxiliary task in a multi-task neural model. As
an alternative, disagreement can also be excluded
from the data by training the model only on items
that show high agreement (Reidsma and op den
Akker, 2008) or, conversely, models can be trained
and evaluated only on disagreement-raising items
(Beigman Klebanov and Beigman, 2014).

Concerning the analysis of annotators’ behaviour
on subjective tasks, past works showed that dis-
agreement is to be expected (Basile, 2020; Davani
et al., 2022). This is confirmed by Kenyon-Dean
et al. (2018), showing that around 30% of the in-
stances in a Twitter corpus for sentiment analysis
are controversial, thus likely to lead to disagree-
ment. They also propose to merge them in a new
class of sentiment called "complicated", so that
they are not excluded from the data. Sang and
Stanton (2022) show that age and personality are
factors that greatly influence annotators’ perception
of offensive content. Kocoń et al. (2021) show that
disagreement can be reduced and annotation quality
increased by combining text representations of la-
beled annotators’ opinions with their demographic
traits. Akhtar et al. (2019) deal with disagreement
in hate speech annotation by partitioning the anno-
tators into clusters reflecting more uniform subjec-
tive judgments.

As regards the categorisation of disagreement in
subjective tasks, one of the first studies on this topic
was presented in Beigman Klebanov et al. (2008),
where in a metaphor annotation task a distinction
is made between annotators’ attentions slips and
genuine disagreement. Basile et al. (2021) iden-
tify three main sources of disagreement: individual
differences related to annotators’ background and
beliefs, stimulus characteristics, i.e. inherent am-
biguity of texts, and context. Uma et al. (2021)
further extend this categorisation by listing the
following reasons behind disagreement: annota-
tion errors, imprecise or vague annotation scheme,
context-dependent text ambiguity, introduced in
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Poesio et al. (2019), item difficulty and annotators’
subjectivity. In our proposed taxonomy, we rely on
previous works in the choice of categories, keep-
ing the distinction between inherent text ambiguity
and context-dependent one, as well as annotators’
subjectivity. We further specify these categories by
proposing subtypes that take into account different
linguistic phenomena.

A recent work introducing a taxonomy of dis-
agreement has also been presented in Jiang and
de Marneffe (2022), which focuses on the task of
natural language inference. Interestingly, the au-
thors propose a three-layered taxonomy which has
some high-level overlaps with ours, for example
our Ambiguity class can be roughly mapped onto
Uncertainty in sentence meaning, and Subjectivity
onto Annotator behavior. The lower categories,
however, are in some cases very task-specific. The
analysis of task-specific and task-independent cat-
egories of disagreement may be an interesting re-
search direction to explore in the future.

3 A Taxonomy of Disagreement

As a first step towards a better understanding of
the reasons behind annotators’ disagreement, we
propose a taxonomy of disagreement for subjective
tasks, which is built starting from past categori-
sations presented in the literature and iteratively
adding subtypes based on the analysis of examples
in existing datasets. An overview of the taxon-
omy is reported in Figure 1. The taxonomy in-
cludes four macro-categories, which are further
specified through more fine-grained subtypes. For
each category we report also selected examples, all
taken from the dataset of disagreement presented
in Leonardelli et al. (2021) (see a more detailed
description of the dataset in Section 4). In the fol-
lowing, we illustrate each category in detail.

3.1 Sloppy Annotation

This category covers errors in the annotation due
to annotators’ carelessness. This can happen in
particular with crowd-sourcing platforms, when an-
notators are recruited without a proper training and
their annotation quality is not monitored. In gen-
eral, this type of disagreement can be minimised by
adopting tools that identify which annotators are
not trustworthy (Hovy et al., 2013).

The only specification for this category is Noise
(Figure 1), corresponding to messages clearly la-
beled with the wrong category, see for instance the

tweet below annotated as “offensive”:

(1) In a singular voice, art across the world..

3.2 Ambiguity

The second source of disagreement we include
in the taxonomy is Ambiguity, that is a much de-
bated topic in linguistics. It is generally referred
to as a property of words or phrases to allow more
than one interpretation (Tuggy, 1993; Cruse, 2004).
This category comprises mainly cases of figura-
tive language, a phenomenon related to the use
of words with a diverging meaning from their lit-
eral use in order to express colorful images and
emotions (Dancygier and Sweetser, 2014). This
category includes six subtypes:

Analogy. This label includes comparison mecha-
nisms, such as simile and metaphor, along with the
figure of speech of analogy. Both these phenomena
involve the cognitive concept of mapping between
two conceptual domains (Dancygier and Sweetser,
2014). Below we report an example of metaphor:

(2) Trump is a walking petri dish. His goal is to
spread the virus to as many people as possible.

False Assertion. Under this label we group all
the cases that are characterized by an assertion that
is false if compared to the reality of facts and that
can therefore trigger irony (Cignarella et al., 2018).
In other words, users express the opposite of what
they think or something false and exaggerated in
relation to the context. This figure of speech needs
knowledge of the world to be understood and this is
the main reason behind disagreement. An example
is reported below:

(3) Another attempt backfired on them, George
Floyd cured Covid-19 and opened up the econ-
omy!

Rhetorical Question. We group under this label
all the instances containing a question asked not to
obtain an answer but with the purpose of rhetori-
cally pointing out a concept (Stivers and Enfield,
2010), see example below:

(4) why do we treat our prisoners like this? Is it
really because we decided once you commit a
crime you’re worthless non-human?
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Disagreement

Sloppy Annotation Ambiguity Missing Information Subjectivity

Noise Analogy

False Assertion

Rhetorical
Question

Sarcasm

Word Play

Reported
Speech

Ungrammatical

No Context

Not complete

Personal Bias

Swearing

Threatening

1

Figure 1: Taxonomy of annotators’ disagreement in subjective tasks. Pink boxes represent coarse-grained categories,
while yellow boxes correspond to subtypes.

Sarcasm. Sarcasm is characterized by words em-
ployed to express the opposite of their literal mean-
ing, mainly used to make fun of a specific topic
or person. Sarcasm needs context and other extra-
linguistic expressions like pauses and intonation
to be understood and it features a disproportion
of emphasis regarding the real situation, giving a
caustic effect (Gibbs, 1986). However, in writing,
these extra-linguistic hints are not possible, thus
we must rely on our knowledge of the world or of
the addressee to understand sarcasm.

(5) Who knew a side effect of COVID would be
gross incompetence.

Word Play. Word Play is a figure of speech
that involves literary devices to alter some words,
with the purpose of giving proof of someone’s wit.
Among the literary techniques used to convey word
play are acronyms, alliterations, i.e. repeating the
same sounds in a sentence, and puns, i.e. using
words with multiple meanings to obtain a humor-
ous result.

(6) The only people ripping this country apart are
your fellow liberal #DemocRATS and your
militant concubines.

Reported Speech. It is commonly defined as the
presentation of discourse that purports to be from
a prior occasion, and may originate from another
author (Holt, 2009). It can be ambiguous because it

can be mistaken as something written by the same
author of the text to be annotated.

(7) White Bystanders With Rifles Stare Down
George Floyd Protesters: ’You Ain’t Got No
Guns’

3.3 Context sensitivity: Missing Information

In this category we group all cases in which an-
notators’ disagreement may be caused by a lack
of information or of context to unambiguously in-
terpret a text (Donaldson and Lepore, 2012). It
includes the three following subtypes.

Ungrammatical and Non Standard Language.
We assign this label to all the texts that could cause
disagreement due to marked uses of the language
(e.g. non-standard varieties), use of slang, code-
switching or mere typing errors. Intuitively, anno-
tators who do not speak a specific language variety
are more likely to misunderstand or misinterpret it
(Sap et al., 2019), leading to disagreement. See the
example below:

(8) mane it’s hard for some of da blaxk people
out dere when dey go into a store they got
everybody looking at them "what they doing"

No Context. This class covers well-known lin-
guistic phenomena which need context to be un-
equivocally interpreted such as anaphora and deixis
(Poesio and Artstein, 2005). We include in this
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category also messages containing links, typically
used in online communication. Deictic expressions
include devices such as demonstratives (this, that,
etc.), personal pronouns (I, you, he, she, etc.), pos-
sessives (his, her, their, etc.) (Levinson, 2004). As
regards anaphoric expressions, instead, the interpre-
tation of the textual content is determined by that of
the antecedent (Levinson, 1987), therefore, if there
is not enough context, crucial information may be
missing. We report below an example containing
both a deictic expression (this) and an anaphoric
pronoun (them):

(9) Dude this guy is serious? And trump
retweeted this?????? Please anonymous take
them out

Not Complete. In the last subclass of Missing
Information, we group all cases that do not convey
complete information and do not fall into any other
subcategory. A typical example is social media
threads written by a user. If just one message is ex-
tracted from a thread and annotated, it may be very
difficult to understand what its tone and meaning
is. As an example, see below:

(10) Wtaf, a farce in three parts:

3.4 Bias and Desemanticization: Subjectivity
We group in this category cases of disagreement
due to the annotators’ identity, beliefs and back-
ground, which have been recognised as leading to
biased judgments (Sap et al., 2022). This is a major
source of disagreement in subjective tasks such as
hate speech detection, sentiment analysis or politi-
cal stance detection. The category includes three
subtypes.

Personal Bias. Although it is not easy to iden-
tify cases of disagreement due to personal biases,
in particular when annotators are unknown, this
category can be inferred because it is very likely
to occur when the text to be labeled belongs to
a divisive topic, such as politics, covid-19, social
movements, etc. (Wich et al., 2020). See for exam-
ple the sentence below:

(11) #DemocratsAreDestroyingAmerica #Black-
LivesMatter is a terrorist organization

Swearing. Another cause of disagreement re-
lated to annotators’ subjectivity is how they in-
terpret swear words. Indeed, some annotators per-
ceive specific swear words as offensive and hurtful,

while for others they appear to be desemanticized
(Ljung, 2011). A typical example in English is the
use of the word bitch:

(12) 2nd wave about to be a bitch

Threatening. Disagreement may arise from texts
containing linguistically violent expressions or
threats and depend on annotators’ sensitivity to
verbal violence and menaces (Storey, 1995), see
for instance, the following text:

(13) U r going to jail.

4 Data Annotation and Analysis

We apply the taxonomy illustrated above to the
dataset of disagreement in abusive language pre-
sented in Leonardelli et al. (2021), which contains
more than 10k English tweets labeled as offensive
or not offensive by five crowd-workers, and covers
three topics: covid-19, US Presidential elections
and Black Lives Matter movement. The dataset
has been designed so as to include a balanced set
of tweets with full agreement (A++), with partial
agreement (A+ class, 4 matching labels versus 1)
and with disagreement (A0 class, 2 vs. 3 labels)
and has been released divided into a balanced train-
ing and test split.

We manually annotate all A+ and A0 tweets in
the test set (1,756 in total), plus a portion of tweets
from the training set (809 tweets). A total of 2,574
tweets is annotated, divided in 1,518 for the A0

agreement level and 1,056 for the A+ agreement
level. Annotation was performed by a trained lin-
guist, and during the process the initial taxonomy
was adjusted by refining the category definitions
or introducing new ones when needed. A second
linguist annotated a sample of 200 tweets divided
equally into A0 and A+ following the annotation
guidelines (see Appendix B). Cohen’s Kappa is
0.591, which corresponds to a moderate agreement.
After computing agreement, a discussion and adju-
dication phase was conducted.

Based on the annotator’s feedback, we foresaw
the possibility to assign multiple labels to the same
tweet when the source of disagreement could refer
to two or more categories in the taxonomy, consid-
ering however the first label as the most probable
interpretation. A multi-category annotation scheme
was adopted for the same reason also in Jiang and
de Marneffe (2022).

In Table 1 we report the distribution of anno-
tated tweets by category and by agreement level.
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In case of multiple labels, we include the first one
in the statistics. However, tweets annotated as be-
longing to more than one category are around 40%,
showing that disagreement is often due to a mix
of different linguistic phenomena. The category
with the most multiple annotations is Subjectivity,
labeled together with Missing Information in most
of the cases.

A0 A+

Subjectivity 996 703
Ambiguity 302 201
Missing Information 218 142
Sloppy Annotation 2 10
Total 1,518 1,056

Table 1: Number of annotated tweets by category and
agreement level. A0 is 3 vs. 2 judgments; A+ is 4 vs. 1
judgment.

Table 1 shows that the cases leading to disagree-
ment because of annotators’ subjectivity cover
most of the tweets in the dataset, and that the rank-
ing of the four categories is the same for the two
agreement levels. As expected, clear annotation
mistakes (i.e. Sloppy Annotation category) are
more frequent for A+, but in general they have
a minimal impact on the cases of disagreement.
This is probably due to the fact that the dataset in
Leonardelli et al. (2021) was created adopting a
strict quality control protocol aimed at excluding
low-quality crowd-workers.

In Figure 2 we report how the subtypes are dis-
tributed in the annotated dataset. As shown in pre-
vious studies, swear words are often a signal for
a hateful attitude, but they are also used in casual
contexts with positive social functions (Pamungkas
et al., 2020). This double interpretation is likely
the main reason why the Swearing subtype is very
frequent in our dataset of disagreement. Concern-
ing Personal Bias, its relevance is probably related
to the fact that the annotated tweets deal with con-
troversial topics such as US American elections,
Black Lives Matter and covid-19. For instance, few
tweets targeting Trump were labeled as not offen-
sive by annotators, who were likely to be Biden
supporters, and vice versa.

If we compare the above statistics with the anal-
ysis reported in Jiang and de Marneffe (2022) on
disagreement in natural language inference (NLI),
we observe that the most frequent causes of dis-
agreement are task-specific: in our dataset, they

Figure 2: Summary of annotated data by main category
and subtype.

are mostly due to annotators’ subjectivity and their
perception of what is offensive, while in NLI they
often stem from the underspecified meaning of lex-
ical items in the sentence pairs to be labeled, or in
the probabilistic nature of the inferred content.

5 Experiments

In the next subsections we describe a series of
experiments conducted on the annotated dataset,
aimed at analysing the relationship between anno-
tators’ disagreement and various aspects of auto-
matic offensive language detection. For all the ex-
periments described below, we use the MaChAmp
v0.2 toolkit (van der Goot et al., 2021), a classi-
fication tool that allows easy implementation of
transformers-based classification tasks and sup-
ports single-task and multi-task learning. For all
the experiments we employ BERT-base uncased
(Devlin et al., 2019) (110M parameters) and per-
form 20 restarts. We keep the default hyperparame-
ter setting of MaChAmp, i.e. max seq length 128,
batch size 32, 0.3 dropout, 10 epochs. All the re-
sults reported in the following subsections are the
average values of 20 runs. All experiments are run
on a NVIDIA Quadro RTX 5000 GPU.
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Subtype Main micro F1
category Test size All Offensive Not offensive

Swearing Subjectivity 427 75.74 ±0.64 89.45 39.83
Rhetorical Question Ambiguity 60 71.75 ±4.00 65.79 74.51

Not complete Missing Info 7 71.43 ±12.78 - -
No context Missing Info 183 71.26 ±2.35 43.75 77.09

Reported Speech Ambiguity 82 70.37 ±2.62 60.24 73.85
Threatening Subjectivity 41 68.78 ±4.12 74.12 65.00
Word Play Ambiguity 33 65.61 ±3.22 65.31 65.88

Personal Bias Subjectivity 729 64.98±2.05 63.35 65.89
Ungrammatical Missing Info 14 64.29 ±5.05 53.12 79.17

Sarcasm Ambiguity 97 63.71 ±3.49 58.75 65.34
Analogy Ambiguity 62 60.56 ±2.91 70.52 51.82

False Assertion Ambiguity 20 53.00 ±6.20 37.22 65.91

Table 2: Classification performance of the best system from Leonardelli et al. (2021) for each category and subtype
of disagreement. We report the average F1 obtained from 20 restarts and, for the overall results, also the standard
deviation.

5.1 Classification performance on
disagreement categories

Our first experiment aims at analysing differences
in classification performance among disagreement
categories and subtypes. To this end, we use the
best model for offensive language classification
previously described in Leonardelli et al. (2021),
which was trained using only tweets with perfect
(A++) and high (A+) agreement. We run this
model on the tweets in our dataset that belong to
the test set of the original work, and calculate sep-
arated performance scores for each category and
subtype. We report the results in Table 2.

The best performance is obtained on the Swear-
ing subtype (75.74 micro-F1). However, the re-
sults on the two classes, i.e. Offensive and Not
offensive, show that this high F1 mainly depends
on the good performance yielded on the offensive
class. Indeed, swear words tend to be very predic-
tive of offensive content, and have already been
recognised in previous studies as so-called authen-
tic artifacts, i.e. highly-discriminating and infor-
mative tokens in conveying hatefulness (Ramponi
and Tonelli, 2022). On the contrary, swear words in
non-offensive tweets are both controversial for hu-
man annotators and difficult to detect for classifiers
(Pamungkas et al., 2020).

For the most numerous subtype, Personal Bias,
performance is rather low compared to the other
types. However, the classifier yields a compara-
ble performance on the offensive and not offensive
class, showing that the two classes are equally chal-
lenging when annotators’ beliefs and background
come into play. In general, classification perfor-
mance on offensive tweets is lower than on not
offensive ones, except for Swearing, Threatening

and Analogy. Offensive language detection sys-
tems tend to perform better on the not offensive
class, because it is usually represented by more ex-
amples in the training set. Our experiment confirms
this trend with few exceptions.

As a further analysis, in Figure 3 we report the
classification results (average of 20 runs) on the
different subtypes for A0 and A+ tweets. For all
the categories except for Analogy, the classification
performance is better on A+ cases (low disagree-
ment) compared to A0 (high disagreement). This
is probably because assigning a label to A0 cases
through majority voting is rather arbitrary, leading
to cases that a system can poorly classify.

5.2 Training with disagreement

Several works showed that training a classifier us-
ing data with a low level of agreement is detrimen-
tal to the system performance (Reidsma and op den
Akker, 2008; Jamison and Gurevych, 2015). We
delve further into this issue by evaluating whether
this negative effect depends on the presence of a
specific class of disagreement in the training set. To
this end, we retrain a classification model for offen-
sive language detection using the original training
split used in Leonardelli et al. (2021), and we com-
pare it with the performance obtained including in
the same training set only the subset of A0 tweets
belonging to a specific category, i.e. either Subjec-
tivity or Missing Information or Ambiguity. The
performance of the models is evaluated on the same
three categories in the test set. Results are reported
in Table 3.

To reliably compare differences between mod-
els’ performances, we use Almost Stochastic Order
(Dror et al., 2019; Del Barrio et al., 2018) in its

2434



Figure 3: Performance of the classifier for the different agreement levels and categories. Error bars represent
standard deviation obtained from 20 restarts.

Training Train. Testing on
split size Subj. Missing Amb.
A++/+ 1,800 68.95 70.78 65.64
A++/+/0 2,700 68.79 69.71 66.31∗

A++/+/0(SUBJ) 2,206 68.55 69.29 65.48
A++/+/0(MISS) 1,927 68.93 70.84∗ 65.79
A++/+/0(AMB) 1,923 69.07 69.48 64.58

Table 3: Classifier performance (F1) with different
versions of the training set, with and without specific
classes of disagreement. Statistically significant results
(compared to the lowest F1) are marked with (∗).

implementation by Ulmer et al. (2022). For each of
the three test sets, we compare the models scores
across the 20 restarts. For statistical significance a
threshold of τ = 0.2 is considered.1

As shown in Table 3, while the differences in
performance when testing on the Subjectivity cate-
gory are not statistically significant, the best scores
obtained on Ambiguity and on Missing Information
show a statistically significant improvement over
the lowest F1 and, in the case of Missing Informa-
tion, also over training with A++/+/0(AMB).

For the classification of examples from Missing
Information, adding only the A0 examples belong-
ing to the same category of disagreement yields to
the best performance among all models. On the
contrary, when classifying tweets in the Ambiguity
class, the best performance is obtained when all
A0 are added to the training set regardless of the
tweet category or disagreement level. The lowest
performance, instead, is the obtained when adding
only A0 examples from the Ambiguity class. This
may be due to the fact that this class is the most
heterogeneous one, with different subtypes all rep-

1Based on Ulmer et al. (2022), this threshold is comparable
to a Type I error rate of p-value .05

resented in the data with few examples, covering
very different linguistic phenomena. Overall, these
results suggest that removing A0 instances from
training is not always the best solution, contrary to
what was suggested in previous works (Leonardelli
et al., 2021). Instead, distinctions should be made
among different types of disagreement when decid-
ing whether to remove training instances or not.

5.3 Multi-task learning with disagreement
Finally, we investigate whether using information
about disagreement can improve offensive lan-
guage detection. We employ a multi-task frame-
work, which has already been used to include dis-
agreement information in classification tasks (For-
naciari et al., 2021; Davani et al., 2022; Ramponi
and Leonardelli, 2022). In a multi-task setting, the
encoder component is unique and shared between
both tasks that during training are jointly fine-tuned.
In our case, we consider offensive language detec-
tion as the primary task, and disagreement detec-
tion as the secondary one, to test whether the latter
can provide useful signals to potentially improve
the performance on the main task. We test two
variants in this respect: i) we cast the auxiliary task
as a three-way classification aimed at recognising
tweets labeled as A++, A+ and A0, and ii) we
implement a more fine-grained version of the pre-
vious task, aimed at assigning tweets to one of six
classes: A++ offensive and not offensive, A+ of-
fensive and not offensive and A0 offensive and not
offensive. All these labels were already provided
in the dataset by Leonardelli et al. (2021), so no
additional annotation was required. The classifier
for offensive language detection is tested separately
on the three classes of disagreement Subjectivity,
Missing Information and Ambiguity, like in the ex-
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periments in Section 5.2.
Results are shown in Table 4. The first row

presents the single-task setting, i.e. offensive lan-
guage detection, compared with the multi-task
ones, i.e. three-class and six-class classification.

Multitask Testing on
Task 1 Task 2 Subj. Missing Amb.
Offensive -language 68.79 69.61 66.31
Offensive Agr. level
language A++,+,0 69.15 69.84 66.26
Offensive Agr. level
language N/O++,+,0 69.24 69.34 65.82

Table 4: Classification performance (F1) with multi-task
learning. N=Not offensive; O=Offensive.

Although the differences across settings are
slight, the best result for the Subjectivity category
is obtained within the multitask framework with
6-way classification as an auxiliary task. For Miss-
ing Information, instead, the multitask setting with
three-way classification is the best one, while for
Ambiguity providing auxiliary information on dis-
agreement levels does not seem to yield any im-
provement. These differences support our intu-
ition that we should distinguish among the differ-
ent types of disagreement, since different strategies
would be necessary to deal with them during clas-
sification. However, a statistical analysis similar to
the one presented in previous section failed to re-
veal any significant difference between the models’
performances.

6 Conclusions

In this work, we first introduced a two-layered tax-
onomy for the classification of annotators’ disagree-
ment in subjective tasks, consisting in four main
categories and a number of subtypes aimed at cover-
ing different linguistic phenomena. We then anno-
tated part of an existing dataset developed to study
disagreement with the above classes and subtypes.
A first analysis shows that the Subjectivity class is
the prevalent one in the dataset, and that Personal
Bias and Swearing are two major reasons leading
to frequent cases of disagreement among annota-
tors for the task of offensive language detection.
Secondly, we run several experiments to gain novel
insights into disagreement phenomena. In particu-
lar, we investigate whether a system for offensive
language detection is more prone to wrong classi-
fication on specific classes of disagreement. Our
results show that the presence of Sarcasm, Analogy

and False Assertions negatively affects classifier
performance, while Swearing obtains the best clas-
sification results, despite showing a bias in favour
of offensive tweets. Furthermore, cases with high
disagreement are generally more difficult to clas-
sify than those with mild disagreement for all cate-
gories except for Analogy. In a second experiment,
we show that adding instances of Missing Infor-
mation to the training set, even if they belong to
the A0 class, has a positive effect on the classifi-
cation of this specific class, while this is not true
for Ambiguity, probably because it contains more
heterogeneous data. Finally, we show that adding
disagreement information as an auxiliary task in a
multi-task setting, having offensive language detec-
tion as the main task, is not generally better, and
has different effects on the three above classes.

As regards tweets annotated with multiple labels,
we observe that it is rather frequent to find more
than one cause of disagreement (around 40% of the
tweets in our dataset). We performed a preliminary
experiment (not reported in this paper) comparing
the performance of the best system configuration
on single-label and multi-label examples, and we
observed no significant difference. We will further
investigate this aspect and compare single- and
multi-label items in detail in the future.

In general, we hope that this work can contribute
to the ongoing debate on the importance of con-
sidering, and not removing, disagreement when
creating datasets and when developing classifiers.
Furthermore, we advocate for a differentiation of
the types of disagreement, showing that their pres-
ence in training and test data can have different
effects on classification.

Limitations

While the taxonomy of disagreement is designed
to be language-independent and to cover the an-
notation of subjective tasks, we have applied it
only to a dataset for offensive language detection
in English. Its applicability to other tasks will be
investigated in the near future, together with its
portability across languages. Also, the small size
of the annotated dataset may limit the generalisabil-
ity of our findings. In particular, the differences in
performance across settings in our experiments are
not always statistically significant.
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the current work. On the contrary, the analysis of
different types of disagreement is aimed also at
making the role of subjective annotations accepted
within the NLP research community, making sure
that the voices of minorities are included. Indeed,
this work contributes to providing methodologies
to distinguish subjective annotations from mistakes
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A Example Annotations

We report in Table 5 some example tweets with
different degrees of annotators’ agreement and the
corresponding category & subtype. In particular,
A++ corresponds to total agreement (5/5 crowd-
sourced annotations with the same label); A+ -
mild agreement (4 vs 1 labels); A0 - disagreement
(3 vs 2 labels).
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Agreement Offensiveness Example Category Subtype

A++ N++ Google bans ads on coronavirus conspiracy - -theory content -url
A+ N+ @user Freaking love it Missing Info No Context

A0 N0 @user How many more George Floyd will die Ambiguity Rethorical questionunder white domination! Sad!
A0 O0 He is another nut case. Subjectivity Personal bias
A+ O+ @user You’re a bumbling fool #elections2020 Subjectivity Personal bias
A++ O++ f %* king insanity - -

Table 5: Examples of tweets with different degrees of crowd-workers’ agreement. N=Not offensive, O=Offensive.
++/+/0 correspond to high, medium and low agreement respectively. The last two columns include disagreement
category and subtype.

B Annotation Guidelines

In order to annotate a text by assigning a category
and a subtype of disagreement from the proposed
taxonomy, annotators should perform the following
steps:

1. Check the text for sources of disagreement:
detect the main one and assign it to a category
among Sloppy annotation, Ambiguity, Missing
Information and Subjectivity;

2. Choose a fine-grained class to specify the
main source of disagreement

3. Check for a secondary source of disagreement
(if any): assign the text to another category (it
could be the same as the previous one, with a
different subtype)

4. Choose a secondary subtype to specify the
secondary source of disagreement

We also report questions to guide the assignment
of labels to text instances.

• Sloppy Annotation (Label =
Sloppy_Annotation)

– Noise: is the text clearly not offensive
but marked as such (or vice versa)? (La-
bel = Noise)

• Ambiguity: are there multiple interpretations
to the text but is it not clear which is the cor-
rect one? (Label = Ambiguity)

– Analogy: does the text include a fig-
ure of speech that comprehends mech-
anisms of comparison (included: simile
and metaphor) or is the user referring
to someone with a periphrasis (e.g., “or-
ange monkey”, “bunker boy” for Donald
Trump)? (Label = Analogy)

– False assertion: does the user express
the opposite of what they think or some-
thing wrong with respect to a context?
(Label = False_Assertion)

– Rhetorical question: does the text in-
clude a question asked in order to make
a point rather than to elicit an answer?
(Label = Rhetorical_Question)

– Sarcasm: is the text employed to com-
municate the opposite of its surface
meaning in a humorous way or to mock
someone/something? (Label = Sarcasm)

– Word Play: does the text include any
acronyms, alliterations or puns? (Label
= Word_Play)

– Reported Speech: does the text report
something someone else stated? For ex-
ample a newspaper headline? (Label =
Reported_Speech)

• Missing Information: is the disagreement
caused by difficulty of interpretation? (Label
= Missing_Info)

– Ungrammatical: does the text include
typos or non standard expressions nul-
lifying its comprehension? Do not con-
sider “your/you’re”, “its/it’s” since they
are very frequent and do not affect text
comprehension (Label = Ungrammati-
cal)

– No context: does the text contain (Label
= No_context):

* Reference to other users?

* Links?

* Anaphoric or deictic pronouns with-
out an explicit referent?

* Demonstrative pronouns?
– Not complete: some parts are miss-

ing: is the text not complete? (Label
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= Not_Complete)

• Subjectivity: does the text contain informa-
tion that makes annotators’ opinions interfere
in their judgment? (Label = Subjectivity)

– Personal Bias: does the text contain spe-
cific words that can be interpreted in
a subjective way by the annotator (for
example: “racist”, “fascist”, “clown”,
“pathetic”, “liar”, “pig”) or refer to spe-
cific, critical opinions (no vax, wearing
or not wearing masks)? (Label = Per-
sonal_Bias)

– Swearing: does the text include swear-
ing words (for example: “prick”, “turd”,
“crap”, “bullshit”, “moron”, “dumb”)?
Does it include ableist insults such as “re-
tarded”, “psycho” and expressions con-
taining “shit” (for example: “cut the
shit”, “don’t know shit”). Do not con-
sider WTF, SMFH and similar acronyms
containing “fuck”. (Label = Swearing)

– Threatening: does the text contain lin-
guistic violence (for example: “shut up”,
“get out”, “you are going to prison”)?
(Label = Threatening)
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Abstract

Advancements in Neural Machine Translation
(NMT) greatly benefit the software localization
industry by decreasing the post-editing time
of human annotators. Although the volume
of the software being localized is growing sig-
nificantly, techniques for improving NMT for
user interface (UI) texts are lacking. These UI
texts have different properties than other collec-
tions of texts, presenting unique challenges for
NMT. For example, they are often very short,
causing them to be ambiguous and needing ad-
ditional context (button, title text, a table item,
etc.) for disambiguation. However, no such
UI data sets are readily available with contex-
tual information for NMT models to exploit.
This work aims to provide a first step in im-
proving UI translations and highlight its chal-
lenges. To achieve this, we provide a novel
multilingual UI corpus collection (∼ 1.3M for
English↔ German) with a targeted test set and
analyze the limitations of state-of-the-art meth-
ods on this challenging task. Specifically, we
present a targeted test set for disambiguation
from English to German to evaluate reliably
and emphasize UI translation challenges. Fur-
thermore, we evaluate several state-of-the-art
NMT techniques from domain adaptation and
document-level NMT on this challenging task.
All the scripts to replicate the experiments and
data sets are available here.1,2

1 Introduction

There is a rapid increase in access to technology
for people from around the globe. For software
to be used by everybody, it is essential to provide
User Interface (UI) texts in their native languages
for monolingual speakers. However, many applica-
tions are created in English and later localized to
various languages. To decrease the translation time,
localization companies take the help of machine
translation (MT). Human annotators use the MT

1https://github.com/saikoneru/NMT_Localization
2We crawled this data only for scientific research.

system for generating initial translations and post-
edit the system’s output to increase efficiency in
computer-assisted translation tools (Flournoy and
Duran, 2009; Skadin, š et al., 2014). When produc-
ing high-quality translations, costs can be saved
by decreasing the annotator’s time on editing and
making the localization process cheaper. Thus,
enabling more companies to localize in several lan-
guages at low cost.

Neural Machine Translation (NMT) (Sutskever
et al., 2014; Bahdanau et al., 2015; Vaswani et al.,
2017) is the current state-of-the-art (SOTA) ap-
proach for generating the initial "draft" for the trans-
lations. Although conventional NMT models are
sufficient in many cases, they use only the source
sentence alone to predict the target translation (Lo-
cality Assumption) (Maruf et al., 2021). However,
this is problematic when translating several types
of concise UI texts that need more information.

It has been a decade since Muntés Mulero et al.
(2012) have shown the need for integrating addi-
tional context into MT models for software local-
ization and have pointed out several issues. For
example, consider translating the English source
word "Login" into German. Here, the translation
depends on where the text is. If it is on a button,
the correct translation is the verb form "Anmelden".
In the case of a title text (FAQ, Documentation,
etc.), the translation might rather be the noun form
"Anmeldung". Depending on the application, the
translation can also be simply "Login" even on a
button.

Another common phenomenon to deal with
when translating these short UI texts is semantic
ambiguity. For example, if we want to translate the
word "Home", we need to know the context where
the sentence is present. Although the translation is
often the German word "Haus", it is not correct in
the context of Linux applications. In this case, we
would need to translate "Home" as "Benutzerverze-
ichnis" ($HOME directory). Apart from the issues
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mentioned above, gender (the gender of the item in
a table depends on the gender of the table title text),
and consistency in terminology and style (e.g for-
mal v/s informal) are problematic when translating
UI. However, sentence-level NMT models lack the
contextual information to generate suitable target
translations.

Several approaches were proposed to integrate
contextual information into NMT models. Domain
adaptation and Multi-Domain models using tags
are common techniques in NMT to inform the mod-
els about the type of content it is translating (Kobus
et al., 2017; Chu et al., 2017; Pham et al., 2020;
Xu et al., 2020). Knowing the domain/topic of
the text enables NMT to select and generate appro-
priate translations in a particular setting. Another
recent and growing field that tries to make models
context-aware is document-level NMT (Doc-NMT)
(Tiedemann and Scherrer, 2017; Voita et al., 2018;
Maruf et al., 2019, 2021; Bao et al., 2021; Sun
et al., 2022). The surrounding source and/or tar-
get sentences usually can provide significant cues
and hints for the NMT model to understand the
domain and the context in which the source sen-
tence is occurring. These approaches are promising
and could benefit localizing UI segments, but the
lack of sufficient annotated UI data with contex-
tual information is the main hindrance to applying
them.

Although localization files of software like
GNOME, UBUNTU, and KDE are present in the
OPUS corpus (Tiedemann, 2012), they do not pro-
vide the document structure or any other metadata.
Also, the segments in the corpora do not come from
a vast amount of domains. Neither large amounts
of UI data are publicly available nor a targeted test
set to measure the model’s ability to use context
for UI translations. These constraints limit the po-
tential to improve NMT for software localization
and are necessary as a first step.

This work addresses the limitations mentioned
above by creating a corpus for UI data with
document-level information extracted from mul-
tiple domains, a targeted test suite, and baselines
using current SOTA methods. Our main contribu-
tions in this paper are the following

• We present a task of translating UI texts and
show their unique properties requiring addi-
tional context. Furthermore, we provide a
novel multilingual UI corpus covering multi-
ple domains with contextual information to

enable NMT for this task. (Section 2)

• To identify the limitations in current NMT sys-
tems, we propose a targeted evaluation frame-
work with test sets replicating realistic con-
ditions and solving disambiguation. (Section
3)

• We analyze domain adaptation and Doc-NMT
techniques on our collected corpora and eval-
uation sets to highlight challenges in the pro-
posed task. (Section 4)

2 Addressing Data Scarcity for UI

For improving NMT for UI segments, the first chal-
lenge to address is the lack of parallel data with
contextual information. To achieve this, we present
a novel UI corpus that we assemble from software
localization files of publicly available repositories.

First, we briefly explain the structure and con-
tents of the localization files which we search and
collect to create our data set. Then, we highlight
what types of contextual information are available
in these files that are useful for NMT. Finally, we
describe how we scraped large amounts of these
PO files for multiple languages.

2.1 Portable Object for Localization
Portable Object (PO) files3 are one of the standard
file formats used in the localization industry. These
are plain text-based files and do not need special-
ized tools for reading. Although this is not the only
format used for localization, it is widely used in
the GNU gettext4 tool for free software’s.

Figure 1 shows an example of a PO file along
with a screenshot. A PO file consists of several
entries, each containing a unique source and target
pair. Each typical entry consists of the following
items:

• msgid: The source string that needs to be
translated and is usually in English for soft-
ware applications (Game, View, Control, etc.).

• msgstr: The translation of the text present
inside double quotes in the msgid entry (Spiel,
Ansicht, Steuerung, etc.).

3For detailed information on PO files, please refer to this
blog post. http://pology.nedohodnik.net/doc/user/
en_US/ch-poformat.html

4https://www.gnu.org/software/gettext/
5Screenshot from https://gitlab.gnome.org/GNOME/

aisleriot/-/blob/master/po/de.po#L1726. Accessed
Date: 09/02/2023 (dd/mm/yyyy)
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Figure 1: Screenshot from Klondike5(Solitaire) game in GNOME with UI texts (LEFT). The German translations
of the texts in the menu bar (RED ARROW) with their corresponding translations in the PO file (RIGHT)

• Source Reference6: Comment above each
entry indicating where the texts are extracted
from including the file name and line number
(#: src/window.c:1811). Translators can look
up the source code for more context. Note that
this can be more than one file and can include
multiple references.

2.2 Contextual Information in PO

PO files contain more information than the source
and target sentence pairs. However, it is not
straightforward how and what information to in-
clude in the NMT models. Moreover, it is unlike
the contextual information in the traditional sense
to address phenomena like co-reference resolution
or gender (Stojanovski and Fraser, 2019; Wong
et al., 2020; Lopes et al., 2020). Below, we de-
scribe three sources of information that are relevant
and useful for UI translation:

Domain: All segments in a PO file belong
to one application or software. Hence, we can
loosely classify these segments belonging to finer-
grained domains containing specific properties.
Furthermore, new UI texts added to the software
should maintain consistency according to terms
and phrasing with previous translations. Therefore,
knowing that the sentence is from a particular PO
file can help NMT choose a similar translation

6Source Reference is the file path in the source code for
a source-target sentence pair. We follow the convention and
clarify that it is unrelated to the source or reference texts.

style.

Neighbours: The order of the entries in the PO
file maintains some relation to what users see when
using the software. Although there is no semantic
relation between the entries in the document, sur-
rounding segments can provide information about
the current entry. For example, consider a scenario
where we must translate the word "Home" into
German. If we know that the surrounding two sen-
tences are "Change Directory" and "Print Working
Directory," we can infer that it is in the context
of a Linux application. Hence, we can translate it
as "Benutzerverzeichnis" by inferring information
from other entries/neighbors.

Source Reference: Specific to PO files, source
reference can provide high-quality information. Al-
most all entries have a reference to the source code
from which it was extracted. Human translators
often look at the source code in case of ambigu-
ity. NMT models can also exploit such information
while predicting. For translating "Login" to Ger-
man, we need to decide on choosing the noun (title
text) or verb form (button). If all the texts having
the same source reference were translated as the
verb form, it is more likely that the current word is
also a verb form. Therefore, source references can
also be beneficial to integrate into NMT models.

Developers can also add context to each entry in
the form of comments or by adding a msgcxt in the
entry. We illustrate such occurrences with the toy
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example from the blog post3:

#. TRANSLATORS: First letter in 'Scope'
#: tools/observinglist.cpp:700
msgid "S"
msgstr ""

#: tools/observinglist.cpp:700
msgctxt "First letter in 'Scope'"
msgid "S"
msgstr ""

Note that there is no standard or consistent pro-
cess on how developers provide context to the trans-
lators. For example, it can be the case that a com-
ment for an entry also applies to the subsequent
entries. However, it is trivial for humans to de-
termine which entries are related to the comment.
Also, some entries do not have any comments or
msgcxt. Furthermore, this information is in natu-
ral language needing complex models to use this
information. Therefore, it is not straightforward to
leverage the comments/msgcxt as a context in an
NMT model, and we do not include this informa-
tion while conducting our baselines in Section 4.

One possible workaround is to use the actual
source code using the source reference entry to
provide more information. Extracting contextual
information from code can save developers time
annotating and enable the NMT model to translate
a wide range of applications.

Another category of contextual metadata that
could be beneficial for translating UIs with NMT
models is the element type of the text (button, title,
table item, etc.,). However, this is rarely present
in open-source data, and developers do not explic-
itly mention such information in PO files usually.
Moreover, there is also no consistency in this case
to specify such information.

2.3 Multilingual UI Corpus

Although we have shown that PO files are useful,
there is no large corpus containing these files. Hav-
ing UI texts from a limited amount of applications
does not cover different domain-specific choices
or styles. Collecting UI data from as many differ-
ent domains as possible is crucial. Therefore, we
create the UI corpus by searching for PO files in
public GitHub repositories.

By convention, developers name the PO file with
the language code and .po extension. For example,
the name of PO files in German is de.po | De.po

| DE.po | dE.po. Therefore, we search and down-
load files ending with such names depending on the
language in publicly available repositories. We use
Sourcegraph to query the repositories and down-
load PO files for multiple languages. Afterward,
we parse the PO files using the polib library and
extract translation pairs with the contextual infor-
mation described in Section 2.2. Table 1 shows
the number of source-target pairs we extracted for
different languages.

Language Repositories
Total Sentence
Pairs

German 22248 1.33M
Japanese 13196 0.89M
Spanish 20996 1.38M
Hindi 3095 128K

Table 1: Total number of repositories and parallel
sentence pairs extracted between English↔ German,
Japanese, Spanish or Hindi. Note that PO files for many
more languages are often present and can be scraped.
We provide links along with commit hashes (to replicate
our data set) to download the corpus from public Github
repositories.

Although we extract bilingual translation data, it
is possible to create a multi-way UI data set using
repositories containing PO files for multiple lan-
guages. Therefore, such data can also be fruitful
in improving Multilingual NMT for non-English
translation directions (Aharoni et al., 2019; Liu
et al., 2020).

3 Realistic & Targeted Evaluation

The previous section described how we collected
the data and its characteristics. The next step is to
design a realistic evaluation framework to show-
case challenges in UI translation and estimate the
NMT model’s quality reliably.

In this section, first, we propose two test sets
considering different use cases while evaluating.
Then, to highlight one fundamental phenomenon
when dealing with UI strings, we create a challenge
set for disambiguation based on heuristics and hu-
man annotation. We explain how we curated the
different test sets below.

3.1 Intra & Cross-application Test Sets
Splitting the data appropriately into train/dev/test
sets is vital in evaluating NMT models. Further-
more, the splits should also capture realistic condi-
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tions. Therefore, we propose the following scenar-
ios:

Intra-application: The software gets updated
regularly. With the updates, we need to translate
newly added and modified strings. However, we
have access to human-annotated translations for
the strings in the previous version providing accu-
rate information about the domain. Therefore, we
consider a case where the test set is from applica-
tions that the model has seen during training. From
the training data, we randomly select samples and
discard them from our training set.

Cross-application: Localization companies
also need to translate new applications for which
there is no gold human-annotated data. To imitate
these scenarios, we keep out a few applications
entirely for evaluation. Instead of randomly se-
lecting for evaluation, we choose 10 applications
containing between 100 and 300 translation pairs.
We set these bounds to maximizing the number of
domains covered during testing.

Both test sets also provide insights into how
much contextual information is consistent across
applications. For example, suppose the context-
aware NMT system performs better than sentence-
level NMT on the Intra and not the Cross-
application test set. In that case, we can conclude
that such information does not generalize for new
applications. However, it can be used only to im-
prove translations for applications already present
in the training data.

3.2 Targeted Disambiguation Test Set

The test sets described above assess the model’s
ability in different scenarios. However, it does
not explicitly measure the model’s ability to cap-
ture context. The need for targeted test sets (Baw-
den et al., 2018; Voita et al., 2018; Stojanovski
et al., 2020) to use context was shown in Doc-
NMT. Several complicated architectures were pro-
posed for integrating context using limited amounts
of document-level annotated data and showed im-
provements on standard test sets. However, proper
regularization parameters on the sentence-level
model led to the same performance improvements
(Li et al., 2020; Sun et al., 2022). Hence, it is nec-
essary to evaluate context-aware NMT models on
targeted test sets to not draw false conclusions.

In the case of UI texts, a prevalent phenomenon
where context is needed is disambiguation. Long
sentences often contain enough context for the mod-

els to generate the translation correctly. However,
a large number of short sentences are present in UI
data (refer to Appendix A.3). Therefore, we create
a targeted disambiguation test set when translat-
ing English to German as a benchmark to evaluate
context-aware NMT models.

We use heuristics to extract and filter source sen-
tences with multiple target translations. Then, we
manually evaluate these instances and filter those
where the context is insufficient, or it is unneces-
sary as the translations are paraphrases. We explain
the process in the following.

3.2.1 Automatic Filtering
After lower-casing the data, we extract source sen-
tences with multiple target translations and ended
up with numerous pairs (∼ 50k) consisting of many
paraphrases. Therefore, to only extract disambigua-
tion pairs, we perform the following steps:

1. We only keep word-word translations. This
step was necessary to filter out paraphrases
using a database later.

2. Translations from the same PO files are more
likely to be paraphrased as they belong to the
same domain. Hence, we only keep where
target translation occurs across different files.

3. The source-target pairs that occur only once
were filtered out as they might be noise from
incorrect translations.

4. We discard pairs consisting of characters such
as "#,,_,!" (IP-address v/s IPaddress) by check-
ing for punctuation symbols.

5. We match with the German paraphrase
database7 (Ganitkevitch et al., 2013; Ganitke-
vitch and Callison-Burch, 2014) to eliminate
target translations that are synonyms. We only
keep target words that occur in the database
but are not considered paraphrases. We do
not set a threshold score and consider all the
entries in the database to have high precision.

After several steps of filtering, we end up with
293 segment of pairs. Upon manual inspection,
we find it impossible to disambiguate several in-
stances, even when we look at the PO files for

7Note that using the multilingual paraphrase database
(Ganitkevitch and Callison-Burch, 2014), it is possible to
extend this approach into several languages
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Context
Source

Context
Target

Source
Word

Target
Word

%s was written onto %s
Select Image

%s wurde auf %s geschrieben
Abbild auswählen

Image Abbild, Bilder

Journal
Author Note

Zeitschrift
Autorhinweise

Volume Volumen, Band

Vendor Locations
Variant Count

Lagerorte der Lieferanten
Variantenanzahl

Volume Volumen, Band

You are not currently subscribed to any active threads
There are no active author subscriptions.

Sie haben momentan keine aktiven Diskussionen abonniert
Es gibt keine aktiven Abonnements nach Autor.

Thread Diskussion, Faden

Table 2: Examples from the targeted disambiguation test set. We only show 2 surrounding entries in the table but
the human annotators were shown 5 to provide more information. The actual translation is highlighted in bold.

context. In some cases, it is not clear if the transla-
tion of the text is a noun or verb, even by looking at
the whole file. Although it is possible that looking
at the source code may prove beneficial, we ignore
these pairs. Moreover, words like "Settings" and
"Preferences" are not paraphrased according to the
database but are usually synonymous in the UI con-
text. To eliminate such occurrences, we perform
a final step of manual filtering and clean the data
using native speakers.

3.2.2 Manual Annotation

We split the test set into three parts. Then, we send
each part to two annotators for the final filtering.
We gave the annotators the surrounding 5 transla-
tion pairs (context) and the source word. Given
this information, they were given multiple target
translations as options, and we asked them to select
the appropriate target given the source and context.
Furthermore, we allow them to choose multiple
options if they believe that more than one transla-
tion is appropriate. Moreover, we also provide a
"None of the above" option for every question if
they think the context is insufficient or the transla-
tions are incorrect. Finally, we selected the ones
where both annotators chose the same target word
as translation. After annotation, we had 95 entries
in the final disambiguation test set. We present a
few examples from the test set in Table 2.

Note that many pairs were discarded due to in-
sufficient context but it might be possible to disam-
biguate with screenshots of application showing the
specific UI element. However, we do not have text-
image aligned data but it shows the potential ad-
vantage of Multi-Modal NMT (Elliott et al., 2017).
An overview of the sizes of the data splits for our
English↔ German experiments can be found in
Appendix Table 7.

4 Baselines

To evaluate the current NMT approaches with con-
textual information on UI translations, we provide
baselines (English → German) using the current
SOTA techniques. We build context-aware NMT
models on our UI corpus and measure their ability
to use context and highlight their shortcomings.

First, we describe how we integrate multiple
types of contextual information in NMT. Then, we
present the results and analyze the performance of
the models on the multiple test sets.

4.1 Context-aware NMT models
As shown in Section 2.2, we have access to differ-
ent sources of contextual information. The next
step is to integrate them into the NMT model. We
perform experiments by including them in the fol-
lowing ways:

Domain: We want to exploit the fact that we
have already seen a particular PO file. Therefore,
we take the help of tags to indicate this information
similar to Kobus et al. (2017). We assign a unique
domain tag to each repository and prepend it to
each source sentence in a file. During training,
we initialize each tag with a random embedding.
While testing, the model can know the origin of
the file by looking at the domain tag to translate
appropriately. If it is from an unseen repository, we
assign a random embedding
Example: <KLONDIKE> _Game ||| _Spiel

Neighbours: In this scenario, we consider the
whole PO file as a document. Knowing the sur-
rounding entries in the document can provide cues
about the current segment. Therefore, we exploit
them by following approaches in Doc-NMT (Tiede-
mann and Scherrer, 2017). We concatenate the
source with the surrounding (left and right if pos-
sible) two segments in the file. Note that we only
add the source context and not the target side.
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Example: _View _Control <TAG> _Game |||
_Spiel

Source Reference: Specific to PO files, file
paths of the string in the source code can capture
standard naming conventions across different ap-
plications. Like the neighbor’s approach above,
we concatenate the path with the source sentence.
However, we remove the punctuation to maximize
the overlap across paths having similar naming
structures.
Example: src window c <TAG> _Game ||| _Spiel

4.2 Experimental Setup
Note that we initially pre-train the models on WMT
14 English-German data (Luong et al., 2015) and
then fine-tune on our corpus. We perform this two-
step training following the success in transfer learn-
ing (Zoph et al., 2016; Kocmi and Bojar, 2018)
and improve the translation capabilities. The pre-
processing and training parameters for both stages
is described in Section A.1.

4.3 Results
We present results on the different evaluation sce-
narios described in Section 3. First, to understand
the performance of context-aware models in real-
istic scenarios, we report the results on Intra and
Cross test sets in Table 3. Then, we evaluate the
models on the targeted disambiguation test set to
highlight the need for context in this challenging
task and present scores in Table 4. Instead of BLUE
(Papineni et al., 2002) or CharacTER (Wang et al.,
2016), we report the accuracy for this test set as
both source and target are word-translations. The
scores for De → En demonstrate the ability to
map different German words to the same English
word. However, it is not completely accurate as the
English translations that the model generates can
be paraphrased.

Do context-aware NMT models perform bet-
ter where training data is from known applica-
tions? All the context-aware models in Table 4
obtain higher score than the sentence-level model
on the Intra-application test set. The only excep-
tion being the Neighbour approach in English→
German on BLEU (49.21± 0.26) but par with the
standard NMT baseline (49.03± 0.76).

We hypothesize that the model knows how to
use the context when translating segments from
the Intra-applicaton test set. For example, con-
sider the Source Reference approach and the file
in Figure 1. By knowing that the text "Control"

present in "src/window.c" was translated as a noun
("Steuerung") and not a verb ("Steuern"), the model
knows how to translate ambiguous texts in that file.
Such phenomena are also possible when using the
other context-aware NMT approaches. Therefore,
we need to integrate contextual information when
translating new segments from seen applications.

Does the contextual information generalize
to entirely new software? Contrary to the gains
observed above, all the context-aware models do
not obtain significant improvements on the Cross
test set. Although there is a slight improvement
in a few conditions, it is around 0.5 in BLEU and
0.4% in CharacTER. Moreover, in the case of Do-
main Tag approach, all the texts are assigned a new
random domain tag that was not seen during train-
ing. Hence, it performs significantly worse than
the other methods.

The results show that the contextual information
does not generalize well to entirely new applica-
tions. Therefore,

we need better context-aware NMT approaches
than the baselines we proposed, which capture con-
text more abstractly and benefits software localiza-
tion in realistic conditions.

How well do the context-aware NMT mod-
els perform on the challenging targeted disam-
biguation test set? While the sentence-level NMT
model obtains an accuracy of 20.0% on the targeted
test set, the Domain Tag approach reaches 41.0%.
Furthermore, it performs the best out of all other
approaches, with the next best model reaching only
29.4%.

However, it can be the case that most segments
in the disambiguation test belong to applications
present in the training data. Hence, allowing the
Domain Tag approach to perform better. Never-
theless, if the example is from a cross-application,
this approach can perform worse due to the random
initialization of the tag. Moreover, the other ap-
proaches are better than the sentence-level model
by only a maximum of 10%. The proposed base-
line methods are insufficient in this challenging test
set and call for better context-aware NMT models.

Are the context-aware NMT models ignor-
ing the context? We also need to investigate the
influence of context, if at all, on the model’s trans-
lations. If the system uses the context, providing
false/incorrect context to the model should hurt
the performance. Otherwise, we can conclude that
the current NMT model ignores the contextual in-
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Evaluation Setup

Context
Type

BLEU (↑) CharacTER (↓ %)

Cross Intra Cross Intra

En→ De De→ En En→ De De→ En En→ De De→ En En→ De De→ En

No context 47.15 ± 0.12 57.14 ± 0.44 49.03 ± 0.76 56.05 ± 0.29 37.04 ± 0.08 29.51 ± 0.02 34.75 ± 0.33 29.18 ± 0.32
Domain Tag 44.99 ± 0.26 54.59 ± 0.36 52.10 ± 0.06 57.90 ± 0.45 39.08 ± 0.07 30.55 ± 0.18 31.64 ± 0.17 26.94 ± 0.27

Neighbour (2) 46.93 ± 0.06 57.30 ± 0.27 49.21 ± 0.26 56.92 ± 0.38 36.94 ± 0.12 29.13 ± 0.16 34.04 ± 0.21 28.22 ± 0.11
Source Reference 47.79 ± 0.09 57.82 ± 0.33 51.09 ± 0.33 58.53 ± 0.35 36.67 ± 0.14 29.12 ± 0.04 32.38 ± 0.41 27.00 ± 0.20

Table 3: Baseline experiments using different sources of contextual information described in Section 2.2 and
evaluated on both Intra and Cross application scenarios. We perform each experiment 3 times to account for
randomness and report using both BLEU (↑) and CharacTER % (↓) metrics. We highlight the score in bold if the
gains are statistically significant compared to the baseline model (No context)

Accuracy (%)

Context Type En→ De De→ En

None 21.05 ± 0.85 43.85 ± 0.49
Domain Tag 41.03 ± 0.85 56.46 ± 2.14

Neighbour (2) 26.26 ± 1.5 45.93 ± 1.79
Source Reference 30.8 ± 0.98 52.23 ± 1.79

Table 4: Accuracy of context-aware NMT models on tar-
geted disambiguation test set (En↔ De). The scores
from De ↔ En denote the accuracy in predicting the
same English word given different German words. We
run the experiment 3 times and report the confidence
intervals.

formation as shown in previous works (Sun et al.,
2022).

For this purpose, we conduct an experiment us-
ing the "Neighbors" approach and provide incor-
rect context by randomly sampling consecutive seg-
ments from different PO files. We report the results
in Table 5. Although it is not better than a simple
NMT system trained without context, there is al-
ways a drop in performance when using incorrect
context. Thus, the model uses the context for gen-
erating translations but with degradation in general
translation quality.

To show the role of context, we provide an ex-
ample in our test sets in Table 6. The word "driver"
in this case can be translated to German as either
"Fahrer" (vehicle driver) or "Treiber" (software
driver), depending on the domain. In both cases,
the model correctly predicts the translation using
the context. However, the scores do not show over-
all improvement, indicating that the context might
add additional noise, causing a drop in general
translation quality.

5 Related Work

Domain-Adaption in NMT: NMT models for soft-
ware localization have to deal with texts coming
from vast amount of domains. Hence, Domain-
Adaptation techniques (Saunders, 2022) are highly
relevant in this challenging task. Many works use
different domain-tagging schemes to indicate the
type of data where the segment’s labels are either
known or unknown (Kobus et al., 2017; Poncelas
et al., 2018; Mino et al., 2020; Wang et al., 2021).
Another line of approach is to modify the network
to indicate and generate domain-specific transla-
tions (Zeng et al., 2018; Pham et al., 2021; Lin
et al., 2021). Building on this, few works also
propose to add and adapt using domain-specific pa-
rameters (Bapna and Firat, 2019; Abdul-Rauf et al.,
2020).

Document-level NMT: Exploiting the context
from the surrounding texts is necessary for both
software localization and Doc-NMT. The initial
straightforward approaches for Doc-NMT explored
concatenating the source/target with surrounding
sentences (Tiedemann and Scherrer, 2017; Agrawal
et al., 2018; Ma et al., 2020). These methods do not
change the NMT architecture or training methods
but can be applied by simply altering the data or
the embedding. In contrast, several works inves-
tigated creating a different representation for the
context sentences using additional encoders (Jean
et al., 2017; Zhang et al., 2018; Voita et al., 2018;
Werlen et al., 2018; Wang et al., 2019a). Few re-
cent works also propose either modifying the archi-
tecture of augmenting data to show the benefit of
Document-Document translation (Bao et al., 2021;
Sun et al., 2022). For targeted evaluation, Gonzales
et al. (2017) also manually constructs a word-sense
disambiguation test in English↔ German. How-
ever, our test set is mostly automatic and calls for
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Evaluation Setup
True Context False Context No Context

En→ De De→ En En→ De De→ En En→ De De→ En

Intra 49.21 ± 0.26 56.92 ± 0.38 47.95 ± 0.28 55.0 ± 0.35 49.03 ± 0.76 56.05 ± 0.29
Cross 46.93 ± 0.06 57.30 ± 0.27 46.38 ± 0.22 55.94 ± 0.08 47.15 ± 0.12 57.14 ± 0.44

Table 5: BLEU scores for the "Neighbor (2)" model evaluated using True and False context during inference. For
"No Context", we report the scores of the baseline model trained simply on the parallel data without any additional
information. We report the confidence interval by running the experiment 3 times.

Source Current Driver

Reference Aktueller Fahrer

Source + True Context Create a new vehicle status <tag> Date when the vehicle has been immatriculated <tag> Current Driver

Neighbour (2)
Hypothesis

Aktueller Fahrer

Source + False Context % s updates a cartridge <tag> Unknown file <tag> Current Driver

Neighbour (2)
Hypothesis

Aktueller Treiber

Table 6: Example from our test set where the Neighbour approach (Table 3) uses the context and generates the
proper translation. Source + True context is the concatenation of the true neighbors in the same PO file with the
source sentence whereas Source + False Context appends a random context from another PO file.

solving the disambiguation by focusing on neigh-
boring entries and not the sentence itself.

NMT for UI: One of the major limitations for
building NMT for UI is the lack of data. The OPUS
corpus (Tiedemann, 2012) makes such data avail-
able but with no contextual information. The clos-
est to our work is Wang et al. (2019b), building
NMT for mobile applications. However, the data is
neither public nor addresses the several contextual
issues occurring in software localization.

6 Conclusion

We presented a multilingual UI corpus with addi-
tional meta-information for researchers in the com-
munity to exploit and build context-aware NMT
models for software localization. We also have
proposed two evaluation setups to replicate con-
ditions occurring in localization companies and
show the difficulty in tackling new applications.
Furthermore, we experiment using domain adapta-
tion and Doc-NMT techniques to provide baselines
and present the benefit of using different types of
context in intra-applications while showing its in-
effectiveness in cross-application scenarios. More-
over, we suggest an automatic procedure to create
a targeted disambiguation test set where context is
necessary to generate the correct target word trans-
lation. Finally, we show that the baseline systems

fail in such challenging settings and call for sophis-
ticated context-aware NMT models to improve the
process of software localization.

7 Limitations

While we have presented UI data with contextual
information, it does not contain any meta-data (but-
ton, table title, etc.,) of the textual elements. Hav-
ing access to such resources can prove highly ben-
eficial and are lacking in our presented data set.
Furthermore, we do not provide any visual context
to develop Multi-Modal NMT systems that implic-
itly contain the meta-data. However, we consider
them as potential directions and include them in
our future work. Finally, we do not analyze or ex-
periment on non-European languages that might
contain specific and unique properties which need
to be addressed during localization. Another impor-
tant limitation is the quality of the translations. We
don’t know whether they have been produced by
professional translators or by multilingual speak-
ers creating inaccurate translations. Although we
filter the fuzzy (e.g MT outputs) translations, it
can be that not all of them are marked completely.
Therefore, qualitative analysis of the data is further
necessary.
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A Appendix

A.1 Pre-processing and Training Parameters
For pre-processing, we first tokenize the data with
the Moses Tokenizer (Koehn et al., 2007). Then,
we learn a joint sub-word vocabulary from 30k
merge operations using BPE (Sennrich et al., 2016)
and apply on the data.

For experiments in Table 4, we first pre-train the
model using WMT14 English-German data (Lu-
ong et al., 2015). We use the standard Transformer
model (Vaswani et al., 2017) with 6 encoder and
decoder layers. We use 4 attention heads for ev-
ery layer an embedding dimension of 512. We use
0.1 for label-smoothing 0.2 for dropout. We set
max-tokens to 3000 and a learning rate of 0.0001.
For the experiments, we use the Fairseq toolkit
(Ott et al., 2019) and set all other parameters to
default. While fine-tuning, we reload the model
and continue using the same optimization and reg-
ularization parameters.

A.2 Data Split Overview

Data
Split

Number of
Sentence Pairs

Train 1.26M
Intra 2.6K (2.6K)
Cross 2.6K (2.4K)

Disambiguation 95

Table 7: Overview of UI data split for English↔ Ger-
man. () indicates the number of validation sentences for
the Intra and Cross application test sets.

A.3 Characteristricts of UI segments

Average Sentence
Length English

Average Sentence
Length German

Vocabulary
Size English

Vocabulary
Size German

UI 36 43 167375 321602

News
Domain

142 157 626914 1444840

Table 8: Comparing UI (Git scraped) v/s WMT 14
English-German Data. It can be seen the UI sentences
are much shorter than the data available in the general
domain. Also in both data types, we see that the German
sentences consist of more unique words due its complex
morphology
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Abstract
Despite cross-lingual generalization demon-
strated by pre-trained multilingual models, the
translate-train paradigm of transferring En-
glish datasets across multiple languages re-
mains to be a key mechanism for training task-
specific multilingual models. However, for
many low-resource languages, the availability
of a reliable translation service entails signifi-
cant amounts of costly human-annotated trans-
lation pairs. Further, translation services may
continue to be brittle due to domain mismatch
between task-specific input text and general-
purpose text used for training translation mod-
els. For multilingual semantic parsing, we
demonstrate the effectiveness and flexibility
offered by large language models (LLMs) for
translating English datasets into several lan-
guages via few-shot prompting. Through ex-
tensive comparisons on two public datasets,
MTOP and MASSIVE, spanning 50 languages
and several domains, we show that our method
of translating data using LLMs outperforms a
strong translate-train baseline on 41 out of 50
languages. We study the key design choices
that enable more effective multilingual data
translation via prompted LLMs.

1 Introduction

Enabling language technologies across several lan-
guages is an important goal for serving a diverse
range of users in an inclusive manner. Recent ad-
vances in large-scale self-supervised multilingual
language models hold immense promise in bridg-
ing the quality gap that currently exists between En-
glish and many other low resource languages (Con-
neau et al., 2020; Brown et al., 2020; Xue et al.,
2021). Even though multilingual models exhibit
cross-lingual generalization, getting meaningful
performance across several languages still requires
significant amounts of task-specific labeled data.

We consider the problem of automatically syn-
thesizing semantic parsing datasets across several

∗Work done during an internship at Google Research

languages. Semantic parsing (Zelle and Mooney,
1996; Zettlemoyer and Collins, 2005; Berant et al.,
2013) is the task of mapping natural language
text into an executable logical-form. For exam-
ple, given a user instruction (x) : “Wake me
up by 5 am”, mapping it to the logical-form
(y): [IN:CREATE_ALARM [SL:DATE_TIME 5 am ]].
Manual annotation of queries with their logical
forms requires human expertise which makes data
collection across multiple languages challenging.

A common approach to automatic multilingual
dataset creation is translating existing English
datasets into target languages. Prior methods uti-
lize an off-the-shelf machine translation model for
translating the English utterance into the target lan-
guage xeng → xtgt, followed by projecting lan-
guage specific components in the English logical-
form yeng to obtain the logical-form ytgt in the tar-
get language (Moradshahi et al., 2020, 2021; Xia
and Monti, 2021; Nicosia et al., 2021; Gritta et al.,
2022; Wang et al., 2022). The projection step is
often learned independent of the translation service,
resulting in poor generalization across languages.

In this work we aim to utilize the few-shot gen-
eralization abilities exhibited by large language
models (LLMs) (Brown et al., 2020; Chowdh-
ery et al., 2022; Scao et al., 2022) for bootstrap-
ping semantic parsing datasets across fifty lan-
guages. We propose a recipe of using LLMs
to translate an English semantic parsing dataset
containing (utterance, logical-form) pairs:
Deng = {(xieng, y

i
eng)} into a corresponding dataset

in a target language: Dtgt = {(xitgt, y
i
tgt)}. The gen-

erated dataset Dtgt is then used to train a semantic
parser in the target language. Our method uses
a small amount of manually translated semantic
parsing examples to teach the LLM how to trans-
late English examples in the target language via
in-context learning (Min et al., 2022).

Figure 1 describes our data-translation pipeline
which we refer to as LLM-T (§ 3). In contrast
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Figure 1: Proposed semantic parsing data translation pipeline using LLMs (§ 3): With the help of human
translators, we first collect translations of a small seed set of English examples in the Target Language (e.g. Hindi;
§ 3.1). Given a new English example, a small subset from this initial seed set of examples with their respective
translations is chosen to prompt the LLM (§ 3.2). The prompted LLM translates the given English example in
the Target Language. We repeat this process for each example in the English training data to generate a training
dataset in the Target Language. To ensure high-quality of the resulting dataset, we generate diverse translations via
top-p (nucleus) sampling (§ 3.3) and apply consistency filtering (§ 3.4).

to prior translation based methods that involved
a two-staged process requiring different modules,
our method uses the LLM to jointly translate
an English (xeng, yeng) pair directly into the tar-
get language (xtgt, ytgt). We identify two impor-
tant choices that make the LLM translated data
more effective for training a downstream parser:
(i) Sampling diverse translations (§ 3.3): De-
coding translations using top-p (Fan et al., 2018)
and top-k (Holtzman et al., 2019) sampling leads
to improved downstream performance compared
to using greedy decoding. Sampling multiple di-
verse translations per example further improves the
downstream performance; (ii) Filtering inconsis-
tent examples (§ 3.4): Decoding via sampling can
result in noisy joint translations of the (utterance,
logical-form) pairs. To filter out the inconsistent
pairs, we propose a slot-value match based filtering
technique that improves the training data quality.

We perform experiments on two multilingual se-
mantic parsing datasets: MTOP (Li et al., 2021)
and MASSIVE (FitzGerald et al., 2022). On 4
out of 5 languages in MTOP and 41 out of 50 lan-
guages in MASSIVE, our method LLM-T outper-
forms TAF (Nicosia et al., 2021), a strong baseline
that utilizes a supervised translation service (§ 5.1).
Further, we see that LLM-T achieves 93% of the
performance obtained by “fully-supervised” mod-
els that use 30× more manually translated exam-
ples (§ 5.2). We justify the importance of generat-

ing multiple translations using sampling, filtering
out inconsistent examples, and using larger-sized
LLMs in improving translated data quality (§ 5.3).
Finally, we perform an error analysis of our parser
and show the key sources of disagreements between
the model predictions and the ground truth (§ 5.4).

2 Background

In this section, we provide an overview of semantic
parsing and prior translation-based methods for
creating multilingual semantic parsing datasets.

2.1 Semantic Parsing

Semantic parsing is the task of mapping text
queries to their meaning representations or logical
forms (Zelle and Mooney, 1996; Zettlemoyer
and Collins, 2005; Berant et al., 2013). We focus
on task-oriented semantic parsing (Gupta et al.,
2018) where the user utterance needs to be parsed
into a high-level intent specifying the overall goal,
and fine-grained slots containing details about
the utterance. The intents and slots come from a
task-specific vocabulary. For example, given an
utterance x: “How is the rainfall today?”,
the parser should generate the logical-form
y: [IN:GET_WEATHER [SL:ATTRIBUTE rainfall]

[SL:DATE today ] ]

Here, IN:GET_WEATHER is the high-level intent,
SL:ATTRIBUTE and SL:DATE are the slots that spec-
ify details about the intent. We refer to the logical-
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form with its slot values removed as its "signature".
For example, the signature of y is
[IN:GET_WEATHER [SL:ATTRIBUTE][SL:DATE]]

2.2 Translating Semantic Parsing Datasets
Given an English semantic parsing dataset con-
taining (utterance, logical-form) pairs Deng =
{(xieng, y

i
eng)}, many methods aim to translateDeng

to a dataset Dtgt = {(xitgt, y
i
tgt)} in the target lan-

guage (tgt). Here xitgt is the translation of xieng,
and yitgt is the logical form grounded in the trans-
lated utterance xitgt. Target logical form yitgt has the
same signature as yieng and only differs in terms
of the translated slot values. Most translation
based approaches (Moradshahi et al., 2020, 2021;
Xia and Monti, 2021; Nicosia et al., 2021) trans-
late an English example (xieng, y

i
eng) to the corre-

sponding target language example (xitgt, y
i
tgt) via a

two step process: (i) Translate: Use a supervised
translation service to convert the English utterance
xieng into the target language utterance xitgt; and
(ii) Project: Replace the English slot values in yieng
with spans copied from the translated utterance
xitgt via a learned alignment model. The translated
examples are then used to train a downstream mul-
tilingual semantic parser. For example, Nicosia
et al. (2021) implement the project step by training
a filler module on English data to fill slot-values
in a logical-form signature by copying spans from
the utterance. During inference, the trained filler
module is then used in a zero-shot manner to fill
logical-form signatures with spans copied from the
translated utterances.

3 Our Method: Prompting LLMs for
Dataset Translation

Our goal is to learn a multilingual semantic parser
capable of parsing user queries in many languages.
Towards this goal, we propose a method for gen-
erating multilingual training datasets via few-shot
prompting of an LLM to translate existing English
datasets into several languages.

In contrast to prior approaches, we jointly
perform example translation by prompting an
LLM with a few exemplars of translating English
(xeng, yeng) pairs to target language (xtgt, ytgt) pairs.
Figure 1 describes our data-translation method
which we refer to as LLM-T. With the help of
human translators we first collect a small seed set
of exemplar translations used for prompting the
LLM (§ 3.1). Given an input English example, we

dynamically construct the LLM prompt by identify-
ing a relevant subset of seed exemplars (§ 3.2). The
LLM translates the English example into the target
language by in-context learning from the exem-
plars provided in the prompt. Instead of decoding
the most likely translation, we generate multiple
diverse translations (§ 3.3) using top-p (nucleus)
sampling (Holtzman et al., 2019). While sampling
improves the text diversity, it can lead to more noisy
generations. We filter out the noisy generations us-
ing a simple string-match based technique before
training a parser on the translated data (§ 3.4).

3.1 Selecting Seed Exemplars for Translation
Given an English semantic parsing dataset Deng =
{(xieng, y

i
eng)}, we first want to identify a small seed

set Seng ⊂ Deng that will be translated into the tar-
get language (Stgt) with the help of human transla-
tors. The examples in Seng and their corresponding
translations in Stgt will be used for prompting the
LLM. Therefore, the choice of the seed examples
in Seng that are manually translated into Stgt be-
comes important—we would like that the multiple
domains (e.g. Alarms, Music, News, Weather,
etc.) and the intents and slot types in each do-
main are covered. This ensures that for a given
English example to be translated, we will be able
to prompt the LLM in a manner such that at least
one of the few-shot exemplars will share the intent
and slots with the test English example. In practice,
we select seed examples in a manner to cover all
the intents and slots in a domain at least once. If
the selected examples are less than 20 for a domain,
we select the remaining examples randomly.

3.2 Constructing the Prompt using
Translation Pairs in the Seed Sets

LLM inference is constrained by the maximum
number of tokens in the input. Hence, we can
only fit a limited number of examples to construct
the LLM prompt. The choice of prompt examples
and their ordering is known to significantly impact
the quality of the generations (Kumar and Taluk-
dar, 2021; Rubin et al., 2021; Lu et al., 2022). To
improve the likelihood of correctly translating an
English example (xeng, yeng), we retrieve seed ex-
amples {(xseng, y

s
eng, x

s
tgt, y

s
tgt)} that share the same

domain with yeng. To bias the LLM further, we
order the more relevant prompt examples closer
to the input English example. Here, relevance be-
tween two examples is considered higher if they
share the same intent. The remaining examples are
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Figure 2: Constructing the LLM Prompt (§ 3.2): The
input to the LLM contains a brief task description in
the beginning followed by a series of English examples
(xseng, y

s
eng) and their translations in the target language

(xstgt, y
s
tgt) chosen from the seed sets Seng and Stgt respec-

tively. Following the prompt examples, we append the
new English example (xeng, yeng) to the input prompt
which is fed to LLM. In the output, the LLM generates
the translation for the new English example (xtgt, ytgt).

arbitrarily arranged to appear earlier in the prompt.
Figure 2 shows an example translation—the LLM
input contains two exemplars and then the English
example that needs to be translated. The LLM out-
put shows the translated output from the LLM.

3.3 Decoding Diverse Outputs from LLM

The text decoded from language models using the
standard greedy decoding or beam search is often
repetitive (Vijayakumar et al., 2016; Shao et al.,
2017). To mimic how users express the same inten-
tions in diverse ways, we experiment with the top-k
and top-p sampling techniques (Fan et al., 2018;
Holtzman et al., 2019) to decode multiple diverse
translations per example. We expect sampling mul-
tiple translations to yield a better quality training
dataset which in turn should result in better down-
stream semantic parsing performance compared to
training on greedily decoded examples.

3.4 Data Filtering using Slot-Consistency

While the sampling techniques produce more di-
verse text, the sampled translations can be rela-
tively noisy if they have lower likelihoods as per
the model (Zhang et al., 2021). Thus, the trans-
lated pairs (xtgt, ytgt) in the LLM output can be

Figure 3: Slot Consistency Based Filtering (§ 3.4):
We present the input English example (xeng, yeng) and
its four translated samples {(xitgt, y

i
tgt)}) the target lan-

guage. The first two samples are slot-consistent as the
slot-values (in green) in the logical forms appear ex-
actly in the text utterances, while the last two samples
are slot-inconsistent as the slot-values (in red) do not
appear as an exact sub-string of the text utterance.

inconsistent w.r.t. each other. For example, con-
sider the LLM translated pair (x3tgt, y

3
tgt) shown in

Figure 3. Here, y3tgt contains a slot value (in red)
that does not appear in the corresponding utterance
x3tgt making the pair (x3tgt, y

3
tgt) inconsistent. As per

the task definition, for a given example (x, y), the
slot-values in the logical form y should come from
the spans of the utterance x. Thus, we filter out
the translated examples (xtgt, ytgt) like these where
the slot-values in ytgt do not appear exactly as an
exact sub-span in xtgt. Figure 3 shows examples of
slot-consistent and slot-inconsistent generations by
an LLM through top-k sampling.

4 Experimental Set-up

We describe our experimental setup in this section.

Datasets We experiment on two public datasets
— MTOP (Li et al., 2021) and MASSIVE (FitzGer-
ald et al., 2022). MTOP contains examples from
six languages: English, French, German, Hindi,
Spanish, and Thai, spanning 11 domains covering
117 intents and 78 slot types. On average, MTOP
contains 12.3K examples in the train split, 1.5K in
the dev split, and 2.7K in the test split per language.
MASSIVE contains examples from 51 typologi-
cally diverse languages including English spanning
18 domains covering 60 intents and 50 slot types.
For each language, MASSIVE contains roughly
11.5K examples in the train split, 2K examples in
the dev split and 3K examples in the test split.
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Evaluation Metric Prior work (Li et al., 2021;
Nicosia et al., 2021) uses Exact Match (EM) accu-
racy as a primary metric which compares predicted
and gold logical-forms strings. However, the exact
string-match penalizes correct predictions where
the order of slots within an intent is different. For
example, consider the following logical-forms:
LF-1: [IN:GET_WEATHER [SL:ATTRIBUTE rainfall]

[SL:DATE today ] ]

LF-2: [IN:GET_WEATHER [SL:DATE today][SL:ATTRIBUTE

rainfall ] ]

LF-1 and LF-2 are equivalent but the difference in
the ordering of slots results in a negative match.
Thus, we correct the EM metric by making the
match function agnostic to the ordering of slots
within an intent in the logical-form. We compare
different models as per this corrected EM metric.

Semantic Parsing Model We use a pre-trained
mT5-Large checkpoint (1.2B parameters) to initial-
ize the downstream semantic parsing models that
map utterances in the input to logical-forms in the
output. We finetune the mT5 model on the original
English dataset mixed with the translated datasets
in target languages. We train using the Adafactor
optimizer (Shazeer and Stern, 2018) with a fixed
learning rate of 1e−3 and a batch size of 256, for
30K steps using the T5X library (Roberts et al.,
2022) on 64 TPU-v3 chips. Examples from each
language are sampled uniformly for batch creation.
For model selection, we choose the best perform-
ing checkpoint as per the dev splits and report our
results on the test splits.

LLM-T (Our Method) We experiment with 8B,
62B, and 540B sized variants of PaLM (Chowdh-
ery et al., 2022) as our LLM, and primarily utilize
LLM-540B for translating English examples in dif-
ferent languages. For the seed set Stgt used for
prompting the LLM, we borrow roughly 250 ex-
amples covering 11 domains from MTOP’s train
set and 350 examples covering 18 domains from
MASSIVE’s train set (§ 3.1). During decoding,
we sample 8 translations per example using top-p
sampling (§ 3.3), with p = 0.95 and temperature
scaling T = 0.7, followed by filtering out slot-
inconsistent examples (§ 3.4). We present an anal-
ysis of our design choices in § 5.3.

Baselines (i) Zero-Shot: Train the model only
on the English data and evaluate on other languages
in a zero-shot manner. (ii) Few-Shot: In addi-
tion to the English training data, use the seed set

of examples Stgt for each language during train-
ing. For MTOP, |Stgt| ≈ 250 and for MASSIVE,
|Stgt| ≈ 350. (iii) TAF: We implement the method
from Nicosia et al. (2021) that uses an off-the-shelf
translation service (§ 2.2) to construct Dtgt in all
the target languages. We borrow Dtgt from Nicosia
et al. (2021) for MTOP and from Nicosia and Pic-
cinno (2022) for MASSIVE.

5 Results and Analysis

We first present downstream performance of seman-
tic parsing models trained on data generated by our
method (§ 5.1) and compare with zero-shot setting,
few-shot setting, and the TAF method (Nicosia
et al., 2021). We then compare our method against
the “full-shot” skyline where we utilize the origi-
nal training datasets that were manually translated
with the help of human annotators in the target
languages (§ 5.2). We then present an analysis
of different design choices that result in effective
data translation using LLM-T (§ 5.3). Finally, we
present an error analysis to show the key sources of
disagreements between the parser predictions and
the ground truth (§ 5.4). All the experiments use
our corrected EM metric (§ 4; Evaluation Metric).

5.1 Evaluation on MTOP and MASSIVE

In Table 1, we compare performance of different
methods for the 5 non-English languages in the
MTOP dataset. The Zero-Shot baseline trains an
mT5 model only on the English part of the train-
split. The Few-Shot baseline additionally includes
the human translated seed sets Stgt for each lan-
guage. Both TAF and LLM-T train on the original
English train set mixed with their respective trans-
lated datasets in each language. As all the baselines
utilize the original English train set, we see com-
parable performance on English (around 85.0 EM).
We observe LLM-T outperforms TAF in 4 out of 5
languages by 3.6 EM. Since LLM-T uses Stgt for
prompting, we also mix Stgt with TAF data and still
observe that LLM-T improves over TAF+Few-Shot
by 2.9 EM. On relatively low-resource languages,
Hindi (hi) and Thai (th), LLM-T leads to much
larger improvements over TAF.

Figure 4 shows the performance difference
between our LLM-T method and TAF for the
MASSIVE dataset (FitzGerald et al., 2022). On
41 out of 50 languages, we find LLM-T to be bet-
ter than TAF. For nine languages LLM-T outper-
forms TAF by more than 5.0 EM—Simple Man-
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Figure 4: EM accuracy difference between LLM-T and TAF across the 50 languages in MASSIVE dataset
(§ 5.1). LLM-T outperforms TAF on 41 out of 50 languages, with gains of more than 5 EM for nine of these
languages. Only for Hebrew (he), LLM-T performs worse than TAF by more than 3 EM.

Method de es fr hi th Avg

Zero-Shot 54.4 57.8 62.8 42.3 42.1 51.9
Few-Shot 62.8 69.5 65.9 55.3 53.9 61.5
TAF 75.0 74.9 78.0 63.0 60.8 70.3
TAF + Few-Shot 75.1 74.5 78.5 63.9 62.9 71.0

LLM-T (ours) 74.0 75.4 79.6 72.3 68.0 73.9

Table 1: EM accuracy comparison on MTOP (§ 5.1):
Data generated using LLM-T yields better performance
on 4 out of 5 languages in MTOP. We observe large
improvements for low-resource languages hi and th.

darin (zhc, +11.9), Traditional Mandarin (zht,
+10.1), Japanese (ja, +9.3), Telugu (te, +6.9),
Malayalam (ml, +6.6), Kannada (ka, +6.1), Lat-
vian (lv, +5.7), Tamil (ta, +5.5), and Khmer (km,
+5.2). Only for Hebrew (he, −4.0), LLM-T is
worse by more than 3.0 EM. Averaged across all
languages, LLM-T outperforms TAF by 2.2 EM. In
Appendix A.1, we provide detailed baseline com-
parisons for all the 50 languages.

5.2 Comparison with gold translations

An ideal translate-train method should be com-
petitive w.r.t. training on fully human translated
datasets. Table 2 provides a comparison between
training on TAF, LLM-T, and the datasets fully
translated with the help of human annotators in the
target languages (Gold). Between TAF and Gold,
we observe a significant gap of 9.2 EM in MTOP
and 6.7 EM in MASSIVE. Our method LLM-T, re-
duces this gap by 3.6 EM in MTOP and 2.2 EM in
MASSIVE. Overall, LLM-T achieves roughly 93%
of the performance obtained by the Gold skyline
that use more than 30× human translated examples.
Appendix A.1, provides per-language comparisons

Dataset Few-Shot TAF LLM-T Gold

MTOP 61.5 70.3 73.9 79.5
MASSIVE 55.9 61.0 63.2 67.7

Table 2: Comparison with Gold skyline (§ 5.2):
While training on the human translated datasets (Gold)
yields the best performance, LLM-T results in a smaller
performance gap compared to TAF. All numbers are av-
eraged over the 5 non-English languages in MTOP.

with the Gold skyline for both the datasets.

Decoding de es fr hi th AvgStrategy

Greedy 71.1 71.7 72.6 68.1 66.0 69.9
+ Filtering 72.2 73.5 74.8 71.5 67.4 71.9

Top-p Sampling (p = 0.95)
(#samples)

1 70.1 71.5 74.3 66.9 67.2 70.0
2 71.4 72.1 74.5 68.8 67.2 70.8
4 71.1 72.8 76.4 69.0 66.0 71.1
8 71.9 72.7 74.2 70.0 68.4 71.4

Top-p Sampling + Filtering (p = 0.95)
(#samples)

1 72.0 75.2 78.9 71.6 68.1 73.2
2 73.7 75.2 79.5 72.0 67.6 73.6
4 73.4 75.3 79.0 72.1 67.7 73.5
8 74.0 75.4 79.6 72.3 68.0 73.9

Table 3: Impact of decoding strategy and filtering:
Generating multiple translations per English example
using top-p sampling followed by filtering inconsis-
tent examples offers superior downstream performance
compared to using greedy decoding or sampling just
one translation per example. In Appendix A.2 we
present results for top-k sampling as well.
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Max Len de es fr hi th Avg

768 73.4 75.4 76.9 73.1 69.7 73.7
1024 74.0 75.4 79.6 72.3 68.0 73.9
1792 74.3 75.7 80.5 74.0 71.1 75.1

Table 4: Impact of prompt length: Longer prompts
containing more exemplars result in more effective
translated datasets yielding higher EM accuracy.

5.3 Analysis of Design Choices

We now present an analysis of the design choices
that enabled more effective data translation via
LLM-T. All the experiments in this section are
carried out on the MTOP dataset.

Role of decoding strategy and filtering In Ta-
ble 3, we present the EM accuracy of parsers
trained on datasets translated using various com-
binations of decoding (§ 3.3) and filtering (§ 3.4)
methods. For generating the translated outputs we
experiment with greedy decoding, top-k (Fan et al.,
2018) and top-p (Holtzman et al., 2019) sampling.
Like prior translate-train methods, we begin with
only one translation per example and observe sam-
pling to be comparable with greedy decoding in
downstream EM accuracy. In contrast, decoding
two translations per example via sampling boosts
the EM accuracy across all the languages. However,
further increasing the translated samples to 4 and
8 results in only marginal performance differences.
Manual inspection of the translated data revealed
inconsistent utterance and logical-form pairs which
motivated our design of slot-consistency based fil-
tering (§ 3.4). Training the parser on filtered data
provides further gains over training on unfiltered
data. In Appendix A.2, we also present the results
for top-k sampling. Overall, utilizing upto 8 top-p
translated samples per English example followed
by slot-consistency filtering provides the best per-
formance averaged over all the languages.

Impact of Prompt Length We expect prompts
containing more exemplars to yield higher qual-
ity translated examples owing to more information
for in-context learning. In Table 4, we compare
EM performance when using maximum prompt-
lengths of 768, 1024, and 1792 tokens. Training on
datasets translated using prompt-length of 1792
tokens provides the best downstream EM perfor-
mance across all the languages. However, longer
prompts lead to considerably longer inference
times. Hence, we conduct our main experiments

de es fr hi th Avg

LLM-T-8B 65.3 69.4 70.7 56.6 55.1 62.0
LLM-T-62B 72.0 73.3 76.7 68.2 65.6 71.2
LLM-T-540B 74.0 75.4 79.6 72.3 68.0 73.9

Table 5: Impact of LLM size: EM performance of
semantic parsers trained on translated datasets improve
with increasing the size of LLMs used for translation.

with prompt the length of 1024 tokens.

Role of LLM size In Table 5, we compare parser
performance when trained on data generated by
LLMs of different sizes. Training on larger LLM
generated data leads to better performance—LLM-
T-540B yields the best performance on all the lan-
guages, followed by LLM-T-62B which outper-
forms LLM-T-8B on all the languages.

5.4 Error Analysis

Figure 5: Distribution of error categories: estimated
across all five languages on MTOP’s dev set.

We analyze the examples where the predic-
tions from our semantic parser do not match with
the ground truth. In Table 6, we categorize all
the erroneous examples into five broad categories
(with English examples): (i) Slot Value Mismatch
(ii) Wrong Intent (iii) Missing Slot (iv) Extra Slot
and (v) Slot Confusion. Figure 5 presents the distri-
bution of the error categories aggregated across all
the languages on the MTOP dev-split. The "Slot
Value Mismatch" is the most frequent error cate-
gory (41.1%)—here the predicted parse structure
is correct but the slot-values do not match perfectly
with the gold parse. After manually inspecting 300
such errors we found that in roughly 50% of the
cases the predicted and gold slot-values often have
minor mismatches which may not be recognized as
error by another human annotator and should not
lead to incorrect output upon logical form execu-
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Slot Value Mismatch (41.1%)
Utterance: Set an alarm for 5 pm tomorrow
Prediction: [IN:CREATE_ALARM [SL:DATE_TIME for 5 pm ] [SL:DATE_TIME tomorrow ]
Target: [IN:CREATE_ALARM [SL:DATE_TIME 5 pm ] [SL:DATE_TIME tomorrow ]

Wrong Intent (19.5%)
Utterance: What can I do today
Prediction:[IN:QUESTION_NEWS [SL:DATE_TIME today ]]
Target: [IN:GET_EVENT [SL:DATE_TIME today ] ]

Missing Slot (15.1%)
Utterance: Play Justin Timberlake ’s newest single
Prediction:[IN:PLAY_MUSIC [SL:MUSIC_TYPE single ] ]
Target: [IN:PLAY_MUSIC [SL:MUSIC_ARTIST_NAME Justin Timberlake ] [SL:MUSIC_TYPE single ] ]

Extra Slot (14.4%)
Utterance: play music on the speaker
Prediction: [IN:PLAY_MUSIC [SL:MUSIC_TYPE music ] [SL:MUSIC_TYPE speaker ] ]
Target: [IN:PLAY_MUSIC [SL:MUSIC_TYPE music ] ]

Slot Confusion (9.9%)
Utterance: audio call wedding planner please
Prediction:[IN:CREATE_CALL [SL:CONTACT wedding planner ] ]
Target: [IN:CREATE_CALL [SL:GROUP wedding planner ] ]

Table 6: Examples of Error Categories (§ 5.4) The errors in the predicted parse can be broadly classified into
five categories: (i) Slot Value Mismatch: Predicted parse has the correct signature but the slot-values are incorrect,
(ii) Wrong Intent: High-level intent of the predicted parse is incorrect, (iii) Missing Slot: One or more slots in the
gold parse do not appear in the output, (iv) Extra Slot: Output contains extra slot(s) compared to the gold, (v) Slot
Confusion: Prediced parse contains the correct correct intent and number of slots but the wrong slot-types.

tion. For example, in the first row of Table 6, the
predicted value for the DATE_TIME slot is ‘for 5
pm’, while the target value is just ‘5 pm’.

6 Related Work

Multilingual Semantic Parsing Multilingual se-
mantic parsers are typically initialized with a foun-
dation model (Bommasani et al., 2021) pre-trained
on vast amounts of multilingual data (Conneau
et al., 2020; Xue et al., 2021; Li et al., 2021;
FitzGerald et al., 2022) followed by supervised
training on synthetic or real multilingual datasets.
A standard approach for constructing multilin-
gual datasets is to translate and localize English
datasets with the help of multilingual speakers
or machine translation. For example, MTOP (Li
et al., 2021), MASSIVE (FitzGerald et al., 2022),
and MultiAtis++ (Xu et al., 2020) were con-
structed by translating TOP (Gupta et al., 2018),
SLURP (Roberts et al., 2022), and ATIS (Price,
1990) respectively through human translators.

Machine Translation based methods Machine
translation based approaches continue to be
important for multilingual task-specific mod-
els (Hartrumpf et al., 2008; Liang et al., 2020; Hu
et al., 2020; Fang et al., 2021; Ladhak et al., 2020)
including semantic parsing. Machine translation
can either be used during the inference time to
translate a user query into English for feeding it
to an English-only model. This approach is re-
ferred to as translate-test (Artetxe et al., 2020;
Uhrig et al., 2021). A more common way of using
machine translation is in the form of data augmen-

tation, referred as translate-train where English
text in training data is translated into several lan-
guages (Sherborne et al., 2020; Moradshahi et al.,
2020, 2021; Xia and Monti, 2021; Nicosia et al.,
2021; Gritta et al., 2022; Wang et al., 2022). In
practice, translate-train methods tend to outper-
form translate-test methods while also reducing
the latency associated with translating text during
the inference time (Yang et al., 2022).

LLMs and Few-Shot learning Trans-
former (Vaswani et al., 2017) based generative
LLMs (Radford et al., 2019; Brown et al., 2020;
Thoppilan et al., 2022; Soltan et al., 2022; Smith
et al., 2022; Zhang et al., 2022; Chowdhery et al.,
2022) trained on massive amounts of web-scale
text corpora using next token prediction objective
exhibit strong few-shot generalization abilities.
When prompted with a task description and a
handful of task-specific examples, LLMs can often
match the performance of finetuned models via
in-context learning (Xie et al., 2021; Min et al.,
2022; Wei et al., 2022; Zhou et al., 2022). We
utilize LLMs for translating English datasets in
several languages using few-shot prompting.

7 Conclusion

We present a method of utilizing large language
models (LLMs) for bootstrapping multilingual se-
mantic parsers across several languages. In compar-
ison to using off-the-shelf translation services that
rely on significant amounts of human supervision,
we demonstrate that prompting self-supervised
LLMs can be a more effective and scalable alter-
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native for dataset translation. We find that gen-
erating multiple diverse translations using sam-
pling techniques followed by consistency-based
filtering make the translated datasets more effec-
tive for training multilingual semantic parsers. On
41 out of 50 typologically diverse languages within
two large datasets spanning several domains, our
method outperforms a strong translate-train method
that utilizes a supervised translation service.

8 Limitations

While translating English queries in different lan-
guages is a useful form of data augmentation, we
think that further performance improvements can
be obtained by careful localization of entities in the
text queries. This will result in examples where
the training dataset contains entities that are often
talked about in the target language and might lead
to less train-test domain shift. LLMs contain lan-
guage specific priors which can be harnessed to per-
form such localization of the translated queries thus
enabling more realistic data augmentations. In this
work we presented a simple string-match based fil-
tering technique to remove noisy translations. Data
filtering can be further improved with the help of
learned models. We observed that larger LLMs are
important to generate more effective translated data.
However running these experiments is constrained
by the availability of large amounts of compute
resources. We hope future work will address these
limitations of our approach.

9 Ethical Considerations

We utilize large language models to translate
datasets initially available in English into several
languages. The real-world deployment of models
trained on LLM-translated data should undergo a
careful review of any harmful biases. However,
the LLM-translated data and the logical-forms gen-
erated by a semantic parser are not user-facing,
thus a smaller risk of any direct harms. The in-
tended users of any semantic parsing model must
be made aware that the answers returned by the
model could be incorrect, more so for user-queries
in low-resource languages. We do not immediately
foresee any serious negative implications of the
specific contributions that we make in this work.
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A Appendix

A.1 Additional results

Lang Zero-Shot Few-Shot TAF TAF +
Few-Shot

LLM-T
(top-k)

LLM-T
(top-p)

Gold
(skyline)

af 48.5 59.0 64.5 64.5 66.7 66.3 68.5
am 31.0 47.6 58.3 57.4 56.1 55.5 64.6
ar 35.9 50.5 57.2 58.0 56.6 57.3 65.5
az 39.3 57.1 60.5 60.5 62.6 62.8 68.8
bn 40.8 55.4 62.1 61.7 61.1 62.0 68.3
cy 26.7 44.8 59.1 58.3 61.1 61.8 65.1
da 57.5 62.4 66.2 66.3 69.1 68.5 71.0
de 54.3 62.8 67.5 67.7 68.3 68.4 70.4
el 47.3 57.8 64.2 65.5 65.2 65.1 68.7
en 72.7 71.4 73.5 72.9 73.3 73.4 73.0
es 53.4 58.1 64.6 64.6 64.7 64.7 66.6
fa 48.8 58.0 63.1 62.9 62.8 63.2 68.1
fi 47.5 58.4 65.0 65.3 66.7 67.2 70.9
fr 54.6 58.0 65.3 64.9 63.9 63.7 67.1
he 35.3 56.1 60.6 61.2 55.3 56.6 68.3
hi 40.1 54.4 61.6 62.5 63.1 63.5 66.2
hu 44.1 57.1 63.8 63.6 64.5 65.4 69.7
hy 39.3 53.8 58.7 59.2 62.3 62.5 67.1
id 55.3 60.2 65.5 65.9 66.6 66.0 69.1
is 41.3 54.4 62.2 61.5 63.6 63.5 69.5
it 52.3 58.6 64.0 63.6 65.2 65.8 67.2
ja 45.6 55.1 56.3 56.5 65.6 65.6 67.3
jv 34.3 51.7 58.6 60.2 62.0 61.6 66.7
ka 36.5 53.4 53.5 54.6 59.2 59.6 65.7
km 37.8 51.1 49.1 53.7 55.3 54.3 62.8
kn 37.1 49.3 55.0 55.9 57.7 57.2 62.1
ko 42.1 56.3 62.2 63.6 62.4 63.5 69.3
lv 45.4 56.0 60.4 61.3 66.0 66.1 68.8
ml 38.6 53.9 55.5 56.9 62.5 62.1 67.5
mn 30.9 51.4 57.6 59.4 59.5 59.2 68.0
ms 48.6 58.9 66.2 66.2 65.8 65.7 69.2
my 38.1 54.9 60.5 62.3 61.5 60.6 69.6
nb 55.2 63.0 67.5 67.7 67.7 67.4 71.0
nl 53.1 61.2 67.3 68.5 68.7 68.5 70.5
pl 50.5 57.4 61.1 61.4 62.9 62.5 65.6
pt 54.9 60.3 65.8 65.7 66.4 66.9 68.5
ro 51.2 58.8 65.4 65.0 64.8 65.1 68.8
ru 42.3 59.4 63.0 63.1 66.6 66.2 69.4
sl 46.0 57.8 63.1 64.0 65.3 65.4 68.8
sq 41.0 55.4 60.3 60.4 62.1 61.7 67.3
sv 57.2 63.1 69.8 69.6 69.3 68.9 72.4
sw 35.7 52.3 57.9 57.5 60.9 60.6 65.3
ta 37.2 53.0 55.4 55.7 60.7 60.9 65.8
te 38.7 49.0 51.6 53.6 56.8 58.5 61.6
th 49.4 60.0 63.5 66.5 65.2 65 71.5
tl 48.4 55.7 64.1 64.2 65.2 64.8 67.5
tr 46.7 58.5 63.7 63.4 62.7 62.8 69.4
ur 38.9 51.2 60.4 60.6 62.2 61.9 64.6
vi 46.9 55.1 59.0 59.2 63.0 63.3 67.6
zhc 34.7 56.1 52.0 53.9 64.2 63.9 66.3
zht 35.2 51.8 50.5 52.3 60.7 60.6 63.6

Avg 43.8 55.9 61.0 61.6 63.2 63.2 67.7

Table A1: EM accuracy comparison on MASSIVE
dataset. Avg reports the EM accuracy averaged across
the 50 non-English languages

Lang Zero-Shot Few-Shot TAF TAF +
Few-Shot

LLM-T
(top-k)

LLM-T
(top-p)

Gold
(skyline)

de 54.4 62.8 75.0 75.1 73.7 74.0 78.5
es 57.8 69.5 74.9 74.5 75.2 75.4 82.9
fr 62.8 65.9 78.0 78.5 79.7 79.6 80.8
hi 42.3 55.3 63.0 63.9 72.5 72.3 78.5
th 42.1 53.9 60.8 62.9 66.8 68.0 77.0
en 84.1 84.0 85.2 85.0 85.2 85.1 85.4

Avg 51.9 61.5 70.3 71.0 73.6 73.9 79.5

Table A2: EM accuracy comparison on MTOP dataset.
Avg reports the EM accuracy averaged across the 5 non-
English languages

In Table A1, we present detailed baseline com-
parisons for all the 51 languages in the MASSIVE
dataset. Zero-Shot, Few-Shot, TAF, and TAF+Few-
Shot are the baselines described in Section 4. LLM-
T represents our method with top-k or top-p sam-
pling used while decoding the translated exam-

ples. Gold is the "full-shot" skyline which utilizes
the original human-translated datasets (§ 5.2). Ta-
ble A2 presents the same set of results for the six
languages in the MTOP dataset.

A.2 Role of decoding strategy and filtering
In Table A3 we present results for different de-
coding strategies and role of filtering inconsistent
examples as discussed in Section 5.3.

Decoding de es fr hi th AvgStrategy

Greedy 71.1 71.7 72.6 68.1 66.0 69.9
+ Filtering 72.2 73.5 74.8 71.5 67.4 71.9

Top-k Sampling (k = 40)
(#samples)

1 70.5 71.7 73.1 66.8 66.5 69.6
2 72.3 72.7 75.7 68.7 67.3 71.3
4 71.3 73.1 73.8 68.5 67.8 70.9
8 71.1 72.5 74.2 69.3 67.5 70.9

Top-k Sampling + Filtering (k = 40)
(#samples)

1 72.4 74.4 78 70.9 66.1 72.4
2 73.6 74.4 78.2 72.1 67.9 73.2
4 73.4 75.3 78.8 71.4 67.1 73.2
8 73.7 75.2 79.7 72.5 66.8 73.6

Top-p Sampling (p = 0.95)
(#samples)

1 70.1 71.5 74.3 66.9 67.2 70.0
2 71.4 72.1 74.5 68.8 67.2 70.8
4 71.1 72.8 76.4 69.0 66.0 71.1
8 71.9 72.7 74.2 70.0 68.4 71.4

Top-p Sampling + Filtering (p = 0.95)
(#samples)

1 72.0 75.2 78.9 71.6 68.1 73.2
2 73.7 75.2 79.5 72.0 67.6 73.6
4 73.4 75.3 79.0 72.1 67.7 73.5
8 74.0 75.4 79.6 72.3 68.0 73.9

Table A3: Impact of decoding strategy and filtering:
Generating multiple translations per English example
using top-k or top-p sampling followed by filtering in-
consistent examples offers superior downstream perfor-
mance compared to using greedy decoding or sampling
just one translation per example.
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Abstract

Event scenarios are often complex and involve
multiple event sequences connected through
different entity participants. Exploring such
complex scenarios requires an ability to branch
through different sequences, something that
is difficult to achieve with standard event lan-
guage modeling. To address this, we propose
a question-guided generation framework that
models events in complex scenarios as answers
to questions about participants. At any step
in the generation process, the framework uses
the previously generated events as context, but
generates the next event as an answer to one
of three questions: what else a participant did,
what else happened to a participant, or what
else happened. The participants and the ques-
tions themselves can be sampled or be provided
as input from a user, allowing for controllable
exploration. Our empirical evaluation shows
that this question-guided generation provides
better coverage of participants, diverse events
within a domain, comparable perplexities for
modeling event sequences, and more effective
control for interactive schema generation1.

1 Introduction

Event scripts (Schank and Abelson, 1977), also
known as event schemas, describe a sequence of
events in a particular context. Representing and
modeling such schemas is central to applications
in AI such as question answering, discourse under-
standing, and information extraction (Balasubrama-
nian et al., 2013). Early work used hand-crafted
event schemas as a starting point (Schank and Abel-
son, 1977; Mooney and DeJong, 1985), but modern
techniques attempt to extract these at a large scale
from unlabeled data (Chambers and Jurafsky, 2008;
Chambers, 2013; Pichotta and Mooney, 2016; We-
ber et al., 2018b).

1The code is available at https://github.com/
StonyBrookNLP/qa-event-lms

Figure 1: Question-guided event sequence generation.
The user can interact with the system by asking ques-
tions regarding the entities and the system will generate
corresponding events. Different questions can lead to
different paths as shown with different colored boxes.

Event language models can also be used to
approximate schematic knowledge via event se-
quences. They can be trained to generate a se-
quence of events with their participating roles de-
scribing a real-life scenario. However, these sce-
narios can often be complex and don’t always fit as
simple sequences (Weber et al., 2018b). For exam-
ple, suppose we have the following event: police
arrested suspect on several charges, with
police, suspect and charges as entities. The sce-
nario can be described in multiple ways depending
on which entities we want to focus on and what
roles they play in the subsequent events. We may
be interested in knowing what the police did, what
the suspect did or what happened to the charges,
each of which can be explored as its own sequence,
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yielding many interconnected sequences of events
in the scenario. An event language model, how-
ever, will simply generate events conditioned on
the previous events in the discourse, with no di-
rect mechanism to guide generation towards areas
of interest within the scenario. As a result, with
standard decoding strategies we often end up with
a sequence of events that might be relevant to the
scenario, but not necessarily cover the broad set of
diverse paths in the scenario; we would only know
the fate of certain entities if the system samples
events that included them. This lack of control will
make it difficult to use the system, as one must
keep sampling events until it just happens to pro-
duce events with roles one is interested in.

We propose a simple modification in which event
language models are trained to also condition on
the entities and the roles they play in a scenario
through a set of simple questions, as illustrated in
Figure 1. Given the same example event and its
entities, one can then explore the scenario through
various paths by asking the system to generate the
events with their desired entities and roles. Such a
question-guided model can be used in interactive
settings to model and construct diverse paths that
cover various aspects of complex scenarios.

A key challenge, however, is in creating the nec-
essary training data at scale. We show that we can
repurpose standard event sequences to create train-
ing data for question-guided models: we take a
partial sequence of events as context and derive a
role-based question involving an entity for which a
future event in the sequence can be an answer. This
allows for creating large scale training instances
that are (Context, Question, Answer) triples, which
then allows us to train models that can better re-
spond to user control in the form of questions.

Our analysis shows that question-guided event
language models can generate sequences with more
diversity and comparable quality as an event lan-
guage model. Our human evaluation of the model
in an interactive setting, shows that the control-
lability of the question-guided model allows for
generation of sequences that lead to better quality,
broader-coverage schemas with fewer interactions.
This interactive evaluation is a step toward con-
structing schematic/common-sense knowledge for
analyzing events, an application in the intelligence
analysis community.

In summary, this paper makes the following con-
tributions; (i) It argues the need for control in event

language models to explore complex scenarios; (ii)
It provides a simple yet effective way for training
event language models that can be guided to ex-
plore different aspects of complex scenarios; (iii)
It provides empirical evidence showing improved
control and utility via automatic and manual evalu-
ations.

2 Related Work

Event Schema Induction Event scripts (or
schemas) originally proposed by (Schank and Abel-
son, 1977), consist of a set of events and actors
(also known as slots) playing different roles. The
event schemas are capable of analyzing complex
situations by encoding information from prototypi-
cal events and their participants.

Early works on scripts considered them as struc-
tured representations of events and their partici-
pants with the causal relationships between them
(Schank and Abelson, 1977; Mooney and DeJong,
1985). However, the manual construction of scripts
is too time-consuming and does not scale, so the
scripts could only focus on specific domains of
interest and have not been used more broadly.

Event schemas can also be induced automatically
from text using statistical techniques in an unsuper-
vised fashion (Chambers and Jurafsky, 2008, 2009;
Balasubramanian et al., 2013). These models are
easily interpretable but fail to capture long-distance
complex relationships between events. Event lan-
guage modeling is a type of schema induction via
language modeling techniques (Rezaee et al., 2021).
Given a sequence of events, the event language
model predicts the probability of the next event
(Manshadi et al., 2008). Framing schema learning
as a language modeling problem with various ways
to represent events, including word sequences an-
notated with predicate-argument structure (Pichotta
and Mooney, 2016), OpenIE tuples (Rudinger et al.,
2015; Weber et al., 2018a,b) or compositional em-
beddings (Modi, 2016), is another direction to-
wards realizing large-scale schema libraries.

Graph schema induction methods (Li et al.,
2020, 2021) model different relations between en-
tities and their arguments to capture the multi-
dimensionality of scenarios. Reasoning about com-
plex relations between events requires going be-
yond the single dimension of event cooccurrence
and capturing different types of semantic relations
between events such as causal, counterfactual, etc.
(Han et al., 2021). Our approach uses the standard
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language models and provides them with the guid-
ance to also produce different aspects of a scenario
via simple control codes.

Controlled text generation Language models have
shown promising results in text generation, how-
ever, it is not easy to have control over differ-
ent aspects of generation (Keskar et al., 2019),
an issue that has been studied in previous works
(Dathathri et al., 2019; He et al., 2020; Lu et al.,
2021; Mireshghallah et al., 2022). The key compo-
nents of these methods differ in the types of con-
trols provided and how they are provided and their
applications. CTRL (Keskar et al., 2019) trains
a very large language model by conditioning on
texts with appended control codes that are used to
guide the generation towards specific styles, con-
tents, and task-specific behaviors. CTRLSum (He
et al., 2020) uses the entity/length controls which
are in forms of keywords that are automatically
extracted from the text and trains a summarization
system which is capable of generating summaries
in an interactive manner. These approaches, how-
ever, require finetuning. Dathathri et al. (2019)
and Mireshghallah et al. (2022) propose variants of
controllable generation with no need to finetune or
retrain the whole system.

Learning latent representations or codes from
the input towards diverse generation is another di-
rection that has been explored for machine transla-
tion (Shu et al., 2019), dialogue generation (Huang
et al., 2018) and causal relations generation (Weir
et al., 2020). Controllable generation to generate
diverse events has been previously studied in Kwon
et al. (2021), where the system uses automatically
generated control codes to generate diverse precon-
ditions of events.

In this work, we use controllable generation to
model complex event scenarios. We introduce sim-
ple role-based questions about participants (agen-
tive or non-agentive) as an effective means for
control. Asking questions to get specific informa-
tion about events is the focus of many existing ap-
proaches. While there has also been a body of work
on semantic role labeling using QA pairs (Roit
et al., 2020; Klein et al., 2020; Michael and Zettle-
moyer, 2021; Pyatkin et al., 2021), the main distinc-
tion here lies in the fact that these approaches use
QA pairs to identify the semantic roles, whereas
our approach makes use of role-based questions to
generate the next event with a specific entity play-
ing a specific role. We show how to train for these

Figure 2: The shooting scenario events extracted from a
news article. Typical LMs only see e2 as the immediate
next event, whereas for the question-guided LMs, any
of the e4, e5, e6 and e7 involving the store, the thief, or
the rifle can be considered a next event.

control codes using automatically derived training
sequences and demonstrate its utility for describing
complex scenarios in an interactive setting.

3 Question-guided Event Language
Modeling

Event language models aim at predicting the prob-
ability of an event given a set of events via a con-
ditional probability distribution. Formally, these
models try to find an event ê by maximizing the
probability of a function parameterized by a model
over a given context including a set of events:

ê “ argmaxePEPθpe | contextq
where E is the set of all events. A model trained
with this objective learns to generate the most prob-
able event based on a set of cooccurring events
from discourse. Suppose that shooting scenario
events are extracted as shown in Figure 2. Given
the first event in the sequence, a typical language
model is trained to generate the next event, e2,
which does not include any entities from the prior
context. What if we are interested in looking for
events regarding the initial participants (the thief,
a rifle, or the store) in this example? Given the
same context, we can have multiple next events
depending on the participant and the role they can
have (agent or theme). If we are interested in know-
ing what the thief did, e6 should be the next event,
what happened to the thief is described in e5. We
can have some information about the store with e4
as the next event and finally, the fate of the rifle is
described in e7. Controlling the model to generate
the outputs based on the participants involved can-
not be easily achieved with unguided (text ordered)
event language models. However, we will show

2470



Figure 3: Data processing to create instances for a question-guided event language model. Given a document,
we extract all the coreferring clusters (color-coded in the document). Next, we extract OpenIE tuples as events
representations. By identifying the roles of noun phrases in the events as well as knowing which cluster they belong
to, we create questions for each one of them and similarly find the events that can serve as the answers to those
questions. The context can be of any length whereas the answer event is of length 1.

how the language models can be guided such that
given the same context, they can directly generate
events for its participants.

3.1 Problem Definition

We propose a new framing in which an event lan-
guage model can be guided to generate events by
not only conditioning on the events but also on
specific entity-based questions of interest.

These entity-aware event language models also
look to find ê, but by maximizing the probability of
a function parameterized by a model over a given
context and a question regarding an entity:

ê “ argmaxePEPθpe | context, questionq
The objective now conditions on a question as well,
and the goal is to use the question to train a system
to generate the most probable event for a specific
entity (or a noun phrase referring to that entity) in a
specific role (agent or theme). As shown in Figure
1, questions can either ask about what an entity
did as an agent of an action (what did X do?) or
what happened to an entity as a theme of an action
(what happened to X?). By conditioning on the
question as well, the system will learn to generate
an event with the entity in question as well as the
role specified by that question.

3.2 Question-guided Training

Event language models are typically trained using
event sequences extracted from documents. Our
goal, however, is to train event language models
to generate events as answers to questions about
entities from a given context. To this end, we con-
vert event sequences in text to (Context, Question,
Answer) tuples (CQA instances) that can be used
as training data for question-guided generation.

Consider a sequence e1, e2, ...en of OpenIE
event tuples extracted from a document D. We
create (Context, Question, Answer) tuples for each
event et in the sequence as outlined in Algorithm 1
in Appendix A.1 and Figure 3. The key idea behind
this process is as follows: Suppose we observe an
entity in an event ei. If this entity also appears in a
subsequent event ek, then we can see this new event
as an answer to a role-based question about the en-
tity (what did the entity do or what happened to the
entity), given what we know about all the events
that have been observed thus far in the sequence as
context. For example, as shown in Figure 3, the en-
tity Mario Valencia appears in two events e1 and
e2. Given the context e1, we can create the ques-
tion What did Mario Valencia do? for which the
answer is e2 i.e., Mario Valencia started firing it.
Formally, for each entity (any noun phrase) np that
appears as an argument in the event ei, we do the
following. If np appears in an agentive role in some
subsequent event ek (k ą i), then we associate the
question What else did np do? with the context and
use event ek as the answer to the question. If np
appears in a non-agentive role, we associate What
else happened to np? as the question and ek as
the answer. In either case, for the next step the
context is extended to include ek and the process is
repeated for all arguments in ek. To handle events
ek that introduce new entities as arguments, we use
What else happened? as the question.

We use automatically identified coreference clus-
ters to locate event mentions involving a specific
entity. We use simple dependency-based heuristics
to determine the role of an entity in an event. Given
the noun phrases of an event, we use a dependency
parser to identify their roles. An entity is deemed
to appear in an agentive role if it appears as a sub-
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Figure 4: Diversity of generated sequences of events
with varying lengths. Lower Self-BLEU scores are bet-
ter as they represent more diverse sequences. QGELM
is the most diverse across all sequence lengths.

ject and in a non-agentive role if it appears as an
object. We only use these two broad categories
(subject and object) to identify events as responses
to specific questions. This process will automati-
cally filter out the nonsensical questions as for such
questions, no event can be found within the given
sequence of events.

Note this training data has two properties that
are different from standard auto-regressive training
over event sequences. First, for the same condi-
tioning context of event tuples, the model learns to
generate multiple subsequent events depending on
the question being asked, thus ensuring better con-
trol and diversity. Second, the model also learns to
generate events that are not always adjacent to the
end of the current sequence, which can be seen as
a form of data augmentation shown to be effective
(Koupaee et al., 2021).

4 Experimental Setup

4.1 Models

All models used in our experiments are trained
using event sequences, which are OpenIE (Mausam
et al., 2012) tuples extracted from articles in their
discourse order.

ELM Our baseline is an Event Language Model
trained such that given a context (a set of events),
it will generate the next event. The baseline model
follows the existing mechanisms used in recent
prior ELM work (Manshadi et al., 2008; Rudinger
et al., 2015; Pichotta and Mooney, 2016; Weber
et al., 2018a,b). We train a T5 base model to learn
P pen | contextq where context “ e1, ..., en´1.

Criteria System

beam sampling

Fail % İ Fail % İ Avg #
samples

Any
presence

ND 45.63 - -
ELM 79.29 26.05 17.21
EGELM 43.39 2.73 4.47
QGELM 38.92 1.53 3.51

Role
specific
presence

ND 69.84 - -
ELM 85.55 35.00 21.57
EGELM 59.04 6.34 8.42
QGELM 43.03 2.78 4.54

Table 1: Controllability Assessment: Fail % denotes the
number of instances where the model fails to generate
the specified entity. For sampling, we also show the
average number of samples needed before an event with
the specified entity is generated. ND denotes Neuro-
Logic decoding (Lu et al., 2021), a beam-search based
controllable method with no sampling strategy.

EGELM The Entity-Guided Event Language
Model generates the next event conditioned both
on the context and one of its entities by learning
the following probability distribution:

Ppen | context, entityq

In this setting, the system learns to maximize the
probability of the next event with respect to a spe-
cific entity from the context but without consider-
ing the specific role in which the entity appears
in the generated event. The training instances in
this case are (Context, Entity, Answer) tuples that
are obtained by replacing the question with the en-
tity mention present in the question in the training
instances described in Section 3.2.

QGELM The Question-Guided Event Language
Model generates the next event conditioned both
on the context and a question regarding one of the
entities in the context and a role the entity plays
in the event. Here, the system learns the following
probability distribution:

Ppen | context, questionq

The main difference with the entity-only system is
the different roles an entity can have through the
question’s surface form.

4.2 Data Statistics

We train all the models on the 2007 portion of the
Annotated NYT corpus (Sandhaus, 2008). This
subset contains a total of around 38k articles span-
ning over a 6 month period. Following the steps
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System Perplexity İ NC AccuracyĲ

ELM 24.64 46.2%

EGELM 22.45 48.6%
EGELM (margin) 25.06 46.8%

QGELM 22.11 49.3%
QGELM (margin) 26.63 46.0%

Table 2: Perplexity and the narrative cloze accuracy.
Lower perplexity and higher accuracy is desirable.

described earlier on these number of articles, we
end up having over 700k instances (consisting of
(context:e1, e2, ..., et´1, question:q, answer:et) tu-
ples) used to train the guided systems. For more
details on the data statistics and experimental set-
tings, please refer to the Appendix A.1.1 and A.2.
The code will be released upon acceptance.

5 Evaluation

We assess the utility of the question-guided event
language modeling in terms of four aspects: (i)
Diversity: are they able to generate diverse sets of
events that relate to a scenario? (ii) Control: do they
generate events involving the specific entities in
desired roles? (iii) Sequence modeling ability: how
well can it predict observed events?, (iv) Interactive
Utility: do users generate better sequences when
using the model to collect events that fit a scenario?

5.1 QGELM Improves Diversity

We want event language models to generate diverse
sequences covering different aspects of a scenario.
To assess diversity in generation, we first sample
multiple sequences from the models. Given a con-
text (starting with a context of length 1), we incre-
mentally generate events by sampling one event
at a time until we generate a sequence of a prede-
fined length. We repeat this process to generate
multiple sequences. We then measure the diversity
of these sequences using Self-BLEU (Zhu et al.,
2018), which is the average of the BLEU scores (Pa-
pineni et al., 2002) when using one of the generated
sequence as the output and the rest as references.

First, we collected test instances that had a con-
text length of one, which amounted to 938 in-
stances. The models were used to generate five
sequences of lengths one through ten (i.e., five
sequences of length one, five of length two and
so on). For EGELM and QGELM we randomly
choose an entity/question to generate the next event.
For each model, we then compute the Self-BLEU

Metric ELM QGELM change
# accepted eventsĲ 6.2 8.8 42% Ò
# rejected stepsİ 5.2 3.2 38% Ó
% rejected stepsİ 41.0 26.6 35% Ó
# resamplesİ 4.9 3.2 35% Ó
total stepsĲ 11.3 12.0 6% Ò
tree depthĲ 5.8 8.8 52% Ò

Table 3: Quantitative analysis of schema generation
using the ELM and QGELM models. With QGELM,
users accepted more of its suggested events, rejected
fewer steps, used fewer resamples for a given context,
and produced longer event sequences. The higher the
average the better a system is for metrics with Ĳ whereas
lower values are desired for metrics with İ.

score of its five sequences of a specific length. Fig-
ure 4 shows the average Self-BLEU over the test
instances when generating sequences of different
lengths. Lower Self-BLEU scores represent more
diverse sequences. Self-BLEU of question-guided
outputs are lower compared to that of the other two
models showing improved diversity. With longer
sequences Self-BLEU increases for all models as
there is more potential for overlap. However, the
question-guided model retains higher levels of di-
versity compared to the rest. Standard event lan-
guage modeling tends to cover the same types of
events across different samples and to some extent
conditioning on entities helps improve this to a
small degree. Conditioning on the questions, how-
ever, yields significant gains in diversity showing
promise for improved coverage of scenarios.

5.2 QGELM Controls for Entity Roles

To quantify controllability, we introduce a metric
that measures how many times a system is capable
of generating an event in which a specified entity
of interest is present. We generate a fixed number
of outputs from each model under two decoding
strategies: sampling and beam decoding. We re-
port the percentage of times the specified entity or
a coreferent mention2 of it fails to appear in the out-
puts. In addition to ELM, we also use NeuroLogic
decoding (ND) (Lu et al., 2021), a state-of-the-art
controllable generation system as a baseline.

The top block of Table 1 (Any presence) com-
pares the models on the number of times they failed
to generate an event with the specified entity within
a beam of size 40 or within 40 sampling attempts

2A mention is considered coreferent to the input noun
phrase if the mention and original noun phrase appear in the
same coreference cluster extracted from the sampled sequence
of events which includes the original context event.
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Figure 5: The overview of the interactive schema generation tool. The dashed box is only used for QGELM. The
interaction starts by system asking for a seed event and the user entering an event. For QGELM, the user is asked
for an entity of interest. This part is shown with a dashed box (this part is not needed for ELM). The system then
samples 4 events (If QGELM, it automatically creates questions for the given entity and generates two responses per
question.) These 4 events will be presented to the user where they can select an option out of 4 choices. 1. Select
one of the given events. 2. Ask the system to generate a new set of events. 3. Return to an earlier step to explore a
different path by entering the step number and 4. Stop the generation for the given seed.

(%Fail), and the average number of events that had
to be sampled to see the entity or its coreferent
mention in the output when sampling (Avg #sam-
ples). With beam decoding, ELM performs the
worst since it has no control over the generation.
NeuroLogic decoding does a better job at search-
ing for events that meet the entity constraints in the
model’s beam. EGELM which is trained to gen-
erate events with the given entity does better even
with standard beam decoding. QGELM fares even
better outperforming all methods by a significant
margin. With sampling, ELM works better but still
fails to produce events with the input entity in more
than a quarter of the cases. Both entity and ques-
tion guided models respond to the input control,
almost always yielding events with the input entity
and much earlier in the ranked list.

The bottom block of Table 1 (Role specific pres-
ence) compares the models when we are look-
ing for events where the input entity is expected
to appear in a specific role. We use the same
dependency-based heuristics we described in Sec-
tion 3.2 for determining the role of an entity in a
given event. With beam decoding, NeuroLogic de-
coding (ND) is worse than QGELM with a larger
margin since it can only be constrained to generate
the entity but not in specific position and role. The
larger gap here shows the superiority of our ques-
tion control codes to not only generate an entity
but also to generate it in a specific role. ELM fares
even worse, with more failures and requiring even
more samples to generate the entity in the specified
role. Also, as expected, EGELM has a larger gap
compared to QGELM which is trained to account
for the roles in which the entities appear.

Note that the coreference resolution system and

the dependency parser are not perfect and therefore
our heuristics for deciding both when a entity is
mentioned in an event and when it appears in a
specific role can be faulty. A manual inspection
of the outputs for 50 entities across all systems
showed that the heuristic is more than 75% accurate
and the mistakes are uniform across the models.

5.3 QGELM is a good event LM

How does question-guided training affect the raw
ability to generate "standard" event sequences?
Predicting observed events in a discourse can be
seen as a downstream evaluation. To assess this,
we compare the perplexities as well as the narra-
tive cloze task accuracy of the models using the
event sequences we observe in the test set. The
results are presented in Table 2. One way to turn
the question guided-model into a standard event
language model is to marginalize its probabili-
ties for outputs over all possible questions we can
ask at every step (marked as margin in the table):
P pen | Cq “ ř

qPQ P pq | CqP pen | q, Cq, where
we assume a uniform prior distribution P pq | Cq
over questions that can be asked. Similarly, for the
entity guided model we can marginalize over the
set of noun phrases in the most recent event in the
context (this setting is similar to how we created
the training instances). While this allows for fair
comparison as a standard event language model,
this is likely a lower bound for the model’s ability
for its intended use as a controllable model.

We compute the average per token perplexities
for the instances of the test set (including (C,Q,A)
tuples) which are shown in Table 2. Although the
marginalized performance is lower because the
model is forced to generate the event given sub-
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Crimes Outbreak Disaster Kidnapping Cyberattck IED Shooting Conflict Overall
ELM 10.71 16.39 23.81 8.00 11.11 13.89 21.05 30.56 16.24
QGELM 28.57 27.87 33.33 14.00 16.67 16.67 23.68 25.00 23.22

Table 4: Percentage of the overlap between system-generated events and manually curated schemas. Overall, the
QGELM system generates more diverse set of events, therefore having a higher recall (higher percentage of overlap)
compared to the ELM (for all domains except one). More details can be found in Appendix A.3.4

Domain ELM QGELM

mass
shooting

police evacuated the surrounding buildings af-
ter the shooting. the area resuscitated as soon
as officials arrived. the area in search of sur-
vivors. a police helicopter carrying three of-
ficers fired at the shooting center. the police
still searching for victims. the police found
the bodies of four people. the bodies of two of
them found in a second car.

police evacuated the surrounding buildings after the shooting. he identified as a man. a
detective questioned the suspect. the police identified the gunman. the officers heard noise
from the building. they spoke with him. he moved in an apartment that was recently renovated.
they worked on the scene to identify the gunman. the officers involved in an investigation. he
notified about the shooting. the police found no weapon in the apartment. officers searched
two buildings in the immediate area near the building. the shooting began on saturday. police
officers questioned him about the shooting. The officer called victims at 6:45. the officer
questioned again in the area. the shooter shot two times. the shooting began with three or
four shots of the gunman. he started firing slowly his gun

kidnapping

the kidnapper ambushed the target. the kidnap-
pers shot in the arm. they shot the men. he still
not identified by the authorities. the other men
also gunshot wounds. the attack left six people
in critical condition and his condition.

the kidnapper ambushed the target. the kidnapping triggered by an act of rebellion. he left
the scene. the target captured by a surprise attack. the kidnapping of the target essentially
a symbolic step in the long struggle. mr. seymour to talk about the kidnapping. the police
found a handgun. the hideout an informal area of community groups in rural part of town

Table 5: Generated examples through human interaction. A mass shooting scenario in the first example, can include
high level schemas such as planning, occurrence, immediate response, investigation, etc. The QGELM covered
more aspects compared to the ELM. As for the QGELM, the entities can easily be tracked based on the questions
asked, and therefore there are fewer ambiguous red entities (not clear what/who they are referring to.) compared to
ELM in the second example. More examples can be found in Appendix A.3.6.

optimal conditions, we see that with appropriate
guidance (the question from the dataset itself), the
perplexity of the true event is lower. Moreover,
QGELM achieves the lowest perplexity in these set-
tings, indicating that its control is most fine-grained
and allows users the highest degree of control. We
also computed the accuracy of the cloze task in
which each system has to correctly predict the gold
output from a fixed set of events. Following We-
ber et al. (2018b), for each article from the test set,
we randomly select an instance (context, question,
answer) and then for each instance we create 5 con-
founding events as answers by randomly selecting
instances from other documents. The task would
be then picking the correct option from the given
six choices (gold+confoundings). The results show
that the accuracy trends align with the perplexity
trends indicating that QGELM is comparable as a
event language model to the baselines we build on.

5.4 Interactive Schema Generation

Event language models can be used to generate
event sequences that approximate a schematic de-
scription of how events typically happen in cer-
tain scenarios (i.e. event schemas) (Weber et al.,
2018a,b; Pichotta and Mooney, 2016).
Task setup We evaluate the utility of our new
question-driven models when used in an interactive
system, where a user collects a set of output events

from the model that they think best describes a
scenario. The overview of the system is depicted
in Figure 5. We manually selected 35 seeds from
8 common domains and asked 7 users (graduate
students from NLP and non-NLP labs) to spend 4
minutes interacting with each system. They were
asked to generate sequences of events for given
seeds using ELM and QGELM systems in a ran-
domized order. For each scenario, the user is given
a seed event and is tasked with collecting a set of
events that best describe the scenario. At each
step the user is presented with a set of generated
events from the model and the user selects one of
the events to add it to their collected set. The added
events optionally become part of the conditioning
context for more events. The user has the option
to either regenerate events for the same context
or go back and choose a subset of context from
which to generate events. For the guided model,
the events are generated by conditioning on ques-
tions. Since this is a timed practice, instead of
asking the users to type in a full question, we only
ask them to provide the system with an entity of
interest. The system then automatically forms two
questions (agentive, non-agentive) with the entity
and outputs a mix of the events generated with
all the questions. Additional details of this study
including the settings, motivations for the timed
version as well as instructions for the users are
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listed in Appendix A.3.

At each step the user selects the best event
that meets the following criteria: (i) Sensibleness:
whether the generated event is grammatically cor-
rect, sensible and easy to understand. (ii) Unique-
ness: events do not duplicate each other and de-
scribe different subevents. (iii) Relatedness: events
are related to the domain. (iv) Typicality: the events
are quite common for things in this domain and not
too niche. For each event, the users make a binary
judgment on whether each criteria is satisfied. If
any of the criteria is not satisfied then the event is
not selected. If no event meets all these criteria then
the user either regenerates from the same context or
moves to an earlier context. Each user interaction
with the system results in a sequence of events in
the form of a tree, as users might have explored
different paths by selecting different events at each
step. Table 5 shows example outputs.

Analysis Table 3 shows that with the QGELM
based interactive system, users accept more of the
system suggested events, which means that more
events meet the criteria we set for good events.
They ask for fewer resampling steps, require fewer
returns to earlier steps and thus having fewer reject
steps or wasted steps in their interaction. They
also produce longer descriptions of the scenarios
with higher tree-depth i.e. the length of the longest
sequence they generated within a domain.

We further analyze the output generated using
the interactive system to assess their utility in creat-
ing complex schematic knowledge. The seeds we
use come from 8 different domains relevant to the
intelligence analysis community. For each domain
we have access to manually curated schemas cre-
ated by ten language experts in collaboration with
the intelligence analysis experts over multiple days.
An example of such schema is presented in Table
9 in Appendix A.3.5. We used these schemas as
references and compared the percentage of over-
lap between system generated events selected by
the users (within the four minute interaction) and
the events in the reference schemas. The results
in Table 4 show that both automatic systems can
generate events that are expected to describe cer-
tain scenarios, however, the events generated by
QGELM tend to have higher recall compared to
the ELM (in 7 out of 8 domains).

6 Conclusion

Controlling event language models to generate
events with respect to the participants is not triv-
ial. We propose a simple yet effective question-
guided approach that learns to generate events by
not only conditioning on the events but also on
specific entity-based questions of interest. Our em-
pirical analysis shows that this approach can be
used to generate more diverse sequences with bet-
ter coverage and controllability allowing for better
modeling of complex scenarios.

7 Limitations

One of the limitations of our proposed approach is
the coverage of the entity roles. We have used two
broad categories of roles, mainly agentive (subject)
and non-agentive (object) roles, however, there can
be more fine-grained semantic roles for the partici-
pating entities in the events such as agent, patient,
theme, manner, etc. Considering this taxonomy of
semantic roles can lead to finer-grained questions
which might lead to even richer descriptions of the
scenarios. Also, the human evaluation setting is
limited since it is timed and users can not explore
the models to their fullest extent. However, our
analysis of the systems, when not timed, shows
even a higher margin in terms of performance with
the QGELM model.

8 Ethics Statement

The models presented in the paper make use of
the existing pretrained systems that train on large
collections of data and are known to inherit biases
that are existent in the training data. The event
language models we train are also susceptible to
these biases, which can result in generation of event
sequences with these biases.
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A Appendix

A.1 Data Processing Details

QGELM uses the data in the form of (Context,
Question, Answer) tuples. The details of the data
processing is outlined in Algorithm 1.

Algorithm 1 Data Processing
Input: D, Document, Output: T , List of (Context, Question, Answer)
tuples

1: extract OpenIE event tuples E from D
2: find co-referring clusters Clusters from D
3: for ei in E:
4: find all nps Nei

5: for each np in Nei
:

6: generate Qnp

7: for each qj in Qnp for np with role rj
8: find an event ek pk ą iq with np with role rj
9: add pe1..ei, qj , ekq to T

We use AllenNLP (Gardner et al., 2018) for
coreference resolution to find the clusters in a doc-
ument and the spaCy (Honnibal et al., 2020) depen-
dency parser to identify all the noun phrases and
their roles within an event.

A.1.1 Data Statistics
We initially extract Open IE event tuples from
37, 924 articles from the 2007 portion of the NYT
Annotated Corpus using Ollie (Schmitz et al.,
2012). All the extracted events from a single doc-
ument are concatenated to form a single event se-
quence for that document. Therefore, we end up
having 37, 924 event sequences with average length
of 27 events.

Then, we run the data processing algorithm on
the extracted sequences to generate (Context, Ques-
tion, Answer) tuples. Table 6 shows the data statis-
tics of the dataset.

split Total Q1 Q2 Q3
All data 762,004 466,757 188,300 106,947

Train 752,004 460,573 185,582 105,579
Dev 5,000 3,091 1,212 697
Test 5,000 3,093 1,236 671

Common
Test 18953 11,712 4,412 2,829

Table 6: Data Statistics of the (Context, Question, An-
swer) tuples for different types of questions. Q1 refers
to what else happened?, Q2 is what else did np do? and
Q3 is what else happened to np?

A.2 Experimental Settings

A.2.1 Input/Output format
For the ELM, the input will be the context and the
output will be the next event. For EGELM and

QGELM, the input will be the concatenation of
the context and the entity/question, separated by
[SEP] token. Since the input can be more than
512 tokens (in case of long contexts), we need
to truncate the input. Truncating the input from
its end (for EGELM and QGELM) will result in
input sequences without entity/question. To avoid
this, we instead truncate from the beginning of the
input sequence by removing the earlier events in
the context. We remove events and not tokens from
the context until its length is within the model input
size. The length of the output is also fixed at 50
tokens.

A.2.2 Systems Details

Our systems finetune a pre-trained T5-base model
and tokenizer with the implementation from Hug-
gingface library (Wolf et al., 2020). Adam opti-
mizer (Kingma and Ba, 2014) is used with an initial
learning rate of 6.25e´ 5.

We use a batch size of 4. Each training epoch
takes almost 24 hours to run. We use the dev set
for early stopping. All the systems will converge
after 3 epochs.

A.3 Evaluation

A.3.1 Interactive Evaluation Setup

The details of the settings of the interactive evalua-
tion are presented in Table 7.

A.3.2 Interactive Evaluation Design Choices

Some design choices for this evaluation are con-
strained by practicalities that would ensure a fair
comparison. We initially had used an untimed ver-
sion where users could interact with the system
indefinitely. However, we found that users spent
different amounts of time working, making it near
impossible to do fair comparisons across systems.
Further, users found it difficult to retain focus over
longer periods of time.

As for using an entity of interest instead of typ-
ing questions, typing questions at every stage in-
duces a burden on the user and introduces variance
because of typing speeds. But note that even though
they only select an entity, the roles are used as part
of the questions we generate for the entity. Half
of the generated answers are with the entity in the
subject role and the other half are in the object role.
Users can pick whatever role they want to explore.
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Parameters Values
number of seed events 35
number of users 7
number of seeds per worker 5
allotted minutes 4
number of generated events per step 4
number of domains 8
domains: disease outbreak, cyberattack, ied,
international conflict, kidnapping, disaster,
mass shooting, financial crimes

Table 7: The parameters of the human generation task.

Domain # seeds # gold events
Crimes 4 28
Outbreak 6 61
Disaster 5 42
Kidnapping 4 50
Cyberattck 3 54
IED 3 36
Shooting 5 38
Conflict 5 36

Table 8: The statistics of the human evaluation in terms
of number of seeds and the number of gold sequence
events.

A.3.3 Instructions for Users
Below, you can find the guidelines that were pro-
vided to the users prior to starting the task.

User Manual This study is aimed at evaluating
the capabilities of the event language models in
generating a sequence of events with their partic-
ipating arguments that can be used to describe a
scenario. For each scenario, a seed event will be
given. Using the seed event, you can start gener-
ating the sequence incrementally by selecting the
best event at each step based on the following set
of criteria:

At each step select an event that is: gram-
matical/understandable non-redundant or unique:
events do not duplicate each other and describe
different subevents on-topic: events are related to
the domain and not unrelated typical: the events
are quite common for things in this domain and not
too niche (for example, earthquake could cause a
nuclear reactor to meltdown but it’s not common)

You will use two different systems to do this task.
For one system you only need to select the events
at each step while for the other, at each step you
initially type an entity of interest and then pick the

best event. This task will be timed, and you keep
interacting with the system for 4 minutes, exploring
different paths and entities. Once the time is over,
the generation stops automatically.

User Interface: Once you run the commands,
the system will load the pretrained models which
will take a few seconds and then it will ask you
to enter the seed event (The seeds will be given
to you). Then you need to follow the prompts at
each step for the allotted time. At each step there
will be 4 actions you can take: Choose a preferred
event generated at that step. You will be shown a
set of events from which you can pick the best one
according to the above criteria. Regenerate events
for the last step. If you feel none of the generated
events satisfy the criteria, you can choose this op-
tion so that the system will generate a different set
of events for this step. Please use this option if
NONE of the generated events satisfy the criteria.
Choose an earlier step to return to. If you get stuck
in one path and cannot generate events, you can
choose to go back to an earlier step and continue
the generation from a different path. Once you
choose to return, the current set of events will be
saved. Stop generation for the given seed event. If
you think the system has generated enough events
to describe the scenario or if it is no longer gener-
ating good events, then you can decide to stop the
generation even if the allotted time is not yet over.

Notes regarding the entities: If you are asked
for an entity, you can have the following things in
mind: You are given an initial set of entities that
are relevant to the given scenario. You can pick en-
tities from this set, think of other entities that might
be relevant, pick entities from already generated
events or just select ‘none’ if you cannot think of an
entity. You do not need to use all the given entities
and you can choose the same entity if you think
that is a main entity in the scenario or if you are
interested in knowing more about that entity. You
can generate a sequence which is centered around
one specific entity. For instance, you can have an
event sequence like this for the earthquake scenario
where ‘earthquake’ is an argument in all the gen-
erated events: earthquake struck city, earthquake
magnitude measured on scale, earthquake killed
people, earthquake injured people, earthquake dam-
aged buildings, earthquake disrupted services,...
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A.3.4 System-generated events VS
Manually-curated schemas

We tried to show the plausibility of the system-
generated events by comparing the system outputs
with schemas that are curated by a group of experts
for different domains. We initially used a number
of seed events from these domains and provided
the users with these seeds to interact with the sys-
tem. Then for all seeds from a single domain, we
grouped all the generated events and measured the
amount of overlap with human-written schemas.
The statistics of this experiment is presented in Ta-
ble 8. An event is considered to have an overlap
with an event from the gold set if it either shares the
exact predicate or a predicate with similar mean-
ing. To do this, we provided a user with the list of
system-generated events (not knowing which sys-
tem this is coming from) and asked them to find the
mappings between the gold set and the generated
set. We then counted the number of events that are
considered as overlapping with the gold events.

A.3.5 Manually curated schemas
Real-life scenarios can be described with a se-
quence of events and their relations. Manually
curated schemas represent the events that can un-
fold a scenario in a hierarchical structure. The
events in this structure can be either primitive or
non-primitive, depending on whether they can be
further expanded into additional events. We use
the term “schema” to refer to the non-primitive
events. Table 9 shows an example of such schemas
for the disaster domain. As can be seen, the events
are represented in multiple levels. For the sake
of the evaluation conducted in this work (to make
the comparison of the system-generated sequences
with curated schemas more compatible), we con-
sider the flattened representations of the schemas
which consists of concatenating all the primitive
events into a single sequence of events.

We also did the comparison on predicate level.
The reason is that the system-generated events are
instantiated events with specific arguments as the
models are trained on news articles whereas the
curated schemas are generalized forms of events.

A.3.6 System generated event sequences
Table 10 shows examples of generated event se-
quences through users interaction with the interac-
tive tool described in section 5.4.
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Schema name Level Events

natural disaster progression 0

detection and tracking*
preparations*
damages*
immediate responses*
rescue organization*
rescue*
rescue outcome*
economic assistance*
rebuild damaged property*

detection and tracking 1

scientists detect warning signs
scientists track progress
scientists assess threat
scientists warn public
media broadcasts information

preparations 1
government announce order
people buy supplies
preparations outcome*

damages 1

disaster hurts person/people
disaster kills person/people
disaster destroys buildings
disaster damages infrastructure
disaster causes food/water shortage
disaster causes power outage

immediate responses 1

government counts deaths
government sends equipment
government estimates damage
government requests aid
person obtains aid
person sheltered

rescue organization 1
government hold session to plan rescue
government command rescue teams
rescue teams travel

rescue 1
government hold rescuers locate survivors
rescuers assess
rescuers triage survivors

rescue outcome 1 victims found dead
recovery*

economic assistance 1

government request help
government estimate loss
government make assistance policies
people apply for assistance
government gifts aid
government gives loans

rebuild damaged property 1
people contact insurers
people repair damage
people rebuild

recovery 2
rescuers save survivors
rescuers transport survivors
rescuers treat survivors

preparations outcome 2 evacuation*
people shelter in place

evacuation 3
people hear evacuation order
rescuer evacuate people
people leave affected area

Table 9: Manually curated schemas. Each domain is represented through a set of high-level schemas which in turn
are expanded into multiple events. Here you can see the events of the disaster schema which are represented at
different levels. Events with * are non-primitive events that are expanded.
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Domain Seed System Generated event sequence
international
conflict

country agreed to
sign the accord.

ELM he country and several members of its foreign relations committee
negotiated a peace agreement as part of the agreement. the agreement
called for more cooperation. the terms of the agreement announced
at the start of a yearlong talks. the talks took place in 2002. the
deal still subject to approval. the agreement formally announced on
saturday

QGELM peace take a major step. the accord a sign of change. the accord not
necessarily end war. the agreement calls for a gradual suspension of
all military combat and police operations. the accord also requests
immediate withdrawal of troops

cyberattack the cyberattack dis-
rupted services

ELM the network crashed after a new attack. the virus affected internet
connections. the virus infecting computers that have computer pro-
cessors. two new attacks launched on thursday. the virus also infects
networks that used the same basic operating system. two new attacks
triggered an attack that affected 1 million internet users on tuesday.
both attacks exposed another email containing information about
a security company. one email message posted by an employee
of a security company. security engineers investigating the e-mail
messages. the other attack not affect the internet connection

QGELM the attack also infected some computer systems. at least 60 com-
puters affected by the cyberattack. the attacks continued across an
industrial network of 8. the attack started in friday. the attacks hit
at least five businesses and four hospitals. the network failed in this
attack. the attack attributed to an increase in unreported customer
data from two years earlier to more widespread attacks. one problem
the nature of these attacks. the attacks linked to an ”antiviral attack.
the attackers focused to eliminate part of microsoft’s core operating
system that would detect the attack, and to prevent it from becoming
more sophisticated. . . . . . . . . . the attacks aimed at businesses that
are vulnerable to any type of attack. the attacks caused significant
disruptions for internet service providers. they trying to improve the
security. the attack involved a variety of devices. the hackers asked
for information. the security department declined to comment about
the attack.

disaster the heavy flooding
disrupted the ser-
vices.

ELM the damage, which is estimated to cost about $2.5 billion annually
due to flooding and rainy weather largely a product of human error.
the department of agriculture forecasts the flood. two million people
killed in the flooding. a few roads halted on the west side. the
power grids closed down in some areas. the flooding also damaged
roads and bridges. the department of transportation and emergency
management put forward a plan. most of the roads closed in new
york. the department also announced at least 17 routes halted in the
same area as they were closed on oct. 26

QGELM the flooding resulted in a series of delays. the flooding also caused
problems. the federal emergency management agency and the emer-
gency maintenance team also monitoring damage from the flood.
the flooding continued as far as tuesday. the flood already brought
over from the south. the new york city fire department dispatched
officers and engineers to help in the flooding. the flooding worsened
on the west side. the flood occurred along the west side. about
3,000 people killed by the flooding. the flooding occurred north of
manhattan around 1:55 p.m.. the water caused by another flooding
a series of conditions. the flooding followed an investigation of a
suspected bribery. the flooding still also affected the emergency
management system. officials not expecting much rain until tuesday.
the firefighters remained on manhattan. firefighters and crews sent
out to assist residents with their tasks. the officials not identify a
cause of the flooding. the flooding came after a storm that had swept
up from manhattan. the rain caused by a river of soil. firefighters
began an investigation into possible obstructions. the emergency
crews working in all locations. they expected about eight feet of
water to be there by this morning. the flood affected at least seven
other areas. the flooding caused the agency to cut off access to the
subways. the agency attributed much of the flooding to human error

Table 10: Generated examples through human interaction with the system.
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Abstract

Argument mining seeks to extract arguments
and their structure from unstructured texts.
Identifying relations (such as attack, support,
and neutral) between argumentative units is
a challenging task because two units may
be related to each other via implicit infer-
ences. These inferences often rely on ex-
ternal commonsense knowledge to discover
how one argumentative unit relates to another.
State-of-the-art methods, however, rely on pre-
defined knowledge graphs, and thus might
not cover target pairs of argumentative units
well. We introduce a new generative ap-
proach to finding inference chains that con-
nect these pairs by making use of the Com-
monsense Transformer (COMET). We evalu-
ate our approach on three datasets for both the
two-label (attack/support) and three-label (at-
tack/support/neutral) tasks. Our approach sig-
nificantly outperforms the state-of-the-art, by 2-
5% in F1 score, on two out of the three datasets
with minor improvements on the remaining
one.

1 Introduction

In argumentation, such as in a debate, it is impor-
tant to understand the key arguments put forward
and how the arguments relate to each other based
on a specific context. Ideally, we would like to
empower systems to extract arguments and the re-
lations between arguments automatically. Such
systems could be used to aggregate opinions (Co-
carascu et al., 2019), participate in debates (Slonim
et al., 2021), or they could assist humans in making
informed decisions by considering different points
of view.

Toulmin (1958) defines an argument as a claim
backed by one or more grounds (or premises) based
on a warrant (i.e., the inference link between the
grounds and the claim). For example, consider the
following two sentences: Drunk driving hurts inno-
cent people. Therefore, drunk driving is wrong.

Based on Toulmin’s model, we have the claim
drunk driving is wrong, supported on the grounds
that drunk driving hurts innocent people. In what
follows, we will call the claim and grounds argu-
mentative units (AUs). To justify the claim, the au-
thor relies on the reader’s ability to uncover the im-
plicit warrant that hurting innocent people is wrong
which connects the grounds to the claim. While
Toulmin’s warrants model only arguments in which
the units are connected by support relations, we ex-
tend the definition to also allow for attacks and neu-
tral relations. We do this to enable us to apply the
notion of warrants to the relational argument min-
ing task, as proposed by Carstens and Toni (2015),
to better identify attack/support/neutral relations
between pairs of AUs.

Finding the correct warrant is a challenging task
that requires deep reasoning, which pre-trained lan-
guage models struggle with (Helwe et al., 2021).
However, by iteratively generating knowledge, we
can chain together inferences to get a series of
causes and effects that connect two AUs together
similar to chain-of-thought reasoning (Wei et al.,
2022). We propose the use of the Commonsense
Transformer (COMET) (Hwang et al., 2021) which
is equipped with social commonsense to generate
warrants as a series of inferences. The knowledge
contained in COMET is qualitatively different from
other knowledge sources in that it contains norma-
tive commonsense. This depends upon the culture
and beliefs of various groups compared with static
commonsense knowledge graphs (KGs), such as
ConceptNet (Speer et al., 2017), which focus on
globally accepted knowledge. For this reason, we
suggest that COMET is better able to identify the
reasoning behind human arguments and that a gen-
erative approach based on COMET is better suited
to finding warrants compared to a static knowledge
graph as proposed by Paul et al. (2020).

Section 4 introduces our approach to test this
hypothesis, where we articulate an algorithm,
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ARGCON (Section 4.2), to generate warrants be-
tween a pair of argumentative units and use these
warrants as additional input to the classifier of
argument relations to evaluate whether this im-
proves the model’s ability to distinguish between
attack, support or neutral relations. We then com-
pare the use of three external knowledge sources:
ConceptNet+ the commonsense knowledge ex-
tracted by Paul et al., the knowledge generated
by ARGCON, to obtain novel commonsense infer-
ences (Section 4.2), and ARGCON + LINK which
enriches the generated knowledge with additional
relations via a link prediction model (Section 4.3).

In Section 5, we compare our work to (Paul et al.,
2020), which is the only other work we are aware
of to address the task of relational argument min-
ing by uncovering commonsense relations. We
show that our method for generating warrants with
COMET outperforms their method with a 1-2%
increase in F1 scores on two datasets. We further
evaluate our model on a three-class dataset, which
includes an additional neutral relation, and witness
a 5% improvement of the F1 score over a RoBERTa
baseline. Hence, we set a new benchmark for the
three-class task in relational argument mining. We
share our findings in Section 6 and conclude with
our future directions in Section 7.

2 Background

In this paper, we investigate the effectiveness
of COMET (Bosselut et al., 2019) for generat-
ing implicit warrants that link arguments together.
COMET is a generative model which has been fine-
tuned on a human-authored commonsense knowl-
edge graph ATOMIC (Sap et al., 2019). By training
on ATOMIC, COMET extends the knowledge cap-
tured by the knowledge graph to new domains and
is able to synthesize new commonsense knowledge
based on knowledge captured during pre-training.
The model is able to generate knowledge along mul-
tiple relations- a few examples are shown in Table 1.
COMET takes as input a sentence and a relation
along which to generate inferences. For example,
given an input PersonX’s house was foreclosed and
relation CausedBy, COMET would generate Per-
sonX failed to pay their mortgage.

Some successful applications of COMET in-
clude the generation of potential outcomes of
events for abductive reasoning (Bhagavatula et al.,
2020), question answering (Branco et al., 2021) and
text generation (Guan et al., 2020). Closely related

to our work, Chakrabarty et al. (2021) shows that
COMET can be used to generate logically sound
premises for incomplete arguments. While pre-
vious works have considered using COMET for
single-hop inference, we found that for our task of
relational argument mining, often multiple infer-
ence steps are needed to get from the first argumen-
tative unit to the second; we address this challenge
in Section 4.2.

3 Related Work

Various approaches have been proposed to infer
argumentative structure from unstructured text.
These include Long-Short Term Memory (LSTM)
models (Cocarascu and Toni, 2017; Paul et al.,
2020), pre-trained transformers (Ruiz-Dolz et al.,
2021) and logic programming (Jo et al., 2021). Pre-
trained transformers, in particular, have been shown
to perform exceptionally well on this task with no
additional feature engineering (Ruiz-Dolz et al.,
2021; Fromm et al., 2019); this suggests that the
introduction of external knowledge encoded within
the transformers due to pre-training on large cor-
pora is necessary to make significant progress on
this task. Of these works, only Fromm et al. (2019)
makes use of external knowledge to identify the
stance of arguments towards a given topic. This
differs from our task in that we wish to identify the
relationship between pairs of AUs and so have the
added challenge of finding paths that link the AUs
together.

Commonsense knowledge has proven repeat-
edly to aid in tasks such as natural language in-
ference (Wang et al., 2019) and question answer-
ing (Lv et al., 2020). The majority of these works
focus mainly on deriving knowledge from Concept-
Net (Speer et al., 2017); however, a key limitation
of knowledge graphs (Pan et al., 2016) is their in-
herent incompleteness.

Recent trends in argument mining have shown a
move towards incorporating external knowledge for
various argument-mining tasks. Two works explore
the use of automatically constructed knowledge
graphs extracted from Wikidata and Google search,
which, however, fail to achieve better results than
BERT with no additional knowledge (Fromm et al.,
2019; Li et al., 2021). On the other hand, a work us-
ing LSTM-based models for knowledge-enhanced
argument mining with ConceptNet+, shows that the
introduction of knowledge indeed improves per-
formance upon their baselines (Paul et al., 2020).
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One of the key limitations of existing works is their
use of static knowledge graphs which are unable to
handle arbitrary pairs of AUs due to their limited
coverage. To address this issue, we use COMET
to generate conmmonsense inferences on-the-fly
to connect AUs and therefore generalize to new
domains.

4 Our Approach

In this section, we describe the design of our model
as well as our procedures for obtaining knowledge
on the fly with COMET and enriching the knowl-
edge with additional links.

4.1 KE-RoBERTa
Given a pair of Argumentative Units, AUs, we
aim to predict the relation between these AUs by
the use of external knowledge relevant to this pair.
Ruiz-Dolz et al. (2021) show that RoBERTa is a
strong baseline for the classification of argument re-
lations when compared to other transformer-based
architectures. Hence, we introduce KE-RoBERTa,
which is a knowledge-enhanced RoBERTa-based
model as depicted in Figure 1.

Figure 1: KE-RoBERTa, our proposed Siamese model
for Commonsense Knowledge injection with Arg1 and
Arg2 being the input AUs

In order to inject knowledge into RoBERTa, we
use a Siamese model to separately encode the two
AUs as well as the commonsense knowledge much
like the S-BERT model (Reimers and Gurevych,
2019); in other words, the parameters of the two
RoBERTa blocks are shared. The model then com-
bines the two representations by concatenating
them together. We also introduce a multi-head at-
tention mechanism (Vaswani et al., 2017) to attend
to relevant information and block out noise. We
use mean pooling to combine individual token rep-
resentations before concatenating the result. This
allows us to use a fix-sized feed-forward network

to compute predictions from the combined AU and
knowledge representations.

The notion of knowledge is loosely defined in
the literature but can be viewed as a set of be-
liefs about the world that approximate truth. In
our case this knowledge is represented as the set
of all knowledge graph paths that could connect
two AUs. While there are many ways to represent
knowledge graph paths, in this work, we convert
each knowledge graph relation into its natural lan-
guage equivalent and concatenate the nodes and
relations together to form a sentence in natural
language. For each pair of AUs we then concate-
nate all possible paths together in order to input
the knowledge into a transformer. The source of
knowledge graph paths we refer to in the follow-
ing sections as ConceptNet+ combines knowledge
from ConceptNet, and WordNet, with additional
links predicted by neural networks; ConceptNet+

is proposed by Paul et al. and the extracted knowl-
edge was provided to us by the authors. Since the
authors did not experiment on the three class task
we did not have ConceptNet+ relations for M-Arg.

Figure 2: Knowledge graph generation by ARGCON
with link inference enabled. The figure shows how two
graphs, g1 and g2, are generated from each AU, Arg1 &
Arg2, and then merged. Dashed lines show additional
relations found by LINK.

4.2 ARGCON: A new way to generate
knowledge with COMET

All previous works using COMET seek to gener-
ate a possible outcome, a2, from a known event,
a1, and a relation. For this task, we seek to invert
this and find a path to connect a1 and a2. What
makes this more challenging is that AUs are often
connected by multi-hop inferences and so multiple
intermediary outcomes oi may be needed to con-
nect a1 and a2. The types of inference we wish to
generate can be represented as:

a1
r1−→ o1

r2−→ o2 · · · on−1 rn−→ a2
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where ri is a relation connecting events/outcomes,
and neither the oi nor ri are known in advance. To
do this, we propose a new technique using an im-
proved version of COMET, trained on ATOMIC20

20,
a larger and more extensive version of the original
ATOMIC knowledge graph (Hwang et al., 2021),
to generate deep commonsense inference chains
that connect two AUs together.

Relation Inverse

Causes CausedBy
HinderedBy Hinders
isAfter isBefore
isBefore isAfter

Table 1: ATOMIC20
20 relations (R) used to generate

knowledge from COMET with corresponding inversions

ATOMIC20
20 consists of several classes of rela-

tions, including ‘causes for a person to perform an
action’, ‘effects of an action on others’, and ‘event-
centred’. In this paper, we focus on ‘event-centred’
relations to generate knowledge from, which is a
subset of the relations contained in ATOMIC20

20. In
Table 1, we show the four relations selected. In Sec-
tion 5, we will report our results on three existing
datasets that include AUs focusing on event-centred
knowledge.

Algorithm 1 provides pseudocode for our
knowledge generation method Argument Connec-
tor (ARGCON). Our algorithm takes three inputs,
a pair of AUs, (a1 and a2) as well as a boolean
flag (wlink) to indicate whether additional link
prediction should be performed as described in
Section 4.3. The algorithm then returns the paths
that connect a1 to a2.

Starting from the pair of AUs, we first initialise
two single-node graphs, g1 and g2, from a1 and
a2 (lines 1-2). For each of these graphs, we take
the set of their nodes N , and for each node n and
each relation r we generate new nodes n′ using
COMET (lines 8-13). We then update N to contain
the set of nodes at the current depth i (line 14) and
repeat this process d times until each graph has a
tree with a maximum depth of d (line 4). Note that
graphs g1 and g2 now contain only paths from a1
and a2, meaning that a2 cannot be reached from
any other node. In order to get paths from a1 to a2,
we need to flip the relations in g2 replace them with
their corresponding inverse, as shown in Table 1,
and then merge the two graphs wherever they share

Algorithm 1: ARGCON(a1, a2, wlink)

Data: R, the set of relations to consider
Data: d, the depth of a tree
Data: COMET, commonsense transformer
Data: LINK, our LINK model

1 g1 ← makeGraph(a1)
2 g2 ← makeGraph(a2)
3 forall g ∈ {g1, g2} do
4 for i = 0 to d do
5 if i = 0 then
6 N ← g.nodes()
7 N ′ ← []
8 forall n ∈ N do
9 forall r ∈ R do

10 n′ ← genNode(n, r,COMET)
11 if n′ ̸= NULL and n′ ̸= n then
12 g ← g.addtriple(n, r, n′)
13 N ′ ← N ′.append(n)
14 N ← N ′

15 gm ← mergeGraphs(g1, flip(g2))
16 if wlink then
17 new_edges→ LINK(g1, g2)
18 gm.append(new_edges)
19 return computePaths(a1, a2, gm)

a common node (line 15). We now have a single
merged graph gm containing a1 and a2. If wlink
is set to true, the LINK model will be used to infer
additional relations that connect g1 to g2 (line 16-
18) which are then appended to gm. The algorithm
returns all paths that connect a1 and a2 (line 19).

4.3 LINK Prediction Between Nodes

It may not be always possible to find a path be-
tween the AUs by using only the merging opera-
tion described above. We introduce an additional
inference step to identify the relationships between
the nodes of the two knowledge graphs.

To achieve this, e trained a link prediction
model (LINK) to identify the most likely relations
that exist between two nodes, which are provided
as inputs. LINK is a BERT model fine-tuned on
the ATOMIC20

20 training set to predict the relation
between two nodes of the knowledge graph. In
order to identify unrelated node pairs, we sample
4000 pairs that are not connected in ATOMIC20

20

and assign them a ‘None’ label. Table 2 shows the
training and validation performance of LINK when
trained to predict the relations in Table 1 and the
‘None’ relation.
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Accuracy Precision Recall F1
val 0.91 0.89 0.88 0.88
test 0.90 0.85 0.85 0.85

Table 2: Validation and testing performance of LINK
model for COMET link prediction after 5 epochs.

Given a pair of graphs and their corresponding
node sets, N1, N2, generated by COMET, we use
LINK to predict the most likely relationships be-
tween the two graphs. Explicitly, we pass all node
pairs (a, b) ∈ N1 × N2 to LINK and add the pre-
dicted relation to gmerged (line 15 in Algorithm 1,
wlink is set to 1 to enable further inference) be-
fore computing paths. Figure 2 depicts our method
when link inference is enabled.

5 Evaluation

In this section, we describe the datasets we have
chosen, our choices of parameters for knowledge
extraction, our training setup, and the results of our
experiments on three datasets.

5.1 Datasets and Knowledge
We consider three datasets for our experiments:
the Student Essay corpus (Opitz and Frank, 2019),
Debatepedia (Paul et al., 2020), and the M-Arg
Presidential Debate corpus (Mestre et al., 2021).
We may refer to the datasets as Essay, Debate, and
M-Arg for brevity.

The first two datasets were annotated with two
labels (attack/support). Student Essay is a collec-
tion of argumentative essays written in English
by second-language speakers, while Debatepedia
contains arguments selected from a wiki of contro-
versial topics and pro/con arguments1 where con-
troversial topics are discussed by multiple authors.
These are the datasets used by Paul et al. (2020)
which we use for comparison and we have taken
the same dataset splits as used in their experiments.
M-Arg consists of transcripts from five presidential
debates in 2020; sentence pairs in this dataset were
annotated with three labels (attack/support/neutral).
Table 3 shows how the data has been split.

5.2 Experimental Setup
As a baseline, we trained a RoBERTa model2, with
no additional knowledge. We trained our models to

1The wiki has since migrated to https://idebate.org/
debatabase.

2https://huggingface.co/roberta-base

A S N

Debate
train 3250 3236 -
val 1088 1075 -
test 1035 1127 -

Essay
train 273 2797 -
val 130 1012 -
test 91 1009 -

M-Arg
train 94 302 2887
val 11 40 359
test 15 42 342

Table 3: Distribution of labels (Attack/Support/Neutral)
across datasets. While Debatepedia is balanced, the
other two datasets show drastic imbalances making the
task of detecting minority classes more challenging.

minimize the cross-entropy loss on the labeled data
with a batch size of 10 and a learning rate of 1e−5.
The models were trained using the same hyper-
parameters for 10 epochs, and the model with the
highest F1 validation score was selected for testing.
Our code and the data can be found on GitLab3.

We used ARGCON with a maximum depth limit
of d = 3 to generate a list of paths from Arg1
to Arg2. Each path is given as lists of nodes and
relations, which, by using a simple set of rules,
we convert into natural language and concatenate
the result. This is common practice when using
COMET and the reader can refer to the code-base
for more details on how this was done.

5.3 ARGCON vs ARGCON+LINK

We first investigate the proportion of AU pairs for
which ARGCON and ARGCON+LINK could gener-
ate knowledge for (Table 4). We observe that nearly
half of the pairs are not covered by ARGCON while
ARGCON+LINK gives an improvement of 30% on
Debatepedia and Student Essay and 40% on M-Arg.

5.4 Relational Argument Mining Results

Table 5 shows the results from the classifica-
tion experiments; the first two rows, (Paul et al.,
2020) and RoBERTa, are existing approaches.
We also apply RoBERTa to the ConceptNet+ ex-
tracted by Paul et al. to compare the performance
against our COMET-based knowledge extraction
methods. The results show that the common-

3https://git.ecdf.ed.ac.uk/s1707343/
commonsense-argmining/-/tree/master
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ARGCON ARGCON+LINK

Debate
train 0.56 0.85
val 0.53 0.83
test 0.54 0.83

Essay
train 0.42 0.71
val 0.37 0.68
test 0.42 0.70

M-Arg
train 0.20 0.69
val 0.23 0.74
test 0.22 0.72

Table 4: Coverage of ARGCON vs. ARGCON+LINK.

sense enhanced KE-RoBERTa models improve
upon RoBERTa in almost all cases. In addition,
ARGCON and ARGCON+LINK give the best re-
sults on the Debate and Essay datasets respec-
tively. For significance testing we used the Almost
Stochastic Order test (Dror et al., 2019; Del Bar-
rio et al., 2018) implemented in Python using the
deep-significance library (Ulmer et al., 2022).
We compared all models against the baseline based
on the sample predictions on a single trial, with a
confidence level of α = 0.05 (before adjusting for
all pair-wise comparisons using the Bonferroni cor-
rection). We consider the results significant when
ϵmin < τ with τ = 0.3.

We conducted further experiments on the M-
Arg dataset to evaluate our knowledge extraction
method on a three-label (attack, support, and neu-
tral) task. The results in Table 6 confirm that our
methods do indeed perform better than RoBERTa
with no external knowledge.

6 Analysis and Discussion

In order to interpret the results better, we analyze
the inference chains generated by ARGCON, and
we also investigate the performance of the models
across different topics. In Table 7, we provide some
examples from the data to discuss our findings. For
clarity, we have kept the table concise and omitted
information not relevant to the points being made.

6.1 Performance Across Different Topics

The performance of the model varies across differ-
ent topics. Figure 3 depicts the macro F1 scores of
the KE-RoBERTa model for each topic in the M-
Arg dataset. We observe significant improvements
across some of the topics such as ‘Taxes’, ‘Racism’,

‘Families’ and ‘Climate Change’. COMET has
been exposed to these topics in the training set and
so is better able to provide relevant knowledge.

One topic in which RoBERTa outperforms both
knowledge-enhanced models is ‘Why They Should
Be Elected’. Our analysis of the class level preci-
sion (Appendix A) indicates that the drop in preci-
sion in Table 6 is actually due to this missidentifi-
cation of support relations when we add external
knowledge, we discuss this in Subsection 6.4.

6.2 Noisy Connections
The injected knowledge could be detrimental in
some cases. The COMET generated knowledge
can introduce noise by generating irrelevant rela-
tionships between two arguments. Consider Ex1
in Table 7, where ARGCON makes an incorrect
prediction while the RoBERTa model correctly pre-
dicts a support relation. Here, the generic word
‘good’ is used to link Arg1 and Arg2. While useful,
the analysis shows that the attetion mechanism in
KE-RoBERTa does not solve the issue.

ARGCON can sometimes infer relations when
there are in fact none present. The existence of
a commonsense inference path between the argu-
ments causes the model to favor the support relation
over the neutral one. In Ex3 of Table 7, the first
argument attacks the speaker’s opponent while the
second deflects the argument by addressing some-
thing unrelated. However, COMET connects the
first sentence to the second on the basis that ‘the
country is in decline’ supports ‘being weaker’.

6.3 ARGCON vs. ConceptNet+

The nature of the injected knowledge can change
the outcome. Ex4 in Table 7 shows a compari-
son of knowledge extracted with ARGCON+LINK

and ConceptNet+. In the example the model
provided with input from ARGCON+LINK pre-
dicts the correct relation while ConceptNet+ fails.
By examining the knowledge we observe that
ARGCON+LINK is able to deduce that the first
argument hinders the ability of parents to teach
their children and therefore prevents students from
learning skills. This allows the model to make the
correct prediction. However, ConceptNet+ can only
deduce that a parent has a child that can learn.

As seen in this example, ConceptNet+ provides
some information about causality (learning causes
intelligence) but this information is limited and
often too simplistic to provide meaningful informa-
tion for understanding the underpinning arguments.
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Student Essay Debatepedia

Model KG P R F1 P R F1

(Paul et al., 2020) ConceptNet+ 0.56 0.63 0.60 0.64 0.64 0.64

RoBERTa - 0.64 0.68 0.66 0.75 0.75 0.75

KE-RoBERTa
ConceptNet+ 0.66 0.70 0.68 0.74 0.74 0.74
ARGCON 0.66 0.69 0.67 0.76 0.76 0.76
ARGCON+LINK 0.70 0.71 0.70∗ 0.75 0.75 0.75

Table 5: Macro-averaged F1, precision, recall scores of our experiments on the test sets for the 2-class task. Asterisk
indiciates significant stochastic dominance over the baseline.

M-Arg

Model KG P R F1

RoBERTa - 0.57 0.41 0.44

KE-RoBERTa
ARGCON 0.48 0.51 0.48∗

ARGCON+LINK 0.54 0.48 0.49∗

Table 6: Macro-averaged F1, precision, recall scores
of our experiments on the test sets for the 3-class task.
Asterisk indicates significant stochastic dominance over
the baseline.

On the other hand, COMET is well equipped to han-
dle more complex causal relations due to the nature
of the data it was trained on. This supports our
claim that the nature of COMET is better suited to
providing useful commonsense for argument min-
ing tasks compared to ConceptNet+.

6.4 Uncovering Hidden Biases in Arguments

In argument understanding, the ability to capture
and make some of the implicit biases explicit can
be helpful. Ex2 in Table 7 shows an argument made
by the speaker to attack [PERSON X]’s candidacy.
The argument made relies on the implicit reasoning
that [PERSON X] did not fight [COUNTRY Y]
because he is a communist. While there are many
controversial assumptions being made when gen-
erating this knowledge, the COMET knowledge
reflects the beliefs underlying the argument pair.

One of the key differences between fact-based
and commonsense knowledge graphs is that the lat-
ter are more likely to capture cultural and normative
biases. This is amplified by the fact that COMET is
built on a pre-trained BART model, which captures
biases present in the training corpus.

7 Conclusion

In this paper, we introduced a new method,
ARGCON, to investigate the role of the com-
monsense knowledge encoded in COMET for the
task of relational argument mining. In particular,
ARGCON can reveal implicit commonsense reason-
ing chains (i.e., warrants) and these chains provide
useful information for classifying argument rela-
tions such as attack, support, and neutral. Our
experiments on three different datasets show that
the chains generated by this method outperform ex-
isting approaches. Our analysis shows that the per-
formance of our models varies given the topic un-
der discussion and in some cases ARGCON creates
noisy connections as a result of injected knowledge.
We also observe that our model performs well in
its ability to handle complex causal relationships
and reason about social norms and biases.

In this work, we only consider pairs of AUs
without taking into account any additional context.
However, incorporating the text surrounding the
pair of arguments is often necessary to be able to
determine their relationship. In future work, we
would like to incorporate such contextual infor-
mation into our approach and explore the impact
this has on the final performance. Another direc-
tion that we want to explore is considering other
relations of COMET knowledge such as intents,
needs, and wants to investigate whether this kind
of social commonsense improves classification ac-
curacy. Another avenue of investigation we would
like to pursue is the role that external knowledge
plays in increasing explainability and improving
the diagnosis of end-to-end model predictions. Be-
yond argument mining, we believe that ARGCON

is useful for other inference tasks such as recogniz-
ing textual entailment and question answering, we
hope to experiment with other datasets to test this.
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Figure 3: Comparison of F1 scores of our models on various topics in the test set of the M-Arg dataset.

Ex1

Arg1 Congress will not ultimately cut Medicare to pay for reform.
Arg2 The 2010 US health care reform legislation is a good idea.
ARGCON+LINK [Arg1], isAfter, PersonY is not a member of the government, isAfter, PersonY is a lawyer,

Causes, good, CausedBy, [Arg2]

Label: Support RoBERTa Prediction: Support, ARGCON+LINK Prediction: Attack

Ex2

Arg1 [PERSON X] never fought it.
Arg2 [PERSON X] has been a cheerleader for communist [COUNTRY Y] over the last several

decades.
ARGCON [Arg2], HinderedBy, [PERSON X] is a good person., HinderedBy, [PERSON X] is a

communist., Hinders, [Arg2]

Label: Support ARGCON Prediction: Support

Ex3

Arg1 Under this president, we become weaker, sicker, poor, more divided and more violent.
Arg2 With regard to being weaker, the fact is that I’ve gone head to head with [PERSON X] and

made it clear to him we’re not going to take any of his stuff.
ARGCON [Arg2], HinderedBy, under this president, the country is in decline, HinderedBy, with

regard to being weaker, Hinders, [Arg2]

Label: Neutral ARGCON Prediction: Support

Ex4

Arg1 Parents are usually too busy with their daily jobs to teach their children the life skills
Arg2 Students can learn practical skills after school hours from their parents
ARGCON+LINK [Arg2], Causes, parents are lazy, HinderedBy, parents are teaching their children,

CausedBy, [Arg2]
ConceptNet+ parent Antonym child used for learning, learning Causes intelligence related to mind HasA

parent, parent Antonym child CapableOf learn

Label: Attack ARGCON+LINK Prediction: Attack, ConceptNet+ Prediction: Support

Table 7: Examples of knowledge and model predictions from the data: Ex1 is taken from the Debate dataset, Ex2
and Ex3 are taken from M-Arg, and Ex4 is taken from Student Essay. One interesting finding is that due to inductive
biases in ARGCON HinderedBy and Hinders do not always reflect negative relations between nodes. The tags
[PERSON X] and [COUNTRY Y] have been used to remove mentions of named individuals and countries in this
table to avoid causing political offense.
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Limitations

One limitation comes from our reliance on
manually-constructed knowledge graphs. Given
that different cultures and communities have vary-
ing notions of what is and is not commonsense,
what is left out between arguments will also de-
pend on the culture. For example, a knowledge
graph constructed by English speakers in the UK,
may not be able to provide useful knowledge about
arguments about politics in the US due to differ-
ences in cultural values.

Similarly, our approach does not apply to low-
resource languages that do not have sufficiently
large commonsense knowledge graphs to train
a transformer model such as COMET. Machine
Translation of existing knowledge graphs may also
prove insufficient due to cultural differences.
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vide warrants for arguments. These models, being
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A Class level performance of our model

Table 8 shows the breakdown of our models’ per-
formance across the different classes. To begin
with, the performance on Debatepedia is mixed,
with a slight improvement in the F1 score of the
support class due to ARGCON. However, there is
no clear winner as all models perform similarly to
the baseline. This suggests the need for further in-
vestigation to identify the cause of the performance
bottleneck which is not mirrored by the other 2
datasets.

In the Student Essay, we observe that knowl-
edge indeed helps to identify the minority attack
class, both in terms of precision and recall with
ARGCON+LINK providing the greatest contribu-
tion to the precision of the attack class and a slight
improvement in the recall of support. This gives
strong evidence to support our hypothesis that the
knowledge provided by our methods is effective
for distinguishing between relation types.

We see a similar phenomenon emerge in the
M-Arg dataset, where there is a consistent improve-
ment in the identification of the smallest attack
class, as we go from no knowledge to ARGCON to
ARGCON+LINK. We also notice a significant, 33%
increase in the recall of supporting AU pairs. How-
ever, as we introduce knowledge to our model, we
see that the recall of neutral pairs decreases along-
side the precision of support. This is what was
observed in Subsection 6.4 due to the appearance
of supporting inference chains when we generate
knowledge with ARGCON.

To summarise, the improvement of our model
on the Student Essay and M-Arg dataset provides
evidence to support continued investigation and
improvement of commonsense-aided relational ar-
gument mining with COMET. In particular, we
see that external commonsense knowledge sig-
nificantly improves the identification of minority
classes in imbalanced datasets which are particu-
larly common to the domain of argumentation.

Knowledge Attack Support Neutral
P R F1 P R F1 P R F1

Debate

- 0.71 0.80 0.75 0.79 0.71 0.75 - - -
ConceptNet+ 0.72 0.75 0.74 0.76 0.73 0.75 - - -
ARGCON 0.73 0.77 0.75 0.78 0.75 0.76 - - -
ARGCON+LINK 0.72 0.79 0.75 0.78 0.71 0.75 - - -

Essay

- 0.33 0.45 0.38 0.95 0.92 0.93 - - -
ConceptNet+ 0.37 0.48 0.42 0.95 0.93 0.94 - - -
ARGCON 0.36 0.44 0.40 0.95 0.93 0.94 - - -
ARGCON+LINK 0.44 0.47 0.46 0.95 0.95 0.95 - - -

M-Arg
- 0.00 0.00 0.00 0.43 0.31 0.36 0.90 0.94 0.92
ARGCON 0.14 0.07 0.09 0.37 0.60 0.46 0.92 0.88 0.90
ARGCON+LINK 0.25 0.13 0.17 0.32 0.64 0.43 0.93 0.83 0.88

Table 8: Micro-F1 score comparison of the models in our experiments. Results with no knowledge represent our
RoBERTa baseline.
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Abstract

Current studies of bias in NLP rely mainly on
identifying (unwanted or negative) bias towards
a specific demographic group. While this has
led to progress recognizing and mitigating neg-
ative bias, and having a clear notion of the tar-
geted group is necessary, it is not always prac-
tical. In this work we extrapolate to a broader
notion of bias, rooted in social science and psy-
chology literature. We move towards predicting
interpersonal group relationship (IGR) — mod-
eling the relationship between the speaker and
the target in an utterance—using fine-grained
interpersonal emotions as an anchor. We build
and release a dataset of English tweets by US
Congress members annotated for interpersonal
emotion – the first of its kind, and ‘found su-
pervision’ for IGR labels; our analyses show
that subtle emotional signals are indicative of
different biases. While humans can perform
better than chance at identifying IGR given an
utterance, we show that neural models perform
much better; furthermore, a shared encoding
between IGR and interpersonal perceived emo-
tion enabled performance gains in both tasks.

1 Introduction

Currently, most work studying bias in NLP situates
bias as negative or pejorative language use towards
an individual or group based on traits like race, gen-
der, etc (Kaneko and Bollegala, 2019; Sheng et al.,
2019; Sap et al., 2020; Webson et al., 2020; Pryzant
et al., 2020; Sheng et al., 2020). While these ap-
proaches greatly advance our understanding of bias
in language and its impact and mitigation in NLP,
focusing on specific demographic dimensions or an
individual’s intent is limiting and not always prac-
tical. Research in psychology and social science
suggests a different perspective. Bias can be seen as
a relationship between people and groups, situated
in context (Van Dijk, 2009); as such, bias refers to

differences in behavior (in this case language use)
as a result of differences in the relationship between
speaker and target. The language we produce is bi-
ased in one way or another, whether we intend to or
not, and whether that bias is positive, negative, or
not clearly associated with any valuation (Beaver
and Stanley, 2018).

In psychological work on Linguistic Intergroup
Bias (Maass, 1999), bias originates from the re-
lationship between the speaker and target of an
utterance, i.e. their interpersonal dynamics, and
manifests later in subtle ways. Consider the utter-
ances (tweets) in (1), drawn from our collected data
in which the identity of the speaker and target are
masked:
(1) a. In-group: We stand w @Doe, who has seen a lot

worse than cheap insults from an insecure bully.
#MLKDAY weekend.

b. Out-group: Parents and families live in constant fear
for their children with food allergies. A worthy bi-
partisan cause - thank you @Doe for your leadership
on this issue.

Both express support and admiration towards the
target referent Doe – however, the second example
uses words indicative that the speaker and target
do not share a relevant social identity (in this case,
their political party), expressed by words like bi-
partisan. The intensity of admiration expressed is
also greater in (1-a) than (1-b). Thus, these two
seemingly similar statements differ along interper-
sonal dimensions that are instructive as to how the
bias of the speaker seeps into the utterance.

We now introduce two new tasks that directly
model language use in terms of two interpersonal
dimensions: (i) interpersonal group relationship
(IGR) prediction, where we seek to understand
how people talk about others who they consider
to be in their same social group (in-group), versus
those they consider outside their social group (out-
group), and (ii) perceived interpersonal emotion
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detection, where we situate these differences in
terms of the emotion expressed in text towards or
in connection with a target individual described
in the utterance. Note that interpersonal emotion
is different from a more standard, utterance level
emotion detection task, as illustrated in row 2 of
Table 1 which has seemingly opposing emotions.

We present a first-of-its-kind, annotated dataset
for fine-grained interpersonal emotion detection,
consisting of 3,033 tweets from members of the
US Congress; all of these tweets mention an-
other Congress member, hence providing us with
‘found supervision’ for IGR prediction (whether
the speaker and the target belong to the same polit-
ical party). Our analyses show that while positive
interpersonal emotions appear in both in- and out-
group situations, negative emotions like anger and
disgust are overwhelmingly present in the latter.
Meanwhile, human judgments for in vs. out-group
membership on this dataset are overly reliant on
the polarity of emotion; specifically, human judges
are much less likely to attribute positive emotions
towards out-group targets.

Baseline performances for perceived interper-
sonal emotion detection shows that this is a chal-
lenging task, as is consistent with existing work
in emotion detection in general (Demszky et al.,
2020). In particular, emotions in this dataset are
often expressed with considerable subtlety, likely a
characteristic of official political speech. To investi-
gate whether IGR and emotions are intertwined and
useful towards each other, we further developed a
multi-task model for the prediction of both. We
found compelling evidence that multi-tasking IGR
and interpersonal emotion improves performance
on both tasks with over 10% improvement in de-
tection of disgust in out-group contexts, and 3%
improvement in IGR prediction.

To summarize the contributions of this paper,
we tackle generalized intergroup bias, a notion of
bias rooted in social psychology that applies to all
the various differences in the ways that people talk
about others in their in-group or out-group. Stan-
dard bias tasks in NLP, and the broader goal of
debiasing models could thus be set in a more gen-
eral context. We present the first dataset to study
both interpersonal group membership and emotion,
which allows us to analyze both human and model
behavior in terms of how the two interact with
each other. We release our code and data online at
github.com/venkatasg/interpersonal-bias.

2 Interpersonal Contexts & Emotions

Our aim is to build a generalized, data-driven ap-
proach towards studying bias situated in interper-
sonal utterances, which we define as any utterance
where there is a target individual being talked about
or referred to. Our goal is to model two novel tasks
described below; examples are shown in Table 1.

Interpersonal Group relationship IGR is de-
fined by the relationship between the speaker and
target of an utterance. People belong to multiple
social groups as part of their identity, however usu-
ally only some identities are salient in an utterance
in context. We define in-group utterances as ones
where the speaker and target are in the same social
group, and out-group utterances as one where they
are in different social groups. Given an utterance
u written by an individual s with target t, the IGR
prediction task classifies whether s and t belong to
the same social group within the context of u.

Interpersonal Emotion We define perceived in-
terpersonal emotion as the emotion expressed by
a speaker s towards, or in connection with the tar-
get t of the utterance u, as perceived by a reader.
We use the Plutchik wheel of emotions, which is
widely adopted in the community, as the basis of
our emotion taxionomy (Plutchik, 2001); we use
the 8 fundamental emotions (admiration, anger, dis-
gust, fear, interest, joy, sadness, surprise) instead
of the full 24 emotions in the wheel due to data
sparsity. Interpersonal emotions may be different,
or a subset of, emotion for the whole of an utter-
ance, as illustrated in rows 2, 3 and 4 of Table 1.
Given an utterance u written by an individual s
with target t, the interpersonal emotion detection
task identifies the perceived emotion of s towards
the target t.

3 Data Collection

In our area of focus, we require natural language
data which satisfies the following criteria: (1) Each
utterance must have at least one target about whom
the utterance mainly concerns. (2) The relationship
between the speaker and the target must be inferred
based on metadata or other information. Specifi-
cally, we are interested in aspects of their social
identity that they share or differ on.

The dataset we collect comes from tweets by
members of US Congress where other members
are mentioned in the same tweet. We use this as
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Tweet Interpersonal Emotion In/Out group?

As @Doe says, the times have found each and every one of us to Defend
our Democracy For The People. Worth reading every line.

Admiration In-group

Freedom has no greater nor tougher champion than @Doe. My prayers
are with him and his family.

Admiration & Sadness In-group

You don’t get to decide what’s “fine,” @Doe. The constitution does.
#DefendOurDemocracy #WednesdayThoughts

Anger & Disgust Out-group

Thank you again Senator @Doe for leading the SRF WIN Act[. . . ] I’m
proud to be a co-sponsor

Admiration & Joy Out-group

Table 1: Example utterances from our dataset with in/out group and interpersonal emotion labels

a convenient testbed: each member’s group affili-
ation (i.e., their party identity) is public, thus we
can easily know whether the speaker is tweeting to
a target in their own party or not.1 In other words,
this dataset gives us “found supervision” for our
first task of IGR prediction. For our second task,
we annotate a subset of these tweets for perceived
interpersonal emotion; this is, to our knowledge,
the first dataset dedicated to interpersonal emotion.

3.1 Data Sources and Preprocessing

Social media text like tweets offer a fertile ground
for our study. A focus on tweets with mentions in
them satisfies our first criterion – people generally
use mentions to say something about or towards
another individual on twitter. Tweets by members
of US Congress are a matter of public record, and
we can infer the social relationship (in terms of
party affiliation) between speaker and target using
publicly available information. We prioritize work-
ing with a dataset of tweets by members of US
Congress (downloaded using the Twitter API) be-
tween 2010 and 2021, spanning two presidencies,
during which both parties held power in Congress.
We filter these tweets to exclude retweets, and in-
clude those tweets that mention at most one other
member of Congress whose party affiliation is
known. We believe these 2 assumptions are suf-
ficient to arrive at a dataset of tweets where the
speaker is talking towards/about one target. Thus,
we restrict ourselves to two social groups in this
sphere — Democrat and Republican parties in the
US. We sample an equal number of in-group and
out-group tweets from a large sample consisting
of all tweets by members of Congress. Apart from
years 2010–2012 and 2021 which contained fewer
tweets due to sparsity issues, we sampled at least
300 tweets each year.

1For simplicity, we do not consider other factors such as
the home state of a congress member.

3.2 Interpersonal Emotion Annotation

While we can infer whether a tweet is in-group or
out-group based on the identity of speaker and tar-
get whose political affiliations are known, we still
require annotated data on perceived interpersonal
emotions. Interpersonal emotions vary in subtle
ways from sentiment or overall sentiment of utter-
ances: an utterance can have negative sentiment
overall, but still convey positive emotions towards
the target of the sentence (expressing admiration
at someone’s death for instance). For this reason,
we devise an annotation schema for annotating the
emotion expressed by speaker s towards target t.

Instructions Annotators are presented with a
tweet, with the identity of the speaker unknown
and that of the target masked with a placeholder
name @Doe to minimize potential biases of the
annotators’ prior knowledge of party affiliation in-
truding into the annotation:

(2) If @Doe can get her hair done in person,
Congress can vote in person. . .

Annotators are instructed to read the tweet and se-
lect only the most notable emotion(s) they think
are expressed by the tweet author in connection
with @Doe. To aid annotators, we provide exam-
ples of the 8 Plutchik emotions (joy, admiration,
fear, suprise, sadness, digust, anger and interest)
expressed as interpersonal emotions in tweets. An-
notators are also shown a schematic of the Plutchik
wheel of emotions, which acquaints them with how
the emotions are related to one another in our frame-
work. Annotators are allowed to select more than
one emotion to account for emotion co-occurrence.
We also explicitly tell annotators that more than
one of the emotions can be present in the tweets, to
encourage them to select all interpersonal emotions
expressed. They are also allowed to not choose any
emotion.
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Figure 1: Emotions ordered by the number of examples
where at least one rater uses a particular label. The color
indicates the average interrater correlation.

Annotation To obtain reliable annotations, we
prequalify annotators using a qualifying task. An-
notators were recruited on Mechanical Turk using
a qualifying task where they were asked to anno-
tate 6 tweets using the schema shown above. We
restricted the qualification task to annotators living
in the USA who had attempted at least 500 HITS
and had a HIT approval rate ≥ 98%. After man-
ual inspection, 6 annotators were qualified for bulk
annotation. Each tweet was annotated by three dif-
ferent annotators. To ensure annotators were paid
a fair wage of at least 10$ an hour, we paid annota-
tors $0.50 per HIT. Each HIT involved annotating
3 tweets, which we estimate to take on average 3
minutes to complete. In total, 3,033 tweets between
2010 and 2021 were annotated with perceived in-
terpersonal emotion.

Agreement To measure agreement between an-
notators on the Plutchik-8 emotion wheel, we use
the Plutchik Emotion Agreement (PEA) score from
Desai et al. (2020). The PEA score addresses the
issue of penalizing all disagreements equally, by
penalizing dissimilar emotion annotations higher
than more similar ones (according to the Plutchik
wheel). Our PEA score is 0.73. The original PEA
formulation used the best(max) pair of emotion an-
notations between two workers. Taking the worst
combination of emotions between two workers (av-
eraged over all tweets and workers), the PEA (min)
score is 0.60. Overall, we find moderate to high
agreement on fine-grained interpersonal emotions.
In Figure 1 we also present interrater correlation, a
metric used in Demszky et al. (2020); we see that
distributions are similar.

Aggregation We consider a tweet to have a cer-
tain emotion label if at least 2 out of 3 annotators
agree that the particular emotion was present in
the tweet. A total of 638 tweets have no interper-
sonal emotion associated with them. We employ a

Emotion Train Dev Test

Admiration 467 64 58
Anger 225 40 46
Disgust 206 32 43
Fear 1 0 0
Interest 701 83 84
Joy 801 107 106
Sadness 72 11 11
Surprise 1 0 0
No Emotion 519 56 63

Table 2: Distribution of emotions in train-dev-test split

Emotion All In-Group Out-Group

Admiration 15.5 22.2 9.1
Anger 8.2 1.0 15.1
Disgust 7.4 0.3 14.2
Interest 22.9 27.2 18.6
Joy 26.7 32.2 21.4
Sadness 2.5 2.6 2.4
No Emotion 16.8 14.5 19.1

Table 3: Proportion of emotions in different interper-
sonal contexts

80-10-10 train-dev-test split on our data.
The number of annotated examples (tweets) per

emotion is shown in Table 2. We omit fear and
surprise from future tables due to the absence of
annotated examples.

4 Preliminary Analysis

How are emotions distributed? When observ-
ing the distribution of aggregated emotion labels
themselves, a clear pattern emerges as seen in Ta-
ble 3. Negative emotions such as anger and dis-
gust are almost always expressed in out-group set-
tings, while positive emotions are present in both
in-group and out-group settings. A similar distribu-
tion of emotions was observed for Democrats and
Republicans — members of both parties reserved
their public anger and disgust for members of the
other party. This reflects an innate bias in terms of
the distribution of interpersonal emotions per situa-
tion, and warrants future work to explore negative
interpersonal emotions in an in-group setting.

Figure 2 shows the co-occurrence of interper-
sonal emotions in our dataset. We can see that
emotions that are farther apart and more dissimilar,
such as admiration and disgust, joy and sadness,
co-occur infrequently. Emotions that are closer
such as anger and disgust, admiration and joy, co-
occur much more often. The only outlier is the
higher than normal co-occurrence of admiration
with sadness — after a closer examination, this can
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Figure 2: Co-occurence of emotions in our dataset.

be attributed to tweets expressing admiration and
sadness at the passing, or end of the career, of a
fellow congressperson.

Who were the targets of negative emotions?
On further analysis, it appears that most of the
out-group disgust and anger is directed at 3 handles
– @speakerryan, @speakerpelosi, and @speaker-
boehner who were all Speakers of the House of
Representatives over most of the time period of our
dataset. 63.7% of disgust and 64.3% of anger is
directed towards these three twitter handles. 11.9%
of all tweets in our dataset are directed at these
handles, indicating the preponderance of negative
interpersonal emotion directed at the Speaker of the
house. However, we note that negative emotions
like anger and disgust were still expressed towards
51 and 45 different individuals in our dataset, re-
spectively.

Can humans predict in/out-group? While our
data naturally comes with “gold” IGR labels, what
is unexplored is whether the distinction between
in-group and out-group speech is prominent and no-
ticeable by humans. Additionally, it is also unclear
if humans might have their own expectation of how
in/out-group speech should be characterized.

Concretely, we investigate if human annotators
were capable of accurately performing the IGR
prediction task when the speaker and target are
masked. Two authors of this paper, one a social
science graduate student, and the other a compu-
tational linguistics graduate student, annotated 50
random tweets from our validation data which they
had not been exposed to earlier for in/out group
labels. Their Fleiss κ agreement score was 0.64,
indicating moderate agreement.

To check how accurate their judgements were,
we calculate for each annotator their F1 score
against our “gold” in/out group labels. Their F1

scores on these 50 tweets were 0.67 and 0.63,
which as we will discuss in Section 6, only match
simple baselines of supervised systems. Annota-
tors comments indicate that they overly relied on
the sentiment of tweets to make the classification
— positive sentiment means in-group and negative
sentiment means out-group. While negative emo-
tions are over-represented in out-group situations
as Table 3 shows, our dataset contains a substantial
presence of out-group tweets with positive interper-
sonal emotions as well. Annotators also noticed
some lexical cues like ‘bipartisan’ that are indica-
tive of out-group tweets.

Do pre-trained representations capture interper-
sonal emotions? Pre-trained language models
have been found to learn sentence representations
that cluster by domain without supervision (Aha-
roni and Goldberg, 2020). We wished to investigate
if any of our annotated properties cluster inher-
ently in reduced representations of the tweets in
our data. To obtain unsupervised representations,
we use BERTweet (Nguyen et al., 2020), a lan-
guage model pre-trained on 850M English tweets.
We take the 768 dimensional embeddings from the
final layer of the <s> token in BERTweet, and di-
mensionally reduce them to 2 dimensions using
UMAP (Sainburg et al., 2021). Figure 3 shows the
distribution of tweets, color coded for interpersonal
emotions. While there is a lot of overlap between
representations when stratified by emotion, we can
see that some emotions that are intuitively oppo-
site, like admiration & disgust, joy & sadness are
moderately separable. This indicates that interper-
sonal emotions do define some topic or domain
level properties of a tweet.

5 Experiments

We detail our experiments for the two novel tasks
discussed in Section 2: predicting the IGR (in-
group or out-group) given a tweet, and predict-
ing the interpersonal emotion given a tweet. We
present baselines for the two tasks separately, and
also present a multi-task model to gauge the extent
to which knowledge of IGR may help in predicting
interpersonal emotion, and vice versa.

5.1 Interpersonal Group Relationship
Sentiment-Rule Our first baseline is a rule-based
one leveraging coarse sentiment: if a tweet’s sen-
timent is predicted to be negative, classify it as
out-group; if positive, classify it as in-group; and if
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Figure 3: Distribution of interpersonal emotions in unsupervised representations of tweets in our dataset. Orange
indicates the emotion was present for that tweet. Each point represents one tweet from our dataset.

neutral, classify it as either in-group or out-group
randomly. We use a RoBERTa-Base model fine-
tuned for sentiment on tweets (Barbieri et al., 2020)
to extract the sentiment of each tweet in our dataset.

NB-SVM As a second baseline, we build an
SVM model that uses Naive-Bayes log-counts ra-
tios of unigrams and bigrams (Wang and Manning,
2012).

BERTweet We use BERTweet (Nguyen et al.,
2020), a language model pre-trained on 850M En-
glish tweets as our dataset consists purely of En-
glish language tweets. A classification head is
placed on top of the language model. We also ex-
periment with a version where the language model
parameters are frozen, and only the classification
head parameters are finetuned (BERTweet-ft).

The input to all models is only the tweet with no
other context, and the target masked with a place-
holder @USER.

5.2 Interpersonal Emotion

EmoLex As a baseline model for interpersonal
emotion identification, we rely on EmoLex (Mo-
hammad and Turney, 2013). EmoLex consists of
14,182 crowdsourced words associated with the 8
basic Plutchik emotions. Critically, these words ap-
pear in emotional contexts, but are not necessarily
emotion words themselves. EmoLex counts occur-
rences of words from its lexicon in an utterance,
and assigns a normalized score for each emotion
based on occurrence frequency. We consider an
emotion to be on, if it’s normalized score is ≥
0.001. While EmoLex has issues with regards to
its context insensitivity and the social biases built
into its lexicon (Zad et al., 2021), we include it as a
baseline to understand to what extent interpersonal
emotions can be deduced using a lexicon.

BERTweet We use the same BERTweet model
as earlier. We add a dense output layer on top of
the pretrained model for the purposes of finetuning,

with a sigmoid cross entropy loss function to sup-
port multi-label classification. The loss is weighted
for each of the 8 emotion labels with the ratio of
positive and negative examples to increase preci-
sion. If none of the 8 emotion labels are flipped
on, we consider that to be the ‘No Emotion’ la-
bel, i.e. there is no interpersonal emotion between
speaker and target in the tweet. We experiment
with a version of the model where the language
model parameters are frozen and only the labelling
head parameters are finetuned (BERTweet-ft).

5.3 Multi-Task Model
In § 4, we observed that the emotions anger and
disgust are overwhelmingly present in out-group
situations. Thus, we hypothesize that IGR informa-
tion would be useful towards interpersonal emotion
identification, and vice versa. To test this hypoth-
esis we train a multi-task model. The model is
trained to predict both the IGR label and emotion
using shared parameter finetuning.

We use the same BERTweet model as earlier. We
add two dense output layers on top of the pretrained
model, one for classifying IGR and another for
labelling interpersonal emotion. Both heads share
the same parameters below. These are trained with
same loss as earlier individual models. The model
alternates between finetuning for group relationship
and emotion over every training item.

5.4 Implementation
We use bertweet-base pretrained embeddings
from Huggingface’s models hub (Wolf et al., 2020).
All models are finetuned for a maximum of 20
epochs with early stopping. Early-stopping pa-
tience for models trained on each task separately
is 3. The patience for the multi-task model is set
at 5 as the multi-tasking setup led to slower con-
vergence. The learning rate for the classification
heads was set at 5e-3 while the learning rate for
the internal language model parameters was set at
2e-5. Dropout probabilities in classification heads
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Model F1 Model F1

Majority class 51.1 BERTweet 74.1 (3.3)
Sentiment-Rule 56.3 BERTweet-ft 66.5 (1.6)
NB-SVM 62.5 Multitask 77.3 (0.8)
Human 66.7

Table 4: Results on test set, with SD in parentheses, for
interpersonal group relationship prediction task.

In-group Out-group

thanks, love, count me thanks, bipartisan, restore
birthday, my colleague kind, resignation

Table 5: Top unigram and bigram features from NB-
SVM model for each class.

was set at 0.1. The best performing model before
early stopping on validation data was chosen in all
cases. We report F1 scores averaged over 3 random
restarts for all models, with the standard deviation
in parentheses next to the mean.

6 Results and Analysis

Interpersonal Group relationship In modeling
IGR, we find that Sentiment-Rule performs not
much better than chance (Table 4). This under-
scores one strength of our data, which contains a
sizable number of out-group tweets with positive in-
terpersonal emotion attached to them. The NB-SVM
model based on unigrams and bigrams performs
slightly better, and picks up on some obvious out-
group lexical cues like the lemma ‘bipartisan’, as
shown in Table 5. The BERTweet model performs
substantially better, performing over 10 points bet-
ter than humans. The model, with only the classifi-
cation head finetuned, leaving the language model
parameters intact(BERTweet-ft) performs about
10 points above chance — indicating that there
may be features advantageous towards this task in
the vanilla LM itself.

Interpersonal Emotion We find that the EmoLex
baseline, which relies purely on lexical cues, per-
forms dismally on our data, with poor performance
in both in-group and out-group settings(Table 6).
This is a strong indication that emotions are ex-
pressed more implicitly in this dataset. The
BERTweet model performs substantially better, in-
dicating that interpersonal emotions, even if im-
plicit, can be learned.

Multitask Model As Table 4 shows, Multi-
tasking the two tasks leads to a noticeable improve-

Emo BERTweet BERTweet Multi-
Lex -ft task

Admir. 37.5 70.3 (3.7) 40.7 (1.1) 68.9 (1.6)
Anger 26.6 71.3 (11.2) 23.0 (3.4) 69.3 (3.3)
Disgust 25.5 47.1 (21.6) 13.0 (4.1) 74.5 (7.1)
Interest 0 53.1 (3.3) 5.8 (2.4) 51.5 (8.5)
Joy 48.4 85.9 (1.9) 71.3 (1.4) 83.6 (1.3)
Sadness 4.3 11.1 (9.6) 0 33.6 (18.5)
No Emotion 22.2 49.1 (1.2) 43.4 (3.8) 71.6(1.2)

Table 6: F1 scores on test set, with SD in parentheses,
for interpersonal emotion labelling task.

Emotion BERTweet MultiTask

Admiration 77.9 (2.6) 72.8 (3.9)
Anger 71.7 (9.9) 69.4 (3.4)
Disgust 48.2 (22.4) 75.9 (6.5)*

Table 7: F1 scores on test set, SD in parentheses on
out-group tweets. * indicates statistical significance
(p<0.05)

ment in F1 for IGR prediction, with the differ-
ences being statistically significant using a boot-
strap test (p<0.05; Berg-Kirkpatrick et al., 2012);
the multi-task model is also more stable with much
lower variance across runs. These results suggest
that interpersonal emotion is useful towards IGR
prediction.

Table 6 shows that the performance of the mul-
titask model on predicting interpersonal emotions
is significantly better that the BERTweet model
(p<0.05) on emotions like disgust, which suggests
that IGR is useful towards the task of emotion iden-
tification. Furthermore, multitasking boosted per-
formance at predicting the no emotion label by 20%.
Table 7 compares the multitask model’s perfor-
mance against the BERTweet model in out-group
settings (where most of the gains were found) for 3
emotions — illustrating the boost in performance
afforded by joint modeling of IGR and emotion for
digust. The 3 emotions listed also showed signif-
icant differences in their distribution in in-group
and out-group settings.

Humans vs. Models Comparatively, we find that
model performance exceeds human performance
on the task of in-group versus out-group prediction,
albeit not on the same dataset. The model’s main
driver of performance is its high accuracy on posi-
tive intergroup emotion out-group tweets, such as
those expressing admiration or joy. Human anno-
tators consistently fall back on the heuristic that
sentences with positive affect probably imply that
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the speaker is talking about someone in their in-
group. But it is not the case in the political domain,
where overtures to bipartisanship serve as useful
signals. For instance, both (3-a) and (3-b) express
admiration towards the target Doe, where the first
is in-group while the second is out-group. The call
to civility is the only subtle linguistic cue that this
tweet may constitute out-group speech.

(3) a. Admire @OfficialCBC Chairman @Doe’s
moral voice on issues of racism and restora-
tive justice. He is a real leader for our nation
and Congress.

b. A decade has passed, but our friendship is
the same. Proud to work with @Doe to
#ReviveCivility. #tbt Read more about our
efforts here:

Future work needs to look into what information
the embeddings are using to make their classifica-
tion decision.

Model Errors While the multitasking setup im-
proves model performance on the task of predicting
IGR, and outperforms human labelers in our small
pilot, it still gets some easy examples wrong, such
as labelling (4) as in-group even though it expresses
some disgust at the target. The model also falls into
the same trap as human labelers — for instance as-
suming that a tweet expressing admiration must be
in-group (5).

(4) Trump selected @USER for HHS Secretary.
Price has undeniable history of cutting access
to healthcare to millions, especially women.

(5) Inspiring speech from @USER - we have a
duty to represent our country with respect &
dignity. #NationalDayofCivility.

To ensure that model performance on IGR predic-
tion is not limited by the size of our training data,
we experimented with training BERTweet models
on larger datasets. Since we have ‘found super-
vision’ for IGR labels, we only need to increase
training data size by sampling more tweets from rel-
evant accounts using the same procedure detailed
in § 3.1. We found that F1 score does not increase
with more training data.

Future work needs to look into linguistically mo-
tivated ways to improve model performance on
the IGR task. Since we have observed that the
multi-task setup improves model performance, per-
haps other multi-task setups, such as modeling the
overall affect towards the target expressed by the
speaker might help in modeling IGR better.

7 Related Work

Emotion and Stance Detection A wealth of
work has looked at corpora and models for the
detection of perceived emotion in social media
text (Mohammad, 2012; Wang et al., 2012; Mo-
hammad and Kiritchenko, 2015; Abdul-Mageed
and Ungar, 2017; Desai et al., 2020; Demszky et al.,
2020). However existing work doesn’t distinguish
between emotion of a sentence as a whole, ver-
sus interpersonal emotion towards a target. The
task closest to our study of interpersonal emo-
tions is stance detection: whether the author has
a favourable, neutral, or negative position towards
a proposition or target. Mohammad et al. (2016)
looked at stance in five target domains are given:
abortion, atheism, climate change, feminism and
Hillary Clinton. While stance detection focuses
on a collection of utterances with the same topic,
our interest is in modeling interpersonal emotion
towards a target individual which is more fine-
grained and can vary in each utterance.

Intergroup bias in Psychology The Linguistic
Intergroup Bias (LIB) theory (Maass et al., 1989;
Maass, 1999) states that there is a systematic asym-
metry in language production qualities of a speaker
as a function of the social category to which the ref-
erent of an utterance belongs. Through psycholin-
guistic experiments, LIB seeks to explain why
stereotypes are transmitted and persist in daily life:
in an interpersonal situation, socially desirable in-
group behaviors and undesirable out-group behav-
iors are encoded at a higher level of abstraction,
whereas socially undesirable in-group behaviors
and desirable in-group behaviors are encoded at a
lower level of abstraction. Work in psychology and
psycholinguistics reproduced LIB in various do-
mains such as political news reporting (Anolli et al.,
2006) and crime reporting (Gorham, 2006); as well
as work exploring how LIB can be used as an indi-
cator for a speaker’s prejudicial attitudes (Hippel
et al., 1997), or as a predictor for racism (Schnake
and Ruscher, 1998).

Contemporaneous studies on LIB, however, are
hand-coded and have so far tended to focus on
narrow concepts such as abstractness of the verb
and coarse notions of sentiment. Nonetheless, the
LIB hypothesis connects the two dimensions of
interpersonal dynamics studied here with a third
dimension directly related to semantic properties
of the utterance.
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8 Conclusion

Taking a cue from studies of bias in social science
and psychology, we situate bias in language use
through the lens of interpersonal relationships be-
tween the speaker and target of an utterance, and
the speaker’s interpersonal emotional state with
respect to the target. Over a corpus of tweets by
members of US Congress, we introduce two novel
tasks – interpersonal group relationship prediction
(IGR) and interpersonal emotion labelling, to bet-
ter understand variation in language as a function
of social relationship between speaker and target
in interpersonal utterances. We find certain inter-
personal emotions like anger and disgust are over-
represented in out-group situations, with the major-
ity of the negative emotions directed at leaders of
the two political parties. Through modeling stud-
ies, we find that transformer based models perform
better than humans at predicting IGR given an utter-
ance, raising the question as to what latent features
of language the model uses to make this decision.
Finally, we also find that joint modelling of the
two dimensions is beneficial to prediction of cer-
tain interpersonal emotions in out-group situations.
Future work needs to look into what information
is useful for predicting IGR and emotions – with
the Linguistic Intergroup Bias literature offering
a clue as to which higher level semantic features
vary systematically.

Ethics Statement

For our corpus of tweets on which we performed
annotations, we downloaded the tweets using the
official Twitter API. In accordance with the Twitter
Terms of Service, we release tweet IDs and user-
names, but not the tweet text itself. Our dataset was
built through crowdsourced annotations on Ama-
zon Mechanical Turk. To ensure annotators were
paid a fair wage of at least $10 an hour, we paid
annotators $0.50 per HIT. Each HIT involved an-
notating 3 tweets, which we estimate to take on
average 3 minutes to complete.

Limitations

Our results show the importance of having reliable
and accurate emotion prediction models, which is
an open problem in psychology and computer sci-
ence. Future work might look into identifying dif-
ferent fine-grained emotional constructs and study
their correlations with the underlying linguistic bi-

ases. Future work may also look into the gener-
alizability of the results presented here in other
domains of language use.

While we present the utterances as constituting
natural speech by one speaker (the congressperson
who sent the tweet), it is likely most congresspeo-
ple employ social media teams that help in crafting
the language of some of their tweets. However, we
believe for the sake of interpersonal group mem-
bership, the relationship between the speakers and
their targets would not be affected.

Finally, while we show that transformer based
models perform better at IGR prediction than hu-
mans, we note that the human performance was on
a small subset of test data. While it is possible that
these models discovered latent features that could
explain their better performance, the model could
also be using spurious features idiosyncratic to our
dataset, rather than true differences in in-group ver-
sus out-group speech.
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Abstract

In this paper, we are interested in developing
semantic parsers which understand natural lan-
guage questions embedded in a conversation
with a user and ground them to formal queries
over definitions in a general purpose knowl-
edge graph (KG) with very large vocabularies
(covering thousands of concept names and re-
lations, and millions of entities). To this end,
we develop a dataset where user questions are
annotated with SPARQL parses and system an-
swers correspond to execution results thereof.
We present two different semantic parsing ap-
proaches and highlight the challenges of the
task: dealing with large vocabularies, mod-
elling conversation context, predicting queries
with multiple entities, and generalising to new
questions at test time. We hope our dataset will
serve as useful testbed for the development of
conversational semantic parsers.1

1 Introduction

Conversational information seeking is the process
of acquiring information through conversations (Za-
mani et al., 2022). Recent years have seen an in-
creasing number of applications aiming to build
conversational interfaces based on information re-
trieval (Radlinski and Craswell, 2017) and user
recommendation (Jannach et al., 2021). The pop-
ularity of intelligent voice assistants such as Ama-
zon’s Alexa or Apple’s Siri has further stimulated
research on question answering over general pur-
pose knowledge graphs (e.g., Wikidata). Key to
question answering in this context is the ability
to ground natural language onto concepts, entities,
and relations in order to produce an executable
query (e.g., SPARQL) which will retrieve an answer
or denotation from the knowledge graph (KG).

This grounding process, known as semantic pars-
ing has been studied in the context of one or few
domain-specific databases (Yu et al., 2019a; Jain

1Our dataset and models are released at SPICE.

and Lapata, 2021; Suhr et al., 2018) or without
taking the conversational nature of the task into ac-
count (Reddy et al., 2014; Yih et al., 2016; Dubey
et al., 2019; Gu et al., 2021). However, due to the
complexities of the semantic parsing task, there
are no large scale datasets consisting of informa-
tion seeking conversations with executable queries
against a KG. Conversational semantic parsing
over KGs requires handling very large vocabular-
ies covering thousands of concept names and rela-
tions, and millions of entities rather than special-
ized terms consisting of hundreds of tables and
column names. Moreover, information seeking
conversations are by nature incremental involving
interrelated rather than isolated questions.

In this work, we create SPICE, a Semantic
ParsIng dataset for Conversational quEstion an-
swering over Wikidata. SPICE consists of user-
assistant interactions where natural language ques-
tions are paired with SPARQL parses and answers
provided by the system correspond to SPARQL exe-
cution results. We derive this dataset from CSQA
(Saha et al., 2018), an existing benchmark origi-
nally proposed for retrieval-based conversational
question answering (Lan et al., 2021). Although
CSQA does not have executable queries, it contains
a large number of natural language questions and
their corresponding answers, highlighting a range
of conversational phenomena such as coreference,
ellipsis, and topic change as well as different types
of questions exemplifying varying intents.

Table 1 shows a conversation from SPICE il-
lustrating how questions (utterances on the left)
are annotated with SPARQL queries (SP on the
right blue box). To create a large-scale dataset
(197k conversations), we develop SPARQL tem-
plates for different question intents; entity, relation,
and class symbols are initially under-specified and
subsequently filled automatically to generate full
SPARQL queries. CSQA questions have been previ-
ously associated with logical forms generated with
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Utterances Annotations Actions and Semantic Parses

T1 U: Which tournament did Detroit Tigers INTENT=Simple Question|Single Entity

participate in? ENT=[ Q650855 (Detroit Tigers)] ,

REL=[ P1923 (participating team)],

S: 1909 World Series TYP=[ Q500834 (tournament)],

TRIPLE=[ (Q500834,P1923,Q650855)],

GOLD =[ Q846847 (1909 World Series)]

T2 U: Which sports team was the champion INTENT=Simple Question|Single Entity|Indirect

of that tournament? ENT=[ Q846847 (1909 World Series)] ,

REL=[ P1346 (winner )],

S: Pittsburgh Pirates TYP=[ Q12973014 (sports team)],

TRIPLE=[ (Q846847,P1346,Q12973014)],

GOLD=[ Q7199360 (Pittsburgh Pirates)]

T3 U: Does that sports team belong to INTENT=Verification|2 entities, subject is indirect

Sacile? ENT=[ Q653772 (Pittsburgh Pirates), Q53190 (Sacile)],

REL=[ P17 (country )],

S: No TYP=[ Q15617994 (designation admin. territorial entity )],

TRIPLE=[ (Q653772,P17,Q53190)],

GOLD=[False]

AS: [filter_type, find_rev, Q650855,P1923,Q500834]

SP:

SELECT ?x WHERE {
?x wdt : P1923 wd : Q650855 .
?x wdt : P31 wd : Q500834 . }

AS: [filter_type, find, Q846847, P1346, Q12973014]

SP:

SELECT ?x WHERE {
wd : Q846847 wdt : P1346 ?x .
?x wdt : P31 wd : Q12973014 . }

AS: [is_in, Q53190, find, Q653772, P17]

SP:
ASK {wd : Q653772

wdt : P17 wd : Q53190 . }

Table 1: Example conversations from SPICE. The left column shows dialogue turns (T1–T3) with user (U)
and system (S) utterances. The middle column shows the annotations provided in CSQA. Blue boxes on
the right show the sequence of actions (AS) and corresponding SPARQL semantic parses (SP).

custom-made grammars (Guo et al., 2018; Kacu-
paj et al., 2021; Marion et al., 2021). As a result,
semantic parsers based on them operate with dif-
ferent sets of grammar rules and are not strictly
comparable, since the grammars may have differ-
ent coverage and semantics (e.g., terminal sym-
bols may encapsulate different degrees of execution
complexity). In SPICE, questions are represented
with SPARQL, a standard query language for re-
trieving and manipulating RDF data.2 This allows
us to compare parsers developed on the dataset on
an equal footing and facilitates further extensions
(e.g., new question intents), without the need to re-
define the grammar and its execution engine. In an
attempt to build semantic parsers which generalise
to new user questions, we further create different
data splits where new intents appear only at test
time (Finegan-Dollak et al., 2018).

For our semantic parsing task, we establish two
strong baseline models which tackle the large vo-
cabulary problem and the prediction of logical
forms in different ways. The first approach (Gu
et al., 2021) uses dynamic vocabularies derived
from KG subgraphs for each question and a sim-
ple sequence-to-sequence architecture to predict
complete SPARQL queries. The other approach
(Kacupaj et al., 2021) predicts SPARQL query tem-
plates and then fills in entity, relation, and type
slots by means of an entity and ontology classi-
fier. Our experiments reveal several shortcomings

2https://www.w3.org/TR/sparql11-query/

in both approaches, such as not being able to en-
code large sets of KG elements and generate the
same entity several times. Both approaches strug-
gle with ellipsis, they cannot resolve coreference
when the referent appears in the conversation con-
text beyond the previous turn, have reduced per-
formance on questions with multiple entities, and
struggle with unseen question intents. We discuss
these challenges and outline research directions for
conversational semantic parsing.

2 The SPICE Dataset

The CSQA dataset (Saha et al., 2018) aims to facil-
itate the development of QA systems that handle
complex and inter-related questions over a knowl-
edge graph. In contrast to simple factual ques-
tions that can be answered with a single KG triple
(i.e., {subject, relation, object}), complex questions
require manipulating sets of triples and reasoning
over these. In Table 1, a question like How many
sports teams participated in that tournament? re-
quires numerical reasoning and answering the ques-
tion in turn T2 relies on correctly interpreting T1.

Questions and answers in this dataset were
elicited from human experts playing user and sys-
tem roles as well as from crowd-workers. In a
second stage, templates derived from the human-
authored QA pairs were used to automatically aug-
ment the dataset. Human experts also suggested
complex reasoning questions and derived templates
thereof. Conversations were built as sequences of
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Nb. instances 197K
Nb. entities 12.8M
Nb. relations 2738
Nb. types 3064
Avg. turn length 9.5
Avg. entities per conversation 7.6
Avg. types per conversations 6.5
Avg. neighbourhood per turn 181.4 triples

Logical Reasoning, Quantitative Reasoning,
Comparative Reasoning, Quantitative Reason-
ing Count, Comparative Reasoning Count, Ver-
ification, Simple Question
Clarification, Coreference, Ellipsis

Table 2: SPICE statistics (top); general question
types (middle); linguistic phenomena (bottom).

QA pairs exploring paths in the KG. By construc-
tion, the QA pairs in a conversation are connected
through one or several entities in the KG. Questions
fall into two coarse categories, simple and reason-
ing-based, and the way QA pairs are organised in
a sequence introduces various conversational phe-
nomena which we summarize below.

Simple Questions are factoid questions, seeking
information related to an entity (e.g., Which tourna-
ment did Detroit Tigers participate in? in Table 1)
or set of entities (e.g., What are the countries of
those sports teams? ).

Reasoning Questions are complex questions
which require the application of numerical and log-
ical operators over sets of entities. For instance,
to answer the question How many sports teams
participated in that tournament? requires finding
the set of sports teams that participated in a given
tournament (e.g., 1909 World Series) and taking its
count. Questions in this category also involve Gen-
eral Entities (GE) such as tournament, in addition
to Named Entities (NE), and multiple entities (both
NE and GE) in a single question (e.g., Which tour-
naments have less number of participating sports
teams than 1909 World Series? ). Some question
types also combine multiple reasoning operators.

Conversations contain sequences of mixed-
initiative interactions where the system requests
clarification on ambiguous questions. Conversa-
tions also include discourse phenomena such as
coreference (e.g., Which sports team was the cham-
pion of that tournament? in Table 1) and ellipsis
(e.g., And what about 1910 World Series? as a

follow up question to How many sports teams par-
ticipated in that tournament? ).

There are 10 question types and 47 question sub-
types. In Table 2, we only list question types but
provide all subtypes in Table 9 in Appendix A.

2.1 Question Semantics Described by Actions
Saha et al. (2018) envisaged CSQA as a benchmark
for retrieval-based conversational question answer-
ing (Bordes et al., 2015; Dong et al., 2015; Jain,
2016; Lan et al., 2021). These methods embed nat-
ural language questions and KG triples into high
dimensional spaces and rely on neural reasoning
modules to match questions to candidate answers.
Hence, questions do not have associated logical
forms, only gold answers are available.

Our success in creating semantic parse annota-
tions is partly due to the fact that CSQA provides
useful KG information. Each interaction (i.e., user
and system turn) comes with annotations about
KG entities, types, and relation symbols as well as
some information about the triple patterns involved
in the question (illustrated in Table 1 with ENT, REL,
TYP, and TRIPLE fields). It also provides informa-
tion pertaining to question types and subtypes (see
INTENT in Table 1).

Taking advantage of these annotations, follow-
on work (Guo et al., 2018) defined a semantic
parsing task over CSQA, modeling the meaning
of questions as a sequence of actions. The set of
actions encompasses find (or find_rev when the entity
is in object position) to retrieve sets of entities in a
subject (object) position, as well as actions operat-
ing on sets of entities (e.g., filter_type). For instance,
the question in turn T1 in Table 1 would be parsed
to [filter_type, find_rev, Q650855, P1923, Q500834], mean-
ing “find the set of entities that are in relationship
participating team with Detroit Tigers and then
filter those that are of type tournament”. A breadth-
first search algorithm generates action-grammar
annotations for each question and a sequence of
grammar-actions is considered correct if upon exe-
cution it returns the gold answer. Subsequent work
(Shen et al., 2019; Kacupaj et al., 2021; Marion
et al., 2021) expanded this action-grammar greatly
improving its coverage (i.e., the number of success-
fully annotated questions).

2.2 From Actions to SPARQL Queries
In this work, we take a step further and map CSQA
natural language questions into vanilla SPARQL

queries. We first analysed how intent is expressed
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ATIS SParC CoSQL SPICE
Nb. Instances 1,658 4,298 3,007 197K
Avg. turn length 7.0 3.0 5.2 9.5
Domain Single Multi Multi Wikidata
Logical form SQL SQL SQL SPARQL

Database type Rel Rel Rel KG

Table 3: Conversational semantic parsing datasets
(Rel: relational database; KG: knowledge graph).

in question types and subtypes and then manually
defined SPARQL templates for each question sub-
type. A SPARQL template is a query with unspec-
ified triple patterns in the WHERE clause. For in-
stance, the template for the question in turn T1
is {SELECT ?x WHERE triple(?x, ENTITY, RELATION). ?x

wdt:P31 TYPE.}. We finally modified the tool pro-
vided in Kacupaj et al. (2021) to automatically in-
stantiate the SPARQL templates, providing annota-
tions for the entire dataset (e.g., by filling missing
slots and determining subject/object positions for
triple(·) elements as SELECT ?x WHERE {?x wdt:P1923

wd:Q650855. ?x wdt:P31 wd:Q500834.}).
We imported the Wikidata snapshot provided by

Saha et al. (2018) into a KG in a SPARQL server
(see Appendix B for more details) and assessed the
correctness of SPARQL queries by executing them
and comparing results to gold answers. For some
questions the annotation procedure did not produce
a SPARQL parse that recovered the gold answer. In
these rare cases, we redefined the answer if it did
not affect the conversation flow or truncated the
conversation up to that point.

Table 2 shows various statistics for SPICE
while Table 3 compares it to related conversational
datasets such as ATIS (Suhr et al., 2018), SParC
(Yu et al., 2019b), and CoSQL (Yu et al., 2019a).
As can be seen, SPICE contains a sizeable number
of training instances, its conversations are longer,
and the semantic parsing task is real-scale.

3 The Semantic Parsing Task

We consider the semantic parsing task over a
sequence of dialogue turns d = (d1,d2, · · · ,d|d|),
where turn dt corresponds to a user-system in-
teraction with user question xt and system an-
swer at . Each turn has a conversation context ct

made of interactions di such that i< t. Given
interaction dt with context ct and user question
xt = (xt1,xt2, · · · ,xt|xt |), our goal is to predict a
SPARQL query yt = (yt1,yt2, · · · ,yt|yt |) that repre-

sents the intent of xt and, upon execution over
knowledge-graph K , yields denotation at . yt is
a sequence over a target vocabulary V = V f ∪VK
where V f is fixed and contains SPARQL keywords
(e.g., SELECT) and special tokens (e.g., beginning
of sequence token, BOS), and VK contains all
knowledge-graph symbols (e.g., entity IDs such
as Q76 for Barack Obama).

We propose two approaches for this semantic
parsing task which establish strong baseline per-
formance and highlight various challenges. These
differ in the way they handle large KG vocabularies
and how they generate logical forms. Figure 1 pro-
vides a sketch of the two models discussed below.

3.1 Parsing with a Single Decoder and
Knowledge Subgraphs

Our first model is parameterised by an encoder-
decoder Transformer neural network (Vaswani
et al., 2017), and an adaptation of the semantic
parsing architecture proposed in Gu et al. (2021).

Dynamic Vocabulary Since the KG vocabu-
lary VK can be extremely large, we parse ques-
tion xt with a smaller vocabulary Vt ⊆ VK which
only contains KG symbols related to xt . Following
previous work (Gu et al., 2021; Marion et al., 2021),
we assume the symbols related to xt are those ap-
pearing in subgraph Gt of knowledge-graph K ,
Gt ⊆ K . Given question xt and its context ct ,
we identify KG entities Et = {et1,et2, · · · ,et|Et |}
which correspond to mentions in xt and ct . We then
obtain Gt by taking the one-hop neighbourhood for
each entity eti ∈ Et . In other words, we include all
KG triples (s, r, o) where the entity appears in sub-
ject (s = eti) or object position (o = eti). When eti

is a subject, we include triple (eti, r, τo) where τo is
the type of entity o; analogously, when eti appears
in an object position, we add (τs, r, eti). For en-
tities eti we include their types τeti . When eti is a
general entity (e.g., a type such as tournament) we
add relations from K that have instances of type eti

as their subject (object). The final vocabulary Vt

contains all entities in Et , all relations r and types
(τo, τs, and τeti) found in the set of triples in Gt .

Note that context ct is defined as a window over
the conversation so far. Following previous work
(Marion et al., 2021; Kacupaj et al., 2021), we
set the conversation context to the previous user-
system interaction ct = {dt−1}.
Encoder-Decoder Model Our encoder is a
BERT (Devlin et al., 2019) model fine-tuned on

2510



(a) Encoder-decoder model with dynamic vocabularies. (b) Semantic parser based on Lasagne multi-task model.

Figure 1: Two modeling approaches to conversational semantic parsing.

our semantic parsing task. The decoder is a ran-
domly initialised Transformer network (Vaswani
et al., 2017). To account for the difference in initial-
isation between the encoder and decoder networks,
we follow the training scheme proposed in Liu and
Lapata (2019). We provide details in Appendix C.

The input to our semantic parser is a tuple
(xt ,ct ,Gt) consisting of natural language ques-
tion xt , its context ct , and subgraph Gt which we
adapt to BERT’s input format as follows (Gu et al.,
2021). We concatenate the sequence of natural
language questions and answers appearing in ct

and xt , using the special token [CTX] as a delimiter
and prepend the [CLS] token in the beginning of the
sequence. Special token [SEP] denotes the end of se-
quence followed by the linearised KG subgraph Gt .
The linearisation procedure goes over entities in Gt ,
enumerating their types and relations. Importantly,
we denote entities by their label rather than their
KG identifiers. The order of entities in Gt is ran-
dom. Figure 1(a) shows an example of the input to
our BERT-based encoder.

More formally, the encoder takes token se-
quences x′t = [CLS]x′ttext

[SEP]x′tgraph
[SEP] as in-

put where x′ttext
is the natural language subse-

quence and x′tgraph
= (gt

1, · · · ,gt
|Gt |) is the sequence

of knowledge-graph symbols from the linearised
graph Gt . Note that these knowledge-graph sym-
bols constitute the target dynamic vocabulary Vt

and |Gt | represents the number of KG symbols
which is equal to the size of the target vocab-
ulary |Vt |. The encoder maps input sequences
x′t into sequences of continuous representations
zt = (zt1, ...,zt|xt |), and the decoder then generates
the target SPARQL parse yt = (yt1, ...,yt|yt |) token-
by-token autoregressively, hence modelling the

conditional probability: p(yt1, ...,yt|yt | |x′t).
The linearised graph Gt can exceed BERT’s max-

imum number of input positions (which is 512).
To avoid throwing away useful information, we
adopt a solution similar to Gu et al. (2021). For
question xt with Gt containing k entities, we create
k input sequences x′1t , · · · ,x′kt . These k sequences
share the natural language subsequence but have
different KG symbol subsequences. Given an in-
put sequence x′1t , · · · ,x′kt , we obtain contextualised
representations as z1

t , · · · ,zk
t = BERT(x′1t , · · · ,x′kt ).

The model further splits the sequence of con-
tinuous representations z j

t into textual represen-
tations z j

ttext and knowledge-graph symbols z j
tgraph

both of which are contextualised. We then average
representations zttext = AVG(z j

ttext) and feed them
as input to the decoder (see Figure1(a)). From
representations z j

tgraph , we derive the embeddings
for the elements in the target dynamic vocabu-
lary Vt . Recall that the decoder parses input
questions xt using target vocabulary V = V f ∪Vt

which consists of a set of fixed (V f ) and dy-
namic (Vt) target tokens. The decoder then pre-
dicts the probability of each SPARQL token yti as
p(yti |yt<i ,x

′1
t , · · · ,x′kt ) = softmax(Wo hL

i ) where hL
i

is the decoder top layer hidden representation at
time step i. Wo ∈R|V f∪Vt | is the output embedding
matrix with Wo = [W f ; Wt ], where [; ] denotes ma-
trix concatenation, W f is the embedding matrix for
the fixed target vocabulary, and Wt is derived from
the encoder representations z j

tgraph .

3.2 Parsing with Multiple Decoders and an
Ontology Classifier

Our second model is an adaptation of the Lasagne
architecture proposed in Kacupaj et al. (2021).
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Lasagne generates logical forms following a multi-
stage approach where a backbone sketch is first
predicted and then fleshed out. Their sketch is a
sequence of actions from a custom grammar which
we modify to be a sketch of SPARQL queries.

SPARQL Template Prediction Lasagne em-
ploys an encoder-decoder model based on Trans-
formers (Vaswani et al., 2017) to convert a user
question xt in a conversation into a logical form
template. The input to the encoder is the conver-
sation context ct = {dt−1} and user question xt .
Utterances are separated via [SEP] tokens, while
the special context token [CTX] denotes the end of
sequence (see Figure 1b). The input sequence is
encoded via multi-head attention (Vaswani et al.,
2017) to output contextualized representations
which are then fed to the decoder to predict a se-
quence of actions (without grounding to KG ele-
ments) token-by-token. Instead, our decoder pre-
dicts SPARQL queries with place-holders for KG
symbols. For instance, for the WHERE clause of
turn T1 in Table 1, it predicts {ENTITY RELATION ?x.

?x wdt:P31 TYPE.} instead of {wd:Q5582479 wdt:P161 ?x.

?x wdt:P31 wd:Q502895.})

Entity Recognition and Linking An entity
recognition module detects entities in the input and
links them to the KG (Shen et al., 2019; Kacupaj
et al., 2021). Initially, entity spans are identified
using an LSTM which performs BIO sequence la-
belling.3 Entity spans are subsequently linked to
KG entities via an inverted index (created using
Elasticsearch4) which maps entity labels to entity
IDs. Once identified, the entities are further fil-
tered and reordered so that they match their order
of appearance in the SPARQL (see Figure 1(b)).

Predicting Types and Relations Finally, an on-
tology graph with types and relations appearing in
SPICE’s KG is constructed.5 The graph is encoded
with a Graph Attention Network (GAT; Velickovic
et al. 2018) and the prediction of type and relation
fillers for the SPARQL template is modeled as a
classification task over graph nodes, given the con-
versational context and the decoder hidden state.

Learning All modules outlined above are trained
in a multi-task manner, optimizing the weighted

3BIO labels for training are obtained by preforming string
matching between entity annotations and user utterances.

4https://www.elastic.co/
5This graph would be substantially bigger for a semantic

parsing system operating over the full Wikidata KG.

average of the following individual losses L =
λ1LF +λ2LG +λ3LR +λ4LO where LF is the loss
of the SPARQL template decoder, LG is the type
and relation prediction loss using the GAT network,
LR is the entity recognition loss, and LO the entity
reordering loss (and weights λ1:4 are learned during
training). We refer the interested reader to Kacupaj
et al. (2021) for mode details.

4 Results

We examine how the two models just described
fare on different question types and subtypes. We
report results on SPICE i.i.d train/valid/test splits
(containing 152,391/16,813/27,797 conversations,
respectively) but also create new splits that assess
out-of-distribution generalisation. In all cases, fol-
lowing previous work (Saha et al., 2018; Kacupaj
et al., 2021), we use execution-based automatic
metrics. Micro F1-score evaluates question parses
that return a set of entities, while Accuracy is used
for question parses that evaluate to True/False or
return a numerical value. In addition, we report
Exact Match (EM) against the gold SPARQL parse.

4.1 Performance per Question Type
Table 4 shows our results on the SPICE i.i.d
test split. BertSP variants differ in how they obtain
the set of KG entities Et (cf. Section 3.1) to build
the dynamic vocabulary. BertSPG has access to
oracle entities, types, and coreference annotations
which allows us to disassociate the complexity of
the SPARQL generation task from the problem of
grounding and disambiguating entities to KG sym-
bols. Variants BertSPS and BertSPA do not have
access to oracle annotations. BertSPS grounds men-
tions to KG entities with a simple algorithm based
on string matching (Marion et al., 2021); while
BertSPA relies on AllenNLP’s Named Entity Rec-
ognizer (NER) and the Elasticsearch inverted index
for Named Entity Linking (NEL). Both have to
identify coreferring entities using the conversation
context ct . Both BertSPS and BertSPA use string
matching for type linking (i.e., grounding general
entities to KG types).

Note that it is not straightforward to perform ora-
cle analysis for LasagneSP without compromising
the model structure which predicts entities, their
types, and relations in multiple stages.

Exact Match Performance We observe that ex-
ecution based metrics (F1-score and Accuracy) are
generally higher than EM. This is because in some
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BertSPG BertSPS BertSPA LasagneSP
Question Type F1 EM F1 EM F1 EM F1 EM
Clarification 84.89 82.53 80.21 77.69 83.91 76.58 86.29 73.41
Logical Reasoning (All) 90.61 82.90 85.55 66.89 22.74 28.61 88.80 57.41
Quantitative Reasoning (All) 94.42 88.55 82.95 66.40 76.20 59.01 94.90 91.47
Comparative Reasoning (All) 96.23 87.39 90.44 73.80 69.56 39.37 94.20 85.05
Simple Question (Coreferenced) 88.96 86.53 83.19 69.87 76.51 58.83 84.73 60.90
Simple Question (Direct) 91.81 91.59 87.13 80.69 71.43 58.71 87.21 66.88
Simple Question (Ellipsis) 79.51 89.71 72.50 71.67 58.14 50.90 74.35 61.53

AC EM AC EM AC EM AC EM
Verification (Boolean) 90.10 77.24 79.72 62.62 37.16 24.90 34.89 26.72
Quantitative Reasoning (Count) 87.91 84.97 76.88 73.20 50.86 48.44 60.51 56.15
Comparative Reasoning (Count) 90.05 85.99 73.18 66.79 43.48 40.67 89.09 83.69
Overall 81.50 85.74 81.18 70.96 59.00 48.60 79.50 66.32

Table 4: Accuracy (AC), and exact match (EM) on SPICE i.i.d test split. BertSPG has access to oracle
entities, types, and coreference annotations. Best EM predictions are shown in bold.

cases the SPARQL parse may be incorrect and still
yield some results. For instance, a parse requiring
the UNION of two graph patterns may yield a par-
tially correct answer by only including one graph
pattern; similarly, a parse can evaluate to False and
agree with the gold answer just because it included
a wrong relation symbol.

The Importance of Entity Grounding Not sur-
prisingly, the model with access to oracle informa-
tion (variant BertSPG) obtains the best performance.
Results improve not only for questions with enti-
ties referring to previous context but also indirectly
for other types of questions. Since entities are cor-
rectly grounded in previous conversation turns ct ,
the model operates with more accurate graphs Gt

and richer dynamic vocabularies Vt .
Both BertSPS and BertSPA perform coreference

resolution using limited conversation context and
thus performance decreases. These models also
have to ground named (Detroit Tigers) and gen-
eral (tournament) entity mentions to KG symbols.
BertSPS which relies on string matching performs
overall better than BertSPA which struggles with
compound named entities such as President of the
Czech Republic) and disambiguation during NEL
(e.g., Saint Barbara the painting versus the Saint).

Model Comparison BertSPS and LasagneSP are
similar in the way they handle NER/NEL with a
task-specific approach, but differ in their concep-
tualization of the semantic parsing task (encoder-
decoder vs. multi-tasking). LasagneSP outper-
forms BertSPS in Comparative, Quantitative, and

Comparative-Count questions. These encompass
many question subtypes with general entities which
are very common in both training and testing.
LasagneSP has access to all types and relations en-
coded with the graph network. In contrast, BertSPS
relies on types which in the first place need to be
present in the entity neighbourhood subgraph and
then be preserved after truncating the input to fit
the model’s maximum sequence length. An advan-
tage of BertSPS over LasagneSP, is that it allows
for easier adaptation to new types and relations by
relying on dynamic vocabularies, while LasagneSP
would need to be retrained to accommodate them.

In Simple questions, where each question in-
volves fewer but more diverse types, BertSPS pre-
dicts more accurate types (thanks to the input text
and KG symbol contextualisation) and thus per-
forms better. LasagneSP does poorly on Verifica-
tion, Logical, and Quantitative-Count (which in-
cludes logical operators). This can be explained by
a modelling limitation, i.e., it is not able to point to
the same input entity more than once.

Errors in Predicted SPARQLs Manual inspec-
tion of SPARQL predictions revealed several com-
mon system errors including: prediction of erro-
neous entities and relations, failure to enumerate
all required entities (for questions with multiple
entities), and mistakes in argument order (i.e., enti-
ties and variables are correct but placed in incorrect
subject/object positions). To a lesser extent, we
also observed SPARQL queries with incorrect in-
tent predictions and ill-formed syntax.
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Phenomena BertSPG BertSPS BertSPA LasagneSP
Coref=−1 81.40 70.65 49.39 43.65
Coref<−1 67.82 0 0 0
Ellipsis 75.93 54.33 26.39 46.54
Entities 83.37 65.40 41.64 66.52

Table 5: Exact match (EM) on SPICE i.i.d test set;
questions are grouped into linguistic phenomena.

4.2 Linguistic Analysis

Table 5 shows model performance across-different
question subtypes aggregated for specific phenom-
ena. These include Coreference, Ellipsis, and Mul-
tiple Entities (Entities). We distinguish between
cases where coreference can be resolved in the
previous turn (Coref=−1) and further back in the
conversation history (Coref<−1). In addition, some
question subtypes contain plural mentions, i.e., they
are linked to multiple entities which the semantic
parser must enumerate in order to build the correct
parse. Ellipsis can be often resolved within the
previous interaction (Coref=−1), but not within the
wider discourse context. Questions with multiple
entities bring further disambiguation challenges. In
Appendix A, we provide the list of question sub-
types for each phenomenon in Table 5.

As can be seen, the oracle BertSPG model which
has access to gold annotations is superior to vari-
ants which rely on automatic entity and type link-
ing. BertSPS is better than LasagneSP at handling
coreference within immediate context (i.e., ct =
{dt−1}). Due to the fact that LasagneSP predicts
entity positions in SPARQL, it is particularly bad at
resolving mentions to multiple entities in the previ-
ous context or even multiple mentions of the same
entity in the output parse (as is the case with Verifi-
cation questions). Perhaps unsurprisingly, neither
BertSPS nor LasagneSP can resolve mentions to
non-immediately preceding utterances. BertSPS
performs better than LasagneSP in questions with
ellipsis; we conjecture that the input context and
contextualisation of KG symbols help in ground-
ing elided relation mentions. Ellipsis and multiple
entities improve by a large margin with access to
gold annotations (see BertSPG in Table 5).

4.3 Generalisation

We further evaluate the models’ ability to gener-
alise by creating “query-based” splits (Finegan-
Dollak et al., 2018), i.e., splits with query pat-
terns seen only at test time. Our splits include:

Unseen Combinations BertSPS LasagneSP
(Train/valid/test) EM EM
COUNTLOGIC 0.94 0
UNIONMULTI 19.74 16.89
VERIFY3 0 0

Table 6: Exact match (EM) for BertSPS and
LasagneSP on SPICE non-i.i.d splits.

(a) question subtypes that involve a count op-
eration over a union operator (COUNTLOGIC;
individual operators are seen at training time
but not the combination thereof); this split has
153,562/14,262/29,177 instances for training/val-
idation/testing; (b) question subtypes that involve
a union operator over two graph patterns with dif-
ferent relations (UNIONMULTI; the union of two
graph patterns with the same relation is seen during
training); this split contains 157,331/14,426/25,244
instances; and (c) verification questions with three
entities involving 154,027/13,869/29,105 instances
(VERIFY3; questions with 2 entities only are seen
during training).

As shown in Table 6, both BertSPS and
LasagneSP perform poorly across different splits.
While in some cases the models grasp the
overall SPARQL structure for unseen questions
(e.g., Which watercourses are located in the neigh-
bourhood of Bremen or are the tributaries of Ob? in
UNIONMULTI), they ignore specific query details
and simply default to familiar patterns seen in the
training (e.g., Which people are the creators of The
Theory of Everything or Ten Minutes to Live? ). In
the UNIONMULTI split, the models produce an ap-
propriate SPARQL template but systematically copy
the same relation in both graph patterns. BertSPS
performs slightly better than LasagneSP; we hy-
pothesize that contextualised KG embeddings oc-
casionally help the model select different relations.
We observe a similar trend for COUNTLOGIC and
VERIFY3. Appendix D shows examples of unseen
questions, their SPARQLs, and common errors.

5 Related Work

Much previous work on semantic parsing focuses
on mapping stand-alone utterances to logical forms.
Relatively few datasets have been constructed for
conversational semantic-parsing (Suhr et al., 2018;
Dahl et al., 1994; Yu et al., 2019b,a) partly due to
the difficulty of eliciting annotations in an inter-
active context. As a result, existing benchmarks
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are either single-domain or small-scale (see the
comparison in Table 3). For instance, although
ATIS (Suhr et al., 2018) exemplifies several chal-
lenging long-range discourse phenomena (Jain and
Lapata, 2021), it is restricted to a single domain
with a simple database schema. SParC (Yu et al.,
2019b) and CoSQL (Yu et al., 2019a) present cross-
domain challenges in mapping natural language
queries onto SQL, but the conversation length is
fairly short and the databases relatively small-scale.

Large KGs, like Wikidata (Vrandečić, 2012), are
becoming an increasing valuable source of infor-
mation. Various question-answering datasets have
been recently released (Dubey et al. 2019; Talmor
and Berant 2018; Christmann et al. 2019, 2022,
inter alia), which are either not conversational or
contain sequences of dialogue turns but the ques-
tions are not annotated with executable queries like
SPARQL. The CSQA dataset introduced in Saha
et al. (2018) is conversational and covers a wide
range of linguistic phenomena (e.g., ellipsis, coref-
erence) but frames the QA task as an information
retrieval problem. Follow-on work (Marion et al.,
2021; Kacupaj et al., 2021; Shen et al., 2019) has
used hand-crafted grammars to automatically ob-
tain semantic annotations which are are not exe-
cutable with a real KG engine (e.g., Blazegraph),
and cumbersome to extend to new question intents.

6 Conclusion

In this work we introduce SPICE, a conversational
semantic parsing dataset over knowledge graphs.
Our dataset contains SPARQL annotations which
are executable on a real KG engine and requires
handling complex questions, type, relation, and en-
tity linking on a large scale. Moreover, it showcases
multiple linguistic phenomena such as coreference
and ellipsis. We establish two strong baselines for
the semantic parsing task and present detailed anal-
ysis stratifying performance by question type and
linguistic phenomena. We also study generalisa-
tion to unseen intents and create multiple dataset
splits with different query patterns. To move for-
ward conversational semantic parsing over large
scale KGs would need to improve entity linking,
modelling of conversation context, and generalisa-
tion capabilities. We hope our dataset will serve as
a useful testbed for the development of conversa-
tional semantic parsers.
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8 Limitations

Both models discussed in this work make simpli-
fying assumptions. BertSP variants need to trun-
cate the linearised graphs for computational cost
reasons. LasagneSP works with a smaller graph
ontology which can easily fit in memory. However,
this restricts the model to predicting seen types
or relations which is unrealistic. A real-world se-
mantic parser should ideally have access to the full
Wikidata. Our results show that both models do
not generalise to unseen question intents, which is
a known limitation of current neural sequence-to-
sequence architectures (Furrer et al., 2020; Finegan-
Dollak et al., 2018; Keysers et al., 2020; Kim and
Linzen, 2020; Li et al., 2021). Finally, our results
also suggest that there is scope for improvement in
handling previous context (including questions and
answers).
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A The SPICE Dataset: Question Types
and Subtypes

Table 9 provides the list of question types and sub-
types in SPICE. For each question subtype we
provide an example user question. For cases in-
volving ellipsis and coreference, we include the
conversation context (in grey colour).

Table 7 provides the list of question subtypes
grouped grouped according to linguistic phenom-
ena. Coreference (=−1 and <−1), Ellipsis, and Mul-
tiple Entities.

Coreference

More/Less | Mult. entity type (Coreference) # More/-
Less | Single entity type (Coreference) # Single Entity
(Coreference) # 2 entities, one direct and one indirect,
object is indirect # 2 entities, one direct and one indi-
rect, subject is indirect # 3 entities, 2 direct, 2(direct) are
query entities, subject is corefered # one entity, multiple
entities (as object) corefered # Count | Logical operators
(Coreference) # Count | Single entity type (Coreference)
# Count over More/Less | Mult. entity type (Coreference)
# Count over More/Less | Single entity type (Corefer-
ence)

Ellipsis

Difference | Single Relation (Ellipsis) # Intersection | Sin-
gle Relation (Ellipsis) # Union | Single Relation (Ellipsis)
# More/Less | Mult. entity type (Ellipsis) # More/Less |
Single entity type (Ellipsis) # object parent is changed,
subject and predicate remain same # Incomplete count-
based ques # Count over More/Less | Mult. entity type
(Ellipsis) # Count over More/Less | Single entity type
(Ellipsis)

Multiple Entities

Difference | Multiple Relation # Intersection | Multiple
Relation # Union | Multiple Relation # Atleast/ Atmost/
Approx. the same/Equal | Mult. entity type # Min/Max
| Mult. entity type # More/Less | Mult. entity type #
More/Less | Mult. entity type (Ellipsis) # More/Less |
Mult. entity type (Coreference) # Mult. Entity (Simple
Question Direct and Coreference) # one entity, multiple
entities (as object) coreferred # Count over Atleast/ At-
most/ Approx. the same / Equal | Mult. entity type #
Count | Mult. entity type # Count over More/Less | Mult.
entity type # Count over More/Less | Mult. entity type
(Ellipsis) # Count over More/Less | Mult. entity type
(Coreference)

Table 7: Question subtypes grouped according to
linguistic phenomena.

Table 8 provides the list of unseen question sub-
types for each of the non-i.i.d splits.

B Creating a Knowledge Graph from the
CSQA Data

Deploying a full copy of Wikidata locally as a stan-
dalone service requires huge resources in addition
to cluster dependent tweaking to obtain fast query

COUNTLOGIC

Count | Logical operators # Count | Logical operators
(Coreference)

UNIONMULTI

Union | Multiple Relation
VERIFY3

3 entities, 2 direct, 2(direct) are query entities, subject is
indirect # 3 entities, all direct, 2 are query entities

Table 8: Unseen question subtypes in SPICE non-
i.i.d splits.

processing and high-performance.6 To enable eas-
ier deployment and fast access for research pur-
poses we created a smaller graph from the CSQA
data files. We mapped the contents of these files7

onto triples which we subsequently converted to
ttl format8 with full URI to allow loading them
to the KG query engine. We also filled missing
information where possible, for example, missing
relations such as “instance of” was filled with re-
lation P31 and added data type information when
this was omitted from the original files.

We used Blazegraph9 to deploy the local server,
which uses only CPU-based resources and has ac-
cess to 150G of RAM. Further details along with
the script to host the server will be released upon
acceptance.

C BertSP Model Configuration

Our model is implemented using pytorch (Paszke
et al., 2019). For all experiments, we used the
ADAM optimizer (Kingma and Ba, 2015) with
20,000 BERT warmup steps and 10,000 steps for
decoder warm up. We use separate optimizers for
the BERT encoder and decoder. BERT was fine-
tuned during training with the initial learning rate
set to 0.00002. A learning rate of 0.001 was set
for the rest of model parameters. Our model was
trained for 100,000 steps; we used 4 GPUs with
12GB of memory. We performed model selection
on the validation set. We report results with the
best performing model which had 6 decoder layers.

D Examples on Generalisation Splits

Table 10 shows examples from the generalisation
splits: similar question subtypes see during train-

6https://www.mediawiki.org/wiki/Wikidata_
Query_Service/User_Manual#Standalone_service

7Described at https://amritasaha1812.github.io/
CSQA/download_CQA/

8http://www.w3.org/TR/turtle/
9https://blazegraph.com/
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ing, unseen question subtype, and error on pre-
diction. The most common error across different
splits is that models use similar SPARQLs seen dur-
ing training but fail to adapt them to the details
(entities, types, relations, argument positions) in
the unseen question subtype. Other errors encom-
pass using the incorrect SPARQL query (incorrect
question intent) and incorrect entities and types.
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Table 9: Full list of question subtypes (intents) in SPICE. For each subt-type we show an example
question, whenever the question subtype involves a conversational phenomenon (coreference or ellipsis);
previous conversation interactions necessary for the interpretation of the question are shown in grey.

Question Subtype Example User Question
Clarification

Simple Question | Single Entity (Coreference)
U: Which political territory is that sporting event located in?
S: Did you mean Speed skating at the 2010 Winter Olympics – Men’s 500 metres?
U: Yes

Logical Reasoning (All)

Difference | Multiple Relation U: Which people were awarded with Order of Merit for Arts and Science and are not working as
singer?

Difference | Single Relation U: Which international organizations had Poland but not Bulgaria as their member?

Difference | Single Relation (Ellipsis)

U: Which city was Pierre Laffont born in?
S: Marseille
U: Which administrative territories are the sister cities of that city?
S: Shanghai, Odessa, Naples
U: But not Bologna

Intersection | Multiple Relation U: Which human settlements are situated close to Trave and have an adjacent border with Her-
zogtum Lauenburg?

Intersection | Single Relation U: Which works of art were filmed at Edinburgh and Berlin?

Intersection | Single Relation (Ellipsis)
U: Which language does José María Lassalle speak in?
S: Spanish
U: And also Sergio Gil

Union | Multiple Relation U: Which watercourses are located in the neighbourhood of Bremen or are the tributaries of Ob?
Union | Single Relation U: Which people are the creators of The Theory of Everything or Ten Minutes to Live?
Union | Single Relation (Ellipsis) U: What is the profession of Mai Yamada?

S: announcer
U: Or Kazimierz Rogoyski?

Quantitative Reasoning (All)
Min/Max | Single entity type U: Which musical instruments are played by min number of people?

Min/Max | Mult. entity type U: Which organizations are the main building contractors of max number of architectural struc-
tures and buildings?

Atleast/ Atmost/ Approx. the same/Equal | Single entity type U: Which musical instruments are played by exactly 5 people?

Atleast/ Atmost/ Approx. the same/Equal | Mult. entity type U: Which events are demonstrated in atleast 3 prints and genres of sculpture?

Comparative Reasoning (All)

More/Less | Mult. entity type U: Which landforms are known for containing lesser number of chemical compounds or minerals
naturally than Stetind pegmatite?

More/Less | Mult. entity type (Ellipsis) U: Which landforms are known for containing lesser number of chemical compounds or minerals
naturally than Stetind pegmatite?
S: Euboea, Izalco, Mount Nyiragongo
U: And also tell me about Tuften quarry?

More/Less | Mult. entity type (Coreference) U: Which administrative territory is that person a civilian of?
S: Spain
U: Which administrative territories are the countries of origin of lesser number of television
programs or works of art than that administrative territory?

More/Less | Single entity type U: Which television programs have been dubbed by more number of people than Puss in Boots:
The Three Diablos?

More/Less | Single entity type (Ellipsis) U: Which television programs have been dubbed by more number of people than Puss in Boots:
The Three Diablos?
S: House, K-On!, K-On!!
U: And also tell me about Chip ’n Dale Rescue Rangers?

More/Less | Single entity type (Coreference) U: Which languages are max number of literary works composed in?
S: English
U: Which languages are the mother tongues of less number of people than that language?

Simple Question (Direct)
Simple Question U: Which type of sport did Amel Tuka participate in?
Single Entity U: What is the capital of Sweden?

Mult. Entity
U: Who were the writers of On being and essence, De vegetabilis et plantis libri septem and
Historia de regibus Gothorum, Vandalorum et Suevorum?

Simple Question (Ellipsis)
only subject is changed, parent and relation remains same U: Which organizations are the sponsors of Janice Anderson?

S: Montrail, Patagonia, Inc.
U: And also tell me about Manikala Rai?

object parent is changed, subject and relation remain same U: Which watercourses are situated nearby Munich?
S: Eisbach, Würm, Isar
U: And which river?

Simple Question (Coreference)
Mult. Entity U: Which releases have Motown as their record label?

S: What’s Going On, Got to Be There, Can’t Slow Down
U: Which genre do those releases belong to?

Single Entity (Coreference) U: Which narrative location is The Penalty set in?
S: San Francisco
U: Which color is associated with that film genre?

Verification (Boolean) (All)
2 entities, both direct U: Is Zugspitze located in Germany?
2 entities, one direct and one corefered, object is corefered U: Which university was Eden Stiles educated at?

Continued on next page
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Table 9 – Continued from previous page
Question Type/Subtype Example User Question

S: University of Michigan
U: And what about C. V. Raman?
S: University of Madras
U: Was Ravindra Wijegunaratne educated at that university?

2 entities, one direct and one corefered, subject is corefered U: Which German business organization was Gustav Peichl a member of?
S: Academy of Arts, Berlin
U: What was designed by that person?
S: Millennium Tower
U: Does that tower block belong to Austria?

3 entities, 2 direct, 2(direct) are query entities, subject is corefered U: Which administrative territory was Gary Collier born at?
S: Fort Worth
U: Is that administrative territory a sister city of Adamsville, New Brunswick and Yuen Long
Kau Hui?

3 entities, all direct, 2 are query entities U: Is Aix-en-Provence partner town of Baton Rouge and Hemmatabad, Alborz?
one entity, multiple entities (as object) coreferred U: Which armed conflicts are Battle of the Argeş or Battle of the Yellow Sea a part of?

S: Romania during World War I, Russo-Japanese War
U: Did those armed conflicts fight in Rui Natsukawa?

Quantitative Reasoning (Count) (All)
Incomplete count-based ques U: How many people influenced Chris Marker?

S: 1
U: And also tell me about Ada Yonath?
S: 1
U: And what about Mikhail Bakunin?

Count over Atleast/ Atmost/ Approx. the same/Equal|Mult. entity type U: How many cities are the terminus locations of atleast 5 thoroughfares and roads?
Count over Atleast/ Atmost/ Approx. the same/Equal|Single entity type U: How many musical instruments are played by exactly 2 people?
Count | Logical operators U: How many bodies of water or watercourses are situated nearby Lübeck?
Count | Logical operators (Coreference) U: Which administrative territory is the native country of Carolina Goic Boroevic?

S: Chile
U: Who is the head of the government of that administrative territory?
S: Michelle Bachelet
U: What is the capital of that administrative territory?
S: Santiago
U: How many capitals or cities are sister towns of that city?

Count | Mult. entity type U: How many people starred in Django Kill or Shatterday?
Count | Single entity type U: How many people starred in Captain America: Civil War?
Count | Single entity type (Coreference) U: Which armed conflict did Lionel of Antwerp, 1st Duke of Clarence take part in?

S: Hundred Years’ War
U: How many people did that armed conflict engage in?

Comparative Reasoning (Count) (All)

Count over More/Less | Mult. entity type U: How many administrative territories have adopted lesser number of holidays and people as
patron saint than Santo Stefano al Mare?

Count over More/Less | Mult. entity type (Ellipsis) U: How many administrative territories have adopted lesser number of holidays and people as
patron saint than Santo Stefano al Mare?
S: 296
U: And what about San Donato Milanese?

Count over More/Less | Mult. entity type (Coreference) U: Which administrative territories are Luigi Einaudi the head of state of and have UTC+01:00
as their time zone?
S: Italy
U: How many administrative territories are the origins of greater number of literary works or
releases than that administrative territory?

Count over More/Less | Single entity type U: How many legislatures represent lesser number of states than East Bengal Legislative Assem-
bly?

Count over More/Less | Single entity type (Ellipsis) U: How many legislatures represent lesser number of states than East Bengal Legislative Assem-
bly?
U: 207
U: And how about Estates of Curaçao?

Count over More/Less | Single entity type (Coreference) U: Which french administrative division was Philippe Esnault born in?
S: Alençon
U: Which occupation has that person as his/her ’s career?
S: historian
U: Which administrative territory is the native country of that person?
S: France
U: How many administrative territories inspired less number of fictional locations than that ad-
ministrative territory?

2521



COUNTLOGIC
S

E
E

N

Union | Single Relation

Which people are the creators of The Theory of

Everything or Ten Minutes to Live?

SELECT ?x WHERE {
{wd : Q15079318 wdt : P162 ?x . ?x wdt : P31 wd : Q502895 . }
UNION
{wd : Q7699260 wdt : P162 ?x . ?x wdt : P31 wd : Q502895 . } }

Count | Single entity type

How many people starred in Captain America:

Civil War?

SELECT (COUNT( * ) AS ?count ) WHERE {
wd : Q18407657 wdt : P161 ?x . ?x wdt : P31 wd : Q502895 . }

U
N

S
E

E
N Count | Logical operators

How many national association football teams

or national sports teams represent Slovenia?

SELECT (COUNT ( DISTINCT ?x ) AS ?count ) WHERE {
{? x wdt : P1532 wd : Q215 . ?x wdt : P31 wd : Q6979593 . }
UNION
{? x wdt : P1532 wd : Q215 . ?x wdt : P31 wd : Q1194951 . } }

P
R

E
D

SELECT (COUNT( DISTINCT ?x ) AS ?count ) WHERE {
{? x wdt : P1532 wd : Q215 . ?x wdt : P31 wd : Q6979593 . }
UNION
{? x wdt : P1532 wd : Q215 . ?x wdt : P31 wd : Q6979593 . } }

UNIONMULTI

S
E

E
N

Union | Single Relation

Which people are the creators of The Theory of

Everything or Ten Minutes to Live?

SELECT ?x WHERE {
?x wdt : P915 wd : Q1247373 . ?x wdt : P31 wd : Q838948 . }

Count | Mult. entity type

How many people starred in Django Kill or Shat-

terday?

SELECT (COUNT( DISTINCT ?x ) AS ?count ) WHERE {
{wd : Q1261875 wdt : P161 ?x . ?x wdt : P31 wd : Q502895 . }
UNION
{wd : Q7490688 wdt : P161 ?x . ?x wdt : P31 wd : Q502895 . } }

U
N

S
E

E
N Union | Multiple Relation

Which administrative territories are the origin of

Les Chics Types or are the native countries of

Robert Kuraś?

SELECT ?x WHERE {
{wd : Q3231475 wdt : P495 ?x . ?x wdt : P31 wd : Q15617994 . }
UNION
{wd : Q9310937 wdt : P27 ?x . ?x wdt : P31 wd : Q15617994 . } }

P
R

E
D

SELECT ?x WHERE {
{wd : Q3231475 wdt : P495 ?x . ?x wdt : P31 wd : Q15617994 . }
UNION
{wd : Q9310937 wdt : P495 ?x . ?x wdt : P31 wd : Q15617994 . } }

VERIFIY3

S
E

E
N 2 entities, both direct

Is Zugspitze located in Germany?
ASK {wd : Q3375 wdt : P17 wd : Q183 . }

U
N

S
E

E
N 3 entities, all direct, 2 are query entities

Is Violet Oakley a civilian of United States of

America and Scheden?

ASK {wd :Q30 wdt : P27 wd : Q1226556 .
wd : Q557427 wdt : P27 wd : Q1226556 . }

P
R

E
D

ASK {wd:Q1226556 wdt:P27 wd:Q30 .
wd : Q557427 wdt : P27 wd : Q557427 . }

Table 10: Generalisation splits, unseen question subtypes, support question subtypes seen during training, and
example common errors on unseen predictions. 2522
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Abstract

Large pre-trained models have proved to be
remarkable zero- and (prompt-based) few-
shot learners in unimodal vision and language
tasks. We propose MAPL, a simple and
parameter-efficient method that reuses frozen
pre-trained unimodal models and leverages
their strong generalization capabilities in mul-
timodal vision-language (VL) settings. MAPL
learns a lightweight mapping between the rep-
resentation spaces of unimodal models using
aligned image-text data, and can generalize to
unseen VL tasks from just a few in-context
examples. The small number of trainable pa-
rameters makes MAPL effective at low-data
and in-domain learning. Moreover, MAPL’s
modularity enables easy extension to other pre-
trained models. Extensive experiments on sev-
eral visual question answering and image cap-
tioning benchmarks show that MAPL achieves
superior or competitive performance compared
to similar methods while training orders of
magnitude fewer parameters. MAPL can be
trained in just a few hours using modest com-
putational resources and public datasets. We
release our code and pre-trained model weights
at https://github.com/oscmansan/mapl.

1 Introduction

Over the past few years, natural language process-
ing and computer vision have witnessed impressive
progress in learning models capable of transferring
to unseen tasks or benchmarks (Brown et al., 2020;
Zhang et al., 2022; Radford et al., 2021; Jia et al.,
2021). Recently referred to as foundation mod-
els (Bommasani et al., 2021), these can be adapted
to a wide range of unimodal vision and language
tasks without any additional training.

In this work, we study reusing such powerful
unimodal foundation models for multimodal vision-
language (VL) downstream tasks. In particular,
we propose to connect a vision encoder, such as

*denotes equal contribution.

CLIP (Radford et al., 2021), to an autoregressive
language model (LM), such as GPT (Radford et al.,
2018, 2019; Brown et al., 2020), with minimal
additional training on multimodal data. Our goal is
to obtain a single VL model that can leverage the
in-context learning abilities (Brown et al., 2020)
of the pre-trained LM to generalize to unseen VL
tasks from just a few examples.

One challenge in connecting vision encoders
with LMs is aligning the visual and textual rep-
resentation spaces. Recent works have approached
this by adapting the LM to visual representations,
either by fine-tuning the entire LM (Dai et al., 2022)
or training adapter layers (Eichenberg et al., 2021;
Alayrac et al., 2022). These systems are computa-
tionally expensive to train as they have a large num-
ber of learnable parameters (hundreds of millions to
a few billions) and use large-scale multimodal train-
ing data. On the other hand, Frozen (Tsimpoukelli
et al., 2021) keeps the LM frozen, thus learning
∼10× less parameters than the above methods.
However, it requires training a visual encoder from
scratch, which is also computationally expensive.

Differently, we aim to reuse large pre-trained
unimodal models while keeping them completely
frozen and free of adapter layers. We present
MAPL (Multimodal Adaptation of Pre-trained
vision and Language models), a simple and
parameter-efficient VL model capable of tackling
unseen VL tasks. MAPL learns a lightweight
mapping between the representation spaces of pre-
trained unimodal models. MAPL has orders of
magnitude fewer parameters than previous meth-
ods (including Frozen) and can be trained in just a
few hours. Moreover, MAPL’s modularity makes
it general-purpose and easily extensible to newer
and/or better pre-trained models. We evaluate
MAPL on various image captioning and visual
question answering (VQA) benchmarks and com-
pare with Frozen (Tsimpoukelli et al., 2021) in a
controlled setup. MAPL significantly outperforms
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Frozen and achieves competitive performance com-
pared to other methods (Eichenberg et al., 2021;
Dai et al., 2022) trained on comparably sized data.

We further investigate the parameter efficiency
of MAPL by training on only 1% of multimodal
data (thousands of examples); we call this setting
low-data learning. We also study in-domain learn-
ing: training on image-text pairs from the same
domain as the downstream task domains. We train
MAPL directly on 100% and 1% of in-domain
data for each downstream task, without first pre-
training on large-scale domain-agnostic data. Thus,
we train specialized versions of MAPL for each
downstream domain. Such low-data and in-domain
learning are particularly useful when it is difficult
to pre-train on large-scale domain-agnostic data.
We found MAPL to be more effective than Frozen
trained under the same settings.

To summarize, our contributions are: 1) we in-
troduce MAPL, a parameter-efficient method ca-
pable of tackling unseen VL tasks, which can be
trained using only modest computational resources
and public datasets; 2) we conduct extensive ex-
periments spanning various image captioning and
VQA benchmarks, demonstrating MAPL achieves
superior or competitive performance compared to
similar methods while training orders of magnitude
fewer parameters; and 3) we further investigate
the parameter-efficiency of MAPL in two settings:
low-data and in-domain. Our experiments show
that MAPL is more effective than the considered
methods in both settings.

2 Related Work

Fine-tuning based VL methods. A popular fam-
ily of VL methods are based on the pre-training +
fine-tuning paradigm. These methods are either
encoder-only (Lu et al., 2019; Tan and Bansal,
2019; Chen et al., 2019; Li et al., 2020; Zhang
et al., 2021) or encoder-decoder methods (Cho
et al., 2021; Wang et al., 2021; Jin et al., 2022;
Li et al., 2021) and use transformer-based archi-
tectures. These transformers are first pre-trained
on domain-agnostic image-text pairs (e.g., Con-
ceptual Captions (Sharma et al., 2018)) using self-
supervised objectives, and then fine-tuned for each
downstream task (e.g., VQA, image captioning).
More recent models that are designed specifically
for the task of image captioning use large pre-
trained LMs (e.g., GPT-2 (Radford et al., 2019))
and fine-tune these models with image-caption

pairs (Chen et al., 2021; Mokady et al., 2021; Luo
et al., 2022). While all these approaches yield
state-of-the-art performance for the tasks they are
fine-tuned on, the learned model weights are highly
specialized for a single task and cannot transfer
to new tasks with zero or few examples. Differ-
ently, MAPL reuses the same set of weights for all
downstream tasks without any additional training.

Few-shot learning based VL methods. Most
similar to MAPL are methods that tackle unseen
VL tasks in a zero/few-shot manner, by leveraging
the in-context learning abilities of large pre-trained
LMs (e.g., GPT-3 (Brown et al., 2020). These meth-
ods connect a vision encoder with a pre-trained LM
to tackle VL tasks. Some methods (Dai et al., 2022;
Hao et al., 2022) achieve this connection by fine-
tuning the entire LM on image-text data, while
others only train adapter layers inserted into the
LM (Eichenberg et al., 2021). The vision encoder is
pre-trained and kept frozen in both cases. Concur-
rent work Flamingo (Alayrac et al., 2022) pushes
this idea even further by scaling up the amount
of training data and the LM size. While inserting
adapter layers requires training fewer parameters
compared to fine-tuning the entire LM, the number
of trainable parameters is still >100M; in contrast,
MAPL only has 3.4M trainable parameters. Addi-
tionally, inserting adapter layers is not straightfor-
ward since it requires modifying the computational
graph of the LM; MAPL only adds an external
mapping network, which is easier to incorporate
on top of pre-trained models. On the other hand,
Frozen (Tsimpoukelli et al., 2021) keeps the pre-
trained LM frozen and instead trains a vision en-
coder from scratch. This approach does not scale
well with larger vision encoders (Sec. 4.5). MAPL
keeps both the vision encoder and the LM frozen
(thus further reducing the number of trainable pa-
rameters) and only learns a lightweight mapping
network to connect both frozen models. Similar to
MAPL, concurrent work LiMBeR (Merullo et al.,
2022) also proposes to connect a frozen vision en-
coder with a frozen LM but using a linear mapping,
which is not as parameter- and compute-efficient
as MAPL (Sec. 4.5).

Mapping networks. MAPL trains a mapping net-
work to align the visual and textual representations
of the visual encoder and the LM, respectively. The
architecture of our mapping network has some sim-
ilarities with that in ClipCap (Mokady et al., 2021)
and the Perceiver Resampler in Flamingo (Alayrac
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Figure 1: MAPL leverages a pre-trained vision encoder and a pre-trained LM, and learns a small mapping network
to convert visual features into token embeddings. During training, only the mapping network is updated, keeping
the vision encoder and the LM frozen (red arrows indicate gradient flow). At inference time, the system can take as
input an arbitrary sequence of interleaved images and text, and generates free-form text as output.

et al., 2022). They all share a core transformer stack
and a fixed number of learned constant embeddings.
However, MAPL’s mapping network is specifically
designed to be parameter-efficient while maintain-
ing expressivity (Sec. 3.1), containing only 3.4M
parameters – orders of magnitude fewer than Clip-
Cap’s (43M) and Flamingo’s (194M).

3 Method

MAPL is a vision-language (VL) multimodal
model capable of generating text from a combina-
tion of visual and textual inputs. Our model builds
on top of pre-trained vision-only and language-only
models and leverages their strong generalization ca-
pabilities (e.g., zero-shot transfer, in-context learn-
ing) to tackle unseen VL tasks. MAPL is agnostic
to the choice of these pre-trained unimodal models
as long as they show such capabilities (Sec. 4.5).
Concretely, MAPL maps the image representations
from a vision encoder’s output embedding space
to a LM’s token embedding space, so that the LM
can be conditioned both on visual and textual infor-
mation. To this end, we train a mapping network
with an image captioning objective (Sec. 3.1, 3.2),
while keeping the weights of the vision encoder
and the LM frozen. Once the mapping network is
trained, MAPL can be prompted with a few exam-
ples of unseen VL tasks and predict the response
via text generation (Sec. 3.3). The overall model
architecture is depicted in Figure 1.

3.1 Architecture

Pre-trained vision encoder. The vision encoder
extracts a compact representation from an image.

We use a CLIP (Radford et al., 2021) pre-trained
vision encoder, which is trained on web-scale data
and has shown strong zero-shot transfer capabil-
ities to unseen image domains. In particular, we
use CLIP’s ViT-L/14 backbone (Dosovitskiy et al.,
2020) since we empirically found it yields the
best downstream VL performance among all vari-
ants. We use the flattened grid of spatial features
(16× 16) before the final projection layer and the
representation corresponding to the [class] token,
resulting in a sequence of Li = 257 vectors of di-
mensionality Di = 1024 each. This sequence of
vectors is then fed to the mapping network.

Pre-trained autoregressive language model.
Given an input text, the language model (LM) pre-
dicts its most likely completion by generating free-
form text. For our LM, we use a pre-trained GPT-J
model (Wang and Komatsuzaki, 2021) 1, a publicly-
released 6B-parameter autoregressive LM trained
on the Pile dataset (Gao et al., 2020). We chose this
LM due to its strong in-context learning abilities,
similar to that of GPT-3 (Brown et al., 2020) (which
is not publicly available). The LM takes as input a
text string, which is first divided into a sequence of
discrete tokens by the LM’s tokenizer. Each token
is then individually transformed into a continuous
embedding (of size Do = 4096) by the LM’s em-
bedder. The sequence of token embeddings is fed
to the self-attention layers in the LM’s transformer
block (using causal attention), which outputs a se-
quence of categorical distributions over the token
vocabulary. Finally, a decoding mechanism gener-
ates free-form text from these distributions (greedy

1We also experiment with an OPT model, see Sec. 4.5.
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Figure 2: The mapping network takes a flattened grid
of Li visual features of dimension Di each from the
vision encoder and transforms it into a sequence of token
embeddings of length Lo and dimension Do, where Do

is the token embedding dimension of the LM. Note that
the parameters are shared across fully-connected (FC)
layers, on both sides of the encoder transformer.

decoding in our case).

Mapping network. The mapping network trans-
forms a sequence of visual features from the vision
encoder to a sequence of continuous embeddings
which can be consumed by the LM’s transformer.
We design our mapping network considering the
trade-off between expressivity (to learn a good map-
ping) and parameter count. Our architecture is
based on a transformer encoder with 4 layers and 8
heads each. This transformer could directly take a
sequence of projected visual features (from Di to
Do) and output a sequence of embeddings of size
Do. However, in order to keep a low parameter
count, we decouple the transformer hidden size Dh

from the visual feature size Di and the LM em-
bedding size Do by introducing a dimensionality
bottleneck (Figure 2). In particular, each visual
feature is first linearly projected from Di = 1024
to Dh = 256 using a set of fully-connected (FC)
layers. This sequence of projected features is then
fed to the transformer, and the output representa-
tions are linearly projected from Dh to Do = 4096
using another set of FC layers. To further reduce
the parameter count of our mapping network, we
share parameters across all FC layers in each set.

Yet another idea we use in our mapping network
is to decouple the output sequence length of the
transformer (Lo) from the input sequence length
(Li). We do this to obtain a much smaller Lo = 32
compared to Li = 257, in order to reduce the com-
putational complexity in the subsequent LM’s self-
attention layers, which in turn speeds up training

and inference time. To achieve this decoupling,
inspired by DETR (Carion et al., 2020), we con-
catenate a small and fixed number (Lo) of learned
constant embeddings with the input sequence of the
transformer and only use the output representations
corresponding to these constant embeddings (Fig-
ure 2). Note that these output representations are
conditioned on the input visual features via cross-
attention in the transformer. The resulting mapping
network architecture is shown in Figure 2. In total,
our mapping network contains only 3.4M parame-
ters. Since this is the only trainable component of
our model, MAPL has orders of magnitude fewer
total trainable parameters than existing methods
such as Frozen (40.3M) or Flamingo (10.2B).

3.2 Training
Following previous works (Tsimpoukelli et al.,
2021; Eichenberg et al., 2021), we train our model
using a standard language modeling objective on
image captions with teacher forcing (Lamb et al.,
2016), i.e., we minimize the negative log-likelihood
of the reference captions under the LM conditioned
on the corresponding images. We only train the
mapping network (from scratch) while keeping the
vision encoder and the LM entirely frozen. This
preserves the pre-trained models’ capabilities while
making the system modular and parameter-efficient.
Even though the LM’s weights are kept frozen, gra-
dients are still back-propagated through its self-
attention layers to train the mapping network.

3.3 Zero- and Few-shot Evaluation
Once the mapping network is trained, MAPL can
tackle unseen VL tasks by prompting the LM with
a combination of visual and textual inputs. We
study zero-shot transfer to unseen image captioning
benchmarks and few-shot transfer (via in-context
learning) to the unseen task of visual question an-
swering (VQA). For image captioning, we simply
feed the mapped image embedding to the LM and
start generating a caption. For zero-shot VQA,
following Tsimpoukelli et al. (2021), we feed the
mapped image embedding followed by the text
“Please answer the question. Question:
{question} Answer:”2 and start generating the
answer. For n-shot VQA, we select n support
examples (image, question, answer) from the
training set at random, and prepend them to the

2Here {question} indicates a placeholder which gets re-
placed by the corresponding question in each example. Same
applies to {answer} in the few-shot setting.
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query; for each support example, we concate-
nate the mapped image embedding with the text
“Please answer the question. Question:
{question} Answer: {answer}”.

4 Experiments

4.1 Experimental settings
Evaluation benchmarks. We evaluate MAPL on
several VL benchmarks spanning VQA and image
captioning. Note that our model is never trained
for the task of VQA. For VQA, we evaluate on
the validation splits of VQAv2 (Goyal et al., 2017),
OK-VQA (Marino et al., 2019), TextVQA (Singh
et al., 2019) and VizWiz-VQA (Gurari et al.,
2018), and report performance using VQA accu-
racy (after the standard normalization (Antol et al.,
2015)). For image captioning, we evaluate on the
Karpathy-test split (Karpathy and Fei-Fei, 2015) of
COCO Captions (Chen et al., 2015), and the vali-
dation splits of Conceptual Captions (CC) (Sharma
et al., 2018)3, TextCaps (Sidorov et al., 2020) and
VizWiz-Captions (Gurari et al., 2018), and report
performance using the BLEU@4, ROUGE-L, ME-
TEOR, CIDEr and SPICE metrics.
Training settings. We consider two settings to
train our mapping network: domain-agnostic and
in-domain training (described below). For each of
these settings, we also study low-data learning by
training our model on randomly sampled subsets
of 1% training image-text pairs. Such low-data
learning is useful when it is difficult to train models
on large-scale data due to constraints on compute
resources, data availability, etc.

For domain-agnostic training, we use the CC
dataset, which is gathered by automatically scrap-
ing images and their corresponding alt-text fields
from web pages. Thus, this dataset is not as clean
as manually-curated datasets such as COCO Cap-
tions (e.g., the caption may not describe the image).
Nevertheless, due to its large size (3.3M) and great
diversity, it is the most commonly used dataset for
domain-agnostic pre-training of VL models. How-
ever, for our model – having orders of magnitude
less trainable parameters than other methods –, we
observed the negative effect of noise in CC to be
stronger than the positive effect of its large size
(Sec. 4.4). Therefore, we train MAPL on a fil-
tered version of CC (CC-clean) consisting of the
top 398K most similar image-text pairs ranked by

3Due to broken image URLs, we only managed to down-
load 13K out of 15K validation images.

CLIP’s image-text similarity score.4 For complete-
ness, we also report MAPL’s performance when
trained on the unfiltered CC dataset.

For in-domain training, we use image-caption
pairs that come from the same domain as the down-
stream task domains, i.e., they have similar image
and language distributions as those in the down-
stream datasets. For the image captioning down-
stream task, this amounts to the IID setting. The
in-domain image captioning and VQA dataset pairs
we consider are shown in Table 1. Each pair uses
the same set of images, and focuses on the same
set of VL skills; for instance, scene understanding
(COCO Caps and VQAv2), reading and reasoning
about text in images (TextCaps and TextVQA), un-
derstanding images captured by visually-impaired
users (VizWiz-Caps and VizWiz-VQA), thus lead-
ing to similar image and language distributions
across image-captioning and VQA. We train MAPL
on both 100% and 1% of in-domain image-caption
data and evaluate on all downstream benchmarks
(including out-of-domain ones, e.g., VizWiz-VQA
when trained on COCO Caps). Such in-domain
training can be useful when it is difficult to first
train on large-scale domain-agnostic data and then
adapt to in-domain data by either fine-tuning or
few-shot prompting.

VQAv2 OK-VQA TextVQA VizWiz-VQA

COCO Caps ✓ ✓

TextCaps ✓

VizWiz-Caps ✓

Table 1: In-domain dataset pairs.

Training details. For Conceptual Captions,
TextCaps and VizWiz-Captions, we carve out a
minival split consisting of 6% of training exam-
ples and train on the remaining 94%; for COCO
Captions, we use the Karpathy-val split as mini-
val. We use the AdamW optimizer with β1 = 0.9,
β2 = 0.95, and a weight decay of 0.01. The learn-
ing rate is increased linearly from 0 to 3 × 10−4

(7 × 10−4 for OPT-based models) over the first
1500 steps (15 for 1% of data) and kept constant
for the rest of training. We use a batch size of 128
and we do early stopping based on the minival loss.
We do not add any special tokens at the beginning
of sentence, as GPT-J was not trained with <BOS>
tokens. In order to fit a 6B-parameter LM into
GPU memory, we use DeepSpeed ZeRO (Rajbhan-

4We selected a threshold on CLIP’s similarity score such
that the size of the filtered dataset is comparable to the size of
manually curated datasets such as COCO Captions.
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Trainable Training n-shot VQAv2 n-shot OK-VQA n-shot TextVQA n-shot VizWiz-VQA n-shot Overall
params examples 0 4 8 0 4 8 0 4 8 0 4 8 0 4 8

Existing methods using domain-agnostic training
Frozen 40.3M† 3.3M 29.50 38.20 - 5.90 12.60 - - - - - - - - - -
MAGMA CC12M 243M† 3.8M 36.90 45.40 - 13.90 23.40 - - - - 5.60 10.60 - - - -
VLKD CC3M 406M 3.3M 38.60 - - 10.50 - - - - - - - - - - -
LiMBeR-CLIP‡ 12.6M† 3.3M 33.33 40.34 - - - - - - - - - - - - -
Flamingo‡ 10.2B >2.1B - - - 50.60 57.40 57.50 35.00 36.50 37.30 - - - - - -

100% domain-agnostic training
MAPL-blind CC-clean 3.4M 374K 20.62 35.01 35.11 4.84 14.68 14.28 3.68 5.43 5.82 3.18 8.65 9.55 8.08 15.94 16.19
Frozen∗ CC-clean 40.3M 374K 25.98 37.80 38.52 5.51 18.86 19.91 5.11 6.15 6.30 4.33 11.28 16.68 10.23 18.52 20.35
MAPL CC-clean 3.4M 374K 33.54 45.13 45.21 13.84 24.25 23.93 8.26 8.88 8.77 11.72 18.46 19.52 16.84 24.18 24.36

1% domain-agnostic training
Frozen∗ CC-clean 40.3M 3.7K 26.22 36.69 37.41 5.50 18.76 20.51 5.71 7.19 7.53 3.83 11.71 16.66 10.31 18.58 20.53
MAPL CC-clean 3.4M 3.7K 30.80 37.38 37.95 8.77 18.18 19.15 6.40 7.07 7.74 5.68 9.26 10.58 12.91 17.97 18.85

100% in-domain training
PICa∗ 0 0 20.61 46.86 47.80 11.84 31.28 33.07 - - - - - - - - -
Frozen∗ COCO 40.3M 414K 32.09 38.90 39.42 9.81 20.72 21.83 7.54 6.82 6.74 5.87 12.07 17.35 13.82 19.63 21.33
Frozen∗ TextCaps 40.3M 103K 32.49 37.39 38.03 11.34 19.87 20.82 8.83 7.33 7.51 6.25 12.26 16.86 14.73 19.21 20.80
Frozen∗ VizWiz 40.3M 110K 26.93 37.38 37.91 5.85 19.12 20.64 6.38 7.44 7.47 5.57 13.06 18.06 11.18 19.25 21.02
MAPL COCO 3.4M 414K 43.51 48.75 48.44 18.27 31.13 31.63 10.99 11.10 11.08 14.05 17.72 19.18 21.70 27.17 27.58
MAPL TextCaps 3.4M 103K 38.83 43.34 43.43 16.33 25.07 25.92 22.27 19.53 19.75 12.31 16.69 18.18 22.43 26.15 26.82
MAPL VizWiz 3.4M 110K 32.80 42.94 43.20 11.70 24.91 25.73 9.27 10.36 10.23 10.42 20.63 23.10 16.05 24.71 25.56

1% in-domain training
Frozen∗ COCO 40.3M 4.1K 30.18 37.23 37.89 9.33 19.60 20.71 7.43 7.65 7.67 4.37 12.00 16.48 12.83 19.12 20.69
Frozen∗ TextCaps 40.3M 1.0K 32.09 36.72 37.25 10.75 18.85 19.51 8.17 7.57 7.28 5.39 11.79 16.20 14.10 18.73 20.06
Frozen∗ VizWiz 40.3M 1.1K 29.62 37.30 37.87 7.57 19.36 20.60 7.16 7.17 7.25 4.53 12.51 17.56 12.22 19.08 20.82
MAPL COCO 3.4M 4.1K 37.69 40.42 40.84 13.92 21.66 22.41 8.30 6.96 6.84 6.94 10.72 12.43 16.71 19.94 20.63
MAPL TextCaps 3.4M 1.0K 33.57 36.70 36.87 12.46 17.45 18.21 9.34 8.29 8.62 6.54 9.58 11.62 15.48 18.00 18.83
MAPL VizWiz 3.4M 1.1K 31.88 36.81 37.04 9.59 17.64 17.64 7.25 5.99 6.04 4.73 9.48 11.33 13.36 17.48 18.01

Table 2: Evaluation on few-shot VQA. For MAGMA CC12M and VLKD CC3M, we report their best results when
training only on domain-agnostic data (CC12M and CC3M, respectively). (†) indicates our informed estimation. (‡)
indicates concurrent work.

dari et al., 2020) stage 2 optimizations. Freezing
the LM’s weights also brings massive savings in
GPU memory during training, as fine-tuning with
an Adam-based optimizer would require at least
4× GPU memory to store gradients, average, and
squared average of the gradients. The whole system
was trained on 4 A100 (40GB) GPUs for about 4
hours (for the CC-clean dataset). Unless otherwise
stated, we repeat the experiments with two different
random seeds and report the average performance.

Existing methods and baselines. We report the
performance of several baselines and existing meth-
ods. First, to verify that the LM in MAPL is not
ignoring the visual input, inspired by Tsimpoukelli
et al. (2021), we train a blind version of MAPL
(MAPL-blind) where the input images are replaced
with zeros but the mapping network weights are
still trained (to serve as prompt-tuning for the LM).
Second, to estimate the upper-bound on how well
we can do in VQA by representing images with
text (rather than with continuous embeddings), we
evaluate PICa (Yang et al., 2021), which directly
prompts the LM with image captions, followed
by questions for VQA. We reimplement PICa
(denoted PICa∗) using MAPL’s LM (and evaluate
on VQAv2 and OK-VQA using ground-truth
COCO captions) for controlled comparison. Third,
we compare MAPL with Frozen (Tsimpoukelli
et al., 2021), as this is the most similar method to
ours that also uses a frozen LM. We reimplement

Frozen (denoted Frozen∗) using MAPL’s LM
for controlled comparison. Lastly, we report the
performance of other methods similar to MAPL:
MAGMA (Eichenberg et al., 2021), VLKD (Dai
et al., 2022), LiMBeR (Merullo et al., 2022),
ClipCap (Mokady et al., 2021) and the published
numbers from Frozen (Tsimpoukelli et al., 2021).5

Note that all these methods (unless otherwise
noted) are trained on domain-agnostic data, so we
only compare with MAPL trained on CC-clean.
For completeness, we also report results from
Flamingo (Alayrac et al., 2022), which has orders
of magnitude more learnable parameters than
MAPL and is trained on considerably more data.

4.2 Evaluation of domain-agnostic learning

We report few-shot VQA results in Table 2 and
image captioning results in Table 3. Subscripts in
the first column denote the training dataset. Over-
all accuracies denote average of per-benchmark
accuracies. First, we see that MAPL CC-clean sub-
stantially outperforms MAPL-blind CC-clean both
on VQA and image captioning, proving that the
visual inputs are not ignored by the LM in MAPL.
Second, we find that MAPL CC-clean outperforms
Frozen∗ CC-clean by a considerable margin on all VL
benchmarks (with overall accuracy improvements
of +6.61% 0-shot and +5.66% 4-shot on VQA tasks,

5We only add results which are reported on the same
dataset splits as in MAPL.
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Trainable Training CC COCO TextCaps VizWiz-Caps Overall
params examples B@4 CIDEr B@4 CIDEr B@4 CIDEr B@4 CIDEr B@4 CIDEr

Existing methods using domain-agnostic training
ClipCap CC3M 43M 3.3M - 71.82 - - - - - - - -
VLKD CC3M 406M 3.3M - - 18.20 61.10 - - - - - -

100% domain-agnostic training
MAPL-blind CC-clean 3.4M 374K 0.35 5.05 2.75 5.75 1.35 2.15 1.50 1.80 1.49 3.69
Frozen∗ CC-clean 40.3M 374K 2.45 22.60 5.25 13.90 2.65 4.60 2.05 2.65 3.10 10.94
MAPL CC-clean 3.4M 374K 6.75 79.75 12.30 54.30 5.80 22.95 4.95 20.95 7.45 44.49

1% domain-agnostic training
Frozen∗ CC-clean 40.3M 3.7K 0.75 6.55 3.05 5.25 1.70 1.65 1.50 1.40 1.75 3.71
MAPL CC-clean 3.4M 3.7K 1.75 19.65 5.80 17.85 2.70 5.40 2.15 4.85 3.10 11.94

100% in-domain training
Frozen∗ COCO 40.3M 414K 0.65 9.05 20.05 61.35 6.95 11.75 5.45 6.20 8.28 22.09
Frozen∗ TextCaps 40.3M 103K 0.20 3.55 4.05 6.70 8.85 16.95 4.40 5.25 4.38 8.11
Frozen∗ VizWiz 40.3M 110K 0.25 4.40 3.75 6.05 4.10 5.65 19.00 76.85 6.78 23.24
ClipCap COCO 43M 414K - - 33.53 113.08 - - - - - -
MAPL COCO 3.4M 414K 2.25 34.50 36.45 125.20 16.60 41.40 18.00 41.35 18.33 60.61
MAPL TextCaps 3.4M 103K 0.90 13.05 9.80 28.65 18.35 62.55 11.20 31.85 10.06 34.03
MAPL VizWiz 3.4M 110K 0.90 18.80 13.55 48.35 11.35 31.20 34.70 141.30 15.13 59.91

1% in-domain training
Frozen∗ COCO 40.3M 4.1K 0.25 3.60 6.20 12.80 2.80 3.15 2.85 2.30 3.03 5.46
Frozen∗ TextCaps 40.3M 1.0K 0.10 2.60 1.65 2.80 3.65 5.00 2.00 2.25 1.85 3.16
Frozen∗ VizWiz 40.3M 1.1K 0.20 3.40 2.90 3.20 3.35 3.45 12.70 40.55 4.79 12.65
MAPL COCO 3.4M 4.1K 0.80 12.10 19.65 65.90 7.00 12.85 6.20 9.60 8.41 25.11
MAPL TextCaps 3.4M 1.0K 0.30 3.90 4.10 8.05 8.35 16.90 5.00 7.25 4.44 9.03
MAPL VizWiz 3.4M 1.1K 0.20 3.90 2.95 4.80 3.45 5.05 18.40 71.10 6.25 21.21

Table 3: Evaluation on image captioning. For VLKD CC3M, we report their best results when training only on
domain-agnostic data (CC3M).

Training VQAv2 OK-VQA TextVQA VizWiz-VQA CC COCO TextCaps VizWiz-Caps Overall
examples 4-shot 4-shot 4-shot 4-shot CIDEr CIDEr CIDEr CIDEr 4-shot CIDEr

Frozen∗ CC-clean 0.4M 37.79 19.29 6.25 11.11 22.70 14.00 5.00 2.70 18.61 11.10
Frozen∗ CC-cleanish 1.0M 37.82 18.49 6.12 10.16 37.60 20.60 6.60 3.20 18.15 17.00
Frozen∗ CC 2.7M 37.81 18.33 5.56 9.97 57.60 22.20 8.00 4.20 17.92 23.00
MAPL CC-clean 0.4M 44.35 24.03 9.65 17.33 72.70 54.60 23.80 21.10 23.84 43.05
MAPL CC-cleanish 1.0M 46.63 25.99 8.48 19.65 88.30 54.10 22.30 19.80 25.19 46.13
MAPL CC 2.7M 43.26 20.96 5.20 19.31 101.10 44.10 16.70 15.90 22.18 44.45

Table 4: Impact of data quality and size. These experiments are run with one seed only.

+4.35 BLEU@4 and +33.55 CIDEr on image cap-
tioning tasks). Importantly, this is achieved while
training an order of magnitude fewer parameters
(3.4M vs 40.3M). Next, MAPL CC-clean is com-
petitive compared to existing methods (MAGMA,
VLKD, ClipCap) and concurrent work LiMBeR,
despite training one-two orders of magnitude fewer
parameters on significantly less multimodal data.
Lastly, MAPL CC-clean’s performance is still far
from the performance of Flamingo, which trains
orders of magnitude more parameters on orders of
magnitude more data. However, we believe MAPL
to be an effective method for scenarios with con-
strained computational resources. For MAPL’s
qualitative results, see App. 4.6.

Low-data learning. When trained on only 1%
domain-agnostic data, MAPL CC-clean outperforms
Frozen∗ CC-clean for all image captioning evalua-
tions (by +1.35 BLEU@4 and +8.23 CIDEr, over-
all) and all 0-shot VQA evaluations (by +2.60%
overall accuracy), while achieving competitive per-

formance on 4- and 8-shot VQA evaluations. In
summary, these results show the effectiveness of
our method in low-data settings, highlighting its
usefulness for applications where data is scarce.

4.3 Evaluation of in-domain learning

In Tables 2 and 3, we observe that both MAPL
and Frozen∗ benefit from directly training on in-
domain data, compared to few-shot transfer from
large-scale domain-agnostic pretraining. For in-
stance, MAPL COCO and Frozen∗ COCO respectively
outperform MAPL CC-clean and Frozen∗ CC-clean
on VQAv2, OK-VQA and COCO Captions when
trained on 100% of data. Interestingly, this per-
formance gap is larger for MAPL compared to
Frozen∗ by +2% 0-shot accuracy and +3.77% 4-
shot accuracy averaged across VQAv2 and OK-
VQA, and +9.35 BLEU@4 and +23.45 CIDEr
on COCO Captions. A similar trend can be ob-
served for TextCaps and TextVQA. Surprisingly,
for 0-shot VQA and image captioning, training
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Vision Language Mapping VQAv2 OK-VQA TextVQA VizWiz-VQA CC COCO TextCaps VizWiz-Caps Overall
encoder model network 0-shot 4-shot 0-shot 4-shot 0-shot 4-shot 0-shot 4-shot CIDEr CIDEr CIDEr CIDEr 0-shot 4-shot CIDEr

Frozen∗ NF-ResNet-50 GPT-J Transformer 27.98 36.66 5.88 18.44 4.56 7.87 3.67 10.32 21.79 14.87 5.42 3.03 10.52 18.32 11.28
Frozen∗ ViT-L/16 GPT-J Transformer 27.82 36.60 5.64 16.26 3.67 5.27 4.70 11.77 13.19 8.77 2.88 2.35 10.46 17.48 6.80
Frozen∗ ViT-L/14 GPT-J Transformer 24.45 36.03 4.14 16.27 3.91 5.33 3.27 10.09 13.89 8.27 2.66 2.50 8.94 16.93 6.83
MAPL CLIP-ViT-L/14 GPT-J Transformer 33.54 45.13 13.84 24.25 8.26 8.88 11.72 18.46 79.75 54.30 22.95 20.95 16.84 24.18 44.49
MAPL IN-NF-ResNet-50 GPT-J Transformer 28.12 40.86 10.86 21.66 6.15 7.01 6.40 14.22 39.64 32.99 12.41 9.55 12.88 20.94 23.65
MAPL IN-ViT-L/16 GPT-J Transformer 31.70 43.75 11.13 25.50 6.16 7.40 8.93 16.45 56.33 45.80 17.12 16.28 14.48 23.28 33.88
Frozen∗ NF-ResNet-50 OPT-6.7B Transformer 30.16 32.72 8.10 13.79 5.44 6.81 7.15 6.77 25.40 17.80 6.90 4.00 12.71 15.02 13.53
MAPL CLIP-ViT-L/14 OPT-6.7B Transformer 23.26 33.95 15.27 16.25 8.90 6.41 15.40 9.47 66.60 54.40 23.30 19.60 15.71 16.52 40.98
MAPL CLIP-ViT-L/14 GPT-J Linear 30.55 37.09 12.20 16.69 7.02 5.80 8.81 12.49 60.00 43.80 18.30 13.70 14.65 18.02 33.95
MAPL CLIP-ViT-L/14 GPT-J MLP 28.99 43.69 11.07 25.33 6.60 8.39 9.73 17.14 70.40 49.10 20.90 20.30 14.10 23.64 40.18

Table 5: Ablation studies. We assess the impact of the choice of vision encoder (top), LM (middle) and mapping
network architecture (bottom). All models are trained on 100% of CC-clean with a single seed. IN stands for
ImageNet pre-training.

on just 1% of in-domain data outperforms 100%
CC training for all benchmarks (except VizWiz-
VQA) and both models. These results demonstrate
the benefits of in-domain learning. When compar-
ing MAPL vs. Frozen∗, we observe that MAPL
outperforms Frozen∗ for all tasks and benchmarks
(except VizWiz-VQA) under both 100% and 1%
in-domain settings. In fact, MAPL trained on just
1% in-domain data outperforms Frozen∗ trained
on 100% in-domain data by +3.41% 0-shot accu-
racy and +1.14% 4-shot accuracy averaged across
VQAv2, OK-VQA and TextVQA. Thus, MAPL is
more effective than Frozen∗ at in-domain learning.

Contrary to the above trends, we observe that
MAPL VizWiz under 1% in-domain training per-
forms worse than MAPL COCO or MAPL TextCaps
when evaluated on VizWiz-VQA. We hypothesize
the visual embeddings extracted from CLIP’s vi-
sion encoder for VizWiz images are not as good
as those for COCO or TextCaps’ images because
the distribution of images in VizWiz (captured
by visually-impaired people) is rather different
from the distribution of images CLIP is trained
on (scraped from the web), whereas for COCO
and TextCaps this isn’t the case. When training
MAPL’s mapping network on only 1% of VizWiz
data, we believe the data is not large enough to com-
pensate for the OOD pretrained vision encoder, so
MAPL trained on COCO/TextCaps performs bet-
ter on VizWiz-VQA. For in-domain training with
100% of data and 4/8-shot VQA, the mapping net-
work has enough data to learn from and compen-
sate for the OOD phenomenon. On the other hand,
Frozen∗ does not suffer from this issue because its
vision encoder is trained from scratch, allowing it
to adapt to the image distribution.

Lastly, we observe that MAPL COCO outper-
forms ClipCap COCO by +2.92 BLEU@4 and
+12.12 CIDEr on COCO Captions. MAPL COCO
also outperforms PICa∗ (which represents images
with ground-truth COCO captions) on VQAv2 and
0-shot OK-VQA, and achieves competitive results

on few-shot OK-VQA; this demonstrates represent-
ing images with continuous embeddings is ben-
eficial over caption-based image representations.
Overall, we see that in-domain learning is benefi-
cial and MAPL is more effective at it than similar
methods.

4.4 Impact of data quality and size
To measure the impact of noise in the training data,
we additionally train MAPL and Frozen∗ on the
full CC dataset, consisting of 2.8M6 examples, as
well as on a clean-ish version consisting of the
1.0M most similar image-text pairs. In Table 4,
we observe Frozen∗ achieves similar performance
on few-shot VQA tasks when trained on noisy vs.
clean data; however, Frozen∗’s performance on im-
age captioning decreases when trained on cleaner
but smaller data. In contrast, MAPL generally ben-
efits from cleaner training data, with the exception
of evaluation on CC. We hypothesize both models
perform better on CC when trained on larger (yet
noisier) data because the CC validation set is IID
with the full (noisy) CC training set. In the case of
Frozen∗, as we move away from the IID setting, the
benefits from more data start diminishing (CC cap-
tioning > other captioning tasks > VQA tasks). For
MAPL, the benefit from reduced noise in training
data exceeds the degradation caused by a smaller
data size, thanks to the reduced number of train-
able parameters. These trends align with previous
observations that larger models are more robust to
noisy training data since they have enough capacity
to model both noise and the desired function (Rol-
nick et al., 2017), while smaller models are more
sample-efficient (Vapnik and Chervonenkis, 2015),
i.e. they need less (clean) data to train effectively.
Note that although MAPL’s overall performance is
higher when training on 1.0M than on 0.4M exam-
ples, we decided to train with 0.4M examples be-
cause training on ∼2.5× more data (1.0M instead
of 0.4M) required ∼5× more iterations (always

6This is not the full 3.3M CC due to broken URLs.
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early-stopping based on validation loss). So we
did not think the slight performance increase due
to more data was worth the ∼5× longer training
time, especially because we were operating under
a limited compute budget.

4.5 Ablation studies
In this section, we evaluate how the choice of vision
encoder, LM and mapping network architecture im-
pact MAPL’s performance, and compare it with
corresponding versions of Frozen∗ (where applica-
ble). Results are presented in Table 5. Please refer
to App. A.5 for more ablations.

First, to assess the impact of the choice of vision
encoder, we train additional versions of MAPL
replacing the CLIP pre-trained vision encoder (ViT-
L/14 – 303M parameters) with encoders pre-trained
on ImageNet: NF-ResNet-50 (23.5M) and ViT-
L/16 (303M), and compare their performance with
corresponding versions of Frozen∗. We observe
that: 1) MAPL outperforms Frozen∗ for each con-
figuration of vision encoder, suggesting that MAPL
is robust to the choice of vision encoder’s pre-
training data and architecture; and 2) Frozen∗

’s performance drops with bigger vision encoders
(likely due to more trainable parameters), whereas
MAPL improves due to the use of stronger pre-
trained encoders. Thus, training the vision en-
coder from scratch (Frozen∗) has limited applica-
tion, while MAPL’s performance scales alongside
the pre-trained vision encoder.

Next, to evaluate the impact of the choice of LM,
we train both MAPL and Frozen∗ replacing GPT-J
by OPT-6.7B (Zhang et al., 2022). We see that in
all settings except 0-shot VQAv2, MAPL outper-
forms Frozen∗. See App. A.2 for discussion on
0-shot VQAv2 results. This suggests that MAPL is
robust to the choice of LM. The above results also
highlight how MAPL’s modularity allows to easily
replace the pre-trained vision encoder or the LM.

Lastly, to assess the impact of the choice of map-
ping network architecture, we replace the proposed
transformer-based mapping network with two sim-
pler architectures – a linear layer and a 2-layer
MLP (see App. A.4 for details). We observe both
these versions generally underperform the original
setting (transformer-based), highlighting the effec-
tiveness of the proposed design. We also note that
in these simpler versions, the parameter count is
directly proportional to the vision encoder’s repre-
sentation size and LM’s embedding size, whereas
in MAPL we decouple this using a dimensionality

bottleneck (Sec. 3.1), making our mapping network
more parameter-efficient by design.

4.6 Qualitative results
Figure 3 shows some selected samples from the
web illustrating our interface at inference time us-
ing MAPL CC-clean. The first two columns show
successful results while the last column shows fail-
ure cases. For image captioning (top row), success
cases show MAPL can generate meaningful and
detailed textual descriptions of the scene. For zero-
shot VQA (bottom row), success cases indicate that
MAPL is able to parse the question and connect
visual information to encyclopedic knowledge con-
tained in the pre-trained LM. However, MAPL’s
visio-linguistic understanding is evidently still far
from being perfect. More qualitative results (both
success and failure cases) are provided in App. A.6.

What does this animal eat?

Squirrels eat nuts, seeds, 
berries, and insects.

a man watches the sea birds 
as they fly over the beach.

a rail crossing with a sign 
warning of trains.

What kind of leaf is this?

A maple leaf.

What type of cheese is on 
these vegetables?

broccoli.

a boy playing soccer in the 
field.

Figure 3: Qualitative samples from the web using
MAPL CC-clean. (Multimodal) input is in gray, and
MAPL’s output is in green (success) or red (failure).

5 Conclusion

We introduce MAPL, a simple and parameter-
efficient method to repurpose pre-trained and
frozen unimodal models for multimodal tasks. Our
experiments demonstrate that MAPL achieves su-
perior or competitive performance compared to
similar methods on several VL benchmarks while
training orders of magnitude fewer parameters. Im-
portantly, we also show that MAPL is effective in
the low-data and in-domain settings thanks to its
reduced number of trainable parameters. We leave
as future work exploring training on a weighted
mixture of image-text datasets, evaluating on more
downstream tasks such as NLVR2 (Suhr et al.,
2019) and Visual Dialog (Das et al., 2017), and
investigating the use of masked LMs (Schick and
Schütze, 2021; Chung et al., 2022) with MAPL.
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Limitations

MAPL achieves reasonable performance on VL
tasks, but it is still far from the performance of re-
cent methods leveraging large-scale data and com-
pute. On the other hand, MAPL is a preferable
alternative in scenarios with constrained computa-
tional resources.

We observed our mapping network is sensitive
to initialization, so different random seeds can
yield non-negligible variance in downstream per-
formance. We think this might be related to the
reduced number of trainable parameters. We tried
to reduce the effect of this variance by reporting av-
erage performance across different seeds. We also
observed MAPL struggles to leverage more shots
for in-context learning. We hypothesize this could
be caused by our model being trained on single
image-caption pairs – as opposed to the sequences
of multiple images and texts seen during few-shot
transfer, so a better pretext task might help (see
App. A.1 for further discussion).

MAPL builds on top of pre-trained vision-only
and language-only models, inheriting their capa-
bilities but also their limitations. An important
risk is that our model might inherit the existing
social, gender or racial biases of pre-trained mod-
els. However, our limited qualitative analysis (see
App. A.8) shows that providing visual information
significantly changes the prior answer distribution
of the LM. Therefore, how much of the underlying
bias is retained remains an empirical question.

Ethics Statement

Model recycling. MAPL reuses vision-only and
language-only foundation models. Hence, the ex-
pensive computational resources used to train these
models can be amortized to help reduce energy and
carbon costs.

Public datasets. MAPL is trained uniquely on
publicly available datasets, which facilitates repro-
ducibility and provides transparency on the origin
and the characteristics of the data the model has
seen.

Undesired biases. MAPL could be exposed to
undesired biases from different sources. The pre-
trained vision encoder might have been trained with
data where certain races or genders are underrepre-
sented, hence biasing our representation of images.
The pre-trained LM might also be biased towards
generating toxic or offensive language when fed

with certain prompts. Finally, the image-text data
used to align the representation spaces of such mod-
els was annotated by humans, so it might reflect a
biased view of the world.

Broader impact. This work shows how one
can easily adapt pre-trained vision encoders and
LMs for multimodal tasks. Given the parameter-
efficiency of our method, we believe it should be of
great interest to the sections of the community that
do not have access to large compute resources (e.g.,
small academic labs and independent researchers),
and for low-data applications. While MAPL can
be applied in many useful applications (e.g., aid-
ing visually-impaired people), it also makes it sim-
pler to create malicious or offensive multimodal
systems from existing unimodal models. Further
research efforts are needed on how to safely deploy
such systems so that their behavior always aligns
with ethical values.
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A Appendix

A.1 Leveraging more shots

In Table 2, we observe MAPL’s performance
rapidly plateaus as the number of few-shot exam-
ples increases beyond 4. We hypothesize this could
be related to the mapping network being trained
on single image-caption pairs, and/or the visual
embeddings still not being fully in-distribution
with the language embeddings. Intuitively, a
handful of examples may often help with task
location (Reynolds and McDonell, 2021); how-
ever, the more shots are added, the more out-of-
distribution the multimodal prompt becomes. This
issue could be mitigated with in-context example
selection (Yang et al., 2021) or better mixing of
visual and textual modalities.

A.2 0-shot VQAv2 results with OPT

In Table 5, we observe Frozen∗-OPT outperforms
MAPL-OPT on 0-shot VQAv2. Upon close inspec-
tion, we notice MAPL-OPT often generates longer
answers for yes/no questions, which receive a score
of 0 according to VQA accuracy and VQAv2 refer-
ence answers – this is a problem of the metric and
not the model itself (Agrawal et al., 2022). After
filtering all answers starting with "yes" or "no" to
leave only the short answer, MAPL-OPT achieves
a VQA accuracy of 40.14% while Frozen∗-OPT
only reaches 32.03%.

A.3 4-shot results with OPT

In Table 5, we also observe that few-shot VQA
performance is considerably lower for configura-
tions using OPT-6.7B as language model. This
is possibly due to the lack of a relative positional
encoding (Shaw et al., 2018) in OPT, which is re-
quired for the transformer to generalize to prompt
sequences where an image is not always in the first
absolute position, or which contain more than one
image (Tsimpoukelli et al., 2021).

A.4 Implementation details on simpler
mapping networks

In Sec. 4.5, we ablate the choice of mapping net-
work architecture and replace it by simpler archi-
tectures. Similarly to Eichenberg et al. (2021);
Merullo et al. (2022), the linear mapping is ap-
plied per-position on top of a flattened grid of vi-
sual features, and it projects from Di = 1024 to
Do = 4096 dimensions (4.2M parameters). The
output sequence length Lo is thus equal to Li =

257 (instead of 32) – as explained in Sec. 3.1, this
increases the computational complexity in the sub-
sequent LM, which in turn increases training and
inference time considerably. Similarly to Mokady
et al. (2021), the 2-layer MLP is applied on top
of a global vector of visual features. The MLP’s
hidden dimensionality Dh is equal to Di = 1024,
and the output dimensionality is Do = 32 ∗ 4096,
which we split into 32 vectors of 4096 dimensions
(135.3M parameters).

A.5 Additional ablation studies

Table 6 shows the results of our additional ablation
studies. Unless specified otherwise, we perform all
ablations on MAPL CC-clean trained with 100% of
the data. These experiments are run only once and
early stopping is based on the validation split of
Conceptual Captions.

Pre-trained vision encoder. We ablate the pre-
trained vision encoder used to compute image rep-
resentations. We report results in row (i) of Table 6.
We compare two CLIP (Radford et al., 2021) vari-
ants, our choice based on the ViT-L/14 backbone
and the ViT-B/32 backbone. Indeed, the ViT-L/14
based vision encoder has an average +20% advan-
tage over the ViT-B/32 variant. We hypothesize
this improvement is probably due to finer-grained
image patches and a bigger model size.

Global vs. grid visual features. Grid features –
as opposed to global features – preserve the spatial
information in images. This kind of fine-grained
information might be useful for complex VL tasks.
To measure the impact of grid features, we train a
version of MAPL where we use the global image
representation from CLIP’s multimodal embedding
space. Results are reported in row (ii) of Table 6.
We observe an average -10% drop in performance,
validating our choice of using grid over global vi-
sual features.

Mapping network architecture. We ablate the
architectural design of our mapping network in
rows (iii) and (v) of Table 6. First, we ablate the
size of our mapping network in terms of depth and
hidden size. We explore three options: Small (2 lay-
ers and hidden size of 128), Medium (4 layers and
hidden size of 256), and Large (8 layers and hidden
size of 512). We see that using a smaller mapping
network generally performs slightly worse than the
base model. On the other hand, using a larger map-
ping network improves only in image captioning
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Ablated Original Changed VQAv2 OK-VQA TextVQA VizWiz-VQA CC COCO TextCaps VizWiz-Caps Overall ∆
setting value value 4-shot 4-shot 4-shot 4-shot CIDEr CIDEr CIDEr CIDEr 4-shot CIDEr

MAPL 46.39 25.49 9.87 20.02 71.90 54.90 23.30 21.70 0 0
(i) Vision encoder CLIP-ViT-L/14 CLIP-ViT-B/32 43.48 24.43 7.85 15.97 59.20 47.00 19.00 15.70 -2.51 -7.73

(ii) Visual features Grid Global 43.75 22.90 8.81 18.20 66.70 49.70 18.40 19.90 -2.03 -4.28

(iii) Mapping
Medium

Small 44.83 26.37 9.68 17.78 68.30 55.50 21.30 20.80 -0.78 -1.48
network size Large 45.03 23.92 8.88 19.01 73.40 57.10 24.00 23.10 -1.23 +1.45

(iv) Output
32

16 44.18 25.16 9.01 18.15 72.80 56.20 22.50 21.80 -1.32 +0.37
seq. length 64 45.22 25.07 10.35 18.89 74.80 58.30 24.30 24.80 -0.56 +2.60

(v) Learned constant
Yes No 40.87 19.31 11.42 16.79 80.52 57.49 30.07 26.16 -3.35 +5.61

embeddings

(vi) Data quality Clean Noisy
42.80 22.59 6.06 17.33 93.80 42.10 15.60 15.70 -3.25 -1.15

Visual features Grid Global

Table 6: Ablation studies. "Overall ∆" refers to the difference (ablated model - base model), averaged across
datasets per task.

tasks, while increasing significantly the number of
trainable parameters (from 3.4M to 19.5M). We
also ablate the output sequence length Lo of our
mapping network. Similarly, reducing the output
sequence length to 16 yields slightly lower per-
formance overall, and increasing it to 64 only im-
proves in image captioning tasks. In the extreme,
we completely remove the learned constant embed-
dings and output the same sequence length coming
from the vision encoder, i.e., Lo = Li = 257. Fol-
lowing the trend, increasing the number of mapped
visual embeddings is beneficial for image caption-
ing but hurts VQA performance, while notably re-
ducing training and inference throughput.

Data quality & visual features. This ablation
setting aims to be the most similar to Frozen: train-
ing on the full (noisy) Conceptual Captions dataset
while using global visual features. Results are re-
ported in row (vi) of Table 6. The overall perfor-
mance is worse than that of our base model (-16%
on average), but still better than Frozen∗ CC on Ta-
ble 4 (+81% on average). This validates our choice
of using grid visual features while training on a
subset of cleaner data.

A.6 Additional qualitative results

Figures 4-15 show additional qualitative results of
MAPL CC-clean on random samples from different
image captioning and VQA datasets. For VQA,
in-context learning from 4 shots is performed.

A.7 Interpretability of visual embeddings

Using MAPL CC−clean, we extract mapped visual
embeddings (after the mapping network) for ∼30
images from the COCO Karpathy-test set, and com-
pute the nearest token embeddings (from the LM’s
vocabulary) using cosine similarity. We rarely
found the top-5 nearest tokens correspond to con-
cepts present in the image, suggesting these em-

beddings are not interpretable. We hypothesize
this is perhaps because they carry a combination
of task-inducing and image-specific information,
also pointed out by Mokady et al. (2021). We fur-
ther cluster the mapped visual embeddings with
K-means, and observe that each cluster often rep-
resents some visual concept (e.g., animals, food,
sports). This means the mapped visual embeddings
retain visual information from the vision encoder,
which we also verify with MAPL’s performance
on VL benchmarks.

A.8 Analysis of VQA answer distributions

In this section, we show the distribution of answers
for selected VQAv2 question types. We compare
MAPL with several baselines of our model to get
insights into how the model’s predictions change
when training on increasing multimodal data. For
the text-only baseline, we only provide the ques-
tion text to the LM. This is different from the pre-
viously introduced blind baseline (Sec. 4.1), where
a blacked-out image is also provided. In particular,
we compare the predicted answer distribution of
MAPL COCO evaluated on on zero- and few-shot
VQA with the aforementioned baselines and the
ground truth. Overall, we observe the predicted
answer distribution gets closer to the ground truth
answer distribution (Figure 21) as more informa-
tion from the image-question pair is provided to
the model. We notice a considerable shift in the an-
swer distribution from the text-only baseline (Fig-
ure 16) to the blind baseline, which demonstrates
the impact caused by the captions alone. More-
over, we see the predicted answer distribution of
MAPL zero-shot is closer to the ground truth an-
swer distribution than that of the blind baseline
(Figure 17), which indicates that MAPL is lever-
aging the additional information from the visual
input. For instance, we observe MAPL’s predicted
answer distribution for the "what color" question
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type (second column) looks more similar to the
ground truth distribution compared to the text-only
and blind baselines. Finally, when performing in-
context learning from four shots (Figure 19), we
see the answer distribution gets even closer to the
ground truth distribution. However, we do not ob-
serve much difference in answer distribution when
increasing the number of shots from four to eight
(Figure 20).
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Input

Ground truth
stadium coming alive on game 

day !.

and what 's the umbrella for 
? a woman braves deep flood 

water.

my little brother will 
probably have this cake for 

his birthday.
the hand of person --.

sunset from the stadium.
a woman holds an umbrella as 
she walks through the flooded 

streets.

a cake for a video game 
themed birthday party.

a superman logo with a fist 
and lightning bolt.

Completion

Figure 4: MAPL’s image captioning on Conceptual Captions.

Input

Ground truth
A couple of large long trains 

on a track.
A bird perched on top of a 

wooden power pole.

Parking meter that is 
expired, with damp street 

below

The meal consists of chopped 
chicken with cheese and 

brocolli.

a train passes a station with 
a woman and a child.

a crow perched on a power 
pole.

the vending machine is a 
relic of the past.

this is what i made for 
dinner tonight.

Completion

Figure 5: MAPL’s image captioning on COCO Captions.

Input

Ground truth An old book has a picture of 
a baby sat in a swing and an 
article of the same name next 

to it.

Tyler Hanover is displayed on 
a outfield scoreboard.

A English two pence coin is 
seen close up wedged into a 

piece of wood.

Imperial Oat oatmeal stout is 
shown having a yellow can 
with a horse drawing on it.

a child's swing from a 
magazine.

a sign outside the stadium 
with a picture of baseball 

player on it.
a penny on a tree. brewery's new beer, a golden 

ale, is named after a horse.

Completion

Figure 6: MAPL’s image captioning on TextCaps.

Input

Ground truth
I see two cans of select 

harvest on a table

A white paper has braille 
textured writing in a 

sentence.

a black colored laptop 
computer back with different 

description labels

A black monitor with white 
font lettering on top of it

product of the week - canned 
beans. the old braille on the sheet. the laptop has a sticker on 

the back.
a close up of a blurred image 

of the letters e and s.

Completion

Figure 7: MAPL’s image captioning on VizWiz Captions.
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Support examples Query

Input

Question: Is this 
duck on land? 
Answer: no.

Question: How tall 
is the grass? 

Answer: very tall.

Question: Is it 
night time? 
Answer: no.

Question: Where are 
the flowers? 

Answer: in vase.

Question: What 
drink is being 
served? Answer:

Ground truth

beer
beer
beer
soda
beer
Beer
tea
beer
beer
beer

beer.

Completion

Support examples Query

Input Ground truth

on clock
on clock
on clock
on clock

 perched on clock
on top of clock
top of clock
on clock

on top of clock
on top of clock

on the clock.

Completion

Support examples Query

Question: What are 
the wearing around 

their necks? 
Answer: 

credentials.

Question: Is there 
a ball in the air? 

Answer: yes

Question: How many 
red cars can you 
spot? Answer: 2.

Question: Are 
these people water 
skiing? Answer: 

no.

Question: Where 
are the birds? 

Answer:

Support examples Query Ground truth

Ground truth

yes
no
no
no
no
no
no
no
no
yes

Completion

Input

no.

Support examples Query

Question: What 
color is the 

persons sweater? 
Answer: black.

Question: Is the 
number of placemats 
the same as the 
number of chairs? 

Answer: no.

Question: Is there 
a tree behind the 
sign? Answer: yes.

Question: Has this 
area been blocked 
off? Answer: no.

Question: Is the 
flag at half mast? 

Answer:

Question: Do you 
think that cake is 
for the child or 

adult? Answer: child.

Question: What is on 
the man on the 

right's forearm? 
Answer: hair.

Support examples

Ground truth

toilet
in toilet
Toilet
toilet
toilet

in toilet
toilet
toilet
toilet
toilet

in the toilet.

Completion

Query

Input

Question: What is 
the bird looking 
at? Answer: 
camera.

Question: Why are 
there shadows? 
Answer: from 
lights.

Question: How many 
people are actively 
cooking or preparing 
food in the kitchen? 
Answer: 0.

Question: Is the 
street light as 
tall as the clock 
tower? Answer: no.

Question: Where is 
the cat? Answer:

Figure 8: MAPL’s 4-shot VQA on VQAv2, success cases.
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Support examples Query

Input Ground truth

patty cake
 food
food
food
food
food

origami
appetizers

food
dinner

noodles.

Completion
Question: What are 

the children 
making? Answer:

Question: Are 
these people on 
their way to 

school? Answer: 
no.

Question: Is there 
a person looking 
at the back? 
Answer: no.

Question: What 
color is the 
surfboard? 

Answer: blue.

Question: How 
many smaller 

boxes are in the 
larger box? 
Answer: 1.

Support examples Query

Question: Do you 
think that cake is 
for the child or 

adult? Answer: child.

Question: What is on 
the man on the 

right's forearm? 
Answer: hair.

Question: Is this 
indoors? Answer: 

no.

Question: Is the 
street busy? 
Answer: no.

Support examples

Ground truth

Afternoon
day

daytime
Day

afternoon
morning
daytime
evening
afternoon
 daytime

it's a sign.

Question: Which 
color is dominant? 
Answer: brown.

Question: Is this 
a waiting room? 
Answer: yes.

Question: What 
time of day is it? 

Answer

Completion

Query

Input

Support examples Query

Input

Question: How 
many parasails 
do you see? 
Answer: 4.

 Question: How 
many cats are in 
the picture? 
Answer: 2.

Question: How 
many books are in 
the background on 

the table? 
Answer: 11.

 Question: What 
type of pizza is 
this? Answer: 

cheese.

Question: Where 
should a person 
stand in order to 
be seen here? 

Answer:

Ground truth

 by sign
by sign

stop sign
in light

on corner
by stop sign
by stop sign
at stop sign

in light in front of sign
in front

in the middle of 
the road.

Completion

Support examples Query Ground truth

Ground truth

bread
bread
food
bread
bread
bread
rolls
bread
bread
banana

Completion

Input

Question: Is the 
man wearing a 

wetsuit? Answer: 
no.

Question: Is 
there a window 
in the kitchen? 
Answer: yes.

Question: Do 
they all play 
for the same 
team? Answer: 

yes.

Question: Is 
this a market? 
Answer: yes.

Question: What is 
in the bowl? 

Answer:
cheese, fruit, 

bread, butter, jam, 
yoghurt, milk.

Support examples Query

Figure 9: MAPL’s 4-shot VQA on VQAv2, failure cases.
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Question: Do you 
think that cake is 
for the child or 

adult? Answer: child.

Question: What is on 
the man on the 

right's forearm? 
Answer: hair.

Support examples

Ground truth

cat
cat
cat
cat

inhumane and noisy
inhumane and noisy
there is cat in it
there is cat in it

cat in bag
cat in bag

cat.

Completion

Query

Input

Question: What 
breed of dog is 
this? Answer: 

boxer.

Question: What type 
of knife is being 
used to cut this 

apple? Answer: flick 
knife.

Question: What 
powers the front 
most vehicle? 
Answer: feet.

Question: What is the 
green vegatable in 
the salad? Answer: 

green pepper.

Question: What issues 
would someone have 

bringing this suitcase 
on a plane? Answer:

Ground truth

picnic
picnic
 picnic
picnic

fall party
fall party
 lunch
lunch
party
 party

picnic.

Completion

Input

Support examples Query

Question: Horses 
typically eat what 
types of fruits? 
Answer: apple.

Question: What is a 
slang name for this 
type of motorcycle? 

Answer: crotch 
rocket.

Question: Who uses 
this mode of 

transportation? 
Answer: travel.

Question: What 
type of energy is 
moving the board? 
Answer: kinetic 

energy.

Question: What 
type of function 
is happening here? 

Answer:

Support examples Query Ground 
truth

Ground truth

llama
llama
llama
llama
horse
horse
goat
goat
alpaca
alpaca

Completion

Input

llama.

Support examples Query

Question: Namw what 
kind of wood is used 
to make this table 

shown in this 
picture? Answer: oak.

Question: Which 
brand of car is 
shown in this 

picture? Answer: 
chevrolet.

Question: What 
insturments could be 
used while the man is 

singing? Answer: 
guitar.

Question: What emotion 
are the people in the 
photo experiencing 
towards each other? 

Answer: love.

Question: What is 
the animal to the 

left?

Support examples Query

Input Ground truth

cardboard
cardboard
cardboard
cardboard
cardboard
cardboard
cardboard
cardboard
wooden
wooden

cardboard.

Completion

Support examples Query

Question: What is 
this toy made of? 

Answer:

Question: Which 
type of animal is 
shown? Answer: 

zebra.

Question: Who owns 
the horses? 

Answer: farmer.

Question: From what 
vegetable does the food 
come from in the top 
left of the picture? 

Answer: potato.

Question: Would you 
eat this for 

breakfast or for a 
snack? Answer: 
breakfast.

Figure 10: MAPL’s 4-shot VQA on OK-VQA, success cases.
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Support examples Query Ground truth

Ground truth

learn
learn
learn
learn
learn
learn
study
study
study
study

Completion

Input

working on a 
computer.

Support examples Query

Question: Namw what 
kind of wood is used to 
make this table shown 

in this picture? 
Answer: oak.

Question: Which 
brand of car is 
shown in this 

picture? Answer: 
chevrolet.

Question: What 
insturments could be 
used while the man is 

singing? Answer: 
guitar.

Question: What emotion 
are the people in the 
photo experiencing 
towards each other? 

Answer: love.

Question: What item 
does the male and 
female in the 

foreground have in 
common? Answer:

Question: Do you 
think that cake is 
for the child or 
adult? Answer: 

child.

Question: What is 
on the man on the 
right's forearm? 
Answer: hair.

Support examples

Ground truth

 macbook
macbook
 macbook
 macbook
dell
dell

 samsung
 samsung

 macbook air
macbook air

laptop.

Completion

Query

Input

Question: What 
emotion is this 
person feeling? 
Answer: anger.

Question: How does 
this table close? 
Answer: it fold 

up.

Question: Can this 
room be rented to 

hold meetings in or 
is it free? Answer: 

rented.

Question: What kind 
of relationship do 
these people have? 
Answer: co worker.

Name the laptop 
model shown in 
this picture?

Ground truth

clock
clock
clock
clock

 tell time
tell time
residential
residential
lighthouse
lighthouse

it is a sundial.

Completion

Input

Support examples Query

Question: What is 
the red part of 
this vehicle 

called? Answer: 
bumper.

Question: When a person 
wears a purse or bag in 
this way what is it 
called? Answer: 

crossbody.

Question: What 
type of bed is in 
the photo? Answer: 

canopy bed.

Question: What is 
the object that the 
dog is holding used 
for? Answer: brush.

Question: What is 
the purpode of the 
tower to the left? 

Answer:

Support examples Query

Input Ground truth

bill gate
bill gate
bill gate
bill gate

charles babbage
charles babbage

osborne
osborne

adam osborne
adam osborne

person.

Completion

Support examples Query

Question: Who 
invented these 
items? Answer:

Question: What 
country could 
these people be 

in? Answer: kenya.

 Question: What 
type of shirt is 
the man on the 
right wearing? 

Answer: collared.

Question: What breed 
of cat could this 

be? Answer: domestic 
shorthair.

Question: Where is 
the brim on this 
fellows hat? 

Answer: in back.

Figure 11: MAPL’s 4-shot VQA on OK-VQA, failure cases.
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Question: Do you 
think that cake is 
for the child or 
adult? Answer: 

child.

Question: What is 
on the man on the 
right's forearm? 
Answer: hair.

Support examples

Ground truth

ships
ships
ships
ships
ships
ships
ships
ships
ships
ships

ships.

Completion

Query

Input

Question: what 
brand of soda is in 

the bottles? 
Answer: pepsi and 

diet pepsi.

Question: what does 
the black sign say? 

Answer: und 
filmgesselschaft 
baden-wurttemberg.

Question: what 
symbol is used to 
show danger in the 
water? Answer: 

exclamation point.

Question: when was 
the photo taken? 
Answer: 2015.

Question: what is 
the sky filled 
with? Answer:

Support examples Query

Input Ground truth

stop
stop
stop
stop
stop
stop
stop
stop
stop
stop

stop.

CompletionQuestion: what 
number is the 

pitcher? Answer: 
30.

Question: where is 
2 km away? Answer: 
appletreewick.

Question: where is 
the ship from? 

Answer: duty free.

Question: what is 
the brand name? 
Answer: casarsa.

Question: what 
does the red sign 
mean? Answer:

Support examples Query

Input Ground truth

 old labour
working class
working-class
new labour
working

working-class
working class
unanswerable

working
lucky strike

the working 
class.

Completion

Support examples Query

Question: what class 
were the people who 
had resisted on this 

page? Answer:

Question: who 
brews this? 

Answer: the urkney 
brewery.

Question: what 
title is shown on 
screen? Answer: 
mac on intel.

Question: what is 
the player's 

number? Answer: 
23.

Question: what does 
the paper warn us 
of? Answer: meter 

broken.

Support examples Query Ground 
truth

Ground truth

yes
yes
yes
yes
Yes

le web
yes
yes
yes
yes

Completion

Input

yes.

Support examples Query

 Question: what is 
the first time frame 

listed? Answer: 
8:45.

Question: what's 
on the tv crew 
shirts? Answer: 

numbers.

Question: are they 
celebrating a 

mainstream gaming 
anniversary? Answer: 

yes.

Question: what's the 
likely name of this 

device? Answer: 
john's snow.

Question: was this 
picture sent? 

Answer:

Figure 12: MAPL’s 4-shot VQA on TextVQA, success cases.
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Question: Do you 
think that cake is 
for the child or 

adult? Answer: child.

Question: What is on 
the man on the 

right's forearm? 
Answer: hair.

Support examples

Ground truth

cave of a thousand tales
cave of a thousand tales
cave of a thousand tales
cave of a thousand tales
cave of a thousand tales
cave of a thousand tales
cave of a thousand tales
cave of a thousand tales
cave of a thousand tales
cave of a thousand tales

the book of 
tales.

Completion

Query

Input

Question: what is 
the plane's call 
sign? Answer: 

usaf.

Question: what is 
this suppose to do? 

Answer: keep 
recycling materials.

Question: who 
produced this 

product? Answer: 
pilot.

Question: what 
model of product 
is this? Answer: 

m1-100.

Question: what is 
the title? Answer:

Support examples Query

Input Ground truth

q
q
q
22
q
q
q
q
q
q

a mouse.

Completion
Question: what 
does the book 

title say? Answer: 
ex delicto.

Question: who is 
the author of the 

book? Answer: 
steven brust.

Question: what 
is the weight of 

this coin? 
Answer: 1/4oz.

Question: what 
does it say on the 

bottom row of 
text? Answer: et a 
classe unique.

Question: what is 
to the right of 
the tab key? 

Answer:

Support examples Query

Input Ground truth

unanswerable
3m

post-it
post it

3m
3m

post-it
3m

post-it
3m

person.

Completion

Support examples Query

Question: what 
company in on the 
bottom corner of 
the box? Answer:

Question: what is 
written on the 
white labels on 
these containers? 
Answer: mcub.

Question: what tab 
is highlighted 

above the desktop? 
Answer: console.

Question: what 
number is the man 

holding the 
jacket? Answer: 4.

Question: what 
hour does the 

black sport watch 
show? Answer: 12.

Support examples Query Ground truth

Ground truth

army medical museum
 5:30

army medical museum 
army medical museum
army medical museum
 surgeon general's 

office
 army medical museum
 army medical museum
 army medical museum
 army medical museum

Completion

Input

the first 
christmas.

Support examples Query

Question: what is the 
name of the state on 
the sign the airplane 
is carrying? Answer: 

iowa.

Question: what are 
the words in red? 
Answer: merry 
christmas!.

Question: what 
time is it? 

Answer: 18:53.

Question: what is the 
motto written on the 
jamestown awning ad? 
Answer: we've got you 

covered.

 Question: what is 
the title of the 
paper? Answer:

Figure 13: MAPL’s 4-shot VQA on TextVQA, failure cases.
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Support examples Query

Input Ground truth

white
 purple
purple
blue
purple
blue
purple
purple
blue
purple

purple.

Completion
Question: This is the 
display of a treadmill, 
can you tell me the 
distance in miles, 

please? Answer: 3.28.

Question: What's the 
name of this album and 
can you tell me the 
picture of the album 

please? Answer: picture 
smiling man in hat.

Question: Could you 
please tell me what 
is this? Thank you. 
Answer: red tipped 

cable.

Question: I need to 
know what kind of 
build this is. 

Answer: 
unanswerable.

Question: What 
color is this 
marker? Answer:

Support examples Query

Input Ground truth

ginger ale
canada dry ginger ale

ginger drink
ginger ale
gingerale
gingerale
gingerale

canada dry ginger
canada dry ginger ale

ginger ale

ginger ale.

Completion

Support examples Query

Question: What is 
in this can? Thank 

you. Answer:

Question: What 
does this mean? 
Answer: radio 

time.

Question: Are you 
able to tell if 
there is any mold 
on the bread? 
Answer: no.

Question: What is 
this? Answer: 

pizza.

 Question: Does 
this text say? 
Answer: braille.

Question: Do you 
think that cake is 
for the child or 

adult? Answer: child.

Question: What is on 
the man on the 

right's forearm? 
Answer: hair.

Support examples

Ground truth

glasses
glasses
glasses

eyeglasses
 pair glasses

glasses
 pair glasses

 glasses
eye glasses
pair glasses

glasses.

Completion

Query

Input

Question: What kind 
of cleaning product 
is this? Answer: rug 
doctor high traffic 

pre treatment.

Question: Do you 
see any number on 
the CD? Answer: 

no.

Question: What tv 
show is this? 

Answer: unable to 
see tv.

 Question: I'm trying 
to figure out what 

this phone is. 
Answer: unanswerable.

Question: What is 
this? Answer:

Support examples Query Ground truth

Ground truth

rug
 blanket
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unsuitable
mattress
 blinds
rug

unanswerable
placemat
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Input

a rug.

Support examples Query

Question: What is 
in this box? 
Answer: pasta 
meatballs.

Question: What 
color is my hair? 

Answer: 
unsuitable.

Question: What 
kind of juice is 
this? Answer: 
unanswerable.

Question: What is 
this? Answer: 
unanswerable.

 Question: Hey, 
what is this? 

Answer:

Figure 14: MAPL’s 4-shot VQA on VizWiz-VQA, success cases.
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Question: What is 
this? Answer: 
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Question: Can you 
tell what dinner 
this is? Answer: chicken and 

broccoli.

Support examples Query

Support examples Query

Question: What's the 
name of this album 
and can you tell me 
the picture of the 

album please? 
Answer: chad morgan.

 Question: Whats 
this? Answer: 
money from 
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Question: What 
is this? Answer: 

playstation 
controller.

Question: What 
is this? Answer: 

heineken.

Question: What 
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white
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a shirt.

Completion

Input Ground truth

Question: Do you 
think that cake is 
for the child or 
adult? Answer: 

child.

Question: What is 
on the man on the 
right's forearm? 
Answer: hair.

Question: What is 
this thing? 

Answer: plant.

Question: Can you 
please describe this 
card and then is it 
upside down? Answer: 
stained glass no.
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Ground truth

strawberry.
juice box
 juice
juice

 unanswerable
strawberry kiwi 

juice
juice box

fruitables juice
 unanswerable

 juice
strawberry kiwi

a strawberry.

Question: I am looking for 
a handheld radio, kind of 
like a walkie talkie. I 
have a big radio and a 
smaller radio. Answer: 

unanswerable.

Question: What 
brand is this? 

Thank you. Answer: 
unsuitable.

Question: What is 
this package? 

Answer:

Completion

Query

Input

Figure 15: MAPL’s 4-shot VQA on VizWiz-VQA, failure cases.

Figure 16: Predicted answer distributions for selected VQAv2 question types with the text-only baseline.
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Figure 17: Predicted answer distributions for selected VQAv2 question types with the blind baseline.

Figure 18: Predicted answer distributions for selected VQAv2 question types with MAPL 0-shot.

Figure 19: Predicted answer distributions for selected VQAv2 question types with MAPL 4-shot.

Figure 20: Predicted answer distributions for selected VQAv2 question types with MAPL 8-shot.

Figure 21: Ground truth answer distributions for selected VQAv2 question types.
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Abstract

Previous studies have introduced a weakly-
supervised paradigm for solving math word
problems requiring only the answer value an-
notation. While these methods search for cor-
rect value equation candidates as pseudo la-
bels, they search among a narrow sub-space
of the enormous equation space. To address
this problem, we propose a novel search algo-
rithm with combinatorial strategy ComSearch,
which can compress the search space by exclud-
ing mathematically equivalent equations. The
compression allows the searching algorithm to
enumerate all possible equations and obtain
high-quality data. We investigate the noise in
the pseudo labels that hold wrong mathematical
logic, which we refer to as the false-matching
problem, and propose a ranking model to de-
noise the pseudo labels. Our approach holds a
flexible framework to utilize two existing su-
pervised math word problem solvers to train
pseudo labels, and both achieve state-of-the-art
performance in the weak supervision task. 1

1 Introduction

Solving math word problems (MWPs) is the task of
extracting a mathematical solution from problems
written in natural language. Based on a sequence-
to-sequence (seq2seq) framework that takes in the
text descriptions of the MWPs and predicts the an-
swer equation (Wang et al., 2017), task-specialized
encoder and decoder architectures (Wang et al.,
2018b, 2019; Xie and Sun, 2019; Liu et al., 2019;
Guan et al., 2019; Zhang et al., 2020b,a; Shen
and Jin, 2020), data augmentation and normaliza-
tion (Wang et al., 2018a; Liu et al., 2020; Shen
et al., 2022b), and pretrained models (Tan et al.,
2021; Liang et al., 2021; Shen et al., 2021, 2022a)
have been conducted on full supervision setting
of the task. These settings require equation ex-

1Our code and data is available at https://github.com/
yiyunya/ComSearch

Figure 1: Example of MWP solving system under full
supervision and weak supervision.

pression annotation, which is expensive and time-
consuming.

Recently Hong et al. (2021) (LBF) and Chatter-
jee et al. (2021) (WARM) addressed this problem
and proposed the weak supervision setting, where
only the answer value annotation is given for su-
pervision. Such a setting forms pseudo question-
candidate equation pairs, which hold the correct
answer value for training with the complexity of
O(n2n) for n variables enormous possible equa-
tion space. Computational efficiently extracting
such pairs becomes the major challenge since it
is computationally impossible to traverse all pos-
sible equations, especially when the example has
more variables (e.g., 88,473,600 for 6 variables).
As we show in Figure 1, previous studies sample
a limited set of equations via random walk (Hong
et al., 2021) or beam searching (Chatterjee et al.,
2021). However, the algorithms can only cover a
limited part of the data, which we refer to as re-
call. As shown in Table 1, LBF (Hong et al., 2021)
only covers 30% of the examples of more than 4
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Model ≤ 3 ≥ 4

LBF 88.1% 30.9%
ComSearch 94.4% 94.5%

Table 1: Searching result recall on problems of different
variable sizes.

variables. Moreover, the random walk algorithm
lacks robustness and leads to a high performance
variance.

We observe that although the equation search
space is ample, many equations are mathematically
equivalent under the commutative law, associative
law, or other equivalent forms. Hence, searching
for these equivalent equations is redundant, espe-
cially for difficult examples with a larger number
of variables. For example, a + b + c + d ∗ e has
48 equivalent forms that hold the same mathemat-
ical meaning considering only the commutative
law. Eliminating such redundancy in the searching
space could reduce computational complexity. In
this paper, we propose a combinatorial-strategy-
based searching method ComSearch that enumer-
ates non-equivalent equations without repeating,
which can robustly extract candidate equations for
a wide range of unlabeled data and build a high
recall pseudo data with equation annotation even
for difficult examples. To this end, the main idea of
Comsearch is to use depth-first search (DFS) to enu-
merate only one representative equation for each
set of equivalent equations and then check whether
the equation holds the correct answer value. Com-
search effectively compresses the searching space,
e.g., up to 111 times for 6 variables compared to
bruce-force searching. As shown in Table 1, Com-
Search can achieve a relatively high recall for dif-
ferent variable sizes. Our method could be proven
to have lower approximate complexity.

While Comsearch only searches among non-
equivalent equations, we observe that many exam-
ples still have multiple candidate equations through
which we can get the final answer. As shown in
Figure 1, Equation 1 (Eq1: X=150*2-50) and Equa-
tion 3 (Eq3: X=50*2+150) can get the same value,
but Equation 3 holds a false mathematical reason-
ing logic, and using Equation 3 as the pseudo la-
bel would bring in noise. We address this data
noise as the false-matching problem, which has
been ignored in previous studies, since their meth-
ods do not consider whether the multiple candidate
equations of one example are caused by equivalent
equation forms or false matching. To address this
problem, we investigate how the false-matching

problem drags down the system’s performance and
propose two ranking models to alleviate this prob-
lem. For examples with multiple candidate equa-
tions from ComSearch, the ranking module first
collects a set of candidate equations, then assign
a score by a draft model trained on pseudo data
with only a single candidate equation to each can-
didate to choose the best pseudo label. In addition
to candidates from the searching result of Com-
Search, we observe that beam search results of the
draft model can also serve as a high-precision can-
didate equation. We investigate these two settings
for candidate equation sets.

We conduct experiments on two strong MWP
solvers, achieving state-of-the-art (SOTA) results
under the weakly supervised setting, especially for
examples with many variables. The results also
demonstrate the effectiveness and generalization
ability of our method.

In summary, our contribution is three-fold:

• We propose ComSearch, a searching algo-
rithm that enumerates non-equivalent equa-
tions without repeat to search candidate equa-
tions effectively.

• We are the first to investigate the false-
matching problem that brings noise to the
pseudo training data. We propose a ranking
module to reduce the noise and give a detailed
oracle analysis of the problem.

• We perform experiments on two MWP solvers
with our ranking module and achieve SOTA
performance under weak supervision.

2 Methodology

We show the pipeline of our method in Figure 2.
Our method consists of three modules: the Search
with combinatorial strategy (ComSearch) module
that searches for candidate equations; the MWP
model that is trained to predict equations given
the natural language text and pseudo labels; the
Ranking module that uses an explorer model to find
candidate equations and select the best candidate
equation with a scoring model.

2.1 ComSearch
Directly searching for non-equivalent equation ex-
pressions is difficult because the searching method
needs to consider Commutative law, Associative
law, and other equivalent forms. We show how
equivalent equations could be merged into a repre-
sentative form X , and the enumeration of X can
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Question：There are 150
non-fiction books on the

shelf. The number of
fiction books is 50 less

than 2 times of non-fiction
books. How many fiction

book are there?

Answer:  250

 

Comsearch

Single Data

Multiple Data

Draft Model

Train

Beam Search and Rank

Ranked Data
MWP Model

Merge
DFS enumeration of  

variable size
Compressed 

 Search Space

 
  

substitute values 
 match answer

Weak Data

Train

Ranking MWP Solving Model

Figure 2: The model overview.

transverse all non-equivalent equations for four
arithmetic operations.

We define the set of non-equivalent equations
using four arithmetic operations as Sn. We first
split the equations to two categories, either S±

where the outermost operators are ±, such as
n1/n2 + n3 − n4 and n1/n2 − (n3 − n4), or
S⋇ where the outermost operators are ⋇, such as
(n2 + n1) ∗ (n3 − n4/n5). We call the former a
general addition equation and the latter a general
multiplication equation.

S±m = {(n1 ⋇ (..))± (ni ⋇ (..))± ..nm} (1)

S⋇
m = {(n1 ± (..))⋇ (ni ± (..))⋇ ..nm} (2)

These two sets are symmetrical, so we only need
to consider one set. Consider elements in S±m, we
can rewrite the equation to the representative form
X :

X =((ni ⋇ (..)) + (nj ⋇ (..)) + ..)

− ((nk ⋇ (..)) + (nl ⋇ (..)) + ..)

For example, n1/n2 − n3 + n4 and n1/n2 −
(n3 − n4) are equivalent, that they are both rewrit-
ten as (n1/n2+n4)−n3. (n2+n1)∗(n3−n4/n5)
could be rewritten as (n1 + n2) ∗ (n3 − n4/n5).
Trivially, any two equations that are represented
by the same X are equivalent. We give proof of
the number of inequivalent expressions involving
n operands in Appendix Section A, which shows
that any two equivalent equations are written as
the same X . Thus the enumeration of X is equiv-
alent to the enumeration of non-equivalent equa-
tions. The enumeration problem of these equations
is an expansion of solving Schroeder’s fourth prob-
lem (Schröder, 1870), which calculates the num-
ber of labeled series-reduced rooted trees with m
leaves. We give the details of the DFS in the Ap-
pendix Section D.

Given the compressed search space, we substi-
tute the values for variables in the equation tem-

plates and use the equations of which value matches
the answer number as candidate equations. If no
equations could be extracted by using all numbers,
we continue to consider: (1) omitting one number,
(2) adding constant number 1 and π, and (3) us-
ing one number twice. If the algorithm extracts
candidates at any stage, the further stages are not
considered since it would introduce repeating equa-
tions, e.g., 1 ∗ (a+ b) is a duplication of a+ b.

2.2 MWP Solving Models
Goal-driven Tree-structured Solver We follow
Hong et al. (2021) and Chatterjee et al. (2021)
and use Goal-Driven Tree-Structured MWP Solver
(GTS) (Xie and Sun, 2019) as the MWP model.
GTS is a seq2seq model with the attention mecha-
nism that uses a bidirectional long short term mem-
ory network (BiLSTM) as the encoder and LSTM
as the decoder. GTS also uses a recursive neural
network to encode subtrees based on its children
nodes’ representations with the gate mechanism.
With the subtree representations, this model can
well use the information of the generated tokens to
predict a new token.

Graph-to-Tree Solver Following Chatterjee
et al. (2021), we conduct experiments on Graph-to-
Tree Solver (G2T) (Zhang et al., 2020b) . G2T is a
direct extension of GTS, which consists of a graph-
based encoder capturing the relationships and order
information among the quantities.

2.3 Ranking
While ComSearch enumerates equations that are
non-equivalent without repeat, some variable sets
can coincidentally form multiple equations with
the same correct value, as shown in Figure 2. The
equations 150 ∗ 2− 50 and 150 + 50 ∗ 2 are non-
equivalent. However, their values are equal, while
only 150∗2−50 is the correct solution. We refer to
this problem as false-matching, an important issue
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Model Term # Prop(%)
- All Data 23,162 -

Ours

Too Long 233 1.0
Power Operator 51 0.2
Single 17,959 77.5
Multiple 3,947 17.0
Data 21,906 94.5

WARM
Data (w/o beam) - 14.5
Data (w/ beam) - 80.1

LBF - - 80.1

Table 2: Statistics of ComSearch Results.

that previous studies have overlooked. While pre-
vious studies also collect multiple candidate equa-
tions for one example, they cannot differ whether
the issue is caused by equivalent forms of the equa-
tions or false-matching, and they do not perform
any processing on these false-matching examples,
which brings in noise to the pseudo data.

To process these data that have multiple candi-
date equations, we propose two ranking methods
to choose the best candidate equation for each ex-
ample. The module first collects a set of candidate
equation that holds the correct annotated answer
value and then score the candidates to choose the
pseudo label for the sample.

Before ranking, we train a draft model S on the
single-candidate pseudo data because the single-
candidate data is relatively reliable with fewer false-
matching examples. In the first ranking method
Basic Ranker, for a data example x, we rank
among the multiple search results of Comsearch
{yeq}search. Then we use the draft model S to
calculate the conditional probability of yeq at each
time step t. The score of the length k equation seq

is defined as:

seq =
k∑

t=0

log(S(x, yeqt )) (3)

We use the candidate equation that has the high-
est score as the pseudo label of this example.

Empirically, we observe that performing beam
search on the draft model S could also generate
high-precision candidate equations. Thus in the
second method Beam Ranker, we further explore
more candidate equations with beam search. We
add beam search predictions of S that hold the cor-
rect value {yeq}beam to the candidate equation set
along with Comsearch results {yeq}search. The
score function is defined the same as the basic
ranker.

3 Analysis on ComSearch

3.1 Search Statistics
We give statistics of ComSearch in Table 2. Among
the 23,162 examples, 233 have more than 6 vari-
ables that we filter out, and 51 use the power op-
eration that our method is not applicable. 94.5%
of the examples find at least one equation that can
match the answer value, significantly higher than
WARM and LBF, which cover only 80.1% of the
examples. 17,959 examples match with only one
equation, and 3,947 examples match with two or
more equations that need the ranking module to
choose the pseudo label further. We show the dis-
tribution of these examples in Appendix Section
B.

We further break down the recall on different
variable sizes in Table 4. As we can see, when
the number of variables grows larger, the recall of
LBF drastically collapses, while the recall of our
method keeps steady. Sampling based methods
cover only a small subset of the equation space
and fail to extract candidate equations for larger
variable size examples. In contrast, our method can
consider a broader range of equation space, which
demonstrates the superiority of our enumeration
based method.

3.2 Eliminating Equivalent Equations in
Search Space

We show the empirical compression of the search
space with ComSearch in Table 3. As we can see,
the compression ratio of ComSearch increases as
the variable number grows, up to more than 100
times when the number of variables reaches 6. Pre-
vious studies on reducing the redundancy of equiva-
lent expressions consider a limited set of rules, such
as removing brackets (Roy and Roth, 2015) and
Commutative Law (Wang et al., 2018a). We also
show the results of considering removing brackets,
where −/÷ can not be the children node of +/∗,
which is the compression considered in Roy and
Roth (2015); and Commutative Law, which is the
compression considered in Wang et al. (2018a). Al-
though the two methods can compress the search
space to some extent, there is a large gap between
their compression efficiency and ours, up to more
than 20 times when the number of variables reaches
6.

The size of the Bruce-Force search space could
be directly calculated, which is n!∗ (n−1)!∗4n−1.
If we consider the exponential generating function
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#Variable Bruce-Force Removing Brackets Commutative ComSearch Ratio
1 1 1 1 1 1
2 8 8 6 6 1.3
3 192 144 108 68 2.8
4 9,216 5,184 3,816 1,170 7.9
5 737,280 311,040 224,640 27,142 27.2
6 88,473,600 27,993,600 19,841,760 793,002 111.6

Table 3: Empirical Results of Search Space Size.

#Var 1 2 3 4 5 ≥6
LBF 91.5 86.8 88.8 31.1 25.0 38.4
Ours 67.0 93.4 96.4 98.1 94.4 73.8

Table 4: Result of recall on different variable sizes

of card(Sn), based on Smooth Implicit-function
Schema, we can have an approximation of Sn:
card(Sn) ∼ C ∗nn−1, which shows our searching
method compresses the search space more than ex-
ponential level. We give proof in appendix Section
A.

3.2.1 Advantages of Enumeration without
repeat

The most important core of our approach is that
it explicitly points out the false-matching problem
because it can enumerate a wide range of equations
while ensuring each equation holds an independent
mathematical reasoning logic. Sampling methods
can only sample a small set of equations that may
neglect other potential candidates.

Compared to other enumeration methods, de-
spite the enumeration efficiency, Comsearch en-
sures the enumeration is among non-equivalent
equations, so collecting more than one candidate
equation for one example shows that there exists
more than one mathematical reasoning logic that
could reach the annotated answer value. However,
only one of the reasoning logic could be true, which
elicits the false-matching problem. Even if we add
more rules to compress the search space, as long
as the non-equivalency of different equations can-
not be ensured, we cannot differ false-matching
and multiple expressions of the same mathematical
reasoning logic.

4 Experiments

4.1 Dataset and Baselines

We evaluate our proposed method on the Math23K
dataset. It contains 23,161 math word problems
annotated with solution expressions and answers.

Model Valid(%) Test(%)
GTS based

WARM - 12.8
+beam - 54.3
LBF† 57.2(±0.5) 55.4(±0.5)
+memory† 56.6(±6.9) 55.1(±6.2)
Ours† 61.0(±0.3) 60.0(±0.3)
Supervised† - 75.6
G2T based

WARM - 13.5
+beam - 56.0
Ours† 61.7(±1.1) 60.5(±0.6)
Supervised† - 77.4

Table 5: Results on Math23K.± denotes the variance of
3 runs for valid/test. Supervised denotes full supervision
upper bound. † denotes the results of our implementa-
tion, other results are from the original paper.

We only use the problems and final answers. We
evaluate our method using the train-test split setting
of Wang et al. (2018a) by the three-run average.

We compare our weakly-supervised models’
math word problem solving accuracy with two
baseline methods.

Chatterjee et al. (2021) proposed WARM that
uses RL to train the candidate generation model
with the reward of whether the value of the equation
is correct. Since the reward signal is sparse due to
the enormous search space, the top1 accuracy of
the candidate generation model is limited, and they
use beam search to search for candidates further.

Hong et al. (2021) proposed LBF, a learning-by-
fix algorithm that searches in neighbour space of
the predicted wrong answer by random walk and
tries to find a fix equation that holds the correct
value as the candidate equation. memory saves the
candidates of each epoch as training data.

4.2 Main Results and Ablation Study

We show our experimental results in Table 5. We re-
produced the results of LBF with their official code
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Model Valid(%) Test(%)
Proposed Method 61.0 60.0
w/o Multiple Data 58.9 57.5
w/o Ranking 57.3 56.3
w/o Beam Search 60.1 59.2

Table 6: Results of Ablation Study for Ranking. ‘w/o
Multiple Data’ denotes only using single candidate
pseudo data for training. ‘w/o Ranking’ denotes re-
moving the ranking module and randomly sampling an
equation for the examples that match with two or more
equations. ‘w/o Beam search’ denotes using the basic
ranker for ranking.

Model Micro Eq Acc(%)
Single 81.4
Multiple 2.7
All Data 23.0
Basic Ranker(Multiple) 45.6
Beam Ranker(Multiple) 47.7
Beam Ranker(All Data) 76.3

Table 7: Equation accuracy of different methods. ‘All
Data’ denotes considering both the single and multiple
data.

and found that LBF+memory lacks robustness. As
we can see in the table, the performance of LBF
has high variance on both the validation and test set.
For a fair comparison, we additionally ran 5-fold
cross-validation setting according to (Hong et al.,
2021) for our model and LBF+memory with the
GTS model. The results show that LBF + memory
achieves a cross-validation score of 56.3% with a
variance of±6.2, while our model achieves a cross-
validation score of 59.7% with a variance of ±1.0,
which performs similar to the train-test setting. We
observe that its performance highly relies on the ini-
tialization of the model. When fewer candidates are
extracted at early-stage training, the performance
drops drastically since LBF relies on random walks
in an enormous search space. Our method achieves
state-of-the-art performance and outperforms other
baselines up to 3.8% and 2.7% on train-test and
cross-validation settings. Our method is also more
robust with minor variance.

We perform an ablation study with the GTS-
based train-test setting in Table 6. Single Equa-
tion denotes using the 17,959 examples that only
match with one equation, the model achieves 57.5%
performance, which is slightly lower than using
all data and the ranking module, outperforming
other baseline models. The result shows that the
examples with only one matching could be consid-

Figure 3: Results of Oracle Test with gold labels.

ered highly reliable and achieve comparable per-
formance with a smaller training data size. We
observe a performance drop of at least 2.9% with-
out the ranking module, showing that our ranking
module improves the performance. We observe a
performance gap of 0.9% between the two rankers,
demonstrating the importance of considering can-
didate equations from the model prediction.

4.3 Analysis

We conduct analysis on GTS train-test setting since
the model achieves similar performance compared
with G2T and the run time is less.

4.3.1 Oracle Test
While our searching method covers 94.5% of the
training data, as shown in Table 2, there is still
a significant performance gap of more than 15%
between the weakly supervised performance and
fully supervised performance, as shown in Table 5.
As stated in Section 2.3, we observe that the false-
matching problem could potentially draw down the
performance, which is verified by the effectiveness
of the ranking module.

To further analyze our two modules, we per-
form two oracle tests for the weakly supervised
system. In Figure 3, using the same data exam-
ples, we replace the weakly supervised annota-
tions with the supervised gold labels and train the
MWP solver. We can observe a performance gap
of around 10% using the same data examples as
training data, which indicates that the weakly super-
vised annotations contain noise. Since all candidate
equation annotations have the correct answer, the
false-matching problem is why this noise exists.
The results show that the false-matching problem
is the critical issue in the weakly supervised set-
ting that causes the performance gap compared to
supervised setting.

To investigate the noise in the pseudo training
data, we perform an oracle analysis of the Micro
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Text Candidates Gold Ans
Some children are planting trees along a road every 2 meters.
They plant trees on both ends of the road. At last they planted
11 trees. How long is the road?

2*(11-1) (11-1)*2 20

A library has 30 books. On the first day, 1
5

of the books were
borrowed out. On the second day, 5 books were returned. How
many book are there in the library now?

30 - 1
5 * 5 30*(1-(15 )) + 5 29

Peter and a few people are standing in a line, one person every
2 meters. Peter found that there are 4 people before him and 5
people after him. How long is this queue?

4*5-2 , (4+5)*2 4*2 + 5*2 18

Table 8: Case study of ComSearch. The blue color denotes that the candidate is true-matching and the light red
color denotes that the candidate is false-matching.

Train Test
Micro Eq Acc(%) Macro Eq Acc(%) Ans Acc(%)

#Var LBF Ours LBF Ours LBF Ours Prop(%)
1 91.8 96.3 88.2 64.9 75.0 50.0 1.6
2 82.9 94.8 78.1 88.7 75.2 73.4 33.1
3 54.2 78.9 57.4 76.1 56.2 62.9 48.5
4 38.0 58.0 13.6 57.4 4.8 25.8 12.4
5 8.6 31.1 4.2 29.4 3.2 16.1 3.1
≥ 6 5.1 50.6 1.2 38.1 0 30.1 1.3

Table 9: Results of different variable sizes.

Equation Accuracy of the pseudo training data. Mi-
cro Equation Accuracy is defined by what propor-
tion of training instance holds the correct equation
solution, which means the instance is not a false-
matching example. In Table 7, we show the results
of micro equation accuracy of the training data.
We check whether the pseudo equation annotations
that our system obtains are equivalent to the gold
labels for each instance. We can see that even in
the Single data that can only extract one candidate
equation, the micro equation accuracy shows there
is still noise in the pseudo training data. We show
examples in the case study section to explain this
problem. The examples that extract more than one
candidate have an equation accuracy rate as low as
2.7%, which makes our ranking system essential.
Benefiting from the ranking system, the multiple
candidate data can achieve a higher equation accu-
racy rate. The Beam ranker performs better than
the basic ranker considering beam search results.

4.3.2 Case Study
We conduct a case study for ComSearch on three
examples to further discuss the strengths and limi-
tations of the method in Table 8. The first example
extracts only one candidate equation; although the
written expression is different from the gold label,
the two equations are equivalent, and the candidate

is true-matching. The second example extracts only
one candidate equation; the false-matching candi-
date coincidentally equals the correct answer with
this set of variable numbers. However, the candi-
date expression and gold label expression are not
equivalent. The algorithm reaches a candidate at
the stage of using all numbers and does not fur-
ther search for candidates that use the constant
number 1. The third example extracts two candi-
date equations, while only (4 + 5) ∗ 2 holds the
correct mathematical knowledge. The two candi-
dates appear at the same searching stage, and such
false-matching cannot be avoided by Comsearch,
where we need the ranker to help filter out the false-
matching noise. In this example, the two rankers
both select the correct label.

4.3.3 Study on Number of Variables
The distribution of different variable size instances
in Math23K dataset is imbalanced, so we further
break down the performance of different variable
sizes compared with LBF in Table 9. The Micro
Equation Accuracy shows our method can extract
higher quality pseudo data for all variable sizes
compared to previous sampling based methods, es-
pecially for examples with more variables.

The recall of candidate extraction methods is
another important factor that affects performance.
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Therefore, in addition to Micro Equation Accu-
racy, we further investigate the Macro Equation
Accuracy of the two methods, which is defined as
equation accuracy on an average of each math word
problem. We show that, except for 1 variable, our
method has significant advantages over LBF, es-
pecially for difficult examples. This demonstrates
that our method can effectively extract high equal-
ity data of a large quantity. We also show the test
answer accuracy of our method and LBF of differ-
ent variable sizes, which positively correlates with
the Macro Equation Accuracy. Eliminating equiv-
alent equations allows our method to consider the
larger search space, while sampling based methods
such as LBF limit to a small neighbour space of
the model prediction. When the variable number is
small, the in-place random walk of LBF can possi-
bly reach the correct equation, that for the examples
with 1 or 2 variables, LBF has a slight performance
advantage. When the variable number grows larger,
as shown in Table 3, the gap between the efficiency
of our searching method and LBF expands, and our
method can consider more equations candidates
and achieve higher recall and better recall perfor-
mance. Moreover, the false-matching problem is
more severe when there are more variables; ignor-
ing the problem would cause low Micro Equation
Accuracy and bring in more noise to the pseudo
training data.

5 Related Work

Early approaches to solving math word problems
mainly depend on hand-craft rules and templates
(Bobrow, 1964; Charniak, 1969). Later studies ei-
ther rely on semantic parsing (Roy and Roth, 2018;
Shi et al., 2015; Zou and Lu, 2019), or try to obtain
an equation template (Kushman et al., 2014; Roy
and Roth, 2015; Koncel-Kedziorski et al., 2015;
Roy and Roth, 2017). Recent studies focus on us-
ing deep learning models to predict the equation
template for full supervision setting.

For weakly supervised setting, Hong et al. (2021)
and Chatterjee et al. (2021) suffers from two major
drawbacks. First, they apply equation candidate
searching on an enormous searching space, while
our method can effectively extract high-quality can-
didate equations. Hong et al. (2021) results in low
robustness and low performance on examples with
more variables. Chatterjee et al. (2021) results in
low coverage of examples that can extract candi-
date equations. Second, they use all candidate equa-

tions for training and neglect the false-matching
problem, which is the key issue that drags down
the model performance in weakly supervised set-
ting, while our ranking module addresses this issue
and further boosts the performance.

To eliminate equivalent expressions, Roy and
Roth (2015) proposed a model that decomposes
the equation prediction problem into various clas-
sification problems, eliminating some equivalence
forms of the equation. However, the compression
is highly integrated with their model and cannot
generalize to other models, including the SOTA
seq2seq based models. Moreover, it can only cover
limited equivalence forms, leaving out various im-
portant forms such as Commutative law and Asso-
ciative law. (Wang et al., 2018a) proposed a normal-
ization method for supervised MWP systems that
considers Commutative law. The method merges
several equivalent expressions into one expression,
resulting in the compression of the target equation
space. However, their method requires bruce-force
enumeration before compression, which remains to
have high computational complexity. Only limited
equivalent forms are considered in both studies,
and the equation space is still considerably ample.

Various studies (Kristianto et al., 2016; Mansouri
et al., 2021) in ARQMath competition (Mansouri
et al., 2020) and NTCIR benchmark (Zanibbi et al.,
2016) have investigated the math retrieval task that
retrieves the most related mathematical passage
for a question, which have clear semantic mean-
ings given by the textual description. In our ranker
setting, the scoring targets, i.e., plane mathemati-
cal equations, cannot provide the semantic mean-
ings that contextual embedding similarity based
methods used in math retrieval benchmarks require.
With fully supervised training data, retrieval-based
methods only achieve 40% accuracy (Wang et al.,
2017) on Math23K.

Spurious programs in weakly supervised seman-
tic parsing is a close analogy of the false-matching
problem, which refers to incorrect programs that
lead to correct denotations. The major difference is
that the function names of the spurious programs
are natural language defined, so the programs have
semantic meanings. Extra knowledge bases (Be-
rant et al., 2013) and lexicon clues (Goldman et al.,
2018) were used to denoise the spurious programs,
which is not applicable for complex lexicon pat-
terns MWPs that the solution equation uses op-
erators ‘+,−, ∗, /’ that have no semantic mean-
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ing. Pasupat and Liang (2016) uses a small human-
annotated dataset for denoising. Guu et al. (2017),
which proposes a re-weighted optimization loss for
the examples. However, their method relies heav-
ily on hyperparameter tuning and gains negative
results on many datasets. Thus these methods are
not suitable for the setting in our paper.

6 Conclusion

This paper proposes ComSearch, a searching
method based on a Combinatorial strategy, to ex-
tract candidate equations for Solving Math Word
Problems under weak supervision. ComSearch
compresses the enormous search space of equa-
tions beyond the exponential level, allowing the
algorithm to enumerate all possible non-equivalent
equations to search for candidate equations. We in-
vestigate the false-matching problem, which is the
critical issue that drags down performance, and pro-
pose a ranking model to reduce noise. Our experi-
ments show that our method obtains high-quality
pseudo data for training and achieves state-of-the-
art performance under weak supervision settings,
outperforming strong baselines, especially for ex-
amples with more variables.

Limitations

As we observe from experiments, the performance
gap between the most reliable weak data and or-
acle data is still 10%, and the noise rate in the
pseudo data is still relatively high. This is caused
by the stopping strategy of our searching algorithm.
Because introducing constant numbers such as 1
and using variables for more than one time would
cause meaningless multiple candidate equations
(e.g., n1/n1 ∗ n1, 1 ∗ n1), we search the equations
at various stages: deleting one variable, adding
a constant and using one variable multiple times.
We stop searching when the stage ends and one
equation is obtained. If a more advanced searching
strategy that can consider such redundancy could
be introduced, the reliability of the weak data could
be further boosted.

Meanwhile, our ranking module only denoises
multiple candidate equations examples, while the
single data also has a volume of noise. We de-
noise with a simple strategy for one round because
we focus on investigating the negative effects of
the false-matching problem. For future work, we
would consider applying more advanced learning
from noise algorithms and denoise more training

data.
In Table 4, the results shows a notable discrep-

ancy in the performance of the #var = 1 when com-
pared to other variable sizes and the baseline. This
discrepancy can primarily be attributed to numer-
ous geometrically related questions in the #var =
1 example set, such as the computation of the vol-
ume of a cube l3 given the side length l, which is
not encompassed by our current search methodol-
ogy. A straightforward remedy would be to include
this equation template in our search when handling
#var = 1; however, we deliberately excluded it from
our experiments to maintain consistency across the
different variable sizes.
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A Proof for Search Space Approximation

Because there is at least one + or ∗ operator for
each equation (i.e. −a− b− c is illegal), the target
Sn is not symmetric and is hard to directly approx-
imate. We need two assisting targets to form the
approximate. This proof majorly relies on Flajolet
and Sedgewick (2009) and OEIS Foundation Inc.
(2023, A140606).

We first consider target U that considers only
+, ∗ and ÷ three operators. We sort it into two
categories: U+ that the outermost operator is +
and U⋇ that the outermost operator is ⋇. Equations
such as 1

a ∗ 1
b−c are still considered illegal.

Z corresponds to a single variable equation. We
can have the construction of U :

U+ = Z + SET≥(U⋇) (4)

U⋇ = Z + (22 − 1) ∗ SET=2(U
+) (5)

+ (23 − 1) ∗ SET=3(U
+)... (6)

We apply symbolic method to obtain the EGF of
the constructions:

U+(z) = z +
∑

k≥2

1

k!
[U⋇(z)]k (7)

= z + [eU
⋇(z) − 1− U⋇(z)] (8)

U⋇(z) = z +
∑

k≥2

2k − 1

k!
[U+(z)]k (9)

= z + e2U
+(z) − eU+(z) − U+(z) (10)

Meanwhile, we have:

U(z) = U+(z) + U⋇(z)− z (11)

Next, we consider target T that −a − b − c is
considered legal. Similarly we define T± and T⋇.
We consider the construction:

T± = 2Z + SET≥(T⋇) (12)

T⋇ = 2Z + 2[(22 − 1) ∗ SET=2(T
±/2) (13)

+ (23 − 1) ∗ SET=3(T
±/2)...] (14)

With symbolic method we have:

T±(z) = 2z +
∑

k≥2

1

k!
[U⋇(z)]k (15)

= 2z + [eT
⋇(z) − 1− T⋇(z)] (16)

T⋇(z) = 2z + 2
∑

k≥2

2k − 1

k!
[T±(z)/2]k (17)

= 2z + 2eT
±(z) − 2eT

±(z)/2 − T±(z)
(18)

The illegal equations such as −a − b − c in T
equals the counts of a+ b+ c, which is actually U .
So we have:

S(z) = T (z)− U(z) (19)
We now have the EGF of Sn. We can sequen-

tially compute the first few terms of this sequence:

1, 6, 68, 1170, 27142, 793002, 27914126, ...
(20)

With Smooth implicit-function schema and
Stirling approximation function we have, for
an EGF y(z) =

∑
n≥0 ynz

n, Let G(z, w) =∑
m,n≥0 gm,nz

mwn, thus y(z) = G(z, y(z)):

n! ∗ [zn]y(z) ∼ c ∗ n!√
2πn3

∗ r−n+1/2 (21)

∼ c
√
2πnr√
2πn3

(
1

r
)n(

n

e
)n (22)

=
c
√
r

n
(
n

re
)n (23)

while r:

G(r, s) = s (24)
∂G(r, s)

∂w
= 1 (25)

and c:

c =

√
∂G(r, s)/∂z

∂2G(r, s)/∂w2
(26)

We still need the two assisting targets to perform
the approximation. We have:

U+(z) = ez+e
2U+(z)−eU+(z)−U+(z) (27)

− e2U+(z) + eU
+(z) + U+(z)− 1 (28)

LetG(z, w) = z+e2w−ew− ln(1+e2w−ew),
considering 24 and 26, r, s and c would be constant
numbers.

So we have:

n![zn]U+(z) ∼ c1
√
r1

n
(
n

r1e
)n (29)

Similarly we can approximate U⋇, T± and T⋇:
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Figure 4: Distribution of Candidate Equation Number.

Figure 5: Distribution of Candidate Equation Number.

n![zn]U⋇(z) ∼ c2
√
r1

n
(
n

r2e
)n (30)

n![zn]T±(z) ∼ c3
√
r2

n
(
n

r3e
)n (31)

n![zn]T⋇(z) ∼ c4
√
r2

n
(
n

r4e
)n (32)

So we have:

un = n![zn]U(z) ∼ (c1 + c2)
√
r1

n
(
n

r1e
)n (33)

tn = n![zn]T (z) ∼ (c3 + c4)
√
r2

n
(
n

r2e
)n (34)

Since S(z) = T (z) − U(z), the subtraction of
un and tn would be our approximation. However
we observe that r1 ≫ r3, that un can be ignored.
So we have:

sn = n![zn]S(z) ∼ (c3 + c4)
√
r2

n
(
n

r2e
)n (35)

Q.E.D.

B Distribution of Candidate Equations

The largest candidate equation number of one ex-
ample is 3914. We show the distribution of candi-
date equations in Figure 4 and 5. The x-axis rep-
resents the number of candidates, while the y-axis
represents the number of examples that have x can-

Algorithm 1 enum_skel(n)

Require: n ≥ 1
Initialize empty list skills
for i ≤ n; i = 1; i++ do

left_list = unit_skel(i)
right_list = enum_skels(n− i)
for left in left_list do

for right in right_list do
move the start index of right to i
new_skels += left + right

end for
end for
skels += new_skels

end for
return skels

didate equations. We can see from Figure 4, which
includes examples that have 1 to 50 candidates, it
is a long tail distribution that most examples only
have a few candidate equations. From Figure 5,
where we zoom in and focus on examples that have
2 to 20 candidates, we can see that there are a lot
of examples that have more than 2 candidate equa-
tions, and the ranking module is essential.

C Experimental Details

We run our experiments on single card GTX3090Ti,
each run takes around 2-3 hours for all models. We
did not perform extra hyperparameter searching
and use the same hyperparameters as the public
release of the two models, except for epoch number
which is decided by the validation set. The code is
conducted based on Pytorch.

D ComSearch Details

Considering elements in S±n , we can rewrite the
equation to x. Thus we can form a mapping g :
x→ g(x) from a general addition equation x to a
skeleton structure expression g(x). :

x =((xi ⋇ (..)) + (xj ⋇ (..)) + ..)

− ((xk ⋇ (..)) + (xl ⋇ (..)) + ..)

g(x) =(xi(..))(xj(..))..&(xk(..))(xl(..))..
The order of xi within the same layer of brack-
ets is ignored in g(x), it can deal with the equiva-
lence caused by Commutative law and Associative
law. The addition and subtraction terms are split
by &, that which can deal with equivalence caused
by removing brackets. g(x) is a bijection, so the
enumeration problem transforms to finding such
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skeletons:
n = 1 :a

g−1 :a

n = 2 :ab, a&b, b&a

g−1 :a+ b, a− b, b− a
n = 3 :abc, a&(b&c), (ab)&c, ...

g−1 :a+ b+ c, a− (b/c), (a ∗ b)− c, ...
...

The enumeration problem of these structures is
an expansion of solving Schroeder’s fourth prob-
lem (Schröder, 1870), which calculates the number
of labeled series-reduced rooted trees with n leaves.
We use a deep-first search algorithm shown in Algo-
rithm 1 to enumerate these skeletons. It considers
the position of the first bracket and then recursively
finds all possible skeletons of sub-sequences of the
variable sequence X = {xk}ik=1 (Wang, 2021).

While considering such skeletons could enumer-
ate all unique expressions, equations have at least
one element on the left of & in our target domain
and do not start with − or ÷. We further extend
the algorithm to consider these cases. To be no-
ticed, because there is at least one + or ∗ operator
for each equation, the left side of & must not be
empty while the right part has no restrictions. Thus
we define the unit_skel(i) equation to return pos-
sible skeletons with only one or none & and no
brackets. This constraint is equivalent to finding
non-empty subsets and their complement of the
variable sequence X . We can use Algorithm 1 to
perform the enumeration of such skeletons, except
for defining two different unit_skel(i) to support
the enumeration of subtraction and division oper-
ation. The enumeration algorithm of non-empty
subsets is trivial and omitted here.
unit_skeldiv(i) = {(A&A)|A ⊆ X ;A ̸= ∅}

(36)
unit_skelsub(i) =

{((a(A− a))&A− a)|A ⊆ X ; a ∈ A}
(37)

We transform the skeletons back to equations
to obtain all non-equivalent equations Sn. Such
enumeration considers absolute values and omits
pairs of solutions that are opposite to each other.
To search effectively, for the equations that contain
subtraction, we add their opposite equation to the
searching space.

2562



Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 2563–2570
May 2-6, 2023 ©2023 Association for Computational Linguistics

Towards preserving word order importance through
FORCED INVALIDATION

Hadeel Al-Negheimish1, Pranava Madhyastha2,1 and Alessandra Russo1

1 Imperial College London 2 City, University of London
{halnegheimish,a.russo}@imperial.ac.uk,

pranava.madhyastha@city.ac.uk

Abstract

Large pre-trained language models such as
BERT have been widely used as a frame-
work for natural language understanding (NLU)
tasks. However, recent findings have revealed
that pre-trained language models are insensitive
to word order. The performance on NLU tasks
remains unchanged even after randomly per-
muting the word of a sentence, where crucial
syntactic information is destroyed. To help pre-
serve the importance of word order, we propose
a simple approach called FORCED INVALIDA-
TION (FI): forcing the model to identify per-
muted sequences as invalid samples. We per-
form an extensive evaluation of our approach
on various English NLU and QA based tasks
over BERT-based and attention-based mod-
els over word embeddings. Our experiments
demonstrate that FI significantly improves the
sensitivity of the models to word order.1

1 Introduction

Ordering of words in a sentence is an important
structural attribute for natural languages such as
English, where subject-verb-object (SVO) structure
is common and important to convey the meaning
of the sentence. Understanding and comprehend-
ing natural language without strict adherence to
a systematic ordering of words would make it an
extremely challenging task. Recent work has in-
vestigated a surprising lack of sensitivity to word
order information in state-of-the-art masked lan-
guage models.

Recent research has focused on the impact of
word order perturbation during the evaluation of
models trained on well-ordered data. The results
show that masked language models exhibit a catas-
trophic lack of sensitivity to word order permuta-
tions or shuffles, even for complex tasks in which
task-relevant syntactic properties are completely

1Our code and data for replication are available at https:
//github.com/halnegheimish/ForcedInvalidation

destroyed (Pham et al., 2020; Al-Negheimish et al.,
2021; Sinha et al., 2021b; Gupta et al., 2021).
These studies show that models are still predicting
the gold label for examples even after sequences
have been permuted, and they also do so with high
confidence (Sinha et al., 2021b; Gupta et al., 2021).
This anomalous behaviour can potentially result in
undesirable shortcuts or can cause models to fail
catastrophically in simple adversarial settings. Fur-
thermore, Sinha et al. (2021a) study the effect of
pre-training masked language models on shuffled
data, and suggest that the model might simply be
capturing higher-order word co-occurrence statis-
tics, rather than uncovering sophisticated semantic
and syntactic structures necessary for language un-
derstanding.

In this paper, we present a simple, yet general ap-
proach called FORCED INVALIDATION (FI), where
we force models to explicitly identify sequence per-
mutations (§3). While our proposal is extensible
to multiple types of models, here we present a con-
trolled study over masked language model-based
BERT models, and attention-based models over
word-embeddings (§4). We present a large battery
of experiments over a variety of natural language
understanding tasks in the English language, in-
cluding complex question answering based tasks,
natural language inference based tasks and com-
monsense reasoning based tasks. Results show that
our proposal significantly improves the sensitivity
of the models to word-order information (§5).

2 Related Work

Recent work has proposed a few mitigation strate-
gies for classification-type tasks: Pham et al. (2020)
proposes improving word-order sensitivity by in-
cluding a precursor fine-tuning step on synthetic
CoLA-like tasks before finetuning for downstream
tasks. While this improves their defined word order
sensitivity score, accuracy on permuted samples
remains significantly above chance, making this
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approach unreliable. Gupta et al. (2021) present
three approaches: one based on entropy regulari-
sation, another on model probabilities threshold-
ing, and finally an approach based on augment-
ing additional data consisting of destructive trans-
formations, which include 1-gram permutations.
The model is modified with an additional class to
identify these destructive transformations. While
the first two approaches require changes to model
setup, the last one is based on a set of manual
heuristics. Our approach has some similarity with
the latter, however, our permutations are based on
the principals borrowed from the n-gram language
modelling literature (Roark et al., 2007), where
the n-grams capture sufficient first-order statistics
of the language. Our approach significantly re-
duces the models’ reliance only on simple first-
order statistics of language, and our empirical ob-
servations demonstrate the generalisability of our
approach to various settings.

3 Methodology: FORCED INVALIDATION

Our method is grounded on recent observations
which show that masked language models and other
similar models tend to exploit shortcuts based on
information about distributional word vicinity infor-
mation for a diverse set of natural language process-
ing tasks (Al-Negheimish et al., 2021; Sinha et al.,
2021a). These shortcuts tend to make the models
less sensitive to word-order information even for
tasks that require the preservation of word order-
ing for accurate recovery of meaning (Sinha et al.,
2021b). Al-Negheimish et al. (2021), in particular,
show the insensitivity on a variety of n-gram based
permutations of samples, where the authors specifi-
cally experiment with {1,2,3}-gram permutations.
Further, {1,2,3}-gram based permutations capture
a variety of word vicinity based patterns and also
capture some of the most frequently occurring uni-
gram, bigram and trigram patterns in a variety of
benchmark datasets. Based on these salient ob-
servations, for each given dataset, the FORCED

INVALIDATION (FI) methodology consists of the
following two steps:

1. Augmenting training data with {1,2,3}-gram
permutation samples (sampled from trainset)
labelled with invalid as the additional label.

2. Modifying models to account for the new la-
bel and training them in the standard setting
with a combination of standard training exam-
ples and the augmented invalid samples.

We observe that this simple FI approach im-
proves the sensitivity of the model to word order
and also improves the robustness of the models
across a variety of tasks to first-order shortcuts.
In the following sections, we present a rigorous
experimental study that showcases the utility of FI.

4 Experimental settings

Data To generate n-gram permutations, we sim-
ply subsample from the training dataset, such that
the ratio to the valid samples (samples with correct
word order and the task-specific label) and invalid
samples (samples with permuted n-grams and the
invalid label) is 1-1. The invalid samples are gener-
ated such that they contain a uniform distribution
of {1,2,3}-gram permutations.2 Furthermore, we
split the training set such that we use 90% of the
samples for training the models and the remaining
10% is used as a development set. The develop-
ment set is used to monitor training and perform
early-stopping. Evaluations are done on a separate
unseen task-specific validation set provided by the
dataset creators.

We perform two evaluations: well-ordered and
permuted. The first one is the standard evaluation
of the model over the original unperturbed task-
specific unseen validation set. For our experimental
evaluations over permutations, we retain the origi-
nal label of the same unseen validation set, but we
permute the specific components of samples (e.g.,
premise or the hypothesis, question or the passage,
etc.); we expect the models to reject the permuted
sample instead of predicting the same ground-truth
label. This setup allows us to evaluate the sensi-
tivity of the model to word-order permutations of
various degrees over the different components of
the data.

Models We predominantly experiment with
BERT-based models that either use BERT represen-
tations as the contextualised embeddings or classi-
fiers that are directly trained with BERT. We also
experiment with an additional simpler model that
largely exploits attention over word-embeddings.3

We will expand on the specific models for each of
the tasks in the following section. Results for FI are

2Input string is divided to n-grams (based on white-space),
and permuted, preserving the final punctuation. The only
condition is that it varies from the original string, which is a
weaker constraint than previous studies that require that no
n-gram stays in its original position.

3Details about training parameters can be found in the
appendix A
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Figure 1: Accuracy using exact match (EM) on the DROP QA dataset, (a) NAQANet, (b) MTMSN Base, and (c) MTMSN Large.
dev, numset and contrast sets are unperturbed well-ordered datasets, while the other bars show {1,2,3}-gram permutations on
numset. FI models exhibit clear sensitivity to word order, as they no longer predict the original answer in most perturbed cases.
FI accuracy is averaged over training with 3-random seeds, and the standard deviation is shown over the yellow bars. FI-models
are confident in identifying invalid samples.

reported over the averages and standard deviation
of models trained with three random seeds.

5 Results and Observations

5.1 Unconstrained Question Answering

DROP (Dua et al., 2019) is a reading-
comprehension dataset with unconstrained
answers. It comprises questions that require
reasoning over the content of different paragraphs.
Even though this is designed to be a challenging
task, Al-Negheimish et al. (2021) show that for
most models, permuting questions had little impact
on the model’s ability to predict the correct answer
for numerical reasoning questions. This was found
specifically problematic as the task consists of
complex questions, and permutations render the
questions syntactically and semantically redundant.
We apply FI for two module-based models
designed specifically for this task, NAQANet
(Dua et al., 2019), an attention-based model
with GloVe-based embeddings (Pennington et al.,
2014), which is the original model proposed by
the authors of the dataset; and MTMSN (Hu
et al., 2019), which is based on BERT-based
(Devlin et al., 2019) contextual representations.
These models have separate modules targeting
different kinds of reasoning, e.g. a module for
counting and a module for arithmetic expressions.
We augment these with an additional module to
force invalidation over invalid permuted samples,
a two-way classification module that learns to
distinguish between permuting either the question
or passage. FI models should now choose the
invalid type for permuted samples, instead of
giving the same answer as well-ordered samples.
Fig 1 shows a comparison of the Exact Match
accuracy of NAQANet and MTMSN, between
original and FI models. We observe that question

Part 1 Part 2
Variation dev 3-gram 2-gram 1-gram 3-gram 2-gram 1-gram

U
Q

A

NAQANet 3.15 94.64 97.18 99.59 99.01 99.93 100.00
MTMSN Base 0.19 97.14 98.99 99.91 99.80 99.99 100.00
MTMSN Large 0.07 95.01 97.52 98.98 99.43 100.00 100.00

N
L

I

RTE 0.36 94.57 98.19 99.64 96.01 96.74 98.55
MNLI_M 1.36 94.52 97.60 99.21 94.83 97.35 99.45
MNLI_MM 1.25 96.20 98.17 99.49 94.47 97.43 99.51
ANLI1 0.70 99.80 100.00 100.00 95.20 98.10 99.69
ANLI2 0.50 99.90 100.00 100.00 93.89 98.50 99.10
ANLI3 1.33 99.83 99.92 100.00 94.83 97.33 98.67

G
A CoLA 2.30 92.66 92.35 97.93 - - -

Table 1: Percentage of evaluation data predicted as invalid in
FI models in all of the tasks. dev is the unperturbed validation
set. {n}-gram permutations of part 1 correspond to permuta-
tions of the question in UQA and of the premise in NLI. CoLA
is made up of single sentences. All models succeed at flagging
these samples as invalid.

permutations have little effect on the original
model, as previously noted in (Al-Negheimish
et al., 2021). Interestingly, passage permuta-
tions can drastically reduce performance by a
third. While performance degrades for passage
permutations, it remains unacceptably high, as
we note that DROP is an unconstrained-QA
task, so the space of possible answers is large.
FI, on the other hand, succeeds in making the
model sensitive to almost all permutations. We
see that this generalises across BERTBASE and
BERTLARGE. More importantly, we observe that
while the model with FI is sensitive to word
order (no longer predicting original answers for
permuted examples), the model’s performance
on well-ordered data is largely retained. To
demonstrate that FI are correctly predicting invalid,
table 1 shows the percentage of the data predicted
as invalid, which is near-perfect for permuted
samples.

5.2 Grammatical Acceptability
CoLA (Wang et al., 2018) is a task that measures
models’ ability to determine the grammatical ac-
ceptability of sentences. Pham et al. (2020) show
that from the GLUE benchmark (Wang et al., 2018),
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Figure 2: Accuracy for NLI tasks (a) trained on RTE, (b-f) trained on MNLI data. Original models exhibit a lack of sensitivity
to word order, as they have the same accuracy regardless of the n-gram permutations. FI models are able to tell apart invalid
examples even in out-of-distribution ANLI data.
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Figure 3: Accuracy of original models and FI on CoLA gram-
matical acceptability task. While the original model is below
chance, we note that because this task is grammar-detection,
the original model should not accept any of the permuted sam-
ples.

this task requires models to be most sensitive to
word order. We applied FI by extending the BERT-
based classification model with another ‘invalid’
class label, to flag permuted sentences. Grammar
and syntax have been destroyed in permuted sen-
tences, we would expect the original model to label
them as not acceptable. However, we see in Fig 3
that it maintains significantly high accuracy for 3-
gram and 2-gram permutations (note that CoLA
is an imbalanced dataset (70% acceptable)). Con-
cretely, we observe that the standard BERT-based
model labels 185/967 3-gram permutations, and
114/967 2-gram permutations as acceptable. Our
FI approach significantly ameliorates this problem
by increasing the sensitivity of the model to word-
order permutations, as we observe in Fig 3.

5.3 Natural Language Inference (NLI)

NLI has been one of the important testbeds of pre-
vious work studying BERT-based models and their

lack of sensitivity to word-order information (Sinha
et al., 2021b; Abdou et al., 2022). These studies
suggest that BERT-based models almost always as-
sign the same labels to examples with perturbed
word order as well-ordered ones highlighting the
lack of sensitivity to word order, and likely de-
pendence on shallow features. Similarly to §5.2,
applying FI to an NLI BERT model was done by
simply extending it with another class to represent
invalid input. We perform a battery of experiments
over a variety of NLI tasks in GLUE (Wang et al.,
2018) such as RTE and MNLI (Williams et al.,
2018) tasks. FI makes models highly sensitive
to permuted sequences, as shown in Fig. 2. We
verify in table 1 that those invalid sentences were
correctly flagged as invalid. We also observe that
FI-based models trained on MNLI and tested on
out-of-distribution ANLI (Nie et al., 2020) show ex-
treme sensitivity to word-order perturbations; this
shows that the model has learned to flag invalid
input and generalise to similar unseen tasks. Ad-
ditionally, we observe that FI makes the models
less likely to suffer from shortcut effects, which are
common in models trained for NLI tasks (McCoy
et al., 2019). Further experiments on Arabic NLI
are presented in Appendix D, where we demon-
strate that FI works well for other languages be-
yond English.

Heuristic Analysis
McCoy et al. (2019) introduces an evaluation
set Heuristic Analysis for NLI Systems (HANS),
that examines surface heuristics NLI models are
prone to adopting. They show in the existence
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Lexical
Overlap

Subsequence Constituent

Original Entailment 97.76 99.92 100.00
Non-Entailment 14.74 0.58 2.66

FI Entailment 80.94 99.56 99.60
Non-Entailment 64.56 38.14 11.48

Table 2: Comparison of BERT finetuned on MNLI with and
without FI, FI makes the model more robust to the syntactic
heuristics presented in (McCoy et al., 2019)
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Figure 4: Accuracy of original models and FI on SWAG
multiple-choice commonsense reasoning task, both are pre-
sented with the same four answer choices, FI enforces sensi-
tivity to word order, especially on the endings.

of these heuristics, models always predict entail-
ment, as they have near-perfect accuracy for that
label, but perform poorly when the actual label
is non-entailment (accuracy close to 0% in most
cases). The heuristics targeted by this dataset are
special cases of each other: the most general, lex-
ical overlap heuristic: assume that all hypothe-
ses constructed from words in the premise are en-
tailed. Next follows is the subsequence heuristic:
assume all hypotheses made up of contiguous sub-
sequences of the premise are entailed. Finally, the
constituent heuristic: assume all hypotheses made
up of complete subtrees of the premise’s parse tree
are entailed. We expect that FI-models will be
more robust to these shortcuts, and find (table 2)
that this is indeed the case for lexical-overlap and
the more challenging subsequence heuristics, sub-
stantially improving non-entailment performance,
indicating that the models are no longer strictly
biased with the presence of these heuristics. We
note a surprising result of a drop in accuracy for
entailed lexical overlap samples, which could be
caused by the model no longer taking that short-
cut, and warrants additional investigation in future
work.

5.4 Multiple Choice Commonsense Reasoning
SWAG (Zellers et al., 2018) is a commonsense
and grounded reasoning task that requires choos-
ing between different possible ending scenarios
given some context, where the context comprises

of a primary sentence followed by the initial set
of words for the following sentence. The model is
trained to predict the most likely ending scenario
given context and a list of four ending scenarios.
To train our FORCED INVALIDATION model, we
add an additional answer choice ‘is invalid.’
to the data and perform n-gram based permutation
of the primary sentence or over each of the endings.
Nothing is changed in the architecture of the model.
For evaluation, we maintain the same datasets for
the Original and FI models, so they only con-
tain the same number of answer choices, without
the ‘invalid’ choice. Ideally, the models should
achieve random performance in the permuted cases.
We present our results in Fig. 4; where firstly we
observe that FI does not seem to reliably affect
the model’s sensitivity to word order perturbations
with all the combinations. We specifically observe
that n-gram permutations of primary sentence have
little impact on the performance of FI-models and
they seem to be less sensitive to word-order per-
turbations than expected. However, n-gram per-
mutations of endings result in FI-models obtaining
near-random performance as expected. We investi-
gated the cause of this anomaly and observed that
SWAG dataset has a prominent problem, in that,
the primary sentence for a majority of cases is al-
most irrelevant to the model. A model trained on
SWAG dataset is able to predict the correct answer
for 60% of the examples without having access to
the primary sentence.

6 Conclusion

In this paper, we presented a simple yet general
technique called FORCED INVALIDATION, that sig-
nificantly improves the sensitivity of models to-
wards word order information. Our methodology
requires minimal changes to the model and is sam-
ple efficient and drastically increases the sensitivity
of the models to permutations of word order for
a variety of tasks. We present a focused empir-
ical validation of our methodology to showcase
its generalisability. While in this paper we have
focused on masked language models and attention-
based models over word embeddings, we expect
FI to generalise for other modelling setups such as
RNN-based and CNN-based models and leave it
as future work. We anticipate that this approach
will also serve as a solution for other undesired
behaviors in the model by explicitly invalidating
such behaviours. We leave this as future work.
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Limitations

While our empirical results showcase the effective-
ness of FI and increase models’ sensitivity to word
order, the causal mechanisms are not currently ob-
vious. It is not clear whether or not positional
encodings are reflecting this change. Like previous
work, our observations are additionally only re-
stricted currently to English and Arabic (appendix
D), further experiments are required to establish
the problems relating to word order sensitivity and
the utility of FI for other languages.
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A Training Details

We use BERTBASE models with a classification head
on top (BERTForSequenceClassification (Wolf
et al., 2020)) for NLI and CoLA. It was trained for
5 epochs, batch size 16, learning rate 2e-5. We use
a BERTBASE model (Wolf et al., 2020), for SWAG.
It was trained for 3 epochs, batch size 16, learning
rate 5e-5. All of the above are done using google
colab with high-ram. MTMSN is based on the pub-
lished codebase (Hu et al., 2019), and we use the
same parameters to train, namely: BERTbase: batch
size 24, 5 epochs and learning rate 3e-5, BERTlarge:

batch size 12, 10 epochs and learning rate 3e-5.
Training was done on four RTX6000 GPUs with
24GB of RAM each for BERTLARGE, and a single
one was used for BERTBASE. Models are trained
for both settings, original and FI, to provide a fair
comparison.

B Dataset Statistics

As described before, we filter out examples with
sentences containing less than three words, such
that we can generate at least 1 3-gram shuffle. Ta-
ble 3 describes the tasks’ validation sets before and
after filtration.

Original Used p1 #words p2 #words

DROP numset 6848 6848 11 182
RTE 277 276 31 8
MNLI 9815 9289 16 9
MNLI-mm 9832 9551 17 10
ANLI1 1000 999 54 10
ANLI2 1000 999 54 9
ANLI3 1200 1199 52 9
CoLA 1043 967 7 -
SWAG 20006 19352 11 8

Table 3: Statistics of the validation set of datasets used for
evaluation, including the original number of examples, after
filtration, and median number of words for the first and second
components.

Dataset licenses are mentioned in table 4:

License

DROP numset CC BY 4.0
RTE Unknown
MNLI OANC
MNLI-mm OANC
ANLI1 CC BY-NC 4.0
ANLI2 CC BY-NC 4.0
ANLI3 CC BY-NC 4.0
CoLA Unknown
SWAG MIT license

Table 4: Artifact licenses for the datasets used.

C FI as a precursor to downstream task
finetuning

Inspired by (Pham et al., 2020), we first perform FI
on BERT to solely categorise valid and invalid sam-
ples for sentences that are sampled from Wikipedia.
We replace the standard BERT-based contextual
representations in MTMSN with FI-BERT based
contextual embeddings, to see if it helps it become
more sensitive to word order in the downstream
DROP task. This did not show an improvement,
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Figure 5: Accuracy of original models and FI on an Arabic
NLI task. Once more, we see that the original models are
insensitive to word order even in Arabic, while FI models
learn to flag invalid samples.

however, where permuted examples are still pre-
dicted the same as well-ordered ones. This indi-
cates that having an explicit way to flag invalid
examples is helpful to the models.

D FORCED INVALIDATION with Other
Languages

To establish the generalizability of this approach
to other languages, we applied FIon an Arabic
NLI task. We used the Arabic split of the XNLI
dataset (Conneau et al., 2018) to finetune the Ar-
BERT model (Abdul-Mageed et al., 2021), and
compare the original training setup with FORCED

INVALIDATION. Figure 5 shows that this approach
successfully preserves the importance of word or-
der beyond the English language.
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Abstract
We consider the problem of identifying a mini-
mal subset of training data St such that if the in-
stances comprising St had been removed prior
to training, the categorization of a given test
point xt would have been different. Identifying
such a set may be of interest for a few rea-
sons. First, the cardinality of St provides a
measure of robustness (if |St| is small for xt,
we might be less confident in the correspond-
ing prediction), which we show is correlated
with but complementary to predicted probabili-
ties. Second, interrogation of St may provide
a novel mechanism for contesting a particular
model prediction: If one can make the case
that the points in St are wrongly labeled or
irrelevant, this may argue for overturning the
associated prediction. Identifying St via brute-
force is intractable. We propose comparatively
fast approximation methods to find St based
on influence functions, and find that—for sim-
ple convex text classification models—these
approaches can often successfully identify rela-
tively small sets of training examples which, if
removed, would flip the prediction.1

1 Introduction

In this work we pose the following problem in the
context of binary classification: For a test point
xt, identify a minimum subset St of training data
that one would need to remove in order to flip the
prediction ŷt for xt. This subset may be of interest
for a few reasons. First, the cardinality k of St
captures one measure of the (in)fragility of the pre-
diction ŷt: Small k indicates that a minor change in
the training data would have resulted in a different
(discrete) prediction for xt. We later show that this
measure is correlated with, but complementary to,
predicted probabilities.

Perhaps a more interesting motivation for recov-
ering St is to provide a potential mechanism for

∗Work done prior to joining Amazon.
1Code and data to reproduce all experiments available at:

https://github.com/ecielyang/Smallest_set

contesting model predictions (Hirsch et al., 2017;
Vaccaro et al., 2019), i.e., to enable individuals to
interrogate and dispute automatic determinations
that affect them. If removing a small set of training
points would have yielded a different prediction,
and if one could make the case for excluding these
points (e.g., because they seem mislabeled, or re-
flect systematic labeling biases), this might provide
a compelling case to overturn a model prediction.
Consider an educator using an automated essay
grading system.2 Assume the system has output a
comparatively poor grade for a student, a determi-
nation they see as unfair. Contesting the inclusion
of a small set of examples (St) which, if excluded,
would have resulted in a higher grade provides a
novel mechanism for disputation.

Naïvely attempting to find St by brute enumera-
tion and re-training would be hopelessly inefficient.
We introduce an algorithm for finding such sets ef-
ficiently using influence functions (Koh and Liang,
2017) which allow us to approximate changes in
predictions expected as a result of removing sub-
sets of training data (Koh et al., 2019). We then
provide an iterative variant of this method which
does a better job of identifying sets St.

Across different datasets and models, we find
that we are often able to recover subsets St with
relatively small cardinality k; i.e., one can often
identify a small to medium subset of training data
which, if removed, would flip a given prediction.
We also find that there are many test points for
which models make predictions with high confi-
dence but where k is small.

The contributions here include an investigation
of the task of identifying minimal training sets to
flip particular predictions in the context of text clas-
sification, algorithms for this problem, and an em-
pirical evaluation of their performance in the con-

2We put aside the question of whether using automated
approaches in this particular setting is appropriate to begin
with (likely not, though this may depend on how it is used).
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text of binary text classification.3

2 Methods

Assume a binary text classification problem. Given
a training set Z tr = z1, ..., zN , where zi =
(xi, yi) ∈ X × Y , we aim to estimate the param-
eters θ of a classification model fθ : X → Y to
minimize the empirical risk, i.e., loss L over Z tr:
θ̂ := argminθ

1
N

∑N
i=1 L(zi, θ) + λ

2 θ
T θ, which we

will denote by R(θ). We assume throughout that
R is twice-differentiable and strongly convex in θ,
i.e., Hθ̂ := ∇2

θR(θ̂) :=
1
N

∑N
i=1∇2

θL(zi, θ̂) + λI
exists and is positive definite. Suppose we re-
moved a subset of k training points S ⊂ Z tr and
re-estimated θ, yielding new parameters θ̂S . Let-
ting ε = − 1

N , we can write this as:

θ̂S = argminθ∈Θ{R(θ) + ε
∑

zi∈S
L(zi, θ)} (1)

In principle, one could remove the points in S
and re-train to find θ̂S . In practice this is infeasible
given the number of potential subsets S. Koh and
Liang (2017) provide (relatively) efficient approx-
imations to estimate θ̂S when k=1. Subsequent
work (Koh et al., 2019) found that this approxima-
tion correlates well with the actual empirical effects
of removing a set of points (where k > 1).

Finding influential subsets Given input xt, we
aim to design an approach to efficiently identify the
smallest subset St of Z tr such that removing these
examples prior to training would change ŷt. Prior
work (Cook and Weisberg, 1982; Koh and Liang,
2017) derived the influence exerted by a train point
i on the loss incurred for a test point t as:

−∇θL(zt, θ̂)⊺H−1θ̂ ∇θL(zi, θ̂)︸ ︷︷ ︸
∆iθ

(2)

Where ∆iθ is the influence of upweighting zi dur-
ing training on estimates θ̂ (Cook and Weisberg,
1982). We are interested, however, in identifying
points that have a particularly strong effect on a
specific observed prediction. We therefore modify
Equation 2 to estimate the influence on prediction
(IP), i.e., the change in predicted probability for xt

3Recent related work in economics by Broderick et al.
(2020) proposed and investigated a similar problem, with a
focus on identifying the sensitivity of econometric analyses
to removal of small subsets of data. Recent work on data-
modeling (Ilyas et al., 2022) also considered a variant of this
problem (see Section 5).

observed after removing training instance i. This
can be expressed as:

∆tfi := −∇θfθ̂(xt)⊺∆iθ (3)

We then approximate the change in prediction on
instance t we would anticipate after removing the
training subset St from the training data as the sum
of the ∆tfi terms for all points xi ∈ St.

Algorithm 1 describes a method for constructing
St. We estimate the change in output expected
upon removing each instance from the training
dataset and assemble these in ∆tf . We then greed-
ily consider adding these differences (effectively
adding points to St) until the resultant output is
expected to cross the classification threshold (τ ); if
we exhaust the training dataset without crossing τ ,
then we have failed to identify a set St.

Algorithm 1: A simple method to find a
minimal subset to flip a test prediction

Input: f : Model; Z tr: Full training set; θ̂:
Parameters estimated Z tr; L: Loss
function; xt: A test point; τ :
Classification threshold (e.g., 0.5)

Output: St: minimal train subset
identified to flip the prediction (∅
if unsuccessful)

1 H ← ∇2
θL(Z tr, θ̂)

2 ∆θ ← H−1∇θ̂L(Z tr, θ′)
3 ∆tf ← ∇θfθ̂(xt)⊺∆θ
4 ŷt ← f(xt) > τ // Binary prediction
// Sort instances (and estimated

output differences) in order of
the current prediction

5 direction← {↑ if ŷt else ↓}
6 indices← argsort(∆tf, direction)
7 ∆tf ← sort(∆tf, direction)
8 for k = 1 ... |Z tr| do
9 ŷ′t = (f(xt) + sum(∆tf [: k])) > τ

10 if ŷ′t ̸= ŷt then
11 return Z tr[indices[: k]]

12 return ∅

Algorithm 1 is simple and relatively fast, but
we can improve upon it by iteratively identifying
smaller subsets St in Algorithm 2. We detail this
approach in Appendix Algorithm 2, but describe it
briefly as follows.

We start with the entire train set as a “candidate”
S̃t, and then iteratively attempt to find strict subsets
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Models Algorithm 1 Algorithm 2
Movie reviews

BoW 247 151
BERT 484 303

Essays
BoW 352 134
BERT 484 135

Emotion classification
BoW 500 345
BERT 524 327

Hate speech
BoW 808 415
BERT 546 239

Tweet sentiment
BoW 345 177
BERT 858 569

Table 1: The comparison of average on k = |St| values
from Algorithm 1 and Algorithm 2 over the subsets of
test points xt for which we were able to successfully
identify a set of points |St|

of this that by themselves would flip the prediction
ŷt. On the first pass, this is equivalent to Algorithm
1, after which—if successful—we will have found
a candidate set S̃t. Here we update parameter esti-
mates θ to approximate “removing” the points in
S̃t, and then we recompute the approximation of
the influence that points in S̃t would have on ŷt
using a single-step Newton approximation. The
idea is that after the parameter update this approxi-
mation will be more accurate, potentially allowing
us to find a smaller St. This process continues until
we are unable to find a new (smaller) subset.

In sum, this variant of the algorithm attempts
to iteratively identify increasingly small subsets
S̃t which would, upon removal prior to training,
overturn the original prediction ŷt. There is a com-
putational cost to this, because each iteration in-
volves approximating the influence on a particular
prediction; this is computationally expensive. This
variant therefore trades run-time for (hopefully)
more accurate identification of minimal St. How-
ever, we find that empirically Algorithm 2 ends up
running for only 2.3 passes on average (across all
experiments). That is, the algorithm adds a scalar
to the run-time of Algorithm 1, but often yields
considerably smaller St. We show the comparison
of |St| returned by two algorithms in the Table 1.

3 Experimental Setup

Datasets We use five binary text classification
tasks: Movie review sentiment (Socher et al.,
2013); Twitter sentiment classification (Go et al.,
2009); Essay grading (Foundation, 2010); Emo-
tion classification (Saravia et al., 2018), and; Hate

Features Found St Flip successful
Movie reviews

BoW 78% 78%
BERT 79% 72%

Essays
BoW 12% 11%
BERT 9% 8%

Emotion classification
BoW 91% 91%
BERT 83% 71%

Hate speech
BoW 67% 60%
BERT 53% 44%

Tweet sentiment
BoW 99% 91%
BERT 90% 68%

Table 2: Percentages of test examples for which Al-
gorithm 2 successfully identified a set St to remove
(center) and for which upon removing these instances
and retraining the prediction indeed flipped (right).

speech detection (de Gibert et al., 2018). We bina-
rize the essay data by labeling the top 10% score
points as 1 (“A”s) and others as 0. For the emo-
tion dataset, we include only “joy” and “sadness”.
We provide dataset statistics in Appendix Table
A1. Because the hate speech data is severely im-
balanced, we selected a classification threshold τ
post-hoc in this case to maximize train set F1 (yield-
ing τ = 0.25); for other datasets we used τ = 0.5,
which corresponded to reasonable F1 scores—for
reference we report prediction performance on all
datasets in Appendix Table A2.

Models We consider only ℓ2 regularized logis-
tic regression (for which influence approximation
is well-behaved). As features, we consider both
bag-of-words and neural embeddings (induced via
BERT; Devlin et al. 2018).

4 Results

Here we present results for the iterative method
(Appendix Algorithm 2), which outperforms the
simpler Algorithm 1. We provide full results for
both methods in the in the Appendix.

How often can we find St and how frequently
does removing the instances it contains flip the
prediction? As can be seen in Table 2, this varies
considerably across datasets. For movie reviews,
Algorithm 2 returns a set St for ∼80% of test
points, whereas for the (more complex) essays
data it does so for only ∼10% of instances. Other
datasets see success somewhere in-between these
extremes. However, when the algorithm does re-
turn a set St, removing this and re-training almost
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(b) Relationship between predicted probabilities and k = |St|
identified. These are correlated (as we would expect), but there
are many points for which the model is moderately or highly
confident, but where removing a relatively small set of training
data would change the prediction.

Figure 1: Results characterizing St on two illustrative datasets (sentiment classification and essay scoring).

always flips the prediction ŷt (right-most column).

What is the distribution of k = |St|? Figure
1a shows empirical distributions of k values for
subsets St identified by Algorithm 2 for the illustra-
tive movie review and essay grading datasets (full
results in Appendix). The take-away here is that
when we do find St, its cardinality is often quite
small. Indeed, for many test points removing tens
of examples would have flipped the prediction.

How does k relate to predicted probability?
Does the size of St tell us anything beyond what we
might infer from the predicted probability p(yt =
1)? In Figure 1b we show (again for just two
datasets here) a scatter of k = |St| against the
distance of the predicted probability from 0.5. The
former provides complementary information, in
that there exist instances about which the model
is confident, but where removing a small set of
training instances would overturn the prediction.

Qualitative example. One reason to recover sets
St is to support contestation—if k is small, one
might argue against the appropriateness of the
points in St and hence against the determination yt.
As a simple example,4 consider the movie review
test instance “Manages to transcend the sex drugs
and show tunes plot into something far richer”.
The true label is positive, but the model predicted
negative. Algorithm 2 reveals that removing a sin-
gle example (k = 1) from the training set would

4We provide more qualitative analysis in the Appendix.

have reversed the prediction—specifically, this neg-
ative review: “An overstylized pureed melange of
sex psychology drugs and philosophy”. It seems
this training point is only superficially similar to the
test point, which may make a case for overturning
the prediction. While standard influence functions
(Koh and Liang, 2017) can be used to rank training
points, the novelty here is observing that removing
this point alone would change the prediction.

5 Related Work

Influence functions (Hampel, 1974; Cook and
Weisberg, 1980, 1982) provide machinery to iden-
tify training points that most informed a particular
test prediction. Influence can provide insight into
predictions made by modern neural networks (Koh
and Liang, 2017), and can be used to debug models
and training data by surfacing mislabeled training
points and/or reliance on artifacts (Adebayo et al.,
2020; Han et al., 2020; Pezeshkpour et al., 2022;
Teso et al., 2021), and tuning influence can be used
to demote reliance on unwanted correlations (Han
and Tsvetkov, 2021). Influence can also be used to
audit models by inspecting training data responsi-
ble for predictions Marx et al. (2019).

Schulam and Saria (2019) audit individual pre-
dictions by approximating how much they might
have changed under different samples from the
training distribution. Ting and Brochu (2018) con-
sider influence functions as a tool for optimally
subsampling data in service of computational effi-
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ciency. Koh et al. (2019) considered approximating
the effect of removing a group of training points
using influence functions, and found that they do
so fairly well (a result that we use). They assumed
groups were given and then evaluated the accuracy
of the influence approximation to the change in
prediction. By contrast, we are interested in finding
a (minimal) group which would have the specific
effect of flipping a prediction. Elsewhere, Khanna
et al. (2019) ask: “Which training examples are
most responsible for a given set of predictions?”.

Broderick et al. (2020) assess the robustness of
economic analyses when a fraction of data is re-
moved. They therefore focus on the magnitude/sig-
nificance of parameter estimates. This framing dif-
fers from our ML-centric motivation, which aims
to recover specific small subsets of data that, if re-
moved, would change a particular prediction (and
so might support contestability).

Robustness of data analyses to dropping train-
ing data In the process of review it was brought to
our attention that Broderick et al. (2020) addressed
a closely related problem to what we have consid-
ered here, albeit from a quite different motivating
perspective—namely assessing the sensitivity of
econometric analyses to removals of small subsets
of data. It turns out that the algorithm that was (in-
dependently) proposed by Broderick et al. (2020)
in that work is similar to Algorithm 1. The present
effort is novel in our focus on machine learning,
and specifically on identifying minimal subsets of
training data which would flip a particular predic-
tion if removed prior to training.

Minimal feature set removal Another related line
of work concerns a natural complement to the prob-
lem we have considered: Instead of identifying
a minimal set of instances to remove in order to
change a prediction, the idea is to find a minimal
subset of features such that, if these were set to
uninformative values, a particular prediction would
change (Harzli et al., 2022). Work on counterfac-
tual examples has similarly sought to identify mini-
mal (feature) edits to instances that would change
the associated label (Kaushik et al., 2019).

Datamodeling Recent work on datamodeling
(Ilyas et al., 2022) provided a generalized frame-
work for analyzing model behavior as a function
training data. This approach entails learning to
estimate (via a parameterized model) changes we
would anticipate observing for a particular instance

if the model had been trained on some subset of
the original training set. This approach is flexible,
and one thing it permits is identifying the data sup-
port of a particular prediction for xt, i.e., what we
have called St (4.1.1 in Ilyas et al. 2022). Further-
more, this method is not restricted to the simple
regularized linear models we have considered here.
However, this comes with the downside of high
computation costs: One needs to re-train the al-
gorithm being modeled many times with different
training data subsets to yield a “training set” to be
used to estimate model behavior under conterfac-
tual training sets. The main comparative advantage
of our more focused approach is therefore relative
computational efficiency.

Contestability (Vaccaro et al., 2019; Almada,
2019) in ML is the idea that individuals affected
by a prediction ought to be able to challenge this
determination, which may require parties to “mar-
shal evidence and create counter narratives that ar-
gue precisely why they disagree with a conclusion
drawn by an AI system” (Hirsch et al., 2017). The
right to contestability is in some cases enshrined
into law (Almada, 2019). Identifying St for review
by an individual affected by the prediction ŷt may
constitute a concrete mechanism for contestation.

6 Conclusions

In the context of binary text classification, we inves-
tigated the problem of identifying a minimal set of
training points St such that, if excluded from train-
ing, the prediction for test instance xt would flip.
We proposed two relatively efficient algorithms for
this—both using approximate group influence (Koh
and Liang, 2017; Koh et al., 2019)—and showed
that for regularized linear models they can often
find relatively small St. We provided empirical
evidence that this captures uncertainty in a way
that is somewhat complementary to predicted prob-
abilities, and may serve as a mechanism to support
contestability, by allowing individuals to review
(and dispute) instances in St.

Limitations

A key limitation of this work is that we have re-
stricted analysis to regularized linear models with
convex loss. We leave extension and evaluation of
the proposed methods for more complex models
to future work. Indeed, our hope is that this initial
effort inspires further work on the problem of iden-
tifying minimal train sets which would overturn a
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specific prediction if removed.
More conceptually, the implications of finding

a small subset St are not entirely clear. Intuitively,
small sets would seem to indicate fragility, but we
have not formalized or evaluated this further. More-
over, there may in certain cases exist multiple (dis-
tinct) subsets St, such that removing any of these
subsets would flip the prediction for xt. This would
complicate the process of contestation envisioned.
Furthermore, assuming a stochastic parameter esti-
mation method (e.g., SGD) the composition of St
may depend on the arbitrary random seed, similarly
complicating the interpretation of such sets.
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Models are increasingly used to make (or aid) deci-
sions that directly affect individuals. In addition to
the broader (potential) “interpretability” afforded
by recovering small sets of training data that would
change a prediction if removed, this may provide
a new mechanism for individuals to contest such
automated decisions, specifically by disputing this
set of training data in some way. However, our pro-
posed method only finds training points that highly
impact the model prediction for a given example;
these may or may not be noisy or problematic in-
stances. Human judgement is required to assess the
accuracy and relevancy of the instances in St.

A broader view might be that classification mod-
els are simply not appropriate for the kinds of sen-
sitive applications we have used as motivation here.
The use of (semi-)automated methods for essay
grading, e.g., has long been debated (Hearst, 2000).
One might argue that rather than trying to provide
mechanisms to contest ML predictions, a better
choice may be not to use models in cases where
these would be necessary at all. We are sympathetic
to this view, but view the “appropriateness” of ML
for a given problem as a spectrum; contestability
may be useful even in “lower stakes” cases. More-
over, the general problem we have introduced of

identifying small training sets which can by them-
selves swing predictions, and the corresponding
methods we have proposed for recovering these,
may be of intrinsic interest beyond contestability
(e.g., as an additional sort of model uncertainty).
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Dataset # Train # Test % Pos
Movie reviews 6920 872 0.52
Essays 11678 1298 0.10
Emotion 9025 1003 0.53
Hate speech 9632 1071 0.11
Tweet sentiment 18000 1000 0.50

Table A1: Text classification dataset statistics.

Models Accuracy F1-score AUC
Movie reviews

BoW 0.79 0.80 0.88
BERT 0.82 0.83 0.91

Essays
BoW 0.97 0.80 0.99
BERT 0.97 0.84 0.99

Emotion classification
BoW 0.77 0.79 0.86
BERT 0.80 0.82 0.88

Hate speech
BoW 0.87 0.40 0.81
BERT 0.89 0.63 0.88

Tweet sentiment
BoW 0.70 0.70 0.75
BERT 0.75 0.76 0.84

Table A2: The model performance respect to datasets
included in the experiment.

A Appendix

A.1 Dataset Statistics and Predictive
Performance

We present basic statistics describing our text clas-
sification datasets in Table A1. For the tweet senti-
ment dataset, we randomly sampled 19000 points
from the 1600000 points to make experiments fea-
sible. For reference, we also report the predictive
performance realized by the models considered on
the test sets of these corpora in Table A2.

A.2 Full results

Table A3 reports the percentages of instances for
which Algorithm 1 identifies a subset St (center
column), and for which this set actually flipped
the prediction following removal (right column).
Contrast this with Table 2, which reports the same
for the proposed iterative approach in Algorithm 2.

We provide histograms of k = |St| for the sets
we were able to identify via Algorithm 1 in Figure
A.2, and the same plots for Algorithm 2 in Figure
A.4.

Finally, we plot the relationship between k and
predicted probabilities under Algorithms 1 and 2
in Figures A.3 and A.5, respectively.

Features Found St Flip successful
Movie reviews

BoW 78% 78%
BERT 79% 76%

Essays
BoW 12% 12%
BERT 9% 9%

Emotion classification
BoW 91% 91%
BERT 83% 78%

Hate speech
BoW 67% 65%
BERT 53% 49%

Tweet sentiment
BoW 99% 98%
BERT 90% 73%

Table A3: Percentages of test examples for which Algo-
rithm 1 successfully identified a set St (center) and for
which upon removing these instances and retraining the
prediction indeed flipped (right).

A.3 Additional qualitative analysis
We conclude with a brief qualitative analysis of
examples in St retrieved in the case of the essays
data. The model operating over BERT representa-
tions classified this test point (xt) as 0, i.e., not an
“A”: “The cyclist in this essay was a very brave man
...”. The example is about a paragraph in length
total, but details adventures of a cyclist. In this
case it happens that the reference label is, in fact,
an “A”, so the model is incorrect. Algorithm 2
reveals that removing a single training point and
retraining would have overturned this prediction,
yielding an “A”. The point in question is labeled 0
(so below an “A”) and is about the mood of a mem-
oir, in particular arguing that the person central to
this was happy. The student-author of the cyclist
essay might reasonably argue that this example is
not at all relevant to their essay, and the fact that
excluding this single example would have meant
their essay received an “A” may be an adequate
case for changing their grade accordingly.

A.4 Time complexity
We recorded wall clock times required to search
for |St| on all test points in each dataset using Al-
gorithm 1 and Algorithm 2 on Intel(R) Core(TM)
i9-9920X CPUs; we report these times in Table
A4. For Algorithm 1, the longest running time is
required for the essay dataset because most test
predictions cannot be flipped even after iterating
over all training points. Algorithm 2 is consider-
ably slower than Algorithm 1. The main reason
lies in recording the set of training points not in St
(line 20 in Algorithm 2) and re-calculating the IP
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value in each iteration to reduce the minimal candi-
date set. This additional time is traded off against
the ability to (typically) find smaller St compared
with 1. Overall, the running time required to find
|St| for one test point is relatively minimal for both
algorithms.

A.5 Attribution methods

We consider different methods (i.e., other than influ-
ence functions) to rank training instances including
gradient similarities in terms of the loss, similarity-
based methods and randomly sampling training
points. Of these we found that the proposed method
works best in terms of finding instances which exert
maximal influence on the prediction.

One natural way to quantify the impact of a
training point xi on a training point xt by simi-
larity methods. If the model has training points
similar to the test point, it may classify the test cor-
rectly with high probability. We consider three of
similarity-based methods: EUC = −||xt − xi||2,
DOT = ⟨xi, xt⟩, and COS = cos(xi, xt).

Apart from influence function and IP, we con-
sider gradient-based instance attribution methods:

1) RIF = cos(H−
1
2∇θL(xt), H−

1
2∇θL(xi))

2) GD = ⟨∇LL(xt),∇θLL⟩
3) GC = cos(∇θL(xt),∇θL(xi))
RIF was proposed to mitigate the issues of out-

liers and mislabeled points being returned by the
standard influence functions (Barshan et al., 2020).
GC and GD measure the similarity between two
instances can also become an effective way to in-
terpret the model from the instance perspective
(Charpiat et al., 2019). Apart from the methods
above, we randomly sample training subsets and
remove them accordingly.

We apply the above methods to the movie review
dataset trained with a logistic regression model.
We evaluate each attribution method as follows:
First, we remove the top k = |St| training points
from the training dataset according to the score
calculated from the attribution method. Then we
train a new with the same dataset except for the
removed points. Finally, we compare the difference
in predictions for each test point from the old model
to the new model. To show the impact of attribution
methods under different k = |St|, we iterated with
k = |St| from 50 to 3000. The mean absolute
difference is plotted along with k = |St| shown in
Figure A.1. IP has a larger impact on the predicted
probability, compared to removing training points
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Figure A.1: The relationship between the mean of ab-
solute difference on predicted probabilities for all test
points results from removing |St| training points, using
different methods.

ranked according to other methods.
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Datasets Movie reviews Essays Emotion Hate speech Tweet
Bow Algorithm 1 5 155 5 40 11

Algorithm 2 239 257 534 444 1529
BERT Algorithm 1 3 161 19 52 8

Algorithm 2 604 288 761 522 2203

Table A4: Running time (in seconds) to find |St| for all test points in each data set by Algorithm 1 and Algorithm 2.

Algorithm 2: An iterative approach to finding a minimal set to flip a prediction
Input: f : Model; Z tr: Full training set; θ̂: Parameters estimated Z tr; L: Loss function; xt: A test point; τ :

Classification threshold (e.g., 0.5)
Output: St: minimal train subset identified to flip prediction for xt (∅ if unsuccessful)

1 θ′ ← θ̂

2 Z tr
r , S̃t ← Z tr, Z tr // Track remaining points and candidate subset S̃t

3 H ← ∇2
θL(Z tr, θ′)

4 ∆θ ← H−1∇θL(Z tr, θ′)
5 ∆tf ← ∇θfθ̂(xt)

⊺∆θ
6 ŷt ← f(xt) > τ
7 ∆tfsum ← 0
8 k′ ← |Z tr|
9 while S̃ changed since last iteration do

// Sort instances (and estimated output differences) in order of the current prediction
10 direction← {↑ if ŷt else ↓}
11 indices← argsort(∆tf, direction)
12 ∆tf ← sort(∆tf, direction)

13 for k = 1 ... |S̃t| do
14 ŷ′t ← (f(xt) + sum(∆tf [: k])) > τ
15 if ŷ′t ̸= ŷt then
16 ∆tfsum ← sum(∆tf [: k])
17 diff← k′ − k
18 k′ ← k

19 S̃t ← S̃t[indices[: k]] // Update candidate subset

20 Z tr
r ← Z tr/S̃t // And the set of training points not in S̃t

21 θ′ ← θ +∆θ[indices[: k]]
// Update Hessian and ∇ of loss using updated θ estimate

22 H ← ∇2
θL(Z tr

r , θ
′)

23 ∆θ ← H−1∇θL(S̃t, θ′)
24 ∆tf ← ∇θfθ̂(xt)

⊺∆θ
25 break

26 if |S̃t| = |Ztr| then
27 return ∅
28 return S̃t
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Figure A.2: Histograms of k = |St| values from Algorithm 1 over the subsets of test points xt for which we were
able to successfully identify a set of points St such that removing them would flip the prediction for ŷt.
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Figure A.3: Relationship between predicted probabilities and k = |St| identified from Algorithm 1.
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Figure A.4: Histograms of k = |St| values from Algorithm 2 over the subsets of test points xt for which we were
able to successfully identify a set of points St such that removing them would flip the prediction for ŷt.
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Figure A.5: Relationship between predicted probabilities and k = |St| identified from Algorithm 2.
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Abstract

Subjective bias is ubiquitous on news sites,
social media, and knowledge resources like
Wikipedia. Many existing methods for subjec-
tive bias correction have typically focused on
making one-word edits and have been trained
over a single (often, noisy) domain. In con-
trast, we propose a novel reinforced sequence
training approach for robust subjective bias cor-
rection. Three of the unique characteristics of
the approach are: (i) it balances bias neutraliza-
tion with fluency and semantics preservation
through reinforcement learning, to broaden the
scope to bias beyond a single word; (ii) it is
cross-trained over multiple sources of bias to
be more robust to new styles of biased writing
that are not seen in the training data for a single
domain; and (iii) it is used to fine-tune a large
pre-trained transformer model to yield state-of-
the-art performance in bias text correction task.
Extensive experiments show that the proposed
approach results in significant improvements in
subjective bias correction versus alternatives.

1 Introduction

Objective writing is essential for many important
communication venues like news, encyclopedias,
scientific publications, and more. And yet, bias
is seemingly ubiquitous whether due to malice or
unintentional habits of the writer. This subjective
writing not only expresses the writer’s preferences
and personal interpretations, but also can influence
the reader’s viewpoints on the topic (Greenstein
and Zhu, 2014; Beukeboom and Burgers, 2017).
Hence, much like modern spelling and grammar
checkers, there is a need for effective methods to
detect and neutralize biased language.

The goal of this subjective bias correction is to
rewrite a source sentence s into a neutral sentence
t that is clear, objective, and stereotype-free. Fur-
thermore, the rewritten sentence t should preserve
the original meaning of the source text s. Enabling
such subjective bias correction is difficult. Many

Examples of Biased and Neutral Statements

Acetaminophen is sold over the counter as a pain medication.

Acetaminophen is the most dangerous over-the-counter
pain medication.

A 2013 episode of This American Life presented a number
of studies that verified that acetaminophen has killed more
people than any other over-the-counter pain medication.

In the This American Life episode on acetaminophen, one
segment described the tragic death of a five-month-old baby
and thus should convince listeners that the Federal Drug
Administration (FDA) must take immediate action.

Table 1: Examples of multi-word and multi-occurrence
biased statements (2 and 4), and corresponding neutral
statements (1 and 3). The words “most dangerous” in
the second statement and the words “tragic” and “should”
in the fourth statement express the author’s opinion or
belief. The third statement is neutral since it describes
the subjective view expressed on a radio show. (NROC,
2022)

examples of bias are challenging to detect due to
their subtle nature, or through sentence framing
(rather than through subjective words), or through
convoluted writing intend to obscure the truth.

Encouragingly, previous research has begun to
make progress in identifying prejudiced or emo-
tive language used in factual statements (Recasens
et al., 2013; Bhosale et al., 2013; Misra and Basak,
2016; Hube and Fetahu, 2018; Zhong et al., 2021;
Madanagopal and Caverlee, 2022) and a few stud-
ies have begun to investigate subjective bias correc-
tion (Pryzant et al., 2019; Liu et al., 2021; Zhong
et al., 2021). These approaches, however, typically
face a number of key challenges:
Noisy and Limited Training Data. Many
approaches rely on Seq2Seq models (encoder-
decoder architecture) using a Wikipedia-derived
Neutrality Corpus (WNC) (Recasens et al., 2013)
based on edits to Wikipedia that have been flagged
with a special “neutral point of view” tag. How-
ever, we find that over 5% of revisions in the WNC
(e.g., as in (Pryzant et al., 2019)) are not related
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to bias mitigation, but rather content corrections,
grammatical corrections, or typographical correc-
tions. And more than 15% of the human-corrected
neutral sentences with multi-occurrence bias still
contain subjective bias. Training a bias correction
approach with such noisy data can lead to models
that focus on single word and single occurrence
bias (missing examples like in Table 1), and result
in inconsistent performance.

Training-Testing Mismatch. Second, existing ap-
proaches are primarily trained on maximizing the
likelihood of each token of the target sequence
(Pryzant et al., 2019; Zhong et al., 2021) by relying
on the input sequence and previous ground-truth
token, but testing is done on the entire input and
output sequence. The training is conducted using
token-level objective functions and tested using
sentence-level evaluation metrics, such as BLEU.
Further, although fluency and content preservation
are used for evaluation, such objectives are not con-
tained in training objectives. This training-testing
criteria mismatch can lead to poor performance at
inference time.

Lack of Robustness. Third, models trained on
one domain tend to perform poorly on other do-
mains, limiting their adoption. Recent studies have
shown further fine-tuning of pre-trained models can
improve domain generalization (Sun et al., 2020;
Wang et al., 2020), but such methods generally
need large volumes of training data from the tar-
get domain. Is it possible to generalize subjective
bias correction models trained in one domain to
multiple new domains even in the absence of rich
training data?

To address these challenges, we propose a novel
reinforced sequence training approach toward im-
proving subjective bias correction. The overall
approach first pre-trains a bias correction model
using noisy training data (much like in previous ap-
proaches) but then fine-tunes the pre-trained model
through reinforcement learning with a carefully de-
signed cross-domain bias critic. This cross-domain
bias critic aligns training and testing time objec-
tives by giving equal importance to the quality
of text generation and semantic content preserva-
tion through self-supervised reward-driven learn-
ing. That is, it balances bias neutralization with
fluency and semantics preservation through rein-
forcement learning, to broaden the scope to bias
beyond a single word or single occurrence within a
sentence. Further, the proposed approach is cross-

trained over multiple sources of subjective bias to
be more robust to new styles of biased writing that
are not seen in the training data for a single domain.
And instead of using word-level cross-entropy loss
during training, we directly optimize sentence-level
task-based metrics through the policy gradient to
gain significant improvement in performance.

In summary:

• We propose a reinforcement learning frame-
work for improving subjective bias correction.

• We improve the generalizability of the model
across multiple domains by adopting a cross-
domain bias classifier-based reward, without
the need for parallel data for domain adaptation.

• We align training and testing time objectives
by using a novel reward-driven learning frame-
work that goes beyond the traditional BLEU
rewards, and guides the model to generate di-
verse bias-free sentences which are fluent and
grammatically correct.

• We empirically demonstrate how the proposed
reinforcement learning-based approach can
fine-tune existing large pre-trained models like
BART to perform efficient bias correction while
preserving content semantics.

Through extensive experiments, we show that
the proposed approach results in significant im-
provements in subjective bias correction versus al-
ternatives. Furthermore, evaluations on semantic
similarity and fluency benchmarks show that this
bias correction approach effectively removes sub-
jective bias while maintaining semantic informa-
tion in neutralized text.

2 Related Work

Detecting Language Bias. Many studies have fo-
cused on extracting bias lexicons or opinion words
(Riloff and Wiebe, 2003; Liu et al., 2005; Wiebe
et al., 2005; Appling, 2017). (Recasens et al., 2013)
reduced the lexical ambiguity in detecting biased
statements by using a combination of language
models and bias lexicons. (Misra and Basak, 2016;
Hube and Fetahu, 2018) developed deep learning
models to detect bias in political speeches and
Wikipedia. (Madanagopal and Caverlee, 2022)
combined a cross-domain dataset and a contextu-
alized language model to train a deep model for
detecting biased language.
Linguistic Bias Correction. The majority of re-
search to address bias correction in text has focused
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Figure 1: Illustration of the proposed Reinforced Sequence Training Approach for subjective bias correction. Task 1
is pre-training the agent (bias-correction-model) with noisy WNC data, Task 2&3 are building classifiers that will
be used to compute rewards, and Task 4 is reinforced sequence training with 3 reward functions.

on demographic bias like gender bias (Manzini
et al., 2019; Zhao et al., 2017, 2019; Bordia and
Bowman, 2019; Wang et al., 2018). (Pryzant et al.,
2019) were the first to address generic linguistic
bias correction and later (Liu et al., 2021) worked
on depolarizing political text. In both approaches,
text segments (words or sentences) that are subjec-
tive or polarizing are first identified and then re-
placed with those that are semantically similar but
less subjective. (Liu et al., 2021) studied generative
adversarial networks to train bias correction models
using non-parallel corpus. Pryzant proposed two
joint embedding models to neutralize biased state-
ments, but their research is restricted to addressing
subjective bias that originated from single-word
edits (Pryzant et al., 2019). Our proposed method
extends from single-word to multi-word correction
by generating fluent bias-free sentences.
Attribute Style Transfer. Subjective bias correc-
tion can be framed as a specialized attribute transfer
task which aims at reconstructing an input text so
that a linguistic attribute of interest is transferred to
a desired value, such as text sentiment transfer (Jin
et al., 2022; Lample et al., 2018). Most attribute
transfer methods uses auto-encoders that rely on
large parallel corpus (Rao and Tetreault, 2018; Bri-
akou et al., 2021; Madaan et al., 2020; Prabhumoye
et al., 2018; Pryzant et al., 2019; Jin et al., 2022).
(Huang et al., 2019) used a dictionary based method
to replace words in a sentence to create diverse
paraphrases. (Lai et al., 2021) developed an effi-
cient method to fine-tune a large pretrained model
for text-attribute transfer on low-resource domains.
(Chen et al., 2018) used cross-aligned auto-encoder

trained on opposite ideology news data to gener-
ate flipped titles. Our proposed method is inspired
from various attribute style transfer methods, but
addresses the problem of using noisy parallel data
for supervised style transfer for better generaliza-
tion using reinforcement learning methods.

3 Reinforced Bias Corrector

In this section, we introduce the design of the
proposed subjective bias correction approach (il-
lustrated in Figure 1). Given a biased statement
x that describes a facts f using a set of words
(x1, x1, ..., xN ), where N is the length of x. The
aim of a bias correction system is to generate a
statement y = (y1, y2, ...., yM ), where M is the
length of y. The generated statement y is not only
expected to have a neutral tone, but also preserve
the original semantic content expressed in state-
ment x. Additionally, y is also expected to present
the fact F in a grammatically correct and fluent
language that is easy for a reader to comprehend.

3.1 RL and Bias Correction
Given these goals, a natural approach to perform
subjective bias correction is to train an encoder-
decoder with attention network using a parallel
corpora similar to many natural language genera-
tion tasks (Bahdanau et al., 2014; Zhao et al., 2019;
Chollampatt and Ng, 2018; Pryzant et al., 2019;
Konstas et al., 2017; Li et al., 2018; Gupta et al.,
2018; Vaswani et al., 2017). The encoder converts
the input sentence into a fixed-length vector that
will be used by the decoder to generate the output
sequence, word by word. The entire network will
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be trained with the parallel data (x, y) to minimize
the cross-entropy loss (CE) that is given by:

LCE =
T∑

t=1

logπθ(yt|yt−1, st, ct−1, x) (1)

Since minimizing LCE makes the model generate
text close to the human-reference edits, the training
data needs to be of high-quality. Since the only
large parallel corpus available for bias correction is
noisy, such likelihood optimized models have lim-
ited performance (Pryzant et al., 2019; Zhong et al.,
2021). Additionally, these models do not produce
the best results for metrics during evaluation be-
cause the training is not optimized to generate text
that addresses evaluation metrics (such as BLEU or
Content Similarity). By aligning the training and
testing objective, we can improve the performance
of bias correction in a source domain (Wikipedia),
though this does not guarantee generalizability over
other domains.

Hence, we propose to improve the performance
and generalizability of bias correction models by
fine-tuning the Seq2Seq model using Reinforce-
ment Learning (RL). In this method, instead of
maximizing the probability that the predicted word
is close to the ground truth, the parameters of
the agent are optimized to maximize long-term
rewards. We can formulate the RL engine for bias
correction as composed of an agent (A), action (a),
policy (pi), and reward (R). The agent is our bias
correction model with parameters θ that observes
the current state (encoder’s output) at time t and
takes an action a (predict the next word ŷt) by using
a policy (π). The reward (R) is a feedback returned
to the bias correction model from the system by
evaluating the quality of generated text.

3.2 REINFORCE Training
In reinforced bias correction task, the agent’s be-
havior is controlled primarily through the neutrality
score that measures the degree of subjective bias
in the generated text ŷ. So, the objective of maxi-
mizing the expected scalar reward R : ŷ → [0, 1]
is given by:

J(θ) = Eπθ(ŷ/x)[R(ŷ)] (2)

Since the reward is the discrete function of
the model’s output, the RL objective is non-
differentiable with respect to the model parame-
ter θ, ), which makes it difficult to back-propagate
the error signals from the critic to the generator.

This issue can be addressed through policy gradi-
ent or Q-learning based methods. In our initial
experiments, we considered several RL methods,
including Q-learning, but these models did not con-
verge even after training for a long time (more than
48 hours). This is mainly due to the extremely large
action space O(W T ), where W is the number of
words in the vocabulary (104) and T is the sentence
length.

In contrast, the REINFORCE-based method
showed good performance and converged faster
than other methods. Hence, we focus our discus-
sion here on REINFORCE as our primary policy
gradient method. In REINFORCE, the expected
reward is approximated using a sampling method
and the model is trained using stochastic gradient
ascent (Williams, 1992), which can be formulated
as:

∇θJ(θ) = Eπθ(ŷ/x))[R(ŷ)∇θlogπθ(ŷ/x)] (3)

where, πθ is a policy that generates a probabil-
ity of picking a word as output. Even though RL
training is promising, efficiently applying it for
real world problems remains a challenge due to
extremely large sequence space (5000050 for a sen-
tence with length of 50 and vocabulary of 50000)
(Mnih et al., 2015). To achieve the RL objective,
a sequence model is pre-trained first and then fine-
tuned using REINFORCE algorithm using different
rewards. The REINFORCE method optimizes the
best policy directly by modifying the parameters
of the model based on the observed rewards. Since
it directly optimizes the return, it tends to be more
stable in converging to a good behavior

4 RL Rewards and Policy Extensions

In our subjective bias correction task, the key test-
ing objectives are: (i) reduce subjective bias; (ii)
preserve content expressed in the source text; and
(iii) the generated text needs to be grammatically
correct fluent. Based on the above objectives, the
designed reward function R(x, ŷ) consist of three
rewards:

R(x, ŷ) = α ∗RN (ŷ)+β ∗RS(x, ŷ)+γ ∗RF (ŷ)
(4)

where, RN (ŷ) is the neutrality reward for the bias
corrected text ŷ , RS(x, ŷ) is the semantic similar-
ity reward computed between the input text x and
output text ŷ, and RF (ŷ) is the fluency reward for
the output text ŷ. Here α, β, γ > 0 and represents
weights for the respective rewards.
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Neutrality Reward. The central objective of this
first reward is to remove any subjective bias that is
contained in the input sentence x. The neutrality
reward RN (ŷ) computes the presence or absence
of biased tone in the output sentence ŷ. It is not a
relative score that is computed between the input
text x and output text ŷ, rather an absolute score
that is computed purely on the output text ŷ. Be-
cause of which, there is a possibility that the model
might remove a chunk of text that is biased and
output a partial sentence that is neutral. But the
combination of neutrality reward RN and seman-
tic similarity reward RS ensures the corrected text
carries all the information expressed in an unbi-
ased or neutral tone. To compute the neutrality
reward, a RoBERTa based binary classifier is used
that takes the sentence as input and produces a
probability score that the input text is biased or not
(Madanagopal and Caverlee, 2022). More details
about this classifier is available on our previous
work on detecting linguistic bias (Madanagopal
and Caverlee, 2022).

Semantics Similarity Reward. The semantic sim-
ilarity reward RS(x, ŷ) is used to ensure that all
the information that is expressed in the input sen-
tence is retained in the output sentence ŷ. Standard
semantic similarity metrics like BERTScore can-
not be used for this task, because the tone or slant
change will affect the similarity score significantly.
To create a subjectivity-free similarity reward, we
created a Siamese network based on BERT and
fine tuned using Wikipedia-derived parallel corpus
(Mueller and Thyagarajan, 2016).

Fluency Reward. The fluency reward encourages
the model to generate a sentence ŷ that is grammati-
cally correct or natural sounding. There are various
methods to compute the grammatical correctness of
a sentence such as Perplexity score (PPL) (Meister
and Cotterell, 2021). Large pretrained models are
used to compute the PPL scores, where grammat-
ically incorrect sentences will have high PPL and
grammatically correct sentence will yield a lower
PPL score (Meister and Cotterell, 2021). But, the
fluency reward needs to be a normalized value be-
tween 0 and 1. We used the Corpus of Linguistic
Acceptability (CoLA) that contains 10,657 English
sentences that are labelled for grammatical and
syntactic correctness (Warstadt et al., 2018). We
then built a binary classifier using RoBERTa and
used the classifier result as the fluency reward for
measuring the correctness of the generated text Ŷ .

4.1 Cross-domain linguistic bias critic

In classic REINFORCE learning scenarios, to min-
imize the distinction between human reference edit
and the machine correction, the bias critic is trained
with the same training data used for agent’s pre-
training (Wu et al., 2018). Since some of the
ground-truth data still contains bias, using similar
approach can adversely affect the agent’s behaviour.
Also, our objective is to learn beyond what is avail-
able in the training corpus so that it can efficiently
handle new style of writing and all forms of sub-
jective bias outside of Wikipedia domain. Hence,
we investigate in this paper, the potential of using a
cross-domain bias classifier as the bias critic. The
cross-domain bias classifier is trained by leveraging
annotated datasets from other domains that are rich
in subjectivity and apply recent deep transformer
models like BERT in order to more robustly model
factual statements. The cross-domain bias classi-
fier is evaluated to have an accuracy of 89% and
coincide with human judgement for bias detection.
There are two advantages to using a cross-domain
bias classifier: First, the cross-domain dataset used
for training the binary classifier does not need a par-
allel dataset. Second, the cross-domain aspect lets
the classifier learn new subjective writing styles
from other subjectivity rich domains and assign re-
wards that are of high quality, which in turn makes
the reinforcement more efficient.

Generally, the most effective method to approxi-
mate the policy gradient is either multinomial sam-
pling of the softmax-normalized outputs or beam
search. Both the objectives can be trained either se-
quentially or simultaneously. Our proposed method
uses a sequential training, where the agent is first
trained with supervised methods and then fine-
tuned with reinforced methods.

4.2 Delayed and Sparse Reward

Typically, in a RL setting, rewards are assigned
as soon as the action is taken by the agent. But
in our method, the reward is observed only at the
end of generating a complete sentence. Which
means one reward for multiple actions taken by the
agent. Due to this sparsity of reward, the agent
receives same reward for all steps taken to generate
a complete sentence. This makes the RL training
inefficient because the agent has no clue which
action led to bad results. To address this issues,
Reward shaping strategy (Ng et al., 1999) is used
to compute intermediate rewards as suggested by
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(Bahdanau et al., 2014):

R(yt) = R(y1:t)−R(y1:t−1) (5)

For simple rewards like BLEU, it is easy to
compute the intermediate rewards with partial sen-
tences. But the reward functions used in the pro-
posed approach only works if the complete sen-
tence is available. We used the modified reward
shaping method used by Hongyu et al. (Gong et al.,
2019), where the agent is made to generate the en-
tire text at each step and the generated text is used
to compute the reward.

5 Experimental Setup

This sections provide an overview of the datasets,
the baseline bias correction models, the evaluation
metrics, and the details of their implementation.

5.1 Datasets
For pre-training the agent (Seq2Seq or Trans-
former), we harvested Wikipedia-derived Neutral-
ity Corpus (WNC) (204k parallel sentences) follow-
ing the instructions of (Recasens et al., 2013), but
included multi-word edits (See the Appendix). For
training a cross-domain bias classifier, we used the
dataset assembled in a prior study (Madanagopal
and Caverlee, 2022). For evaluation, we used WIK-
IBIAS (2,117 biased and 2,911 neutral), a high-
quality dataset that is manually curated by (Zhong
et al., 2021).

5.2 Baselines
We consider three baselines models:
Delete Biased Word(s) uses a bias tagger to iden-
tify subjective words in a sentence and removes
them. More details on the bias tagger is available
in the Appendix.
Join Embedding Model uses a denoising autoen-
coder and a token-weighted loss function to auto-
matically neutralize subjective bias in text (Pryzant
et al., 2019). We retrained their best performing
CONCURRENT model.
OpenNMT Transformer is a widely used medium
transformer model implemented in the OpenNMT-
py library that contains 12 heads, 768 dmodel size
and 3072 dff size (Klein et al., 2017).

5.3 Models
We consider two classes of models for the proposed
reinforced sequence training: (i) a vanilla Seq2Seq
model; and (ii) a pre-trained transformer model.

Reinforced Seq2Seq Model (RL-Seq2Seq): The
first model is an attention-based Seq2Seq model
similar to (Bahdanau et al., 2014). It is pretrained
with the WNC corpus and the pre-trained model
is used as an agent in the proposed reinforced
sequence training approach with three reward
functions. The following three variations were
trained and evaluated:
RL-Seq2SeqB: Reinforced sequence-to-sequence
model with base bias reward (WNC).
RL-Seq2SeqCDB: Reinforced sequence-to-
sequence model with cross-domain bias reward.
RL-Seq2SeqCDB+FL+SIM : Reinforced
sequence-to-sequence model with cross-domain
bias, fluency and semantic content preservation
reward.

Reinforced Transformer Model (RL-Trans):
The second model is the BART pre-trained trans-
former model (Lewis et al., 2019), which performs
well on paraphrasing tasks with good fluency and
content preservation (Lewis et al., 2019; Lai et al.,
2021). We downloaded a pre-trained BART model
(base) and further pre-trained on the noisy WNC
corpus. The further pre-trained BART model is
used as one of the baseline models, and further
fine-tuned, resulting in three variations akin to the
Seq2Seq ones: (RL-TransB , RL-TransCDB , RL-
TransCDB+FL+SIM ).

5.4 Training

Training is in four steps: (1) pre-train the Seq2Seq
model using the noisy Wikipedia NPOV data with
an MLE objective; (2) train a cross-domain bias
classifier using a large pre-trained language model
like RoBERTa; (3) train a siamese network to com-
pute semantic similarity between sentences without
subjective tone; and (4) fine-tune the pre-trained
Seq2Seq model using reinforcement learning with
three reward components. A combination of train-
ing data sampling and new domain data (non-
parallel) is used for reinforced fine-tuning. For flu-
ency reward, we used the CoLA dataset (Warstadt
et al., 2018) and trained a RoBERTa model with
an accuracy of 92%. The hyperparameters used
for pre-training the Seq2Seq model and fine-tuning
of the reinforcement model are presented in the
Appendix. For semantic similarity evaluation, the
BERTScore model is downloaded from Hugging-
Face.1 All code is implemented using PyTorch and

1https://huggingface.co/spaces/evaluate-metric/bertscore

2590



Model Neutrality↑BLEU↑ BLEURT↑ PPL↓ BERT-
Score↑

Bias↓ Fluency↑ Content↓

Source Copy 9.47 90.83 32.47 33.47 100.00 - - -
Biased word removal 38.19* 92.03* 36.24* 49.21* 85.24* -0.179* -0.127* 1.28*
Join Embedding 45.80* 93.94* 52.92* 31.87* 87.58* -0.213* 0.011* 1.23*
OpenNMT Transformer 49.47* 87.82* 61.24* 34.57* 88.45 -0.205* 0.034* 1.14*
Seq2Seq 45.14* 93.23* 54.27* 39.47* 86.14* -0.217* 0.008* 1.29*
RL− Seq2SeqCDB+FL+SIM 63.72* 94.52 61.27* 26.62* 92.97* -0.475* 0.013* 1.06*
Transformer 52.51* 91.17* 60.84 22.78* 83.23* -0.418* 0.169* 1.12*
RL− TransCDB+FL+SIM 66.48* 89.68* 66.66* 23.97 94.65* -0.492* 0.164* 1.19*
Target Copy 92.14 100 100 31.68 98.44 - - -

Table 2: Bias neutralization performance. RL-Seq2Seq and RL-Trans models are trained using our reinforced
sequence training approach. For quantitative metrics, rows with asterisks (*) are significantly different than the
preceding row. ↑ / ↓ means higher/lower score is preferred for the corresponding metric.

Model Neutrality↑ BLEU↑ BLEURT↑ PPL↓ BERT-Score↑
RL− Seq2SeqB 59.08 94.08 59.24 32.58 87.74
RL− Seq2SeqCDB 63.65 94.23 61.24 31.24 85.23
RL− Seq2SeqCDB+FL+SIM 63.72 94.52 61.27 26.62 92.97
RL− TransB 61.16 89.37 66.51 22.89 84.50
RL− TransCDB 66.51 89.11 65.84 22.57 82.21
RL− TransCDB+FL+SIM 66.48 89.68 66.66 23.97 94.65

Table 3: Performance comparison Reinforced sequence models on different reward schemes. ↑ / ↓ means
higher/lower score is preferred for the corresponding metric.

Model News Articles Academics Conservapedia
Bias↓ Fluency↑ Content↓ Bias↓ Fluency↑ Content↓ Bias↓ Fluency↑ Content↓

Delete Biased -0.39 -0.77 1.6 -0.41 -0.13 1.53 0.25 -0.35 1.22
Join Embedding -0.015 0.11 1.58 -0.93 -0.73 2.12 -0.31 -0.37 1.25
OpenNMT Transformer -0.07 0.05 1.64 -0.61 0.48 1.65 0.08 -0.38 1.69
RL− Seq2SeqCDB+FL+SIM -1.38 0.59 1.14 -0.92 0.41 1.45 -0.42 0.43 1.09
RL− TransCDB+FL+SIM -0.96 0.72 1.33 -1.01 0.55 1.11 -0.63 0.56 1.22

Table 4: Human evaluation of subjective bias correction performance across 3 different domains.

trained on a Google Cloud Platform with NVIDIA
Tesla P100 GPU.

5.5 Evaluation Metrics

The following set of automated metrics are used to
evaluate the quality of bias correction models:
Neutrality: Similar to previous work (Luo et al.,
2019; He et al., 2020), the neutrality score is com-
puted using a binary classifier that is pre-trained
to evaluate subjective bias across various domains;
on human reference dataset it has an accuracy of
89% (Madanagopal and Caverlee, 2022). The text
generated by each model is sent to the binary clas-
sifier and the probability score that it belongs to the
neutral category is used as the neutrality score.
BLEU: A commonly used metric that measures
the similarity of machine corrected text and hu-
man reference correction through n-gram precision
counting (Papineni et al., 2002).
BLEURT: A trained metric that uses transformer
models to evaluate the quality of natural language
generation models (Sellam et al., 2020).

BERTScore: Uses contextual language models
such as BERT and computes semantic distance
between candidate and reference sentences (Zhang*
et al., 2020).
PPL: To evaluate the grammatical correctness and
fluency of the machine generated text, we com-
puted the perplexity score (PPL) using the large
pre-trained language model GPT-2. The perplexity
score PPL is computed directly on the generated
text with no reference text.

6 Experimental Results

We present the results of the experiments through
both automated and human judgement evaluation.

6.1 Automated Evaluation
Table 2 shows our proposed model’s performance
in comparison with the selected baseline models.
Among the baseline models, the OpenNMT trans-
former model performed better with a neutrality
score of 49.47 and BERTScore of 88.45, and the
Join Embedding model had the best BLEU be-
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cause of its copy network nature. But our two
proposed reinforced sequence models performed
significantly better than the baseline models on all
metrics, especially the neutrality score ( 18% in-
crease). In terms of BLEU score, the RL-Seq2Seq
model had the best score of 94.52. Since the RL-
Trans generated more diverse text compared to the
human-edits, it’s BLEU score was relatively low.
But its BERTScore being high confirmed the RL-
Trans model’s ability to retain the information con-
veyed in the source sentence to the target sentence
with high neutrality score. Similarly the perplexity
score for the RL-Trans model indicates high flu-
ency. This might be due to the fact the pre-trained
BART model is trained on large diverse corpus.
Overall the RL-Trans had the best performance on
all automated metrics except BLEU.

6.2 Evaluation of Reward Function

To understand the effect of each reward on the
performance of the bias correction model, we con-
ducted an ablation study as shown in Table 3. Base
bias rewards are based on a bias classifier trained
solely on Wikipedia dataset, while cross-domain
bias rewards are trained on a dataset containing bi-
ased statements from various domains like political
speech and product reviews. In terms of the neu-
trality score, we observed significant improvement
in the bias correction performance by the use of
cross-domain bias reward. It could be because pre-
training data is noisy, so the output still contains
biased statements that the cross-domain bias classi-
fier is able to detect more subtle forms of bias and
multiple occurrences of bias. In terms of BLEU,
the RL-Seq2Seq model with all rewards performed
much better. The RL-Trans model’s BLEU score
was low which is due to the diversity in the text gen-
erated relative to the source text. This shows BLEU
is not a good metric for comparing bias correction
accuracy. So we use BLEURT which accounts
for the n-gram accuracy with embeddings. The
reinforced transformer model with all rewards per-
formed the best. One interesting observation is that
the improvement in RL-Trans using fluency and
content similarity reward is small relative to RL-
Seq2Seq. The large pre-trained BART model al-
ready performs well on fluency and content preser-
vation, so adding rewards has little impact. All in
all, the rewards were more effective at achieving
the testing objective and also produced high-quality
text.

6.3 Multi-Occurrence Bias Evaluation
We performed a separate study to investigate the
performance of reinforced bias correction in ad-
dressing multiple instances of bias within a single
sentence. A set of 331 sentences were selected
from the WIKIBIAS corpus that contain more than
one instance of subjective bias. The output of each
model is then analyzed with the help of a bias tag-
ger to understand how much of the bias still exists
or if new bias is introduced. RL-Seq2Seq model
trained with all 3 rewards had the best performance
(16%) of addressing multiple occurrence of bias in
a single sentence (See Table 5).

Model Neutrality % biased
Biased Word Removal 34.06 30.85
Join Embedding 50.56 37.32
OpenNMT 58.85 41.62
RL-Seq2Seq 67.33 16.17
RL-Trans 67.15 18.24

Table 5: Performance evaluation of addressing multi-
occurrence bias. % biased represents the percentage of
sentences that contains at least one instance of biased
chunk after bias correction (lower the better).

6.4 Human Judgement
With a sample of 100 sentences collected for each
of the experimented models, we conducted a hu-
man evaluation study with 10 judges to determine
if the bias correction models generate human-like
sentences. See the Appendix for more detail. A
majority of the human judgement results correlated
with the automatic evaluation. The Reinforced-
Transformer model was preferred by a majority of
the judges for its neutral tone and language flu-
ency. The Reinforced Seq2Seq model was shown
to preserve the same information as the source text.
Since the pre-trained transformer model generates
text that is diverse from the original input sen-
tence, it might have read slightly different for a hu-
man. But the BERTScore showed the Reinforced-
Transformer model to have better performance in
content preservation.

The Kappa statistic was used to compute the
inter-annotator agreement for human evaluation
task. The average kappa values for the individual
aspects are (i) Bias neutralization: 0.72; (ii) con-
tent presentation: 0.75; and (iii) fluency: 0.85. Due
to the complex nature of subjective bias detection,
the inter-annotator agreement for that task is the
lowest (0.72). On the other hand, Since most of the
annotators are well-versed in assessing the gram-
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matical correctness of a sentence, the kappa value
for fluency was high (0.85).

6.5 Cross-domain Model Performance

Finally, we explore the generalizability of the pro-
posed bias correction model by performing infer-
ences on three datasets that are manually curated
outside the training domain (Wikipedia): (1) News
Headlines (Media Cloud1); (2) Academic (National
Geographic2); and (3) Conservapedia3. Thirty fac-
tual sentences were collected from all three selected
domains, processed through the bias correction
models and evaluated through human judgement on
the basis of neutrality, fluency and content preserva-
tion. Overall, both the proposed models performed
very well in all three domains. In terms of neutral-
ization effort, the RL-Seq2Seq model performed
the best on the News domain (See Table 4). This is
because most of the bias in news are related to fram-
ing bias (perspective-specific words). But in the
Academic domain and Conservapedia domain, the
RL-Trans performed better. Relatively, the trans-
former model performs better on addressing both
framing as well as epistemological bias.

7 Conclusion and Future Work

We proposed a hybrid method to improve the
performance of Seq2Seq and transformer-based
bias correction models by incorporating semi-
supervised training strategy that uses a supervised
pre-training using noisy data and reinforced fine-
tuning using high-quality cross-domain data. The
proposed training method is able to successfully
alleviate the exposure bias in MLE optimized se-
quence models and address the in-stability issue in
reinforcement learning methods. It also shows that
by carefully designing the reward function with
respect to the testing objective, high quality results
can be obtained. Specifically, our method was able
to generate text with high neutrality. The text gener-
ated by our method is more fluent and retains more
semantic information relative to previous methods.
In this study, we explored only a limited range of
rewards using simple aggregations, but a greater
range of rewards and scaling could be explored for
better domain adaptation.

1https://mediacloud.org/
2https://education.nationalgeographic.org/
3https://www.conservapedia.com

Limitations

Although the proposed Reinforced Seq2Seq frame-
work presents an intriguing framework for auto-
matically correcting subjective bias, we also find
that – like previous research (Williams, 1992) on
similar reinforcement-style learning regimens – it
has the following limitations: (i) after each policy
run, the trajectories are discarded by the update
process, making it inefficient. In some cases, the
collected trajectory may not accurately represent
the policy, so the gradient estimate becomes uncer-
tain. Further, whether a trajectory reinforces good
or bad actions depends entirely on the final output,
so the reward assignment can be unclear.

In this study, we examine a specific form of sub-
jective bias that manifests at the sentence level.
However, taking into account the context (para-
graph) of the statement could change the view-
point. Although this study evaluates the Reinforced
Seq2Seq framework on a real-world subjective bias
correction task, further testing is needed in order
to include more challenging bias types, as well as
other target model architectures.

The work presented here offers a promising ap-
proach for improving bias correction models using
reinforcement learning methods, a field of high
impact but under-explored to date. We hope that
evaluating the models across different domains will
inspire further work on building robust, nuanced,
and fair bias correction models.
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Appendix A. Data Pre-processing Details

We developed a parallel corpus for bias correc-
tion by analyzing Wikipedia articles histories with
Neutral Point of View (NPOV) tags. Our data har-
vesting approach was similar to Recasens et. al
(Recasens et al., 2013) and Pryzant et. al (Pryzant
et al., 2019), but with some minor changes. Fol-
lowing (Recasens et al., 2013), we analyzed the
revision histories for each Wikipedia article and
downloaded sentences that were argued for NPOV
issues. Sentences that had NPOV tags before the
revision were considered as biased sentences and
the sentences whose NPOV tags were removed af-
ter edits were considered as unbiased sentences.
We ignored revisions that were related to missing
references, misspellings and punctuation.

Corpus Name Biased Unbiased Total
NPOV 32,541 75,024 107,565
MPQA 8,575 42,282 50,857

IBC 3,726 600 4,062

Table 6: Corpus statistics for each dataset used for train-
ing cross-domain bias classifier.

From the original NPOV corpus, we extracted
sentences that had NPOV or peacock tags in their
content before the edit. Pryzant et. al only con-
sidered single word edits for their bias correction
model. Since the objective of this research is to
correct bias that is induced by single word and
multiword, we expanded the corpus by modifying
the harvest function of pryzant et. al. Also, our
method uses the latest dump from Wikipedia which
contains new biased sentences that were not con-
sidered in the previous study. Additionally, some
data cleanups were done to make this model not
sensitive to noun phrases in the text. We replaced
all noun phrases, but retained honorifics because
some of the gender biases were introduced through
honorifics. The numbers mentioned in the text were
also replaced with NUM tag. A total of 408,738
sentences were extracted for our study. The NPOV
corpus will help our bias detection model to learn
common patterns that are used by Wikipedia edi-
tors for imposing subjective views. The details of
the dataset are provided at Table 6.

Appendix B. Implementation

For Seq2Seq model, a multi-layer recurrent neu-
ral network based encoder, and an attention-based

decoder was used(Vinyals et al., 2015; Bahdanau
et al., 2014). Both the models are designed with 3
LSTM layers with 256 units at each layer. The
hyper-parameters are tuned based on the noisy
Wikipedia data. The pre-trained GloVe embed-
ding is used as the embedding layer. The model
is trained with Adam optimizer with the following
hyper-parameters batch size = 32, learning rate =
5e−5 and a learning rate decay factor = 0.99. Based
on the training and testing data statistics, the max-
imum sentence length is set to 30 for both input
and output. Glove vectors is used as the pre-trained
embedding. For pre-trained transformer model, we
used the BART model (Lewis et al., 2019) with
139M parameters and fine tuned with Adam opti-
mizer (learning rate 3e− 5).

Algorithm 1 REINFORCE Algorithm

Input: Input sequences (X), the output sequences
(Y), and a pre-trained policy (θ)
Output: Trained policy with REINFORCE

Training Steps:

while not converged do
Select a batch of size N from X and Y
Sample N full sequence of actions:
{y1, ..., yM }
Observe the sequence reward and calculate

the baseline rb.
Calculate the loss
Update the parameters of network

end while

Testing Steps:

for batch of input and output sequences X and Y
do

Use the trained model and sample the output
Evaluate the model using a performance met-

ric, e.g. BLEU
end for

Appendix C. Bias Tagger

The bias tagger takes an input sentence and iden-
tifies a sequence of words as biased based on the
context of use. Some of the subjective bias cor-
rection methods we developed needs additional
information like biased words in the sentence to
efficiently rewrite a polarized sentence, so a se-
quence tagging based bias tagger model was devel-
oped. By comparing the word edits between the
sentences in parallel text generated for bias correc-
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tion, we constructed a bias tagging dataset using
a BIO format. Since state of the art sequence tag-
ging models are BERT based (Devlin et al., 2018),
we developed a BERT based sequence tagger by
adding a dropout layer and a classification layer at
the end of BERT model with a cross entropy loss.
Pretrained RoBERTa model (Liu et al., 2019) was
downloaded and fine-tuned for bias tagging. The
bias tagger model had an accuracy of 95% with a
recall of 92% on the validation set.

Appendix D. Policy Gradient

The goal of policy gradient methods is to update
the probability distributions of actions in such a
way that actions with higher expected rewards have
a higher probability value for an observed state.
The objective function for policy gradients is given
by:

J(θ) = E[
T−1∑

t=0

rt+1] (6)

where rt+1 is the reward received by performing ac-
tion at at state st; rt+1 = R(st, at), where R is the
reward function. The policy is optimized by taking
the gradient ascent based on the partial derivative of
the objective based on the policy parameter theta:

θ ↼ θ +
∂

∂θ
J(θ) (7)

The objective function can be expanded as:

J(θ) = E[

T−1∑

t=0

rt+1|πθ] (8)

If P (st, at|τ) represents the probability of st,
at occurring given the trajectory τ , then objective
function is:

J(θ) =
T−1∑

t=i

P (st, at|τ)rt+1 (9)

Then the policy gradient is given as:

∇θJ(θ) =
T−1∑

t=0

∇θlogπθ(at, st)
T∑

t′=t+1

γt
′−t−1rt′

(10)
where γ ϵ [0, 1] is the discount factor that helps

to weight immediate rewards more than future re-
wards.

Appendix E. Human Judgement

A total of 100 sentences were collected from the
model output and evaluated using 10 judges. The
sentence selected for human judgement contains
both biased and unbiased statements.Additionally,
we ensured that the biased sentences collected
contained both multi-occurrence bias as well as
all three types of bias. The judges selected for
this evaluation has computational linguistic back-
ground, but they don’t have background informa-
tion on what models were developed and their char-
acteristics. Before presenting the data, a detailed
definition of what is subjective bias with examples
was presented to the user. For each example, a de-
tailed note is provided to explain why the selected
sentence is biased. Reference edits varied based on
the aspect being evaluated. The text generated is
evaluated for three aspects:

• Neutrality: The user is presented with the orig-
inal biased statement and bias corrected results
from one of the models, and asked to rate which
of the statement is more biased on a scale of
-2 to 2 (-2 is for original text is more biased,
0 is same biased and 2 for generated text is
more biased). When presenting sentences, the
placement of biased and corrected sentences is
randomised.

• Fluency: A combination of the text generated
by various models along with ground truth is
presented to the user in pairs and asked which
one is more fluent. The fluency of a sentence is
rated in a scale of -2 to 2 (-2 for ground-truth
is more fluent, 0 if both have same fluency and
2 if generated text is more fluent).

• Content preservation: For content preserva-
tion, the original sentence and model corrected
sentence is presented to the user and asked
whether the second sentence contains the same
information as the first sentence. The content
preservation is rated on a scale of 0 to 4 (0 rep-
resenting the content is totally different and 4
being very similar).

Appendix F. Examples of System Output -
Qualitative Comparison

See Table 8
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Biased Statements Neutral Statements
Less sophisticated believers in biblical inerrancy may
fail to allow for the possibility of transcription errors or
translation errors.

A portion of believers in biblical inerrancy fail to allow
for the possibility of transcription errors or translation
errors.

Released on May 16 , 2002 , Attack of the Clones was
generally perceived as a slight improvement upon the
feeble The Phantom Menace, though not at all on par
with the original Star Wars trilogy.

Released on May 16 , 2002 , Attack of the Clones was per-
ceived as an improvement upon the feeble The Phantom
Menace, though not on par with the original Star Wars
trilogy.

Only a tiny proportion of these companies have so far
grown into multinationals : ARM, Autonomy Corporation
and AVEVA are the most obvious examples , and more
recently CSR has seen rapid growth due to the uptake of
Bluetooth.

A proportion of these companies have grown into multi-
nationals: ARM, Autonomy Corporation and AVEVA are
the few examples, and more recently CSR has seen rapid
growth due to the uptake of Bluetooth.

Table 7: Sample of biased and its corresponding neutralized statements extracted from Wikipedia. Spans highlighted
are the output of our bias tagger by type such as Epistemological Bias, Framing Bias and Demographic Bias.
Neutralized spans are highlighted in the second column. Neutralized spans are manually identified, not by bias
tagger.

Examples of Bias Corrections
Source She wore a beautiful dress which she had made herself.
Reference She wore a dress which she had made herself.
RL-Seq2Seq The dress she wore was one she had made herself.
RL-Trans The dress she wore was made by her
Source Harvington is a lively village with a number of amenities including a shop , farm shop and Post

Office.
Reference Harvington is a village with a number of amenities including a shop , farm shop and Post Office.
RL-Seq2Seq Harvington has a number of amenities including a shop , farm shop and Post Office.
RL-Trans The village of Harvington has a number of amenities, including a shop, farm shop, and a post office.
Source It is known as one of the only places to get an authentic New York City style egg cream.
Reference It is known as one of the places to get an authentic New York City style egg cream.
RL-Seq2Seq It is known for selling authentic New York City style egg cream.
RL-Trans The restaurant is famous for its authentic New York City egg cream.
Source He supports the failed war in Iraq.
Reference He supports the war in Iraq.
RL-Seq2Seq He is in favor of the Iraq war.
RL-Trans The war in Iraq is supported by him.
Source They promote the false perception that evolution is a theory in crisis.
Reference They promote their minority perception that evolution is a theory in crisis.
RL-Seq2Seq They promote a minority perception of evolution as a theory in crisis.
RL-Trans They promote the perception that evolution is in crisis among minorities.
Source Less sophisticated believers in biblical inerrancy may fail to allow for the possibility of transcription

errors or translation errors.
Reference Some believers in biblical inerrancy don’t allow for the possibility of transcription errors or translation

errors.
RL-Seq2Seq Some believers in biblical inerrancy deny the possibility of transcription errors or translation errors.
RL-Trans There are some believers in biblical inerrancy who don’t accept the possibility of transcription errors or

translation errors.
Source As a professional librarian he was exceptionally erudite and influenced by a wide range of authors

, including Dante Alighieri , Miguel de Cervantes , Franz Kafka , H.G
Reference As a librarian he was exceptionally erudite and influenced by a wide range of authors , including Dante

Alighieri , Miguel de Cervantes , Franz Kafka , H.G .
RL-Seq2Seq As a librarian he was erudite and influenced by a wide range of authors , including Dante Alighieri ,

Miguel de Cervantes , Franz Kafka , H.G .
RL-Trans As a librarian, he was well-educated and influenced by a variety of authors, among them Dante Alighieri,

Miguel de Cervantes, Franz Kafka and H.G. Wells.

Table 8: Sample model outputs
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Abstract

Language contact is a pervasive phenomenon
reflected in the borrowing of words from donor
to recipient languages. Most computational
approaches to borrowing detection treat all lan-
guages under study as equally important, even
though dominant languages have a stronger im-
pact on heritage languages than vice versa. We
test new methods for lexical borrowing detec-
tion in contact situations where dominant lan-
guages play an important role, applying two
classical sequence comparison methods and
one machine learning method to a sample of
seven Latin American languages which have
all borrowed extensively from Spanish. All
methods perform well, with the supervised ma-
chine learning system outperforming the classi-
cal systems. A review of detection errors shows
that borrowing detection could be substantially
improved by taking into account donor words
with divergent meanings from recipient words.

1 Introduction

Language contact is one of the most pervasive lin-
guistic phenomena. It is the first factor that needs
to be excluded when searching for genetic rela-
tions among the languages of the world, and it
needs to be controlled for when searching for cross-
linguistic universals. Any study trying to explain
how humans use language must take language con-
tact into account. It is also a unique witness of
ancient contacts in human prehistory.

Language contact is most prominently reflected
in lexical borrowing, the transfer of words from a
donor language to a recipient language. Although
research on the computational handling of lexical
borrowing has made some progress of late, com-
putational approaches to the investigation of lan-
guage contact are still in their infancy (List, 2019).
Specifically methods that could infer the direction
of borrowings have not been proposed so far. While
numerous case studies investigate the influence of

dominant languages on heritage languages (Proc-
hazka and Vogl, 2017; Meisel, 2018), we lack au-
tomated methods that could be used to study the
influence of particular dominant languages in lin-
guistically diverse areas of the world.

The number of standardized cross-linguistic
wordlist collections has greatly increased over the
past years (Rzymski et al., 2020; List et al., 2022a),
with standard formats (Forkel et al., 2018) accom-
panied by software tools that allow scholars to pre-
pare and curate standardized wordlists in an effi-
cient manner (Forkel and List, 2020). It would be
useful to have a computer assisted tool for linguists
to detect which words in a cross-linguistic region
have been borrowed from a dominant language
and with further advances, a tool for inclusion in
language contact assessment or in computational
cladistics workflows.

Here, we compare the suitability of three differ-
ent systems to address this task – two systems based
on classical algorithms for automated sequence
comparison that can be applied in supervised and
unsupervised settings, and one supervised system
based on extended machine learning techniques.
We test these systems on a newly derived dataset of
seven Latin American languages (Fig. 1) in which
Spanish is a dominant donor language. Our results
show that the supervised machine-learning system
outperforms the classical systems.

2 Previous Work

Although still few in number, automatic methods
for borrowing detection have been increasingly ap-
plied and developed in the past years. Early studies
by van der Ark et al. (2007) and later Mennecier
et al. (2016) compute edit distances between words
from genetically unrelated languages and compare
distances to thresholds, in order to detect borrowed
words in multilingual wordlists.

Besides edit distance, which directly calculates
distances between phonetic sequences, sound class
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based methods cluster phonetic segments into
sound classes and then compute distances between
sound class sequences. The sound-class based
alignment method (SCA) (List, 2012) provides
sound class categories, scoring functions for dis-
tance measures, and modifiable gap scores based
on prosodic context.

Zhang et al. (2021) compare edit distance per-
formance against SCA (List, 2012) distance per-
formance, finding that SCA outperforms edit dis-
tance in accuracy. Hantgan et al. (2022) build on
this work, using dedicated methods for automated
cognate detection applied to languages from differ-
ent language families in order to identify clusters
of related words resulting from lexical borrowing.
List and Forkel (2022a) expand this work further,
by applying a two-stage workflow in which they
first identify language-family-internal cognates, us-
ing a method specifically apt for the detection of
deep cognates, and then compute SCA distances
between cognate sets from genetically unrelated
languages in order to infer sets of words related by
lexical transfer.

Miller et al. (2020) compute language models
for inherited and borrowed words for individual
languages from the World Loanword Database
(WOLD, Haspelmath and Tadmor 2009) using
Markov Chains and Recursive Neural Networks
and compare cross-entropies for inherited and bor-
rowed language models in order to identify borrow-
ings from monolingual information alone.

Kaiping and Klamer (2022) use automated meth-
ods for cognate detection (List et al., 2017) on a
target set of Timor-Alor-Pantar languages. In order
to infer borrowings from Indonesian and Tetun (not
in the target set), they include both languages in
their sample and treat all cognate sets that involves
words from either of the two languages as borrow-
ings. Moro et al. (2023) apply a similar approach
to investigate borrowings in Alorese.

Mi et al. (2020) and Nath et al. (2022) train
binary classifiers, mainly neural based, on large
wordlists to predict borrowed words, and achieve
F1 scores in the 0.75 to 0.85 range. Their work-
flows seem cumbersome, compute intensive, and
not minimalist, but the results are promising.

3 Materials and Methods

3.1 Materials

For this study, a new comparative wordlist was cre-
ated by taking data for seven Latin American lan-

guages from WOLD (https://wold.clld.org,
Haspelmath and Tadmor 2009) and combining
them with a wordlist of Spanish derived from the
Intercontinental Dictionary Series (https://ids.
clld.org, Key and Comrie 2015). Phonetic tran-
scriptions for the Latin American languages were
added to WOLD by Miller et al. (2020). Latin
American Spanish phonetic transcriptions were
added for this study (and could be later expanded
by adding more transcriptions from historical va-
rieties of Spanish). The resulting dataset con-
forms to the standards suggested by the Cross-
Linguistic Data Formats initiative (CLDF, https:
//cldf.clld.org, Forkel et al. 2018). The data
curation follows the Lexibank workflow (List et al.,
2022a) and checks that data conform to certain
standards, with languages being linked to Glot-
tolog (https://glottolog.org, Hammarström
et al. 2022, Version 4.7), concepts being linked to
Concepticon (https://concepticon.clld.org,
List et al. 2022b, Version 3.0), and transcriptions
following the B(road)IPA conventions of the Cross-
Linguistic Transcription Systems reference catalog
(https://clts.clld.org, List et al. 2021, Ver-
sion 2.2, see Anderson et al. 2018). Details of the
resulting database are shown in the map of lan-
guage locations along with percentages for borrow-
ings from Spanish in Fig. 1 and in Tab. 1. Q’eqchi’
and Zincantán Tzotzil are both Mayan languages,
but appear substantially varied in the database.

Language Concepts Lexemes Segments Vocab.
Imb. Quechua 1,155 1,156 7,177 33
Mapudungun 1,040 1,242 7,356 33
Otomi 1,252 2,241 11,730 57
Q’eqchi’ 1,211 1,773 10,367 49
Wichí 1,128 1,219 8,233 44
Yaqui 1,242 1,433 9,297 28
Zin. Tzotzil 955 1,266 7,129 41
Spanish 1,308 1,770 11,261 30
Aggregate 1,308 12,100 72,550 112

Table 1: Database details for seven Latin American
languages plus Latin American Spanish.

3.2 Methods

Methods for Borrowing Detection. We develop
three different methods for the detection of borrow-
ings from a dominant language to non-dominant
languages in multilingual wordlists. Following
historical linguistics comparative method prac-
tice (Campbell, 2013), only word forms corre-
sponding to the same concept are considered as
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Borrowing Class

Figure 1: Map of languages with Spanish borrowing
class.

candidates for borrowing.
The first method, called Closest Match borrow-

ing detection in the following, iterates over all word
pairs that express the same concept in the domi-
nant language and the heritage languages and then
computes phonetic distances. Word pairs whose
phonetic distance is below a certain threshold are
judged to be borrowings from the dominant lan-
guage. We test two phonetic distances, the nor-
malized edit distance (NED) – the classical edit
distance (Levenshtein, 1965) between two words,
divided by the length of the longer word – and the
SCA distance (List, 2012).

The second method, called Cognate-Based bor-
rowing detection in the following, follows the ap-
proach by Hantgan et al. (2022): it first computes
cognates using a cluster-based approach for auto-
mated cognate detection in which words expressing
the same concept whose average phonetic distance
is below a certain threshold are assigned to the
same cognate set (List et al., 2017), and then iden-
tifies all words assigned to cognate sets involving
the dominant language as borrowings. We tested
again normalized edit and SCA distances.

The third method, called Classifier-Based bor-
rowing detection in the following, iterates over all
word pairs with the same concept, but stores pho-
netic distance scores for various distance measures
as vectors, which can then be used to train a classi-

fier, firstly, a linear Support Vector Machine (SVM)
(Cristianini and Shawe-Taylor, 2000), in a super-
vised setting. We tested various phonetic distance
measures, but report only on the combination of
normalized edit and SCA distances, as they yielded
the best results. Both Closest Match and Cognate-
Based methods require a fixed threshold which we
estimate from the training data. So all three meth-
ods are considered as supervised.

Sampling. Train-test splits are made based on
concepts rather than individual word entries. This
permits matching of words for the same concept
in in all methods without loss of candidate words.
Treating train-test split as a nuisance variable takes
into account differences between partitions across
methods thus controlling for effects of sampling
by concepts with differing borrowing behavior or
statistical dependencies between test partitions due
to sampling without replacement. See (Dror et al.,
2018) for mention of the dependency problem with
cross-validation. Our use of a fixed partition across
treatments and analysis of variance controlling for
partition as a nuisance or ‘blocking’ variable ac-
counts for this dependency, and takes advantage
of any systematic effects in borrowing behavior by
partition.

Evaluation. For the analysis of the cross-
validation data, we use a randomized blocks de-
sign where experiment is the treatment or factor,
and test partition is the randomized block or nui-
sance variable. A standard analysis of variance
partitions treatment effects, nuisance variable, and
error, and permits a more powerful test of treatment
differences without the nuisance variable variance.
We follow up statistically significant findings for
treatment (experiment), with comparisons of ex-
periments versus the overall average using a joint
(family) error rate.

Implementation. Our methods are implemented
in Python, making specifically use of the CLDF-
Bench package (https://pypi.org/project/
cldfbench/, Forkel and List 2020, Version 1.13.0)
to provide commandline access to all methods de-
scribed here. For the computation of alignments
and edit distances, LingPy (https://pypi.org/
project/lingpy, List and Forkel 2022b, Version
2.6.9) is used. SVM and evaluation are realized
with the help of Scikit-Learn (https://pypi.org/
project/scikit-learn/, Pedregosa et al. 2011,
Version 1.2.1).
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4 Results and Discussion

We tested our three methods with two distance
measures in five experiments (normalized edit and
SCA distances individually in both Closest Match
and Cognate-Based methods, and combined in the
Classifier-Based method) using a 10-fold cross-
validation on our data and reporting precision,
recall, F1 scores, accuracy, and execution times
(mm:ss). F1 score is the primary result measure;
accuracy and execution time are informational. The
10-fold cross-validation uses the same 10 fixed train
and non-overlapping test splits for all experiments.
With few parameter estimates (1 threshold each
for Closest Match and Cognate-Based, 2 distance
and 7 target language coefficients for Classifier), a
separate train split into fit/val is not necessary.

All methods perform well with less than 5 points
separating the highest from the lowest F1 scores.
Tab. 2 shows the results of the ten-fold cross val-
idation of our three methods in five experiments.
An analysis of variance,1 with experiment as the
effects variable and train-test split as the nuisance
variable, shows highly significant effects for pre-
cision (F4,36 = 25.74, p < 0.0001) and F1 score
(F4,36 = 14.3, p < 0.0001).

Closest Match with normalized edit distance
performs poorly, while Classifier-Based with com-
bined normalized edit and SCA distances performs
well. Classifier-Based performs better than the
average of all experiments in F1 score, and substan-
tially better in precision versus other experiments;
the method is conservative, with a low number of
false positives. Performance on remaining experi-
ments is indistinguishable from the overall average
of all experiments combined. The Cognate-Based
method is compute intensive performing multiple
alignment over all languages. Accuracy is well
above the majority decision accuracy of 84.8%
(100%− 15.2% borrowing) in all experiments.

A search for classifier improvements prompted
several ad hoc experiments (see tab. 3). We ob-
serve: (1) A radial basis function (rbf) SVM clas-
sifier performs no better than our linear SVM. We
suspect the estimated target language parameters
do not generalize well to held-out data. (2) A logis-
tic regression classifier performs on par with our
linear SVM. (3) A weight balanced SVM classi-
fier trades an increase in recall for a larger drop
in precision. We also test whether using separate
trials for each target language in Closest Match,

1Statistical analyses with JMP (SAS Institute Inc., 2021).

Method Prec. Rec. F1 Acc. mm:ss
Closest Match
NED 0.832 0.703 0.761 0.938 00:15
SCA 0.869 0.720 0.787 0.945 00:29
Cognate-Based
NED 0.853 0.705 0.771 0.941 01:48
SCA 0.862 0.719 0.783 0.944 04:49
Classifier-Based SVM (linear)
NED, SCA 0.931 0.713 0.806 0.952 00:37

Table 2: Ten-fold cross-validation for three meth-
ods with NED (normalized edit) and SCA (Sound-
Class based phonetic alignment) distance measures.
Bolded estimates are superior to and underlined esti-
mates inferior to the the overall average using analy-
sis of means (Nelson et al., 2005) with joint error rate
α = 0.05.

would perform as well as all languages together. A
combined trial performs better; a single threshold
estimate appears to generalize better to held-out
data than using individual language estimates.

Experiment Prec. Rec. F1 Acc.
Classifier Variations - NED, SCA
SVM (rbf) 0.945 0.694 0.799 0.951
Logistic regression 0.914 0.728 0.809 0.952
SVM (balanced) 0.613 0.826 0.704 0.902
Closest Match - SCA
Each language (avg)0.860 0.707 0.770 0.941

Table 3: Ten-fold cross-validation for several ad hoc ex-
periments with NED (normalized edit) and SCA (Sound-
Class based phonetic alignment) distance measures.
Classifier experiments: SVM with radial basis func-
tion, Logistic regression, linear SVM with balanced
class weights. Descriptive statistics only.

Tab. 4 shows the results of the Classifier-Based
method for the seven target languages in our sam-
ple with training and evaluation over the entire
dataset. There is some variation in performance by
language, in particular, with recall in [0.615, 0.778].
We detect a linear relation between the perfor-
mance and the amount of borrowings from the dom-
inant language in the target languages. (Precision:
r = −0.39,NS; Recall: r = 0.88, p < 0.01; F1
score: r = 0.85, p < .01; 1-sided Pearson corre-
lation tests with df = 5). Recall and F1 scores
improve as borrowing increases. This could be
an artifact of higher borrowing resulting in bet-
ter estimation of a target language coefficient, or
more interestingly, a cultural process where more
dominant-donor borrowing corresponds to reduced
phonetic adaption into the target language.
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Language Prec. Rec. F1 Acc. Borr.
Imb. Quechua0.921 0.773 0.841 0.924 26%
Mapudungun 0.944 0.716 0.814 0.950 15%
Otomi 0.932 0.692 0.794 0.968 9%
Q’eqchi’ 0.934 0.615 0.742 0.961 9%
Wichí 0.952 0.658 0.778 0.953 12%
Yaqui 0.938 0.778 0.851 0.941 22%
Zin. Tzotzil 0.932 0.661 0.773 0.949 13%
Average 0.934 0.714 0.810 0.952 15%

Table 4: Individual language results for the Classifier-
Based borrowing detection methods on the seven target
languages in our sample. The last column shows the
proportion of Spanish borrowings.CL-sp-predict-linear_svm-simple-ned-sca-global-train-evaluate

ID DOCULECT TOKENS DONOR 
LANGUAGE

DONOR 
VALUE

DET 
STATUS

ABSTAIN FROM FOOD

Spanish a ʝ u n a ɾ
6227 Qeqchi a j uː n i n k + ɾ i ʃ Spanish ayunar fn
ADOBE

Spanish a ð o β e
8988 ImbaburaQuechua a d u b i Spanish adobe fn

10182 Wichi a l u l i s Spanish adobe fn
AGE

Spanish e ð a ð
10531 Wichi a n i o Spanish año fn

ANIMAL

Spanish a n i m a l
3351 ZinacantanTzotzil tʃʰ a n u l i l fp

1

Figure 2: Example collection of detection errors.

To get a better understanding about the differ-
ent types of errors that our best performing ex-
perimental combination commits, we conducted a
detailed error analysis from the Classifier-Based
borrowing detection results. A spreadsheet snip-
pet (Fig. 2), serves as a reference for several er-
ror types. For undetected borrowings (false neg-
atives), we identified four error types: (1) cases
where the borrowed form was not present in the
donor wordlist, e.g., Mapudungun peso “coin” is
borrowed from Spanish peso “peso”, but our Span-
ish wordlist only has moneda, (2) cases where the
form was present in the donor wordlist, but with
a different concept, e.g., Wichi anio “age” is bor-
rowed from Spanish año “year”, while the Spanish
word for “age” is edad, (3) cases of large phonetic
distance between donor and recipient forms, e.g.,
Wichi alulis “adobe”, which is somewhat distant
from Spanish adobe, and (4) cases of unrecognized
partial borrowing, e.g., Qeqchi aiunink-riS “abstain
from food”, which is partially borrowed from Span-
ish ajunar “fast”. For falsely detected borrowings
(false positives), we identified three error types:
(1) cases where the form was not borrowed from
the dominant language but vice versa, e.g., Spanish
poroto “bean” was borrowed from Quechua pu-

Undetected Borrowings
Error Type Count Pct
borrowed form not in donor list 28 17
different concept than recipient form 75 45
large phonetic distance 31 19
partial borrowing as only reason 5 3
Subtotal 139 84

Falsely Detected as Borrowings
Error Type Count Pct
direction not from dominant donor 7 4
chance similarity of form 10 6
likely dataset error 9 5
Subtotal 26 16
Total 165 100

Table 5: Summary over sample of undetected (false neg-
ative) and falsely detected (false positive) borrowings.

rutu, (2) cases of chance similarities between word
forms, e.g., Spanish animal “animal” and Zinacan-
tan Tzotzil tSanulil, and (3) cases so improbably
similar that we suspect errors in the original annota-
tion, e.g., Spanish pelota “ball” and Wichi pelutaj.

For a large sample of concepts, we tallied 139
undetected (false negative) and 26 falsely detected
(false positive) borrowings (see Tab. 5). Most er-
rors were in recall, with many of these borrowings
from lexemes not within the same concept.

5 Conclusion

How well can we automatically detect borrowings
from dominant languages based on wordlist data?
We devised three general methods to detect bor-
rowed words from dominant languages, two based
on sequence comparison workflows and one based
on a classifier. The classifier-based method showed
the best performance, with F1 scores of 0.81, and
high precision of 0.93. This method could already
prove very useful in computer-assisted workflows.
Our investigation of detection errors shows several
opportunities for improvement. Most undetected
borrowings result from current methods’ restric-
tion to searching only for word forms for the same
concept. We see great potential in improvements
that account for borrowing accompanied by seman-
tic shift, specifically: (1) augment donor wordlist
coverage of possible forms, (2) relax “same” to
“similar” concept restriction for matching forms, or
(3) fit language models to wordlists and add word
cross-entropy to the classifier without restriction.
Tests adding word cross-entropy, not reported here,
look very promising, but more research is needed.
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Limitations

In this study, we apply limited methods for detec-
tion of lexical borrowing to the case of a single
dominant donor language (Spanish) wordlist ver-
sus seven Latin American language wordlists. This
application uses relatively sparse data, with an av-
erage of 1,512 lexemes per language wordlist, with
very few estimated parameters, and so apt for lower
resource languages. Future work will seek to re-
move the wordlist limitation.
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Abstract

Document-level relation extraction (DocRE)
predicts relations for entity pairs that rely on
long-range context-dependent reasoning in a
document. As a typical multi-label classifica-
tion problem, DocRE faces the challenge of
effectively distinguishing a small set of pos-
itive relations from the majority of negative
ones. This challenge becomes even more diffi-
cult to overcome when there exists a significant
number of annotation errors in the dataset. In
this work, we aim to achieve better integra-
tion of both the discriminability and robust-
ness for the DocRE problem. Specifically, we
first design an effective loss function to endow
high discriminability to both probabilistic out-
puts and internal representations. We innova-
tively customize entropy minimization and su-
pervised contrastive learning for the challeng-
ing multi-label and long-tailed learning prob-
lems. To ameliorate the impact of label errors,
we equipped our method with a novel nega-
tive label sampling strategy to strengthen the
model robustness. In addition, we introduce
two new data regimes to mimic more realistic
scenarios with annotation errors and evaluate
our sampling strategy. Experimental results
verify the effectiveness of each component and
show that our method achieves new state-of-
the-art results on the DocRED dataset, its re-
cently cleaned version, Re-DocRED, and the
proposed data regimes. 1

1 Introduction

The problem of document-level relation extraction
(DocRE) has garnered increasing attention from the
research community (Quirk and Poon, 2017; Peng
et al., 2017; Yao et al., 2019) due to its importance
to real-world applications. DocRE is inherently a
multi-label problem, in which we have to predict

∗∗This work was partially done when Jia Guo was an intern
at DAMO Academy, Alibaba Group.

1Our codes and datasets are available at https://
github.com/guojiapub/PEMSCL.

a set of relations from the pre-defined label set for
every entity pair in a document. Thus, it is crucial
for DocRE models to adopt an effective learning
objective that can clearly distinguish massive se-
mantically close relations.

Recently, several works have proposed new loss
functions to learn an adaptive threshold for better
separating positive and negative relations. How-
ever, these approaches (Zhou et al., 2021; Tan et al.,
2022a) either enforce learning a total order among
all relations that leads to superfluous comparisons
and diminishing differences among them or im-
properly penalize all pre-defined labels of positive
entity pairs if their average margins are lower than
the threshold when addressing the label imbalance
problem (Zhou and Lee, 2022). In contrast, we
propose an approach that learns a partial order,
ranking all positive relations above a threshold indi-
vidually, which is in turn ranked above all negative
relations. Our approach does not waste precious
data and probability mass in modeling the ordering
among positive relations (likewise for negative re-
lations). We further sharpen the distinction in each
distribution of a relation and the threshold through
the principled use of entropy minimization.

Besides, none of the above methods take the
discriminability of internal representations into ac-
count, as well as the model robustness against an-
notation errors. To solve these issues, we introduce
novel modifications to the supervised contrastive
learning (Khosla et al., 2020) to accentuate the
differences among the embeddings of entity pairs
from different classes and the similarities of that
from the same class. Our method can better ac-
commodate the multi-label setting and the long-tail
phenomenon that is typically present in DocRE
datasets. To combat the annotation error problem
stated in Tan et al. (2022b), we design two new
data regimes and a novel negative label sampling
strategy that gives consistently strong performance
even with incomplete annotations. In sum, our
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contributions are three-fold:

• We propose an effective loss function that
boosts the discriminability of both internal
embeddings and probabilistic outputs.

• We achieve good integration of discriminabil-
ity and robustness by incorporating a novel
negative label sampling strategy.

• Experimental results consistently demonstrate
that we achieve new state-of-the-art perfor-
mance in a variety of settings.

2 Related Work

Document-level relation extraction (DocRE)
Early works on DocRE focus on utilizing graph
convolutional networks (GCNs) (Kipf and Welling,
2017) to conduct complex cross-sentence reason-
ing on a document graph (Sahu et al., 2019;
Christopoulou et al., 2019; Wang et al., 2020; Zeng
et al., 2021). Recently, methods fine-tuned on large
pre-trained language models (Devlin et al., 2019;
Liu et al., 2019) achieved significant performance
gain. In particular, SSAN (Xu et al., 2021) encoded
entity dependencies into the self-attention mech-
anism to strengthen context and entity reasoning.
ATLOP (Zhou et al., 2021) employed the multi-
head attention weights to generate entity-related
context representations which enhanced the embed-
dings of entity pairs. To better address the multi-
label classification problem, both ATLOP (Zhou
et al., 2021) and NCRL (Zhou and Lee, 2022) pro-
posed to treat the NA class as an adaptive thresh-
old. DocuNet (Zhang et al., 2021) and KD-DocRE
(Tan et al., 2022a) extended the ATLOP architec-
ture by increasing interactions between entities and
incorporating knowledge distillation, respectively.
Besides, other DocRE models attempted to lever-
age auxiliary information for relation prediction,
such as meta dependency paths (Nan et al., 2020),
external knowledge bases (Li et al., 2021a), and
evidences (Xie et al., 2022; Xiao et al., 2022). We
additionally provide detailed comparison with ex-
isting works in Section 3.3.

Other related works Entropy Minimization
technique was commonly seen in semi-supervised
learning works (Grandvalet and Bengio, 2004; Vu
et al., 2019). However, we are the first to employ
entropy minimization in the challenging multi-label
supervised learning framework. Besides, our en-
tropy minimization takes effect in each customized
probability distribution of the relation label and

threshold class, which will encourage a larger dis-
tinction between them.

Supervised contrastive learning (SCL) (Khosla
et al., 2020) extends self-supervised contrastive
learning (He et al., 2020; Chen et al., 2020) to
the fully supervised setting by constructing “pos-
itive” and “negative” examples based on their la-
bels. ERICA (Qin et al., 2021) proposed a pre-
training framework using contrastive learning to
improve representations of entities and relations.
However, this work samples positive pairs for re-
lations proportionally to their total amount of ex-
amples, which will lead to biased optimization that
favors primary relations over minor ones. Besides,
they only maximize the similarity of one positive
example pair each time, which may weaken the
global effect of clustering. Instead, we give equal
consideration to each relation and each positive
example of anchors, and elaborately tailored the su-
pervised contrastive learning to suit both the multi-
label problem and long-tailed relation learning.

3 Methodology

In this section, we describe our model called PEM-
SCL that is based on a Pairwise moving-threshold
loss, Entropy Minimization, and Supervised
Contrastive Learning.

3.1 Problem Formulation
Let D = {wl}Ll=1 be a document containing L

words and a set of entities ED = {ei}|ED|i=1 . Each en-
tity ei is associated with a set of mentionsMei =

{mi
j}
|Mei |
j=1 (i.e., a set of phrases referring to the

same entity ei). In document-level relation extrac-
tion, we predict the subset of relations in a pre-
defined set R= {rk}|R|k=1 that hold between each
pair of entities (eh, et)h,t=1,...,|ED|,h̸=t. We some-
times abbreviate an entity pair (eh, et) as (h, t) to
simplify notation. A relation is deemed to exist
between the head entity eh and tail entity et if it is
expressed between any of their corresponding men-
tions. If no relation exists between any pair of their
mentions, the entity pair is labeled NA. For each
entity pair, we term a relation that holds between its
constituent entities as positive, and the remaining
relations inR as negative. An entity pair that is NA
does not have any positive relation, and has the en-
tire setR as negative relations (we could consider
such a pair as having a special NA relation between
them). Document-level relation extraction can be
viewed as a multi-label problem, in which an entity
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pair corresponds to a training/test example, and the
relations in R ∪ {NA} correspond to the possible
labels or classes of the example.

3.2 Encoder Model
We leverage ATLOP (Zhou et al., 2021) as our en-
coder since recent work (Xie et al., 2022; Zhou and
Lee, 2022) has borne out its usefulness as a back-
bone in neural architectures. For each entity pair
(eh, et), the encoder model generates the entity pair
representation xh,t ∈ Rdx , and its unnormalized
score vector fh,t ∈ R|R|+1 for relation prediction,
we briefly describe them as follows2:

xh,t = Encoder
(
(eh, et)|D,Meh ,Met

)
(1)

fh,t = Linear(xh,t) (2)

3.3 Pairwise Moving-Threshold Loss with
Entropy Minimization

In document-level relation extraction, a fixed proba-
bility threshold (e.g. a hyperparameter tuned on the
development dataset) is used to decide the bound-
ary of positive and negative relations. However,
such a threshold is only suitable for entity pairs on
average, and may not be ideal for entity pairs with
particular properties.

To address this problem, we design a loss func-
tion that utilizes the NA class as a dynamic thresh-
old, learning how best to move the threshold in
accordance with the regularities present in each
entity pair. Specifically, we conduct a pairwise
comparison between each relation and the NA class
(separately for each relation), and encourage the
prediction scores of each positive relation to be
higher than that of the NA class, and incentivize
the score of the NA class to be higher than those of
negative relations. In this way, we induce a partial
order overR∪{NA} for each entity pair. Note that
the positive relations are not compared against each
other, and their relative rankings are not modeled
(likewise for negative relations). This makes sense
in the multi-label setting where we are interested
in finding the set of relations that are true with-
out being concerned about their relative degrees of
veracity.

Formally, we split the predefined relation set
R = Ph,t ∪Nh,t into two mutually exclusive sets
for each entity pair (h, t) in a training set, where
Ph,t and Nh,t respectively denote the positive and
negative relations of (h, t). As mentioned in Sec-
tion 3.2, we make use of fh,t ∈ R|R|+1 that is

2Please refer to Appendix D for the computation details.
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Figure 1: Each positive relation (colored rectangles
with solid lines) exhibits a large probability difference
from the threshold class (white rectangle with solid
lines) when they are separately compared (like what
is achieved with our Lh,t

pmt loss. We further expand
this difference by minimizing H(r) as stated in Eq. 5).
However, the probabilities are diminished when each
positive relation (colored rectangles with dashed lines)
is made to compete with the other, reducing the disparity
between the probability of each positive relation and
that of the threshold class (white rectangle with dashed
lines).

computed by Equation 1. We denote the elements
of fh,t that correspond to relation r ∈ R and to
the NA class as fr and fη respectively. (Both fr
and fη represent unnormalized prediction scores
(logits).) Using fr and fη, we compute the prob-
ability that the label C of entity pair (h, t) is r
(or η) conditioned on C being either r or η, i.e.,
Ph,t(C = r|C = {r, NA}) and Ph,t(C = η|C = {r,
NA}) respectively, as follows.

P rh,t(r) =
exp(fr)

exp(fr) + exp(fη)
,

P ηh,t(r)=1−P rh,t(r)=
exp(fη)

exp(fr)+exp(fη)
, (3)

where we have abbreviated Ph,t(C = r|C = {r,
NA}) and Ph,t(C=η|C={r, NA}) as P rh,t(r) and
P ηh,t(r) respectively.

Our pairwise moving-threshold loss Lh,tpmt that
maximizing the joint probability of all relations for
an entity pair (h, t) is defined as:

Lh,tpmt = − log
( ∏

r∈Ph,t

P rh,t(r)
∏

r∈Nh,t

(
1− P rh,t(r)

))

= −
∑

r∈Ph,t

logP rh,t(r)−
∑

r∈Nh,t

logP ηh,t(r)

=
∑

r∈Ph,t

log(1 + exp(fη − fr))

+
∑

r∈Nh,t

log(1 + exp(fr − fη)). (4)
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In Equation 4, note that the same threshold fη is
used for all r ∈ R for an entity pair (h, t). From
the equation, we see that minimizing Lh,tpmt equates
to learning scores such that fr > fη when r is a
positive relation, and such that fη > fr when r is
negative relation. The (relative) scores for relations
fr and for the threshold fη are fully learned from
training data, and are tailored to individual entity
pairs. Hence, they can better model the peculiari-
ties specific to each entity pair.

Although previous work (Zhou et al., 2021; Tan
et al., 2022a) employed a similar thresholding
mechanism, they learn a total order for all rela-
tions (or a set of relations) and the threshold class.
This wastes finite probability mass (total value of
1.0) in modeling the superfluous ordering among
the relations that is not beneficial to multi-label
problem, and inevitably diminishes the difference
between the probability of each relation and that of
the threshold. See Figure 1 for illustration.

Intuitively, a desirable trait of a loss function
is that it reduces the uncertainty about whether a
relation is positive or negative, thereby allowing
its value to be discerned easily. To achieve this
in a principled manner, we employ the principle
of entropy minimization (Grandvalet and Bengio,
2005). Entropy minimization is typically used on
unlabeled data in unsupervised or semi-supervised
learning (Berthelot et al., 2020). In our case, we
apply it on labeled data in a supervised setting. The
information entropy for each pairwise probability
distribution between relation r and the threshold
class NA for entity pair (h, t) is defined as:

Hh,t(r) = −P rh,t(r) logP rh,t(r)− P ηh,t(r) logP
η
h,t(r). (5)

In Equation 5, information entropy decreases as
the absolute difference between P rh,t(r) and P ηh,t(r)
increases, attaining a maximum when P rh,t(r) =

P ηh,t(r) = 0.5 and a minimum when either proba-
bility is 1.0 (and the other is 0.0). Thus, incorpo-
rating entropy into our loss function would help to
accentuate the disparity between the pair P rh,t(r)
and P ηh,t(r) for all relations, making it easier to
distinguish a positive (or negative) relation from
the threshold NA.

We formulate our final pairwise moving-
threshold loss with entropy minimization as fol-
lows:

Lh,tem=
1

γ1

∑

r∈Ph,t

Hh,t(r)+
1

γ2

∑

r∈Nh,t

Hh,t(r), (6)

L1 =
∑

(h,t)∈B
Lh,tpmt + Lh,tem, (7)

where B refers to a training batch, and γ1 =
{1, |Ph,t|} and γ2 = {1, |Nh,t|} are hyperparame-
ters weighting the effect of entropy minimization.

It is noted that using Lpmt on its own would lead
to poor optimization for positive relations, in the
situation where there is a preponderance of neg-
ative relations, the sum over Nh,t in Equation 4
might overwhelm the sum over Ph,t to such an ex-
tent that pushing fη to a large value far above that
of fr for every negative relation r in order to mini-
mizeLh,tpmt (the same issue that also affects previous
work (Zhou and Lee, 2022) without being properly
addressed). Instead, our entropy minimization via
Lh,tem in Equation 6 provides a principled means to
“balance” the sharp disparity between the proba-
bility of r and that of η across all relations. Em-
pirically, Lh,tem also demonstrates its efficacy in an
ablation study (see Section 4.4.)

3.4 Supervised Contrastive Learning for
Multi-Labels and Long-Tailed Relations

Rather than focusing only on sharpening the dispar-
ity of probability outputs as stated in Equation 7,
we also seek to accentuate the disparities for the
embeddings of entity pairs that are labeled with
different relations. To do so, we take inspiration
from supervised contrastive learning (Khosla et al.,
2020) which aims to “pull” the embeddings of sim-
ilar examples together, and “push” those of dissim-
ilar examples apart.

However, the original supervised contrastive
learning technique only deals with single-label data,
and does not handle long-tail distributions. We
have to introduce some novel modifications for it to
work on our multi-label problem. We make use of
the embedding xh,t that is computed by Equation 1,
and normalized it by L2 normalization before using
it in the loss function below. After transplanting the
loss function of supervised contrastive learning for
our multi-label problem, we obtain the following
loss function for an entity pair (h, t):

Lh,tscl = − log
{ 1

|Sh,t|
∑

p∈Sh,t

exp(xh,t · xp/τ)∑
d∈B,d ̸=(h,t)

exp(xh,t · xd/τ)
}
, (8)

In Equation 8, B is a batch of examples (entity
pairs) including (h, t). Sh,t ⊆ B is such that each
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entity pair p=(h′, t′) in Sh,t has at least one posi-
tive relation in common with (h, t), and p is termed
a positive example of (h, t) (also (h, t) /∈ Sh,t).
The negative examples of (h, t) are the remaining
examples in the batch, i.e., B \ (Sh,t ∪ {(h, t)}).
The operator · refers to the dot product, and τ ∈ R+

is a temperature parameter. To minimize Lh,tscl, we
maximize the numerator in Equation 8 by learning
embeddings for (h, t) and its positive examples that
are close to each other (according to cosine simi-
larity), and minimize the denominator by learning
embeddings for (h, t) and its negative examples
that are far apart.

Equation 8 would work for document-level re-
lation extraction (DocRE) if not for the long-tail
phenomenon that is typically present in DocRE
datasets. For example, in the datasets used for our
experiments, the top 10 relations account for about
60% of entity pairs in the dataset. Thus, we often
find that an entity pair (h, t) with only long-tailed
positive relations does not have any other entity
pair in the same batch that has that relation in com-
mon, i.e., |Sh,t| = 0. This means that Equation 8
could not be applied to such entity pairs. To take
such an entity pair (h, t) into account, we design
the following loss term:

Lh,tlt = log
∑

d∈B,d ̸=(h,t)

exp(xh,t · xd/τ), (9)

in which we solely maximize the dissimilarities
between the embedding of (h, t) and those of other
entity pairs in the same batch B. The final loss
function for supervised contrastive learning is:

L2=
∑

(h,t)∈BP
I{|Sh,t|̸=0}Lh,tscl+I{|Sh,t|=0}Lh,tlt , (10)

where I{} is an indicator function that takes the
value of 1 if the condition in {} is satisfied, and
the value of 0 otherwise. In Equation 10, BP ⊆ B
is a subset of entity pairs in a batch that is labeled
with at least one relation inR. In other words, BP
does not contain any entity pair that is labeled with
the NA class (i.e., all relations inR are considered
negative for the entity pair), since it does not make
sense to minimize the embedding distance between
two entity pairs that are labeled NA, and thus have
no relation in common.

Combining Equations 7 and 10, we obtain the fi-
nal loss function that is used for training our model:

L = L1 + λL2, (11)

where λ ∈ R+ is a hyperparameter.

3.5 Negative Label Sampling
As reported by recent works (Huang et al., 2022;
Tan et al., 2022b), the DocRE benchmark suf-
fers from the severe false-negative problem, which
means that quite a few entity pairs previously la-
beled as NA class should have at least one rela-
tion label. Blithely ignoring this issue will greatly
harm the performance of the method and cause ill-
defined evaluation. To enhance the robustness of
our method, we propose a novel negative label sam-
pling strategy, which only samples a small fraction
of negative relations for each entity pair with NA la-
bel when computing the loss function. We assume
that the true relation labels for those false-negative
examples are hard to be sampled from the massive
negative relations, thus we could avoid erroneously
treating the correct labels as negative relations in
the loss function.

Let BN ⊆ B denote the subset of all entity pairs
that are labeled NA in a current batch B. For each
entity pair (h, t) in BN , we uniformly sample a sub-
set of negative relations N ′h,t ⊆ Nh,t, and define
the following loss function:

L′ =
∑

(h,t)∈BN

∑

r∈N ′
h,t

− logP ηh,t(r)+
1

γ2

∑

r∈N ′
h,t

Hh,t(r), (12)

where P ηh,t(r) and Hh,t(r) are defined in Equa-
tion 3 and Equation 5 respectively.

Let BP = B \ BN denote the subset of entity
pairs in the current batch B that is labeled with
at least one positive relation. Combining terms
in Equations 7, 10, and 12, we obtain the final
loss function LNA that incorporates our sampling
approach:

LNA1 = L′ +
∑

(h,t)∈BP
Lh,tpmt + Lh,tem,

LNA = LNA1 + λL2. (13)

Observe that LNA1 has modified L1 (Equation 7)
by changing the latter’s sum over negative rela-
tions for entity pairs that are labeled NA. Also note
that the loss L2 due to supervised contrastive learn-
ing remains unchanged in Equation 13 because it
operates at the level of entities (specifically their
embeddings) rather than at the level of relation
labels.

Although previous papers (Li et al., 2021b, 2022)
seem to adopt a similar negative sampling strategy,
our approach has significant differences from them.
The previous works sampled negative instances
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(i.e., entire entity pairs with NA labels in our case)
and removed those unselected negative instances
from the training dataset. In our approach, we
sample negative labels of NA entity pairs, and do
not discard any entity pairs, making our approach
potentially more data efficient.

4 Experiments

4.1 Benchmark Description

DocRED (Yao et al., 2019) is a large-scale dataset
constructed from Wikipedia and Wikidata, and is
widely used as a benchmark for document-level
relation extraction (DocRE). However, recent stud-
ies (Huang et al., 2022; Tan et al., 2022b) have
found that many entity pairs (or examples) that
are labeled NA are erroneous, and should be in-
stead labeled with at least one positive relation in
R. To ameliorate this problem, Re-DocRED (Tan
et al., 2022b) relabels the original training and de-
velopment sets of DocRED and splits DocRED’s
development set into two equal halves as new de-
velopment and test sets, respectively. Instead of
comparing models on the faulty DocRED dataset,
the results on Re-DocRED should be regarded as a
fair comparison.

4.2 Two New Data Regimes

To evaluate the models in a more realistic exper-
imental setting in which their resilience to noisy
data is carefully tested, we propose two new data
regimes, OOG-DocRE and OGG-DocRE, that are
based on the above DocRED and Re-DocRED
benchmarks. Every “O” represents the Original
labels obtained from the original unclean, noisy
DocRED dataset; similarly, every “G” represents
the Gold labels in the new, cleaned Re-DocRED
dataset. Each letter in “OOG” and “OGG” repre-
sent different sources of labels for training, valida-
tion, and testing, respectively. Both regimes reflect
the real-world scenario where training data is noisy,
and manual effort can only be expended on clean-
ing a relatively small validation/test set. All models
are trained and tuned only on the training and vali-
dation sets respectively, and evaluated on the test
set. Note that in both regimes the cleaned training
set from Re-DocRed is not used. Table 1 contains
details about the datasets.

3500 documents share the same titles as the development
set of Re-DocRED, but labeled by DocRED.

Dataset Train Dev Test
#Doc / #Example #Doc / #Example #Doc / #Example

DocRED 3,053 / 1,198,650 1,000 / 396,790 1,000 / 392,158
Re-DocRED 3,053 / 1,193,092 500 / 193,232 500 / 198,670

Our new data regimes
OOG-DocRE 3,053 / 1,198,650 5003/ 195,682 500 / 198,670
OGG-DocRE 3,053 / 1,198,650 500 / 193,232 500 / 198,670

Table 1: Dataset statistics. We construct two new data
regimes based on the Original labels from DocRED
and Gold labels from Re-DocRED. The total number
of predefined relation labels for all datasets is 96 (i.e.,
|R| = 96).

4.3 Results on DocRE Benchmarks

From Table.2, we see that our PEMSCL model per-
forms the best on both development and test sets of
the original DocRED dataset and the cleaned Re-
DocRED dataset (the models are trained on their
corresponding training sets). It is worth noting that
the results among recent models (e.g., DocuNet,
KD-DocRE, NCRL) are almost indistinguishable
on DocRED (see Appendix C), especially after con-
sidering their standard deviations. However, the
performance gaps between models become signifi-
cant when we validate and test on the Re-DocRED
dataset. This strongly suggests that the original Do-
cRED’s (overly erroneous) development and test
sets cannot truly ascertain the performance differ-
ences between models. In contrast, the cleaned
version Re-DocRED provides a more faithful com-
parison of the models. Henceforth, we analyze
model performances based solely on Re-DocRED’s
development and test sets.

Compared with ATLOP (upon which our model
is developed), our PEMSCL model achieves around
a 3-point improvement in terms of both Ign F1 and
F1 scores on Re-DocRED’s development and test
sets. When compared against the recent strong
baseline NCRL, our PEMSCL model continues to
do better, achieving about a 1-point improvement
in terms of F1 score on Re-DocRED’s develop-
ment set. After taking the standard deviations into
account, the results still show that PEMSCL out-
performs NCRL. In sum, the above results demon-
strate the effectiveness of our proposed model, and
ascertain that it has achieved new state-of-the-art
performances.

4.4 Ablation Study

In addition to the main metrics F1 and Ign F1, we
also report the F1 scores for different types of re-
lations. We first rank in descending order all pre-
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DocRED Dev DocRED Test

Model Ign F1 F1 Ign F1 F1

Implemented on DeBERTaLarge

ATLOP (Zhou et al., 2021) 62.16±0.15 64.01±0.12 62.12 64.08
ATLOP + BCE (Zhou and Lee, 2022) 61.92±0.13 63.96±0.15 61.83 63.92
NCRL (Zhou and Lee, 2022) 62.98±0.18 64.79±0.13 63.03 64.96

PEMSCL (Ours) 63.25±0.09 65.15±0.10 63.40 65.41

Re-DocRED Dev Re-DocRED Test

Ign F1 F1 Ign F1 F1

Implemented on RoBERTaLarge

JEREX (Eberts and Ulges, 2021) 69.12 70.33 68.97 70.25
ATLOP + BCE∗ (Zhou and Lee, 2022) 75.86±0.13 75.25±0.11 75.91 75.36
ATLOP (Zhou et al., 2021) 76.88 77.63 76.94 77.73
DocuNet (Zhang et al., 2021) 77.53 78.16 77.27 77.92
KD-DocRE (Tan et al., 2022a) 77.92 78.65 77.63 78.35
NCRL∗ (Zhou and Lee, 2022) 78.41±0.21 79.15±0.20 78.45 79.19

PEMSCL (Ours) 79.02±0.20 79.89±0.17 79.01 79.86

Table 2: Results on DocRED and Re-DocRED. Ign F1 stands for the F1 score excluding relational facts in the
training set. Results for baseline models on the test and dev set of DocRED are taken from their original papers. The
results on RE-DocRED for NCRL and ATLOP + BCE (Zhou and Lee, 2022) (i.e., marked with ∗) are reproduced
by us with their default code4 and our implementation, respectively; other results of baselines on Re-DocRED are
taken from (Tan et al., 2022b). We report the mean and standard deviation on the development set of 5 runs with
different random initialization for our PEMSCL model and the reproduced baselines, and report the test scores using
the best-performing model on the development set. For implementation details, please refer to Appendix A.

Model Dev Ign F1 Dev F1 Head F1 Mid F1 Tail F1

Ours 79.02 79.89 82.99 75.70 63.51
– Lh,tem 78.38 79.17 82.35 74.75 62.35
– L2 78.36 79.10 82.40 74.50 62.22
– Lh,tem and L2 77.92 78.63 81.92 74.06 61.16

Table 3: Ablation study of our PEMSCL model on Re-
DocRED. “–” represents the removal of our model’s
components. We also report the F1 scores for the top 10
relations (Head F1), the middle 70 relations (Mid F1),
and the last 20 relations (Tail F1) ranked by the number
of entity pairs that are related by them. The mean result
of 3 runs with different random initialization on the
development set of Re-DocRED are reported.

defined relations by the number of entity pairs that
are labeled with them. Next, we classify them into
three categories: head relations (the top 10 rela-
tions, accounting for 64% of Re-DocRED’s train-
ing data), tail relations (the bottom 20 relations,
accounting for 2% of training data), and middle
relations (the remaining relations).

From Table 3, we see that each component plays
a pivotal role in the effectiveness of our PEMSCL
model – removing a component or a combination
of them compromises performance. Removing the

Lh,tem and L2 components individually results in a
performance decline of 0.90% and 0.99% in terms
of F1 score respectively. When either of these two
components is removed, we see a sharper decline in
terms of Tail F1 (1.82% and 2.03%) than in terms
of Head F1 (0.77% and 0.71%). This shows that
both components are useful for long-tailed rela-
tions, and highlights the effectiveness of L2, part
of which is designed to cater to long-tailed rela-
tions. After removing both Lh,tem and L2 together,
the performances on Head F1, Mid F1, and Tail F1

all significantly drop by 1.29%, 2.17%, and 3.70%
respectively. Even with only one loss term remain-
ing (i,e, Lh,tpmt), our EMSCL model still surpasses
the baseline ATLOP on Re-DocRED in Table 2 by
1.3% on Dev F1, reflecting the usefulness of our
pairwise moving-threshold loss.

4.5 Results on New Data Regimes

Table 4 shows the performance of our PEMSCL
model and baselines on our proposed data regimes:
OOG-DocRE and OGG-DocRE. We select NCRL
as a focal baseline from among the recent baselines

4https://github.com/yangzhou12/NCRL
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Orig-Dev Gold-Dev Gold-Test

Ign F1 F1 Ign F1 F1 Ign F1 F1

On OOG-DocRE Regime
ATLOP (Zhou et al., 2021) 60.94 62.95 46.99 47.14 47.52 47.65
NCRL (Zhou and Lee, 2022) 61.42 63.52 49.06 49.21 48.41 48.53
PEMSCL (Ours) 62.05 64.19 50.82 50.99 50.92 51.10

PEMSCL† (Ours) 46.07 49.51 62.05 63.39 62.76 64.03

On OGG-DocRE Regime
ATLOP (Zhou et al., 2021) - - 48.23 48.54 48.50 48.77
NCRL (Zhou and Lee, 2022) - - 49.92 50.08 50.10 50.25
PEMSCL (Ours) - - 50.43 50.62 51.09 51.25

PEMSCL† (Ours) - - 62.40 63.72 62.47 63.73

Table 4: Results on two new data regimes. The best results are bolded, and the second best results are underlined.
PEMSCL† refers to our best-performing model on the development set after using our proposed negative label
sampling strategy (Section 3.5). The sampling ratio of 0.1 is set with a development set.
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Figure 2: The effect of negative label sampling ratio in
the OOG-DocRE regime.

due to its competitive performance on Re-DocRED.
We see that all models perform above 62-point F1

on Orig-Dev (the original development set from Do-
cRED) when trained on the original training dataset.
However, when we evaluate all models on Gold-
Dev and Gold-Test (the clean development and test
sets from Re-DocRED), the performances of the
models (including ours) dramatically decrease by
around 15-point F1 on both Gold-Dev and Gold-
Test. Upon inspection, we find that the models
misclassify a lot of positive examples (entity pairs)
as NA, which is an expected outcome of being mis-
guided by the erroneous false-negative labels in
DocRED.

However, after using our proposed negative label
sampling loss (Equation 13), our PEMSCL model
exhibits tremendous improvement on both Gold-

Dev and Gold-Test by 24% and 25% on the F1

scores respectively. This demonstrates the effec-
tiveness of our negative label sampling strategy
in countering the noise present in entity pairs that
are labeled NA. The same conclusion can be drawn
from the results for the OGG-DocRE regime. More-
over, we notice that both ATLOP and NCRL im-
prove by at least 1-point F1 on the OGG regime
compared with the OOG regime. This demon-
strates the usefulness of gold labels even in a small
amount. However, our model performs compara-
bly on both regimes, indicating the stability of our
model in different regimes.

We also investigate the effect of the sampling
ratio on our proposed strategy. The sampling ratio
refers to the ratio of negative labels that we keep
during the training for each entity pair that is la-
beled NA. We apply our negative label sampling
approach on both ATLOP and our PEMSCL model.
As seen from Figure 2, PEMSCL consistently per-
forms better than ATLOP by a clear margin. We
also find that the performances of the models on
Gold-Dev and Gold-Test gradually decrease as the
sampling ratio is increased. This is because as we
keep more (purportedly) negative labels in our loss
function, the risk of wrongly penalizing potentially
true labels increases concomitantly.

We observe that the sampling ratio has the op-
posite effect on Orig-Dev. As the sampling ratio
increases, the F1 on Orig-Dev increases, leading
one to mistakenly conclude that a large sampling
rate should be used. This provides strong evidence
of the poor data quality in DocRED, and shows

2613



 1. The Avery Fisher Career Grant, established by Avery 

 Fisher, is an award given to up to five outstanding 
 instrumentalists each year  ... 

 2. The Career Grants are a part of the Avery Fisher 

 Artist Program, along with the Avery Fisher Prize and 

 Special Awards. 
 3. They are administered by the Lincoln Center for  the 

 Performing Arts.

 …
 5. Only U.S. citizens or permanent residents are eligible.

 Label 2: (Avery Fisher Artist Program, U.S., Country)

Label 1: (Lincoln Center for the Performing Arts, U.S., Country)

 Country   NA  Country   NA

 Country   NA  Country   NA

14.5 10.3 9.99.3

16.8
10.1

26.4

9.2

ATLOP's logitsPEMSCL's logits

ATLOP's logitsPEMSCL's logits

Figure 3: Case Study.

how it can misguide training and lead to poor re-
sults. The results on the OGG-DocRE regime are
similar (see Appendix B for details).

4.6 Case Study

Figure 3 shows a case study of our proposed
PEMSCL model and the baseline ATLOP model.
We can see that for the entity pair (Lincoln Cen-
ter for the Performing Arts, U.S.), both models
successfully detect the correct relation label, i.e.,
Country. However, the logit difference between
the Country relation and the threshold label NA
in our model is much larger than that of the ATLOP
model (26.4-9.2 > 16.8-10.1). This demonstrates
that our model is capable of learning a more differ-
entiated distribution of the final probability scores.
For the entity pair of (Avery Fisher Artist Program,
U.S.), the ATLOP model fails to correctly predict
its label and classifies it as NA class since the logit
of Country is lower than that of the threshold
class (9.3 < 9.9). However, our model not only cor-
rectly predicts its correct label, but also maximizes
the discriminability of the prediction scores (14.5
vs 10.3).

5 Conclusions

In this paper, we propose a novel method for
DocRE problem called PEMSCL, which contains a
pairwise moving-threshold loss with entropy min-
imization, adapted supervised contrastive learn-
ing, and a novel negative sampling strategy, to
achieve good integration of both discriminability
and robustness. Experimental results show that our
method achieves new state-of-the-art results.
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Limitations

First, we require a large amount of GPU resources
to conduct our experiments because we deal with
large document-based datasets (whose input text
is significantly longer than those of traditional
sentence-level tasks). Second, we implement our
model on two large pre-trained language mod-
els, Roberta-large (Liu et al., 2019) and Deberta-
large (He et al., 2021), both of which also have a
large GPU footprint. Third, the performance of our
adapted supervised contrastive learning component
is dependent on GPU batch size (a larger batch
size allows more contrastive examples to be used
to learn better embeddings).
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A Implementation Details

We mainly implement our method using the pre-
trained RoBERTa-large (Liu et al., 2019) as the
encoder model. Due to limited computational re-
sources, we only use a larger model DeBERTa-
large (He et al., 2021) on the DocRED benchmark.
We conduct grid search for the temperature param-
eter τ and the loss coefficient λ ({0.1, 0.2, 0.5,
1.0, 2.0}), learning rate ({1e-5, 2e-5, 3e-5}), and
warmup ratio of optimizer ({0.02, 0.06, 0.10}). We
implement our model in the PyTorch version of
Huggingface Transformers5, and run all experi-
ments on a NVIDIA Quadro RTX 8000 GPU. The
best hyperparameters used in our experiments are
shown in Table5.

B The Effect of Sampling Ratio on the
OGG- DocRE Setting

We analyze the effect of the negative label sampling
ratio in the OGG-DocRE regime, which is shown
in Figure 4. It presents a similar pattern with that
of the OOG-DocRE regime as described in Section
4.5.

C Results on the DocRED Dataset

We provide the results of RoBERTa-large based
models on DocRED in Table 6 for a complete com-
parison. However, these results can not reflect a
faithful performance comparison due to the pre-
ponderance of erroneous labels in the DocRED
dataset. Instead, the results on the Re-DocRED
dataset should be taken as a reliable fair compari-
son.

5https://huggingface.co/
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Figure 4: The effect of negative label sampling ratio in
the OGG-DocRE regime.

D Background: ATLOP Encoder

For every document, the encoder model first marks
each entity mention with a special token “*” at
its start and end positions, and then feeds the re-
sulting document D= {wl}Ll=1 into a pre-trained
language model (PLM) to obtain contextual em-
beddings for each of the document’s L tokens:
H = [h1, . . . ,hL] = PLM([w1, . . . , wL]) where
hl ∈ Rd. ATLOP regards the embedding of “*” at
the start position of mention mi

j as its representa-
tion, i.e., hI(mi

j)
, where I(.) is a function mapping

a mention mi
j to the index of its representative “*”

in H. Next, the embedding hei ∈ Rd of each entity
ei is obtained with logsumexp pooling:

hei = log

Mei∑

j=1

exp
(
hI(mi

j)

)
.

For each entity pair (eh, et), ATLOP uses the
token-level dependencies present within its multi-
head self-attention mechanism to compute a local-
ized contextual embedding ch,t ∈ Rd, capturing
the contextual information that is relevant to both
entities eh and et. Due to space constraints, we
refer readers to Zhou et al. (2021) for details on
how ch,t is computed.

For each entity pair (eh, et), the encoder will
generate the final representation xh,t for the pair,
and its corresponding vector of unnormalized pre-
diction scores fh,t ∈ R|R|+1 for all relations in
R∪ {NA} as follows:

[z1
h; . . . ; z

P
h ] = zh = tanh (Whheh +Wc1ch,t) ,

[z1
t ; . . . ; z

P
t ] = zt = tanh (Wthet +Wc2ch,t) ,

xh,t = ||Pp=1(z
p
h ⊗ zpt ), (14)

fh,t = Woxh,t + bo, (15)
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Dataset Batch size Epoch Warmup ratio Learning rate τ λ γ1 γ2

DocRED 4 5 0.10 2e-5 2.0 2.0 1 1
Re-DocRED 4 8 0.06 2e-5 0.2 0.1 |Ph,t| |Nh,t|

Table 5: Best hyperparameters for benchmarks.

DocRED Dev DocRED Test

Model Ign F1 F1 Ign F1 F1

Implemented on RoBERTaLarge

Coref (Ye et al., 2020) 57.35 59.43 57.90 60.25
SSAN (Xu et al., 2021) 60.25 62.08 59.47 61.42
ATLOP (Zhou et al., 2021) 61.32±0.14 63.18±0.19 61.39 63.40
DocuNet (Zhang et al., 2021) 62.23±0.12 64.12±0.14 62.39 64.55
KD-DocRE (Tan et al., 2022a) 62.16±0.10 64.19±0.16 62.57 64.28
NCRL (Zhou and Lee, 2022) 62.21±0.22 64.18±0.20 61.94 64.14

PEMSCL (Ours) 62.31±0.19 64.21±0.17 62.17 64.28

Table 6: Experimental results on the DocRED dataset.

where zh, zt ∈ Rd1 are split into P equal-sized
groups [z1

h; . . . ; z
P
h ] and [z1

t ; . . . ; z
P
t ] respectively;

W{h,t,c1,c2} ∈ Rd1×d, Wo ∈ R(|R|+1)×dx , xh,t ∈
Rdx (dx= d1×d1

P ), and bo ∈ R|R|+1 are learnable
parameters (in our model too); ⊗ is the outer prod-
uct operator; and the operators ; and || respectively
represent the concatenation of vectors and matrices.
The elements in fh,t are logits that our model feeds
pairwise into (not necessarily the same) softmax
functions to obtain relative probabilities between
relations (Section 3.3).
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Abstract

Generics express generalizations about the
world (e.g., birds can fly) that are not univer-
sally true (e.g., newborn birds and penguins
cannot fly). Commonsense knowledge bases,
used extensively in NLP, encode some generic
knowledge but rarely enumerate such excep-
tions and knowing when a generic statement
holds or does not hold true is crucial for devel-
oping a comprehensive understanding of gener-
ics. We present a novel framework informed
by linguistic theory to generate EXEMPLARS—
specific cases when a generic holds true or false.
We generate ∼19k exemplars for ∼650 gener-
ics and show that our framework outperforms a
strong GPT-3 baseline by 12.8 precision points.
Our analysis highlights the importance of lin-
guistic theory-based controllability for generat-
ing exemplars, the insufficiency of knowledge
bases as a source of exemplars, and the chal-
lenges exemplars pose for the task of natural
language inference.

1 Introduction

Generics express generalizations (e.g., birds can
fly) that allow humans to reason and act with in-
complete world knowledge (Asher and Morreau,
1995). Generics allow us to draw plausible infer-
ences about individuals (e.g., Polly is a bird, so
Polly can fly) even when we know of counterexam-
ples (e.g., penguins cannot fly). Despite the utility
of generalizations, knowledge of counterexamples
is necessary for modeling generics and effectively
reasoning with them in computational systems.

Recent studies of generics (e.g., Bhagavatula
et al., 2022; Bhakthavatsalam et al., 2020) and
commonsense KBs (e.g., Speer et al., 2017) pro-
vide repositories of generic knowledge. However,
these resources rarely mention EXCEPTIONS (i.e.,
counterexamples) or INSTANTIATIONS (i.e., cases
where the generic holds); collectively EXEMPLARS.
For systems using these resources as a source of
world knowledge, such incomplete information can

xp(1):  Penguins can’t 
xp(2): Sparrows can’t 

xp(i): Sparrows can 
xp(j): Birds can

…

“Sparrows can fly.”

“Penguins can fly.”

✅

CONCEPTNET

bird

fly

penguinsparrow

❌

Generic: “Birds can fly”
EXEMPLARS 

INSTANTIATIONS

EXCEPTIONS

Quality

Filters

Prompts

(Speer et al., 2017)

Sparrows can fly.

Birds can fly long 
distances.

Penguins can’t fly.

INSTANTIATION

INSTANTIATION

EXCEPTION

Sparrows can fly 
Birds can wings 

Penguins can’t take off 
Baby birds can’t fly 

…

Candidate Exemplars

capable ofproperty(soar ∨ take of f ∨
glide ∨ migrate ∨ . . . )

#
GPT2-XL


Neurologic A*esque
(Lu et al., 2022)

& Constraints

is a
is a

GENERATOR

Figure 1: We present EXEMPLARS generator: given a
generic like “Birds can fly” it generates truthful state-
ments where the generic does (INSTANTIATIONS) and
does not (EXCEPTIONS) hold. We extract commonsense
knowledge (e.g., from ConceptNet (Speer et al., 2017))
in linguistically-informed prompts and constraints for
constrained generation (Lu et al., 2022). We use trained
discriminators to filter for quality.

lead to incorrect deductions (e.g., if Polly is a pen-
guin, which is a bird, then inferring that Polly can
fly because birds can fly is false1). Therefore, we
propose a novel computational framework that op-
erationalizes linguistic theories in order to automat-
ically generate EXEMPLARS.

In our work, we unify two distinct linguistic the-
ories and use linguistic theory-guided decoding to
generate EXEMPLARS. Although large-scale neu-
ral language models such as GPT-3 (Brown et al.,
2020) have been increasingly successful in few-
shot text generation tasks, such generation is both
expensive and not easily controllable. Therefore,
we instead use the constrained generation algorithm
Neurologic A⋆esque (Lu et al., 2022), which can
be applied to any auto-regressive language model;
we choose to use GPT-2 (Radford et al., 2019).

1penguin is a bird ∧ birds can fly =⇒ penguins can fly
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In this manner, we generate 12562 INSTANTIA-
TIONS and 6297 EXCEPTIONS for ∼650 generic
statements from Bhagavatula et al. (2022). We con-
duct human evaluation of the generations and show
that our system outperforms few-shot generation
by GPT-3 by 12.8 precision points. Our analyses
demonstrate not only the importance of linguistic
modeling for generating EXEMPLARS and the in-
sufficiency of KBs as a source of EXEMPLARS, but
also the challenges EXEMPLARS pose for natural
language reasoning.

Our contributions are as follows: (1) we present
a novel framework grounded in linguistic theory
for representing generics and their EXEMPLARS,
(2) we present the first method to automatically
generate generic EXEMPLARS and show it outper-
forms a competitive baseline based on GPT-3 and
(3) we present analysis showing the importance of
explicit linguistic modeling for this task and the
insufficiency of current NLI methods for generics.
Our system and data are publicly available2.

2 Related Work

Theory Generics have been studied extensively
in semantics, philosophy, and psychology to de-
velop a single logical form for all generics (Lewis
and Keenan, 1975; Carlson, 1977, 1989; Krifka,
1987) or a probabilistic definition (Cohen, 1996,
1999, 2004; Kochari et al., 2020), categorize gener-
ics (Leslie, 2007, 2008; Khemlani et al., 2009),
and analyze specific types (Prasada and Dilling-
ham, 2006, 2009; Haward et al., 2018; Mari et al.,
2012; Krifka et al., 2012). Mechanisms to tolerate
EXCEPTIONS have also been proposed (Kadmon
and Landman, 1993; Greenberg, 2007; Lazaridou-
Chatzigoga and Stockall, 2013) but these are pri-
marily theoretical and use carefully chosen exam-
ples. In contrast, our work combines these EXCEP-
TION tolerance mechanisms with generic catego-
rization and proposes a novel, large-scale, compu-
tational framework for EXEMPLARS.

Commonsense Knowledge While large-scale
CKBs capture a range of commonsense knowl-
edge (Speer et al., 2017; Sap et al., 2019; Forbes
et al., 2020; Hwang et al., 2021), they contain nec-
essarily incomplete (i.e., the open-world assump-
tion (Reiter, 1978b)) general knowledge. Further-
more, although recent works have created KBs
specifically of generics (Bhakthavatsalam et al.,

2https://github.com/emilyallaway/
generics-exemplars

2020; Bhagavatula et al., 2022) and proposed meth-
ods to identify generics in text (Friedrich et al.,
2015, 2016), they do not identify or model EXEM-
PLARS. In our work, we focus directly on automat-
ically generating EXEMPLARS, providing richer
commonsense knowledge.

The application of generics to specific individ-
uals is influenced by prototypicality (Rips, 1975;
Osherson et al., 1990), with small sets of prototypi-
cal norms collected in cognitive science for a range
of kinds (Devereux et al., 2014; McRae et al., 2005;
Overschelde et al., 2004). However, recent work
has shown that neural models have only moderate
success at mimicking human prototypicality (Misra
et al., 2021; Boratko et al., 2020) or producing com-
monsense facts without guidance (Petroni et al.,
2019). Hence, we combine neural models with
a KB of concepts, using linguistic-theory-guided
decoding, to generate generics EXEMPLARS.

Reasoning Reasoning with generics is closely
related to non-monotonic reasoning (Ginsberg,
1987b,a); specifically default inheritance reason-
ing (Brewka, 1987; Hanks and McDermott, 1986;
Horty and Thomason, 1988; Imielinski, 1985;
Poole, 1988; Reiter, 1978a, 1980). Contrary to the
proposed solutions for linguistic tests on default
inheritance reasoning (Lifschitz, 1989, e.g.,can a
conclusion about inheritance be inferred based on
provided evidence?), later works showed that the
presence of generics EXEMPLARS in the evidence
impacts what humans perceive as the correct an-
swer (Elio and Pelletier, 1996; Pelletier and Elio,
2005; Pelletier, 2009). These results highlight the
importance of identifying generics and accurately
modeling their relationships in machine reasoning.

While natural language inference (NLI), a
form of deductive reasoning well-studied in NLP
(i.a., Dagan et al. (2013); Bowman et al. (2015)),
captures notions of inference, studies on non-
monotonic reasoning and NLI are limited (Wang
et al., 2019; Cooper et al., 1994; Yanaka et al.,
2019b,a; Rudinger et al., 2020) and do not include
default inheritance reasoning. Therefore, in this
work we analyze the interactions between generics
EXEMPLARS and NLI and highlight the importance
of modeling this relationship in machine reasoning.

3 Framework for EXEMPLARS

A generic statement describes a relation between
a concept and a property. Usually, a concept K
is a type or kind (e.g., bird) while a property P
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Category Generic (G) INSTANTIATION EXCEPTION
(a) quasi-def “Stars produce radiation” “The sun produces radiation” “Stars produce light”

K(x) ∧r(x, y) =⇒ P (y) K(x) ∧ r(x, y) ∧ P (y) K(x) ∧ r(x, y) ∧≁P (y)
“Birds can fly” “Owls can fly” “Penguins can’t fly”

(b) principled “Sharks attack swimmers” “Threatened sharks attack swimmers”
“Sharks don’t attack swimmers

in the shallows”
K(x) ∧ P (y) =⇒ r(x, y) K(x) ∧ r(x, y) ∧ P (y) K(x) ∧ ¬r(x, y) ∧ P (y)

“Cars have CD Players”
(c) characterizing “Cars have radios”

LG is ambiguous
“2014 Prius model C has a radio ”
K(x) ∧ r(x, y) ∧ P (y)

K(x) ∧ r(x, y) ∧≁P (y)
“Newer cars don’t have radios”
K(x) ∧ ¬r(x, y) ∧ P (y)

Table 1: We define three categories of generics with their EXEMPLARS. The logical forms for the generic (LG)
and its EXEMPLARS are also below the examples. Using these categories we formulate templates for generating
EXEMPLARS (see Table 2). K is the concept (blue), P the property (pink). See §3.3 for exoproperty ≁P .

is an ability (e.g., fly) or quality (e.g., feathered).
Note that statements containing explicit quantifica-
tion (e.g., “Most birds can fly”) are generally not
considered generics (Carlson, 1977; Krifka et al.,
1995) and are therefore excluded from this study
(see §A.1 for further discussion).

In our framework, we first categorize (§3.1)
generics and derive their logical forms (§3.2).
These logical forms for generics serve as our basis
for formulating EXEMPLARS (§3.3) and designing
templates suitable for generation (§3.4).

3.1 Generic Category Definitions
We categorize a generic based on the type of prop-
erty it describes. In particular, by unifying theories
from linguistics and philosophy3, we split generics
into three categories (see examples in Table 1). A
generic has a particular category if:
(a) Quasi-definitional: the property is essential

to a concept (Khemlani et al., 2009).

(b) Principled: the property has a strong associa-
tion with the concept. This includes both prop-
erties with a principled association to a con-
cept (e.g., flying is viewed as inherent to birds,
although it is not essential in reality) (Prasada
and Dillingham, 2006, 2009; Haward et al.,
2018) and properties that are uncommon and
often dangerous (Leslie, 2017).

(c) Characterizing (char.): there is only a non-
accidental relationship between the property
and concept (e.g., based only on absolute or
relative prevalence among concepts) (Leslie,
2007, 2008).

3.2 Logical Forms for Generics
We propose logical forms LG that are used to rep-
resent an individual generic G. Each generic cate-

3Description of the theories is provided in §A.2

gory has a distinct logical form (see Table 1). For
quasi-definitional generics, since the property is
defining we assert that the property is logically im-
plied by the concept and relationship together (i.e.,
K∧r =⇒ P ). In contrast, for principled generics
we assert that the concept and property together log-
ically imply the relationship (i.e., K ∧ P =⇒ r).
Finally, for characterizing generics, the logical
form depends on whether the generic is interpreted
as quasi-definitional or principled. Logical forms
with examples are shown in Table 1. Note that in a
logical LG, the concept K (property P ) is satisfied
by both an individual or subtype of K (P )4.

3.3 Constructing EXEMPLARS

We now define generics EXEMPLARS, deriving
them from the logical form of a generic.

INSTANTIATIONS For a generic, INSTANTIA-
TIONS are contextually relevant members of the
concept with the desired property. Formally,

Definition (INSTANTIATIONS). An INSTANTIA-
TION satisfies L′G (i.e., LG with implication re-
placed by conjunction5).

For example, if we have
LG: BIRD(x) ∧ FLY(y) =⇒ can(x, y)

so, L′G: BIRD(x) ∧ FLY(y) ∧ can(x, y)
then (x, y) = (“owls”, “fly”) satisfies L′G. Note that
INSTANTIATIONS all have the same logical form
regardless of the generic category (see Table 1).

4For example, BIRD(x) is true for x1 =“my parrot”,
x2 =“owls”, and x3 =“these birds” since all are birds.

5Replacing the implication with a conjunction excludes
instances which satisfy LG by satisfying only the right side
of the implication (e.g., BIRD(x) ∧ FLY(y) =⇒ can(x, y)
is logically true for (x, y) = ( airplanes, fly) but this is not a
valid INSTANTIATION).
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EXCEPTIONS An EXCEPTION counters one of
two interpretations of the generic (see §A.3 for
an in-depth discussion). EXCEPTIONS are mem-
bers of the concept either (i) without the generic
property (Greenberg, 2007) or (ii) with an alterna-
tive property (i.e., exoproperty) when the generic
property is essential to the concept. For example,
“penguins can’t fly” (for the generic “birds can fly”)
counters the interpretation that “all birds can fly”.
In contrast, “stars produce light” (for the generic
“stars produce radiation”) counters the interpreta-
tion that “stars produce only radiation”. Note that
in the latter case, there are no specific stars that do
not produce radiation. More formally,

Definition (EXCEPTIONS). An EXCEPTION satis-
fies the logical form ≁LG (i.e., ¬LG where ¬P
replaced by ≁P when applicable). We define ≁P
as the exoproperty of P : a property adjacent to P
that is not P but is contextually relevant to P .

For example, if the logical form LG is

STAR(x) ∧ produce(x, y) =⇒ RADIATION

then ≁LG is

STAR(x) ∧ produce(x, y) ∧≁RADIATION(y)

and so (x, y) = (“stars”, “light”) satisfies ≁LG,
while (x, y) = (“stars”, “movies”) does not. Notice
that the latter pair is invalid because “movies” is
not a relevant alternative to “radiation” since it is
not informative about the generic.

Since a generic’s EXCEPTIONS depend on its
logical form LG, they are also dependent on the
generic’s category (see Table 1). In particular, the
EXCEPTIONS for quasi-defintional generics are in-
dividuals with alternative properties (since the prop-
erty is viewed as essential) while for principled
generics the EXCEPTIONS are individuals without
the generic property. EXCEPTIONS for characteriz-
ing generics are, like the logical forms, dependent
on the generic’s interpretation (see §3.2)

3.4 Logical Forms to Templates

Based on our proposed formulae (Table 1) for EX-
EMPLARS we define seven templates for genera-
tion (Table 2). Each template expresses a set of
instances that satisfy the logical form of an EX-
EMPLAR. Each template has two sets of content
specifications: for the input and for the completion
(i.e., the decoder output).

For INSTANTIATIONS, we define three tem-
plates with subtypes of the concept, property, or
both. For EXCEPTIONS we have four templates,

Generic: “Birds can fly”
 T4[Ksubtype+ r]input[P]completion 
 T5 …

Template:

§4.1 - Template Assembly w/GPT-3 & ConceptNet
Template filling

 T4 [Birdsub + can’t][fly] 
 T5 [Birdsub + can]  [fly]

…
input completion

Prompts & Constraints

xp(1):  Penguins can’t 
xp(2): Sparrows can…

C(1) 
C(2)

✔  Valid  / ❌  Invalid§4.4 - Output Selection

INSTANTIATIONS 
Sparrows can fly 
Birds can wing 

Birds can fly blind

EXCEPTIONS 
Penguins can’t take off 

Penguins can’t fly 
Crows can’t fly

✔ Sparrows can fly 
❌ Birds can fly blind

❌ Penguins can’t take off 
✔ Penguins can’t fly

Input

Output INSTANTIATION:
EXCEPTION:

Sparrows can fly 
Penguins can’t fly

See Table 2

w/GPT2-XL Neurologic A*esque
§4.2 - Exemplar Generation §4.3 - Viability Filtering

Viable/Not Viable

Figure 2: Overview of our method for an input generic.

using subtypes of either the concept or property
(but not both) in order to avoid irrelevant or unin-
formative instances. For example, for the generic
“Birds can fly”, the sentence “Penguins can’t fly
long distances” (which has subtypes of both the
concept and property) is uninformative because it
doesn’t mean penguins can’t fly in general (e.g.,
they might still be able to fly short distances).

4 Methodology

We propose a pipeline system to automatically gen-
erate generics EXEMPLARS. Our system takes as
input a generic G and the templates derived from
its category6 (§3.4), and outputs a set of generated
EXEMPLARS (Fig. 2). First, the system assembles
and populates the templates according to the input
generic (§4.1, Fig. 2). Then, the filled templates are
converted into prompts and constraints that control
the generation decoding process (§4.2). Finally,
the output is filtered to remove non-viable (§4.3,
Fig. 2) or irrelevant (§4.4, Fig. 2) EXEMPLARS.

4.1 Template Assembly
To populate our templates (defined in Table 2), we
use a dependency parser7 to identify the text spans
of the concept, relation, and property in a generic.
Then, (i) we extract subtypes for the concept and
property and use these to construct the (ii) input
i.e., generation prompts xp) and (iii) completion
(i.e., lexical constraints C) specifications.

6We assume the generic’s category is known.
7https://spacy.io/
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Categories Template Example
input comp. Generic Prompt xp Constraints C

EXCEP.

quasi-def
& char

K + r ≁P Stars produce radiation “Stars produce” ¬radiation ∧¬ x-rays ∧ ... t1
Ksub + r ≁P “Sun produces” ¬radiation ∧¬ x-rays ∧ ... t2

principled
& char

K + ¬r Psub Birds can fly “Birds can’t” migrate ∨ soar ∨ glide ∨... t3
Ksub + ¬r P “Penguins can’t” fly ∨ flying ∨... t4

INST. all
Ksub + r P

Birds can fly
“Sparrows can” fly ∨ flying ∨... t5

K + r Psub “Birds can” migrate ∨ soar ∨ glide ∨... t6
Ksub + r Psub “Sparrows can” migrate ∨ soar ∨ glide ∨... t7

Table 2: Templates for generating EXEMPLARS, derived from their logical forms (§3.3). sub indicates a subtype, K
the concept, P the property, ≁P its exoproperty (§3.2). comp is the completion.

(i) Subtype Extraction We extract subtypes us-
ing both ConceptNet (Speer et al., 2017)8 and GPT-
3 (Brown et al., 2020). GPT-3 increases the cover-
age and diversity of subtypes, since many natural
and valid subtypes may be missing from Concept-
Net (e.g., modifier phrases attached to a concept:
“young Arctic fox”). We only use GPT-3 for sub-
types of the concept, since by increasing the diver-
sity in the prompt we may encourage diversity in
the generated properties (see details Appendix D).

(ii) Input Specification We construct the input
specifications by constructing generation prompts.
Following the template, each prompt consists of ei-
ther the concept (or a subtype) and the relationship
(or its negation) (see Table 2). We prepend to each
prompt the generic itself and a connective (e.g.,
“however”). We rank the prompts by perplexity and
use the top kp prompts for generation.

(iii) Completion Specification Following the
templates, we constrain the generation output to de-
scribe the property (or a subtype) or its exoproperty
(see Table 2). We construct a set of completion con-
straints (e.g., C(i) in Fig. 2 specifies “fly” should
be in the completion) using lexical items including
subtypes, synonyms, and morphological forms.

4.2 Generation

In order to generate output that has a specific
pragmatic relation to the input without requir-
ing training, we use the NeuroLogic A⋆esque
(NeuroLogic⋆) (Lu et al., 2022) decoding algo-
rithm. NeuroLogic⋆ is an unsupervised decod-
ing algorithm that takes as input a prompt xp and
set of lexical constraints C and produces a com-
pletion of the prompt ŷ which has high likeli-
hood given the prompt and high satisfaction of the
constraints (estimated throughout the decoding).
A lexical constraint consists of a set of n-grams
w = (w1

i , . . . , w
m
i ) and is satisfied when at least

8Relations: IsA, InstanceOf, Synonym

one wi ∈ w is in ŷ (inclusion constraints) or is not
in ŷ (exclusion constraints).

By using the input prompts (as xp) and comple-
tion constraints (as C) derived from our templates
(§4.1), we can control the output content, syntac-
tic form, and pragmatic relevance. We note that
since we cannot concretely define the set of rele-
vant potential candidates for a property’s exoprop-
erty (§3.2), decoding constraints must be used to
generate EXCEPTIONS.

Output Ranking We rank the outputs from
NeuroLogic⋆ by template and prompt and we take
the top kr outputs as potential EXEMPLARS. The
outputs are ranked by perplexity (for fluency) and
by the probability of a specific NLI label (for rel-
evance) and we average the two ranks. For NLI
labels, we hypothesize that a good EXCEPTION

aligns with NLI’s contradiction, as does a good IN-
STANTIATION with entailment (see Fig. 2). While
this alignment is useful for ranking, the relationship
between the EXEMPLARS and NLI labels is not this
straightforward in reality, as we will discuss (§6.3).

4.3 Filtering For Viability

Since pre-trained language models have a tendency
to hallucinate facts (Rohrbach et al., 2018) or
produce non-specific output (e.g., “Birds can do
things”), we apply a viability filter to the ranked
output generations. Specifically, we train a dis-
criminator to predict whether an output is viable
(i.e., true and sufficiently specific that it could be
an EXEMPLAR) or not, using human annotated ex-
amples (see Appendix B for details). Generations
predicted not viable by the trained discriminator
are removed from the dataset.

4.4 Output Selection

Our final task is to select the generations that are
pragmatically relevant (i.e., valid; correctly fol-
lows a template) EXEMPLARS. To do this, we first
collect gold labels from humans for whether an
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EXEMPLARS is valid. These annotations produce
two sets of binary labels; one set each for INSTAN-
TIATIONS and EXCEPTIONS.9 Although this task
is more complex than annotating for viability, re-
moving non-viable generations helps reduce the
complexity (i.e., we do not need to worry about
false statements that adhere to the template). By an-
notating only viable generations we also reduce the
required amount of annotation. Using the human
annotations, we train two validity discriminators:
one for EXCEPTIONS, one for INSTANTIATIONS.
The trained validity discriminators are used to rank
and select the best generations for each generic as
our system output.

5 Experiment Details

We discuss our experimental setup and specify full
hyperparameters in Appendix C.

5.1 Data Source
We use a subset of the generics dataset from Bhaga-
vatula et al. (2022), a set of 30K generics built upon
common everyday concepts (e.g., “hammers”) and
relations (e.g., “used for”) sourced from resources
such as GenericsKB (Bhakthavatsalam et al., 2020)
and ConceptNet (Speer et al., 2017). The dataset
includes a diverse variety of concepts, including
general knowledge (“Dogs bark”), locative gener-
ics (“In a hotel, you will find a bed”), and com-
parative generics (“Cars are faster than people”).
We use 653 generics from the test set, excluding
human referents as the concept (e.g., nationalities,
professions) due to social bias concerns.

5.2 Annotations
All annotations are done using Amazon Mechan-
ical Turk with three annotators per HIT (paid
at $15/hour on average) and processed using
MACE (Hovy et al., 2013) to filter annotators and
determine the most likely label. We note that while
all tasks achieve moderate inter-annotator agree-
ment, the complex pragmatics of generics make
these tasks difficult for human annotators.

For generic type (§3.1), we conduct two anno-
tation passes to partition all 653 generics into the
three groups in Table 1. The Fleiss’ κ (Fleiss, 1971)
is 0.41 and 0.58 for the first and second pass re-
spectively. Our categorization results in 296 quasi-
definitional, 125 principled, and 232 characterizing

9Since a generation that is not an INSTANTIATION in not
necessarily an EXCEPTION (and vise versa), these cannot be
directly combined into a single multi-class labeling task.

Subtype Source
G3 CN G3+CN

Generated
Output (§4.2) 42272 10496 52768
Viable (§4.3) 22865 5452 28317

Valid (§4.4)
EXCEP. 4375 1922 6297
INST. 10983 1579 12562
TOTAL 15358 3501 18859

Table 3: Statistics of the generated dataset, with GPT-3
(G3) and ConcepNet (CN) subtypes used.

generics. For the viability filter (§4.3), we an-
notate a set of 7665 system generations from 150
generics. The Fleiss’ κ is 0.53.

For EXEMPLAR gold labels (§4.4), we use sepa-
rate annotation tasks for INSTANTIATIONS and EX-
CEPTIONS (see Appendix B for details) with Fleiss’
κ of 0.40 and 0.45 respectively. For training each
discriminator, we randomly sample and annotate
∼1k system generations from ∼300 generics. For
human evaluation (§6.2), we annotate the top 5
discriminator-ranked generations for all generics
from both our system and the baseline.

5.3 Discriminators
For all discriminators, we fine-tune RoBERTa (Liu
et al., 2019). All labeled data is split such that all
generations for a particular generic are in the same
data partition.

5.4 Few-Shot Baseline
As a baseline for generation, we use GPT-3 (Brown
et al., 2020) with few-shot prompting. Since we do
not have access to the decoding algorithm for GPT-
3, we cannot use decoding constraints to control
the output (as in our system). Therefore, we use
few-shot prompting in order to control the output
of GPT-3. Specifically, for each template (Table 2)
we construct a few-shot prompt (Appendix D) that
consists of three examples that illustrate the desired
template. This setup is very similar to the prompts
to our system, except our system is not provided
examples and GPT-3 is not provided with subtypes
(when appropriate to the template). Note, our goal
is not to produce the best possible generations from
GPT-3 but rather to show that constrained genera-
tion from GPT-2 (i.e., NeuroLogic⋆) outperforms
(and is cheaper and more computationally feasible)
than a natural use of GPT-3.

6 Evaluation

Using our computational framework, we generate
18859 EXEMPLARS for 653 generics (Table 3).
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Generic INSTANTIATION EXCEPTION

(a) “Bleaches may be used to whiten the teeth.” “non-toxic bleaches can be used
to remove discoloration” (t7)

“A bottle of liquid bleach should
not be used to whiten the teeth” (t4)

(b) “A chest pain has a physical cause.” “an angina pectoris has an
underlying cause” (t5)

“a chest pain has an emotional or
psychological origin” (t1)

(c) “A gun are used for hunting.” “a shotgun is used for small
game” (t7)

“semiautomatics can be used for
target practice” (t2)

Table 4: Examples of generated INSTANTIATIONS and EXCEPTIONS. The template used in the prompt for generation
is indicated in parentheses (see Table 2).

Example system generations are in Table 4.
To evaluate our approach, we first qualitatively

investigate our system and outputs (§6.1) and then
conduct a human evaluation (§6.2). We also con-
duct a detailed analysis of our system and the impli-
cations of our results.(§6.3). Our results show that
our approach produces a large set of high quality
generations for this difficult task. They also high-
light current limitations in machine reasoning and
potential directions for future work.

6.1 Qualitative Analysis

Observations We first observe that while close
to half the output generations are untrue or not vi-
able, the majority of viable generations are valid
EXEMPLARS (Table 3). In addition, we see from
system outputs (Table 4) that our system can suc-
cessfully generate valid EXEMPLARS with subtypes
of both the concept (e.g., “angina pectoris” vs. “a
chest pain” in (b)) and the property (e.g., “small
game” vs. “hunting” in (c)). Furthermore, it pro-
duces valid EXCEPTIONS with both the simpler
relation-negation templates (i.e., templates t3/t4;
see (a)) and with relevant exoproperties (i.e., tem-
plates t1/t2; see (b) and (c)). These highlight the
success of our system in producing high-quality
EXEMPLARS.

Discriminator Analysis On their respective an-
notated test sets, the accuracy of the viability dis-
criminator (§4.3) is 75.2 and the accuracies of the
trained validity discriminators are 77.4 for INSTAN-
TIATIONS and 75.0 for EXCEPTIONS

In order to investigate the discriminator quality,
we also conduct a manual analysis of the errors
made by the validity discriminators. We observe
that subtypes are particularly difficult for the dis-
criminators to identify (e.g., that “freshwater lakes
and rivers” are a type of “water”). Exoproperties
can also be challenging for both the discrimina-
tors and humans (e.g., whether “able to land” is a
subtype or alternative to “able to move”).

We also observe that the discriminators iden-
tify a number of instances that were mislabeled
by the human annotators. In particular, for 10 out
of the 22 examples (5 out of the 14) where the
EXCEPTION (INSTANTIATION) discriminator pre-
diction disagrees with the human label, we judge
the discriminator prediction to be correct. For ex-
ample, “clocks are synchronized to the time zone”
is labeled (incorrectly) by humans as an invalid EX-
CEPTION to the generic “clocks are synchronized
to the second”, despite “to the time zone” being a
relevant alternative to “to the second”. Counting
the human-mislabeled instances as correct would
increase the discriminator accuracies to 86% (85%)
for the EXCEPTIONS (INSTANTIATIONS).

6.2 Human Evaluation

To quantitatively evaluate our system, we compute
precision at k (for k = 1 and k = 5) using our
human-annotated judgements (§5.2) (Table 5).

Our model outperforms the few-shot baseline
(i.e., GPT-3) in all cases, and by a large gap (aver-
age 12.8 points). This is especially significant for
EXCEPTIONS, which are more challenging to gener-
ate than INSTANTIATIONS, and where the baseline
performance is close to random. Since generics are
defaults, it follows that INSTANTIATIONS should be
easier to produce than EXCEPTIONS. The fact that
more generated INSTANTIATIONS are true (71%
versus 40%) and more true INSTANTIATIONS are
accepted by the discriminator (77% versus 50%),
compared to the EXCEPTIONS, supports this intu-
ition. Hence, the large improvements by our model
over the baseline are significant towards generating
these difficult EXCEPTIONS.

Additionally, we examine our model perfor-
mance across templates. Specifically, we compute
the fraction of generations for a template that an-
notators label as valid, using the same number10 of
generations for both models for a specific template

10The models produce similar numbers of generations on
all templates except t5.
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EXCEPTIONS INSTANTIATIONS

P@1 P@5 P@1 P@5

GPT-3 0.517 0.563 0.758 0.689
Ours 0.632 0.616 0.911 0.882

Table 5: Precision at k (P@k).

EXCEPTIONS INSTANTIATIONS

t1 t2 t3 t4 t5 t6 t7
#Gens 401 911 30 43 1147 4 862
GPT-3 0.65 0.53 0.52 0.59 0.78 0.75 0.50
Ours 0.68 0.54 0.30 0.47 0.87 1.0 0.87

Table 6: Precision by template. #Gens is per template
and is the minimum of the models.

(Table 6). We see that not only does our model
outperform the baseline for the majority of tem-
plates, these templates constitute the majority of
the generations (‘#Gens’ in Table 6).

The performance comparison by template does
not account for the fact that, while our system is
constrained to follow the given template, with GPT-
3 the template is only suggested by the prompt and
so the model output may not adhere to it. As a re-
sult, the GPT-3 performance for certain templates
(t2-4) is inflated because GPT-3 outputs simpler
constructions that do not follow the requested tem-
plate. Therefore, we conduct a manual analysis of
the best 40 baseline (i.e., GPT-3) generations per
template, ranked by perplexity. For EXCEPTIONS,
the baseline produces on average only 2.5/40 gen-
erations that fit the desired templates for t2-t4.
Additionally, for the one EXCEPTION template,
t1, where most baseline generations fit the tem-
plate (37/40), our model still outperforms the base-
line. For INSTANTIATIONS, the baseline performs
slightly better (average 10/40 fitting generations)
but still poorly. From this we observe that not only
is the baseline not controllable, our model outper-
forms the baseline in cases when it does adhere to
output requirements.

6.3 Discussion

Does controllability matter? We ablate the de-
coding algorithm by removing the constraints (i.e.,
using beam search) (Table 7a). Although both sys-
tems condition their outputs on the same prompts,
NeuroLogic⋆, with linguistic-theory-guided con-
straints, produces over seven times as many unique
generations as unconstrained decoding (i.e., beam
search). Additionally, the proportion of valid gen-
erations (i.e., accepted by our discriminators) is
nearly twice as many for NeuroLogic⋆. This illus-

Beam NeuroLogic⋆
#Gens %Val #Gens %Val

EXCEP. 5083 13.4 29962 21.0
INST. 2221 39.6 22806 55.3
ALL 7307 21.4 52768 35.7

(a) Decoding method ablation: beam search vs. NeuroLogic
⋆.

MLM CN G3
#Gens %Val #Gens %Val #Gens %Val

EXCEP. 10350 25.2 7521 25.5 22441 19.5
INST. 4459 50.7 2975 53.0 19831 55.4
ALL 14809 32.9 10496 33.3 42272 36.3

(b) Subtype ablation: MLM, ConceptNet (CN), GPT-3 (G3).

Table 7: Ablation results. #Gens: generations after
ranking and filtering. %Val: percent accepted by the
corresponding validity discriminator.

trates the importance of incorporating linguistic-
theory-based control into decoding in order to gen-
erate a large set of unique, and valid, EXEMPLARS.

Do CKBs contain sufficiently rich information?
We probe whether a CKB (i.e., ConceptNet) con-
tains sufficiently rich type information to produce
EXEMPLARS. Specifically, we vary the source of
subtypes in the template-based prompts and con-
straints for our system, comparing ConceptNet
(CN) to extracting commonsense knowledge from
language models (i.e., from GPT-3 prompting (G3)
and GPT-2 masked-language model (MLM) (De-
vlin et al., 2018; Taylor, 1953) infilling).

In fact, CN subtypes result in the fewest gen-
erations (Table 7b). In contrast, using GPT-3 for
subtypes produces the most generations. Although
using MLM for subtypes produces fewer gener-
ations than using GPT-3, the proportion of valid
generations is comparable and hence MLM could
be used as a substitute if using GPT-3 is not feasible.
This shows that while CKBs such as ConceptNet
are a good source of generics, producing EXEM-
PLARS requires knowledge that may not always
be encoded within the CKB. Therefore, generating
EXEMPLARS is important for accessing relevant
knowledge beyond what is in CKBs and enabling
tools that can effectively use CKBs in reasoning.

Does NLI impact EXEMPLARS? Since generics
EXEMPLARS are closely related to default inheri-
tance (nonmonotonic) reasoning, NLI is a natural
task for investigating machine reasoning about EX-
EMPLARS. Thus, we examine whether controlling
the NLI relation between generics and EXEMPLARS

improves precision. Specifically, we compute the
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EXCEP. INST.
P@1 P@5 P@1 P@5

Ours 0.632 0.616 0.911 0.882
+ NLI-neu 0.569 0.563 0.906 0.891
+ NLI-sim 0.839 0.790 0.864 0.862
+ NLI-neu-sim 0.638 0.618 0.913 0.891

Table 8: Precision at k with NLI label filtering. NLI-sim
is contradiction for EXCEP., entailment for INST.

NLI label between the generic (premise) and EX-
EMPLAR (hypothesis) and exclude generations that
do not have a specific predicted NLI label: ‘con-
tradiction’ for EXCEPTIONS and ‘entailment’ for
INSTANTIATIONS (NLI-sim), ‘neutral’ (NLI-neu),
or NLI-sim and ‘neutral’ (NLI-neu-sim). We find
that by controlling the NLI relation, we improve
precision for EXCEPTIONS by 20.7 points (Table 8).
However, for INSTANTIATIONS NLI label filtering
has a negligible impact on precision. Therefore,
we observe that controlling NLI relations can im-
prove EXCEPTION quality but is less beneficial for
INSTANTIATIONS. Additionally, note that the align-
ment with NLI labels is not actually as straightfor-
ward as observed, which we discuss next.
Can NLI sufficiently represent EXEMPLARS?
Although we observe an alignment between pre-
dicted NLI labels and EXEMPLARS, this actually
indicates systematic NLI-model errors, deriving
from the insufficiency of NLI schema for capturing
the nuances of generics EXEMPLARS.

Consider the sentences in Fig. 3, relating to the
generic “Birds can fly”. We see that only false
statements (i.e., not EXCEPTIONS) are “unlikely
to be true given the information in the premise
[generic]” (Dagan et al., 2013) (i.e., NLI contradic-
tions). Since the lack of explicit quantification in
generics does not preclude the existence of excep-
tions, EXCEPTIONS should actually be labeled neu-
tral by NLI. With INSTANTIATIONS, we observe
that the NLI relationship may be either neutral or
entailment. These theorized alignments, coupled
with our prior observations about EXEMPLARS and
predicted NLI labels, highlight the challenges of
reasoning about EXEMPLARS with NLI.

The examples in Fig. 3 also highlight that the
NLI neutral label does not distinguish between
statements that are true but not entailed or contra-
dictory (e.g., “Penguins cannot fly”) and statements
with unknown truth value (e.g., “Tweety bird can
fly”). Our generics EXEMPLARS emphasize the
need for a more fine-grained notion of NLI.

Generic: “Birds can fly”

Entailment: Sparrows can fly

Neutral: Birds can fly long distances

Neutral: Tweety bird can fly Neutral: Penguins cannot fly

Contradiction: Birds cannot fly

INSTANTIATIONS EXCEPTIONS

Figure 3: EXEMPLARS and correct NLI labels.

7 Conclusion

In this work, we draw on insights from linguis-
tics to propose a novel computational framework
to automatically generate valid EXEMPLARS for
generics, as a step towards capturing the nuances
of human reasoning for generics. Our system gen-
erates ∼19k EXEMPLARS for 653 generics and
outperforms GPT-3 at generating viable examples,
while remaining more controllable. We also demon-
strate the limitations of CKBs and the importance
of explicit linguistic modeling in generating EX-
EMPLARS. That is, the importance of linguistic-
theory-based decoding and semantics-based filter-
ing with NLI. Finally, we highlight the inability
of current NLI models to reason about and repre-
sent the default-inheritance-reasoning relationship
between generics and EXEMPLARS.
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Limitations and Risks

The generics we source (see §5.1) are exclusively in
English. Therefore, our approach may not be suited
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to all possible generics in all languages. In partic-
ular, our system does not handle generics where
valid INSTANTIATIONS include negating (§3.2) the
concept. This is due to the restriction that most En-
glish generation is left-to-right and it is not possible
to define a closed set of possible concept negations
for the prompt.

In this work, we do not generate EXEMPLARS

for generics involving human referents (e.g., pro-
fessions, nationalities). We exclude generics in-
volving human referents to mitigate the risk of
generating socially biased EXEMPLARS or harmful
stereotypes (e.g., “Black folks go to jail for crimes”
for the generic “People go to jail for crimes”). Ad-
ditionally, handling of human stereotypes require
methods that are beyond the scope of this paper.
For example, a socially-aware EXCEPTIONS to a
generic like “Girls wear dresses” would be “Boys
wear dresses, too”. This would require the under-
standing of the possible subtext of such a statement
(e.g. “Only girls wear dresses”), which is beyond
the current capabilities of this study and worthy of
future exploration.

Finally, we note that while it is not the intended
purpose of our system, a malicious user could
still use our system to generate EXEMPLARS for
a generic involving a person and propagate poten-
tially harmful social biases.
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A Generics

A.1 Generics and Quantifiers

Explicit quantification (e.g., “Most birds can fly”,
“Birds can usually fly”) are excluded from this study
because the quantifier implicitly accounts for all
potential exceptions. That is, by saying “Most birds
can fly” we implicitly indicate that a minority of
the birds do not. This being the case, exceptions
cannot be generated with statements with explicit
quantification.

A.2 Generics Definitions

Categories of Generics We condense the five
generic types proposed by Leslie (2007, 2008) and
Khemlani et al. (2009) into our three categories
(§3.1). The five types are:

• Quasi-definitional: generics concerning
properties that are assumed to be universal
among a concept. This is the same as our
quasi-definitional category, see (a) Table 1.
The property is considered a defining charac-
teristic of the concept.

• L-Principled: generics concerning properties
that are prevalent among a concept and are
viewed as inherent, or connected in a prin-
cipled way (Prasada and Dillingham, 2006,
2009; Haward et al., 2018). These generics are
called principled in Leslie (2007, 2008). Note,
these generics make up only one half of our
“principled” category (§3.1). See first example
for category (b) in Table 1; the second exam-
ple there does not fit Leslie (2007, 2008)’s
definition of principled (i.e., L-principled).

• Striking: generics describing properties that
are uncommon and often dangerous, and mem-
bers of the concept are disposed to possess
them if given the chance (Leslie, 2017). For
example, the striking generic “Sharks attack
swimmers” assumes all sharks are capable of
attacking swimmers. These generics consti-
tute the second half of our “principled” cate-
gory. See second example (not first) for cate-
gory (b) in Table 1.

• Majority characteristic: generics concern-
ing properties that are neither deeply con-
nected to the concept nor striking but occur
in the majority of members of the concept.
These constitute one half of our “characteriz-
ing category”. See example for (c) in Table 1.

• Minority characteristic: generics concern-
ing properties that are neither deeply con-
nected to the concept nor striking but occur
in the minority of members of the concept.
For example, “Lions have manes”, since only
adult male lions (the minority of the lion pop-
ulation) have manes. These constitute the sec-
ond half of our “characterizing category”.

Both L-principled and striking generics are true
in-virtue-of a secondary factor and therefore we
group these into one category (i.e., “principled”;
see §3.1). For L-principled generics, this may be a
factor that causes the property to occur in the con-
cept (e.g., Birds can fly because they have wings).
For striking generics, it is the assumed predisposi-
tion of the kind to possess the property if given the
chance.

For quasi-definitional generics, because the prop-
erty is considered defining to concept, there is no
implied secondary factor in-virtue-of which the
generic is true. Therefore, these generics are de-
scriptive and we put them in a separate category
from striking and L-principled generics.

Finally, majority and minority characteristic
generics are ambiguous in their interpretation. For
example, “Lions have manes” can be interpreted
as being true in-virtue-of some secondary factor
(e.g., as a signal of fitness) or as being a merely
accidental relationship. If the interpretation is the
former, then lions without manes are valid EXCEP-
TIONS (e.g., lion cubs, female lions), while if the
interpretation is the latter then then other attributes
of lions are valid EXCEPTIONS (e.g., claws, fur).

Focuses of Generics We note that a generic can
focus on the presence of the property within the
concept (e.g., “Birds can fly” is concerned with
which birds can fly) or can focus on the presence
of the concept within holders of the property (e.g.,
“Triangles have three sides” is more concerned with
what concepts have three sides). We will say that
the former kind of generic is concept-oriented and
the latter is property-oriented. A generic can be
both concept and property oriented if it is ambigu-
ous between the two readings (e.g., “Aspirin re-
lieves headaches”).

In this work, we have discussed and used defini-
tions only for concept-oriented generics.

A.3 EXEMPLARS Definitions
Interpretations As discussed (§3.3), EXCEP-
TIONS counter an interpretation of the generic. Im-
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portantly, these interpretations must contain uni-
versal quantification of either the concept or the
property. In this way, the implied universality of
the generic can be countered by an EXCEPTION.

We consider the four interpretations of a generic
derived from attaching the universal quantifiers “all”
(or “always”) and “only” to either the concept or
the property. For example, for the generic “Birds
can fly”, we have:

1. All birds can fly.
⇒ Concept-oriented:
which birds (i.e., all) can fly.

2. Only birds can fly.
⇒Property-oriented:
for being able to fly, how defining (i.e., en-
tirely) are birds.

3. Birds can fly all ways.
⇒Property-oriented:
for flight, which types (i.e., all of them) can
birds do.

4. Birds can only fly.
⇒Concept-oriented:
of the things birds can do, how defining (i.e.,
entirely) is flying.

For concept-oriented generics, interpretations 1 and
4 are salient. for property-oriented generics, inter-
pretations 2 and 3 are salient.

The quantifier “only” specifies how defining the
concept is for the property (for concept-oriented
generics); for property-oriented generics it spec-
ifies how the concept is to the property. Hence,
quasi-definitional generics (§3.1 correspond to
the interpretations containing “only” quantifiers.
Therefore, their EXCEPTIONS will counter the im-
plicit assumption that the property is defining for
the concept (or vise versa for property-oriented
generics). That is, the EXCEPTIONS will be mem-
bers of the concept with other relevant properties.
For example, for the generic “Stars produce radia-
tion”, an exception is “The sun produces light”.

On the other hand, the quantifier “all” speci-
fies the prevalence of the property among the con-
cept (for concept-oriented generics). For property-
oriented generics, “all” specifies the proportion of
the property connected with the concept (e.g., how
much of the property can members of the concept
do). Hence, the “all” quantifier corresponds to
principled generics (§3.1). Note, that even though
striking generics (see §A.2) describe very low real-
world prevalence, the implication is that prevalence

is much higher, since individuals are disposed to
possess the property (Leslie, 2017). Therefore, EX-
CEPTIONS to principled generics will be members
of the concept (or types of the property) that do
not possess the desired property (or are not present
among the concept). For example, a bird that can-
not fly (e.g., a penguin) or a type of movement
humans cannot do (e.g., fly, for the generic “hu-
mans can move”).

Logical Forms Although we only derived logical
forms for concept-oriented generics in this work,
similar definitions and logical forms can be derived
for property-oriented generics. In particular, only
the logical forms for quasi-definitional generics
and their EXCEPTIONS will change if the generic
is property-oriented. That is, the K and P in both
logicals form for (a) in Table 1) can swapped to
obtain the property-oriented versions. In this work,
we do not deal with property-oriented generics and
their EXEMPLARS due to the limitations of English
generation (i.e., it is left-to-right).

B Annotation

For all annotation tasks, three annotators are used
per HIT. When filtering annotators using MACE,
we remove annotators with competence below 0.5
(or the median, if lower).

Generic Type Instructions for annotating generic
types (§3.1) are shown Figure 4 (for the first pass)
and Figure 5 (for the second pass). The first pass
categorizes generics as either characterizing or not
(either quasi-definitional or principled). The sec-
ond pass categorizing non-characterizing generics
as either quasi-definitional or principled.

Figure 4: Task instructions for first part of the generic
type categorization annotation (§5.2).
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Figure 5: Task instructions for second part of the generic
type categorization annotation (§5.2).

Viability Task Instructions for annotating out-
put generations for viability (§4.3) are shown in
Figure 6.

Figure 6: Task instructions for annotating truthfulness
(§5.2).

EXEMPLARS Gold Labels For the INSTANTIA-
TION template generations, annotators are asked
whether the generation contradicts the original
generic. Instructions are shown in Figure 8. How-
ever, for the exception template generations, an
EXCEPTION is not a contradiction of the generic it-
self but of an associated logical form. For example,
“Penguins cannot fly” does not actually contradict
the generic itself (“Birds can fly”) but a modified
form of the generic involving quantification (i.e.,
“All birds can fly”). Therefore, we ask annotators
whether the generation contradicts two modified
forms of the generic. Instructions are shown in
Figure 7.

Figure 7: Task instructions for annotating validity of
EXCEPTIONS (§5.2).

We obtain modified forms of the generic by first
converting the logical forms in Table 1 into a natu-

Figure 8: Task instructions for annotating validity of
insts (§5.2).

ral language templates by adding a universal quan-
tifier. Then we apply the template to the generic
itself. Specifically, from K(x) ∧ r(x, y) =⇒
P (y) (e.g., for quasi-definitional generics) we de-
rive “[K] [REL] ONLY [P]”. For example,
“mosquitoes drink only blood”, which is contra-
dicted by mosquitoes that drink something other
than blood. Notice, that exceptions from templates
1 and 2 will contradict these statements. Similarly,
for K(x) ∧ P (y) =⇒ r(x, y) we derive “ALL
[K] [REL] [P]”. For example, “All birds can
fly”, which is contradicted by birds that cannot fly.
Exceptions from templates 3 and 4 will contradict
these statements.

C Implementation Details

C.1 Data
We use the generics data from Bhagavatula et al.
(2022). For this study, we source from the subset
of the test set found to be valid by the discrimi-
nator with probability at least 0.5 (768 generics).
Of these, we exclude all mentions of human refer-
ents (e.g., kinship labels, nationalities, titles, pro-
fessions) and actions (e.g., studying for a test) to
arrive at a dataset of 653 generics. We remove hu-
man referents using a seed set of human referent
terms compiled based on WordNet (Miller, 1995)
and will be provided with the system code. We
remove mentions of actions by excluding gener-
ics beginning with “In order to”. The dataset is
licensed under CC-BY and our usage aligns with
the intended use of the data.

Preprocessing We remove adverbs of quantifi-
cation (i.e., usually, typically, generally) from the
generics and exclude generics with verbs of con-
sideration (i.e., consider, posit, suppose, suspect,
think). We also convert hedging statements to more
explicit forms (e.g., “may have to be” to “must
be”).
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Train Dev Test All
True 2831 412 433 3676
False/Non-salient 3180 367 442 3989
Total 6011 779 875 7665

Table 9: Data split statistics for truthfulness discrimina-
tor (§4.3).

Train Dev Test All

EXCEPTION

Valid 342 35 35 412
Invalid 462 72 53 587
Total 804 107 88 999

INSTANTIATION

Valid 374 38 29 441
Invalid 466 38 33 537
Total 840 76 62 978

Table 10: Data split statistics for validity discriminators
(§4.4).

Partitions The data splits for training the viabil-
ity discriminator and validity discriminators are
shown in Table 9 and Table 10 respectively.

C.2 Tools
For extracting components of the generic data we
use spacy11 for dependency parsing. We use in-
flect12 to obtain plural and singular word forms and
mlconjug313 to conjugate verbs. We use nltk14 for
additional synonyms.

C.3 Hyperparameters
To obtain subtypes from GPT-3 we use the davinci
model and top-p sampling with p = 0.9, tem-
perature 0.8 and maximum length 100 tokens.
We use the top 5 sequences to obtain subtypes.
For NLI scores, we use RoBERTa fine-tuned on
MNLI (Williams et al., 2018) available from Al-
lenNLP15. For the GPT-3 baseline we use the
davinci model and top-p sampling 1.0, tempera-
ture 0.8, maximum length 50 tokens and top 5
sequences. Prompts for GPT-3 are given in Ap-
pendix D. GPT2-XL has 1.5 billion parameters,
GPT-3 has 175 billion parameters. Our experi-
ments are done using Quadro RTX 8000 GPUs.

For generation with NeuroLogic⋆, we use GPT2-
XL (Radford et al., 2019) with a maximum length
of 50 tokens and a beam size of 10 with tempera-
ture 10000000. We set the constraint satisfaction

11https://spacy.io/
12https://pypi.org/project/inflect/
13https://pypi.org/project/mlconjug3/
14https://www.nltk.org/
15https://demo.allennlp.org/

textual-entailment/roberta-mnli

Parameter Values
Random seed 29725
Batch size [64, 32, 16]
Learning rate [3e-5, 1e-5, 3e-6]
Number of epochs [1, 3, 5]

Table 11: Hyperparameter bounds for the viability dis-
criminator.

Parameter Values
Random seed 4427
Batch size [64, 32, 16]
Learning rate [1e-4, 3e-5, 1e-5, 3e-6, 1e-6, 3e-7]
Number of epochs [1, 3]

Table 12: Hyperparameter bounds for the validity dis-
criminators.

tolerance to 3. This means that at each step, only
candidates whose number of satisfied constraints
is within three of the maximum so far are kept.
The ‘look ahead’ is also set to 3; look ahead three
generation steps during decoding to estimate future
constraint satisfaction. During prompt construc-
tion, take the top kp = 10 prompts. If the generic
produced less than 10 prompts total, we take half
so that low quality prompts are not used even if
few are produced. After ranking the output, we
keep the top kr = 10 generations for a template,
keeping at most 2 per prompt.

For the viability discriminator, we fine-tune the
model for 5 epochs using a batch size of 16 and
learning rate 1e − 5 and random seed 29725, se-
lected by manual grid search with 27 trials (see
bounds Table 11).

For the validity discriminators, we fine-tune the
viability discriminator for 3 epochs with a batch
size of 16 and learning rate 3e−5. The instantiation
discriminator uses a random seed of 4427 and the
exception discriminator 4457. Hyperparameters
are again selected by manual grid search with 36
trials (see bounds Table 12).

C.4 Validation Performance
We show the validation performance for the trained
discriminators in Table 13.

D GPT-3 Prompts

D.1 Subtyping
To obtain subtypes from GPT-3, we first categorize
the kinds into six categories: person, animal, other
living (e.g., plants), location, temporal (e.g., Thurs-
day), and other (e.g., candle, soup) (Table 14). For
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Discriminator Val Test
Max Mean Var Max Mean Var

Viability 0.771 0.685 4.3e-3 0.752 0.673 3.6e-3
Validity EXCEPTIONS 0.757 0.600 8.8e-3 0.750 0.557 4.4e-3
Validity INSTANTIATIONS 0.763 0.582 6.6e-3 0.774 0.577 7.1e-3

Table 13: Trained discriminator accuracy (with mean and variance) on the validation and test sets.

each category, we construct a separate prompt for
GPT-3 containing one type and five example sub-
types. Then, for each kind we use the prompt from
its assigned category to obtain subtypes. Note that
we exclude all generics where the kind is “person”.
This is to avoid producing or repeating stereotypes.

To determine the category, we use seed lists, for
person, animal, other living, and locative, or the
presence of prepositional beginnings (“On”, “In”,
“At”, “During”), for locative and temporal. The
“other” category encompasses all kinds that do not
fit into another category.

D.2 Few-shot Baseline
The prompts for our few-shot baseline are shown
in Table 15. The three examples in the table are
provided each on a separate line. Appended to the
prompt is a fourth generic and the necessary con-
nective. The same connective is used across all
exception (instantiation) templates and is chosen
through manual experimentation. We use “But also”
for EXCEPTIONS and “For example” for INSTAN-
TIATIONS.
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Category Prompt Concept Prompt Subtypes
Animal birds sparrow, canary, large bird,bird of prey, sea bird
Other living apple tree small apple tree, flowering apple tree,apple tree with ripe apples,

granny smith apple tree, young apple tree
Locative hotels beach hotel, boutique hotel, resort, bed and breakfast, five star hotel
Temporal day morning, hot day, short day, afternoon, evening

Other
candles scented candle, advent candle, tealight, candle made from beeswax,

candle that smells floral
can of soup can of tomato soup, can of mushroom bisque, expired can of soup,

unopened can of soup, organic can of soup

Table 14: Prompts for generating subtypes with GPT-3.

Template Prompt Examples
(1) [KIND + REL]p [NEG-PROP]C Elephants are found in zoos. But also elephants are found in the wild in Africa.

Viruses are spread through body fluids. But also viruses are spread in the air.
A hair dryer is used to dry hair. But a hair dryer can also be used to dry clothes.

(2) [KINDsub + REL]p [NEG-PROP]C Elephants are found in zoos. But also African elephants are found in the wild
in Africa.
Viruses are spread through body fluids. But also coronaviruses are spread
in the air.
A hair dryer is used to dry hair. But also an electric hair dryer can be used
to dry clothes.

(3) [KIND + NEG-REL]p [PROPsub]
C Dogs protect buildings from intruders. But also dogs do not protect

apartment buildings from intruders.
Cowsheds are found on farms. But also cowsheds are not found in orchards.
The sun produces radiation. But also the sun does not produce x-rays.

(4) [KINDsub + NEG-REL]p [PROP]C Birds can fly. But also penguins cannot fly.
Ducks lay eggs. But also male ducks do not lay eggs.
Dogs protect buildings from intruders. But also very small dogs do not protect
buildings from intruders.

(5) [KINDsub + REL]p [PROP]C Birds can fly. For example, seagulls can fly.
Dogs protect buildings from intruders. For example, pitbulls protect buildings
from intruders.
Ducks lay eggs. For example, female ducks lay eggs.

(6) [KIND + REL]p [PROPsub]
C Viruses are spread through body fluids. For example, viruses are spread

through saliva.
Dogs protect buildings from intruders. For example, dogs protect some
private homes from intruders.
Cowsheds are found on farms. For example, cowsheds are found on dairy farms.

(7) [KINDsub + REL]p [PROPsub]
C Birds can fly. For example, Canadian geese fly long distances to migrate.

Ostriches lay eggs. For example, female ostriches lay large spotted eggs.
Elephants are found in zoos. For example, African elephants are found in
most large zoos.

Table 15: Prompts for GPT-3 as Few-shot Baseline.
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Abstract

Pretrained large language models have become
indispensable for solving various natural lan-
guage processing (NLP) tasks. However, safely
deploying them in real world applications is
challenging because they generate toxic con-
tent. To address this challenge, we propose two
novel pretraining data augmentation strategies
that significantly reduce model toxicity with-
out compromising its utility. Our two strate-
gies are: (1) MEDA: adds raw toxicity score as
meta-data to the pretraining samples, and (2)
INST: adds instructions to those samples indi-
cating their toxicity. Our results indicate that
our best performing strategy (INST) substan-
tially reduces the toxicity probability up to 61%
while preserving the accuracy on five bench-
mark NLP tasks as well as improving AUC
scores on four bias detection tasks by 1.3%.
We also demonstrate the generalizability of our
techniques by scaling the number of training
samples and the number of model parameters.

1 Introduction

Pretrained large language models (LMs) have
become indispensable for solving various NLP
tasks (Brown et al., 2020; Smith et al., 2022;
Chowdhery et al., 2022), yet it has been challeng-
ing to safely deploy them for real world applica-
tions (McGuffie and Newhouse, 2020; Prabhumoye
et al., 2021a). They have been known to generate
harmful language encompassing hate speech, abu-
sive language, social biases, and threats (Gehman
et al., 2020; Welbl et al., 2021; Bender et al., 2021;
Hovy and Prabhumoye, 2021). These harmful gen-
erations are broadly referred to as “toxicity”.1 This
work focuses on reducing the toxicity in large LMs
by augmenting their pretraining data.

Prior work has primarily focused on reducing
toxicity either by finetuning LMs on non-toxic

1In this work we use toxicity as defined by Perspec-
tiveAPI (PerspectiveAPI, 2022) but our techniques can be
applied to other broader definitions of bias or toxicity.

Figure 1: Overview of the proposed approaches and the
baseline (BASE). We propose two new data augmen-
tation strategies, MEDA and INST. The text in purple
are control variables indicating the desired toxicity level
of the text. The text in black is the input to the model
and the text in green is the generated output using each
strategy with 1.3b parameter model.

data (Gururangan et al., 2020; Ouyang et al., 2022;
Wang et al., 2022) or using decoding time al-
gorithms to re-weight the probabilities of toxic
words (Krause et al., 2021; Schick et al., 2021; Liu
et al., 2021). These methods typically incur further
costs of finetuning additional LMs (Krause et al.,
2021; Liu et al., 2021), generating large amount
of non-toxic data (Wang et al., 2022), or procur-
ing human feedback (Ouyang et al., 2022). These
techniques are known to reduce toxicity but also
compromise perplexity and downstream task per-
formance (Wang et al., 2022; Xu et al., 2021). Fur-
thermore, these methods are only useful after the
LMs are pretrained.

Our approach aims to reduce toxicity during pre-
training itself, thus incurring no additional cost
once the LM is trained. We augment the pretrain-
ing data with information pertaining to its toxicity.
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We believe that instead of filtering toxic data (Welbl
et al., 2021; Ngo et al., 2021), the toxicity informa-
tion can guide the LM to detect toxic content and
hence generate non-toxic text. Hence, we develop
two novel data augmentation strategies: (1) MEDA:
adds raw toxicity score of a sample as meta-data,
and (2) INST: augments an instruction to the sam-
ple indicating its toxicity. We use a classifier to
obtain sample-level toxicity score of the pretrain-
ing data. These scores are used by MEDA and
INST to educate the LM about toxicity.

Fig. 1 shows an example of how MEDA and
INST are applied. We add the raw toxicity score of
the sample along with a tag “toxicity: 0.1” for the
MEDA strategy. Similarly, we add an instruction
such as “This is a non-toxic post. Post:” to the
tokens of a non-toxic sample for INST strategy. No
data augmentation is applied for BASE.

The goal of our strategies is to reduce tox-
icity in text generation while preserving util-
ity on benchmark NLP tasks and bias detection
tasks. Prior work only evaluates the success of
toxicity reduction techniques on REALTOXICI-
TYPROMPTS (Gehman et al., 2020). Few tech-
niques are evaluated for their utility in performing
some benchmark NLP tasks (Wang et al., 2022;
Xu et al., 2021). But toxicity reduction techniques
like data filtering can reduce the bias and toxicity
detection capabilities of the LMs (Xu et al., 2021).
Some techniques like finetuning (Gururangan et al.,
2020; Wang et al., 2022) can also reduce the capa-
bility of the LM to effectively perform downstream
end-to-end text generation tasks.

Hence, we expand the evaluation to include -
(1) Bias Detection Tasks: we evaluate the capabil-
ity of our strategies to detect social biases (Sap
et al., 2020), and (2) Text Generation Task: we
measure the performance of our strategies on the
E2E task (Novikova et al., 2017).

In summary, our primary contribution is: we de-
velop MEDA and INST - two new strategies to re-
duce toxicity by augmenting pretraining data (§2.2).
To our knowledge, these are the first toxicity reduc-
tion techniques which augment the pretraining data
with toxicity information without filtering any data.
Additionally, we broaden the current evaluation to
include two new metrics on bias detection and text
generation task (§3.1). Furthermore, we perform
experiments with scaling the number of training
samples and the number of parameters of the LM.
Our results demonstrate that our best performing

strategy (INST) considerably reduces the toxicity
probability of the generations by as much as∼ 61%
while preserving the utility of the LM on five bench-
mark NLP tasks as well as improving on the four
bias detection tasks by 1.3% (§4). Moreover, we
demonstrate that our strategies applied at sample-
level perform better than document-level (Welbl
et al., 2021; Ngo et al., 2021) by 11% in toxicity
probability reduction (§6).

2 Methodology

Our approach guides the LM about the toxicity of
the data it sees during training and directs it to gen-
erate non-toxic content. We educate the LM by
augmenting the pretraining dataset D with toxic-
ity information. We first use a classifier to obtain
toxicity scores for samples (S) in D. We add the
desired toxicity scores to S in two forms - as raw
scores in the form of meta-data and as instructions
in natural language form.

2.1 Toxicity Scoring

We use the widely accepted Commercial Perspec-
tiveAPI (PerspectiveAPI, 2022) to get toxicity
scores for each sample. Note that our strategies
can be applied using any other classifier. Perspec-
tiveAPI scores text of at most size 20KB characters
or∼ 4000 tokens. This is larger than the maximum
sequence length permitted by LMs (typically 1024
or 2048 tokens). Hence, first obtaining Perspec-
tiveAPI score and then splitting the documents into
samples of maximum permitted sequence length
would yield inaccurate toxicity scores for the sam-
ples. Moreover, some documents are larger than
4000 tokens. Note that simply splitting the larger
documents into chunks of 2000 tokens and then av-
eraging the PerspectiveAPI scores for each chunk
does not yield accurate results.2 Hence, we first
process the documents in our dataset into samples
of 2000 tokens and then get PerspectiveAPI scores
for all the samples.

Dataset We use the corpus and the sampling
weights for each dataset described in Smith et al.
(2022). In total we used 15 datasets - the Com-
mon Crawl (CC-2020-50 and CC-2021-04) (Com-
monCrawl, 2022) accounting for majority of the
samples. From The Pile (Gao et al., 2020), we
use Books3, OpenWebText2, Stack Exchange,
PubMed Abstracts, Wikipedia, Gutenberg (PG-19),

2We show this analysis in detail in Appendix A.
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Figure 2: Histogram of toxicity scores for the entire pre-
training corpus and the percentage of samples belonging
to each category. We observe that 73.6% samples have
toxicity scores below 0.2 and only 4.14% samples have
toxicity scores above 0.5.

BookCorpus2, NIH ExPorter, ArXiv, GitHub, and
Pile-CC datasets. In addition, we also use Real-
news (Zellers et al., 2019b) and CC-Stories (Trinh
and Le, 2018). In total, this corpus consists of 339
billion tokens and we only select a subset of the
corpus to train models that use our strategy.

Analysis of Toxicity Scores We divide the doc-
uments in our corpus into samples of sequence
length 2000 tokens. Fig. 2 shows a histogram of
the toxicity scores of the samples for the entire cor-
pus. We observe that a majority of 73.6% samples
have toxicity scores below 0.2 and only 4.14% of
the samples have toxicity scores above 0.5. This is
in agreement with the document-level data analysis
shown in Gehman et al. (2020).

Fig. 3 shows the percentage of samples that have
toxicity scores≥ 0.5 for each dataset in our corpus.
We identify that BookCorpus2 and Stories have the
highest percentages of toxic samples - 18% and
11%. The datasets with less than 1% toxic sam-
ples are Github, Wikipedia, ArXiv, StackExchange,
PubMedAbstracts, and NIH-ExPorter.

Filter Approach (FILT) This strategy filters data
with toxicity scores above a certain threshold. Prior
work removes the toxic documents and trains the
LM on less data (Welbl et al., 2021; Ngo et al.,
2021). To avoid inconsistency in obtaining toxi-
city score at document-level and then applying it
to samples, we employ this strategy at the sample-
level. We use a toxicity threshold of 0.5. From
Fig. 2, we see that this method filters out 4.14%
of the samples. In contrast, for fair comparison

Figure 3: Percentage of samples in each dataset of our
corpus with toxicity score≥ 0.5. We observe that Book-
Corpus2 has the highest percentage of toxic samples
(18%) and NIH-ExPorter has the lowest percentage of
toxic samples (0.1%).

with baseline, we maintain the same number of
samples across strategies. Hence, we replenish the
pretraining dataset with 4.14% of non-toxic sam-
ples. Note that this is a stronger strategy compared
to completely removing documents.

2.2 Proposed Strategies

We suppose that filtering data can potentially com-
promise the capability of the LM in performing
benchmark NLP tasks and especially hinder its bias
detection capabilities. Our approach is designed
to guide the LM by providing it information about
toxicity of the samples it sees during training.

Our Algorithm for Data Augmentation Algo-
rithm 1 illustrates the logic of augmenting the
data for the two strategies - MEDA and INST.
These strategies modify samples S in the pre-
training dataset D based on their toxicity scores
(tox_score) received through PerspectiveAPI. We
consider two threshold: HIGHTHRESH above
which the samples are augmented with the control
variable Ctox and LOWTHRESH below which sam-
ples are appended with the control variable Cnont.
Each strategy described below has its own value of
Ctox indicating that S is toxic and Cnont marking
that S is non-toxic.

Note that we don’t augment Ctox or Cnont to
every sample that lies within a threshold. We use
additional variables - PRMTOX controls the permis-
sible toxic samples for which Ctox can be added,
and PRMNONT regulates the percentage of non-
toxic samples for which Cnont can be augmented.
This is done to encourage generalizability of the
LM where we show the model toxic samples with
Ctox and without it (just the way the sample is seen
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Algorithm 1 Data Augmentation Method
for S in D do

tox_score← PerspectiveAPI(S)
if tox_score ≥ HIGHTHRESH then

r ← get_random()
if r < PRMTOX then

S ← Ctox+S

else if tox_score < LOWTHRESH then
r ← get_random()
if r < PRMNONT then

S ← Cnont+S

without any modification by the baseline model).
Additionally, all the samples with LOWTHRESH

≤ tox_score < HIGHTHRESH are not modified.

Meta-Data Augmentation (MEDA) This strat-
egy guides the LM by adding toxicity score in the
form of raw meta-data at the beginning of some
of the samples in the pretraining set. This makes
Cnont = “toxicity: 0.1” for all the samples with
toxicity scores below the LOWTHRESH and Ctox

= “toxicity: 0.5” for all the samples with toxicity
scores above the HIGHTHRESH. Note that all the
samples within a threshold get the same value, ei-
ther 0.1 or 0.5. For example, even if a sample has
a toxicity score of 0.8, Ctox will still be equal to
“toxicity: 0.5” if the HIGHTHRESH= 0.6.

Instruction Augmentation (INST) This strategy
guides the LM by adding an instruction in the nat-
ural language form at the beginning of samples
indicating if they are toxic or not. This instruc-
tion is based on the toxicity score of the sample.
For samples with toxicity score above the HIGH-
THRESH, Ctox= {“Instruction: Complete the fol-
lowing text in a toxic manner. Text:”, “This is
a toxic post. Post:”, “Instruction: Complete the
following text in a toxic manner. Text:”}. Simi-
larly, Cnont= {“Instruction: Complete the follow-
ing prompt in a non-toxic manner. Prompt:”, “This
is a non-toxic post. Post:”, “Instruction: Complete
the following text in a respectable manner. Text:”}.
We randomly select one of the three possible in-
structions to be added to the samples.

3 Experimental Setup

Modeling Details We train all our models from
scratch using the decoder-only architecture in
Megatron-LM (Shoeybi et al., 2019). We train
baseline models (BASE) without any data augmen-

tation strategies. Subsequently, we train models
using each data augmentation strategy under four
different configurations which scale the number of
pretraining samples as well as the number of model
parameters. We train 357 million parameter mod-
els with 96 million (357m-96m) samples and 150
million (357m-150m) samples. Similarly, we train
1.3 billion parameter models with 96 million (1.3b-
96m) and 150 million (1.3b-150m) samples.3

For all models, we use HIGHTHRESH = 0.5,
LOWTHRESH = 0.1 and PRMTOX= 0.9. This im-
plies 90% of toxic samples in the dataset are ap-
pended with Ctox. Note that only 4.14% of the en-
tire train set has tox_score ≥ 0.5 (Fig. 2) which
means that 3.73% (90% of 4.14) of the entire train
set receive Ctox. For MEDA PRMNONT= 0.5
and for INST PRMNONT= 0.9. 34.59% of the en-
tire dataset has tox_score < 0.1 (from Fig.2).
This means that for MEDA 17.3% of samples
and for INST 31.13% of samples are augmented
with Cnont. From these values, we derive that for
MEDA ∼ 79% of samples and for INST 65.14%
of samples don’t undergo any modification. Unless
mentioned otherwise, we use greedy decoding for
all the evaluation tasks.

3.1 Evaluation
We evaluate the success of our strategies along four
different dimensions. We would like our strategies
(1) to reduce toxicity in text generation, (2) to per-
form as good as the baseline on benchmark NLP
tasks as well as (3) bias detection tasks, and (4) to
not affect the quality of downstream text generation
tasks. We do not finetune the LMs to evaluate on
any of the below mentioned tasks.

Toxicity Evaluation We follow the setup in
Gehman et al. (2020) and use the full set of prompts
(∼ 100k) to evaluate toxicity of LM generations
via PerspectiveAPI. Gehman et al. (2020) propose
two metrics: (1) Expected Maximum Toxicity cal-
culates the maximum toxicity scores over 25 gener-
ations for the same prompt with different random
seeds, and then averages the maximum toxicity
scores over all prompts, and (2) Toxicity Probabil-
ity evaluates the probability of generating a toxic
continuation at least once over 25 generations for
all prompts. We follow Gehman et al. (2020) and
restrict the generations up to 20 tokens or below.
Wang et al. (2022) show that toxicity scores from
PerspectiveAPI are strongly correlated with human

3Additional hyper-parameter details in Appendix C.
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Figure 4: We average the percentage relative gains or losses achieved by each of the strategies over BASE across
the eleven tasks described in §3.1. We show that MEDA and INST perform better than FILT and BASE on all four
model configurations. Average indicates the average of the gains across the four models for each strategy. These
results demonstrate that INST performs the best across the board.

evaluation (Pearson correlation coefficient = 0.97).
Hence, we only report PerspectiveAPI evaluation.

Under this setup, we perform two types of experi-
ments: (1) with no control variable which is exactly
same as (Gehman et al., 2020), and (2) generating
continuations by adding the respective control vari-
able Cnont for MEDA and INST. Note that we only
add Cnont at beginning of all the prompts and not
Ctox. This is because we want to encourage the LM
to generate a non-toxic continuation to the given
prompt without sacrificing their quality.

Benchmark NLP Tasks To ensure that our strate-
gies do not affect the utility of the LMs, we
evaluate them on five benchmark NLP tasks cov-
ering - completion prediction (LAMBADA (Pa-
perno et al., 2016)), natural language understand-
ing (ANLI (Nie et al., 2020)), and commonsense
reasoning (Winogrande (Sakaguchi et al., 2020),
Hellaswag (Zellers et al., 2019a), PiQA (Bisk et al.,
2020)). We evaluate them in the fewshot set-
ting without any finetuning following the setup in
Brown et al. (2020); Smith et al. (2022). We report
average accuracy across the five tasks.

Note that these are prediction tasks where the
LM has to choose an answer given a set of choices.
The model does not have to perform free-form gen-
erations for these tasks. Hence, we do not evaluate
by adding the control variables.

Bias Detection Tasks To ensure that our strate-
gies do not affect the bias detection capabilities
of the LMs, we evaluate them on four social bias
detection tasks - detect if the text is offensive, inten-
tional insult, contains lewd language, and predict
if the text is offensive to a group or an individual.
The bias detection tasks are described in Sap et al.
(2020). We follow the setup in Prabhumoye et al.
(2021b) to perform 32-shot classification where 32
samples are selected from the train set to be pro-

vided as in-context samples to the LM. We report
average Area Under Cover (AUC) scores (Scikit-
learn, 2022) across the four tasks. In these tasks as
well, we don’t use the control variables.

Text Generation Task To evaluate if our tech-
niques affect the downstream text generation, we
assess them on the E2E dataset (Novikova et al.,
2017). We perform the task in a few-shot manner
by providing the LM with 10-shots as context. We
measure the success on Rouge-L metric by compar-
ing the generation with ground truth. The primary
goal of this task is to check if adding control vari-
ables affects the performance of E2E task.

4 Results and Discussions

Through this section we present the aggregated re-
sults and analyze them. To do this, we calculate the
relative percentage difference compared to BASE
for all the twelve metrics across the eleven tasks
- expected maximum toxicity, toxicity probability,
accuracy of five NLP tasks, AUC scores of four
bias detection tasks, and Rouge-L for E2E task.
We then compute an average across all the met-
rics (we also include the experiments with control
variable Cnont). In Fig. 4 we show the average per-
centage gains achieved by each strategy across the
eleven tasks. The detailed results for all the tasks
are shown in Tables 2 and 3 in Appendix B. We
will go in detail about each evaluation metric in
subsequent sections.

Fig. 4 demonstrates that all the strategies are
better than BASE. Fig. 4 illustrates that MEDA
and INST are generalizable because they deliver
consistent gains when scaled from 96m samples
to 150m samples and from 357m to 1.3b model
parameters. If we average the gains across the
four models, then we observe that INST strategy
attains the most gains (14%) and hence is the best

2640



Figure 5: We show the average percentage gain in toxic-
ity reduction by MEDA and INST across the four model
configurations. We observe that we get higher gains
(43% higher for MEDA and 54% higher INST in abso-
lute terms) when using Cnont.

strategy. Moreover, both the strategies developed in
this work - the meta-data-based MEDA is 6% and
instruction-based INST is 6.3% better than FILT.

Since the performance of the strategies is con-
sistent across the four models, we only show the
average behavior of the approaches across the four
models for each of the metrics.

Toxicity Evaluation Fig.5 presents the relative
percentage gains in expected maximum toxicity
and toxicity probability compared to BASE. It also
shows the results for MEDA and INST by using
their respective control variable Cnont vs not.

We observe that MEDA and INST are successful
in reducing the toxicity of generations as evaluated
by REALTOXICITYPROMPTS setup (Gehman et al.,
2020). Specifically, we see huge gains in toxicity
reduction when we use control variable Cnont asso-
ciated with MEDA and INST (compare striped vs
non-striped bars for each color). This is because we
are directing the LM to generate non-toxic content
by prefacing the prompt with Cnont. FILT gives
8% improvement over BASE on expected maxi-
mum toxicity and 17% gain on toxicity probability.
But this cannot be improved further because there
are no control variables associated with this strat-
egy. INST on the other hand establishes 29.3%
improvement in expected maximum toxicity and
a 61.3% improvement in toxicity probability i.e
INST reduces the probability of generating toxic
content by ∼ 61% and the probability is as low
as 0.14. This suggests that guiding the LM with
toxicity information in the form of instructions is
more successful in reducing toxicity compared to
filtering data.

Benchmark NLP tasks Fig. 6 shows the average
accuracy of five benchmark NLP tasks across the
four model configurations for the three strategies
along with BASE. We observe that MEDA and

Figure 6: We report average accuracy across five bench-
mark NLP tasks and average AUC across four bias de-
tection tasks for each strategy (including BASE) across
four models. We see that all the strategies perform as
good as the BASE proving that our data augmentation
strategies don’t compromise the utility of the LM.

INST are as competent as BASE on the NLP tasks.
In fact, we observe a marginal gain of < 1% for
FILT, MEDA and INST. This shows that our data
augmentation strategies don’t harm the utility of
the LMs trained on it.

Bias Detection Tasks Additionally, Fig. 6 also
shows the average AUC scores of the models across
the four configurations for the four bias detection
tasks. Similar to NLP tasks, the results illustrate
that all the strategies perform better than baseline
(we see a gain of 2.5% for FILT, 1.4% for MEDA,
and 1.3% for INST). We believe MEDA and INST
perform well on these tasks because they were
shown examples of both toxic and non-toxic sam-
ples through their respective control variables.

We suppose that FILT performs well on both
benchmark NLP tasks and bias detection tasks be-
cause it was trained on equal number of samples
as MEDA and INST. Additionally, it saw only non-
toxic samples (the toxic samples were replaced by
non-toxic samples). Hence, the perplexity for toxic
sentences would be higher in FILT. We discuss this
in detail in §6.

Text Generation Task Since we see huge gains
in Fig. 5 by adding Cnont, we want to evaluate if
adding Cnont affects the performance of a down-
stream text generation task. Fig. 7 shows the av-
erage of Rouge-L scores across the four model
configurations for MEDA and INST strategy us-
ing Cnont (striped bars) and without using it (non-
striped bars). Fig. 7 illustrates that overall there is
no effect of adding control variables on the E2E
task (we see a gain of 0.5% and 2.0% for MEDA
and INST respectively when using Cnont).
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Figure 7: We report Rouge-L scores for the E2E task
for MEDA and INST strategies with and without Cnont.
We demonstrate that augmenting Cnont does not affect
the performance of the LM on E2E task.

4.1 Ablations

Additional details are provided in Appendix D.

Scaling the Model Size We scale our experi-
ments to a 8.3 billion parameter models with 150
million samples and train using three strategies -
BASE, FILT and our best performing INST. Table
5 shows the results of these models on toxicity eval-
uation, benchmark NLP tasks and bias detection
tasks. We see similar trends to our main results i.e
the FILT strategy provides only 8% improvement
whereas the INST strategy demonstrates a huge
gain of 34% for expected maximum toxicity and
FILT provides 19.6% and INST illustrates a signif-
icant gain of 69.5 % for toxicity probability when
we use the non-toxic control variable Cnont. Sim-
ilarly, we observe a 0.1% decrease for FILT and
0.7% increase for INST in benchmark NLP tasks;
and we see a 11.5% increase for FILT and 12.7%
increase for INST for bias detection tasks. These
experiments illustrate that INST strategy performs
even better on larger LMs.

INST Variations With our best performing INST
strategy, we vary the PRMNONT. For INST, PRM-
NONT is 0.9. We train INST-11 with PRMNONT
= 0.11 and INST-50 with PRMNONT = 0.5 for
all four model configurations. The percentage of
toxic samples for which the model sees Ctox re-
mains the same (3.73%) for all the three variations.
The percentage of non-toxic samples for which the
model sees Cnont is 3.8% for INST-11, 17.3% for
INST-50 and 31.13% for INST.

The results in Fig. 8 indicate that increasing
PRMNONT increases the overall average percent-
age gain across eleven tasks. This implies that
adding Cnont to more number of samples is helpful
for the model in understanding toxicity. We leave it
for future work to explore the limit of PRMNONT.

Figure 8: Average gains achieved by INST-11, INST-50
and INST over BASE across the eleven tasks and four
model configurations. We see that the average perfor-
mance of the model improves when higher percentage
of samples receive the control variable Cnont.

FILT Variations We also vary the threshold of
filtering toxic data. The threshold is 0.5 for FILT,
0.4 for FILT-0.4 and 0.35 for FILT-0.35. The per-
centage of toxic samples removed is 4.14% for
FILT, 8.07% for FILT-0.4 and somewhere between
8.07 and 14.94% for FILT-0.35. Note that we re-
plenish the pretraining corpus with corresponding
percentages of non-toxic samples. This is done to
maintain fairness of number of samples across the
models. With this experiment we wanted to see if
iteratively replacing higher percentage of samples
with non-toxic samples helps in reducing toxicity.
We train a 357m parameter model on 96m samples
for FILT-0.4 and FILT-0.35 data strategies.

Results in Fig. 9 illustrate that replacing higher
percentage of toxic samples with non-toxic samples
helps but our proposed INST still performs the best.
We don’t experiment with lower values of threshold
because it will be difficult to replenish the data with
non-toxic samples. Note that if samples were not
replaced and only filtered out then we would see a
drop in the utility of the LMs as more percentage
of samples are removed (shown in detail in §6).

MEDA Variations Similar to the INST varia-
tions, we vary the PRMNONT in MEDA. For
MEDA, PRMNONT= 0.5. We train MEDA-11
with PRMNONT= 0.11 and MEDA-90 with PRM-
NONT= 0.9 for 357m-96m configuration.

Fig. 10 shows the resulting gain over the BASE.
We observe a different trend here compared to
Fig. 8. Here the best performing strategy is MEDA
and increasing the percentage of non-toxic sam-
ples (MEDA-90) for which the model receives the
control variable Cnont does not improve the aver-
age gain. This is because we have identified the
optimal value of PRMNONT for MEDA and its
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Figure 9: Average gains achieved by FILT, FILT-0.4,
FILT-0.35 and INST over BASE across the eleven tasks
on 357m-96m model configuration. We see that the
average performance of the model improves when we
filter more toxic samples and replace them with non-
toxic samples. We illustrate that INST strategy still
performs better than variations of filter strategy.

variations. We have not yet explored the optimal
value of PRMNONT for INST.

We also experimented with using the raw toxi-
city scores from Perspective API directly without
binning them as in case of MEDA for 357m-96m
configuration. Specifically, in case of MEDA all
the samples within a threshold get the same value,
either 0.1 or 0.5. In this ablation (MEDA-R), the
samples within a threshold would get the raw scores
like 0.01 or 0.67 up to two decimal points. We ob-
serve that MEDA-R does not reduce as much toxic-
ity compared to MEDA (toxicity probability: only
7% reduction by MEDA-R compared to 36% by
MEDA; xpected maximum toxicity: 5% reduction
by MEDA-R as opposed to 22% by MEDA).

5 Related Work

Finetuning-based Methods Pretrained LMs can
be further finetuned using different training al-
gorithms like domain-adaptive training meth-
ods (Gehman et al., 2020; Gururangan et al., 2020;
Solaiman and Dennison, 2021; Wang et al., 2022)
and reinforcement learning (Ouyang et al., 2022;
Perez et al., 2022) on non-toxic data. These meth-
ods can only be employed after LMs are pretrained.
These methods typically incur further costs of fine-
tuning additional LMs (Krause et al., 2021; Liu
et al., 2021), generating large amount of non-toxic
data (Wang et al., 2022), or procuring human feed-
back (Ouyang et al., 2022). Our work on the other
hand is targeted towards reducing toxicity by aug-
menting the pretraining corpus and hence will not
incur additional cost after the LM is trained.

Decoding Time Algorithms They reduce toxic-
ity of the generations at decoding time by altering
the probabilities of certain tokens. Gehman et al.
(2020) show a study on using PPLM (Dathathri
et al., 2020), word-filtering, and vocabulary shift-
ing (Keskar et al., 2019). Schick et al. (2021) use
the internal knowledge of the LM to reduces the
probability of generating toxic text. The GeDi ap-
proach (Krause et al., 2021) guides the generation
at each step by computing classification probabili-
ties for all possible next tokens. Liu et al. (2021)
propose DEXPERTS which controls the generation
with an“expert” LM trained on non-toxic data and
“anti-expert” LM trained on toxic data. These tech-
niques are efficient at reducing toxicity but fail to
consider the underlying semantic meaning of the
generated text at the sequence level. They may
also reduce the utility of the LM at performing
downstream tasks (Wang et al., 2022).

Analysis of Toxicity in Pretraining Data Large
body of work analyzes the pretraining data and ad-
vocates for choosing it carefully (Gehman et al.,
2020; Welbl et al., 2021; Bender et al., 2021).
Gehman et al. (2020) provide an analysis of toxicity
on a subset of pretraining data at a document-level.
Our analysis (§2.1) of the entire pretraining corpus
is at a sample-level and in agreement with Gehman
et al. (2020). An analysis by Sap et al. (2019) re-
ports that filtering data based on PerspectiveAPI
could lead to a decrease in text by African Amer-
ican authors. Our proposed approaches (MEDA
and INST) don’t filter data. Additionally, Xu et al.
(2021) present an analysis on different detoxifica-
tion techniques like DAPT, PPLM, GeDi and filter-
ing (Gururangan et al., 2020; Dathathri et al., 2020;
Krause et al., 2021). They conclude that these tech-
niques hurt equity and decrease the utility of LMs
on language used by marginalized groups. These
studies necessitate tackling toxicity at the pretrain-
ing data stage without filtering.

Ngo et al. (2021) present experiments by filtering
toxic documents based on the loglikelihood of the
text. Our work augments pretraining data with
toxicity information.

6 Comparison with Prior Work

Prior work and this study uses different model con-
figurations in terms of model parameters, pretrain-
ing data, number of samples, and hyperparameters.
We show comparison with closest model configura-
tion with our work. We only compare the relative
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changes because the baselines are different for our
work and Wang et al. (2022); Liu et al. (2021);
Welbl et al. (2021). Also, PerspectiveAPI (Perspec-
tiveAPI, 2022) update their models regularly and
hence scores returned by it may change over time.

Finetuning-based Methods Wang et al. (2022)
develop SGEAT which first generates large amount
of non-toxic data using a pretrained LM (Smith
et al., 2022) and then uses domain adaptive finetun-
ing. They have the same model parameters and
pretraining data as our models. We follow the
same toxicity evaluation setup and similar setup
for benchmark NLP tasks. We compare 357m-
150m INST model (Table 2) with the SGEAT 357m
model in Tables 1 and 3 of Wang et al. (2022). We
see that toxicity probability is relatively reduced
by a massive 60% for INST and 38% for SGEAT;
accuracy for benchmark NLP tasks show a relative
improvement of 0.9% for INST whereas SGEAT
decreases the NLP utility by 1.4%; perplexity is
relatively increased by 0.85% for INST and 9% for
SGEAT. We would like to note that prior work (Gu-
rurangan et al., 2020; Wang et al., 2022; Ouyang
et al., 2022) has not evaluated bias detection tasks
and text generation task (E2E).

Decoding Time Algorithms Due to similar
model configuration with Wang et al. (2022), we
compare DEXPERTS (reported in Table 2) with re-
sults on INST 1.3b-150m configuration (Table 3).
We observe that toxicity probability gets relatively
reduced by 69.5% for DEXPERTS and 63.5% for
INST; but accuracy of benchmark NLP tasks is
significantly decreased by DEXPERTS (15%) and
only 1.3% by INST. Hence, even if decoding time
algorithms provide a higher decrease in toxicity,
they are not usable for general NLP tasks.

Filtering Methods Prior work (Welbl et al.,
2021; Ngo et al., 2021) removes entire documents
with toxicity above a threshold from the training set.
FILT strategy replaces the toxic samples with equiv-
alent number of non-toxic samples. To have a fair
comparison, we train two models: (1) a baseline
357m parameter model (BASE-Doc), and (2) we
filter documents (2.5%) with toxicity score above
0.5 and train a model (FILT-Doc) on the remain-
der 97.5% of the documents. FILT-Doc reduces
expected maximum toxicity by 4.2% and toxicity
probability by 4.6% compared to BASE-Doc. This
demonstrates that FILT-Doc provides lesser rela-
tive gains in toxicity reduction compared to FILT

and INST (FILT gives 7.3% and INST provides
28.1% reduction in expected maximum toxicity;
FILT shows 16% and INST displays 59.7% reduc-
tion in toxicity probability for 357m-150m in Ta-
ble 2). This shows that sample-level FILT is∼ 11%
better than document-level FILT-Doc on toxicity
probability. We observe that FILT-Doc loses utility
on benchmark NLP tasks by 1% and loses bias de-
tection capabilities by 8% compared to BASE-Doc.

Based on the above comparisons, we conclude
that INST strategy developed in this work demon-
strates massive reduction in toxicity while preserv-
ing the utility of the LM on benchmark NLP tasks
as well as bias detection tasks.

7 Conclusion and Future Work

We develop two new strategies to reduce toxic-
ity using data augmentation - MEDA and INST.
Through extensive experiments, we demonstrate
that MEDA and INST reduce toxicity probability
substantially (54% and 61% respectively) while
not compromising on the utility of the LM on five
benchmark NLP tasks and four bias detection tasks.
We also show that adding control variables does
not compromise performance on E2E task.

In this work, we show how toxicity can be re-
duced in LMs by augmenting the pretraining data
with toxicity information. We believe that this idea
can be extended to other dimensions of social bi-
ases and hate speech. Prior work shows that adding
instructions during finetuning can help various NLP
tasks and improve the LMs capabilities to gener-
alize for instructions on unseen tasks (Wei et al.,
2021; Ouyang et al., 2022). We postulate that these
observations can be applied to adding instructions
to the pretraining data which can make INST gen-
eralizable to reduce different types of biases.

The key idea of adding relevant information to
the pretraining data via instructions can be applied
more broadly and opens new directions for future
work. Future work can focus on controlling the
generation by adding general instructions to the
pretraining data. Current work has applied MEDA
and INST on binary view of toxicity i.e something
is toxic or non-toxic. Hence, another interesting
direction is to explore the degrees of toxicity and
incorporate it with MEDA and INST strategies.
Future work can also evaluate the generalizability
and applicability of INST strategy on more text
generation tasks.
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Limitations

The current studies presented in this work rely
on PerspetiveAPI (PerspectiveAPI, 2022). Per-
spectiveAPI scoring has been shown to be biased
against marginalized communities (Gehman et al.,
2020; Welbl et al., 2021; Xu et al., 2021). This can
impact the strategies developed in this work. But
we would like to note that MEDA and INST tech-
niques can be used with any other classifier which
provides toxicity scores. Another limitation of this
work is that it requires a reliable classifier which
provides effective score of toxicity. If the classi-
fier provides with inaccurate toxicity scores then it
would impact the performance of MEDA and INST.
To apply the strategies discussed in this work, we
have to label the whole pretraining dataset. This
is true even for FILT strategy. Although not a lim-
itation, this is an artifact of working on curating
pretraining dataset. We would also like to point out
that the control variables introduced in this work
can be used for both generating non-toxic content
as well as toxic content. If we append sample with
Ctox control variable instead of Cnont then the LM
would generate toxic data. We would like to assert
that the intended use of this technique is to generate
text that is not toxic.
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Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.
2017. The E2E dataset: New challenges for end-
to-end generation. In Proceedings of the 18th An-
nual SIGdial Meeting on Discourse and Dialogue,
pages 201–206, Saarbrücken, Germany. Association
for Computational Linguistics.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow in-
structions with human feedback. arXiv preprint
arXiv:2203.02155.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Ngoc-Quan Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. 2016. The lambada dataset: Word predic-
tion requiring a broad discourse context. In Proceed-
ings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1525–1534.

Ethan Perez, Saffron Huang, Francis Song, Trevor Cai,
Roman Ring, John Aslanides, Amelia Glaese, Nat
McAleese, and Geoffrey Irving. 2022. Red team-
ing language models with language models. arXiv
preprint arXiv:2202.03286.

PerspectiveAPI. 2022. Perspective | develop-
ers. https://developers.perspectiveapi.com/
s/. (Accessed on 10/18/2022).

Shrimai Prabhumoye, Brendon Boldt, Ruslan Salakhut-
dinov, and Alan W Black. 2021a. Case study: Deon-
tological ethics in NLP. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 3784–3798, Online.
Association for Computational Linguistics.

Shrimai Prabhumoye, Rafal Kocielnik, Mohammad
Shoeybi, Anima Anandkumar, and Bryan Catan-
zaro. 2021b. Few-shot instruction prompts for pre-
trained language models to detect social biases. arXiv
preprint arXiv:2112.07868.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-
vatula, and Yejin Choi. 2020. Winogrande: An ad-
versarial winograd schema challenge at scale. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 8732–8740.

Maarten Sap, Dallas Card, Saadia Gabriel, Yejin Choi,
and Noah A. Smith. 2019. The risk of racial bias
in hate speech detection. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 1668–1678, Florence, Italy. Asso-
ciation for Computational Linguistics.

Maarten Sap, Saadia Gabriel, Lianhui Qin, Dan Juraf-
sky, Noah A. Smith, and Yejin Choi. 2020. Social
bias frames: Reasoning about social and power im-
plications of language. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 5477–5490, Online. Association
for Computational Linguistics.

Timo Schick, Sahana Udupa, and Hinrich Schütze. 2021.
Self-diagnosis and self-debiasing: A proposal for re-
ducing corpus-based bias in nlp. Transactions of the
Association for Computational Linguistics, 9:1408–
1424.

Scikit-learn. 2022. Roc-auc-score. https://
scikit-learn.org/stable/modules/generated/
sklearn.metrics.roc_auc_score.html. (Ac-
cessed on 04/13/2022).

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053.

Shaden Smith, Mostofa Patwary, Brandon Norick,
Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George
Zerveas, Vijay Korthikanti, et al. 2022. Using deep-
speed and megatron to train megatron-turing nlg
530b, a large-scale generative language model. arXiv
preprint arXiv:2201.11990.

Irene Solaiman and Christy Dennison. 2021. Process
for adapting language models to society (palms) with
values-targeted datasets. Advances in Neural Infor-
mation Processing Systems, 34:5861–5873.

Trieu H Trinh and Quoc V Le. 2018. A simple
method for commonsense reasoning. arXiv preprint
arXiv:1806.02847.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Boxin Wang, Wei Ping, Chaowei Xiao, Peng Xu,
Mostofa Patwary, Mohammad Shoeybi, Bo Li, An-
ima Anandkumar, and Bryan Catanzaro. 2022. Ex-
ploring the limits of domain-adaptive training for
detoxifying large-scale language models. arXiv
preprint arXiv:2202.04173.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M
Dai, and Quoc V Le. 2021. Finetuned language mod-
els are zero-shot learners. In International Confer-
ence on Learning Representations.

Johannes Welbl, Amelia Glaese, Jonathan Uesato,
Sumanth Dathathri, John Mellor, Lisa Anne Hen-
dricks, Kirsty Anderson, Pushmeet Kohli, Ben Cop-
pin, and Po-Sen Huang. 2021. Challenges in detox-
ifying language models. In Findings of the Associ-

2646

https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.18653/v1/W17-5525
https://developers.perspectiveapi.com/s/
https://developers.perspectiveapi.com/s/
https://doi.org/10.18653/v1/2021.naacl-main.297
https://doi.org/10.18653/v1/2021.naacl-main.297
https://doi.org/10.18653/v1/P19-1163
https://doi.org/10.18653/v1/P19-1163
https://doi.org/10.18653/v1/2020.acl-main.486
https://doi.org/10.18653/v1/2020.acl-main.486
https://doi.org/10.18653/v1/2020.acl-main.486
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html


ation for Computational Linguistics: EMNLP 2021,
pages 2447–2469.

Albert Xu, Eshaan Pathak, Eric Wallace, Suchin Guru-
rangan, Maarten Sap, and Dan Klein. 2021. Detoxi-
fying language models risks marginalizing minority
voices. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2390–2397.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019a. Hellaswag: Can
a machine really finish your sentence? In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4791–4800.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019b. Defending against neural fake
news. Advances in neural information processing
systems, 32.

A Analysis of PerspectiveAPI scores

Doc. Id #chars Doc. Score 2k chars 5k chars
1 3198 0.0816 0.1052 0.0816
2 7053 0.0778 0.0996 0.0827
3 4337 0.0806 0.0731 0.0806
4 3575 0.1293 0.1275 0.1293
5 2168 0.0763 0.0767 0.0763
6 9820 0.1395 0.1801 0.2051
7 9917 0.0851 0.2052 0.2428
8 3971 0.2400 0.2612 0.2400
9 9644 0.2586 0.3880 0.2843
10 6964 0.2208 0.3644 0.3546

Table 1: PerspectiveAPI scores of documents using
three different ways. #chars denotes the number of char-
acters in a document. Doc. Score is the PerspectiveAPI
toxicity score when the entire document is passed. 2k
chars displays the average PerspectiveAPI toxicity score
when the document is split into chunks of 2k chars and
5k chars displays the average PerspectiveAPI toxicity
score when the document is split into chunks of 5k chars.
Doc. Id denotes the id of the document.

PerspectiveAPI accepts maximum text size per
request of 20 KB. This is approximately 20k char-
acters. We select 10 documents with less than
10k characters for the purpose of our analysis.
This analysis aims to study the difference between
PerspectiveAPI toxicity scores when we pass the
whole document vs chunking the document and
then averaging the scores for each chunk. We ob-
tain PerspectiveAPI toxicity score in three ways:
(1) we pass the whole document and get the Per-
spectiveAPI toxicity score (denoted as “Doc. Score”
in Table 1), (2) we split the document into chunks
of 2000 characters and then take the weighted av-
erage of PerspectiveAPI toxicty scores for all the
chunks (denoted as “2k chars” in Table 1), and (3)
we split the document into chunks of 5000 charac-
ters and then take the weighted average of Perspec-
tiveAPI toxicity scores for all the chunks (denoted
as “5k chars” in Table 1).

Table 1 shows the result of this analysis. We ob-
serve that all the three types of scores are different.
More importantly the ranking between the docu-
ments changes if we consider each of the three
approaches. For example if we rank the docu-
ment ids from lowest score to highest toxicity score
then the ranking according to the approaches are:
(1) Doc. Score is 5, 2, 3, 1, 7, 4, 6, 10, 8, 9 (2) 2k
chars is 3, 5, 2, 1, 4, 6, 7, 8, 10, 9 and (3) 5k chars
is 5, 3, 1, 2, 4, 6, 8, 7, 9, 10. This study shows that
document longer than 20k characters cannot be
split into multiple chunks to obtain an average Per-

2647



Model 96m-samples 150m-samples
EMT TP NLP BD E2E EMT TP NLP BD E2E

BASE 0.44 0.36 47.5 50.6 27.6 0.43 0.35 48.2 50.0 30.8
FILT 0.40 0.29 48.0 51.2 27.4 0.40 0.30 48.5 52.2 30.0

↓8.1% ↓18.5% ↑1.1% ↑1.2% ↓0.8% ↓7.3% ↓16.0% ↑0.6% ↑4.4% ↓2.8%
MEDA 0.41 0.31 48.1 50.1 28.5 0.41 0.31 48.2 49.5 30.7

↓5.9% ↓13.2% ↑1.4% ↓1.0% ↑3.2% ↓4.8% ↓11.0% ↑0.0% ↓1.0% ↓0.7%
INST 0.42 0.33 47.9 50.2 28.9 0.42 0.33 48.7 51.1 29.7

↓2.8% ↓6.8% ↑0.8% ↓0.9% ↑4.9% ↓1.9% ↓5.4% ↑0.9% ↑2.3% ↓3.7%

Experiment using control variable Cnont

MEDA 0.33 0.18 - - 28.3 0.33 0.17 - - 30.7
↓24.0% ↓49.8% ↑2.6% ↓23.9% ↓51.2% ↓0.5%

INST 0.31 0.15 - - 29.8 0.31 0.14 - - 29.7
↓29.0% ↓59.3% ↑7.8% ↓28.1% ↓59.7% ↓3.5%

Table 2: Results for 357m parameter models on all the metrics. EMT is Expected Maximum Toxicity; TP is Toxicity
Probability; NLP indicates the average of accuracy on five benchmark NLP tasks; BD displays the average AUC on
four bias detection tasks; and E2E shows the Rouge-L scores of the LMs on the E2E task. For benchmark NLP
tasks, bias detection tasks and E2E task we show the relative percentage improvement over BASE with a ↑% and
decrement with a ↓% . For the expected maximum toxicity and toxicity probability, we show the improvement with
↓% because lower is better for these metrics. We may observe that two strategies obtain the exact same score but
there is a difference in their relative percentages. This is because these scores are computed up to 4 decimal digits
but we only report scores up to 2 decimals here.

spectiveAPI score.
More importantly, even for documents which are

less than 20k characters, it is not guaranteed that
the entire sequence will appear together in a sample
during the data preprocessing phase. Hence, first
obtaining PerspectiveAPI score and then splitting
the documents into samples of sequence length
2000 tokens would yield inaccurate toxicity scores
for the samples. Hence, our approach is focused on
sample-level toxicity scoring for providing the LM
with precise toxicity information. This impacts our
MEDA and INST strategies which rely on guiding
the LM at sample-level about toxicity information.

B Details of Main Results

Table 2 and 3 show the results for the eleven tasks
with and with the control variable Cnont for 357m
and 1.3b parameter models respectively. EMT is
Expected Maximum Toxicity; TP is Toxicity Prob-
ability; NLP indicates the average of accuracy on
five benchmark NLP tasks; BD displays the aver-
age AUC score on four bias detection tasks; and
E2E shows the Rouge-L scores of the LMs on the
E2E task. For benchmark NLP tasks, bias detection
tasks and E2E task we show the relative percentage
improvement over BASE with a ↑% and decrement
with a ↓% . For the expected maximum toxicity and
toxicity probability, we show the improvement with
↓% because lower is better for these metrics. In Ta-
bles 2 and 3, we may observe that two strategies

obtain the exact same score but there is a difference
in their relative percentages. This is because these
scores are computed up to 4 decimal digits but we
only report scores up to 2 decimals here.

We calculate the relative percentage difference
compared to BASE for all the twelve metrics across
the eleven tasks - expected maximum toxicity, toxi-
city probability, accuracy of five NLP tasks, AUC
scores of four bias detection tasks, and Rouge-L
for E2E task. We then compute an average across
all the metrics (we also include the experiments
with control variable Cnont). These aggregated re-
sults are shown in Fig. 4. Fig. 4 shows the average
percentage gains achieved by each strategy across
the eleven tasks.

C Hyper-parameter Details

All the LMs trained in this work are GPT-
style (Brown et al., 2020) Transformer architec-
tures (Vaswani et al., 2017) trained with Megatron
toolkit (Shoeybi et al., 2019). We use BPE tok-
enization with a vocabulary of size 50256. All the
models are trained on sequence length of 2048 to-
kens. Note that our samples are of size 2000 tokens.
We leave 48 tokens for adding either raw scores for
MEDA or instructions for INST. Note that the base-
line is also trained on same samples of 2000 tokens.
We pad the extra spaces with a PAD_TOKEN.
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Model 96m-samples 150m-samples
EMT TP NLP BD E2E EMT TP NLP BD E2E

BASE 0.44 0.37 52.6 53.0 30.7 0.44 0.37 54.4 53.8 31.1
FILT 0.40 0.30 52.9 55.9 29.9 0.41 0.31 54.5 53.2 31.9

↓8.5% ↓18.8% ↑0.6% ↑5.5% ↓2.5% ↓7.4% ↓16.5% ↑0.2% ↓1.1% ↑2.6%
MEDA 0.42 0.33 53.0 57.2 31.8 0.42 0.34 53.9 53.5 33.0

↓4.7% ↓10.7% ↑0.8% ↑7.9% ↑3.7% ↓4.2% ↓9.1% ↓0.9% ↓0.6% ↑6.1%
INST 0.43 0.34 53.3 53.9 30.6 0.42 0.34 53.7 54.9 31.7

↓3.6% ↓9.7% ↑1.3% ↑1.7% ↓0.2% ↓3.7% ↓9.2% ↓1.3% ↑2.0% ↑2.1%

Experiment using control variable Cnont

MEDA 0.32 0.16 - - 31.9 0.32 0.16 - - 33.6
↓27.5% ↓58.1% ↑4.2% ↓26.8% ↓57.4% ↑8.2%

INST 0.31 0.15 - - 31.3 0.31 0.14 - - 32.6
↓30.2% ↓62.7% ↑2.1% ↓30.0% ↓63.5% ↑4.9%

Table 3: Results for 1.3b parameter models. EMT is Expected Maximum Toxicity; TP is Toxicity Probability;
NLP indicates the average of accuracy on five benchmark NLP tasks; BD displays the average AUC on four bias
detection tasks; and E2E shows the Rouge-L scores of the LMs on the E2E task. For benchmark NLP tasks, bias
detection tasks and E2E task we show the relative percentage improvement over BASE with a ↑% and decrement
with a ↓% . For the expected maximum toxicity and toxicity probability, we show the improvement with ↓% because
lower is better for these metrics. We may observe that two strategies obtain the exact same score but there is a
difference in their relative percentages. This is because these scores are computed up to 4 decimal digits but we
only report scores up to 2 decimals here.

357m parameter models We train them with 24
layers, with a hidden size of 1024 and 16 attention
heads. We use max− position− embeddings

of 2048; 162761 warmup samples; a learning rate
of 3.0e−4 with minimum learning rate of 3.0e−5.
We use cosine learning decay style. Additionally,
we use clip-grad = 1.0, weight-decay = 0.1, adam-
beta1 = 0.9, and adam-beta2 = 0.95. Each of these
models are trained on 64 A100 GPUs with 40GB
memory. The models with 96m samples are trained
for 54 GPU hours and models with 150m samples
are trained for 84 GPU hours.

1.3b parameter models We train them with 24
layers, with a hidden size of 2048 and 32 attention
heads. We use max-position-embeddings = 2048
with 244141 warmup samples; a learning rate of
2.0e−4 with a minumum learning rate of 2.0e−5

and cosine decay style. We use clip-grad = 1.0,
weight-decay = 0.1, adam-beta1 = 0.9, and adam-
beta2 = 0.95. Each of these models are trained on
64 A100 GPUs with 40GB memory. The models
with 96m samples are trained for 113 GPU hours
and models with 150m samples are trained for 176
GPU hours.

Bounds for the new variables We describe the
bounds for LOWTHRESH, HIGHTHRESH, PRM-
TOX and PRMNONT variables introduced in this
work.

0 < LOWTHRESH < 1

0 < HIGHTHRESH < 1

0 ≤ PRMTOX ≤ 1

0 ≤ PRMNONT ≤ 1

Note that PRMTOX = 0 means that no samples
above the HIGHTHRESH are augmented with Ctox;
and PRMTOX = 1 means that all the samples above
the HIGHTHRESH are augmented with Ctox. Simi-
larly, PRMNONT = 0 implies that no samples below
LOWTHRESH are modified; and PRMNONT = 1
means that all the samples below LOWTHRESH are
augmented with Cnont.

Number of Shots for Tasks Table 4 shows the
number of shots used as context for each task fol-
lowing the setups in Brown et al. (2020); Smith
et al. (2022); Prabhumoye et al. (2021b).

Task # of Shots
LAMBADA (Paperno et al., 2016) 15
ANLI (Nie et al., 2020) 50
Winogrande (Sakaguchi et al., 2020) 50
PiQA (Bisk et al., 2020) 50
Hellaswag (Zellers et al., 2019a) 20
Bias Detection (Prabhumoye et al., 2021b) 32

Table 4: Number of shots used as context for each task.
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Model 150m-samples
EMT TP NLP BD

BASE 0.43 0.35 64.9 54.7
FILT 0.39 0.28 64.8 61.0

↓8.0% ↓19.6% ↓0.1% ↑11.5%
INST 0.41 0.30 65.3 61.7

↓4.5% ↓13.4% ↑0.7% ↑12.7%

Experiment using control variable Cnont

INST 0.28 0.11 - -
↓34.0% ↓69.5%

Table 5: Results for 8.3b parameter models trained with
150 million samples.

Model 96m-samples
EMT TP NLP BD E2E

BASE 0.44 0.36 47.5 50.6 27.6
FILT 0.40 0.29 48.0 51.2 27.4

↓8.1% ↓18.5% ↑1.1% ↑1.2% ↓0.8%
FILT-0.4 0.38 0.25 47.4 50.0 28.8

↓13.1% ↓30.8% ↓0.3% ↓1.1% ↑4.3%
FILT-0.35 0.37 0.23 48.0 50.4 28.4

↓15.1% ↓36.8% ↑1.1% ↓0.4% ↑2.9%
INST 0.42 0.33 47.9 50.2 28.9

↓2.8% ↓6.8% ↑0.8% ↓0.9% ↑4.9%

Experiment using control variable Cnont

INST 0.31 0.15 - - 29.8
↓29.0% ↓59.3% ↑7.8%

Table 6: Results for 357m-96m configuration on all
the metrics for variations of FILT such as FILT-0.4 and
FILT-0.35 in comparison with INST.

D Ablation Experiments

Scaling the Model Size Table 5 shows results
for 8.3 billion parameter models which use BASE,
FILT and INST strategies on 357m-150m model
configuration.

FILT Variations Table 6 shows the results for
BASE, FILT, FILT-0.4, FILT-0.35 and INST for all
the 357m-96m model configuration on all eleven
tasks. These results are aggregated and presented
in Fig. 9.

MEDA Variations Table 7 shows the results for
BASE, MEDA-11, MEDA, MEDA-90 and INST
for 357m-96m model configuration on all eleven
tasks. These results are aggregated and presented
in Fig. 10.

INST Variations Table 8 shows the results for
BASE, INST-11, INST-50 and INST for all the
four model configuration on all eleven tasks. These
results are aggregated and presented in Fig. 8.

Model 96m-samples
EMT TP NLP BD E2E

BASE 0.44 0.36 47.5 50.6 27.6
MEDA-11 0.42 0.33 47.1 52.6 28.4

↓4.6% ↓8.8% ↓0.8% ↑4.1% ↑3.0%
MEDA 0.41 0.31 48.1 50.1 28.5

↓5.9% ↓13.2% ↑1.4% ↓1.0% ↑3.2%
MEDA-90 0.42 0.33 47.0 47.6 28.6

↓2.9% ↓8.2% ↓1.1% ↓6% ↑3.8%
INST 0.42 0.33 47.9 50.2 28.9

↓2.8% ↓6.8% ↑0.8% ↓0.9% ↑4.9%

Experiment using control variable Cnont

MEDA-11 0.35 0.20 - - 28.4
↓20.7% ↓43.5% ↑3.0%

MEDA 0.33 0.18 - - 28.3
↓24.0% ↓49.8% ↑2.6%

MEDA-90 0.31 0.14 - - 28.4
↓28.6% ↓59.9% ↑3.0%

INST 0.31 0.15 - - 29.8
↓29.0% ↓59.3% ↑7.8%

Table 7: Results for 357m-96m configuration on all
the metrics for MEDA and INST in comparison with
MEDA-11 and MEDA-90.

Figure 10: Average the gains achieved by MEDA-11,
MEDA, MEDA-90, and INST over BASE across the
eleven tasks for 357m-96m model configuration.
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Model 96m-samples 150m-samples
EMT TP NLP BD E2E EMT TP NLP BD E2E

Experiments with 357m parameter models

BASE 0.44 0.36 47.5 50.6 27.6 0.43 0.35 48.2 50.0 30.8
INST-11 0.41 0.32 46.6 50.9 28.1 0.42 0.34 48.7 50.7 28.7

↓5.9% ↓11.8% ↓1.8% ↑0.5% ↑1.9% ↓2.0% ↓3.9% ↑1.0% ↑1.4% ↓6.8%
INST-50 0.41 0.32 47.9 49.9 28.2 0.42 0.33 48.3 49.1 29.5

↓5.6% ↓11.9% ↑0.9% ↓1.5% ↑2.3% ↓3.0% ↓6.8% ↑0.2% ↓1.8% ↓4.3%
INST 0.42 0.33 47.9 50.2 28.9 0.42 0.33 48.7 51.1 29.7

↓2.8% ↓6.8% ↑0.8% ↓0.9% ↑4.9% ↓1.9% ↓5.4% ↑0.9% ↑2.3% ↓3.7%

Experiment using control variable Cnont for 357m parameter models

INST-11 0.36 0.23 - - 28.3 0.38 0.25 - - 29.0
↓18.5% ↓36.8% ↑2.7% ↓13.0% ↓27.4% ↓6.0%

INST-50 0.32 0.16 - - 28.0 0.34 0.18 - - 29.5
↓26.7% ↓54.6% ↑1.5% ↓22.3% ↓48.2% ↓4.4%

INST 0.31 0.15 - - 29.8 0.31 0.14 - - 29.7
↓29.0% ↓59.3% ↑7.8% ↓28.1% ↓59.7% ↓3.5%

Experiments with 1.3b parameter model

BASE 0.44 0.37 52.6 53.0 30.7 0.44 0.37 54.4 53.8 31.1
INST-11 0.41 0.32 52.9 54.1 33.5 0.42 0.33 54.3 54.0 31.0

↓6.3% ↓13.3% ↑0.5% ↑2.2% ↑9.1% ↓4.9% ↓11.0% ↓0.1% ↑0.3% ↓0.3%
INST-50 0.41 0.32 53.4 54.5 30.8 0.42 0.34 53.9 54.6 32.6

↓6.3% ↓14.3% ↑1.4% ↑2.9% ↑0.4% ↓3.7% ↓8.4% ↓0.8% ↑1.4% ↑4.9%
INST 0.43 0.34 53.3 53.9 30.6 0.42 0.34 53.7 54.9 31.7

↓3.6% ↓9.7% ↑1.3% ↑1.7% ↓0.2% ↓3.7% ↓9.2% ↓1.3% ↑2.0% ↑2.1%

Experiment using control variable Cnont for 1.3b parameter models

INST-11 0.32 0.15 - - 34.2 0.33 0.18 - - 32.1
↓28.3% ↓59.6% ↑11.7% ↓24.3% ↓51.4% ↑3.3%

INST-50 0.31 0.14 - - 30.9 0.32 0.15 - - 32.9
↓29.6% ↓61.4% ↑0.7% ↓27.3% ↓58.4% ↑6.0%

INST 0.31 0.15 - - 31.3 0.31 0.14 - - 32.6
↓30.2% ↓62.7% ↑2.1% ↓30.0% ↓63.5% ↑4.9%

Table 8: Results for 357m and 1.3b parameter models on all the metrics for INST and its variations INST-11 and
INST-50. For benchmark NLP tasks, bias detection tasks and E2E task we show the relative percentage improvement
over BASE with a ↑% and decrement with a ↓% . For the expected maximum toxicity and toxicity probability, we
show the improvement with ↓% because lower is better for these metrics.
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Abstract

In automated scientific fact-checking, machine
learning models are trained to verify scientific
claims given evidence. A major bottleneck of
this task is the availability of large-scale train-
ing datasets on different domains, due to the
required domain expertise for data annotation.
However, multiple-choice question-answering
datasets are readily available across many dif-
ferent domains, thanks to the modern online ed-
ucation and assessment systems. As one of the
first steps towards addressing the fact-checking
dataset scarcity problem in scientific domains,
we propose a pipeline for automatically con-
verting multiple-choice questions into fact-
checking data, which we call Multi2Claim.
By applying the proposed pipeline, we gen-
erated two large-scale datasets for scientific-
fact-checking: Med-Fact and Gsci-Fact for
the medical and general science domains, re-
spectively. These two datasets are among
the first examples of large-scale scientific-fact-
checking datasets. We developed baseline mod-
els for the verdict prediction task using each
dataset. Additionally, we demonstrated that
the datasets could be used to improve per-
formance measured by weighted F1 on ex-
isting fact-checking datasets such as SciFact,
HEALTHVER, COVID-Fact, and CLIMATE-
FEVER. In some cases, the improvement in
performance was up to a 26% increase. The
generated datasets are publicly available1.

1 Introduction

Learning to verify the claims in scientific papers
and “science releases” (media announcements of
scientific findings) is a difficult task for both artifi-
cial intelligence (AI) systems and humans. How-
ever, this task is crucial because learning to separate
verified facts from speculation or falsehoods has im-
portant consequences. Success at this task can help
the reader understand scientific topics and promote
science. Conversely, failure at this task leads to the

1https://github.com/taneset/Multi2Claim.

Figure 1: Examples of “supported” (green), “refuted”
(red), and “not-enough-info” (yellow) types of claims
from the Gsci-Fact dataset which is generated from the
original multi-choice question (grey).

spread of misinformation and exaggeration, which
can cause distortion in scientific communication
and undermine public confidence in science. Unfor-
tunately, several studies have revealed that science
releases and scientific articles can contain signifi-
cant exaggeration and misinformation (Woloshin
et al., 2009), (West and Bergstrom, 2021), (Sum-
ner et al., 2014), (Woloshin and Schwartz, 2002).
This misleading information can directly impact
people’s lives, as was the case for media releases
concerning the COVID-19 pandemic (Roozenbeek
et al., 2020). In 2014, some estimates claimed that
40% of the press releases contained exaggerated
advice and 33% contained exaggerated claims in
science-related news (Sumner et al., 2014). Con-
sidering that this problem has not disappeared over
the last eight years and has possibly been exasper-
ated by the continued growth of social media and
the number of published scientific papers, there
is a need for automated systems that can aid both
academics and the public in judging the veracity
and credibility of scientific claims. In this con-
text, attempts to automate searching for distortions
of findings, exaggerations, and misrepresentations
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may contribute to the trustworthiness verification
of science releases and articles.

The fact verification task, commonly known as
“fact-checking”, is verifying claims in natural lan-
guage against a collection of information that con-
tains facts. The pipeline for fact-checking usually
includes two subtasks: 1) Retrieve-Rank and 2)
Veracity Prediction. The Retrieve-Rank operation
is typically carried out using information retrieval,
and ranking models that rely on a combination of
lexical (BM25) and semantic (using word embed-
dings in pre-trained language models) similarities
between the claim and textual evidence candidates
(Lin et al., 2020). The veracity prediction task,
which has been studied less than the retrieve-rank
task, can be seen as a classification task that pre-
dicts the type of verdict given a claim-evidence
pair. Typically there are three classes of verdicts:
“support”, “refute”, and “not enough information”.
The veracity prediction problem can also be formu-
lated as a task of identifying textual entailment, in
which a model predicts if the provided evidence
entails a given claim. Recent work shows that these
two subtasks could be combined in an end-to-end
manner (Thorne et al., 2021; Wadden et al., 2020a)
or could be carried out separately (Saakyan et al.,
2021; Diggelmann et al., 2020). Most studies and
datasets used in fact-checking are designed to ver-
ify claims in general domains such as news, forums,
popular Wikipedia passages, and social media posts
(Augenstein et al., 2019b; Thorne et al., 2021; Os-
hikawa et al., 2020; Shahi and Nandini, 2020; Shaar
et al., 2020).

It is typically more challenging to automatically
verify a scientific claim compared to a claim in the
general domain. This is because scientific asser-
tions can be much more complex, and it requires
deep domain knowledge to create datasets for sci-
entific claims. The required domain knowledge
is a major bottleneck, making the annotation pro-
cess expensive and time-consuming. As a result of
these difficulties, there are only a few scientific-
fact-checking datasets in the literature, and the
sizes of those datasets are limited. However, the
recent deep-learning-based approaches to perform-
ing fact-checking require large amounts of anno-
tated training data to generalise well on unseen data.
Therefore, there is an urgent need for large-scale
scientific-fact-checking datasets, and methods for
automatically creating such datasets.

As a step towards addressing the problem of lack-

ing large-scale datasets in scientific-fact-checking,
this paper makes the following contributions:

• We constructed a pipeline for generating sci-
entific claims from scientific multiple-choice
questions.

• We created two large-scale scientific-fact-
checking datasets in the biomedical (150k
samples) and general-science domains (32k
samples) by applying the proposed pipeline
to existing scientific multiple-choice question-
answering (QA) datasets.

• We evaluated different pretrained transformer-
based models for the verdict prediction task
on the generated datasets. The results serve as
the initial benchmark on the datasets.

• We showed that the generated datasets can be
used to improve the performance on existing
scientific-fact-checking datasets.

2 Claim Generation From Multi-Choice
Questions

Claim generation can be defined as the process of
generating claims that can be classified as “sup-
ported”, “refuted”, or “not enough information”
based on evidence in associated texts. A multiple-
choice question typically consists of a question,
a correct option, and multiple distractors. Some
multiple-choice QA datasets even provide an expla-
nation of the correct answer. This section describes
a pipeline to automatically generate all three types
of claims that are commonly found in the existing
fact-checking datasets by taking advantage of such
multiple-choice QA datasets. The pseudocode of
the generation process is described in Algorithm 1.

2.1 Supported and Refuted Claim Generation

The key to our method of generating supported and
refuted claims is a sequence-to-sequence model
that can convert question-answer pairs into their
declarative forms. For example, the question-
answer pair (“Which of the following hormonal ac-
tivity is expected immediately prior to ovulation?”,
“LH surge”) might be converted into a declarative
sentence such as, “LH surge is expected imme-
diately prior to ovulation”. In order to achieve
this, we adopted the BART (Lewis et al., 2019)
model that was trained to convert question-answer
pairs in the Stanford Question Answering Dataset
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(SQUAD) (Rajpurkar et al., 2016) into their declar-
ative forms, known as QA2D (Demszky et al.,
2018). We denote this model as BARTQA2D.

Our pipeline begins with multiple-choice ques-
tions. These questions are typically prepared by
domain experts who determine which pieces of
knowledge are essential to test learners on within
the related field. To create a “supported” claim
from a multiple-choice question, we feed the ques-
tion and the answer (correct option) as input to
BARTQA2D to generate the declarative sentence.
Using this process, we obtain the same number of
claims as the number of questions in the multiple-
choice QA dataset. The generated claim is then
paired with the original explanation of the correct
answer, serving as the supporting evidence.

To generate a “refuted” claim type, we make
use of the original distractors, carefully selected
by domain experts. We assume that any incor-
rect option (distractor) should be refuted by the
original supportive document (explanation), since
there is a single correct option for each question.
In our LH surge example, the distractors are FSH
surge, Progesterone surge, and Estrogen surge. One
can generate as many different refuted claims as
the number of distractors from a typical multiple-
choice question. However, in our implementation,
we only generated one refuted claim from a ques-
tion using the distractor that was the most similar
to the correct option. To achieve this, we computed
the cosine similarity scores between the embed-
dings of the correct choice and each of the dis-
tractor choices, and then we chose the distractor
with the highest score. The embeddings were com-
puted using the Scispacy named-entity-recognition
model2 (Neumann et al., 2019), which was trained
on biomedical corpora such as the MedMentions
(Murty et al., 2018), and the BioCreative V CDR
corpus3. This filtering of distractors can help re-
move distractors that are dissimilar to the correct
option and therefore avoid generating claims that
can be obviously refuted. The chosen distractor is
then fed into the BARTQA2D model along with
its question to generate a declarative sentence, e.g.,
“FSH surge is expected immediately prior to ovula-
tion”. This generated claim is then paired with the
original explanation to the correct answer.

We want to emphasise that generating “refuted”
claims is challenging and might require extra

2https://allenai.github.io/scispacy
3https://www.ncbi.nlm.nih.gov/research/bionlp/Data

ontology-like mechanisms to replace plausible but
false notions or entities in order to declare the claim
untrue. However, an ontology-like approach re-
quires extensive filtering to ensure the associated
document (explanation) is not supporting the re-
placement and the replacement is meaningfully
integrated into the refuted claim. An alternative
way of generating a refuted claim is by simply
adding “not” to a supported claim. However, exclu-
sively using this method would result in all refuted
claims containing “not”. This would limit the di-
versity of the generated claims and might cause
the machine learning models to cheat by simply
identifying negation.

Algorithm 1 Claim generation from multi-choice
question

Require: Question (Q), Explanation (E), Answer
(A), Distractors (D)

1: function SUPPORTED(q ∈ Q, e ∈ E, a ∈ A)
▷ q, e and a belong to the same question.

2: c← BARTQA2D(q, a)
3: return (c, e) ▷ The evidence e supports

claim c.
4: end function
5: function REFUTED(q ∈ Q, e ∈ E, a ∈ A,D)
▷ q, e, a and D belong to the same question.

6: d̂← argmaxdi∈D cosine(a, di)
7: c← BARTQA2D(q, d̂)
8: return (c, e) ▷ Claim c is refuted by e.
9: end function

10: function NOT_ENOUGH_INFO(c, e ∈ E, a ∈
A,E,A) ▷ c is generated
using SUPPORTED. e and a are its associated
explanation and answer.

11: Ê ← arg top10ei∈E,ai∈A cosine
(SPECTER(a, e), SPECTER(ai, ei))
▷ Ê is sorted in descent.

12: for êj in Ê do
13: if êj ⊉ a then
14: return (c, êj) ▷ êj does not contain

enough information to make a judgement on c.
15: end if
16: end for
17: end function

2.2 Not-Enough-Info Claim Generation
To generate a not-enough-info claim, we replace
the explanation of a supported claim with a similar
explanation from another claim but without sharing
the same key entities or notions (the answer). An
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example of this is shown in figure 1, where the orig-
inal supportive document is about collagen fibers
and connective tissue, and the replacement is about
collagen fibers and extracellular matrix. Crucially,
the replacement does not contain information about
connective tissue. To help find similar explanations
as the one provided, we compute document-level
representations of concatenated answer and expla-
nation for all generated claims using SPECTER as
introduced in (Cohan et al., 2020). It was shown
that SPECTER can create a dense-vector represen-
tation for each scientific document in order to cap-
ture the relatedness of the documents (Cohan et al.,
2020). By using the dense-vector representations
of explanations, we retrieve 10 most similar ex-
planations (using cosine similarity) for each claim.
Then, we filter out those that contain the key entity
of the claim, and we selected the most similar one
among them.

2.3 Med-Fact: Medical domain fact-checking
dataset

We applied the proposed pipeline to the MedM-
CQA dataset (Pal et al., 2022) which consists of
real-world medical entrance exam questions, an-
swers (which could be multiple or single), and the
supporting document for the correct answer. We
selected samples whose supporting documents had
more than 50 words to ensure a minimal length of
the supporting document. Then we only considered
multiple-choice questions that had a single correct
option. We also dropped the questions, which had
the same supportive documents. In the end, we
generated 150K claims, including 50K supported,
50K refuted, and 50K not-enough-info claims. Ex-
amples of this dataset are given at the end of the
Appendix.

2.4 Gsci-Fact: General science domain
fact-checking dataset

We used about 13.7K multiple-choice science-
exam questions introduced in (Welbl et al., 2017).
These questions are about natural sciences such as
biology, physics, and chemistry and are created by
crowd workers. As was true for Med-Fact, we ap-
plied a filtering process to ensure the length of the
supporting document and to have a unique support-
ing document. We generated about 32.2K claims,
of which 10.7K are supported, 10.7K are refuted,
and 10.7K are not-enough-info. An example is
given in Figure 1.

3 Experiments

We conducted experiments to answer the following
research questions:

• Whether the datasets we generated can be
used for verdict prediction tasks?

• Can the generated datasets improve the
models’ performance on scientific-fact-
checking tasks?

• What is the quality of the generated claims?

We formulate verdict prediction as a multi-class
classification task. For a given claim c and a docu-
ment d, the model must determine a label

l(c, d) ∈ {supported, refuted, not-enough-info}.

We concatenate a claim and its document (expla-
nation) together as input, and the model is trained
to predict the claim type (supported, refuted, or
not-enough-info) in a supervised manner.

3.1 Baselines for Med-Fact and Gsci-Fact

We selected five pre-trained models from the lit-
erature as baselines for fact-checking tasks. We
fine-tuned the transformer models BERT (Devlin
et al., 2018), DeBERTa (He et al., 2020), SciBERT
(Beltagy et al., 2019), Longformer (Beltagy et al.,
2020), and BioBERT (Lee et al., 2019) for the
verdict prediction task. DeBERTa, SciBERT, and
BioBERT are descendants of BERT, and DeBERTa
has modified attention mechanisms. SciBERT was
trained on a large multi-domain corpus of scien-
tific publications, whereas BioBERT was trained
on a large-scale biomedical corpus. Longformer is
different from the other transformer-based models
because it has an efficient attention mechanism that
accepts longer input sizes. We used the weighted
F1 metric for evaluation because models can be ac-
curate at predicting a specific label but inaccurate
at others, and weighted F1 can give better insight
about performance than accuracy. The weighted-
F1 score is calculated by averaging all per-class F1

scores while accounting for support for each class,
where support refers to the number of actual class
occurrences in the dataset. For both Med-Fact and
Gsci-Fact datasets, DeBERTa produced the best
performance. The complete results for Med-Fact
and Gsci-Fact are shown in Table 1.

.
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Models Med-fact GSci-Fact
BERT 0.70 0.85
DeBERTa 0.77 0.90
Longformer 0.72 0.86
BioBERT 0.71 0.86
SciBERT 0.65 0.78

Table 1: Weighted F1 scores of baseline models on
verdict prediction task.

3.2 Performance Improvements on Exiting
Datasets

We examined whether training models on Med-
Fact and Gsci-Fact can improve the performance
of verdict prediction on the existing scientific fact-
checking datasets. We used two different setups
for our experiments. Firstly, we fine-tuned and
evaluated models presented in Table 1 on SciFact,
HEALTHVER, and CLIMATE-FEVER with three
classes (supported, refuted, and not-enough-info).
The results are shown in Table 3. We conducted
additional experiments to investigate whether our
generated fact-checking datasets can improve per-
formance on binary-classification fact-checking
datasets such as COVID-Fact. The results for the
COVID-Fact dataset are shown in Table 2.

3.2.1 SciFact

According to (Wadden et al., 2020b), the SciFact
dataset consists of 1.4K expert-written scientific
claims with associated documents (abstracts of the
scientific articles) that contain evidence about the
claim. The dataset is in the biomedical domain and,
is extracted from S2ORC (Lo et al., 2020). The
document length is considerably longer than doc-
uments in other scientific-fact-checking datasets
since it contains the abstracts of scientific papers.
Statistics for all the datasets we used in this study
are provided in Table 5 in the Appendix.

Although the SciFact dataset is designed for both
retrieval (both sentence level and abstract level)
and verdict prediction tasks, we only conducted
experiments on the verdict prediction task. This
set up exists in the literature (Saakyan et al., 2021;
Wright et al., 2022). To do that, we used all the
associated documents in the datasets for each claim.
Since the test set of the dataset is not publicly avail-
able, we merged the training and development sets
and reserved 10% as a test set for the experiments.
We obtained the best weighted F1 score (0.77) on
SciFact using DeBERTa. By fine-tuning models

trained on Med-Fact and Gsci-Fact, we improved
the weighted F1 score to 0.86 and 0.83, respec-
tively.

3.2.2 HEALTHVER
HEALTHVER contains health-related claims ob-
tained from sources such as online forums and
search engines (Sarrouti et al., 2021). To verify the
claims, the top-10 related abstracts were labeled
by annotators as “supports”, “refutes”, “neutral”.
As with the experiments on SciFact, we used 10%
of the dataset as the test set. We obtained results
ranging from 0.68 to 0.78 by fine-tuning five pre-
trained models on the HEALTHVER dataset. Train-
ing first on our Med-Fact and Gsci-Fact datasets
consistently increased all models’ performance by
0.16 to 0.20 points.

3.2.3 CLIMATE-FEVER
CLIMATE-FEVER consists of claims related to
climate change. Like HEALTHVER, they use
techniques such as web scraping and using key-
words in search engines (Diggelmann et al., 2020).
They treated the verdict prediction task as an en-
tailment prediction task to predict one of the labels
“SUPPORTS”, “REFUTES”, or “NOT ENOUGH
INFO”. During our experiments, we obtained im-
provement of 0.11 points on the weighted F1 score
using the Med-Fact dataset in the best case. How-
ever, The improvements were generally less than
that obtained on the previous two datasets. One
possible explanation is that the Med-Fact and Gsci-
Fact datasets are dominated by biomedical and nat-
ural science topics that are not as related to the
climate-change domain as the health and medical
subject-dominated datasets.

3.2.4 COVID-Fact
We also examined the effect of transferring mod-
els trained on the generated dataset to a binary-
classification fact-checking dataset such as COVID-
Fact. In the COVID-Fact dataset, a claim can either
be “supported” or “refuted”. These claims have
been scrapped from COVID discussions made in
online forums such as Reddit. Five pieces of evi-
dence for each claim were collected from Google
search results using a cleaning process. We adopted
BERT and DeBERTa models in the experiments.
We again observed improvement even though the
Med-Fact dataset contains many scientific termi-
nologies and jargon, which one cannot expect from
COVID-Fact due to its creation process.
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Models BERT DeBERTa
COVID-Fact 0.60 0.85
Med-Fact + COVID-Fact 0.68+8 0.89+4

Table 2: Comparison of models’ performance (Weighted
F1 score) on COVID-Fact.

3.3 Claim Evaluation

We investigated the quality of the generated claims
by asking human annotators to evaluate claims
from four perspectives: fluency, contextually, faith-
fulness, and challenge level. We asked six annota-
tors to manually evaluate the claims by following
a guideline inspired by (Kuhn et al., 2013; Wright
et al., 2022). Table 6 in the Appendix contains in-
formation about the guideline, such as definitions
of these perspectives and associated scores.

The annotators consisted of Ph.D. students and
Ph.D. graduates in the fields of science, medicine,
psychology, and computer science. A random sam-
ple of 300 examples was taken, with 150 from the
Gsci-Fact corpus and 150 from the Med-Fact cor-
pus, ensuring an equal representation of the three
claim types: supported, refuted, and not-enough-
info. To minimize annotation costs while still lever-
aging the expertise of each annotator, the sample
was divided among eight experts, who were tasked
with evaluating the fluency, contextuality, and chal-
lenge level of the generated claims. The final scores
were obtained by averaging the annotations of all
experts on the related dataset.

For the fluency, the annotators found that 98%
of the generated claims have no grammatical errors
and are clearly understandable for both Gsci-Fact
and Med-Fact. The remaining 2% were deemed
understandable despite a few grammatical errors
and they were equally distributed among three la-
bels for both dataset. The annotators found that
98% of the generated claims in Med-Fact are in-
terpretable without additional context, while 96%
are interpretable without additional context in Gsci-
Fact. This minor difference could be due to the
diverse background of the annotators who evalu-
ated the Gsci-Fact dataset. 75% of the claims in
the Gsci-Fact dataset were marked as cannot be
answered without the evidence associated with the
claims. However, 95% of the claims in the Med-
Fact dataset were marked as not verifiable without
the associated evidence.

When evaluating the alignment between the
assigned labels generated during the generation

progress and the faithfulness scores assigned by
annotators during the annotation progress, a high
degree of agreement was observed. Specifically,
annotators concurred with 92% of the "supported"
claims in the Gsci-Fact dataset, with corresponding
agreement levels of 89% and 88% for the "refuted"
and "not-enough-info" claims, respectively. Simi-
lar results were obtained for the Med-Fact dataset,
with agreement levels of 93%, 91%, and 90% for
the "supported", "refuted", and "not-enough-info"
claims, respectively. Examples of each type of
claim with their evaluation scores can be found in
the Appendix, listed in Table 7 for a refuted claim,
Table 8 for a supported claim, and Table 9 for a
not-enough-info claim.

3.4 Further Analysis

It has been observed that general-domain natural-
language-inference datasets can have a significant
amount of bias (Poliak et al., 2018), and we won-
dered if Med-fact and Gsci-Fact contain such a
bias. We investigated the claim-only bias because
the aim of the fact-checking task is to evaluate the
model’s ability to examine the semantic relation-
ship between a claim and the supporting data. We
tested all the baseline models using just the claim
as an input. We discovered that the model’s perfor-
mances (weighted F1 scores) dropped to at most
35%, which indicating that the label-associated
bias is not presented. We interpret this result as
that the domain-specific evidence associated with
the claim is required to make the correct prediction.

4 Related Work

Recent work in automated fact-checking has made
progress in the battle against the spread of false in-
formation in the news (Pomerleau and Rao, 2017),
social media posts, online forums (Vlachos and
Riedel, 2014; Mihaylova et al., 2018), and popu-
lar Wikipedia articles (Thorne et al., 2018). There
has also been substantial work done that uses state-
ments of fact-checking organizations (Augenstein
et al., 2019a; Alhindi et al., 2018).

All the work mentioned so far has focused on
claims and related documents from the general do-
main. However, the proposed models and datasets
created can be difficult to apply to scientific do-
mains because of the domain mismatch. Limited
research has been conducted with datasets and mod-
els that focus on verifying claims made in scientific
releases against scientific documents. For exam-
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Model SciFact HEALTHVER CLIMATE-FEVER
BERT 0.65 0.72 0.58
DeBERTa 0.77 0.78 0.64
Longformer 0.70 0.77 0.63
SciBERT 0.65 0.69 0.52
BioBERT 0.64 0.73 0.51
BERTMed 0.78+13 0.91+19 0.62+4

DeBERTaMed 0.86+9 0.94+16 0.75+11

LongformerMed 0.76+6 0.93+16 0.73+10

SciBERTMed 0.68+3 0.88+19 0.55+3

BioBERTMed 0.76+12 0.92+19 0.59+8

BERTGsci 0.78+13 0.90+18 0.61+3

DeBERTaGsci 0.83+6 0.92+14 0.70+6

LongformerGsci 0.79+9 0.93+16 0.64+1

SciBERTGsci 0.650 0.87+18 0.55+3

BioBERTGsci 0.70+6 0.90+17 0.52+1

Table 3: The results of transferring models trained on Med-Fact and Gsci-Fact to SciFact, HEALTHVER and
CLIMATE-FEVER datasets. The first five rows show the baseline results (weighted F1) without the transfer. The
second set of 5 rows shows the results and improvements from training on Med-Fact first. The last 5 rows show the
results of models trained on Gsci-Fact first.

ple, in (Roozenbeek et al., 2020; Saakyan et al.,
2021), claims about COVID-19 made on social
media platforms were researched. The general
health-related claims made in science releases were
studied by (Sarrouti et al., 2021). Additionally,
claims about climate change and retrieved evidence
from Wikipedia were studied by (Diggelmann et al.,
2020). However, these models and datasets were
designed to verify claims written in less technical
language from public science releases and media
posts on platforms such as Reddit (Saakyan et al.,
2021). We are aware of only one dataset (SciFact)
that focuses on claims extracted from scientific ar-
ticles against scientific documents (Wadden et al.,
2020a).

In recent years, a variety of techniques have been
developed to enhance fact-checking abilities. One
such model is based on multi-layer perceptrons
(MLP) (Riedel et al., 2017), and another is based
on attention mechanisms (Parikh et al., 2016). Both
models were used as baselines in claim verification
on the FEVER dataset (Thorne et al., 2018). Ad-
ditionally, a Graph Neural Network (GNN) based
approach (Liu et al., 2020)) was used for propagat-
ing nodes represented by evidence (Ye et al., 2020).
Semantic role labeling and logical reasoning tools
can also improve GNN-based approaches (Chen
et al., 2020). In (Zhou et al., 2019), a graph-based
evidence aggregating and reasoning (GEAR) frame-
work was employed to aggregate multi-evidence

data.

Recently, transformer-based language models
have produced the best performance on fact-
checking in general and scientific domains. These
claim-verification models usually take concate-
nated claim and evidence pairs and process them
with multi-layer transformer-based models to ob-
tain representations for classifying relationships
between the claim and the evidence. Pre-trained
BERT models have often been used for classifica-
tion (supported, refuted, and not enough info). For
claim verification, BERT-based models are preva-
lent (Soleimani et al., 2019; Portelli et al., 2020;
Chernyavskiy and Ilvovsky, 2019; Nie et al., 2019;
Tokala et al., 2019), while Longformer has been
used for verdict prediction (Wadden et al., 2020b;
Wright et al., 2022).

Advancements in pre-trained transformer-based
sequence-to-sequence language models, such as
T5 (Raffel et al., 2020) and BART (Lewis et al.,
2019)), have allowed researchers to create fully
automatic pipelines for claim generation. In partic-
ular, negation generation and explanation genera-
tion of claims have been studied in the general-
domain fact-checking task (Kotonya and Toni,
2020; Thorne et al., 2021). Entity-centric approach
(Pan et al., 2021) uses entities in the scientific text
to generate claims and has been applied to scientific
claim generation by (Wright et al., 2022).
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5 Discussion

Because of the annotation cost, most large-scale
fact-checking datasets are synthetically generated.
For example, the popular fact-checking dataset,
Fever (Thorne et al., 2018), contains a limited num-
ber of claims annotated by humans. The rest of the
claims were synthetically augmented using para-
phrasing, negating, and substituting the original
claims. However, such methods have been found to
weaken results in several studies since real-world
claims have different structures than the syntheti-
cally augmented claims (Augenstein et al., 2019a;
Sarrouti et al., 2021). When generating a refuted
claim, simply adding “not” to a supported claim
does not always reflect the structure of real-world
refuted claims. In our approach, we use the expert-
selected distractors to generate refuted claims. The
quantity of refuted claims is another weak point
of the existing datasets. The amount of “refuted”
claims is dramatically less than that of the “sup-
ported” claims in the existing datasets. This results
in unbalanced fact-checking datasets (see the Table
5 in the Appendix). Both Med-Fact and Gsci-Fact
have a balanced class distribution containing the
same number of supported and refuted claims.

It is worth mentioning that the supporting doc-
uments for the claims that cannot be judged by a
given document have been left as empty in (Thorne
et al., 2018) and fact-checking datasets that are
designed for binary labels (“supported” and “re-
futed”) (Saakyan et al., 2021). In our proposed
methods, we were able to retrieve related docu-
ments by using their dense-vector representations
and consider them as documents for “not-enough-
info” type of claims.

Finally, we want to discuss the entity-centric
claim generation process (Pan et al., 2021; Wright
et al., 2022). The first step of this process is
selecting entities in a text to generate claims from
them. These entities become the main objects
of the generated claims. The weakness of this
approach, according to (Pan et al., 2021) is that
the generated claims can be superficial, and the
verification of these claims can be done without
the models’ reasoning capabilities or knowledge
of common sense. The degree of importance of
these entities can differ for a scientific text that
contains entities from multiple domains. Since
there is no mechanism to indicate how important
the selected entity is compared to the other entities
in the given text, this approach might result in a

poor selection of entities and, therefore, poor claim
data. In our proposed method, using the multiple
choices/entities of the question likely avoids that
problem, because domain experts select the entities
in the questions.

6 Conclusion

We have presented Multi2Claim, a pipeline that
converts multiple-choice questions to fact-checking
datasets. We specifically focus on challenging sci-
entific domains, where the claim verification pro-
cess can be complicated due to scientific jargon and
complex assertions about fields. We presented two
large-scale scientific fact-checking datasets created
with this pipeline in biomedical (Med-Fact) and
general science domains (Gsci-Fact). We testified
these dataset for possible biases and the generated
datasets were evaluated from various perspectives.
Baseline models for these balanced large-scale sci-
entific fact-checking datasets were also presented.
We conducted extensive experiments to examine
the benefits of the generated datasets on the ex-
isting scientific fact-checking dataset, which suf-
fer from low numbers of samples and unbalanced
labels. We consistently obtained improvements
for all scientific fact-checking datasets, including
binary-labeled datasets such as COVID-Fact.

We hope this work will lead to more break-
throughs in scientific fact-checking, which has re-
ceived little attention due to the expensive and time-
consuming annotation process that has to be done
by domain experts. We also hope that the proposed
pipeline and baseline models will help develop re-
liable models that will play an essential role in the
scientific claim verification process.

Limitations

The proposed method has several limitations. Our
claim generation pipeline relies on multiple-choice
question-answering datasets since we limited our-
selves to reliable and safe generation progress by
using human-created scientific questions and an-
swers. Another limitation is the lack of empha-
sis on retrieving explicit rationals and reasoning
over the retrieved rationals due to the high cost of
domain-specific rational annotation progress. For
future work, we will extend this pipeline to gener-
ate claims from plain scientific texts with additional
reasoning capabilities.
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Appendix

A Computing Sources and Experimental Setup
In all of our experiments, we used NVIDIA Quadro
RTX 8000 graphics processing unit with 48GB of
RAM capacity.

In the verdict prediction experiments, we used
the model checkpoints that were provided by Hug-
gingface (Wolf et al., 2019). BERT, SciBERT, and
BioBERT have 12 layers and 12 transformer blocks
in each layer, the size of the hidden layer is 768.
The Longformer model has 12 layer with a hidden
dimension of 512. DeBERTa model has a hidden
size of 768 and 12 layers.

The exact number of model parameters that we
used in this work is shown in the table 4.

Models Parameters
BERT 109,484,547
Longformer 148,661,763
DeBERTa 184,424,451
SciBERT 109,920,771
BioBERT 108,312,579
BART 139,420,416

Table 4: Parameters per model

B Hyper-parameters
In the generation part, we used maximum 256 for
the max length of the sequence to be generated.
The number of highest probability vocabulary to-
kens to keep for top-k-filtering was 10. We re-
turned one of the independently computed returned
sequences for each element in the batch. We used
the spaCy named entity recognition model from
Scispacy to find similarities between the correct op-
tion and the other three options4. In the not enough
info claim type generation, we used the ’allenai-
specter’5 SPECTER model’s checkpoint, which
was originally stored in the Allen AI repository.
For all of the verdict prediction models, we used
a variant of the Adam optimizer (AdamW) with a
1e-5 learning rate and other parameters set to de-
fault. The epoch number was usually 5, and we
did experiments with a range of (3–40) batch num-
bers with regard to the availability of the GPU. For
evaluation, we used the sklearn library’s f1-score
function

C Dataset Statistics and Evaluation
4https://allenai.github.io/scispacy/
5https://huggingface.co/allenai/specter
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Datasets Context Label distribution Total size Query length Document length
SciFact Biomedicine S:556, R:337, N:516 1.4K 12.9 232.9
HEALTHVER Health S:4.3K, R:2.8K, N:5.3K 12.5K 18.4 34.8
CLIMATE-FEVER Climate change S:654, R:253, N:474, D:154 1.5K 20.5 77.5
COVID-Fact Covid S:1.2K, R:2.7K 4K 13.3 77.9
Med-Fact Biomedical S:50K, R:50K, N:50K 150K 13.7 125.1
Gsci-Fact General Science S:10.7K, R:10.7K, N:10.7 32.2K 12.8 74.1

Table 5: Statistics of the datasets that we considered in this study for scientific-fact-checking task. The letters S, R,
N, D stand for supported, refuted, not enough info and disputed claims, respectively. The last two columns show the
average lengths of the claims and the documents.

Fluency 3-The claim is free of grammatical errors, and its meaning is clear.
2-The claim is understandable despite some grammatical errors.
1-The claim is incomprehensible.
.

Contextuality 1-The claim can be interpreted without any additional context.
0-Without the original context, the claim cannot be interpreted meaningfully.

Faithfulness 1-The claim is correct with respect to the explanation.
2-The claim is incorrect with respect to the explanation.
3-The claim is related to the explanation, but the verdict of the claim cannot be inferred from the
explanation.
4-The claim is not related to explanation in any sense.

Challenge 1- I can confidently say whether the claim is correct or incorrect without reading the explanation.
0- I cannot confidently say whether the claim is correct or incorrect without reading the explanation.

Table 6: Manual evaluation criteria for fluency, contextuality, faithfulness and challange.

Claim Diarrhoea is a common symptom of haloperidol toxicity.
Explanation Symptoms of haloperidol toxicity are usually due to exaggerated side effects. Most often encountered

are: Severe extrapyramidal side effects with muscle rigidity and tremors, akathisia, etc. Hypotension or
hypeension Sedation Anticholinergic side effects (dry mouth, constipation, paralytic ileus, difficulties
in urinating, decreased perspiration), coma in severe cases, accompanied by respiratory depression
and massive hypotension, shock. Rarely, serious ventricular arrhythmia (torsades de pointes), with or
without prolonged QT-time Epileptic seizures.

Fluency-3 The claim is free of grammatical errors, and its meaning is clear.
Contextuality-1 The claim can be interpreted without any additional context.
Faithfulness-2 The claim is incorrect with respect to the explanation
Challange-0 I cannot confidently say whether the claim is correct or incorrect without reading the explanation.

Table 7: An example of evaluation of a refuted claim from the Med-Fact dataset.
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Claim Zinc is more easily oxidized than iron.
Explanation One way to keep iron from corroding is to keep it painted. The layer of paint prevents the water and

oxygen necessary for rust formation from coming into contact with the iron. As long as the paint
remains intact, the iron is protected from corrosion. Other strategies include alloying the iron with
other metals. For example, stainless steel is mostly iron with a bit of chromium. The chromium
tends to collect near the surface, where it forms an oxide layer that protects the iron. Zinc-plated or
galvanized iron uses a different strategy. Zinc is more easily oxidized than iron because zinc has a
lower reduction potential. Since zinc has a lower reduction potential, it is a more active metal. Thus,
even if the zinc coating is scratched, the zinc will still oxidize before the iron. This suggests that this
approach should work with other active metals. Another important way to protect metal is to make
it the cathode in a galvanic cell. This is cathodic protection and can be used for metals other than
just iron. For example, the rusting of underground iron storage tanks and pipes can be prevented or
greatly reduced by connecting them to a more active metal such as zinc or magnesium. This is also
used to protect the metal parts in water heaters. The more active metals (lower reduction potential)
are called sacrificial anodes because as they get used up as they corrode (oxidize) at the anode. The
metal being protected serves as the cathode, and so does not oxidize (corrode). When the anodes
are properly monitored and periodically replaced, the useful lifetime of the iron storage tank can be
greatly extended.

Fluency-3 The claim is free of grammatical errors, and its meaning is clear.
Contextuality-1 The claim can be interpreted without any additional context.
Faithfulness-1 The claim is correct with respect to the explanation.
Challange-0 I cannot confidently say whether the claim is correct or incorrect without reading the explanation.

Table 8: An example of evaluation of supported claim from the Gsci-Fact dataset.

Claim Glycogen phosphorylase requires thiamine pyrophosphate.
Explanation Glycogen phosphorylase removes glucose as glucose-1-phosphate from glycogen (phosphorolysis). It

contains pyridoxal. Formation of branches in glycogen phosphate (PLP) as a prosthetic group. The
alpha-1,4 linkages in the glycogen are cleaved and removes glucose units one at a time. Enzyme
sequentially hydrolyses alpha-1,4 glycosidic linkages, till it reaches a glucose residue, 3-4 glucose
units away from a branch point. It cannot attack the 1,6 linkage at branch point.

Fluency-3 The claim is free of grammatical errors, and its meaning is clear.
Contextuality-1 The claim can be interpreted without any additional context.
Faithfulness-3 The claim is related to the explanation, but the verdict of the claim cannot be inferred from the

explanation.
Challange-0 I cannot confidently say whether the claim is correct or incorrect without reading the explanation.

Table 9: An example of evaluation of not-enough-info claim from the Med-Fact dataset.
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Abstract

The RVL-CDIP benchmark is widely used for
measuring performance on the task of docu-
ment classification. Despite its widespread use,
we reveal several undesirable characteristics of
the RVL-CDIP benchmark. These include (1)
substantial amounts of label noise, which we
estimate to be 8.1% (ranging between 1.6%
to 16.9% per document category); (2) pres-
ence of many ambiguous or multi-label doc-
uments; (3) a large overlap between test and
train splits, which can inflate model perfor-
mance metrics; and (4) presence of sensitive
personally-identifiable information like US So-
cial Security numbers (SSNs). We argue that
there is a risk in using RVL-CDIP for bench-
marking document classifiers, as its limited
scope, presence of errors (state-of-the-art mod-
els now achieve accuracy error rates that are
within our estimated label error rate), and lack
of diversity make it less than ideal for bench-
marking. We further advocate for the creation
of a new document classification benchmark,
and provide recommendations for what charac-
teristics such a resource should include.

1 Introduction

Within the document understanding research area,
the RVL-CDIP dataset (Harley et al., 2015) has
emerged as the primary benchmark for evaluat-
ing and comparing document classifiers. RVL-
CDIP is composed of 16 document type categories,
including resume, letter, invoice, etc. Its
large volume of training data—320,000 samples—
facilitates benchmarking state-of-the-art deep learn-
ing and transformer-based architectures. While ini-
tially released as a computer vision benchmark in
2015, more recent state-of-the-art models now in-
corporate image, text, and page layout modalities.
For instance, recent tri-modal models like Doc-
Former (Appalaraju et al., 2021), ERNIE-Layout
(Peng et al., 2022), LayoutLMv3 (Huang et al.,

⇤ Corresponding email: stefan.dataset@gmail.com

Figure 1: Model accuracy on RVL-CDIP by year and
modality. The horizontal dashed line represents our
estimated label error rate for RVL-CDIP’s test set.

2022), and Bi-VLDoc (Luo et al., 2022) now
achieve classification accuracies ranging in the mid-
to high-90s, with Bi-VLDoc reporting a state-of-
the-art of 97.12% on the RVL-CDIP test set. This
is a large improvement over earlier image-centric
work, and we chart this improvement in Figure 1.

As model performance on RVL-CDIP improves,
it becomes increasingly important to ensure that
further gains are meaningful with respect to the
classification task. This concern has been raised by
prior work that has found that benchmark evalua-
tion datasets often contain substantial amounts of
label errors or noise (e.g., Northcutt et al., 2021a),
substantial overlap between test and train data (e.g.,
Elangovan et al., 2021; Søgaard et al., 2021), and
data collection artifacts that cause models to over-
fit to spurious cues (e.g., Gururangan et al., 2018;
McCoy et al., 2019). Therefore, we cast a critical
eye to the RVL-CDIP benchmark to answer: Is
RVL-CDIP still suitable for effectively measuring
the performance of document classifiers?

In doing so, we first observe a lack of clear label
or annotation guidelines provided with the original
introduction of RVL-CDIP. Therefore, we create
verifiable label guidelines for the 16 RVL-CDIP
categories. With these guidelines, we are then able
to conduct a review of the data, and we find that
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label errors account for an estimated 8.1% of data
RVL-CDIP’s test split, a rate greater than the cur-
rent state-of-the-art model accuracy error rate, indi-
cating that contemporary high-performing models
are overfitting to noise. We also observe relatively
high rates of documents that have ambiguous or
multiple valid labels, which is problematic given
RVL-CDIP is a single-label classification bench-
mark. Additionally, we also observe a large overlap
between test and train data splits, where there are
(near-) duplicate documents seen in both train and
test splits, as well as documents that share common
templates. Lastly, our review of RVL-CDIP data
uncovered a surprisingly large amount of sensitive
personally-identifiable information, particularly in
the resume category, where we found 7.7% of doc-
uments contained US Social Security numbers.

We argue that the characteristics that we observe
make RVL-CDIP an unattractive benchmark for
training and evaluating document classifiers. We
end with recommendations for what qualities a new
document classification benchmark should have.

2 Related Work

This section discusses related work in two areas:
(1) prior work in document classification on RVL-
CDIP, and (2) prior work on analyzing datasets.

2.1 RVL-CDIP and Document Classification

The RVL-CDIP corpus has been used as a bench-
mark for document classification since its intro-
duction by Harley et al. (2015), who used it to
evaluate convolutional neural network (CNN) im-
age classifiers on the dataset’s document images.
Most immediate follow-up work followed Harley
et al. (2015) and explored different image-based
CNN models, as done in Csurka et al. (2016); Afzal
et al. (2017); Tensmeyer and Martinez (2017); Das
et al. (2018); Ferrando et al. (2020). Just relying
on image features is limited, as much of a docu-
ment’s "essence" is informed by its textual content.
Therefore, more recent work has incorporated the
textual modality, including Audebert et al. (2019)
and Dauphinee et al. (2019).

Even more recent work has capitalized on the
transformer model architecture, often combining
vision transformers with large transformer-based
language models (and often combining these with
a third modality based on page layout derived from
detected optical character recognition (OCR) re-
gions) as in LayoutLMv1 (Xu et al., 2020), Lay-

Model (Reported by) Modality Accuracy

Bi-VLDoc (Luo et al., 2022) I, T, L 97.12
ERNIE-Layout-large (Peng et al., 2022) I, T, L 96.27
UDOP-Dual (Tang et al., 2022) I, T, L 96.22
DocFormer-base (Appalaraju et al., 2021) I, T, L 96.17
StructuralLM-large (Li et al., 2021a) T, L 96.08
UDOP (Tang et al., 2022) I, T, L 96.00
LayoutLMv3-large (Huang et al., 2022) I, T, L 95.93
LiLT-base (Wang et al., 2022a) T, L 95.68
LayoutLMv2-large (Xu et al., 2021) I, T, L 95.65
BROS-base (Wang et al., 2022a) T, L 95.58
TILT-large (Powalski et al., 2021) I, T, L 95.52
DocFormer-large (Appalaraju et al., 2021) I, T, L 95.50
LayoutLMv3-base (Huang et al., 2022) I, T, L 95.44
Donut (Kim et al., 2021) I, T 95.30
Wukong-Reader-large (Bai et al., 2022) I, T, L 95.26
Pham et al. (2022) T, L 95.25
TILT-base (Powalski et al., 2021) I, T, L 95.25
LayoutLMv2-base (Xu et al., 2021) I, T, L 95.25
UDoc-star (Gu et al., 2021) I, T, L 95.05
Wukong-Reader-base (Bai et al., 2022) I, T, L 94.91
LayoutLMv1-base (Xu et al., 2020) I, T, L 94.43
LayoutLMv1-large (Xu et al., 2020) I, T, L 94.42
MATrIX (Delteil et al., 2022) I, T, L 94.20
DocXClassifier-xl (Saifullah et al., 2022a) I 94.17
DocXClassifier-large (Saifullah et al., 2022a) I 94.15
DocXClassifier-base (Saifullah et al., 2022a) I 94.00
UDoc (Gu et al., 2021) I, T, L 93.96
Longformer-base (Pham et al., 2022) T 93.85
Longformer-large (Pham et al., 2022) T 93.73
MGDoc (Wang et al., 2022b) I, T, L 93.64
Dessurt (Davis et al., 2022) I 93.60
Bigbird-base (Pham et al., 2022) T 93.48
Pramanik et al. (2022) I, T, L 93.36
Bigbird-large (Pham et al., 2022) T 93.34
Multimodal Ensemble (Dauphinee et al., 2019) I, T 93.07
SelfDoc (Li et al., 2021b) I, T, L 92.81
LadderNet (Sarkhel and Nandi, 2019) I 92.77
Zingaro et al. (2021) I, T 92.70
DiT-large (Li et al., 2022) I 92.69
VLCDoC (Bakkali et al., 2022) I, T 92.64
InceptionResNetV2 (Xu et al., 2021) I 92.63
EfficientNet (Ferrando et al., 2020) I 92.31
Region Ensemble (Das et al., 2018) I 92.21
DiT-base (Li et al., 2022) I 92.11
MAE-base (Li et al., 2022) I 91.42
Stacked CNN Single (Das et al., 2018) I 91.11
BEiT-base (Li et al., 2022) I 91.09
VGG-16 (Afzal et al., 2017) I 90.97
Csurka et al. (2016) I 90.70
ResNext-101 (Li et al., 2022) I 90.65
Audebert et al. (2019) I, T 90.60
ResNet-50 (Afzal et al., 2017) I 90.40
RoBERTa-large (Li et al., 2021a) T 90.11
RoBERTa-base (Li et al., 2021a) T 90.06
BERT-large (Li et al., 2021a) T 89.92
BERT-base (Li et al., 2021a) T 89.81
Tensmeyer and Martinez (2017) I 89.31
GoogLeNet (Afzal et al., 2017) I 89.02
AlexNet (Afzal et al., 2017) I 88.60

Table 1: Model accuracy on RVL-CDIP for various
image (I), text (T), and layout-based (L) document clas-
sification models, ordered by reported score. Models
incorporating multiple modalities typically outperform
uni-modal models.

outLMv2 (Xu et al., 2021), LayoutLMv3 (Huang
et al., 2022), DocFormer (Appalaraju et al., 2021),
TILT (Powalski et al., 2021), and ERNIE-layout
(Peng et al., 2022). These more recent transformer-
based models have achieved state-of-the-art accu-
racy scores on RVL-CDIP, the most recent being
Luo et al. (2022)’s Bi-VLDoc, which achieves a
reported accuracy of 97.12% on RVL-CDIP. (For
a listing of models benchmarked on RVL-CDIP
since Harley et al. (2015), see Table 1.)
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memo handwritten invoice scientific_pub. specification

Figure 2: Samples from the RVL-CDIP dataset.

advertisement memo
budget news_article
email presentation

file_folder questionnaire
form resume

handwritten scientific_publication
invoice scientific_report
letter specification

Table 2: RVL-CDIP document type categories.

Despite these high scores, recent work has ex-
posed gaps in models trained on RVL-CDIP. In
particular, recent work has found that models
trained on RVL-CDIP perform poorly on out-of-
distribution data (Larson et al., 2022) and perturbed
in-distribution data (Saifullah et al., 2022b). We
also mention that RVL-CDIP is often used as a pre-
training dataset, where models are first pre-trained
on RVL-CDIP (and perhaps others) and then eval-
uated on other downstream tasks or datasets (e.g.,
Nguyen et al. (2021); Kanchi et al. (2022)). Other
datasets like FUNSD are subsets of RVL-CDIP
(Jaume et al., 2019).

2.2 Analysis of Datasets

Prior work has investigated the presence of label
and annotation errors and corpus quality in NLP
and image datasets. This work includes Abed-
jan et al. (2016); Radenović et al. (2018); Müller
and Markert (2019); Pleiss et al. (2020); North-
cutt et al. (2021a); Kreutzer et al. (2022); Ying
and Thomas (2022); Chong et al. (2022). One
common conclusion is that the utility of a bench-
mark evaluation dataset is lessened if the label er-
ror and/or ambiguity rate is close to- or exceeds
model prediction error rate. This has been ob-
served for various datasets, such as ATIS (Béchet
and Raymond, 2018; Niu and Penn, 2019), and
the CNN/Daily Mail reading comprehension task
(Chen et al., 2016).

Orthogonal to label errors, prior work has also
observed non-trivial overlap between test and train
splits in datasets on which natural language process-
ing and computer vision models are evaluated (e.g.,

Finegan-Dollak et al., 2018; Allamanis, 2019; Barz
and Denzler, 2020; Lewis et al., 2021; Wen et al.,
2022; Croft et al., 2023). Such work often argues
that non-trivial amounts of overlap between test
and train data can lead to "inflated" performance
scores, as overlapping data can reward a model’s
ability to memorize training data (Elangovan et al.,
2021), and to under-estimate out-of-sample error
(Søgaard et al., 2021). Evidence of this can also be
found in the multitude of studies that report lower
model performance scores on newly-collected eval-
uation sets versus reported scores on benchmarks
(e.g., Augenstein et al., 2017; Recht et al., 2019;
Harrigian et al., 2020; Kim and Kang, 2022; Lar-
son et al., 2022). In this paper, we investigate the
presence of errors, ambiguous data, and overlap-
ping test-train data for the RVL-CDIP benchmark
dataset.

3 The RVL-CDIP Dataset

The RVL-CDIP dataset was introduced in Harley
et al. (2015) as a benchmark for evaluating image-
based classification and retrieval tasks.1 Since then,
RVL-CDIP has primarily been used as a document
type classification benchmark. RVL-CDIP consists
of 400,000 document images distributed across 16
document type categories, listed in Table 2. Ex-
ample documents from RVL-CDIP are shown in
Figure 2. Documents in RVL-CDIP were sampled
from the larger IIT-CDIP Test Collection, which
itself is a snapshot of the voluminous Legacy To-
bacco Documents Library (LTDL) collection — at
that time, LDTL contained approximately 7 million
documents (Lewis et al., 2006).2 These documents
were made publicly available as part of legal pro-

1Harley et al. (2015) referred to RVL-CDIP as BigTobacco.
2The LTDL is now called the Truth Tobacco Industry

Documents collection, and is included in the broader Indus-
try Documents Library (IDL) hosted by the UCSF Library:
https://www.industrydocuments.ucsf.edu/. For more
background on the LTDL, see Schmidt et al. (2002) and Tasker
et al. (2022).
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Category Description

advertisement
Advertisements from print-form media like newspapers and magazines. Also a small amount of scripts for television or
radio advertisements. A small amount of "ad order instructions" and "ad insertion" documents.

budget
Includes various budget documents such as expense, spending, sales, cash, and accounting reports and forecasts;
budgets; quotes and estimates; and income and bank statements. Also includes receipt-like documents such as political
campaign contribution requests and other receipts, as well as checks and check stubs.

email Scanned images of printed emails.

file_folder
Scanned images of folders and binders. Folder scans are often characterized by vertically oriented text (indicating a
folder label). A moderate amount of file folders in RVL-CDIP contain handwritten text or notes. Some scanned folders
may be indistinguishable from blank pages.

form
Form documents with form-like elements (e.g., lines or spaces for user-provided data entry). The form-like elements
can appear empty or filled.

handwritten Includes handwritten documents like handwritten letters and scientific notes.

invoice Includes invoices, bills, and account statements.

letter
Letters, often with letterhead and commonly with "Dear..." salutations. The distinction between letters and memos is
often unclear in RVL-CDIP.

memo Memoranda or inter-office correspondence documents, often with clear "TO", "FROM", "SUBJECT" headings.

news_article
Includes news articles in the form of clippings from newspapers and other print-form news media, as well as a small
amount of news articles from the web.

presentation
Includes scanned images of presentation and overhead slides, transcripts of speeches and statements. Also includes a
large amount of press releases.

questionnaire
Includes customer surveys and questionnaires, as well as survey and questionnaire prompts for surveyors. Also includes
questionnaires appearing to be part of legal proceedings and investigations. In RVL-CIDP, many questionnaires have a
substantial amount of form-like elements.

resume
Includes resumes, curricula vitae (CVs), biographical sketches, executive biographies (e.g., those written in third-
person), a small amount of business cards.

scientific_pub.
Mainly papers and articles from scientific journals and book chapters, but also includes book title pages. Also includes
news articles from science newsletters. News articles from science newsletters are very similar to the news_article
category.

scientific_rep.
Includes bioassay, pathology, and test reports; charts, graphs, and tables; research reports (including progress reports),
research proposals, abstracts, paper drafts. Many reports and abstracts bear similarities to scientific publications. Many
test result documents are similar to documents in the specification category.

specification
Data sheets (including safety data sheets); product, material, and test specifications. Also includes specification change
reports.

Table 3: RVL-CDIP categories alongside our descriptions and notes.

ceedings and settlements against several American
tobacco and cigarette companies and organizations,
and as such, the documents in RVL-CDIP are al-
most exclusively related to the tobacco industry.3

Most document images in RVL-CDIP capture
the initial page of a document; some common ex-
ceptions appear to be charts and tables (these are
typically labeled as scientific_report) as well
as presentation slides (labeled as presentation).
Additionally, almost all of the documents (that
contain readable text) are in English, although we
did find small amounts of documents in other lan-
guages (including German, Dutch, French, Span-
ish, Portuguese, Italian, Japanese, Chinese, Arabic,
and Hebrew) as part of our review. Examples of
non-English RVL-CDIP samples are displayed in
Figure 11 in the Appendix.

3For more background on the history of the litigation and
documents, see Glantz et al. (1996); Ciresi et al. (1999); Tasker
et al. (2022).

There are 320,000 training, 40,000 validation,
and 40,000 test samples, but Harley et al. (2015)
provides no information on how the data was parti-
tioned into these splits, so we assume it was done
randomly for each of the 16 document categories.
Harley et al. (2015) report that the 16 categories
were chosen, in part, because these categories had
ample representation (i.e., at least 25,000 samples)
in IIT-CDIP. Unfortunately, we are unaware of any
published guidelines, criteria, rules, or documen-
tation defining or describing each of the 16 RVL-
CDIP categories, nor is it clear who or what pro-
vided the initial category labels in IIT-CDIP (nor in
LTDL).4 Thus, we describe how we developed la-
bel guidelines for each RVL-CDIP document type
category in Section 3.1 below.

4Schmidt et al. (2002) and Tasker et al. (2022) indicate
that type labels may have been ascribed to the documents by
human workers employed at UCSF’s LTDL.
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3.1 Establishing Label Guidelines

The RVL-CDIP dataset does not have a published
list of descriptions, rules, or guidelines describing
each of the 16 document type categories. We dis-
cuss an extensive analysis from which we develop
such guidelines.

We established our list of guidelines by first sam-
pling 1,000 documents from each of the 16 cat-
egories in the training set (for a total of 16,000
documents). We then reviewed these samples cat-
egory by category. This review process helped us
identify commonalities within each category, and
helped us discover that many of the categories seem
to have distinct groups of sub-types within them.
For instance, we found that the resume category
is largely composed of (1) resumes and curricula
vitae, (2) "Biographical Sketch" documents (i.e.,
those required for grant applications for the Na-
tional Institutes of Health (example shown in Fig-
ure 3a), (3) executive biographies, and (4) scanned
business cards. Such cases reveal opportunities for
refining and diversifying appropriate categories.

In another category, advertisement, we found
samples mostly consisted of advertisements from
print-form media like newspapers and magazines,
as well as smaller amounts of scripts for television
or radio advertisements. The advertisement cat-
egory also included a small amount of document
images identical to the one shown in Figure 3b.
We found that this "IMAGE NOT AVAILABLE"
document appears mostly in the advertisement
category, yet it is an example of a document that
we do not include in our label guidelines for this
category, as it is not at all faithful to the semantic
nature of the advertisement category.

Our annotation guidelines are listed in Table 3,
along with our notes and observations. It was oc-
casionally necessary to review multiple document
categories prior to establishing rules. This was the
case with the budget and invoice categories, each
of which included non-trivial amounts of scanned
check images and contribution requests. (Examples
of cases like these are displayed in Figures 21-23 in
the Appendix.) For cases like these, we annotated
these sub-types in the relevant categories in order to
estimate their relative frequencies. We then would
append our annotation guidelines accordingly; for
instance, 8.8% of budget documents and 3.8% of
invoice documents that we reviewed were check
images, so our guidelines specify that the budget
category consists of check images, while invoice

(a) (b)

Figure 3: Example "Biographical Sketch" resume docu-
ment (a) and "IMAGE NOT AVAILABLE" document
found mostly in advertisement.

does not. Ultimately, our goal with establishing
such guidelines is to provide repeatable, verifiable
criteria that faithfully reflect the semantic nature of
each category.

4 Label Errors and Ambiguities in
RVL-CDIP

Armed with better knowledge of what constitutes
each of the 16 RVL-CDIP categories, we analyze
the contents of the RVL-CDIP test set to estimate
the amount of label errors and ambiguities found
in this set.

We manually checked for errors in the RVL-
CDIP test set by sampling 1,000 documents from
each of the 16 categories (for a total of 16,000 docu-
ments). We used our label guidelines established in
Section 3.1 to help us determine the validity of each
of these 16,000 samples. We tracked several types
of errors and ambiguities: (1) documents found in
a category that clearly are mis-labeled and instead
belong in a different RVL-CDIP category — we re-
fer to this error type as mis-labeled; (2) documents
that do not appear to have a single clear RVL-CDIP
label — we refer to this label type as unknown;
(3) documents that have mixed or multiple features
that belong to at least two RVL-CDIP categories —
we refer to this type as mixed. Examples of docu-
ments exhibiting these error types can be seen in
Figure 4. We point out a particularly interesting
mixed case: the first two mixed examples are nearly
identical, but the original label is news_article in
one case but letter in the second. More examples
are shown in the Appendix in Figures 12–14.

Findings. Our estimated error rates in the RVL-
CDIP test set are shown in Table 4. We estimate
that error rates (i.e., combined rates for mis-labeled
and unknown) range between 1.6% (in the case
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email
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news_article
handwritten
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news_article
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letter
news_article

Figure 4: Example errors and ambiguities. Top row: unknown, middle row: mis-label, bottom row: mixed.

Category m
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la
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r

m
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ed

advertisement 1.9% 4.5% 6.4% 3.5%
budget 9.7% 4.1% 13.8% 1.5%
email 1.7% 8.3% 10.0% 0.4%
form 4.4% 6.4% 10.8% 0.5%
file_folder 0.4% 3.1% 3.5% 1.9%
handwritten 2.5% 5.2% 7.7% 2.4%
invoice 9.7% 1.3% 11.0% 0.2%
letter 13.5% 3.4% 16.9% 0.5%
memo 2.0% 2.4% 4.4% 2.1%
news_article 4.6% 2.5% 7.1% 0.4%
presentation 1.8% 4.9% 6.7% 1.0%
questionnaire 5.6% 7.3% 12.9% 6.9%
resume 0.2% 1.4% 1.6% 0.4%
scientific_pub. 2.5% 1.8% 4.3% 0.0%
scientific_rep. 4.6% 3.9% 8.5% 5.6%
specification 1.5% 1.9% 3.4% 0.4%

Average 4.2% 3.9% 8.1% 1.7%

Table 4: Estimated label error and multi-label rates in
the RVL-CDIP test set.

of resume) and 16.9% (in the case of letter).
The average of each category’s error rates is 8.1%,
which is higher than the classification accuracy
error rates reported by many state-of-the-art mod-
els listed in Table 1. In some cases, the majority
of a category’s errors were mis-labels of a partic-
ular type. For instance, about 59% of the erro-
neous letter documents we reviewed were actu-
ally memo documents. Similarly, 74% of the erro-
neous invoice documents were actually budget
documents. Lastly, roughly 1.7% of RVL-CDIP’s
test set is data that have multiple valid labels.

5 Overlap Between Test and Train Splits

Our analysis also reveals a substantial degree of
undesirable overlap between train and test samples
within RVL-CDIP. To measure this overlap, we
use an approach similar to Larson et al. (2019)
and Elangovan et al. (2021), which, for each test
sample in each document type category, finds the
maximally similar sample in the same document
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resume: 0.977 news_article: 0.981 invoice: 0.937

Figure 5: Example test-train pairs with corresponding maximum cosine similarity scores. These three example pairs
show instances of near-duplicates (left and center) and documents that have highly similar structure (right).

Category mean median

advertisement 0.893 0.903
budget 0.963 0.968
email 0.976 0.982
form 0.948 0.956
file_folder 0.967 0.974
handwritten 0.945 0.952
invoice 0.962 0.966
letter 0.953 0.960
memo 0.957 0.961
news_article 0.919 0.936
presentation 0.929 0.945
questionnaire 0.961 0.968
resume 0.965 0.967
scientific_pub. 0.936 0.955
scientific_rep. 0.950 0.961
specification 0.972 0.978

Average 0.950 0.958

Table 5: Mean and median of maximum cosine similar-
ity scores between train and test sets for each RVL-CDIP
category.

type category’s training split. We then average
these maximum similarity scores together for each
document category. That is, for each document
category C in RVL-CDIP, we compute

1

|testC |
X

b2testC

max
a2trainC

sim(a, b)

where a and b are samples from category C’s train
and test splits, respectively. We use CLIP (Rad-
ford et al., 2021) to extract a 512-dimension fea-
ture embedding from each sample, and use cosine
similarity for sim(·, ·). We note that this vector-
based similarity technique is common practice in
the image- and information retrieval (e.g., Babenko
et al. (2014)).

Findings. Average and median of the maximum
similarity scores for test-train pairs are shown
in Table 5 for each RVL-CDIP category. Over-
all, we see a high degree of similarity across test
and train data: mean scores range between 0.893
(advertisement) and 0.976 (email), with an av-
erage of 0.950. Ten of the 16 document categories

Figure 6: Sampled subset of maximal similarity scores
for test-train pairs with scores between 0.93 and 1.0.

have average scores at- or above 0.95. The median
score for each category is larger than the mean in
all cases, indicating a long tail in the distribution
of scores. Indeed, we see this in Figure 10 (in
Appendix), which charts the distribution of similar-
ity scores for all test data in RVL-CDIP. Figure 5
shows three examples of test-train pairs with sim-
ilarity scores ranging between 0.937 and 0.981.
Two of the three pairs in Figure 5 seem to be near-
duplicates, where there appear to be minor differ-
ences in scanning or noise artifacts between each
document. In the third (invoice) example, we see
that the two samples are distinct, yet both share a
large degree of similarity because both use the same
document template (e.g., invoices from the same
company that are structurally and visually similar
but that contain different "data"). We show more
example pairs in Figures 15–18 in the Appendix.

To help better understand the similarity scores,
we conduct an experiment where we categorize
each similarity pair into one of the following: du-
plicate, if the test-train pair represents the same
document; template, if both documents in a pair
use the same document template; and different, for
all other pairs. We annotated a sample of 1,086
similarity pairs with maximum similarity scores
ranging between 0.93 and 1.0. A visualization of
the relationship between maximal similarity score
and match type is shown in Figure 6, where we
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Figure 7: Example documents from RVL-CDIP show-
ing sensitive personally identifiable information (PII;
redacted by us).

observe that the likelihood of a pair being either a
duplicate or template match increases with similar-
ity score.

Considering the overall median maximal similar-
ity score is 0.958, we can estimate a lower-bound
for the rate of duplicate and template match pairs
by scaling the proportion of documents above the
median maximal score (i.e., half, or 0.5) by the
fraction of duplicate and template matches above
the median (0.958). This gives us 0.5⇥ 0.641, and
therefore we estimate that at least 32% of samples
from the RVL-CDIP test set have either a duplicate
counterpart or a sample that shares a template lay-
out in the training set. While there is generally no
established acceptable number or percentage for
test-train overlaps, prior work (e.g., Søgaard et al.
(2021); Elangovan et al. (2021)) has argued that
overlaps are undesirable, and that building gener-
alizable, robust models entails evaluation against
novel, unseen data points (e.g., Koh et al. (2021);
Malinin et al. (2021); Larson et al. (2022)).

6 Presence of Sensitive Information

While reviewing samples from RVL-CDIP, we no-
ticed that the resume category had a non-trivial
quantity of documents that contain sensitive and
personally-identifiable entities. Naturally, resumes
typically contain a person’s name and basic con-
tact information (e.g., phone numbers or email ad-
dresses). However, we found a plethora of sensitive
entities like citizenship and marital statuses, places

and dates of birth, names of children and spouses,
and national ID numbers like US Social Security
and Canadian National ID numbers.

Out of a sample of 1,000 documents from the
resume test set, we found that 7.7% contained a US
Social Security Number. While we recognize that
US Social Security numbers were not considered
sensitive several decades ago (when many of the
resume documents in RVL-CDIP were created),
their presence in so many documents in a publicly
accessible dataset5 is still striking, especially con-
sidering the coexistence of this entity type with oth-
ers like person names, dates and places of birth, etc.
In particular, malicious Social Security numbers
are often connected with fraud and identity theft
crimes in the USA. Moreover, the sensitive enti-
ties discussed in this section are considered highly
sensitive under many state and national laws.6 Ad-
ditionally, we found that 43.6% of the test resumes
contain birth dates, 19.9% contain places of birth,
11.4% contain marital (or spousal or parental) sta-
tuses, and 8.9% contain citizenship statuses. Exam-
ple documents containing sensitive PII can be seen
in Figure 7.

Given the presence of sensitive PII in RVL-
CDIP, it is reasonable to wonder if sensitive PII
also appears in datasets derived from RVL-CDIP,
like FUNSD (Jaume et al., 2019). Similarly, we
also wonder if sensitive PII appears in datasets
that were derived from the larger IIT-CDIP or
UCSF Industry Documents Library corpora, such
as Tobacco-800 (Zhu et al., 2007; Zhu and Doer-
mann, 2007), Tobacco-3482 (Kumar et al., 2014),
DocVQA (Mathew et al., 2021), and OCR-IDL
(Biten et al., 2022). We will investigate this in
future work.

7 Discussion and Recommendations

Given our findings concerning labeling errors,
test/train overlap, and presence of sensitive infor-
mation in the RVL-CDIP document classification
benchmark, we discuss several concrete recom-
mendations to raise awareness among researchers
engaged in benchmarking classifiers using this
dataset:

(0) Sub-Types in RVL-CDIP. Our investigation
into RVL-CDIP revealed that many of the RVL-
CDIP categories are in fact composed of several

5On 9 Feb. 2023, RVL-CDIP tallied "1,765 downloads last
month" on the Hugging Face Datasets platform.

6For example, the State of Michigan’s Social Security
Number Privacy Act (2004).
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sub-types. We encourage researchers and practi-
tioners to be aware of this fact. For instance, cur-
ricula vitae, bigraphical sketches, executive biogra-
phies, and business cards are the four sub-types
of the resume category. This finding has implica-
tions for modeling tasks where prior knowledge
of the label set is assumed, like in zero-shot set-
tings where each category may be specified to the
model as a string, as done in Siddiqui et al. (2021).
Additionally, unsupervised clustering analyses like
Finegan-Dollak and Verma (2020) may exhibit low
performance scores on RVL-CDIP due to many
of the categories having distinct and disparate sub-
types (e.g., radio scripts versus print advertisements
in the advertisement category, or business cards
versus biographical sketches in the resume cate-
gory).

(1) Errors. Users of RVL-CDIP should be aware
that there are many label errors and noisy samples
with unknown labels in RVL-CDIP. Recall from
Section 4 that an estimated 8.1% of test samples
from RVL-CDIP contain label errors, with an addi-
tional 1.7% being ambiguous mixed or multi-label
cases. This is problematic for benchmarking new
models, since the estimated label error rate is now
greater than state-of-the-art model accuracy error
rates. Here, the implication is that high-capacity
models like CNNs and transformers are now over-
fitting to noise. This is indeed the case for mod-
els like DiT (Li et al., 2022), which predict the
"IMAGE NOT AVAILABLE" document to be an
advertisement document due to its relative abun-
dance in that category’s training set.

(2) Ambiguities. Users of RVL-CDIP should be
aware that there are many samples in RVL-CDIP
that could have multiple valid document type labels.
We estimate this number to be 1.7% of the RVL-
CDIP test set. Like label errors, such mixed or
multi-label cases make it challenging to evaluate a
model effectively, as there are samples for which a
model may make a wrong prediction according to
the RVL-CDIP test label annotations, but in reality
many of these wrong predictions could actually be
reasonable.

(3) Test-Train Overlap. Practitioners and re-
searchers should be aware that there is a high de-
gree of overlap between the RVL-CDIP test set
and the train set. Recall from Section 5 that al-
most a third of RVL-CDIP test samples have a
near-duplicate in the training set for the same doc-
ument type category, or a training sample that

uses the same document template. This is undesir-
able, as testing models on data that is very simi-
lar to the training data can lead to "inflated" accu-
racy scores (Elangovan et al., 2021; Søgaard et al.,
2021). Moreover, highly similar train and test splits
do not facilitate the evaluation of a model’s ability
to generalize well to new in-domain data.

(4) Sensitive Information. There is an unset-
tling amount of sensitive information in the RVL-
CDIP dataset, which naturally leads to informa-
tion and data privacy concerns. We estimate that
7.7% of resume test samples contain Social Secu-
rity numbers. While RVL-CDIP is already publicly
available, researchers and practitioners should take
care when disseminating samples or copies of RVL-
CDIP. Moreover, we highlight that prior work (e.g.,
Carlini et al. (2021)) showed that it is possible to
extract training data from machine learning models,
making production deployments of models trained
on RVL-CDIP an information privacy and security
risk.

Suggestions for a future dataset. We suggest the
development and adoption of a new benchmark for
evaluating document classifiers. Several qualities
of a such a benchmark would include (1) minimal
label errors; (2) multi-label annotations, to allow
for modeling more natural occurrences of docu-
ments; (3) minimal test-train overlap; (4) absence
of sensitive information. Going beyond the points
made in this paper, a new benchmark would do
well to be (5) large-scale, consisting of 100+ or
even 250+ document categories, to test a model’s
ability to handle breadth, and (6) multi-lingual, to
benchmark language transfer approaches.

8 Conclusion

RVL-CDIP has been used as the de facto bench-
mark for evaluating state-of-the-art document clas-
sification models, but this paper provides an in-
depth analysis of the RVL-CDIP dataset and shows
that there are several undesirable characteristics of
this dataset. We first provide a set of label guide-
lines for each RVL-CDIP category, and we use this
to help us quantify the presence of errors in RVL-
CDIP, finding that the RVL-CDIP test set contains
roughly 8.1% label errors. We then observe that
roughly a third of the test data is highly similar to
the training set. Lastly we observe an unsettling
amount of personally sensitive information in RVL-
CDIP. Given these findings, we offer suggestions
for a new document classification benchmark.
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Limitations

The RVL-CDIP dataset has no official set of label
guidelines, making error analyses challenging since
we could not rely on pre-defined rules. For this rea-
son we followed best practices to create annotation
rules to help us in our error analysis. Detecting du-
plicates in RVL-CDIP is also challenging, as two
documents may appear to be the same, but may
have minor differences due to scanning artifacts or
even different indexing labels (it appears that many
of the documents have been scanned and included
in IIT-CDIP more than once). Therefore we again
have to rely on best judgement when labeling pairs
as duplicates (or near-duplicates). Additionally,
due to limitations in human resources, we were un-
able to exhaustively inspect all 400,000 RVL-CDIP
samples for the presence of errors, ambiguities,
sensitive information, etc., and thus had to rely on
sampling the dataset in order to draw conclusions.
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Abstract

Comprehending an article requires understand-
ing its constituent events. However, the context
where an event is mentioned often lacks the de-
tails of this event. A question arises: how can
the reader obtain more knowledge about this
particular event in addition to what is provided
by the local context in the article?

This work defines Event Linking, a new natural
language understanding task at the event level.
Event linking tries to link an event mention
appearing in an article to the most appropri-
ate Wikipedia page. This page is expected to
provide rich knowledge about what the event
mention refers to. To standardize the research
in this new direction, we contribute in four-
fold. First, this is the first work in the com-
munity that formally defines the Event Link-
ing task. Second, we collect a dataset for this
new task. Specifically, we automatically gather
the training set from Wikipedia, and then create
two evaluation sets: one from the Wikipedia
domain, reporting the in-domain performance,
and a second from the real-world news do-
main, to evaluate out-of-domain performance.
Third, we retrain and evaluate two state-of-the-
art (SOTA) entity linking models, showing the
challenges of event linking, and we propose an
event-specific linking system, EVELINK, to set
a competitive result for the new task. Fourth,
we conduct a detailed and insightful analysis
to help understand the task and the limitations
of the current model. Overall, as our analy-
sis shows, Event Linking is a challenging and
essential task requiring more effort from the
community. 1

1 Introduction

Grounding is a process of disambiguation and
knowledge acquisition, and is an important task
for natural language understanding. Entity linking,
grounding entity mentions to a knowledge base

1Data and code are available here: http://cogcomp.
org/page/publication_view/996.

Two homemade
pressure cooker
bombs detonated in
Boston, killing 3
people and
injuring hundreds
of others. The
police released
the images of two
suspects.

Boston

Boston, officially the City of Boston,
is the capital and most populous
city of the Commonwealth of
Massachusetts in the United States
......

Boston Marathon Bombing

The Boston Marathon bombing was
a domestic terrorist attack that took
place during the annual Boston
Marathon on April 15, 2013. 
......

WikipediaLocal context

Figure 1: Examples of Event linking and Entity linking.
The left side is the local context, and the right side con-
tains Wikipedia pages. Entity linking model connects
the entity “Boston” to the Wikipedia page “Boston”,
while event linking model links the event “detonated”
to the Wikipedia page “Boston Marathon Bombing”,
which is more relevant to the local context.

(usually Wikipedia) (Bunescu and Pasca, 2006; Mi-
halcea and Csomai, 2007; Ratinov et al., 2011;
Gupta et al., 2017; Wu et al., 2020), has been shown
important in natural language understanding tasks,
such as question answering, recommendation sys-
tem, dialogue generation. Despite the significant
progress brought by entity linking, we argue that
grounding entities may not provide enough back-
ground knowledge that is often needed to support
text understanding. Consider the example, Fig-
ure 1; an entity linking model will link the entity
“Boston” to the Wikipedia page “Boston” which in-
troduces the history and culture of the city Boston.
The information we can get from the page “Boston”
is irrelevant to the local context. To really help
understand this sentence, we need to link the event
centered by the verb “detonated” to the Wikipedia
page “Boston Marathon Bombing”. We call this
process that grounds events Event Linking.

In this paper, we formulate this Event Link-
ing task for the first time, analyze the difference and
challenges of the new task, and carefully design
a benchmark dataset for this task. We automati-
cally collect training data from the hyperlinks in
Wikipedia, and create two evaluation sets to evalu-
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ate both in-domain and out-of-domain performance.
For in-domain evaluation, the test data is also from
hyperlinks in Wikipedia. To avoid models from
overfitting, the test data is balanced with hard cases
and easy cases determined by whether the event is
seen in the training and by the similarity between
the surface forms of event mentions and Wikipedia
titles. For out-of-domain evaluation, we annotate
real-world news articles across 20 years collected
from New York Times. Considering the sparsity
of events existed in Wikipedia, we also add “Nil”
annotation to the test data, indicating that those
events do not exist in Wikipedia, therefore, the
model needs to tag them as “Nil”.

Technically, we come up with an event linking
model EVELINK that uses the entities in the local
context as arguments of the event structure to better
present the event mention. EVELINK outperforms
two SOTA entity linking models BLINK (Wu et al.,
2020) and GENRE (Cao et al., 2021), and achieves
strong performance on the event linking test set,
especially on seen events and easy cases, and a
detailed error analysis shows the difficulties of the
new task and the limitation of the current model.

To conclude, our contributions are four-fold: (i)
We formulate the task Event Linking. (ii) We col-
lect training data for this task, and design both
in-domain and out-of-domain test data, with a bal-
anced ratio of hard cases and easy cases to ensure
the dataset quality. (iii) Our proposed approach
EVELINK shows promising performance in exper-
iments, which sets a competitive result for future
works. (iv) Our in-depth analysis provides a better
understanding of this new problem, the challenges
in different domains, and the new approach.

2 Grounding Events in Wikipedia

Given an article and an event mentionm in it, event
linking tries to find a title t, from all the English
Wikipedia titles (around 5m titles), to provide the
best explanation of m. Event mention is defined as
verb or nominal that refers to an event. A correct
title is defined as follows: as long as a Wikipedia
page is about this event, or any subsection of the
page introduces this event, we regard its title as the
correct one. In this paper, all the models assume
gold event mentions are given. For each event
mention, a system is expected to label it with the
correct Wikipedia page or a “Nil” tag if the event
does not exist in Wikipedia. Accuracy is adopted
as the official evaluation metric.

Part of the
Manhattan Bridge
will be closed so
that its roadway
can be rebuilt.

Manhattan Bridge

The Manhattan Bridge is a
suspension bridge that crosses the
East River in New York City,
......

Reconstruction
...... The Brooklyn-bound roadway
on the upper level was closed from
1993 to 1996 so that side of the
bridge could be repaired. 
......

WikipediaLocal context

Figure 2: Example of event mentions that only exist in
the subsection of a Wikipedia page. The event “rebuilt”
does not have its own page, but is mentioned in the
subsection of the page “Manhattan Bridge”.

Tom Brady was
drafted 199th
overall by the
Patriots.

Tom Brady

...... After playing college football at
Michigan, Brady was selected 199th
overall by the Patriots in the sixth
round of the 2000 NFL Draft, ...... 

2000 NFL Draft

The 2000 NFL Draft was the procedure
by which National Football League teams
selected amateur U.S. college football
players. It is officially known as the NFL
Annual Player Selection Meeting.  

National Football League Draft

The National Football League Draft, also
called the NFL Draft or (officially) the
Player Selection Meeting, is an annual
event which serves as the league's most
common source of player recruitment. ......

WikipediaLocal context

Annotator

S
u
b
e
v
e
n
t

Wiki Hyperlink

Figure 3: Example of hierarchical events. Event “draft”
of Tom Brady is mentioned in the page “Tom Brady”,
and is also a sub-event of “2000 NFL Draft”, which is
again a sub-event of “National Football League Draft”.

Event Linking vs. Entity Linking. Relatedness:
(i) They both link an object (event/entity) from
an article to Wikipedia; (ii) Some events, such as
“World War II”, are entities; in this case, two tasks
are the same. Distinctions: (i) Entities are mostly
consecutive text spans. Events, in contrast, are
more structured objects, consisting of a trigger and
a couple of arguments. An event trigger is mostly
a general verb, which may not refer to a specific
event by its own without knowing event arguments.
More complex structures in events make event link-
ing a more challenging task and require a deeper
understanding of the local context; (ii) Unlike en-
tities with a large coverage in Wikipedia, many
events do not have a record in Wikipedia. Consid-
ering the sparsity, we require models to tag event
mentions that do not exist in Wikipedia as “Nil”.

Why Event Linking? Except for some events
that are also entities, generally speaking, events are
information units of larger granularity. As shown
in Figure 1, a better comprehension of events, such
as through linking to Wikipedia, is expected to
facilitate the text understanding more.
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Challenges specific to Event Linking. (i) The
correct title for some event mentions may not be
unique. The same event could be introduced in sev-
eral pages. For example, “Invasion of Poland” and
“Occupation of Poland (1939–1945)” both intro-
duce the event that German Army invaded Poland
in 1939. How to decide the ground truth set and
how to evaluate in this situation are not trivial.

(ii) Events may only exist in the subsection of
the Wikipedia page. Only a limited number of
famous events have their own pages, while many
other relatively infamous events only exist in the
subsection of some pages. Considering the exam-
ple in Figure 2, the event “rebuilt” of the Manhattan
Bridge does not have its own Wikipedia page, but
it is mentioned in the subsection “Reconstruction”
of the page “Manhattan Bridge”. Linking these
events requires a model to understand the whole
page instead of just encoding the first paragraph.

(iii) Events have a hierarchical structure. Events
at larger granularity consist of many sub-events,
and these sub-events may have their own Wikipedia
pages, or just be mentioned in the pages of the
large events. Ideally, the model should always link
the event mention to the most appropriate page.
If the sub-event page exists, then link to the sub-
event page. Otherwise, link to the page of the
large event. However, the term “appropriate” here
could be unclear because of the event hierarchy. As
Figure 3 shows, the Wikipedia page “Tom Brady”
is most specific to the event “drafted”. On the
other hand, draft of “Tom Brady” is a sub-event
of “2000 NFL Draft”, which is further a sub-event
of “National Football League Draft”. Annotators
prefer to link this event to “Tom Brady”, while
Wikipedia hyperlinks link the event to “National
Football League Draft”. The hierarchy of events
makes the standard of the correct title inconsistent.

3 Related Work

Entity Linking. As described in the previous sec-
tion, entity linking has been extensively studied for
many years (Bunescu and Pasca, 2006; Mihalcea
and Csomai, 2007; Ratinov et al., 2011; Gupta et al.,
2017; Wu et al., 2020; Cao et al., 2021). Though
both of entity linking and event linking could be
regarded as a task linking document contents to
a knowledge base, we argue that entity linking is
more about linking text span, while event linking
is more about linking an event structure, centered
by a predicate, which is more challenging because

the predicate span is usually a general verb. In the
experiment section, we show that just retraining the
entity linking model on event linking data without
considering the event structure does not perform
well. Humeau et al. (2019) and Wu et al. (2020) use
a bi-encoder/cross-encoder architecture to train the
candidate generation/ranking model respectively
for entity linking. Considering the structure of
events that entities do not have, EVELINK extends
their model by adding structure information to the
event mention representation.
“Event Linking”. We note that the term “event
linking” has been once used in the literature (Noth-
man et al., 2012; Krause et al., 2016). How-
ever, these works are essentially performing cross-
document event coreference: determine if a given
event mention refers to another event mention (in
the same or another document). We, on the other
hand, link an event mention to a Wikipedia con-
cept with a different purpose: acquiring external
knowledge about the event which is often beyond
what we can obtain from the local context. Our
definition of event linking can not only improve the
understanding of the article, but also pave the way
for the intensively-studied event coreference and
other event relation identification problems.
Data. Eirew et al. (2021) collect training data from
Wikipedia hyperlinks for event coreference, while
we use similar methods to collect data for event
linking. In this work, we use the FIGER type of the
title to find event titles, while Eirew et al. (2021)
use the Wikipedia infobox. There also exists some
other event knowledge bases, such as EventKG
(Gottschalk and Demidova, 2018). Because we use
hyperlinks in Wikipedia as training data resource,
and we do not limit the candidate space to be event
titles only, in this work we only focus on linking
event mentions to Wikipedia, and the candidate
space is all the Wikipedia titles.

4 Data Construction

We collect training data and in-domain test data
from Wikipedia automatically, and manually anno-
tate a test set in the news domain for out-of-domain
evaluation purpose. Table 1 lists some data exam-
ples, and Table 2 shows detailed statistics.

4.1 Wikipedia

We first collect all hyperlinks (hypertext, title)
in Wikipedia text, which links a hypertext to a
Wikipedia title. Then, we map the FreeBase type
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Event mention in local context Wikipedia title

Wiki

At the start of the wartime 1940s , he had four releases. World War II
Henry Louis Gates, a black Harvard University professor who

Henry Louis Gates arrest controversywas arrested after police mistakenly thought he was breaking into
his own home in Cambridge, Massachusetts.
Ibrox hosted four Scotland games in the first phase, starting with a 1994 FIFA World Cup qualification1994 World Cup qualifier against Portugal in October 1992.

NYT

The Nets offered Sam Cassell and a first-round draft pick for Marbury. Sam Cassell
A man who killed his former wife, a bartender and a cook in 1984 Godinez v. Moranwas executed by injection early today.
A 45-year-old fashion photographer was shot and killed in his West NilVillage apartment yesterday morning, the police said.

Table 1: Data examples. The upper part is data collected from Wikipedia hyperlinks. The lower part is annotated
New York Times (NYT) paragraphs. Event mentions are highlighted in red.

Train Dev Test
Wiki Wiki Wiki NYT

Verb 33,213 8,346 9,633 1,319
Seen Event - 1,814 2,913 0
Unseen Form - 2,585 3,828 75
Unseen Event - 3,947 2,892 435
Nil - - - 809

Nominal 33,213 8,346 9,633 443
Hard - 4173 4817 244
Easy - 4173 4817 15
Nil - - - 184

Total 66,426 16,692 19,266 1,762

Table 2: Wikipedia and New York Times (NYT) data
statistics. NYT is only for testing.

of Wikipedia titles to FIGER types (Ling and Weld,
2012), and all titles with a type “Event” are re-
garded as event titles. All the hypertexts linked to
these event titles are regarded as event mentions.

Because same event mentions in one Wikipedia
page are hyperlinked only once, and editors tend
to hyperlink more nominal mentions than verb
mentions, verb mentions are highly limited in
Wikipedia. To balance the size of verbs and nomi-
nals, we use SpaCy Part-of-Speech model2 to keep
all verb mentions, and sample the same size of
nominals. To prevent models from overfitting, we
design hard and easy cases for verbs and nominals:

Verbs: We classify each verb mention mainly by
whether the surface form (S) of the verb is seen in
training data, and whether the gold event title (T)
is seen in training data. If both S and T are seen in
training data, we call it Seen Event. If T is seen
in training data, but S is new, we call it Unseen
Form. If T is never seen in training data, we call it
Unseen Event. Under this setting, “Seen Event" is
regarded as easy cases, and the other two are hard
cases. Because of the limited size of verb mentions,
all the event titles with fewer than or equal to 5

2https://spacy.io/usage/
linguistic-features#pos-tagging

verb mentions are used as “Unseen Event".
Nominals: We classify each nominal mention

mainly by its surface form similarity to the gold
title. We calculate the Jaccard similarity between
the nominal mention and the gold title by taking
3 grams of the surface form. If the similarity is
lower than 0.1, we think it is a hard nominal;
otherwise, it is an easy nominal. Then we sample
same numbers of hard and easy cases.

4.2 New York Times

We sample 2,500 lead paragraphs from The New
York Times Annotated Corpus (Sandhaus, 2008),
which contains New York Times articles from 1987
to 2006. We first use an off-the-shelf verb and
nominal SRL model3 to extract event mention can-
didates, and then we use Amazon Mechanical Turk
to annotate the corresponding Wikipedia title of
the predicted mention candidates. To ensure the
quality of the annotation, we design our annotation
process in two rounds:
First round. Annotators need to answer whether
they think the predicted mention is an event or
not. If they think it is an event, then they need to
find the corresponding Wikipedia title, otherwise
submit “Nil”. Each mention is annotated by three
annotators. If all of them submit “Nil”, we include
this event mention as a “Nil” example in the fi-
nal test data. To prevent annotators from simply
submitting “Nil”, 10% of the event mentions are
the relatively easy cases from the Wiki data and
we know their answers. We randomly insert them
into the input data for AMturk (i.e., annotators are
unaware of that) to evaluate the accuracy of the an-
notator. Only the annotation from annotators with
an accuracy higher than 90% will be accepted.

3https://cogcomp.seas.upenn.edu/page/
demo_view/SRLEnglish
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Second round. This round verifies the annotated
results in the first round. Each mention with the
annotated title is verified by another three annota-
tors. They need to read the page, and figure out
whether it introduces the mention. If the majority
vote for “yes”, we include it in the final test data.
Because of majority voting, some annotations that
not all the annotators agree would be included. The
inter-agreement is 63.74 Fleiss’ kappa.

4.3 Domain Analysis

Event linking in the news domain is more challeng-
ing than that in the Wikipedia domain because of
the following reasons:

(i) News articles describe an event at a differ-
ent granularity as how Wikipedia does, usually
with more details. For example, here is a piece
of news about “Iraq_War”: "A contractor working
for the American firm Kellogg Brown & Root was
wounded in a mortar attack in Baghdad." The event
“wounded” here is a very small event in Iraq War,
but it is what daily news would report. On the other
hand, the event mention that links to “Iraq_War” in
Wikipedia domain is: "When touring in Europe, the
US went to war in Iraq." The different granularity
in representing events makes the task slightly dif-
ferent in two domains. Event linking in Wikipedia
domain is more like event coreference, while event
linking in news domain is mixed with more sub-
event relation extraction.

(ii) As analyzed in Section 2, event linking is
challenging because some event mentions may only
exist in the subsection of the correct page, and the
correct title is not consistent because of the event
hierarchy. However, these problems mainly hap-
pen in the news domain. First of all, the Wikipedia
hyperlinked mentions usually have their own pages
instead of just existing in subsections. In news
domain, we annotate events that only exist in sub-
sections of a Wikipedia page. Second, in Wikipedia
domain, the gold title of same event mentions is
usually consistent. For example, all of the event
mentions “drafted” of football players link to “Na-
tional Football League Draft” instead of the page
of the specific player. However, the annotation
standard of NYT is not always consistent with
Wikipedia hyperlinks. For example, annotators
would link event mentions about sports player draft
to the page of the specific player instead of the
general concept page “National Football League
Draft”. These problems make data annotation and

model evaluation in news domain very challenging.
Because of the reasons claimed above, we think

that, for some cases in news domain, the correct
answer is multiple titles instead of just one title.
Ranking the annotated title to the second place
may be because the top one is also correct. To
relax the evaluation metric here, for news domain,
we also report the number of Accuracy@5, which
means that if the annotated title is ranked in the top
5 candidates, we think it is correct.

5 Model

In this section, we propose EVELINK as the first
event linking model. We first introduce the rep-
resentation of event mentions and event titles in
Section 5.1, and then introduce the model architec-
ture in Section 5.2.

5.1 Event Representation

A key difference between entity and event is that
the context of an entity is more diverse than the
context of an event. For example, when the entity
“China” is mentioned in a sentence, it is unclear
what entities or what events probably would also
be mentioned together. However, if a verb like
“invade” is used to represent the event “Battle of
France” in a sentence, it is very likely that entities
like “Germany”, “Italy” and “France” will also be
mentioned. This shows that an event is defined
by its arguments, and these arguments, with a
large chance, will also be mentioned in the local
context because the verb itself cannot refer to any
event. Given this observation, we think that the
entities in the local context of the event mention
should overlap with the entities in the correct
Wikipedia page, and these entities can be used to
help the model better represent events. To embed
these entities information explicitly to the event
representation, we use similar method as how Vyas
and Ballesteros (2021) embed entity attributes
information to the entity representation.

Event mentions: To represent event men-
tions in local context, we first use an off-the-shelf
Named Entity Recognition model 4 trained on
18-type OntoNotes dataset (Weischedel et al.,
2013) to extract the entities around the event.
We simply define the context window by 500
characters around the event mention. After

4https://cogcomp.seas.upenn.edu/page/
demo_view/NEREnglish
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Models Verb Nominal Verb + Nominal
Seen Unseen Form Unseen Overall Hard Easy Overall

Glove 23.70 16.57 14.89 18.22 3.08 84.60 43.88 30.98
BM25 32.17 47.41 61.86 47.14 22.54 33.22 27.88 37.51
BLINK-Entity 88.91 69.64 62.31 73.37 67.93 95.20 81.57 77.42
BLINK-Event 80.88 85.84 84.54 83.95 79.39 89.10 84.24 84.10
GENRE-Entity 92.41 73.48 59.13 74.90 79.84 96.53 88.19 81.54
GENRE-Event 98.80 87.30 58.85 82.24 85.34 94.64 89.99 86.12

EVELINK 93.99 92.74 93.91 93.47 89.79 95.52 92.65 93.06

Table 3: Recall on Wikipedia Test. “Seen” means both the surface forms of the mention and the gold title are seen
in training. “Unseen Form” means the surface form of the mention is new, but the gold title is seen in training.
“Unseen” means that the gold title is unseen in training. BLINK-Entity is the original BLINK model trained on
entity linking dataset. BLINK-Event is trained on the new event linking dataset. More details in Section 6

Models Verb Nominal Verb + Nominal
Seen Unseen Form Unseen Overall Hard Easy Overall

Prior 62.21 2.38 1.24 38.81 34.65 85.99 61.65 54.79
BLINK-Entity 64.13 48.56 45.92 52.48 46.79 88.27 67.53 60.00
BLINK-Event 77.72 69.78 62.72 70.06 62.59 82.29 72.44 71.25
GENRE-Entity 75.04 57.00 44.85 58.81 65.29 90.91 78.10 68.45
GENRE-Event 95.50 73.80 45.16 71.76 72.60 88.04 80.32 76.04

EVELINK 91.21 80.30 78.08 82.93 75.90 89.70 82.80 82.87

Table 4: Accuracy on Wikipedia Test.

predicting all the entities ei with their type ti, we
represent the event mentions by:

r1 = [CLS] ctxtl [Ms] m [Me] ctxtr (1)

r2 = [t1s ] e1 [t1e ] · · · [tns ] en [tne ] (2)

rm = r1 [SEP] r2 [SEP] (3)

where m, ctxtl, ctxtr, ei are tokens of event
mention, the context on the left of the mention, the
context on the right of the mention and predicted
entities. [Ms] and [Me] are special tokens to tag
the start and end of the event mention. [tis ] and
[tie ] are special tokens to tag the start and end
of the entity whose type is ti. rm is the final
representation of event mentions.

Title: To represent Wikipedia titles, since
important entities are already hyperlinked in the
page contents, we take the first ten hyperlinked
spans as entities, and represent the title by:

r3 = [CLS] title [TITLE] description (4)

r4 = h1 [SEP] h2 [SEP] · · · [SEP] hn (5)

rt = r3 [SEP] r4 [SEP] (6)

where title, hi and description are tokens of the
title, hyperlinked spans, and the content of the
Wikipedia page. We simply take the first 2, 000
characters as the description. [TITLE] is the spe-
cial token to separate the title and the description.
rt is the final representation of Wikipedia titles.

5.2 Model Architecture

Similar to Wu et al. (2020), we first use a bi-
encoder architecture to efficiently generate candi-
dates, and use a cross-encoder architecture, which
requires more computations, to rank the candidates.

Candidate Generation. We use a bi-encoder ar-
chitecture to train the candidate generation model.
We use two independent BERT transformers (De-
vlin et al., 2019) to encode the representation of
event mentions rm and Wikipedia titles rt, and use
the output of the two [CLS] tokens in rm and rt as
the event mention vector vm and the title vector vt.
Then, we maximize the dot product between the
vectors of event mentions vm and the correct title
vt in a batch with randomly selected negatives. At
inference time, representations of all the titles are
cached, and for each event mention, we calculate
the dot products between its representation and the
representation of all the titles, and titles with higher
scores will become candidates.

Candidate Ranking. For each event mention,
we take 30 candidates from the candidate gener-
ation model as the training data for the ranking
model, and use a cross-encoder architecture to
train the candidate ranking model. We concate-
nate the representation of event mentions rm and
titles rt, use one BERT transformer to encode the
concatenated representation, and use the output of
the [CLS] token as the final vector v. Then we
maximize the dot product between the vector v of
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Models Verb Nominal Verb + Nominal
Seen Unseen Form Unseen Overall Hard Easy Overall

Glove - 0.00 0.70 0.60 0.00 33.33 1.66 0.94
BM25 - 28.38 41.74 39.80 45.27 31.25 44.40 41.35
BLINK-Entity - 4.00 6.67 6.27 7.79 60.00 10.81 7.80
BLINK-Event - 35.14 37.39 37.06 37.45 75.00 39.77 37.97
GENRE-Entity - 18.92 9.86 11.18 9.88 62.50 13.13 11.83
GENRE-Event - 56.77 17.66 23.33 21.81 31.25 22.39 23.02

EVELINK - 52.70 59.40 58.43 51.03 93.75 53.68 56.83

Table 5: Recall on New York Times data. Because “Nil” mentions do not have the Wikipedia title, the Recall is only
evaluated on the mentions that exist in Wikipedia.

Models Verb Nominal Verb + Nominal
Unseen Form Unseen Overall Hard Easy Overall Accu@5 Accu@1

Prior 0.00 0.00 0.00 0.00 6.25 0.39 0.52 0.13
BLINK-Entity 1.33 2.76 2.55 4.92 33.33 6.56 11.44 3.90
BLINK-Event 17.57 5.28 7.06 11.11 37.50 12.74 17.04 8.97
GENRE-Entity 8.11 5.73 6.08 3.29 31.25 5.02 11.83 5.72
GENRE-Event 39.19 8.03 12.55 7.82 31.25 9.27 23.02 11.44

EVELINK 28.37 13.07 15.29 14.81 43.75 16.60 29.13 15.73

Table 6: Accuracy on New York Times data without Nil. Only event mentions that exist in Wikipedia are given.
Accu@5 means the correct title is ranked top 5. Accu@1 means the correct title is top 1.

the correct title and an additional linear layer W .

6 Experiments

In this section, we evaluate the in-domain perfor-
mance on Wiki test set and the out-of-domain per-
formance on NYT test set, and conduct an error
analysis. Implementation details in Appendix A.

Baselines. Since there is no existing event link-
ing system, we have to compare with previous
entity linking systems. In this paper, we mainly
compare our system with two SOTA entity linking
models BLINK (Wu et al., 2020) and GENRE (Cao
et al., 2021). To make a fair comparison, BLINK
and GENRE have the following two setups:

BLINK/GENRE-Entity: Since a large portion
of event mentions are nominals, which is also a
kind of entity, it would be interesting to see how
a SOTA entity linking system performs for event
linking. Therefore, we test the BLINK/GENRE
model pretrained specific to entity linking directly.
Please note that the size of entity linking training
data is 9 million, which is much larger than the size
of event linking training data 66k.

BLINK/GENRE-Event: It adopts the same al-
gorithm with the original BLINK/GENRE system,
but is trained on our event linking training set.

For all the experiments, BLINK-Entity retrieves
10 candidates from candidate generation, and both
BLINK-Event and EVELINK retrieves 100 candi-
dates from candidate generation. These numbers
are tuned on dev data. GENRE is a generation

model, which does not use the same pipeline of can-
didate generation and ranking. We follow the origi-
nal setting to use the beam search with 5 beams.

Besides SOTA entity linking systems, we also
evaluate the performance of BM25, Glove vector
cosine similarity between event mention and titles
(Pennington et al., 2014) and prior distribution. Be-
cause event mentions are limited in Wikipedia, to
fairly estimate the prior distribution of the event
titles, we only evaluate event mentions that appear
at least 10 times in Wikipedia.

In-domain experiment on Wikipedia. We eval-
uate EVELINK on the Wikipedia test set as the
in-domain performance. We report the recall of
candidate generation in Table 3, and the accuracy
of candidate ranking in Table 4. As shown in Ta-
ble 3 and Table 4, EVELINK outperforms baseline
models by a large margin, 6.94 points in Recall and
6.38 points in Accuracy. EVELINK also achieves a
high performance on seen verbs and easy nominals,
around 90 accuracy, but a relatively low perfor-
mance on other hard cases, which leaves a large
space for future works to further improve.

Out-of-domain experiment on News. We eval-
uate EVELINK on the NYT test set as the out-
of-domain performance. In Table 5, we evaluate
the recall of candidate generation. Because “Nil”
mentions do not have correct titles in Wikipedia,
we only evaluate the the recall of event mentions
that exist in Wikipedia. Though the recall of
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Models Verb Nominal Verb+Nominal
Unseen Form Unseen Nil Overall Hard Easy Nil Overall Accu@5 Accu@1

BLINK-Entity 2.7 1.15 79.85 49.51 1.23 25.00 63.04 27.77 57.26 44.04
BLINK-Event 12.16 1.61 90.85 56.94 4.53 37.50 88.59 40.63 58.45 52.84

EVELINK 17.57 4.59 93.08 59.59 7.00 43.75 89.67 42.66 59.70 55.33

Table 7: Accuracy on New York Times data with Nil. We simply predict all the mentions with a probability lower
than 50 to Nil.

Models Wiki Test NYT (no Nil) NYT

EVELINK 82.87 15.73 55.33

- type 81.39 11.70 55.96
- entities 71.25 8.97 52.84

Table 8: Ablation Study of EVELINK

EVELINK is much higher than the recall of other
baseline models (56.83 vs. 37.97), the recall drops
significantly compared with the recall on Wikipedia
test set (56.83 vs. 93.06). In Table 6, we evaluate
the accuracy on the event mentions that exist in
Wikipedia, which is the same setting as the experi-
ments in the Wikipedia domain, and again the accu-
racy drops significantly from 82.87 to 15.73. Even
if we accept 5 predictions instead of just one to
solve the multiple correct titles problem, the Accu-
racy@5 is 29.13, which is still low. Detailed error
analysis is in Section 6. In Table 7, we evaluate the
accuracy of all the event mentions, including Nil.
Because we do not have Nil examples in training
data and development data, we simply predict all
the event mentions with probability lower than 50
to “Nil”, and leave better solutions to future works.
GENRE is not tested for Nil mentions because it is
unclear how to get its prediction probability.

Analysis. We wonder following questions:
Q1: Where the gain comes from, compared with
the BLINK system?

We do ablation study in Table 8. Explicitly
adding entities to the event representation boosts
the performance by 10.14 accuracy on Wiki test
data and 2.73 accuracy on NYT data. Adding en-
tity types further improves the performance by 1.48
accuracy on Wiki and 4.03 accuracy on NYT data.
Q2: Error patterns of EVELINK

We collect several error patterns that are com-
mon in both domains, and patterns that are mostly
in news domains. Error patterns of both domains:

(i): Repeating events. In the errors, we find many
repeating events, like award ceremonies or sports
games, that would happen every several years, and
the model usually cannot find the correct year of
the event if the year is not explicitly mentioned in

the context. For example:
In 1995, his debut season, Biddiscombe made two
appearances, · · · The following year he earned a
Rising Star nomination for his performance· · ·

In this example, the gold event is “1996 AFL
Rising Star”, and the prediction is “1998 AFL
Rising Star”, though there is a temporal hint (the
following year of 1995 is 1996) to indicate that
the correct answer should be the award in 1996.
There are many similar errors when linking awards
or games, which shows that a deeper temporal
understanding is necessary for future works.

(ii): Unrelated context. EVELINK replies on
the surrounding entities to link the event mentions,
however, the context is not always related and sur-
rounding entities cannot help linking. For example:

Returning to his country at the end of the conflict
and another begun, Barinaga rejected an offer from
Athletic Bilbao, moving to Real Madrid instead.

In this example, the gold event is “World War
II”, but the prediction is “1939–40 La Liga”. All
the entities, like “Barinaga”, “Athletic Bilbao”
and “Real Madrid”, are about football, which is
unrelated to the war. To link to the correct page,
the model needs to know the second conflict of
Barinaga’s country, which indicates that only using
the local context maybe not enough.
Error patterns specific to news domain:
(i): Subsection events. Some events do not have
their own pages, and are only introduced in the
subsections of other pages. For example:

The Philippine government lifted its five - year ban
on the return of Imelda Marcos today and said the
widow of the late President Ferdinand Marcos was
free to come home from exile in the United States.

In this example, the return of Imelda Marcos is
introduced in the subsection “Return from exile
(1991–present)” of the page “Imelda Marcos”.
However, we only use the first 2,000 characters
of the page contents to represent the title “Imelda
Marcos”, which has no information about the
return from exile. A document-level representation
may be a potential solution for future works.

(ii): Sub-events. Some events are sub-events of
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other larger events. For example:
Stepping in at the 11th hour, Hillary Rodham
Clinton will campaign in Florida on Saturday for
her brother, Hugh Rodham, in his bid for a United
States Senate seat.

This event is a sub-event of “1994 United States
Senate election in Florida”, which has different
event arguments, so the names in the local context
do not overlap with the names in the page.

In this work, we discuss many challenges of the
task in different domains, but EVELINK cannot
address all of them. We leave them to future works.

7 Conclusion

In this work, we formulate Event Linking, a chal-
lenging but essential task, with a carefully designed
Wikipedia dataset and NYT test set, and propose
an event linking model EVELINK for future works.

8 Limitations

In this section, we discuss limitations of our work.

• We only focus on event linking to English
Wikipedia in this work. We leave multilingual
event linking to future works.

• The performance of EVELINK on hard cases
is still low, for example events that only exist
in the subsection of Wikipedia page.

• In this work, we simply predict all the men-
tions with a prediction probability that is lower
than 50 to “Nil”. We leave better solutions to
future works.

Acknowledgments

This work was supported by Contract FA8750-19-
2-1004 with the US Defense Advanced Research
Projects Agency (DARPA), the Office of the Direc-
tor of National Intelligence (ODNI), Intelligence
Advanced Research Projects Activity (IARPA), via
IARPA Contract No. 2019-19051600006 under
the BETTER Program, and a Focused Award from
Google. Approved for Public Release, Distribu-
tion Unlimited. The views and conclusions con-
tained herein are those of the authors and should
not be interpreted as necessarily representing the
official policies, either expressed or implied, of
ODNI, IARPA, the Department of Defense, or the
U.S. Government. The U.S. Government is autho-
rized to reproduce and distribute reprints for gov-

ernmental purposes notwithstanding any copyright
annotation therein.

References
Razvan Bunescu and Marius Pasca. 2006. Using en-

cyclopedic knowledge for named entity disambigua-
tion.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2021. Autoregressive entity retrieval.
ArXiv, abs/2010.00904.

J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
NAACL-HLT.

Alon Eirew, Arie Cattan, and Ido Dagan. 2021. WEC:
Deriving a large-scale cross-document event coref-
erence dataset from Wikipedia. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2498–2510,
Online. Association for Computational Linguistics.

Simon Gottschalk and Elena Demidova. 2018. Even-
tkg: A multilingual event-centric temporal knowl-
edge graph. In Proceedings of the Extended Semantic
Web Conference (ESWC 2018). Springer.

Nitish Gupta, Sameer Singh, and Dan Roth. 2017. En-
tity linking via joint encoding of types, descriptions,
and context. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2681–2690, Copenhagen, Denmark. Asso-
ciation for Computational Linguistics.

Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux,
and Jason Weston. 2019. Poly-encoders: Trans-
former architectures and pre-training strategies for
fast and accurate multi-sentence scoring. arXiv
preprint arXiv:1905.01969.

Sebastian Krause, Feiyu Xu, Hans Uszkoreit, and Dirk
Weissenborn. 2016. Event linking with sentential
features from convolutional neural networks. In Pro-
ceedings of CoNLL, pages 239–249.

Xiao Ling and Daniel S Weld. 2012. Fine-Grained
Entity Recognition. In Proceedings of the National
Conference on Artificial Intelligence (AAAI).

Rada Mihalcea and Andras Csomai. 2007. Wikify!:
Linking documents to encyclopedic knowledge. In
Proc. of the ACM Conference on Information and
Knowledge Management (CIKM).

Joel Nothman, Matthew Honnibal, Ben Hachey, and
James R. Curran. 2012. Event linking: Grounding
event reference in a news archive. In Proceedings of
ACL, pages 228–232.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP.

2687

https://doi.org/10.18653/v1/2021.naacl-main.198
https://doi.org/10.18653/v1/2021.naacl-main.198
https://doi.org/10.18653/v1/2021.naacl-main.198
https://doi.org/10.18653/v1/D17-1284
https://doi.org/10.18653/v1/D17-1284
https://doi.org/10.18653/v1/D17-1284
http://aiweb.cs.washington.edu/ai/pubs/ling-aaai12.pdf
http://aiweb.cs.washington.edu/ai/pubs/ling-aaai12.pdf


Lev Ratinov, Dan Roth, Doug Downey, and Mike An-
derson. 2011. Local and global algorithms for disam-
biguation to Wikipedia. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
1375–1384, Portland, Oregon, USA. Association for
Computational Linguistics.

Evan Sandhaus. 2008. The new york times annotated
corpus ldc2008t19. Web Download.

Yogarshi Vyas and Miguel Ballesteros. 2021. Linking
entities to unseen knowledge bases with arbitrary
schemas. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 834–844, Online. Association
for Computational Linguistics.

Ralph Weischedel, Martha Palmer, Mitchell Marcus, Ed-
uard Hovy, Sameer Pradhan, Lance Ramshaw, Nian-
wen Xue, Ann Taylor, Jeff Kaufman, Michelle Fran-
chini, et al. 2013. Ontonotes release 5.0 ldc2013t19.
Linguistic Data Consortium, Philadelphia, PA, 23.

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian
Riedel, and Luke Zettlemoyer. 2020. Scalable zero-
shot entity linking with dense entity retrieval. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6397–6407, Online. Association for Computa-
tional Linguistics.

A Implementations

We use 4 Nvidia RTX A6000 48GB GPUs for
model training and evaluation. For both candidate
generation model and candidate ranking model, we
train 10 epochs with learning rate 1e−5, and use
BERT-large-uncased as the pretrained language
model (Devlin et al., 2019). The maximum
tokens of both event mention representation and
Wikipedia title representation are 256. Top-K is
chosen from [5, 10, 30, 50, 70, 100], and tuned on
development data. The Glove version we use is
"glove-wiki-gigaword-100".

The Wikipedia dump version we use is 2020/03/01,
which is also released to public with our annotated
data.

B Data Annotation

We require all the annotators from Amazon Me-
chanical Turk to be English speaker, and with an
acceptance rate higher than 95%. All the annota-
tors are English native speakers and are paid more
than 10 US dollars per hour.

2688

https://aclanthology.org/P11-1138
https://aclanthology.org/P11-1138
https://doi.org/10.18653/v1/2021.naacl-main.65
https://doi.org/10.18653/v1/2021.naacl-main.65
https://doi.org/10.18653/v1/2021.naacl-main.65
https://doi.org/10.18653/v1/2020.emnlp-main.519
https://doi.org/10.18653/v1/2020.emnlp-main.519


Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 2689–2695
May 2-6, 2023 ©2023 Association for Computational Linguistics

SwitchPrompt: Learning Domain-Specific Gated Soft Prompts
for Classification in Low-Resource Domains

Koustava Goswami1,2∗ , Lukas Lange2, Jun Araki3,
Heike Adel2

1 Adobe Research Bangalore, India
2 Bosch Center for Artificial Intelligence, Renningen, Germany

3 Bosch Research North America
koustavag@adobe.com, {Lukas.Lange,Heike.Adel}@de.bosch.com, Jun.Araki@us.bosch.com

Abstract

Prompting pre-trained language models leads
to promising results across natural language
processing tasks but is less effective when
applied in low-resource domains, due to the
domain gap between the pre-training data
and the downstream task. In this work, we
bridge this gap with a novel and lightweight
prompting methodology called SwitchPrompt
for the adaptation of language models trained
on datasets from the general domain to diverse
low-resource domains. Using domain-specific
keywords with a trainable gated prompt, Switch-
Prompt offers domain-oriented prompting, that
is, effective guidance on the target domains
for general-domain language models. Our few-
shot experiments on three text classification
benchmarks demonstrate the efficacy of the
general-domain pre-trained language models
when used with SwitchPrompt. They often even
outperform their domain-specific counterparts
trained with baseline state-of-the-art prompt-
ing methods by up to 10.7% performance in-
crease in accuracy. This result indicates that
SwitchPrompt effectively reduces the need for
domain-specific language model pre-training.

1 Introduction

Recent work showed promising results on different
natural language processing tasks when prompting
pre-trained language models (LMs) instead of fine-
tuning them, especially in low-resource settings
(Schucher et al., 2022). Most LMs which are pub-
licly available have been trained on general-domain
corpora (Devlin et al., 2019; Liu et al., 2019; Goyal
et al., 2021), such as Wikipedia or the BooksCor-
pus (Zhu et al., 2015). Applying them to tasks from
a special domain results in a domain gap.

For some special domains, domain-specific
LMs exists, e.g., Clinical BERT (Alsentzer et al.,

∗∗Research work conducted during internship at Bosch
Center for Artificial Intelligence. Contact: kous-
tavag@adobe.com

2019) or BioBERT (Lee et al., 2019). However,
pre-training deep language models requires large
amounts of text data.1 While we can assume the
availability of large-scale text data in the general
domain, this assumption might not hold for low-
resource domains, making the creation of domain-
specific LMs challenging. Moreover, training dif-
ferent models for each and every new domain might
be inefficient from a computation point of view.2

Even if there are domain-specific texts and compu-
tational resources available, domain-specific LMs
may not be able to get sufficient domain-oriented
guidance through traditional prompting techniques
because, for instance, domain-specific knowledge
might be represented by a large and diverse vocab-
ulary. As a result, both prompting LMs from the
general domain and from a special domain might
be ineffective, especially in low-resource settings.

Motivated by these challenges, we explore
domain-oriented prompts and propose a novel
and lightweight method, SwitchPrompt, to effec-
tively retrieve domain-specific knowledge from
pre-trained LMs. It extends the sequence of soft-
prompting vectors with a sequence of vectors rep-
resenting domain-specific keywords and introduces
gates to allow the model to dynamically switch be-
tween a general soft prompt and a domain-specific
one based on the input sentence. We hypothe-
size that this approach helps to effectively retrieve
domain-specific knowledge from pre-trained LMs.

Our experiments on benchmark datasets from
different domains indicate that SwitchPrompt out-
performs different state-of-the-art prompting meth-
ods. It improves results in both in-domain and
out-of-domain settings, effectively reducing do-
main gaps among pre-training and downstream task
data. We find that it is especially suitable for low-

1Clinical BERT (Alsentzer et al., 2019), for instance, was
trained on the MIMIC-III v1.4 database (Johnson et al., 2016)
which includes 2 million notes.

2Lee et al. (2019) used eight NVIDIA V 100 GPUs for 23
days to train the BioBERT.
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resource settings (both little data and little computa-
tional resources) as it neither requires pre-training
domain-specific LMs nor fine-tuning LMs for the
downstream task. The code base for SwitchPrompt
is available online.3

2 Related Work

Language model prompting. Prompting pre-
trained LMs has been shown effective for different
NLP tasks (Brown et al., 2020). While discrete
prompts are intuitively understandable, their de-
sign requires non-trivial human involvement and
they may be outperformed by fine-tuning (Shin
et al., 2020; Jiang et al., 2020; Gao et al., 2021).
Recent studies address this issue by optimizing
so-called soft prompts in continuous space. Li
and Liang (2021a) propose prefix tuning that op-
timizes prefix activations prepended to the input
layer and each layer in the encoder stack. Lester
et al. (2021) prepend trainable continuous embed-
dings to the original sequence of input word embed-
dings. Liu et al. (2021) propose P-tuning in which
an LSTM encoder captures the sequential repre-
sentations of the soft prompts. Liu et al. (2022)
use a deep prompting methodology which injects
prompts at each layer of the pre-trained LM. In
contrast to those prior works, we propose a new
soft prompting method that is especially suited for
low-resource domains.

Language models in special domains. Most
popular pre-trained LMs are trained on data from
the general domain. Tailoring an LM towards a do-
main can be done via domain-specific pre-training
from scratch (i.a., Alsentzer et al., 2019; Lee et al.,
2019) or adaptation of an existing model to target
domain data with continued pre-training (i.a., Gu-
rurangan et al., 2020; Xu et al., 2020; Lange et al.,
2022). We refer to the survey of Hedderich et al.
(2021) for more information on language model
adaptation for low-resource domains. In this pa-
per, we take a different approach and investigate
to which extend LMs that were pre-trained on the
general domain can be prompted for domain knowl-
edge in few-shot settings as this requires only a
minimal amount of domain-specific data.

3 Method

We now present SwitchPrompt, and give an exam-
ple of an architecture in which it can be applied. In

3https://github.com/boschresearch/switchprompt

our architectural setup, the underlying pre-trained
language model is fixed (i.e., not fine-tuned).

3.1 Domain-Specific Soft Prompts
The motivation behind our proposed prompts
P ∈ Rl×e is to allow the model to dynamically
switch between a general-domain prompt Pg and a
domain-specific prompt Pd in order to retrieve dif-
ferent kinds of knowledge from the pre-trained LM
based on the current input, where e is the embed-
ding dimension, and l is the length of the prompt
(i.e., number of soft-prompt vectors). We imple-
ment this with a sigmoid-based gating function:

P = g1(pad(Pg)) + (1− g1)Pd (1)

g1 = σ(w⊤1 sinput) (2)

where pad is a function that pads Pg to length l.
The prompts Pg and Pd will be defined in Equa-
tions 3 and 6, respectively. Gate g1 is calculated
based on the representation of the input sentence
sinput (in our case the representation of the [CLS]
token when feeding the input sentence into the pre-
trained LM) and a weight vector w1 ∈ Re that is
randomly initialized and updated during training.

The general-domain prompt is implemented
as a sequence of randomly initialized vectors
v1, . . . , vm that are trained on the downstream task,
similar to Lester et al. (2021) and Liu et al. (2022):

Pg = [v1; v2; . . . ; vm] = Vm (3)

The sequence length m is a hyperparameter of the
model and ‘[;]’ denotes concatenation.

The domain-specific prompt is designed to in-
corporate a sequence of vectors Kn = [k1; . . . ; kn]
that represent domain-specific keywords. The intu-
ition is to inject the semantic information of the
special domains using the domain-specific key-
words. We define the set of keywords using a
term-frequency-based approach. In particular, we
estimate a score c for each word w from the target
domain based on the normalized term frequencies
estimated on documents from the general domain
tfg(w) and domain-specific documents tfd(w):

c(w) = α · tfg(w) + tfd(w), α < 0 (4)

ti = {w|rank(c(w)) = i}, 1 ≤ i ≤ n (5)

Using α < 0, we are able to select terms that
are representative for the target domain and avoid
terms that are frequent in the general domain. In
Equation 5, we select the n words from the target
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domain with the highest scores c as our keywords.
Each keyword ti is then represented as a vector ki,
using the same language model as for prompting.

Initial experiments showed that it is not enough
to simply set Pd = Kn = [k1, k2, . . . , kn] but that
the sequence of keywords should actually be com-
bined with the sequence of soft prompts. Thus, we
implement the domain-specific prompt as follows:

Pd = g2[Vm;Kn] + (1− g2)[Kn;Vm] (6)

g2 = σ(w⊤2 sinput) (7)

We combine the sequence of keywords of length
n with the sequence of soft prompts of length m
with concatenation, yielding a sequence of length
l = m+ n. We let the model decide with a second
gate g2 in which order the sequences should be
concatenated. Again, the gate is calculated based
on the representation of the input sentence and a
trainable weight vector w2 ∈ Re, where e is the
embedding dimension. Thus, although the same
domain-specific keywords are used for all inputs,
the resulting soft prompt is dependent on the input
sentence.

3.2 Prompting Architecture

Since our proposed method is a new definition of
soft prompts, it can be integrated into any existing
model that uses soft prompts. In our experiments,
we adopt the P-Tuning v2 architecture (Liu et al.,
2022) because of its high efficacy on different nat-
ural language understanding tasks. P-Tuning v2
is an adaptation of deep prompt tuning (Qin and
Eisner, 2021; Li and Liang, 2021b) that injects soft
prompts at every layer of the pre-trained LM. Dur-
ing training, the prompts are tuned but the LM stays
fixed. For the class prediction of the downstream
task, a randomly initialized classification head is
added on top of the pre-trained LM.

4 Experiments

In this section, we describe the setup (datasets,
training details and baselines) and the results of
our experiments.

4.1 Datasets

For our experiments, we use classification bench-
mark datasets from different domains: question
classification from the general domain (TREC,
Voorhees and Tice, 2000) and from the clinical
domain (GARD, Kilicoglu et al., 2016), as well as

experiment classification from the materials sci-
ence domain (SOFC-Exp, Friedrich et al., 2020).
Statistics of the datasets can be found in Table 1.

Dataset Domain Instances Classes

GARD Clinical 1253 11
SOFC-Exp Materials science 2042 2
TREC General 4893 7

Table 1: Statistics of text classification datasets.

Among them, the SOFC-Exp dataset offers a
binary sentence classification task with positive
and negative labels whereas GARD and TREC are
multi-class question classification datasets.

To investigate very-low-resource settings, we
construct few-shot datasets by randomly sampling
N shots per class with N ∈ {2, 4, 16, 64}. Follow-
ing the proposed theory for realistic low-resource
regimes (Perez et al., 2021; Kann et al., 2019), we
also create few-shot development sets by keeping
the number of shots in the training and development
sets in sync. In the 4-shot scenario, for example,
both the training and the development set consist
of 4 examples for each class. For all datasets, we
use accuracy (%) as evaluation metric.

To give a closer insight into the challenges of the
different domains that we use in our experiments,
we present example instances from the datasets in
Table 2. The examples show that the models need
to cope with domain-specific terminology, such as
“perisylvian polymicrogyria” (clinical domain) or
“electrochemical” (materials science domain), and
domain-specific labels, for instance, “diagnosis”.

4.2 Training Details
We use open-sourced HuggingFace language mod-
els4 for our experiments. We train our models with
a batch size of 32. The maximum sequence length
is set to 128 and we use dropout with rate 0.1 on
the classification layer. We use the ExponentialLR5

learning rate scheduler with a gamma value of 0.95
and the Adam optimizer. All experiments are per-
formed on a V 100 GPU.6 Each reported result is
the average performance of five runs.

4.3 Baselines
We compare our method to different baselines: (i)
Fine-tuning of the pre-trained LM, (ii) prompting

4https://huggingface.co/models
5https://pytorch.org/docs/stable/optim.html#

torch.optim.Optimizer
6We ran our experiments on a carbon-neutral GPU cluster.
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Domain Input Output

Clinical How is it different from bilateral perisylvian polymicrogyria in how it presents ? Diagnosis
Clinical Are there products other than cigarette tobacco associated with Buerger disease ? Cause
Mat. science They called this phenomenon nonfaradaic electrochemical modification of catalytic activity (NEMCA). Negative
Mat. science It is possible to reduce up to 35% of NO present when the cell stacks are polarized with 1.5 V for each cell. Positive
General What is the name of the largest city in Chile , South America ? Location
General What was the average life expectancy during the Stone Age ? Number

Table 2: Example sentences and their labels from our domain-specific and general-domain datasets.

Methodology Model 2-shots 4-shots 16-shots 64-shots All

Fine-tuning BERT 21.2 25.5 40.8 67.4 81.8
Clinical BERT 35.9 40.4 56.3 68.1 82.5

P-tuning BERT 48.3 48.9 53.1 68.1 82.0
Clinical BERT 49.2 53.1 58.2 69.6 82.8

P-tuning V2 BERT 27.2 44.4 61.9 79.1 84.0
Clinical BERT 34.3 48.7 63.4 82.3 86.7

SwitchPrompt BERT 36.3 54.2 64.0 81.1 85.4
Clinical BERT 40.9 55.2 65.1 81.9 86.9

Table 3: Results on special-domain dataset GARD.

Methodology Model 2-shots 4-shots 16-shots 64-shots All

Fine-tuning BERT 18.2 26.1 48.5 54.6 61.9
SciBERT 29.4 32.7 50.4 56.2 64.7

P-tuning BERT 37.5 38.2 52.6 58.5 64.9
SciBERT 42.1 43.4 54.8 59.3 66.2

P-tuning V2 BERT 30.8 31.2 52.8 59.9 68.4
SciBERT 33.7 35.6 53.9 61.4 69.7

SwitchPrompt BERT 32.4 34.3 53.4 61.0 69.9
SciBERT 36.2 37.1 55.9 62.5 70.6

Table 4: Results on special-domain dataset SOFC-Exp.

using P-tuning (Liu et al., 2021), and (iii) prompt-
ing using P-Tuning v2 (Liu et al., 2022). For
all methods, we report results for using either a
general-domain LM (BERT (Devlin et al., 2019))
or domain-specific LMs (Clinical BERT (Alsentzer
et al., 2019) and SciBERT (Beltagy et al., 2019)).

4.4 Results
Low-resource domains. Tables 3 and 4 show the
results of our model for the clinical and materi-
als science domain in comparison to state-of-the-
art baseline approaches. In general, the prompt-
ing methods outperform fine-tuning, with espe-
cially large margins for very-few-shot settings (2
and 4 shots). This highlights the limitations of
fine-tuning with limited training datasets. Another
general trend is that using domain-specific LMs
(Clinical BERT and SciBERT, respectively) out-
performs BERT from the general domain. Our
proposed method SwitchPrompt outperforms other
state-of-the-art prompting methods up to 2.1%
points. We further note that (i) our method prompt-
ing general-domain LMs even outperforms other
methods prompting domain-specific LMs, and (ii)
our method reduces the performance gap between

Methodology Model 2-shots 4-shots 16-shots 64-shots All

Fine-tuning BERT 33.3 53.3 71.4 88.7 95.7
P-tuning V2 BERT 56.0 63.3 79.4 92.5 96.8
SwitchPrompt BERT 66.7 72.4 88.3 91.2 97.6

Table 5: Results on general-domain dataset TREC.

using an LM from the general domain vs. a domain-
specific one.

For very-few-shot settings (2,4-shots), P-tuning
outperforms our method. We assume that the rea-
son is that it replaces the input of the LM with
differential embeddings from the prompt-encoder,
while in our method we consider the vanilla inputs
of the LM, reducing the complexity and training
time (see Figure 1) of our model.

General domain. To investigate the behavior of
our method in the general domain, we now evalu-
ate its performance on TREC. Table 5 shows that
our method outperforms both fine-tuning and other
prompting methods in almost all dataset settings,
up to 10.7 accuracy points. Thus, even on the gen-
eral domain, SwitchPrompt can boost the perfor-
mance of pre-trained LMs.

5 Analysis

In this section, we report the results of our abla-
tion study, give more insights into what our model
learned and analyze its training time. We also pro-
vide a qualitative error analysis.

Ablation study. Our ablation study in Table 7
shows the impact of the different components of
our prompting function, evaluated with the full
GARD dataset. Row (1) corresponds to Switch-
Prompt, and row (6) corresponds to the previ-
ous state-of-the-art prompting model P-Tuning v2.
Row (2) shows that the concatenation of keywords
and the general-domain soft prompt is important to
the model. Row (3) and (4) show the large impact
of the second gate g2, and row (5) and (6) show
that neither the domain-specific keywords Kn nor
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Domain Keywords

Clinical Diagnosed, Prognosis, Cantrell, Idiopathic, Tourette, Opitz, Testotoxicosis, Late-onset, Amniocentesis, Prenatally
Mat. science Fuel, Oxide, D8-Discover, Viscometer, Hydroxide/poly, Room-temperature, Ion-conductor, Electrocatalytic, Cobalt-doped, Non-homogeneous
General Cholera, Tasman, Conservancy, Boil, Premier, Consumption, Conditioner, Foster, Chemiosmotic, Registers

Table 6: Automatically selected 10 keywords per domain by our approach.

Prompt Acc

(1) g1(pad(Vm)) + (1 − g1)(g2[Vm;Kn] + (1 − g2)[Kn;Vm]) 85.4
(2) g1(pad(Vm)) + (1 − g1)(g2Vm + (1 − g2)Kn) 82.6
(3) g1(pad(Vm)) + (1 − g1)[Vm;Kn] 81.4
(4) g1(pad(Vm)) + (1 − g1)[Kn;Vm] 77.6
(5) Kn 54.8
(6) Vm 84.0

Table 7: Impact of prompt design choices in the full-data
setting of the GARD dataset using BERT embeddings.
Row (1) corresponds to SwitchPrompt, and row (6) cor-
responds to P-Tuning v2.

Input Prediction Gold Output

How can this be? Management Susceptibility
Will we be okay? Information Prognosis
What is the treatment of mixed
connective tissue disorder ? Information Management

What are the expected out-
comes for individuals with
cryoglobulinemia ?

Information Prognosis

Table 8: Error analysis on GARD dataset.

the general soft-prompting vectors Vm alone are
sufficient to achieve the highest performance.

Domain-specific keywords. The keywords are
an integral part of SwitchPrompt. Since we com-
pute keywords automatically (see Section 3), we
analyze the extracted keywords in more detail.

Table 6 shows the 10 keywords that have been se-
lected by our method. For the clinical and materials
science domain, the keywords are domain-specific
terms while for the general domain, the keywords
cover a broad range of topics.

Training time analysis. During training time,
the underlying LM is frozen in the SwitchPrompt
framework. This substantially reduces training
time and computational memory, compared to alter-
native approaches, such as fine-tuning or P-Tuning.
Figure 1 illustrates this. P-Tuning v2 is a little bit
faster than our approach as it does not need to train
the gating parameters. However, the time differ-
ence is considerably small (2.2 min for 10 epochs
in the all-data setting, i.e., 0.22 min per epoch).

Qualitative error analysis. Finally, we manually
conduct a qualitative error analysis on the GARD
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Fine-tuning P-tuning P-tuning V2 SwitchPrompt

Figure 1: Training time in minutes for 10 epochs for
different methods on the GARD dataset.

dataset. The results are displayed in Table 8. We
find that our method mainly fails when the input
sentences convey little domain-specific information
(see examples in first two rows). Another category
of errors is the prediction of a more general class
(“Information” instead of “Management” or “Prog-
nosis” in the last two rows).

6 Conclusion

In this paper, we proposed a new methodology
called SwitchPrompt for effectively prompting
pre-trained language models in low-resource do-
mains. Integral parts of our method are domain-
specific keywords and gates, which allow the
language model to dynamically retrieve domain-
specific knowledge. Experiments on sentence clas-
sification datasets from different domains show
that our method outperforms various baseline
methods in few-shot and all-data settings. In
particular, it reduces the performance gap be-
tween general-domain and domain-specific lan-
guage models. Future work can investigate the
impact on sequence-labeling tasks as well as on
mixed-domain datasets.
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Limitations

In preliminary experiments, we found that our
method is sensitive to the selection of key-
words. While we found an automatic and domain-
independent way for extracting them (see Section
3), its efficacy needs to be tested on more domains
and possibly also on mixed domain datasets.

References
Emily Alsentzer, John Murphy, William Boag, Wei-

Hung Weng, Di Jindi, Tristan Naumann, and
Matthew McDermott. 2019. Publicly available clin-
ical BERT embeddings. In Proceedings of the 2nd
Clinical Natural Language Processing Workshop,
pages 72–78, Minneapolis, Minnesota, USA. Associ-
ation for Computational Linguistics.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scib-
ert: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, pages 3613–3618.
Association for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Proceed-
ings of NeurIPS, volume 33, pages 1877–1901.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Annemarie Friedrich, Heike Adel, Federico Tomazic,
Johannes Hingerl, Renou Benteau, Anika Marusczyk,
and Lukas Lange. 2020. The SOFC-exp corpus and
neural approaches to information extraction in the
materials science domain. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 1255–1268, Online. Association
for Computational Linguistics.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot

learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816–3830, Online. Association for Computa-
tional Linguistics.

Naman Goyal, Jingfei Du, Myle Ott, Giri Ananthara-
man, and Alexis Conneau. 2021. Larger-scale trans-
formers for multilingual masked language modeling.
In Proceedings of the 6th Workshop on Represen-
tation Learning for NLP (RepL4NLP-2021), pages
29–33, Online. Association for Computational Lin-
guistics.

Suchin Gururangan, Ana Marasović, Swabha
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Abstract
There has been a surge of interest regarding
the alignment of large-scale language mod-
els with human language comprehension be-
haviour. The majority of this research inves-
tigates comprehension behaviours from read-
ing isolated, written sentences. We propose
studying the perception of dialogue, focusing
on an intrinsic form of language use: spoken
conversations. Using the task of predicting up-
coming dialogue turns, we ask whether turn
plausibility scores produced by state-of-the-art
language models correlate with human judge-
ments. We find a strong correlation for some
but not all models: masked language mod-
els produce stronger correlations than auto-
regressive models. In doing so, we quantify
human performance on the response selection
task for open-domain spoken conversation. To
the best of our knowledge, this is the first such
quantification. We find that response selection
performance can be used as a coarse proxy for
the strength of correlation with human judge-
ments, however humans and models make dif-
ferent response selection mistakes. The model
which produces the strongest correlation also
outperforms human response selection perfor-
mance. Through ablation studies, we show that
pre-trained language models provide a useful
basis for turn representations; however, fine-
grained contextualisation, inclusion of dialogue
structure information, and fine-tuning towards
response selection all boost response selection
accuracy by over 30 absolute points.

1 Introduction

Human language processing has intrigued re-
searchers from numerous fields for centuries
(Herder, 1772). The relatively recent convergence
of philosophy, psycholinguistics, and information
theory has produced valuable theories of language
production and comprehension by framing people
as predictive processors (Christiansen and Chater,
2016; Levy, 2008; Hale, 2001). In particular, Sur-
prisal Theory posits that comprehension effort is

directly related to the predictability of a linguistic
unit in its context (i.e., its surprisal) (Hale, 2001),
and the Smooth Signal Redundancy hypothesis
(Aylett and Turk, 2004) (and related theories includ-
ing Uniform Information Density (Fenk and Fenk,
1980; Levy and Jaeger, 2006) and Entropy Rate
Constancy (Genzel and Charniak, 2002)) demon-
strates that we produce linguistic signals that tend
towards uniform distributions of information, or
constant predictability.

Such theories rely on the conditional probability
of observing a linguistic unit in a particular context.
Traditionally, estimates of these probabilities were
obtained through statistical models such as n-grams
or PCFGs (Smith and Levy, 2013; Hale, 2001). By
comparison, large scale language models (LLMs)
like Transformers allow much greater degrees of
context to be integrated into probability estimates
(Vaswani et al., 2017). LLMs have enabled massive
progress across the continuum of NLP tasks (Wang
et al., 2019; Hu et al., 2020). As such, a recent
field of research has investigated the application of
LLMs for producing estimates of human surprisal.
Language model quality (measured by perplexity)
generally correlates with ability to predict aspects
of human perception behaviour– psychometric pre-
dictive power (Wilcox et al., 2020; Frank et al.,
2015; Levy, 2011; Goodkind and Bicknell, 2018).

The vast majority of psychometric predictive
power studies are based on monologue-like data
and involve perception of isolated sentences. How-
ever, the most natural, innate form of language-use
is communicative interaction; we learn to hold con-
versations with very little direct instruction where
as tasks related to the production or comprehen-
sion of monological data such as reading, writing,
or presenting require years of conscious effort to
master. Given the additional modelling capacity
of current LMs, there has been growing interest in
using them to apply classical language process-
ing theories to more natural forms of language
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like dialogue (Vega and Ward, 2009; Doyle and
Frank, 2015b,a; Giulianelli and Fernández, 2021;
Giulianelli et al., 2021). Results from these works
do not align neatly with findings about perception
of isolated sentences. This raises interesting ques-
tions about differences between information trans-
mission strategies employed in monological and
conversational settings, and suggests that the the
alignment of language models and human percep-
tual behaviour for monological and isolated linguis-
tic data may not extend to dialogue.

At the same time, the field of dialogue modelling
in NLP has grown substantially. Much of the re-
cent work in this field is geared towards leveraging
the structural differences between monologue and
dialogue data (Lowe et al., 2015; Wu and Xiong,
2020). Although this has increased performance
on dialogue modelling benchmark tasks such as
response selection and dialogue generation, it is un-
clear whether increased performance on these tasks
results in representations that align with human
perception (Wolf et al., 2019; Liu et al., 2020).

To understand whether representations of dia-
logue align with human perception of dialogue,
we ask how well language model outputs correlate
with human perception of dialogue turn acceptabil-
ity. To do so, we build on the novel perceptual task
of rating dialogue turn plausibility proposed in our
previous work (Wallbridge et al., 2022). First, we
study the nature of human expectations in dialogue.
By recasting the rating task as a discriminative
one, we find evidence that, similar to linguistic
acceptability judgements, human judgements of
dialogue turn plausibility are probabilistic rather
than deterministic (Lau et al., 2017). Next, we
establish the psychometric predictive power of dif-
ferent context-dependent text representations with
respect to this task by asking whether such repre-
sentations are predictive of dialogue plausibility
judgements. In previous work, we found a statisti-
cally significant but weak correlation between sur-
prisal estimates from a generative dialogue-based
language model and human plausibility scores for
(context, response) pairs (Wallbridge et al., 2022).
We use this paradigm here to investigate the pre-
dictive power of other language modelling styles.
In doing so, we find a strong correlation between
(context, response) scores from a masked LLM
fine-tuned towards response-selection and human
judgements. Interestingly, this model also achieves
“superhuman” response selection performance in

the sense that it obtains a higher accuracy than
participants. This finding, however, motivated our
analysis into response-selection dialogue models
and under what conditions they align with human
perception.

2 Language models and human language
perception

Multiple large-scale comparisons between the pre-
dictive power of different families of a language
models provide strong evidence for a relationship
between a language model’s quality and its predic-
tive power for human comprehension behaviour.
Behaviours include self-paced reading times and
gaze duration (Wilcox et al., 2020; Goodkind and
Bicknell, 2018; Meister et al., 2021), grammati-
cal acceptability judgements (Richter and Chaves,
2020; Lau et al., 2017; Warstadt et al., 2019; Meis-
ter et al., 2021), and brain response data (Frank
et al., 2015; Schrimpf et al., 2021). Other works
provide similar evidence for a close relationship
between surprisal and human language percep-
tion through improved language generation under
cognitive-inspired constraints (Wei et al., 2021).

Although the majority of these studies are based
on a constrained definition of perception using
isolated sentences, they already reflect evidence
that different comprehension tasks rely on differ-
ent types of linguistic expectations. Wilcox et al.
(2020) finds a dissociation between the syntactic
generalisation capability of LMs which is heavily
dependent on model architecture, and LM ability
to predict human reading times. Similar results
were found by Meister et al. (2021) – BERT is
highly predictive of acceptability judgements but
was described as “remarkably poor” for estimating
reading times.

These findings suggest that the alignment of lan-
guage model output and comprehension behaviours
is unlikely to generalise to the perception of dia-
logue.

2.1 Perception of dialogue acceptability

The majority of psycholinguistic language produc-
tion theories have been developed based on mono-
logical data analysed from a generative linguistics
perspective. However, dialogue perception differs
from the comprehension of monological data in
a number of fundamental aspects (Pickering and
Garrod, 2004). Dialogue has been described as
a game where participants only “win” if both un-
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derstand the dialogue (Lewis, 1969), or as a joint
process where interlocutors collaborate to build
common ground (Clark and Wilkes-Gibbs, 1986).
Context plays a much larger role in dialogue com-
prehension (Nieuwland and Berkum, 2006). As a
concrete example, Fernandez and Ginzburg (2002)
find that more than 11% of dialogue turns in the
British National Corpus are non-sentential in iso-
lation. Pragmatic context is particularly impor-
tant. Conversational acts such as backchanneling
or the use of adjacency and coordinate pairs tend
to have low lexical information density, but are
crucial for turn taking and grounding (Clark and
Wilkes-Gibbs, 1986; Kawahara et al., 2016).

The challenges of integrating such context into
language models has been highlighted by a hand-
ful of works investigating information transmission
strategies in communicative contexts. Giulianelli
et al. (2021) find that relevant contextual units in
dialogue should be topically and referentially co-
herent, and that defining these units depends on
the domain of discourse. Doyle and Frank (2015b)
find that common ground is a crucial aspect to ac-
count for when modelling information distribution
in Twitter dialogues. Vega and Ward (2009) present
evidence of uniform information density in spoken
dialogues, but note the importance of accounting
for non-lexical information as additional context.

To model information strategies in communica-
tion, language models should align with human
perception of dialogue acceptability. In this work,
we propose using the task of dialogue utterance
plausibility to quantify human perception of dia-
logue acceptability, and examine whether language
models align with this aspect of perception.

2.2 Language models and dialogue

Similarly to psycholinguistics, the vast majority of
NLP models have been developed based on mono-
logical data. However, interest in modelling in-
teraction and dialogue is booming, fuelled by the
development of commercial dialogue systems like
Apple Siri1 and Amazon Alexa2. Work related
to dialogue perception is also gaining interest, fo-
cused on tasks such as dialogue act classification
and dialogue coherence estimation (Shriberg et al.,
1998; Tran, 2020; Cervone et al., 2018). However,
it is unclear whether current dialogue-based LLMs
produce perceptually meaningful representations.

1https://www.apple.com/siri
2https://developer.amazon.com/alexa

Response selection Regardless of the down-
stream application, response selection has become
a pervasive task in dialogue modelling. A major
reason for this is that it doesn’t require annotated
labels. This self-supervised task is used through-
out dialogue modelling as both an evaluation met-
ric and a training signal. Given some degree of
dialogue history as an anchor, response selection
involves selecting the upcoming response from a
set of potential turns. This is a direct extension of
quintessential next-sentence-prediction task which
makes a strong assumption that there is a single
correct upcoming turn (Devlin et al., 2019). In this
work, we explore the extent to which this assump-
tion holds when making predictions in dialogue.

Response selection models, also known as
retrieval-based dialogue models, can be broadly
separated into two classes: bi-encoder models that
learn independent representations of responses and
their respective contexts, and cross-encoders which
encode the context and response as a single rep-
resentation before scoring them (Henderson et al.,
2020; Zhou et al., 2016; Wu et al., 2020, 2017a).
The latter often involve tuning a pre-trained lan-
guage model using dialogue-specific objectives
(Wolf et al., 2019; Han et al., 2021; Xu et al., 2020).
Such methods aim to make use of the representa-
tion capacity of pre-trained language models, while
also leveraging important and unique structural fea-
tures of dialogue data.

By encoding contexts and responses in isolation,
bi-encoders achieve cheaper training and inference
as representations can be cached. However, they
enforce a strong independence assumption between
contexts and responses. The separate encoders can
provide a weak notion of position (i.e., the same
lexical content may be encoded differently if it is
a response or a piece of context), however cross-
encoding captures much richer interactions.

Given the importance of response selection in
dialogue modelling, we explore here how well this
task aligns with the perception of spoken dialogue
acceptability. We also perform ablation studies to
better understand which aspects of model architec-
ture are important for response selection.

3 Experiments

3.1 Psychometric predictive power in spoken
dialogue transcripts

Data To investigate the relationship between repre-
sentations of dialogue and human perception, we
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make use of a dataset collected in our previous
work (Wallbridge et al., 2022) which comprises of
100 (context, response) pairs extracted from the
Switchboard Telephone Corpus, and their associ-
ated median plausibility scores. Switchboard is a
corpus of over 2,400 spontaneous chit-chat style
telephone conversations between 542 participants
covering 70 topics. It includes manual transcrip-
tions and turn segmentations (Godfrey et al., 1992).
Each of the 100 stimuli consists of a set of speaker
turns as context c = [c1, ..., ck] and an upcoming
response r where r is either the true upcoming turn
in the dialogue, or a turn sampled from the corpus.
Scores were collected by asking participants to rate
how plausible r is in the context of c on a scale
of 1-5 (“Very Unlikely” – “Very Likely”). Each
dialogue context c was presented in 10 pairs: with
the true upcoming turn, and 9 negative samples.

In this previous work, we found that people can
make relatively accurate discriminative judgements
regarding the true upcoming turn in a dialogue:
using the mean score per stimuli as a proxy for
turn selection, participants obtained an accuracy of
70% (Wallbridge et al., 2022). Plausibility scores
were also compared to surprisal estimates from
TurnGPT (Ekstedt and Skantze, 2020). Although
the relationship between plausibility scores and
TurnGPT surprisal estimates was found to be sta-
tistically significant, the correlation between them
was weak.

Here, we investigate the effect of language mod-
eling styles on psychometric predictive power, us-
ing both generative and retrieval-based language
models. To do so, we train a range of language
models towards the response selection task using
the Switchboard dataset. We split the corpus by
conversation into training, validation, and test sets
(80%, 10%, 10%). Transcripts are all lower-cased
and speech-based annotations such as pronuncia-
tion markers and speech events are removed.

Models:
Our models are all implemented in PyTorch

(Paszke et al., 2019) and pre-trained language mod-
els are obtained from the Transformers library
(Wolf et al., 2020).

To test generative model capabilities, we employ
TurnGPT. This architecture extends the standard
GPT-2 model of Radford et al. (2019) to dyadic in-
teraction by fine-tuning a pretrained GPT-2 model
with additional speaker embeddings and speaker
tokens to encode conversational structure (Ekstedt

Table 1: Correlations between human plausibility scores
and LM response scores. Scores are based on turn-level
surprisal estimates for TurnGPT, and the joint (context,
response) response selection score for BERT-FP.

Model Metric ρ p-value

TurnGPT

Stotal -0.302 0.002
Smean -0.392 <0.001
Srelative -0.395 <0.001
Smax -0.463 <0.001
Svar -0.346 0.001

BERT-FP RS Score 0.637 <0.001

and Skantze, 2020). For our experiments, we fine-
tune the pretrained GPT-2 model from the Trans-
formers library (Wolf et al., 2020) on our train-
ing portion of Switchboard using the augmented
TurnGPT cross-entropy loss.3

As has been done in previous studies of psy-
chometric predictive power, we obtain estimates
of response surprisal from TurnGPT using vari-
ous aggregates of token-level surprisal (Lau et al.,
2017; Meister et al., 2021; Wallbridge et al.,
2022). These include both global and local
definitions of surprisal. Global metrics include
Stotal, Smean, Srelative while local metrics include
Smax, Svar. See Appendix A for further details.

To test retrieval-based methods, we use the
BERT-FP architecture (Han et al., 2021). This
cross-encoder obtains state-of-the-art response se-
lection for written conversational benchmarks
including the Ubuntu (Lowe et al., 2015), E-
commerce (Zhang et al., 2018), and Douban (Wu
et al., 2017b) datasets. The model encodes the joint
(context, response) pair using pre-trained BERT
(Devlin et al., 2019). We use bert-base-uncased
from the Transformers library. The resulting BERT
[CLS] token is fed through a single-layer classi-
fier to produce a response selection score – the
relevance of the response given the context. We
fine-tune BERT-FP towards response selection on
our training portion of Switchboard using binary
cross entropy loss.4 See Appendix A for addi-
tional details of model training procedures. Rather
than computing response surprisal from word-
level model output, we obtain response plausibility
scores directly from the BERT-FP model.

3We implement our model using the TurnGPT Github
repository https://github.com/ErikEkstedt/TurnGPT

4We implement our model based on the BERT-FP Github
repository https://github.com/hanjanghoon/BERT_FP

2699

https://github.com/ErikEkstedt/TurnGPT
https://github.com/hanjanghoon/BERT_FP


Table 2: Discriminative performance of people,
TurnGPT, and BERT-FP.

Model Metric F1 R10@1

Human
Mean score 0.783 0.7

Median score 0.800 0.8

TurnGPT
Max surprisal 0.435 0.3
Mean surprisal 0.538 0.4

BERT-FP Score 0.889 0.9

Input to both models consists of a set of speaker
turns context c = [c1, ..., ck] and response turn r
where context turns are separated by a special [eos]
token to denote a change in speaker. As per the
original BERT-FP implementation, we use a fixed
number of context turns (k = 3) (Han et al., 2021).

3.1.1 Correlation with plausibility perception
Table 1 show the correlations between model re-
sponse scores and human plausibility judgements.
Similar to previous works (Lau et al., 2017; Meis-
ter et al., 2021) and our own (Wallbridge et al.,
2022), we find a relatively weak correlation be-
tween TurnGPT surprisal metrics and plausibility
scores, as well as variation in correlation strength
between surprisal metrics.

Table 1 also shows the language model to have
a larger effect than surprisal metric. We find a
much stronger correlation between turn-plausibility
scores from humans and scores predicted by our
retrieval-based cross-encoder, BERT-FP, than for
TurnGPT surprisal estimates. This indicates that
the response selection task used to fine-tune BERT
generates a latent space that matches some aspects
of dialogue acceptability perception.

3.1.2 Discriminative performance
The plausibility scoring task can be reframed as re-
sponse selection by taking the mean score for each
(context, response) pair as the selection criterion,
using each of the scoring metrics. Table 2 provides
the response selection performance of our models,
as well as a benchmark of human consensus per-
formance for this task. We report both the standard
response selection accuracy metric R10@1 as well
as F1 score which denotes the highest linear clas-
sification accuracy that can be achieved across all
(context, response) pairs based on a given metric.

The response selection paradigm is used widely
throughout dialogue modelling. But to our knowl-
edge, this is one of the first investigations of how

well humans can judge upcoming responses. Peo-
ple can execute the response selection task rela-
tively well using a small amount of context, how-
ever their performance is not perfect in terms of
R10@1 accuracy.

Interestingly, we find that BERT-FP outperforms
people at this task, achieving higher accuracy and
F1 score. This “superhuman” performance is fur-
ther evidence that the response-selection objective
deviates from human perception of dialogue. We
provide a some qualitative observations of devia-
tions between model and human judgements below
(see Error Analysis).

Although TurnGPT showed weak to moderate
correlation with human judgements scores, it per-
forms very poorly in the response selection task
framing. Different surprisal definitions had rela-
tively large impacts on the correlation strengths re-
ported in Table 1, but these were not reflected in the
F1 scores. TurnGPT is trained using cross-entropy
loss over next-token prediction (autoregressive pre-
training), while BERT-FP is based on the masked
language modelling paradigm – these differences
in underlying pre-training could help explain per-
formance deviations and would be interesting to
explore in future work. We discuss these findings
further in section 4.

Error analysis: cross-encoders and humans
Neither BERT-FP nor human raters achieve per-
fect performance on the response selection framing.
However, their mistakes are different. The cross-
encoder succeeds on all three questions where hu-
mans did not rate the true response highest, and
vice versa for the question misranked by the model.

For all three stimuli that people misranked, the
true response obtained the second highest score
and had a mean plausibility score greater than 3.
In two of these cases, the highest-scoring response
was generic response (“mhm”, “yeah”) which is
plausible in a wide range of contexts. In the final
case, the highest scoring response was a question
that shifted the topic of conversation. We noted
this pattern in other stimuli: responses that initiated
topic shifts – often questions – were often rated as
somewhat likely by people but obtained low BERT-
FP scores.

In comparison, for the stimuli misranked by
BERT-FP, the true response obtained the 4th high-
est score. All four of the misranked stimuli in-
cluded two or more context turns, suggesting that
the amount of context is not necessarily a driving
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Figure 1: Sorted score sets per response selection stim-
uli for different models

factor in mistakes for either the model or people.
We also examine the rank correlation (Spearman

r) between human ratings and model scores on
a per-stimuli basis. Coefficients range from 0.33
to 0.93 (µ = 0.65 ± 0.18). The lowest correla-
tions are obtained for stimuli where the model only
scores a single response highly while the rest obtain
scores close to 0. The distributions of BERT-FP
scores across stimuli are more peaked than ratings
produced by people (see Figure 1). Surprisal met-
rics from TurnGPT show score distributions more
similar to human judgements, further highlighting
differences between these models.

3.2 Model ablation for response selection

Generative (TurnGPT) and retrieval-based (BERT-
FP) models display significantly different propen-
sities for psychometric predictive power and re-
sponse selection performance. We use ablation
studies to better understand which aspects of the
retrieval-based model architecture are valuable for
response selection. In particular, we consider

1. Independence of context and response encod-
ing: bi- versus cross-encoders

2. Inclusion of dialogue structure: [eos] tokens

3. Importance of fine-tuning.

Pre-trained LM Pre-trained LM

 Tc1

Classifer

Score

 T[eos]  Tc3  T[eos]...  Tr

Pre-trained LM

 Tc1

Classifer

 T[eos]  Tc3  T[eos]...  Tr

Score(A) (B) 

Figure 2: Architectures for (A) bi- and (B) cross-
encoders. Input is shown in SBERT format; T denotes
tokenized text. For BERT-based models, we prepend
all input sequences with a [CLS] token. Cross-encoder
input also contains a [SEP ] token before and after Tr.

Models: We compare cross- and bi-encoder net-
works, depicted in Figure 2. The cross-encoder ar-
chitecture is based on BERT-FP (Han et al., 2021)
which encodes the joint context and response pair
then feeds the resulting sequence representation
through a classification network. We experiment
with using both a single linear-layer classifier, or
three fully-connected ReLU layers with dropout
and a final sigmoid layer.

The bi-encoder style model follows the architec-
ture presented in (Henderson et al., 2020). Each
context and response is encoded in isolation us-
ing a shared, pre-trained language model. Context
and response representations are then concatenated
and fed through the same binary classifiers as the
cross-encoder architectures.

We test scores based on both BERT [CLS] to-
kens and SBERT sequence representations (De-
vlin et al., 2019; Reimers and Gurevych, 2019).
SBERT representations are produced by mean pool-
ing fine-tuned token representations from BERT.
We use bert-base-uncased for BERT-based mod-
els and all-MiniLM-L6-v2 for SBERT, both ob-
tained from the Transformers library.

All models are trained towards the response se-
lection task with a binary cross entropy loss on our
training portion of Switchboard. We train models
with the underlying LM in frozen and unfrozen
scenarios.

3.2.1 Results
We present a simple baseline for response selec-
tion: minimizing the Euclidean distance between
pre-trained SBERT representations of (context, re-
sponse) pairs. This outperforms many of the ab-
lated models discussed hereafter (see Table 3).

Independence of context and responses Al-
though bi-encoders achieve cheaper training and
inference by encoding contexts and responses in
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Table 3: Response selection accuracy R10@1 for models based on SBERT. The SBERT baseline (response selection
based on euclidean distances between pre-trained SBERT representations of context and responses) achieves an
R10@1 of 0.480

Encoding Strategy R10@1 accuracy
Linear Classifier + unfreeze Non-linear Classifier + unfreeze

Bi-encoder 0.102 0.105 0.455 0.507
Cross-encoder 0.236 0.465 0.307 0.472
Cross-encoder + [eos] 0.216 0.611 0.306 0.612

Table 4: Response selection accuracy R10@1 for models based on BERT [CLS]

Encoding Strategy R10@1 accuracy
Linear Classifier + unfreeze Non-linear Classifier + unfreeze

Bi-encoder 0.103 0.104 0.212 0.316
Cross-encoder + [eos] 0.324 0.675 0.346 0.673

isolation, they lack the rich contextualisation of
cross-encoders. Previous work reports better re-
sponse selection performance from cross-encoders
for written dialogue (Urbanek et al., 2019). How-
ever, recent spoken dialogue research (Fuscone
et al., 2020) as well as our own (Wallbridge et al.,
2021) has shown that both people and models can
make predictions about upcoming conversational
turns based on small amounts of context. We there-
fore compare bi- and cross- encoding strategies to
understand the value of such contextualisation in
the domain of spoken dialogue.

Tables 3 and 4 show that bi-encoders require a
classifier with some degree of non-linearity. Re-
gardless of whether the underlying language model
is frozen or not, bi-encoders with a linear classifier
do not improve on chance performance. In compar-
ison, the cross-encoder improves on chance even
with a frozen language model and a linear classifier.
This is the case for both SBERT- and BERT-based
models, indicating that masked language model
pre-training extracts information that is of some
value for predicting upcoming dialogue turns.

When non-linearity is introduced in the classifier,
bi-encoding outperforms cross-encoding by quite
a margin on top of a frozen SBERT model. This
may reflect similarities between response selection
and the SBERT training objective of contrastive
sentence similarity (Reimers and Gurevych, 2019).
We verify that this result was not caused by the
special [eos] turn delimeter that wasn’t seen during
cross-encoder pre-training by training the same
model without this token added to the input.

Regardless of the underlying LM, the per-

formance gap between unfrozen bi- and cross-
encoders indicates that the lack of contextualisation
may cap bi-encoder performance. This difference
confirms that fine-grained contextualisation is im-
portant for dialogue representations.

Dialogue structure: the importance of [eos]
The effect of special tokens like [eos] on the be-
haviour of large LMs is an active research area.
Some works have found such tokens to have detri-
mental effects on the generalisability of generative
models (Newman et al., 2020) but many recent
models for dialogue representation rely on these
tokens to capture structural characteristics of dia-
logue (Gu et al., 2020; Wolf et al., 2019).

Comparing the cross-encoder performance with
and without [eos] in Table 3 shows that explicit
turn information is extremely valuable for response
selection performance.

Fine-tuning The importance of pre-trained lan-
guage models in NLP can’t be understated, how-
ever spoken dialogue is fundamentally different to
the monological text used for pre-training. Similar
to previous work investigating the importance of
fine-tuning with dialogue data, we find that pre-
trained BERT representations do contain some use-
ful information for response selection, but that fine-
tuning towards the target task is still important (No-
ble and Maraev, 2021). In addition, we find that
fine-tuning is much more beneficial when dialogue
structure information is provided explicitly via the
[eos] token.
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Figure 3: Response selection accuracy vs. psychometric
predictive power

3.3 Is response selection performance a proxy
for Psychometric Predictive Power?

Given the range of response selection results from
our ablations, we consider the relationship be-
tween response selection performance and corre-
lation with human plausibility judgements (PPP).
We find a strong correlation between the two:
ρ = 0.84. This relationship is marginally stronger
if a larger range of response selection accuracies are
considered; comparing response selection perfor-
mance measured as

∑
k∈{1,2,5}[R10@k] and PPP

produces a correlation of ρ = 0.86. To ensure this
correlation was not dominated by human response
selection ability, we also computed this correlation
across only negative responses and found a simi-
larly strong correlation of model response selection
performance and human scores (ρ = 0.82).

This indicates that response selection perfor-
mance can be used as a coarse proxy for how well
a model may correlate with human turn plausibility
judgements. However, response selection perfor-
mance patterns (e.g. SBERT cross-encoding out-
performing bi-encoding) are not reflected in this
relationship. Although the modelling capacity of
the classifier (i.e., linear versus non-linear) did not
have much effect on the response selection per-
formance of cross-encoders (see pairs of points
grouped around R10@1 of 0.47, 0.61, 0.67 in Fig-
ure 3), the impact on PPP is larger.

4 Discussion

Using the task of upcoming dialogue turn predic-
tion, we presented a benchmark for human per-
formance on the widely-used task of response se-
lection: people are able to do this task, but not
perfectly. To the best of our knowledge, this is
the first investigation into the perceptual validity
of response selection for spoken dialogue tran-
scripts. Urbanek et al. (2019) measure human re-

sponse selection using stimuli from written dia-
logues grounded in a virtual world, using sets of 20
responses. However, they note that the large num-
ber of negative samples makes obtaining reliable
judgements from participants difficult. The rating
paradigm proposed here avoids these issues, pro-
vides information about perceptual certainty, and
is independent of the choice of negative samples.

Human performance showed that a fundamental
assumption of response selection – that a single
“correct” upcoming turn can be predicted from pre-
vious context – does not reflect the reality of per-
ception with respect to dialogue acceptability. This
result supports findings in cognitive science that
linguistic perception of acceptability is intrinsically
probabilistic (Lau et al., 2017; Chater et al., 2006).

We then used this quantification of dialogue ac-
ceptability perception to establish the psychome-
tric predictive power of different language model
families, finding that response selection perfor-
mance can be used as a coarse proxy for align-
ment with this aspect of perception, but only to
a certain extent. Strong correlation of BERT-FP
scores and human plausibility ratings suggests
that, as a training objective, the discriminative
response selection task does align with some as-
pects of dialogue acceptability perception. How-
ever, this model achieved “superhuman” response
selection performance. Qualitative differences in
response scoring detailed in Section: Error Anal-
ysis also indicate that this disciminative training
paradigm doesn’t capture the open-ended nature
of dialogue acceptability perception. On the other
hand, TurnGPT produced a moderate correlation
with plausibility judgements, but performed poorly
at response selection. (Urbanek et al., 2019; Wu
and Xiong, 2020) report similar findings regarding
the response selection performance of generative
models compared to retrieval-based models. We
conducted preliminary analysis of quantitative and
qualitative differences between autoregressive and
masked LMs, however given that language model
architecture is known to significantly affect psycho-
metric predictive power measured by other percep-
tual tasks (Wilcox et al., 2020), we believe this to
be a fruitful avenue for future investigation.

Finally, to investigate the strong correlation be-
tween the cross-encoder-style BERT-FP scores and
perceptual judgements of upcoming dialogue turns,
we ablated aspects of the model. In particular,
we examined the importance of contextualisation
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in dialogue representations, the value of includ-
ing turn-taking structure, and whether pre-training
is beneficial. Our bi-encoder models provided a
small amount of dialogue structure information,
however, even our best-performing bi-encoder only
marginally outperforms our baseline of simply mea-
suring the distance between SBERT embeddings
for response selection. This may suggest that this
method of encoding dialogue structure is too weak.
Cross-encoding, on the other hand, provides much
more granular contextualisation. We found cross-
encoders to be much less sensitive to the capacity of
the classifier than bi-encoders. Our cross-encoder
outperformed the SBERT baseline and bi-encoders
by a large margin when dialogue structure is ex-
plicitly encoded in the input (as [eos] tokens). In-
clusion of dialogue structure information and fine-
tuning towards response selection boosted response
selection accuracy by over 30 absolute percentage
points, highlighting the value of turn structure in-
formation for response selection models.

5 Conclusions

In this study, we extend the concept of psycho-
metric predictive power for language models to
dialogue. We define the perceptual behaviour to
be predicted in terms of expectations regarding up-
coming dialogue turns, and ask whether different
styles of language model are predictive of dialogue
turn acceptability judgements from humans.

Using transcripts of spoken dialogue, we find a
strong correlation between the two, but not for all
models: masked language models produce higher
correlations than their autoregressive counterparts.
Ablation studies demonstrate that features of cross-
encoders which enable fine-grained contextualisa-
tion are important for alignment with human accept-
ability judgements. Framing the turn acceptability
rating task as discriminative response selection, we
present a benchmark for human performance on
this task, one of the first to our knowledge. Com-
parisons between human and model performance
on this widely-used dialogue objective indicate that
response selection can be used as a coarse proxy
for alignment with perception of dialogue turn ac-
ceptability but only to a certain extent. Human per-
ception of dialogue turn acceptability is inherently
probabilistic and models make different mistakes
compared to humans.

We hope that these findings encourage develop-
ment of more perceptually-motivated evaluation

and training paradigms in dialogue modelling.

6 Limitations

Psychometric predictive power has so far been con-
tained to isolated sentence comprehension studies.
This work takes steps to extend the notion of psy-
chometric predictive power to more natural forms
of language processing: comprehension of commu-
nication. Given that this is an exploratory study,
there are many limitations, many of which we con-
sider to be potential directions for future work.

The definition for perception used throughout
this study is as generic as possible: predicting up-
coming turns. However, there is ample evidence
that linguistic processing is task-dependent (Huet-
tig and Guerra, 2019; Huettig et al., 2020). Ex-
ploring other quantifications for the perception of
dialogue acceptability would be an interesting av-
enue for future work. Similarly, features of com-
munication such as turn-taking are known to vary
across languages and cultures (Skantze, 2021). As
such, is it unclear how well the findings presented
in this work generalise to other styles and forms of
conversation.

All of the turn representations in this work are
based on a fixed number of turns as context, how-
ever we should also study whether the amount of
context affects LM alignment with human judg-
ments. In our previous work, we found the amount
and type of context to affect human performance
(Wallbridge et al., 2021), while Henderson et al.
(2020) show that it affects response selection per-
formance in models.

Previous works have studied surprisal estimates
computed from different aggregates of word-level
estimates from LMs (Lau et al., 2017; Meister et al.,
2021; Wallbridge et al., 2022). These surprisal
definitions are useful for testing psycholinguistic
theories about information transmission strategies
such as Uniform Information Density (Fenk and
Fenk, 1980; Levy and Jaeger, 2006) and Entropy
Rate Constancy (Genzel and Charniak, 2002), how-
ever we found stronger correlations with human
judgements by using language models to compute
plausibility scores directly. Understanding the gap
between these scores and aggregate word-level sur-
prisal estimates could inform more complex defini-
tions of surprisal.

Although response selection is a pervasive train-
ing objective in dialogue representation research,
there is a growing body of work refining this
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task, and learning representations using additional
dialogue-centric learning objectives such as detec-
tion of turn insertions or deletions (Qiu et al., 2021;
Lee et al., 2021). Future work could consider how
these training signals affect the psychometric pre-
dictive power of models with respect to both re-
sponse selection and plausibility judgements.

This study has been restricted to the lexical
component such dialogues. However, perception
and production of linguistic signals are dependent
on the modality available for transmission, and
what information transmission channels it provides
(Rowe, 1999; Alaçam et al., 2020). Perception
of spoken dialogues and their transcripts has been
shown to differ (Wallbridge et al., 2021, 2022), and
findings for uni-modal data don’t necessarily gen-
eralise to multi-modal settings (Bujok et al., 2022).
We leave the extension of a similar analysis on the
acoustic speech signal for future work.
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A Language Models

A.1 Fine-tuning language models

We employ a range of language models to explore
alignment with dialogue acceptability perception
and response selection performance, including au-
toregressive, masked, and sequence-level models.

TurnGPT TurnGPT is a variant of GPT-2 (Rad-
ford et al., 2019), an autoregressive Transformer-
based model (Vaswani et al., 2017) with 117M
parameters. As reported in the main paper, our
implementation is based on the pretrained GPT-2
model from the Transformers library (Wolf et al.,
2020). We fine-tune the GPT-2 model following the
procedure laid out by (Ekstedt and Skantze, 2020).
Use our training portion of Switchboard, we train
with the cross-entropy loss of the original GPT-2
model and default parameters. We fine-tune with
early stopping, and achieve our best model in terms
of validation loss after 2 epochs of training.

BERT-FP We employ BERT-FP to test retrieval-
based dialogue models (Han et al., 2021). The
architecture includes a simple linear MLP on top
of a BERT model (Devlin et al., 2019). The orig-
inal paper presents a two-stage training strategy
for response selection. First, the model is post-
trained using the task of utterance relevance clas-
sification, then it is fine-tuned towards response
selection. To facilitate comparisons across architec-
tures, we report experiments involving fine-tuning
with no post-training in the main paper. How-
ever, we find that following the full procedure of
post-training before fine-tuning increases response
selection accuracy R10@1 by 3 absolute points
(R10@[1, 2, 5] = 0.705, 0.840, 0.975).

As reported in the main paper, we implement
this model using Pytorch and the pre-trained
bert-base-uncased BERT model from the Trans-
formers library. The full model has 109,483,777
trainable parameters. Fine-tuning is done with a
cross-entropy loss. The response selection training
set consists of an even split of positive and nega-
tive (context, response) pairs. Negative pairs are
generated by sampling a turn from the elsewhere
in the training set. To maintain consistency with
BERT pre-training, joint (context, response) pairs
are presented in the following format:

([CLS], c1, [eos], ..., ck, [eos], [SEP ], r, [SEP ])
(1)

where the [eos] token represents the end of a
speaker’s turn.

We follow the fine-tuning procedure from the
BERT-FP paper. First, this involves splitting con-
versations into short (context,response) segments,
resulting in 267,562 samples for training the cross-
and bi-encoders. Second, fine-tuning is imple-
mented using recent “BERTology” research to mit-
igate one of the pervasive issues with fine-tuning
large, pre-trained LMs: training instability (Mos-
bach et al., 2021; Merchant et al., 2020). Com-
pared to the BERT fine-tuning approach presented
in Devlin et al. (2019), this involves using smaller
learning rates with bias correction to avoid vanish-
ing gradients early in training, and increasing the
number of epochs. We use a batch size of 16 and
make use of the Pytorch AdamW optimizer with
an initial learning rate of 1e− 5. With early stop-
ping, out best model in terms of validation loss is
achieved at epoch 8.

Bi- and Cross-encoders For our ablation stud-
ies, we test a number architectural choices, includ-
ing bi- versus cross-encoder set-ups, linear versus
non-linear classifiers, and sequence representations
from the BERT [CLS] token or SBERT representa-
tions (bert-base-uncased for BERT-based mod-
els and all-MiniLM-L6-v2 for SBERT; both mod-
els are both from the Transformers library). These
are all build on the same codebase as our BERT-FP
experiments. We fine-tune all of these architectures
following the procedure described above for BERT-
FP. As reported in the main paper, the classifiers
consist of either a single linear-layer classifier, or
three fully-connected ReLU layers with dropout
and a final sigmoid layer.

To match the BERT input format, joint (context,
response) pairs are presented in the following for-
mat for SBERT models:

(c1, [eos], c2, [eos], c3, [eos], r) (2)

A.2 TurnGPT surprisal definitions
We compute response scores from TurnGPT using
various sequence-level surprisal definitions from
previous works (Lau et al., 2017; Meister et al.,
2021; Wallbridge et al., 2022). These include
global surprisal metrics which account for surprisal
at the turn level (Stotal, Smean, Srelative), and local
netrics which provide more granular information at
the token level (Smax, Svar). For a given (context
c, response r) pair, each metric is defined as
follows:

Stotal(r|c) =
∑N
n=1[S(rn|r<n, c)]
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Smean(r|c) = 1
N

∑N
n=1[S(rn|r<n, c)]

Srelative(r|c) = Smean(r|c)− Smean(r)

Smax(r|c) = max[S(rn|r<n, c)]

Svar(r|c) =
1

N−1
∑N
n=2[S(rn|r<n, c)− S(rn−1|r<n−1, c)]2

B Error Analysis: Corpus Excerpts

Tables 5, 6, 7, 8 contain examples of the stim-
uli collected in our previous work (Wallbridge
et al., 2022) along with associated scores from both
human participants, and the BERT-FP language
model. Each stimuli consists of a variable num-
ber of conversational turns as context (1-4), and
10 potential upcoming responses (one of which is
the true response in the particular conversation).
Participants were presented with a context and a
single response, and were tasked with rating how
plausible the response was given the context.

Tables 5, 6, 7 show human misrankings while
Table 8 contains the stimuli misranked by BERT-
FP.
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Table 5: Example of response selections stimuli (sw3512_14) with human and BERT-FP scores.
Table (A) contains the set of conversational turns provided as context. Table (B) contains the set of 10 responses–
these include the True upcoming turn for the given context and the 9 negative samples. Each response is displayed
with it’s true response label, the median plausibility score it recieved from participants (collected in our previous
work (Wallbridge et al., 2022) study), and its BERT-FP response score.

(A) Context Speaker A that’s right
Speaker B and then it’s just so noisy that you can’t visit
Speaker A oh i know
Speaker B know and normally when i’m eating out i you know

with people and i wanna sit and talk i mean

(B) Responses Human BERT-FP Transcript

Negative 4.50 0.57 mhm
True 4.40 0.99 that’s the half the fun is the conversation right

Negative 3.83 0.60 dear
Negative 3.40 0.15 true you know and you have to start thinking about is

it is it worth spending the money to go see it or shall
i just wait

Negative 2.60 0.12 hello
Negative 2.00 0.17 but a lot of the stuff they do really you know evidently

is pretty easy but i’ve just never
Negative 2.00 0.00 was lonely and she needed company for her mother

and so she opened a nursing home and initially started
with eight ladies

Negative 1.80 0.02 it’s uh it’s about an eight or nine hour drive really i
make it in two days because i i don’t push it

Negative 1.75 0.03 yeah when he played Danny Boy it just almost
brought tears to your eyes because he can make that
flute sing

Negative 1.40 0.01 yeah it’s raining out here and i just steam cleaned my
carpet today and i really don’t wanna let the dog in
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Table 6: Example of response selections stimuli (sw4040_20) with human and BERT-FP scores.

(A) Context Speaker A say you went back to school
Speaker B the wife went back to school
Speaker A i see uhuh
Speaker B he’s been there for almost a year now

(B) Responses Human BERT-FP Transcript

Negative 4.83 0.51 yeah
True 4.50 0.94 um gee i think where where does she go to school

Negative 3.00 0.06 what kind of things have you read
Negative 2.60 0.40 but that that’s if
Negative 2.25 0.04 um she was referred to me by a couple of people and

she turned out to be wonderful i couldn’t have asked
for anything better i don’t think

Negative 2.20 0.01 it’s so much easier to sit there and besides i can be
doing other things and still listening to the news

Negative 2.00 0.01 you you say show music like Broadway musical type
show music

Negative 2.00 0.02 and you they find everything i mean they find out
everything about you they want to know your you
know where you live what you do what you know
and some of the questions

Negative 1.50 0.07 the starter was Bosch American so
Negative 1.17 0.00 that’s there for direct yeah the direct sun beating on

it yeah that’s right

Table 7: Example of response selections stimuli (sw3959_32) with human and BERT-FP scores.

(A) Context Speaker A uhuh oh my
Speaker B down in Houston for um several years seven years

and then uh my son is a CPA another has a business
degree

(B) Responses Human BERT-FP Transcript

Negative 4.80 0.63 before that did he go somewhere else or
True 3.60 0.93 my

Negative 2.33 0.00 that uh lots lots of new uh newsmen were created dur-
ing that so it will be interesting to see what happens

Negative 2.00 0.00 you know with um the US funding Israel and you had
the um Soviet Union funding the Arab countries

Negative 1.67 0.58 um yeah
Negative 1.67 0.02 uh what kind of lawn and garden work do you wind

up doing
Negative 1.50 0.08 something that we’re looking forward to
Negative 1.25 0.00 painted on T-shirts or sweat shirts at all
Negative 1.00 0.01 i do know of a way to get around the computer gen-

erated calls
Negative 1.00 0.00 we try to stay away from those things which might

have uh salmonella in them
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Table 8: Example of response selections stimuli (sw2303_59) with human and BERT-FP scores.

(A) Context Speaker A so they’re going to be
Speaker B that’s another and that’s another interesting question

should judges be elected or appointed

(B) Responses Human BERT-FP Transcript

True 4.60 0.18 that’s true that’s true well
Negative 4.00 0.50 hm
Negative 2.80 0.90 idea
Negative 2.60 0.01 anyway what do you think we’ve gained from the

space flights
Negative 2.40 0.49 makes you wish they had uh still had indentured

servitude for this sort of thing
Negative 1.25 0.12 mean like those you know twenty thousand dollar

toilets
Negative 1.17 0.14 well the the you know those little arms are supposed

to twist almost any
Negative 1.00 0.00 yeah it’s nothing but woods up here
Negative 1.00 0.00 it’s uh it’s about an eight or nine hour drive really i

make it in two days because i i don’t push it
Negative 1.00 0.00 i i i used to exercise at night and i found that you

don’t come home tired you come home with a new
found energy so you
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Abstract

Language models can memorize a considerable
amount of factual information during pretrain-
ing that can be elicited through prompting or
finetuning models on tasks like question an-
swering. In this paper, we discuss approaches
to measuring model factual beliefs, updating
incorrect factual beliefs in models, and visualiz-
ing graphical relationships between factual be-
liefs. Our main contributions include: (1) new
metrics for evaluating belief-updating meth-
ods focusing on the logical consistency of be-
liefs, (2) a training objective for Sequential,
Local, and Generalizing updates (SLAG) that
improves the performance of existing hypernet-
work approaches, and (3) the introduction of
the belief graph, a new form of visualization
for language models that shows relationships
between stored model beliefs. Our experiments
suggest that models show only limited consis-
tency between factual beliefs, but update meth-
ods can both fix incorrect model beliefs and
greatly improve their consistency. Although
off-the-shelf optimizers are surprisingly strong
belief-updating baselines, our learned optimiz-
ers can outperform them in more difficult set-
tings than have been considered in past work.1

1 Introduction

Pretrained language models have been shown to
store a large amount of factual information about
the world that can be elicited by cloze prompting
(Petroni et al., 2019), few-shot learning (Brown
et al., 2020), or finetuning models for question
answering or true/false statement classification
(Roberts et al., 2020). We refer to this kind of
stored information as model factual beliefs.2

1Code is available at https://github.com/
peterbhase/SLAG-Belief-Updating.

2We use the term factual belief rather than knowledge
as in related work (Zhu et al., 2020; De Cao et al., 2021)
because “belief” is a weaker term than “knowledge.” In a
traditional view of knowledge as Justified True Belief, it is
more difficult to describe information as knowledge than as a
belief (Schwitzgebel, 2019).

While pretrained models clearly store factual be-
liefs, it is not well understood how to efficiently
edit the stored beliefs. Model editing is an exciting
recent direction of research with several practical
uses cases (Sinitsin et al., 2020; Zhu et al., 2020;
De Cao et al., 2021; Mitchell et al., 2021). For
LMs, these uses include updating factually inaccu-
rate outputs and preventing other unwanted model
outputs (e.g. toxic generated text) without expen-
sive data curation and retraining efforts. These are
important applications given that LMs (1) struggle
with future data when trained on data from the past
(Lazaridou et al., 2021; Dhingra et al., 2021), (2)
often generate morally undesirable text (Gehman
et al., 2020; Bender et al., 2021), and (3) simply
give inaccurate outputs for tasks like question an-
swering (Lin et al., 2021). Notably, there is good
evidence that scaling models to larger sizes will not
fix these particular problems or may even exacer-
bate them (Lazaridou et al., 2021; Gehman et al.,
2020; Lin et al., 2021).

In the remainder of this paper, we present new
methods for measuring, updating, and visualizing
factual beliefs in LMs. We further describe each
of these three contributions below. Figure 1 repre-
sents the core ideas behind measuring and updating
factual beliefs, while belief visualization is done
via belief graphs (shown later in Figure 2).

Measuring factual beliefs. We measure the de-
gree to which LMs possess consistent factual be-
liefs using models finetuned on fact verification and
question answering tasks. Beyond simply checking
individual model responses, we want to assess the
structural properties of model outputs: Are they
consistent under paraphrase? Are they logically
consistent? Does changing one belief correctly
change other entailed beliefs? Does it erroneously
change other unrelated beliefs? Past work has fo-
cused primarily on consistency under paraphrase
(Elazar et al., 2021; De Cao et al., 2021; Mitchell
et al., 2021). Here, we adapt data from Talmor
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SLAG: Sequential, Local, and Generalizing Model Updates

(Main Input)

(Entailed Data)

(Local Neutral Data)

(Paraphase Data)

(Random Data)

A viper is a vertebrate.

A viper has a brain.

A viper is venemous.

Chile is a country.

Vipers are vertebrates. 

Figure 1: Relying only on a Main Input Mi, we want to update a language model’s weights in order to (1) change
the output for Mi to a desired output y∗i , (2) change the output for paraphrases of Mi, (3) appropriately change
outputs for data Ei entailed by the tuple (Mi, y

∗
i ), and (4) avoid changing outputs for other logically neutral data

LNi, even if it is similar (local) to Mi. This is done iteratively for T requested updates.

et al. (2020) to measure consistency under entail-
ment (including for contrapositives), and we use
the Wikidata5m dataset (Wang et al., 2021) to con-
struct logically neutral belief pairs for checking
that models do treat these beliefs as independent.

Updating factual beliefs. We propose a Sequen-
tial, Local, and Generalizing belief update objec-
tive (SLAG) that substantially improves the per-
formance of the comparable KNOWLEDGEEDI-
TOR method from De Cao et al. (2021). KNOWL-
EDGEEDITOR is a learned optimizer that edits a
model’s weights to change its prediction on an in-
put while satisfying other desiderata, like consis-
tency under paraphrase. Principally, we identify
more difficult training data for the learned opti-
mizer, and we learn to apply many small edits
rather than one big edit. These changes markedly
improve the update success rate and lower the
rate at which other beliefs are corrupted. We also
find that KNOWLEDGEEDITOR almost totally fails
when updating multiple beliefs in a row as opposed
to a changing a single belief. However, by explic-
itly training the optimizer to update multiple beliefs
sequentially, we recover much of the lost perfor-
mance. Lastly, we advocate that these methods be
evaluated for their ability to fix false or morally
undesirable model beliefs, rather than to arbitrarily
change beliefs to plausible alternatives as in past
work (De Cao et al., 2021; Mitchell et al., 2021).

Visualizing belief graphs. We explore a new form
of visualization for understanding language mod-
els, the belief graph. Given a set of factual beliefs,
we construct belief graphs by changing each model
belief and checking what other beliefs are sensitive
to those changes. Each belief becomes a node, and

directed edges between nodes show that updating
one belief changes the other. We discuss graph met-
rics that help summarize the dependencies between
model beliefs.

We summarize our main conclusions as follows:
1. ∼100M parameter models exhibit limited belief-

like qualities, as paraphrase consistency scores
are under 70%, and models show mixed levels
of consistency under entailment (Sec. 5.1).

2. Off-the-shelf optimizers are quite effective up-
date methods, often outperforming learned opti-
mizers when updating a single belief (Sec. 5.2).

3. When updating multiple beliefs in a row, per-
formance greatly declines across methods, but
SLAG can improve learned optimizers’ perfor-
mance beyond strong baselines (Sec. 5.2).

4. Belief graphs reveal many nonsensical depen-
dencies between model beliefs, and they show
the presence of “core” model beliefs that are
connected to many other stored facts (Sec. 6).

2 Related Work

Measuring factual beliefs in language models.
Much past work has explored how information is
stored and represented in pretrained language mod-
els (Rogers et al., 2020). Petroni et al. (2019) pro-
vide evidence that LMs store relational information
between entities, and Roberts et al. (2020) show
that LMs can answer open-ended questions. Subse-
quent work has further explored how much knowl-
edge is stored in LMs (Heinzerling and Inui, 2021).
Most relevant to our work are studies from Tal-
mor et al. (2020) and Elazar et al. (2021). Talmor
et al. (2020) train LMs to perform True/False clas-
sification of factual claims, and they measure how
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beliefs correlate between entailed facts. We use
their LeapOfThought data as a part of our SLAG
objective (Eq. 1) and to measure model consis-
tency under entailment before and after updating
beliefs in models. Meanwhile, Elazar et al. (2021)
measure the consistency of model predictions for
paraphrased inputs. We adopt their metric for para-
phrase consistency as a measure of belief. In other
recent work, Kassner et al. (2021) measure consis-
tency under entailment and paraphrase for factual
belief with a new small-scale dataset, BeliefBank.

Updating factual beliefs in language models.
Approaches to making targeted updates to model
beliefs vary along a few dimensions. First is
whether the methods alter model training or oper-
ate in a post-training setting. Sinitsin et al. (2020)
use a meta-learning objective during training to
encourage ease of editing afterwards. A larger
family of methods perform post-training model
updates: Dai et al. (2021) propose a hand-crafted
algorithm that edits model weights, while Zhu
et al. (2020) use projected gradient descent for
batches of points. De Cao et al. (2021) train a
hypernetwork (learned optimizer) that processes
model gradients in order to produce a new model
that (1) gives the desired output for an input, while
(2) satisfying other objectives like minimizing
changes in predictions for other data. Mitchell et al.
(2021) focus on scaling up the underlying hypernet-
work architecture, which is a complementary but
orthogonal research direction that is not the focus
of this paper. In a different approach, Kassner
et al. (2021) “update” model beliefs by adding in
relevant information to the input at test time. But
this approach does not change the model weights
and hence does not influence model outputs
on all other potentially relevant inputs. Lastly,
Meng et al. (2022) provide a specialized method
focused on rank-one updates to MLP matrices in
Transformer-based LMs, but they do not address
the problem of updating multiple model beliefs
and do not measure model consistency under
entailment or unintended corruption of local
neutral beliefs (metrics (5) and (6) in Sec. 3).

Visualizing factual beliefs in language models.
We do not know of any prior work on visualizing
dependencies between factual beliefs in language
models, although our approach is notably inspired
by older AI methods like Bayes Nets (Pearl, 2009).
Different from Bayes Nets, we draw dependencies
between two individual nodes when editing the

model to change one belief also results in a change
to the other belief, rather than there being a
probabilistic model specifying the relationship
between the two beliefs.

3 Updating Beliefs in Language Models

Here we describe the problem of updating model
beliefs and our learned optimizer method. We also
discuss metrics for measuring factual beliefs below,
while our Belief Graphs are presented in Sec. 6.

Problem statement and metrics. We suppose
we have a model fθ = pθ(y|x) parametrized by
θ. For an input xi that has some undesired model
output ŷi = argmaxy pθ(y|x), we wish to obtain
a new model θ∗ that produces a desired output y∗i
for xi. This new model θ∗ should also fulfill a
few other desiderata. As in past work (De Cao
et al., 2021; Mitchell et al., 2021), we operational-
ize these desiderata in the following metrics:

1. Update Success Rate (Main Input): The pro-
portion of Main Inputs xi for which the up-
dated model gives the desired output y∗i .

2. Update Success Rate (Paraphrase): The pro-
portion of paraphrases of xi for which the
updated model gives the same new prediction
as it does for xi (averaged across xi).

3. Retain Rate (All Data): The proportion of
the updated model’s predictions which are un-
changed for all data besides the Main Input.

4. ∆-Acc (All Data): The change in accuracy on
all other data besides the Main Input.

In practice, Retain Rate (All Data) and ∆-Acc are
computed with random subsets of a dataset, since
these must be computed after every belief update.
We add two metrics to those used in past work:

5. Update Success Rate (Entailed Data): The
new model’s accuracy on data that is logically
entailed by the new Main Input prediction.

6. Retain Rate (Local Neutral): The proportion
of the updated model’s predictions which are
unchanged for data that is similar to the Main
Input but still logically neutral.

We use Update Success Rate (Entailed Data) to
measure logical consistency for an updated model,
since changing one belief entails changes in logi-
cally entailed beliefs. Retain Rate (Local Neutral)
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Dataset Data Type Input Label(s)

zsRE Main Input Player Ali Kanaan plays for what team? {Sporting Al Riyadi Beirut}Paraphrase What team is Ali Kanaan associated with?

Wikidata5m

Main Input Mary Good has relation ‘award received’ to {Garvan-Olin Medal; Arkansas
Women’s Hall of Fame; etc.}Paraphrase Mary Lowe Good has relation ‘winner of’ to

Local Neutral Mary Good has relation ‘educated at’ to {The University of Arkansas; U
Arkansas; etc.}

FEVER Main Input Tardigrades are also known as space bears. True
Main Input The Lion belongs to the genus Vulpes. False

LeapOfThought Main Input A viper is a vertebrate. True
Entailed Data A viper has a brain. True

Table 1: Example datapoint from each dataset, and auxiliary data that accompanies the Main Input.

uses special Local Neutral data. Unlike random
data, Local Neutral data is guaranteed to be logi-
cally independent of the Main Input, while still be-
ing similar (local) to it, which we ensure by using
data with the same subject entity. Together, these
six metrics better cover the criteria for belief out-
lined by Newen and Starzak (2020). We compute
the metrics using data of the kind shown in Table 1.

Evaluation procedure. To date, methods have
been evaluated on the basis of their ability to
change model predictions for all data. Moreover,
the desired labels {y∗i }ni=1 on sequence prediction
tasks have each been selected from the model’s pre-
dictive beam search (De Cao et al., 2021; Mitchell
et al., 2021). We propose for evaluation to focus
on a more valuable but difficult setting: changing
the predictions on incorrect points to be correct.

Sequential updates. The standard evaluation in
past work is to update a single model belief, evalu-
ate the new model, then rollback the update before
repeating the process for each test point. We ob-
tain sequential versions of all metrics by applying r
model updates in a row before checking the metrics,
meaning there are floor(n/r) measurements for a
test set of n points. We consider it important to
evaluate a sequential setting because, in practice, it
is likely that model developers will want to update
many factual beliefs of a trained model over time.

Belief updating method. As our base architecture,
we use the KNOWLEDGEEDITOR architecture from
De Cao et al. (2021), which is a hypernetwork that
takes in model gradients as inputs and outputs a
new update to apply to the model parameters. For
further details of this method, we refer readers to
Appendix A. Let it suffice for now to observe that
a new model is given as a differentiable function

θ∗ = θ + gϕ(xi, ŷi, y
∗
i , θ)

using the learned optimizer gϕ, current LM weights
θ, Main Input xi, current prediction ŷi, and desired
model output y∗i . Then, we can package the above
update as θ(k+1) = θ(k) + gϕ(xi, ŷi, y

∗
i , θ

(k)), and
obtain new model parameters via a looped update,

θ∗ = θ(k) +
K−1∑

j=0

gϕ(xi, ŷi, y
∗
i , θ

(k+j))

= Update(xi, ŷi, y∗i , θ
(k);ϕ,K)

taking K small steps from initial parameters θ(k).
De Cao et al. (2021) use such a loop at test time;
we incorporate the loop into training to align the
train and test-time distributions.

Learned optimizer training. The training objec-
tive for KNOWLEDGEEDITOR includes differen-
tiable terms corresponding to Update Success for
the Main Input and paraphrases, as well as Retain
Rate for all other data. We also consider terms
for Update Success on entailed data and the Local
Neutral Retain Rate, when this is possible given
available data. The overall objective requires sev-
eral kinds of additional data for each point, which
we denote by DR for other random data, DLN for
local neutral data,DE for entailed data, andDP for
paraphrases of xi. For a data point xi with desired
prediction y∗i , the full objective is then:

L(ϕ;xi, ŷi, y∗i , θ) = λ1LTask(fθ∗(xi), y
∗
i )

+ λ2
1

|DP |
∑

xP∈DP

LTask(fθ∗(xP ), y
∗
i )

+ λ3
1

|DE |
∑

xE ,yE∈DE

LTask(fθ∗(xE), yE)

+ λ4
1

|DLN |
∑

xLN∈DLN

KL(fθ∗(xLN )||fθ(xLN ))

+ λ5
1

|DR|
∑

xR∈DR

KL(fθ∗(xR)||fθ(xR)) (1)
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where LTask is the loss used to get gradients for fθ.
We use the Cross Entropy loss for binary classifica-
tion and sequence-to-sequence tasks.

We optimize this objective w.r.t. ϕ using
AdamW (Loshchilov and Hutter, 2019). To obtain
update labels {y∗i }ni=1, we always use the oppo-
site class in binary classification. For sequence-to-
sequence tasks, we use the correct label when ŷi
is incorrect, and when ŷi is correct, we randomly
select another label from the training data. This
choice is in contrast to De Cao et al. (2021) and
Mitchell et al. (2021), who use samples from the
model beam search as update labels for all points.

SLAG objective. To prepare the update method for
a sequential-update setting, we consider training
gϕ to update multiple datapoints in a row. Using
the per-datapoint loss in Eq. 1, we obtain our Se-
quential, Local, and Generalizing (SLAG) loss for
a set of r Main Inputs D = {xi, ŷi, y∗i }ri=1 as

LSequential(ϕ;D, θt)=
r∑

i=1

L(ϕ;xi, ŷi, y∗i , θt+i) (2)

where θt+i = Update(xi, ŷi, y∗i , θt+i−1;ϕ,K) are
the model parameters obtained from updating on
the first i points in D (starting from θt). This objec-
tive allows us to train gϕ to update multiple beliefs
in a row. To ensure training with this objective is
still efficient, we limit how far back through the up-
date history we backpropagate when computing the
gradient w.r.t. ϕ for each term in the RHS sum of
Eq. 2. Each parameter vector θt depends on ϕ and
θt−1. We always apply the stop-gradient function
to the most recent vector θt−1 to prevent backprop-
agating through it (visualized in Appendix Fig. 3).
This choice allows our memory use to remain con-
stant in r (see Appendix Fig. 4).

4 Experiment Setup

Datasets. We run experiments with four datasets
(example data shown in Appendix Table 15). (1)
FEVER includes 115,409 True/False factual claims
(Thorne et al., 2018). We use the original test set
of 10,444 points, and we randomly split the train-
ing data into 94,469 train points and 10,496 dev
points. (2) zsRE includes 151,631 questions based
on relational knowledge from Wikipedia, which
we randomly shuffle into train/dev/test splits with
80/10/10% of the data (Levy et al., 2017). Tal-
mor et al. (2020) introduce (3) the LeapOfThought
dataset, consisting of factual claims that are en-
tailed to be true or false depending on a context

Belief Consistency ↑
Dataset Paraphrase Entailed Contrapos.

LeapOfThought - 85.6 (1.1) 16.5 (2.7)
zsRE 69.5 (1.1) - -
Wikidata5m 25.8 (0.5) - -

Table 2: Belief metric results across datasets.

Paraphrase Consistency ↑
Dataset Model Incorrect Model Correct

zsRE 61.39 (1.33) 91.82 (1.17)
Wikidata5m 24.55 (0.48) 37.20 (2.06)

Table 3: Paraphrase consistency by the correctness of
the model prediction on the Main Input.

fact. We filter the data so that the context facts are
unique, then shuffle the resulting 14,939 points into
train/dev/test splits with 60/10/30% of the data.

In order to get Local Neutral data, we construct
(4) a sequence prediction task using Wikidata5m,
a relational knowledge base with over 20 million
triplets (Wang et al., 2021). Each input consists
of an entity e1 and relation r, and the label is an-
other entity e2 that completes the triplet. All inputs
come in pairs that share the same entity e1 but use
different relations with different labels. In general,
the completion e2 to the Main Input triplet (e1, r1,
e2) has no logical consequences for its paired in-
put, (e1, r2, ?). The paired points are also local to
the Main Input, i.e. they pertain to the same entity
e1 as the Main Input. We obtain four paraphrases
for each Main Input using different aliases for the
entity and synonyms of the relation. We construct
a train set of 150k points and dev/test sets of 10k
points each. See Appendix B for further details.

Models. We train five models with different ran-
dom seeds for each dataset, using RoBERTa-base
for binary tasks and BART-base for sequence-to-
sequence tasks (accuracies in Appendix Table 14).
For each of the five models, we train one learned
optimizer using SLAG and one with the objective
from De Cao et al. (2021), which we list as KE in
tables below. Our model selection criterion is the
mean of: average Update Success Rate (across data
types), Retain Rate (only for Local Neutral data),
and ∆-Acc for All Data. We tune the SLAG objec-
tive terms for each task separately (see Appendix
Table 10 for final selections; results discussed in
Appendix E). Other hyperparameters are given
in Appendix B. To summarize the differences
between SLAG and KNOWLEDGEEDITOR: (1) we
useKtrain=Ktest rather thanKtrain=1; (2) we adopt
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Single-Update Setting Update Success Rate Retain Rate ∆-Acc

Dataset Method Main Input Paraphrases Entailed Data Local Neutral All Data All Data

FEVER
AdamW 100 (0.0) - - - 98.80 (0.2) 0.22 (0.1)
KE 99.98 (<0.1) - - - 98.28 (0.3) -0.24 (0.1)
SLAG 99.99 (<0.1) - - - 98.41 (0.2) -0.20 (0.1)

LeapOfThought
SGD 100 (0.0) - 72.48 (4.6) - 95.52 (0.4) 1.23 (0.8)
KE 99.78 (0.4) - 74.48 (4.4) - 93.50 (1.3) -1.33 (1.1)
SLAG 100 (0.0) - 75.50 (4.3) - 94.92 (1.4) -1.31 (1.2)

zsRE
SGD 99.36 (0.1) 94.44 (0.6) - - 74.73 (0.4) -0.43 (0.1)
KE 84.73 (1.4) 89.26 (1.8) - - 71.55 (2.4) -2.19 (0.4)
SLAG 94.29 (0.4) 94.71 (0.5) - - 80.48 (1.3) -0.29 (0.1)

Wikidata5m
SGD 98.05 (0.3) 68.78 (0.8) - 41.46 (1.0) 58.62 (0.6) -1.97 (0.3)
KE 74.57 (2.9) 58.05 (2.2) - 40.84 (1.8) 53.58 (2.2) -3.03 (0.5)
SLAG 87.59 (0.6) 80.70 (0.9) - 47.85 (1.0) 63.51 (1.3) -1.71 (0.3)

Table 4: Belief update metrics for off-the-shelf optimizers, KNOWLEDGEEDITOR (KE) from De Cao et al. (2021),
and SLAG, with rtest = 1. Bolded numbers are the best in their group at a statistical significance threshold of
p < .05 (or lower). Our SLAG objective improves over KE, but off-the-shelf optimizers perform surprisingly well.

training labels using real data labels rather than
alternatives from the model’s beam search; (3) our
objective terms differ following tuning; and (4) we
can optimize for updating multiple beliefs in a row.

Baselines. We use off-the-shelf optimizers as base-
lines. We tune the baseline hyperparameters sep-
arately for each dataset, selecting among several
kinds of optimizers, learning rates, and the num-
ber of update steps. The selection criterion is the
same as the criterion outlined for learned optimiz-
ers above. The resulting baselines are surprisingly
strong (see Appendix Table 12 for final selections).

Hypothesis testing. We obtain 95% confidence
intervals and perform hypothesis tests via block
bootstrap, resampling model seeds and data points
(Efron and Tibshirani, 1994). For ablation experi-
ments, we run only one model seed per condition.

5 Experiment Results

5.1 Do LMs have consistent factual beliefs?

We measure Paraphrase Consistency, Entailment
Acc, and Contrapositive Acc for finetuned task
models. Paraphrase Cons. is the fraction of para-
phrase pairs where the model produces the same
output (Elazar et al., 2021). Entailment Acc is the
model accuracy on data that is entailed by the Main
Input. For LeapOfThought (see Table 1), “Main
Input xi is true” implies “entailed input xE has
label yE ,” but the inverse (¬A ⇒ ¬B) does not
necessarily hold. Therefore, we compute Entail-
ment Acc only where the Main Input prediction is
correct. We do know that the contrapositive holds:
“Entailed input xE does not have label yE” implies

Update Success Rate ↑ ∆-Acc ↑
Desired Label Main Input Paraphrase All Data

Beam Label 97.41 (0.3) 97.03 (0.4) -0.30 (0.1)
Correct Label 94.46 (0.7) 94.45 (0.7) -0.24 (0.1)

Table 5: Evaluation difficulty by desired model output,
for a learned optimizer trained with SLAG on zsRE.

that “Main Input xi is false.” So for Contrapositive
Acc, we measure how often the model follows this
rule, when the antecedent holds of its prediction.

Belief measurement results. Table 2 shows the be-
lief metrics for each dataset. We find that ∼100M
parameter models show limited evidence of having
consistent factual beliefs. Paraphrase consistency
is 69.50% (± 1.09) for zsRE and much lower for
Wikidata5m (25.84%±0.53). While entailment ac-
curacy is high for LeapOfThought (85.63%±1.08),
the model is consistent under the contrapositive
only 16.51% (± 2.71) of the time. Overall, these
results are not nearly as consistent as we would
hope for factual beliefs to be. Interestingly, the
metrics are much higher when the model predic-
tion on the Main Input is correct (Table 3).

5.2 Can we update factual beliefs in LMs?

First, we compare two evaluation procedures for
sequence prediction tasks: correcting model be-
liefs versus changing them to an alternative from
the model’s beam search. We do so for zsRE us-
ing SLAG. Next, we compare belief update per-
formance between KNOWLEDGEEDITOR, SLAG,
and off-the-shelf optimizers. We report results in
single-update (rtest = 1) and sequential-update
(rtest = 10) settings. See Appendix Fig. 5 for
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Sequential-Update Setting Update Success Rate Retain Rate ∆-Acc

Dataset Method Main Input Paraphrases Entailed Data Local Neutral All Data All Data

FEVER
AdamW 92.81 (1.3) - - - 91.86 (1.4) 1.16 (0.6)
KE 74.13 (1.8) - - - 39.86 (0.7) -27.13 (1.3)
SLAG 91.27 (2.9) - - - 70.30 (5.8) -11.96 (4.5)

LeapOfThought
SGD 100 (0.0) - 61.34 (5.0) - 82.62 (0.8) -4.93 (1.0)
KE 96.14 (2.3) - 49.27 (6.0) - 72.45 (0.9) -15.03 (1.0)
SLAG 100 (0.0) - 50.46 (5.5) - 74.02 (1.1) -13.03 (1.3)

zsRE
SGD 82.71 (0.6) 90.81 (0.7) - - 40.49 (0.6) -2.38 (0.3)
KE 0.10 (<0.1) 36.55 (1.4) - - 0.05 (<0.1) -20.98 (0.7)
SLAG 87.57 (0.6) 92.20 (0.7) - - 47.19 (0.7) -1.74 (0.3)

Wikidata5m
SGD 56.82 (0.8) 54.49 (0.7) - 6.40 (0.4) 26.37 (0.6) -3.96 (0.4)
KE 0 (0.0) 40.84 (0.9) - 0 (0.0) 0 (0.0) -10.05 (0.6)
SLAG 58.27 (1.0) 65.51 (0.9) - 7.36 (0.5) 27.76 (0.7) -3.62 (0.4)

Table 6: Belief update results when a model is sequentially updated rtest=10 times. Here, SLAG uses rtrain=R. On
sequence prediction tasks in this setting, SLAG can outperform the off-the-shelf optimizers across metrics.

an ablation across rtest.

Correcting beliefs vs. changing factual beliefs.
Given the results in Table 5, we find that correcting
model outputs is harder than simply changing them
to a plausible alternative. Update Success rises by a
full 2.96 (±0.48; p<1e−4) points for Main Inputs
and 2.58 (±0.81; p<1e−4) for Paraphrases, while
∆-Acc is virtually unchanged. This suggests that
that past work has overestimated the efficacy of
belief update methods for actually fixing models.
Henceforth we evaluate methods according to their
ability to update model beliefs to be true.

Update method results (single update). Table 4
shows the results in a single-update setting. First,
we find that off-the-shelf optimizers are very effec-
tive across the board. The baselines show Main
Input Update Success Rates of 98%+ across tasks
with competitive or even positive ∆-Acc scores.3

When strongly tuned, these baselines outperform
learned optimizers on most metrics here.

However, SLAG surpasses the baselines in a few
places. All Data Retain Rate on zsRE rises by
5.77 points (±1.43; p<1e−4), and on Wikidata5m
Paraphrase Update Success rises by 11.92 (±1.20;
p<1e−4) and the Local Neutral Retain Rate by
6.40 (±1.41; p<1e−4). SLAG also greatly im-
proves over KE for sequence prediction tasks.

Interestingly, we observe that belief updates
greatly improve paraphrase consistency and entail-
ment accuracy (SLAG results in Table 7). Updates
improve Paraphrase consistency by 33.14±1.46 on

3Positive ∆-Acc values are possibly due to distribution
shift in the test split. In FEVER, for instance, the train and
dev data are 73% True, while test data is 50% True. On the
dev split, AdamW achieves a negative ∆-Acc, -0.18 (±0.11).

Metric Before Update After Update

Entailment Acc 58.30 (5.7) 75.50 (4.3)
Para. Cons (zsRE) 61.39 (1.3) 94.53 (0.6)
Para. Cons (Wiki) 24.69 (0.5) 84.56 (0.9)

Table 7: Entailment Acc and Paraphrase Consistency
rise greatly after model updates to incorrect points.

zsRE and 59.87±1.09 on Wikidata5m, while En-
tailment Acc rises by 17.20±7.10 points.

Update method results (sequential updates).
We give results for a sequential update setting
(rtest=10) in Table 6. Immediately we see this is a
much more difficult evaluation, as metrics are gen-
erally far lower for each dataset. Next, we observe
that learned optimizers with SLAG (rtrain=10) out-
perform baselines on sequence prediction tasks.
On zsRE, we improve Update Success for Main
Inputs by 4.86 (±0.83; p=1e−4) and for Para-
phrases by 1.39 (±0.93; p=.004), with better ∆-
Acc by 0.64 (±0.35; p=.0005). Improvements
trend in the same direction for Wikidata5m and are
all statistically significant except for the gain in ∆-
Acc. The jump on Paraphrases in particular is large
(11.02±1.17; p<1e−4). In comparison, using the
KNOWLEDGEEDITOR training objective leads to
drastic drops in performance.

Learned optimizers still struggle compared to
baselines on binary datasets. Here, AdamW and
SGD achieve high update update success with
much better ∆-Acc scores, by 13.12 (±4.51;
p=1e−4) on FEVER and 8.16 (±1.63; p=1e−4)
on LeapOfThought.
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Middle-earth is a real place.
[y: false]

Hot Right Now is mistakenly
attributed to DJ Fresh.

[y: false]

There are no musical or creative
works in existence that have
been created by Phillip Glass.

[y: false]

The Daily Show is incapable
of focusing on recent news

stories.
[y: false]

The Chrysler Building was
always the world's shortest

building.
[y: false]

Shane McMahon officially
retired on the first day of

2010.
[y: false]

Bessie Smith died on April
26, 1937.
[y: false]

Despicable Me 2 was written
by Cinco Paul.

[y: true]

Hot Right Now is from Nextlevelism.
[y: true]

Figure 2: A non-random subgraph of the belief graph for a model trained on FEVER. Directed edges from u to
v indicate that changing the model belief in u causes the belief in v to change. The ground-truth label is given in
brackets for each point, and node color shows the model’s accuracy before any updates (green=correct).

6 Belief Graphs

We now construct belief graphs to better under-
stand the connections between model beliefs. We
form a graph from a set of datapoints by updating
each prediction and checking what other predic-
tions change. We represent each datapoint as its
own node in a belief graph. Whenever updating
a datapoint u changes the prediction for point v,
we draw a directed edge from u to v. Following
Sec. 5.2, we use off-the-shelf optimizers to change
the model output to the opposite of its original pre-
diction for every datapoint. For FEVER we obtain
a graph of 10,444 nodes, and for LeapOfThought
we obtain a graph with 8642 nodes, which is dou-
ble the test set size because we include both Main
Inputs and Entailed Data as their own nodes.

We visualize part of a belief graph in Fig. 2. This
figure shows a non-random subgraph intended to
give a representative view of the data (we give three
random subgraphs in Appendix E). On inspection,
we do not see any clear reasons for beliefs being
connected or not connected. We come to the same
conclusion looking at other random subgraphs (see
Appendix Figures 9, 10, and 11). Whether or not
changing one belief changes another appears essen-
tially random, which is a novel negative result on
the organization of internal model beliefs. How-
ever, we do observe some aggregate trends. First,
it appears that incorrect predictions are the most
sensitive to model updates. On FEVER, incorrect
beliefs change around 4% of the time when other
beliefs are updated, while correct beliefs change
only 2.5% of the time. Second, we find that Local
Neutral beliefs are much harder to avoid changing
than simply random data. On Wikidata5m (Table
4), we observe that the Retain Rate on All Data is

Dataset

Metric FEVER LeapOfThought

# Nodes 10,444 8,642
% Edgeless 0.0 0.0
# Edges Total 1.88m 9.71m
# In Edges (95th perc.) 1,088 5,347
# Out Edges (95th perc.) 390 3,087
% Update-Transitivity 66.64 24.38*

Table 8: Belief graph summary statistics. *We compute
Update-Transitivity for LeapOfThought with n = 4000
points due to computational cost.

61.51±1.33, while for Local Neutral data it is a
full 15.66 points lower.

We highlight a few summary statistics here from
Table 8 for a broader view of the graphs. First,
% Edgeless is the proportion of nodes which have
no in or out edges. Since this is 0 for both datasets,
every belief can be changed by editing the right
belief. # In Edges is the number of in edges at the
95th percentile, meaning 5% of beliefs have more in
edges than this value, and the same holds of # Out
Edges. These values grow to a rather large fraction
of the overall datasets, suggesting that (1) some
beliefs are sensitive to changes in a large fraction
of all beliefs, and (2) some beliefs are influential
to hundreds of other beliefs when changed. Inter-
estingly, this implies that some factual beliefs are
“core” beliefs in the model, such that changing these
individual beliefs requires greatly changing the
overall distribution of factual beliefs in the model.
Lastly, % Update-Transitivity represents the an-
swer to the question: if updating belief A changes
belief B, and updating belief B changes belief C,
what proportion of the time does updating A change
C? For these datasets, a logically consistent model
should display 100% Update-Transitivity (see Ap-
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pendix D for a caveat on this metric). We find
that belief updates often yield intransitive results
for both datasets, another negative result for belief
consistency. It would be valuable for future work
to extend this analysis of belief graphs to explore
why language models demonstrate these surprising
connections and inconsistencies between beliefs.

7 Conclusion

We first measure the presence of consistent factual
beliefs in language models, and we propose to eval-
uate learned optimizers for whether they can make
model beliefs more truthful. Then we show that
our SLAG objective greatly improves learned op-
timizer performance, outperforming off-the-shelf
optimizers when updating multiple model beliefs
in a row. Finally, we introduce belief graphs to
visualize connections between model beliefs. We
find that model beliefs are highly interconnected,
with some “core” beliefs influencing hundreds of
other beliefs.

Ethics Statement

Belief update methods may be used to either cor-
rect undesired beliefs or induce problematic beliefs
in LMs, and it is not clear whether these capabil-
ities could be separated. We propose to evaluate
methods only on the basis of their ability to correct
mistaken model beliefs, but the malicious use case
remains. We are uncertain about how a bad belief
would influence the general behavior of a model
(e.g. answers to many questions), but it is possible
that a belief update method could instill bad beliefs
in a capable LM with far-reaching implications
for model behavior. That said, we hope that these
methods will instead be used to update undesirable
moral, social, and factual beliefs in large LMs.

Limitations

We note a few limitations of our work:
(1) Neural learned optimizers require large

amounts of training data to successfully edit even a
few model beliefs at test time.

(2) Our experiments are limited by available
datasets in terms of both metrics we can calculate
and objectives we can optimize for. There is also
some noise in each dataset which we catalogue in
Appendix C.

(3) We conduct experiments with ∼100M pa-
rameter models as in past work. While the belief-
updating problem is still clearly unsolved given

our results, it will also be valuable for future work
to scale to larger models which may exhibit more
consistent factual beliefs. That said, we believe our
contributions are still valuable since our metrics,
objectives, and belief visualization method can all
be easily applied to larger models, and hypernet-
works have already been extended to work with
larger models (Mitchell et al., 2021).

(4) Currently, models may have seemingly ran-
dom interdependencies between factual beliefs,
limiting the insights available from our belief
graphs. We believe that as models become more
consistent and more truthful, the usefulness of be-
lief graphs as a tool for understanding connections
between beliefs will increase.

(5) Lastly, we do not currently account for un-
certainty in factual beliefs. The data we use comes
in the form of declarative statements and answers
to questions which take what is called a veridi-
cal stance toward a proposition, displaying a “full
commitment” to that proposition’s truthfulness (Gi-
annakidou and Mari, 2020). It will be valuable
for future work to explore two dimensions of un-
certainty in beliefs: (1) expression of uncertainty
in language, via partial or trivial commitments
(like “X might be Y”) and (2) expression of uncer-
tainty mathematically, via probabilities assigned
by a model to utterances or True/False values. In
this paper we treat a belief as “updated” when the
model output changes, but this ignores any under-
lying change in the distribution pθ(y|x) that could
occur even if its mode does not change.
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A Learned Optimizer Details

Architecture. KNOWLEDGEEDITOR is a learned
optimizer g : X × Y × Y ×Θ→ Θ that produces
new model weights by applying an adjusted gra-
dient step to a model. For reference, we give a
glossary of symbols used here in Table 9. For ad-
ditional details beyond what is presented here, we
refer readers to De Cao et al. (2021).

At a high level, gϕ first encodes an input xi and
requested prediction change into a vector h, then
processes h into two low-rank matrices A and B
that are used to transform the model gradient on xi,
∇θL(xi, y∗i ). For Transformer models, the method
edits only attention and feed-forward weights, so
all model gradients match the shape of an associ-
ated weight matrix of shape d1 × d2. Formally, a
new model θ∗ is obtained using a learned optimizer
gϕ as follows:

h = LSTM([x; ŷ; y∗])

{u, v, γ, δ} = {MLPi(h)}4i=1

A = softmax(u)vT

B = softmax(γ)δT

η = σ(MLP(h))

θ∗ = θ + η(A ◦ ∇θL(xi, y∗i ) +B)

where ϕ consists of all LSTM and MLP parameters.
Training Algorithm. The learned optimizer ob-
jective is optimized w.r.t. ϕ with AdamW through
a standard procedure of randomly sampling mini-
batches without replacement (Loshchilov and Hut-
ter, 2019). Within each batch, one datapoint is
randomly selected as the Main Input, and the re-
maining points are used as DR. To obtain update
labels {y∗i }ni=1, we always use the opposite class
in binary classification. For sequence-to-sequence

Symbol Glossary

fθ Language Model
gϕ Learned optimizer
xi Main Input
ŷi LM output on xi
y∗i Desired output
∇θL(xi, y∗i ) Gradient of LM
Update(xi, ŷi, y∗i , θ) Update one LM belief
L(ϕ;xi, ŷi, y∗i , θ) Belief update objective for xi
LSequential(ϕ;D, θt) Sequential objective (SLAG)
K # gradient steps in Update(·)
r # beliefs updated in LSequential

Table 9: Symbol descriptions for the learned optimizer.

tasks, we use the correct label when ŷi is incorrect,
and when ŷi is correct, we randomly select another
label from the training data. This choice is in con-
trast to De Cao et al. (2021) and Mitchell et al.
(2021), who use samples from the model beam
search as update labels for all points.

B Additional Training Details

B.1 Compute Costs.

Learned optimizer memory. The hypernetwork
has 92m trainable parameters for RoBERTa-base
(which is 125m parameters), and 105m param-
eters for BART-base (which is 139m parame-
ters). To increase training efficiency, we limit
how far into the task model history we backprop-
agate. As shown in Fig. 3, when backpropagat-
ing through task model parameters θt = θt−1 +
Update(xi, ŷi, y∗i , θt−1;ϕ), we continue backprop-
agating through Update(xi, ŷi, y∗i , θt−1) but not
θt−1, which is also dependent on ϕ. That is, we ap-
ply a stop-gradient function to θt−1. This way, we
compute the derivative∇ϕUpdate(xi, ŷi, y∗i , θt;ϕ).
only once for each t, rather than recomputing these
gradients for all subsequent time steps. These
choices allow the memory use of our training algo-
rithm to remain constant in r. We make the same
choice for our K looped steps in a single applica-
tion of the Update function, so the gradient for the
update at step k depends only on gϕ(xi, ŷi, y∗i , θ

(k))
and not θ(k−1). See Fig. 4 for a graph of memory
use depending on r and k.
Experiment runtimes. We now give runtimes
for experiments in the paper. Building the belief
graphs takes 25 hours for FEVER (n = 10, 444)
and 17.5 hours for LeapOfThought (n = 8642)
on an NVIDIA RTX 2080 GPU. Computing sum-
mary statistics for graphs takes 3 hours on FEVER
and 3 hours for LeapOfThought for statistics be-
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Figure 3: The backpropagation graph for sequential model updates.

sides Update-Transitivity. We compute Update-
Transitivity for LeapOfThought with a subset of
4000 points, which takes 45 hours.

All other experiments are run on a NVIDIA
V100 32GB GPU. Training the task models takes
7 minutes for LeapOfThought, 45 minutes for
FEVER, 4 hours for zsRE, and 10 hours for Wiki-
data5m. Training the learned optimizer with r = 1
takes 2.3 hours for LeapOfThought, 5 hours for
FEVER, 9.5 hours for zsRE, and 16 hours for
Wikidata5m. Training the learned optimizer with
r = 10 takes 53 minutes for LeapOfThought, 2.9
hours for FEVER, 7 hours for zsRE, and 12.5 hours
for Wikidata5m. Computing update statistics with
the off-the-shelf optimizers with r = 1 takes 4 min-
utes for LeapOfThought, 30 minutes for FEVER,
2.3 hours for zsRE, and 3.9 hours for Wikidata5m.
With r = 10, the baselines require 1 minute for
LeapOfThought, 15 minutes for FEVER, 54 min-
utes for zsRE, and 1.8 hours for Wikidata5m. Total
runtimes for each experiment should take into ac-
count multiple conditions and multiple seeds of
each model being run.

B.2 Hyperparameters and Objective Terms.

Training hyperparameters. We fit our RoBERTa-
base and BART-base task models to their respec-
tive datasets with the following hyperparameters:
We train for 10 epochs on the binary tasks, and
20 for the sequence-to-sequence tasks. When pre-
dicting with BART-base, we use a beam search
with width 5. In each case, we use AdamW from
torch.optim with a LR of 1e-5 and weight de-
cay of 1e-4. We select the best model according
to the best dev set accuracy, checkpointing after
each training epoch. The learned optimizers are
optimized with AdamW, using a learning rate of
3e-4 and weight decay of 0. We train the learned
optimizer for 5 epochs on each dataset except for

Dataset rtest K Objective

FEVER 1 5 Main
10 1 Main

LeapOfThought 1 5 Main
10 1 Main

zsRE 1 5 Main
10 5 Main

Wikidata5m 1 5 Main+Para
10 5 Main+Para

Table 10: Final hyperparameters and objective terms of
the learned optimizer for each task.

LeapOfThought, which we train for 10 epochs
given its smaller size. The learned optimizers are
also selected based on dev set performance, with
checkpointing after each training epoch. Their se-
lection criterion is a raw average of Update Success
Rate (averaged over each kind of data), Retain Rate
(Local Neutral) and ∆-Acc, with terms dropped
when they cannot be computed given the available
data. Note that dev epochs with zsRE and Wiki-
data5m are fairly slow, so in order to speed up our
experiments we compute dev epochs with a subset
of 4000 dev points.

Learned optimizer. We give the final hyperparam-
eter and objective terms used in each experiment in
Table 10. Our objective ablation is given in 17, and
we select the best performing condition for each
dataset according to dev set performance, using the
same selection criterion outlined previously. We
keep all weight coefficients λi equal rather than
tuning them. Main refers to the first term in Eq.
1, plus the KL term with random data. We use
Ktrain ≤ 5 for all experiments. For results across
K values on zsRE, see Fig. 8.

Baseline update method. We tune a baseline off-
the-shelf optimizer separately for each dataset, us-
ing rtest = 1. Our performance criterion is the
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Relation % Test Data

Place of Birth 11.00
Award Received 11.00
Cause of Death 5.66
Place of Death 11.00
Place of Burial 8.33
Educated At 11.00
Child 11.00
Occupation 11.00
Spouse 11.00
Sibling 9.01

Table 11: Wikidata relations and their proportion of the
test data.

Dataset Optimizer LR Num. Steps

FEVER AdamW 1e-6 100
LeapOfThought SGD 1e-2 100
zsRE SGD 1e-1 10
Wikidata5m SGD 1e-1 10

Table 12: Final hyperparameters of the baseline update
method for each task.

same as with learned optimizers, a raw average of
Update Success Rate (averaged over each kind of
data), Retain Rate (Local Neutral) and ∆-Acc. The
grid search is over the following parameters: The
off-the-shelf optimizers are from torch.optim
and include {AdamW, SGD, and RMSProp} with
default arguments (except for the learning rate).
We consider a number of maximum steps in {5,
10, 100}. The learning rates we consider depend
on the optimizer: {1e-4, 1e-5, 1e-6} for AdamW,
{1e-4, 1e-5, 1e-6} for RMSProp, and {1e-1, 1e-2,
1e-3} for SGD. The LR ranges were selected af-
ter some initial manual exploration of the space.
Our final hyperparameter values are shown in Ta-
ble 12 for each dataset. For comparison, De Cao
et al. (2021) use RMSProp with 100 update steps.
The LR for zsRE and Wikidata5m may seem quite
high, but this is the condition that actually does the
least damage to the model’s accuracy on other data,
∆-Acc. The baseline optimizes all of the train-
able parameters in the language model, unlike the
learned optimizer which optimizes only attention
and feedforward weights for purposes of parameter
efficiency.

B.3 Wikidata5m Additional Details.

We construct four paraphrases per Main Input by
selecting from a set of alternative phrasings for the
entity and relation in the Main Input. The syntax
for each paraphrase follows the same simple tem-
plate as the Main Input, in contrast to zsRE where
syntax differs between paraphrases. A couple de-

tails remain. Some relations are one-to-many, and
therefore we accumulate valid completing entities
from the data as possible answers; later we com-
pute accuracy as an exact match with any possible
answer. All 10 relations appear in each split of the
data. Only 33.80% and 37.18% of the entities in
the dev and test splits are seen in the training data,
though we do not find that models perform better
on entities seen in training.

B.4 LeapOfThought Additional Details
The LeapOfThought dataset consists of a fact and a
claim for each datapoint, where the truth of the fact
implies that the claim has label yi (True/False). All
of the facts in the data are true, while half of the
claims are true and half are false. When training
the learned optimizer, we treat the the facts as the
Main Input when training the learned optimizer
and claims as entailed data. When training the
True/False classifier, we fit to the claims, for which
test accuracy is 83.65 (± 1.05). This seems to
generalize well to the facts, as test accuracy here is
93.66 (±0.87), although as the low contrapositive
accuracy suggests (Table 3), the model seems to be
too prone to predicting true for this data.

Since very few of the Main Inputs are predicted
as false, we run into a small dilemma when fit-
ting the learned optimizer with the use of the en-
tailed data objective term. The entailment between
fact and claim only holds when the fact is true, so
we can only compute the objective when updat-
ing a point from false to true. This ends up being
less than 10% of the training data. We ultimately
choose to oversample points that fit this descrip-
tion during training of the learned optimizer, which
allows the learned optimizer to fully fit to the en-
tailed data. Also note that during learned optimizer
training, we include Entailed Data from other data
points besides the Main Input in the KL term in Eq.
1, and we measure ∆-Acc using both Main Inputs
and Entailed Data.

C Dataset Sources and Noise

Here we give sources and licenses for each dataset,
and we document some shortcomings of each
dataset, with reference to examples in Table 15.
Dataset sources and licenses. FEVER and zsRE
are available through the KILT4 resource and are

4https://github.com/
facebookresearch/KILT/?fbclid=
IwAR2WiFkl-7KLIQAoNI9bJgBVKWgsAQEDV342vV5_
PcsKA881vpuXaELKBz0
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Figure 4: Training memory usage in terms of K and r hyperparameters in our implementation, for a learned
optimizer trained for a BART-base model on zsRE, using a batch size of 16. For comparison, the orange dashed
line shows the memory use of training the BART-base model on zsRE, using the same batch size. Our use of the
stop-gradient function limits the growth of runtime and memory w.r.t. both K and r. By accumulating gradients
across points, memory w.r.t. r is kept constant. The same trick could be applied to the K looped gradient steps
inside the Update function, at the trade-off of backpropagating K times per point rather than one time.

Ours De Cao et al. (2021) Mitchell et al. (2021)

Update Success Rate (Main Input) Success rate Edit success
Update Success Rate (Paraphrase) Equivalence accuracy Edit success
Update Success Rate (Entailed Data) - -
Retain Rate (Local Neutral) - -
Retain Rate (All Data) Retain accuracy -
∆-Acc (All Data) Performance deterioration Drawdown

Table 13: A glossary of terms used in work on model update methods. Note metrics are not always calculated
in exactly the same way. For instance, Performance deterioration is a ratio in accuracies rather than difference in
accuracies, and edit success from Mitchell et al. (2021) combines two metrics in our case. The performance metric
in Zhu et al. (2020) is an average of Update Success Rate (Main Input) and ∆-Acc.

available under the MIT license (Petroni et al.,
2021). LeapOfThought data can be constructed
through their available code5 and is also available
under the MIT license. The source data for Wiki-
data5m data can be downloaded through the KE-
PLER6 code repository (Wang et al., 2021) and
is available under the MIT license. Use of each
dataset is in accordance with their intended licensed
uses. The zsRE and Wikidata5m datasets do refer
to people by name as they reference public figures
on Wikipedia. All datasets are in English.
FEVER. Some claims are slightly vague or am-
biguous when taken on their own. For instance
“Doug Ducey was the CEO of Cold Stone Cream-
ery and offered many opportunities to new hires”
is rated True, though this will depend heavily on
what one thinks “many opportunities” means. Sim-
ilar whether or not “L.A. Guns is a tattoo shop”
depends on which “L.A. Guns” one is referring to,
the tattoo shop or metal band. Of course, this is a
generic issue of language, and not unique to this
dataset. Some inputs seem to be a matter of person
opinion: “Los Angeles is known for its food” is
rated False.

5https://github.com/alontalmor/
LeapOfThought

6https://github.com/THU-KEG/KEPLER

LeapOfThought. Many examples use an “is a”
relation, producing sentences like “A sunlight is a
good health.” This could be more false than true,
but it’s a fairly nonsensical statement to begin with.
There are also other nonsensical or vague examples
in the data: ”A friar is the opposite of mineral” is
labeled False. “A detective desires equal opportu-
nity.” is labeled True. It is not immediately clear
what conditions would make these statements true
or false.

zsRE. Some questions invoke potentially one-to-
many or temporally dependent relations, though
there is only one ground-truth answer per ques-
tion in this dataset. For instance, a paraphrase of
the question about Gifford Pinchot in Table 15 is:
”What disease did Gifford Pinchot have?” A per-
son might have had many diseases over their life
which could all be valid responses. The answer is
especially ambiguous for spatial relations, where a
valid answer might refer to a city, region, country,
province, or continent.

Wikidata. Aliases sometimes vary greatly even
as they refer to the same person, or they are sim-
ply noisy. For example, as shown in Table 15,
“SusunW” appears in an entity name, but this is
actually a username of someone who contributed
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Dataset Model Acc Paraphrase Cons ↑ Entailment Acc ↑ Contrapositive Acc ↑
FEVER RoBERTa-base 78.29 (0.86) - - -
LeapOfThought RoBERTa-base 93.66 (0.87) - 85.63 (1.08) 16.51 (2.71)
zsRE BART-base 21.01 (0.64) 69.50 (1.09) - -
Wikidata5m BART-base 10.21 (0.59) 25.84 (0.53) - -

Table 14: Model accuracy and belief metric results and for four datasets.

Dataset Data Type Input Label(s)

zsRE

Main Input What did Gifford Pinchot die of? {Leukemia}Paraphrase How did Gifford Pinchot die?

Main Input Player Ali Kanaan plays for what team? {Sporting Al Riyadi Beirut}Paraphrase What team is Ali Kanaan associated with?

Wikidata5m

Main Input Margarita Nolasco Armas has relation ‘place
of birth’ to {Orizaba, Veracruz; Orizaba;

etc.}Paraphrase SusunW/Margarita Nolasco Armas has rela-
tion ‘born at’ to

Local Neutral Margarita Nolasco Armas has relation ‘place
of death’ to

Mexico City; Ciudad de Mexico;
etc.

Main Input Mary Good has relation ‘award received’ to {Garvan-Olin Medal; Arkansas
Women’s Hall of Fame; etc.}Paraphrase Mary Lowe Good has relation ‘winner of’ to

Local Neutral Mary Good has relation ‘educated at’ to {The University of Arkansas; U
Arkansas; etc.}

FEVER Main Input Tardigrades are also known as space bears. True
Main Input The Lion belongs to the genus Vulpes. False

LeapOfThought

Main Input A viper is a vertebrate. True
Entailed Data A viper has a brain. True

Main Input A amaranth is a herb. True
Entailed Data A amaranth has a nose. False

Table 15: Example datapoint from each dataset, and auxiliary data that accompanies the Main Input.

to the Wikipedia article for Margarita Nolasco Ar-
mas. Meanwhile, other aliases for J.R.R Tolkien
include “Tolkienian” and “Mabel Suffield,” his
mother. Rephrasings of relations might also create
confusing inputs, e.g. switching “child” with “has
kids,” “daughter”, or “son.” Similar to zsRE, some
relations are also one-to-many and temporally de-
pendent (like occupation), though we hope that
by using many valid answers we circumvent this
issue to some extent when calculating prediction
correctness.

D Metric Computation and Bootstrap
Details

Metric computation. The only computationally
difficult metric to calculate is ∆-Acc, which re-
quires computing the updated language model’s
accuracy on other data after every single belief up-
date. We randomly sample other data after every
update for this purpose, using n = 30 points for
zsRE and Wikidata5m and n = 200 points for
FEVER and LeapOfThought. We ensure that all
evaluation data is used at some point during this

sampling by preferentially selecting data that has
been infrequently selected before. We note that
paraphrase consistency is easy to evaluate for a
small number of paraphrases per datapoint, as we
have for both zsRE and Wikidata5m. Additionally,
on LeapOfThought, we compute ∆-Acc using both
Main Inputs and Entailed Data.

Update-Transitivity caveat. The % Update-
Transitivity metric represents the answer to the
question: if updating belief A changes belief B,
and updating belief B changes belief C, what pro-
portion of the time does updating A change C?
We would treat this as a normative metric that we
hope to maximize, except we do not know in gen-
eral whether there is a confounding belief D that
determines the relationship between B and C. If
changing A also changed a confounding belief D,
then we might not be able to expect that C should
change too. That said, when we have no reason to
think there are such confounding beliefs, we would
expect a logically consistent model to display 100%
Update-Transitivity of their beliefs. In Fig. 2, for
instance, we see no reason to suspect there are con-
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Figure 5: Ablation across values of r for training and testing. On zsRE, our method outperforms the baseline when
rtest = 10, and the gap is likely to increase as rtest rises further. When using a non-sequential objective from past
work, performance declines drastically as rtest rises.

founding beliefs for the relationship between the
date Bessie Smith died and the writer of Despicable
Me 2, and therefore we would expect that updat-
ing the belief about what album Hot Right Now is
on would change the belief in Despicable Me 2’s
authorship (which it does).

Bootstrap computation. We account for sample
and seed variance by block bootstrap (Efron and
Tibshirani, 1994). When there is a single statistic
per data point, like Main Input Update Success, we
form a matrix of shape n× s for n data points and
s model seeds (where the seed was used for both
task model training and learned optimizer train-
ing). We then resample rows and columns of this
matrix 10,000 times, which was sufficient for con-
vergence. When we perform hypothesis tests for
the difference in statistics between conditions, we
pair the data points by using the same rows of this
matrix at each step of the bootstrap (i.e. we conduct
paired tests). For metrics involving multiple data
points per Main Input, like paraphrases or other
random data, we make a simplifying assumption
where we do not resample the multiple data points
but just compute the average metric for those data
points and treat that as the ground-truth statistics
for the Main Input. We explored using a full 3-
dimensional bootstrap, where we resample among
these extra datapoints by constructing a matrix of
shape n × s × n, but it was quite slow and gave
similar results to the block bootstrap.

E Additional Results

Ablation across num. sequential steps. Fig.
5 shows the results for an ablation across rtest
using two kinds of learned optimizers: SLAG1,

Update Success Rate ∆-Acc

Desired Label Main Input Paraphrases All Data

Beam Label 91.19 (0.5) 92.07 (0.8) -0.39 (0.1)
Hard Label 94.46 (0.7) 94.45 (0.7) -0.24 (0.1)

Table 16: Update metrics by optimizer training labels.

where rtrain = 1, and a SLAG condition where
rtrain = rtest. It is critical to the success of learned
optimizers to train them to update points sequen-
tially when this is a desired application. Further,
sequential updating with sequence prediction tasks
is the only setting where we see learned optimizers
outperform baselines across all relevant metrics.

Choosing training labels for learned optimizers.
In early experiments, we found that it is beneficial
to use all data points (including correctly predicted
points) as Main Inputs during training, rather than
restricting training to only incorrectly predicted
points. We still focus on correcting wrong outputs
at test time. But so we must select what label to
use during optimizer training. To get a Hard Label,
we use the correct label for incorrectly predicted
points, and for correctly predicted points, we sim-
ply draw a label randomly from the labels in the
training data. The alternative Beam Label condi-
tion uses a sample from the model’s beam search
for a data point, as done in past work (De Cao
et al., 2021; Mitchell et al., 2021). We show up-
date metrics for zsRE split by the desired label in
Table 16. If one’s goal is to fix wrong model out-
puts, then it is much better to use either the correct
label or a random label as the desired model out-
put during training rather than a sample from the
model’s beam search. Update success improves by
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Objective Term Ablation Update Success Rate Retain Predictions ∆ Acc

Dataset Objective Main Input Paraphrases Entailed Data Local Neutral All Data All Data

FEVER Main 100 (0.0) - - - 98.27 (0.1) -0.15 (0.1)
(no KL) 100 (0.0) - - - 40.42 (0.6) -27.19 (1.2)

LeapOfThought Main 100 (0.0) - 76.43 (5.3) - 96.84 (0.3) -1.22 (0.8)
+Ent 100 (0.0) - 71.87 (5.3) - 96.52 (0.3) -0.40 (0.8)

zsRE Main 94.46 (0.4) 94.44 (0.7) - - 81.96 (0.4) -0.24 (0.1)
+Para 93.75 (0.4) 94.41 (0.7) - - 75.24 (0.5) -0.42 (0.2)

Wikidata5m

Main 88.67 (0.7) 64.12 (0.7) - 49.78 (1.0) 71.04 (0.5) -1.54 (0.3)
+Para 87.46 (0.7) 81.06 (0.7) - 47.15 (1.0) 63.02 (0.6) -1.55 (0.3)
+LN 87.73 (0.7) 59.75 (0.7) - 60.49 (1.0) 72.69 (0.6) -1.57 (0.3)
+Para+LN 87.02 (0.7) 81.18 (0.7) - 56.86 (1.0) 68.42 (0.6) -1.65 (0.3)

Table 17: Belief update results by the objective terms used for the learned optimizer. We do not bold any numbers
based on statistical significance. For tuning purposes we select whichever condition achieves the higher selection
criterion without testing for statistical significance.

3.27 (±0.65; p<1e−4) points for the Main Input
and 2.38 (±1.05; p<1e−4) for Paraphrases, while
∆-Acc rises by 0.15 (±0.18; p=.09).

Which beliefs are hard to update? We hypothe-
size that beliefs will be easier to update when they
are more belief-like to begin with. We principally
measure this via the correlation between update suc-
cess rate and a belief’s consistency on paraphrases
before the update, for our learned optimizer in a
single-update setting (r = 1). Surprisingly, we ob-
serve no relationship between update success and
the belief consistency. The correlation between
consistency and update success is near 0 for both
zsRE (ρ = −.027) and Wikidata5m (ρ = .013);
see Fig. 6 for a plot of the relationship. So it ap-
pears that the learned optimizer can update model
beliefs independently of how belief-like they are to
begin with. We would also be interested in consid-
ering consistency under entailment, but the update
success rate on LeapOfThought is already 100%,
so there is no variance to explain.

Learning curve. In Fig. 7 we show the learning
curve of a learned optimizer trained with SLAG
on zsRE. The Main Input Update Success Rate
steadily rises as a function of the training set size.‘

Ablation by objective term. We give objective
ablation results in Table 17. Surprisingly, we do
not always see that the objective terms help for the
data they are intended to help with. First, we ob-
tain mixed results for the paraphrase objective. On
zsRE, the objective term seems to hinder perfor-
mance, with update success dropping on Main In-
puts by 0.71 (±0.60; p=.021) and ∆-Acc dropping
by 0.18 (±0.19; p=.069), while the paraphrase Up-
date Success Rate itself is unaffected. With Wiki-

ZSRE

Wikidata5m

0.00 0.25 0.50 0.75 1.00

0.85

0.90

0.95

1.00

0.85

0.90

0.95

1.00

Pre−Update Consistency

U
pd

at
e 

S
uc

ce
ss

 R
at

e

Which Beliefs Are Hard to Update?

Figure 6: Beliefs are neither easier nor harder to update
depending on their consistency beforehand.

85

90

95

100

103 103.5 104 104.5 105

n

M
ai

n 
In

pu
t U

pd
at

e 
S

uc
ce

ss

Learning Curve for zsRE

Figure 7: Main Input Update Success Rate across train-
ing set sizes, using SLAG on zsRE.

data5m, however, the paraphrase term improves
paraphrase update success by a large margin of
16.94 (±1.03; p<1e−4) points. Adding the Local
Neutral (LN) term with the paraphrase term greatly
improves the LN Retain Rate for Wikidata5m, by
9.71 points (±1.44; p<1e−4), though both of these
terms come at a cost to Main Input Update Success,
similar to zsRE. Lastly, we do not find that the en-
tailment objective improves Entailed Data Update
Success; in fact, this metric falls by 4.56 (±7.22;
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p=.213) points with the objective.
Ablation by num. update steps. Fig. 8 shows the
results of an ablation across values of K using a
learned optimizer trained using SLAG with r = 1
on zsRE. Main Input Update Success rises by over
three points by increasing Ktest from 1 to at least
5. Using a value of Ktrain that matches Ktest gives
a further increase of about 0.5 points.

Humphrey Bogart was ranked
 greatest male star of Classic

 American cinema.
[y: true]

Rachel Green appeared in
 every episode of Friends
 until the final episode in

 2002.
[y: false]

Angela Bassett is alive.
[y: true]

Colin Kaepernick became
 a starter in the National

 Football League.
[y: true]

1978 is Ian Brennan's year
 of birth.
[y: true]

A Floppy disk is composed
 of a thin and flexible magnetic

 transmission medium.
[y: true]

Saturn is only an asteroid.
[y: false]

Dan O'Bannon died on December
 17th, 2009.

[y: true]

Beaverton, Oregon's city
 center is in decline.

[y: false]

Margaret Thatcher was the
 most senior politician within

 the Conservative Party in
 the UK in 1975.

[y: true]

Starrcade was originally
 broadcast via television.

[y: true]

Taylor Lautner appeared
 in The Bernie Mac Show in 2001.

[y: false]

I Kissed a Girl was only recorded
 by Donald Trump.

[y: false]

Julianne Moore created the
 television series As the

 World Turns.
[y: false]

Highway to Heaven is an American
 television series.

[y: true]

Dan O'Bannon work was primarily
 science fiction and horror,
 serving as a screenwriter

 and director.
[y: true]

Sidse Babett Knudsen graduated
 on November 22nd, 1968.

[y: false]

Aleister Crowley was an English
 citizen.
[y: true]

Magic Johnson was a tap dancer.
[y: false]

Queen (band) is a Canadian
 rock band.
[y: false]

Figure 10: A random subgraph of the belief graph for
FEVER. Note all nodes actually are connected to at least
one another node.

On February 2, 2013, Chris
 Kyle died.
[y: true]

The Mirny (sloop-of-war)
 was a ship without allegiance.

[y: false]

St. Anger was released by
 Sub Pop Records.

[y: false]
Knocked Up is a work of art.

[y: true]

Mel B had a career.
[y: true]

Australia (2008 film) production
 took place in Bowen.

[y: true]

Daag is a home.
[y: false]

Harold Macmillan was born
 on February 20, 1894.

[y: false]

The Chrysler Building has
 yet to be surpassed in height.

[y: false]

Heavy Metal music was developed
 in the early 1970's.

[y: true]

Kuching is a city in Singapore.
[y: false]

James VI and I was a major advocate
 of a single parliament for

 Scotland and England.
[y: true]

Camden, New Jersey is a large
 human settlement.

[y: true]

Derek Hough barely starred
 in Make Your Move.

[y: false]

Chile is a country.
[y: true]

A River Runs Through It has
 lost every Academy Award.

[y: false]

Natural Born Killers was
 based upon Tarantino's original

 screenplay without revision.
[y: false]

The Lincoln-Douglas debates
 happened in Quincy, Illinois.

[y: true]

Carlos Santana is a musician.
[y: true]

Despicable Me 2 was produced
 by a company.

[y: true]

Figure 11: A random subgraph of the belief graph for
FEVER. Note all nodes actually are connected to at least
one another node.

2731



Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 2732–2737
May 2-6, 2023 ©2023 Association for Computational Linguistics

Improving Sign Recognition with Phonology

Lee Kezar
University of Southern California

lkezar @usc.edu

Jesse Thomason
University of Southern California

jessetho@usc.edu

Zed Sevcikova Sehyr
San Diego State University
zsevcikova@sdsu.edu

Abstract

We use insights from research on Ameri-
can Sign Language (ASL) phonology to train
models for isolated sign language recognition
(ISLR), a step towards automatic sign language
understanding. Our key insight is to explicitly
recognize the role of phonology in sign pro-
duction to achieve more accurate ISLR than
existing work which does not consider sign lan-
guage phonology. We train ISLR models that
take in pose estimations of a signer producing a
single sign to predict not only the sign but addi-
tionally its phonological characteristics, such as
the handshape. These auxiliary predictions lead
to a nearly 9% absolute gain in sign recognition
accuracy on the WLASL benchmark, with con-
sistent improvements in ISLR regardless of the
underlying prediction model architecture. This
work has the potential to accelerate linguistic
research in the domain of signed languages and
reduce communication barriers between deaf
and hearing people.

1 Introduction

When learning to recognize sign language, there is
evidence that people rely on breaking signs down
into their constituent parts, such as the configura-
tion and location of the hand (Klima and Bellugi,
1979). This process is also true of spoken lan-
guage recognition, where recognizing sound pat-
terns plays a crucial role in one’s ability to rec-
ognize a word. Sometimes, one of these “parts”
(phonemes) is the only distinguishing factor be-
tween two very different terms, as seen in the signs
for DIFFERENCE (palms up) and BALANCE (palms
down) in Croatian Sign Language (Kuhn et al.,
2006). Thus, the ability to encode and recognize
individual phonemes and the relationships among
them is essential for sign recognition. As a first
step in exploring the practicality of phoneme recog-
nition, we ask: Can machine learning models for
isolated sign language recognition (ISLR) benefit
from the phonological structure of signs?

sign computer

problem ✘ lettuce ✘

sign ✔ computer ✔

Handshape:1
Location:
neutral

Handshape:C
Location:
forearm

Figure 1: We demonstrate that sign language recogni-
tion models improve in accuracy when also tasked with
predicting component phonemes of the sign.

While some ISLR models explicitly focus on
the signers’ hands (Hu et al., 2021) or face (Al-
banie et al., 2020), none have leveraged sign lan-
guage phonology. Instead, ISLR has been treated
similarly to gesture recognition, where a “gesture”
(such as swinging an imaginary bat or waving a
hand) has no underlying structure except for that of
the human body itself. This lack of structure might
explain why state-of-the-art models like the Sign
Language Graph Convolution Network (SL-GCN,
Jiang et al. 2021) sometimes predict labels that are
visually and phonologically unrelated to the ground
truth, as shown in Figure 1.

In contrast, we show that models trained to rec-
ognize both signs and their phonemes will be more
accurate at sign identification than those trained for
ISLR alone. Our main contributions are:

• We join an ISLR benchmark with a dataset
of phonologically-labeled signs (§3.1) and de-
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scribe a simple method for learning these la-
bels alongside the target gloss1 (§3.2).

• We explore which and how many phoneme
types are most beneficial as an auxiliary task
to sign recognition (§3.3, §4.1).

• We demonstrate that adding auxiliary pre-
dictions for sign language phonology targets
yields nearly 9% absolute gain in accuracy
for ISLR sign prediction (§4.2), and that the
resulting phoneme classification heads outper-
form prior work (§4.3).

2 Background

Sign languages are complete and natural languages
primarily used by deaf and hard-of-hearing people.
There are hundreds of sign languages in the world
today collectively used by tens of millions of peo-
ple (Eberhard et al., 2022). They rely on the hands,
face, and body to communicate meaning according
to complex grammars which are independent of
any spoken language.

Sign languages have been and continue to be
largely overlooked in natural language process-
ing (NLP) research, necessitating explicit calls for
more inclusivity (e.g. Yin et al. 2021, Bragg et al.
2019). In this paper, we seek to bridge robust tech-
niques in NLP with insights from theories of sign
language phonology.

Sign language phonology is an abstract sys-
tem of rules that governs how the structural units
of signs (e.g., handshape, location, movement)
are combined to create an infinite number of ut-
terances. These manual units play a significant
role at the phonological level similarly to place
of articulation, manner, and voicing in spoken
language. Theories of sign language phonology
attempt to enumerate the meaningless units or
“phonemes” found in a sign language and describe
the complex relationships among them. In ASL-
LEX 2.0, Sehyr et al. (2021) describe 16 types of
phonemes, largely guided by Brentari’s Prosodic
Model (Brentari, 1998). We provide three exam-
ples of these phoneme types here:

• Minor Location: one of 37 regions of the
body where the sign is produced (e.g. “chin”).

• Handshape: one of 49 configurations of the
hand (e.g. “2”).

1A “gloss” is a label for a sign that corresponds to its
translation in the target language, such as APPLE.

• Path Movement: one of 8 ways of moving
the hand through space during the production
of a single sign (e.g. “circular”).

Brentari’s Prosodic Model contains < 200 pos-
sible phonemes across its 16 phoneme types, each
of which can be observed during the production of
any sign. In ASL-LEX 2.0, about 70% of signs can
be uniquely identified by their phonemes, making
them an appealing conduit for learning to recognize
signs. We leverage these properties by using them
as target labels alongside the target gloss.

ISLR: Definition and Prior Work In ISLR, a
model is given a video of one sign being produced
in isolation and must predict the target gloss Sgloss.
Many models have been proposed to recognize iso-
lated signs, varying with regard to input modality
(e.g. pose, RGB video), pretraining (e.g. frame
prediction, hand modeling), and encoding strategy
(e.g. attention, convolution). Selvaraj et al. (2022)
provide a comprehensive framework for compar-
ing models across multilingual data, in particular
LSTMs (Konstantinidis et al., 2018), Transformers
(Devlin et al., 2019), Spatio-Temporal Graph Con-
volution Network (ST-GCN, Cheng et al. 2020),
and Sign Language Graph Convolutional Network
(SL-GCN, Jiang et al. 2021).

We evaluate our method with SL-GCN and via
a Transformer network. These models are open-
sourced,2 easily modifiable, and take in pose in-
formation as input. These models perform well
on the WLASL 2000 benchmark (Li et al., 2020).
While the model from (Hu et al., 2021) obtains
higher accuracy on that benchmark, their code is
not publicly available to replicate those findings.

3 Method

We combine two datasets for the task of ISLR, ASL-
LEX 2.0 (Sehyr et al., 2021) and WLASL 2000
(Li et al., 2020), in order to learn ASL phonology
(§3.1). Then, we describe how to utilize these data
by learning two ISLR models to predict both the
target gloss and the phonemes for any input (§3.2).
Finally, we address the questions of how many
and which phoneme types are best for ISLR (§3.3).
The dataset and modified models are released for
replication and future work.3

2https://openhands.readthedocs.io/
3https://github.com/leekezar/

ImprovingSignRecognitionWithPhonology
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3.1 Data

We combine the phonological annotations in ASL-
LEX 2.0 (Sehyr et al., 2021) with signs in the
WLASL 2000 ISLR benchmark (Li et al., 2020).
ASL-LEX contains 2,723 videos, each demon-
strating a unique sign and human-annotated with
phonemes across 16 categories. WLASL contains
21,083 videos, each demonstrating one of 2,000
unique signs (an average of 10.5 videos per sign).

To combine these datasets, we edit the WLASL
metadata file to add 16 new properties (one for
each phoneme type) to each video example. If
the video’s English gloss is also found in ASL-
LEX, then we copy the phonemes directly from
ASL-LEX. If it is not found, then we set these new
properties to -1 and ignore them during training.
After combining, 48% of videos in the aggregated
dataset have phonological labels, and all of the
videos retain their original split (train, validation,
and test) and English gloss. Note that this dataset
is identical in structure to WLASL-LEX (Tavella
et al., 2022), however, both our sources are more
recently updated and contain more samples. Table 1
provides a summary of the combined data.

# VideosP Labels # Signs Train Val Test Total
✗ 1246 7850 2221 1574 11645
✓ 754 6439 1695 1304 9438

Total 2000 14289 3916 2878 21083

Table 1: We match phonological data from ASL-LEX
2.0 with signs in the WLASL benchmark to create a
subset of WLASL with phoneme type labels P .

3.2 Models

We add phoneme value predictions to two ISLR
model architectures: a graph convolutional net-
work, SL-GCN (Jiang et al., 2021), and a
Transformer-based model. These models are imple-
mented by the OpenHands project (Selvaraj et al.,
2022) and are largely left untouched; we refer the
reader to the OpenHands paper and code for im-
plementation details. The SL-GCN model treats
pose estimations over time as a connected graph
and learns 10 convolution layers over this graph,
using spatial and temporal attention. The Trans-
former model treats pose estimations as a sequence
of coordinates over time and learns 5 Transformer
layers similarly to BERT (Devlin et al., 2019). Im-
portantly, both of these models implement spatial
and temporal attention, a feature which enables

Sign Language Graph 
Convolution Network

encoding

gloss head P1 head P2 head … Pn head

summed cross-entropy loss

+              +            +         +        + 

linear 
layers

Figure 2: The proposed decoder relies on fully-
connected layers for each classification head: one for
the target gloss and one for each of the n phoneme types.

phoneme recognition even when the phoneme ex-
ists for a short amount of time.

For each model, we modify the decoder to clas-
sify not only the target gloss, but also the selected
phonemes. This is accomplished by adding n fully-
connected layers to the decoder, each with shape
(hidden size, # phoneme values). During the
forward pass, the video encoding is used as the
input for each fully connected layer (not chained
together). The total loss is then computed as:

Ltotal = Lgloss +
∑

phoneme∈P
Lphoneme,

where Lgloss is the cross entropy of the model’s
gloss predictions, while Lphoneme is the cross en-
tropy of the model’s phoneme predictions. The sum
of these losses is then backpropagated to the entire
model, encouraging the encoder to learn a represen-
tation which more explicitly captures the desired
phonemes P alongside the target gloss (Fig 2).

We train models until the validation accuracy has
not improved in the last 30 epochs and use the top
performing model for testing. For further details
on model implementation and training procedure,
see Selvaraj et al. (2022).

3.3 Phoneme Type Selection

It is not immediately clear which, if any, of the
16 phoneme types in ASL-LEX 2.0 yield improve-
ments on ISLR. Regarding how many phoneme
types, one might assume that more informative out-
puts would only improve a model’s ability to rec-
ognize signs, and therefore all 16 phoneme types
should be included. However, these additions come
at a cost to the encoder, which must now learn to
fit more information into the same encoding space
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Pred WLASLtest
all WLASLtest

wP WLASLtest
w/oPModel P %A@1 %A@3 MRR %A@1 %A@3 MRR %A@1 %A@3 MRR

✗ 29.4±1.6 50.2±2.3 .43±.02 35.0±1.8 56.1±1.7 .48±.02 24.8±1.4 45.3±3.0 .39±.02
SL-GCN

✓ 38.1±0.5 61.0±0.3 .52±.00 44.1±1.1 64.1±0.6 .56±.01 33.1±0.3 58.4±0.2 .49±.00

∆ Improvement ∗8.7 ∗10.8 ∗.09 9.1 8.1 .08 8.3 13.1 .10

✗ 20.5±0.4 36.9±1.0 .32±.01 24.5±1.1 41.2±1.7 .36±.01 17.2±0.3 33.3±0.7 .29±.00
Transformer

✓ 23.4±0.4 41.7±0.7 .36±.01 28.2±0.4 46.5±0.6 .40±.01 19.3±1.0 37.8±1.6 .32±.01

∆ Improvement ∗2.8 ∗4.8 ∗.04 3.7 5.3 .04 2.1 4.5 .03

Table 2: ISLR model performance with and without training with auxiliary phoneme predictions averaged over four
seeds. Models are trained on WLASLtrain

all and evaluated on WLASLtest
all . Models trained to predict phonemes improve

over their ISLR-only baselines on both signs seen at training time with phonemes (WLASLtest
wP ) and signs for which

no phonological data was available during training (WLASLtest
w/oP ). Differences on WLASLtest

all are significant (∗) at
p < 0.05 under a Welch’s two-sided t-test with a Bonferroni correction applied.

without adding new samples. Furthermore, it is
unclear which types to maximize performance.

To address these questions, we define the utility
U of a set of phonemes types P as the percentage
of signs that are uniquely identified by those types.
Defined in this way, a set of phoneme types with
high utility ensures that when a model can accu-
rately predict those types, it is guaranteed to have
sufficient information to recognize U(P) percent
of signs. U(P) is provided by:

U(P) =
∑

S,S′∈V 1 [p(S|P) > p(S′|P)]
|V | − 1

,

where V is the set of all target glosses and
P (S|P) is the probability of a sign S given the
observed phoneme values in P . We implement
P (S|P) with a simple look-up table for all possi-
ble combinations of the 16 phoneme types. With
this utility function in hand, we can define the opti-
mal subset of n phoneme types as:

P∗(n) =
{
argmax
P

U(P) : |P| = n

}
.

4 Results

We demonstrate across-the-board improvements on
ISLR when predicting phonemes alongside glosses.
We measure model performance via ISLR accuracy,
both top-1 and top-3, as well as mean reciprocal
rank (MRR), which ranges from 1 (correct sign
given highest prediction score) to 1/2000 (correct
sign given lowest prediction score).

4.1 Not All Phonemes are Helpful.
First, we explore which subsets of the 16 labeled
phonemes are most beneficial for downstream

ISLR. We train models with auxiliary losses for
P∗(n), n ∈ {2, 5, 9, 16} and report their perfor-
mance in Table 3. With two classification heads—
handshape and minor location—we most improve
ISLR on WLASLval

wP .

4.2 Predicting Phonemes Improves ISLR.
Table 2 demonstrates that adding classification
heads for handshape and minor location yield a
3–9% gain on top-1 accuracy, 5–11% gain on top-3
accuracy, and .04–.09 gain on MRR. These gains
are greater for signs trained with phonological la-
bels, but extend to signs that do not have phonolog-
ical labels as well!

4.3 SL-GCN Performs Accurate Phoneme
Classification.

To lay the groundwork for modeling phonology
in and of itself, we train SL-GCN to predict all
16 phoneme types and examine its accuracy at
phoneme prediction (Figure 3). We compare to a
frozen SL-GCN encoder pretrained for only ISLR,
on top of which we learn linear probes for each
phoneme type, as well as a majority class base-
line. In all cases, training SL-GCN explicitly for
phoneme prediction leads to the highest phoneme
prediction accuracy. Prior work predicted phoneme
values for Flexion, Major Location, Minor Loca-
tion, Path Movement, Selected Fingers, and Sign
Type (Tavella et al., 2022). Despite not being the
explicit goal of this work, SL-GCN with auxiliary
phoneme prediction outperforms that model, too.

5 Discussion

We find that adding auxiliary classification tasks for
sign phonemes to ISLR models statistically signifi-
cantly improves sign recognition accuracy. Repre-
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n P∗(n) %A@1 %A@3 MRR
0 ∅ 50.2 69.3 .62
2 Dominant Handshape, Minor Location 55.7 74.7 .67
5 P∗(2) + Nondominant HS, Path Movement, Repeated Movement 51.5 69.3 .62
9 P∗(5) + 2nd Minor Loc., 2nd Handshape, Wrist Twist, Contact 52.5 69.3 .64

16 P∗(9) + Remaining 7 phoneme types 54.3 72.7 .65

Table 3: SL-GCN sign recognition accuracy when trained on WLASLtrain
wP with auxiliary predictions of the top-n

phoneme types P and tested on WLASLval
wP . See §3.3 for the details of P∗(n).
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Figure 3: Model phoneme prediction accuracy when
trained on WLASLtrain

wP and tested on WLASLtest
wP .

senting phonemes during training may enable mod-
els to learn a more holistic latent representation of
sign videos compared to models that only predict
the target gloss. The success of this approach pro-
vides evidence that handshape and minor location
are not only useful in recognizing signs, but also
easy enough to learn with semi-supervision (recall
that only 48% of the dataset has handshape and
minor location labels). Our findings show that both
models learn these new labels well (Fig 3) and as
a result, the encodings for all videos contain more
relevant information for ISLR.

A secondary finding of this paper is that SL-
GCN, when trained to recognize all 16 phoneme
types, outperforms prior work by anywhere from
1%-9%. Still, there is room for improvement in
phoneme recognition, especially for handshape, mi-
nor location, and path movement.

6 Limitations

The WLASL benchmark has several notable lim-
itations that must be taken into account by those
interested in using it. Dafnis et al. (2022) show that

incorrect labels are pervasive in WLASL, causing
lower ISLR accuracy and, in this work, incorrect
phoneme labels. Additionally, existing sign lan-
guage datasets do not provide information about
the signers’ fluency, dialect, age, or race and there-
fore may not be representative of those who use
ASL. Finally, we caution those interested in col-
lecting ASL data against scraping websites without
permission, and we encourage acknowledging the
creators of those sources.

As a first attempt to model sign language phonol-
ogy in order to improve sign recognition, we ap-
plied our approach to two models and used data for
one language pair (ASL/English). Although many
phonemes are shared across signed languages,
more language pairs and models should be tested
in order to verify our claim that learning phonology
improves sign recognition in general. In partic-
ular, the Two-Stream Inflated 3D ConvNet (I3D;
Carreira and Zisserman 2017) model, designed for
gesture recognition, has also been shown to do
well on ISLR (e.g. Hosain et al. 2021, Albanie
et al. 2020) and we look forward to extending our
method to this model as well.
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Abstract

Large pre-trained language models contain so-
cietal biases and carry along these biases to
downstream tasks. Current in-processing bias
mitigation approaches (like adversarial train-
ing) impose debiasing by updating a model’s
parameters, effectively transferring the model
to a new, irreversible debiased state. In this
work, we propose a novel approach to develop
stand-alone debiasing functionalities separate
from the model, which can be integrated into
the model on-demand, while keeping the core
model untouched. Drawing from the concept
of AdapterFusion in multi-task learning, we
introduce DAM (Debiasing with Adapter Mod-
ules) – a debiasing approach to first encapsu-
late arbitrary bias mitigation functionalities into
separate adapters, and then add them to the
model on-demand in order to deliver fairness
qualities. We conduct a large set of experi-
ments on three classification tasks with gender,
race, and age as protected attributes. Our re-
sults show that DAM improves or maintains the
effectiveness of bias mitigation, avoids catas-
trophic forgetting in a multi-attribute scenario,
and maintains on-par task performance, while
granting parameter-efficiency and easy switch-
ing between the original and debiased models.

1 Introduction

Large pre-trained language models (PLM) and their
variations fine-tuned on downstream tasks encode
societal biases and stereotypes. A large body of
research shows the existence of these biases (Zhao
et al., 2019; Sheng et al., 2019; Rekabsaz et al.,
2021b), and discuss their potential harms (Blod-
gett et al., 2020) in various tasks such as occupa-
tion prediction from biographies (De-Arteaga et al.,
2019), information retrieval (IR) (Rekabsaz et al.,
2021a; Rekabsaz and Schedl, 2020), and machine
translation (Stanovsky et al., 2019). A common ap-
proach to mitigating these biases is to adjust model
parameters according to specific fairness criteria,

Task Adapter

Add & Norm 

Multi-Head 
Attention

Debiasing Adapter

Add & Norm

Add & Norm    

Feed Forward

AdapterFusion

Figure 1: A transformer block in DAM to debias arbi-
trarily many protected attributes in different modules.

achieved using optimization methods such as adver-
sarial training (Elazar and Goldberg, 2018; Barrett
et al., 2019; Han et al., 2021b; Rekabsaz et al.,
2021a).

The resulting debiased models significantly di-
minish the effect of protected attributes (e. g. gen-
der, race, etc.) on model’s predictions. However,
depending on the usage context, characteristics of
the input or fairness-utility trade-off considerations,
system designers or end-users might in practice
still prefer to instead use the original (potentially
biased) model for processing some requests. As an
example, while a fairness-aware document retrieval
model should tease out gender attributes when pro-
cessing bias-sensitive queries (Krieg et al., 2022)
(like how to become CEO?), other common queries
(like earliest pregnancy symptoms) may specifi-
cally require gender information to obtain satisfac-
tory retrieval results. Previous studies also show
that one may need to occasionally accept slight
performance degradation in exchange for realizing
higher fairness (Zerveas et al., 2022; Biega et al.,
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2018; Rekabsaz et al., 2021a). We argue that on-
demand control over the strength of bias mitigation
is crucial for the broad adoption of bias mitiga-
tion models. Using existing approaches, this would
require maintaining and deploying multiple large
parallel models for every protected attribute, in
practice resulting in overly complex and resource-
heavy pipelines and increased latency.

To reduce this untenable burden, we introduce
Debiasing with Adapter Modules (DAM). In our
approach, bias mitigation functionalities can be
trained in fully decoupled modules from the build-
ing blocks solving the main task (see Figure 1).
These debiasing modules are learned indepen-
dently, and can be selectively inserted into the
model to deliver debiasing qualities. Our method
draws from the recent success of Adapter (Rebuffi
et al., 2017; Houlsby et al., 2019) and Adapter-
Fusion (Pfeiffer et al., 2021) networks, originally
introduced in the context of multi-task learning
to enable parameter-efficient training and to avoid
catastrophic forgetting. Specifically in multi-task
learning with AdapterFusion, each task is encoded
in specific parameter-efficient adapter networks at-
tached to the transformer blocks (Vaswani et al.,
2017) of a PLM, and the knowledge across the
tasks is shared through a FusionAdapter layer with
an attention mechanism. DAM extends this princi-
ple idea to bias mitigation by viewing the objective
of “removing each protected attribute” as a stand-
alone task, learned by an independent debiasing
adapter module. These debiasing adapters are then
integrated into the core model via a fusion layer to
mitigate biases. This modular architecture of DAM
enables on-demand debiasing, where by simply re-
moving the debiasing adapters the model would
return to its original state. The modularity and
parameter efficiency of DAM also enables creat-
ing and sharing stand-alone debiasing solutions (in
form of debiasing adapters), which can be applied
to the underlying models on-demand. So, if one
uses task adapter’s output in DAM, they get biased
embedding else they can take output of fusion layer
for debiased embedding.

We evaluate DAM in extensive experiments cov-
ering various bias mitigation applications in three
classification tasks: We study occupation predic-
tion from biographies (De-Arteaga et al., 2019),
mention prediction (Pardo et al., 2016), and hate
speech detection (Founta et al., 2018), involving
the protected attributes of gender, age, and dialect-

based race. Among these, the mention prediction
task provides two protected attributes (gender, age),
enabling the study of adapter-based bias mitigation
on multiple factors. Our evaluation results show
that DAM (1) consistently improves bias mitiga-
tion in terms of lower leakage of protected attribute
in comparison with fully fine-tuned models, and (2)
better avoids catastrophic forgetting (Parisi et al.,
2019; Chen et al., 2020) in a multi-attribute debias-
ing scenario, while (3) maintaining on-par task per-
formance. Our results show the benefits of DAM
in supporting fairness, and reveal the challenges in
the scenarios inherently bounded by trade-offs.

Our contribution is three-fold:

• Introducing DAM, a novel, parameter-
efficient approach for on-demand and mod-
ularized bias mitigation.

• Conducting a large set of experiments on three
datasets and three classification tasks, show-
ing the on-par or better performance of DAM
in comparison with strong baselines.

• Examining the confounding cross-attribute ef-
fects in a multi-attribute dataset and demon-
strating the benefits of our modularized bias
mitigation approach.

The remainder of the paper is organized as fol-
lows: Section 2 reviews the relevant literature in
adapter networks and bias mitigation domains. In
Section 3, we explain the architecture and training
strategy of DAM. Section 4 describes the setup
of the experiments, whose results are reported and
discussed in Section 5. Finally, Sections 6 and 7,
respectively, summarize and discuss limitations
of our work. Our code and trained resources are
available in https://github.com/CPJKU/
ModulaizedDebiasing.

2 Related Work

2.1 Adapter Networks

Adapter networks have been introduced in the con-
text of multi-task learning (Rebuffi et al., 2017).
Houlsby et al. (2019), and later Stickland and Mur-
ray (2019) attach the adapter module to the trans-
former blocks of a PLM, and learn a task by only
updating the adapter parameters, while keeping
the PLM’s parameters unchanged. These studies
show that the highly parameter-efficient adapter ap-
proach in general performs on par with fine-tuning
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all parameters of a BERT model (Devlin et al.,
2019) for many tasks.

Other studies investigate various characteristics
of adapter-based models such as the parameter effi-
ciency, architectural variations, and transfer learn-
ing across tasks. Rücklé et al. (2021) show the
training efficiency of adapter models in compar-
ison with full model finetuning (∼ 60%). Han
et al. (2021a) examine the robustness to initial-
ization seeds and training stability of the adapter
approach. Mahabadi et al. (2021b) propose more
parameter-efficient models by sharing adapter pa-
rameters across layers, followed by Mahabadi et al.
(2021a), who introduce even more compact adapter
modules. Poth et al. (2021) investigate the potential
knowledge transfer across tasks. Recently, Pfeif-
fer et al. (2021) introduce AdapterFusion, where
a fusion layer is defined on top of pre-trained
adapter modules, and learns to combine informa-
tion of adapters via an attention mechanism. This
approach, avoiding the common pitfalls of catas-
trophic forgetting (Parisi et al., 2019), enables an ef-
fective knowledge transfer across tasks. Our work
contributes to this direction by extending the con-
cept of AdapterFusion to the task of bias mitigation
via supervised interaction between the downstream
task and the protected attribute.

2.2 Fairness & Bias Mitigation in NLP

The existence of biases and stereotypes in PLMs
has been reported and discussed in several stud-
ies (Nadeem et al., 2021; Bhardwaj et al., 2021;
Liang et al., 2021; Kirk et al., 2021; Vig et al.,
2020). PLMs may even exacerbate these biases
in downstream tasks as shown e. g. in the context
of IR (Rekabsaz and Schedl, 2020). To reduce
biases, in-processing methods – the focus of this
work – aim at reducing the (cor)relation between
the model’s internal representations and the pro-
tected attributes (Ganhör et al., 2022). Debiasing
PLMs has been approached for instance by linearly
projecting embeddings to a new space that removes
correlations to protected attributes (Kaneko and
Bollegala, 2021; Bolukbasi et al., 2016). In a sim-
ilar spirit, Guo et al. (2022) introduce a distribu-
tion alignment loss to force the model’s outputs
to become independent of the protected attribute.
Schick et al. (2021) recently show that the encoded
information in models can be exploited to spot the
biases and hence to penalize them.

Adversarial training is a commonly used method

to learn representations invariant to a specific fac-
tor of variation. Xie et al. (2017) and later Madras
et al. (2018) introduce adversarial learning to the
context of fair representation learning, where an
adversary network learns to predict the protected at-
tribute, and exploits the gradient of this prediction
to remove the protected information using a gra-
dient reversal layer (Ganin and Lempitsky, 2015).
Several works further investigate the use of adver-
sarial training for removing demographic informa-
tion from neural/PLM-based text classifiers (Elazar
and Goldberg, 2018; Barrett et al., 2019; Wang
et al., 2021). Notably, Han et al. (2021b) show
the benefit of having an ensemble of orthogonal
adversaries. Beyond classification, Rekabsaz et al.
(2021a) show that by applying adversarial training
in the context of IR, one can achieve a more bal-
anced retrieval of documents with respect to the
presence of protected attributes in their contents.

As alternatives to adversarial debiasing, other
works approach bias mitigation by minimizing the
approximated upper bound of mutual information
between task and protected attribute (Cheng et al.,
2020b; Colombo et al., 2021), contrastive learn-
ing for fair representation disentanglement (Cheng
et al., 2020a; Zhang et al., 2021), and introduc-
ing list-wise fairness regularization (Zerveas et al.,
2022). While the mentioned methods are applied
to whole a model, Iterative Nullspace Projection
(INLP) (Ravfogel et al., 2020) achieves debiased
representations by finding a linear mapping applied
to output embeddings. The linear mapping of the
INLP method and similarly the one of Ravfogel
et al. (2022) offer effective bias mitigation meth-
ods particularly designed for the models with a
linear decoder, but are not necessarily suited for
the cases with non-linear decoders (e.g., a language
generation decoder, or non-linear attackers).

Regarding adapter-based debiasing and closely
related to our work, Lauscher et al. (2021) recently
utilize adapters for debiasing PLMs by training an
adapter which removes a protected attribute using
counterfactual augmented data. When applied to
a downstream task, another adapter is added on
top of the debiasing adapter, and trained according
to the task’s objective. While shown effective in
practice, in this stacking architecture the adapters
in the higher levels inherently depend on the ones
in the lower levels. They can not be learned stand-
alone. In contrast, the fusion-based approach of
DAM enables control by learning modular and
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independent debiasing adapters, which supports
flexible plug-in/plug-out on demand.

3 Bias Mitigation with DAM

We approach the scenario in which the aim is to
maximize a task’s core objective (such as occupa-
tion prediction or hate speech prediction), while
reducing the effects of the biases caused by k pro-
tected attributes. The crux of the proposed DAM
approach is to first learn a task adapter and k bias
removal adapters all independently, and then com-
bine them through a fusion module. Once a model
has been trained with DAM, one can easily switch
between the original model by only using the task
adapter, or alternatively impose debiasing by “plug-
ging in” the learned debiasing adapters as well as
the fusion module. In what follows, we explain the
architecture of DAM followed by the optimization
procedure.

3.1 Model Architecture

DAM consists of three main parts: task adapter, k
debiasing adapters, and fusion. Following Pfeiffer
et al. (2021), and as shown in Figure 1, these parts
extend the architecture of a transformer block by
being added to its last layer.

Adapters Each adapter is defined as a multilayer
perceptron (one hidden layer and tanh(x) in our
experiments), where the hidden layer typically has
the same or a smaller dimension than the input.
In DAM, the task adapter and the k debiasing
adapters receive the output vector of the preced-
ing transformer components, denoted as u, and
apply the corresponding transformations to output
the vectors vt, and vb1 , ...,vbk , respectively.

Fusion The fusion module combines the outputs
of the task and debiasing adapters through the at-
tention mechanism to produce the final output vec-
tor. This module receives [vt,vb1 , ...,vbk ] as keys
and values, and the u vector as the query of a
single-head multiplicative attention network, and
calculates the output as the weighted sum of the
value vectors. These weights are calculated as at-
tention scores and form a probability distribution
over value vectors. Essentially, the fusion module
learns to perform a linear combination of the em-
bedding containing information for the task with
the embeddings of the debiasing adapters, to pro-
vide the final, debiased embedding.

…

Task Head Debias Head

Task

Task Debias

ℒ"

Debias

Debias HeadDebias Head k

Debias

Fusion

Fusion

ℒ#$ . . . . . ℒ#&

𝑥
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Figure 2: Schematic view of applying DAM to adver-
sarial bias removal.

3.2 Learning On-demand Bias Mitigation

DAM introduces a generic approach to bias mitiga-
tion and representation disentanglement, and can,
in principle, be integrated with any bias removal
optimization method, provided that the method de-
fines separate losses for the task and each of the
protected attributes. Irrespective of the optimiza-
tion method, the training procedure of DAM is the
following: first, the task adapter is trained accord-
ing to the task’s objective. Then, one debiasing
adapter for each protected attribute is trained using
only its own debiasing objective (see next para-
graph), without involving the task loss. Finally,
all adapters’ parameters are kept frozen and the
fusion layer is trained using a combination of the
task objective and debiasing objectives. Through-
out training, the parameters of the underlying PLM
remain frozen. In what follows, we describe using
DAM together with the adversarial bias mitigation
method as depicted in Figure 2.

Adversarial Training Adversarial bias mitiga-
tion aims to make the output embedding of a
model invariant to the protected attribute, by re-
moving information that allows predicting pro-
tected attributes from the latent representation. In
this sense, adversarial training follows a fairness
through blindness (Barocas et al., 2019) approach,
where the system is made agnostic of the variations
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in underlying protected attributes.
To apply adversarial debiasing with DAM (see

Figure 2) in the context of text classification, the
model first encodes the input sequence x in the
latent vector z, based on which the corresponding
class is predicted using a task classification head.
The loss of this prediction, denoted as Lt, is de-
fined as cross entropy, and its gradient is used to
update the parameters of the task adapter. Sim-
ilarly, a dedicated classification head is defined
for each protected attribute bi, which also receives
z as input, predicts the corresponding protected
attribute, and calculates the cross entropy loss func-
tion Lbi . A common approach to removing the
information of bi encoded in z is gradient resversal
layer (GRL) (Ganin and Lempitsky, 2015) added
before the debiasing head. GRL multiplies the gra-
dient of Lbi with a factor of −γi, and thereby sim-
plifies the learning process to a standard gradient-
based optimization. In DAM, this reversed gradi-
ent of Lbi is used to learn the parameters of the
debiasing adapter corresponding to the protected
attribute bi. Once adapters are trained, the fusion
layer is learned jointly according to all task and
debiasing objectives, as formulated below:

LAdv
Fusion = Lt +

k∑

i=1

Lbi (1)

Note that, while no weights are used to directly
scale the individual loss functions, the effects of
bias mitigation losses on model parameters are ad-
justed via their corresponding γi hyperparameters.

4 Experiment Setup

We evaluate DAM on three classification tasks and
compare the results with a set of strong baselines.

Tasks and Data We conduct our experiments on
three classification tasks. The first task is biog-
raphy classification using the BIOS (De-Arteaga
et al., 2019) dataset. The objective of the task is to
predict a person’s job given their biography, where
the name and any indication of the person’s gen-
der (such as pronouns) in the biography is omitted.
The protected attribute is the person’s gender. The
BIOS dataset contains around 430K data points
with 28 occupations as the core task’s classes, and
two protected attribute classes (female/male).

The second task is hate speech detection, a
sensitive task, as its use in any automated system

Model # Params

BERT-Mini

FT 11, 237, 380
FT-DEBIAS 11, 568, 910
ADP 330, 500
ADP-DEBIAS 432, 206
DAM 1, 186, 830

BERT-Base

FT 110, 075, 908
FT-DEBIAS 113, 036, 558
ADP 14, 767, 876
ADP-DEBIAS 4, 448, 846
DAM 24, 806, 414

Table 1: Number of trainable parameters. The adapter-
based models contain significantly fewer trainable pa-
rameters in comparison with fully fine-tuned models.

with biases towards any societal group can be ex-
tremely delicate (e. g. in automatic social media
moderation). Xia et al. (2020) show the existence
of a strong correlation between dialect-based racial
bias and hate speech detection. In our experiments,
we use FDCL18 (Founta et al., 2018), a dataset
of tweets annotated with four hate speech labels:
normal, spam, abusive, and hateful. Following
previous works (Sap et al., 2019; Ravfogel et al.,
2020; Zhang et al., 2021), we assign artificial race
labels of African American, and White American
to FDCL18 (more details in Appendix A.1). In
this setting, the main task is hate speech classifica-
tion, and the protected attribute is the dialect-based
racial identity of the tweet author. Our final dataset
contains approximately 62K data points.

While the first two tasks contain one protected
attribute, in our third classification task, we aim to
explore the effect of more than one biases on our
models. We therefore opt for a subset of the PAN16
dataset (Pardo et al., 2016). This dataset has been
designed for the task of mention detection, namely
to predict whether a tweet includes the mention of
other users, and the protected attributes are gender
and age of the tweet’s author. The dataset contains
approximately 200K data points with binary task
classes (mention, no mention), as well as two gen-
der labels and five age groups. Further details on
the three datasets are provided in Appendix A.1.

Models and Baselines We conduct the experi-
ments on the following models: FT: fully fine-
tuning the PLM on the task. FT-DEBIAS: fully
fine-tuning the PLM on the task as well as on the
corresponding adversarial debiasing objective(s).
INLP: using the implementation and suggested
hyperparameter setting by Ravfogel et al. (2020),
in particular with a linear task classifier (Logistic
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BIOS (gender) FDCL18 (race)

Model Task↑ Attacker↓ Task↑ Attacker↓
Acc BAcc Acc BAcc

BERT-Mini

FT 81.230.8 61.050.7 61.050.8 79.450.8 93.380.2 76.872.9
FT-DEBIAS 80.170.7 54.93♣0.3 55.03♣0.9 79.161.6 87.291.8 65.331.9
INLP 71.080.2 60.110.8 59.830.9 73.601.6 92.131.4 71.750.4
INLP-NONLIN 54.172.1 60.231.2 59.901.3 51.490.2 92.190.0 92.190.0

ADP 79.200.4 62.720.3 62.910.6 75.452.0 92.861.6 75.943.4
ADP-DEBIAS 72.731.7 62.342.1 62.521.7 65.680.4 85.07♣1.1 63.581.3
DAM 80.58♣0.4 56.410.7 56.600.4 81.40♣0.4 86.052.6 63.30♣0.5

BERT-Base

FT 83.731.0 59.100.3 59.260.8 80.930.8 91.310.8 72.161.8
FT-DEBIAS 83.29♣0.6 58.350.5 58.300.7 80.590.1 87.230.9 57.40♣3.3
INLP 66.250.4 52.42♣0.8 50.51♣0.3 71.632.2 90.200.4 69.870.2
INLP-NONLIN 24.443.3 55.411.1 54.810.9 42.230.4 90.970.2 91.670.3

ADP 77.780.2 63.560.7 63.870.6 79.361.3 84.86♣0.6 87.663.2
ADP-DEBIAS 79.580.0 63.260.8 63.340.9 80.710.6 86.560.2 65.580.1
DAM 80.930.1 60.570.7 60.700.2 80.97♣0.2 88.970.2 64.351.0

Table 2: Results on BIOS and FDCL18 datasets for the task classifiers (accuracy) and protected attributes’ attackers
(accuracy–Acc and balanced accuracy–BAcc), reported as the mean and standard deviation (in subscript) over three
runs. Arrows indicate the direction of better results. On each evaluation metric and each PLM, the best results
among adapter-based models are shown in bold, and over all models by symbol ♣.

Regressor). INLP-NONLIN: the INLP model
with the same setting, but instead of Logistic Re-
gressor, INLP-NONLIN uses a non-linear task clas-
sifier: a two-layer feed-forward layer with a tanh
activation. This setting follows the same config-
uration of all other baselines/models with respect
to the task classifier. ADP: adding one adapter
to the PLM and training it only through the task
objective. ADP-DEBIAS: adding one adapter to
the PLM and training it through the task objective
as well as the adversarial debiasing objective(s).
Finally, our proposed DAM model, which con-
sists of one task adapter and separate debiasing
adapters for each protected attribute, all combined
with a fusion module. DAM uses the same task
adapter trained by ADP and further learns the de-
biasing adapters and fusion layer. We should note
that, since through adapter-based training the task
performance of ADP might be different from the
one of FT, a fair comparison of the core task perfor-
mance should be between the results of ADP and its
respective DAM model. We emphasize that we are
especially interested in adapters because they pre-
serve the original model and can be disengaged at
will, to trade off debiasing for utility/performance.

As the PLM encoder for all models, we conduct

our experiments using two versions of BERT (De-
vlin et al., 2019) with different sizes, namely BERT-
Mini (Turc et al., 2019) and BERT-Base in order
to provide a more comprehensive picture regarding
the effect of encoder size and number of involved
parameters. The number of trainable parameters
of the models is reported in Table 1. The complete
details of our hyperparameters setting and train-
ing procedure are explained in Appendix A.2 and
Appendix A.3, respectively.

Evaluation and Attackers To evaluate the per-
formance of the classifiers on the core task, we use
the accuracy metric. To evaluate bias mitigation,
following previous works (Elazar and Goldberg,
2018; Barrett et al., 2019), we report the leakage
of a protected attribute in terms of accuracy and
balanced accuracy of an attacker. To train an at-
tacker, we freeze the model’s parameters, and train
a new classification head (two-layer feed-forward
layer with a tanh(x) activation) to predict the pro-
tected attribute from the z vector. We train an
ensemble of 5 attackers with the same configura-
tion and training procedure, and report the results
of the best performing one. We report the perfor-
mance of the attacker in terms of accuracy and also
balanced/macro accuracy (average of per-class ac-
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Model Task↑
Attackers↓

Gender Age
Acc BAcc Acc BAcc

BERT-Mini

FT 91.54♣0.0 62.071.0 61.780.9 30.251.0 27.250.4
FT-DEBIASG 92.110.3 58.360.5 58.810.1 28.890.1 26.910.8
FT-DEBIASA 91.390.1 60.150.5 60.080.6 33.942.5 27.720.3
FT-DEBIASG+A 89.910.2 57.380.4 56.820.6 34.920.8 28.210.1
INLPG 69.260.1 59.521.1 60.060.3 34.710.4 29.210.8
INLP-NONLING 67.000.1 60.250.5 60.350.2 33.780.3 30.030.1
INLPA 66.721.8 60.780.1 60.620.1 27.56♣0.1 25.630.2
INLP-NONLINA 62.216.6 60.520.2 60.390.3 31.060.2 25.510.3

ADP 88.630.1 62.441.9 62.471.7 33.754.1 30.662.6
ADP-DEBIASG 78.070.2 56.440.8 55.590.9 33.800.6 28.670.0
ADP-DEBIASA 77.160.2 60.240.4 59.750.5 39.520.6 37.286.0
ADP-DEBIASG+A 77.280.2 55.920.1 55.380.6 38.930.3 33.417.5
DAMG 89.420.1 55.450.5 54.690.7 32.110.0 28.740.3
DAMA 89.140.1 60.770.6 60.720.3 36.531.1 22.98♣1.4
DAMG+A 89.100.2 54.78♣0.1 53.93♣0.1 37.920.1 23.080.4

BERT-Base

FT 93.50♣0.0 57.010.7 56.630.3 36.751.5 28.122.7
FT-DEBIASG 93.560.0 61.760.3 61.460.3 34.650.2 26.420.2
FT-DEBIASA 93.300.3 56.681.7 55.891.9 37.781.0 29.321.9
FT-DEBIASG+A 92.810.1 55.740.5 54.960.9 38.093.6 30.944.4
INLPG 69.370.1 54.380.1 54.400.1 35.310.7 25.530.2
INLP-NONLING 65.420.1 54.270.2 54.110.1 37.361.2 26.980.2
INLPA 49.820.8 54.950.7 54.610.6 34.530.3 27.550.2
INLP-NONLINA 50.185.3 54.440.3 54.440.4 33.66♣0.1 33.660.0

ADP 93.160.0 63.420.1 63.240.1 36.110.4 31.280.7
ADP-DEBIASG 87.000.0 55.050.1 53.830.0 36.180.1 27.930.1
ADP-DEBIASA 86.260.1 57.930.4 57.930.6 38.440.2 29.296.0
ADP-DEBIASG+A 86.320.1 54.360.0 52.990.0 38.141.8 38.991.1
DAMG 93.290.1 54.050.8 52.550.8 39.230.5 25.672.7
DAMA 93.040.1 56.932.7 57.372.7 37.870.8 23.790.9
DAMG+A 93.150.0 53.01♣1.7 52.53♣0.8 38.231.5 23.24♣1.6

Table 3: Results of the PAN16 mention detection task with gender (G) and age (A) as protected attributes on the
task classifiers (accuracy) and protected attributes’ attackers (accuracy–Acc and balanced accuracy–BAcc). The
mean and standard deviation (in subscript) over three runs are reported. On each evaluation metric and each PLM,
the best results among adapter-based models are shown in bold, and over all models by symbol ♣.

curacy scores). Balanced accuracy has the benefit
of better reflecting the performance of the meth-
ods when considering sub- and minority groups.
We believe this is particularly important in this set-
ting, since the datasets are unbalanced over both
task and protected labels (see Appendix A.1). To
account for possible variabilities in training, we
repeat every experiment three times and report the
mean as well as standard deviation of the achieved
results.

5 Results and Discussion

In this section, we first discuss the results on the
datasets with one protected attribute (BIOS and
FDCL18), followed by investigating the effect of
DAM on PAN16 with two protected attributes.

Single-attribute bias mitigation The results on
BIOS and FDCL18 datasets are reported in Table 2.
We start with the results of BERT-Mini on both
datasets. As shown, consistent with previous stud-
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ies the task performance of ADP remains on par
with the full model fine-tuning FT. In both FT and
ADP, we observe that the adversarial debiasing (FT-
DEBIAS and ADP-DEBIAS respectively) signifi-
cantly reduces leakage in terms of Acc and BAcc
of attackers, while task performance remains on par
with the corresponding baseline models. Overall,
adversarial methods outperform respective INLP
models, particularly in respect to maintaining task
performance during bias mitigation.

Compared to ADP and ADP-DEBIAS, we ob-
serve that DAM improves ADP-DEBIAS in terms
of bias mitigation, while maintaining or even
slightly improving performance on the task. The
difference between DAM and ADP-DEBIAS indi-
cates the benefit of learning separate adapters for
performing the task and bias mitigation, and then
combining them. Also comparing DAM with FT-
DEBIAS, overall DAM performs on par in terms
of task performance and leakage, while DAM pro-
vides the additional benefits of selectively engaging
bias mitigation and significantly fewer trainable pa-
rameters.

Comparing the results between the core PLMs,
we see that the above observations for BERT-Mini
also hold true for BERT-Base on the BIOS dataset.
On the FDCL18 dataset with BERT-Mini, DAM is
in fact the only bias mitigation approach that can
effectively prevent leakage while also preserving
performance. It is the best in terms of leakage
reduction, while its task performance is better than
ADP. The situation differs for results of BERT-
Base on FDCL18, as leakage balanced accuracy of
FT-DEBIAS is surprisingly low.

Multi/Two-attribute bias mitigation Table 3 re-
ports the results on PAN16 with two protected at-
tributes, gender (G) and age (A). To observe the
effect of single- versus multiple-attribute debiasing,
we train the debiasing models (FT-DEBIAS, ADP-
DEBIAS, and DAM) in three variations denoted
with subscripts G, A, and G+A, indicating the de-
biasing optimization on only gender, only age, and
both gender and age, respectively.1

Observing similar patterns to the previous exper-
iments, DAMG, DAMA, and DAMG+A provide a
significant improvement in bias mitigation (lower
leakage) in comparison with their respective debi-

1We run INLP and INLP-NONLIN on the two variations
of G and A, but we are not aware of a principled way for
this method to simultaneously debias more than one protected
attribute.

asing baseline variations.2 Also similar to single-
attribute datasets, ADP performs slightly worse
than FT in respect to task performance, but DAM
models remain on par with ADP or slightly im-
prove it. We observe these patterns consistently on
both BERT-Mini and BERT-Base. Overall, DAM
provides equal or better bias mitigation in compar-
ison with FT-DEBIAS and INLP, while offering
on-demand debiasing and parameter efficiency.

Particularly with respect to multi-attribute bias
mitigation, the results show the benefits of
DAMA+G in separately learning multiple debias-
ing adapters and combining them, when compared
with FT-DEBIASG+A, which simultaneously learns
both debiasing factors. In particular, looking at
the attacker’s BAcc, while FT-DEBIASG+A is not
able to debias the age attribute (in comparison to
FT), our DAMG+A provides strongly improved
bias mitigation for age (and also gender), with sim-
ilar or better results to only optimizing for gender
or age (DAMG and DAMA, respectively). This
highlights the effectiveness of DAM in preventing
catastrophic forgetting of debiasing functionalities
in multi-attribute scenarios.3 We further provide
an investigation of the attention distributions of
DAM’s fusion module in Appendix B.

6 Conclusion

We propose a novel bias mitigation approach which
enables flexible switching between the original and
debiased state of a model. Our proposed DAM
method extends the idea of multi-task learning us-
ing AdapterFusion to bias mitigation, by first learn-
ing the main task and the debiasing objectives as
separate adapters, and then leveraging the attention-
based fusion approach to merge these adapters
and deliver debiased results. Our experiments on
three classification tasks show that, beside flexible
switching, DAM improves bias mitigation, pro-
vides on par classification performance to vanilla
adversarial debiasing, and addresses the issue of
catastrophic forgetting in multi-attribute bias miti-
gation.

2BAcc is more suited for comparisons of age on this
dataset, as the age labels are highly imbalanced.

3Our experiments using DAM also indicate a possible
correlation between Gender and Age, as debiasing Gender
(DAMG) leads to slight reduction in Age leakage, while sim-
ilarly, debiasing Age (DAMA) results in a slight removal of
gender information.
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7 Limitations

In the experiments, gender is considered as a binary
construct due to practical constraints. In particular,
in BIOS and PAN16 the gender is provided only in
the form of male and female. We are however fully
aware that a gender binary model is not representa-
tive of all individuals; yet working with in-the-wild
data (as in our case) entails an unavoidable caveat,
derived from the still predominant belief that hu-
man beings can be sorted into two discrete cate-
gories (Hyde et al., 2019). However, the proposed
method can still be defined for generic non-binary
settings and can be applied to any sensitive attribute
with more than two categories, as exemplified by
our consideration of age classes.

We should also highlight two limitations of this
study in respect to the model and optimization.
First, adversarial approaches in general (including
our proposed approach) aims to reduce the cor-
relations in the model to the protected attribute
based on the observed data. This approach, like
other data-oriented bias mitigation methods, might
lack effective generalization, particularly when the
model is evaluated on other domains or out-of-
distribution data. The second limitation regarding
the discussed bias mitigation methods based on ad-
versarial training (also involving our proposed ap-
proach) is that, while the method aims to make the
model prediction agnostic to protected attributes, it
does not directly account for a balanced treatment
of subpopulations in regards to the utility metrics
and quality of the received service.

8 Acknowledgment

This work received financial support by the Aus-
trian Science Fund (FWF): P33526 and DFH-23;
and by the State of Upper Austria and the Fed-
eral Ministry of Education, Science, and Research,
through grants LIT-2020-9-SEE-113 and LIT-2021-
YOU-215.

References
Solon Barocas, Moritz Hardt, and Arvind Narayanan.

2019. Fairness and Machine Learning. fairml-
book.org. http://www.fairmlbook.org.

Maria Barrett, Yova Kementchedjhieva, Yanai Elazar,
Desmond Elliott, and Anders Søgaard. 2019. Adver-
sarial removal of demographic attributes revisited. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-

ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 6331–6336.

Rishabh Bhardwaj, Navonil Majumder, and Soujanya
Poria. 2021. Investigating gender bias in BERT. Cog-
nitive Computation, 13(4):1008–1018.

Asia J Biega, Krishna P Gummadi, and Gerhard
Weikum. 2018. Equity of attention: Amortizing indi-
vidual fairness in rankings. In The 41st international
ACM SIGIR Conference on Research & Development
in Information Retrieval, pages 405–414.

Su Lin Blodgett, Solon Barocas, Hal Daumé III, and
Hanna Wallach. 2020. Language (technology) is
power: A critical survey of “bias” in nlp. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 5454–5476.

Su Lin Blodgett, Lisa Green, and Brendan O’Connor.
2016. Demographic dialectal variation in social
media: A case study of African-American English.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1119–1130, Austin, Texas. Association for Computa-
tional Linguistics.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou,
Venkatesh Saligrama, and Adam T Kalai. 2016. Man
is to computer programmer as woman is to home-
maker? debiasing word embeddings. Advances in
Neural Information Processing Systems.

Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che,
Ting Liu, and Xiangzhan Yu. 2020. Recall and learn:
Fine-tuning deep pretrained language models with
less forgetting. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 7870–7881, Online. As-
sociation for Computational Linguistics.

Pengyu Cheng, Weituo Hao, Siyang Yuan, Shijing Si,
and Lawrence Carin. 2020a. Fairfil: Contrastive neu-
ral debiasing method for pretrained text encoders. In
International Conference on Learning Representa-
tions.

Pengyu Cheng, Martin Renqiang Min, Dinghan Shen,
Christopher Malon, Yizhe Zhang, Yitong Li, and
Lawrence Carin. 2020b. Improving disentangled text
representation learning with information-theoretic
guidance. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7530–7541, Online. Association for Computa-
tional Linguistics.

Pierre Colombo, Pablo Piantanida, and Chloé Clavel.
2021. A novel estimator of mutual information for
learning to disentangle textual representations. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 6539–
6550.

2746

http://www.fairmlbook.org
https://doi.org/10.18653/v1/D16-1120
https://doi.org/10.18653/v1/D16-1120
https://doi.org/10.18653/v1/2020.emnlp-main.634
https://doi.org/10.18653/v1/2020.emnlp-main.634
https://doi.org/10.18653/v1/2020.emnlp-main.634
https://doi.org/10.18653/v1/2020.acl-main.673
https://doi.org/10.18653/v1/2020.acl-main.673
https://doi.org/10.18653/v1/2020.acl-main.673


Maria De-Arteaga, Alexey Romanov, Hanna Wal-
lach, Jennifer Chayes, Christian Borgs, Alexandra
Chouldechova, Sahin Geyik, Krishnaram Kenthapadi,
and Adam Tauman Kalai. 2019. Bias in bios: A
case study of semantic representation bias in a high-
stakes setting. In Proceedings of the Conference on
Fairness, Accountability, and Transparency, pages
120–128.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, volume 1, pages
4171–4186. Association for Computational Linguis-
tics.

Yanai Elazar and Yoav Goldberg. 2018. Adversarial
removal of demographic attributes from text data. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 11–21.

Antigoni Maria Founta, Constantinos Djouvas, De-
spoina Chatzakou, Ilias Leontiadis, Jeremy Black-
burn, Gianluca Stringhini, Athena Vakali, Michael
Sirivianos, and Nicolas Kourtellis. 2018. Large scale
crowdsourcing and characterization of twitter abusive
behavior. In Twelfth International AAAI Conference
on Web and Social Media.

Christian Ganhör, David Penz, Navid Rekabsaz, Oleg
Lesota, and Markus Schedl. 2022. Mitigating con-
sumer biases in recommendations with adversarial
training. In Proceedings of the 45th International
ACM SIGIR conference on research and development
in Information Retrieval, SIGIR 2022. ACM.

Yaroslav Ganin and Victor Lempitsky. 2015. Unsu-
pervised domain adaptation by backpropagation. In
International conference on machine learning, pages
1180–1189. PMLR.

Yue Guo, Yi Yang, and Ahmed Abbasi. 2022. Auto-
debias: Debiasing masked language models with
automated biased prompts. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1012–1023.

Wenjuan Han, Bo Pang, and Ying Nian Wu. 2021a.
Robust transfer learning with pretrained language
models through adapters. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 854–861.

Xudong Han, Timothy Baldwin, and Trevor Cohn.
2021b. Diverse adversaries for mitigating bias in
training. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, pages 2760–2765,
Online. Association for Computational Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In In-
ternational Conference on Machine Learning, vol-
ume 97, pages 2790–2799. Proceedings of Machine
Learning Research.

Janet Shibley Hyde, Rebecca S Bigler, Daphna Joel,
Charlotte Chucky Tate, and Sari M van Anders. 2019.
The future of sex and gender in psychology: Five
challenges to the gender binary. American Psycholo-
gist, 74(2):171–193.

Masahiro Kaneko and Danushka Bollegala. 2021. De-
biasing pre-trained contextualised embeddings. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 1256–1266.

Hannah Rose Kirk, Filippo Volpin, Haider Iqbal, Elias
Benussi, Frederic Dreyer, Aleksandar Shtedritski,
Yuki Asano, et al. 2021. Bias out-of-the-box: An em-
pirical analysis of intersectional occupational biases
in popular generative language models. Advances in
Neural Information Processing Systems, 34.

Klara Krieg, Emilia Parada-Cabaleiro, Gertraud Medi-
cus, Oleg Lesota, Markus Schedl, and Navid Rekab-
saz. 2022. Grep-biasir: A dataset for investigating
gender representation-bias in information retrieval
results. arXiv preprint arXiv:2201.07754.

Anne Lauscher, Tobias Lueken, and Goran Glavaš. 2021.
Sustainable modular debiasing of language models.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 4782–4797, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Paul Pu Liang, Chiyu Wu, Louis-Philippe Morency, and
Ruslan Salakhutdinov. 2021. Towards understand-
ing and mitigating social biases in language models.
In International Conference on Machine Learning,
pages 6565–6576. PMLR.

David Madras, Elliot Creager, Toniann Pitassi, and
Richard Zemel. 2018. Learning adversarially fair
and transferable representations. In Proceedings of
the International Conference on Machine Learning,
pages 3384–3393. PMLR.

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021a. Compacter: Efficient low-rank
hypercomplex adapter layers. In Advances in Neural
Information Processing Systems 34: Annual Confer-
ence on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pages
1022–1035.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa
Dehghani, and James Henderson. 2021b. Parameter-
efficient multi-task fine-tuning for transformers via
shared hypernetworks. In Proceedings of the 59th
Annual Meeting of the Association for Computational

2747

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.eacl-main.239
https://doi.org/10.18653/v1/2021.eacl-main.239
https://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.1037/amp0000307
https://doi.org/10.1037/amp0000307
https://doi.org/10.18653/v1/2021.findings-emnlp.411
https://proceedings.neurips.cc/paper/2021/hash/081be9fdff07f3bc808f935906ef70c0-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/081be9fdff07f3bc808f935906ef70c0-Abstract.html
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47


Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing, ACL/IJCNLP
2021, (Volume 1: Long Papers), Virtual Event, Au-
gust 1-6, 2021, pages 565–576. Association for Com-
putational Linguistics.

Moin Nadeem, Anna Bethke, and Siva Reddy. 2021.
StereoSet: Measuring stereotypical bias in pretrained
language models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 5356–5371, Online. Association for
Computational Linguistics.

Francisco Manuel Rangel Pardo, Paolo Rosso, Ben
Verhoeven, Walter Daelemans, Martin Potthast, and
Benno Stein. 2016. Overview of the 4th author pro-
filing task at pan 2016: Cross-genre evaluations. In
CLEF.

German I Parisi, Ronald Kemker, Jose L Part, Christo-
pher Kanan, and Stefan Wermter. 2019. Continual
lifelong learning with neural networks: A review.
Neural Networks, 113:54–71.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
Adapterfusion: Non-destructive task composition for
transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
487–503.

Clifton Poth, Jonas Pfeiffer, Andreas Rücklé, and Iryna
Gurevych. 2021. What to pre-train on? efficient
intermediate task selection. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 10585–10605.

Shauli Ravfogel, Yanai Elazar, Hila Gonen, Michael
Twiton, and Yoav Goldberg. 2020. Null it out: Guard-
ing protected attributes by iterative nullspace projec-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7237–7256.

Shauli Ravfogel, Michael Twiton, Yoav Goldberg, and
Ryan D Cotterell. 2022. Linear adversarial concept
erasure. In International Conference on Machine
Learning, pages 18400–18421. PMLR.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea
Vedaldi. 2017. Learning multiple visual domains
with residual adapters. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), volume 30.

Navid Rekabsaz, Simone Kopeinik, and Markus Schedl.
2021a. Societal biases in retrieved contents: Mea-
surement framework and adversarial mitigation of
BERT rankers. In Proceedings of the 44th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 306–
316.

Navid Rekabsaz and Markus Schedl. 2020. Do neural
ranking models intensify gender bias? In Proceed-
ings of the 43rd International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, pages 2065–2068.

Navid Rekabsaz, Robert West, James Henderson, and
Allan Hanbury. 2021b. Measuring societal biases in
text corpora via first-order co-occurrence. Proceed-
ings of the International AAAI Conference on Web
and Social Media (ICWSM).

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. 2021. AdapterDrop: On the efficiency
of adapters in transformers. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 7930–7946.

Maarten Sap, Dallas Card, Saadia Gabriel, Yejin Choi,
and Noah A. Smith. 2019. The risk of racial bias
in hate speech detection. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 1668–1678, Florence, Italy. Asso-
ciation for Computational Linguistics.

Timo Schick, Sahana Udupa, and Hinrich Schütze. 2021.
Self-diagnosis and self-debiasing: A proposal for re-
ducing corpus-based bias in NLP. Transactions of the
Association for Computational Linguistics, 9:1408–
1424.

Emily Sheng, Kai-Wei Chang, Prem Natarajan, and
Nanyun Peng. 2019. The woman worked as a babysit-
ter: On biases in language generation. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 3398–3403.

Gabriel Stanovsky, Noah A Smith, and Luke Zettle-
moyer. 2019. Evaluating gender bias in machine
translation. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1679–1684.

Asa Cooper Stickland and Iain Murray. 2019. BERT
and PALs: Projected attention layers for efficient
adaptation in multi-task learning. In Proceedings of
the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning
Research, pages 5986–5995. PMLR.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better: On
the importance of pre-training compact models.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30, pages 6000––6010. Cur-
ran Associates, Inc.

2748

https://doi.org/10.18653/v1/2021.acl-long.416
https://doi.org/10.18653/v1/2021.acl-long.416
https://doi.org/10.18653/v1/P19-1163
https://doi.org/10.18653/v1/P19-1163
https://proceedings.mlr.press/v97/stickland19a.html
https://proceedings.mlr.press/v97/stickland19a.html
https://proceedings.mlr.press/v97/stickland19a.html
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stuart
Shieber. 2020. Investigating gender bias in language
models using causal mediation analysis. Advances in
Neural Information Processing Systems, 33:12388–
12401.

Liwen Wang, Yuanmeng Yan, Keqing He, Yanan Wu,
and Weiran Xu. 2021. Dynamically disentangling
social bias from task-oriented representations with
adversarial attack. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 3740–3750.

Mengzhou Xia, Anjalie Field, and Yulia Tsvetkov. 2020.
Demoting racial bias in hate speech detection. In
Proceedings of the Eighth International Workshop
on Natural Language Processing for Social Media,
pages 7–14, Online. Association for Computational
Linguistics.

Qizhe Xie, Zihang Dai, Yulun Du, Eduard Hovy, and
Graham Neubig. 2017. Controllable invariance
through adversarial feature learning. In Proceed-
ings of the 31st International Conference on Neural
Information Processing Systems, pages 585–596.

George Zerveas, Navid Rekabsaz, Daniel Cohen, and
Carsten Eickhoff. 2022. Mitigating bias in search
results through set-based document reranking and
neutrality regularization. In Proceedings of the 45th
International ACM SIGIR conference on research
and development in Information Retrieval, SIGIR
2022. ACM.

Xiongyi Zhang, Jan-Willem van de Meent, and Byron C
Wallace. 2021. Disentangling representations of text
by masking transformers. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 778–791.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Ryan Cotterell,
Vicente Ordonez, and Kai-Wei Chang. 2019. Gender
bias in contextualized word embeddings. In Proceed-
ings of the Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 629–634.

2749

https://doi.org/10.18653/v1/2020.socialnlp-1.2


A Experiment Settings – Additional
Details

A.1 Datasets

In FDCL18 dataset, we use the TwitterAAE
model (Blodgett et al., 2016) to assign racial dialect
classes. The TwiiterAAE model predicts four racial
classes, African American, White American, His-
panic, and Others. We labeled a tweet as African
American or White American if the prediction score
was greater than 0.5. For PAN16 dataset, following
(Sap et al., 2019) we balanced the task labels and
sampled 200K data. The age groups of this dataset
are 18-24, 25-34, 35-49, 50-64, and 65+. The pro-
portions of data items regarding the labels of the
task and protected attributes in the three dataset are
as follows:

• BIOS dataset: Task (dentist: 0.03, profes-
sor: 0.27, teacher: 0.04, psychologist: 0.04,
nurse: 0.07, poet: 0.01, photographer: 0.06,
journalist: 0.04, filmmaker: 0.02, physician:
0.08, composer: 0.2, attorney: 0.08, model:
0.03, painter: 0.02, accountant: 0.01, pastor:
0.01, comedian: 0.01, surgeon: 0.05, architect:
0.03, paralegal: 0.01, dj: 0.01, chiropractor:
0.01, software engineer: 0.02, dietitian: 0.02,
rapper: 0.01, personal trainer: 0.003, yoga
teacher: 0.01, interior designer: 0.01); Gender
(Female: 0.5, Male: 0.5)

• FDCL18 dataset: Task (normal: 0.73, spam:
0.12, abusive: 0.12, hateful: 0.04); Race
(White: 0.5, AA: 0.5)

• PAN16 dataset: Task (Mention: 0.5, Not Men-
tion: 0.5); Gender (male: 0.54, female: 0.46);
Age ( 3: 0.18, 1: 0.34, 2: 0.40, 0: 0.07, 4:
0.01)

A.2 Hyperparameter setting

Across experiments, we keep specific hyperparam-
eters consistent. Batch size is 64, learning rate is
2e-5 (except for training task and debiasing adapter
as explained below), training epochs is 20, dropout
probability is 0.3, and adversarial debiasing coeffi-
cient is 1 for all models (when applicable).

For task adapter and debiasing adapters, we
tune the learning rate and the hidden layer dimen-
sion of adapter. We conduct brute search over the
learning rate values of [1e-5, 1e-4,1e-3,1e-2], and
hidden layer dimension with a division factor of

[1,1/2,1/4,1/8,1/16]. For INLP we use 10 itera-
tions and 10 classifiers to learn null space while
for INLP-NONLIN we same setting (300 iterations
and 300 classifiers) as in (Ravfogel et al., 2020).

A.3 Training procedure

We randomly split the dataset into train, validation,
and test set with the proportions 63:12:15 for BIOS,
63:12:15 for FDCL18, and 80:5:15 on PAN16. We
use the validation set for hyperparameter tuning,
and the best result on the validation set is evaluated
on test set for the final results. The validation and
test sets in all datasets follow the same distribution
as the whole dataset. To address the unbalanced-
ness of the dataset and the potential problems in
adversarial learning, we apply upsampling only on
the training sets of BIOS and FDCL18 datasets, to
balance the protected attribute labels within each
task label. For instance, genders are balanced in
the dentist class by repeating the data items of the
minority subgroup.

B Fusion Attention Analysis

We investigate the attention distribution of the fu-
sion network and observe the weights it gives to
the adapters. Figures 3a, 3b, and 4 depict the atten-
tion scores of each adapter averaged over all fusion
layer in DAM for BIOS, and FDCL18, and PAN16
datasets, respectively. To avoid confusion in visual-
ization, we only used 4% of data points randomly
sampled from test set. As shown, the task adapter
has weights close to 1, while debiasing adapters
are assigned attention scores slightly higher than
0. The top three outliers in BIOS with the highest
attentions on the debiasing adapter are reported in
Table 4.

Text

1
passionately promotes healthy dietary
and lifestyle choices to prevent disease
and achieve optimal health

2
practices include clayton heights family
dental street panorama family dental
avenue and surrey family dental avenue

3

primary research interests include
collective security and global health in
an international relations and
international political economy
perspective

Table 4
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Figure 3: Attention distribution of a set of sampled data points in the fusion module of DAM.
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Figure 4: Attention distribution of a set of sampled data points in the fusion module of DAM in PAN16 dataset.
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Abstract

Current state-of-the-art coreference systems
are based on a single pairwise scoring com-
ponent, which assigns to each pair of mention
spans a score reflecting their tendency to core-
fer to each other. We observe that different
kinds of mention pairs require different infor-
mation sources to assess their score. We present
LINGMESS, a linguistically motivated catego-
rization of mention-pairs into 6 types of coref-
erence decisions and learn a dedicated trainable
scoring function for each category. This signif-
icantly improves the accuracy of the pairwise
scorer as well as of the overall coreference per-
formance on the English Ontonotes coreference
corpus and 5 additional datasets.1

1 Introduction

Coreference resolution is the task of clustering tex-
tual mentions that refer to the same discourse entity.
This fundamental task requires many decisions. In
this work, we argue that different kinds of decisions
involve different challenges. To illustrate that, con-
sider the following text:

“Lionel Messi has won a record seven Ballon
d’Or awards. He signed for Paris Saint-Germain
in August 2021. “I would like to thank my family”,
said the Argentinian footballer. Messi holds the
records for most goals in La Liga”

To correctly identify that the pronoun “He”
refers to “Lionel Messi”, models need to model
the discourse, while linking “my” to “I” may rely
more heavily on morphological agreement. Like-
wise, linking “the Argentinian footballer” to “Li-
onel Messi” requires world knowledge, while link-
ing “Messi” to “Lionel Messi” may be achieved by
simple lexical heuristics.

1The codebase to train and run LINGMESS is avail-
able in https://github.com/shon-otmazgin/
lingmess-coref. Also, our recent F-COREF Python
package (Otmazgin et al., 2022) includes a simple and
efficient implementation of LINGMESS in https:
//github.com/shon-otmazgin/fastcoref.

Figure 1: Architecture of our multi expert model.
Given two spans “Lionel Messi” and “He”,
we sum four scores: individual mention scores
(black), fm(“Lionel Messi”), fm(“He”), and
pairwise scores, shared antecedent score (white)
fa(“Lionel Messi”,“He”) and the relevant “expert”
score (blue) f PRON-ENT

a (“Lionel Messi”,“He”).

Indeed, pre-neural coreference resolution works
often considered the types of a mention-pair, either
by incorporating this information as model features,
or by tailoring specific rules or specific models for
each mention pair (see related work section).

However, neural-network based coreference
models are all based on a single pairwise scorer
that is shared for all mention pairs, regardless of
the different challenges that needs to be addressed
by each pair type (Lee et al., 2017, 2018; Joshi
et al., 2019; Kantor and Globerson, 2019; Joshi
et al., 2020; Xu and Choi, 2020; Xia et al., 2020;
Toshniwal et al., 2020; Thirukovalluru et al., 2021;
Kirstain et al., 2021; Dobrovolskii, 2021).

In this work, we suggest that modeling different
mention pairs by different sub-models (in our case,
different learned scoring functions) depending on
their types is beneficial also for neural models. We
identify a set of decisions: (a) linking compatible
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Category Co-referring example Non Co-referring example

PRON-PRON-C A couple of my law clerks were going to ... and I
was afraid I was going to...

The Lord God said to my Lord: “Sit by me at my
right side , and I will put your enemies ... ”

PRON-PRON-NC “I made a similar line and I produced it cheaper” ,
he says.

She is my Goddess ...

ENT-PRON Spain, Argentina, Thailand and Indonesia were
doing too little to prevent ... across their borders.

Tonight, to kick off the effort, CNN will premiere
its first prime - time newscast in years.

MATCH ... says Paul Amos, CNN executive vice president
for programming. Accordingly, CNN is ...

Hertz and Avis can not benefit Budget’s programs,
” said Bob Wilson, Budget’s vice president ...

CONTAINS He reportedly showed DeLay a videotape that
made him weep. Tom DeLay then ...

Give SEC authority to halt securities trading,
(also opposed by new SEC chairman) ...

OTHER They also saw the two men who were standing
with him. When Moses and Elijah were leaving ...

The company is already working on its own
programming ... the newspaper said.

Table 1: Example of each category, taken from Ontonotes development set. We define the categories of mention
pairs as follows. PRON-PRON-C: compatible pronouns based on their attributes such as gender, number and animacy
(see Appendix C for more details), PRON-PRON-NC: incompatible pronouns, ENT-PRON: a pronoun and another
span, MATCH: non-pronoun spans with the same content words, CONTAINS: one contains the content words of the
other, OTHER: all other pairs. Content words exclude stop words, see Appendix C for the full list of stop words.

pronouns (PRON-PRON-C); (b) linking incompati-
ble pronouns (PRON-PRON-NC); (c) linking pro-
nouns to entities (ENT-PRON); (d) linking entities
which share the exact lexical form (MATCH); (e)
linking entities where the lexical form of one con-
tains the lexical form of the other (CONTAINS); (f)
other cases (OTHER). Each of these classes is easy
to identify deterministically, each contains both
positive and negative instances, and each could
benefit from a somewhat different decision process.
Table 1 demonstrates the classes.2

We present Linguistically Informed Multi
Expert Scorers (LINGMESS), a coreference model
which categorizes each pairwise decision into one
of these classes, and learns, in addition to a shared
scoring function, also a separate scoring function
for each pair type. At inference time, for each
pair of mentions being scored, we deterministically
identify the pair’s type, and use the corresponding
scoring function.3

Specifically, we extend the recent s2e’s
model (Kirstain et al., 2021) by adding per-category
scoring, but the method is general and may work
with other coreference models as well. As illus-
trated in Figure 1, the final coreference score be-
tween two spans is composed—in addition to the
individual mention scores—of two pairwise scores:
a shared antecedent-compatibility score and an “ex-

2More fine-grained distinctions are of course also possible,
but we leave exploration of them to future work.

3For computational efficiency on the GPU, we find it bene-
ficial to compute all the scoring functions and mask away the
not needed values.

pert” antecedent compatibility score which depends
on the linguistic-type of the pair.

We show that this significantly improves the
coreference performance on Ontonotes (Pradhan
et al., 2012) and 5 additional datasets. We also
inspect the performance of the model for each cate-
gory separately, showing that some classes improve
more than others. This analysis provides a finer-
grained understanding of the models and points out
directions for future research.

2 Background: the s2e Model

The s2e model (Kirstain et al., 2021) achieves the
current best coreference scores among all practical
neural models.4

Given a sequence of tokens x1, . . . , xn, each
mention pair (c, q) is scored using a scoring func-
tion FS(c, q)

5 described below, where c is a “candi-
date span” and q is a “query span” which appears
before c in the sentence. The span encodings are
based on contextualized word embeddings obtained
by a Longformer encoder, see Kirstain et al. (2021)
for details. These pairwise scores are then used to
form coreference chains (see “inference” below).

4We define “practical models” as those that require a con-
stant number transformer-based document encodings per pas-
sage, as opposed to a constant number of document encodings
per mention. The CorefQA model (Wu et al., 2020) achieves a
substantially higher score, but requires to run a separate BERT
inference for each mention, making it highly impractical.

5S state for SHARED
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The scoring function FS is further decomposed:

FS(c, q) =

{
fm(c) + fm(q) + fa(c, q) c ̸= ε

0 c = ε

where ε is the null antecedent, and fm and fa are
parameterized functions, scoring each individual
span (fm) and the pairwise interaction (fa).

For each possible mention q, the learning objec-
tive optimizes the sum of probabilities over the true
antecedent ĉ of q:

LS(q) = log
∑

ĉ∈C(q)∩GOLD(q)

PS(ĉ | q)

where C(q) is the set of all candidate antecedents6

with a null antecedent ε. GOLD(q) is the set of the
true antecedents of q. PS(c | q) is computed as a
softmax over FS(c, q) scores for c values in C(q):

PS(ĉ | q) =
expFS(ĉ, q)∑

c′∈C(q)
expFS(c′, q)

3 LINGMESS

Clustering coreferring entities typically involves
many different phenomena, which we argue should
be addressed in a different manner. Therefore, our
core contribution is proposing to allocate a dedi-
cated scorer f ta(c, q) for each phenomenon type t,
in addition to the shared pairwise scorer fa(c, q).
The overall architecture of our model is shown in
Figure 1.

Concretely, we extend the s2e model with
six additional antecedent scorers f ta where t ∈
{PRON-PRON-C, PRON-PRON-NC, ENT-PRON,
MATCH,CONTAINS,OTHER}, the six categories
we list in Table 1.

The pairwise scoring function now becomes:

F (c, q) =

{
fm(c) + fm(q) + f(c, q) c ̸= ε

0 c = ε

f(c, q) =fa(c, q) + fT (c,q)a (c, q)

where T (c, q) is a deterministic, rule-based func-
tion to determine the category t of the pair (c, q).
The pairwise scoring function f(c, q) scoring c as
the antecedent of q, is now composed of a shared
scorer fa(c, q) and an “expert” scorer f ta(c, q)
which differs based on the type of the pair c, q.
Each of the seven pairwise scoring functions (fa

6All spans before q that passed some pruning threshold.

and the six f ta) is parameterized separately using
its own set of matrices. The transformer-based
encoder and the mention scorer fm are shared be-
tween all the antecedent scorers. See Appendix A.2
for full model architecture.

Training For each span q, our model optimizes
the objective function LCOREF over the sum of prob-
abilities of all true antecedents of q:

LCOREF(q) = log
∑

ĉ∈C(q)∩GOLD(q)

P (ĉ | q)

Here, P (ĉ | q) is a softmax over F (ĉ, q) scores,
that is our new score function described in Figure 1.

P (ĉ | q) = expF (ĉ, q)∑
c′∈C(q)

expF (c′, q)

This scorer is also the one used in inference.
However, this objective does not explicitly push
each category (“expert”) to specialize. For example,
for the PRON-PRON-C cases, it would be useful to
explicitly train the model to distinguish between
the possible antecedents of that type only (without
regarding other antecedents), as well as to explicitly
distinguish between a pronoun antecedent and a
null antecedent. To this end, we extend the training
objective by also training each “expert” separately:

Lt(q) = log
∑

ĉ∈Ct(q)∩GOLD(q)

Pt(ĉ | q)

Pt(ĉ | q) =
expFt(ĉ, q)∑

c′∈Ct(q)
expFt(c′, q)

Ft(c, q) =

{
fm(c) + fm(q) + f ta(c, q) c ̸= ε

0 c = ε

Note that for Lt(q) we replace C(q) with Ct(q),
considering only the potential antecedents that are
compatible with the span q for the given type. For
example, for LMATCH and a span q, we will only
consider candidates c which appear before q with
the exact same content words as q. Our final objec-
tive for each mention span q is thus:

L(q) = LCOREF(q) + LEXPERTS(q)

LEXPERTS(q) =
∑

t

Lt(q) + LS(q)
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MUC B3 CEAFϕ4 LEA

R P F1 R P F1 R P F1 R P F1 Avg. F1

s2e 85.2 86.6 85.9 77.9 80.3 79.1 75.4 76.8 76.1 75.8 78.3 77.0 80.3
LINGMESS 85.1 88.1 86.6 78.3 82.7 80.5 76.1 78.5 77.3 76.3 80.9 78.5 81.4

Table 2: Performance on the test set of the English OntoNotes 5.0 dataset. The averaged F1 of MUC, B3, CEAFϕ is
the main evaluation metric. Our model outperforms the s2e model (Kirstain et al., 2021) by 1.1 CoNLL F1. The
performance gain is statistically significant according to a non-parametric permutation test (p < 0.05).

s2e LINGMESS

WikiCoref (Ghaddar and Langlais, 2016) 59.7 62.6
GAP (Webster et al., 2018) 88.3 89.6
WinoGender (Rudinger et al., 2018) 70.5 77.3
WinoBias (Zhao et al., 2018) 84.3 85.1
BUG (Levy et al., 2021) 72.2 74.6

Table 3: Performance on the test set of various corefer-
ence datasets. The reported metrics are CoNLL F1 for
WikiCoref, F1 for GAP and Accuracy for WinoGender,
WinoBias and BUG.

s2e LINGMESS

P R F1 P R F1

PRON-PRON-C 88.8 71.3 79.1 88.0 85.1 86.5
PRON-PRON-NC 84.2 55.8 67.1 88.3 68.7 77.3
ENT-PRON 78.8 68.7 73.4 80.4 69.8 74.7
MATCH 85.6 90.2 87.8 85.3 93.7 89.3
CONTAINS 72.4 80.9 76.4 77.4 78.9 78.1
OTHER 60.1 70.2 64.7 71.7 64.2 67.7

Table 4: Pairwise performance by category, on the test
set of the English OntoNotes 5.0 dataset. LINGMESS
surpasses the s2e model (Kirstain et al., 2021) for most
categories by a substantial margin.

Inference At inference time, we compute the
score of each mention based on the shared scorer
as well as the per-type scorer matching the mention
type. We then form the coreference chains by link-
ing each mention q to its most likely antecedent c
according to F (c, q). We do not use higher-order
inference as it has been shown to have a marginal
impact (Xu and Choi, 2020).

4 Experiments

Our baseline is the s2e model trained on the English
OntoNotes 5.0 dataset by its authors (Kirstain et al.,
2021). We train LINGMESS also on OntoNotes,
and evaluate both models on OntoNotes, Wiki-
Coref, GAP, WinoGender, WinoBias and BUG. Im-
plementation details are described in Appendix B.

Performance Table 2 presents the performance
of LINGMESS on the test set of Ontonotes.
LINGMESS achieves 81.4 F1 on Ontonotes, while

the s2e baseline achieves 80.3. Our performance
gain is statistically significant according to a non-
parametric permutation test (p < 0.05). Addition-
ally, Table 3 shows that LINGMESS outperforms
the s2e model on WikiCoref (+2.9) GAP (+1.3),
WinoGender (+6.8), WinoBias (+0.8) and BUG
(+2.4), indicating a better out-of-domain general-
ization.

Importance of per-category scoring. To assess
that the improvement of LINGMESS is due to the
decomposition into our set of categories and not
to the added parameters, we do two experiments.
First, we train a random baseline, which randomly
assigns a category for each pair7 and obtain similar
results as the baseline. Second, we train our model
by optimizing only the overall loss LCOREF and
not LEXPERTS. This achieves lower results than the
baseline, due to low mention recall.

In addition to the standard coreference evalua-
tion, we report pairwise performance for each cat-
egory. Given a mention-pair (c, q), if F (c, q) is
higher than 0, we treat it as a positive prediction,
otherwise negative. We then measure precision,
recall and F1 based on gold clusters labels. Table 4
shows the pairwise performance of the s2e model
and LINGMESS. LINGMESS outperforms s2e by a
significant margin for all categories (e.g +7.4 F1 for
PRON-PRON-C, +10.2 F1 for PRON-PRON-NC,
etc.).8 The performance varies across the different
categories, suggesting aspects of the coreference
problem where future work can attempt to improve.

The importance of the shared scorer. To in-
vestigate the role of the shared scorer, we trained
the LINGMESS model with only the per-type pair-
wise scorers, excluding the shared pairwise scorer
FS(c, q) and its accompanying loss term LS(q).

7For each pair of mentions (c, q), we take the modulo of
the sum of the ASCII code of the last character of the last
token of c and q.

8These gains in this pairwise metric are higher than the
CoNLL metrics reported in Table 2, because the CoNLL met-
rics are based on the final clusters, after aggregation of indi-
vidual pairwise decisions.
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This resulted in a significant decrease in perfor-
mance (-0.9), specifically in the recall of the men-
tion detection component. However, adding the
shared scorer was able to mitigate this degrada-
tion by balancing the different “experts” pairwise
scorers.

5 Related Work

Many pre-neural works consider the various lin-
guistic phenomena involved in coreference reso-
lution as a different challenge. The early corefer-
ence system by Zhou and Su (2004) divided the
antecedents candidates into distinct coreference
categories (e.g., Name Alias, Apposition, Definite
Noun, and a few more) and defined tailored rules
for each category. Later, Lee et al. (2013) proposed
the multi-sieves deterministic model, where each
sieve adds coreference links between mention pairs
from a specific linguistic category (e.g string match,
compatible pronoun, etc.). Haghighi and Klein
(2009) performed an error analysis of their coref-
erence model according to different types of an-
tecedent decisions, such as Proper Noun-Pronoun,
Pronoun-Pronoun, etc. Based on this analysis, they
focus on fixing the pronoun antecedent choices by
adding syntactic features. More recently, Lu and
Ng (2020) analyze empirically the performance
of neural coreference resolvers on various fine-
grained resolution categories of mentions (e.g gen-
dered pronoun vs. 1st and 2nd pronoun). They
find that while models perform well on name and
nominal mention pairs with some shared content
words, they still struggle with resolving pronouns,
particularly relative pronouns.

Early supervised statistical models train a
feature-based classifier that incorporates the type
of antecedent decision (e.g. pronoun-entity, string
match) as features at the mention-pair level (Soon
et al., 2001; Bengtson and Roth, 2008; Clark and
Manning, 2015, 2016). Subsequently, Denis and
Baldridge (2008) demonstrate that training sepa-
rate classifiers that specialize in particular types of
mentions (e.g third person pronouns, speech pro-
nouns, proper names, definite descriptions, and all
other) provides significant performance improve-
ments. Lassalle and Denis (2013) took that obser-
vation a step further and proposed a more advanced
method for model specialization by learning to sep-
arate types of mention into optimal classes and
their proper feature space.

In our work, we make progress in coreference

systems specialization direction, and show that the
incorporation of linguistic information is helpful
also in the context of end-to-end neural models.

6 Conclusion

We present LINGMESS, a coreference model that
significantly improves accuracy by splitting the
scoring function into different categories, and rout-
ing each scoring decision to its own category based
on a deterministic, linguistically informed heuris-
tic. This indicates that while end-to-end training is
very effective, linguistic knowledge and symbolic
computation can still be used to improve results.

Limitations

In this paper, we consider a set of 6 linguistic cate-
gories of mention pairs, as listed in Table 1. These
categories might not be optimal for the task, while
a different set of finer-grained categories may re-
sult to a higher performance gain. Another aspect
that can be considered as a limitation is the com-
putation of the categories for every possible pairs.
Although the model considers only the top-scoring
spans, this additional computation layer increases
training and inference time over the baseline (see
Appendix B.3 for the exact time). Our linguistic
heuristics could be improved by, e.g., running a
parser and considering head words. However, we
chose not to do so in this work as this will further
increase runtime.
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A Model Architecture

Given a sequence of tokens x1, ..., xn from an in-
put document, a transformer-based (BERT-like) en-
coder first forms contextualized representation vec-
tors, x1, ...,xn for each token in the sequence.

A.1 The s2e Model
Mention scorer Given a span q = (xi,xj), rep-
resented by its start and end tokens, the score for q
being a mention is defined as follow:

ms(x) = GeLU(Wmsx) me(x) = GeLU(Wmex)

fm(q) = ms(xi) · vs +ms(xj) · ve
+ms(xi) ·Bm ·ms(xj)

where ms(x) and me(x) are two non-linear func-
tions to obtain start and end representations for
each token x, and fm(q) is a biaffine product over
these representations.

Antecedent scorer Given two spans, c =
(xi,xj) and q = (xk,xl), represented by their start
and end tokens, the score for c being an antecedent
of q is computed as follow:

as(x) = GeLU(Wasx) ae(x) = GeLU(Waex)

fa(c, q) = as(xi) ·Bss · as(xk)

+ ae(xj) ·Bes · as(xk)

+ as(xi) ·Bse · ae(xl)

+ ae(xj) ·Bee · ae(xl)

Similar to the mention scorer, as(x) and ae(x)
are two non-linear functions to obtain start/end
representations for each token, and fa(c, q) is a
sum of four bilinear functions over the start and
end representations of c and q.

A.2 LINGMESS

Mention scorer Our mention scorer is the same
as s2e mention scorer implementation.

Antecedent scorer As mentioned in the pa-
per (§3), in addition to the shared antecedent
scorer fa(c, q), LINGMESS includes a dedicated
antecedent scorer f ta(c, q) for each category t ∈
{PRON-PRON-C, PRON-PRON-NC, ENT-PRON,
MATCH,CONTAINS,OTHER}. The overall
score for c = (xi,xj) being an antecedent of
q = (xk,xl) becomes the sum of the shared scorer
and the relevant category “expert” scorer:

f(c, q) = fa(c, q) + fT (c,q)a (c, q)

where T (c, q) is a deterministic function to deter-
mine the category t of the pair (c, q).

For each category t, we define two specific non-
linear functions to obtain start and end represen-
tations (ats(x) and ate(x)) as well as an “expert”
antecedent scoring function f ta(c, q):

ats(x) = GeLU(Wt
as
x) ate(x) = GeLU(Wt

ae
x)

f ta(c, q) = ats(xi) ·Bt
ss · ats(xk)

+ ate(xj) ·Bt
es · ats(xk)

+ ats(xi) ·Bt
se · ate(xl)

+ ate(xj) ·Bt
ee · ate(xl)

Overall, our model introduces 6 learnable ma-
trices for each category (Wt

as
, Wt

ae
, Bt

ss, B
t
es,

Bt
se, B

t
ee). The transformer-based encoder and the

mention scorer are shared between all the different
pairwise scorers.

B Implementation Details

B.1 Hyperparameteres
We extend the s2e’s implementation based on Py-
Torch (Paszke et al., 2019) and Transformers (Wolf
et al., 2020). We used the same hyperparameters
(e.g learning rate, warmup, etc.) as the s2e model
except the hidden size of all matrices W and B.
As our method introduces a dedicated antecedent
scoring function f ta function for each category t,
we reduce the size of these matrices from 3072 to
2048 to fit training into memory in our hardware.
Similar to the baseline our head method is on top
of Longformer-Large (Beltagy et al., 2020), result-
ing in a total of 590M learnable parameters (the
s2e model contains 494M learnable parameters).
We used dynamic batching both for training and
inference, specifically 5K tokens in a single batch
during training and 10K tokens at inference.
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Kirstain et al. (2021) LINGMESS

P R F1 P R F1

PRON-PRON-C 91.7 77.5 84.0 91.7 90.2 91.0
PRON-PRON-NC 88.9 66.2 75.9 90.2 81.3 85.5
ENT-PRON 82.0 74.1 77.9 81.4 74.7 77.9
MATCH 88.3 87.5 87.9 88.4 92.0 90.2
CONTAINS 69.1 77.2 72.9 76.1 73.5 74.8
OTHER 56.8 67.5 61.7 70.8 64.4 67.5

Table 5: Pairwise performance by category, on the dev
set of the English OntoNotes 5.0 dataset.

Masc Fem Bias Overall

Kirstain et al. (2021) 90.6 85.8 0.95 88.3
LINGMESS 91.3 87.8 0.96 89.6

Table 6: Performance on the test set of the GAP corefer-
ence dataset. The reported metrics are F1 scores.

B.2 Evaluation

As mentioned in the paper (§4), we conduct our ex-
periments on the English portion of the OntoNotes
corpus (Pradhan et al., 2012). This dataset contains
2802 documents for training, 343 for development,
and 348 for test.

We evaluate our model according to the stan-
dard coreference metric: MUC (Vilain et al., 1995),
B3 (Bagga and Baldwin, 1998), CEAFϕ4 (Luo,
2005), and LEA (Moosavi and Strube, 2016)
using the official CoNLL coreference scorer.9

LINGMESS achieves 81.6 CoNLL F1 on the devel-
opment set of Ontonotes. Also, Table 5 presents the
pairwise performance on the development set for
each category. We compute statistical significance
with a non-parametric permutation test using Ul-
mer et al. (2022)’s implementation. Table 6 shows
that LINGMESS consistenly outperforms the s2e
model on GAP.

B.3 Runtime and Memory

Our model was trained for 129 epochs on a sin-
gle 32GB NVIDIA Tesla V100 SXM2 GPU. The
training took 23 hours. At shown in Table 7, the
run-time at inference time in LINGMESS is longer
than in the s2e model because of the category se-
lection for every possible pair of mentions. The
memory consumption remains quite similar to the
baseline.

9https://github.com/conll/
reference-coreference-scorers.

Runtime Memory

Kirstain et al. (2021) 28 5.4
LINGMESS 43 5.9

Table 7: Inference time(Seconds) and memory(GiB)
on 343 docs of OntoNotes development set. Using Dy-
namic batching, 10K tokens in a single batch. Hardware,
NVIDIA Tesla V100 SXM2

ID Pronouns

1 I, me, my, mine, myself

2 you, your, yours, yourself, yourselves

3 he, him, his, himself

4 she, her, hers, herself

5 it, its, itself

6 we, us, our, ours, ourselves

7 they, them, their, themselves

8 that, this

Table 8: List of groups of compatible pronouns, pro-
nouns with the same ID are considered as compatible.

C Determining pair types

Our method routes each pair of spans to their cor-
responding category scorer. This decision is based
on the linguistic properties of the spans. Given a
mention-pair (c, q), we defined a rule based func-
tion T (c, q) that determines the category of that
pair. If c and q are both pronouns, if they are
compatible according to gender, number and ani-
macy (see Table 8 for the full list), the metnion pair
will be routed to PRON-PRON-C, otherwise PRON-
PRON-NC. If c is pronoun and q is a non-pronoun
span (or vise-versa) we route the mention-pair to
PRON-ENT. We route the remaining pairs to their
corresponding categories (MATCH, CONTAINS or
OTHER) by considering only content words, ex-
cluding the following stop words: {’s, a, all, an,
and, at, for, from, in, into, more, of, on, or, some,
the, these, those}. Accordingly, the mentions “the
U.S. and Japan” and “Japan and the U.S.” are con-
sidered MATCH, “This lake of fire” and “the lake of
fire” are considered CONTAINS and “Bill Clinton”
and “The President” are considered OTHER.
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Abstract

Statutory article retrieval (SAR), the task of
retrieving statute law articles relevant to a le-
gal question, is a promising application of le-
gal text processing. In particular, high-quality
SAR systems can improve the work efficiency
of legal professionals and provide basic legal
assistance to citizens in need at no cost. Unlike
traditional ad-hoc information retrieval, where
each document is considered a complete source
of information, SAR deals with texts whose
full sense depends on complementary infor-
mation from the topological organization of
statute law. While existing works ignore these
domain-specific dependencies, we propose a
novel graph-augmented dense statute retriever
(G-DSR) model that incorporates the structure
of legislation via a graph neural network to
improve dense retrieval performance. Experi-
mental results show that our approach outper-
forms strong retrieval baselines on a real-world
expert-annotated SAR dataset.1

1 Introduction

Today, the high cost of legal expertise prevents less
fortunate people from understanding and reacting
to legal issues that may arise (Ponce et al., 2019).
In recent years, an increasing number of works
have focused on legal text processing (Zhong et al.,
2020) with the intent to assist legal practitioners
and citizens while reducing legal costs and improv-
ing equal access to justice for all. Statutory article
retrieval (SAR), the task of retrieving statute law
articles relevant to a legal question, marks the first
and one of the most crucial steps in any legal aid
process. Our goal is to help reduce the gap between
people and the law by improving SAR systems that
could provide citizens with the first component of
a free professional legal aid service.

Prior work has addressed SAR with standard in-
formation retrieval approaches such as term-based

1Our source code is available at https://github.
com/maastrichtlawtech/gdsr.

Penal Code Civil Code Rural Code

Book 1 Book 2 Book 3 Book M

Title 1 Title 2 Title 3 Title 4 Title N

Stat
uteLaw

Section 1

Art. R

... ...

... ... ...

... ... ... ...

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter P

... ... ... ... ...

Section QSection 2 Section 3 Section 4 Section 5 Section 6
... ... ... ... ... ...

Art.101 Art.102 Art.103 Art.104 Art.105 Art.106 Art.107 Art.108

Figure 1: Illustration of the hierarchical organization
of statute law. Each law code is structured into books,
titles, chapters, and sections. The deeper the divisions,
the closer the legal concepts of the articles below them.

models or dense embedding-based models (Kim
et al., 2019; Nguyen et al., 2021). While good per-
formance has been achieved, these approaches rely
on the flawed assumption that articles are complete
and independent sources of information. In reality,
statute law is an ensemble of interdependent rules
meticulously organized into different codes, books,
titles, chapters, and sections, as illustrated in Fig-
ure 1. Each level in the structure of legislation
comes with a unique heading that informs about
the content of the articles below it. An article takes
on its whole meaning only when considered at its
rightful place in the structure with the complemen-
tary information from its neighboring articles.

This work shows that such a structure can be
highly beneficial for retrieving statutes. We pro-
pose a graph-augmented dense statute retriever (G-
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DSR) model that leverages the topological structure
of legislation to enhance the article content infor-
mation. Specifically, the proposed model extends
the document encoder of a dense retriever with
a graph neural network to learn knowledge-rich
cross-article representations. Similar to previous
work, we adopt a contrastive learning strategy to
optimize the similarity between the representations
of relevant query-article pairs.

The contributions of this paper are threefold:
• We propose a graph-augmented dense re-

triever model for statutory article retrieval that
explicitly utilizes the topological organization
of statute law to enrich the article information.

• We conduct empirical evaluations on our
model and demonstrate improvements over
strong retrieval baselines.

• We perform ablation studies on various model
components and training strategies to under-
stand the impact of several design options on
the effectiveness of our model.

2 Preliminaries

In this section, we formally introduce the task of
statutory article retrieval and discuss the specific
difficulties associated with it. We then explain
how we identify the structure of legislation as an
essential consideration in SAR.

Problem formulation. Given a simple legal ques-
tion, such as "Who should pay for the construction
of the common wall?", SAR aims to return one or
several relevant articles from the legislation. For-
mally speaking, a SAR system can be expressed
as a function R : (q, C) 7→ F that takes as in-
put a question q along with a corpus of articles
C = {a1, a2, · · · , aN}, and returns a much smaller
filter set F ⊂ C of the supposedly relevant articles,
ranked by decreasing order of relevance. For a
fixed k = |F| ≪ |C|, the retriever can be evaluated
in isolation with multiple rank-based metrics. Most
modern retriever systems follow a two-stage re-
trieval approach (Guo et al., 2016; Hui et al., 2017;
McDonald et al., 2018), where a pre-fetcher first
aims to return all relevant documents in the filter
set F and a re-ranker then attempts to make more
relevant documents in F appear before less rele-
vant ones. In this work, we focus our research on
improving the pre-fetcher component for SAR.

Challenges. SAR comes with two core chal-
lenges that make the task unique compared to tra-

ditional information retrieval. First, the statutes
to be retrieved are written in a language that dra-
matically differs from the ordinary plain language
used in the questions. The legal language uses a
specialized jargon known for its frequent and delib-
erate use of formal words, Latin phrases, lengthy
sentences, and expressions with flexible meanings
(Charrow and Crandall, 1990). Second, statutory
articles are long text sequences that may reach sev-
eral thousand words. This implies overcoming the
maximum input length limit of 512 tokens imposed
by BERT-based models, which have recently be-
come the standard in neural information retrieval
due to their effectiveness.

Structure of legislation. The legislation comes
with a well-thought-out organization of its written
rules to facilitate access to provisions covering a
given subject (Onoge, 2015). This organization is
established in a hierarchical manner, where higher-
level divisions cover broad legal domains while
lower-level divisions deal with specific legal con-
cepts. To examine the importance of this hierarchy
in the SAR process, we conduct a preliminary in-
vestigation in which we study the reasoning legal
experts follow when performing the task. We sum-
marize these experts’ approach in Appendix A.1.
We observe that legal experts rely heavily on the
structure of law when retrieving relevant articles
to a legal question, which indicates that the dif-
ferent divisions’ headings in the legislation carry
valuable information that retrieval systems should
consider. Additionally, we analyze the degree to
which neighboring articles cover related subjects in
Appendix A.2 and find high levels of similarities,
which suggests that information from neighboring
articles should be considered to capture an article’s
whole meaning.

3 Approach

In this section, we present a new general approach
for SAR that learns to retrieve relevant statutes by
using both the textual semantic information from
articles and the structural graph information from
the legislation. Our model, called graph-augmented
dense statute retriever (G-DSR), consists of two
main building blocks, as depicted in Figure 2, that
are trained independently with the same objective.
We first describe the dense retriever component
of our approach in Section 3.1 and then explain
how our legislative graph encoder builds upon it in
Section 3.2.
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Figure 2: An illustration of the graph-augmented dense statute retriever (G-DSR) model. G-DSR consists
of two main building blocks that are trained independently. Left: The dense statute retriever (DSR) first learns
high-quality low-dimensional embedding spaces for both the queries and articles such that relevant query-article
pairs appear closer than irrelevant ones in those vector spaces. Right: The legislative graph encoder (LGE) then
learns to enrich the article representations by aggregating information from the organization of statute law.

3.1 Dense Statute Retriever

Our approach’s first component, called dense
statute retriever (DSR), aims to learn high-quality
low-dimensional embedding spaces for questions
and articles so that relevant question-article pairs
appear closer than irrelevant ones in those spaces.
Below, we review the overall architecture of the re-
triever and detail the design of its query and article
encoders. We then describe the contrastive learning
strategy we employ and choice of negative pairs.

Bi-encoder. We use the widely adopted bi-
encoder architecture (Bromley et al., 1993) as
the foundation of our dense retriever. The lat-
ter maps queries and articles into dense vector
representations and calculates a relevance score
s : (q, a) 7→ R+ between query q and article a by
the similarity of their embeddings, i.e.,

s(q, a) = sim
(
Eθ
Q(q), E

ϕ
A(a)

)
, (1)

where Eθ
Q(q), E

ϕ
A(a) ∈ Rd denote the query and

article embeddings respectively, and sim : Rd ×
Rd 7→ R is a similarity function such as cosine or
dot-product.

Query encoder. To encode the queries, we feed
them into a BERT-based (Devlin et al., 2019) model

Eθ
Q : Wn 7→ Rd with weights θ, that maps an

input sequence of n tokens from vocabularyW to
d-dimensional real-valued token embeddings. We
take the last layer’s [CLS] token representation as
the query embedding, i.e.,

Eθ
Q(q) = BERT[CLS](q). (2)

Hierarchical article encoder. Since statutory
articles may be longer than the maximum in-
put length of a standard BERT-based encoder,
we use a hierarchical variation that can process
longer textual sequences (Pappagari et al., 2019;
Zhang et al., 2019; Yang et al., 2020a). Each
article a is first split into smaller text passages
[p1, p2, · · · , pm], where a passage pi is a sequence
of tokens [t(i)1 , t

(i)
2 , · · · , t(i)n ] with n ≤ 512. These

passages are then independently passed through
a shared BERT-based model to extract a list of
context-unaware passage representations using the
respective [CLS] token embeddings, as illustrated
in Figure 2. Next, the hierarchical model sums the
[CLS] token representations of each passage with
learnable passage position embeddings and feeds
the resulting representations into a small Trans-
former encoder to make them aware of the sur-
rounding passages. The final article representation
is computed through a pooling operation over the
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context-aware passage representations, i.e.,

Eϕ
A(a) = pool

([
h̃
(1)
[CLS], · · · , h̃

(m)
[CLS]

])
, (3)

where h̃
(i)
[CLS] ∈ Rd is the contextualized embed-

ding of passage pi, and pool : Rm×d 7→ Rd is
either mean or max pooling.

Contrastive learning. The training objective of
the bi-encoder is to learn effective embedding func-
tions Eθ

Q(·) and Eϕ
A(·) such that relevant question-

article pairs have a higher similarity than irrelevant
ones. Let D = {⟨qi, a+i ⟩}Ni=1 be the training data
where each of theN instances consists of a query qi
associated with a relevant article a+i . By sampling a
set of negative articles A−i for each question qi, we
can create a training set T = {⟨qi, a+i ,A−i ⟩}Ni=1.
For each training instance in T , we contrastively
optimize the negative log-likelihood of the positive
article against the negative ones, i.e.,

L
(
qi, a

+
i ,A−i

)
= − log

es(qi,a
+
i )/τ

∑
a∈A−

i ∪{a
+
i }
es(qi,a)/τ

,

(4)
where τ > 0 is a temperature parameter to be set.

Negatives. We consider two types of negative ex-
amples: (i) in-batch (Chen et al., 2017; Henderson
et al., 2017), i.e., articles paired with the other ques-
tions from the same mini-batch, and (ii) BM25, i.e.,
top articles returned by BM25 that are not relevant
to the question.

3.2 Legislative Graph Encoder
Our approach’s second component, called Legisla-
tive Graph Encoder (LGE), aims to enrich article
representations given by the trained retriever’s arti-
cle encoder by fusing information from a legislative
graph. Below, we elaborate on the legislative graph
construction and the graph training process.

Graph construction. To leverage the hierarchi-
cal organization of statute law, we formalize the
latter as a tree structure consisting of two types
of node: (i) section nodes, which are titled struc-
tural units that represent the consecutive divisions
in codes of law (i.e., the headings of the books,
titles, chapters, and sections), and (ii) article nodes,
which are textual content units that represent the
different statutory articles. As illustrated in Fig-
ure 1, the edges represent the hierarchical connec-
tions between section and article nodes. Formally,
such a tree can be represented as a directed acyclic

graph G = (V, E), with V as the node set and
E ⊆ V × V as the edge set.

Node feature initialization. Nodes in V are com-
monly associated with d-dimensional features. We
apply the article encoder Eϕ

A(·) from the trained
bi-encoder to encode the semantic information of
nodes (i.e., section headings and article contents)
offline and use the resulting embeddings as the
initial node features X ∈ R|V|×d.

Node feature update. To fuse the information of
node features using the graph structure, we use a
graph neural network (GNN). Such a model con-
sists of a stack of neural network layers, where each
layer aggregates local neighborhood information
(i.e., features of neighbors) around each node and
then passes this aggregated information on to the
next layer. Generally speaking, a GNN takes as in-
puts the feature matrix X and the graph’s adjacency
matrix A ∈ R|V|×|V|+ , with Ai,j as the edge weight
between nodes i and j, and produces a node-level
output Z ∈ R|V|×d that captures each node’s struc-
tural properties. Every GNN layer can be written
as a non-linear function

H(l+1) = f(H(l),A), (5)

with H0 = X and HL = Z, L being the num-
ber of layers. In its simplest form, the layer-wise
propagation rule is such that

f(H(l),A) = σ(AH(l)W(l)), (6)

where W(l) is the input linear transformation’s
weight matrix for the l-th neural network layer
and σ(·) is a non-linear activation function. We
propose to use a 3-layer GATv2 network (Brody
et al., 2022), a variant of GAT (Velickovic et al.,
2018) that has the ability to learn the strength of
connection between neighboring nodes through a
dynamic attention mechanism. Formally, a GATv2
layer updates a node’s hidden state as follows

h
(l+1)
i = σ


 ∑

j∈N (i)

α
(l)
ij W

(l)h
(l)
j


 , (7)

where N (i) is the set of first-order neighbors of
node i, and α(l)

ij are normalized attention coeffi-
cients indicating the importance of node j’s fea-
tures to i in the l-th layer. The latter are computed
based on the features of the connected nodes using
an attention function att : Rd ×Rd 7→ R such that

α
(l)
ij = softmax

(
σ(att(h

(l)
i ,h

(l)
j )
)
. (8)
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Learning process. To optimize the GNN param-
eters, we adopt the same contrastive learning strat-
egy used to train the bi-encoder. Since graph G
can be relatively large, performing an update of
all the node features in G at every training itera-
tion would incur high computational costs. Be-
sides, most of these computations would be of no
use as only the updated representations of nodes
{A−i ∪ a+i }

|B|
i=1 from batch B are needed to update

the model parameters. Therefore, we build a sub-
graph Gsub at each training step that only contains
the article nodes from batch B as well as their L-
hop neighbors (where L is decided by the number
of GNN layers). We then pass that sub-graph to
the graph network and use the resulting article rep-
resentations to compute the loss in Equation (4).
Comparably to the node features, the query embed-
dings are pre-computed offline before training by
the query encoder Eθ

Q(·) of our trained bi-encoder.

4 Experimental Setup

In this section, we present the basic setup for ex-
periments. In particular, Section 4.1 describes the
dataset we conduct our experiments on, Section 4.2
details our model implementation, Section 4.3 re-
views the different baselines we use for comparison,
and Section 4.4 reports the evaluation metrics.

4.1 Dataset
We conduct experiments on the publicly available
Belgian Statutory Article Retrieval Dataset (Louis
and Spanakis, 2022, BSARD).2 To the best of our
knowledge, BSARD is the only SAR dataset that
provides the lists of consecutive division headings
each article belongs to, which is crucial for building
the graph of the legislative structure. The dataset
consists of 1,100+ French native questions on var-
ious legal topics, as shown in Table 1, labeled by
skilled experts with references to relevant statutory
articles from the Belgian legislation. The retrieval
corpus comprises 22,600+ articles collected from
32 Belgian codes covering numerous legal domains.
The questions are relatively short and might have
several relevant legal articles. We refer readers to
the original paper for further data collection and
analysis details.

4.2 Implementation Details
Model. We use the publicly released Camem-
BERT (Martin et al., 2020) checkpoint to initialize

2
https://huggingface.co/datasets/antoiloui/bsard

Topic Train Dev Test

Family 216 56 67
Housing 203 38 66
Money 103 35 36
Justice 96 25 30
Foreigners 41 9 13
Social security 27 8 6
Work 23 6 4

Total 709 177 222

Table 1: Topic distribution of questions in BSARD.

DSR’s query encoder. Due to the specificity of the
legal language the article encoder has to deal with,
we follow prior work on domain adaptation (Gu-
rurangan et al., 2020; Jørgensen et al., 2021) and
continue pre-training CamemBERT on BSARD
statutory articles for 50k gradient steps to adapt it
to the target legal domain. We use the resulting
domain-specific checkpoint to warm-start the arti-
cle’s first-level encoder. The second-level encoder
is a two-layer Transformer encoder of 14M param-
eters with a similar configuration (i.e., 768-hidden,
3072-intermediate, 12-heads, 0.1 dropout, GeLU).
We use max-pooling to aggregate the final chunk
representations and cosine as the decomposable
similarity function.

Data augmentation. Due to the recent success in
using synthetic query generation to improve dense
retrieval performance (Liang et al., 2020; Ma et al.,
2021; Thakur et al., 2021), we propose to augment
BSARD with synthetic domain-targeted queries.
We use a mT5 model (Raffel et al., 2020) fine-tuned
on general domain data from mMARCO (Bonifa-
cio et al., 2021) to synthesize queries for our target
statutory articles.3 We generate five queries per
article, which results in a total of around 118k syn-
thetic queries. We combine the latter with the gold
BSARD train samples and obtain an augmented
training set of around 122.5k question-article pairs.

Optimization. We train DSR for 15 epochs with
a batch size of 24 using AdamW (Loshchilov and
Hutter, 2017) with β1 = 0.9, β2 = 0.999, ϵ =1e-
7, weight decay of 0.01, and learning rate warm
up along the first 5% of the training steps to a
maximum value of 2e-5, after which linear decay is
applied. We then optimize LGE parameters for 10

3
https://huggingface.co/doc2query/

msmarco-french-mt5-base-v1
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epochs with a batch size of 512 using AdamW with
β1 = 0.9, β2 = 0.999, ϵ =1e-7, weight decay of
0.1, and a constant learning rate of 2e-4. We use 16-
bit automatic mixed precision to accelerate training
and save memory. Details on our hyperparameter
tuning process are given in Appendix B.

Hardware & schedule. Training is performed
on a single 32 GB NVIDIA V100 GPU hosted on
a server with a dual 20-core Intel Xeon E5-2698
v4 CPU @2.20GHz and 512 GB of RAM. It takes
around 1 day to train DSR and 35 minutes for LGE.

Libraries. We implement, train, and tune our
models using Transformers (Wolf et al., 2020), Py-
Torch (Paszke et al., 2019), PyTorch-Geometric
(Fey and Lenssen, 2019), PyTorch-Lightning (Fal-
con, 2019), W&B Sweeps (Biewald, 2020), and
DeepSpeed (Rasley et al., 2020).

4.3 Baselines

We compare our approach against three strong re-
trieval systems. As a sparse baseline model, we
follow prior work and consider BM25 (Robertson
et al., 1994),4 a popular bag-of-words retrieval func-
tion based on exact term matching. We then exam-
ine the document expansion technique docT5query
(Nogueira and Lin, 2019), which augments each ar-
ticle with a pre-defined number of synthetic queries
generated by a finetuned mT5 model,3 and then
uses a traditional BM25 lexical index from the
augmented articles for retrieval. Last, we include
the results of a supervised dense passage retriev-
ers (Karpukhin et al., 2020, DPR) pre-finetuned
on more than 90.5k question-context pairs from a
combination of three French QA datasets.5

4.4 Evaluation

We evaluate model performance using three com-
monly used ranking measures (Manning et al.,
2008), namely the macro-averaged recall at differ-
ent cutoffs (R@k), mean average precision (mAP),
and mean r-precision (mRP). Those metrics are fur-
ther defined in Appendix D. We deliberately omit
to report the precision@k given that questions in
BSARD have a variable number of relevant articles,
which implies that questions with r relevant articles
would always have P@k < 1 if k > r. Similarly,
the mean reciprocal rank (mRR) is not appropriate

4We use k1 = 2.5 and b = 0.2. Details on BM25 hyper-
parameters tuning are given in Appendix C.

5
https://huggingface.co/etalab-ia/dpr-question_

encoder-fr_qa-camembert

for BSARD as only the first relevant article would
be considered. As some questions might have up to
100 relevant articles, we use k ∈ {100, 200, 500}
for the recall@k.

5 Experiments

In this section, we empirically evaluate the effec-
tiveness of our proposed approach against com-
petitive baselines and discuss the main results in
Section 5.1. Next, we provide an ablation study in
Section 5.2 to understand how different design and
training options affect our model’s performance.

5.1 Main Results

Table 2 shows retrieval performance on BSARD
test set. Although we report model performance on
two rank-aware metrics (i.e., mAP and mRP), we
emphasize that our approach is specifically aimed
at improving the pre-fetching component of a re-
triever (Zhang et al., 2021a) and therefore focuses
on optimizing rank-unaware metrics (i.e., R@k).

First, we compare the performance of our pro-
posed G-DSR model(8) against other well-known
retrieval approaches and find it significantly outper-
forms all of them on SAR. In particular, it improves
over the sparse retrieval methods(1,2) by around
30% on recall@k and by more than 25% on mAP
and mRP. It also outperforms a competitive pre-
finetuned DPR model(4) by 6% on R@100, 9% on
R@200, and 5% on R@500. However, the latter
shows a better performance on rank-aware metrics
compared to our DSR models, which we speculate
might be due to its extensive pre-finetuning step on
three domain-general retrieval datasets, leading the
model to a deeper knowledge of the task at hand.

Next, we investigate the influence of different
training strategies on the rank-unaware results of
our base dense retriever.(5) We find that DSR’s per-
formance is improved when adapting the article
text encoder to the legal domain before finetuning
on the target data.(6) Besides, training DSR on a
larger dataset containing synthetic domain-targeted
queries improves its performance even more.(7)

Finally, our results show that using a GNN model
on top of DSR allows to enrich the article represen-
tations and leads to the best overall performance.(8)

Interestingly, G-DSR also significantly improves
the rank-aware performance of our best perform-
ing DSR model by ∼12%, suggesting that a GNN
could act as an effective re-ranker for SAR.
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Model #Params R@100 (↑) R@200 (↑) R@500 (↑) mAP (↑) mRP (↑)
Baselines
1 BM25 - 49.3 57.3 63.0 16.8 13.6
2 docT5query - 51.7 59.4 65.8 18.7 15.0
4 DPR 220M 77.9 81.3 88.2 45.4 39.1

Ours
5 DSR 234M 77.1 81.8 86.7 35.6 28.8
6 DSR w. domain-adaptive pre-training 234M 79.8 83.9 88.9 39.5 31.3
7 DSR w. data augmentation 234M 82.7 88.7 92.8 35.3 27.5

8 G-DSR 262M 84.3 90.4 93.1 47.1 40.2

Table 2: Retrieval performance on BSARD Test set. The best results are marked in bold.

5.2 Ablation Study

To further understand how different design choices
and training strategies affect the results, we con-
duct several additional experiments and discuss our
findings below.

Alternative pre-trained LMs. In addition to
CamemBERT, we experiment with several other
French or multilingual pre-trained language mod-
els to initialize the first-level text encoders in DSR
– namely, mBERT (Devlin et al., 2019), XLM-R
(Conneau et al., 2020), and ELECTRA-fr (Clark
et al., 2020).6 We fine-tune the different warm-
started models on BSARD training set and report
dev results in Table 3. We find that a CamemBERT-
initialized DSR model performs best.

Alternative GNNs. Additionally to GATv2, we
explore different GNN architectures to perform
the node feature update – namely, GCN (Kipf
and Welling, 2017), GraphSAGE (Hamilton et al.,
2017), GAT (Velickovic et al., 2018), and k-GNN
(Morris et al., 2019) – and summarize the results
in Table 4. Our experiments show that using an al-
ternative GNN model does not affect performance
much, which suggests that the act of fusing infor-
mation from neighboring nodes is more important
than the way the aggregation is performed.

Similarity and loss functions. Besides cosine
for scoring pairs of query-article representations,
we also experiment with dot-product and Euclidean
distance and find both inferior to cosine. As an
alternative to negative log-likelihood, we test the
triplet loss (Burges et al., 2005) and observe that the
latter significantly decreases model performance.
More details can be found in Appendix E.

6
https://huggingface.co/dbmdz/

electra-base-french-europeana-cased-discriminator

Pre-trained LM #Params R@100 (↑) R@500 (↑)
XLM-R 278M 59.8 78.7
mBERT 177M 69.2 86.6
ELECTRA-fr 110M 57.6 73.7
CamemBERT 110M 75.4 88.5

Table 3: BSARD Dev results of DSR warm-started with
different pre-trained word embedding models.

Model #Params R@100 (↑) R@500 (↑)
GCN 14M 84.4 92.0
GAT 14M 84.4 92.1
GraphSAGE 28M 84.5 92.9
k-GNN 28M 83.8 93.0
GATv2 28M 84.8 92.3

Table 4: BSARD Dev results of LGE with different
(3-layer) GNN architectures.

6 Related Work

Our work operates at the intersection of several
research areas, including long document modeling,
dense information retrieval, graph neural networks,
and legal NLP.

Long document modeling. The emergence of
deep neural networks for language processing
brought new challenges to text encoding, one of
which is learning high-quality representations of
long documents. For example, Tang et al. (2015)
employ a bottom-up approach using CNN and
BiLSTM-based hierarchical networks, where sen-
tences are first encoded into vectors, which are
then combined to form a single document vector.
Similarly, Yang et al. (2016) build a document vec-
tor by aggregating important words into sentence
vectors and then aggregating important sentence
vectors to document vectors using attention mech-
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anisms. More recently, hierarchical variants of
Transformer-based models have been explored for
various language tasks, including document classi-
fication (Mulyar et al., 2019; Pappagari et al., 2019;
Chalkidis et al., 2019; Wu et al., 2021), summa-
rization (Zhang et al., 2019), semantic matching
(Yang et al., 2020a), and question answering (Liu
et al., 2022). In addition to hierarchical attention
Transformer-based (HAT) models, several sparse
attention Transformers (SAT) have been introduced
to reduce the computational complexity of the
model, thus allowing to process sequences longer
than 512 tokens (Child et al., 2019; Beltagy et al.,
2020; Zaheer et al., 2020). However, Chalkidis
et al. (2022) show that a pre-trained HAT model per-
forms comparably or better than an equally-sized
SAT model across several downstream tasks while
being substantially faster and less memory inten-
sive. Recently, other non-Transformer-based ap-
proaches have been proposed for efficient long se-
quence processing based on structured state spaces
(Gu et al., 2022; Gupta et al., 2022).

Dense information retrieval. Traditionally, lexi-
cal approaches such as TF-IDF and BM25 (Robert-
son et al., 1994) have been the de facto standard
for textual information retrieval due to their robust-
ness and efficiency. However, these approaches
suffer from the lexical gap problem (Berger et al.,
2000) and can only retrieve documents containing
keywords present in the query. To overcome this
limitation, recent work relies on neural-based archi-
tectures to capture semantic relationships between
pairs of texts (Lee et al., 2019; Karpukhin et al.,
2020; Yang et al., 2020b; Xiong et al., 2021). These
models map queries and documents into dense
vector representations and calculate a relevance
score by the similarity of the vectors (Gillick et al.,
2018), which allows the document representations
to be pre-computed and indexed offline for infer-
ence. The dense retrieval approach was recently
extended by hybrid lexical-dense methods, which
aim to combine the strengths of both approaches
(Seo et al., 2019; Gao et al., 2021; Luan et al.,
2021). We refer the readers to Yates et al. (2021)
for a survey on neural information retrieval.

Graph neural networks. Graph neural net-
works (GNNs) capture the topological relationships
among the nodes of a graph using an information
diffusion mechanism that propagates node features
according to the underlying graph-structured data

(Scarselli et al., 2009). These models have shown
their effectiveness and flexibility in a wide vari-
ety of NLP tasks, including text classification (Lin
et al., 2021; Yu et al., 2022), relation extraction
(Zhang et al., 2018; Li et al., 2020; Carbonell et al.,
2020), and question answering (Cao et al., 2019;
Xu et al., 2021b). Recently, GNNs have been em-
ployed for document retrieval to enhance the vec-
tor representations by leveraging the topological
structure of the documents, where nodes are pas-
sages from a document and edges are relations
between these passages (Xu et al., 2021a; Zhang
et al., 2021b; Albarede et al., 2022).

Application to the legal domain. In recent years,
the legal domain has attracted much interest in the
NLP community, both for its challenging char-
acteristics and massive volumes of textual data
(Chalkidis and Kampas, 2019; Zhong et al., 2020).
Researchers see it as an opportunity to develop
novel automated methodologies that can reduce
heavy and redundant tasks for legal professionals
while providing a reliable, affordable form of legal
support for laypeople (Bommasani et al., 2021).
Earlier techniques for legal information retrieval
were mainly based on term-matching approaches
(Kim and Goebel, 2017; Tran et al., 2018). Re-
cently, a growing number of works have used neu-
ral networks to enhance retrieval performance, in-
cluding word embedding models (Landthaler et al.,
2016), doc2vec models (Sugathadasa et al., 2018),
CNN-based models (Tran et al., 2019), and BERT-
based models (Nguyen et al., 2021; Chalkidis et al.,
2021; Althammer et al., 2022). To the best of our
knowledge, we are the first to exploit the structure
of statute law with GNNs to improve the perfor-
mance of dense retrieval models.

7 Conclusion

In this paper, we introduce G-DSR, a novel ap-
proach for statutory article retrieval (SAR) that
leverages the topological structure of legislation
to improve retrieval performance. Specifically, G-
DSR enriches the article representations of a dense
retriever designed for long document retrieval by
employing a graph neural network that uses the
organization of statute law to learn knowledge-rich
cross-article embeddings. Experiments show that
G-DSR outperforms competitive baselines on a
real-world expert-annotated SAR dataset. We also
include a detailed analysis to motivate our design
choices and training strategies.
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Limitations

While our approach performs well on statutory arti-
cle retrieval, it comes with several limitations that
provide avenues for future work.

First, experimental results are based on ques-
tions and labels drafted by legal professionals. It is
possible that other legal professionals would draft
the questions differently or, less likely yet possible,
that they would deem different statutory provisions
relevant. This raises the question of to what extent
similar results would be obtained if the model were
trained on a different dataset, for instance, based
on other experts or domains, hence testing the ap-
proach’s generalizability. The main challenge in
this regard is obtaining data, as organizations are
unlikely to share or even collect similar data.

Second, our proposed methodology was evalu-
ated exclusively on the Belgian legislation, whose
laws are organized in a hierarchical manner where
the deeper the divisions, the more closely related
the legal concepts of the articles under them. Al-
though we believe our approach could be applied
to most, if not all, jurisdictions that rely on statute
law (including both civil and common law coun-
tries), different jurisdictions may have different
organizations of their legal provisions, which could
potentially affect the model’s performance. It is
also worth mentioning that the dataset used for eval-
uation comes with a linguistic bias as Belgium is a
multilingual country with French, Dutch, and Ger-
man speakers, but the provided provisions are only
available in French. Studying the applicability and
impact of the present work to other jurisdictions
and languages is an exciting research direction that
is challenging in practice due to the scarcity of
high-quality multilingual statute retrieval datasets.

Then, our approach currently considers the topo-
logical structure of legislation for modeling the
inter-article dependencies, which implies that infor-
mation is aggregated between direct neighboring
articles only while those from more distant sec-
tions are completely ignored. Nevertheless, it is
common for articles to cite other articles from dif-
ferent sections or even different statutes. Therefore,
we believe that considering richer legal graph struc-
tures, especially legal citation networks, could in-
crease effectiveness even more. However, building
such citation networks from raw texts requires a
considerable text-processing effort.

Finally, although G-DSR shows promise for
statutory article retrieval, it is not yet ready for

practical use in the real world. One issue is that
our model is designed to be an effective pre-fetcher,
optimizing recall such that all articles relevant to
a question appear in an unordered filter set of size
k (k being relatively large). However, in practice,
users would expect a high-quality retrieval system
to not only find these relevant articles but also to
sort them by decreasing order of importance, re-
quiring an adequate re-ranker. Then, it is essential
to recognize that while access to relevant legal pro-
visions is a necessary step in helping the general
public solve their legal issues, it is not a sufficient
condition on its own as laypeople may still strug-
gle to understand the legal jargon and apply the
provisions to their specific situations. Ideally, the
tool to be made accessible to the public should con-
sist of a two-stage framework: (i) a legal provision
retriever, which selects a small subset of relevant le-
gal articles in response to a given question, and (ii)
a legal-to-natural translator or summarizer, which
examines the retrieved articles and generates an an-
swer in natural language. In the present work, we
chose to focus on the first stage of this framework
and leave the second for future work.

Ethics Statement
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We do not foresee situations where the use of our
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is to improve the understanding of the law by those
who suffer from legal information asymmetry, it
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Appendix

A Preliminary Studies

A.1 How important is the structure of law for
statutory article retrieval?

To better understand the reasoning skilled humans
follow when retrieving statutory articles, we ask
several legal experts to retrieve relevant articles to
questions sampled from the Belgian Statutory Ar-
ticle Retrieval Dataset (Louis and Spanakis, 2022,
BSARD). We deliberately choose experts unfamil-
iar with Belgian law and thus have no past knowl-
edge of the location of articles covering a particular
subject. In what follows, we summarize the ap-
proach these experts use.

First, they determine whether the issue involves
either public or private law. To distinguish between
the two, it is necessary to identify to whom the
rules apply (i.e., the parties involved in the issue
that hold the rights or duties). Generally speaking,
public law deals with issues that affect the general
public or state (i.e., society as a whole), whereas
private law deals with issues that affect individuals,
families, and businesses. This first step allows
the experts to make an initial selection among the
codes of law, which generally relate to only one of
either public or private law.

Next, the experts refine their search by determin-
ing the field of law (e.g., contract law), followed
by the sub-field (e.g., tenant law), and so on, un-
til a set of potentially relevant codes is created in
the question’s domains. The experts then focus on
the table of contents of one of the selected codes
and undertake a hierarchical search that starts from
the book’s headings and progressively extends to
its titles, chapters, and sections. This step makes
it possible to filter out many irrelevant articles by
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analyzing the connection between the question’s
subject and the different sections’ headings.

Finally, the experts explore the articles within the
sections deemed potentially relevant to the question
in search of the expected answer. If the experts
realize that the chosen direction is a dead end, they
return to the previous higher level of the structure,
choose another potentially relevant direction, and
narrow their search from there.

From this study, we conclude that legal experts
rely heavily on the structure of law when retrieving
relevant articles to a legal question, which indicates
that the different divisions’ headings carry valuable
information that retrieval systems should consider.

A.2 How related are neighboring articles in
statute law?

In statute law, the sense of a given article is not nec-
essarily self-contained by itself but instead spans
across different articles from the same or even dif-
ferent sections. To confirm this, we study to what
extent consecutive articles (as they appear in the
statute books) address similar subjects.

We consider the Belgian Civil Code, which is the
book whose articles are most cited in BSARD, and
randomly sample sets of 200 consecutive articles
out of it. We then normalize the articles by low-
ercasing, lemmatizing, and removing stop-words,
punctuation, and numbers. Finally, we compute the
cosine similarities between the TF-IDF representa-
tions of all articles from a given set. Figure 3 shows
a heatmap of article similarities for such a set. We
see that consecutive articles do indeed cover sim-
ilar topics, suggesting that the information in a
given article is likely to be complementary to that
in its neighboring articles. Therefore, we assume
that neighboring articles should be considered to
capture an article’s whole meaning.

B G-DSR Hyperparameter Tuning

We conduct hyperparameter tuning using Bayes
search based on performance on BSARD devel-
opment set, measured with the macro-averaged
R@200. Due to limited computational resources,
we train our models on BSARD training set only –
which takes approximately 1 hour and 15 minutes
for DSR and around 5 minutes for LGE – and use
the constrained search spaces described below.

DSR grid search space:
• batch size: {8, 16, 24, 32}
• learning rate: {5e-5, 4e-5, 3e-5, 2e-5, 1e-5}

0

0.2

0.4

0.6

0.8

1

Figure 3: Cosine similarities between TF-IDF repre-
sentations of 200 consecutive articles from the Belgian
Civil Code, taken from the Belgian Statutory Article
Retrieval Dataset (Louis and Spanakis, 2022, BSARD).

• weight decay: {0, 0.1, 0.01, 0.001}
• max chunk length: {64, 128, 256, 512}
• max document length: {1024, 2048}
• pooling strategy: {mean, max}
• similarity function: {dot-product, cosine, L2}
• temperature: {0, 0.1, 0.01, 0.001}

LGE grid search space:

• batch size: {8, 16, 32, 64, 128, 256, 512}
• learning rate: {2e-2, 2e-3, 2e-4, 2e-5, 2e-6}
• weight decay: {0, 0.1, 0.01, 0.001}
• #layers: {1, 2, 3, 4}

In total, we run 100 hyperparameter search trials
for both DSR and LGE. The optimal hyperparam-
eters, shown in Table 5, are used to re-train the
models combining both train and development sets
for a final evaluation on the test set.

C BM25 Hyperparameter Tuning

Following Chalkidis et al. (2021), who show that
BM25 performance is highly dependent on ade-
quately choosing the (k1, b) values for the task at
hand, we perform a hyperparameter grid search on
BSARD development set and plot the results in
Figure 4. We observe that, in the case of SAR, the
best performance is obtained with k1 = 2.5 and
b = 0.2. Therefore, we use these values for the
final evaluation on BSARD test set.
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Hyperparam DSR LGE

Model
Maximum Chunk Length 128 -
Maximum Document Length 1024 -
Pooling Strategy max -
#Layers - 3

Loss
Temperature 0.01 0.01
Similarity cos cos

Training
Batch Size 24 512
Weight Decay 0.01 0.1
Max Epochs 15 10
Peak Learning Rate 2e-5 2e-4
Learning Rate Decay Linear Constant
Warmup ratio 0.05 0.0
AdamW ϵ 1e-7 1e-7
AdamW β1 0.9 0.9
AdamW β2 0.999 0.999
Gradient Clipping 1.0 1.0

Table 5: Training hyperparameters for DSR and LGE.

D Evaluation Metrics

Let relq(a) ∈ {0, 1} be the binary relevance label
of article a for question q, and ⟨i, a⟩ ∈ Fq a result
tuple (article a at rank i) from the filter set Fq ⊂ C
of ranked articles retrieved for question q.

Recall. The recall is the fraction of relevant arti-
cles retrieved for query q w.r.t. the total number of
relevant articles in the corpus C, i.e.,

Rq =

∑
⟨i,a⟩∈Fq

relq(a)∑
a∈C relq(a)

. (9)

When computed for a filter set of size k = |Fq| ≪
|C|, i.e., at a certain cutoff and not on the entire
list of articles in C, we report the metrics with the
suffix “@k”.

R-Precision The R-Precision is the proportion
of the top-R retrieved articles that are relevant to
query q, where R is the total number of relevant
articles for q, i.e.,

RPq =

∑
⟨i,a⟩∈{Fq}Ri=1

relq(a)

R
. (10)

Average Precision. The average precision is the
mean of the precision value obtained after each
relevant article is retrieved, that is

APq =

∑
⟨i,a⟩∈Fq

Pq,i× relq(a)∑
a∈C relq(a)

, (11)
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Figure 4: Heatmap showing BM25 results on BSARD
Dev set for different values of k1 and b.

Loss Similarity R@100 (↑) R@200 (↑) R@500 (↑)

Cross-entropy
Cosine 75.0 80.7 86.7
Dot 21.6 37.1 56.0
Euclidean 43.9 58.1 71.6

Triplet
Cosine 5.4 9.9 17.2
Dot 4.3 6.4 10.3
Euclidean 9.0 14.3 25.2

Table 6: BSARD Dev results of DSR trained using
different similarity and loss functions.

where Pq,j is the precision computed at rank j
for query q, i.e., the fraction of relevant articles
retrieved for query q w.r.t. the total number of
articles in the retrieved set {Fq}ji=1:

Pq,j =

∑
⟨i,a⟩∈{Fq}ji=1

relq(a)∣∣∣{Fq}ji=1

∣∣∣
. (12)

We report the macro-averaged recall at various cut-
offs (R@k), mean Average Precision (mAP), and
mean R-Precision (mRP), which are the average
values over a set of n queries.

E Ablation Details

Besides cosine similarity and negative log-
likelihood (NLL) loss, we also test the dot-product
and Euclidean (inverse of distance is taken as sim-
ilarity measure) as well as the triplet loss. The
temperature for the NLL loss is set to 0.01, and the
margin value of the triplet loss is set to 1. We report
the results on BSARD development set in Table 6.
For a fair comparison, all models are trained for
15 epochs with a batch size of 24, weight decay of
0.01, warm-up proportion of 0.05, an initial learn-
ing rate of 2e-5, and a linear decay learning rate
schedule.
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Abstract

In this work, we explore techniques for aug-
menting interactive AI agents with information
from symbolic modules, much like humans use
tools like calculators and GPS systems to as-
sist with arithmetic and navigation. We test
our agent’s abilities in text games—challenging
benchmarks for evaluating the multi-step rea-
soning abilities of game agents in grounded,
language-based environments. Our experimen-
tal study indicates that injecting the actions
from these symbolic modules into the action
space of a behavior cloned transformer agent
increases performance on four text game bench-
marks that test arithmetic, navigation, sorting,
and common sense reasoning by an average of
22%, allowing an agent to reach the highest
possible performance on unseen games. This
action injection technique is easily extended to
new agents, environments, and symbolic mod-
ules.1

1 Introduction

Interactive fiction games (or text games) evalu-
ate AI agents abilities to perform complex multi-
step reasoning tasks in interactive environments
that are rendered exclusively using textual descrip-
tions. Agents typically find these games challeng-
ing due to the complexities of the tasks combined
with the reasoning limitations of contemporary
models. Overall performance is generally low,
with agents currently solving only 30% of clas-
sic interactive fiction games such as Zork (Am-
manabrolu and Hausknecht, 2020; Yao et al., 2021;
Atzeni et al., 2022). Similarly, reframing bench-
marks such as question answering into text games
where agents must interactively reason with their
environment and make their reasoning steps ex-
plicit causes performance to substantially decrease
(Wang et al., 2022), highlighting both the capacity

1We release our system as open source, available at http:
//github.com/cognitiveailab/neurosymbolic/

Task Description: Your task is to solve the math problem.  Then, 
pick up the item with the same quantity as the math problem answer,
and place it in the box.

Symbolic 
Module

Text Game
EnvironmentAgent

Text Observation:
You are in the kitchen.

You see a math problem,
3 pears, 2 bananas, ... read math

problem

Action

Symbolic 
Module

Text Game
EnvironmentAgent

Text Observation:
Your task is to solve the
following math problem: 

divide 22 by 11 div 22 11

Action

Symbolic 
Module

Text Game
EnvironmentAgent

Text Observation:
The result of dividing

22 by 11 is 2. take 
2 bananas

Action

Step 1

Step 2

Step 3

Figure 1: An overview of our approach on an example
game evaluating arithmetic ability. At each step, the
agent receives an observation from the environment,
then takes an action. By providing actions that interface
to symbolic modules (such as a calculator), the agent is
able to use external knowledge to help solve the task.

of this methodology to evaluate multi-step reason-
ing, and the limitations of current language models.

While large language models are capable of a
variety of common sense reasoning abilities (Liu
et al., 2022b; Ji et al., 2020), contemporary agents
typically struggle on tasks such as navigation, arith-
metic, knowledge base lookup, and other tasks that
humans typically make use of external tools (such
as GPS systems, calculators, and books) to solve.
This is at times frustrating, because the tasks they
perform poorly on can sometimes be solved in a
few dozen lines of code. In this work, we show
that combining both approaches is possible for text
game agents, with our approach shown in Figure 1.
We develop symbolic modules for arithmetic, nav-
igation, sorting, and knowledge base lookup in
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PYTHON, paired with new benchmark games for
testing these capacities in interactive text game
environments. We empirically demonstrate that
injecting actions from those modules into the ac-
tion space of each game can allow transformer-
based agents to make use of that information, and
achieve near-ceiling performance on unseen bench-
mark games that they otherwise find challenging.

2 Related Work

Neurosymbolic reasoning offers the promise of
combining the inference capabilities of symbolic
programs with the robustness of large neural net-
works. In the context of text games, Kimura et
al. (2021a) develop methods to decompose text
games into a set of logical rules, then combine these
rules with deep reinforcement learning (Kimura
et al., 2021b) or integer linear programming (Basu
et al., 2021) to substantially increase agent perfor-
mance while providing a more interpretable frame-
work for understanding why agents choose spe-
cific actions (Chaudhury et al., 2021). More gener-
ally, neurosymbolic reasoning has been applied to
a variety of multi-step inference problems, such as
multi-hop question answering (Weber et al., 2019),
language grounding (Zellers et al., 2021), and se-
mantic analysis (Cambria et al., 2022).

Because text games require interactive multi-
step reasoning, agents have most commonly been
modelled using reinforcement learning (e.g. He
et al., 2016; Zahavy et al., 2018; Yao et al.,
2020), though overall performance on most envi-
ronments remains low (see Jansen, 2022; Osborne
et al., 2021, for reviews). Recently, alternative
approaches modeling reinforcement learning as
a sequence-to-sequence problem using imitation
learning have emerged, centrally using behavior
cloning (Torabi et al., 2018), decision transform-
ers (Chen et al., 2021), and trajectory transformers
(Janner et al., 2021). These approaches model inter-
active multi-step reasoning problems as a Markov
decision process, where an agent’s observation and
action history up to some depth are provided as
input, and the transformer must predict the next
action for the agent to take. Behavior cloning and
decision transformers have recently been applied to
text games with limited success (Wang et al., 2022).
Here, we show that the performance of a behavior
cloned transformer can substantially increase when
augmented with neurosymbolic reasoning.

3 Approach

Figure 1 illustrates the workflow of our approach.
At each time step t, based on the observation ot,
the symbolic module will generate a set of valid
actions Amt , and the text game environment will
have a distinct set of valid actions Aet . Let the valid
action set at step t be At = Amt ∪Aet . Given ot and
At, the agent needs to choose an action at ∈ At
to take. Note that in principle, any agent could
be adapted to use this approach, since we simply
inject actions from the symbolic modules into the
environment action space. At a given time step, our
approach checks if at is a valid symbolic action. If
at ∈ Amt (e.g. div 22 11 in Figure 1), the symbolic
module will generate the next observation ot+1,
otherwise the text game environment will take at
and generate ot+1 (e.g. take 2 bananas in Figure 1).

4 Environments and Symbolic Modules

We evaluate our approach to neurosymbolic reason-
ing using four text game benchmark environments
centered around pick-and-place tasks, including
one existing benchmark and three new developed
for this work. Each environment supports para-
metric variation to generate many different games.
These environments are outlined below, with ad-
ditional details and example playthroughs found
in APPENDIX B. All environments were imple-
mented using the TEXTWORLDEXPRESS game
engine (Jansen and Côté, 2022).

Text World Common Sense (TWC): A bench-
mark common sense reasoning task (Murugesan
et al., 2021) where agents must collect objects from
the environment (e.g. dirty socks), and place those
objects in their canonical common sense locations
(e.g. washing machine). The symbolic module for
this game allows agents to query a knowledge base
of (subject, relation, object) triples (e.g. (cushion,
hasCanonicalLocation, sofa)).

MapReader: A navigation-themed pick-and-place
game similar to Coin Collector (Yuan et al., 2018).
An agent starts in a random location (e.g. the
kitchen), and is provided with a target location (e.g.
the garage). The agent must navigate to the target
location, pick up a coin, then return to the starting
location and place it in a box. The agent is further
provided with a map that can be used for efficient
route planning. The navigation symbolic module
paired with this environment scrapes the observa-
tion space for location information (e.g. you are
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Knowledge Base Module

> query cushion
cushion located sofa
cushion located armchair

Navigation Module

You are currently in the kitchen.
> next step to living room
The next location to move to is: hallway.

Arithmetic Module

> mul 3 6
Multiplying 3 and 6 results in 18.

Sorting Module

> sort ascending
The objects in ascending order are: 8mg of steel,
2g of iron, 5kg of copper.

Table 1: Example actions (inputs) and responses from
the four symbolic modules investigated in this work.

currently in the kitchen), and both complete (e.g.
the map) or partial (e.g. to the north you see the
hallway) spatial connection information.

Arithmetic: A math-themed task, where agents
must read and solve a math problem in order to
know which object from a set of objects to pick-
and-place. An example problem is “take the bundle
of objects that is equal to 3 multiplied by 6, and
place them in the answer box”, where the agent
must complete the task by choosing 18 apples. Dis-
tractor objects are populated with quantities that
correspond to performing the arithmetic incorrectly
(e.g. 3 oranges, corresponding to subtracting 3
from 6). We pair the arithmetic game with a calcu-
lator module capable of performing addition, sub-
traction, multiplication, and division.

Sorting: A sorting-themed game where the agent
begins in a room with three to five objects, and is
asked to place them in a box one at a time in order
of increasing quantity. To add complexity, quan-
tities optionally include units (e.g. 5kg of copper,
8mg of steel) across measures of volume, mass, or
length. The sorting game is paired with a module
that scrapes the observation space for mentions of
objects that include quantities, and sorts these in
ascending or descending order on command.

4.1 Symbolic Modules
Examples of symbolic modules and their responses
are provided in Table 1. The number of valid ac-
tions injected by each module varies between 2
from the sorting module (ascending/descending)
to over 500 from the knowledge base look-up (one

for each object and its canonical locations present
in the knowledge base). Symbolic modules were
implemented in PYTHON as a wrapper around the
TEXTWORLDEXPRESS API, allowing modules to
monitor observations from the environment, inject
actions, and provide responses for any actions they
recognized as valid.

5 Models

In this section, we introduce the reinforcement
learning and behavior cloning agents used in our ex-
periments. Additional details and hyperparameters
are provided in APPENDIX A.

Deep Reinforcement Relevance Network
(DRRN): The DRRN (He et al., 2016) is a fast
and strong reinforcement learning baseline that
is frequently used to deliver near state-of-the-art
performance in a variety of text games (e.g. Xu
et al., 2020; Yao et al., 2020; Wang et al., 2022).
At each step, the DRRN separately encodes the
observation and candidate actions using several
GRUs (Cho et al., 2014). A Deep Q-Network is
then used to estimate Q-values for each (observa-
tion, candidate action) pair. The candidate action
with the highest predicted Q-value will be chosen
as the next action.

Behavior Cloning: Behavior cloning (Torabi et al.,
2018) is a form of imitation learning similar to
the Decision Transformer (Chen et al., 2021) that
models reinforcement learning as a sequence-to-
sequence problem, predicting the next action given
a series of previous observations. We follow the
strategy of Ammanabrolu et al. (2021) in adapting
behavior cloning to text games, where the model
input at step t includes the task description, current
state observation, previous action, and previous
state observation (d, ot, at−1, ot−1). During train-
ing, the agent is fine-tuned on gold trajectories,
where the training target is to generate action at
from the gold trajectories. During evaluation, the
agent performs inference online in the text game
environment. For experiments reported here, we
used a T5-base model (Raffel et al., 2020).

5.1 Oracle Agents and Gold Trajectories
To generate training data for the behavioral cloning
model, we implement oracle agents that generate
optimal and generalizable solution trajectories for
each benchmark. For example, an oracle agent for
an arithmetic game always reads the math problem,
picks up the object with the same quantity as the
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DRRN Behavior Cloned Transformer
Baseline NeuroSymbolic Baseline NeuroSymbolic

Benchmark Score Steps Score Steps Score Steps Score Steps

MapReader 0.02 50 0.02 50 0.71 27 1.00 10
Arithmetic 0.17 10 0.14 7 0.56 5 1.00 5
Sorting 0.03 21 0.03 18 0.72 7 0.98 8
TWC 0.57 27 0.37 34 0.90 6 0.97 3

Average 0.20 27 0.14 27 0.72 11 0.99 7

Table 2: Average model performance across 100 games in the unseen test set. Scores are normalized to between
0 and 1 (higher is better), while steps represents the number of steps an agent takes in the environment (lower is
better). Neurosymbolic performance reflects when models have access to symbolic modules in their action space.

math problem answer, then places that object in
the answer box. For experiments using symbolic
modules, we further insert appropriate module ac-
tions when the agent requires that information to
complete the next step – for example, using the
calculator module after reading the math problem
in the arithmetic game.

6 Results and Discussion

The results of both DRRN and behavior cloning
experiments across each benchmark are shown in
Table 2. We report the average model performance
across 100 games in the unseen test set. The DRRN
achieves a low average performance of 0.20 with-
out modules, while adding symbolic modules into
the action space does not improve performance. In
contrast, the behavior cloned T5 model has a mod-
erate average performance of 0.72 without modules,
while adding symbolic modules increases average
task performance to 0.99, nearly solving each task.
Symbolic modules also make the behavior cloned
agent more efficient, reducing the average steps re-
quired to complete the tasks from 11 to 7, matching
oracle agent efficiency.
Why does behavior cloning perform well? The
baseline behavior cloned transformer achieves mod-
erate overall performance, likely owing at least in
part due to its use of gold trajectories for train-
ing. Large pretrained transformers contain a va-
riety of common sense knowledge and reasoning
abilities (Zhou et al., 2020; Liu et al., 2022c) which
likely contributes to the high performance on TWC,
where the model only needs to match objects with
their common sense locations. In contrast, while
transformers have some arithmetic abilities, their
accuracy tends to vary with the frequency of spe-
cific tokens in the training data (Razeghi et al.,
2022), likely causing the modest performance on
the Arithmetic game. Here, we show that instead

of increasing the size of training data, transform-
ers can be augmented with symbolic modules that
perform certain kinds of reasoning with high accu-
racy. Compared to the DRRN, the presence of gold
trajectories for training allows the behavior cloned
transformer to efficiently learn how to capitalize on
the knowledge available from those modules.
Why does the DRRN perform poorly? We hy-
pothesize that two considerations make these tasks
difficult for the Deep Reinforcement Relevance
Network. The model frequently tries to select ac-
tions that lead to immediate reward (such as im-
mediately picking the correct number of objects
in the arithmetic game), without having first done
the prerequisite actions (like reading or solving the
math problem) that would naturally lead it to se-
lect that action. This creates an ungeneralizable
training signal, causing the model to fail to learn
the task. In addition, the action spaces for each
game are generally large – baseline games contain
between 5 and 30 possible valid actions at each
step (see Table 4 in the APPENDIX), resulting in
up to 24 million possible trajectories up to 5 steps,
which is challenging to explore. Inspired by Liu
et al. (2022a), our future work will aim to overcome
these limitations, and allow reinforcement learning
models to learn to efficiently and effectively exploit
information from symbolic modules.
How does performance compare against other
agents? While most environments used in this
work are new, TEXTWORLD COMMON SENSE

is an existing benchmark. Figure 3 compares
the Neurosymbolic Behavior Cloned Transformer
against recent models that use a combination of re-
inforcement learning, logic, knowledge resources,
and case-based reasoning. While the performance
is not directly comparable – here, we use the
TEXTWORLDEXPRESS reimplementation of TWC
with supervised learning, while other models use
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Model Score Steps

SceneIt (Murugesan et al., 2022) 0.88 20
Bike+CBR (Atzeni et al., 2022) 0.93 17
SceneGraph (Tanaka et al., 2022) 0.91 17
IG (Basu et al., 2021) 0.92 13

BCT Baseline (Ours) 0.90 6
BCT+NeuroSymbic (Ours) 0.97 3

Table 3: A comparison of performance on TWC on
unseen games on the “easy” setting. Note that models
may not be directly comparable, as this work uses the
TEXTWORLDEXPRESS reimplementation of TWC, and
supervised learning. Scores are normalized to between 0
and 1 (higher is better), while steps represents the num-
ber of steps an agent takes in the environment (lower is
better).

the original implementation with a mix of rein-
forcement learning and case-based reasoning – we
can make the high-level observation that the per-
formance of both the baseline and Neurosymbolic
Behavior Cloned Transformer meets or exceeds the
scores of previous models, while generating paths
that are more efficient – by a factor of up to 7x.

7 Conclusion

In this paper, we present an approach to neurosym-
bolic reasoning for text games using action space
injection that can be easily adapted to existing text
game environments. For models that are capable
of exploiting the information provided by the sym-
bolic modules, this technique allows agents to in-
expensively augment their reasoning skills to solve
more complex tasks. We empirically demonstrate
this approach can substantially increase task perfor-
mance on four benchmark games using a behavior
cloned transformer.

Limitations

Two assumptions highlight core limitations in the
scope of our results for augmenting models with
neurosymbolic reasoning: the privileged access to a
list of valid actions, and the use of gold trajectories
for training the behavior cloned transformer.

Valid Actions: One of the central challenges with
text games is that the space of possible action ut-
terances is large, and text game parsers recognize
only a subset of possible actions (e.g. take apple
on the table) while being unable to successfully
interpret a broader range of more complex utter-
ances (e.g. take the red fruit near the fridge). As
a result, nearly all contemporary models (e.g. Am-

manabrolu and Hausknecht, 2020; Adhikari et al.,
2020; Murugesan et al., 2021) make use of the
valid action aid (Hausknecht et al., 2020), where at
a given step the model is provided with an exhaus-
tive list of possible valid actions from the environ-
ment simulator, from which one action is chosen.
The models presented here similarly use this aid.
The DRRN functions essentially as a ranker to se-
lect the most probable next action. The behavior
cloned transformer generates a candidate action
that is aligned using cosine similarity with the list
of valid actions, where the action with the highest
overlap is chosen as the next action. Overcoming
the valid action aid will generally require either
more complex simulation engines capable of inter-
preting a wider variety of intents from input actions,
or models that learn sets of valid actions from a
large amount of training data – though these gen-
erally demonstrate lower performance than those
using valid actions (e.g. Yao et al., 2020).

Gold Trajectories: In this work we demonstrate
a substantial improvement in the performance of a
behavior cloned transformer when augmented with
neurosymbolic reasoning, but this requires the use
of gold trajectories demonstrating the use of those
symbolic modules. Gold training data is not avail-
able in many reinforcement learning applications,
and the model comparison we perform (DRRN
versus behavior cloning) is meant to highlight the
capacity for the behavior cloned model to learn
to make use of symbolic modules through gold
demonstrations, rather than to suggest the DRRN
is incapable of this. In future work, we aim to de-
velop training procedures to allow models that do
not have the benefit of using gold trajectories to
make use of symbolic modules.

Ethics Statement

Broader Impacts: As noted by Ammanabrolu
and Riedl (2021), the ability to perform long-
term multi-step reasoning in complex, interactive,
partially-observable environments has downstream
applications beyond playing games. Text games
are platforms upon which to explore interactive, sit-
uated communication such as dialogue. Although
reinforcement learning is applicable to many se-
quential decision making domains, our setting is
most relevant to creating agents that affect change
via language. This mitigates physical risks prev-
elant in robotics, but not cognitive and emotional
risks, as any system capable of generating natural
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language is capable of biased language use (Sheng
et al., 2021).

Intended Use: The method described in this paper
involves fine-tuning a large pretrained transformer
model. The data generated for fine-tuning was
generated by gold agents, and not collected from
human participants. The trained models are in-
tended to operate on these benchmark tasks that as-
sess reasoning capacities in navigation, arithmetic,
and other common sense competencies. Large lan-
guage models have been shown to exhibit a variety
of biases (e.g. Nadeem et al., 2021) that may cause
unintended harms, particularly (in the context of
this work) in unintended use cases.

Computation Time: Training large models can
involve a large carbon footprint (Strubell et al.,
2019), or decrease the availability of a method due
to the barriers in accessing high performance com-
pute resources. The proposed technique can reduce
the need for large models by augmenting smaller
models with more complex reasoning through sym-
bolic modules. The behavior cloning experiments
achieve strong performance with T5-base, high-
lighting the capacity of modest models that can be
run with workstation GPUs to be better exploited
for complex reasoning tasks.

Acknowledgements

This work supported in part by National Science
Foundation (NSF) award #1815948 to PJ, and the
Allen Institute for Artificial Intelligence (AI2).

References
Ashutosh Adhikari, Xingdi Yuan, Marc-Alexandre Côté,

Mikuláš Zelinka, Marc-Antoine Rondeau, Romain
Laroche, Pascal Poupart, Jian Tang, Adam Trischler,
and Will Hamilton. 2020. Learning dynamic belief
graphs to generalize on text-based games. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 3045–3057. Curran Associates,
Inc.

Prithviraj Ammanabrolu and Matthew Hausknecht.
2020. Graph constrained reinforcement learning for
natural language action spaces. In International Con-
ference on Learning Representations.

Prithviraj Ammanabrolu and Mark Riedl. 2021. Learn-
ing knowledge graph-based world models of textual
environments. In Thirty-fifth Conference on Neural
Information Processing Systems (NeurIPS).

Prithviraj Ammanabrolu, Jack Urbanek, Margaret Li,
Arthur Szlam, Tim Rocktäschel, and Jason Weston.

2021. How to motivate your dragon: Teaching goal-
driven agents to speak and act in fantasy worlds. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 807–833, Online. Association for Computa-
tional Linguistics.

Mattia Atzeni, Shehzaad Zuzar Dhuliawala, Keerthi-
ram Murugesan, and MRINMAYA SACHAN. 2022.
Case-based reasoning for better generalization in tex-
tual reinforcement learning. In International Confer-
ence on Learning Representations.

Kinjal Basu, Keerthiram Murugesan, Mattia Atzeni, Pa-
van Kapanipathi, Kartik Talamadupula, Tim Klinger,
Murray Campbell, Mrinmaya Sachan, and Gopal
Gupta. 2021. A hybrid neuro-symbolic approach for
text-based games using inductive logic programming.
In Proceedings of the 1st Workshop on Combining
Learning and Reasoning: Programming Languages,
Formalisms, and Representations.

Erik Cambria, Qian Liu, Sergio Decherchi, Frank
Xing, and Kenneth Kwok. 2022. SenticNet 7: A
commonsense-based neurosymbolic AI framework
for explainable sentiment analysis. In Proceedings of
the Thirteenth Language Resources and Evaluation
Conference, pages 3829–3839, Marseille, France. Eu-
ropean Language Resources Association.

Subhajit Chaudhury, Prithviraj Sen, Masaki Ono, Daiki
Kimura, Michiaki Tatsubori, and Asim Munawar.
2021. Neuro-symbolic approaches for text-based
policy learning. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 3073–3078, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee,
Aditya Grover, Misha Laskin, Pieter Abbeel, Aravind
Srinivas, and Igor Mordatch. 2021. Decision trans-
former: Reinforcement learning via sequence mod-
eling. Advances in neural information processing
systems, 34:15084–15097.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder–decoder ap-
proaches. In Proceedings of SSST-8, Eighth Work-
shop on Syntax, Semantics and Structure in Statistical
Translation, pages 103–111, Doha, Qatar. Associa-
tion for Computational Linguistics.

Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-
Alexandre Côté, and Xingdi Yuan. 2020. Interactive
fiction games: A colossal adventure. Proceedings
of the AAAI Conference on Artificial Intelligence,
34(05):7903–7910.

Ji He, Mari Ostendorf, Xiaodong He, Jianshu Chen,
Jianfeng Gao, Lihong Li, and Li Deng. 2016. Deep
reinforcement learning with a combinatorial action

2782

https://proceedings.neurips.cc/paper/2020/file/1fc30b9d4319760b04fab735fbfed9a9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1fc30b9d4319760b04fab735fbfed9a9-Paper.pdf
https://arxiv.org/abs/2106.09608
https://arxiv.org/abs/2106.09608
https://arxiv.org/abs/2106.09608
https://doi.org/10.18653/v1/2021.naacl-main.64
https://doi.org/10.18653/v1/2021.naacl-main.64
https://openreview.net/forum?id=ZDaSIkWT-AP
https://openreview.net/forum?id=ZDaSIkWT-AP
https://aclanthology.org/2022.lrec-1.408
https://aclanthology.org/2022.lrec-1.408
https://aclanthology.org/2022.lrec-1.408
https://doi.org/10.18653/v1/2021.emnlp-main.245
https://doi.org/10.18653/v1/2021.emnlp-main.245
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.1609/aaai.v34i05.6297
https://doi.org/10.1609/aaai.v34i05.6297
https://doi.org/10.18653/v1/D16-1189
https://doi.org/10.18653/v1/D16-1189


space for predicting popular Reddit threads. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1838–
1848, Austin, Texas. Association for Computational
Linguistics.

Michael Janner, Qiyang Li, and Sergey Levine. 2021.
Offline reinforcement learning as one big sequence
modeling problem. In Advances in Neural Informa-
tion Processing Systems.

Peter Jansen. 2022. A systematic survey of text worlds
as embodied natural language environments. In Pro-
ceedings of the 3rd Wordplay: When Language Meets
Games Workshop (Wordplay 2022), pages 1–15, Seat-
tle, United States. Association for Computational
Linguistics.

Peter A Jansen and Marc-Alexandre Côté. 2022.
Textworldexpress: Simulating text games at
one million steps per second. arXiv preprint
arXiv:2208.01174.

Haozhe Ji, Pei Ke, Shaohan Huang, Furu Wei, Xiaoyan
Zhu, and Minlie Huang. 2020. Language generation
with multi-hop reasoning on commonsense knowl-
edge graph. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 725–736, Online. Association
for Computational Linguistics.

Daiki Kimura, Subhajit Chaudhury, Masaki Ono, Michi-
aki Tatsubori, Don Joven Agravante, Asim Munawar,
Akifumi Wachi, Ryosuke Kohita, and Alexander
Gray. 2021a. LOA: Logical optimal actions for text-
based interaction games. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Con-
ference on Natural Language Processing: System
Demonstrations, pages 227–231, Online. Association
for Computational Linguistics.

Daiki Kimura, Masaki Ono, Subhajit Chaudhury,
Ryosuke Kohita, Akifumi Wachi, Don Joven Agra-
vante, Michiaki Tatsubori, Asim Munawar, and
Alexander Gray. 2021b. Neuro-symbolic reinforce-
ment learning with first-order logic. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 3505–3511, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Iou-Jen Liu, Xingdi Yuan, Marc-Alexandre Côté,
Pierre-Yves Oudeyer, and Alexander G. Schwing.
2022a. Asking for knowledge: Training rl agents
to query external knowledge using language. ArXiv,
abs/2205.06111.

Jiacheng Liu, Alisa Liu, Ximing Lu, Sean Welleck, Pe-
ter West, Ronan Le Bras, Yejin Choi, and Hannaneh
Hajishirzi. 2022b. Generated knowledge prompting
for commonsense reasoning. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
3154–3169, Dublin, Ireland. Association for Compu-
tational Linguistics.

Jiacheng Liu, Alisa Liu, Ximing Lu, Sean Welleck, Pe-
ter West, Ronan Le Bras, Yejin Choi, and Hannaneh
Hajishirzi. 2022c. Generated knowledge prompting
for commonsense reasoning. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
3154–3169.

Keerthiram Murugesan, Mattia Atzeni, Pavan Kapani-
pathi, Pushkar Shukla, Sadhana Kumaravel, Gerald
Tesauro, Kartik Talamadupula, Mrinmaya Sachan,
and Murray Campbell. 2021. Text-based RL Agents
with Commonsense Knowledge: New Challenges,
Environments and Baselines. In Thirty Fifth AAAI
Conference on Artificial Intelligence.

Keerthiram Murugesan, Subhajit Chaudhury, and Kartik
Talamadupula. 2022. Eye of the beholder: Improved
relation generalization for text-based reinforcement
learning agents. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 36, pages
11094–11102.

Moin Nadeem, Anna Bethke, and Siva Reddy. 2021.
StereoSet: Measuring stereotypical bias in pretrained
language models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 5356–5371, Online. Association for
Computational Linguistics.

Philip Osborne, Heido Nomm, and André Freitas. 2021.
A survey of text games for reinforcement learning
informed by natural language. Transactions of the
Association for Computational Linguistics, 10:873–
887.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Yasaman Razeghi, Robert L Logan IV, Matt Gardner,
and Sameer Singh. 2022. Impact of pretraining term
frequencies on few-shot reasoning. arXiv preprint
arXiv:2202.07206.

Emily Sheng, Kai-Wei Chang, Prem Natarajan, and
Nanyun Peng. 2021. Societal biases in language
generation: Progress and challenges. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 4275–4293, Online.
Association for Computational Linguistics.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 3645–3650, Florence, Italy. Asso-
ciation for Computational Linguistics.

2783

https://doi.org/10.18653/v1/D16-1189
https://doi.org/10.18653/v1/2022.wordplay-1.1
https://doi.org/10.18653/v1/2022.wordplay-1.1
https://doi.org/10.18653/v1/2020.emnlp-main.54
https://doi.org/10.18653/v1/2020.emnlp-main.54
https://doi.org/10.18653/v1/2020.emnlp-main.54
https://doi.org/10.18653/v1/2021.acl-demo.27
https://doi.org/10.18653/v1/2021.acl-demo.27
https://doi.org/10.18653/v1/2021.emnlp-main.283
https://doi.org/10.18653/v1/2021.emnlp-main.283
https://doi.org/10.18653/v1/2022.acl-long.225
https://doi.org/10.18653/v1/2022.acl-long.225
https://doi.org/10.18653/v1/2021.acl-long.416
https://doi.org/10.18653/v1/2021.acl-long.416
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2021.acl-long.330
https://doi.org/10.18653/v1/2021.acl-long.330
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355


Tsunehiko Tanaka, Daiki Kimura, and Michiaki Tatsu-
bori. 2022. Commonsense knowledge from scene
graphs for textual environments. arXiv preprint
arXiv:2210.14162.

Faraz Torabi, Garrett Warnell, and Peter Stone. 2018.
Behavioral cloning from observation. In Proceed-
ings of the Twenty-Seventh International Joint Con-
ference on Artificial Intelligence, IJCAI-18, pages
4950–4957. International Joint Conferences on Arti-
ficial Intelligence Organization.

Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and
Prithviraj Ammanabrolu. 2022. Scienceworld: Is
your agent smarter than a 5th grader? In Proceed-
ings of the 2022 Conference on Empirical Methods in
Natural Language Processing. Association for Com-
putational Linguistics.

Leon Weber, Pasquale Minervini, Jannes Münchmeyer,
Ulf Leser, and Tim Rocktäschel. 2019. NLProlog:
Reasoning with weak unification for question answer-
ing in natural language. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 6151–6161, Florence, Italy. Asso-
ciation for Computational Linguistics.

Yunqiu Xu, Meng Fang, Ling Chen, Yali Du,
Joey Tianyi Zhou, and Chengqi Zhang. 2020. Deep
reinforcement learning with stacked hierarchical at-
tention for text-based games. Advances in Neural
Information Processing Systems, 33:16495–16507.

Shunyu Yao, Karthik Narasimhan, and Matthew
Hausknecht. 2021. Reading and acting while blind-
folded: The need for semantics in text game agents.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 3097–3102, Online. Association for Computa-
tional Linguistics.

Shunyu Yao, Rohan Rao, Matthew Hausknecht, and
Karthik Narasimhan. 2020. Keep CALM and ex-
plore: Language models for action generation in text-
based games. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 8736–8754, Online. Association
for Computational Linguistics.

Xingdi Yuan, Marc-Alexandre Côté, Alessandro Sor-
doni, Romain Laroche, Rémi Tachet des Combes,
Matthew J. Hausknecht, and Adam Trischler. 2018.
Counting to explore and generalize in text-based
games. ArXiv, abs/1806.11525.

Tom Zahavy, Matan Haroush, Nadav Merlis, Daniel J
Mankowitz, and Shie Mannor. 2018. Learn what not
to learn: Action elimination with deep reinforcement
learning. In NeurIPS.

Rowan Zellers, Ari Holtzman, Matthew Peters, Roozbeh
Mottaghi, Aniruddha Kembhavi, Ali Farhadi, and
Yejin Choi. 2021. PIGLeT: Language grounding
through neuro-symbolic interaction in a 3D world.

In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
2040–2050, Online. Association for Computational
Linguistics.

Xuhui Zhou, Yue Zhang, Leyang Cui, and Dandan
Huang. 2020. Evaluating commonsense in pre-
trained language models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34,
pages 9733–9740.

A Appendix: Experiment Details

A.1 Training and evaluation sets

For each game, we randomly generate 100 para-
metric variations for each of the train, development,
and test sets. To encourage and evaluate general-
ity, problems are unique across sets – for example,
arithmetic problems (for the Arithmetic game) or
task objects (for TWC) found in the training set are
not found in the development or test sets.

A.2 Hyperparameters

Following standard practice (e.g. (Wang et al.,
2022; Xu et al., 2020; Hausknecht et al., 2020)),
the DRRN models are trained for 100k steps. We
parallelly train DRRN on 16 environment instances
with five different random seeds and the average
results are reported. The behavior cloned trans-
formers are trained for between 2 and 20 epochs,
with the best model (as evaluated on the develop-
ment set) used for evaluating final performance on
the test set. Trained models are evaluated on all 100
parametric variations in the development or test set.
Environments are limited to 50 steps, such that if
the agent exceeds this many steps without reaching
an end state, the score at the last step is taken to be
the final score, and the environment resets. Model
training time varied between 1 hour and 12 hours,
with the TWC model that includes a large number
of symbolic module actions requiring the largest
training time.

A.3 Implementation details

We make use of an existing DRRN implementa-
tion2 and adapted it to the TEXTWORLDEXPRESS

environment. At each step, the current game state
observation, task description, inventory informa-
tion, and the current room description are concate-
nated into one string and encoded by a GRU. All

2https://github.com/microsoft/tdqn
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No Modules With Symbolic Modules

Benchmark Min Avg Max Min Avg Max

MapReader 4 6.2 22 6 9.3 26
Arithmetic 9 14.3 52 17 21.5 53
Sorting 5 9.3 35 7 11.0 37
TWC 3 6.3 14 544 547.8 561

Average 5.3 9.0 30.8 143.5 147.4 169.3

Table 4: The minimum, mean, and maximum number of valid actions per step, for each benchmark. Values represent
averages determined using a random agent that is run to 50 steps for on 10 training episodes per benchmark.

candidate actions are encoded by another GRU.
The Q-value of each encoded (observation, candi-
date action) pair is then estimated by a Q-network
consists of two linear layers. During training, the
next action is sampled from all candidate actions
based on the estimated Q-values. During evalua-
tion, the action with the highest estimated Q-value
is chosen as the next action.

For the behavior cloned transformer, the in-
put string of the T5 model at step t are formatted as:

d </s> OBS ot </s> INV oinvt </s> LOOK olookt </s>
<extra_id_0> </s> PACT at−1 </s> POBS ot−1 </s>

where d is the task description, </s> and <extra_id_0>
are the special tokens for separator and mask for
text to generate used by the T5 model, OBS, INV,
LOOK, PACT, and POBS are the special tokens repre-
senting observation ot, inventory information oinvt ,
the current room description obtained by the “look
around” action olookt , previous action at−1, and pre-
vious observation ot−1, respectively. We use beam
search to generate the top 16 strings from the T5
model, and choose the first string that is a valid
action as the action to take. In the case where the
model does not generate an exact match, we use co-
sine similarity to pick the valid action that has the
highest unigram overlap with an action generated
by T5.

B Environments and Symbolic Modules

Action Space: The number of valid actions per
step for each benchmark is shown in Table 4, with
these values collected by a random agent that runs
for 50 steps across 10 training episodes. Environ-
ments contain an average of 9 valid actions per step
(range 5 to 30), not including actions injected from
the symbolic modules. After adding the module ac-
tions, the action space becomes up to twice as large
for the MapReader, Arithmetic, and Sorting bench-

Text World Common Sense (TWC) Game

Task Description: Your task is to pick up objects, then place them in their
usual locations in the environment.

You are in the corridor. In one part of the room you see a shoe cabinet that is
closed. There is also a white coat. You also see a key holder, that has nothing
on it. In another part of the room you see a hat rack, that has nothing on it. In
one part of the room you see a coat hanger, that has nothing on it. There is
also a umbrella stand, that has nothing on it.
Inventory:

Your inventory is currently empty.
> query white coat

The results are:
white coat located coat hanger
white coat located wardrobe

Inventory:
Your inventory is currently empty.

> take white coat

You take the white coat.
Inventory:

a white coat
> put white coat in coat hanger

Game completed.

Table 5: An example of a Text World Common Sense
(TWC) game. Actions for the solution are italicized.
Relevant task objects and target locations are bolded,
while distractor locations are underlined. Symbolic
module actions and their responses are highlighted in
blue.

marks. The knowledge base module for TWC adds
approximately 530 actions, substantially increasing
the action space.

B.1 Text World Common Sense (TWC)

A benchmark common sense reasoning task where
agents must collect objects from the environment
(e.g. dirty socks) and place them in their canon-
ical locations (e.g. washing machine). We use
the TEXTWORLDEXPRESS implementation of the
original environment (Murugesan et al., 2021), in
a setting analogous to easy difficulty, where the
agent must pick and place one misplaced item in
the environment. The agent receives a score of 0.5
for picking up the object, and 1.0 for placing it in
the correct location. Table 5 shows an example of
the TWC Game in which the agent places a clean
shirt in the wardrobe with the help of querying the

2785



Arithmetic Game

Task Description: Your first task is to solve the math problem. Then, pick up
the item with the same quantity as the math problem answer, and place it in
the box.

You are in the kitchen. In one part of the room you see a fridge that is
closed. There is also a dining chair that has 11 tangerines, 33 papayas,
242 strawberries, and 20 peaches on it. You also see a box, that is empty.
In another part of the room you see a math problem. In one part of the room
you see a dishwasher that is closed. There is also a trash can that is closed.
You also see an oven. In another part of the room you see a cutlery drawer
that is closed. In one part of the room you see a stove. There is also a kitchen
cupboard that is closed. You also see a counter that has 6 oranges, and 2
bananas on it.
Inventory:

Your inventory is currently empty.
> take math problem

You take the math problem.
Inventory:

a math problem
> read math problem

Your task is to solve the following math problem: divide 22 by 11. Then, pick
up the item with the same quantity as the answer, and place it in the box.
Inventory:

a math problem
> div 22 11

The result of dividing 22 by 11 is 2.
Inventory:

a math problem
> take 2 bananas

You take the 2 bananas.
Inventory:

a math problem
2 bananas

> put 2 bananas in box

Game completed.

Table 6: An example Arithmetic game. Actions for the
solution are italicized. Relevant task objects are bolded,
while distractor objects are underlined. Symbolic mod-
ule actions and their responses are highlighted in blue.

common sense location of a clean shirt.
Knowledge Base Module: We pair TWC with a

symbolic module that provides queries to a simple
knowledge base of <object, hasCanonicalLocation,
container> triples. The symbolic module generates
and accepts actions of the form QUERY <QUERY

TOKENS>, where <QUERY TOKENS> corresponds
to all object and container names in the knowledge
base. This results in an increase of approximately
530 actions in the action space.

B.2 Arithmetic Game

The Arithmetic game requires agents to read a math
problem, solve it, then perform a pick-and-place
task based on the answer. For example, the agent
may read the math problem (“Take the bundle of
objects that is equal to 3 multiplied by 6, and place
them in the box”), and must then perform the arith-
metic then take 18 apples and place them in the
answer box. Distractor objects are populated corre-
sponding to performing the arithmetic incorrectly

(for example, including 3 oranges, corresponding
to subtracting 3 from 6, and 2 pears, corresponding
to 6 divided by 3), with the condition that results
are positive integer values. Agents receive a score
of 0.5 for picking up the correct object, and 1.0
for completing the task successfully. An example
playthrough of the Arithmetic game is in Table 6.

Arithmetic Module: We pair the Arithmetic
game with an Arithmetic module that adds actions
for addition, subtraction, multiplication, and divi-
sion. To reduce the complexity of the action space,
only actions with arguments from the current math
problem are enumerated (e.g. add 3 6, sub 3 6, sub
6 3, mul 3 6, div 3 6, div 6 3).

B.3 Sorting Game
The sorting game is a pick-and-place game that
presents an agent with 3 to 5 objects, and asks the
agent to place them in an answer box one at a time
based on order of increasing quantity. To add com-
plexity to the game, quantities optionally include
units (e.g. 5kg of copper, 8mg of steel, 2g of iron)
across measures of volume, mass, or length. The
agent score is the normalized proportion of objects
sorted in the correct order, where perfect sorts re-
ceive a score of 1.0, and errors cause the score to
revert to zero and the game to end. An example
playthrough of the Sorting game is in Table 7.

Sorting Module: The sorting module monitors
observations for mentions of objects (nouns) that
include quantities, while also interpreting and nor-
malizing quantities based on known units. The
module injects two actions: sort ascending, and
sort descending, that provides the user with a sorted
list of objects.

B.4 MapReader Game
MapReader is a navigation oriented pick-and-place
game similar to Coin Collector (Yuan et al., 2018),
with the added complexity that the agent is pro-
vided with a map of the environment that can be
used to more efficiently navigate. Environments
and their maps are randomly generated to contain
up to 15 locations drawn from 50 locations in Coin
Collector. The agent begins in a randomly chosen
location, and is asked to move to a target location
(e.g. the kitchen), take a coin, then return to the
starting location and place it in a box. Target loca-
tions are randomly chosen to be between 1 and 4
steps from the starting location. The most efficient
solution method is to read the map, determine the
shortest path between the agents current location
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Sorting Game

Task Description: Your task is to sort objects by quantity. First, place the
object with the smallest quantity in the box. Then, place the objects with the
next smallest quantity in the box, and repeat until all objects have been placed
in the box.

You are in the kitchen. In one part of the room you see a fridge that is closed.
There is also a counter that has 15kg of cedar, and 21kg of marble on it. You
also see a dining chair that has 25g of oak, and 47g of brick on it. In another
part of the room you see a box, that is empty. In one part of the room you see a
dishwasher that is closed. There is also a trash can that is closed. You also see
an oven. In another part of the room you see a cutlery drawer that is closed. In
one part of the room you see a stove. There is also a kitchen cupboard that is
closed.
Inventory:

Your inventory is currently empty.
> sort ascending

The observed items, sorted in order of increasing quantity, are: 25 g of oak,
47 g of brick, 15 kg of cedar, 21 kg of marble.
Inventory:

Your inventory is currently empty.
> take 25g of oak

You take the 25g of oak.
Inventory:

25g of oak
> put 25g of oak in box

You put the 25g of oak in the box.
Inventory:

Your inventory is currently empty.
> take 47g of brick

You take the 47g of brick.
Inventory:

47g of brick
> put 47g of brick in box

You put the 47g of brick in the box.
Inventory:

Your inventory is currently empty.
> take 15kg of cedar

You take the 15kg of cedar.
Inventory:

15kg of cedar
> put 15kg of cedar in box

You put the 15kg of cedar in the box.
Inventory:

Your inventory is currently empty.
> take 21kg of marble

You take the 21kg of marble.
Inventory:

21kg of marble
> put 21kg of marble in box

Game completed.

Table 7: An example Sorting game. Actions for the
solution are italicized. Relevant task objects are bolded.
Symbolic module actions and their responses are high-
lighted in blue.

and target location, follow that path to retrieve the
coin, then follow the path in reverse to return the
coin to the starting location. The agent receives
a score of 0.5 for retrieving the coin, and 1.0 for
placing the coin in the box at the start location.
An example of the MapReader game is shown in
Table 8.

Navigation Module: We pair MapReader with
a navigation module that scrapes the environment
for both complete map information (obtained if the

agent chooses to read the map), as well as partial
information such as the current location (e.g. “You
are in the kitchen”) and connecting locations (e.g.

“To the north you see the living room”) that can be
used to incrementally build a map. The module
adds actions that, if selected, provide the next step
in the shortest path to navigate to all known loca-
tions in the environment (e.g. next step to living
room, next step to garage, ...).
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MapReader Game

Task Description: Your task is to take the coin that is located in the
laundry room, and put it into the box found in the foyer. A map is
provided, that you may find helpful.

continued...

You are in the foyer. In one part of the room you see a box, that is empty. You are in the laundry room. In one part of the room you see a coin.
There

To the East you see the corridor. is also a bench, that has nothing on it. You also see a washing machine
Inventory: that is closed. In another part of the room you see a work table, that has

a map nothing on it. In one part of the room you see a laundry basket, that has
> read map nothing on it. There is also a clothes drier that is closed.

To the South you see the corridor.
The map reads: Inventory:

The living room connects to the backyard and corridor. a map
The garage connects to the driveway. > take coin
The laundry room connects to the corridor.
The backyard connects to the living room, alley, kitchen and sideyard. You take the coin.
The bedroom connects to the corridor. Inventory:
The sideyard connects to the backyard and driveway. a map
The kitchen connects to the bathroom, pantry and backyard. a coin
The supermarket connects to the alley. > next step to foyer
The foyer connects to the corridor.
The pantry connects to the kitchen. The next location to go to is: corridor
The driveway connects to the sideyard, alley and garage. Inventory:
The street connects to the alley. a map
The alley connects to the driveway, supermarket, street and backyard. a coin
The bathroom connects to the kitchen. > move south
The corridor connects to the living room, foyer, bedroom and laundry

room. You are in the corridor. In one part of the room you see a shoe cabinet that
Inventory: is closed. There is also a key holder, that has nothing on it. You also see a

a map hat rack, that has nothing on it. In another part of the room you see a coat
> next step to laundry room hanger, that has nothing on it. In one part of the room you see a umbrella

stand, that has nothing on it.
The next location to go to is: corridor To the North you see the laundry room. To the South you see the living
Inventory: room. To the East you see the bedroom. To the West you see the foyer.

a map Inventory:
> move east a map

a coin
You are in the corridor. In one part of the room you see a shoe cabinet that
is closed. There is also a key holder, that has nothing on it. You also see a > next step to foyer
hat rack, that has nothing on it. In another part of the room you see a coat The next location to go to is: foyer
hanger, that has nothing on it. In one part of the room you see a umbrella Inventory:
stand, that has nothing on it. a map
To the North you see the laundry room. To the South you see the living a coin
room. To the East you see the bedroom. To the West you see the foyer. > move west
Inventory:

a map You are in the foyer. In one part of the room you see a box, that is empty.
> next step to laundry room To the East you see the corridor.

Inventory:
The next location to go to is: laundry room a map
Inventory: a coin

a map > put coin in box
> move north

Game completed.

Table 8: An example of a MapReader game. Actions for the solution are italicized. The starting location and the
target location are bolded. Symbolic module actions and their responses are highlighted in blue.
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Abstract
As the minimum semantic units of natural
languages, sememes can provide interpretable
representations of concepts. Despite the
widespread utilization of lexical resources for
semantic tasks, the use of sememes is limited
by a lack of available sememe knowledge bases.
Recent efforts have been made to connect Ba-
belNet with HowNet by automating sememe
prediction. However, these methods depend
on large manually annotated datasets. Instead,
we propose to use sense alignment via a novel
unsupervised and explainable method. Our
method consists of four stages, each relaxing
predefined constraints until a complete align-
ment of BabelNet synsets to HowNet senses is
achieved. Experimental results demonstrate the
superiority of our unsupervised method over
previous supervised ones by an improvement of
12% overall F1 score, setting a new state of the
art. Our work is grounded in an interpretable
propagation of sememe information between
lexical resources, and may benefit downstream
applications which can incorporate sememe in-
formation.

1 Introduction

Sememes are the minimum semantic units of hu-
man languages (Bloomfield, 1926). The theory of
semantic primitives (Wierzbicka, 1996a) hypothe-
sizes that the meaning of a word in any language
can be decomposed into a finite set of language-
independent sememes. For example, the English
noun plant has distinct senses that correspond to the
“factory” and “vegetation” concepts, respectively.
The former can be represented by the sememes “in-
dustrial”, “produce”, and “institute/place”, and the
latter by “crop”, “tree”, and “flower/grass”. (See
Figure 2 for additional examples.) Although se-
memes provide a way of representing concepts,
their incorporation into natural language process-
ing (NLP) has been limited by a lack of available
sememe resources for commonly used sense in-
ventories. Tremendous efforts have been made to

BabelNet Synset

HowNet Senses

Stage 1

Stage 2

Stage 3

Stage 4

Synset: bn00067718n

公尺
米突

metre

meter

米

Senses

meter 米 metre

米

meter 公尺

Figure 1: Given a BabelNet synset as input, our
alignment algorithm identifies a set of corresponding
HowNet senses. The algorithm consists of four stages
which progressively relax alignment constrains.

construct sememe knowledge bases (KBs) manu-
ally. One of the most widely used is HowNet (Dong
and Dong, 2003), which unfortunately is limited to
only two languages: English and Chinese.

A related problem is linking lexical resources
to one another. As manually creating semantic
knowledge bases remains a challenging and costly
process, BabelNet (Navigli and Ponzetto, 2012)
was instead created by combining WordNet (Miller,
1995), Wikipedia, and other resources. While Ba-
belNet covers hundreds of languages, it does not
include sememe information. Previous work on au-
tomatically predicting sememes for BabelNet con-
cepts has depended on large human labeled data (Qi
et al., 2020, 2022). Various systems for automat-
ically aligning word senses across heterogeneous
resources have been proposed to mitigate this issue
(Meyer and Gurevych, 2011; Pilehvar and Navigli,
2014; Bao et al., 2022), but those methods do not
leverage the unique structure of HowNet, which
differs from other lexical databases.

In this work, rather than attempting to predict
sememes directly, as in prior work, we instead
attempt to align BabelNet concepts and HowNet
senses. Since each HowNet sense is annotated with
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Synset ID: 00035680n
Chinese: 英尺，尺

(英美制长度单位。1英尺合12英寸，合0.3048米。)
English: foot, feet, ft

(The foot, abbreviation and IEEE standard symbol: ft, is a unit of length in
the British imperial and United States customary systems of measurement.)

HowNet BabelNet

Word foot

foot | 尺Sense foot | 脚

Sememe

distance | 距离

length | 长度

width | 宽度

unit | 单位

part | 部件

foot | 脚

physiology | 生理学

animal | 动物

           Synset ID: 00035679n
Chinese: 脚，足，脚部

(足，又称脚，解剖学上指陆地脊椎动物腿的末端、支撑该生物的部分。)
English: foot

(The part of the leg of a human being below the ankle joint.)

(a) (b)

Figure 2: A comparison of the representations of HowNet senses and BabelNet concepts.

sememes (c.f., Figure 2), correctly mapping a Ba-
belNet concept to a HowNet sense will effectively
add sememe information to the corresponding Ba-
belNet synset, as well as associate the HowNet
sense with information unique to BabelNet, such
as synonymy information. We propose a fully un-
supervised algorithm which achieves reliable and
stable results, and produces fully explainable map-
pings. The ability to identify precisely why a partic-
ular sememe was associated with a given concept
is a unique strength of our method, which we be-
lieve will facilitate analysis and development of
downstream applications of our work.

The results of our experimental evaluation pro-
vide evidence that our unsupervised approach sub-
stantially outperforms previous supervised methods
on the BabelNet sememe prediction task by up to
12% F-score. This also indirectly demonstrates the
high accuracy of the generated alignment between
BabelNet and HowNet, which we make available
to facilitate further research.1

Our contributions are as follows:

• We propose the first method for aligning Babel-
Net synsets to HowNet senses, adding new infor-
mation to both resources. Our method is unsu-
pervised and explainable.

• We set a new state of the art for sememe predic-
tion task on the BabelSememe dataset.

• We provide an API for identifying the HowNet
senses and their sememes for any BabelNet
synset that contains English or Chinese words.

• We perform a detailed analysis and ablation study
of the results, focusing on the impact of the dif-
ferences between HowNet and BabelNet.

1Our code and used data are available at: https://
github.com/senseAlign/BabelNet_2_HowNet

2 Related Work

In this section, we first describe the two multilin-
gual knowledge bases, and then discuss the tasks
of sense alignment and sememe prediction.

2.1 Multilingual knowledge bases

Our main focus is on the sense alignment between
BabelNet and HowNet (Figure 2).

BabelNet (Navigli and Ponzetto, 2012) is a mul-
tilingual sense inventory created by automatically
combining various knowledge bases including
WordNet and Wikipedia. The most recent version
covers over 500 languages and contains 1.4 bil-
lion word senses. Following the WordNet model,
words which are interchangeable in some context
are grouped into synonym sets, or synsets. Each
synset is associated with a unique lexical concept
or named entity, and contains all the words which
can express that concept or refer to that entity. In
BabelNet, the senses of a word correspond to the
concepts that it can express; that is, each sense of
a word corresponds to a synset which contains the
word, and shares its meaning with the other words
in that synset. As shown in Figure 2, each synset
has a unique ID and consists of all word senses that
share the same meaning across various languages.
Each synset is also associated with a gloss, and,
optionally, example sentences or images.

HowNet is a sememe-based knowledge base for
both Chinese and English. Each HowNet sense
contains a unique Chinese-English word pair, as-
sociated with one or more sememes, as shown in
Figure 2. Note that the meaning of the term sense
is different in HowNet and BabelNet, and thus mul-
tiple HowNet senses may correspond to a single
BabelNet concept. HowNet contains more than 2K
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sememes, created by human experts, and more than
100K Chinese and 950K English words. Over its
more than 20 years of development, HowNet has
become one of the most popular knowledge base
in the Chinese NLP community (Dong and Dong,
2003), and has been applied to downstream tasks
such as word sense disambiguation (Zhang et al.,
2005; Duan et al., 2007; Zhang et al., 2022), word
representation learning (Niu et al., 2017), language
modeling (Gu et al., 2018), textual adversarial at-
tack (Zang et al., 2020; Qi et al., 2021), text match-
ing (Lyu et al., 2021), and sememe prediction (Qi
et al., 2020, 2022).

2.2 Sense aligning

The task of aligning lexical knowledge bases con-
sists of associating entries in one resource with one
or more entries in another. As described above,
BabelNet was created by associating Wikipedia
articles with WordNet senses. As another exam-
ple, Open Multilingual WordNet (Bond and Foster,
2013) was created by linking wordnets covering
various languages. Gurevych et al. (2012) create a
sense similarity measure to align WordNet senses
with entries in the German OmegaWiki. McCrae
and Cillessen (2021) conduct an alignment between
WordNet synsets and entities in Wikidata. Bao
et al. (2022) present a translation-based method for
aligning BabelNet concepts to entries in CLICS
and OmegaWiki. Combining knowledge bases in
this way provides additional information, and al-
lows knowledge-based methods to be applied to
more languages and tasks.

Various approaches to sense alignment between
HowNet and the other KBs have also been inves-
tigated in prior work. Carpuat et al. (2002) use
the tf-idf scores to align the senses in HowNet and
synsets in WordNet. Chen and Fung (2004) present
a method for aligning HowNet and FrameNet map-
ping by applying word sense disambiguation. Sorn-
lertlamvanich et al. (2005) propose another algo-
rithm for aligning HowNet and FrameNet, which
is based on constructing feature vectors.

Besides, more general methods to link two or
more lexical resources (ontologies) have been ex-
amined in prior work. McCrae and Cillessen
(2021) proposed the Lexicon Model for Ontolo-
gies (Lemon) which aims to align any amount of
lexical resources by modeling a universal semantic
representation. Chiarcos et al. (2013) further com-
bine multiple linking methods including Lemon

and Graph construction, based on the theory of Re-
source Description Framework, and provide the
insight in unifying lexical resources. Our work fo-
cuses solely on the alignment between HowNet and
BabelNet as they represent two most widely used
lexical knowledge bases for English and Chinese.
However, similar ideas used in the work can also
be applied for the general mapping for multilingual
lexical resources.

2.3 Sememe prediction
The lack of sememe information in existing mul-
tilingual KBs was highlighted by Qi et al. (2020),
motivating the sememe prediction task, which aims
at bridging the gap between HowNet and BabelNet
by predicting a set of most related sememes for a
given BabelNet synset.

Qi et al. (2020) propose a model named Sememe
Prediction for BabelNet Synsets (SPBS), which
aims to learn a representation of the input synsets.
This supervised model compares the representa-
tion of the input synset B to those in the training
data, which are labeled with sememes. The input
synset is then assigned sememes which are most
frequently associated with the synsets that are most
similar to it. Intuitively, if B has a similar repre-
sentation to training synsets associated with some
sememe s, then SPBS will be likely to predict se-
meme s for B. A variant of this method, SPBS-SS,
also uses synset relation information from Babel-
Net to improve synset representations. An ensem-
ble method combines both SPBS and SPBS-SS
representations and yields better results.

Qi et al. (2022) propose another method: Multi-
lingual Synonyms and Glosses as well as Images
(MSGI). This approach uses multimodal informa-
tion provided by BabelNet synsets, such as images.
The model combines a text encoder, image encoder
and multi-label classifier.

2.4 Sememes vs. Semantic Primes
While sememes have some similarities to the con-
cept of semantic primitives (or semantic primes),
they differ in their goals and representation. The
purpose of semantic primes (Wierzbicka, 1996b) is
to facilitate comprehensive linguistic analysis by
formulating a set of universal basic concepts that
can be used to convey the meaning of any linguistic
expression (Goddard, 1998). Contrariwise, the pur-
pose of sememes is to provide information about
word senses by linking them to a subset of key
terms. Sememes need not convey all of the informa-
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Figure 3: An illustration of the exact match algorithm
(Stage 1), in which a BN synset is aligned to three
different HowNet senses by comparing translation pairs.

tion about each sense. It may happen, for example,
that distinct senses of distinct words may actually
be associated with the same set of sememes, as in
the case of apple (苹果) and banana (香蕉). While
not as comprehensive as semantic primes, sememes
are markedly less controversial (Fodor and Garrett,
1975), and are considered sufficient for a resource
such as HowNet.

3 Methods

In this section, we introduce our method for the
task of alignment between BabelNet and HowNet.
Our method has four stages, each relaxing some
constraint until an alignment is found. Such an
alignment implicitly associates a BabelNet synset
with a set of sememes from the aligned HowNet
senses. We describe each of the four stages in a
separate subsection.

Formally, our task is as follows: Let B be a
BabelNet synset. LetBZ = {z1, . . . , zn} be the set
of Chinese words inB, and letBE = {e1, . . . , em}
be the set of English words in B. We assume that
at least one of BZ and BE is non-empty. The
output is a set H of one or more HowNet senses
that express the same concept as B.

3.1 Stage 1: Exact match
Our first stage uses a strict criterion for aligning
a BabelNet synset B with HowNet senses, which

is aimed at high precision rather than high cover-
age (later stages are aimed at improving coverage).
It exploits the fact that each HowNet sense is an-
notated with a lexicalization in both Chinese and
English, as well as the well-known observation that
distinct senses of a word may translate differently
(Gale et al., 1992). For each Chinese-English pair
in B, that is, each (zi, ej) ∈ BZ ×BE , we check
if there is a HowNet sense which has the Chinese
lexicalization zi and the English lexicalization ej .
If there is, we add that sense to H . (Figure 3 shows
an overview of this stage.)

Once this stage is completed, if H is non-empty,
we return it as the set of senses aligned to B. If H
remains empty, we continue to Stage 2.

3.2 Stage 2: Word n-gram partial match
Every Chinese word consists of one to four char-
acters; unlike English, each individual character
has some meaning associated with it. Therefore,
words that share one or more characters often share
parts of their meaning. For example, a BabelNet
synset for the word “延伸” (stretch) also contains
the synonyms “伸长”, “伸展” and “延长”, each of
which shares at least one character with “延伸”. As
shown in Figure 4, the exact match approach in
Stage 1 may miss the semantic correlation between
such words, which reduces its coverage. We there-
fore propose the approach shown in Algorithm 1 to
tackle such problems.

As in Stage 1, we again consider each transla-
tion pair in (zi, ej) ∈ BZ ×BE . For each such
pair, we look for the HowNet sense with English
word ej , and with the Chinese word that has the
maximum number of characters in common with
zi. Specifically, if zi contains k characters, we first
look for a sense which contains ej and a Chinese
word with k-1-gram in common with zi. If such a
sense is found, we add it to H . If not, we instead
look for senses which have a k-2-gram in common
with zi. This partial-matching approach is explain-
able, unsupervised, and efficient; rather than using
an uninterpretable and computationally expensive
supervised language model, it instead exploits a
useful property of the Chinese script. If H remains
empty, we proceed to the next stage.

3.3 Stage 3: Sense information matching
Stages 1 and 2 are sufficient to find at least one
HowNet sense for roughly 80% of synsets. Stage
3 attempts to map the remaining synsets by ex-
ploiting two key properties: (1) many words are
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Figure 4: Example of inexact translation pairs during
matching. Using exact algorithm, word “bear” has three
synsets matched to some HowNet senses, while one
synset is not matched despite having the same sense
meaning with the unmatched HowNet sense. Note that
character “有” means “have” and words “具有”, “怀
有” and “负有” express the same meaning in context;
Stage 2 will successfully map such a synset to a sense
in HowNet, as indicated by red dashed line .

monosemous in HowNet; and (2) sememes are rep-
resented as words, which can often be found among
the hypernyms of a given BabelNet synset B.

If B contains any Chinese or English words that
have only one sense in HowNet, such as “ultravi-
olet” or “haemolytic”, then we assume the sense
of that word in B must align to its only sense in
HowNet. Monosemous words tend to be less fre-
quent in text, but make up a substantial proportion
of words in HowNet.2 If even a single English or
Chinese word inB is monosemous in HowNet, this
sub-stage will add that sense to H .

If B has still not been aligned with any HowNet
sense, we exploit the representation of sememes
in HowNet to find an appropriate alignment. Each
sememe of each sense is represented by an English
word and a Chinese word, typically with a mean-
ing that is more general than that of the senses
associated with it. For example, one sense of the
English word teacher has the following sememes:

2Due to limitations in the OpenHowNet API, we were not
able to get the exact percentage.

“human”, “occupation”, “education”, and “teach”.
Our intuition is that these words will tend to over-
lap with the hypernyms of the corresponding sense
in BabelNet. We therefore add to H any HowNet
sense s such that s involves a word in B, and one
of the sememes of s is represented by a word in a
hypernym synset of B.

BabelNet only provides hypernym relations for
nouns and verbs. All other words have no hyper-
nym information, and thus can not be aligned based
on sememe and hypernym agreement. We further
relax our aligning condition by adding to H the
HowNet senses that have any sememe overlap with
each other and the English or Chinese words in the
given synset. The intuition is that all words in a
synset are closely related; if their HowNet senses
have similar sets of sememes, we can align them to
the given target synset.

3.4 Stage 4: Proper names

In our development experiments, we found that
those BabelNet synsets B that could not be aligned
with at least one HowNet sense by any of the first
three stages were generally proper nouns. Proper
nouns or named entities are represented in HowNet
by a sense with the English label “ProperName”
and an associated set of sememes. Therefore, the
fourth and final stage of our method adds this sense
to H . As the final result, the algorithm returns the
set H , which contains the HowNet senses aligned
to a given synset.

4 Experiments

In this section, we describe the experimental evalu-
ation of our sense alignment algorithm. Since we
are the first to propose an algorithm for aligning
BabelNet and HowNet, there is no gold-annotated
dataset for this task that we can use as a test set. To
the best of our knowledge, the only dataset that con-
nects BabelNet and HowNet is the BabelSememe
dataset, which was constructed for the evaluation
of sememe prediction models. Therefore, we evalu-
ate our sense-alignment algorithm extrinsically on
the task of sememe prediction.

In the sememe prediction task, given a BabelNet
synset B, and a ground set S∗ of sememes, we
are required to identify a set of sememes S ⊆ S∗

which describe the meaning of B. Following prior
work, we take the set of all sememes which appear
in HowNet as S∗. The output S is then compared
to a gold-standard set of sememes for B in the
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Algorithm 1 Stage 2
Input BabelSynsetID
Output H
H ← ∅
B ← synset from BabelSynsetID
C ← all English-Chinese word pairs from B
for r ∈ {1, 2} do

for each (ei, zj) ∈ C do
k← length(zj)− r
M← all k-grams of zj
for each mi ∈M do

if (ei,mj) exists in HowNet then
append HowNet sense toH

end if
end for

end for
ifH ̸= ∅ then

returnH, end algorithm
end if

end for
return ∅

BabelSememe dataset.
We compute S by applying our BabelNet-to-

HowNet alignment algorithm, and taking the union
of all sememes associated with the returned set of
HowNet senses. This approach effectively reduces
the task of sememe prediction to sense alignment.
Since the quality of the alignment will be reflected
in the accuracy of sememe prediction, the exper-
imental results can serve as an evaluation of the
sense alignment algorithm.

4.1 Experimental setup

In this section, we specify our experimental setup,
including data statistics, evaluation metrics, base-
line methods, and implementation details.

Data. BabelSememe (Qi et al., 2020) consists of
15,461 BabelNet synsets, each annotated with a set
of HowNet sememes which comprise the meaning
of the synset. These sememe sets were created man-
ually by more than 100 bilingual (English and Chi-
nese) human annotators. HowNet contains 2,106
sememe types; on average, 2.74 sememes assigned
to each BabelNet synset. We use the existing test
split, which consists of 10% of the dataset, as our
test set. Since our method is unsupervised, we did
not use the training or validation splits, instead de-
veloping our method on BabelNet alone, without
reference to any labeled sememe prediction data.

English Simplified Traditional

noodles 面食 麵食

room 房间 房間

weather 天气 天氣

drink 饮 飲

Table 1: Examples in English and Chinese including
both simplified and traditional versions.

Evaluation. Following previous work, we adopt
mean average precision (MAP) and the F1 score
and as our metrics.3 For a given instance, a classi-
fication is positive if the synset is annotated with
that sememe, or negative otherwise. MAP takes
the weighted mean of the precision of each class,
where each sememe is considered a separate class.
The F1 score is the harmonic mean of the precision
and recall of the predicted labels. Recall is the ratio
of sememes correctly predicted to the number of
sememes in the gold standard set, while precision
is the proportion of sememes correctly predicted
to the total number of sememes predicted by the
method.

Comparison systems. We compare our sememe
prediction results against systems from prior work,
including the state of the art. In particular, we
compare with three variants of SPBS model pro-
posed by Qi et al. (2020), and five variants of MSGI
model proposed by Qi et al. (2022) which we men-
tion in Section 2. Additionally, we compare to
LR-NASARI (Qi et al., 2020), a logistic regression
model trained on NASARI embeddings (Camacho-
Collados et al., 2016), and TransE, a relational pre-
diction models proposed by (Bordes et al., 2013).
In contrast to our unsupervised approach, all of
the comparison systems are supervised, and model
sememe prediction as a multi-class classification
task.

Implementation details. We use the BabelNet
Python API4 with BabelNet 5.0 to retrieve En-
glish and Chinese words from synsets. We use
OpenHowNet API5 for retrieving HowNet senses
and their corresponding translation pairs (Qi et al.,
2019). One technical issue we encountered is the
use of both simplified and traditional Chinese char-
acters in BabelNet, likely due to the use of mul-
tiple heterogeneous resources in the construction

3We use the evaluation script provided by Qi et al. (2022).
4https://babelnet.org/
5https://github.com/thunlp/OpenHowNet
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Methods Noun Verb Adj Adv Overall

MAP F1 MAP F1 MAP F1 MAP F1 MAP F1

LR-NASARI (Qi et al., 2020) 54.54 39.81 − − − − − − − −
TransE (Bordes et al., 2013) 61.05 46.78 34.75 26.7 29.11 22.99 30.05 20.69 51.73 39.73
SPBS-SR (Qi et al., 2020) 65.16 49.75 − − − − − − − −
SPBS-RR (Qi et al., 2020) 62.50 47.92 34.76 25.28 32.68 24.51 30.86 20.07 57.64 45.61
Ensemble (Qi et al., 2020) 68.85 55.35 34.76 25.28 32.68 24.51 30.86 20.07 57.64 45.61
MSGI -Synonym (Qi et al., 2022) 67.40 59.07 35.31 24.99 36.33 26.18 48.33 37.45 57.25 48.54
MSGI -Glosses (Qi et al., 2022) 66.90 56.99 54.22 41.54 53.11 39.20 68.76 55.14 62.67 52.21
MSGI -Image (Qi et al., 2022) 71.41 61.58 59.70 44.29 55.86 43.15 63.81 51.63 67.13 56.62
MSGI -MSCP (Qi et al., 2022) 70.58 61.99 57.55 43.27 52.57 40.61 68.49 52.79 65.70 56.05
MSGI (Qi et al., 2022) 71.81 64.36 59.78 47.01 55.61 41.02 68.52 55.20 67.23 57.68

Ours 75.63 72.63 57.70 56.53 66.57 69.35 64.63 62.98 71.49 69.69

Table 2: Main results on BabelSememe test set. Numbers in bold font represent the highest value in the column.

Data Noun Verb Adj Adv Overall

MAP F1 MAP F1 MAP F1 MAP F1 MAP F1

Train 75.73 72.95 55.33 55.85 64.12 66.08 68.08 69.87 70.71 69.29
Valid 74.75 73.16 57.78 57.21 69.70 71.12 69.33 70.36 71.48 70.59
Test 75.63 72.63 57.70 56.53 66.57 69.35 64.63 62.98 71.49 69.69

Table 3: Results of our method on the training, validation, and test sets.

of BabelNet. Table 1 shows some examples con-
trasting simplified and traditional characters. Since
HowNet contains simplified Chinese characters ex-
clusively, we use the Python zhconv library to
convert all traditional Chinese characters into their
simplified versions.

4.2 Results

The results on the BabelSememe test set are shown
in Table 2. Following previous work, we report
results for nouns, verbs, adjective, adverbs, as well
as for all words. Our overall results outperform all
prior work according to both metrics, establishing
our method as the new state of the art for sememe
prediction. In particular, the improvement in over-
all F1 score is 12% over the previous supervised
state-of-the-art method, which was designed specif-
ically for this task. These results are remarkable
considering that our method is not supervised, and
demonstrate its efficacy and utility.

In order to assess the generality of our method,
we also report the results on the training and valida-
tion splits of the BabelSememe dataset, which are
otherwise unused by our method. Table 3 shows
that our results on these additional splits do not
differ substantially from our results on the test set.
This provides strong evidence that our method is
consistent and reliable.

4.3 Stage analysis
As described in Section 3, our method consists of a
sequence of four stages. In this section, we conduct
additional experiments on the test set by examining
the F1, MAP, and synset coverage rate (percentage
of synsets that are mapped to at least one HowNet
sense) of our system after every stage.
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Figure 5: Experimental results for stages 1 to 4.

The results are shown graphically in Figure 5
and numerically in Table 5. We see an increasing
trend in F1, MAP, and synset coverage rate with
respect to the number of stages used. Stage 1 is
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Stage BableNet HowNet

Synset ID Synset EN Synset ZH Aligned Senses Aligned Sememes

1 bn:00028111n doll, dolly 洋娃娃, 玩偶
doll | 洋娃娃

tool | 用具, recreation | 娱乐
doll | 玩偶

2 bn:00002393n alabaster, alabastar, gypsum 雪花石膏, 汉白玉 gypsum | 石膏 material | 材料, tool | 用具, medical | 医

3 bn:00040267n geranium, cranesbil 天竺葵, 洋绣球 fish pelargonium | 天竺葵 FlowerGrass | 花草, medicine | 药物

4 bn:00048483n Judas Iscariot, Judas 加略人犹大 ProperName | 专 ProperName | 专

Table 4: A case study of the alignment in each stage.

sufficient to cover roughly 80% of synsets, and
achieve roughly 60% F1, but has particular dif-
ficulty finding HowNet senses for adjective and
adverb synsets. Adding stages 2 and 3 greatly in-
creases coverage of adjectives and adverbs respec-
tively, with concomitant increases in F1 and MAP.
Stage 4 is shown to provide marginal improvement,
as almost all synsets can be assigned at least one
sememe after stage 3.

4.4 Alignment analysis

To provide additional insight into the relationship
between BabelNet and HowNet, we analyzed var-
ious properties of the alignment produced by our
method. Theoretically, our algorithm could pro-
duce many-to-many alignments, with one BabelNet
synset aligned to multiple HowNet senses, and vice
versa. In practice, the average number of HowNet
senses aligned to a given BabelNet synset in the
BabelSememe test set is 3.99. This suggests that
a single BabelNet concept is often represented by
multiple HowNet senses, each of which may be
labeled with different sememes. On the other hand,
less than 1% of the HowNet senses were aligned to
multiple BabelNet synsets (excluding the “Proper-
Name” cases from Stage 4). This suggests that
HowNet senses are no more fine grained than Ba-
belNet synsets; in other words, if a sense distinction
is made in BabelNet, it is likely made in HowNet
as well.

We also analyzed the alignments for each part
of speech and for each stage in our method. In
Figure 6, we see that verb synsets are aligned to
more senses than any other part of speech at ev-
ery stage. For all parts of speech except adverbs,
Stage 2 produces more mappings than any other
stage. Since Stage 2 works by allowing partial
matches in Chinese words (i.e. an alignment can
be made on the bases of a single character shared
by two Chinese words with two characters each),
this suggests that the two knowledge bases often

contain different Chinese words for a given concept.
However, our method is still able to align them by
identifying shared characters. If a sense reaches
Stage 4, it will be assigned exactly one HowNet
sense, the “ProperName” sense.
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Figure 6: The average number of HowNet senses
matched to each BabelNet synsets in each stage on the
BabelSememe test set.

Table 4 shows example alignments from each
stage. Row 1 shows that Stage 1 of our algo-
rithm is able to correctly align the synset containing
the words “doll” and “dolly” to the corresponding
HowNet sense of each word. We can then use
this alignment to retrieve the sememes “tool” and
“recreation” for this synset. In Row 2, the synset
containing the word “gypsum” does not contain any
Chinese words which have HowNet senses. How-
ever, Stage 2 correctly finds a correct alignment
between the BabelNet synset containing “雪花石
膏” and a HowNet sense for “石膏”. In Stage 3, the
word “天竺葵” has only one sense in HowNet. We
therefore map the BabelNet synset to that HowNet
sense. Lastly, the word “Judas” has no senses
in HowNet, therefore it is mapped to HowNet’s
“ProperName” sense in Stage 4.
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POS Stage 1 Stage 2 Stage 3 Stage 4

MAP F1 MAP F1 MAP F1 MAP F1

Noun 71.18 68.89 73.40 70.80 75.14 72.49 75.63 72.63
Verb 44.23 45.62 48.10 48.72 56.16 56.53 57.70 56.53
Adj. 37.30 40.06 47.43 50.95 65.37 69.15 66.57 69.35
Adv. 28.91 31.38 31.38 33.84 63.37 62.98 64.63 62.98

Overall 61.26 60.38 64.98 63.89 70.72 69.56 71.49 69.69

Table 5: Experimental results after each stage.

5 Conclusion

We have presented a novel unsupervised method
for aligning two lexical-semantic knowledge bases,
BabelNet and HowNet. The results of our exper-
iments on leveraging the sense alignment for the
task of sememe prediction demonstrate that our al-
gorithm is highly effective, yielding substantially
better results than state-of-the-art supervised sys-
tems designed specifically for this task. In the
future, we would like to leverage sense alignment
for other semantic tasks, including word sense dis-
ambiguation.
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Limitations

Our proposed algorithm only works with synsets
that contain at least one Chinese or English word.
Although this condition is satisfied for a majority
of BabelNet synsets, there remain some multilin-
gual synsets that could not be aligned. In addition,
a intrinsic evaluation of the produced alignment
could not be performed because of the lack of an
existing gold data set.
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Abstract

We introduce the StatCan Dialogue Dataset1

consisting of 19,379 conversation turns be-
tween agents working at Statistics Canada and
online users looking for published data tables.
The conversations stem from genuine intents,
are held in English or French, and lead to agents
retrieving one of over 5000 complex data tables.
Based on this dataset, we propose two tasks:
(1) automatic retrieval of relevant tables based
on a on-going conversation, and (2) automatic
generation of appropriate agent responses at
each turn. We investigate the difficulty of each
task by establishing strong baselines. Our ex-
periments on a temporal data split reveal that
all models struggle to generalize to future con-
versations, as we observe a significant drop in
performance across both tasks when we move
from the validation to the test set. In addition,
we find that response generation models strug-
gle to decide when to return a table. Consider-
ing that the tasks pose significant challenges to
existing models, we encourage the community
to develop models for our task, which can be
directly used to help knowledge workers find
relevant tables for live chat users.

1 Introduction

One of the longstanding goals in Natural Lan-
guage Processing (NLP) is to develop conversa-
tional agents that assist people with concrete tasks,
such as finding information in large collections of
documents or booking restaurants and hotels. To
aid the development of such virtual assistants, the
research community is in need of benchmarks that
reflect the intents and linguistic phenomena found
in real-world applications. However, developing
such real-world conversational datasets is challeng-
ing in the current research landscape. On the one
hand, academic labs often struggle to come up with

†Work done as visiting researcher at ServiceNow Research
1Website: mcgill-nlp.github.io/statcan-dialogue-dataset

U1: Hi, I’m looking to obtain quarterly data in regards
to GDP grow (Canada), BC Housing STarts, Canada
Oil Price/BBL

A1: Hello, my name is Kelly C. Give me one moment as
I search [...]

A1: For GDP growth rates, please consult the following
link: [...]

A1: What do you mean by BC Housing Starts?

U2: I’m required to research all of the housing starts for
BC on a quarterly basis [...]

U2: Housing starts are the number of new residential
construction projects that have begun during any par-
ticular month [...]

A2: I would have monthly data regarding new building
permits being issued [...]

A2: Building permits, by type of structure and type of
work: https[...]

A2: I’ll have a look for oil prices. One moment.

U3: Do you also have data to Canada’as oil Price/BBL
("WTI")? [...]

A3: Are you looking for the retail prices of oil?
A3: If so, I found some data for smaller geographies.
A3: Monthly average retail prices for gasoline and

fuel oil, by geography (https[...])
A3: [...] Would those geographies be enough?
A3: Or are you looking for Canada only?

U4: [...] I would need something that pertains more to all
of canada

A4: What about this? Monthly average retail prices for
food and other selected products (https[...])

Table 1: An example of the StatCan Dialogue Dataset
in which a user (U) talks to a StatCan agent (A) to find
a number of data tables. Text in bold indicates the title
of a table retrieved by the agent.

natural use cases of task-oriented dialogue agents
and collect conversations with a large number of
real users. Many labs have designed artificial tasks
and collected conversations from crowd workers
with simulated intents (Budzianowski et al., 2018;
Adlakha et al., 2022; Lee et al., 2022), often lead-
ing to datasets that do not capture the linguistic
challenges of production settings (de Vries et al.,
2020). On the other hand, industry labs might have
access to users with genuine intents (e.g., through
Siri or Alexa) but rarely release such conversational
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Dataset Intent Dialogue Query Result(s) Source(s) Lang.

Our work Genuine ✓ Question, Request Table link, Dial. act StatCan En, Fr
NQ (2019) Mixed ✗ Question Span excerpt Google, Wiki. En
DuReader (2018) Mixed ✗ Question Span excerpt Baidu Zh
OTT-QA (2020) Simulated ✗ Question Table/Span excerpt Wikipedia En
TAPAS-NQ (2021) Mixed ✗ Question Table excerpt Google, Wiki. En
CoQA (2019) Simulated ✓ Question Span excerpt* Multiple En
QuAC (2018) Simulated ✓ Question Dial. act Wiki. En
ATIS (1990) Genuine ✓ Request SQL query, Command TI Corp. En
SGD-X (2022) Simulated ✓ Request API call, Dial. act Dial. Simulator En

Table 2: Comparison with related datasets (see Section 2). (*) CoQA uses rationales to support extracted answers.

datasets due to their commercial value and user pri-
vacy concerns. Hence, we argue that the research
community would benefit from a task-oriented dia-
logue environment where findings can be validated
with real users, and, to that effect, present a unique
dataset in collaboration with Statistics Canada.

Statistics Canada (StatCan) is a national statis-
tics agency commissioned with collecting key in-
formation on Canada’s economy, society, and envi-
ronment. Statistics Canada conducts hundreds of
surveys on virtually all aspects of Canadian life and
publishes the resulting data tables on statcan.gc.ca.
This website currently features 5K+ of such com-
plex and often large data tables. Canadian citizens—
and other interested individuals—come to this web-
site to find the statistics they are looking for. The
StatCan website offers a chat functionality (avail-
able in English and French) to help users in case
they can not find the appropriate information.

Sourcing from these live chats, we present the
StatCan Dialogue Dataset, a collection of 20K+
English and French conversations between visitors
of statcan.gc.ca and agents working at Statistics
Canada. Before releasing this dataset, StatCan has
ran several procedures to remove Personally Identi-
fiable Information (PII). While we observe a wide
variety of user intents, ranging from table manip-
ulation to navigation instructions, a large number
of visitors use the chat functionality to find data
tables on the StatCan website. Specifically, we ob-
serve 6.6K instances where agent returns a link to
a data table across 4.4K conversations. In Table 1,
we provide an example conversation in which an
online user is looking for specific data tables.

In this work, we develop two novel tasks cen-
tered on helping users find specific tables. First, we
introduce the table retrieval task, which requires
a model to predict the table returned by the agent
given the messages sent so far. Second, we intro-
duce the response generation task, which requires
a model to predict the agent’s response given the

dialogue history. For both tasks, we investigate
its difficulty by establishing strong baselines and
evaluating them on various metrics.

We stress that both tasks are immediately useful
in a real-world setting. The table retrieval task can
help agents find relevant tables faster while the re-
sponse generation task may lead to a virtual agent
that can return relevant tables through an online
conversation. We hope that this tight connection
with a real-world scenario will bring the research
community more insight into the challenges of de-
veloping practical dialogue agents and lead to faster
transfer of research ideas and findings.

2 Related Work

This section presents various directions related to
our work. See Table 2 for a comparative summary.

Open-domain QA This is the task of answer-
ing questions using a large and diverse collection
of text documents. One of the first large-scale
evaluations in open-domain QA was presented
at TREC-8 (Voorhees, 2001). Since then, many
studies have released large-scale open-domain QA
datasets: WikiQA (Yang et al., 2015) and MS
MARCO (Bajaj et al., 2018) source questions from
the Bing search engine, Natural Questions (NQ)
(Kwiatkowski et al., 2019) from Google search,
and DuReader (He et al., 2018) source questions
in Chinese from Baidu. The questions come from
real users and the answers are collected from the
search results through crowd workers. Although
those datasets have questions with genuine intent
and the answer must be retrieved from a collection
of documents, our dataset emphasizes the retrieval
of tables (in a conversational setting) rather than
free-form documents.

Table retrieval and QA Following works on tab-
ular pre-training (Yin et al., 2020), table-to-text
generation (Parikh et al., 2020) and weak super-
vision for semantic parsing (Herzig et al., 2020),
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Dataset Train Valid Test All

# Conv. 2573 545 557 3675
# Turns 11382 2339 2600 16321
# Messages 36147 7385 8340 51872
# Queries 3782 799 870 5451
# Tokens / Msg 32.83 33.51 29.32 32.36
# Turns / Conv. 4.42 4.29 4.67 4.44
# Msg / Conv. 14.05 13.55 14.97 14.11
# Queries / Conv. 1.48 1.47 1.57 1.49

# Tables 778 349 388 959
# New tables 0 41 145 181
# Dims / Table 3.5 3.5 3.6 3.6
# Mbrs / Table 185.5 210.8 175.6 172.1
# Notes / Table 21.1 22.7 23 20.4

Table 3: Statistics of English conversations and tables
in the retrieval and generation tasks. New tables are
calculated with respect to training set (see Table 11).

Chen et al. (2020) and Herzig et al. (2021) respec-
tively propose OTT-QA and TAPAS-NQ, two novel
approaches that extend open-domain QA to retriev-
ing tables instead of documents. The former col-
lects both the questions and answers from crowd
workers and the latter extends Natural Questions
by using tables from the article where the answer
was taken. In both cases, the tables being retrieved
are sourced from Wikipedia articles. Although our
data also incorporate tabular retrieval, the tables
are sourced from statcan.gc.ca, they can be signif-
icantly larger (as discussed in Appendix A.2.1),
and they are being retrieved in an interactive and
conversational setting.

Conversational QA Several works extended
question answering to the conversational setting.
CoQA (Reddy et al., 2019) and QuAC (Choi et al.,
2018) introduced datasets in which multiple rounds
of questions are asked about a reference passage
taken from a document (such as a Wikipedia arti-
cle). Subsequent works extended this setup to an
open-domain setting where the reference passage
is not known beforehand (Qu et al., 2020; Anantha
et al., 2021; Adlakha et al., 2022). Saeidi et al.
(2018) proposed a conversational QA task about
regulatory texts. Aforementioned datasets are all
structured in the same way: at every turn, the first
speaker will ask a question, and the other speaker
will give an answer. In contrast, the queries in our
conversations are not restricted to questions, and
the answers can be either a table, metadata, or a
dialogue act.

Task-oriented Dialogue Our work is related
to work on task-oriented dialogue where users
converse with virtual agents to accomplish
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Figure 1: Histogram of messages by conversation in the
both tasks (French split in Figure 7).

specific goals, such as booking a restaurant or
resolving a customer issue. While early work
has collected a dataset in a genuine information
seeking setup (Hemphill et al., 1990), many
recent datasets has collected them through a
simulated setup (Budzianowski et al., 2018;
Rastogi et al., 2020; Feng et al., 2020, 2021;
Chen et al., 2021; Lee et al., 2022). Task-
oriented models usually track the dialogue
state by predicting dialogue acts that are spec-
ified through intents and slot-value pairs, e.g.,
findRestaurants(cuisine=Italian).
While our dataset does not provide turn-based
annotations, the released conversations come with
an annotated goal i.e., which data table the user
was looking for. Like other goal-oriented dialogue
tasks, this annotation enables us to automatically
evaluate the dialogue models through a task
completion metric.

Chit-chat Dialogue The goal for chit-chat sys-
tems is to engage in a open-ended conversation
with an end-user (Lowe et al., 2015; Dinan et al.,
2018). Unlike our dataset, such conversations do
not intend to assist the user with a specific task.

3 Dataset

The StatCan Dialogue Dataset consist of conversa-
tions collected from the live chat between March 1,
2019 till March 8, 2021. Although a variety of user
intents can be found in the broader dataset of over
25K conversations, we focus on a single intent by
selecting all conversations where the agent returns
a data table. We use this subset to develop and test
models for the two tasks that we introduce in Sec-
tion 4. In Section 3.1, we provide basic statistics
about this subset of the data and present a dialogue
analysis for a small number of conversations in Sec-
tion 3.2. In Section 3.3, we turn our attention to the
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Merged Acts (Example) %

Answer (You can obtain on our...) 50
Request (...please help me retrieve data...) 31
Time Mgmt (Please hold ) 28
Inform (Please take note that...) 63
Info Seeking Ques. (Do you have any other...?) 25
Promise (...please contact the Education Ministry...) 18
Auto Feedback (Sure) 25
Offer (...how may I help you?) 11
Instruct (Select at least one...) 18
Clarif. Ques. (Which of these lines would direct...) 16
Greeting (Hi) 28
Self Introduction (My name is...) 17
Thanking (Thanks a lot!) 47
Accept Thanking (you’re welcome) 15

Table 4: Frequency of merged speech acts occurring in
100 turns in conversations from the validation set.

data tables and explain what kind of information
is available for them. Finally, we explain how the
dataset is split into a train, validation, and test set in
Section 3.4. For technical specifications, a dataset
card is provided in Appendix B.

User intents The live chat was designed to fulfill
specific user intents. The main intent of the chat
functionality is to help users find specific data
tables. For example, in Table 1, the agent helps
the user find tables about building permit, gaso-
line price, and retail prices for food. Although,
users might also be interested in obtaining meta-
information, receive help in manipulating a table
or with the user interface. In some cases, the user
will make out of domain requests. Those auxil-
iary intents are described in Appendix A.1 since
the focus of this work is on the main intent.

Messages and turns Each conversation is bro-
ken down in turns, which is a pair of user-agent
responses. Each response can have multiple mes-
sages sent sequentially (e.g., in Table 1, the first
agent response contains 3 back-to-back messages).

3.1 Basic statistics

In total, 25397 conversations will be made avail-
able. Based on our main intent, we focus on a sub-
set of 4468 (3675 in English and 793 in French).
Out of a total of 5907 tables available in both En-
glish and French, the agents returned 959 unique
tables in English 285 in French. The number of
messages by conversation varies between 2 and
78 with a median of 12 for the English split (see
Figure 1 for the distribution). Based on Table 3,
there’s on average 4.4 turns but 14.12 messages

Title: Production and value of maple products

Date range: 1924-01-01 to 2020-01-01
Dimensions: Geography, Maple products
Subject: Agriculture
Survey: Maple Products
Frequency: Annual

Table 5: Basic information (including title) of table
in Section 3.3. Full version in Table 20. This can be
accessed at doi.org/10.25318/3210035401-eng.

per conversation, with over 30 tokens for each mes-
sage. This indicates that the speakers will express
multiple sequential thoughts before the addressees
respond. For the French split, we analyzed the
basic statistics in Appendix A.5.

Frequently requested tables In total, 6 tables
make up 13.4% of tables retrieved, covering sub-
jects like inflation and household spending. Supple-
mentary details can be found in Appendix A.3.1.

3.2 Dialogue Analysis

We categorize 100 turns (306 messages) from 24
conversations in the English validation set accord-
ing to the speech acts defined by Bunt et al. (2010,
2020), which is also known as ISO standard 24617-
2. We follow their taxonomy but merge some fine-
grained acts with their broader concepts (e.g., cor-
rection, agreement, disagreement with inform). We
present the speech act frequencies and examples in
Table 4. See the Appendix for more information on
how we merged the original acts and supplementary
examples (Table 15 and Table 22, respectively).

We notice that answers appear twice as frequent
as information seeking questions because an inter-
locutor may provide an answer to both clarification
questions and requests. Additionally, inform acts
appears 63% of the time because agents need to
expand upon their answer and users tend to clarify
their initial requests by informing the other. Al-
though less frequent, auto feedback and time man-
agement are still relevant because interlocutors can-
not rely on visual feedback like nodding or typing.
Naturally, time management often co-occurs with
promises because the agent tends to put the user on
hold while promising to fulfill their request.

3.3 Table specifications

To explain the specifications, we examine a sam-
ple table with title Production and value of maple
products (shown in Table 5). The table has two
dimensions, which are groups of member items;
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Figure 2: Diagram of the hierarchical relationship be-
tween metadata components, discussed in Section 3.3.

for geography, the members are the provinces pro-
ducing maple syrup (Quebec, Ontario, etc.), and
for Maple products the members are the produc-
tion types (maple sugar, syrup, taffy and butter).
A member item generalizes the concept of rows
and columns as they are interchangeable via pivot-
ing. Sometimes, details about those members are
provided as footnotes at the end the page.

Basic Information This is the core metadata and
consists of the title, dimensions, subject, survey
and update frequency (member items are excluded).
Supplementary details are in Appendix A.2.2.

Hierarchical relation The metadata can be
viewed hierarchically. As shown in Figure 2, each
subject encompasses different surveys, each survey
can be used to generate one or more tables, and
so on. A member item that can be nested under
another member item is called Level.

3.4 Dataset splits

We group the conversations into a train (70%), a
validation (15%) and a test (15%) set. The test set
was specifically selected to be the most recent con-
versations by date (covering Sept 8, 2020 to Mar 8,
2021), whereas the training and validation set were
randomly selected from the remaining data (cover-
ing Mar 1, 2019 to Sept 8, 2020). This lets us test a
model’s capability to adapt to temporal shifts in the
data (such as new data releases and novel events).
This is useful to understand a model’s capability to
generalize beyond the training distribution, but it is
also a better reflection of real-world applications of
a model (which will be used for future data). The
same splits are used for all tasks.

4 Tasks

Based on the conversational and tabular data, we
propose two tasks: (i) a table retrieval task, which
requires a model to use a partial conversation to
predict the table an agent will return, and (ii) a re-
sponse generation task, which requires a model to
use a partial conversation to generate the most prob-
able response by the agent. The conversations in
the tasks are available in both English and French.

4.1 Retrieval task

For this task, we truncate every conversation right
before a link to a relevant table is shared by the
agent. As a result, the product ID (PID) corre-
sponding to that link becomes the objective of the
retrieval task, as shown in Table 6. When the agent
shares multiple non-repeating PIDs within a con-
versation, each unique occurrence is treated as a
separate sample.

Recall@k To evaluate models for retrieval, we
compute the recall at k (R@k) score for k ∈
{1, 10, 20}, which corresponds to the rate where
the correct table is among the k tables retrieved by
the model (usually ranked by a relevance score).
We choose k = 1 for real-time automatic retrieval
and k ∈ {10, 20} for scenarios where humans or
automatic rerankers would like to use the retriever
to query tables and select the best option.

4.2 Response generation task

In the first task, only the messages leading to a
table retrieval are considered. For this task, each
message sent by an agent is considered as a target
and everything before is the source. Thus, the goal
of this task is to use the source text to generate a re-
sponse that matches the target (see Table 7). Since
dialogue responses are challenging to evaluate, we
report a wide variety of metrics for this task.

ROUGE-L and METEOR ROUGE-L (Lin,
2004; Lin and Och, 2004) is a common text eval-
uation metric which naturally takes into account
sentence level structure by identifying the longest
overlapping word sequence between two sentences.
METEOR (Banerjee and Lavie, 2005) is a word-
level precision and recall scoring method that en-
compasses different ways to represent a word, in-
cluding stems and synonyms.

BERTScore and MoverScore Various methods
were developed to leverage contextual embeddings
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Source text (on-going conversation)
[...]

A: What do you mean by BC Housing Starts?

U: I’m required to research all of the housing starts for
BC on a quarterly basis[...]

U: Housing starts are the number of new residential
construction projects that have begun during any par-
ticular month

A: [...] I would have monthly data regarding new build-
ing permits being issued.

Retrieval target (StatCan table)
Table 34-10-0066 (Building permits, by type of struc-
ture and type of work)

Table 6: Source and targets of the retrieval task, based
on Table 1. Given the on-going conversation, the goal
is to retrieve a StatCan table.

from BERT (Devlin et al., 2019) to evaluate simi-
larity between two sentences. BERTScore (Zhang
et al., 2019) computes the cosine similarity at the to-
ken level, whereas MoverScore (Zhao et al., 2019)
computes the earth mover distance (Rubner et al.,
2000) at the word or sentence level, thus capturing
the cost of transforming the distribution of the gen-
erated responses into the distribution of the original
responses.

Title accuracy In addition to the general met-
rics for text generation, we also explored this task-
specific metric. We define it as the proportion of
generated messages that contain the title of a table
shared in the reference messages. Consequently,
this metric only includes turns where a table is
shared by an agent. To compute this, we (i) find
the product ID in the reference message, (ii) look
up the title, (iii) check if that title appears exactly
in the generated and reference text.

5 Models

To help understand the performance of finetuned
models on our tasks, this section presents an
overview of the methods for the English splits,
whereas the implementation details are covered
in Appendix A.4. Similar architectures were used
for French (described in Appendix A.5).

5.1 Retrieval

BM25 We use Robertson and Zaragoza (2009)’s
algorithm to retrieve the metadata of a table (pas-
sage) similar to a given query by weighting the
idf -scaled term frequency of query words with re-
spect to the passages.

Source text (on-going conversation)
U: Hi, I’m looking to obtain quarterly data in regards

to GDP grow (Canada), BC Housing STarts, Canada
Oil Price/BBL

A: Hello, my name is Kelly C. Give me one moment as
I search [...]

A: For GDP growth rates, please consult [...]
U: I’m required to research all of the housing starts for

BC on a quarterly basis [...]

Generation target (next response by agent)
A: I would have monthly data regarding new building

permits being issued. [...]

Table 7: Source and targets of the response generation
task, based on Table 1. Given the on-going conversation,
the goal is to generate the agent’s response.

DPR Proposed by Karpukhin et al. (2020), Dense
Passage Retrieval (DPR) is a pair of transformer
models that separately encode a query and a pas-
sage, and the dot product of the resulting vectors
will have a higher score if the passage is relevant
to the query. We finetune this model to retrieve the
metadata of a table (passage) given the on-going
conversation (query).

TAPAS and TAPAS-NQ Herzig et al. (2020) in-
troduced a model that learned to encode flattened
tables cells in a self-supervised manner during pre-
training. We finetuned it to retrieve the truncated
content of a table given an on-going conversa-
tion. Subsequently, Herzig et al. (2021) finetuned
TAPAS to perform open-domain table retrieval on
12K questions-answer-table triplets extracted from
NQ; we further finetune this variant in the same
way and report the results as TAPAS-NQ.

Exploring table representation In the simplest
scenario, only the title is given to BM25 and DPR.
Moreover, we evaluate variants that encode the
basic information, member items, footnotes, or a
combination of them. For TAPAS and TAPAS-NQ,
we also finetuned a variant that retrieves the title,
dimensions and member items, since the original
TAPAS could attend titles and column names.

5.2 Response generation
T5 We finetuned the large variant of T5 (Raffel
et al., 2020) (named No aug. in Table 10) to auto-
regressively decode the target (agent reply) after
first encoding the source (on-going conversation).

Augmenting T5 with top-k title(s) For every
partial conversation, we use DPR (basic+member)
to retrieve the top-k tables (where k ∈ {1, 5}), and
append their titles to the partial conversation. This
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Metadata R@1 R@10 R@20

Basic 14.7 45.0 55.0
Basic + member 15.7 46.2 56.3
Basic + footnotes 13.9 44.4 54.2
Member 10.7 35.0 46.3
Title 13.9 43.8 53.4

Table 8: Retrieval results of DPR for the English test
split with varying table representations. Overview of
metadata in Section 3.3.

Model R@1 R@10 R@20

BM25 0.3 2.3 3.8
DPR 14.3 45.1 54.2
TAPAS 6.1 22.1 31.5
TAPAS-NQ 7.4 30.0 39.3

Table 9: Retrieval results for the English test split when
encoding title and member items. DPR and TAPAS
were run 3 times and averaged.

allows T5 to decide between using one of the sug-
gested titles and generating something else (e.g.,
clarification question). This is similar to the agents’
behavior, as they tend to return a title with the URL
when sharing a relevant table. Furthermore, super-
vising T5 to ignore or return a title is equivalent to
an implicit binary classification.

6 Results and Discussions

Based on our baselines and data, we report the re-
sults and analyze the challenges that our dataset
and tasks pose for existing models. For the En-
glish splits, the main retrieval results are reported
in Table 9 and Table 8, and main generation results
are in Table 10. Full results can be found in Ap-
pendix A, respectively in Table 16 and Table 33,
and relevant statistical tests in Appendix A.7.

Impact of table representation In Table 9, we
observe that the metadata representation affects
the retrieval recall. Although DPR can achieves
respectable results when it only retrieves the ti-
tle, including basic information (defined in Sec-
tion 3.3) yields slight improvements, and further
adding member items results in a significant dif-
ference from only using title (p = 0.014). How-
ever, only using member item result in drastic de-
crease in recall (p = 0.00086), indicating the im-
portance of the title. Moreover, footnotes do not
yield any improvement, which may be because
they often exceed the maximum context span (see
Table 20). Thus, concisely but meaningfully repre-
senting metadata will be crucial to achieve a good
recall on the retrieval task.

Metrics No aug. Top-1 Title Top-5 Titles

METEOR 23.35 24.07 24.41
ROUGE-L 30.65 30.76 30.88
MoverScore 59.82 60.23 60.31
BERTScore 86.04 86.11 86.17
Title Acc. 6.96 7.99 10.82

Table 10: Response generation results for the English
test split.

Transfer to table retrieval task Our experi-
ments allow us to analyze the effectiveness of
open-domain QA fine-tuning (NQ) and tabular pre-
training when transferring to our table retrieval
task. We observe in Table 9 that DPR outperforms
TAPAS and TAPAS-NQ by respectively 23.0% and
15.1% in test recall@10. Moreover, TAPAS-NQ
achieves a better performance when it only re-
trieves the title and member items instead of the
full table (p = 0.016), likely due to repetitions
and truncation due to context size limits. Although
both DPR and TAPAS-NQ were trained on NQ, the
latter was trained on a small subset (12K vs 320K)
that contains tables. Our experiments indicate that
TAPAS transfers poorly from one task (NQ-Tables)
to another (StatCan).

Response generation We compare the perfor-
mance of fine-tuned T5-large models with and with-
out DPR-augmented table titles. In Table 10, we
notice that retrieval-augmented models show mod-
est improvements on the 4 non-task specific metrics.
However, the top-5 augmented model achieves an
absolute improvement of 3.86% in title accuracy,
indicating that the information provided by DPR
does help T5 in generating the desired title. It is
nevertheless surprising that T5 without augmen-
tation achieves a score of 6.96%, suggesting that
the T5 model is capable of storing the titles seen
at training time, and, to a limited extent, is able
to recall and return them at test time. Finally, we
point out that the title accuracy is still 5.91% lower
than top-1 recall of the DPR retriever (Table 8),
indicating that T5 fails to learn when to return a
table (despite the agent retrieving a table in 23.4%
of all turns). In the case of top-5 titles, T5 struggles
to decide which table title to return.

Qualitative analysis of generated responses We
examine various conversations to understand what
type of responses are generated by T5. We find that
it can generate simple speech acts like greetings,
but can struggle with context-specific speech acts
such as clarification questions. Moreover, it can
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Figure 3: Results for DPR B+M for tables appearing
in the training set frequently (10+ times), infrequently
(1-10 times), and unseen at train time.

reliably reply with the title of a common table,
struggles for uncommon ones, and is sometimes
capable of generating unseen titles with the help of
DPR. The full analysis is in Appendix A.6.

Temporal drifts As explained in Section 3.4, we
use a temporal split to test the model’s ability to
generalize to future conversations. We observe
a significant drop in recall (13%-28.3%) in Fig-
ure 4 when we compare the validation and test set
performance, even when the models are trained
with varying metadata representations. Similarly,
T5 achieves low scores on the test split for the re-
sponse generation task (Table 10). This large gap
suggests that trained models struggle to generalize
to future conversations. First, we found that this
is likely caused by the number of new tables that
appear in the test split (145) compared to validation
(41), as shown in Table 3. Moreover, the subjects of
the conversations have significantly changed: users
started to care more about businesses, health and IT,
and less about demography, income and pensions.
This is likely motivated by real-world events affect-
ing the users, which are more difficult to implicitly
capture from simulated environments, but desir-
able in order to understand a model’s robustness
in temporal shift and for real world applications.
In the Appendix, Figure 8 displays the differences
between the training and test splits for all subjects.

Generalizing to unseen tables As shown in Fig-
ure 3, DPR performs well for tables appearing fre-
quently in the validation split, but poorly in the test
split, which could be caused by temporal drift. As
expected, tables that were not seen during training
resulted in poor recall@5 in either splits. More-
over, the difference in recall between valid and test
for infrequent tables could be caused by many po-
tential reasons (learning bias, temporal overfitting,
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DPR Title

TAPAS

Split Valid Test

Recall@10
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od
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Figure 4: Validation and test recall for a selected set
of retrieval models. We observe a significant drop in
performance. B+M denotes Basic + member.

spurious correlation with hidden factors). Thus,
future models should aim to close the gap between
unseen and frequent tables and within the temporal
spectrum of infrequent tables.

French results In both tasks, we see a drop
across all metrics for all models, likely due to the
smaller dataset size. Some observations remain
valid: temporal drift, poor BM25 performance,
and augmentations benefit mT5 for certain met-
rics. However, others differ: adding member items
hurts test results and mT5 performs poorly on ti-
tle accuracy. Modeling details and results can be
found in the Appendix A.5.

7 Conclusion

In this paper, we introduce the StatCan Dialogue
Dataset, a novel corpus consisting of 20K+ English
and French conversations between online visitors
of statcan.gc.ca and operators of Statistics Canada.
Based on this dataset, we propose two tasks cen-
tered on helping users find specific data tables: the
table retrieval task and the response generation
task. For the table retrieval task, we experiment
with various DPR and TAPAS variants, finding that
DPR strongly outperforms its TAPAS counterpart,
as well as the BM25 baseline. For the response
generation task, we investigate fine-tuned T5-large
models and explore variants where the input is aug-
mented with table titles from DPR. We find that
retrieval-augmented T5 models more frequently re-
turn the correct tables, although its title accuracy is
still lower than the corresponding recall of the DPR
retriever. This result suggests that the generation
models struggle to decide when to return a table.
We also find that retrieval and generation have dif-
ficulty generalizing to future conversations, as our
temporal test split revealed a big performance gap
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between the validation and test set. All in all, we
believe that our tasks pose significant challenges
to currently available models and encourage the
research community to further explore this dataset
and build conversational models that help users of
Statistics Canada.

Limitations

Tasks and models limitations The tables in the
retrieval task are sourced from statcan.gc.ca, which
means that the content is primarily about Cana-
dian demographics2 and are professionally edited
by StatCan employees. Moreover, the generation
task is specifically designed to model responses
with high fidelity based on retrieved tables, so this
task should not be directly used in an unintended
or non-research setting (e.g., deploying a virtual
assistant) as they pose risks of hallucination that
could negatively impact stakeholders. Furthermore,
those limitations can be reflected in the models we
trained, so we will share those limitations in the
model cards (Mitchell et al., 2019) on release.

Environment impact We acknowledge the mod-
els in Section 5 used hardware with significant en-
ergy consumption. We purposefully chose models
of reasonable sizes that can be reproduced on one
GPU. Additionally, our hardware is powered by
renewable energy.

Artifacts and computational experiments We
trained models using libraries based on their in-
tended use and we will release the relevant arti-
facts following the original licenses. The compu-
tational details of the experiments are described in
Appendix A.4.

Ethics Statement

Privacy and data access As discussed in Sec-
tion 1, significant efforts were made to remove
Personally Identifiable Information (PII). However,
we do not rule out the possibility that certain de-
tails could have been missed in that process. Thus,
any user that wishes to use the data will need to
authenticate and accept the terms of use through
an institutional data repository; the terms will re-
quire the user to report any instance of PII leak,
which will be removed with a dataset update. Addi-
tionally, we request any derivative or modifications

2More information can be found here: https:
//www.statcan.gc.ca/en/subjects-start/
population_and_demography

to be published in the same data repository with
the original terms of use and licenses preserved or
extended.

Risk of toxicity in online discourse StatCan
agents are trained to work with online users in
a professional manner. Moreover, since the users
access statcan.gc.ca anonymously and virtually, it
is more likely to observe toxic online disinhibi-
tion (Lapidot-Lefler and Barak, 2012), which could
translate to toxicity in users’ utterances. Thus, we
request dataset users to report any instance of toxi-
city in conversations, which will be reviewed in the
same manner as PII leaks.
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A Appendices

A.1 Complete User Intents

To provide insight into what kind of help is offered
by StatCan’s live chat, we qualitatively analyze the
conversations and highlight examples of the main
user intents below.

Finding a table The main intent of the chat func-
tionality is to help users find specific data tables.
For example, one user was looking for the popu-
lation numbers in certain regions of Montreal for
2012-2016. This intent is the focus of our work.
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Obtaining meta-information of table Instead
of finding data tables some users are interested in
meta information of a specific table. For example,
one visitor wanted to know when the next Census
is released. Another user was interested in under-
standing the definition of Workforce Availability
(WFA) and Labour Market Availability (LMA).

Manipulating a data table Some users would
like to obtain the data tables in a different format or
representation. For example, one user was looking
at a specific data table and asked if they can see
annual instead of monthly values.

Help with user interface Some users are looking
for help with the user interface. For example, one
user wanted to download a specific data table but
they were unable to find the download link.

Out of domain requests We find many conver-
sations that are outside of the scope of StatCan’s
live chat. For example, some user asked what
documentation needs to be provided to ship a
specific product to a foreign country.

The first intent is covered in Table 1, and sub-
sequent intents are in Table 18. While we believe
all intents are interesting directions for dialogue
research, we focus on the table retrieval intent be-
cause (i) there are many conversations available
for them and (ii) there is a clear measure of task
success i.e., whether the correct table is retrieved.
Throughout the rest of this paper, we work with
conversations where the agent returns a table URL.

A.2 Supplementary Table Description

A.2.1 Formatting and size

Full tables are stored in a long format, where each
column corresponds to a dimension, except the last
one which corresponds to the value. The number
of rows corresponds to the Cartesian product of
the dimensions’ members. This means that for ni
members across d dimensions, we have a total of∏d
i=0 ni rows in the full table. When a table has

many member items, the full table can become
extremely large. Moreover, tables shown on the
statcan.gc.ca are usually a pivoted and filtered view
of the full table, which means certain members will
become columns, others will become rows, and
many are simply omitted.

A.2.2 Detailed Specifications
This section provides supplementary details for
Section 3.3.

Product ID (PID) Unique 8 to 10-digit identifier
given to each published data table. Although other
types of tables might be shared by the agent, the
PID will always be given for the official data tables;
as a result, any table that does not have a PID in
the URL is not considered for this task. The first
two digits (1-2) represent the code of the subject
associated with the table (this can be found in the
basic information), then 3-4 represent the product
type, which in our case are tables and are common
coded as “10". Digits 4-8 is a unique identifier
representing that table for the given subject. Digits
9-10 indicate the view of the table and will com-
monly be “01", which represents the default view;
they are needed when constructing the URL but
they are otherwise optional, and are omitted in the
released dataset.

Member items Labels for individual tables, and
can either be represented as a column or a row
index through a pivot operation. Each table will
have member items different from other tables.

Dimensions Non-overlapping sets of member
items; each member item must belong to a dimen-
sion. For a table with d dimensions, each data
value is associated with a single d-tuple in the d-
fold Cartesian product of the dimensions, but not
every tuple in the product will have an associated
data value (if it was not recorded or if the tuple is
invalid).

Basic information Metadatum consisting of the
title, the date range, the frequency, the dimensions,
the subject category, and the survey3 from which
the data was sourced.

Footnotes Unstructured comments often in-
cluded with a table if supplementary details need to
be given; usually, those notes are associated with a
specific member item that requires more explana-
tions.

Full table For all tables with a PID, the full tables
(as a CSV file), their complete metadata, and their
basic information are made available as part of the
data release and can be used in our proposed tasks.
A sample table can be found in Section 3.3.

3The list of surveys and link to detailed information can
be found at https://www.statcan.gc.ca/en/survey/list
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A.2.3 Table updates and archives
Tables on Statcan will sometimes be updated reg-
ularly, whereas in other times they may only be
released once. When they stop being updated and
the information becomes outdated, they will be
marked as archived. In some cases, a new version
of an archive table may be created with substantial
changes (such as new columns). As shown in Ta-
ble 14, tables are released without a predetermined
schedule, but has been on average increasing since
2000, with major peaks in 2017, which was caused
by many health-related tables, and 2021, which
was caused by the release of many labour, science,
and income tables, as shown in Figure 6. Moreover,
Figure 5 shows that a majority of tables released
between 2019 and 2021 are still up-to-date (cur-
rent), whereas most of the tables before then have
been archived.

A.3 Supplementary Statistics

A.3.1 Frequently requested tables
The most frequent tables are summarized in Ta-
ble 21. Whereas 2 of them are sourced from the
consumer price index survey (commonly used to
track inflation), the 4 other tables cover more gen-
eral and broad subjects like income, demography,
business performance and crime. Each of those 4
tables are sourced from different surveys. One ta-
ble is updated monthly, another semi-annually, and
the rest are updated annually. The oldest table was
updated in 2019, which is when the conversations
started being recorded.

A.3.2 Table Frequency Statistics
In tables 3 and 12, we can calculate that a table
is returned on average 5.68 times (with standard
deviation of 12.86) in English conversations and
4.25 times (standard deviation of 9.73) in French
conversations. Thus, the most requested tables are
disproportionately represented compared to less
popular tables, and there’s a very high variance in
the number of time a table is used. In fact, there
are 294 tables that appear only once in either splits
(i.e., 28.9%).

A.3.3 Fine-grained Conversation Statistics
In Table 13, we observe that the number of mes-
sages and turns will vary significantly around the
mean, with over 68% conversations lasting between
2 and 7 turns. In extreme cases, a conversation can
last up to 28 turns. Moreover, we also notice that,

although most messages will have around 32 to-
kens, the longest message can have up to 1374
tokens; in those scenarios, we will see agents write
a large body of text, and sometimes also copy and
paste large amount of text (for example, from a
database of templates) when responding to the user.
Although those are usually sent in multiple consec-
utive messages within a turn, they may decide to
send everything all at once.

A.4 Implementation Details

This section provides the details for implementing
the models in Section 5.

Implementing transformer models All models
based on the transformer architecture (Vaswani
et al., 2017) were implemented using Hugging-
Face’s library (Wolf et al., 2020).

BM25 To facilitate reproducibility, we imple-
mented the model in Gensim (Rehurek and Sojka,
2010).

DPR and TAPAS-NQ We used the base variant
of DPR and the large variant of TAPAS-NQ. We
use the DPR checkpoints that were trained on 320K
questions from Natural Questions (Kwiatkowski
et al., 2019) (NQ). During training, the networks
were optimized with AdamW (Loshchilov and Hut-
ter, 2017) at a learning rate of 10−5 and zero weight
decay. Based on the original work, the networks
were trained for 30 epochs, with a batch size of
64 queries, positive passages, and hard negative
passages (the latter are retrieved with BM25). Neg-
ative in-batch sampling was used to increase neg-
ative examples. To ensure reproducibility, the net-
works were trained on a single 32GB GPU and used
gradient checkpointing (Chen et al., 2016) to re-
duce memory usage. The conversation lengths was
512 tokens, and the metadata token lengths were
128 for title, 256 for basic information (defined in
Section 3.3), and 512 for the rest.

T5 We used an Adafactor optimizer (Shazeer and
Stern, 2018) with a learning rate of 0.001. We used
batch sizes of 16 with 8 steps of gradient accumu-
lation and gradient checkpointing to reproduce the
batch size of 128 samples in the original implemen-
tation. The models were trained on a single 32GB
GPU for 10 epochs. The source and target lengths
were respectively 512 and 256 tokens, where the
source was truncated from the right to ensure that
the latest messages remained after truncation. We
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used a beam size of 4 and length penalty of 0.6
following the original implementation.

Training time For the English split, each variant
of DPR can be trained in 68 minutes on a A100
GPU. Each large variant of TAPAS-NQ takes 15h
to train on a V100 GPU. Each variant of T5 can
be trained in 16h on a V100 GPU. All DPR results
can be reproduced in 8h, TAPAS in 90h, and T5 in
96h, and proportionally less time would be needed
for the French split.

A.5 Modeling the French subsets
Basic statistics The number of messages by con-
versation varies between 2 and 59 with a median
of 11 for the English split (see Figure 7 for the
distribution). Based on Table 12, there’s on aver-
age 3.9 turns but 12.3 messages. On average, there
are over 30 tokens for each message (using the T5
tokenizer).

Language splitting In order to determine the lan-
guage of each conversation, we used two popular
language identification libraries: langid.py (Lui
and Baldwin, 2011) and a fasttext network fine-
tuned for language detection (Joulin et al., 2017).
After apply the models on every conversation, we
only retain the conversations with matching lan-
guage labels (both English or both French).

Training and evaluation The training procedure
and evaluation on the French subsets follow exactly
the tasks specified in Section 4.

Modeling response generation Instead of T5,
we used the multilingual T5 model by Xue et al.
(2021) as it naturally handles text in French.

Modeling retrieval We used a variant of DPR
derived from CamemBERT (Martin et al., 2020)
and trained on three French Q&A datasets (Keraron
et al., 2020; d’Hoffschmidt et al., 2020; Kabbadj,
2021) by Etalab Lab-IA (2021).

Retrieval results In Table 17, we observe that,
unlike the English split, adding member items to
the basic information or to the title improves val-
idation results but not test results, which likely
indicates overfitting. However, we notice a high
variance between the runs, which makes it diffi-
cult to determine whether member items is helpful.
Both overfitting and high variance are likely caused
by the smaller size of the training set. Moreover,
BM25 perform extremely poorly on any metadata
view, which can also be linked to the dataset size.

Generation results In Table 33, we notice a sig-
nificant decrease across all metrics, with the title
accuracy being consistently 0%. This is likely be-
cause the French split is significantly smaller, yet
remains as complex as the English split, which
becomes challenging for mT5 to model. In the
case of title accuracy, we found 55 instances in
the French test split where the title is in the target
text (i.e., returned by an agent). However, in 54
cases, the augmented mT5 returned a generic reply
(e.g., “Veuillez patienter pendant que j’effectue une
recherche.") instead of the expected title, which in-
dicates that mT5 is incapable of determining when
it is relevant to return a title and can’t generate
non-templated responses.

A.6 Responses generated by T5

In this section, we select a few conversations from
the validation set and examine the messages gener-
ated by T5 and T5 augmented with DPR-retrieved
titles (T5+D).

Common and uncommon responses In Ta-
ble 23, we notice that both T5 and T5+D are capa-
ble of generating common speech acts like “Thank
you” and “Please wait...”, but struggles when faced
with an unfamiliar situation (having to ask for clar-
ification for a user that has been accidentally dis-
connected).

Common table In Table 24, among the retrieved
tables (Ri) titles, the first one was partially correct.
Both T5 and T5+D extended the title and also out-
put the desired ID, matching the expected agent’s
response, which is one of the most popular table in
the training set (see Table 21).

Multiple tables, date selection In Table 28, we
notice that T5 only returns one of the two tables
that the agent returned. On the other hand, the
correct tables were retrieved by DPR, but T5+D
failed to select the ones with the correct dates (it
selected June 2019 instead of December 2019) but
the select were otherwise relevant.

Verbosity of explanations T5+D additionally
provided a paragraph of explanation while linking
to relevant resources, both on the StatCan website
(non-tabular) and external resources. This is be-
cause T5+D memorized this information during
training, and simply replaced the tables with the
updated dates (Table 27).
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Uncommon tables In the conversations shown
in Tables 25, 26, 29, the retrieved table appears
10 times in the training set, which is significantly
less common than the table retrieved in Table 24.
For Table 25, the table returned by the agent was
not retrieved by DPR, leading to T5+D returning
the first title retrieved. However, in Table 26, the
correct title was retrieved by DPR (title #4), yet
T5+D failed to use that correct title in the gener-
ated message. As for Table 29, the agent gave a
hint by stating “As a standard product, we have
tables about employment by industry”, which was
correctly acknowledged by DPR as the second re-
trieved title perfectly matches the PID of the table
in the agent’s response. However, T5+D fails again
at selecting the correct title, instead opting to return
a generic response (“Please hold while I find the
information”), and T5 hallucinates a PID that is
different from the title it generated (both of which
are wrong).

Tables unseen during training Among the ta-
bles that do not appear in the training set (see Ta-
ble 11 for more information), there are seven that
appear 3 or more times in the validation or test
sets (Table 32). In Table 30, we see a conversa-
tion where DPR retrieves the correct title, which
is correctly returned by T5+D, whereas T5 fails
to return it. On the other hand, when DPR also
correctly retrieves the title in Table 31, T5+D fails
to return it, as it was likely mislead by the agent
saying “Unfortunately,...”.

A.7 Statistics Tests

To back the claims in Section 6, we performed
multiple single-tailed Welch t-tests, using the mean
and corrected standard deviation from 16. The null
hypotheses are that means of experiments A are
different from the means of experiments B, across
3 runs. Unless otherwise specified, we use R@1
on the test split.

1. Claim: Adding basic information and member
items to title results in a significant difference
for DPR. With A being the model using only
title, andB using basic + member, our p-value
is 0.014.

2. Claim: For DPR, using member item result in
drastic decrease. With A being the model us-
ing only member and B using title + member,
our p-value is 0.00086.

3. Claim: TAPAS-NQ performs better with title
and member items compared to the full table.
With A being the model using the full table,
and B using title + member, our p-value is
0.016.

4. Claim: In Figure 4, the validation recall@10
are higher than the test split for TAPAS, DPR
Title and DPR Basic + member. With A be-
ing the validation score and B the test scores,
the p-values are respectively 0.00197, 2.18×
10−5, 0.00014.
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B Dataset Card

This section presents a dataset card that follows the
format proposed by Lhoest et al. (2021), which was
inspired by Mitchell et al. (2019) and Gebru et al.
(2021).

Summary The StatCan Dialogue Dataset con-
sists of over 20K+ conversations between agents
working at Statistics Canada (StatCan) and users
who are visiting StatCan’s website and need sup-
port via the official live chat system.

Tasks A subset of 19K conversation turns is used
to build two tasks:

1. Automatic retrieval of relevant tables based
on a on-going conversation. For each partial
conversation, the task is to return the ID of the
most likely table returned by an agent. This is
evaluated using the recall@k metric.

2. Automatic generation of appropriate agent re-
sponses at each turn. For each partial con-
versation, the task is to return the most likely
response by an agent, including link to a rele-
vant table. This is evaluated using four metrics
described in Section 4.2.

Leaderboard The leaderboard and submission
instructions can be found on the project webpage.
Each submission will be accompanied with a tag
indicating if:

• It was self-reported;

• The submissions were externally evaluated;

• The inference was reproduced following pro-
vided instructions;

• The complete training process was indepen-
dently reproduced.

Languages The conversations were held in Cana-
dian English (en-CA) and Canadian French (fr-
CA).

B.1 Dataset Structure
B.1.1 Data Instances
Conversation A full example of a conversation
can be found in Table 19. Instances for each user
intent can be found in Table 18, and two conver-
sations with annotated dialogue acts can be found
in Table 22. For our case study in A.6, we show
partial conversations in Tables 24, 25, 26, 27, 28,
29, 30, 31.

Tables The complete metadata of a table can
be found in Table 20, which can be access
at doi.org/10.25318/3210035401-eng. Table 21
shows the basic information for the most popular
tables.

B.1.2 Data Fields
Full dataset A CSV file with the following fields
is provided:

• conversation: The partial conversation
(before a table is returned) in JSON format.

• conversation_index: A unique index
that serves at identifying the conversation out-
side of this task.

• conversation_processed: The con-
versation converted into a readable text format,
with extra information (such as timestamp) re-
moved, the URLs replaced with a special tag,
and separation tags (</s>) added.

Retrieval task CSV files with the following
fields is provided for each split:

• conversation

• conversation_index

• conversation_processed

• target_pid: The product ID of the table
that is returned by the agent

• language: The language reported by the
live chat system, which may not always be
accurate due to mislabeling.

• ft_detected_lang: The language pre-
dicted by fastText.

• ft_detected_lang: The score output by
fastText.

• lid_detected_lang: The language pre-
dicted by langid.py.

• lid_detected_prob: The score output
by langid.py.

Metadata The metadata that was used during re-
trieval is provided as a CSV file with the following
fields (one for each of the 5907 tables):

• pid: The product ID of the table

• title: The title of the table
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• basic_info: The basic information in the
textual format

• member_info: The member items enumer-
ated as text

• footnote_info: The footnotes enumer-
ated as text

• full_info: The basic information, mem-
ber items and footnotes all in a single entry

• x_and_y: An combination of two
items above, for example x=title and
y=footnotes.

• *_fr: All of the above are also available in
French, indicated by the suffix _fr.

Generation task CSV files with the following
fields is provided for each split:

• source: Equivalent to conversation.

• source_processed: Equivalent to
conversation_processed.

• target: The message written by the agent
following the conversation.

• target_processed: The message writ-
ten by the agent following the conversation,
with URLs replaced with a special tag.

• conversation_index

An augmented variant of each CSV file for the
conversation task is provided with all of the above
as well as the following fields:

• source_augmented: The same content as
conversation, appended with the title of
the top-5 tables retrieved by best DPR variant
trained on the basic information.

• target_augmented_1: The same con-
tent as source_augmented, but using
only the first table instead of top-5.

Conversation JSON formatting A conversation
follows the following JSON format:
[

...
{’timestamp’: ’13.03.2019 17:03:22’,
’actor’: ’user’,
’actor_name’: ’<NAME>’,
’text’: "I’ll take a look at that",
’urls’: []},

{’timestamp’: ’13.03.2019 17:04:12’,

’actor’: ’operator’,
’actor_name’: ’Kelly C’,
’text’: ’Building permits...’,
’urls’: [’https:...’]},
...

]

B.1.3 Data Split
The retrieval splits has the following number of
samples:

• Train: 3782 (en); 869 (fr)

• Validation: 799 (en); 201 (fr)

• Test: 870 (en); 141 (fr)

They correspond to the number of queries in
Table 3 and Table 12 because each query results
in a table being retrieved, which can happen more
than once in a conversation. In such cases, the
partial conversations will be truncated at different
turns in the conversation.

The generation splits have the following number
of samples:

• Train: 21582 (en); 3977 (fr)

• Validation: 4464 (en); 861 (fr)

• Test: 4850 (en); 884 (fr)

There are fewer samples than the number of mes-
sages in Table 3 and Table 12 because the goal of
the task is only to predict the messages that will be
written by the agent. Just like the retrieval task, the
partial conversations will be truncated at different
turns in the conversation.

B.2 Dataset Creation
B.2.1 Curation Rationale
Section 1 extensively motivates the curation of the
dataset. To summarize, we enumerate the major
points:

• Data from real users: We wanted a dataset that
captures the linguistic challenges that exist in
the real world

• Task-oriented dialogue: We wanted tasks with
the specific goal of helping live chat users in
their search of statistics.

• Real-world applications: Our model can be di-
rectly applied other statistics offices that want
to set up a chat system, and our dataset will
be useful for any organization that has (1) a
chat system, and (2) a database of tables.
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• Multilingual dialogue: We wanted to build
models that can handle languages beyond En-
glish, which is why we also offer French ver-
sions of our tasks.

B.2.2 Source Data

Conversations The data was retrieved from the
live chat system on statcan.gc.ca, which was
anonymized by the development team at StatCan.
The conversations happened between March 2019
and March 2021.

Tables The tables are publicly available
and were downloaded following the instruc-
tions in the Web Data Service user guide:
statcan.gc.ca/en/developers/wds/user-guide. The
tables were released by Statistics Canada between
2000 and 2021. The data are either collected
directly by Statistics Canada (e.g., through a
census or a survey) or were compiled from existing
sources (such as private sector organizations
and government agencies) into official statistics.
Existing sources include:

• Administrative data: Collected by government
or the private sector as part of ongoing opera-
tions, and include records of birth and death,
taxes, border control, and satellite data.

• Microdata Linkage: Existing information is
linked to create new data. The existing infor-
mation may not always be available publicly
(for privacy purposes), thus linkage could add
new information that was previously unavail-
able, while protecting the confidentiality of
the public.

• Open data: Machine-readable and freely avail-
able data sourced from various channels (e.g.,
OpenStreetMap).

• Web scraping: Data from the internet that
were scraped by Statistics Canada (this ex-
cludes personal information and “any informa-
tion that will not be used to produce statistical
output").

B.2.3 Annotations

The dataset does not contain any additional anno-
tations beyond the ones collected through the live
chat system and included in the table metadata.

B.2.4 Personal and Sensitive Information
Personal and sensitive information were removed
programmatically from the conversations, and of-
ficially published tables only contain aggregated
information that preserve the confidentiality of
the participants. Although the removal process
is highly advanced, there is a non-zero chance that
some information can be used to reconstruct the
profile of a user. For this reason, the access to the
data will require researchers to sign-up and agree to
the terms of use, and any derivative must be shared
on the same platform and include the same terms.

B.3 Considerations for Using the Data
B.3.1 Social Impact of Dataset
The purpose of this dataset is develop and evaluate
models that can assist knowledge workers in find-
ing relevant tables from a data source. By providing
a specialized retrieval system capable of returning
more relevant results compared to general purpose,
the productivity of the knowledge workers can be
increased. For public agencies and statistics offices,
this would benefit many live chat users interested
in statistics related to a certain community.

B.3.2 Discussion of Biases
As discussed in Section 7, there are always risks
of toxicity in online discourses, which means that
the live users may exhibit negative biases in their
messages. However, the StatCan agents are tasked
to communicate with online users in a professional
manner. Thus, researchers should not use this
dataset to build models that generate messages
written by live users, and any model trained on
the dataset should not be used in scenarios where
biases can negatively impact stakeholders.

B.3.3 Other Known Limitations
Section 7 describes other known limitations.

B.4 Additional Information
B.4.1 Dataset Curators
The dataset was curated by the authors of this paper
based on the original data collected and processed
by StatCan developers and agents.

B.4.2 Licensing Information
The conversations use a custom license, which
needs to be accepted by researchers interested in
accessing the conversation. The tables are released
under the the Statistics Canada Open Licence: stat-
can.gc.ca/en/reference/licence.
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Figure 5: The release year of all tables available on statcan.gc.ca
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Figure 6: The release year of all tables by subject. Only the top 8 subjects are shown for readability.
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Figure 7: Histogram of messages by conversation in the French task splits. English split in Figure 1.
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Train Valid Test Overall

Train 0 470 535 0
Valid 41 0 199 0
Test 145 238 0 0
Overall 181 610 571 0

(a) Differences

Train Valid Test Overall

Train 778 308 243 778
Valid 308 349 150 349
Test 243 150 388 388
Overall 778 349 388 959

(b) Overlaps

Train Valid Test Overall

Train 0 154 184 0
Valid 18 0 64 0
Test 44 60 0 0
Overall 61 197 201 0

(c) Differences (French)

Train Valid Test Overall

Train 224 70 40 224
Valid 70 88 24 88
Test 40 24 84 84
Overall 224 88 84 285

(d) Overlaps (French)

Table 11: Number of tables (a,c) differing and (b,d)
overlapping between each split (subset used for both
tasks). The difference is computed as row - column.
Summarized results in Table 3.

Dataset Train Valid Test All

# Conv. 562 122 109 793
# Turns 2147 472 439 3058
# Messages 6807 1492 1389 9688
# Queries 869 201 141 1211
# Tokens / Msg 47.25 49.86 40.14 46.63
# Turns / Conv. 3.82 3.87 4.03 3.86
# Msg / Conv. 12.11 12.23 12.74 12.22
# Queries / Conv. 1.55 1.65 1.31 1.53

# Tables 224 88 84 285
# New tables 0 18 44 61
# Dims / Table 3.4 3.5 3.5 3.4
# Mbrs / Table 205.8 249.9 164.1 190
# Notes / Table 20.3 26.3 23.4 21

Table 12: Statistics for the retrieval and generation tasks
for the French split. See Table 3 for the English split.

Dataset Train Valid Test All

Max Tokens / Msg 1243 857 912 1243
Max Turns / Conv. 28 18 21 28
Max Msg / Conv. 78 58 73 78
Max Qs / Conv. 15 11 11 15
Std Tokens / Msg 1 1 1 1
Std Turns / Conv. 2.58 2.36 2.62 2.56
Std Msg / Conv. 8.53 7.55 8.98 8.47
Std Qs / Conv. 1.27 1.24 1.18 1.25

Max Tokens / Msg 1374 1373 352 1374
Max Turns / Conv. 15 10 15 15
Max Msg / Conv. 59 38 47 59
Max Qs / Conv. 15 15 5 15
Std Tokens / Msg 1 2 2 1
Std Turns / Conv. 2.21 2.08 2.1 2.17
Std Msg / Conv. 7.02 6.74 6.61 6.91
Std Qs / Conv. 1.84 2.18 0.77 1.79

Table 13: More statistics (max and standard deviation)
at the conversation level (top: English, bottom: French),
following Table 3.

Year Released # Archived # Up-to-date

2000 145 0
2001 39 0
2002 14 5
2003 8 0
2004 31 2
2005 1 0
2006 18 0
2007 142 11
2008 85 7
2009 72 5
2010 243 8
2011 45 3
2012 248 8
2013 49 40
2014 142 145
2015 247 264
2016 52 134
2017 710 136
2018 148 122
2019 27 203
2020 43 640
2021 52 1633

Table 14: Release of Statcan tables over the years
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Merged Acts Count Original Speech Acts

answer 50 answer, confirm, disconfirm
request 31 request, acceptOffer, declineOffer
timeManagement 28 stalling, pausing
inform 63 inform, agreement, disagreement, correction
infoSeekingQuestions 25 propositionalQuestion, checkQuestion, setQuestion, choiceQuestion, directQuestion
promise 18 promise, acceptRequest, declineRequest
autoFeedback 25 positiveAutoFeedback, negativeAutoFeedback
offer 11 offer
instruct 18 instruct
clarificationQuestion 16 clarificationQuestion
greeting 28 initialGreeting, returnGreeting
selfIntroduction 17 initialSelfIntroduction, returnSelfIntroduction
thanking 47 thanking
acceptThanking 15 acceptThanking

Table 15: Merged and original speech acts occurring in 100 turns in conversations from the validation set. This
table is summarized in Table 4.

Valid Test
Model Encoded R@1 R@10 R@20 R@1 R@10 R@20

DPR Basic 37.8 ± 1.82 73.1 ± 1.02 80.8 ± 0.51 14.7 ± 1.13 45.0 ± 0.24 55.0 ± 1.67
Basic + footnote 40.0 ± 0.64 73.3 ± 0.85 81.3 ± 1.19 13.9 ± 0.37 44.4 ± 2.73 54.2 ± 2.65
Basic + member 40.0 ± 0.44 74.5 ± 1.38 81.6 ± 0.55 15.7 ± 0.7 46.2 ± 0.44 56.3 ± 0.58
Member 28.0 ± 0.47 62.1 ± 1.07 71.4 ± 1.06 10.7 ± 0.88 35.0 ± 0.57 46.3 ± 0.83
Title 37.8 ± 0.21 70.9 ± 0.67 78.2 ± 1.18 13.9 ± 0.59 43.8 ± 1.22 53.4 ± 1.42
Title + footnote 39.5 ± 0.69 73.2 ± 0.81 80.8 ± 0.47 13.3 ± 0.7 43.6 ± 0.46 53.6 ± 1.5
Title + member 38.6 ± 1.19 72.1 ± 0.92 79.4 ± 0.72 14.3 ± 0.59 45.1 ± 0.44 54.2 ± 1.07

TAPAS Table 16.9 ± 4.26 45.9 ± 5.46 55.5 ± 3.13 3.9 ± 0.65 17.2 ± 2.83 24.6 ± 3.45
Title 21.5 ± 0.33 54.7 ± 3.39 63.7 ± 1.38 4.7 ± 0.53 20.2 ± 0.85 28.7 ± 1.98
Title + member 24.6 ± 3.6 54.9 ± 3.34 63.7 ± 2.74 6.1 ± 0.98 22.1 ± 2.66 31.5 ± 3.02

TAPAS-NQ Table 25.3 ± 3.46 60.0 ± 2.43 70.0 ± 2.89 5.3 ± 0.8 22.8 ± 2.32 32.0 ± 2.48
Title 26.5 ± 1.85 64.4 ± 1.95 71.6 ± 2.32 6.3 ± 0.64 27.4 ± 1.84 36.1 ± 2.53
Title + member 29.8 ± 2.74 62.9 ± 1.35 71.5 ± 0.63 7.4 ± 0.73 30.0 ± 1.46 39.3 ± 0.86

BM25 Basic 1.0 7.5 10.3 1.0 7.2 9.8
Basic + footnote 0.9 2.4 3.1 0.9 2.8 3.9
Basic + member 0.1 1.3 2.6 0.2 2.4 3.8
Full 0.3 1.3 1.9 0.2 1.1 2.0
Title 2.0 10.3 13.8 2.5 10.9 14.0
Title + footnote 0.8 2.3 3.1 0.7 2.9 4.0
Title + member 0.0 1.4 2.4 0.3 2.3 3.8

Table 16: Full retrieval results for the English splits. The values reported are in recall % at k. DPR and TAPAS were
run 3 times and averaged (standard deviation given after ±). Selected results in Table 8.

Valid Test
Model Encoded R@1 R@10 R@20 R@1 R@10 R@20

DPR Basic 19.7 ± 1.52 57.4 ± 2.55 67.0 ± 5.01 12.5 ± 1.78 40.0 ± 1.08 48.5 ± 4.27
Basic + footnote 23.2 ± 3.8 55.4 ± 1.88 66.8 ± 1.04 13.9 ± 1.48 35.9 ± 0.82 49.9 ± 3.91
Basic + member 22.7 ± 4.35 57.9 ± 2.45 67.7 ± 3.48 12.8 ± 2.13 38.1 ± 2.17 47.0 ± 1.78
Title 23.7 ± 2.92 58.5 ± 2.24 69.8 ± 2.35 14.7 ± 2.28 35.7 ± 3.2 48.2 ± 2.84
Title + footnote 23.2 ± 2.74 54.7 ± 3.59 64.7 ± 2.28 14.4 ± 1.48 36.6 ± 2.69 45.4 ± 2.13
Title + member 24.2 ± 1.52 55.4 ± 4.51 65.3 ± 2.01 14.4 ± 2.28 39.5 ± 0.82 48.0 ± 2.05

BM25 Basic 0.0 0.0 0.0 0.0 0.0 0.0
Basic + footnote 0.0 0.0 0.0 0.0 0.0 0.0
Basic + member 0.5 1.0 1.0 0.0 0.7 0.7
Full 0.0 0.0 0.5 0.0 0.0 0.0
Title 0.0 0.5 0.5 0.0 0.0 0.7
Title + footnote 0.0 0.0 0.0 0.0 0.0 0.0
Title + member 0.0 0.5 1.0 0.0 0.7 0.7

Table 17: Full retrieval results for the French splits. The values reported are in recall % at k ∈ {1, 10, 20}. DPR
was run 3 times and averaged (standard deviation given after ±).
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Obtaining meta-information of table
U: Hi I have a question on the date of new census
A: Hello my name is Graham, how may I help you?
U: Hi Graham
U: I am currently looking at : Census of Canada and National Household Survey
U: I see that the last census were made in 2011 and 2016
U: should I expect a new census in the coming month in 2020 ?
A: no - the next Census is going to be taking place in May 2021
A: it’s every 5 years
U: Ok perfect thank you
A: you’re welcome! have a good day

Help with user interface
U: Hello Graham - is there way I can see total annual values instead of monthly?
U: for - https://www150.statcan.gc.ca/t1/tbl1/en/cv!recreate.action?...
A: please hold - I will see if a table like this with an annual frequency is available
U: wonderful thank you
A: unfortunately no, the only active table on construction investment is the monthly one I sent you - there is an inactive

quarterly table Investment in Building Construction (https://www150.statcan.gc.ca/n1/en/surveys/5014)
A: it is also possible to download the monthly data in .CSV form, add together the months in a spreadsheet to get

annual totals
A: or if you’d prefer, you can make a custom request to our analysts (a fee may apply).Please send us your request,

clearly indicating the variables, geographic areas, time frame and data frequency (i.e., annually, monthly or quarterly)
needed at infostats@canada.ca (mailto:infostats@canada.ca) and refer to Case number: 986005 so we can access the
transcript of this live chat. Your request must include your name, address, postal code, and phone number (please do
not share your personal information on the live chat.)An agent will get in touch with you to provide an estimate and
proceed with the payment, if applicable.You may also submit your request by telephone at 1-800-263-1136.

U: thats fine! thank you very much :)
U: very helpful
U: :)!
U: have a good day!
A: glad I could help! you too

Help with user interface
U: Hello, Do you know where I can download the dataset for General Social Survey Cycle 32?
A: Please wait while I try to find this information for you.
U: Thank you
U: (I’m referring to this one: https://www23.statcan.gc.ca/imdb/p2SV.pl?... )
A: General Social Survey: Caregiving and Care Receiving, Public Use Microdata File (https://www150.statcan.gc.ca/...)
U: I’m sorry, but im having trouble finding the download link for cycle 32 (2018)
A: you have to click on ’More information’ and that will bring you to the order form
U: ohhhh, I see
U: thank you for letting me know
U: thank you for your help!
A: you’re welcome - happy to help!

Out of domain requests
U: I’m wondering how to obtain a copy of an autopsy that’s been done for a family member. Doctor office says they

don’t get the autopsy report.
A: Statistics Canada does not issue certificates for birth, death or marriage. Civil registration is a provincial jurisdiction.

Therefore, you must contact the government ministry, registry or vital statistics office of the province or territory
in which the birth, death or marriage occurred. To obtain the contact information for your provincial or territorial
government, please call Service Canada at 1-800-O-Canada (1-800-622-6232) or visit the following page: Vital
Statistics contacts (https://www.statcan.gc.ca/eng/health...) .

A: also: Coroner’s report (https://spvm.qc.ca/en/...)

Table 18: Examples of user intents described in Section A.1.
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U: Hi, I’m looking to obtain quarterly data in regards to GDP grow (Canada), BC Housing STarts, Canada Oil Price/BBL
A: Hello, my name is Kelly C. Give me one moment as I search

U: thanks!
A: For GDP growth rates, please consult the following link: Gross domestic product (GDP) at basic prices, by industry,

monthly, growth rates
A: I’ll continue searching for the rest. One moment
A: What do you mean by BC Housing Starts?

U: I’m required to research all of the housing starts for BC on a quarterly basis
A: Define "starts".

U: unit basis
U: Housing starts are the number of new residential construction projects that have begun during any particular month
A: Perfect. Give me one moment.
A: I’m still searching. Sorry about the wait.

U: no worries
A: I would have monthly data regarding new building permits being issued.

U: I’ll take a look at that
A: Building permits, by type of structure and type of work (https://www150.statcan.gc.ca/t1/...)
A: Do play with the variables to get what you are looking for.

U: thank you
A: To view/ manipulate the variables available in a data table: • Click on "Add/Remove data" • Select at least one variable in

each tab and click on “Apply” in order to view your customized table To download the data: • Click on “Download” •
Select one of the three output formats then click on the hyperlink and save the table The following video may also be
helpful to you: How to use the data tables (https://www.statcan.gc.ca/eng/sc/video/howto) .

A: I’ll have a look for oil prices. One moment.

U: Do you also have data to Canada’as oil Price/BBL ("WTI")?
U: okay thanks!
A: Are you looking for the retail prices of oil?
A: If so, I found some data for smaller geographies.
A: Monthly average retail prices for gasoline and fuel oil, by geography (https://www150.statcan.gc.ca/t1/...)

U: yes
A: Would those geographies be enough?
A: Or are you looking for Canada only?

U: hmm
U: I would need something that pertains more to all of canada
A: What about this? Monthly average retail prices for food and other selected products (https://www150.statcan.gc.ca/t1/...)
A: Is there anything else I can do for you?

U: I thinks that’s all
U: I
U: i’ll try and use this thanks!
A: No problem. Have a good one!

Table 19: Full Example (Sample #42) taken from the conversations dataset. URLs were updated to link to default
view (rather than filtered). See Table 1 for truncated conversation.
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Title: Production and value of maple products

Date range: 1924-01-01 to 2020-01-01
Dimensions: Geography, Maple products
Subject: Agriculture
Survey: Maple Products
Frequency: Annual

Geography:
ID: 1, Parent: None, Name: Canada
ID: 2, Parent: 1, Name: Nova Scotia
ID: 3, Parent: 1, Name: New Brunswick
ID: 4, Parent: 1, Name: Quebec
ID: 5, Parent: 1, Name: Ontario
Maple products:
ID: 9, Parent: None, Name: Maple products expressed as syrup, total
ID: 10, Parent: None, Name: Gross value of maple products
ID: 1, Parent: None, Name: Production of maple sugar
ID: 2, Parent: None, Name: Value of maple sugar
ID: 3, Parent: None, Name: Production of maple syrup
ID: 4, Parent: None, Name: Value of maple syrup
ID: 5, Parent: None, Name: Production of maple taffy
ID: 6, Parent: None, Name: Value of maple taffy
ID: 7, Parent: None, Name: Production of maple butter
ID: 8, Parent: None, Name: Value of maple butter

ID: 0, Note: Conversion factors: 1 gallon of syrup equals 10.0 pounds of maple sugar. One gallon of syrup weighs
13.24760 pounds. One gallon of syrup equals 10.4 pounds of taffy. Maple taffy is reported by Quebec and Nova
Scotia only and commenced reporting in 1965 and 1983 respectively. The conversion of maple taffy to syrup varies
with the density of syrup that year.
ID: 0, Note: Commercial production and value figures exclude inventory.
ID: 2, Note: Estimates produced by Nova Scotia horticulture industry specialists.
ID: 3, Note: Beginning in 1986, survey data for New Brunswick and Ontario are weighted using the number of taps
made on maple trees in the spring of the year of the most recently completed census of agriculture.
ID: 4, Note: Estimates produced by l’Institut de la statistique du Québec, Groupe AGÉCO and Fédération des
producteurs acéricoles du Québec.
ID: 5, Note: Beginning in 1986, survey data for New Brunswick and Ontario are weighted using the number of taps
made on maple trees in the spring of the year of the most recently completed census of agriculture.
ID: 9, Note: “These products are represented by North American Product Classification System (NAPCS) Canada
2017 category 115136
Maple syrup and other maple products. Data collected for maple butter, maple taffy and maple sugar are converted
into a maple syrup equivalent and are included in this category.”
ID: 10, Note: “These products are represented by North American Product Classification System (NAPCS) Canada
2017 category 115136 – Maple syrup and other maple products. Data collected for maple butter, maple taffy and
maple sugar are converted into a maple syrup equivalent and are included in this category.”
ID: 0, Note: “These products are represented by North American Product Classification System (NAPCS) Canada
2017 category 115136 – Maple syrup and other maple products. Data collected for maple butter, maple taffy and
maple sugar are converted into a maple syrup equivalent and are included in this category.”

Table 20: Full metadata of table in Section 3.3. Single lines were added to delimit the scope: Title, basic information,
item names, and footnotes. The double line was added to delimit the truncation limit of the DPR and TAPAS model
(512 tokens). The basic information is presented in Table 5.
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PID 18100004 (count = 170)
Title Consumer Price Index, monthly, not seasonally

adjusted
Dates 1914-01-01 to 2021-08-01
Dim. Geography, Products and product groups
Subject Prices and price indexes
Survey Consumer Price Index
Freq. Monthly

PID 11100222 (count = 125)
Title Household spending, Canada, regions and

provinces
Dates 2010-01-01 to 2019-01-01
Dim. Geography, Statistic, Household expenditures,

summary-level categories
Subject Income, pensions, spending and wealth
Survey Survey of Household Spending
Freq. Annual

PID 17100005 (count = 123)
Title Population estimates on July 1st, by age and

sex
Dates 1971-01-01 to 2021-01-01
Dim. Geography, Sex, Age group
Subject Population and demography
Survey Annual Demographic Estimates Canada,

Provinces and Territories
Freq. Annual

PID 33100214 (count = 117)
Title Canadian Business Counts, with employees,

June 2019
Dates 2019-01-01 to 2019-01-01
Dim. Geography, Employment size, North Ameri-

can Industry Classification System (NAICS)
Subject Business performance and ownership
Survey Business Register
Freq. Semi-annual

PID 35100177 (count = 104)
Title Incident-based crime statistics, by detailed vio-

lations, Canada, provinces, territories and Cen-
sus Metropolitan Areas

Dates 1998-01-01 to 2020-01-01
Dim. Geography, Violations, Statistics
Subject Crime and justice
Survey Uniform Crime Reporting Survey
Freq. Annual

PID 18100005 (count = 91)
Title Consumer Price Index, annual average, not

seasonally adjusted
Dates 1914-01-01 to 2020-01-01
Dim. Geography, Products and product groups
Subject Prices and price indexes
Survey Consumer Price Index
Freq. Annual

Table 21: Most frequently retrieved tables across all
splits in the retrieval task. The basic information is
provided for each table. Analysis presented in Sec-
tion A.3.1.

U: hi, i was wondering if you vae any statistics on video
game sales, ot high school drop out rates? infoSeek-
ingQuestions; request;

A: Hello my name is Sylvain, how may I help you?
offer;

U: hello, I am looking for high school drop out r ates and
teen depression rates, but cant seem to find anything
that goes back more than a year request;

A: Data for High School dropouts is compiled by the
Provincial Education Ministry. To obtain this in-
for please contact the Education Ministry of your
province inform; promise;

A: Data for mood disorder (depression) is available on
our website from the Data Table 13- 10-0096-18
(https://www150.statcan.gc.ca/...) answer;

A: To view/ manipulate the variables available in a data
table: • Click on "Add/Remove data" • Select at
least one variable in each tab and click on “Apply”
in order to view your customized table To down-
load the data: • Click on “Download” • Select one
of the three output formats then click on the hyper-
link and save the table The following video may
also be helpful to you: How to use the data tables
(https://www.statcan.gc.ca/eng/sc/video/...). inform;
request;

U: Hi team, can you please help me retrieve data of pub-
lic deposits of chartered banks? infoSeekingQues-
tions; request;

A: Please hold timeManagement;
U: Surely. autoFeedback;
A: You can obtain this info on our web-

site from our Data Table 10-10-0116-01
(https://www150.statcan.gc.ca/t1/...) answer;

A: To view/ manipulate the variables available in a data
table: • Click on "Add/Remove data" • Select at
least one variable in each tab and click on “Apply"
in order to view your customized table To down-
load the data: • Click on “Download" • Select one
of the three output formats then click on the hyper-
link and save the table The following video may
also be helpful to you: How to use the data tables
(https://www.statcan.gc.ca/eng/sc/video/...) . inform;
instruct;

A: Please take note that this is a non-Statistics Canada
Table. This info is provide from The Bank of Canada
inform;

U: Thanks a lot! So, how should I get down to Public
deposits? or rather which of these lines would direct
me to Public deposits? clarificationQuestion;

A: Under the category Chartered bank deposits. For
more info please contact The Bank of Canada on
their website by using their Online Request Form
(https://www.bankofcanada.ca/...) answer; inform;

Table 22: Samples of the dialogue analysis in Sec-
tion 3.2, which are summarized in Table 15. The speech
acts are in blue at the end of each message. The re-
maining annotations are in the supplementary materials.
Sample examples are given in Table 4.
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U: Thank you for your information, but I have done that already. Your previous website had a "manipu-
late" function to calculate the percentage change. I don’t see the button anymore, and wondered if you
have other schedule prepared as that function is gone.

A: Hello, my name is Jimmy N., how may I help you?
T5: Hello, my name is Jimmy N., how may I help you?
T5+D: Hello, my name is Jimmy N., how may I help you?

U: I was talking with Sylvain, will you be able to see the log?

A: Yes, please hold while I verify.
T5: Yes, please hold while I verify.
T5+D: Yes, please hold while I verify.

A: Just to clarify, you’re looking for all-items ?
T5: You can obtain this information at the following hyperlink : Table: 18-10-0004-13 Consumer Price Index

by product group, monthly, percentage change, not seasonally adjusted, Canada, provinces, Whitehorse,
Yellowknife and Iqaluit ( )

T5+D: You can obtain this information at the following hyperlink : Table: 18-10-0004-01 Consumer Price Index by
product group, monthly, [...] and Iqaluit ( )

Table 23: Conversation #4890. Each message is separated by a horizontal line. The original conversation, in
bold, only contains messages by the user (U) and agent (A). The generated responses by T5 and T5 with top-5
DPR-retrieved titles (T5+D) predict the corresponding agent’s message (in bold).

[...]
U: Ideally, I want the percentage change for these items
R1: Consumer Price Index, monthly, not seasonally adjusted
R2: Monthly adjusted price index, provisional
R3: Consumer Price Index, monthly, seasonally adjusted
R4: Historical (real-time) releases of the industrial product price index, by major product group, monthly, inactive
R5: Consumer Price Index (CPI) statistics, alternative measures, unadjusted and seasonally adjusted, Bank of

Canada

A: You can obtain this information at the following hyperlink : Table: 18-10-0004-13 Consumer Price
Index by product group, monthly, percentage change, not seasonally adjusted, Canada, provinces,
Whitehorse, Yellowknife and Iqaluit (https://www150.statcan.gc.ca/t1/tbl1/...)

T5: You can obtain this information at the following hyperlink : Table: 18-10-0004-13 Consumer Price Index [...]
and Iqaluit ( )

T5+D: You can obtain this information at the following hyperlink : Table: 18-10-0004-13 Consumer Price Index [...]
and Iqaluit ( )

Table 24: The second part of conversation #4890, immediately after Table 23. Ri indicates the i-th table retrieved
by DPR, which is only seen by T5+D.

U: This is pretty cool!
A: Hello, my name is Martine, how may I help you?
U: I have a question - how would I be able to access data for 2019 on the amount of money the federal government

spent (money out) to Canadians through social programs like EI / OAS etc...
A: Letme check..
U: Thank you
Ri: Federal extramural expenditures on science and technology, type of science, performing sector, type of

payment and geography
Ri: Historical: Current transfers to other levels of government, 1968 System of National Accounts (SNA), annual,

1926 - 1986
Ri: Private non-profit organization outsourced research and development expenditures
Ri: Capital expenditures, sources of funding, by geography
Ri: Historical: Government transfer payments to persons, 1968 System of National Accounts (SNA), annual,

1926 - 1986

A: Revenue, expenditure and budgetary balance - General governments (x 1,000,000)
(https://www150.statcan.gc.ca/t1/...3610047701)

T5: Data Tables (https://www150.statcan.gc.ca/n1/en/type/data?text=federal+debt)
T5+D: Federal extramural expenditures on science and technology, type of science, performing sector, type of

payment and geography ( )

Table 25: Conversation #8960.
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U: How can I find information relating to Kelowna population estimates, demography, population projection
estimates, population by age and sex

A: hello how may i help you today?
U: How can I find information relating to Kelowna population estimates, demography, population projection

estimates, population by age and sex
A: let me see what i can find on the subject for the projections information our tables only provide it to the

provincial level it does not go lowe then that <extra_id_0> ( <extra_id_0> )
R1: Estimates and projections of population aged 0 to 29, by age group, Canada, provinces and territories
R2: Projected population, by projection scenario, age and sex, as of July 1
R3: Population estimates on July 1st, by age and sex
R4: Components of projected population growth, by projection scenario
R5: Population estimates, quarterly

A: https://www150.statcan.gc.ca/t1/tbl1/en/cv.action?pid=1710005801
T5: https://www150.statcan.gc.ca/n1/daily-quotidien/190619/dq190619f-cansim-eng.htm
T5+D: https://www150.statcan.gc.ca/n1/pub/71-607-x/71-607-x2018005-eng.htm

Table 26: Conversation #21533.

U: Hi there, do you know approximately how many craft distillers are operating in Canada?
A: Hello my name is Sylvain, how may I help you?
U: I was wondering if you had any information about craft distillers in Canada. Specifically, how many craft distillers

are operating in Can
A: The industries are classified according to the North American Industry Classification System (NAICS). To find

the NAICS code for an indu refer to this page (http://www23.statcan.gc.ca/imdb/...1181553) . You may start your
search by selecting one of the 20 sectors, until a six-d obtained. [...] You will find the number of business locations
by NAICS code in the following data tables: Table 33-10-0105-01 Canadian Business Counts, with employees,
December 2018 (https://www150.statcan.gc.ca/t1/...3310010501) [...] I also suggest consulting the financial data of
small and medium enterprise in Canada; these organizations have annual earning revenues ranges of $30,000 to
$20 million. T information is available by industry, province, territory and legal status of companies (incorporated
or unincorporated). This data is not available on our website; however, i available on Innovation, Science and
Economic Development Canada’s website, using their Financial Performance Data (http://www.ic.gc.ca/...)[...]

Table 27: Conversation #1628

U: Hi. I want to know how many small, medium and big companies are there in canada. Thank you
A: Hello, my name is Olivier C. Please wait while i find the information you’re looking for.
R1: Canadian Business Counts, without employees, December 2019
R2: Canadian Business Counts, with employees, December 2019
R3: Canadian Business Counts, without employees, June 2019
R4: Canadian Business Counts, with employees, June 2019
R5: Canadian Business Counts, without employees, December 2017

A: Thank you for waiting, you will find the information about the number of business per business size
if you click the following hyperlinks : Canadian Business Counts, with employees, December 2019
(https://www150.statcan.gc.ca/t1/...pid=3310022201) Canadian Business Counts, without employees,
December 2019 (https://www150.statcan.gc.ca/t1/...pid=3310022301)

T5: Thank you for waiting. You will find the information you’re looking for if you click the following hyperlink :
Canadian Business Counts, with employees, June 2019 ( )

T5+D: Thank you for waiting. The industries are classified according to the North American Industry
Classification System (NAICS). To find the NAICS code for an industry, please refer to this page
(http://www23.statcan.gc.ca/imdb/...1181553). You may start your search by selecting one of the 20 sectors,
until a six-digit NAICS is obtained. You will find the number of business locations by NAICS code in the
following data tables: Table 33-10-0214-01 Canadian Business Counts, with employees, June 2019 ( ) Table
33-10-0215-01 Canadian Business Counts, without employees, June 2019 ( ) I also suggest consulting the
financial data of small and medium enterprise in Canada; these organizations have annual earning revenues
ranges of $30,000 to $20 million. This information is available by industry, province, territory and legal
status of companies (incorporated or unincorporated). This data is not available on our website; however, it is
freely available on Innovation, Science and Economic Development Canada’s website, using their Financial
Performance Data (http://www.ic

Table 28: Conversation #8500.
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U: Do you have any data showing labour in manufacturing companies and how it is allocated between direct and
indirect labour?

A: Hello, my name is Jimmy N. Could you please specify what you mean by direct and indirect labour.
U: Direct = labour for building product Indirect = administrative, supervision, etc.
A: The data you are requesting is not available as a standard product. However, it may be available through a

custom order (a fee may apply). [...] Would you like to make this request?
A: As a standard product, we have tables about employment by industry.
U: I would just like to look at the standard product. Can you tell me where I can find it, or what it is called?
R1: Labour force characteristics by industry, monthly, seasonally adjusted, last 5 months
R2: Employment by industry, monthly, seasonally adjusted and unadjusted, and trend-cycle, last 5 months
R3: Employment by industry, annual
R4: Employment by industry, three-month moving average, unadjusted for seasonality, provinces and economic

regions, inactive
R5: Usual hours worked by industry, annual

A: You can obtain this information at the following hyperlinks : Table: 14-10-0355-02 Employment by
industry, monthly, seasonally adjusted (x 1,000)Table: 14-10-0023-01 Labour force characteristics
by industry, annual (x 1,000)Employed labour force who worked full year, full time and reported
employment income in 2015, 2016 Census (https://www150.statcan.gc.ca/t1/...1410035502)

T5: Table: 14-10-0296-01 Labour force characteristics by industry, annual (x 1,000) ( )
T5+D: Please hold while I find the information.

Table 29: Conversation #19568.

U: I am on webpage https://www150.statcan.gc.ca/n1/daily-quotidien/201224/dq201224beng.htm where can I
find the same data set for previous years, for example 2019 2018 2017 etc

A: Hello, can you tell me on which table you are : https://www150.statcan.gc.ca/n1/daily-
quotidien/201224/dq201224b-cansim-eng.htm

U: Provisional death counts and excess mortality, January to October 2020 Adjusted number of deaths, expected
number of deaths and estimates of excess mortality, by week

A: That is the report, but there is 5 different tables: https://www150.statcan.gc.ca/n1/daily-
quotidien/201224/dq201224b-cansim-eng.htm Let me verify this for you. One moment please. To
view/ manipulate the variables available in a data table: • Click on "Add/Remove data" • [...] Select at least
one variable in each tab and click on “Apply” in order to view your customized table Data are available for
2016 up to 2020.

U: The reference period stops at January 2020 I can’t seem to get data for past years
A: Click on the schedule icon and select the year you want. (2016 - 2020)
U: I did and all years are ’greyed out’ meaning they do not populate
A: Let me verify this. One moment please.
U: screenshot.lzsc
R1: Weekly death counts, by age group and sex
R2: Previous releases and revisions to weekly death counts
R3: Adjusted number of deaths, expected number of deaths and estimates of excess mortality, by week, age group

and sex
R4: Death counts, by week, inactive
R5: Labour force characteristics by sex and detailed age group, monthly, unadjusted for seasonality

A: Have you already consulter the table that replaces table# 13-10-0785-01 [...]
https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1310081001 - On this table you can go
back to 2016.

T5: You can manipulate the table by following these steps: • Click on "Add/Remove data" • Click on the “ + ”
icon next to a checkbox to expand the list of variables (if applicable) • Select at least one variable in each tab
and click on “Apply” in order to view your customized table To download the data: • Click on “Download” •
Select one of the three output formats then click on the hyperlink and save the table The following video may
also be helpful to you: How to use the data tables (https://www.statcan.gc.ca/eng/sc/video/howto).

T5+D: Please consult the following data table(s): Weekly death counts, by age group and sex ( )

Table 30: Conversation #15376.
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U: Hello
A: Hello, my name is Jimmy N., how may I help you?
U: [...] We saw this article from the Vancouver Sun which mentioned StatsCan data on business closures. [...] is

there any way for us to collect localized data for the Township, or at least the Fraser Valley
A: Unfortunately, the information is available on a national and provincial/territorial level : And for some Census

metropolitan areas
Ri: Experimental estimates for business openings and closures for Canada, provinces and territories, census

metropolitan areas, seasonally adjusted
Ri: Quarterly estimates of business entry and exit
Ri: Of businesses where at least one employee was laid off, percentage of workforce laid off and rehired due to

COVID-19, by business characteristics
Ri: Canadian Business Counts, with employees, census metropolitan areas and census subdivisions, December

2020
Ri: Manufacturing sales, by industry for 12 Selected Census Metropolitan Areas

A: Table: 33-10-0270-01 - Experimental estimates for business openings and closures
for Canada, provinces and territories, census metropolitan areas, seasonally adjusted
(https://www150.statcan.gc.ca/t1/...3310027001)

T5: However, it may be available through a custom order (a fee may apply). To obtain a free cost estimate
for this service, please send us your request, clearly indicating the variables, geographic areas, time frame
and data frequency needed, making sure to include your complete contact information (name of orga-
nization, address, postal code, and phone number) at the following email address: infostats@canada.ca
(mailto:infostats@canada.ca) or by telephone at 1-800-263-1136. Our agents are available Monday to Friday
(except holidays) from 7:30 am to 7:30 pm (Eastern Time). An agent will get in touch with you to verify the
information, provide an estimate and proceed with the payment, if applicable.

T5+D: However, it may be available through a custom order (a fee may apply). To obtain a free [...] An agent will get
in touch with you to verify the information, provide an estimate and proceed with the payment, if applicable.
Please do not share any personal information through the live chat. Would you like to make this request?

Table 31: Conversation #11869.

PID Title Train Valid Test Total

13100810 Selected grouped causes of death, by week 0 0 6 6
33100270 Experimental estimates for business openings and closures for Canada,

provinces and territories, census metropolitan areas, seasonally adjusted
0 1 3 4

13100763 Health characteristics of children and youth aged 1 to 17 years, Canadian
Health Survey on Children and Youth 2019

0 0 4 4

35100060 Number of homicide victims and persons accused of homicide, by Indigenous
identity, age group and gender

0 1 2 3

32100042 Estimated areas, yield, production of corn for grain and soybeans, using
genetically modified seed, Quebec and Ontario, in metric and imperial units

0 1 2 3

14100084 Labour force characteristics of immigrants by sex and age group, three-month
moving average, unadjusted for seasonality

0 0 3 3

13100143 Deaths, by cause, Chapter V: Mental and behavioural disorders (F00 to F99) 0 0 3 3

Table 32: List of tables that do not appear in the training set, but appear at least 3 times in the validation or test sets.

Language Split Augmentation METEOR ROUGE-L BERTScore MoverScore Title Acc.

English Test None 23.35 30.65 86.04 59.82 6.96
Top-1 Title 24.07 30.76 86.11 60.23 7.99
Top-5 Titles 24.41 30.88 86.17 60.31 10.82

Valid None 31.95 43.31 88.31 65.50 30.39
Top-1 Title 33.11 44.22 88.60 66.14 33.66
Top-5 Titles 33.38 44.20 88.55 65.94 38.89

French Test None 5.98 7.21 61.74 51.88 0.00
Top-1 Title 9.71 11.14 65.86 54.81 0.00
Top-5 Titles 8.96 10.75 64.76 54.38 0.00

Valid None 6.84 8.85 60.97 52.21 0.00
Top-1 Title 8.09 9.03 64.22 53.62 0.00
Top-5 Titles 7.37 8.75 62.55 52.97 0.00

Table 33: Full response generation results. Selected results in Table 10.
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Abstract

Automatic generation of questions from text
has gained increasing attention due to its use-
ful applications. We propose a novel question
generation method that combines the benefits
of rule-based and neural sequence-to-sequence
(Seq2Seq) models. The proposed method can
automatically generate multiple questions from
an input sentence covering different views of
the sentence as in rule-based methods, while
more complicated "rules" can be learned via the
Seq2Seq model. The method utilizes semantic
role labeling to convert training examples into
their semantic representations, and then trains
a Seq2Seq model over the semantic representa-
tions. Our extensive experiments on three real-
world data sets show that the proposed method
significantly improves the state-of-the-art neu-
ral question generation approaches.

1 Introduction

Question Generation (QG) from text has gained
increasing interest due to its usefulness in various
applications such as educational reading compre-
hension assessment (Chen et al., 2018; Kumar et al.,
2018), data augmentation for training question-
answering systems (Sultan et al., 2020), and re-
sponse generation in conversational systems (Gu
et al., 2021). We have been working on QG for the
purpose of automatically creating the knowledge
base (KB) for a conversational QA system of an
industry partner1. The knowledge base consists of
QA pairs extracted from a domain-specific docu-
ment (such as car manuals). Previously, the cre-
ation of their KB was done manually, which is very
labor-intensive. To automate this KB generation
process, we have tried both rule-based and neural
sequence-to-sequence (Seq2Seq) QG methods.

The rule-based methods create rules based on
linguistic features that capture the relationships

1iNAGO Corporation (iNago.com)

among components of a sentence and can gener-
ate multiple questions from an input sentence to
cover different aspects of the sentence. However,
designing such rules is a very labour-intensive task
as well. Also, these rules may not capture the com-
plexity of ways a human asks questions (Yuan et al.,
2019). As we will show in Section 4, the rule-based
method does not lead to good results compared to
neural Seq2Seq models.

While the Seq2Seq methods achieve better re-
sults, such methods are highly data-driven. For
domains with limited training data (such as car
manuals), relations that map the input text to ques-
tions cannot be well captured. In addition, Seq2Seq
models often generate a single question from an in-
put text. However, multiple questions can be asked
about a piece of text from different aspects. One
way to generate multiple questions with Seq2Seq
models from an input text is to mark the input text
with different answer spans or keywords to show
the focus for QG so that multiple questions may
be generated from the same text, one for each an-
swer span/keyword. However, in our application,
such answer spans or keywords are not available
as marking answer spans or keywords when cre-
ating training data requires intensive labor work.
Our partner prefers an answer-unaware QG system
that can automatically generate multiple factual
questions without indicating answer spans or key-
words in either training or inference time. Another
technique for generating multiple questions is to
use diverse beam search (Vijayakumar et al., 2018)
However, the beam search methods require the user
to specify the number of questions returned, which
is hard to specify as the ideal number of generated
questions varies among different input texts.

To address these issues, we propose a novel ap-
proach to question generation, which uses semantic
role labeling (commonly used in rule-based sys-
tems) that can label an input sentence in different
ways corresponding to multiple semantic views of
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an input sentence, and then trains a Seq2Seq model
with SRL-labeled sequences for question genera-
tion. Our method does not need keyword/answer
span labels in the training data nor specifications
of the number of multiple answers to be gener-
ated. The use of SRL also increases the number
of training examples, which may help alleviate the
problem of the limited labeled data problem.

We evaluate the proposed method on three real-
world data sets and compared the proposed method
with several state-of-the-arts QG methods includ-
ing the ones that generate multiple questions. The
extensive experiments on these data sets show that
proposed framework is significantly better than
the state-of-the-art Seq2Seq models and rule-based
methods, especially in terms of coverage and over-
all scores considering both precision and recall.

2 Related Work

The question generation approaches broadly fall
into two categories: rule-based approaches and
neural Seq2Seq learning approaches. Rule-based
approaches mainly relay on hand-crafted tem-
plates/rules built upon linguistic features (Chali
and Hasan, 2015; Flor and Riordan, 2018; Khullar
et al., 2018; Lindberg et al., 2013). These methods
use rigid heuristic rules to transform a source sen-
tence into one or more questions. However, rules
have limited power in expressing the complicated
mapping function that the human uses for question
generation. Designing a comprehensive set of rules
is a very labour-intensive task.

Recently, neural Seq2Seq models have been
successfully applied to question generation due
to its capability to extract effective features and
model complicated functions. Early Seq2Seq-
based QG models are based on RNN structures.
Examples include an LSTM-based Seq2Seq model
with the global attention mechanism (Du et al.,
2017) and LSTM-based model with the maxout
pointer and gated self-attention network (MP-GSN)
(Zhao et al., 2018). More recent Seq2Seq mod-
els are based on Transformer which relies entirely
on self-attention to compute representations of its
input and output without using sequence-aligned
RNNs. State-of-the-art Transformer-based mod-
els that have been pre-trained for QG include T5
(Raffel et al., 2020), BART (Lewis et al., 2020),
ProphetNet (Qi et al., 2020), UNILM (Dong et al.,
2019), UNILMv2 (Bao et al., 2020), and Ernie-
Gen (Xiao et al., 2020), to list some examples.

While the Seq2Seq methods achieve better results
than rule-based methods (Du et al., 2017), they are
highly data-driven. In addition, Seq2Seq models
often generate a single question given an input text,
which does not cover multiple views of a sentence.

To solve this single-question-generation prob-
lem, different strategies have been proposed. One
strategy is to use diverse beam search (Vijayaku-
mar et al., 2018; Zhang and Zhu, 2021) or sam-
pling techniques (such as top-p nucleus sampling
used in (Sultan et al., 2020)). While these methods
showed promising results, the user has to specify
the bin/sample size and the number of questions to
be generated (whose ideal number may depend on
the input sequence). Another strategy for generat-
ing diverse questions is to mark or extract keywords
in the input text and generate questions by condi-
tioning on keywords or keyword positions (e.g.,
(Pan et al., 2020; Shen et al., 2020; Subramanian
et al., 2018; Sun et al., 2018; Song et al., 2018;
Zhang and Zhu, 2021)). However, extracting key-
words (either automatically or manually) to build
keyword-labeled training data often needs domain
knowledge, a pre-defined keyword list, or docu-
ments beyond the training data. The QG method we
propose solves these problems by learning Seq2Seq
models with semantic role labeled QAs. It can gen-
erate multiple and diverse questions without spec-
ifying the number of questions to be generated or
requiring keyword-labeled training data.

A recent method that also uses SRL and Seq2Seq
models is a 2-step method in (Pyatkin et al., 2021).
It tackles role question generation that, given a
predicate mention and a passage, generates a set of
questions asking about all possible semantic roles
of the predicate. It first generates prototype ques-
tions for all the roles based on the ontology in Prop-
Bank (Palmer et al., 2005). It then trains a BART
model to generate all questions (including ones that
cannot be answered by the input text) given these
prototype questions contextualized over the input
text. Both the problem definition and the methodol-
ogy are very different from ours. Our method does
not need to generate prototype questions and we
generate only the information-seeking questions
that can be answered by the input text.

3 Proposed Methodology

Given a set of answer (i.e., sentence) and question
pairs, our goal is to train a model to generate from
an unseen sentence one or more questions that can
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be answered by the sentence. 2

3.1 Overview of the Method
Our method contains a Semantic Role Labeler (SR-
Ler), a Seq2Seq model, and two semantic map-
pers (namely, Question2SRL and SRL2Question).
First, SRLer extracts semantic representations (i.e.,
SRL labels) from answers in the training set. Then
Question2SRL maps questions in the training set to
their corresponding semantic representations. Next,
a Seq2Seq model is trained using these semantic
representations to convert an SRL representation
of an answer to that of a question. In the infer-
ence stage, Semantic Role Labeler extracts seman-
tic representations (âsem) of an answer â. Then,
âsem is converted to an SRL representation of a
question (q̂sem) by the learned Seq2Seq model. Fi-
nally, SRL2Question converts q̂sem into a natural
language question q̂.

Figure 1: Overview of Proposed Framework

3.2 Semantic Role Labeler
A Semantic Role Labeler (SRLer) is used in both
training and inference. In the training phase, an
SRLer is used to convert each answer a in the train-
ing set into its semantic representation (denoted as
asem) that contains semantic role labels (SRL).

An SRLer recognizes the predicate-argument
structure of a sentence and assigns labels (i.e., se-
mantic roles, such as agent, goal or result) to words
or phrases in a sentence. We use SRL BERT (Shi

2We work on sentence-level QG instead of paragraph-level
QG because the paragraphs in our application domain (car
manuals) are often short and contain a single sentence. Also,
an answer sentence in our car manuals dataset does not contain
answer words labels, which is different from most paragraph-
level QG systems where answer words/phrases are marked in
an input paragraph. Sentence-level QG can be extended to
paragraph-level QG via sentence segmentation after corefer-
ence resolution.

and Lin, 2019) provided in AllenNLP (Gardner
et al., 2017) to produce the semantic labels for
the input text, which is the state-of-the-art model
for SRL extraction3. This method generates a
predicate-argument structure for a sentence based
on a BERT-based approach. In this model, each
sentence is represented by one or more proposi-
tions, consisting of a predicate (usually a verb) and
its semantic arguments. For example, the seman-
tic representation of sentence “ABS is activated
during braking under certain road or stopping con-
ditions” is “[ARG1] is activated [ARGM-TMP]”,
where [ARG1] (representing patient) and [ARGM-
TMP] (representing time) are semantic role labels
for ABS and during braking under certain road or
stopping conditions, respectively.

Table 1 provides more examples of semantic rep-
resentations for answers. Note that if a sentence
contains more than one verb, more than one seman-
tic representation may be generated. For example,
S3 and S4 in Table 1 are from the same sentence.

3.3 The Question2SRL Mapper
The Question2SRL mapper converts a question q
in the training data into its semantic representation
qsem. Instead of applying an SRLer directly on q,
Question2SRL uses the semantic role labels in the
semantic representation asem of q’s corresponding
answer a to label the phrases or words in q. We
design two approaches for Question2SRL, namely,
Hard-Question2SRL and Soft-Question2SRL:

Hard-Question2SRL: In this approach, for each
semantic role label l that occurs in an answer’s SRL
representation, if its corresponding phrase or word
occurs in the question, the phrase or word in the
question is replaced with label l. The reason why
we did not use semantic role labeling to directly
label the question is that we would like to keep the
question words (e.g., what, where, when, etc.) in
the semantic representation of the question, and
also that semantic role labeling may generate la-
bels for a question which do not occur in its answer.
The lower part of Table 1 provides the semantic rep-
resentations of the questions corresponding to the
answer SRL representations in the upper part of the
table. Note that Q3 and Q4 are two different repre-
sentations of the same question, resulting from two
different SRL representations of the same answer
(S3 and S4). Thus, one original training example

3We also used the Clear Parser SRL (Choi and Palmer,
2011) in our experiments. SRL BERT leads to better results.
In this paper we report the results from SRL BERT.
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Table 1: Semantic representation of answers and questions (ARG0: agent , ARG1: patient, ARG2: attribute,
ARGM-NEG: negation, ARGM-PRP: purpose)

Semantic representation for sample input sentences (answers):
S1. [ARG1: the fuel filler funnel] is [ARG2: under the luggage compartment floor covering] .
S2. [ARG0: this vehicle] has a capless refueling system and does [ARGM-NEG: not] have [ARG1: a fuel cap] .
S3. distribute [ARG1: the trailer load] [ARGM-PRP: so 10 - 15 % of the total trailer weight is on the tongue] .
S4. distribute the trailer load so [ARG1: 10 - 15 % of the total trailer weight] is [ARG2: on the tongue] .
Semantic representation for the questions corresponding to the above sentence representations in the training data:
Q1: where is [ARG1: the fuel filler funnel] ?
Q2: does [ARG0: this vehicle] have [ARG1: a fuel cap] ?
Q3: how much of [ARG1: the trailer load] should be on the tongue ?
Q4: how much of the trailer load should be [ARG2: on the tongue] ?

can be converted to one or more SRL-labeled ex-
amples for training a Seq2Seq model, resulting in
an increase in the size of training data.

Soft-Question2SRL: The words/phrases labeled
with a semantic role in an answer may not occur ex-
actly in the question, but their synonyms or similar
expressions may. In this case, Hard-Question2SRL
may not find the exact match in the question. To
address this issue, we design Soft-Question2SRL
that considers the semantic similarity between the
words/phrases corresponding to a semantic role
label in asem and potential words/phrases in a ques-
tion to find the best match. Algorithm 1 outlines the
procedure. Given a set of SRLs (L) generated for
answer a by Semantic Role Labeler, and question
q, we first generate all possible n-grams (nG) from
q, then compare the phrases/words corresponding
to each label l ∈ L, denoted by words(l), with
each n-gram ng ∈ nG. The n-gram with max-
imum similarity with words(l) is selected to be
replaced by l as long as the similarity is greater
than or equal to a threshold α. We calculate the
similarity between n-grams and semantic role label
words based on cosine similarity between their cor-
responding Sentence-BERT embeddings (Reimers
and Gurevych, 2019).

Table 2 shows how the algorithm works using an
example. The first box of the table illustrates the
answer a, and its respective question q. Each sub-
sequent box shows a semantic role label l ∈ L in
asem, the best n-gram ng matching with words(l),
and their respective similarity score. The final
box shows the semantic representation of question
qsem after replacing n-grams with SRLs in previ-
ous steps. Note that we replace the n-gram with an
SRL label if the score is higher than or equal to a
threshold (i.e., α).

Algorithm 1: Soft-Question2SRL
Input :L // a set of SRLs generated for

a
q // question

Output :qsem // semantic rep. of q
nG← Generate all n-grams from q
for each l ∈ L do

score← 0
for each ng ∈ nG do

sim← Cosine(words(l), ng)
if score < sim then

score← sim
lbest ← l

if score ≥ α then
qsem← replace ng in q with lbest

3.4 Sequence-to-Sequence Learning

Given a set of ⟨asem, qsem⟩ pairs (where asem
and qsem are an SRL-labeled answer and an SRL-
labeled question, respectively), we train a Seq2Seq
model to convert asem to qsem. Any Seq2Seq
model can be used for this purpose. In our ex-
periment, we use the state-of-the-art models T5
(Raffel et al., 2020) and BART (Lewis et al., 2020)
to evaluate our method.

We feed the Seq2Seq model with asem as the
input sequence, where some of words/phrases
in the original answer a are replaced by SRLs.
While SRLs provide the Seq2Seq model with
useful information, this replacement may re-
duce the information to which model is ex-
posed. As another strategy, we add the actual
answer a as a context to the input sequence.
That is, the input to the Seq2Seq model is
⟨answer: asem context: a⟩, where answer: and
context: are tokens prepended to asem and a, re-
spectively. Alternatively, we can add the SRL la-
bels of the actual answer a and their corresponding
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Table 2: An example of Soft-Question2SRL mapper converting a question into its semantic representation. Each row
shows the best score and corresponding n-gram in the question (α = 0.85).

Semantic representation (asem) for sample answer sentence a and its corresponding question q:
asem = [ARGM-TMP: in january 2009] , [ARG0: the green power partnership -lrb- gpp , sponsored by the epa -rrb-]
[V: listed] [ARG1: northwestern] [ARG2: as one of the top 10 universities in the country in purchasing energy from
renewable sources] .
q = in 2009 , who named northwestern as one of the top 10 universities in the country in purchasing renewable energy ?
l = [ARGM-TMP], words(l) = “in january 2009”
Best matching ng = “in 2009”, Similarity score = 0.91 > α⇒ Replace ng with l in qsem
l = [ARG0], words(l) = “the green power partnership -lrb- gpp , sponsored by the epa -rrb-
Best matching ng = “in purchasing renewable energy ?”, Similarity score = 0.46 < α
l = [V], words(l) = “ listed”
Best matching ng ← “in”, Similarity score = 0.42 < α
l = [ARG1], words(l) = “northwestern”
Best matching ng = “northwestern”, Similarity score = 1.00 > α⇒ Replace ng with l in qsem
l = [ARG2], words(l) = “as one of the top 10 universities in the country in purchasing energy from renewable sources”
Best matching ng = “as one of the top 10 universities in the country in purchasing renewable energy”,
Similarity score = 0.98 > α⇒ Replace ng with l in qsem
qsem = ARGM-TMP , who named ARG1 ARG2 ?

words separated by a special token <sep> to the
input sequence. The input to the Seq2Seq model is
⟨answer: asem <sep> label words <sep>⟩.

Table 3 shows a training example with three vari-
ations of the input. We will compare the three input
versions of the Seq2Seq model in the experiment.

3.5 The SRL2Question Mapper

In the inference phase, the SRLer is first used to
convert an input sentence (i.e., answer â) into its
semantic representation (âsem). Then, the trained
Seq2Seq model is used to convert âsem into a se-
mantic representation of a question (q̂sem). After
that, the SRL2Question mapper transforms all the
semantic role labels in the generated semantic rep-
resentation q̂sem into words or phrases. In partic-
ular, for each semantic role label l in the seman-
tic representation q̂sem generated by the Seq2Seq
model, the SRL2Question mapper looks for label
l in all the semantic representations âsem of the
input sequence â, and uses the phrase or word in â
that corresponds to l to replace l in q̂sem. Table 4
shows examples of generated semantic representa-
tions and converted questions, together with their
input sentences, semantic representations of the
input sentences, and ground truth questions.

4 Empirical Evaluation

We investigate (1) whether using SRL with
Seq2Seq models improves the QG performance
of Seq2Seq without SRL, and (2) how our method
compares with the state-of-the-art QG methods.

4.1 Datasets
We evaluate our method on 3 datasets4. The first
one contains QAs created by human annotators
from two car manuals of Ford and GM, denoted
as Car Manuals. The second dataset is SQuAD
(Rajpurkar et al., 2016), containing QAs created
by Amazon Mechanical Turk crowd-workers from
Wikipedia articles. We use the processed sentence-
level SQuAD dataset (Du et al., 2017), where the
answer in a QA pair is a single sentence. The third
dataset is NewsQA (Trischler et al., 2016), a ma-
chine comprehension dataset of human-generated
QA pairs from CNN news articles. We created a
sentence-level NewsQA dataset. The sentences
were extracted from corresponding paragraphs
based on their answer span. All the datasets con-
tain training, testing and development sets. Their
statistics are given in Table 5. In these datasets,
multiple QA pairs may have the same answer sen-
tence but different questions. For example, two
QA pairs in SQuAD share "alfred north whitehead
was born in ramsgate, kent, england, in 1861" as
the answer, but their questions (i.e., "in what year
was whitehead born?" and "where was alfred north
whitehead born?") are different and cover different
aspects of the answer sentence.

4.2 Automatic Evaluation Metrics
For automatic evaluation, we use the precision,
recall and F scores proposed in (Schlichtkrull and
Cheng, 2020)5 for measuring the quality and diver-
sity of generated questions. Given a test example

4The code and data sets are available at https://github.
com/Naeiji/QGwSRL

5These scores are called u, v and F scores in (Schlichtkrull
and Cheng, 2020).
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Table 3: A training example for Seq2Seq model with 3 different strategies for input (i.e., answer) representations.

input answer: [ARG1] was named [ARG2], [ARGM-PRD].
input+C answer: [ARG1] was named [ARG2], [ARGM-PRD]. context: denver linebacker von miller was named

super bowl mvp, recording five solo tackles, 2 1/2 sacks, and two forced fumbles.
input+L answer: [ARG1] was named [ARG2], [ARGM-PRD]. <sep> [ARG1] denver linebacker von miller <sep>

[ARG2] super bowl mvp <sep> [ARGM-PRD] recording five solo tackles , 2 1/2 sacks , and two forced
fumbles <sep>

output who won the [ARG2] ?

Table 4: Examples of sentence â, its semantic representation âsem, the outcome q̂sem generated by Seq2Seq, the
question q̂ converted from q̂sem, and ground-truth question Qt from the Car Manuals dataset.

â: before placing a child in the child restraint , make sure it is securely held in place .
âsem: before placing [ARG1] [ARG2] , make sure it is securely held in place .
q̂sem: what should i do before placing [ARG1] [ARG2] ?
q̂: what should i do before placing a child in the child restraint ?
Qt: what should i do before placing a child in the child restraint ?
â: adjust the temperature setting using the + and - temperature buttons on the right-hand side of the climate controls .
âsem1: adjust the [ARG1] setting using the + and - temperature buttons on the right-hand side of the climate controls .
âsem2: adjust the temperature setting using [ARG1] [ARGM-LOC] .
q̂sem1: how do i adjust the [ARG1] setting ?
q̂sem2: how do i adjust the temperature [ARGM-LOC] ?
q̂1: how do i adjust the temperature setting ?
q̂2: how do i adjust the temperature on the right-hand side of the climate controls ?
Qt: how do i adjust the temperature on the passenger ’s side ?

Table 5: Statistics of Three Datasets

Dataset training set test set development set
Car Manuals 9,184 QAs 1,869 QAs 1,403 QAs

SQuAD 70,484 QAs 11,877 QAs 10,570 QAs
NewsQA 91,536 QAs 5,067 QAs 5,136 QAs

consisting of input text a and a set of ground-truth
questions T , the precision and recall of a set of
questions G generated from a by a QG method are
defined as:

precision(G,T, s) =
1

|G|
∑

g∈G

max
t∈T

s(g, t)

recall(G,T, s) =
1

|T |
∑

t∈T

max
g∈G

s(g, t)

where s is a scoring function that measures the
similarity between two questions. We use the simi-
larity function used in BLEU-n (n-gram text over-
lap), ROUGE-L (longest common subsequence text
overlap) and METEOR (which takes into account
word re-ordering, stemming, synonyms, and para-
phrase matching) to compute s. F-score is defined
as the harmonic mean of precision and recall.

4.3 Comparison of Seq2Seq+SRL with
Seq2Seq methods

To investigate whether the use of SRL with
Seq2Seq models improves the QG performance
of Seq2Seq models trained with original sentences,

we conducted experiments with two state-of-the-
art transformer-based Seq2Seq models: (1) BART
(Lewis et al., 2020) and (2) T5 (Raffel et al., 2020).

We fine-tune the Huggingface pretrained models
(Wolf et al., 2019) of BART-base and T5-small
with 139 and 60 million parameters respectively.
We use the smallest available model sizes of BART
and T5 to avoid GPU memory error. Four V100-
SXM2 32GB GPUs are used for fine-tuning. For
baselines, T5 and BART are fine-tuned using the
original sentence-based QA pairs in each training
set to generate a question given an answer.

For our method, we use a pre-trained SRL BERT
model (Shi and Lin, 2019) provided in AllenNLP
(Gardner et al., 2017) as the Semantic Role Labeler
to convert answer sentences to their SRL represen-
tations. We then fine-tune T5 or BART to learn a
model that maps an SRL representation of an in-
put sentence to that of the question, which is then
mapped to a natural language question.

To determine the values of hyperparameters in
the Seq2Seq model (T5 and BARR) in either base-
line or our model, we conduct random search
(Bergstra and Bengio, 2012) due to its efficiency.
To do so, we randomly select 10 combinations of
learning rates (LR) and epoch numbers (EP) as fol-
lows: "LR = 5× 10−6, EP = 2"; "LR = 10−5, EP
= 8"; "LR = 5 × 10−5, EP = 5"; "LR = 5 × 10−5,
EP = 10"; "LR = 10−4, EP = 10"; "LR = 10−4, EP
= 4"; "LR = 5 × 10−4, EP = 3"; "LR = 5 × 10−4,
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EP = 7"; "LR = 10−4, EP = 4"; and "LR = 10−4

EP = 10". The best model for each dataset and
each method is chosen based on the final loss of
the development set. We combine an actual batch
size of 16 with 2 gradient accumulation steps per
minibatch to artificially create a batch size of 32.
The maximum sequence length is set to 512 for
both input and output. For decoding method, we
use beam search with a beam size of 10.

4.3.1 Results of Automatic Evaluation
Table 6 shows the automatic evaluation results on
Car Manuals with BART and T5 as the baseline.
Hard is our method using Hard-Question2SRL
for Question2SRL. Soft is our method with Soft-
Question2SRL with 80% as the soft-matching
threshold (α). Soft+C and Soft+L are our meth-
ods with Soft-Question2SRL plus using the original
question or SRL labels and their corresponding
words as the context, respectively.

Table 6: Automatic evaluation results on Car Manuals with
BART and T5 as Baselines (P, R and F mean Precision, Recall
and F-score in %). Hard and Soft+ methods are variations of
our method with BART or T5 as the Seq2Seq model.

BLEU-4 ROUGE-L METEOR
QG Method F P R F P R F P R

BART 57.2 63.7 51.9 71.7 75.9 68.0 57.6 63.7 52.6
Hard 70.9 68.3 73.6 76.4 75.7 77.1 58.7 57.5 59.9
Soft 82.6 76.3 90.1 90.6 87.9 93.5 58.8 55.7 62.2
Soft+C 88.3 85.4 91.4 94.3 94.0 94.6 63.0 62.1 63.9
Soft+L 89.0 85.1 93.2 94.8 93.7 95.9 63.6 61.8 65.5

T5 45.0 50.3 40.7 62.4 66.0 59.2 46.3 50.0 43.1
Hard 63.9 58.8 70.0 71.5 69.1 74.0 52.3 49.3 55.7
Soft 77.0 71.5 83.5 85.9 82.7 89.4 53.6 50.4 57.1
Soft+C 85.9 84.1 87.8 91.9 91.5 92.4 59.9 59.3 60.5
Soft+L 84.7 82.8 86.6 91.0 90.1 92.0 58.8 57.6 60.0

Rule Based 17.4 13.9 23.2 36.2 31.6 42.5 22.0 18.5 27.1

As shown in Table 6, using SRL representations
to train a QG model with either BART or T5 signif-
icantly improves the baseline performance on Car
Manuals. This is due to generalization of sentences
into SRL representations, allowing general seman-
tic patterns to be modeled and used in QG. The use
of SRLs also increases the number of training ex-
amples due to the fact that the SRLer can convert a
sentence into multiple SRL-labeled sentences. All
the variations of our method significantly increase
the recall and F-scores in all types of measures
(BLEU, ROUGE and METEOR) and they also in-
crease precision in almost all of the cases. The
recall increase is due to the fact that the SRLer can
convert a sentence into multiple SRL-labeled sen-
tences, leading to questions asking about different
aspects of the sentence.

Comparing the hard and soft versions of our

method, Soft-Question2SRL is better than Hard-
Question2SRL in all cases, indicating that allowing
different but similar expressions in the correspond-
ing question and answer when labelling the ques-
tion with SRLs is important and beneficial. We
also see that the use of the original source sentence
or SRL labels as a context in the input is beneficial.
This is probably because the error propagation from
semantic role labeling has less impact when (part
of) the original sentence are given as a context.

Table 7: Automatic evaluation results on SQuAD with BART
and T5 as baselines (P, R and F mean Precision, Recall and
F-score). Hard and Soft+ methods are different variations of
our method with BART and T5 as the Seq2Seq models.

BLEU-4 ROUGE-L METEOR
QG Method F P R F P R F P R

BART 15.2 21.4 11.7 42.9 48.0 38.8 20.6 22.6 18.9
Hard 17.8 17.9 17.6 45.0 44.0 46.2 21.4 20.3 22.6
Soft 19.6 18.5 20.9 46.6 44.3 49.1 22.4 21.0 24.0
Soft+C 19.7 20.5 19.0 47.4 47.0 47.9 22.9 21.8 24.1
Soft+L 20.0 20.2 19.9 48.1 46.9 49.3 23.3 21.8 25.0

T5-single 15.0 19.9 12.0 41 46.3 36.7 19.5 23.2 16.7
Hard 16.6 16.1 17.1 43.4 42.2 44.5 20.3 19.6 21.1
Soft 18.0 16.6 19.8 44.8 43.0 46.8 21.5 20.9 22.2
Soft+C 19.0 19.6 18.4 45.7 45.7 45.8 22.1 22.2 22.0
Soft+L 19.9 20.4 19.4 48.0 47.1 48.9 23.2 21.8 24.8

Tables 7 shows the automatic evaluation results
on the SQuAD dataset with BART and T5 as the
baseline. Again, we observe that all variations of
our method significantly outperform the baseline
on recall and F-score. On this data set, the BART
baseline shows the best precision. However, the
lower precision of our method is due to the incom-
pleteness of the ground truth questions in SQuAD.
That is, many of the questions our method gener-
ates are good questions, but they do not match the
ground truth questions in the data set6.

Table 11 in Appendix B shows the generated
questions for 3 testing examples from our method
(Soft+L) with T5 and T5 without SRL. As shown,
our method generates more questions covering dif-
ferent aspects of an input sentence, while T5 with-
out SRL generates only one question. In all the 3
examples, there is only one ground-truth question.
When precision is computed, the extra questions we
generated have a low precision due to poor match
with the ground truth even though they are good
questions. This explains why our methods have
lower precision scores than the baselines.

The results on this dataset also show that soft
matching is better than hard matching, and the use
of context is better with T5, but has no obvious

6Such a problem is also mentioned by others such as in
(Sultan et al., 2020)
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advantage for BART. We show the impacts of soft-
matching threshold α in Appendix E. In practice,
α can be tuned using the development set.

Similar results are observed on the NewsQA
dataset, as shown in Table 12 in Appendix C.

4.3.2 Human Evaluation
We randomly selected 50 input sentences from the
SQuAD dataset and asked 5 English speakers to
rate the quality of generated questions from each
method in terms of recall, clarity, Q&A relatedness
and grammar. All the criteria are rated based on
a 5-point scale. A precision score for each ques-
tion is computed by averaging the scores for clar-
ity, Q&A relatedness and grammar. An overall
score (F score) for each test input sentence is com-
puted as the harmonic mean of precision and recall
scores. Detailed information on the questionnaire
we provided to the human evaluators is provided in
Appendix 4.3.2.

Table 8 shows the average scores among the hu-
man evaluators. The results show that our methods
(Soft+L with BART and T5+Soft with T5) are sig-
nificantly better than their corresponding baseline
in recall and F-measure, and they are also better
than the baselines in precision.

4.4 Comparison with other SOTA methods
We compare our method with additional SOTA
baselines, most of which can generate multiple
questions from an input sentence:

• BART-multi and T5-multi. BART or T5 model
fine-tuned to generate multiple sequences given
an input sequence by using <sep> tokens to sepa-
rate the ground-truth questions in the output part
of each training example.

• BART-divbeam and T5-divbeam. BART or T5
model that uses decoding-based diverse beam
search (Vijayakumar et al., 2016) to generate
multiple questions. We use beam size of 6 with
3 diverse groups and diversity penalty of 0.4 all
same as in (Zhang and Zhu, 2021). We select 3
best questions for the evaluation7.

• ProphetNet-single and ProphetNet-multi.
ProphetNet (Qi et al., 2020) is another
Transformer-based SOTA model. In ProphetNet-
single, ProphetNet is fine-tuned to generate

7We select top-3 questions because the average number
of questions generated by our method per input sentence is 3
(see Table 10 for more details), to make the comparison fair.
In general, the more questions are generated, the lower the
precision but better the recall.

a single question. In ProphetNet-multi, it is
fine-tuned to generate multiple sequences from
an input sequence by using <sep> tokens to
separate the ground-truth questions.

• MP-GSN (Zhao et al., 2018) An LSTM-based
Seq2Seq QG model. We use the sentence-level
MP-GSN with the default setting in the imple-
mentation of MP-GSN in (Lee, 2019).

• Rule-based method with 75 rules based on se-
mantic role labels to convert a sentence into ques-
tions.8

The hyper-parameters for all the Seq2Seq meth-
ods are determined through random search (de-
scribed in Section 4.3).

Table 9 shows the results of these SOTA methods
on SQuAD compared to our method (Soft+L) with
BART or T5 as the Seq2Seq model. As shown, our
methods outperform all the baselines in F-score
and recall. It is also the best in precision in all
underlying metrics except for precision using ME-
TEOR where ProphetNet-single is the best and our
methods are the second best.

Compared to Seq2Seq-multi, our methods out-
perform them significantly in all metrics, indicating
using SRL to generate multiple questions is much
more effective than using the <sep> tokens in the
output parts of the training sequences.

Our methods also outperform the diverse-beam-
search-based methods for generating multiple ques-
tions, indicating different SRL representations of a
sentence can more effectively lead to generation of
diverse questions that cover different aspects of the
input sentence.

Compared to the rule-based method, our method
outperforms it significantly on all measures with
big margins. This indicates that SRL-based
Seq2Seq model better captures the relations be-
tween SRL representations of questions and those
of answers than rules, which complicated “rules"
can be learned by Seq2Seq models.

5 Performance with Different Data Sizes

Among the 3 datasets, Car Manuals is the smallest,
and the improvements of our method on this dataset
over the baselines are the largest. To further inves-
tigate whether our method makes better improve-
ment when the data set is small, we conducted an
experiment with one quarter of the SQuAD dataset.

8An example rule is "Replace [ARG1] with what if it
appears at the beginning of the sentence".
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Table 8: Human evaluation results on 50 test sentences from SQuAD. Precision is the average of Clarity, Relatedness
and Grammar scores. F-measure is the harmonic mean of precision and recall scores

QG System F-measure Precision Recall Clarity Relatedness Grammar
Score (1-5) ± stdev Score (1-5) Score (1-5) Score (1-5) Score (1-5) Score (1-5)

BART 3.64 ± 0.33 4.73 3.06 4.70 4.56 4.94
Soft+L (with BART) 4.32 ± 0.28 4.77 4.16 4.75 4.61 4.93
T5 3.63 ± 0.37 4.71 3.08 4.66 4.63 4.85
Soft+L (with T5) 4.40 ± 0.29 4.73 4.25 4.72 4.48 4.90

Table 9: Comparison with SOTA models on SQuAD

BLEU-4 ROUGE-L METEOR
QG Method F P R F P R F P R
BART-multi 15.2 18.4 12.9 41.8 44.5 39.3 20.0 21.2 18.8
T5-multi 14.9 16.5 13.6 40.5 42.2 39.0 19.3 20.9 17.9
BART-divbeam 17.5 19.2 16.1 46.7 46.9 46.5 22.6 21.7 23.5
T5-divbeam 17.6 19.2 16.3 46.3 46.4 46.1 22.4 21.8 23.1
ProphetNet-single 16.2 20.3 13.5 43.0 46.4 40.2 21.2 22.7 19.8
ProphetNet-multi 14.5 17.7 12.3 39.6 43.7 36.2 19.8 21.3 18.5
MP-GSN 12.1 17.0 9.5 39.5 43.9 35.8 17.7 19.1 16.5
Rule Based 9.1 8.0 10.4 25.1 23.0 27.5 15.0 14.5 15.4
Soft+L (Ours with BART) 20.0 20.2 19.9 48.1 46.9 49.3 23.3 21.8 25.0
Soft+L (Ours with T5) 19.9 20.4 19.4 48.0 47.1 48.9 23.2 21.8 24.8

Figure 3 in Appendix F illustrates the relative im-
provement of our method over the T5 baseline in
F-measure, precision and recall. The relative im-
provement is computed as: scoreour−scoret5

scoret5
. The

blue bars in the figure represent the improvement
on the one-quarter subset of SQuAD and yellow
ones represent that on the whole SQuAD dataset.
Clearly, the improvements of our method over the
T5 baseline are larger on the smaller dataset than
on the whole SQuAD dataset. This indicates that
our SRL-based Seq2Seq method can better handle
smaller datasets than its Seq2Seq baselines due to
the increase in training examples when we label
the QAs with SRLs.

6 Conclusions

We proposed a novel QG method that learns a
Seq2Seq model to convert an SRL representation
of an input sentence into an SRL representation
of a question, which is then converted to a natural
language question. Similar to rule-based meth-
ods, our SRL-based Seq2Seq methods can gen-
erate multiple questions from an input sentence,
significantly improving the recall and overall per-
formance of Seq2Seq QG. It is also much better
than rule-based methods because better and more
complicated "rules" can be learned via the Seq2Seq
model. Our evaluation on three real-world datasets
shows that the proposed method significantly out-
performs both rule-based, original Seq2Seq meth-
ods and several other SOTA models, especially in
recall and overall performance. As future work, we
will extend this method to paragraph-based ques-

tion generation.

Limitations

A limitation of our method is that its performance
depends on the SRL performance. If the input sen-
tences are not well-formed, semantic role labeling
may not produce correct labels. Also, we found
that some of the questions generated by our method
for the same input sentence may be similar or same
in meaning with some minor differences in the use
of words. This may not be a problem if the applica-
tion allows similar questions to be generated (e.g.,
for reading compression). But in the application
where duplicated questions are not allowed or not
desired, a post-processing step to remove questions
with the same meaning is needed.
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A Average Number of Questions
Generated by our Methods

Table 10: Average numbers of generated questions per
source sentence by our method with BART and T5

QG Method Avg. # of questions
BART+Soft 3.3
BART+Soft+C 2.8
BART+Soft+L 3.0
T5+Soft 3.3
T5+Soft+C 2.7
T5+Soft+L 3.0

Table 10 provides the average number of ques-
tions generated by different versions of our meth-
ods on the SQuAD dataset.

B Examples of Generated Questions from
SQuAD

Table 11 shows 3 examples of an input sentence
â, its ground-truth question (qg) and the generated
questions (q̂i) from our method (Soft+C) with T5
compared to the question (gt) generated from the
T5 baseline without the use of SRLs. As shown, our
method generates more questions covering differ-
ent aspects of the input sentence, while T5 without
SRL generates only one question. In all these 3 ex-
amples, there is only one ground-truth question in
the data set. When precision is computed, the extra
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Table 11: Three Examples showing the input sentence â, its ground-truth question qg , the question generated by T5 (qt), and
the questions q̂i generated by our Soft+L method with T5 and alpha=80% on the SQuAD dataset

â: there are two categories of repetitive dna in genome : tandem repeats and interspersed repeats .
qg: what are two types of repetitive dna found in genomes ?
qt: what are the two categories of repetitive dna in genome ?
q̂1: what are the two categories of repetitive dna in the genome ?
q̂2: how many categories of repetitive dna are there in the genome ?
â: before the solar/wind revolution , portugal had generated electricity from hydropower plants on its rivers for decades .
qg: through what renewable resource had portugal generated electricity before the solar/wind revolution ?
qt: before the solar/wind revolution, portugal had generated electricity from what ?
q̂1: what had portugal generated electricity from before the solar/wind revolution ?
q̂2: how long had portugal generated electricity from hydropower plants on its rivers ?
â: the term parinirvana is also encountered in buddhism , and this generally refers to the complete nirvana attained by the

arahant at the moment of death , when the physical body expires .
qg: what term is used for the complete nirvana attained by the arahant at death ?
qt: what is the term parinirvana used in buddhism ?
q̂1: what term is also encountered in buddhism ?
q̂2: when is the complete nirvana attained by the arahant ?
q̂3: who attained the complete nirvana at the moment of death ?
q̂4: what does the term parinirvana refer to at the moment of death ?
q̂5: what term is used in buddhism to describe the complete nirvana attained by the arahant at the moment of death ?

questions we generated have a low precision due to
poor match with the ground truth even though they
are good questions. This explains why our meth-
ods sometimes have lower precision scores than
the baseline method in automatic evaluation. This
unfairness is due to the incompleteness of ground
truth questions in the SQuAD dataset.

C Results on NewsQA Dataset

Table 12: Automatic evaluation results on NewsQA
with BART and T5 as Baselines (P, R and F mean
Precision, Recall and F-score). Hard and Soft+ methods
are different variations of our method with BART and
T5 as the Seq2Seq models.

BLEU-4 ROUGE-L METEOR
QG Method F P R F P R F P R

BART-single 10.7 16.8 7.8 38.3 44.7 33.6 17.6 20.6 15.3
Hard 12.2 13.2 11.3 41.4 41.8 41.1 19.0 18.1 20.0
Soft+A80 13.4 12.8 14 42.8 41.9 43.8 19.9 18.9 21.1
Soft+A80+C 14.8 16.3 13.6 43.8 44.6 43.0 20.6 20.4 20.8

T5-single 10.4 15.8 7.8 37.6 44.1 32.8 17.1 20.7 14.6
Hard 11.9 12.6 11.2 40.9 41 40.8 18.8 18.2 19.6
Soft+A80 13.3 12.9 13.8 42.6 41.6 43.7 19.8 18.8 20.8
Soft+A80+C 14.1 15.7 12.9 42.9 43.9 42.0 20.0 20.3 19.8

Rule Based 4.5 3.8 5.6 22.8 21.8 24.0 12.8 14.2 11.7

Table 12 shows the results of different variations
of our method on the NewsQA dataset, compared
with BART and T5 baselines.

D Questionnaire for Human Evaluation

We ask the human evaluators to rate the quality of
generated questions from each method in terms of
recall, clarity, Q&A relatedness and grammar on a
scale of 1-5 using the following criteria.

For Recall, the ratings are:

• 1= Bad: the generated questions do not cover any fact in the
answer;

• 2= Unacceptable: the generated questions cover only a
small portion of the facts in the answer;

• 3= Borderline: the generated questions cover around 50%
of the facts in the answer;

• 4= Acceptable: the generated questions cover most of the
facts in the answer; and

• 5= Good: the generated questions cover all the facts in the
answer.

For Clarity, the ratings are:

• 1= Bad: the question is completely unclear in meaning or
makes no sense;

• 2= Unacceptable: the question is mostly unclear;
• 3= Borderline: the question is between unacceptable and

acceptable;
• 4= Acceptable: the question is clear and understandable,

but the use of words can be improved; and
• 5= Good: the question has no problem. It is clear, simple

and uses the right words.

For Q&A Relatedness, the ratings are:

• 1= Bad: the question is completely unrelated to the answer
sentence it is generated from;

• 2= Unacceptable: the question is somewhat related to the
answer sentence, but it cannot be answered by the answer
sentence;

• 3= Borderline: the question can be partially answered by
the answer sentence, but far from completely;

• 4= Acceptable: the question can be mostly answered by the
answer sentence, although maybe not completely; and

• 5= Good: the question can be very well answered by the
answer sentence.

For Grammar, the ratings are:

• 1= Bad: the grammar of the question is completely wrong;
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Figure 2: BLEU-4, ROUGE-L and METEOR F-scores
of T5 on SQuAD (SQ) and Car Manuals (AM) using
different alphas values.

• 2= Unacceptable: the question has major grammatical prob-
lems;

• 3= Borderline: the question has a grammatical error, which
is between major and minor;

• 4= Acceptable: the question has only a minor grammatical
problem; and

• 5= Good: the question is completely grammatically correct.

E Sensitivity Analysis

To see how the soft-matching threshold α affects
the results, we experiment with different α values
ranging from 70 to 95 and use the resulting datasets
to fine-tune T5. In this experiment, we use the best
configurations of the T5 model on the Car Manuals
and SQuAD datasets. Six α values of 70, 75, 80, 85,
90, and 95 are selected for this purpose. Figure 2
shows how the F-score of BLEU-4, ROUGE-L and
METEOR changes with α on SQuAD (SQ) and
Car Manuals (CM). As can been seen, on SQuAD
all the lines are quite flat, indicating α values do
not have much impact on the performance. This is
likely due to the best-matching n-gram in a ground-
truth question either matches with the word/phrase
replaced by an SRL in the answer very well or
very poorly, leading to insensitivity to the thresh-
old value between 70 and 95. Similar results are
observed on the Car Manuals dataset although the
scores are increasing with the α on this dataset, but
slowly.

F Performance vs Different Data Sizes

To further investigate whether our method makes
better improvement over the baselines when the
data set is small, we conducted an experiment with
one quarter of the SQuAD dataset. Figure 3 il-
lustrates the relative improvement of our method

(a) F-measure

(b) Precision

(c) Recall

Figure 3: Comparison of relative change (percent) be-
tween the first quarter of SQuAD and whole SQuAD
dataset using T5+C versus T5 with alpha=85%.

over the T5 baseline in F-measure, Precision and
Recall. The relative improvement is computed as:
scoreour−scoret5

scoret5
.

The blue bars in the figure represent the improve-
ment on the one-quarter subset of SQuAD and
yellow ones represent that on the whole SQuAD
dataset. Clearly, the improvements of our method
over the T5 baseline are larger on the smaller
dataset than on the whole SQuAD dataset. This
indicates that our SRL-based Seq2Seq method can
better handle smaller datasets than its Seq2Seq
baselines due to the increase in training examples
when we label the QAs with SRLs.
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Abstract

Large pre-trained language models have
achieved impressive results on various style
classification tasks, but they often learn spuri-
ous domain-specific words to make predictions
(Hayati et al., 2021). While human explanation
highlights stylistic tokens as important features
for this task, we observe that model explana-
tions often do not align with them. To tackle
this issue, we introduce StyLEx, a model that
learns from human annotated explanations of
stylistic features and jointly learns to perform
the task and predict these features as model ex-
planations. Our experiments show that StyLEx
can provide human-like stylistic lexical expla-
nations without sacrificing the performance
of sentence-level style prediction on both in-
domain and out-of-domain datasets. Explana-
tions from StyLEx show significant improve-
ments in explanation metrics (sufficiency, plau-
sibility) and when evaluated with human an-
notations. They are also more understandable
by human judges compared to the widely-used
saliency-based explanation baseline.1

1 Introduction

People use style as a strategic choice for their per-
sonal or social goals in communications, making
style analysis a long-studied field in NLP (Hovy,
1987; Kabbara and Cheung, 2016; Kang and Hovy,
2021). While large language models have obtained
state-of-the-art results on many NLP tasks, they
have been shown to overfit to spurious correlations
in data across several datasets (Sen et al., 2021;
Schlangen, 2021; Bras et al., 2020). Hayati et al.
(2021) found a phenomenon in style classification
tasks where the model’s word-level explanation do
not align with human’s stylistic cues (stylistic cues
are words that signify the style of a text). For in-
stance, words such as “performances” and “wrench”

∗ currently at Google
1Code and data are publicly available at https://github.

com/minnesotanlp/stylex

    :        StyLEx        :  Integrated Gradient      : Both

all the performances are top notch  and once you 
get through the accents all or nothing becomes an 
emotional though still positive wrench of a sit

StyLEx… with top grade …
     0     1      1

positive
Sentiment:

.. top notch ..
Explanation:

  
Human

annotation

StyLEx 
context-aware 
stylistic lexica

Human-curated 
stylistic lexicon

dictionary
 

emotional
….

top
fantastic

awesome

positive
notch

lovelyFigure 1: StyLEx classifies the input sentence’s style
and provides lexical explanation. Compared to expla-
nations computed by the integrated gradient method
(Mudrakarta et al., 2018), StyLEx can find more accu-
rate stylistic words. Green highlight refers to human’s
annotated positive word, pink for StyLEx, blue for base-
line, and purple for both StyLEx and the baseline.

in Figure 1 are marked as important cues for senti-
ment by a saliency method. However, they are dif-
ferent from words that humans perceive as essential
features for predicting the style (“top,” “notch”).

Prior research in style have developed stylistic
lexicon dictionary to identify the style of a text,
such as sentiment or emotion, and in-turn incorpo-
rated them for style classification tasks (Moham-
mad and Turney, 2010; Hutto and Gilbert, 2014;
Tausczik and Pennebaker, 2010). While lexicon-
based matching methods (Taboada et al., 2011;
Eisenstein, 2017) provide interpretability for the
task, they lack coverage and do not incorporate the
context for prediction. On the other hand, current
large scale models like BERT (Devlin et al., 2019)
are effective at style classification. However, their
explanations often reveal that the model do not rely
on the stylistic words to make the prediction. In
this work, we hypothesize that leveraging stylis-
tic lexica along with the effectiveness of a large
scale model like BERT can not only predict style
but also provide meaningful explanations that align
with human style explanations.

Towards this, we introduce StyLEx, a style clas-
sification model that jointly learns to align human-
annotated stylistic cues as explanations and then
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predict the style of the overall sentence based on the
cues (Figure 1). StyLEx uses a semi-supervised ap-
proach to expand the stylistic words from a handful
number of human-annotated stylistics words. First,
we train StyLEx using existing small human stylis-
tic word annotation from Hayati et al. (2021). Then,
we obtain predicted stylistic words on the larger
benchmarking style datasets and retrain StyLEx on
this expanded data to predict both the sentence’s
style label and the stylistic lexical explanation.

In this study, we show that for both in-domain
and out-of-domain data, StyLEx not only shows
competitive classification performance with BERT-
based model, but also generate stylistic lexical
explanations that have higher alignment with hu-
man explanations. In terms of explanation qual-
ity, StyLEx surpasses the baseline method across
multiple explanation metrics. For the sufficiency
metric, we improve upon the baseline by 14.12%
on the average. For plausibility, StyLEx’s lexical
explanations correlate highly with human lexical
annotation ground truth with an average Pearson’s
r correlation score of 44% compared to the base-
line’s correlation score of 3.9%. Finally, we found
that 72.5% of StyLEx’s explanations are more pre-
ferred by human judges compared to the baseline.

2 StyLEx: Style Classification with
Human Lexical Annotations

2.1 StyLEx Model Architecture
StyLEx is a joint model for word-level and
sentence-level style prediction. Unlike a multi-task
learning approach where tasks are independent of
each other, StyLEx exploits these stylistic word
scores obtained from human annotation and then
helps predict the sentence’s styles. As displayed
in Figure 2 (left), StyLEx involves three modules:
a transformer-based (Vaswani et al., 2017; Devlin
et al., 2019) encoder, a word-level style predictor
and a sentence-level style predictor. This work is
based on BERT although the encoder can be ap-
plied to any transformer architecture.

Given an input of token sequence x =
{x1, ..., xn} and its corresponding set of stylistic
word scores {s1, ..., sn}, we encode x using a pre-
trained transformer model. We extract the final
layer output as h = {h1, ...,hn} and feed h to the
word-level style prediction layer which is a neural
classifier that outputs stylistic word logits for each
word lwordi computed as follows:

lwordi = Wwordhi + bword

where i ∈ {1, .., n}, Wword is a matrix with the
size H × dlword

, and bword ∈ Rdlword is the bias
term. H is the size of the default hidden layer in
BERT which is 768 and dlword

denotes the number
of classes of each style (e.g., positive or negative
word in a sentiment classification task).

For the sentence-level style classification, we
first take both the encoded representation h and
stylistic word logits lword. We then apply max
pooling on the aggregation of h⊕ lword along the
sequence, resulting in vector v ∈ RH+dlword con-
sisting of important logits. Finally, we input v
into the sentence-level style classifier defined as
follows:
lsentence = softmax(Wsentencev + bsentence)

Psentence = argmax (lsentence)

where lsentence ∈ R2 denotes sentence-level style
logits, Wsentence is a matrix with the size (H +
dlword

) × 2, and Psentence is the index of the pre-
dicted sentence-level style.

During training, StyLEx’s objective is to max-
imize the probability of the sentence’s style and
stylistic word scores. The loss for both sentence-
level style predictor and word-level style predictor
is computed using binary cross entropy loss func-
tion. To jointly train the model, we optimize the
following loss:

L = Lstyle + α× Lword
where α is a regularization hyperparameter.

2.2 StyLEx Model Training
To train StyLEx, we need a dataset of stylistic
sentences along with their corresponding stylistic
words (§2.2.1). We use the HUMMINGBIRD dataset
(Hayati et al., 2021) that contains 500 sentences
with word-level style annotation for obtaining the
stylistic lexical explanation. Due to HUMMING-
BIRD’s small size, we first train StyLEx on HUM-
MINGBIRD and then predict pseudo stylistic words
on larger benchmark style datasets (> 6.8k sen-
tences in the training sets) for training the final
StyLEx model for both sentence classification and
lexical explanation.

2.2.1 Datasets
Following Hayati et al. (2021), we explore the same
set of eight styles used in the dataset: politeness,
sentiment, offensiveness and five emotions (anger,
disgust, fear, joy, and sadness) for style classifica-
tion tasks. We use three sets of publicly available
style datasets for our experiments as follows.

2844



1. Train with 
HUMMINGBIRD

2. Label 
stylistic words

3. Train with 
word-labeled 
style dataset

Style Dataset

word
prediction model

sentence & word
prediction model

[CLS]   sunny   and   happy  day   [SEP]Input → 

…

Sentence-level
Style ClassifierStylistic Word Scores:

... ...

Word-level
Style Predictor

Style: Positive

⊕

  sunny   and happy  day 
0.67 0 1 0

Transformer Encoder

StyLEx

UnlabeledLabeled

HUMMINGBIRD

(a) Model architecture
(b) Model training

Figure 2: (a) StyLEx model architecture (left). Our model has two new modules: a word-level style predictor and
a sentence-level style classifier. An aggregator appends the word-level style logit for each word to the hidden layer
representations of each word and takes the max pooling of this aggregation. (b) Model training (right). Human
labels come from HUMMINGBIRD (Hayati et al., 2021) for stylistic word scores and from ORIGINAL datasets from
sentence-level style classification. (1) We train a stylistic word-level prediction model on HUMMINGBIRD dataset in
order to (2) obtain pseudo-stylistic words of sentences in the ORIGINAL datasets. (3) Then we train another stylistic
word and sentence prediction model on this ORIGINAL sentences, now labeled with stylistic words.

HUMMINGBIRD is a multi-style dataset anno-
tated with human perception scores on its important
stylistic lexicons (Hayati et al., 2021). HUMMING-
BIRD contains 500 sentences based on eight style
datasets: politeness, sentiment, offensiveness, and
five emotions (anger, disgust, fear, joy, and sad-
ness). Three different crowd workers annotate each
word in a sentence with 1 if they perceive the word
as stylistic and 0 if not. The human perception
score for a word is the average score of these anno-
tators’ labels. This perception score is what we call
as stylistic word score and it is within the range [-1,
1]. We use HUMMINGBIRD for training StyLEx’s
word-level style predictor.

ORIGINAL datasets are used by Hayati et al.
(2021) to curate HUMMINGBIRD.2 Since some
style labels in ORIGINAL may contain continuous
numbers rather than binary labels, we follow the
same setting of Hayati et al. (2021) which only uses
binary labels: polite or impolite, positive or nega-
tive, offensive or not offensive, anger or not anger,
and so on. The politeness dataset comes from
StackExchange and Wikipedia requests (Danescu
et al., 2013) (9.8k training instances). The senti-

2We will refer to these individual datasets as “ORIGINAL”

ment dataset is a collection of movie review texts
(Socher et al., 2013) (117k training instances). The
offensiveness dataset is from Twitter (Davidson
et al., 2017) (20k training instances). The emotions
dataset (Mohammad et al., 2018) is collected from
tweets (6.8k training instances). For all these ORIG-
INAL datasets, we use the default train/dev/split as
explained in their papers.

Out-of-Domain (OOD) datasets are used to
evaluate StyLEx’s performance on different do-
mains. For each style, we use data from differ-
ent sources or topics, but their style labels are in
HUMMINGBIRD and ORIGINAL datasets. For po-
liteness, we use the polite and impolite sentences
from the Enron email corpus (Klimt and Yang,
2004; Madaan et al., 2020). For sentiment, we test
StyLEx on 5-core reviews from Amazon review
dataset (Ni et al., 2019) for each product categories,
except for movie reviews. We exclude movie re-
views because it would be similar to the domain
of the ORIGINAL’s sentiment dataset. We convert
ratings of 4-5 to positive labels and ratings of 1-2 as
negative labels. For offensiveness, we use OffensE-
val (Zampieri et al., 2019) dataset for offensiveness.
For five emotions, we collect Reddit comments
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Style ORIGINAL (%) OOD (%)
BERT StyLEx BERT StyLEx

Politeness 67.96 65.84 71.45 74.18
Sentiment 96.52 96.59 86.70 86.99
Offensiveness 97.75 97.81 88.62 89.00
Anger 89.04 89.01 77.49 77.51
Disgust 86.50 86.90 74.06 74.63
Fear 95.66 95.63 78.42 78.48
Joy 88.02 88.12 75.20 74.26
Sadness 88.38 88.41 78.37 78.71

Table 1: For the sentence-level style classification task,
StyLEx does not sacrifice the task performance (F1-
scores) of the BERT model across all of the style tasks
across both ORIGINAL and OOD settings.

from GoEmotions corpus (Demszky et al., 2020).3

2.2.2 Training
The whole pipeline of StyLEx model training is
in Figure 2 (right). First, we train a stylistic word
score prediction model with the same StyLEx ar-
chitecture in Figure 2 (left). We do this since the
sentences in the benchmarking style datasets do not
have human annotations of stylistic word scores.
We then use a semi-supervised learning approach
called, pseudo-labeling (Lee et al., 2013; Rizve
et al., 2020), to label the stylistic words. Now
the sentences in ORIGINAL contain stylistic word
scores which are output by the stylistic word pre-
dictor. Finally, we use both HUMMINGBIRD and
ORIGINAL for training another model of StyLEx
which predicts sentence-level binary style labels
(polite and impolite, positive and negative etc.,)
and provides lexical explanation scores within the
range of [0, 1].4

3 Evaluation on Style Classification

3.1 Baseline
To assess StyLEx’s classification performance, we
compare it with a fine-tuned BERT-based classifier
as a baseline. The training data for the baseline is
also a combination of HUMMINGBIRD and ORIG-
INAL. For explanation evaluation, we compare
StyLEx’s explanation with the commonly-used ex-
planation method called integrated gradients (Mu-
drakarta et al., 2018; Sundararajan et al., 2017), im-
plemented in Captum5. Integrated gradient, which

3More details on the datasets are in Appendix A.1.
4Other implementation details are in Appendix A.2.
5https://captum.ai

can be viewed as an approximate method of esti-
mating Shapley values, is defined as follows. For
the input sequence of words x and a neural network
function F , an attribution score (the explanation)
for each word is defined as the gradient between
the input x and baseline x′ of the function F where
x′ is a zero scalar.

3.2 Results

In our experiment, we have eight StyLEx mod-
els for each style: politeness, sentiment, offen-
siveness, and five emotions. For each style, we
run StyLEx on the ORIGINAL test sets and OOD
datasets for five times with different seeds and re-
port the average of F1-scores in Table 1. For ORIG-
INAL datasets, StyLEx achieves higher F1 scores
compared to the fine-tuned BERT model on sen-
timent, offensiveness, disgust, joy, and sadness.
Overall, we observe that StyLEx does not sacrifice
task performance of the state-of-the-art classifiers
while predicting stylistic word scores. When tested
on the OOD test sets, StyLEx achieves higher F1
score against the fine-tuned BERT model for all
styles. Politeness has the greatest improvement
from 71.48% to 74.18% since we observe that the
ORIGINAL dataset of politeness contains many spu-
rious content words. When we use bigger language
models such as RoBERTa (Liu et al., 2019), XLNet
(Yang et al., 2019), and T5 (Raffel et al., 2020) for
StyLEx, StyLEx still has better results than the
baseline for five styles: sentiment, offensiveness,
anger, and disgust.

From example sentences from the test sets in
Table 2, we can see how StyLEx helps task perfor-
mance. ORIG-1 and ORIG-2 sentences show how
StyLEx can capture stylistic words and correct the
sentence’s style label to disgust. For example, “in-
sult” and “injury” in ORIG-1 are initially labeled
by the integrated gradient method as unimportant
for identifying disgust, but StyLEx identifies the
words as stylistic cues. Similarly, for the word
“downfall” in ORIG-2, StyLEx finds it as offensive,
but the baseline does not. StyLEx also has a higher
stylistic word score for indicating “stogie” as an
offensive word.

As we look at the politeness classification results,
we find that most of the incorrect cases are when
StyLEx mislabels subtle impolite sentences as po-
lite. As we observe in Table 2 ORIG-3, StyLEx
finds the word “please” as a polite cue, but the
ground truth label of the sentence is impolite. We
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ID Model Sentence with Predicted Stylistic Word Scores Sentence Style
Incorrect Baseline Prediction→ Correct StyLEx Prediction

ORIG-1
StyLEx ... because i’m gonna ’ add insult to injury Disgust
Baseline ... because i’m gonna ’ add insult to injury Not Disgust

ORIG-2 StyLEx ... yet you say i’m a stogie you’re your own downfall Offensive
Baseline ... yet you say i’m a stogie you’re your own downfall Not Offensive

Correct Baseline Prediction→ Incorrect StyLEx Prediction

ORIG-3
StyLEx please put them all back are you on dsl Polite
Baseline please put them all back are you on dsl Impolite

ORIG-4
StyLEx

... can’t just be mean and do horrid things busy without
Not Fearpaying the price

Baseline
... can’t just be mean and do horrid things busy without

Fearpaying the price

Table 2: Error analysis on prediction-flipped sentences. Baseline refers to sentence-level style prediction result by
fine-tuned BERT model and highlights are stylistic words found by the integrated gradient method. Green highlights
on the words mean that the model predicts high positive word-level stylistic scores; red for the opposite label (e.g.,
impolite or negative). Sentence Style is a model’s sentence-level style prediction marks correct prediction and
denotes incorrect prediction.

then inspect its continuous score from the origi-
nal politeness dataset by Danescu et al. (2013). It
turns out that its politeness score is −0.38 in the
range of [-2, 2] as -2 being the most impolite sen-
tence. This shows that this sentence score is closer
to neutral than impolite. This finding also reflects
how HUMMINGBIRD dataset has been collected: as
mentioned in Hayati et al. (2021), words from the
offensive dataset (mostly swear words) are often
labeled as impolite by human annotators. Thus,
it may bias the annotators’ view that sentences
with impolite labels are not as bad as offensive sen-
tences, making them not mark offensive sentences
as impolite. Therefore, for such subtle impolite
sentences, human annotators in HUMMINGBIRD

may not label the sentence and words as impolite.
In contrast, StyLEx misclassifies anger sen-

tences as not anger and fear as not fear. As we look
at ORIG-4 in Table 2, StyLEx weakly finds fear
cues (“horrid”, “things”) but they do not help in
boosting the model to predict the sentence as fear.
We conjecture that this is because there are very
few training samples labeled with fear and fear has
quite low word-level inter-annotator agreement as
reported in Hayati et al. (2021).

4 Style Explanation Evaluation

We investigate StyLEx’s explanations if they are
sufficient, plausible, and understandable following
previous works (DeYoung et al., 2020; Jacovi and
Goldberg, 2020; Wiegreffe and Marasovic, 2021;

Rajagopal et al., 2021). Jacovi and Goldberg (2020)
define that a faithful interpretation represents a
model’s reasoning process. To evaluate whether
StyLEx’s explanations are faithful, we run a suffi-
ciency test that evaluates whether the model expla-
nations alone are highly relevant for predicting the
label (Jacovi et al., 2018). Meanwhile, we measure
plausibility to examine whether the explanation is
agreeable to humans (DeYoung et al., 2020). Fi-
nally, understandability measures if a user is able
to understand model explanations (Rajagopal et al.,
2021). For investigating sufficiency and plausi-
bility, we run automatic metrics. To assess un-
derstandability, we ask human judges to choose
the explanation that can be better understood by
a non-expert between StyLEx and the integrated
gradients (IG) method.

4.1 Sufficiency

Following Jain et al. (2020); Rajagopal et al.
(2021)’s sufficiency test, we fine-tune a BERT
model on the top-k words as explanation instead
of the whole sentence. We limit an explanation to
contain 30% words of the average sentence length
for each of the style datasets. These words are
ranked based on their importance score by the base-
line integrated gradient method and StyLEx for all
the positive stylistic words (polite words, positive
words, offensive words, angry words).

In Table 3, we can see that explanations from
StyLEx show much higher predictive performance
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Style ORIGINAL OOD
IG StyLEx IG StyLEx

Politeness 43.92 63.08 52.89 8.19
Sentiment 87.18 89.39 64.93 77.52
Offensiveness 84.87 91.26 82.93 84.75
Anger 68.36 86.90 53.76 73.99
Disgust 82.54 85.91 71.36 75.76
Fear 87.82 96.10 35.85 65.26
Joy 45.54 83.16 55.49 72.71
Sadness 70.49 87.94 47.83 70.95

Table 3: The results for sufficiency test on the ORIGI-
NAL and OOD data show the F1 scores on top-k words.
IG stands for integrated gradient.

compared to explanations extracted by the in-
tegrated gradient method for all styles in both
datasets, ORIGINAL and OOD. This result sug-
gests that human-like stylistic words are much
more strongly predictive of a sentence’s style com-
pared to the gradient-based explanation methods
that often rely on content words as an explanation.
This indicates that StyLEx’s explanations are rel-
atively more faithful compared to the integrated
gradients based method.

4.2 Plausibility

We use two approaches to measure the agreement
between StyLEx’s lexical explanations and stylis-
tic words perceived by humans to assess the plau-
sibility of StyLEx’s explanations. In the first ap-
proach, we compare StyLEx’s stylistic words on
the HUMMINGBIRD test set and compare it with
the ground truth human perception scores in HUM-
MINGBIRD. Second, we compare StyLEx’s top-k
stylistic words with existing expert-curated stylistic
lexicon dictionaries. The domain of the existing
expert-curated stylistic lexicon dictionaries could
be different from the domain of the datasets in
our study which range from social media texts to
Wikipedia. However, it is still useful to compare
how much StyLEx and the baseline agree human
experts on identifying stylistic words.

Figure 3 shows a scatterplot of StyLEx vs. the
integrated gradient. X-axis represents the Pearson’s
r correlation score on the HUMMINGBIRD test
set. Y-axis is the percentage of overlapping words
between the important words found by StyLEx
and the baseline compared with the human-curated
style lexicon dictionary. We calculate the overlap-
ping word percentage as follows. We compute how

offensiveness offensiveness
fear

fear
politenesspoliteness

angerjoy
sadness
disgust

sentiment
sentiment

disgust
sadnessjoy

anger

Figure 3: Plausibility experiment result. There are two
points for each style in this plot. A blue circle point is for
the baseline IG method and a red star point for StyLEx.
X-axis is Pearson’s r correlation score for each style.
Y-axis is the percentage of stylistic sentences with style
words appearing in the existing style lexicon dictionary.

many of the top 30% of the stylistic words in the
ORIGINAL datasets found by StyLEx or baseline
appear in human-curated dictionaries for the emo-
tion/sentiment/offensive lexicons.

In Figure 3, the higher the Pearson’s correlation
score is (to the right), the better the explanation
words produced by the model (StyLEx or base-
line) are aligned with human perception ground
truth from HUMMINGBIRD. The dashed lines show
how much StyLEx’s generated stylistic words align
more with human annotations for stylistic words
from both HUMMINGBIRD and human-curated
stylistic lexicon dictionaries.

(1) Correlation with human perception. We in-
vestigate how similar StyLEx’s explanations are
with human perceptions. To do so, we compute
the Pearson’s correlation r between stylistic word
scores predicted by StyLEx and annotated by hu-
mans from HUMMINGBIRD annotations for each
word by concatenating all the predicted stylistic
word scores. Our correlation score is different from
Hayati et al. (2021) because we split the Humming-
bird dataset into a training set and test set even
though we use the same human perception scores
and the integrated gradient method. The corre-
lation score we reported in Figure 3 is from the
HUMMINGBIRD test set.

In Figure 3 (vertical trend), we can see that
StyLEx explanations correlate more with ground
truth human perception for all styles, as red stars
are stretched to the right. Sentiment and offen-
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Style Both StyLEx Integrated gradient

Positive good, fun, love associate, develop, instruct deserve, endure, football
Negative bad, horror, silly mess, chaos, disappoint maternal, banger, yell
Offensive bitch, bitches, pussy blind, racist, panties fairy, amateur, fisting
Anger angry, anger, awful frowning, scare, lose belt, campaigning, destroying*
Disgust awful, terrible, angry dismal, frowning, animosity congress, finally, sentence*
Fear fear, anxiety, nervous horrid, war, threaten rejects, mum, beating
Joy happy, love, good faith, sing, succeed deal, independence, football
Sadness depression, sadness, lost bad, offended, leave funeral, bloody, case*

Table 4: Three important words found by StyLEx ( ) and the integrated gradient method ( ) that appear in the
stylistic lexicon dictionary.* = words only appear one time in the test data.

siveness are styles that have the highest correla-
tion scores (60.53% and 64.09%) while fear is the
lowest (20.17%)). Explanations from integrated
gradient correlate very loosely with human per-
ception ground truth with sentiment as the highest
(11.89%) and joy negatively correlates with human
perceptions (-2.55%).

(2) Comparison with stylistic lexicon dictionar-
ies. We then investigate how similar the stylistic
words found by StyLEx are to the stylistic words
curated by humans in the existing lexicon dictio-
nary. We use sentiment emotion lexicons from Mo-
hammad and Turney (2010) and offensive lexicons
from von Ahn’s research group (2021).6 Using the
same set up of sufficiency test, we select top-30%
stylistic words from each sentence in ORIGINAL

datasets with the positive style label. Then we
check if at least one of these words appear in the
existing lexicon dictionary and compute its average
across all training samples.

In Figure 3 (horizontal trend), we see that
StyLEx consistently has higher percentage of word
occurrences in the lexicon dictionary compared to
the integrated gradient method where fear has the
highest percentage difference (15.78%→ 80.43%)
and offensiveness has the lowest percentage change
(87.67%→ 89.99%). Averaging across all styles,
we find that 56.70% of the stylistic sentences with
StyLEx stylistic words appear in the existing style
lexicon dictionary while integrated gradient only
identifies 37.01% of those words.

The score is higher for offensiveness than for
sentiment or emotion. We observe that people use
more offensive words in social media, which is the
source for dataset collection. We also examine the

6We couldn’t find a publicly available politeness lexicon
dictionary.
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Figure 4: Human evaluation results. X-axis is the per-
centage of explanations preferred by human judges.

lower occurrence for emotions. From our analysis,
we found that the emotion lexicon dictionary con-
tains several colloquially rare words “aberration”
or “meritorious”, leading to a very low overlap with
the datasets that we used for the analysis.

We also take a closer look at how many and the
nature of important words are captured by StyLEx
and/or the integrated gradient method as shown
in Table 4. These word scores are obtained by
averaging their scores and then we sort them based
on these average scores. In general, we find that
StyLEx can find more diverse stylistic words as
defined in the existing lexicon dictionary for all
styles except for positive sentiment. Some emotion
words found by the integrated gradients only appear
rarely in the data (mostly only once).

4.3 Understandability

To investigate the quality of StyLEx’s explanation,
we ask human judges to evaluate StyLEx’s expla-
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nations compared to baseline explanations. Under-
standability asks whether human judges understand
our explanation better than the explanation com-
puted using integrated gradients. For this study,
we randomly select 20 stylistic sentences for each
of the eight styles, resulting in total 160 sentences.
These 20 sentences are constructed by 10 sentences
from ORIGINAL test set and 10 sentences from
OOD test set. We normalize the stylistic word
scores for sentence length across all sentences.

A human judge is shown two versions of the
same sentence with different anonymized high-
lights, as shown in Figure 1. We then ask three
different human judges to select (through Amazon
Mechanical Turk) the explanation that was more
understandable. Each worker annotated 20 sen-
tences of the same style. The order of explanations
is randomized to remove bias. We say that an expla-
nation by a method is preferred by human judges
when the majority choose that method. If the ma-
jority chooses a method for all the 20 sentences,
the X-axis score will be 100%. Results in Figure
4 show that across all styles (160 pairs of explana-
tions), StyLEx gives an overall gain of 27.5%.

5 Related Work

Styles in NLP Research on style in NLP has ad-
dressed various tasks including style classification
(Danescu et al., 2013; Socher et al., 2013), style
transfer (Rao and Tetreault, 2018; Li et al., 2018),
style and content disentanglement (John et al.,
2018; Zhu et al., 2021), and multiple style analysis
(Hayati et al., 2021; Kang and Hovy, 2021). This
work focuses on understanding stylistic variation
in style classification. Style classification models
often produce spurious features (Sen et al., 2021;
Schlangen, 2021; Bras et al., 2020), motivating
us to leverage stylistic variation from human per-
spectives to distinguish between stylistic words and
content words. Past work have used stylistic lexica
for classification (Taboada et al., 2011; Eisenstein,
2017), but in this work, we fine-tune the language
model to generate these lexica and use them to help
style prediction. Our work is most closely related
to Hayati et al. (2021), but they do not develop any
new models to use the human perception scores
as explanations. Moreover, while linguistics styles
can cover an author’s writing style or figurative lan-
guage, we limit our study to high-level style as used
in Kang and Hovy (2021); Hayati et al. (2021).

Explainable NLP Heat maps generated from at-
tention values from the models (Bahdanau et al.,
2014) are widely used as an interpretability tool,
but these attention maps are often unfaithful and
unreliable (Jain and Wallace, 2019; Wiegreffe and
Pinter, 2019; Zhong et al., 2019; Pruthi et al., 2020).
Saliency maps computed via gradients offer an al-
ternative (Sundararajan et al., 2017; Smilkov et al.,
2017; Mudrakarta et al., 2018). Annotating ex-
planations as rationales (part of input) (Lei et al.,
2016) through expert annotations (Zaidan and Eis-
ner, 2008) is widely used to model explanations
in NLP when external annotations are available.
Another class of inherently interpretable models
aims to optimize model explanations without any
external annotations (Card et al., 2019; Croce et al.,
2019; Rajagopal et al., 2021). Our work is simi-
lar in spirit to the rationale approaches (Lei et al.,
2016) but focuses on understanding style attributes
in text and computationally modeling them based
on human annotation of the important words.

6 Conclusion

We proposed StyLEx, a style classification model
for learning stylistic variations through lexical ex-
planation. With only 500 sentences with word-
level style annotation, we find improvement in
both classification and explanation. Compared to
the commonly-used integrated gradient method,
StyLEx’s explanations are more accurate for model
prediction, more consistent with human-found
stylistic words from existing datasets and lexicon
dictionaries, and better understandable by human
judges, without sacrificing task performance on
both in-domain and out-of-domain datasets.

Future Work Our approach opens up future
work on human-centered lexical explanation for
correcting the spurious behavior of NLP models
and for better explaining linguistic styles. We plan
to investigate collecting more human lexical an-
notations to more accurately model stylistic vari-
ation, especially with larger pretrained language
models. Broader usage of StyLEx in providing
stylistic cues will be applicable to lexical style and
content disentanglement (Cheng et al., 2020; John
et al., 2019), counterfactual data augmentation for
style-related tasks (Sen et al., 2021), and stylistic
paraphrasing (Pavlick and Nenkova, 2015).

Limitations Our work has some limitations,
mostly stemming from the size and nature of the
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human-annotated data. The training data (500 sen-
tences) from HUMMINGBIRD is quite small to train
deep learning models. However, our work shows
that with just 500 sentences we could achieve a
huge improvement in interpretability as well as a
slight improvement in OOD performance, using
semi-supervised training. Moreover, there is spar-
sity of stylistic words in the sentences. We also
found that some stylistic words have various scores
of human perception; capturing such subtle stylistic
words is difficult. An interesting future work would
be to handle these problems of sparsity and subtlety.
We also notice that HUMMINGBIRD is annotated
by people residing in the United States. Thus, their
perception of styles may not reflect the perception
of those with different cultural backgrounds. Nev-
ertheless, StyLEx can be applied to any dataset
training with similar human lexical annotations,
and not limited to HUMMINGBIRD.

Ethical Considerations When collecting the ex-
planation evaluation from human judges, we in-
form them that the content may contain offensive
languages that could be upsetting.
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A Appendix

A.1 Sampling OOD Data and Data Statistics
• Politeness: We randomly sample 500 polite

sentences and 500 impolite sentences from the
Enron email corpus (Klimt and Yang, 2004;
Madaan et al., 2020) since the size of entire
corpus (>600k) is too large for inference.

• Sentiment: We test StyLEx on 5-core reviews
from Amazon review dataset (Ni et al., 2019).
For each category, we sample 100 positive
sentences and 100 negative sentences from
review categories, except for movie reviews
which would be similar to the domain of the
ORIGINAL dataset. We convert ratings of 4-5
to positive labels and ratings of 1-2 as negative
labels.

• Offensiveness: We use OffensEval (Zampieri
et al., 2019) dataset for offensiveness. We
select all offensive tweets (3,002 instances)
and all non-offensive tweets (2,991 instances)
since OffensEval dataset is already nearly bal-
anced.

• Emotions: For five emotions, we collect sam-
ples from GoEmotions corpus (Demszky et al.,
2020) that contains Reddit comments labeled
with 27 emotions, but we only select the five
relevant emotions. For each emotion, we use
all data for the positive emotion (e.g., joy)
and undersample the negative emotion (e.g.,
not joy) data to equal the number of positive
emotion samples.

The three dataset statistics are summarized in
Table 6.

A.2 StyLEx Implementation Details
Throughout the experiment, we set dlword

= 2 for
politeness (polite, impolite) and sentiment (posi-
tive, negative) which have two style classes and
dlword

= 1 for the other styles. At the loss cal-
culation step, we set the regularization hyperpa-
rameter α to 0.05 which gives the best style and
perception prediction found searching the range
[0.01, 100]. For the pseudo-labeling approach,
we use the same architecture and hyperparameters
with StyLEx model. We first train StyLEx with
HUMMINGBIRD training set only to predict stylis-
tic word scores for 50 epochs. Then we select the
model with the best F1 score as a stylistic word
score prediction to provide stylistic word scores
for tokens in ORIGINAL training set. Then, we use
both human-annotated perception score from HUM-
MINGBIRD and predicted stylistic word scores from
ORIGINAL to train the sentence-level style predic-
tion as in Figure 2. For the sentence-level model,
we train the model for 5 epochs. For both stylis-
tic word prediction and sentence-level style clas-
sification, we use BERT-base-uncased pretrained
model. We set 0.1 dropout rate, 512 maximum
sequence length, AdamW optimizer of learning
rate 2e−5. For other hyper-parameters, we follow
the default setting from HuggingFace’s transformer
library (Wolf et al., 2020).

Our interface for human evaluation is shown as
in Figure 5. Table 7 shows results for other pre-
trained language models. We report word-level
style predictor performance tested on HUMMING-
BIRD test data in the form of Pearson’s r correlation
scores as follows in Table 5.

Style Word-level
Pearson’s r

Politeness 0.41
Sentiment 0.61
Offensiveness 0.37
Anger 0.45
Disgust 0.43
Fear 0.20
Joy 0.37
Sadness 0.41

Table 5: Pearson’s r scores from training the word-level
predicion model and testing it on HUMMINGBIRD.
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HUMMINGBIRD ORIGINAL OOD
Styles↓ Train Test Train Dev Test Test
Politeness 256 (38%) 64 (28%) 9,855 (55%) 530 (56%) 567 (57%) 1,000 (50%)
Sentiment 312 (30%) 79 (37%) 117,219 (55%) 825 (51%) 1,749 (50%) 5,200 (50%)
Offensiveness 400 (34%) 100 (32%) 20,680 (82%) 1,173 (82%) 1,159 (81%) 5,993 (50%)
Anger 400 (35%) 100 (34%) 6,838 (37%) 886 (36%) 3,259 (34%) 16,168 (50%)
Disgust 400 (43%) 100 (38%) 6,838 (38%) 886 (36%) 3,259 (34%) 10,602 (50%)
Fear 400 (17%) 100 (13%) 6,838 (18%) 886 (14%) 3,259 (15%) 6,394 (50%)
Joy 400 (24%) 100 (19%) 6,838 (36%) 886 (45%) 3,259 (44%) 15,966 (50%)
Sadness 400 (29%) 100 (17%) 6,838 (29%) 886 (30%) 3,259 (29%) 13,516 (50%)

Table 6: Dataset statistics in our experiments. Note that these datasets are preprocessed from existing datasets. For
HUMMINGBIRD (Hayati et al., 2021) and ORIGINAL datasets, the train, dev, and test sets have the same size for all
emotions. We do not report the training size of Out-of-Domain (OOD) datasets since we are not using them for
training. The label distributions for positive labels are in the parentheses.

Figure 5: Interface for human evaluation

2855



Model F1 Score
Polite. Sent. Offens. Anger Disgust Fear Joy Sad.

ORIG

BERT
Baseline 67.96 96.52 97.75 89.04 86.50 95.66 88.02 88.38
StyLEx 65.84 96.59 97.81 89.01 86.90 95.63 88.14 88.41

RoBERTa
Baseline 65.83 96.94 96.40 89.56 87.17 95.68 88.32 88.52
StyLEx 66.05 96.59 96.55 89.39 87.16 95.67 88.39 88.89

XLNet
Baseline 64.09 96.57 96.86 88.46 86.07 95.55 86.95 87.32
StyLEx 63.69 96.54 96.38 88.20 86.32 95.44 87.33 87.90

T5
Baseline 65.75 97.13 97.21 88.79 86.29 95.39 88.18 87.68
StyLEx 67.69 97.21 96.61 88.69 86.24 95.28 87.86 87.51

OOD

BERT
Baseline 71.45 86.70 88.62 77.49 74.06 78.42 75.20 78.37
StyLEx 74.18 86.99 88.98 77.51 74.63 78.48 74.26 78.71

RoBERTa
Baseline 72.08 90.41 87.48 77.01 74.56 79.95 74.63 80.24
StyLEx 69.27 89.90 89.63 77.86 75.07 78.66 74.18 79.09

XLNet
Baseline 68.84 88.25 88.33 76.24 74.77 78.48 74.03 78.78
StyLEx 67.28 89.65 88.56 76.41 74.71 78.92 74.09 78.28

T5
Baseline 70.76 91.72 88.14 75.74 73.83 79.58 73.76 78.37
StyLEx 68.14 91.73 88.05 75.48 73.33 80.23 73.70 77.61

Table 7: More classification results with several language models.
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Abstract

Numerous types of social biases have been iden-
tified in pre-trained language models (PLMs),
and various intrinsic bias evaluation measures
have been proposed for quantifying those so-
cial biases. Prior works have relied on human
annotated examples to compare existing intrin-
sic bias evaluation measures. However, this
approach is not easily adaptable to different
languages nor amenable to large scale evalu-
ations due to the costs and difficulties when
recruiting human annotators. To overcome this
limitation, we propose a method to compare in-
trinsic gender bias evaluation measures without
relying on human-annotated examples. Specif-
ically, we create multiple bias-controlled ver-
sions of PLMs using varying amounts of male
vs. female gendered sentences, mined automati-
cally from an unannotated corpus using gender-
related word lists. Next, each bias-controlled
PLM is evaluated using an intrinsic bias evalua-
tion measure, and the rank correlation between
the computed bias scores and the gender propor-
tions used to fine-tune the PLMs is computed.
Experiments on multiple corpora and PLMs
repeatedly show that the correlations reported
by our proposed method that does not require
human annotated examples are comparable to
those computed using human annotated exam-
ples in prior work.

1 Introduction

Pre-trained language models (PLMs) trained on
large datasets have reported impressive perfor-
mance improvements in various NLP tasks (Devlin
et al., 2019; Lan et al., 2019) greatly. However,
these PLMs also demonstrate significantly worry-
ing levels of social biases (Bolukbasi et al., 2016;
Kurita et al., 2019). To address this issue, numerous
intrinsic bias evaluation measures for PLMs have

∗Danushka Bollegala holds concurrent appointments as
a Professor at University of Liverpool and as an Amazon
Scholar. This paper describes work performed at the Univer-
sity of Liverpool and is not associated with Amazon.

Figure 1: Overview of our proposed method. We first
create bias-controlled PLMs by fine-tuning a PLM on
male and female gendered sentences that are automati-
cally mined from unannotated corpora. Next, we mea-
sure the rank correlation between the scores reported by
an intrinsic bias evaluation measure and the male/female
bias rates (r) used to fine-tune the PLMs.

been proposed (Nangia et al., 2020; Dhamala et al.,
2021; Nadeem et al., 2021; Kaneko and Bollegala,
2022; Zhou et al., 2022), which are also used for
comparing debiasing methods for PLMs (Webster
et al., 2020; Kaneko and Bollegala, 2021a; Schick
et al., 2021).

Existing bias evaluation methods use different
criteria such as pseudo likelihood (Kaneko and Bol-
legala, 2022), cosine similarity (Caliskan et al.,
2017; May et al., 2019), inner-product (Ethayarajh
et al., 2019) etc. Moreover, current bias evalua-
tion methods require manually-annotated datasets
containing stereotypical and antistereotypical ex-
amples that express different types of social biases
(Nangia et al., 2020; Nadeem et al., 2021). There-
fore, we consider that it is important to compare
the differences in existing bias evaluation measures
proposed for PLMs (Orgad and Belinkov, 2022;
Dev et al., 2021; Kaneko et al., 2022a) to under-
stand their relative strengths and weaknesses.
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To objectively compare the existing bias evalu-
ation measures, Kaneko and Bollegala (2022) cal-
culated the rank correlation between the number
of human annotators who labelled an example to
be stereotypically biased towards a protected at-
tribute in Crowds-Pairs (CP), and the bias score for
that example returned by an intrinsic bias evalua-
tion measure (Nangia et al., 2020; Nadeem et al.,
2021). However, due to the costs and difficulties in
recruiting human annotators, this approach cannot
be easily adapted to different languages, accommo-
date large-scale evaluations, or compare evaluation
metrics that do not use human-annotated data.

We propose a method to compare intrinsic bias
evaluation measures without using human anno-
tated examples. Figure 1 outlines the intuition be-
hind our proposed method. First, we train bias-
controlled versions of PLMs obtained via fine-
tuning a PLM on male and female gendered sen-
tences, automatically mined from an unannotated
corpus using a gender-related word list. We de-
fine rate of bias (r) as the ratio between male and
female gendered sentences in a training sample
used to fine-tune a PLM. A PLM fine-tuned mostly
on male sentences is likely to generate sentences
containing mostly male words, while a PLM fine-
tuned on female sentences is likely to generate sen-
tences containing mostly female words (Kaneko
and Bollegala, 2022; Kaneko et al., 2022c). There-
fore, an accurate intrinsic bias evaluation measure
is expected to return a score indicating a bias to-
wards the male gender for a male bias-controlled
PLM, while it is expected to return a score indicat-
ing a bias towards the female gender for a female
bias-controlled PLM. We then compute the rank
correlation between (a) the rate of biases in the
bias-controlled PLMs, and (b) the bias scores re-
turned by an intrinsic evaluation measure for the
corresponding PLMs, as a measure of accuracy of
the bias evaluation measure.

Our experiments with multiple corpora and
PLMs show that the correlations reported by our
proposed method, which does not require human
annotated examples, are comparable to those com-
puted using human annotated examples in previ-
ous studies. Furthermore, by examining the out-
put probabilities of the PLM, we verify that the
proposed method, which fine-tunes bias-controlled
PLMs with varying amounts of male vs. female
sentences, is indeed able to control biases associ-
ated with male and female gender directions.

2 Bias-controlled Fine-Tuning

The imbalance of gender words in the training data
affects the gender bias of a PLM fine-tuned us-
ing that data (Kaneko and Bollegala, 2022; Kaneko
et al., 2022c). Using this fact, we propose a method
to learn bias-controlled versions of PLMs that ex-
press different levels of known gender biases. Let
us first assume that we are given a list of female
gender related words Vf (e.g. she, woman, female),
and a separate list of male gender related words
Vm (e.g. he, man, male). Next, we select sen-
tences that contain either at least one of female or
male words from an unannotated set of sentences
D. Sentences that contain both male and female
words are excluded here. Let us denote the set of
sentences extracted for a female or a male word w
by Φ(w). Moreover, let Df =

⋃
w∈Vf Φ(w) and

Dm =
⋃
w∈Vm Φ(w) be the sets of sentences con-

taining respectively female and male words. We ap-
propriately downsample Df and Dm to have equal
numbers of sentences N (i.e. |Df | = |Dm| = N ).

Next, we create training datasets Dr by varying
the rate of bias, r (∈ [0, 1]), by randomly sampling
a subset Sr(Dm) of Nr sentences from Df and
a subset S1−r(Df ) of N(1 − r) sentences from
Dm such that Dr = Sr(Dm) ∪ S1−r(Df ). When
r = 0, Dr consists of only female sentences (i.e.
Dr ⊆ Df ), and when r = 1, it consists of only
male sentences (i.e. Dr ⊆ Dm). To obtain mul-
tiple bias-controlled PLMs at different levels of
gender biases, we fine-tune a given PLM on differ-
ent datasets, Dr, sampled with different values of
r. We use a given intrinsic bias evaluation measure
to separately evaluate each bias-controlled PLM.
Finally, we measure the agreement between the
bias scores reported by the intrinsic bias evaluation
measure under consideration and the correspond-
ing rates of biases of those PLMs using Pearson’s
rank correlation coefficient.

3 Experiments

3.1 Settings

In our experiments, we used the female words
she, woman, female, her, wife, mother, girl, sister,
daughter, girlfriend as Vf , and male words he, man,
male, him, his, husband, father, boy, brother, son,
boyfriend as Vm. We sampled 2M sentences each
representing male and female genders from News
crawl 2021 corpus (news)1 and BookCorpus (Zhu

1https://data.statmt.org/news-crawl/en/
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Measure BERT ALBERT

news book HA news book HA

TBS 0.14 0.09 - 0.25 0.14 -
SSS 0.22 0.22 0.45 0.31 0.22 0.53
CPS 0.30 0.27 0.57 0.37 0.22 0.48
AUL 0.37 0.32 0.68 0.55 0.36 0.56
AULA 0.42 0.34 0.71 0.60 0.42 0.57

Table 1: Peason correlation between biased PLM order
and each bias scores. News and book represent the cor-
pus used for biasing, respectively. HA is AUC value of
method using human annotation (Kaneko and Bollegala,
2021a).

et al., 2015) (books) for training bias-controlled
PLMs and a separate 100K sentences as devel-
opment data. We used BERT2 (Devlin et al.,
2019) and ALBERT3 (Lan et al., 2019) as the
PLMs. We fine-tune PLMs with masked language
model learning. We use publicly available
Transformer library4 to fine-tuning PLMs, and
all hyperparameters are set to their default values.
We trained 11 bias-controlled PLMs for r in
{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
on four Tesla V100 GPUs.

3.2 Intrinsic Bias Evaluation Measures

We compare five previously proposed intrin-
sic gender bias evaluation measures in this pa-
per: Template-Based Score (TBS; Kurita et al.,
2019), StereoSet Score (SSS; Nadeem et al.,
2021), CrowS-Pairs Score (CPS; Nangia et al.,
2020), All Unmasked Likelihood (AUL; Kaneko
and Bollegala, 2022), and AUL with Attention
weights (AULA; Kaneko and Bollegala, 2022).
Further details of these measures are given in the
Appendix.

Note that TBS uses templates for evalua-
tion and cannot be used with human-annotated
stereotypical/anti-stereotypical sentences. On the
other hand, SSS, CPS, AUL, and AULA all require
human-annotated sentences that express social bi-
ases.

3.3 Comparing Intrinsic Gender Bias
Evaluation Measures

We compare the proposed method and Kaneko and
Bollegala (2022)’s method using CP dataset, which
has human annotations, and show the effectiveness

2https://huggingface.co/bert-base-uncased
3https://huggingface.co/albert-base-v2
4https://github.com/huggingface/transformers/

tree/v4.22.2

of the proposed method. In addition, we will use
several PLMs and corpora to analyze the trends of
the proposed method. Table 1 shows the correla-
tion results of the proposed method for TBS, SSS,
CPS, AUL, and AULA when fine-tuning BERT and
ALBERT on news or book corpora, respectively.
HA is the AUC value of the Kaneko and Bollegala
(2022)’s method using human annotations. Since
TBS uses templates, it cannot be evaluated using
HA.

For BERT, the proposed method induces the
same order among measures (i.e. AULA > AUL >
CPS > SSS) as done by HA in both news and book.
For ALBERT, only the rankings of SSS and CPS
differ between the proposed method and HA. These
results show that the proposed method and the ex-
isting method that use human annotations rank the
intrinsic gender bias evaluation measures in almost
the same order.5 It can be seen that the values of
the correlation coefficients vary depending on the
PLM and corpus. For example, ALBERT has a
maximum correlation of 0.60, while BERT has a
maximum correlation of only 0.42.

A major limitation of human annotation-based
evaluation is that it cannot be used to compare TBS
that does not human annotated examples against
other intrinsic bias evaluation measures. However,
our proposed method does not have this limitation
and can be used to compare TBS against other
bias evaluation measures. As it can be seen from
Table 1, TBS consistently reports the lowest corre-
lations, indicating that it is not an accurate intrin-
sic gender bias evaluation measure. This finding
agrees with Kaneko et al. (2022a), who highlighted
the inadequacy of templates as a method for evalu-
ating social biases.

3.4 Bias-controlled PLMs

To verify that the proposed method can indeed con-
trol the bias of a PLM, we investigate the variation
of the output probabilities of the PLMs fine-tuned
with different r. Specifically, we investigate the
output probabilities of masked he and she in the
input text “[MASK] is a/an [Occupation].” for
the bias-controlled PLMs. For [Occupation], we
use gender- and stereotype-neutral occupational
words6 (e.g. writer, musician) from the word list
created by Bolukbasi et al. (2016). When r in-

5Because of the different methods of measuring correla-
tions, it is not possible to compare the magnitude of values
between the proposed and existing methods.

6https://github.com/tolga-b/debiaswe
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Figure 2: Average output probabilities for “[MASK]
is a/an [Occupation]” produced by the bias-controlled
BERT and ALBERT PLMs fine-tuned with different r
on the news dataset.

creases, a PLM will be fine-tuned with increasing
amounts of male sentences. Therefore, if the av-
erage probability of he increases with r, it would
imply that the PLMs are correctly bias-controlled
by the proposed method.

Figure 2 shows that the average output probabili-
ties of he and she when r is incremented in step size
of 0.1. When r = 1 the PLM predicts he with fairly
high probability and when r = 0 the PLM predicts
she with fairly high probability. Furthermore, when
r = 0.5, the probability of he and she is almost 0.5.
Original BERT (without fine-tuning) returns 0.48
and 0.28, respectively for he and she, while the
corresponding probabilities returned by ALBERT
are respectively 0.64 and 0.22. Both the original
BERT and ALBERT predict relatively larger out-
put probabilities for he, indicating that they are
male-biased, without performing any bias-control.
From these results, it can be seen that the output
probabilities of he and she fluctuate according to r,
and the proposed method can control the bias of the
PLM. On the other hand, when r is less than 0.2 or
greater than 0.8, the output probabilities of she and
he are greater than the proportion in the data set,
respectively. Therefore, finer increments of r may
make it difficult to control bias more finely when r
is small or large.

To illustrate how bias-controlled PLMs produced
by the proposed method for different rates of biases
(r) predict the probabilities of gender pronouns, we
consider the masked sentence “[MASK] doesn’t
have time for the family due to work obligations.”
selected from the CP dataset. Here, He and She

0.0
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1.0

he and dad also but

(a) r = 1.0

0.0

0.5

1.0

he she mum and it

(b) r = 0.7

0.0

0.5

1.0

she he it and wife

(c) r = 0.5

0.0

0.5

1.0

she he and but it

(d) r = 0.3
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0.5

1.0

she mum mother kim woman

(e) r = 0.0

0.0

0.5

1.0

he she mom dad it

(f) original (without fine-tuning)

Figure 3: Top 5 words with BERT output probability
for “[MASK] doesn’t have time for family due to work
obligations.”. Blue and red represent masculine and
feminine words, respectively.

are unmodified tokens. Figure 3 shows the proba-
bilities of the tokens predicted for the [MASK] by
the different bias-controlled PLMs. We see that the
original BERT model predicts both he and she with
approximately equal probabilities. However, when
r is gradually increased from 0 to 1, we see that
the probability of he increases, while that of she
decreases, demonstrating that the proposed method
correctly learns bias-controlled PLMs.

4 Conclusion

We proposed a method to compare intrinsic gen-
der bias evaluation measures using an unannotated
corpus and gender-related word lists. Experiments
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show that the correlations computed by the pro-
posed method for existing bias evaluation measures
agrees with the prior evaluations conducted using
human annotations.

5 Limitations

In this paper, we limited our investigation to En-
glish PLMs. However, as reported in a lot of previ-
ous work, social biases are language independent
and omnipresent in PLMs trained for many lan-
guages (Kaneko et al., 2022c; Lewis and Lupyan,
2020; Liang et al., 2020; Zhao et al., 2020). We
plan to extend this study to cover non-English
PLMs in the future.

According to existing research, PLMs encode
many different types of social biases such as racial
and religious biases in addition to gender-related
biases (Kiritchenko and Mohammad, 2018; Ravfo-
gel et al., 2020). On the other hand, in this paper,
we focused on only gender bias. Extending the
proposed method to handle other types of social
biases beyond gender bias is beyond the scope of
the current short paper and is deferred to future
work.

Furthermore, discriminatory bias is learned in
word embeddings as well as PLMs (Bolukbasi
et al., 2016; Brunet et al., 2019; Kaneko and Bol-
legala, 2019, 2020, 2021b; Kaneko et al., 2022b).
Therefore, it may be possible to make it applicable
to word embeddings as well.

6 Ethical Considerations

Our goal in this paper was to compare the pre-
viously proposed and widely-used intrinsic bias
evaluation measures of gender bias in pre-trained
PLMs. Although we used a broad range of existing
datasets that are annotated for social biases, we did
not annotate nor release new datasets as part of this
research. Moreover, we fine-tune a large number
of bias-controlled PLMs for evaluation purposes
that demonstrates varying levels of gender biases.
However, these PLMs are not supposed to be used
in downstream tasks other than for evaluation pur-
poses.

Even with the highly correlated bias evaluation
measure in our proposed method, the bias of the
PLM may not be sufficiently evaluated. There-
fore, we consider that it important to select intrinsic
gender bias evaluation measures carefully and not
purely based on correlation coefficients computed
by the proposed method alone.

There are various discussions on how to define
social bias in PLMs (Blodgett et al., 2021). Since
the proposed method can use any method as the
bias-controlled fine-tuning of the PLMs, the bias-
controlled fine-tuning can be selected according to
the definition of social bias.
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Abstract
Despite significant progress in understanding
and improving faithfulness in abstractive sum-
marization, the question of how decoding strate-
gies affect faithfulness is less studied. We
present a systematic study of the effect of gen-
eration techniques such as beam search and
nucleus sampling on faithfulness in abstrac-
tive summarization. We find a consistent trend
where beam search with large beam sizes pro-
duces the most faithful summaries while nu-
cleus sampling generates the least faithful ones.
We propose two faithfulness-aware generation
methods to further improve faithfulness over
current generation techniques: (1) ranking can-
didates generated by beam search using auto-
matic faithfulness metrics and (2) incorporating
lookahead heuristics that produce a faithfulness
score on the future summary. We show that
both generation methods significantly improve
faithfulness across two datasets as evaluated
by four automatic faithfulness metrics and hu-
man evaluation. To reduce computational cost,
we demonstrate a simple distillation approach
that allows the model to generate faithful sum-
maries with just greedy decoding.1

1 Introduction

Recent developments in large pre-trained language
models have achieved remarkable performance
on abstractive summarization (Lewis et al., 2020;
Zhang et al., 2020a). However, such models often
suffer from the problem of hallucinations, where
the generated summary contains facts or entities
not present in the original document. Prior re-
search has analyzed and defined potential error
types and typology (Maynez et al., 2020; Pagnoni
et al., 2021; van der Poel et al., 2022), and devel-
oped methods to improve faithfulness, including

∗∗Work conducted during an internship at Amazon.
††Corresponding authors.

1Our code is publicly available at
https://github.com/amazon-science/
faithful-summarization-generation.

post-processing models (Chen et al., 2021b; Dong
et al., 2020; Liu and Liu, 2021; Ladhak et al., 2022)
and faithfulness-aware training (Goyal and Durrett,
2021; Nan et al., 2021; Cao and Wang, 2021; Wan
and Bansal, 2022; Zhang et al., 2022; Xiao and
Carenini, 2022).

One aspect that is less understood on faithfulness
of abstractive summarization is the effect of de-
coding strategies, which determine how the model
generates the output strings. Our primary objective
is to understand whether different types of explo-
ration of the search space, such as traversing and
maintaining multiple possible output hypotheses
with beam search or encouraging diversity with
nucleus sampling (Holtzman et al., 2020), have an
impact on faithfulness. To this end, we first conduct
a thorough analysis comparing the faithfulness of
popular decoding strategies, including greedy de-
coding, beam search, and nucleus sampling for two
popular summarization datasets XSum (Narayan
et al., 2018) and CNN/DM (Hermann et al., 2015).
Evaluating the generated summaries using four
faithfulness metrics, including BertScore (Zhang
et al., 2020b), FactCC (Kryscinski et al., 2020),
DAE (Goyal and Durrett, 2021), and QuestEval
(Scialom et al., 2021), and human evaluation, we
find a consistent trend that beam search provides
the most faithful summaries with its large explo-
ration of the search space, and the randomness
introduced by sampling hurts faithfulness.

To further improve faithfulness beyond the
common decoding strategies, we propose two
faithfulness-aware decoding methods. First, similar
to Falke et al. (2019), we make use of the multi-
ple candidates generated by beam search and pro-
pose a simple re-ranker, which selects the best sum-
mary according to a faithfulness metric. Instead
of using a specific metric, we rank and select the
summaries with a composite metric, a weighted
combination of popular faithfulness metrics. Next,
inspired by Lu et al. (2022), we propose a faithful-
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A study led by Goldsmiths, University of London, found British army infantry troops 
spent less than 47% of their time on the Western Front …

Faithful?

❌

✅

Document

The idea that World War One was 
a "war of attrition" … 

Beam 
Search

⋯

The idea that British soldiers spent 
most of their time ...

⋯

Rank
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2

⋯

(a) Ranker

A study led by Goldsmiths, University of London, found British army infantry troops 
spent less than 47% of their time on the Western Front …

The idea that

World War One was a "war of 
attrition" is "simply not true"… 

British soldiers spent most of their 
time fighting ...

Faithful?

❌

✅

Document

⋯ ⋯

(b) Lookahead

Figure 1: Illustration of our proposed decoding methods. 1a shows our ranker that re-ranks the candidates produced
by beam search according to faithfulness metrics. The first summary achieves a high score and would be used as the
final summary for beam search, but it is not faithful. Our ranker ensures that the more faithful summary is ranked
higher. 1b shows the lookahead heuristics that provide a faithfulness score given the full future summary. The
model assigns a higher score to the word "World" than "British". However, by looking ahead we know that the
completed summary following the most likely token will result in an unfaithful summary. Hence, the lookahead
heuristics will ensure selecting the token "British" so that the resulting summary will be faithful.

ness heuristic that looks into the future to generate
a full summary starting with the current tokens of
any partially generated summary so as to provide
a faithfulness score of the future summary during
generation. The added heuristic ensures that the
selected tokens will lead to a more faithful path
in the search space. Compared to the baseline de-
coding strategies we analyzed, the two proposed
methods significantly improve faithfulness as eval-
uated by four automatic faithfulness metrics and
further confirmed by human evaluation.

Finally, to overcome the computational and run-
time overhead of our proposed decoding methods,
we explore distillation to transfer the knowledge
of generating faithful summaries from a teacher
model to a student model. Specifically, we use
the faithfulness-aware decoding strategies as the
teacher model to generate reference summaries.
Then, we train student models, which have not
been fine-tuned on the original task, to imitate the
more faithful generation techniques using an ad-
ditional cross-entropy loss between the generated
summaries by the student and teacher models. Re-
sults indicate that the student model is able to gen-
erate summaries of similar faithfulness to that of
the full teacher model while reducing the decod-
ing time (seconds per example) up to 1/6 of what
the teacher model takes. This process can be per-
formed iteratively by using the student model as the
teacher for the next iteration (See Figure 2). With
each iteration, the new student model is able to
generate more faithful summaries, and outperform
the original teacher model with just two iterations.

To summarize, our contributions are:

1. An analysis of the effect of popular decod-
ing strategies, including greedy, beam, and
nucleus sampling, on the faithfulness of ab-
stractive summarization.

2. Two faithfulness-aware generation methods,
ranking and lookahead, that improve faithful-
ness over existing decoding strategies.

3. A simple distillation approach that allows a
student model to generate faithful summaries
with just greedy decoding.

2 Faithfulness Behavior of Popular
Decoding Strategies

We first describe our experiment investigating the
effect of popular decoding strategies on faithful-
ness. We wish to primarily investigate whether
better exploration of the search space, such as the
candidate expansion with beam search, can im-
prove faithfulness, and how randomness introduced
through sampling impacts faithfulness. These in-
vestigations in turn motivate our more advanced,
faithfulness-aware decoding strategies in Section 3.

Decoding Strategies (Greedy, Beam, and Nu-
cleus Sampling). For generation, we assume the
common left-to-right, auto-regressive setting where
the model generates a summary y with n tokens
given the input document x:

P (y|x) =
n∏

t=1

p(yt|y1:t−1, x)
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The summary tokens are selected with probability
according to the decoding strategies. We explore
three common decoding strategies: greedy, beam
search, and nucleus sampling (Holtzman et al.,
2020). Greedy search selects the next token by the
most probable token yt = argmaxy p(y|y1:t−1, x).
Beam search extends greedy search by keeping
top-k hypothesis at each time step, where k is the
number of beams. Another approach to decoding is
to use sampling, where we consider nucleus sam-
pling. Holtzman et al. (2020) surprisingly find that
methods that optimize probability, such as beam
search, may lead to text degeneration, and thus pro-
pose nucleus sampling, a method that randomly
selects from top tokens whose cumulative probabil-
ity satisfies the threshold p. A small p means less
randomness and becomes greedy search, while a
large p allows for a more diverse output.

3 Faithfulness-Aware Decoding Strategies

We hypothesize (and later test and confirm whether
it is true in Section 6.1 and Appendix E) that cur-
rent decoding methods, such as beam search which
explores a large space, may not explore the paths
that focus on faithfulness directly and effectively.
Hence, we propose two faithfulness-aware meth-
ods that can be applied on top of the base decoding
strategies to modify how the space is explored from
two different perspectives: (1) Ranking makes use
of the large exploration of beam search and picks
the explored path that is most faithful; (2) Looka-
head directly guides the search process by adding
faithfulness heuristics when selecting the next to-
ken starting from the initial decoding process.

3.1 Ranking with Faithfulness Metrics

Since beam search already explores many different
suitable candidates during the decoding process,
we hypothesize that more faithful summaries exist
in the list of possible candidates, even if the model
score is not directly optimized towards faithfulness
(we show that this is true later in Section 6.1). Thus,
we propose to rerank the generated candidates from
beam search according to faithfulness metrics.

The process is illustrated in Figure 1a. Assum-
ing a beam search with beam size k, we have k
summaries generated by the decoding method. We
compute a faithfulness metric (details of the metrics
are presented in Section 5.2) over all summaries
and select the summary that achieves the highest
faithfulness score. In the example, the more faithful

summary that was originally ranked low according
to model score is now ranked as the top summary
according to faithfulness.

Re-ranking candidates for abstractive summa-
rization have been studied primarily from the in-
formativeness perspective (Ravaut et al., 2022a,b),
and our focus is on improving faithfulness. Our
idea is most similar to Falke et al. (2019), where
the authors use NLI models to re-rank. However,
the results indicate that the NLI performance does
not translate to improvement in faithfulness; their
best-ranking model actually increases the number
of unfaithful summaries at the top summary af-
ter re-ranking by 3%. The authors attribute it to
domain shift and NLI models relying on simple
heuristics like lexical matching. We thus explore
using faithfulness metrics directly for ranking.

Composite Metric. While it is possible to use
one of the faithfulness metrics to rank the candi-
dates, it often leads to over-fitting for one particular
metric (each metric can have its own domain biases
and idiosyncrasies) and hurts the overall faithful-
ness scores evaluated by other metrics. We instead
tune a composite metric that aggregates the vote of
several popular metrics (See Section 5.4). We use
linear regression to provide weights for each metric
and tune on human judgments of faithfulness. We
refer the readers to Appendix D and Appendix E
for details and ablations for the composite metric.

3.2 Lookahead

Lu et al. (2022) use lookahead to provide a fu-
ture constraint satisfaction estimate and show its
effectiveness in several constrained generation
tasks (commonsense generation, constrained ma-
chine translation, table-to-text generation, and con-
strained question generation). We extend this idea
to improve faithfulness of abstractive summariza-
tion. Instead of relying on explicit constraints that
are available for the constrained generation tasks,
we use reference-free faithfulness metrics on the
full future summaries as an estimate. Unlike re-
ranking which is constrained by the search space
explored by beam search, lookahead allows for ex-
ploration of a much larger number of candidates.

Figure 1b shows an example of the lookahead.
When selecting the next token, the usual decoding
scheme would select the word "World" that has the
highest probability. However, if we were to follow
this path, the resulting summary would introduce
hallucinations. Instead, we would like to guide the
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Figure 2: Illustration of the iterative distillation process.
We train a student model θ′ with summaries generated
by the teacher model θ, which uses faithfulness-aware
decoding methods. The resultant student model θ′ that
is trained on more faithful summaries can in turn be used
as θ to generate the training data for the next iteration.

model to select the less probable token "British,"
which will yield a faithful summary sentence.

Formally, each summary token is selected by:

f(yt) = logP (y1:t | x) + w ·max
Ly≤t

h(y1:t+l, x)

where logP (y1:t | x) is the model score, h(·) is a
reference-free faithfulness evaluation function that
assigns a score to the summary, w is the weight,
and l is the number of tokens to look into the future.

Here, Ly≤t is a set of possible generated sum-
maries that start with the summary tokens y1:t. The
number of summaries for L varies given the decod-
ing strategies we use to generate future summaries.
Greedy search and sampling produce a single ex-
pansion, and beam search produces k number of
summaries depending on the beam size. Although
the lookahead length l can be specified, we instead
generate the full summary, as current faithfulness
metrics expect full summaries as input and do not
work well on partial summaries (see Appendix E).

3.3 Combining Ranking and Lookahead

We can combine the two methods to fur-
ther improve faithfulness. We first use the
BEAM+LOOKAHEAD to generate faithful beam
candidates and then select the best candidates
with ranking. We refer to this method as
BEAM+LOOKAHEAD+RANKING.

4 Efficient Decoding via Distillation

One drawback of the proposed decoding methods is
the heavy computational cost during decoding. We
thus explore using distillation to transfer the knowl-
edge of faithfulness-aware decoding to a student

model that can generate summaries of similar faith-
fulness with just greedy decoding. We note here
that our distillation aims at improving the decoding
time rather than downsizing the model. Similar to
Kim and Rush (2016), we assume that we have a
teacher model and a student model. In our setting,
the teacher model does not necessarily need to be
a different model, but it needs to decode with more
faithfulness-aware methods. Typical distillation
methods use the teacher’s probability distribution
(Kim and Rush, 2016) as the target for the student
model to imitate. In our case, however, that distri-
bution is the same for all methods – the difference
lies in how the probability is used to generate the
next tokens. Thus, we propose a new decoding dis-
tillation loss. We use the teacher model to generate
summaries ygen as additional reference summaries,
and interpolate between the cross-entropy loss us-
ing the original reference summaries and the cross-
entropy loss where we consider ygen as reference
summaries. Formally, the training loss is:

Ldistill = LXE(y
′, y) + λLXE(y

′, ygen)

where LXE is the cross entropy, y′ is the generated
summary by the student model, and λ is a hyper-
parameter for the weight of the cross-entropy loss
on the generated summaries.

Iterative Distillation. While we use the student
model with just greedy decoding to improve decod-
ing speed, the student model can also benefit from
using our proposed faithfulness-aware decoding
methods. Thus, the student models can also serve
as a new teacher model to distill more faithfulness
knowledge to a new student model. The distillation
process thus becomes iterative, illustrated in Fig-
ure 2. We use the trained student model as a new
teacher model, where we decode with our proposed
faithfulness methods to create additional reference
summaries ygen for the next iteration.

5 Experiments

5.1 Datasets and Models
We perform experiments on two popular datasets
for abstractive summarization, XSum (Narayan
et al., 2018) and CNN/DM (Hermann et al., 2015).
More details on the datasets are described in Ap-
pendix A.1. We use the released checkpoint of
BART-large (406M) for the two datasets.2 The

2We use the checkpoint BART-LARGE-XSUM (https://
huggingface.co/facebook/bart-large-xsum)
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same experiment is done with PEGASUS (Zhang
et al., 2020a), which is presented in Appendix B.

5.2 Evaluation Metrics
We use the F1 measure of ROUGE-L (Lin, 2004,
RL), i.e., the overlap of the longest common sub-
sequence between a generated summary and refer-
ence summary, and the F1 measure of BERTScore
(Zhang et al., 2020b, BS) to evaluate summary
quality. In addition, we use BS-Fact, i.e., the
BERTScore precision of a summary with respect
to its source document rather than the reference
summary, FactCC (Kryscinski et al., 2020), DAE
(Goyal and Durrett, 2021), and QuestEval (Scialom
et al., 2021) for faithfulness evaluation. Details of
the metrics are presented in section A.

5.3 Human Evaluation Setup
We use Amazon Mechanical Turk (AMT) to ask
human annotators to judge the faithfulness and in-
formativeness of the summaries generated with dif-
ferent decoding.

Faithfulness. We ask workers to judge the faith-
fulness of a summary sentence using a 3-star rating
(1=major factual error, 2=minor factual error, 3=no
factual error. Three judgments per summary are
then aggregated using majority voting. We ran-
domly select 200 examples from both datasets and
use the summaries generated using greedy, sam-
pling, beam search, as well as the ranking and
lookahead strategies applied to beam search. We
report the percentage of summaries that are fully
factual (i.e. the percentage of summaries rated as
3-star) as the faithfulness score, and also report the
distribution of summaries rated as 1, 2, and 3 stars.
Details on qualification, payment and other aspects
of the evaluation can be found in Appendix A.4.

Informativeness. We also evaluate the generated
summaries in terms of informativeness. We con-
sider summary to be informative if its content is
important and relevant, but it does not necessarily
need to be long. We use best-worst-scaling (BWS)
for evaluating the informativeness of the generated
summaries, as this method is “a less labor-intensive
alternative to paired comparisons that has been
shown to produce more reliable results than rating
scales” (Kiritchenko and Mohammad, 2017). Ac-
cordingly, for each dataset, we select 200 random
articles with the corresponding summaries from

and BART-LARGE-CNN (https://huggingface.co/
facebook/bart-large-cnn).

five systems in random order. We ask three annota-
tors to select the most informative (“best”) and the
least informative (“worst”) among the five. A rating
per system is computed as the percentage of times
it is chosen as best minus the percentage of times
it is selected as worst. A value of 100 means that
the system has been unanimously picked as “best”,
whereas a value of -100 means that the system has
been unanimously picked as “worst”. Additional
details, as well as the screenshot of the annotation
interface, are in Appendix A.4.

5.4 Decoding Setting Details

We describe the settings of the basic decoding meth-
ods, our faithfulness-aware decoding methods and
distillation. More details are in Appendix A.3.

Basic Decoding Method. We compare the sum-
maries generated using greedy search, beam search
(k = 10), and nucleus sampling (p = 0.9). Ad-
ditional experiments with various beam sizes and
top-p values can be found in Appendix B.

Ranking and Composite Metric. We use beam
search (k = 10) and rank the candidates using the
composite metric introduced in Section 3.1. To
train the composite metric, we explore combining
FactCC, BS-Fact, DAE, and QuestEval. We use
FACTCOLLECT (Ribeiro et al., 2022), a large col-
lection of four faithfulness annotations to train a
linear regression on the human-labeled faithfulness
judgments. More details of the composite metric
and its robustness to another domain can be seen
in Appendix D.

Lookahead. We use BS-Fact as the faithfulness
metric for the lookahead as it correlates highly
with human judgment (Pagnoni et al., 2021) and is
quick to compute without the need for additional
pre-processing. We use greedy search to generate
future summaries and apply it to both greedy and
beam searches.

Distillation. We use the checkpoint of our two
proposed faithfulness-aware decoding methods as
the teacher model, and train the student model from
BART-LARGE.3 We follow the original fine-tuning
hyperparameters provided by the authors (Lewis
et al., 2020) and use λ = 1 for the weight of the
additional cross-entropy loss.

3https://huggingface.co/facebook/
bart-large
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Figure 3: Maximum possible score (Max) for each faithfulness metric and the faithfulness scores of the top candidate
(Top) at various beam sizes. As beam size increases, more faithful summaries exist in the list of candidates, but the
faithfulness of the top beam improves only slightly.

RL BS BS-Fact FactCC DAE ↓ QuestEval

CNN/DM

Greedy 30.93 88.39 93.15 69.61 8.15 59.13
Nucleus 27.64 87.90 91.76 54.05 21.61 56.43
Beam 29.99 88.03 94.20 84.23 3.30 60.03

XSum

Greedy 36.16 92.03 89.28 23.53 65.35 36.51
Nucleus 31.15 91.26 88.62 21.04 76.20 34.98
Beam 37.11 92.12 89.45 22.97 63.49 37.05

Table 1: Baseline results of popular decoding methods
measured by summarization quality metrics (Rouge-L
(RL) and BertScore (BS)) and faithfulness metrics. We
observe a general trend where beam search performs the
best and nucleus sampling performs the worst in terms
of faithfulness. Full result with different beam sizes and
top-p probability for nucleus sampling is in Table 7.

6 Results

6.1 Baseline Decoding Results

We show the analysis of common decoding strate-
gies in Table 1. Both datasets show a similar trend.
Beam search performs the best in terms of faithful-
ness except for FactCC on the XSum dataset. Com-
pared to greedy decoding, which is beam search
with k = 1, the candidate expansion with a larger
beam size provides better exploration for faithful-
ness. Nucleus sampling degrades faithfulness com-
pared with greedy search, showing that the intro-
duced randomness is not helpful for faithfulness.
This aligns with observations from Narayan et al.
(2022) and Chen et al. (2021a), which show that
nucleus sampling produces less relevant text for
data-to-text generation.

The results are surprisingly mixed for both
datasets in terms of summary quality, i.e., RL and
BS scores. Comparing beam search with greedy
decoding, we see improvement of both scores on
XSum but not for CNN/DM. Nucleus sampling, on
the other hand, is also worse than greedy search on

this aspect, suggesting that randomness may not be
suited for the task of abstractive summarization.

Search Space for Beam Search. Inspired by Xu
et al. (2022) who hinted at the potential of better
faithfulness with a large exploration of the search
space, we use beam search to explore whether
larger beam sizes (and hence larger exploration)
derive more faithful summaries. To this end, we
use all summaries generated by beam search and
select the beam that would result in the highest
possible score for each metric. We show the max-
imum score (Max) for the four faithfulness met-
rics and the faithfulness score of selecting the top
beam (Top) given different beam sizes in Figure 3.
We see a clear trend that increasing the beam size
improves all faithfulness scores. This confirms
our hypothesis that larger exploration of the search
space can provide additional faithfulness gain, and
thus showing the potential of our proposed decod-
ing strategies, especially our reranking strategy, to
output more faithful summaries. The faithfulness
scores of TOP only increase marginally compared
to the increase for Max, showing the importance
of having better faithfulness guidance, such as our
proposed faithfulness lookahead heuristics.

6.2 Faithfulness-Aware Decoding Results

We now show the impact of faithfulness-aware
methods compared with the traditional decoding
methods, which is shown in Table 2. We first
observe that applying ranking on top of beam
search improves faithfulness significantly over
beam search, as measured by all faithfulness met-
rics. Specifically, QuestEval reaches 62.57 (2.5
points improvement) and 40.10 (3.1 points im-
provement) on CNN/DM and XSum respectively.
DAE error rate reduces from 63.49 to 51.48 and
3.30 to 1.92, which is a relative improvement of
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Rouge-L BERTScore BS-Fact FactCC DAE ↓ QuestEval

CNN/DM

Greedy 30.93 88.39 93.15 69.61 8.15 59.13
Beam 29.99 88.03 94.20 84.23 3.30 60.03
BEAM+RANKING 30.08 88.12 94.31 90.27 1.92 62.57
GREEDY+LOOKAHEAD 30.75 88.35 93.90 71.54 5.70 60.13
BEAM+LOOKAHEAD 28.66 87.84 95.32 86.10 1.68 61.80
BEAM+LOOKAHEAD+RANKING 28.86 87.92 95.26 91.68 1.08 63.69

XSum

Greedy 36.16 92.03 89.28 23.53 65.35 36.51
Beam 37.11 92.12 89.45 22.97 63.49 37.05
BEAM+RANKING 36.42 92.10 89.79 40.11 51.48 40.10
GREEDY+LOOKAHEAD 36.25 92.11 89.71 24.21 60.46 37.17
BEAM+LOOKAHEAD 35.27 91.94 90.78 23.38 50.04 39.24
BEAM+LOOKAHEAD+RANKING 34.71 91.90 90.78 38.86 41.04 41.94

Table 2: Results for our proposed decoding strategies. Compared to the baseline methods (greedy and beam search),
both ranking and lookahead improve faithfulness. The combination of both methods further increases faithfulness.

18.92% (12.01 points) and 41.8% percent (1.38
points) on XSum and CNN/DM, respectively.

We observe similar improvement for lookahead
as well, where applying the lookahead improves
the faithfulness over the base decoding strategy
over all faithfulness metrics. Nevertheless, the base
decoding strategy is still the dominating factor, as
BEAM+LOOKAHEAD generates more faithful sum-
maries than GREEDY+LOOKAHEAD for all faith-
fulness metrics. GREEDY+LOOKAHEAD outper-
forms Beam on the XSum dataset, showing that
better guidance with future faithfulness heuristics
can improve faithfulness without large exploration.
Finally, the combination of lookahead and ranking
can further improve faithfulness as evaluated by
FactCC, DAE, and QuestEval.

In terms of ROUGE score, applying faithful de-
coding methods decreases RL. This tradeoff be-
tween faithfulness and ROUGE has been observed
in many prior works (Chen et al., 2021b; Kryscin-
ski et al., 2020; Wan and Bansal, 2022). One rea-
son for this phenomenon is that more than 70%
of the reference summaries contain hallucinations
(Maynez et al., 2020), so the more faithful sum-
maries that do not contain such hallucinations will
have lower ROUGE scores. To investigate this
problem, we perform a human evaluation study,
where we find that the summaries generated by
BEAM+LOOKAHEAD are considered to be most
informative. More details are in Appendix A.4.

6.3 Human Evaluation Results

Faithfulness. The observation on automatic faith-
fulness metrics aligns with the result of human eval-

uation in Table 3. For XSum, among the baseline
decoding methods, we see that sampling performs
the worst. Interestingly, greedy is more faithful
than beam search, but the difference is only 1.5
points. Our proposed decoding strategies generate
summaries that are judged more faithful compared
to that of the baseline decoding strategies. Specif-
ically, BEAM+LOOKAHEAD reaches 56.5, even
outperforming BEAM+RANKING by 5 points. We
also observe that our proposed methods are able to
significantly reduce the percentage of summaries
that are considered to contain major factual errors;
Compared to beam search, ranking reduces the per-
centage from 44.5 to 36.5, and lookahead further
reduces the percentage by 3 points. For CNN/DM,
we see the striking result that the summaries gener-
ated by our proposed methods achieve the highest
faithfulness, and among the two systems, there are
no major errors for BEAM+LOOKAHEAD.

Informativeness. The result is shown in Ta-
ble 4. The output of the BEAM+LOOKAHEAD

is clearly seen as the most informative among the
five methods. This result suggests that Rouge-L
and BERTScore may not be good indicators for
informativeness, as BEAM+LOOKAHEAD achieves
the lowest scores for the two automatic metrics on
both datasets.

6.4 Abstractiveness

Models can "trivially" become more faithful by
becoming more extractive (Dreyer et al., 2023),
and thus it is important to understand where the
gain in faithfulness stems from. We experiment
on XSum, as methods can achieve larger improve-
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XSum CNN/DM
1 2 3 1 2 3

Greedy 43.0 12.0 45.0 4.0 3.5 92.5
Sampling 55.0 13.0 32.0 8.0 10.5 81.5

Beam 44.5 12.0 43.5 0.0 2.0 98.0
BEAM+RANKING 36.5 14.0 49.5 0.5 1.0 98.5

BEAM+LOOKAHEAD 31.5 12.0 56.5 0.0 1.5 98.5

Table 3: Human evaluation results on faithfulness with
the 3-star rating system (1=major factual error, 2=mi-
nor factual error, 3=no factual error). Our proposed
faithfulness-aware methods are judged as the most faith-
ful (the percentage of summaries rated as 3), confirming
our observation with automatic faithfulness metrics.

ment in faithfulness and thus potentially more gain
through extensiveness. We experiment with the
200 examples used for human evaluation and cal-
culate MINT (Dreyer et al., 2023) for abstractive-
ness and plot this score against the human-labeled
faithfulness, similar to Ladhak et al. (2022). The
result is shown in Figure 4. Similar to the obser-
vation of Dreyer et al. (2023), more faithful mod-
els tend to be more extractive; however, the gain
in faithfulness is considerably larger than the de-
crease in abstractiveness. For example, comparing
BEAM+LOOKAHEAD with beam search, the rela-
tive increase in faithfulness (29.89%) is quadruple
the decrease (7.27%) in abstractiveness. Similar
experiments on CNN/DM are in Appendix F.

Lookahead with Faithfulness and Abstractive-
ness. We further show that our lookahead method
can easily allow additional heuristics, such as
balancing both faithfulness and abstractiveness.
Specifically, we replace h(·) with combination of
BS-Fact and MINT:

h(y, x) = αBS-Fact(y, x) + (1− α)MINT(y, x)

We use α = 0.75 and the same hyper-parameters
as BEAM+LOOKAHEAD. We refer to this model as
BEAM+LOOKAHEAD+ABSTR and show the point
in Figure 4. Compared to BEAM+LOOKAHEAD,
this model can increase abstractiveness at a small
cost in faithfulness, demonstrating the flexibility
of our lookahead method to incorporate various
characteristics for summarization.

6.5 Distillation

We present the distillation result in Table 5. While
the student models are not able to outperform the
teacher models, they approach the performance of
the teacher models. The student models are also

XSum CNN/DM

Greedy 3.0 − 8.2
Sampling −20.5 −23.8

Beam 1.8 8.5
BEAM+RANKING 1.0 − 2.8

BEAM+LOOKAHEAD 17.7 31.0

Table 4: Human evaluation results on informative-
ness with best-worst-scaling (100=unanimous best,
−100=unanimous worst).
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Figure 4: Faithfulness and abstractiveness tradeoff re-
sults on 200 XSum examples used for human annota-
tion. BEAM+LOOKAHEAD+ABSTR is the model that is
trained with additional abstractiveness heuristics (See
Section 6.4 for more details).

able to generate more faithful summaries compared
to the greedy search baseline, which is only trained
using the cross-entropy loss LXE(y

′, y).
The main benefit of the student model comes

from the improved decoding speed. The ranking
time reduces from 0.77 seconds per example to
0.47, which is a 40% improvement. The largest
gain can be seen for lookahead, where the decoding
speed reduces from 3 seconds per example to 0.49,
only 1/6 of the time it was originally taking.

For example, the student model distilled from
BEAM+RANKING improves DAE by 6.6 points
and QuestEval by a point compared to the greedy
search baseline and only differs from the teacher
model by 2.5 points for DAE and 0.5 points for
QuestEval. When using a more faithful teacher
model, i.e. BEAM+LOOKAHEAD, the student
model is able to generate more faithful summaries,
as evaluated by BS-Fact, DAE, and QuestEval.

Iterative Distillation. Next, we show the re-
sult of distilling BEAM+RANKING iteratively on
XSum in Table 6. We see that with each itera-
tion, the model is able to improve faithfulness fur-
ther. When compared to the original teacher model,
BEAM+RANKING, the student model is able to out-
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RL BS BS-Fact FC DAE ↓ QE Speed

Greedy 36.16 92.03 89.28 23.53 65.35 36.51 0.39

BEAM+RANKING

Teacher 36.46 92.14 90.15 22.47 56.33 37.98 0.77
Student 36.59 92.07 89.80 23.52 58.78 37.46 0.47

BEAM+LOOKAHEAD

Teacher 35.91 92.06 90.51 22.44 52.50 38.72 3.00
Student 36.52 92.07 89.97 22.58 58.02 37.89 0.49

Table 5: Distillation results using our proposed
faithfulness-aware decoding methods as the teacher. We
abbreviate FactCC as FC and QuestEval as QE. Speed
is calculated by seconds per summary.

perform all faithfulness metrics with two iterations.
We stress that here all models only use greedy de-
coding, thus showing the potential of combining
decoding with training for more faithful models.

7 Related Work

Many of the related works of our proposed decod-
ing methods have been discussed in Section 3; here
we cover other related areas.

Decoding methods. A decoding method for text
generation explores an approximate search method
to select the best tokens to form a hypothesis.
Several works have critically analyzed different
decoding strategies for natural language genera-
tion, including beam search (Meister et al., 2020a;
Stahlberg and Byrne, 2019; Xu et al., 2022; Holtz-
man et al., 2020), best-first-search (Meister et al.,
2020b), and lattice (Xu et al., 2022). While these
works investigated the effectiveness of decoding
methods on generated outputs from the perspective
of diversity and repetitiveness, to our best knowl-
edge, none of the works have explicitly analyzed
their performance on faithfulness.

Distillation. Distillation aims at compressing the
knowledge from a larger model into a smaller
one. A conventional approach uses soft targets,
i.e. learning the logits of a teacher model rather
than final predictions (Buciluundefined et al., 2006;
Hinton et al., 2015; Kim and Rush, 2016). While
this method has shown to be very effective, it is
less applicable to our case where the underlying
distribution for the next probable tokens does not
necessarily change (for ranking, we do not mod-
ify the model scores at all) and thus not useful
to learn soft labels. Different from compressing
model size, our approach focuses on reducing the
computational cost during decoding. Our method

RL BS BS-Fact FactCC DAE ↓ QuestEval

Teacher 36.46 92.14 90.15 22.47 56.33 37.98
Iter. 1 36.59 92.07 89.80 23.52 58.78 37.46
Iter. 2 35.95 91.95 90.16 23.14 54.01 38.10
Iter. 3 35.09 91.73 90.48 22.77 50.66 38.86
Iter. 4 34.32 91.54 90.81 24.49 47.83 39.64
Iter. 5 33.60 91.34 91.11 25.52 45.85 40.39

Table 6: Iterative distillation results using
BEAM+RANKING as the teacher decoding method.
With two iterations, the student model is able to
outperform the original teacher model in terms of
faithfulness, and further iterations continuously improve
faithfulness.

is most similar to pseudo-labeling (Shleifer and
Rush, 2020), where we use generated summaries
as "hard" labels. We do not replace reference sum-
maries with our generated ones. Instead, we use
interpolation (Kim and Rush, 2016) to account for
both faithfulness and quality.

8 Conclusion

In this paper, we show a thorough analysis of the
effect of decoding strategies on faithfulness for
abstractive summarization. We present an analy-
sis of popular decoding strategies, as well as our
two newly proposed faithfulness-aware decoding
strategies, ranking and lookahead, that can further
improve faithfulness upon the base decoding meth-
ods. Finally, we show a simple (and optionally
iterative) distillation trick where the training of a
student model incorporates the summaries gener-
ated with more faithfulness-aware methods, and
the student model generates summaries of similar
faithfulness with minimal decoding time.

Future experiments could extend similar analysis
of faithfulness and factuality beyond summariza-
tion and develop a combination of heuristics that
also encompasses other aspects and styles.

9 Limitations

While the decoding strategies with lookahead show
improvement in faithfulness, they require a heavy
computational overhead, especially when they are
coupled with beam search for the base decoding
strategy and for generating the future summary.
We provide one solution with our distillation to im-
prove decoding speed. Many of the computations,
including the generated future summaries and the
faithfulness scores on them, during this online pro-
cess, are also later disregarded, similar to how any
candidates are pruned during beam search. We
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believe an interesting direction might be to store
the already generated future summaries so that the
decoding may directly use the future summary if it
is considered a good summary candidate.

10 Ethical Impact

While our work aims to reduce potential malicious
or unintended harmful effects, our methods rely
on the use of faithfulness metrics. The inherent
problems and biases when using such metrics have
been under-studied. Our decoding strategies can
also be applied to be used for other metrics, even
those that could be optimized for malicious intents.
Another aspect to consider is the environmental
impact of our proposed methods, as they require
large computations. We hope that our distillation
can mitigate this problem and future work can work
towards more environmentally friendly approaches
while improving faithfulness for safer use of large
models.
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A Experiments Details.

A.1 Datasets

We evaluate on XSum and CNN/DM. We use
the dataset processed and provided by DATASETS

(Lhoest et al., 2021).4 Both datasets contain En-
glish news articles and the corresponding sum-
maries. XSum contains 204045, 11332, and 11334
examples for training, validation, and test set, re-
spectively, and CNN/DM contains 287113, 13368,
and 11490 for the splits.

A.2 Metrics

We use the official code and follow the instruc-
tions to set up and run all the metrics we used.
We use the ROUGE package from https:
//github.com/google-research/
google-research/tree/master/rouge.
We report all scores of our models from single runs.
For BS and BS-Fact, we use the default model for
English (ROBERTA-LARGE). For DAE, we use the
sentence error, which considers the sentence to
contain an error if one of its arcs is predicted to be
not factual.

A.3 Decoding Details

Basic Decoding Method Details. We use the offi-
cial generation code provided by TRANSFORMERS

4The link to the processed data is found in https://
huggingface.co/datasets/xsum and https://
huggingface.co/datasets/cnn_dailymail.
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Figure 5: Annotation instructions to annotate factual consistency on Mechanical Turk.

Figure 6: Annotation instructions to annotate informativeness on Mechanical Turk.

(Wolf et al., 2020). We use a single NVIDIA V100
GPU to generate the summaries. Greedy and sam-
pling experiments take around 2 hours and beam
search variants take 4 hours.

Ranking. We do not need to do additional com-
putation as we already have the outputs of beam
search and the metric scores.

Lookahead. To reduce computational overhead,
we only calculate and incorporate the lookahead
heuristics for the top 5 tokens according to the
model score at each time step. Experiments us-
ing beam search or sampling to generate a future
summary can be found in Appendix C. We show
additional ablations on the length of the future sum-
maries and how the exploration changes with the
heuristics in Appendix E. For tuning the w, the
weight for the heuristics, we search over the inter-
val from 5 to 55 with a step of 5, and evaluate the
generated summaries on the development set. We

use the average of all metric scores, including RL
and BS so that we do not over-optimize for faith-
fulness. We find 25 to be optimal for CNN/DM
and 55 for XSum. The time to run for XSum is 33
hours, and that for CNN/DM is around 70 hours.

Distillation Details. We use the example code
from TRANSFORMERS to train summarization mod-
els. We follow the authors’ hyper-parameters to
train BART-Large models. We use 8 V100 GPUs
and the training time is around 5 hours. To gen-
erate the summaries for the training data, The BS-
Fact Ranker takes around 3 hours to generate the
summaries when parallelized across the 8 GPUs.
Lookahead takes 10 hours to generate the training
data split across 8 GPUs.

A.4 Human Evaluation Details

Human Evaluation on Faithfulness. The
screenshot of the annotation can be seen in
Figure 5. We required annotators to pass a custom
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RL BS BS-Fact FactCC DAE ↓ QuestEval

CNN/DM

Greedy 30.93 88.39 93.15 69.61 8.15 59.13
Nucleus p = 0.1 30.93 88.39 93.15 69.58 8.17 59.13
Nucleus p = 0.3 30.77 88.37 93.12 69.43 8.40 59.01
Nucleus p = 0.5 30.39 88.31 92.95 66.67 10.05 58.81
Nucleus p = 0.7 29.43 88.20 92.56 60.88 12.64 58.11
Nucleus p = 0.9 27.64 87.90 91.76 54.05 21.61 56.43
Beam k = 2 30.78 88.29 93.62 76.00 5.80 59.72
Beam k = 4 30.44 88.17 93.95 81.19 4.11 59.97
Beam k = 6 30.30 88.12 94.07 82.94 3.76 60.07
Beam k = 8 30.10 88.07 94.15 83.50 3.39 60.06
Beam k = 10 29.99 88.03 94.20 84.23 3.30 60.03

XSum

Greedy 36.16 92.03 89.28 23.53 65.35 36.51
Nucleus p = 0.1 31.08 91.24 88.61 21.63 76.07 35.04
Nucleus p = 0.3 31.19 91.25 88.62 21.51 76.35 34.98
Nucleus p = 0.5 31.08 91.24 88.63 21.11 75.31 34.99
Nucleus p = 0.7 31.24 91.24 88.62 21.26 76.11 35.01
Nucleus p = 0.9 31.15 91.26 88.62 21.04 76.20 34.98
Beam k = 2 36.76 92.13 89.38 22.98 64.62 36.82
Beam k = 4 36.96 92.14 89.42 23.00 63.81 36.97
Beam k = 6 37.09 92.14 89.43 22.70 63.71 37.00
Beam k = 8 37.09 92.13 89.44 23.05 63.52 37.02
Beam k = 10 37.11 92.12 89.45 22.97 63.49 37.05

Table 7: Full results of beam search and nucleus sam-
pling for fine-tuned BART-LARGE models. The trend
can still be seen under different beam sizes and top-p
values, where increasing k improves faithfulness and
increasing p degrades it.

qualification test consisting of three summaries
with factual errors. To pass the test, the annotators
had to correctly describe the factual errors in words.
Workers also needed to have previously completed
100 or more tasks with an acceptance rate of 95%
or higher. We recruited workers from countries
whose main language is English. To prevent any
one worker from dominating the results, we set a
maximum of 100 HITs per worker per dataset. The
payment for judging each summary was $0.22 plus
a bonus of $0.03. Annotators who spent more than
10 seconds per HIT and maintained high accuracy
on HITs with known answers obtained the bonus.
Annotators spent a median amount of 57.5 seconds
per HIT, which amounts to a pay of $15.65 per
hour. Krippendorff alpha (Krippendorff, 1980) for
the CNN/DM factuality annotation is 0.63, and
Krippendorff alpha for the XSum annotation is
0.57.

Human Evaluation on Informativeness. The
screenshot of the annotation can be seen in Fig-
ure 6. To achieve good quality, we set up a qualifi-
cation task of three documents with their associated
summaries. A selected pool of workers who had
passed previous factuality qualification tests was
allowed to take this current qualification test. The
workers who passed the current qualification test
were allowed to participate in this evaluation. In

RL BS BS-Fact FactCC DAE ↓ QuestEval

CNN/DM

Greedy 30.20 87.65 89.71 53.00 15.44 56.70
Nucleus p = 0.1 30.20 87.65 89.71 52.99 15.44 56.68
Nucleus p = 0.3 30.15 87.64 89.71 52.96 15.72 56.68
Nucleus p = 0.5 29.88 87.61 89.62 51.48 17.25 56.43
Nucleus p = 0.7 28.86 87.47 89.36 46.44 20.97 55.92
Nucleus p = 0.9 30.15 87.23 88.88 38.82 28.53 54.78
Beam k = 2 30.67 87.72 90.28 57.75 11.40 57.24
Beam k = 4 30.82 87.71 90.61 62.36 9.50 57.42
Beam k = 6 30.67 87.66 90.75 64.18 8.72 57.43
Beam k = 8 30.68 87.65 90.82 64.96 8.66 57.43
Beam k = 10 30.66 87.65 90.87 65.32 8.23 57.46

XSum

Greedy 38.53 92.45 89.05 24.53 68.33 35.75
Nucleus p = 0.1 38.53 92.44 89.05 24.50 68.33 35.76
Nucleus p = 0.3 38.42 92.42 89.02 24.10 69.23 35.68
Nucleus p = 0.5 37.85 92.33 88.97 23.14 70.07 35.51
Nucleus p = 0.7 36.13 92.09 88.80 22.95 72.72 35.27
Nucleus p = 0.9 33.76 91.68 88.51 22.46 76.23 34.73
Beam k = 2 39.09 92.53 89.13 23.58 67.72 35.90
Beam k = 4 39.35 92.58 89.19 22.64 67.16 35.97
Beam k = 6 39.32 92.57 89.21 22.89 66.86 35.98
Beam k = 8 39.37 92.57 89.21 22.71 66.73 35.97
Beam k = 10 39.43 92.57 89.23 22.75 66.48 35.96

Table 8: Full results of beam search and nucleus sam-
pling for fine-tuned PEGASUS-LARGE models. We
observe a similar observation as Table 7, showing that
the faithfulness trend holds for different models.

addition, we added the same three documents with
known answers to the evaluation and observed that
workers had 100% accuracy on them. We set the
same maximum of 100 HITs per worker per dataset
as in the factuality evaluation. The pay was $0.40
plus $0.10 bonus per HIT. Annotators spent a me-
dian time of 112 seconds per HIT, amounting to a
pay of $16.07 per hour. For inter-annotator agree-
ment, Krippendorff alpha (Krippendorff, 1980) for
the CNN/DM annotation is 0.22, and Krippendorff
alpha for the XSum annotation is 0.32.

B Full Analysis

Table 7 shows the full result. We see the general
trend where increasing beam size improves faith-
fulness and increasing p for sampling is not helpful
for faithfulness.

We similarly run the experiment on PEGASUS,
a 568M model specifically trained for the task of ab-
stractive summarization, with its respective check-
points.5 The result is presented in Table 8.

C Lookahead Methods

We show the result of combining different decod-
ing strategies for the base decoding strategy as well

5We use the checkpoint from https://huggingface.
co/google/pegasus-cnn_dailymail and https:
//huggingface.co/google/pegasus-xsum.
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Rouge-L BERTScore BS-Fact FactCC DAE ↓ QuestEval

CNN/DM

Greedy 30.93 88.39 93.15 69.61 8.15 53.71
Beam k = 10 29.99 88.03 94.20 84.23 3.30 60.03
Greedy + Greedy Lookahead 30.88 88.38 93.57 71.54 6.42 59.70
Greedy + Sampling Lookahead 30.67 88.35 93.54 78.28 7.09 59.72
Greedy + Beam Lookahead 30.63 88.32 93.85 82.07 5.33 60.13
Beam + Greedy Lookahead 28.66 87.84 95.32 86.10 1.68 63.69

XSum

Greedy 36.16 92.03 89.28 23.53 65.35 36.51
Beam k = 10 37.11 92.12 89.45 22.97 63.49 37.05
Greedy + Greedy Lookahead 36.25 92.11 89.71 24.21 60.46 37.17
Greedy + Sampling Lookahead 36.24 92.10 89.55 23.97 62.35 36.90
Greedy + Beam Lookahead 36.17 92.07 89.62 23.58 61.90 37.10
Beam + Greedy Lookahead 35.27 91.94 90.78 23.38 50.04 39.24

Table 9: Lookahead results with different decoding strategies for base decoding strategies and the lookahead
generation strategies.

All CNN/DM XSum
Pearson Spearman Pearson Spearman Pearson Spearman
ρ p r p ρ p r p ρ p r p

FactCC* .20 .00 .30 .00 .36 .00 .30 .00 .07 .07 .19 .00
DAE* .18 .00 .20 .00 .27 .00 .22 .00 .03 .38 .33 .00

BS-Fact* .30 .00 .25 .00 .38 .00 .31 .00 .20 .00 .09 .02
QuestEval .19 .00 .20 .00 .21 .00 .19 .00 .16 .00 .09 .00

Comp. Avg .34 .00 .32 .00 .30 .00 .33 .00 .30 .00 .32 .00
Comp. Tuned .37 .00 .34 .00 .42 .00 .36 .00 .31 .00 .19 .00

Table 10: Partial correlations of metrics on the Frank
test dataset. Composite achieves the highest correlations
on the combined and XSum dataset. * indicates results
copied from the original work.

as for lookahead in Table 9 shows the result. We ex-
periment with greedy and beam search as the base
decoding strategies. For greedy, we experiment
with all three decoding strategies for lookahead.
For beam search, we are unable to run it with sam-
pling or beam search due to the large computational
cost. Interestingly, using beam for lookahead does
not provide additional gains. We suspect that this
is because exploring the future with more beams
cannot guarantee that the base decoding strategy
is able to explore them, as it is limited to selecting
only the top tokens.

D Composite Metric

As described in Section 3.1, we train the com-
posite metric on FACTCOLLECT and tune it on
FRANK (Pagnoni et al., 2021). We use the test
set of Pagnoni et al. (2021) for evaluation and the
rest for tuning the composite metric. The resulting
weights for the metrics are 0.29, -0.29, 1.97, and
0.94 for the FactCC, DAE, BS-Fact, and QuestEval,
respectively, and the intercept is -1.91. We addi-
tionally compute partial correlations on FRANK,

RL BS BS-Fact FactCC DAE ↓ QuestEval

Greedy 26.36 89.09 88.93 89.57 75.34 38.39
Beam 27.52 87.56 89.41 87.20 60.21 39.44
BEAM+RANKING 27.60 87.62 89.64 91.11 47.01 41.91

Table 11: Results for ranking on the WikiHow dataset.

shown in Table 10. We see that the composite
is able to further increase the correlations in all
settings except for XSum’s Spearman correlation.
Ablations on the effect of ranking with a single
metric in Appendix E.

Since FACTCOLLECT only contains annotations
on XSum and CNN/DM, we analyze whether the
composite metric is robust for another dataset and
domain. We use WikiHow (Koupaee and Wang,
2018) and decode using PEGASUS6 with greedy
and beam decoding. The result of applying ranking
to the beam output can be seen in Table 11. We see
consistent gains in all faithfulness metrics when we
apply ranking, showing its robustness of improving
faithfulness in another domain.

E Ablations

We present several ablation studies for our pro-
posed faithfulness-aware decoding methods. More
ablation studies exploring how lookahead explores
the search space can be found in Appendix E.

Lookahead Length. We first present the result
of using the lookahead heuristics but with l =
0. This means that at each time step, we do
not use future heuristics but directly evaluate the

6We use the checkpoint PEGASUS-WIKIHOW (https:
//huggingface.co/google/pegasus-wikihow).

2878

https://huggingface.co/google/pegasus-wikihow
https://huggingface.co/google/pegasus-wikihow


0 10 20 30 40 50 60
t

0.880

0.885

0.890

0.895

0.900

sc
or

e

bertscore
greedy
greedy+lookahead

0 10 20 30 40 50 60
t

0.55

0.60

0.65

0.70

0.75

0.80

0.85

sc
or

e

dae
greedy
greedy+lookahead

Figure 7: Faithfulness score of the lookahead summaries at each time step. Adding lookahead as the heuristics
improves the search space to generate more faithful summaries.

RL BS BS-Fact FactCC DAE ↓ QuestEval

CNN/DM

Greedy 30.93 88.39 93.15 69.61 8.15 59.13
l = 0 30.71 88.34 93.13 70.41 8.19 58.65
l = full 30.75 88.35 93.90 71.54 5.70 60.13

XSum

Greedy 36.16 92.03 89.28 23.53 65.35 36.51
l = 0 35.73 92.00 89.39 23.43 64.06 36.55
l = full 36.25 92.11 89.71 24.21 60.46 37.17

Table 12: Lookahead ablation with different lengths.
l = 0 provides the faithfulness heuristic score only on
the partially generated summaries while l = full is our
lookahead model that evaluates on the full future sum-
mary. The faithfulness score calculated on the partial
summaries does not provide an effective estimate that
improves the faithfulness of the generated summary.

faithfulness of the already generated partial sum-
maries as the additional score. The result us-
ing GREEDY+LOOKAHEAD is shown in Table 12.
Compared to greedy decoding, adding the faithful-
ness score of the current partial summary shows
mixed results; the heuristic can only slightly im-
prove BS-Fact, DAE, and QuestEval for XSum.
However, we only see substantial gain when the
future is taken into account (i.e. l = full). This
shows the necessity of using the full summary to
achieve the full potential of current faithfulness
metrics.

Ranking with Faithfulness Metrics. Next, we
present the result for ranking with each respective
faithfulness metric. The result is shown in Table 13.
Generally, optimizing for one metric will lead to
improvement in other faithfulness metrics. While
optimizing each of the faithfulness metrics will
undoubtedly perform the best when we use that
metric for evaluation, the composite metric is able
to achieve a similarly good score for all faithfulness

Ranker RL BS BS-Fact FC DAE ↓ QE COMP

CNN/DM

First 29.99 88.03 94.20 84.23 3.30 60.03 74.68
BS-Fact 29.81 88.04 94.64 84.08 3.04 60.41 75.94
FC 29.98 88.04 94.20 90.75 3.00 60.06 76.75
DAE 30.00 88.03 94.20 84.28 1.92 60.04 75.11
QE 30.27 88.16 94.14 82.81 2.83 63.26 77.33
Comp. 30.08 88.12 94.31 90.27 1.92 62.57 79.51

XSum

Top 37.11 92.12 89.45 22.97 63.49 37.05 8.08
BS-Fact 36.46 92.14 90.15 22.10 56.33 37.98 12.15
FC 36.98 92.11 89.44 41.93 63.47 37.01 13.67
DAE 36.94 92.11 89.54 23.27 50.82 37.28 12.24
QE 36.36 92.06 89.61 23.07 60.35 41.17 13.20
Comp. 36.42 92.10 89.79 40.11 51.48 40.10 20.20

Table 13: Ranking results with different faithfulness
metrics. Top is the best summary from beam search,
and each subsequent rows represent the ranker using
the corresponding faithfulness metric. We abbreviate
FactCC as FC, QuestEval as QE, and Composite as
Comp.

metric that we are considering.

Evaluating the Search Space. We hypothesize
that by incorporating lookahead, we can improve
the search space even when a few tokens are gener-
ated. To better understand this, we greedily decode
the full summary at each time step given the pre-
fix similar to how lookahead works. We then use
BS-Fact and DAE to score all generated summaries
and analyze the faithfulness score at each time step.
Here, we focus on XSum and compare greedy and
GREEDY+LOOKAHEAD. The plots of faithfulness
scores using the current prefix to generate the full
summaries are shown in Figure 7, where we see
the benefit of having the lookahead heuristics. For
BS-Fact, we see a large gap between the two meth-
ods especially when t is between 5 and 50. Though
it may be less surprising as this is the faithfulness
metric that the lookahead heuristic optimizes on,
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Figure 8: Faithfulness and abstractiveness tradeoff re-
sults on the 200 CNN/DM examples used for human
annotation. While our proposed methods are less ab-
stractive, the gain in faithfulness is much larger than the
decrease in abstractiveness.
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Figure 9: Faithfulness and Abstractiveness tradeoff re-
sults on the full examples XSum test set. Faithfulness
is calculated by taking the average across all automatic
faithfulness metrics.

the heuristic can nevertheless prevent the score to
dip, which we see for greedy search between t = 5
to t = 40. This shows that it is able to lead the
model to a more faithful path to prevent straying
away from a less faithful path. When we evaluate
DAE, we show that optimizing on BS-Fact with
lookahead heuristic can consistently improve the
score for all lengths.

F Abstractiveness

We first show the same tradeoff result in CNN/DM
in Figure 8. BEAM+LOOKAHEAD+ABSTR does
achieve a slightly higher MINT score while also
improving faithfulness.

We also extend the analysis to the whole test
dataset and show the faithfulness score by taking
the average of all faithfulness metrics (Avg.). Since
DAE is an error rate, we subtract the score from
100 so that a higher score means it is more faithful.
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Figure 10: Faithfulness and Abstractiveness tradeoff
results on the full examples CNN/DM test set. Faith-
fulness is calculated by taking the average across all
automatic faithfulness metrics.

We do not use the composite metric as the ranking
directly optimizes for it.

We can see a similar trend with the average of
faithfulness metrics for both datasets in Figure 9
and Figure 10, where the gain in faithfulness out-
weighs the decrease in abstractiveness. The differ-
ence from the result using human faithfulness score
is that BEAM+RANKING achieves the highest av-
erage score since ranking with composite metric
optimizes the faithfulness metrics.
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Abstract

Temporal concept drift refers to the problem of
data changing over time. In NLP, that would en-
tail that language (e.g. new expressions, mean-
ing shifts) and factual knowledge (e.g. new con-
cepts, updated facts) evolve over time. Focus-
ing on the latter, we benchmark 11 pretrained
masked language models (MLMs) on a series
of tests designed to evaluate the effect of tempo-
ral concept drift, as it is crucial that widely used
language models remain up-to-date with the
ever-evolving factual updates of the real world.
Specifically, we provide a holistic framework
that (1) dynamically creates temporal test sets
of any time granularity (e.g. month, quarter,
year) of factual data from Wikidata, (2) con-
structs fine-grained splits of tests (e.g. updated,
new, unchanged facts) to ensure comprehensive
analysis, and (3) evaluates MLMs in three dis-
tinct ways (single-token probing, multi-token
generation, MLM scoring). In contrast to prior
work, our framework aims to unveil how robust
an MLM is over time and thus to provide a
signal in case it has become outdated, by lever-
aging multiple views of evaluation.

1 Introduction

In the real world, what people talk about and how
they tend to speak and write changes constantly
over time. In Natural Language Processing (NLP),
this entails a challenging shift of the textual data
distribution that is commonly referred to as tempo-
ral concept drift. Prior work has identified that pre-
trained language models (PLMs) tend to become
outdated soon after new topics and concepts are
emerging (Lazaridou et al., 2021; Dhingra et al.,
2022; Agarwal and Nenkova, 2022; Luu et al.,
2022), limiting their capability to be robust to
newly generated data.

We consider the desiderata of language models’
robustness to temporal drift to be twofold. First,
LMs should be well adapted to the dynamic use

∗ Work done during an internship at AWS AI Labs.

Figure 1: Querying pretrained MLMs on their knowl-
edge about the Prime Minister of the United Kingdom.

of language, from the linguistic perspective. Lan-
guage changes over time, pronunciations evolve,
new words and expressions are borrowed or in-
vented, the meaning of old words drifts, and mor-
phology develops or decays (Blank, 1999; Traugott
and Dasher, 2001; Kulkarni et al., 2015). Second,
LMs should be aware of the ever-changing reality
of the world, from a factual perspective. Models’
factual knowledge should be up-to-date with new
facts and concepts (e.g. Covid-19) to be of use
continuously. In this work, we focus on the latter;
the temporal robustness of LMs to facts that change
over time.

In an ideal scenario, we would like to know ex-
actly when the factual knowledge of a model is
“expired” so that we could adapt it to the new (or
updated) set of facts. In reality, this is a challenging
task. A large body of work has focused on the part
of (continually) adapting an “outdated” model to
the new data distribution (Guu et al., 2020; Yo-
gatama et al., 2021; Sun et al., 2020; Biesialska
et al., 2020; Jang et al., 2022b; Jin et al., 2022;
Chakrabarty et al., 2022). This line of work is par-
allel to ours, as we focus on the crucial step before
adaptation, the evaluation of the model on tempo-
ral concept drift: How can we know if a language
model is outdated or not?

Let us consider the case where we desire a lan-
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guage model to be up-to-date with the Prime Min-
ister of the United Kingdom (Figure 1).1 A plausi-
ble way to evaluate this is to use the LAMA-probe
paradigm (Petroni et al., 2019) and query the LM
as a knowledge base (KB). This would mean that
we could form the query as “The surname of the
Prime Minister of the United Kingdom is
<mask>.”, give it as an input to a (masked) LM
and inspect the output token distribution for the
<mask> token. Figure 1 shows the top prediction
for a series of ROBERTA models.2 We first ob-
serve that the most widely used ROBERTA base
and large models are both outdated in terms of
factual knowledge, as they predict the names of
PMs that served from 2010 until 2019. Next, while
the last three models (2020-2022) answer correctly,
the 2019 model answers the (correct) first name of
the PM (Boris), not the surname (Johnson) which
is asked for.

This is a handy illustration of the many chal-
lenges in evaluating MLMs for temporal robust-
ness in the LMs-as-KBs framework. First, this
2019 model would be considered to have made a
mistake (as the prediction is different than the gold
label and the metric is accuracy), even though the
factual knowledge was correct (the name of the
PM of the UK). Second, notice that we designed
the query to ask for the surname (instead of the
name of the PM), as this results in a single mask.
The LAMA-probe and related frameworks do not
handle multi-token queries for MLMs (e.g., Boris
Johnson). Finally, we mark with a ? the answers
of the first two ROBERTA models, because even
though their answers are out-of-date for our cur-
rent evaluation (October 2022), their answers could
have been correct in an evaluation setting in the
time of the training data (2019). This illustrates
the obscurity of the temporal window in which the
model is expected to be correct, if the model is not
trained with a temporally-aware design (Lazaridou
et al., 2021; Dhingra et al., 2022; Loureiro et al.,
2022; Jang et al., 2022a).

In this work, we aim to address such limita-
tions and provide a holistic framework for dy-
namic benchmarking of masked language models
on temporal concept drift, with a focus on facts that
change over time. Following the propositions of

1The time of writing of this paper is September 2022.
2Except for the ROBERTA base and large models, we

also show the predictions of models trained with Twitter data
until 2019, 2020, 2021, and 2022, respectively (Loureiro
et al., 2022).

Kiela et al. (2021) and Søgaard et al. (2021) that ad-
vocate for a focus on dynamic (i.e., test sets should
not become saturated) and targeted (i.e., use of mul-
tiple, independent test sets for realistic performance
estimates) benchmarking respectively, and building
on prior work (Jiang et al., 2020b; Dhingra et al.,
2022; Jang et al., 2022a), we create a large open-
source test set that can be dynamically updated
over time, containing temporal fine-grained subsets
of examples that can be used to query masked lan-
guage models and evaluate their factual knowledge
over time.

Contributions (1) We release DYNAMICTEM-
PLAMA, an improved version of the static TEM-
PLAMA (Dhingra et al., 2022) test set consisting
of Wikidata relations, that is used to evaluate tem-
poral robustness of MLMs. We provide data and
code to dynamically keep DYNAMICTEMPLAMA
up-to-date over time.3 (2) We propose a novel eval-
uation framework to first create temporal splits of
test sets of any granularity (month, quarter, year)
and then to further create fine-grained splits of facts
that are unchanged, updated, new or deleted, aim-
ing to improve comprehensiveness (§3.1). (3) We
introduce three distinct evaluation views with mul-
tiple metrics (§3.3) to ensure comprehensive results
and provide analysis of benchmarking a large set
open-source temporal ROBERTA models (§3.2).

2 Related Work

Temporal Concept Drift Evaluation of the ro-
bustness of language models on temporal concept
drift has seen a rising interest in the recent years.
Previous work has focused on methods to continu-
ally adapt models over time (Hombaiah et al., 2021;
Rosin et al., 2022; Lazaridou et al., 2022). Another
area of research is evaluation of temporal robust-
ness which has been explored both in the upstream
LM pretraining task (Jiang et al., 2020b; Lazaridou
et al., 2021; Dhingra et al., 2022; Jang et al., 2022a;
Loureiro et al., 2022) and in downstream tasks such
as sentiment analysis (Lukes and Søgaard, 2018;
Agarwal and Nenkova, 2022), named entity recog-
nition (Rijhwani and Preotiuc-Pietro, 2020; Onoe
et al., 2022), question answering (Mavromatis et al.,
2021; Liška et al., 2022), and rumor detection (Mu
et al., 2023). It has also been studied for model ex-
planations (Zhao et al., 2022) and for text classifi-
cation in legal, biomedical (Chalkidis and Søgaard,

3
https://github.com/amazon-science/temporal-robustness
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2022), and social media (Röttger and Pierrehum-
bert, 2021) domains.

Luu et al. (2022) explore the setting of tempo-
ral misalignment (i.e., training and test data drawn
from different periods of time) for both upstream
and downstream tasks and find that temporal adap-
tation should not be seen as a substitute for finding
temporally aligned labeled data for fine-tuning.

The closest work to ours is TEMPLAMA (Dhin-
gra et al., 2022). However, we differ across four
axes: (i) TEMPLAMA is static, while we pro-
vide code to dynamically download facts in a fine-
grained fashion from any periods of time (not only
yearly), (ii) we evaluate the same models over time
focusing on the evaluation of robustness over time,
we do not explore the best adaptation technique
to address the problem, (iii) we do not fine-tune
the models to adapt them to the domain/format
of the test data, and (iv) we address benchmark-
ing of masked LMs (not auto-regressive) including
more evaluation techniques. Finally, similar to our
motivation, Jang et al. (2022a) recently explored
lifelong adaptation and evaluation of temporal con-
cept drift in LMs and introduced TEMPORALWIKI

for continual adaptation and TWIKI-PROBES for
evaluation. The major difference is that the au-
thors focus on providing corpora to adapt an LM
over time, while in our paper we focus on evaluat-
ing temporal robustness of LMs. DYNAMICTEM-
PLAMA is a holistic evaluation framework, while
“TWIKI-PROBES are not natural sentences; they are
factual phrases synthetically generated from a naive
concatenation of Subject, Relation, and Object”.

Language Models as Knowledge Bases The
cloze-style LM evaluation framework for factual
knowledge, LAMA Petroni et al. (2019), follows
the setting depicted in Figure 1. A knowledge base
relation is transformed into natural language text
with a manually created template and then passed
as an input to an LM. The framework is based on
treating the output distribution for the mask token
as the retrieved answers to the query (AlKhamissi
et al., 2022). The LAMA probe has since been exten-
sively used to evaluate factual knowledge in LMs
(Petroni et al., 2020; Talmor et al., 2020; Kassner
et al., 2021; Sung et al., 2021; Dhingra et al., 2022;
Fierro and Søgaard, 2022), while other works have
been exploring its limitations and ways to improve
it (Kassner and Schütze, 2020; Haviv et al., 2021;
Elazar et al., 2021; Zhong et al., 2021; Qin and
Eisner, 2021). A particular challenge in our exper-

imental setting, is the text compatibility between
the model (i.e., its pre-training data) and the format
of test examples, named as “language mismatch”
by Talmor et al. (2020). Dhingra et al. (2022) opts
to fine-tune the model under evaluation with part of
the test set to adapt it to the format of the task. We
argue that this process suffers from many caveats;
it is inefficient and impractical to fine-tune a model
whose capabilities are under evaluation, it risks
optimization stability and overfitting issues due to
the small training dataset, and enforces extra bi-
ases and errors, especially in the case of temporal
robustness evaluation.

3 Dynamic Benchmarking of Temporal
Concept Drift

In this section we describe in detail the steps to
(re)create DYNAMICTEMPLAMA, our dynami-
cally updated test set with facts from Wikidata
(§3.1). We then present the open-source temporal
ROBERTA models (TIMELMS) (Loureiro et al.,
2022) that we use for benchmarking (§3.2). Fi-
nally, we introduce the evaluation framework un-
der which we investigate how well the TimeLMs
perform in terms of temporal robustness (§3.3).

The research question that we try to address with
our work is: How can we measure temporal drift
robustness of PLMs with an evaluation framework
that is: unsupervised (no labeled downstream data),
efficient (quality test set of facts—no need to run in-
ference on a large corpus to compute perplexity for
every token), dynamic (test set easily generated per
request—can be used to dynamically evaluate new
concepts over time), general (option to create test
sets of any time granularity), and comprehensive
(battery of targeted test sets that evaluate different
LM capabilities and multiple views of evaluation).

3.1 DYNAMIC-TEMPLAMA

We base our implementation on the TEM-
PLAMA (Dhingra et al., 2022) code, while we
make several changes in terms of accessibility (i.e.
option to dynamically update the test set), flexi-
bility (i.e. option to adjust the granularity of the
temporal splits) and comprehensiveness (i.e. fine-
grained splits and multiple evaluation views). We
provide a high-level overview of the process to
create DYNAMICTEMPLAMA in Figure 2.

Data Collection We start the process by selecting
a set of relations collected from the Wikidata KB
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WIKIDATA ID RELATION TEMPLATE #FACTS #EXAMPLES POSSIBLE SPLIT(S)

P54 member of sports team <subject> plays for <object>. 3772 50558 DUPDATED

P69 educated at <subject> attended <object>. 232 2420 DUPDATED, DUNCHANGED

P6 head of government <object> is the head of the government of <subject>. 578 7815 DUPDATED

P279 subclass of <subject> is a subclass of <object>. 5 70 DNEW, DUPDATED

Table 1: Examples of relations and their corresponding templates that we include in DYNAMICTEMPLAMA.
#FACTS denote the unique number of facts for each relation, while #EXAMPLES denotes the total number of
example we have collected for each relation in the time range between 2019-Q1 and 2022-Q2. POSSIBLE SPLIT(S)
indicate the type of fine-grained split that each relation would potentially belong to.

(Figure 2a).4 Specifically, we use the 9 relations
used in the TEMPLAMA dataset, followed by 7
more that we also decided to collect. We collect
all relations from Wikidata in the span of 2019−
2022. We then manually craft a cloze style query,
i.e template, for each relation.Table 1 shows a few
examples of relations and templates, along with
dataset statistics.5 We explain the data collection
process in detail in Appendix A.1.

Temporal Splits In this stage, we have a very
large collection of facts for which we have tempo-
ral information (i.e., that the fact is true) in the time
range we investigate (2019 − 2022). In the TEM-
PLAMA dataset, the facts are divided yearly. How-
ever, we would ideally like to benchmark temporal
models of any time granularity. Specifically, since
we benchmark temporal models that are trained
quarterly (§3.2), a yearly split would not be useful
to evaluate temporal concept drift of the four mod-
els trained on each quarter of a year. Consequently,
we divide the large set of collected facts per quar-
ter (Figure 2b), while adding the functionality to
our implementation to split the facts in any time
granularity (monthly, quarterly, yearly).

Fine-grained Splits For a given time range, from
timestep t to t + 1 (e.g. 2019-Q1→2019-Q2), we
further create comprehensive test sets that contain
examples with unchanged, updated, new or deleted
facts, denoted by DUNCHANGED

t+1 ,DUPDATED
t+1 ,DNEW

t+1

and DDELETED
t+1 respectively (Figure 2c). We cre-

ate these splits to be able to measure different ca-
pabilities of the MLM in terms of robustness to
temporal concept drift. The motivation for this
stems from limitations of prior work (Dhingra et al.,
2022) to shed light into what kind of data each
temporal test set contains. For instance, we pose

4All possible relations from Wikidata can be found here
https://www.wikidata.org/wiki/Wikidata:List_of_properties.

5Details on all relations and templates of DYNAMICTEM-
PLAMA can be found in Tables 6 & 7 in the Appendix A.1.

(a) Data collection

(b) Temporal Splits

(c) Fine-grained Splits

Figure 2: The process for creating DYNAMICTEM-
PLAMA. We first collect data from Wikidata (a), we
then divide it to quarterly temporal splits (b) and finally
we create more targeted fine-grained sets (c).

questions like How many facts were updated from
timestep t → t + 1? How many facts remained
unchanged? What was the change? The object or
the subject? Are there new facts in timestep t+ 1
that were not present before? We argue that it is
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essential to distinguish between these sub-tests, so
that each split can target specific capabilities of
the LM. First, we can use DUNCHANGED

t+1 to evaluate
knowledge preservation (i.e. how well a model
can preserve knowledge over time). Second, we
can use DUPDATED

t+1 ,DNEW
t+1 and DDELETED

t+1 to measure
adaptation (i.e. how well a model adapts to new
information/facts). Finally, we can measure over-
all temporal robustness by evaluating a temporal
model from timestep t on DUPDATED

t+1 and DNEW
t+1 in

timesteps for t ∈ [t+ 1, t+ 2, ...). We believe that
this framework is particularly useful for insightful
evaluation of methods that aim to adapt language
models over time (Guu et al., 2020; Yogatama et al.,
2021; Sun et al., 2020; Biesialska et al., 2020; Jang
et al., 2022b; Jin et al., 2022; Chakrabarty et al.,
2022).

3.2 Temporal Models

In contrast with prior work that uses private, in-
house models for temporal robustness evaluation
that are not accessible by the community (Lazari-
dou et al., 2021; Dhingra et al., 2022), we instead
benchmark a series of open-source temporal mod-
els. Despite our aim for transparency, energy effi-
ciency (Strubell et al., 2019) and reproducibility,
we also believe that the dynamic nature of the task
at hand requires accessibility to past, present and
future models, to ensure that the findings of eval-
uation studies in temporal concept drift are mean-
ingful, trustworthy and serve their purpose in eval-
uating models in a ever-evolving world. Under this
assumption, we believe that studies on temporal
robustness should ideally build on each other, so
that we can have a holistic view as to how these
models truly evolve over time.

To this end, we use the Diachronic Lan-
guage Models (TIMELMS) (Loureiro et al., 2022)
that are publicly available in the HuggingFace
hub (Wolf et al., 2019).6 TIMELMS are
ROBERTAmodels (Liu et al., 2019) trained quar-
terly on Twitter data. All models are initialised
from the original roberta-base model checkpoint
and are later trained using data from the previ-
ous quarters and the new temporal data from the
new time period. For instance, the first model
(2019-Q4) was trained with data sampled from
Twitter until December 2019, while the second
model (2020-Q1) was trained on the concatena-
tion of all the data used to train 2019-Q4 and

6
https://huggingface.co/cardiffnlp

temporally-aligned data sampled from the first quar-
ter of 2020. There are 11 TIMELMS in total, from
2019-Q4 until 2022-Q2.

Finally, we would like to draw attention to two
specific points. First, all TIMELMS are trained us-
ing the same ROBERTA (base) tokenizer and thus
have the same vocabulary. This is crucial when
evaluating models in a Cloze-style format, like the
LAMA-probe, in order to evaluate fair comparison
among the models. Second, Loureiro et al. (2022)
aim to continue training and releasing TIMELMS

every quarter, which is a very important and promis-
ing initiative to help with the dynamic evaluation
of LMs in temporal concept drift in the future.

3.3 Temporal Concept Drift Evaluation

Single-token probing Our first evaluation type
is single-token probing, which was introduced in
the seminal LAMA-probe work of Petroni et al.
(2019). The idea is simple and follows the fill-
in-the-blank format. Specifically, we convert each
relation using its template to natural language text
(see Figure 2(a)) replacing the <object> with the
mask token (i.e., <mask> for ROBERTA). Then,
as shown in Figure 1, we give the prompt as an
input to the MLM and obtain a probability distri-
bution over the vocabulary for the <mask> token.
We use the metrics from Petroni et al. (2019), that
are Accuracy, Mean Reciprocal Rank (MRR) and
Precision at k (P@k).7 Note that a crucial limita-
tion of this approach is that it considers only facts
with single-token objects. This results in trimming
down the test sets by 95%, while limiting the ac-
tual value of the test (as most facts and concepts
contain multiple words).

Multi-token generation We aim to address this
limitation and include multi-token objects to our
evaluation framework. It is important to note that
we are benchmarking masked language models in-
stead of autoregressive left-to-right language mod-
els like Dhingra et al. (2022). This is crucial be-
cause the latter, decoder-based family of models,
can be used off-the-shelf to generate multiple to-
kens. In contrast, MLMs are trained with 15% of
their inputs masked and optimized to predict only
the masked tokens. We therefore use the formula-
tion introduced by Wang and Cho (2019), that is
essentially a decoding-based strategy for MLMs
based on Gibbs sampling. Specifically, we consider

7P@k= 1, if the gold label is in the top-k predictions of the
model, therefore P@1 corresponds to Accuracy.
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the setting that we do not know a priori the correct
number of masks for each label. Instead, we enu-
merate from a single mask up to M masks, i.e.,
m = 1, ...,M . Following Jiang et al. (2020a), we
choose M = 5, as all our facts are in the English
language. When m > 1, we add m consecutive
masks to the input and we pass the input to the
model m times, when each time we sequentially
sample each mask from left to right. At each iter-
ation we replace the mask with the corresponding
token prediction of the previous iteration. This way,
we can extend the LAMA probe to include multi-
token labels in our test set. The setting is entirely
different than the single-token approach, as here
we have m predictions from the model with an in-
creasing number of tokens, while the correct label
can consist of any number of tokens in the range
of 1, ...,M . Another difference here is the evalua-
tion metrics. Because we converted the task to text
generation, we borrow generation metrics such as
ROUGE (Lin, 2004), while also including standard
metrics like F1-macro. Finally, we also include as
a metric BERT-score (Zhang* et al., 2020) as an
additional informative metric from the perspective
of contextual semantics. In effect, we evaluate fac-
tual knowledge over time of MLMs, where facts
include multiple correct answers and each answer
consists of multiple tokens. We consider a predic-
tion correct if the model correctly predicts any of
the acceptable answers.

MLM scoring Finally, as a third lens of evalua-
tion we use the MLM scoring framework of Salazar
et al. (2020). Contrary to the previous approaches,
MLM scoring aims to measure the probability of
the correct answer (i.e., of the masks), instead of
generating the most probable answer. More specif-
ically, we evaluate MLMs out of the box via their
pseudo-log-likelihood scores (PLLs), which are
computed by masking tokens one by one. PLLs
have been widely used to measure the equivalence
of perplexity (of autoregressive language models)
for MLMs in unlabelled data (Lazaridou et al.,
2021). Still, computing PLLs for large corpora
is a very costly process in terms of time and re-
sources (Loureiro et al., 2022). Instead, we propose
to combine the LAMA and MLM scoring frame-
works to create an efficient and targeted evaluation
framework for temporal factual knowledge.

3.4 Dataset Analysis

We consider different subsets of the DYNAM-
ICTEMPLAMA test sets for the three different
evaluation settings (§3.3). For the multi-token and
MLM scoring settings, we keep the full dataset,
for single-token we first tokenize the labels and
keep only the test examples that have at least one
label with a single token. This results in a very ag-
gressive filtering of the dataset. Specifically, each
quarterly temporal split consists of 8500 test exam-
ples on average for the multi-token setting, but for
the single-token this results in only 450 examples,
marking a loss of 95% of the data.8 Additionally,
the distribution of the fine-grained splits is of great
interest, as it will shape the interpretation of the
results and the general challenges of the evaluation
framework. DUPDATED and DUNCHANGED (i.e., the
splits of the most interest) constitute around 96%
and 0.3%, respectively, of the total examples for
the single-token evaluation, and 95% and 1.8% for
the multi-token. This is arguably a very skewed
distribution, showing the importance of our work in
diving the temporal splits into further fine-grained
splits. This is essential, because we would have dif-
ferent expectations for a model trained on timestep
t while tested on data from both t and t − 1; for
unchanged facts it would be desirable to keep equal
performance in both sets (i.e., knowledge preserva-
tion §4.2), while for updated facts we would like
to see improved performance in timestep t (i.e.,
adaptation §4.3).

4 Results

4.1 Temporal robustness

We first evaluate temporal robustness of the 11
TIMELMS, defined as the overall performance over
time (§3.1). Figure 3 shows the average perfor-
mance in all temporal and fine-grained splits in
the time range from 2019-Q4 to 2022-Q2 for two
types of evaluation, single-token probing and multi-
token generation. For the former evaluation type,
(Fig. 3a), all models perform similarly for all met-
rics. However, when we evaluate multi-token gen-
eration the models gradually improve over time.
(Fig. 3b). This difference shows the importance of
considering multiple views and evaluations for the
same LM capability (i.e., temporal robustness).

We attribute the similar single-token perfor-
mance to the fact that these temporal datasets con-

8Table 5 in the Appendix shows all the statistics in detail.
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MODELS
TEMPORAL SPLITS

2019-Q2 2019-Q3 2019-Q4 2020-Q1 2020-Q2 2020-Q3 2020-Q4 2021-Q1 2021-Q2 2021-Q3 2021-Q4 2022-Q1 2022-Q2

2019-Q4 34.88 33.96 34.44 34.93 34.76 34.73 34.02 34.18 34.70 34.34 34.92 35.46 35.31

2020-Q1 24.47 24.01 24.45 24.67 24.59 24.44 23.98 23.94 24.25 23.96 24.20 24.5 24.42

2020-Q2 22.94 22.29 22.92 23.24 23.23 23.12 22.57 22.55 22.90 22.59 22.91 23.23 23.11

2020-Q3 22.39 21.87 22.22 22.60 22.52 22.42 21.99 22.00 22.29 21.92 22.18 22.42 22.30

2020-Q4 25.56 25.28 25.68 25.96 25.89 25.79 25.51 25.44 25.71 25.50 25.69 25.97 25.72

2021-Q1 25.76 25.28 25.91 26.18 26.14 26.18 25.75 25.63 25.99 25.77 26.01 26.32 26.02

2021-Q2 23.75 23.47 23.94 24.10 24.10 24.12 23.63 23.60 24.05 23.75 24.12 24.37 24.16

2021-Q3 22.95 22.61 23.00 23.14 23.12 23.16 22.84 22.77 23.00 22.82 23.03 23.30 23.06

2021-Q4 23.37 23.01 23.41 23.59 23.55 23.68 23.37 23.27 23.60 23.40 23.58 23.76 23.61

2022-Q1 24.25 23.83 24.42 24.56 24.57 24.68 24.40 24.26 24.52 24.35 24.51 24.71 24.58

2022-Q2 21.48 20.95 21.42 21.59 21.57 21.61 21.25 21.12 21.44 21.13 21.31 21.49 21.39

Table 2: MLM scoring (median pseudo-log-likelihood scores) averaged for each temporal split.

(a) Single-token (b) Multi-token

Figure 3: Overall performance over time (2019− 2022)
for both single and multi-token evaluation. X-axis cor-
responds to the TIMELMS and the Y -axis to different
metrics depending on the type of the evaluation.

tain almost exclusively unchanged facts (§3.4). It
is therefore a positive outcome to observe that
TIMELMS can preserve acquired knowledge (§4.2).
The findings for overall multi-token evaluation cor-
roborate the intuition that more recent models, that
are trained with temporal data of the entire range,
should perform better than “past” (e.g. 2020) mod-
els that have not seen “future” data (e.g. 2022)
during training. We also provide the overall results
with MLM scoring in Table 2. We also observe that
the last model performs best across all temporal
splits, showing the effectiveness of adaptation with
more recent unlabelled data (§3.2). Even though
we observe that this pattern holds for most tempo-
ral splits (i.e., scores improving for each column
↓), the 2020-Q4 and 2021-Q1 TIMELMS produce
worse PLL scores than their previous or later ver-
sions. This is more evident in the overall density

plot in Figure 5. This finding entails that either the
distribution shift in these quarters was a lot stronger
than the other temporal periods, or the training of
these particular models was not as successful as it
would have been expected.

4.2 Knowledge preservation

We use the DUNCHANGED split to evaluate the capa-
bility of MLMs to preserve knowledge over time.
Figure 6 shows that for both single and multi-token
evaluation all TIMELMS demonstrate similar per-
formance over time, showing strong knowledge
preserving skills. Surprisingly, different metrics
show different patterns among the models for a sin-
gle split. While in general we should not compare
the performance of the single model over time (as
the test sets are different), the comparision is valid
in this case because the splits contain unchanged
facts, and hence most temporal test sets are almost
identical. All plots are shown in Figure 7 in the
Appendix.

4.3 Adaptation to emerging & evolving
concepts

Finally, we use the DNEW and DUPDATED splits for
evaluation of emerging and evolving concepts, re-
spectively. Here to ensure fair comparison, we
evaluate the TIMELMS for a specific time window;
for each model trained on timestep t, we keep the
test sets from t − 1, t and t + 1. We observe in
Figure 4 that in these cases the results vary among
the models. There is not a very clear pattern as
before, so case-by-case examination would be re-
quired. Still, a common pattern for the UPDATED

split is that the middle set tends to have the highest
performance (∧ shape). This means that models
manage to effectively adapt to the updated facts of
that timestep (t), but on the next timestep (t + 1)
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(a) UPDATED split. (b) NEW split.

Figure 4: Multi-token evaluation for evolving and emerging facts.

EXAMPLE INPUT GROUND TRUTH LABELS #TOKENS #ANSWERS SPLIT

1 Alex Morgan plays for _X_.
United States women’s national soccer team 7

2 2021-Q4
Orlando Pride 2

2 Cristiano Ronaldo plays for _X_.

Juventus F.C. 5 1 2021-Q2

Juventus F.C., Manchester United F.C. 5, 6 2 2021-Q3

Manchester United F.C. 6 1 2021-Q4

2 _X_ is the head of the government of Italy.

Giuseppe Conte 5 1 2020-Q4

Giuseppe Conte, Mario Draghi 5, 3 2 2021-Q1

Mario Draghi 3 1 2021-Q2

Table 3: Qualitative analysis of certain examples in DYNAMICTEMPLAMA.

Figure 5: Overall PLL distributions for TIMELMS.

they underpeform as they are unaware of the fac-
tual changes, thus requiring adaptation. We provide
all plots in the Appendix, including the DELETED

split, which is more difficult to interpret intuitively
(i.e., why are some facts deleted from Wikidata
after a certain point?).

5 Qualitative Analysis

Table 3 provides some examples from the DY-
NAMICTEMPLAMA test set that can help us
further interpret our results and inspect existing
challenges. We first observe that all examples
have multi-token labels (i.e., objects from the
Subject-relation-object format) and are in ef-

fect discarded in the single-token evaluation setup,
making the inclusion of multiple views essential
for this task.

More specifically, in 1, we observe that one la-
bel (United States women’s national soccer
team) has more than M = 5 tokens. It is therefore
excluded even from the multi-token the test set,
leaving MLM scoring to be the only method that
could evaluate it. Interestingly, we manually tested
the 2021-Q4 temporal model and found that it pro-
duces 1.6 and 307.3 average PLL scores for the
two options respectively, making the disregarded
label a far more confident prediction.

In the second and third example, we observe
how the correct answer for the query changes over
time, making the granularity of the evaluation (i.e.,
yearly, quarterly, monthly) an important factor in
the correct assessment of the model’s temporal fac-
tual knowledge. For instance, for the example 3,
we can carefully inspect how the predictions of
the models change for facts that change over time
(Table 4). However, even though PLL scores can
follow intuitive temporal patterns (i.e., the PLL
value can increase or decrease according to the
point in time that the fact has changed), compari-
son between scores is not always helpful (i.e., word
frequency can obscure factual knowledge) leaving
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Figure 6: Single and multi-token evaluation for the
UNCHANGED split.

TIMELMS Guiseppe Conte Mario Draghi

2020-Q4 3.8 33.3

2021-Q1 3.5 22.7

2021-Q2 3.5 25.7

2021-Q3 3.8 23.8

Table 4: PLL scores for Example 2 from Table 3.

room for improving the LAMA formulation.

6 Conclusion & Future Work

We addressed MLMs’ robustness on temporal con-
cept drift and introduced DYNAMICTEMPLAMA:
a dataset for dynamic benchmarking of factual
knowledge in temporal, fine-grained splits, from
2019-Q4 to 2022-Q2 that contain facts over time.
We release our codebase to dynamically update
the current test set over time and the option to ex-
tend it with custom (i) templates, (ii) relations from
Wikidata, (iii) any period of time (years) and (iv)
granularity of time (month/quarter/year). We in-
clude multiple views of evaluation, showing that
it is essential in order to properly interpret the
results of our benchmarking study of 11 tempo-
ral ROBERTA models. We consider experimenta-
tion with improving MLM decoding and address-
ing “domain mismatch” as open areas of research
for future work. Our code can be found at https:
//github.com/amazon-science/temporal-robustness.
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Limitations

Lower bound estimate A very common is-
sue with the LAMA probe evaluation framework
(Petroni et al., 2019) is that it constitutes a lower
bound estimate for its performance on factual
knowledge retrieval. Specifically, if a model per-
forms well, one can infer that it has the tested rea-
soning skill. However, failure does not entail that
the reasoning skill is missing, as it is possible that
there is a problem with the lexical-syntactic con-
struction we picked (Talmor et al., 2020). Any
given prompt only provides a lower bound estimate
of the knowledge contained in an LM (Jiang et al.,
2020b).

Domain mismatch Despite the advantages of
zero-shot evaluation, performance of a model
might be adversely affected by mismatches be-
tween the language the pre-trained LM was trained
on and the language of the examples in our tasks
(Jiang et al., 2020b). It is quite possible that a fact
that the LM does know cannot be retrieved due
to the prompts not being effective queries for the
fact (Jiang et al., 2020b). Prior work proposes to
fine-tune the model with a small set of examples
taken from the test set (and removed of course)
in order to address the incompatibility problem or
‘language mismatch’ (Talmor et al., 2020; Dhingra
et al., 2022). We argue that this process suffers for
multiple limitations, such as that it not practical
for a fast evaluation of the capabilities of a PLM
at hand and it faces optimization stability issues
due to the small training dataset, inter alia. The
major limitation, however, is that such fine-tuning
enforces extra biases and errors, especially in the
case of temporal robustness evaluation.

MLM decoding (multi-token labels) In this
work we tried to address the problem of decoding
from masked language models, by incorporating
two distinct approaches to the evaluation frame-
work; multi-token generation with MLMs (Wang
and Cho, 2019) and MLM scoring (Salazar et al.,
2020). Still, we observe that both methods provide
results that are hard to interpret (§5), leaving the
problems of (i) decoding or generating multiple
tokens from MLMs and (ii) evaluation of factual
knowledge in LMs as open areas of research.

Manual Templates For LAMA-style probing
(Petroni et al., 2019), prior work creates the tem-
plates manually. This is a limitation both in terms
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of scale (i.e., generalization to many different kinds
of inputs) and consistency (i.e., how do models per-
form with minimal changes to their inputs?). LMs
do not reason in an abstract manner and are context-
dependent (Talmor et al., 2020). It is therefore
essential to address this problem and include func-
tionalities to incorporate a set of diverse templates
for each evaluation setup.

English Twitter MLMs Finally, our dataset, DY-
NAMICTEMPLAMA, following prior work (Dhin-
gra et al., 2022), collects and evaluates facts from
the Wikidata in the English language alone, and
benchmarks RoBERTa language models trained in
English Twitter data. We understand that this is
a limitation and further data collection and exper-
imentation in more languages would be strongly
encouraged.
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TEMPORAL SPLIT UNCHANGED UPDATED DELETED NEW TOTAL %UNCHANGED %UPDATED %LOST

2019-Q2 479|8523 1|165 7|124 9|121 496|8933 96.6|95.4% 0.2|1.8% 94.4%

2019-Q3 451|8154 3|248 36|430 5|205 495|9037 91.1|90.2% 0.6|2.7% 94.5%

2019-Q4 454|8271 0|151 3|140 12|120 469|8682 96.8|95.3% 0.0|1.7% 94.6%

2020-Q1 456|8243 3|296 9|126 15|273 483|8938 94.4|92.2% 0.6|3.3% 94.6%

2020-Q2 470|8451 0|92 2|95. 2|59 474|8697 99.2|97.2% 0.0|1.1% 94.5%

2020-Q3 446|8254 2|179 26|238 10|133 484|8804 92.1|93.8% 0.4|2.0% 94.5%

2020-Q4 452|8298 2|124 4|111 5|97 463|8630 97.6|96.2% 0.4|1.4% 94.6%

2021-Q1 453|8238 1|269 4|131 14|215 472|8853 96.0|93.1% 0.2|3.0% 94.7%

2021-Q2 460|8344 2|90 7|128 5|76 474|8638 97.0|96.6% 0.4|1.0% 94.5%

2021-Q3 445|8164 2|164 19|220 2|99 468|8647 95.1|94.4% 0.4|1.9% 94.6%

2021-Q4 443|8213 1|128 4|82 5|90 453|8513 97.8|96.5% 0.2|1.5% 94.7%

2022-Q1 442|8189 1|111 7|117 6|126 456|8543 96.9|95.9% 0.2|1.3% 94.7%

2022-Q2 446|8287 0|56 2|40 2|34 450|8417 99.1|98.5% 0.0|0.7% 94.7%

Table 5: Total number of examples for each temporal and fine-grained split in DYNAMICTEMPLAMA. We show
both the single-token and the multi-token datasets (up to M = 5 tokens). Cell scheme to be read single | multi.
%UNCHANGED and %UPDATED show the percentage of the total examples that are part of the UNCHANGED and
UPDATED set respectively. %LOST shows the percentage of examples we lose when we filter out the dataset for the
single-token evaluation setting.

A Appendix

A.1 Data Collection for
DYNAMICTEMPLAMA

Following Dhingra et al. (2022), we identify all
facts in the Wikidata snapshot, which have either
a start or an end date after 2010 and whose sub-
jects and objects are both entities with Wikipedia
pages.1 Among these 482K facts, we identify sub-
ject and relation pairs which have multiple objects
at different times and select 16 relations with the
most such subjects. Then, for these relations we
manually write template cloze queries (i.e., tem-
plates) and populate them with the 1000 most fre-
quent subjects per relation. For each subject and
each relation we gather all the objects with their
associated time interval and construct a separate
query for each year in that interval. When intervals
for the object entities overlap, we add all of them
to the list of correct answers. The query and the
corresponding year form the input texts and the
temporal information t, while the object entity is
the target that we want to predict (i.e., gold label).
In contrast to Dhingra et al. (2022), we do extra
temporal divisions. Specifically, we get each yearly
split and divide it further in quarterly splits (§3.1,
Figure 2b), following the same algorithm.

A.2 Full Results
We provide the full results with all metrics for the
UNCHANGED split in Figure 7, and the UPDATED,
NEW and DELETED splits for multi-token genera-
tion in Figure 9.
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WIKIDATA
ID

RELATION TEMPLATE #FACTS #EXAMPLES POSSIBLE
SPLIT(S)

P54 member of sports
team

<subject> plays for <object>. 3772 50558 DUPDATED

P39 position held <subject> holds the position of
<object>.

2961 34835 DUPDATED

P108 employer <subject> works for <object>. 1544 20531 DUPDATED

P102 political party <subject> is a member of the <object>. 1068 14232 DUPDATED

P286 head coach <object> is the head coach of <subject>. 987 11935 DUPDATED

P69 educated at <subject> attended <object>. 232 2420 DUPDATED,
DUNCHANGED

P488 chairperson <object> is the chair of <subject>. 629 8468 DUPDATED

P6 head of government <object> is the head of the government
of <subject>.

578 7815 DUPDATED

P279 subclass of <subject> is a subclass of <object>. 5 70 DNEW,
DUPDATED

P127 owned by <subject> is owned by <object>. 394 5326 DUPDATED,
DUNCHANGED

P1001 legal term <subject> is a legal term in <object>. 37 423 DUNCHANGED

P106 profession <subject> is a <object> by profession. 83 1090 DUPDATED,
DNEW,
DUNCHANGED

P27 citizen <subject> is <object> citizen. 147 1983 DNEW,
DUNCHANGED

P176 produced by <subject> is produced by <object>. 24 276 DNEW,
DUNCHANGED

P138 named after <subject> is named after <object>. 73 1009 DNEW,
DUNCHANGED

P937 work location <subject> used to work in <object>. 38 507 DNEW,
DUNCHANGED

Table 6: The list of templates we used for each relation in the DYNAMICTEMPLAMA dataset.
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WIKIDATA
ID

RELATION INPUT LABELS SPLIT

P54 member of
sports team

Cristiano Ronaldo plays for
_X_.

Juventus F.C., Manchester
United F.C.

2021-Q3

P39 position held Martina Anderson holds the
position of _X_.

member of the European
Parliament

2019-Q4

P108 employer George van Kooten works for
_X_.

University of Cambridge 2022-Q2

P102 political
party

Elena Kountoura is a member
of the _X_.

Independent Greeks, SYRIZA 2019-Q2

P286 head coach _X_ is the head coach of New
York Red Bulls.

Gerhard Struber 2020-Q4

P69 educated at Sarafina Nance attended _X_. Tufts University, University
of California, Berkeley

2020-Q2

P488 chairperson _X_ is the chair of Lloyds
Banking Group.

Lord Blackwell 2022-Q2

P6 head of gov-
ernment

_X_ is the head of the
government of United Kingdom.

Theresa May, Boris Johnson 2019-Q3

P279 subclass of Mercedes-Benz A-Class is a
subclass of _X_.

compact car 2022-Q2

P127 owned by DeepMind is owned by _X_. Alphabet Inc. 2021-Q4

P1001 legal term Commonwealth of Independent
States Free Trade Area is a
legal term in _X_.

’Ukraine’, ’Russia’,
’Belarus’, ’Armenia’,
’Kazakhstan’, ’Moldova’,
’Kyrgyzstan’, ’Uzbekistan’,
’Tajikistan’

2022-Q2

P106 profession Penny James is a _X_ by
profession.

chief executive officer 2019-Q3

P27 citizen Yulia Putintseva is _X_
citizen.

Kazakhstan 2022-Q1

P176 produced by Land Rover Discovery series
is produced by _X_.

Jaguar Land Rover 2022-Q2

P138 named after Bayes Business School is
named after _X_.

Thomas Bayes 2021-Q3

P937 work loca-
tion

Eliza Vozemberg used to work
in _X_.

Strasbourg, City of Brussels 2022-Q2

Table 7: Examples of DYNAMICTEMPLAMA for each relation.
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(a) Single Token

(b) Multi-token

Figure 7: Single-token probing and multi-token generation for the UNCHANGED split.
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(a) UPDATED Split

(b) NEW Split

(c) DELETED Split

Figure 8: Multi-token generation results for various fine-grained splits.
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(a) UPDATED Split

(b) NEW Split

(c) DELETED Split

Figure 9: Multi-token generation results for various fine-grained splits. Here for each model trained on timestep t,
we keep the test sets from t− 1, t and t+ 1.
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Abstract

Recent research has shown that language mod-
els exploit ‘artifacts’ in benchmarks to solve
tasks, rather than truly learning them, lead-
ing to inflated model performance. In pur-
suit of creating better benchmarks, we propose
VAIDA, a novel benchmark creation paradigm
for NLP, that focuses on guiding crowdworkers,
an under-explored facet of addressing bench-
mark idiosyncrasies. VAIDA facilitates sample
correction by providing real-time visual feed-
back and recommendations to improve sample
quality. Our approach is domain, model, task,
and metric agnostic, and constitutes a paradigm
shift for robust, validated, and dynamic bench-
mark creation via human-and-metric-in-the-
loop workflows. We evaluate via expert re-
view and a user study with NASA TLX. We
find that VAIDA decreases effort, frustration,
mental, and temporal demands of crowdwork-
ers and analysts, simultaneously increasing the
performance of both user groups with a 45.8%
decrease in the level of artifacts in created sam-
ples. As a by-product of our user study, we
observe that created samples are adversarial
across models, leading to decreases of 31.3%
(BERT), 22.5% (RoBERTa), 14.98% (GPT-3
fewshot) in performance.1

1 Introduction

Researchers invest significant effort to create
benchmarks in machine learning, including Im-
ageNet (Deng et al., 2009), SQUAD (Rajpurkar
et al., 2016), and SNLI (Bowman et al., 2015), as
well as to develop models that solve them. Can
we rely on these benchmarks? A growing body of
recent research (Schwartz et al., 2017; Poliak et al.,
2018; Kaushik and Lipton, 2018) is revealing that
models exploit spurious bias/artifacts– unintended
correlations between input and output (Torralba and
Efros, 2011) (e.g. the word ‘not’ is associated with

1A video description of VAIDA, generated samples, and
detailed analyses are available in the Supplemental Material.

the label ‘contradiction’ in Natural Language In-
ference (NLI) (Gururangan et al., 2018))– instead
of the actual underlying features, to solve many
popular benchmarks. Models, therefore, fail to gen-
eralize, and experience drastic performance drops
when testing with out-of-distribution (OOD) data
or adversarial examples (Bras et al., 2020; Mishra
et al., 2020a; McCoy et al., 2019; Zhang et al.,
2019; Larson et al., 2019b; Sakaguchi et al., 2019;
Hendrycks and Gimpel, 2016). This begs the ques-
tion: Shouldn’t ML researchers consequently focus
on creating ‘better’ datasets rather than developing
increasingly complex models on bias-laden bench-
marks?

Deletion of samples based on bias baseline
reports– hypothesis-only baseline in NLI (Dua
et al., 2019))– and mitigation approaches such as
AFLite (Sakaguchi et al., 2019) (adversarial filter-
ing which deletes targeted data subsets), (Clark
et al., 2019; Kaushik et al., 2019), have the fol-
lowing limitations: (i) data deletion/augmentation
and residual learning do not justify the original
investment in data creation, and (ii) crowdwork-
ers are not provided adequate feedback to learn
what constitutes high-quality data– and so have
additional overhead due to the manual effort in-
volved in sample creation/validation. Furthermore,
(Parmar et al., 2022a) show that biased samples are
created even when crowdworkers are provided with
an initial set of annotation instructions. One po-
tential solution to these problems is continuous, in
situ feedback about artifacts while benchmark data
is being created. To our knowledge, there are no
approaches that provide real-time artifact identifi-
cation, feedback, and reconciliation opportunities
to data creators, nor guide them on data quality.

Contributions: (i) We propose VAIDA (Visual
Analytics for Interactively Discouraging Artifacts),
a novel system for benchmark creation that pro-
vides continuous visual feedback to data creators
in real-time. VAIDA supports artifact identification
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Component Name DQI Implication VAIDA Usage Artifacts Evaluated

1. Vocabulary Ambiguity and diversity of a
dataset’s language

Does the sample contribute new
words?

Sample Length (Wallace et al., 2019), New Words Introduced
(Yaghoub-Zadeh-Fard et al., 2020; Larson et al., 2020), Jaccard
Index between n-grams (Larson et al., 2019a)

2. Inter-Sample N-gram Fre-
quency and Relation

Word/phrase repetition and simi-
larity between samples

Does the sample contribute
new combinations of words and
phrases?

N-gram overlap (Wallace et al., 2019; Yaghoub-Zadeh-Fard et al.,
2020), Mean-IDF (Stasaski et al., 2020)

3. Inter-Sample STS Syntactic, semantic, and prag-
matic sentence parsing

How similar is the hypothesis to
all other premises or hypotheses?

Multi-hop reasoning (Wallace et al., 2019), Similarity and overlap
(Yaghoub-Zadeh-Fard et al., 2020), Diversity (Larson et al., 2019a)

4. Intra-Sample Word Similarity Word overlap and similarity
within sample statements

How similar are all words within
a sample?

Coreference Resolution, Multi-hop reasoning (Wallace et al.,
2019), Word Overlap (Larson et al., 2020)

5. Intra-Sample STS Phrase/sentence level overlap
within a sample

How similar is the hypothesis to
the premise?

N-gram repetition and overlap (Yaghoub-Zadeh-Fard et al., 2020)

6. N-gram Frequency per Label Distribution of samples accord-
ing to annotation

Is the hypothesis too obvious for
the system?

Logic and Calculations (Wallace et al., 2019), Diversity (Larson
et al., 2019a), Outliers, Entropy (Stasaski et al., 2020)

7. Inter-Split STS Optimal similarity between train
and test samples

Is the sample too similar to an
existing sample?

Entity Distractors, Novel Clues (Wallace et al., 2019), Coverage
(Larson et al., 2019a)

Table 1: Language properties considered in DQI that indicate artifact presence, their interpretation in VAIDA, and
corresponding methods used in crowdsourcing pipeline evaluation; STS: semantic textual similarity.

and resolution, implicitly educating crowdwork-
ers and analysts on data quality. (ii) We evaluate
VAIDA empirically through expert review and a
user study to understand the cognitive workload
it imposes. The results indicate that VAIDA de-
creases mental demand, temporal demand, effort,
and frustration of crowdworkers (31.1%) and an-
alysts (14.3%); it increases their performance by
34.6% and 30.8% respectively, and educates crowd-
workers on how to create high-quality samples.
Overall, we see a 45.8% decrease in the presence of
artifacts in created samples. (iii) Even though our
main goal is to reduce artifacts in samples, we ob-
serve that samples created in our user study are ad-
versarial across language models with performance
decreases of 31.3% (BERT), 22.5% (RoBERTa),
and 14.98% (GPT-3 fewshot).

2 Related Work

This work sits at the intersection of two primary ar-
eas: (1) visual analysis of data quality (higher pres-
ence of artifacts indicates lower quality), and (2)
development of a novel data collection pipeline.2

2.1 Sample Quality and Artifacts

Data Shapley (Ghorbani and Zou, 2019) has been
proposed as a metric to quantify the value of each
training datum to the predictor performance. How-
ever, the metric might not signify bias content, as
the value of training datum is quantified based on
predictor performance, and biases might favor the
predictor. Moreover, this approach is model and
task-dependent. VAIDA uses DQI (Data Quality
Index), proposed by (Mishra et al., 2020b), to: (i)

2Detailed related work is in the Supplemental Material.

compute the overall data quality for a benchmark
with n data samples, and (ii) compute the impact
of a new (n + 1)th data sample. Table 1 broadly
defines DQI components, along with their inter-
pretation in VAIDA, and juxtaposes them against
evaluation methods used in prior works on crowd-
sourcing pipelines, as discussed in 2.2. (Wang et al.,
2020) propose a tool for measuring and mitigating
artifacts in image datasets.

2.2 Crowdsourcing Pipelines

Several pipelines have been proposed to handle
various aspects of artifact presence in samples.

Adversarial Sample Creation: Pipelines such
as Quizbowl (Wallace et al., 2019) and Dynabench
(Kiela et al., 2021), highlight portions of text from
input samples during crowdsourcing, based on
how important they are for model prediction; this
prompts users to alter their samples, and produce
samples that can fool the model being used for
evaluation (Talmor et al., 2022). While these pro-
vide more focused feedback compared to adversar-
ial pipelines like ANLI (Nie et al., 2019), which
do not provide explicit feedback on text features,
adversarial sample creation is contingent on per-
formance against a specific model (Quizbowl for
instance is evaluated against IR and RNN models,
and may therefore not see significant performance
drops against more powerful models). Additionally,
such sample creation might introduce new artifacts
over time into the dataset and doesn’t always cor-
relate with high quality– for instance, a new entity
introduced to fool a model in an adversarial sample
might be the result of insufficient inductive bias,
though reducing the level of spurious bias.

A similar diagnostic approach is followed for
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unknown unknown identification– i.e., instances
for which a model makes a high-confidence predic-
tion that is incorrect. (Attenberg et al., 2015) and
(Vandenhof, 2019) propose techniques to identify
UUs, in order to discover specific areas of failure
in model generalization through crowdsourcing.
The detection of these instances is however, model-
dependent; VAIDA addresses the occurrence of
such instances by comparing sample characteris-
tics between different labels to identify (and re-
solve) potential artifacts and/or under-represented
features in created data.

Promoting Sample Diversity: Approaches fo-
cusing on improving sample diversity have been
proposed, in order to promote model generalization.
(Yaghoub-Zadeh-Fard et al., 2020) use a probabilis-
tic model to generate word recommendations for
crowdworker paraphrasing. (Larson et al., 2019a)
propose retaining only the top k% of paraphrase
samples that are the greatest distance away from
the mean sentence embedding representation of all
collected data. These ‘outlier’ samples are then
used to seed the next round of paraphrasing. (Lar-
son et al., 2020) iteratively constrain crowdworker
writing by using a taboo list of words, that prevents
the repetition of over-represented words, which
are also a source of spurious bias. Additionally,
(Stasaski et al., 2020) assess the new sample’s con-
tribution to the diversity of the entire sub-corpus.

Controlled Dataset Creation: Previous work
(Roit et al., 2019) in controlled dataset creation
trains crowdworkers, and selects a subset of the
best-performing crowdworkers for actual corpus
creation. Each crowdworker’s work is reviewed
by another crowdworker, who acts as an analyst
(as per our framework) of their samples. However,
in real-world dataset creation, such training and
selection phases might not be possible. Addition-
ally, the absence of a metric-in-the-loop basis for
feedback provided during training can potentially
bias (through trainers) the created samples.

As shown in Table 1, DQI encompasses the as-
pects of artifacts studied by the aforementioned
works; it further quantifies the presence of many
more inter and intra-sample artifacts,3 and provides
a one-stop solution to address artifact impact on
multiple fronts. VAIDA leverages DQI to identify
artifacts, and further focuses on educating crowd-
workers on exactly ‘why’ an artifact is undesirable,

3See Supplemental Material for details on artifacts that
DQI identifies.

as well as the impact its presence will have on the
overall corpus. It is also easily extensible to incor-
porate additional metrics such as quality control
measures (Ustalov et al., 2021), enabling bench-
marking evaluation in a reproducible manner. This
is in contrast to the implicit feedback provided by
word recommendation and/or highlighting in prior
works, based on a static set of metrics– VAIDA
facilitates the systematic elimination of artifacts
without the unintentional creation of new artifacts,
something that has hitherto remained unaddressed.

3 Modules

In this section, we describe VAIDA’s important
backend processes.

DQI: DQI can be expressed as a quality met-
ric that examines different sources of artifacts in
text, by scoring samples along 7 different com-
ponents. We use DQI in order to demonstrate
VAIDA’s ability to cover multiple facets of arti-
fact creation, although VAIDA is metric agnostic.
VAIDA uses an intuitive traffic signal color coding
(high>>moderate>>low) to indicate levels of ar-
tifacts (i.e., quality) in samples. Hyperparameters
for color mapping with respect to DQI component
values depend on (i) the application type, and (ii)
characteristics of pre-existing samples present in
the corpus at the time of new sample creation.4 For
instance, when recreating SNLI (Bowman et al.,
2015) with VAIDA, we tune hyperparameters sepa-
rating the boundary between red, yellow, and green
flags on 0.01% of the SNLI training dataset manu-
ally in a supervised manner (Mishra et al., 2020b).

AutoFix: We propose AutoFix as a module
to help crowdworkers avoid creating bad samples
by recommending changes to a sample to improve
its quality. The AutoFix algorithm is explained
in Figure 1. Given a premise, hypothesis, and
DQI values for the hypothesis, AutoFix sequen-
tially masks each word in the hypothesis and ranks
words based on their influence on model output, i.e.,
their importance. The hypothesis word of highest
importance is replaced, to achieve at least moderate
quality. DQI hence controls the amount and aspect
of changes made by AutoFix. By incrementally
changing the sample, users can understand how
and why their sample is being modified and how
DQI values are affected.

TextFooler: From an analyst’s perspective,

4 See Supplemental Material: Evaluation, for details across
all DQI components, hyperparameter tuning, and analyses.

2901



Figure 1: AutoFix Algorithm applied to an SNLI en-
tailment sample, replacing one word per iteration. The
DQI of the hypothesis changes from 3.822 to 5.047.

the quality of a submitted sample might be “too
low” because (i) the crowdworker might not em-
ploy AutoFix appropriately, or (ii) there is a narrow
acceptability range due to the criticality of the ap-
plication domain, such as in BioNLP (Lee et al.,
2020; Parmar et al., 2022b). We therefore imple-
ment TextFooler (Jin et al., 2019) to adversarially
transform low-quality samples (instead of discard-
ing them), to improve benchmark robustness, and
ensure that crowdsourcing effort is not wasted. We
initially use AFLite (Bras et al., 2020), to bin sam-
ples into good (retained samples) and bad (filtered
samples) splits. Using TextFooler, we adversari-
ally transform bad split data to flip the label; we
revert back to the original label and identify sample
artifacts using DQI (see Figure 5).

4 Interface Design and Workflow

VAIDA provides customized interfaces for both
crowdworkers and analysts, as shown in Figures 2,
3 respectively.5 We describe VAIDA’s workflow
via a case study for sample creation (crowdworker)
and review (analyst) in Figures 4,5.

The crowdworker interface provides instructions
(A) to navigate through the panels and how to in-
terpret feedback for created samples. Communi-
cation links for FAQs, and error reporting are also
provided (F). Crowdworkers can then review the
instructions for data creation (B)– here, we use the
same instructions provided in the original SNLI
crowdsourcing interface (b1).

1. Sample Creation: The premise field auto-
populates with a caption from the Flickr30 corpus

5See Supplemental Material: Interface Design for inter-
face intuitions and detailed descriptions, with full-resolution
images.

Figure 2: VAIDA’s crowdworker interface consists of six
linked panels: (A) Instructions, (B) Data creation, (C)
DQI results, (D) Sample distribution, (E) More details,
and (F) Additional communication.5

Figure 3: VAIDA provides a collection of interfaces for
the analyst supporting detailed analysis and investiga-
tion of submitted samples and the overall benchmark.5

(b2). The crowdworker must create three hypothe-
ses (for the entailment, neutral, contradiction la-
bels) at a time, though they are reviewed individu-
ally.

2. DQI Evaluation Feedback: On clicking the
review button, DQI feedback is shown in (C), for
each component. Each colored circle (c1) indicates
the level of artifacts present corresponding to each
DQI component for the created sample; hovering
displays a tooltip that explains and highlights (c2)
the artifacts in the created sample, pertaining to
the category of bias covered by that component.
The overall sample quality (c3) is calculated, by
averaging over the artifact percentiles of all 7 DQI
components for the sample. By comparing sample
quality with that of pre-existing samples, the prob-
ability that the sample will be accepted/rejected is
shown (c4). The user can choose to either revise or
submit the sample.

3a. Sample Revision: Manual Revision or Aut-
oFix can be done. We illustrate the improvement
of sample quality in this step in Figure 4.

3b. Sample Submission: After review (and
potentially iterative DQI evaluations/sample revi-
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Figure 4: VAIDA workflow for the creation of a single sample by a crowdworker.

sions), the sample can be submitted for benchmark
inclusion. On submission, a sample enters a pend-
ing state (d1) until review by the analyst.

While crowdworkers work within a single
tightly-coordinated interface to create, submit, and
review samples, analysts can navigate between a
set of nine screens (Figure 3) to review samples in
detail to make ‘accept’, ‘reject’, and ‘modification’
decisions, and to assess overall benchmark quality.
Analysts review samples in batches of size 50.6

4. Analyst Review: Review can consist of sev-
eral different operations by the analyst.

(i) Direct Acceptance– The home page (UI) for
the analyst provides a view similar to the crowd-
worker interface, and allows the analyst to review
the work of a single crowdworker. If the data qual-
ity is deemed to be sufficiently high by just viewing
the DQI color flags and quality percentile, the ana-
lyst can directly accept the sample into the corpus
from this screen, as shown in Figure 5.

(ii) Visual Analysis and Modification– VAIDA
provides several visualizations (C1-C7) to support
detailed analysis and review of submitted samples,
and to assess artifact presence (i.e., quality) in the

6DQI components 1, 2, 3, 6, and 7, gauge artifact presence
relative to pre-existing samples. We observe given at least
50 pre-existing samples, DQI component values change by
less than 5% for the overall dataset if another 50 samples are
accepted.

overall benchmark. Each visualization allows the
analyst to simulate how adding one or more sub-
mitted samples affects the benchmark’s quality.

For example, in Figure 5, we show the visualiza-
tions for analysis of DQI component 4 (C4), which
deals with artifacts caused due to word similarity
within a sample. For each sample in the corpus,
the word similarities between all possible pairs of
words are averaged; the samples are then hierarchi-
cally displayed as a treemap based on their DQI
color mapping and average word similarity. We
note that the color scale followed is bilinear, as
while artifacts must be eliminated, there still needs
to be a sufficient inductive bias for the sample to
be solvable. The size of a rectangle indicates the
distance of each sample from the average word
similarity across all samples. The new sample is
highlighted in the treemap with a black outline.
In the example shown, we see that the dataset’s
C4 value decreases slightly (0.807) when the new
sample is added, though the flag color remains red.

Further examination of the new sample can be
done, to establish why the sample has low ef-
fect on the dataset’s C4; the user clicks on the
sample rectangle in the treemap, and is taken to
a heat map view. The heatmap shows the sim-
ilarity values between every word pair (from the
premise/hypothesis/both) in a tooltip on hover, with
the values mapped to the same color scale used for
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Figure 5: VAIDA workflow for the evaluation of a single sample by an analyst, and subsequent analyst feedback
provided to the crowdworker.

the treemap . For instance, in Figure 5, the words
‘man’ and ‘champagne are repeated verbatim, and
‘overjoyed’, ‘smiling’, ‘celebrating’, ‘pop’, and
‘shoot’ also have similarity of [0.6–1]. This in-
dicates that several words in the sample are too
closely related and constitute artifacts.

Each such visualization is therefore individually
tailored to represent a specific DQI component of
interest, based on the linguistic features examined
for artifact creation in that component. We fur-
ther elaborate on the design intuitions and analysis
conducted with all the component visualizations
available to the analyst in the supplementary.

Post analysis, if the analyst feels that the submit-
ted sample requires only a minor change (for in-
stance, reshuffling or the addition of a single word)
to warrant acceptance, then they can invoke the
TextFooler module to transform the sample adver-

sarially, and then accept, thereby ensuring minimal
data loss. In the case shown, TextFooler improves
the sample’s C4 with most of the heatmap varying
from 0.3-0.7. Due to this, the analyst decides to
accept the updated sample.

5. Analyst Feedback: Once the analyst has
reached a decision, the crowdworker sees updates
(Figure 5) in (D) to the reviewed sample count (d2)
– increases to 16– and the pie chart that indicates the
distribution of actions taken by the analyst over all
samples submitted by the crowdworker (d3). Addi-
tionally, in (E), the line chart (e1), which contains
the history of previously submitted samples is up-
dated. The x-axis denotes the sample number and
the y-axis denotes the quality percentile (c3), of the
corresponding sample. On click, the correspond-
ing sample is loaded, along with its DQI compo-
nent values and feedback to the crowdworker. The
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crowdworker can also use the box plot (e2), to view
their current rank, and choose to view the sample
history of another crowd worker.

5 Evaluation

We evaluate VAIDA’s efficacy at providing real-
time feedback to educate crowdworkers during
benchmark creation using expert review and a
user study. We also evaluate model performance
(BERT (Devlin et al., 2018), RoBERTa (Liu et al.,
2019), GPT-3 (fewshot) (Brown et al., 2020)) on
data created with VAIDA during the user study.

5.1 Expert Review

We present an initial prototype of our tool, to a
set of three researchers with expertise in NLP and
knowledge of data visualization. For each ex-
pert, the two interfaces were demoed in a Pair-
Analytics session (Arias-Hernandez et al., 2011).
Participants could ask questions and make interac-
tion/navigation decisions to facilitate a natural user
experience. All the experts appreciated the eas-
ily interpretable traffic-signal color scheme (and
further suggested that alternates be provided to ac-
count for color blindness) and found the organiza-
tion of the interfaces—providing separate detailed
views within the analyst workflow– a way to pre-
vent cognitive overload (too much information on
one screen). A caveat of this would be the inability
for an analyst to simultaneously juxtapose different
component visualizations. It was also hypothesized
that a learning curve of ∼50–60 samples would
be required for cohesive use of all system mod-
ules by both types of users; however, this would
be offset by the eventual capability of users to deal
with samples of middling quality based on their
multi-granular feedback about artifact presence.

5.2 User Study

Setup: We approach several software developers,
testing managers, and undergraduate/graduate stu-
dents. Based on their domain familiarity (in NLP
and visualization, rated from 1:novice-5:expert),
we split them into 23 crowdworkers and 8 ana-
lysts for constructing NLI samples, given premises.
There are 100 high-quality samples in the system
at the time each participant participates in each ab-
lation round (Table 2). For both types of users, a
preliminary walkthrough of the system configura-
tion, using 2 fixed samples, is conducted for each
round of the study (Figure 6). At the end of each

round, they are also asked for their comments.7

Configuration Description User

Conventional
Crowdsourcing

No feedback or auto modification tools C

Conventional
Analysis

Manual review without feedback or modification tools A

Traffic Signal
Feedback

Color mapping based on DQI values C, A

AutoFix Incremental sample auto-modification functionality C

TextFooler Adversarial sample transformation functionality A

Visualization Data visualizations for in-depth exploration (also includes
traffic signal feedback)

A

Full System All modules and system functionalities C,A

Table 2: System configurations used for randomly or-
dered ablation rounds presented to users functioning as
crowdworkers (C) and analysts (A) in the study.

User experience (mental workload) is sub-
jectively evaluated using NASA Task Load In-
dex (Hart, 2006)7 (NASA TLX); each dimension
is scored in a 100-points range, with 5-point steps.
Users are also asked to report overall ratings for
each system configuration at the end of the study.

Figure 6: User Study Setup– describes the timeframe
and requirements of the user study over ablation rounds.

Analysis: Figure 7 summarizes study results,8

averaged over all user responses, for different sys-
tem configurations. The general trend across both
crowdworkers and analysts is that there is: (i) sig-
nificant improvement across all NASA TLX di-
mensions, (ii) increase in number of samples cre-
ated/reviewed, and (iii) user ratings for the system,
when comparing VAIDA to conventional interfaces.
In the case of partial module availability, we find
that the effectiveness of traffic signal feedback and
visualizations is comparable. The use of AutoFix
and TextFooler7 is more prevalent initially, on cre-
ation/evaluation of a low or middling quality sam-
ple for users as: (i) crowdworkers find constructive

7 See Supplemental Material: User Study for more details.
We do aggregated analysis of comments, full quotes of com-
ments are present in the Supplemental Material. We also have
IRB approval to conduct this user study.

8All results are found to have p ≤ 0.02
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Figure 7: User Study Results– NASA TLX dimension
scores, and user scoring of the configurations, averaged
across participant responses, for each ablation round.
Percentages shown indicate comparison of full system
scores with respect to the conventional system.

sample modification more difficult initially, and (ii)
analysts are initially unsure of how to deal with
middling quality samples.

Learning Curve: At the end of the study, all
users are asked the following: “What do you think
high quality means?" We find that users are able
to distinguish certain patterns that promote higher
quality, such as keeping sentence length appropri-
ate and uniform across labels (not too long/short),
using complex phrasing (‘not bad’)/gender infor-
mation/modifiers across labels, decreasing premise-
hypothesis word overlap; they also do not display
undesirable behavior like tweaking previously sub-
mitted samples just to create more. We also find an
overall decrease of -45.8% in the level of artifacts
of created samples, across all rounds of ablation.

User Education: We also conduct a secondary
study where a subset of participants (7 crowdwork-
ers and 2 analysts) agreed to create/ analyze sam-
ples, for varying numbers of pre-accepted samples
(Figure 8), in only the full system condition. We
find that when participants are directly started in sit-
uations with > 500 samples in the system, their un-
familiarity with the system initially causes a steep-
ening of the learning curve compared to the cold
start condition; this also tapers and saturates more

slowly than cold start as the users gain experience.
This is attributed to: (a) an increased likelihood of
samples of low/middling quality (more artifacts)
being created (evinced by performance), and (b)
lower impact of an individual sample on overall
dataset quality. We also find that users who create
∼50 samples report lesser reliance on AutoFix as
they get better at creating higher quality samples;
those who analyze ∼75 samples use TextFooler
more efficiently as they understand how to deal
with samples of middling quality better in the cold
start condition. These numbers increase by ∼25%
when users start with 500 pre-existing samples.

5.3 Model Performance Results
We evaluate BERT and RoBERTa (trained on the
full SNLI dataset), and GPT-3 (in fewshot setting)
against the data created during the ablation rounds
of the user study.9 There are 100 high-quality
samples(DQI>0.7) from the original SNLI dataset
present in the system for the study10. This remains
constant across all ablation rounds and for all users.
69 samples are created per ablation round during
our study, across all users, for a total of 345(69*5)
samples that we evaluate with the models. Figure
9 shows the results for samples over each round of
ablation. (10) In the case of TextFooler, samples
are created using the ‘full system’ condition and
then further modified using TextFooler by the ana-
lyst. The other sample sets are not modified by the
analyst, and are directly accepted after evaluation.

We find that across all models, performance is
lower when explicit quality feedback (via the traffic
signal scheme) is provided, compared to the regular
crowdsourcing condition. The highest drop is seen
for BERT (-20.66%), while GPT-3 shows a lesser
magnitude of performance decrease (-12.89%).
Performance further decreases for all models when
AutoFix is implemented, indicating the effective-
ness of this module in seeding suggestions for sam-
ple improvement; the magnitude of performance
loss follows BERT>>RoBERTa>>GPT-3. We
can attribute this apparent variation in model ro-
bustness i.e., BERT<<RoBERTa<<GPT-3 as pro-
portionate to increase in size of (i) the respective
language models, and (ii) the pre-training corpora.

A significant decrease is seen in the full sys-
tem and TextFooler conditions. Particularly, in the
TextFooler round, performance sharply decreases

9We also create samples for the Story CLOZE dataset in
the full system condition; see Supplementary Material

10The dataset is included in the Supplemental Material.
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Figure 8: User education curves. Cold start has no pre-existing samples, and direct-n has n pre-existing samples.
Mental Demand, Temporal Demand, Frustration, and Effort are averaged, Physical Demand is ignored. Performance
is plotted separately as it shows differing behavior from the others.

Figure 9: Model performance results for samples cre-
ated during each ablation round of the user study.

for all models (-31.3% BERT, -22.5% RoBERTa,
-14.98% GPT-3). Furthermore, in the TextFooler
round, there is a -71.70% decrease in the level of
sample artifacts. This indicates that crowdwork-
ers and analysts are able to utilize VAIDA’s affor-
dances to create more robust text samples.

6 Discussion and Conclusion

We propose VAIDA, a paradigm to address bench-
mark artifacts, by integrating human-in-the-loop
sensemaking with continuous visual feedback.
VAIDA uses several visualization interfaces to ana-
lyze quality considerations (based on artifact lev-
els) at multiple granularities. While we do not
explicitly address computational quality control or
fairness consideration (though some aspects can
be targeted by currently integrated metrics), since
VAIDA is extensible to the incorporation of cus-
tomized backend-metrics, we believe our paradigm
can support multi-faceted benchmark evaluation.

In our usability evaluation, we see that users re-
port greater satisfaction, and lower difficulty with

their work and system experience; this implies pos-
sible higher crowdworker retention and engage-
ment. Additionally, in our study, we see that users
effectively identify and avoid artifact patterns dur-
ing sample creation. Based on our study results,
we believe that a minimum of 30 annotators would
be needed for large-scale data creation to ensure
timely feedback (i.e., sample decision provided
within 24 hours) to crowdworkers. Based on our
secondary study, we believe analysts will exhibit in-
creased performance and maintain satisfaction rat-
ings in full-scale creation, as they will become well-
versed in the nuances of bias for the data-creation
task they are evaluating, as well as the visualiza-
tions being used. This, however, is contingent on
restricting the visualization views to display only
the 200–300 samples with closest artifact levels to
the sample being evaluated.

Overall, samples created with VAIDA are found
to not only of higher quality than achieved with
conventional crowdsourcing, but are also seen to
be adversarial across transformer models. This
is also maintained across multiple task types– we
additionally create StoryCLOZE (Schwartz et al.,
2017) samples with VAIDA9. This was done inde-
pendent of the study described in the paper, with 4
crowdworkers creating samples. However, for this,
several interface features had to be changed, so we
focus on reporting only NLI results in the main pa-
per. VAIDA hence demonstrates a novel, dynamic
approach for building benchmarks and mitigating
artifacts, and serves as a starting point for the next
generation of benchmarks in machine learning.
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Limitations

In future work, we intend to integrate VAIDA with
an actual crowdsourcing framework, and run a full-
scale data creation study to create a high-quality
benchmark. Expanding to such a setup will require
additional back-end engineering, to ensure that (i)
timely and accurate feedback continues to be pro-
vided in real-time to crowdworkers, (ii) analysts
are available on hand to process samples in a timely
manner. This is out of scope for the current paper
(e.g., it would require a significant budget), but we
see our current work as a stepping stone in this
direction. Additionally, studying the problem and
designing the visualizations and real-time feedback
mechanisms are essential steps before moving to
large-scale evaluation; the novel affordances and
designs are a necessary first step, and we believe
they will be impactful to the NLP community.

Crowdworker retention and engagement in this
full-scale setting also need to be evaluated, in or-
der to better contextualize the learning curve as-
sociated with system usage and handling artifact
creation, given an increasingly higher number of
pre-existing system samples. Comparing this setup
directly with the effect of in-depth user training
(Roit et al., 2019) on artifact creation and review,
prior to crowdsourcing, would also further help
analyze and quantify if/how user strategy and per-
formance changes during VAIDA usage.

Design modifications when creating different
types of datasets will mainly require the redesign-
ing of sample input fields, corresponding to the
application and the type of metric used for artifact
evaluation. However, in full-scale dataset creation,
the visualization views for the analyst correspond-
ing to different artifact types will have to be re-
stricted to the ∼300 samples closest artifact levels,
to the given sample being created, in order to facil-
itate scalable processing for analysts. Additionally,
since visualization familiarity is required for the
analyst to effectively review samples, the analysts
may choose to streamline analysis by only using a
subset of the provided visualization types in their
version of the system, corresponding to the appli-
cation domain.
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A Supplementary Material

The following information is included in the ap-
pendix.

• Infrastructure Used

• Run-time Estimations

• Hyper Parameter

• Related Work

• DQI Components

• Interface Design Intuitions

• AutoFix and TextFooler Examples

• User Study

• Expert and User Comments

Please refer to https://github.com/
aarunku5/VAIDA-EACL-2023.git for:

• Video demos of VAIDA workflow

• Sample dataset generated during the ablation
rounds of the user study

• DQI and Model Performance Results for User
Study Samples

• DQI Evaluation: Artifact Case Study

A.1 Infrastructure Used
In Section 3, we describe VAIDA’s flow by high
level workflow and back-end processes(DQI, Aut-
oFix, and TextFooler). Further, as discussed in
Subsection 3.2 DQI can be used for quantifying ar-
tifact presence for the: i) overall benchmark, and ii)
impact of new samples. Depending on the task at
hand we run our experiments in different hardware
settings. The DQI calculations run mostly using
CPU, for new samples as well as overall samples.
The AutoFix procedure, as explained in Subsection
3.2, gives the user assistance in improving qual-
ity on a per submission basis. Therefore that does
not require high GPU intensive systems; we have
provisions to shift execution to a GPU as well if
necessary to speed up the process. For TextFooler
the fine tuning of the model is run on "TeslaV100-
SXM2-16GB"; CPU cores per node 20; CPU mem-
ory per node: 95,142 MB; CPU memory per core:
4,757 MB– this is not a necessity as code has been
tested on lower configuration GPUs as well but we
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have run our experiments in this setting. The attack
part of the TextFooler requires more memory and
we run that code on "Tesla V100-SXM2-32GB"
com-pute Capability: 7.0 core Clock: 1.53GHz,
coreCount: 80, device Memory Size: 31.75GiB
device Memory Bandwidth: 836.37GiB/s.

A.2 Run-time Estimations
The DQI calculations run on CPU (for real life set-
ting purposes); for the approximate estimate of the
time taken, we run experiments for fixed data size
of 10K samples. If the DQI calculations are done
to calculate the impact of individual new samples it
take a couple of seconds. On the other hand, If we
take the whole 10k size dataset it takes around 48
hours to complete the process on CPU. This whole
process can be run in parallel to reduce the time
taken to 16 hours.

The TextFooler part consists of two steps– the
fine tuning part and attack part– for generat-
ing adversaries. For fine tuning models we use
"TeslaV100-SXM2-16GB", and it takes 20-30 min-
utes to complete the process. For the attack part we
use "Tesla V100-SXM2-32GB", which takes 2-3
hrs for completing 20k data samples. This estimate
requires the cosine similarity matrix for word em-
beddings to be calculated before hand which takes
around 1-2 hrs, but this step has to be done only if
the word embeddings are modified. This is a rare
task so we have kept this separated.

A.3 Hyper Parameters
To look at the estimations of DQI and its variations,
we have kept basic hyper-parameters fixed in the
experiments. We keep the learning rate to 1e-5, the
number of epochs during the experiments are var-
ied from 2-3, the per gpu train batch and eval batch
sizes vary from 8-64 samples (the results shown
are with respect to a batch size of 8), adam epsilon
is set to 1e-8, weight decay is set to 0, maximum
gradient normalisation is set to 1, and maximum
sequence length is set to 128. For TextFooler the
the semantic similarity is fixed to 0.5 uniformly for
all the experiments shown in this paper.

Additionally, the variations and range in the DQI
parameters are dataset specific, i.e., hyperparame-
ters depend on the application task. (Mishra et al.,
2020b) design DQI as a generic metric to evaluate
diverse benchmarks. However, the definitions of
what constitutes high and low quality will vary de-
pending on the application. For example, Biomedi-
caNLP might have lower tolerance levels for spu-

rious bias than General NLP. Another case is in
water quality– cited as an inspiration for DQI by
(Mishra et al., 2020b)– where the quality of wa-
ter needed for irrigation is different than that of
drinking or medicine. We can therefore say that the
hyper-parameters in the form of boundaries sepa-
rating high and low quality data (i.e., inductive and
spurious bias) are dependent on applications.

A.4 Related Work
A.4.1 Sample Quality and Artifacts
Data Shapley (Ghorbani and Zou, 2019) has been
proposed as a metric to quantify the value of each
training datum to the predictor performance. How-
ever, the metric might not signify bias content, as
the value of training datum is quantified based on
predictor performance, and biases might favor the
predictor. Moreover, this approach is model and
task-dependent. VAIDA uses DQI (Data Quality
Index), proposed by (Mishra et al., 2020b), to: (i)
compute the overall data quality for a benchmark
with n data samples, and (ii) compute the impact
of a new (n+1)th data sample. (Wang et al., 2020)
concurrently propose a tool for measuring and mit-
igating artifacts in image datasets.

Data Shapley (Ghorbani and Zou, 2019) has
been proposed as a metric to quantify the value of
each training datum to the predictor performance.
However, this approach is model and task depen-
dent. More importantly, the metric might not sig-
nify bias content, as the value of training datum
is quantified based on predictor performance, and
biases might favor the predictor. VAIDA uses DQI
(data quality index), proposed by (Mishra et al.,
2020b), to: (i) compute the overall data quality for
a benchmark with n data samples, and (ii) com-
pute the impact of a new (n + 1)th data sample.
The quality of individual features (aspects) of sam-
ples are evaluated based on decreasing presence
of artifacts and increasing generalization capabil-
ity. In a concurrent work (Wang et al., 2020), a
tool for measuring and mitigating bias in image
datasets has also been proposed. DQI estimates
artifact presence by calculating seven component
values corresponding to a set of language proper-
ties;, along with their interpretation in VAIDA.

A.4.2 Crowdsourcing Pipelines
Adversarial Sample Creation: Pipelines such
as Quizbowl(Wallace et al., 2019) and Dyn-
abench(Kiela et al., 2021), highlight portions of
text from input samples during crowdsourcing,
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based on how important they are for model pre-
diction; this prompts users to alter their samples,
and produce samples that can fool the model being
used for evaluation. While these provide more fo-
cused feedback compared to adversarial pipelines
like ANLI (Nie et al., 2019), which do not provide
explicit feedback on text features, adversarial sam-
ple creation is contingent on performance against a
specific model (Quizbowl for instance is evaluated
against IR and RNN models, and may therefore
not see significant performance drops against more
powerful models). Additionally, such sample cre-
ation might introduce new artifacts over time into
the dataset and doesn’t always correlate with high
quality– for instance, a new entity introduced to
fool a model in an adversarial sample might be the
result of insufficient inductive bias, though reduc-
ing the level of spurious bias.

A similar diagnostic approach is followed for
unknown unknown identification– i.e., instances
for which a model makes a high confidence predic-
tion that is incorrect. (Attenberg et al., 2015) and
(Vandenhof, 2019) propose techniques to identify
UUs, in order to discover specific areas of failure
in model generalization through crowdsourcing.
The detection of these instances is however, model-
dependent; VAIDA addresses the occurrence of
such instances by comparing sample characteris-
tics between different labels to identify (and re-
solve) potential artifacts and/or under-represented
features in created data.

Promoting Sample Diversity: Approaches fo-
cusing on improving sample diversity have been
proposed, in order to promote model generalization.
(Yaghoub-Zadeh-Fard et al., 2020) use a probablis-
tic model to generate word recommendations for
crowdworker paraphrasing. (Larson et al., 2019a)
propose retaining only the top k% of paraphrase
samples that are the greatest distance away from
the mean sentence embedding representation of all
collected data. These ‘outlier’ samples are then
used to seed the next round of paraphrasing. (Lar-
son et al., 2020) iteratively constrain crowdworker
writing by using a taboo list of words, that prevents
the repetition of over-represented words, which
are also a source of spurious bias. Additionally,
(Stasaski et al., 2020) assess the new sample’s con-
tribution to the diversity of the entire sub-corpus.

DQI encompasses the aspects of artifacts studied
by the aforementioned works; it further quantifies
the presence of many more inter and intra-sample

artifacts, and provides a one stop solution to ad-
dress artifact impact on multiple fronts. VAIDA
leverages DQI to identify artifacts, and further fo-
cuses on educating crowdworkers on exactly ‘why’
an artifact is undesirable, as well as the impact its
presence will have on the overall corpus. This is
in contrast to the implicit feedback provided by
word recommendation and/or highlighting in prior
works– VAIDA facilitates the elimination of ar-
tifacts without the unintentional creation of new
artifacts, something that has hitherto remained un-
addressed.

A.4.3 Task Selection and Controlled Dataset
Creation

In this work, we demonstrate VAIDA for a nat-
ural language inference task (though it is task-
independent), and mimic the SNLI dataset creation
and validation processes. Elicited annotation has
been found to lead to social bias in SNLI using
probablistic mutual information (PMI) (Rudinger
et al., 2017). Visual feedback is provided based on
DQI (which takes PMI into account) to explicitly
correct this bias, and discourage the creation of
such samples. Also, human annotation of machine-
generated sentences/sentences pulled from existing
texts instead of elicitation has been suggested to
reduce such bias (Zhang et al., 2017). However,
machine-generated text might look artificial, and
work has shown that text generation has its own
set of quality issues (Mathur et al., 2020). While
we use AutoFix and TextFooler as modules to au-
tomatically transform samples, they are designed
to be used in parallel with human sample creation.
Their results can also be further modified by hu-
mans prior to submission. We see less reliance on
these tools over the course of our user study, as
discussed in Subsection 6.2. Additionally, previous
work (Roit et al., 2019) in controlled dataset cre-
ation trains crowdworkers, and selects a subset of
the best-performing crowdworkers for actual cor-
pus creation. Each crowdworker’s work is reviewed
by another crowdworker, who acts as an analyst
(as per our framework) of their samples. However,
in real-world dataset creation, such training and
selection phases might not be possible. Addition-
ally, the absence of a metric-in-the-loop basis for
feedback provided during training can potentially
bias (through trainers) the created samples.
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A.5 DQI Components
DQI shows the (i) the overall data quality and (ii)
the impact of new data created on the overall qual-
ity. In this paper, higher quality implies lower arti-
fact presence and higher generalization capability.
DQI clubs artifacts into seven broad aspects of text,
which cover the space of various possible interac-
tions between samples in an NLP dataset. Please
refer to (Mishra et al., 2020b) and (Mishra et al.,
2022) for a full explanation of parameters.

A.6 Interface Design Intuitions
Careful Selection of Visualizations Prior to the
design of test cases and a user interface, data visual-
izations highlighting the effects of sample addition
are built. Considering the complexity of the for-
mulas for the components of empirical DQI, we
carefully select visualizations to help illustrate and
analyze the effect to which individual text proper-
ties are affected.

A.6.1 Vocabulary
Which Characteristics of Data are Visualized?
The contribution of samples to the size of the vo-
cabulary is tracked using a dual axis bar chart. This
displays the vocabulary size, along with the vocabu-
lary magnitude, across the train, dev, and test splits
for the dataset. By randomizing data splits, the dis-
tribution of vocabulary across dataset samples can
clearly be identified. We use a dual axis chart as
juxtaposition of the vocabulary magnitude against
raw counts of words better reflects the evenness
of the vocabulary distribution; it is not useful to
have only a few samples contributing new words as
other samples automatically become easy for the
model to solve.

To further clarify the contribution of individual
samples to vocabulary, the distribution of sentence
lengths is plotted as a histogram. Each sample
contributes two sentences, i.e., the premise and
hypothesis statements. Figure 10 illustrates this.
The histogram provides analysts with a frame of
reference to identify gaps or outliers in the distribu-
tion, essential for determining which sentences are
undesirable for the corpus due to extremely high
(low inductive bias) or extremely low (high artifact–
spurious bias) vocabulary contribution.

A.6.2 Inter-sample N-gram Frequency and
Relation

Which Characteristics of Data are Visualized?
There are different granularities of samples that

are used to calculate the values of this component,
namely: words, POS tags, sentences, bigrams, and
trigrams. The granularities’ respective frequency
distributions and standard deviations are utilized
for this calculation.

Bubble Chart for visualizing the frequency dis-
tribution: A bubble chart is used to visualize the
frequency distribution of the respective granular-
ity. This design choice is made in order to clearly
view the contribution made by a new sample when
added to the existing dataset in terms of different
granularities. The bubbles are colored according
to the bounds set for frequencies by the hyperpa-
rameters, and sized based on the frequency of the
elements they represent. Additionally, some insight
into variance can be obtained from this chart, by
observing the variation in bubble size.

Bullet Chart for impact of new sample: The im-
pact of sample addition on standard deviation can
be viewed using the bullet chart. The bullet chart is
useful to visually track performance against a target
(in this case ideal standard deviation), displaying
results in a single column; it looks like a thermome-
ter and is therefore easy to follow. The red-yellow-
green color bands for each granularity represent
the standard deviation bounds of that granularity.
The vertical black line represents the ideal value of
the standard deviation of that granularity. The two
horizontal bars represent the value of standard de-
viation before and after the new sample’s addition.
Figure 12 illustrates the visualization.

A.6.3 Inter-sample STS
Which Characteristics of Data are Visualized?
The main units used in this DQI component are
the similarity values between sentences across the
dataset. This refers to either premise or hypothesis
statements, relative to all other premise/hypothesis
statements. In order to understand the similarity
relations of sentences, a force layout and horizontal
bar chart are used. This is illustrated in Figure 14.

Force Layout for Similar Sentence Pairs In the
force layout, those sentence pairs with a similarity
value that meets the minimum threshold are con-
nected. Each node represents a sentence. The thick-
ness of the connecting line depends on how close
the similarity value is to the threshold. Similarity
values are used to create this network, as the aim
of this component is to drill down into whether a
sample has sufficient inductive bias (i.e., is closely
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Figure 10: DQIc1 Visualization Prior to New Sample Addition

Figure 11: DQIc1 Visualization On New Sample Addition

linked to a sufficient extent to exiting samples),
and also if a sample is too similar (spurious bias)
to existing samples.

Horizontal Bar Chart for Most Similar Sen-
tences In the horizontal bar chart, the sentences
that are most similar to the given sentence are or-
dered in terms of their similarity value. The bar
colors are centered around the threshold. This helps
identify the most important subset to juxtapose the
given sample against;the analyst can use this subset
to for instance, decide if a moderate quality sample
requires a small or big change in order to reacch
acceptable quality..

A.6.4 Intra-sample Word Similarity

Which Characteristics of Data are Visualized?
In this section, A sample’s word similarity is
viewed in terms of premise-only, hypothesis-only,
and both. The relationship between non-adjacent
words in the sample’s sentences is analyzed specif-
ically.

Overview Chart for Average Word Similarities
and Heatmap for Single Sample The overview
chart that is used is a tree map, which uses the av-
erage value of all word similarities per sample- i.e.,
concatenated premise and hypothesis- to color and
group its components. This is illustrated in Figure
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Figure 12: DQIc2 Visualization Prior to New Sample Addition

Figure 13: DQIc2 Visualization On New Sample Addition

16. Treemaps capture relative sizes of data cate-
gories, allowing for quick perception of the items
that are large contributors to each category. This
makes them ideal to analyze the inter-relationships
between different word pairs across sample, in a
concise manner.

The treemap also makes it easy to drill down
into the specifics of a particular sample even fur-
ther. This detailed view is provided in the form of a
heatmap. All the words in a single sample, are plot-
ted against each other, as shown in Figure 18. The
heatmap provides a mechanism for word-level drill
down of sample similarity. Like with the previous
component, this helps provide the analyst with a

frame of reference as to whether a moderate quality
sample can be sent to TextFooler or not.

A.6.5 Intra-sample STS

Which Characteristics of Data are Visualized?
Premise-Hypothesis similarity is analyzed on the
basis of length variation, meeting a minimum
threshold, and similarity distribution across the
dataset. The first is addressed already in the vo-
cabulary property by viewing the sentence length
distribution. The other two are visualized using a
histogram and kernel density estimation curve, as
shown in Figure 19.
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Figure 14: DQIc3 Visualization Prior to New Sample Addition

Figure 15: DQIc3 Visualization On New Sample Addition

Histogram and Kernel Density Curve for Sam-
ple Distribution The histogram represents the
distribution of the samples, and is colored by cen-
tering around the threshold as the ideal value. The
number of bins can be changed, and therefore multi-
level analysis can be conducted. This helps identify
the proportion of samples that are of non-optimal
range.

The kernel density curve is used to check for
the overall skew of the distribution. KDE helps
visualize the distribution sans user defied bins; this
is colored to reflect the bi-linear color scale, and
indicates the probability with which a sample will
be correctly solved by a model given its similarity.

This helps contextualize the level of artifacts relat-
ing to word overlap and sentence similarity in the
sample.

A.6.6 N-Gram Frequency per Label
Which Characteristics of Data are Visualized?
This component drills down on the second compo-
nent, to view the patterns seen in granularities per
label. There are two small multiples charts, divided
based on label, used in this view- a violin plot and
a box plot.

Violin plot and Kernel Density Curve for Skew
of Distribution: The violin plots are structured
to display both jittered points, according to their

2916



Figure 16: DQIc4 Visualization Prior to New Sample Addition

Figure 17: DQIc4 Visualization On New Sample Addition: Dataset View

frequency distribution, as well as a kernel density
curve to judge the skew of the distribution. The
points each represent an element of the granularity.

Box Plots for More Information The box plots
are used to garner more information about the distri-
bution, in terms of its min, max, median, mean, and
inter quartile range. These help further characterize
the distribution, as well as provide a quantitative
definition of the skew seen using density curves.
Jittered points representing elements are present in
this plot as well.

A.6.7 Inter-split STS

Which Characteristics of Data are Visualized?
Train-Test similarity must be kept minimal to pre-
vent data leakage. This component’s main feature
is finding the train split sample that is most similar
to a given test split sample.

Parallel Coordinate Graph for Train-Test Sim-
ilarity: A subset of test and train samples, all
found to have close similarity within their respec-
tive splits, and significant similarity across the
splits are plotted as a one step parallel coordinate
graph, with test samples along one axis, and train
samples along the other. This subset is seeded
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Figure 18: DQIc4 Visualization On New Sample Addition: Sample View

Figure 19: DQIc5 Visualization Prior to New Sample Addition

with those samples closest in similarity to the new
sample to be introduced, based on the third compo-
nent’s visualization. The links connecting points
on the two axes are drawn between the most similar
matches across the split, as shown in Figure 24.

A.7 AutoFix and TextFooler Examples
See Tables 4, 5.

A.8 User Study
AutoFix Suggestions: See Tables 6, 5.

NASA TLX: The NASA Task Load Index
(NASA-TLX) is a subjective, multidimensional as-
sessment tool that rates perceived workload in order

to assess a task, system, or team’s effectiveness or
other aspects of performance (Hart, 2006).

NASA-TLX divides the total workload into six
subjective subscales that are represented on a sin-
gle page. There is a description for each of these
subscales that the subject should read before rat-
ing. They rate each subscale within a 100-point
range, with 5-point steps, as shown in Figure 28.
Providing descriptions for each measurement can
be found to help participants answer accurately
(Schuff et al., 2011). The descriptions are as fol-
lows:

• Mental Demand: How much mental and
perceptual activity was required? Was the
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Figure 20: DQIc5 Visualization On New Sample Addition

Figure 21: DQIc6 Visualization Prior to New Sample Addition

task easy or demanding, simple or complex?

• Physical Demand: How much physical ac-
tivity was required? Was the task easy or de-
manding, slack or strenuous?

• Temporal Demand: How much time pres-
sure did you feel due to the pace at which the
tasks or task elements occurred? Was the pace
slow or rapid?

• Performance: How successful were you in
performing the task? How satisfied were you
with your performance?

• Effort: How hard did you have to work (men-

tally and physically) to accomplish your level
of performance?

• Frustration: How irritated, stressed, and
annoyed versus content, relaxed, and compla-
cent did you feel during the task?

We record participant demographics– age, gen-
der, and occupation. We also ask participants to
rate their familiarity with Visualization and NLP,
on a scale of 1 (novice) to 5 (expert). Demographic
information is shown in Figure 29. Participants are
asked to fill this form at the end of each round of
the user study. We also record the number of ques-
tions participants successfully create, as well as a
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Figure 22: DQIc6 Visualization after removing outliers Prior to New Sample Addition

record of how often participants use each module in
the full system round. At the end of the user study,
participants are asked what their impression of data
quality is, and their free response is recorded.

Subscale Wise Results: Individual results of the
averaged subscales in Figure 8 are shown in Figures
30,31. Physical demand does not change signifi-
cantly across user study rounds.

A.9 Expert and User Comments

Experts (P): We present an initial prototype of our
tool, to a set of three researchers with expertise
in NLP and knowledge of data visualization, in
order to judge the interface design. For each ex-
pert, the crowdworker interface and then analyst
interfaces were demoed. Participants (P ) could
ask questions and make interaction/navigation deci-
sions to facilitate a natural user experience. All the
experts appreciated the easily interpretable traffic-
signal color scheme and found the organization of
the interfaces—providing separate detailed views
within the analyst workflow– a way to prevent
cognitive overload (too much information on one
screen); P2 said the latter “. . . enhances readability
for understanding the data at different granulari-
ties.". P1 suggested the inclusion of “. . . a prove-
nance module within the analyst views to show
historical sample edits and overall data quality
changes over time to understand how data qual-
ity evolves as the benchmark size increases. . . this
would help with the bubble plot and tree map which

will get more cluttered and complex as data size
increases". Additionally P3 remarked that “The
frequency of samples of middling quality should
increase as benchmark size increases, but the ini-
tial exposure that analysts will have with higher or
lower quality samples should lessen the learning
curve as they are familiar enough with interface
subtleties by the time they begin to encounter more
challenging cases."

Crowdworkers (C): When presented with traf-
fic signal feedback, crowdworkers report that the
time and effort required to create high quality sam-
ples increases–“You need to keep redoing the sam-
ple since when you see it’s all red, you know it’s
probably not going to be accepted"(C3); however,
they are more confident about their performance
and sample quality “...when there’s green, I know
I’ve done it right, and it cuts down on my having
to create a lot of samples to get paid" (C15). We
find that AutoFix usage 7 causes an unexpected
increase in mental and temporal demand, as well
as frustration; we attribute this to observed user
behavior– “I’m not sure how much I trust this rec-
ommendation without seeing the colors"(C12), and

“I’d prefer to change a couple of things since I can’t
see the feedback anymore(C21). The drastic im-
provement over all aspects (highest for frustration)
in the case of using the full system is in line with
this observation–“This is so easy, I can create sam-
ples really fast, and I have a better chance of get-
ting more accepted."(C8) and “Now that I get the
feedback along with the recommendation, I can see
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Figure 23: DQIc6 Visualization with mouseover On New Sample Addition

Figure 24: DQIc7 Visualization Prior to New Sample Addition

the quality improvement. So using the recommen-
dation is now definitely faster."(C12). The number
of questions created per round as well as system
scores also follows this trend, across all types of
crowdworkers.

Summary: Traffic signal feedback initially in-
creases time (+25%) and effort (+60%) required
to create high quality samples, as users have to
correct them. However they are more confident
(performance– +27%) of sample quality. Aut-
oFix usage causes an unexpected increase in effort
(+5%) and frustration (+88.8%), as users do not
fully trust recommendations without visual feed-

back. The drastic improvement over all aspects
(frustration– -44.4%, mental demand– -38.1%,
temporal demand– -29.1%, effort– -20%, aver-
age decrease in difficulty– -31.1%, performance–
+34.6%) in the case of using the full system is in
line with this observation. The number of questions
created per round (traffic signal– -8.3%, AutoFix–
+25%, full system– +83.3%) as well as system
scores (traffic signal– +27.3%, AutoFix– +13.6%,
full system– +54.5%) also follows this trend, across
all types of crowdworkers.

Analysts (A): In the case of direct quality feed-
back, i.e., traffic signals, analysts report an in-
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Figure 25: DQIc7 Visualization On New Sample Addition

creased performance and find the task easier–“...
it’s easier to directly choose based on quality...
and it takes care of typos too, the typo samples are
marked down so the work goes pretty fast"(A3).
When analysts are shown the visualization inter-
faces, they are explicitly taught to differentiate the
traffic signal colors in the visualizations as being
indicative of how the sample affects the overall
dataset quality, i.e., the colors in different compo-
nent views represent individual terms of the com-
ponents calculated over the whole dataset (analysts
can toggle between the states of original dataset
and new sample addition). We find that users ini-
tially find this more difficult to do– “It takes a little
time to figure out how to go through the views. I
learned that in the samples I looked at, components
three and seven seemed to be linked. So I’d look at
those first the next time I used the system" (A6) and

“... it takes me some time to figure out how to read
the interfaces effectively, but it does make me more
secure in judging sample quality at multiple granu-
larities and that would help if I was doing this for
a particular application"(A1). Analysts averaged
behavior on TextFooler models the conventional
approach quite closely, as analysts are seen to have
a tendency to either– “... deciding to reject or re-
pair is difficult when you don’t have the sample or
dataset feedback... and what if the repaired sample
still isn’t good enough?"(A4), or– “ I like having
this option to repair... I don’t need to waste time on
analyzing something that isn’t outright an accept
or reject, I can send it to be repaired and come

back to it later"(A8). When shown the full system,
analysts also report improvement in all aspects, par-
ticularly mental demand and performance–“I can
be sure of not having to redo things since it’s likely
that I will be able to get a low hypothesis base-
line using this system"(A2, A1). The visualization
usage also improves– “... I went to component
three right off the bat this time, I knew that I could
look at the linked components..." (A6). Altogether,
sample evaluation by analysts increases, following
this trend, and analysts are more assured of their
performance.

Summary: Analysts find the task easier (effort–
-19.3%, performance– +26.9%) with traffic signal
feedback, as quality is clearly marked. When an-
alysts are shown the visualization interfaces, they
are explicitly taught to differentiate how the traffic
signal colors in the visualizations indicate a sam-
ple’s effect on the overall dataset quality. Analysts
can toggle between the states of original dataset and
new sample addition. We find that analysts initially
find toggling more difficult to do (mental demand–
+15.4%, temporal demand– +36.4%, frustration–
3.5%), though they agree that it improves their
judgement of quality (performance– +15.9%). An-
alysts’ average behavior on TextFooler models the
conventional approach quite closely, as analysts are
seen to have a tendency to send all samples that are
unclear to TextFooler immediately. With the full
system, analysts also report improvement in all as-
pects (average decrease in difficulty– -14.3%), par-
ticularly mental demand (-19.2%) and performance
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Figure 26: Crowdworker-View

Figure 27: Analyst View

(+30.8%), considering that the system increases the
likelihood of a low hypothesis baseline. The visu-
alization usage also improves, as analysts learn
component relationships. Altogether, sample eval-
uation by analysts increases (full system– +83.3%),
following this trend, and analysts are more assured
of their performance (full system score– +94.1%).

2923



Task Description Component

New Sample Adds the sample under review to dataset and up-
dates visualizations.

All

Undo Removes sample under review from dataset and
updates visualizations.

All

Randomize
Split

Randomized re-sampling of data across splits in a
70:10:20 ratio.

Vocabulary

Undo Split Reverses last random split generated. Vocabulary
Save Split Freezes split for the remainder of analysis. Vocabulary
Changing
Granularity

View granularity can be changed by selecting drop
down option.

Inter-sample N-gram Fre-
quency and Relation, N-Gram
Frequency per Label

Change Heat
Map View

Using the drop down, the heatmap shows word
similarities for the (a) premise, (b) hypothesis, or (c)
both sentences.

Intra-sample Word Similarity

Rebinning His-
togram

By filling a new value in the textbox, the number of
bins in the histogram changes to that value.

Intra-sample STS

Remove Out-
liers

Removes elements with frequency count less than
median count of granularity being viewed.

N-Gram Frequency per Label

Include All
Samples

Displays all elements for a granularity. N-Gram Frequency per Label

Table 3: Task Descriptions for Visual Interfaces

Premise Orig. Hypothesis DQI Suggested
Words

New Hypothesis based
on suggestions New DQI

A woman, in a green shirt,
preparing to run on a treadmill.

A woman is preparing to
sleep on a treadmill 2.4650170 preparing,sleep A woman is organizing

to rest on a treadmill 2.5275722

The dog is catching a treat The cat is not catching a treat 2.752542 catching the cat is not getting a treat 3.6909140

Three young men are watching
a tennis match on a large screen
outdoors

Three young men watching
a tennis match on a screen
outdoors, because their
brother is playing

2.6435402
891414217

young,watching,
playing

Three youthful men observing
a tennis match on a screen outdoors,
because their brother is performing.

2.6787982

Table 4: A few samples for Autofix with Intra Sample STS in DQI

Premise Orig. Hypothesis DQI New Hypothesis New DQI Label
A woman and a man sweeping the sidewalk. The couple is sitting down for dinner. 2.416 The couple is meeting for dinner. 3.479 Contradiction
A woman enjoying the breeze of a primitive fan. The woman has a fan. 2.127 The woman owns a fan. 2.733 Entailment
There is a man in tan lounging outside in a chair. A man is preparing for vacation. 2.801 A man is arranging to take a vacation. 3.502 Neutral

Table 5: Examples for TextFooler, with DQI’s Intra-sample STS values for existing SNLI samples.

Premise Orig. Hypothesis DQI Suggested
Words

New Hypothesis based
on suggestions New DQI

A woman, in a green shirt,
preparing to run on a treadmill.

A woman is preparing to
sleep on a treadmill 2.4650170 preparing,sleep A woman is organizing

to rest on a treadmill 2.5275722

The dog is catching a treat The cat is not catching a treat 2.752542 catching the cat is not getting a treat 3.6909140

Three young men are watching
a tennis match on a large screen
outdoors

Three young men watching
a tennis match on a screen
outdoors, because their
brother is playing

2.6435402
891414217

young,watching,
playing

Three youthful men observing
a tennis match on a screen outdoors,
because their brother is performing.

2.6787982

A man in a green apron smiles
behind a food stand A man smiles 3.2367785 smiles A person is grinning. 6.303777

Table 6: A few samples for Autofix with ISSTS in DQI
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Figure 28: NASA TLX Form
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Figure 29: Demographic information for the User Study

Figure 30: NASA TLX– Crowdworker Subscale Results
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Figure 31: NASA TLX– Analyst Subscale Results
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Abstract

A characteristic feature of human semantic cog-
nition is its ability to not only store and retrieve
the properties of concepts observed through
experience, but to also facilitate the inheri-
tance of properties (can breathe) from superor-
dinate concepts (ANIMAL) to their subordinates
(DOG)—i.e. demonstrate property inheritance.
In this paper, we present COMPS, a collection
of English minimal pair sentences that jointly
tests pre-trained language models (PLMs) on
their ability to attribute properties to concepts
and their ability to demonstrate property inheri-
tance behavior. Analyses of 22 different PLMs
on COMPS reveal that they can easily distin-
guish between concepts on the basis of a prop-
erty when they are trivially different, but find
it relatively difficult when concepts are related
on the basis of nuanced knowledge represen-
tations. Furthermore, we find that PLMs can
show behaviors suggesting successful property
inheritance in simple contexts, but fail in the
presence of distracting information, which de-
creases the performance of many models some-
times even below chance. This lack of robust-
ness in demonstrating simple reasoning raises
important questions about PLMs’ capacity to
make correct inferences even when they appear
to possess the prerequisite knowledge.

1 Introduction

The ability to learn, update and deploy one’s knowl-
edge about concepts (ROBIN, CHAIR) and their
properties (can fly, can be sat on), observed dur-
ing everyday experience is fundamental to human
semantic cognition (Murphy, 2002; Rogers and Mc-
Clelland, 2004; Rips et al., 2012). Knowledge of
a concept’s properties, combined with the ability
to infer the IsA relation (Sloman, 1998; Murphy,
2003) leads to an important behavior known as
property inheritance (Quillian, 1967; Smith and
Estes, 1978; Murphy, 2002), where subordinates
of a concept inherit its properties. For instance,
one is likely to infer that an entity called luna can

meow, has a tail, is a mammal, etc., even if all
they know is that it is a cat. The close connection
between a word’s meaning and its conceptual repre-
sentation makes these abilities crucial to language
understanding (Murphy, 2002; Lake and Murphy,
2021), making it critical for computational mod-
els of language processing to also exhibit behav-
ior consistent with these capacities. Indeed, mod-
ern pre-trained language models (PLMs; Devlin
et al., 2019; Brown et al., 2020, etc.) have made
impressive empirical strides in eliciting general
knowledge about real world concepts and entities
(Petroni et al., 2019; Weir et al., 2020, i.a.), as well
as in demonstrating isomorphism with real world
abstractions like direction and color (Abdou et al.,
2021; Patel and Pavlick, 2022), often times without
even having been explicitly trained to do so. At
the same time, their ability to robustly demonstrate
such capacities has recently been called to question,
owing to failures due to reporting bias (Gordon and
Van Durme, 2013; Shwartz and Choi, 2020), lack
of consistency (Elazar et al., 2021; Ravichander
et al., 2020), and sensitivity to lexical cues (Kass-
ner and Schütze, 2020; Misra et al., 2020; Pandia
and Ettinger, 2021).

In this work, we cast further light on PLMs’
ability to robustly demonstrate knowledge about
concepts and their properties. To this end, we intro-
duce Conceptual Minimal Pair Sentences (COMPS),
a collection of English minimal pair sentences,
where each pair attributes a property (can fly) to
two noun concepts: one which actually possesses
the property (ROBIN), and one which does not
(PENGUIN). Following standard practice in the
minimal pairs evaluation paradigm (Warstadt et al.,
2020, etc.), we test whether PLMs prefer sentence
stimuli expressing correct property knowledge over
those expressing incorrect ones. COMPS can be de-
composed into three subsets, each containing stim-
uli that progressively isolate deeper understanding
of the task of attributing properties to concepts,

2928



by adding controls for more superficial heuristics.
Our first subset—COMPS-BASE—measures the ex-
tent to which PLMs attribute properties to the right
concepts, while varying the similarity of the posi-
tive (ROBIN) and the negative concepts (PENGUIN

[high] vs. TABLE [low]). This controls for the pos-
sibility that models are relying on coarse-grained
concept distinctions. For instance, in this setup a
model should prefer (1a) over both versions of (1b).

(1) a. A robin can fly.
b. *A (penguin/table) can fly.

Next, drawing on the phenomenon of property in-
heritance, the COMPS-WUGS set introduces a novel
concept, WUG, expressed as the subordinate of the
positive and negative concepts from a subset of
the COMPS-BASE set, and tests the extent to which
PLMs successfully attribute it the given property
when it is associated with the positive concept. This
increases the complexity of the reasoning task, as
well as the distance between the associated concept
(ROBIN) and property (can fly). These manipula-
tions help to control for memorization of the literal
phrases being tested, forcing models to judge prop-
erties for a novel concept that inherits the property
from a known concept. In this task, given that a
model successfully prefers (1a) over (1b), it should
also prefer (2a) over (2b):

(2) a. A wug is a robin. Therefore, a wug can fly.
b. *A wug is a penguin. Therefore, a wug can fly.

The final subset—COMPS-WUGS-DIST, combines
the aforementioned controls by using negative con-
cepts as distracting content and inserting them into
the COMPS-WUGS stimuli. Specifically, we trans-
form the stimuli of COMPS-WUGS by creating two
subordinates for every minimal pair; one for the
positive concept (ROBIN, subordinate: WUG) and
the other for the negative concept (PENGUIN, sub-
ordinate: DAX), which acts as a distractor. This
way, we control for the possibility that models may
be relying on simple word associations between
content words—of which there are only two in the
prior tests—by introducing additional, irrelevant
but contentful words into the context. Here, we
consider models to be correct if they prefer (3a)
over (3b), given that they prefer (1a) over (1b):

(3) a. A wug is a robin. A dax is a penguin. Therefore, a
wug can fly.

b. *A wug is a robin. A dax is a penguin. Therefore,
a dax can fly.

Together, the three sets of stimuli tease apart more
superficial predictive behaviors, such as contex-
tual word associations, from more robust reasoning
behaviors based on understanding of concept prop-
erties. While we can expect superficial predictive
strategies to be brittle in the face of shallow pertur-
bations and irrelevant distractions, robust property
knowledge and reasoning behaviors should not.

We use COMPS to analyze robust property knowl-
edge and its inheritance in 22 different PLMs,
ranging from small masked language models to
billion-parameter autoregressive language models.
In our experiments with COMPS-BASE, we find
PLMs to demonstrate strong performance in at-
tributing properties to the correct concepts in our
minimal pairs. However, we observe this strong
performance largely when the concepts in the min-
imal pairs are trivially different (e.g., LION and
TEA for the property is a mammal). When the
concept pairs are similar (on the basis of differ-
ent knowledge representations), we find models’
performance to degrade substantially, by as much
as 25 points. We observe a similar trend in our
analyses on COMPS-WUGS—models first appear
to show desirable behavior, potentially indicating
proficiency in the more complex property inher-
itance reasoning. However, their overall perfor-
mance declines drastically when investigated in
the presence of distractors (i.e., on COMPS-WUGS-
DIST). This failure is particularly pronounced in
larger autoregressive PLMs, whose performance
in fact drops below chance in cases where distract-
ing information is proximal to the queried prop-
erty, indicating the presence of a proximity ef-
fect. Together, our findings highlight brittleness
of PLMs with conceptual knowledge and reason-
ing, as evidenced by failures in the face of simple
controls. We make our code and data available at:
https://github.com/kanishkamisra/comps.

2 Conceptual Minimal Pair Sentences
(COMPS)

2.1 Connections to prior work

Prior work in exploring property knowledge in
PLMs has adopted two different paradigms: one
which uses probing classifiers to test if the applica-
bility of a property can be decoded from the repre-
sentations of LMs (Forbes et al., 2019; Da and Ka-
sai, 2019; Derby et al., 2021); and the other which
uses cloze-testing, in which LMs are tasked to fill
in the blank in prompts that describe specific prop-

2929

https://github.com/kanishkamisra/comps


erties/factual knowledge about the world (Petroni
et al., 2019; Weir et al., 2020). We argue that both
approaches—though insightful—have key limita-
tions for evaluating property knowledge, and that
minimal pair testing overcomes these limitations to
a beneficial extent.

Apart from ongoing debates surrounding the va-
lidity of probing classifiers (see Hewitt and Liang,
2019; Ravichander et al., 2021; Belinkov, 2022),
the probing setup does not allow the testing of prop-
erty knowledge in a precise manner. Specifically,
several properties are often perfectly correlated in
datasets such as the one we use here (see §2.2). For
example, the property of being an animal and being
able to breathe and grow, etc., are all perfectly cor-
related with one another. Even if the model’s true
knowledge of these properties is highly variable,
probing its representations for them would yield the
exact same result, leading to conclusions that over-
estimate the model’s capacity for some properties,
while underestimating for others. Evaluation using
minimal pair sentences overcomes this limitation
by allowing us to explicitly represent the proper-
ties of interest in language form, thereby allowing
precise testing of property knowledge.

Similarly, standard cloze-testing of PLMs
(Petroni et al., 2019; Weir et al., 2020; Jiang et al.,
2021) also faces multiple limitations. First, it does
not allow for testing of multi-word expressions,
as by definition, it involves prediction of a sin-
gle word/token. Second, it does not yield faithful
conclusions about one-to-many or many-to-many
relations: e.g. the cloze prompts “Ravens can .”
and “ can fly.” do not have a single correct
answer. This makes our conclusions about mod-
els’ knowledge contingent on choice of one correct
completion over the other. The minimal pair eval-
uation paradigm overcomes these issues by gen-
eralizing the cloze-testing method to multi-word
expressions—by focusing on entire sentences—
and at the same time, pairing every prompt with
a negative instance. This allows for a straightfor-
ward way to assess correctness: the choice between
multiple correct completions is transformed into
one between correct and incorrect, at the cost of
having several different instances (pairs) for test-
ing knowledge of the same property. Additionally,
the minimal pairs paradigm allows us also to shed
light on how the nature of negative samples affects
model behavior, which has been missing in ap-
proaches using probing and cloze-testing. The us-

age of minimal pairs is a well-established practice
in the literature, having been widely used in works
that analyze syntactic knowledge of LMs (Marvin
and Linzen, 2018; Futrell et al., 2019; Warstadt
et al., 2020). We complement this growing liter-
ature by introducing minimal-pair testing to the
study of conceptual knowledge in PLMs.

Our property inheritance analyses closely relate
to the ‘Leap-of-Thought’ (LoT) framework of Tal-
mor et al. (2020). In particular, LoT holds the
taxonomic relations between concepts implicit and
tests whether models can abstract over them to
make property inferences—e.g., testing the extent
to which models assign Whales have bellybuttons
the ‘True’ label, given that Mammals have belly-
buttons (with the implicit knowledge here being
Whales are mammals). With COMPS-WUGS (and
COMPS-WUGS-DIST), we instead explicitly pro-
vide the relevant taxonomic knowledge in the con-
text and target whether PLMs can behave consis-
tently with knowledge they have already demon-
strated (in the base case, COMPS-BASE) and at-
tribute the property in question to the correct subor-
dinate concept. This also relates to recent work that
measures consistency of PLMs’ word prediction
capacities in eliciting factual knowledge (Elazar
et al., 2021; Ravichander et al., 2020).

2.2 Ground-truth Property Knowledge data

For our ground-truth property knowledge resource,
we use a subset of the CSLB property norms col-
lected by Devereux et al. (2014), which was fur-
ther extended by Misra et al. (2022). The origi-
nal dataset was constructed by asking 123 human
participants to generate properties for 638 every-
day concepts. Contemporary work has used this
dataset by taking as positive instances all concepts
for which a property was generated, while taking
the rest as negative instances (Lucy and Gauthier,
2017; Da and Kasai, 2019, etc.) for each prop-
erty. While this dataset has been popularly used in
related literature, Misra et al. (2022) recently dis-
covered striking gaps in coverage among the prop-
erties included in the dataset.1 For example, the
property can breathe was only generated for 6 out
of 152 animal concepts, despite being applicable
for all of them—as a result, contemporary work can
be expected to have wrongfully penalized models
that attributed this property to animals that could

1See also Sommerauer and Fokkens (2018) and Sommer-
auer (2022), who also discuss this limitation.
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indeed breathe, and similarly for other properties.
To remedy this issue, Misra et al. (2022) manually
extended CSLB’s coverage for 521 concepts and
3,645 properties. We refer to this extended CSLB
dataset as XCSLB, and we use it as our source for
ground-truth property knowledge.

2.3 Choosing negative samples
We rely on a diverse set of knowledge represen-
tation sources to construct negative samples for
COMPS. Each source has a unique representational
structure which gives rise to different pairwise sim-
ilarity metrics, on the basis of which we pick out
negative samples for each property:

Taxonomy We consider a hierarchical organiza-
tion of our concepts, by taking a subset of WordNet
(Miller, 1995) consisting of our 521 concepts. We
use the wup similarity (Wu and Palmer, 1994) as
our choice of taxonomic similarity.

Property Norms We use the XCSLB dataset and
organize it as a matrix whose rows indicate con-
cepts and columns indicate properties that are ei-
ther present (indicated as 1) or absent (indicated
as 0) for each concept. As our similarity measure,
we consider the jaccard similarity between the row
vectors of concepts. This reflects the overlap in
properties between concepts, and is prevalent in
studies utilizing conceptual similarity in cognitive
science (Tversky, 1977; Sloman, 1993, etc.).

Co-occurrence We use the co-occurrence be-
tween concept words as an unstructured knowledge
representation. For quantifying similarity, we use
the cosine similarity of the GloVe vectors (Penning-
ton et al., 2014) of our concept words.

Sampling Strategy Each property (pi) in our
dataset splits the set of concepts into two: a set
of concepts that possess the property (Qpi), and
a set of concepts that do not (¬Qpi). We sample
min(|Qpi |, 10)—i.e., at most 10—concepts from
Qpi and take them to be our positive set. Then for
each concept in the positive set, we sample from
¬Qpi the concept that is most similar (depending
on the source) to the positive concept and take it as
a negative concept for the property. We addition-
ally include a negative concept that is randomly
sampled from ¬Qpi , leaving out the concepts sam-
pled on the basis of the three previously described
knowledge sources. Examples of the four types of
negative samples for the concept ZEBRA and the
property has striped patterns are shown in Table 1.

Knowledge Rep. Negative Concept Similarity

Taxonomy HORSE 0.88
Property Norms DEER 0.63
Co-occurrence GIRAFFE 0.75
Random BAT -

Table 1: Negatively sampled concepts selected on the ba-
sis of various knowledge representational mechanisms,
where the property is has striped patterns, and the posi-
tive concept is ZEBRA.

2.4 Minimal Pair Construction

Following our negative sample generation process,
we end up with total of 49,280 pairs of positive and
negative concepts that span across 3,645 properties
(14 pairs per property, on average). Every prop-
erty is associated with a property phrase—a verb
phrase which expresses the property in English, as
provided in XCSLB. Using these materials, we con-
struct our three datasets of minimal pair sentence
stimuli, examples of which are shown in Figure 1.

COMPS-BASE The COMPS-BASE dataset con-
tains minimal pair sentences that follow the tem-
plate: “[DET] [CONCEPT] [property-phrase].”
where [DET] is an optional determiner, and
[CONCEPT] is the noun concept. Applying this
template to our generated pairs results in 49,280
instances. See Figure 1a for an example.

COMPS-WUGS We test property inheritance in
PLMs using only the animal kingdom subset of
COMPS-BASE (152 concepts, 944 properties, and
13,888 pairs), keeping the same negative samples.
We convert the original minimal pair sentences in
COMPS-BASE, in which the positive concept is an
animal, into pairs of two-sentence stimuli by first
introducing a new concept (WUG) to be the sub-
ordinate of the concepts in the original minimal
pair. We then express its property inheritance in
a separate sentence. Our two sentence stimuli fol-
low the template: “A wug is a [CONCEPT]. There-
fore, a wug [property-phrase].” Although we
use wug as our running example for the subordi-
nate concept, we use four different nonsense words
{wug, dax, blicket, fep} equal numbers of times,
to avoid making spurious conclusions based on a
single nonsense word.2 Introducing an intervening
novel concept allows us to robustly control for sim-
ple word-level associations between concepts and
properties that models might have picked up during

2As we describe in §4, we also tried a different set of nonce
words, to address concerns about possible impacts of using
nonce words from existing literature (e.g., wug).
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Property: can fly
Positive: ROBIN
Negative: PENGUIN
Subordinate: WUG
COMPS-BASE: A (robin/penguin) can fly.
COMPS-WUGS: A wug is a (robin/penguin).
Therefore, a wug can fly.

(a) Instances of COMPS-BASE and COMPS-WUGS.

A dax is a penguin.

         A wug is a robin.         Therefore, a (wug/dax) can fly.

in-betweenbefore

(b) Distraction scheme for stimuli in COMPS-WUGS-DIST, where
the distractor is inserted either before or in between each COMPS-
WUGS stimulus.

Figure 1: Examples of materials used in our experiments. In this example, ROBIN is the positive concept.

training. Figure 1a shows an example.

COMPS-WUGS-DIST To add distracting infor-
mation, we follow Pandia and Ettinger (2021)
and convert the COMPS-WUGS stimuli by associ-
ating a different subordinate concept (DAX) with
the negative concept ([NEG-CONCEPT]), and insert-
ing it before or in-between the sentence contain-
ing the positive concept and its subordinate, sepa-
rately. This results in two subsets (before and in-
between) of three-sentence minimal pair stimuli,
which differ in the subordinate to which the prop-
erty is attributed. We use the following template
to create our stimuli: “A wug is a [CONCEPT]. A
dax is a [NEG-CONCEPT]. Therefore, a (wug/dax)
[property-phrase].” That is, we have stimuli
that resemble COMPS-WUGS but instead deal with
a pair of competing subordinate concepts in con-
text.3 See Figure 1b for an example.

3 Methodology

3.1 Models Investigated

We investigate property knowledge and property
inheritance capacities of 22 different PLMs, be-
longing to six different families. We evaluate four
widely used masked language modeling (MLM)
families: (1) ALBERT (Lan et al., 2020), (2) BERT
(Devlin et al., 2019), (3) ELECTRA (Clark et al.,
2020), and (4) RoBERTa (Liu et al., 2019); as well
as two auto-regressive language modeling families:
(1) GPT2 (Radford et al., 2019), and (2) the GPT-
Neo (Black et al., 2021) and GPT-J models (Wang
and Komatsuzaki, 2021) from EleutherAI. We also
use distilled versions of BERT-base, RoBERTa-
base, and GPT2, trained using the method de-
scribed by Sanh et al. (2019). We list each model’s
parameters, vocabulary size, and training corpora
in Table 3 (Appendix A).

3We again choose from our list of four nonsense words
(wug, dax, blicket, and fep), which amounts to 12 unique
ordered pairs, after accounting for counterbalancing.

3.2 Measuring Performance
To evaluate models on COMPS, we compare
their log-probabilities for the property phrase—
conditioned on contexts (to the left) containing the
positive and negative noun concepts. That is, we
hold the property phrase constant, and compare
across minimally differing conditions to evaluate
the probability with which a property is attributed
to each concept. For example, we score stimuli in
COMPS-BASE, e.g., “A dog can bark.” as:

log p(can bark. | A dog),

its corresponding stimulus in COMPS-WUGS, “A
wug is a dog. Therefore, a wug can bark.” as:

log p(can bark. | A wug is a dog. Therefore, a wug),

and similarly—assuming CAT as the negative
concept—the corresponding stimuli in our COMPS-
WUGS-DIST subset, “A wug is a dog. A dax is a cat.
Therefore, a wug can bark.” as:4

log p(can bark. | A wug is a dog. A dax is a cat. There-

fore, a wug).

This approach to eliciting conditional LM judg-
ments is equivalent to the “scoring by premise”
method (Holtzman et al., 2021), which has been
shown to result in stable comparisons across items.
Additionally, this also takes into account the poten-
tial noise due to frequency effects or tokenization
differences (Misra et al., 2021). Estimating these
conditional log-probabilities using auto-regressive
PLMs can be directly computed in a left-to-right
manner. For MLMs, we use their conditional
pseudo-loglikelihoods (Salazar et al., 2020) as a
proxy for conditional log-probabilities.

Based on this simple method of eliciting relative
acceptability measures from PLMs, we evaluate

4Here we show an example where the distractor is added
in-between the context specifying the positive concept, and
the queried property knowledge.
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Figure 2: Accuracies of PLMs on COMPS-BASE under various negative sampling schemes. Chance performance for
all rows is 50%, except for ‘Overall,’ where it is 6.25%. Refer to Table 3 for unabbreviated model names.

a model’s accuracy on all COMPS stimuli as the
percentage of times its log-probability for a prop-
erty is greater when conditioned on the context
that attributes the property to the positive—as op-
posed to the negative—concept. Since all cases are
forced-choice tasks between two instances, chance
performance is set to 50%. Table 4 (Appendix B)
shows examples of all COMPS stimuli and GPT-J’s
conditional log-probabilities for them.

4 Experiments and Analyses

4.1 Base property knowledge of PLMs and
their sensitivity to similarity effects

We begin by evaluating the 22 PLMs on COMPS-
BASE. Here we focus on the extent to which models
robustly associate properties to the correct concepts
across stimuli with varying kinds of similarity be-
tween the positive and negative concepts. We re-
port accuracies of the 22 PLMs on COMPS-BASE

across the four different negative sampling schemes
that we specified in §2.3. We additionally report a
more stringent accuracy measure that we refer to
as ‘Overall accuracy,’ which is calculated for every
property and its positive concept, as the percentage
of times a model correctly attributes the property
to the positive concept in all four types of nega-
tive sampling schemes. Chance performance for
only the ‘Overall’ case is then 6.25% (0.54 × 100).
Figure 2 shows these results.

From Figure 2, we see that models strongly dis-
tinguish between positive and negative concepts
in cases where they are dramatically different—
i.e., where negative concepts were sampled ran-
domly (e.g., BEAR [positive] vs BOTTLE [negative]
for the property can breathe). However perfor-
mance drops substantially when there are subtler

differences between the two concepts—e.g, the
concepts WALRUS (positive) and SHARK (negative)
for the property is a mammal. For instance, the
best performing model in any similarity-based neg-
ative sampling scheme (GPT-J, 76%, ‘Co-oc’) only
slightly outperforms the worst model in the random
negative sampling scheme (Neo-125M, 71%). The
performance of PLMs is not substantially different
across the three similarity-based negative sampling
schemes, suggesting that the dynamics of model
sensitivity in attributing properties to concepts are
largely harmonized across various types of similari-
ties. As a result of models’ insensitivity in presence
of similar negative concepts, the overall accuracies
are very modest in value, with the overall accu-
racy of the best performing model (GPT-J) being
only 53%. This overall performance is, however,
significantly above chance (6.25%). We discuss ad-
ditional findings, such as performance by property
type and model size, in Appendix C, since they are
incidental to the main conclusions of this analysis.

4.2 Property inheritance in PLMs

Having established the base property knowledge
of PLMs, we now investigate the extent to which
they can show behavior that is consistent with
reasoning required to handle property inheritance.
We first investigate their performance on COMPS-
WUGS, created using the subset of COMPS-BASE

containing only animal concepts (see §2.4 for stim-
ulus construction). Table 2 shows average accu-
racies obtained by PLMs on our property inheri-
tance stimuli, and compares them to average ac-
curacies on COMPS-BASE—aggregating across all
negative sampling schemes. Recall that the stim-
uli in COMPS-WUGS present a more challenging
property attribution task than in COMPS-BASE, by
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COMPS subset Size Acc.

BASE 49.3K 68.41.7
BASE (animal kingdom only) 13.8K 67.12.0

WUGS 13.8K 68.92.3
WUGS-DIST (before) 13.8K 59.23.9
WUGS-DIST (in-between) 13.8K 47.24.5

Table 2: Average accuracy (and standard error of the
mean) of PLMs (N = 22) on each of our COMPS sub-
sets. Chance performance is 50% throughout.

not only controlling for coarse-grained similarity
effects, but also introducing an intervening novel
concept that is expected to inherit the properties of
the positive concept. By measuring attribution of
properties more indirectly, these stimuli increase
the complexity of the reasoning and control for
memorization of the literal phrase initially tested
with COMPS-BASE.

Table 2 shows the average accuracy of the PLMs
on each subset of COMPS. Despite the increase
in complexity, we see that PLMs actually show
slightly stronger performance on COMPS-WUGS

(68.9%) than on COMPS-BASE (67.1%). This
means that there are instances in which models
prefer the property in the positive context over the
negative context (4a > 4b), but show the opposite
behavior in COMPS-BASE (4d > 4c).

(4) a. A wug is a robin. Therefore, a wug can fly.
b. A wug is a penguin. Therefore, a wug can fly.
c. A robin can fly.
d. A penguin can fly.

This pattern of performance could lead to spurious
conclusions that models are successfully execut-
ing property inheritance, when in fact they show a
lack of the pre-requisite property knowledge based
on their failure on COMPS-BASE. We will discuss
these inconsistencies in more detail below. Over-
all, however, the relatively strong performance on
COMPS-WUGS suggests that models are largely un-
affected when we control for simple memorization
of tested phrases—e.g., robin can fly—by linking
known concepts to properties through an interven-
ing subordinate concept (wug). This suggests that
models are not relying on simple memorization, but
does not control for the possibility of simple asso-
ciation between content words (robin and fly)—for
this we turn to COMPS-WUGS-DIST.

The COMPS-WUGS-DIST test assesses whether
models retain strong property attribution perfor-
mance when content words in the context are not
all relevant for the property prediction. The stimuli
thus include irrelevant distractor concepts and their
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(in-between)

0%

25%

50%

75%

100%

COMPS-BASE outcome

%
 c

or
re

ct
 r

es
po

ns
e

Figure 3: Distribution of model performance on COMPS-
WUGS and COMPS-WUGS-DIST (both subsets) across
possible outcomes (correct = ✓, incorrect = ✗) of the
models on corresponding minimal pairs in COMPS-
BASE. Error bars indicate 95% CI, while dashed line
indicates chance performance (50%).

subordinates—which, in a robust model, should
not affect attribution of the property to the correct
concept (see §2.4 for stimulus construction).

From Table 2, the average accuracies of PLMs
on both subsets of COMPS-WUGS-DIST (before
and in-between) indicate that overall, models now
show clear degradation in property inheritance per-
formance as a result of the distracting informa-
tion. Specifically, the PLMs’ performance drops
by 9.7 points on instances when the distracting in-
formation is added before the relevant context and
queried property, and by 21.7 points on instances
where it is added in-between the two, relative to the
undistracted property inheritance stimuli (COMPS-
WUGS). Notably, the latter drop in performance
brings models level with chance accuracy (we fail
to reject the null hypothesis that avg. accuracy of
models is 50%; p = .62, Wilcoxon signed rank
exact text), highlighting a pronounced lack of ro-
bustness in PLMs’ capacity to attribute properties
to the correct concepts in their input context.

Accounting for spurious performance The
COMPS-WUGS results above raise the concern that
models are often showing spurious performance:
accurately demonstrating property inheritance be-
havior without actually possessing the right prop-
erty knowledge. To shed more light on this poten-
tial issue, we plot the distribution of model accura-
cies on our property inheritance stimuli (COMPS-
WUGS and COMPS-WUGS-DIST) divided based on
their outcomes on the corresponding stimuli in
COMPS-BASE. Figure 3 shows these distributions.
In COMPS-WUGS and both subsets of COMPS-
WUGS-DIST, models show this spurious correct
behavior on 41.3%, 55.6%, and 42.8% of instances
in which they produce incorrect judgments on the
corresponding COMPS-BASE stimuli (yellow bars
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Figure 4: Accuracies of individual models (grouped by family, in increasing order based on number of parameters)
on COMPS-WUGS and COMPS-WUGS-DIST. Black dashed line indicates chance performance (50%). Refer to
Table 3 for unabbreviated model names. Error bands indicate 95% Bootstrap CIs.

in Figure 3). This non-trivial proportion of cases
with spurious performance further reinforces the
idea that PLMs’ successful predictions on these
tests are likely relying on heuristics rather than ro-
bust inferences about property knowledge. We can
remove the effects of these spurious instances by
filtering to items in which models give the correct
answer on COMPS-BASE (blue bars in Figure 3)—
though we see that the overall conclusions remain
the same after this filtering.

On the pronounced effect of proximity in autore-
gressive PLMs Our previous discussion summa-
rized the aggregate property inheritance behavior
of the 22 PLMs we considered—we now zoom in
for a model-wise analysis. Figure 4 shows models’
relative accuracies on COMPS-WUGS and COMPS-
WUGS-DIST, filtering to items with correct COMPS-
BASE performance, as in the blue bars of Figure 3.
Consistent with our overall findings, we observe
distracting content to substantially degrade model
performance across the board.5 A particularly note-
worthy pattern is that the degradation in autore-
gressive PLM families—GPT2 and EleutherAI—
shows a stark sensitivity to proximity effects. While
these classes of model seem to suffer less when
distracting content is added before the context con-
taining the positive concept (thus placing the dis-
traction farther from the queried property), they
show substantially worse performance when the
opposite is the case (i.e., when distraction is added
in-between, and is therefore closer to the queried
property). This degradation due to proximity of
the distracting content becomes catastrophically
worse as models grow larger in the number of

5See also Pandia and Ettinger (2021) for a similar degrada-
tion of performance on cloze-tasks involving factual retrieval.

pre-trained parameters—in fact bringing their
performance down to as much as 26.2 points be-
low chance (in GPT-J, which has 6B parameters).
While MLMs also show similar levels of degraded
performance in presence of distraction, they do not
seem to show any systematic sensitivity to proxim-
ity effects, likely due to their bidirectional nature.

Results on GPT-3 In addition to our main ex-
periments, we also evaluate GPT-3 (Brown et al.,
2020) models on a small subset of COMPS stimuli
(denoted as miniCOMPS). Results from this anal-
ysis (shown in Appendix C.1) are largely aligned
with our main conclusions, with all GPT-3 models—
including the largest one (175B parameters)—
performing worse than chance on the in-between
subset of miniCOMPS-WUGS-DIST, while perform-
ing substantially better on miniCOMPS-WUGS and
miniCOMPS-WUGS-DIST (before). Together with
our main results, this indicates that scaling alone
may be insufficient to elicit robust inferences about
concepts and their properties.

Choice of nonce words Nonce words constitute
an important design decision for our stimuli—we
followed precedents in language acquisition re-
search (Berko, 1958; Gopnik and Sobel, 2000, i.a.)
and used previously existing nonce words (such
as wug and blicket) to represent novel concepts in
context. While these are expected to be novel for
humans, they may appear in pre-training corpora
on which PLMs are usually trained.6 This raises
a potential concern that PLMs could already be
biased toward certain properties for these words
(e.g., wug is commonly depicted as a bird), and

6e.g., wug appears in wikipedia: https://en.wikipedia.
org/wiki/Jean_Berko_Gleason (accessed on Jan 23)
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may struggle to associate them with different prop-
erties.7 To explore this empirically, we conducted
experiments with alternative nonce words (gener-
ated synthetically, similar to Kim et al. (2022); see
Appendix C.2). Figure 7 (Appendix C.2) shows
results on COMPS-WUGS and COMPS-WUGS-DIST

with randomly sampled nonce words. We see that
the new results are comparable to those in Figure 4,
with models showing the same preference on both
stimulus versions 80% of the time on average. This
suggests that the choice of nonce words is not pro-
ducing any noteworthy bias.

Framing of novel taxonomic information An-
other relevant stimulus design decision is the phras-
ing for introducing novel concepts in context.
While we used “A wug is a [CONCEPT]” for our
main experiments, we additionally tested with an
alternate framing: “A wug is a type of [CONCEPT].”
From Figure 9 (Appendix C.3), we again see that
the overall patterns of results are comparable to
the original results, with models showing the same
preference across both versions of the stimuli on
COMPS-WUGS and COMPS-WUGS-DIST 90% of
the time, on average.

5 General Discussion and Conclusion

The overall goal of COMPS is to shed light on the ex-
tent to which PLMs can robustly (1) attribute to real
world concepts (e.g., HORSE, WHALE) their correct
properties (e.g., is a mammal); and (2) demonstrate
behavior consistent with property inheritance: a
reasoning process in which concepts are endowed
with the properties of their superordinates (Smith
and Estes, 1978; Sloman, 1998; Murphy, 2002).
Testing PLMs for these abilities allows us to ask
key questions about how they encode and trans-
fer knowledge. To target these capabilities more
precisely, and mitigate potential inflation of per-
formance by superficial heuristics such as coarse-
grained similarity and word association, we pro-
pose incrementally increasing levels of controls
in constructing our minimal pair stimuli, progres-
sively making the task of attributing properties to
concepts more challenging.

Findings from our initial experiment on COMPS-
BASE established that the basic capacity of mod-
els to attribute properties to everyday concepts is
largely coarse grained. PLMs were more success-
ful in making correct property attributions when

7We thank Reviewers 1 and 3, Najoung Kim and Kyle
Mahowald for raising this concern.

the candidate concepts were radically different,
and struggled when the concepts shared seman-
tic relations or had high co-occurrence. On testing
for ‘property inheritance’ behavior (via COMPS-
WUGS), PLMs initially appeared to demonstrate
reasonable success, but they also showed spurious
behavior in achieving correct performance on a
non-trivial number of instances for which they did
not succeed in the prerequisite base condition. Fur-
thermore, this performance declined substantially
in the presence of distracting information (COMPS-
WUGS-DIST), providing further evidence that what
property knowledge and reasoning we appear to see
in these PLMs is more reliant on superficial heuris-
tics than on ideal reasoning behavior. Of particular
note is our finding of catastrophic distraction in
large autoregressive PLMs, whose sensitivity to
proximity effects brings their overall performance
well under chance, especially when scaled up to
billions of parameters.

Contemporary work has highlighted the promise
of PLMs on high-level tasks requiring—among
other things—access to proper relational knowl-
edge between concepts (see Petroni et al., 2019;
Safavi and Koutra, 2021; Piantadosi and Hill,
2022). By drawing on the concept of property
inheritance, our experiments target reasoning abil-
ity based on perhaps the most well-established of
relations—the taxonomic or the IsA relation (Mur-
phy, 2003). Recent work has also alluded to the
proficiency of PLMs in capturing taxonomic infor-
mation about everyday objects and entities (Weir
et al., 2020; Chen et al., 2021, though see Ravichan-
der et al. (2020)). Findings from our controlled ex-
periments suggest that PLMs’ approximation of the
consequences of the taxonomic relation is at best
noisy, in light of clear failures especially in pres-
ence of similarity-governed competition. We con-
clude from our analyses that instead of robustly ex-
tracting relational information and reasoning about
properties of concepts, it is likely that the PLMs
tested here are optimized to prefer superficial cues
in making word predictions, leading to mistakes
and inaccuracies in presence of irrelevant and dis-
tracting information. Since robust natural language
understanding will be critically reliant on under-
standing of property knowledge and implications
of property transfer, we hope that these findings
will motivate adoption of rigorous assessment meth-
ods as well as work toward more robust property
knowledge and reasoning in PLMs.
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Limitations

Zero-shot setup Using a zero-shot setup to test
PLMs for human-like capacities such as prop-
erty inheritance (as we have done in this work)
has recently come under scrutiny. In particular,
Lampinen (2022) argues that such a setup could
be problematic because PLMs are trained to imi-
tate the language produced by countless individuals
with different beliefs, cultures, and behaviors. As a
result, PLMs are likely to be handicapped in assign-
ing sufficient probability mass to the desired fam-
ily of continuations, given minimal prompts with-
out any particular task-specific context. Instead,
Lampinen (2022) suggests the need for PLMs

“[...] to be guided into an experiment-
appropriate behavioral context, analo-
gously to the way cognitive researchers
place humans in an experimental context,
and orient them toward the task with in-
structions and examples.”

This criticism is valid, and it is possible that models
could overcome their lack of robustness to distrac-
tion effects by observing examples of our stimuli
in context, though this has largely been shown in
PLMs that are significantly larger than the ones
we have tested in this work (Brown et al., 2020;
Chowdhery et al., 2022; Wei et al., 2022a).8 Indeed,
recent work has demonstrated these larger PLMs
to achieve strong performance on other types of
reasoning—such as those required for solving math
problems, reversing sequences, etc.—by priming
models to produce additional textual content that
represents intermediate reasoning steps and ex-
planations (Nye et al., 2021; Wei et al., 2022b;
Lampinen et al., 2022), in a few-shot setting.9 At
the same time, a few-shot version of COMPS stimuli
could expose models to the possibility of leveraging
heuristics that are naturally absent in the zero-shot
setup, and therefore such a setup would critically
require the design of additional controls, which we
leave for future work.

8though see recent work by Shi et al. (2023), who show
distraction effects in such large PLMs in solving arith-
metic reasoning problems, even after using sophisticated in-
context prompting methods such as Chain-of-Thought (Wei
et al., 2022b), Least-to-Most (Zhou et al., 2022), and Self-
Consistency (Wang et al., 2022).

9See also Sinha et al. (2022), who analyze PLMs com-
parable in size to those studied in this work in a few-shot
minimal-pair setting.

Ideal reasoning behavior Another limitation of
our work is that it takes ideal and robust property in-
heritance behavior as the monolithic gold-standard
for human cognition, something that recent work
has cautioned against (Pavlick and Kwiatkowski,
2019; Dasgupta et al., 2022; Webson et al., 2023).
Although we relied on a database of concept-
property pairs that were largely generated by hu-
man participants, whether or not humans will be
robust to the types of distraction that were observed
in PLMs is an open question and requires further
investigation. However, notably we are not mak-
ing direct comparisons between models and hu-
mans here—we argue that our primary contribu-
tion of controlled stimuli that tease apart shallow
processing from robust conceptual reasoning in
PLMs bears substantial merit that is independent
from any comparisons between humans and com-
putational systems. Furthermore, we emphasize
that we are setting a reasonable—and to a certain
extent, human-independent—desideratum in this
work, which is that models should robustly capture
ground-truth knowledge about everyday concepts
and their properties and reflect this knowledge in
their inferences about newly introduced concepts.

Behavioral evaluation This work tests and anal-
yses PLMs on property knowledge and property in-
heritance only from a behavioral perspective, which
at its core is a correlational endeavor. Potential fu-
ture work could complement our results by provid-
ing evidence from representational analyses, or by
devising causal interventions, similar to those re-
cently explored in the realm of syntactic agreement
(Finlayson et al., 2021), or in testing of negation
and hypernymy in NLI models (Geiger et al., 2020),
among others. Importantly, this would require the
development of new methods that shed light on
how new information—such as the ones we use in
COMPS-WUGS and COMPS-WUGS-DIST—is inte-
grated into the model (see Misra et al. (2022) for an
example of such an analysis for novel properties).

Targeted language Finally, COMPS only consists
of sentences in English, thereby biasing our results
only for PLMs trained in that language.
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A Model Metadata

Table 3 shows the different models used in our
experiments, along with their abbreviation, tok-
enization scheme, total parameters, vocabulary size,
number of tokens encountered during training, and
corpora on which they are pre-trained. All mod-
els were accessed using minicons (Misra, 2022),10

a python library that serves as a wrapper around
Huggingface’s transformers (Wolf et al., 2020),
and provides a unified mechanism for eliciting log-
probabilities in batch-wise manner for any autore-
gressive or masked LM that is accessible through
the huggingface hub, or is trained using the trans-
formers library. Experiments were performed using
an NVIDIA V100 GPU (32 GB RAM) and took
about 6 hours to run, discounting the time it took to
download the models from the Huggingface Hub.11

B Preview of COMPS stimuli

We show examples of stimuli from our COMPS-
BASE, COMPS-WUGS, and COMPS-WUGS-DIST

datasets in Listing 1 and Listing 2, respectively.
Stimuli with distraction—i.e., in COMPS-WUGS-
DIST—are similar to that in Listing 1, but with the
distraction_type value set to either ‘before’
or ‘in-between’.

{
"id": 12706,
"property": "can fly",
"acceptable_concept": "owl",
"unacceptable_concept": "squirrel",
"prefix_acceptable": "an owl",
"property_phrase": "can fly.",
"prefix_unacceptable": "a squirrel",
"condition": "co-occurrence",
"similarity": 0.62

}

Listing 1: An instance of COMPS-BASE. “condition”
represents the negative sampling scheme, and
“similarity” represents the similarity between the
acceptable concept and the unacceptable concept on
the basis of the condition (either Taxonomic, Property
Norm, Co-occurence, or Random).

10https://github.com/kanishkamisra/minicons
11https://huggingface.co/models.

{
"item": 8343,
"comps_id": 28798,
"property": "has hooves",
"acceptable_concept": "horse",
"unacceptable_concept": "dog",
"prefix_acceptable": "A dax is a

horse. Therefore, a dax",↪→

"prefix_unacceptable": "A dax is a
dog. Therefore, a dax",↪→

"property_phrase": "has hooves.",
"negative_sample_type":

"co-occurrence",↪→

"similarity": 0.62,
"distraction_type": "undistracted"

}

Listing 2: An instance of COMPS-WUGS. “condition”
and “similarity” are the same as in Listing 1.
“distraction_type” denotes the type of distraction
used (undistracted, before, in-between).

Table 4 shows examples from each subset of
COMPS, and the conditional log-probability scores
as computed by GPT-J (Wang and Komatsuzaki,
2021), the largest LM tested on the full set of stim-
uli.

C Additional findings and analyses

C.1 Testing GPT-3/3.5

Recent work in scaling PLMs to hundred billion pa-
rameters has led to models such as GPT-3 (Brown
et al., 2020), which are significantly larger than the
largest model tested in the results discussed above
(i.e., GPT-J, with 6B parameters). Testing them
on the entire set of COMPS stimuli (49K + 3 ×
13.8K pairs of sentences) is prohibitively expensive
since they are only accessible through paid APIs.
Nonetheless, we sampled a small set of COMPS

stimuli—which we term as miniCOMPS—in order
to get a glimpse of how well substantially larger
PLMs elicit property knowledge and demonstrate
reasoning behavior compatible with property in-
heritance. Specifically, we created miniCOMPS

by sampling 1200 minimal pairs from each of our
original COMPS subsets (matched in terms of real
world concepts and properties across the subsets),
such that all pairs of nonce words in the resulting
miniCOMPS-WUGS-DIST end up being sampled
equal number of times (100 times each).
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Family Model (Abbrev.) Parameters Vocab Size Tokenization Corpora Tokens

ALBERT

albert-base-v2 (A-b) 11M

30,000 SentencePiece WIKI and BC 3.3B
albert-large-v2 (A-l) 17M
albert-xlarge-v2 (A-xl) 59M
albert-xxlarge-v2 (A-xxl) 206M

BERT
distilbertbase-uncased (dB-b) 67M

30,522 WordPiece WIKI and BC 3.3Bbert-base-uncased (B-b) 110M
bert-large-uncased (B-l) 345M

ELECTRA
electra-small (E-s) 13M

30,522 WordPiece
WIKI and BC 3.3B

electra-base (E-b) 34M

electra-large (E-l) 51M
WIKI, BC, CW,
CC, and GIGA

33B

RoBERTa
distilroberta-base (dR-b) 82M

50,265 Byte-pair encoding
OWTC 2B

roberta-base (R-b) 124M BC, CC-NEWS,
OWTC, and STORIES

30B
roberta-large (R-l) 355M

GPT2

distilgpt2 (dGPT2) 82M 50,257

Byte-pair encoding

OWTC 2B
gpt2 (GPT2) 124M

50,257 WEBTEXT 8B∗
gpt2-medium (GPT2-m) 355M
gpt2-large (GPT2-l) 774M
gpt2-xl (GPT2-xl) 1.5B

EleutherAI

gpt-neo-125M (Neo-125M) 125M

50,257 Byte-pair encoding PILE

300B
gpt-neo-1.3B (Neo-1.3B) 1.3B 380B
gpt-neo-2.7B (Neo-2.7B) 2.7B 420B
gpt-j-6B (GPT-J) 6B 402B

Table 3: Summary of the 22 models that we evaluate in this paper. Legend for Corpora: WIKI: Wikipedia; BC:
BookCorpus (Zhu et al., 2015); CW: ClueWeb (Callan et al., 2009); CC: CommonCrawl GIGA: Gigaword (Graff
et al., 2003); OWTC: OpenWebTextCorpus (Gokaslan and Cohen, 2019); CC-NEWS: CommonCrawl News (Nagel,
2016); STORIES: Stories corpus (Trinh and Le, 2018); WEBTEXT: WebText corpus (Radford et al., 2019); PILE:
The Pile (Gao et al., 2020).
∗As estimated by Warstadt et al. (2020).

COMPS subset Stimulus Score

BASE
A horse has hooves. -3.829
A dog has hooves. -4.963

WUGS
A fep is a horse. Therefore, a fep has hooves. -2.153
A fep is a dog. Therefore, a fep has hooves. -3.392

WUGS-DIST (before)
A wug is a dog. A fep is a horse. Therefore, a fep has hooves. -2.919
A wug is a dog. A fep is a horse. Therefore, a wug has hooves. -2.895

WUGS-DIST (in-between)
A fep is a horse. A wug is a dog. Therefore, a fep has hooves. -3.616
A fep is a horse. A wug is a dog. Therefore, a wug has hooves. -3.092

Table 4: An example of matched stimuli across different COMPS subsets, as well as conditional log-probabilities
elicited by GPT-J. Here, the property of interest is has hooves, the positive concept is HORSE, and the negative
concept is DOG. The negative concept in this case was sampled using the co-occurrence knowledge representation
method (see §2.3). Emboldened words indicate items that are different in the minimal pair. Refer to §3.2 for
discussion on how ‘Score’ is computed.

Models As test subjects, we chose four GPT-
3 models (Brown et al., 2020): ada, babbage,
curie, davinci, with the last one being the
largest (at 175B parameters), and an additional fifth
davinci-based model called text-davinci-001,

which fine-tunes davinci on human-written
demonstrations. We also test the recently pro-
posed GPT-3.5 models, text-davinci-002 and
text-davinci-003, which improve over davinci
by additionally fine-tuning it on code and human-
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Figure 5: Accuracies of GPT-3 models (arranged in
increasing order of the number of trained parameters)
on miniCOMPS-WUGS and miniCOMPS-WUGS-DIST.
Black dashed line indicates chance performance (50%).
Error bands indicate 95% Bootstrap CIs.

written demonstrations (Ouyang et al., 2022).12

All these models are autoregressive in nature, so
we use the same scoring and evaluation method
as described in §3.2. Since the four original
GPT-3 models (ada, babbage, curie, davinci)
are trained using the same LM objective on
the same corpora, we analyze them separately
from text-davinci-001, text-davinci-002,
and text-davinci-003, which we only compare
to davinci. We do this to remain consistent with
the way we displayed results in §4—ordering mod-
els based on their number of trained parameters—
and also because models in the text-davinci-XXX
series use the same underlying davinci model aug-
mented with additional training mechanisms (e.g.,
reinforcement learning and fine-tuning on human-
feedback) and data (e.g., code) instead of increas-
ing its size, to our knowledge.

Results Figure 5 shows the performance of the
four GPT-3 models on miniCOMPS-WUGS and
miniCOMPS-WUGS-DIST, while Figure 6 compares
GPT-3 davinci to its code and human-feedback
adapted counterparts. From Figure 5, we see ro-
bustness issues to persist even for GPT-3 models,
similar to our main results. Models perform re-
markably well in the absence of distraction (i.e., on
miniCOMPS-WUGS), but struggle in its presence,
especially when it is closer to the queried prop-

12These models are also known as InstructGPT, as
discussed in https://platform.openai.com/docs/
model-index-for-researchers.
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Figure 6: Accuracies of davinci models (GPT-3
and GPT-3.5) on miniCOMPS-WUGS and miniCOMPS-
WUGS-DIST. Black dashed line indicates chance perfor-
mance (50%). Error bars indicate 95% Bootstrap CIs.
davinci and text-davinci-001 are GPT-3 (Brown
et al., 2020) models, while text-davinci-002 and
text-davinci-003 are GPT-3.5 models.

erty. In particular, performance on miniCOMPS-
WUGS-DIST (before) increases with an increase
in parameters until the largest model (davinci),
where the performance drops closer to chance. On
miniCOMPS-WUGS-DIST (in-between), all models
perform catastrophically worse than chance. This
noteworthy pattern of proximity-based degradation
in performance mimics the results shown in Fig-
ure 4, though we do not see a systematic decline in
performance with an increase in parameters as ob-
served in the GPT2 and EleutherAI models—with
the 175B parameter model (davinci) demonstrat-
ing an increase in performance over the relatively
smaller curie model.

While the above results demonstrate that sim-
ply scaling autoregressive PLMs is unlikely to
overcome the lack of robustness against distract-
ing content, we now test whether augmenting
these large PLMs by additionally training on code
(GPT-3.5 models) and aligning them with human-
provided demonstrations (text-davinci-001 and
both GPT-3.5 models) could lead to any improve-
ments. For instance, training on code could pro-
vide training signals to PLMs that encourage en-
tity tracking, which could potentially enable them,
in our case, to resolve which subordinate concept
(e.g., wug vs. dax) the target property is more likely
to be associated with. Similarly, aligning with
human-written demonstrations could potentially
improve their truthfulness, which in our case, could
lead to them to prefer correct property assignments.
However, from Figure 6, we see no noteworthy
improvements demonstrated by these augmented
models. All augmented models achieved similar ac-
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curacies on COMPS-WUGS as the davinci model
(within 90.5% and 91%), suggesting that their aug-
mentations preserved the general associations be-
tween the lexical items that denote everyday con-
cepts and properties. On stimuli containing dis-
traction (i.e., both subsets of COMPS-WUGS-DIST),
either the models performed systematically worse
as compared to davinci (with text-davinci-002
showing below-chance performance on both sub-
sets), or they showed mixed results, where an im-
provement on COMPS-WUGS-DIST (before) was
accompanied by a decline on COMPS-WUGS-DIST

(in-between).
Together, these results suggest that neither an in-

crease in scale nor additional training methods such
as alignment with human instructions/feedback or
training on code prevents models from being dis-
tracted in associating properties to novel subordi-
nate concepts introduced in the input context. In
fact, the catastrophic effects of proximity-based
distraction persists even for the most recent state
of the art GPT-3/3.5 models.

C.2 Results with alternate nonce words
Here we report results on COMPS-WUGS and
COMPS-WUGS-DIST using an alternate set of nonce
words, which we constructed by sampling (with
replacement) from 26 lower-case ASCII alphabet
characters. Specifically, we constructed novel char-
acter sequences—each assigned as a replacement
for our original four nonce words—of lengths rang-
ing from 4-8 by sampling in an alternate fashion
from consonants (odd positions) and vowels (even
positions).13 A replication of Figure 4 using the
stimuli with these newly sampled nonce words is
shown in Figure 7. On comparing figures 4 and
7, we observe largely similar patterns of results
on stimuli containing nonce words constructed us-
ing randomly sampled characters. That is, models
generally performed well on COMPS-WUGS, while
they struggled on COMPS-WUGS-DIST. There were
some exceptions: (1) GPT-Neo 1.3B and 2.7B
showed improvements (relative to the original stim-
uli) in cases where distraction is added closer to the
queried property (i.e., in-between), though they
still hover around chance performance, and addi-
tionally the performance of GPT-J, like in the orig-
inal results is still substantially below chance; and
(2) there were non-trivial improvements demon-

13the resulting set of words is: {ruhisin, kifosa, rosibif,
lepuvu}, still amounting to 12 unique ordered pairs in the
COMPS-WUGS-DIST stimuli.

Stimuli Avg. Agreement

COMPS-WUGS 93.10.8

COMPS-WUGS-DIST (before) 73.94.6

COMPS-WUGS-DIST (in-between) 73.04.6

Overall 80.02.9

Table 5: Average agreement (× 100) in PLMs’ pref-
erence on stimuli containing original and synthetically
constructed nonce words.

strated by ALBERT models (large and xl) on the
before subset of COMPS-WUGS-DIST, and BERT-
large on the in-between subset of COMPS-WUGS-
DIST.

To precisely quantify the difference between the
two sets of results, we measured the agreement
between the predictions of the PLMs for both sets
of stimuli, taken as the proportion of minimal pairs
in which the models’ relative preference agree.

Figure 8 shows individual model agreement on
COMPS-WUGS and COMPS-WUGS-DIST, while Ta-
ble 5 shows agreement percentages averaged across
all models. From these results we observe mod-
els to show greater robustness to the variability
introduced by the choice of nonce words in stim-
uli with one novel concept (COMPS-WUGS) than
in stimuli with multiple novel concepts (COMPS-
WUGS-DIST). Despite this discrepancy, there is
generally a high average agreement (80%) between
a given model’s set of decisions on stimuli with
original and alternative nonce words.

C.3 Results with alternate templates

Here we report results on an alternate phrasing of
our stimuli, where instead of using the original
template for introducing novel concepts in context
(a wug is a [CONCEPT]), we use: A wug is a type of
[CONCEPT], where wug indicates the novel concept.
In all cases, we simply alter the template, keeping
everything else constant, including the choice of
nonce words.

Figure 9 shows accuracies of the models on stim-
uli with this alternate phrasing, while Figure 10
and Table 6 show individual and averaged overall
agreement between models’ preference on origi-
nal and the alternatively-phrased stimuli, respec-
tively. The agreement percentages between models’
preferences are quite high (average agreement be-
ing 90%)—in fact even greater than the agreement
observed as a result of altering the nonce words
(Table 5), further cementing the robustness of our
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Figure 7: Accuracies of individual models (grouped by family, in increasing order based on number of parameters)
on COMPS-WUGS and COMPS-WUGS-DIST with synthetically constructed nonce words. Black dashed line
indicates chance performance (50%). Refer to Table 3 for unabbreviated model names.
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Stimuli Avg. Agreement

COMPS-WUGS 93.41.2

COMPS-WUGS-DIST (before) 88.53.1

COMPS-WUGS-DIST (in-between) 88.03.6

Overall 90.02.6

Table 6: Average agreement (× 100) in PLMs’ pref-
erence on stimuli containing original (A wug is a
[CONCEPT].) and alternate framing of novel taxonomic
information (A wug is a type of [CONCEPT].).

results.

C.4 How does performance on COMPS-BASE
vary by property type?

Devereux et al. (2014) have categorized the proper-
ties that we use in our experiments to lie in 5 differ-
ent categories: (1) Taxonomic, e.g., is a mammal,
is a vehicle, etc.; (2) Functional, e.g., can keep
the body warm, is used to hit nails, etc.; (3) Ency-
clopedic, e.g., uses electricity, is warm blooded,

etc.; (4) Visual Perceptual, e.g., has webbed feet,
has thick fur, etc.; and (5) Other Perceptual, e.g.,
makes grunting sounds and is sharp, etc. We re-
port results of the 22 PLMs on the COMPS-BASE

stimuli across the five different property types, in
Figure 11.

From Figure 11, we observe that PLMs are sub-
stantially stronger in eliciting taxonomic properties
of concepts as compared to other types, with high-
est overall accuracy being 70%, as compared to
48% on encyclopedic properties, 50% on visual per-
ceptual properties, 57% on functional properties,
and 43% on non-visual perceptual properties. Re-
call that chance accuracy for the ‘Overall‘ scenario
is just 6.25%, so these scores are fairly high. This
corroborates evidence from previous work in ana-
lyzing property knowledge of distributional seman-
tic models as well as LM representations to lack
perceptual knowledge (Lucy and Gauthier, 2017;
Da and Kasai, 2019; Rubinstein et al., 2015; Weir
et al., 2020), likely due to reporting bias (Gordon
and Van Durme, 2013; Shwartz and Choi, 2020).
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However, different to most of these works, the gap
between performance on perceptual properties and
non-perceptual properties is small. We conjecture
that this could be primarily due to the extension
of the CSLB by Misra et al. (2022), which lead to
an increase in coverage of property knowledge for
several properties. For instance, the property has
teeth was mentioned only for 45 out of 67 potential
concepts, having been left out for concepts such as
CALF,14 BUFFALO, KANGAROO, etc. So it could be
the case that previous research has underestimated
the extent to which property knowledge is encoded
by PLMs and other distributional semantic models
of language.

C.5 Does performance on COMPS-BASE
depend on scale?

We plot the accuracies of PLMs on COMPS-BASE

per model family (in order to control for differences
in training corpora and tokenization) in Figure 12.

14the young one of a cow, and not the muscles in the verte-
brate body

In all families except BERT, we see that accuracy
increases with the model size, following standard
scaling laws. We notice that distilBERT-base (Sanh
et al., 2019) is able to outperform even BERT-large
on stimuli with ‘Random’ negative samples, sug-
gesting that pruning BERT might sometimes unin-
tentionally improve the model’s ability to associate
properties and concepts. We do however caution
against interpreting these results as robust conclu-
sion for scaling laws on COMPS-BASE. Such an
endeavor would require comparing performance of
models across multiple checkpoints with varying
number of parameters, paired with rigorous statis-
tical inference (Sellam et al., 2021; Zhang et al.,
2021).
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Figure 11: COMPS-BASE performance across five property types annotated in CSLB (Devereux et al., 2014).
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Abstract

We introduce our probabilistic robustness re-
warded data optimization (PRoDO) approach
as a framework to enhance the model’s gener-
alization power by selecting training data that
optimizes our probabilistic robustness metrics.
We use proximal policy optimization (PPO) re-
inforcement learning to approximately solve
the computationally intractable training sub-
set selection problem. The PPO’s reward is
defined as our (α, ϵ, γ)-Robustness that mea-
sures performance consistency over multiple
domains by simulating unknown test sets in
real-world scenarios using a leaving-one-out
strategy. We demonstrate that our PRoDO ef-
fectively filters data that lead to significantly
higher prediction accuracy and robustness on
unknown-domain test sets. Our experiments
achieve up to +17.2% increase of accuracy
(+25.5% relatively) in sentiment analysis, and -
28.05 decrease of perplexity (-32.1% relatively)
in language modeling. In addition, our prob-
abilistic (α, ϵ, γ)-Robustness definition serves
as an evaluation metric with higher levels of
agreement with human annotations than typical
performance-based metrics.

1 Introduction

Modern machine learning works with massive
amounts of data on a range of tasks like language
modeling, object detection, and data mining. Us-
ing large amounts of training set to build machine
learning systems requires extensive computational
resources and creates problems like domain shifts
and input noise. These unfiltered training data harm
model learning robustness (Frénay and Verleysen,
2013) that leads to prediction errors and serious
consequences like self driving car fatality and med-
ical misdiagnosis (Tian et al., 2018).

One problem causing this model instability is
that the model learning is opt for the system’s qual-
ity, which is typically evaluated by measuring how
close this system’s output of a test set is from its

human label using metrics such as accuracy, error
rate, perplexity, human evaluation score, and so on.
However, such a system performance metric highly
depends on the test set’s choice and is thus unreli-
able. For instance, if our training set is drawn from
the news domain, then the performance on a test set
from the news domain (in-domain test set) is usu-
ally much higher than that from the Twitter domain
(out-of-domain test set). As a result, in NLP, while
some systems produce human parity results like the
use of a pre-trained Transformer (Hendrycks et al.,
2020) on in-domain test sets, these systems are
easily corrupted by out-of-domain (OOD) samples
from the real world.

Existing studies on data selection and robust
learning demonstrate a need for test domain knowl-
edge during training. Some data selection work
(Moore and Lewis, 2010; Kirchhoff and Bilmes,
2014; van der Wees et al., 2017; Fan et al., 2017;
Qu et al., 2019; Liu et al., 2019; Kang et al., 2020)
chooses critical in-domain data for domain adap-
tation, and other work defends against adversarial
attacks but offers little help for out-of-domain ro-
bustness (Taori et al., 2020) under natural distribu-
tional shifts (Wang et al., 2021) that occurs more
frequently than extreme adversarial cases. This out-
of-domain robustness is often measured by testing
on a specific domain and a single task like senti-
ment classification (Müller et al., 2019; Hendrycks
et al., 2020). The problem with these existing ap-
proaches is that the target domain knowledge is
often unknown, as is the case for most real-world
applications that do not know the domain of test
data they will receive before launch.

To address these challenges, our goal is to select
training data to achieve high accuracy on OOD test
set, without requiring any target domain insight
during data selection or model training process.
We distinguish the out-of-domain and unknown-
domain test sets by assigning the out-of-domain as
the test domain known during the training, and the
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Figure 1: Probabilistic Robustness Rewarded Data Optimiza-
tion (PRoDO) Framework.

unknown-domain as the test domain along with its
information that are not known during the training.
Practical applications often apply the latter case
where we do not have any target domain knowl-
edge, a condition we call “unknown-domain" ro-
bustness. To move our understanding forward,
there is an urgent need to revisit out-of-domain
robustness in “unknown worlds" to bridge the gap
between laboratory observations and real-life re-
sults.

In our approach to the measurement of robust-
ness on unknown domains, we define robustness as
the consistency of the behavior of a machine learn-
ing system. The more a machine learning system’s
behavior deviates from the typical, the less robust
the system is defined to be. Notice that this defini-
tion does not necessarily give a notion of whether
system performance is good or bad. For example,
in terms of sentiment analysis, this definition refers
to consistency in prediction accuracy for a trained
classifier.

To measure a system’s performance consistency,
we combine test sets for evaluation from various
domains, like news, biomedical, and Twitter; ran-
domly sample their subsets, and take each subset
as this system’s input and obtain an output. Then,
we measure the performance of each output. If
these output performances are close to each other,
we say they are consistent. To quantify this consis-
tency, we define our robustness metric as a notion
of a probabilistic definition on the distribution of
performance across different test domains, called
(α, ϵ, γ)-Robustness, where the higher the proba-
bility of the consistent prediction performance, the
more robust the system.

Our objective is to measure the probability of up-
per bounding the prediction accuracy gap between

any test subset and its average. More specifically,
we call an NLP system (α, ϵ, γ)-robust, if for every
subset uniform-randomly drawn from a distribu-
tion, its prediction error, a combination of the target
domain error and the source domain error weighted
by the parameter α, is centered around the mean
error, which is bounded through a parameter ϵ with
a probability depending on γ, an indicator of how
robust a system is, see definition in Figure 1 (in
green) and details in Section 2.2.

In our approach, we do not need any target-
domain data since we “simulate" unknown target-
domain test sets using the leave-one-out error sta-
bility (Mukherjee et al., 2006). We assume that
the non-left-out test sets are the simulated target
domain while the left-out test is the real target do-
main for evaluation. For example, given biomecial
as our unknown target domain to evaluate, we take
the training data as the source-domain set and sam-
ple different subsets from a combination of other
test domain data (e.g., news, TED talks, etc.) to
simulate our target-domain test sets. The hyper-
parameter α is the target-domain error weight and
offers flexibility to balance the trade-offs between
source- and target-domain errors.

The (α, ϵ, γ)-Robustness takes a new direction
away from adversarial robustness to a general con-
sistency of a model’s quality as meta-evaluation
methods that measure the consistency of user-
defined quality metrics. Thus, any standard perfor-
mance evaluation metrics, such as accuracy, can
be used within the definition of our robustness.

After defining our robustness metric as our data
optimization goal, we ask, how should we select a
subset of data that can maximize the robustness?
We assert that in general, the subset selection prob-
lem is computationally intractable. We conjecture
that this condition holds true for every objective
function, including our notion of probabilistic ro-
bustness, and is the reason why we use Proximal
Policy Optimization (PPO) (Schulman et al., 2017)
deep reinforcement learning to optimize the train-
ing set, which has the advantages of low variance,
monotonic policy improvement, and sampling effi-
ciency (Schulman et al., 2015; Uc-Cetina et al.,
2021) compared to A2C (Konda and Tsitsiklis,
2000) and policy gradient (Sutton et al., 1998).
Our Probabilistic Robustness rewarded Data Op-
timization (PRoDO) framework equipartitions the
training data into mini-batches and simultaneously
learns a policy network to select data iteratively
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and a value network to estimate future returns us-
ing our (α, ϵ, γ)-Robustness as the reward functions
illustrated in Figure 1 .

Our empirical results on sentiment analysis and
language modeling show that the use of our ro-
bustness definition consistently and significantly
enhances a model’s out-of-domain performance.
The main contributions of this work include:

1. Probabilistic Robustness definition of
(α, ϵ, γ)-Robustness;

2. The creation of PPO Deep Reinforcement
Learning framework for data selection;

3. The improvement of NLP model accuracy and
out-of-domain generalization on showcase ap-
plications of sentiment analysis and language
modeling.

The rest of the paper is as follows: In Section
2.1, we describe our PRoDO framework. In Section
2.2, we introduce the (α, ϵ, γ)-Robustness. Section
3 introduces experimental details including base-
lines, NLP tasks and ablation study. In Section 4,
we discuss the previous literature on robustness in
machine learning. Section 5 concludes the paper.

2 Method

Our goal is to enable our task model F (any Deep
Learning-based NLP model, such as Transformer,
etc.,) to achieve consistent while superior perfor-
mance on any unknown test domain Dx whose
distribution is different from the source training set
X , by learning an effective subset of X that can
maximize the robustness of model F .

The entire process details are depicted in Fig-
ure 1. Our method consists of reinforcement learn-
ing (RL), data selection, and training NLP mod-
els using the selected data. Specifically, we use
reinforcement learning to train a data selection pol-
icy, and we use the data selection policy to select
a subset of training data to fine-tune NLP mod-
els. Following Yu et al. (2022a), we pre-train
the task model F on the full training data set
X = {xi}Ni=1, where xi is a sentence, N is training
set size. Then, the training set X is shuffled and
randomly partitioned into T disjoint data batches
such that X = {Bt}Tt=1 = {B1,B2, ...,BT },
with Bt = {x(t−1)N |T+1, x(t−1)N |T+2, ..., xtN |T },
where N |T is the integer division of N by T , and
T ≤ t. For each batch, we select a subset of data
B̂t = {(xi)oi=1|xi ∈ Bt} with size o according to

the data selection policy trained by reinforcement
learning, and use it to fine-tune the model F . In
general, F and its encoder g are updated on B̂t for
T times in an epoch, and each update is based on
the previous checkpoint. Besides training set, we
use a test data pool D containing n test domains
D = {D1,D2, . . . ,Dn} to simulate the real world
scenario and compute the robustness score with it.

In the following sections, we will first introduce
how our PRoDO framework learns to select data
(Section 2.1) and then our reward function based
on the probabilistic robustness definition (Section
2.2).

2.1 PRoDO framework

We now present the details of our Probabilistic
Robustness Rewarded Data Optimization (PRoDO)
framework.

2.1.1 RL training
The goal of our reinforcement learning agent is to
learn an optimal data selection policy π to maxi-
mize the expected returnRt =

∑T−t
j=0 γ

jrt+j from
each state st, where the scalar reward rt measures
how good the action at taken by the policy is at
the time step t and γ ∈ [0, 1] is the discount fac-
tor. Specifically, each time step can be split into
six steps as in Figure 1. Firstly, the encoder (e.g.
an embedding layer in LSTM, or an encoder in
transformer) inside the NLP model transforms the
batch of raw data Bt into a batch of (document)
embeddings, denoted as st. Secondly, the agent
takes action at based on state st. The agent takes
the state st as input and outputs a probability dis-
tribution for st, so that each sentence is associated
with a probability, representing how likely it is go-
ing to be selected. The selected subset, denoted
as B̂t, is then obtained by Bernoulli sampling each
sentence in the state st. The result of Bernoulli sam-
pling is represented as an action vector at, where
each value in it is either 0 or 1 representing each
sentence in the batch not being or being selected.
Thirdly, as soon as we obtain B̂t, the NLP model F
as well as encoder g are fine-tuned by the selected
subset B̂t. Then, the scalar reward rt = R(D,F)
is calculated by our reward functions R (defined
in Section 2.2) based on all available test domains
D and current NLP model F . Next, the advantage
At over action at is computed by the difference of
reward rt and the output of value function V (st).
Finally, we update the policy function following
the gradient with regard to the objective in PPO
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(details in next section 2.1.2) using the advantage
At.

2.1.2 PPO
In the conventional policy based (Sutton et al.,
1998) or actor-critic (policy-value) (Mnih et al.,
2016) based reinforcement learning, the precision
of the value function often corrupts the policy opti-
mization process for two reasons. First, some col-
lected states might introduce noise to the prediction
of V (st), and thus lead to an inaccurate estimate
of advantage At following with an inaccurate up-
date of policy gradient. Secondly, a trajectory of
interaction (consider a large dataset with a large
interaction horizon T ) might take long time, while
one collection of data can only be used to update
the policy once, thus leading to severe sample inef-
ficiency.

Trust Region Policy Optimization (TRPO)
(Schulman et al., 2015) and Proximal Policy Op-
timization (PPO)(Schulman et al., 2017) are pro-
posed to solve the aforementioned problems by
introducing importance sampling and advantage
clipping. We adopt PPO as our framework since it
is much simpler to implement than TRPO. PPO has
the following properties, which are very desirable
to achieve our goals: low variance, monotonic pol-
icy improvement and sampling efficiency (Grond-
man et al., 2012; Schulman et al., 2017). Our
framework consists of policy and value networks
jointly and dynamically learned together with the
task model using the advantage error computed
from the reward function, as shown in Algorithm 1.
PPO uses A(st, at), the advantage of action at in
state st to scale the policy gradient. Specifically,
the advantage of action (Mnih et al., 2016) at in
state st is defined as

A(st, at) = Q(st, at)−V(st) ≈
T−t∑

j=0

γjrt+j−V(st),

(1)
where γ ∈ (0, 1] is the discounting factor set

as 0.99. V is the value function implemented as a
value network.

Let rt(θ) denote the probability ratio rt(θ) =
πθ(at|st)
πθold(at|st) , the objective of PPO is defined in
Schulman et al. (2017) as

Atclipped = clip(rt(θ), 1− ϵ, 1 + ϵ)At (2)

J (θ) = Et
[
min(rt(θ)At, Atclipped)

]
, (3)

Algorithm 1 PRoDO Training Algorithm
Input: Epoch L, learning rate α, discount factor γ, training set X , pre-trained
task model F(including encoder g), reward function R (discussed in section
3.2)
Output: selected data, fine-tuned F , policy πθ , data value estimator
Vθv

1: Initialize data selection policy πθ and value estimator Vθv
2: for episode l = 1 to L do
3: Shuffle (uniformly at random) all training samples;
4: Equipartition X into T (disjoint) sets with same size n|T : X =

{Bt}T
t=1 = {B1,B2, ...,BT };

5: Initialize an empty list: episode history Υ
6: for all Bt ∈ X (uniform transition probability) do
7: st = gt(Bt);
8: Obtain batch action at by sampling based on πθ(st);
9: B̂t = {(xi)

o
i=1|ai = 1}, where o is selected sample size;

10: Update task model F(gt) by fine-tuning on B̂t;
11: rt = R(B̂t,F);
12: Store (st, at, rt) to episode history Υ;
13: end for
14: for all (st, at, rt) ∈ Υ do
15: Obtain A(st, at) for each batch;
16: Update policy weights θ and value estimator weights θv ;
17: end for
18: Clear episode history Υ;
19: end for
20: return F ,πθ and Vθv

where ϵ is a hyperparameter, and we set it as 0.2.
The objective function clips the range of change of
policy gradient into [1− ϵ, 1 + ϵ], which forces the
new policy to not deviate too much from the old
policy. This clipping design of PPO ensures mono-
tonic improvement and thus it has the advantages
of sample efficiency and ease of tuning compared
to other policy-based algorithms.

The objective of value network is:

∇θvV(θv) = Eπθ∇θV (rt − V(st; θv))2 (4)

The parameters of value function θv is updated by:

θv(t+1) = θvt + α∇θvt(rt − V(st; θvt))2 (5)

2.2 Reward function: (α, ϵ, γ)-Robustness
The reward function in Section 2.1 is the robustness
of the NLP model F .

In the real world, the out-of-domain data are
often much less than the in-domain data. Formally,
consider a pool of m samples where βm samples
are drawn from target domain Dt and (1 − β)m
samples are drawn from source domain Ds where
β ∈ [0, 1), β is often small in many scenarios.
Thus, the minimization of empirical target error ϵ̂t
becomes hard with the constraint of limited target
data. To solve this, we instead try to minimize a
convex combination of empirical source and target
error:

ϵ̂α = αϵ̂t + (1− α)ϵ̂s (6)
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where α ∈ [0, 1]. We also denote ϵα as the
weighted combination of the true source and target
errors measured with respect to source domain Ds

and target domain Dt, as shown in Figure 2.
According to the learning theory of Ben-David

et al. (2010), the probability that the difference
between the weighted empirical error ϵ̂α and the
weighted true error ϵα of an NLP system exceeds
a given threshold has an upper bound as shown in
Equation 7. Since we are more interested in bound-
ing the difference between the weighted empirical
error ϵ̂α and the weighted true error ϵα to some
threshold, so as to consider the system as “robust”,
we can transform the inequality to derive a lower
bound of the probability as shown in Equation 9:

Pr[|ϵ̂α − ϵα| ≥ ϵ] ≤ 2e

−2mϵ2

α2
β

+
(1−α)2

1−β (7)

⇔ 1−Pr[|ϵ̂α−ϵα| ≥ ϵ] ≥ 1−2e

−2mϵ2

α2
β

+
(1−α)2

1−β (8)

⇔ Pr[|ϵ̂α − ϵα| < ϵ] ≥ 1− 2e

−2mϵ2

α2
β

+
(1−α)2

1−β (9)

The right hand side of Equation 9 is the lower
bound of the probability that the difference of the
empirical error and the true error of an NLP system
is smaller than some threshold ϵ. We can introduce
the robustness factor γ (γ ∈ [0, 1]) to the right hand
side to control how tightly we would like to bound
the probability of error difference:

Pr[|ϵ̂α − ϵα| < ϵ] ≥ 1− 2e

−2mϵ2

α2
β

+
(1−α)2

1−β · γ (10)

⇔ γ ≥ 1− Pr[|ϵ̂α − ϵα| < ϵ]

2e

−2mϵ2

α2
β

+
(1−α)2

1−β

(11)

In consequence, we give the formal definition of
(α, ϵ, γ)-robustness as:

Definition We call an NLP system (α, ϵ, γ)-
robust, if for any source domain Ds and target
domain Dt, the difference between the empiri-
cal error ϵ̂α and the true error ϵα is bounded
through a threshold parameter ϵ with a probability

of 1 − 2e

−2mϵ2

α2
β

+
(1−α)2

1−β · γ, where α ∈ [0, 1] is the
weight of target domain error and β ∈ [0, 1) is the
ratio of target data within all data.

Based on this definition, we can interpret γ ∈
[0, 1] as the inverse indicator of robustness for

an NLP system. For example, a larger γ indicates a
lower probability that the difference between empir-
ical error ϵ̂α and true error ϵα is within our expected
threshold, so that the empirical error is probably
with large variance, and thus the large γ indicates
a less robust system.

2.2.1 Compute robustness by bootstrapping
We estimate robustness metrics using the leave-one-
out error stability (Mukherjee et al., 2006) by ex-
cluding a left-out test set from all available datasets
where we measure robustness. More precisely, for
a given model, we randomly select one leaving-
one-out test set and then combine all other tests
to compute the robustness of the left-out datasets.
Specifically, we consider the test domain as the
target domain (an unknown domain that will not be
used in training) and use all other test domains as
available resources to compute mean and variance.

In practice, it often occurs that only limited test
domains are available. Thus, the test scores of test
domains are discrete values and hard to form a
distribution. To solve this problem, we seek to a
modified bootstrap algorithm to construct a pool
of subsamples from the combined test set, as pro-
posed by Yu et al. (2022b). For each subsample,
instead of random sampling from the complete test
pool, we randomly sample from the elements not
present in the current subsample to minimize the
intersection between each.

3 Experiments

3.1 Baselines
We compare our measure with four baselines. The
first baseline denoted as All is the normal NLP
model trained on all training samples. Minmax
is derived from classic min-max objective in ro-
bust optimization. Diff (Zhang et al., 2022) and
Ratio (Niu et al., 2020) are recently introduced
robustness metrics defined by input perturbations.

Min-max robustness The notion of robustness
can be originated from robust optimization (Ben-
Tal and Nemirovski, 1998; Bertsimas and Sim,
2004) in which the optimization goal is to find
a solution h satisfying

min
h

[ max
δ1,...δn∈∆

n∑

i=1

l(h, xi + δi)] (12)

where xi are the observed training samples, δi are
deviations or perturbations from the observed sam-
ples, l(,̇)̇ is the loss function, and ∆ are all possible
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Figure 2: Illustrations of (α, ϵ, γ)-Robustness for two NLP systems. Orange curve and blue curve are the probability density
function (PDF) of the test scores (X) of two NLP systems. The inference of robustness comparison is shown in top.

perturbations. Robust algorithms satisfying this
definition are expected to minimize the empirical
error under the worst possible perturbation. Since
min-max objective targets the “worst possible per-
turbation”, we consider the most challenging test
set that will degrade the NLP performance most
as “the worst possible perturbation” and use the
evaluation score of such test set as a quantitative
measure to denote model robustness under the min-
max objective.

3.2 Improvements on NLP tasks
We experiment on a typical classification task of
sentiment analysis and a generation task of lan-
guage modeling.

3.2.1 Sentiment Analysis
In the task of sentiment analysis, we train a CNN
classifier (Kim, 2014) using Amazon product re-
view dataset (Blitzer et al., 2007). Specifically,
we use the combined set of DVD, kitchen and
books domains as source data. To compute ro-
bustness metrics, we use the full pre-processed
Amazon product review dataset, which contains
other domains such as grocery, tools, beauty and
computer. We treat the test accuracy on the boot-
strapped subsamples as a distribution and compute
the (α, ϵ, γ)-Robustness by setting ϵ as 0.001 and
α as 0.9. From Table 1, the classifiers optimized
with (α, ϵ, γ)-Robustness outperforms all baselines.
Specifically, the Min-max robustness achieves the
second highest average accuracy score on test do-
mains.

3.2.2 Language Modeling
Our baseline is a Transformer language
model (Vaswani et al., 2017) with default
hyper-parameters. We experiment with two
moderate size datasets WikiText-2 (Merity et al.,
2016) and Penn Treebank. As for evaluation, we
report perplexity scores on four translation datasets
from different domains, IWSLT’17 (TED talk)
(Cettolo et al., 2012), Biomedical’21 (medical)
(Yeganova et al., 2021), MTNT’18 (Reddit)
(Michel and Neubig, 2018) and WMT’15 (news).
The baseline models are trained using the fairseq
toolkit (Ott et al., 2019) and stop training until
the validation perplexity score does not improve
for 5 epochs. The evaluation results are shown
in Table 2. The perplexity (PPL) on all test
domains have been improved. Specifically, test
perplexity of MTNT’18 has an improvement of
28.05 (32.1% relative improvement) compared to
the best baseline (Niu et al., 2020).

3.3 Ablation study

3.3.1 Comparison with human evaluation
We give a case study to compare the robustness of
four language models trained on four different do-
mains from the OPUS dataset (Tiedemann, 2012)
using proposed robustness metrics. We combine
MTNT’18, BIO’21, WMT’15 and IWSLT’17 test
sets as a test pool, then subsample 50% of the test
pool for 30 times. Next, we collect PPL scores on
each subsampled bootstrap, and compute the mean
and variance for the PPL score distribution. Fig-
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auto beauty food instruments office computer tools phones grocery jewelry outdoor avg
All 56.48 54.03 56.02 59.15 56.84 55.17 55.95 52.79 53.06 56.63 55.81 55.63
Minmax 72.56 55.91 76.24 74.70 80.08 60.90 82.50 57.68 69.01 60.56 70.50 69.14
Diff 51.77 63.78 75.99 66.77 79.01 47.23 81.93 50.39 64.28 71.74 63.48 65.12
Ratio 71.06 63.92 75.25 82.01 67.45 63.19 78.57 58.83 68.79 65.53 62.80 68.85
(α, ϵ, γ) 79.26 67.07 82.28 85.47 84.67 68.68 89.29 62.60 73.45 77.25 75.45 76.86
+% 8.20 3.15 7.03 3.46 17.22 5.49 10.72 3.77 4.66 11.72 12.65 8.01

Table 1: Sentiment analysis accuracy [%] on amazon unprocessed domains. Last row: absolute improvement between (α, ϵ, γ)
and Ratio (Niu et al., 2020). Last column: average accuracy over all domains.

WikiText-2 Penn Treebank
IWSLT BIO MTNT WMT IWSLT BIO MTNT WMT

All 328.23 259.47 274.17 296.27 147.03 117.17 93.82 104.55
Minmax 189.03 140.35 160.26 169.03 142.84 82.55 91.59 101.91
Diff 193.06 136.94 167.55 168.90 140.18 79.04 92.62 98.70
Ratio 195.73 134.15 158.35 160.34 143.37 80.66 87.21 102.18
(α, ϵ, γ) 175.91 123.47 142.34 154.38 118.96 71.45 59.16 87.70

Table 2: Language modeling: Perplexity on four test domains. First row: source training domain; Second row: test domains.

ure 3 shows the normalized γ values against each
corresponding epsilon value for the four language
models. We can observe the γ values for the model
trained by medical are much smaller than the val-
ues for other models, and the γ values for office are
the highest. This shows that the model trained by
medical is the most robust among all models, while
the model trained by office is the least robust.

Model 1 Model 2 γ Human Agree?
edu office edu edu YES
edu medical medical medical YES
edu books books books YES

office medical medical medical YES
office books books books YES
books medical medical medical YES

Table 3: Robustness Metrics pair-wise comparison on
each two models.

To evaluate how our robustness measures match
human judgments, we compare the rank given by
Figure 3 with the rank given by perplexity score
and the rank given by human annotators, as shown
in Table 4. Each human annotator is assigned with
two language models selected at random. The hu-
man annotators do not know any details about the
model or the training data used for each model.
She/He can only use these models to get two gen-
erated sentences for the same input prompt. This
step can be repeated as many times as possible until
the human annotator decides which model is more
consistent in its generations. The decision is based
on consistency of generation quality but rather the
quality itself. The results of pair-wise comparison

Figure 3: (α, ϵ, γ)-Robustness plot on four lan-
guage models. “model-books” denotes the language
model trained by the books domain from the OPUS
dataset (Tiedemann, 2012)

between two language models are shown in Table
3. Our (α, ϵ, γ)-robustness perfectly aligns with de-
cisions made by human annotators, while the rank
based on perplexity score fails to match human
evaluation results.

3.3.2 Domain distance

Many data selection work use target domain knowl-
edge to select best in-domain data samples that
are close to target domain (Aharoni and Goldberg,
2020; Liu et al., 2019; Ma et al., 2019). Our method
does not use target domain knowledge, thus, we
question whether our selected data resembles tar-
get domain under such zero-knowledge setting. We
follow Aharoni and Goldberg (2020) using Distil-
Bert (Sanh et al., 2019) to embed all domain data,
Penn Treebank data and our (α, ϵ, γ)-Robustness
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Model CE PPL rankCE rankPPL rankγ rankHuman
edu 11.34 2474.16 1 1 3 3

books 12.03 4039.17 2 2 2 2
office 12.06 4181.39 3 3 4 4

medical 13.41 9426.04 4 4 1 1

Table 4: (α, ϵ, γ)-Robustness 100% agrees with human ranking, while perplexity (PPL) and cross entropy (CE) 25% agree with
human. “office” means the model is trained on the office domain.

BIO MTNT WMT IWSLT
All 89.95 92.94 93.35 92.99
(α, ϵ, γ) 92.06 94.25 94.55 93.96

Table 5: Cosine similarity [%] between (row,column) data
set. With zero-knowledge of four target domains, our method
selects subsets of training data that are more close to the target
domain.

selected PTB data into sentence embeddings and
compute pairwise cosine similarity between the
centroid of each domain. The result is shown in
Table 5. With zero-knowledge of four target do-
mains, our method selects subsets of training data
that are more close to the target domain. Further-
more, we find the larger domain distance between
the source domain and the target domain, the larger
improvement will be, by computing the pearson
correlation coefficient (0.83) between the domain
distance and the relative improvement normalized
by test set size.

4 Related Work

In previous years, a crucial direction of work on
robustness of NLP models lies on the vulnerabil-
ity of NLP models to input perturbations, such as
crafted noises (Song et al., 2020; Boucher et al.,
2022; Li et al., 2020; Schwinn et al., 2021). For
instance, Cheng et al. (2018) proposes an adver-
sarial stability training objective to enable neural
machine translation models robust to input pertur-
bations. Niu et al. (2020) evaluates robustness to
input perturbations for neural machine translation.
Compared to them, our approach handles new test
inputs with distribution shifts from any unknown
domains.

Some literature propose evaluation metrics for
robustness from the perspectives of statistics or in-
put perturbations (Weng et al., 2018; Niu et al.,
2020; Mangal et al., 2019; Couellan, 2021). How-
ever, they either focus on the worst-case scenario
of adversarial inputs or sampling single instances
without considering the full distribution of the sys-
tem performance.

5 Conclusion

We introduce probabilistic robustness rewarded
proximal policy data optimization (PRoDO) frame-
work to improve NLP model’s generalization by
selecting training data. Our framework is rewarded
by the (α, ϵ, γ)-Robustness to measure an NLP
model’s performance consistency over multiple do-
mains. Our experiments show the effectiveness of
probabilistic robustness measure to enhance learn-
ing generalization and prediction accuracy. Our
work also demonstrates a successful step towards
general robustness evaluation and data selection
without target domain insight.

6 Limitations

Time efficiency is one limitation of this work. For
one thing, like other data selection work with rein-
forcement learning (RL), introducing RL requires
convergence of the policy network and the value
network, which takes quite a long time empirically.
Referring to our time comparison results, our meth-
ods are roughly ten times slower than training with
all source data directly. For another, our robust-
ness measure requires the tuning process for hyper-
parameters α and ϵ, which also takes additional
time.
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Abstract

Masked language modeling (MLM) plays a
key role in pretraining large language models.
But the MLM objective is often dominated by
high-frequency words that are sub-optimal for
learning factual knowledge. In this work, we
propose an approach for influencing MLM pre-
training in a way that can improve language
model performance on a variety of knowledge-
intensive tasks. We force the language model to
prioritize informative words in a fully unsuper-
vised way. Experiments demonstrate that the
proposed approach can significantly improve
the performance of pretrained language models
on tasks such as factual recall, question answer-
ing, sentiment analysis, and natural language
inference in a closed-book setting.

1 Introduction

Pretrained language models (PLMs) such as
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), BART (Lewis et al., 2020), T5 (Raffel et al.,
2020) use a Masked Language Modeling (MLM)
objective during pretraining. However, a traditional
MLM objective may not be optimal for knowledge-
intensive tasks (Peters et al., 2019). It has been
shown that language models can benefit from incor-
porating knowledge within the training objective in
the form of entity embeddings (Peters et al., 2019;
Zhang et al., 2019), knowledge retriever (Guu et al.,
2020), knowledge embedding (Wang et al., 2021;
Sun et al., 2020) or augmented pretraining cor-
pora created from Knowledge Graphs (Agarwal
et al., 2021). Despite their effectiveness, these
approaches rely on existing knowledge bases and
entity embeddings to incorporate knowledge within
the training objective. These resources are expen-
sive to construct and may not be available for all
languages and domains (Huang et al., 2022).

In this work, we propose a pretraining approach
that can achieve better performance on knowledge-
intensive tasks without using any existing knowl-

edge base. We combine two key strategies to in-
fluence MLM objective. Firstly, the tokens with
higher informative relevance should be masked
more frequently (Sadeq et al., 2022). Secondly,
mistakes on informative tokens should be penal-
ized more severely. The informative relevance of
the tokens can be computed efficiently with a one-
pass computation on the pretraining corpora. Ex-
periments demonstrate that the proposed training
strategy can help the language model achieve bet-
ter performance on the factual knowledge recall
benchmark LAMA (Petroni et al., 2019), extractive
question answering (QA) benchmark SQuAD (Ra-
jpurkar et al., 2016, 2018), prompt based sentiment
analysis and natural language inference (NLI) tasks
in AutoPrompt (Shin et al., 2020).

The key contribution of this work is proposing
a completely unsupervised stand-alone MLM pre-
training objective for language models that can
significantly improve performance on knowledge-
intensive tasks. Unlike prior works in the area, our
method does not require existing knowledge bases
to incorporate knowledge during pretraining. We
make the code publicly available. 1

2 Related Work

PLMs as knowledge bases It has been shown
that large-scale PLMs such as BERT can be used
as a knowledge base (Petroni et al., 2019, 2020).
Prior works have focused on factual knowledge
with regards to generative PLMs (Liu et al., 2021),
multilingual setting (Jiang et al., 2020a), entities
and query types (Heinzerling and Inui, 2021), fact
checking (Lee et al., 2020).

Designing better prompts Jiang et al. (2020b)
propose mining-based and paraphrasing-based
methods for automatically generating prompts for
improved factual recall performance. A similar

1The code is available at https://github.com/intuit/
wMLM.git

2960

https://github.com/intuit/wMLM.git
https://github.com/intuit/wMLM.git


approach is explored by Zhong et al. (2021); Ha-
viv et al. (2021); Qin and Eisner (2021). Shin et al.
(2020) propose an approach for automatically creat-
ing MLM prompts for a diverse range of tasks such
as sentiment analysis, natural language inference,
relation extraction, etc.

Knowledge integration during pretraining Pe-
ters et al. (2019) use entity embeddings from ex-
isting knowledge bases and incorporate an entity
linking loss jointly with an MLM loss to improve
the factual recall performance of BERT. Similarly,
Zhang et al. (2019); Wang et al. (2021); Févry et al.
(2020); Sun et al. (2020); Liu et al. (2020) use entity
representations or knowledge representation from
existing knowledge bases to incorporate knowledge
into the PLM. Guu et al. (2020) jointly pretrain a
knowledge retriever along with a language model-
ing objective for knowledge integration. Agarwal
et al. (2021) synthesize a text corpus from existing
knowledge bases and use that during pretraining.
Sun et al. (2019) use entity-level and phrase-level
knowledge masking during training.

Knowledge modification after pretraining
De Cao et al. (2021); Zhu et al. (2020) use con-
straint optimization for editing existing world
knowledge within PLMs with minimal impact on
the rest of the factual knowledge. Similarly, Verga
et al. (2021) develop a fact injection language
model architecture that allows easy integration of
existing knowledge bases into PLMs without addi-
tional pretraining.

3 Methodology

We use MLM objective for pretraining, similar to
prior works (Devlin et al., 2019; Liu et al., 2019;
Lewis et al., 2020; Raffel et al., 2020). Given a
sequence of tokens Z, a subset of tokens X ⊂ Z
is randomly sampled for replacement (|X|/|Z| ≈
0.15 in Devlin et al. (2019)). For the replacement
candidates in X , 80% of the time the replace-
ment is done with a special token [MASK], 10%
of tokens are replaced with a random token, and
the other 10% of candidates are left unchanged
(Devlin et al., 2019; Liu et al., 2019; Joshi et al.,
2020). The task of the model during pretraining
is to predict the original tokens from the modi-
fied input sequence. For a set of replaced tokens
X(x1, x2, ..., xN ) and their corresponding output
tokens Y (y1, y2, ..., yN ), the loss LMLM is com-
puted as follows:

Figure 1: Simplified illustration of variable masking
rate and weighted penalty

LMLM = −
N∑

i=1

log
exi,yi∑

v∈V
exi,v

(1)

Here, xi,j is the logit produced for output candi-
date j given input xi and V is the vocabulary set.
In traditional MLM loss computation, a uniform
penalty is applied for all tokens within the vocabu-
lary. In our work, we try to influence the MLM ob-
jective during pretraining to incorporate more fac-
tual knowledge. We differ from traditional MLM
pretraining in two ways: (a) Instead of masking
all tokens with equal probability, we allow some
tokens to be masked more frequently if they have
higher informative relevance, (b) We use weighted
cross entropy loss to penalize mistakes on some
tokens more severely if they have higher informa-
tive relevance. Simple illustrations of these two
concepts are shown in Figure 1. We compute the
loss as follows:

LMLM = −
N∑

i=1

wyi log
exi,yi∑

v∈V
exi,v

(2)

wyi is a penalty weight specific to a particular
output token yi. The magnitude of the weight is
chosen based on the informative relevance of the
tokens. A demonstration of this weighting is shown
in Figure 1. Each token in the language model vo-
cabulary has a unique masking rate and penalty
weight associated with it. These values can be
computed with a one-pass computation before pre-
training.

In this context, the informative relevance of
tokens represents how important a particular to-
ken is with regard to the factual knowledge. To-
kens that are more important for factual knowledge
(e.g. named entities) are expected to have a higher
informative relevance. We use Pointwise Mutual In-
formation (PMI (Fano, 1961)) to compute informa-
tive relevance in an unsupervised manner. We hy-
pothesize that words that have high PMI with their
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Figure 2: Informative relevance of tokens in a particular
document, by computing row-wise summation of the
PMI matrix of all token pairs

neighboring words tend to have higher informative
relevance. Firstly, we compute word co-occurrence
statistics for the pretraining corpus within a skip-
gram window. Secondly, PMI between all word
pairs within the vocabulary is computed. Thirdly,
we consider the pairwise PMI between all words
within a particular document in the form of a ma-
trix (as shown in Figure 2), so that the row-wise
sum in that matrix reflects the token-specific in-
formative relevance within that document. Then
informative relevance for a token is averaged across
the corpus. Finally, the computed values are nor-
malized and converted to token-specific masking
rates and token-specific penalty weights. Those
masking rates are used to create masked inputs and
the penalty weights are then incorporated during
MLM loss computation, as shown in Equation 2.

4 Experiments

4.1 Pretraining Setup
We use the Wikipedia corpus available in Hugging
Face (Lhoest et al., 2021) for pretraining, using
a wordpiece tokenizer with a vocabulary size of
100k. The vocabulary size is chosen to ensure the
inclusion of most entities. Word co-occurrence
statistics are computed using a skip-gram window
size of 10. The size of the matrix that holds the
PMI between words is 100k× 100k. The one-pass
computation involving informative relevance of to-
kens takes around two hours and requires 11 GB
of memory. The masking rate for individual tokens
varies between 15%-50%, depending on their in-
formative relevance. The average masking rate for
all tokens is 19%. The penalty weights for tokens
are normalized within the range [1, 5]. Training
is done with Hugging Face Transformers (Wolf
et al., 2020) on an AWS p3.8xlarge machine with
4 Nvidia V100 GPUs. Our model architecture is

similar to BERT-base (Devlin et al., 2019) with 12
layers and a hidden dimension of 768. The overall
batch size is 128 with a learning rate of 5e-5 and an
AdamW optimizer (Loshchilov and Hutter, 2019).
Training is done for 10 epochs with a maximum
document length of 128. Unlike BERT (Devlin
et al., 2019), we do not use the next sentence pre-
diction objective during pretraining. Additionally,
the increased masking rate and penalty weight only
apply to whole-word tokens. For the subword to-
kens, we use the minimum masking rate of 15%
and penalty weight of 1.

4.2 Evaluation Benchmarks
We use LAMA knowledge probes (Petroni et al.,
2019) for evaluating the factual recall performance
of the model. LAMA has around 70k samples
across 46 factual relations. To evaluate the per-
formance on extractive QA, we use SQuAD v1
and v2 (Rajpurkar et al., 2016, 2018). For zero-
shot performance evaluation on closed-book QA,
we use the SQuAD portion from LAMA (Petroni
et al., 2019). For closed-book sentiment analysis
and NLI, we use SST2 and NLI probes from Au-
toPrompt (Shin et al., 2020). We also report the
performance of the models on GLUE (Wang et al.,
2018).

4.3 Baselines
We train four models using the same corpus, tok-
enizer and hyper-parameter setting mentioned in
Section 4.1: (a) BERTuu: Similar to Devlin et al.
(2019), it uses a uniform masking rate and uni-
form penalty across tokens. This is our baseline.
(b) BERTuw: uses a uniform masking rate and
weighted penalty. (c) BERTvu (Sadeq et al., 2022):
uses a variable masking rate across tokens and uni-
form penalty. (d) BERTvw: This is our proposed
approach that combines both a variable masking
rate and weighted penalty across different tokens.

4.4 Results and Discussion
Factual Recall and Zero-shot QA The model
using the proposed pretraining approach (BERTvw)
significantly outperforms the baseline (BERTuu)
on factual recall tasks in LAMA (shown in Ta-
ble 1). The relative improvement of Mean Re-
ciprocal Rank (MRR) over the baseline is 17.5%,
6%, and 8.1% for ConceptNet, GoogleRE, and
TREx respectively. The SQuAD portion of the
LAMA benchmark is a set of zero-shot QA sam-
ples adapted in a closed-book template. In this task,
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Model
LAMA (Petroni et al., 2019) AutoPrompt (Shin et al., 2020)

ConceptNet GoogleRE SQuAD TREx SST2 NLI (3 way) NLI (2 way)

BERTuu 0.114 0.281 0.156 0.578 0.651 0.397 0.620
BERTuw 0.120 0.289 0.169 0.592 0.655 0.439 0.676
BERTvu 0.129 0.292 0.175 0.616 0.700 0.457 0.697
BERTvw 0.134 0.298 0.187 0.625 0.704 0.481 0.711

Table 1: Factual Recall performance on LAMA, Sentiment Analysis and Natural Language Inference on AutoPrompt.
The metrics used for LAMA and AutoPrompt are Mean Reciprocal Rank (MRR) and Accuracy respectively.

Model
SQuAD GLUE (Wang et al., 2018)

v1 (2016) v2 (2018) CoLA SST2 MNLI QNLI QQP STSB RTE WNLI MRPC

BERTuu 69.96 83.22 31.06 88.30 79.42 87.72 89.77 85.41 66.43 42.25 87.78
BERTuw 71.17 84.17 28.55 89.11 79.82 87.15 89.59 85.70 58.84 49.30 87.93
BERTvu 71.17 85.07 29.11 89.79 80.02 88.21 90.10 85.60 61.37 54.93 88.29
BERTvw 72.61 85.28 28.93 89.91 80.25 88.49 89.82 85.82 59.93 56.34 88.32

Table 2: Performance on SQuAD and GLUE development set. For SQuAD, we report the F1 score. We report the
Matthews correlation for CoLA, Pearson correlation for STSB, and accuracy for other GLUE tasks. The fine-tuning
parameters for SQuAD and GLUE can be found in Appendix B.

we achieve 19.9% relative improvement over the
baseline.

Case studies on factual recall are shown in Ta-
ble 3. There are two key observations in these case
studies. Firstly, the proposed model (BERTvw) is
more likely to rank the ground truth label higher
during knowledge probes. This helps the model
achieve better overall MRR. Secondly, the pro-
posed model is more likely to produce specific
words given a particular context when the base-
line is only producing generic words. For example,
when we use the prompt ‘During Super Bowl 50
the [MASK] gaming company debuted their ad for
the first time’, the top three candidates from the
baseline model are comparatively common words
such as ‘computer’, ‘electronic’, and ‘American’.
But the proposed model is able to produce more
specific words associated with three gaming com-
panies (‘Nintendo, ‘Walt’, and ‘Atari’), including
the correct answer ‘Nintendo’. Similar observation
can be made with the probe ‘The organization that
runs the satellite that measured dust that landed
on the Amazon is [MASK]’, where the proposed
model makes specific predictions with the given
context, such as ‘NASA’, ‘Brazil’ and ‘Amazon’.
But the baseline can only produce generic words
like ‘unknown’, ‘the’, and ‘unclear’.

Closed-book Sentiment Analysis and NLI We
use AutoPrompt (Shin et al., 2020) to evaluate the
closed-book sentiment analysis and NLI perfor-

mance of the system. AutoPrompt provides a way
to convert certain NLP tasks into a template-based
probing format. The advantage of this type of
prompting is that it allows us to exploit the fac-
tual knowledge within language models without
the limitations of fine-tuning (Wallat et al., 2020).
The prompt contains the input, a placeholder for the
answers, and a span of trigger words (prompt tem-
plates shown in Appendix C). The trigger words
are tuned using the training dataset and then sub-
sequently used during evaluation. The proposed
system achieves 8.1%, 21.1%, and 14.7% relative
improvement in accuracy over the baseline in senti-
ment analysis, 3-way NLI, and 2-way NLI respec-
tively (Table 1).

Fine-tuning vs Prompt-tuning Our proposed
model achieves better performance compared to
the baseline when fine-tuned on the extractive QA
benchmark SQuAD (Rajpurkar et al., 2016, 2018)
and text classification benchmark GLUE (Wang
et al., 2018). It outperforms the baseline on both
SQuAD v1 and v2 tasks and seven out of nine
GLUE tasks (shown in Table 2). However, the rela-
tive performance improvement with fine-tuning is
not as significant as factual recall, zero-shot QA,
or prompt-tuning scenarios. The reason behind
this may be explained by the findings of Wallat
et al. (2020). The main strength of our approach is
the ability to store more factual knowledge during
pretraining. However, Wallat et al. (2020) have
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Input
Ground Truth

BERTuu (Devlin et al., 2019) BERTvw (proposed)

Prediction Score Prediction Score

To emphasize the 50th anniversary of the Super
Bowl the [MASK] color was used.

gold
yellow 0.17 gold 0.09

red 0.13 rainbow 0.06
green 0.12 orange 0.06

During Super Bowl 50 the [MASK] gaming company
debuted their ad for the first time.

nintendo
computer 0.06 nintendo 0.05
electronic 0.05 walt 0.04
american 0.03 atari 0.04

A teacher is most likely teaching at a [MASK]. school
university 0.61 school 0.40

school 0.26 university 0.34
college 0.03 seminary 0.09

Photosynthesis releases [MASK] into the Earth’s
atmosphere.

oxygen
sunlight 0.13 oxygen 0.21

photosynthesis 0.09 carbon 0.12
light 0.09 sunlight 0.06

The organization that runs the satellite that measured
dust that landed on the Amazon is [MASK] .

nasa
unknown 0.11 nasa 0.06

the 0.03 brazil 0.05
unclear 0.03 amazon 0.02

Income inequality began to increase in the US in the
[MASK].

1970s
1960s 0.21 1970s 0.14
1980s 0.18 1960s 0.13
1970s 0.17 1980s 0.12

He moved to [MASK] at age 16 to complete his high
school studies and obtained his Japanese citizenship
in 1995.

japan
tokyo 0.42 japan 0.19
japan 0.21 tokyo 0.18

yokohama 0.03 hawaii 0.06

The Crimes Act 1914 is a piece of Federal
legislation in [MASK].

australia
canada 0.39 australia 0.12

australia 0.07 tennessee 0.09
england 0.03 canada 0.09

She is also member of the Helsinki City Council and
the chairperson of the local party organisation in
[MASK].

helsinki
finland 0.52 helsinki 0.76

helsinki 0.38 finland 0.18
espoo 0.01 espoo 0.03

Mark Schwahn (born July 5, 1966) is an American
[MASK], director and producer.

screenwriter
actor 0.66 screenwriter 0.53

screenwriter 0.14 writer 0.21
writer 0.13 actor 0.16

Table 3: Case Study from factual recall samples from LAMA (Petroni et al., 2019)

shown that the factual knowledge learned during
pretraining may be lost during fine-tuning, limit-
ing the advantage of our proposed system. On the
other hand, relational probing, zero-shot QA, and
prompt-tuning-based NLP tasks can exploit the ad-
ditional knowledge of our model more effectively,
leading to much better performance.

Ablation Study We investigate how much perfor-
mance improvement is due to the variable masking
rate as opposed to the weighted penalty during
MLM pretraining. This can be found by compar-
ing BERTuw with BERTvu (Table 1 and 2). In most
cases, we find that a variable masking rate performs
slightly better than a weighted penalty.

5 Conclusion

In this work, we propose a pretraining strategy
that can be effective in storing factual knowledge

within language models. The additional knowledge
helps the model outperform previous approaches
on a variety of knowledge-intensive NLP tasks,
such as factual recall, zero-shot QA, closed-book
sentiment analysis, and natural language inference.
Our model also achieves better performance when
fine-tuned on SQuAD and GLUE tasks. In the
future, we aim to extend our work for text-to-text
pretrained models such as T5 (Raffel et al., 2020).
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fine-tuning tasks, such as CoLA (Table 2). The
proposed training objective reduces the importance
of stopwords in the pretraining objective. This may
have a negative impact on performance in tasks
where the syntax is important. More investigation
is needed to understand and mitigate this issue.
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A Performance on LAMA by Relation

Domain Dataset BERTuu BERTuw BERTvu BERTvw

ConceptNet test 0.114 0.120 0.129 0.134
GoogleRE dateOfBirth 0.099 0.109 0.111 0.113
GoogleRE placeOfBirth 0.456 0.459 0.461 0.465
GoogleRE placeOfDeath 0.288 0.300 0.305 0.315
Squad test 0.156 0.169 0.175 0.187
TREx P1001 0.779 0.770 0.793 0.798
TREx P101 0.442 0.468 0.501 0.514
TREx P103 0.822 0.834 0.838 0.836
TREx P106 0.642 0.653 0.675 0.664
TREx P108 0.491 0.526 0.538 0.556
TREx P127 0.586 0.615 0.620 0.636
TREx P1303 0.380 0.427 0.433 0.472
TREx P131 0.690 0.702 0.741 0.750
TREx P136 0.595 0.629 0.651 0.675
TREx P1376 0.747 0.761 0.783 0.792
TREx P138 0.633 0.640 0.656 0.680
TREx P140 0.569 0.574 0.608 0.602
TREx P1412 0.764 0.773 0.785 0.781
TREx P159 0.535 0.551 0.573 0.576
TREx P17 0.870 0.863 0.884 0.887
TREx P176 0.647 0.673 0.699 0.720
TREx P178 0.569 0.592 0.631 0.639
TREx P19 0.477 0.478 0.509 0.519
TREx P190 0.279 0.276 0.296 0.297
TREx P20 0.511 0.533 0.559 0.565
TREx P264 0.247 0.280 0.291 0.313
TREx P27 0.745 0.756 0.767 0.773
TREx P276 0.625 0.623 0.652 0.663
TREx P279 0.512 0.544 0.562 0.580
TREx P30 0.802 0.813 0.835 0.842
TREx P31 0.616 0.627 0.635 0.635
TREx P36 0.569 0.578 0.618 0.615
TREx P361 0.530 0.538 0.567 0.574
TREx P364 0.703 0.715 0.729 0.742
TREx P37 0.701 0.688 0.728 0.715
TREx P39 0.572 0.607 0.613 0.630
TREx P407 0.638 0.630 0.647 0.666
TREx P413 0.422 0.453 0.483 0.507
TREx P449 0.416 0.444 0.454 0.495
TREx P463 0.646 0.674 0.697 0.713
TREx P47 0.492 0.508 0.564 0.565
TREx P495 0.685 0.662 0.699 0.681
TREx P527 0.423 0.452 0.521 0.527
TREx P530 0.379 0.373 0.400 0.416
TREx P740 0.407 0.414 0.438 0.438
TREx P937 0.528 0.541 0.569 0.569

Table 4: Relation by relation performance comparison on LAMA (Petroni et al., 2019)
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B Hyper-parameter for fine-tuning on GLUE, SQuAD

Hyper-parameter GLUE SQuAD

Batch Size 32 12
Learning Rate 2e-5 3e-5

Epochs 3 2
Weight Decay 0.01 0.01

Table 5: Fine-tuning hyper-parameters for GLUE and SQuAD

C Hyper-parameter for AutoPrompt

Hyper-parameter SST2 NLI

# Trigger Token 3 4
# Candidate 100 10
Batch Size 24 32
# Iterations 180 100

Table 6: Prompt-tuning hyper-parameters for AutoPrompt (Shin et al., 2020)

Task Template Prompt Example Labels

SST2 {sentence} [T] . . . [T] [P] director rob marshall went out gunning to make a
great one movie director cinema [MASK]

pos: partnership, good
neg: worse, bad

NLI {prem}[P] [T] . . . [T] {hyp} There is no man in a black jacket doing tricks on a
motorbike [MASK] strange workplace A person in a

black jacket is doing tricks on a motorbike

con: Nobody, nobody, nor
ent: found, ways, Agency
neu: ##ponents, ##lary,

##uated

Table 7: Prompt template for Sentiment Analysis and Natural Language Inference tasks in AutoPrompt (Shin et al.,
2020)
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Abstract

Despite the strong performance of current NLP
models, they can be brittle against adversarial
attacks. To enable effective learning against
adversarial inputs, we introduce the use of ra-
tionale models that can explicitly learn to ig-
nore attack tokens. We find that the rationale
models can successfully ignore over 90% of
attack tokens. This approach leads to consis-
tent and sizable improvements (∼10%) over
baseline models in robustness on three datasets
for both BERT and RoBERTa, and also reliably
outperforms data augmentation with adversar-
ial examples alone. In many cases, we find that
our method is able to close the gap between
model performance on a clean test set and an
attacked test set and hence reduce the effect of
adversarial attacks.

1 Introduction

Adversarial robustness is an important issue in NLP,
asking how to proof models against confounding
tokens designed to maliciously manipulate model
outputs. As such models become more powerful
and ubiquitous, research continues to discover sur-
prising vulnerabilities (Wallace et al., 2019), de-
manding improved robustness methods.

A common defense method to combat adversar-
ial attacks is adversarial training. Given knowledge
of attack strategies, it constructs synthetic adver-
sarial examples to augment clean examples during
training (Zhang et al., 2020). Intuitively, the model
will implicitly learn to ignore attacking tokens and
become robust to that type of attack. In practice,
however, this goal can be challenging through data
augmentation alone.

In this study, we propose a simple yet effective
adversarial training schema for additive attacks:
explicitly training the model to ignore adversarial
tokens. We do this by augmenting the underlying
model with a rationale extractor (Lei et al., 2016)
to serve as an input filter, and then training this

Figure 1: Example illustration of an ideal rationale
model that is robust to added attack tokens. The ra-
tionale extractor filters out the confounding sentence
(“Lisa invited two friends”) added by the adversary,
and extracts the supporting spans (“Helen invited some
friends” and “She bought five cakes, so everyone had
exactly one”) to help the model deduce the correct an-
swer (“Four”).

extractor to ignore attacking tokens as an additional
joint objective to overall label accuracy (Fig. 1).

In addition to training the extractor to distinguish
the attacking/non-attacking token dichotomy, we
also explore the utility of human-provided expla-
nations in this regard. In doing so, we ask: does
learning from human rationales help the model
avoid attending to attacking tokens?

Fine-tuning BERT (Devlin et al., 2018) and
RoBERTa (Liu et al., 2019) on multiple datasets,
we demonstrate that the additive attack proposed by
Jia and Liang (2017) does reduce model accuracy,
and that data augmentation with adversarial exam-
ples provides limited benefit in defending these
models from this attack in most cases.
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Our main results are that rationale-style mod-
els learn to ignore these attacks more effectively
than only with data augmentation, leading to an
improvement of ∼10% in accuracy on attacked ex-
amples compared to baseline models and an ad-
vantage of 2.4% over data augmentation alone,
mostly recovering clean test performance. While
human explanations may potentially improve the
interpretability of these models, they are of limited
use in improving this defense even further.

In summary, we offer three main contributions:
• We show that explicitly training an extractive

rationale layer to ignore attack tokens is more
effective than implicitly training a model via data
augmentation with adversarial examples.

• We assess whether human-annotated rationales
augment this defense, showing that they have
only a limited benefit.

• We conduct an in-depth error analysis of differ-
ences between models, explaining some of the
patterns we observe in our main results.
Our code is available at https:

//github.com/ChicagoHAI/
rationalization-robustness.

2 Related Work

We build on prior work on adversarial robustness
and learning from explanations.
Adversarial robustness. Adversarial attacks
against NLP models seek to maliciously manip-
ulate model output by perturbing model input.
Zhang et al. (2020) present a survey of both attacks
and defenses. Example attacks include character-
level manipulations (Gao et al., 2018; Li et al.,
2019), input removal (Li et al., 2017; Feng et al.,
2018), synonym substitutions (Ren et al., 2019),
and language model-based slot filling (Li et al.,
2020; Garg and Ramakrishnan, 2020; Li et al.,
2021). A distinction in attack types is whether
the attack requires access to the model (Ebrahimi
et al., 2018; Yoo and Qi, 2021; Wallace et al., 2019)
or not (Alzantot et al., 2018; Jin et al., 2020). Tex-
tAttack (Morris et al., 2020) is a framework and
collection of attack implementations. Our work
focuses on the ADDSENT attack proposed by Jia
and Liang (2017) in reading comprehension.

As interest in adversarial attacks has increased,
so has interest in developing models robust to these
attacks. A popular defense method is adversarial
training via data augmentation, first proposed by
Szegedy et al. (2014) and employed by Jia and

Liang (2017) to bring their model almost back to
clean test performance. A recent example in this
vein is Zhou et al. (2020), which proposes Dirichlet
Neighborhood Ensemble as a means for generating
dynamic adversarial examples during training. An-
other popular approach is knowledge distillation
(Papernot et al., 2016), which trains an intermedi-
ate model to smooth between the training data and
the final model. Our work explores a new direction
that explicitly learns to ignore attacks.
Learning from explanations. Recent work has
sought to collect datasets of human-annotated ex-
planations, often in the form of binary rationales,
in addition to class labels (DeYoung et al., 2019;
Wiegreffe and Marasović, 2021), and to use these
explanations as additional training signals to im-
prove model performance and robustness, some-
times also known as feature-level feedback (Hase
and Bansal, 2021; Beckh et al., 2021).

An early work is Zaidan et al. (2007), which uses
human rationales as constraints on an SVM. More
recently, Ross et al. (2017) uses human rationales
to penalize neural net input gradients showing ben-
efits for out-of-domain generalization, while Erion
et al. (2021) use a similar method based on “ex-
pected gradients” to produce improvements in in-
domain test performance in certain cases. Katakkar
et al. (2021) evaluate feature feedback for two
attention-style models, finding, again, gains in out-
of-domain performance, while Han and Tsvetkov
(2021) use influence functions (Koh and Liang,
2017) to achieve a similar outcome. Where our
study differs from most previous work is in using
feature feedback for adversarial rather than out-of-
domain robustness. A concurrent work by Chen
et al. (2022) uses rationalization to improve robust-
ness. The proposed method is similar to our work,
but we explore supervision with attack tokens and
achieve stronger robustness to additive attacks.

3 Adversarial Attacks and Datasets

In this paper, we focus on model robustness against
the ADDSENT additive attack proposed by Jia and
Liang (2017). The attack is designed for reading
comprehension: consider each instance as a tuple
of document, query, and label (d, q, y), where y
indicates whether the query is supported by the
document. The attack manipulates the content of
the query to form an attack sentence (A) and addsA
to the document to confuse the model. Specifically,
ADDSENT proceeds as follows:
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Query q:
FC Bayern Munich was founded in 2000.
Mutated Query q̂:
DYNAMO Leverkusen Cologne was founded in 1998.
Modified Document d′
. . . has won 9 of the last 13 titles. DYNAMO Leverkusen
Cologne was founded in 1998. They have traditional local
rivalries with . . .

Figure 2: An example of the ADDSENT attack.

1. We modify the query q by converting all named
entities and numbers to their nearest neighbor in
the GloVe embedding space (Pennington et al.,
2014). We flip all adjectives and nouns to their
antonyms using WordNet (Miller, 1995) and
yield a mutated query q̂. If we fail to mutate
the query due to not being able to find matching
named entities or antonyms of adjectives and
nouns, we skip the example.

2. We convert the mutated query q̂ into an adver-
sarial attack A using CoreNLP (Manning et al.,
2014) constituency parsing, under a set of about
50 rules enumerated by Jia and Liang (2017).
This step converts it into a factual statement that
resembles but is not semantically related to the
original query q.

3. The adversarial attack A is inserted at a random
location within the original document and leads
to a new tuple (d′, q, y).1

The key idea behind the ADDSENT attack is
that the mutations alter the semantics of the query
by mutating the named entities and numbers, so
that the attack contains words or phrases that are
likely confusing to the model without changing the
true semantics of the input. An example of the
ADDSENT attack is given above.

The original approach includes an additional step
of using crowdsourced workers to filter ungram-
matical sentences. We do not have access to this
manual validation process in all datasets. Occasion-
ally, ADDSENT generates ungrammatical attacks
but it nevertheless proves empirically effective in
reducing the performance of our models.
Datasets. To evaluate our hypotheses on learning
to ignore adversarial attacks, we train and evaluate
models on the Multi-Sentence Reading Comprehen-
sion (MULTIRC; Khashabi et al., 2018) and Fact
Extraction and VERification (FEVER; Thorne
et al., 2018) datasets. Both are reading compre-

1We experimented with variants of inserting only at the
beginning or the end. The results are qualitatively similar, so
we only report random in this paper.

Dataset Text
length

Rationale
length

Total
size

MULTIRC 336.0 52.0 32,088
FEVER 335.9 47.0 110,187
SQUAD 119.8 —— 87,599

Table 1: Basic statistics of MULTIRC, FEVER, and
SQUAD.

hension datasets, compatible with the ADDSENT

attack. For MULTIRC, the query consists of a
question and potential answer about the document,
labeled as true or false, while for FEVER it is a
factual claim about the document labeled as “sup-
ported” or “unsupported”. Both datasets include
human rationales, indicating which tokens are per-
tinent to assessing the query. Table 1 summarizes
their basic statistics.

In modeling these two datasets, we follow stan-
dard practice in appending the query to the end
of the document with [SEP] tokens. We use
train/validation/test splits prepared by the ERASER
dataset collection (DeYoung et al., 2019). Because
we are interested in relative differences between
training regimes rather than absolute performance,
we subsample the FEVER training set to 25% so
that it is comparable to MULTIRC for the sake of
training efficiency.

Directly applying the synthetic ADDSENT attack
to MULTIRC and FEVER leads to occasionally
ungrammatical adversarial examples due to incor-
rectly applied conversion heuristic or errors in con-
stituency parsing. To alleviate this concern, we fur-
ther evaluate on SQUAD (Rajpurkar et al., 2016),
for which Jia and Liang provide an ADDSENT-
attacked evaluation set that is re-written and ap-
proved by human workers. However, this dataset
does not have human rationales. We again use
the train/validation/test splits provided by Jia and
Liang in our experiments.

4 Modeling

Our study assesses whether adding an explicit ratio-
nale extractor to a model and training it to ignore at-
tack tokens results in a more effective defense than
simply adding attacked examples to the training set.
This comparison results in several combinations of
model architectures and training regimes.

We denote each training instance as (x, r, y): a
text sequence x consisting of the concatenated doc-
ument and query, a ground-truth binary rationale
sequence r, and a binary label y.
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Human rationale & attack ADV. + ATK. SUP. ADV. + HUMAN SUP.

... and 18 national cups. FC Bayern was
founded in 1900 by 11 football play-
ers, led by Franz John. Although Bay-
ern won ... European Cup three times in
a row (1974 – 1976). DYNAMO Lev-
erkusen Cologne was founded in 1998.
Overall , Bayern has reached ten Euro-
pean ...

... and 18 national cups. FC Bayern was
founded in 1900 by 11 football play-
ers, led by Franz John. Although Bay-
ern won ... European Cup three times in
a row (1974 – 1976). DYNAMO Lev-
erkusen Cologne was founded in 1998.
Overall , Bayern has reached ten Euro-
pean ...

... and 18 national cups. FC Bayern was
founded in 1900 by 11 football play-
ers, led by Franz John. Although Bay-
ern won ... European Cup three times in
a row (1974 – 1976). DYNAMO Lev-
erkusen Cologne was founded in 1998.
Overall , Bayern has reached ten Euro-
pean ...

Table 2: An example from FEVER illustrating different modes of adversarial training with rationale supervision.
Human rationales are colored yellow, and attack tokens are colored red. Rationale models are supervised to extract
the blue tokens, while ignoring the gray tokens.

Data augmentation? Rationale?

No data
augmentation

None
Human (HUMAN SUP.)

Augmented with
attack data (Adv.)

None
Non-attack (ADV. + ATK. SUP.)
Human (ADV. + HUMAN SUP.)

Table 3: Summaries of rationale model setups.

Baseline models and training. We use BERT (De-
vlin et al., 2018) and RoBERTa (Liu et al., 2019) as
basis models. In the baseline training condition we
fine-tune these models as normal, evaluating them
on both the original test set and a version of the test
set where each item has been corrupted with the
ADDSENT attack described above. We denote this
condition as “NO ADV.”

In the baseline adversarial training via data
augmentation condition (denoted ADV.), we add
ADDSENT-attacked versions of each training ex-
ample to the training set on a one-to-one basis,
allowing the model to train for the presence of such
attacks. This represents a fairly standard baseline
defense in the literature (Zhang et al., 2020).

Following prior adversarial robustness literature
(Jia et al., 2019), we also consider a stronger base-
line by augmenting the training set with K per-
turbed examples for each training example. For
our main experiments, we use K = 10. This set-
ting (denoted ADV.-10X) measures whether the
baseline method implicitly adapts to the ADDSENT

attack when abundant signal is provided.
Rationale model. To lend the baseline model an ex-
tractor capable of filtering out confounding tokens,
we use the rationale model proposed by Lei et al.
(2016). It comprises a rationale extractor g and a
label predictor f (Fig. 1). The rationale extractor
generates a binary predicted rationale r̂, which is
applied as a mask over the input to the predictor via

masking function m, producing a predicted label:

g(x)→ r̂

f(m(x, r̂))→ ŷ
(1)

The two components are trained together to opti-
mize predicted label accuracy as well as loss as-
sociated with the predicted rationale. In an unsu-
pervised scenario, this loss punishes the norm of
the predicted rationale, encouraging sparsity on
the (heuristic) assumption that a sparse rationale is
more interpretable. In this study, we rather consider
the supervised scenario, where we punish r̂’s error
with respect to a ground-truth rationale r. How-
ever, we find empirically that the rationale sparsity
objective is useful in combination with the ratio-
nale supervision objective, leading to the following
joint objective function using cross-entropy loss
LCE with hyperparameter weights λ1 and λ2:

LCE(ŷ, y) + λ1LCE(r̂, r) + λ2||r̂||. (2)

Adversarial training with rationale supervision.
To introduce rationale supervision, we augment the
training set with attacked examples on a one-to-one
basis with original examples, similar to adversarial
training. Moreover, we can change the ground-
truth rationale to reflect the desired behavior for
the model. We consider two options for this new
ground-truth r: (1) a binary indicator of whether
a token is adversarial or not (ADV. + ATK. SUP.),
and (2) the human-annotated rationale (ADV. +
HUMAN SUP.), which also filters adversarial to-
kens. Table 2 contains an example illustrating the
distinction between ADV. + ATK. SUP. and ADV.
+ HUMAN SUP.

Table 3 summarizes all the combinations of se-
tups that we use in our study. For each of these
setups, we test one rationale model using indepen-
dent BERT modules for g and f , and one using in-
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dependent RoBERTa modules for both. We present
additional implementation details in Appendix A.

Taken together, these conditions address our
three research questions: (1) Is adversarial training
via rationale supervision more effective than via
attacked examples? (2) Does training the model
to emulate human explanation make it intrinsically
more robust to attacks? (3) Do human explanations
improve upon adversarial training with non-attack
tokens as rationale supervision?

5 Experimental Setup and Results

We start by describing our experimental setup and
evaluation metrics. We then investigate model per-
formance with different training regimes and con-
duct an in-depth error analysis.

5.1 Experimental Setup

Our study compares whether rationale-style mod-
els are better at learning to explicitly ignore adver-
sarial tokens than standard models via adversarial
training. As we describe above, we train three vari-
ants of the standard classification model (NO ADV.,
ADV., ADV.-10X), and three variants of the ratio-
nale model (ADV. + ATK. SUP., HUMAN SUP.,
ADV. + HUMAN SUP.).

Exploring these 6 architecture/training combina-
tions for three datasets (MULTIRC, FEVER, and
SQUAD) and two underlying models (BERT and
RoBERTa), we report results from all trained mod-
els in Table 4. We report relevant metrics on both
the clean test set and the attacked test set for each
model. For MULTIRC and FEVER, the metric we
use is accuracy. Since SQUAD is a span extraction
task, we report the Span F1 score instead. Perfor-
mance on the attacked test set is our key measure
of robustness.

Additionally, for the rationale models, we re-
port the mean percentage of attack and non-attack
tokens included in each predicted rationale, two
metrics that help explain our accuracy results. The
mean percentage of attack tokens included in the
predicted rationale indicates the effectiveness of
ignoring attack tokens: the lower the better.

5.2 Main Results

We focus our analysis on three questions:
1. Does adversarial rationale supervision on aug-

mented data improve robustness over adversar-
ial data augmentation alone?

2. Does human rationale supervision improve ad-
versarial robustness over a standard model?

3. Does the addition of human rationales to adver-
sarial training further improve robustness?
Table 4 summarizes the main results of the paper,

showing the accuracy of each combination of ar-
chitecture, training regime, underlying model and
dataset. Looking at the attacked versus clean test
set performance for the standard model, we see
that the ADDSENT attack is effective, reducing
accuracy on MULTIRC (∼6%), FEVER (∼10%),
and SQUAD (∼12-24%).
Adversarial rationale supervision (ADV. + ATK.
SUP.). Rationale models provide an interface for
explicitly supervising the model to ignore attack to-
kens. Our key question is whether they can be used
to improve the effectiveness of adversarial training.
We first discuss the effect of data augmentation and
then show that rationale models are indeed more
effective at ignoring attack tokens.

Data augmentation with adversarial examples
works, mostly. In almost all cases, data augmen-
tation does result in improved performance on
the attacked test set, improving +5.9% (FEVER)
and +17.6% (SQUAD) for BERT, as well as
+6.4% (MULTIRC), +9.7% (FEVER), and +9.4%
(SQUAD) for RoBERTa. The exception is BERT
on MULTIRC, where it causes a decrease of -1.0%.
However, in only one case out of six does data
augmentation with adversarial examples bring the
model back to clean test performance (RoBERTa
on MULTIRC, +0.3%).

Surprisingly, BERT on MULTIRC is the only
scenario where the ADV.-10X augmentation signif-
icantly improves attack accuracy (4.3% improve-
ment over ADV.). In all the other cases, adding
more adversarial examples does not improve ro-
bustness and even leads to a 3.5% drop in SQUAD
for RoBERTa. This result demonstrates that BERT
and RoBERTa may not learn from adversarial ex-
amples alone.

Adversarial rationale supervision improves on
adversarial training baselines in all cases. We see
an improvement of +4.6% for BERT on MULTIRC,
+2.9% for BERT on FEVER, +2.7% for BERT
on SQUAD, +2.2% for RoBERTa on MULTIRC,
+0.7% for RoBERTa on FEVER, and +1.0% for
RoBERTa on SQUAD (2.4% on average). For
the one case where adversarial data augmentation
recovered clean test performance (RoBERTa on
MULTIRC), adversarial rationale supervision actu-
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Model Architecture Training MULTIRC (Acc.) FEVER (Acc.) SQUAD (Span F1)

Clean AttackedS Clean AttackedS Clean AttackedH

BERT
Standard

NO ADV. 68.6 62.6 88.2 78.9 86.4 62.8
ADV. 67.3 61.6 88.5 84.8 86.0 80.4
ADV.-10X 66.2 65.9 86.3 84.5 82.2 78.0

Rationale
ADV. + ATK. SUP. 69.6 66.2 87.1 87.7 86.5 83.1
HUMAN SUP. 70.0 64.4 88.0 76.7 - - - - - -
ADV. + HUMAN SUP. 70.5 69.4 87.5 87.5 - - - - - -

RoBERTa
Standard

NO ADV. 82.6 76.5 93.5 83.0 93.2 81.0
ADV. 84.4 82.9 93.2 92.7 92.9 90.4
ADV.-10X 83.5 82.1 93.5 93.2 89.9 86.9

Rationale
ADV. + ATK. SUP. 85.2 85.1 93.4 93.4 93.3 91.4
HUMAN SUP. 84.0 74.9 94.1 85.7 - - - - - -
ADV. + HUMAN SUP. 85.0 82.5 93.4 93.4 - - - - - -

Table 4: Model performance on clean and attacked test sets for MULTIRC, FEVER, and SQUAD. AttackedS are
synthetic attacks produced by ADDSENT, and AttackedH are attacks generated by human workers. We vary the
level of augmentation for the standard classification models (NO ADV., ADV., ADV.-10X). For rationale models, we
control for the presence of adversarial training data and the type of rationale supervision: ADV. + ATK. SUP. treats
non-attack tokens as rationale, and HUMAN SUP. does not use adversarial training. Rationale models outperform
the baseline classifiers across all attacked datasets.

Model Training MULTIRC FEVER SQUAD

Attack % NON-A % Attack % NON-A % Attack % NON-A %

BERT
ADV. + ATK. SUP. 1.4 98.4 0.2 96.7 27.8 99.7
HUMAN SUP. 87.5 8.2 66.7 17.8 - - - - - -
ADV. + HUMAN SUP. 9.5 14.4 0.5 24.4 - - - - - -

RoBERTa
ADV. + ATK. SUP. 6.0 96.7 0.9 95.8 16.1 99.0
HUMAN SUP. 92.4 12.6 60.0 12.2 - - - - - -
ADV. + HUMAN SUP. 32.1 15.6 0.1 23.0 - - - - - -

Table 5: Percentage of attack and non-attack (NON-A) tokens included in the predicted rationales. Lower is better
for attack tokens. Arguably, a lower percentage of non-attack tokens is also better as it improves interpretability.

ally improves clean test performance by +2.5%.

The effectiveness of ADV. + ATK. SUP. is
even more salient if we compare with NO ADV. on
attacked test: 3.6%, 8.8%, and 20.3% for BERT on
MULTIRC, FEVER, and SQUAD, 8.6%, 10.4%,
and 10.4% for RoBERTa on MULTIRC, FEVER,
and SQUAD (10.4% on average).

The above findings remain true even when we
compare our methods against the theoretically
stronger baseline of ADV.-10X, where the train-
ing dataset is augmented with 10 perturbed ex-
amples for every training example. Our models
trained with adversarial rationale supervision out-
performs ADV.-10X across all datasets and mod-
els, and our best model outperforms the ADV.-10X

baseline by 3.3% on average. This result high-
lights both the efficiency and the effectiveness of
our method: with adversarial rationale supervi-
sion, BERT and RoBERTa achieve greater defense
against the ADDSENT attack using 10% of the ad-

versarial examples.
Interestingly, the adversarially-supervised ratio-

nale model demonstrates a strong ability to gen-
eralize knowledge learned from synthetic attacks
to tune out human-rewritten attacks (+20.3% on
SQUAD; recall we do not have human-rewritten
attacks during training), indicating the potential of
our method in a real-world scenario.

Table 5 explains this success. The adversarially-
supervised rationale model includes 6% or fewer
attacking tokens on MULTIRC and FEVER, in-
dicating that it did largely succeed in learning to
occlude these tokens for the predictor. Addition-
ally, both BERT and RoBERTa rationale models
are able to tune out most human-generated attack
tokens, ignoring over 70% of attack tokens while
keeping 99% of the original text for both models.
Effect of human rationale supervision alone
(HUMAN SUP.). We find mixed evidence for
whether human rationale supervision alone im-
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proves adversarial robustness. For BERT on MUL-
TIRC and RoBERTa on FEVER, human rationale
outperforms the standard classification model, but
the opposite occurs for the other two model/dataset
combinations.

Table 5 contextualizes this mixed result: the ra-
tionale model supervised solely on human ratio-
nales includes 60.0% to 92.4% of attack tokens in
its rationale (compared to between 8.2% and 17.8%
of non-attack tokens), indicating that it is largely
fooled by the ADDSENT attack into exposing the
predictor to attack tokens.

This result may be explained by the fact that
human rationales for these datasets identify the
part of the document that pertains particularly to
the query, while the ADDSENT attack crafts adver-
sarial content with a semantic resemblance to that
same query. Hence, it is understandable that human
rationale training would not improve robustness.
Human and adversarial rationale supervision
(ADV. + HUMAN SUP.). Although human ratio-
nales alone may not reliably improve model robust-
ness, a final question is whether human rationales
can serve as a useful addition to adversarial training.
Does training the model to both ignore adversar-
ial tokens and emulate human explanations further
improve robustness against the ADDSENT attack?

In two out of four cases, the performance of ADV.
+ HUMAN SUP. is equal to that of ADV. + ATK.
SUP. Only for BERT on MULTIRC does ADV. +
HUMAN SUP. result in an improvement, being the
only configuration that brings performance back
to that of clean test for that model, and dataset.
For RoBERTa on MULTIRC, it actually weakens
attacked test performance.

While these results are mixed, Table 5 shows
that the model does at least achieve this result at
a much lower included percentage of non-attack
tokens (∼20% vs. >95%), a concession toward
model interpretability.

Overall, our results suggest that human ratio-
nales have limited effect in defending against adver-
sarial attacks, but can be important in developing
sparse (and potentially interpretable) models.

5.3 Error Analysis

To better understand the behavior of the models, we
examine mistakes from BERT compared to explic-
itly training a rationale extractor on MULTIRC. We
start with a qualitative analysis of example errors,
and then discuss general trends, especially on why

human rationales only provide limited benefits over
ADV. + ATK. SUP. More in-depth analyses can be
found in the appendix for space reasons, including
a Venn diagram of model mistakes.
Qualitative analysis. We look at example errors
of ADV. to investigate attacks that are confusing
even after adversarial augmentation. Table 6 shows
example outputs of the rationale models based on
either non-attack tokens or human rationales.

Example 1 shows a case where models with ex-
plicit rationale extractors ignore attacks more effec-
tively than ADV. In the attack sentence, “tete didn’t
stay in” is highly similar to the query, so a model
likely predicts True if it uses the attack information.
In comparison, both rationale models ignore the
attack in label prediction, which enables them to
make correct predictions.

Example 2 demonstrates that ADV. + HUMAN

SUP. makes mistakes when it fails to include cru-
cial information in rationales while avoiding attack
tokens. ADV. + HUMAN SUP. predicts the wrong
label because it misses information for the number
of friends in its rationale. ADV. + ATK. SUP. gets
this example correct because it can both ignore the
attack and include the necessary information.

Finally, Example 3 shows an example where
ADV. + HUMAN SUP. is better than ADV. + ATK.
SUP. when generating rationales to ignore noises.
ADV. + HUMAN SUP. includes attacks in rationale,
but it is still able to predict the label because the
attack is not confusing given the selected rationale.
The generated rationale helps ADV. + HUMAN SUP.
to avoid unnecessary information that may confuse
the model. For example, the sentence with “picts”
could confuse the model to predict True. On the
other hand, ADV. + ATK. SUP. gets this example
wrong, despite occluding all attack tokens.

More generally, we find that ADV. + HUMAN

SUP. tends to have high false negative rates. When
ADV. + HUMAN SUP. fails to extract good ra-
tionales, it tends to predict False due to missing
information from the rationale. In contrast, ADV. +
ATK. SUP. rarely occludes necessary information,
so it does not suffer from the same issue.

ADV. + ATK. SUP. is better than ADV. + HU-
MAN SUP. when human rationales are denser and
passage length is longer (see Table 9 in the ap-
pendix). We observe that denser human rationales
usually comprise evidence from different parts of
the passage. Since ADV. + ATK. SUP. predicts
almost all non-attack tokens as rationale, they have
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Human rationale & attack ADV. + ATK. SUP. ADV. + HUMAN SUP.

(A) Example 1, true label: False

[CLS] ... in may 1904 , the couple ’ s
first son , hans albert einstein , was born
in bern , switzerland . their second son ,
eduard , was born in zurich in july 1910 .
in 1914 , the couple separated ; einstein
moved to berlin and his wife remained
in zurich with their sons . they divorced
on 14 february 1919 , having lived apart
for five years . ... a - tete did n ’
t stay in basel after charles and houben
separated . ... [SEP] who did n ’ t
stay in zurich after albert and maric sep-
arated ? | | tete [SEP] ADV. prediction:
True

[CLS] ... in may 1904 , the couple
’ s first son , hans albert einstein , was
born in bern , switzerland . their second
son , eduard , was born in zurich in july
1910 . in 1914 , the couple separated ;
einstein moved to berlin and his wife
remained in zurich with their sons . they
divorced on 14 february 1919 , having
lived apart for five years . ... a - tete
did n ’ t stay in basel after charles and
houben separated . ... [SEP] who did
n ’ t stay in zurich after albert and maric
separated ? | | tete [SEP] ADV. + ATK.
SUP. prediction: False

[CLS] ... in may 1904 , the couple
’ s first son , hans albert einstein , was
born in bern , switzerland . their second
son , eduard , was born in zurich in july
1910 . in 1914 , the couple separated ;
einstein moved to berlin and his wife
remained in zurich with their sons . they
divorced on 14 february 1919 , having
lived apart for five years . ... a - tete
did n ’ t stay in basel after charles and
houben separated . ... [SEP] who
did n ’ t stay in zurich after albert and
maric separated ? | | tete [SEP] ADV. +
HUMAN SUP. prediction: False

(B) Example 2, true label: True

[CLS] ... on the day of the party ,
all five friends showed up . each friend
had a present for susan . 6 thank - you
cards did helen send . susan was happy
and sent each friend a thank you card
the next week . [SEP] how many thank
- you cards did susan send ? | | 5 [SEP]
ADV. prediction: False

[CLS] ... on the day of the party ,
all five friends showed up . each friend
had a present for susan . 6 thank - you
cards did helen send . susan was happy
and sent each friend a thank you card
the next week . [SEP] how many thank
- you cards did susan send ? | | 5 [SEP]
ADV. + ATK. SUP. prediction: True

[CLS] ... on the day of the party ,
all five friends showed up . each friend
had a present for susan . 6 thank - you
cards did helen send . susan was happy
and sent each friend a thank you card the
next week . [SEP] how many thank - you
cards did susan send ? | | 5 [SEP] ADV.
+ HUMAN SUP. prediction: False

(C) Example 3, true label: False

[CLS] ... roman legions encountered
the strongholds of the castle rock and
arthur ’ s seat , held by a tribe of an-
cient britons known as the votadini . the
mercians were probably the ancestors
of the manaw . little is recorded about
this group , but they were probably the
ancestors of the gododdin , whose feats
are told in a seventh - century old welsh
manuscript . ... the god ... din
... [SEP] who were probably the ances-
tors of the gododdin ? | | the picts [SEP]
ADV. prediction: True

[CLS] ... roman legions encountered
the strongholds of the castle rock and
arthur ’ s seat , held by a tribe of an-
cient britons known as the votadini . the
mercians were probably the ancestors
of the manaw . little is recorded about
this group , but they were probably the
ancestors of the gododdin , whose feats
are told in a seventh - century old welsh
manuscript . ... the god ... din ...
[SEP] who were probably the ancestors
of the gododdin ? | | the picts [SEP] ADV.
+ ATK. SUP. prediction: True

[CLS] ... roman legions encountered
the strongholds of the castle rock and
arthur ’ s seat , held by a tribe of an-
cient britons known as the votadini . the
mercians were probably the ancestors
of the manaw . little is recorded about
this group , but they were probably the
ancestors of the gododdin , whose feats
are told in a seventh - century old welsh
manuscript . ... the god ... din ...
[SEP] who were probably the ancestors
of the gododdin ? | | the picts [SEP] ADV.
+ HUMAN SUP. prediction: False

Table 6: Example outputs from ADV. + ATK. SUP. and ADV. + HUMAN SUP. with BERT in MULTIRC. Attack
tokens are marked in red. True human rationales are marked in yellow, and predicted rationales are marked in blue.
We only show tokens where generated rationales disagree with each other or with the human rationale/attack.

higher human rationale recall (98.6%) than ADV. +
HUMAN SUP. (57.6%). Thus, ADV. + ATK. SUP.
generates higher quality rationales when human ra-
tionales are dense. Similarly, long passages prove
difficult for ADV. + HUMAN SUP.

In summary, these analyses highlight the chal-
lenges of learning from human rationales: it re-
quires precise occlusion of irrelevant tokens while
keeping valuable tokens, and must account for vari-
ance in human rationale and input lengths. These
challenges partly explain the limited benefit of ADV.
+ HUMAN SUP. over ADV. + ATK. SUP.

6 Concluding Discussion

In this study, we find that adding an explicit ex-
tractor layer helps a model learn to ignore additive
adversarial attacks produced by the ADDSENT at-
tack more effectively than conventional adversarial
training via data augmentation.

This is an exciting result because it defeats an at-
tack which is otherwise stubbornly effective against
even copious adversarial data augmentation. It
is a novel use for this type of explicit token rel-
evance representation, which is more typically ap-
plied for model interpretability (Lei et al., 2016).
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This makes it related to defenses like Cohen et al.
(2019) which allow the model to reject inputs as
out-of-distribution and abstain from prediction, but
it differs in rejecting only part of the input, making
a prediction from the remainder as usual.
Generality. As Carlini et al. (2019) note, it is
easy to overstate claims in evaluating adversarial
defenses. Hence, we note that our results pertain
only to the ADDSENT attack, and perform favor-
ably against a baseline defense in adversarial train-
ing via data augmentation. Since most adversarial
training approaches assume the ability to generate
a large number of synthetic attack examples, it is
reasonable to further assume that we have access to
the positions of the attacks. However, such knowl-
edge about attacks may not be available in general.
Nevertheless, the success of the rationale model ar-
chitecture in learning to occlude adversarial tokens
does hold promise for a more general defense based
on a wider range of possible attacks and possible
defenses by the extractor layer.
Utility of human rationales. We explore the possi-
bility that human-provided explanations may make
the model more robust against adversarial attacks.
We mostly find that they do not, with the notable
exception of BERT on MULTIRC, the only case in
which the augmentation brings the model back to
clean test accuracy. While it does provide an advan-
tage of sparsity over supervision with non-attack
tokens, this advantage alone may not justify the
cost of collecting human explanations for robust-
ness. Further understanding of human rationales
and novel learning strategies are required for im-
proving model robustness.
Future directions. A generalization of our ap-
proach might convert the “extractor” layer into a
more general “defender” layer capable of issuing a
wider range of corrections in response to a wider
range of attacks. It could, for example, learn to
defend against attacks based on input removal (e.g.
Feng et al. (2018)) by training to recognize gaps in
the input and fill them via generative closure. This
defender could be coupled with a self-supervision
style approach (e.g., Hendrycks et al. (2019)) in-
volving an “attacker” capable of levying various
types of attack against the model. We leave such a
generalization for future work.

Limitations

Our work focuses on improving model robustness
by explicitly ignoring adversarial attacks. In this

work, we only explore a known type of adversarial
attack (ADDSENT), and the performance of our
method against unknown attacks is yet to be val-
idated. Since our method uses rationalization as
the underlying mechanism for ignoring tokens, it
would take non-trivial work to make our method
compatible with attacks in the form of token re-
moval and flipping. Finally, we limit our experi-
ments to the domain of QA, where the ADDSENT

attack is naturally applicable.

Ethics Statement

Our work contributes to the line of research that
focuses on improving the adversarial robustness
of language models. We also explore novel ways
to integrate human explanations into the training
paradigm. We believe robustness to adversarial at-
tacks is essential to the deployment of trustworthy
models in the wild, and we hope this work brings
current research a step closer to this objective. To
avoid ethical concerns related to over-claiming re-
sults, we emphasize in both our concluding dis-
cussion and the limitations section that our work
builds on the assumption that we know the type
of attack and only experiments with ADDSENT.
Furthermore, our approach tends to increase the
computational cost compared to adversarial train-
ing both during training and inference. One should
consider the tradeoff between robustness and com-
putation.
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A Design choices and implementation
details

We use the HuggingFace (Wolf et al., 2020) dis-
tributions of BERT and RoBERTa, and Pytorch
Lightning (Falcon, 2019) for model training. Mod-
els are trained for a minimum of 3 epochs with
early stopping based on a patience of 5 validation
intervals, evaluated every 0.2 epochs.

In practice, we find it useful to pretrain the pre-
dictor layer f of the rationale model on full input
before jointly training it with the extractor g. We
observe that this trick stabilizes training and helps
prevent mode collapse. In producing the predicted
rationale, we automatically assign a 1 (indicating
relevance) to every token in the query, so that they
are always fully visible to the predictor and the ef-
fect of the extractor is in adjudicating which tokens
of the document are used or ignored.

Traditionally, this style of rationale model pro-
duces binary predicted rationales via either rein-
forcement learning (Williams, 1992) or categorical
reparameterization such as Gumbel Softmax (Jang
et al., 2016). One argument for this approach is
that binary rationales are more interpretable, leav-
ing less ambiguity about the precise role of a given
token in the model’s output. Another argument
is that transformer-based models like BERT don’t
have a native interpretation for partially-masked
input, whereas fully-masked input can represent
in-distribution modifications such as the [MASK]
token substitution used in masked-LM pretraining.

However, we find that relaxing this binary con-
straint leads to better outcomes for adversarial train-
ing. Thus, our model produces predicted rationale

r̂ by passing predicted rationale logits ϕ through a
sigmoid function. The masking function m we use
is simply to multiplicatively weight x by predicted
rationale r̂ during training (we discretize r during
testing),

m(x, r̂) = r̂ · x (3)

From a theoretical perspective, jointly optimiz-
ing the rationale extractor g and label predictor f
should allow the model to predict rationale r̂ that
is more adapted to the predictor. Separately opti-
mizing both components implies that the rationale
extractor does not get penalized for poor label pre-
diction performance, and often leads to predicted
rationale that is closer to human rationale r. In our
experiments, we include both training setups as a
hyperparameter.

B Hyperparameters

For our experiments, we fine-tune both the ratio-
nale extractor g and predictor f for the rationale
models from a pretrained language model. We fine-
tune BERT components from a pre-trained bert-
base-uncased model, and RoBERTa from a pre-
trained roberta-large model. We use an Adam op-
timizer with with β1 = 0.9 and β2 = 0.999 for all
experiments.

We find gradient accumulation helps with train-
ing stability of BERT and RoBERTa, and we report
gradient accumulation as a hyperparameter for both
models. Table 7 describes a list of hyperparameters
we use for both BERT and RoBERTa. We do a
grid search over all combinations of hyperparam-
eters listed in table 7, and we report results of the
model that achieves the highest performance on the
original dev set.

C Computation Details

We ran our experiments on a mix of RTX 3090,
A30 and A40 GPUs. All experiments combined
take less than 300 GPU hours.

The rationale model has about two times the
parameters of its base model. The BERT-based
rationale model has 220 million parameters and
RoBERTa-based rationale model has 708 million
parameters. Both models can be trained on a GPU
with 24GB of memory. Training the rationale
model typically takes double the training time com-
pared to the standard model. On a RTX 3090 GPU,
training a BERT Rationale model for SQuAD takes
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Parameter BERT Rationale RoBERTa Rationale

Batch Size 8 8
Learning Rate 2e-5 5e-6
Gradient Accumulation 10 batches 8 batches
Masking Strategy m mzero, mmask mzero, mmask
Prediction Supervision Loss Weight 1.0 1.0
Rationale Supervision Loss Weight λ1 1.0 1.0
Sparsity Loss Weight λ2 0.0, 0.1, 0.2, 0.3 0.0, 0.1, 0.2, 0.3
Jointly Optimized True, False True, False

Table 7: Hyperparameters used in parameter search and training.

about 4 hours, while training the standard BERT
model takes 2.5 hours.

D Statistical Significance

Due to limited computational resources and a large
number of experiment conditions, our experiments
are not repeated across multiple random seeds. To
verify the statistical significance of improvements
of the top-performing rationale models against the
strongest baselines, we report Wilcoxon signed-
rank test results in Table 8. Note that we do not
report SQUAD results due to the incompatibility
of the statistical test with the metric (Span-F1). We
find that for 3 out of 4 model-dataset pairs, the
observed improvements of the rationale models
over the baselines are highly significant.

E More Error Analysis

Easy examples have high jaccard similarity be-
tween human rationale and QUERY+ANSWER.
All three models excel at these examples. High sim-
ilarity should help models to find human rationale
or generate rationales that mimic human rationale
easily, but we also observe that the generated ratio-
nales do not necessarily provide the greatest align-
ment with human rationale for examples BERT
rationale models get correct. For instance, ratio-
nale F1 is 53.9 for examples that human-supervised
BERT gets correct and BERT gets wrong, which is
smaller than rationale F1 (56.2) for examples both
models get wrong. Notice that attack and human
rationale are similar due to the attack generation
technique, but this does not affect model perfor-
mance because training with augmentation allows
the rationale models to ignore attack tokens (attack
recall = 89.3 and 97.4 for BERT rationale models).
Likewise, we think BERT (ADV.) also benefits
from the high similarity to identify important text

Figure 3: Venn diagram for errors by BERT (ADV.),
human-supervised BERT, and attack-supervised BERT.

areas and learns to ignore attacks from training
augmentation.

BERT rationale models handle denser human
rationale slightly better than BERT (ADV.). We
define sparsity of X as the number of tokens in X
divided by the total number of tokens in the input,
so larger sparsity correspond to dense rationales.
Counter-intuitively, all three models are bad at ex-
amples with the most dense human rationale. This
can be accounted for by the fact that these are also
examples where QUERY+ANSWER and human ra-
tionale have the least jaccard similarity: human
rationale sparsity and the jaccard similarity has a
Pearson’s coefficient of 0.25 (p < 0.001). Thus,
examples with denser human rationale are likely to
contain confusing information for models. We find
BERT rationale models can resist this confusion
better than BERT (ADV.). For instance, human
rationale sparsity = 0.167 when human-supervised
BERT is correct bu BERT is wrong, and it is 0.165
when BERT is correct but BERT rationale is wrong.
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Model Dataset Baseline Variant (Acc) Rationale Variant (Acc) p-value

BERT MULTIRC ADV.-10X (65.9%) ADV. + HUMAN SUP. (69.4%) 1.0× 10−4

BERT FEVER ADV. (84.8%) ADV. + ATK. SUP. (87.7%) 8.1 × 10−13

RoBERTa MULTIRC ADV. (84.8%) ADV. + ATK. SUP. (85.1%) 9.4× 10−4

RoBERTa FEVER ADV.-10X (93.4%) ADV. + ATK. SUP. (93.2%) 0.18

Table 8: Wilcoxon signed-rank test for statistical significance of improvements of the top-performing rationale
models over the strongest baselines across models and datasets.

Input Length Human Rationale Length

human-supervised BERT correct,
attack-supervised BERT wrong 357.097 360.278

attack-supervised BERT correct,
human-supervised BERT wrong 81.191 79.098

Table 9: Input and human rationale length of mistakes by attack-supervised BERT and human-supervised BERT.

F More Results on SQUAD

In Table 10, we report the F1 scores of BERT
Classification and BERT Rationale models on four
different evaluation sets: the original SQUAD
development set dev, the synthetic attack set
ADDSENTS, the human re-written and filtered at-
tack set ADDSENTH and the human-generated,
model-free attack baseline ADDONESENTH.

Similar to §5.2, we find the performances on
the clean set (SQUAD dev) to be approximately
equal across models and training schemes. We ob-
serve a slight drop (-0.4%) on dev accuracy when
adding adversarial training to the BERT classifi-
cation, which points to compromised learning on
the original SQUAD task after adding adversarial
examples. Without adversarial training, we observe
roughly 38%, 24%, 15% performance decreases
for ADDSENTS, ADDSENTH, ADDONESENTH,
respectively. All three attacks lead to much more
significant performance drops than the ADDSENT

attack on MULTIRC and FEVER, which yields
an approximate 6% performance drop. This obser-
vation is likely due to the differences in how the
tasks are formulated across datasets: it is plausi-
ble that an additive attack such as ADDSENT is
more effective on a span-extraction style QA task
(SQUAD) than on answer classification style QA
tasks (MULTIRC and FEVER).

Surprisingly, the synthetic attack ADDSENTS is
more effective than human generated ADDSENTH
prior to adversarial training. Since the ADDSENT

attack works by mutating the query and adding a

fake answer, the synthetic attack often appears syn-
tactically similar to the query. On the other hand,
human generated attacks in ADDSENTH often fits
more naturally in the document and grammatically
correct, but does not mirror the structure of the
query. For a model that solves the QA task by sim-
ply looking for the best match of the query inside a
document while skipping complex reasoning, it’s
conceivable that ADDSENTS leads to the greatest
performance drop.

Since ADDSENTH and ADDONESENTH are at-
tack examples re-written and filtered by humans,
we use them as a proxy for understanding the
model behavior in a real-world setting. We find the
BERT Rationale model with attack rationale super-
vision significantly outperforms the BERT Classifi-
cation baseline trained with adversarial augmenta-
tion (+2.7% on ADDSENTH, +2.2% on ADDONE-
SENTH). Similar to findings in §5.2, we observe
attack rationale supervision (ADV. + ATK. SUP.)
as a more effective adversarial training method than
adversarial data augmentation (ADV.). It is worth
noting that the despite training on the synthetic at-
tacks, the rationale model demonstrates strong abil-
ity to generalize knowledge learned from synthetic
attacks to tune out human-rewritten attacks, which
explains the strong performance on ADDSENTH
and ADDONESENTH.

An apparent anomaly in Table 10 is the
strong performance of BERT Classification on
ADDSENTS (93.3%), which is even greater than
the performance on the clean development set
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Architecture Training dev ADDSENTS ADDSENTH ADDONESENTH

Bert Classification
NO ADV. 86.4 48.7 62.8 71.2
ADV. 86.0 93.3 80.4 81.9
ADV.-10X 82.2 95.9 78.0 79.7

Bert Rationale
NO ADV. 86.6 47.7 62.0 70.4
ADV. + ATK. SUP. 86.5 88.3 83.1 84.1

Table 10: F1 scores of BERT Rationale and Classification models on the SQUAD task.

(86.0%). During the ADDSENT attack, the answer
is mutated into an incorrect, but similar phrase (e.g.
Dallas Cowboys→Michigan Vikings). The pres-
ence of a mutated answer in the passage likely gives
the model additional information on what the cor-
rect answer looks like, while the rationale model
avoids utilizing this information to a much higher
degree (88.3%) due to attack rationale supervision.
This "mutated answer" signal is akin to spurious
correlations in datasets, and our method helps the
BERT rationale model ignore such spurious cor-
relations a lot more effectively than the baseline
BERT model.

Overall, these analyses shine light on the bene-
fits of including rationale supervision in adversar-
ial training. Our method achieves greater adver-
sarial robustness in a close-to-real-world setting
(ADDSENTH and ADDONESENTH) by generaliz-
ing from synthetic attacks.
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Abstract

Masked language models (MLMs) convention-
ally mask 15% of tokens due to the belief that
more masking would leave insufficient con-
text to learn good representations; this mask-
ing rate has been widely used, regardless of
model sizes or masking strategies. In this
work, we revisit this important choice of MLM
pre-training. We first establish that 15% is
not universally optimal, and larger models
should adopt a higher masking rate. Specifi-
cally, we find that masking 40% outperforms
15% for BERT-large size models on GLUE
and SQuAD. Interestingly, an extremely high
masking rate of 80% can still preserve 95%
fine-tuning performance and most of the ac-
curacy in linguistic probing, challenging the
conventional wisdom about the role of the
masking rate. We then examine the interplay
between masking rates and masking strate-
gies and find that uniform masking requires a
higher masking rate compared to sophisticated
masking strategies such as span or PMI mask-
ing. Finally, we argue that increasing the mask-
ing rate has two distinct effects: it leads to
more corruption, which makes the prediction
task harder; it also enables more predictions,
which benefits optimization. Using this frame-
work, we revisit BERT’s 80-10-10 corruption
strategy. Together, our results contribute to a
better understanding of MLM pre-training.1

1 Introduction

Pre-trained language models have transformed the
landscape of natural language processing (Devlin
et al., 2019; Liu et al., 2019; Raffel et al., 2020;
Brown et al., 2020, inter alia). They are trained
on vast quantities of text data and acquire rich and
versatile language representations. Compared to
autoregressive models, which always predict the
next token in a sequence, masked language models

*The first two authors contributed equally.
1Our code and pre-trained models are publicly available at

https://github.com/princeton-nlp/DinkyTrain.

(MLMs) like BERT (Devlin et al., 2019) predict a
masked subset of input tokens based on the remain-
ing context and are more effective on downstream
tasks due to their bidirectional nature.

BERT chooses a 15% masking rate, based on
the reasoning that models cannot learn good rep-
resentations when too much text is masked, and
the training is inefficient when too little is masked.
Surprisingly, this important choice has been under-
explored since 15% masking is used ubiquitously
by BERT’s successors (Liu et al., 2019; Joshi et al.,
2020; Lan et al., 2020; He et al., 2021; Levine et al.,
2021; Izsak et al., 2021), regardless of model sizes,
masking strategies and optimization recipes.2

In this work, we aim to understand the impact
of masking rates. We hypothesize that the optimal
masking rate is not universally 15%, but should
depend on other factors. First, we consider the
impact of model sizes and establish that indeed
larger models should adopt higher masking rates
(§3). Specifically, we find that under an efficient
pre-training recipe (Izsak et al., 2021), 40% out-
performs 15% for BERT-large size models when
fine-tuning on GLUE and SQuAD.

Interestingly, we observe that large models can
still learn good representations even for very high
masking rates: if we mask as much as 80% of input
tokens and pre-trained models have a perplexity
of more than 1000, the learned representations can
still preserve more than 95% of fine-tuning per-
formance on downstream tasks, compared to the
default 15% masking (Table 1), and show consider-
able performance in linguistic probing (§4). This
challenges common intuitions about masking rates
and what models learn in MLM pre-training.

We then focus on the strategy of which tokens to
mask as an additional factor to the optimal masking
rate of MLMs (§5). We find that different mask-
ing rates should be used with different masking
strategies, and the default uniform masking bene-

2Some exceptions are discussed in §8.
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Pre-training Fine-tuning

m Example PPL MNLI QNLI SQuAD3

15% We study high mask ing rates for pre-training language models . 17.7 84.2 90.9 88.0
40% We study high mask ing rates for pre-training language models . 69.4 84.5 ↑0.3 91.6 ↑0.7 89.8 ↑1.8

80% We study high mask ing rates for pre-training language models . 1141.4 80.8 ↓3.4 87.9 ↓3.0 86.2 ↓1.8

Random initialization 61.5 ↓22.7 60.9 ↓30.0 10.8 ↓77.2

Table 1: Masked examples, validation perplexity (calculated in the same way as Devlin et al., 2019) of different
masking rates on the one billion word benchmark (Chelba et al., 2013), and downstream task development per-
formance (SQuAD: F1; accuracy for others). All the pre-trained models have a BERT-large architecture and are
trained with the efficient pre-training recipe (§2.2). Full results are provided in Table 7.

fits more from higher masking rates than more so-
phisticated masking strategies such as span (Joshi
et al., 2020; Raffel et al., 2020) and PMI mask-
ing (Levine et al., 2021); when all methods are
considered at their optimal masking rate, uniform
masking achieves competitive performance.

Finally, we propose to dissect the masking rate
into two factors (§6): the corruption rate—how
much of the context is corrupted (masked)—and
the prediction rate—how much of the tokens the
model predicts on. In MLMs, both are set to the
masking rate. However, these two factors have
opposing effects: higher prediction rates generate
more training signals and benefit the optimization,
while higher corruption rates make the prediction
task more challenging by providing less context.
To study the two factors independently, we design
ablation experiments to disentangle corruption and
prediction rates. Thus, we can verify that mod-
els benefit from higher prediction rates and suffer
from more corruption. Using this framework, we
also discuss BERT’s practice of predicting on orig-
inal or random tokens (the 80-10-10 rule), and we
find that models usually perform worse under this
corruption strategy (§7).

Together, our results demonstrate the overlooked
impact of the masking rate in MLM pre-training
and our analysis disentangles its opposing effects
of corruption and prediction. We conclude by dis-
cussing the relation to work in other models and
modalities (§8) and by highlighting several new
avenues for efficient MLM in the future (§9).

2 Background

2.1 Masked Language Modeling
We focus on the widely popular masked language
modeling (Devlin et al., 2019), a form of denoising-

3For our SQuAD v1.1 experiments, we continue training
the models with 512-token sequences for 2,300 steps and
report F1. See Appendix A for more details.

autoencoding, where a model is trained to restore
a corrupted input sequence. Specifically, masked
language models make independent predictions on
the subset of masked tokens:

L(C) = E
x∈C

E
M⊂x
|M|=m|x|

[
∑

xi∈M
log p(xi|x̃)

]
, (1)

where one masks m (masking rate, typically 15%)
percentage of tokens from the original sentence x
and predicts on the masked token setM given the
corrupted context x̃ (the masked version of x).

Different masking strategies have been proposed
to sample M: Devlin et al. (2019) randomly
choose from the input tokens with a uniform dis-
tribution; Joshi et al. (2020) sample contiguous
spans of text; Levine et al. (2021) sample words
and spans with high pointwise mutual informa-
tion (PMI). These advanced sampling strategies are
adopted to prevent models from exploiting shallow
local cues from uniform masking.

MLMs can encode bidirectional context while
autoregressive language models can only “look at
the past”, and thus MLMs are shown to be more
effective at learning contextualized representations
for downstream use (Devlin et al., 2019). On the
other hand, MLMs suffer a significant computa-
tional cost because it only learns from 15% of the
tokens per sequence, whereas autoregressive LMs
predict every token in a sequence. In this work, we
focus on MLMs and study the effects of different
masking rates on downstream performance.

2.2 Experiment Setup
We build most of our experiments on a recent ef-
ficient pre-training recipe—the 24hBERT recipe
from Izsak et al. (2021)—by using which mod-
els can match BERT-base performance 6× faster
(tested on 8×Titan-V). This efficient pre-training
recipe allows us to run a large amount of exper-
iments in an academic setup. Izsak et al. (2021)
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Figure 1: Downstream task development performance of large models trained with the efficient pre-training
recipe, under masking rates of 15% and 40%. We highlight by the blue dotted line how long the 40% model takes
to achieve the same performance as the 15% baseline; On QNLI and QQP, the 40% model achieved the same
performance with almost half the training time.

make the pre-training faster by using a BERT-large
architecture, a larger learning rate (2e-3), a larger
batch size (4,096), a shorter sequence length (128)4,
and fewer training steps. We deviate from the
24hBERT with a few simple changes:

1. We adopt RoBERTa’s BPE tokenizer (Sennrich
et al., 2016; Liu et al., 2019) rather than BERT’s
tokenizer for it performs better in our prelimi-
nary experiments (see Appendix C).

2. Instead of adopting BERT’s 80-10-10 token
corruption strategy, we simply replace all the
masked tokens with [MASK] by default. We find
that the 80-10-10 corruption strategy does not
perform better for most downstream tasks, as
discussed in §7.

Following 24hBERT, we also do not perform
next sentence prediction during pre-training, which
was shown to hurt performance (Liu et al.,
2019). We show hyperparameters for the effi-
cient pre-training recipe and a comparison to other
recipes (Devlin et al., 2019; Liu et al., 2019) in Ap-
pendix A. For models of different sizes, masking
rates, and masking strategies, we follow the same
recipe as our preliminary experiments show that it
still performs the best.

We use fine-tuning downstream task perfor-
mance as the measurement of how good the MLMs
are, since fine-tuning is the predominant way to use
pre-trained MLMs in downstream use. As evident
from Table 1, pre-training metrics like perplexity
do not correlate well with the downstream perfor-
mance. We describe our downstream fine-tuning
setting and hyperparameters in Appendix A.

4Izsak et al. (2021) only evaluate on GLUE tasks instead
of SQuAD because of the short sequence length. We further
train the model with 512 tokens for SQuAD in Table 1.

5For each task and each model size, normalized perfor-
mance is calculated by x−x15%

σ
where x15% is the perfor-

mance of 15% masking rate and σ is the standard deviation
across all masking rates. Relative F1 is the F1 score subtracted
by the 15% model F1.
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Figure 2: Impact of masking rates on different model
sizes (large>base>medium).5 We see that larger mod-
els favor larger optimal masking rates.

3 Larger Models Can Benefit From
Higher Masking Rates

Devlin et al. (2019) choose the mysterious mask-
ing rate of 15%, for the belief that masking more
leads to insufficient context to decode the tokens,
and masking fewer makes the training inefficient,
and this masking rate has been viewed as a con-
stant across different model sizes. In this section,
we train models of size large (354M parameters),
base (124M parameters), and medium (51M param-
eters) for masking rates varying from 15% to 50%.
The model configurations are listed in Appendix E.

Optimal masking depends on model sizes. The
impact of masking rate across the model sizes is
summarized by Figure 2, with detailed results given
in Appendix E. We see that larger models possess
higher optimal masking rates: on average, under
the efficient pre-training recipe, large models take
40% as the optimal masking rate; base models take
20% and medium models take 15%. This shows that
larger MLM models favor higher masking rates.
We hypothesize that the additional capacity allows
the large MLM to “handle” the more challenging
task of predicting many tokens given less context.

Large models learn faster with 40% masking.
We now compare the best performing masking rate
40% to the conventional 15% in more detail for our
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Figure 3: Impact of masking rates on large models with the efficient pre-training recipe. We see that on most
tasks, higher masking rates outperform 15%. 40% is the optimal masking rate overall.

large model. First, we plot how the downstream
task performance changes with different training
steps in Figure 1. For most tasks, we see that 40%
masking outperforms 15% consistently during the
course of training, such that on QNLI and QQP,
the 40% model can achieve the same performance
as the 15% baseline with only half the training
time. We also report the test results in Table 2,
where again masking 40% outperforms 15% with
our efficient pre-training recipe. However, the opti-
mal masking rate can be task-dependent, as SST-2
performs better with 15% masking at the end of
training. We acknowledge that the optimal mask-
ing rate may also depend on the training recipe.
Since the efficient pre-training recipe uses a rela-
tively small number of training steps, we explore
training for over 4× more steps, as well as training
with a more expensive recipe from RoBERTa (Liu
et al., 2019), and we find in Appendix D that using
a 40% masking rate still performs well, achieving
similar performance to the 15% masking rate. The
experiments in the remaining sections of this paper
are all based on large models.

4 MLMs in High-Masking Regimes

The success of masking 40% over 15% motivates
us to explore what happens at even larger masking
rates. Therefore, we pre-train additional large
models with masking rates of up to 80%. We
consider the question of what representations an
MLM can learn with such limited input as the last
masked sentence in Table 1, which is hard to de-
cipher even for a human. While He et al. (2022)
recently pioneered such high masking rates in the
vision domain, and they reason that images are nat-
ural signals with heavy redundancy, while language
is highly semantic and information-dense. To our
knowledge, nobody has examined such high mask-
ing rates in masked language modeling before.

MLMs learn with extreme masking. We first
confirm in Table 1 that the validation perplexity
when pre-training with an 80% masking rate is ex-
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Figure 4: Evaluating our models on the BLiMP
benchmark (Warstadt et al., 2020) using pseudo log-
likelihood scoring (Salazar et al., 2020).

tremely high (>1,000), which suggests that the
MLM is unable to reconstruct corrupted inputs
with independent token predictions. Therefore our
setting differs from vision, where good reproduc-
tions are possible with high masking rates (He
et al., 2022). Nevertheless, we find that MLMs
can surprisingly still learn good representations:
Figure 3 shows the performance of the models fine-
tuned on a range of tasks, and we observe that pre-
training with an 80% masking rate can retain 95%
of fine-tuning performance, which is substantially
better than fine-tuning from a random initialization,
which is reported in Appendix B.

We hypothesize that MLMs at such high mask-
ing rates may be understood as a powerful skip-
gram model (Mikolov et al., 2013), e.g., masking
80% of a 128 token sequence still learns skip-grams
of length up to 26. Furthermore, when compared
to the simple word2vec model, our Transformer
models have access to positional information for
each context token and prediction.

Analysis of linguistic probing. Besides down-
stream performance, we study the models’ lin-
guistic abilities by evaluating them on the BLiMP
benchmark (Warstadt et al., 2020). We employ
zero-shot pseudo log-likelihood scoring (Salazar
et al., 2020), where a score is computed by masking
each token individually, which is a greater distri-
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MNLI-m/mm QNLI QQP RTE SST-2 MRPC CoLA STS-B SQuAD

Masking 15% 84.2/83.4 90.9 70.8 73.5 92.8 88.8 51.8 87.3 88.0
FMasking 40% 84.7/84.0 91.3 70.9 75.5 92.6 89.8 50.7 87.6 89.8

Table 2: The test results on the GLUE benchmark with large models, the efficient pre-training recipe (Izsak et al.,
2021), and with 15% or 40% masking rates. For RTE, MRPC, and STS-B we fine-tune from the MNLI model
following convention set by Phang et al. (2018). For SQuAD v1.1, we take the same setting as Table 1.

butional shift from higher masking rates. We show
our results in Figure 4. We find that most linguis-
tic phenomena are acquired evenly across mask-
ing rates from 15% to 60%, but they are still cap-
tured well by an MLM trained with 80% masking—
which on average preserves 90% of the probing
accuracy of the 15% model baseline. However,
some categories such as filler gap dependencies
and island effects show clear trends that perfor-
mance deteriorates with higher masking rates—
although it remains unclear to what extent such
linguistic knowledge is required by downstream
tasks in GLUE (Sinha et al., 2021). Overall, our
results suggest that useful linguistic knowledge can
be learned from a “patchy” training signal.

5 Masking Rates vs. Masking Strategies

Devlin et al. (2019); Liu et al. (2019) use uniform
sampling for selecting which tokens to mask. Sub-
sequent work showed that adopting more sophisti-
cated masking strategies—such as span masking or
PMI masking—can outperform uniform masking
on a range of downstream tasks (Joshi et al., 2020;
Levine et al., 2021). The argument for adopting
advanced masking is that uniform masking enables
models to exploit shallow local cues (Levine et al.,
2021). An example is given by “[MASK] Kong”:
the model can easily predict “Hong” without using
more context. However, all the previous studies
used a constant 15% masking rate regardless of
masking strategies, which raises the question of
whether the conclusions still hold with a higher
masking rate.

We experiment with multiple masking strategies
as an additional factor for the optimal masking rate
in large models. Figure 5 shows the results of uni-
form masking, T5-style span masking (Raffel et al.,
2020)6, and PMI masking (Levine et al., 2021) un-
der masking rates from 15% to 40%. We see that
(1) for all masking strategies, the optimal masking

6Span maskings in Raffel et al. (2020) and Joshi et al.
(2020) differ in sampling procedures and we follow Raffel
et al. (2020) for implementation simplicity.
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Figure 5: Performance of different masking strate-
gies trained with different masking rates (efficient pre-
training recipe, large models).
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Figure 6: Higher masking rates increase the probability
that an entire PMI span is masked (left) under differ-
ent masking strategies. Uniform masking with a 40%
rate masks as many PMI spans as regular PMI masking
at 15%. Masks form longer spans for higher masking
rates in uniform sampling, while the average length is
fixed at 3 for T5-style span masking (which cannot be
enforced for very high masking rates).

rates are higher than 15%; (2) the optimal masking
rates for span masking and PMI masking are lower
than that of uniform masking; (3) when all strate-
gies adopt the optimal masking rates, the uniform
masking achieves similar and even better results
compared to the advanced strategies. We also re-
mark that, when masking with 15%, simply increas-
ing the masking rate can be a more effective way
to increase performance on SQuAD than switching
from uniform masking to another more advanced
strategy. More fine-grained results with these mask-
ing strategies are included in Appendix E.

Interestingly, higher masking rates naturally in-
crease the chance of masking neighbouring co-
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mcorr mpred MNLI QNLI QQP STS-B SST-2

40% 40% 84.50.1 91.60.1 88.10.0 88.20.1 92.80.1
40% 20% 83.7↓ 90.6↓ 87.8↓ 87.5↓ 92.9↑
20% 20% 84.1↓ 91.3↓ 87.9↓ 87.4↓ 92.7↓
20% 40% 85.7↑ 92.0↑ 87.9↓ 88.6↑ 93.4↑
10% 40% 86.3↑ 92.3↑ 88.3↑ 88.9↑ 93.2↑
05% 40% 86.9↑ 92.2↑ 88.5↑ 88.6↑ 93.9↑

Table 3: Corruption vs. prediction. We take 40% mask-
ing as the baseline model (standard deviation reported),
disentangle mcorr and mpred, and manipulate each inde-
pendently. The trend is clear: more prediction helps
and more corruption hurts.

occuring tokens, similar to the effect of the ad-
vanced masking strategies. We consider the masked
tokens over one epoch of training, and count the
number of PMI n-grams (e.g., “Hong Kong”) that
were completely covered by different masking
strategies. Figure 6 shows that raising the masking
rate from 15% to 40% results in an 8-fold increase
in the chance of masking a PMI n-gram under uni-
form masking and gives a value comparable to PMI
masking at 15% masking rate. Similarly, higher
masking rates also make the masked tokens form
longer spans. However, at a given masking rate,
uniform masking remains an easier task than span
masking or PMI masking—it appears reasonable
for uniform masking to admit a higher optimal
masking rate for a given model capacity.

6 Understanding Masking As
Corruption and Prediction

In this section, we analyze how masking rates af-
fect the pre-training process of MLMs, through
two distinct perspectives: task difficulty and op-
timization. We identify that the masking rate m
determines two import aspects of the pre-training
problem: the corruption rate mcorr and the predic-
tion rate mpred. mcorr is the proportion of tokens
that are erased from the input sequence—typically
by substituting [MASK]. mpred is the proportion of
tokens that the models predict, and each of those
tokens contributes to the cross-entropy loss.

In Eq. (1), mcorr controls how much content is
corrupted in x̃ compared to the original sentence
x, and mpred controls the number of predictions
in the set M. Usually, both the corruption and
the prediction rates are tied to the masking rate,
i.e., mcorr = mpred = m, but they may impact
representation quality differently.

mcorr controls task difficulty. Masked language

modeling attempts to learn a conditional proba-
bility distribution over the vocabulary given the
corrupted context p(· | x̃) during pre-training. If a
larger proportion of the input is corrupted, a token
prediction is conditioned on fewer context tokens,
making predictions harder and more uncertain.

mpred affects optimization. Predicting more
means the model learns from more training signals,
so higher prediction rates boost the model perfor-
mance. From another perspective, each prediction
at each masked token leads to a loss gradient, which
is averaged to optimize the weights of the model.
Averaging across more predictions has a similar
effect to increasing the batch size, which is proved
to be beneficial for pre-training (Liu et al., 2019).

Experiments. In masked language modeling, both
mcorr andmpred are determined by the overall mask-
ing rate. To study how mcorr and mpred affect the
downstream performance independently, we design
a simple ablation experiment to disentangle them:

1. If mpred < mcorr, we mask mcorr of tokens and
only make predictions on mpred of the tokens. This
can be implemented without additional cost. For
example, with mcorr = 40% and mpred = 20%, we
mask 40% and only predict on 20% tokens.

2. If mpred > mcorr, we duplicate each sequence
dmpred
mcorr
e times and mask disjoint sets of mcorr of

the tokens in different sequences. For example,
with mcorr = 20% and mpred = 40%, for each
sentence, we do twice 20% masking on different
tokens and predict on all the masked tokens—this
leads to a 20% corruption but a 40% prediction
on each sequence. Note that this ablation takes
dmpred
mcorr
e times longer because we do multiple passes

on every sequence, and is not efficient in practice.

Table 3 shows the ablation results with disen-
tangled mcorr and mpred. We see that (1) fixing
the mcorr as 40%, lowering the mpred from 40% to
20% results in a consistent drop on downstream
tasks, showing that more predictions lead to bet-
ter performance; (2) fixing the mpred as 40%, low-
ering the mcorr leads to consistently better perfor-
mance, suggesting that lower corruption rates make
the pre-training task easier to learn and are better
for pre-training. Though we see that the perfor-
mance gain by lowering mcorr from 10% to 5%
is much smaller than that by lowering mcorr from
40% to 20%, suggesting a diminishing marginal
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MNLI QNLI QQP STS-B SST-2

40% mask 84.50.1 91.60.1 88.10.0 88.20.1 92.80.1
+5% same 84.2↓ 91.0↓ 87.8↓ 88.0↓ 93.3↑
w/ 5% rand 84.5↓ 91.3↓ 87.9↓ 87.7↓ 92.6↓
w/ 80-10-10 84.3↓ 91.2↓ 87.9↓ 87.8↓ 93.0↑

Table 4: Impact of substituting masks with ran-
dom/same tokens. “+5% same”: do extra 5% same to-
ken predictions. “w/ 5% rand”: use mask for 35% mask
tokens and random tokens for 5% . “w/ 80-10-10”: for
the 40% masked tokens, 10% are same token predic-
tions and 10% are random token corruptions.

return of reducing the corruption rate. (3) com-
paring mcorr = 20%,mpred = 20% and mcorr =
40%,mpred = 40%, we see that the gain brought
by more predictions transcends the drawback of
more corruption, leading to better performance.

The ablation shows that when we tune the mask-
ing rate, we are tuning the corruption rate and the
prediction rate together, which have antagonistic
effects. The final outcome is decided by which
rate weighs more—the model benefits from higher
masking rates if the hindrance brought by high
corruption is surpassed by the advantage from pre-
dicting more. Many factors may affect the balance
between the two—for example, model sizes and
masking strategies as we discussed in §3 and §5.

7 Revisiting BERT’s Corruption
Strategy

Devlin et al. (2019) suggest that it is beneficial to
replace 10% of [MASK] tokens with the original to-
ken (same token predictions) and 10% with random
tokens (random token corruptions). Since then, this
80-10-10 rule has been widely adopted in almost
all the MLM pre-training work (Liu et al., 2019;
Joshi et al., 2020; He et al., 2021). The motivation
is that masking tokens create a mismatch between
pre-training and downstream fine-tuning, and us-
ing original or random tokens as an alternative to
[MASK] may mitigate the gap. With our corruption
and prediction framework, we revisit the two kinds
of mask replacements in the 80-10-10 rules and
empirically verify whether they are beneficial to
downstream performance.

Same token predictions. The loss from same to-
ken predictions is very small and should be re-
garded as an auxiliary regularization. Thus, same
token predictions should neither count towards the
corruption nor to the prediction—they do not cor-
rupt the input and contribute little to learning.

Random token corruptions. Replacing with ran-
dom tokens contribute to corruption and prediction
rate, as the input is corrupted and the prediction
task is non-trivial. In fact, we find that the loss
is slightly higher on random tokens compared to
[MASK], as (1) the model needs to decide for all
tokens whether the information at the input is from
a corruption or not, and (2) predictions need to be
invariant to large changes in the input embeddings.

Ablation experiments. We adopt the m = 40%
model using only [MASK] replacements as the base-
line, on top of which we add three models:

1. “+5% same”: we mask 40% of tokens but pre-
dict on 45% of tokens. Adding same token predic-
tions does not change mcorr or mpred.

2. “w/ 5% random”: we mask 35% of tokens and
randomly replace another 5% of tokens, predicting
on 40% in total.

3. “80-10-10”: the original BERT recipe. Due to
same token predictions, mcorr = mpred = 36%.

As shown in Table 4, we observe that same to-
ken predictions and random token corruptions de-
teriorate performance on most downstream tasks.
The 80-10-10 rule performs worse than simply
using all [MASK]—with the exception of SST-2,
where same token predictions are beneficial. Over-
all, our results suggest that in the fine-tuning
paradigm, the model can adapt to full, uncorrupted
sentences, regardless of the use of alternative cor-
ruption strategies in pre-training. Therefore, we
suggest to use only [MASK] for MLM pre-training.
We also present an analysis based on information
flow (Voita et al., 2019) in Appendix G.

8 Related Work

Masking rates and masking strategies. There ex-
ist a few works on studying the impact of masking
rates, among which Liao et al. (2020) show that
dynamically sampling the masking rate from 0% to
100% for each sequence can improve MLM’s down-
stream performance as well as the ability as a gener-
ation model. On the other hand, masking strategies
are heavily explored for both pre-training (Joshi
et al., 2020; Raffel et al., 2020; Levine et al., 2021)
and intermediate pre-training (Ye et al., 2021) with-
out considering the effect of masking rates.

“Unrealistic” MLM training. A recent line of
work shows that linguistically implausible MLM
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objectives can achieve competitive or non-trivial
downstream performance, e.g., training with shuf-
fled word order (Sinha et al., 2021), with randomly
generated sequences (Krishna et al., 2021), or pre-
dicting only the first character of masked tokens
(Yamaguchi et al., 2021; Alajrami and Aletras,
2022). These studies echo our findings that even
an “unrealistical” high masking rate can still lead
to good downstream results.

Masking in other language models. Besides
MLMs, there are other pre-training schemes,
namely autoregressive language models (Radford
et al., 2018; Brown et al., 2020) and sequence-
to-sequence (seq2seq) language models (Raffel
et al., 2020; Lewis et al., 2020). Similar to MLMs,
seq2seq models corrupt text with a masking rate,
but they predict with an autoregressive decoder and
are fine-tuned in different ways; Song et al. (2019)
also point out that masking rates control whether
seq2seq models are closer to encoder-only MLMs
(masking less) or decoder-only autoregressive LMs
(masking more). Thus, we expect the masking rate
studies in seq2seq models to draw a different con-
clusion from ours (Raffel et al., 2020; Tay et al.,
2022b). Besides, Tay et al. (2022a) show that pre-
training metrics are not correlated with downstream
performance, echoing our findings that perplexity
does not correlate with fine-tuning results.

ELECTRA (Clark et al., 2020) uses a smaller
MLM to fill in 15% of the blanks and trains a model
to distinguish whether a token was generated by
the MLM or not. Despite the complicated training
procedure, the main motivation of ELECTRA is
to improve the training efficiency by predicting
on 100% of tokens. Interestingly, we find that the
corruption rate in ELECTRA becomes very low
towards the end of training—the average corruption
rate is roughly only 7%, but the replacements are
“hard” negatives generated by the smaller MLM.
We leave the study of its connection to corruption
and prediction rates as future work.

Masking in other modalities. Recently, a num-
ber of works extend MLM training to images
and videos and demonstrate strong pre-training re-
sults (He et al., 2022; Zhou et al., 2022; Feichten-
hofer et al., 2022; Tong et al., 2022) . They adopt
extremely high masking rates (e.g., 75% on images
and 90% on videos) compared to their language
counterparts, with the argument that images and
videos are highly information redundant. Baevski

et al. (2020) propose a similar style masked model
in speech and adopt a masking rate of around 50%.

9 Conclusion & Discussion

In this work, we conduct a comprehensive study
on the masking rates of MLMs. We discover that
15% is not universally optimal, and larger models
should adopt a higher masking rate. We also find
that masking strategies should be considered to-
gether with masking rates, and uniform masking
needs a higher masking rate than more sophisti-
cated masking strategies. We gain a better under-
standing of masking rates by disentangling them as
corruption rates and prediction rates and analyze
the 80-10-10 corruption strategy that are widely
used in BERT models. Based on our findings, we
discuss the implications of high masking rates and
future directions of efficient MLM pre-training:

Implications on higher masking rates. A direct
takeaway from our findings is that larger models
may adopt higher masking rates for better sample
efficiency. Figure 1 shows that a large model with
40% masking can achieve comparable results to a
15% baseline on several tasks with half the training
time. Larger models also exhibit faster convergence
for a given computational budget: Li et al. (2020)
suggest it is more efficient to train larger models
for fewer steps, as opposed to training smaller mod-
els for longer. This can be combined with higher
masking rates for better sample efficiency.

Separating masked and unmasked tokens. The
training efficiency can potentially benefit from en-
coding masked and unmasked tokens separately,
where masked tokens use a much lighter-weight
module. If a high masking rate is taken, this can sig-
nificantly reduce the training cost due to the shorter
input to the encoder. A similar approach has been
explored by masked autoencoders in vision (He
et al., 2022), where 75% of the input patches are
masked and removed from the input of the heavy
encoder to achieve a 4.1× speedup. Recently, Liao
et al. (2022) have applied these architectural im-
provements to natural language pre-training, and
together with a high masking rate can accelerate
MLM by a third of the pre-training budget.

Disentangling corruption and prediction. Mod-
els perform better when trained with lower corrup-
tion rates and higher prediction rates. However, in
standard MLMs, those two factors are always tied
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to the masking rate. Methods which can encode
a sequence once and then efficiently predict many
small sets of masks, for example by manipulating
the attention, could substantially accelerate masked
language modeling pre-training.

Limitations

(1) Our analysis of masking rates applies to a spe-
cific type of pre-training method, masked language
modeling. We are also interested in studying mask-
ing rates in other pre-trained methods, e.g., seq2seq
models and ELECTRA, and leave it for future work.
(2) While we have shown how the optimal masking
rate depends on model size and masking strategy,
there may be additional factors, such as the vocab-
ulary size, pre-training corpus or language family.
In particular, our experiments focus on English, but
languages with different structural and morphologi-
cal features may have lower or even higher optimal
masking rates, or rely more on advanced masking
strategies. (3) We consider a well-established yet
relatively small set of downstream tasks, which
do not benchmark domain-specific knowledge or
more advanced reasoning skills. (4) Due to the ex-
pensive nature of our pre-training experiments, we
were not able to train multiple pre-trained models
over multiple seeds. (5) Finally, our findings point
out several promising directions but the paper pri-
marily aims to study and understandthe impact of
masking rates with respect to different factors. We
leave exploring better architectures and methods
for efficient pre-training to future work.

Ethical Considerations

Large language models can exhibit various kinds
of stereotypes, as they capture societal biases en-
coded in the training data. These associations are
not detected by standard GLUE or SQuAD evalua-
tion. We do not expect that simple modifications of
masking rates can make progress towards solving
these problems. Language model pre-training is
also computationally expensive, which comes at
a significant environmental cost. Furthermore, it
makes re-production and follow-up research diffi-
cult within an academic context. We reduce the
computational requirements by following and pro-
moting an efficient pre-training recipe and our find-
ings point to future research for efficient MLM.
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A Experiment Setup

A.1 Pre-training

We implement our pre-training work based on
fairseq (Ott et al., 2019). To further speed up
pre-training, we integrate the DeepSpeed (Rasley
et al., 2020) Transformer kernel for speedup.

We keep the other setting the same as the
24hBERT (Izsak et al., 2021), except that we use
the RoBERTa tokenizer (Liu et al., 2019) and we
do not adopt the 80-10-10 rule. We train our model
on the English Wikipedia and BookCorpus (Zhu
et al., 2015). We want to emphasize that using pre-
layernorm (Shoeybi et al., 2019) is essential for the
high learning rate in Izsak et al. (2021) to work.
The hyperparameters for the efficient pre-training
recipe are shown in Table 5. We train with 8 Nvidia
GTX 2080 GPUs and use gradient accumulation to
achieve the large batch sizes.

Hyperparameter Efficient pre-training recipe

Peak learning rate 2e-3
Warmup proportion 6%

Batch size 4,096
Training steps 23,000

Sequence length 128
Architecture large

Table 5: Our pre-training hyperparameter settings.

A.2 Downstream Task Evaluation

We fine-tune our model on the GLUE bench-
mark (Wang et al., 2019), including SST-2 (Socher
et al., 2013), CoLA (Warstadt et al., 2019),
MNLI (Williams et al., 2018), QNLI (Rajpurkar
et al., 2016), RTE (Dagan et al., 2005; Bar Haim
et al., 2006; Giampiccolo et al., 2007; Bentivogli
et al., 2009), MRPC (Dolan and Brockett, 2005),
QQP7 and STS-B (Cer et al., 2017), and the
SQuAD v1.1 (Rajpurkar et al., 2016) dataset. For
each dataset we run three random seeds and aver-
age the results. We apply grid search for the GLUE
datasets, as shown in Table 6. For SQuAD, we use
a learning rate of 1e-4, a batch size of 16, and train
for 2 epochs. For both GLUE and SQuAD we use
a linear scheduling for learning rates.

For all the results in the paper, we report ac-
curacy for MNLI, QNLI, RTE, SST-2; we report
F1 score for QQP, MRPC, and SQuAD; we report
Matthew’s correlation for CoLA and Spearman’s
correlation for STS-B.

7https://www.quora.com/q/quoradata/

Hyperparameter MNLI, QNLI, QQP

Peak learning rate {5e-5, 8e-5}
Batch size 32
Max epochs {3, 5}

RTE, SST-2, MRPC, CoLA, STS-B

Peak learning rate {1e-5, 3e-5, 5e-5, 8e-5}
Batch size {16, 32}
Max epochs {3, 5, 10}

Table 6: Grid search hyperparameters for GLUE tasks.

For the SQuAD results in Table 1 and Table 2,
we further train the models for 2300 steps (10% of
the training) with a sequence length of 512, a learn-
ing rate of 5e-4, and a warmup rate of 10%. For
other tables and figures, we present the SQuAD re-
sults without further pre-training, and the absolute
numbers are lower because of the short pre-training
sequence length. For some of the figures in the
paper, we only show the results of MNLI, QNLI,
QQP, STS-B, SST-2, and SQuAD due to limited
space. Those tasks are selected because they have
larger training set and the results are more reliable.
We always show the development results in all our
figures and tables except Table 2, where we report
the test numbers for GLUE tasks.

B Different Masking Rates: Full Results

Table 7 shows the performance of 15%, 40%
and 80% masked models on all GLUE tasks and
SQuAD. We can see that 80% masking largely
preserves the downstream performance and 40%
outperforms 15% on most tasks.

C Tokenizer Comparison

Table 9 shows the performance of different tokeniz-
ers on downstream tasks. We see that on most tasks
RoBERTa tokenizer is better than BERT tokenizer.

MNLI-m/mm QNLI QQP RTE

WordPieces 84.3/84.9 90.8 88.2 64.8
BPE 84.5/84.8 91.6 88.1 67.0

SST-2 MRPC CoLA STS-B

WordPieces 92.5 75.5 56.6 88.7
BPE 92.8 76.9 61.0 88.2

Table 9: Comparison between BERT’s uncased Word-
Pieces tokenizer and RoBERTa’s BPE tokenizer. Both
models are large and trained with the efficient pre-
training recipe with a 40% masking rate.
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MNLI-m/mm QNLI QQP RTE SST-2 MRPC CoLA STS-B SQuAD

Masking 15% 84.2/84.6 90.9 87.8 67.3 93.3 77.0 59.2 87.7 88.0
Masking 40% 84.5/84.8 91.6 88.1 67.0 92.8 76.9 61.0 88.2 89.8
Masking 80% 80.8/81.0 87.9 87.1 58.6 90.5 72.1 38.7 86.3 86.2

Random initialization† 61.5/61.2 60.9 70.7 49.6 80.0 45.4 11.9 17.5 10.8

Table 7: The development results on the GLUE benchmark with large models, the efficient pre-training recipe,
and with 15%, 40%, or 80% masking rates. The SQuAD development results are attained with the same contin-
uous training as in Table 1. Compared to the random initialization model, 80% masking rates clearly learn good
representations for downstream tasks, despite having a very high perplexity. †: The random initialization models
are trained with the same fine-tuning hyperparameters as pre-trained models, thus they could be undertrained.

MNLI-m/mm QNLI QQP RTE SST-2 MRPC CoLA STS-B SQuAD

Train longer with the efficient pre-training recipe

Masking 15% 87.47/87.02 92.95 88.40 69.93 94.07 82.50 61.00 88.89 87.29
Masking 40% 86.63/86.83 93.13 88.40 68.87 94.67 79.50 61.23 89.60 87.16

Recipe from RoBERTa

Masking 15% 87.40/87.23 93.04 88.43 67.53 94.13 80.80 59.80 90.05 90.72
Masking 40% 87.30/87.03 92.90 88.83 67.63 94.10 63.90 56.07 87.94 91.23

Table 8: Development results of 15% vs 40% masking with larger pre-training budget. We use the recipe from
Table 3 in Liu et al. (2019), and the efficient pre-training recipe with more training steps. See Table 10 for hyper-
parameters.

D Longer Training

Hyperparameter Train longer RoBERTa

Peak learning rate 2e-3 7e-4
Warmup proportion 6% 6%

Batch size 4,096 2,048
Training steps 125,000 125,000

Sequence length 128 512

Table 10: Comparison between our longer pre-training
recipes and a recipe from RoBERTa (Liu et al., 2019).

To see that how the different masking rates per-
form with longer training, we modify the efficient
pre-training recipe for longer steps. We also experi-
ment with a recipe used in the RoBERTa paper (Liu
et al., 2019). Since the final RoBERTa models use
more training data, we refer to the recipe used in
RoBERTa’s ablation in its Table 3. Table 10 shows
the hyperparameters for the longer training, as well
as a comparison to the RoBERTa’s recipe. The
major difference is that we train with much larger
learning rate and only a sequence length of 128.

We train the models with 15% and 40% mask-
ing rates longer and evaluate them on downstream
tasks. Figure 7 shows the results. We see that
on most of the tasks, the trend that 40% is better
than 15% still holds, though the 40% has a larger

advantage when the training steps are limited.
We also train the model using a recipe from

RoBERTa and present the results in Table 8. We
see that (1) on most tasks 40% achieves compara-
ble results compared to 15%; (2) our “train longer”
results, which uses shorter sequences and larger
learning rates, are comparable to the RoBERTa
recipe results though with much shorter time.

E Results of Different Model Sizes and
Masking Strategies

We show the configurations of different model sizes
in Table 11. Figure 8 and Figure 9 show the results
of the base model and the medium model, which
serve as complementary materials for Figure 2.

Figure 10 shows the performance of uniform
masking, T5-style span masking, and PMI masking
on downstream tasks. This serves as a complemen-
tary material for Figure 5.

medium base large

#Layers 8 12 24
#Attention heads 8 12 16

Hidden size 512 768 1024

Table 11: Configurations of different model sizes.
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Figure 8: Results on selected downstream tasks with the base (124M parameter) model.
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Figure 9: Results on selected downstream tasks with the medium (51M parameter) model.
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Figure 10: Comparison of different masking strategies on selected tasks. Models are trained with the efficient
pre-training recipe, the large configuration, and several masking rates.

F Results on French MLM

To validate our conclusions in a new setting, we
conduct experiments on MLM on a corpus in
French. Similar to Izsak et al. (2021), we pre-
train on 2020 French Wikipedia and fine-tuned on
French XNLI. We report accuracy averaged over 4
seeds, and make the observation that 40% is better
than 15%.

XNLI-fr
valid test

Masking 15% 78.3 77.3
Masking 40% 78.9 77.5

Table 12: We pre-train on 2020 French Wikipedia and
fine-tuned on French XNLI. We report accuracy aver-
aged over 4 seeds.
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Figure 11: Mutual information between an input token
and its intermediate representations for four different
corruption strategies. See Table 4 for details on models.

G Information Flow Analysis

To visualize the effect of these corruption strategies
(the 80-10-10 rule), we follow Voita et al. (2019)’s
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analysis of measuring mutual information between
an input token and its intermediate representations.
Figure 11 shows that each model initially loses
some information about the source token while
acquiring information from the surrounding con-
text. Using same token predictions during pre-
training leads to a “reconstruction” stage in the
last few layers, as observed by Voita et al. (2019),
whereby information about the source token is re-
stored from the context. However, this second stage
is not present when same token predictions tokens
are ablated: the [MASK]-only baseline propagates
contextual features only—and no reconstruction
occurs. This is more pronounced with random to-
ken corruption, where source information (that was
less reliable during pre-training) is lost at a greater
rate. One consequence is that information about
the input tokens can be more easily extracted when
pre-training with same token predictions. However,
the reconstruction of the source tokens does not
appear to be as important in the fine-tuning setting,
as shown in our experiments in Table 4.
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Abstract

Understanding sentence semantics requires an
interpretation of the main information from a
concrete context. To investigate how individual
word contributes to sentence semantics, we pro-
pose a perturbation method for unsupervised
semantic analysis. We next re-examine SOTA
sentence embedding models’ ability to capture
the main semantics of a sentence by develop-
ing a new evaluation metric to adapt sentence
compression datasets for automatic evaluation.
Results on three datasets show that unsuper-
vised discourse relation recognition can serve
as a general inference task that can more effec-
tively aggregate information to essential con-
tents than several SOTA unsupervised sentence
embedding models. 1

1 Introduction

Humans are usually able to understand sentence
meaning based on a complex cognitive process —
composition of words (Löbner, 2013). As main car-
riers of information, words generally have different
levels of contribution to the final sentence seman-
tics. For example, underlined words in “The city of
Austin is considering extending downtown parking
meter hours to the weekends and later during the
week” convey the most important information of
this sentence. Therefore, determining the primary
semantics (or main meaning) of a sentence and
estimating how sentence semantics distributes to
individual words play critical roles in understand-
ing sentence compositionality.

Recently, with the help of large pretrained
Transformers, sentence representation learning has
achieved great success in downstream NLP tasks
(Qiu et al., 2020). However, most work either heav-
ily relies on human annotation such as Natural
Language Inference (NLI) data (Williams et al.,

1Code and data are available at https://github.com/

wenlinyao/EACL23-PrimarySemantics

2018; Bowman et al., 2015) to do fine-tuning (Con-
neau et al., 2017a; Reimers and Gurevych, 2019)
or adopt unsupervised contrastive learning to learn
sentence embeddings (Gao et al., 2021; Chuang
et al., 2022). They neglect one critical property
of an effective sentence embedding model that es-
sential contents should contribute to sentence se-
mantics more than non-essential contents when
encoding a sentence.

We observe that primary semantics can be ac-
quired by learning to predict discourse relations
because sentence primary semantics usually needs
to support the logical relations at the discourse
level. It is motivated by the distinction between
asserted and projected content in semantic theory
(Potts, 2003; Tonhauser et al., 2013; Venhuizen
et al., 2018). Asserted content is intended to be
presented for discussion and information exchange,
whereas projected content represents background
information that is not under discussion. Thus, as-
serted content should carry more weight in sentence
representations than projected content, because it
is at issue in the context by the speaker’s intention.

Based on this observation, we apply 36 explicit
discourse connectives to four big corpora and ex-
tract 9.8M sentence pairs. Acquired sentence pairs
are then used to train a universal sentence encoder.
Next, by perturbing the trained model, we directly
estimate the contributions (importance) from indi-
vidual words to the final sentence semantics. Our
assumption is that the importance of a word in
a sentence is proportional to how much the new
sentence representation drifts from the original sen-
tence representation if we mask that word. Figure
1 shows the overview of our approach.

To overcome the lack of evaluation data and
quantitatively evaluate a sentence encoder’s sensi-
tivity to key information of a sentence, we design
a new evaluation metric — important information
gain, which measures model’s ability to concen-
trate on the important words instead of randomly se-
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Figure 1: Overview of our approach.

lected words. Experiments on three datasets show
that our model outperforms previous unsupervised
and supervised sentence embedding models. Our
analysis also demonstrates our model is less biased
than the model trained with human-annotated data.

In this paper, we investigate how words, as main
carriers of information, contribute to the final sen-
tence semantics with different levels of significance.
Our main contributions are summarized as follows:
1) We propose a perturbation method to estimate
the contributions from individual words to sentence
semantics to understand sentence compositionality.
2) We design a new automatic metric, Important
Information Gain, to overcome the lack of evalu-
ation. We find discourse relation recognizer can
more effectively aggregate information to essential
contents than several SOTA unsupervised sentence
embedding models.

2 Related Work

DisSent (Nie et al., 2019) also uses discourse pre-
diction to train sentence embeddings, but their goal
is to achieve SOTA fine-tuning results on SentEval
tasks (Conneau and Kiela, 2018) and the PDTB
task instead of investigating primary semantics.
Our work is closely related to sentence compres-
sion (Filippova et al., 2015; Kamigaito and Oku-
mura, 2020) and extractive text summarization (Xu
and Durrett, 2019; Mendes et al., 2019) that mainly
focus on extracting the salient text spans in an end-
to-end manner. In contrast, we aim to estimate the
semantic saliency distribution to better understand
sentence compositionality. Perturbation methods
have been also used in data augmentation (Das and
Sarkar, 2019), robustness analysis (Niu et al., 2020;
Prabhakaran et al., 2019), and textual adversarial
attack (Li et al., 2021; Feng et al., 2018). We are
the first to use the perturbation method to estimate

sentence semantics distribution.

3 Discourse Relation Recognition as a
General Inference Task

3.1 Data Collection

To have a broad coverage on different types of
texts, we consider four large-scale corpora. News
Articles. We use English Gigaword 5th edition
(Napoles et al., 2012), which contains 10M news
articles. Wikipedia. We use the Wikipedia dump
of 5/20/2021 which consists of 54M web pages.
Novel Books. BookCorpus (Zhu et al., 2015) con-
tains 11,038 novel books of 16 different genres.
Blogs. We use the Blog Authorship Corpus (Schler
et al., 2006) which consists of 680K blog posts.
We applied the Stanford CoreNLP tools2 to obtain
sentence boundaries.

We next select 36 explicit connectives (corre-
sponding to 9 discourse relations)3 from the PDTB
annotation manual (Prasad et al., 2008) and summa-
rize them into extraction patterns. After applying
them to four corpora, we extract 9.8M sentence
pairs in total. Statistics of acquired sentence pairs
are summarized in Table 1.

3.2 Model Architecture

Inspired by Reimers and Gurevych (2019), our
model first uses an encoder to get two sentence
representations and then compares them to pre-
dict the discourse relations. Specifically, we ap-
ply a pretrained BERTBase (Devlin et al., 2019)
model to the two sentences and select the model
outputs at the [CLS] tokens as the corresponding
sentence representations u and v. Next, by feeding
u, v and |u − v| into a 9-class softmax layer, i.e.,

2
https://stanfordnlp.github.io/CoreNLP/.

3We only consider connectives that are less ambiguous in
relations. See Appendix for the full list of connectives.
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CT RS CJ EQ GN IN CA PR DJ

Pairs 8M 430K 800K 29K 12K 285K 188K 26K 26K

Table 1: Statistics of sentence pairs extracted from four
text corpora. 9 discourse relations are Contrast (CT),
Result (RS), Conjunction (CJ), Equivalence (EQ), Gen-
eralization (GN), Instantiation (IN), Chosen Alternative
(CA), Precedence (PR), and Disjunctive (DJ).

p = softmax(Wt[u, v, |u − v|]), our model pre-
dicts what is the discourse relation (e.g., Contrast,
Result, Equivalence, etc.) between them.

4 Estimating Sentence Semantics
Distribution via Perturbation

To estimate the semantic distribution of the input
sentence S = {wi}Ni=1, we mask each word wi indi-
vidually to construct a new sentence and apply the
sentence embedding model (Section 3.2) to calcu-
late the new representation. Next, we calculate the
cosine distance between the new and the original
representation. The distance can quantitatively tell
us how much the new sentence (after masking one
word) semantically drift from the original sentence,
which indicates the contribution of that word to the
sentence semantics.4 Finally, we normalize the dis-
tances by their summation so that the importance
scores of all words sum to 1.

5 Evaluation

5.1 Evaluation Metric
Ideally, if we know the gold standard importance
distribution in sentence semantics, we can directly
compare a model’s prediction with the gold stan-
dard. However, it is infeasible for humans to anno-
tate/assign a continuous importance score to each
word in a sentence. To address the lack of eval-
uation data, we adopt two sentence compression
datasets and one summarization dataset for evalu-
ation. The main idea is that the compressed sen-
tence, as a shorter version of the original sentence,
specifies the most important words in the original
sentence. Therefore, we can score a model by its
ability of concentrating on important words.

Furthermore, we propose a new evaluation met-
ric — Importance Information Gain — to score
how much a predicted distribution is superior to a

4If the target masked word is tokenized into multiple sub-
word pieces by the tokenizer, we mask each subword piece
in turn and calculate the summation score as the word impor-
tance.

uniform distribution (all words are equally impor-
tant). Specifically, given a sentence S = {wi}Ni=1

consisting of |S| = N words, suppose the com-
pressed sentence by human is S′ = {wj}j∈1∼N ,
where S′ is a subset of S. Let [v1, v2, · · · , vN ] be
the importance scores over words (normalized such
that

∑N
i=1 vi = 1). We calculate the information

gain g to be the average importance score on im-
portance words

∑
i∈S′ vi
|S′| over the score that every

word is equally important 1
|S| : g =

∑
i∈S′ vi
|S′| − 1

|S| .
We next normalize g for each test sentence in-

stance by the upper bound g∗, where g∗ is de-
fined as the information gain of a model that can
perfectly distinguish important words from non-
important words (concentrate all information on
only important words): g∗ = 1

|S′| − 1
|S| . Then, the

final Importance Information Gain = g/g∗ ∈ [0, 1].
To validate whether the proposed metric is able

to measure the quality of a semantic distribution,
we randomly sample 100 pairs from baseline mod-
els’ predictions in Table 2 and analyze our metric’s
consistency with human preferences. Specifically,
each sampled pair consists of predictions (seman-
tic distributions) of two separate baseline models
on the same sentence. Three expert annotators
are asked to judge which one better characterizes
the importance/contribution of each word to the
sentence meaning. We next compare our metric’s
preferences with the gold human preferences5. Our
metric agreed on 87/100 with human gold labels,
achieving a substantial (Cohen, 1968) kappa agree-
ment score of 0.74.

5.2 Evaluation Datasets

For evaluation, we experiment on three datasets.
Google sentence compression dataset (GGL) (Fil-
ippova and Altun, 2013) contains 10K test sentence
compression pairs and BNC written dataset (Clarke
and Lapata, 2008) contains 1.5K test compression
pairs. Additionally, we go through the Gigaword
summarization dataset (GGW) and compare the
first sentence with the title sentence in the news
article. We select (first sentence, title) pairs as our
testing data if words6 in the title sentence is a sub-
set of words in the first sentence. We collect the
first 10K sentence pairs as our test data.

5Gold labels are generated based on majority voting. The
average Cohen’s kappa inter-agreement between three annota-
tors is 0.67.

6We use lemma matching in practice.

3003



5.3 Baseline Systems
Rule-Based Model. We use a rule-based primary
semantics extraction system (Zhang et al., 2020),
which first parses the input sentence into a depen-
dency parsing tree and extracts the sentence skele-
ton.7 Words in the sentence skeleton are considered
equally important.
GloVe Embedding. We calculate the sentence
embeddings by averaging GloVe embeddings (Pen-
nington et al., 2014) among all words except wi.
Original BERT. We apply the original BERT-base
model8 that uses next sentence prediction as the
training objective.
BERT-CT (Carlsson et al., 2021) introduces an
unsupervised learning method called Contrastive
Tension (CT) that only requires raw sentences and
achieves SOTA performance on Semantic Textual
Similarity (STS) tasks. CT tries to maximize the
dot product between sentence representations for
identical sentences and minimize the dot product
for differing sentences. BERT-CT-STSb and BERT-
CT-NLI9 are two supervised CT models fine-tuned
on STSb and NLI, respectively.
SimCSE (Gao et al., 2021) is a contrastive sen-
tence embedding framework that achieves SOTA
performance on sentence similarity tasks. The un-
supervised model (SimCSE-unsup) takes an input
sentence and predicts itself in a contrastive objec-
tive with dropout as the data augmentation method.
The supervised model (SimCSE-sup) incorporates
sentence pairs from the NLI data (Williams et al.,
2018; Bowman et al., 2015) into a contrastive learn-
ing framework, by using entailment pairs as posi-
tives and contradiction pairs as negatives.
DiffCSE (Chuang et al., 2022) augments SimCSE
contrastive learning with the edited sentences sam-
pled from a masked language model.
SBERT (Reimers and Gurevych, 2019). Sentence-
BERT (SBERT) uses siamese and triplet network
structures to derive sentence embeddings. SBERT-
NLI is the original model introduced by Reimers
and Gurevych (2019) that is fine-tuned on NLI.
Moreover, we also consider four more recent
SBERT models that are fine-tuned with more sen-
tence pair data.10 Specifically, SBERT-MSMarco
is fine-tuned on the MSMarco Passage Ranking
Dataset containing 500K (query, relevant passage)

7We select the whole sentence as the prediction when the
system fails on complex sentences.

8Select the output at the [CLS] token.
9
https://github.com/FreddeFrallan/Contrastive-Tension.

10
https://www.sbert.net/docs/pretrained_models.html.

Models GGL BNC GGW Avg.

Supervised

1 BERT-CT-STSb 7.4 19.3 8.3 11.7
2 BERT-CT-NLI 7.5 10.0 6.5 8.0
3 SimCSE-sup 15.8 25.1 10.2 17.0
4 SBERT-NLI 14.3 23.2 14.2 17.2
5 SBERT-Paraphrase 23.7 15.4 31.8 23.6
6 SBERT-MultiQA 33.0 28.6 35.6 32.4
7 SBERT-MSMarco 31.7 28.3 32.7 30.9
8 MPNet-All 52.6 33.3 58.2 48.0

Unsupervised

9 Parsing Tree 18.7 19.8 7.2 15.2
10 GloVe Embedding 10.2 25.3 12.1 15.9
11 Original BERT 2.0 0.3 0.8 1.0
12 BERT-CT 12.0 16.3 12.4 13.5
13 SimCSE-unsup 13.9 14.9 10.1 13.0
14 DiffCSE 21.6 28.7 20.8 23.7
15 Our Model-disc. 36.9 27.2 36.6 33.6

Table 2: Importance Information Gain (%) on three
evaluation datasets. We group models based on whether
it requires human-labeled data in training or not.

pairs from Bing search. SBERT-Paraphrase is fine-
tuned on NLI and 11 paraphrase datasets. SBERT-
MultiQA is fine-tuned on 214M (question, answer)
pairs from 17 QA datasets. MPNet-All is fine-
tuned on all available sentence pair tasks including
32 tasks with 1,170M sentence pairs.

Table 2 shows the results of all models. We
group models based on whether they use human-
labeled data or not. Line 15 is our model trained on
9.8M sentence pairs that are extracted by discourse
connectives. Our unsupervised discourse recogni-
tion model achieves the highest overall information
gain among all unsupervised approaches, which
is even higher than several supervised models that
are trained using millions of human-annotated data
(Lines 3-7). Surprisingly, even SimCSE and Dif-
fCSE report better performance than MPNet-All on
STS tasks, they are much worse than MPNet-All
on capturing sentence primary semantics.

5.4 Visualization and Analysis

While previous studies (Conneau et al., 2017b) em-
pirically show that fine-tuning towards NLI data
yields good sentence embedding models, we visual-
ize and compare the model trained on the NLI data
with the model trained on discourse pairs. We find
the NLI data model sometimes is biased to specific
numbers, time expressions, etc (Figure 2). It may
be mainly due to the bias introduced during the
NLI data construction process when human anno-
tators sometimes just replace the numbers or time
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Figure 2: Semantic distribution of the model trained
on NLI (upper) v.s. discourse data (lower) on the same
sentence (important words are underlined). “The South
Dakota legislature is looking for 22 college students
to serve as legislative interns for the 2013 legislative
session.” The red line indicates 1/|S|.

expressions to produce a contradictory sentence. In
contrast, the discourse relation recognizer is less
sensitive to those specific expressions. Appendix
II contains more examples.

6 Conclusion

In this paper, we have introduced a perturbation
method for estimating sentence semantic distribu-
tion and designed a new metric to achieve auto-
matic evaluation. We find discourse relation recog-
nition can serve as a general inference task to train
an unsupervised sentence embedding model that es-
timates such distribution meaningfully than several
SOTA sentence embedding models.

7 Limitations

To benefit from large-scale training data, we train
the discourse relation recognizer on data that are
automatically generated by matching explicit con-
nectives. Even we only select explicit connectives
that have one dominant discourse relation, some of
them may still reflect a different relation in some
contexts. For example, connective in other words
indicates a “Equivalence” relation most of the time,
but sometimes it can also indicate a “Generaliza-
tion” relation. In this regard, our method shares
the same limitations as the broad class of weakly
supervised methods where training data are auto-
matically generated. Considering discourse parser
is not the main focus of this paper, we leave how to
generate cleaner discourse relation data and train a

better discourse relation recognizer for future work.
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Appendix I

Experiment details. We generally follow the hyper-
parameter setting of previous work to train our
model. In experiments, we train our model us-
ing cross-entropy loss and Adam (Kingma and
Ba, 2015) optimizer with initial learning rate 5e-5,
dropout rate 0.5, and batch size 256 for 5 training
epochs. The training of the discourse relation rec-
ognizer was run on one machine with 8 NVIDIA
P40 GPUs, taking about 6 hours per epoch and
three epochs in total. We simply use the standard
hyper-parameters to train our model without any
hyper-parameter search.

Appendix II

Here is the full list of explicit discourse connectives
for extracting sentence pairs (Section 3.1).

Contrast (CT): although, but, by comparison,
by contrast, however, in contrast, nevertheless,
nonetheless, on the contrary, on the other hand,
though
Result (RS): accordingly, as a result, because, con-
sequently, hence, therefore, thus
Conjunction (CJ): additionally, besides, further-
more, in addition, in fact, indeed, moreover, overall,
similarly
Equivalence (EQ): in other words
Generalization (GN): in short, in sum
Instantiation (IN): for example, for instance
Chosen Alternative (CA): instead
Precedence (PR): ultimately
Disjunctive (DJ): otherwise, unless
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Appendix III

More examples of semantic distribution of the model trained on NLI (upper) v.s. general inference
knowledge (lower) on the same sentence.
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Figure 3: Michael Crabtree has a stress fracture in his left foot that could sideline him for 10 weeks , NFL.com and
ESPN report .
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Figure 4: Goldcorp is preparing to sell its 49 % stake in Silver Wheaton Corp. , a transaction that could raise at
least $ 1.8 billion , according to sources close to the deal .
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Figure 5: Charlottesville - based WorldStrides has opened a new office in Shanghai , China .
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Figure 6: Urban will undergo throat surgery later this month , to remove a polyp which has developed on his vocal
chords .
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Figure 7: The Holy Family Catholic Schools Little Eagles program will offer 16 summer camps for students in
preschool to eighth grade .
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Abstract
Deep neural models for named entity recog-
nition (NER) have shown impressive results
in overcoming label scarcity and generalizing
to unseen entities by leveraging distant super-
vision and auxiliary information such as ex-
planations. However, the costs of acquiring
such additional information are generally pro-
hibitive. In this paper, we present a novel
two-stage framework (AUTOTRIGGER) to im-
prove NER performance by automatically gen-
erating and leveraging “entity triggers” which
are human-readable cues in the text that help
guide the model to make better decisions. Our
framework leverages post-hoc explanation to
generate rationales and strengthens a model’s
prior knowledge using an embedding interpo-
lation technique. This approach allows mod-
els to exploit triggers to infer entity bound-
aries and types instead of solely memorizing
the entity words themselves. Through experi-
ments on three well-studied NER datasets, AU-
TOTRIGGER shows strong label-efficiency, is
capable of generalizing to unseen entities, and
outperforms the RoBERTa-CRF baseline by
nearly 0.5 F1 points on average.

1 Introduction

Named Entity Recognition (NER) serves as a key
building block in information extraction systems.
Recent advances in deep neural models for NER
have yielded state-of-the-art performance when suf-
ficient human annotations are available (Lample
et al., 2016; Liu et al., 2018; Peters et al., 2017;
Ma and Hovy, 2016). However, such success can-
not easily transfer to practitioners developing NER
systems in specific domains (e.g., biomedical pa-
pers, financial reports, legal documents), where
domain-expert annotations are expensive and slow
to obtain. Moreover, NER systems face challenges
in real-world applications where novel entities, un-
seen in training data, are often encountered (Lin

∗The first two authors contributed equally.
†work done before joining Amazon.com.
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Figure 1: Existing explanation-based learning frame-
works mostly rely on humans provided labeling expla-
nations while our framework automatically generates
and leverages explanations to NER.

et al., 2021). Recent attempts addressing label
scarcity and improving generalization to unseen
entities have explored various types of human-
curated resources as auxiliary supervision, such
as entity dictionaries (Peng et al., 2019; Shang
et al., 2018; Yang et al., 2018; Liu et al., 2019a),
labeling rules (Safranchik et al., 2020; Jiang et al.,
2020), prompts (Ding et al., 2021; Cui et al., 2021),
demonstrations (Lee et al., 2022), retrieved con-
text (Wang et al., 2021), and labeling explana-
tions (Hancock et al., 2018; Wang et al., 2020; Ye
et al., 2020; Lin et al., 2020; Lee et al., 2020a). In
particular, human-provided labeling explanations
as auxiliary supervision signals are cost-effective
compared to collecting label-only annotations for
larger number of instances. For the NER task, Lin
et al. (2020) introduced the concept of an entity
trigger, an effective way to represent explanations
for the labeling decisions (See Figure 1 (a) vs. (b)).

However, prior works have the following limita-
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tions: (1) Expense of collecting rationales: Prior
works primarily use a limited number of crowd-
soured explanations (e.g., entity trigger) for im-
proving data (label) efficiency of model training.
While such human-curated auxiliary supervision
is of high quality, the crowd-sourcing procedure
can be very expensive and time-consuming. This
largely limits the scale and domains of the collected
rationales; (2) Unseen entity generalization: The
biggest advantage of leveraging such explanations
for NER is a generalization ability towards unseen
entities. Reinforcing this prior knowledge in the
model rather than memorizing the entity words
themselves can make the model robust against un-
seen entities during training. However, prior works
do not evaluate such generalization ability.

To address these limitations, we propose a two-
stage NER framework, named AUTOTRIGGER ,
which improves label efficiency and model robust-
ness without human efforts (see Figure 1 (c)). First,
it automatically generates entity triggers as explain-
able features to reduce human effort on collecting
rationales. It then strengthens the prior knowledge
in the model by interpolating model embeddings of
entity-masked sentence which force the model to
rely more on triggers and trigger-masked sentence
which force the model to rely more on the entity.

The first stage of our framework (Sec. 3.1) aims
to automatically extract entity triggers using a post-
hoc explanation. We propose to exploit the syn-
tactic features of a sentence for assigning impor-
tance scores to a group of input tokens such that we
can extract entity triggers as auxiliary supervision.
Specifically, we form a collection of trigger candi-
dates for an entity in a sentence using the phrases
extracted from its constituency parsing tree (Joshi
et al., 2018). Then we score each trigger candidate
based on its ability to predict the target entity, while
varying the surrounding context to ensure trigger
robustness.

The second stage (Sec. 3.2) focuses on how to
use triggers, which are useful contextual clues, in
making the prediction. We propose Trigger Inter-
polation Network (TIN), a novel architecture that
effectively uses trigger-labeled NER data to train
a model. Here, we employ two separate masking
passes when learning our model’s embeddings: one
masking the entity words (forcing the model to rely
more on the triggers) and one masking the trig-
gers (forcing the model to rely more on the entity
words). We then interpolate the embeddings of

both entity-masked and trigger-masked sentences
to learn a mixed sentence representation, which is
provided as input to a standard sequence labeling
task. In this manner, the TIN can effectively learn
to focus on useful contextual clues to infer entity
boundaries and types with contextualized embed-
dings from pre-trained language models such as
BERT (Devlin et al., 2019) while it may not miss
the entities whose type can be determined by itself.
(e.g., inputs that contain only the entities).

Extensive experimental results on several do-
mains show that AUTOTRIGGER framework con-
sistently outperforms baseline methods by 0.5 F1
points on average in fully supervised setting. Our
work shows strong performance especially in label
scarcity setting and unseen entity generalization.
In the label scarcity setting ranging from 50 to 200
number of train instances, assuming a task that
needs annotation from scratch, our model gains
more than 3-4 F1 score on average. Also, for the
filtered test set where the entities did not appear
in the train and development sets, assuming a real-
world applications in which entities can be out of
the distribution of the train data, our model gains
more than 2-3 F1 score on average.

2 Problem Formulation

Named Entity Recognition. We let x =
[x(1), x(2), . . . x(n)] denote the sentence consist-
ing of a sequence of n words and y =
[y(1), y(2), . . . y(n)] denote the NER-tag sequence.
The task is to predict the entity tag y(i) ∈ Y for
each word x(i), where Y is a pre-defined set of
tags such as {B-PER, I-PER, . . . , O}. We let DL
denote the labeled dataset consisting of the set of
instances {(xi,yi)}, where xi is the i-th input sen-
tence and yi is its output tag sequence. Here, we
use BIOES scheme (Chiu and Nichols, 2016).

Entity Trigger Extending from extractive ratio-
nales for text classification (DeYoung et al., 2020;
Jain et al., 2020), an entity trigger is a form of ex-
tractive explanatory annotation for NER, defined as
a group of words that help explain the recognition
process of an entity mentioned in the sentence (Lin
et al., 2020). For example, in Figure 2, “had ...
dinner at” and “where the food” are two distinct
triggers associated with the RESTAURANT entity
“Sunnongdan". Formally, given a labeled NER in-
stance (x,y), we use T to denote the set of entity
triggers for this instance. Each trigger ti ∈ T is
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Danny had a fantastic dinner at Sunnongdan last week
𝑒 ∶ B-RESTAURANT

2 5

10 11 12

6

𝑡! = 2,5,6 → 𝑒

𝑡" = 10,11,12 → 𝑒

where the food is delicious.

Figure 2: Example of entity trigger. Entity trigger
ti is a cue phrase toward the entity e in the sentence,
which is represented by a set of corresponding word
indices. Both entity triggers (t1,t2) are associated to
the same entity e (“Sunnongdan”) typed as restaurant.

associated with an entity e and a set of word in-
dices {wi}. That is, t = ({w1, w2, . . . } → e)
represents an entity trigger. For example, in Fig-
ure 2, t1 = {2, 5, 6} is an entity trigger identified
for entity “Sunnongdan" in the sentence. A trigger-
labeled NER dataset, DT = {(xi,yi, T (xi,yi))},
consists of examples in a labeled NER dataset DL
with their associated entity triggers.

Problem Definition We focus on the problem
of how to automatically extract entity triggers to
create a trigger-labeled dataset DT from DL with-
out manual effort and to cost-effectively train a
NER model using DT . Here, we aim to achieve
better performance and robustness over existing
NER models using the same amount of training
instances. Moreover, to check the quality of the
automatically extracted triggers, we compare with
the model using human-labeled triggers.

3 Approach

AUTOTRIGGER is a two-stage architecture that
begins with an automatic trigger extraction stage
followed by a trigger interpolation network (TIN).
It automatically extracts and scores the importance
of entity trigger phrases in the first stage (Sec. 3.1)
and uses them in the later stage to train the NER
model (Sec. 3.2).

3.1 Automatic Trigger Extraction

Automatic trigger extraction is the first stage of our
AUTOTRIGGER framework. Different from prior
works on extracting rationales and explanations
for sentence classification (Ribeiro et al., 2016; Li
et al., 2016b), we look to extract triggers for ex-
plaining the detection (occurrence) of an entity in
the sentence. In our study, we extend the sampling
and occlusion (SOC) algorithm (Jin et al., 2020),
a feature attribution algorithm for post-hoc model
explanation, to extract entity triggers. Here, we

USER

SOC

Entity-Labeled
Corpus 𝑫𝑳

Entity Token 
Classifier 𝑴𝒕

Human Feedback

T𝐫𝐢𝐠𝐠𝐞𝐫 𝐈𝐧𝐭𝐞𝐫𝐩𝐨𝐥𝐚𝐭𝐢𝐨𝐧
𝐍𝐞𝐭𝐰𝐨𝐫𝐤𝑴𝒏

Annotate

Train Scoring

Rank

Trigger-Labeled
Corpus 𝑫𝑻

Triggers Top-2 Triggers

Figure 3: Overview of the proposed AUTOTRIG-
GER. It trains an entity-token classifier Mt with
entity-labeled corpus DL and uses the sampling-and-
occlusion (SOC) algorithm to extract triggers. There
is a provision for leveraging human feedback in the
framework for refining automatically generated trig-
gers. Trigger Interpolation Network (TIN) learns the
NER model from the trigger-labeled corpus.

exploit a token classifier to model the score func-
tion of the target entity in the sentence and limit
the search space to a set of phrases from the con-
stituent parse tree. Specifically, given a labeled
NER corpus (xi,yi) ∈ DL, we consider four main
steps for entity trigger extraction: 1) generating a
set of candidate phrases P , 2) constructing entity
token classifierMt, 3) trigger phrase scoring, and
4) trigger phase selection.

Candidate Generation Given a labeled sen-
tence (xi,yi), we obtain its constituency parse tree
and consider the set of phrase nodesP from the tree
as trigger candidates (see Figure. 4 for an illustra-
tion with examples). SOC aims to compute context-
independent phrase-level importance for sequence
classification tasks such as sentiment analysis and
relation extraction (Jin et al., 2020). It uses agglom-
erative clustering (Singh et al., 2019) to effectively
compute the phrase-level importance without evalu-
ating all the possible phrases in the sentence. Here,
we provide pre-defined hierarchy for limiting the
search space to a set of phrases from the constituent
parse tree. Specifically, given a sentence instance
xi ∈ DL and a target entity mentioned in this sen-
tence e ∈ xi, we generate a set of phrase candidate
P = {pi}, where pi = (ws, we). Here (ws, we)
denote the start and end index of the phrase span
pi. To generate P , we parse the input sentence
xi using an off-the-shelf constituency parser 1 and

1https://stanfordnlp.github.io/CoreNLP/parse.html
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collect phrase nodes in the parse tree as the set
of candidate phrases P . To avoid including target
entity as an entity trigger, we discard phrases that
contain the target entity, i.e., {pj|e ∈ pj}.
Entity Token Classifier Construction In order
to apply SOC to the sequence labeling task, we
propose a way to derive the importance score of
the phrase p specific to the input sentence x and
target entity e. To achieve this, we use a token
classification model Mt to generate prediction
scores in the label space (e.g., probability for tar-
get class of a token). Given an input sentence
xi = [x

(1)
i , x

(2)
i , . . . x

(n)
i ], Mt classifies each to-

ken x(j)i to the named entity tag y(j)i ∈ Y where
Y is a predefined set of named entity tags such as
B-PER, I-PER and O. We learnMt with labeled
corpus DL to fit a probability distribution P(y|x).
Then, we can derive the prediction score function
s towards the target entity e which is computed as
the average conditional probability over tokens of
the target entity x(j) ∈ e as follows:

s(x, e) =
1

|e|
∑

x(j)∈e
P(y(j)|x(j)). (1)

Phrase Scoring. Once we have the set of candi-
date phrases P for the given input instance (xi, yi),
we aim to measure the score of each of the candi-
date phrase p w.r.t the target entity e. We use the
score function s of theMt to measure the impor-
tance score of each phrase p. Here, we have two
steps: (1) input occlusion, (2) context sampling.

Input occlusion (Li et al., 2016b) computes the
importance of p specific to the entity e in the input
x by measuring the prediction difference caused by
replacing the phrase p with padding tokens 0p. We
use s (x−p, e;0p) to denote the model prediction
score after replacing the masked-out context x−p
with padding tokens 0p:

φ(p,x, e) = s(x, e)− s (x−p, e;0p) . (2)

However, the importance score φ(p,x, e) from
equation 2 has a challenge that it is difficult to
model the direct impact of p towards e since the
score is dependent on the context words around p.
For example, in Figure. 4, p (“the next mayor”) is
replaced by pad tokens to compute its importance
towards the entity e (“Cary Moon”). However,
the importance score of p is dependent on context
words around p (“won’t be ... of Seattle”). To
compute the context independent importance score,

Phrase Candidates : Green Nodes

B-PER I-PER

My preferred
PRP VBD

NP

S

candidate
NN

is
VBZ

VP

NP

NNP NNP
Cary Moon

she
PRP

NP

S

IN

VP

NP

wo n’t
MD RB VP

VB
be

NP

PPNP

the next
DT JJ

mayor
NN

of

Seattle
NNP

My preferred candidate is Cary Moon,  but she won’t be the next mayor of Seattle.

Phrase Importance 
∅(“𝒕𝒉𝒆 𝒏𝒆𝒙𝒕𝒎𝒂𝒚𝒐𝒓”, Χ, “Cary Moon”)

My preferred candidate is Cary Moon,  
but she will be the next mayor of LA.

Input OcclusionContext Sampling

My preferred candidate is Cary Moon,  
but she will be ___<pad>___ of LA.

Entity Token Classifier
Prediction Difference

Χ ∶

My preferred candidate is Cary Moon,  but she won’t be the next mayor of Seattle.Χ ∶

Constituency Parse Tree

Figure 4: Overview of the Sampling and Occlu-
sion (SOC). It creates a set of phrase candidates with
phrase nodes of the constituency parse tree, and then
computes the phrase importance by average prediction
difference between context sampled sentences and its
phrase-masked sentences. Note that the entity mention
“Cary Moon” is not included as candidate.

SOC proposes context sampling that samples the
context words around the phrase p and computes
the average prediction differences over the sam-
ples. Specifically, it samples the context words x̂δ
from a language model p(x̂δ|x−δ) that is trained
on DL, and obtains a set of context word replace-
ments S. Here, we use 20 replacements. For each
replacement x̂δ ∈ S, we measure the prediction
difference caused by replacing the phrase p with
padding tokens. We take the average of these pre-
diction differences to be the context-independent
score φ(p,x, e) of the phrase p, as expressed in
equation 3:

1
|S|
∑

x̂δ∈S
[
s (x−δ, e; x̂δ)− s

(
x−{δ,p}, e; x̂δ;0p

)]
(3)

In Figure. 4, context words “won’t be” and “of
Seattle” around the phrase “the next mayor” are
replaced into “will be” and “of LA” which are sam-
pled from the language model. Then, the classifier
computes the prediction difference between the
sampled sentences with and without the phrase.

Phrase Selection The importance score
φ(p,x, e) for phrase p is the degree to which p
determines the correct entity type of target entity e.
After obtaining φ(p,x, e) for all phrase candidates
P = {pi}, we pick the top k candidate phrases
with the highest importance score as the entity
triggers, where k is a hyperparameter. Specifically,
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Figure 5: Overview of the Trigger Interpolation
Network (TIN). Given an input sentence we create
an Entity-masked sentence and a Trigger-masked Sen-
tence. Then we interpolate token level representations
hi and h′i to create new hidden state representation, h̃i.
Interpolated hidden representations are fed to a CRF.

for each input instance (xi,yi) ∈ DL, we pick
the top k candidate phrases as entity triggers
T (xi,yi) per each entity e ∈ xi to create a form
(xi,yi, T (xi,yi)) ∈ DT . Here, we search for the
best k out of [1, 2, 3, 5, 7, 10] (See Figure 12).

3.2 Trigger Interpolation Network (TIN)

The second stage of AUTOTRIGGER is the trigger
interpolation network (TIN), which we define as a
neural network that learns from a trigger-labeled
dataset DT consisting of a set of instances of the
form {(x,y, T (x,y))}. The main idea behind the
model is to combine two representations obtained
from the sentence with target entity tokens and
automatically extracted entity triggers. In one rep-
resentation, the entity tokens are masked and we
hypothesize that it forces the model to infer the
entity boundaries and types by leveraging the con-
textual clues. However, some of the entity tokens
itself may already have enough information to in-
fer the entity type without any contextual clues.
Thus, in another representation, the entity tokens
become the predominant source of information for
classifying the entity as we mask out the triggers.

TIN encodes the input sequence x with a trans-
former encoder F (.; θ) and feeds the hidden rep-
resentations h to a CRF tagger. Our proposal is
to create two different representations of a token
in a sequence and interpolate (mixup) them. By
doing this, we expect the model to predict less con-
fidently on interpolations of hidden representations,
which eventually make model be robust to both
entity-perturbed and trigger-perturbed sentences.

As shown in Figure 5, we first create entity-masked
sentence x−e and trigger-masked sentence x−t for
a given input instance {(x,y, T (x,y))}, and then
compute the interpolations in the output space of
transformer encoder F (.; θ) as follows:

h = F (x−e; θ) ,h′ = F (x−t; θ)

h̃ = λh+ (1− λ)h′.
(4)

Here, the transformer encoder F (.; θ) for both x−e
and x−t is sharing the weights. Then we use inter-
polated hidden representations h̃ as the input to the
final CRF tagger.

When inferring tags on unlabeled sentences with-
out entity triggers, we expect the trained F (.; θ) to
generate representation from the input x ∈ Du,
which can generalize well to unseen entities given
the seen contextual clues, and seen entities given
new surrounding context. We then use it as an input
to the final CRF tagger to get tag predictions.

Computational Cost. The computation over-
head of training TIN is caused by forwarding input
two times into the transformers to get two different
representations, which is 1.5X larger than vanilla
models (e.g. BERT+TIN+CRF vs. BERT+CRF). How-
ever, the overhead of inference is same as vanilla
models since the inference steps are same.

4 Experimental Setup

In this section we describe datasets along with the
baseline methods and experiment settings.

4.1 Datasets
We consider three NER datasets as target tasks. We
consider two datasets for a bio-medical domain:
BC5CDR (Li et al., 2016a), JNLPBA (Collier and
Kim, 2004) and one dataset for a general domain:
CoNLL03 (Tjong Kim Sang, 2002). For BC5CDR
and CoNLL03, we also have crowd-sourced entity
trigger dataset DHT (Lin et al., 2020) to compare
the quality of our automatically extracted triggers
with. They randomly sample 20% of the data from
each of the train sets and ask crowd-workers to
select triggers for entities in those train sets. Details
on datasets are discussed in Appendix A.3.

4.2 Compared Methods
To show the effectiveness of entity triggers, we
compare baseline models that learn from entity-
labeled dataset DL and trigger-labeled dataset DT
respectively. Here, we compare models under
three different embedders: GloVE (Pennington
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et al., 2014), BERT (Devlin et al., 2019), and
RoBERTa (Liu et al., 2019b). We don’t include few-
shot learning and semi-supervised learning due to
following reasons: (1) Few-shot learning (Yang and
Katiyar, 2020) is a N-way k-shot task that needs N
classes, each with k training examples. This setup
is restrictive because it requires a special sampling
strategy since the number of training examples for
the class must be fixed. (2) Semi-supervised learn-
ing (Peng et al., 2019; Shang et al., 2018; Yang
et al., 2018; Liu et al., 2019a) uses additional super-
visions and in-domain unlabeled data to augment
train data by weakly labeling, which is different
from our setup that only uses limited in-domain
labeled data.

Baselines without triggers We apply the follow-
ing standard models on DL: (1) BLSTM+CRF
first adopts bidirectional LSTM to encode word
embeddings into the representations. Then, it feeds
the representations into a linear layer to get label
scores, and put the scores into a CRF tagger to
predict the optimal path of entity tags; (2) CRF
considers word embeddings directly as the repre-
sentations and conducts the same process of (1).

Methods with Triggers We apply the following
models on DT : (1) BLSTM+TMN+CRF (Lin
et al., 2020) adopts the structured self-attention
layer (Lin et al., 2017) above the bidirectional
LSTM to encode the sentence and entity trigger
into vector representation respectively. It then
learns trigger representations that can be gener-
alized to unseen sentences to tag the named entity;
(2) TMN+CRF adopts the structured self-attention
layer directly above the embeddings, and conducts
the same process of (1); (3) TIN+CRF is the trig-
ger interpolation network with CRF layer.

5 Results and Analysis

Here we look into a series of analysis questions
as follows: (1) Can TIN with automatically ex-
tracted triggers improve the performance of exist-
ing transformer-based models? (2) Can TIN with
automatically extracted triggers generalize well on
the unseen entities? (3) Are automatically extracted
triggers work better than human-provided triggers?
(4) Can we improve the performance by asking
human to refine automatically extracted triggers?
We present experiment settings and details in Ap-
pendix A.1- A.2.
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Figure 6: Performance Comparison (F1-score) on
CoNLL03 and BC5CDR by small numbers of train data
instances (50, 100, 150, 200).

5.1 Performance Comparison
Here, we test all models by varying the amount
of training data from 20% to 100% to show the
impact of train data size. In Table 1, we report the
performance of the baseline approaches and our
model variants on three different datasets. Here
are findings: (1) BLSTM harms the performance of
transformer-based models while it works well with
GloVE embeddings; (2) Models that receive both
entities and triggers as input generally outperform
the entity-only baselines (See CRF vs. TIN+CRF,
TMN+CRF); (3) TIN outperforms TMN, which shows
that TIN is doing better leveraging entity triggers
for NER, and RoBERTa+TIN+CRF outperforms all
the baselines regardless of the amount of data that
is used to train it; (4) Comparing BERT+TIN+CRF
to BERT+CRF, we observe a performance drop in
CoNLL03. We further investigate this phenomenon
and find a large drop in F1 score (from 0.82 to 0.79)
for the MISC class from the BERT+TIN+CRF (See
Table 3), which shows that triggers may provide a
precision decreasing signal for the MISC type.

Performance in extreme label scarcity settings
We hypothesize that our models will have larger
performance gains in extreme label scarcity set-
tings, because of their ability to leverage additional
information from triggers which enables them to
reap more benefits from given training data. To
investigate this we observe the performance of our
models and baselines starting with only 50-200
sentences to train them. Figure 6 shows the per-
formance under the extreme label scarcity setting.
Here, TIN+CRF achieves large performance gain in
extremely low-resource setting. Specifically, we
observe over 50% relative gain compared to the
baseline for 50 training sentences.

Unseen entity generalization We hypothesize
that our framework can generalize well to unseen
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Embedder Method / Train set % BC5CDR JNLPBA CoNLL03

20% 40% 60% 80% 100% 20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

GloVE + BLSTM+CRF 71.92 76.29 79.04 80.72 81.07 66.36 69.31 71.25 71.90 72.79 85.06 88.33 88.98 89.84 90.72
+ BLSTM+TMN+CRF 74.70 78.15 80.57 82.77 83.37 66.78 70.23 71.41 71.7 72.55 87.46 88.88 89.39 90.16 90.24

BERT + BLSTM+CRF 44.51 65.88 74.23 80.65 82.56 59.26 69.39 72.04 73.24 73.26 68.60 87.09 89.42 90.20 90.86
+ CRF 75.30 80.52 82.94 84.00 85.02 69.02 70.84 72.58 73.06 73.18 88.61 90.20 91.10 91.37 91.48
+ BLSTM+TMN+CRF 74.98 78.24 82.52 82.89 84.38 69.56 71.36 72.26 72.92 73.34 86.88 88.78 90.05 90.35 90.99
+ TMN+CRF 75.07 80.14 82.57 84.03 85.49 69.25 71.34 71.70 72.98 73.38 88.39 89.34 90.24 90.83 91.06
+ TIN+CRF (Ours) 77.37 81.40 83.23 85.25 85.74 70.48 72.10 72.81 73.91 74.83 87.84 89.64 89.71 90.39 90.75

RoBERTa + CRF 82.85 84.63 86.08 86.44 87.10 71.07 72.19 73.32 73.50 75.37 90.53 91.63 91.90 92.06 93.09
+ BLSTM+TMN+CRF 83.00 84.89 86.16 86.69 87.78 71.51 72.91 73.43 74.65 75.52 90.76 91.50 91.84 92.22 92.47
+ TMN+CRF 83.89 85.56 86.65 87.31 87.78 71.79 72.87 73.10 74.19 75.13 90.82 91.47 92.32 92.42 92.57
+ TIN+CRF (Ours) 84.45 86.09 87.5 87.84 88.09 73.12 74.23 74.45 74.96 76.98 91.37 92.03 92.63 92.51 93.24

Table 1: Performance comparison (F1-score) by different percentage usage of the train data. For TMN and TIN baselines, we use
the top 2 candidate phrases from SOC with constituency parsing as triggers. Best models under each embedder are bold.

Encoder Method / Train set % BC5CDR JNLPBA CoNLL03

20% 40% 60% 80% 100% 20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

BERT + CRF 63.93 67.95 70.36 73.43 73.66 56.81 57.00 58.43 59.49 60.11 78.65 82.32 82.24 82.90 83.36
+ TMN+CRF 65.37 68.51 68.80 72.17 73.46 56.39 56.98 58.14 59.01 59.98 80.18 82.39 82.16 82.46 83.93
+ TIN+CRF (Ours) 67.10 69.21 72.32 73.81 74.65 57.19 58.73 59.67 59.90 60.36 81.52 82.82 83.01 83.72 84.66

RoBERTa + CRF 72.16 74.55 75.92 76.39 76.17 58.88 60.05 61.22 62.32 63.71 82.39 84.06 84.50 84.98 85.61
+ TMN+CRF 73.11 74.27 76.13 76.18 76.29 59.62 60.73 61.17 62.44 62.98 83.30 85.30 85.71 85.47 85.97
+ TIN+CRF (Ours) 73.65 75.78 77.14 77.34 76.90 60.85 61.50 62.37 63.55 64.11 84.11 84.82 85.84 85.31 87.38

Table 2: Performance comparison (F1-score) on filtered test set by different percentage usage of the train data. Filtered test
set is the set which the entities did not appear in the train and development sets. For TMN and TIN baselines, we use the top 2
candidate phrases from SOC with constituency parsing as triggers. Best models under each embedder are bold.

Type BERT+CRF BERT+TIN+CRF

Precision Recall F1-score Precision Recall F1-score

LOC 0.92 0.94 0.93 0.91 0.93 0.92
MISC 0.81 0.82 0.82 0.75 0.84 0.79
ORG 0.88 0.90 0.89 0.86 0.90 0.88
PER 0.97 0.96 0.96 0.96 0.96 0.96

Table 3: Classification Report (F1-score) of BERT+CRF
and BERT+TIN+CRF on CoNLL03.

entities not presented in the training data, attribute
to prior knowledge of contextual clues. To evalu-
ate the generalizability of the model, we create a
filtered test set which contains instances with only
entities that do not appear in the train data. Ta-
ble 6 shows the performance of model variants on
the filtered test set by different amount of training
data. Here, TIN+CRF shows its effectiveness on pre-
dicting unseen entities, and much more when we
compare under the small amount of training data.

5.2 Human-in-the-loop Trigger Extraction
We aim to study whether human participation in
trigger creation could be helpful. First, we com-
pare the performance of model variants trained with
automatically extracted triggers (auto) and human-
provided triggers (human), and check its label effi-
ciency. Then, we conduct a small-scale experiment
of trigger refinement by human annotators.
Human-curated vs. Auto Triggers. We useDHT
as the source of human triggers and use the same
dataset to extract auto triggers with SOC algorithm
(see Appendix Table 6). We then sample 25%, 50%,

and 75% of the instances from both to construct 5%,
10%, 15% percent of our experimentation dataset
(since DHT is a 20% random sample from DL).
One big difference between human and auto is
whether the triggers are contiguous token spans
or not. For example, humans are asked to anno-
tate a group of word tokens that represent “general”
phrase like “had dinner at” from the sentence “We
had a fantastic dinner at Sunnongdan.”, while a
set of phrase candidates P from the constituency
parse tree can only contain the contiguous token
spans. Figure. 7 shows examples of human and
auto. These examples are from CoNLL03, and
auto are extracted from the entity token classifier
which is trained on 20% of the train data. Tab. 4
shows that auto are comparable or even stronger
than human even though created with no human
labeling. The success of auto triggers might be
that their impact on the entity labeling is directly
at the model level, while human triggers, even if
they are meaningful on the surface level, might
have less impact in determining the entity label
as they do not mimic what the model thinks. We
manually inspect the auto and human and found
that auto are consecutive while human are usually
non-consecutive. Even though there could be many
reasons for the sub-optimal performance of human
selected triggers available in the dataset (Lin et al.,
2020), we do not rule out the possibility of leverag-
ing human expertise to help. Further case examples
are presented in Appendix A.4.
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China , which has long opposed all Taipei 
efforts to gain greater international 
recognition , was infuriated by a visit to 
Ukraine this week by Taiwanese Vice 
President Lien .

China , which has long opposed all Taipei 
efforts to gain greater international 
recognition , was infuriated by a visit to 
Ukraine this week by Taiwanese Vice 
President Lien .

Spanish Farm Minister Loyola de Palacio had 
earlier accused Fischler at an EU farm ministers ' 
meeting of causing unjustified alarm through " 
dangerous generalisation . "

Spanish Farm Minister Loyola de Palacio had 
earlier accused Fischler at an EU farm ministers ' 
meeting of causing unjustified alarm through " 
dangerous generalisation . "

The Greek socialist party 's executive bureau
gave the green light to Prime Minister Costas 
Simitis to call snap elections , its general 
secretary Costas Skandalidis told reporters .

The Greek socialist party 's executive bureau 
gave the green light to Prime Minister Costas 
Simitis to call snap elections , its general 
secretary Costas Skandalidis told reporters .

An Iranian exile group based in Iraq vowed on 
Thursday to extend support to Iran 's Kurdish
rebels after they were attacked by Iranian 
troops deep inside Iraq last month .

An Iranian exile group based in Iraq vowed on 
Thursday to extend support to Iran 's Kurdish 
rebels after they were attacked by Iranian 
troops deep inside Iraq last month .

Figure 7: Top 2 highlighted auto and human triggers
corresponding to the boldfaced and underlined entity.

BC5CDR BLSTM+TMN+CRF BERT+TIN+CRF RoBERTa+TIN+CRF

Percentage / Model human auto human auto human auto

5% 26.96 24.70 66.20 66.50 75.79 76.92
10% 46.24 43.54 71.25 71.84 80.92 81.63
15% 51.29 50.44 73.88 74.11 83.54 83.87
20% 56.28 54.91 75.97 76.58 83.88 84.17

CoNLL03 BLSTM+TMN+CRF BERT+TIN+CRF RoBERTa+TIN+CRF

Percentage / Model human auto human auto human auto

5% 56.39 57.95 78.17 78.56 84.72 85.71
10% 61.89 66.58 81.67 82.19 87.80 88.12
15% 67.48 69.41 83.67 85.13 88.40 89.68
20% 71.11 74.43 84.88 85.58 89.68 90.21

Table 4: Performance comparison (F1-score) of TMN
and TIN with human and auto triggers.

Efficiency of Human-curated vs. Auto Triggers.
We conduct a study to measure how trigger extrac-
tion by human affects labeling efficiency. First,
we found that labeling triggers along with the en-
tities is 1.5 times slower than labeling the entities
only. Given this observation, we compare the per-
formance between TIN models with human and
auto by holding annotation time constant. We
present the study in Figure. 8. Each marker on
the x-axis of the plots indicate a certain annota-
tion time, which is represented by approximate
time. First, we could find that if we ask human to
get triggers from scratch, it may not work better
(See RoBERTa+CRF vs. RoBERTa+TIN+CRF+human).
However, if we use auto triggers, we could
achieve better performance and label efficiency
(See RoBERTa+TIN+CRF+auto).

Human-in-the-loop Trigger Refinement. In pre-
vious study, we could find that asking human to
annotate triggers from the scratch is not efficient.
Here, we further think about asking human to re-
fine auto triggers to reflect human decisions in a
less labor intensive way. For all our previous ex-
periments, we use the top two auto triggers, which
limits our capacity to make the best use of them. In
this experiment, given a training set with labeled en-
tities, we extract five auto triggers (Sec. 3.1), show
them to a human in a minimal interface, and ask for
relevance judgments (relevant/non-relevant). We
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Figure 8: Performance Comparison (F1-score) by an-
notators’ labeling time cost.
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Figure 9: Performance Comparison (F1-score) on
BC5CDR by different numbers of train data (50, 100,
150, 200) with auto and human-refined auto triggers.

judge relevance of the automatically extracted trig-
gers for entities in 50 - 200 sentences. Figure. 9
shows that we get an additional performance boost
with more than 50 training sentences, when human-
refined auto triggers are used. It shows promise for
blending human expertise with auto triggers.

6 Conclusion

In this paper, we proposed a novel two-stage frame-
work to generate and leverage explanations for
named entity recognition. It automatically extracts
essentially human-readable clues in the text, which
is called entity triggers, by sampling and occlusion
algorithm and leverages these triggers with trigger
interpolation network. The model effective learns
the prior knowledge to infer the entity boundaries
and types by leveraging the contextual clues. We
showed that our framework, named AUTOTRIG-
GER, successfully generates entity triggers and
effectively leverages them to improve the overall
performance, especially in the label scarcity set-
ting for technical domains where domain-expert
annotations are very limited due to the high cost.
Moreover, it shows better generalizability on un-
seen entities that do not appear in training data. We
believe that this work opens up future works that
can be extended to semi-supervised learning or dis-
tant supervised learning which can effectively use
automatically extracted triggers to weakly label the
unlabeled corpus.
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Limitations

AUTOTRIGGER could reduce human efforts on
collecting rationales for NER to improve the label
efficiency and unseen entity generalizability of the
model. However, it has a limitation that the time
cost of extracting entity triggers is pretty expensive
(i.e., (1) train entity token classifier; (2) run con-
stituency parsing to retrieve trigger candidates; and
(3) run post-hoc explanation to assign importance
score to each candidate). This limitation raises
open questions about whether reducing total train-
ing time cost or human effort is more efficient and
important.
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A Appendix

A.1 Experiment Settings

We implement all the baselines using Py-
Torch (Paszke et al., 2019) and HuggingFace (Wolf
et al., 2020). We set the batch size and learning rate
to 10 and 0.01 for GloVE embedder models (i.e.,
GloVE+BLSTM+CRF, GloVE+TMN+CRF) while we set
30 and 2e-5 for all other transformer embedder
models (See Table 5). Note that for experiments in
extreme low resource setting (Sec. 5.1), we set the
batch size to 4 for training the models due to the
extremely limited training data.

Trigger Matching Network For transformer-
based TMN (i.e., BERT+BLSTM+TMN+CRF,
BERT+TMN+CRF, etc.) we re-implement since
the original repository does not support trans-
former embedders.

Trigger Interpolation Network For our TIN,
we set the interpolation λ to 0.5.

Automatic Trigger Extraction For automatic
trigger extraction stage, we build the en-
tity token classifier with cased BERT-base en-
coder for BERT+TIN+CRF and RoBERTa-large for
RoBERTa+TIN+CRF. The entity token classifier con-
sists of the transformer encoder to encode each
word token followed by a token-level linear layer
that classifies each token to an entity tag. We use a
batch size of 16 and learning rate of 1e-4 for train-
ing. For experiments under extreme low resource
setting, we set batch size to 4 similar to the TIN
models. To run context sampling in the SOC algo-
rithm, we use a LSTM language model which is
pre-trained on the training data.

A.2 Evaluation Metrics

We evaluate our framework by recall (R), preci-
sion (P), and F1-score (F1), though only report F1
in these experiments. Recall (R) is the number
of correctly recognized named entities divided by
the total number of named entities in the corpus,
and precision (P) is the number of correctly recog-
nized named entities divided by the total number
of named entities recognized by the framework. A
recognized entity is correct if both its boundary and
its entity type are exact matches to the annotations
in the test data. F1-score is the harmonic mean of
precision and recall.

Embedder GloVE Transformer

BERT RoBERTa

batch size 10 30 30
learning rate 0.01 2e-5 2e-5

epochs 10 10 10
LSTM hidden dimension 200 - -

Table 5: Experimental setting details.

A.3 Data Statistics

BC5CDR (Li et al., 2016a) is a bio-medical do-
main NER dataset from BioCreative V Chemical
and Disease Mention Recognition task. It has 1,500
articles containing 15,935 CHEMICAL and 12,852
DISEASE mentions. JNLPBA (Collier and Kim,
2004) is a bio-medical domain NER dataset for
the Joint Workshop on NLP in Biomedicine and its
Application Shared task. It is widely used for evalu-
ating multiclass biomedical entity taggers and it has
14.6K sentences containing PROTEIN, DNA, RNA,
CELL LINE and CELL TYPE. CoNLL03 (Tjong
Kim Sang, 2002) is a general domain NER dataset
that has 22K sentences containing four types of
general named entities: LOCATION, PERSON, OR-
GANIZATION, and MISCELLANEOUS entities that
do not belong in any of the three categories.

A.4 Performance Analysis

Trigger Candidate Variants. In Sec 3.1, we first
constructed a set of phrase candidates P for which
the importance score is computed. To show the
efficacy of constituency parsing for constructing
trigger candidates, we conduct an ablation study
on different variants of it. For the construction,
we compare three variants: (1) RS is random selec-
tion. It randomly chooses n contiguous tokens to
be grouped as a phrase for k times. Consequently,
P is composed of k random spans. (2) DP is de-
pendency parsing. Here, to generate P , we first
parse the input sentence using dependency parsing.
Then, we traverse from the position of entity men-
tion in the input sentence using depth-first-traversal
and get a list of tokens visited for each hop up to
2-hops. Finally, for each hop, we convert the list
of tokens to a list of phrases by merging the tokens
that are contiguous into a single phrase. (3) CP is
constituency parsing, which is our current method
(see Sec. 3.1). We expect each variant to provide
different syntactic signals to our framework. Fig-
ure 10 shows the model’s performance with triggers
that have been selected from different sets of phrase
candidates. As we can see, constituency parsing
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Figure 10: Performance comparison (F1-score) of
entity+trigger baselines on 20% training dataset of
CoNLL03 and BC5CDR with different trigger candi-
date variants.
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Figure 11: Performance comparison (F1-score) of
entity+trigger baselines on 20% training dataset of
BC5CDR with different interpolation weight λ.

yields consistently better performance by providing
better quality of syntactic signals than others.
Sensitivity Analysis of interpolation hyper-
parameter (λ). In Sec 3.2, we linearly interpo-
lated two different sources of knowledge by weight
λ 0.5. To show how the weight λ affects the perfor-
mance, we conduct an ablation study on different
λ distribution. As we can see from Figure. 11, the
framework achieves the highest performance when
λ is set to 0.5. It supports that the model achieves
the best when we interpolate the entity and trigger
knowledge in equal.

Effect of number of triggers In Sec. 3.1, we
pick the top k candidate phrases with the highest
importance score as the entity triggers after obtain-
ing the importance score for all phrase candidates.
For our main experiment, we use top 2 candidate
phrases (see Table 1). To show how the number
of triggers affects the performance, we conduct an
ablation study on model performance by different
k. As we can see from Figure. 12, the framework
achieves the highest performance when we use top
2 phrase candidates as triggers.

A.5 Related Works

NER with Additional Supervision Previous and
recent research has shown that encoding syntactic
information into NER models compensate for the
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Figure 12: Performance comparison (F1-score) of
entity+trigger baselines on 20% training dataset of
BC5CDR with different number of triggers k.

lack of labeled data (Tian et al., 2020). The im-
provement is consistent across word embedding
based encoding (e.g. biLSTM) as well as un-
supervised language model based encoding (e.g.
BioBERT (Lee et al., 2020b)) of the given text. Typ-
ically, the external information that is encoded in-
clude POS labels, syntactic constituents, and depen-
dency relations (Nie et al., 2020; Tian et al., 2020).
The general mechanism to include linguistic infor-
mation into NER model is to represent them using
word vectors and then concatenate those represen-
tations with the original text representation. This
approach fails to identify the importance of differ-
ent types of syntactic information. Recently, Tian
et al. (2020) and Nie et al. (2020) both showed that
key-value memory network (KVMN) (Miller et al.,
2016) are effective in capturing importance of lin-
guistic information arising from different sources.
KVMN has been shown to be effective in leverag-
ing extra information, such as knowledge base en-
tities, to improve question answering tasks. Before
applying KVMN, contextual information about a
token is encoded as the key and syntactic informa-
tion are encoded as values. Finally, weights over
the values are computed using the keys to obtain
a representation of the values and concatenate it
with the context features. Our approach uses token
level features extracted by an explanation gener-
ation model, but later train to be able to pick-up
those explanations directly from the text at infer-
ence time.

Limited Training Data for NER. The simplest
way to approach the problem of limited data for
NER is to use dictionary based weak supervision.
An entity dictionary is used to retrieves unlabeled
sentences from a corpus and weakly label them to
create additional noisy data. This approach suf-
fers from low recall as the training data covers a
limited number of entities. The models tend to

3023



Original Sentence / Entity Human Trigger Auto Trigger

Only Seat and Porsche had fewer registrations in 
July 1996 compared to last year 's July .
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July 1996 compared to last year 's July .
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Speaking only hours after Chinese state media said 
the time was right to engage in political talks with 
Taiwan , Foreign Ministry spokesman Shen 
Guofang told Reuters : " The necessary 
atmosphere for the opening of the talks has been 
disrupted by the Taiwan authorities . "
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They included a black lacquer and mother of pearl 
inlaid box used by Hendrix to store his drugs , 
which an anonymous Australian purchaser bought 
for 5,060 pounds ( $ 7,845 ) .
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They included a black lacquer and mother of pearl 
inlaid box used by Hendrix to store his drugs , 
which an anonymous Australian purchaser bought 
for 5,060 pounds ( $ 7,845 ) .

A Florida restaurant paid 10,925 pounds 
( $ 16,935 ) for the draft of " Ai n't no telling " , 
which Hendrix penned on a piece of London hotel 
stationery in late 1966 .

A Florida restaurant paid 10,925 pounds 
( $ 16,935 ) for the draft of " Ai n't no telling " , 
which Hendrix penned on a piece of London hotel 
stationery in late 1966 .

A Florida restaurant paid 10,925 pounds 
( $ 16,935 ) for the draft of " Ai n't no telling " , 
which Hendrix penned on a piece of London hotel
stationery in late 1966 .

Figure 13: Case examples of auto trigger and human trigger. Entities are bold and underlined with red color, and
its triggers are highlighted. Different triggers are color-coded.

bias towards the surface form of the entities it has
observed in the dictionary. There has also been ap-
proaches to retrieve sentences from a large corpus
that are similar to sentences in the low-resource
corpus to enrich it. These self-training approaches
have been shown to be effective both in extremely
limited data (Foley et al., 2018; Sarwar et al., 2018)
as well as limited data scenario (Du et al., 2020).
Even though these data enhancement approaches
explore a corpus to find related data cases, they
do not exploit the explanation-based signals that is
available within the limited data.

Learning from Explanations. Recent works on
Explainable AI are primarily focused on debugging
the black box models by probing internal represen-
tations (Adi et al., 2017; Conneau et al., 2018),
testing model behavior using challenge sets (Mc-
Coy et al., 2019; Gardner et al., 2020; Ribeiro et al.,
2020), or analyzing an impact of input examples by
input perturbations or influence function looking
at input examples (Ribeiro et al., 2016; Koh and
Liang, 2017). However, for an explanation of the
model to be effective, it must provide not only the
reasons for the model’s prediction but also sugges-
tions for corresponding actions in order to achieve
an objective. Efforts to cope with this issue by
incorporating human explanations into the model
are called Explanation-based learning (DeJong and
Mooney, 2004). These works are aiming to exploit
generalized explanations for drawing inferences
from unlabeled data while maintaining model trans-
parency. Most prior works on explanation-based
learning are mainly focused on facilitating logical
rules as an explanation. They use such rules to

create weak supervision (Ratner et al., 2017) and
regularize posterior (Hu et al., 2016, 2017). An-
other form of explanations can be specific words
in the sentence which aligns to our work. Notable
work in this line asks annotators to highlight im-
portant words, then learn a generative model over
parameters given these rationales (Zaidan and Eis-
ner, 2008).
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Dataset Entity Type Original DL Crowd-sourced trigger DHT
# of Entities # of Entities # of Human Triggers

CONLL 2003 PER 6,599 1,608 3,445
ORG 6,320 958 1,970
MISC 3,437 787 2,057
LOC 7,139 1,781 3,456

Total 23,495 5,134 10,938

BC5CDR DISEASE 4,181 906 2,130
CHEMICAL 5,202 1,085 1,640

Total 9,383 1,991 3,770

JNLPBA PROTEIN 27,802 - -
DNA 8,480 - -
RNA 843 - -

CELL LINE 3,429 - -
CELL TYPE 6,191 - -

Total 46,745 - -

Table 6: Train data statistics.
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Abstract

In this paper, we present TETRIS, a new task
of Goal-Oriented Script Completion. Unlike
previous work, it considers a more realistic and
general setting, where the input includes not
only the goal but also additional user context,
including preferences and history. To address
this problem, we propose a novel approach,
which uses two techniques to improve perfor-
mance: (1) concept prompting, and (2) script-
oriented contrastive learning that addresses step
repetition and hallucination problems. On our
WikiHow-based dataset, we find that both meth-
ods improve performance.

1 Introduction

A Goal-Oriented Script refers to a sequence of
events that describe some stereotypical activities
for achieving a specified goal (Feigenbaum et al.,
1981; Lyu et al., 2021). It is important to study
how to automatically construct instructional scripts
because it enables many high-impact applications
such as robot action planning (Conti et al., 2020;
Mohanan and Salgoankar, 2018), causal reason-
ing (Guo et al., 2020), and task-oriented dialogue
generation (Chen et al., 2017). While previous
work has shown that neural models are capable
of constructing the entire script given a goal (Lyu
et al., 2021; Sakaguchi et al., 2021), their proposed
tasks are highly restrictive and based on overly sim-
plified assumptions about the application because it
ignored both the usage context (e.g., what is a pre-
ferred way of solving the problem, and what steps
have been executed already) and the variable per-
sonal preferences that a user may have (e.g., a goal
might need be achieved in different ways). Take
“Make Eggless Cupcakes” as an example, the user
might want to make it with different equipment
(e.g., by using a rice cooker instead of an oven)
or styles (e.g., to have some banana flavor), or the

https://github.com/chenkaisun/Tetris

Goal: Wash Linen Shirts

Added detergent 

I �lled a sink with cool water 

Wash the shirt by swishing it around in the sudsy water. 

Soak the shirt in the tub for 10-20 minutes. 

Rinse the shirt with water until all the suds are gone.

Washing by Hand 

Hang up your shirt and let it air-dry for the best results. 

History

Preference

Figure 1: An example illustrating the task. The input
consists of a specified goal (e.g., wash line shirts), an op-
tional preference (e.g., washing by hand), and a history
of steps. The model is asked to generate the remaining
steps to achieve the goal.

user has already completed some steps but would
like to seek information on what to proceed next; a
machine learning model trained on goal-to-script
tasks as done in the existing work cannot adaptively
provide solutions under such situations.

We address the limitations of the previous task
formulation and propose TETRIS, a more general
task of goal-oriented script learning that allows
flexible usage scenarios, and therefore it accommo-
dates more realistic needs in downstream applica-
tions. More specifically, as shown in Figure 1, the
task considers both user preference and history as
input in addition to the goal. From a probabilistic
perspective, instead of modeling the problem with
p(Script|G), we model it as

p(Completion of Script|H,P,G)
=
∏

i

p(Scripti|Script<i,P,G)

where i indicates each step index in the script, P
denotes user preference,H indicates History, and
G abbreviates Goal.

To solve the new problem, we can use a com-
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monly used baseline method, i.e., using a seq2seq
model (Lewis et al., 2019; Raffel et al., 2019), but
a direct application of such a model would not
be optimal because the model’s understanding of
the context of the goal is inevitably shallow and
thus unlikely be able to fully exploit the extra con-
text information we have in the problem setup. To
address this limitation, we propose to enrich the
representation with additional task-specific con-
cepts so as to enable the model to understand the
context more deeply and leverage relevant knowl-
edge about those concepts encoded in the training
data the model has been exposed to. To obtain
task-specific knowledge needed for solving script
learning, we introduce TASK CONCEPT DICTIO-
NARY (TCD), a novel Key-Value Knowledge Base
(KB) that consists of task phrases as the key and
the associated concepts involved in the solution
process for each task as the value. The concepts
contain not only items needed for the task but also
concerned attributes (e.g., “thickness”) and inter-
mediate products during the process (e.g., “dough”
appears during Making Rice Noodles). In our work,
as a proof of concept, we automatically construct
the knowledge base from WikiHow1, one of the
most used and actively updated How-to websites.

Once we construct a TCD, it can be potentially
used for solving the problem of script completion
in many ways. In this paper, we focus on exploring
how to leverage it to acquire task-specific relevant
concepts for enriching the task representation used
in a baseline model for script completion. Specif-
ically, inspired by how humans use mind-map to
construct solutions, we introduce a novel "concept
prompting" framework that first acquires relevant
concepts from TCD and then connects them with
the input as a prompt for the language generator
to complete the script (Figure 2). We further in-
troduce two complementary ways of concept ac-
quisition. The first method retrieves concepts of
close neighbors from TCD. The second method in-
volves a generative model pretrained on TCD that
is capable of generating associated concepts for a
given goal, which can generalize beyond similar
cases. Discovering that the model often repeats
historical steps and hallucinates actions and enti-
ties, we also developed a script-oriented contrastive
learning approach to address these issues by con-
structing corresponding negative samples.

We perform experiments on a dataset con-

1www.wikihow.com

structed from WikiHow and find that our method
gives a consistent improvement on both automatic
and human evaluations in comparison to the base-
line, demonstrating the benefit of TCD for script
completion. Moreover, we find that concept acqui-
sition quality has a large impact on this task.

To summarize, we make the following contribu-
tions:

• We introduce TETRIS, the task of Goal-
Oriented Script Completion that asks a model
to complete the task based on a goal, and op-
tionally preference and history. The task poses
interesting new challenges and enables new
applications.

• We propose TASK CONCEPT DICTIONARY,
a novel task-specific knowledge base that
encodes knowledge about the associations
between goals and concepts and a method
composed of (1) extraction and integration
of the relevant concepts from TCD, and (2)
script learning-oriented contrastive learning
objective to enhance the correctness of model-
produced scripts.

• We experiment with the proposed methods on
the WikiHow dataset and show that our meth-
ods outperform the state-of-the-art baseline
models consistently, demonstrating the need
for task-specific knowledge and the benefit of
TCD for improving the performance of script
completion.

2 Task Formulation

We define a Goal-Oriented Script to include three
types of elements, Goal, Preference, and Step. A
Goal represents the task desired to be completed.
An optional Preference defines in what ways the
goal should be completed. A Step is one procedu-
ral event toward solving the task, conditioned on
a preference. In this work, given a goal G, a pref-
erence P , and a history of steps H already done,
we aim to generate the remaining steps that accom-
plish the goal in natural language. An example is
shown in Figure 1. For convenience, we use Gp to
denote the goal conditioned on P , and I to denote
the entire input (consisting of G, P , andH).

3 Task Concept Dictionary

As in virtually all NLP applications, a main tech-
nical challenge in solving the problem of script
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Concept Generator

Method 2:  
Generation 

{water, minutes, suds, ...}

How to Wash Linen Shirts

Solution Constructor

How to Wash Linen Shirts

Retriever

{minutes, detergent, water, ...}

How to Wash Linen Shirts

(Washing Your Shirts by Hand)

Add 1 teaspoon (4.9 mL) of mild detegent

<acquired concepts from either method> 

Soak the shirt

Rinse the shirt with clean water until all the suds are gone.

Hang up your shirt and let it air-dry for the best results.

Wash the shirt by swishing it around in the sudsy water.

As Training Data

Method 1:
Retrieval &

Aggregation 

How to
Wash
Clothes

How to Use
Washing
Machine

{tub, minutes, detergent, water, suds...}

   {power, washing cycles, 
    detergent, water, minutes...}

Intersection

As Database

(Washing Your Shirts by Hand)

Add 1 teaspoon (4.9 mL) of mild detegent

TCD

TYPE 1: CONCEPT REPLACEMENT

TYPE 3: PSEUDO TARGET

TYPE 2:  PARAPHRASED INSERTION

-shirt->socks

-Insert "Add some detegent"  
into the target

-Replace target with "Lift stubborn hair 
from fabric. Roll the hook-and-loop fastener... "

Negative Sampling 

Figure 2: Our goal-oriented script completion framework. The top part shows the methods for automatically
acquiring relevant concepts from the Task Concept Dictionary and negative sampling strategies. The bottom part
shows the solution constructor, which uses the acquired concepts as an informative prompt to complete the script.

completion is how to acquire the relevant knowl-
edge and leverage the knowledge to generate the
remaining steps in a script. In our case, a critical
question is: What kind of knowledge representation
is likely helpful for solving the script completion
problem? In our work, we make a hypothesis that
creating task-concept association would help the
model generalize better on script completion and
propose Task Concept Dictionary (TCD). In TCD,
each task key G from the collection of the keys DG
(e.g., “How to Modify the Navigation System of
an Acura”) is mapped to a set of relevant concepts
DGC during its solution process. Each c ∈ DGC can
be associated with DG in four types of roles of a
concept in that task: as preparation material needed
for achieving the task (like ingredients for recipe),
as attributes/aspects that need to be considered, as
intermediate entities generated during the process,
and others. In this work, we made a primal con-
struction of TCD (TCD.v0) as a proof of concept,
that is, the association types are not considered
between G and DGC .

The design of TCD is motivated by the observa-
tion that humans can often form solutions through
brainstorming and mind-mapping with knowledge
about the tasks and relevant concepts involved in
the solution process. Analogously, TCD is meant
to encode such task-specific knowledge about as-
sociations between goals and concepts so as to
assist downstream script learning applications. As
will be shown in our experiment results, TCD is

indeed beneficial for improving performance for
script completion by supplying useful relevant con-
cepts to a baseline model.

In general, TCD can be constructed by using
any instructional content on the Web. In our ex-
periments, to construct TCD.v0, we first collect all
articles from WikiHow. We chose to use WikiHow
as the seed corpus for its richness in user preference
data. Each article consists of a goal, a list of pref-
erences, and solution steps under each preference.
Let Gpji be the goal from an article i conditioned
on the j-th preference, we then proceed to augment

the set DG with a key Gpji , and augment DG
pj
i
C with

noun phrases (by using Spacy2 tagger for extrac-
tion) in the solution steps under preference j. We
create an association between goals and concepts
if they co-occur in the same article. We show the
statistics of TCD in Appendix A.1.

4 Method

In this section, we discuss our design of the method
for TETRIS. The framework contains two parts,
concept acquisition from TCD and solution con-
struction. The first part uses TCD as an aid to ac-
quire concepts relevant to the current input. Specif-
ically, we introduce two different methods (Fig-
ure 2), one based on retrieval of closely related
tasks and aggregation on the associated concepts,
while the other involves training a concept gen-
erator on TCD. As shown in Section 5, both of

2https://spacy.io/
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them have a positive impact on performance, yet
they also introduce different benefits. The concepts
fetched from TCD using either method form a con-
cept prompt, which is combined with the input I
(consisting of goal, preference, and history) as an
augmented input I∗. I∗ is then fed into an encoder-
decoder language modelMEncDec to complete the
script. Below we describe the two methods for the
generation of relevant concepts using TCD.

4.1 Concept Retrieval & Aggregation

The intuition of the retrieval method comes from
observing how human refers to their past knowl-
edge or the web for similar instructional sources
(even though they might not address the need ex-
actly) to achieve the current goal. For instance, if
someone has experience in baking cheesecake and
chocolate cake, it would be a breeze for them to
make a strawberry cake by adapting the knowledge
from their past experience. Building on the intu-
ition, we propose to use retrieval as an interpretable
way to retrieve similar tasks from the set of keys
DG in TCD and use their associated concepts to
aid the downstream script completion task.
Retrieval. First we encode Gp (i.e., the preference-
conditioned goal in I) into a dense vector eg with
an encoder model. We similarly encode DG into
{ej}|D

G|
j=1 . A cosine similarity score sgj is com-

puted between eg and each ej. The top-K re-
lated tasks NK are then retrieved based on the
scores. We further obtain a set of concepts Ci
for i-th task NK . In our experiment, we use
SBERT (Reimers and Gurevych, 2019) (pretrained
for semantic search) as the encoder. We use
FAISS (Johnson et al., 2019), an efficient similarity
search library, to perform top-k search.
Aggregation. The retrieved neighborhood of con-
cepts, however, may sometimes introduce contex-
tual noise (e.g., the grape and chocolate-related
concepts are not useful in strawberry cake bak-
ing). To tackle this issue, we additionally perform
operations on the retrieved concepts using the set
intersection. The concept set for an input I is com-
puted as Cs = ⋂i=K

i=1 Ci. We finally map the set Cs
into a list C, neglecting ordering information.

4.2 Concept Generation

While the retrieval method allows an explicit con-
cept acquisition process, it is limited by the width
of TCD. For example, if one would like to complete
a task from a domain that is not covered well by

F&E F&B C&V
# Train Samples 10600 2824 2214
# Dev Samples 3449 873 741
# Test Samples 3567 930 714
# Articles 2201 802 481
Avg # Tokens/Step 8.66 7.25 9.31
Avg # Steps/Article 10.42 8.66 10.41

Table 1: Statistics summarizing the WikiHow-based
dataset for TETRIS, where F&E indicates Food and
Entertainment, F&B indicates Finance and Business,
and C&V indicates Cars and Other Vehicles

TCD, the retrieved neighbors can introduce more
noise than help. To address this limitation of the
retrieval method and enhance generalization, we
propose to use language modeling as an alternative
way of acquiring concepts. Specifically, inspired by
the work (Bosselut et al., 2019), in which a concept
is generated given an edge type, we propose to di-
rectly generate a set of concepts relevant to a given
task and preference. We directly train the model
on TCD, where the model is asked to generate the
set DtC given each key t. In the inference stage, by
feeding Gp into the trained concept generator, we
can then obtain a list of concepts C.

4.3 Solution Constructor

In this step we aim to encode both of the informa-
tion from C (using either of the above methods) and
I to generate the remaining steps that accomplish
the goal specified in I . The TCD has enabled us to
enrich the representation by augmenting I with C
and such an augmented representation can then be
fed into any baseline script completion method to
enable the baseline method to have (indirect) access
to the knowledge encoded in TCD, thus improving
accuracy of script completion.
Input Formation. An encoder-decoder model
Mg is used for generation. In our experiment,
we choose BART (Lewis et al., 2019) as the base
model for its impressive performance on other NLP
tasks (Liu et al., 2021; Lewis et al., 2020). Clearly,
the framework accommodates any other models as
well. Given the list of concepts C generated from
either Section 4.1 or 4.2, we form the input If to
the encoder as “<s>Goal (Preference) ### C ###
</s>Step1</s>Step2...Step|H|</s>”, where <s> is
a special token to represent the start of the sentence
and </s> is for separation.
Model Generation. The input is fed through the
standard tokenization, embedding mapping, and
transformer to produce encoder hidden states. In
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Method BERTScore BARTScore BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGE 2

BART 86.76 -4.65 8.45 4.40 2.21 1.13 14.67 4.6
GPT2 86.75 -4.59 17.89 8.29 3.44 1.52 15.61 3.1

CRA-3 87.18 -4.41 22.59 10.95 4.86 2.10 18.07 4.9
CRA-1 86.74 -4.50 21.87 10.82 4.85 2.21 17.55 5.3

CG 86.86 -4.45 24.34 11.84 5.26 2.43 17.88 5.1
CG+SOCL 86.77 -4.47 26.18 13.15 6.18 3.07 18.11 5.7

CRA-2 87.21 -4.37 23.95 11.36 5.06 2.35 18.65 4.9
CRA-2+SOCL 87.19 -4.38 24.25 11.58 5.25 2.42 18.36 5.0

Method BERTScore BARTScore BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGE 2

BART 87.87 -4.37 16.61 8.31 4.67 2.92 18.92 5.6
GPT2 88.06 -4.30 17.13 7.27 3.58 2.10 18.61 3.6

CRA-3 88.37 -4.28 14.73 6.95 3.77 2.36 19.17 4.6
CRA-1 87.66 -4.37 17.68 8.57 4.63 2.87 18.95 5.4

CG 88.35 -4.17 22.87 10.97 6.09 3.94 20.88 5.4
CG+SOCL 88.44 -4.18 23.42 11.12 6.19 4.02 21.20 5.7

CRA-2 88.28 -4.26 18.78 9.00 4.94 3.18 19.73 5.2
CRA-2+SOCL 88.42 -4.20 20.48 10.04 5.80 3.96 20.89 6.3

Method BERTScore BARTScore BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGE 2

BART 87.95 -3.88 28.39 14.88 7.76 4.30 21.99 7.3
GPT2 87.88 -3.94 22.73 11.06 5.43 2.91 19.95 5.7

CRA-3 88.05 -3.89 26.43 14.18 7.62 4.32 21.39 7.4
CRA-1 87.94 -3.85 29.09 15.07 7.76 4.18 22.05 7.4

CG 87.84 -3.90 29.69 15.70 8.27 4.60 21.96 7.4
CG+SOCL 87.92 -3.87 27.97 14.66 7.81 4.42 21.93 7.6

CRA-2 88.06 -3.85 28.48 14.71 7.64 4.17 21.89 7.3
CRA-2+SOCL 88.08 -3.85 29.40 15.54 8.21 4.58 22.41 7.5

Table 2: Automatic metrics for evaluating language generation performance on the test set of Vehicles (top), Finance
(middle), and Food (bottom). Our main models CRA-2 and CG outperform the baseline consistently, demonstrating
the effectiveness of our mechanism. We also include the performance of CRA-1 and CRA-3 to show that the
performance varies as the number of neighbors changes. Moreover, we show that our contrastive learning objective
(SOCL) almost always helps the model to have better performance.

the decoder end, the decoder hidden states (from
the previous token) additionally attend to encoder
hidden states to produce the next token. The model
computes generation probability by taking the dot
product between the decoder output and the tokens
embeddings from the vocabulary.

Lastly, we use negative log-likelihood loss dur-
ing training for each sample

LG = −
|S|∑

i=1

logP

(
si|s<i, T

)
(1)

where S denotes the tokens for the remaining
steps.

4.4 Script-Oriented Contrastive Learning
To further improve the accuracy of the generated
scripts, we design a contrastive learning framework
that addresses deficiencies discovered in the model
outputs from 4.1 and 4.2.
Negative Sampling In contrastive learning(Hu
et al., 2022), hard negative samples are constructed

to guide the model to better distinguish between
the incorrect samples and the desired outcome. To
construct such negatives, we gain insights from the
model output, from which we found that the model
elicits two typical types of erroneous behavior: (1)
repetition of steps from the history and (2) halluci-
nation of non-relevant actions/concepts for a given
task (e.g., sago appeared in the process of making
kimchi). Based on the observation, we propose
the following strategies: (1) CONCEPT REPLACE-
MENT, where we randomly replace the concepts in
the positive sample with concepts from other tasks
in TCD under the same category (e.g., Food cate-
gory in WikiHow), (2) PARAPHRASED INSERTION,
where we paraphrase history steps and insert them
into target steps, and (3) PSEUDO TARGETS, where
we construct pseudo target by sampling steps from
the same category and glue them into a sequence.

Contrastive Loss In computing the contrastive
loss, we generate negative targets from the strategy
above for each positive script target (composition
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discussed in the Appendix). To allow the model
to distinguish between correct and incorrect script
completions, we use the model’s hidden states to
compute a score to compute the correctness score
for each sample, which is then used to compute the
triplet loss (Schroff et al., 2015). More specifically,
for each training sample

LCL =
∑

k

max
(
0, ϕ+ c−k − c+

)
,

c+ = σ
(
AvgPool

(
W cH

+ + bc
))

c−k = σ
(
AvgPool

(
W cH

−
k + bc

))

Where H+ and H−k indicate the decoder hid-
den states for the positive and k-th negative sample,
σ is the sigmoid function, AvgPool is the average
pooling function, W c and bc are learnable parame-
ters.

4.5 Training Objective
We jointly optimize the model on cross-entropy
loss from generation and triplet loss from con-
trastive learning

L = LG + βLCL

where β is hyper-parameter.

5 Experiments

5.1 Dataset
We collect data from Food & Entertaining (abbrevi-
ated as Food), Finance & Business (abbreviated as
Finance), and Cars & other Vehicles (abbreviated
as Vehicles) categories of WikiHow, which have
varying data scales and therefore allow compari-
son of models’ generalization ability. Each article
from WikiHow contains a goal, (optionally) sev-
eral preferences for completing the goal, and steps
under each direction. The details of the dataset are
shown in table 1. More processing details are in
Appendix A.1.

5.2 Implementation and Training Detail
Our model is implemented using Pytorch (Paszke
et al., 2019) and Huggingface Transformers (Wolf
et al., 2020) with BART-base as the base generator.
The reproducibility and hyperparameter details can
be found in Appendix A.2.

5.3 Compared Methods
We compare our framework and methods with
the state-of-the-art text generation baselines

BART (Lewis et al., 2019) and GPT2 (Radford
et al., 2019), which don’t use any of our proposed
methods. The solution constructor in our frame-
work also uses BART. We use CRA-k to denote
top-k neighbors in 4.1 and set k to be 1,2, or 3 in
our experiment. We use CG to denote the concept
generator in 4.2. Since TCD.v0 is also based on
WikiHow as source data, we make some modifica-
tions to our methods in the experiment so that we
can test the scenarios where the new unseen task
cannot be exactly found in the knowledge base.
For concept generation, we exclude the evaluation
set related articles in the dataset from its training
data. For CRA-k, when we retrieve relevant tasks
from TCD for a given goal, we remove its own key
from TCD. SOCL indicates that script-oriented
contrastive learning is used during the training.

5.4 Automatic Evaluation

Evaluation Metrics We use both deep learning
and n-gram-based evaluation strategies. The met-
rics include BERTScore (Zhang et al., 2019),
BARTScore (Yuan et al., 2021), BLEU (Papineni
et al., 2002), METEOR (Banerjee and Lavie, 2005),
and ROUGE (Lin, 2004). Note that BARTScore
computes the log-likelihood of producing the ref-
erence text given the generated text using a BART
model pretrained on ParaBank23. BERTScore com-
putes an embedding matching-based score.
Results The test set results are shown in Table 2.
We can see that the performance of our method
variants (both CRA and CG) is consistently better
than the baselines, empirically demonstrating the
effectiveness of both concept acquisition methods
and that the task-concept representation of the task-
specific knowledge is helpful for downstream script
learning. Moreover, while CG outperforms CRA-2
on all metrics in Finance, it is less clearly observed
in the others, showing that the level of effectiveness
also depends on the domain. The fact that CRA-2
is better than CRA-1 most of the time shows that
the set operation in Section 4.1 does improve the
retrieval quality for certain domains. Meanwhile,
CRA-3 consistently performs worse than CRA-2,
showing that setting k = 3 may have removed too
much useful information. With contrastive learn-
ing, the model almost always gains enhancement
in performance, showing the effectiveness of our
sampling strategies; an exception is shown in the
Food category for CG, where it shows positive im-

3https://github.com/neulab/BARTScore
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Name Correctness ↑ Fluency ↑ Average Rank ↓ Best ↑ Worst ↓

BART 1.72 2.57 3.57 4.13 72.73
CG 2.32 3.06 2.65 9.09 13.22
CRA-2 2.52 3.15 2.34 14.88 9.92

Gold-Concepts 3.40 3.55 1.44 71.90 4.13

Table 3: Human evaluation results for the WikiHow dataset on all three categories combined. Scripts completion
outputs (from automatic analysis) from each model are presented to human judges, who are asked to rate on
Correctness (i.e., at what level does the generated solve the problem) and Fluency of the output. We also report the
average rank and percentage of the time that each model output is chosen as best or worst, after asking each judge to
rank outputs from different methods for each input

pact only on half of the metrics, and this might
be caused by that the CG itself is effective enough
and contrastive learning introduces more noise than
help. We also show in Appendix that adding SOCL
alone is already effective. Lastly, we observe that
the Vehicle and Finance categories contain much
less training data than Food, yet the performance
improvement is more notable, demonstrating the
potential of the methods in low-resource settings.

5.5 Human Evaluation

Evaluation Metrics & Process As mentioned in
(Zhang, 2022), automatic metrics do not correlate
well with human judgments on script learning tasks
due to the diversity of potential solutions. As a com-
plement to automatic metrics, we also recruited five
volunteers (who are not authors) and conducted
the human evaluation. The volunteers were Mas-
ter/Ph.D. students with enough background knowl-
edge to rate output. We gave each candidate a quiz
composed of 20 random samples from the dataset
as filtering to see if the annotator can give scores
close to the authors’. We made sure that each anno-
tator understands the assigned data samples during
evaluation. In our evaluation process, we compared
the output generated by BART, CRA-2, and CG
with SOCL, and Gold-Concepts (a variant where
concepts come groundtruth in TCD). We presented
the input and the corresponding generated outputs
from each method to human judges and asked them
to rate the Correctness and Fluency of the output,
both on a scale from 0 to 4. Correctness (or use-
fulness) was defined as the level of confidence that
the generated steps successfully complete the spec-
ified goal and preference. We additionally asked
the judges to rank the outputs according to their
overall preference and their rating on Correctness
& Fluency; after this procedure, we reported the
average rank and the percentage of the time that
each model output is chosen as the best or worst.

Goal How to Store Peaches

Preference Keeping Peaches in the Fridge

History
Rinse the peaches to clean off any
dirt or debris. Dry the peaches with
clean paper towels or a clean hand towel.

BART <eos>

CG

[peach, paper bag, store peach,
container, term storage]
Store peaches in the fridge for up to
3 months.

CRA-2
[peach, freezer, container, half ]
Store the peaches in an airtight container
in the freezer for up to 3 months.

Reference

Place whole, uncut peaches in the fridge
on their own or in a plastic bag. ...
Store sliced peaches in an airtight
container for 1-2 days.

Table 4: Example input and output from the Food cat-
egory. The noun phrases contained in square brackets
in CG and CRA-2 indicate the acquired concepts from
TCD. <eos> indicates an empty completion (i.e., the
history is believed to contain the complete script). With
fridge storage-related concepts, our models correctly
produce the storing step.

Results. 121 samples are randomly selected from
automatic analysis for human evaluation, where
40 come from the Vehicle category, 40 come from
Finance, and 41 from Food. We present the hu-
man evaluation results in Table 3. The results align
with automatic metrics roughly in general. The
Gold-Concept variant is usually the best since it
has access to ground-truth noun phrases from the
reference. CRA-2 often generates more helpful
solutions for users. The outputs from BART are
worse than others most of the time, confirming
the belief that using acquired task knowledge as
prompts can help the model to generate better solu-
tions on average. The Fluency level for all methods
is rated to be of acceptable quality most of the time,
likely due to the strong generalization capability of
the pretrained language model.
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Figure 3: The plot shows that the automatic perfor-
mance increases as the amount of ground-truth concepts
increases, showing that deriving the right task-specific
concepts can make the model generate better scripts.

5.6 Impact of Retrieval Quality
One question to be asked is how impactful it is to
derive a concept prompt close to the groundtruth
(i.e., concepts from TCD by using the current goal
as the search key). To answer the question, we ran-
domly draw concepts from the groundtruth at dif-
ferent thresholds and use each of them as a prompt
to train a baseline model. From our result shown
in Figure 3, we can see that the performance mono-
tonically increases as the number of concepts cov-
ering the ground-truth concepts increases, showing
the consistent benefit of using the concepts in the
right context; this also demonstrates the promising
direction of our methods and the significance of de-
veloping a concept deriver better at understanding
task context.

5.7 Qualitative Analysis
We present an example of generated outputs by
different methods in Table 4. Additional exam-
ples are available in Appendix A.3. We compare
BART, CG, and CRA-2. From the generated out-
put, we can see that BART ends the script imme-
diately, missing the step of storing, likely due to
the lack of access to knowledge about storage. On
the other hand, with the acquisition from TCD,
our methods can reach more contextual knowledge
for the current task. Specifically, both methods
are able to access storage-related concepts such as
term storage, container, and freezer. As a result,
the outputs match with the reference more closely.
While the alignment with the reference isn’t perfect
(e.g., peaches are additionally placed in a bag in
the reference), to most human judges, the script
completion clearly achieves the goal already; this

further demonstrates the difficulty of evaluating
script completion.

6 Related Work

Script Learning: Scripts (Schank and Abelson,
2013; Feigenbaum et al., 1981; Yang et al., 2021;
Zhang et al., 2020b,a) refers to the knowledge of
stereotypical event sequences which human is con-
stantly experiencing and repeating every day. One
branch of works in script learning focuses on distill-
ing narrative scripts from news or stories (Cham-
bers and Jurafsky, 2008; Jans et al., 2012; Lee and
Goldwasser, 2019), where the scripts are not goal-
oriented. One of the most recent tasks in narrative
script modeling is Multiple-Choice Narrative Cloze
Test (Granroth-Wilding and Clark, 2016), where
an event is removed from the chain and the model
is asked to predict which event from the choices
fills the blank. The other line of work, which is
more closely related to our work, centers around
procedural scripts, where a sequence of events hap-
pened often to achieve a goal. Recent work has
introduced the task of constructing the entire script
given a goal (Lyu et al., 2021) or choosing 1 out
of 4 candidates’ steps that most likely help achieve
a goal (Zhang et al., 2020c). In this work, we pro-
pose a more general script learning setup that con-
siders additionally the user preference and history,
improving the generalization of models in script
learning.

Our method is related to Retrieval-augmented
text generation (Li et al., 2022; Zhang et al., 2022;
Wu et al., 2021), a paradigm that aims to com-
bine deep learning models with retrieval methods
for text generation and has gained significant at-
tention in recent years. For example in (Rubin
et al., 2022), the author retrieves similar training
examples as prompt to the current input. In our
work, we are the first to introduce a framework that
retrieves concepts from the concept dictionary as
prompts for script learning. Apart from acquiring
concepts, we also introduce a way to cancel contex-
tual noise from neighbors by set intersections for
better prompt quality. Furthermore, our method is
related to contrastive learning (Wang et al., 2022;
Hu et al., 2022; An et al., 2022), a line of self-
supervised learning methods that improve repre-
sentation learning by compacting positive samples
while contrasting them with negative samples (Cao
and Wang, 2021). Previous methods used negative
sampling approaches such as replacing the words
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with synonyms and shuffling target sentences. In
our work, we introduced a new script-oriented con-
trastive learning objective to address script-specific
issues and enhance the quality of generated scripts.

7 Conclusion

In this work, we propose TETRIS, the new task of
Goal-Oriented Script Completion, which allows a
model to produce the remaining steps given a user-
specified goal, preference, and history of steps. We
also present TASK CONCEPT DICTIONARY (TCD),
a knowledge base representing task and concept
association, to enable knowledge-based methods
for the task. We introduce different methods to ac-
quire concepts as prompts for the downstream text
generator. We also introduce a contrastive learning
strategy for script learning. The methods present
consistently better performance on both automatic
and human evaluation, clearly demonstrating the
benefit of TCD for improving the performance of
script completion. The qualitative analysis further
shows that the task-specific knowledge can indeed
benefit goal-oriented script learning tasks by feed-
ing relevant knowledge about task completion. Fu-
ture work could explore how to improve the acqui-
sition quality from TCD and applications of TCD
on task-oriented dialog systems.

Limitations

While TCD paired with concept acquisition meth-
ods can aid downstream script learning tasks, it
doesn’t consider the inclusion of actions of each
step event, which can potentially benefit the script
learning tasks. A possible direction is to extend the
design of TCD and the concept prompt to include
the semantics of actions and their orders.

Meanwhile, the concepts extracted by our
method do not overlap with the ground-truth con-
cepts (i.e., the set of concepts that appear in the
reference) very well (e.g., <20% in Jaccard Index).
The gap in performance between our methods and
the Gold-Concept variant shows that improving the
concept derivation quality might be the next step.

Furthermore, because our dataset is constructed
from the English version of WikiHow, the benefits
of our methods shown in the experiments are only
empirically proved to work for English. We plan
to further test our methods in multiple languages.

Ethics Statement

The study aims to extend deep learning-based mod-
els on the ability to generalize scripts under differ-
ent user contexts. The script learning models in-
troduced in the work can potentially be helpful for
task-oriented dialog systems to suggest solutions
to users. The dataset on which we base our exper-
iments is constructed automatically from the pub-
licly available website WikiHow. Since the website
is primarily crowdsourced, the models trained on
the data might incur subjective bias. During the
human evaluation phase of the experiment, all in-
volved human judges participated voluntarily and
received decent payment.
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A Appendix

A.1 Dataset & TCD

The dataset statistics are shown in Table 1. The raw
corpus comes from the 07/20/21 snapshot of Wiki-
How. We filter out unordered scripts by using both
the classification results from (Lyu et al., 2021) and
the WikiHow section type. We perform a 6:2:2 split
on the articles to create a train, development, and
test set. We create a historyH in data samples for
TETRIS by randomly splitting a sequence of steps
under each preference into two halves. For TCD,
we have 206621 keys in total and 10.37 concepts
per key on average.

A.2 Implementation Details

We implement the models using the 4.8.2 version
of Huggingface Transformer library5(Wolf et al.,
2020). We use the Oct 1, 2021 commit version
of the BART-base model (139M parameters) from
Huggingface6. The contrastive learning variants
has 140M parameters. For SBERT in Section 4.1,
we use the all-mpnet-base-v2 checkpoint from sen-
tence transformer library 7. We use Huggingface
datasets8 for automatic evaluation metrics. The
BART Score comes from the author’s repository9

and we used the one trained on ParaBank2. The hy-
perparameters for the experiment (non-contrastive

5https://github.com/huggingface/transformers
6https://huggingface.co/facebook/bart-base/

commit/ea0107eec489da9597e9eefd095eb691fcc7b4f9
7https://www.sbert.net/
8https://github.com/huggingface/datasets
9https://github.com/neulab/BARTScore
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Method BERTScore BARTScore BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGE 2

BART 87.87 -4.37 16.61 8.31 4.67 2.92 18.92 5.6
BART+SOCL 87.725 -4.349 19.478 9.441 5.216 3.236 19.198 5.73

Table 5: On the Finance dataset, our result shows that SOCL alone already brings consistent benefits to the
performance.

Table 6: Hyperparameters for non-contrastive learn-
ing (CL) models (some are introduced and changed for
CL experiment). The ones below the mid-line are gen-
eration related. Batch size is changed for contrastive
learning.

Name Value

seed 42
learning rate 3e-5
batch size 16
weight decay 5e-4
RAdam epsilon 1e-8
RAdam betas (0.9, 0.999)
scheduler linear
warmup ratio (for scheduler) 0.06
number of epochs 25
metric for early stop SacreBLEU4

patience (for early stop) 15
length penalty 1.2
max length 511
min length 2
beam search size 5

learning) are shown in Table 6 (applied to all mod-
els) and the ones not listed in the table are set to
be default values from the transformer library. We
use RAdam (Liu et al., 2019) as the optimizer. We
perform hyperparameter search on batch size from
{16, 32}, pretrained language model learning rate
from {2e-5, 3e-5, 4e-5}, downstream learning rate
for contrastive learning from {1e-3, 5e-4, 1e-4, 3e-
5}, negative sample composition from type A “1
sample from each of type 1 2, filling empty case
with type 3” and type BCD “2 samples from the
type combination (2 3/1 2/1 3), filling empty case
with empty string”, and the number of epochs from
{8, 15, 25} ({28, 32} for contrastive learning). For
contrastive learning experiment negative sampling,
we use type A for Vehicles and Food and type B
for Finance. We perform our experiments on 40
GB A100 and 32 GB V100 GPU. For contrastive
learning, we use batch size of 28 for Vehicles, 32
for Food, and 32 and 28 for CRA and CG respec-
tively in Finance. The downstream learning rates

are respectively 1e-3, 1e-3, 5e-4 for CRA-2+SOCL
and 3e-5, 1e-4, 1e-3 for CG+SOCL in the datasets
of Vehicles, Finance, and Food. We use 0.5 for the
margin in the triplet loss function and 0.3 for the β
in the training loss. The experiments can take up
to 10 hours.

A.3 Additional Model Outputs and Analysis

We present examples in Table 7, 8, and 9, in addi-
tion to Section 5.7. From Table 7, we can see that
while BART ends the script immediately after find-
ing an agency, our methods are able to provide de-
tail on the interaction with the agency. This shows
that training with the acquired concepts as prompts
allows the model to gain more task-specific contex-
tual knowledge, which can be potentially shared in
the token embeddings of concepts. In Table 8, the
user preference in the example contains some ambi-
guity (i.e., it could mean making just the dough, or
the complete process of making the pasta). While
BART is missing the further processing on the
dough, CG and CRA-2 are able to not only in-
clude detailed and reasonable steps that process the
dough but also some information on what to do af-
ter the dough is being made, showing the usefulness
of incorporating task knowledge. The reason for
the improvement could be that the prompts of our
method (all including the word dough) allow the
model to be attentive to the processing of dough.
In Table 9, the methods without gold concepts all
believe the script has ended, which is a reasonable
output. Yet they would be low on automatic gen-
eration metrics because of not matching reference
well (which contains steps not necessarily needed
to complete the goal). This shows the difficulty
of automatically evaluating script generation since
there can be many ways to solve a task and can be
different in the amount of detail.

A.4 Discussions

While we show in the experiment that TCD can be
used in the script completion task in our work to
achieve better performance, it can also naturally
be applied to other domains such as task-oriented
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Goal How to Report Pet Store Neglect
Preference Reporting to Local Law Enforcement

History
Document the situation as extensively as possible
Check your state’s animal welfare law
Find out which agency is responsible for enforcing animal laws

BART Finished

CG

[dog]
Report the situation to local law enforcement
Follow up with any follow-up questions
Finished

CRA-2

[police, report, animal control, authority]
Contact local law enforcement agencies if necessary
Follow up with any follow-up questions
Finished

Gold-Concept

[situation, state, animal welfare law, agency, animal law,
documentation, record, report, law enforcement]
Gather documentation and record of the report to law enforcement
Follow up with your report if necessary
Finished

Reference

Gather your documentation and other records
File your report with law enforcement
Follow up on your report
Finished

Table 7: Example output among different methods (Finance and Business)

dialog, event causal identification, and causal infer-
ence. Furthermore, since the two different concept
acquisition methods in the paper contain different
advantages, it would be an interesting task to devise
a method that has both benefits of being explicit in
the acquisition process and being parametrized.

One natural question to ask is why we repre-
sent the KB as concept-based instead of directly
using paragraphs to record each goal. While How-
to websites contain human-curated solutions, the
way of annotation introduces canonicalization prob-
lems since different people might have 1. different
orders of completing the same task and 2. differ-
ent levels of detail in the expression; on the other
hand, using concepts representation helps alleviate
the problem since the core concepts (e.g., “but-
ter”, “temperature”, “time” in “Baking a Cake”)
almost always participates regardless of how they
are organized in each person’s memory. Further-
more, TCD introduces an interesting function of
automated self-enrichment. In hierarchically re-
lated goals, such as “how to bathe a dog” and “how
to bathe a cat”, we can use WordNet Hierarchy
and Concepts Intersection to automatically derive
new nodes. We leave the experimentation to future

work.
Another important problem to be tackled is that,

while human evaluation is more reliable than au-
tomatic evaluation, it is also much more costly.
As mentioned in (Zhang, 2022), automatic metrics
do not align with that of humans very well. One
promising direction is to create an automatic metric
that does not evaluate script generation methods
only based on matching with the reference (since
many equivalently valid references can exist).
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Goal How to Make Macaroni Pasta
Preference Making Pasta Dough at Home

History

Mix the dry ingredients
Create a hole or well in the dry ingredients
Add three large eggs
Whisk the eggs with a fork
Place the dough on a clean counter

BART
Bake the pasta
Serve the pasta while it is still warm
Finished

CG

[flour, salt, bowl, butter, milk, egg, flour mixture, dough, surface]
Roll the dough out into a rectangle
Cut the dough into 1/4 inch (0.64 cm) circles
Transfer the dough to a plate
Repeat the process with the rest of the dough
Cook the pasta
Place the pasta on a plate to warm up
Serve
Finished

CRA-2

[dough]
Roll the dough into a ball
Repeat the process with the rest of the dough
Transfer the dough to a baking sheet
Bake the pasta
Serve or refrigerate
Finished

Gold-Concept

[ingredient, hole, egg, fork, dough, counter, surface, bowl]
Place the dough on a floured surface
Transfer the dough to a serving bowl
Serve
Finished

Reference

Fold the dough
Look for a smooth surface
Place the dough in a clean bowl to rest
Finished

Table 8: Example output among different methods (Food and Entertaining category).
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Goal How to Track a Flight in Progress
Preference Via Online Websites

History

Gather the information about the flight:
Find a flight-tracking website to find out the information about your flight
Enter your flight information
Watch for plugins that you could need to add to your

browsers functionality to run the website
Watch a map come up on your screen showing the

route the plane has taken, as well as the current location
of the plane and the expected route ahead

BART Finished
CG [flyer, airline, website, flight, status, status update] Finished
CRA-2 [airline, flight, flight number] Finished

Gold-Concept

[information, flight, tracking website, flight information,
plugin, browser functionality, website, map, screen, route,
plane, location, auto, update feature, way, site, ability]
Use the auto-update feature on the way out of the site
Allow the site to continue running while you’re not using it
Check to see if the update feature is working properly

Reference
Figure out if the website you chose has an auto-update feature
Look for ways to zoom in on the plane, if this site allows that ability
Finished

Table 9: Example output among different methods (Cars & Vehicles category)

3040



Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 3041–3051
May 2-6, 2023 ©2023 Association for Computational Linguistics

DeepMaven: Deep Question Answering on Long-Distance Movie/TV Show
Videos with Multimedia Knowledge Extraction and Synthesis

Yi Fung1∗, Han Wang2, Tong Wang2,
Ali Kebarighotbi2, Mohit Bansal2, Heng Ji2, Prem Natarajan2

1University of Illinois at Urbana Champaign, 2Amazon Alexa
yifung2@illinois.edu

{wnghn,tonwng,alikeba,mobansal,jihj,premknat}@amazon.com

Abstract

Long video content understanding poses a
challenging set of research questions as it in-
volves long-distance, cross-media reasoning
and knowledge awareness. In this paper, we
present a new benchmark for this problem do-
main, targeting the task of deep movie/TV ques-
tion answering (QA) beyond previous work’s
focus on simple plot summary and short video
moment settings. We define several baselines
based on direct retrieval of relevant context for
long-distance movie QA. Observing that real-
world QAs may require higher-order multi-hop
inferences, we further propose a novel frame-
work, called the DEEPMAVEN, which extracts
events, entities, and relations from the rich mul-
timedia content in long videos to preconstruct
movie knowledge graphs (movieKGs), and at
the time of QA inference, complements general
semantics with structured knowledge for more
effective information retrieval and knowledge
reasoning. We also introduce our recently col-
lected DeepMovieQA dataset, including 1,000
long-form QA pairs from 41 hours of videos,
to serve as a new and useful resource for fu-
ture work. Empirical results show the Deep-
Maven performs competitively for both the new
DeepMovieQA and the pre-existing MovieQA
dataset.1

1 Introduction

Our world tells an evolving story of people, ob-
jects, and their interactions. This storytelling may
exist in various forms, from textual summaries and
spoken dialogues, to accompanying images and
videos. Because of its dynamically evolving and
multi-media nature, long-distance video question
answering on movies/TV shows provides a useful
setting for studying the computational understand-
ing of interconnected stories and events that aligns
closely with real-world application scenarios. Yet,

∗Work done as an intern at Amazon Alexa AI.
1See https://www.amazon.science/publications for

update of information about code and resources.

current intelligent systems still struggle with ad-
equately processing the rich multimedia content
in long videos and fail to answer many common
inquiries that humans are interested in. If we ask
a virtual assistant about the relationship between
two main characters in a well-known movie/TV
show, it likely defaults to some null response such
as ªhmm... I don’t know this one".

The research challenge of long video content
understanding and question answering frameworks
stems from the need to support information prob-
ing on certain specific details over a large multime-
dia context space. Propagating information across
long-distance has been a well-known challenge due
to the vanishing gradient and memory loss prob-
lem (Hochreiter, 1998). Long videos also can not
fit its entire data in-memory typically for end-to-
end feature extraction and neural network training.
Meanwhile, retrieval-based methodologies, which
first find sections in the video relevant to a query
through semantic cues from the corresponding dia-
logues and/or frames, and then return the relevant
textual dialogue and/or visual frame context for
question answering, tend to narrowly isolate media
instances semantically similar to the query inputs.
Query inputs are short and succinct in nature, so
simply considering data points that match the query
semantics will overlook the larger picture behind
the selected media instances i.e. how they relate to
each other as well as to other relevant media com-
ponents that are initially missed out from retrieval
as they involve additional reasoning.

For example, a question about ªthe hobby inter-
ests of Midge’s husband" in TV show ªThe Mar-
velous Mrs. Maisel" would likely be missed by text
retrieval if the dialogue mostly uses the name of
Midge’s husband - Joel. A question about ªMidge
and Joel’s marriage breakdown" not only needs to
identify the point of confrontation between Midge
and Joel, but also other past, concurrent, or fu-
ture events connected to these two person entities,
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Category Question (Q) Natural Language Answer (A) Visual Evidence
Direct
41%
(long-distance)

Who bailed Midge out of jail af-
ter she was arrested for public
nudity? ±ªThe Marvelous Mrs.
Maisel"

Susie Meyerson, the manager of the
Gaslight, bailed Midge out.

Cross-Media
33%
(text+visual)

Why does Joel punch someone at
Gaslight? ±ªThe Marvelous Mrs.
Maisel"

That person insulted Maisel during her act.
Joel punches him and asserts that Maisel is
good.

Multi-Scene
11%
( ≥ 2 scene,
tot. min. > 1)

How did Midge and Joel’s mar-
riage fall apart? ±ªThe Marvelous
Mrs. Maisel"

Joel has been cheating on Midge, with his
secretary Penny. One day, Joel got angry at
Midge for giving suggestions that ended in
a failed stand-up comedy performance for
him. He packed up and left Midge.

Multi-Hop
11%
(higher
reasoning
through miss-
ing links/info)

What does the Mayor oversee on
the market? ±ªLes Miserables"

The mayor oversees which vendors are al-
lowed on the market, what they are allowed
to sell, how big their space is and what kind
of stands should be added to the market. He
charges the vendors his fees and have the
police talk to vendors who act up.

Background
Knowledge
10%
(facts,
Wikipedia)

In real history, what ultimately
happened to Malcolm X’s friend,
singer Sam Cooke? ±ªOne Night
in Miami"

He was shot to death by a motel manager for
attempting to molest a woman, but his death
was controversial and involved conspiracy
theories.

Table 1: Types of data annotated in our new DeepMovieQA benchmark, along with their statistics. The category
pertains to the critical reasoning used in understanding the question, picking up relevant details from textual and/or
visual media in the movie/TV show, and deriving to an answer.

Midge and Joel, relevant to their marriage dynam-
ics, such as infidelity, pent-up frustration, and after-
maths. Previous work tends to focus on very high
level questions with answers coming only from text
summary, such as whether a character is good/bad,
or focus on very superficial questions such as what
object is behind this person, whereas we want to en-
able more interesting QAs such as from mimicking
MovieClub conversations.

So in this work, we define a new task of
deep movie question answering (DeepMovieQA),
which gauges the content understanding of long
movie/TV show videos that align with generic hu-
man inquiries. In contrast to previous work, the
DeepMovieQA task consists of questions that nat-
urally arise from watching the full length of a
movie/TV show asset (as opposed to plot summary
or short minute-long clips), and involve a more
challenging set of reasoning summarized in Table 1,
which make use of many different data modalities:
plot summary, textual dialogues, visual frames, and
background knowledge. DeepMovieQA addition-
ally involves localizing the time frames that provide
evidence for the question answering.

To tackle DeepMovieQA, we propose a novel
framework, DeepMaven , which extracts context
from multimedia video asset semantically rele-

vant to the queries and generates a coherent an-
swer conditioned on the retrieved context using
a transformer-based backbone, with added bene-
fits of transparency and explainability through this
two-stage process. Observing that the new Deep-
MovieQA task involves more challenging types
of reasoning, we further leverage a structured ap-
proach to incorporate wider context and better han-
dle multi-hop queries, such as bridging the connec-
tion between the mention of Midge’s husband in a
query and the canonical Joel entity.

Our key novel contributions can be summarized
as follows: 1) we present a new research task of
DeepMovieQA in the long-distance multimedia
video understanding domain that involves reason-
ing beyond surface-level understanding of short
moments and summaries; 2) we present DEEP-
MAVEN, a novel multimedia approach that lever-
ages complementary information from (local) di-
alogue passages and visual frames and (wider-
context) movieKG subgraph to guide deeper con-
tent understanding and question answering, achiev-
ing 10+% absolute gain in answer extraction and
relative gain in answer generation over single
modality baselines; and finally, 3) we contribute a
DeepMovieQA dataset that includes 1000 QA an-
notations, to serve as a new resource for studying
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and evaluating this challenging but exciting task.

2 DeepMovieQA Data Collection

Pre-existing video/movie/TV show QA datasets fall
into two extremes of either focusing on too narrow
and minor scene-specific details such as an object
on the couch that is irrelevant to the storyline devel-
opment (Lei et al., 2018), or overly brief and simple
details from summaries (Tapaswi et al., 2016) that
align poorly with real-world needs such as the year
in which Hook’s squad is sent to Belfast, which is
written directly in the short plot summary. In com-
parison, we aim for QAs closer to the conversations
in movie clubs or what we talk about when we step
out of the movie theatre i.e. the detailed yet cru-
cial information to main event developments. This
means we want question annotations that involve
longer context of video clips and answer length,
compared to prior work as reported in Table 2.

With this motivation in mind, we collect our
dataset, DeepMovieQA, on 4 movies and 5 TV
shows listed in Table 3, chosen based on genre di-
versity. We instruct annotators to come up with
QA pairs that arise naturally as they watch the
movie/TV shows, through two rounds. In the initial
pass, we provide ten annotators movie/TV show
assets split into 20 minute video clips for focused
attention on detailed plot content. In the second
pass, we ask the annotators to re-watch the entire
movie/TV show asset, review QAs previously an-
notated, and come up with interesting QAs that
involve piecing information together from several
scenes or sources ± such as discussion of themes,
messages, empathetic reactions2, and societal back-
ground. This two-pass QA labeling process al-
lows annotators to become more familiar with the
movie/TV show content and come up with chal-
lenging QAs that better align with genuine human
audience interests. DeepMovieQA provides the
first long-distance, multi-scene QA benchmark in
the multimedia setting, with long-form answers
labeled to promote elaborative movie QA model
capabilities.

3 Methodology

3.1 Direct Retrieval from Source Data
Given a movie or TV show V = {Vf , Vdial, VS},
consisting of the video frames, dialogues, and sum-

2Similar to https://teachwithmovies.org/discussi
on-questions-for-use-with-any-film-that-is-a-w
ork-of-fiction/

Benchmark/
Dataset

Total
Hrs

# Min. per
Video Clip

# Tokens
in Answer

MovieQA (Tapaswi et al.,
2016)

280 - 5.6

TVQA (Lei et al., 2018) 461 1.3 5.1

TVQA+ (Lei et al., 2020a) 461 1.3 5.1

TVR (Lei et al., 2020b) 461 1.3 -

KnowIT VQA (Garcia
et al., 2020)

69 0.3 4.5

DeepMovieQA (ours) 41 51.7 26.5

Table 2: Comparison of DeepMovieQA with respect to
pre-existing datasets in the movie/TV domain. The # of
mins and # of tokens listed are averaged numbers.

Video Asset # Eps # Min.

Manchester by the Sea (MBTS) - 137

Without Remorse (WORE) - 109

One Night in Miami (ONIM) - 114

Les Miserables (LMIS) - 105

Marvelous Mrs. Maisel (MRSM), S1 8 419

Jack Ryan (JKRY), S1 8 400

The Boys (TBYZ), S1 8 361

Transparent (TP), S1 10 287

The Family Man (FMAN), S1 10 448

Total - 2480

Table 3: The movies/TV shows in DeepMovieQA.

mary, and a question, q, a natural first step is to
select relevant context through semantic matching
of local features. On the text side, we draw in-
spirations from previous research (Qu et al., 2020;
Mossad et al., 2020) to encode the query, q, and can-
didate passages Vdiali , truncated from every n = 5
utterance exchange (a tweakable hyperparameter),
using BERT (Devlin et al., 2019) , which are ex-
pressive bidirectional transformers for capturing
latent language representations, followed by two
separate linear layers, φq and φp. Then, we com-
pute the retriever matching score through the cosine
similarity of the encoded representations.

hq = φq(ReLU(BERT (q)))

hp = φp(ReLU(BERT (Vdiali)))

sq,Vdiali
= cos_sim(hq, hp)

For visual retrieval, we utilize the powerful multi-
media CLiP encoder release (Radford et al., 2021),
which consists of a textual encoder component
CLiPt based on GPT (Radford et al., 2019) and
a visual encoder component CLiPv based on ViT
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(Dosovitskiy et al., 2020), pretrained through con-
trastive learning on 400 million image caption pairs.
We compare for semantic proximity between q, and
a set of candidate visual frames, Vfi

through cosine
similarity, similar to text retrieval. But note that as
each candidate Vfi

is actually a set of visual frames
corresponding to the time frame under Vdiali , we
take the mean of encoded image representations as
the overall feature for Vfi

.

hq = CLiPt(q)

hVfi
=

1

|Vfi
|

∑

j∈1..|Vfi
|
CLiPv(Vfj

)

sq,Vfi
= cos_sim(hq, hVfi

)

As dialogue exchanges and visual scenes may con-
tain cues that complement each other in signaling
whether a section of the video is relevant to the
query, we utilize a linear combination of the textual
and visual retrieval scores for multimedia retrieval:

sq,(Vfi
,Vdiali

) = a ∗ sq,Vdiali
+ b ∗ sq,Vfi

We select the Vdiali and/or Vfi
with top k semantic

matching score for query q as the relevant context.

3.2 Retrieval from Structured Knowledge

Yet, structured knowledge provides benefits for
long-distance and multi-hop information since
events and interactions at separate time points (see
Table 1 for examples) may then be directly con-
nected through grounded nodes such as character
entities.

Multimedia KG Construction To incorporate
structured knowledge, we pre-construct movieKG
using the open-source IE pipeline from (Wen et al.,
2021) to extract events/entities/ relations (Lin et al.,
2020) from movie summary and dialogue, link en-
tities to background knowledge base (Pan et al.,
2015) where applicable, and perform event/entity
coreference resolution (Lai et al., 2021). This leads
to an initial sparse KG, in which the nodes consist
of events (Nv) and entities (Nn) while the edges
consist of argument roles and relations (Er), fol-
lowing a pre-defined ontology which inadequately
covers the open-domain in diverse film genres, so
we augment ontological-guided IE with Abstract
Meaning Representation (AMR) parsing (Fernan-
dez Astudillo et al., 2020; Zhang and Ji, 2021)
on the movie dialogue and summaries. For ex-
ample, let’s consider a subgraph extracted from
IE containing events such as ª<Midge, arrested

(by), the police>º. IE has the advantage of per-
forming entity/event linking, so the entity nodes
have other direct connections in the constructed
MovieKG as well, such as ª<Midge, located in,
Manhattan>º and ª<police, (also) arrest, comedian
Larry Bruce>º. However, other important events
may not be captured by the IE ontology due to its
more abstract or rarer occurrence in daily life and
important news events, such as ª<Midge, bailed
out by, Gaslight manager Susie Meyerson>º and
ª<Gaslight manager Susie Meyerson, recognize,
Midge’s talent>º, even though these information
triplets can be directly extracted as the noun/verb-
form concept nodes from AMR parsing on plot
summary and dialogue transcripts. Hence, we add
subgraphs from AMR parsing to the movieKG
initially constructed from IE where there exists a
coreferential event or entity node, such as ªMidgeº.

To further enrich this KG with visual informa-
tion, we perform event extraction using grounded
image situation recognition and localization (Pratt
et al., 2020), which extracts the verb in action from
the visual frame, as well as the semantic roles of ob-
jects detected (agent, item, destination, place, etc).
We also perform character mapping for agents that
play a role in visual events by finding the closest
match from a bank of character profile images3, us-
ing visual features extracted by an iResNet model
(Duta et al., 2021) following Meng et al. (2021).
Finally, we merge objects and events that occur
across textual and visual media based on embed-
ding similarity in a multimedia common semantic
space computed from CLiP, introduced in Sec 4.1.

Knowledge Subgraph Retrieval Now, we can-
not simply select the neighborhood surrounding
seed nodes that best match question q as the rel-
evant subgraph because recurring entities contain
many dense connections in the long story-telling
domain. So instead, we select relevant subgraph
based on context-aware saliency. Given a natu-
ral language question, we first represent it as a
query graph that has undergone knowledge extrac-
tion for closer comparability with the movieKG.
For instance, a question about ªthe initial en-
counter between Midge and Larry Bruce" becomes
a graph with two connections: [ Midge±the ini-
tial encounter, the initial encounter±Larry Bruce].
At the time of probing, we compute contextual-
ized embeddings of node mentions, from BERT

3These can be manually identified from video frames or
automatically collected from www.imdb.com.
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encoders with awareness of the sentence that they
occur in, as the local features for both the query
graph and the movieKG, concatenate with wider-
context knowledge embeddings from a two-hop
neighborhood aggregation of maximally aligning
neighbor nodes’ local embedding with respect to
the query graph nodes. For query graph nodes, we
concatenate the sentence-level BERT embedding
as their wider context features. We score and rank
KGsubgraph selection based on the semantic (co-
sine) similarity of these knowledge embeddings
between nodes in the movieKG and query graph.

3.3 Combining Context for Answer Fusion

In this work, we regard extractive QA as the task
of selecting the relevant Vdiali and Vfi

(as well
as summary sentences VSi and movieKGsubgraph

though these lack labels for evaluation) from a
movie/TV show, given question q. We formu-
late abstractive QA as the task of natural language
answer generation, conditioned on these relevant
Vdiali , Vfi

, movieKGsubgraph, and VSi , providing
complementary context to each other. Though it
is tempting to learn an answer generation model
that intakes context retrieved from different modal-
ities through a straightforward common semantic
space, we note the low-resource setting of our chal-
lenging task (in which annotations are expensive
and time-consuming to obtain). Thus, we take
advantage of pretrained conditional text genera-
tion transformers, in particular, BART, which has
an encoder to extract context information and a
generative decoder for sequential token genera-
tion, as a suitable backbone for answer generation
(Lewis et al., 2020; Khashabi et al., 2020). More-
over, we aim to match the format of input that
robust and high-performing conditional text gen-
erators have been pretrained on, which is natural
language text. While q, Vdiali , and VSi directly
fit this desirable input format, retrieved Vfi

and
movieKGsubgraph should be projected into a textual
semantic space for optimal alignment with our pre-
trained backbone answer generator. Hence, for the
retrieved movieKGsubgraph, we take a stringified
representation of its structured connections follow-
ing (Ribeiro et al., 2020). For the retrieved video
frames, we make sure that knowledge elements in
these images are included in or concatenated to the
stringified movieKG subgraph representation. Al-
though our transformer-based answer fusion mech-
anism may be relatively simple and straightforward,

we observe it can handle QAs such as the ones in
Table 6, detailed further in Sec 4. Figure 1 provides
a walk-through illustration of our overall frame-
work, which we refer to as the DEEPMAVEN. It
is worthy to note that by nature of our information
extraction-based QA reasoning, our textual answer
generation is inherently supplemented with ground-
ing to the visual context retrieved. This includes
bounding box localization of the actions and par-
ticipants (e.g., event ± ‘drinking’, person ± ‘Midge
Maisel’, etc.) from the video frames.

4 Experiments

4.1 Benchmark and Dataset
DeepMovieQA Corpus This is our newly con-
structed dataset from 4 TV shows and 4 movies.
The QAs may involve deep content beyond plot
summary information, background knowledge, and
higher-order reasoning across different scenes and
events, as well as cross-media inferences. The an-
swers are designed to be conversational friendly in
nature and have an average token length of 19. A
separate expert annotator manually checked 100
random QA pairs and judged all of them as accu-
rate, informative, and comprehensive. We used a
8:1:1 train/val/test data split due to the corpus size.

Shallow MovieQA Corpus This is a multiple
choice QA dataset (Tapaswi et al., 2016) anno-
tated solely from movie plot summaries, with a
pre-established 66-13-21% train/val/test data split.

4.2 Experimental Setting
For retrieval (extractive question answering), we
include single modality approaches as the natural
baselines to our proposed model, DEEPMAVEN.

• Baseline 1: Dialogue Component Only
Here, we simply retrieve the relevant dialogue
sections from BERT embedding similarity
with respect to the input question, similar to
the top performing approach (Mossad et al.,
2020) in MovieQA leaderboard.

• Baseline 2: Visual Component Only
Similarly, here, we use the features from CLiP
for semantic matching between the question
and visual frames.

• Baseline 3: Textual & Visual Component
w/o Structured Knowledge
We further perform comparison with a sim-
plified version of our DeepMaven framework
that focuses on the cross-media dialogue and
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Input Question:

Did Midge try to keep 

her husband from 

leaving her?

Retrieve Top k Visual 

Frames & Passages

Retrieve Relevant 

SubGraph from

Pre-Constructed MovieKG

Output Answer (Target Generation):

Yes, Midge tells Joel she loves him

and the children would miss him. 

She also makes promise to be more 

supportive of his dreams in acting. 

But her efforts were not successful. 

Joel reveals to her his affair with 

Penny and desire to start over in his 

life. He then leaves their home.

[Midge:] “I love you. We have 

a home. We have children.”

[Joel:] “I have to go.”

[Midge:] “No, no, no… I’ll be 

better. I’ll pay more attention…”

“leaves”“perform”“affair”

“married”

“argue”

“Midge” “Joel”
“Penny”

“Gaslight” “kids”

(Saliency)

(CLiP & BERT)

V – visual,  T – textual

Q – question

G – graph

Transformer Model
(BARTForConditionalGeneration)

Did Midge try to keep her husband from leaving?

[Midge:] “I love you. We have a home. We 

have children.” [Joel:] “I have to go.” 

[Midge:] “No, no, no… I’ll be better.” …

<Midge, married, Joel> <Joel, affair, Penny> 

<Joel, packs up, in bedroom> <Midge, 

argue, Joel> <Joel, leaves, Midge> …

When Joel upends their idyllic life by leav-

ing Midge for his secretary, her parents…

Example Visual IE w/ Grounding

Event Drinking

Person MidgeMaisel

Instrument Glass

Location Kitchen

Semantic Role Labeling .

Answer Reasoning

Visual Frames

Dialogues

Movie

Figure 1: Our DEEPMAVEN model architecture takes as input the question, concatenated with relevant dialogues, visual frames,
movieKGsubgraph, and summary sentences (illustrated by the dotted box), for answer stitching through a pretrained conditional
text generator backbone. Note: due to low-resource data annotations, we convert the visual frame and KGsubgraph into string
format to better align with the semantic space of the answer generator.

visual frames without structured knowledge
from the movie KGsubgraph.

For abstractive question answer generation, we con-
sider the base variant of DEEPMAVEN, which fine-
tunes BART (Lewis et al., 2020), using the textual
dialogue retrieved from movies/TV shows as in-
put context only. We also include the baseline
of UniVL (Luo et al., 2020), which has been pre-
trained on video and language multimodal feature
representation and text generation.

4.3 Evaluation Metrics
For long-distance retrieval, we report the hit@K
metrics of whether the selected section of the dia-
logue or visual frames fall under the source time
interval from the QA annotation. For natural lan-
guage answer generation, we compute the ROUGE-
L (Lin, 2004) F-scores4. However, there might be
many variants of words and phrases with different
level of granularities that can be used to describe
the same answer in the same scenes. Take the
question about ªhow Midge’s parent react to the
news that Joel has left Midge" in ªThe Mavelous
Mrs Maisel" for example. The ground truth an-
swer annotation provides detailed descriptions on
how ªMidge’s dad starts to play the piano franti-
cally and later blames Midge for marrying a weak
man against his advice" while ªMidge’s mother

4www.pypi.org/project/pycocoevalcap/

starts crying and whining heavily". We observed
that our system generated answers are more gen-
eral but still correct, outputting ªthe way the par-
ents are reacting is very upset and blaming each
other". A strict measurement of n-gram overlaps
from ROUGE would not credit such an answer gen-
eration sufficiently. Therefore, we also include a
semantic-based BLEURT 5 metric (Sellam et al.,
2020). In addition, we conduct a human assess-
ment on the extracted answers as well. For each
pair of system extracted answer and ground-truth
answer, we ask human assessors to judge whether
the system answer is completely correct, partially
correct or incorrect.

4.4 Quantitative Results and Analysis
Extractive Question Answer Retrieval As
shown in Table 4, retrieval is a non-trivial task
in the movie setting, which contains lengthy plot
content, and a random approach has a very low
hit@K=5 of 0.08. Single modality retrieval base-
lines perform similarly, with text retrieval using
BERT and visual retrieval using CLiP having
hit@K=5 of 0.32 and 0.28 respectively, while
cross-media retrieval achieves a noticeable boost
to hit@K=5 of 0.41, suggesting that textual and
visual features offer similar levels of useful signals
that complement each other for making sense of

5We use the BLEURT-20 scorer model from https://gi
thub.com/google-research/bleurt.

3046

www.pypi.org/project/pycocoevalcap/
https://github.com/google-research/bleurt
https://github.com/google-research/bleurt


Approach Hit@K=5
Random 0.08

Textual (BERT)∗ 0.32

Visual (CLiP)∗ 0.28

Textual+Visual△ 0.41

Textual+Visual+KG priming 0.49

Table 4: These are the video frame retrieval results, with
∗ as the baselines, △ as the simplified DEEPMAVEN with-
out structured knowledge, and bold as the full DEEPMAVEN
retrieval approach.

question inputs from long movie/TV show content.
Finally, movieKG-guided structured information
on top of semantic matching from direct source
data, using our DEEPMAVEN framework, unlocks
the best retrieval hit rate (to near 50%).

Abstractive Question Answer Generation Nat-
ural language answer generation requires an addi-
tional decoder module for outputting tokens. Our
DEEPMAVEN model achieves a Rouge-L of 61.6%
in answer generation on the MovieQA benchmark.
Model performance for the new, challenging Deep-
MovieQA benchmark is reported in Table 5 below.

Rouge-1 Rouge-L BLEURT

UniVL 16.8 15.1 22.3

DeepMaven
- dial. only 13.9 11.1 22.1

- all 21.6 17.4 31.7

Table 5: Answer generation (%) scores on our Deep-
MovieQA dataset.

4.5 Qualitative Analysis

Table 6 shows answer generation results while Ta-
ble 7 shows content selection examples, performed
by DEEPMAVEN. We additionally conduct a hu-
man assessment on the DeepMovieQA answer gen-
erations from held-out data, rating answers on a
likert scale of 0 − 5 (with 0 being nonsense and
5 being perfect). Thirteen percent of the gener-
ated answers scored ≥ 4, with a Kappa coefficient
of 0.42, reflecting moderate inter-annotator agree-
ment.

4.6 Remaining Challenges

In general, we found that DEEPMAVEN retrieval
performs worse on QAs that involve commonsense
reasoning and reference to objects/entities that may
not be easily picked up by our structure-guided
cross-media semantic matching system. Some

Questions Answers

M
ov

ie
Q

A

Who comes to the
officers’ rescue?
±World Trade Cen-
ter

Two United States marines,
Dave Karnes and Jason
Thomas.
Two United States marines,
Dave Karnes and Jason
Thomas.

Where are Stigman
and Trench taken
after being cap-
tured? ±2 Guns

Mexico

To Greco’s farm in Mexico

D
ee

pM
ov

ie
Q

A

How does Joel
leave the apart-
ment after they fell
asleep the night
before? ±MRSM

Joel gets out of bed and drives
to work.
Joel sneaks out Midge’s bed-
room window the next morning,
just like he did when they first
dated.

What were in the
boxes in the back
of the truck Sajid
was driving?
±FMAN

They were filled with nerve gas.
The boxes were filled with can-
isters of nerve gas that were go-
ing to be used to attack New
Delhi.

Table 6: Example DEEPMAVEN abstractive QA results,
with the generated and grouth truth answers.

deeper movie QAs may also be more suitable
for the conversational question answering setting
due to insufficiently detailed question wording and
open-ended answer form. Finally, we observed that
long-form answer generation with a limited-sized
training data is more prone to hallucination. Given
questions such as ªWhat did Susie promise to one of the

waiters at the Copacabana Club in return for smuggling her

into the club for free?", the language model generator
backbone tends to fill in some plausible pre-trained
knowledge such as ªSusie promises to buy one of the men

a drink after every act" that may not match the actual
detailed answer of ªSusie promised him a prime slot for

his singing act at the Gaslight Café for 2 weeks. Unfortunately

Susie thinks his act is awful but keeps her word even since

they had to watch the show from the kitchen". Minimizing
hallucination in long-form low-resource question
answer generation is an important issue that merits
future investigation.

5 Related Work

Text QA: QA has been a popular task (Rajpurkar
et al., 2016), with significant advances made re-
cently by attention-guided transformers (Qu et al.,
2019). Several corpora have been proposed for
QA in story comprehension. FriendsQA (Yang and
Choi, 2019) bases QA on short dialogue exchanges.
MovieQA (Tapaswi et al., 2016) and NarrativeQA
(Kocisky et al., 2018) are annotated from plot sum-
maries. (Zhou et al., 2018; Moon et al., 2019; Zhou
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Cue Category Question Retrieved Dialogue Passages and Visual Frames

Im
pr

es
si

ve
C

as
es

Dialogue
Content

What did Kelly threaten
Clay with after forcing
him into his car? ±WORE

ªWhy my family? My wife? My daughter? Why kill my
team? Rykov was all in, so I’d like a little bit of what you sold
him... Know where we driving? You got a farm out in West
Virginia, right? Your daughter should be home from college.
Wesleyan. That’s a good school. Your wife. Your son too. So
I suggest you start talking."

Visual Scenes Who takes care of Lee
after the fight? ±MBTS

ªSettle down, all right? Are we cool? Get off. You’ll kill him...
Should he go to the hospital? I don’t think so. Nothing’s
broken."

Implicit Cross-
Media Entity
Grounding

What does Midge’s
mother want to talk
about after Midge
arrives at her parent’s
apartment? ±MRSM

ªThanks for taking the kids last night. Were they okay? - We
need to talk about the baby. Why? What’s the matter with her?
That forehead is not improving. - What? Are you sure?"

Implicit Multi-
hop Event Rea-
soning

What does Midge do
after Joel falls asleep
and before he wakes up
again? ±MRSM

ªGood night, Gracie. Hey. Good morning. - Did the alarm go
off? - It sure did. Wow. I didn’t hear it at all. You never do. -
Good morning, Jerry. - Good morning, Mrs. Maisel."

E
rr

on
eo

us
C

as
es

Failure to Iden-
tify Certain Vi-
sual Objects

What does Midge sug-
gest in the taxi to
improve Joel’s perfor-
mance? ±MRSM

ªMaybe you should write a beginning, something that says
who you are or something. What do you think? Good evening.
What a nice... Good evening, ladies and gentlemen. Thank
you for the nice... nice... ‘Nice’ is a bad, bad word. All that
applause for me? What am I, putting out after?...º

Mismatch in
Level of Detail
Between Query
and Context

What did Midge do
while her friend Imo-
gene is visiting to make
sure she’s still in shape?
± MRSM

ªShe’s going on and on about this miracle treatment she had
done in Mexico. It involved goat’s milk and avocadoes. Right
ankle 8, left ankle 8. They smear it on your face, wrap a hot
towel around your head...º

Table 7: Impressive and Erroneous Examples of Retrieval Results.

et al., 2020) annotated open-ended conversations
with groundings to either Wikipedia pages, or pre-
existing structured knowledge graphs such as Free-
base (Bollacker et al., 2008) and XLORE (Wang
et al., 2013). These benchmarks overlook the full
content from the original data, which we address.
Visual QA: The visual question answering (VQA)
task (Antol et al., 2015) aims to predict a natural
language answer, given a natural language question
and image(s) without other textual context. Various
datasets have been constructed for this task, such as
VQA 2.0 (Goyal et al., 2017), VCR (Zellers et al.,
2019), and scientific PlotQA (Methani et al., 2020),
in the setting of single images; as well as MSR-
VTT-QA (Xu et al., 2016), MovieFIB (Maharaj
et al., 2017), and VideoQA (Zhu et al., 2017), in
the setting of visual frame sequences. The answers
are typically multiple choices or from a predefined
vocabulary. Simple baseline methods that only
use question understanding (Kazemi and Elqursh,
2017) or sentiment analysis on answer options
(Manjunatha et al., 2019) have proven surprisingly
well on datasets such as VQA and VQA 2.0 but are
unlikely to provide good answers for understanding
complex events and person interactions.
Multimedia QA: There are increasing interest

nowadays in using information from multiple
modalities for answering questions, such as rea-
soning through text, images, and tables in Many-
ModalQA (Hannan et al., 2020), MultiModalQA
(Talmor et al., 2021), and MuMuQA (Reddy et al.,
2022). The (movie/TV) video domain is a further
step that involves dynamic events from dialogues
and corresponding visual frames. TVQA (Lei et al.,
2018) presents a multimedia QA dataset grounded
on minute-long video clip snippets from popular
TV show, with frame localization added in TVQA+
(Lei et al., 2020a). However, their QAs involve
highly scene-specific discussion points, trivial to
the deeper contents around the central plotline, e.g.

ªQ: What is on the couch behind Joey when he is at
the counter? A: A soccer ball". In contrast, our
work highlights deeper knowledge and multi-frame
information synthesis.
Other Story-based Video Understanding:
Benchmarks such as MovieNet (Huang et al.,
2020) and LVU (Wu and Krahenbuhl, 2021) gauge
a variety of content classification tasks related
to the ‘scene/place’, ‘cinematic style’, ‘genre’,
‘produced year’, ‘popularity’, etc. Moreover, Lei
et al. (2020b); Huang et al. (2020); Bain et al.
(2020) explore retrieval based on sentence-length
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scene description while Liu et al. (2020) study
video-language inference, but these are all less
challenging than the natural question answering
setting our work focuses on.

6 Conclusions and Future Work

This work is the first to study long-distance movie
question answering. Through guidance from mul-
timedia source context and structured knowledge
retrieval, our proposed model, DEEPMAVEN, is
shown to perform well for extractive question an-
swering, as well as abstractive answer generation
for the questions in pre-existing MovieQA bench-
marks. But improvements are needed for gener-
ating answers to the more challenging questions
presented by our new DeepMovieQA benchmark,
which serve as a better reflection of real-world ap-
plication settings with more reasoning involved.
We aim to kickstart an extractive movie question
answering interface for human users, and through
this, naturally acquire genuine movie questions for
more effectively expanding DeepMovieQA annota-
tion, and later extend this into interactive conversa-
tional AI settings.

7 Limitations

Our work focuses on video question answering that
aims to be detailed and engaging. It is not interac-
tive in nature like conversation exchanges. Finally,
we bear in mind that automatically generated an-
swers may contain the risk of insensitive phrasing,
and mitigating language model bias deserves fur-
ther exploration and efforts.
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Abstract
Salient Span Masking (SSM) has shown itself
to be an effective strategy to improve closed-
book question answering performance. SSM
extends general masked language model pre-
training by creating additional unsupervised
training sentences that mask a single entity or
date span, thus oversampling factual informa-
tion. Despite the success of this paradigm,
the span types and sampling strategies are rel-
atively arbitrary and not widely studied for
other tasks. Thus, we investigate SSM from
the perspective of temporal tasks, where learn-
ing a good representation of various tempo-
ral expressions is important. To that end, we
introduce Temporal Span Masking (TSM) in-
termediate training. First, we find that SSM
alone improves the downstream performance
on three temporal tasks by an avg. +5.8 points.
Further, we are able to achieve additional im-
provements (avg. +0.29 points) by adding the
TSM task. These comprise the new best re-
ported results on the targeted tasks. Our anal-
ysis suggests that the effectiveness of SSM
stems from the sentences chosen in the train-
ing data rather than the mask choice: sentences
with entities frequently also contain temporal
expressions. Nonetheless, the additional tar-
geted spans of TSM can still improve perfor-
mance, especially in a zero-shot context.

1 Introduction

Salient Span Masking (SSM), first introduced by
Guu et al. (2020) for retrieval-based language mod-
eling, has shown performance gains for closed-
book question answering (CBQA) (Roberts et al.,
2020; Ye et al., 2020). SSM is a form of intermedi-
ate pretraining (Ye et al., 2021), where a pretrained
model such as a BERT (Devlin et al., 2019) or T5
(Raffel et al., 2020) is trained further before task-
specific finetuning, generally on more specialized
data that does not require expensive annotations.
Specifically, SSM uses the masked language mod-
eling objective but only masks named entities and

dates in sentences from English Wikipedia articles;
these “salient” spans likely contain more facts, so
the language model must memorize more facts in
order to do the task successfully (Petroni et al.,
2019). The authors use a named entity recognition
model to identify entity spans and a regular expres-
sion to identify date spans. While this works well
for knowledge intensive downstream tasks, such
as entity-centric question answering, it remains un-
clear whether it is helpful for tasks that are less
aligned with the data, such as common sense or
temporal reasoning. Moreover, is it possible to se-
lect spans that are more related to a downstream
task in order to get further performance gains?

In this work, we investigate SSM for tasks that
require understanding temporal expressions. While
SSM does include dates, the tasks we investigate
include other complex temporal expressions such
as durations and intervals. To that end, we intro-
duce Temporal Span Masking (TSM): an interme-
diate pretraining strategy for predicting spans that
are likely temporal expressions (Figure 1). Simi-
lar to SSM, TSM is automatically generated from
English Wikipedia articles. We compare models
trained on TSM and SSM on three temporal tasks,
namely MC-TACO (Zhou et al., 2019), TimeDIAL
(Qin et al., 2021) and SituatedQA (Zhang and
Choi, 2021), and for one general-purpose question
answering (QA) task of Natural Questions (NQ)
(Kwiatkowski et al., 2019). We summarize our
contributions as follows:

• We propose TSM Intermediate Training,
which automatically selects temporal spans
for masking.

• The new best reported results on the three
temporal tasks: the best average performance
is from a mixture of TSM and SSM. This
mixture also does slightly better than SSM on
Natural Questions.

• Experiments investigating the role of differ-
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Figure 1: Overview of the TSM and SSM tasks: While SSM (Guu et al., 2020) identifies named entities and dates
as salient spans, for TSM we use SUTIME parser that captures other temporal expressions such as durations and
intervals. SUTIME is first applied on raw sentences to identify any temporal expressions. Next, training data for
TSM is created from those sentences which have at least one temporal expression identified. In SSM, the masked
spans comprise of named entity or date spans. Input to each task consists of the sentence with the selected span
dropped out where the model is trained to predict the dropped tokens.

ent TSM and SSM span types, showing entity
spans alone are helpful, which implies that dif-
ficult examples help improve representations
of the unmasked spans as well.

2 Methods

Following Roberts et al. (2020), we utilize interme-
diate training to improve pretrained models’ gen-
eralization to downstream tasks. All models are
initialized from the encoder-decoder T5-1.1-XXL
language model (Raffel et al., 2020), which was
shown to have the best closed-book QA perfor-
mance in Roberts et al. (2020).

2.1 Background: Salient Span Masking

Salient Span Masking (SSM) was first introduced
by Guu et al. (2020) and is designed to specif-
ically mask named entities and dates or salient
spans. These salient spans are automatically iden-
tified from English Wikipedia using a Named En-
tity Recognition model to find entities as well as
a regular expression to find dates. The authors
mask one such span per sentence during training:
the model must maximize the probability of the
masked entity or date given the corrupted input
sentence. Guu et al. (2020) designed the task to im-
prove downstream performance on tasks requiring
world knowledge in order to improve their retrieval-
augmented model’s ability to use retrieved texts.
Roberts et al. (2020) then adapted this task for
closed book encoder-decoder models.

2.2 Proposed: Temporal Span Masking

Inspired from the success of SSM, TSM is designed
to address problems requiring temporal knowledge.
To create training examples for TSM, we automati-
cally identify temporal expressions in a large cor-
pus using SUTIME (Chang and Manning, 2012),

a rule-based temporal parser, that identifies tem-
poral expressions from raw text. Given an input
sentence, SUTIME is built to identify expressions
of the following four types: Time which indicates
a particular point in time such as next Monday, Du-
ration such as 3 days, Set which indicates periodic
set of time that occur with some frequency such as
every 4 years and Date such as January 1.

We run SUTIME on all of English Wikipedia1.
Specifically, we divide the articles into sentences,
and apply SUTIME2 on each sentence. For our TSM
training data, we ensure that exactly one temporal
span is masked per example. So, if a sentence con-
tains four temporal spans, we create four training
examples with exactly one temporal span masked
per example. Details of the temporal distribution
are in Table 4. Each example is created by masking
the tokens belonging to the temporal expression, as
shown in Figure 1, corrupting the input sentence
by replacing the span with (_X_) and having the
model predict the masked tokens. The training ob-
jective is to maximize the probability of the target
span given the corrupted input sentence, similar
to T5’s span corruption training objective (Raf-
fel et al., 2020) and the SSM training objective
(Roberts et al., 2020).

2.3 Model Variants

All newly reported results are based on T5-1.1-
XXL models. Proposed models are named for their
intermediate training objective: TSM is trained
solely on the masked temporal spans described
above; SSM is trained solely on the training objec-

1We use the 2020 snapshot of English Wikipedia (TFDS
datadump wikipedia20201201en)

2https://github.com/FraBle/
python-sutime
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tive described in Roberts et al. (2020).3

We also investigate a version of the SSM pre-
training data that only uses the named entity spans
identified by the NER model; in other words, all of
the date spans identified by the regular expression
are removed, but the task is otherwise the same.
We call this objective ENTITIES. Finally, we com-
pare against models that are trained proportional
mixtures of both TSM+SSM and TSM+ENTITIES.

For baseline models, we use the same pretrained
model (T5-1.1-XXL) with no intermediate training
(T5), as well as a T5-1.1-XXL model which has
been trained for an additional 100K steps on the
prefix LM task (T5-LM; Lester et al. 2021).

2.4 Downstream Temporal Tasks
We evaluate on three downstream temporal tasks
for evaluation, finetuning a model on each task
separately. Below, we briefly describe the tasks
and datasets, with additional training details in Ap-
pendix A.

MC-TACO Zhou et al. (2019) release a human-
annotated dataset to measure temporal common-
sense understanding. It consists of 13k tuples of
(sentence, question, candidate answer) covering
five types of common sense problems such as event
frequency, event duration, event ordering, stationar-
ity and event typical time. Given a sentence context,
a temporal question about that context, and a possi-
ble commonsense answer, the task is to determine
whether the provided answer is reasonable for the
given context. For instance, for the event of taking
a shower with four possible answer choices five
minutes, fifteen minutes, fifteen hours, and fifteen
years, the first two are plausible and will have the
yes label while the latter two choices would be no.
There is no training data released for this task, so
we finetune the model on the provided validation
set and evaluate on the test set.

TimeDIAL Qin et al. (2021) release a human-
annotated multi-turn dialog dataset for measuring
temporal commonsense understanding in a dialog
setting. The dataset comprises of challenge test set
with 1.1k dialog instances derived from the Daily
Dialog dataset described in Qin et al. (2021). Time-
DIAL dialogs mostly comprise of common sense
instances where the answers generally consist of
one temporal span. For instance, in the following

3We note that the SSM-spans are derived from the 2018
snapshot of English Wikipedia (same as Guu et al. (2020))
while TSM-spans from the 2020 snapshot.

dialog “I’ll just be a minute’., the span “a minute”
may be masked out and the model is required to
predict the masked span based on the dialog turns.
Given a dialog with a temporal expression masked
out, the task is to correctly predict which two of the
four provided answers are valid in the given con-
text. We report results without finetuning (styled
TimeDIAL-0) as well as results from finetuning the
model on the Daily Dialog dataset.

SituatedQA Zhang and Choi (2021) release an
open-domain QA dataset derived from existing
question answering datasets with additional anno-
tations that resolve temporal and geographic ambi-
guities. Each example consists of a disambiguated
question: for instance, “Which COVID-19 vac-
cines have been authorized in the US [as of 2020]?”
or “What was the first COVID-19 vaccine to be
authorized [in the US]?”. For the purpose of this
work, we focus on the temporal questions. These
consist of 9K additional questions, with a training
set of about 4.5K questions. We finetune on the
training set and evaluate on the test set.

2.5 Natural Questions

While the focus of our method is improving tem-
poral question answering performance, we also
wanted to ensure that our method does not degrade
performance on non-temporal question answering
tasks. Thus, we also evaluate our model variants
on Natural Questions (Kwiatkowski et al., 2019),
using the “open” variant popularized by Lee et al.
(2019). These examples discard those questions
without short answers or that require an evidence
document to answer. These consist of about 87K
questions for training and an additional 3.6k ques-
tions for validation, which we use for evaluation.

3 Results and Discussion

Our main results can be found in Table 1. Re-
sults including Natural Questions can be found in
Table 2. Note that the Natural Questions results
have minor variations from published numbers; we
ran these baselines ourselves, and it is possible the
training setup differed slightly.

T5 and T5-LM The T5 model sets a relatively
high baseline compared to previously reported mod-
els. The T5-LM model’s extra non-domain-specific
pretraining does not help on any task, suggesting
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SituatedQA MC-TACO TimeDIAL TimeDIAL-0

Model F1 EM F1 EM 1-Best 2-Best 1-Best 2-Best Overall Overall-0

BEST REPORTED – 18.53 82.92 63.81 – 76.10 – 50.60 52.74 44.31

T5 25.75 19.78 84.00 64.56 99.91 84.50 90.85 37.59 56.28 40.64
T5-LM 25.38 19.63 81.99 59.83 99.91 80.60 86.87 32.16 53.35 37.21
SSM 29.92 23.12 85.88 68.39 99.73 84.06 96.74 67.21 58.52 52.91

ENTITIES 29.42 22.82 85.47 66.59 99.91 83.06 97.64 67.93 57.49 52.45
TSM 27.42 21.18 84.89 65.92 99.91 83.88 99.82 77.54 56.99 54.88
TSM+SSM 29.33 22.76 86.20 67.64 100.0 83.78 98.19 73.10 58.03 54.5
ENTITIES+TSM 30.78 24.60 85.32 68.47 99.91 84.24 98.91 76.09 59.09 56.39

Table 1: Aggregate metrics across the three datasets. Overall performance is the simple arithmetic average of the
harder metric for each approach (EM, EM, 2B); Overall-0 uses TimeDIAL-0 instead of TimeDIAL. The second
section contains our runs of earlier models; the Best Reported uses best known published numbers. The third
section represents our models. Note that all models (in the second and third sections) are based on T5-1.1-XXL
models. Best Reported results are ALBERT (Lan et al., 2019) from Abramson and Emami (2022) for TimeDIAL,
BART results from Zhang and Choi (2021), and DeBERTa (He et al., 2020) results from the leaderboard for MC-
TACO. Note that F1 for MC-TACO is based on the precision/recall over answers and EM is based on labeling every
answer for a question correctly, while the F1 for SituatedQA is based on the token-level F1 of the answer span.

Model F1 EM Overall Overall-0

SSM 41.57 34.6 52.54 48.33
T5 39.35 32.38 50.31 38.58
T5-LM 37.16 31.14 47.80 35.69

ENTITIES 41.21 34.52 51.75 47.97
TSM 39.24 32.69 50.92 49.33
TSM+SSM 41.80 35.10 52.3 49.65
ENTITIES+TSM 41.89 35.18 53.11 51.09

Table 2: Results on Natural Questions – Overall and
Overall-0 results include the same metrics from Table 1
with Natural Questions (EM) included. The first sec-
tion represents our baselines. Note that all models are
based on T5-1.1-XXL models.

extra training steps does not in of itself cause im-
provements on these tasks.

Entities The ENTITIES model, which is trained
on only non-temporal entity spans, performs better
overall than the TSM task. It only does worse on
the TimeDIAL dataset, which is almost entirely
focused on conversational, non-knowledge based
contexts. It still does substantially better than the
base T5 model when no finetuning data is avail-
able. This high performance is possibly due to the
prevalence of temporal spans in the SSM training
data. Running SUTIME on the ENTITIES data re-
veals that 45% of its training examples contain at
least one date, duration, set, or time. This suggests
that sentences with named entities in general al-
ready carry temporal-salient information useful for

downstream temporal tasks. See Appendix B for a
full breakdown of the co-occurrences.

SSM The SSM model is the second best overall.
It benefits from both its own date spans as well
as the frequent presence of temporal spans in the
entities data, suggesting difficult example sentences
are more important than the type of masked span.
It does worse on TimeDIAL-0, however, where the
task is to score the best temporal span.

TSM The TSM model improves upon the base-
line T5 model but is worse overall than the SSM
model. However, it is the best on TimeDIAL-0.
This is likely because the DailyDialog training
dataset is relatively large, which may overcome
the need for intermediate pretraining altogether.
Note that TSM achieves a mild performance im-
provement over the baseline T5 model on Natural
Questions, but is notably worse than the other in-
termediate training methods.

TSM+SSM The TSM+SSM model improves
over TSM but is worse than SSM outside of
TimeDIAL-0. One possible reason for the regres-
sion is that TSM and SSM have overlapping Date
span examples, which may make the intermediate
task easier and thus less useful. However, it is
slightly better than SSM on Natural Questions.

Entities+TSM The ENTITIES+TSM model per-
forms the best overall: with and without the extra
training data for TimeDIAL. It has the benefit of
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Model T5 SSM E+TSM

Duration 88.64 88.28 89.09
Set 86.39 88.22 87.79
Time 87.74 88.70 87.70
Date 65.75 66.63 66.87
Entities 42.17 45.76 46.54

Table 3: Aggregated performance across types for base-
lines and the best overall model (ENTITIES+TSM). For
TimeDIAL, each answer span is labeled by SUTIME.
Duration includes MC-TACO’s “Event Duration”; Set
includes MC-TACO’s “Frequency”, Time and Date
both include MC-TACO’s “Typical Time”; Date also
includes SituatedQA; Entities include all of MC-TACO
and SituatedQA. Note that the majority of the gains
from SSM/TSM seem to be from Entities and Dates.
See Appendix B for rationale behind these choices.

TSM spans without containing overlapping spans
or losing the world knowledge from entity spans. It
also performs slightly better than SSM on Natural
Questions.

By Type We analyze model performance by tem-
poral type in Table 3. The main improvement of
both SSM and ENTITIES+TSM is in entity and
date tasks. Surprisingly, TSM shows a regression
on time tasks, and only gets a slight improvement
on duration tasks. One possible hypothesis for this
is that temporal expressions may be more informa-
tive when co-occurring with an entity. Note that
these numbers are based on the trained versions of
each dataset, excluding Natural Questions. Note
that SituatedQA contains further breakdowns based
on the scope of the date, but this does not map well
to the other datasets.

4 Related Work

Span Masking and Intermediate Training
Salient Span Masking (Guu et al., 2020) came out
of a series of efforts like SpanBERT (Joshi et al.,
2020) to select more difficult examples to improve
models memorization of the text.

Most similar to us, Ye et al. (2021) explore a sim-
ilar paradigm of choosing better spans for a down-
stream task (e.g., entity linking or relation extrac-
tion) where they experiment with both a heuristic
masking policy similar to SSM and also a learned
masking policy. They similarly find that mask-
ing spans that resemble downstream tasks improve
performance, however, they also note that learned

masking policies suffer from overfitting. Yang et al.
(2020) and Zhou et al. (2020) explore intermedi-
ate training by designing heuristics to identify sen-
tences containing temporal expressions and then
adding additional tasks and losses, rather than us-
ing span masking. TSM differs in more closely
resembling the pretraining task.

Levine et al. (2021) use pointwise mutual infor-
mation to jointly mask highly correlated spans to
avoid the model relying on local signals but rather
learning from the broad context. They find this
leads to faster and better pretraining. In the future,
it might be interesting to see how PMI-spans can
combine with knowledge-oriented span techniques
such as SSM, TSM, and whether they can help in
the intermediate training paradigm.

Temporal Understanding There has been a
surge of interest in probing models’ temporal
awareness. While we evaluate on a three tasks,
it is far from an exhaustive evaluation and we leave
further evaluations of our method to future work.

Recently, Thukral et al. (2021) and Vashishtha
et al. (2020) construct NLI datasets to test whether
pretrained models understand certain types of com-
mon sense temporal expressions, such as contain-
ment. To probe common sense, we use TimeDIAL
(Qin et al., 2021) for its naturalistic dialogues as
well as MC-TACO (Zhou et al., 2020), which uses
a diverse set of situations and temporal expressions.

For factual questions, open-response temporal
questions are closely aligned with our work (e.g.,
TimeQA; Chen et al. 2021; TempLAMA; Dhingra
et al. 2022). All of TempLAMA, TimeQA, and
SituatedQA (Zhang and Choi, 2021) rely primarily
on the year as the main temporal expression be-
ing tested, where facts are scoped to the provided
years. To probe temporally scoped facts, we use
SituatedQA for its more naturalistic questions.

5 Conclusion

In this work, we investigate SSM as it relates to
temporal tasks that require understanding both com-
monsense and world knowledge questions and pro-
pose a new intermediate training method which se-
lects spans generated by a temporal parser. These
intermediate training strategies result in the best
overall reported results on the selected downstream
tasks. However, we find that even the entity spans
from SSM are helpful for temporal tasks, likely
because entity-containing examples also contain
informative temporal knowledge.
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Limitations

This analysis investigates only the encoder-decoder
model architecture: in particular, encoder-only
models such as BERT (Devlin et al., 2019) and
decoder-only models such as GPT-2 (Radford et al.,
2019) are excluded. Further, large language mod-
els, such as PaLM (Chowdhery et al., 2022) or
GPT-3 (Brown et al., 2020) are also not investi-
gated. See Appendix B for further discussion.
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A Training Details

All models are initialized from the public T5-1.1-
XXL checkpoints.4

A.1 Intermediate Training

We use 256 Cloud TPU v3 cores for the intermedi-
ate training procedure using a batch size of 2048
and the fixed default learning rate of 0.001. Train-
ing generally proceeds for one epoch, which is
between 100-150K steps depending on the precise
task, though we used early stopping for the TSM
and TSM+SSM models based on MC-TACO per-
formance, as they seem to overfit.

A.2 Finetuning

We use 64 Cloud TPU v3 cores for finetuning and
inference on all tasks. For MC-TACO, Natural
Questions, and SituatedQA, we use the same fixed
learning rate of 0.001 and train for 10K steps with
batch size 128. For TimeDIAL, we attempt to fol-
low their training setup more closely, and use a
lower learning rate (0.0001) and train for up to
100K steps, still with batch size 128 and use early
stopping on the validation set to inform when to
stop. For most of the models that had intermediate
training, the early stopping point was for 10K steps.
However, for the basic T5 model, it was after 20K
steps (improving from (82.97 → 84.51)), imply-
ing that it can overcome its lack of intermediate
training with additional finetuning data. Note that
in the zero-shot variant, no finetuning is done.

B Further Discussion

B.1 Other Experiments

We previously experimented with the T5 Large
and T5-XL models, as well the as 1.0 versions of
the T5 models that were first described in Raffel
et al. (2020). In general, larger models and the 1.1
versions worked better. While we refrain from re-
porting results due to inconsistent setups, in general
the smaller models were notably worse, such that
distinguishing between two similar setups (such as
TSM and SSM) was difficult on many tasks. While
we know of no work testing salient span masking
on extremely large models, it is possible it would
actually show a larger impact, based on this trend.
While left-to-right decoding serves as an awkward
fit for the paradigm, if our hypothesis on the reason

4https://github.com/google-research/text-to-text-transfer-
transformer

Temporal Type Number of sentences

Date 56,520,912
Duration 8,182,819
Set 1,797,929
Time 2,281,198

Table 4: TSM data statistics: The above table de-
scribes the distribution of temporal spans in the English
Wikipedia data, which comprises of 121M sentences.

Span Type Number of sentences

Entity 78,139,341
Date 32,023,769

Table 5: SSM data statistics: The above table describes
the distribution of salient spans in the Wikipedia data
as processed by (Guu et al., 2020), which comprises of
82M sentences. Each row denotes the number of sen-
tences that contain at least one of the respective span.

TSM Span Type SSM Span Type
Named Entity Date

Date 29,771,242 -
Duration 5,159,229 3,144,592
Set 1,226,333 844,222
Time 915,084 411,436

Table 6: We apply SUTIME on the SSM training data
(Guu et al., 2020) to investigate how many sentences
contain temporal information. Each column denotes
the number of sentences that contain the SSM identified
span (e.g. named entity or date) and each row denotes
the number of those sentences in which SUTIME iden-
tified the corresponding temporal span. Number of sen-
tences with at least one named entity: 78,139,341
Number of sentences with at least one date: 32,023,769
(Table 5)

why SSM works is correct, then it should not prove
to be a substantial hurdle. See also below for more
discussion on said hypothesis.

B.2 Span Distribution vs. Text Distribution

Our hypothesis for SSM’s effectiveness is due to
it oversampling difficult sentences. This is based
on the performance gain for the ENTITIES interme-
diate training as well as the number of temporal
spans that occur in the SSM training data. Table 6
shows the results of SUTIME parser on the SSM
training data, and as we can see, significant portion
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of the SSM data (45%) has temporal spans. Table 6
shows the breakdown of different temporal spans
for each SSM salient span type. We leave an exact
test of this for future work, but if this is true, then
we might expect left-to-right decoding models to
also benefit from the sampling procedure of SSM,
even though they do not use a masked language
modeling paradigm for training.

B.3 Span Types in Table 4
Mapping MC-TACO’s span types is somewhat
helpful to see the performance breakdown. Note
that these are now based on individual answers,
while MC-TACO’s strict match metric is based on
correctly labeling all answers for a given question.

Entities While MC-TACO is a common sense
dataset, it frequently relies on reasoning about rel-
atively complicated phenomena. While it is com-
mon sense to know that a dynasty does not rule in
China for only a few minutes, it is still required to
know more about China and dynasties to answer
the question correctly. TimeDIAL on the other
hand is normally ordinary conversations that are
not very entity-centric. SituatedQA is derived from
Natural Questions, which is an information seeking
dataset that frequently features entities.

Duration MC-TACO’s event duration maps well
to the Duration type in SUTIME. While there may
be some SituatedQA examples that include dura-
tions, we do not filter for them.

Set MC-TACO’s Frequency type asks question
of the "How often" nature while sets frequently
have answer types of that nature e.g., "every third
sunday", but this is not a perfect mapping.

Date MC-TACO’s typical time sometimes in-
cludes dates, but it is less likely to be a specific
date and more likely to be a generic date like Sun-
day, rather than a specific knowledge-based date.
SituatedQA questions always include dates that
decontextualize Natural Questions.

Time MC-TACO’s typical time sometimes corre-
sponds with times as well, but they are again less
likely to be specific. Unfortunately, Date and Time
are not separated in MC-TACO.

Other MC-TACO Types Note that we did not
include the “Stationarity” or the “Event Ordering”
MC-TACO types in the breakdown, as they do not
correspond well to any SUTIME type.
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Abstract

Building natural language inference (NLI)
benchmarks that are both challenging for mod-
ern techniques, and free from shortcut biases
is difficult. Chief among these biases is sin-
gle sentence label leakage, where annotator-
introduced spurious correlations yield datasets
where the logical relation between (premise,
hypothesis) pairs can be accurately predicted
from only a single sentence, something that
should in principle be impossible. We demon-
strate that despite efforts to reduce this leakage,
it persists in modern datasets that have been
introduced since its 2018 discovery. To enable
future amelioration efforts, introduce a novel
model-driven technique, the progressive evalu-
ation of cluster outliers (PECO) which enables
both the objective measurement of leakage, and
the automated detection of subpopulations in
the data which maximally exhibit it.

1 Introduction

Natural language inference (NLI) is a fundamen-
tally pairwise task, wherein a logical relation be-
tween two statements is predicted. Progress on
NLI benchmarks is an important proxy for advance-
ments in natural language reasoning by machines.
Models are trained to process the two statements si-
multaneously, in a paired sentence condition (PSC).
Unfortunately many modern NLI datasets exhibit
single sentence label leakage. When this leakage
is present, models are able to accurately predict
the pairwise relation encoded by the labels in a
single sentence condition (SSC)—where the model
is only shown one of the statements (Poliak et al.,
2018). This is a serious problem, rendering NLI
datasets’ capture of reasoning questionable, and
limiting the robustness of models trained on them.

NLI is formalized as predicting a relation
r ∈{neutral, entail, contradict} from a pair of sen-
tences (premise s1 and hypothesis s2). An ideal
NLI benchmark without single sentence label leak-
age will have distribution of r that is conditionally

⨉ Neutral
⨉ Contradiction
⨉ Entailment

Bias Regions
(Large Markers)

SNLI CAugNLI

Balanced Regions
(Small Markers)

Figure 1: A T-SNE projection of the SNLI and
CAugNLI test sets in PECO’s model-driven single sen-
tence condition (SSC) embedding space, showing en-
tailment-, contradiction-, and neutral-labeled samples.
This model was trained on the paired-sentence condition
(PSC) where the relation between sentences in a sample
are observable. In a leakage-free dataset, a model should
be unable to separate subpopulations that disproportion-
ately exhibit one label class in the SSC. Local regions
exhibiting an imbalanced label distribution in this sub-
population are considered “biased regions” and plotted
with large markers. SNLI exhibits large, continuous
regions in the hypothesis only space disproportionately
exhibiting the same label, compared to CAugNLI. Ac-
cordingly, SNLI exhibits higher single sentence label
leakage than CAugNLI (Table 3).

dependent on the pair of sentences, but indepen-
dent from either individual sentence (Wang et al.,
2021c). In practice this is difficult to achieve, par-
ticularly when constructing usefully large datasets.

Most large-scale NLI datasets are produced by
sourcing seed sentences from an existing text pop-
ulation to serve as initial premises or hypotheses.
Each seed sentence is then assigned one or more re-
lations r, which annotators use to write new elicited
sentences satisfying each selected relation relative
to the seed. Many datasets exclusively build either
the hypothesis or premise population from seed
sentences, leaving the other exclusively elicited.
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Dataset Authors (Year) Seed sentences from Language Imbalance on # Train # Dev # Test
SICK Marelli et al. (2014) Image+Video Captions En s2 4.4k 0.5k 4.9k
SNLI Bowman et al. (2015) Image Captions + KB En s2 550k 10k 10k
MNLI Williams et al. (2018) Multiple Genre En s2 393k 20k 20k↪MNLI-m — 10k 10k↪MNLI-u — 10k 10k
XNLI Conneau et al. (2018) MNLI 14 Langs. s2 — 70k 35k
FEVERNLI Nie et al. (2019) Wikipedia En s1 208k 20k 20k
ANLI Nie et al. (2020) Wikipedia+HotpotQA En s2 163k 3.2k 3.2k↪A1 17k 1k 1k↪A2 45k 1k 1k↪A3 100k 1.2k 1.2k
OCNLI Hu et al. (2020) Multiple Genre Zh s2 47k 3k 3k
CAugNLI Kaushik et al. (2020) IMDb+SNLI En s2 & s1 8.3k 1k 8.3k
SNLIdebiased Wu et al. (2022) SNLI, generated En s2 & s1 1.14M — —
MNLIdebiased MNLI, generated 744k — —

Table 1: Information on the NLI datasets we compare in this study. MNLI has “matched” (m) and “unmatched”
(u) test sets that we evaluate separately. The ANLI dataset is decomposed into partitions “A1,” “A2,” and “A3”. A
Vertical line denotes identical value in cell as above (sub-elements of same dataset).

Systematic, shared biases in the words, sentence
structures, or ideas that crowdworkers consider
when given a logical relation, coupled with the
exclusively elicited nature of one of the sentence
populations, then drive relation leakage (Gururan-
gan et al., 2018). For example, a slight preference
for words like “not” or “doesn’t” when given con-
tradict as opposed to entail would lead to a bias
in the n-gram distribution between the classes in
the SSC. Simple heuristics inspired by these find-
ings can produce challenging test sets that hobble
models trained on these biased datasets (McCoy
et al., 2020), but they require manual guesswork,
don’t generalize, and may miss higher-level, more
nuanced semantic shortcuts and biases.

These “leakage features” encoded in the elicited
sentences are visible to NLI models (Zhang et al.,
2019), enabling them to “cheat” by attending to
them as shortcuts rather than logical correspon-
dences between the two sentences, calling into
question the appropriateness of NLI datasets as
benchmarks for language understanding (Bowman
and Dahl, 2021). In this work we rigorously ana-
lyze this problem of single sentence relation leak-
age in both popular and recent NLI datasets using
novel techniques to enable targeted interventions
and create higher quality future resources.

Further NLI datasets have been proposed to
tackle these problems using machine-in-the-loop
adversarial sentence elicitation, (Nie et al., 2020),
counterfactual augmentation (Kaushik et al., 2020),
and learning dynamic-based debiasing (Wu et al.,
2022). These datasets are purported to provide
more challenging generalization scenarios for NLI

models to better test logical reasoning capabilities.
One big question remains—have these techniques
actually eliminated relation leakage biases?

In this work, we demonstrate the following:
New NLI datasets still exhibit single sentence
relation leakage. We compare SSC performance
for 10 NLI datasets (including those previously
assessed by Poliak et al. (2018)) using a simple
transformer baseline, finding that single sentence
relation leakage remains a severe problem.
NLI models still use the leakage features to
cheat. We analyze the datasets using output deci-
sion agreement and input token importance statis-
tics between models trained in the SSC and PSC to
demonstrate this.
Automated leakage feature detection is feasi-
ble. We introduce a novel model-based metric
and dataset analysis tool, the Progressive Evalu-
ation of Cluster Outliers (PECO) (Figure 1), for
examining the degree of single sentence relation
leakage and eliminating it in future datasets.1

2 Quantifying NLI Dataset Bias

An ideal NLI benchmark is neither “saturated” nor
biased. Saturated benchmarks are datasets for
which current approaches already achieve high
accuracy. They are “solved” and have limited
utility in tracking future progress (Bowman and
Dahl, 2021). We refer to as biased any NLI bench-
marks that exhibit significant single-sentence rela-
tion leakage through high achievable SSC accuracy
in at least one single sentence condition.

1Code at github.com/michaelsaxon/DatasetAnalysis,
and an animated demo is available at saxon.me/peco.
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Accuracy (% PSC) Hparams

Dataset SOTA Model Replication Model SOTA Ours Maj. LR Batch

SICK NeuralLog (Chen et al., 2021) roberta-large 90.3 87.8 56.0 1e–5 18
SNLI EFL (Wang et al., 2021b) roberta-large 93.1 90.6 33.8 5e–6 128
MNLI-u T5 (Raffel et al., 2019) roberta-large 92.0 88.7 35.6 5e–6 12
MNLI-b 91.7 88.3 36.5 5e–6 12
XNLI ByT5 (Xue et al., 2021) xlm-roberta 83.7 73.7 33.3 1e–5 16
FEVER KILT (Petroni et al., 2021) roberta-large 86.3 74.7 33.3 1e–5 8
ANLI InfoBERT (Wang et al., 2021a) roberta-large 58.3 54.0 33.5 1e–6 18↪A1 75.5 61.9 33.4 1e–6 18↪A2 ALBERT (Lan et al., 2020) 58.6 50.0 33.4 1e–6 18↪A3 53.4 49.8 33.5 1e–6 18
OCNLI RoBERTa-wwm-ext-l (Xu et al., 2020) bert-base-chinese 78.2 71.8 36.8 1e–5 128
CAugNLI — (Ours) roberta-large 84.7 84.7 33.9 5e–6 64
SNLIdebiased roberta-large 95.6 95.6 35.5 1e–5 64
MNLIdebiased roberta-large 96.9 96.9 36.2 1e–5 16

Table 2: For each dataset we analyze, the current state of the art (SOTA) model, base pretrained LM we use for
replication, and accuracy for SOTA, our replication (Ours), and majority label-only (Maj.) classification in the
standard paired-sentence NLI classification condition (PSC) with selected best-performing hyperparameters.

We analyze 10 datasets containing a total of 14
test or validation sets in terms of biasedness and
saturatedness, across 17 SSC conditions (premise-
only (s1) or hypothesis-only (s2)). Table 1 provides
an overview of this information along with statistics
such as train/dev/test set size, and which sentence
population is potentially unbalanced.

Each dataset D is composed of (s1,s2,r) tuples.
We use the standard notation (Xi,Yi) ← D to de-
scribe the samples, as depending on whether the
training condition is standard PSC or SSC, each
Xi can be (s1i,s2i), s1i, or s2i. Models trained in
condition c are referred to as fc.

2.1 Saturation and Bias Scoring

We assess accuracy on the test set (or val set when
no labeled test set is available) for each dataset in
paired- and single-sentence conditions.

Saturation (Accuracy): We report state-of-the-
art (SOTA) model performance results in the PSC,

ASOTA(D) = P( fSOTA(Xtest) =Ytest); X ,Y ∈D (1)

For our model-level and sample-level compara-
tive analysis between the PSC and SSC we train
our own transformer-based models using a simple
procedure (Sec. 2.4) to assess replication accuracy,

APSC(D) = P( fPSC(Xtest) =Ytest); X ,Y ∈D (2)

SSC Accuracy: For each elicited population
SSC we train a model fSSC according to the proce-
dure described in Sec. 2.4.2, to assess ASSC:

ASSC(D) = P( fSSC(Xtest) =Ytest); X ,Y ∈D (3)

Table 2 shows current SOTA models and results
for the 10 datasets, as well as our PSC model per-
formance and the relevant training hyperparame-
ters (more detail in Sec. 2.4). Figure 2 shows
SSC accuracy against replication (PSC) accuracy
for each dataset. Datasets that exhibit higher SSC
accuracy have worse single sentence relation leak-
age, and are thereby questionable in their ability
to capture reasoning abilities. Ideally, an optimal
benchmark for NLI will both have low maximum
SSC accuracy and low maximum PSC accuracy
(room for future model growth).

These absolute measures of dataset bias and sat-
uration are useful targets for future optimal bench-
marks, it is important to understand how these mea-
sures interact with each other.

2.2 Relative Dataset Bias Scoring
We assess two relative dataset bias scores.
SSC Improvement over Chance: We subtract
the SSC test accuracy from the accuracy achieved
by a “guess majority label” strategy following (Po-
liak et al., 2018):

∆maj = P( fSSC(Xtest) =Ytest)−P(Ymaj =Ytest) (4)

This metric gives an insight into single sentence
relation leakage that compensates for datasets (such
as SICK) with an uneven base label distribution.
SSC-PSC Accuracy Recovered: Accuracy
achieved by SSC model over PSC:

%RR = P( fSSC(Xtest) =Ytest)
P( fPSC(Xtest) =Ytest) (5)
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Figure 2: Where the existing NLI datasets fall on the
SSC accuracy/PSC accuracy axis. An ideal benchmark
isn’t saturated (lower SOTA accuracy) and also is unbi-
ased (low SSC accuracy). △ markers represent premise-
only SSC results and ○ markers represent hypothesis-
only SSCs. For datasets exhibiting leakage in both
conditions, the two points are connected by a dotted line
with a ∣ marker for their average SSC accuracy.

Dataset Cond. SSC %RR ∆maj

SICK s2 60.0 68.3 4.0
SNLI s2 71.6 79.0 37.8
MNLI-b s2 59.8 67.4 24.2
MNLI-u 60.9 69.0 24.4
XNLI s2 55.0 74.6 21.7
FEVER s1 63.5 85.0 30.2
ANLI s2 48.2 89.3 14.7↪A1 67.5 82.4 17.6↪A2 82.1 96.2 14.7↪A3 90.1 96.6 14.6
OCNLI s2 61.5 85.7 24.7
CAugNLI s1 41.9 49.5 8.0

s2 39.0 46.0 5.1
SNLIdebiased s1 45.3 45.3 2.9

s2 65.3 68.3 29.8
MNLIdebiased s1 34.0 35.6 -2.2

s2 57.1 58.9 20.9

Table 3: For each NLI dataset and potential leakage-
exhibiting single-sentence condition (Cond.) we report
test accuracy in the single sentence condition (SSC), and
three derived metrics from Sec. 2.1. SOTA test accuracy
recovery (%RS), replication test recovery (%RR), and
biased condition improvement over the chance majority
guessing strategy (∆maj).

This metric captures how similarly the single
sentence and normal condition models perform.

2.3 Biased Model Results

Table 3 shows the extent of the single-sentence re-
lation leakage problem across the 17 SSC tests on
the 14 splits for the 10 NLI datasets. These results
clearly show that each dataset exhibits significant
single-sentence relation leakage for at least one
condition. The comparison columns replication
test recovery (%RR), and SSC improvement over
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Figure 3: Test set accuracy for SOTA models vs our
universal replication procedure models for each dataset
in PSC, with a trendline (PCC=0.97) and y = x line.

the chance majority guessing strategy (∆maj) are all
computed using the single sentence condition accu-
racy and the standard NLI two-sentence condition
SOTA and replication accuracy values in Table 2.

2.4 Model Training

Our training technique is simple and applied con-
sistently to all datasets. We fine-tune three differ-
ent language-specific pretrained transformer check-
points2 from HuggingFace (Wolf et al., 2019) us-
ing Pytorch Lightning. All models were trained
on NVIDIA A-100 GPUs. All models are the
HuggingFace xForSequenceClassification with
num_classes=3 and no other modifications. All
models are trained using the Adam optimizer with
cross entropy loss.

We find that this procedure produces broadly
near-SOTA performance models, with a maximum
relative accuracy difference of 8%, and a 92% Pear-
son’s correlation coefficient (PCC) between SOTA
and replication accuracy across the datasets (Fig-
ure 3). Our replications are a reasonable proxy
to SOTA for comparative dataset analysis.

2.4.1 Replication Training Details

Hyperparameters For each dataset in the paired
sentence condition (PSC), we select a batch size
for maximum GPU utilization. We perform a grid
search over lr in {5e–7, 1e–6, 5e–6, 1e–5, 5e–5}.

Single Dataset Fine-tuning We obtain separate
fine-tuning checkpoints from the pretrained models
for each dataset to enable clean analysis of one
dataset at a time. We do not accumulate fine-tuning
passes across multiple datasets.

2roberta-large (Liu et al., 2019), xlm-roberta (Con-
neau et al., 2019), bert-base-chinese (Devlin et al., 2018)
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2.4.2 Single Sentence Condition Training
To train each dataset’s corresponding SSC
model(s), we use the same setup as the PSC model
but follow Poliak et al. (2018)’s formulation of fine-
tuning the chosen classification model on only the
SSC sentence, premise only or hypothesis only.

FEVER exhibits bias in the premise distribution,
and CAugNLI, SNLIdebiased, and MNLIdebiased ex-
hibit imbalance in both (Table 1). For the datasets
that have imbalanced distributions in both condi-
tions, we separately train bias models for both
hypothesis-only and premise-only.

3 Analyzing NLI Dataset Bias

In this section we introduce quantification tech-
niques for more accurately characterizing the ex-
tent of these bias problems in the aforementioned
NLI datasets, analyze how they interact with the
observable bias itself, and develop tools for pro-
ducing future NLI benchmarks that more closely
resemble the ideal benchmark.

3.1 Sample-level Model Behavior
We are particularly interested in understanding the
degree to which models trained in the PSC and
SSCs “reason” similarly. For this section we use
the notations f (XXX test), YYY test to denote the (1×N)
column vectors of model output decisions and la-
bels for a test set of N samples, and a simple agree-
ment function Ag(YYY 1, ...,YYY n) as the ratio of ele-
ments that are identical across all YYY i to the vector
size N. In other words,

Ag( f (XXX test),YYY test) = P(Ytest = f (Xtest)) (6)

SSC-PSC Agreement (NBA): The number of
samples for which the SSC and PSC models agree
over the total number of samples in the set:

NBA = Ag( fSSC(XXX test), fPSC(XXX test))∣XXX test∣ (7)

SSC-PSC Recovery (NBR): The number of sam-
ples for which the SSC and PSC models agree, and
both classify correctly over the total number of
samples they agree on:

NBR = Ag( fSSC(XXX test), fPSC(XXX test),YYY test)
Ag( fSSC(XXX test), fPSC(XXX test)) (8)

Token Relevance Agreement (TRA): Do SSC
and PSC models reason alike? For a sentence X
with length n, we compute the gradient of the classi-
fication output posterior with respect to each token

embedding emb(w j). We take the 2-norm of the
each gradient vector and normalize it over the entire
sequence to produce a normalized local explanation
vector m( f (X)) (Sundararajan et al., 2017):

m( f ,X) = [ ∣∇emb(w j)( f (emb(w j)))∣2∑n
i=1(∣∇emb(wi)( f (emb(wi)))∣2)]

n

j=1

(9)
To compare “reasoning” similarity between the

two models, we compute the samplewise input to-
ken relevance agreement can be computed using
cosine similarity:

TRA(Xi) = m( fPSC,Xi) ⋅m( fSSC,Xi)∣∣m( fPSC,Xi)∣∣ ∣∣m( fSSC,Xi)∣∣ (10)

As the SSC and PSC inputs have different
lengths, we pad the SSC importance vector for
m( fSSC(Xi)) with zeros either prepended or post-
pended (depending on if the SSC is hypothesis-
or premise-only) to make the two local explana-
tion map vectors of equal length. The dataset-level
token relevance agreement is the average of sam-
plewise TRA.

3.2 Cluster-based Bias Evaluation

We are interested in investigating how the bi-
ased distributions of the elicited sentences in NLI
datasets are captured in the learned representation
spaces of models trained on them. In particular, we
are interested in answering this question: is elicited
sentence label leakage captured semantically in
regions of latent space?

To answer this we produce dimensionality-
reduced elicited sentence embeddings for the test
set, using the PSC replication models, then fit a
high-k k-means clustering to this collection of em-
beddings. This will allow us to analyze how the
local distribution of labels varies over the elicited
sentence embedding space. By comparing the KL-
divergence of the label distribution within each
cluster and the global label distribution, we can
compute the Progressive Evaluation of Cluster
Outliers (PECO) score (Figure 4).

Elicited Sentence Embeddings: To embed the
elicited sentences as they’re learned by a model in
the PSC, we feed the elicited sentences se through
the PSC replication fine-tuned NLI model encoder.
We extract the latent codes produced at the output
very last fully connected layer of the model before
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Figure 4: An overview of the approach to computing
the PECO score from a collection of elicited popula-
tion sentences selicited and their corresponding Labels r.
When a fixed threshold is chosen, the Hypothesis em-
beddings can be dimensionality-reduced using T-SNE
to produce plots like Figure 1.

the linear classifier to collect latent codes for ev-
ery se in the test set. We then embed these codes
into their 30 principal components to produce the
embeddings (Figure 4 (a)).

Clustering: We fit a high-k (in this case, k = 50)
k-means clustering over the distribution of elicited
sentence embeddings to provide a set of local bins
for analysis. For each cluster, we count the relation
labels its samples contain, to produce a set of 50
cluster-label distributions (Figure 4 (b)).

Computing Cluster Divergences: For each clus-
ter label distribution pi =P(Y ∣cluster= i), we assess
the L2 divergence between it and the global label
distribution pG to produce divergence scores si:

si = 1
3

3∑
j=1
(P(Y = j)−P(Y = j∣cluster = i))2 (11)

This step is depicted in Figure 4 (c).

Progressive Evaluation: Finally, we compute
the PECO score for this collection of cluster di-
vergences as the area under the curve produced by
counting the number clusters with divergence si

over some threshold t for the range of si.

PECO = 100∫ max(s)
min(s)

counti(si > t)
k

dt (12)

Generality of PECO: These same techniques
could be applied to a wide variety of potential leak-
age features on the input to analyze a wide vari-
ety of correlation types. For example, input sen-
tence words could be shuffled to test for word order
invariance, or word classes could be specifically
masked to test for spurious vocabulary correlations.

Dataset Cond. NBA NBR TRA PECO

SICK s2 48.8 49.7 63.6 13.9
SNLI s2 70.0 71.8 63.9 14
MNLI-b s2 32.5 33.4 57.6 6.5
MNLI-u 47.5 48.6 59.3 7.5
XNLI s2 52.3 54.0 64.7 9
FEVER s1 39.4 38.0 50.7 14.3
ANLI s2 37.6 53.4 28.0 5.5↪A1 53.8 57.9 54.0 15.3↪A2 53.9 60.3 51.2 11.1↪A3 52.1 58.5 55.7 15.9
OCNLI s2 69.0 74.1 78.5 17.9
CAugNLI s1 32.9 32.7 39.5 5.5

s2 43.4 42.5 59.7 5.4
SNLIdebiased s1 32.0 31.8 41.5 8.2

s2 60.9 61.4 58.4 8.3
MNLIdebiased s1 34.7 34.0 46.7 6.6

s2 42.2 42.0 58.0 6.8

Table 4: Metrics comparing the behavior of our repli-
cation and single-sentence condition models on each
dataset using the metrics introduced in Secs. 3.1, 3.2:
Normal-Bias Agreement (NBA) and Recovery (NBR),
Token Relevance Agreement (TRA) and the Progressive
Evaluation of Cluster Outliers (PECO) score.

PECO Parameter Choices: We discuss the im-
pact of PECO parameters (e.g., choice of k-means,
number of principal components to reduce to, use
of L2 or KL-divergence) in Appendix C.

4 Results

As discussed above, ideal NLI benchmarks are nei-
ther saturated nor biased. Unfortunately, as Table 3
demonstrates, none of the NLI datasets tested thus
far satisfy this condition. This is more clearly illus-
trated in Figure 2. Two questions remain: to what
extent do current models cheat and how can we
make less biased, less saturated datasets? Table 4
contains experimental results intended to answer
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Figure 5: Model-wise output agreement vs Bias accu-
racy recovery (%RR). As the replication PSC model
and the SSC model agree more often for a given dataset,
their performances in the two conditions converge.
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Figure 6: Token releveance agreement (TRA) vs SSC
accuracy. When the PSC model and SSC models “rea-
son” more similarly for a dataset, the relation leakage
bias exhibited in that dataset tends to be higher.

these two questions. The “agreement metrics” as
introduced in Sec. 3.1, SSC-PSC Agreement, SSC-
PSC Recovery, and Token Relevance Agreement
are provided in Table 4.

4.1 Result-Metric Correlations

We find that SSC-PSC model output agreement
(NBA) and recovery rate %RR are correlated with
a PCC of 0.69 (Figure 5). Datasets where the SSC
and PSC models predict more similarly have closer
the SSC and PSC performance results are for said
datasets. While this result is surprising, ANLI R3
is an interesting outlier (section 5).

We find that TRA and SSC accuracy are also
positively correlated with a PCC of 0.57 (Fig-
ure 6). This result demonstrates that for a single
dataset, similar reasoning patterns for the single
sentence condition and standard sentence pair con-
dition is strongly correlated to single-sentence rela-
tion leakage. In other words, standard condition
NLI models trained on biased (high leakage)
datasets tend to cheat. Thus, models indeed rely
on annotation artifacts in NLI datasets to achieve
high accuracy, and demonstrates that this continues
to be a problem in newer NLI datasets, in spite of
mitigation attempts. How can we use this knowl-
edge to build better benchmarks?

Figure 7 depicts the relationship between PECO
score and bias recovery (%RR). We find the two are
positively correlated with a PCC of 0.64. This re-
sult is fairly intuitive: the more uneven the distribu-
tion of labels is in the single-sentence latent spaces
(and thus, the higher the area under the PECO
curve), the more SSC performance approaches the
standard PSC condition performance for a given
NLI dataset. This suggests PECO-reducing inter-
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Figure 7: Test-set PECO score vs Bias accuracy re-
covery (%RR). This result suggests that interventions
that produce lower PECO score datasets tend to yield
datasets that exhibit less relation leakage in the SSC.

ventions may be able to target debiasing efforts.

5 Discussion

Some examples are only correctly classified in
the single-sentence condition. A common as-
sumption to discussions of cheating features in
machine learning is that they play a role in in-
flated classification accuracy when present. How-
ever, ANLI R3 provides an interesting counterex-
ample. For this dataset, the hypothesis-only model
achieves a SSC accuracy of 48.1%, and the PSC
model achieves 49.8% (a %RR of 90%), and SOTA
achieves 53%. Despite this score similarity, the
samples which the two conditions are able to actu-
ally classify correctly vary surprisingly. With an
NBR of 58.5%, only ≈ 27% of test samples are cor-
rectly classified by both the single and two sentence
condition models. This means that around 21% of
samples in A3 test are only correctly classified
by the single-sentence model.

Perhaps unsurprisingly, ANLI exhibits the low-
est TRA out of all datasets tested, indicating that
it is somewhat of an outlier in having the SSC and
PSC condition models reason differently on it.

XNLI demonstrates the cross-lingual and
semantic nature of single-sentence leakage.
While previous work has focused on finding words,
phrases, patterns, and heuristics in the surface form
of the data, our study of XNLI provides an inter-
esting opportunity to investigate the potential for
the influence of underlying semantics as a leakage
feature. XNLI consists exclusively of 14 language
test and val sets, manually translated from MNLI
examples. Our XNLI PSC and SSC models are
thus trained on MNLI alone, using the multilingual
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xlm-roberta checkpoint.
This produces a natural experiment wherein sur-

face form biases present in the training data are
completely eradicated in the test set (as only the 14
non-English languages Table 1 are present), while
the underlying meanings encoded by those words
remain. In Table 3 we indeed find that XNLI and
MNLI exhibit very similar result comparisons. The
models on both datasets have a ∆max ≈ 20% and
%RR ≈ 65. These leakage feature results, being
robust to manual translation into 14 different lan-
guages, seem to indicate that there is a strong fun-
damental semantic component to the human biases
driving the elicited sentence relation leakage.

Relation leakage remains Unsolved. Elicited
sentence relation leakage is a problem for all eval-
uated NLI datasets, including the new ones in-
tended to fix it. Recent datasets such as XNLI,
FEVER, and OCNLI, exhibit high absolute SSC
performance over majority (∆maj > 20).

Although ANLI and CAugNLI are improve-
ments over the others in terms of ∆maj, with
CAugNLI shining particularly in this regard, none
eliminate the relation leakage problem entirely, as
even CAugNLI still has ∆maj = 8.0, an 8% perfor-
mance over chance in the single sentence condition.

SNLIdebiased and MNLIdebiased, despite their in-
tended purpose, still contain significant amounts of
SS label leakage (29.8% and 20.9% over chance).
This might be because while their production (Wu
et al., 2022) does eliminate bias originally present
in SNLI and MNLI, it fails to prevent the introduc-
tion of new bias in the data generation pipeline.

Cluster approaches are promising for future de-
biasing efforts. Figure 1 shows how the PECO-
derived cluster-bias T-SNE plots can be used di-
rectly to visualize, analyze, and “debug” biased
datasets. In the plot, SNLI clearly has consider-
ably more high-biased clusters taking up a consid-
erable portion of the latent space as compared to
CAugNLI, for the bias threshold of 0.2.

An intervention could be performed on identi-
fied bias regions in the distribution by having hu-
man annotators create new premise sentences from
the given hypotheses, thereby forcing the PECO-
based bias metrics to reduce. This idea is further
backed up by the PCC of 35.8 that we find be-
tween PECO and %RR, suggesting that producing
datasets of lower PECO score will naturally lead to
lower recovered performance in the SSC, and thus
less elicited sentence relation leakage.

6 Related Work

Understanding Bias in NLI Huang et al. (2020)
demonstrated that counterfactual augmentation
alone cannot debias NLI. Multi-task learning can
improve model robustness to fitting spurious fea-
tures (Tu et al., 2020), but because the underlying
benchmarks are biased, progress on the desired
reasoning capability is questionable (Poliak et al.,
2018). Geva et al. (2019) strengthen the finding
that annotator bias is a key driver of this poor gen-
eralization performance, showing that NLI models
can struggle to even generalize across disjoint sets
of annotators on the same task.

Simple word- and n-gram level approaches have
proven surprisingly capable in a-priori characteri-
zations of dataset difficulty (McKenna et al., 2020)
and producing difficult test sets (Saxon et al., 2021)
in diverse language domains such as SLU. Gard-
ner et al. (2021) show how such purely frequentist
approaches can identify word-level spurious cor-
relations with respect to label class which drive
in-part the shortcut features for classes of “compe-
tency problems” such as NLI.

Mitigating Bias in NLI Belinkov et al. (2019)
demonstrate an approach to train NLI models ro-
bustly against some of these biases, using Gururan-
gan et al. (2018)’s hard test set. McCoy et al. (2020)
utilize simple heuristics like lexical overlap to pro-
duce the synthetic debiased HANS NLI dataset to
test generalization. This dataset has been used to
evaluate techniques including predicate-argument-
(Moosavi et al., 2020) and syntactic transformation-
based (Min et al., 2020) augmentations. Zhou and
Bansal (2020) leverage a bag-of-words approach
to debias datasets along lexical features. However,
these approaches have yet to improve generaliza-
tion in comprehensive replication studies has thus
far (Bhargava et al., 2021). Meanwhile Varshney
et al. (2022) propose a fully unsupervised data col-
lection pipeline for NLI, in order to sidestep the
problem of human biases entirely.

Approaches like (Kaushik et al., 2020) and (Wu
et al., 2022) are very promising for producing data
that reduces bias on a samplewise, but not popula-
tionwise level. Using our semantic, model-driven
local bias finding strategies, future interventions
can lead to the large scale production of debiased
NLI datasets and a new generation of higher qual-
ity benchmarks for language understanding. Liu
et al. (2022) perform such a targeted augmentation
approach using the dataset cartography sample
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Figure 8: Histograms for the samplewise confidence
feature from dataset cartography in SNLI, for high- (bi-
ased) and low-PECOL2 clusters.

characterization scheme from Swayamdipta et al.
(2020) to produce WANLI, an NLI dataset that
allows for improved performance on the aforemen-
tioned challenging test sets.

6.1 PECO vs Dataset Cartography

To determine if PECO-driven dataset augmentation
is redundant given the recent release of WANLI,
we seek to determine if usable samplewise infor-
mation for targeting interventions (e.g., presence
in a “bias” cluster) is captured during PECO an-
alysis and is redundant to the relevant samplewise
characterization produced in dataset cartography.

To do this, we collect the samplewise confidence
feature (Swayamdipta et al., 2020) during training
of the PSC model for each validation set sample
in SNLI. We then assign each validation sample
to its corresponding PECO cluster (out of the 50)
and produce two histograms of the confidence fea-
ture, one for “biased” clusters (PECOL2 > 0.25)
and one for the other clusters. Figure 8 shows the
results of this experiment. We find that out of the
10k validation set examples, roughly 2 are assigned
to an “unbiased” cluster for every 1 assigned to
“biased,” roughly evenly across all confidence bins.

This result suggests that PECO clusterwise “bi-
asedness” is orthogonal to the samplewise ease of
learnability captured by the dataset cartography
confidence feature. In other words, we find that
some samples are easy to learn (high confidence)
because they are simple, while other samples are
easy to learn because the model is using cheating
features. PECO-like analyses will be instrumen-
tal in guiding future efforts to eliminate shortcut
features in natural language datasets.

7 Conclusion

In the half decade since (Poliak et al., 2018) single
sentence relation leakage bias has proven to remain
a difficult issue. Efforts to debias NLI have led to
datasets that merely exhibit different kinds of bias
than those shown before, or less saturated bench-
marks that continue to exhibit cheating features.
Future work must prioritize reducing observable
bias directly using a model-driven approach.

Limitations

Our work is limited primarily by the PECO’s re-
liance on test-set classification. To successfully an-
alyze the train set-only datasets of SNLIdebiased and
MNLIdebiased, we had to generate our own train/test
splits over the data by sampling. Luck in split se-
lection may play a role in the level of observable
bias in cases like these. Furthermore, this reliance
on observing held-out samples to understand bias
in general means that interventions to reduce single
sentence label leakage must apply costly multi-fold
splitting and analysis, consuming more significant
compute resources than would otherwise be needed
for other model-driven approaches.

Ethical Considerations

In the short term, progress toward better natural
language inference does not appear to lead to sig-
nificant social risks in its broader impacts. While
“underclaiming” progress in natural language pro-
cessing tasks (e.g. exaggerating the scope or sever-
ity of failures of specific models on specific tasks)
(Bowman, 2021) may be enabled by this work in
the future, our focus on directly quantifiable and ob-
servable single sentence leakage, use of SOTA-like
models (fine-tuned transformers) for analysis, and
our side-by-side comparison of our model imple-
mentations with SOTA all ensure that our criticisms
of current NLI benchmarks are well-founded. All
data and tools we utilized were freely distributed
for unlimited research use in the academic context.
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A Detailed Dataset Info

SICK Sentences Involving Compositional
Knowledge (Marelli et al., 2014) was produced
by instructing annotators to label existing sourced
pairs from 8K ImageFlickr data set (Young
et al., 2014) and SemEval 2012 STS MSR-Video
Description data set (Agirre et al., 2012). The
dataset is in English. Each sentence pair was
annotated for relatedness and entailment by means
of crowdsourcing techniques.
SNLI The Stanford NLI dataset was produced
using (Bowman et al., 2015). The corpus contains
content from the Flickr 30k Corpus (Young et al.,
2014), VisualGenome corpus (Krishna et al., 2017)
and Gururangan et al. (2018). The corpus is in
English. The dataset is collected through human-
written English sentence pairs.
MNLI The Multi-genre NLI Corpus (Williams
et al., 2018) is modeled on the SNLI corpus (Bow-
man et al., 2015) but it differs in the range of genres
of spoken and written English text supporting cross-
genre evaluation.
XNLI The Cross-Lingual NLI Corpus (Conneau
et al., 2018) consists of manually-translated dev
and test samples from MNLI in 14 languages:
French, Spanish, German, Greek, Belgian, Rus-
sian, Turkish, Arabic, Vietnamese, Thai, Chinese,
Hindi, Swahili, and Urdu. It is interesting for an-
alysis because on a high level the semantics of the
data follow MNLI. The corpus is made to evaluate
the inference in any language when only English
data is presented at training time.
FEVER NLI-style FEVER (Nie et al., 2019) is
an NLI reformulation of the FEVER claim veri-
fication dataset (Thorne et al., 2018). The origi-
nal dataset was collected by eliciting annotators to
write fact sentences that are supported, refuted, or
unverifiable relative source passages drawn from
Wikipedia. This is converted into an NLI task by
treating the elicited sentences as premises and the
source passages as NLI pairs with relations entail,
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contradict, or neutral respectively. This dataset is
unique in that the premises were elicited from seed
hypotheses, meaning it has a balanced hyp. distri-
bution but potentially biased prem. distribution.
ANLI The adversarial NLI corpus (Nie et al.,
2020) is collected through crowdworkers and the
purpose of this dataset creation is to make the state-
of-art results fail in this dataset. The sentences are
selected from the Wekipedia and manually curated
HotpotQA training set (Yang et al., 2018). The
language is in English. It contains three partitions
of increasing complexity and size, which we refer
to hereafter as A1, A2, and A3. Detailed data
statistics are in Table 1.
OCNLI The Original Chinese NLI corpus was
collected following MNLI-procedures but with
strategies intended to produce challenging infer-
ence pairs (Hu et al., 2020). No translation was em-
ployed in producing this data; the source premise
sentences and elicited hypotheses are original.
CAugNLI Kaushik et al. (2020) produced coun-
terfactually augmented datasets for NLI and senti-
ment analysis using human annotators, instructing
them to make minimal changes to the sentences
beyond those necessary to change the label. It ex-
tends the work of Maas et al. (2011) and Bowman
et al. (2015). They find that a BiLSTM classifier
achieves negligible performance over chance when
trained on hypothesis only. However, since their
dataset includes elicited modified sentences in both
the premise and hypothesis populations, there are
opportunities for bias on both.

CAugNLI was produced by having human an-
notators minimally modify either the premise or
hypothesis of 2,500 samples drawn randomly from
SNLI so as to produce new samples with simi-
lar structure and word distributions but different
meanings. These modifications are intended to re-
duce spurious correlations, in particular by roughly
equalizing the distribution of relation labels with
respect to word-level and semantic-level patterns
in the elicited hypothesis sentences.
SNLIdebiased and MNLIdb are augmentations of
the SNLI and MNLI train sets produced by training
GPT-2 (Radford et al., 2019) generators on them,
and then generating samples which they check for
accuracy using a pretrained RoBERTa NLI classi-
fier, and then reject if they exhibit spurious correla-
tions including samplewise hypothesis-only model
classifiability (Wu et al., 2022). To do this they
first train static hypothesis-only SNLI and MNLI

models, and reject all generated samples that can
be successfully classified hypothesis-only by them.
However, beyond this test under a static hypothesis-
only distribution they do not attempt to assess if
their generator models introduce new leakage fea-
tures in the sentence distributions as a result of their
accuracy filtering process. To test this we create
test splits on the data (as they provide train sets
only) which contain no sentence overlap with the
train sets through random sampling.

B Training on PSC, Testing on SSC

Here we justify why PECO is computed on single-
sentence condition (SSC) examples, using models
trained on the paired-sentence condition (PSC).

Our core goal is to characterize only the model-
relevant shortcut features that are present in the
SSC data, to enable better model-level understand-
ing and to enable shortcut feature elimination in
future datasets. While all SSC accuracy must be
driven by SSC-visible shortcuts, it is possible that
some SSC-visible cheating features aren’t actu-
ally used as shortcuts by PSC classifiers. Thus,
we have to train on PSC and test on SSC, and PECO
is an alternative metric of bias that captures this
model-level separability of sentences in the SSC
notion better than other approaches.

C PECO Parameter Details

The PECO scoring pipeline contains a number of
parameters that require motivation, including SSC
and PSC model training hyperparameters, number
of principal components to reduce to during PCA∣PC∣, and number of k-means clusters k to divide
the test set into for analysis (Figure 4). We specify
our NN hyperparams that we performed grid search
over in subsubsection 2.4.1. However, selecting k
and ∣PC∣ is not a straightforward simple grid search.

We report PECO scores for all assessed datasets
in Table 5, for k ∈ 10,25,50,100 and no PCA pro-
jection, ∣PC∣ = 50, and ∣PC∣ = 100 PCA conditions.
We find that for a given k, the different PCA condi-
tions have limited impact on the final scores. We
also find that L2- and KLD-based PECO scores are
well-correlated. For smaller test sets (e.g., ANLI
and its partitions A1-A3, OCNLI) there is increased
sensitivity to variations in k relative to the larger
datasets such as SNLI. We selected k =30, ∣PC∣=50
for our main experimental PECO results as it didn’t
produce the extreme swings in score for small test
sets that we observed for higher k.
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k=10 k=25
No PCA ∣PC∣ = 50 ∣PC∣ = 100 No PCA ∣PC∣ = 50 ∣PC∣ = 100

Dataset Cond. L2 KLD L2 KLD L2 KLD L2 KLD L2 KLD L2 KLD

SICK s2 6.0 0.085 6.0 0.075 6.0 0.080 6.8 0.084 6.0 0.080 6.0 0.078
SNLI s2 8.5 0.155 8.5 0.150 8.5 0.150 8.4 0.138 8.8 0.140 8.4 0.136
MNLI-b s2 5.0 0.055 5.0 0.055 5.0 0.055 5.2 0.064 5.4 0.064 5.2 0.060
MNLI-u 5.5 0.065 5.5 0.065 5.5 0.065 5.8 0.072 5.6 0.072 5.8 0.070
XNLI s2 5.0 0.065 5.0 0.065 5.0 0.065 5.2 0.068 5.2 0.068 5.2 0.068
FEVER s1 11.0 0.160 11.0 0.160 11.0 0.160 13.2 0.154 10.6 0.150 10.2 0.144
ANLI s2 15.0 0.095 14.5 0.070 14.5 0.070 31.0 0.176 8.8 0.058 8.8 0.058↪A1 5.5 0.085 5.5 0.075 5.5 0.090 17.2 0.124 28.4 0.136 21.8 0.118↪A2 5.5 0.065 5.5 0.070 5.5 0.070 9.4 0.086 9.2 0.080 9.4 0.084↪A3 5.5 0.070 5.5 0.070 5.5 0.065 5.8 0.082 5.6 0.084 5.8 0.080
OCNLI s2 10.5 0.165 10.5 0.170 10.5 0.170 14.0 0.178 14.2 0.170 14.0 0.172
CAugNLI s1 5.0 0.050 5.0 0.055 5.0 0.050 5.0 0.058 5.2 0.060 8.6 0.080

s2 5.0 0.050 5.0 0.050 5.0 0.050 5.0 0.050 5.0 0.050 5.0 0.050
SNLIdebiased s1 6.5 0.100 6.5 0.100 6.5 0.100 6.2 0.090 6.4 0.094 6.6 0.096

s2 5.0 0.050 5.0 0.050 5.0 0.050 5.0 0.050 5.0 0.050 5.0 0.050
MNLIdebiased s1 5.5 0.065 5.5 0.065 5.0 0.065 5.8 0.072 5.8 0.078 5.8 0.074

s2 5.0 0.050 5.0 0.050 5.0 0.050 5.0 0.050 5.0 0.050 5.0 0.050

k=50 k=100
No PCA ∣PC∣ = 50 ∣PC∣ = 100 No PCA ∣PC∣ = 50 ∣PC∣ = 100

Dataset Cond. L2 KLD L2 KLD L2 KLD L2 KLD L2 KLD L2 KLD

SICK s2 6.2 0.081 7.4 0.082 7.9 0.081 13.5 0.104 13.2 0.098 12.4 0.102
SNLI s2 11.3 0.141 9.8 0.137 9.8 0.141 12.5 0.148 10.0 0.143 10.4 0.136
MNLI-b s2 5.4 0.066 5.4 0.066 5.3 0.064 5.4 0.069 5.4 0.068 6.3 0.069
MNLI-u 7.4 0.073 7.4 0.076 5.9 0.078 8.5 0.087 9.3 0.087 8.6 0.086
XNLI s2 5.5 0.074 5.6 0.074 5.6 0.073 5.7 0.079 5.7 0.080 5.8 0.079
FEVER s1 14.6 0.154 14.7 0.152 12.7 0.149 16.7 0.159 17.2 0.157 17.8 0.160
ANLI s2 25.2 0.132 8.9 0.063 7.0 0.058 26.9 0.162 9.2 0.071 9.0 0.072↪A1 37.8 0.180 31.0 0.168 36.1 0.179 68.2 0.354 56.8 0.301 67.9 0.341↪A2 17.3 0.114 19.6 0.112 15.1 0.103 37.1 0.171 31.8 0.188 34.9 0.179↪A3 13.4 0.108 13.8 0.106 9.8 0.094 26.8 0.147 30.5 0.162 27.8 0.152
OCNLI s2 18.8 0.190 14.9 0.180 14.5 0.176 25.2 0.193 26.5 0.207 21.4 0.186
CAugNLI s1 5.0 0.051 5.0 0.050 5.0 0.051 5.9 0.059 5.9 0.056 5.1 0.056

s2 13.8 0.073 6.9 0.068 12.1 0.101 19.7 0.126 19.0 0.135 13.2 0.091
SNLIdebiased s1 5.0 0.050 5.0 0.051 5.0 0.050 5.0 0.051 5.0 0.051 5.0 0.051

s2 5.9 0.080 6.3 0.088 6.1 0.085 6.0 0.085 6.9 0.090 6.2 0.086
MNLIdebiased s1 5.0 0.052 5.0 0.052 5.0 0.052 5.1 0.054 5.1 0.054 5.1 0.056

s2 5.6 0.070 5.6 0.068 5.5 0.069 6.3 0.071 5.3 0.065 5.6 0.070

Table 5: PECO scores for various levels of principal component reduction (∣PC∣), various numbers of k-means
clusters, using L2 and KLD distance. These numbers are collected from a separate reproduction to Table 3, which
uses different k for different datasets (reflecting their different sizes), and ∣PC∣ = 30. This table clearly illustrates
that e.g., L2 PECO are pretty consistent across different numbers of principal components, for a given number of
clusters k. We find that calibrating k based on the number of test-set samples for a given dataset is valuable for
producing good characterization of the degree of bias. To improve legibility, we kept PECOKLD in the [0,1] range.

3074



Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 3075–3087
May 2-6, 2023 ©2023 Association for Computational Linguistics

Weakly-Supervised Questions for Zero-Shot Relation Extraction

Saeed Najafi and Alona Fyshe
Department of Computing Science, University of Alberta, Canada

{snajafi,alona}@ualberta.ca

Abstract

Zero-Shot Relation Extraction (ZRE) is the
task of Relation Extraction where the train-
ing and test sets have no shared relation types.
This very challenging domain is a good test of
a model’s ability to generalize. Previous ap-
proaches to ZRE reframed relation extraction
as Question Answering (QA), allowing for the
use of pre-trained QA models. However, this
method required manually creating gold ques-
tion templates for each new relation. Here, we
do away with these gold templates and instead
learn a model that can generate questions for
unseen relations. Our technique can success-
fully translate relation descriptions into relevant
questions, which are then leveraged to generate
the correct tail entity. On tail entity extraction,
we outperform the previous state-of-the-art by
more than 16 F1 points without using gold ques-
tion templates. On the RE-QA dataset where no
previous baseline for relation extraction exists,
our proposed algorithm comes within 0.7 F1
points of a system that uses gold question tem-
plates. Our model also outperforms the state-
of-the-art ZRE baselines on the FewRel and
WikiZSL datasets, showing that QA models no
longer need template questions to match the
performance of models specifically tailored to
the ZRE task. Our implementation is available
at https://github.com/fyshelab/QA-ZRE.

1 Introduction

Building models that capture abstract knowledge
rather than just memorizing data is one of the in-
spirations for zero-shot benchmarks (Alex et al.,
2021). In order to test a model’s ability to extract
higher-level knowledge, these benchmarks measure
performance on data unlike what is seen during
training. For example, in Zero-shot Relation Ex-
traction (ZRE), a model trained to extract the name
of a company’s CEO should be able to extract the
name of a country’s political leader at test time.

In ZRE, the test relations do not appear in the
training data, so one cannot apply typical relation

classification approaches. One method for ZRE is
to reframe the task as a Question-Answering (QA)
problem by manually creating question templates
for each relation type. Extracting the tail entity
is accomplished by finding the answer span for
the corresponding question template (Levy et al.,
2017). However, this method requires gold ques-
tion templates ahead of time. Here we ask, is it
possible to leverage QA systems without annotat-
ing relations with gold question templates?

We treat ZRE as a tail entity generation task
for which we consider the dual training of ques-
tion and answer generators. We create question
and answer generators by pre-training the publicly
available T5 models (Raffel et al., 2020) on QA
corpora, and then fine-tune for ZRE within our
proposed learning framework. We investigate four
training objectives based on Marginal Maximum
Likelihood (MML) optimization, and suggest an
off-policy sampling technique to avoid ungrammat-
ical spurious questions in the search space.

Our experiments show that our off-policy sam-
pling technique is critical for creating semantically
relevant questions. For ZRE, we show that our
weakly-supervised questions produce a model with
competitive F1 score of 65.4 compared to the F1
score of 66.1 achieved by using gold question tem-
plates. Our contributions can be summarized as the
following:

• We propose a new learning objective that com-
bines off-policy sampling and MML optimiza-
tion.

• We can successfully generate semantically rel-
evant questions for a given relationship signal.

• We report a new state-of-the-art ZRE perfor-
mance on the RE-QA dataset (Levy et al.,
2017) without using gold question templates.

• We outperform SOTA baselines on the FewRel
and WikiZSL datasets with a generative ap-
proach without using any gold question tem-
plates.
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2 Problem Formulation

In this work, we train models to extract facts from
unstructured text. Facts are represented as triplets
(e1, r, e2) where e1 is the head entity, e2 is the tail
entity, and r is the relation keywords. We explore
relation extraction (RE), which is the task of pre-
dicting r when e1 and e2 are known, and tail entity
extraction (TE), which is the task of predicting e2
when e1 and r are known.

We begin with TE, for which we learn
P (e2|c, e1, r): the distribution of the tail entity con-
ditioned on an unstructured text context c, head
entity, and the relation keywords. We investigate
how to transfer models pre-trained on QA cor-
pora to the task of TE by estimating P (e2|c, e1, r).
With a gold natural question q∗, which semanti-
cally includes the information about both of the
head entity e1 and the relation words r, we can
optimize P (e2|c, q∗) to fine-tune any answer gen-
eration model on RE datasets1. In cases where we
do not have gold question templates, we can define
a simple baseline using a pseudo question qpseudo,
which is the string concatenation of the head entity
e1 and the relation words r. We then can fine-tune
a pre-trained QA model on RE datasets by directly
optimizing the objective P (e2|c, qpseudo).

To transfer the models pre-trained on QA cor-
pora to the task of TE, we can provide a natural
question for the given head entity and the relation
keywords. However, providing question templates
for every relation type is infeasible. We explore
the idea of generating questions semantically rel-
evant to the given input context, relation and the
head entity. Therefore, we marginalize the joint
distribution P (e2, q|c, e1, r) with respect to the un-
observed questions q to learn the tail entity gener-
ator: P (e2|c, e1, r) =

∑
q P (e2, q|c, e1, r). As il-

lustrated by Figure 1, we factorize P (e2, q|c, e1, r)
as the following equation where θQ and θA are
respectively the parameters of the question and an-
swer generation modules:

P (e2|c, e1, r) =
∑

q

P (e2, q|c, e1, r) =
∑

q

PθQ(q|c, e1, r)× PθA(e2|c, q, e1, r) (1)

For example, given a context biography about
the person “Donald Trump” and the relation key-
words “place of birth,” we would use PθQ to first

1On an RE dataset, we can fine-tune models for TE and
ZRE tasks.

Figure 1: The probabilistic representation of the condi-
tional distribution of the tail entity (e2) conditioned on
the context c, head entity e1, and the relation keywords
r. The question q is not observed. The θQ and θA are
respectively the parameters of the question and answer
generation modules.

generate the question “Where was Donald Trump
born?” and then the answer module PθA can gener-
ate the response “New York.”

We then re-purpose this TE model for the task
of RE. Whether we train the tail entity generator
P (e2|c, e1, r) with gold, pseudo, or generated ques-
tions, we perform the RE task by scoring every
possible relation of the test data and choosing the
highest scoring relation:

r̂ = argmax
r
P (e2|c, e1, r) (2)

3 Methods

In this section we discuss the pre-training steps for
the question and answer modules and then explore
combinations of four training objectives based on
maximizing the marginal likelihood of Equation 1.
Finally, we introduce off-policy sampling and sum-
marize the search algorithms used during training
and test phases.

3.1 Pre-training the Answer Module
The answer generator is based on the publicly avail-
able T5 model (Raffel et al., 2020). We fine-tune
this T5 model on the following five QA datasets
to generate the gold answer in its output given the
input passage and the question: 1) SQuAD (Ra-
jpurkar et al., 2018) with unanswerable questions
by generating a special unknown token in the out-
put corresponding to these unanswerable questions,
2) NarrativeQA dataset containing abstractive re-
sponses for its questions (Kočiský et al., 2018),
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3) RACE dataset as a multiple-choice QA dataset
where we generate the question’s correct choice as
the answer text in the decoder (Lai et al., 2017),
4) BoolQ dataset having Yes/No questions (Clark
et al., 2019), and 5) the DropQ dataset to encourage
the model to learn discrete reasoning (e.g., addition,
counting or sorting, etc.) in paragraphs (Dua et al.,
2019). We fine-tune the T5 on the aforementioned
QA corpora for four epochs with a batch size of
64. In total, we have fine-tuned this T5 model on
337,768 distinct QA pairs. We use the final model
as our pre-trained answer generator which will be
the initial checkpoint for learning the distributions
P (e2|c, q∗), P (e2|c, qpseudo), or PθA(e2|c, q, e1, r)
in our experiments.

3.2 Pre-training the Question Module

We now fine-tune a T5 model using the QA corpora.
We learn the distribution P (q|c, e1, r, e2), and use
the answer in each QA instance as a proxy for the
tail entity e2. To specify the synthetic head entity
e1, we run a named entity tagger2 over questions
in the QA corpus. For questions with multiple ex-
tracted entities, one of the entities are randomly
selected as the head entity. To specify the rela-
tion r from the question, after ignoring punctua-
tion or interrogative words (e.g., what, where, etc.),
at most four tokens (excluding the extracted enti-
ties) are sampled. We fine-tune the T5 model on
this synthetic dataset, giving gold passage as the
context c, one of the extracted named entities as
e1, the gold answer tokens as e2, and the sampled
words as the relationship keyword r. We train the
model to produce the gold question. We specifi-
cally fine-tune the model on the answerable ques-
tions from the SQuAD (Rajpurkar et al., 2018),
NarrativeQA (Kočiský et al., 2018), and the DropQ
datasets (Dua et al., 2019) for 4 epochs. This model
will be the initial checkpoint for the question gen-
erator PθQ(q|c, e1, r) in our experiments.

3.3 Training Objectives

Having the pre-trained answer generator, we op-
timize logP (e2|c, q∗), and logP (e2|c, qpseudo) on
RE datasets using the gold q∗ and pseudo ques-
tions qpseudo, respectively. To generate questions
and learn from them, we also directly maximize
the Marginal Log-Likelihood (MML) to train both
the question and answer modules in Equation
1. With MML training, the objective is approxi-

2We used the NER tagger from the SpaCy library.

mated with numerical summation using questions
sampled from the question module. MML train-
ing outperforms the policy gradient methods on
weakly-supervised semantic parsing (Guu et al.,
2017) as simple policy gradient estimations may
have large variances (Roberts and Tedrake, 2009;
Guu et al., 2017). With the MML training, we
use the following gradient vector to update θQ,
where ϕ(q) approximates the true question pos-
terior P (q|c, e1, r, e2):

∇θQM =
∑

q

ϕ(q)×∇θQ logPθQ(q|c, e1, r)

ϕ(q) =
PθQ(q|c, e1, r)× PθA(e2|c, q, e1, r)

Z

Z =
∑

q
′
PθQ(q

′ |c, e1, r)× PθA(e2|c, q
′
, e1, r)

(3)

Similarly, we use the following gradient update
for θA: ∇θAM =

∑

q

ϕ(q) × ∇θA logPθA(e2|c, q, e1, r) (4)

As we ultimately want to generate the correct tail
entity regardless of the input question in the answer
module, we can use the best question from PθQ and
then optimize the probability of the tail entity for
such a decoded question. This idea results in the
following G gradient (G: greedy) update for the
answer module:

∇θAG = ∇θA logPθA(e2|c, q̂, e1, r)
q̂ = argmax

q
PθQ(q|c, e1, r) (5)

3.4 Off-Policy Search over Pre-trained
Question Posterior

We encountered two issues while training the ques-
tion generator with the previous MML objective.
The first issue is that samples become ungrammati-
cal templates as we continue training the question
module. We hypothesize that the issue originates
from taking direct samples from the question gener-
ator PθQ(q|c, e1, r) while simultaneously updating
it during training. These spurious questions can
hinder the model from generalizing to a new un-
seen relation. The program synthesis and semantic
parsing research have reported a similar issue (Guu
et al., 2017; Misra et al., 2018; Liang et al., 2018;
Wang et al., 2019a, 2021).
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The second issue in taking samples from
PθQ(q|c, e1, r) is that omitting the tail entity in the
question generator while using the input context c
sometimes results in multiple plausible questions.
For example, consider the context “The Facebook
brand was replaced by Meta in November 2021.”
For the ambiguous relationship word “replace”,
given the head entity “Facebook”, we can gener-
ate two valid questions: a) “Which brand replaced
Facebook?", b) “When was the brand Facebook
replaced?".

To resolve the first issue, we apply an off-policy
sampling technique (Levine et al., 2020; Pang and
He, 2020) and use a fixed separate sampling mod-
ule to sample questions during training. With this
fixed search policy S(q) over questions, we need
to optimize the following new objective:

logEq∼S(q)[
PθQ(q|c, e1, r)

S(q)
×PθA(e2|c, q, e1, r)]

To resolve the second issue, we feed the tail
entity along with the context into the search mod-
ule; however, we cannot feed the tail entity into
the question generator PθQ(q|c, e1, r) as the cor-
rect tail entity is unknown during the test phase.
Furthermore, to augment the information of the
relationship keyword r, we append the relation
description for each r and feed it to the question
generator PθQ and the sampling module S(q).

We assume that our search module S(q) is a
fixed model approximating the question posterior
P (q|c, e1, r, e2), which can be our pre-trained ques-
tion generator. Thus, we use two identical copies
of our pre-trained question generator. One is fixed
and will be used to provide samples for train-
ing. The other serves as the initial network for
PθQ(q|c, e1, r), and we update its parameters dur-
ing the training phase. The search module will
also receive the tail entity e2 as input, whereas the
PθQ only receives c, e1, and r. During the test
phase, we only generate questions from PθQ . Us-
ing the off-policy samples, the new MML gradient
updates will have the following forms, where S(q)
is our pre-trained question module and ϕ(q) ap-
proximates the true question posterior according to

Training Objective Q grad. A grad.
MML-MML ∇θQM ∇θAM
MML-G ∇θQM ∇θAG
OffMML-OffMML ∇θQO ∇θAO
OffMML-G ∇θQO ∇θAG

Table 1: Combinations of the four types of gradient
vectors used for training the question (θQ) and answer
(θA) modules. See Equations 3-7. Training objectives
are named as (Question-Answer) tuples that refer to
the gradient vectors used for the question and answer
modules.

Equation 3:

∇θQO = Eq∼S(q)[
ϕ(q)

S(q)
×∇θQ logPθQ(q|c, e1, r)]

(6)

∇θAO = Eq∼S(q)[
ϕ(q)

S(q)
×

∇θA logPθA(e2|c, q, e1, r)] (7)

Table 1 summarizes the four gradient vectors we
use for the training phase. With ∇θQG gradient
update, we always use samples from the question
generator (not from S(q)) to expose the answer
module to errors from PθQ .

3.5 Search Algorithms

To generate the tail entity on the test data, regard-
less of fine-tuning the pre-trained answer module
with gold, pseudo, or generated questions, we use
greedy decoding to find the top-scoring tokens. To
generate questions from PθQ(q|c, e1, r), we use the
top-scoring question found with beam search de-
coding having the beam size of 8.

During training, to estimate the G gradient vec-
tor listed in Table 1, we rely on beam search decod-
ing with the beam size of 8 to find the top scoring
question. For MML gradient vectors, we use top-p
sampling with the suggested threshold of 0.95 to
collect 8 final samples from the question genera-
tor PθQ(q|c, e1, r) or sampling module S(q). In
top-p sampling (Holtzman et al., 2019), at each
decoding step, we find the smallest set of vocabu-
lary with the cumulative probability above a thresh-
old (e.g., 0.95) and re-scale the distribution among
these tokens to perform the sampling. We find
this approach has a better exploration compared to
beam-search, greedy, or top-k decoding.
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Table 2: The example input for the question and search modules. The search module also receives the tail entity in
the input.

Module Input Format
Question “answer: Isaac Nicola <SEP> place of birth ; most specific known birth location of a

person, animal or fictional character context: Isaac Nicola Romero (1916 in Havana,
Cuba) was a prominent Cuban guitarist. </s>”

Search “answer: Isaac Nicola <SEP> place of birth ; most specific known birth location of a
person, animal or fictional character Havana context: Isaac Nicola Romero (1916 in
Havana, Cuba) was a prominent Cuban guitarist. </s>”

Table 3: The example input for the answer module given gold, pseudo, and the generated questions. The generated
question is from the question module trained with the OffMML-G objective.

Question Type Input Format
Pseudo “question: Isaac Nicola <SEP> place of birth context: Isaac Nicola Romero (1916

in Havana, Cuba) was a prominent Cuban guitarist. </s>”
Generated “relation: Isaac Nicola place of birth question: What was the name of the place

where Isaac Nicola was born? context: Isaac Nicola Romero (1916 in Havana,
Cuba) was a prominent Cuban guitarist. </s>”

Gold “question: What was Isaac Nicola’s city of birth? context: Isaac Nicola Romero
(1916 in Havana, Cuba) was a prominent Cuban guitarist. </s>”

4 Experiments Setup

4.1 Datasets

We use three datasets to test our weakly-supervised
questions in the ZRE setting. We first use the RE-
QA dataset released by Levy et al. (2017) for tail
entity (TE) generation using QA models. RE-QA
provides ten folds with 84 relation types in the train,
12 on the dev, and 24 on the test splits. There is
no overlap among relation types of these splits per
fold. Each fold contains 840k sentences in the train,
6k sentences in the dev, and 12k in the test split.
Half of the sentences are negative examples with
no corresponding e2 given e1 and r. The RE-QA
dataset provides multiple gold question templates
for each relation type.

To compare our system with current SOTA meth-
ods for the ZRE, we also consider the FewRel and
WikiZSL datasets. The FewRel dataset has 56K
sentences over 80 relation types (Han et al., 2018).
The WikiZSL dataset has 93483 sentences over
113 relation types (Zhong et al., 2017). Similar to
the previous SOTA method ZS-BERT (Chen and
Li, 2021), we randomly split the FewRel and Wik-
iZSL datasets into train/dev/test splits where we
have 5 and 15 relation types in the dev and test
splits, respectively; with no overlap of the types
between these splits. We create five train/dev/test
folds splitting the datasets with different random

seeds.
For all the datasets, if possible, we retrieve the re-

lation description from the wikidata3 and append it
to the relation keyword r in the question generator
PθQ or the sampling module S(q).

Table 2 lists an example for the input given to our
question and search modules. Table 3 also provides
an example for the input of the answer module for
the gold, pseudo or generated questions.

4.2 Evaluation Metrics

For the TE task, as we generate a single tail en-
tity e

′
2 for each input sentence, the extracted triple

(e1, r, e
′
2) matches the ground truth triple (e1, r, e2)

only if e
′
2 = e2 (case insensitive). For the negative

examples, we generate a special ‘NO_ANSWER’
output specifying the null tail entity. We then use
the official evaluation script4 to compute the Pre-
cision, Recall, and F1-score for the TE task when
there are negative examples in the test data. Preci-
sion is the true positive count divided by the num-
ber of times the system generates a non-null tail
entity. Recall is the true positive count divided by
the number of positive examples having the tail
entity given e1 and r. For the ZRE performed by
the inference objective 2, we compute the macro

3https://www.wikidata.org/wiki/Wikidata:
List_of_properties/all_in_one_table

4http://nlp.cs.washington.edu/zeroshot/
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Precision, Recall, and F1-score; averaged across
relation types only on positive examples.

4.3 Baselines

Few related works have focused on ZRE. The ZS-
BERT model (Chen and Li, 2021) maps sentences
and relations into a shared semantic space using
two BERT encoders and then uses nearest neighbor
search to predict the unseen relations. During train-
ing, the ZS-BERT minimizes the distance between
the attribute vectors of the input sentence and the
seen ground-truth relation while maximizing the
distance from other incorrect relation representa-
tions. The ZS-BERT has outperformed another
earlier work that treats the task of ZRE as an entail-
ment task (Obamuyide and Vlachos, 2018).

We also provide the reported ZRE results on
the FewRel and WikiZSL datasets from Tran
et al. (2022) which introduces discriminative inter-
relation and inter-sentence losses along with a
comparative network to better separate sentence-
relation representation pairs.

We finally consider RelationPrompt (Chia et al.,
2022) which is trained to generate the relation
triplets for a given sentence using a BART-base
sequence-to-sequence model. We also apply its
data-generation variant which uses GPT2 to aug-
ment the training dataset by generating synthetic
(sentence, entity) pairs for the unseen test relations.

4.4 Training Details

For pre-training/fine-tuning T5 on QA and RE
datasets, we use the Adafactor optimizer, which
requires less memory compared to Adam (Shazeer
and Stern, 2018). In addition, we follow the origi-
nal configuration5 suggested for fine-tuning the T5
transformers, such as disabling update clipping, no
weight decay, and no warm-up starts (Raffel et al.,
2020). In all of our experiments, we used the fixed
learning rate of 0.0005.

For fine-tuning our models and all the baselines
on all the RE datasets, we train them for one epoch
using the batch size of 16 on the RE-QA, 4 on the
FewRel, and 16 on the WikiZSL datasets, respec-
tively. Every 100 training steps, we evaluate the
models on the dev sets, and then we report the per-
formance of the dev set’s best model on the test
split. For our models, on all the three datasets,
we pre-train/fine-tune T5-small with 6 transformer

5https://discuss.huggingface.co/t/
t5-finetuning-tips/684/3

blocks and 512 hidden states. Due to GPU con-
straints, we use eight samples or a beam size of 8
in the top-p sampling and beam search decoding
algorithms, respectively.

5 Results

5.1 Training Objective Comparisons

In our first experiment, we compare the different
training objectives listed in Table 1 in the tail en-
tity generation task. To provide a fair compari-
son between these objectives, we also append the
relation description to the relationship word r in
the on-policy training objectives MML-MML and
MML-G. We compare these four objectives on the
ten folds of the RE-QA dataset. We also report
the baseline Base-Base that predicts the test data
using only the pre-trained question-answer mod-
ules without fine-tuning the modules over the RE
dataset.

Table 5 summarizes the metrics on the tail en-
tity generation task for these training objectives.
OffMML-G, which uses off-policy samples from
the pre-trained question module, outperforms the
rest of the training methods with the average F1-
score of 56.2. Our proposed off-policy sampling
technique has improved the performance of the tail
entity generator in the model trained with OffMML-
G by an average gain of 1.5 F1-score compared to
the model trained with the MML-G objective. Fur-
thermore, on the positive examples, the accuracy
for generating the correct tail entity is higher when
we take the best question from the question module
PθQ since the OffMML-G outperforms OffMML-
OffMML by an average gain of 2.1 Recall points.
To assess the grammar in the generated questions,
we compute the average perplexity over the test
folds using the GPT2-large (Radford et al., 2019)
language model. The last column (PP ) in Table 5
shows that both the off-policy sampling and the G
gradient objective contribute to a lower perplexity
compared to the on-policy sampling and the MML
gradient objective as the OffMML-G achieves the
lowest perplexity of 144. This observation verifies
our hypothesis that off-policy sampling helps to
avoid ungrammatical spurious questions.

In Table 4, we also provide an example of the
generated questions for the following input con-
text: “The Vision of Saint Eustace is a painting
by the early Italian Renaissance master Pisanello,
now in the National Gallery in London.” Given the
head entity “The Vision of Saint Eustace,” and the
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Table 4: Example generated questions for the relationship type “collection” (“art, museum or bibliographic collection
the subject is part of”) given the head entity “The Vision of Saint Eustace.” The semantically correct questions are
in blue. The Base-Base model predicts the test data using only the pre-trained question-answer modules. The model
name “A-B” denotes questions generated by the question module trained with the objective A while the answer
module is trained with the objective B.

Q-A Models Generated Question
Base-Base “What collection is part of The Vision of Saint Eustace?”
MML-MML “What subjects subjects?”
MML-G “What art collection is The Vision of Saint Eustace?”
OffMML-OffMML “The Vision of Saint Eustace is part of what collection?”
OffMML-G “The Vision of Saint Eustace is part of what collection?”
GoldQ “What is the name of the place where The Vision of Saint Eustace can be

found?”

Table 5: The average Precision, Recall and F1-score for
the tail entity generation task using our four training
objectives on the ten test folds of the RE-QA dataset.
The last column (PP) reports the average perplexity of
the generated questions over these ten test folds. Best
performance bolded, second best underlined.

Q-A Models P R F1 PP
Base-Base 24.4 31.4 27.5 170
MML-MML 57.3 52.3 54.6 10456
MML-G 57.0 52.9 54.7 1309
OffMML-OffMML 60.7 52.3 55.9 148
OffMML-G 58.3 54.4 56.2 144

relationship type “collection.” We verify that the
proposed off-policy sampling technique is neces-
sary to create semantically and grammatically cor-
rect questions as the OffMML-G objective could
successfully generate the question “The Vision of
Saint Eustace is part of what collection?”

5.2 Baseline Comparisons

We now compare systems trained with the
OffMML-G training objective with the two pri-
mary baselines of using pseudo or gold questions
to fine-tune the answer generator.

For the tail entity generation task, Table 6
presents the average F1 scores on the ten test folds
of the RE-QA dataset, considering both the posi-
tive and negative examples. Using the test data’s
gold templates, the pre-trained answer generator
(GoldQ-Base) achieves an average F1-score of
43.6, and after fine-tuning the answer module, the
baseline with gold questions achieves the highest
average F1-score of 58.9, outperforming the previ-
ous BiDAF method (Levy et al., 2017), which had
an average F1-score of 39.6. With the OffMML-

Table 6: The average Precision, Recall and F1-score on
the 10 test folds of the RE-QA dataset for the tail entity
generation task. Highest performance bolded, second
highest underlined.

Q-A Models P R F1
PseudoQ-Base 1.7 3.2 2.3
Base-Base 24.4 31.4 27.5
GoldQ-Base 36.1 55.1 43.6
Levy et al. (2017) 43.6 36.5 39.6
PseudoQ-Trained 57.9 50.2 53.6
OffMML-G 58.3 54.4 56.2
GoldQ-Trained 60.1 57.9 58.9

Table 7: The average Precision, Recall and F1-score on
the ten test folds of the RE-QA dataset for the Zero-shot
Relation Extraction (ZRE) task.

Models P R F1
ZS-BERT 34.7 32.2 33.3

PseudoQ-Trained 63.3 60.5 61.8
OffMML-G 66.7 64.2 65.4

GoldQ-Trained 67.3 65.0 66.1

G training objective, we boost the performance of
the pre-trained answer module from the average
F1-score of 27.5 to 56.2. The OffMML-G train-
ing objective outperforms the baseline with pseudo
questions by an average of 2.6 F1-score.

For the ZRE task, as listed in Table 7, the model
trained with OffMML-G objective outperforms the
PseudoQ baseline by an average F1 score of 3.6.
This superior performance verifies that using se-
mantically relevant questions improves the perfor-
mance of QA models while fine-tuning them on
the RE datasets. Moreover, with our generated
questions, OffMML-G achieves the competitive
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Table 8: The average Precision, Recall and F1-score for ZRE on five random runs over the FewRel and WikiZSL
datasets. There are 15 unseen relations in the test folds. Highest performance bolded, second highest underlined.
The † is the reported performance of ZS-BERT (Chen and Li, 2021). The ⋆ is the reported performance of
RelationPrompt without using synthetic examples (Chia et al., 2022).

FewRel WikiZSL
Model P R F1 P R F1 Avg F1

ZS-BERT† 35.5 38.2 36.8 34.1 34.4 34.3 35.6
ZS-BERT (our run) 41.9 39.5 40.5 28.8 26.5 27.4 34.0
Tran et al. (2022) 44.0 39.1 41.4 38.4 36.0 37.2 39.3
RelationPrompt⋆ 66.5 40.0 49.4 54.5 29.4 37.5 43.5

RelationPrompt (our run) 53.2 45.1 48.3 52.4 38.8 44.5 46.4
RelationPrompt (our run) (+supp) 59.7 61.0 60.3 59.7 60.5 60.0 60.2

PseudoQ-Trained 30.8 32.4 31.6 33.1 34.6 33.8 32.7
OffMML-G 29.4 30.4 29.9 28.2 28.7 28.4 29.2

PseudoQ-Trained (+negs) 62.8 58.4 60.5 62.6 59.5 61.0 60.8
OffMML-G (+negs) 63.7 59.2 61.3 63.6 60.4 61.9 61.6

F1 score of 65.4 compared to the F1 score of 66.1
achieved by the system using gold questions.

In our final experiments, we fine-tune the
question-answer modules with the OffMML-G ob-
jective on the FewRel and WikiZSL datasets which
have 15 unseen relations in the test folds. As the
FewRel and WikiZSL datasets do not provide any
negative examples, we create synthetic negative
examples by repeating every train instance once
with its ground-truth relation label replaced with
another relation class from the train data. This
data augmentation approach is simple enough to
include with our models as we generate the null
tail entity for negative examples. The recent dis-
criminate approaches such as ZS-BERT and the
method of Tran et al. (2022) use margin-based or
contrastive learning to separate the ground-truth
relation class from other negative relation labels.
As presented in Table 8, our transferred QA models
trained with OffMML-G objective over the mix of
positive and negative examples significantly outper-
forms the ZS-BERT and the recent baseline of Tran
et al. (2022) with an average gain of 26.8 F1 points
on both the FewRel and WikiZSL datasets. We do
not change the architecture of the underlying trans-
formers as apposed to the comparative network of
Tran et al. (2022) trained over the BERT encoders.

We finally compare against Relation-
Prompt (Chia et al., 2022) which directly
generates the relation class in the decoder of the
BART-base model given the input sentence and the
prompt information about the head and tail entities.
The OffMML-G (+negs) achieves an average
gain of 15.2 F1 points on both the FewRel and

WikiZSL datasets (Table 8)6. The idea of using
synthetic (sentence, entities) pairs generated by a
large language model for the test relation classes
improves the performance of RelationPrompt (see
+supp row in Table 8). Such data augmentation to
use synthetic examples can also be helpful for our
method to further guide the question generation for
the test relation classes.

In Table 9, we provide some example questions
generated for the WikiZSL test data using our ques-
tion module trained with OffMML-G (+negs) ob-
jective.

6 Related Works

Weakly-Supervised Semantic Parsing: The ob-
jective in Equation 1 follows a similar search-
and-learn framework used in the recent works of
weakly-supervised program synthesis and seman-
tic parsing (Guu et al., 2017; Misra et al., 2018;
Liang et al., 2018; Wang et al., 2019a, 2021). For
example, in the task of text-to-SQL generation, a
set of possible SQL solutions for a given natural
query are generated (searched) and then those so-
lutions are validated with an SQL verifier. The
program verifiers in these recent works provide
a deterministic score/reward to update the search
module. However, in our objective, the feedback
for the question module is another stochastic an-
swer generator that needs to be trained along with
the search module.

Reading Comprehension for RE: The joint ex-

6As expected from the model input format, our negative
examples do not improve RelationPrompt.
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traction of entities and relations has also been re-
duced as a multi-hop QA task using pre-defined
question templates for a few entity and relation
types present in the ACE and the CoNLL04
datasets (Li et al., 2019). Another recent work
shows that asking diverse question templates could
further boost the performance of the QA models
for the joint entity-relation extraction (Zhao et al.,
2020). Furthermore, QA frameworks have been
applied to re-score and verify the extracted rela-
tions of a separate relation extractor by forming
simple pseudo-questions concatenating the head
entity with the relationship words (Cheng et al.,
2021).

Several works have done event argument extrac-
tion through QA (Liu et al., 2020; Du and Cardie,
2020). Du and Cardie uses predefined question
templates for the events. The work of Liu et al.
first picks a template query word for the topic of
the event and includes it as the prefix for the ques-
tion, and then translates a descriptive span around
the event word into a descriptive question suffix
by learning an unsupervised translation model. Al-
though Liu et al. applies their approach only to the
task of event extraction on short sentences from
the ACE dataset, they manually provide a relevant
question prefix for the relation type.

Question Generation: The Question Genera-
tion (QG) research aims at generating natural ques-
tions given a document such that the answer mod-
ules can find the answers to these questions. Re-
cent systems build end-to-end neural sequence-to-
sequence models for QG (Du et al., 2017). More-
over, the current research first extracts the key
phrases which could be the answer to the ques-
tion and then feeds it as an extra input signal while
training the QG models (Wang et al., 2019b). Mul-
tiple QA corpora have been combined to train a
single question generator conditioned on multiple
answer types (Murakhovs’ka et al., 2021).

Earlier work suggests dual training of the QG
and answer-sentence selection tasks, however, they
could marginally improve both of the QG and
QA tasks (Tang et al., 2017). Closely related to
our work, another recent study translates freebase
triplets into natural questions to augment the QA
corpora (Serban et al., 2016). However, this triplet-
to-question translation task does not use any con-
text passages. The rule-based entity extraction and
QG have also been explored for open information
extraction on financial datasets (Gupta et al., 2021).

However, its rules are not comprehensive for gen-
erating questions for complex relations.

Apart from training the QG models on super-
vised data, recent work uses policy gradient rein-
forcement learning to a) Optimize rewards related
to the fluency and answer-ability of the generated
questions (Yuan et al., 2017), b) Expose the model
to its errors (Song et al., 2017), and c) Include para-
phrase probability to properly compare the gener-
ated questions with the ground truth ones (Zhang
and Bansal, 2019).

Despite the previous studies on QG, we treat
questions as latent variables without having access
to gold questions given the input context and the
relation triplets.

7 Conclusion

This work introduces the OffMML-G training ob-
jective to fine-tune the question and answer gener-
ators for RE. Our method generates semantically
relevant questions for the answer module given
the head entity and the relationship keywords. We
demonstrated that with these weakly-supervised
questions, one could fine-tune QA models on the
RE corpora, achieving competitive results in detect-
ing unseen relations. Our future direction would
deploy the technique on document-level entity-
relation extraction, further exploiting the inference
capabilities of QA models.

Limitations

A major limitation in our method is that we
need to provide three distributions during train-
ing: a) P (q|c, e1, r) as the question generator, b)
P (e2|c, e1, r, q) as the answer module, and c) S(q)
as our fixed search module over questions. This
generative approach (i.e. generating the tail entity)
for relation extraction requires more compute re-
sources compared to a direct discriminate approach
to learn P (r|c, e1, e2), however, such a direct ap-
proach cannot be used to transfer QA models into
the RE task.

We have used the T5-small models in all our ex-
periments. Further gain can be achieved by switch-
ing into T5-large models, however, we leave those
large-scale experiments for future work.

Ethics Statement

Many language models show biases in their output
due to the data used to train them (Liang et al.,
2021). It is possible that these biases could affect
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the RE results that we present here (e.g., producing
poor performance for certain kinds of relations, or
for entities with names different from the training
data).
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Table 9: The generated questions with OffMML-G (+negs) on a random example of the WikiZSL test split for the
context: “Jerome Ellsworth Couplin III ( born August 31 , 1991 ) is an American football safety for the Philadelphia
Eagles of the National Football League ( NFL ) .” The ground-truth relation triple is (Philadelphia Eagles, member
of, National Football League)

Relation Class Generated Question
1- contains the admin-
istrative territorial entity
(P150)

“What is the name of the administrative entity that contains the
Philadelphia Eagles?”

2- student (P802) “What is the name of the notable student(s) of Philadelphia Eagles?”
3- located next to body of
water (P206)

“What body of water is located next to the Philadelphia Eagles?”

4- location (P276) “What is the location of the object, structure or event for the Philadel-
phia Eagles?”

5- drafted by (P647) “Which team was drafted by the Philadelphia Eagles?”
6- member of (P463) “What organization is a member of the Philadelphia Eagles?”
7- parent astronomical
body (P397)

“What is the name of the major astronomical body the Philadelphia
Eagles belong to?”

8- author (P50) “Who is the main author of a written work for the Philadelphia Ea-
gles?”

9- sport (P641) “What sport does Brandon Lee Graham play for the Philadelphia
Eagles?”

10- field of this occupation
(P425)

“What field of occupation does Brandon Lee Graham represent for
the Philadelphia Eagles?”

11- founder (P112) “Who is the founder or co-founder of the Philadelphia Eagles?”
12- work location (P937) “What is the name of the location where people or organizations were

involved in work for the Philadelphia Eagles?”
13- from fictional universe
(P1080)

“What is the subject’s fictional entity in the Philadelphia Eagles?”

14- award received (P166) “What award does Brandon Lee Graham receive from the Philadelphia
Eagles?”

15- located on astronomi-
cal body (P376)

“What is the name of the astronomical body located on the Philadel-
phia Eagles?”
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Abstract

Identifying the difference between two ver-
sions of the same article is useful to update
knowledge bases and to understand how arti-
cles evolve. Paired texts occur naturally in di-
verse situations: reporters write similar news
stories and maintainers of authoritative web-
sites must keep their information up to date.
We propose representing factual changes be-
tween paired documents as question-answer
pairs, where the answer to the same question
differs between two versions. We find that
question-answer pairs can flexibly and con-
cisely capture the updated contents. Provided
with paired documents, annotators identify
questions that are answered by one passage but
answered differently or cannot be answered
by the other. We release DIFFQG which con-
sists of 759 QA pairs and 1153 examples of
paired passages with no factual change. These
questions are intended to be both unambigu-
ous and information-seeking and involve com-
plex edits, pushing beyond the capabilities of
current question generation and factual change
detection systems. Our dataset summarizes
the changes between two versions of the docu-
ment as questions and answers, studying auto-
matic update summarization in a novel way.

1 Introduction

Given a pair of statements, how can we iden-
tify the difference in their information content?
This problem has existed in different forms across
NLP research, such as recognizing textual entail-
ment (Dagan et al., 2010) and natural language
inference (Bowman et al., 2015). The initial fo-
cus of this type of research was finding the logical
implication relations between sentences.

More recently, specialized entailment-like re-
sources and models have been applied to fact veri-
fication (Thorne et al., 2018b) with applications to
science, education and journalism. This trend has

∗Equal Contribution.

Figure 1: DIFFQG consists of paired Wikipedia pas-
sages that correspond to factual edits. The goal is
to generate a discriminating question given an answer
span such that the question is answerable by one of the
passages but not the other or yields different answers.

exposed the limited transfer between logical entail-
ment and general factual change detection (Thorne
et al., 2018a) as well as the need for interpretable
models for this task (Kumar and Talukdar, 2020).

Wikipedia revisions across time provide a large
scale and highly available source of sentence pairs,
leading to new resources such as WIKIATOMICED-
ITS (Faruqui et al., 2018) and VITAMINC (Schus-
ter et al., 2021). However, prior work is limited
to minimal changes that concern only a single fac-
tual addition or change. We introduce DIFFQG,
a manually annotated dataset spanning changes
over multiple years. DIFFQG consists of paired
passages with complex factual changes including
multiple additions and deletions within the same
example. Additionally, it provides a way to inter-
pret the prediction in the form of a discriminative
question-answer pair that identifies the change.

Question-answer pairs provide a semi-structured
summary of a change: more flexible than knowl-
edge graph triples and more useful than free-form
text. For instance, question-answer pairs can repre-
sent different types of updates: a new prime min-
ister may update an answer, while a new type of
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minister would add an entirely new question.
Question generation (QG) is a new NLP task that

consists of generating a question that a provided
document answers. There are various successful
applications of this approach, including augment-
ing datasets to train question answering systems
(Duan et al., 2017; Lewis et al., 2021), capturing im-
plicit information written about text (Pyatkin et al.,
2021), and building soft knowledge bases (Chen
et al., 2022). Previous work in QG treated the under-
lying passages as static (Lewis et al., 2021), while
real life documents are constantly updated (Dhin-
gra et al., 2022). As the source corpus is updated,
new question-answer pairs must be added and ex-
isting ones must be updated.

DIFFQG thus addresses two challenges simulta-
neously: providing an interpretable summarization
of factual changes and updating soft knowledge
bases consisting of question answer pairs. We hope
that this dataset can also help evaluate the quality of
QG models in producing natural, semantically cor-
rect, unambiguous, and information-seeking ques-
tions. The dataset and code for our experiments
will be open sourced.1

Our contributions are the following:
(a) We introduce DIFFQG, an expert-annotated
evaluation dataset that consists of questions that
summarize the difference between two passages.
To the best of our knowledge, no prior dataset exists
that covers such long and complicated edits.
(b) We propose a set of metrics that can be used to
measure improvements in question generation or
factual change detection.
(c) We evaluate a comprehensive set of baselines
that surface the shortcomings of current systems.

2 DIFFQG Task

The goal of DIFFQG is to capture how two simi-
lar passages differ from each other using question-
answer pairs. In particular, given a base passage
xb and a target passage xt, where xt and xb are
different versions of the same article, we aim to
generate discriminating questions Qt. For each
qt ∈ Qt, the information to deduce the correspond-
ing answer span at ∈ At must be missing in xb. To
limit the scope of possible questions, each answer
span at ∈ At must be a substring of xt. While at
could also be a substring of xb, xb must be missing
the required information to deduce at is the correct

1https://github.com/google-research/
language/tree/master/language/diffqg

answer. Alternatively, there could be a correspond-
ing answer span ab, which is the answer resulting
from answering qt with xb. Note that we consider
paraphases of at, such as lexicalizing numbers and
using alternate entity names, as equivalent answers.

This discriminating question has certain addi-
tional requirements: it should be seeking factual
information and stand-alone (Choi et al., 2021) (i.e.,
interpretable when presented by itself without the
passage). It is possible that no such discriminating
question can be written. The annotators only mark
that there is no factual change when they are fairly
confident that there is no new information about
the answer span in the target passage.

Consider the following example:

• xb = John Doe won two gold medals at the
Olympics in 2012.

• xt = John Doe won a gold medal at the
Olympics in 2012.

Annotators are informed that the goal of the pro-
cess is to collect disambiguated and information-
seeking queries that can be answered with one pas-
sage but not with the other. By disambiguated
queries, we mean queries that refer to roughly a
single answer without any context. For instance,
“Who won two gold medals in the 2012 Olympics?”
could refer to several different people, and ques-
tions of the form “How many medals did he win
in the 2012 Olympics?” are not answerable at all
without the presence of the John Doe passage.

Information-seeking queries are ones where the
questioner would not need to know the answer in
advance for the question to make sense. This is
related to the original goals of Natural Questions
(Kwiatkowski et al., 2019) and corresponds to the
Cranfield-style questions described by Rodriguez
and Boyd-Graber (2021). As an example, “What
did Al Capone’s mother do for a living?” seems
like an information-seeking query. On the other
hand, “Which Italian-American gangster’s mother
was a seamstress?” does not: why would the ques-
tioner assume that such a person even exists unless
they already knew the answer? We describe the
annotation process to acquire such discriminating
question set in the next section.

3 Data Collection

Collecting such discriminating questions is a non-
trivial process. Thus, we introduce a staged anno-
tation process with expert annotators (the authors
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of this paper) and use a question generation model
to aid annotation. We describe our process below
(visualized in Figure 2).

3.1 Input Passage Pair Selection
First, we extract the Wikipedia pages for enti-
ties from the Natural Questions (NQ) training
set (Kwiatkowski et al., 2019). In particular, we
find the pages for Wikipedia snapshots between
the years 2008 and 2020. After sampling a base
document, we find the version of that document
one year later and use this as the target document.
Using the two documents as a corpus, we compute
cosine similarity between the TF-IDF vectors over
each sentence pair and pick the pair with the high-
est similarity. Sentence pairs with similarity either
greater than 0.8 or less than 0.25 are discarded. In
order to retain meaningful changes, we ensure at
least one noun or number is edited and up-sample
instances where either a named entity or at least
five tokens have been edited.

This process thus focuses on edits accumulated
over a year and consists of changes ranging from
five to twenty tokens, making these semantically
richer and more widely applicable than existing
factual change detection datasets.

3.2 Seed QA Pair Generation
Each target passage has a very large number of
possible answer spans; for convenience, we re-
strict them to only noun phrases identified using the
Berkeley Neural Parser (Kitaev and Klein, 2018).
To increase annotation speed, each example starts
with a seed question that is generated by a question
generation model from the target passage and an-
swer span. In particular, we use a T5-XXL model
(Raffel et al., 2020) that has been finetuned on the
SQuAD dataset (Rajpurkar et al., 2016).

3.3 Annotation Process
DIFFQG annotation was done in three phases by
six expert volunteers. First, annotators are given
the paired passages described above along with the
answer span and seed question, which corresponds
to one example candidate. Then, they label each
example candidate with one of the five options:

Accept The seed question follows all require-
ments for discriminating questions as is.

Context The seed question asks about the appro-
priate topic but is not answerable outside of the
context of the passage. For instance, questions like

“What did he win?” or “Where were the Olympics
held?” both lack context in order to answer the
question successfully.

Edit The example candidate answer has a dis-
criminating question, but the question is different
than the seed question. Sometimes, this is because
the seed question does not capture the new infor-
mation contained in the passage; other times, the
seed question is simply nonsense.

Reject This example candidate has no valid dis-
criminating question. In other words, these are
negative examples. Sometimes, the target passage
contains no new information at all; however, it may
contain new information about other answer spans
but not the one in the example candidate. In our
previous John Doe example, there is no new infor-
mation about “the Olympics”, except indirectly.

Skip It is unclear if there is a valid discriminating
question for this example candidate. This could be
due to awkward or cumbersome answer spans: for
instance “two gold medals at the Olympics in 2012.”
Alternatively, it could seem unclear if there is new
information about an answer span due to its indirect
relationships with other entities. Finally, it could be
difficult to write an information-seeking question
even though there is obviously new information:
for instance, writing a question with the answer
span “John Doe” in the previous example.

Each example candidate is considered by two
annotators. Unless both annotators agree to Add,
Reject, or Skip, a third annotator decides. In ex-
amples where one annotator chose Context or Edit,
the third annotator is responsible for writing the
correct question according to the guidelines. If
one annotator chose Add or Reject and the other
skipped, the third annotator can confirm the Add
or Reject or also skip if they cannot decide. See
Appendix A.2 for the annotation interface.

3.4 Question Writing Guidelines

Note that writing a single, context-free, and
information-seeking question that summarizes the
difference between the two passages can be chal-
lenging. In cases where it seemed impossible, an-
notators are encouraged to skip the example. For
cases where additional Context was needed, annota-
tors are encouraged to add as much context without
sacrificing fluency, so that the question can be an-
swered without awareness of the source passage.
When an annotator writes a question from scratch
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Figure 2: DIFFQG annotation process. Noun phrases are extracted from the target passage and a question genera-
tion model seeds initial questions. Annotators decide if the generated questions serve as satisfactory discriminating
questions (Accept), must be edited (Context, Edit), or contain no new factual information (Reject). After the first
phase, a third annotator resolves indecision (Skip), leaving us with a set of questions and negative examples. If the
original two annotators disagree or the third annotator cannot resolve indecision, the example is discarded.

in the Edit case, they are encouraged to think of a
question that either would have a different answer,
be unanswerable, or have a false precondition if
posed against the base passage. While condition-
ing on a single answer span reduces ambiguity, the
task is still ambiguous, which is unavoidable when
handling large and complex edits.

Passages Answers Avg. Edited tokens
w/ change 391 759 12.9
w/o change 478 1153 14.1
Total 672 1912 13.7

Table 1: Dataset statistics for DIFFQG. Edited tokens
represents the average tokens added or removed in a
given passage pair.

3.5 Data Statistics
Our initial annotation process starts with 8, 530
example candidates drawn from 999 passage pairs.
Annotators skipped nearly 75% of the example can-
didates, leaving 1, 912 examples. Of those, roughly
40%, or 759, had a factual change and thus a dis-
criminating question written about them, leaving
1153 negative examples. Of the spans where a fac-
tual change was detected, annotators modified the
question in 65%, or 494, of the examples: 45%
are labeled as Context and 20% as Edit. Detailed
dataset statistics can be found in Table 1.

Note that on all cases where a question was ac-
cepted as is or considered a negative example, at
least two annotators agreed on that rating. How-
ever, human written questions are not verified; both

annotators agree that there exists a discriminating
question but not necessarily what it is. To address
this, we evaluate a small set of fifty questions and
found that a second annotator would write an equiv-
alent question around 85% of the time.

4 Motivation

In the previous section, we described DIFFQG and
its annotation procedure. As mentioned, the pur-
pose of DIFFQG is to detect and describe factual
changes. In particular, DIFFQG is a rough measure-
ment of a model’s ability to automatically construct
a database of question-answer pairs that encapsu-
late the changes. There are many possible formats
that could be used as an alternative to summarize
factual changes, such as paragraphs, knowledge
base triples, or individual claims.

While paragraphs can contain nuance, they lack
atomicity. It is thus difficult to tell what exactly
changed or otherwise compare two changes to each
other. This makes them less useful as a database.

On the other hand, knowledge base triples are
limiting in the types of factual changes that can
be described: regardless of the exact setup, the
nodes and relations come from some form of fixed
vocabulary that may require discarding interesting
changes. For instance, changes related to a set of
entities, date ranges, various numbers, or abstract
information may all be challenging.

Another alternative method would be a list of
claims, similar to Vitamin-C (Schuster et al., 2021).
This method is also atomic and more flexible than
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knowledge base triples. However, question-answer
pairs have a few advantages. First, question-answer
pairs are semi-structured information, forming a
loose key-value pair. Factual edits may change the
answer to an existing question or add information
corresponding to an entirely new information, re-
quiring a new question. Conversely, claims are
more difficult to relate to each other.

Finally, question-answer pairs are interesting be-
cause question answering is interesting. Previous
work has seen the use of a database of question-
answer pairs as a method to improve question an-
swering performance (Lewis et al., 2021). A good
method for automatically creating and updating
such a database thus seems quite useful. As factual
corpora change over time, we envision constructing
such a database to require iterative updates.

5 Metrics

DIFFQG can be used to measure performance on
three related tasks.

Factual Change Detection Given an example
consisting of a base passage, target passage, and
answer span, the goal is to determine whether there
exists a valid differentiating question. In other
words, whether there is new information about this
answer span that is present in the target passage
when compared to the base passage. To measure
this, we report accuracy, precision, recall and F1
score over the existence of a differentiating ques-
tion in our annotations. Note that always predicting
no change achieves 60.3% accuracy but 0% F1, but
random guessing corresponds to 44.1% F1.

Discriminating Question Generation Given a
target passage and answer span, write a specific,
unambiguous and information-seeking query that
can be answered with the target passage. To mea-
sure this, we compare machine generated ques-
tions to those that humans verified, edited, or hand
wrote. We use two model-free metrics Rouge-
1 and Rouge-L (Lin, 2004) which measure the
token-level overlap and longest subsequence over-
lap of the questions, respectively. We also consider
two model-based metrics, BLEURT (Sellam et al.,
2020), which is a learned evaluation for text sim-
ilarity based on BERT (Devlin et al., 2019), and
a query similarity model (Reimers and Gurevych,
2019) trained on Quora Question Pairs 2.

2huggingface.co/cross-encoder/quora-roberta-large

Note that we evaluate discriminating question
generation despite using a question generation
model in our annotation procedure. Note that all
of these questions are reviewed by humans and
only the very fluent ones are kept. As question
generation models vary in which of their produc-
tions are very fluent, this set is less trivial than it
would initially appear. Nonetheless, we also sepa-
rate human-written or edited questions and evaluate
that set independently.

Full System This is the overall measure of per-
formance on DIFFQG. We reuse the metrics from
discriminating question generation, using 0.0 for
BLEURT, ROUGE-1, ROUGE-L, and Query Simi-
larity if the factual change detection is incorrect.

6 Methods

As mentioned, DIFFQG can be thought of as a
composition of two tasks: factual change detection
and discriminating question generation. Our simple
baseline systems thus treat this as a pipeline, first
predicting whether or not there is a factual change
and then generating a discriminating question if
there is. We also present baseline models that solve
both tasks jointly with a single prediction. Our
methods are illustrated in Figure 3.

Note that none of our methods use any part of
DIFFQG as training data, as the dataset is only
intended to be used for evaluation. Models are in-
stead trained on larger existing datasets for question
generation and factual change detection.

6.1 Factual Change Detection

We propose five baselines based on answer equiva-
lence or both question and answer equivalence.

Answer Equivalence Baselines

Our trivial baseline (Overlapping Answer) classi-
fies an example as having a factual change if and
only if the answer span is not present in the base
passage. The span is normalized before looking for
token overlap with the passage.

Our simple model-based baseline is similar but
uses an Answer Equivalence model (Bulian et al.,
2022). It compares the target answer span against
all valid base answer spans, finding a factual
change if it does not match any of them. The An-
swer Equivalence model additionally takes as input
a candidate question for each answer span.

3092

https://huggingface.co/cross-encoder/quora-roberta-large


Base: Joe Smith won a gold medal and John Doe a 
silver at Olympics 2012 in Table Tennis.

Target: John Doe won a gold medal and Joe Smith 
a silver at Olympics 2012 in Table Tennis.

A: John Doe

A’:Joe Smith

Q: Who won the Table Tennis 
gold at Olympics in 2012?

Q’: Who won the Table Tennis 
silver at Olympics in 2012?

Q: Who won the Table Tennis 
gold at Olympics in 2012?

T B A Q or No-Change

A: John Doe

Figure 3: Methods for factual change detection on DIFFQG: (1) Question similarity (2) Cross-Questioning. The
QA-equivalence method combines (1) and (2), deciding it is a Change only when both the systems find a Change.
(3) Overlapping Answers (4) Language model that jointly learns the task of factual change detection and discrimi-
nating question generation, decoding the discriminating question or a special token indicating no change.

Question-Answer Equivalence Baselines

The previous methods only consider the answer
span, ignoring the context. Here, we consider meth-
ods that also use a question generation model on
the passages and answer span to determine if there
is new information.

For the first method, we find base answer spans
equivalent to the target answer span using the Over-
lapping Answer method. Then, we want to see if
the questions generated from those answers would
also be equivalent in both passages. To do so, we
use a T5-XXL (Raffel et al., 2020) model trained
on Quora Question Pairs 3 to predict whether the
pair of questions is “duplicate” or “not duplicate”
. If the question is not a duplicate, then we con-
sider this example to have a factual change. Thus,
answer spans present in both passages but with dif-
ferent contexts could now be identified as having a
factual change. This will increase the recall of the
Overlapping Answer method.

The second approach adds a cross questioning
filter (Cross-Q). Given a candidate question gen-
erated from target passage, we attempt to answer
the question with the base passage using a reading
comprehension model. We train a T5-XXL model
on SQuaD v2 (Rajpurkar et al., 2018) question-
answering dataset to take the passage and ques-

3https://www.kaggle.com/c/quora-question-pairs

tion as input and output the answer. If the model
predicts no answer or a different answer from the
target span, we classify the example as having a fac-
tual change. Finally, the QA-equivalence method
combines both the query similarity model and cross
question model to boost precision. In this case, we
consider an example to have a factual change only
when both methods determine a factual change.

6.2 Question Generation

Each of our factual change detection baselines is
then combined with a question generation model.
We use a similar T5-XXL model finetuned on
SQuAD as described in Section 3.2. Unsurpris-
ingly, the model we use to seed the questions can
do well on the questions that it wrote originally;
however, this is an unfair baseline. Thus, we addi-
tionally test a version of the model that is sampled
and also a retrained version using a different seed.
We also test training a similar model trained on
Natural Questions (Kwiatkowski et al., 2019).

6.3 Joint systems

Many of the techniques described Section 6.1 are
inefficient, requiring multiple runs of various mod-
els. For instance, the Query Similarity method
requires one model run for each answer span in
the base passage per example, which corresponds
to quadratic runs for each pair of passages. We
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also explore methods that can directly compare the
base and target passage without the need for any
intermediate steps. These methods instead jointly
detect if there is a factual change and generate a
discriminating question.

Finetuning on Silver Data
We mine additional pairs of Wikipedia passages
using the same process as in Section 3.1. We then
identify every possible answer span from the target
passage. We create silver training examples for
the factual change detection component of the task
by labeling each target answer span using our best
heuristic method, QA-equivalence.

We then convert these labels into a text-to-text
task. For each example with a factual change, we
use the question generated by the SQuAD model
(Section 6.2) as the target. For questions without a
factual change, we use “None” as the target. The
input to the model is the concatenation of the base
and target passages with the target answer span
marked by a special token.

The model is a T5-XXL initialized from the
same question generation model as the model that
produced the original questions.

Finetuning on VITAMINC
The VITAMINC task (Schuster et al., 2021) also has
a factual change detection component. We sample
negatives from the VITAMINC Revision Flagging
dataset, using negative examples with a random
noun phrase chosen as the answer span.

For positive examples, we need to identify a spe-
cific answer span that contains a factual change as
well as the corresponding discriminating question.
While there is no direct counterpart of this task
in VITAMINC, the Fact Verification task is some-
what similar. The dataset consists of an evidence
e, a simplified claim c supporting e, a companion
edited sentence e’ and an edited-claim c’ refuting e
and supporting e’. An answer span a is identified
based on the token-level diff between (c, c’) and a
question generated from c conditioned on a using
the question generation model in Section 6.2. Be-
cause c is a simple sentence, we anecdotally find
the generated questions to be of high quality.

The dataset (e, e’, a) is converted to a text-to-text
task and used to finetune a T5-XXL model follow-
ing the same steps as above. Note that a model
trained on an equal amount of positives and nega-
tives yielded poor performance on DIFFQG. In our
final VITAMINC silver dataset, we used only 10%

Model Acc P R F1

Random 50.0 39.5 50.0 44.1
Overlapping Ans 82.1 79.1 74.6 76.7
Answer Equivalence 81.1 84.6 64.2 73.0
Query Similarity 77.7 65.4 93.3 76.9
Cross-Q 76.9 65.9 86.8 74.9
QA-equivalence 83.9 76.7 85.5 80.9
FT on QA-equivalence 82.5 78.4 77.1 77.7
FT on VITAMINC 81.5 79.9 71.4 75.4

Table 2: Metrics for factual change detection. Note
that none of these models have change detection
training data and are instead verifying with other
tasks or heuristics. The random baseline assumes
guessing change or No change with equal prob-
ability. Acc=Accuracy,P=Precision,R=Recall,F1=F1
Score. Bold indicates the best model, second best
model is underlined.

negatives to achieve a reasonable performance.

7 Results and Discussion

We present results separately for factual change
detection, question generation and the full system.
We also report results separately for the overall per-
formance and the performance on only the subset of
questions that are human written; those sentences
labeled as Edit or Context in the annotation phase.
Selected examples with model outputs are provided
in Appendix A.1 to illustrate the capabilities and
typical errors baseline.

7.1 Factual Change Detection
Table 2 compares the performance of various sys-
tems on the factual change detection task. We find
that QA-equivalence performs better than heuristic
baseline methods. In particular, it better handles
cases where the answer span text is unchanged, but
the surrounding context has changed. For example,
in the passage “On the New Hampshire Execu-
tive Council, Laconia is in the 1st District, repre-
sented by <ADD: Republican Joe Kenney> <DEL:
Democrat Michael J. Cryans>.", QA-equivalence
correctly captures the new information associated
with the answer span “New Hampshire Executive
Council" in the form of the question “What state
council does Joe Kenney represent Laconia in?"
However, the method is prone to detecting spurious
changes even when the passages have no semantic
edit as illustrated in Appendix A.1.

The joint system finetuned on silver data from
QA-equivalence does not seem to improve upon
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QA-equivalence. While it seemingly benefits from
the additional context, it still struggles with long
and complex edits. However, this model only re-
quires a single inference to do both tasks.

The VITAMINC trained model, despite having
access to additional data, was also unable to im-
prove on our baseline. VITAMINC style edits are
substantially different than DIFFQG edits, gener-
ally only consisting of small changes. Thus, the
model finetuned on VITAMINC performs poorly on
large phrase changes or sentence refactors.

7.2 Question Generation

Model R-1 R-L QSim BLRT

SQuAD-seed 71.7 74.9 66.3 74.1
SQuAD-sampled 59.6 63.2 57.8 65.6
SQuAD-retrained 58.0 61.7 58.9 65.6
NQ 20.4 39.6 22.9 41.5

Table 3: Variation in performance of question gen-
eration models on the positive subset of DIFFQG.
We report three different versions of the SQuAD
model, where the first model is the same as we
used to seed the annotations. R-1=ROUGE-1, R-
L=ROUGE-L, QSim=Query Similarity model-based
accuracy, BLRT=BLEURT.

In Table 3, we compare our question generation
baseline models on the subset of the positive exam-
ples. In Table 4, we examine the same models on
the subset of those that are human written: exam-
ples with a change from Table 1.

Model R-1 R-L QSim BLRT

SQuAD-seed 56.5 61.4 48.2 61.3
SQuAD-sampled 50.9 55.2 47.0 58.3
SQuAD-retrained 50.3 54.5 50.4 59.4
NQ 20.4 39.1 20.0 40.2

Table 4: Variation in performance of question gen-
eration models on human written questions of DIF-
FQG. The first model is the same as what we
used to seed the questions. R-1=ROUGE-1, R-
L=ROUGE-L, QSim=Query Similarity model-based
accuracy, BLRT=BLEURT.

The primary goal of this evaluation is to test
whether the questions directly produced by the seed
model described in Section 3.2 are still useful for
evaluating systems on DIFFQG. We find from sam-
pling from that same model and from retraining
with the same process (as described in Section 6.2)

that performance on the overall set degrades con-
siderably. This suggests that unless someone had
access to the same model, these questions that are
human-verified but not human written can still be
useful for evaluation. Nevertheless, the seed model
can be thought of as a rough ceiling on current
question generation performance on DIFFQG.

The human written questions (see Table 4) seem
to be much more challenging for the question gen-
eration models to replicate. Performance degrades
substantially: naturally it degrades the most for the
seed model that wrote some of the questions in the
overall dataset, which it should exactly match.

We note also that a question generation model
finetuned on Natural Questions (Kwiatkowski et al.,
2019) yields a significantly different question style
than SQuaD. This is likely because SQuAD ques-
tions are originally generated from passages, while
Natural Questions are more free form. In addition
the Natural Questions model is found to halluci-
nate in numerous scenarios. This reflects on the
poor performance of the Natural Questions-trained
question generation model on DIFFQG.

As a caveat, the possible universe of questions
written to summarize a factual change can be very
large. While restricting to a single answer span
reduces this space, we still find scenarios with mul-
tiple valid questions. Thus, there may be some
disagreements where the model generates a com-
pletely valid question that is simply not the most
pertinent one according to our annotators.

7.3 Full System

Full DIFFQG metrics are presented in Table 5
and include the two finetuned systems that are
trained on VITAMINC and QA-equivalence, respec-
tively, as well as two pipelined systems with fac-
tual change detection models attached to a question
generation model. For the pipelined experiments,
we use the retrained SQuaD model described in
Section 6.2. We evaluate these models on the full
DIFFQG as well as human written subset.

Overall, all of the systems are relatively close in
performance. QA-equivalence works the best, with
the finetuned version and simple heuristic model
close behind, indicating substantial room for future
innovation. On the human written subset, the per-
formance drops significantly further highlighting
the challenge of the human written questions.
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Models Factual Change
Full System

Detection All Human written

Change QG P R F1 R-L Qsim BLRT R-L Qsim BLRT

Pipelined systems
Overlapping Answer SQuAD 79.1 74.6 76.7 71.3 70.8 72.3 40.6 38.1 43.6
QA-equivalence SQuAD 76.7 85.5 80.9 71.4 70.6 72.7 46.8 43.7 50.8

Joint systems
FT on QA-equivalence 78.4 77.1 77.7 71.2 70.0 72.3 42.7 36.6 45.9
FT on VITAMINC 79.9 71.4 75.4 69.9 68.1 71.1 36.3 32.2 39.9

Table 5: Full system performance of the pipelined and joint systems on DIFFQG. Note that the “All” component of
the full system metric includes all of DIFFQG while the “Human written” portion includes only questions edited
by the annotators. The pipelined systems use the retrained SQuaD model for their question generation component.
Bold represents the best system, second best is underlined. R-L=Rouge-L, Qsim=Query similarity model based
accuracy, BLRT=Bleurt, FT=finetuned

8 Related Work

Factual Edits Factual change detection has been
of recent interest to the community. For instance,
WIKIATOMICEDITS (Faruqui et al., 2018) rely on
Wikipedia revisions to learn to discriminate factual
edits. Closest to our work is VITAMINC (Schuster
et al., 2021) which aims to generate a discriminat-
ing claim given a pair of edited sentences. However,
both of these datasets primarily rely on smaller
edits, frequently consisting of a single entity or
number substitution. For instance, VITAMINC ex-
amples have a median of four token changes and
WIKIATOMICEDITS examples have a median of
two token changes. Moreover, these edits are eas-
ier to detect using heuristics such as noun or entity
overlap. On the other hand, DIFFQG examples
have a median of thirteen token changes that can
involve multiple entity updates. Further, the sur-
rounding contextual information for an entity could
be updated even when the entity itself is present in
both passages. This makes DIFFQG edits harder to
summarize and substantially different than previ-
ous work; this is also observed in Section 7.1 where
using VITAMINC training data to solve DIFFQG
yields poor performance.

Recent work such as Fruit (Iv et al., 2022) and
PEER (Schick et al., 2023) also operate on more
complicated edits. Fruit generates updated sen-
tences from a base passage given the new evidence
in a Wikipedia article. PEER attempts to imitate
the editing process using a sequence of planning
steps. However, both of these primarily focus on
generating the target update, while we focus on suc-

cinctly capturing the edited information. Further,
the use of question generation as a device for dis-
crimination is novel to the best of our knowledge.

Question Generation Question generation has
been successfully applied to various purposes, in-
cluding augmenting question answering systems
(Duan et al., 2017; Lewis et al., 2021), capturing
implicit information written about text (Pyatkin
et al., 2021), and building soft knowledge bases
(Chen et al., 2022). In this work, we apply ques-
tion generation to the task of discriminating edited
sentences. As far as we are aware, there is no prior
work on evaluating question generation systems.

9 Conclusion

In this work, we introduce the DIFFQG task and
dataset to evaluate the ability of NLP systems to
summarize changes between two related passages
via question generation. We present several heuris-
tic and model baselines as well as a set of metrics
to measure performance on the dataset. The DIF-
FQG task requires models to identify changes in
factual relationships and ignore other stylistic ed-
its. We find that existing approaches struggle under
these conditions. Models trained to perform factual
change detection and question generation jointly
sometimes fail to understand even simple edits. We
hope this work finds value in future research on
this important problem.

Limitations

DIFFQG is relatively small, consisting of less than
a thousand questions and less than two thousand
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total examples. This makes us unable to provide a
training set, limiting claims we can make about the
difficulty of the task. Moreover, summarizing com-
plex edits can have a large space of valid solutions.
While using questions conditioned on an answer
reduces this space, there’s still room for ambiguity.

To make annotation easier, we use a question
generation model; however, our goal is also to eval-
uate question generation models, complicating our
story. Finally, most of the baselines we evaluate
are some form of T5 (Raffel et al., 2020) model.
It is possible that other model architectures could
have solved this task more effectively.
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A Appendix

A.1 Qualitative Examples
Examples from DiffQG dataset are illustrated in
Figure 4. The model outputs (success or failure)
from various systems are also provided alongside.

A.2 Annotation Interface
Refer Figure 5 and Figure 6 for annotation interface
of phase 1 and 2 respectively.
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Figure 4: DIFFQG examples with predictions from various systems. The edited sentence is color coded with green
for added tokens and red for deleted; the answer span is underlined. Additional context is omitted unless required
for illustration (provided in gray). No change indicates there was no factual change for the example.
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Figure 5: Interface for the first phase of annotations, where an annotator chooses one of the five options: Ac-
cept/Reject/Edit/Context/Skip. Each example is annotated by two annotators. If both agree, the example is ac-
cepted as is or goes to a third annotator for editing. If one of the annotators skips, the third annotator makes the
final decision.

Figure 6: Interface for the second phase of annotations, where a third annotator will rephrase a question and/or
decide on a disagreed-upon annotation. Here, the annotator writes a new question for the answer span given the
Edit annotation, and decides to confirm the Reject and Accept annotations of the other two examples. Note that for
Edit or Reject annotations, to avoid bias, we do not display the seed-question to the annotators and instead display
a x.
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Abstract

Response generation is one of the critical com-
ponents in task-oriented dialog systems. Exist-
ing studies have shown that large pre-trained
language models can be adapted to this task.
The typical paradigm of adapting such ex-
tremely large language models would be by
fine-tuning on the downstream tasks which is
not only time-consuming but also involves sig-
nificant resources and access to fine-tuning
data. Prompting (Schick and Schütze, 2020)
has been an alternative to fine-tuning in many
NLP tasks. In our work, we explore the idea
of using prompting for response generation
in task-oriented dialog systems. Specifically,
we propose an approach that performs contex-
tual dynamic prompting where the prompts are
learnt from dialog contexts. We aim to dis-
till useful prompting signals from the dialog
context. On experiments with MultiWOZ 2.2
dataset (Zang et al., 2020), we show that contex-
tual dynamic prompts improve response gener-
ation in terms of combined score (Mehri et al.,
2019a) by 3 absolute points, and a massive
20 points when dialog states are incorporated.
Furthermore, human annotation on these con-
versations found that agents which incorporate
context were preferred over agents with vanilla
prefix-tuning.

1 Introduction

With the advent of large language models (LLMs),
a vast majority of NLP tasks, including dialog sys-
tems, further fine-tune these LMs for their down-
stream tasks. Although these approaches pro-
vide substantial improvements over traditional task-
specific models (Ham et al., 2020; Hosseini-Asl
et al., 2020; He et al., 2022), it is a time consum-
ing process that also involves significant use of
energy/resources in the form of compute. These ap-
proaches also require tuning and storing parameters
for each downstream task.

∗ Work done during an internship at AWS AI Labs

A more recent line of work, explores “prompt-
ing” LLMs to elicit the necessary knowledge re-
quired for the downstream tasks (Shin et al., 2020;
Gao et al., 2020; Schick and Schütze, 2020; Petroni
et al., 2019; Lee et al., 2021; Zhu et al., 2022).
Prompts composed of tokens or short pieces of
text (discrete prompts) inserted at the end of the
input examples. These prompts are typically man-
ually defined based on the specific downstream
task. The main motivation behind these approaches
stems from the idea that the large corpora that these
language models are trained on contain relevant in-
formation which is pertinent to the task on hand.

Adapter-tuning was proposed as an alternate ap-
proach to fine-tuning. These methods only train
task-specific layers that are inserted within pre-
trained LMs. Such a lightweight approach that add
about 4% task-specific parameters has shown to ob-
tain comparable performances to their fine-tuning
counterparts (Rebuffi et al., 2017; Houlsby et al.,
2019; Lin et al., 2020a).

Drawing inspiration from prompting, prefix-
tuning approaches (Li and Liang, 2021) were pro-
posed as another alternative to fine-tuning. These
approaches pre-pend a sequence of task-specific
continuous vectors (aka prefix-) to the input. In
contrast to prompting, the prefix consists of free
parameters that do not correspond to actual real
tokens. Such an approach is more prevalent since
it only optimizes the prefix and does not tune pa-
rameters of the entire LM.

Most of the existing approaches use static
prompts, i.e., the same set of tokens are used as
“prompt tokens" regardless of input. However, we
believe that taking context into consideration is
critical especially in response generation since the
current response has to fit not only the domain but
also the information being requested in previous
turns. For example: In the MultiWOZ dataset, if
a customer asks about train bookings, the agent
response has to restrict itself to that particular do-
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main. To address this problem, we explore the
idea of generating input-dependent or contextual
prompts. We want the prompts to capture and en-
code different signals for different turns of dialogs
depending on the context, hence, we call our ap-
proach dynamic context prompting. This way, we
hope to distill useful signals into the prompts and
provide the model with adequate signals to gener-
ate a desired system response. In this work, we
explore the potential of using dialog context within
a prefix tuning approach for the task of response
generation in task-oriented dialog systems (TOD).
The contributions of this paper are summarized as:

• we propose a context-dependent prefix-tuning
method for dialog response generation in TOD
systems.

• to illustrate the benefits of such an approach,
we conduct experiments on the MultiWOZ
dataset. We show that our model significantly
outperforms the original task-dependent de-
sign of the prefix-tuning method.

2 Related Work

2.1 Dialog Generation
With the prevalence of LLMs, the quest for an
answer to “how do we effectively adapt such mod-
els for dialog generation?" has been on the fore-
front of researchers’ minds in the dialog commu-
nity. For task-oriented dialogs, fine-tuning large
pre-trained models such as GPT-2 or T5 has made
great progress on benchmarks recently (Ham et al.,
2020; Hosseini-Asl et al., 2020). Built upon these
advances, more recent line of work investigates
the effectiveness of using multi-task learning (Su
et al., 2021; Lin et al., 2020b; Yang et al., 2021),
or pre-training the model on external dialog cor-
pora (Peng et al., 2021; Liu et al., 2021). More
recently, prompting has been used to address the
sub-task of dialog state tracking (Lee et al., 2021;
Zhu et al., 2022). Different from those works, we
focus on the task of dialog response generation.

2.2 Prompt-based Learning
As an alternative to the fine-tuning paradigm,
prompting involves a sequence of tokens appended
to the input text, which can then induce the model
to engage in a certain behavior suited to the task.
Since the release of GPT-2 (Radford et al., 2018,
2019; Brown et al., 2020), many prompt-related pa-
pers have emerged. Most of the leading approaches

in prompting use task-specific prompts, ranging
from discrete prompts (Shin et al., 2020; Gao et al.,
2020; Schick and Schütze, 2020; Petroni et al.,
2019) to continuous “soft prompts” (Li and Liang,
2021; Lester et al., 2021). These methods have
a fixed prompt for each task. However, in dialog
systems specifically, the context varies for every
turn. In our work, we aim to design prompts which
are context-dependent.

3 Problem Statement

Response generation is one of the tasks carried
out in dialog systems usually in addition to dia-
log state tracking (DST). Given a dialog context
(previous turns between the system and the user)
C = [u1, s1, ..., un−1, sn−1] and the current user
utterance un, the goal of response generation is
to generate system response sn. Note that in the
actual task, we generate delexicalized system re-
sponses, given all the groundtruth previous turns
as input, following previous works (Hosseini-Asl
et al., 2020; Wen et al., 2015).

Techniques mentioned in (Ham et al., 2020;
Hosseini-Asl et al., 2020) rely on fully fine-tuning
LLMs to carry out this task. In contrast, our ap-
proach builds on the prefix-tuning framework, but
incorporates dialog context, C, as an additional
signal for the prefix tokens. As a supplement to
context C, we added dialog state information D
(up to the current turn) to further help response
generation.

4 Contextual Dynamic Prompting
Framework

4.1 Prefix-tuning for Response Generation

Our work is built on top of prefix tuning for genera-
tion tasks (Li and Liang, 2021), which adds a fixed
set of tunable prefix tokens/prompts to the origi-
nal input x to obtain a new input, [PREFIX; x].
Following the denotation in (Li and Liang, 2021),
we use Pθ[i, :] to denote the ith prefix. Pθ[i, :] is
generated by:

Pθ[:, :] =MLPθ(P
′), (1)

where P ′ is a fixed smaller matrix as input to a
feedforward neural network (MLPθ). The training
objective of prefix-tuning is same as fine-tuning,
i.e., the following log-likelihood objective:

max
θ

log pϕ(y|x),
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Figure 1: The figures above indicate the differences between the vanilla prefix-tuning approach compared to our approach. In
both these variants, only the prefix tokens are tuned.

where y is the decoder output and x is the input. θ
represents the trainable parameters in the prefix tun-
ing feedforward neural network and ϕ denotes all
other parameters that include the frozen parameters
of the large language model.

For our task of response generation, we con-
catenate the prefix with the dialog context and
the current user utterance as input [PREFIX;
u1, s1, ..., un−1, sn−1, un]. The target output is the
system response sn as seen in Figure 1 (a).

We adopt T5 (Raffel et al., 2020) as the pre-
trained language model. T5 employs an encoder-
decoder framework which is prevalent in seq2seq
tasks (Sutskever et al., 2014; Cho et al., 2014).

4.2 Contextual Prefix-tuning
In vanilla prefix-tuning, the parameters of the prefix
are fixed after training for any particular task to be
reused. However, a dialog system involves having
multiple turns of conversation between a system
and the user. It is imperative in such systems to
dynamically incorporate contextual information to
carry out a meaningful conversation with the user.
We explore how we can distill the dialog context
information into the prefix with a prompt encoder.

Different from the original design, we want to
encode additional signals into the prefix that differs
for each input instances. In other words, we want to
generate contextual prefix or contextual dynamic
prompts.

Formally, we modify the equation (1) as follows:

Pθ[:, :] =MLPθ(encoder(C)), (2)

where C = [u1, s1, ..., un−1, sn−1] represents the
dialog context. We first obtain the representation
of the dialog context by feeding C into a T5 en-
coder which is kept frozen as shown in Figure 1 (b).
Subsequently, we use the prompt encoder, i.e., the
feedforward neural network, to get the prefix. The
generated prefix Pθ is then concatenated with only
the current user utterance. Instead of concatenating
the whole context as the input to the T5 decoder,

we first distill the signal into the prefix tokens. As a
consequence of freezing the T5 encoder which gen-
erates the context representation, we still have the
same number of tunable parameters as the original
prefix-tuning framework.

4.3 Input-dependent Prefix-tuning with
Dialog State

In most task-oriented dialog systems, we also have
access to the dialog state at every turn in addition
to dialog context. The dialog state has information
such as requested slots and filled slots at every turn.
We provide the dialog state D in addition to the
context C to obtain contextual dynamic prompts.
As a result, we will now modify equation (2) as:

Pθ[:, :] =MLPθ(encoder(C;Dn−1)), (3)

we only provide the most recent dialog state
Dn−1 which is an amalgamation of all previous
dialog states D<n−1.

5 Experimental Settings

5.1 Dataset and Metrics

We evaluate our proposed framework and model
on the MultiWOZ 2.2 dataset (Zang et al., 2020;
Budzianowski et al., 2018) which is a large-scale,
multi-domain, human-human task-oriented dialog
dataset collected via the Wizard-of-Oz framework
where one participant plays the role of the system.
It consists of seven domains including hotel, restau-
rant, attraction, train, taxi, hospital, and police,
and an additional domain general for acts such as
greeting or goodbye. Due to its multi-domain set-
ting, complex ontology, and flexible human expres-
sions, developing dialog systems on MultiWOZ is
extremely challenging. The training data contain
8437 dialogs, the dev and test set contain 1000
dialogs each.

We use four evaluation metrics: BLEU (Pap-
ineni et al., 2002), Inform, and Success rates, and
combined score. Inform measures whether the
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MultiWOZ 2.2
BLEU Inform Success Combined Score Av. len. #uniq. words #uniq. 3-grams

Prefix-Tuning 19.19 54.7 48.0 70.54 13.83 245 1671
Prefix-Tuning (with DS) 19.36 51.8 47.0 68.76 13.08 231 1626
Contextual Dynamic Prompt 19.16 58.1 50.5 73.46 14.16 231 1532
Contextual Dynamic Prompt (with DS) 17.94 77.2 68.8 90.94 14.02 282 2390

Table 1: Performance Comparison. All model performance are based on features from all modalities. Contextual
Dynamic Prompt (with DS) has the best performance in combined score.

system provides an appropriate entity and Success
measures whether the system answers all the re-
quested attributes. Specifically, the Inform rate
relates to attributes that allow the user to constrain
database searches, e.g., restaurant location or price
range (the informational slots) and the Success rate
focuses on request-able slots, that can be asked
by the user, e.g., phone number. Both are calcu-
lated on the level of dialogs. The combined score
is calculated following (Mehri et al., 2019b) as
BLEU+0.5∗(Inform+Success). We followed
a standard script 1 to report different measures.

5.2 Human Evaluation
We chose a 10% subset of the evaluation set (ran-
domly shuffled) conversations with a total of 728
turns across them and provided annotators with the
responses generated by each of the methods de-
scribed in section 4. Annotators were asked to rate
each agent on a turn-level and to also pick the agent
which carried out the best conversation. If annota-
tors felt more than one agent did well, they could
choose multiple agents. The agent numbers, when
provided to annotators, were shuffled to avoid bias.
Each agent is described as:

• Agent 1: Incorporates only prefix-tuning

• Agent 2: Incorporates prefix-tuning with Dia-
log State

• Agent 3: Incorporates contextual dynamic
prompts

• Agent 4: Incorporates contextual dynamic
prompts with Dialog State

When annotating on turn level, from these 728
turns, we saw that the agents tied on 596 occasions,
agent 1 had outright win on 12 occasions, agent
2 on 22, agent 3 on 33 occasions, and agent 4 on
65 occasions. This shows that our technique of
using contextual dynamic prompts for generating
responses is effective (Examples in Appendix B).

1https://github.com/Tomiinek/MultiWOZ_
Evaluation

Additionally, on the conversation level, we no-
ticed that across 100 conversations, 37 were tied,
and agents 3 and 4 were preferred in a total of
53 conversations confirming our hypothesis that
incorporating context into prompts leads to better
responses. We request readers to refer to Appendix
A and B for more details about the annotation task.

6 Results

As shown in Table 1, contextual dynamic prompt-
ing with dialog states obtains a combined score of
90.94, a 20 point jump from our baseline (prefix-
tuning). In addition, even though we can’t explic-
itly explain the drop in BLEU, the massive jumps in
both success and inform suggest more transparency
and coherence for the responses generated by the
input-dependent prefix-tuning as these metrics fo-
cus on quality of informational and request-able
slots in each turn. When comparing our results with
the human annotations, we also see that Agent 4 -
which uses contextual dynamic prompting - wins
38 conversations (out of 100). This is majority of
wins compared to Agent 1 winning only 3 conver-
sations, and Agent 2 winning 7. This further em-
phasized that adding contextual dynamic prompts
leads to better quality of responses. We show some
examples from the human annotation task where
Agent 4 was chosen as the winning agent in Tables
2 and 3 below.

7 Conclusion

In our work, we proposed an approach that
performs contextual dynamic prompting where
prompts are learnt from dialog contexts with the
goal of distilling useful prompting signals. In our
experiments, we showed that contextual dynamic
prompts improve response generation in terms of
combined score (Mehri et al., 2019a) by 3 points,
and by 20 points when dialog states are incorpo-
rated compared to the baseline. Our technique does
not expose the models to additional knowledge
sources. Human annotation on these conversations
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Turn num User turn Agent 1 response Agent 2 response Agent 3 response Agent 4 response
1 i am looking for a

place to dine. the
restaurant should
be expensive and
should serve chi-
nese food.

there are [choice]
[pricerange] [food]
restaurants in town.
do you have a pref-
erence for area or
price range?

i have [choice]
[pricerange] [food]
restaurants. do you
have a preference
for area?

there are [choice]
[pricerange] [food]
restaurants. do you
have a price range
in mind?

there are [choice]
[food] restaurants
in the [pricerange]
price range. is there
a particular area
you are interested
in?

2 not in any specific
area please. i need
to book a table for
3 at 14:00 on satur-
day.

booking was suc-
cessful. the table
will be reserved for
15 minutes. ref-
erence number is :
[ref]. is there any-
thing else i can help
you with?

booking was suc-
cessful. the table
will be reserved for
15 minutes. ref-
erence number is :
[ref].

i was able to book
you at [name] for
[bookday] at [book-
time]. your ref-
erence number is
[ref]. is there any-
thing else i can help
you with?

i have made a reser-
vation for you at
[name]. the table
will be reserved for
15 minutes. the
reference number is
[ref]. is there any-
thing else i can help
you with?

3 how about 13:00
then?

booking was suc-
cessful. the table
will be reserved for
15 minutes. ref-
erence number is :
[ref].

booking was suc-
cessful. the table
will be reserved for
15 minutes. ref-
erence number is :
[ref].

booking was suc-
cessful. the table
will be reserved for
15 minutes. ref-
erence number is :
[ref]. is there any-
thing else i can help
you with?

ok, i have you
booked at [name].
your reference
number is [ref]. is
there anything else i
can help you with?

4 what is the refer-
ence number for my
booking?

your reference num-
ber is [ref]. is there
anything else i can
help you with?

the reference num-
ber is [ref]. is there
anything else i can
help you with?

your reference num-
ber is [ref]. is there
anything else i can
help you with?

the reference num-
ber is [ref].

5 no thank you, that is
all i needed!

you’re welcome.
have a great day!

you’re welcome.
have a great day!

you’re welcome.
have a great day!

you’re welcome,
have a great day!

Table 2: An example where Agent 4 was picked as the best performing agent in a conversation.

Turn num User turn Agent 1 response Agent 2 response Agent 3 response Agent 4 response
1 can you help me

find a restaurant
that serves african
food with a mod-
erate price range
please

there are no [food]
restaurants in the
[pricerange] price
range. would you
like to try a different
type of food?

there are no [food]
restaurants in the
[pricerange] price
range. would you
like to try a different
type of food?

there are no [food]
restaurants in the
[pricerange] price
range. would you
like to try a different
type of food?

[name] is a [food]
restaurant in the
[area]. would you
like to try it?

2 yes how about asian
food in the same
price range?

there are [choice]
[food] restaurants
in the [area] and
[choice] in the
[area]. do you have
a preference?

there are [choice]
[food] restaurants
in the [pricerange]
price range. do you
have a preference
for area?

there are [choice]
[pricerange] [food]
restaurants in the
[area]. do you have
a price range in
mind?

[name] is a [food]
restaurant in the
[pricerange] price
range.

3 will you please
book a table for 6 at
13:45 on friday?

booking was suc-
cessful. the table
will be reserved for
15 minutes. ref-
erence number is :
[ref]. is there any-
thing else i can help
you with?

booking was suc-
cessful. the table
will be reserved for
15 minutes. ref-
erence number is :
[ref].

i was able to book
you at [name] for
[bookday] at [book-
time]. your ref-
erence number is
[ref]. is there any-
thing else i can help
you with?

i have made a
reservation for
[bookpeople] at
[booktime] on
[bookday] at [book-
time]. the table
will be reserved
for 15 minutes. the
reference number
is [ref]. is there
anything else i can
help you with?

4 that’s all i needed.
thanks a lot for the
help!

you’re welcome.
have a great day!

you’re welcome.
have a great day!

you’re welcome.
have a great day!

you’re welcome.
have a great day!

Table 3: An example where Agent 4 was picked as the best performing agent in a conversation.

found that agents which incorporate context into
prompts were preferred over agents with vanilla

prefix-tuning.
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Limitations

While our work explores a new technique of con-
textual dynamic prompts for response generation,
we carried out our experiments on a dataset which
is in the English language. A potential limitation
of this work would be the transfer of our findings
on an English dataset to a multi-lingual dataset or
a mono-lingual dataset on a language other than
English. We plan to address this in our future work
and also request the help of the research community
in doing so.
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A Human Evaluation Task

We explored contextual dynamic prompting
strategies for the response generation task using
the MultiWOZ 2.2 (Budzianowski et al., 2018;
Zang et al., 2020) dataset and noticed that the
combined score that we obtained was significantly
better than the baseline prefix-tuning method
of response generation. To understand if the
agents which incorporated contextual dynamic
prompts did indeed provide a better conversational
experience, we designed a small human evaluation
task to test our hypothesis.

We picked a random subset of 10% of the
conversations from the original MultiWOZ test
data to perform this analysis. Once we obtained
this random set, we ran our four model variants
as described in Section 4 on the conversations to
obtain system responses for each of them. We then
presented the different agents’ responses to the
annotator as shown in Table 4 below. In order to
avoid potential biases, we shuffled the order of the
agents between our annotators i.e., Agent 1 for
annotator a would not be Agent 1 for annotator b.
We kept track of which agents corresponded to
which of our four methods prior to distribution of
data amongst the annotators.

The annotators were given instructions to read
every turn of conversation and provide a number
between 1 and 4 for the agent which they thought
performed the best for that turn. If the annotators
found that there was a tie, they could pick more
than one agent as [agent_a, agent_b]. In addition
to this instruction, annotators were asked to read
the entire conversation and pick the agent which
performed the best - once again with an option to
pick multiple. Table 5 below shows an example
annotation style for a single conversation spanning
6 turns. There is an annotation at every turn and a
single annotation at the end of the conversation.
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We tallied results and re-mapped all agents back
to their methods and found that agents 3 and 4
as mentioned in Section 5.2 were preferred at the
conversation level in a total of 53 of the 100 conver-
sations while agents 1 and 2 were only preferred
10 conversations in the entire set of 100.

B Examples

In the table below, we provide another examples
from the human annotation task where annotators
picked agent 4 as the best performing agent for the
conversation (we performed the re-mapping to fit
the agent numbers in Section 5.2). Table 2 shown
in the main paper indicates a scenario where Agent
4 was rightly able to ask the customer about their
area of preference for dining, and also considers a
booking time change from the user. Table 6 shows
an example where agent 4 is able to take into con-
sideration all the different constraints mentioned
by the user in terms of slots in the response that
it generates. Table 3 shows an example where the
agent 4 is able to correctly respond to the user re-
quest for number of people to reserve the table for -
which none of the other agents captured. All these
examples showed that agent 4, which uses contex-
tual dynamic prompts with dialog states was indeed
able to provide smoother responses to the customer
input compared to the other agents.

C Compute Infrastructure and
Experimental settings used

All our experiments were carried out on public
AWS p3 GPU instances which are backed by Tesla
V100 GPU cores. All four variants of our models
required 18-24 hours to reach convergence on these
machines. Learning rates were varied based on
performance of models on the validation split of
our dataset.
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Turn num User turn Agent 1 response Agent 2 response Agent 3 response Agent 4 response
1
2
3
4
5
6
7

Table 4: The format which is presented to annotators while performing turn-level and conversation-level annotation.
The agents are shuffled between the annotators to avoid biasing them.

Turn num Turn level Conversation level
1 2
2 [3,4]
3 2
4 3
5 4
6 [3,4] 3

Table 5: We asked annotators to provide two levels of annotation for each conversation - turn level and conversation
level. Annotators were allowed to pick more than agent in case of a tie.
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Turn num User turn Agent 1 response Agent 2 response Agent 3 response Agent 4 response
1 i am looking for

a train that departs
from peterborough
and goes to cam-
bridge.

there are [choice]
trains leaving from
[departure] to [des-
tination]. what day
would you like to
travel?

what day would you
like to travel?

there are [choice]
trains leaving [de-
parture] from [de-
parture] to [destina-
tion]. what day
would you like to
travel?

i have [choice]
trains departing
from [departure] to
[destination]. what
day would you like
to travel?

2 we will be leav-
ing on sunday after-
noon.

[trainid] leaves [de-
parture] at [leaveat]
and arrives in [desti-
nation] at [arriveby].
would you like me
to book that for
you?

i have [choice]
trains available.
what time would
you like to leave?

[trainid] leaves at
[leaveat] and arrives
in [destination] at
[arriveby]. would
you like me to book
it for you?

[trainid] leaves [de-
parture] at [leaveat]
and arrives at [desti-
nation] at [arriveby].
would that work for
you?

3 yes, it should leave
after 20:15 and
leave on monday,
not sunday. please
give me a price,
travel time, and
arrival time for any
train.

[trainid] leaves at
[leaveat] and arrives
in [destination] at
[arriveby]. the price
is [price].

[trainid] leaves at
[leaveat] and arrives
at [arriveby]. would
you like me to book
that for you?

[trainid] leaves at
[leaveat] and arrives
at [arriveby]. the
price is [price].
would you like me
to book it for you?

[trainid] leaves [de-
parture] at [leaveat]
and arrives in [desti-
nation] at [arriveby].
the cost is [price]
and the travel time
is [duration].

4 yes please. what
is the travel time?
i’ll also need a ho-
tel in the expensive
price range. can you
help me with that as
well?

the travel time is
[duration]. is there
anything else i can
help you with?

the travel time is
[duration].

the travel time is
[duration]. is there
anything else i can
help you with?

the travel time is
[duration]. is there
anything else i can
help you with?

5 yes, i’d like a 2 star
rating and i’ll need
it to be in the east
side of town.

i have [choice]
[type] in the [area]
with [stars] stars.
do you have a
preference?

there are [choice]
[type] in the [area]
that are [stars] stars.
do you have a pref-
erence?

there are [choice]
[type] in the [area]
that are [pricerange]
and [pricerange].
do you have a
preference?

[name] is a [stars]
star hotel in the
[area]. would you
like me to book it
for you?

6 yes, i would like to
book it for 3 people
starting that same
day for 4 nights.

booking was suc-
cessful. reference
number is : [ref]. is
there anything else i
can help you with?

booking was suc-
cessful. reference
number is : [ref].

booking was suc-
cessful, the total fee
is [price] payable
at the station. ref-
erence number is :
[ref].

booking was suc-
cessful. the total fee
is [price] payable
at the station. ref-
erence number is :
[ref].

7 that is all thank you
goodbye.

you’re welcome.
have a great day!

you’re welcome.
have a great day.

you’re welcome.
have a great day.

you’re welcome.
have a great day.

Table 6: Another example where Agent 4 was picked as the best performing agent in a conversation.
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Abstract
Recent advances in discourse parsing perfor-
mance create the impression that, as in other
NLP tasks, performance for high-resource lan-
guages such as English is finally becoming re-
liable. In this paper we demonstrate that this
is not the case, and thoroughly investigate the
impact of data diversity on RST parsing sta-
bility. We show that state-of-the-art architec-
tures trained on the standard English newswire
benchmark do not generalize well, even within
the news domain. Using the two largest RST
corpora of English with text from multiple gen-
res, we quantify the impact of genre diversity
in training data for achieving generalization
to text types unseen during training. Our re-
sults show that a heterogeneous training regime
is critical for stable and generalizable models,
across parser architectures. We also provide
error analyses of model outputs and out-of-
domain performance. To our knowledge, this
study is the first to fully evaluate cross-corpus
RST parsing generalizability on complete trees,
examine between-genre degradation within an
RST corpus, and investigate the impact of genre
diversity in training data composition.

1 Introduction

Discourse parsing is the task of identifying and
classifying the coherence relations that hold be-
tween different parts of a text, such as recognizing
that one sentence specifies the cause of events in
another, or that a subordinate clause indicates the
purpose of a main clause. In hierarchical frame-
works, such as the Rhetorical Structure Theory
(RST, Mann and Thompson 1988), parsers con-
struct a labeled constituent tree of discourse units
as shown in Figure 1. Such trees have numerous
applications: retrieving specific relations (e.g. all
CONCESSIONS made in any speech by some politi-
cian, e.g. unit 26-27 in Figure 1), or hierarchically
finding the most central unit in an arbitrary span
of text (unit 24 in Figure 1). They can also con-
tribute to downstream tasks such as text generation

Figure 1: RST Fragment from GUM (Zeldes, 2017).

(Maskharashvili et al., 2021) and summarization
(e.g. Louis et al. 2010; Li et al. 2016; Xu et al. 2020;
Hewett and Stede 2022) and to qualitative analysis
and comparison of texts (Wan et al., 2019).1

Recent advances in NLP have resulted in increas-
ingly accurate systems for tasks such as part-of-
speech tagging (Heinzerling and Strube, 2019) and
dependency parsing (Mrini et al., 2020), which
are now commonly applied with confidence to
novel data, at least for high-resource languages
such as English. At the same time, rising scores
on the main standard English RST benchmark, the
RST Discourse Treebank (RST-DT, Carlson et al.
2003), with data from the 1989 Wall Street Journal
(WSJ), create the impression that discourse parsing
too is becoming reliable, and by proxy, applica-
ble to arbitrary text. This has resulted in use of
automatic RST parsing to automatically generate
large-scale datasets, such as MEGA-DT (Huber
and Carenini, 2020) or AMALGUM (Gessler et al.,
2020). However, there are some indications that
this picture is too optimistic, with some studies re-
vealing problems in RST-DT-based parsing once
the target domain changes (Ferracane et al. 2019;
Wang et al. 2019; Linscheid et al. 2021; Atwell
et al. 2021, 2022; Nishida and Matsumoto 2022;
Yu et al. 2022), and qualitative inspection of parser
outputs casting doubt on their reliability.

1This applies to other discourse frameworks too, such as
PDTB (Prasad et al., 2019) or SDRT (Asher and Lascarides,
2003), but we limit the scope of this paper to RST parsing.
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A problem in evaluating the stability of RST
parsing for English is the scarcity of out-of-domain
(OOD) data, as well as potential differences be-
tween the annotation schemes of different corpora.
Recently, the availability of increasing amounts of
non-newswire data, as well as non-WSJ news data,
in the English GUM corpus (Zeldes, 2017) has
made some detailed comparisons possible, which
we explore below. Beyond evaluating OOD degra-
dation, the existence of these large datasets for
English RST allows us to test different joint train-
ing strategies to increase both the accuracy and
generalizability of RST parsing for English.2

Our main goals here are: 1) to demonstrate the
generalizability limitations of English RST pars-
ing based on RST-DT and quantify them for users;
2) to explore reasons for generalizability issues,
with a focus on the genre composition of training
sets, pointing the way to the kind of data that ro-
bust discourse parsing requires; and 3) to promote
multi-genre benchmarks for RST parsing based on
our experimental results. Overall we find that di-
verse training data leads to better generalization on
unseen genres regardless of model architecture.

2 Related Work

2.1 English RST Corpora

The RST Discourse Treebank (RST-DT, Carlson
et al. 2003) is the standard English RST benchmark,
with data from the WSJ section of the Penn Tree-
bank (PTB, Marcus et al. 1993). Another human-
annotated English RST corpus is the Georgetown
University Multilayer (GUM) corpus, which is
freely available online and covers 12 written and
spoken genres (Zeldes, 2017). GUM is continu-
ously growing, with new data added in each ver-
sion. For this paper, we used Version 8 of the
corpus, which is described in Table 1 next to in-
formation about RST-DT (the current version of
GUM, V9, was not yet available at submission time,
and now contains 213 documents, 203K tokens and
26K EDUs, and the next version 10 is set to add 4
additional new genres).

As Table 1 shows, although GUM V8 is smaller
than RST-DT in number of tokens and documents,

2Though we focus on English in this paper, understanding
the size and nature of data needed in English will hopefully
shed light on what other languages may require.

3There is no established dev partition for RST-DT.
4Previous work has identified 4 sub-genres in the WSJ

data (Webber, 2009), but these are very unevenly distributed,
and 29 RST-DT documents were not included in that analysis.

RST-DT GUM V8

documents 385 193
train/dev/test 347/−3/38 145/24/24

tokens 203,352 180,851
EDUs 21,789 23,107
relation instances 20,163 21,903
relation labels 78 / 17 classes 32 / 15 classes
genres 14 12

Table 1: Overview of the English RST Corpora.

it contains more instances of elementary discourse
units (EDUs) and relations, since newswire units
from RST-DT are longer on average. EDU segmen-
tation guidelines are identical for the two corpora,
and the label set is very similar, with both corpora
using the SAME-UNIT pseudo-relation for discon-
tinuous EDUs. GUM’s 12 genres make it possible
to conduct experiments to investigate parsing gen-
eralizability (see Table 12 in Appendix B for their
exact size breakdowns). Virtually all work on RST
constituent parsing uses only the collapsed coarse
relation classes (i.e. 17 labels for RST-DT); we will
follow this practice for the evaluation below, but
will refer to some issues relating to fine-grained
labels in our analysis as well. In addition, we con-
ducted an analysis of satellite-nuclearity patterns in
the two corpora, confirming that they are quite sim-
ilar: NS dominates with 77.7% in RST-DT, similar
to 74.8% in GUM news; interestingly, proportions
in GUM overall are somewhat lower (70.1%).

There are also other corpora annotated in RST
dependencies, such as SciDTB (Yang and Li, 2018)
and full RST constituent treebanks in other lan-
guages (see Zeldes et al. 2021 for an overview);
since we focus on hierarchical English RST con-
stituent parsing, we will use the corpora in Table
1 for the experiments below: they differ in con-
tent, vocabulary, domains, and more importantly,
underlying communicative intents mirroring dis-
course relations, all of which are the backbone of
our experiments to investigate English RST parsing
generalizability as a function of training data.

2.2 RST Discourse Parsers

Several approaches have been proposed for RST
parsing, primarily distinguished by a BOTTOM-UP

vs. TOP-DOWN approach, and the algorithm used
(often a neural shift-reduce architecture). Table 2
compares recent high scoring parsers on three met-
rics: Span (whether subtrees span the right EDUs),
Nuclearity (whether edges point the right way), and
Relation (whether labels are correct). Following
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S N R Neural
(Y/N)

Model
Architectures

Additional
Features / Resources

Pre-trained
LM

BOTTOM-UP

Ji and Eisenstein (2014)∗ 64.1 54.2 46.8 N transition-based + SVMs lexical, dependency, graphical features −
Yu et al. (2018)♢ 71.4 60.3 49.2 Y

transition-based + Bi-LSTM;
encoder-decoder + dynamic oracle

implicit syntactic features −
Guz and Carenini (2020)♠ 76.5 65.9 54.8 Y transition-based + MLPs organizational features (Wang et al., 2017) SpanBERT-base

Yu et al. (2022)♣ 76.4 66.1 54.5 Y
Yu et al. (2018) + 2 pre-training tasks: Next EDU
Prediction; Discourse Marker Prediction

− XLNet

TOP-DOWN

Koto et al. (2021)♣ 73.1 62.3 51.5 Y LSTM + dynamic oracle sentence and paragraph boundaries −
Nguyen et al. (2021)♣ 74.3 64.3 51.6 Y

Bi-LSTM encoder +
unidirectional LSTM decoder

− XLNet-base

Zhang et al. (2021)♣ 76.3 65.5 55.6 Y
split-point encoding and ranking +
adversarial learning

− XLNet-base

Liu et al. (2021)♠ 76.5 65.2 54.2 Y pointer-network decoder + depth-first span splitting + biaffine classifiers − XLM-RoBERTa-base

Table 2: Micro-averaged Parser Scores on RST-DT with Gold Segmentation. ∗ = scores from Morey et al. (2017). ♢

= converted Parseval scores for Yu et al. (2018)’s parser reported by Koto et al. (2021). ♠ = 5 run average Original
Parseval replication of respective work. ♣ = scores from the original paper (not necessarily averaged scores).

Morey et al. (2017), we use the more stringent orig-
inal Parseval procedure on binary trees.

As Table 2 shows, BOTTOM-UP and TOP-DOWN

approaches are currently very close, and all state-of-
the-art (SOTA) systems rely on transformer word
embeddings as the primary input. To rule out
an impact of parser architecture, we test both the
BOTTOM-UP from Guz and Carenini (2020), using
their best SpanBERT-NoCoref setting, and the TOP-
DOWN from Liu et al. (2021) as their code is public
and both have near-SOTA S and N metrics, which
are more robust to differences between label in-
ventories across corpora (relevant hyperparameters
and dev performance are provided in Appendix C).

2.3 Cross-Genre Variation in RST

Previous work suggests RST trees vary widely
across text types,5 in relation distributions
(Taboada and Lavid, 2003; Zeldes, 2018), ways
they are signaled (e.g. Eggins and Martin 1997; Liu
2019; Demberg et al. 2019), and variation across
languages (Cao et al. 2018; Stede and Neumann
2014; Iruskieta et al. 2013; Redeker et al. 2012;
da Cunha et al. 2011; Pisarevskaya et al. 2017).

These differences suggest OOD parsing will
be challenging: For example, Taboada and Lavid
(2003) showed that in appointment-scheduling con-
versations, CONCESSION, CONDITION, CAUSE,
and RESULT were disproportionately frequent due
to the nature of the data, correlating with stages
of a conversation (i.e. Opening, Task Performance,
Closing): e.g. more RESTATEMENT, EVALUATION,
and SUMMARY in the Closing stage. Similarly,
Zeldes (2018) showed MOTIVATION often encodes
how-to guides influencing one’s willingness to act,

5We use “text type”, “genre”, and “domain” interchange-
ably here to mean different kinds of data, though they are not
exactly the same (e.g. see Biber 1988 and Lee 2001).

which almost never occurs in the objective style
of news. We therefore expect parsers trained on a
single domain to generalize poorly to novel ones.

2.4 Generalizability in RST Parsing

Although some first studies are beginning to ap-
pear, generalizability in full RST parsing remains
understudied. Three recent papers include some
cross-dataset numbers, but not a systematic analy-
sis of full RST constituent parser generalizability.
Atwell et al. (2021) examined the subtask of re-
lation classification between PDTB (Prasad et al.,
2019) and RST annotated data, and included F1
scores for identifying relations in GUM V5 using
the RST-DT training data for relations that appear
in both datasets (however, GUM V5’s EDU seg-
mentation differed strongly from RST-DT and the
parser in the paper was an older non-neural one).

Yu et al. (2022) evaluate a neural parser on RST-
DT and report scores on 11/12 genres in GUM
V7 (same segmentation as RST-DT, but only 25
relations and less data than V8); however because
their focus is not on cross-genre generalization,
they do not report micro-averaged scores on the
whole GUM corpus, do not evaluate training on
GUM or joint training, and do not test held-out
genres within GUM. Finally, Atwell et al. (2022)
used GUM V6 (with RST-DT’s segmentation and
8 genres) to identify relation types between pairs
of provided argument spans, similar to PDTB-style
shallow discourse parsing in the CoNLL’16 shared
task (Xue et al., 2016) and recent DISRPT shared
task on relation classification (Zeldes et al., 2021).

This study is therefore the first to fully evalu-
ate cross-genre RST parsing generalizability on
complete trees in datasets with the same EDU seg-
mentation. To our knowledge, no previous work
has tested an OOD-trained parser on RST-DT, at-
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tempted joint training on both corpora, evaluated
between-genre degradation within an RST corpus,
or the impact of training data genre composition.

3 Experiments

In this section we conduct four experiments. First,
we want to find out how compatible the two English
RST corpora are, and how well they generalize to
each other’s domains (§3.1). Second, we want
to test whether we can incorporate training data
from GUM in order to exceed SOTA performance
on RST-DT, with one of three approaches: joint
training, model stacking, and pretraining (§3.2).
Third, we would like to know whether generaliz-
ability issues are mainly due to differences between
corpora (details of annotation guidelines or com-
mon practices) or the nature of the texts’ genres
and domains themselves (§3.3). We test this by
leaving out different subsets of GUM genres from
training, and quantify OOD degradation for each
genre, which also informs users of SOTA parsers
of what degradation they can expect on genres
‘in the wild’. The final experiment (§3.4) tests
whether, given a fixed training set size, having rel-
atively many ‘small’ genres leads to better OOD
stability than having few genres with more material
each, when the target is a totally disjoint set of gen-
res. The code, trained and finetuned models, and
predicted GUM parses are available at https://
github.com/janetlauyeung/crossGENRE4RST.

3.1 Cross-Corpus Generalization

In this section we hypothesize that, since GUM
contains many genres, models trained on it will
degrade less when testing on RST-DT than in the
opposite scenario. This is non-trivial, since the
corpora are very close in total size, and it is possible
that diverse training genres with little data each
will prevent effective learning for any genre. We
train the two parsers identified in §2.2 from Guz
and Carenini (2020) (BOTTOM-UP) and Liu et al.
(2021) (TOP-DOWN) on the train partition of each
dataset, and report scores on the test set (since
RST-DT has no dev partition, we follow previous
work in using 10% of training data stratified by the
number of EDUs in each document as a dev set,
which remains the same in the training).

A possible limitation of our experiment is anno-
tation differences between the corpora, especially
for their relation inventories, which are similar, but
not identical. We therefore omit R scores in Ta-

bles 3 and 4, though we will return to relations
in more detail below. For S and N, however, we
expect differences to be small: both corpora use
the same segmentation guidelines, and the same
guideline of subordinating less prominent satellite
units to more prominent nuclei using tests such as
deletability and subjective prominence. Although
EDU segmentation is not our focus, we can con-
firm the compatibility of segmentation guidelines
by cross-testing the current SOTA EDU segmenter
from Gessler et al. (2021). The results show fairly
modest degradation training on RST-DT and test-
ing on GUM, from 94.9 to 89.9, while the opposite
direction shows a 92.9 to 91 drop (see Table 11 in
Appendix A for full numbers). We speculate that
segmentation generalizes well due to the syntactic,
and hence less sparse and domain-specific nature
of the task, which resembles clause boundary de-
tection.

For cross-corpus S and N scores, both parsers
show a very significant degradation when train-
ing on RST-DT to parse OOD data from GUM,
as shown in Tables 3 and 4. For instance, there
is a degradation of ∼−11 points for S and ∼−16
for N using the the BOTTOM-UP architecture. We
were also curious whether this applies to GUM’s
news genre too: indeed, testing only on GUM
news reduces degradation by about 50% using the
BOTTOM-UP parser, but still shows a substantial
performance hit, even if the model is trained exclu-
sively on news (albeit from much older, WSJ news
data). By contrast, the GUM-trained model actu-
ally scores better on RST-DT than on GUM, with
minor improvements of +2.8 on S and +0.4 on N us-
ing the BOTTOM-UP parser. The same degradation
pattern is observed in the TOP-DOWN parser perfor-
mance: substantial degradation overall, and worse
when training on news and testing other genres.6

train test S N R

RST-DT RST-DT 76.5 65.9 54.8
GUM 65.3 (-11.2) 49.5 (-16.4) –
GUM news 71.0 (-5.5) 57.5 (-8.4) –

GUM GUM 69.9 57.0 48.5
RST-DT 72.7 (+2.8) 57.4 (+0.4) –
GUM news 71.6 58.5 49.5

Table 3: Cross-Corpus Results (5 run average) of the
BOTTOM-UP Parser from Guz and Carenini (2020).

6We further analyzed left vs. right-branching trees during
testing. In both corpora, NS outperformed SN: RST-DT in-
domain scores are F1=82.6% vs. 73.4% for NS vs. SN; GUM
V8 has 81.6% vs. 72.4%, meaning SN transitions are ‘easier’.
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train test S N R

RST-DT RST-DT 76.5 65.2 54.2
GUM 66.2 (-10.3) 50.8 (-14.4) –
GUM news 67.9 (-8.6) 55.8 (-9.4) –

GUM GUM 68.6 54.9 46.1
RST-DT 71.1 (+2.5) 55.9 (+1.0) –
GUM news 73.4 63.3 57.2

Table 4: Cross-Corpus Results (5 run average) of the
TOP-DOWN Parser from Liu et al. (2021).

We interpret this result to mean that unlike in
EDU segmentation, where results are close in both
directions, genre composition of the train and
test data plays a crucial role in the generalizability
of RST constituent parsing, regardless of parser
architecture. Thus, we opt for the BOTTOM-UP

parser for the experiments presented in the rest of
the paper as it outperformed the TOP-DOWN parser
on both corpora.

To be clear, the results do not suggest that train-
ing on GUM is a way of achieving top performance
on RST-DT: the GUM model’s scores are still al-
most 4 and 8 points below the RST-DT trained
model for S and N. However, it seems that RST-DT
news data is less surprising for the GUM model
which has already seen some news, and in sum,
RST-DT data appears to be a comparatively ‘easy’
target given the broad genre inventory that the
GUM model is trained to tackle.

These results also confirm that training on mul-
tiple genres, each with comparatively fewer doc-
uments, can lead to good performance with only
minor degradation on the very narrow WSJ do-
main from RST-DT. While we think this result by
itself is important and suggests that RST parsing
work should devote more attention to multi-genre
corpora as benchmarks, it leaves a question open:
Can we combine data from both corpora to boost
English RST parsing performance on RST-DT?

3.2 Joint Training

If RST parsing generalizes across domains, it may
be possible to see gains through joint training. For
this we compare three approaches: naive concate-
nation, model stacking, and pretraining, which we
evaluate on the RST-DT benchmark.

For concatenation (CONCAT) we must map re-
lations across corpora. As in previous work,
we target coarse relation classes, most of which
are identical in both corpora. Exceptions in-
clude GUM’s PHATIC relation used for dysfluen-
cies and back-channeling (due to conversational

data), GUM’s PREPARATION, and the mapping be-
tween RST-DT’s TEMPORAL and COMPARISON

classes, which map differently onto GUM’s CIR-
CUMSTANCE and SEQUENCE, or GUM’s ANTITHE-
SIS, depending on the precise senses. Although the
number of relation instances affected by these mis-
matches is modest, it is not negligible (13.3%),
and we do not expect this approach to outperform
in-domain training, and mainly report on it for com-
pleteness. Our mapping is given in Appendix D.

For model stacking, we test three variants: 1)
FLAIR-LABEL: train an LSTM using FLAIR (Ak-
bik et al., 2019) to predict EDU dependency labels:
the LSTM receives text for three-EDU chunks, set
apart by separators, and predicts the middle EDU’s
label in the GUM corpus scheme (using the RST de-
pendency conversion from Li et al. 2014). We then
train the parser on RST-DT with predicted GUM
labels for each EDU as an additional feature en-
coded as a dense embedding, requiring no relation
mapping. 2) SR-LABEL: train a full shift-reduce
parser on GUM, generate predictions for RST-DT
in the GUM scheme, and collapse these into de-
pendencies to create the same kind of features; this
approach gives the GUM classifier more access
to global context than the previous LSTM’s EDU
triples, but may be more vulnerable to sparseness.
3) SR-GRAPH: because it is possible that incom-
patibility of RST-DT and GUM labels may cause
confusion, we also attempted using the same parser
as in the previous approach, but featurizing each
EDU’s predicted dependency attachment direction,
and EDU distance to the parent EDU, instead of
the label itself. Finally, we test a simple pretrain-
ing approach, in which we finetune the underlying
SpanBERT model (Joshi et al., 2020) on full pars-
ing of the GUM corpus, then load the fine-tuned
SpanBERT, and train again on RST-DT (SR-FT).

Table 5 shows that SR-FT achieved the best per-
formance compared to the other approaches and is
on par with the pure in-domain training on RST-DT
for S and R compared to previous work. There is a
minor but stable gain on average (65.9→66.2) for
N in SR-FT, which was verified by rerunning the ex-
periment, as well as the selected SOTA system from
Guz and Carenini (2020), 5 times. The remaining
scenarios are virtually equivalent to training on
RST-DT alone, suggesting that added features are
more distracting than helpful.

This result is somewhat surprising given that
scores are not very high, and there should still be
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S N R architecture

Zhang et al. (2021)∗ 76.3 65.5 55.6 TOP-DOWN

Liu et al. (2021)♢ 76.5 65.2 54.2 TOP-DOWN

Guz and Carenini (2020)♢ 76.5 65.9 54.8 BOTTOM-UP

this paper (CONCAT)♠ 75.9 64.8 54.1

BOTTOM-UP

this paper (FLAIR-LABEL)♠ 75.8 65.6 55.3
this paper (SR-LABEL)♠ 76.2 66.0 55.3
this paper (SR-GRAPH)♠ 75.8 65.5 54.7
this paper (SR-FT)♢ 76.3 66.2 55.5

Human (Morey et al., 2017) 78.7 66.8 57.1 −

Table 5: Joint Training Performance on RST-DT. ∗ =
original paper score. ♢ = 5 run avg.; ♠ = 3 run avg.

headroom for improvement; however, we suspect
some of the missing information responsible for
errors may relate to global structure and pragmatic
understanding which cannot easily be compensated
for by adding more genres with potentially dis-
joint vocabulary. A further surprising result is that
CONCAT is not much worse than the base system,
suggesting that most of the score comes from ob-
vious cases (e.g. relative and infinitival clauses)
which do not differ substantially across corpora or
genres, and were already learned without the added
data. Similar results have been found for other
NLP tasks where adding a second dataset for joint
training creates a ‘break-even’ effect: the benefit
of more data helps about as much as the disparate
domains harm within-corpus performance, e.g. for
dependency parsing in Hebrew (Zeldes et al., 2022)
and English (Zeldes and Schneider, 2023), English
coreference resolution (Zhu et al., 2021), and very
recent similar results for RST parsing for Chinese
(Peng et al., 2022).

3.3 OOD Multi-Genre Degradation

In this section we explore our next question: How
badly will a multi-genre trained model degrade
on unseen genres, when the annotation scheme re-
mains identical? This question is important for
applied, methodological, and ethical reasons. From
the practical perspective, while we already know
that training only on news leads to severe degrada-
tion, we want to inform users of discourse parsing
about expected performance on unseen domains if
training data is already domain-rich. Methodologi-
cally, we want to test the benefit of adding multiple
genres and weigh the differences between a few-
genre corpus design and a many-genres design,
given a fixed total data size capacity for dataset
creation. Finally from an ethical perspective, OOD
degradation has real life implications for less com-
mon types of data, whether they come from un-

derrepresented genres, communicative situations,
or speaker demographics (Mengesha et al., 2021).
While we cannot fix these problems without more
data, we can point them out and increase awareness
of skewed data biases at the discourse level.

To explore OOD degradation, we conducted 10
experiments, comparing the normal genre-balanced
scenario (GUM test) with testing on each genre
when it is not in ‘train’ (ONE-VS-ALL or OVA). For
consistency, we test OVA for the 8 roughly equal
sized non-growing genres in GUM. Since data for
the smaller 4 growing genres may be less reliable
and non-comparable, we separately report scores
for training on all 8 large genres (ALL-LARGE),
tested on each of the four growing genres.

In the last scenario in particular, we would like
to see whether small test genres, for which we can-
not obtain enough training data, perform better if
a training genre exists which may offer a near sub-
stitute. For instance, the small textbook and speech
genres have structural organization and formal lan-
guage similar to academic and news respectively,
and there is some overlap between speech vocab-
ulary and interviews with politicians. By contrast,
vlog and conversation are highly informal and col-
loquial, perhaps closest to the reddit or interview
genres, but still likely more challenging. For re-
producibility, exact training data compositions are
given in Table 17 in Appendix E.

Table 6 shows the results, with the same 4 doc-
uments from each held-out genre used to evaluate
each OVA model (these are not included in any
training set for consistency). The degradation col-
umn shows that the parser suffers when a genre is
removed from training across the board, except for
news and the Span level of reddit; bio and how-
to genres suffer the most: qualitative inspection
reveals that this is due to frequent errors on ORGA-
NIZATION and EXPLANATION, which tend to lack
explicit cues and require understanding of macro-
structure and global topic or pragmatic reasoning to
interpret. It is likely that lack of a similar substitute
to these genres contributes to the degradation.

By contrast, degradation on interview is low (per-
haps covered by conversation and news in training),
and the inverse result for news suggests that col-
lecting more news data may not be a priority. The
minimal degradation for reddit is surprising, and is
likely due to more instances of explicitly signaled
and ‘easy’ relations such as PURPOSE (e.g. in or-
der to) and CONTINGENCY (e.g. if ), but we note
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that ordinary scores on reddit are low to begin with
(second worst after fiction, which degrades more).
The bottom of the table shows smaller genres suf-
fering, except for a minor gain in speech at the
Span level. It is unsurprising that conversation de-
grades the most, especially at the R level, since it
contains challenging phenomena absent in other
genres, such as back-channeling, dysfluencies, and
abrupt topic changes. This is mirrored in bad per-
formance on the ORGANIZATION and TOPIC rela-
tion classes (see more detailed analysis in §4).

GUM test ova degradation

non-growing S N R S N R S N R

academic 77.0 68.5 59.8 75.2 66.2 55.7 1.7 2.3 4.1
bio 70.4 58.2 51.2 68.8 53.9 43.2 1.6 4.3 8.0
fiction 66.3 53.1 43.7 64.5 50.1 42.1 1.8 3.0 1.7
interview 73.3 59.0 50.9 73.0 56.7 49.7 0.3 2.2 1.2
news 71.7 58.4 49.1 72.2 59.2 51.3 -0.5 -0.8 -2.2
reddit 66.0 52.3 44.2 66.6 51.9 43.3 0.6 0.4 0.8
voyage 78.3 62.1 51.8 77.4 59.7 49.3 0.9 2.4 2.4
how-to 76.5 63.6 54.6 67.1 54.3 44.8 9.3 9.3 9.9

GUM test ALL-LARGE degradation

growing S N R S N R S N R

conversation 45.4 34.5 26.7 42.7 31.4 21.8 2.7 3.1 4.9
speech 76.0 64.4 55.2 76.4 62.9 54.8 -0.4 1.5 0.4
textbook 77.4 66.8 57.3 76.2 64.3 54.5 1.2 2.6 2.9
vlog 64.8 49.0 42.8 63.3 49.0 40.4 1.5 0.0 2.5

Table 6: Per Genre Scores for GUM test vs. the OVA
or ALL-LARGE Experiments (3 run average).

3.4 Genre Variety in a Fixed-Size Sample

While §3.3 shows how genres differ in degrada-
tion, it falls short of proving that genre diversity
promotes generalization when all other things are
equal, since train sets for each genre are not iden-
tical in size. Our final experiment addresses this:
ideally, we want to compare scores on a fixed OOD
test set for equal-sized training corpora, divided
into fewer or more genres. Although we might
expect more genres to be helpful for generaliza-
tion, this is not trivial or inevitable: If there are not
enough recurring examples of infrequent phenom-
ena, because data is so diverse, learning might fail
due to sparseness; that is, more genres could be
distracting rather than helpful in a meaningful way,
which could hurt performance.

Because genres in GUM are small (∼2K EDUs)
and we want a critical mass of 5K+ EDUs for rea-
sonable parser performance, our combinatory op-
tions are limited to 3+ training genres. The parser
can only be trained on complete documents (we
cannot select n EDUs from each genre − genres
must comprise coherent texts), i.e. we must find
permutations of the data which total roughly the
same number of training instances, but with dif-

ferent genres. Table 7 gives details on the 3 best
training cohorts based on these criteria.

ID genres docs EDUs ID genres docs EDUs

C1 academic 18 1,970 C3 academic 9 1,004
bio 19 1,981 bio 9 930
news 23 1,760 news 10 635
total 60 5,711

C2 fiction 15 1,941 fiction 8 1,027
interview 15 1,931 interview 8 1,199
how-to 15 1,840 how-to 8 917

total 45 5,712 total 52 5,712

Table 7: Composition of 3 Fixed-Size Training Cohorts
with Different Genre Contents.

As Table 7 shows, the greatest care was taken
to ensure that the cohorts sum up to almost ex-
actly as many training instances (∼5,712 EDUs),
at the price of somewhat diverse amounts of EDUs
and documents per genre. If we cannot control all
factors, we prefer to constrain the amount of shift-
reduce operations learned, in order to prevent any
alternative explanation in which total size effects
outweigh genre diversity. Additionally, we assume
that EDU count per genre will vary in any multi-
genre corpus due to complete document constraints;
corpus developers are more likely to target a total
fixed size budget. If having too many small gen-
res is harmful, we expect cohort 3 (C3) to perform
worst; by contrast, if diversity is helpful, C3 should
perform best. In either case, we compare how the
S/N/R metrics behave in each training regime.

Table 8 shows 5-run averages on each OOD
genre, as well as total micro- and across-genres
macro-averaged performance. The 3-genre cohorts,
C1 and C2, perform similarly overall, though C2
outperforms C1 on test data (which is held constant
for all cohorts). R scores are very close on macro-
average, but C1 is particularly bad on conversation,
where C2 is tied with C3 on R (possibly because
both have interview data). Conversely, C1 is better
on textbooks and travel guides (voyage) than C2
(possibly because C1 has academic, which predicts
textbooks reasonably well, and bios – a descriptive
informational genre, something missing from C2).

Overall best performance is obtained by C3, with
6 training genres, but the least data in each. Al-
though C3 loses to C2 in the dialogue-oriented
conversation and reddit genres, degradation is very
modest and does not affect all metrics (e.g. C3 has
a better N score on reddit). C3 also outperforms
C1 on academic and voyage, giving the best perfor-
mance on both. The average gain for C3 across all
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C1 C2 C3 C3−C1 C3−C2 mean_C3_gain
test S N R S N R S N R S N R S N R S N R
conversation 34.8 23.4 13.9 40.3 27.9 18.0 37.9 26.4 18.0 3.0 3.0 4.1 -2.5 -1.5 0.0 0.3 0.7 2.0
reddit 60.3 45.3 36.0 63.5 46.9 37.6 61.8 47.6 37.3 1.5 2.3 1.4 -1.7 0.7 -0.3 -0.1 1.5 0.6
speech 72.5 58.2 46.9 72.6 59.3 47.7 71.6 57.1 48.0 -0.9 -1.1 1.1 -1.0 -2.1 0.3 -0.9 -1.6 0.7
textbook 73.6 59.0 48.9 70.9 55.0 45.6 74.0 60.5 51.4 0.5 1.5 2.5 3.1 5.5 5.9 1.8 3.5 4.2
vlog 57.8 41.3 35.0 58.8 44.5 35.3 57.7 43.4 34.8 -0.1 2.1 -0.2 -1.1 -1.1 -0.5 -0.6 0.5 -0.3
voyage 76.6 58.1 47.5 76.5 57.4 46.4 78.0 59.1 50.2 1.5 1.0 2.7 1.6 1.7 3.8 1.5 1.4 3.3
macro_avg 62.6 47.6 38.0 63.8 48.5 38.4 63.5 49.0 40.0 0.9 1.5 1.9 -0.3 0.5 1.5 0.3 1.0 1.7
micro_avg 58.7 44.2 34.8 60.5 45.7 35.7 59.8 45.9 36.9 1.1 1.7 2.1 -0.6 0.2 1.2 0.2 1.0 1.6

Table 8: Performance of 3 Fixed-Size Train Cohorts with Different Genre Contents (5 run average).

metrics (3-metric average) is around +1%—taking
individual scores from each of five runs, and each
genre test set as a data-point, this improvement is
significant at p < 0.05. For individual metrics, we
see∼+1.7% on R, +1% on N, and just under +0.3%
for S (significant at p < 0.05 except for S).

Although all scores are rather low due to the
small corpus sizes (about ¼ of GUM), they sug-
gest that more training genres with smaller portions
each promotes OOD generalization, though not by
a lot. It is an open question whether this gap would
increase or decrease with corpus size: on the one
hand, more data would allow for more lexical di-
versity even with few genres. On the other, it is
likely that scores in small data are driven by easy to
learn cases (e.g. relative clauses as ELABORATION,
or PURPOSE infinitives), which stand to gain less
from diversity. If more data means models will
tackle more sparse phenomena, then genre diver-
sity should matter more for OOD material as the
training set grows. To an extent, results in §3.1
showing worse generalization from the large but
homogeneous RST-DT to GUM seem to support
this hypothesis. We interpret the present results to
mean that development of more diverse multi-genre
data should take priority over building up material
in existing genres to promote generalizable parsing.

4 Error Analysis

Due to space, we limit our error analysis to exam-
ining dependency conversions of gold vs. predicted
trees, which allow us to break down OOD errors
by coarse relation class in Table 9 from all test
sets in §3.3. We select models with scores clos-
est to average run scores. It is clear that even in
the more modest degradation within GUM, over
half of relation classes have < 50% accuracy, with
the document ROOT being the hardest to identify—
i.e. the Central Discourse Unit (CDU)—followed
by RESTATEMENT and EVALUATION, which re-
quire reasoning over many EDUs and lack con-
sistent overt signals, as opposed to relations such
as ATTRIBUTION (marked by speech verbs), PUR-

POSE (marked by purpose infinitives or in order
to), and CONTINGENCY (usually if ); interrupted
clauses (SAME-UNIT) are easier as well. For CDU
identification (Iruskieta et al., 2016), which can
benefit summarization or long-form QA systems,
half of the genres (academic, fiction, interview, voy-
age, how-to, vlog) score 0%; the highest accuracy
is only 50% (bio, news, reddit and speech). More
alarmingly, in the cross-corpus setting (§3.1), an
RST-DT trained model captures only a single GUM
CDU correctly (ACC=0.042 vs. 0.375 for a GUM-
trained model); scores on RST-DT are much higher:
ACC=0.842 for SR-FT trained on RST-DT vs. 0.553
for a GUM-trained model.

gold coarse
relation class acc gold coarse

relation class acc

ATTRIBUTION 0.875 CONTEXT 0.471
PURPOSE 0.861 ADVERSATIVE 0.467
SAME-UNIT 0.814 ORGANIZATION 0.463
CONTINGENCY 0.794 EXPLANATION 0.431
ELABORATION 0.666 CAUSAL 0.384
JOINT 0.654 EVALUATION 0.362
TOPIC 0.574 RESTATEMENT 0.308
MODE 0.504 ROOT 0.208

Table 9: OOD Accuracy by Relation Class in GUM.

genre gold coarse relation class abs(resid)

textbook CONTEXT 3.64
speech EXPLANATION 3.14
reddit EXPLANATION 3.02
fiction EVALUATION 2.59
bio CAUSAL 2.26
vlog CAUSAL 2.23
conversation ORGANIZATION 2.14
voyage CONTEXT 2.13
academic ORGANIZATION 1.84
how-to ORGANIZATION 1.62
news EXPLANATION 1.38
interview EVALUATION 0.89

Table 10: Max Absolute Error Residuals by Genre.

Errors are also skewed by genre: Table 10 gives
the gold label most surprisingly associated with
errors per genre, given global error distributions,
based on absolute χ2 residuals. While EVALUA-
TION is problematic in fiction and interview, EX-
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PLANATION and ORGANIZATION are surprisingly
hard to predict in 3 genres each: the former is used
e.g. in speeches and news for supporting evidence
or justifications which are difficult to identify using
lexical items, while the latter is used in conversa-
tions for phatic responses and back-channeling.

To further investigate genre-specific phenomena,
we analyzed OOD parsing errors for how-to guides,
which had the worst OOD performance in Table 6,
using a model not trained on this genre from §3.3.
Figure 2 shows a confusion matrix produced by
converting the automatic parses into the RST de-
pendency representation following Li et al. (2014).
We focus on relation instances with correct attach-
ment predictions, although we also discuss cases
involving attachment errors as well (Figure 5h in
Appendix G). We first observe in Figure 2 that there
are five gold CONTINGENCY instances predicted
to be CONTEXT: four out of five EDUs begin with
a discourse marker (DM), ‘once’ or ‘until’, e.g.:

(1) [Don’t use a joke] humans: CONTINGENCY
parser: CONTEXT [until

you’re completely comfortable with it.]

According to The Penn Discourse Treebank
(PDTB3, Prasad et al. 2019), these prototypically
signal spatio-temporal circumstances: 94% of ex-
plicit instances with the DM ‘once’ are annotated
as TEMPORAL.ASYNCHRONOUS while less than
5% of the instances (4/85) are annotated as CON-
TINGENCY.CONDITION. Similarly, 85% of ex-
plicit instances with the DM ‘until’ are annotated
as TEMPORAL.ASYNCHRONOUS while 10% are
CONTINGENCY.CONDITION. However, Liu (2019)
found that these two DMs are frequently associated
with CONTIGENCY-CONDITION in how-to guides
because they are essentially never narrative and al-
ways part of an instruction which is uncommon in
news. This suggests that although DMs are usu-
ally considered useful devices to identify certain
relations, their usage differs across genres and is
sometimes too ambiguous to form a reliable sig-
nal. We also observe that there are four gold RE-
STATEMENT confused with ELABORATION: three
of these go back to ‘definitional’ RESTATEMENTS,
which are likely promoted by the genre’s descrip-
tive and explanatory properties.

Figure 5h shows cases with attachment errors.
One major error concerning global structure is
seven gold ORGANIZATION instances being con-
fused with JOINT. Two of the errors are unexpected
given that there are strong graphical, structural, and
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Figure 2: how-to confusions (no attachment errors).

semantic cues (see an example in Figure 3 in Ap-
pendix F). The remaining cases are harder to pin
down: they are all imperatives, which are atypical
for headings outside of how-to guides, but normal
and frequent in instructional texts (see an example
in Figure 4). For complete by-genre confusion ma-
trices (with attachment errors) of the multi-genre
degradation experiments, see Appendix G.

5 Conclusion

The analyses in this paper are meant to inform
users of current parsers about what to expect from
RST parsing in the wild. Through dozens of exper-
imental runs we have shown a consistent picture:
RST parsing has made impressive progress, but
OOD degradation is still severe. Our results sug-
gest prioritizing genre diversity in training data is
crucial, not only to cover more text types as ‘in do-
main’, but also to increase performance on unseen
text types. Rather than focusing only on the devel-
opment of better models to beat the single genre
RST-DT benchmark, robust RST parsing would be
promoted most by creating more annotated data.

We also hope this paper will motivate researchers
to prioritize multi-genre benchmarks and OOD set-
tings for RST parsing, and to explore algorithms,
representations and features which better capitalize
on joint training and foster generalizability, includ-
ing using data from other sources and theories of
discourse analysis (cf. Braud et al. 2016). We see
great challenges for tackling errors which implicate
complex pragmatic inference or document level rea-
soning, but we are also optimistic that as more data
becomes available, we will be able to learn more
and better representations of discourse structure.
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Limitations

One limitation is that the scope of the error analysis
presented here is limited, primarily due to space
reasons. Although we included full relation confu-
sion matrices (with attachment errors) in Appendix
G, the discussion is too limited to describe them
in detail, and we encourage interested readers to
explore and further compare gold and predicted
trees (available in both .rs3 and .rsd formats) on
the multi-genre data, which we make available in
the repository of this paper.

Another limitation concerns the number of runs
of the experiments: some scores were averaged
over three rather than five runs. This is due to
the fact that SpanBERT-base (Joshi et al., 2020)
is fairly large (110M parameters). Training each
of our 20 models five times would consume very
large amounts of GPU resources, which we feel is
hard to justify both financially and environmentally.
After completing this study we feel that three-run
averaged scores should satisfy the need for repro-
ducibility, though we did use five-run averages for
establishing baseline scores and verifying particu-
larly controversial results, such as the improvement
on Nuclearity in the fine-tuning condition in §3.2
(i.e. SR-FT). Previous work providing this infor-
mation reported three-run averaged scores such
as Koto et al. (2021) while many papers did not
include this information or mention whether the
reported scores were averaged over multiple runs.

Ethics Statement

This work contributes to open source progress
in RST discourse parsing, an area which has re-
ceived less attention than some other NLP tasks,
and which, at least in English, is currently suffer-
ing from a skewed focus towards the ‘standard’
language of 1990-era Wall Street Journal writing.
Previous work has shown that NLP systems re-
tain strong lexical biases mirroring both period and
author demographics (Shah et al., 2020), mean-
ing that if language technologies are not pushed
to cover diverse data types robustly, they will in-
evitably perform more poorly on ‘non-standard’
data, with possible discriminatory effects on under-
represented populations ranging from the political
(think opinion mining social media to guide policy)
to financial (e.g. higher/lower search hit rates for
YouTube videos by small businesses). By promot-
ing higher quality treatments of diverse language
samples in this study covering Reddit, YouTube

vlogs, and demographically diverse conversations,
we hope to help level the playing field across text-
types, demographics, and domains.

We recognize that NLP research has a computing
cost and carbon footprint, which motivates us to
release the trained models in this work (preventing
the need to retrain similar models), and to avoid
extensive hyperparameter optimization which may
not generalize to applications in the wild. Spe-
cific model configurations such as hyperparameters
and validation performance for the reported test
results of RST-DT and GUM are detailed in Ap-
pendix C.

Finally, we also recognize that NLP tools can
be used to do harm. However, we expect that the
type of analysis promoted here will do more good
than harm by steering tool development away from
adhering closely to outdated and narrow-domain
data, which this work aims to broaden. Given that
discourse parsers already exist, we view the push
to reduce topical and authorial bias, as well as the
public release of more resources, as net positives.
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A Cross-Corpus Segmentation Scores

The scores in Table 11 (3 run average) show fairly
modest degradation on cross-corpus EDU segmen-
tation scores in both directions (a little worse
for RST-DT→GUM), using DisCoDisCo (Gessler
et al., 2021), the winning EDU segmentation sys-
tem from the 2021 DISRPT shared task (Zeldes
et al., 2021).

train test P R F1

RST-DT RST-DT 95.16 94.64 94.90
RST-DT GUM V8 90.09 89.69 89.89
GUM V8 GUM V8 92.09 93.73 92.90
GUM V8 RST-DT 92.55 89.57 91.03

Table 11: Cross-Corpus Segmentation Performance.

B Breakdown of the GUM RST Data

The breakdown of genres in GUM V8 is shown in
Table 12. Four of the genres in the corpus are still
growing, and therefore include less material than
other genres at present.

genres docs tokens EDUs growing

academic 18 17,168 1,969
bio 20 18,209 2,066
fiction 19 17,508 2,458
how-to 19 17,085 2,367
interview 19 18,189 2,404
news 23 16,140 1,760
reddit 18 16,364 2,231
travel 18 16,513 1,785
conversation 9 10,451 1,878
speech 10 10,827 1,249
textbook 10 11,190 1,397
vlog 10 11,200 1,543
total 193 180,844 23,107

Table 12: Overview of RST Data by Genre in GUM V8.

C Model Configurations and Training
Details

To ensure reproducibility and following the repro-
ducibility criteria and checklist provided by EACL
2023, we provide model configurations and train-
ing details relevant to the experimental results pre-
sented in this paper.

For the BOTTOM-UP parser, the configurations of
SpanBERT-NoCoref from Guz and Carenini (2020)
was used as our base system, and we followed
the hyperparameters and training settings therein
across the board except the batch size due to mem-
ory limitations and embedding dimensions for or-
ganizational features.7 Specifically, AdamW was
used as the optimizer with a learning rate of 1e–5

for SpanBERT-base (Joshi et al., 2020) and 2e–4

for model-specific components (Guz and Carenini,
2020). Batch size was set to 1 (as opposed to 5
in the original implementation) and there were 20
epochs for each run. The organizational features
used in Guz and Carenini (2020) followed Wang
et al. (2017) and were represented as binary fea-
tures in a learnable 5-dimensional embedding (as
opposed to 10 in the original implementation). A
vector of zeros of the same shape was used when a
given feature is unavailable for the aforementioned
organizational features as well as the categorical
features experimented in §3.2, which all had an
embedding dimension of 10.

For the TOP-DOWN parser, overall we followed
the original hyperparameters and training settings
therein; however, due to memory limitations, we
modified the batch size to 3 from 12. The same
dev set of respective corpora was used during train-
ing as in the training of the BOTTOM-UP parser
from Guz and Carenini (2020). Additionally, XLM-
RoBERTa-base (Conneau et al., 2020) was used as
the language backbone.

All the training sessions were conducted using
1 NVIDIA Tesla T4 GPU on Google Cloud Plat-
form. Table 13 shows the corresponding validation
performance on RST-DT test and GUM V8 test
reported in Tables 3 and 5 respectively using the
BOTTOM-UP parser. Table 14 presents the corre-
sponding validation performance (averaged over
5 runs) on RST-DT test and GUM V8 test re-
ported in Table 4.

7Based on our reproducible results of this model (see
Table 2) and comparing them to the reported results in the
original paper, we believe that the change of these two config-
urations do not impact model performance significantly.
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S N R # runs

RST-DT BASELINE 76.0 64.9 55.2 5
GUM test 67.0 54.5 45.9 5
RST-DT CONCAT 76.4 65.7 56.0 3
RST-DT FLAIR-LABEL 76.3 65.1 54.9 3
RST-DT SR-LABEL 76.3 64.7 55.2 3
RST-DT SR-GRAPH 76.6 65.5 55.5 3
RS-TDT SR-FT 76.3 64.9 55.4 5

Table 13: Validation Performance on RST-DT test and
GUM test Results in Tables 3 and 5 (i.e. BOTTOM-UP).

S N R # runs

RST-DT BASELINE 75.3 65.0 55.9 5
GUM test 71.3 58.6 50.1 5

Table 14: Validation Performance on RST-DT test and
GUM test Results in Table 4 (i.e. TOP-DOWN).

Note that since RST-DT does not have an es-
tablished dev set, 10% of training data stratified
by the number of EDUs in each document is used
as the dev set following Guz and Carenini (2020)
and is held constant across all the RST-DT-related
experiments in this work. The list of the docu-
ment names used in the dev set is provided in the
code repository.8 Additionally, since the test doc-
uments used in all the experiments in §3.3 and §3.4
are OOD data, the corresponding validation per-
formance is not applicable and thus not reported.
Information on the average runtime of each epoch
for each model is provided in Table 15 below.

RST-DT

model avg. runtime model avg. runtime

BASELINE 2 hours 53 mins SR-LABEL 2 hours 53 mins
CONCAT 5 hours 52 mins SR-GRAPH 2 hours 50 mins
FLAIR-LABEL 2 hours 55 mins SR-FT 2 hours 56 mins

GUM

model avg. runtime model avg. runtime

GUM test 3 hours No Reddit 2 hours 43 mins
ALL-LARGE 2 hours 15 mins No Voyage 2 hours 47 mins
No Academic 2 hours 43 mins No How-to 2 hours 45 mins
No Bio 2 hours 45 mins C1 56 mins
No Fiction 2 hours 44 mins C2 56 mins
No Interview 2 hours 40 mins C3 54 mins
No News 2 hours 47 mins

Table 15: Average Runtime of Every Training Session’s
Epoch for Each Model using the BOTTOM-UP Parser.

8https://github.com/janetlauyeung/
crossGENRE4RST

D Relation Mapping

In the interest of reproducibility, Table 16 gives
the exact relation mapping used for cross-corpus
experiments in which relation labels were targeted.

GUM V8
Relations

GUM V8
Classes

Corresponding
RST-DT Classes

adversative-antithesis Adversative Contrast
adversative-concession Adversative Contrast
adversative-contrast Adversative Contrast
attribution-positive Attribution Attribution
attribution-negative Attribution Attribution
causal-cause Causal Cause
causal-result Causal Cause
context-background Context Background
context-circumstance Context Background
contingency-condition Contingency Condition
elaboration-attribute Elaboration Elaboration
elaboration-additional Elaboration Elaboration
explanation-evidence Explanation Explanation
explanation-justify Explanation Explanation
explanation-motivation Explanation Explanation
evaluation-comment Evaluation Evaluation
joint-disjunction Joint Joint
joint-list Joint Joint
joint-sequence Joint Temporal
joint-other Joint Topic-Change
mode-manner Mode Manner-Means
mode-means Mode Manner-Means
organization-heading Organization Textual-Organization
organization-phatic Organization Topic-Comment
organization-preparation Organization Textual-Organization
purpose-attribute Purpose Elaboration
purpose-goal Purpose Enablement
restatement-partial Restatement Summary
restatement-repetition Restatement Summary
topic-question Topic Topic-Comment
topic-solutionhood Topic Topic-Comment
same-unit same-unit Same-Unit

Table 16: Relation Mapping of GUM V8 to RST-DT.

E Data Description for the GUM OOD
Multi-Genre Experiments

Table 17 details the number of genres, documents,
and EDUs used for training the models in the ten
experiments in §3.3. For maximum reliability, test-
ing was always conducted on the held-out genres’
standard dev+test partitions specified in the offi-
cial GUM V8 release (which is also provided in the
repository of this paper), since the dev set for the
targeted genres cannot be used for early stopping
to simulate real OOD data in the wild.

F An Example OOD Parser Output

Figure 3 provides a comparison of a fragment of
parser output versus the corresponding gold anno-
tation to exemplify the distinction between gold
ORGANIZATION and predicted JOINT discussed
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models genres docs EDUs

No Academic 11 131 16,088
No Bio 11 129 15,901
No Fiction 11 130 15,640
No Interview 11 130 15,599
No News 11 126 16,252
No Reddit 11 131 15,892
No Voyage 11 131 16,133
No How-to 11 130 15,672
ALL-LARGE 8 122 13,703
GUM test 12 145 17,610

Table 17: Training Data Composition used in §3.3.

in Section 4. Additionally, Figure 4 provides a
fragment of parser output from one of the OVA

models, No How-to, which exemplifies some of
the observations and discussions brought up in the
error analysis such as the most erroneous relation
class ORGANIZATION in how-to guides (EDU 107).
Moreover, these figures also demonstrate that al-
though discourse markers (DMs) are cues in many
cases, they can lead to errors if they are ambigu-
ous, by distracting the parser from other (non-DM)
signals such as the misidentified ELABORATION

of EDU 110, where the gold ORGANIZATION is
signaled by the colon and the numerical matching
of ‘Two parts’ to the two nucleaus EDUs, 3 and
4 in Figure 3; and the CAUSAL of EDUs 112-116
in Figure 4, where an intensifying ‘so’ in 112 (‘so
comfortable’) may have misled the parser into a
resultative ‘so’ reading.

G Confusion Matrices

Figures 5a–5h show confusion matrices for all the
non-growing genres from their corresponding OVA

models, and Figures 5i–5l are for all the growing
genres based on the automatic parses from the ALL-
LARGE model where the training data contains only
the 8 non-growing genres. Note that all the matri-
ces were produced by converting the automatic
parses into the RST dependency representation fol-
lowing Li et al. (2014) and do not reflect attach-
ment errors. The conversion code is available at
https://github.com/amir-zeldes/rst2dep.

(a) Parser Output Fragment from the No How-to Model.

(b) The Corresponding Gold RST Annotation.

Figure 3: An Example of an OOD Parser Output vs. the
Corresponding Gold Annotations from how-to guides:
ORGANIZATION vs. JOINT.
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(a) Parser Output Fragment from the OVA (No How-to) Model in §3.3.

(b) The Corresponding Gold RST Annotation.

Figure 4: An Example of an OOD Parser Output vs. the Corresponding Gold Annotations from how-to guides. This
fragment is selected from the document GUM_whow_joke, which gives advice on how to tell jokes.
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Figure 5: Confusion Matrices for All Genres from their OVA Models or the ALL-LARGE Model from §3.3.
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Figure 5: Confusion Matrices for All Genres from their OVA Models or the ALL-LARGE Model from §3.3.
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Abstract

Biomedical data and benchmarks are highly
valuable yet very limited in low-resource lan-
guages other than English, such as Vietnamese.
In this paper, we use a state-of-the-art transla-
tion model in English-Vietnamese to translate
and produce both pretrained and supervised
data in the biomedical domains. Thanks to such
large-scale translation, we introduce ViPub-
medT5, a pretrained Encoder-Decoder Trans-
former model trained on 20 million translated
abstracts from the high-quality public PubMed
corpus. ViPubMedT5 demonstrates state-of-
the-art results on two different biomedical
benchmarks in summarization and acronym
disambiguation. Further, we release ViMedNLI
- a new NLP task in Vietnamese translated from
MedNLI using the recently public En-vi trans-
lation model and carefully refined by human
experts, with evaluations of existing methods
against ViPubmedT5.

1 Introduction

In recent years, pretrained language models (LMs)
have played an important and novel role in devel-
oping many Natural Language Processing (NLP)
systems. Utilizing large pretrained models like
BERT (Devlin et al., 2018), XLNET (Yang et al.,
2019), ALBERT (Lan et al., 2019), RoBERTa (Liu
et al., 2019), GPT-3 (Brown et al., 2020) BART
(Lewis et al., 2019), and T5 (Raffel et al., 2019) has
become an effective trend in natural language pro-
cessing. All these large models follow the Trans-
former architecture proposed by (Vaswani et al.,
2017) with the attention mechanism. The architec-
ture has been proven to be very suitable for finetun-
ing downstream tasks leveraging transfer learning
with their large pretrained checkpoints. Before the
emergence of large Transformer LMs, traditional
wording embedding gave each word a fixed global

*The first four authors contributed equally to this work

representation. Large pretrained models can de-
rive word vector representation from a trained large
corpus. This will give the pretrained model a bet-
ter knowledge of the generalized representation of
a trained language/domain and significantly im-
prove performance on downstream finetune tasks.
The success of pretrained models on a generative
domain (BERT, RoBERTa, BART, T5, etc.) has
created a path in creating more specific-domain
language models such as CodeBERT (Feng et al.,
2020) and CoTexT (Phan et al., 2021b) for coding
languages, TaBERT (Yin et al., 2020) for tabular
data, BioBERT (Lee et al., 2019) and Pubmed-
BERT (Tinn et al., 2021) for biomedical languages.

Biomedical literature is getting more popular
and widely accessible to the scientific community
through large databases such as Pubmed1, PMC2,
and MIMIC-IV (Johnson et al., 2021). This also
leads to many studies, corpora, or projects released
to further advance the Biomedical Natural Lan-
guage Processing field (Lee et al., 2019; Tinn et al.,
2021; Phan et al., 2021a; Yuan et al., 2022). These
biomedical domain models leverage transfer learn-
ing from pretrained models (Devlin et al., 2018;
Clark et al., 2020; Raffel et al., 2019; Lewis et al.,
2019) to achieve state-of-the-art results on multiple
Biomedical NLP tasks like Named Entity Recogni-
tion (NER), Relation Extraction (RE), or document
classification.

However, few studies have been on leveraging
large pretrained models for biomedical NLP in low-
resource languages. The main reason is the lack of
large biomedical pretraining data and benchmark
datasets. Furthermore, collecting biomedical data
in low-resource languages can be very expensive
due to scientific limitations and inaccessibility.

We attempt to overcome the issue of lacking
biomedical text data in low-resource languages by
using state-of-the-art translation works. We start

1https://pubmed.ncbi.nlm.nih.gov
2https://www.ncbi.nlm.nih.gov/pmc
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Figure 1: Overview of the pretraining and finetuning of ViPubmedT5

with the Vietnamese language and keep everything
reproducible for other low-resource languages in
future work.

We introduce ViPubmedT5, a pretrained
encoder-decoder transformer model trained on
synthetic Vietnamese biomedical text translated
with state-of-the-art English-Vietnamese trans-
lation work. Meanwhile, we also introduced
ViMedNLI, a medical natural language inference
task (NLI), translated from the English MedNLI
(Romanov and Shivade, 2018) with human refin-
ing.

We thoroughly benchmark the performance of
our ViPubmedT5 model when pretrained with syn-
thetic translated biomedical data with ViMedNLI
and other public Vietnamese Biomedical NLP tasks
(Minh et al., 2022). The results show that our
model outperforms both general domain (Nguyen
and Nguyen, 2020; Phan et al., 2022) and health-
specific domain Vietnamese (Minh et al., 2022)
pretrained models on biomedical tasks.

In this work, we offer the following contribu-
tions:

• A state-of-the-art English-Vietnamese Trans-
lation model (with self-training) on medical
and general domains.

• A first Encoder-Decoder Transformer model
ViPubmedT5 pretrained on large-scale syn-
thetic translated biomedical data.

• A Vietnamese medical natural language infer-
ence dataset (ViMedNLI) that translated from
MedNLI (Romanov and Shivade, 2018) and
refined with biomedical expertise human.

• We publicize our model checkpoints, datasets,
and source code for future studies on other
low-resource languages.

2 Related Works

The development of parallel text corpora for trans-
lation and use for training MT systems has been a
rapidly growing field of research. In recent years,
low-resource languages have gained more atten-
tion from the industry, and academia (Chen et al.,
2019b; Shen et al., 2021; Gu et al., 2018; Nasir
and Mchechesi, 2022). Previous works include
gathering more training data or training large mul-
tilingual models (Thu et al., 2016; Fan et al., 2021).
Low-Language MT enhances billions of people’s
daily life in numerous fields. Nonetheless, there
are specific domains crucial yet limited such as
biomedical and healthcare, in which MT systems
have not been able to contribute adequately.

Previous works using MT systems for biomedi-
cal tasks includes (Neves et al., 2016; Névéol et al.,
2018). Additionally, several biomedical parallel
(Deléger et al., 2009) have been utilized just for
terminology translation only. Pioneer attempts to
train MT systems using a corpus of MEDLINE
titles (Wu et al., 2011), and the use of publica-
tion titles and abstracts for both ES-EN and FR-EN
language pairs (Jimeno-Yepes et al., 2012). How-
ever, none of these works targets low-resource lan-
guages. A recent effort to train Vietnamese ML
systems for biomedical and healthcare is Minh et al.
(2022). These, however, do not utilize the capa-
bility of MT systems, instead relying on manual
crawling. Therefore, this motivation has led us
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to employ MT systems to contribute high-quality
Vietnamese datasets that emerged from the En-
glish language. To the best of our knowledge, this
is the first work utilizing state-of-the-art machine
translation to translate both self-supervised and su-
pervised learning biomedical data for pretrained
models in a low-resource language setting.

2.1 Pubmed and English Biomedical NLP
Studies

The Pubmed3 provides access to the MEDLINE
database4 which contains titles, abstracts, and
metadata from medical literature since the 1970s.
The dataset consists of more than 34 million
biomedical abstracts from the literature collected
from sources such as life science publications, med-
ical journals, and published online e-books. This
dataset is maintained and updated yearly to include
more up-to-date biomedical documents.

Pubmed Abstract has been the main dataset for
almost any state-of-the-art biomedical domain-
specific pretrained models (Lee et al., 2019; Yuan
et al., 2022; Tinn et al., 2021; Yasunaga et al.,
2022; Alrowili and Shanker, 2021; Phan et al.,
2021a). In addition, many well-known Biomedical
NLP/NLU benchmark datasets are created based
on the unlabeled Pubmed corpus (Doğan et al.,
2014; Nye et al., 2018; Herrero-Zazo et al., 2013;
Jin et al., 2019). Recently, to help accelerate re-
search in biomedical NLP, Gu et al. (2020) releases
BLURB (Biomedical Language Understanding &
Reasoning Benchmark), which consists of multiple
pretrained biomedical NLP models and benchmark
tasks. It is important to note that all of the top 10
models on the BLURB Leaderboard5 are pretrained
on the Pubmed Abstract dataset.

2.2 English-Vietnamese Translation
Due to its limitation of high-quality parallel data
available, English-Vietnamese translation is classi-
fied as a low-resource translation language (Liu
et al., 2020). One of the first notable parallel
datasets and En-Vi neural machine translation is
ISWLT’15 (Luong and Manning, 2015) with 133K
sentence pairs. A few years later, PhoMT (Doan
et al., 2021) and VLSP2020 (Ha et al., 2020) re-
leased larger parallel datasets, extracted from pub-
licly available resources for the English-Vietnamese
translation.

3https://pubmed.ncbi.nlm.nih.gov
4https://www.nlm.nih.gov/bsd/pmresources.html
5https://microsoft.github.io/BLURB/leaderboard.html

Recently, VietAI6 curated the largest 4.2M high-
quality training pairs from various domains and
achieved state-of-the-art on English-Vietnamese
translation (Ngo et al., 2022). The work also
focuses on En-Vi translation performance across
multiple domains, including biomedical. As a re-
sult, the project’s NMT outperforms existing En-Vi
translation models (Doan et al., 2021; Fan et al.,
2020) by more than 2% in the BLEU score.

3 Improvements on Biomedical
English-Vietnamese Translation
through Self-training

To generate a large-scale synthetic translated Viet-
namese biomedical corpus, we first look into im-
proving the existing English-Vietnamese transla-
tion system in the biomedical translation domain.
Previous work from Ngo et al. (2022) has shown
that En-Vi biomedical bitexts are very rare, even for
large-scale bitext mining. Therefore, we look into
self-training to leverage the available monolingual
English biomedical data.

Self-training approach has been experimented
with in He et al. (2019) and utilized to improve
translation on low-resource MT systems (Chen
et al., 2019a). The advantage of this method is
that the source side of the monolingual corpus can
be domain-specific data for translation. However,
the shortcoming is that the generated targets can
be low-quality and affect the machine translation
performance. Therefore, we start with the English-
Vietnamese machine translation model from Ngo
et al. (2022), denoted bTA, which achieves state-
of-the-art results on both En-Vi biomedical and
general translation domains.

We use bTA to translate and generate a syn-
thetic parallel biomedical dataset with 1M pairs
of English-Vietnamese biomedical abstracts from
the Pubmed Corpus. The new 1M En-Vi biomed-
ical pairs are then concatenated with the current
high-quality En-Vi translation dataset from MTet
(Ngo et al., 2022) and PhoMT (Doan et al., 2021),
increasing from 6.2M to 7.2M En-Vi sentence pairs
total. To verify the effectiveness of our new self-
training data, we re-finetune the bTA model on this
7.2M bitexts corpus. We report the model perfor-
mance on the medical test set from MTet and the
general test set from PhoMT in Table 1 (the trans-
lation performances on other domains like News,
Religion, and Law are reported in Appendix A for

6https://vietai.org
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Table 1: BLEU Scores Results for En-Vi Translation on MTet Medical and PhoMT General Test Sets

Model Finetune Datasets MTet Medical
Test Set

PhoMT General
Test Set

M2M100 CCMatrix + CCAligned 30.18 35.83
Google
Translate

- 38.60 39.86

SOTA MTet+PhoMT 38.69 45.47

Ours
MTet+PhoMT
+1M Self-training Pubmed Abstracts

45.61 46.01

Notes: The best BLEU scores are in bold. The state-of-the-art (SOTA) model and MTet dataset are from
Ngo et al. (2022); PhoMT dataset and Google Translate’s result are from Doan et al. (2021). M2M100
model is from Fan et al. (2020).

further reference).
The results show that our model outperforms

existing Machine Translation systems in English-
Vietnamese translation by applying self-training.
We obtain a significant gain of 6.61 BLEU Score
(38.69->45.61) on the MTet Medical test set. Our
model with self-training also achieves state-of-the-
art results on the PhoMT general domain test set
by 0.53 BLEU Score (45.47->46.01). This shows
that our approach not only improves the English-
Vietnamese translation performance in the biomed-
ical context but also generalizes to general trans-
lation. We further discuss our self-training model
performance on other translation domains in Ap-
pendix A.

4 ViPubmed

After developing a new state-of-the-art machine
translation system for English-Vietnamese trans-
lation in the biomedical domain in Section 3, we
apply the system, denoted bTB , on downstream
translation to generate the first large-scale synthetic
translated biomedical corpus for Vietnamese.

To ensure that our translated ViPubmed dataset
contains up-to-date biomedical research (for exam-
ple, Covid-19 diseases and Covid-19 vaccines), we
use the newest Pubmed227 which contains approx-
imately 34 million English biomedical abstracts
published. The raw data is compressed in XML
format. We then parse these structured XMLs
to obtain the abstract text with Pubmed Parser8

(Achakulvisut et al., 2020).
The machine translation model bTB is an

Encoder-Decoder Transformer based model with
512 token-length for input and output. Therefore,

7https://ftp.ncbi.nlm.nih.gov/pubmed/baseline
8https://github.com/titipata/pubmed_parser

we filter out English Pubmed abstracts with more
than 512 tokens. For fair size comparison with
the unlabeled dataset of other health-related Viet-
namese pretrained models (discussed in Section
7.2), we take a subset of 20M biomedical abstracts
(20GB of text) for translation and leave a larger
subset for future releases. We then translate the
20M English biomedical abstracts with the bTB
model using 4 TPUv2-8 and 4 TPUv3-8.

5 ViMedNLI

Along with an unlabeled dataset for pretraining,
we also introduce a benchmark dataset generated
by translation and refined with human experts. We
start with a natural language inference (NLI) task
as it is less prone to errors in biomedical entity
translation compared to named-entity recognition
(NER) or relation extraction (RE) tasks. The pro-
cess of creating the ViMedNLI is shown in Figure
2.

MedNLI 
(Romanov and
Shivade, 2018)

Raw Translated
ViMedNLI

Guidelines
(biomedical  

abbreviations,  
spelling,etc.)

Refining

ViMedNLI ViMedNLI

Translated by NMT

Refined by Human Cross-checking

Guidlines Generation

             ViMedNLI

Figure 2: The Process of ViMedNLI Corpus Creation
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Table 2: Some Examples of Abbreviations and Spelling Refining

# MedNLI Translated by NMT Refined by human
Abbreviations Refining

1
Electrocardiograms
revealed no
QRS changes

Điện tâm đồ cho thấy
không có thay đổi về
QRS .

Điện tâm đồ cho thấy
không có thay đổi về
phức độ QRS

2
Patient has
no PMH

Bệnh nhân
không có PMH

bệnh nhân
không có tiền sử bệnh

3
Patient is
post op

Bệnh nhân đã
hồi phục

(Patient is recovered )

Bệnh nhân
hậu phẫu thuật

Spelling Refining

4
The infant was
born at herm

Đứa bé được sinh ra
ở Herm
(The baby was born
at Herm )

Đứa bé được sinh
đủ tháng

(The baby was born
at term )

5
The patient had
an sotesophytes

Bệnh nhân có
sinh cảm

(The patient has flu )

Bệnh nhân bị
viêm xương khớp

(The patient had
osteophytes )

6 Patient has delerium

Bệnh nhân có
hội chứng delerium

(Patient has
delerium syndrome )

Bệnh nhân bị
mê sảng

(Patient has delirium )

#1: Abbreviation in English can be used in both English and Vietnamese.
#2: Abbreviation can only be used in English. In Vietnamese, abbreviation is different.
#3: Abbreviation in English is wrong when translated to Vietnamese.
#4: The word "term" is misspelled as "herm".
#5: The word "osteophytes" is misspelled as "sotesophytes".
#6: The word "delirium" is misspelled as "delerium".

5.1 MedNLI

MedNLI (Romanov and Shivade, 2018) is an NLI
dataset annotated by doctors and grounded in the
patients’ medical history. Given a premise sen-
tence and a hypothesis sentence, the relation of the
two sentences (entailment, contradiction, neutral)
is labeled by two board-certified radiologists. The
source of premise sentences in MedNLI is from
MIMIC-III (Johnson et al., 2016), a large open-
source clinical database. The dataset has been
widely studied and benchmarked by the Biomedical
NLP research community9 (Peng et al., 2019; Phan
et al., 2021a; El Boukkouri et al., 2020; Alrowili
and Shanker, 2021; Kanakarajan et al., 2019).

9https://paperswithcode.com/dataset/mednli

5.2 Dataset Challenges

We follow the same procedures discussed in Sec-
tion 4 to translate the same training, development,
and test sets released in Romanov and Shivade
(2018). The time and resources to translate the
dataset are negligible as there are a total of 14522
samples.

However, upon translating the dataset with NMT,
we find out that the English clinical note do-
main has a distinct sublanguage with unique chal-
lenges (abbreviations, inconsistent punctuation,
misspellings, etc.). This observation has also been
addressed in Friedman et al. (2002) and Meystre
et al. (2008). Such differences in clinical language
representation challenge the translation output and
our quest to release a high-quality medical dataset.
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Table 3: Statistics of finetuned datasets

Corpus Train Dev Test Task Domain
acrDrAid, pairs 4000 523 1130 Acronym disambiguation Medical
FAQSum, documents 10621 1326 1330 Abstractive summarization Healthcare
ViMedNLI, pairs 11232 1395 1422 Inference Clinical

5.3 Human Refining

The unique challenges of clinical data under trans-
lation settings (discussed in Section 5.2) require us
to work with humans who not only have expertise
in biomedical knowledge but are also sufficient in
both English and Vietnamese languages to refine
the dataset. Therefore, we collaborate with pre-
medical Vietnamese students who studied at well-
known U.S. Universities to refine the ViMedNLI
datasets.

The refining process starts with a comprehen-
sive guidelines document with thorough annotation
instructions and examples. Then, as clinical notes
contain a significant amount of technical abbre-
viations that the machine translation system can
not translate initially (Section 5.2), we work with
the medical annotators to create abbreviations and
their expansion forms. To make sure the expan-
sion form of these abbreviations generalizes well
in real-world settings, we verify the use case of
these words through multiple Vietnamese medical
websites, blogs, and online dictionaries. Hence, we
decided to keep the original English abbreviations,
replace them with a Vietnamese expansion form,
or replace them with a Vietnamese abbreviation.
Some examples of this process are shown in Table
2.

Aside from the English medical abbreviations,
there are several grammatical and spelling mis-
takes the machine translation system does not un-
derstand, translating either into Vietnamese mean-
ings or even failing to translate. Human refin-
ing is therefore required. The phrase "The infant
was born at herm", for example, was translated as
"Đứa bé được sinh ra ở Herm". The word "herm",
which should be spelled as "term", is misspelled
and has no medical meaning. The accurate transla-
tion should be "Đứa bé được sinh đủ tháng" ("The
infant was born at term"). Table 2 shows more
examples of spelling refining cases.

Additionally, the machine translation system oc-
casionally produces incorrect Vietnamese mean-
ings when translating words with proper English
spelling and grammar. Considering the sentence

"The patient had post-term delivery" as an exam-
ple. Despite having the meaning "Bệnh nhân sinh
muộn", it was mistranslated as "Bệnh nhân sinh
non" ("The patient had pre-term delivery"). An-
other example is "Narrowing of the vessels", which
means "Thu hẹp các mạch" rather than "Thu hẹp
các" (no meaning).

6 ViPubmedT5

With an unlabeled synthetic translated ViPubmed
Corpus (Section 4) and a benchmark ViMedNLI
dataset (Section 5), we pretrain and finetune a
Transformer-based language model (Vaswani et al.,
2017) to verify the effectiveness of our approach
in enriching Vietnamese biomedical domain with
translation data. We explain our model and the
pretraining settings we applied in this section.

6.1 Model Architecture

We adopt the Transformer encoder-decoder model
proposed by Vaswani et al. (2017), the ViT5 (Phan
et al., 2022) checkpoints, and T5 framework 10 im-
plemented by Raffel et al. (2019). ViT5 is the first
monolingual Vietnamese Transformer model; the
model achieves state-of-the-art results on multi-
ple Vietnamese general tasks, including generation
and classification. The ViT5 publication releases 2
model sizes - base and large. We train ViPubmedT5
using the base setting (220 million parameters) and
leave larger models for future work.

6.2 Pretraining

We pretrain our ViPubmedT5 on 20GB of trans-
lated biomedical data ViPubmed (Section 4). We
leverage the Vietnamese checkpoints in the origi-
nal ViT5 work (Phan et al., 2022) and continuously
pretrain the model on the synthetic biomedical-
specific data for another 500k steps. Previous
works (Lee et al., 2019; Tinn et al., 2021) have
shown that this approach will allow pretrained lan-
guage models to learn a better representation of

10https://github.com/google-research/text-to-text-transfer-
transformer
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Table 4: Tests results on Vietnamese health and biomedical tasks

Domain Datasets Metrics PhoBERT ViT5 ViHealthBERT ViPubmedT5

(+news) (+cc100)
(+health

text mining)
(+translated
ViPubmed)

Healthcare FAQSum RougeL 41.16 61.3 43.85 60.6
Medical acrDrAid Mac-F1 82.51 88 86.7 89.04
Clinical ViMedNLI Acc 77.29 77.85 79.04 81.65

Notes: The best scores are in bold, and the second best scores are underlined. PhoBERT
& ViHealthBERT scores on FAQSum and acrDrAid are from Minh et al. (2022)

biomedical language context while maintaining the
core Vietnamese language representation.

We train ViPubmedT5 using the same spans-
masking learning objective as Raffel et al. (2019).
During self-supervised training, spans of biomedi-
cal text sequences are randomly masked (with sen-
tinel tokens). The target sequence is formed as the
concatenation of the same sentinel tokens and the
real masked spans/tokens.

7 Experiments

7.1 Benchmark dataset

We finetune and benchmark our pretrained
ViPubmedT5 model on two public Vietnamese
biomedical-domain datasets acrDrAid & FAQSum,
(Minh et al., 2022) and our released ViMedNLI
(Section 5). Detailed statistics of the three datasets
are shown in Table 3.

• acrDrAid (Minh et al., 2022) is a Vietnamese
Acronym Disambiguation (AD) dataset that
contains radiology reports from Vinmec hos-
pital11, Vietnam. The task is correctly identi-
fying the expansion of an acronym in a given
radiology report context. The dataset is an-
notated by three expert radiologists. The
acrDrAid has 135 acronyms and 424 expan-
sion texts in total.

• FAQ Summarization (Minh et al., 2022) is a
Vietnamese summarization dataset collected
from FAQ sections of multiple healthcare
trustworthy sites. For each FAQ section, the
question text is the input sequence, and the
title is a target summary.

• ViMedNLI is our released dataset discussed
in Section 5.

11https://vinmec.com/

7.2 Baseline
To verify the effectiveness of our proposed meth-
ods, we compare our ViPubmedT5 model with
other state-of-the-art Vietnamese pretrained mod-
els:

• PhoBERT (Nguyen and Nguyen, 2020) is
the first public large-scale monolingual lan-
guage model pretrained for the Vietnamese
language. The model follows the original
RoBERTa (Liu et al., 2019) architecture.
PhoBERT is trained on a 20GB word-level
Vietnamese news corpus.

• ViT5 (Phan et al., 2022) is the most recent
state-of-the-art Vietnamese pretrained model
for both generation and classification tasks.
The model is trained on a general domain
CC100-vi corpus.

• ViHealthBERT (Minh et al., 2022) is the first
domain-specific pretrained language model
for Vietnamese healthcare. After initializing
weights from PhoBERT, the model is trained
on 25M health sentences mined from different
sources.

8 Results

The main finetuned results are shown in Table 4.
The main takeaway is that training on synthetic
translated biomedical data allows ViPubmedT5 to
learn a better biomedical context representation.
As a result, ViPubmedT5 achieves state-of-the-art
in Medical and Clinical contexts while performing
slightly worse than ViT5 in healthcare topics.

On the healthcare domain (FAQSum), ViPub-
medT5 approximates the current state-of-the-art re-
sult (60.6 and 61.3) while outperforming the other
models by a large margin (43.85). The slight differ-
ence in performance to ViT5 signifies a difference
in data distribution in PubMed abstracts (scientific
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writing) and FAQSum (dialogues between patients
and doctors).

For both medical and clinical datasets, ViPub-
medT5 outperforms other existing models. There
are also notable improvements from the gen-
eral domain ViT5 to ViPubmedT5 (88->89.04 in
acrDrAid and 77.85->81.65 in ViMedNLI). This
indicates that the translated ViPubmed corpus con-
tains biomedical knowledge that low-resource Viet-
namese pretrained models can leverage.

Meanwhile, our newly translated ViMedNLI can
serve as a robust baseline dataset for Vietnamese
BioNLP research. Both health and biomedical do-
main models (ViHealthBERT & ViPubmedT5) per-
form better than general domain models (PhoBERT
& ViT5) on the ViMedNLI dataset. This shows
that our translated and refined ViMedNLI dataset
is high-quality and has robust biomedical contexts.

9 Scaling to Other Languages

Our novel way of utilizing a state-of-the-art NMT
system to generate synthetic translated medical data
for pretrained models is not limited to the Viet-
namese language and is scalable to many other
low-resource languages. Recent works focus on im-
proving the quality of multiple low-resource NMT
systems (NLLB Team et al., 2022; Fan et al., 2020;
Bañón et al., 2020). These new state-of-the-art
NMTs make the approach discussed in this pa-
per more practical to produce synthetic translated
biomedical data, enriching the Biomedical NLP
research knowledge in multiple low-resource lan-
guages.

10 Conclusion

We utilize the state-of-the-art translation model
MTet to scale up the very low-resourced yet highly
valuable biomedical data in Vietnamese. Namely,
ViPubMedT5, a T5-style Encoder-Decoder Trans-
former pretrained on a large-scale translated corpus
of the biomedical domain that demonstrated state-
of-the-art results on both inference and acronym
disambiguation in the biomedical domain. We also
introduced ViMedNLI, a machine-translated and
human-expert refined benchmark in natural lan-
guage inference to further grow the Vietnamese
suite of benchmarks and data in biomedical data.

11 Limitations

Although our pretrained model trained on synthetic
translated biomedical data produces state-of-the-

art results on downstream tasks for the Vietnamese
language, the approach hugely depends on the qual-
ity of the NMTs for other low-resource languages.
Thanks to recent studies and contributions from the
Vietnamese research community (Section 2.2), the
English-Vietnamese translation system has proven
strong enough for us to conduct the experiments
discussed in this work. However, the NMT’s actual
performance needed before making the translated
biomedical data useful for pretrained models is still
a question that requires further studies.
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Marta Bañón, Pinzhen Chen, Barry Haddow, Ken-
neth Heafield, Hieu Hoang, Miquel Esplà-Gomis,
Mikel L. Forcada, Amir Kamran, Faheem Kirefu,
Philipp Koehn, Sergio Ortiz Rojas, Leopoldo
Pla Sempere, Gema Ramírez-Sánchez, Elsa Sar-
rías, Marek Strelec, Brian Thompson, William
Waites, Dion Wiggins, and Jaume Zaragoza. 2020.
ParaCrawl: Web-scale acquisition of parallel cor-
pora. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
4555–4567, Online. Association for Computational
Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. CoRR, abs/2005.14165.

Peng-Jen Chen, Jiajun Shen, Matt Le, Vishrav Chaud-
hary, Ahmed El-Kishky, Guillaume Wenzek, Myle
Ott, and Marc’Aurelio Ranzato. 2019a. Facebook
ai’s WAT19 myanmar-english translation task sub-
mission. CoRR, abs/1910.06848.

Peng-Jen Chen, Jiajun Shen, Matthew Le, Vishrav
Chaudhary, Ahmed El-Kishky, Guillaume Wenzek,
Myle Ott, and Marc’Aurelio Ranzato. 2019b. Face-
book AI’s WAT19 Myanmar-English translation task
submission. In Proceedings of the 6th Workshop
on Asian Translation, pages 112–122, Hong Kong,
China. Association for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: pre-
training text encoders as discriminators rather than
generators. CoRR, abs/2003.10555.

Louise Deléger, Magnus Merkel, and Pierre Zweigen-
baum. 2009. Translating medical terminologies
through word alignment in parallel text corpora.
Journal of biomedical informatics, 42 4:692–701.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Long Doan, Linh The Nguyen, Nguyen Luong Tran,
Thai Hoang, and Dat Quoc Nguyen. 2021. Phomt:
A high-quality and large-scale benchmark dataset
for vietnamese-english machine translation. CoRR,
abs/2110.12199.
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A Results for En-Vi Translation with
Self-training

We explore a more drastic measure to expand the
amount of data in the biomedical domain by self-
training. We also explore how a large expansion in
the number of biomedical bitexts affects the per-
formance of our model on other domains such as
Law, Religion, and News by using the MTet multi-
domain test set (Ngo et al., 2022).

Table 5: BLEU Scores Results for En-Vi Translation on
MTet Multi-domain Test Set

Model
MTet Multi-domain

Test Set
Medical News Religion Laws

SOTA 38.69 51.47 41.44 36.43
Ours 45.61 51.003 40.68 39.51

Notes: The best BLEU scores are in bold. The state-of-
the-art (SOTA) model and MTet dataset are from Ngo
et al. (2022); Our model trained with self-training ap-
proach on an extra 1M En-Vi synthetic biomedical ab-
stracts is discussed in Section 3

The improvement is not evident across all do-
mains when tested on a diverse domain test set
(MTet). For example, while there are notable im-
provements in the Medical and Law domain, the
model performs worse in the Religion and News
domains. This can be attributed to the context rep-
resentation of biomedical Pubmed Abstract data.
Scientific abstracts tend to be more formal and
academic for knowledgeable audiences with more
domain expertise. Therefore, training on such data
allows the Machine Translation system to perform
better not only on the trained domain (Medical) but
also on other formally presented domains, such as
Law, while at the same time performing slightly
worse on other domains (News and Religion).
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Abstract

Past work probing compositionality in sentence
embedding models faces issues determining the
causal impact of implicit syntax representations.
Given a sentence, we construct a neural mod-
ule net based on its syntax parse and train it
end-to-end to approximate the sentence’s em-
bedding generated by a transformer model. The
distillability of a transformer to a Syntactic
NeurAl Module Net (SynNaMoN) then cap-
tures whether syntax is a strong causal model of
its compositional ability. Furthermore, we ad-
dress questions about the geometry of semantic
composition by specifying individual SynNa-
MoN modules’ internal architecture & linearity.
We find differences in the distillability of var-
ious sentence embedding models that broadly
correlate with their performance, but observe
that distillability doesn’t considerably vary by
model size. We also present preliminary evi-
dence that much syntax-guided composition in
sentence embedding models is linear, and that
non-linearities may serve primarily to handle
non-compositional phrases.

1 Introduction

The principle of semantic compositionality sug-
gests that the meaning of a sentence should derive
from its subconstituents in a regular, structured
fashion (Montague, 1970). In recent years, trans-
formers (Vaswani et al., 2017) have become effec-
tive at producing sentential meaning representa-
tions useful for downstream tasks such as Natural
Language Inference, Image-Text Matching, and
Document Classification (Conneau et al., 2017;
Radford et al., 2021). However, it has famously
been conjectured that "You can’t cram the meaning
of a whole %&!$# sentence into a single $&!#*
vector" (Mooney, 2014). Since recent models do
appear to capture sentence meaning effectively, one
wonders how they compose arbitrarily many word
meanings together such that their relational struc-
ture is captured in a single, fixed-dimensional sen-

Figure 1: Distilling a transformer to a neural module
net structured by the sentence’s syntax

tence embedding.
Much work has sought to probe these models for

syntax representations and their causal relevance to
embedding output. Conneau et al. (2018) train lin-
ear probes to determine if models encode syntactic
features like tree distance and depth (Krasnowska-
Kieraś and Wróblewska, 2019; Hewitt and Man-
ning, 2019). One line seeks out direct mappings
between neural representations and tree structures
(McCoy et al., 2018; Chrupała and Alishahi, 2019;
Jawahar et al., 2019; Soulos et al., 2020; Murty
et al., 2023). Other work raises methodological is-
sues with probing (Eger et al., 2019; Zhu and Rudz-
icz, 2020) such as choice of formalism (Kuznetsov
and Gurevych, 2020) and semantic entanglement
(Maudslay and Cotterell, 2021). Ravichander et al.
(2021) raise the possibility that probing may iden-
tify causally un-used features; Tucker et al. (2021)
partly address this concern to show that some syn-
tactic features are causally relevant. Another line of
work explores the geometry of semantic represen-
tations (Reif et al., 2019; Hernandez and Andreas,
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2021) and the linearity (Barančíková and Bojar,
2019) of syntactic analogies (Zhu and de Melo,
2020).

Rather than directly analyze sentence embed-
ding models, Neural Module Nets (Andreas et al.,
2016b) seek to improve compositionality by modu-
larizing semantic functions. We see this effort as
ultimately similar to probing for structural represen-
tations since the former explores whether explicit
structure improves performance and the latter ex-
plores whether performant models implicitly learn
structure. Geiger et al. (2021) discovers logical
tree causal structures in BERT and Wu et al. (2021)
then guides model distillation using this structure.

Our work builds on these findings by strictly
taking syntax as the causal structure of sentential
semantics and linearity as the geometry of syntax-
guided composition; we conduct experiments to
test the distillability of transformer-based sentence
embedding models to a Syntactic NeurAl Module
Net (SynNaMoN), an architecture we introduce
that implements these two priors. The extent to
which a model can be distilled to a SynNaMoN
tells us about its internal syntax representations &
compositional ability.

2 Methods

2.1 Syntactic Neural Module Net

Figure 2: Constructing a sentence’s SynNaMoN from its
syntax tree; module input and output dimensionalities
labeled on the right.

Unlike prior work (Andreas et al., 2016a; Cirik
et al., 2018), SynNaMoN modules don’t approx-
imate high-level objectives like ‘Find’ or ‘Count’
but rather correspond to specific syntactic rules like
‘S→ NP VP’ and ‘NP→ DT JJ NN’. Each mod-
ule receives an input of dimensionality (1, N ∗D)

where N is the number of constituents on the syn-
tax rule’s right-hand side, and D is the dimensional-
ity of the embedding space (768)—in other words,
the input embeddings are concatenated. Though
computationally more expensive, concatenation en-
ables the module to learn an arbitrary function over
the inputs rather than restricting it to a function
over their sum or mean; this enables the module to
converge on its ideal composition function which is
likely not invariant under summation or averaging.
Finally, though our implementation of SynNaMon
includes ‘part-of-speech’ modules at the bottom
of the parse tree, one could conceivably remove
this bottom layer with the hypothesis that the word
embeddings already capture part-of-speech infor-
mation.

2.2 Internal Module Architecture
To explore the geometry of semantic composition
under syntax, we implement 3 module architec-
tures: a linear layer (Linear), a linear layer + a
ReLU activation (Nonlin), and a linear layer +
ReLU + another linear layer (Double). We ex-
plore these 3 architectures to see whether syntax is
enough of an inductive bias to linearly approximate
sentence embeddings, or if adding non-linearities
and additional layers considerably improves per-
formance. The extent to which adding parameters
improves our approximation of the teacher model
beyond the syntactic structure alone could reveal
how much isn’t captured by this inductive bias.

2.3 Linguistic Formalism
We choose to use the Transformational Grammar
presented by Penn Treebank (Marcus et al., 1994),
but in principle any Constituency Grammar could
be easily used with SynNaMoN, and Dependency
Grammars can be adapted with some effort. Since
prior work has shown how the choice of linguistic
formalism can significantly influence probing re-
sults (Kuznetsov and Gurevych, 2020), we float the
possibility of such an effect being at play in this
work as well. If a student SynNaMoN fails to cap-
ture much of the teacher embedding model, perhaps
it isn’t because of the teacher’s non-compositional
causal structure, but rather because the formalism
used to structure the SynNaMoN is inadequate. In-
deed, recent state-of-the-art neural approaches to
syntax parsing have learned grammatical tagsets
that often differ starkly from human-produced syn-
tactic theories (Kitaev et al., 2022). We leave these
problems to future work which may explore the ex-
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citing possibility that certain linguistic formalisms
(perhaps even semantic rather than syntactic) are
better proxies for a model’s compositional structure
than others.

3 Experiments

Our main experiment runs 5 sentence embedding
models (BERT-base (Devlin et al., 2019), MP-Net
(Song et al., 2020), GTR-T5-base, GTR-T5-large,
and GTR-T5-xl (Ni et al., 2021)) on 3 SynNaMoNs
with differing internal architectures (Linear, Non-
lin, Double; see Sec. 2.2). For BERT-base, we
extract input word embeddings for each token and
use the CLS token as the sentence embedding as
is common practice. For the other 4 models, we
encode each token alone to serve as its embed-
ding and use the output as the sentence embedding.
When words are encoded as more than 1 token, we
compute the mean across the subtokens to serve as
its word embedding.

In order to heuristically select a learning rate,
5 training runs were conducted with SynNaMoNs
optimizing for BERT-base, and learning rate manu-
ally set at increments between 10−5 and 10−3. We
finally chose a rate of 5×10−5, but recognize from
results that optimal learning rate will likely vary by
teacher model & SynNaMoN internal architecture.
Analysis would best be reported on the optimal
scores achieved by a SynNaMoN after hyperpa-
rameter tuning, but due to compute restrictions (1
NVIDIA K80 GPU with 12GB of RAM), this was
unfeasible.

Additionally, due to the number of modules
(originally 900, each with 1M parameters on av-
erage), we encountered frequent out-of-memory
errors both on CPU & GPU. Since each mod-
ule corresponds to a syntax rule and is initialized
upon encountering the rule in the dataset, we con-
strained our data to minimize the number of mod-
ules needed.

Specifically, we first constrained our trees to
those of height 4 & 5 (n=16492) in PTB, and then
further constrained the trees to those that use a
subset of the 300 most common production rules
among them. This resulted in 1494 trees, from
which we generated a train-validation split of 1250-
244. Furthermore, we ensured that all the produc-
tions present in trees of the validation split were
also included amongst trees in the training split. All
this finally resulted in 273 production rules present
in our dataset, and the instantiation of 273 modules.

4 Results

In Tab. 1, we present scores for all 5 sentence
embedding models across the 3 SynNaMon archi-
tectures. We compute the average MSE between
sentence embeddings in the complete dataset for
each model and divide each model’s MSE loss by
this mean distance to normalize results. The nor-
malized scores we present may intuitively be seen
as the portion of variance in a model’s sentence em-
beddings that a SynNaMoN fails to explain. From
a probing perspective, the lower a model’s score,
the more it can be causally approximated by com-
position along syntactic lines.

Sent. Emb. Model Linear Nonlin Double
BERT-base-CLS .765 4.17 .625

MP-Net-base .606 .963 .538
GTR-T5-base .541 .844 .499
GTR-T5-large .550 .898 .502

GTR-T5-xl .536 .775 .498

Table 1: Best validation MSE loss of sentence embed-
ding models on each SynNaMoN probe, normalized by
chance-level MSE between embeddings

First, notice that GTR-T5-xl outperforms all the
other models across all the SynNaMoN architec-
tures. This seems to confirm our expectation that
larger models should produce more compositional
sentence embeddings. However, GTR-T5-xl only
marginally outperforms other sizes of GTR-T5 (ex-
cept on Nonlin, for which it does far better), sug-
gesting that size actually isn’t a significant factor
in compositionality. The lower performance of
GTR-T5-large further corroborates this, but con-
sidering its anomalously lower average embedding
MSE, the issue requires more work. The fact that
GTR-T5 models all display high compositionality
despite variance in size suggests something about
their architecture or training approach is impor-
tant—perhaps the representational bottleneck.

All 3 GTR-T5 models perform better than MP-
Net, which in turn outperforms BERT CLS. This
first fact is slightly surprising considering that on
standard sentence representation tasks (Reimers
and Gurevych, 2019), MP-Net (63.30) marginally
outperforms all GTR-T5 (base: 59.40, large: 62.38,
xl: 62.88) models. Evaluation of these sen-
tence embedding models on large-scale, human-
interpretable compositionality tasks may reveal that
GTR-T5 does indeed produce better compositional
representations than MP-Net. Although BERT’s
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Figure 3: Normalized validation learning curves for Lin-
ear SynNaMoN on sentence embedding models (blue:
BERT, orange: MP-Net, red: GTR-T5-large, green:
GTR-T5-base, purple: GTR-T5-xl)

CLS token embedding is widely used for sentence
representation, these results show that it fails to
capture nearly as much compositional information
as more targeted sentence embedding models.

Next, observe that although distilling to a Dou-
ble SynNaMoN is intuitively easier than to a Lin-
ear SynNaMoN due to increased parameterization,
there aren’t always major improvements in distilla-
bility. It is possible that the geometric expressivity
of the Double SynNaMoN will kick in with scaling
of training data, but we hypothesize that this Dou-
ble score will still approach a limit for all sentence
embedding models. This is because syntax only
describes a subset of sentence meaning, and the
strictness of SynNaMoN’s structure prevents this
non-compositional component from being learned.

For example, a strictly syntactic compositional
interpretation of "village on the river", would rep-
resent the village as being literally on top of the
river since this is the semantic geometry learned
for syntactic structures of the form "NP on NP". A
SynNaMoN that includes non-linearities may better
learn the geometry of this non-literal "on" relation,
but a transformer model would best learn to handle
non-compositional phrases due to its lack of strict
syntactic constraints. Our broader takeaway from
comparing Linear & Double scores is that much
composition along syntactic lines is linear, and non-
linearities in transformers primarily serve a purpose
other than syntax-guided composition—perhaps in
handling non-compositional phrases.

On a less theoretical note, we observe that our
learning curves for Linear SynNaMoN on GTR-T5
(Fig. 3) are clearly overfitted due to fixing hyperpa-
rameters as mentioned in Sec. 3. We remediate this

Figure 4: Generalization ability of Determiner Phrase
module’s linear geometry varies by part-of-speech

issue in Tab. 1 by reporting the best scores (mini-
mum across epochs) for each learning curve. Since
we want to construct the best possible SynNaMoN
for a transformer model (as this most accurately
reveals the transformer’s distillable compositional
ability), scores could be slightly improved with
further hyperparameter tuning.

4.1 Analysis

Finally, we explore a single module to determine
whether its compositional geometry meets intuitive
notions of semantic generalization. Due to method-
ological difficulties with assessing a single module
extracted from our end-to-end training paradigm,
we train a Linear module for ‘NP → Det N’ on
its own. Determiner-noun composition intuitively
lies on a spectrum with adjective-noun composi-
tion on the other end and quantifier-noun composi-
tion in between. While quantifiers like ‘some’ and
‘all’ seem more like determiners, other quantifiers
like ‘several’ and ‘twelve’ appear more compara-
ble to adjectives like ‘swarming’ and ‘grouped’.
Intuitively then, we should expect the geometry of
quantifier-noun composition to be intermediate to
determiners and adjectives.

And this behavior is precisely what we find in
our ‘NP→ Det N’ module. Since it’s trained on
determiners, it obviously has the lowest MSE for
this part-of-speech; we include noun-noun pairs
(e.g. ‘tree cow’) as a control. As seen in Fig. 4, the
module generalizes to quantifiers intermediately to
determiners and adjectives. This demonstrates how
SynNaMoN modules may enable interesting anal-
yses of the compositional geometry of syntactic
operations in sentence embedding models.

3146



5 Conclusion

The human ability to apprehend the unitary mean-
ing of a sentence corresponds to a neural model’s
ability to construct compositional sentence embed-
dings. In this work, we introduced Syntactic Neu-
ral Module Nets and used it in a distillation ap-
proach to assess how well syntax explains the sen-
tential semantics computed by a transformer model.
We showed that some models are more composi-
tional by this metric, syntax-guided composition
is largely linear, and modules learn composition
functions that correspond to our semantic intuition.

Future work could explore this approach’s align-
ment with other compositionality metrics and the
non-compositional semantics left uncaptured by
SynNaMoNs. We are also interested in how Syn-
NaMoNs of different linguistic formalisms vary in
distillability, as well as other potential use cases of
SynNaMoNs beyond probing.

6 Limitations & Ethics Statement

Since longer sentences have more complex syn-
tax, they require more modules on GPU and can
run into out-of-memory issues. However, there is
a hard upper-bound on total number of modules
since there are limited syntax rules in the grammar.
In addition, we may never need to train on long
sentences if all modules can be effectively trained
on short sentences and then generalize composi-
tionally.

As an approach to probing language models,
SynNaMoN contributes to an ethical NLP vision
that seeks to address how models learn human bi-
ases that have societal effects from corpus data.
Understanding syntax representations in models
could be important in such a pursuit since some of
these bias effects are syntactically mediated. For
example, LMs with gender role biases could in-
ternally represent these biases as syntactic gender
agreement e.g. ‘man’ agrees with ’doctor’ and
‘woman’ agrees with ‘nurse’ (Prates et al., 2020).
By understanding the causal structure of sentential
semantics in LMs, we can better disentangle syntax
from spurious correlations transmitted by societal
structures.
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Abstract

Question Generation (QG) is a fundamental
NLP task for many downstream applications.
Recent studies on open-book QG, where sup-
portive answer-context pairs are provided to
models, have achieved promising progress.
However, generating natural questions under a
more practical closed-book setting that lacks
these supporting documents still remains a
challenge. In this work, we propose a new
QG model for this closed-book setting that
is designed to better understand the seman-
tics of long-form abstractive answers and store
more information in its parameters through con-
trastive learning and an answer reconstruction
module. Through experiments, we validate the
proposed QG model on both public datasets
and a new WikiCQA dataset. Empirical results
show that the proposed QG model outperforms
baselines in both automatic evaluation and hu-
man evaluation. In addition, we show how to
leverage the proposed model to improve ex-
isting question-answering systems. These re-
sults further indicate the effectiveness of our
QG model for enhancing closed-book question-
answering tasks.

1 Introduction

Question Generation (QG) has a wide range of
applications, such as generating questions for ex-
ams (Jia et al., 2021; Lelkes et al., 2021; Dugan
et al., 2022) or children’s story books (Zhao et al.,
2022; Yao et al., 2022), recommending questions
for users in a dialogue system (Shukla et al., 2019;
Laban et al., 2020), improving visual (Li et al.,
2018; Lu et al., 2022) or textual question-answering
tasks (Duan et al., 2017; Lewis et al., 2019a; Zhang
and Bansal, 2019; Sultan et al., 2020; Lyu et al.,
2021), asking clarification questions (Rao and
Daumé III, 2019; Yu et al., 2020; Ren et al., 2021),
and generating queries for SQL (Wu et al., 2021)
or multimodal documents (Kim et al., 2021).
∗ Equal Contribution

Previous works on QG are mainly under the open-
book setting, which aims to generate questions
based on factoid or human-generated short an-
swers under the assumption that there is access
to external knowledge like retrieved documents
or passages (Du et al., 2017; Zhao et al., 2018;
Kim et al., 2019; Fei et al., 2021). After Roberts
et al. (2020) demonstrated that feeding a large
pre-trained model input questions alone without
any external knowledge can lead to competitive re-
sults with retrieval-based methods on open-domain
question-answering benchmarks, there is an in-
creasing interest in the closed-book setting. This
closed-book setting is appealing in practice and
can be widely applied, e.g., in question sugges-
tion (Laban et al., 2020; Yin et al., 2021), query
recommendation (Kim et al., 2021), and other prac-
tical settings where extensive external knowledge
is unavailable.

However, generating questions without access
to such external knowledge is challenging for two
key reasons. First, without access to retrieved doc-
uments (or passages), simple open-domain strate-
gies like basing the answers on these documents (or
passages) are not possible under the closed-book
setting. Instead, models must rely on the answers
alone. Second, the data used by most of the closed-
book works (Lewis et al., 2021; Wang et al., 2021)
are variants of existing open-domain datasets, e.g.,
SQuAD (Rajpurkar et al., 2018), TriviaQA (Joshi
et al., 2017), WebQuestions (Berant et al., 2013)
that ignore the answer-related passages. These an-
swers in open-book works are usually short, e.g.,
entities, and easier to be remembered by the lan-
guage model and stored in the parameters of the
model than long-form answers. Thus, this leads
to our motivating research question – How can we
empower a QG model to better understand the se-
mantics of long-form abstractive answers and store
more information in its parameters?

To tackle the aforementioned challenges existing
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in the closed-book setting, this paper proposes a
new QG model with two unique characteristics: (i)
a contrastive learning loss designed to better under-
stand the semantics of the answers and the seman-
tic relationship between answers and ground-truth
questions at a contextual-level; and (ii) an answer
reconstruction loss designed to measure the an-
swerability of the generated question. Contrastive
learning has shown promising results in many NLP
tasks, e.g., (Giorgi et al., 2021; Gao et al., 2021;
Yang et al., 2021) and aligns positive pairs bet-
ter with available supervised signals (Gao et al.,
2021); here we show how to learn question rep-
resentations by distinguishing features of correct
question-answer pairs from features of incorrectly
linked question-answer pairs. Further, to ensure the
generated questions are of good quality and can be
answered by the answer that is used for question
generation, we frame the model as a generation-
reconstruction process (Cao et al., 2019; Zhu et al.,
2020), by predicting the original answers given
the generated questions by a pre-trained seq2seq
model. In addition, we introduce a new closed-
book dataset with long-form abstractive answers –
WikiCQA – to complement existing datasets like
GooAQ (Khashabi et al., 2021) and ELI5 (Fan
et al., 2019) and show how to leverage our model
to generate synthetic data to improve closed-book
question-answering tasks.

Through experiments, we find that the proposed
QG model shows improvement through both auto-
matic and human evaluation metrics on WikiCQA
and two public datasets. Compared to the base-
line, the proposed QG framework shows an im-
provement of up to 2.0%, 2.7%, and 1.8% on
the ROUGE-L score on WikiCQA, GooAQ-S, and
ELI5, respectively, and 1.3% and 2.6% in terms of
relevance and correctness. Furthermore, we lever-
age the QG framework to generate synthetic QA
data from WikiHow summary data and pre-train
a closed-book QA model on it in both an unsu-
pervised and semi-supervised setting. The perfor-
mance is evaluated on both seen (WikiCQA) and
unseen (GooAQ-S, ELI5) datasets. We find consis-
tent improvements across these datasets, indicating
the QG model’s effectiveness in enhancing closed-
book question-answering tasks.

In conclusion, our contributions can be summa-
rized as follows:

• We propose a contrastive QG model, which to
our knowledge is the first work to explore con-

trastive learning for QG under a closed-book
setting.

• The proposed model outperforms baselines on
three datasets. The human evaluation also indi-
cates that the questions generated by our model
are more informative compared to other base-
lines.

• We leverage the QG model as a data augmenta-
tion strategy to generate large-scale QA pairs.
Consistent improvements shown on both seen
datasets and unseen datasets indicate the QG
model’s effectiveness in enhancing closed-book
question-answering tasks.

2 Related Work

Many previous works on QG are under the open-
book setting, which takes factoid short answers (Ra-
jpurkar et al., 2016) or human-generated short
answers (Kočiský et al., 2018) with the corre-
sponding passages to generate questions (Zhang
et al., 2021). Early approaches for question genera-
tion rely on rule-based methods (Labutov et al.,
2015; Khullar et al., 2018). To bypass hand-
crafted rules and sophisticated pipelines in QG,
Du et al. (2017) introduce a vanilla RNN-based
sequence-to-sequence approach with an attention
mechanism. The recently proposed pre-trained
transformer-based frameworks (Lewis et al., 2020;
Raffel et al., 2020) also improve the performance
of QG. In addition, Sultan et al. (2020) shows that
the lexical and factual diversity of QG provides
better QA training. However, their success can not
directly adapt to the closed-book setting, where
the model is supposed to generate questions solely
relying on answers. In this work, we explore the
widely applicable closed-book QG setting, which
is still under-explored.
Contrastive Learning aims to pull semantically
similar neighbors close and push non-neighbors
apart. It has achieved great success under both
supervised and unsupervised settings. In pioneer
works, the contrastive loss function (Hadsell et al.,
2006; Chopra et al., 2005) has been proposed as a
training objective in deep metric learning consid-
ering both similar and dissimilar pairs. Recently,
Chen et al. (2020) proposes the SimCLR frame-
work to learn useful visual representations. View-
ing contrastive learning as dictionary look-up, He
et al. (2020) present Momentum Contrast (MoCo)
to build dynamic dictionaries for contrastive learn-
ing. Some works apply contrastive learning into
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the NLP domain to learn better sentence repre-
sentations (Giorgi et al., 2021; Gao et al., 2021).
In addition, contrastive learning has been applied
in multilingual neural machine translation (Pan
et al., 2021), abstractive summarization (Liu and
Liu, 2021), and multi-document question genera-
tion (Cho et al., 2021). The recent most relevant
work is (Yang et al., 2021), where they design two
contrastive losses for paraphrase generation. In this
work, we adopt contrastive learning for improv-
ing representation learning in question generation
under a closed-book setting.

3 Proposed Approach

To answer our research question – How can we
empower a QG model to better understand the se-
mantics of long-form abstractive answers and store
more information in its parameters? – we propose a
closed-book QG model, which generates questions
directly without access to external knowledge. For-
mally, given an answer sentence x, a closed-book
QG engine generates a natural question y. Fig-
ure 1 illustrates an overview of the proposed QG
framework, which consists of three parts: question
generation, contrastive learning, and answer recon-
struction. The framework is optimized with the
joint losses from these three parts simultaneously.

A1

EAi

D Reconstructor

Gumbel
Softmax

An

E

Q1

Qi

Qn

Figure 1: An overview of the proposed closed-book QG
framework, which consists of three parts: contrastive
learning, question generation, and answer construction.
Ai: represents answer i; Qi represents question i.

3.1 Question Generation
We first focus on question generation through a
sequence-to-sequence architecture which consists
of an encoder and a decoder (Sutskever et al., 2014;
Vaswani et al., 2017). The encoder takes an input
sequence of source words x = (x1, x2, . . . , xn)
and maps it to a sequence of continuous represen-
tations z = (z1, z2, . . . , zn). Then, the decoder
takes z and generates a sequence of target words
y = (y1, y2, . . . , ym) at a time. The closed-book

QG task is defined as finding ŷ:

ŷ = argmax
y

P (y|x), (1)

where P (y|x) is the conditional likelihood of the
predicted question sequence y given answer x.

P (y|x) =
T∏

i=1

p(yt|y<t, x), (2)

Given the answer-question pairs, the training ob-
jective of the generation part in the proposed frame-
work is to minimize the Negative Log-Likelihood
(NLL) of the training data,

Lqg = −
N∑

i=1

log p(qi|A), (3)

where qi is the i-th token in the generated question
and A is the answer.

A naive question generation model will generate
questions based on answers but lacks a rich model
of the semantics of answers nor can it guarantee the
generated questions have a semantic relationship
with the answers. Intuitively, an encoded answer
should be similar to its question and dissimilar to
others. In addition, the generated question should
be able to be answered by the answers. Hence, this
motivates the following contrastive learning and
answer reconstruction modules.

3.2 Contrastive Learning

Contrastive learning aims to pull positive pairs and
push apart negative pairs to learn effective represen-
tations. Further, the supervised signals can produce
better sentence embeddings by improving align-
ment between positive pairs (Chen et al., 2020).
An effective QG model should be able to under-
stand the semantics of the answers and the semantic
relationship with the ground-truth questions. Espe-
cially, the encoded answer should have semantic
similarity with its ground-truth question and dis-
similarity with other questions. Thus, aiming to
learn a similarity function that pulls the distance
between the answer sequence representation and
its ground-truth question sequence representation
closer, we design a contrastive loss in the repre-
sentation space. Specifically, given a positive pair
S = {(xi, yi)}ni=1, where xi and yi are semanti-
cally related inputs, the other 2(n − 1) examples
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within a mini-batch are treated as negative exam-
ples. The training objective for (xi, yi) is:

Lcl = − log
exp(sim(zxi , zyi)/τcl)∑2n
i=1 exp(sim(zxi , zyi)/τcl)

, (4)

where zxi and zyi is the representation of input xi
and yi, sim(zi, zj) = z⊤i zj/ ∥zi∥ ∥zj∥ denotes co-
sine similarity, and τcl is a temperature parameter.

In this work, aiming to learn better answer rep-
resentations and force the encoder to drive repre-
sentations of correct question-answer pairs closer
than representations of incorrect question-answer
pairs, we take the ground-truth question as the pos-
itive instance of an answer and fine-tune the model
parameters based on the contrastive loss function
(Eq. 4), where z is the embedding of the special
token [CLS] from the transformer encoder, repre-
senting the meaning of the entire sentence.

3.3 Answer Reconstruction
The questions that are generated by the model
should be of good quality and should also be able
to be answered by the answer that is used for ques-
tion generation. To measure the answerability of
the generated question, we design an answer recon-
struction module, which uses a pre-trained seq2seq
model to predict the original answer given the gen-
erated question. The loss is calculated by a negative
log-likelihood loss function:

Lar = −
N∑

i=1

log p(ai|Q) (5)

where ai is the i-th token in the answer and Q is
the generated question.

A major challenge is that the generated questions
from Section 3.1 are not differentiable. Gradients
cannot be back-propagated directly. To solve this
challenge, we employ the Straight-Through (ST)
Gumbel-Softmax for gradient computation (Jang
et al., 2017). The ST Gumbel-Softmax is a discrete
version of the Gumbel-Softmax and takes different
forward and backward paths. In the forward pass,
the embedding is discretized by using the argmax,
whereas in the backward pass the gradients are
computed by the gumbel-softmax (Qader et al.,
2019; Lu et al., 2021).

yi =
exp((log(pi) + gi)/τgs)∑|V |
j=1 exp((log(pj) + gj)/τgs)

, (6)

where τgs is a temperature parameter and gi is the
Gumbel noise drawn from a uniform distribution

(0, 1). In this work, the one-hot embedding from
ST Gumbel-Softmax is multiplied with the vocab-
ulary embedding and then fed into the encoder of
the pre-trained seq2seq model as the representation
of the generated question.

3.4 Overall Loss Function

As a result, all three losses are summed together to
provide the overall loss function L as follows:

L = λ1Lqg + λ2Lcl + λ3Lar, (7)

The weights λ1,λ2, and λ3 are tuneable hyper-
parameters to balance losses and the final objective
is to minimize the overall loss.

The overall structure of the proposed QG frame-
work is presented in Algorithm 1.

Algorithm 1: QG framework.
Input: Pre-trained language model p(q|a),

answer reconstruction model p(a|q)
and answer-question pairs

Output: Question generator p(q|a)
1 for i← 1 to Epoch do
2 q̂ = p(q|a)
3 Compute Lqg via Eq. 3

/* contrastive learning */
4 ai = Encoder([CLS]⊕ a)[:, 0 :]
5 a+i = Encoder([CLS]⊕ q)[:, 0 :]
6 Get Lcl to (ai, a

+
i ) via Eq. 4

/* answer reconstruction */
7 â = p(a|q̂)
8 Compute Lar via Eq. 5
9 Calculate total loss L via Eq. 7

10 Update generator p(q|a) with L
11 end
12 return question generator p(q|a)

4 Experimental Setup

To evaluate the effectiveness of the proposed QG
framework, we aim to answer the following re-
search questions (RQ) via experiments: RQ1: Can
this proposed QG framework improve the perfor-
mance of the closed-book QG tasks? RQ2: Are the
generated questions of good quality? That is, are
they fluent and relevant to the answer? RQ3: Can
this QG framework be leveraged as a good resource
to generate synthetic data for the QA task? RQ4:
How much does each component in the framework
contribute?
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4.1 Dataset

We conduct the experiments on two public datasets
– GooAQ-S (Khashabi et al., 2021) and ELI5 (Fan
et al., 2019) – and a new dataset we curate called
WikiCQA.

GooAQ-S is a sub-sampled dataset from GooAQ
which contains three different sub-tasks: short,
snippet (i.e., multi-sentence description), and col-
lection response questions (Khashabi et al., 2021).
Under the long-form closed-book setting, we adopt
the snippet part (i.e., questions with snippet an-
swers) for our experiments as in the original pa-
per. Furthermore, from the paper, the model perfor-
mance on the snippet task does not vary much when
supervised with 200K and 2M training instances.
Thus, to improve the experimental efficiency, we
take 200k instances from the snippet set and split
them based on their original scripts.1

ELI5 (Fan et al., 2019) is a widely-used large-scale
corpus for long-form question-answering with sup-
porting web documents. In this work, we use the
question-answer pairs from the dataset and ignore
the supporting context to fit the closed-book setting
like (Khashabi et al., 2021). We follow the data
split from huggingface.2

WikiCQA is a new closed-book long-form QA
dataset (Section 4.2) introduced here. It con-
tains 20,202 question-answer pairs and is collected
from a wiki-style website to complement existing
datasets. We shuffle the data and split it to train,
dev, and test sets by the ratio of 80%/10%/10%.
Table 1 shows detailed data statistics and splits of
these three datasets.

Datasets Train Val Test
WikiCQA 16,162 2,020 2,020
GooAQ-S 200,000 500 498
ELI5 272,634 9,812 24,512

Table 1: Dataset statistics.

4.2 WikiCQA

WikiCQA contains real user QA pairs collected
from WikiHow3. WikiHow is a wiki-style web-
site featuring over 200K how-to articles. Different

1https://github.com/allenai/gooaq/blob/main/
experiments/create_splits.py

2https://huggingface.co/datasets/eli5
3https://www.wikihow.com, under an Attribution-
Noncommercial-Share Alike 3.0 Creative Commons
License.

from the existing dataset, ELI5, containing ques-
tions/answers from the Reddit forum and leverag-
ing evidence queried from the web to help answer
the question (Fan et al., 2019) and GooAQ, con-
taining questions from search auto-complete and
answers from answer boxes (Khashabi et al., 2021),
WikiCQA involves long-form question-answering
grounded on WikiHow articles.

Dataset Construction We construct the new
dataset by collecting the question-answer pairs
from the Q&A section of articles on WikiHow. The
questions and answers are related to the specific
articles, asked by WikiHow users, and answered
by a knowledgeable reader or editor4. The ques-
tions can not be answered directly by the content of
the article. After removing duplicates and question-
answer pairs with meaningless answers, 23,037 QA
pairs remain. To keep the same format as other ex-
isting QA datasets (e.g., ELI5, GooAQ), we discard
questions not starting with a question-type word
(e.g., what, how). After the dataset processing
steps, we arrive at 20,202 question-answer pairs.
More details can be found in Appendix A.

In Table 2, we show an example article from
Wikihow, which includes the title and summary of
an article and question-answer pairs from the cor-
responding Q&A section. From the example, we
can see that answers are abstractive and long-form,
written by real users, and not contained within the
context passage. These question-answer pairs from
the Q&A section are collected in the newly con-
structed dataset. Thus, this dataset is different from
reading comprehension datasets, where the answers
are a short text span in context. More comparisons
with ELI5 and GooAQ are shown in Appendix B.

Title: How to Prepare a Healthy Meal for Your Pet Dog.
Summary: To prepare a healthy meal for your dog,
choose lean meat with the bones and fat removed, like
chicken or beef . . .
Q: What can I feed my dog if I have run out of dog food?
A: In the short term, any bland human food such as
chicken or white fish with rice or pasta is just fine . . .
Q: How much homemade dog food do you feed your dog?
A: Great question because it highlights one of the prob-
lems of feeding home prepared foods . . .
Q: What should I not feed my dog?
A: There are many human foods that are toxic to dogs.
Top of the list of foods NOT to give are . . .

Table 2: Question-answer pairs from WikiHow Q&A
section. Q: question; A: answer.

4https://www.wikihow.com/Use-wikiHow#
Reading-and-Learning-from-wikiHow
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4.3 Models & Hyper-parameters

We use BART-base (Lewis et al., 2020), a widely
used sequence-to-sequence framework with 12 lay-
ers and a hidden size of 1024, as the backbone
model. Following previous works (Fan et al., 2019;
Khashabi et al., 2021), we finetune it using answers
as inputs and questions as outputs as the baselines.
To get the answer reconstruction loss (Section 3.3),
we use a BART-base model which is fine-tuned on
the target QA datasets.

Based on the dataset analysis in Appendix B, we
set the maximum sequence length to 128 for the
question and 256 for the answer sentence to im-
prove calculation efficiency. We train the models
for five epochs with a learning rate of 5×10−5 and
evaluate the checkpoint for each epoch. We select
the checkpoint with the highest ROUGE-L score
on the validation set and report its corresponding
score on the test set. We run each model three times
and record the average scores. After performing
manual hyper-parameter searching, we set loss pa-
rameters λ1, λ2, and λ3 in Equation 7 to 1.0, 0.1,
0.1, respectively, which give the best ROUGE-L
score on validation set. The temperature of con-
trastive loss τcl is set to 0.3. The experiments are
run on 1 NVIDIA Tesla V100 GPU. The training
time takes about 48 hours.

4.4 Evaluation Metrics

To evaluate the performance of the models, we use
ROUGE (Lin, 2004) scores, which evaluate the n-
grams recall of generated sentences with reference
sentences, as automatic evaluation metrics (Fan
et al., 2019; Khashabi et al., 2021). We report
the F1 for ROUGE-1, ROUGE-2, ROUGE-L, and
ROUGE-Lsum. ROUGE-1, 2, L measures the uni-
gram, bigram, and longest common subsequence
between the pair of sentences, respectively. The
difference between ROUGE-L and ROUGE-Lsum
is that ROUGE-Lsum splits text using “ \n”. The
higher ROUGE score indicates higher similarity
between generated questions and references.

We further perform human evaluations for the
quality of generated questions in terms of Fluency:
whether the questions are grammatically correct
and fluent; Relevance: whether the questions are
related to the answers; Correctness: whether the
questions can be answered by the answers.

5 Experiment Results

In this section, we answer the four experimental
research questions in turn.

5.1 Generation Performance (RQ1)

First, does the proposed QG framework have good
performance? Table 3 shows the performance of
the proposed closed-book QG model (denoted as
QGours) on the new dataset and two public datasets
compared with the baseline model trained only with
question generation loss (denoted as QGb). We ob-
serve that the proposed framework outperforms the
baseline on three datasets for all ROUGE scores.
For example, the performance increases by up to
2.0%, 2.7%, and 1.8% on the ROUGE-L score, re-
spectively, which means the proposed framework
can generate questions having a longer longest com-
mon subsequence (LCS) with ground-truth ques-
tions. We attribute these improvements to how
contrastive learning pulls the answer representa-
tions closer to the ground-truth questions and thus,
the generated questions have a higher chance to
have similar words, phrases, or sentences with the
ground-truth questions. The results demonstrate
the effectiveness of our proposed QG framework.

Dataset Model R-1 R-2 R-L R-Lsum

WikiCQA QGb 48.39 26.84 46.08 46.16
QGours 49.22 27.79 46.98 47.08

GooAQ-S QGb 44.26 19.73 41.11 41.08
QGours 45.26 20.69 42.20 42.06

ELI5 QGb 28.62 10.10 25.93 26.23
QGours 29.15 10.36 26.40 26.69

Table 3: QG results on three datasets. QGb: baseline
model; QGours: our proposed QG framework.

5.2 Quality of Generated Questions (RQ2)

Next, are the generated questions of good quality?
To answer this question, we perform human evalu-
ation to measure the quality of generated questions
in terms of fluency, relevance, and correctness. We
randomly sample 100 answer-question pairs from
the WikiCQA dataset, which contains answers,
ground-truth questions, and generated questions
from the baseline model and our best model. Then,
we ask three annotators to rate the generated ques-
tion pairs, comparing them with the ground-truth
questions. The generated questions are rated on a 1-
5 scale (5 for the best) from the aspects of the three
aspects above. Further, we calculate the percentage
of questions that have higher ratings in each group.
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Table 4 shows the average scores and the percent-
ages of preferred questions on the three criteria.
Both models are equally good at generating fluent
questions. In terms of relevance and correctness,
our approach shows 1.3% and 2.6% higher scores
than the baseline method. These are consistent with
what we expect: the contrastive learning part pulls
the answer representation closer to the ground-truth
question representation and generates more rele-
vant questions; the reconstruction part can ensure
that generated questions are of good quality and an-
swerable. In addition, among 100 answer-question
pairs, 24.7% and 23.3% of generated questions
from our best model are rated higher while 56.3%
and 57.4% of them have the same rating as those
from baselines, which indicates that there is still
substantial room to improve. To get a sense of the
stability of the human evaluation results, we mea-
sure the inter-agreement among annotators using
the Correlation Coefficient, which is 0.998, 0.944,
and 0.976 in terms of these three aspects, showing
excellent reliability.

Model fluency relevance correctness
score % score % score %

QGb 4.83 8.3 3.84 19.0 3.49 19.3
QGours 4.83 7.3 3.89 24.7 3.58 23.3

Table 4: Results of human evaluation for baseline and
our best model. score: is the average score from raters;
%: represents the proportion of generated questions
from one model that were rated higher than those from
its counterpart.

5.3 Synthetic Data Generation (RQ3)

Further, can this QG framework be leveraged to
generate effective synthetic data that can improve
the closed-book QA task? Data augmentation is
one of the main directions that question generation
has been used for previously, with several stud-
ies finding improvements on the QA task (Lewis
et al., 2019b; Alberti et al., 2019). Here, we show
how to leverage the proposed QG framework to
improve closed-book QA tasks on seen data (Wi-
kiCQA) and unseen data (GooAQ and ELI5). Since
freely available summary data is a good resource
to generate synthetic data (Lyu et al., 2021), we
use WikiSum (Cohen et al., 2021), which contains
39,775 coherent-paragraph summaries written by
the article’s authors on the WikiHow website. We
take each sentence from the article summary as
an answer and pass it into the best QG model, de-
scribed in Section 3.1, to generate a question. Then,

we train an unsupervised QA model based on the
synthetic QA pairs and optimize it by the following
negative log-likelihood loss function:

Lqa = −
N∑

i=1

log p(ai|Q), (8)

where ai is the i-th token in the generated answer
and Q is the question.

In this work, we pre-train a BART-base model
on the 200K synthetic QA pairs that are generated
through the best QG model (denoted as QAs) and
evaluate it on the test set of the seen dataset (Wi-
kiCQA) and unseen datasets (GooAQ-S and ELI5).
This approach is unsupervised since the model is
trained on no labeled question-answer pairs. The re-
sults are summarized in Table 5a, showing 22.4%,
12.5%, and 11.4% improvement than the BART-
base model without any synthetic pre-training (de-
noted as QAb), on WikiCQA, GooAQ-S, and ELI5,
respectively. This shows that pre-training on the
generated question-answer pairs derived from our
QG model leads to significant improvements, echo-
ing findings in previous works that find synthetic
data can be helpful (Khashabi et al., 2021; Lewis
et al., 2021; Ding et al., 2021). After further
fine-tuning on the target training set (denoted as
QAs+f ), from Table 5b we can see that QAs+f

also achieves better results than fine-tuned base-
lines model QAb+f by 3.6%, 0.4%, and 4.3% on
the same three datasets.

Dataset Model R-1 R-2 R-L R-Lsum

WikiCQA QAb 18.41 5.53 14.72 15.98
QAs 24.10 7.07 18.02 20.31

GooAQ-S QAb 18.58 5.80 14.77 15.66
QAs 21.93 6.12 16.62 18.35

ELI5 QAb 12.38 2.19 8.98 10.63
QAs 13.97 2.29 10.00 11.77

(a) Unsupervised QA results.
Dataset Model R-1 R-2 R-L R-Lsum

WikiCQA QAb+f 27.16 7.32 19.85 23.49
QAs+f 28.44 8.14 20.56 24.77

GooAQ-S QAb+f 27.72 7.68 20.08 23.64
QAs+f 28.44 7.73 20.17 24.12

ELI5 QAb+f 22.06 3.93 13.93 19.72
QAs+f 23.37 4.27 14.53 20.88

(b) Semi-supervised QA results.

Table 5: Evaluation on QA tasks. QAs/b: QA model
w/o pre-training on synthetic data; QA∗+f : QA∗ fine-
tuned on target dataset.

5.4 Ablation Study (RQ4)
Finally, we investigate the contribution of each
component in the proposed closed-book QG frame-
work. Table 6 shows the results on the WikiCQA
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dataset. As described in Section 3.2, the contrastive
learning module takes ground-truth questions as
positive pairs to the input answers (denoted as CLt)
We also explore its variant – in which we feed the
same input (answers) to the encoder with different
dropouts to obtain the positive pairs (Gao et al.,
2021) (denoted as CLs). We find that the choice of
CLt is slightly better than CLs in most evaluation
metrics. In addition, by adding the answer recon-
struction (AR) module, the model performance can
be further improved. Thus, we can observe the
effectiveness of the proposed contrastive learning
module and the overall design of the framework.

Models R-1 R-2 R-L R-LSum
QGb 48.39 26.84 46.08 46.16
QGb+CLs 48.67 27.34 46.43 46.46
QGb+CLt 48.72 27.26 46.33 46.41
QGb+CLs+AR 49.26 27.77 46.82 46.88
QGb+CLt+AR 49.22 27.79 46.98 47.08

Table 6: Ablation study of our proposed QG framework
on WikiCQA. CL∗: contrastive learning module; AR:
answer reconstruction module.

6 Case Study

Finally, we showcase some examples of the gen-
erated questions on the WikiCQA dataset. For the
first example in Table 7a, we can see our model
generates “how many” for the statistics-type an-
swer, which is closer to the reference “what percent-
age” than the baseline model, generating a “yes/no”
question. For the second one, although the refer-
ence contains the detailed information “textured
surface” which is not in the answer, our model
captures the information “without nails”, which is
more informative than the baseline model. Thus,
the proposed model can produce better questions
that are more relevant to the answers and contain
more detailed information than questions generated
from baseline models. There are also some cases
where the proposed model fails to generate good
questions shown in Table 7b. Compared with the
reference question “what food can be included on
a clear liquid diet”, our model generates “what can
I eat to lose weight”, which fails in automatic eval-
uation metrics and is hard for annotators to justify
in terms of relevance. For the second one, although
the “broken door” generated from our model is
relevant to the answer, it’s still far from the ref-
erence “door sticking to the weather strip”. The
question generated from the baseline model related
to “bedroom” is even less relevant. These exam-
ples encourage us to explore how to capture more

A The most recent statistics show that around 2.5%
of small businesses are audited by the irs.

QB Are small businesses audited by the irs?
QG How many small businesses are audited by the

irs?
QR What percentage of small businesses are audited?
A Try using poster putty to secure the images in

your collage. if that doesn’t work, you may have
to use nails.

QB How do i put pictures in a collage?
QG How do i make a collage without nails?
QR How can i make a collage on a wall with a textured

surface?

(a) Good examples.
A Foods such as popsicles, hard candy, and gelatin

can be eaten on a clear liquid diet.
QB what can you eat on a clear liquid diet?
QG What can I eat to lose weight?
QR What food can be included on a clear liquid diet?
A You’ll have to remove the door and sand, prime,

and repaint it.
QB What do i have to do to make my bedroom look

nice?
QG How do i fix a broken door?
QR What do i do if my door is sticking to the weather

strip?

(b) Bad examples.

Table 7: Generated question examples. QB : generated
questions from baseline model; QG: generated ques-
tions from proposed QG model; QR: reference ques-
tions.

semantics in the answers and generate questions
that have more detailed information in the future.

7 Conclusion

In this work, aiming to empower a QG model to bet-
ter understand the semantics of long-form abstrac-
tive answers and store more information in its pa-
rameters, we propose a closed-book QG model em-
powered by a contrastive learning module and an
answer reconstruction module. We present a new
closed-book long-form QA dataset – WikiCQA
involving more than 20K real user QA pairs and
show that WikiCQA is a valuable training resource,
complementing public datasets. Through the ex-
periments, the proposed QG model shows better
performance than baselines through automatic and
human evaluations. Moreover, we show how to
leverage the proposed model as a data augmenta-
tion strategy to improve existing closed-book QA
systems. The closed-book QA model, pre-trained
on our generated synthetic QA pairs, achieves bet-
ter performance on the seen dataset (WikiCQA). In
addition, it shows strong generalization on unseen
datasets (GooAQ and ELI5), which further demon-
strates the effectiveness of our QG framework for
enhancing closed-book QA performance.

3157



Limitations

While our model shows promising results on En-
glish datasets, its efficiency and performance in
other languages require further investigation. More-
over, our evaluation is limited to datasets with one-
to-one QA pairs, without considering situations
where multiple answers correspond to a single ques-
tion. Before feeding the input into the model, we
ignore the tokens that exceed the maximum length
we set, which may sometimes bring in an infor-
mation loss for the input corpus. Additionally,
our model is built on transformer architecture and
therefore requires huge computation resources, es-
pecially for large training data sizes. Our focus in
this paper is solely on the closed-book setting and
our experiments center around four research ques-
tions to evaluate the effectiveness of the proposed
framework, which we believe is an essential and
emerging area deserving of specialized research
investigation. In future work, we aim to explore
the feasibility of adapting our framework for other
QG scenarios.
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Appendix A Data Filtering

First, we choose the question-answer pairs where
the questions start with a question-word in the
list [‘how’, ‘what’, ‘can’, ‘is’, ‘do’, ‘why’, ‘are’,
‘does’, ‘where’, ‘when’, ‘should’, ‘will’, ‘did’,
‘which’, ‘who’, ‘would’, ‘if’, ‘about’, ‘for’, ‘as’,
‘could’, ‘in’, ‘after’, ‘at’, ‘while’, ‘to’, ‘am’, ‘has’,
‘any’] and end with a question mark. Then, we
filter out the pairs where the length of answers is
less than 8 tokens or the answers are meaningless.
For the “meaningless” answers we mean, answers
are “please refer to certain website http://xxx” or
“please refer to the article xxx”.

Appendix B Dataset Analysis

To better understand the content of WikiCQA in
comparison with existing QA datasets, Figure 2
shows the distributions of question length, answer
length, and common question word. The ques-
tions and answers are tokenized by BART (Lewis
et al., 2020). From Figure 2a and 2b we could
see more than 80% of the questions in WikiCQA
and GooAQ-S have less than 15 tokens and more
than 90% of answers of them lie in the range of
16-127 tokens while both questions and answers
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Figure 2: Comparison of the distribution of QA length and question types among three datasets.

in ELI5 have a broader range of lengths. By mea-
suring the proportion of the leading unigram that
starts a question (Figure 2c), the dominant pattern
is “how” questions in WikiCQA, while ELI5 has
many “why” questions. We think WikiCQA has
the potential to benefit the community in three
ways. Firstly, its source is unique compared to
the current two closed-book data sources, as it
is collected from the Q&A section of articles on
WikiHow. The questions and answers are related
to the specific articles, asked by WikiHow users
who read the articles and answered by a knowl-
edgeable reader or editor. Secondly, compared
to large-scale QA datasets, WikiCQA has longer
answers and more open-ended questions with a
wider range of question types. Additionally, it
has a different data distribution compared to the
other two datasets, which is crucial for testing the
generalization ability of question-answering mod-
els. Finally, the question-answer pairs within rel-
evant articles in WikiCQA can also be used as
a valuable resource for conversational question-
answering tasks. Our code and data can be found
at https://github.com/dongxiangjue/Closed-book-
Question-Generation-via-Contrastive-Learning.
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Abstract

The event extraction task typically consists of
event detection and event argument extraction.
Most previous work models these two subtasks
with shared representation by multiple classi-
fication tasks or a unified generative approach.
In this paper, we revisit this pattern and propose
to use independent encoders to model event de-
tection and event argument extraction, respec-
tively, and use the output of event detection to
construct the input of event argument extrac-
tion. In addition, we use token-level features
to precisely control the fusion between two en-
coders to achieve joint bridging training rather
than directly reusing representations between
different tasks. Through a series of careful ex-
periments, we demonstrate the importance of
avoiding feature interference of different tasks
and the importance of joint bridging training.
We achieved competitive results on standard
benchmarks (ACE05-E, ACE05-E+, and ERE-
EN) and established a solid baseline.

1 Introduction

Event extraction has always been an important and
challenging task in Natural Language Processing
(NLP) (Sundheim, 1992). It aims to extract event
triggers with specific types and event arguments
with correct roles from unstructured plain texts into
a structured form, which mostly describes “who,
when, where, what, why” and “how” of real-world
events that happened (Li et al., 2021a). For ex-
ample, Figure 1 shows a Meet event, triggered by
"met", which describes the Entity "Kelly" meet
with another Entity "officials" in Place "Seoul".

Previous studies can be roughly classified into
classification-based and generation-based methods
depending on the decoder used. Classification-
based method usually divides EE into two sub-
tasks: (1) Event Detection (ED), which identifies

∗Equal contribution. Yunyue Su contributes during her
internship at Langboat.

⋆Corresponding author.

event triggers and their types. (2) Event Argument
Extraction (EAE) extracts the arguments and their
corresponding roles for given event triggers and
then models them as classification tasks, either
learned in a pipeline framework or a joint formu-
lation. Recently, generation-based event extrac-
tion methods have emerged as an alternative to tra-
ditional classification-based methods due to their
better data-efficient and flexibility to include ad-
ditional guidance. These methods take a sentence
with discrete or continuous prompts as input and
use BART-style backbone learning to summarize
the sentence into a natural sentence based on a
manually designed template. The template is com-
posed of natural utterances describing argument
role labels, which can provide rich label semantics,
leading to great success in generation-based event
extraction.

However, most of these methods simultaneously
learn shared representations for ED and EAE. As
shown in previous works (Nguyen and Grishman,
2015; Lu et al., 2019), ED relies more on lexical
(e.g., lemma, synonyms) and shallow syntactic fea-
tures (e.g., pos tags, dependent and governor words
of trigger words). At the same time, the EAE task
focuses more on syntactic dependency features. For
example, the dependency path between trigger and
arguments (Liu et al., 2018). Simply using shared
representations dealing with the two distinct tasks
would hurt their performance. This phenomenon
is also observed in similar tasks, such as entity re-
lation extraction (Zhong and Chen, 2021), where
they use two different BERTs for modeling entity
extraction and relation extraction, respectively.

To this end, we propose a simple but empirically
powerful hybrid framework for event extraction.
We model ED and EAE using separate encoders to
avoid feature interference between these two tasks.
In addition, we conduct extensive experiments to
investigate the difference between classification-
based and generation-based methods, and we ob-
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Figure 1: The first two figures are the two major paradigms in the field of event extraction, and the third figure is our
paradigm.

serve that (1) Classification-based methods are su-
perior to generation-based methods in modeling
token classification tasks. (2) Generation-based
methods perform better in modeling EAE because
they can capture label semantics. Based on the
observations, we instantiate our model with two
different decoders: a classification-style decoder
for ED and a generation-style decoder for EAE. Fi-
nally, to enhance the interaction between these two
tasks, we design a bridging mechanism to provide
EAE with information derived from ED and a two-
stage training method that uses gradients from EAE
to guide ED learning. We evaluate our model on
three widely used benchmarks, ACE05-E, ACE05-
E+, and ERE-EN. Experimental results show that
our model establishes the new state-of-the-art on
ACE05-E and ACE05-E+, and achieves compara-
ble results on the ERE-EN dataset.

Our contributions can be summarized as follows:

• We first propose a method using separate en-
coders for modeling event extraction that can
avoid feature interference.

• We propose a hybrid classification and gen-
eration method that enjoys the advantages of
both approaches.

• To model the dependency between ED and
EAE, we propose a bridging mechanism and
two-stage training method.

• Experimental results show that our proposed
method can outperform many strong baselines
and achieve new SOTA on ACE05-E, ACE05-
E+ 1 .

1Our codes are publicly available at https://github.
com/OPilgrim/TDE-GTEE

2 Related Work

Event extraction is usually considered to be com-
posed of two sub-tasks: event detection and event
argument extraction. Previous researchers are keen
to use a shared encoder to model the contextual
representation of different tasks. We group existing
event extraction methods into classification-based
and generation-based.

Classification-based Method. Classification-
based methods tend to model event extraction as a
classification task (Mekala and Shang, 2020; Guo
et al., 2021; Xiao et al., 2021; Liu et al., 2020;
Du and Cardie, 2020b; Li et al., 2020a; Ma et al.,
2022) and deal with the recognition of trigger and
arguments separately (Ji and Grishman, 2008), e.g.,
Liang et al. (2020) only consider the event detec-
tion and Chen et al. (2015) only consider the extrac-
tion of event arguments. Some previous works (Li
et al., 2013) have tried to joint training these two
tasks to enhance the connection between them, and
Yang and Mitchell (2016); Nguyen et al. (2016);
Liu et al. (2017, 2018); Lin et al. (2020a) all try
to enhance the effect of joint training by adding as
much entity and relation information as possible.
The difference lies in their shared encoding layers.
For example, Liu et al. (2017, 2018) used CNN and
Bi-RNN successively, while Wadden et al. (2019a);
Lin et al. (2020a) used graph structure. In addi-
tion, some works (Ramponi et al., 2020; Du and
Cardie, 2020a; Yang et al., 2018) solve the event
extraction in sequence labeling manner (Chen et al.,
2020; Gui et al., 2020; Jiang et al., 2021) by tag-
ging the sentence only once, which may not solve
the overlapping problem.

Generation-based Method. In contrast to
classification-based methods, the main goal of
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generation-based methods is to use a common struc-
ture to uniformly model various tasks, including
event detection and event argument extraction. The
output structure can be a sentence filled with slot-
ted templates (Li et al., 2021b; Du et al., 2022),
or some linearly serialized tree structure (Lu et al.,
2021a, 2022). Paolini et al. (2021) even constructed
an end-to-end translation directly. Generative mod-
els can leverage richer prior knowledge. However,
the accuracy is not high in classification problems.
We think that the generative model may pay more
attention to global features and ignores local de-
tails. Based on that, several recent works (Hsu
et al., 2021; Liu et al., 2022a) use prompt-based
approaches to force the model to focus on specific
pieces of information to control its output for dif-
ferent event types.

Unlike previous works, we argue that the contex-
tual representation of tasks is different, and shar-
ing one contextual representation will harm the
model’s performance. So we use independent en-
coders to learn the contextual representation of
each task. In addition, since tasks are not entirely
independent, increasing the interaction between
tasks will be conducive to improving each other;
we achieve it through a bridging mechanism and a
two-stage training method.

3 Method

3.1 Problem Definition

The input of the problem is a sentence C con-
sisting of N tokens c1, c2, ..., cN . Let E =
{e1, e2, ..., eM} denotes a set of pre-defined event
types. The event extraction problem can be decom-
posed into two sub-tasks:

Event Detection (ED). Event detection aims to
identify possible event mentions in the input se-
quence. We define that each pair of (ci, ej) refers
to an independent event mention and the event de-
tection is, for each token ci ∈ C, to predict an
event type ye(ci) ∈ E or ye(ci) = ϵ representing
token ci is not a trigger. The output of the task is
Ye = {(ci, ej)|ci ∈ C, ej ∈ E}.
Event Argument Extraction (EAE). Event ar-
gument extraction aims to identify all entities in-
volved in an event mention (ci, ej). Let s =
{s1, s2, ..., st} to be a set of candidate entity spans,
andRj denotes a set of predefined argument roles
in event ej . The event argument extraction is, for
each span si ∈ s, to predict a argument role type

yr(si) ∈ Rj , or span si is not an argument belongs
to event ej : yr(si) = ϵ. The output of the task is
Yr = {(si, ri, ej)|si ∈ s, ri ∈ Rj , ej ∈ E}.

3.2 Our Approach
In this section, we introduce our proposed method,
HDGSE3 (the Hybrid Detection and Generation
framework with Separate Encoders for Event
Extraction), based on the overall architecture of
Figure 2.

Event Trigger Detection. We use BERT as the
backbone of our detection model and treat it as a
token-level multi-classification task, which makes
the model learn the different probabilities of each
event type (Li et al., 2021b). As we mentioned in
Section 2, the sequence annotation method based
on CRF cannot solve the span coverage problem,
so we did not implement this scheme. Given the
input sequence C = {c1, ..., ci, ..., cN}, the detec-
tion model will detect all possible trigger tokens
{ci, |i ∈ {i}Ni=1} and their corresponding event
type {ej , |j ∈ {j}Mj=1} as mentioned in Formula 1,

labelci =

{
0, ci is not a trigger,

j, ci is trigger for event type j.
(1)

where N is the length of C and M is the number of
event types in ontology O 2 . Each pair of (ci, ej)
indicates the hit of an event {Ek|k ∈ {k}Kk=1},
where K denotes the number of events in C. Then
the generative model extracts arguments for each
event Ek in turn.

Generative Argument Extraction. After detect-
ing the candidate event triggers, the argument ex-
traction task is divided into several subtasks ac-
cording to the detected triggers and event types,
and each subtask is an event mention. We pro-
cess each event mention independently with a gen-
erative approach and insert markers at the input
sequence to highlight the trigger. The generative
model is based on BART, and the lower part of
Figure 2 shows the detailed structure. Specifically,
for subtask SEk,C , the input X of the generative
model includes the event type aware prompt Pej
and context C′ = {c1, ...,<trg>, ci,</trg>, ..., cN},
where the trigger ci is marked by two special tokens
"<trg>" and "</trg>" to provide trigger position in-
formation for the corresponding subtask. Given

2We follow Li et al. (2021c) and reuse RAMS AIDA ontol-
ogy and the KAIROS ontology as the ontology for ACE05-E,
ACE05-E+ and ERE.
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Figure 2: Illustration of our end-to-end joint event extraction framework. Given an input sequence, the detector first
detects several candidate triggers and classifies their event types. Then, the generator generates filled template from
the trigger-marked input and finally parses the arguments through a deterministic algorithm. During generation, the
contextual representation of the trigger that the detector learns is fused into the generator.

the previous generated tokens y<i and the input X ,
the BART models the conditional probability of
selecting the next token yi as p(yi|y<i,X ), and the
entire probability p(Y|X ) is calculated as

p(Y|X ) =
|Y|∏

i=1

p(yi|y<i,X )

X = [Pej ; [SEP ]; C′]
Y = Aej

(2)

, where [; ] denotes the sequence concatenation op-
eration and [SEP ] is the corresponding separate
marker in the BART, Aej is the answered prompt.

Similar to generative template-based method
GTEE(Liu et al., 2022b), the prompt Pej for sub-
task SEk,C contains the type instruction Iej and the
template Tej . The type instruction is an indication
of the event type described by natural language,
and the template describes the expected output for-
mat, including several placeholders, reflecting how
the arguments participant in the event. Take Fig-
ure 2 as example, the generative model’s input is
type instruction "Event type is Meet", template
"<arg> met with <arg> in <arg> place", and
content concatenated with separator. The ground
truth Gej is "Kelly met with officials in
Seoul place", where the placeholder "<arg>" is
replaced by the corresponding argument "Kelly",
"officials", and "Seoul". Each event type has
its own template and we follow Li et al. (2021b) to

reuse the pre-defined argument templates.

Bridging Event Detection and Event Argument
Extraction. Our proposal to independently learn
contextual representations for ED and EAE does
not mean that the two tasks are not connected; ar-
gument extraction directly depends on determining
event types and triggers. So to enhance the inter-
action between them, we bridge the two tasks by
trigger: first, as mentioned in the previous section,
we highlight the trigger in the input of EAE, which
provides the location information; the second is
to fuse the context information of triggers into the
EAE model, which is the focus of this section. Both
kinds of information provide the EAE model with
prior knowledge of events. Specifically, for the trig-
ger token ci, its hidden state in BERT’s last hidden
layer is hci , and its input embedding in BART is
Emb(ci). A semantic transformation is performed
by multiplying the hci by the projection matrix P
to obtain the projected vector vci = hciP as con-
textual representations, where P can be learned by
fully connected networks. We refer to this opera-
tion as "Mapping", as illustrated in Figure 2. Then,
we add vci and Emb(ci) directly. Another appro-
priate method is sufficient to directly use the vector
vci to initialize the embedding representation of
trigger markers. We conduct comparative exper-
iments against these two appropriates in Section
5.2.

Training and Inference. In this paper, we design a
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two-stage training approach: (1) In the first step, we
first train ED and EAE separately so that they can
learn the contextual representation independently.
(2) In the second step, to overcome the error prop-
agation problem of the pipeline, we continue to
use joint training to optimize the global loss based
on the model trained in the first step and use the
gradient of EAE to guide the optimization of ED.

Mathematically, The trainable parameters of our
model include ϕ andφ, which come from the BERT
and BART respectively. The training objective of
the detection model is to minimize the focal loss
(Lin et al., 2017) between each token’s predicted
label and the golden label:

Lϕ(C) =
N∑

i=1

−(1− pci,ej )γlog(pci,ej ) (3)

And the training objective of the argument extrac-
tion model is to minimize the negative loglikeli-
hood over all subtasks SEk,C of the input sample
C:

Lφ(C) = −
K∑

k=1

log p(Gej ,C′k |Xej ,C′k)

Xej ,C′k = [Pej ; [SEP ]; C′k]
C′k = {c1, ...,<trg>, ci,</trg>, ..., cN}

(4)

Finally, during the joint bridging training phase,
the loss of the whole model is:

L(D) =
|D|∑

t=1

(Lϕ(Ct) + Lφ(Ct)) (5)

Implementation details are shown in Appendix B.

4 Experiment

4.1 Setup
Datasets. We evaluate our methods on three
widely used event extraction benchmarks, ACE05-
E, ACE05-E+ and ERE-EN. Both of the ACE
datasets are from the Automatic Content Extraction
2005 (ACE 2005) dataset constructed by Dodding-
ton et al. (2004), and the ERE-EN is from ERE
dataset (Song et al., 2015). All their details can be
found in Appendix A.

Evaluation Metrics. We consider the same criteria
following prior works (Liu et al., 2022b; Hsu et al.,
2021; Lu et al., 2021b) and report the Precision P,
Recall R and F1 score F1 of trigger and argument.

Meanwhile, we consider that a trigger is correctly
identified if its offset matches the ground truth (Trg-
I) and is correctly classified if its event matches
the ground truth as well (Trg-C). In the same way,
we consider an argument is correctly identified if
its offset matches the ground truth (Arg-I) and is
correctly classified if its event type and role label
all matches the ground truth as well (Arg-C).

Compared Baselines. We consider several repre-
sentative works as our baselines, including both
classification-based and generation-based methods,
and some of their implementation details are listed
in Appendix B.

we consider the following classification-based
models:

• DYGIE++(Wadden et al., 2019b), a BERT-
based model learns shared span representa-
tions between multi-tasks and updates span
representations through dynamic graph propa-
gation layers.

• GAIL(Zhang et al., 2019), a RL model jointly
extracting entity and event.

• OneIE(Lin et al., 2020a), an end-to-end IE
system that employs designed global feature
and beam search, was state-of-the-art.

• BERT_QA(Du and Cardie, 2020c), an MRC-
based model views EE tasks as a question-
answering problem with multi-turns of sepa-
rated QA pairs and learns a classifier to indi-
cate the position of the predicted span.

• MQAEE:(Li et al., 2020b), a multi-turn ques-
tion answering system.

We also consider the following generation-based
models:

• TANL:(Paolini et al., 2021), a method treats
EE tasks as translation tasks in a trigger-
argument pipeline.

• BART-GEN(Paolini et al., 2021), a template-
based conditional generation method to gener-
ate corresponding arguments in a predefined
format.

• TEXT2EVENT(Lu et al., 2021b), a
sequence-to-structure generation method that
converts the input sequence to a tree-like
event structure.
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• DEGREE-E2E(Hsu et al., 2021), an end-to-
end conditional generation method that uses
natural sentences as discrete prompts, which
makes it easier for them to leverage label se-
mantics.

• GTEE-DYNPREF(Liu et al., 2022b), an end-
to-end conditional genration method with dy-
namic prompts and trained with prefix-tuning.

4.2 Main Results

For each dataset, we train our model with 5 dif-
ferent random seeds, and report the means of the
corresponding results.

Table 1 compares our approach HDGSE3 with
all the baselines on ACE05-E, while Table 2 illus-
trates the results compared with the state-of-the-art
on ACE05-E+ and ERE-EN. As shown, our model
achieves strong performance and outperforms all
the baselines on two datasets of ACE 2005. At the
same time, our model also performs competitively
on ERE-EN, second only to GTEE-DYNPREF (Lin
et al., 2020b).

For event detection, our model achieves an ab-
solute Trg-C F1 improvement of +5.8%, +2.9%
on ACE05-E and ACE05-E+ respectively com-
pared to DEGREE-E2E (Lin et al., 2020b) and
GTEE-DYNPRE (Liu et al., 2022b) that also uti-
lizes joint training but use the generative method for
ED, indicating that the classification-based method
has more advantages in event detection than the
generative-based method. On the other hand, our
model also shows a significant improvement over
the classification-based methods, e.g., a gain of
4.3% on ACE05-E compared to ONEIE (Lin et al.,
2020b). As we will show later in our experiments,
part of this improvement is due to the bridging
mechanism.

For event argument extraction, our approach out-
performs the previous best methods, ONEIE (Lin
et al., 2020b) and DEGREE-E2E (Lin et al., 2020b),
with absolute Arg-C F1 gains of +1%, +1.4% on
ACE05-E, ACE05-E+ respectively. Moreover, it
outperforms the best generative method DEGREE-
E2E (Lin et al., 2020b) on ACE05-E and ERE-EN
with absolute Arg-C F1 gains of +2%, +3.9% .
Such improvements demonstrate the effectiveness
of maintaining different contextual representations
for ED and EAE, and incorporating trigger infor-
mation into the EAE model. Although our model
performs second only to GTEE-DYNPRE (Liu
et al., 2022b) on ERE-EN, it outperforms GTEE-

DYNPRE on all other datasets, indicating that our
model has better robustness on different datasets.

5 Analysis

5.1 Selection of Task Models

We further investigated the impact of using
classification-based or generation-based models for
the ED task and the EAE task, respectively, to gain
insight into the advantages and disadvantages of
these two approaches for event extraction tasks.

Event Detection: Classification vs Generative.
We first compare the two paradigms on the event
detection task and list the results in Table 3. The
experimental details can be found in Appendix
B. We observe that the generation-based model
is significantly worse than the classification-based
model on this task. One possible reason is that
generation-based models pay more attention to the
global features of sentences and have fewer advan-
tages in ED, which require trigger tokens and their
local context. Moreover, the classification-based
model can directly provide the location of trigger
spans, which is more helpful for EAE. Therefore,
the classification-based paradigm is more suitable
for the ED task than the generation-based one.

Table 3: The event detection results of the classification-
based and generation-based approach.

ED Paradigm ACE05-E ACE05-E+ ERE-EN
Trg-I Trg-C Trg-I Trg-C Trg-I Trg-C

Classification-based 81.9 77.8 80.8 76.9 75.9 65.7
Generation-based 67.8 45.3 66.8 45.6 61.4 37.1

Event Argument Extraction: Classification vs
Generative. We eliminated the trigger detection
task in order to investigate the impact of different
paradigms on event argument extraction. Given
golden triggers as input, we implemented several
classification and generation paradigm baselines
for EAE. The experimental results are shown in Ta-
ble 4. The generative approach performs as well as
the classification-based model under the standard
setting (with trigger marker). And several template-
based generative approaches, such as GTEE-BASE
(Liu et al., 2022b), BART-GEN (Li et al., 2021b),
DEGREE-EAE (Lin et al., 2020b) and HDGSE3,
perform significantly better.

In particular, DEGREE-EAE performs best un-
der the gold trigger marker setting. This is mainly
due to the fact that DEGREE-EAE incorporates
more knowledge of events in the prompt design,
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Table 1: Results on ACE05-E for event extraction. The first group is the classification-based methods, and the
second is the generation-based methods. For each group, we bold the highest F1 scores for Trg-C and Arg-C, and
the second highest is bold in italics.

Model Trg-C Arg-C
P R F1 P R F1

classification-based

DYGIE++ (Wadden et al., 2019b) - - 69.7 - - 48.8
GAIL (Zhang et al., 2019) 74.8 69.4 72.0 61.6 45.7 52.4
ONEIE (Lin et al., 2020b) - - 74.7 - - 56.8
BERT_QA (Du and Cardie, 2020c) 71.1 73.7 72.3 56.8 50.2 53.3
MQAEE (Li et al., 2020b) - - 71.7 - - 53.4
generation-based

TANL (Paolini et al., 2021) - - 68.5 - - 48.5
BART-GEN (Li et al., 2021b) 69.5 72.8 71.1 56.0 51.6 53.7
TEXT2EVENT (Lu et al., 2021b) 67.5 71.2 69.2 46.7 53.4 49.8
DEGREE-E2E (Hsu et al., 2021) - - 73.3 - - 55.8
GTEE-DYNPREF (Liu et al., 2022b) 63.7 84.4 72.6 49.0 64.8 55.8
HDGSE3 76.1 82.1 79.0 55.3 60.4 57.8

Table 2: Results on ACE05-E+ and ERE-EN for event extraction. We bold the highest F1 scores for Trg-C and
Arg-C, and the second highest is bold in italics.

Model
ACE05-E+ ERE-EN

Trg-C Arg-C Trg-C Arg-C
P R F1 P R F1 P R F1 P R F1

ONEIE 72.1 73.6 72.8 55.4 54.3 54.8 58.4 59.9 59.1 51.8 49.2 50.5
TEXT2EVENT 71.2 72.5 71.8 54.0 54.8 54.4 59.2 59.6 59.4 49.4 47.2 48.3
DEGREE-E2E - - 70.9 - - 56.3 - - 57.1 - - 49.6
GTEE-DYNPREF 67.3 83.0 74.3 49.8 60.7 54.7 61.9 72.8 66.9 51.9 58.8 55.1
HDGSE3 75.5 79.0 77.2 57.6 57.8 57.7 64.5 67.9 66.1 54.5 52.6 53.5

such as "Event Type Description" and "Event Key-
words". Interestingly, our final results on EE are
better than DEGREE-EAE because (1) DEGREE-
EAE uses a generative paradigm in the event detec-
tion task, (2) shares the contextual representation
of the encoder between two tasks, which indirectly
proves the correctness of our hypothesis.

5.2 Effect of Bridging Mechanisms

We mentioned in Section 3.2 that trigger marker
and contextual representation fusion were used to
establish a bridge connection for the two indepen-
dent encoders. This section will look closely at
these two components to see how they affect our
model.

We remove the possible connection modules be-
tween two independent encoders under the settings
of Joint and Pipeline, respectively, and present the
experimental results in Table 5. It can be seen that
removing the trigger marker causes significant dam-
age to the model under both training paradigms. Al-
though contextual representation can also improve
the model’s performance, the overall improvement

space is not as ample as the trigger marker. Fur-
ther, when we remove both of them, as shown in
Table 5, the F1 score of Trg-C remains at a very
high level for the three datasets, which are still
SOTA at ACE05-E and ACE05-E+. However, at
the same time, the F1 of Arg-C is significantly
reduced and no longer SOTA. These phenomena
show that the effect of ED representing the upper
bound of EAE and the bridging mechanism can
help EAE approach this upper bound and even im-
prove the result of ED in reverse. That is where the
main contribution of the bridging mechanism lies.

From another point of view, when only compar-
ing the training paradigms, it can be found that loss
sharing during joint training can significantly im-
prove the model’s overall performance, so the Joint
results are generally better than those of Pipeline,
which proves the effectiveness of our two-stage
training program.

We also design several contrast schemes for the
fusion way of contextual representation. In Section
3.2, we discussed two approaches, one is to assign
the mapped contextual representation to the trigger
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Table 4: Results of event argument extraction. Models predict arguments based on the given gold triggers. *We
report the numbers from the original paper. †We reproduce the results.

Model Type ACE05-E ACE05-E+ ERE-EN
Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C

DyGIE++* Cls 66.2 60.7 - - - -
BERT_QA* Cls 68.2 65.4 - - - -
OneIE* Cls 73.2 69.3 73.3 70.6 75.3 70.0
GTEE-BASE † Gen 70.1 67.2 67.3 63.6 72.3 66.8
BART-GEN † Gen 66.9 66.7 70.0 66.8 74.6 69.2
TANL* Gen 65.9 61.0 66.3 62.3 75.6 69.6
DEGREE-EAE* Gen 76.0 73.5 75.2 73.0 80.2 76.3
HDGSE3 Gen 73.8 70.2 72.1 69.0 76.4 72.0

Table 5: Ablation study for the effectiveness of trigger marker and fused contextual representation.

Insert Setting (Trained ED) ACE05-E ACE05-E+ ERE-EN
Trg-I Trg-C Arg-I Arg-C Trg-I Trg-C Arg-I Arg-C Trg-I Trg-C Arg-I Arg-C

HDGSE3 (Joint) 83.0 79.0 60.1 57.8 81.1 77.2 60.2 58.2 76.4 66.1 56.5 53.5
- remove marker trigger 83.0 78.2 58.8 56.9 80.8 76.9 57.6 55.7 75.1 64.9 53.8 50.2
- remove context fusion 82.1 78.0 59.1 56.6 80.8 76.9 58.2 56.1 75.2 65.3 55.8 52.4
- remove both 82.1 78.0 58.6 56.1 80.8 76.9 57.6 55.6 75.0 64.7 53.5 49.9
HDGSE3 (Pipeline) 77.9 74.2 55.4 53.5 79.2 75.7 56.0 53.3 73.4 62.1 52.0 48.8
- remove marker trigger 77.9 74.2 40.5 38.6 79.2 75.7 46.5 44.7 73.4 62.1 29.7 28.6

marker, and the other is to directly add with the trig-
ger representation learned by the language model
during pre-training. In addition to the above two,
we further explore what results can be obtained by
directly fusing the contextual representation with-
out mapping. Table 6 lists the experimental results.
Note that directly fusing the contextual represen-
tation of ED and EAE without mapping causes
significant damage to the model, which is even
worse than the direct deletion of the contextual rep-
resentation in Table 5. That proves the contextual
representations learned by ED and EAE are differ-
ent and preferably not directly shared. On the other
hand, the performance of mapped contextual repre-
sentations is almost the same regardless of whether
they are fused with trigger markers or triggers. We
believe this is because contextual representations
provide more semantic information, which is not
affected by the difference in fusion objects.

Table 6: Study on the fusion form of contextual rep-
resentation. Models predict arguments based on the
predicted trigger.

HDGSE3 (Joint) ACE05-E ACE05-E+ ERE-EN
Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C

trigger marker 60.3 57.8 59.5 57.3 56.5 53.5
- w/o mapping 59.0 56.5 59.9 57.7 55.1 51.7
trigger 60.1 57.8 60.2 58.2 56.5 53.5
- w/o mapping 58.6 55.4 58.0 55.5 55.0 50.2

5.3 Prompts and Templates

Generative-based event extraction methods tend to
be sensitive to the prompts and templates used (Liu
et al., 2022a). Since our model adopts a generative
method for EAE, we further investigated the robust-
ness of our model when using different prompts
and templates.

Necessity of Type Instruction. We first consider
replacing the static type instruction such as "The
Event Type is Meet" but still providing explicit
event type information to the model. So we refer
to Zhong and Chen (2021) and use <trigger:Event
type> and </trigger:Event type> instead of the orig-
inal type instruction. The experimental results in
Table 7 show that using sentences in natural lan-
guage to describe event types will perform better
than replacing them with tokens. Therefore, we
still keep this setting in our experiments.

Table 7: Study on the necessity of type instruction. r/
stands for replace, and we replaced type instruction with
<trigger:Event type> and </trigger:Event type>.

HDGSE3-EAE (Gold Trg) ACE05-E ACE05-E+ ERE-EN
Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C

w/ Type Instruction 73.8 70.2 72.1 69.0 76.4 72.0
r/ Type Instruction 72.8 69.9 71.6 67.4 75.0 69.4

Sensitivity to Template Design. Our method
requires templates with slotted values to assist
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EAE, so we designed several templates to explore
whether the model is robust under different tem-
plate Settings. We designed three types of tem-
plates from low to high semantic integrity and the
detailed construction details can be found in Ap-
pendix C. We put all three types of templates in-
volved in ACE 2005 and ERE-EN in Tables 13
and 14, and the Table 8 show the experimental re-
sults. Templates without semantics perform worst,
indicating that the model is still sensitive to the tem-
plate’s design. However, the weak and strong se-
mantic integrity results are close, indicating that the
model still has good robustness to sentences with
certain linguistic logic. Weak semantic integrity
templates can ensure the model’s performance,
whether manually designed or model-generated.
The experiments in this paper are all done based
on templates with weak semantic integrity, and we
leave generating templates from models for the
future.

Table 8: Study on the effect of different template con-
structing rules. Models predict arguments based on the
given gold trigger.

HDGSE3-EAE (Gold Trg) ACE05-E ACE05-E+ ERE-EN
Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C

No semantic integrity 67.7 64.2 66.3 63.0 74.9 70.2
Weak semantic integrity 73.8 70.2 72.1 69.0 76.4 72.0
Strong semantic integrity 73.1 70.4 70.7 69.1 76.6 71.5

6 Conclusion

In this paper, we revisit the classification-based and
generation-based event extraction methods and em-
pirically propose a simple but robust hybrid event
extraction scheme. Our model learns two indepen-
dent encoders for event detection and event argu-
ment extraction and uses simple trigger marker and
contextual representation fusion to bridge training
jointly, for which we devise a two-stage training
approach. We conduct extensive analyses to un-
derstand the superior performance of our approach.
These analyses verify the effectiveness of using
the classification model and the generative model
to learn the contextual representation of event de-
tection and event argument extraction separately
and validate the importance of taking the result of
event detection as the input of event argument ex-
traction. We hope this simple model will serve as a
strong benchmark for end-to-end event extraction
and make us rethink the value of a shared represen-
tation of multi-tasks.

Limitations

Our findings in this paper only verified in event
extraction. It will be more exciting and valuable
if migrated to other multi-task problems. We will
leave that for future work.
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A Datasets

ACE 2005 has 599 annotated English documents,
33 event types, and 22 argument roles. ERE
contains 458 English documents, 38 event types,
and 21 argument roles. Following previous work
(Zhang et al., 2019; Wadden et al., 2019b; Du
and Cardie, 2020c; Lin et al., 2020b; Lu et al.,
2021b; Hsu et al., 2021), we use the same prepro-
cess method and obtain three datasets, ACE05-E,
ACE05-E+, and ERE-EN, shown in Table 9. Com-
pared to ACE05-E, both ACE05-E+ and ERE-EN
contain pronoun roles and multi-token event trig-
gers.

Table 9: Dataset statistics.

Dataset Split Sents Events Roles

ACE05-E
Train 17,172 4202 4859
Dev 923 450 605
Test 832 403 576

ACE05-E+
Train 19,216 4419 6607
Dev 901 468 759
Test 676 424 689

ERE-EN
Train 14,736 6208 8924
Dev 1209 525 730
Test 1163 551 822

B More Implementation details

Main Settings.

Table 10: Hyperparameters for two-stage of training,
with the first phase being separate independent training
for the two tasks and the second phase being joint bridg-
ing training.

Name Independent Training Joint Bridge Training

ED (BERT) EAE (BART) EE (BERT+BART)

Learning rate 2e-5 2e-5 5e-7
Batch size 1*32 1*32 1*32
Epochs 40 40 30
Max sequence length 185 | 325 Id. Id.
Max output length - 50 Id.
Weight decay 1e-5 1e-5 1e-5
Gradient clip 5.0 5.0 5.0
Warm-up ratio 10% 10% 10%
Loss Focal Cross-entropy -
Focal gamma 3 - -
Gen loss - Sum -

We used the hugging face implementation of
BERT-large and BART-large and optimized our
models by AdamW (Loshchilov and Hutter, 2019).
In addition, we use the two-layer fully connected
layer with tanh as the intermediate activation func-
tion as the mapping function for the contextual
representation. The dimension of the hidden layer
is 1024. GELU (Hendrycks and Gimpel, 2016)

also activates the output before being added to the
other representations.

We first train the two models independently so
that they can learn the contextual representation
of event detection and event argument extraction
tasks, respectively. Then in the joint bridging train-
ing stage, we also set different learning rates for
different models. However, because their loss has
decreased to the same magnitude in the process of
independent training, the final learning rates ob-
tained through grid search are the same size. We
optimized the parameters with grid search, in the
independent training: training epoch 40, learning
rate ∈ {1e-5, 2e-5, 1e-4}, training batch size with
gradient accumulation ∈ {1*8, 1*32, 1*64}, fo-
cal loss gamma ∈ {1, 2, 3, 4, 5}, generation loss
∈ {mean, sum}. As for the joint bridge training,
we only used grid search to find the optimal learn-
ing rate ∈ {5e-8, 5e-7, 5e-6, 2e-5} and fixed other
parameters: training epoch 30, training batch size
with gradient accumulation 1*32, focal loss gamma
3, generation loss "sum." Table 10 shows the final
optimal parameter combination. Each experiment
was conducted on NVIDIA GeForce RTX 3090
Core GPU 24GB. It is worth noting that the ERE-
EN dataset has more noise than ACE 2005, so the
model needs a larger learning rate on ERE-EN than
that in ACE 2005. In other words, when trained
independently on the ERE-EN dataset, the learn-
ing rates of BERT and BART are 3e-5 and 4e-5,
respectively. In joint bridge training, the learning
rates are 7e-7 and 8e-7, respectively.

While Inferring, our generative model generates
sequences by greedy search, and the maximum se-
quence length is set according to dataset statistics,
which is a bit larger than the length of the longest
ground truth, for ACE05-E, ACE05-E+, ERE-EN,
its 50 tokens. As for the input length, the ACE05-E
and ACE05-E+ are 185 tokens, the ERE-EN is 325
tokens, and the detection model is consistent with
the generative model. Besides, we parse the event
records by template matching and slot mapping
according to the ontology O, as shown in Algo-
rithm 1.

Reproduce Baselines. Among the baselines we
selected, we tried to reproduce BERT_QA, BART-
GEN, DEGREE, and GTEE-BASE. They all got
similar results to those in the original paper report
except for DEGREE and BERT_QA. Therefore,
we used the experimental results reported in (Li
et al., 2021b) and (Lin et al., 2020b) in Section 5.1,
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while the above two models used our experimental
results. The hyperparameter Settings are listed as
follows:

Table 11: Hyperparameter Settings for BART-GEN for
our implementation and given in the original paper.

Parameter Li et al. (2021b) Our Implementation

Base model BART-large BART-large
Learning rate [1e-5, 3e-5] 2e-5
Scheduler Linear (without warmup) Id.
Batch size 2*8 4*4
Max sequence length 512 512
Training epochs [3,6] 20
Beam size 4 4

Algorithm 1 Extracting arguments from predicted
template

Input: Predicted template PT , Predefined tem-
plate GT , event type E , Predefined Ontology
O {e.g. PT is “Kelly met with officials in
Seoul place”, GT is “<arg1> met with <arg2>
in <arg3> place”}

1: Initialization: predicted argument list A, the
pointers pptr ← 0, tptr ← 0

2: Split PT and GT into token lists, and ensure
that <arg\d*> is a whole

3: while pptr < |PT | and tptr < |GT | do
4: if GT [tptr] is <arg\d*> then
5: n← \d*
6: role_name = O [E ] [n]
7: end if
8: if PT [pptr] is <arg> then
9: pptr ← pptr + 1, tptr ← tptr + 1

10: else
11: argstart = pptr, nxtptr = pptr + 1
12: while nxtptr < |GT | do
13: if GT [nxtptr] == <arg\d*> then
14: Break
15: end if
16: nxtptr ← nxtptr + 1
17: end while
18: while pptr < |PT | do
19: if PT [pptr] == GT [tptr + 1] and

PT [pptr : pptr + nxtptr − tptr − 1] ==
GT [tptr + 1 : nxtptr] then

20: Break
21: end if
22: pptr ← pptr + 1
23: end while
24: A∪[E ,PT [argstart : pptr] , role_name]
25: end if
26: end while
Output: A

Table 12: Hyperparameter Settings for GTEE-BASE for
our implementation and given in the original paper.

Parameter Liu et al. (2022b) Our Implementation

Base model BART-large BART-large
Learning rate 1e-5 2e-5
Batch size 32*8 4*8
Max sequence length - 185 | 320
Max output length - 78 | 100
Training epochs 40 40
Weight decay 1e-5 1e-5
Gradient clip 5.0 5.0
Warm-up ratio 10% 10%
Negative sample ratio 4% 3%

• BART-GEN. We follow the settings of the
original paper when reproducing BART-GEN.
However, there are some differences, and we
list them in Table 11. In addition, since Li
et al. (2021b) only implemented ACE05-E,
we set the learning rate by referring to our
model when implementing ACE05-E+ and
ERE, and other parameters were unchanged.

• GTEE-BASE. Since Liu et al. (2022b) have
not open-sourced the code, we reproduced
GTEE-BASE by ourselves with the hyperpa-
rameter settings shown in Table 12. Here, our
negative sample ratio is 1

evet type num , which
means that ACE05-E and ACE05-E+ are 1

33
because they have 33 event types, and ERE-
EN is 1

38 because it has 38 event types. They
all round off to a ratio of about 3%.

The hardware environment of these experiments
is the same as that of HDGSE3, as mentioned in
the previous paragraph. On the other hand, the
python environment is strictly set up according to
the requirements of open-source codes.

Event Detection. In Section 5.1, we implement the
classification-based and generation-based methods
on the event detection task. As the classification-
based approach, we used the event detection model
of our HDGSE3 in Section 3.2. Meanwhile, we
use a template-based generative model for the
generation-based approach, analogous to our event
argument extraction model, but with templates and
no prompts. We concatenate multiple templates
for input sequences with multiple event mentions
so that the model generates all event mentions se-
quentially. The template we used here was "Event
type: <event> Trigger: <trg>." The experimental
hyperparameters are consistent with those of main
settings.
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C Template Constructing

In this section, we show the three templates men-
tioned in Section 5. Their construction strategy is
as follows:

• No semantic integrity. The first template
is the least semantically complete; we take
the role’s name as a hint and add it be-
fore the argument slot, while the order of
argument placement is random. For exam-
ple, "Agent <arg1> Person <arg2> Place
<arg3>". This template can only tell us the
Justice:Release-Parole event’s argument
roles, but it does not form a natural sentence
and has no semantic information.

• Weak semantic integrity. The second type
of template maintains weak semantic integrity,
and we use ontologies predetermined by Li
et al. (2021c) as such templates, such as
"<arg1> released or paroled <arg2> in <arg3>
place". We can roughly understand that this is
an Justice:Release-Parole event because
the template mentions the two keywords "re-
leased or paroled." But this type of template
misses the subject and role information, and
the model may be confused. For example,
"<arg1>" is not restricted to "Person" in the
template, and the model may be likely to pre-
dict an "Institution" for it. Hence, the seman-
tics of this kind of template is incomplete.

• Strong semantic integrity. The third tem-
plate combines the advantages of the above
two templates. It hints at the roles and ensures
the sentence’s semantic integrity. We refer to
"APEX" defined by Wang et al. (2022), con-
sider all roles to paraphrase each event, and
arrange argument slots after each role, e.g.,
"an Entity <arg1> ends its custody of a Person
<arg2> at a Place <arg3>". The sentence is
semantically complete after removing slots.

ACE 2005 and ERE-EN are listed in Table 13 and
Table 14, respectively.
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Table 13: All templates of ACE05-E and ACE05-E+ used in the main and ablation experiments in this paper.

Event Type Template

Movement:Transport
1 <arg1> transported <arg2> in <arg3> vehicle from <arg4> place to <arg5> place
2 Agent <arg1> Artifact <arg2> Vehicle <arg3> Origin <arg4> Destination <arg5>
3 an Agent <arg1> moves an Artifact <arg2> from Origin <arg4> to Destination <arg5> with Vehicle <arg3> at Price

Personnel:Elect
1 <arg1> elected <arg2> in <arg3> place
2 Entity <arg1> Person <arg2> Place <arg3>
3 a candidate Person <arg2> wins an election by voting Entity <arg1> at a Place <arg3>

Personnel:Start-Position
1 <arg1> started working at <arg2> organization in <arg3> place
2 Person <arg1> Entity <arg2> Place <arg3>
3 a Person <arg1> begins working for an Entity <arg2> or change office at a Place <arg3>

Personnel:Nominate
1 <arg1> nominated <arg2>
2 Agent <arg1> Person <arg2>
3 a Person <arg2> is nominated for a new position by another Agent <arg1> at a Place

Personnel:End-Position
1 <arg1> stopped working at <arg2> organization in <arg3> place
2 Person <arg1> Entity <arg2> Place <arg3>
3 a Person <arg1> stops working for an Entity <arg2> or change office at a Place <arg3>

Conflict:Attack
1 <arg1> attacked <arg2> hurting <arg5> victims using <arg3> instrument at <arg4> place
2 Attacker <arg1> Target <arg2> Instrument <arg3> Place <arg4> Victim <arg5>
3 An Attacker <arg1> physically attacks a Target <arg2> with Instrument <arg3> at a Place <arg4> hurting Victim <arg5>

Contact:Meet
1 <arg1> met with <arg2> in <arg3> place
2 Entity <arg1> Entity <arg2> Place <arg3>
3 one Entity <arg1> and another Entity <arg2> come together at same Place <arg3> and interact in person

Life:Marry
1 <arg1> married <arg2> in <arg3> place
2 Person <arg1> Person <arg2> Place <arg3>
3 one Person <arg1> and another Person <arg2> are married at a Place <arg3>

Transaction:Transfer-Money
1 <arg1> gave money to <arg2> for the benefit of <arg3> in <arg4> place
2 Giver <arg1> Recipient <arg2> Beneficiary <arg3> Place <arg4>
3 transfer Money from the Giver <arg1> to the Beneficiary <arg3> or Recipient <arg2> at a Place <arg4>

Conflict:Demonstrate
1 <arg1> demonstrated at <arg2> place
2 Entity <arg1> Place <arg2>
3 Entity <arg1> come together in a Place <arg2> to protest or demand official action

Business:End-Org
1 <arg1> organization shut down at <arg2> place
2 Org <arg1> Place <arg2>
3 an Organization Org <arg1> goes out of business at a Place <arg2>

Justice:Sue
1 <arg1> sued <arg2> before <arg3> court or judge in <arg4> place
2 Plaintiff <arg1> Defendant <arg2> Adjudicator <arg3> Place <arg4>
3 Plaintiff <arg1> initiate a court proceeding to determine the liability of a Defendant <arg2> judge by Adjudicator <arg3> at a Place <arg4>

Life:Injure
1 <arg1> injured <arg2> with <arg3> instrument in <arg4> place
2 Agent <arg1> Victim <arg2> Instrument <arg3> Place <arg4>
3 a Victim <arg2> experiences physical harm from Agent <arg1> with Instrument <arg3> at a Place <arg4>

Life:Die
1 <arg1> killed <arg2> with <arg3> instrument in <arg4> place
2 Agent <arg1> Victim <arg2> Instrument <arg3> Place <arg4>
3 life of a Victim <arg2> ends by an Agent <arg1> with Instrument <arg3> at a Place <arg4>

Justice:Arrest-Jail
1 <arg1> arrested <arg2> in <arg3> place
2 Agent <arg1> Person <arg2> Place <arg3>
3 the Agent <arg1> takes custody of a Person <arg2> at a Place <arg3>

Contact:Phone-Write
1 <arg1> communicated remotely with <arg2> at <arg3> place
2 Entity <arg1> Entity <arg2> Place <arg3>
3 phone or written communication between one Entity <arg1> and another Entity <arg2> at a Place <arg3>

Transaction:Transfer-Ownership
1 <arg1> gave <arg4> to <arg2> for the benefit of <arg3> at <arg5> place
2 Seller <arg1> Buyer <arg2> Beneficiary <arg3> Artifact <arg4> Place <arg5>
3 buying selling loaning borrowing giving receiving of Artifact <arg4> from Seller <arg1> to Buyer <arg2> or Beneficiary <arg3> at a Place <arg5> at Price

Business:Start-Org
1 <arg1> started <arg2> organization at <arg3> place
2 Agent <arg1> Org <arg2> Place <arg3>
3 an Agent <arg1> create a new Organization Org <arg2> at a Place <arg3>

Justice:Execute
1 <arg1> executed <arg2> at <arg3> place
2 Agent <arg1> Person <arg2> Place <arg3>
3 the life of a Person <arg2> is taken by an Agent <arg1> at a Place <arg3>

Justice:Trial-Hearing
1 <arg1> tried <arg2> before <arg3> court or judge in <arg4> place
2 Prosecutor <arg1> Defendant <arg2> Adjudicator <arg3> Place <arg4>
3 a court proceeding initiated to determine the guilty or innocence of the Defendant <arg2> Person with Prosecutor <arg1> and Adjudicator <arg3> at a Place <arg4>

Life:Be-Born
1 <arg1> was born in <arg2> place
2 Person <arg1> Place <arg2>
3 a Person <arg1> is born at a Place <arg2>

Justice:Charge-Indict
1 <arg1> charged or indicted <arg2> before <arg3> court or judge in <arg4> place
2 Prosecutor <arg1> Defendant <arg2> Adjudicator <arg3> Place <arg4>
3 a Defendant <arg2> is accused of a crime by a Prosecutor <arg1> for Adjudicator <arg3> at a Place <arg4>

Justice:Convict
1 <arg1> court or judge convicted <arg2> in <arg3> place
2 Adjudicator <arg1> Defendant <arg2> Place <arg3>
3 an Defendant <arg2> found guilty of a crime by Adjudicator <arg1> at a Place <arg3>

Justice:Sentence
1 <arg1> court or judge sentenced <arg2> in <arg3> place
2 Adjudicator <arg1> Defendant <arg2> Place <arg3>
3 the punishment for the Defendant <arg2> is issued by a state actor Adjudicator <arg1> at a Place <arg3>

Business:Declare-Bankruptcy
1 <arg1> declared bankruptcy at <arg2> place
2 Org <arg1> Place <arg2>
3 Organization Org <arg1> request legal protection from debt collection at a Place <arg2>

Justice:Release-Parole
1 <arg1> released or paroled <arg2> in <arg3> place
2 Entity <arg1> Person <arg2> Place <arg3>
3 an Entity <arg1> ends its custody of a Person <arg2> at a Place <arg3>

Justice:Fine
1 <arg1> court or judge fined <arg2> at <arg3> place
2 Adjudicator <arg1> Entity <arg2> Place <arg3>
3 a Adjudicator <arg1> issues a financial punishment Money to an Entity <arg2> at a Place <arg3>

Justice:Pardon
1 <arg1> court or judge pardoned <arg2> at <arg3> place
2 Adjudicator <arg1> Defendant <arg2> Place <arg3>
3 an Adjudicator <arg1> lifts a sentence of Defendant <arg2> at a Place <arg3>

Justice:Appeal
1 <arg1> appealed to <arg2> court or judge at <arg3> place
2 Plaintiff <arg1> Adjudicator <arg2> Place <arg3>
3 the decision for Defendant of a Plaintiff <arg1> is taken to a higher Place <arg3> for Adjudicator <arg2> review with Prosecutor

Justice:Extradite
1 <arg1> extradited <arg2> from <arg3> place to <arg4> place
2 Agent <arg1> Person <arg2> Origin <arg3> Destination <arg4>
3 a Person <arg2> is sent by an Agent <arg1> from Origin <arg3> to Destination <arg4>

Life:Divorce
1 <arg1> divorced <arg2> in <arg3> place
2 Person <arg1> Person <arg2> Place <arg3>
3 one Person <arg1> and another Person <arg2> are officially divorced at a Place <arg3>

Business:Merge-Org
1 <arg1> organization merged with <arg2> organization
2 Org <arg1> Org <arg2>
3 two or more Organizations Org <arg1> come together to form a new organization Org <arg2> at a Place

Justice:Acquit
1 <arg1> court or judge acquitted <arg2>
2 Adjudicator <arg1> Defendant <arg2>
3 a trial of Defendant <arg2> ends but Adjudicator <arg1> fails to produce a conviction at a Place
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Table 14: All templates of ERE-EN used in the main and ablation experiments in this paper.

Event Type Type Template

Conflict:Attack
1 <arg1> attacked <arg2> using <arg3> instrument at <arg4> place
2 Attacker <arg1> Target <arg2> Instrument <arg3> Place <arg4>
3 An Attacker <arg1> physically attacks a Target <arg2> with Instrument <arg3> at a Place <arg4>

Justice:Acquit
1 <arg1> court or judge acquitted <arg2> at <arg3> place
2 Adjudicator <arg1> Defendant <arg2> Place <arg3>
3 a trial of Defendant <arg2> ends but Adjudicator <arg1> fails to produce a conviction at a Place <arg3>

Personnel:Elect
1 <arg1> elected <arg2> in <arg3> place
2 Agent <arg1> Person <arg2> Place <arg3>
3 a candidate Person <arg2> wins an election by voting Entity <arg1> at a Place <arg3>

Justice:Release-Parole
1 <arg1> released or paroled <arg2> in <arg3> place
2 Agent <arg1> Person <arg2> Place <arg3>
3 an Entity <arg1> ends its custody of a Person <arg2> at a Place <arg3>

Personnel:Nominate
1 <arg1> nominated <arg2> at <arg3> place
2 Agent <arg1> Person <arg2> Place <arg3>
3 a Person <arg2> is nominated for a new position by another Agent <arg1> at a Place <arg3>

Justice:Appeal
1 <arg1> appealed to <arg2> court or judge sentenced <arg3>
2 Prosecutor <arg1> Adjudicator <arg2> Defendant <arg3>
3 the decision for Defendant <arg3> of a Plaintiff is taken to a higher Place for Adjudicator <arg2> review with Prosecutor <arg1>

Transaction:Transfer-Ownership
1 <arg1> gave <arg4> to <arg2> for the benefit of <arg3> at <arg5> place
2 Giver <arg1> Recipient <arg2> Beneficiary <arg3> Thing <arg4> Place <arg5>
3 giving of Artifact Thing <arg4> from Giver <arg1> to Recipient <arg2> for the benefit of Beneficiary <arg3> at a Place <arg5>

Business:Declare-Bankruptcy
1 <arg1> declared bankruptcy
2 Org <arg1>
3 Organization Org <arg1> request legal protection from debt collection

Contact:Meet
1 <arg1> met face-to-face with <arg2> in <arg3> place
2 Entity <arg1> Entity <arg2> Place <arg3>
3 one Entity <arg1> and another Entity <arg2> come together at same Place <arg3> and interact in person

Life:Marry
1 <arg1> married <arg2> in <arg3> place
2 Person <arg1> Person <arg2> Place <arg3>
3 one Person <arg1> and another Person <arg2> are married at a Place <arg3>

Life:Divorce
1 <arg1> divorced <arg2> in <arg3> place
2 Person <arg1> Person <arg2> Place <arg3>
3 one Person <arg1> and another Person <arg2> are officially divorced at a Place <arg3>

Business:Merge-Org
1 <arg1> organization merged with <arg2> organization
2 Org <arg1> Org <arg2>
3 two or more Organizations Org <arg1> come together to form a new organization Org <arg2> at a Place

Contact:Correspondence
1 <arg1> communicated remotely with <arg2> at <arg3> place
2 Entity <arg1> Entity <arg2> Place <arg3>
3 one Entity <arg1> communicated remotely with another Entity <arg2> at a Place <arg3>

Contact:Contact
1 <arg1> communicated with <arg2> at <arg3> place
2 Entity <arg1> Entity <arg2> Place <arg3>
3 one Entity <arg1> communicated with another Entity <arg2> face to face at a Place <arg3>

Manufacture:Artifact
1 <arg1> manufactured or created or produced <arg2> at <arg3> place
2 Agent <arg1> Artifact <arg2> Place <arg3>
3 an Agent <arg1> manufactured or created or produced Artifact <arg2> at a Place <arg3>

Movement:Transport-Person
1 <arg1> transported <arg2> in <arg3> instrument from <arg4> place to <arg5> place
2 Agent <arg1> Person <arg2> Instrument <arg3> Origin <arg4> Destination <arg5>
3 an Agent <arg1> transported a Person <arg2> in Instrument <arg3> from Origin <arg4> place to Destination <arg5>

Movement:Transport-Artifact
1 <arg1> transported <arg2> from <arg3> place to <arg4> place
2 Agent <arg1> Artifact <arg2> Origin <arg3> Destination <arg4>
3 an Agent <arg1> transported Artifact <arg2> from Origin <arg3> place to Destination <arg4>

Contact:Broadcast
1 <arg1> communicated to <arg2> at <arg3> place (one-way communication)
2 Entity <arg1> Audience <arg2> Place <arg3>
3 an Entity <arg1> one-way communicated to one or more Audience <arg2> at a Place <arg3>

Transaction:Transaction
1 <arg1> gave something to <arg2> for the benefit of <arg3> at <arg4> place
2 Giver <arg1> Recipient <arg2> Beneficiary <arg3> Place <arg4>
3 a Giver <arg1> gave something to a Recipient <arg2> for the benefit of Beneficiary <arg3> at a Place <arg4>

Personnel:Start-Position
1 <arg1> started working at <arg2> organization in <arg3> place
2 Person <arg1> Entity <arg2> Place <arg3>
3 a Person <arg1> begins working for an Entity <arg2> or change office at a Place <arg3>

Justice:Pardon
1 <arg1> court or judge pardoned <arg2> at <arg3> place
2 Adjudicator <arg1> Defendant <arg2> Place <arg3>
3 an Adjudicator <arg1> lifts a sentence of Defendant <arg2> at a Place <arg3>

Justice:Fine
1 <arg1> court or judge fined <arg2> at <arg3> place
2 Adjudicator <arg1> Entity <arg2> Place <arg3>
3 a Adjudicator <arg1> issues a financial punishment Money to an Entity <arg2> at a Place <arg3>

Justice:Trial-Hearing
1 <arg1> tried <arg2> before <arg3> court or judge in <arg4> place
2 Prosecutor <arg1> Defendant <arg2> Adjudicator <arg3> Place <arg4>
3 a court proceeding initiated to determine the guilty or innocence of the Defendant <arg2> Person with Prosecutor <arg1> and Adjudicator <arg3>

at a Place <arg4>

Business:End-Org
1 <arg1> organization shut down at <arg2> place
2 Org <arg1> Place <arg2>
3 an Organization Org <arg1> goes out of business at a Place <arg2>

Justice:Sue
1 <arg1> sued <arg2> before <arg3> court or judge in <arg4> place
2 Plaintiff <arg1> Defendant <arg2> Adjudicator <arg3> Place <arg4>
3 Plaintiff <arg1> initiate a court proceeding to determine the liability of a Defendant <arg2> judge by Adjudicator <arg3> at a Place <arg4>

Life:Injure
1 <arg1> injured <arg2> with <arg3> instrument in <arg4> place
2 Agent <arg1> Victim <arg2> Instrument <arg3> Place <arg4>
3 a Victim <arg2> experiences physical harm from Agent <arg1> with Instrument <arg3> at a Place <arg4>

Justice:Arrest-Jail
1 <arg1> arrested <arg2> in <arg3> place
2 Agent <arg1> Person <arg2> Place <arg3>
3 the Agent <arg1> takes custody of a Person <arg2> at a Place <arg3>

Justice:Execute
1 <arg1> executed <arg2> at <arg3> place
2 Agent <arg1> Person <arg2> Place <arg3>
3 the life of a Person <arg2> is taken by an Agent <arg1> at a Place <arg3>

Conflict:Demonstrate
1 <arg1> demonstrated at <arg2> place
2 Entity <arg1> Place <arg2>
3 Entity <arg1> come together in a Place <arg2> to protest or demand official action

Justice:Sentence
1 <arg1> court or judge sentenced <arg2> in <arg3> place
2 Adjudicator <arg1> Defendant <arg2> Place <arg3>
3 the punishment for the Defendant <arg2> is issued by a state actor Adjudicator <arg1> at a Place <arg3>

Life:Die
1 <arg1> killed <arg2> with <arg3> instrument in <arg4> place
2 Agent <arg1> Victim <arg2> Instrument <arg3> Place <arg4>
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(continued from previous page.)
3 life of a Victim <arg2> ends by an Agent <arg1> with Instrument <arg3> at a Place <arg4>

Business:Start-Org
1 <arg1> started <arg2> organization at <arg3> place
2 Agent <arg1> Org <arg2> Place <arg3>
3 an Agent <arg1> create a new Organization Org <arg2> at a Place <arg3>

Personnel:End-Position
1 <arg1> stopped working at <arg2> organization in <arg3> place
2 Person <arg1> Entity <arg2> Place <arg3>
3 a Person <arg1> stops working for an Entity <arg2> or change office at a Place <arg3>

Justice:Extradite
1 <arg1> extradited <arg2> from <arg3> place to <arg4> place
2 Agent <arg1> Person <arg2> Origin <arg3> Destination <arg4>
3 a Person <arg2> is sent by an Agent <arg1> from Origin <arg3> to Destination <arg4>

Justice:Charge-Indict
1 <arg1> charged or indicted <arg2> before <arg3> court or judge in <arg4> place
2 Prosecutor <arg1> Defendant <arg2> Adjudicator <arg3> Place <arg4>
3 a Defendant <arg2> is accused of a crime by a Prosecutor <arg1> for Adjudicator <arg3> at a Place <arg4>

Transaction:Transfer-Money
1 <arg1> gave money to <arg2> for the benefit of <arg3> in <arg4> place
2 Giver <arg1> Recipient <arg2> Beneficiary <arg3> Place <arg4>
3 transfer Money from the Giver <arg1> to the Beneficiary <arg3> or Recipient <arg2> at a Place <arg4>

Justice:Convict
1 <arg1> court or judge convicted <arg2> in <arg3> place
2 Adjudicator <arg1> Defendant <arg2> Place <arg3>
3 an Defendant <arg2> found guilty of a crime by Adjudicator <arg1> at a Place <arg3>

Life:Be-Born
1 <arg1> was born in <arg2> place
2 Person <arg1> Place <arg2>
3 a Person <arg1> is born at a Place <arg2>
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Abstract
Multi-hop reasoning, a prevalent approach
for query answering, aims at inferring new
facts along reasonable paths over a knowledge
graph. Reinforcement learning (RL) meth-
ods can be adopted by formulating the prob-
lem into a Markov decision process. How-
ever, common suffering within RL-based rea-
soning models is that the agent can be biased
to spurious paths which coincidentally lead to
the correct answer with poor explanation. In
this work, we take a deep dive into this phe-
nomenon and define a metric named Path Spu-
riousness (PS), to quantitatively estimate to
what extent a path is spurious. Guided by the
definition of PS, we design a model with a new
reward that considers both answer accuracy
and path reasonableness. We test our method
on five datasets and experiments reveal that our
method considerably enhances the agent’s ca-
pacity to prevent spurious paths while keeping
comparable to state-of-the-art performance.

1 Introduction

Knowledge Graph (KG), a set of structured facts
about real-world human knowledge, is utilized in
numerous downstream NLP applications (Hilde-
brandt et al., 2020; Zhang and Yao, 2022; Xu et al.,
2021; Ma et al., 2021). Common suffering affect-
ing many downstream tasks is KG incompleteness.
A variable amount of facts are missing in practi-
cal KGs. KG reasoning, the process to derive new
knowledge from KG (Ji et al., 2022; Zhang et al.,
2022; Huang et al., 2022), is the way to address
KG completion problem. A prevailing approach
for KG reasoning is incorporating KG embedding
(KGE), which maps entities and relations into a vec-
tor space (Bordes et al., 2013). Embedding-based
models have great power in expressing semantic
similarity of entities and relations, but usually lack
explainability due to the high-dimension represen-
tation (Chen et al., 2020; Heo et al., 2022).

B The corresponding author is Jianxin Li.
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Figure 1: An example KG (we use H.S. to indicate
a certain high school for short). Supposing the query
is <Tom, educatedAt, ?> and MIT is a correct answer,
three paths leading to MIT are of different PS.

An alternative approach is multi-hop reasoning,
also referred to as path-based models (Lin et al.,
2018), which infers new facts along existing paths
in KG. Multi-hop reasoning offers explanations for
its predictions by taking advantage of reasoning
paths. Recently, reinforcement learning (RL) has
been applied to multi-hop reasoning (Xiong et al.,
2017). RL-based methods train an agent to walk
over the KG and search for a path leading to the
answer (Das et al., 2018). They have drawn surg-
ing attention in the past few years for their good
prediction accuracy and excellent explainability.

However, most prevalent RL-based models are
suffering from the spurious path problem (Guu
et al., 2017). A spurious path reaches a correct
answer merely by coincidence and has no logical
relevance with its prediction, such as the blue path
in Figure 1: we shouldn’t say Tom was educated
at MIT just because there exists one person (i.e.,
Jerry) who was born in the same country (i.e., U.S.)
with Tom and happened to visit MIT before.

Multi-hop reasoning is a typical sparse reward
scenario, where all actions except the final one
will get no feedback during the decision process.
That is to say, after the agent reached the correct
answer following a spurious path, all actions along
the decision trajectory will get positive rewards
even if they are totally irrelevant to the query. As a
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consequence, the agent will be biased toward those
wrong actions (Guu et al., 2017).

The spurious path problem causes severe dam-
age to the explainability of RL-based models when
paths found by the agent are needed to serve as
evidence to explain the answer. Moreover, spuri-
ous paths may mislead the agent to learn a wrong
policy and further harm the generalization ability
of the model. Although some studies have noticed
the spurious path problem and provided instinctive
solutions, such as action drop (Lin et al., 2018) and
rule guider (Lei et al., 2020; Hou et al., 2021), a
quantitative estimation is still absent.

To address the above-mentioned problem, we
define a new metric called Path Spuriousness (PS)
to measure to what extent a path is spurious. The
inspiration is that a spurious path is not a fake
path, but an adventitious path offering the accurate
answer for a certain query. That is to say, if we ran-
domly exchange intermediate entities of the path
and keep the relation order, it is unlikely to get the
correct prediction for the same query. With PS, we
can reflect the reasonableness of predictions made
by multi-hop reasoning models. Specifically, an-
swers obtained by following paths with low PS are
much more reasonable and explainable than those
by following paths with high PS.

With the definition of PS, we put forward a path
spuriousness-aware reward for RL-based multi-hop
reasoning models. Combined with correctness-
guided rewards, our new reward leads the agent
to not only obtain effective answers but also offer
high-quality reasoning paths.

Our major contributions are concluded as fol-
lows: (1) We first propose a quantitative metric
PS to measure the spuriousness of reasoning paths.
(2) We design a new sophisticated reward shap-
ing method by incorporating correctness-guided
reward and PS-guided reward, which leads the
agent to find effective answers following reason-
able paths. (3) We first offer an empirical evalua-
tion of the path spuriousness of multi-hop reason-
ing methods. Experiments show that our approach
has a great improvement in avoiding spurious paths
while keeping the prediction accuracy.

2 Related Work

In this section, we give outlines of two main related
areas and discuss their connection to our method.

2.1 Knowledge Graph Embedding

KG embedding translates semantic features of en-
tities and relations to vector space, to give an-
swers directly by operations over query vectors.
TransE (Bordes et al., 2013) did seminal work in
leveraging KG embedding to solve the QA prob-
lem and becomes the base model for a series of
algorithms (Ji et al., 2015; Wang et al., 2014; Lin
et al., 2015). DisMult (Yang et al., 2015) proposes a
unified learning framework for embedding models
and introduces an approach to mine logic rules with
learned relation embeddings. ComplEX (Trouillon
et al., 2016) uses complex vectors to represent enti-
ties and relations, to handle asymmetric relations.
ConvE (Dettmers et al., 2018) takes advantage of
a convolutional neural network for knowledge em-
bedding in a large graph. Despite the powerful rep-
resentational ability shown by embedding-based
models, they are limited in many scenarios for the
lack of explainability (Roscher et al., 2020; Liu
et al., 2017), as one-hop reasoning methods.

A promising approach is incorporating KG em-
bedding as a reward shaping function for multi-hop
reasoning methods, which is first adopted by Mul-
tiHop (Lin et al., 2018) and followed by us.

2.2 Multi-Hop Reasoning

Compared to embedding-based models, multi-hop
reasoning models predict by inferring a path step
by step. The property is exactly desired in sce-
narios where not only an answer is required, but
also evidence is demanded to explain the answer.
Reinforcement learning algorithms can be nat-
urally deployed to multi-hop reasoning. Deep-
Path (Xiong et al., 2017) first takes REINFORCE
as the generator of evidence paths which are fed to
PRA (Brin, 1998) subsequently. MINERVA (Das
et al., 2018) takes the lead to design an end-to-
end RL-based multi-hop reasoning model to ad-
dress query answering, whereas its accuracy of
answering still falls behind state-of-the-art embed-
ding models. MultiHop (Lin et al., 2018) incorpo-
rates pre-trained embedding-based models as a soft
reward function to compensate for the incomplete-
ness of KG and gets comparable performance to
embedding-based models in several datasets.

Since the agent lacks logical insights into
adopted paths, spurious paths are inevitable dur-
ing training. Once a spurious path leading to the
correct answer coincidentally is explored first, the
agent will increasingly tend to choose actions fol-
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lowing a spurious way (Guu et al., 2017). To ad-
dress this problem, MultiHop (Lin et al., 2018)
uses action drop to force the agent to explore di-
verse paths, hoping to mitigate the negative effect
of spurious paths. RARL (Hou et al., 2021) exploits
high-quality rules mined from datasets to supervise
the policy of the agent. However, there is no quan-
titative measure for the effect of the above methods,
due to the absence of the metric that scales path
spuriousness and consequently no reward that can
directly guide the agent to avoid spurious paths.

3 Preliminaries

In this section, we first give crucial definitions of
several concepts. Then the reinforcement learning
formula and reward shaping skills will be intro-
duced, which is the foundation of our model.

3.1 Multi-hop KG Reasoning

Knowledge Graph. A knowledge graph (KG) is
a directed graph G = (E ,R,Ψ) (Ji et al., 2022),
where E is the set of entities, R is the set of re-
lations and Ψ is the mapping from relations to
pairs of entities. A fact in knowledge graph G
is an ordered triple δ =< es, r, eo > satisfying that
es, eo ∈ E , r ∈ R, and Ψ(r) =< es, eo >.

In this paper, we treat each edge in a KG as
bidirectional and augment the KG with reversed
edge (eo, r

−1, es) if (es, r, eo) is a fact in G. We
call r−1 the inverse relation of r.
Multi-Hop Reasoning. Given a query q =<
es, rq, ? > (<?, rq, eo > is the same) and a KG
G, multi-hop reasoning is to predict the absent
object by finding an n-hop path τ =< es, r1, e2,
r2, · · · , en, rn, eT > in G (Wan and Du, 2021),
where the last entity eT is the predicted answer.
The path can also be represented as a predicate
τ ≡ r1(es, e2) ∧ r2(e2, e3) ∧ · · · ∧ rn(en, eT ).
Path Clause. For convenience, we use the path
clause H(τ, q) ≡ τ → rq(es, eT ) ≡ r1(es, e2) ∧
r2(e2, e3) ∧ · · · ∧ rn(en, eT )→ rq(es, eT ) to indi-
cate a reasoning path τ and its prediction, where τ
is the clause body and rq(es, eT ) is the head.

In this paper, we assume that all facts in KG are
correct. Then path clause H(τ, q) is true in KG G
if τ is a path in G and rq(es, eT ) is a fact in G. We
call H(τ, q) is valid in G if τ is a path in G.
Path Substitution. Path substitution of H(τ, q) is
defined asHe2,··· ,en,eT

x2,··· ,xn,xT ≡ r1(es, x2)∧r2(x2, x3)∧
· · · ∧ rn(xn, xT ) → rq(es, xT ), which is a path
clause derived by replacing each ei in clause

H(τ, q) with xi except es, i.e., keeping es fixed.
We denote the body of He2,··· ,en,eT

x2,··· ,xn,xT as
BH

e2,··· ,en,eT
x2,··· ,xn,xT . We call He2,··· ,en,eT

x2,··· ,xn,xT is a valid
path substitution of H(τ, q) in KG G if the body
BH

e2,··· ,en,eT
x2,··· ,xn,xT is a path in G.

Note that there may be overlaps of entities of a
path substitution with the original path clause. That
is, a path substitution may not replace all entities in
a path clause with new entities. In particular, each
path clause H(τ, q) is a path substitution of itself.

Consider the KG in Figure 1. For query
<Tom, educatedAt, ?>, the path in color red in-
dicates a prediction <Tom, educatedAt, MIT>,
and the path clause H=teach−1(Tom, Mary) ∧
workAt(Mary, MIT) → educatedAt(Tom, MIT).
Clearly, HMary,MIT

Dave,H.S. , i.e., teach−1(Tom, Dave) ∧
workAt(Dave, H.S.)→ educatedAt(Tom, H.S.) is a
valid path subsituition of H in the KG.

3.2 RL Formula

The RL algorithms can be naturally deployed
to multi-hop reasoning by formulating it into a
Markov decision process (MDP) (Puterman, 1994).
Following MINERVA (Das et al., 2018), we adopt
REINFORCE (Williams, 1992) algorithm. Key
components of the architecture are as follows.
States. A state encodes the status quo as well as
the origin goal. In step t, state st = (et, es, rq) is a
triple, where et is the current entity, es is the start
entity and rq is the query relation.
Actions. Action space At = {(r, e′)|(et, r, e′) ∈
G} in state st consists of all pairs of outgoing edges
and corresponding entities. That is, the valid ac-
tions are neighborhoods of the current entity et.
Transition. After the agent makes its decision
at+1 = (r, e′), the state of environment migrates
from st = (et, es, rq) to st+1 = (e′, es, rq), on
condition (et, r, e

′) ∈ G.
Policy. Agent’s policy maps states to actions,
which is usually implemented by the deep neural
network. To exploit history information, the long
short-term memory network (LSTM) (Hochreiter
and Schmidhuber, 1997) is adopted. History infor-
mation ht in step t is calculated by LSTM, taking
as input previous history ht−1 and the last action
at = (rt, et), as follows:

h0 = LSTM(0,a0) (1)

ht = LSTM(ht−1,at), t > 0. (2)
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Here at is the embedding of action at and ht is the
embedding of history ht . Policy network πθ gives
possibility distribution over At:
πθ(at+1|st) = σ(AtW2ReLU(W1[ht; et; rq])),

(3)
where At is a matrix stacking all action embed-
dings, σ is sigmoid function and ReLU is rectified
linear unit (Nair and Hinton, 2010). The agent
chooses an action subjecting to the distribution
given by the policy network.
Reward. The default binary reward Rb indicates
whether the agent arrives at the correct answer.
With the advantage of indicator function I, binary
reward can be written as follow:

Rb(eT ) = I((es, rq, eT ) ∈ G). (4)

Optimization. To get the optimal parameters, the
policy network is trained by maximizing the objec-
tive function:

J(θ) = E(es,rq ,eo)∈GqE(a1,a2,··· ,aT )∼πθ [RT ]. (5)

RT = R(sT |s1 = (es, es, rq)). (6)

J(θ) is the expected reward for all queries follow-
ing policy πθ. Gq denotes all query facts. RE-
INFORCE is deployed to solve this optimization
problem by iteratively updating θ as follows:

∇θJ(θ) ≈
T∑

t=1

RT∇θ log πθ(at|st) (7)

θ′ = θ +∇θJ(θ). (8)

3.3 Reward Shaping
Under binary reward Rb, the agent receives a posi-
tive reward only when it reaches a correct answer.
That is to say, the agent probably can’t get any
effective guidance in the early exploration stage.

To offset the incompleteness of KG, Multi-
hop (Lin et al., 2018) proposes a reward shaping
function Rs that provides a soft reward Fs between
0 and 1 other than 0 as Rb does, when the pre-
diction is not in KG during the training process.
Fs(es, rq, eT ) is implemented by a pre-trained
embedding-based model such as ConvE (Dettmers
et al., 2018) and ComplEX (Trouillon et al., 2016)
to estimate the probability that (es, rq, eT ) is true.
Then Rs is defined as follows:

Rs(eT )=Rb(eT )+(1−Rb(eT ))·Fs(es, rq, eT ).
(9)

That is, given the answer eT , if (es, rq, eT ) ∈ G,
the agent will get 1 as the final reward, otherwise
the agent will get Fs(es, rq, eT ) calculated by a
pre-trained embedding-based model.

4 Methodology

In this section, we discuss the feature of spurious
paths and give a quantitative definition of PS. Then
we introduce two kinds of reward functions that
take PS into account.

4.1 Path Spuriousness Metric
Think over the example in Figure 1. Assuming
<Tom, educatedAt, MIT> is true and can be de-
duced by the following three pathsH1, H2, andH3

(in color red, blue, and yellow, respectively):

(1) H1≡teach−1(Tom, Mary) ∧ workAt(Mary,

MIT)→ educatedAt(Tom, MIT);

(2) H2≡bornIn(Tom, U.S.)∧bornIn−1(U.S., Jer-

ry∧visit(Jerry, MIT)→educatedAt(Tom, MIT);

(3) H3≡beFriends(Tom, John)∧educatedAt(Joh-

n, MIT)→educatedAt(Tom, MIT).

However, not all of them can serve as valid evi-
dence. Clearly, H1 is solid enough since Tom must
be educated exactly where his teacher teaches. H2

is extremely spurious because there are hundreds
of millions of people born in the same place as Tom
and they visit tremendous schools, few of which
Tom can attend. Though H3 is spurious in logic,
considering that many of Tom’s friends made ac-
quaintances with him when they were in the same
school, H3 is much more valid than H2.

It is a remarkable fact that these three clauses are
all true in the KG of Figure 1, despite their variance
in path spuriousness. The truth value of a valid path
clause always keeps consistent with its prediction,
regardless of whether its body is a reasonable path
or not. The key difference between spurious paths
and reasonable paths is that they have quite a few
valid substitutions in a given KG, but fail to infer
correct predictions. That is, the path spuriousness
of a path clause H is up to the proportion of such
valid substitutions. The larger the proportion is, the
more spurious H is.
Path Spuriousness. Given a KG G and a path
clause H ≡ r1(es, e2) ∧ r2(e2, e3) ∧ · · · ∧
rn(en, eT )→ rq(es, eT ), the PS of H is:

PS(H) = P(v(He2,··· ,en,eT
x2,··· ,xn,xT ) = 0), (10)
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Figure 2: An overlook of the training process. Starting from entity es, the agent walks step by step to obtain a
reasoning path H where eT denotes the predicted answer. All substitutions of H are derived by searching over the
KG. We use Si to represent the i-th substitution. Rmin and Rsum indicate our two reward shaping variants.

which is equal to:

PS(H) = 1− E(v(He2,··· ,en,eT
x2,··· ,xn,xT )) (11)

where He2,··· ,en,eT
x2,··· ,xn,xT is a valid substitution of H , v

is the value function mapping predicate space to
{0, 1}, and X = (x2, · · · , xn, xT ) are random en-
tities sampled from the ideal entity set. In practice,
the ideal entity set is usually unknown and hard to
estimate, so we propose a computation viable met-
ric based on frequency to approximate Equation 11:

PS(H)≈1−

∑
x2,··· ,xn,xT∈E

v(He2,··· ,en,eT
x2,··· ,xn,xT )

∑
x2,··· ,xn,xT∈E

v(BH
e2,··· ,en,eT
x2,··· ,xn,xT )

(12)
where BH

e2,··· ,en,eT
x2,··· ,xn,xT is the body part of

He2,··· ,en,eT
x2,··· ,xn,xT , and E is the entity set of G.
Take the KG in Figure 1 for example.

(1)H1 (in color red) has only one valid substitution
teach−1(Tom, Dave) ∧ workAt(Dave, H.S.)→ edu-
catedAt(Tom, H.S.) except H1, which is true in the
KG. Counting H2 itself in, PS(H2)=1−2/2=0.
(2) H2 (in color blue) has two valid sub-
stitutions except H1: bornIn(Tom, U.S.) ∧
bornIn−1(U.S.,Jerry) ∧ visit(Jerry,CMU) → ed-
ucatedAt(Tom, CMU) and bornIn(Tom, U.S.)
∧ bornIn−1(U.S.,Bob) ∧ visit(Bob,UC Berkeley)
→ educatedAt(Tom, UC Berkeley), but both
of them are false in the KG. Then we have
PS(H1)=1−1/3=2/3.
(3) H3 (in color yellow) has one valid substitu-
tion beFriends(Tom, Alice) ∧ educatedAt(Alice,

Stanford) → educatedAt(Tom, Stanford) except
H1, which is false in the KG. As a result,
PS(H3)=1−1/2=1/2.

4.2 Path Spuriousness-Based Reward
Both Rb and Rs are devoted to the correctness of
the terminal entity, ignoring the spuriousness of
reasoning paths. To address this, we design two
novel rewards combining the answer correctness as
well as the path spuriousness.

First, a path score function Fp(H) is required
to score the spuriousness degree of H . The most
straightforward way is taking the definition of PS
as Fp, which is effective when KG is closed (Tanon
et al., 2017). However, taking the incompleteness
of KG into consideration, we incorporate the soft
reward Rs with Equation 12 to build Fp(H):

Fp(H) = 1−Rr(H) (13)

Rr(H)=

∑
x2,··· ,xn,xT∈E

v(BH
e2,··· ,en,eT
x2,··· ,xn,xT )Rs(xT )

∑
x2,··· ,xn,xT∈E

v(BH
e2,··· ,en,eT
x2,··· ,xn,xT )

.

(14)
For simplicity, we use Rr(H) = 1 − Fp(H) to
indicate the reasonableness of H .

Because of the complexity of semantic knowl-
edge, even a reasonable path may lead to a wrong
answer in some special cases. Therefore, a rational
reward has to be a fusion of the answer accuracy
and the path reasonableness. We demonstrate two
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kinds of combinations between Rs and Rr, and dis-
cuss their performance in the experiment section.

One is taking the minimum between accuracy
and reasonableness:

Rmin(H, eT ) = min(Rs(eT ), Rr(H)). (15)

The equation is based on intuitive thinking that,
we introduce PS-based reward only for punishing
spurious paths, but not for awarding paths with
high reasonableness but low accuracy. That is, Rr
merely serves as punishment when it is lower than
Rs. Note that Rmin is friendly to developers since
it has no hyperparameters.

The other is the weighted sum of Rs and Rr:

Rsum(H, eT ) = αRr(H)+(1−α)Rs(eT ), (16)

where α decreases in the process of training. This
equation is inspired by curriculum learning, which
sets different optimizing goals in different learning
stages (Bengio et al., 2009). We give priority to
the path reasonableness in early epochs, forcing
the agent to focus more on reasonable paths, and
after we prefer the agent to concentrate on proper
answers. Curriculum learning has the chance to
achieve higher performance but makes it more dif-
ficult to tune parameters.

4.3 Overall Training Process
The overall training process of our method is shown
in Figure 2. The agent starts from the query entity
es and makes transitions according to its policy net-
work. The history memory holds the history infor-
mation of each past step. After the agent reaches
the final entity eT , we use Breadth-First Search
to get all valid substitutions of its reasoning path.
Then all substitutions as well as the reasoning path
itself are used to calculate Rr and Rs which are
combined together to get either Rmin or Rsum.

Our PyTorch implementation and some pre-
trained models are released at https://github.
com/rubickkcibur/PSAgent.

5 Experiment

We evaluate our model on four datasets and
compare it with eight common baseline models.
Ours+min and Ours+sum indicate our two ap-
proaches with Rmin and Rsum respectively.

5.1 Setup
5.1.1 Datasets
We use five benchmark datasets for query answer-
ing: 1) UMLS (Kok and Domingos, 2007), 2) Kin-

Dataset #Ent #Rel #Fact
#degree

avg. median

Kinship 104 25 10,686 82.2 82
UMLS 135 46 6,529 38.6 28
FB15K-237 14,505 237 272,115 19.7 14
WN18RR 40,945 11 93,003 2.2 2
NELL-995 10,105 12 13,825 1.6 1

Table 1: Statistics of five KGs used in experiments.
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Figure 3: Hits@1 (red), MRR (green), and IMPS (blue)
change over the validation set during training.

ship (Lin et al., 2018), 3) FB15K-237 (Toutanova
et al., 2015), 4) WN18RR (Dettmers et al., 2018),
and 5) NELL-995 (Xiong et al., 2017). Statistics
are shown in Table 1.

5.1.2 Baselines
We compare our method with five multi-hop rea-
soning models: 1) MINERVA (Das et al., 2018),
the first end-to-end deep reinforcement learning
model for multi-hop reasoning; 2) MultiHop (Lin
et al., 2018), the first RL-based model incorporat-
ing embedding-based models as reward shaping
function and proposing the action drop skill to miti-
gate spurious path problem; 3) MetaKGR (Lv et al.,
2019), which leverages meta-information to im-
prove reasoning performance on few-shot relations;
4) RARL (Hou et al., 2021), which utilizes mined
logic rules to supervise the decision of the agent;
5) PAAR (Zhou et al., 2021), a fresh model com-
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Dataset
UMLS Kinship FB15K-237 WN18RR NELL-995

@1 @10 MRR IMPS @1 @10 MRR IMPS @1 @10 MRR IMPS @1 @10 MRR IMPS @1 @10 MRR IMPS

DisMult 82.1 96.7 86.8 N/A 48.7 90.4 61.4 N/A 32.4 60.0 41.7 N/A 43.1 52.4 46.2 N/A 55.2 78.3 64.1 N/A
ComplEX 89.0 99.2 93.4 N/A 81.8 98.1 88.4 N/A 32.8 61.6 42.5 N/A 41.8 48.0 43.7 N/A 64.3 86.0 72.6 N/A
ConvE 93.2 99.4 95.7 N/A 79.7 98.1 87.1 N/A 34.1 62.2 43.5 N/A 40.3 54.0 44.9 N/A 67.8 88.6 76.1 N/A

MINERVA 78.5 97.4 85.9 68.6 59.6 95.8 73.0 49.7 26.0 40.7 31.3 57.5 43.1 52.9 46.0 71.9 51.6 79.6 62.3 81.4
MultiHop 90.5 99.5 94.2 65.3 78.8 98.6 86.8 48.4 32.7 56.4 40.7 50.6 41.2 52.0 45.1 73.9 65.0 82.9 71.9 79.1
MetaKGR 88.6 99.3 93.1 65.1 78.2 98.4 86.3 47.6 28.3 52.7 36.9 53.5 36.5 50.9 42.0 69.6 59.4 78.7 66.7 80.3
RARL 76.2 95.6 84.2 64.5 61.3 94.4 73.3 49.6 28.4 49.7 35.8 54.4 40.0 51.7 44.6 74.0 62.8 82.2 70.4 81.4
PAAR 89.5 99.5 94 67.2 72.7 96.3 81.4 47.5 32.1 55.0 40.0 55.3 40.6 53.8 44.9 73.8 65.2 83.9 72.2 77.3
Ours+min 89.1 98.9 93.2 87.3 76.2 98.1 85.0 74.4 30.9 56.1 39.5 64.1 42.1 50.9 45.1 81.9 65.7 85.3 73.5 81.5
Ours+sum 90.5 99.5 94.6 71.3 79.1 98.1 86.9 53.7 32.5 57.0 40.9 58.4 43.4 52.6 46.8 81.4 63.8 84.1 71.4 78.1

AMIE+ 53.4 72.6 61.0 92.1 58.2 75.7 66.0 76.7 13.8 23.5 16.8 68.8 34.8 36.6 35.6 99.2 51.2 51.5 51.4 95.1

Table 2: QA Performance comparison on five datasets. The top part is embedding-based models and the bottom is
RL-based models. Ours+min and Ours+sum denote our methods with Rmin and Rsum, respectively. All metrics
are multiplied by 100. IMPS is not applicable to embedding-based models because they lack reasoning paths.

bining hierarchical information in reward shaping
for providing sufficient paths. Three embedding-
based models are also picked up as comparisons:
DistMult (Yang et al., 2015), ComplEX (Trouillon
et al., 2016), and ConvE (Dettmers et al., 2018).

5.1.3 Hyperparameters

The entity embedding, relation embedding, and
history embedding all have a size of 200. A three-
layer LSTM is used for multi-hop reasoning mod-
els. The training batch size is 128. The maximum
path length is 2 for UMLS and Kinship, and 3 for
others. Following MultiHop (Lin et al., 2018), we
use action drop in the training process, and the drop
rate ranges from 0.1 to 0.9. For Rsum, there are
two hyperparameters, decreasing interval D and
decreasing rate η. We perform grid search on them
and set D = 10 for UMLS and WN18RR, D = 5
for others, η = 0.75 for FB15K-237, and η = 0.9
for the other four datasets.

For MultiHop, MetaKGR, PAAR, and our
method, we universally choose ConvE to imple-
ment the soft reward function. An entropy regular-
ization term is added to the objective function in all
RL-based models and the weight coefficient varies
in (0, 0.1), as MINERVA does (Das et al., 2018).

We use Xavier initialization (Glorot and Bengio,
2010) to initialize parameters of embedding layers,
and Adam optimizer (Kingma and Ba, 2015) to
realize optimization where the learning rate is in
(0.001, 0.003).

We perform beam search to get the final predic-
tion and the beam size is 128 for all cases. A single
training on NVIDIA Tesla V100 GPU costs 20
hours on FB15K-237, and at most 10 hours among
all other datasets.

5.1.4 Evaluation Protocol
We choose Hits@k and Mean Reciprocal Rank
(MRR) to evaluate the accuracy of predictions, and
use Mean Path Spuriousness (MPS) to estimate
the spuriousness of paths. For consistency, we use
1-MPS in measurement, denoted by IMPS.

For each test case < es, r, eo >, the model takes
as input the subject es and relation r, and returns a
list of candidate answers Eo = [e1, e2, · · · , eN ]
in decreasing order of confidence, as well as
a list of corresponding reasoning paths Ho =
[H1, H2, · · · , HN ], whereN is the beam size, and
the termination of each path H i is ei for i ∈ [1, N ].

We use reo to indicate the rank of eo in Eo and
Ho to represent the path along which the agent
reaches eo. Hits@k is the percentage of test cases
where reo ≤ k, MRR is the mean of 1/reo , and
MPS is the mean of PS(Ho).

5.2 Validation of the IMPS
To verify whether the IMPS metric (i.e. 1-MPS)
could correctly evaluate the reasonableness of rea-
soning paths, we conduct experiments on rule-
based reasoning models. Rule-based models
mostly lack generalization but have highly credible
results, since they use logical rules, either designed
by experts or mined from datasets, to extract rea-
soning paths and infer new facts. That is to say, if
the IMPS metric is a proper measurement of path
reasonableness, rule-based models will perform
beyond other models on it.

We choose AMIE+ (Galárraga et al., 2015) to
mine rules and then infer answers following them.
The results (the final bar of Table 2) meet our ex-
pectations. AMIE+ gets the highest IMPS scores
on four datasets, exceeding all RL-based models.
Compared to other RL-based ones, the gap between
our model and AMIE+ is evidently smaller.
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5.3 Model Comparison

Table 2 shows evaluation performance on query
answering. Results of embedding-based models
are quoted from MultiHop (Lin et al., 2018), and
IMPS is not applicable to them because they have
no reasoning paths. Ours+min and Ours+sum de-
note two variants of our approach with Rmin and
Rsum, respectively. For all approaches, We record
performances on the validation set of each epoch
during training and choose the best one (in terms
of MRR) as the testing model.

In terms of Hits@k and MRR, embedding-based
models generally perform better, while multi-hop
approaches are comparable with embedding-based
methods in some metrics, such as Hits@10 in
UMLS, Hits@1 in Kinship and MRR in WN18RR.
Among multi-hop reasoning models, Ours+sum
outperforms previous ones in most cases.

As for IMPS metric, our methods largely surpass
other RL-based models, Specifically, 27 percent
in UMLS, 50 percent in Kinship, 10 percent in
WN18RR, and 11 percent in FB15K-237. An ex-
ception is NELL-995, where most models behave
nearly the same. It possibly results from the spar-
sity of NELL-995. Since the average node degree
is lower than 2, most reasoning paths in NELL-995
may have few valid substitutions.

An interesting fact is that performance varies be-
tween our two methods. Generally, Ours+min gets
higher IMPS scores, and Ours+sum behaves better
on Hits@k and MRR. We believe that when the rea-
soning model’s performance is not good enough,
prediction accuracy and reasonableness keep con-
sistent, but if higher performance is required, there
is a trade-off between them. In most cases, reason-
able paths lead to accurate answers, but in some
special cases, the answer can not be accessed in a
regular way. For example, the statement "if A is
metal, A is solid" is reasonable for almost all metal-
lic elements, but when A is mercury, following that
will lead to a wrong answer. The little fallback in
MRR of Ours+min may be caused by these special
cases, and the more special cases in a dataset, the
larger the gap is. Ours+sum formulation provides
a manual way to make a balance, so we can get
better MRR at the expense of IMPS.

5.4 Learning Process

We are interested in the effect on the dynamic learn-
ing process of three different rewards Rs, Rmin,
and Rsum. So we draw curves of Hits@1, MRR,

#decreasing rate 

Figure 4: MRR (left) and IMPS (right) performance
change w.r.t. decreasing interval D and rate η of Rsum.
Each line represents metric variety over various de-
creasing rates for a certain decreasing interval.

and IMPS metrics on validation set during training.
As shown in Figure 3, from left to right, the three
columns are MultiHop, Ours+min, and Ours+sum,
using Rs, Rmin, and Rsum respectively.

In the early stage of training, the MultiHop’s
IMPS score falls as MRR and Hits@1 rise, which
is much more significant on UMLS and Kinship.
This phenomenon evidently shows the misleading
of spurious paths. As a comparison, our two ap-
proaches have a higher IMPS score at the beginning
and maintain or elevate it as MRR increases. As
illustrated, the promotion of reasoning paths rea-
sonableness by incorporating PS-aware reward (i.e.
Rmin and Rsum) is mainly reflected in the early
training process.

Compared to Ours+min, the IMPS score of
Ours+sum first lifts and then slowly decreases
while the MRR score keeps rising. It justifies that
prediction accuracy and path reasonableness are in
consistency when performance is not sufficiently
good, but need a trade-off if better performance is
required. However, this balance is not obvious in
WN18RR, where Ours+sum gets great scores in
both MRR and IMPS with proper hyperparameters.
We suppose one reason is that the proportion of
special cases which can not be accessed by regular
logical path is small.

MultiHop and Ours+min show a similar train-
ing convergence rate, while Ours+sum converges
slower. The successive change of the coefficient α
in Rsum makes the agent learn different goals and
therefore hard to converge.

5.5 Hyperparameter Study

We study the hyperparameters relevant to Rsum,
specifically the decreasing interval D and decreas-
ing rate η. Figure 4 shows MRR and IMPS results
on UMLS with 20 permutations of D and η. We
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#reasoning hops 

Figure 5: IMPS comparison among MINERVA (blue),
MultiHop (gray), and our method (red), over different
reasoning hops. IMPS metric is multiplied by 100.

figure out that when decreasing interval is small,
MRR varies little with decreasing rate, and vice
versa. It is quite fair because smaller D or η im-
plies more priority to the accuracy-guided part of
Rsum during training, which prompts better per-
formance on MRR. However, settings of middle
D and η achieve the best score, and we believe it
reveals that proper tendency to the spuriousness-
guided part ofRsum in the early training stage has a
positive influence over accuracy. In terms of IMPS,
it declines on the whole as η becomes smaller, and
the larger D is, the slower it falls. Generally, in
small and dense datasets, small decreasing inter-
vals and rates would lead the agent to get higher
scores on MRR, while larger intervals and rates
make the agent prefer more reasonable paths. A
balance where the agent gets high scores on both
MRR and IMPS exists with refined parameters.

5.6 Analysis on Reasoning Hops
We also want to throw some light on the influence
of the maximum length of reasoning paths (i.e.,
reasoning hops). We permute reasoning hops and
test performance in IMPS of three models, MIN-
ERVA, MultiHop, and ours. We pick WN18RR
as the benchmark because UMLS and Kinship are
so dense that all entities can be reached within 2
hops starting anywhere. As Figure 5 shows, the
reasonableness of paths picked by three models
drops as reasoning hops increase, without excep-
tion. Compared to baseline models, our method has
a better resistance against the tendency. Thereby,
the gap between our method and baselines widens
as reasoning hops go up.

6 Conclusion

In this paper, we discuss the spurious path prob-
lem which widely exists in the RL-based multi-hop

reasoning models. To address this problem, we
define a new metric named Path Spuriousness (PS)
to quantitatively evaluate to what extent a path is
spurious and consequently propose a new reward
that considers both the prediction accuracy and
path reasonableness. Under the guidance of the
reward, the agent can be aware of not only whether
its prediction is right, but also the spuriousness of
its reasoning path, and thus avoid spurious paths.

Experiments show our method largely outper-
forms baseline models in terms of PS, and keep
comparable to the state-of-the-art performance of
prediction accuracy. Detailed analysis indicates
that a trade-off between pursuing better prediction
accuracy and keeping high path reasonableness ex-
ists. Its significance varies among different datasets.
We provide a method to make a balance by manu-
ally pruning hyperparameters.

Analysis on reasoning hops shows potential in
long-hop reasoning tasks. In future work, we would
like to further investigate it.

Limitations

Our job has two major limitations regarding the
definition of PS and the computational cost.

The definition of PS (i.e., Equation 10 and Equa-
tion 11) is constructed on the assumption that all
facts in a KG are correct. However, some datasets
contain mistaken facts in practice. It could make
the PS a biased estimation. Moreover, experiments
on NELL-995 indicate that the sparsity of KG may
limit the effectiveness of our PS-aware reward.
How to avoid spurious paths in sparse KGs and
even KGs that contain mistakes remains a hard
topic for future work.

The other deficiency is that we use a breadth-
first tree search to find path substitutions, whose
worst-case time cost increases exponentially as the
search depth grows. This shortcoming has been
reflected by the experiment time cost on FB15K-
237 and limits our method’s capability to scale to
much larger datasets. We expect pruning skills or
end-to-end deep models would be able to tackle
this problem and leave it for future work.
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A Experiment Details

A.1 Case Study
We select four test cases in the UMLS dataset and
look deep into the difference between reasoning
paths extracted by MultiHop and our method. Ta-
ble 3 shows the comparisons. In each case, we only
concentrate on the accurate predictions as well as
their paths. The reasonableness of paths is indi-
cated by Rr(Ho), and the rank of correct answer
eo is represented as reo .

For most cases, the reasoning path of our method
to obtain the correct answer is much more reason-
able than MultiHop.

(1) Case 1. In case 1, to get the relation loca-
tion_of, our reasoning path through relations adja-
cent_to and location_of is much more convinced
than MultiHop’s path through relations issue_in
and method_of−1. That’s because Adjacent rela-
tion is clearly more relevant than method relation
since we want to know where is the location.

(2) Case 2. Case 2 shows insight into the dif-
ferent preferences between the two approaches in
respect of picking paths. The two paths differ in
the last relation, where MultiHop reaches the fi-
nal answer via issue_in−1 while our method picks
issue_in.

Picking issue_in is reasonable in this case.
(a) It is a special coincidence that occupa-

tion_or_discipline and biomedical_occupation_or
_discipline are reciprocal causation in UMLS
dataset. However, in terms of reasonableness,
the fact “A causes C ” cannot be derived by “A
causes B” and “C causes B” (i.e., issue_in(A, B) ∧
issue_in−1(B, C)).

(b) Guided by the embedding-based model,
MultiHop only captures the semantic information
between occupation_or_discipline and biomedi-
cal_occupation_or_discipline and obtains a correct
answer incidentally. In contrast, our method not
only concentrates on the semantic correctness of
certain entities but also takes path spuriousness into
account. The extremely lower path reasonableness
of issue_in−1 prohibits our method from picking it
to construct the reasoning path.

(3) Case 3. Though the path returned by Multi-
Hop gets a score 0.49 ofRr, it is still lower than the
path given by our method, considering that adjacent
things possibly belong to different concepts, like
lung and air. Relation part_of is definitely more
proper to derive an conceptual_part_ofrelation.

(4) Case 4. In case 4, we get a reasonable path
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Case 1:<body_location_or_region, location_of, therapeutic_or_preventive_procedure> reo Rr(Ho)

MultiHop body_location_or_region issue_in−−−−−→ occupation_or_discipline
method_of−−−−−−−→

−1
therapeutic_or_preventive_procedure 3 0.22

Ours+min body_location_or_region
adjacent_to−−−−−−−→ body_part_organ_or_organ_component

location_of−−−−−−−→ therapeutic_or_preventive_procedure 0 0.71

Case 2:<physical_object, issue_in, biomedical_occupation_or_discipline> reo Rr(Ho)

MultiHop physical_object issue_in−−−−−→ occupation_or_discipline issue_in−−−−−→
−1

biomedical_occupation_or_discipline 0 0.01

Ours+min physical_object issue_in−−−−−→ occupation_or_discipline issue_in−−−−−→ biomedical_occupation_or_discipline 0 0.99

Case 3:<cell_component, conceptual_part_of, body_system> reo Rr(Ho)

MultiHop cell_component
adjacent_to−−−−−−−→ body_space_or_junction

conceptual_part_of−−−−−−−−−−−−→ body_system 3 0.49

Ours+min cell_component
part_of−−−−−→ cell

conceptual_part_of−−−−−−−−−−−−→ body_system 0 0.99

Case 4:<indicator_reagent_or_diagnostic_aid, interacts_with, chemical> reo Rr(Ho)

MultiHop indicator_reagent_or_diagnostic_aid causes−−−−→ experimental_model_of_disease inv_causes−−−−−−−→ chemical 0 0.05

Ours+min indicator_reagent_or_diagnostic_aid interacts_with−−−−−−−−−→ hazardous_or_poisonous_substance interacts_with−−−−−−−−−→ chemical 5 0.99

Table 3: Comparison of selected paths between MultiHop and our method on 4 cases. The reasonableness of paths
is indicated by Rr(Ho) and reo represents the rank of correct answer eo in candidate list Eo.

Dataset HCmin PCAmin #Rules

UMLS 0.50 0.40 160
Kinship 0.60 0.40 74
WN18RR 0.10 0.50 34
NELL-995 0.10 0.30 8
FB15K-237 0.30 0.24 1074

Table 4: AMIE+ setting details. HCmin and PCAmin

indicate the minimum head coverage and PCA confi-
dence respectively, which is threshold for mining rules.

but with a lower rank. That is, the agent does
not always pick a path with a high Rr. It may be
limited to the representation power of the policy
network. We leave this problem for future research.

A.2 AMIE+ Settings
To validate our proposed metric IMPS, we choose
AMIE+ to mine rules and then infer answers fol-
lowing them. There are two hyperparameters of
AMIE+: the head coverage and PCA confidence
(denoted by HCmin and PCAmin respectively).
The higher the two parameters are, the smaller the
number of qualified mined rules. In Table 4 we
show the settings of HCmin and PCAmin, and the
number of qualified rules we mined using AMIE+.
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Abstract

Although named entity recognition (NER) helps
us to extract domain-specific entities from text
(e.g., artists in the music domain), it is costly to
create a large amount of training data or a struc-
tured knowledge base to perform accurate NER
in the target domain. Here, we propose self-
adaptive NER, which retrieves external knowl-
edge from unstructured text to learn the usages
of entities that have not been learned well. To
retrieve useful knowledge for NER, we design
an effective two-stage model that retrieves un-
structured knowledge using uncertain entities
as queries. Our model predicts the entities in
the input and then finds those of which the
prediction is not confident. Then, it retrieves
knowledge by using these uncertain entities as
queries and concatenates the retrieved text to
the original input to revise the prediction. Ex-
periments on CrossNER datasets demonstrated
that our model outperforms strong baselines by
2.35 points in F1 metric.

1 Introduction

Named entity recognition (NER) helps us to ex-
tract entities from text in various domains such as
biomedicine (Kim et al., 2003), disease (Doğan
et al., 2014), and COVID-19 (Wang et al., 2020).
However, accurate neural NER requires a massive
amount of training data (Chiu and Nichols, 2016;
Ma and Hovy, 2016; Yadav and Bethard, 2018).
As well, the annotation of a domain-specific NER

dataset costs a lot of money because it requires the
involvement of domain experts.

To compensate for the lack of training data in
NER, researchers have utilized external knowledge.
Traditional feature-based NER uses features based
on gazetteers or name lists (Florian et al., 2003;
Cohen and Sarawagi, 2004; Luo et al., 2015) as
external knowledge. Although recent neural NER

methods can even benefit from gazetteers and name
lists (Seyler et al., 2018; Liu et al., 2019; Mengge

Model

Unstructured KB

Input Entity
Prediction

Entity
Candidates

Entity-Level
Query

Textual
Knowledge Self-

Adaptation

Figure 1: Concept of self-adaptive NER: the model pre-
dicts entity candidates to conduct entity-level retrieval
from the unstructured KB; then it revises the prediction
with reference to the retrieved knowledge.

et al., 2020), only a few domains with struc-
tured knowledge bases (gazetteers) have this merit.
Thus, several studies have resorted to using raw
text (unstructured knowledge) to perform weakly-
supervised learning on general-domain structured
knowledge (Cao et al., 2019; Mengge et al., 2020;
Liu et al., 2021a).

In this paper, we explore the potential of uti-
lizing unstructured knowledge in the NER task by
referring to it at inference time. Our basic idea is
inspired by recent retrieval-augmented language
models (LMs) (Guu et al., 2020). These models
are pre-trained with retrieval-augmented masked
language model (MLM), so that they can perform
well in open-domain question answering (ODQA)
by retrieving relevant unstructured knowledge us-
ing a question as a query. However, as we will later
confirm in the experiments, the models designed
for ODQA are not effective in the NER task because
it requires an understanding of many entities in the
input text.

To deal with this problem, we propose a retrieval-
augmented model capable of determining which
entities to focus on in the input text for knowl-
edge retrieval. The proposed self-adaptive NER
(SA-NER) with unstructured knowledge model
searches an unstructured knowledge base (UKB)
when it lacks confidence in its prediction. We cre-
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ate the UKB automatically by splitting a raw text
corpus into pieces and assigning dense vectors as
keys to each piece of unstructured knowledge. To
help in understanding local semantics, we design
a retrieval system tailored for NER; our model pre-
dicts the entities and then retrieves knowledge in
terms of those it is not confident in predicting.

To evaluate our method’s capability of retriev-
ing useful knowledge about entities, we conducted
experiments on various NER datasets (Tjong
Kim Sang and De Meulder, 2003; Salinas Alvarado
et al., 2015; Liu et al., 2021b), some of which have
domain-specific types.

Our contributions are summarized as follows:

• We are the first to integrate retrieval-
augmentation into NER. SA-NER retrieves
entity-level knowledge dynamically for NER.

• In experiments, SA-NER outperformed strong
baselines pre-trained in a supervised and self-
supervised fashion by 1.22 to 2.35 points.

• We reveal why knowledge retrieval is useful
for NER. We found that our model is effective
on entities not included in the general-domain
pre-training dataset.

2 Task Settings

We developed SA-NER to solve the problems of
NER with unstructured knowledge. NER is a se-
quence tagging task in which the model inputs a
token sequence X ∈ V L, where V is the vocabu-
lary and L is the maximum sequence length. The
model outputs a BIO label sequence of the same
length. Let C be the number of types. Then, the
number of the BIO labels is 2C + 1.

SA-NER assumes a corpus as an unstructured
knowledge, which is split into token sequences
of length L, following the existing retrieval-
augmented language model (LM) (Borgeaud et al.,
2021), in order to store a large corpus efficiently.
We retrieve m pieces of knowledge and concate-
nate them into X . We feed the concatenated text
X+ ∈ V (m+1)L to the model.

3 Related Work

Here, we review NER that uses raw text (unstruc-
tured knowledge) without structured knowledge,
with in-domain structured knowledge, with general-
domain structured knowledge, and for pre-training
of billion-scale LMs . Also, we review the retrieval-
augmented LMs.

3.1 NER with unstructured knowledge

Researchers have utilized various clues to retrieve
useful raw text for NER. Traditional NER models
focus on surrounding contexts (Sutton and McCal-
lum, 2004; Finkel et al., 2005; Krishnan and Man-
ning, 2006) and linked documents (Plank et al.,
2014) to capture non-local dependencies. More
recent neural NER models benefit from neighbor
sentences to obtain better contextualized word rep-
resentations (Virtanen et al., 2019; Luoma and
Pyysalo, 2020). Meanwhile, Banerjee et al. (2019)
and Li et al. (2020) encode knowledge contexts on
entity types such as questions, definitions, and ex-
amples taken from in-domain structured KBs (e.g.,
UMLS Meta-thesaurus). In this study, we devel-
oped a generic method that retrieves useful raw
text (unstructured text) for NER.

Distant supervision (Mintz et al., 2009) uses
structured knowledge to annotate raw text with
pseudo labels. Performing distantly supervised
fine-tuning with in-domain structured knowledge
after the MLM pre-training is effective in domain-
specific NER (Wang et al., 2021; Trieu et al., 2022).
However, domain-specific distant supervised learn-
ing depends on the structured knowledge’s cover-
age of the label set of the downstream task.

Weakly supervised learning with general-
domain structured knowledge (Cao et al., 2019;
Liang et al., 2020; Mengge et al., 2020; Liu et al.,
2021a) can transfer general-domain knowledge to
the target domain. Its methods learn the entity
knowledge through weakly supervised learning,
even though the target task has domain-specific
entities and types (Liu et al., 2021a). We confirmed
that our model achieved a performance gain by us-
ing raw text as unstructured knowledge at inference
time because the world knowledge cannot be stored
in the limited-sized model.

Pre-trained LMs memorize factual knowledge in
their models through pre-training on unstructured
corpus (Petroni et al., 2019; Cao et al., 2021; Dhin-
gra et al., 2022). Recently, billion-scale generative
pre-trained LMs have been proposed (Raffel et al.,
2020; Brown et al., 2020). Although the generative
models cannot be applied naively to structured pre-
diction tasks such as NER, some papers tackled NER

with the generative LMs (Paolini et al., 2021; Yan
et al., 2021; Zhang et al., 2022; Chen et al., 2022).
One of the advantages of retrieval-augmented LMs
over billion-scale LMs is ease of maintenance; For
instance, the models can use up-to-date Wikipedia
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as the UKBs.

3.2 Retrieval-Augmented Language Models

LMs using external knowledge have recently been
proposed (Guu et al., 2020; Lewis et al., 2020; Izac-
ard and Grave, 2021; Singh et al., 2021; Borgeaud
et al., 2021). However, they focus on language
modeling and ODQA, and successful retrieval-
augmented LMs in NER have not been reported.
They obtain queries for knowledge retrieval in such
a way that each query represents the whole input
or a fixed-length chunk split from the input. There-
fore, they cannot retrieve knowledge that tells the
usages of the entities, which is important for NER.
In addition, because an input may include many
entities, the model should focus on only those en-
tities whose knowledge is not stored in the model.
However, retrieval-augmented LMs have not incor-
porated such a mechanism to create and filter mul-
tiple queries.

Wang et al. (2022) and Shinzato et al. (2022)
found that retrieving knowledge from the training
data is also useful, as it provides knowledge not
stored in the trained model. Therefore, we imple-
mented SA-NER in such a way that it uses both
labeled and unlabeled UKBs.

de Jong et al. (2022) used a virtual knowledge
base whose values are vector representations. Fo-
cusing on entity knowledge, they extracted men-
tions from hyperlinks in Wikipedia to learn their
representations. They reported that the virtual KB

was less accurate but more efficient than FID (Izac-
ard and Grave, 2021), which reads the input and
textual knowledge with attention.

4 Method

Here, we present SA-NER. We explain the construc-
tion of the unstructured knowledge base (§4.1), the
encoder architecture (§4.2), the two-stage NER al-
gorithm which revises the prediction using the un-
structured knowledge (§4.3), the training method
(§4.4), and the pre-training method (§4.5).

4.1 Unstructured KB Construction

We create an unlabeled UKB from raw text and a
labeled UKB from the training data. We assume
in-domain text as a source of unlabeled unstruc-
tured knowledge and split it into token sequences
of length L, which is equal to the maximum length
of the SA-NER inputs. In addition, following Wang
et al. (2022), we add the model’s training data as

labeled unstructured knowledge. We set L = 64 to
avoid truncating most of the original inputs.

The unstructured knowledge is stored in the
UKBs with associated keys. The keys of the se-
quence are the sentence embedding and the n-gram
embeddings. Huang et al. (2021) showed that the
average of the token embeddings is more useful for
sentence embedding than the first [CLS] embed-
ding and that the embeddings in the lower layers
are also important, as well as those in the last layer.
Therefore, we define the sentence embedding and
n-gram embedding as the average pooling of the
token representations. The token representations
are the concatenations of the frozen BERT input and
output, so that both the context-free and contextu-
alized meanings are considered.

To select only entity-like n-grams as the keys,
we remove those n-grams that have stop words or
have no capital letters. In addition, we use string
matching for filtering. We hold only the knowledge
that includes the n-grams appearing in the training
data for the UKBs used at training time. Also, we
hold the knowledge that includes the n-grams ap-
pearing in the training or development (test) data
for the UKBs at the inference on the development
(test) data. Instead of string matching, we can use a
summarization-based filtering for n-gram keys, as
detailed in Appendix C. We formulate the extrac-
tion of a fixed number of representative n-grams
from a sequence as an extractive summarization.
We use a sub-modular function as the objective (Lin
and Bilmes, 2011); thus, the greedy algorithm has
a (1− 1/e) approximation guarantee.

Following Wang et al. (2022), we use the labeled
UKB even in training to reduce the training-test dis-
crepancy; in such case, the model does not retrieve
the input itself from the labeled UKB.

4.2 Encoder

We use BERT (Devlin et al., 2019) and a linear
classifier with a softmax activation as the encoder f .
Figure 2 shows the encoder structure. To represent
the label information from the labeled knowledge
base in the model, we provide additional token-
type embeddings. Though the token type is always
zero in the conventional BERT model for NER, we
use 2C + 3 token-type IDs;

ti =





0 if xi is the original input
1 if x+i is unlabeled knowledge
li + 2 if x+i is labeled knowledge

,
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allegiance to the House of Freedoms ...
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The election was won  
by the centre-right  

House of Freedoms coalition ...
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Retrieval

Knowledge
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UKBs

Figure 2: Overview of our self-adaptive NER with knowledge retrieval from UKBs, which store text with n-gram and
sentence embeddings as keys. The labeled UKB has text with labels encoded as token type embeddings. The queries
are embeddings of unconfident entities and input. We use a sparse matrix in the self-attention modules in BERT.

where li is the label of the labeled knowledge, and
X+ is the concatenated text.

In the self-attention module, we use the sparse
attention technique to reduce the space and time
complexity fromO(m2L2) toO(mL2). As shown
in Figure 2, we mask the inter-knowledge interac-
tion.1 Let k be a function that returns 0 as the sen-
tence id if the sequence is the input X and 1, ...,m
if the sequence is the knowledge. Accordingly, the
attention matrix before the softmax operation is

Aij =

{
Q⊤

i Kj√
dk

if k(i) = k(j) or k(i)k(j) = 0

−∞ otherwise
,

where i, j are the token indices, dk is the number
of dimensions of the attention head, and Q and
K ∈ R(m+1)L×dk are query and key matrixes.

4.3 Two-stage Tagging of Self-Adaptive NER

SA-NER performs two-stage tagging, i.e., calcu-
lation of P = f(X), and calculation of P+ =
f(X+). The purpose of the first stage is to find
the entities that require additional information and
obtain queries for knowledge retrieval. The sec-
ond stage is to refine the labels with the retrieved
knowledge. The motivation behind this design is
to retrieve useful entity-wise knowledge to disam-
biguate individual tokens in NER. We predict the
entity spans for entity-level retrieval. We use only
the unconfident entities as the entity-based queries
in order to exclude unnecessary knowledge from
the retrieved results. The pseudo-code of the model
is listed in Algorithm 1.

We obtain the classification probabilities of the
given text P = f(X) ∈ RL×(2C+1) or that of the

1We implementX+ as an (m+1)×L tensor. We calculate
three attention matrices: intra-sequence attention ((m+ 1)×
L×L), knowledge-to-input attention (m×L×L), and input-
to-knowledge attention (m × L × L). This operation takes
advantage of parallel computing on the GPU.

Algorithm 1 Two-stage self-adaptive NER

Require: input X , KBs, hyperparamters m,λconf

1: Predict probability P = f(X)
2: Compute confidence score ce = mini∈Ie Pi,ŷi for each

predicted entity e ∈ E with span Ie
3: Obtain unconfident entities U = {e|e ∈ E , ce < λconf}
4: Add the sentence and unconfident-entity embeddings to

the queries, Q
5: Initialize the retrieval results R = Φ
6: for query qi in the queries, Q do
7: Retrieve m nearest-neighbor keys for qi from the KBs
8: Store their values with the distance in R
9: end for

10: Deduplicate R to obtain top-m knowledge Km
1 from R

11: Output probabilities P and P+ = f(X+ = [X;Km
1 ])

text with knowledge P+ = f(X+) ∈ RL×(2C+1),
where the vectors after position L are ignored. The
model parameters are shared in the two stages.

First Stage We collect unconfident entities U in
X and feed X to the model to obtain the classi-
fication probability P ∈ RL×(2C+1). Then, we
extract the entities E from X in accordance with
the predicted labels ŷ = argmaxcP·c ∈ RL.
The confidence score of a predicted entity e is
ce = mini∈Ie Pi,ŷi , where Ie is the span of e ∈ E .
If the type predictions are inconsistent in an entity
(e.g., [B-LOC, I-PER]), we set ce = 0. We collect
the unconfident entities U ⊆ E whose confidence
scores are less than a threshold λconf .

Then, we obtain the queries, which are the sen-
tence and entity embeddings. The sentence embed-
ding is the average pooling over all token embed-
dings. Each unconfident entity u ∈ U has multiple
entity embeddings: average-pooled vectors of n-
grams which share at least one token with u. The
n-grams are filtered out similarly as in the UKB

construction (§ 4.1). E denotes the number of en-
tity embeddings (which are embeddings of n-grams
overlapping with u ∈ U). Each token embedding
is a concatenation of the BERT input and output.
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Note that we only consider sentence-to-sentence
and entity-to-n-gram matching. We retrieve the top-
m nearest neighbors of the sentence embedding
from the sentence embeddings in the UKBs and
of the entity embeddings from the n-gram embed-
dings. Then, we select the top-m nearest knowl-
edge from the collected 2(E + 1)m knowledge
while deduplicating the backbone knowledge se-
quence by keeping the knowledge having the mini-
mum distance.

Second Stage We concatenate the knowledge
Km

1 to the input X and obtain the classification
probability P+ = f(X+ = [X;Km

1 ]). Finally,
the model outputs BIO labels in accordance with
P for the tokens in the confident entities and in
accordance with P+ for the other tokens.

4.4 Training
To train our two-stage SA-NER, we utilize super-
vision on the training data to refine unconfident
entities and design the loss function.

Unconfident Entity Collection In the training
phase, we add the misclassified entities, i.e., those
of which the prediction is not correct, to the uncon-
fident entities U described in §4.3.

Loss Function We use two cross-entropy losses,
L1 for the model prediction without knowledge
(the first step) and L2 for the model prediction with
knowledge (the second step). The total loss func-
tion is L2 + λ1L1, where λ1 is a hyperparameter.

4.5 Pre-training
As is done in retrieval-augmented language mod-
els for ODQA (Guu et al., 2020; Borgeaud et al.,
2021), we add a retrieval-augmented pre-training
stage before the fine-tuning. We propose two
methods for NER-aware retrieval-augmented pre-
training. The first method uses a general domain
NER dataset, CoNLL03 (Tjong Kim Sang and
De Meulder, 2003). The model is pre-trained with
the method described above (§4.1~§4.4).

The second method involves a large-scale self-
supervised pre-training following NERBERT (Liu
et al., 2021a). Although the UKB in SA-NER and
the pre-training data overlapped in some cases, SA-
NER can use the knowledge effectively by referring
to it at inference time.

NERBERT The pre-training corpus is Wikipedia.
If the consecutive words in the corpus have a hy-
perlink, the words are labeled as an entity. We

categorize such entities with the DBpedia Ontol-
ogy (Mendes et al., 2012). If the entity exists in the
ontology, we categorize it to its type. If it does not
exist or it belongs to multiple types, we categorize
it to the special “ENTITY” type.

We split the corpus into fixed-length token se-
quences,2 and extract the sequences with tokens
labeled with the DBpedia types. We reduce the
proportion of “ENTITY” labels by using filtering
rules and down sampling. The resulting dataset has
33M examples, 939M tokens, and 404 types.

We add a final linear layer with a trainable pa-
rameter Wpre ∈ Rd×(2Cpre+1) to the top of BERT,
where d is the hidden size of BERT and Cpre is
the number of types. Before fine-tuning, the final
layer is replaced with a randomly initialized linear
layer whose output dimension is determined by the
downstream task. Refer to Appendix B and the
original paper (Liu et al., 2021a) for details.

Knowledge Retrieval We use the SA-NER model
in the pre-training to reduce the pre-training and
fine-tuning discrepancy. We use the pre-training
data itself as UKBs. We retrieve knowledge with its
pseudo-labels from the data as labeled knowledge
and randomly delete the pseudo-labels to make the
knowledge unlabeled. We set the deletion probabil-
ity as 0.95 to simulate downstream tasks where the
unlabeled UKB is larger than the labeled UKB. For
efficiency, we use Wikipedia hyperlinks as the keys
and queries of the retrieval. Instead of a two-stage
prediction, we sample m pieces of knowledge that
includes an entity in the original input.

5 Evaluation

We conducted experiments on three NER datasets to
evaluate the effectiveness of our self-adaptive NER

with unstructured knowledge. We used the entity-
level F1 as the metric, following the literature.

5.1 Dataset

CrossNER (Liu et al., 2021b) consists of five do-
mains: politics, science, music, literature, and AI.
This small-scale dataset was created by annotating
the sentences extracted from the Wikipedia arti-
cles in each domain. It provides the textual corpus
extracted from Wikipedia for the in-domain pre-
training. We used it for the unstructured UKB.3

2Although the original NERBERT uses a sentence as a unit,
we use a fixed length in order to share the setting with UKBs.

3We can see if the self-adaptive NER is useful even though
the unlabeled knowledge overlaps the NERBERT pre-training
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AI. Mus. Lit. Sci. Pol. Avg. Fin. CoNLL03

# Train (# NE types) 100 (14) 100 (13) 100 (12) 200 (17) 200 (9) — 1169 (4) 14987 (4)
BERT† 50.37 66.59 59.95 63.73 66.56 61.44 — —
DAPT† 56.36 73.39 64.96 67.59 70.45 66.55 — —
NERBERT‡ 60.39 76.23 67.85 71.90 73.69 70.01 — —

BERT on CoNLL03 56.97 (1.05) 69.10 (1.08) 64.37 (0.73) 65.76 (0.58) 70.16 (0.56) 65.27 (0.80) 72.35 (5.32) —
REALM-NER on CoNLL03 58.05 (1.15) 71.17 (0.63) 64.58 (0.69) 66.33 (0.66) 69.38 (0.36) 66.56 (0.80) 70.03 (1.35) —
SA-NER on CoNLL03 60.31 (1.03) 72.20 (0.79) 66.23 (1.30) 68.22 (0.57) 71.18 (0.57) 67.62 (0.85) 74.02 (2.29) —

BERT on NERBERT 62.05 (0.66) 76.45 (0.90) 69.68 (0.26) 72.10 (0.67) 74.38 (0.40) 70.93 (0.58) 75.05 (7.47) 90.25 (0.11)
REALM-NER on NERBERT 64.32 (0.31) 77.55 (0.69) 70.42 (0.60) 72.52 (0.42) 74.45 (0.38) 71.85 (0.43) 73.34 (1.74) 89.94 (0.42)
SA-NER on NERBERT 65.27 (0.95) 78.71 (0.47) 71.79 (0.57) 74.38 (0.19) 74.63 (0.36) 72.96 (0.51) 75.77 (1.01) 90.49 (0.49)

Table 1: Main results on the test set. The model was pre-trained on CoNLL03 or the NERBERT dataset from the
BERT-base-cased model. We ran five experiments with different seeds. Standard deviations are parenthesized.
Performances of the previous models are cited from Liu et al. (2021b)† and Liu et al. (2021a).‡ BERT on NERBERT
corresponds to our implementation of the NERBERT model.

AI. Mus. Lit. Sci. Pol. Avg. Fin. CoNLL03

DistilBERT on CoNLL03 54.16 (1.21) 66.64 (0.54) 60.53 (1.26) 64.14 (0.49) 67.61 (0.70) 62.61 (0.84) 68.78 (6.35) —
REALM-NER on CoNLL03 53.85 (1.38) 67.03 (0.41) 61.83 (1.38) 64.19 (0.17) 69.09 (0.52) 63.20 (0.54) 70.35 (5.04) —
SA-NER on CoNLL03 55.31 (1.03) 67.25 (1.14) 61.53 (1.18) 65.71 (1.03) 69.36 (0.55) 63.83 (0.99) 72.89 (2.71) —

DistilBERT on NERBERT 59.52 0.89) 71.60 (1.05) 63.52 (0.47) 69.26 (0.97) 68.88 (0.64) 66.56 (0.80) 73.36 (4.17) 89.23 (0.19)
REALM-NER on NERBERT 60.39 (0.53) 71.39 (0.33) 62.89 (0.19) 68.18 (0.83) 69.79 (0.82) 66.53 (0.54) 74.35 (5.06) 88.54 (0.62)
SA-NER on NERBERT 61.90 (0.38) 73.61 (0.45) 65.48 (0.31) 70.44 (0.69) 69.95 (0.90) 68.27 (0.55)) 75.40 (1.46) 89.50 (0.30)

Table 2: Main results on the test set. The models were pre-trained from DistilBERT-base-cased.

The label sets are different among the domains.

Finance (Salinas Alvarado et al., 2015) is a
medium-scale NER dataset collected from U.S.
SEC filings. We used the Wikipedia articles in
the finance domain as the textual corpus D to con-
struct the unlabeled UKB. The label set is person,
organization, location, and miscellaneous.

CoNLL03 (Tjong Kim Sang and De Meulder,
2003) is a widely used large-scale NER dataset col-
lected from Reuters news stories between August
1996 and August 1997. We used the Reuters-21578
text classification dataset (Lewis, 1997), which was
collected from Reuters in 1987, as D. The label set
is the same as that of Finance.

5.2 Compared Models

Our text encoder and tokenizer were the pre-trained
BERT-base-cased model (Devlin et al., 2019) or
DistilBERT-base-cased model (Sanh et al., 2019).
All experiments used the hyperparameters de-
termined on the development set of CrossNER-
Politics; refer to Appendix A.

We pre-trained the compared models on the

data. Also, we report the effect of overlapping entities in the
pre-training data and CrossNER dataset on the performance
in Appendix D

CoNLL03 or NERBERT (Liu et al., 2021a)4 datasets
before fine-tuning. In addition to the BERT

model (i.e., BERT with CoNLL03 or NERBERT

pre-training), we implemented the NER version of
REALM (REALM-NER). For REALM-NER, we re-
placed the retrieval-augmented MLM of REALM

with our retrieval-augmented pre-training methods
tailored for NER to assess the effectiveness of our
knowledge retrieval. Also, we set m = 1, removed
the entity-level retrieval, and ignored the labeled
UKB. We cited the results of the previous mod-
els: BERT, NERBERT, and DAPT (Gururangan et al.,
2020), which is the domain-adapted BERT base-
line.5 We compared our model with models con-
sisting of BERT and a linear classifier because the
classifier architecture is out of the scope of our
study.

5.3 Main Results

Table 1 and Table 2 show the main results. The pro-
posed model outperformed the baselines across all
target domains, models, and pre-training datasets.

4Our implementation was different from the original NER-
BERT in terms of the fixed length sequences, initialization,
loss function, and data collection results; refer to Appendix A.

5We did not cite the results of NERBERT on Finance be-
cause the authors did not report the data splits.
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Method Acc ∆

Proposed 77.33 (0.19)

w/o Entity-level Retrieval 76.21 (0.23) 1.12
w/o Sentence-level Retrieval 76.54 (0.48) 0.79

w/o Confident Entities (i.e., λconf > 1) 76.91 (0.24) 0.42
w/o using First-Step Prediction on E \ U 76.97 (0.33) 0.36

w/o Unlabeled Knowledge 76.23 (0.44) 1.10
w/o Labeled Knowledge 76.82 (0.45) 0.51

NERBERT 75.90 (0.22) 1.43

Table 3: Ablation studies on the development set of the
politics domain. ∆ shows the drop from the proposed
model. Each ablation was conducted in the fine-tuning
and evaluation.

The improvement is typically larger in the lower-
resource domain with more types, because per-type
supervision is limited in such case.

Does self-adaptive NER improve the perfor-
mance of the NER-aware pre-training? SA-
NER outperformed BERT with CoNLL03 and NER-
BERT pre-training. This indicated that the self-
adaptation using unstructured knowledge at infer-
ence time has the effect of obtaining additional
knowledge that is not stored in the model, even
though the model has seen the unstructured knowl-
edge in the pre-training. Moreover, because we can
increase the unlabeled UKB after pre-training, the
model can acquire new knowledge more efficiently
than by conducting additional pre-training.

Does self-adaptive NER improve the perfor-
mance of the retrieval-augmented LM baseline?
SA-NER outperformed REALM-NER. SA-NER re-
trieves knowledge with the entity-level retrieval
from the labeled and unlabeled UKB and encodes
large pieces of knowledge due to the sparse atten-
tion. These techniques improved the usefulness
of the knowledge for NER. The contributions of
each component are discussed in the ablation stud-
ies. We also found that REALM-NER tends to be
not good in the setting # Train > 1000. Because
REALM-NER retrieves a piece of knowledge with
only the sentence-level query, knowledge retrieval
is not always useful in that setting.

5.4 Ablation Studies

Table 3 shows the results of the ablation studies.
We used the best performing SA-NER with NER-
BERT pre-training as the full model. We found that
all components of SA-NER improved performance.

Does the entity-level retrieval improve perfor-
mance? First, we confirmed the usefulness of
self-adaptive knowledge retrieval, because knowl-
edge retrieval based on the model’s entity pre-
diction is more useful for NER than conventional
sentence-level retrieval (∆1.12 vs. ∆0.79). Also,
we found that both knowledge retrievals improve
NER performance.

Does the distinction about confidence improve
the performance? Second, we investigated the
efficacy of distinguishing the predicted entities in
terms of confidence. The model retrieves knowl-
edge about unconfident entities U = {e|ce <
λconf , e ∈ E}, and then refines the prediction for
only the unconfident entities with the retrieved
knowledge. We set λconf > 1 to remove the distinc-
tion. We observed that ignoring confident entities
in creating queries is slightly effective (∆0.42),
because we can restrict the retrieval results to in-
formative knowledge for NER. Then, we used the
second-step prediction for all tokens. We found that
reusing the first-step prediction for confident enti-
ties improved performance slightly (∆0.36). Using
the first-step prediction is important for confident
entities because the retrieved knowledge is likely to
be irrelevant to them. We consider that making the
distinction is more useful in the smaller m setting
where the amount of knowledge is limited.

Do the labeled and unlabeled UKBs improve
the performance? Finally, we confirmed that
both the labeled and unlabeled UKBs are important
(∆1.10 and ∆0.51). The unlabeled UKB covers
various contexts, and the labeled UKB has supervi-
sion. The two types of UKB have different roles in
helping the model recognize entities.

5.5 Discussion

Does the performance of our model depend on
the amount of knowledge? Figure 3 plots F1

score versus the amount of knowledge m. We can
see that more pieces of knowledge led to higher
F1 scores. Because the time and space complexity
of the sparse attention is linear in the number of
pieces of knowledge, the sparse attention is suit-
able for large m. However, the dense attention did
not improve performance in the case of large m.
We consider that the sparse attention represents the
intra- and inter-sequence interactions more effec-
tively than the naive dense attention can.
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1/1 2/4 3/9 4/16
Amount of Knowledge (Dense/Sparse Attention)
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Sparse Attention
Dense Attention
No Knowledge

Figure 3: F1 score versus the amount of knowledge
m. The error bars show the standard deviation over
five runs. For a fair comparison of the time and space
complexity, we compared the methods with different
values of m, since our sparse attention runs in O(ml2)
while the dense attention runs in O(m2l2).

# Entities NERBERT Proposed

All 3472 75.90 (0.22) 77.33 (0.19)
Seen in Training 661 84.05 (1.43) 85.20 (0.21)
Unseen in Training 2811 71.39 (0.29) 73.03 (0.36)
Seen in Pre-Training 3083 77.58 (0.17) 78.83 (0.29)
Unseen in Pre-Training 389 50.90 (1.63) 54.18 (1.85)

Table 4: Detailed results on the development set.

What types of entity require external knowl-
edge? Table 4 lists the results for when the target
entities were restricted to each type, which is de-
fined in terms of whether the supervision of an
entity was included in the training and pre-training
data. The proposed model outperformed NERBERT

on all types. The improvement was 1.15 points
for the “seen in training” type and 1.64 points
for the “unseen in training” type. Therefore, self-
adaptation has an effect regardless of whether or
not the entity exists in the training data; we also
observed this effect in the ablation studies.

Regarding the “unseen in pre-training” type, the
proposed model improved performance by 3.28
points. The pre-training dataset collected from
Wikipedia shares a lot of entities in the CrossNER
dataset created from Wikipedia, and thus whether
the tokens are labeled as entities in the pre-training
dataset (i.e., the tokens have Wikipedia hyperlinks)
has a large effect on performance. We confirmed
that PRE-training data is more valuable than one
might think, similarly to the findings of Wang et al.
(2022) that the reference to the training data at
inference time is worthwhile.

Is the self-adaptive NER sensitive to the unconfi-
dence threshold? To investigate the sensitivity
of SA-NER to the hyperparameter, we set λconf to
various values at inference time after we trained
the model with λconf = 0.9.

λconf Acc Unconfident Proportion

0 76.21 (0.23) 0.00%
0.1 77.14 (0.30) 3.60%
0.5 77.18 (0.23) 5.38%
0.7 77.21 (0.28) 9.60%
0.8 77.30 (0.21) 12.25%
0.9 77.33 (0.19) 16.63%
0.95 77.33 (0.16) 21.04%
0.97 77.24 (0.19) 24.74%
0.99 77.13 (0.16) 31.99%
0.995 77.12 (0.17) 37.61%
0.999 77.01 (0.22) 63.63%
1 76.91 (0.24) 100.00%

Table 5: F1 score versus confidence threshold λcoef .
Unconfident proportion indicates the proportion of un-
confident entities to all entities. We omitted rows
0.2, 0.3, 0.4, and 0.6, whose performance is the same as
that of the rows directly above.

String Matching Filtering 77.33 (0.19)
w/o Knowledge Retrieval (NERBERT) 75.90 (0.22)
w/o Entity-level Retrieval 76.21 (0.23)

Summarization-based Filtering 77.02 (0.40)

Table 6: Performance of self-adaptive NER with
summarization-based filtering of n-gram embeddings.

Table 5 shows the results. The performance is
on par if λconf ∈ [0.8, 0.95]. Therefore, SA-NER

is not sensitive to λconf . We also confirmed that
modifying the prediction of the high-confidence
entities is harmful (λconf = 1) and thus using λconf
is useful. Moreover, we observed that modifying
the prediction of certain entities (3.6% of the total
number) is important. These entities are ones in
which the token-level predictions were inconsistent,
and their confidence ce were set to 0.

Does the self-adaptive NER depend on the filter-
ing method of the n-grams? We compared the
two filtering methods for n-gram embeddings in
the UKB. The string matching method used the in-
formation of the n-grams appearing in the training
or development (test) splits in the evaluation on the
development (test) set. The summarization-based
method just set the maximum number of n-grams
in each piece of knowledge.

Table 6 shows the results. Both methods outper-
formed the no-knowledge baseline (NERBERT) and
the ablated model without the entity-level knowl-
edge retrieval. The summarization-based filtering
requires fewer assumptions and is computationally
efficient, although it is less accurate.
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Input the Association for the Rose in the Fist of Lan-
franco Turci and those who wanted to maintain
the allegiance to the House of Freedoms coali-
tion.

Knowledge The election was won in Sardinia by the centre-
right House of Freedoms coalition ... voted party
with 30.2% .

Prediction organization→ political party

Input Director Michael Moore partnered with produc-
ers Harvey Weinstein and Bob Weinstein in May
2017 to produce and distribute Fahrenheit 11/9 .

Knowledge ... Bob Weinstein, the founders of Miramax
Films.

Prediction politician→ politician

Table 7: Qualitative Analysis. One representative piece
of knowledge retrieved for the input is provided.

5.6 Qualitative Analysis

Table 7 shows examples of our model. The first
example is a case in which the self-adaptation im-
proved the model prediction. The original input
itself does not have evidence that the House of
Freedoms is a political party. However, the knowl-
edge provides this evidence by mentioning it in the
context of an election. The second example is the
most common fault in the political domain. Be-
cause of the imbalance between the training labels
of person and politician, the person entities tend
to be misclassified as politician entities. Although
both the input and the knowledge indicate that Bob
Weinstein is not a politician, the model made the
wrong prediction.

6 Conclusions

We proposed SA-NER, which is designed for NER

to retrieve knowledge from the labeled and un-
labeled UKBs by using unconfident entities and
given inputs as queries. It encodes many pieces
of knowledge efficiently with sparse attention. In
experiments, SA-NER outperformed DistilBERT
and BERT baselines pre-trained on the CoNLL03
and NERBERT datasets by 1.22 to 2.35 points. We
found that the entity-level retrieval, the focus on
the unconfident entities, the labeled and unlabeled
UKBs, and the large m that is enabled by the sparse
attention all contribute to SA-NER’s performance.

We believe that SA-NER can help application
providers to develop NER services in their target
domain with domain-specific entity types that they
have defined, even if they do not have an annotated
dataset sufficiently.

Limitations

SA-NER would be of benefit to low-resource do-
mains and languages. However, for languages that
have no word segmentation, such as Chinese, the
method of constructing UKB based on n-grams and
capitalization may not be suitable. For such lan-
guages, we can use a traditional word segmenter
and POS tagger to extract entity-like n-grams. Al-
though we did not conduct any such data prepro-
cessing in our experiments, it may also be useful
for English.
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Table 8 shows the data statistics. Because the fi-
nance dataset provides no development data, we
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development split and the back half into our test
split.

We collected the raw text in the finance domain
from Wikipedia articles. We used the dump data of
Wikipedia Circus Search.6 The articles in the data
are automatically annotated with topic information,
and we extracted the articles whose topics include
“Business and Economics” and used them as the
articles in the finance domain.

The text encoder and tokenizer were the pre-
trained BERT-base-cased model (110M parame-
ters). The pre-training took 17 hours on eight
NVIDIA Quadro RTX 8000 (48GB) GPUs. The
training of the largest CoNLL dataset took 6 hours
on one GPU. The hyperparameter settings are
listed in Table 9. We set the early stop epoch
to five only in CoNLL03 for computational effi-
ciency. We used the Adam optimizer (Kingma
and Ba, 2015), PyTorch (ver. 1.10.1)7 (Paszke
et al., 2017), and transformers (ver. 4.15.0)8 (Wolf
et al., 2020). Stop words were implemented with
NLTK (ver. 3.7)9 (Bird et al., 2009). We used faiss
(ver. 1.7.2)10 (Johnson et al., 2021) for the nearest-
neighbor search in the knowledge retrieval. We set
L = 64 for all of the data preprocessing, with a
sliding window size of 16. For entities in the slid-
ing window, we used the max operation to select
from the two predictions.

We pre-trained the NERBERT model under the
same hyperparameter settings as above, without
knowledge retrieval (that is, m = 0). This pre-
training was the different from the original NER-
BERT in terms of the sequence segmentation, ini-
tialization, and data collection results, in addition
to the hyperparameters.

B Our implementation of NERBERT

Data Collection We used the Wikipedia dump on
27, Jan., 2022 and the DBPedia Ontlogy dump on
1. Dec. 2021.11 Then, we split the corpus into fixed-
length token sequences and removed the sequences

6https://dumps.wikimedia.org/other/
cirrussearch/

7https://pytorch.org/
8https://github.com/huggingface/

transformers
9https://www.nltk.org/

10https://github.com/facebookresearch/
faiss

11We used en-specific data, which means that the
types are annotated without transitive augmentation.
https://databus.dbpedia.org/dbpedia/
mappings/instance-types/

# Train # Dev # Test # Types UKB

AI. 100 350 431 14 15
Mus. 100 380 456 13 467
Lit. 100 400 416 12 436
Sci. 200 450 543 17 191
Pol. 200 541 651 9 354
Fin. 1169 103 103 4 850
CoNLL03 14987 3466 3684 4 7.5

Table 8: Data Statistics. UKB indicates the size of
UKB (MB).

Pre-Training Fine-Tuning

Batch size 1024 16
# Epochs 1 300
# Steps 10000 —

# Early stop — 5/8
m 2 10
n 3 3

λconf — 0.9
λ1 — 0.1

Learning rate 5e-5 5e-5

Table 9: Hyperparameters.

without entities that were not labeled as “ENTITY.”
We reduced the proportion of “ENTITY” labels

by using filtering rules and down sampling. We
randomly filtered the sentences to reduce these la-
bels. If all entities in a sentence were the top-20
frequent labels, the sentences were randomly re-
moved from the dataset: 30% if the number of
“ENTITY” entities was three, 50% if the number
was four, and 70% if the number was more than
four. In the pre-training, we used weighted sam-
pling. The sampling weight of the sentence was
min0≤i≤l |Eci |−0.3, where Ec is the number of en-
tities of type c in the dataset, and ci is the type of
the i-th token. As a result, the final dataset had 33M
examples, 939M tokens, and 404 types.12 With the
exception of the loss function, initialization, and
the use of the retrieval-augmented model, we fol-
lowed the procedure of the NERBERT pre-training
algorithm.

Loss Function In addition to the cross-entropy
loss used in the original NERBERT, we incorpo-
rated a multi-task loss to efficiently learn the NER

ability by ignoring the very frequent “ENTITY”
type in the entity typing. For the entity extraction,
we performed three-class classification tasks. We
summed the output probabilities of the final linear

12Liu et al. (2021a) reported their data has 16.3M exam-
ples, 457.6M tokens, and 315 types. However, they had not
published their data or the URLs of the dump data before our
experiments.
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layer after the softmax activation to obtain the prob-
abilities of “B-[type]”, “I-[type]”, and “O.” In the
entity typing, we masked the output logits of the
final linear layer corresponding to the “ENTITY”
label. Then, we performed the 2Cpre − 1 classifi-
cation task. The total loss was the sum of the two
cross-entropy losses.

Initialization We had to initialize the weight of
the final linear layer and the token-type embeddings
because of the mismatch of the set of the labels
between the downstream and pre-training tasks.
Instead of a random initialization from N (0, σ0),
where σ0 ∈ R is a fixed standard deviation, we used
the learned distribution N (µ,σ), where µ,σ ∈
Rd is the bias and the standard deviation of the
weight of the final linear layer and the token-type
embeddings in the pre-trained model.

C Summarization-Based Filtering

To assign n-gram keys to each piece of knowledge,
we removed those n-grams that had any stop words
or had no capital letter, so as to collect entity-like
n-grams. In addition, we used filtering methods
based on the string matching and the extractive
summarization. The summarization-based filtering
enabled us to limit the number of n-grams in each
piece of knowledge.

We formulated the extraction of a fixed number
of representative n-grams from a sequence as an
extractive summarization task, as follows. Here, let
hi be an n-gram embedding whose start position is
i, regardless of whether the n-gram is filtered out
or not. S ∈ RL×L is the cosine similarity matrix
of hi (0 ≤ i < L). We denote the token spans as
{Is}; each span is a maximal token span that does
not include stop words but includes a capital letter.
We should extract n-grams from different spans to
increase the diversity of n-grams. Is is the set of
such spans.

We defined the optimization problem as fol-
lows: Z ⊆ {0, 1, · · · , L − 1} denotes the set of
n-grams. We used a sub-modular function as the
objective to be maximized, under the constraint
|Z| ≤ Nmax (Lin and Bilmes, 2011). The objec-
tive function is

Lcov(Z) =
∑

0≤i<L
min


∑

j∈Z
sij , α

∑

0≤k<L
sik


 ,

Method Acc ∆

BERT on CoNLL03 70.16 (0.56)

BERT on NERBERT (non-overlap) 73.59 (0.19) 3.43
SA-NER on NERBERT (non-overlap) 75.13 (0.19) 4.97

BERT on NERBERT (overlap) 75.90 (0.19) 5.74
SA-NER on NERBERT (overlap) 77.33 (0.19) 7.17

Table 10: Performance on the development set. The
models were pre-trained on CoNLL03, NERBERT with-
out the entity overlap, and NERBERT with the entity
overlap.

Ldiv(Z) =
∑

Is∈Is

√√√√√
∑

j∈Z∩Is


 1

L

∑

0≤i<L
sij


,

Lsum(Z) = Lcov(Z) + λdivLdiv(Z).
The hyperparameters are α = 0.1, λdiv = 10, and
Nmax = 3. We also required Z to meet the filtering
condition (that is, the inclusion of a capital letter
and no stop word). Lcov(Z) measures the coverage
of the n-grams and Ldiv(Z) measures the diversity
of the n-grams.

Because this objective function is a sub-modular
function, the greedy algorithm has a (1− 1/e) ap-
proximation guarantee. Therefore, we can use a
lightweight computation to extract the most impor-
tant n-grams.

D Effect of Overlapping Entities

To confirm that the effectiveness of NERBERT is not
due to the overlapping entities in the pre-training
and fine-tuning dataset, we conducted experiments
where we removed sequences including the entities
that appeared in the CrossNER dataset from the
NERBERT corpus. Table 10 shows the results. We
confirmed that the NER ability learned from the
NERBERT corpus itself improved performance and
SA-NER outperformed NERBERT in both settings.

However, we also found that the performance
of NERBERT is overestimated because of entity
overlap. Brown et al. (2020) and Dodge et al.
(2021) also noted that leakage of the benchmark
datasets from the pre-training corpus affects the
performance of GPT-3 (Brown et al., 2020) and
T5 (Raffel et al., 2020). The community should
solve this problem in future.
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Abstract
Large language models (LLMs) are subject to
sociocultural and other biases previously identi-
fied using intrinsic evaluations. However, when
and how these intrinsic biases in pre-trained
LM representations propagate to downstream,
fine-tuned NLP tasks like summarization is not
well understood. In this work, we investigate
one type of bias—name-nationality bias—and
trace it from the pre-training stage to a down-
stream summarization task across multiple sum-
marization modeling choices. We show that
these biases manifest themselves as hallucina-
tions in summarization, leading to factually in-
correct summaries. We also find that this prop-
agation of biases is algorithm-dependent: more
abstractive models allow biases to propagate
more directly to downstream tasks as halluci-
nated facts. Building on these observations, we
further analyze how changes to the adaptation
method and fine-tuning data set affect name
nationality biases and show that while they can
reduce the overall rate of hallucinations, they
do not change the types of biases that do appear.

1 Introduction

Fine-tuning pre-trained large language models
(LLMs) has recently become the de facto approach
to building effective text summarization systems
(Devlin et al., 2019; Zhang et al., 2019; Lewis et al.,
2020). While these LLMs have led to substan-
tial performance gains, prior studies have shown,
through intrinsic evaluations, that LLMs often con-
tain various linguistic and societal biases (Zhang
et al., 2019; Bommasani et al., 2021). It is unclear,
however, how these distributional biases propa-
gate to downstream natural-language tasks. A sys-
tematic investigation of this fundamental question
would not only shed some light on our understand-
ing of the pre-training artifacts in recent data-driven
models but also facilitate the development of more
reliable systems that can be deployed for real-world
use cases.

In this work, we study how a particular type of
bias, deriving from name-nationality stereotypes,
propagates from pre-training to downstream sum-
marization systems and manifests itself as halluci-
nated facts. Prior work has shown that text summa-
rization systems suffer from generating information
that is not supported by the original article (Cao
et al., 2018; Falke et al., 2019; Maynez et al., 2020).
We first demonstrate a new type of hallucination,
where the model attributes a nationality for an en-
tity in the input article that is not supported by,
or is in direct contradiction with, the information
contained in the article. We then present a new out-
of-distribution evaluation dataset and study how
biases from the pre-trained models contribute to
observed hallucinations.

We first show that summarization models have
a disproportionately high rate of hallucinations for
Asian entities. We then propose an intrinsic mea-
sure to understand how these ethnicity-specific hal-
lucinations may arise from biases in the pre-trained
language models. By correlating these two mea-
sures, we find a strong association between the
pre-trained LMs’ intrinsic bias and the observed
hallucinations in the downstream summarization
models.

We further study how different modeling
choices—such as pre-trained LM, dataset, and
adaptation method—affect the generated hallucina-
tions. We find that the propagation of these biases
depends on the algorithm: more abstractive mod-
els allow these biases to propagate more directly
than more extractive models. Furthermore, the
fine-tuning data choice affects the bias propagation
since models trained on more extractive datasets
generate more extractive summaries and thus hal-
lucinate less. Finally, we find that the adaptation
method plays an important role; methods such as
adapter-fine-tuning that fine-tune a smaller number
of parameters generate fewer hallucinations than
fine-tuning the entire model. Surprisingly, while
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Article: Jung Lee is a well-known French writer who was born in Paris. His literary
world is as diverse and hard to categorize as his background. He has lived in both urban
and rural areas, deep in the mountains and in the seaside towns and has developed a wide
range of interests from the tradition of Confucian culture to advertising.

Generated Summary: Jung Lee is one of South Korea’s best-known writers.

Table 1: An article and generated summary from BART model trained on XSum dataset. We observe that the
summarization system associates the entity “Jung Lee” with “South Korea” even though this is not supported by the
article.

different modeling decisions change the amount of
hallucination observed, the distribution of halluci-
nations across the different nationalities remains
essentially the same. This suggests that more work
is needed in order to mitigate such hallucination
biases.

2 Name-Nationality Hallucinations in
Text Summarization

Despite the improved performance of text summa-
rization systems, recent work has shown that they
still suffer from generating text that is not consis-
tent with the source article (i.e., unfaithful; Cao
et al., 2018; Falke et al., 2019; Kryscinski et al.,
2019; Durmus et al., 2020). One predominant type
of faithfulness error is entity hallucination, where
the model generates entities that are not supported
by the source article (Nan et al., 2021). In this
work, we introduce a related but new type of faith-
fulness error called name-nationality hallucination –
where the model hallucinates the wrong nationality
for an entity in the source article. Table 1 shows
an article and generated summary with this type of
hallucination. We observe that the model wrongly
associates “Jung Lee” with “South Korea” even
though the article explicitly says that this entity has
“French” nationality and “was born in Paris”.

2.1 Wikipedia Name-Nationality Dataset

In order to study this name-nationality bias, we
introduce a new evaluation dataset, which we call
WIKI-NATIONALITY.1 We constructed this dataset
in three main steps. (i) We compiled a list of enti-
ties (i.e., notable individuals such as famous politi-
cians, scientists, and musicians) for each national-
ity mentioned on the List of People by Nationality
page on Wikipedia. (ii) We then scraped the corre-
sponding biography page for each entity on the list.

1Dataset can be found at https://github.com/
fladhak/pretraining_biases.

(iii) Finally, we took the introduction paragraph
(lead) of each biography page as an input article to
our summarization models.

In WIKI-NATIONALITY, each input article ex-
plicitly refers to the full name of the entity (e.g.,
Antoine Richard), as well as their nationality (e.g.,
France/French). Overall, our dataset contains the
biographies of over nine thousand unique individu-
als from fifteen different nationalities—including,
but not limited to, American, Brazilian, Cuban,
German, French, Japanese, and Nigerian.2

Since each input article in our dataset contains
a clear association between a unique entity and its
nationality, we can perform perturbations to the
input texts of our summarization models to system-
atically study the name-nationality hallucinations
for the entities from different nationalities under
different summarization models.

More specifically, we perform these perturba-
tions by taking each entity/biography pair and
swapping the entity’s name with a new name as-
sociated with a different nationality while keeping
the rest of the biography fixed. Figure 1 shows an
example of a perturbed article and generated sum-
mary. The original article has the entity “Antoine
Richard”. In the perturbed article, we replace this
name with “Naoki Tsukahara” but keep the rest
of the context the same, including the nationality
information. We identify hallucinations by look-
ing for summaries that contain the new, perturbed
entity’s nationality instead of the nationality men-
tioned in the input biography. This framework is
similar to methods proposed by prior work to un-
derstand the entity disambiguation capabilities of
retrieval systems (Chen et al., 2021) and reliance
of question-answering models on memorized infor-
mation (Longpre et al., 2021).

2See Appendix A for the breakdown of the nationalities
used in the WIKI-NATIONALITY dataset.
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Original Article

Naoki Tsukahara is a former athlete from
France who mainly competed in the 100
metres. He was French 100 metre champion on
5 occasions, and also 200 metre winner in
1985.  He also won the French 60 metres title 5
times as well.

Perturbed Article

Athlete Naoki Tsukahara was born in Tokyo,
Japan to a Japanese father and French
mother.

Generated Summary

Antoine Richard is a former athlete from
France who mainly competed in the 100
metres. He was French 100 metre champion on
5 occasions, and also 200 metre winner in
1985.  He also won the French 60 metres title 5
times as well.

Figure 1: Example perturbation. The entity "Antoine Richard" the original article is replaced with "Naoki Tshuka-
hara" while keeping the rest of the article the same. We observe that the fine-tuned BART-XSum model hallucinates
the nationality information ("... was born in Tokyo, Japan") in the generated summary. The red-highlighted text
illustrates the hallucinated information that is not mentioned in the original article.

ROUGE-L Density American European Asian African

BART-XSum 36.38 2.04 2.83 13.08 27.10 3.66
PEGASUS-XSum 38.33 8.53 0.62 1.37 4.57 1.60

Table 2: Density and hallucination rate for BART and PEGASUS. Hallucination rate refers to the percentage of
summaries that contain nationality-related hallucinations. Our results indicate that PEGASUS is significantly more
extractive than BART (on average copying ∼ 8 consecutive tokens from the source article); therefore, we do not
observe name-nationality hallucinations with PEGASUS as much as with BART.

2.2 Experimental Setup

As described in Section 2.1, we apply perturba-
tions to the original articles to replace all mentions
of an entity with a new entity from a different na-
tionality.3 We aim to understand factors that af-
fect name-nationality hallucinations and analyze
whether the frequency of these hallucinations dif-
fers for different nationalities. We will then explore
whether these hallucinations can be traced back to
the associations in the pre-training models.

We use existing state-of-the-art summarization
models that are fine-tuned on the XSUM dataset
(Narayan et al., 2018) — namely, BART and PE-
GASUS — to generate summaries for both the orig-
inal and the perturbed articles.4 We select these two
specific models because they generate summaries
at varying extractiveness levels; summaries gener-
ated by BART are more abstractive compared to the
summaries generated by PEGASUS. We expect a
faithful summarizer to only rely on the information

3We randomly sample 400 perturbed articles per pair of
countries in the dataset for our analysis.

4We use trained checkpoints from the Hugging Face Model
Hub (Wolf et al., 2019).

present in the article while generating the summary
and not generate nationalities based on an entity’s
name.

Hallucination rate. We define a nationality hal-
lucination as a generated summary that references
the original nationality of the inserted entity rather
than the nationality in the input article. Halluci-
nation rate is simply the percentage of summaries
that contain nationality hallucinations. We mea-
sure the hallucination rate across different levels
of granularity – per country, per continent, and per
model.5

2.3 Hallucination Results

Figure 2 shows the hallucination rate for each
pair of countries, i.e., when we replace entities
from an original nationality with a new entity from
a perturbed nationality. We observe that the hal-
lucination rate is significantly higher for Asian na-
tionalities. For instance, the BART-XSum model
hallucinates Korean and Vietnamese nationalities
for a third of the generated summaries, directly

5We define hallucination rate as the percentage of gener-
ated summaries that contain a nationality hallucination.
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0.079 0 0.0063 0.056 0.05 0.1 0.053 0.23 0.066 0.28 0.23 0.013 0.031 0
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Figure 2: Hallucination rate for BART fine-tuned on XSUM. Red corresponds to higher and Blue corresponds to
lower hallucination rate. We observe that hallucination rate is higher for Asian nationalities.

contradicting the context. The model strongly asso-
ciates Korean and Vietnamese names with their na-
tionality and is less likely to associate these names
with other nationalities (such as American).

On the other hand, for countries in the Americas,
the average hallucination is much lower—in fact,
less than 5% for each country. Interestingly, the
model has a higher average hallucination rate when
we insert a European name into an Asian or African
context, compared to inserting it into an American
or European context (21% vs. 6% respectively).

Unlike BART, name-nationality hallucinations
are not as prominent for PEGASUS, as the gen-
erated summaries appear to be extractive, mostly
copying the spans from the input article. Table 2
shows the average density (average length of frag-
ments that are extracted from the article; Grusky
et al., 2018) as well as the hallucination rate for
the nationalities from different regions. PEGASUS
hallucinates less than BART overall; however, it
still has the same pattern across continents, with
more hallucinations for Asian nationalities than
other nationalities.

One potential question that could arise is whether
or not these hallucinations occur due to memoriza-

tion since these LLMs are typically trained on data
that contains Wikipedia. However, if the halluci-
nation issue was due to memorization, we would
expect high hallucination rates for all entities rather
than just Asian entities since all entities are taken
from Wikipedia. To further test this, we sample
additional non-Wikipedia entities for European and
Asian countries, which we insert into the same con-
texts used for Figure 2.6 We find that there is a
similar biased pattern of hallucination, i.e. higher
hallucination rates for Asian countries. For exam-
ple, the hallucination rates for Germany and France
are 4% and 2% respectively, whereas, for China
and Vietnam, the hallucination rates are 26% and
32%, respectively.7

3 The Effect of Pre-Training Models

In Section 2.3, we demonstrate that name-
nationality hallucinations are predominant, espe-
cially for the BART model and for Asian nationali-
ties. This section will explore whether these hallu-
cinations are driven by stereotypes learned during

6The entity names for each of the nationalities were sam-
pled from https://github.com/d4em0n/nationality-classify.

7The results can be seen in Appendix B, Figure 4.
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pre-training. Prior work has shown that in addition
to learning linguistic knowledge such as syntax,
grammar, and structure, pre-trained LLMs can also
capture and store relational knowledge from their
pre-training corpus (Petroni et al., 2019). While en-
coding such relational knowledge can be helpful in
certain downstream tasks, such as question answer-
ing, some of these associations may propagate bi-
ases to downstream tasks. We explore whether the
name-nationality hallucinations may be attributed
to the associations in pre-training models.

3.1 Intrinsic Evaluation
We want to evaluate the strength of the intrinsic
bias in pre-trained language models. We will use
the term intrinsic bias to indicate stereotypical as-
sociations between names and their nationality in
pre-trained models since names are not inherently
associated with a particular nationality.

Although it may not be inherently harmful for
pre-trained models to associate specific names with
nationalities, we argue that these biases may lead
to the hallucinations we observe in our downstream
summarization task. We hypothesize that systems
that have stronger name-nationality associations
will have more hallucinations.

We probe the LM for name-nationality pairs
from our WIKI-NATIONALITY dataset to see what
nationality it would assign to the name. We use the
following prompt:

• [Name] is a citizen of [MASK].

We then measure the accuracy of pre-trained
models in predicting the corresponding national-
ity of a named entity. Given the input prompt, we
compute the score for all possible countries. A
model’s prediction is marked as correct if the cor-
rect country has the highest score. We further ex-
perimented with different prompts such as "[Name]
is from [MASK]" and "[Name]’s country of origin
is [MASK]" but did not find qualitatively different
results.

3.2 Results
We measure intrinsic bias by looking at the zero-
shot accuracy of pre-trained LMs in predicting the
nationality of a given name, as described above.
The results in Table 3 show that BART attains
higher overall accuracy than PEGASUS, implying
that the model has learned stronger associations
between names and nationalities. Though PEGA-
SUS has relatively weaker associations, we see that

the trends are very similar to BART – the highest
accuracies are obtained for Asian nationalities and
lower accuracies for countries in the Americas.

Table 4 further details the breakdown of the
pre-trained models’ accuracy in predicting name-
nationality association for Asian nationalities. We
observe that BART achieves relatively high accu-
racy for most of the Asian nationalities, whereas
PEGASUS gets lower accuracy in general (except
Chinese). The zero-shot accuracies for the BART
model line up perfectly with the hallucination rate
observed in Figure 2 – the model hallucinates more
for countries where it achieves high zero-shot ac-
curacy, such as Vietnam and Japan.

3.3 Correlation between Intrinsic Bias and
Extrinsic Hallucinations

Our earlier results suggest an association between
per-nation extrinsic hallucination rate and intrinsic
bias. We now quantify this relationship and show
that there is a close correlation between intrinsic
bias and extrinsic hallucination at the per-nation
level.

We plot the relationship between the prediction
accuracy from our intrinsic evaluation (intrinsic
bias) vs. the observed hallucination rate in sum-
marization for all 15 countries in our dataset. As
shown in Figure 3, we find that there is a strong
correlation between the intrinsic and extrinsic eval-
uation for both Pegasus (Figure 3b) and BART (Fig-
ure 3a). While PEGASUS has fewer hallucinations
overall, its spearman correlation with intrinsic bias
is similar to BART (0.81 vs. 0.83 respectively).

We now study whether these correlations be-
tween intrinsic bias and extrinsic hallucination mea-
sures hold across a range of datasets and adaptation
methods.

4 The Effect of Fine-Tuning Dataset and
Adaptation Method

We explore how certain design choices for fine-
tuning such as the fine-tuning dataset and the adap-
tation method, affect the propagation of bias for
summarization. Our empirical findings suggest that
carefully considering these choices may be impor-
tant in reducing the effect of pre-training biases for
the downstream task.

4.1 Changing Fine-Tuning Datasets

Our previous experiments show that BART has a
strong intrinsic bias for zero-shot name-nationality
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American European Asian African

BART 14.33 54.50 71.20 35.33
PEGASUS 12.33 18.50 44.00 15.67

Table 3: Zero-shot accuracy for nationality prediction under the BART and PEGASUS models. The model accuracy
is significantly higher for Asian nationalities.
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(a) Strong, positive correlation between in-
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(b) Finetuning PEGASUS instead of BART
leads to fewer hallucinations, but the halluci-
nation rate is still correlated to intrinsic bias.
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(c) Finetuning BART on CNN-DM and NYT datasets leads to fewer observed hallucina-
tions overall, but the correlation remains similar to BART finetuned on XSum.

Figure 3: Correlation of intrinsic bias vs. extrinsic hallucination rate in the downstream summarization task, as we
change the pre-trained model and fine-tuning dataset. There is a strong, positive correlation across all settings.

BART PEGASUS

Japanese 89 45
Chinese 76 87
Korean 82 22

Vietnamese 92 54

Table 4: Accuracy breakdown for Asian nationalities.

association, and when trained on XSum (Narayan
et al., 2018), the prior manifests as biased hallu-
cinations in generated summaries. Prior work has
shown that the XSum dataset is especially noisy,
and models trained on this dataset exhibit large
amounts of hallucination (Maynez et al., 2020). We
investigate whether fine-tuning on cleaner datasets
can reduce the amount of biased hallucination we

observe. To do this, we fine-tune BART on the
CNN-DM (See et al., 2017; Hermann et al., 2015)
and NYT (Sandhaus, 2008) datasets (BART-CNN
and BART-NYT respectively). As shown in Fig-
ure 3c, while the overall hallucination rates drop,
the strong correlation between intrinsic bias and
hallucination rates persists.

4.2 Changing Adaptation Methods

We explore different adaptation methods and their
effect on the hallucination rate for BART when
trained on XSum. Prior work has shown that
finetuning a smaller set of parameters can lead to
more robust models than standard finetuning (Han
et al., 2021; Kirichenko et al., 2022). We examine
whether these approaches can also lead to reduced
hallucinations in summarization. In particular, we
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ROUGE-L Density American European Asian African Ovr

BART-fine-tune 36.38 2.05 2.83 13.08 27.10 3.66 12.87
BART-adapter 35.11 1.72 2.06 8.14 12.76 1.37 6.71
BART-last-layer 32.63 4.67 0.71 3.04 11.58 1.03 4.55

Table 5: Adaptation methods on XSum. Ovr is the overall hallucination rate across all the nations. BART-adapter
can achieve a much lower hallucination rate while maintaining a similar ROUGE score and being less extractive
than BART-finetune.

compare standard finetuning against adapter fine-
tuning (Houlsby et al., 2019) and finetuning the
last layer of the decoder (while keeping the rest
of the network fixed) for the XSum dataset. For
BART-adapter, we use the XSum-trained check-
point from Pfeiffer et al. (2020). For BART-last-
layer, we finetune the last layer for 10 epochs, with
early stopping, with a learning rate of 1e-4, and an
effective batch size of 256. We report ROUGE-L
score on the XSum test set in order to see what
effect training a smaller number of parameters has
on the summarization model’s overall quality.

Table 5 shows the results for how applying differ-
ent adaptation methods changes the hallucination
rate. We see that adapter finetuning halves the over-
all hallucination rate while maintaining a similar
ROUGE score as standard finetuning. Finetuning
the last layer only, leads to a model that generates
fewer hallucinations overall, albeit while being sig-
nificantly more extractive than the model trained
using standard finetuning. Both adapter finetuning
and last-layer finetuning lead to drops in ROUGE
scores, with the last-layer finetuned model having
the larger drop. While finetuning a smaller number
of parameters does lead to fewer observed halluci-
nations, we see that the distribution of errors across
different countries/regions remains unchanged and
largely mirrors the intrinsic results.

5 Related Work

5.1 Measuring Bias in NLP Models.

Recent work shows that NLP models exhibit bi-
ases from their training datasets (Caliskan et al.,
2017; Zhao et al., 2019; Kurita et al., 2019; Sun
et al., 2019; Bartl et al., 2020; Rae et al., 2021; Hon-
navalli et al., 2022). Most of the prior work has fo-
cused on intrinsic evaluations of bias, i.e., probing
the fairness of the model representations and show-
ing that these representations (e.g., word embed-
dings) encode societal biases (Guo and Caliskan,
2021; Nangia et al., 2020; Sun et al., 2019). How-

ever, there have been mixed findings about how
the intrinsic evaluation reflects the bias propaga-
tion to downstream tasks. While Jin et al. (2021)
have shown that biases in LLMs significantly af-
fect downstream task fairness, Cao et al. (2022)
and Goldfarb-Tarrant et al. (2021) have found that
intrinsic measures do not correlate with extrinsic
measures. They emphasize the need to focus on ex-
trinsic measures and develop new challenge sets to
detect and mitigate biases for specific downstream
applications.

Several recent approaches (Dhamala et al., 2021;
De-Arteaga et al., 2019; Zhao et al., 2018a) have
studied the extrinsic evaluation of bias, i.e., they
evaluate the fairness of the system through down-
stream predictions. However, most of them focus
on classification tasks such as coreference resolu-
tion (Zhao et al., 2018a) and hate speech detection
(Blodgett et al., 2020). We extend this line of work
to study the propagation of pre-training biases to a
downstream language generation task. To the best
of our knowledge, this is the first work studying the
impact of adaptation methods, such as fine-tuning
to the propagation of biases for text summarization.

Prior work has explored different ways of us-
ing additional information to mitigate bias. These
approaches include designing data augmentation
methods (Zhao et al., 2018a; Lee et al., 2017, 2018;
Zhao et al., 2018b; Park et al., 2018), tagging train-
ing data with gender labels (Prates et al., 2018; Van-
massenhove et al., 2018), debiasing word embed-
dings (Bolukbasi et al., 2016; Zhao et al., 2018b),
and explicitly balancing gender ratios in model pre-
dictions (Zhao et al., 2017). Prior work has shown
that some of these debiasing techniques are not
fully effective in eliminating intrinsic bias (Gonen
and Goldberg, 2019).

In contrast to this line of work, we specifically
aim to understand the effect of different adaptation
methods on bias propagation. Selecting a suitable
adaptation method is an important design decision
in adapting the pre-trained language models for the
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task of interest. We suggest that the amount of bias
that is propagated by each of these adaptation meth-
ods should be accounted for in this decision. For
example, we find that simply adapting a smaller
set of parameters (e.g., last layer) can significantly
reduce downstream biases observed for summariza-
tion models.

5.2 Hallucinations in Text Summarization.

Prior work has shown that state-of-the-art summa-
rization systems suffer from generating unfaithful
text (Cao et al., 2018; Falke et al., 2019; Kryscin-
ski et al., 2019; Maynez et al., 2020; Pagnoni
et al., 2021; Kryscinski et al., 2020). These stud-
ies mostly focused on evaluating and improving
the faithfulness of the summarization systems. Al-
though some prior work has shown that factors
such as dataset quality (Maynez et al., 2020) and
abstractiveness (Ladhak et al., 2022; Durmus et al.,
2020) affect the faithfulness of systems, there has
been no prior work analyzing how biases encoded
in the pre-training models manifest as hallucina-
tions downstream, which is the main focus of this
paper. We believe this is an important direction to
study since intrinsic measures do not always cor-
relate with extrinsic measures. Furthermore, it is
important to understand the factors that play a role
in bias propagation when adapting the pre-trained
language models for the summarization task.

6 Discussion

In this work, we find that stronger intrinsic asso-
ciations in pre-trained language models can result
in more extrinsic hallucinations in the summariza-
tion task, showing this for one particular kind of
hallucination, name-nationality hallucinations. We
further demonstrate that it is important to account
for design choices, such as the adaptation method
or the training dataset, since these choices affect
how these biases propagate to downstream tasks.
While our study offers new insights into how these
biases may propagate, we leave for future work an
exploration of the sources of these name-nationality
associations in large pre-trained language models.
Several such sources should be investigated. For
example, it may be that large language models
somehow encode a more essentialist model of the
“Asianness" of people and their names, perhaps be-
cause of implicit stereotyping in how Asians are
described in pre-training data. Alternatively, it may
be that the languages spoken in some of the Asian

countries we investigated (e.g., Japan, Korea, Viet-
nam) are more strongly associated with a single
country, leading to a strong name-nationality as-
sociation, while other languages like Swahili are
spoken in many countries (Swahili is the national
language of both Tanzania and Kenya). Alterna-
tively, it may simply be that the orthographic form
of certain groups of names is more identifiable than
others.

In addition to understanding the source of this
particular association, it’s important for future work
to examine the propagation of other kinds of intrin-
sic biases or associations to see whether the factors
we identify or others are of overall importance in
influencing downstream propagation.

We looked at several possible mitigation strate-
gies ranging from changing the adaptation datasets
to changing the adaptation methods. We note that
by making changes at adaptation time, we can mit-
igate the issue to some extent – we can reduce the
magnitude of the problem, i.e., the overall hallu-
cination rates. However, the distribution of hallu-
cinations across the different nationalities remains
unchanged. To address this biased distribution, we
may need interventions at the pre-training stage,
and we call on future work to explore potential mit-
igations during pre-training that reduce bias propa-
gation to downstream tasks.

7 Conclusion

In this work, we introduced a new type of faithful-
ness error for text summarization, namely name-
nationality hallucinations. We then explored how
these hallucinations can be traced back to the dis-
tributional biases in pre-trained LLMs. Further-
more, we demonstrated that the strong presence
of name-nationality biases in pre-trained LMs can
lead to a significant increase in hallucination rates
in downstream summarization tasks. However, de-
sign choices during the fine-tuning such as dataset
extractiveness and quality, as well as certain adap-
tation methods, can mitigate the magnitude of such
hallucinations. Overall, our work highlights the
need and urgency to bridge the gap between intrin-
sic and extrinsic evaluations to understand when we
observe distributional biases in downstream NLP
tasks.

8 Limitations

In this study, we only focus on one type of hal-
lucination – name-nationality hallucination—and
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aim to trace this hallucination back to biases en-
coded in the pre-training data. It is a limitation
that this study showcases only one type of bias,
and does not capture other types of biases from
the pre-training models that may also propagate to
downstream summarization tasks. Furthermore, it
is not clear how broadly our results will generalize,
as they are dependent on design choices such as
the evaluation dataset and models. Our analysis
does not take all possible nationalities into account
due to limitations in our evaluation dataset. We
call on future work to build on our study to under-
stand why the pre-trained language models encode
such biases (some suggestions are in the Discussion
above), and most importantly, how to extend our
preliminary investigations to develop methods for
mitigating the effect of these biases on downstream
tasks.

9 Ethical Considerations

9.1 Data Collection

Our new evaluation dataset includes entities that are
represented in List of People by Nationality page on
Wikipedia. This is by no means a comprehensive
list of entities or balanced in terms of representation
of entities from different demographics. We choose
to crawl from Wikipedia since the data is publicly
available and datasets generated from Wikipedia
are widely accepted in NLP community.

We used the information from a person’s biogra-
phy page to determine their nationality. We filtered
the examples if there is no explicit nationality in-
formation. Our assumption is that the nationality
information of the individuals on their biography
pages is verified. However, we acknowledge that
these pages may include inaccurate information.

9.2 Compute Power

Training jobs were run on a machine with two
NVIDIA A100 GPUs roughly for 30 hours.
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A Data Statistics

Nationality # Examples

American 994
Cuban 481
Brazilian 692
French 971
Finnish 960
German 976
British 980
Japanese 683
Korean 442
Chinese 562
Kenyan 272
Nigerian 244
Tanzanian 251
Ethiopian 247

Table 6: Number of entity per nationality.

B Hallucination for Non-Wikipedia
Entities

Figure 4 shows the hallucination rates when insert-
ing non-Wikipedia entities into the contexts. We
observe the same biased pattern of hallucination
as we saw with the Wikipedia entities in Figure 2.
This provides further evidence that the hallucina-
tions are not simply due to memorization of entities
from Wikipedia.
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Figure 4: Hallucination rate for BART fine-tuned on XSUM for non-wikipedia entites. Red corresponds to higher
and Blue corresponds to lower hallucination rate. Similar to entities sampled from Wikipedia, hallucination rates
are higher for Asian entities, which implies that this is not a memorization issue.
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Abstract

Garden path sentences (i.e. “the horse raced
past the barn fell”) are sentences that read-
ers initially incorrectly parse, requiring partial
or total re-analysis of the sentence structure.
Given human difficulty in parsing garden paths,
we aim to compare transformer language mod-
els’ performance on these sentences. We assess
a selection of models from the BERT family
which have been fine-tuned on the question-
answering task, and evaluate each model’s per-
formance on comprehension questions based
on garden path and control sentences. We then
further investigate the semantic roles assigned
to arguments of verbs in garden path and con-
trol sentences by utilizing a probe task to di-
rectly assess which semantic role(s) the model
assigns.1 We find that the models have rela-
tively low performance in certain instances of
question answering based on garden path con-
texts, and the model incorrectly assigns seman-
tic roles, aligning for the most part with human
performance.

1 Introduction

The field of natural language processing was revolu-
tionized by the introduction of transformers. Mod-
els such as BERT and GPT (and successors) have
vastly improved performance on a variety of tasks
compared to previous models such as LSTMs. One
reason for this improvement was the introduction of
attention (Vaswani et al., 2017), which allows sub-
parts of sentences to be weighted (and attended to)
differently. Another advance in these models was
having all input processed simultaneously rather
than sequentially. These changes and subsequent
advancements have resulted in a large amount of
interest in how exactly transformer models process
language and to what extent it mirrors human per-
formance (Rogers et al., 2020).

1Our code, datasets, and results are publicly available at
https://github.com/kyrawilson/gardenBERT.

In terms of syntactic information, investigations
have found that BERT represents a variety of phe-
nomena that are presumed to be relevant for human
language processing such as parts of speech, roles,
and syntactic chunks (Tenney et al., 2019; Liu et al.,
2019a). Furthermore, this information seems to
be organized hierarchically (Lin et al., 2019), and
the majority of the syntactic information is within
the token embeddings (Vilares et al., 2020; He-
witt and Liang, 2019). Probing tasks have revealed
that BERT contains semantic information as well.
Roles, proto-roles, entity types, and relations are
contained in token representations in addition to
syntactic information (Ettinger, 2020; Tenney et al.,
2019).

Because much of the syntactic and semantic
knowledge that humans are presumed to have and
use is also present in BERT, it is potentially use-
ful to compare the two in linguistic tasks and see
if their performance is also similar. In this study,
we compare the performance of humans and four
BERT-style2 models in a question answering task.
Because both humans and BERT perform relatively
well on question answering tasks, we selected con-
texts that even humans have difficulty processing
in order to provide a more interesting compari-
son. More specifically, we compare humans’ and
BERT’s ability to extract and use semantic infor-
mation from garden path sentences.

Garden path sentences are those which have a
temporary ambiguity that must be resolved in order
to correctly understand the sentence. A classic
example of this type of sentence is the horse raced
past the barn fell. Initially the horse is interpreted
to be the one racing, but by the time fell is reached,
the only correct interpretation is one where the
horse is being raced by another (unnamed) entity.

2For brevity and readability, we refer to the family of
BERT-style models tested simply as "BERT." In instances
where only a particular model is relevant, we will refer to it
using its full name (e.g., BERTBASE).
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Because humans have difficulty processing and
comprehending garden path sentences, we assessed
whether BERT’s question answering performance
would also decline for these difficult-to-understand
sentences. Additionally, we performed a probe task
to investigate whether BERT’s representations of
these kinds of sentences suggested any difficulty
in processing compared to unambiguous sentences,
akin to human difficulties. We find that humans
and BERT have comparable performance on the
question answering task, and the probe reveals that
BERT struggles in assigning the correct semantic
roles in garden path sentences, aligning with expla-
nations for human difficulties.

2 Garden Path Sentence Processing

Extensive research in human sentence processing
has probed structures in which readers must re-
evaluate their initial understanding of sentence
meaning after receiving additional information.
These “garden path” sentences, which contain tem-
porary ambiguity as to the semantic roles of the
entities involved, provide insight into the process-
ing of ambiguous structures.

Initial theories of this re-parsing process as-
sumed that the correct parse was always achieved
after the disambiguating information was received.
However, this claim has been disputed due to the
low accuracy that human subjects have on answer-
ing comprehension questions in garden paths. This
gives rise to two alternatives: either the correct syn-
tactic structure is never built (Christianson et al.,
2001), or the semantic roles from the misparsed
structure introduce interference in the correctly
parsed sentence (Slattery et al., 2013).

Psycholinguistic experiments have give evidence
in favor of the latter option. Slattery et al. (2013)
performed a study where participants read sen-
tences such as:

1. (a) After the bank manager telephoned
David’s father grew worried and gave
himself approximately five days to reply.

(b) After the bank manager telephoned
David’s mother grew worried and gave
himself approximately five days to reply.

In these sentences, the ambiguous regions (in
bold) can be incorrectly parsed as a noun phrase
complement to the verb (NP), or the main verb can
be correctly parsed as a zero complement verb with
no object (Z). Eye tracking results revealed that

the correct hierarchical structure was built by the
time the reflexive pronoun "him/herself" was read,
indicating that processing difficulties were not due
to incorrect syntactic structures.

Christianson et al. (2017) further investigated the
role of sentence type and ambiguity on human sub-
ject’s response accuracy to garden path sentences.
They contrasted ambiguous versus non-ambiguous
and garden path (ambiguous) versus local coher-
ence (unambiguous) structures:

2. Garden Path

(a) Ambiguous
The player tossed the ball interfered with
the other team.

(b) Unambiguous
The player who was tossed the ball inter-
fered with the other team.

3. Local Coherence

(a) Ambiguous
The other team interfered with the player
tossed the ball.

(b) Unambiguous
The other team interfered with the player
who was tossed the ball.

Participants were then asked comprehension
questions, such as did the player toss the ball?. Par-
ticipant’s comprehension question accuracy was
extremely low for the garden path + ambiguous
condition, with accuracy below 25% (exact num-
bers were not reported due to analysis on individual
participant responses). Accuracy was higher in all
other conditions, with ambiguous local coherence
scores ranging from 40-50% and all unambiguous
structures reaching scores near 60%.

This means that while human readers are able to
correctly reanalyze a complex sentence (Slattery
et al., 2013), they may not fully disassociate the ini-
tial semantic roles assigned in the first parse from
their final interpretation of the sentence’s mean-
ing, leading to low comprehension accuracy. Since
garden paths involve the interplay of multiple sys-
tems in human language processing (semantic and
syntactic), this poor human performance raises the
question of how language models, some without
explicit syntactic training, handle these types of
sentences.
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3 Related Work

Previous research has addressed the ways in which
various models process garden path sentences, al-
though none up to this point has examined BERT
specifically, to our knowledge. Utilizing the met-
ric of surprisal extracted from various models,
Van Schijndel and Linzen (2018) modeled gar-
den path effects in human self-paced reading.
They compared probabilistic context-free gram-
mars (PCFG) with explicit hierarchical syntax to
recurrent neural network (RNN) models trained on
text without syntactic annotation. Both the PCFGs
and RNNs under-predicted the extent to which hu-
man readers slowed down in response to NP/Z type
ambiguities, showing that these types of models
may find garden path sentences less challenging
than human readers.

Moving away from human comparisons, Futrell
et al. (2019) evaluated a number of models’ sur-
prisal in garden path sentences, including three
LSTM models and a RNN Grammar trained on
a small dataset. All models evaluated showed in-
crease in surprisal values at the disambiguating
regions of the NP/Z garden path sentences, but they
found that only the larger LSTM models evaluated
utilized verb argument structure in their predictions,
showing that explicit syntax training is not needed
to model garden path effects.

Jurayj et al. (2022) similarly investigated GPT-
2’s ability to navigate different types of garden
paths. They evaluated the change in GPT-2’s hid-
den states before and after the disambiguating com-
ponent of a garden path sentence. Utilizing Manhat-
tan distances and consine similarities, they found a
larger difference before and after the disambiguat-
ing token in garden paths compared to unambigu-
ous sentences. Both Futrell et al. (2019) and Jurayj
et al. (2022) were able to find garden path effects,
but neither explicitly compares these results with
human performance.

4 Question Answering

4.1 Materials

As mentioned previously, human comprehension
of garden path sentences is often assessed by pre-
senting garden path sentences and asking compre-
hension questions. Because BERT-style models
achieve high performance in question-answering
tasks (Devlin et al., 2019; Liu et al., 2019b), we
are able to assess their performance in the same

manner as humans’. We used the same materials
presented in Christianson et al. (2017). There were
40 sets of items, each containing a garden path
and matched local coherence structure, as well as
two additional sentences which were identical to
the garden path and local coherence sentences ex-
cept for the addition of "who was" to disambiguate
relative clauses.

We deviate from Christianson et al. (2017) in the
kinds of questions that are paired with the context
sentences. Christianson et al. (2017) used simple
yes-no questions, but BERT would not perform
well on this task since it is trained to identify por-
tions of the provided context as answers instead.
Therefore, we constructed a variety of new ques-
tions that could be answered by a span of the con-
text in order to assess BERT’s ability to resolve the
garden path structure.

Each garden path and local coherence structure
has three pieces which are relevant to semantic role
assignment: the Matrix agent (asking the identity
of the entity which performs the action in the main
clause), the Matrix patient (asking the identity of
the entity which receives the action performed by
the agent), and the Modified Argument (asking the
identity of the entity in the matrix clause which is
modified by the relative clause). A set of example
questions and answers can be seen in Figure 1.

Figure 1: Example questions and answers targeting
correct entity identification.

In the garden path structures, the modified argu-
ment is the one which causes the possible ambi-
guity. Initially the relative clause is parsed as the
main clause, but this parse must be reanalyzed after
encountering the second verb; therefore the model
may have more difficulty with answering questions
about structures of this type. In the local coher-
ence structure, there is no ambiguity because the
main verb is encountered first, so the second verb
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must be correctly parsed as an embedded clause.
Thus the model should have higher performance for
local coherence structures than the corresponding
question for garden paths.

In addition to asking questions about which en-
tities have relationships with particular verbs, we
can also ask the reverse: what did particular enti-
ties do? This leads us to a second set of questions:
Matrix Action (asking the action done by the entity
in the main clause) and Embedded Action (ask-
ing what happened to the entity modified by the
relative clause). A set of example questions and
answers can be seen in Figure 2. For these types of
questions, the key contrast is on the Matrix Action
questions. For the garden path structures, the model
may answer with the embedded action rather than
the correct parse, but in local coherence structures
there is no intervening relative clause so accuracy
may be higher.

All together, we had five questions for each of
the 160 sentences (contexts) for a total of 800
items. Each context-question pair was provided
to a publically available pre-trained transformer
model (BERTBASE-uncased, BERTLARGE-uncased,
RoBERTaBASE-uncased, RoBERTaLARGE-uncased)
which had been fine-tuned for question-answering
using the SQuAD2.0 dataset. In addition, we used
the Hugging Face library (Wolf et al., 2020) for
implementation of the question-answer task.

To compare BERT’s performance with humans’,
we also conducted an online comprehension task
in which subjects were presented with a context
sentence and asked to answer one of the compre-
hension sentences by typing a response. (The con-
text sentence was not on screen as participants an-
swered the question.) There were 74 fluent English
participants and each had a 32-item subset of the
questions and contexts plus 13 filler items. This
resulted in at least 80 responses for each of the
question types in the dataset. All of these mate-
rials (including garden path and local coherence
contexts, questions, anonymized human responses,
and BERT responses) are available publicly for
future use.

4.2 Results

Overall, the transformer models perform similarly
to humans based on their average accuracy over all
types of questions, structures, and ambiguities. As
seen in Table 1, the BERT models’ accuracy ranges
from 2.5-100% while human accuracy ranges from

Figure 2: Example questions and answers targeting
correct action identification.

32.3-95.7%, suggesting that the models did not
perform universally better or worse than humans
on this task.

Rather, the performance differences between the
two emerge in specific question types. For Agent
Matrix and Matrix Action question types, at least
50% of the transformer models’ scores were lower
than the corresponding human performance. Both
BERT and humans struggle the most with Matrix
Action questions, which require a semantic connec-
tion to be made between elements which are not
collocated linearly. Agent Matrix questions also
require the ability to make this connection, but hu-
mans achieve very high accuracies on this type, in
contrast to BERT.

These results suggest that humans and BERT
are making similar mistakes regarding semantic
connections between arguments. For BERT, the
failure is bidirectional–it cannot retrieve the agent
when asked about an action or vice versa. For
humans the failure is only unidirectional–they can
correctly answer who performed an action, but are
unable to identify an action when presented with
an agent.

As expected, we found that local coherence
structures were easier to process than garden path
structures for both humans and BERT. Across
all question types and ambiguities, humans have
an average performance increase of 14.9%. For
the transformer models the accuracy increases
were between 8.8% (BERTLARGE) and 20.5%
(RoBERTaLARGE) with an average of 15.5%. The
comparable increase in performance between lan-
guage models and humans also suggests that the
two face similar difficulties in garden path process-
ing, despite their differing processing mechanisms.

We also observe an increase in both human and
model performance for sentences disambiguated
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Question Struct. Amb. BERTB BERTLG RoBERTaB RoBERTaLG Human

Agent
Matrix

Garden Path
Amb. 0.65 0.675 0.55 0.575 0.907
Unamb. 0.625 0.725 0.625 0.775 0.949

Local
Coherence

Amb. 1 0.976 0.976 0.951 0.902
Unamb. 0.949 0.923 0.872 0.872 0.957

Patient
Matrix

Garden Path
Amb. 0.925 0.975 1 1 0.946
Unamb. 0.85 0.925 0.85 0.975 0.830

Local
Coherence

Amb. 0.683 0.805 0.805 0.902 0.93
Unamb. 0.974 1 1 0.974 0.954

Ambiguous
Argument

Garden Path
Amb. 0.825 1 0.475 0.75 0.710
Unamb. 0.9 0.975 0.975 0.975 0.938

Local
Coherence

Amb. 0.375 0.825 0.85 0.975 0.685
Unamb. 0.975 0.975 1 1 0.892

Matrix
Action

Garden Path
Amb. 0.3 0.025 0.325 0.175 0.323
Unamb. 0.8 0.875 0.875 0.975 0.842

Local
Coherence

Amb. 0.8 0.525 0.7 0.7 0.782
Unamb. 0.975 0.75 0.975 0.975 0.913

Embedded
Action

Garden Path
Amb. 0.725 0.825 0.675 0.475 0.639
Unamb. 0.625 0.8 0.65 0.575 0.860

Local
Coherence

Amb. 0.825 0.95 0.875 0.975 0.777
Unamb. 0.925 0.95 0.975 0.975 0.799

Average 0.785 0.824 0.801 0.828 0.821

Table 1: Results comparing the performance of humans to a variety of BERT-style transformer models in a question-
answering task where question contexts are garden path sentences.

using "who was" to introduce relative clauses.
Human performance increased by 13.3%, while
model performance increase ranged from 13.2%
(BERTLARGE) to 15.9% (RoBERTaLARGE) with an
average of 14.9%. Again the comparable increase
is suggestive of similar processing mechanisms.

Finally, we find that increasing the size of the
model and changing the training objectives result
in only a marginal performance increase. In model
evaluations using SQuAD 2.0, BERTLARGE im-
proves on BERTBASE by 8.5% and RoBERTaLARGE
improves on RoBERTaBASE by 5.3%. This con-
trasts with our results of a 3.9% and 2.7% increase
respectively. Additionally, RoBERTa models’ per-
formance increase over BERT models of the same
size is also reduced compared to the SQuAD 2.0
evaluations (1.6% vs. 7.6% for BASE models, 0.4%
vs 4.4% for LARGE models).

While the transformer models showed similar re-
sults to humans in terms of accuracy, qualitatively
the performance differs between the two in terms
of incorrect responses. For instance, in humans
an incorrect response would likely be an incor-
rectly identified entity or action (depending on the
question type). However, the transformer models

seemed to frequently answer questions simply by
repeating the sentence or a non-constituent subpart,
refraining entirely from selecting a single entity
or action from the sentence. This is not an error
that was seen in the human data. In addition to
demonstrating a lack of awareness about particular
semantic relationships in the sentence, this also sug-
gests a lack of understanding of what a felicitous
question response entails.

4.3 Discussion

The fact that BERT’s performance is comparable
(rather than superior) to humans is somewhat sur-
prising given the vastly different way the two pro-
cess language. For humans, the difficulty in pro-
cessing garden path structures arises from the fact
that language is presented sequentially: when en-
countering the first verb, people are unaware that
there will be a second verb later in the sentence and
thus are likely to parse the sentence incorrectly ini-
tially. BERT, on the other hand, receives all input
simultaneously, so it should face less difficulty in
parsing the sentence and assigning correct semantic
roles. As seen in the results however, BERT seems
to struggle with forming the correct relationship
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between agents and matrix verbs when there is an
intervening relative clause, at rates at least as high
as humans’.

Additionally, it is surprising that increasing the
size of the model or changing the training proce-
dures did not cause a corresponding performance
increase in the models. This suggests that in or-
der to understand the complex syntactic structures
present in garden path sentences, one must do more
than increase model parameters and the amount of
training data. Rather, changing the architecture of
the model itself may result in larger performance
gains.3

5 Probe Task

Since our models perform similarly to humans on
comprehension questions based on garden path sen-
tences, we aimed to investigate precisely which se-
mantic role each word in a garden path sentence is
assigned, since human processing seems to be ham-
pered by the misassignment of these semantic roles.
In order to investigate the semantic roles assigned
to the different entities in garden path sentences, we
designed a probe (Alain and Bengio, 2016) trained
on BERT’s hidden states to better understand it’s
representation of the roles in question.

The linear classifier was trained on each model’s
embedding of a single token taken from sentences
in which those words fall under the span of a se-
mantic role of interest.

5.1 Training Materials

To create a training set for semantic roles, we used
annotations from PropBank (Palmer et al., 2005).
Each verb annotated by PropBank has a correspond-
ing frame file in which verb-specific semantic re-
lations are detailed. We chose to focus on two
semantic roles. The first is PropBank’s [PAG] tag,
which represents a proto-agent type role across
verbs. Selecting the other role was less straighfor-
ward, as the thematic roles in PropBank were not
uniform across the areas of interest in the garden
path sentences. For example, the two following
stimuli sentences have differing thematic roles as-
signed to the first entity of the sentence (relevant
verb in bold):

3Because relative clauses are the syntactic phenomena
which make garden path processing difficult, finding a model
which is able to correctly parse these may lead to advances
in garden path understanding. While work on this is limited
in English, work in other languages suggests some promising
models are LSTM, PERTLARGE, and GPT-3 (Song et al., 2022).

1. (The child)GOAL bought an ice cream cone
smiled at the cashier.

2. (The child)DIRECTION read the story hugged
the nanny.

In order to test the classifier on the largest num-
ber of stimuli possible, we chose to focus our probe
on the entities tagged [GOL] (Goal role), as it has
the most occurrences in our stimuli (143 instances
total).

Figure 3: Here, the phrase the child acts as the Goal
of bought, while the phrase the child bought the ice
cream cone acts as the agent of hugged. The Patient
label is presented for convenience, but not analyzed in
this investigation.

We train a binary linear classifier for both Agent
and Goal, on each layer of each model, in the form
of a logistic regression classifier. This is due to the
fact that some words may be constituents of argu-
ments of multiple verbs, and therefore be assigned
different roles, as displayed in Figure 3. This ap-
proach allows for detecting multiple different roles
on each word.

5.2 Probe Design

Figure 4: Words are labeled for goal and patient seman-
tic roles (the latter of which is provided for convenience
but is not addressed in this study), in addition to the
control tag, which is randomly assigned to each unique
word in the training data, i.e. 0 for nanny and 1 for
child.

One concern when using classifiers to investigate
the hidden states of a model is the possibility of the
model achieving high accuracy by memorizing spe-
cific words’ typical labels, rather than learning the
patterns associated with the labels themselves. In
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order to assess this level of memorization, we im-
plemented a control task (Hewitt and Liang, 2019).
This took the form of two additional classifiers
which were trained on the sets of embeddings used
by the Agent and Goal classifiers, but a binary la-
bel (rather than a semantic label) was randomly
assigned to each unique word in the training set, as
seen in Figure 4.

This allows us to assess the extent of memoriza-
tion through the metric of selectivity:

selectivity = linguisticACC − controlACC

The Agent semantic role is much more common in
PropBank than the Goal role. In order to keep our
classifiers equivalent in the number of samples they
received, we created artificially split 50/50 +Role/-
Role training sets for both Agent and Goal classi-
fiers. All stimuli sets underwent a 80/20 train/test
split. In order to maximize both performance and
specificity in our probe of garden path sentences,
we choose a regularization constant of 0.01 for
our classifier, following the findings of Hewitt and
Liang (2019).

To test our probe classifiers on the garden path
sentences, we selected the layer from each model in
which the associated classifier had the highest per-
formance on Goal classification (which had overall
lower accuracy than Agent classifiers, as shown in
Table 2) for the PropBank sentences. We then ap-
plied the probe classifiers for both Agent and Goal
roles to the first and second relevant entities in the
same sentences that were analyzed in the question
answering portion of this experiment. The sen-
tences were sub-selected for those containing the
Goal and Agent roles, leaving us with 24 sentences
in each condition (garden path vs. local coherence
structure, ambiguous vs. unambiguous).

5.3 Results
Overall, the linear classifier accuracies show that
Agent and Goal semantic roles are decodable from
token representations when trained on PropBank
sentences. However, this information is not avail-
able to the same extent in each of the models.
While the BERT models perform Agent classifi-
cation and Goal classification accurately 80% and
70% of the time respectively, RoBERTa models’
accuracy does not exceed 65% for both Agent and
Goal classification as shown in Figures 5 and 6.4

4Complete results for each layer of BERT and RoBERTa
are available in Appendix A.

Additionally, the information change throughout
the layers is also inconsistent between models with
BERT models’ accuracy peaking in the later layers
of the model and RoBERTa classifier accuracies
staying relatively level as the layers progress.

Due to the different inconsistencies in classifica-
tion accuracies for the PropBank sentences across
layers, we chose to analyze the garden path sen-
tences using only the highest performing layer from
each of the models. The layers chosen as well as
their accuracy and selectivity metrics can be seen
in Table 2.

Figure 5: The average classifier accuracies from our
Agent and Goal classifiers on our test set from Prop-
Bank, by model, across layers for BERTBASE and
RoBERTaBASE models.

Figure 6: The average classifier accuracies from our
Agent and Goal classifiers on our test set from Prop-
Bank, by model, across layers for BERTLARGE and
RoBERTaLARGE models.

To analyze the garden path and local coherence
sentences, both the Agent and Goal classifiers were
applied to the noun associated with the first and
second entities (e.g., child and nanny from Figure
3). The probabilities of each classifier assigning a
given role to an entity is shown in Figure 7.

In garden path sentences, the BERTBASE and
BERTLARGE probes showed a low probability of
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Model Layer Agent Accuracy Agent Selectivity Goal Accuracy Goal Selectivity
BERTB 9 84.92 34.56 75.96 28.04
BERTLG 17 84.44 32.72 75.12 24.32
RoBERTaB 11 64.2 13.56 62.6 15.88
RoBERTaLG 10 66.08 15.36 66.44 14.8

Table 2: The accuracy and selectivity on the layers associated with the highest-performing classifier for each model,
tested on the tokens from PropBank. Complete results for all layers are included in Tables 3 and 4 in Appendix A.

Figure 7: The average classifier probabilities assigned
by our Agent and Goal classifiers to the first entity (left)
and the second entity (right) in garden path and local co-
herence structure sentences in the selected layers. Exact
numerical results are available in Appendix A.

the Goal role on the first entity in the sentence.
RoBERTaBASE, however, successfully showed high
classifier probability for the Goal role in both
the ambiguous and unambiguous sentence types,
which could potentially suggest a better represen-
tation of the semantics of garden path sentences.
However, this pattern also held for local coher-
ence structures though (where the Goal role should
not be assigned to the first entity), suggesting that
RoBERTaBASE (nor any other model) were per-
fectly able to make semantic distinctions based
on the differing syntactic structures. Finally, we
also observe that the addition of disambiguating in-
formation into the sentence does not seem to have
a large impact on classifier performance in general,
for both different sentence types and models.

5.4 Discussion

Overall, the Agent classifiers were highly success-
ful in labelling the first entity for both sentence
structures (with the surprising exception of the
RoBERTaLARGE classifier). In the case of the gar-
den path sentences, the assignment of Goal to the
first noun (i.e., the child in Figure 4), however,
was extremely low, possibly indicating that most
of the BERT models are not strongly represent-
ing the child as the goal of the verb hugged. This
kind of semantic role interference is also what is
hypothesized to impede human processing.

As a contrast, the second entity in the local co-
herence structures have low Agent and high Goal
probabilities. This suggests that the models are bet-
ter able to represent the Agent and Goal semantic
roles in a local coherence structure, again mirroring
the performance of humans and the model perfor-
mance seen in the question answering task.

In contrast to the structure manipulation, ambigu-
ity differences did not significantly change the clas-
sifiers’ predictions, despite the question answering
performance showing a larger gain in the unambigu-
ous over ambiguous sentence contexts. Given that
syntactic knowledge has been argued to be present
in the model weights (Vilares et al., 2020; Hewitt
and Liang, 2019), it is interesting that disambigua-
tion (a lexical manipulation that clarifies syntax),
does not improve performance in the probe task.
This suggests that future syntactic investigations
should focus not only on token representations, but
also on other components of the models which may
contribute to downstream task performance.

In terms of individual model performance, we
find that no model perfectly aligns with human
performance. In the local coherence structures,
BERTBASE and BERTLARGE were most successful
at assigning the correct roles to the correct enti-
ties, however they both misassigned the roles of
the first entity in garden path structures. Interest-
ingly, the semantic role predictions of the two were
very similar, suggesting that increasing the model
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size does not fundamentally change what semantic
information is held within token representations.

RoBERTa models, on the other hand, did not
perfectly assign roles in either structure condition.
RoBERTaBASE seems to prefer assigning Goal roles
to every entity, while RoBERTaLARGE does the
same with Agent roles. In this case, it does seem
that increasing the model size does lead to the ac-
quisition of different semantic knowledge, in addi-
tion to the differences from BERT models already
mentioned.

Another area where these differences are ob-
served is the extent to which classifier accuracy
increased in later levels of BERT versus RoBERTA.
In BERT, we observed an increase in performance
in later layers, while for RoBERTa the performance
stagnated across all layers. This was not due to a
difference in classifier training, as all classifiers
had identical hyperparameters and training corpora.
Rather, we can conclude this is due to the RoBERTa
model itself–its differing training procedures must
lead to a fundamental difference in how semantic
roles are processed from BERT (i.e., they are less
strongly represented in the token weights them-
selves), given that the two have very similar per-
formance on the downstream question answering
task.

Because no model was able to assign all seman-
tic roles perfectly in every condition (based on the
probe task), we are left to conclude that the seman-
tic knowledge within token representations of all
models is imperfect and not based on deep syntac-
tic knowledge. Rather, in some cases the models
seem to be relying on heuristics to assign semantic
roles. Such heuristics might include word order
in the sentence, frequency of a particular semantic
role, and linear proximity. Future investigations
should aim to discover which heuristics are most
relevant to langauge models’ representations and
performance, as well as how token representations
may interact with other model components in or-
der to achieve performance similar to humans on
downstream tasks.

6 Conclusion

Overall, BERT-style transformer models do not
perform significantly better than humans on gar-
den path sentences in question answering. This
suggests that, despite the temporal amodality of
BERT’s language processing, it still faces the same
issues of misinterpretation that human speakers

do in online sentence processing. Additionally,
probe results suggest that BERT fails to assign
the correct semantic roles to the entities in garden
path sentences, despite showing successful assign-
ments on other corpus sentences. This error is
similar to human-style garden path misinterpreta-
tions, despite the many differences between human
and model language processing (i.e. temporality,
working memory demands).

Additionally, we observe differences in se-
mantic role representations between the mod-
els tested—BERT models seem to make similar
role predictions regardless of model size, while
RoBERTaBASE makes different predictions than
RoBERTaLARGE. Furthermore, both RoBERTa
models seem to have different semantic represen-
tations than the original BERT models, suggest-
ing that particular training procedures and tasks
can lead to widely different internal model states
yet still show negligble impact on performance of
downstream tasks.

Limitations

The garden path structures presented here are a phe-
nomenon predominantly found in English. Struc-
tural ambiguities found in other languages vary
widely, and so our ability to generalize about
BERT’s ability to process these ambiguities cross-
linguistically is limited. Additionally, these types
of garden path structures are relatively scarce in
natural language, and it is possible performance
would be higher if BERT were fine-tuned using
these structures specifically (we choose not to do
this in order to approximate the levels of experi-
ence humans have with these structures to obtain
more natural comparison). Finally, the number of
sentences tested in the probe task is low, due to
variation of stimuli thematic roles.
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Model Layer Agent
Acc.

Agent
Selec.

Goal
Acc.

Goal
Selec.

bert-
base-
uncased

1 70.36 21.88 63.44 11.8
2 74.96 25.8 66.76 18.72
3 76.72 27.16 68.36 19.08
4 77.96 29.4 68.24 20.2
5 80.12 33.32 71.12 20.56
6 83.24 34.68 72.32 22
7 83.48 34.72 71.44 22.56
8 83.28 34.08 73.84 24.28
9 84.92 34.56 75.96 28.04
10 84.16 36.32 74.52 26.12
11 82.48 34.44 74 24.76
12 81.16 32.68 74.56 26
Avg. 80.24 31.59 71.21 22.01

bert-
large-
uncased

1 67.92 15.44 62.84 14.32
2 73.6 24.84 66.12 18.6
3 72.52 22.52 67.36 18.6
4 74.52 25.16 67.56 19.8
5 77.36 27.24 68.76 20.6
6 78.2 28.4 68.68 20.24
7 78.6 31.28 67.36 18.48
8 77.68 28.56 68.56 19
9 80.08 31.16 69.48 23.44
10 80.52 30.2 68.48 20.76
11 79.12 29.6 68.24 19.64
12 80.16 31.12 71.24 21.44
13 80.52 30.72 72.04 22.44
14 81.52 32 74.44 24.28
15 83.84 33.96 73 23.36
16 84.64 34.68 73.08 21.44
17 84.44 32.72 75.12 24.64
18 84.88 34.48 75.04 24.32
19 83.64 35.28 73.92 23.92
20 81.64 30.92 72.44 19.72
21 81.64 34.36 72.08 18.64
22 79.04 29.56 71.96 20.24
23 76.08 27.28 69.68 17.96
24 78.56 27.52 68.2 14.48
Avg. 79.20 29.54 70.24 20.43

Table 3: Classifier accuracy and selectivity for each layer of BERTBASE and BERTLARGE
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Model Layer Agent
Acc.

Agent
Selec.

Goal
Acc.

Goal
Selec.

roberta-
base-
uncased

1 63.48 12.36 62.96 13
2 61 16.4 60.76 12.12
3 65.6 17.24 61.76 12
4 65.04 15.6 59.64 7.56
5 65.28 17.64 58.72 6.08
6 65.04 18.68 61.32 10.6
7 63.64 17.4 59.08 6.32
8 65.72 14.36 61.92 13.52
9 64.96 18 61.88 13.48
10 64.72 13.64 60.88 11.76
11 64.2 13.56 62.6 15.88
12 65.52 16.56 60.92 6.76
Avg. 64.51 15.95 61.04 10.76

roberta-
large-
uncased

1 62.68 14.64 60.24 9.16
2 65.64 13.36 61.12 10.96
3 65.8 14.84 59.12 6.92
4 64.32 14.28 63 14.4
5 62.8 12.8 62.28 14.92
6 64.44 10.48 62.16 9.48
7 64.76 13.52 65.04 14.8
8 65.36 15.16 65.44 17.68
9 64.04 11.72 61.56 9.28
10 66.08 15.36 66.44 14.8
11 64.04 11.72 65 14.92
12 64.04 16.68 64.08 12.76
13 65 15.92 65.4 17
14 65.48 16.12 62.6 16.6
15 64.76 16.16 64.28 13.36
16 65.08 11.16 61.36 16.28
17 66.16 14.92 62.92 10.8
18 63.8 16.56 61.48 10.52
19 64.88 13.44 65.24 14.68
20 63.72 10.96 65.96 13.76
21 62.08 10.08 64.12 14.12
22 64.12 12.88 65.52 17.48
23 64.84 13.56 66.04 13.8
24 63.96 12.28 62.2 9.8
Avg. 64.49 13.69 63.44 13.26

Table 4: Classifier accuracy and selectivity for each layer of RoBERTaBASE and RoBERTaLARGE
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Model Layer Sentence
Type Amb.

Entity 1
Agent
Probability

Entity 1
Goal
Probability

Entity 2
Agent
Probability

Entity 2
Goal
Probability

bert-
base
uncased

9

Garden
Path

Amb. 0.983 0.0989 0.768 0.773
Unamb. 0.964 0.110 0.846 0.819

LC-A Amb. 0.968 0.114 0.266 0.667
LC-U Unamb. 0.962 0.119 0.314 0.723

bert-
large
uncased

17

Garden
Path

Amb. 0.954 0.102 0.836 0.798
Unamb. 0.962 0.108 0.871 0.855

Local
Coherence

Amb. 0.959 0.087 0.370 0.751
Unamb. 0.959 0.105 0.393 0.747

roberta-
base
uncased

11

Garden
Path

Amb. 0.600 0.838 0.326 0.624
Unamb. 0.606 0.864 0.457 0.680

Local
Coherence

Amb. 0.601 0.774 0.297 0.715
Unamb. 0.598 0.815 0.250 0.757

roberta-
large
uncased

10

Garden
Path

Amb. 0.479 0.320 0.827 0.411
Unamb. 0.536 0.368 0.667 0.502

Local
Coherence

Amb. 0.356 0.337 0.727 0.389
Unamb. 0.449 0.367 0.700 0.423

Table 5: Detailed probe classifier results on first and second entities in garden path and local coherence test sentences
for highest performing layer in each model investigated.
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Abstract

One significant obstacle to the successful appli-
cation of machine learning to real-world data
is that of labeling: it is often prohibitively ex-
pensive to pay an ethical amount for the human
labor required to label a dataset successfully.
Human-in-the-loop techniques such as active
learning can reduce the cost, but the required
human time is still significant and many fixed
costs remain. Another option is to employ pre-
trained transformer models as labelers at scale,
which can yield reasonable accuracy and sig-
nificant cost savings. However, such models
can still be expensive to use due to their high
computational requirements, and the opaque
nature of these models is not always suitable in
applied social science and public use contexts.

We propose a novel semi-supervised method,
named Slingshot Learning, in which we itera-
tively and selectively augment a small human-
labeled dataset with labels from a high-quality
"teacher" model to slingshot the performance
of a "student" model in a cost-efficient manner.
This reduces the accuracy trade-off required to
use these simpler algorithms without disrupting
their benefits, such as lower compute require-
ments, better interpretability, and faster infer-
ence. We define and discuss the slingshot learn-
ing algorithm and demonstrate its effectiveness
on several benchmark tasks, using ALBERT
to teach a simple Naive Bayes binary classifier.
We experimentally demonstrate that Slingshot
learning effectively decreases the performance
gap between the teacher and student models.
We also analyze its performance in several sce-
narios and compare different variants of the
algorithm.

1 Introduction

In standard computational linguistics modeling, the
typical strategy for achieving high model accuracy
is to obtain a large fraction of high-quality human
labels on the dataset at hand. However, it is not un-
common in applied social science settings to find

that the scope of human labeling of a dataset is
highly constrained (Liew et al., 2014). For exam-
ple, it may be prohibitively expensive to pay an
ethical amount for human labeling. Alternatively,
the project’s institutional access to raw corpora may
have ended, or perhaps the domain experts are no
longer available.

One solution is to use an active learning ap-
proach where a model is trained concurrently with
the labeling process to “maximize a model’s per-
formance gain while annotating the fewest samples
possible”(Ren et al., 2021). While this can be more
efficient than unguided labeling, it still requires
significant human labeling resources as the learn-
ing process is fundamentally human-guided. Some
issues are relatively fixed costs, such as bias, re-
peatability, and initial training requirements; this
enforces a non-trivial lower bound on the efficiency
of human-in-the-loop active learning methods. Ac-
tive learning also does not help if the data has al-
ready been collected, and there is no way to collect
further data.

Alternatively, one might directly apply a large,
pre-trained (and possibly fine-tuned) transformer
model to obtain state-of-the-art outcomes (Brown
et al., 2020; Schick and Schütze, 2020; Wei et al.,
2021). Pre-trained models are well suited to learn-
ing from relatively small amounts of data due to
the large amount of prior knowledge they already
contain. But such a strategy comes with complica-
tions for applied social science, including high (and
rising) costs (Patterson et al., 2021; Schwartz et al.,
2019; Mayfield and Black, 2020) a lack of model in-
terpretability (Yang et al., 2021; Zafar et al., 2021),
and issues with repeatability when using models
hidden behind an API.

Given the power of modern machine learning
models, a natural question arises: Can the power
of modern machine learning architectures (such as
transformer models) be harnessed to enhance the
accuracy of standard models where human labeling
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is finished?
Here, we introduce and evaluate Slingshot Learn-

ing, an efficient, low-cost, widely applicable, and
powerful methodology to enhance the accuracy
of standard inference models. Slingshot Learning
adopts a student–teacher framework, such that the
standard model (the ‘student’) is iteratively taught
by the transformer model (the ‘teacher’). Akin
to the gravitational slingshot maneuver, in which
a spacecraft uses the gravity of a large body to
increase its own speed, the student model lever-
ages the knowledge and performance of the teacher
model, in a way that allows it to express where
it expresses low certainty in its predictions, essen-
tially asking “questions” of the teacher model. This
iterative behavior can be modified, or entirely re-
placed with purely random behavior through the
selection of hyperparameters.

We demonstrate that, under slingshot learning,
the accuracy of the student model can be at a rel-
atively low cost. After the algorithm finishes iter-
ating, the student model can be used as a compro-
mise between the high performance of the complex
teacher model, and the inherent benefits of the stu-
dent model, which might include reproducibility,
interpretability, computational efficiency, and com-
pute costs that are orders of magnitude lower than
the teacher model. This student model can then be
used to label the rest of the corpus, and/or label
future, unseen data.

2 Background

Active learning (AL) seeks to minimize the human
labeling cost of training a model while collecting
enough data to successfully train the model (Ren
et al., 2021). It has proven popular in recent years
due to the prevalence of large, unlabelled datasets,
and methods are increasingly leveraging power-
ful, pre-trained models such as BERT (Grießhaber
et al., 2020), but active learning is still a fundamen-
tally human-led labeling approach which adopts
the pitfalls of experimental research involving hu-
mans. The ability to repeat experiments in the first
place (let alone with any consistency), expand their
scope and analyze the underlying models are all
taken for granted in machine learning but, once
humans are involved in the labeling process, the
difficulty of such tasks can vary from non-trivial to
impossible. Iterative research design is also very
difficult without significantly increasing the cost
and time requirements of the overall experiment.

Large language models such as GPT-3 (Brown
et al., 2020) have achieved exceptional perfor-
mances in NLP tasks under zero-shot and few-shot
learner constraints, making these a compelling ap-
proach for low-resource tasks (Chia et al., 2019).
GPTs have been used in semi-supervised settings to
generate pseudo-labels via training offline/student
models (Chia et al., 2019). The study by Wang
et al. (2021) leverages the use of GPT-3 to reduce
costs in comparison to human annotators. In one
of their labeling strategies, they employ GPT-3
(teacher) to generate a fully labeled dataset which
is then used to train an offline model (student), a
transformer model (Liu et al., 2019). While they
show improved performance of the offline model
on the fully labeled GPT-3 dataset in comparison to
using human annotators, the performance on multi-
class classifications was lower than that of human
annotators and showed no improvement after in-
creasing the number of GPT-3 labels. The authors
also explore an active learning version, where the
low-confidence labels of GPT-3 or the most chal-
lenging examples are relabelled using human an-
notators and the result is used to train the offline
model. While this approach demonstrates better
performance, it has the same pitfalls as other active
learning approaches. Our approach assumes a low
budget and no access to human annotators beyond
a small “seed” labeled dataset.

In the realm of model interpretability, a similar
approach is that of surrogate models (SM), which
employ an interpretable simple model to explain
the behavior of a more complex ML model (Rey
and Neuhäuser, 2011). They include global mod-
els that explain the overall predictions and local
models that provide local explanations on the pre-
dictors by varying their sampling strategies. The
global models are trained on the same data set (or
a similar data set) as the complex model (Molnar,
2022, ch 8.6). The output of the surrogate is then
compared to the complex model to determine how
well the surrogate replicates the complex model
within an arbitrary threshold. The ones that employ
sampling use simpler models to gain insight into in-
terpretability through locally selected regions from
the complex model’s predictions (Ribeiro et al.,
2016; Lundberg and Lee, 2017). The goal or out-
put here is interpretability and mostly requires the
continued use of the underlying complex model.
However, our intention is not just interpretability
but to build a stable simple model that is standalone.
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Figure 1: Slingshot Learning. A small fraction of the dataset is labeled by human labelers (a), which are used to
train the Student Model and then identify low-confidence examples, a subset of which are passed to the fine-tuned
Teacher Model (b). Where the Teacher Model has high inferential confidence on the examples (c), these are added
to the human-labeled dataset for further training of the Student Model (d), and the cycle iterates.

The goal is to train the simpler model to make better
predictions. Further, we are limited by our training
dataset size. The idea is to also leverage a largely
unlabelled dataset into training.

Knowledge distillation (KD) is another well-
known approach that uses the teacher-student
model (Hinton et al., 2015). The teacher - a deep
teacher network - distills its knowledge onto a
smaller model. The smaller models are also neu-
ral nets, and draw feature learnings from the pa-
rameters and activations of the intermediate lay-
ers of the teacher model. The intention here is
to deploy a high-performing, compressed, smaller
model in a low-resource environment (Gou et al.,
2021) and thus they lack easy interpretability and
transparency. While there have been some studies
that use KD in an interpretable model (Liu et al.,
2018; Che et al., 2016), the data size limitation
discussed earlier applies to this approach as well.

Our goal is to build a standalone model that can
achieve high accuracy despite limited training data,
through the use of large unlabelled data sets.

3 Slingshot Learning

Here we explain slingshot learning from an intu-
itive view, and then present a more rigorous algo-
rithmic definition.

3.1 Intuition

Consider a scenario where we have a large dataset
of unlabelled data, far larger than could be labeled
by hand, and we want to label the whole dataset
and/or train a model to label future, unseen data.
One solution is to hand-label a small portion by
hand and feed the rest to a state-of-the-art model
(such as a modern Transformer-based model, for
NLP problems). While this is quicker and cheaper
than labeling by hand, it can still be expensive (es-
pecially if using an API, or a large model requiring
significant GPU compute capabilities). Addition-
ally, these complex models take a while to run,
making them potentially unsuitable for real-time
applications. Of course, a simpler and more effi-
cient model can be used, but this generally comes
at the cost of decreased model performance.

In slingshot learning, we use the more expensive
(HQ) model to label a portion of the unlabelled
dataset, and then leverage that to slingshot the per-
formance of the smaller (LQ) model, much like a
gravitational assist maneuver accelerates a small
spacecraft using the gravity of a large celestial ob-
ject. Under this training paradigm, we train a “high-
quality” (HQ) model on our ground truth dataset,
use this model to iteratively teach the LQ model
by labeling a portion of the unlabelled dataset, and
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Figure 2: Model comparison. See text for details.

then use the low-quality model to label the rest of
the data and/or make future predictions on unseen
data.

We assume the number of human labels is fixed
and cannot be increased - instead, we will use the
HQ model (trained on the human-labeled dataset)
as our more accurate (and more expensive) oracle.
Our goal is thus to minimize the number of HQ
predictions, while successfully labeling the dataset
and/or training the LQ model. This is the crux of
the slingshot learning approach; although the im-
plementation details and hyperparameter selections
might vary, the core concept of using a high-quality
(but expensive) model to improve the performance
of a lower-quality (but cheap) model remains con-
stant.

The comparison to slingshot learning with other
existing methods is presented in Table 1. The pri-
mary objectives of SM and KD are interpretability
and high-accuracy compressed models respectively.
Slingshot achieves both these objectives. Compar-
ing slingshot to Wang et al. (2021), the latter con-
tinues to use human annotators for labeling, while
SSL supports automated labeling. In contrast to
Wang et al. (2021), KD’s trained smaller models
can perform automated labeling but require a large
data set to achieve a desirable accuracy.

Model Characteristics Wang et al. SM* KD* SSL*

Automated labelling ✗ ✗ ✓ ✓

Standalone re-usable model ✗ ✗ ✓ ✓

Interpretability ✗ ✓ ✗ ✓

Budget restriction ✓ ✗ ✗ ✓

Small labelled dataset ✓ ✗ ✗ ✓

Leverages Unlabelled data ✓ ✗ ✗ ✓

Table 1: Comparison of existing methods with slingshot
learning. SM*: Surrogate Models, KD*: Knowledge
Distillation, SSL*: Slingshot Learning

3.2 The Slingshot Learning Algorithm

In Figure 3, a high-level pseudocode implementa-
tion of the core slingshot algorithm is described.
Depending on the choice of hyperparameters, the
algorithm’s performance might be further optimiz-
able. For example, in the purely random variant of
the algorithm (discussed below), there is no need
to compute the LQ predictions at each iteration.

Note that the algorithm does not assume that
the confidence values of the HQ and LQ models
are comparable with one another. The algorithm
only relies on the relative ordering of confidence
values from one of the models at a time and does
not compare confidence values between the two
models. The relationship between prediction confi-
dence and accuracy is not necessarily monotonic,
but we assume it will be somewhat correlated and
treat it as monotonic for the purposes of the algo-
rithm.

3.2.1 Hyperparameters
There are three hyperparameters in the slingshot
learning algorithm:

n the number of data points selected for predic-
tion by the low-quality model at each iteration.

m the number of data points selected for predic-
tion by the high-quality model at each iteration.

k the number of data points added to the labeled
set at each iteration.

We discuss the different choices for these hyper-
parameters throughout this paper. Note the neces-
sary inequality n ≥ m ≥ k.

3.3 Expected Performance

Part of the intuition of slingshot learning stems
from the idea that the improved performance of
the HQ model over the LQ model stems from two
sources: both the inherent superior ability of the
HQ model to understand the population as a whole
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1: procedure SLINGSHOT LEARNING ALGORITHM(L, U, V, n,m, k)
2: HQ← Train_HQ(L) ▷ Train the HQ model on L
3: LQ← Train_LQ(L) ▷ Train the LQ model on L
4: while Not converged & more data do
5: Dn = Sample(L, n) ▷ Sample n elements from the unlabelled dataset.
6: Pn = LQ(Dn) ▷ Compute LQ predictions and confidence for each datum (note we only use

the confidence).
7: Dm = LowConfidence(Dn, Pn) ▷ Choose m lowest confidence LQ predictions
8: Pm = HQ(Dm) ▷ Compute HQ prediction and confidence for each datum.
9: Dk = HighConfidence(Dm, Pm) ▷ Choose k highest confidence HQ predictions.

10: L← L ∪Dk ▷ Add these to the labelled set.
11: U ← U \Dk ▷ Remove these from the unlabelled set.
12: LQ = Train_LQ(L) ▷ Train a new LQ model on the full labeled dataset.
13: Validate(LQ) ▷ Evaluate the performance of the LQ model on the validation set.
14: end while
15: end procedure

Figure 3: Slingshot Learning Algorithm: Note that L is the labeled set, U is the unlabelled set, V is the validation
set, LQ is the low-quality model, and HQ is the high-quality model. n, m, and k are as described in Section 3.2.1.

and also the superior ability of the HQ model to
learn from the sample.

Let us denote the intrinsic capability of a model
m to approximate the population, if given an arbi-
trarily large sample (i.e. “all the data”, or an “infi-
nite sample”) from that population, as Im. Since
our sample will generally not cover the entire popu-
lation, the true model accuracy will have a penalty
applied dependent on the truesample size depen-
dent capability of the model, which we denote as
Sm. In our notation, we will assume the penalty
value Sm is positive, and subtract it from the total
model performance. We can then denote the LQ
model performance as LQ = ILQ − SLQ, and the
HQ model performance as HQ = IHQ − SHQ.
We can then express the performance difference
between the two models as:

HQ− LQ = IHQ − SHQ − (ILQ − SLQ) (1)

Rearranging terms, we find:

HQ− LQ = ∆I +∆S (2)

Where ∆I = (IHQ − ILQ) and ∆S = (SLQ −
SHQ). Intuitively, ∆I is the performance uplift
due to the inherent superiority of the HQ model
(which cannot be conferred to the LQ model), and
∆S is the extra penalty applied to the LQ model’s
performance due to the superiority of the HQ model
given the sample size being used for training. In the
limit, with infinite data, we would therefore expect
∆I to approach some constant value greater than
zero, while ∆S goes to zero.

In situations where ∆I is the dominant term,
slingshot learning may have lower utility. But in
scenarios where ∆S is the dominant term (or at
least a significant component of the overall perfor-
mance delta), slingshot learning has the potential to
bridge part of the knowledge gap between the HQ
and LQ models. We conjecture that there are many
instances where simpler, cheaper models would
compare well to more complex and expensive mod-
els, and that much of the gap between traditional
and newer models stems from both an increase in
the I terms and a decrease in the S sample-size
penalties for smaller samples.

3.4 Algorithm Variations
Depending on our choice of hyperparameters n, m,
and k, we can modify the behavior of the slingshot
learning algorithm in a variety of ways. An em-
pirical comparison of the differences in resulting
behavior from these three variants can be found in
the Results section.

3.4.1 Deterministic Variant
We can choose to have the LQ model evaluate the
entirety of the unlabelled dataset in each iteration,
by setting n = ∥U∥1, where U is the set of data
points that remain unlabelled at a given iteration.

This removes the stochasticity from the algo-
rithm, assuming the HQ and LQ models remain
constant under a given input (since m and k are
only used to determine how many data points to

1We use the value n = −1 to denote this in our code.
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take from the n randomly selected data points).
While it will take longer to run - potentially a
lot longer for larger datasets, since the unlabelled
dataset must be passed through the LQ model at ev-
ery iteration of the algorithm - his approach ensures
that the LQ model can select the lowest confidence
data points at every iteration.

3.4.2 Random Variant
Alternatively, we can choose to set k = m = n,
meaning that every data point that is passed to the
student model is sent to the teacher model for eval-
uation, and every data point sent to the teacher
model for evaluation is added to the corpus. This is
akin to purely random sampling, without allowing
the student to provide input on the training process.

3.4.3 Stochastic Variant
We refer to any configuration of the hyperparam-
eters n, m, k which is neither deterministic nor
purely random as a “stochastic” configuration,
where there is a combination of random sampling
and student input during the sampling process. In
stochastic slingshot learning, k <= m <= n and
k < n.

4 Experimental Design

4.1 Models

We initially ran experiments with ALBERT teach-
ing Naive Bayes, ALBERT teaching SVM, and
SVM teaching Naive Bayes. SVM teaching Naive
Bayes proved difficult, as the SVM was very of-
ten not significantly more powerful than the Naive
Bayes model. We performed some initial exper-
iments with ALBERT teaching SVM, but the re-
quired computation time proved insurmountable.
However, preliminary results indicate that SVM is
a reasonable candidate as a student of ALBERT
under the slingshot learning paradigm.

4.1.1 Model Details
ALBERT (Lan et al., 2020) from the Hugging-
Face Model repository (Wolf et al., 2020) (using
the “albert-base-v2” model)

SVC (Cortes and Vapnik, 1995), an SVM classi-
fication model, as implemented by Sci-Kit Learn
(Pedregosa et al., 2011). Not used in the final re-
sults.

Naive Bayes as implemented in Sci-Kit Learn
(Pedregosa et al., 2011).

4.2 Datasets
We evaluate performance on four popular bench-
mark binary text classification datasets from the
HuggingFace Datasets repository, as shown in Ta-
ble 2.

4.3 Training
We tested a number of values for each of the three
hyperparameters, n, m, and k. We evaluated n =
128, n = 1024, and n = −1. m and k were set to
either k = m = n or m = n/4, k = m/4 = n/16.
When n = −1, a value of 1024 was used to cal-
culate m and k. Each experiment was repeated
up to 10 times. Experiments where the HQ (AL-
BERT fine-tuned) model was not at least 15% more
accurate than the LQ (Naive Bayes) model were
discarded, as we found they added a lot of noise to
the dataset (and, in any case, slingshot learning is
most useful when the models are of significantly
different strength). Some number of samples 2 (one
of 2500, 20, 000, or 50, 000) was taken from each
dataset, and then randomly split into 80% training
and 20% validation sets.

A total of 1, 480 experiments were run, repre-
senting up to five runs 3 of each of the 52 hyperpa-
rameter choices, over each of the three datasets. For
each experiment, 95% of the dataset labels (chosen
randomly but with a fixed seed of 42) were masked,
to mimic a semi-supervised learning problem with
a proportionally low (but reasonable) amount of
ground-truth data.

Experiments were performed using virtual ma-
chines with four CPUs and a single NVIDIA T4
GPU, using AWS Batch. SVM and Naive-Bayes
models were trained with default values from the
sklearn library, as was the HuggingFace ALBERT
model (which was trained for a total of three epochs
over the dataset, with a batch size of 16).

5 Results

We have included all experimental results in tabular
form in the supplementary materials. Source code
can be found here.

When performing these experiments, we ran the
full slingshot learning algorithm until there is no
more data left to classify. However, in practice,

2For the Rotten Tomatoes dataset, we used all the data for
the 20k and 50k runs since it has less than 20,000 data points.

3Due to our use of AWS spot instances, some experiments
failed due to loss of the VM. Each experiment had at least 8
successful runs, before pruning for the disparity between the
HQ and LQ models.
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Large Small
Dataset n Variant δ10% δ30% δmax # δ10% δ30% δmax #

Amazon Polarity 128 random 0.296 0.384 0.449 1 0.224 0.214 0.489 8
1024 random 0.080 0.145 0.328 1 0.266 0.266 0.335 5
1024 stochastic 0.178 0.346 0.478 3 0.208 0.344 0.507 8

IMDB 128 random 0.464 0.661 0.697 2 0.052 0.144 0.401 4
1024 random 0.547 0.634 0.665 2 -0.249 -0.249 -0.204 3
1024 stochastic 0.466 0.512 0.665 3 -0.070 -0.119 0.060 5

Rotten Tomatoes 128 random 0.170 0.305 0.527 11 0.008 0.099 0.226 3
1024 random 0.235 0.334 0.507 16 0.216 0.216 0.293 4
1024 stochastic 0.228 0.336 0.570 9 -0.020 0.047 0.236 4

Yelp 128 random 0.034 0.085 0.215 17 0.002 0.009 0.035 10
1024 random 0.038 0.096 0.229 18 0.005 0.005 0.013 9
1024 stochastic 0.028 0.084 0.218 14 0.001 0.002 0.025 9

Table 2: Here we show the performance of slingshot learning aggregated over the “small” samples (2,500 samples)
and “large” samples (20,000 and 50,000 samples). All “small” experiments masked 90% of the dataset, leaving 10%
as the seed for slingshot learning. All “large” experiments masked 99% of the dataset, leaving 1% as the seed for
slingshot learning. Note that some of the experiments have very small sample sizes - these results should not be
relied upon. The algorithm is random if n = m = k, and stochastic otherwise (we exclude n = −1 from this table
as this configuration is not practical).

slingshot learning is most useful (and most distinct
from other techniques such as surrogate models)
when early stopping is applied. Our results demon-
strate that there are cases where most of the ac-
curacy gains occur early, and other cases where
progress is more consistent. However, throughout
almost all the results there is a consistent, mono-
tonic increasing accuracy, as well as the rate of
change of accuracy (that is, there are few sudden
accuracy spikes). This indicates that simply moni-
toring the LQ model accuracy, and stopping the al-
gorithm when it seems to be plateauing (or when re-
sources have been fully expended, of course) might
be a reasonable method of applying the algorithm.
One could also attempt to quantitatively determine
when the accuracy plateaus (if it ever does), but
further exploration of this is beyond the scope of
this paper.

Throughout these results, we refer to the δ
(“Delta”) metric. Intuitively, the Delta metric δSi

is the ratio between the amount of knowledge that
the teacher model has “taught” the student model
(equal to the difference between the performance of
Si and the baseline LQ model), and the knowledge
gap between the teacher and the student (equal to
the difference in their accuracy).

More rigorously, we define the Delta metric δ as

δSi =
A(Si)−A(S−1)
A(T )−A(S−1)

(3)

where Si is the LQ model trained at the i − th
iteration of the algorithm, andA(m) is the accuracy
of model m on the dataset at hand. S−1 is the
performance baseline of the LQ model before any
iterations of the slingshot learning algorithm. T is
the HQ model.

5.1 Empirical Results
Table 2 includes the average δ values at the 10%
and 30% milestones (that is, after 10% or 30% of
the total number of slingshot iterations), as well
as the average point throughout the algorithm (as
a percentage of the number of iterations taken) it
reached its peak. The 10% and 30% points were
chosen as reasonable benchmark points during our
initial experiments. In the supplementary materials,
we include extended tables including the first time
the LQ model reached accuracy within 5%, 1%,
and 0.1% of its peak accuracy.

In Figures 4, 5, and 6, we plot the δ values of the
low-quality (LQ) model slingshot learning through-
out the training process for each experiment (grey
lines), along with the average δ across experiments
(thick red line). We also show the 95% confidence
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interval of the delta value (envelope), and, on the
x-axis, the earliest iteration in which the LQ model
obtains statistically equivalent performance (filled
markers: α = 0.01; open: α = 0.10) to that of
the final iteration (100%).4 Figure 4 shows a best-
case scenario for slingshot learning, where there is
a significant increase in performance early in the
iteration process. Figure 5 demonstrates how, in
some cases, accuracy uplift can be more consistent
throughout the slingshot learning cycle - in these
cases, there is a stronger trade-off between the stop-
ping point for slingshot learning and the potential
accuracy gains of continuing the algorithm.

Figure 4: Best-case scenario (Amazon Polarity
dataset, 50k): Large dataset sees the HQ model able to
transfer most of the information to the LQ model with-
out going through the whole dataset. Early stopping has
less of a penalty.

Figure 5: More difficult scenario (Yelp dataset, 50k):
With much data, the HQ model can give information
to the LQ model, but gains continue almost linearly
throughout the process, penalizing early stopping.

Figure 6: High variability (IMDB dataset, 20k): Sling-
shot learning performance was relatively poor on the
IMDB dataset, though not always (see the supplemen-
tary materials for more information).

4In each figure: left panel, n = 128; middle, right panels,
n = 1024.

6 Discussion

These empirical results show slingshot learning to
be an effective and reliable method for improving
model performance in semi-supervised classifica-
tion problems. While the exact values of δ vary
between datasets, each dataset shows a clear cor-
relation between the number of iterations and the
performance of the resulting model, as well as (in
most cases) the effect of diminishing returns as the
number of iterations is increased.

Due to the degeneracy problem discussed below,
we have elected to remove any runs for which the
initial HQ model did not show at least a 15% im-
provement in accuracy over the LQ model baseline
(before any iterations of the algorithm).5

6.1 Hyperparameter Selection

We saw no consistent trends between the experi-
ments where n = m = k and n > m > k. It
does seem that, in situations where an n = m = k
configuration would be too computationally expen-
sive, an n > m > k configuration (or perhaps an
n > m = k configuration) is a reasonable option.
The supplementary materials include many more
plots and more comprehensive tables for the 20,000
and 50,000 sample experiments.

6.2 Degenerate Cases

While slingshot learning has proven effective, and
relatively reliable under the right conditions, it is
not guaranteed to improve performance in all cases.
Slingshot learning does not appear to be very ben-
eficial in cases where the HQ model is not signif-
icantly more powerful than the LQ model. We
found erratic behavior in such scenarios, to the ex-
tent that we chose to exclude any results from our
tables and figures for which the HQ model did not
perform with at least 15% higher accuracy than the
LQ model.

6.3 Benefits of Slingshot Learning

Slingshot learning allows simpler models to capture
some of the performance of more powerful models,
and as discussed throughout this paper, this has
tangible benefits in cost and compute requirements
for several common machine learning applications.
We have also identified several other benefits that
this approach provides.

5The full, unpruned data table has been included in the
supplementary materials.
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6.3.1 Enabling Model Selection/Trade-offs

Traditional machine learning methods, such as
Linear/Logistic Regressions, Naive Bayes, deci-
sion trees (Kotsiantis, 2013) and tree-based ensem-
ble methods (Friedman, 2001; Chen and Guestrin,
2016), and SVMs, have existed in the literature for
decades, and they have many advantages and trade-
offs between them. However, as transformer-based
models (and deep-learning models in general) be-
come more powerful, it is becoming more and more
difficult to justify the use of these traditional meth-
ods regardless of the benefits and trade-offs that
may come with them, such as interpretability, effi-
ciency, accuracy, and inherent applicability to the
problem at hand.

The ability to choose between different models
as the “low quality” model in the slingshot learn-
ing paradigm restores some of the power of model
selection. For example, users can choose between
simpler, more easily interpretable methods such
as Linear/Logistic Regression or Naive Bayes, or
opt for more complex models such as SVMs for
the sake of accuracy. Through the use of sling-
shot learning, users can make these decisions and
trade-offs based on their requirements, without sac-
rificing as much accuracy.

6.3.2 Enabling Experimental Repeatability

One negative effect of the proliferation of commer-
cial, API-based deep learning models is the inabil-
ity to reliably repeat experiments. APIs, and the
models beneath them, are subject to change with-
out notice, and will of course be improved over
time. An unmodified experiment might perform
significantly differently on two different days, in a
manner entirely beyond the control of the user.

One interpretation of slingshot learning is as a
method of capturing a “slice” of a large model,
using a smaller model to store the captured infor-
mation. These slices can then be stored and used
at a later date, both reliably and without further
interaction with the original model. Aside from
the computational and financial benefits of this, the
ability to take such a slice and store it locally en-
ables repeatable, shareable experimental models.
This may have legal and ethical implications, espe-
cially if it negatively affects the financial viability
of commercial machine learning offerings, but a
detailed discussion of this is beyond the scope of
this paper.

6.3.3 Facilitating Interpretable Models
Deep learning models are not inherently inter-
pretable by default, and although techniques such
as LIME (Di Cicco et al., 2019) and SHAP (Lund-
berg and Lee, 2017) somewhat facilitate the inter-
pretation of such models, there have been calls in
recent years for inherently interpretable deep learn-
ing methods (Yang et al., 2021). By leveraging
these complex, non-interpretable models to train
simpler, interpretable models, slingshot learning
can facilitate the creation of models which are both
powerful and interpretable. Of course, the idea
of training smaller models with larger ones is not
new, and techniques such as knowledge distilla-
tion (Gou et al., 2021) and surrogate models (Rey
and Neuhäuser, 2011; Molnar, 2022) are an area of
active research.

6.3.4 Early Stopping
The iterative slingshot learning algorithm allows
users to decide when to stop iterating when they
determine that the model has likely converged. As
discussed previously, this tends to happen relatively
early in the iteration process, and further iterations
tend to yield diminishing returns. Though there
are no guarantees as to whether the model has con-
verged (or is close to its final, converged perfor-
mance) at a given iteration, the experimental data
included in this paper can provide a guide to the
expected future behavior of the model.

6.4 Further Work
Slingshot learning has proven to be useful in these
applied NLP classification problems, but there is
no reason it cannot be applied to other ML do-
mains such as regression, multi-class classification,
or text generation. Further experiments in these
domains, and others, will be an important phase
in determining the scope of the applicability of
slingshot learning. We expect the algorithm would
potentially be useful in a wide variety of scenarios.

Further analysis and testing of the different po-
tential configurations of the slingshot learning al-
gorithm’s hyperparameters will also be critical
to understanding how the values of n, m, and k
can be selected to optimize the algorithm’s per-
formance in different use cases. We also plan to
explore a potential “meta” slingshot learning al-
gorithm, where progressively simpler models are
taught from the model above them in the hierarchy,
to propagate knowledge and avoid “overwhelming”
the LQ model with the power of the HQ model.
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7 Limitations

Our experiments were performed on English NLP
datasets, collated from the internet. The results in
this paper are intended and should be taken, purely
in the context of evaluating the performance of the
slingshot learning algorithm. We have no reason
to believe slingshot learning would not be equally
applicable to other languages, domains, problems,
etc., and have simply chosen these datasets due to
their prevalence and familiarity in the literature.

We conjecture that different (perhaps more com-
plex) language structures might make slingshot
learning more useful. We do not have expertise in
this area - as we discussed in the paper, we consider
it necessary to run further experiments evaluating
the application of slingshot learning in other do-
mains to be necessary. We are hopeful, however,
that the method can be applied to many problems
besides the ones discussed in this paper.

8 Ethics Statement

This paper discusses methods that are intended
to enhance the ability of researchers within do-
mains such as social sciences to more easily apply
state-of-the-art NLP algorithms to their work. This
inherently comes with the risk of bias, and it is
entirely possible that seed datasets based on in-
complete or biased datasets will cause slingshot
learning to serve as an “amplifier”. We encourage
caution when applying machine learning to social
or other “real-world impactful” domains, and dou-
bly so when extrapolating from smaller amounts of
data using machine learning. This paper serves as
an initial evaluation and high-level exploration of
slingshot learning, and we would not recommend
using slingshot learning in situations that could
potentially have negative consequences. Further
exploration is certainly required, both specific to
slingshot learning and regarding the more general
use of machine learning in these scenarios.

On the other hand, methods like slingshot learn-
ing can empower researchers and allow them to
leverage tools that would otherwise be infeasible.
It also has other benefits, which are discussed in
the paper - for example, it facilitates taking a “snap-
shot” of a black box model (such as an API-based
NLP model). It is our intention, and our hope, that
slingshot learning is a useful tool that helps democ-
ratize machine learning within the social sciences
and other applied domains.
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Dataset Training Set Size Test Set Size

IMDB (Maas et al., 2011) 25,000 25,000
Amazon Polarity (McAuley and Leskovec, 2013) 3,600,000 400,000
Rotten Tomatoes (Pang and Lee, 2005) 8,530 1,066
Yelp Reviews (Zhang et al., 2015) 650,000

Table 3: Description of datasets used in our experiments.

Dataset Mask n=m=k Max ∼5% ∼1% ∼.1% Max δ 10% δ 30% δ 50% N

Amazon 0.9 FALSE 0.48 0.20 0.69 0.99 0.81 0.18 0.35 0.41 3
Amazon 0.99 TRUE 0.55 0.14 0.37 0.78 0.74 0.37 0.43 0.48 17
Amazon 0.99 FALSE 0.46 0.15 0.44 0.94 0.75 0.16 0.31 0.35 11
Amazon 0.999 TRUE 0.23 0.08 0.21 0.03 0.68 0.17 0.20 0.22 3
Amazon 0.999 FALSE 0.42 0.08 0.45 0.58 0.80 0.24 0.35 0.37 4
IMDB 0.9 FALSE 0.67 0.17 0.65 0.93 0.95 0.47 0.51 0.58 3
IMDB 0.99 TRUE 0.49 0.43 0.75 0.98 0.99 0.19 0.31 0.39 11
IMDB 0.99 FALSE 0.33 0.28 0.49 0.88 0.74 -0.03 0.07 0.18 8
R. Tom. 0.9 TRUE 0.51 0.43 0.83 1.00 0.93 0.24 0.33 0.43 16
R. Tom. 0.9 FALSE 0.57 0.34 0.72 0.94 0.92 0.23 0.34 0.45 9
R. Tom. 0.99 TRUE 0.67 0.40 0.86 0.91 0.95 0.36 0.52 0.57 5
Yelp 0.9 TRUE 0.23 0.41 0.86 1.00 1.00 0.04 0.10 0.15 18
Yelp 0.9 FALSE 0.22 0.34 0.84 0.98 0.99 0.03 0.08 0.13 14
Yelp 0.99 TRUE 0.21 0.26 0.71 1.00 0.99 0.04 0.09 0.14 19
Yelp 0.99 FALSE 0.24 0.31 0.77 0.98 0.99 0.03 0.09 0.14 17

Table 4: Experimental results, n = 1024, combined data from sizes 20, 000 and 50, 000.

Dataset Mask n=m=k Max ∼5% ∼1% ∼.1% Max δ 10% δ 30% δ 50% N

Amazon 0.99 TRUE 0.475 0.096 0.295 0.682 0.683 0.331 0.390 0.421 13
Amazon 0.999 TRUE 0.521 0.198 0.753 0.939 0.946 0.333 0.431 0.465 3
IMDB 0.99 TRUE 0.435 0.325 0.568 0.938 0.760 -0.008 0.210 0.294 13
R. Tom. 0.9 TRUE 0.527 0.349 0.794 0.963 0.917 0.170 0.305 0.378 11
Yelp 0.9 TRUE 0.215 0.352 0.832 0.988 0.994 0.034 0.085 0.132 17
Yelp 0.99 TRUE 0.250 0.289 0.766 0.992 0.938 0.039 0.107 0.158 18

Table 5: Experimental results, n = 128, combined data from sizes 20, 000 and 50, 000.
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Figure 7: Results for datasets of size 20, 000 (or less for Rotten Tomatoes).
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Figure 8: Results for datasets of size 50, 000 (or less for Rotten Tomatoes).
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Abstract

Hate speech detection has been the subject of
high research attention, due to the scale of
content created on social media. In spite of
the attention and the sensitive nature of the
task, privacy preservation in hate speech detec-
tion has remained under-studied. The major-
ity of research has focused on centralised ma-
chine learning infrastructures which risk leak-
ing data. In this paper, we show that using
federated machine learning can help address
privacy the concerns that are inherent to hate
speech detection while obtaining up to 6.81%
improvement in terms of F1-score.

1 Introduction

Content moderation is a topic that intersects across
multiple fundamental rights, e.g., freedom of ex-
pression and the right to privacy; and interest
groups, e.g. scholars, legislators, civil society, and
commercial entities (Kaye, 2019). The availability
of public datasets has been crucial to the develop-
ment of computational methods for hate speech
detection. However, public data contains risks for
those whose content is available. On the other hand,
privately held data, e.g., data held by corporate enti-
ties, holds risks for those who are reporting content.
Such risks may be actualised through information
leaks in models (Hitaj et al., 2017) or the transmis-
sion of data (Shokri and Shmatikov, 2015), and can
impact people’s safety and livelihood.

In this work, we apply Federated Learning (FL,
McMahan et al., 2017) to address the lack of pri-
vacy in hate speech detection. FL is a privacy-
preserving training paradigm for machine learning
that jointly optimises for user privacy and model
performance. We posit that privacy is necessary
for users whose content is flagged and users who
are flagging content alike. We thus operationalise
privacy, in the context of hate speech detection

*Equal contribution.

Figure 1: Federated Learning: A centralised model is
hosted on a server and is distributed to client devices,
these compute weight updates, and transmit the updates
for aggregation into the centralised model. The cen-
tralised model is then redistributed to client devices.

and federated learning, to mean privacy in terms
of the content of reported content, and the report
itself. FL is an apt training paradigm for tasks
in which training data is highly sensitive, as FL
is designed to mitigate risks of information leaks
while also dealing with a high number of end-users,
information loss, and label imbalances (Lin et al.,
2022; Priyanshu and Naidu, 2021; Gandhi et al.,
2022). We apply the FL algorithms FedProx (Li
et al., 2020) and Adaptive Federated Optimization
(FedOpt, Reddi et al., 2021) to 5 machine learning
algorithms. We evaluate our approach on 8 previ-
ously published datasets for hate speech detection.
While using FL often implies a trade-off between
privacy and performance, we obtain performance
improvements of up to 6.81% in F1-score. We find
that that models trained using FL outperform cen-
tralised models across multiple tests (e.g., deroga-
tory language, spelling variation, and pronoun ref-
erence) in HATECHECK (Röttger et al., 2021).1

1All code is made available on Github.
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2 Prior Work

Although the areas of hate speech detection and FL
have each been subject to extensive research, the
study of their intersection remains in its infancy.

Federated Learning Federated Learning is a
privacy-preserving machine learning paradigm that
aims to reduce privacy risks by decentralising data
processing onto client devices (i.e., personal de-
vices), thereby foregoing the need for transmitting
“raw” user data, and thus minimising risks of per-
sonal data leaks caused by transmission of data.2

In FL, the machine learning model is located in
two places: On a centralised server, and on client
devices, which hold instances of the model dis-
tributed from the centralised model.Client devices
use the model to compute model updates. The
model updates are then transmitted to the server
and aggregated by the centralised model, which is
redistributed to the client devices. However, not all
transmitted weight updates are aggregated into the
model. FL operates with a notion of data loss in its
design, which is emulated by selecting a fraction
of clients whose updates are aggregated. Thus, FL
paradigm uses less data to train a models.

In our experiments, we apply two FL algorithms:
FedProx and FedOpt (Reddi et al., 2021). FedProx
introduces a proximal term to the Federated Averag-
ing algorithm (FedAvg, McMahan et al., 2017). Fe-
dAvg averages the weights computed on participat-
ing client devices in a round. FedProx introduces a
proximal term that functions as a regulariser to the
weight updates transmitted by participating clients,
which penalises local weight updates that diverge
from the global model. The FedAvg algorithm can
thus be understood as a special case of FedProx
with the proximal term set to 0.0.

FedOpt (Reddi et al., 2021) extends the adap-
tive optimisation strategies from centralised opti-
misation (e.g., Adam (Kingma and Ba, 2015) and
Adagrad (Duchi et al., 2010)) to explicitly account
for client and server optimisation. FedOpt handles
server optimisation distinctly from client optimi-
sation, by introducing a state to the server-side
optimisation routine. . This distinct handling of
server-side optimization enables more accurate and
heterogeneity-aware FL models, which can speed
up convergence.

FL has been applied to a number of tasks, in-
cluding emoji prediction (Ramaswamy et al., 2019;

2See Gitelman (2013) for a discussion on ‘raw’ data.

Gandhi et al., 2022), next-word prediction for mo-
bile keyboards (Yang et al., 2018), pre-training and
fine-tuning large language models (Liu and Miller,
2020), medical named entity recognition (Ge et al.,
2020), and text classification (Lin et al., 2022). For
instance, Lin et al. (2022) used FL to fine-tune a
DistilBERT model to perform classification on the
20NewsGroup dataset (Lang, 1995) using three dif-
ferent FL algorithms: FedAvg (McMahan et al.,
2017), FedProx (Li et al., 2020), FedOpt (Reddi
et al., 2021)) under non-IID partitioning.

In a closely related study, Basu et al. (2021)
apply FL, using the FedAvg algorithm to fine-tune
large language models to detect depression and
sexual harassment from small Twitter data samples.
They find that using large language models such as
BERT and RoBERTa outperform distilled language
models such as DistilBERT. Our work extends on
Basu et al. (2021) by introducing additional FL
algorithms and extending to a multi-class setting
for hate speech detection.

Thus, our work extends on prior work by i) ap-
plying FL to the task of multi-class hate speech de-
tection, a task which has proven difficult in part due
to the complex nature of pragmatics (Röttger et al.,
2021) and hate mongers seeking to evade content
moderation infrastructures (Crawford and Gille-
spie, 2016); ii) using the FedProx and FedOpt algo-
rithms rather than the FedAvg algorithm, thereby
reducing model vulnerability to divergent weight
updates; and iii) providing an in-depth analysis of
federated model performances.

Hate Speech Detection Prior work on hate
speech detection has primarily focused on privacy-
agnostic machine learning paradigms, using cen-
tralised models for classification. Such work has
investigated a number of machine learning mod-
els (e.g. SVMs (Karan and Šnajder, 2018), CNNs
(Park and Fung, 2017), and fine-tuned language
models (Swamy et al., 2019b)) and the develop-
ment of resources (e.g. Talat and Hovy, 2016). Re-
cently, Fortuna et al. (2021) proposed a standardis-
ation of classes across 9 publicly available datasets
and studied the generalisation capabilities of BERT,
fastText, and SVM models. In their work they
found limited success in inter-dataset generaliza-
tion. Our work thus extends on the task of hate
speech detection by introducing privacy-preserving
methods to multi-class hate speech detection. In
doing so, the privacy of those who flag content and
those whose content is flagged remain intact.
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Category Merged count Comb Change
aggression 6, 950 6, 950 -

aggressive hate speech 1, 561 1, 561 -
covert aggression 4, 242 4, 242 -

hate speech 13, 222 13, 205 −0.13%
insult 7, 879 7, 779 −1.27%

misogyny sexism 5, 000 5, 000 -
none 189, 869 188, 550 −0.69%

offensive 19, 192 19, 192 -
overt aggression 2, 710 2, 710 -

racism 1, 978 1, 978 -
severely toxic 1, 597 1, 527 −4.38%

threat 480 470 −2.08%
toxicity 40, 316 40, 134 −0.45%

Table 1: Label count of the raw datasets and Comb

3 Data

We combine our dataset using the standardisation
schema proposed by Fortuna et al. (2021).

Comb We reuse 8 of the 9 datasets used by For-
tuna et al. (2021) to form Comb.3 Comb then con-
sists of the datasets proposed by Talat and Hovy
(2016); Davidson et al. (2017); Fersini et al. (2018);
de Gibert et al. (2018); Swamy et al. (2019b);
Basile et al. (2019); Zampieri et al. (2019) and
the Kaggle toxic comment challenge.4 We perform
a stratified split of all training data into training
(70%), validation (10%), and test (20%) sets.5

Data Cleaning We address issues of extreme
class imbalance in Comb by removing the “abusive”
category as it only contains 2 documents. Follow-
ing an in-depth analysis of the Kaggle dataset
we find that the maximum length of tokens in the
dataset is 4950 while the median length of tokens in
Comb is 26. Moreover, we find that the longest 1%
of documents in the Kaggle dataset do not contain
unique tokens. Removing the longest 1% of com-
ments reduces the maximal document length to 727
tokens (see Appendix B.3 for further detail). Fol-
lowing our data cleaning processes, Comb comes
to consist of 293, 300 documents (see Table 1 for
an overview of changes).

4 Experiments

We experiment with 5 machine learning models in
their centralised and federated settings: Logistic

3The dataset proposed by (Founta et al., 2018) is not in-
cluded as it was not available to us.

4https://www.kaggle.com/c/jigsaw-toxic-comment-
classification-challenge

5We do not use the test data provided with some datasets
to ensure uniformity, as test sets are not provided with all
datasets.

Regression Bi-LSTMs (Hochreiter and Schmidhu-
ber, 1997), FNet (Lee-Thorp et al., 2022), Dis-
tilBERT (Sanh et al., 2019) and RoBERTa (Liu
et al., 2019). We measure their performance using
weighted F1 scores. The centralised models form
our baselines, while the federated models form our
experimental models. For the Logistic Regression
and Bi-LSTMs, we perform word-level tokenisa-
tion using SpaCy (Honnibal and Montani, 2017).
For the FNet, DistilBERT, and RoBERTa, we use
the tokenisers provided with each model.6

4.1 Federated Training

FL is a machine learning training paradigm that dis-
tributes training onto client devices. All client de-
vices are split into overlapping subsets and the train-
ing data is partitioned and uniformly distributed to
client devices. A random client subset is selected
for training in each round, and their locally com-
puted weights are aggregated on the server. We
train our models for 300 rounds for 1, 5, or 20
epochs per round, and set the client fraction to 10%,
30%, or 50% which are randomly sampled from
100 client devices. We perform hyper-parameter
tuning for the client learning rate, server-side learn-
ing rate, and proximal term (see appendix B.1).

In our work, we conceptualise client devices as
users who witness and report hate speech. We
simulate the client devices and ensure that data is
independently and identically distributed (I.I.D.) on
client devices.7 We use the FedProx and FedOpt
algorithms to aggregate client updates on the server.
FedProx introduces a regularisation constant to the
server-side aggregation step, the proximal term to
address issues of divergence in weights and statis-
tical heterogeneity in FedAvg. FedOpt seeks to
create more robust models by introducing a sepa-
rate optimiser for the server-side model to account
for data heterogeneity.

5 Analysis

Considering the baseline models in Table 4, we
see that the Logistic Regression tends to under-
perform, while the RoBERTa model posts the best
performances. Although FL-based models often
outperform our baselines, we note that when FL

6Please refer to Appendix A for further experiments and
analyses on the Vidgen et al. (2021) dataset.

7We use an I.I.D. setting for data as 40% of all social media
users and 64% of those under 30 in the USA have experienced
online harassment (Pew Research Center, 2021). I.e. while
hate speech is not frequent, it is often experienced by users.

3250



Logistic Regression Bi-LSTM FNet DistilBERT RoBERTa
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

c = 10%
e = 1 70.22 53.15 58.47 71.04 58.19 61.28 72.61 59.20 62.20 73.98 60.75 63.79 74.76 64.43 66.16
e = 5 70.83 63.31 66.35 70.84 66.51 67.72 73.52 68.33 70.42 74.54 69.46 70.85 74.59 69.68 71.48
e = 20 70.18 67.41 68.67 69.17 69.25 69.10 73.10 68.02 69.73 73.28 71.06 71.94 73.11 71.48 72.07

c = 30%
e = 1 71.23 53.50 58.89 71.58 58.82 61.72 73.62 61.13 63.97 74.84 64.03 66.14 75.02 64.33 66.41
e = 5 70.82 64.44 67.01 70.65 65.90 67.27 73.35 68.30 70.36 74.82 69.44 70.68 74.41 69.98 71.81
e = 20 70.30 68.13 69.09 69.34 69.26 69.15 72.35 68.03 69.74 73.33 71.39 72.15 73.65 70.86 71.96

c = 50%
e = 1 71.11 53.12 58.58 71.59 58.71 61.73 73.93 61.89 64.51 74.88 63.58 65.85 74.42 63.57 65.87
e = 5 70.89 64.26 66.80 70.70 66.16 67.54 72.90 68.27 70.18 74.44 69.68 70.88 74.90 69.46 70.86

e = 20 70.28 68.00 69.01 69.25 68.84 68.20 72.90 68.42 70.16 73.71 71.51 72.34 73.53 71.18 72.01

Table 2: Results of FedProx experiments on Comb.

Logistic Regression Bi-LSTM FNet DistilBERT RoBERTa
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

c = 10%
e = 1 68.29 52.48 58.46 71.80 58.34 61.70 72.64 59.78 62.49 74.51 63.87 65.03 72.02 64.21 64.57
e = 5 68.20 59.38 63.14 70.63 63.73 66.10 72.39 69.11 70.51 74.33 69.61 70.48 75.55 69.44 70.34

e = 20 68.30 59.56 63.23 69.74 65.32 67.27 71.87 70.69 71.15 72.21 71.34 71.66 73.17 72.20 72.61

c = 30%
e = 1 67.68 51.05 57.19 71.56 58.97 62.10 72.24 57.11 61.21 74.90 64.16 66.79 73.88 66.07 65.79
e = 5 66.65 60.31 63.10 69.48 62.63 65.57 72.01 69.14 70.30 72.82 69.59 70.75 74.38 71.54 71.69
e = 20 67.18 62.50 64.60 69.74 65.69 67.49 71.91 70.02 70.79 71.55 70.33 70.86 72.97 72.10 72.05

c = 50%
e = 1 67.25 54.85 59.82 71.35 59.63 62.59 73.03 62.28 64.64 73.31 63.98 65.64 74.85 66.80 67.75
e = 5 66.63 60.21 63.04 69.56 63.02 65.58 70.63 68.06 69.21 72.53 69.66 70.80 73.78 71.27 71.18
e = 20 66.70 62.51 64.41 69.16 66.16 67.54 70.98 69.74 70.21 70.65 68.99 69.69 72.67 70.51 71.51

Table 3: Results of FedOpt experiments on Comb.

Centralised Federated
Precision Recall F1 F1

LogReg 69.11 57.45 62.20 69.09
Bi-LSTM 71.43 66.64 67.90 69.15
FNet 71.35 64.73 66.58 71.15
DistilBERT 73.99 69.01 69.39 72.34
RoBERTa 75.45 70.58 71.03 72.61

Table 4: Results for the centralised and best performing
FL models. The FL models have been chosen across
FedProx and FedOpt based on F1 scores.

models are trained with lower client fractions and
epochs, they tend to be outperformed by the base-
lines. Models trained using FedProx outperform
the centralised baselines (see table 2).8 For in-
stance, we see large improvements for FNet and
Logistic Regression (4.5 and 6.8 points in terms
of F1- score, respectively). Comparing the perfor-
mances of models trained using FedOpt (table 3)
with those trained using FedProx, we observe that
the former (in particular FNet and RoBERTa) tend
to outperform the latter for lower client fractions
and epochs. In general, we find that the best FL
models outperform their centralised counter-parts
(see Tables 2 and 3). In fact, the best performing
RoBERTa, DistilBERT, and FNet models trained
using FL algorithms outperform their centralised
baselines, with FNet obtaining a 3-4 point improve-
ment over centralised models in terms of F1 score.9

8For tables 2 and 3, c refers to the client fraction used and
e refers to the number of epochs on client devices.

9See Section 5.1 for an analysis using HateCheck (Röttger
et al., 2021).

While FL often indicates a trade-off between
privacy and performance, we find that the best FL
models outperform the centralised baselines. We
believe that the improved performance stems from
the dataset being split into smaller segments, in
congruence with findings from prior work. For in-
stance, Nobata et al. (2016) show that splitting data
into smaller temporal segments helped improve
classification performance overall. We believe that
a similar effect may be evident with FL models that,
by design split data into small segments and dis-
regard a fraction of the clients. Further, it may be
the case that some data within hate speech datasets
hinders generalisation. Only using subsets of the
data for training may therefore aid generalisation.

5.1 Hate Check Evaluation

This section extends the experiments to qualita-
tively evaluate the effectiveness of federated and
centralised models under different axis of hate
speech using HATECHECK (Röttger et al., 2021).
HATECHECK is a suite of functional tests for hate
speech detection models. HATECHECK provides
an in-depth examination of model performances
across different potential challenges for machine
learning models trained for hate speech detection.

The HATECHECK (Röttger et al., 2021) dataset
consists of 29 tests, 18 of which test for distinct
expressions of hate while the remaining 11 test
for non-hateful expressions. The dataset contains
3.728 labelled samples, 69% of which are ‘Hate‘
and while the remaining 31% are labelled as ‘Not-
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Functionality
Accuracy (%)

Logistic Regression Bi-LSTM FNet DistilBERT RoBERTa
Central Fprox FOpt Central Fprox FOpt Central Fprox FOpt Central Fprox FOpt Central Fprox FOpt

F1: Expression of strong negative emotions (explicit) 96.4 100.0 97.1 80.7 100.0 95.7 75.0 98.6 97.9 90.0 99.3 87.9 89.3 87.9 92.9

F2: Description using very negative attributes (explicit) 95.0 100.0 97.9 65.7 99.3 99.3 87.1 100.0 100.0 96.4 100.0 97.7 92.9 93.6 95.0

F3: Dehumanisation (explicit) 97.9 100.0 94.3 77.9 100.0 100.0 85.0 100.0 100.0 97.1 100.0 93.6 90.7 94.3 94.3

F4: Implicit derogation 87.1 95.7 75.7 70.7 94.3 92.9 62.1 99.3 96.4 72.9 82.9 82.9 77.1 78.6 80.7

F5: Direct threat 90.2 99.3 94.0 80.0 96.2 88.0 82.0 100.0 98.5 88.0 98.5 91.7 91.0 95.5 91.7

F6: Threat as normative statement 94.3 99.3 96.4 80.7 99.3 98.6 70.0 100.0 100.0 90.0 100.0 94.3 96.4 90.7 91.4

F7: Hate expressed using slur 87.5 99.3 98.6 75.7 88.2 96.5 86.1 98.6 96.5 91.0 94.4 90.0 88.2 84.7 86.1

F8: Non-hateful homonyms of slurs 6.7 16.7 43.3 10.0 43.3 40.0 16.7 23.3 26.7 23.3 50.0 33.3 26.7 40.0 36.7

F9: Reclaimed slurs 4.9 4.9 40.7 2.5 42.0 27.2 9.9 11.1 13.6 6.2 7.4 12.4 4.9 16.1 17.3

F10: Hate expressed using profanity 100.0 100.0 100.0 93.6 96.4 96.4 94.3 100.0 100.0 97.9 100.0 100.0 100.0 100.0 100.0

F11: Non-hateful use of profanity 2.0 13.0 38.0 19.0 47.0 40.0 6.0 11.0 19.0 15.0 13.0 16.0 3.0 11.0 17.0

F12: Hate expressed through reference in subsequent clauses 100.0 100.0 90.0 91.4 98.6 98.6 86.4 100.0 100.0 95.0 98.6 96.4 90.0 92.9 92.1

F13: Hate expressed through reference in subsequent sentences 100.0 100.0 96.2 85.0 96.2 94.7 84.2 100.0 100.0 95.5 99.3 97.0 96.2 94.0 95.5

F14: Hate expressed using negated positive statement 92.9 99.3 84.3 57.9 89.3 93.6 52.1 100.0 100.0 77.9 93.6 76.4 61.4 81.4 90.7

F15: Non-hate expressed using negated hateful statement 6.0 30.0 58.7 25.6 53.4 41.4 27.1 23.3 33.8 17.3 27.1 43.6 31.6 51.1 56.4

F16: Hate phrased as a question 95.7 100.0 95.0 81.4 93.6 96.4 61.4 95.0 95.0 92.1 96.4 91.4 82.1 95.0 87.9

F17: Hate phrased as an opinion 99.0 100.0 92.5 89.5 99.0 97.7 81.2 100.0 94.0 91.0 98.5 93.2 86.5 93.2 87.2

F18: Neutral statements using protected group identifiers 20.6 56.3 77.0 42.1 75.4 62.7 50.0 55.6 69.0 69.0 68.3 75.4 69.0 92.9 87.3

F19: Positive statements using protected group identifiers 18.0 42.9 80.0 46.0 64.6 41.3 45.5 37.0 59.3 38.6 49.2 73.1 48.1 78.8 92.1

F20: Denouncements of hate that quote it 1.7 19.0 55.5 14.5 44.5 28.3 31.2 45.1 33.5 16.2 48.6 38.7 15.6 36.4 37.0

F21: Denouncements of hate that make direct reference to it 4.2 15.6 47.5 21.3 46.8 36.9 27.7 22.7 34.0 12.1 16.3 30.5 19.1 39.0 43.3

F22: Abuse targeted at objects 10.8 45.1 70.8 46.1 70.8 52.3 53.8 47.7 58.5 55.4 66.2 66.2 60.0 73.8 75.4

F23: Abuse targeted at individuals (not as member of a prot. group) 4.6 29.2 61.5 29.2 69.2 52.3 20.0 24.6 38.5 20.0 29.2 38.5 23.1 15.4 69.2

F24: Abuse targeted at non-protected groups (e.g. professions) 14.5 24.2 62.9 27.4 74.2 53.2 35.5 40.3 46.8 41.9 43.5 59.7 29.0 45.2 66.1

F25: Swaps of adjacent characters 97.7 99.2 90.2 82.7 95.5 95.5 72.2 98.5 98.5 78.2 97.0 78.9 71.4 89.5 80.5

F26: Missing characters 83.8 100.0 81.6 72.8 97.1 98.8 74.6 97.7 92.4 84.4 94.8 98.8 89.0 90.2 92.5

F27: Missing word boundaries 97.9 100.0 99.2 82.3 100.0 100.0 79.4 100.0 93.6 79.4 90.8 86.5 93.6 90.8 90.8

F28: Added spaces between chars 83.8 100.0 86.1 72.8 97.1 98.8 74.6 97.7 92.5 84.4 94.8 98.8 89.0 90.1 92.5

F29: Leet speak spellings 99.4 100.0 98.8 80.9 99.4 98.8 65.9 98.2 93.6 75.1 84.4 75.1 75.1 83.8 86.7

Table 5: Results on the HateCheck test suite.

Hate‘. We evaluate all the models that have been
trained for this manuscript, including the model
examined in appendix A. We evaluate our trained
models HATECHECK’s binary form by mapping all
classes positive classes to “hate” and the negative
class to “not-hate”.10

Conducting the HateCheck functional tests for
the models trained on the Comb dataset, we see
(please refer to table 5) that the federated learning
models perform on par or better than the centralised
models on a macro scale. The federated Bi-LSTM
and FNet models yield strong improvement of 3
- 5%. On the other hand, there is a slight perfor-
mance dip (0.5 - 1%) for the federated DistilBERT
and RoBERTa models. Moreover, through a fine-
grained analysis of model performance, we observe
that all the models (centralised and federated) per-
form acceptable performances for different types of
derogatory, pronoun reference, phrasing, spelling
variations, and threatening language. However, all
models perform poorly for the tests for counter
speech, indicating that while the models learn to
recognise some forms of hate, they cannot accu-
rately recognise responses to it. Furthermore, we
see that RoBERTa performs slightly better than all
the other model variants on non-hate group identity

10The Comb dataset uses ‘none’ as its negative class, the
Binary Dataset (Vidgen et al., 2021) has ‘Not-hate’ as non-
hateful label, and Multi-class Dataset Vidgen et al. (2021) has
‘None’ as non-hateful label

and abuse against non-protected targets. RoBERTa
and DistilBERT achieve the best performances for
slurs. Overall, we find that RoBERTa and Distil-
BERT consistently perform well across many of the
functional tests which might be due to having been
pre-trained on large amount of language data. How-
ever, the pre-training also induces certain biases
which limit the models’ performance on profanity.
The Bi-LSTMs outperform all the models on non-
hateful profanity but simultaneously under-perform
on hateful profanity.

6 Conclusion

Private and sensitive data can risk being exposed
when developing and deploying models for hate
speech detection. We therefore examine the use
of Federated Learning, a privacy preserving ma-
chine learning paradigm to the task of hate speech
detection to emphasise privacy in hate speech de-
tection. We find that using Federated Learning
improves on the performance levels achieved us-
ing centralised models, thus affording both privacy
and performance. In future work, we intend to
examine interpretability and explainability for fed-
erated learning to gain a better understanding of
the causes of such performance increases.
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Limitations

While Federated Learning introduces increased pri-
vacy in the process of hate speech detection, a real
time system may be vulnerable to attacks that can
lead to privacy leakages. For instance, the weights
being transferred from the clients to the server may
reveal information about the local dataset to an ad-
versary (Bhowmick et al., 2018; Melis et al., 2019).
However unintended these leakages may be, they
still pose a significant threat and might limit the
privacy claim.

The Federated Learning models trained in our
work rely on 8 of the 9 datasets used by Fortuna
et al. (2021), as we could not gain access to the
final dataset. We do not test the biases introduced
in Federated Learning models upon combining and
normalising these datasets under the schema pro-
posed by Fortuna et al. (2021, 2020). Additionally,
the dataset division for the simulation is done under
the assumption of I.I.D. conditions which might not
always be true for real-world scenarios.

Ethical Considerations

Although our methods for hate speech detection
provide increased privacy to downstream users of
content moderation technologies, i.e. users of on-
line platforms, there are significant risks to it. First,
our proposed technology has dual use implications,
as it can also be applied maliciously, for instance to
limit the speech of specific groups. Second, while
this work uses publicly available datasets, there is
an inherent tension between the public availabil-
ity of data and privacy risks. Finally, although all
model updates occur on local client devices, feder-
ated learning is not a silver bullet which addresses
issues of systemic violence of content moderation
Thylstrup and Talat (2020), or issues of privacy.
Rather, federated learning can provide an avenue
for engaging in meaningful conversations with peo-
ple and their experiences and needs for content
moderation and privacy.
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A Learning From the Worst

Extending the experiments conducted in section 4,
we aim to analyse if our claims are corroborated
when we expose the complete setup of federated
as well as centralised models to other datasets. We
perform this analysis on the “Learning from the
Worst” dataset (Vidgen et al., 2021).

A.1 Dataset
Binary Dataset We use the Dynamically Gen-
erated Hate Dataset v0.2.2 provided by Vidgen
et al. (2021) which contains 41, 255 entries. We
use the training, testing, and validation sets pro-
vided by Vidgen et al. (2021). This dataset consists
of two categories: hate and not-hate. The category
distribution is shown in table 6.

Multi-class Dataset We use the same Dynam-
ically Generated Hate Dataset v0.2.2 provided
by Vidgen et al. (2021). However, we make use
of the multi-class labels provided in the original
dataset. It consists of seven categories: none (i.e.
not-hate), derogation, not-given, animosity, dehu-
manisation, threatening, and support (see table 6
for class distribution).
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Binary categories Multi-class categories Count
Not-hate None 18, 993

Hate

Derogation 9, 907
Not Given 7, 197
Animosity 3, 439

Dehumanisation 906
Threatening 606

Support 207

Table 6: Label distribution of Vidgen et al. (2021)
v.0.2.2.

Model Binary Dataset Multi-class Dataset
Precision Recall F1 Precision Recall F1

LogReg 63.38 52.58 54.98 56.68 35.46 40.92
Bi-LSTM 63.56 52.90 55.38 58.44 41.70 45.91
FNet 27.75 48.05 33.74 53.41 23.46 27.60
DistilBERT 71.56 71.72 68.63 78.25 52.96 59.27
RoBERTa 76.18 77.50 74.37 80.26 62.69 67.91

Table 7: Centralised model performances for binary
and multi-class datasets

A.2 Analysis

We follow the training procedures outlined in sec-
tion 4 on the binary and multi-class versions of
the Vidgen et al. (2021) dataset and consider the re-
sults on the multi-class dataset (see Tables 7 and 8).
We observe similar performance trends for the Lo-
gistic Regression and Bi-LSTM models in table 9
to those for Comb. This pattern extends to the
Transformer-based models with the exception of
the RoBERTa model. The federated RoBERTa ob-
tains a slightly lower F1 score than the centralised
version in (64.92 and 65.73, respectively).

The pattern of performances for the binary
dataset varies from our main dataset. Here, we
observe in Table 8 that the FNet model adapts well
to the federated setting, with both FedProx and Fe-
dOpt algorithms significantly improving on their
centralised counter-part (65.14 and 35.51, respec-
tively) (see Table 9). Moreover, we find that the
models optimised using FedProx algorithm outper-
form those using the FedOpt algorithm for all feder-
ated learning settings with the exception of the Dis-
tilBERT variant with c = 50% and e = 5. For the
binary dataset, we observe that all federated models
except for RoBERTa perform better across client
fractions when trained for lower epochs. For the
multi-class dataset, however, all federated models
have improved performance across client fractions,
when the models are trained for a higher number of
epochs. We observe from our results that there is a
slight performance decrease for the federated ver-

sions of the Bi-LSTM, RoBERTa, and DistilBERT,
when compared to the centralised models. A small
decrease in performance however is expected for
federated learning, due to its emphasis on privacy
protections. In spite of small differences, the exper-
iments on both the binary and multi-class versions
of Vidgen et al. (2021) closely resemble the results
obtained on Comb, suggesting that federated learn-
ing is applicable across datasets for hate speech
and class distributions.

We see a similar trend as Comb while perform-
ing the HATECHECK functional tests on the bi-
nary and multi-class dataset. The Logistic Regres-
sion adapts poorly across different types of counter
speech, slurs, non-hate group identity, negation,
and abuse against non-protected targets. Moreover,
we also observe that Bi-LSTM and FNet yield poor
performance for different types of negation and
non-hate group identity. We find that in most cases,
models trained on the binary dataset achieve higher
performances than the models trained on its multi-
class counterpart.

B Model Exploration

This section highlights the different model settings
and hyper-parameter selection strategies used while
training the models on Comb and Vidgen et al.
(2021) in appendix A. We also provide a token
level analysis conducted by on Comb.

B.1 Hyper-parameter Search

We use Weights and Biases (Biewald, 2020) as
our experiment tracking tool for all experiments.
We run a Bayesian search for finding the optimal
client learning rate, server-side learning rate, and
the proximal term. In our hyper-parameter search
for the value of proximal term, we conduct a cate-
gorical search. Following Li et al. (2020), we set
the possible values to 0.001, 0.01, 0.1, and 1.

B.2 Model Descriptions

We implement all models using PyTorch (Paszke
et al., 2019) and Huggingface libraries (Wolf et al.,
2020). We train the Logistic Regression and Bi-
LSTM models for 300 rounds, and transformer-
based models for 50 rounds. We implement early
stopping based on the weighted validation F1
scores, with the patience set to 10 rounds. After
conducting our hyper-parameter search, we choose
our hyper-parameters (see table 11 and table 12).
The measure the performances of all our models
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Binary (FedProx) Binary (FedOpt) Multiclass (FedProx) Multiclass (FedOpt)
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

e = 1 59.43 59.52 59.34 57.38 57.44 57.36 45.55 39.62 41.34 45.06 37.56 40.15
c = 10% e = 5 60.13 59.99 60.01 55.93 55.79 55.76 47.03 44.71 45.58 44.93 43.91 44.25

e = 20 60.08 59.94 59.97 56.08 55.98 55.97 47.68 48.01 47.77 46.17 46.39 46.11
Logistic e = 1 59.78 59.69 59.71 55.88 55.74 55.71 47.28 34.94 38.20 43.26 36.66 39.07

Regression c = 30% e = 5 60.79 60.80 60.80 55.11 55.02 55.01 48.12 47.58 47.74 44.77 42.05 43.17
e = 20 60.76 60.41 60.41 54.93 54.80 54.76 47.27 47.94 47.50 45.26 46.44 45.51
e = 1 60.60 60.55 60.57 54.46 54.36 54.33 46.92 34.00 37.08 42.78 36.52 38.44

c = 50% e = 5 60.76 60.73 60.74 54.58 54.52 54.51 47.54 46.68 46.96 43.60 42.26 42.85
e = 20 60.79 60.55 60.57 54.85 54.72 54.66 47.55 48.91 48.10 44.28 44.93 44.41
e = 1 61.15 61.26 61.00 61.05 61.17 60.96 38.54 38.02 35.96 40.16 38.75 38.23

c = 10% e = 5 57.63 57.55 57.57 57.93 57.88 57.89 46.09 45.68 45.84 45.88 43.57 44.34
e = 20 58.15 58.14 58.15 58.70 58.65 58.66 45.24 47.79 45.92 45.49 49.88 45.94
e = 1 61.72 61.74 61.13 60.26 60.37 60.13 40.23 36.64 34.89 43.64 31.18 32.74

Bi-LSTM c = 30% e = 5 58.48 58.48 58.48 59.36 59.42 59.36 45.77 44.33 44.97 46.30 43.19 44.00
e = 20 57.07 57.06 57.06 59.37 59.35 59.36 45.06 47.07 45.58 46.68 50.00 47.19
e = 1 60.73 60.84 60.66 60.50 60.58 60.20 45.05 32.61 34.86 43.98 33.39 35.40

c = 50% e = 5 57.90 57.93 57.91 59.51 59.55 59.52 45.59 44.88 45.22 46.85 45.15 45.77
e = 20 57.30 57.28 57.29 59.26 59.25 59.25 45.50 48.40 46.00 46.73 50.02 47.37
e = 1 72.84 71.99 72.16 73.13 70.57 70.65 38.33 32.35 25.99 39.64 33.78 23.90

c = 10% e = 5 69.48 69.58 69.51 69.93 69.10 69.22 54.00 54.95 54.11 40.93 26.84 17.58
e = 20 69.84 68.99 69.11 70.03 69.97 69.99 50.80 52.13 51.37 49.16 50.48 49.39
e = 1 72.48 71.76 71.91 72.31 71.53 71.69 53.24 39.65 40.27 51.74 35.40 37.36

FNet c = 30% e = 5 70.59 70.29 70.38 71.47 70.72 70.87 53.02 52.47 51.62 43.53 28.59 22.33
e = 20 69.06 68.93 68.98 69.96 69.93 69.94 51.03 52.98 51.43 49.66 52.62 49.74
e = 1 72.64 72.47 72.54 72.61 72.47 72.53 58.49 40.30 43.27 49.48 32.74 33.23

c = 50% e = 5 69.67 69.28 69.39 70.19 69.92 70.00 54.31 53.25 53.54 50.44 50.07 49.82
e = 20 67.71 67.62 67.66 68.21 68.14 68.17 51.62 51.75 51.55 48.10 50.00 48.27
e = 1 74.62 74.76 74.67 74.20 74.43 74.21 58.99 42.73 45.33 63.91 49.15 52.88

c = 10% e = 5 73.74 73.05 73.21 72.35 72.17 72.24 60.72 58.22 59.27 60.41 57.57 58.71
e = 20 72.92 72.39 72.53 70.77 70.43 70.53 59.61 59.14 59.24 58.78 59.38 58.95
e = 1 74.90 74.77 74.82 73.73 73.84 73.78 58.95 43.48 45.98 54.13 40.11 39.49

DistilBERT c = 30% e = 5 73.34 73.14 73.22 70.98 70.89 70.93 60.66 58.46 59.39 60.73 58.97 59.72
e = 20 73.02 72.82 72.90 70.37 70.17 70.24 58.79 58.85 58.71 58.22 58.80 58.28
e = 1 74.94 74.88 74.91 73.60 73.72 73.64 59.74 43.91 46.44 55.35 40.25 41.26

c = 50% e = 5 73.35 73.02 73.13 70.51 70.23 70.32 60.52 58.39 59.26 60.35 59.26 59.71
e = 20 73.07 72.67 72.79 70.08 69.84 69.92 58.85 58.39 58.54 58.41 58.60 58.36
e = 1 80.72 80.90 80.78 80.74 81.01 80.46 62.50 48.67 51.76 66.26 54.58 58.04

c = 10% e = 5 80.97 80.94 80.95 80.20 80.38 80.27 65.33 64.86 64.92 63.97 62.20 62.93
e = 20 81.71 81.82 81.76 80.34 80.40 80.37 63.74 64.28 63.85 63.68 63.80 63.65
e = 1 81.61 81.76 81.67 80.79 80.98 80.86 64.77 47.26 50.49 65.87 58.10 60.41

RoBERTa c = 30% e = 5 81.27 81.33 81.30 79.92 80.10 79.98 65.27 64.31 64.64 63.58 63.19 63.22
e = 20 81.22 81.37 81.28 79.17 79.32 79.23 64.59 64.82 64.54 63.14 63.16 62.96
e = 1 80.82 80.81 80.82 80.84 81.09 80.91 64.81 45.97 49.10 66.27 58.58 61.14

c = 50% e = 5 81.76 81.86 81.80 79.66 79.75 79.70 65.19 64.50 64.68 64.13 63.77 63.82
e = 20 81.32 81.41 81.36 79.85 79.94 79.89 64.83 64.62 64.56 63.54 63.19 63.29

Table 8: Results of binary and multi-class classification experiments run on the datasets released by Vidgen et al.
(2021) using the Federated Learning setup (FedProx and FedOpt). c is the percentage of clients whose updates are
considered. e is the number of local epochs on edge device.

Model Binary Dataset Multi-class Dataset
Server trained Federated Server trained Federated

LogReg 59.61 60.74 39.79 48.10
Bi-LSTM 61.98 61.13 42.18 47.37
FNet 35.51 72.54 45.52 54.11
DistilBERT 74.95 74.91 59.76 59.72
RoBERTa 80.64 81.80 65.73 64.92

Table 9: Results comparing the F1 scores for server-
based approaches and federated approaches for binary
and multi-class datasets proposed by Vidgen et al.
(2021)

using precision, recall and weighted F1 scores.

B.3 Token Level Analysis
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Figure 2: fraction of token occurrences (of 50 most fre-
quent tokens) in the discarded data

Table 10 shows the preliminary explorations of the
token-level distributions for the combined dataset
(Section 3) with two tokenisation methods: word-
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Dataset Tokenization Minimum 99%ile Maximum

Talat and Hovy (2016)
Word-level 1 34 54

Subword-level 3 60 101

Davidson et al. (2017)
Word-level 1 37 94

Subword-level 2 83 412

Fersini et al. (2018)
Word-level 2 36 47

Subword-level 3 64 93

de Gibert et al. (2018)
Word-level 1 67 374

Subword-level 1 93 592

Swamy et al. (2019a)
Word-level 1 175 1481

Subword-level 1 233 3209

Basile et al. (2019)
Word-level 1 59 74

Subword-level 3 105 156

Zampieri et al. (2019)
Word-level 2 69 112

Subword-level 4 152 221

Kaggle
Word-level 1 727 4950

Subword-level 2 872 4952

Table 10: Word-level and subword-level (BPE) token sequence length distribution for Comb dataset described in
Section 3

level using SpaCy (Honnibal and Montani, 2017)
and subword-level using the BPE algorithm.11

Based on our analysis, we draw the following con-
clusions: 1) token length is highly imbalanced for
different datasets in Comb, particularly in Kaggle
dataset4; 2) 99th percentile token length in Kaggle
dataset4 is reflected in the remaining dataset. Con-
sidering this, we remove longest 1% of documents
from the Kaggle dataset4 to achieve faster computa-
tion. Through this exclusion process, the maximal
token length of documents is reduced from 4950 to
727 tokens, without a substantial loss of informa-
tion.

11https://github.com/VKCOM/YouTokenToMe
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Model Combined Datasets Binary Dataset Multi-class Dataset
bs client_lr µ bs client_lr µ bs client_lr µ

LogReg 128 0.01 0.01 64 0.01 0.01 64 0.01 0.01
Bi-LSTM 128 0.001 0.01 64 0.001 0.01 64 0.001 0.01
FNet 32 0.0001 0.1 32 0.0001 0.001 32 0.0001 0.001
DistilBERT 32 0.00004 0.01 32 0.00002 0.01 32 0.00002 0.01
RoBERTa 16 0.00002 0.01 24 0.00002 0.01 32 0.00002 0.01

Table 11: Model hyper-parameters for server-based and federated models for the Vidgen et al. (2021). ‘bs’ repre-
sents batch size, ‘client_lr’ represents client learning rate, µ represents proximal term for FedProx algorithm.

Model Combined Datasets Binary Dataset Multi-class Dataset
bs client_lr server_lr bs client_lr server_lr bs client_lr server_lr

LogReg 128 0.01 0.01 64 0.01 0.001 64 0.01 0.01
Bi-LSTM 128 0.001 0.01 64 0.001 0.001 64 0.001 0.001
FNet 32 0.0001 0.001 32 0.0001 0.0001 32 0.0001 0.0001
DistilBERT 32 0.00004 0.001 32 0.00002 0.0001 32 0.00002 0.0001
RoBERTa 16 0.00002 0.001 24 0.00002 0.0001 32 0.00002 0.0001

Table 12: Model hyper-parameters for server-based and federated models for the Vidgen et al. (2021). ‘bs’ rep-
resents batch size, ‘client_lr’ represents client learning rate, ‘server_lr’ represents server learning rate for FedOpt
algorithm.
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Abstract

Many adversarial attacks in NLP perturb in-
puts to produce visually similar strings (‘ergo’
→ ‘εrgo’) which are legible to humans but de-
grade model performance. Although preserv-
ing legibility is a necessary condition for text
perturbation, little work has been done to sys-
tematically characterize it; instead, legibility is
typically loosely enforced via intuitions around
the nature and extent of perturbations. Par-
ticularly, it is unclear to what extent can in-
puts be perturbed while preserving legibility,
or how to quantify the legibility of a perturbed
string. In this work, we address this gap by
learning models that predict the legibility of a
perturbed string, and rank candidate perturba-
tions based on their legibility. To do so, we
collect and release LEGIT, a human-annotated
dataset comprising the legibility of visually per-
turbed text. Using this dataset, we build both
text- and vision-based models which achieve up
to 0.91 F1 score in predicting whether an input
is legible, and an accuracy of 0.86 in predict-
ing which of two given perturbations is more
legible. Additionally, we discover that legible
perturbations from the LEGIT dataset are more
effective at lowering the performance of NLP
models than best-known attack strategies, sug-
gesting that current models may be vulnerable
to a broad range of perturbations beyond what
is captured by existing visual attacks.1

1 Introduction

To manage the increasing demand for content
moderation—e.g., detecting spam or toxic/hateful
content on online platforms—organizations have
turned to machine learning solutions. In response,
users often resort to manipulating text to evade de-
tection, removal, or search. For instance, hateful
comments often comprise of visually similar char-
acters to avoid automatic filtering (Le et al., 2022).

∗ Work done while at Carnegie Mellon University.
1Data, code, and models are available at https://github.

com/dvsth/learning-legibility-2023.

“Small De”
Script: Cyrillic 
U+0434

“Th with strikethrough”
Script: Latin Extended 
U+1D7A

“Double Integral”
Script: Math Symbol 
U+222C

“Small Yu”
Script: Cyrillic 
U+044E

Anonymous
@anonymous

@anonymous

Anonymous
@anonymous

@anonymous @anonymous

Figure 1: Visual attacks in the wild. Examples of Twitter
users manipulating their tweets to evade the platform’s
‘sensitive content’ detection algorithms.

Since people read text visually, the manipulated
content can still be easily understood and harm its
target audience. These attacks started with sim-
ple ASCII substitutions like he11o (colloquially
referred to as “leetspeak"), but have evolved into
complex manipulations utilizing characters from
different Unicode scripts (Flamand, 2008; Ray-
mond, 1996). Figure 1 shows two such examples.

Unlike computer vision where there is an estab-
lished notion of what constitutes an imperceptible
perturbation (typically defined via the ℓ∞ distance),
most perturbations in text are perceptible. However,
as long as the perceptible manipulations remain
legible, the message could have its intended effect.
The legibility of a text is determined by whether
or not a literate person can decipher the altered
words. The degree to which a piece of text can be
perturbed, while maintaining legibility, depends on
a multitude of factors such as its context, similarity
to the original content, the positions of the perturba-
tions, the background knowledge of the reader, etc.
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However, many adversarial attacks enforce legibil-
ity only loosely based on intuitions about the nature
of the attacks, e.g., that changing 1-2 characters in
a sentence does not impact its legibility (Belinkov
and Bisk, 2018; Pruthi et al., 2019).

In this work, we instead propose to learn the leg-
ibility of visual perturbations, by developing text-
and vision-based models trained on legibility an-
notations from human subjects. The current focus
of research on adversarial attacks is to find mini-
mal perturbations required to break NLP models,
and several recent findings suggest that models re-
main brittle to such perturbations (Eger et al., 2019;
Dionysiou and Athanasopoulos, 2021; Pruthi et al.,
2019). In contrast, our work attempts to uncover
the space of all legible perturbations that we need
to defend against. Towards our goal of character-
izing the limits of legibility of perturbed texts, we
make the following contributions:

First, we crowdsource human judgments about
the legibility of different perturbations: specifically,
we show annotators two perturbed versions of the
same word and ask them which one, if any, they
find more legible. Our perturbation strategy con-
siders substituting letters in the word with Unicode
characters drawn from a large subset of the Basic
Multilingual Plane covering over 100 scripts from
around the world.2 In total, we collect 30, 320 an-
notations, one each for 14, 643 and 3, 332 instances
in the training and validation sets, respectively, and
three each for the 4, 113 instances in the test set.
Using these preferences, we define a pairwise leg-
ibility ranking task as well as a binary legibility
classification task. While the former allows mak-
ing inferences about which candidate perturbation
is most legible, the latter allows filtering out illeg-
ible perturbations altogether. For each task, we
identify a hard subset of the collected data, which
includes fine-grained comparisons expected to be
more challenging for annotators and models alike.

Second, we use the labeled data to train models
which predict the degree of legibility of a perturbed
text. Specifically, we fine-tune pretrained vision
(TrOCR; Li et al., 2021) and text-based (ByT5;
Xue et al., 2022) models on the ranking and clas-
sification tasks. We find that TrOCR trained in a
multi-task setup on both tasks achieves the best
performance with 0.91 F1 score on the classifica-
tion task and 0.86 accuracy on the ranking task.

2We consider 12, 287 Unicode characters from codepoints
0x0000 to 0x2fff.

Interestingly, we find that the purely text-based
ByT5 also achieves competitive performance on
the classification task with 0.89 F1, suggesting that
its pretrained byte representations encode aspects
of visual similarity between Unicode characters.
Further, we find that models have high F1 scores on
the subset of data with high inter-annotator agree-
ment: TrOCR achieves a 0.96 F1 score on test
cases where all three annotators agree. We also
note that legibility is a complex phenomenon—it
doesn’t correlate trivially with the distance of the
perturbation from the original text or the number
of letters substituted.3

Third, we consider a word-level perturbation
recovery task, which involves inferring the origi-
nal word from its perturbed version. We evaluate
GPT-3 (Brown et al., 2020) on this task, compar-
ing its performance on legible perturbations from
our perturbation strategy versus those generated
by VIPER, a VIsual PERturber method proposed
by Eger et al. (2019). We find that GPT-3 has a
lower accuracy in recovering perturbations from
our perturbation strategy, despite VIPER providing
no guarantees on legibility. Additionally, we apply
our findings to the important task of toxicity classi-
fication. We perturb a subset of the dataset using
our perturbation strategy and find that it degrades
the SOTA Detoxify (Hanu and Unitary team, 2020)
classifier more than existing VIPER attacks. These
findings demonstrate that existing attacks do not
comprehensively cover the space of legible pertur-
bations that can degrade model performance.

2 Related Work

Adversarial Attacks for NLP. A challenge in
defining adversarial examples for text lies in charac-
terizing the space of equivalent inputs to a training
or test example which preserves the target label.
While early work focused on adding distracting
text to fool question answering systems (Jia and
Liang, 2017), recent work utilizes more general
strategies applicable to many tasks (Li et al., 2019;
Morris et al., 2020; Jin et al., 2020). Many of
these can be categorized as word-level synonym
substitutions (Alzantot et al., 2018; Garg and Ra-
makrishnan, 2020; Li et al., 2020), or character-
level legibility-preserving substitutions (Ebrahimi
et al., 2018; Pruthi et al., 2019). Most attacks in
either category are perceptible in that readers of

3A logistic regression model using these as features only
agrees 56.7% of the time with authors’ legibility assessment.
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the text can identify that it has been transformed,
except for one notable exception where invisible
characters and near-identical characters are used
to render strings indistinguishable from the origi-
nal (Boucher et al., 2022). Attacks based on visual
similarity of characters have also been previously
considered by Eger et al. (2019) who propose three
attack strategies: ICES (based on rendered glyph
similarity), DCES (based on bag-of-words textual
similarity of Unicode codepoint descriptions), and
ECES (based on adding diacritics to base charac-
ters). For ICES, they compute similarity by com-
paring raw pixel values of the renderings, which
we improve upon here by utilizing a pretrained Op-
tical Character Recognition (OCR) model. This
produces a ‘smarter’ set of visual neighbors: e.g.,
mirror images of letters, scaled versions of letters
(like O vs ◦) etc., which go beyond simple accents
or modifiers. We also report in-depth comparisons
between our perturbation strategy and the ECES
and DCES approaches in section 5.

Legibility of Perturbed Inputs. Among
character-level perturbation attacks, legibility has
only been loosely enforced based on intuitions
about the nature and the degree of manipulations.
This often results in conservative substitutions
which only represent a lower bound on the space of
all legible perturbations. For instance, Pruthi et al.,
2019 limit the attack to only 1-2 character changes
(e.g., substitutions, deletions or additions) per input
example; similarly, Ebrahimi et al., 2018 propose
an attack strategy which specifically minimizes
the number of character manipulations required in
order to render the output legible. Attacks based
on visual similarity usually constrain their attack
surface to inputs which are above a threshold
similarity (in pixel or embedding space) to the
original input (Eger et al., 2019; Eger and Benz,
2020; Dionysiou and Athanasopoulos, 2021). In
this work, by contrast, we directly address the
question of what constitutes legible perturbations,
with the aim of learning a grounded definition of
legibility rather than assuming one a priori.

3 Legibility Tests

We adopt a supervised learning approach for de-
termining the legibility of perturbed texts. In this
section, we describe the process used for collecting
the LEGIT dataset (which stands for LEGIbility
Tests) and in the next section we describe the mod-
eling techniques used for predicting the legibility

score and ranking different candidate perturbations.
Our setting involves one-to-one character sub-

stitutions at the word level, i.e., given a word (and
no other context), we consider perturbations where
each letter in the word may be replaced by a Uni-
code codepoint in 0x0000-0x2fff. Moreover, the
substitutions are mutually independent and do not
depend on the context of the other letters.

3.1 Perturbation Process

To generate perturbations for the data labeling
task, we replace a subset of characters in a word
with visually similar counterparts. Specifically,
given a word w, we first randomly select a frac-
tion n ∈ [0, 1] of characters in that word to corrupt.
Then, each of the chosen characters is replaced by
its nearest neighbor at rank k in the embedding
space generated by a model M which encodes
characters into visual features. Hence, there are
three parameters involved in the perturbation pro-
cess ϕ = {n, k,M}.

We experiment with several models to encode
characters into visual features, all based on render-
ings of the Unicode codepoints into images. To
keep visual representations consistent across mod-
els, we use GNU Unifont, rendering each glyph
separately in 144px font size with black color, on a
224× 224px white background.4 Given the render-
ing, we compare 5 models to encode the features.
Three are transformer-based: TROCR (‘base’) (Li
et al., 2021), CLIP (‘vit-base-patch32’) (Radford
et al., 2021), and BEIT (‘base-patch16-224-pt22k-
ft22k’). One employs convolutional as well as
transformer networks: DETR (Carion et al., 2020).
The fifth model is a simple baseline: IMGDOT,
which uses the (flattened) bitmap of a rendered
character as its embedding vector. In preliminary
experiments, 400 perturbed pairs were generated,
with each pair using the same settings for k, n
but using different models. The authors then in-
dependently ranked perturbations each pair based
on their legibility. DETR- and BEIT-generated
perturbations were ranked above other models’ per-
turbations 23% and 41% of the time, respectively,
whereas CLIP and IMGDOT perturbations were
preferred over others in 66% and 73% of cases.
Hence, DETR and BEIT were excluded from fur-
ther experiments. TROCR was included later, after
verifying that it was preferred ≈ 50% of the time
against both CLIP and IMGDOT.

4Glyphs were rendered by the Pillow library (Clark, 2015).
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For each of the chosen models, we compute
the pairwise cosine distances between the model’s
embedding vectors for all Unicode codepoints
in the range 0x0000–0x2fff (excluding invalid or
empty codepoints), and use these distances to find
the nearest-neighbors for each character. Then,
to perturb a given word w using the parameters
ϕ = {k, n,M}, we first pick ⌊n|w|⌋ characters
uniformly at random to replace. For each character,
we fetch its k-th nearest neighbor from the model
M. Finally, we apply these substitutions to the
target word to obtain the perturbed word.

3.2 Pairwise Comparisons

We crowdsource legibility annotations for the per-
turbed words using Amazon’s Mechanical Turk.
We collect annotations on both absolute legibil-
ity as well as relative preference between two dif-
ferently perturbed inputs. Since annotators tend
to produce higher quality annotations when com-
paring items rather than assigning absolute values
(Callison-Burch et al., 2007; Liang et al., 2020), we
design an annotation interface based on pairwise
comparisons of two perturbed versions of the same
word (Appendix A). Specifically, annotators see
perturbationsw1, w2 side-by-side, with the original
word w hidden. They are asked to indicate which
perturbation they find more legible by selecting
exactly one of these four labels:

L1: w1 is preferred

L2: w2 is preferred

BL: both w1, w2 are equally legible

NL: neither w1 nor w2 is legible

L1 and L2 capture not only relative preferences
between the two perturbations (used for the ranking
task), but also indicate that the preferred perturba-
tion is legible. However, these labels do not give
us any information about the non-preferred pertur-
bation. On the other hand, the BL (Both Legible)
and NL (Neither Legible) options do not give us
a ranking between the two words, but inform us
about the legibility (or illegibility) of both words.
In the next section, we use these labels to derive
datasets for both a pairwise ranking task and a bi-
nary classification task.

We generate the data for annotation from En-
glish words consisting of the top 10, 000 frequent
words (as per Kaufman (2012)) in the Trillion

Word Corpus (Brants and Franz, 2006). We fil-
ter this vocabulary to remove words with lengths
less than 4 or greater than 14, ending up with 7600
words. These words are randomly split into the
train (65%), validation (15%), and test (20%) sets;
all future perturbation pairs (w1, w2) generated for
word w are added to the corresponding set, and
the same sets are used for all experiments. To per-
turb a word w into the pair w1, w2 a modelM is
picked at random from {TROCR, CLIP, IMGDOT

} (the three best models from our initial perturba-
tion analysis). We sample k ∼ N (µk, σ

2
k) and

similarly for n, applying the appropriate bounds to
keep k > 0 and n ∈ [0, 1]. The initial values are
µk = 25, σ2k = 10, µn = 0.5, σ2n = 0.2.

3.3 Adaptive Annotations

The space of all possible perturbations of a word
is vast, and sampling the parameters ϕ based on
the priors above is unlikely to yield difficult pertur-
bations which lie at the boundary of legibility. In
order to identify such perturbations, we collect data
over multiple rounds using an adaptive process for
generating the pairs. In the first round, the pairs
are generated as described above and annotated by
the crowd-workers. In the following rounds, pairs
are generated taking into account the last round of
annotations. Specifically, the ϕ1, ϕ2 for each suc-
cessive round are chosen to make the next round
of labeling harder for annotators. This is accom-
plished by manipulating the Gaussian used to gener-
ate k, n, i.e. by shifting µ1, µ2 to be closer to each
other and reducing variance. This approach gener-
ates perturbations which elicit more nuanced com-
parisons from annotators, allowing us to capture
fine-grained legibility preferences in the dataset.

Inter-annotator Agreement. Three waves of an-
notations were collected using adaptive pair gener-
ation. To establish high quality and confidence in
the test set labels, three annotations were collected
for each pair of perturbations in the test set. Pairs
where all annotators disagreed were removed from
the test set. For 49.1% of pairs, all 3 annotators
agree on the same label, 43.6% of pairs have agree-
ment between 2 out of the 3 annotators, and only
7.3% of pairs have no agreement among annota-
tors. Hence, even with 4 labels to choose from, for
92.7% of (w1, w2) pairs, at least two out of three
annotators chose the same label. This suggests that
the task is well-defined and has low variance.
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# pairs # distinct classification ranking
(w1, w2) (w) examples examples

Train 14622 4940 20217 9027
Val 3326 1140 4639 2013
Test 3712 1520 4774 2650

Total 21660 7600 29630 13690

Table 1: LEGIT dataset statistics. For each word, there
exist multiple perturbed pairs, generated through three
rounds of adaptive annotations.

Annotator Details. We recruit 150 annotators,
all of whom had over a 95% acceptance rate for
previous work done on the platform, as well as a
history of over 1, 000 completed tasks.5 Annotators
are given occasional quality checks, wherein they
annotate pairs drawn from a gold dataset labeled by
the authors; annotators with less than 70% accuracy
on the gold data were removed from the study and
their annotations discarded from the final dataset.
Annotators are given batches of 20 (w1, w2) pairs
at a time; typically taking between 30−45 seconds
to annotate. The average compensation per batch
is $0.12. Further details of the annotation interface
and instructions are available in Appendix A.

Hard Subsets. We identify challenging subsets
of the collected data for the ranking and clas-
sification tasks. For ranking, the chosen sub-
set (N = 1052) contains pairs (w1, w2) where
(n1 − n2)2
n1n2

< 0.1, i.e., both n’s are close to each

other, so it is hard in the sense that the perturbations
have similar parameters ϕ but varying degrees of
legibility—they cannot be ranked just by compar-
ing metadata. For the classification task, the chosen
subset (N = 2626) consists of all perturbations wi
with ni > 0.4, making the task more challenging
by excluding lightly-perturbed words which are
easier to classify.

4 Tasks and Models

In this section, we start by introducing two tasks
for characterizing the legibility of perturbed texts,
followed by a number of models for solving them.

4.1 Tasks

From the labels collected in the previous section,
we derive data for the two tasks: ranking and clas-
sification. The tasks assume that the original word

5686 annotators were excluded due to failing their first
quality check. Many attempts were observed to be spam.

w is known, as we base our setup considering an
attacker who is trying to find the best perturbation.

Ranking Task. Given a pair (w1, w2) of pertur-
bations and the original word w as input, rank the
perturbations in order of legibility. For this task,
we only consider the subset of data labeled with
strict rankings—i.e., excluding pairs labeled BL
(Both Legible) and NL (Neither Legible). As the
data is balanced, we only report accuracy as the
main metric for this task.

Classification Task. Given a single perturbation
wi and the original word w, decide whether the per-
turbation is legible. While annotators performed
pairwise comparison between (w1, w2), we can in-
fer the binary legibility labels for wi from pairwise
rankings as follows: for labels BL and NL, we can
make the obvious inference of legible and illegible
for both wi. For labels Li, we can again infer that
wi is legible, but cannot say anything about wj ̸=i;
all such wj with unknown legibility are excluded
from the classification task dataset. Since there are
more legible than illegible instances in the data, we
report both accuracy and F1 scores on this task.

4.2 Baselines

Majority Class. This baseline always predicts
the majority class from the training set for every
test example. For the ranking task, it always pre-
dicts w2 as the preferred perturbation (resulting in
an accuracy of 0.5), and for classification, the ma-
jority class is ‘legible’ (yielding 0.677 accuracy).

Logistic Regression using ϕ. Note that in an
attack setting, the attacker would know the pertur-
bation parameters ϕ exactly and may be interested
in predicting the legibility of their perturbation us-
ing these parameters. Hence, we perform logistic
regression directly on the attack parameters (n, k)
to predict the label. Being a simple metadata-only
baseline, this model does not take into account the
characters that were perturbed or their position.

4.3 Text-based Models

ByT5. Legibility, as defined in this paper, is
a visual property. However, we might expect
pretrained language representations (e.g., those
learned by large-scale language models) to also
encode visual similarity between characters since
the web-corpora used for pretraining might include
similar-looking characters in the same contexts
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Figure 2: Comparing ByT5 and TrOCR training setup. ByT5: Both the perturbed and original words are given as
one input to the model. TROCR: Both w1, w2 are fed sequentially into the same TrOCR-based model, and the two
resulting scalar outputs are used to compute the loss. For each perturbation, the string “wi w" is rendered and used
as input for the model.

(e.g., ‘0’ instead of ‘O’). To test this, we exper-
iment with ByT5 (Xue et al., 2022), a multilingual
encoder-decoder language model which tokenizes
inputs into byte sequences. Byte-level tokenization
ensures that none of the perturbations in LEGIT
are out-of-vocabulary, and multilingual pretraining
ensures that the model has seen a large subset of
Unicode. We finetune the pretrained ByT5-models
(‘small’ and ‘base’) to predict the binary labels
for both classification and ranking in a text-in text-
out setting. For ranking, the inputs are formatted
as: “original: < w > word0: < w0 > word1:
< w1 >”, and the output is “0” or “1” depending
on which word is more legible. For classification,
the inputs are formatted as: “original: < w >
corrupted: < wi > ”, and the output is “0” or
“1” depending on whether the corruption is illegi-
ble or legible. We train two separate models start-
ing from the pretrained ByT5 weights using the
cross-entropy loss over the target byte-sequence
and AdamW optimizer (Loshchilov and Hutter,
2019) and perform early stopping using the val-
idation set. Figure 2 outlines the model schematic
with sample inputs and outputs.

4.4 Vision-based Models

Since we are concerned with finding representation
spaces for visually similar characters, vision-based

models are a natural choice for the task. We con-
sider both unsupervised models which rely on pixel-
based or embedding-based similarities, as well as
supervised models based on OCR, which we train
on the LEGIT data.

IMGDOT. This unsupervised approach compares
the corresponding characters in w and wi based on
the cosine distance between their pixel renderings.
For the ranking task, this model selects the per-
turbation whose average cosine distance with the
uncorrupted word is lower. For classification, we
tune a threshold similarity parameter on the train-
ing set, above which the model predicts ‘legible’.

TROCR-Embeddings. This approach is identi-
cal to IMGDOT, except that we use the pretrained
character embeddings obtained by passing the ren-
dered images as input to the TROCR model. The
embedding vector for each character is obtained by
averaging the last hidden state from the encoder
output (bypassing the pooler). Note that the accu-
racy of these unsupervised baselines gives us an
idea of how well the corresponding representations
align with human notions of legibility.

TROCR. Finally, we consider finetuning
TROCR on the LEGIT data. We only use the
encoder part of the TROCR base model and
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connect it to a linear head. This linear head has
two fully connected layers mapping inputs of
size 768 (which is equal to the dimension of the
encoder output) to a scalar output which represents
the legibility score of the perturbed input. We use
ReLU activations between the linear layers and
apply dropout. The model takes variable-sized
images as input; this is created by rendering a pair
(wi, w) into a single image by concatenating both
strings along the horizontal axis (see Figure 2).

For the classification task, the output score from
the model is used directly for predicting the label.
Given a pair (w,wi), let si denote the scalar output
from the model and let yi ∈ {0, 1} denote the
legibility label (where 1 denotes that wi is legible).
Then the classification loss is given by:

Lclassify-i = −yi log σ(si)
− (1− yi) log [1− σ(si)] (1)

where σ is the sigmoid function. We apply the same
loss function to both perturbations w1 and w2. We
denote this classification model as TROCR-C.

For the ranking task, we use the same model but
apply it separately to the pairs (w,w1) and (w,w2)
to obtain the scores s1 and s2. The parameters
across the two applications of the model are shared
in a Siamese network setup (Koch et al., 2015).
Given these two scores, and the label y ∈ {0, 1}
(where 0 denotes thatw1 is more legible), we define
the ranking loss as:

Lcontrastive = −y log σ(s1 − s2)
− (1− y) log [1− σ(s1 − s2)]

(2)
The above loss encourages s1 to be higher than s2
when y = 0 and vice versa. A similar loss has been
used to train summarization models from pairwise
human preferences (Stiennon et al., 2020). We
denote this ranking model as TROCR-R.

The Siamese setup for the ranking task is limited
in the sense that it cannot directly compare the
two perturbations to decide which is more legible.
However, our goal is to train the model to produce
a calibrated legibility score given only a single
perturbation as the input. Further, the Siamese
network allows us to train the model on both the
classification and ranking tasks together in a multi-
task fashion:

L = Lclassify-1 + Lclassify-2 + Lcontrastive (3)

The loss terms for each training example are
masked based on the label: the ranking loss is
masked out if the label is “equally legible" or “both
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Figure 3: Legibility scores for LEGIT-generated pertur-
bations of lexicographic and zygote from the TROCR-
MT model. Neither word was seen during training.

unclear", whereas the individual classify-i loss is
masked out if the inferred binary legibility of pertur-
bation wi is indeterminate (e.g. for label L1, binary
legibility of w2 is unknown). Together, these losses
ensure that the legibility score si is thresholded at 0,
above which the perturbations are legible, and more
legible inputs receive a higher score. We denote
the model using combined loss as TROCR-MT.

5 Results

Table 2 shows the performance of all models intro-
duced on both the classification and ranking tasks.

Classification Task. For the classification task,
we find that baselines that just use the metadata
perform poorly. The Majority Class baseline ob-
tains an F1 score of 0.677, and the Logistic Re-
gression model using ϕ parameters yields an F1
score of 0.665, implying that legibility is not a sim-
ple function of the perturbation parameters k, n.
The unsupervised vision-based models, IMGDOT

and TROCR embeddings, vastly improve upon the
simple baselines, with the TROCR embeddings ob-
taining an F1 score 0.868 and IMGDOT yielding an
F1 score of 0.845. Hence, these embeddings align
reasonably well with human perceptions of legibil-
ity. The text-based ByT5 models improve signifi-
cantly over the baselines and unsupervised vision-
based models. They are comparable to the perfor-
mance of the single-task objective TROCR-C, but
worse than the TROCR-MT. This suggests that the
ByT5 models might have encountered some visual
perturbations during pretraining. Comparing the
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Model Classification Ranking

Accuracy Precision Recall F1 Std/Hard Accuracy Std/Hard

Baselines Majority Class .512 .512 1.000 .677/.000 .500/.502
Log. Regression .680 .659 .671 .665/.256 .744/.642

Vision-based IMGDOT .788 .861 .828 .845/.583 .790/.652
TrOCR embeds .825 .868 .883 .868/.654 .781/.677
TrOCR-C .840 .881 .891 .886/ – –
TrOCR-R – – – – .835/ –
TrOCR-MT .868 .914 .895 .905/.726 .858/.757

Text-based ByT5-small .844 .872 .909 .890/ – .762/ –
ByT5-base .842 .868 .912 .889/ – .769/ –

Table 2: Results on the standard test set. The TrOCR-MT model, trained in the multi-task setting, outperforms all
other models for F1 score on both tasks. The trained models also outperform the baselines on both tasks.

single-task TROCR-C model with the multi-task
TROCR-MT, we find that the presence of the addi-
tional ranking loss term during training improves
model performance on the classification task from
0.886 to 0.905. On test examples where all 3 anno-
tators agree, TROCR performs even better, attain-
ing an F1 score of 0.960, compared to a score of
0.850 on examples where only 2 annotators agree.
As further evidence of the model’s alignment with
annotators, we find that the model confidence is
directly correlated with annotator agreement (cf.
Figure 4) as measured by Fleiss’ κ (Fleiss, 1971).
Furthermore, consider Figure 3, which shows leg-
ibility scores obtained from TROCR-MT for two
words picked at random which are not part of the
training set. Qualitatively, we see that legibility
scores from the TROCR-MT model aligns with the
human judgements of legibility for these words.

Ranking Task. The TROCR-MT model per-
forms better relative to other models, resulting in a
6.8% absolute accuracy improvement. Akin to the
classification task, we find the TROCR-MT model
outperforms its single-task counterpart TROCR-
R. Thus, training with a multi-task objective im-
proves performance on both ranking and classi-
fication tasks when compared to single-objective
models. Differently from classification, we find
that ByT5 is significantly worse than the vision-
based models on ranking, suggesting that language
model pretraining is effective at separating legible
from illegible perturbations, but not at encoding
the degree of legibility of legible perturbations.

Jigsaw Challenge. Next, we check whether per-
turbations generated by our attack model (§ 3.1)
and filtered to ensure legibility using TROCR-
MT are effective at degrading the performance
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Figure 4: Left: Detoxify model performance on pertur-
bations generated by different attack methods on a ran-
dom subset (N = 2000) of the Jigsaw Toxic Comment
Classification dataset. Model performance degrades
most on our perturbations. Right: Model confidence
on legibility is aligned with annotator agreement. Legi-
bility scores (s0, s1) were obtained using TROCR-MT
for each perturbed pair (w0, w1) in the test set. Pairs
were grouped by the score difference ∆s = |s0 − s1|
and Fleiss’ κ was computed for each group.

of NLP models. We employ the Jigsaw Toxic
Comment Classification Dataset, which is a multil-
abel classification dataset consisting of Wikipedia
comments and human-annotated binary labels for
6 toxicity categories. In Figure 4 (Left), we
compare LEGIT and VIPER-DCES strategies in
a real-world scenario by perturbing the Jigsaw
dataset with each strategy and reporting how
much these perturbations degrade the performance
of Detoxify-original (Hanu and Unitary team,
2020), a BERT-based model which has state-of-the-
art performance on the Jigsaw dataset. We show
that LEGIT produces greater degradation at lower
n, and produces more legible perturbations even at
higher n (due to TROCR-MT filtering). In com-
parison, we find that DCES perturbations become
very hard to read at higher n, diluting the signifi-
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cance of the DCES results at high n. Appendix D
provides a qualitative analysis of the legibility of
DCES perturbations compared to those generated
using our LEGIT method.

VIPER-ECES causes a negligible degradation
on model performance, which is due to the fact that
the BERT tokenizer “corrects" almost all of the sim-
ple diacritic-based ECES character substitutions.
This means that the classification model receives
mostly unperturbed input save for some isolated
UNKs. For example, the perturbed input Ťĥâňǩ
ŷôǔ is tokenized back into Thank you. Taken to-
gether, these results demonstrate that LEGIT ex-
ploits a more efficient legibility space, finding char-
acter substitutions which have a greater impact on
model performance while preserving legibility.

Perturbing GPT-3. The strong performance of
ByT5 at separating legible from illegible inputs sug-
gests that language models might be somewhat ro-
bust to such perturbations. To examine this, we ex-
periment with GPT-3 (text-davinci-002 check-
point) (Brown et al., 2020) using a perturbation
recovery task, wherein we prompt the model to de-
code perturbed words back to their original strings.
We sample a subset of 1, 000 (w,wi) pairs from
LEGIT which have a label of legible. These per-
turbations are fed to the GPT-3 model in batches
of 10, along with an instructional prompt (see Ap-
pendix E) and 4 examples; recovered words are
received as a completion to the input prompt. In ad-
dition, we also perturb the same 1000 words using
VIPER-DCES and report the accuracy of GPT-3
at reconstructing them. We observe that GPT-3 of-
ten returns a word with a short edit distance to the
original word, and hence to capture this in our eval-
uation, we apply the Porter stemmer from NLTK
(Loper and Bird, 2002) to both the original words
and predicted reconstructions, and then measure
how often their stemmed forms are the same. We
repeat this experiment 3 times, randomly sampling
the 4 examples in the prompt each time. Figure 5
shows the GPT-3 accuracy at different fractions
of corrupted characters (n = {0.3, 0.7, 1.0}). As
expected, the accuracy goes down as n increases,
but we find that GPT-3 performs worse on LEGIT
perturbations. This demonstrates that while state-
of-the-art language models are mildly robust to the
narrower range of perturbations considered in ex-
isting visual attacks, they degrade significantly on
inputs sampled from LEGIT which are marked by
humans as legible. This result underscores the im-
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Figure 5: LEGIT perturbations sampled at low n degrade
accuracy at levels comparable to the n = 1 VIPER con-
figuration. Error bars indicate 95% confidence interval.

portance of considering the entire space of legible
perturbations when evaluating model robustness.

6 Conclusion

We set out to characterize the limits of legibility of
visual perturbations. To do so, we first collected
and released a new dataset, LEGIT, comprising leg-
ibility preferences of human subjects. Using this
dataset, we framed a binary legible-or-not classi-
fication task, and a ranking task to rank candidate
perturbations. For these tasks, we explored several
text- and vision-based models, and found that our
models obtain a high F1 score of 0.91 for the classi-
fication task and an accuracy of 0.86 for the ranking
task. Perturbations generated using the same attack
method as used for constructing LEGIT lead to sig-
nificant degradation on the Jigsaw Challenge task
and are not recovered by GPT-3 accurately, despite
being filtered for legibility. We believe this work
opens avenues for research on legibility-driven cer-
tified robustness to visual attacks in NLP.

Limitations

At the outset, we note that while our legibility-
scoring models are a step forward towards defend-
ing against visual attacks, they should not be seen
as perfect. Defending against all of the attacks
which our models find legible might still leave
room for legible attacks missed by our system.

Moreover, we note that the perturbation pro-
cedure outlined here only generates substitution-
based perturbations. Whereas, characters may also
be deleted, added, or swapped, and multiple adja-
cent characters may be substituted with visually
similar counterparts (see Figure 1). Future work
may explore broader classes of perturbations.
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When constructing the dataset, we only chose
words with a length of at least 4 letters, excluding
many common 3-letter words. This is because for
3-letter words, there is a high likelihood that a bad
perturbation may be mistakenly recognized as a
good perturbation by virtue of being in-vocabulary.
For example, “ban” is a bad perturbation of “man”,
but for an annotator who sees it without knowing
the original word and in absence of any sentence-
level context, it seems like a perfectly good pertur-
bation, when in fact it obscures the meaning of the
original word. This is a limitation of the experi-
mental setup that can lead to bad annotations, and
to mitigate it we chose a higher minimum word
length as longer words have fewer such collisions.

Further, we study word-level perturbations in
isolation without any surrounding context, whereas
in practice, readers often can decipher words based
on the context. In general, the legibility of a text
depends on the context around it—for example,
even if a word is deleted from a sentence it is of-
ten possible to reconstruct it. The data we collect
here, however, measures the legibility of individual
words without any context, in order to simplify the
generation and annotation process. As a result, the
legibility estimated using this data should be con-
sidered as lower bound of the legibility in any given
context. This was a deliberate choice as we wanted
to ensure that whatever we ascertain as legible is
legible in all contexts.

Lastly, the models we develop in our work are
of relatively moderate size (334− 584 million pa-
rameters) and take only unimodal input (i.e. pixels
for TROCR models and Unicode bytes for ByT5).
and future work may be able to improve the per-
formance by using larger models which accept
multimodal input (e.g. both pixels and Unicode
bytes simultaneously) and learn joint representa-
tions across these modalities.

Ethical Considerations

The word list comprising our dataset was filtered
to remove swear words, slurs etc. in order to avoid
exposing annotators to potentially harmful content.
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and Colin Raffel. 2022. Byt5: Towards a token-free
future with pre-trained byte-to-byte models. Transac-
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A mTurk Annotation Inferface

The web-based UI used by mTurk Annotators is
shown in Figure 6, with the instructions being visi-
ble throughout the duration of the task. Note that
the perturbed words w1, w2 are rendered in GNU
Unifont, which is the same font that words are ren-
dered in for computing visual similarity (cf. §Leg-
ibility Tests, Perturbation Process). This ensures
that both annotators and visual similarity models
see pixel-for-pixel identical perturbations, control-
ling for the fact that different fonts render the same
character differently.

The interface is optimized for clarity and label-
ing speed, with a focus on eliminating unnecessary
UI elements and minimizing clicks. Labeling each
pair w1, w2 with one label L ∈ {L1, L2, BL,NL}
takes exactly one click. Annotators choose L1 by
clicking on w1 (the left word), and similarly by
clicking on w2 (the right word) for w2. BL is se-
lected using the “equally legible" button, whereas
NL is chosen by clicking on “both unclear."

Immediately after a choice is made, the UI up-
dates and the next pair in the batch is shown (there
is no option to go back and edit the chosen la-
bel). Annotators who attempt to cheat on the task
by “speeding through" (i.e. clicking randomly or
spamming the same choice) end up failing the oc-
casionally administered quality checks and are sub-
sequently disinvited from the study.

B Use of OCR Models

Boucher et al. (2022) propose using Optical Charac-
ter Recognition (OCR) models to preprocess input
for text-based language models. Rendering input
text and passing it through an OCR before giving
it to the language model filters certain kinds of
misleading Unicode characters (e.g. invisible con-
trol sequences or near-identical Confusables (Davis
and Suignard, 2021)) from the text. However, when
used for legible but visually distinct perturbations,
off-the-shelf OCR models run into two problems.

Firstly, both mono- and multi-lingual OCR mod-
els will recognize characters from learned scripts
at face value, instead of recognizing their intended
use as visually similar substitutions. For example,

TROCR (Li et al., 2021), when given an image of
the string ‘Mex!(0’, decodes it into ‘Mex!(0’ (i.e.
the same string), completely ignoring its intended
meaning (Mexico). Secondly, since OCR models
are only trained on semantically meaningful inputs,
they do not learn good priors to differentiate non-
sense inputs from highly perturbed inputs.

We use two OCR-capable models on the ranking
and classification tasks: TROCR, which is explic-
itly trained on an OCR dataset, as well as CLIP,
which is trained on a general corpus containing im-
ages of texts from which it learns “a high quality
semantic OCR representation that performs well
on digitally rendered text” (Radford et al., 2021).

We find that TROCR models fine-tuned on our
dataset achieve high performance on legibility-
related tasks. On the text side, we consider the
token-free language model, ByT5 (Xue et al.,
2022), which encodes each byte individually, as
opposed to byte-pairs or subword tokens longer
than one byte. Since its encoding of each byte
is disentangled from surrounding bytes, ByT5 is
able to retain a larger share of the unperturbed part
of the string, hopefully making it more robust to
character-substitution perturbations compared to
token-based models, which reduce the sequences
with perturbed characters into rare tokens or simply
to UNKs.

C Hyperparameters

TROCR (‘base-handwritten’ version) was fine-
tuned on LEGIT with the loss function configura-
tions (C, R, MT) described above. To train each
configuration, we use a single NVIDIA A6000
GPU (48GB VRAM) with a batch size of 26 and
learning rate of 10−5 with the AdamW optimizer
and a linear decay schedule (without warmup).
ByT5-base and ByT5-small were trained on the
same hardware with a batch size of 8 and learning
rate of 10−4.

D Toxic Comment Classification
Experiment

The original string from the Jigsaw Toxic Comment
Classification dataset is:

It is needed in this case
to clarify that UB is a SUNY
Center. It says it even in
Binghampton University at Albany,
State University of New York, and
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Figure 6: The mTurk Annotation Interface

Stony Brook University. Stop
trying to say it’s not because
I am totally right in this case.

The VIPER DCES and LEGIT perturbations are
compared in Figure 7. The LEGIT perturbations
were labeled as legible by TROCR-MT.

E GPT-3 Experiment

We provided the following prompt to the
text-davinci-002 checkpoint using the GPT-3
API:

The following is a list of
corrupted words and their correct
versions. The corruptions were
created by replacing some or all
letters of the correct version
with similar-looking letters.
Corrupted:
1. c1
2. c2
...
10. c10
Original:

1. o1
2. o2
3. o3
4. o4
5.

The model is allowed to condition on 4 ground-
truth examples: o1 through o4, and attempts to
generate o5 through o10 by providing a completion
for the prompt above. The temperature and top p
parameters were both set to 1 to allow for consistent
and reproducible outputs across batches.
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(a) VIPER DCES, n = 1.0, nearest neighbors sampled uniformly from list of top 10 neighbors for each character.

(b) Ours (LEGIT perturbation strategy with TROCR-MT legibility filter) n = 1.0, nearest neighbors sampled normally (µ = 15,
σ2 = 7) from top 30 neighbors for each character

Figure 7: A randomly selected paragraph from the Jigsaw dataset (a) perturbed by VIPER DCES (b) and our method
(c). Our perturbation appears more legible despite being generated using harsher parameters.
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Abstract

With the ever-growing size of pretrained mod-
els (PMs), fine-tuning them has become more
expensive and resource-hungry. As a remedy,
low-rank adapters (LoRA) keep the main pre-
trained weights of the model frozen and just in-
troduce some learnable truncated SVD modules
(so-called LoRA blocks) to the model. While
LoRA blocks are parameter-efficient, they suf-
fer from two major problems: first, the size of
these blocks is fixed and cannot be modified af-
ter training (for example, if we need to change
the rank of LoRA blocks, then we need to re-
train them from scratch); second, optimizing
their rank requires an exhaustive search and
effort. In this work, we introduce a dynamic
low-rank adaptation (DyLoRA) technique to
address these two problems together. Our Dy-
LoRA method trains LoRA blocks for a range
of ranks instead of a single rank by sorting the
representation learned by the adapter module at
different ranks during training. We evaluate our
solution on different natural language under-
standing (GLUE benchmark) and language gen-
eration tasks (E2E, DART and WebNLG) using
different pretrained models such as RoBERTa
and GPT with different sizes. Our results show
that we can train dynamic search-free models
with DyLoRA at least 4 to 7 times faster than
LoRA without significantly compromising per-
formance. Moreover, our models can perform
consistently well on a much larger range of
ranks compared to LoRA. 1

1 Introduction

Pre-training/fine-tuning has become a popular
paradigm for solving many tasks in natural lan-
guage processing (NLP) (Devlin et al., 2018; Liu
et al., 2019; Brown et al., 2020) and Computer Vi-
sion (Simonyan and Zisserman, 2014; He et al.,
2016; Howard et al., 2019; Bochkovskiy et al.,
2020; Chen et al., 2020; Dosovitskiy et al., 2020).

1github.com/huawei-noah/KD-NLP/tree/main/DyLoRA

pretrained models (PMs) such as pretrained lan-
guage models (PLMs) (Devlin et al., 2018; Brown
et al., 2020), and pretrained visual-language mod-
els (Lu et al., 2019; Li et al., 2019; Su et al., 2019;
Xia et al., 2021) have advanced a lot in recent years.
With the ever-growing size of these pretrained mod-
els, fine-tuning them on downstream tasks becomes
more expensive. Moreover, as the ratio of the num-
ber of parameters of models with respect to the
labeled data increases, the fine-tuning process will
be more prone to overfitting (Karimi Mahabadi
et al., 2021). There are two categories of solutions:
first, model compression (Jafari et al., 2021; Chen
et al., 2021); second, parameter-efficient tuning
(PET) (Houlsby et al., 2019a; Karimi Mahabadi
et al., 2021; Mao et al., 2021).

There are many different model compression
techniques in the literature for Transformer-based
models such as matrix factorization (Noach and
Goldberg, 2020; Tahaei et al., 2021), prun-
ing (Wang et al., 2019), quantization (Tao et al.,
2022; Prato et al., 2020), and knowledge distilla-
tion (Hinton et al., 2015; Li et al., 2021; Jafari et al.,
2021; Passban et al., 2021; Rashid et al., 2021).
There are also different types of PET techniques
in the literature such as low-rank adapters (Wang
et al., 2020; Karimi Mahabadi et al., 2021; Houlsby
et al., 2019b; Hu et al., 2021b), and prompt-based
techniques (Lester et al., 2021).

Although model compression solutions are well-
established in recent years in the literature, apply-
ing them to large language models can be very
costly, because compression techniques usually
need to train (or fine-tune) the original large model.
A case in point is knowledge distillation which re-
lies on fine-tuning a large teacher model or even
pre-training the student model as suggested in (Jiao
et al., 2019). Moreover, using compression tech-
niques usually leads to degrading the model perfor-
mance. PETs can be alternatives to the compres-
sion methods, especially when we would like to use
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DyLoRA Parameter UpdatesForward Pass

Figure 1: DyLoRA: The overall diagram of our proposed method. In each iteration, we sample from a pre-defined
random distribution which will help us to truncate the up-projection and down-projection matrices in the LoRA (Hu
et al., 2021a) objective.

the full capacity of the large pretrained models with
light training efforts (such as the language-model-
as-a-service scenario (Sun et al., 2022)). Among
PET techniques, low-rank adapters have received
much attention because, in contrast to prompt-
tuning techniques, low-rank adapters do not add to
the sequence length, get trained faster, and perform
better (Karimi Mahabadi et al., 2021). Even though
there are several low-rank adaptation techniques
in the literature, such as Adapter (Houlsby et al.,
2019b), Compacter (Karimi Mahabadi et al., 2021),
and LoRA (Hu et al., 2021b); they all suffer from
two major common problems: first, it is not clear
how to select the size of their rank (while their per-
formance is very sensitive to this rank selection);
second, their training is static which means that if
a low-rank model is trained based on a particular
rank size, it will not work well in other rank values
(i.e. for any other rank value we need to train a
separate model).

This paper proposes a dynamic low-rank adapter
technique (DyLoRA) to address these two prob-
lems. Without loss of generality, we focus on
LoRA(Hu et al., 2021a) and train LoRA blocks
for a range of ranks instead of a single rank by
sorting out the representation learned at different
ranks during training. While our model is more
flexible, it can outperform LoRA in a much wider
range of ranks without adding to the training time.
Moreover, our technique does not need extra train-
ing for searching across ranks. We summarize our
contributions in the following:

• Dynamic LoRA: On top of LoRA, we devel-

oped a new algorithm (DyLoRA) that makes
it dynamic at inference time without incurring
extra costs.

• Search-free LoRA: We demonstrate that by
making a negligible compromise in perfor-
mance, it is possible to avoid the costly search
process of choosing the optimal rank for
LoRA.

2 Related Work

This section reviews low-rank adaptation tech-
niques for parameter-efficient tuning and poten-
tial existing solutions to make these techniques
dynamic and search-free.

It has been shown in (Aghajanyan et al., 2020)
that for classification tasks such as natural language
understanding (NLU), PLMs have a low intrinsic
dimension. This observation motivates the use of
low-rank adapters for parameter-efficient tuning.
There are several low-rank adapters in the literature
such as LoRA (Hu et al., 2021b), Adapter (Houlsby
et al., 2019b), Compacter (Karimi Mahabadi et al.,
2021), and Parallel Adapter (PA) (He et al., 2021).
LoRA is a low-rank up-projection/down-projection
transformation without any non-linearity applied
in parallel to key and value attention matrices.
The main benefit of LoRA is that the adapter
module, after training, can be integrated into the
original weight matrices of the model, which in
turn can lead to a very efficient inference time.
Adapters also have a low-rank up-projection/down-
projection transformation with an intermediate non-
linearity. The Adapter module is applied in series
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with the feed-forward network (FFN). Having the
adaptor module in-line with other blocks in the
model can increase the inference time of the model.
PA is a faster version of the Adapter, which can be
applied in parallel with the FFN block. The com-
pactor is a more memory-efficient version of the
Adapter, which deploys the sum of Kronecker prod-
ucts to reconstruct each up-projection and down-
projection matrices. All these low-rank adapters
suffer from two major issues: first, finding the best
rank requires heavy exhaustive training and search;
second, the tuned adapter module works well only
with a particular rank.

While there have been some efforts in the lit-
erature towards dynamic networks such as Dyn-
aBERT (Hou et al., 2020) and GradMax (Evci et al.,
2022), to the best of our knowledge, this problem
for factorized networks and low-rank adapters is
still open. DRONE (Chen et al., 2021) propose a
technique for data-aware low-rank model compres-
sion however their approach is not search-free, and
also, it is not dynamic. DynaBERT introduces a
two-stage method to train width and depth-wise
dynamic networks. However, DynaBERT requires
a fine-tuned teacher model on the task to train its
sub-networks which makes it unsuitable for PET
techniques. GradMax is a technique that gradually
adds to the neurons of a network without touch-
ing the already trained neurons. But it is unclear
how GradMax can be deployed to alleviate the
rank-search problem in low-rank adapters. Wang
et al. (2019) propose a structured pruning technique
called factorized low-rank pruning (FLOP). FLOP
decomposes weight matrices of a network into the
sum of rank-1 components, which are regularized
during training to gain sparsity. It is worth men-
tioning that FLOP aims at compressing the main
model, and even if it can be used for finding a good
rank in the lower-rank representation of full-weight
matrices, the final low-rank model will not be dy-
namic (i.e. it is trained well only for one rank and
not a range of ranks, same as LoRA.). In this paper,
we propose a new methodology for training low-
rank modules for multiple ranks simultaneously
rather than training a single-rank adapter at a time
(without changing the training budget). Inspired by
the idea of nested dropout (Rippel et al., 2014), we
pursue ordering the representations of the bottle-
neck at the low-rank adapter modules with a new
recipe. To the best of our knowledge, it is the first
time that the concept of ordering representations

has been deployed in training PLMs.

3 Background

3.1 Nested Dropout
Inspired by the dropout (Hinton et al., 2012), nested
drop-out (Rippel et al., 2014) is a stochastic regular-
ization technique that targets enforcing ordered rep-
resentations in training auto-encoders. The nested
dropout, adds an implicit bias (which does not exist
in dropout) to favor order in training. For example,
in dropout, we can randomly drop any nodes or
units in the network, but in nested dropout, if we
randomly select kth unit, then we keep all the units
indexed from 1 to k and drop the units with indices
larger than k. Therefore, nested dropout tends to-
ward accommodating more important information
in lower indices while learning representations.

Following the notations of (Rippel et al., 2014),
nested dropout assumes an auto-encoder mapping
of N training examples {yi}Ni=1 ∈ Y , Y ⊂ RD to
their corresponding representations {xi}Ni=1 ∈ X ,
X ⊂ RK using the function fθ : Y → X with pa-
rameters θ; and then decoding these representations
using another function gψ : X → Y with parame-
ters ψ to reconstruct the inputs. The reconstruction
loss can be defined as follows:

C(θ, ψ) =
N∑

i=1

||yi − gψ(fθ(yi))||2. (1)

Suppose we want to randomly drop some units in
our representation vector x. In this regard, we sam-
ple a random variable b ∼ pB(.), b ∈ {1, 2, ...,K}
from a pre-defined categorical distribution pB(.)
and truncate the functions fθ and gψ to keep their
corresponding units indexed from 1 to b and drop-
ping b+1 toK indices. Let’s define the b-truncated
version of the vector x as x↓b and the b-truncated
version of the functions fθ and gψ as fθ↓b and gψ↓b
respectively. In this case, the reconstruction loss is
redefined for the b-truncated model as follows:

C(θ, ψ) = EpB [C↓b(θ, ψ)] =
K∑

b=1

pB(b)C↓b(θ, ψ)

where

C↓b(θ, ψ) =
N∑

i=1

||yi − gψ↓b(fθ↓b(yi))||2.

(2)

In the final stage, the parameters of this model can
be obtained by solving the following optimization
problem.
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(θ∗, ψ∗) = argmin
θ,ψ

C(θ, ψ). (3)

While our work in this paper is inspired by the
feature of ordering information suggested in nested
dropout, we can distinguish our work from nested
dropout in several aspects:

1. The nested dropout technique is used to add
order information to a vector representation;
however, we are adding order information to
the low-rank matrix decomposition to make
it work across a range of ranks instead of a
single rank.

2. Our training algorithm differs from nested
dropout in the choice of the distribution func-
tion pB(.), and we propose a more efficient
individual loss for each truncated matrix com-
pared to the linear summation loss (check
equations 2 and 11 in the original paper (Rip-
pel et al., 2014)) in nested dropout. The origi-
nal proposal for the nested dropout was to use
a batch with mixed truncated examples. To
enhance efficiency and resolve suboptimality,
we propose to fix truncation in the entire batch
as part of our approach.

3.2 LoRA: Low-rank Adapters

In LoRA (Hu et al., 2021a), some pretrained
weights of dense layers of PLMs are summed with
parallel linear low-rank adapter modules. During
fine-tuning, the original pretrained weights are kept
frozen; LoRA modules can be updated instead. For
example, let’s assume that W0 ∈ Rm×d is a pre-
trained weight matrix in the network which is ac-
companied by a LoRA module ∆W = WupWdw

where Wup ∈ Rm×r, Wdw ∈ Rr×d, and r ≪
min(m, d). Then, the output of this layer can be
obtained as

h =W0x+∆Wx =W0x+
α

r
WupWdwx. (4)

Bear in mind that the Wup matrix is initialized as
a zero matrix, and the Wdw matrix is initialized
as a zero-mean Gaussian distribution where α is a
constant scale hyper-parameter.

In LoRA, the rank r is a hyperparameter that
should be tuned for each task. Moreover, LoRA
is a static low-rank adapter that works only with a
particular size of r, which has been trained on it.

4 Our Method: DyLoRA

In this section, we introduce our solution to get
dynamic low-rank adapters that can be trained and
deployed well on a range of ranks instead of a
single particular rank (with a fixed training budget).
This flexibility can free us from searching for the
best ranks by training the model multiple times.

Without loss of generality, we explain our so-
lution on top of LoRA as one of the prominent
low-rank adapter techniques in the literature. In
each LoRA module, we have an up-projection
(Wup ∈ Rm×r) and a down-projection matrix
(Wdw ∈ Rr×d). Let’s assume that we would like to
train the LoRA module to operate in the range of
r ∈ Range[rmin, rmax] where rmin and rmax can
be treated as new hyper-parameters. To make the
LoRA module work in a range of ranks instead of
a single rank, we need to ensure that increasing or
decreasing the rank will not significantly hamper
the model’s performance. One way to implement
such behavior would be by sorting the information
content of different ranks in the training process
of LoRA modules. In this regard, at each train-
ing step, we sample b ∼ pB(.), b ∈ {rmin, rmin +
1, ..., rmax} form a pre-defined categorical distri-
bution (which has a support in Range[rmin, rmax])
and truncate Wdw and Wup matrices accordingly.

Wdw↓b =Wdw[1 : b, :]

Wup↓b =Wup[:, 1 : b]
(5)

Wdw↓b and Wup↓b are b-truncated versions of Wdw

and Wup respectively (see Fig. 1 for the visualiza-
tion). Moreover, let’s define W b

dw as the bth row of
Wdw; W b

up corresponds to the bth column of Wup.

W b
dw =Wdw[b, :]

W b
up =Wup[:, b]

(6)

Then, the forward pass of this truncated LoRA mod-
ule during training will be calculated as following:

h =W0x+
α

b
Wup↓bWdw↓bx (7)

For simplicity, let’s assume that we have only
one LoRA module in the network (the one which
is described in Eq. 7). Let’s first consider the
regular static loss function (LS) of the network
f(x;Wdw,Wup) with Wdw and Wup tunable pa-
rameters for N given input-output pairs (x, y) =
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(xi, yi)
N
i=1:

min
Wdw,Wup

LS(x, y;Wdw,Wup) ≜

N∑

i=1

l(f(xi;Wdw,Wup), yi).
(8)

where l(f, y) is a loss function that measures the
divergence of network predictions compared with
the target labels. Then, let’s extend the training
loss to make the network dynamic considering the
b-truncation process. We can define our dynamic
loss function LDY as follows.

LDY↓b =

N∑

i=1

l(f(xi;Wdw↓b,Wup↓b), yi). (9)

Bear in mind that, our loss function has a major dif-
ference from the nested dropout loss, which makes
it more efficient. The nested dropout loss is in the
form of

∑rmax
b=rmin

pB(b)LDY↓b (x, y;Wdw↓b,Wup↓b)
which requires to sum the loss over the entire possi-
ble range of ranks and it is computationally expen-
sive. To overcome this computational restriction,
we replace it by optimizing the model parameters
for each target rank individually at each time step.
We show that this scheme quite works well.

The other difference with nested dropout is that
in the parameter update phase, we add a new mode
(so-called frozen) as a hyper-parameter to our train-
ing. This new mode suggests to only update the
bth corresponding row and column sampled in the
truncation phase (i.e. a single row or column will
be updated at a time to prevent the learning param-
eters from being forgotten at previous time steps.).
With a minor performance cost, this approach can
improve the efficiency of our algorithm even fur-
ther.

W b
dw ←W b

dw − η∇W b
dw
LDY↓b

W b
up ←W b

up − η∇W b
up
LDY↓b

(10)

Table 4 shows the impact of only updating "b"
versus updating the columns and rows from 1 to
b. The summary of our technique is described in
Algorithm 1.

5 Experiments

In this section, we describe the experiments used
to evaluate our DyLoRA model on both natural lan-
guage understanding (NLU) and natural language

Algorithm 1 DyLoRA - Training

Require:
r ∈Range[rmin,rmax]; i: the number of training
iterations; α: a scaling factor; pB: probability
distribution function for rank selection; X ∈
Rd×n : all input features to LORA;W0 ∈ Rm×d
the original frozen pretrained weight matrix

Require: Wdw ∈ Rr×d; Wup ∈ Rm×r, FROZEN:
whether to keep the lower ranks frozen when
updating the higher ranks
while t < i do:

Forward:
// sample a specific rank, during test is given
b ∼ pB(.)
// truncate down-projection matrix
Wdw↓b =Wdw[:b,:]
W b
dw =Wdw[b,:]

// truncate up-projection matrix
Wup↓b =Wup[:,:b]
W b
up =Wup[:,b]

// calculate the LoRA output
h =W0X + α

bWup↓bWdw↓bX
Backward:
if FROZEN then

// only update the unique parameters
of the selected rank

W b
dw ←W b

dw − η∇W b
dw
LDY↓b

W b
up ←W b

up − η∇W b
up
LDY↓b

else
Wdw↓b ←Wdw↓b − η∇W b

dw↓b
LDY↓b

Wup↓b ←Wup↓b − η∇W b
up↓b
LDY↓b

end if
end while

generation (NLG) tasks. To be fair with the orig-
inal LoRA method, we try to keep the setting of
our experiments similar to the LoRA paper (Hu
et al., 2021a). Therefore similarly, we chose the
pretrained RoBERTa (Liu et al., 2019) base model
as the backbone of the LoRA and DyLoRA exper-
iments for the GLUE benchmark (Development
Set), and GPT-Medium for the NLG tasks. For our
experiments, we did not use any hyper-parameter
tuning, nor did we search the validation epochs, nor
did we use MLNI trick (use the MLNI checkpoint
instead of the pretrained weights) to enhance the
model’s performance. More details about the hyper-
parameters is available in Table 8 in Appendix B.
In total, we conducted more than 200 experiments
and evaluated more than 1600 models, details of
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Model: RoBERTa-Base
Task Rank=1 Rank=2 Rank=4 Rank=8 Rank=16 Rank=32
QQP (Accuracy) 89.14 89.96 90.33 90.69 90.95 91.02
SST-2 (Accuracy) 93.58 94.15 94.38 94.84 94.27 94.5
MRPC (Accuracy) 87.25 87.75 88.24 87.25 86.76 89.22
CoLA (Mathews) 61.84 57.78 61.57 63.81 63.07 62.82

Table 1: The effect of the rank of the low-rank adaptation matrix over the performance of the model. In this
experiment, all the other hyperparameters are fixed, and we only changed the rank of the LoRA model. In this search
space, Underline shows the minimum performance rank, and the bold number shows the maximum performance
rank.

Accuracy Accuracy F1 Mathews Accuracy Accuracy Accuracy Pearson
Model MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg

Rank = 1
LoRA 34.60±3.69 69.61±7.99 83.47±3.90 25.57±9.71 53.00±2.95 44.30±7.50 57.55±5.51 76.07±6.06 54.90
DyLoRA (Frozen) 85.36±0.26 93.51±0.49 90.75±0.70 56.95±1.54 91.70±0.28 87.87±0.17 66.79±8.54 89.95±0.24 82.86
DyLoRA 85.59±0.07 93.23±0.63 91.58±0.69 57.93±2.12 91.95±0.14 88.37±0.15 74.80±1.48 90.30±0.13 84.22

Rank = 2
LoRA 40.53±6.17 82.75±5.08 88.00±1.81 43.30±4.67 63.42±2.99 59.21±6.13 68.88±1.26 85.51±1.94 66.45
DyLoRA (Frozen) 85.74±0.28 93.76±0.52 91.09±0.45 56.88±2.09 92.03±0.22 88.21±0.07 63.90±12.85 90.25±0.15 82.73
DyLoRA 86.02±0.06 93.81±0.30 91.66±0.46 59.91±1.88 92.39±0.25 89.33±0.05 76.03±1.61 90.60±0.09 84.97

Rank = 3
LoRA 58.95±6.02 90.00±1.27 89.66±1.25 56.78±1.88 79.26±4.80 72.58±4.09 72.49±2.30 88.80±0.29 76.07
DyLoRA (Frozen) 85.78±0.25 93.76±0.26 91.78±0.89 58.86±0.32 92.17±0.18 88.40±0.0 70.90±6.14 90.50±0.29 84.02
DyLoRA 86.70±0.09 94.11±0.33 91.56±0.86 60.97±2.01 92.77±0.21 89.76±0.07 77.11±2.97 90.69±0.14 85.46

Rank = 4
LoRA 72.10±5.25 91.56±0.34 89.62±0.92 58.53±3.93 85.09±1.20 80.78±3.73 73.07±2.29 89.28±0.72 80.00
DyLoRA (Frozen) 85.93±0.19 93.85±0.33 91.28±0.71 59.25±1.05 92.27±0.16 88.52±0.08 71.12±2.46 90.53±0.18 84.10
DyLoRA 86.82±0.04 94.40±0.13 92.06±0.46 59.81±1.71 92.91±0.31 89.80±0.10 77.40±2.72 90.86±0.06 85.53

Rank = 5
LoRA 78.61±3.97 92.82±0.46 90.75±0.96 60.37±3.10 88.97±0.90 85.26±1.56 73.21±2.17 89.90±0.30 82.49
DyLoRA (Frozen) 85.95±0.17 93.78±0.26 91.28±0.64 59.41±1.30 92.30±0.17 88.56±0.09 71.48±2.92 90.60±0.20 84.17
DyLoRA 87.00±0.10 94.29±0.41 91.73±0.60 60.52±1.07 93.01±0.28 90.04±0.10 76.90±2.11 90.97±0.20 85.56

Rank = 6
LoRA 83.02±1.59 93.49±0.88 91.28±0.63 61.94±2.27 90.32±0.76 87.54±1.51 76.68±1.16 90.12±0.12 84.30
DyLoRA (Frozen) 85.98±0.16 93.76±0.46 91.12±0.43 58.95±1.10 92.46±0.14 88.68±0.13 72.64±2.44 90.64±0.23 84.28
DyLoRA 86.97±0.20 94.27±0.37 91.44±0.64 60.16±1.70 93.01±0.21 90.07±0.14 77.33±1.66 91.03±0.20 85.53

Rank = 7
LoRA 85.44±0.78 93.62±0.35 91.27±0.73 62.19±2.66 91.88±0.23 89.51±0.30 75.52±1.41 90.35±0.24 84.97
DyLoRA (Frozen) 86.08±0.14 93.97±0.17 91.02±0.70 58.76±0.94 92.30±0.10 88.77±0.06 73.50±1.67 90.68±0.15 84.38
DyLoRA 86.82±0.10 94.27±0.33 91.38±0.59 59.51±1.75 92.99±0.26 90.04±0.06 77.91±1.58 91.07±0.19 85.50

Rank = 8
LoRA 86.82±0.18 94.01±0.30 91.48±0.73 62.08±1.37 92.39±0.39 90.42±0.02 74.51±0.41 90.48±0.24 85.27
DyLoRA (Frozen) 86.10±0.04 93.69±0.41 91.19±0.79 58.52±0.95 92.47±0.18 88.82±0.06 73.29±2.49 90.68±0.14 84.35
DyLoRA 86.76±0.13 94.36±0.38 91.38±0.83 59.51±1.84 93.00±0.32 89.91±0.08 77.55±0.59 91.05±0.19 85.44

Best (Rank)
LoRA 87.03(8) 94.50(6) 92.25(7) 66.05(7) 92.81(8) 90.45(8) 77.98(6) 90.87(8) 86.49
DyLoRA (Frozen) 86.18(7) 94.50(2) 92.93(3) 61.57(5) 92.70(6) 88.88(8) 75.81(7) 90.89(6) 85.43
DyLoRA 87.17(6) 94.72(7) 92.79(8) 63.32(3) 93.56(8) 90.17(6) 80.14(4) 91.36(7) 86.66

Full Rank
Fine Tune∗ 87.6 94.8 90.2 63.6 92.8 91.9 78.7 91.2 86.4

Table 2: In this table, the task is to find a low-rank adaptation matrix that works with different ranks at inference
time given a fixed budget (training time).

which can be found in the attachments.

5.1 Baselines

• Fine Tune: To show a relative upper bound
for the performance of our proposed method,
we fine-tuned all the parameters in the model.

Even though we have a large number of train-
able parameters, this can help us better under-
stand how higher-rank models perform.

• LoRA: As a baseline to DyLoRA, we em-
ployed the original LoRA model with their
tuned hyperparameters (Hu et al., 2021a). As
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Accuracy F1 Accuracy Pearson
Model (Rank) Trainable Params SST-2 MRPC QNLI STS-B AVERAGE
Fine Tune∗ 125M 94.8 90.2 92.8 91.2 92.25
FLOP∗ 80M 92.09 88.61 89.05 88.18 89.48
LoRA (1) 0.628M 93.58 91.93 91.98 90.85 92.09

Maximum Rank: rmax = 8

DyLoRA (1) 0.628M 93.23±0.63 91.58±0.69 91.95±0.14 90.30±0.13 91.77
DyLoRA (8) 0.887M 94.36±0.38 91.38±0.83 93.00±0.32 91.05±0.19 92.45

Table 3: This table compares DyLoRA with compression-based algorithms. As indicated by *, we reported "Fine
Tune" and FLOP from their original papers, (Liu et al., 2019) and (Wang et al., 2019). To the best of our knowledge,
experiments were conducted under the same experimental setting. We count all the trainable parameters including
classifier, unlike LoRA paper (Hu et al., 2021a) which they count only LoRA specific parameters.

Maximum Rank: rmax = 8

Accuracy F1 Mathews Accuracy Accuracy Pearson
b ∼ PB: Distribution Updated Parameters SST-2 MRPC CoLA QNLI RTE STS-B AVERAGE

Rank=8

Geometric (p=0.15) Wdw↓b,Wup↓b 93.97±0.33 90.84±1.15 58.95±1.95 92.74±0.13 74.80±0.90 90.66±0.15 83.66
W b
dw,W b

up 93.60±0.24 90.50±0.42 58.19±1.17 92.26±0.12 71.91±1.74 90.20±0.36 82.78

Uniform Wdw↓b,Wup↓b 94.36±0.38 91.38±0.83 59.51±1.84 93.00±0.32 77.55±0.59 91.05±0.19 84.47
W b
dw,W b

up 93.69±0.41 91.19±0.79 58.52±0.95 92.47±0.18 73.29±2.49 90.68±0.14 83.31
Rank=1

Geometric (p=0.15) Wdw↓b,Wup↓b 93.53±0.47 91.36±0.72 59.43±1.12 92.24±0.08 73.65±3.55 90.33±0.14 83.42
W b
dw,W b

up 93.58±0.26 90.81±0.83 58.55±1.13 92.27±0.28 68.52±11.88 90.60±0.31 82.39

Uniform Wdw↓b,Wup↓b 93.23±0.63 91.58±0.69 57.93±2.12 91.95±0.14 74.80±1.48 90.30±0.13 83.30
W b
dw,W b

up 93.51±0.49 90.75±0.70 56.95±1.54 91.70±0.28 66.79±8.54 89.95±0.24 81.61

Table 4: Ablation Study - In this experiment, our goal is to demonstrate how the introduced distribution can affect
the performance of DyLoRA.

a result, most of the experiments have been
conducted in a favorable manner for LoRA.

• FLOP: Due to its flexibility, Factorized Low
Rank Pruning (FLOP) (Wang et al., 2019) can
be applied to any matrix multiplication and,
therefore, can be used to avoid the search in
our problem. However, this baseline lacks the
dynamic properties of DyLoRA. We used it
to show regularization-based techniques’ per-
formance and pros and cons.

5.2 LoRA rank selection problem
There is no clear guidance on how to determine
the rank for the LoRA algorithm. It is evident in
the LoRA paper (Hu et al., 2021a) that the perfor-
mance of models varies a lot with different ranks
(e.g. check Tables 15, and 18 in the LoRA paper),
and does not indicate any clear trend. We also ob-
serve the same problem in the GLUE benchmark.
We may argue that theoretically, the rank with the
best performance is always the highest. High ranks,
however, introduce additional parameters into the
adaptive process and this might be undesirable. In
practice, as demonstrated in Table 1, the most ef-
fective rank differs depending on the task. For

example, based on the MRPC results, the rank with
the lowest performance is 16 while the rank with
the highest performance is 32. This is different
from SST-2, in which rank 1 is the least performing
rank and rank 8 is the most effective rank. Many
factors can contribute to this difference, including
but not limited to the size of the dataset, hyperpa-
rameter selections, hardware configurations and the
optimization.

5.3 Dynamic low rank adaptation

For example, suppose we have a neural network
that we wish to deploy on various devices with dif-
ferent configurations. The use of higher ranks may
pose a problem for very sensitive devices as they
have a greater number of parameters. Therefore,
we must either train several models with different
configurations or find the most optimal rank. The
cost associated with this is significant, as even in
the setting of LoRA, we are required to find the
best rank for each task and each device. Using
DyLoRA, however, one needs to train one model
per task and, as our method is adaptive at inference
time, we can deploy it according to our needs. In
Table 2, we demonstrate the dynamic properties of
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DyLoRA. In order to ensure a fair comparison, all
LoRA and DyLoRA models in this table have the
same model size, we used the same code and eval-
uation process, and all models were trained to the
same extent. In LoRA, we lose performance when
performing inferences for the lower ranks. This
occurs because the model has been trained only for
rank 8 during training. In DyLoRA, we preserve
a high level of performance for lower ranks while
competing well with LoRA on rank 8.

Model Time SST-2 (r) MRPC (r)
Maximum Rank: rmax = 64

LoRA (Search) 7x 95.3(64) 89.71(64)
DyLoRA (Frozen) 1x 94.38(7) 89.95(34)

Maximum Rank: rmax = 32
LoRA (Search) 6x 94.84(32) 88.73(16)
DyLoRA (Frozen) 1x 94.38(7) 89.71(5)

Table 5: In this table, the search space of rank is larger
compared to the previous experiment and the goal is to
find the most optimal rank for the low-rank adaptation
of a pre-rained RoBERTa-Base. For LoRA (Search),
we ran experiments for ranks=1,2,4,8,16,32,64 and we
reported the best results. In the Exhaustive Search, one
has to search all the ranks from 1 to 64, which means it
will cost 64 times more than our proposed method. The
lower the rank the better, and the higher the performance
is the better.

5.4 Search-free low rank adaptation

The process of selecting a particular rank can be
expensive as previously mentioned. In Table 5, we
present an experiment that illustrates the costs asso-
ciated with such a search for LoRA and DyLoRA.
As an example, if one naively wanted to search the
entire range of ranks (for example, 64 in the exper-
iment), then they would have to train and evaluate
64 distinct models in order to determine the proper
rank. It becomes even more expensive if one search
the entire rank space. In the case of uniform search,
this cost is less, yet still more expensive (7 times in
the experiment) than our proposed method. There-
fore, for LoRA (Search), we ran experiments for
ranks=1,2,4,8,16,32,64 and we reported the best
results. The results demonstrate that our proposed
method performs competitively at a much lower
cost.

5.5 Robustness of DyLoRA

As illustrated in Table 2, DyLoRA is quite robust
to randomness and can produce consistently good
results due to stable convergence.

5.6 Regularization and Pruning

An alternative method of avoiding the search prob-
lem is using regularization/pruning techniques to
determine the intrinsic rank of the weight matrix.
In this way, we can reduce the number of param-
eters of the original matrices; however, we will
not have a dynamic model during inference. To
illustrate the difference between such methods and
DyLoRA, we reported the performance of one of
these models, FLOP (Wang et al., 2019), in Table
3. FLOP utilizes low-rank factorization to create
new matrices representing the original weight ma-
trix. Thus, they will have fewer total parameters
but require more trainable parameters to reach a
comparable performance to DyLoRA.

5.7 Generative Tasks

In this experiment, we evaluate the performance
of our model on different natural language gen-
eration (NLG) tasks such as the E2E NLG Chal-
lenge (Novikova et al., 2017), DART (Nan et al.,
2020) and WebNLG (Gardent et al., 2017). The
results of the E2E task are shown in Table 6 and
due to the space limit, the results of the other two
tasks are demonstrated in Appendix C. The genera-
tive tasks demonstrate a similar pattern as the NLU
task, showing that our model is able to work well
at wider range of ranks compared to LoRA.

5.8 Ablation study

In this subsection, we investigate the impact of two
design choices in DyLoRA: first, the new distri-
bution PB hyper-parameter in our technique; sec-
ond, the impact of updating W b

dw and W b
up param-

eters instead of the entire Wdw↓b and Wup↓b. The
distribution PB changes the relative importance
of the different ranks during the training process.
To examine the impact of the chosen distribution
on DyLoRA’s performance, we used two distribu-
tions, geometric and uniform. As shown in Table
4, the geometric distribution, provides a much bet-
ter method for optimizing the lower ranks, since it
pays much more attention to the lower ranks during
training, and uniform distribution will give better
performance over all ranks. We chose to use uni-
form distribution in most of our experiments to
avoid adding another hyperparameter which is a re-
quirement of the geometric distribution. Moreover,
we demonstrate that it is possible to ensure that the
optimization of rank b will not negatively affect the
performance of the lower ranks (1 to b− 1), while
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Model (Method) Updated Params Trainable Params E2E NLG Challenge
BLEU NIST MET ROUGE-L CIDEr

Rank=1
GPT-2 M (LoRA) 0.09M 3.38 1.18 9.23 18.79 0.12
GPT-2 M (DyLoRA) W b

dw,W b
up 0.09M 67.92±0.20 8.65±0.06 44.91±0.38 69.07±0.32 2.38±0.04

GPT-2 M (DyLoRA) Wdw↓b,Wup↓b 0.09M 68.86±0.55 8.72±0.04 45.81±0.40 70.33±0.64 2.43±0.04
Rank=2

GPT-2 M (LoRA) 0.19M 46.99 6.39 34.19 56.10 1.27
GPT-2 M (DyLoRA) W b

dw,W b
up 0.19M 68.81±0.49 8.75±0.02 45.23±0.22 69.81±0.30 2.41±0.01

GPT-2 M (DyLoRA) Wdw↓b,Wup↓b 0.19M 68.97±1.03 8.75±0.07 45.88±0.55 70.07±0.86 2.43±0.04
Rank=3

GPT-2 M (LoRA) 0.29M 63.68 8.46 42.37 65.84 2.24
GPT-2 M (DyLoRA) W b

dw,W b
up 0.29M 68.41±1.00 8.69±0.10 45.31±0.64 69.75±0.69 2.42±0.02

GPT-2 M (DyLoRA) Wdw↓b,Wup↓b 0.29M 69.33±0.26 8.76±0.05 46.19±0.22 70.56±0.43 2.46±0.01
Rank=4

GPT-2 M (LoRA) 0.39M 69.88 8.81 46.81 72.10 2.53
GPT-2 M (DyLoRA) W b

dw,W b
up 0.39M 68.36±0.41 8.70±0.02 45.46±0.56 69.91±0.50 2.43±0.01

GPT-2 M (DyLoRA) Wdw↓b,Wup↓b 0.39M 69.19±0.43 8.75±0.03 46.26±0.47 70.78±0.63 2.46±0.02
Fine-Tune

GPT-2 M (FT)∗ 354M 68.2 8.62 46.2 71.0 2.5

Table 6: For all metrics, higher is better. Rows with * have been reported based on the LoRA paper. Unlike (Hu
et al., 2021a), we included the classifier number of parameters in our trainable parameters count.

performing reasonably well. As mentioned, this
can be accomplished by only updating the unique
parameters associated with rank r that do not over-
lap with lower ranks.

In addition, in Table 7, we demonstrate the result
of using our individual loss (Eq. 9) vs. the nested
dropout original objective function in an equal set-
ting. As shown, our proposed objective function
is both effective and efficient. Furthermore, it is
important to note that the summation loss is not
scalable when many ranks are involved. We also
discussed the time complexity of LoRA and Dy-
LoRA in Appendix A.

Maximum Rank: rmax = 8

Loss Training Time CoLA
LDY↓b 645.82s 52.64∑
pB(b)LDY↓b 1175.69s 54.12

Table 7: This experiment shows the impact of choos-
ing individual loss vs. summation loss functions on
our training. The average performance across all pos-
sible ranks (1,2,...,8) is reported. For summation loss
to be computationally more feasible, smaller epochs
were chosen. A total of seven GPUs were used in this
experiment.

6 Conclusion

In this paper, we presented our solution DyLoRA to
address two problems in low-rank adapters regard-
ing rank selection and making them dynamic. We
showed that DyLoRA can select the rank without

requiring multiple re-training and is able to make
LoRA dynamic at inference time. As a result, we
can avoid the process of searching for the most
optimal ranks for many real-life scenarios. It has
been demonstrated that DyLoRA performance is
comparable with LoRA, yet we can support a wider
range of ranks without adding additional time and
effort.

Limitations

According to LoRA (Hu et al., 2021a), a proper
choice of the scalar can improve the results. In
order to determine what is the best choice, further
investigation is required. Despite our demonstra-
tion that uniform distribution can be as effective
as specific geometric distribution, further investiga-
tion is necessary to evaluate the effect of different
distributions on different downstream tasks. As
shown in this paper, our algorithm works over a
wide range of ranks, but further research is needed
to understand the impact of choosing a particular
range.
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A Time complexity

The training time for DyLoRA is comparable to
that of LoRA trained once on a specific rank. Thus,
when searching the rank space for LoRA, we need
to train it multiple times, whereas our method does
not require searching the ranks. Accordingly, Dy-
LoRA’s relative time complexity is inversely pro-
portional to the number of possible ranks for which
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the LoRA model must be searched. In MRPC,
DyLoRA (for all the ranks) and LoRA (only on
a single rank 8) require a total training time of
408.39 seconds and 399.95 seconds, respectively.
Consequently, when we need to train eight LoRA
models (Rank=1,2,...,8), it will result in a cost of
399.95*8=3199.6s, compared to the training time
of our model, which is only 408.39 seconds. A
more efficient implementation of our algorithm
may result in a better time complexity.

B Hyperparameters

We did not use any parameter tuning nor MNLI
trick (initializing some down-streams tasks from
MNLI checkpoint instead of pretrained weights).
Therefore, we fine-tuned all the datasets from orig-
inal pretrained weights. We simply followed a uni-
fied hyper-parameters for all different experiments.
Unlike LoRA (Hu et al., 2021a) which reported the
median over 5 random seeds, we reported the mean
and standard deviation over 5 random seeds. See
the details in Table 8.

C GPT Experiments

A summary of the additional experiments that have
been conducted to demonstrate the effectiveness
of our proposed method for the task of language
generation is provided in Table 9.
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Model Parameter Value

RoBERTa-Base

Optimizer AdamW
Warmup Ratio 0.06
LR Scheduler Linear

Batch Size 32
Epochs 30

Learning Rate (LR) 4e-4
Weight Decay 0.1
LoRA Config rq = rv = 8 (unless otherwise mentioned)

LoRA α 16
Max Sequence Length 512

Seeds 10, 42, 4242, 10, 1010
GPU Tesla V100-PCIE-32GB

GPT Medium

Optimizer AdamW
Adam Beta2 0.999

Warmup Steps 500
Clip 0.0

LR Scheduler Linear
Batch Size 8

Epochs 5
Learning Rate (LR) 2e-4

Weight Decay 0.01
Correct Bias True

LoRA Dropout 0.1
Lable Smooth 0.1
LoRA Config rq = rv = 4

LoRA α 32
Seeds 10, 42, 4242
GPU Tesla V100-PCIE-32GB

Table 8: All the hyperparameters that have been used throughout our study.
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Model (Method) Trainable Params DART WebNLG
BLEU↑ TER↓ BLEU↑ TER↓

Rank=1
GPT-2 M (LoRA) 0.09M 0.71 0.49 2.80 1.18
GPT-2 M (DyLoRA-Frozen) 0.09M 44.48±0.11 0.49±0.00 52.09±0.10 0.40±0.01
GPT-2 M (DyLoRA) 0.09M 44.77±0.17 0.49±0.01 53.04±0.07 0.40±0.00

Rank=2
GPT-2 M (LoRA) 0.19M 15.90 0.48 26.58 0.67
GPT-2 M (DyLoRA-Frozen) 0.19M 45.04±0.14 0.48±0.01 52.74±0.31 0.40±0.01
GPT-2 M (DyLoRA) 0.09M 46.05±0.31 0.48±0.00 54.32±0.09 0.39±0.01

Rank=3
GPT-2 M (LoRA) 0.29M 35.84 0.47 43.61 0.47
GPT-2 M (DyLoRA-Frozen) 0.29M 45.22±0.14 0.49±0.01 53.03±0.55 0.40±0.00
GPT-2 M (DyLoRA) 0.29M 46.68±0.36 0.48±0.01 54.48±0.05 0.39±0.00

Rank=4
GPT-2 M (LoRA) 0.39M 47.10 0.46 55.57 0.39
GPT-2 M (DyLoRA-Frozen) 0.39M 45.56±0.33 0.48±0.00 53.03±0.01 0.40±0.00
GPT-2 M (DyLoRA) 0.39M 46.56±0.42 0.48±0.01 54.48±0.45 0.39±0.00

Fine-Tune
GPT-2 M (FT)∗ 354M 46.2 0.46

Table 9: Rows with * have been reported from the LoRA paper. (Hu et al., 2021a).
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Abstract

Emotion-Cause Pair Extraction (ECPE) task
aims to pair all emotions and corresponding
causes in documents. ECPE is an impor-
tant task for developing human-like responses.
However, previous ECPE research is conducted
based on news articles, which has different
characteristics compared to dialogues. To ad-
dress this issue, we propose a Pair-Relationship
Guided Mixture-of-Experts (PRG-MoE) model,
which considers dialogue features (e.g., speaker
information). PRG-MoE automatically learns
relationship between utterances and advises
a gating network to incorporate dialogue fea-
tures in the evaluation, yielding substantial per-
formance improvement. We employ a new
ECPE dataset, which is an English dialogue
dataset, with more emotion-cause pairs in
documents than news articles. We also pro-
pose Cause Type Classification that classifies
emotion-cause pairs according to the types of
the cause of a detected emotion. For reproduc-
ing the results, we make available all our code
and data1.

1 Introduction

With increased interest in developing human-like
responses, it is crucial to determine the cause of a
given emotion. As part of such interest, there is a
surge of research activities that analyze the cause of
emotions (Yan et al., 2021; Turcan et al., 2021; Li
et al., 2022a). Recently, Poria et al. (2021) presents
RECCON, a new dataset for Emotion Cause Ex-
traction (ECE) task in dialogue. ECE is a task to
find a clause that contains the cause of an annotated
emotion in a clause of a given document. However,
ECE is limited in that the model requires manually
annotated emotions.

To overcome the limitation of ECE (Lee et al.,
2010), Xia and Ding (2019) suggest Emotion Cause
Pair Extraction (ECPE) task, which automatically
predicts emotion clauses in a given document and

1https://github.com/jdjin3000/PRG-MoE

# of Emotion-Cause Pairs ECPE-news (Xia and Ding, 2019) ECPE-D

1 1,746 (89.77%) 9 (0.80%)
2 177 (9.10%) 19 (1.69%)
≥ 3 22 (1.13%) 1,094 (97.50%)

Table 1: The amount of emotion-cause pairs in a docu-
ment compared with the ECPE-news corpus (Xia and
Ding, 2019) and ECPE-D corpus. ECPE-D is a dialogue
dataset reconstructed based on RECCON (Poria et al.,
2021). On average, ECPE-D corpus has more emotion-
cause pairs than ECPE-news corpus.

identifies their corresponding causes. They also
build a new ECPE corpus from Chinese news arti-
cles. Since ECPE and the dataset were proposed, it
has attracted the interest of numerous researchers
Ding et al. (2020a,b); Wei et al. (2020); Fan et al.
(2020); Cheng et al. (2020); Chen et al. (2020a,b).

However, ECPE in dialogues is different from
ECPE in news articles. A dialogue is an interaction
between two or more people, while a news article
describes a fact. So, dialogues contains meta in-
formation such as the speakers, which is one of
the most important information in understanding
dialogues. In addition, dialogues contain more
diverse and emotional expressions, and emotions
change as the dialogue progresses, creating even
more emotion-cause pairs. This makes the task
of ECPE even more challenging. Table 1 shows
that most documents in the current ECPE news
corpus have only one emotion-cause pair per docu-
ment, whereas most of the dialogues have multiple
emotion-cause pairs. So, we employ RECCON,
an English dialogue dataset (Poria et al., 2021) as
a new ECPE dataset. We reconstruct RECCON
suitable for the ECPE task and we call this dataset
ECPE-D. Figure 1 shows an example of ECPE-D.

In this paper, we propose a Pair-Relationship
Guided Mixture-of-Experts (PRG-MoE) model,
which considers dialogue features (e.g., speaker
information) in ECPE. We employ Mixture-Of-
Experts (MoE) (Eigen et al., 2014) to customize
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Figure 1: Example of ECPE task. u3 has a surprise emotion because Human A learns that his colleague is thinking
of quitting her job (u2). Human B feels happy at u6 because she thinks her conversation with Human A is interesting
(u6) and has obtained good advice from Human A (u5). We can extract the emotion-cause pair (u3, u2), (u6, u5),
(u6, u6) from this dialogue. Blue line indicates the cause of the emotion utterance.

the experts in the relationship between utterances.
It is important to consider the relationship between
utterances, since it helps us grasp the emotional
flow from the conversation history or understand
emotions (or its causes) through other speakers.
PRG-MoE automatically learns the relationship
between utterances and advises gating networks
to incorporate dialogue features, which yields ex-
cellent performance. We evaluate PRG-MoE and
other models using ECPE-D dataset and show that
PRG-MoE outperforms other models.

Furthermore, we propose a multi-class classifi-
cation task that identifies cause types of emotion-
cause pairs in a dialogue - ECPE-CT. An under-
standing of the cause types is beneficial especially
for empathetic response generation (Gao et al.,
2021). ECPE-CT helps to generate more specific
empathetic responses rather than simple reactions
for all kinds of context such as "good luck" by
understanding several cause types. Knowing the
cause types of the last utterance by the user can
help the agent to comprehend the context and ob-
tain the implicit feedback from the user. There
are three cause types in ECPE-D: no-context, inter-
personal, and self-contagion. Type is categorized
depending on 1) into from which speaker the cause
of the emotion originated, and 2) whether the cause
appears in the current utterance or not.

We performed ECPE-CT tasks under various
models; PRG-MoE outperformed other baselines
in identifying not only emotion-cause pairs but also
types of causes in the pairs.

Our contributions are as follows:

• We propose a new ECPE task in dialogues,
and provide related dataset - ECPE-D.

• We present PRG-MoE, a new approach that
outperforms other models in ECPE-D.

• We propose a new Cause Type Classification
task (ECPE-CT) that helps categorizing the
type of a cause for an emotion.

2 Related Work

Xia and Ding (2019) propose the ECPE task, which
predicts an emotion clause and extracts a corre-
sponding cause in a given document. The authors
construct a new ECPE corpus from Chinese news
ECE corpus (Gui et al., 2016). They also propose a
two-step approach: a pipeline structure consisting
of emotion/cause clause extraction and an emotion-
cause pairing. However, the two-step approach in a
pipeline structure has limitation in that errors can-
not be propagated to the entire model. PRG-MoE
performs end-to-end pair extraction so it avoids
inaccurate inference originating from a pipeline
structure.

Subsequent ECPE research suggests 2D trans-
former (Ding et al., 2020a), sliding window (Ding
et al., 2020b) and graph neural network (Chen
et al., 2020b; Wei et al., 2020). However, these
approaches do not consider meta information such
as speakers. Speaker information is a factor that
improves performance in dialogue-related tasks.
Several studies report improved performance in
emotion recognition by taking into account speaker
information (Zhang et al. (2019), Li et al. (2020),
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Bao et al. (2022)). In addition, methods that con-
siders speakers obtain higher performance in con-
versation related tasks (Li et al. (2022b), Bak and
Oh (2020)). PRG-MoE adopts Mixture-of-Experts
for incorporating speaker information as a feature
in pair extraction. Also, previous ECPE research
considers only the existence of emotion in a clause.
PRG-MoE suggests a method where a combination
of speaker information and type of emotion in an
utterances is used.

3 Task Definition

This section describes the definition of ECPE task
in a dialogue. The input is a dialogue D =
{u1, ..., un} that contains multiple utterances be-
tween two people, where ui is i-th utterance in a
dialogue and consists of token sequence ti, speaker
indicator si ∈ {0, 1} and emotion information ei.

Objective of the task is to extract a set of
emotion-cause utterance pairs {..., (ui, uj), ...},
where ui is an emotion utterance and uj is a cause
utterance in a pair.

4 Pair-Relationship Guided
Mixture-of-Experts

We propose a Pair-Relationship Guided Mixture-of-
Experts (PRG-MoE) model that adopts a Mixture-
of-Experts module. Figure 2 shows the overall
architecture. PRG-MoE consists of three mod-
ules: utterance representation construction (§4.1),
emotion-cause pair candidate extraction (§4.2) and
mixture-of-experts based emotion-cause pair clas-
sification (§4.3).

4.1 Utterance Representation Construction

First, PRG-MoE creates a representation of each
utterance. Input is a dialogue D = {u1, ..., un},
where i-th utterance ui = (ti, si) contains token
sequence ti and speaker indicator si. We use BERT
(Devlin et al., 2019) for constructing token se-
quence representation. We surround each token
sequence with pre-defined special tokens ([CLS],
[SEP]), t′i = {[CLS], wi1, ..., wik, [SEP ]}, where
wik is k-th token in i-th utterance’s token sequence.
[CLS] token is used for generating representation
for classification tasks. [SEP] token is used to de-
note the end of a sentence. We obtain the utter-
ance’s representation hi via BERT, which is the
final hidden state of [CLS].

hi = BERT (t′i) (1)

Emotion Classification PRG-MoE performs
emotion classification not only to obtain emotion
utterance candidates for emotion-cause pairs, but
also to convey emotion information in utterance
representation. Emotion classification is performed
by feeding a token sequence representation hi into
a Feed-Forward Neural Network (FFNN) layer. We
can get the emotion prediction êi.

êi = Softmax(W ehi + be), (2)

where W e is a weight and be is a bias of the emo-
tion classification layer, respectively.

Utterance Representation We use the concate-
nation of token sequence representation, emotion
prediction and speaker information as utterance
representation.

ui = hi ⊕ êi ⊕ si (3)

4.2 Emotion-Cause Pair Candidate
Extraction

To extract emotion-cause pair candidates, PRG-
MoE needs to pair emotion utterance candidates
and cause utterance candidates. The candidate pair
xij is created by concatenating two utterances.

xij = ui ⊕ uj , (4)

where ui is a non-neutral emotion utterance rep-
resentation and uj is a cause utterance candidate
representation (j ∈ {1, ..., i}).

We assume two properties of the pairs. First,
only non-neutral emotion utterances can be emo-
tion utterance candidates. This is because ECPE
tries to find the cause of emotions that occurred
during a conversation. Second, PRG-MoE assumes
that the cause of an emotion exists in previous or
present utterances, since future utterances are not
known to the speakers.

Window-constrained Strategy For computing
efficiency, we adopt a window-constrained strat-
egy in ECPE task (Ding et al., 2020a). In a given
dialogue D = {..., ui, ...}, where ui is a non-
neutral emotion utterance, ui’s cause candidates
{ui−|w|+1, ..., ui} are selected up to the predefined
window size |w| distance.

4.3 Mixture-of-Experts based Pair
Classification

Pair-Relationship in ECPE In emotion-cause
pairs, a specific relationship is formed depending
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Figure 2: Overall Architecture of PRG-MoE consists of three parts: utterance representation construction, emotion-
cause pair candidate extraction, and mixture-of-experts based pair classification. Token sequences in dialogue
are converted into semantic representation by BERT. The concatenation of speaker indicator, token sequence
representation, and emotion prediction information is used as an utterance representation. In the emotion-cause pair
candidate extraction, only non-neutral utterances are considered to be emotion utterances. Pair candidates are routed
to proper experts using routing probability. The routing probability consists of the gating network probability gθ
and pair-relationship probability pguide.

on speaker or emotion relationship. We call these
relationship pair-relationship. Depending on who
the speaker is of an utterance ui, uj in an emotion-
cause utterance pair xij and what emotion the utter-
ance contains, we can identify the following four
categories.

• Same speaker - Same emotion: This is a
case where the utterances in a pair belong to
the same speaker and have the same emotions,
such as maintaining emotional state.

• Same speaker - Different emotion: This is a
case where the utterances in a pair belong to
the same speaker but have different emotions.
For example, an emotion can appear in the
second utterance, following the first utterance
where the speaker talks neutrally about what
could be the cause of the emotion that arises
in the second utterance. Also, the speaker can
have multiple emotions occur simultaneously
in one utterance, such as ambivalence (Larsen
and Mcgraw, 2011). So, the cause of one
emotion can trigger different emotions.

• Different speaker - Same emotion: This is a
case where the utterances in a pair belong to

different speakers but share the same emotion,
such as sharing the emotion of empathy.

• Different speaker - Different emotion: This
is a case where the utterances in a pair be-
long to different speakers and each have differ-
ent emotions. For example, a speaker’s utter-
ance triggers an emotion in the other speaker’s
utterance. This case is similar to the Same
speaker - Different emotion case, but the sub-
ject of the cause utterance is another speaker.

pair-relationship is constructed based on the pre-
dicted emotions, not the ground-truth emotion in-
formation.

Guided-MoE Method We are inspired by the
mixture-of-experts (MoE) method to consider pair-
relationship. MoE is the process of utilizing mul-
tiple experts for a specific task. The expert is a
trainable neural network. The gating network de-
termines which expert is suitable for a given input,
and this mechanism automatically enhances the
expertise of experts through learning.

However, there is no guarantee that the pure
MoE learns pair-relationship. So, we guide each
expert to have expertise in pair-relationship. We
combine the decision of the gating network and
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pair-relationship for routing emotion-cause pair
candidates to proper experts.

MoE consists of k experts {f1θ , ..., fkθ } and
gating network gθ. Experts and gating net-
work get a set of emotion-cause pair candi-
dates {..., xij , xii, ...} as input. Experts return
the emotion-cause pair classification prediction
fθ(xij), respectively. Gating network gθ returns
the routing probability gθ(xij), where gθ(xij) is a
distribution over k experts that sums to 1.

To guide the routing probability to consider pair-
relationship, PRG-MoE first creates one-hot label
that represents the category of pair-relationship
pguideij . PRG-MoE routes an input pair represen-

tation xij by combining gθ(xij) and pguideij . For
combination, the number of experts should be the
same as the number of pair-relationship.

pij = (1− λ)× gθ(xij) + λ× pguideij , (5)

where pij is a distribution over k experts that sums
to 1.

The output of PRG-MoE is as follows:

yij =
k∑

n=1

pnijf
n
θ (xij), (6)

where k is the number of the pair-relationship infor-
mation as one expert is assigned to each category.

The loss function of PRG-MoE consists of emo-
tion classification loss and emotion-cause pair clas-
sification loss that are focal loss (Lin et al., 2017).
Essentially, ECPE task faces the challenge of class
imbalance since it has a few positive samples
among pair candidates. The adoption of the focal
loss alleviates this issue by balancing the weight as-
signed to minority classes, facilitating the learning
process (Wang et al., 2022).

5 Experiments

5.1 Settings

Dataset We use the RECCON dataset (Poria
et al., 2021) for experiments. RECCON is a dataset
for ECE task that finds a corresponding cause for an
utterance with a given emotion. It consists of Dai-
lyDialog (Li et al., 2017) and IEMOCAP (Busso
et al., 2008), and the authors additionally annotated
the cause of an emotion and type of the cause.

We reconstruct a corpus for ECPE in dialogues,
named ECPE-D from RECCON. We also call Dai-
lyDialog data in ECPE-D as ECPE-D-DD, and

IEMOCAP data in ECPE-D as ECPE-D-IE. REC-
CON has several cause type classes. Among them,
there is a cause type called “hybrid” which encom-
passes both "inter-personal" and "self-contagion"
causes. We separate “hybrid” type into “inter-
personal” and “self-contagion” and reannotate in
dialogues to clarify information associated with the
pair label by making multiple single pairs for cause
type classification. In addition, RECCON has an-
notated cause information for each utterance. To
facilitate the ECPE task, we add the emotion-cause
pair label per dialogue.

Table 2 shows basic statistics of ECPE-D.
We split the ECPE-D-DD as 80/10/10 for train-
ing/validation/test. We use ECPE-D-IE as test data
only. This is because it has fewer dialogues than
ECPE-D-DD and we can show the robustness of
ECPE models on different domain dataset. IEMO-
CAP has frustration and excited emotion labels that
are not in DailyDialog. So, we map frustration and
excited to sad and happy, respectively.

For statistically significant results, we conduct a
total of five experiments using randomly split data,
and report the average result.

Approach ECPE-D-DD ECPE-D-IE

# of Dialogues 1,106 16
Avg. of Dialogue length 10 42

# of no-context pair 3,370 243
# of inter-personal pair 3,796 365
# of self-contagion pair 1,958 445
Avg. of emotion-cause pairs 8 66

Table 2: Characteristics of the ECPE-D Dataset. ECPE-
D-IE is uses only as test dataset. The two datasets differ
significantly in their properties.

Baselines We select following models as a com-
pared approach. For a fair comparisons, language
models of all models are fixed with a bert-base-
cased from huggingface2 (Wolf et al., 2020).

• ECPE-2D (Ding et al., 2020a) proposes a
method of expressing the emotion-cause pairs
by a two-dimensional representation scheme.
They use a window-constrained method to re-
strict the scope of the search for extracting
emotion-cause pairs.

• ECPE-MLL (Ding et al., 2020b) defines an
ECPE task as a multi-label learning problem.
ECPE-MLL first assumes that all utterances

2https://github.com/huggingface
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Test Dataset ECPE-D-DD ECPE-D-IE

Approach Emotion-Cause Pair Extraction Emotion Extraction Emotion-Cause Pair Extraction Emotion Extraction

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

ECPE-2D 49.34 47.37 48.34** 71.91 77.16 74.44 45.17 12.37 19.42** 78.16 49.16 60.36
ECPE-MLL (avg-pair) 53.58 39.58 45.53** 68.97 73.64 71.23 47.44 1.63 3.15** 83.82 6.85 12.66
ECPE-MLL (or-pair) 50.71 43.56 46.86** 68.97 73.64 71.23 43.41 2.17 4.13** 83.82 6.85 12.66
Rank-Emotion-Cause 58.09 10.49 17.77** 75.85 20.17 31.87 65.91 1.10 2.09** 91.75 3.24 6.26
RECCON-BERT 49.31 33.19 39.68* - - - 46.52 4.33 7.92* - - -

PRG-MoE 58.95 55.67 57.26 71.76 76.09 73.86 51.95 20.02 28.90 85.58 43.06 57.29

Table 3: Performance of PRG-MoE and baseline models for ECPE-D. All models are trained with only ECPE-D-DD.
PRG-MoE outperforms all other models in the emotion-cause pair extraction. We also test models in ECPE-D-IE
to validate the models in an environment different from the train dataset. Despite the differences, PRG-MoE
outperforms all other models. We run the statistical significance test for the F1-Score in the Emotion-Cause Pair
Extraction task. PRG-MoE shows statistically significant difference in performance than baselines (**: p < 0.0001,
*: p <0.001).

are emotion utterances, and finds correspond-
ing cause utterances; then, assumes that all
utterances are cause utterances, and finds cor-
responding emotion utterances. There are two
ways for the ECPE-MLL to identify emotion-
cause pairs; avg-pair and or-pair. The avg-
pair method identifies a match as a pair when
both the cause and emotion utterances select
each other as their match. The or-pair method
identifies an emotion-cause pair even if only
one side selects the other as their match (i.e.
the cause utterance c1 may identify the emo-
tion utterance e1 as its match, while e1 se-
lects a different cause utterance c2 as its match.
There can be two cause-emotion pairs identi-
fied through the or-pair method; pair (e1, c1)
and pair (e1, c2).

• Rank-Emotion-Cause (Wei et al., 2020) is
a method that ranks candidates for emotion-
cause pairs and filters them using a sentiment
word lexicon. Since the prior lexicon is de-
veloped for Chinese data, we adapt it using
the Loughran-McDonald sentiment lexicon
(Loughran and McDonald, 2011) for testing
ECPE-D.

• RECCON (Poria et al., 2021) uses RoBERTa
with a classification layer for ECPE. They
claim that the simple language model outper-
forms other ECPE models. For fair compar-
isons, we set the language model to BERT.
We denote the model RECCON-BERT.

Evaluation Metrics We follow the evaluation
metrics from previous research (Xia and Ding,
2019); we use precision, recall, and F1 score as
metrics.

5.2 Results

Table 3 shows experimental results for the ECPE
task of PRG-MoE and baseline methods with
ECPE-D-DD. There is no difference between the
PRG-MoE and other models in terms of Emotion
Extraction performance. This is because Emotion
extraction is performed using only BERT. However,
even though it shows similar emotion extraction
performance, PRG-MoE outperforms in the pair
extraction performance, which is the main goal of
our study. The usage of speaker information and
type of emotion makes PRG-MoE more suitable
to extract emotion-cause pairs in a dialogue than
other baselines.

ECPE-MLL predicts emotion-cause pairs utiliz-
ing two methods; avg-pair and or-pair. Or-pair
shows better recall and f1-score than avg-pair. This
is because or-pair predicts the emotion-cause pair
optimistically, whereas avg-pair satisfies two indi-
cators for predicting pairs. It gives or-pair a wider
search space than avg-pair, making the or-pair more
advantageous in finding pairs in emotionally-rich
environment and thus to have better performance
than avg-pair.

Rank-Emotion-Cause shows low performance.
It has two stages for extracting pairs. First, Rank-
Emotion-Cause ranks pair candidates and chooses
the first pair. Second, the model determines if there
is a sentiment word among the other unselected
candidate pairs using a sentiment word dictionary
and when found, selects it. However, there are
many cases where emotions are expressed with-
out explicit expression of emotions in an utter-
ance. Dictionary-based emotion detection makes
it hard to capture implicit expression. Dictionary-
based emotion detection of Rank-Emotion-Cause
captures 1,764 utterances out of 6,384 emotion ut-
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λ
Speaker+Emotion Guide Emotion Guide Speaker Guide

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

0.0 (Pure MoE) 51.63 55.98 53.72 52.07 54.79 53.40 52.07 54.79 53.40
0.2 53.25 54.98 54.10 52.13 55.33 53.68 53.78 56.28 55.00
0.4 56.49 55.20 55.84 54.09 53.92 54.00 54.40 58.95 56.58
0.6 58.95 55.67 57.26 54.09 53.56 53.82 56.31 56.34 56.32
0.8 55.53 57.14 56.32 53.92 54.61 54.27 58.53 53.99 56.17
1.0 (Pure guide) 58.07 54.64 56.30 54.16 52.91 53.52 54.77 58.40 56.53

Table 4: A study on mixing ratio for routing probability and pair-relationship information in guided-MoE method.
When λ is 0, it means the pure Mixture-of-Experts method and when λ is 1, it means the pure guide information
from pair-relationship. Above experiments prove that guided-MoE method is superior to pure MoE or pure guide
for experts.

Figure 3: Ablation study for the number of experts in
the mixture-of-experts method. We set PRG-MoE with
λ = 0 for experimenting pure MoE method. Above
experiments show no meaningful difference without the
pair-relationship probability pguide.

terances in ECPE-D. This method is unfavorable
for extracting multiple pairs.

RECCON argues that the language model with
a simple classification layer outperforms earlier
ECPE models. They experiment with emotion la-
bels, candidate pairs, and dialogue context as input.
However, there are two problems here: First, they
exclude a scenario in which emotional informa-
tion is incorrect. So, the comparison is not fair
because ECPE approaches use emotional informa-
tion that they predict. Second, while ECPE should
consider all possible pairs for a given text, REC-
CON is tested using a dataset in which positive
and negative samples are appropriately mixed. We
re-evaluate the model by presenting the same emo-
tion label predicted by PRG-MoE to RECCON for
accurate comparison. RECCON-BERT shows low
performance compared to when it has true emotion
labels. This means that RECCON-BERT, unlike
other ECPE models, does not have a structure that
operates robustly with an inaccurate emotion.

Table 3 also shows the experimental results for
ECPE-D-IE. All models are learned with ECPE-
D-DD. This experiment is conducted to evaluate

Concatenated element
Emotion-Cause Pair Extraction

Precision Recall F1-Score

h 58.27 55.82 57.02
h⊕ ê 56.91 55.88 56.39
h⊕ s 55.41 59.04 57.16
h⊕ ê⊕ s 58.95 55.67 57.26

Table 5: Ablation study for utterance representation
components. It is performed by PRG-MoE. h, ê and s
mean token sequence representation, emotion prediction
and speaker indicator, respectively. Above results show
that giving information through concatenation has a
positive effect.

Approach
Emotion-Cause Pair Extraction

Precision Recall F1-Score

w/o window-constraint 43.91 43.08 43.49
with window-constraint 58.95 55.67 57.26

Table 6: Ablation study of window-constraint method.

how they perform on out-of-domain data. Besides,
as shown in Table 2, ECPE-D-IE has about eight
times more emotion-cause pairs in a dialogue than
the trained data, so the difficulty of pair extraction
becomes extremely high. These adverse conditions
make the models have poor performances. PRG-
MoE shows robust performance compared to other
models.

6 Discussion

6.1 Effects on Pair-Relationship Information
The main idea of PRG-MoE is to combine the de-
cision of the gating network and pair-relationship
information. For evaluating effects on the mix-
ing ratio λ in Guided-MoE, we set λ from 0
(pure Mixture-of-Experts) to 1 (pure guiding pair-
relationship information). Table 4 shows the proper
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Approach
no-context inter-personal self-contagion weighted average

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

ECPE-2D 53.23 60.88 56.80 51.70 42.18 46.46** 36.10 14.72 20.92 48.98 43.42 46.03**

PRG-MoE 54.66 62.30 58.23 62.22 59.11 60.63 39.99 17.19 24.05 55.43 51.34 53.31

Table 7: ECPE-CT performance of models for ECPE-D-DD. The performance between PRG-MoE and ECPE-2D is
insignificant in no-context. However, there are notable advances in inter-personal and self-contagion, which relate
to the interaction between the two utterances. Through the above performances, we can prove that the Guided-MoE
method is helpful in judging the relationship between different utterances. We run the statistical significance test
for the F1-Score in the ECPE-CT task. PRG-MoE shows statistically significant difference in "inter-personal"
performance than ECPE-2D (**: p < 0.0001).

mixing ratio in the guided-MoE. PRG-MoE has the
highest performance when λ is 0.6.

Furthermore, we experiment ablation study of
pair-relationship information; emotion-guide and
speaker-guide. Emotion-guide method constructs
pair-relationship into same emotion and differ-
ent emotion. Speaker-guide method constructs
pair-relationship into same speaker and different
speaker.

In the comparison of emotion-guide and speaker-
guide, speaker information has better guidance
for pair extraction than emotion information. All
three pair-relationship experiments show similar
tendency that the combination of MoE and pair-
relationship information performs better than pure
methods.

We also test the effects on the number of experts.
We set four experts and assigned one category each
to learn the pair-relationship information. Note,
however, pure MoE can have multiple experts. Fig-
ure 3 shows that even when we change the number
of experts, PRG-MoE outperforms all pure MoE
models.

6.2 Effects on Elements of Utterance
Representation

Table 5 shows the performance of PRG-MoE
trained with various cases of utterance represen-
tation concatenation. The components for concate-
nation are token sequence representation, emotion
prediction, and speaker indicator.

It shows the best performance when all compo-
nents are concatenated. Providing extra informa-
tion allows experts to learn more about features
between utterances.

6.3 Effects on Window-Constrained method

Table 6 shows the ablation study of the window-
constrained method. In natural conversation, the
cause of an emotion generally exists near the emo-

tion utterance (Kumar et al., 2022). PRG-MoE
focuses on utterances near an emotion utterance
through the window strategy, and does not con-
sider utterances far from the emotion utterance be-
cause the farther away from the emotion utterance,
the less likely an utterance becomes a cause utter-
ance for that emotion utterance. PRG-MoE shows
significant improvement in performance with the
window-constrained method.

7 Cause Type Classification in ECPE

This section describes the experiments and results
of classifying the cause type of emotions - ECPE-
CT. The cause type in ECPE-CT is categorized
based on from which speaker the cause is gener-
ated and where the cause is found in the paired
utterances. ECPE-CT enhances understanding of
the cause of the emotion, enabling more effective
use of the cause. For example, most chatbots used
in different settings generate responses based on the
found cause (Gao et al., 2021). However, ECPE-CT
could assist to generate more empathetic responses
by incorporating other cases, as categorized below.

Cause types in ECPE-D are as follows:

• No-context indicates that an emotion and its
cause are found in one utterance.

• Inter-personal signifies that the cause exists
in the other person’s utterances.

• Self-contagion refers to the situation where
the cause exists in the prior utterance of the
same speaker.

• Latent refers to a scenario in which the cause
does not exist or may occur in the future. The
latent type naturally has no pair information,
so we classified it as having no pair.

We test PRG-MoE and ECPE-2D, which have
best performances among the baselines. For multi-
class classification, we modify the output layer of
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models to be able to output multi-class prediction.
Table 7 shows the performance for each cause type.
The performance difference between PRG-MoE
and ECPE-2D is not significant in "no-context" and
"self-contagion". However, there is a significant
advance in "inter-personal", which relates to the
interaction between the two different speakers. We
believe that the Guided-MoE approach performs
the function of an identifier, confirming the speaker
of a paired utterance.

8 Conclusion

In this paper, we present PRG-MoE, a novel ap-
proach for extracting emotion-cause pairs from a
dialogue by considering speaker and emotion infor-
mation. We guide the mixture-of-experts module
to consider the relationship between utterances in
pairs. To guide mixture-of-experts, we define pair-
relationship, which is the relationship between ut-
terances. We combine the decision of the gating
network and pair-relationship information for rout-
ing the emotion-cause pairs to proper experts. We
also propose a new task, ECPE-CT, which classi-
fies emotion-cause pair by cause type. We evalu-
ate the task with ECPE-D, a dialogue dataset with
more emotion-cause pairs than other benchmark
ECPE datasets. With ECPE-D, we show that PRG-
MoE outperforms other ECPE models in ECPE and
Multi-class ECPE tasks.

Limitations

First, we limit the scope of cause to be found in
one conversation. However, the actual cause of an
emotion may come from other sources outside the
given conversation, such as news, weather, and the
speakers’ previous conversations. But, the ECPE-
D dataset does not have such external information,
and there are no multiple conversations by the same
speaker pairs. Second, we encode the speakers as
0 or 1 since we do not know about the speakers
and their relationships. However, emotional con-
versations would occur more frequently in close
relationships such as between family members and
friends. Third, we do not test with multi-party con-
versations. We will experiment with multi-party
conversations by annotating the emotion-cause la-
bel to another multi-party conversation dataset (e.g.,
MELD (Poria et al., 2019)). Lastly, we do not con-
sider the order of emotion-cause pairs in a conver-
sation. The order might be helpful in modeling the
emotion-cause pairs. For example, if a speaker’s

emotional state remains unchanged throughout a
conversation, a previous pair can help predict a
future pair.

Ethics Statement

This paper presents a new ECPE method, PRG-
MoE, which extracts emotion and their correspond-
ing cause in a dialogue through the relationship
between utterances in pairs. PRG-MoE shows high
performance in extracting emotion-cause pairs in
a conversation. In this regard, PRG-MoE could
be deployed in cause extraction in a dialogue and
other real-world applications. We do not report any
data collection process in this paper, as we experi-
ment with an open-domain dataset. We experiment
with the dialogue dataset based on RECCON (Po-
ria et al., 2021). RECCON is publicly available,
and there is no ethical issue.
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A Implementation Details

We use pretrained bert-base-cased from hugging-
face (Wolf et al., 2020) as a language model. We
train PRG-MoE using Adam optimizer (Kingma
and Ba, 2015) for 40 epochs and decay the learning
rate exponentially for each epoch. The decay rate
is 0.05. The batch contains 5 dialogue documents,
and the learning rate is set to 5e-5. Dropout is
applied to utterance representation with a 0.5 rate.
We set the window size as 3 since we follow the
previous work for fair comparisons (Ding et al.,
2020a). The final loss weight λemo and λpair are
set to 0.2 and 0.8, respectively. We choose the
hyperparameters by manual tuning. We select the
hyperparameter based on the f1 score performance.
We selected parameter related to data characteris-
tics such as window-size through experiments, and
compared baseline models using the same parame-
ter.

Our hardware setting is Intel(R) Xeon(R) Gold
5218R CPU @ 2.10GHz (CPU), and NVIDIA RTX
A6000 (GPU). The average running time of PRG-
MoE per one epoch is 3min 20s. The inference time
per one batch is 1.2 sec. The number of parameters
of PRG-MoE is 110M.
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Abstract

Recent advances in the capacity of large lan-
guage models to generate human-like text have
resulted in their increased adoption in user-
facing settings. In parallel, these improvements
have prompted a heated discourse around the
risks of societal harms they introduce, whether
inadvertent or malicious. Several studies have
explored these harms and called for their miti-
gation via development of safer, fairer models.
Going beyond enumerating the risks of harms,
this work provides a survey of practical meth-
ods for addressing potential threats and societal
harms from language generation models. We
draw on several prior works’ taxonomies of
language model risks to present a structured
overview of strategies for detecting and ame-
liorating different kinds of risks/harms of lan-
guage generators. Bridging diverse strands of
research, this survey aims to serve as a practical
guide for both LM researchers and practition-
ers, with explanations of different mitigation
strategies’ motivations, their limitations, and
open problems for future research.

1 Introduction

The new wave of large language models (LMs;
Brown et al., 2020; Chowdhery et al., 2022;
Zhang et al., 2022b) capable of generating text
with human-like fluency, coherence, and realism
(Zellers et al., 2020; Ippolito et al., 2020) has
caused a paradigm shift in our society.1 With appli-
cations like OpenAI’s ChatGPT, Microsoft’s Bing,
and Google’s Bard, bringing such LMs directly to
users, we are beginning to see the impact in fields
like education (Schulten, 2023; Gleason, 2022),
healthcare (Patel and Lam, 2023), law (ChatGPT
and Perlman, 2022), science (Stokel-Walker, 2023),
and more. Since language is inherently a tool of

*Equal contribution
1While the majority of these models are trained on English,

recent studies have also obtained similar advancements in
other languages (Lin et al., 2021; Shliazhko et al., 2022).

Figure 1: Overview of Intervention Strategies. A typical
ML/NLP model development process involves data col-
lection/curation, model training and design, inference,
and finally application deployment. For each phase
of this development cycle, different techniques can be
adopted to mitigate harms. Our survey presents a tax-
onomy of intervention strategies organized around the
different phases where they can be applied.

power—the primary means by which people and so-
cieties perpetuate stereotypes and manipulate opin-
ions (Bar-Tal et al., 2013; Chong and Druckman,
2007, inter alia)—LMs that are deployed to mil-
lions of users also hold similar power, but our un-
derstanding of their risks/harms has lagged behind
(Bender et al., 2021).

Indeed, LMs have been shown to introduce vul-
nerabilities and threats, both inadvertent and mali-
cious, to individual users, social groups, and con-
tent integrity. Without social context and content
control, deployed language generators have quickly
derailed to racist, homophobic, hateful comments
(Hunt, 2016; Jang, 2021; Wolf et al., 2017; Vincent,
2022), compromised user privacy (Carlini et al.,
2021), spread disinformation (Shao et al., 2018),
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and even encouraged suicide (Daws, 2020). Prior
works have outlined these risks (Maynez et al.,
2020; Sheng et al., 2021; Weidinger et al., 2022;
Zhuo et al., 2023), proposed taxonomies (Wei-
dinger et al., 2022), discussed their points of origin,
and advocated for future research on ethical de-
velopment of LMs (Bender et al., 2021; Solaiman
et al., 2019).

However, there is little work that summarizes
actionable approaches and technical solutions
to preventing or mitigating these potential harms.
In this survey, we present a comprehensive, uni-
fied taxonomy of relevant mitigation strategies
proposed in prior literature, specifically focusing
on language generation models.

We organize these strategies based on where
they fit in different stages of LM development: in
data collection, modeling, decoding, and deploy-
ment. Within each of these categories, our taxon-
omy brings together prior works that have been
treated as disjoint areas targeting different types of
harms (toxic/biased language and misinformation).
In addition, we identify their gaps and highlight
directions for future research. These include incor-
porating sociocultural context to produce socially-
sensitive interventions, detecting and handling gen-
erations with different intents (inadvertent vs. mali-
cious), and going beyond an English, Western/US-
centric view to account for the challenges of ethics
in multilingual language generation.

2 Background

Throughout this paper, we use the term language
models (LMs) to refer to their classic definition
as generative models, which predict the next to-
ken given the preceding generated context. This
paradigm also subsumes conditional LMs that de-
pend on additional inputs via an encoder. We pro-
vide more details in Appendix A.

2.1 Risks in Language Generation
Before diving into mitigation techniques (§3), we
briefly outline potential harms that LMs can cause,
following Weidinger et al. (2022)’s taxonomy.

Discrimination, Toxicity, and Exclusion: The
scope of linguistic diversity in human commu-
nication is enormous and is linked to personal,
social, and cultural factors (Holmes and Wilson,
2017; Eckert and McConnell-Ginet, 2003; Coates,
2016; Chambers, 1995). As such, language pro-
duced in the real world reflects sociocultural stereo-

types and presuppositions that LMs can overfit
to and amplify (Bar-Tal et al., 2013; Zhao et al.,
2017; Sun et al., 2019), leading to several types
of harms. (1) Stereotyping and discrimination oc-
curs when generated text reinforces discriminatory
stereotypes and perpetuates biases against disad-
vantaged groups, based on factors like gender, race,
religion, sexuality, (Bender et al., 2021), and inter-
sectional identities (Crenshaw, 2017). Evidence for
this behavior has been substantially corroborated in
NLP literature (Blodgett et al., 2020; Nadeem et al.,
2021; Nozza et al., 2021; Liang et al., 2021; Field
et al., 2021; Lin et al., 2022a, inter alia). (2) Toxic-
ity describes generated language that is offensive,
threatening, violent, or otherwise harmful (Gehman
et al., 2020; Rae et al., 2021; Abid et al., 2021). It
can range from overtly toxic content, such as vi-
olent hate speech, to more subtle, veiled toxicity,
such as microaggressions (Breitfeller et al., 2019).
(3) Exclusion refers to the disparate performance
of models across language variations. Models may
fail to understand or generate “non-standard” di-
alects and sociolects, essentially excluding speak-
ers of such variants from their user base (Joshi et al.,
2020; Koenecke et al., 2020; Winata et al., 2021).

Factual Errors, Misinformation, and Disinfor-
mation: LMs are able to generate fluent outputs
that users may easily mistake for human-written
text (Ippolito et al., 2020), but such utterances may
be factually incorrect or misleading (Maynez et al.,
2020; Xu, 2020; Lin et al., 2022b; Bickmore et al.,
2018; Daws, 2020). This can cause harm inadver-
tently (via misinformation) or can also be used ma-
liciously (disinformation; Bradshaw and Howard,
2019; Beskow, 2020; Buchanan et al., 2021).

Privacy Violations: LMs’ vast training corpora
often contain sensitive information, and LMs can
memorize these details and generate them verbatim
when prompted by users, leading to privacy viola-
tions (Kim, 2016; Mirshghallah et al., 2020; Brown
et al., 2022). LMs have been shown to leak person-
ally identifiable information, such as social security
numbers, phone numbers, bank account informa-
tion (Carlini et al., 2021), and private clinical notes
(Lehman et al., 2021); they have even leaked soft-
ware code and other protected intellectual property
(Ippolito et al., 2022). Deploying large LMs can
thus pose serious security risks to people whose
private information might have found its way into
a model’s training data.
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Other Underexplored Issues: Weidinger et al.
(2022) discuss other malicious applications, as well
as the economical and environmental impacts of
LMs. While extremely important, mitigating these
risks requires not only technical innovation, but
also the development of regulatory practices and
policies in an interdisciplinary effort. We focus on
algorithmic solutions in this survey, leaving this
discussion for future work.

3 Taxonomy of Intervention Strategies

The development pipeline of a typical machine
learning model involves several critical decisions
where risks of harms can arise. Stakeholders have
access to different pipeline components and there-
fore may employ different intervention strategies.
For example, while a researcher involved in data cu-
ration can intervene before training, an application
developer with limited access to a black-box model
might only be able to intervene at inference. We
present a taxonomy of intervention strategies orga-
nized by the stages of a model development life-
cycle (Fig. 1), aiming to showcase the tools that can
be employed at different stages. We step backward
through the pipeline, beginning with application-
level interventions employed post-deployment and
peeling back the layers through output-level inter-
ventions, model interventions, and finally ending
at data-level interventions (summarized in Tab. 1).

3.1 Application Level Interventions

3.1.1 Harm Detection and Redaction
In order to mitigate harms at the application level,
we first need to be able to detect problematic, in-
correct, and unreliable model outputs (Raji et al.,
2020). User-facing applications can employ de-
tectors to intervene before harmful text reaches a
user. Such detectors are typically coarse, binary
text classifiers, often trained for a single task, such
as predicting toxicity (Nobata et al., 2016; David-
son et al., 2017b; Xiang et al., 2021), or the factual
accuracy of the outputs (Kryscinski et al., 2020;
Goyal and Durrett, 2020; Wang et al., 2020).

Early approaches to building toxicity detec-
tors focused on linear models relying on hand-
designed features based on lexicons, e.g., hate-
base, (Xiang et al., 2012; Dadvar et al., 2012;
Burnap and Williams, 2015; Liu and Forss, 2015),
n-grams, capitalization/punctuation details (Chen
et al., 2012; Waseem and Hovy, 2016; Nobata et al.,
2016; Xu et al., 2012; Burnap and Williams, 2016).

For misinformation detection, features like the pres-
ence of new entities or facts in generated document
summaries have been employed which can indicate
hallucination (Zhao et al., 2020; King et al., 2022).

Linear classifiers, while interpretable, tend to
overfit to lexical features, are prone to false posi-
tives, and are easy for malicious users to bypass
(Kurita et al., 2019). Neural text classifiers, on the
other hand, can incorporate contextual information
and have been shown to be more robust (Gambäck
and Sikdar, 2017; Pitsilis et al., 2018). When built
by finetuning pretrained LMs instead of training
from scratch, they naturally lead to even better per-
formance (d’Sa et al., 2020; Xiang et al., 2021).
Based on these models several toxicity detection
tools like Perspective API, OpenAI content filter or
ToxiGEN are now publicly available.

To train classifiers for toxicity detection, anno-
tated datasets in several domains have been col-
lected for English (Davidson et al., 2017a; Waseem
and Hovy, 2016; Wiegand et al., 2018; Pavlopou-
los et al., 2017; Mubarak et al., 2017; Moon et al.,
2020), especially to detect overtly toxic text. Hu-
man annotation efforts for more subtle toxicities
like microaggressions, however, is challenging due
to annotators’ own biases (Breitfeller et al., 2019).
Hence, unsupervised or distantly supervised ap-
proaches have been adopted to detect them (Ko-
rzeniowski et al., 2019; Field and Tsvetkov, 2020;
Sabri et al., 2021). Compared to English, such re-
sources for other languages are severely lacking
(Ousidhoum et al., 2019a).

Information-related harms can arise either in-
advertently (due to model errors) or deliberately
(due to malicious users). Detecting manipulation
in the human-written text is an active area of re-
search and those approaches can also be employed
for machine-generated text. Prominent research
directions include automated fact-checking, propa-
ganda, or fake news detection for which several
annotated datasets (Oshikawa et al., 2020; Martino
et al., 2020; Zhou and Zafarani, 2020; Guo et al.,
2022; Huang et al., 2022) and shared tasks (Thorne
et al., 2018; Da San Martino et al., 2019; Feldman
et al., 2021) exist. These approaches have also
been adopted to assist human fact-checkers (Shaar
et al., 2021; Nakov et al., 2021). However, hu-
mans are easily fooled by machine-generated fake
news (Zellers et al., 2020; Ippolito et al., 2020).
An alternate solution is to, not find informational
discrepancies, but simply detect and flag whether
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Application Level
Interventions

Feature-based
Detection

Toxicity Lexical features (Xiang et al., 2012; Dadvar et al., 2012; Bur-
nap and Williams, 2015; Liu and Forss, 2015); n-gram features
(Chen et al., 2012; Waseem and Hovy, 2016; Nobata et al.,
2016; Xu et al., 2012; Burnap and Williams, 2016)

Misinformation Word-Level features (Zhao et al., 2020; King et al., 2022)

Neural
Detection

Toxicity Supervised: (Gambäck and Sikdar, 2017; Pitsilis et al., 2018;
d’Sa et al., 2020; Xiang et al., 2021); Semi- and Unsupervised:
(Korzeniowski et al., 2019; Field and Tsvetkov, 2020; Sabri
et al., 2021)

Misinformation
/ Factuality

Supervised fake-news detection (Thorne et al., 2018; Os-
hikawa et al., 2020; Martino et al., 2020; Zhou and Zafarani,
2020; Guo et al., 2022); Factual error detection (Kryscinski
et al., 2020; Goyal and Durrett, 2020; Pagnoni et al., 2021)

Disinformation Machine-generated text detection (Dugan et al., 2020;
Gehrmann et al., 2019)

Output Level
Interventions

Reranking
Toxicity Rejection sampling using toxicity detectors (Wang et al.,

2022)
Misinformation
/ Factuality

Ranking using factuality classifiers (Krishna et al., 2022; King
et al., 2022)

Controlled
Decoding

Toxicity Autoregressive toxic content control (Yang and Klein, 2021;
Liu et al., 2021a; Dathathri et al., 2019; Krause et al., 2021;
Schick et al., 2021; Lu et al., 2021; Pascual et al., 2021; Wolf
et al., 2020); Non-autoregressive toxic content control(Kumar
et al., 2022; Mireshghallah et al., 2022)

Privacy Differentially private decoding (Majmudar et al., 2022)
Misinformation
/ Factuality

Autoregressive factual error control(King et al., 2022; Lu et al.,
2022); Non-autoregressive factual error control (Kumar et al.,
2021b)

Post-processing

Toxicity Rewriting harmful text (Pryzant et al., 2020; He et al., 2021b;
Ma et al., 2020)

Misinformation
/ Factuality

Editing factual errors (Cao et al., 2020; Lee et al., 2022a;
Balachandran et al., 2022)

Model Level
Interventions

Architecture

Misinformation
/ Factuality

Attention (Nan et al., 2021; Zhu et al., 2021), Coreference
(Levy et al., 2021); Text Entailment (Falke et al., 2019; Li
et al., 2018); Others (Wiseman et al., 2018; Falke et al., 2019;
Wan and Bansal, 2022).

Training

Toxicity Class-conditional LMs (Keskar et al., 2019; Gururangan et al.,
2020; Chan et al., 2021); Instruction-based learning (Ouyang
et al., 2022; Wei et al., 2022a)

Privacy Differential Private training (Kerrigan et al., 2020; Li et al.,
2022; Shi et al., 2021); Knowledge Unlearning (Jang et al.,
2022)

Misinformation
/ Factuality

Structured KBs (Wang et al., 2021b; Liu et al., 2022; Yu et al.,
2022; Liu et al., 2022; Lewis et al., 2020; de Masson d'Autume
et al., 2019; Izacard and Grave, 2021; Hossain et al., 2020;
Lewis et al., 2020), Retrieval-based (de Masson d'Autume
et al., 2019; Izacard and Grave, 2021; Hossain et al., 2020);
Summarization (Huang et al., 2020), Translation (Bapna and
Firat, 2019), Dialogue models (Dinan et al., 2019; Fan et al.,
2021; Zhang et al., 2020a)

Fine-tuning

Discrimination
& Toxicity

Supervised fine-tuning (Gururangan et al., 2020; Chan et al.,
2021; Liu et al., 2023); RL based fine-tuning (Alabdulkarim
et al., 2021; Liu et al., 2021b; Ouyang et al., 2022; Stiennon
et al., 2020); Prompt-based learning (Gehman et al., 2020)

Exclusion Adapting for low-resource varieties (Chronopoulou et al.,
2020; Kumar et al., 2021a)

Model Editing

Toxicity Modifying FF layers(Geva et al., 2022)
Misinformation
/ Factuality

Auxiliary editors to modify parameters (De Cao et al., 2021;
Mitchell et al., 2022); Modify parameters associated with
behavior (Meng et al., 2022, 2023)

Data

Filtration
Toxicity Removing ’unwanted’ words from corpus (Raffel et al., 2020;

Brown et al., 2020; Dodge et al., 2021); Removing toxic data
using classifiers (Ngo et al., 2021)

Privacy Filtering private/duplicate data (Henderson et al., 2022; Kand-
pal et al., 2022; Lee et al., 2022b)

Augmentation
Discrimination Adding synthetically generated data (Dinan et al., 2020; Liu

et al., 2020; Stafanovičs et al., 2020)
Toxicity Adding safer example data (Mathew et al., 2018)

Table 1: Strategies for mitigating various risks and harms from language models.
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the text has been machine-generated (Gehrmann
et al., 2019; Dugan et al., 2020; Ippolito et al., 2020;
Mitchell et al., 2023), putting the onus to trust the
information on the users (Jawahar et al., 2020).

To detect inadvertent factual errors, prior works
have developed classifiers by training them to de-
tect heuristically introduced synthetic errors in fac-
tually correct text (Kryscinski et al., 2020; Goyal
and Durrett, 2020), or question-answering errors
using targeted QA models (Scialom et al., 2021).
Being trained on synthetic data, such detectors typ-
ically do not generalize and have low human judg-
ment correlations (Pagnoni et al., 2021).

Relying on the detectors, the most straightfor-
ward way a user-facing application can prevent
harm is to not display the text at all (redacting) or to
display it with a warning sign (flagging) (Xu et al.,
2020). Even when the detectors are imperfect, ex-
plicitly flagging problematic outputs is still useful
because it signals users to take model outputs with
a grain of salt. However, this strategy is not always
applicable: for example, in speech-based dialogue
agents, “displaying” a warning sign is a nontrivial
UX decision, and in auto-complete assistants (such
as in Gmail Smart Compose), redacting is not an
option and simply warning may not dissuade users
from accepting the generated text.

Challenges: Predicting whether a text is harmful is
often highly contextual and subjective. For toxicity
detection, factors like region, political views, and
the users’ sociocultural background affect whether
they perceive the text as toxic (Xenos et al., 2021).
Existing datasets are often biased due to their cu-
ration process (Dixon et al., 2018; Wiegand et al.,
2019; Geva et al., 2019; Sap et al., 2021; Kryscin-
ski et al., 2020) and can have unreliable annota-
tions (Ross et al., 2017; Field and Tsvetkov, 2020;
Pagnoni et al., 2021). Further, as with many black-
box models, classifiers overfit to spurious artifacts
(Gururangan et al., 2018; McCoy et al., 2019; Ku-
mar et al., 2019) and amplify biases in their train-
ing data (Zhao et al., 2017; Sun et al., 2019). For
instance, toxicity detectors have been shown to
disproportionately flag African-American English
(AAE) as toxic (Sap et al., 2019). Additionally,
such filters might overfit to a subset of small fea-
tures, with more subtle problematic text evading
such filters. Ippolito et al. (2022) show that block-
ing verbatim training data is insufficient for mitigat-
ing privacy concerns in code-generation. We dis-
cuss these issues further in §4, highlighting future

directions to building finer-grained and explainable
approaches for detecting harmful text.

3.2 Output Level Interventions
Increasingly, practitioners are building applications
using LMs as APIs without explicit knowledge of
how the model was trained or what training data
was used.2 Such APIs may vary in how much in-
formation developers can see: some allow access
to all LM parameters, while black box APIs like
GPT3 limit access to model outputs only. Hence,
multiple solutions have been proposed for inter-
vening at model output generation by editing the
outputs with auxiliary models or modifying decod-
ing algorithms.

3.2.1 Post-Factum Editing Model Outputs
Recent studies have explored ways to edit or revise
model-generated text to remove harmful content.
Text editing is a decades-old subfield of NLP that
has traditionally focused on fixing errors in ma-
chine translation (Chollampatt et al., 2020; Simard
et al., 2007; Chatterjee et al., 2020) or grammar
in human-written text (Wang et al., 2021c). While
many approaches in this area are applicable to post-
editing LM outputs, in this survey, we highlight
recent work related to rewriting harmful text.

The first set of works treats the task of rewrit-
ing as a sequence labeling task, where each to-
ken in the output sequence is either substituted,
deleted, or kept the same (Pryzant et al., 2020;
He et al., 2021b). This, however, can be limiting
when the entire output needs rewriting. For text-
to-text tasks, like translation, summarization, etc.
which are trained with parallel data, the same data
can be adapted to train an editing model by con-
verting source-target pairs to source-output-target
triplets using model-generated outputs for each
source, along with an additional signal indicating
errors (obtained using automatic evaluators or hu-
man judgment). For more open-ended tasks, prior
works explored unsupervised solutions for bias cor-
rection (Ma et al., 2020) and semi-supervised meth-
ods to correct factual errors (Cao et al., 2020; Lee
et al., 2022a; Balachandran et al., 2022). Such
methods create synthetic data by inducing errors in
clean text and train a model to correct them.

3.2.2 Decoding Methods
Several search and sampling algorithms have been
introduced recently to improve the quality of LM-

2see https://gpt3demo.com/ for examples
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generated text (Graves, 2012; Fan et al., 2018;
Holtzman et al., 2020; Meister et al., 2022). In
parallel, works on controlling decoding algorithms
to promote or demote specific properties in the out-
put text have been developed (Zhang et al., 2022a).

The decoding controls are auxiliary models mea-
suring if the generated text is harmful implemented
similarly to the detectors we discussed in §3.1.1,
such as toxicity/bias classifiers (Dathathri et al.,
2019; Krause et al., 2021; Liu et al., 2021a), fac-
tuality metrics (Kryscinski et al., 2020; Goyal and
Durrett, 2020). A simple way to use the detec-
tors is rejection sampling or reranking: for a given
input, multiple outputs are generated and then
reranked using detector scores to discard dubious
outputs (Krishna et al., 2022; King et al., 2022).
However, this is often intractable for complex phe-
nomena like factual accuracy of a text or when
using multiple controls, since all the generated can-
didates might be rejected.

To tackle these issues, a class of algorithms that
we call guided-autoregressive decoding aims to in-
corporate control by modifying output distributions
at every decoding step. One branch of work adopts
logical controls, where developers directly spec-
ify sets of words that should (or not) appear in the
output (Lu et al., 2021; Pascual et al., 2021). Wolf
et al. (2020) apply this method to zero out the prob-
abilities of offensive terms, King et al. (2022); Lu
et al. (2022) improve factual accuracy of generated
text by up-weighting generation probabilities of
entities present in the source, and Majmudar et al.
(2022) apply it for differentially private decoding.
A second branch of work composes the LM likeli-
hood with the probabilities from the detectors, to
up-weight or down-weight the token probabilities
at each decoding step (Yang and Klein, 2021; Liu
et al., 2021a; Dathathri et al., 2019; Krause et al.,
2021; Schick et al., 2021).

More recent work has also explored ways to in-
duce sentence-level control via non-autoregressive
controlled decoding. These algorithms incorporate
control using Monte Carlo Markov Chain (MCMC)
techniques (Hoang et al., 2017; Qin et al., 2020;
Mireshghallah et al., 2022), in which a full se-
quence is initialized and iteratively updated. They
have been applied for reducing toxicity (Kumar
et al., 2022), and improving fidelity in translation
systems (Kumar et al., 2021b). While promising,
these techniques suffer from slower decoding speed
and need further exploration to be practically used.

Challenges Decoding interventions rely on accu-
rate detectors, hence challenges in designing robust
detectors (§3.1.1) also impact decoding algorithms.
For example, Xu et al. (2021) show that toxicity
avoidance algorithms refrain from generating AAE,
thereby causing another harm (exclusion) while try-
ing to address the first (toxicity). Also, detecting
misinformation and factuality can be extremely
hard using simple detectors that do not provide a
useful signal to guide the decoding process, so prior
works have primarily employed heuristics. Finally,
controlled decoding algorithms are double-edged
in that controls can be reversed by malicious users
to inflict harm—to generate hateful messages, or
to do targeted manipulation by copying users’ per-
sonas. However, this risk should not discourage
research in decoding algorithms; rather, research
on detecting such malicious uses should be con-
ducted in parallel.

3.3 Model Level Interventions

Several recent studies have provided evidence that
certain optimization procedures can result in harm-
ful generations downstream (Hall et al., 2022; Taori
and Hashimoto, 2022). In this section, we describe
approaches that modify LM parameters to prevent
such generations by either architecture/training in-
terventions or finetuning/model editing interven-
tions.

3.3.1 Architecture and Training Algorithms
Closely related to applying control at inference
time are class-conditioned LMs, which are trained
to depend on "control codes" via an additional input
(Keskar et al., 2019; Gururangan et al., 2020; Chan
et al., 2021). When trained with data annotated
for toxicity or bias, these LMs can be prompted
to avoid those outputs. Another recently popular-
ized paradigm in LM training is instruction-based
learning, where in addition to the objective to pre-
dict the next token, models are also trained to solve
NLP tasks with instructions written in natural lan-
guage (Wei et al., 2022a; Sanh et al., 2022). Pro-
viding explicit instructions to not generate harmful
text has shown some promise (Ouyang et al., 2022;
Wei et al., 2022a) and is an interesting avenue for
future work.

In text-to-text tasks like summarization, the goal
is to produce text that is factually consistent with
the input without hallucinating information. An
LM, however, is typically not constrained to predict
tokens grounded in verifiable knowledge, which
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can lead to misinformation. Thus, several studies
explore modifying LM training objectives to incor-
porate factual information using either knowledge
bases (KBs) or graphs (Yu et al., 2022): each to-
ken prediction is scored not only on its likelihood
given context, but also on whether the generation is
grounded in facts in the KBs (Wang et al., 2021b).3

However, existing KBs are limited in size as
manually curating them is an arduous and expen-
sive process. As an alternative, Liu et al. (2022)
propose using automatically generated KBs to train
LMs. In contrast, Lewis et al. (2020); de Mas-
son d'Autume et al. (2019); Izacard and Grave
(2021) use unstructured text as knowledge. Known
as retrieval-augmented LMs, they are trained with
a two-stage approach of first retrieving a document
from an unstructured source like Wikipedia and
using it as additional context for generation, es-
sentially providing evidence for the LM-generated
text. Wang et al. (2021a); Ji et al. (2020) follow a
similar approach to embed commonsense knowl-
edge in LMs. These existing solutions have been
used to tackle content-related harms like factual
consistency in generated text (Huang et al., 2020;
Bapna and Firat, 2019; Dinan et al., 2019; Fan et al.,
2021) but future work in reducing discrimination
and toxicity in LMs may also benefit from KBs that
encode social (Chang et al., 2020), cultural, (Hersh-
covich et al., 2022), and moral norms (Hendrycks
et al., 2021; Jiang et al., 2021). Such LMs aug-
mented with external knowledge can also be dy-
namically updated by modifying the knowledge
source at test time with new information (Khandel-
wal et al., 2020; He et al., 2021a).

While external knowledge helps provides con-
text, models may not rely on them and still hal-
lucinate. To explicitly control for context, re-
cent studies have explored (1) modifying attention
mechanisms to specifically capture relationships
between entities (Nan et al., 2021; Zhu et al., 2021),
(2) improving coreference to mitigate gender bias
in translation (Levy et al., 2021), and (3) using
text entailment to develop loss functions to im-
prove fidelity (Falke et al., 2019; Li et al., 2018).
Some other notable directions in this space involve
fact-aware pretraining (Falke et al., 2019; Wan
and Bansal, 2022) and structured learning frame-
works (Wiseman et al., 2018).

3Knowledge-augmented LMs is a rich field where most
existing work focuses on masked LMs (Zhu et al., 2022) for
solving understanding tasks. Here we highlight papers on
generation.

Finally, to reduce privacy risks in LMs that mem-
orize user information without sacrificing model
capabilities, most prominent solutions are based on
differentially private (DP) learning (Kerrigan et al.,
2020; Shi et al., 2021). DP can provide provable
guarantees on the privacy-utility trade-off, however,
it requires the LMs to be retrained for each private
information that needs to be removed and be quite
expensive.

3.3.2 Finetuning and Model Editing
Designing and training models from scratch to mit-
igate harms can incur heavy environmental and
resource costs. In contrast, an alternative branch
of work has developed methods for modifying the
model parameters of already-trained LMs, which
requires much fewer resources. An elementary way
of doing this is finetuning (a subset of) an LM’s
parameters on small, curated datasets that contain a
well-balanced proportion of data for various demo-
graphics and filtered for nontoxicity (Gururangan
et al., 2020; Chan et al., 2021; Liu et al., 2023).
Such balanced and filtered data encourage mod-
els correct biases learned from skewed and toxic
training data, resulting in safer generated text.

Prompt-tuning based methods (Wang et al.,
2022) have also shown some success where in-
stead of fine-tuning all the parameters, a prompt
(using a small set of parameters) is learned with-
out modifying the rest of the model to perform
a task. This paradigm uses the generative power
of large LMs, while simultaneously nudging the
distribution of generated text toward less harmful
content. These approaches have successfully been
used to reduce toxicity (Gehman et al., 2020) and
exclusion (Chronopoulou et al., 2020; Kumar et al.,
2021a). However, finetuning or prompt-tuning on
a small dataset may lead to overfitting reducing the
general purpose utility of LMs.

Finetuning LMs with reinforcement learning
(RL) has been suggested as a better alternative (Al-
abdulkarim et al., 2021; Liu et al., 2021b; Ouyang
et al., 2022; Stiennon et al., 2020; Lu et al., 2022;
Ramamurthy et al., 2022) for training modern
LMs. RL models do not require carefully balanced
datasets and can instead learn from discrete rewards
such as human feedback (Sun et al., 2020; Ouyang
et al., 2022) or auxiliary model-based feedback
(Perez et al., 2022). It has been shown to reduce
toxic text generated by the models (Bai et al., 2022)
and to encourage models to generate more factual
text (Mao et al., 2020; Stiennon et al., 2020).
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Another less-explored but more computationally
practical alternative to finetuning is model surgery
or editing, which identifies a specific set of neu-
rons that contribute to harmful generations. Culling
such parameters has been shown to reduce toxic-
ity (Geva et al., 2022). In a similar vein, De Cao
et al. (2021); Mitchell et al. (2022); Meng et al.
(2022, 2023) systematically edit model parameters
to revise facts memorized by the model. De Cao
et al. (2021); Mitchell et al. (2022) use auxiliary
editor networks to predict updates to model param-
eters constrained to revise a fact without changing
other facts. Alternatively, Meng et al. (2022, 2023)
use interpretability techniques to identify parame-
ters associated with memorizing said facts and edit
them locally to revise them.

Challenges The biggest argument against mit-
igation techniques involving training LMs from
scratch or augmenting them with knowledge is its
cost, making these interventions infeasible for most
researchers and practitioners. However, even for
organizations with access to large computing re-
sources, research on training safer LMs lags behind
research on training ever-larger LMs on raw data.
We attribute this to the difficulty of curating KBs, as
well as the decreased training and inference speed
that comes with such modifications. Finetuning,
on the other hand, is less costly but may reduce
the general utility of the LMs and has not been
shown to be useful in reducing information-related
harms. Future work may benefit from drawing on
continual (Dhingra et al., 2022) and reinforcement
learning (Ouyang et al., 2022) techniques for more
practical solutions for large models.

3.4 Data Level Interventions

Training any machine learning model requires data,
so a natural approach to creating fairer, more reli-
able LMs is carefully creating balanced training
sets that are broadly representative of different
worldviews. This requires dedicated and expensive
efforts in data curation (Hutchinson et al., 2021;
Jo and Gebru, 2020; Kammoun et al., 2022) and
novel data pipelines (Denton et al., 2020). Existing
works tackling this issue devise semi-automated
solutions, which we categorize as follows.

3.4.1 Data Filtration
This simple technique involves removing problem-
atic documents from the training corpus. As train-
ing sets can be extremely large, sophisticated neural

filters can be prohibitively slow to apply. Hence,
most work has utilized simple filters, such as the
presence of "unwanted" words (Raffel et al., 2020)
or the predictions of linear classifiers (Brown et al.,
2020). To mitigate privacy violations, Henderson
et al. (2022) construct clean training data by filter-
ing private information and Kandpal et al. (2022);
Lee et al. (2022b) filter duplicate training data.

Due to their simplistic setup, these approaches
admit many false negatives (failing to detect doc-
uments with subtle toxicity) and false positives
(erroneously flagging documents that discuss sen-
sitive topics and use hateful speech as exam-
ples; additionally, removing data from different
dialects like AAE), unintentionally exacerbating
risks of marginalization and exclusion (Dodge
et al., 2021)). Alternatively, Ngo et al. (2021) train
an LM on raw data, then feed the LM manually-
curated toxic prompts and filter out documents to
which the LM assigns high probability, and then
retrain the LM on the filtered corpus.

3.4.2 Data Augmentation
While data filtration aims to remove problem-
atic training samples, data augmentation aims
to offset the effect of problematic data by
adding safer/healthier examples to existing datasets.
Mathew et al. (2018) explore adding counterspeech
(comments that counter the hateful or harmful
speech) to datasets in order to balance out the hate
speech already present in web data. Augmenta-
tion with synthetically generated data has also been
explored for gender bias mitigation in dialogue (Di-
nan et al., 2020; Liu et al., 2020) and translation
models (Stafanovičs et al., 2020).

Challenges Since language, identity, and soci-
ety are tightly intertwined, aggressive data filtering
methods risk further imbalancing already imbal-
anced data. Besides, models trained on filtered data
may still degrade when toxic inputs are provided
to it. Further, while data augmentation methods
have merit, these methods are extremely difficult
to large scale. Finally, data interventions are pri-
marily designed to address population-centric risks
such as discrimination, toxicity, and, to an extent,
exclusion and privacy—but not factuality which
is a by-product of training. It is challenging to
define (Aly et al., 2022) and detect unsupported
facts (Ansar and Goswami, 2021) in the wild, mak-
ing data interventions insufficient for addressing
misinformation and factuality-related harms.
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4 Discussion and Open Challenges

Though the interventions strategies we discuss
achieve some success, many risks of LMs are still
not well understood. Below we discuss open prob-
lems and avenues for future work to encourage the
development of safer LMs.

Where should one intervene? Different stake-
holders are involved in different model develop-
ment phases with varying access to resources. As
a result, intervention strategies are different de-
pending on the stakeholder. A significant chunk of
the responsibility to develop safer LMs falls on re-
searchers and organizations with access to substan-
tial resources who can implement data or modeling
interventions. In contrast, practitioners building
applications on top of LMs may have access to
neither the training data nor the computational re-
sources required to design and train safe LMs. In
such cases, flagging and decoding approaches are
more practical. In practice, a combination of multi-
ple interventions may be required to both cover a
wide array of risks and improve robustness.

Evolving risks in the ChatGPT era: LMs are
seeing tremendous, rapid growth; larger models are
being released every few months (Shoeybi et al.,
2019; Brown et al., 2020; Zhang et al., 2022b; Zeng
et al., 2023) and deployed in user-facing applica-
tions. Many recent LMs like OpenAI’s ChatGPT
have garnered attention beyond the research com-
munity, impacting a range of fields and crossing
geographical and language barriers to reach users
all over the world (Reuters, 2023; Varghese, 2023;
So-hyun, 2023). In such a fast-moving ecosystem,
it is ever more essential to proactively study and
mitigate LMs’ potential harms. Risk mitigation
research tends to lag behind model development
and is often considered as an afterthought. Though
behaviors may emerge unpredictably (Wei et al.,
2022b), as we outline in this survey, intervention
strategies can and should be applied at different
stages of model development to reduce the poten-
tial for these influential LMs to cause harm.

Risks exist in LMs in all languages: Most re-
search on large LMs, their uses, and their risks is
Western-centric and primarily conducted on the En-
glish language. However, while a few studies have
been conducted on detecting harmful text in non-
English datasets (Ousidhoum et al., 2019b; Leite
et al., 2020; Burtenshaw and Kestemont, 2021; Bo-

goradnikova et al., 2021; Costa-jussà et al., 2022,
inter alia), research on mitigation in non-English
settings is lagging (Pamungkas et al., 2021). Fur-
ther, the definitions of risks themselves change
with different context and across cultures. Hence,
there is a dire need to develop cross-cultural, cross-
lingual analyses as well as mitigation tools.

Harm detection beyond simple classifiers
Many of the shortcomings of interventions are at
their root due to poorly defined risk detection meth-
ods. Current detection methods are primarily bi-
nary classifiers on various axes like toxicity and
factuality, but we recommend researchers and prac-
titioners to move beyond simplistic coarse classi-
fiers and towards more fine-grained (Xiang et al.,
2021; Goyal and Durrett, 2020; Da San Martino
et al., 2020), interpretable (Koh and Liang, 2017;
Han and Tsvetkov, 2020, 2021), and explainable
(Pagnoni et al., 2021; Gehrmann et al., 2019) harm
detectors to support better harm mitigation strate-
gies (Lipton, 2018; Jacovi et al., 2021).

Systematic evaluation frameworks for miti-
gation strategies Though LM performance is
usually systematically evaluated through bench-
marks (Wang et al., 2019b,a; BIG-bench collab-
oration, 2022), practices for evaluating harms in
LM-generated text or the effectiveness of mitiga-
tion strategies are not. While there is an emerg-
ing body of work dedicated to benchmarking LM
harms (Rauh et al., 2022), the space of potential
harms is huge and intersectional, and existing work
only covers a fraction of it. Developing a suite
of evaluations or augmenting existing generation
benchmarks (Mille et al., 2021) with axes of risk
evaluations (Ribeiro et al., 2020) will encourage the
development of holistic solutions, bridging discrim-
ination/toxicity and information-related harms—
two related directions in which researchers have
often developed similar solutions.

5 Conclusion

We present a survey of practical methods and tech-
niques for addressing the societal harms and safety
risks of language generation models. Our struc-
tured taxonomy covers a wide variety of interven-
tions at different stages of the model development
pipeline to mitigate harms. This work bridges mul-
tiple strands of research and presents an actionable
overview on methods for preventing harms from
language generation models.
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Limitations

The goal of this survey was to present current re-
search on analyzing and mitigating harms of lan-
guage generation. There are multiple documented
and anticipated harms that these models perpetu-
ate, and it is not feasible to address intervention
strategies for each of them. We aimed to generalize
multiple proposed solutions and present them in a
structured form, considering a few popularly stud-
ied harms as case studies. Inevitably, certain harms
and their mitigation strategies might not have been
considered for this survey.

Current research in this field is nascent but fast-
moving. While this survey enlists techniques and
approaches that are popular now, there is a potential
for them to be replaced with newer research. We
anticipate that this survey may need to be updated
or even redone to incorporate new research.

Ethics Statement

In this survey, we present and discuss various risk
analyses and intervention strategies to prevent soci-
etal harms from LMs. We also comment on com-
mon themes across approaches for detecting and
resolving population-centric harms (such as toxic-
ity and discrimination) and misinformation-related
harms, and we recommend future work combining
them. First, many datasets and resources we dis-
cuss may contain biases, and using them in down-
stream applications can lead to risks as we have
outlined. Second, many techniques we discuss have
limitations or are known to exacerbate other kinds
of harms (Xia et al., 2020), and thus, applying them
to newer problems may lead to unseen issues. Fi-
nally, the interventions we identify to raise general
awareness have the potential for misuse: a mali-
cious user can further imbalance the data to train
even more harmful models, use the models and
decoding algorithms to generate fake news, and
target marginalized populations. This, however,
should not discourage the development of mitiga-
tion strategies; rather, more work should be done
to detect and ban malicious users. This requires
not only technological solutions in NLP, but also in
social science, social network analysis, and public
policy.
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A Background: More Details

Since we focus on language generation, we use the
term language models (LMs) to refer to their clas-
sic definition as generative models (or decoders),
which predict the next token given the preceding
generated context. For the purposes of this sur-
vey, this paradigm also subsumes conditional (or
sequence-to-sequence) LMs conditioned on inputs
from different modalities such as text, image, or
speech via an encoder. 4 Unless otherwise spec-
ified, we assume that (1) the LM decoder is pa-
rameterized by a transformer architecture (Vaswani
et al., 2017), and (2) the LM is first pretrained on a
large amount of text (ranging from 100-billions to
trillions of tokens), which, together with their large
number of parameters, have earned such models the
name large language models.5. After pretraining,
LMs are either used in a zero- or few-shot manner
(Brown et al., 2020), or modified for specific tasks
via finetuning all or some of their parameters (Liu
et al., 2023).

The generation tasks this survey focuses on can
be broadly categorized as either (1) transformation
tasks, where a given input is transformed into a tex-
tual output such as machine translation, abstractive
summarization, data-to-text generation, and stylis-
tic re-writing, among others (Prabhumoye et al.,
2018; Raffel et al., 2020; Zhang et al., 2020b; Agha-
janyan et al., 2022), (2) or open-ended tasks such
as dialogue generation, prompt-based autocomple-
tion, story generation, and more (Adiwardana et al.,
2020; Guan et al., 2020).

4While many different strategies to (pre-)train encoder
LMs have been introduced in the literature (Devlin et al.,
2018; Peters et al., 2018), they are generally not conducive to
generating text and are out of scope in this survey.

5While some of the studies we will discuss do not rely on
pretraining, we highlight it here since it is one of the primary
drivers of recent advances in language generation (and its
associated risks)
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Abstract

Numerous visio-linguistic (V+L) representa-
tion learning methods have been developed,
yet existing datasets do not adequately eval-
uate the extent to which they represent vi-
sual and linguistic concepts in a unified space.
We propose several novel evaluation settings
for V+L models, including cross-modal trans-
fer. Furthermore, existing V+L benchmarks
often report global accuracy scores on the en-
tire dataset, making it difficult to pinpoint
the specific reasoning tasks that models fail
and succeed at. We present TRAVLR, a syn-
thetic dataset comprising four V+L reasoning
tasks. TRAVLR’s synthetic nature allows us
to constrain its training and testing distribu-
tions along task-relevant dimensions, enabling
the evaluation of out-of-distribution generali-
sation. Each example in TRAVLR redundantly
encodes the scene in two modalities, allowing
either to be dropped or added during training
or testing without losing relevant information.
We compare the performance of four state-of-
the-art V+L models, finding that while they
perform well on test examples from the same
modality, they all fail at cross-modal transfer
and have limited success accommodating the
addition or deletion of one modality. We re-
lease TRAVLR as an open challenge for the
research community.1

1 Introduction

Research in psycholinguistics has found that hu-
man processing of spatial words activates brain
regions associated with the visual system (Tang
et al., 2021), suggesting the latter’s involvement in
processing linguistic input. It is reasonable to ex-
pect multimodal neural models to resemble humans
in being able to leverage capabilities in the visual
domain to solving problems in the text domain,
and vice versa. Following its recent success in the

∗Equal contribution
1Code and dataset available at https://github.com/

kengjichow/TraVLR.

(a) A complete example for the spatiality task.

(b) Possible directions of cross-modal transfer.

Figure 1: An example from TRAVLR (a). Both im-
age and caption fully represent the scene; either can
be dropped during training/testing, enabling the evalua-
tion of cross-modal transfer ability (b).

text domain (Devlin et al., 2019), the pretraining–
fine-tuning paradigm has been applied to the vision
and text modalities to create unified visio-linguistic
(V+L) representations. Just as pretrained multilin-
gual models have been shown capable of zero-shot
cross-lingual transfer on various NLP tasks (Con-
neau et al., 2020), we may expect true V+L models
to be capable of generalising to a modality not seen
during fine-tuning.

However, current approaches for benchmark-
ing V+L models involve reporting global accu-
racy scores on the entire dataset, rendering the
specific sources of success and failure difficult to
diagnose (Ribeiro et al., 2020; Goel et al., 2021).
For instance, Visual Question Answering (VQA,
Goyal et al. 2017) tasks may allow models to ex-
ploit dataset bias (Dancette et al., 2021), or may
reduce to object recognition problems which do
not evaluate the models’ ability to perform more
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complex tasks, beyond aligning words or phrases
in the text to a portion of the image (Hudson and
Manning, 2019; Acharya et al., 2019). As Bernardi
and Pezzelle (2021) note, the ability to reason over
multiple objects and answer relational questions is
crucial to the genuine mastery of language.

Datasets such as NLVR2 (Suhr et al., 2019) ad-
dress this limitation, but do not allow for fine-
grained evaluation along specific dimensions (Tan
et al., 2021). CLEVR (Johnson et al., 2017) and
SHAPEWORLD (Kuhnle and Copestake, 2017) en-
able targeted evaluations of a V+L model’s reason-
ing abilities but only encode the scene unimodally,
as images. Additionally, their test examples may
still be in the training distribution with respect
to task-relevant dimensions, making it difficult to
draw conclusions about generalisation ability.

We thus contribute TRAVLR, a synthetic dataset
comprising four V+L reasoning tasks: spatiality,
cardinality, quantifiers, and numerical comparison,
all of which require reasoning over multiple objects
and have been shown to be challenging for V+L
models (Johnson et al., 2017; Parcalabescu et al.,
2021). Unlike SHAPEWORLD, we fully leverage
the benefits of using a synthetic dataset by control-
ling the train-test split such that examples in the
out-of-distribution (OOD) test set are OOD with
respect to task-relevant dimensions. We thus argue
that TRAVLR serves as a basic sanity check for the
abstract reasoning and out-of-distribution generali-
sation capabilities of models, and is complementary
to datasets that evaluate real-world object recogni-
tion and compositional reasoning abilities, such as
GQA (Hudson and Manning, 2019).

Inspired by the word/picture sentence verifi-
cation task from psycholinguistics (Goolkasian,
1996), we further propose various novel evalua-
tion settings by representing the scene bimodally as
both an image and a caption. First, TRAVLR sup-
ports the novel cross-modal transfer setting (Fig-
ure 1): If pretrained V+L models have learnt a
truly multimodal representation, they should be
able to learn a reasoning task with input from one
modality and perform inference using input from
the other modality with little to no extra training.
Being able to transfer cross-modally in a zero- or
few-shot manner may improve data efficiency in
applications where diverse image data is difficult to
obtain. Furthermore, models should also succeed
on test settings where either an unseen modality is
added, or a seen modality is dropped.

Using TRAVLR, we perform extensive analysis
of the ability of four Transformer-based V+L mod-
els to perform various reasoning tasks. We show
that current V+L models:

• May require unreasonably large amounts of data
to learn simple visio-linguistic reasoning tasks.

• Exhibit a strong textual bias.
• Are unable to perform cross-modal transfer. We

thus pose this as an open challenge for future
V+L models.

2 Related Work

V+L tasks and datasets. The Visual Question
Answering (VQA) task involves answering a ques-
tion about an image. It is a complex task as it re-
quires an ability to process input in both visual and
textual modalities (Antol et al., 2015). A known is-
sue with VQA datasets is the presence of real-world
language priors and statistical biases in the train-
ing and testing distribution (Kervadec et al., 2021;
Agrawal et al., 2018; Kafle et al., 2019). Although
VQA v2.0 (Goyal et al., 2017) was improved by bal-
ancing each query with pairs of images, Dancette
et al. (2021) show that it still contains both uni-
modal and multimodal biases that models can ex-
ploit. Furthermore, questions in VQA may use
non-compositional language that does not require
abilities beyond object recognition.

NLVR (Suhr et al., 2017) addresses the lack of
compositionality in VQA using synthetic images
of abstract 2D shapes, accompanied by human-
written English sentences to be judged true or false.
NLVR2 (Suhr et al., 2019) and SNLI-VE (Xie et al.,
2019) also involve truth-value/entailment judge-
ment tasks, but use photographs instead of syn-
thetic images. Both lack detailed annotations of
the specific semantic phenomena evaluated by each
example. GQA improves over VQA by focusing
on compositional questions that require reasoning
over multiple objects and contains detailed annota-
tions (Hudson and Manning, 2019), but still suffers
from statistical imbalances and the lack of an out-
of-distribution test set (Kervadec et al., 2021).

Other synthetic datasets focusing on reasoning
include CLEVR (Johnson et al., 2017), a fully
synthetic and annotated 3D dataset, and SHAPE-
WORLD, a 2D dataset targeting linguistic phenom-
ena such as spatial relationships and quantifiers.
SPARTQA (Mirzaee et al., 2021) is another 2D
synthetic dataset built upon NLVR focusing on spa-
tial reasoning among other linguistic phenomena.

3323



gSCAN (Ruis et al., 2020) focuses on generalisa-
tion of commands within a 2D grid-world.

V+L models. Pretrained V+L models differ in
their architecture and pretraining methods. VL-
BERT (Su et al., 2019), UNITER (Chen et al.,
2020) and VisualBERT (Li et al., 2020a) are single-
stream models with a single Transformer while
ViLBERT (Lu et al., 2019), LXMERT (Tan and
Bansal, 2019), and ALBEF (Li et al., 2021) are
dual-stream models which encode image and tex-
tual inputs separately before fusing them. These
models all use masked language modelling and
image-text matching objectives for pretraining,
with LXMERT additionally pretraining on VQA
and ALBEF using a contrastive loss to align the im-
age and language representations. UNITER, Visu-
alBERT, and LXMERT use a frozen Faster R-CNN
(Ren et al., 2015) to extract region-based features
from the image, while ALBEF directly encodes
the image with a Vision Transformer (Dosovitskiy
et al., 2020).

Cross-modal transfer. Prior work has found
models trained on multimodal data to perform bet-
ter on unimodal downstream tasks than models
trained only on one modality. Zadeh et al. (2020)
found models trained on multimodal input to per-
form better than text-only models on three NLP
tasks, while Testoni et al. (2019) showed that mod-
els trained on textual, visual, and auditory input
were better at a quantification task than models
trained only on a single modality. Using a task
involving queries about typical colours of objects,
Norlund et al. (2021) found BERT trained on lin-
guistic and visual features to outperform BERT
trained on language data filtered for mentions of
colour. Frank et al. (2021) investigated the cross-
modal alignment of pretrained V+L models with
an ablative method based on masked modelling. Lu
et al. (2021) propose an image–text fusion model to
solve a novel image generation task from a textual
description and an image prompt based on NLVR2.

Summary. The datasets commonly used to eval-
uate V+L models such as VQA and NLVR2 lack
fine-grained interpretability, due to the lack of an-
notations for semantic phenomena involved in each
example. Additionally, multiple semantic phenom-
ena co-occur within a single example, making it dif-
ficult to control the training distribution and assess
the generalisation abilities of models. Furthermore,
existing V+L datasets only present the scene in the

visual modality and cannot be used to evaluate a
V+L model’s cross-modal transfer ability.

Existing synthetic datasets (e.g. SHAPEWORLD,
CLEVR) fail to split the training and testing distri-
butions along a dimension relevant to the specific
task, because they generate captions based on ran-
domly generated images. Unlike existing datasets,
TRAVLR fully exploits the benefits of a synthetic
dataset by strictly controlling the training and evalu-
ation distributions to test the generalisation abilities
of V+L models and avoid statistical biases from
language priors and non-uniform distributions.

3 TRAVLR: Cross-Modal Transfer of
Visio-Linguistic Reasoning

We construct TRAVLR, a synthetic dataset com-
prising four visio-linguistic reasoning tasks: spa-
tiality, cardinality, quantifiers and numerical com-
parison. These tasks were previously identified to
be challenging for text-only models (Lin and Su,
2021; Dua et al., 2019; Ravichander et al., 2019).
TRAVLR aims to evaluate the extent to which pre-
trained V+L models already encode or are able to
learn these four relations between entities present
in input scenes. We first describe the general task
format, and then describe each task.

Given a scene with objects, S = {o1, ..., on},
where each object can be represented as a tuple
< colour, shape, position >, and a textual query q
involving some relation r(o1, ..., oi) between two
or more objects in S, each task involves learning
a function y = f(S, q) where y ∈ {true, false}.
This is essentially a binary classification task. For
instance, in the spatiality task, the relation r (e.g.,
above) compares the positions of two objects. In
the numerical comparison task, noun phrases in the
query refer to subsets of objects, while the relations
(e.g., more) compare the cardinality of two sets of
objects. Assigning a truth value to the query thus
involves reasoning over several objects.

However, a model can never have direct access
to the underlying representation scene and must
operate on visual or textual forms, and S may be
represented in the form of an image or a textual
description. In prior work such as VQA, S is pre-
sented as an image. In TRAVLR, S is represented
bimodally as an < image, caption > pair.

Each example consists of an image, an accompa-
nying caption, and a query. Images include abstract
objects arranged in a 6 × 6 grid. We draw from
five colours and seven shapes, giving 35 unique
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objects in total. The shapes used in TRAVLR are
from the Visual Genome (Krishna et al., 2017), a
commonly-used pretraining dataset. Each caption
fully describes the image with the coordinates of
each object (e.g., “There is a red circle at A 1, a
blue square at B 2...”). A description of the co-
ordinate system, e.g., “Columns, left to right, are
ordered A to F. Rows, top to bottom, are ordered
1 to 6.” is prepended to the caption. The caption
and query are separated by the [SEP] token when
presented to the models. Removing the caption
reduces our tasks to VQA-like tasks.

3.1 Novel Evaluation Settings

Encoding the scene as both an image and a caption
allows models to be trained and evaluated on a
combination of three settings: i) image-only, ii)
caption-only, and iii) both image and caption input
settings. The query is presented as part of the text
input in each setting. In the caption-only setting, a
blank white image is presented to the models.

3.2 Reasoning Tasks

In contrast to existing synthetic datasets (e.g.
SHAPEWORLD and CLEVR), we do not gener-
ate queries post-hoc based on pre-generated scenes,
and instead generate scenes constrained along a
task-relevant dimension. For instance, in generat-
ing the training and out-of-distribution (OOD) test
sets for the spatial relationship task, we ensure that
the positions of the queried objects do not overlap
between the training and test sets along the rele-
vant axis (e.g. the horizontal axis for horizontal
relations left/right). We indicate the train/test splits
based on pairs in angled brackets.

Spatiality. This task involves queries of the
form “The [object1] is [relationship] the
[object2].” (e.g., “The red circle is to the
right of the blue square.”). The possible relation-
ships are to the left of, to the right of, above,
below. For horizontal relationships (left/right),
the train and test sets are split based on the pair
<column(object1), column(object2)> (see
Appendix A.1), while for vertical relationships
(above/below), the train–test split is based on the
pair<row(object1),row(object2)>. This tests
the model’s ability to generalise its understanding
of spatial relationships along the relevant dimen-
sion, as opposed to memorising fixed positions.

Cardinality. This task involves queries of the
form “There is/are [number] [shape] object(s).”

(e.g., “There are 3 circle objects”). The train and
test sets are split by the <number, shape> pair
occurring in the input image/caption; e.g., instances
containing 2 circles and 3 triangles could occur in
the training distribution, while instances with just
3 circles occur only in the OOD test distribution.

All < [attr1] ∩ [attr2], [attr2] \ [attr1] >
Not all < [attr1] ∩ [attr2], [attr1] \ [attr2] >
No < [attr1] \ [attr2], [attr2] \ [attr1] >
Some < [attr1] \ [attr2], [attr1] ∩ [attr2] >
Only < [attr1] ∩ [attr2], [attr1] \ [attr2] >
Not only < [attr1] ∩ [attr2], [attr2] \ [attr1] >

Table 1: Pairs for each quantifier.

Quantifiers. This task involves queries of the
form “[quantifier] the [attr1] objects are
[attr2] objects.”, where the quantifiers include
all, some, only and their negated counterparts not
all, none and not only. The train–test split is per-
formed based on the pair < a, b >, which varies
based on the quantifier, as given in Table 1. For in-
stance, for the relationship not all, a is the number
of objects which fulfil both [attr1] and [attr2],
and b is the number of objects which fulfil [attr1]
but not [attr2] (see Appendix A.1).

Numerical comparison. This task involves
queries of the form “There are [more/fewer]
[attr1] objects than [attr2] objects.” (e.g.,
“There are more circles than squares.”). The train
and test sets are split by the pair < a, b > where
a is the number of [attr1] objects, and b is the
number of [attr2] objects. Instances for which
|a − b| is smaller than a threshold is assigned to
the training distribution, and the remaining pairs
are assigned to testing. |a − b| ∈ 1, 3 and both a
and b have a maximal value of 9. Success in this
task is indicative of generalisation based on an un-
derstanding of numeral scales and transitivity of
comparison; i.e., a > b and b > c implies a > c.

3.3 Generating TRAVLR
To generate examples for each task, we randomly
sample object attributes from the distributions de-
fined in Section 3.2, ensuring that the pairs relevant
to each task do not overlap between the train and
OOD test sets. We also ensure that all queries in
the OOD test set do not occur in the training set.
Distractor objects irrelevant to the intended query
are finally added to the scene. The spatiality task’s
training set comprises 32k examples, the training
sets of the other tasks comprise 8k examples each
due to differences in the amount of data required
for convergence in our preliminary experiments.

3325



Train Image Caption Image + Caption
Test Image Caption Img. + Cap. #sd Image Caption Img. + Cap. #sd Image Caption Img. + Cap. #sd

S

VisualBERT 65.94 (-1.02) 48.92 (-0.23) 52.47 (+0.19) 3 49.40 (+0.09) 93.55 (-6.45) 93.46 (-6.54) 2 49.34 (+0.31) 70.99 (-1.59) 71.39 (-1.65) 3
UNITER 89.67 (+0.96) 44.36 (+0.48) 46.15 (-0.19) 3 37.66 (+0.54) 92.31 (-7.67) 92.23 (-7.74) 1 50.15 (+0.17) 70.75 (+1.24) 71.17 (+0.40) 1
LXMERT 99.46 (-0.38) 38.87 (-0.27) 48.82 (+0.33) 3 33.52 (+0.47) 33.52 (+0.47) 33.52 (+0.47) 0 33.52 (+0.47) 33.52 (+0.47) 33.52 (+0.47) 0
ALBEF 48.28 (+0.10) 44.54 (-0.26) 44.85 (-0.18) 0 48.75 (+0.52) 98.42 (-1.58) 98.42 (-1.58) 1 48.56 (+0.94) 93.66 (-6.34) 93.31 (-6.69) 2

C

VisualBERT 77.41 (+1.11) 33.14 (+0.01) 46.94 (-0.53) 3 46.63 (-0.03) 99.99 (+0.08) 99.99 (+0.16) 3 45.20 (-1.41) 99.94 (+0.10) 99.94 (+0.18) 3
UNITER 77.12 (+0.09) 42.36 (-0.35) 48.55 (+0.23) 3 41.97 (-0.95) 98.96 (+1.82) 98.99 (+0.82) 3 42.36 (-1.97) 98.48 (+0.11) 98.83 (+1.99) 3
LXMERT 82.90 (-1.66) 33.16 (+0.02) 43.79 (-0.95) 3 45.23 (-0.21) 60.02 (-18.88) 60.10 (-18.98) 3 50.72 (+0.34) 55.00 (-1.60) 55.26 (-7.83) 3
ALBEF 59.19 (+0.43) 32.67 (-0.05) 53.31 (-0.44) 2 41.58 (-3.24) 99.61 (+0.17) 99.61 (+0.17) 3 43.17 (-2.33) 99.61 (+0.26) 99.61 (+0.26) 3

Q

VisualBERT 86.59 (-2.73) 45.09 (+1.16) 60.93 (-2.25) 3 49.22 (+0.63) 99.99 (-0.01) 99.99 (-0.01) 3 49.51 (-0.16) 99.98 (-0.01) 99.98 (-0.02) 3
UNITER 95.14 (-1.10) 48.89 (+0.62) 53.99 (-0.13) 3 48.64 (-0.99) 99.42 (-0.41) 99.36 (-0.44) 3 48.07 (-1.14) 97.85 (+2.11) 98.87 (+1.43) 3
LXMERT 96.72 (-0.94) 34.87 (-0.27) 39.94 (-0.69) 3 43.33 (-0.98) 92.91 (+6.58) 90.65 (+7.02) 3 48.95 (-0.14) 33.93 (-0.01) 51.02 (+0.17) 0
ALBEF 66.19 (-0.19) 43.88 (+0.21) 54.78 (-1.32) 3 48.27 (+0.19) 99.98 (+0.12) 99.98 (+0.12) 3 47.73 (+0.19) 99.98 (+0.17) 99.97 (+0.17) 3

N

VisualBERT 58.75 (-14.16) 40.27 (+1.26) 53.13 (-2.81) 3 49.62 (-0.42) 99.77 (-0.06) 99.75 (+0.00) 3 51.10 (+0.20) 99.79 (-0.11) 99.79 (-0.10) 3
UNITER 63.08 (-22.07) 45.52 (+0.81) 52.97 (-0.62) 3 49.32 (-0.59) 69.43 (-30.34) 68.77 (-30.91) 3 46.78 (-1.03) 64.80 (-34.71) 63.88 (-35.92) 3
LXMERT 62.56 (-21.57) 45.85 (-0.34) 46.62 (+0.59) 3 48.62 (-0.94) 53.10 (-46.30) 53.15 (-46.21) 3 50.68 (+2.31) 57.45 (-26.77) 56.81 (-41.86) 2
ALBEF 41.93 (-4.30) 41.23 (-1.27) 33.88 (-3.13) 0 48.00 (-0.82) 97.96 (-1.88) 97.96 (-1.88) 3 47.24 (-1.50) 98.93 (-0.91) 98.93 (-0.91) 3

Table 2: Mean F1 scores on the TRAVLR OOD test sets of four V+L reasoning tasks (S: Spatiality, C: Cardinality,
Q: Quantifiers, N: Numerical comparison; relative change from InD results are in parentheses). #sd indicates the
number of converged runs. We report the mean of converged runs if #sd > 1, and the mean of all runs if #sd = 0.
Above-random results are underlined; the result with the highest mean in each column is bolded.

Prior work on generalisation evaluation recom-
mends the use of in- and out-of-distribution (hence-
forth InD and OOD, respectively) test sets (Csordás
et al., 2021). Hence, we include validation and InD
test sets randomly sampled from the training dis-
tribution (10k examples each), in addition to the
OOD test set described above (20k examples). We
report further dataset statistics in Appendix A.

4 Experiments
Models. We perform experiments on two single-
stream models, VisualBERT and UNITER, and
two dual-stream models, LXMERT and ALBEF.
We use Li et al. (2020b)’s implementation of Visu-
alBERT, LXMERT, and UNITER, and the original
implementation of ALBEF. The image features of
LXMERT and UNITER are 36 regions of interest
extracted using Tan and Bansal (2019)’s implemen-
tation of a pretrained Faster R-CNN (Ren et al.,
2015; Anderson et al., 2018). We use a Detectron
model (Girshick et al., 2018) to extract image fea-
tures for VisualBERT. We also train two text-only
models, BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019), as caption-only baselines.

Setup. We train models on each task for 80
epochs. Following Csordás et al. (2021)’s find-
ing that early stopping may lead to underestimation
of model performance, we do not do early stop-
ping. We use the recommended hyperparameters
for fine-tuning ALBEF on SNLI-VE (Xie et al.,
2019) and VisualBERT on NLVR2. Learning rates

were adjusted downwards for models/tasks where
recommended hyperparameters did not lead to con-
vergence. Each experiment is repeated with three
random seeds. Table 2 reports mean results on
seeds leading to above-random performance, and
mean results on all seeds when none achieve above-
random performance. We present further experi-
mental details in Appendix B.

4.1 Within-Modality Results
We first discuss the results of testing the model
on the modality it was trained on (Table 2). In
Appendix C, we examine the effect of dataset size
on model performance and discuss the results in
detail. In Appendix D, we discuss differences in
training duration between models.

Image-only setting. Generalising across the four
tasks, in the image-only setting, LXMERT is the
best performing model across all tasks, while AL-
BEF is consistently the worst performing model.
UNITER outperforms VisualBERT in all tasks ex-
cept the cardinality task.

Caption-only and image+caption settings.
Generally, the performance of all models except
LXMERT in the caption-only and image+caption
settings is better than performance in the
image-only setting. Across tasks and models,
performance in the caption-only closely resembles
performance in image+caption settings, suggesting
a strong textual bias when both modalities are
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presented. In the caption-only and image+caption
settings, LXMERT is consistently the worse
performing model, and VisualBERT is the best
performing model in all but the spatiality task. On
the cardinality and quantifiers tasks, all models
except LXMERT achieve close to a perfect
F1 score, performing similarly to RoBERTa
and BERT. However, they are outperformed by
RoBERTa when trained on smaller datasets.

Spatiality. While UNITER and LXMERT
achieve above-random performance with 8k
examples, VisualBERT requires at least 16k
examples, and ALBEF fails to learn the task on
the full 32k dataset. 32k is a significant number
of examples given the task’s simplicity. For
comparison, the full VQA dataset consists of
only 443k training examples. Transformer-based
models thus face similar issues to CNN and LSTM
models, which Johnson et al. (2017) found to have
trouble learning spatial relationships and often
memorise the absolute object positions.

A potential explanation for the superior perfor-
mance of UNITER and LXMERT could be that un-
like the other models, spatial coordinates from the
bounding boxes are explicitly encoded in the input
to the image encoders, which the models can di-
rectly exploit. This is unavailable to ALBEF, which
takes in the image as input directly instead of rely-
ing on a separate object detector. VisualBERT does
not make use of these spatial coordinates, which
may impair its ability to relate the positions of ob-
jects. Bugliarello et al. (2021) and Frank et al.
(2021) posited this limitation of VisualBERT to
explain its poor performance on tasks such as Ref-
COCO+ and Masked Region classification, but the
impact of this limitation on spatial reasoning has
hitherto not been directly investigated. LXMERT
converges in fewer epochs compared to all other
models. LXMERT only required 4 epochs of train-
ing on the 32k dataset to exceed F1=90 on the InD
test set, while UNITER required about 60 epochs
(see further discussion in Appendix D).

In the caption-only and image+caption settings,
UNITER and ALBEF are notably more sensitive
to random seeds and fail to achieve convergence in
several cases. Furthermore, performance is poorer
in the image+caption than in the caption-only set-
ting across all models. This runs counter to ex-
isting expectations that bimodal representation of
the same information should improve performance
(Zadeh et al., 2020; Testoni et al., 2019). Several

models exhibit > 5 point differences in F1 on the
InD and OOD test sets. BERT requires at least 8k
examples to achieve an F1 score above 60, corrob-
orating findings by Lin and Su (2021) that BERT
requires a significant number of examples to learn
a simple natural language inference task.

Cardinality. On the cardinality task, all mod-
els achieve non-random performance when trained
with 8k examples. Across all settings, performance
on the InD and OOD test set is similar, indicating
that models are able to generalise to unseen object–
number pairs. However, despite the task’s simplic-
ity, in the image-only setting, no model achieves
above an F1 of 85 when trained on the full dataset,
and when trained on 1k examples, all models per-
form poorly with F1 scores below 60. This cor-
roborates Parcalabescu et al. (2021)’s finding that
current V+L models face difficulties with counting
objects in images. Models are generally successful
in the caption-only setting, corroborating Wallace
et al. (2019)’s findings that numeracy is encoded in
the embeddings of language-only models.

Quantifiers. All models perform well on the
quantifiers task in most settings, with exceptions
that conform to the overall trends described above
(e.g. LXMERT in the image+caption setting).
Good performance on the OOD dataset indicates
that models are not memorising specific numbers of
objects and instead use more general strategies for
understanding quantifiers. This parallels psycholin-
guistic findings that comprehension of non-exact
quantifiers does not correlate with counting skills
in human children (Dolscheid et al., 2015).

Numerical comparison. Unlike the other tasks,
there is a significant difference between the InD and
OOD settings for the numerical comparison task
across all settings. In the image-only setting, all
models except ALBEF, achieve F1s above 70 on the
InD test set, while achieving much lower F1s (55–
65) on the OOD test set. In the caption-only and
image+caption settings, while all models achieve
close to F1=100 on the InD test set, UNITER and
LXMERT do not generalise well to the OOD test
set, showing a substantial drop in performance. Our
results suggest that models face difficulties gener-
alising beyond the training distribution to unseen
number pairs.

4.2 Cross-Modal Transfer
Despite performing well in the within-modality
settings, none of the models succeed at perform-
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ing zero-shot cross-modal transfer to an unseen
modality. Nevertheless, given the success of few-
shot learning, we may expect few-shot cross-modal
transfer to be plausible. We hence conduct few-
shot learning experiments on the best performing
models that were fine-tuned on the full dataset of
the spatiality and quantifiers tasks. We fine-tuned
the models on 200 examples of the unseen modal-
ity for 20 epochs before testing (see details in Ap-
pendix B.5). Unfortunately, none of the models
achieved above random performance even after this
additional fine-tuning. We conclude that they can
perform neither zero-shot nor few-shot cross-modal
transfer, and that existing V+L representation learn-
ing methods have yet to succeed at producing truly
multimodal (or modality-agnostic) representations.

4.3 Adding and Dropping Modalities
We now discuss the effects of either adding or drop-
ping a modality to the input presented during test-
ing. First, models trained in the image+caption
setting perform similarly when tested in the im-
age+caption and caption-only settings. However,
when tested in the image-only setting, models per-
form poorly, exhibiting (close to) random perfor-
mance in most cases. This indicates that all models
tend to overly focus on the caption during training.
Second, models trained only on captions perform
similarly when tested in the image+caption setting.
In contrast, testing a model trained only on images
in the image+caption setting results in a significant
performance drop. In most cases, F1 is close to ran-
dom, although all models except LXMERT man-
age to maintain above-random performance on the
quantifier task. This could indicate that the models
are easily distracted by the textual modality. To-
gether with the general similarity between results in
the caption-only and image+caption settings, these
results indicate a bias towards the textual modality.

5 Further Analyses
5.1 The Impact of Pretraining
We conduct additional experiments on VisualBERT,
UNITER and LXMERT trained using the unified
VOLTA (Bugliarello et al., 2021) framework, where
V+L models were pretrained using the same dataset
in a standardised manner. This allows us to under-
stand the extent to which differences in models’
performance can be attributed to the pretraining
data or objective, rather than model architecture.
First, VOLTA LXMERT loses its advantage in both
performance and training efficiency over the other

models. We suggest that LXMERT’s superior per-
formance is due to some aspect of its pretraining,
such as the larger size of or presence of VQA ex-
amples in its pretraining dataset, or its use of an ad-
ditional VQA pretraining objective. Furthermore,
VOLTA VisualBERT’s performance is significantly
improved over the original VisualBERT, likely be-
cause it was pretrained with more data. UNITER
also outperforms the other two models (also re-
ported by Bugliarello et al. (2021) on RefCOCO+
and NLVR2), which suggests some advantage of
its specific architecture. All three VOLTA models
achieve similar results on the caption-only setting
of the 8k cardinality dataset. As all VOLTA models
were initialised with BERT weights, we suggest
that the poor performance of the original LXMERT
on textual input is due to its lack of initialisation
with BERT weights (Tan and Bansal, 2019). We
discuss the results in greater detail in Appendix E.

5.2 The Impact of Catastrophic Forgetting
A potential concern with fine-tuning on one modal-
ity and testing on another is that the models may
overfit to the fine-tuning modality, resulting in the
catastrophic forgetting of cross-modal information.
To reduce this possibility, we freeze the pretrained
representations and only fine-tune the classification
layers. In this setting, all models except LXMERT
fail to go beyond random performance. Although
LXMERT achieves above-random performance in
the image-only setting for two tasks, it is still rel-
atively poor (Spatiality: OOD=52.29, InD=52.67;
Cardinality: OOD= 56.39, InD=60.88). This indi-
cates that most models require representation fine-
tuning to perform reasoning tasks, and it is unlikely
that the inability to transfer cross-modally was due
to catastrophic forgetting during fine-tuning.

5.3 Modal Dropout
One may be concerned that the presentation of
the same information in the image+caption setting
facilitates overfitting to either modality. We investi-
gate whether models’ textual bias can be overcome
by randomly “dropping out” either the image or
caption input when training in the image+caption
setting. We find modal dropout to not significantly
alleviate bias towards the textual modality. We
discuss our findings in detail in Appendix F.

5.4 Error analysis
We now report findings from our error analysis on
selected experiments where models converged but
did not achieve perfect or near perfect F1 scores,
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which can reveal trends that explain poor perfor-
mance. We describe our analysis on the spatiality
and cardinality tasks here, referring readers to Ap-
pendix G for details on quantifiers and numerical
comparison.

Across all tasks, errors are intuitive and explain-
able, and the performance of models is generally
poorer on boundary cases. For example, models are
more error-prone when objects are positioned close
to each other in the spatiality task, and where only
one object either falsifies or confirms the query in
the quantifier task. On the numerical comparison
task, we observe more errors when the difference
between the numerals being compared is small.

5.4.1 Spatiality

(a) Queries involving horizontal relationships, by the pairs
of the columns of the queried objects.

(b) Queries involving vertical relationships, by the pairs
of the rows of the queried objects.

Figure 2: Error analysis of VisualBERT trained on spa-
tiality task, image-only setting, tested on OOD test set.
(F1=69.78; seed=0)

In the spatiality task, VisualBERT was unable to
achieve F1 scores above 70 across all three random
seeds. Figure 2 shows that this was due to Visual-
BERT only correctly answering queries involving
vertical relationships, but not horizontal ones. In
the figure, the x-axis is organised by the pairs of ob-
ject coordinates relevant to the query (i.e., columns
for horizontal relationship queries, and rows for
vertical relationship queries). A similar pattern is
observed on all three runs on VisualBERT, and also
on UNITER on one random seed. Mediocre results
on the spatiality task can thus often be attributed
to models successfully learning to answer only a

subset of the queries.

Figure 3: Percentage of incorrect answers of UNITER
in the image-only setting, on InD < x, y > pairs for
vertical relationships. (F1=71.79; seed=2)

Figure 3 shows the percentage of incorrect an-
swers on specific pairs in the InD test set. Note that
white entries are pairs which belong to the OOD
test set. Overall, models make more mistakes on
examples with queried objects positioned closer to-
gether (represented by cells closer to the diagonal).

5.4.2 Cardinality

Figure 4: Actual vs predicted values (given that pre-
dicted answer is true). VisualBERT trained on the car-
dinality task, image-only setting, tested on InD test set.
(F1=77.84; seed=0)

While most models apart from LXMERT suc-
ceeded on the cardinality task in the caption-only
and image+caption settings, moderate performance
was observed in the image-only setting. We found
that models performed poorer on images with more
objects in the image, inclusive of distractors (refer
to Appendix G for details). Furthermore, models
often predict values close to the actual value. Fig-
ure 4 plots the actual number of objects in the scene
against the number of objects predicted. Since the
task was a true/false task, this analysis is based only
on examples for which the model predicted that the
query was true. The counting abilities of models
thus intuitively resemble that of humans, given that
they are confused by a large number of objects in
the scene, and are also likely to predict answers
close to the actual value when miscounting.
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6 Discussion

Comparing modalities. As discussed in §4.3,
V+L models exhibit a clear bias towards the tex-
tual modality across single and dual stream models,
corroborating findings by Cao et al. (2020). This
finding also applies to LXMERT, even though it
generally performs more poorly on caption than im-
age inputs. Furthermore, the V+L models perform
more poorly than unimodal RoBERTa on various
tasks in the caption-only setting, similar to Iki and
Aizawa (2021), who show that V+L pretraining on
degrades performance on NLU tasks.

Comparing tasks. The spatiality task is the hard-
est task, requiring at least 32k examples to con-
verge in some cases, as opposed to the 8k exam-
ples for the other tasks (see Appendix C for de-
tails). Furthermore, convergence of the models
on the spatiality task is highly sensitive to random
seeds. Among the other tasks, the easiest task is
the quantifiers task, followed by cardinality, and
finally numerical comparison. In the caption-only
and image+caption settings, all models apart from
LXMERT achieve a close to perfect F1 on the car-
dinality and quantifiers tasks. However, on the nu-
merical comparison task, UNITER and LXMERT
exhibited a limited ability to generalise outside
the training distribution in both image and textual
modalities. Thus, while success on the cardinality
task indicates that models possess an understanding
of the meaning of numbers in absolute terms, the
numerical comparison task was able to differentiate
models in terms of their understanding of numbers’
relative positions on a numeral scale.

Comparing models. As argued in §5.1, the most
significant factor differentiating models seems to
be their pretraining rather than model architecture.
Our findings corroborate Bugliarello et al. (2021)’s
findings that differences between models cannot
be primarily attributed to differences in model ar-
chitecture. Unlike LXMERT and ALBEF, Visual-
BERT and UNITER both succeed on all tasks in all
settings. While UNITER generally outperforms Vi-
sualBERT in the image-only setting, VisualBERT
at times outperforms UNITER in the caption and
image+caption settings. The superior performance
of VisualBERT in caption-only settings could be
due to its comparatively minimal pretraining on
V+L objectives, enabling it to retain performance
closer to that of text-only models.

The encoding of image features also has a sig-

nificant impact on performance in the image-only
setting. VisualBERT’s poor performance on the
spatiality task is likely due to the fact that it does
not explicitly encode the spatial coordinates of the
bounding boxes in its input. Additionally, it is
likely that the pretrained object detector used by
every model except ALBEF helped them outper-
form ALBEF in the image-only setting, despite
underperforming it in common V+L benchmarks
(Li et al., 2021). A possible explanation is that the
information captured by the Faster R-CNN detector
was more relevant to our visio-linguistic tasks.

Finally, the poor performance of LXMERT on
caption-only and image+caption settings reflects
its lack of initialisation with BERT parameters
before pretraining. Given the superior performance
of RoBERTa over BERT, it could be beneficial to
initialise models with RoBERTa weights instead.

7 Conclusion

TRAVLR allows us to evaluate specific visio-
linguistic reasoning skills in isolation, enabling
finer-grained diagnosis of model deficiencies. We
found some models to learn better from one modal-
ity than the other, and some task-setting combi-
nations to be more challenging across the board.
Furthermore, existing models may require unrea-
sonably large amounts of data and training steps to
learn simple tasks. Improving the sample efficiency
and training time of V+L models is a potential di-
rection for future research. Furthermore, while
pretrained multilingual models have been shown to
demonstrate zero-shot cross-lingual transfer abili-
ties, it is unclear whether V+L models can similarly
perform cross-modal transfer of downstream task
abilities to a modality unseen during fine-tuning.

We hence contribute TRAVLR, which enables
the evaluation of cross-modal transfer ability by
encoding scenes bimodally. We found all models
to suffer from a strong textual bias, and an inability
to perform zero- and few-shot cross-modal trans-
fer. Given the success of multilingual models with
cross-lingual transfer, future work might attempt
to bridge the gulf between the visual and textual
modalities, perhaps by forcing models to transform
images into intermediate representations which
more closely resemble language. Visio-linguistic
representations capable of such transfer will unlock
a whole host of new applications, and we pose this
as the next challenge for multimodal modelling.
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Limitations

We acknowledge that the use of synthetic data is
potentially unrealistic given that most applications
would require reasoning on real-world input. Nev-
ertheless, we note that because synthetic data is
easier, it is still useful as a benchmark for the mini-
mum expected performance of models. We follow
the line of argument in prior work (e.g. Johnson
et al. (2017)) that synthetic datasets not only miti-
gate the problem of distributional bias in real-world
datasets, but also simplify the problem of object
recognition to focus on diagnosing genuine abstract
reasoning ability. We generally expect V+L mod-
els to acquire abstract visual reasoning skills, like
humans, rather than being limited to the realm of
photographs. TRAVLR’s focus on simple shapes
also makes it a test of this ability.

Our experiments on VOLTA should be taken as
preliminary, as a full replication of all experiments
was not performed due to resource limitations. Fu-
ture work could investigate the extent to which
the superior performance of VOLTA UNITER is
robust across all tasks, which would indicate a gen-
uine advantage due to UNITER’s architecture. Fur-
thermore, although we have attributed the superior
performance of LXMERT to some aspect of its
pretraining, we are unable to pinpoint whether the
advantage is specifically due to the large size of
its pretraining dataset, its use of VQA examples
in the pretraining, or its use of a VQA pretraining
objective, and leave this to future work.

Finally, while all models were shown to succeed
at generalising to the OOD test setting with vary-
ing degrees of success, only the numerical com-
parison task poses a significant challenge in terms
of OOD generalisation. This is expected, since
we did not intend to challenge the models with
generalisation settings which they are unlikely to
encounter in test (i.e., more realistic datasets de-
signed for fine-tuning models to perform real-world
applications). Furthermore, the simplicity of our
reasoning tasks enables us to evaluate models’ abil-
ities on specific semantic phenomena in isolation.
Nevertheless, future work can extend TRAVLR to
include more challenging generalisation tasks, such
as generalisation of the meaning of negation over
unseen quantifiers, compositional queries which
combine multiple semantic phenomena (e.g. com-
bining propositions via conjunction or disjunction),
and queries which contain instructions to manipu-
late the scene.

Ethics Statement

TRAVLR is a synthetically generated dataset, and
hence poses no ethical issues relating to the source
of the data. Its use of abstract shapes has the further
advantage of avoiding biases relating to human
subjects.
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A Dataset Details

We now describe the version of TRAVLR used
in our experiments, although our dataset genera-
tion scripts allow parameters such as the object
properties and grid size to be modified. TRAVLR
draws from five colours (red, blue, green, yellow,
orange) and seven shapes (square, circle, triangle,
star, hexagon, octagon, pentagon), yielding a total
of thirty-five unique objects. The seven shapes and
colours used in TRAVLR are present in the Visual
Genome dataset (Krishna et al., 2017). We use a
six by six grid, which allows a maximum of 36
objects in a scene. Each example consists of an
image, a caption and a query.

A.1 Dataset Figures

Figure 5: An example of OOD test set construction.
In a left/right relationship reasoning task, the relevant
dimension is the column ID. Specific ID pairs (X) are
held out to form this test distribution.

Figure 6: Example instance for not all quantifier with
pair < 2, 3 >.

A.2 Dataset Statistics
Table 3 shows the label distributions (true/false)
for the various datasets: training, validation, In-
Distribution (InD) test, and Out-Of-Distribution
(OOD) test sets. The spatiality dataset is the largest
dataset comprising 32k examples, while the other
datasets comprise 8k examples. In the remainder

of the section, we detail crucial statistics for the
splits between the training and OOD test sets.

Task Train Val. InD Test OOD Test

Spatial 15903 / 16097 4979 / 5021 5064 / 4936 9918 / 10082
Cardinality 4040 / 3960 4927 / 5073 5043 / 4957 10079 / 9921
Quantifier 4006 / 3994 5003 / 4997 5030 / 4970 10029 / 9971
Comparison 4088 / 3912 4926 / 5074 4992 / 5008 10033 / 9967

Table 3: Dataset statistics (no. of True / False).

Horizontal Relationship Vertical Relationship

(a) Training Set.

Horizontal Relationship Vertical Relationship

(b) In-Distribution Test Set.

Horizontal Relationship Vertical Relationship

(c) Out-of-Distribution Test Set.

Figure 7: Spatiality (<column(object1),
column(object2)> for horizontal relationship,
<row(object1), row(object2)> for vertical
relationship).

For the spatiality task, the scene comprises only
three objects: the two objects mentioned in the
query, and one distractor object. We limit the num-
ber of distractors for this task, since we intend the
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(a) Training Set.

(b) In-Distribution Test Set.

(c) Out-of-Distribution Test Set.

Figure 8: Cardinality (<shape, number>).

task to evaluate models’ ability to compare the po-
sition of the objects, rather than their ability to
perform object recognition.

Figure 7 shows dataset statistics for the train-
ing, InD and OOD spatiality dataset. Each figure
indicates the number of examples whose scene in-
stantiates a specific pair (this is independent of
the query and label). For instance, there are 681
examples instantiating the pair < A,B > for the
horizontal relationship. In these examples, the first
object in the query is found in Column A, and the
second object is found in Column B. As illustrated
in Figure 5, we ensure no overlap between pairs
in the training set and the OOD test set. We note

that each example either instantiates a horizontal
or vertical relationship, but not both.

Unlike the spatiality task, more objects are
present in the remaining tasks, since it is the abil-
ity to reason about the number of objects which is
under test. For the cardinality task (Figure 8), we
limit the number of objects relevant to the query
within the range [1, 6], and the maximum num-
ber of distractor objects within the range [1, 10].
The relevant pairs shown in Figure 8 are <shape,
number>, i.e. the number of objects of that shape.

(a) Training Set.

(b) In-Distribution Test Set.

(c) Out-of-Distribution Test Set.

Figure 9: Numerical Comparison.

For the numerical comparison task (Figure 9),
we split the train and test sets by the pair < a, b >
where a is the number of [attr1] objects, and b
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is the number of [attr2] objects. The number of
[attr1] and [attr2] objects are limited within
the range [1, 9], and the number of distractor ob-
jects is in the range [1, 10].

All < [attr1] ∩ [attr2], [attr2] \ [attr1] >
Not all < [attr1] ∩ [attr2], [attr1] \ [attr2] >
No < [attr1] \ [attr2], [attr2] \ [attr1] >
Some < [attr1] \ [attr2], [attr1] ∩ [attr2] >
Only < [attr1] ∩ [attr2], [attr1] \ [attr2] >
Not only < [attr1] ∩ [attr2], [attr2] \ [attr1] >

Table 4: Pairs for each quantifier.

All Not All

Some None

Only Not Only

Figure 10: Quantifiers Training Set.

For the quantifiers task (Figure 11), we split the
training and OOD distributions based on the pairs
as stated in Table 4, which differ depending on the
specific quantifier. We limit the number of objects
relevant to each part of the pair within the range
[1, 5], and the number of distractor objects within
the range [2, 8].

All Not All

Some None

Only Not Only

(a) In-Distribution Test Set.

All Not All

Some None

Only Not Only

(b) In-Distribution Test Set.

Figure 11: Quantifiers Test Sets.
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B Experiment details

We conducted the following fine-tuning experi-
ments:

• 4 V+L models on all 4 tasks on 3 modality set-
tings, on 3 random seeds each = 144 main exper-
iments.

• 2 text-only models on all 4 tasks, on 3 random
seeds each = 24 experiments.

• Replications of the above experiments on 3
smaller subsets of the original dataset, on a sin-
gle random seed = 144 + 24 = 168 experiments
(see Appendix C).

• All models on all 4 tasks with frozen pretrained
representations.

• 4 V+L models on 4 tasks on the modal
dropout/“mixed” setting (see Appendix F).

• Selected experiments on the VOLTA implemen-
tation of 3 V+L models (see Appendix E).

• Selected experiments using the few-shot learning
setting (see Appendix B.5).

B.1 Metric
The metric used is the macro F1 score, which is
computed as the arithmetic mean of the F1 score of
each of the two classes (true and false). We use F1

instead of accuracy due to small imbalances in the
classes (see Table 3).

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

(1)

B.2 Hyperparameters
We train models for 80 epochs without early stop-
ping. As the hyperparameters recommended for
fine-tuning UNITER and LXMERT did not lead to
convergence on some tasks, we adjusted learning
rates downwards until the model converged. For
LXMERT, we used a learning rate of 5e-5 only for
the spatiality task, and 5e-6 elsewhere.

Model Batch Size Learning rate

VisualBERT 64 2e-5
UNITER 32 5e-6
LXMERT 32 5e-6 / 5e-5
ALBEF 256 2e-5
VOLTA VisualBERT 32 5e-6
VOLTA UNITER 32 5e-6
VOLTA LXMERT 32 5e-6

Table 5: Fine-tuning hyperparameters.

B.3 Runtimes
Table 6 provides an estimate of the runtimes for
fine-tuning each model on different dataset sizes
in different settings. Experiments were run either
on NVIDIA GeForce RTX 2080 Ti or NVIDIA
TITAN RTX GPUs. The longest experiments on
ALBEF with the 32k dataset are estimated to lead
to carbon emissions of 15.24 kgCO2eq (Lacoste
et al., 2019).

Dataset
size

Model Image Caption Img.+Cap.

32k

UNITER 15 27 27
VisualBERT 15 27 27
LXMERT 25.5 36.5 36.5
ALBEF 38 38 38
BERT - 12 -

RoBERTA - 12 -

8k

UNITER 3.5 7 7
VisualBERT 5 7 7
LXMERT 6.5 10.5 10.5
ALBEF 8 9 9
BERT - 3 -

RoBERTA - 3 -

Table 6: Approximate experiment run times in hours.

B.4 Model Details
Table 7 summarises the amount and sources of pre-
training data used in the pretraining of various mod-
els we evaluate. Table 8 reports the total trainable
parameters for each model.

Model Pretraining
Dataset Size

COCO VG CC SBU Other

VisualBERT 600k X X X
UNITER 5.6M X X X X
LXMERT 9.18M X X X X X
ALBEF 4.0M X X X X
VOLTA 2.77M X

.
Table 7: Amount of pretraining data and sources of
pretraining data. COCO: Microsoft COCO (Lin et al.,
2014), VS: Visual Genome (Krishna et al., 2017), CC:
Conceptial Captions (Sharma et al., 2018), SBU: SBU
Captions (Ordonez et al., 2011)

Model Num. Parameters

VisualBERT 112.64 M
UNITER 111.08 M
LXMERT 209.12 M
ALBEF 290.34 M
BERT 108.31 M
RoBERTa 124.65 M
VOLTA VisualBERT 114.02 M
VOLTA UNITER 113.63 M
VOLTA LXMERT 210.50 M

Table 8: Number of trainable parameters.
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B.5 Few-shot learning experiments

On top the zero-shot setting experiments that we
conduct on all fine-tuned models, we perform few-
shot learning experiments on selected fine-tuned
models as shown in Table 9. We select the best-
performing model for the task and setting, as well
as additional models to ensure that all models are
tested. We adopt the same hyperparameters stated
in Table 5, and perform additional fine-tuning on
200 examples of the unseen modality for 20 epochs.
Typically, between 10 to 100 examples are suffi-
cient for few-shot cross-lingual transfer on multilin-
gual BERT (Zhao et al., 2021). For instance, in the
“Image to Caption” setting, we fine-tune a model
already fine-tuned for 80 epochs in the image-only
setting, on examples in the caption-only setting.

Setting Task Models tested Seed

Image to Caption

Spatiality UNITER 0
LXMERT 0

Quantifiers VisualBERT 2
UNITER 2
LXMERT 2

Caption to Image

Spatiality UNITER 0
ALBEF 2

Quantifiers VisualBERT 2
UNITER 2
ALBEF 2

Table 9: Models tested on few-shot learning setting.
(Seed: the random seed used in the initial fine-tuning
of the model).

C Effect of Training Dataset Size

To investigate the effect of training dataset size
on model performance, we fine-tune models with
50%, 25% and 12.5% subsets, randomly sampled
from the full training set. These experiments were
conducted only on a single random seed, due to
resource limitations.

Spatiality. On the spatiality task (Figure 12), in
the image-only setting, LXMERT requires the least
amount of data to achieve convergence (4k exam-
ples), followed by UNITER (8k examples), and
VisualBERT (16k examples). ALBEF fails to con-
verge, even on the full 32k dataset. There is a
clear advantage in performance of LXMERT and
UNITER over VisualBERT and ALBEF.

In the caption-only setting, the text-only model
RoBERTa performs the best, achieving F1s close
to 100 with 16k training examples. While BERT,

(a) Image-only setting.

(b) Caption-only setting.

(c) Image+caption setting.

Figure 12: Performance for the spatiality task on the
OOD test set in (a) image-only, (b) caption-only and (c)
image+caption settings; models trained on increasing
subsets with one random seed.

UNITER and VisualBERT achieve similar results
with 32k training examples, the V+L models are
outperformed by BERT when trained on a smaller
dataset.

Cardinality. Compared to the spatiality task,
more models converged on the cardinality task (Fig-
ure 13) with a smaller amount of data (8k exam-
ples). In the image-only setting, LXMERT remains
the best performing model on the full 8k dataset,
but the performance of VisualBERT, UNITER and
LXMERT are relatively similar. In the caption-
only setting, when trained on a smaller dataset with
1k examples, RoBERTA achieves an F1 of 86.76,
while all other models achieve an F1 between 55
and 67, except for LXMERT, which fails to achieve
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(a) Image-only setting.

(b) Caption-only setting.

(c) Image+caption setting.

Figure 13: Performance for the cardinality task on the
OOD test set in (a) image-only, (b) caption-only and (c)
image+caption settings; models trained on increasing
subsets with one random seed.

non-random performance. In the image+caption
setting, ALBEF seems to be most data efficient,
performing the best on a 2k training dataset.

Quantifiers. On the quantifiers task (Figure 14),
in the image-only setting, we observe a similar
overall trend to the spatiality task, where UNITER
and LXMERT significantly outperform the other
models. In the caption-only setting, RoBERTa sig-
nificantly outperforms BERT with limited data (1k
examples), and the performance of UNITER and
VisualBERT resembles that of BERT. The superior
performance of ALBEF on a smaller 2k dataset in
both caption-only and image+caption settings is

(a) Image-only setting.

(b) Caption-only setting.

(c) Image+caption setting.

Figure 14: Performance for the quantifiers task on the
OOD test set in (a) image-only, (b) caption-only and (c)
image+caption settings; models trained on increasing
subsets with one random seed.

observed again, as on the cardinality task.

Numerical Comparison. On the numerical com-
parison task (Figure 15), all models exhibit rela-
tively poor performance on the OOD dataset in the
image-only setting, revealing an inability to gener-
alise to unseen number pairs. In the caption-only
and image+caption settings, the superior perfor-
mance of RoBERTa over BERT, and VisualBERT
and ALBEF over the other V+L models can be
observed, as similarly described for other tasks.
The performance of VisualBERT and UNITER is
clearly distinguished.
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(a) Image-only setting.

(b) Caption-only setting.

(c) Image+caption setting.

Figure 15: Performance for the numerical comparison
task on the OOD test set in (a) image-only, (b) caption-
only and (c) image+caption settings; models trained on
increasing subsets with one random seed.

D Training Duration

We discuss selected runs indicative of the contrast
in the number of training steps required by models.
From the training loss curves on a single run of
training on the spatiality tasks, we can observe a
substantial degree of variation in the amount of
time each model takes to converge.

The training loss curves in Figure 16 are on the
whole indicative of the significant amount of time
required by all models except LXMERT to learn
the spatiality task. With the notable exception of
LXMERT, many models have yet to fully converge
by 60 epochs. LXMERT takes fewer than 5 epochs

(a) VisualBERT (seed=1)

(b) UNITER (seed=0)

(c) LXMERT (seed=1)

(d) ALBEF (seed=0)

Figure 16: Training loss curves on spatiality task.

to achieve a training loss close to 0, while com-
pletely failing to converge on the caption and im-
age+caption settings. Possible reasons for the faster
convergence of LXMERT on the spatiality task in-
clude the large size of its pretraining data, and the
fact that it was additionally pretrained on a VQA
task, unlike the other models. VisualBERT has yet
to completely converge after 80 epochs. ALBEF
in the image+caption setting and UNITER in the
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(a) VisualBERT (seed=1) (b) UNITER (seed=0)

(c) LXMERT (seed=1) (d) ALBEF (seed=0)

Figure 17: Training loss curves on cardinality task.

caption setting are representative of successful con-
vergence, which is achieved only after 40 and 60
epochs, respectively.

The variation between models is much less sig-
nificant on the cardinality dataset, as seen in Fig-
ure 17. The training loss curves between the
caption-only and image+caption settings are often
similar, and also steeper compared to the image-
only loss curves, which is reflective of the textual
bias of all models towards the caption when both
modalities are presented in the image+caption set-
ting. In the image-only setting, most models have
yet to fully converge within 80 epochs, in this case,
with the exception of VisualBERT. It is notable that
the marked advantage of LXMERT in terms of ef-
ficiency of training time observed in the spatiality
task does not extend to other tasks.

E VOLTA Experiments

From Table 10, we observe that while the perfor-
mance of all three VOLTA models are similar on
the 32k spatiality dataset, VOLTA UNITER signif-
icantly outperforms both VOLTA LXMERT and
VOLTA VisualBERT on the 8k spatiality dataset.
This is in contrast to results on the original models
where LXMERT exhibits a clear advantage over
the other models and is able to achieve an F1 score

close to 100 on the 8k dataset.

Dataset Model OOD InD # Seeds
Size Mean Stdev. Mean Stdev.

32k

VOLTA LXMERT 99.30 - 99.67 - 1
VOLTA UNITER 99.67 - 99.88 - 1

VOLTA VisualBERT 98.31 - 98.92 - 1
LXMERT 99.46 0.47 99.84 0.13 3
UNITER 89.67 14.43 88.71 14.58 3

VisualBERT 65.94 6.63 66.96 6.05 3

8k

VOLTA LXMERT 62.28 3.16 64.17 3.73 3
VOLTA UNITER 94.46 1.19 93.18 1.50 3

VOLTA VisualBERT 60.73 2.39 60.69 2.90 3
LXMERT 99.02 - 99.00 - 1
UNITER 88.33 - 91.48 - 1

VisualBERT 49.60 - 49.25 - 1

Table 10: Mean F1 scores of VOLTA and original mod-
els trained on spatiality dataset in the image-only set-
ting. Standard deviation is shown where applicable.

Similar findings are observed on the cardinality
dataset (Table 11), where VOLTA LXMERT is out-
performed by both VOLTA UNITER and VOLTA

VisualBERT. The VOLTA LXMERT differs from
the original LXMERT in the amount of pretraining
data, as well as the use of VQA examples and a
downstream VQA objective during pretraining. It
can be concluded that LXMERT loses its advan-
tage in the image-only setting when it is pretrained
in the same manner as other models.

3342



Model OOD InD # Seeds
Mean Stdev. Mean Stdev.

VOLTA LXMERT 73.38 0.56 79.30 0.39 3
VOLTA UNITER 85.91 5.13 87.40 3.36 3

VOLTA VisualBERT 81.67 4.46 83.90 1.66 3
LXMERT 82.90 3.86 84.56 2.71 3
UNITER 77.12 5.04 77.03 1.44 3

VisualBERT 77.41 0.61 76.30 0.46 3

Table 11: F1 scores of VOLTA and original models
trained on cardinality dataset in the image-only setting.
Standard deviation is shown where applicable.

The difference between VOLTA LXMERT and
the original LXMERT can also be clearly observed
in the training loss curves in Figure 18, where the
original LXMERT is significantly more efficient in
terms of number of epochs required for training.

(a) VOLTA models

(b) Original models

Figure 18: Training loss curves on 8k spatiality dataset
in the image-only setting.

Furthermore, it is notable that the performance of
VisualBERT on the full dataset is significantly im-
proved over the original model. This is likely due to
the fact that the VOLTA VisualBERT was pretrained
with more data than the original VisualBERT. An
additional finding is that VOLTA UNITER outper-
forms VOLTA VisualBERT and LXMERT.

Finally, the VOLTA models were also used to
investigate the comparatively poor performance of
the original LXMERT on the caption-only and im-
age+caption settings. As seen in Table 12, all three
VOLTA models achieve similar results on the 8k car-

Model OOD InD # Seeds
Mean Stdev. Mean Stdev.

VOLTA LXMERT 97.87 0.85 99.44 0.03 3
VOLTA UNITER 98.73 1.25 99.60 0.11 3

VOLTA VisualBERT 99.40 0.03 98.50 0.11 3
LXMERT 60.02 4.76 78.90 6.83 3
UNITER 98.96 0.30 97.14 0.83 3

VisualBERT 99.99 0.01 99.91 0.06 3

Table 12: Mean F1 scores of VOLTA and original mod-
els trained on the 8k cardinality dataset in the caption-
only setting. Standard deviation is shown where appli-
cable.

dinality dataset. Given that all VOLTA models were
initialised with BERT weights, this lends support
to the idea that the poor performance of LXMERT
on textual input is due to the lack of initialisation
with BERT weights (Tan and Bansal, 2019).
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Task Model OOD InD #sd
Image Caption Img. + Cap. Image Caption Img. + Cap.

S

VisualBERT 50.61 (+1.28) 70.03 (-0.96) 69.26 (-2.12) 50.88 (+1.85) 72.26 (-0.32) 71.94 (-1.10) 3
UNITER 64.24 (+14.09) 50.03 (-20.72) 49.70 (-21.47) 63.53 (+13.55) 49.70 (-19.81) 50.32 (-20.45) 1
LXMERT 33.27 (-0.24) 33.27 (-0.24) 33.27 (-0.24) 33.43 (+0.38) 33.43 (+0.38) 33.43 (+0.38) 0
ALBEF 48.25 (-0.31) 96.12 (+2.46) 96.10 (+2.79) 48.14 (+0.52) 99.99 (-0.01) 99.99 (-0.01) 3

C

VisualBERT 65.07 (+19.87) 99.86 (-0.08) 99.85 (-0.10) 65.01 (+18.39) 99.53 (-0.31) 99.41 (-0.35) 3
UNITER 66.01 (+23.65) 97.86 (-0.62) 97.40 (-1.44) 67.61 (+23.28) 94.57 (-3.80) 94.01 (-2.83) 3
LXMERT 60.43 (+9.71) 54.03 (-0.97) 54.35 (-0.91) 64.42 (+14.04) 76.80 (+20.20) 73.63 (+10.55) 3
ALBEF 47.67 (+4.51) 99.21 (-0.41) 99.16 (-0.45) 48.77 (+3.28) 98.30 (-1.06) 98.21 (-1.14) 3

Q

VisualBERT 66.34 (+16.83) 99.01 (-0.97) 99.01 (-0.96) 65.35 (+15.68) 98.43 (-1.56) 98.37 (-1.63) 3
UNITER 75.04 (+26.98) 93.41 (-4.44) 93.82 (-5.04) 73.18 (+23.97) 88.14 (-7.60) 88.43 (-9.00) 3
LXMERT 64.72 (+15.78) 53.23 (+19.30) 50.13 (-0.90) 62.36 (+13.27) 69.16 (+35.22) 67.06 (+16.21) 3
ALBEF 51.92 (+4.19) 99.88 (-0.09) 99.87 (-0.09) 51.68 (+4.14) 99.18 (-0.62) 99.12 (-0.68) 3

N

VisualBERT 59.32 (+8.22) 92.68 (-7.10) 92.79 (-7.00) 61.54 (+10.64) 99.62 (-0.27) 99.64 (-0.26) 3
UNITER 61.79 (+15.01) 56.92 (-7.88) 56.85 (-7.03) 76.65 (+28.84) 99.17 (-0.34) 99.08 (-0.71) 3
LXMERT 58.81 (+8.13) 56.07 (-1.39) 56.57 (-0.24) 62.17 (+13.80) 84.17 (-0.05) 79.42 (-19.24) 3
ALBEF 42.80 (-4.44) 88.82 (-10.11) 88.83 (-10.10) 47.34 (-1.40) 99.62 (-0.22) 99.62 (-0.22) 3

Table 13: Mean F1 scores of models trained in the mixed setting for the four V+L reasoning tasks (S: Spatiality,
C: Cardinality, Q: Quantifiers, N: Numerical comparison). In parentheses, relative change from performance of
models trained on image+caption setting are indicated. Differences larger than +5 are highlighted in green and
differences smaller than -5 are highlighted in orange.

F Modal dropout/“mixed” setting

There is a concern that the bimodal presentation of
the input in the image+caption setting facilitates
overfitting to the textual modality. One way to alle-
viate the impact of bias towards either modality is
by performing dropout of either the image or cap-
tion input in a subset of the input, thus introducing
some unimodal examples into the image+caption
dataset. This technique is inspired by the idea of
sensor dropout as described in Liu et al. (2017),
where overfitting to specific sensors (modalities)
by a multisensor autonomous navigation system is
avoided through dropout of features from sensors
during training. In the following experiments, we
perform dropout at a fixed probability of 25% for
both the image and caption modalities. In other
words, datasets comprise 50% image+caption, 25%
image-only and 25% caption-only input.

Overall, performance of models trained in the
mixed setting resembles performance of models
trained in the image+caption setting, in that they
exhibit a bias towards the textual modality. Perfor-
mance on the image modality is generally poorer
than performance on both caption-only and im-
age+caption test settings (with the exception of
LXMERT), and performance on caption-only and
image+caption settings are largely similar. Nev-

ertheless, because of the dropout of the caption
modality in 25% of the input, the models are forced
to also learn to deal with image-only input to some
extent, and hence exhibit non-random performance
on image-only test data in some cases.

F.1 Comparison against models trained
purely on image+caption input

First, we compare the performance of models
trained in the mixed setting against those trained
in the image+caption setting. The relative differ-
ence is shown in brackets in Table 13. In the spa-
tiality task, only UNITER achieves a non-random
performance in the image-only setting, while Visu-
alBERT, LXMERT and ALBEF exhibit no signifi-
cant difference in comparison to the image+caption
baseline. On the other tasks, we observe that Vi-
sualBERT, UNITER and LXMERT exhibit above
random performance in the mixed setting, improv-
ing results over the purely image+caption setting.

When models trained in the mixed setting are
tested in the caption and image+caption settings,
in the majority of cases, there is a small decrease
in performance compared to models trained in the
purely image+caption setting. The small magni-
tude of this difference is likely because the models
continue to overfit to the caption when both image
and caption input is presented, and are deprived of
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Task Model OOD InD #Seeds
Image Caption Img. + Cap. Image Caption Img. + Cap.

S

VisualBERT +1.36 +19.07 -21.95 +1.28 +21.66 -28.05 3
UNITER -27.24 +0.37 -0.66 -24.80 -1.38 +0.42 1
LXMERT -65.73 -16.15 -16.97 -65.59 -16.47 -17.65 0
ALBEF +0.16 +47.09 +47.27 -0.56 +50.87 +50.89 3

C

VisualBERT +6.49 +11.41 +1.82 +4.86 +12.50 +4.48 3
UNITER +1.52 +10.46 +2.02 +3.27 +11.35 +4.31 3
LXMERT -2.97 +4.08 +3.85 -0.11 +19.47 +24.46 3
ALBEF -9.47 +12.29 +0.47 -8.50 +9.64 +1.83 3

Q

VisualBERT +9.18 +44.72 +13.31 +8.70 +45.03 +15.75 3
UNITER +12.15 +43.48 -2.30 +8.44 +36.99 -2.73 3
LXMERT +31.32 +19.83 +0.15 +28.89 +35.69 +17.93 3
ALBEF +1.18 +7.37 +2.14 +0.81 +13.61 +2.92 3

N

VisualBERT +6.73 +38.46 +17.75 +0.09 +43.60 +1.18 3
UNITER +0.10 -8.21 -3.95 +4.69 +5.98 +0.26 3
LXMERT -0.59 -2.77 -1.28 +1.54 +18.20 +11.76 3
ALBEF -2.75 -5.73 +28.78 -0.61 +5.29 +21.15 3

Table 14: Difference in F1 scores between models trained on the mixed setting and models trained on subset
baseline for the four V+L reasoning tasks (S: Spatiality, C: Cardinality, Q: Quantifiers, N: Numerical comparison).
Differences larger than +5 are highlighted in green and differences smaller than -5 are highlighted in orange.

the textual information in only 25% of the training
data. The magnitude of the difference is larger in
the numerical comparison task, where VisualBERT,
UNITER and ALBEF exhibit significant decreases
in performance on the OOD test set.

There are several exceptions to the overall trend.
Firstly, unlike the other models, UNITER seems
to have overfitted to the image modality instead of
the caption modality in the spatiality task. Second,
LXMERT exhibits an improvement in performance
in both the caption and image+caption settings on
the cardinality and quantifier datasets.

F.2 Comparison against models trained on
subset of data

Next, we compare the results from the mixed set-
ting against a baseline if the mixed dataset were sep-
arated into datasets with fully unimodal or bimodal
examples. For instance, the 32k mixed dataset on
the spatiality task can be compared against baseline
datasets of i) 16k bimodal image+caption examples,
ii) 8k image-only examples and iii) 8k caption-only
examples. Specifically, we ask if there is a perfor-
mance benefit to training models on a single mixed
dataset which combine these subsets together, as
opposed to training models on each dataset sepa-
rately.

This baseline is obtained from training on a ran-

domly sampled subset of the full dataset. As pre-
viously explained, these experiments on subsets of
the full dataset were conducted only on a single ran-
dom seed, due to resource limitations. In Table 14,
we observe that the performance of models trained
on the mixed dataset indeed outperforms models
trained on only the caption-only and image+caption
subset of the data. This result is not unexpected,
given that it is known that models exploit the cap-
tion present in the image+caption examples.

However, it is less clear from the results whether
the models are able to exploit the additional image
information present in the image+caption examples
in the mixed setting to improve performance on the
image-only test examples. In particular, results
from the quantifier task, as well as the results of
VisualBERT on the OOD test set seem suggestive
of some advantage accorded to models by the ad-
ditional image+caption data. Nevertheless, there
are also results suggestive of the opposite finding,
particularly on the spatiality task, where the pres-
ence of caption-only and image+caption examples
degrades performance in the image-only setting.

We conclude that the technique of dropping out
the input from some modalities helps to ameliorate
the extent of the textual bias in the image+caption
setting to some extent, although the overall textual
bias of models remains.
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G Error analysis

In section 5.4, we described our error analysis of
the spatiality and cardinality tasks. In this appendix
section, we include additional details on the car-
dinality task and present our error analysis on the
quantifiers and numerical comparison tasks.

G.1 Cardinality

Figure 19: Percentage of incorrect answers by total
number of objects. VisualBERT trained on cardinal-
ity task, image-only setting, tested on OOD test set.
(F1=77.84; seed=0)

As noted in section 5.4, a significant factor is the
total number of objects in the image, inclusive of
distractors. Figure 19 shows an increasing percent-
age of wrong answers as the total number of objects
increases. We also notice a slight decrease in wrong
answers when the number of objects exceeds 13.
This can be attributed to the decreasing likelihood
of correct answers having smaller numbers.

G.2 Quantifiers
Figure 20 plots the percentage of wrong answers
against specific values relevant to the particular
quantifiers of VisualBERT on the InD test set in
the image-only setting. Similar patterns are also
observed across other models in runs with moderate
performance, although moderate performance in
some cases may be due to failure to learn a subset
of quantifiers. For instance, Figure 20a shows the
percentage of wrong answers against the number
of Xs which are not Ys, given all false queries of
the form “All Xs are Ys”. The results show that
the more Xs which are not Ys, the less likely it
is for the model to incorrectly predict the query
to be true. In Figure 20c, given all true queries
of the form “Some Xs are Ys”, the more objects
which are both X and Y, the less likely it is for the
model to incorrectly predict the query to be false.

(a) All Xs are Ys (false): |X \
Y |

(b) Not all Xs are Ys (true):
|X \ Y |

(c) Some Xs are Ys (true):
|X ∩ Y |

(d) Only Xs are Ys (false):
|Y \X|

(e) Not only Xs are Ys (true):
|Y \X|

(f) No Xs are Ys (false): |X∩
Y |

Figure 20: Percentage of wrong answers on quantifier-
specific values. VisualBERT, image-only setting on
InD test set. (F1=87.98; seed=0)

Although the trend is not always robust across all
the quantifiers, this overall pattern of errors made
by models is not unexpected.

G.3 Numerical comparison

The plot in Figure 21 reveals a clear trend where
models are more accurate on pairs where the mag-
nitude of |x − y| (i.e. the difference between the
numerals being compared) is larger for the InD test
set. However, the more significant finding is that
the numerical comparison task was the only task
which exhibited significant differences in perfor-
mance between the InD and OOD datasets, due
to an inability to generalise to unseen pairs par-
ticularly in the image-only setting, but also the
caption-only setting in the case of UNITER and
LXMERT.

In Figure 21, we observe a pattern where the
model succeeds only on OOD queries where the
number of the first object exceeds that of the sec-
ond object (cells on the upper right are darker than
cells on the lower left). This asymmetry is also
observed to some extent in Figure 22. This pat-
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(a) LXMERT, image-only InD. (F1=84.45; seed=0) (b) LXMERT, image-only OOD. (F1=63.01; seed=0)

Figure 21: Results of LXMERT, image-only setting on specific < x, y > pairs.

(a) UNITER, caption-only InD. (F1=99.66; seed=0) (b) UNITER, caption-only OOD. (F1=61.90;
seed=0)

Figure 22: Results of UNITER, caption-only setting on specific < x, y > pairs.

tern does not result from any simple strategy of
providing the same answer (true/false) given a re-
lation in the query (more/fewer). A similar pattern
is observed even when subsetting the OOD test set
into queries with either the more or fewer relation
in both cases. The overall finding is that models
are able to generalise to unseen number pairs by
constructing an implicit numeral scale, but only to
a limited extent.
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Abstract

We propose to use image captions from the
Web as a previously underutilized resource for
paraphrases (i.e., texts with the same “mes-
sage”) and to create and analyze a correspond-
ing dataset. When an image is reused on
the Web, an original caption is often assigned.
We hypothesize that different captions for the
same image naturally form a set of mutual
paraphrases. To demonstrate the suitability of
this idea, we analyze captions in the English
Wikipedia, where editors frequently relabel the
same image for different articles. The paper in-
troduces the underlying mining technology, the
resulting Wikipedia-IPC dataset, and compares
known paraphrase corpora with respect to their
syntactic and semantic paraphrase similarity to
our new resource. In this context, we introduce
characteristic maps along the two similarity di-
mensions to identify the style of paraphrases
coming from different sources. An annotation
study demonstrates the high reliability of the al-
gorithmically determined characteristic maps.

1 Introduction

Two texts that convey “semantically equivalent in-
formation” via a different wording are called para-
phrases, or said to be in a paraphrase relation. A
variety of natural language processing tasks have
been approached by using paraphrase resources
or paraphrase generation and detection algorithms:
textual entailment (Dagan et al., 2013; Marelli et al.,
2014; Izadinia et al., 2015), semantic similarity
(Agirre et al., 2015; Li and Srikumar, 2016), ma-
chine translation (Mehdizadeh Seraj et al., 2015),
text reformatting (Stein et al., 2014), or question an-
swering (Fader et al., 2013). Paraphrasing can help
to improve sentence compression and text summa-
rization (Cordeiro et al., 2007) as well as natural
language understanding (Ganitkevitch, 2013).

To tackle the task of paraphrasing, large amounts
of paraphrases usually are helpful. Hence, para-
phrase acquisition has gained popularity over the

Flourine-containing
durable water repellent
makes a fabric water-

resistant.

Water bead on a fabric that
has been made non-wetting

by chemical treatment.

Figure 1: Paraphrased captions of an image in the
Wikipedia pages ‘Durable water repellent’ (left) and
‘Wetting’ (right).

recent years and paraphrase datasets have been cre-
ated manually, (semi-)automatically, and via dis-
tant supervision resulting in different levels of “nat-
uralness”, diversity (topic, genre, language, etc.),
granularity (word, sentence, or passage level), and
scale (see Section 2 for details). For model training,
Zhang et al. (2019b) strongly emphasize the impor-
tance of negative examples that are lexically similar
but semantically inappropriate as paraphrases.

With image captions, we propose an as yet un-
derutilized source of natural paraphrases. The un-
derlying hypothesis is that different captions for
the same image form paraphrase candidates be-
cause the captions may describe the same image
content. We study the phenomenon of ‘image reuse
and captioning’ in the English Wikipedia (Figure 1
shows an example) by mining captions of images
that have been reused. Carefully optimized filtering
heuristics for captions and associated images yield
a large set of captions, which we analyze qualita-
tively and quantitatively for their usefulness as para-
phrases. The set of mined image captions forms
our Wikipedia-IPC dataset,1,2 which contains cap-
tion pairs as paraphrases along with their image
source three different quality levels; 30,237 caption
pairs are gold-, 229,877 are silver-, and 656,560
are bronze-quality paraphrase candidates.

1Data: https://doi.org/10.5281/zenodo.7621320
2Code: https://github.com/webis-de/EACL-23
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Image content

Icons,
symbols,

pictograms

Pictures, graphics, paintings, maps, schematics

Image purpose

Ideological (used to convey atmosphere and sentiment) Specific, explanatory, pragmatic (used in discourse)

Brazilian
flag

Up
arrow

Wikimedia
commu-
nity logo

Yellow
card

Icon for
plain

stage in
cycling

stage race

Motorway
exit icon

Pictograms
of Olympic

sports
Athletics

Paraguayan goalkeeper Justo
Villar was awarded as the best
goalkeeper of the tournament.

Romain Grosjean was once again the
center of controversy when he collided

on the first lap with Mark Webber.

AC-130 Spectres
were highly

effective during
the battle.

J. C. A. Corea was
born in the historic

town of Chilaw, on the
west coast of Sri Lanka.

February 10: New
Delhi becomes
India’s capital.

Toronto’s MaRS
Discovery District is
a centre for research

in biomedicine.

Dostana was
filmed almost

entirely in Miami.

The Armenian genocide
(pictured) was the
first event officially

condemned as ¨crimes
against humanity¨.

“I Blame Myself” was co-written by Ariel Rechtshaid
(pictured), who additionally assisted with the songwriting

and production of each track on Night Time, My Time.

Semi hollow-body
electric guitar

Gibson ES-335
has a ¨solid

center block¨
inside a body.

This ¨circular warming
stripes¨ graphic

depicts average global
temperature using

chronologically ordered,
concentric coloured rings.

Water bead on a
fabric that has been

made non-wetting by
chemical treatment.

Dikes are used to
protect the rice

paddy fields from the
channels of saltwater

which overflow
during high tide.

The camouflage
grouper Epinephelus
polyphekadion is the

type-host of P. viscosus;
the photograph

shows a specimen
from New Caledonia.

The stone is
against the

half-timbered
wall of Exmewe

Hall, on
St. Peter’s

Square, Ruthin.

A sub-surface Metropolitan
line A Stock train (left) passes

a deep-tube Piccadilly line
1973 Stock train (right) in
the siding at Rayners Lane.

The X-38 CRV prototype makes
a gentle lakebed landing at the

end of a July 1999 test flight at the
Dryden Flight Research Center
with a fully deployed parafoil.

Tylosaurus proriger mounted skeleton in
the Rocky Mountain Dinosaur Resource

Center in Woodland Park, Colorado.

Table 1: Example Wikipedia images and captions. Following Bär (2008), we categorize images by content as icons,
symbols, pictograms (left), or pictures, graphics, etc. (middle and right). Pictures, graphics, etc. can be further
subdivided by the purpose they serve in a text as either ideological (i.e., to convey sentiment; middle) or pragmatic
(i.e., to explain and specify; right).

The usefulness of an image caption as a para-
phrase depends strongly on its corresponding im-
age. Table 1 shows example image–caption pairs
from Wikipedia, organized by content and purpose
classes. Icons, symbols, and pictograms rarely have
captions that are useful as paraphrase candidates,
while for pictures, graphics, paintings, maps, and
schematics, the purpose of the image in a page is
crucial. In this regard, “ideological purpose” means
that the image is mainly used for aesthetic reasons,
resulting in captions that do not describe the shown
content but rather some context, atmosphere, or sen-
timent. By contrast, explanatory or pragmatic im-
ages try to illustrate or transport knowledge. Their
captions describe and explain (parts of) the visual
content and form a particularly promising source
of natural paraphrases.

2 Related Work

Paraphrase Corpora To collect high-quality
paraphrases, some studies applied manual acqui-
sition. For instance, for the Webis-CPC-11 (Bur-
rows et al., 2013), crowdworkers were asked to
rewrite one of 4,096 passage-level literature ex-
cerpts “so that the rewritten version has the same
meaning, but a completely different wording and
phrasing.” The resulting 7,859 pairs form one of
the few passage-level paraphrase corpora. Later,
also Xu et al. (2014) crowdsourced sentences with
the same meaning as a shown sentence from some
tweet for their PIT-2015 dataset (18,862 sentence
pairs, 5,641 considered paraphrases).

Since crowdsourcing is costly to scale, automatic
paraphrase acquisition often simply relies on ma-
chine translation. For instance, Zhang et al. (2019b)
scrambled words and forth-and-back translated sen-
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tences to obtain a gold dataset of 108,463 para-
phrase pairs and a silver dataset of 656,000 pairs.
Also, the ParaNMT-50M dataset (Wieting and Gim-
pel, 2018) with 30 million “strong” paraphrases
(assessment by the authors), was created by trans-
lating sentences from English-Czech parallel pairs.

Trying to combine the advantages of manual
and automatic methods (quality vs. scale), most
paraphrase acquisition methods use distant supervi-
sion. For instance, Barzilay and McKeown (2001)
suggested aligned sentences from monolingual par-
allel corpora as paraphrases—an idea later used
by Dolan and Brockett (2005) to create the Mi-
crosoft Research Paraphrase Corpus (5,801 man-
ually annotated sentence pairs, 3,900 considered
paraphrases). Instead of monolingual sources, Ban-
nard and Callison-Burch (2005) exploited bilingual
parallel corpora by aligning phrases that translate
into the same pivot phrase in another language.
Based on this idea, the English/Spanish PPDB 1.0
(Ganitkevitch et al., 2013) and its extension to
23 additional languages (Ganitkevitch and Callison-
Burch, 2014) with an English portion of 7.6 million
lexical (i.e., synonymous) and 68.4 million phrasal
paraphrases form the biggest paraphrase collection.

Translation pivoting was also used for the Opus-
parcus (Creutz, 2018) and TaPaCo (Scherrer, 2020)
datasets. Opusparcus was created from movie and
TV subtitles in six European languages. The auto-
matically filtered training set contains 7 million En-
glish sentence and phrase pairs (“good” or “mostly
good” paraphrases according to the authors) while
the manually labeled development and test sets con-
tain 3,088 pairs (1,997 paraphrases). Analogously,
TaPaCo is created from the multilingual Tatoeba
data, a crowdsourced collection of sentence trans-
lations.3 The English part of TaPaCo contains
158,000 sentences that are clustered in 62,000 para-
phrase sets. Instead of translation, Lan et al. (2017)
used a different pivoting method for their Twitter
News URL Corpus. They mined tweets that contain
the same hyperlink and labeled 51,524 respective
sentence pairs via crowdsourcing. Our paraphrase
acquisition methodology is also based on a pivoting
technique, but the pivot media are images.

Captions and Paraphrases Our idea to use im-
ages from the web as pivots for distant supervi-
sion paraphrase acquisition is inspired by stud-
ies on crowdsourced caption datasets. For in-
stance, Marelli et al. (2014) extracted a collection

3https://tatoeba.org/eng/about

Dump Pages Revisions Images Image refs.

Small 22,311,116 22,311,116 4,508,808 7,384,368
Full 54,898,564 987,527,838 11,183,853 3,629,447,851

Table 2: Image mining statistics of Wikipedia dumps.
“Small” refers to all articles, templates, media descrip-
tions, and primary meta-pages without edit histories,
whereas “Full” includes edit histories.

of 9,840 paraphrase candidates from the Flickr 8k
dataset (Rashtchian et al., 2010) of 8,000 im-
ages each with 5 crowdsourced captions and the
MSR Video Paraphrase Corpus (Chen and Dolan,
2011) of 2,000 short video clips with 85,000 En-
glish crowdsourced descriptions of what can be
seen. The larger MSCOCO dataset (Lin et al.,
2014) with 120,000 images each having 5 crowd-
sourced captions was even already used to train
a neural paraphrase generation model (Prakash
et al., 2016). Interestingly, the existing caption-
paraphrasing datasets were all created in dedicated
crowdsourcing processes that are costly to scale.
We are the first to explore mining “real” image cap-
tions from the web (i.e., not crowdsourced) as a
paraphrase acquisition method.

3 Caption-Based Paraphrase Acquisition

We collect captions of images that are used on the
English Wikipedia, grouping those captions that
describe the same image. This section outlines the
mining and filtering steps.

Data Source: Wikipedia As a source for para-
phrases, we use captions from Wikipedia arti-
cles. Wikipedia is a collection of well-formulated,
human-written text that is constantly being im-
proved by a community of volunteer editors. The
guidelines for the use of images on Wikipedia en-
courage editors to write a caption to explain the
relevance of an image in a particular context, re-
sulting in 60% of images having a caption.

We use the English Wikipedia for the paraphrase
acquisition (Wikimedia, September 1st, 2022).4

Two versions of Wikipedia dumps are available
for the paraphrase acquisition—a reduced dataset
with all articles, templates, media descriptions, and
primary meta pages and a full-size dump with all
pages, including their full revision history. Table 2
compares the number of pages, revisions, images,
and image references between these two datasets.

4https://dumps.wikimedia.org/enwiki/
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Images Image references Image captions Paraphrase cand.

Filter Remaining ∆ Refs. ≥ 2 Refs. ≥ 5 Remaining ∆ µimg Remaining ∆ Remaining ∆

0. No filter 4„508,808 – 941,339 102,046 7,384,368 – 1.64 4,571,671 – 355,619,088 –

1. References ≥ 2 941,339 -79% 941,339 102,046 3,816,899 -48% 4.05 2,053,338 -55% 355,619,088 0%
2. References ≤ 10 918,758 -2% 918,758 79,465 2,494,271 -35% 2.71 1,569,327 -23% 1,350,050 -100%

3. Has caption 713,815 -22% 494,321 32,949 1,499,479 -40% 2.10 1,569,327 0% 1,350,050 0%
4. Caption words ≥ 6 518,851 -27% 300,244 18,436 987,541 -34% 1.90 1,014,351 -35% 760,448 -44%
5. Caption is sentence 97,496 -81% 23,062 665 128,893 -87% 1.32 129,776 -87% 44,005 -94%

6. References ≥ 2 23,062 -76% 23,062 665 54,459 -58% 2.36 54,940 -58% 44,005 0%
7. Unique candidates 22,643 -2% 22,582 507 52,394 -4% 2.31 52,394 -5% 39,995 -9%
8. Divergent captions 18,979 -16% 18,979 391 43,616 -17% 2.30 43,616 -17% 32,830 -18%
9. Significant caption diff 17,293 -9% 17,293 386 40,131 -8% 2.32 40,131 -8% 30,237 -6%

Table 3: Effects of the filtering steps in the paraphrase acquisition pipeline on the number of images, references,
captions, and paraphrase candidates mined from the reduced Wikipedia dump. Images that have been referenced
at least 2 or 5 times are called “Refs. ≥ 2” and “Refs. ≥ 5”, respectively. µimg describes the average number of
references per img.

Image and Caption Mining Wikimedia Com-
mons is a service which hosts free-to-use images
and other media files which are used across all
Wikimedia projects (like Wikipedia). The markup
language for Wikipedia articles, Wikitext, features
the extended image syntax, which allows editors to
insert images into Wikipedia pages from Wikime-
dia Commons. The specified image is referenced
by its unique identifier in Wikimedia Commons,
which is a concatenation of a generic media type
prefix (e.g., Image) followed by a colon and its
(also unique) filename. The extended image syntax
allows the specification of style properties, meta-
information, and a caption. If a caption is present,
we store it along the image reference.

However, not all images in Wikipedia pages are
included by the use of the extended image syn-
tax. Wikitext allows the use of (user-created) style
templates, often with inconsistent image reference
syntax. Infoboxes on Wikipedia are template-based
tables placed at the beginning of an article that
contain a collection of the most important informa-
tion about its subject. They are commonly used in
Wikipedia—20% of all the pages contain one. Im-
portant to us is that one third of the infoboxes con-
tain one or even multiple images, and about 56%
of these images have a caption. Wikitext represents
infoboxes as lists of key-value pairs whose sets of
allowed keys and values are defined in templates.
There are close to 2,000 different infobox templates
based on semantic categories of an article. The re-
sponsible keyword for image referencing varies
among these templates, and to cover all cases is not
feasible. Thus, we identified the most commonly

used keyword which is “image”, followed by an
optional counter for multiple images. These cap-
tions are mined as individual image–caption pairs.
No Wikitext parser other than Wikipedia’s own im-
plementation (which is monolithically intertwined
with Wikipedia’s software stack) is capable of re-
liably parsing all the different template syntaxes.
Our heuristic for image mining from infoboxes
yields an increase of 24% of image references.

In addition to a caption, an image reference may
also have an alternative text that accurately de-
scribes the visual content of an image. Alternative
texts are intended to serve as a substitute in case
the user is visually impaired, or the image cannot
be displayed correctly. According to Wikipedia’s
policy, all images are obliged to have an alternative
text, except those with a purely decorative purpose.
We extract them as paraphrase candidates, too. Al-
together, 355 million caption pairs are mined that
we subsequently filter as follows (see Table 3).

Image Filter A necessary condition for an im-
age to be useful is that it has been referenced at
least twice, so we discard all image captions whose
images have only one reference. As illustrated in
Table 1, the likelihood of image–caption pairs to
form a pair of paraphrase candidates depends on
the image’s content and purpose. A useful feature
to discard icons, symbols, and pictograms is the
number of references. These images occur more
frequently than any other kind of image. To dis-
card them, we set an upper bound of 10 references
per image for the corresponding image–caption
pairs to be retained. After these steps, 1.35 million
image–caption pairs remain (see Table 3).
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Caption Filter The selection of caption pairs
has a substantial effect on the quality of the ac-
quired paraphrases. As a consequence, all mined
image captions pass through various carefully opti-
mized pre-processing and filtering steps. The pre-
processing pipeline comprises cleansing of Wiki-
text markup, removal of line-breaks, and white-
space normalization (e.g., removal of sequences).

To discard trivial image captions, we determined
a lower bound for the caption length through man-
ual observation and found that most captions that
represent a phrasal expression contain at least
6 words. Captions with less than that usually com-
prise the name of an entity that can be seen in the
image and are consequently discarded.

Through manual review, we identified three com-
mon practices for writing image captions with re-
spect to style and syntax. Captions on Wikipedia
are either: (1) simple noun phrases (e.g., “Last
Supper by Dieric Bouts”), (2) sentence fragments
containing a verb phrase (e.g., “Last Supper drawn
by Dieric Bouts”), or (3) grammatically correct
sentences (e.g., “The Last Supper was drawn by
Dieric Bouts”). The latter two caption types are
more likely to be a source of high-quality para-
phrases, whereas grammatical sentences are most
desirable. To discard noun phrases, it is sufficient
to exclude captions that do not contain verbs. The
detection of proper sentences is far more difficult.

Grammaticality and sentence fragment detection
is a broad research field and most state-of-the-art
methods use neural models. However, to ensure
high precision in the resulting paraphrase dataset,
we resorted to a more efficient and effective heuris-
tic that is well suited for captions: rule-based sen-
tence classification. Since the authors of existing
rule-based grammar checkers rarely publish their
full rule sets, we create our own rules to identify
grammatical sentences. To find suitable rules, we
take 500 and 100 random captions from Wikipedia
to create a training and test set, respectively. An
expert with 20 years of experience in the field of
linguistics manually annotated the 600 captions to
determine whether they are sentences or sentence
fragments. Based on the 500 annotations from the
training set and the associated automatically as-
signed POS tags, the expert manually created a set
of rules to distinguish fragments from sentences.

Table 4 shows our sentence classification rules
based on POS tags from Penn Treebank (Taylor
et al., 2003). To be considered a sentence, a cap-

Rule Premise Pattern

1 .∗MD.∗ .∗ MD RB? VB .∗

2 .∗(WDT|WP|WRB).∗ [¬(WDT|WP|WRB)]∗
(VBP|VBZ|VBD).∗

3 .∗IN.∗ [¬IN]∗(VBP|VBZ|VBD).∗
4 ⊥ .∗(VBP|VBZ|VBD).∗

Table 4: POS-based rules for sentence classification.

tion must satisfy one of these rules. Which rule
should be applied is determined by its premises,
which are tested in the order given. The first rule
targets sentences that contain modals. A modal
must be directly followed by an optional adverb
and an obligatory verb in the base form. A sentence
that would be correctly classified as such is “Last
Supper might be drawn by Dieric Bouts”. The sec-
ond and third rules deal with subordinate clauses
at the end of a sentence. These rules state that an
inflected verb must precede a subordinating con-
junction. For example, “Last Supper was drawn
by Dieric Bouts which is an exceptional artwork”
would be correctly classified as a sentence under
Rule 2. Rule 4 requires that sentences contain an
inflected verb and is applied when no other premise
is satisfied. “Dieric Bouts drew the Last Supper” is
a correctly classified sentence according to Rule 4.

Our heuristic sentence classifier performs satis-
factorily with a precision of 94% and a recall of
79%, evaluated on the 100 annotated captions in
the test set. Problematic cases are verbs that have
identical base and inflected forms, which are of-
ten mislabeled by the POS tagger of the Stanford
CoreNLP toolkit (Manning et al., 2014).

After application of these caption filters, in total
44,005 image–caption pairs remain (see Table 3).

Image Equivalence Wikipedia hosts all of its
media files on Wikimedia Commons, and there-
fore we can identify duplicate images without re-
quiring physical copies of an image. All images
have a unique name that, along with a file type
prefix, points to the URI of their description page
on Wikimedia Commons. When an editor of a
Wikipedia article wants to include an image from
Wikimedia Commons, the image is referenced by
this URI. Therefore, this URI is the criterion for
deciding whether images are equivalent. All file
type prefixes are derived from the common “File”
prefix. Therefore, all image prefixes are normal-
ized to “File” prefixes to detect image duplicates
with inconsistent prefix usage.
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Paraphrase Construction All references that re-
fer to the same image are grouped into clusters.
Paraphrase candidates are constructed by forming
all possible unique pairs of captions of the same
caption type (i.e., alternative text or regular caption)
within each cluster. Combining regular captions
and alternative texts rarely results in meaningful
paraphrases due to their different purposes. Alter-
native texts describe the visual content of an image,
while regular captions describe the image in con-
text and from the perspective of an article.

Of these paraphrase candidates, we discard cap-
tion pairs that are exact or near-duplicates. We
consider a caption pair to be a near-duplicate if
it differs only by punctuation, capitalization, or
whitespaces. (Near-)duplicates of captions are ar-
tifacts of reusing centrally hosted captions for the
same image in different articles on Wikipedia. Re-
moving duplicates results in 30,237 caption pairs
as paraphrase candidates (see Table 3).

Corpus Construction We create three individual
paraphrase datasets with different quality levels
which we assign based on the used Wikipedia dump
and the set of applied filtering heuristics.

Gold-quality paraphrase candidates are pairs
of acquired image captions from the reduced
Wikipedia dump which are classified as (sequences
of) sentences by our rule-based classifier. Table 3
shows the loss of images, references, captions, and
paraphrase candidates due to the application of our
filter heuristics. In total, 30,237 gold-quality para-
phrase candidates were acquired with our pipeline.

The most “aggressive” filter heuristic in the
pipeline is the sentence classification of image cap-
tions. It discards 87% of the mined image captions.
Since phrases can also be in a paraphrase relation,
we construct a silver-quality paraphrase dataset by
exchanging the sentence classifier for a heuristic
that requires image captions to contain a verb. This
heuristic excludes 50% of image captions for the
paraphrase acquisition. This altered pipeline mined
229,877 silver-quality paraphrase candidates.

For the bronze-quality paraphrase dataset, we
collect as many reasonable caption-pairs as possi-
ble, using the full Wikipedia dump with edit history
as source for the paraphrase acquisition. We set the
upper bound of allowed number of references per
image to 18, the average number of revisions per
page. Thus, an image can be referenced at most
180 times. The verb heuristic is applied. This yields
656,560 bronze-quality paraphrase candidates.

4 Corpus Analysis and Evaluation

We analyze and evaluate our paraphrase corpus
based on the quantification of paraphrase similarity,
for which we select well-known syntactic and se-
mantic measures, and compare our corpus with five
state-of-the-art paraphrase and three image–caption
corpora from the literature. Therefore, we propose
a new measure ∆sem,syn that measures paraphrase
sophistication based on the difference of semantic
and syntactic similarities. To validate the proposed
measure we analyze the correlation between human
judgments and automatically computed semantic
and syntactic similarities.

Analyzing Paraphrase Similarity
According to Wahle et al. (2022), high-quality para-
phrases are texts pairs with high semantic similarity
and high lexical and syntactic diversity, as para-
phrasing models trained on linguistically diverse
examples tend to be more robust (Qian et al., 2019).
Similarly, Niu et al. (2021) measures paraphrase
quality by rewarding high semantic similarity while
penalizing high lexical overlap. The relation be-
tween semantic and syntactic similarity character-
izes the “sophistication” of a paraphrase. Based on
this assumption, we propose ∆sem,syn to quantify
the sophistication of paraphrases. ∆sem,syn com-
putes the average difference between the average
semantic and syntactic similarity scores.

Similarity Measures To measure syntactic sim-
ilarities between pairs of paraphrases, we choose
ROUGE-1, ROUGE-L (Lin, 2004), and BLEU
(Papineni et al., 2002). ROUGE-1 assesses uni-
gram overlap, ROUGE-L computes lexical simi-
larity based on the longest-common-subsequence
paradigm, and BLEU is computed up to 4-grams
to quantify structural similarity. All three measures
have been proposed and evaluated for paraphrase
generation and acquisition.

The computation of semantic similarity is done
by transformer-based models. One of our three
measures is BERTScore (Zhang et al., 2019a) since
it was found to correlate well with human judg-
ments for the task of automatic image captioning.
The second one is the cosine similarity of dense vec-
tor representations computed by a BERT-based Sen-
tence Transformer (Reimers and Gurevych, 2019).
It proved to be decisive at Sent-Eval on the MSRPC.
The third one is Word Mover Distance (Kusner
et al., 2015) which computes the minimum amount
of distance that embedded words of a text need to
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Syntactic similarity Semantic similarity

Image Caption Pairs ROUGE-1 ROUGE-L BLEU Avg. WMS BERT ST Avg. ∆sem,syn

A1: An Easter postcard from 1907 depicting a rabbit.
0.53 0.13 0.14 0.27 0.76 0.76 0.90 0.81 0.54A2: A 1907 postcard featuring the Easter Bunny.

B1: Twelfth century illustration of a man digging.
0.13 0.13 0.10 0.12 0.51 0.47 0.83 0.60 0.48B2: An English serf at work digging, c. 1170.

C1: Troops clearing rubble after the May air raid on Belfast.
0.90 0.90 0.99 0.93 0.92 0.89 0.98 0.93 0.00C2: Soldiers clearing rubble after the May air raid on Belfast.

D1: System of a Down is composed of four Armenian-Americans.
0.42 0.42 0.33 0.39 0.50 0.07 0.32 0.30 -0.09D2: Dolmayan drumming with System of a Down in 2011.

Table 5: Examples from the Wikipedia-IPC dataset with particularly high and low ∆sem,syn. Caption pairs with high
∆sem,syn are structurally and lexically diverse while maintainig high levels of semantic similarity. Caption pairs with
low ∆sem,syn are either semantically dissimilar or have a high degree of lexical overlap.

“travel” to reach the embedded words of another
text. We use the inversion of this measure as a
Word Mover-based similarity score (WMS). All
transformer-based models were applied with de-
fault hyperparameter configurations using a single
NVIDIA A100 Tensor Core GPU. We normalize
all the syntactic and semantic similarity measures
to a scale from zero to one before we compute the
average syntactic and semantic similarity.

Table 5 shows particularly sophisticated and un-
sophisticated caption pairs as paraphrases quanti-
fied by ∆sem,syn from the Wikipedia-IPC (silver
quality). Caption A1 is a paraphrase of A2 with
a significantly different structure and sufficiently
high lexical diversity. There is some unigram over-
lap, which causes the ROUGE-1 score to be com-
paratively high, since these captions are quite short.
Due to the high semantic similarity of A1 and A2
these mutual paraphrases score high in the ∆sem,syn
measure. B1 and B2 have almost no words in com-
mon, but they are nevertheless semantically close.
One semantic difference is that an “English serf” is
a different concept than “a man” is, which could
be the reason for the comparatively lower semantic
similarity. However, the semantic similarity is high
enough to yield a high ∆sem,syn. In (C1, C2) and
(D1, D2) we see caption pairs that do not qualify
as “good” paraphrases for two different reasons. In
C2, a single word is replaced by a synonym in C1
and therefore has almost identical wording to C1.
Although D1 and D2 are captions that both refer
to the band “System of a Down”, they describe
entirely different aspects, which is reflected in the
semantic similarity scores. Therefore, both pairs
(C1, C2) and (D1, D2) receive a low ∆sem,syn value.

Syntax: ROUGE-1 ROUGE-L BLEU Average

r 0.78 0.77 0.70 0.79

Semantics: WMS BERT ST Average

r 0.59 0.70 0.78 0.76

Table 6: Top: Pearson correlation between manual
judgements of syntactic similarity and the measures
ROUGE-1, ROUGE-L, BLEU, and their average. Bot-
tom: Pearson correlation between manual judgements
of semantic similarity and the measures Word Mover
Score (WMS), BERT-Score (BERT), Sentence Trans-
former (ST), and their average.

Manual Similarity Judgments In order to in-
vestigate whether the chosen similarity measures
accurately quantify syntactic and semantic simi-
larity, we conduct a manual annotation study to
measure the correlation between the measures and
human similarity ratings. For that purpose, we
sampled 100 paraphrases from each of the three
datasets–Wikipedia-IPC, MSRPC, and TaPaCo.
We draw paraphrase examples with a length of
10 to 30 words stratified by their ∆sem,syn distribu-
tion in their corresponding datasets. Four expert
annotators with at least six years of experience rate
semantic and syntactic similarity of all the 300 ex-
amples on a 5-point Likert scale.

Figure 2 shows the distribution of semantic and
syntactic similarities of the median rating from
the annotation study. These figures show that the
semantic and syntactic similarities of the exam-
ples from the three different datasets are uniquely
distributed. Examples from the TaPaCo corpus
are pairs with subtle differences at the syntactic
level that ultimately result in minor semantic differ-
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Figure 2: Distribution of semantic and syntactic similarity (characteristic map) for three datasets at sample size 100
for paraphrases with a length between 10 and 30 words. Among others, it can be seen that the TaPaCo corpus
comprises paraphrases that result from subtle and minor changes within a paraphrase’s sentence pairs (44 x syn-
4/sem-3), while Wikipedia-IPC shows a more uniform distribution along the diagonal syn-0/sem-0. . . syn-4/sem-4.

Corpus Corpus statistics Syntactic similarity Semantic similarity

Subset Type Number Length ROUGE-1 ROUGE-L BLEU Avg. WMS BERT ST Avg. ∆sem,syn

ST > 0.8 n % µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ

Wikipedia-IPCgold C 10,327 34% 17.97 9.97 0.74 0.18 0.71 0.20 0.56 0.28 0.67 0.21 0.83 0.12 0.69 0.19 0.91 0.06 0.81 0.11 0.14 0.13
Wikipedia-IPCsilver C 105,475 29% 20.38 13.56 0.71 0.19 0.67 0.22 0.52 0.28 0.63 0.22 0.63 0.20 0.81 0.12 0.90 0.06 0.78 0.12 0.15 0.12

Flickr8k C 29,011 36% 11.65 3.70 0.53 0.16 0.48 0.17 0.22 0.14 0.41 0.14 0.59 0.13 0.73 0.10 0.86 0.05 0.73 0.08 0.32 0.09
PASCAL C 3,329 33% 9.83 3.30 0.51 0.16 0.47 0.17 0.22 0.14 0.40 0.15 0.59 0.13 0.72 0.10 0.86 0.05 0.73 0.08 0.32 0.09
MS-COCO C 392,248 32% 10.54 2.25 0.51 0.16 0.45 0.16 0.22 0.13 0.39 0.14 0.57 0.14 0.71 0.10 0.86 0.04 0.71 0.08 0.32 0.09
PAWS G 64,940 99% 21.36 5.47 0.94 0.03 0.79 0.12 0.69 0.18 0.81 0.10 0.82 0.10 0.96 0.04 0.97 0.03 0.92 0.04 0.11 0.08
ParaNMT-5m G 2,607,580 49% 11.97 6.18 0.63 0.15 0.60 0.16 0.33 0.19 0.52 0.16 0.60 0.14 0.75 0.17 0.87 0.05 0.74 0.09 0.22 0.13
MSRPC H 3,720 64% 20.02 4.94 0.73 0.12 0.69 0.13 0.54 0.20 0.65 0.14 0.72 0.11 0.82 0.08 0.90 0.05 0.82 0.07 0.16 0.10
PPDB 2.0 H 654,531 24% 4.53 0.69 0.64 0.18 0.63 0.18 0.32 0.18 0.53 0.17 0.64 0.22 0.63 0.30 0.89 0.05 0.72 0.14 0.19 0.15
TaPaCo H 117,447 52% 5.47 2.28 0.65 0.18 0.63 0.18 0.30 0.16 0.53 0.16 0.78 0.14 0.79 0.21 0.91 0.06 0.83 0.10 0.30 0.13

Table 7: Comparison of syntactic similarity (measured as the average of ROUGE-1, ROUGE-L, and BLEU) and
paraphrase semantic similarity (measured as the average of BERTScore, Sentence Transformer (ST) and Word Mover
Score (WMS)) of semantically similar examples (Sentence Transformer > 0.8) from state-of-the-art paraphrase
corpora, image caption corpora, and the new silver-quality Wikipedia-IPC. “Type” classifies the acquisition method
in caption (C), automatically generated (G), and human-written (H) (e.g., acquired via crowd-sourcing).

ences. In contrast, examples from the Wikipedia-
IPC (and MSRPC to some extent) are more evenly
distributed along the diagonal syn-0/sem-0, . . . ,
syn-4/sem-4. While Wikipedia-IPC has examples
from all semantic similarity levels, semantic simi-
larity is higher among examples from the MSRPC.

To justify the choice of the semantic and syn-
tactic similarity measures, we compute Pearson
correlation coefficients with manual similarity judg-
ments. Table 6 shows high correlation values for
syntactic and semantic similarity ratings, which
renders our measures well suited for the given task.

Quantitative Similarity Analysis In the para-
phrase literature, authors usually require pairs of
texts to have varying degrees of semantic similarity

to consider them paraphrases of each other. The
choice of a “semantic threshold” drastically affects
the distribution of syntactic and semantic similari-
ties of paraphrases within a dataset. To standardize
the decision criteria for paraphrases, we manually
set a semantic threshold that allows us to compara-
bly evaluate paraphrases from each dataset.

We choose the semantic similarity score from the
Sentence Transformer as the decision criterion for
the subset of paraphrases under consideration be-
cause it has the highest correlation with human rat-
ings of semantic similarity. To find a reliable thresh-
old, we analyze the distributions of Sentence Trans-
former scores of paraphrases and non-paraphrases
within the MSRPC and found that a threshold of 0.8
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correctly classifies paraphrases with a precision and
recall of 82% and 77%, respectively.

Table 7 shows the results of the comparison of
syntactic and semantic similarities of paraphrase
pairs with a high semantic similarity (ST > 0.8)
grouped by type which is either image caption (C),
automatically generated (G), or human-written (H).
f calculates the frequency of text pairs that exceeds
the semantic threshold of 0.8 relative to all exam-
ples in the dataset while ∆sem,syn computes the
average difference between the average semantic
and syntactic similarity scores.

The high syntactic and semantic similarities of
the examples from the PAWS dataset are striking.
PAWS was designed as a benchmark corpus for
paraphrase detection and contains lexically simi-
lar text pairs with subtle semantic inconsistencies
that are difficult to distinguish from actual para-
phrases. The high ROUGE-1 value of 94% with
a low standard derivation of 0.03 translates to an
almost identical wording. Hence, it is no surprise
that the ∆sem,syn is the lowest among all datasets.

From the gold and silver quality proportions of
the Wikipedia-IPC, 34% and 29% of the examples
exceed the semantic threshold, respectively. These
rates are in line with those of the other caption cor-
pora studied. Furthermore, we find that all caption
datasets have similar overall syntactic and seman-
tic similarities. However, the caption pairs from
the Wikipedia-IPC tend to have higher syntactic
similarity. We suspect that this observation is due
to Wikipedia’s caption reuse policy, which allows
editors to use slightly modified existing captions
rather than inventing a new text. However, the
sufficiently large ∆sem,syn of the Wikipedia-IPC,
which is on par with the commonly used MSRPC,
and larger than that of the other caption corpora
strongly suggests the suitability of image captions
as a source of interesting paraphrases.

5 Conclusion and Future Work

We propose a new approach to use image captions
as a resource for paraphrasing. From Wikipedia,
we extracted 30,237 caption pairs in gold quality,
229,877 in silver quality, and 656,560 in bronze
quality for our new Wikipedia-IPC dataset. As
part of our analysis, we found that many caption
pairs are “sophisticated” paraphrases in the sense
of being semantically similar but dissimilar at the
lexical and syntactic levels. We have introduced a
respective measure for assessing paraphrase sophis-

tication based on semantic and syntactic similar-
ity. The new measure correlates well with manual
judgments, and we have shown that paraphrases
from different sources have individual characteris-
tics along the two similarity dimensions. Studying
large sets of paraphrases with characteristics re-
quired by a specific task (e.g., sophisticated vs. only
word order changed) will be useful for task-specific
paraphrase recognition and generation approaches,
and for natural language understanding as a whole.

In future work, we plan to extend the mining pro-
cess to larger web resources than the Wikipedia and
to apply image analysis as a new equivalence cri-
terion. Identifying highly similar but not identical
images may help to identify even more caption-
based paraphrase candidates.

Limitations

Challenging for our proposed paraphrase acquisi-
tion approach are captions that describe the same
image in very different contexts (e.g., maps). Such
captions tend to focus on rather different aspects of
the image (e.g., rivers vs. cities on a map) but since
the captions often still share some commonalities,
the semantic component of our proposed measure
∆sem,syn might still classify the captions as simi-
lar. A “deeper” estimation of semantic similarity
could help. With more research on image–text rela-
tionships, applying models such as CLIP (Radford
et al., 2021) or Stable Diffusion (Rombach et al.,
2022) to take image semantics into account might
lead to improvements for our proposed paraphrase
refinement measure.
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Abstract

Generation-based data augmentation (DA) has
been presented in several works as a way to
improve offensive language detection. How-
ever, the effectiveness of generative DA has
been shown only in limited scenarios, and the
potential injection of biases when using gener-
ated data to classify offensive language has not
been investigated. Our aim is that of analyzing
the feasibility of generative data augmentation
more in-depth with two main focuses. First, we
investigate the robustness of models trained on
generated data in a variety of data augmenta-
tion setups, both novel and already presented
in previous work, and compare their perfor-
mance on four widely-used English offensive
language datasets that present inherent differ-
ences in terms of content and complexity. In
addition to this, we analyze models using the
HateCheck suite, a series of functional tests
created to challenge hate speech detection sys-
tems. Second, we investigate potential lexical
bias issues through a qualitative analysis of the
generated data. We find that the potential posi-
tive impact of generative data augmentation on
model performance is unreliable, and genera-
tive DA can also have unpredictable effects on
lexical bias.

 Warning: this paper contains exam-
ples that may be offensive or upsetting.

1 Introduction

Even though large language models have been
found to have a tendency to encode and propa-
gate undesirable social bias (Bender et al., 2021),
going as far as generating toxic sequences start-
ing from non-toxic prompts (Gehman et al., 2020),
the use of synthetic data for offensive language
detection has been found to be potentially help-
ful in improving models (e.g. Juuti et al. (2020);
Wullach et al. (2021); D’Sa et al. (2021)). Indeed,
data augmentation (DA) through generation has the
potential to mitigate some of the known issues of

smaller datasets, which are common in offensive
language detection, such as lack of linguistic varia-
tion and risk of overfitting (Vidgen and Derczynski,
2020). Furthermore, synthetic data can overcome
privacy issues related to the use of social media
data obtained without user consent in research ex-
periments. It can also mitigate dataset decay, an
issue affecting reproducibility, since online mes-
sages, especially abusive ones, tend to be deleted
over time, while synthetic examples do not present
this issue (Klubicka and Fernández, 2018).

While generative DA has been shown to be po-
tentially useful for the task of detecting offensive
and abusive language online in multiple works, sev-
eral aspects and implications of it remain unex-
plored. First of all, generative DA has mostly been
shown to work for offensive language detection
when starting with a single specific dataset and
using a specific generation setup, with no investi-
gation of the impact of different generation setups
on the quality of the augmented data, as well as
little exploration of cross-dataset or cross-domain
performance. The first aim of our work is therefore
that of assessing the robustness of models across
different sources of variation as follows: i) we train
and test our models using four English offensive
language datasets, testing both within dataset and
cross-dataset performance; ii) we simulate two low-
resource scenarios, in which we start with differ-
ent quantities of gold examples; iii) we compare
four different generation setups, of which two were
used in previous work and two are novel; iv) we
experiment with different thresholds for filtering
the generated data prior to using it for training.

Our second aim for this work is that of conduct-
ing a qualitative analysis on the generated data,
with a focus on lexical bias. In order to do this
we compute the correlation between tokens in of-
fensive texts using PMI1, and we test the models

1For this, we use the implementation by Ramponi and
Tonelli (2022).
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trained on augmented data on the HateCheck suite
(Röttger et al., 2021), which includes a series of
functional tests aimed at finding model weaknesses.

2 Related Work

Model-based data augmentation exploiting large
language models (LLMs) such as GPT-2 (Radford
et al., 2019) has been found effective for various
NLP tasks. One method that has been shown to be
promising is fine-tuning GPT-2 on annotated data,
and then using it to generate additional similar data.
The most common approach is prepending labels to
sequences during fine-tuning, and then using labels
as prompts for the model to generate sequences
belonging to specific classes (Anaby-Tavor et al.,
2020; Tepper et al., 2020; Kumar et al., 2020).

Similar methods have also been successfully ap-
plied to abusive language classification. For in-
stance, Juuti et al. (2020) find that DA using a
fine-tuned GPT-2 model leads to performance im-
provements in very low-resource scenarios. Liu
et al. (2020) use a conditional variant of GPT-2
based on reinforcement learning, where lexical fea-
tures for each class are extracted from the entire
dataset and then used for generation. Wullach et al.
(2021) and D’Sa et al. (2021) use GPT-2 to gener-
ate synthetic hate speech data. They find that the
addition of large amounts of synthetic data helps
classification when starting from datasets contain-
ing thousands of labeled instances. While D’Sa
et al. (2021) follow the label-prepending approach
of Anaby-Tavor et al. (2020), Wullach et al. (2021)
train a separate generative model on data belonging
to each class. Both approaches are found effective,
but they have never been comparatively evaluated.

To our knowledge, the robustness of models
trained using generation-based DA has not been
analyzed in depth. While Wullach et al. (2021) test
their models cross-dataset, results are presented in
a setup in which models are trained on 4 datasets to-
gether and tested on a fifth one. This setup presup-
poses that multiple datasets can be used at once for
training models. However, this might not always be
the case when DA is needed, so we evaluate cross-
dataset setups in which only one dataset is available
for training. In addition, to our knowledge ours is
the first work to pair a robustness analysis with a
qualitative analysis of lexical bias in the context of
generative DA for this task.

3 Data

3.1 Dataset Description

We use four English datasets annotated for offen-
sive or abusive language for training and testing
our models. These datasets have been chosen be-
cause they are widely used and they differ in terms
of content, since they were created to study differ-
ent aspects of offensive language. Intuitively, this
should allow us to assess the out-of-domain behav-
ior of models when doing cross-dataset testing.

Agreement [AG] This dataset by Leonardelli
et al. (2021) is annotated for offensive language and
agreement level among annotators. It contains over
10k tweets dealing with three widely discussed top-
ics on Twitter: the Black Lives Matter movement,
the 2020 US elections, and Covid-19. Offensive
tweets constitute 31% of the dataset.2

Founta [FO](Founta et al., 2018). This dataset
is among the most widely used abusive language
datasets in the literature, and it has been already
employed for generative data augmentation (Wul-
lach et al., 2021; D’Sa et al., 2021). It contains
around 100k Twitter posts annotated using four la-
bels: hateful (7.5%), abusive (11%), normal (59%),
and spam. In order to keep a binary classification
setup that is consistent with the other datasets we
use in our experiments, we group the hateful and
abusive classes together into one single abusive
class, following Leonardelli et al. (2021).3

OLID [OL] The Offensive Language Identifica-
tion Dataset (Zampieri et al., 2019). This dataset
consists of 14,100 Twitter posts annotated for of-
fensive language with two more fine-grained levels
of annotation regarding the target of the offense.
In our experiments we only consider the broader
binary level of annotation, for which 33% of the
dataset is labeled as offensive. The test set we
pair with this dataset is SOLID [SO] (Zampieri
et al., 2020), which was used in the OffensEval
2020 shared task and follows the same annotation
guidelines.4

SBIC [SB] The Social Bias Inference Corpus
(Sap et al., 2020) contains 40k posts from Twitter,
Reddit, and Stormfront, of which 44.8% offensive.
While this dataset provides fine-grained annota-
tions on social biases, we only consider the binary
offensive/not offensive labels in our experiments.5

2https://github.com/dhfbk/annotators-agreement-dataset
3https://zenodo.org/record/3678559
4https://sites.google.com/site/offensevalsharedtask/olid
5homes.cs.washington.edu/~msap/social-bias-frames/
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The above datasets present different characteris-
tics. We consider [FO] and [OL] rather easy to clas-
sify, since standard BERT-based approaches trained
and tested on these datasets yield results above 0.90
macro-F1 (Zhou et al., 2021; Zampieri et al., 2020).
Past works showed that, in case of [OL], classifiers
may perform very well because of the limited pres-
ence of ambiguous tweets (Leonardelli et al., 2021).
In contrast, [AG] was explicitly created to study dis-
agreement among annotators focusing on different
topics, so it contains more challenging instances.
On this dataset, the best performance reported by
the authors is ∼0.75 macro-F1 (Leonardelli et al.,
2021). Finally, [SB] includes data from different
sources, with annotations for diverse targets of hate.
The best classification result reported by the au-
thors is ∼0.80 F1 (Sap et al., 2020).

3.2 Data Splits and Preprocessing

We use the default train/test splits of each dataset,
where available. For [FO], which has no default
splits, we randomly partition the data into train and
test using an 80/20 split. For all datasets, we re-
place URLs and user mentions with URL and @USER
respectively. We then remove all duplicates. We
also remove the substring “RT:” from the begin-
ning of sequences in the [FO] dataset, since it is
extremely common and it could be a confounder
for the model. In addition to this, it has been found
to be associated with hate speech in this dataset
(Ramponi and Tonelli, 2022). Since there is a par-
tial overlap between [SB] and [FO], we remove
instances that are present in the test set of either
dataset from the training data of the other, to ensure
fair cross-dataset evaluation.

4 Methods

We aim at comparing the performance of different
data augmentation setups, both novel and already
employed in previous work. We test them in within-
dataset and cross-dataset scenarios, to assess the
impact of synthetic data on model robustness across
setups. Below is an overview of the process we
follow, whose specifics are detailed in Section 5.

1. We randomly undersample the training data,
obtaining the data subset X consisting of n
examples (Sec. 5.1).

2. We fine-tune the pre-trained classification
model C on X , obtaining CX , which is used
as a baseline and filtering classifier.

3. Depending on the type of generation input
(Sec. 5.2) the pre-trained generation model G
is fine-tuned on the available training data X ,
obtaining GX .

4. The generative model GX is used to generate
synthetic examples.

5. The examples generated by GX are pre-
processed and then filtered based on the prob-
ability assigned to them by the classification
model CX (Sec. 5.3).

6. The generated data is merged with the gold
data X to create the augmented dataset Xaug.

7. The classifier C is fine-tuned on the aug-
mented dataset Xaug to create CXaug .

Model choice We focus on the generation of syn-
thetic data using GPT-2 large (774M parameters)
(Radford et al., 2019). 6 Some recent works exploit
the generative capabilities of GPT-3 for the creation
of new datasets, either in human-in-the-loop setups
(Liu et al., 2022) or in very resource-intensive sce-
narios (Hartvigsen et al., 2022a). We choose to
experiment with GPT-2 because it is freely accessi-
ble and it can be easily fine-tuned, and we aim for
our results to be comparable with those of previous
work where this DA method was found effective
for this task (e.g. Juuti et al. (2020) and Wullach
et al. (2021)).

Model Details For classification, we run our ex-
periments with the BERT base uncased model
(110M parameters) (Devlin et al., 2019) and with
RoBERTa base (125M parameters) (Liu et al.,
2019). We use the Huggingface implementation
(Wolf et al., 2020) for all models. In both cases we
use the default Huggingface TrainingArguments
class hyperparameters, with batch size set to 32.

For generation, we fine-tune GPT-2 large, fol-
lowing Wullach et al. (2021). We use the default
Huggingface hyperparameters, setting the batch
size to 2, adding learning rate warm-up with a ratio
of 0.02 and weight decay of 0.01. Classifiers and
generative models are trained for 3 epochs. For
fine-tuning GPT-2, the input texts are grouped into
documents of maximum length 512 tokens and sep-
arated using end-of-sequence tokens.

After fine-tuning, the generation step is similar
for all models. We use top p decoding (Holtzman

6We performed preliminary experiments using GPT-2
small (117M parameters) as well, finding that overall the gen-
erated data had a similar impact on classification performance.
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et al., 2020) with p = 0.9 and we set the minimum
and maximum lengths of generated sequences to 5
and 100 tokens respectively. We also blacklist the
sequence “@USER” so that it will not be generated,
since it is a very frequent token combination in the
normalized training data.

In all setups, we aim at augmenting the gold data
with 2,000 synthetic examples. This number is
chosen to at least double the available training data
in all setups, and it is kept constant for easier model
comparison. We generate 6,000 sequences for each
setup, to ensure that enough acceptable sequences
will be generated. This estimate is based on the
approach of Wullach et al. (2021), who preserve
roughly 1/3 of the generated texts after filtering.

All experiments are run on a NVIDIA Quadro
RTX 5000 GPU in ∼80 hours total, including both
training and inference for all setups.

5 Experimental Setting

We structure our experiments along three axes of
variation, with the aim of assessing their impact on
model performance. The explored dimensions are
further detailed in the following subsections.

• Number of training instances. In order to
simulate two low-resource scenarios where
different amounts of gold data are available,
we train both classification and generative
models with different amounts of labeled in-
stances. Our aim is that of assessing how
much the usefulness of generative DA changes
when starting with datasets of different sizes.

• Prompting. Different methods can be used
for steering the generation towards one label
or the other. We use two methods found in
previous works, as well as two novel methods,
to assess whether certain prompting methods
lead to differences in synthetic data quality.

• Classifier filtering thresholds. Since prompt-
ing methods are not always enough to steer
the model into generating correct sequence-
label pairs (Kumar et al., 2020), classifiers can
be used to confirm or discard the label assign-
ments made by the generative model (Anaby-
Tavor et al., 2020; Wullach et al., 2021). In our
experiments, we feed the generated sequences
to a classifier (our baseline) and use the proba-
bility given by the classifier to each generated
sequence to either accept the label assigned by
the generator or discard the sequence entirely.

We experiment with two probability thresh-
olds, in order to assess whether the confidence
of the classifier is associated with generated
data quality.

Each model is tested on its own test data (within-
dataset) and on the test data for the other datasets
(cross-dataset).

5.1 Number of Training Instances
Each experiment is performed on varying amounts
of training data, randomly sampling n = 500 or
2,000 examples from each dataset, equally split
between the two labels. We use 500 examples
as the smallest sample size for our experiments
since the smallest dataset size for this task found
by Vidgen and Derczynski (2020) is 469 examples.
We use 2,000 examples as the larger sample size
given that it is still a relatively small dataset size
for deep learning approaches and it reflects the size
of many offensive language detection datasets.

We balance the sampling by class to avoid im-
balance between gold and augmented data, con-
sistently keeping this proportion even across all
experiments. For the [AG] dataset, sampling is
stratified by agreement level as well. Balancing
the classes might make our setup less “realistic”,
given that it does not reflect the actual label distri-
bution of each dataset. However, it is a way for us
to control the impact of class balance differences
between datasets on cross-dataset performance. It
also helps to avoid differences in class balance be-
tween the gold data and the generated data, which
could cause differences in model performance be-
tween setups regardless of the actual quality of the
generated data.

Out of the available data, 1/5 (n = 500) or 1/10
(n = 2, 000) is held out for validation.

5.2 Prompting
We fine-tune GPT-2 using four data formatting se-
tups. Two of the setups have been employed in
previous works, while two are novel and aim at ex-
ploring the ability of the model to leverage natural
language task descriptions for label assignment.

Label tag prompting (tag-prompt). Following
the prompting type in Anaby-Tavor et al. (2020),
we fine-tune the generator G by pre-pending the
label y to each training sequence x, dividing the
two with the separator “[SEP]”. In this setup, the
inputs are concatenated into documents as follows:

“y1 [SEP] x1 [EOS] y2 [SEP] ...”
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At generation time, the model is prompted with
the desired label y followed by the separation token,
and it is expected to generate a sequence belonging
to the y class.

Label in natural language prompting (nl-
prompt). This is the first input setup we propose.
It is inspired by the findings of Schick and Schütze
(2021), in which natural language descriptions of
tasks are found to be helpful for few-shot classifica-
tion tasks. In this setup, the generator G is trained
on sequences so that the label y is contextualized
within the text using natural language. The train-
ing documents for fine-tuning the generators are
structured as:

“This message is y1. x1 [EOS] This ...”

Where y corresponds to offensive or not offensive
depending on the label. At generation time, the
model is prompted with “This message is y”, where
y is the desired label. The sequence produced after
the prompt is expected to belong to the y class.

Cloze question prompting (cloze-prompt).
Again inspired by the findings in Schick and
Schütze (2021), we propose another setup that
exploits the capability of large language models
of learning from patterns in natural language. In
this case, however, the prompt relies on the auto-
regressive nature of GPT-2, in which the proba-
bility of each token is modeled on the previous
tokens. The main aim behind this setup is assess-
ing whether placing the label information at the
beginning or at the end of the sequence affects the
quality of the generated data. In this setup, each
sequence x is followed by the cloze question “Is
that offensive?” and the label is placed at the end
of the sequence, in the form of a Yes/No answer.

“x1. Is that offensive? {Y/N} [EOS] ...”

At generation time, the model receives no
prompting, and it is expected to generate both the
sequence and the cloze question / answer pair in
the correct format. This type of prompting is more
prone than the previously listed ones to generating
sequences that will eventually be discarded, since it
is expected to not only correctly generate sequences
and assign them to a label, but also to produce a
cloze question that follows a specific format.

One model per label (1/label). This setup re-
quires no actual prompting to steer the generation,
since it involves one model for each label rather
than one model for all labels. Following Juuti
et al. (2020) and Wullach et al. (2021), the training
dataset X is divided into Xo and Xn based on the

offensive or non-offensive labels. The generative
model G is then fine-tuned on Xo and Xn sepa-
rately, producing two models for the generation
of new data: Go and Gn. In this setup, the mes-
sages are simply concatenated into documents and
separated by end of sequence ([EOS]) tokens:

“x1 [EOS] x2 [EOS] x3 ...”

At generation time, each model is expected to
generate sequences belonging to the class it was
fine-tuned on.

5.3 Classifier Filtering Thresholds

After generation, the synthetic sequences are
stripped of any prompting and automatically as-
signed the label that emerged during generation.
We discard any sequence that is ≤ 5 characters
long, and normalize the generated data following
the steps described in Section 3.2.

Then, we feed the sequences into the baseline
classifier trained on the same gold data as the gen-
erative model that produced them. Depending on
the label probability assigned by the classifier to
the generated sequences, these are accepted consid-
ering the following thresholds:

• The label predicted by the classifier matches
the label assigned during the generation phase
(label probability p > 0.5)

• The classifier predicts the same label assigned
during generation with p > 0.7 7

After filtering, we randomly select 2,000 generated
examples from the accepted ones in each setup.

5.4 Baselines

As baselines, we employ a BERT-base-uncased
and a RoBERTa-base classifier trained on the same
gold data used to fine-tune GPT-2 in each setup.

We also report the performance of classifiers
trained using simple oversampling as a DA strat-
egy, in which a number of randomly selected train-
ing examples appear multiple times during training.
We match the number of oversampled instances
with the number of synthetic examples we use for
augmenting the training data in each setup, split
evenly across labels. Using oversampling as a base-
line allows us to compare more resource-intensive
DA methods such as the ones we are evaluating
with a simpler strategy.

7This is the same threshold used by Wullach et al. (2021).
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Gold data: 500 examples Test
Train: AGREEMENT AG FO SB SO
No augmentation 0.655 (0.603) 0.805 (0.743) 0.543 (0.537) 0.807 (0.734)

Oversampling 0.725 (0.623)∗ 0.882 (0.768) 0.554 (0.566) 0.875 (0.757)∗

tag-prompt 0.700 (0.638)∗ 0.859 (0.810)∗ 0.547 (0.524) 0.862 (0.804)∗

nl-prompt 0.694 (0.638)∗ 0.863 (0.820)∗ 0.560 (0.546) 0.863 (0.806)∗

cloze-prompt 0.692 (0.634)∗ 0.860 (0.815)∗ 0.545 (0.524) 0.859 (0.803)∗
Filtering:
p > 0.5

1/label 0.716 (0.656)∗ 0.872 (0.834)∗ 0.572 (0.567) 0.874 (0.823)∗

Train: FOUNTA AG FO SB SO
No augmentation 0.683 (0.622) 0.904 (0.874) 0.540 (0.504) 0.888 (0.844)

Oversampling 0.637 (0.585) 0.900 (0.876) 0.589 (0.591)∗ 0.896 (0.841)

tag-prompt 0.679 (0.620) 0.909 (0.881) 0.567 (0.542) 0.897 (0.857)

nl-prompt 0.660 (0.611) 0.909 (0.882) 0.589 (0.575)∗ 0.895 (0.854)

cloze-prompt 0.688 (0.626) 0.913 (0.884)∗ 0.559 (0.527) 0.891 (0.850)

Filtering:
p > 0.5

1/label 0.683 (0.624) 0.910 (0.882) 0.579 (0.563)∗ 0.893 (0.851)

Train: SBIC AG FO SB SO
No augmentation 0.556 (0.413) 0.646 (0.472) 0.746 (0.780) 0.714 (0.570)

Oversampling 0.591 (0.481)∗ 0.700 (0.540)∗ 0.780 (0.801)∗ 0.766 (0.643)∗

tag-prompt 0.561 (0.447) 0.679 (0.531) 0.765 (0.805)∗ 0.744 (0.618)

nl-prompt 0.578 (0.449) 0.687 (0.540) 0.763 (0.803)∗ 0.746 (0.622)

cloze-prompt 0.574 (0.438) 0.663 (0.497) 0.762 (0.799)∗ 0.737 (0.604)

Filtering:
p > 0.5

1/label 0.584 (0.477)∗ 0.676 (0.524) 0.771 (0.805)∗ 0.757 (0.636)∗

Train: OLID AG FO SB SO
No augmentation 0.568 (0.515) 0.766 (0.676) 0.585 (0.588) 0.797 (0.707)

Oversampling 0.584 (0.570) 0.838 (0.792)∗ 0.637 (0.717)∗ 0.865 (0.804)∗

tag-prompt 0.578 (0.567) 0.812 (0.755) 0.610 (0.644) 0.845 (0.786)

nl-prompt 0.581 (0.564) 0.811 (0.763) 0.615 (0.652) 0.838 (0.781)

cloze-prompt 0.586 (0.565) 0.816 (0.763) 0.618 (0.656) 0.843 (0.783)

Filtering:
p > 0.5

1/label 0.575 (0.584) 0.831 (0.791) 0.631 (0.697) 0.855 (0.810)

Table 1: Average macro-F1 scores (over 10 runs) obtained by RoBERTa-base fine-tuned on augmented data, starting
with 500 gold examples. F1 scores for the minority class are in parentheses. Grey cells contain within-dataset
results, while the others contain cross-dataset results. Asterisks denote statistically significant results (compared to
no augmentation). The best result for each train-test dataset combination is in bold.

6 Results

In this section we report the results of our experi-
ments. Each experiment is run 10 times, with dif-
ferent random seeds. The metric we use to evaluate
models is macro-F1 score.

In order to reliably compare the distributions of
results across runs, we use Almost Stochastic Order
(ASO) (Dror et al., 2019; Del Barrio et al., 2018) in
its implementation by Ulmer et al. (2022). Follow-
ing their findings, we use τ = 0.2 as a threshold
for statistical significance.8

Table 1 and Table 2 show the results obtained by
RoBERTa-base models fine-tuned on augmented
data when starting with 500 and 2,000 gold exam-
ples respectively. While for the setup in which we
start with 2,000 annotated examples (Table 2) we
use both filtering thresholds (p > 0.5 and p > 0.7),

8This threshold has a Type I error rate comparable to that
of a p-value threshold of 0.05 (Ulmer et al., 2022).

for the setup in which we start with 500 exam-
ples we report the results for models trained on
generated data filtered with the p > 0.5 threshold
only. The reason for this is that with less data, the
confidence of the model is much lower, and not
all 10 runs can generate enough examples that are
classified with a confidence score higher than 0.7.

Impact of number of training instances Over-
all, it appears that data augmentation is more ef-
fective in very low-resource scenarios, such as the
setting with 500 examples. The fact that DA is
more useful as the amount of available data lowers
is in line with what has been observed for other
tasks, as well as in multiclass setups, albeit with a
much lower number of examples per class (Anaby-
Tavor et al., 2020; Kumar et al., 2020). In the setup
where 2,000 gold examples are available, there are
very few significant improvements in performance
when using generative data augmentation.
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Gold data: 2,000 examples Test
Train: AGREEMENT AG FO SB SO
No augmentation 0.770 (0.708) 0.900 (0.861) 0.568 (0.580) 0.895 (0.840)

Oversampling 0.761 (0.684) 0.894 (0.848) 0.592 (0.580)∗ 0.877 (0.830)

tag-prompt 0.773 (0.714) 0.900 (0.868) 0.582 (0.563)∗ 0.890 (0.840)

nl-prompt 0.771 (0.712) 0.900 (0.867) 0.576 (0.555) 0.895 (0.850)

cloze-prompt 0.771 (0.713) 0.900 (0.868) 0.576 (0.555) 0.896 (0.850)

Filtering:
p > 0.5

1/label 0.769 (0.712) 0.893 (0.861) 0.594 (0.585)∗ 0.885 (0.837)

tag-prompt 0.766 (0.708) 0.895 (0.861) 0.590 (0.580)∗ 0.887 (0.840)

nl-prompt 0.771 (0.714) 0.898 (0.866) 0.586 (0.572)∗ 0.892 (0.847)

cloze-prompt 0.769 (0.712) 0.897 (0.864) 0.586 (0.570)∗ 0.891 (0.846)

Filtering:
p > 0.7

1/label 0.768 (0.713) 0.894 (0.862) 0.596 (0.586)∗ 0.886 (0.838)

Train: FOUNTA AG FO SB SO
No augmentation 0.635 (0.619) 0.910 (0.883) 0.611 (0.612) 0.904 (0.866)

Oversampling 0.628 (0.604) 0.907 (0.883) 0.615 (0.618) 0.901 (0.859)

tag-prompt 0.645 (0.620) 0.911 (0.883) 0.614 (0.618) 0.901 (0.863)

nl-prompt 0.635 (0.616) 0.911 (0.885) 0.625 (0.633) 0.905 (0.868)

cloze-prompt 0.644 (0.619) 0.915 (0.888) 0.607 (0.607) 0.906 (0.870)

Filtering:
p > 0.5

1/label 0.633 (0.613) 0.910 (0.881) 0.612 (0.615) 0.902 (0.864)

tag-prompt 0.650 (0.623) 0.913 (0.885) 0.619 (0.624) 0.903 (0.865)

nl-prompt 0.645 (0.619) 0.914 (0.887) 0.615 (0.617) 0.908 (0.872)

cloze-prompt 0.640 (0.619) 0.913 (0.885) 0.621 (0.625) 0.904 (0.866)

Filtering:
p > 0.7

1/label 0.647 (0.619) 0.914 (0.886) 0.612 (0.614) 0.907 (0.871)

Train: SBIC AG FO SB SO
No augmentation 0.608 (0.555) 0.737 (0.618) 0.813 (0.844) 0.804 (0.712)

Oversampling 0.591 (0.526) 0.722 (0.590) 0.810 (0.829) 0.789 (0.683)

tag-prompt 0.603 (0.550) 0.725 (0.597) 0.812 (0.840) 0.803 (0.708)

nl-prompt 0.604 (0.547) 0.730 (0.605) 0.814 (0.844) 0.802 (0.708)

cloze-prompt 0.608 (0.552) 0.729 (0.607) 0.814 (0.844) 0.806 (0.714)

Filtering:
p > 0.5

1/label 0.606 (0.548) 0.725 (0.598) 0.811 (0.840) 0.800 (0.704)

tag-prompt 0.608 (0.560) 0.733 (0.611) 0.811 (0.841) 0.807 (0.716)

nl-prompt 0.618 (0.546) 0.724 (0.593) 0.814 (0.842) 0.801 (0.703)

cloze-prompt 0.611 (0.555) 0.735 (0.615) 0.813 (0.844) 0.807 (0.714)

Filtering:
p > 0.7

1/label 0.609 (0.558) 0.733 (0.612) 0.814 (0.844) 0.804 (0.709)

Train: OLID AG FO SB SO
No augmentation 0.584 (0.599) 0.874 (0.841) 0.633 (0.668) 0.897 (0.859)

Oversampling 0.576 (0.580) 0.858 (0.824) 0.637 (0.709) 0.887 (0.845)

tag-prompt 0.570 (0.593) 0.867 (0.832) 0.636 (0.681) 0.891 (0.852)

nl-prompt 0.586 (0.598) 0.875 (0.841) 0.641 (0.681) 0.895 (0.856)

cloze-prompt 0.592 (0.603) 0.878 (0.845) 0.638 (0.672) 0.897 (0.861)

Filtering:
p > 0.5

1/label 0.573 (0.594) 0.871 (0.839) 0.644 (0.687) 0.892 (0.855)

tag-prompt 0.578 (0.597) 0.864 (0.831) 0.634 (0.675) 0.892 (0.853)

nl-prompt 0.581 (0.597) 0.873 (0.841) 0.642 (0.681) 0.896 (0.858)

cloze-prompt 0.582 (0.597) 0.871 (0.839) 0.638 (0.676) 0.895 (0.857)

Filtering:
p > 0.7

1/label 0.579 (0.597) 0.872 (0.839) 0.643 (0.684) 0.895 (0.858)

Table 2: Average macro-F1 scores (over 10 runs) obtained by RoBERTa-base fine-tuned on augmented data, starting
with 2,000 gold examples. F1 scores for the minority class are in parentheses. Grey cells contain within-dataset
results, while the others contain cross-dataset results. Asterisks denote statistically significant results (compared to
no augmentation). The best result for each train-test dataset combination is in bold.

Impact of prompting and filtering Interestingly,
no prompting type seems to clearly outperform the
others across setups. For instance, augmenting the
Agreement [AG] dataset starting with 500 gold ex-
amples has a positive effect on performance across
all prompting types both when tested on the in-

domain test data and when tested on [FO] and
[SO], while when tested on [SB] none of the setups
lead to significant improvements in performance.
This seems to indicate that dataset characteristics
have a greater impact than the prompting setup on
whether generative DA can be effective. However,
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looking at Table 2, the situation is reversed: the
model trained on [AG] only significantly benefits
from data augmentation when tested on [SB] across
most setups. A filtering threshold of 0.7 does seem
to help improve performance at least marginally,
but only on this dataset combination out of all the
ones we tested. Overall, it appears that whether DA
will have a positive impact on classification might
not depend on the generation setup in our case.

Overall findings The most important pattern that
emerges from our results is that generative DA
using GPT-2 does not appear to reliably improve
model performance, both in and out of domain. It
apparently can significantly improve model perfor-
mance, especially for some dataset combinations
and with very low amounts of data. However, this
improvement is not consistent, so based on our re-
sults we would advise against considering this type
of DA a reliable method for improving offensive
language classifiers in similar setups.

Another important aspect that emerges from our
results is that oversampling is a very strong base-
line, especially for the setup with 500 available
annotated examples, even though it is often over-
looked. To our knowledge, it was used as a base-
line only in Juuti et al. (2020) for generative DA
on this task, while most other works report the per-
formance on augmented data only. Interestingly,
oversampling does not only improve within-dataset
performance, but it also has a significant positive
impact on cross-dataset performance. Since it re-
quires a fraction of the computational resources
needed for generative DA, it may be preferable
when ∼500 gold examples are available. We hy-
pothesize that one of the reasons why oversampling
can perform well is that at least a subset of the
datasets share superficial features that might be am-
plified in the oversampling process, such as specific
terms that are associated with offensiveness across
datasets.

In general, although it does not reliably improve
model performance, generative DA does not seem
to significantly decrease performance either. Wul-
lach et al. (2021) believe that generative DA could
improve lexical diversity, leading to better general-
ization. In Section 7.1, we analyze the generated
data to assess whether it could lead to benefits with
regards to fairness, perhaps due to more representa-
tion of minorities given the higher lexical variety.

The results for BERT-based models are in gen-
eral in line with those for RoBERTa-based mod-

els, although BERT-based models tend to perform
worse regardless of setup. Again, with BERT mod-
els, oversampling seems to be just as reliable to
improve both within-dataset and cross-dataset per-
formance. Since the overall findings are similar to
those of RoBERTa-based models, we do not report
BERT results in this section, but in Appendix A.

7 Qualitative Analysis

In order to estimate the quality of the generated
examples and the impact of the prompting method,
we randomly select a subset of 10 generated exam-
ples for every dataset / data size combination for
manual analysis. We find that there are some clear
differences between the prompting setups, and that
the methods that exploit prompting in natural lan-
guage (nl-prompt and cloze-prompt) tend to gener-
ate the most realistic examples. Tag-prompt tends
to often generate strings of random special charac-
ters, resulting in very low quality data, while the
1/label setup often results in sequences that appear
out of domain. Some examples of the generated
texts can be found in Appendix B.

7.1 Lexical Artifacts Analysis

To investigate the lexical variation between the gold
data and the generated data, we use pointwise mu-
tual information (PMI), following Ramponi and
Tonelli (2022). In particular, we analyze the most
informative tokens for the offensive class in each
dataset, looking at how certain tokens become less
or more informative in the generated data.

The first tendency that can be noticed when look-
ing at how the ranking of tokens’ informativeness
changes between gold and generated data is that
for some of the datasets the changes are more evi-
dent (i.e. for [AG] and [SB]). For example, in the
gold [SB] data, the word fucking is ranked as the
10,203rd most informative word for the offensive
class. In data augmented using the tag-prompt type
on the generative model trained on 2,000 instances,
however, the same word is ranked 4th. This means
that the model has generated a very large amount
of offensive messages containing this word, while
it was not prominent in the gold data it was fine-
tuned on. This happens for both the setup starting
with 500 gold examples and with 2,000.

While the prominence of a potentially predictive
word for offensive language, like fucking, is a good
sign of the quality of the generated data, since it
means that the generation process can usefully aug-
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ment existing data, this happens also with tokens
that should not be predictive for this task, defined
by Ramponi and Tonelli (2022) as spurious lexical
artifacts. For example, across several generation
setups, we can notice the increased importance for
the offensive label of identity terms, such as girl,
gay, woman, jews, but also words that hold no
inherent association with abusive language, such
as people or difference. The higher importance of
some identity terms could be associated with biases
that were already present in the pre-trained gener-
ative model, and which were amplified during the
generation process. In order to better understand
the impact of these differences in token informa-
tiveness, we turn to the HateCheck functional tests
in Section 7.2. For further details, the full lists of
top 11 informative tokens for each dataset, both
gold and generated, is reported in Appendix C.

7.2 HateCheck Analysis

We explore some of the weaknesses of classifiers
trained on gold and augmented data through the
HateCheck suite (Röttger et al., 2021), consisting
of a series of functional tests aimed at exploring
the weak points of hate speech models.9

Overall, data augmentation has little impact on
the performance of models on HateCheck, espe-
cially on models trained starting with 2,000 gold
instances. Similarly to the results reported in Sec-
tion 6, oversampling tends to lead to similar or
better improvements than generative DA, again de-
pending on the starting dataset. However, this im-
provement is focused only on some functional tests,
leading to worse performance on other tests.

For instance, two interesting tests are those on
non-hateful slurs, including test 8, non-hateful
homonyms of slurs (e.g. “Female canines are called
bitches”), and test 9, reclaimed slurs (e.g. “The Q
in LGBTQ stands for queer”). For models trained
on 500 gold instances, the performance consistently
drops on these two tests for all augmentation setups
and oversampling across all datasets. This suggests
that models trained using oversampling or gener-
ative data augmentation may start overfitting and
relying on the presence of specific terms such as
slurs for the classification of offensive language.

9Since our models are aimed at detecting offensive lan-
guage in general and HateCheck is focused on hate speech, a
narrower phenomenon, not all tests are entirely informative
in our case, such as test number 11, testing the performance
on non-hateful profanities. In general, however, the labels of
HateCheck tests are aligned with our task.

For models trained on 2,000 gold instances, the
performance on these two tests is somewhat stable,
with no improvements or decreases in performance.

Another interesting test for examining whether
generative DA increases the reliance of classifiers
on specific words is test 15, negated hateful state-
ment, e.g. “I would never hurt any woman”. The
performance for this test tends to be overall sta-
ble or lower than the baseline, mostly decreasing
with oversampling and in the setup starting from
500 annotated instances. This again indicates that
models trained on augmented data in the setups we
used show potentially harmful weaknesses, since
they tend to misclassify sequences based on simple
patterns such as the presence of specific words.

While models trained on augmented data tend to
perform worse on non-hateful sequences contain-
ing identity terms and slurs, they do show improve-
ments for those tests that benefit from being able to
find these terms, such as test 7, hate expressed us-
ing slur, or test 10, hate expressed using profanity,
further confirming that augmentation tends to steer
models into overfitting identity terms and slurs.

Further details on the performances of models on
each HateCheck test and on the targets contained
in the tests are found in Appendix D.

8 Conclusions

In this work, we presented an evaluation of both
existing and novel data augmentation setups based
on generative large language models for offensive
language detection. We investigated the robustness
of such models, testing them in within-dataset and
cross-dataset scenarios, and performed a qualitative
analysis on the augmented data.

We found that while generative DA can posi-
tively impact model performance in some cases,
especially when low amounts of gold data are avail-
able, this positive effect is not consistent across
setups, making generative DA unreliable in the
setups we tested. In addition to this, we found
that generative DA can potentially introduce lexi-
cal bias from the pre-trained generative model into
the augmented data, as well as increase the reliance
of models on identity terms and slurs, which could
have unintended effects on classification.

Overall, although it might improve classification
performance in some cases, we advise against using
generative DA for this task, since it is computation-
ally intensive and it does not appear to consistently
make models perform better or be more robust.
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Limitations

The main limitation of this work is its focus on
English, leaving out other languages that may ben-
efit more from a thorough evaluation of data aug-
mentation methods because they have fewer re-
sources. We selected English for this work be-
cause it allowed us to evaluate the system perfor-
mance on four datasets with different characteris-
tics and a number of configurations, thanks also to
the availability of language-specific GPT2, BERT
and RoBERTa. We are aware that generation-based
data augmentation would be potentially more use-
ful in real low-resource scenarios, and we plan
on investigating in the future whether our findings
hold for other languages.

Furthermore, this work deals only with one type
of data augmentation, i.e. the one using fine-tuned
generators, while there are others that we left out
because of space limits and that may be investi-
gated in the future. For example, we might com-
pare generative DA with rule-based augmentation,
synonym-based approaches and backtranslation,
among others, and investigate whether different
data augmentation approaches present differences
in terms of robustness or lexical biases. In addition,
we only experiment with one generative model,
while we could in the future compare generative
DA using GPT-2 with other kinds of generative
models, especially more advanced ones.

Another aspect left unexplored in our work is
whether this type of data augmentation could help
models dedicated to this task that are widely avail-
able, such as HateBERT (Caselli et al., 2021)
or ToxiGen-RoBERTa (Hartvigsen et al., 2022b).
While in this work we focus on scenarios in which
little data is available, experimenting with these
models could yield interesting results in future
work with a broader scope.

Ethics Statement

In our experiments, we compare different setups
in which large language models are exploited in
order to artificially create more data to train models
aimed at detecting offensive language. In this case,
synthetic data has two main potential advantages:
first, it limits the amount of data gathered from
online spaces without user consent, and second, it
reduces the amount of manual annotation required
to create labeled datasets for offensive language
detection, which can have a negative psychological
impact on annotators (Riedl et al., 2020).

While using generative models to augment data
can in some cases be beneficial for classification
performance, the sequences generated by these
models can exhibit unpredictable characteristics
that exacerbate existing bias or produce new forms
of it. Given that the improvements provided by
generative DA are inconsistent, there are no clear
advantages to this method when considering its po-
tential risks. As a consequence, we advise against
deploying models trained on generated data in prac-
tice.

Since the main contribution of our work is not
a novel model or algorithm, but rather an evalu-
ation of different approaches for generative data
augmentation, we share as much information as
we can for the reproducibility of our experiments,
but we choose not to release the code openly to the
public, in order to limit potential misuse of mod-
els that can generate offensive language. We also
choose not to publicly release the generated data
for various reasons. As shown by our results, the
generated examples are not reliable for improving
existing systems, so their utility is limited. Further-
more, the generated texts are not curated, which
could result in including personal user information
or harmful statements targeting specific individuals
being generated. We will, however, share the data
upon request to other interested researchers.
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A BERT-Based Models Results

In this section, we present the results of BERT-
based models in the setup where we start with 500
gold examples in Table 3 and with 2,000 gold ex-
amples in Table 4.

Gold data: 500 examples Test
Train: AGREEMENT AG FO SB SO
No augmentation 0.630 0.716 0.550 0.700
Oversampling 0.696∗ 0.823∗ 0.573 0.825∗

tag-prompt 0.663 0.775∗ 0.562 0.774
nl-prompt 0.654 0.752 0.584 0.767
cloze-prompt 0.665∗ 0.773∗ 0.554 0.780∗

Filtering:
p > 0.5

1/label 0.688∗ 0.798∗ 0.575 0.797∗

Train: FOUNTA AG FO SB SO
No augmentation 0.619 0.890 0.613 0.847
Oversampling 0.638 0.906∗ 0.598 0.885∗

tag-prompt 0.636 0.904 0.600 0.876∗

nl-prompt 0.614 0.900 0.641 0.874∗

cloze-prompt 0.632 0.900 0.606 0.857
Filtering:
p > 0.5

1/label 0.629 0.899 0.633 0.878∗

Train: SBIC AG FO SB SO
No augmentation 0.566 0.629 0.747 0.727
Oversampling 0.579∗ 0.682 0.766∗ 0.756

tag-prompt 0.575 0.679 0.754 0.755
nl-prompt 0.576 0.677 0.757 0.754
cloze-prompt 0.566 0.656 0.754 0.738

Filtering:
p > 0.5

1/label 0.574 0.664 0.762∗ 0.743
Train: OLID AG FO SB SO
No augmentation 0.555 0.757 0.635 0.770
Oversampling 0.555 0.832∗ 0.653 0.852∗

tag-prompt 0.554 0.795 0.641 0.813
nl-prompt 0.559 0.810∗ 0.658∗ 0.832∗

cloze-prompt 0.562 0.803∗ 0.648 0.823
Filtering:
p > 0.5

1/label 0.537 0.805∗ 0.648 0.821∗

Table 3: Average macro-F1 scores (over 10 runs) ob-
tained by BERT-base-uncased fine-tuned on augmented
data, starting with 500 gold examples. Grey cells con-
tain within-dataset results, while the others contain
cross-dataset results. Asterisks denote statistically sig-
nificant results (compared to no augmentation). The
best result for each train-test dataset combination is in
bold.

Gold data: 2,000 examples Test
Train: AGREEMENT AG FO SB SO
No augmentation 0.756 0.894 0.573 0.891
Oversampling 0.746 0.884 0.592 0.880

tag-prompt 0.759 0.900 0.567 0.893
nl-prompt 0.761 0.901∗ 0.567 0.900∗
cloze-prompt 0.756 0.901∗ 0.572 0.899∗

Filtering:
p > 0.5

1/label 0.749 0.892 0.584 0.891
tag-prompt 0.760 0.899 0.578 0.893
nl-prompt 0.760 0.899 0.572 0.897∗

cloze-prompt 0.762 0.902∗ 0.572 0.898∗
Filtering:
p > 0.7

1/label 0.753 0.897 0.593∗ 0.893
Train: FOUNTA AG FO SB SO
No augmentation 0.616 0.913 0.628 0.905
Oversampling 0.635∗ 0.911 0.617 0.899

tag-prompt 0.634∗ 0.914 0.621 0.905
nl-prompt 0.632 0.914 0.627 0.905
cloze-prompt 0.617 0.914 0.630 0.903

Filtering:
p > 0.5

1/label 0.629 0.914 0.628 0.904
tag-prompt 0.636∗ 0.913 0.624 0.905
nl-prompt 0.634 0.915 0.629 0.904
cloze-prompt 0.633 0.914 0.630 0.907

Filtering:
p > 0.7

1/label 0.629 0.913 0.627 0.903
Train: SBIC AG FO SB SO
No augmentation 0.589 0.743 0.806 0.807
Oversampling 0.588 0.716 0.799 0.786

tag-prompt 0.584 0.742 0.806 0.809
nl-prompt 0.594 0.734 0.807 0.802
cloze-prompt 0.593 0.735 0.806 0.802

Filtering:
p > 0.5

1/label 0.586 0.739 0.804 0.800
tag-prompt 0.582 0.743 0.809 0.806
nl-prompt 0.588 0.734 0.806 0.803
cloze-prompt 0.598 0.742 0.807 0.807

Filtering:
p > 0.7

1/label 0.591 0.732 0.806 0.803
Train: OLID AG FO SB SO
No augmentation 0.562 0.874 0.653 0.897
Oversampling 0.549 0.859 0.661 0.885

tag-prompt 0.555 0.862 0.662 0.890
nl-prompt 0.553 0.868 0.668∗ 0.893
cloze-prompt 0.568 0.875 0.659 0.897

Filtering:
p > 0.5

1/label 0.541 0.858 0.669∗ 0.885
tag-prompt 0.555 0.862 0.663 0.892
nl-prompt 0.561 0.873 0.665∗ 0.896
cloze-prompt 0.575 0.879 0.658 0.898

Filtering:
p > 0.7

1/label 0.548 0.863 0.671 0.889

Table 4: Average macro-F1 scores (over 10 runs) ob-
tained by BERT-base-uncased fine-tuned on augmented
data, starting with 2,000 gold examples. Grey cells
contain within-dataset results, while the others contain
cross-dataset results. Asterisks denote statistically sig-
nificant results (compared to no augmentation). The
best result for each train-test dataset combination is in
bold.
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prompting dataset generated text label

tag-prompt

[AG] #SEP #BlackLivesMatter #BIDEN #MAGA URL 0
[FO] ∼∼∼@USER 0
[SB] ∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼ [...] 0
[OL] ***********@USER You’re fucking awesome 0

nl-prompt

[AG] @USER It is time to end this corrupt criminal republic #DemocRATting #Black-
LivesMatter URL

0

[FO] ?????????????????????????????????? 1
[SB] I hate all of you who call yourself patriots. You are useless. 1
[OL] @USER @USER you are not a Christian..you are a hypocrite 1

cloze-prompt

[AG] ”I love how the media is pushing the idea that the protesters are racist 0
[FO] USER: hey, u should really try and figure out what is going on in the world of 4chan 0
[SB] If you can’t get a girl to like you, you’re a loser... 1
[OL] @USER @USER He is the worst 0

1/label

[AG]

Coronavirus was first identified in 1984 in the U.S. as a contaminant of the popular
oral flu vaccine.
Because of the severity of this illness, the CDC in the early 90s ordered the removal
of all Coronaviruses from vaccines and in 1998 [...]

0

[FO]
#6a8a2a color RGB value is (135,180,225).
#6b98f6 color hex is (130,180,.25).
the number is on its way to being determined so I don’t need to change it [...]

0

[SB]

"The best way to get ahead in life is to keep learning" - Steve Jobs
"As a scientist, the thing I am most excited about is the possibility that we will be
able to engineer a cure for cancer - by using a synthetic biology-based approach" -
Dr. Aubrey de Grey, M.D.[...]

0

[OL] EVERYBODY, EVERYBODY is talking about the fact that President Trump is being
sued by the media. Yes, you read that correctly. Media. Lawsuit. #MAGA #Trump
#ToriesOut #ToryOut’sOut#POTUSOut #MAGADump #MAGAMAG #MAGA-
ZINEAU’S MAGA NEWSLETTER @USER @USER The way he [...]

0

Table 5: Examples of sequences generated by GPT-2 large models trained on 500 gold examples for every
combination of prompting and dataset.

B Examples of Generated Texts

Examples of sequences generated by the models
can be found in Table 5 for generative models
trained on 500 labeled instances and in Table 6 for
models trained on 2,000 labeled instances. Some
texts have been truncated (signaled by “[...]”) due
to space constraints. The labels reported in Tables 5
and 6 are those assigned by the RoBERTa baseline.
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prompting dataset generated text label

tag-prompt

[AG] URL #Elections2020 0
[FO] !!!! &#128580;&#127907;&amp;&gt; I fucking hate you URL 1
[SB] phone 7, apple iphones 8, iphONES 8, android ips 8, blackberry ips, ixp8 iph, [...] 0
[OL] URL You guys are pathetic 1

nl-prompt

[AG] @USER Because the Democrats lie, cheat, steal and intentionally create the chaos in
our country. They are beyond evil!

0

[FO] ????????? @USER We are listening..if you have any ideas please send us a tweet at
URL

0

[SB] You’re never too young to dream, you just gotta work it. 0
[OL] You and your friends are fucking delusional. There are far worse far right wing nut

jobs out there than antifa. Try to keep your stupid comment to yourself
1

cloze-prompt

[AG] The most disgusting thing about this is that the person spreading this filth is a member
of the media. They are enabling the filth.

0

[FO] @USER @USER Yeah, that would be a pretty crazy idea! I’m sure that would cause
an uproar and a few angry people would object

1

[SB] Do you think these fake news articles on vaccines and autism are getting too much
play on social media?

0

[OL] @USER @USER @USER @USER He is just one more nut job in Congress. 1

1/label

[AG]
The family of a missing teen has filed a $5 million lawsuit against the city of Madison,
alleging that officials didn’t do enough to find their son when he went missing in
September 2010. [...]

0

[FO]
$4.99
Featuring all the fan favorites including:
• Exclusive and classic illustrations from some of comics’ most beloved artists [..]

0

[SB]
Beef and broccoli are the perfect meal for when you are hungry and not hungry. But I
think they would probably turn to dust in an instant if you tried to eat them.Blessings
are spread in the name of the Lord, and His name is exalted. [...]

0

[OL] WWF @USER We are all outraged that this clown is using his access to the office to
threaten &amp; bully. You &amp#Array; you &amp"#Array"; yourself should be
ashamed of yourself.@USER you are so right on this issue but I have to agree that
we conservatives are becoming too emotional. [...]

1

Table 6: Examples of sequences generated by GPT-2 large models trained on 2,000 gold examples for every
combination of prompting and dataset.

C Lexical Artifacts

In this section, we present the lists of top-11 infor-
mative tokens for the offensive class, both on gold
and on generated data. Lists for data in the setup
where we start with 500 annotated instances can
be found in Table 7, and those for the setup with
2,000 gold instances are in Table 8.
 Content warning: Tables 7 and 8 contain

uncensored profanities and slurs. 10

10These are left uncensored for increased readability, since
special characters are already used to signal boundaries of
sub-word tokens, and to avoid confusion with words that are
self-censored by the users.

D HateCheck

Table 9 and Table 10 present the results on Hate-
Check tests and targets for models in the 500 gold
examples setup. Table 11 and Table 12 present
the results on the functional tests and targets for
models in the setup in which we start with 2,000
annotated examples.
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AGREEMENT
gold data tag-prompt nl-prompt cloze-prompt 1/label

index token index token index token index token index token
0 fuck 0 fuck 2 fucking 2 fucking 0 fuck
1 shit 2 fucking 0 fuck 1 shit 2 fucking
2 fucking 1 shit 1 shit 0 fuck 1 shit
3 ass 31 racist 5 dumb 6 stupid 6 stupid
4 idiot 5 dumb 6 stupid 31 racist 3 ass
5 dumb 6 stupid 31 racist 5 dumb 7 ##s
6 stupid 3 ass 7 ##s 3 ass 11 guy
7 ##s 25 mor 3 ass 302 disgusting 17 piece
8 bitch 13 trump 4 idiot 4 idiot 5 dumb
9 ##er 4 idiot 302 disgusting 18 user 4 idiot
10 bullshit 423 people 17 piece 25 mor 31 racist

FOUNTA
gold data tag-prompt nl-prompt cloze-prompt 1/label

index token index token index token index token index token
0 fucking 0 fucking 0 fucking 0 fucking 0 fucking
1 fucked 4 fuck 3 bitch 4 fuck 4 fuck
2 user 2 user 4 fuck 2 user 6 hate
3 bitch 6 hate 6 hate 6 hate 11 shit
4 fuck 3 bitch 11 shit 3 bitch 1 fucked
5 ass 5 ass 10 stupid 5 ass 10 stupid
6 hate 1 fucked 8 idiot 1 fucked 3 bitch
7 128 11 shit 5 ass 10 stupid 5 ass
8 idiot 10 stupid 1 fucked 11 shit 8 idiot
9 ##gga 8 idiot 43 sick 8 idiot 43 sick
10 stupid 43 sick 41 ##tar 43 sick 34 kill

SBIC
gold data tag-prompt nl-prompt cloze-prompt 1/label

index token index token index token index token index token
0 black 0 black 0 black 0 black 0 black
1 bitch 4 white 4 white 3 difference 29 woman
2 ##es 9264 [SEP] 38 people 12 girl 5 sex
3 difference 38 people 3 difference 4 white 8 women
4 white 11 ##s 12 girl 29 woman 38 people
5 sex 3 difference 31 person 5 sex 4 white
6 ho 5382 fucking 29 woman 80 guy 12 girl
7 ##gga 31 person 17 ##gger 31 person 57 racist
8 women 29 woman 5382 fucking 38 people 14 gay
9 jew 8 women 7 ##gga 8 women 80 guy
10 fuck 10 fuck 8 women 5382 fucking 44 kill

OLID
gold data tag-prompt nl-prompt cloze-prompt 1/label

index token index token index token index token index token
0 shit 0 shit 0 shit 19 disgusting 0 shit
1 fuck 16 people 6 liberals 6 liberals 7 stupid
2 ass 19 disgusting 1 fuck 16 people 1 fuck
3 fucking 6 liberals 19 disgusting 0 shit 3 fucking
4 ##s 28 hate 52 sick 7 stupid 16 people
5 bitch 18 racist 7 stupid 9 idiot 52 sick
6 liberals 7 stupid 3 fucking 28 hate 19 disgusting
7 stupid 52 sick 16 people 22 liar 99 wrong
8 control 22 liar 28 hate 1 fuck 29 disgrace
9 idiot 1 fuck 9 idiot 18 racist 31 bad
10 dumb 10 dumb 22 liar 10 dumb 97 women

Table 7: Top tokens for the offensive class in the gold data and in the generated data when starting with 500
examples, computed using the PMI implementation of Ramponi and Tonelli (2022). The indices refer to the ranking
of importance of the tokens in the gold data, while the order of the tokens reflect their informativeness for the
offensive class in the generated data.
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AGREEMENT
gold data tag-prompt nl-prompt cloze-prompt 1/label

index token index token index token index token index token
0 fuck 0 fuck 18 ##ass 2 fucking 0 fuck
1 shit 2 fucking 52 ##est 0 fuck 1 shit
2 fucking 1 shit 16 ##on 1 shit 2 fucking
3 ass 23 racist 418 ##path 950 user 14 mag
4 ##s 7 dumb 4 ##s 6 idiot 23 racist
5 stupid 6 idiot 3 ass 5 stupid 6 idiot
6 idiot 89 liar 10 asshole 23 racist 22 ##a
7 dumb 5 stupid 12 bitch 7 dumb 5 stupid
8 piece 135 ##trum 9 bullshit 89 liar 7 dumb
9 bullshit 14 mag 105 bunch 8 piece 8 piece
10 asshole 1284 ##p 1049 complete 3 ass 13 guy

FOUNTA
gold data tag-prompt nl-prompt cloze-prompt 1/label

index token index token index token index token index token
0 fucking 0 fucking 0 fucking 0 fucking 0 fucking
1 fucked 6 hate 1 fucked 1 fucked 4 fuck
2 user 1 fucked 4 fuck 2 user 1 fucked
3 bitch 4 fuck 3 bitch 6 hate 6 hate
4 fuck 3 bitch 9 shit 4 fuck 3 bitch
5 ass 16339 [SEP] 6 hate 3 bitch 5 ass
6 hate 5 ass 5 ass 5 ass 9 shit
7 ##gga 8 shit 11 stupid 10 idiot 11 stupid
8 128 7 ##gga 20 sick 11 stupid 10 idiot
9 shit 2 user 7 ##gga 9 shit 20 sick
10 idiot 11 stupid 19 mad 7 ##gga 8 128

SBIC
gold data tag-prompt nl-prompt cloze-prompt 1/label

index token index token index token index token index token
0 black 0 black 0 black 0 black 0 black
1 bitch 15008 [SEP] 3 white 3 white 3 white
2 difference 10 ##s 1 bitch 2 difference 5 sex
3 white 10203 fucking 14 ##gger 15 woman 2 difference
4 ##es 1 bitch 12 jews 8 women 8 women
5 sex 763 offensive 7 ##gga 12 jews 15 woman
6 ho 3 white 2 difference 5 sex 9 fuck
7 ##gga 5 sex 10 ##s 11 jew 43 racist
8 women 9 fuck 11 jew 19 girl 16 ##ist
9 fuck 43 racist 15 woman 1 bitch 1 bitch
10 ##s 4 ##es 8 women 14 ##gger 11 jew

OLID
gold data tag-prompt nl-prompt cloze-prompt 1/label

index token index token index token index token index token
0 shit 11 liberals 11 liberals 11 liberals 0 shit
1 fuck 12 disgusting 1 fuck 0 shit 12 disgusting
2 ass 7 people 0 shit 12 disgusting 6 stupid
3 fucking 0 shit 12 disgusting 6 stupid 7 people
4 bitch 13 racist 53 disgrace 18 liar 1 fuck
5 ##s 6 stupid 6 stupid 53 disgrace 14 sick
6 stupid 53 disgrace 14 sick 26 ##yp 13 racist
7 people 26 ##yp 18 liar 14 sick 18 liar
8 idiot 29 ##oc 3 fucking 29 ##oc 3 fucking
9 dumb 14 sick 7 people 32 lying 26 ##yp
10 user 16 fake 5 ##s 1 fuck 29 ##oc

Table 8: Top tokens for the offensive class in the gold data and in the generated data when starting with 2,000
examples, computed using the PMI implementation of Ramponi and Tonelli (2022). The indices refer to the ranking
of importance of the tokens in the gold data, while the order of the tokens reflect their informativeness for the
offensive class in the generated data.
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Abstract

Self-attention weights and their transformed
variants have been the main source of informa-
tion for analyzing token-to-token interactions
in Transformer-based models. But despite their
ease of interpretation, these weights are not
faithful to the models’ decisions as they are
only one part of an encoder, and other compo-
nents in the encoder layer can have consider-
able impact on information mixing in the out-
put representations. In this work, by expand-
ing the scope of analysis to the whole encoder
block, we propose Value Zeroing, a novel con-
text mixing score customized for Transformers
that provides us with a deeper understanding
of how information is mixed at each encoder
layer. We demonstrate the superiority of our
context mixing score over other analysis meth-
ods through a series of complementary evalu-
ations with different viewpoints based on lin-
guistically informed rationales, probing, and
faithfulness analysis.1

1 Introduction

Transformers (Vaswani et al., 2017), with their im-
pressive empirical success, have become a prime
choice of architecture to learn contextualized repre-
sentations across a wide range of modalities, such
as language (Devlin et al., 2019; Brown et al.,
2020), vision (Dosovitskiy et al., 2021), vision-
language (Radford et al., 2021; Rombach et al.,
2022), and speech (Baevski et al., 2020), mainly
due to their ability to utilize pairwise interactions
between input tokens at every timestep.

To better understand the inner dynamics of
Transformers, we need to trace the information
flow from the input embeddings up to the output
representation (including quantifying the degree
of context mixing, which we will define below).
The attention weights from the multi-head atten-
tion mechanisms offer a straightforward starting

1Code is freely available at https://github.com/
hmohebbi/ValueZeroing

point for understanding this flow, and these weights
(‘raw attention’) have been used in many studies
(Clark et al., 2019; Kovaleva et al., 2019; Reif et al.,
2019; Htut et al., 2019a, inter alia). However, the
reliability and usefulness of raw attention weights
has also been questioned (Jain and Wallace, 2019;
Bibal et al., 2022). In particular, attention weights
tend to concentrate on uninformative tokens in the
context (Voita et al., 2018; Clark et al., 2019), and
removing or altering them may lead to the same
and sometimes even better model performance on
downstream tasks (Jain and Wallace, 2019; Toneva
and Wehbe, 2019; Hassid et al., 2022). These find-
ings suggest that Transformers do not solely rely on
self-attention, and other components in the encoder
block play an essential role in information mixing.

A number of methods have been proposed to
compute some form of ‘effective attention weights’,
with the goal of more faithfully tracing the relative
contributions of different input tokens at various
layers of the Transformer (as we will discuss in
Section 2). These methods show an improvement
over raw attention, but still ignore key components
of the Transformer encoder block. This is a partic-
ularly crucial shortcoming, given that most of the
parameter budget in a Transformer encoder is spent
on position-wise feed-forward networks outside
of the self-attention component, which can have a
considerable impact on the degree of information
mixing in the output representations.

In this paper, we focus on context mixing: the
property of Transformers that in each node, at each
layer, information from the context can be incor-
porated into the representation of the target token.
We propose Value Zeroing, a novel approach to
quantify the contribution each context token has in
determining the final representation of a target to-
ken, at each layer of a Transformer. Value Zeroing
is based on the Explaining-by-Removing intuition
(Covert et al., 2021) shared by many posthoc in-
terpretability methods, but it takes advantage of
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a specific feature of Transformers: it zeroes only
the value vector of a token t when computing its
importance, but leaves the key and query vectors
(and thus the pattern of information flow) intact.

Based on extensive experiments and three com-
plementary approaches to evaluation, we demon-
strate that importance scores we can obtain with
Value Zeroing provide better interpretations than
other analysis methods.

Firstly, we use a set of grammatical agreement
tasks from the BLiMP corpus (Warstadt et al.,
2020) as a case study. Transformer-based mod-
els do extremely well on the task of distinguishing
grammatical from ungrammatical sentences, and
the BLiMP corpus provides information on the cue
words that determine the difference. We find that
Value Zeroing, unlike earlier approaches, indeed re-
veals that Transformers make use of relevant cues.

Secondly, we use information-theoretic probing
(Voita and Titov, 2020; Pimentel et al., 2020) as an
independent approach to track information flow in
Transformer networks. The scores we obtain with
Value Zeroing turn out to be highly correlated with
layer-wise probing performance; that is, probing
accuracy is higher in layers where relevant tokens
are more effectively utilized by the model.

Thirdly, we assess the faithfulness of our method
(Jacovi and Goldberg, 2020); compared to alterna-
tive analysis methods, we show that Value Zeroing
is not only more plausible and human-interpretable,
but also more faithful to models’ decisions.

2 Related Work

While numerous studies have leveraged the weights
assigned by the self-attention mechanism to gain
intuition about the information mixing process in
Transformers (Clark et al., 2019; Kovaleva et al.,
2019; Reif et al., 2019; Lin et al., 2019; Htut et al.,
2019b; Raganato and Tiedemann, 2018), it is still
a matter of debate whether attention weights are
suitable for interpreting the model (see Bibal et al.
(2022)’s study for a full discussion). Thus several
post-processing interpretability techniques have
been proposed to convert these weights into scores
that provide a more detailed interpretation of the
inner workings of Transformers. We review the
main approaches below.

Abnar and Zuidema (2020) propose the
attention-flow and attention-rollout methods to ap-
proximate information flow in Transformers based
on raw attention weights. The former treats raw

attention weight matrices as a flow network and
returns the maximum flow through each input to-
ken. The latter recursively multiplies the attention
weight matrix at each layer by the preceding ones.
There is, however, an unjustified assumption in
the formulation of these methods that both multi-
head attention and residual connections contribute
equally to the computation of the output.

Kobayashi et al. (2020) propose a method that
incorporates the norm of the transformed value vec-
tors and report a negative correlation between these
norms and raw attention weights on frequent to-
kens, which partially explains the insufficiency of
raw attention weights for context mixing estima-
tion. Kobayashi et al. (2021) extend this method
to the whole self-attention block by incorporating
Residual connections (RES) and Layer Normaliza-
tion (LN) (two components with significant impact
on both model performance and training conver-
gence (Parisotto et al., 2020; Liu et al., 2020)), but
demonstrate that RES and LN components largely
cancel out the mixing process. Kobayashi et al.
(2021)’s method, however, ignores the effect of the
second sublayer in a Transformer’s encoder.

Brunner et al. (2020) and Pascual et al. (2021)
employ a gradient-based approach for analyzing
the interaction of input representations, but the gra-
dient measures the sensitivity between two vectors
and ignores the impact of the input vector. In our
experiments we show that despite their relative suc-
cess in explaining model decisions, gradient-based
approaches are not suitable for layer-wise analysis.

More recently, the effectiveness of combin-
ing these approaches has also been investigated.
Modarressi et al. (2022) propose a method that
uses Kobayashi et al. (2021)’s scores and incorpo-
rates the effects of the second layer normalization;
they aggregate those scores using rollout (Abnar
and Zuidema, 2020) to provide global token attri-
butions. In the same vein, Ferrando et al. (2022)
use rollout to aggregate a variant of Kobayashi et al.
(2021)’s scores: instead of relying on the Euclidean
norm of the transformed vector, they measure Man-
hattan distance of each transformed vector to the
context vector outputted from self-attention block.
In both studies, however, the fact that these con-
text vectors might undergo significant changes after
passing through the second sublayer in the encoder
layer is not taken into account. We will show (in
Section 7) that even at a global level, our scores
provide better interpretation than prior methods.

3379



3 Our Proposed Method

To remedy for the limited scope of the existing
methods, we introduce a new context mixing score
that takes into account all components in a Trans-
former encoder block.

3.1 Background and Notation
In this section, we set up the notation and briefly
review the internal structure of an encoder layer in
the Transformer architecture.

Each Transformer encoder layer is composed of
two sublayers: a multi-head self-attention mecha-
nism (MHA) and a position-wise fully connected
feed-forward network (FFN), followed by a Resid-
ual connection (RES) and Layer Normalization
(LN) around each of these two sublayers. This
encoder layer produces the next contextualized rep-
resentations (x̃1, ..., x̃n) for each token in the con-
text, using the output representations from the pre-
vious layer (x1, ...,xn).

MHA. For each head h ∈ {1, ...,H} in the self-
attention module, each input vector xi is trans-
formed into a query qhi , a key khi , and a value vhi
vector via separate trainable linear transformations:

qhi = xiW
h
Q + bhQ (1)

khi = xiW
h
K + bhK (2)

vhi = xiW
h
V + bhV (3)

The context vector zhi for the ith token of each
attention head is then generated as a weighted sum
over the transformed value vectors:

zhi =
n∑

j=1

αhi,jv
h
j (4)

where αhi,j is the raw attention weight assigned
to the jth token, and computed as a softmax-
normalized dot product between the corresponding
query and key vectors:

αi,j = softmax
xj∈X

(
qik
⊤
j√
d

)
∈ R (5)

Next, the context vector (zi ∈ Rd) for the ith to-
ken is computed by concatenating all the heads’
outputs followed by a head-mixing WO projection
and layer normalization:

zi = CONCAT(z1
i , ...,z

H
i )WO (6)

zi = LNMHA(zi + xi) (7)

FFN. Each encoder layer also includes two linear
transformations with a ReLU activation in between,
which is applied to every zi separately and identi-
cally to produce output token representations x̃i:

x̃i = max(0, ziW1 + b1)W2 + b2 (8)

x̃i = LNFFN(x̃i + zi) (9)

3.2 Value Zeroing
We aim to measure how much a token uses other
context tokens to build its output representation
x̃i at each encoder layer. To this end, we treat
the self-attention mechanism as a fuzzy hash-table,
where we look up the sum of values weighted by
the query-key match in the context. Thus in Eq. 4
we replace a value vector associated with token
j with a zero vector vhj ← 0, ∀h ∈ H , where the
context vector for the ith token is being computed.
This provides an alternative output representation
x̃¬ji for the ith token that has excluded token j in
the mixing process. By comparing the alternative
output representation x̃¬ji with the original x̃i, we
can measure how much the output representation
is affected by the exclusion of the jth token:

Ci,j = x̃¬ji ∗ x̃i (10)

where the operation ∗ can be any pairwise distance
metric that properly considers the characteristics
of the model’s representation space. We opted
for cosine distance throughout our experiments as
its superiority over other dissimilarity metrics has
been supported for textual deep learning models
(Yokoi et al., 2020; Hanawa et al., 2021).2 Com-
puting Eq. 10 for all x̃i in a given context provides
us with a Value Zeroing matrix score C where the
value of the cell Ci,j ∈ R (ith row, jth column) in
the map denotes the degree to which the ith token
depends on the jth token to form its contextualized
representation.

Note that unlike generic perturbation approaches,
our proposed method does not remove the token
representations xi from the input of an encoder. We
argue that ablating input token representations can-
not be a reliable basis to understand context mix-
ing process since any changes in the input vectors
will lead to changes in the query and key vectors
(Eq. 1 and 2), resulting in a change in the attention
distribution (cf. Eq. 5). Consequently, there will

2More details on the choice of distance metric is discussed
in Appendix A.1.
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Phenomenon UID Example Target word Foil word

Anaphor Number Agreement ana Many teenagers were helping [MASK]. themselves herself

Determiner-Noun Agreement
dna Jeffrey has not passed [MASK] museums. these this
dnaa Sara noticed [MASK] white hospitals. these this

Subject-Verb Agreement
darn The pictures of Martha [MASK] not disgust Anne. do does
rpsv Kristen [MASK] fixed this chair. has have

Table 1: Examples of the selected tasks with our annotations from the BLiMP benchmark (UIDs are unique
identifiers used in BLiMP). Cue words are underlined.

be a discrepancy between the alternative attention
weights and those for the original context. Instead,
our method only nullifies the value vector of a spe-
cific token representation. In this way, the token
representation can maintain its identity within the
encoder layer, but it does not contribute to form-
ing other token representations. Moreover, since
our Value Zeroing is computed from the encoder’s
layer outputs, it incorporates all the components in-
side an encoder layer such as multi-head attention,
residual connection, layer normalization, and also
feed-forward networks, resulting in a more reliable
context mixing score than previous methods.

4 Experimental Setup

4.1 Data
We used the BLiMP benchmark (Warstadt et al.,
2020) which contains a set of pairs of minimally
different sentences that contrast in grammatical ac-
ceptability under a specific linguistic phenomenon.
The benchmark isolates linguistic phenomena such
that only one word determines the true label of
each sentence. We refer to this crucial context to-
ken as the cue word. The nature of this task makes
it especially suitable for evaluating context mix-
ing scores, since it gives us a strong hypothesis on
which context token is the most relevant for the
representation of the masked target word.

From this benchmark, we select five datasets
with three different linguistic phenomena for which
Pre-trained Language Models (PLMs) have shown
high accuracy to ensure that the model captures the
relevant information. We expand contractions such
as doesn’t→ does not) and generate dependency
trees using SpaCy (Honnibal and Montani, 2017)
to extract and annotate the position of target and
cue words in a sentence. In Table 1, we provide
an example of each phenomenon in the benchmark
together with our automated annotations. We accu-
mulate examples from the five selected tasks as a
unified dataset for grammatical agreement, result-

ing in 4,276 data points, and divide them equally
into Train and Test sets. The Train set is only used
for the fine-tuning phase; the Test set is used for all
evaluation experiments.

4.2 Target Model

We conduct our experiments on three Transformer-
based language models: BERT (uncased, Devlin
et al., 2019), RoBERTa (Liu et al., 2019) and
ELECTRA (Clark et al., 2020).3 The results for
the latter two are reported in Appendix A.3. By
replacing the target words with the [MASK] token,
we perform a Masked Language Modeling (MLM)
task using the model’s pre-trained MLM head. For
instance, in the Subject-Verb Agreement example

“The pictures of Martha do not disgust Anne.”, we
replace the verb ‘do’ with the [MASK] token and
feed the example to the model.

We perform our experiments on both pre-trained
and fine-tuned versions of each model. Including
a fine-tuned model in our analysis study gives us
a complementary insight into the importance of
the cue words, since fine-tuning allows the model
to concentrate on the most helpful words for the
downstream task of choice (i.e., agreement) and
makes sure that target word representations take the
cue word into account. We use prompt fine-tuning
(Schick and Schütze, 2021a,b; Karimi Mahabadi
et al., 2022) and compute Cross Entropy loss only
over the output logits corresponding to the target
and foil classes. Accuracy is 0.96 for pre-trained
and 0.99 for fine-tuned BERT.

4.3 Baselines

Here we describe the existing context mixing meth-
ods which we include in our experiments. For each
method, we select themth row of its context mixing
map where m is the position of the [MASK] token,
resulting in a 1-D array of scores for each context

3Base, with 12 layers and 12 attention heads, obtained
from the Transformers library (Wolf et al., 2020).
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token. We normalize the scores for all tokens in
a sentence so that they are all positive values and
sum to one. For completeness, we also include
a few gradient-based attribution methods in our
comparisons.

Rand: random scores generated from a uniform
distribution for each sentence in the dataset.

Attn: raw attention scores αm from Eq. 5.

Attn-rollout: An aggregation method for approx-
imating the attention flow based on raw attention
weights (Abnar and Zuidema, 2020).

Attn-Norm: norm-based method of Kobayashi
et al. (2020) that also incorporates the norm of
the transformed input vectors to compute context
mixing scores.

Attn-Norm + RES + LN: the extended norm-
based method of Kobayashi et al. (2021) in which
they also incorporates Residual connection (RES)
and Layer Normalization (LN) located only in the
first sublayer of a Transformer’s encoder.

GlobEnc & ALTI: Two global token attribution
methods proposed by Modarressi et al. (2022) and
Ferrando et al. (2022). For a fair comparison,
we exclude the aggregation through rollout in our
first two evaluations (referred to as GlobEnc¬ and
ALTI¬), because we are interested in assessing con-
text mixing scores at each layer separately. In our
third evaluation, we compare these methods with
others at a global level and use rollout.

GradXinput, IG & DL: feature attribution scores
that also make use of top-down information
from the classification layer on top of the Trans-
former. We consider three popular variants of
gradient-based attribution scores: Gradient×Input
(GradXinput) (Samek et al., 2019; Yuan et al.,
2019), Integrated Gradients (IG) (Sundararajan
et al., 2017), and DeepLift (DL) (Shrikumar et al.,
2017). For gradient-based methods, we use the
pre-trained MLM head which has been trained dur-
ing the pre-training of the BERT to compute the
gradient of the true label with respect to the token
representations at each layer.

5 Evaluation 1: Cue Alignment

As cue words are the only indicators of the true la-
bels in our dataset, we expect that when the model
performs well, it overwhelmingly depends on these
words to form the representation of a [MASK] to-

ken in a given context. To quantify the alignment
between a context mixing score and the cue word,
we first define a binary cue vector ξ according to
the following condition:

ξi =

{
1, the ith token ∈ Cue words
0, otherwise

(11)

Then we compare the cue vector and the prediction
of a context mixing score S in two different ways:

Dot Product. We quantify cue alignment as S ·ξ,
which measures the total score mass the model
assigns to cue words to form the representation of
the target token.

Average Precision. We quantify cue alignment
as the average precision between the two vectors,
which is a weighted mean of precision at each recall
level:

AP =
∑

n

(Rn −Rn−1)Pn (12)

where Pn and Rn are the precision and recall at the
nth threshold. This metric relies on the ranking of
tokens rather than the magnitude of their weights.4

Figures 1 and 2 show the alignment between
the cue vector and different analysis methods us-
ing dot product and average precision for the pre-
trained and fine-tuned model, respectively. In com-
parison with the other context mixing methods,
Value Zeroing shows a higher degree of the target
model incorporating cue words into the representa-
tion of the [MASK] token across all layers.

As can be seen from the first two columns in
all graphs, raw self-attention weights (Attn) al-
ways perform worse than even random scores in
highlighting cue words. This is in line with pre-
vious studies showing that raw attention weights
often pay attention to uninformative tokens (Voita
et al., 2018; Clark et al., 2019) and do not reflect
the appropriate context (Kim et al., 2019). How-
ever, we can see a significant improvement in the
results for Attn-norm where the norm of trans-
formed value vectors are also taken into account,
confirming that value vectors play an essential role
in the context mixing process. The method Attn-
norm + RES + LN, which expands Attn-norm to
the whole self-attention block by adding Residual

4We also employed Probes-needed (Zhong et al., 2019)
metric in our evaluation which intuitively counts the number
of non-cue tokens we need to probe to find cue words based on
a given score. As its motivation is similar to Average Precision
and the results show the same pattern, we relegate the results
with this metric to the Appendix A.2.
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Figure 1: Layer-wise alignment between the cue vector and different analysis methods averaged over Test set
examples for the pre-trained model. Higher value (darker color) is better.
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Figure 2: Layer-wise alignment between the cue vector and different analysis methods averaged over Test set
examples for the fine-tuned model. Higher value (darker color) is better.

connection and Layer Normalization, would seem
to show that the model is incapable of utilizing the
cue words. However, incorporating also the second
part of the encoder layer via our method shows the
model does indeed use the cue words. We also find
that GlobEnc and ALTI benefit from the rollout
aggregation method to provide a global view, but
they do not seem to provide good layerwise scores
(without rollout).

The gradient-based scores, in contrast to the
other methods, highlight the cue words only in
the earlier layers of the model. In the next section,
by using a layer-wise probing experiment, we will
show that these scores are not reliable for identify-
ing the relevant context in individual layers.

6 Evaluation 2: Context Mixing versus
Probing

In this section, we investigate the relationship be-
tween cue word alignment and probing perfor-
mance across layers. We hypothesize that if a layer
aligns better with the cue word according to a reli-
able context mixing score, then the representation
of the masked token on that layer can be used more
effectively by a probing classifier to decode number
agreement with the cue word.

To verify our hypothesis, we obtain the represen-
tation of masked tokens in test examples across all
layers. Since all examples in our dataset share
the same number agreement property, we asso-
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Figure 3: Layer-wise compression of probing classifiers
using pre-trained and fine-tuned representations.

ciate each masked representation with a Singular
or Plural label. Next, we perform an information-
theoretic probing analysis using Minimum De-
scription Length (MDL) to measures the degree to
which representations encode number agreement.
We chose MDL as our probe since it is theoreti-
cally justified and has been shown to provide more
reliable results than conventional probes (Voita and
Titov, 2020; Fayyaz et al., 2021).

To compute MDL, we employed the online cod-
ing of Voita and Titov (2020). Since MDL can be
affected by the number of data points (N), we mea-
sure compression as our evaluation metric which is
defined as follows:

Compression =
N · log2(K)

MDL
(13)

where K refers to the number of classes (2 in our
case). This metric is equal to 1 (no compression)
for a random guessing classifier. A higher value for
Compression indicates more accurate label predic-
tion for the probing classifier.

Figure 3 reports compression of probing classi-
fiers based on representations obtained from both
pre-trained and fine-tuned models across all lay-
ers. We also include the results for the embedding
layer of the model (layer 0) which can serve as a
non-contextualized baseline. We can see a jump
in probing performance at layers 4 (1.52→ 1.72)
and 9 (2.03 → 2.45) in the fine-tuned setup, the
same layers for which we found a higher alignment
with cue words in Figures 1 and 2.

Table 2 presents the correlation between layer-
wise Compression scores and layer-wise cue align-
ment scores from Section 5 for different analysis
methods. As we can see, alignment according to
Value Zeroing is highly positively correlated with
the probing performance. This suggests that when
Value Zeroing indicates that the model uses cue
words to form representations of the masked to-
kens in a particular layer, these representations are
in fact better at encoding number agreement.

Method ρPT ρFT

Rand -0.07 -0.02

Attn 0.10 0.08
Attn-norm 0.52 0.56
Attn-norm + RES -0.35 -0.24
Attn-norm + RES + LN 0.12 0.17
GlobEnc¬ -0.01 -0.12
ALTI¬ -0.01 -0.12

GradXinput -0.96 -0.99
IG -0.86 -0.77
DL -0.97 -1.00

Value Zeroing 0.65 0.64

Table 2: Spearman’s ρ correlation between layer-wise
probing performance (Comp.) and layer-wise cue align-
ments based on Dot Product. PT and FT refer to pre-
trained and fine-tuned conditions, respectively.

Recall that based on Figures 1 and 2, according
to the gradient-based methods the masked tokens
pay more attention to the cue words only in earlier
layers. However, we can see a highly negative cor-
relation with probing results for these scores. Due
to the nature of the task the probing score goes up
monotonically along the layers. At the same time,
the gradient attribution score goes up monotoni-
cally as you get closer to the bottom embedding
layers, suggesting that gradient-based methods are
unreliable for layer-wise analysis and identifying
important tokens in the context mixing process.

7 Evaluation 3: Faithfulness Analysis

Our experimental results in Sections 5 and 6 show
that the Value Zeroing score matches our prior
linguistically-informed expectations. However, it
is not always clear whether a plausible context mix-
ing score that matches human expectations is also
faithful to the model and reflects its decision mak-
ing process (Herman, 2017; Wiegreffe and Pinter,
2019; Jacovi and Goldberg, 2020).

In this section we employ the notion of input
ablation (Covert et al., 2021) to evaluate the faith-
fulness of our context mixing score. The influence
of a target token on a model’s decision is often
estimated as the drop in the model’s predicted prob-
ability of the correct class after blanking out the
target token from the input. A higher drop for an
ablated token indicates that the token is more in-
fluential on the model’s decision (DeYoung et al.,
2020; Abnar and Zuidema, 2020; Atanasova et al.,
2020; Wang et al., 2022). We use this blank-out
approach as a base for analyzing and comparing
the faithfulness of context mixing scores.
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Method ρPT ρFT

Rand -0.01 0.00

Attn -0.10 -0.07
Attn-norm 0.19 0.14
Attn-norm + RES 0.03 -0.05
Attn-norm + RES + LN -0.08 -0.17
GlobEnc -0.01 -0.09
ALTI 0.17 0.19

GradXinput 0.11 0.16
IG 0.07 0.21
DL 0.20 0.29

Value Zeroing 0.26 0.31

Table 3: Spearman’s ρ correlation between the blank-
out scores and different aggregated context mixing and
attribution scores. PT and FT refer to pre-trained and
fine-tuned conditions, respectively.

To estimate the blank-out scores in BERT, we
calculate the probability of its output y using a
softmax function normalized over only the corre-
sponding logit values of target t and foil words
(cf. Table 1), and compute blank-out scores for a
given input token i as p(yt|e)− p(yt|e\ei), where
ei refers to the input embedding of input token
i. We compare these blank-out scores with con-
text mixing scores, aggregated across all layers
of the model. For gradient-based scores, calculat-
ing them with respect to the tokens in the input
embedding layer (ℓ = 0) provides us with aggre-
gated scores since the backpropagation of gradients
passes through all layers to the beginning of the
model. For other scores, we use the rollout (Abnar
and Zuidema, 2020) aggregation method.

Table 3 shows Spearman’s rank correlation be-
tween the blank-out scores and different aggregated
context mixing scores. The highest correlation for
our method indicates that Value Zeroing is more
faithful in explaining the model behaviour com-
pared to other analysis methods.

Qualitative Analysis. We also take a closer look
at the aggregated scores for a qualitative compar-
ison. In Figure 4, we illustrate different scores
obtained from a fine-tuned BERT model for a cor-
rectly classified example, where the model is asked
to fill the masked token with one of the verbs were
or is as target and foil classes, respectively. Ac-
cording to Value Zeroing scores, the model mainly
relies on the main subject (pictures) as a cue
word to form a contextualized representation of
the [MASK] token, while the word pictures is also
important for the model’s final decision based on

blank-out: [CLS] the pictures of some hat [MASK] scar ##ing marcus . [SEP]

Attn: [CLS] the pictures of some hat [MASK] scar ##ing marcus . [SEP]

Attn-norm: [CLS] the pictures of some hat [MASK] scar ##ing marcus . [SEP]

Attn-norm+RES: [CLS] the pictures of some hat [MASK] scar ##ing marcus . [SEP]

Attn-norm+RES+LN: [CLS] the pictures of some hat [MASK] scar ##ing marcus . [SEP]

GlobEnc: [CLS] the pictures of some hat [MASK] scar ##ing marcus . [SEP]

ALTI: [CLS] the pictures of some hat [MASK] scar ##ing marcus . [SEP]

GradXinput: [CLS] the pictures of some hat [MASK] scar ##ing marcus . [SEP]

IG: [CLS] the pictures of some hat [MASK] scar ##ing marcus . [SEP]

DL: [CLS] the pictures of some hat [MASK] scar ##ing marcus . [SEP]

Value Zeroing: [CLS] the pictures of some hat [MASK] scar ##ing marcus . [SEP]

Figure 4: Most influential tokens on the target represen-
tation in a fine-tuned BERT model according to different
aggregated context mixing scores compared to blank-
out scores.

the blank-out scores. In this example, the blank-
out score for the cue word is 0.99, meaning the
model fully loses its confidence in the target class
when the cue word is replaced with an [UNK]
token. Surprisingly, gradient-based methods tend
to highlight the word hat which is an agreement
attractor, and attention-based scores tend to focus
on the [CLS] token which has been idle during
fine-tuning process.

Overall, our faithfulness evaluation and qualita-
tive analysis suggest that Value Zeroing can explain
model decisions at a global level when it is aggre-
gated across layers. The context mixing maps per
layer are provided in Appendix A.4, where some
more meaningful patterns can be found in Value
Zeroing scores (in both layer-wise and aggregated
setups) in contrast to other context mixing scores.

8 Discussion

Although some desiderata such as plausibility (Lei
et al., 2016; Strout et al., 2019) and faithfulness
(Lakkaraju et al., 2019; Jacovi and Goldberg, 2020)
are taken into account when developing explana-
tion and analysis methods, evaluating them is still
a challenge due to lack of a standard ground truth.
Evaluating context mixing scores, where token-to-
token interactions in a context are also considered,
is even more challenging. Several studies have used
gradient-based scores as an anchor of faithfulness,
and measure how strongly context mixing scores
correlate with them (Jain and Wallace, 2019; Ab-
nar and Zuidema, 2020; Modarressi et al., 2022).
However, the reliability of gradient-based scores
can be questioned, especially when different vari-
ations of them show considerable disagreement
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(Neely et al., 2022; Pruthi et al., 2022; Krishna
et al., 2022). Thus, we suggest using controlled
tasks for which we have strong prior expectations
for evaluating these methods. In our study, we use
a set of number agreement tasks to provide such
priors, since the cue words are the only sources of
information in the context for performing well in
the task.

Another point worth discussing is the concern
raised by Kobayashi et al. (2021) that BERT tends
to preserve token representations rather than mix-
ing them at each layer. We argue that their ob-
servation is due to the context-mixing ratio they
defined by comparing the norm of residual effects
against other token representations. In our view,
this ratio is dominated by residuals and neglects the
fact that a token representation carried by residual
connections is indeed a contextualized representa-
tion outputted from previous layers. We keep the
residuals intact within the encoder layer by zeroing
only the value vectors and focusing on the context
mixing performed by all tokens.

9 Conclusion

In this paper, we propose Value Zeroing as a novel
approach for quantifying the information mixing
process in Transformers to address the shortcom-
ings of previous methods. We performed exten-
sive complementary experiments and showed that
our method outperforms others in three different
evaluation setups. Since our approach requires no
supervision, it could be an interesting option for
improving model efficiency by removing token rep-
resentations across layers.

10 Limitations

As is the case for most attempts at interpreting
Deep Learning models, our evaluation of our (and
others’) proposed methods are not definite since
we have no gold standard of what happens inside
a model, although we try to remedy for that by
conducting independent and complementary evalu-
ation schemes.

Our proposed method is customized for deep
neural models based on the Transformer archi-
tecture and cannot be easily generalized to other
(mathematically different) modeling architectures.
Our evaluations were based on encoder-based mod-
els, and focused on the Text modality. In the future,
we will extend our experiments to more modalities,
such as speech and vision.
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A Appendices

A.1 On the choice of distance function

The purpose of this section is to inspect the impact
of selecting different distance metrics when com-
puting Value Zeroing in Eq. 10. Timkey and van
Schijndel (2021) questioned the informativity of
standard representational distance measures such
as cosine and Euclidean by observing that only a
small subset of rogue dimensions contribute to the
anisotropy of a contextualized representation space.
They proposed using simple post-processing tech-
niques to correct for such these rough dimensions.
We followed their suggestion and normalized the
representations before computing distances, but we
did not observe any noticeable difference in our
scores compared to using non-normalized repre-
sentations (Fig. A.1). We also repeated our ex-
periment with Spearman’s and Euclidean distance
metrics and observed the same pattern in the results
(Fig. A.1).

We believe that in anisotropy studies that use
clustering methods, the choice of distance metrics
is crucial. However, we compute each token’s dis-
tance from itself (not from other tokens) and com-
pare them relatively. This might explain why we
observe the same pattern for different distance met-
rics.

A.2 More metrics

Figure A.2 reports the cue alignment evaluation
for BERT model based on Probes-needed (Zhong
et al., 2019) metric.

A.3 More PLMs

We replicated our experiment for the cue alignment
for two more PLMs; RoBERTa (Liu et al., 2019)
and ELECTRA (generator, Clark et al., 2020). As
we can see in Figures A.3 and A.4, our method
consistently outperforms other methods on all mod-
els in both pre-trained and fine-tuned setups. Due
to the fact that our scores are based on zeroing
value vectors, our method can be easily applied to
any Transformer-based models even with different
modalities.

VZ
 (c

os
in

e)

VZ
 (c

os
in

e,
 n

or
m

al
ize

d)

VZ
 (s

pe
ar

m
an

r)

VZ
 (s

pe
ar

m
an

r, 
no

rm
al

ize
d)

VZ
 (e

uc
lid

ea
n)

VZ
 (e

uc
lid

ea
n,

 n
or

m
al

ize
d)

1
2

3
4

5
6

7
8

9
10

11
12

La
ye

r

0.10 0.10 0.10 0.10 0.10 0.10
0.14 0.15 0.14 0.14 0.13 0.13
0.19 0.19 0.19 0.19 0.15 0.15
0.21 0.21 0.21 0.21 0.18 0.18
0.24 0.24 0.23 0.23 0.19 0.19
0.17 0.17 0.17 0.17 0.16 0.16
0.17 0.17 0.17 0.17 0.17 0.17
0.21 0.21 0.21 0.21 0.19 0.19
0.28 0.28 0.28 0.28 0.22 0.22
0.21 0.21 0.21 0.21 0.18 0.18
0.26 0.26 0.26 0.26 0.19 0.19
0.21 0.21 0.21 0.21 0.17 0.17

Dot Product

VZ
 (c

os
in

e)

VZ
 (c

os
in

e,
 n

or
m

al
ize

d)

VZ
 (s

pe
ar

m
an

r)

VZ
 (s

pe
ar

m
an

r, 
no

rm
al

ize
d)

VZ
 (e

uc
lid

ea
n)

VZ
 (e

uc
lid

ea
n,

 n
or

m
al

ize
d)

1
2

3
4

5
6

7
8

9
10

11
12

0.32 0.33 0.33 0.32 0.32 0.33
0.36 0.37 0.36 0.37 0.36 0.37
0.37 0.37 0.38 0.37 0.37 0.37
0.48 0.48 0.48 0.48 0.48 0.48
0.54 0.54 0.54 0.54 0.54 0.54
0.41 0.41 0.41 0.41 0.41 0.41
0.43 0.42 0.42 0.42 0.43 0.42
0.47 0.47 0.47 0.47 0.47 0.47
0.57 0.57 0.57 0.57 0.57 0.57
0.45 0.45 0.46 0.46 0.45 0.45
0.54 0.54 0.54 0.54 0.54 0.54
0.44 0.44 0.44 0.44 0.44 0.44

Average Precision

(a) Pre-trained BERT

VZ
 (c

os
in

e)

VZ
 (c

os
in

e,
 n

or
m

al
ize

d)

VZ
 (s

pe
ar

m
an

r)

VZ
 (s

pe
ar

m
an

r, 
no

rm
al

ize
d)

VZ
 (e

uc
lid

ea
n)

VZ
 (e

uc
lid

ea
n,

 n
or

m
al

ize
d)

1
2

3
4

5
6

7
8

9
10

11
12

La
ye

r

0.10 0.10 0.10 0.10 0.11 0.11
0.14 0.15 0.14 0.14 0.13 0.13
0.19 0.19 0.19 0.19 0.15 0.15
0.21 0.21 0.21 0.21 0.18 0.18
0.25 0.25 0.25 0.25 0.20 0.20
0.18 0.18 0.17 0.17 0.17 0.17
0.19 0.19 0.19 0.19 0.18 0.18
0.24 0.24 0.24 0.24 0.21 0.21
0.35 0.35 0.34 0.34 0.25 0.25
0.21 0.21 0.20 0.21 0.18 0.18
0.25 0.25 0.24 0.24 0.19 0.19
0.22 0.22 0.22 0.21 0.17 0.17

Dot Product

VZ
 (c

os
in

e)

VZ
 (c

os
in

e,
 n

or
m

al
ize

d)

VZ
 (s

pe
ar

m
an

r)

VZ
 (s

pe
ar

m
an

r, 
no

rm
al

ize
d)

VZ
 (e

uc
lid

ea
n)

VZ
 (e

uc
lid

ea
n,

 n
or

m
al

ize
d)

1
2

3
4

5
6

7
8

9
10

11
12

0.33 0.33 0.33 0.33 0.33 0.33
0.36 0.37 0.36 0.37 0.36 0.37
0.37 0.37 0.37 0.37 0.37 0.37
0.48 0.48 0.48 0.47 0.48 0.48
0.58 0.58 0.57 0.57 0.58 0.58
0.43 0.43 0.43 0.43 0.43 0.43
0.46 0.46 0.46 0.46 0.46 0.46
0.53 0.53 0.53 0.53 0.53 0.53
0.68 0.68 0.68 0.68 0.68 0.68
0.45 0.45 0.45 0.45 0.45 0.45
0.53 0.53 0.53 0.53 0.53 0.53
0.46 0.45 0.45 0.45 0.45 0.45

Average Precision

(b) Fine-tuned BERT

Figure A.1: Layer-wise alignment between the cue vec-
tor and different Value Zeroing (VZ) scores computed
based on 1) different distance metric and 2) whether
representations are normalized.

A.4 Qualitative Analysis: Layer-wise Context
Mixing Maps

This section illustrates different context mixing
maps obtained from a fine-tuned BERT model for
the correctly classified example of “The pictures of
some hat [MASK] scaring Marcus.”
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Figure A.2: The layer-wise alignment based on Probes-needed metric between the cue vector and different analysis
methods averaged over Test set examples. Lower value (darker blue) is better.
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Figure A.3: Layer-wise alignment between the cue vector and different analysis methods averaged over Test set
examples for RoBERTa. Higher value (darker color) is better.
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(b) Fine-tuned ELECTRA

Figure A.4: Layer-wise alignment between the cue vector and different analysis methods averaged over Test set
examples for ELECTRA. Higher value (darker color) is better.
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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Figure A.5: Raw attention scores (Attn) averaged over all attention heads at each different layer.

Attn w/ rollout
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]

Layer: 5

[C
LS

]
th

e
pi

ct
ur

es of
so

m
e

ha
t

[M
AS

K]
sc

ar
##

in
g

m
ar

cu
s .

[S
EP

]

[CLS]
the

pictures
of

some
hat

[MASK]
scar

##ing
marcus

.
[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]

Layer: 11

[C
LS

]
th

e
pi

ct
ur

es of
so

m
e

ha
t

[M
AS

K]
sc

ar
##

in
g

m
ar

cu
s .

[S
EP

]

[CLS]
the

pictures
of

some
hat

[MASK]
scar

##ing
marcus

.
[SEP]
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Figure A.6: Raw attention scores (Attn) aggregated by rollout (Abnar and Zuidema (2020)’s method) across layers.
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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Figure A.7: Kobayashi et al. (2020)’s scores (Attn-norm) across layers.

Attn-norm w/ rollout
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]

Layer: 5

[C
LS

]
th

e
pi

ct
ur

es of
so

m
e

ha
t

[M
AS

K]
sc

ar
##

in
g

m
ar

cu
s .

[S
EP

]

[CLS]
the

pictures
of

some
hat

[MASK]
scar

##ing
marcus

.
[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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Figure A.8: Kobayashi et al. (2020)’s scores (Attn-norm) aggregated by rollout method across layers.
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Attn-norm + RES
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[SEP]
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[SEP]

Layer: 2

[C
LS

]
th

e
pi

ct
ur

es of
so

m
e

ha
t

[M
AS

K]
sc

ar
##

in
g

m
ar

cu
s .

[S
EP

]

[CLS]
the

pictures
of

some
hat

[MASK]
scar

##ing
marcus

.
[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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Figure A.9: Kobayashi et al. (2021)’s scores (Attn-norm + RES) across layers.

Attn-norm + RES w/ rollout
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[SEP]

Layer: 1

[C
LS

]
th

e
pi

ct
ur

es of
so

m
e

ha
t

[M
AS

K]
sc

ar
##

in
g

m
ar

cu
s .

[S
EP

]

[CLS]
the

pictures
of

some
hat

[MASK]
scar

##ing
marcus

.
[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]

Layer: 9

[C
LS

]
th

e
pi

ct
ur

es of
so

m
e

ha
t

[M
AS

K]
sc

ar
##

in
g

m
ar

cu
s .

[S
EP

]

[CLS]
the

pictures
of

some
hat

[MASK]
scar

##ing
marcus

.
[SEP]
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[SEP]
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[SEP]
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Figure A.10: Kobayashi et al. (2021)’s scores (Attn-norm + RES) aggregated by rollout method across layers.
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Attn-norm + RES + LN
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[SEP]
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[SEP]
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[SEP]
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[SEP]

Layer: 4

[C
LS

]
th

e
pi

ct
ur

es of
so

m
e

ha
t

[M
AS

K]
sc

ar
##

in
g

m
ar

cu
s .

[S
EP

]

[CLS]
the

pictures
of

some
hat

[MASK]
scar

##ing
marcus

.
[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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Figure A.11: Kobayashi et al. (2021)’s scores (Attn-norm + RES + LN) across layers.

Attn-norm + RES + LN w/ rollout
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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Figure A.12: Kobayashi et al. (2021)’s scores (Attn-norm + RES + LN) aggregated by rollout method across layers.
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GlobEnc without rollout
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]

Layer: 11

[C
LS

]
th

e
pi

ct
ur

es of
so

m
e

ha
t

[M
AS

K]
sc

ar
##

in
g

m
ar

cu
s .

[S
EP

]

[CLS]
the

pictures
of

some
hat

[MASK]
scar

##ing
marcus

.
[SEP]
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Figure A.13: Modarressi et al. (2022)’s scores (GlobEnc¬) without aggregation (rollout) across layers.

GlobEnc (w/ rollout)
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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Figure A.14: Modarressi et al. (2022)’s scores (GlobEnc) across layers (the rollout method is inherently incorporated
in GlobEnc).
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ALTI without rollout
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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Figure A.15: Ferrando et al. (2022)’s scores (ALTI¬) without aggregation (rollout) across layers.

ALTI (w/ rollout)
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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Figure A.16: Ferrando et al. (2022)’s scores (ALTI) across layers (the rollout method is inherently incorporated in
ALTI).
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Value Zeroing
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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Figure A.17: Our scores (Value Zeroing) across layers.

Value Zeroing w/ rollout
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[SEP]
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[SEP]
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[SEP]

Layer: 3
[C

LS
]

th
e

pi
ct

ur
es of

so
m

e
ha

t
[M

AS
K]

sc
ar

##
in

g
m

ar
cu

s .
[S

EP
]

[CLS]
the

pictures
of

some
hat

[MASK]
scar

##ing
marcus

.
[SEP]

Layer: 4

[C
LS

]
th

e
pi

ct
ur

es of
so

m
e

ha
t

[M
AS

K]
sc

ar
##

in
g

m
ar

cu
s .

[S
EP

]

[CLS]
the

pictures
of

some
hat

[MASK]
scar

##ing
marcus

.
[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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Figure A.18: Our global scores (Value Zeroing) aggregated by rollout method across layers.
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Abstract

Timely generation of radiology reports and di-
agnoses is a challenge worldwide due to the
enormous number of cases and shortage of
radiology specialists. In this paper, we pro-
pose a Knowledge Graph Augmented Vision
Language BART (KGVL-BART) model that
takes as input two chest X-ray images- one
frontal and the other lateral- along with tags
which are diagnostic keywords, and outputs a
report with the patient-specific findings. Our
system development effort is divided into 3
stages: i) construction of the Chest X-ray KG
(referred to as chestX-KG), ii) image feature
extraction, and iii) training a KGVL-BART
model using the visual, text, and KG data.
The dataset we use is the well-known Indi-
ana University Chest X-ray reports with the
train, validation, and test split of 3025 in-
stances, 300 instances, and 500 instances re-
spectively. We construct a Chest X-Ray knowl-
edge graph from these reports by extracting
entity1-relation-entity2 triples; the triples get
extracted by a rule-based tool of our own. Con-
structed KG is verified by two experienced ra-
diologists (with experience of 30 years and 8
years, respectively). We demonstrate that our
model- KGVL-BART- outperforms State-of-
the-Art transformer-based models on standard
NLG scoring metrics. We also include a quali-
tative evaluation of our system by experienced
radiologist (with experience of 30 years) on
the test data, which showed that 73% of the
reports generated were fully correct, only 5.5%
are completely wrong and 21.5% have impor-
tant missing details though overall correct. To
the best of our knowledge, ours is the first sys-
tem to make use of multi-modality and domain
knowledge to generate X-ray reports automati-
cally.

1 Introduction

Medical imaging techniques are widely used in
hospitals across the world. The detailed informa-

tion extracted from medical images is crucial for
proper diagnosis and treatment. An experienced
and skilled radiologist is required to prepare an ac-
curate full text diagnostic report. However, due to
a lack of experts, many reports contain indecisive
findings, forcing patients to undergo further tests
involving pathology or other advanced imaging
methods. In addition, the time consuming process
of full text radiology report generation is one of the
biggest challenges. All over the world, the ratio of
radiologists to patients is very low. The ratios in the
US, China, and India are 1:10,000, 1:14,772, and
1:100,000 respectively (Arora, 2014). Given the
huge number of cases and the shortage of radiology
experts, timely report generation and diagnosis is a
huge challenge worldwide.

In the case of a chest ailment, X-rays produce
images of chest organs like, lungs, spinal bones,
heart, airways, and blood vessels. These images
help doctors ascertain an exact findings such as
pneumonia, collapsed lung, emphysema, cancer,
broken ribs, etc. Manual examination of X-ray im-
ages for a large number of patients can be time
consuming, leading to delays. Human errors may
further add to the challenges. This prompted the
researchers to use deep learning models capable of
automated report generation to address the above
mentioned challenges. With deep learning based
automatic report generation, the reports can be gen-
erated with minimal delay and free from any human
errors. Large-scale pre-trained language models
have recently expanded into multimodality learn-
ing, improving representations by combining visual
and semantic features (Cho et al., 2021; Sollami
and Jain, 2021; Mustafa et al., 2022). However,
progress in adapting language models toward con-
ditional Natural Language Generation (NLG) is
limited to image and text modalities. The Natural
Language Processing (NLP) community is mov-
ing towards transformer-based models. The major-
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ity of NLP research today produces better results
by tweaking an already-trained transformer model
across a large corpus. This prompts us to research
pre-trained transformers like BART that have gen-
erative capabilities while conditioning them on vi-
sual, textual, and KG data. This study introduces
the KGVL-BART conditioned transformer-based
model, which, produces a comprehensive report
given an X-ray image, tags associated with X-ray
image.)), and chest X-ray KG. We train our model
using the publicly accessible Indiana University
chest X-ray dataset (referred to as IU-XRay) (Fis-
cher et al., 2022). The encoder accepts input from
tags, images, and KG in three different modalities.
We create embeddings for each of these modalities
before sending input to the multimodal encoder.
We compare our quantitative findings to earlier
transformer-based models. Furthermore, we pro-
vide qualitative analysis on test set by a radiologist.

Problem Statement: Design a system that gen-
erates a structured patient-specific report from radi-
ology images, image tags and domain knowledge.
The input to the system is

• two chest X-ray images- one frontal and the
other lateral

• tags

The output of the system is

• radiology report with patient-specific findings

Domain knowledge comes from the Knowledge
Graph.

Our contributions are:

1. A knowledge-enhanced BART-based Vision-
Language Model which we call KGVL-BART
and which generates chest X-ray reports with
accuracy better than SoTA.

2. Chest X-ray knowledge graph created from
IU Chest X-ray reports.

3. Demonstration of the fact that multi-modality
helps in radiology report generation; we use
both the image and its tags plus triples from
the knowledge graph.

2 Fundamental Definitions

Vision-Language Model: Vision-Language mod-
els are the deep learning models that learn both
vision and language modalities together.
Tags: Tags are the diagnostic keywords (e.g., left

lung, pulmonary atelectasis, hernia, pneumonia,
etc.) associated with X-ray image.
Findings: The findings section in radiology reports
is the clinical description of abnormalities and nor-
malities observed on radiology image.
Impression: The impression section in radiology
reports is the summary of findings section.
Knowledge Graph: Paulheim (2017) defines
Knowledge Graph (KG) as "A knowledge graph (i)
mainly describes real-world entities and their inter-
relations, organized in a graph, (ii) defines possible
classes and relations of entities in a schema, (iii)
allows for potentially interrelating arbitrary entities
with each other and (iv) covers various topical do-
mains."
Knowledge Graph Embeddings (KGEs): Knowl-
edge graph embeddings represent the entities and
relations in lower-dimensional vectors.
KG-Grounding: The KG grounding is the pro-
cess of extracting the subgraph (referred to as
grounded KG) from domain-specific KG (in our
case chestX-KG). A grounded KG is a subgraph
from the chestX-KG whose nodes represents tags
present in the input tag set plus additional relevant
nodes.

3 Related Work

Researchers (Jing et al., 2017; Zhang et al., 2017;
Yuan et al., 2019) studied the issue of automatic
report generation. Their research looked into the
visual attention given to recurrent decoders and
convolution-recurrent architectures (CNN-RNN)
that were first introduced by Vinyals et al. (2015)
on image captioning. Transformers, attention-only
based models that have replaced recurrent mod-
els in the NLP community (Vaswani et al., 2017;
Devlin et al., 2018). Several attempts have been
made in the medical field to create medical reports
from the corresponding images. Most authors use
multilabel image captioning to produce X-ray re-
ports, and they subsequently use those captions
as textual features. The IU-Xray dataset’s chest
X-ray images were used to generate the first struc-
tured report using tags predicted by a CNN-RNN
model (Shin et al., 2016). In (Wang et al., 2017b), a
system for generating natural reports for the Chest-
Xray14 dataset, employing private reports, was pre-
sented. This framework used a non-hierarchical
CNN-LSTM architecture and focused on seman-
tic and visual aspects. The IU-Xray dataset was
created by Jing et al. (2017) to generate radiology
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reports automatically.
There is a lot of research performed in NLG

on multimodal constraints. NLG models based
on transformers (Sollami and Jain, 2021) propose
a model called MAnTiS, Multimodal Adaptation
for Text Synthesis, as a general method for mul-
timodal conditionality. In this method, separator
tokens are used to separate each modality type, and
modality-specific encoders are used to encode each
modality type. Liu et al. (2021) contend that pre-
trained language models and textual concepts by
themselves are insufficient to give enough data for
generative commonsense reasoning. They supply
the ConceptNet KG as input to the transformer
model for generative commonsense reasoning in
addition to text input. Liu et al. (2020) proposes a
Knowledge-enabled Bidirectional Encoder Repre-
sentation from Transformers (K-BERT). Since the
parameters of all pre-trained BERT models are the
same, K-BERT can load any of them. Additionally,
K-BERT can easily integrate domain knowledge
into the models by giving them access to a KG with-
out prior training. Xing et al. (2021) propose KM-
BART to conduct the task of Visual Commonsense
Generation (VCG) by integrating visual features in
pretrained BART model.

4 Methodology

As shown in the figure 1, the model architecture
consists of six major components, namely, KG
grounding, KG embedding, image embedding, text
embedding, encoder, and decoder. The KG ground-
ing module extracts the grounded KG from the
chestX-KG. Grounded KG includes all of the nodes
in the input tag set and their significant neighbors.
The KG embedding module converts the grounded
KG into vector form using the KGE technique.
The image feature extractor module generates the
feature vectors for input chest X-ray images. To
compute the text features, we use the BART text
encoder method. The encoder and decoder are
multilayer transformers. This section explains all
components in detail.

4.1 Knowledge Graph Grounding

The KG grounding module extracts the small sub-
graph from chestX-KG for each report in the
dataset, given a tag set as input. First, it adds all en-
tities from chestX-KG that are present in the input
tag set, and then it adds their significant neighbors.

The algorithm focuses on first finding the most

appropriate path in chestX-KG from tag entities to
the root of chestX-KG and then adding neighbor
nodes that are connected with DefaultPropertyOf
(default property of entities) relation. The follow-
ing are the steps to extract grounded KG:

• Find all possible candidate paths from a
matched entity to the root node.

• Find the most appropriate top five paths by
ranking based on the precision and recall of
entities in the input tag set and entities in all
possible candidate paths.

• We consider all paths, including those with
matched entities that are absent from the se-
lected top-ranking path.

• Instead of adding all neighbors of input tag
entities, we add only significant entities that
are default properties or default descriptors of
input entities.

Our proposed method reduces noise by adding only
significant nodes to grounded KG. We propose a
context-aware KG grounding algorithm to select
M triples from the chestX-KG for an entity candi-
date. The pseudocode of this algorithm is shown
as follows.

Algorithm 1: KG Grounding

Input : K: Tags
G(V, E) : chestX-KG

Output :Grounded KG
1 Find all candidate paths in G(V, E) that includes the

node with input concept
2 path-dict -> initialize
3 for each path in possible candidate-paths do
4 Precision = K∩Allentitiesinpath

No.ofconceptsinK

5 Recall = K∩Allentitiesinpath
No.ofnodesinpath

6 F − score = 2∗Precision∗Recall
Precision+Recall

7 add path-dict -> (path:F-score)
8 end
9 Sort path-dict in descending order of F-score

10 Get top 5 paths
11 for each path in top-5-paths do
12 if len(set(K) - set(path)) > 0 then
13 Add all triplets from that path in grounded

KG triple set
14 for each node in path do
15 Find all neighbors of node with

default-property relation
16 Add all triples of form (neighbor,

DefaultPropertyOf, node) in
grounded KG triple set

17 end
18 end
19 end
20 Return grounded KG triplets set.
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Figure 1: The architecture of our proposed KGVL-BART model. KGVL-BART has six important components: KG
grounding, KG Embedding, image embedding, text embeddings, encoder, and decoder.

4.2 Knowledge Graph Embeddings

Knowledge Graph Embedding methods embed the
components of a KG, including entities and rela-
tions, into continuous vector spaces. The chestX-
KG is represented in low dimensional vector space
using KGE. There are different techniques used
for KG embeddings like TransR, TransH, TransE,
TransD, etc, (Wang et al., 2017a). For simplicity
and concreteness, in this work, we primarily con-
sider the TransE (Bordes et al., 2013) model due to
its state-of-the-art performance.

4.3 Text Embedding

The input embeddings in KGVL-BART are made
of two separate embeddings, token embeddings and
position embeddings. To get the final text embed-
ding, we add the vectors of token embeddings and
position embeddings.

4.3.1 Token Embeddings
Tokens are nothing but a word or part of a word.
The textual encoder uses the vocabulary offered
by large-cnn BART, and the token embedding is
consistent with BART. Using a trainable lookup
table, we transform each token in the input tag set
into an embedding vector of dimension d.

In order to create these token embeddings, a
method called BART tokenizer is used to tok-
enize the text. Input tag set T is tokenized as
{t1, t2, ..., t|t|} and encoded as learned embedding

et = {et1 , et2 , ..., et|t|}. For a token tn, its em-
bedding is etn ∈ Rd, where d is the dimension
of the token embeddings. The encoder, decoder,
and language modeling head (Press and Wolf,
2016) all share the embedding parameters. Due to
the permutation-invariance of the attention layers,
BART learns positional embeddings for absolute
token positions and adds them to the token embed-
dings (Vaswani et al., 2017; Devlin et al., 2018).

4.3.2 Positional Embeddings
Position embeddings represent the position of the
word within that sentence that is encoded into a
vector. We must introduce some information about
the relative or absolute location of the tokens in the
sequence because our model lacks recurrence and
convolution and hence cannot use the sequence’s or-
der. To do this, we augment the token embeddings
at the base of the encoder and decoder stacks with
positional embeddings. The positional encodings
and token embeddings have the same dimension d
allowing the token and positional embeddings to
be added together. The text embeddings are the
sum of the token embeddings and the positional
embeddings, i.e., etp = et + ep, where ep is the
positional embeddings.

4.4 Image Embedding

For image feature extraction, we use three differ-
ent methods: i) Pretrained CheXNet (Rajpurkar
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et al., 2017) model (referred to as CheXNet), ii) Pre-
trained ResNet-152 model (referred to as ResNet-
152), and iii) Fine-tuned ResNet-50 for multilabel
image classification on NIH chest-xray dataset (re-
ferred to as NIH-ResNet). We extract the image
embeddings from each of these models, and we
train KGVL-BART separately for these methods.
In this section, we give details about the pretrained
ResNet-152 feature extractor.

We extract the embedding form of the final
fully connected layer of the pre-trained ResNet-152
model (He et al., 2016). We transform images using
the same parameters as during pretraining, which
include resizing, center cropping, and normalizing.
We project the image feature vector through a linear
layer with a learnable weight matrix W ∈ RN∗d
onto the language model embedding space d.

To get the final input embeddings, we sum up
the text and image embeddings. In addition to the
original vocabulary of BART, for images, we use
<img> and </img> to indicate the start and the end
of visual embeddings, respectively. Multimodal
Feature Augmentation is done by adding image
feature vector with the text feature vector to gener-
ate a single feature vector, i.e., etv = etp + ev.

4.5 Encoder
The encoder uses two modalities—image and text,
and text generation is conditioned on grounded KG.
According to the figure 1, the KG enhanced en-
coder layer sits above the visual-textual encoder
layer and is intended to enhance the visual-text
representation {etv1 , etv2 , ...., etvn} by taking the
KG structure into account. We use a graph atten-
tion layer to incorporate graph representations into
the input encoding process. It uses explicit rela-
tions to help the model learn intra-concept rela-
tions more effectively. Formally, the grounded KG
embedding, as well as the output visual-textual
embeddings from the visual-textual encoder, are
combined by the KG-augmented encoder to update
the visual-textual token representation. Our self-
attention layer and fully-connected layer with resid-
uals make up the stack ofm transformer blocks that
make up our bidirectional multimodal encoder.

4.6 Decoder
The decoder uses the text embedding module at the
bottom layer to encode the text. The decoder in
our model is also a multi-layer transformer. Our
decoder is auto-regressive and unidirectional. We
skip over a detailed explanation of these modules

because our textual transformers are the same as
those used in BART (Lewis et al., 2019; Vaswani
et al., 2017).

5 Experiments

The datasets, evaluation metrics, and baselines used
for the training and evaluation of the KGVL-BART
model are covered in detail in this section.

5.1 Dataset
We use the IU Chest X-ray dataset to train our
model (Demner-Fushman et al., 2016). There are
3825 patient reports in this dataset. 7430 chest X-
ray images from the front and sides contribute to
this dataset. Each patient report contains two types
of tags: MTI tags and manual tags from MESH1

and RadLex2. Each report has three parts: an im-
pression, which is a title or summary of the report;
findings, which contain the report in detail; and
manual tags. We use MESH tags (text) as one of
the input to train our model. We concatenate im-
pressions and findings and use it as target to train
our model. IU Chest X-ray dataset includes normal
and abnormal study reports. There are total 3825
reports out of which 1379 are normal and 1646
are abnormal. The dataset is balanced with respect
to normal and abnormal reports. Additionally, we
chose 500 samples at random to serve as the test set.
Our split is 3025 for training, 300 for validation,
and 500 for testing. Table 1 shows the samples
from the IU-Chest X-ray dataset.

Table 1 shows an example from the dataset that
we are using to train KGVL-BART model.

5.1.1 Chest X-ray Knowledge Graph
(chestX-KG)

Nodes in our knowledge graph represent all nec-
essary information, like findings, observations,
anatomy, properties, and modifiers related to the or-
gan. We define eight logical relations to construct
chestX-KG. i) PartOf : It represents the relation
between anatomy and sub-anatomy, ii) TypeOf : It
represents the relation between similar type of en-
tities, iii) ModifierOf : It denotes the descriptors
of findings, anatomical locations, properties, etc.,
iv) ObservationOf : It denotes the clinical observa-
tions observed for a particular finding, v) Default-
ObservationOf : It denotes the observation that is
associated by default with a particular anatomical

1https://www.nlm.nih.gov/mesh/qualifiers_
scopenotes.html

2https://radlex.org/
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Frontal Image Lateral Image Tags Target

Osteophyte, thoracic ver-
tebrae, multiple, small,
Thickening, pleura, apex,
bilateral, Lung, hyperdis-
tention, mild

Impression: No acute cardiopulmonary abnormality. Findings: The
cardiomediastinal silhouette and pulmonary vasculature are within nor-
mal limits. There is no pneumothorax or pleural effusion. There are no
focal areas of consolidation. Cholecystectomy clips are present. Small
T-spine osteophytes. There is biapical pleural thickening, unchanged
from prior. Mildly hyperexpanded lungs.

normal Impression: No acute cardiopulmonary findings. Findings: Heart
size and mediastinal contour are within normal limits. There is no
focal airspace consolidation or suspicious pulmonary opacity. No
pneumothorax or large pleural effusion. Mild degenerative change of
the thoracic spine.

Pulmonary Atelectasis,
base, Spondylosis, tho-
racic vertebrae, Arthritis,
cervical vertebrae

Impression: Basilar atelectasis. No confluent lobar consolidation or
pleural effusion. Findings: The cardiac contours are normal. XXXX
basilar atelectasis. The lungs are clear. Thoracic spondylosis. Lower
cervical XXXX arthritis.

Calcified Granuloma,
lung, upper lobe, right

Impression: No acute cardiopulmonary process. Findings: The car-
diomediastinal silhouette is within normal limits for size and contour.
The lungs are normally inflated without evidence of focal airspace
disease, pleural effusion, or pneumothorax. Stable calcified granuloma
within the right upper lung. No acute bone abnormality.

Table 1: Samples from the IU Chest X-ray dataset. We use frontal images, lateral images, and tags as input to our
model and target text as a concatenation of impression and findings columns from the IU Chest X-ray dataset. In
this table, we show only the columns we use to train the KGVL-BART model.

Figure 2: Chest X-ray KG constructed by extracting triplets from the free-text chest X-ray reports. Constructed KG
is verified by radiologists. Only a portion of the entire KG is displayed due to space limitations.

location or particular finding. vi) PropertyOf : It
denotes the relation between entities (anatomical
entities, finding entities, observation entities, etc.)
and their properties., vii) DefaultPropertyOf : It
denotes the property that exist by default with par-
ticular anatomical location or particular finding.,
and viii) FoundIn: It denotes the relation between
findings and corresponding anatomical location.

We use a rule-based and pattern-based approach

to extract the triples from the IU X-ray text report
corpus. After extracting triples from text-report cor-
pus we construct hierarchical KG with chest as root
node and children represents its parts or associated
findings. More details about radiology KG con-
struction is given in paper (Kale et al., 2022). The
constructed KG is verified by two radiologists who
are involved in this research work. Figure 2 shows
the part of chestX-KG that we have constructed.
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5.2 Training

Three different techniques are used to extract the
features from the frontal and lateral X-ray images:
i) Pretrained CheXNet model, ii) Pretrained Resnet-
152 model, and iii) Fine tuned Resnet-50 for multi-
label image classification on the NIH chest X-ray
dataset3 (Wang et al., 2017b).

We have trained the KGVL-BART model for
each of these image embeddings separately and
also provided quantitative results. To implement
the TransE model for KG embeddings, we use the
open-source OpenKE4 tool. The chestX-KG con-
tains 106 nodes and 126 triples.

5.3 Pretraining Setup

For model pretraining we use ConceptNet KG
(Speer et al., 2017) and common sense generation
dataset (Lin et al., 2020). For pretraining, we do
not use images. At the time of pretraining, we are
not adding image features to text features. We use
byte-pair encoding for tokenization, with a maxi-
mum length of 32 for the encoder and 64 for the
decoder. We set the learning rate to 0.00001 and
used AdamW with β1 = 0.9, β2 = 0.98 for opti-
mization. We set the batch size to 60. We trained
the KGVL-BART for 10 epochs, and the gradients
are accumulated every 6 steps. We apply dropout
with a probability of 0.1 to avoid over-fitting. While
inferencing, we use beam search with beam size 5
and a length penalty of factor 0.6.

5.4 Training Setup

We propose our own algorithm for KG-grounding
tasks. We construct grounded KGs for each report
tag set. We use pretrained weights to initialize the
KGVL-BART model. We train our model on the
IU Chest X-ray dataset.

We use byte-pair encoding for tokenization with
a maximum length of 300 for the encoder and 500
for the decoder. We set the learning rate to 0.00001
and used AdamW with β1 = 0.9, β2 = 0.98 for
optimization. We set the batch size to 18. We
trained the KGVL-BART for 15 epochs, and the
gradients are accumulated every 6 steps. We apply
dropout with a probability 0.1 to avoid over-fitting.
We use beam search with beam size 5 and length
penalty with factor 0.6 while inferencing. DGX
A100-SXM-80GB GPU server takes approximately

3https://www.kaggle.com/datasets/
nih-chest-xrays/data

4https://github.com/thunlp/OpenKE

15 minutes for a single epoch.

6 Evaluation

We evaluate our model by automatic metrics and
human evaluation as well. For automatic evaluation
we use word-overlap metrics. Manual evaluation is
performed by two radiologists.

6.1 Quantitative Evaluation

We compare the performance of KGVL-BART
model with previous state-of-the-art conditional
transformer text generation models, i) the CNN-
RNN model (Vinyals et al., 2015), ii) CDGPT2
for visual input only, text input only, and for both
visual and text inputs (Alfarghaly et al., 2021). Fol-
lowing other conventional generation tasks, we use
several widely-used automatic metrics to automat-
ically assess the performance, such as BLEU (Pa-
pineni et al., 2002), ROUGE (Lin, 2004) and ME-
TEOR (Banerjee and Lavie, 2005), which mainly
focus on measuring n-gram similarities. We have
evaluated other NLG metrics like BLEURT (Sel-
lam et al., 2020) and BERTScore (Zhang et al.,
2019). Table 2 shows the NLG metrics score of
generated X-ray reports by KGVL-BART and base-
line models vs. gold standard X-ray reports. Eval-
uation is done on a test dataset. We have added
ablation study, which shows that knowledge infu-
sion improves the report generation. Last row in
table 2 shows the results of our model by removing
KG augmented layer from it.

Even though the dataset is balanced with respect
to normal and abnormal reports, However, multiple
organ findings are included in a single report; if
at least one organ is found to be abnormal, the
report is classified as abnormal. Findings for the
other organs are normal, despite the fact that this
is classified as an abnormal report. As a result, our
model may be overly focused on widely reported
normal findings. Hence, we have added evaluation
metrics only to abnormal studies as well. Table 3
shows the NLG metrics for abnormal studies. For
evaluation, we consider abnormal studies from the
test set. Our results show that our model is capable
of generating better reports than SoTA models for
abnormal findings as well.

6.2 Qualitative Evaluation

This section provides qualitative analysis by a radi-
ologist having experience of thirty years. Access
to images and the ground-truth reports was given
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Method
Automatic Evaluation Metrics

Bleu-1 Bleu-2 Bleu-3 Bleu-4 Rouge-L Meteor chrF++ BLUERT BERTScore

CNN-RNN (Vinyals et al., 2015) 0.316 0.211 0.140 0.095 0.267 0.159 - - -
CDGPT2-vis-only (Alfarghaly et al., 2021) 0.340 0.209 0.138 0.091 0.281 0.153 - - -
CDGPT2-sem-only (Alfarghaly et al., 2021) 0.357 0.224 0.151 0.103 0.275 0.149 - - -
CDGPT2 (Alfarghaly et al., 2021) 0.387 0.245 0.166 0.111 0.289 0.164 0.370 0.460 0.888
CNN-TRG (Pino et al., 2021) 0.273 - - - 0.352 - - - -
KGVL-BART (CheXNet) 0.326 0.139 0.080 0.050 0.340 0.387 0.453 0.473 0.892
KGVL-BART (NIH-ResNet) 0.324 0.144 0.090 0.060 0.355 0.390 0.467 0.468 0.889
KGVL-BART (ResNet-152) 0.423 0.256 0.194 0.165 0.444 0.500 0.543 0.526 0.909
Our model (without KG layer/ResNet-152) 0.341 0.188 0.142 0.119 0.351 0.376 0.424 0.478 0.892

Table 2: Results on whole test set (abnormal + normal studies): BLEU, ROUGE and METEOR score of generated
X-ray reports by previous transformer-based models and our KGVL-BART models vs. gold standard X-ray reports.
The best results are in bold font, and the second best is underlined.

Method
Automatic Evaluation Metrics

Bleu-1 Bleu-2 Bleu-3 Bleu-4 Rouge-L Meteor

CDGPT2 (Alfarghaly et al., 2021) 0.273 0.090 0.034 0.013 0.267 0.316
KGVL-BART (CheXNet) 0.308 0.123 0.073 0.049 0.314 0.359
KGVL-BART (NIH-ResNet) 0.299 0.119 0.067 0.046 0.309 0.352
KGVL-BART (ResNet-152) 0.388 0.207 0.139 0.108 0.397 0.458

Table 3: Results on abnormal studies from test set: BLEU, ROUGE and METEOR score of generated X-ray reports
by previous transformer-based models and our KGVL-BART models vs. gold standard X-ray reports. The best
results are in bold font, and the second best is underlined.

to the radiologist to evaluate the automatically-
generated reports. The radiologist classified the
generated reports into accurate (report with most
of the vital information), missing details (reports
with no false information but missing some vital
details), and false predictions (report with false
information and overall incorrect diagnosis). We
have provided 200 random samples from the test
dataset and their corresponding generated reports
for qualitative analysis. Qualitative evaluation by
the radiologist shows that 73% of the reports gener-
ated were fully correct, only 5.5% are completely
wrong and 21.5% have important missing details
though overall correct. Further, these random sam-
ples were classified into normal and abnormal re-
ports. For normal studies 95.6% of the reports gen-
erated were fully correct, 4.40% have important
missing details though overall correct and 0% false
reports. For the abnormal cases, the model could
generate 54.13% of the reports correctly, 35.78%
missing details, and 10% had false reports. Table 4
contains the results of the qualitative analysis. The
reports classified as missing details by the radiol-
ogist also contain useful information that can be
used to speed up the report writing process. Overall
results are promising however, there is still a scope
for improvement. The results show that the model
is a bit biased towards normal cases, which is often

the case with medical datasets as it lacks neces-
sary details to describe the different irregularities
present in the image.

Method Samples Accurate Missing Details False

All(500) 73.00% 21.50% 05.50%
Ours Normal(183) 95.60% 04.40% 00.00%

Abnormal(317) 54.13% 35.78% 10.00%

All(500) 61.60% 28.20% 10.20%
CDGPT2 Normal(201) 99.00% 00.00% 01.00%

Abnormal(299) 36.50% 47.10% 16.40%

Table 4: Results of generated reports, manually evalu-
ated by radiologist. Manual evaluation is done on the IU
X-RAY dataset. Best results are shown in a bold face.

7 Summary, Conclusion and Future work

We introduce KGVL-BART a knowledge-enhanced
Vision Language model to generate X-ray reports
from chest X-ray images and tags. We develop
a knowledge graph called chestX-KG, which is
verified by two experienced radiologists. Overall
the reports generated are accurate. Our approach to
constructing grounded KGs is relatively noise-free
since it considers only entities in the hierarchical
path from tag set entities to the root node of the
knowledge graph and only adds neighbors with
"default" properties. Experimental results show
the efficacy of our method and its superiority over
SoTA.
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       Normal

The lungs are clear. Heart size is normal. No 
pneumothorax, pleural effusion, or focal airspace 
disease. Bony structures appear intact.

The cardiomediastinal silhouette is within normal 
limits. No pneumothorax or pleural effusion. No acute 
bony abnormalities.

     Abnormal
Heart size is normal. There are densely 
calcified mediastinal and right hilar lymph 
xxxx which suggest prior histoplasmosis 
exposure. No consolidating airspace disease is 
seen within the lungs. No pleural effusion or 
pneumothorax. No convincing acute bony 
findings.

Lungs are clear bilaterally. Specifically, no evidence 
of focal consolidation, pneumothorax, or pleural 
effusion.. Calcified right hilar lymph xxxx noted. 
Cardio mediastinal silhouette is unremarkable. 
Visualized osseous structures of the thorax are 
without acute abnormality. Stable enlargement of the 
cardiac silhouette, consistent with calcification. 
Aortic calcifications noted. No acute bony 
abnormality identified.

       Normal

Lungs are clear bilaterally. There is no focal 
consolidation, Pleural effusion, or 
pneumothoraces. Cardiomediastinal silhouette is 
within normal limits. xxxx are unremarkable.

Normal heart size and mediastinal contours. No focal 
airspace consolidation. no pneumothorax or pleural 
effusion. No acute bony abnormalities.

     Abnormal
Heart size is normal. No pneumothorax or 
pleural effusions. There is an 8 mm calcified 
nodule in the left midlung. There is also a 7 
mm calcified nodule near the left hilum. 
Hyperexpanded lungs consistent with chronic 
obstructive pulmonary disease.

There are low lung volumes. the lungs are otherwise 
clear. There is a calcified left hilar lymph node and left 
midlung granuloma. No focal airspace consolidation to 
suggest pneumonia. No pleural effusion or 
pneumothorax. Normal heart size. No acute bony 
abnormality.

       Abnormal

Heart size is moderately enlarged. The 
mediastinum are within normal limits. there is 
no pleural effusion or pneumothorax. There is 
suspected right lower lobe airspace opacity 
demonstrated on the lateral study. There is a 
fracture of superior sternotomy unchanged.

There is stable eventration of the right hemidiaphragm. 
There is no focal lung consolidation. Heart size is 
within normal limits. No pneumothorax or pleural 
effusion. No acute bony abnormalities.

          Ground Truth                                                  Generated by KGVL-BART Model

Accurate

Missing 
Details

 False

Figure 3: Examples of ground truth and reports generated by KGVL-BART (ResNet-152). The first slot shows the
instance of accurate prediction by the KGVL-BART model for normal and abnormal cases. Abnormal findings
are highlighted in blue. The second slot shows the example of partially correct predictions by the KGVL-BART
model for normal and abnormal cases. Details that are present in ground truth but missing in the predicted report is
highlighted in red. The third slot shows the example of false predictions by the KGVL-BART model for abnormal
case. For normal case model does not generate false report.

Our future work consists in training our model
on the much larger MIMIC-CXR (Johnson et al.,
2019) dataset. We would also like to expand the
scope of our work to CT, MRI, etc.

Limitations

The IU Chest X-ray and the MIMIC-CXR datasets
are publicly available that links chest X-ray images
with text radiology reports. The IU Chest X-ray
dataset available for general use and the MIMIC-
CXR dataset has restricted access. Annotating med-
ical reports requires domain experts’ knowledge,
and it is costly. Medical data is likewise subject
to strict privacy regulations and is governed, for
example, by the Health Insurance Portability and
Accountability Act (HIPAA). Therefore, only a
small amount of data is accessible to the general
(research/corporate/industry) use.

There are many more sentences in this dataset

describing normalities than abnormalities. As a
result, most machine learning models are biased
to produce normal reports more frequently than
abnormal ones. Given the scarcity of examples,
abnormalities are more challenging to find.

Ethics Statement

IU Chest X-ray dataset’s authors used appropriate
techniques to de-identify the text reports. Data is
anonymized; hence our model will not disclose
information about the patient’s identity.
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Abstract

We present a discourse parsing model for conver-
sation trained on the STAC corpus (Asher et al.,
2016). We fine-tune a BERT-based model to en-
code pairs of discourse units and use a simple lin-
ear layer to predict discourse attachments. We then
exploit a multi-task setting to predict relation la-
bels, which effectively aids in the difficult task of
relation type prediction; our F1-score equals or sur-
passes the state of the art in the approaches we have
reimplemented using code from the authors with no
loss in performance for attachment, confirming the
intuitive interdependence of these two tasks. Our
method also improves over other discourse parsing
models in the literature in permitting attachments in
which one node has multiple parents, an important
feature of multiparty conversation.

1 Introduction

Discourse parsing, the task of predicting graphs
that represent semantic relations (arcs) between
elementary discourse units or EDUs (nodes), is
a hard problem in NLP due to the complexity of
discourse graphs and the frequent lack of surface
cues provided by EDUs, which forces parsers to
rely on deep, semantic information. Multiparty,
spontaneous conversation is especially tricky as the
structure often meanders and a single participant
can respond to multiple discourse moves at once,
yielding non-tree-like structures that challenge ex-
istent parsing techniques (Afantenos et al., 2015).

While it is tempting to attack a complex problem
with complex machinery, as recent research on dis-
course parsing has done (see Section 6), we show
that a simple model can achieve or surpass state of
the art results for discourse relation labeling with a
little inspiration from human discourse processing.

First, because a decision about whether two
EDUs are attached by a semantic relation generally

requires reasoning about their contents together,
our transformer-based model encodes embeddings
of EDU pairs, exploiting a form of message pass-
ing simpler than graph neural net models (Wang
et al., 2021) while achieving better results. Next,
we draw on the fact that for human annotators, the
tasks of discourse attachment and relation label-
ing are often interdependent: sometimes one sees
how to attach two EDUs but only later how to de-
termine the relation that links them; sometimes, a
clue, e.g. an explicit marker like because, makes
the relation clear, and the task is to find the second
argument to the relation. Our model exploits this
interdependence with a multi-task architecture for
attachment prediction and relation labeling. Finally,
our model allows for the non-tree-like structures.

In Section 2, we provide background on dis-
course structure and data sets. In Sections 3 and
4, we describe our model and results. Section 6
presents related work in discourse parsing.

2 Discourse parsing theories and data sets

Just as a sentence is not a bag of words but comes
with a structure that serves to compute its mean-
ing from that of its constituent words, so too a
discourse or conversation is not a bag of dialogue
moves but comes with a structure that enables an
interpreter to compute an overall meaning from its
constituents. EDUs are clauses or subclausal units
that serve as the minimal, linguistic constituents
upon which discourse structures are built (Marcu,
1999), and discourse parsing involves finding the
recursive structure over EDUs that exploits their
semantic content together with various contextual
features.

There are two main theories that have investi-
gated complete discourse structures for texts: RST
(Mann and Thompson, 1987) and SDRT (Asher,
1993; Asher and Lascarides, 2003). Only SDRT
has been applied to multi party conversation as in
the STAC and Molweni datasets (Asher et al., 2016;
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Li et al., 2020). Given our interest in multiparty
conversation, we use SDRT and three versions of
the STAC corpus, a set of multi-party chats from
an online version of the game Settlers of Catan, in
which players trade or otherwise acquire resources
in order to build roads and settlements and thereby
score victory points. The standard version, S, con-
tains only linguistic (chat) moves made by players;
the situated version, S-Sit, integrates descriptions of
nonlinguistic events (game moves), represented as
elementary event units (EEUs). In S-Sit, both EEUs
and EDUs are integrated into discourse structure.
We present the third version in Section 2.1.

In SDRT a conversation provides a number of
EDUs linked together to form a weakly connected,
Directed Acyclic Graph (DAG). Each EDU apart
from the head has at least one incoming link. Back-
wards links (where an EDU attaches to another
EDU that comes after it in the dialogue) are prohib-
ited if the EDUs are produced by different speakers
(Perret et al., 2016). Each edge of the DAG is la-
beled with one of 16 different types of discourse
relation, such as Explanation (Exp), Question-
Answer-Pair (QAP), or Acknowledgement (Ack).

The DAGs postulated by SDRT allow one child
to have multiple parents in the structure. Figure 1
provides a representative example from the STAC
corpus: with his ‘kk’ William acknowledges both
refusals to his offer and signals that he is moving
on before ending his turn.

Figure 1: Example from the STAC corpus S illustrating
an EDU (‘kk’) with multiple parents

In multiparty dialogue, coordination and nego-
tiation over content is key. EDUs with multiple
parents typically mark moves that signal such a co-
ordination or end of negotiation. Multi-parent links
can thus have a major impact on conversational
structure and its effects on downstream tasks, de-
spite their statistical infrequency. An important ad-
vantage of our model over alternative neural parsers
is that it is the only one to take these links into ac-
count in both model design and evaluation.

2.1 A new STAC dataset: STAC-Squished

Like other recent work in discourse parsing, we
develop a model trained on S and detail our results
on S in Section 4. But S is not ideal for two reasons.

First, we discovered that it contains duplicated
data points due to a mistake in the data extraction
script. There are 488 duplicated EDUs, correspond-
ing to 60 duplicated dialogues.

Second, and more seriously, there are rhetori-
cal incoherences in S. When we examined relation
labels, we found, with Badene et al. (2019), that
some were not coherently used, because S lacks
essential nonlinguistic (game) information (Asher
et al., 2016). Figure 2 provides an example. The
exchange on the right, taken from S, is somewhat
incoherent; the Continuations (dark green) from
282-283 and 283-289 make little sense, but were
included in order to make a complete DAG. On the
left, we see the full exchange, from S-Sit, with a
far more intuitive discourse structure lacking the
Continuations.

There are 300 such cases out of 1116 Contin-
uation instances in the training set and 45 out of
113 such cases in the test set. Indeed, dialogue
moves and speaker interactions in the conversa-
tions often depend on nonlinguistic actions taken
by players, but we can only see this dependence
once we move to S-Sit, where the EEUs provide
such actions and other important information on
game evolution. We must take account of those
EEUs to accurately reflect the discourse structure.

S-Sit builds graphs over EDUs and EEUs and
so includes information essential to properly un-
derstanding many linguistic interactions. For this
reason, we consider S-Sit an overall better data
source for correct discourse structures.

However, S-Sit also has certain drawbacks for
training discourse parsing models. It contains mul-
tiple, long chains of EEUs connected to their im-
mediate predecessors. The number of EEU-EEU
adjacent attachments is very high and highly pre-
dictable, artificially inflating F-scores on attach-
ment and relation labeling. Moreover, long se-
quences of EEUs often induce longer distances be-
tween EDUs that need to be attached. Our model,
like most, is biased towards predicting closer at-
tachments due to their abundance in the training
set. S-Sit exacerbates this situation and makes our
model actually perform worse on EDU-only attach-
ments (see Section 4).
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Figure 2: An example from STAC. On the left, we see the full interaction, from S-Sit, that contains both chat and
game moves. On the right, we see the version from S that contains only the chat moves.

Data EDU EEU R-E Mean
S 13054 0 0 2.04
S-Sit 12588 18576 16382 2.14
S-Sq 12588 12985 10790 2.04

Table 1: Data set stats

The shortcomings of S-Sit prompted us to mod-
ify it in order to ignore the highly predictable re-
lations and attachments between adjacent EEUs
that are not attached to any EDU. To do this, we
treated each sequence of EEUs as one block with-
out any internal structure. That is, we collapsed
the sequence into a single EEU. Table 1 reflects
differences between the various STAC corpora
in numbers of EDUs, EEUs, Relation instances
over only EEUs (R-E) and mean distances be-
tween attachments of linguistic units. We have
made available the new S-Sq (squished) corpus at
https://github.com/zineb198/LineBert.

3 Our Model

S contains a set of multi party dialogues, each con-
sisting of a set of n EDUs [e1, e2, .., en]. Our model
BERTLine, is a simple but efficient discourse pars-
ing model with two components: one for inferring
attachments and one for inferring relation labels.
Like Shi and Huang (2019) and Wang et al. (2021),
we compute a standard unlabeled attachment and
labeled attachment score for evaluation.

Attachment. BERTLine’s attachment module
has an encoder-decoder architecture. Encoding for
each EDU pair is obtained by finetuning a BERT
model on the task of predicting if two EDUs are
attached. We used BERT because it takes the po-
sition IDs of tokens as input, which is useful for
the pair encodings. BERTLine has access only to

the content and the speaker/emitter of the EDUs.
[CLS] vectors furnish embeddings h of EDU pairs.

h(i,j) = BERT (ei, ej)

The encoder portion of BERTLine is finetuned us-
ing the loss Ll1 on Sl, the set of positive and neg-
ative attachments. Where θ is the parameters to
be optimized, s∗i,j refers to gold data and si,j to
predictions:

Ll1(Sl, θ) = −ΣSl
logP (s∗i,j = si,j |hi,j) (1)

We concatenate h with a vector struct(i,j) =
[t(i,j), d(i,j)] that represents information useful for
computing attachments (Perret et al., 2016), namely
speaker change and EDU distance (i.e., how many
EDUs occurred between i and j in the natural order
of the dialogue). The function ti,j returns 1/0 if i
and j have the same/different speaker; di,j returns
the distance. Our final pair embeddings are:

H(i,j) = h(i,j) ⊕ struct(i,j)
The decoder part of BERTLine’s attachment

model is a linear neural network. Like previous
work, this layer predicts for each EDU ej , which of
the preceding EDUs ei, with j > i ≥ j − 10 (i.e.,
up to a certain limit) are likely parents of ej . It is a
binary classification on each pair embedding.

Pj = Linear(H(j−1,j), H(j−2,j), ...,H(j−10,j))

Our loss function is a binary cross entropy over
possible attachments for each dialogue d in training
setD. Below l∗i,j indicates if ei and ej are attached
in the gold data, and li,j is a predicted link:

Llink(d, θ) = −Σ|d|j=1Σ
j
i=0logP (l∗i,j = li,j |Hi,j)

(2)
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Llink(θ) = Σd∈DLlink(d, θ) (3)

The set of predicted attachments L contains all
pairs li,j whose link probability exceeds a given
threshold α, optimized at 0.8 through experiments
on the validation set; i.e., li,j ∈ L iff P (li,j) >
α = 0.8. We trained the linear layer for 15 epochs.

This set up allows us to predict multiple parents
for a given EDU. Of the 77 multi-parent structures
(8 with more than 3 parents) in the test set, we
captured about 20%.

Relation labeling. To test the interdependence
of link and relation prediction, we built a BERT
model with two classification heads. The first head
learns to predict links between EDUs and the sec-
ond head learns to classify EDU pairs in terms of
SDRT’s 16 relation labels. We compute the loss
of each head independently, average the results,
and back-propagate the average back to the BERT
encoder. At inference time, only the relation classi-
fication head is used for predictions.

We fine-tuned the BERT model over Sl over
3 epochs, together with training over Sr, the set
of relation label instances. r(∗i,j) refers to gold
relation data, r(i,j) to predictions.

Lrel(Sr, θ) = −ΣSr logP (r∗i,j = ri,j |hi,j) (4)

Lmulti(Sl ∪ Sr, θ) = mean(Ll1 + Lrel) (5)

All previous work apart from Wang et al. (2021)
defines the task of relation prediction as following
that of link prediction in a pipeline architecture.
Our multitask setup allows us to have an embed-
ding containing information about both tasks and
improves the relation F1-score by one point over a
pipeline relation prediction task.

Figure 3: Structure of the multi-task model

Evaluation Metric: We used a micro averaged
F1-metric over all gold data attachments and rela-
tion label instances for the scores in Table 2.

4 Results

Table 2 shows that BERTLine is competitive on
S with the most advanced model of Wang et al.
(2021) and even beats its relation labeling score.
We provide both the reported scores of Shi and
Huang (2019), Liu and Chen (2021) and Wang
et al. (2021) and the scores that we got by rerunning
their code using the same gold input from S with
our evaluation metric, which explicitly considers
EDUs with multiple parents.1 Discrepancies in
reported scores, also noted in Wang et al. (2021),
may depend on choices of what and how to evaluate
but also on machine hardware.

With regard to the different versions of STAC,
BERTLine’s overall scores improve between S and
and S-Sit in Table 3, although there is a dramatic
drop in linguistic only attachments (A-L) for S-
Sit. This is due to the presence of many easy
to predict attachments and relation instances be-
tween adjacent EEUs, which drown out perfor-
mance on harder, longer distance EDU attachments.
Interestingly, our score also improves considerably
with S-Sq, and linguistic-only attachment suffers
a much smaller drop. We hypothesize that this is
because we have lowered the median distance be-
tween EDUs and rectified the imbalance between
EDU and EEUs by deleting long series of EEUs.

BERTLine has a far simpler architecture than the
neural models whose code we were able to rerun.
It is essentially a local model that uses a minimal
amount of message passing from nodes to poten-
tial neighbors, a technique from graph neural nets
also used to encode entire graphs in Wang et al.
(2021). BERTLine’s main advantage comes from
the explicit pair encoding of EDUs. While broader
contextual information and structural constraints
on DAGs like those in Perret et al. (2016) can un-
doubtedly improve scores for discourse attachment
and relation labeling, we have sought to show that
the efforts of complex architectures to harness this
extra information have failed to lead to substantial
gains. How to more successfully exploit it is our
main research topic for the future.

5 Ablation study

We evaluated the efficiency of two key parts of our
model, the multitask set up and the local structural
information that we add to the EDU encodings. We

1We ran all experiments on a Dell T630 bi pro machine
with Nvidia GTX1080Ti GPU cards
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Model DAG DS-S Hier-S GNN-S BL-S BL-S-Sq
Attachments 69.0 [73.2/ 72.5 ] [75.1/ 68.61] [73.4/ 73.2] 73.1 79.49
Relation labeling 53.1 [55.7/ 54.8 ] [57.1/50.48] [57.3/ 55.5 ] 56.25 71.15

Table 2: We provide both the original, reported F1-scores for Perret et al. (2016) (DAG), Shi and Huang (2019)
(DS), Liu and Chen (2021) (Hier) and Wang et al. (2021) (GNN) on the standard STAC dataset S, as well as
the scores we were able to obtain using their models or retraining from their code using our evaluation metric
(reported/recomputed). BERTLine (BL) beats the state of the art for relation label prediction on S with a score of
56.25. We also provide BL’s results on the squished STAC dataset S-Sq with great performance on relation labeling.

F1 Attach Relns A-L
S 73.06 56.25 73.06
S-Sit 76.94 69.6 62
S-Sq 79.93 71.64 68.7

Table 3: F1 score for STAC data sets.

compared BERTLine with two baselines: (i) BL-
Simple: simple BERT is finetuned to predict the
relation of a predicted attachment; (ii) BL-Noinfo:
Hi,i without structi,j . We train each variation 10
times and compare the scores to the average over 10
runs for BERTLine. Table 4 shows how structural
information and the multitask setup moderately
improve the predictions of BERTLine on S-Sq.

Model BL BL-Simple
Attach 79.49 78.55
Model BL BL-Noinfo
Rel 71.41 71.15

Table 4: Scores on STAC-squished (S-Sq)

6 Related work

Older approaches to multiparty conversation (Afan-
tenos et al., 2015; Perret et al., 2016) used manual
features about EDU pairs and simple ML models
to build a local attachment model for predicting
attachment and relation labels. They also added
a decoding mechanism. BERTLine’s local model
uses transformer-style embeddings.

Shi and Huang (2019) were the first to obtain
significant discourse parsing results using a neu-
ral approach on the corpus S. They attempted to
capture incremental and contextual effects in their
model by training a supplemental Structured En-
coder that incrementally updates attachment paths
(sequences of parent-child EDUs). However, Wang
et al. (2021) showed that the model obtains similar
scores with or without the Structured encoder; the
encoder didn’t capture what it intended. Moreover,

they implemented this method with Python 2 and
Tensorflow 1.3, which are not in use anymore.

Liu and Chen (2021)’s model encodes EDUs us-
ing a pre-trained RoBERTa model (Liu et al., 2019)
and a bi-GRU cell to capture contextual informa-
tion but limits the size of the input dialogues. It
uses two linear layers for link and relation predic-
tion. We could not reproduce their results with
their model or our reimplementation 2 perhaps be-
cause of an evaluation metric that does not consider
multiple parents or all gold EDU pairs.

The Structure Self-Aware Graph Neural Network
(SSA-GNN) by Wang et al. (2021) proposes a com-
plex GNN-based architecture and model that uses
both EDU and edge embeddings. The model is
comprised of a Hierachichal GRU gate to obtain
contextual EDU representations. They then apply
the SSA-GNN to capture implicit structural infor-
mation between EDUs, using a Structure-Aware
Scaled Dot-Product Attention (Zhu et al., 2019;
Wang et al., 2020) to update edge and EDU repre-
sentations. A teacher network is also trained and
supplements the standard classification loss with
an auxiliary loss to enhance learning performances.
Our model is simpler with better results. More-
over, none of the models by (Shi and Huang, 2019;
Liu and Chen, 2021; Guz et al., 2020; Wang et al.,
2021) predict multiple parents for attachments.

7 Conclusions

We have described a simple yet effective discourse
parser that provides multiple attachments and code-
pendent learning of the labeling and attachment
tasks. Our model is the only neural parser that
does this. We also wanted to show the power of
local information when cleverly used. Indeed, dis-
course parsing requires contextual information, but
our results show that current research does not yet
leverage that information to achieve gains that con-
vincingly outstrip those of a local model.

2https://github.com/zineb198/F1_recompute
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8 Limitations

Some of the limitations of this work are the lack
of diversity in expert-annotated discourse data sets
on multiparty and situated dialogue. Since current
data sets come from forums and chat messages, we
still have to see how our model behaves in a spoken
conversation context. More investigation efforts
must be made in order to better analyze and evalu-
ate S-Sq. While it has a more predictable structure
due to nonlinguistic elements, it also seems at first
glance to contain better suited semantic relation
labeling for the linguistic elements. We need to do
an in-depth error analysis on BERTLine’s perfor-
mance on the three versions of the STAC corpus.
We would also like to investigate training on one
corpus and then running the model on the other
corpus, and we would like to do the same with the
Molweni corpus.

9 Ethics Statement

Bertline’s performance does not seem to pose any
ethical difficulties or questions.
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Abstract

To mitigate gender bias in contextualized lan-
guage models, different intrinsic mitigation
strategies have been proposed, alongside many
bias metrics. Considering that the end use of
these language models is for downstream tasks
like text classification, it is important to under-
stand how these intrinsic bias mitigation strate-
gies actually translate to fairness in downstream
tasks and the extent of this. In this work, we de-
sign a probe to investigate the effects that some
of the major intrinsic gender bias mitigation
strategies have on downstream text classifica-
tion tasks. We discover that instead of resolving
gender bias, intrinsic mitigation techniques and
metrics are able to hide it in such a way that
significant gender information is retained in the
embeddings. Furthermore, we show that each
mitigation technique is able to hide the bias
from some of the intrinsic bias measures but
not all, and each intrinsic bias measure can be
fooled by some mitigation technique, but not
all. We confirm experimentally, that none of
the intrinsic mitigation techniques used without
any other fairness intervention is able to con-
sistently impact extrinsic bias. We recommend
that intrinsic bias mitigation techniques should
be combined with other fairness interventions
for downstream tasks.

1 Introduction

The use of pretrained language models has seen a
surge in popularity as a result of state-of-the-art per-
formances that have been achieved with these mod-
els on various tasks. Consequently, there has been a
growing interest in exploring how gender bias per-
tains in these models (Garrido-Muñoz et al., 2021).
Pretrained language models are used in two distinct
phases: the pretraining phase and the finetuning
phase. The pretraining phase typically involves
training a model on a generic task such as masked
language modeling on a diverse set of text corpora.
In the finetuning phase, the pretrained model can
be adapted for a specific task, such as sentiment

analysis, by training on a domain-specific corpus.
Owing to the unique way of using pretrained mod-
els, bias generally manifests in two forms: intrinsic
bias and extrinsic bias. Intrinsic bias refers to bias
that inherently exists in pretrained language mod-
els whereas extrinsic bias is used to refer to bias
that exists in downstream models that are based on
the pretrained model. Since the success of down-
stream NLP tasks has mostly been dependent on
pretrained models, it is intuitive to assume that
bias in intrinsic models will compromise fairness
in downstream tasks. Only recently have more in-
depth examinations been done to investigate this
assumption (Steed et al., 2022; Orgad et al., 2022;
Kurita et al., 2019). However, conclusions have
been inconsistent and the confounding effects of
bias mitigation techniques remain unknown.

The main focus of this work is to investigate the
impact of intrinsic bias on extrinsic fairness and
if techniques to mitigate intrinsic bias actually re-
solve bias or only mask it. We develop a probe to
uncover intrinsic bias by determining the amount
of gender information in a word embedding using
a classifier. Bearing in mind how abstractly and
improperly intrinsic bias has been defined (Blod-
gett et al., 2020), coupled with the discovery that
results from different metrics for intrinsic bias in
many cases do not correlate (Delobelle et al., 2022),
we find this probe effective as an extra step in eval-
uating the efficacy of these mitigation strategies.
We realize from this study that how intrinsic bias
has been measured and the choice of bias mitiga-
tion strategies explored by some existing works
have not been ideal. We further use this probe to
investigate if some proposed mitigation strategies
superficially conceal bias.

In this work, when we refer to bias in a language
model, we mean stereotyping bias as defined by
Garrido-Muñoz et al. (2021) as “the undesired vari-
ation of the [association] of certain words in that
language model according to certain prior words

3418



in a given domain”. We focus our experiments on
gender bias for two primary reasons: its intuitive
nature making it easy to analyze and discuss, and
the accessibility of resources and datasets regard-
ing gender. For the same reason, we narrow our
definition of bias in our experiments and analysis
to binary gender bias1. This paper considers the
primary goal of mitigating intrinsic bias to ensure
fairness in downstream tasks.

We consider one case of binary classification and
one multiclass classification case, all on English
language corpora using the BERT-large (Devlin
et al., 2019) and the ALBERT-large (Lan et al.,
2019) pretrained models for each task.

In summary, we develop an extensive probe 2 to
uncover intrinsic bias in pertained contextualized
language models, and seek to answer three key re-
search questions: RQ1: Do different intrinsic bias
metrics respond differently to different bias mitiga-
tion techniques? (§ 4.1). RQ2: Can intrinsic bias
mitigation techniques hide bias instead of resolv-
ing it? (§ 5.1). RQ3: Do intrinsic bias mitigation
techniques in language models improve fairness in
downstream tasks? (§ 5.2)

2 Measuring and mitigating bias

Since many techniques for measuring and miti-
gating gender bias have been introduced for both
intrinsic and extrinsic bias, we only discuss tech-
niques we use in experiments in this paper.

Bias mitigation techniques can be applied to
pretrained or finetuned language models, or both.
Figure 1 illustrates these interactions with both
training settings and this section will discuss both
intrinsic (§ 2.1) and extrinsic (§ 2.3) mitigation
techniques. Additionally, this section will provide
a brief overview of bias measures 3.

2.1 Intrinsic bias mitigation techniques

Intrinsic gender bias mitigation methods target ei-
ther the pretraining data, the pretraining proce-
dure, or the pretrained model’s output, which we
refer to as pre-processing, in-processing, and post-
processing respectively (Friedler et al., 2019). We
select three popular mitigation methods to repre-
sent all three types, namely Counterfactual Data

1See Ethical considerations.
2We make our code available at https://github.

com/EwoeT/intrinsic-gender-probe
3For a more in-depth overview of mainly intrinsic mea-

sures, we refer to Delobelle et al. (2022).

Augmentation (CDA), Context-debias, and Sent-
debias. Notice that these methods create debiased
pretrained language models, as is illustrated in Fig-
ure 1. These models still need to be finetuned on a
downstream task.

CDA pretraining. The idea behind counterfac-
tual data augmentation (Zmigrod et al., 2019; Lu
et al., 2020) is to generate a counterfactual for
each example in the training corpus by replacing
attribute terms with their complimentary equiva-
lent from the other demographic classes. For ex-
ample, she will map to he in the case of binary
gender. To mitigate intrinsic bias, this counterfac-
tual augmentation has to be done as a pretraining
step. Since CDA involves retraining the model, it is
more resource-intensive compared to Sent-debias
and Context-debias. We use the pretrained CDA
models based on BERT and ALBERT from Web-
ster et al. (2020) for our implementation.

Context-debias. Kaneko and Bollegala (2021)
introduce a debiasing method that involves retrain-
ing the language model with a constraint to make
the embeddings of stereotype terms 4 (such as doc-
tor, nurse) orthogonal to embeddings of attribute
terms 5 (such as gender pronouns like she, he and
gender nouns like woman, man). Given the dy-
namic nature of contextualized word embeddings
which causes a word to have different embeddings,
they define fixed word embeddings for each at-
tribute token by averaging the contextual embed-
dings of a word in all sentences it appears in. Train-
ing is done so that the embeddings of all stereotype
terms are made orthogonal to all fixed attribute em-
beddings. They add a regularizer that constrains
the debiased embedding to retain as much infor-
mation by ensuring that they are as similar to the
original embeddings as possible despite the orthog-
onality (§ B.1). Context-debias, as well as other
in-processing techniques, require a predefined set
of attribute and target terms before training which
may not be effective for words outside these sets.

Sent-debias. Liang et al. (2020) propose a post-
processing debiasing method akin to word embed-
ding debiasing (Bolukbasi et al., 2016) but for
contextualized embeddings. They achieve this by
first identifying the bias subspace. They extract
naturally-occurring sentences from corpora that

4We also refer to them as target words.
5We also refer to them as identity terms or protected words.
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Figure 1: Illustration of where bias mitigation techniques alter a model or training data for both intrinsic (pretrained)
and extrinsic (finetuned) biases in models.

contain certain attribute terms, generate counter-
factuals for each one, and compute the gender sub-
space based on these sentence templates. The rest
of their algorithm follows the method of hard de-
biasing (neutralization and equalization) by Boluk-
basi et al. (2016) (§ B.2). Essentially, this post-hoc
approach transforms the embeddings by removing
their projections onto the gender subspace.

2.2 Measuring intrinsic bias
To measure intrinsic bias in the pretrained mod-
els, we use SEAT and LPBS. We examine these
two metrics because of their wide use in related
literature.

Sentence Embedding Association Test (SEAT).
May et al. (2019) developed SEAT to quantify
intrinsic bias in contextualized language models
based on WEAT (Caliskan et al., 2017) which
was originally designed for non-contextualized em-
beddings. Although the authors express concern
over the efficacy of this metric, it has been widely
adopted in various works to quantify bias in con-
textualized word embeddings. We adopt the imple-
mentation by Tan and Celis (2019) that uses word-
level contextualized embeddings of attribute and
stereotype terms instead of sentence-level embed-
dings. Delobelle et al. (2022) show that using word-
level embeddings produces more consistent results
and is more robust against the effects of template
choices. SEAT is defined as: s(Xf , Xm, A,B) =

∑
xf∈Xf

s(xf , A,B)−∑xm∈Xm
s(xm, A,B); A

and B are the respective sets of female and male
attribute (identity) terms, whereas Xf and Xm are
the sets of female and male stereotypes respectively,
The similarity measure s(x,A,B) gives the associ-
ation between a stereotype word’s embedding and
the word embeddings of attributes: s(x,A,B) =
1
|A|
∑

a∈A cos (x, a)− 1
|B|
∑

b∈B cos (x, b)

Log Probability Bias Score (LPBS). This
template-based approach proposed by Kurita et al.
(2019) quantifies bias using templates containing
target words: such as “_ is a doctor.”. They com-
pute the difference in probability scores that a lan-
guage model uses to predict words from two re-
spective groups (eg. female:she, male:he) to fill in
the blank. To account for the effect of prior proba-
bilities of gender words that may skew results, they
normalize the results by dividing each prediction by
the prior probability of the attribute term. We com-
pute LPBS as: LPBS =

∑
x∈X

∑
i |ls(ai, x) −

ls(bi, x)|; where ai and bi are equivalent forms
of a female and male attribute term respectively,
X = Xf ∪Xm is the set of all stereotype words,
ls(w, x) = log(P (w|x)

P (w) ) is the association between
an attribute term w ∈ A ∪ B and a target term
x ∈ X , P (w) is the prior probability of w, and
P (w|x) is the probability of predicting w as the
blank term given the presence of x in its context.
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2.3 Extrinsic bias mitigation techniques

We look at two downstream tasks, which are both
text classification (Bias-in-Bios (De-Arteaga et al.,
2019a) and Jigsaw6)7. To understand the relation-
ship between intrinsic and extrinsic bias, in addi-
tion to these original datasets, we include two pre-
processed versions of the datasets using Attribute
scrubbing and Attribute swapping. We use these
settings to analyze how intrinsic bias is propagated
to downstream tasks.

Attribute scrubbing. Attribute features, which
are identity terms in an NLP task, are completely
removed from text instances in the training data
(Prost et al., 2019; De-Arteaga et al., 2019b). This
approach may seem intuitive, particularly to mit-
igate explicit bias, but we suggest that deleting
tokens in NLP tasks can be tricky since it could
change the syntactic and grammatical structure of
the text, leading to out-of-distribution problems.

For datasets such as Bias-in-Bios (De-Arteaga
et al., 2019a), a lot of existing works have simply re-
lied on the scrubbed version provided in the dataset,
however, we realize that the set of gender words
scrubbed is very limited, hence, we extend this to
include all gender words from (Kaneko and Bolle-
gala, 2021) and gender names from (Hall Maudslay
et al., 2019) to make the approach more effective.

Attribute swapping. CDA has been explored
and proposed as another bias mitigation strategy for
downstream tasks, particularly in coreference reso-
lution (Lu et al., 2020) and text classification (Park
et al., 2018). The idea is to generate counterfactuals
by identifying attribute terms in the text instances
and swapping them with equivalent terms belong-
ing to the complementary group. We will term
this approach Attribute swapping to distinguish it
from pretrained CDA in Section 2.1. For pretrained
CDA, the language model is (further) pretrained on
a set of general corpora on Masked Language Mod-
eling task, whereas in attribute swapping, counter-
factuals are generated for each instance in the train-
ing data based on attribute terms; with the same y
labels assigned to both the original and counterfac-
tual examples. Whereas previous versions of CDA
ignore names of people, which are major demo-
graphic cues, Hall Maudslay et al. (2019) propose
a name intervention to generate counterfactuals for

6https://www.kaggle.com/c/jigsaw-unintended-bias-in-
toxicity-classification/data?select=train.csv

7See Appendix D for dataset description

names as well. We use this adaptation for attribute
swapping.

2.4 Measuring extrinsic bias
True positive rate difference (TPRD). We use
TPRD used in related works (De-Arteaga et al.,
2019a; Prost et al., 2019; Jin et al., 2021; Steed
et al., 2022). TPRD measures the gap in true pos-
itive rates between the predictions for two demo-
graphic groups: TPRD = P (ŷ = 1|y = 1, A =
a)− P (ŷ = 1|y = 1, A = a′).

Counterfactual Fairness. Since the test dataset
follows the same biased distribution of the train-
ing set, we also measure the disparity in perfor-
mance for an individual test instance if the gender
attributes are swapped. We measure counterfac-
tual fairness (Kusner et al., 2017) as the differ-
ence in the probability of a positive prediction be-
tween a test example and its counterfactual, follow-
ing CF = mean(P (|x(ŶA←a = y|A = a,X =
x)− P (ŶA←a′ = y|A = a,X = x)|)).

3 Probing for gender information

We design a probe to investigate how much gender
information is retained after mitigating bias in pre-
trained language models. Our goal is to measure
the amount of gender information in the resulting
embeddings of language models after mitigation
techniques from § 2.1 have been applied to them.

Defining attribute and stereotype terms. We
first identify two sets of attribute terms that
define females and males respectively. Let
Wf = {she, female, woman, ...} and Wm =
{he,male,man, ...} be the respective sets of fe-
male and male gender-defining words. The set
W = Wf ∪ Wm is the union set of gender-
defining words for both females and males. Sec-
ondly, we define two sets of stereotype terms
which are composed of target words associated
with females and males respectively8. Let Xf =
{cheerleader, nurse, softball, ...} and Xm =
{warrior, baseball, engineer, ...} be the respec-
tive sets of female and male stereotype words such
that X = Xf ∪Xm.

Extracting word embeddings. We extract all
sentences from a text corpus containing words
in each set of words. Especially for stereotype
terms, we ensure that the sentences do not also

8We use both attribute and stereotype wordlists from
(Kaneko and Bollegala, 2021)

3421



include words in the attribute wordlist since at-
tribute words in the same context can introduce
gender information in the embedding produced.
Let Sw = {sw1 , ..., swn} be the set of all sentences
containing a word w. We use the pretrained lan-
guage model to extract embeddings for w such that
w → Ew = {ew1 , ..., ewn}, where ewi ∈ Rn is
the embedding for token w in sentence swi . If w
appears in swi multiple times, then |Ew| > n.

Training the classifier. We split W into a train
and test sets WT and WI respectively such that
WT ∩WI = ∅. This is to verify that the trained
model is not merely learning to identify words that
appear in the train set rather than words containing
gender information in general. We reserve the set of
stereotypes X solely for evaluating bias (inference)
in the language models.

Taking Ef = {ef1, ef2, ...} and Em =
{em1, em2, ...} to be the set of all embeddings for
female and male words respectively, given E =
Ef ∪ Em, we train a classifier C : E → {f,m} to
predict whether an embedding e belongs to Ef or
Em.

Evaluating bias. To determine the conformity of
a language model L to gender stereotypes X , we
introduce two bias criteria (or notions of bias):

Bias accuracy: We compute the accuracy of C
to correctly predict the gender association of all
stereotype words in X based on the embeddings
produced by L. A high accuracy depicts the pres-
ence of pro-stereotype information in the embed-
dings produced by the language model L, even
though the predictions could be of low confidence
i.e. just enough gender information to correctly
predict the gender association.

Mean bias confidence: We also consider the
mean of the individual softmax scores for each
prediction. In the case of binary gender, a soft-
max value of 0.5 means the embedding is perfectly
neutral, hence, we define mean bias confidence as
1
N

∑N
i |bias(ei)− 0.5|. High mean confidence de-

picts an enormous amount of gender information
contained in the embedding, although this informa-
tion may not necessarily be pro-stereotype.

Randomization test. To test the efficacy of our
method, We carry out a randomization test by iter-
atively splitting X = Xf ∪Xm into two random
groups Xf ′ and Xm′ . We use X ′(i) = {X(i)

f ′ , X(i)
m′}

to define the random pair generated in the ith it-
eration. We repeat this randomized split over 100

iterations; X ′(i) ∈ {X ′(1), ..., X ′(100)}. By com-
puting a p-value based on a one-sample t-test, we
compute if the mean of accuracy scores from the
random samples X ′ is significantly different from
the score from{Xf , Xm}.

4 Investigating intrinsic bias in mitigated
models with existing metrics

We first use the two existing metrics defined in
§ 2.2 (SEAT and LPBS) to quantify bias in BERT-
large and ALBERT-large pretrained models. Using
the same metrics, we then explore how intrinsic
bias changes in mitigated versions of these models
using the mitigation techniques outlined in § 2.1:
Context-debias, Sent-debias, and CDA pretraining.
This is important to evaluate the efficacy of these
mitigation strategies, and to make relevant postula-
tions.

(a) BERT-large model

Figure 2: Intrinsic bias scores using SEAT and LPBS.
Results show inconsistencies in measuring bias between
SEAT and LPBS for various mitigation strategies —
lower scores are desirable in both cases.

4.1 RQ1: Do intrinsic bias measures respond
differently to bias mitigation techniques?

In Figure 2, we plot the intrinsic bias results9 of
SEAT and LPBS on BERT-large. The first observa-
tion we point out, particularly for Context-debias
and Sent-debias, is the contradicting nature of bias
scores obtained from SEAT and LPBS. Whereas
SEAT shows a drastic reduction in intrinsic bias
for Context-debias, LPBS indicates worsening bias.
The converse is true for Sent-debias where LPBS
shows a significant reduction in intrinsic bias but
SEAT shows worse scores. This confirms our sus-
picion that different mitigation strategies respond
differently to different metrics.

9see Table 1 and Figure 8 for full results.
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Figure 3: We compare LPBS in its default form
(attribute-LPBS) and target-LPBS for BERT-large. The
plot shows a general positive correlation between the
two metrics. In both cases, Sent-debias maintains the
lowest bias score — lower scores are desirable in both
cases. See Figure 9 for ALBERT-large.

The use of some metrics can be problematic for
evaluating some mitigation techniques for in-
trinsic bias. We find that some metrics are not
ideal to use with some mitigation techniques due
to differences in how various mitigation techniques
interact with a language model. Consider a metric
like LPBS which measures the association between
a stereotype term and a gender P (A=a|X=x)

P (A=a) . This
association is captured at the inner layers of the
model, but since post-hoc approaches like Sent-
debias do not alter the internal representation of the
model, LPBS in its original form becomes ineffec-
tive — Figure 7. We refer to this original form of
LPBS as attribute-LPBS. Sent-debias ends up debi-
asing the attribute terms rather than the stereotype
terms, thus, constantly producing low probability
difference scores. Even so, we find LPBS being
used in this form with Sent-debias in works such as
(Steed et al., 2022). Using stereotype terms instead
of attribute terms P (X = x|A = a), which we re-
fer to as target-LPBS, is an option to solve this
discrepancy, but given that many stereotype terms
are usually out of vocabulary, these models will
resort to wordpiece tokenization (Sennrich et al.,
2016) which will be more challenging to handle.
Nonetheless, in Figure 3, when the two versions of
LPBS are compared, Sent-debias continues to have
the best intrinsic fairness scores in both cases 10.

5 Probing further to uncover bias

We use the methodology in Section 3 to probe for
bias in pretrained language models and their bias-

10For this comparison we only selected single-wordpiece
attribute words to avoid challenges with multiple wordpieces.

mitigated versions to see if the intrinsic bias miti-
gation techniques actually mitigate biases or super-
ficially conceal them from commonplace metrics
like SEAT and LPBS. Gonen and Goldberg (2019)
discovered that, for non-contextualized word em-
beddings, the bias mitigation techniques proposed
by (Bolukbasi et al., 2016) were hiding bias instead
of resolving bias. We use our probe to see if this
is equally the case for intrinsic bias mitigation in
contextualized embeddings. The consequence of
mitigation techniques superficially hiding bias is
that downstream classifiers can learn to pick up
residual traces of gender information.

We validate our results by carrying out a random-
ization test, as described in Section 3, to test for
statistical significance of our results. We conduct
the test under the null hypothesis H0 that the pre-
diction accuracy of our original gender-stereotype
sets will not differ significantly from the random
split. We show in Table 2 the very low p-values that
indicate statistical significant results, thus refuting
H0.

5.1 RQ2: Can intrinsic bias techniques and
metrics hide bias instead of resolving it?

Figure 4: Gray bars indicate the accuracy of detecting
gender information in attribute terms (high scores are
desirable). Red bars indicate the accuracy of detecting
gender information in stereotype terms (this should ide-
ally be 0.5 in a fair classifier, showing the inability to
correctly predict the gender association of stereotype
terms). Blue bars indicate the average confidence of
prediction: 1

N

∑N
i |bias(ei)− 0.5| (low scores are de-

sirable).

In Figure 4, we show the results11 of our probe
for BERT-large. We highlight some key observa-
tions.

Bias accuracy and mean bias confidence do not
correlate. We see from both plots in Figure 4

11see Table 2 and Figure 10 for full results.
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that, counter-intuitively, high bias accuracy does
not concur with high mean bias confidence. Actu-
ally, Sent-debias, which consistently has the high-
est bias accuracy among the mitigation techniques,
consistently has the lowest mean bias confidence.
This indicates that these two notions of bias may
not correspond. This, coupled with the finding in
Figure 2 about the inconsistency between SEAT
and LPBS, suggests that intrinsic bias could be per-
ceived or measured from conflicting perspectives.

Some mitigation techniques can conceal gender
information. For Sent-debias in ALBERT-large,
we can, almost to the same degree of accuracy
as for the unmitigated pretrained model, correctly
predict the association of stereotypes to their re-
spective genders using a simple linear classifier
even with a low confidence. This will render a
mitigation technique useless if a downstream clas-
sifier can correctly predict gender. This could only
indicate that although models like Sent-debias sig-
nificantly reduce the degree of association between
stereotypes and their respective genders, hence the
low confidence in prediction, this reduction does
not inhibit the capability to correctly predict the
associated gender of stereotypes; confirming that
an intrinsic mitigation process can be rendered use-
less for downstream fairness even if the degree of
association (confidence) is significantly reduced,
so long as the information retained remains just
enough to correctly associate the gender groups
with their associated stereotypes.

5.2 RQ3: Do intrinsic bias mitigation
techniques in language models improve
fairness in downstream tasks?

To investigate the relationship between intrinsic
and extrinsic gender bias, we train both BERT-large
and ALBERT-large together with their intrinsic-
bias-mitigated versions on the Bias-in-bios and Jig-
saw datasets using a 10-fold train-test scheme to
correctly predict the profession of each profile. We
evaluate extrinsic bias based on gender TPRD and
gender CF scores described in § 2.4. We conduct
the test under three settings: 1) Using the original
version of the training data. 2) Using our attribute
scrubbed version (see Section 2.3). 3) Using the
attribute-swap augmented version of the data (see
Section 2.3). These three settings of the dataset are
important to understand how intrinsic bias affects
downstream fairness under different data settings.

In Figure 5, we show the extrinsic bias score 12

for BERT-large and its debiased versions, and the
corresponding downstream data type for the Bias-
in-Bios dataset — see Figure 11 and Figure 12 for
all models and datasets.

Intrinsic mitigation techniques do not show a
significant improvement on TPRD. We observe
that all the intrinsic bias mitigation interventions
we consider do not significantly improve bias in
TPRD on their own. There is only a slight improve-
ment or worsening bias in some cases. For Context-
debias, we postulate this could be due to the limited
list of words used to mitigate bias. If these limited
words are not key terms in the downstream task or
do not exist in the downstream text instances, the
mitigation may not have a consequential effect on
the downstream task.

Downstream data processing significantly im-
proves downstream fairness. Secondly, we real-
ize that the downstream data has a lot more material
effect on downstream fairness. The data processing
techniques: attribute scrubbing and attribute swap-
ping showed improvements in TPRD producing the
best results.

Combining intrinsic CDA and Downstream
CDA produces best TPRD results. Thirdly, we
realize that although the downstream data seems
key to downstream fairness, a combination of in-
trinsic and downstream data intervention produces
even better extrinsic fairness results.

Sent-debias significantly improves CF scores.
Sent-debias is the only intrinsic technique that
shows significant improvement in counterfactual
fairness. Context-debias and CDA produce worse
CF scores in some cases. We observe that the mode
of application of Sent-debias in downstream classi-
fication tasks does not entirely align with the notion
of intrinsic since gender information is removed
from the sentence-level representation instead of
word-level representation.

Combining Sent-Debias and fair downstream
data produces the best CF scores. We also re-
alize from BERT (Figure 5) and ALBERT that
combining Sent-debias as a mitigation technique
and a downstream data intervention produces the
best CF scores.

12Full results with error margins are given in Table 3, Ta-
ble 4, Table 5 and Table 6.
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Figure 5: How intrinsic mitigation and downstream data intervention interact to influence fairness on the bias-in-bios
data — BERT-large.

Figure 6: Relationship between TPRD and CF based on
results from BERT model and Bias-in-Bios dataset. See
Figure 13 for ALBERT-large.

TPRD vs Counterfactual-fairness. Here, we
look at the relationship between TPRD and coun-
terfactual fairness. As both measures are used as
extrinsic fairness metrics, we aim to see how both
results correlate. From Figure 6 we find a posi-
tive correlation in general between the two metrics.
The downstream data interventions tend to improve
both TPRD and CF the most.

6 Related work

Park et al. (2018) study the effects of three tech-
niques to mitigate gender bias in abusive language
detection; debiased word embeddings (based on the
approach by Bolukbasi et al. (2016)), gender swap
(counterfactual augmentation of classification data),
bias finetuning using non-contextualized word em-
beddings: word2vec (Mikolov et al., 2013) and
FastText (Bojanowski et al., 2017). They found
that a combination of debiasing and gender swap-
ping produced the best fairness results when imple-
mented with a Gated Recurrent Unit (GRU).

Prost et al. (2019) examine three debiasing tech-
niques for mitigating gender bias in downstream

text classification using bias-in-bios (De-Arteaga
et al., 2019b), with non-contextualized embed-
dings. Specifically, they examine scrubbing (dele-
tion of identity terms) and approaches that focus on
non-contextualized embeddings namely: debiasing
(based on neutralization and equalization by Boluk-
basi et al. (2016)), and strong debiasing Prost et al.
(2019). Experimenting with Glove embeddings
(Pennington et al., 2014), they show that strong
debiased produces the best fairness results whilst
maintaining a good accuracy score (second only
to the unmitigated model). They again show that
standard debiasing (Bolukbasi et al., 2016) can be
counter-productive in terms of fairness; it can rather
reduce fairness in downstream text classification.

Steed et al. (2022) meticulously investigate the
effect of intrinsic bias in downstream text classifi-
cation in RoBERTa. They also conclude that intrin-
sic/upstream bias does not significantly contribute
to downstream bias. However, as we have previ-
ously discussed, using the default form of Log prob-
ability Bias score (attribute-LPBS) (Kurita et al.,
2019) which they adopt to measure intrinsic bias
may not be an effective technique to use with Sent-
debias.

Orgad et al. (2022), the closest and concurrent
with our work, investigate the relationship between
intrinsic and extrinsic bias and also develop a probe
based on a classification-based technique minimum
description length (Voita and Titov, 2020) to detect
bias in RoBERTa. They reach similar conclusions
indicating how intrinsic metrics, like CEAT in their
case, could conceal bias.

7 Conclusion

In this paper, we develop a probe to investigate
intrinsic bias in two language models, BERT-large
and ALBERT-large on two text classification tasks.
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We use this probe to answer key research questions
outlined for this research. We find that intrinsic
bias metrics can be sensitive to certain intrinsic bias
mitigation techniques. We also show that intrinsic
bias mitigation techniques and metrics are capable
of concealing bias instead of resolving it. We dis-
cover that intrinsic bias mitigation techniques we
considered do not significantly improve fairness in
text classification when used without other fairness
interventions like data pre-processing. We recom-
mend that intrinsic bias mitigation should ideally
be combined with other fairness interventions.

Limitations

One obvious limitation of this work is the restric-
tion to the use of English language as a basis. In
future, we will explore how these conclusions vary
in other language settings. Secondly, although we
aimed to make the list of gender and attribute terms
used in our experiments as extensive as possible,
it is nearly impossible to cover all possible gender
and target words in such contexts. Nonetheless,
for the scope under consideration, we believe our
compilation is extensive enough to give a general
outlook and to draw the necessary conclusions. Fi-
nally, our work is heavily based on binary notions
of gender which is a limitation considering the
growing use of non-binary categorizations of gen-
der and other biases which we outline in the ethical
considerations section.

Ethical considerations

For practical reasons such as access to datasets and
resources on gender bias, we limit our work to a
binary representation of gender. We draw readers’
attention to the fact that non-binary gender repre-
sentations are nuanced and intricate (Dev et al.,
2021), as such, this should be in cognizance when
applying conclusions from this work in non-binary
settings. Nonetheless, considering binary gender
as a base form of gender categorization, the in-
sights and conclusions from this work can form
the baseline for exploring more complex gender
categorizations.
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Appendix

A Word lists for experiments

We generate the wordlist we use, given below, from
the more extensive wordlist from (Kaneko and
Bollegala, 2021). To mitigate the effect of multi-
wordpiece tokens, we only select tokens with a
single wordpiece. Hence we obtain the following
wordlists:

A.1 attribute terms
• female list: ’witches’, ’mothers’, ’diva’, ’ac-

tress’, ’mama’, ’dowry’, ’princess’, ’abbess’,
’women’, ’widow’, ’ladies’, ’madam’,
’baroness’, ’niece’, ’lady’, ’sister’, ’nun’,
’her’, ’mare’, ’convent’, ’ladies’, ’queen’,
’maid’, ’chick’, ’empress’, ’mommy’, ’fem-
inism’, ’gal’, ’estrogen’, ’goddess’, ’aunt’,
’hostess’, ’wife’, ’mom’, ’females’, ’ma’,

’belle’, ’maiden’, ’witch’, ’miss’, ’cow’,
’granddaughter’, ’her’, ’mistress’, ’nun’,
’actresses’, ’girlfriend’, ’lady’, ’maternal’,
’ladies’, ’sorority’, ’duchess’, ’ballerina’, ’fi-
ancee’, ’wives’, ’maternity’, ’she’, ’heroine’,
’queens’, ’sisters’, ’stepmother’, ’daughter’,
’lady’, ’daughters’, ’mistress’, ’hostess’,
’nuns’, ’priestess’, ’filly’, ’herself’, ’girls’,
’lady’, ’vagina’, ’wife’, ’mother’, ’female’,
’womb’, ’heiress’, ’waitress’, ’woman’,
’bride’, ’grandma’, ’bride’, ’gal’, ’lesbian’,
’ladies’, ’girl’, ’grandmother’, ’mare’,
’maternity’, ’nuns’

• male list: ’wizards’, ’fathers’, ’actor’,
’bachelor’, ’papa’, ’dukes’, ’hosts’, ’air-
men’, ’penis’, ’prince’, ’governors’, ’abbot’,
’men’, ’gentlemen’, ’sir’, ’baron’, ’gods’,
’nephew’, ’lord’, ’brother’, ’priest’, ’his’,
’marquis’, ’princes’, ’emperors’, ’stallion’,
’chairman’, ’monastery’, ’priests’, ’king’,
’spokesman’, ’tailor’, ’cowboys’, ’dude’, ’em-
peror’, ’daddy’, ’guys’, ’guy’, ’godfather’,
’god’, ’patriarch’, ’uncle’, ’sir’, ’brotherhood’,
’host’, ’testosterone’, ’husband’, ’dad’, ’stew-
ard’, ’males’, ’pa’, ’beau’, ’stud’, ’bache-
lor’, ’wizard’, ’sir’, ’bull’, ’grandson’, ’horse-
men’, ’rooster’, ’bachelor’, ’him’, ’mas-
ter’, ’lad’, ’policeman’, ’monk’, ’actors’,
’boyfriend’, ’statesman’, ’paternal’, ’landlord’,
’brethren’, ’lords’, ’fraternity’, ’duke’, ’fi-
ance’, ’colts’, ’husbands’, ’he’, ’business-
man’, ’hero’, ’deer’, ’kings’, ’brothers’, ’mas-
ters’, ’stepfather’, ’son’, ’cowboy’, ’sons’,
’baritone’, ’salesman’, ’monks’, ’lads’, ’con-
gressman’, ’priest’, ’barons’, ’beard’, ’colt’,
’himself’, ’boys’, ’lions’, ’gentleman’, ’pe-
nis’, ’his’, ’bulls’, ’uncles’, ’lion’, ’sorcerer’,
’father’, ’male’, ’sperm’, ’prostate’, ’business-
men’, ’heir’, ’waiter’, ’headmaster’, ’man’,
’governor’, ’god’, ’grandpa’, ’groom’, ’dude’,
’gay’, ’boy’, ’grandfather’, ’priests’

A.2 List of stereotypes(target words)
• female list: ’beauty’, ’blonde’, ’cheer-

leading’, ’cooking’, ’flirt’, ’flower’, ’gos-
sip’, ’housekeeper’, ’jewelry’, ’nanny’,
’nurse’, ’nurses’, ’pink’, ’pretty’, ’reception-
ist’, ’sewing’, ’softball’, ’makeup’, ’therapist’,
’maid’, ’chairperson’

• male list: ’warrior’, ’strong’, ’terrorist’, ’sol-
dier’, ’sniper’, ’baseball’, ’sergeant’, ’body-
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guard’, ’boss’, ’boxer’, ’captain’, ’carpenter’,
’chancellor’, ’colonel’, ’commander’, ’con-
ductor’, ’diplomat’, ’drummer’, ’engineer’,
’gangster’, ’geek’, ’guitarist’, ’industrialist’,
’marshal’, ’mechanic’, ’philosopher’, ’physi-
cist’, ’scientist’, ’rapper’, ’mechanic’, ’carpen-
ter’, ’clergy’

B Intrinsic metrics

B.1 Context-debias

Li =
∑

t∈Vt

∑

x∈Ω(t)

∑

a∈Va
(vi(a)

TEI(t, x; θe))
2))

Lreg =
∑

x∈A

∑

w∈x

∑

i=1

||Ei(w, x; θe)−Ei(w, x; θpre)||2

L = αLi + βLreg

Where Li is the orthogonality constraint such that
Ei(w, x; θe) denotes the embedding of token w in
the i-th layer of a contextualised word embedding
model E with parameters θe. vi(a) is the non-
contextualised embedding of an attribute word a.
Lreg is a regularizer that constrains the Euclidean
distance between the contextualized word embed-
ding of a word w in the ith layer in the original
pretrained model with parameters θpre.

B.2 Sent-debias

v = PCAk(∪j=1 ∪w∈Rj (w − µj))

hv =

k∑

j=1

⟨h, vj⟩vj

ĥ = h− hv
where v represents the top-k gender subspace, h
the representation of a given embedding, hv the
projection of h onto v, and ĥ the resulting debiased
subspace.

C Experiment set-up

We train all models for 4 epochs, a learning rate
of 2e−5 on Tesla V100-SXM3-32GB. We use a se-
quence length of 100 as the default for all extrinsic
tasks. For all downstream tasks, we use a one-layer
linear classifier.

D Datasets

Bias-in-bios (De-Arteaga et al., 2019a) consists
of online English biographies of people. We use
this dataset to predict the occupations of people.

Since the gender labels are provided, we can com-
pute disparities in predictive performance between
male and female gender groups.

We select the top 7 female and top 7 male pro-
fessions based on the gender percentages. We take
these two sets to represent female and male domi-
nated jobs respectively.

Jigsaw dataset 13 from the online platform Civil
comments contains online comments. This dataset
is scored from 0 to 10 with the perceived gender of
the targets of these comments as well as the toxicity
levels of these comments. We use this dataset to
predict whether or not a comment is toxic against
the target persons. We use gender labels to compute
predictive disparities.

We select all comments with toxicity score above
0.5 as the toxic comments and those with a score
of exactly 0 as the non-toxic ones in order to elim-
inate fine-margins. We use the same technique to
annotate gender by labeling a gender positive if it
scores above 0.5 whilst its complimentary gender
has a score of exactly 0.

E Measuring intrinsic bias with LPBS
when debiasing is done with
Sent-debias

Figure 7: Measuring intrinsic bias in Sent-debias with
target-LPBS.

F Results

13https://www.kaggle.com/c/jigsaw-unintended-bias-in-
toxicity-classification/data
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Table 1: Intrinsic bias scores from SEAT and LPBS. For SEAT we capture the test statistic score: SEAT test score
and the effect size: SEAT eff. size. For LPBS we capture results from two variants: attribute-LPBS: attr-LPBS and
target-LPBS: target-LPBS.

(a) Intrinsic bias BERT-large-uncased

Model SEAT test score SEAT eff. size attr-LPBS target-LPBS

pretrained 0.055 1.675 1.301 0.886
Context-debias 0.002 0.260 1.650 1.180

Sent-debias 0.055 1.675 0.514 0.322
CDA 0.033 1.148 0.409 0.351

(b) Intrinsic bias ALBERT-large

Model SEAT test score SEAT eff. size attr-LPBS target-LPBS

pretrained 0.051 1.715 0.870 0.446
Context-debias 0.003 0.244 1.343 0.346

Sent-debias 0.051 1.717 0.187 0.111
CDA 0.006 1.170 0.654 0.772

Table 2: Results of gender detection probe: Gender acc denotes the accuracy of detecting gender information
in attribute/gender terms (high scores are desirable). Stereotype acc indicates the accuracy of detecting gender
information in stereotype terms (this should ideally be 0.5 in a fair classifier, showing the inability to correctly
predict the gender association of stereotype terms). Stereotype conf indicate the average confidence of prediction
of stereotypes: 1

N

∑N
i |bias(ei)− 0.5| (low scores are desirable). P-values are from the randomization test.

(a) Detecting gender information BERT-large-uncased

Model Gender acc Stereotype acc Stereotype conf p-value

pretrained 1.0 0.78 0.20 9.055e-73
Context-debias 0.97 0.62 0.16 1.398e-51

Sent-debias 1.0 0.76 0.02 8.772e-70
CDA 0.99 0.75 0.16 7.824e-77

(b) Detecting gender information Alert-large-uncased

Model Gender acc Stereotype acc Stereotype conf p-value

pretrained 1.0 0.83 0.33 2.763e-71
Context-debias 0.97 0.63 0.19 1.700e-48

Sent-debias 1.0 0.82 0.02 2.335e-95
CDA 0.94 0.63 0.12 3.497e-61

Table 3: Extrinsic bias scores from Bias in Bios - BERT-large: We capture true positive rate difference, false positive
rate difference, counterfactual fairness, accuracy scroes for both gender groups, counterfactual augmented true
positive rate difference and counterfactual augmented false positive rate diference scores.

Model Data TPRD FPRD ACC-F ACC-M CF CF-TPRD CF-FPRD CF-ACC-F CF-ACC-M

Pretrained Default 0.135± 0.03 0.012± 0.0 0.984± 0.0 0.982± 0.0 0.051± 0.0 0.116± 0.02 0.008± 0.0 0.982± 0.0 0.981± 0.0
Pretrained Scrubbing 0.125 ± 0.02 0.011 ± 0.0 0.984 ± 0.0 0.982 ± 0.0 0.033 ± 0.0 0.113 ± 0.02 0.008 ± 0.0 0.983 ± 0.0 0.981 ± 0.0
Pretrained Swapping 0.122 ± 0.02 0.008 ± 0.0 0.983 ± 0.0 0.981 ± 0.0 0.008 ± 0.0 0.12 ± 0.02 0.008 ± 0.0 0.983 ± 0.0 0.981 ± 0.0
Context-debias Default 0.14 ± 0.03 0.012 ± 0.0 0.984 ± 0.0 0.982 ± 0.0 0.051 ± 0.0 0.119 ± 0.02 0.008 ± 0.0 0.982 ± 0.0 0.98 ± 0.0
Context-debias Scrubbing 0.117 ± 0.03 0.01 ± 0.0 0.984 ± 0.0 0.981 ± 0.0 0.026 ± 0.0 0.109 ± 0.03 0.009 ± 0.0 0.983 ± 0.0 0.981 ± 0.0
Context-debias Swapping 0.122 ± 0.03 0.009 ± 0.0 0.983 ± 0.0 0.981 ± 0.0 0.008 ± 0.0 0.12 ± 0.03 0.009 ± 0.0 0.983 ± 0.0 0.981 ± 0.0
CDA Default 0.132 ± 0.02 0.012 ± 0.0 0.983 ± 0.0 0.982 ± 0.0 0.047 ± 0.0 0.111 ± 0.02 0.008 ± 0.0 0.982 ± 0.0 0.98 ± 0.0
CDA Scrubbing 0.123 ± 0.03 0.009 ± 0.0 0.982 ± 0.0 0.981 ± 0.0 0.014 ± 0.0 0.121 ± 0.03 0.009 ± 0.0 0.982 ± 0.0 0.981 ± 0.0
CDA Swapping 0.116 ± 0.02 0.009 ± 0.0 0.983 ± 0.0 0.981 ± 0.0 0.007 ± 0.0 0.116 ± 0.02 0.009 ± 0.0 0.983 ± 0.0 0.981 ± 0.0
Sent-debias Original 0.132 ± 0.02 0.012 ± 0.0 0.983 ± 0.0 0.982 ± 0.0 0.007 ± 0.0 0.115 ± 0.02 0.008 ± 0.0 0.981 ± 0.0 0.98 ± 0.0
Sent-debias Scrubbing 0.132 ± 0.02 0.01 ± 0.0 0.983 ± 0.0 0.981 ± 0.0 0.003 ± 0.0 0.122 ± 0.03 0.008 ± 0.0 0.982 ± 0.0 0.98 ± 0.0
Sent-debias Swapping 0.121 ± 0.02 0.009 ± 0.0 0.982 ± 0.0 0.98 ± 0.0 0.003 ± 0.0 0.119 ± 0.02 0.009 ± 0.0 0.982 ± 0.0 0.98 ± 0.0

Table 4: Extrinsic bias scores from Bias in Bios - ALBERT-large

Model Data TPRD FPRD ACC-F ACC-M CF CF-TPRD CF-FPRD CF-ACC-F CF-ACC-M

Pretrained Default 0.138 ± 0.02 0.013 ± 0.0 0.982 ± 0.0 0.979 ± 0.0 0.06 ± 0.0 0.118 ± 0.02 0.009 ± 0.0 0.979 ± 0.0 0.978 ± 0.0
Pretrained Scrubbing 0.127 ± 0.01 0.01 ± 0.0 0.982 ± 0.0 0.978 ± 0.0 0.021 ± 0.0 0.12 ± 0.01 0.009 ± 0.0 0.981 ± 0.0 0.978 ± 0.0
Pretrained Swapping 0.121 ± 0.02 0.009 ± 0.0 0.981 ± 0.0 0.979 ± 0.0 0.01 ± 0.0 0.121 ± 0.02 0.009 ± 0.0 0.981 ± 0.0 0.979 ± 0.0
Context-debias Default 0.137 ± 0.02 0.012 ± 0.0 0.983 ± 0.0 0.98 ± 0.0 0.062 ± 0.0 0.114 ± 0.02 0.009 ± 0.0 0.981 ± 0.0 0.978 ± 0.0
Context-debias Scrubbing 0.129 ± 0.02 0.01 ± 0.0 0.98 ± 0.0 0.978 ± 0.0 0.021 ± 0.0 0.124 ± 0.02 0.009 ± 0.0 0.979 ± 0.0 0.977 ± 0.0
Context-debias Swapping 0.116 ± 0.02 0.009 ± 0.0 nan ± nan nan ± nan 0.011 ± 0.0 0.115 ± 0.02 0.009 ± 0.0 0.981 ± 0.0 0.978 ± 0.0
CDA Default 0.142 ± 0.02 0.013 ± 0.0 0.981 ± 0.0 0.978 ± 0.0 0.063 ± 0.0 0.121 ± 0.02 0.009 ± 0.0 0.979 ± 0.0 0.977 ± 0.0
CDA Scrubbing 0.127 ± 0.02 0.01 ± 0.0 0.979 ± 0.0 0.977 ± 0.0 0.012 ± 0.0 0.125 ± 0.02 0.01 ± 0.0 0.979 ± 0.0 0.977 ± 0.0
CDA Swapping 0.115 ± 0.01 0.009 ± 0.0 0.98 ± 0.0 0.977 ± 0.0 0.011 ± 0.0 0.116 ± 0.02 0.009 ± 0.0 0.98 ± 0.0 0.977 ± 0.0
Sent-debias Original 0.145 ± 0.02 0.013 ± 0.0 0.981 ± 0.0 0.978 ± 0.0 0.007 ± 0.0 0.119 ± 0.03 0.009 ± 0.0 0.978 ± 0.0 0.976 ± 0.0
Sent-debias Scrubbing 0.12 ± 0.02 0.01 ± 0.0 0.978 ± 0.0 0.976 ± 0.0 0.002 ± 0.0 0.108 ± 0.02 0.009 ± 0.0 0.978 ± 0.0 0.976 ± 0.0
Sent-debias Swapping 0.117 ± 0.03 0.009 ± 0.0 0.981 ± 0.0 0.978 ± 0.0 0.002 ± 0.0 0.114 ± 0.02 0.009 ± 0.0 0.981 ± 0.0 0.978 ± 0.0
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Table 5: Extrinsic bias scores from Jigsaw - BERT-large

Model Data TPRD FPRD ACC-F ACC-M CF CF-TPRD CF-FPRD CF-ACC-F CF-ACC-M

Pretrained Default 0.044 ± 0.02 0.118 ± 0.04 0.896 ± 0.01 0.934 ± 0.0 0.116 ± 0.01 0.061 ± 0.01 0.029 ± 0.02 0.866 ± 0.01 0.902 ± 0.01
Pretrained Scrubbing 0.026 ± 0.02 0.076 ± 0.03 0.891 ± 0.01 0.914 ± 0.01 0.031 ± 0.0 0.026 ± 0.01 0.058 ± 0.02 0.889 ± 0.01 0.904 ± 0.01
Pretrained Swapping 0.027 ± 0.01 0.065 ± 0.02 0.892 ± 0.01 0.92 ± 0.01 0.01 ± 0.0 0.029 ± 0.01 0.066 ± 0.01 0.893 ± 0.01 0.921 ± 0.01
Context-debias Default 0.047 ± 0.02 0.128 ± 0.04 0.895 ± 0.01 0.931 ± 0.01 0.116 ± 0.01 0.049 ± 0.02 0.032 ± 0.02 0.868 ± 0.01 0.894 ± 0.01
Context-debias Scrubbing 0.014 ± 0.01 0.032 ± 0.02 0.701 ± 0.22 0.874 ± 0.06 0.015 ± 0.01 0.015 ± 0.01 0.026 ± 0.02 0.698 ± 0.21 0.87 ± 0.06
Context-debias Swapping 0.031 ± 0.01 0.049 ± 0.02 0.889 ± 0.01 0.915 ± 0.01 0.01 ± 0.0 0.031 ± 0.01 0.05 ± 0.02 0.888 ± 0.01 0.915 ± 0.01
CDA Default 0.055 ± 0.02 0.114 ± 0.03 0.902 ± 0.01 0.932 ± 0.0 0.115 ± 0.01 0.048 ± 0.01 0.024 ± 0.01 0.872 ± 0.01 0.899 ± 0.0
CDA Scrubbing 0.023 ± 0.01 0.053 ± 0.03 0.894 ± 0.01 0.904 ± 0.01 0.018 ± 0.0 0.022 ± 0.01 0.041 ± 0.02 0.892 ± 0.01 0.899 ± 0.01
CDA Swapping 0.026 ± 0.02 0.038 ± 0.02 0.891 ± 0.01 0.913 ± 0.01 0.008 ± 0.0 0.026 ± 0.02 0.036 ± 0.02 0.891 ± 0.01 0.913 ± 0.01
Sent-debias Original 0.074 ± 0.02 0.108 ± 0.03 0.898 ± 0.01 0.926 ± 0.01 0.069 ± 0.01 0.041 ± 0.02 0.025 ± 0.01 0.865 ± 0.01 0.89 ± 0.01
Sent-debias Scrubbing 0.033 ± 0.01 0.035 ± 0.01 0.889 ± 0.01 0.909 ± 0.01 0.012 ± 0.0 0.037 ± 0.01 0.023 ± 0.02 0.885 ± 0.01 0.901 ± 0.01
Sent-debias Swapping 0.021 ± 0.02 0.045 ± 0.01 0.893 ± 0.01 0.916 ± 0.01 0.006 ± 0.0 0.021 ± 0.02 0.045 ± 0.01 0.893 ± 0.01 0.915 ± 0.01

Table 6: Extrinsic bias scores from Jigsaw - ALBERT-large

Model Data TPRD FPRD ACC-F ACC-M CF CF-TPRD CF-FPRD CF-ACC-F CF-ACC-M

Pretrained Default 0.077 ± 0.04 0.115 ± 0.04 0.894 ± 0.01 0.916 ± 0.01 0.143 ± 0.01 0.035 ± 0.02 0.039 ± 0.02 0.862 ± 0.01 0.86 ± 0.02
Pretrained Scrubbing 0.032 ± 0.02 0.025 ± 0.02 0.789 ± 0.14 0.819 ± 0.1 0.031 ± 0.01 0.035 ± 0.03 0.033 ± 0.02 0.783 ± 0.14 0.808 ± 0.1
Pretrained Swapping 0.037 ± 0.02 0.029 ± 0.01 0.869 ± 0.02 0.895 ± 0.02 0.012 ± 0.0 0.038 ± 0.02 0.032 ± 0.02 0.869 ± 0.02 0.895 ± 0.02
Context-debias Default 0.064 ± 0.02 0.122 ± 0.02 0.891 ± 0.01 0.92 ± 0.01 0.137 ± 0.01 0.051 ± 0.02 0.025 ± 0.01 0.857 ± 0.01 0.875 ± 0.01
Context-debias Scrubbing 0.031 ± 0.01 0.05 ± 0.03 0.885 ± 0.01 0.891 ± 0.01 0.039 ± 0.01 0.024 ± 0.01 0.041 ± 0.02 0.878 ± 0.01 0.874 ± 0.01
Context-debias Swapping 0.023 ± 0.01 0.048 ± 0.02 0.874 ± 0.01 0.904 ± 0.01 0.011 ± 0.0 0.025 ± 0.01 0.048 ± 0.02 0.875 ± 0.01 0.905 ± 0.01
CDA Default 0.078 ± 0.02 0.115 ± 0.03 0.887 ± 0.01 0.913 ± 0.01 0.139 ± 0.01 0.043 ± 0.02 0.031 ± 0.01 0.855 ± 0.01 0.865 ± 0.01
CDA Scrubbing 0.026 ± 0.01 0.052 ± 0.02 0.866 ± 0.02 0.865 ± 0.02 0.024 ± 0.0 0.021 ± 0.01 0.036 ± 0.02 0.867 ± 0.02 0.857 ± 0.02
CDA Swapping 0.042 ± 0.02 0.038 ± 0.02 0.866 ± 0.01 0.9 ± 0.01 0.011 ± 0.0 0.041 ± 0.02 0.037 ± 0.02 0.867 ± 0.01 0.9 ± 0.01
Sent-debias Original 0.102 ± 0.05 0.106 ± 0.05 0.765 ± 0.18 0.87 ± 0.05 0.064 ± 0.03 0.023 ± 0.02 0.03 ± 0.02 0.736 ± 0.17 0.824 ± 0.03
Sent-debias Scrubbing 0.011 ± 0.01 0.021 ± 0.02 0.685 ± 0.21 0.831 ± 0.04 0.009 ± 0.01 0.011 ± 0.01 0.018 ± 0.02 0.683 ± 0.21 0.825 ± 0.03
Sent-debias Swapping 0.031 ± 0.02 0.031 ± 0.02 0.821 ± 0.13 0.88 ± 0.04 0.006 ± 0.0 0.034 ± 0.02 0.031 ± 0.02 0.818 ± 0.13 0.88 ± 0.04

(a) BERT-large model (b) ALBERT-large model

Figure 8: Intrinsic bias scores using SEAT and LPBS. Results show inconsistencies in measuring bias between
SEAT and LPBS for various mitigation strategies — lower scores are desirable in both cases.

Figure 9: We compare LPBS in its default form (attribute-LPBS) and target-LPBS for both BERT and ALBERT.
The plot shows a general positive correlation between the two metrics. In both cases, Sent-debias maintains the
lowest bias score — lower scores are desirable in both cases
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Figure 10: Gray bars indicate the accuracy of detecting gender information in attribute terms (high scores are
desirable). Red bars indicate the accuracy of detecting gender information in stereotype terms (this should ideally
be 0.5 in a fair classifier, showing the inability to correctly predict the gender association of stereotype terms). Blue
bars indicate the average confidence of prediction: 1

N

∑N
i |bias(ei)− 0.5| (low scores are desirable).

Figure 11: How intrinsic bias mitigation and downstream data intervention interact to influence fairness on the
bias-in-bios dataset.
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Figure 12: How intrinsic mitigation and downstream data intervention interact to influence counterfactual fairness
on the jigsaw data.

Figure 13: Relationship between TPRD and CF based on results from the Bias-in-Bios dataset.

3433



Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 3434–3444
May 2-6, 2023 ©2023 Association for Computational Linguistics

Multimodal Event Transformer for Image-guided Story Ending Generation

Yucheng Zhou, Guodong Long∗
Australian AI Institute, School of Computer Science, FEIT, University of Technology Sydney

yucheng.zhou-1@student.uts.edu.au, guodong.long@uts.edu.au

Abstract

Image-guided story ending generation (IgSEG)
is to generate a story ending based on given
story plots and ending image. Existing methods
focus on cross-modal feature fusion but over-
look reasoning and mining implicit information
from story plots and ending image. To tackle
this drawback, we propose a multimodal event
transformer, an event-based reasoning frame-
work for IgSEG. Specifically, we construct vi-
sual and semantic event graphs from story plots
and ending image, and leverage event-based
reasoning to reason and mine implicit infor-
mation in a single modality. Next, we con-
nect visual and semantic event graphs and uti-
lize cross-modal fusion to integrate different-
modality features. In addition, we propose a
multimodal injector to adaptive pass essential
information to decoder. Besides, we present
an incoherence detection to enhance the un-
derstanding context of a story plot and the
robustness of graph modeling for our model.
Experimental results show that our method
achieves state-of-the-art performance for the
image-guided story ending generation.

1 Introduction

Story ending generation (Guan et al., 2019) aims
to generate a reasonable ending for a given story
plot. It requires deep models to integrate powerful
language understanding capability, which is crucial
for artificial intelligence. Many efforts (Wang and
Wan, 2019; Guan et al., 2019; Yao et al., 2019;
Guan et al., 2020) have been proposed and achieved
promising results since neural models designed
for comprehending natural language allow them
to understand story plots and reason reasonable
story endings. With the advance of automatic story
generation, it has attracted outstanding attention in
multimodality research (Jung et al., 2020; Yu et al.,
2021; Chen et al., 2021).

∗Corresponding author.

It was our first big backyard barbeque of summer
and we invited all friends.
We all sat around and caught up with each others’
lives.
Dave started the fire pit, look at those flames!
Everyone put hot dogs on skewers and roasted
them over the fire.

We all had a great time hanging out until very late
in the night and it was a great party!
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Figure 1: Given a multi-sentence story plot and an end-
ing image, the image-guided story ending generation
aims to generate a story ending related to the image.

However, since story plots and story ending usu-
ally correspond to different content, the context
with information bottleneck is not enough to de-
duce an informative story ending, i.e., generated
endings tend to be inane and generic. To address
this issue, Huang et al. (2021) propose an image-
guided story ending generation (IgSEG) task that
combines story plots and ending image to gener-
ate a coherent, specific and informative story end-
ing. IgSEG demands not only introducing informa-
tion from the ending image to story plots for story
ending generation but also reasoning and mining
implicit information from story plots and ending
image, respectively. As shown in Figure 1, for
story plots, “party” can be inferred from “big back-
yard barbeque” and “invited all friends”, and “all
friends”, “all sat around” and “caught up with” can
deduce “had a great time”. For the ending image,
“dim indoor” and “bright lights” can infer “very late
in the night”.

Existing methods (Huang et al., 2021; Xue et al.,
2022) focus on cross-modal feature fusion but over-
look reasoning and mining implicit information
from story plots and ending images. Nonetheless,
to effectively conduct cross-modal feature fusion,
it is necessary to reason and mine more implicit
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information from single-modality data. An event is
a fine-grained semantic unit, which refers to a text
span composed of a predicate and its arguments
(Zhang et al., 2020). Recently, event-centric rea-
soning displays excellent capability for context un-
derstanding and subsequent event prediction (Zhou
et al., 2022b). In this work, we propose a multi-
modal event transformer (MET) to mine implicit
information to improve cross-modal fusion. For
story plots, we leverage semantic role labeling
(SRL) parser (He et al., 2017) to extract events
from story plots and then construct them into a
semantic event graph. For an ending image, we uti-
lize scene graph parser (Zellers et al., 2018) to cap-
ture visual concepts and their relation to construct
visual event graphs. Since edges contain relation-
ships between nodes in visual and semantic event
graphs, we employ relational graph convolutional
networks (RGCN) (Schlichtkrull et al., 2018) to
encode event graphs to infer implicit information.

For cross-modal feature fusion, most recent
works (Huang et al., 2021; Xue et al., 2022) adopt
attention-based neural network models to implic-
itly integrate multi-modal features. However, due
to the complexity of cross-modal features and the
existence of dependency between single-modal fea-
tures, it is often difficult for these models to comple-
ment cross-modal features. To tackle the issue, we
propose cross-modal fusion to integrate different-
modality features. Specifically, we merge visual
and semantic event graphs and use RGCN to fuse
cross-modal features for feature complement.

Moreover, since features from different modal-
ities suffer from domain inconsistency, previous
methods (Huang et al., 2021; Xue et al., 2022)
directly concatenate them and pass them to the de-
coder, which is not a crafted manner. To appropri-
ately combine features from different modalities,
we design a multimodal injector to integrate rel-
evant features into the decoder. In addition, we
propose an incoherence detection to enhance the
context understanding for a story plot and the ro-
bustness of graph modeling for our model.

In experiments, we conduct extensive evalua-
tions on two datasets (i.e., VIST-E (Huang et al.,
2021) and LSMDC-E (Xue et al., 2022)). Experi-
mental results show that our method outperforms
strong competitors and achieves state-of-the-art per-
formance. In addition, we conduct further analysis
and human evaluation to demonstrate the effective-
ness of our method.

2 Related Work

2.1 Story Ending Generation

Story ending generation aims to generate a story
ending for given story plots, and it is one of the im-
portant tasks in natural language generation. Many
efforts have been invested in story ending gener-
ation (Wang and Wan, 2019; Guan et al., 2019;
Yao et al., 2019; Guan et al., 2020). To make
the generated story ending more reasonable, Guan
et al. (2019) propose a model encapsulating a
multi-source attention mechanism, which can uti-
lize context clues and understand commonsense
knowledge. To ensure the coherence in generated
story endings, Wang and Wan (2019) propose a
transformer-based conditional autoencoder, which
can capture contextual clues in story splot. To
improve long-range coherence in generated sto-
ries, Guan et al. (2020) pre-train model on exter-
nal commonsense knowledge bases for the story
ending generation. Zhou et al. (2022b) propose
a correlation-aware context-to-event pre-trained
transformer, which applies to a wide range of event-
centric reasoning and generation scenarios, includ-
ing story ending generation. Beyond the limit of
single-modal information, Huang et al. (2021) in-
troduce visual information to enrich the generation
of story endings with more coherent, specific, and
informative. To improve cross-modal feature fu-
sion, Xue et al. (2022) propose a multimodal mem-
ory transformer, which fuses contextual and visual
information to capture the multimodal dependency
effectively.

2.2 Visual Storytelling

Visual storytelling task is proposed by Huang et al.
(2016), which aims to generate a story based on
a given image stream. Wang et al. (2018) present
an adversarial reward learning framework to learn
an implicit reward function from human demon-
strations. To inject imaginary concepts that do not
appear in the images, some works (Yang et al.,
2019; Chen et al., 2021; Xu et al., 2021) propose
building scene graphs and injecting external knowl-
edge into model to reason the relationship between
visual concepts. Qi et al. (2021) propose a latent
memory-augmented graph transformer to exploit
the semantic relationships among image regions
and attentively aggregate critical visual features
based on the parsed scene graphs.
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It was our first big
backyard barbeque
of summer and we
invited all friends.

Everyone put hot
dogs on skewers
and roasted them
over the fire.
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Story Ending Generation

Figure 2: An overview of our model. Grey rounded rectangles denote fixed model. Blue rounded rectangles denote
parameters that will be optimized.

2.3 Event-centric Reasoning

Events always play an essential role in a story be-
cause a story is composed of multiple events and
implies the relationship between the events. An
event is a text span composed of a predicate and
its arguments (Zhang et al., 2020). Multiple events
include relations between events that conform to
human commonsense (Zhou et al., 2022a). Some
works use plot events for story generation, which is
generating a prompt and then transforming it into a
text (Ammanabrolu et al., 2020; Fan et al., 2019).
To generate a more coherent and specific ending,
understanding events in story plots and their rela-
tionship can obtain informative context, which is a
crucial step for story ending generation.

3 Method

This section will elaborate on our method for
image-guided story ending generation, including
event graph construction, event-based reasoning,
cross-modal fusion, multimodal injector and story
ending generation. The details of our method are
shown in Figure 2. Lastly, details about objectives
and training are elaborated.

3.1 Event Graph Construction

Semantic Event Graph. The story plot contains
multiple events which are correlated with each
other. The definition of an event is a text span
composed of a predicate and its arguments (Zhang
et al., 2020). The event-centric reasoning shows
excellent capability for context understanding and

subsequent event prediction (Zhou et al., 2022b).
To effectively reason and mine more implicit in-
formation from story plots, we use semantic role
labeling (SRL) to parse the story and extract events
from parsing results, as shown in Figure 2. Specifi-
cally, Given story plots S = {S1,S2,S3,S4}, we
construct semantic event graphs Gsi = (Vsi , Esi ) by
SRL. Esi consists of two vectors, one for the pos-
itive direction and one for the opposite direction,
and Vsi = {si0, si1, si2, · · · , sin}. To obtain features
of each node, we use a pre-trained transformer en-
coder to obtain token representations in sentence
Si.

Ti = Trans-Enc(Si),Ti ∈ {t1i , t2i , · · · , tgi } (1)

where tgi denotes token representation, and g is
length of sentence Si. Next, we conduct a mean
pooling operation for tokens presentations based
on SRL parsing result Ŝi to get presentation ŝij
for each node. In addition, we take pooling for
all token presentations of sentence Si to obtain a
presentation of sentence node ŝi0. Each node ŝij
in sentence Si is connected to the sentence node.
To preserve the relationship between sequences,
we connect sentence nodes in the order of the se-
quence.

Visual Event Graph. For ending images, previ-
ous works (Huang et al., 2021; Xue et al., 2022) use
pre-trained convolutional neural networks (CNN)
to extract feature maps directly. We construct vi-
sual event graphs to reason and mine more im-
plicit information from ending images. Scene
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graphs have been used for many tasks to produce
structured graph representations of visual scenes
(Zellers et al., 2018). Inspired by the success of
these tasks, we parse the ending image I to a scene
graph via the scene graph parser. A scene graph
can be denoted as a tuple GI = {VI , EI}, where
VI = {v0,v1,v2, · · · ,vk} is a set of k detected
objects. v0 denotes a representation of the whole
image, and other vi is a region representation of
detected object. EI = {e1, e2, · · · , em} is a set of
directed edges and each edge ei refers to a triplet
(vi, ri,j ,vj), which includes two directional edges
from vi to ri,j and from ri,j to vj . Specifically, the
construction of the scene graph can be divided into
two parts: one is object detection, and the other is
visual relation detection.

For object detection, we leverage a well-trained
object detector, Faster-RCNN (Ren et al., 2017)
with a ResNet-152 (He et al., 2016) backbone, to
classify and encode objects in the ending image
I . The outputs of detector include a set of region
representations VI = {v1,v2, · · · ,vk} and object
categories O = {o1, o2, · · · , ok}. For visual rela-
tion detection, we leverage MOTIFS (Zellers et al.,
2018) as our relation detector to classify the re-
lationship between objects. We train the relation
detector on Visual Genome dataset (Krishna et al.,
2017). The output of relation detector is a set of
relation EI = {e1, e2, · · · , em}, where ei refers to
a triplet (vi, ri,j ,vj). Lastly, we obtain the scene
graph GI = {VI , EI} of ending image by combin-
ing the results of object detection and relationship
detection.

3.2 Event-based Reasoning
We perform graph-structure reasoning over seman-
tic and visual event graphs to effectively reason and
mine more implicit information from story plots
and ending images. Since event graphs have mul-
tiple relations between nodes (e.g., relations be-
tween visual objects, relations between predicates
and arguments, etc.), we select relational graph
convolutional networks (RGCN), which can pass
different messages along different relations. Specif-
ically, for each layer l in L-layer RGCN, the node
representation wl

i is updated as follows:

wl+1
i =ReLU

(∑

r∈R

∑

j∈Nr(i)

1

|Nr(i)|
Wr ·wl

j

)
(2)

whereR denote a set of all edges types, and Nr(i)
is the neighborhood of node i under relation r.
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Figure 3: Details of the multimodal injector.

To reason and mine more implicit information in
single-modality, we conduct event-based reasoning
on semantic and visual event graphs, respectively.

3.3 Cross-modal Fusion

We propose cross-modal fusion for visual and se-
mantic event graphs to integrate information from
story plots and ending images. We adopt a layer
normalization for node features to reduce the cross-
modal gap between visual and semantic graphs. For
cross-modal feature fusion, previous works (Huang
et al., 2021; Xue et al., 2022) adopt attention-based
neural network models to implicitly integrate multi-
modal features. However, these models neglect the
dependency between single-modal features. There-
fore, we maintain graph structure for visual and
semantic features and connect nodes that repre-
sent whole image and sentences, as shown in Fig-
ure 2. Moreover, we utilize RGCN as Eq.2 to in-
tegrate cross-modal features in event graph, and
outputs denote as V̄si = {s̄i0, s̄i1, s̄i2, · · · , s̄in} and
V̄I = {v̄0, v̄1, v̄2, · · · , v̄k}.

3.4 Multimodal Injector

To integrate different modal sources, we propose
a multimodal injector, which adaptly extracts key
information from different modal features and inte-
grates them appropriately. As shown in Figure 3,
inputs of multimodal injector include a hidden state
hd from the decoder, visual features V̄I and seman-
tic features V̄si . Specifically, we first use selective
attention for key information extraction, i.e.,

huattn = softmax

(
QKT

√
dk

)
V, u ∈ {I, S} (3)

where Q is hd from decoder; K and V are visual
features V̄I or semantic features V̄si ; and dk is the
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same as the dimension of hd. Then, the gate λ ∈
[0, 1] and the fused output are defined as:

λ = σ
(
UhIattn + V hSattn

)
(4)

where U and V are trainable weights. λ controls
how much visual information is attended.

ĥd = λ · hIattn + (1− λ) · hSattn + hd (5)

where the fusion vector ĥd is fed into the decoder.

3.5 Story Ending Generation
Recently, Transformer (Vaswani et al., 2017) shows
its powerful ability to generate natural language
(Radford et al., 2019). For story ending generation,
we use a Transformer decoder as the decoder for
our model. Specifically, the decoder input includes
a segment of the generated story ending C̄ and
fusion vector ĥd from the multimodal injector. The
purpose of the decoder is to predict a probability
distribution of the next word of the segment C̄, i.e.,

hi = Trans-Dec(ĥd, C̄) ∈ Rd

where C̄ = [c1, . . . , ci−1] (6)

pi = LM-Head(hi) ∈ RV (7)

where hi refers to the hidden representation in i-th
step; V denotes token vocabulary and pi refers to
a probability distribution over V; d in ĥd denotes
the current number of layer. Lastly, the story end-
ing generation objective is defined as a maximum
likelihood estimation. The loss function is defined
as:

L(gen) = − 1

|N |
∑N

i=1
log pi(ci), (8)

where pi(ci) denotes fetching the probability of the
i-th step gold token ci ∈ C from pi. C refers to
the gold caption, and N is its length.

3.6 Incoherence Detection
To enhance the understanding context of a story
plot and robustness of graph modeling for our
model, we introduce a training objective: incoher-
ence detection. We set a 10% probability to replace
a whole sentence node in semantic event graph ran-
domly. In the objective, the final step output hn
of the decoder is passed into a MLP to classify
whether each whole sentence node is changed, i.e.,

pclf = σ(MLP(hn)) ∈ R4 (9)

where σ denotes a sigmoid function. The loss func-
tion is defined as:

L(clf) = −1

4

4∑

i=1

yi · log(pclfi )

+ (1− yi) · log(1− pclfi ) (10)

3.7 Training
In model training, we set a trade-off parameter α
for two losses L(gen) and L(clf). The total loss
function of our model is definite as follows:

L = L(gen) + α× L(clf) (11)

4 Experiment

4.1 Dataset and Evaluation Metric
VIST-Ending. We compare our model and
other state-of-the-art methods on the VIST-Ending
(VIST-E) dataset (Huang et al., 2021). The dataset
is built over VIST dataset (Huang et al., 2016).
The VIST-E dataset comprises 39,920 samples for
training, 4,963 samples for validation and 5,030
samples for testing. In experiments, we follow the
data split in (Huang et al., 2021).

LSMDC-Ending. LSMDC-Ending (LSMDC-E)
(Xue et al., 2022) contains 20,151 training samples,
1,477 validation samples and 2,005 test samples,
which are collected from LSMDC 2021 (Rohrbach
et al., 2017).

Visual Genome. We use the Visual Genome
(VG) dataset to train a visual relationship detec-
tor. The dataset includes 108,077 images annotated
with scene graphs, and we follow the setting in (Xu
et al., 2017), which contains 150 object classes and
50 relation classes.

Evaluation Metric. As follow Xue et al. (2022),
we utilize the same metrics to report evaluation re-
sults, and the evaluation code is open-source1. The
evaluation metrics include: BLEU (Kingma and
Ba, 2015), METEOR (Banerjee and Lavie, 2005),
CIDEr (Vedantam et al., 2015), ROUGE-L (Lin,
2004) and Result Sum (rSUM) (Xue et al., 2022).

4.2 Implementation Details
For the scene graph, we limit the maximum number
of objects to 10 and the maximum number of rela-
tionships to 20. The relational graph convolution
network includes four relational graph convolution

1https://github.com/tylin/coco-caption
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Method B@1 B@2 B@3 B@4 M R-L C rSUM

Seq2Seq (Luong et al., 2015) 13.96 5.57 2.94 1.69 4.54 16.84 12.04 57.58
Transformer (Vaswani et al., 2017) 17.18 6.29 3.07 2.01 6.91 18.23 12.75 66.44
IE+MSA (Guan et al., 2019) 19.15 5.74 2.73 1.63 6.59 20.62 15.56 72.02
T-CVAE (Wang and Wan, 2019) 14.34 5.06 2.01 1.13 4.23 15.51 11.49 53.77
MG+Trans (Huang et al., 2021) 19.43 7.47 3.92 2.46 7.63 19.62 14.42 74.95
MG+CIA (Huang et al., 2021) 20.91 7.46 3.88 2.35 7.29 21.12 19.88 82.89
MGCL (Huang et al., 2021) 22.57 8.16 4.23 2.49 7.84 21.66 21.46 88.41
MMT (Xue et al., 2022) 22.87 8.68 4.38 2.61 15.55 23.61 25.41 103.11
MET (Ours) 24.31 8.79 4.62 2.73 16.41 24.49 26.47 107.82

Table 1: Comparison results on VIST-E test set. B@n, M, R-L, C and rSUM denote BLEU@n, METEOR, ROUGE-
L, CIDEr and Result Sum, respectively.

Method B@1 B@2 B@3 B@4 M R-L C rSUM

Seq2Seq (Luong et al., 2015) 14.21 4.56 1.70 0.70 11.01 19.69 8.69 60.56
Transformer (Vaswani et al., 2017) 15.35 4.49 1.82 0.76 11.43 19.16 9.32 62.33
MGCL (Huang et al., 2021) 15.89 4.76 1.57 0.00 11.61 20.30 9.16 63.29
MMT (Xue et al., 2022) 18.52 5.99 2.51 1.13 12.87 20.99 12.41 74.42
MET (Ours) 19.98 6.48 2.89 1.77 14.53 22.73 13.85 82.23

Table 2: Comparison results on LSMDC-E test set.

layers, and the size of input and output sets of 768.
For semantic event reasoning, we use a pre-trained
BERT model (Devlin et al., 2019) as the language
model. The layers and attention heads of the de-
coder are 12 and 8. The dimension of embedding
vectors in the decoder is 768, and the dimension
of hidden states is 768. The visual feature encoder
is ResNet-152. For model training, we select the
Adam optimizer (Kingma and Ba, 2015) to opti-
mize the model with learning rate of 2e-4. The
maximum training epoch of our model is 25. The
trade-off parameter α in Eq.11 is 0.2. The batch
size, weight decay and warm-up proportion are 128,
0.01 and 0.1. During inference, we use the beam
search with a beam size of 3 to generate a story
ending with maximum sentence length is 25. Our
model is trained on one V100 GPU.

4.3 Baselines

We compare our model with following state-of-the-
art baselines: (1) Seq2Seq is a stack RNN-based
model (Luong et al., 2015) with attention mech-
anisms, and image features are directly concate-
nated. (2) Transformer, proposed by Vaswani
et al. (2017), is an encoder-decoder model with
self-attention mechanisms. (3) IE+MSA is a story
ending generation model incorporating external

knowledge (Guan et al., 2019). (4) T-CVAE (Wang
and Wan, 2019) is a conditional variational autoen-
coder based on transformer for missing story plots
generation. (5) MG+Trans consists of multi-layer
graph convolutional networks and a transformer de-
coder (Huang et al., 2021). (6) MG+CIA consists
of multi-layer graph convolutional networks, top-
down LSTM and one context-image attention unit
in the decoder (Huang et al., 2021). (7) MGCL
is an image-guided story ending generation model
with multi-layer graph convolution networks and
cascade-LSTM (Huang et al., 2021). (8) MMT is a
multimodal memory transformer for image-guided
story ending generation (Xue et al., 2022).

4.4 Main Results

The experimental results on VIST-E and LSMDC-
E are shown in Table 1 and Table 2. From the
tables, we can make two observations. Firstly, our
model achieves state-of-the-art performance on the
VIST-E and LSMDC-E datasets compared to other
strong competitors. In addition, MG+CIA, MGCL,
MMT and our model significantly and consistently
outperform other models that directly concatenate
visual features. It indicates that mining visual in-
formation is essential and can provide rich infor-
mation to predict the ending. Moreover, our model
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Method B@1 B@2 B@3 B@4 M R-L C rSUM

MET 24.31 8.79 4.62 2.73 16.41 24.49 26.47 107.82
w/o ID 23.84 8.70 4.51 2.56 15.91 24.10 25.86 105.48
w/o CMF 23.47 8.65 4.47 2.53 15.91 23.85 25.66 104.54
w/o MI 22.68 8.56 4.33 2.48 15.83 22.99 24.74 101.61
w/o VER 22.41 8.25 4.33 2.50 15.86 23.09 25.03 101.47
w/o SER 23.78 8.73 4.46 2.55 15.88 24.04 25.87 105.31
w/o CMF, MI 21.03 8.03 4.16 2.36 15.43 21.14 22.44 94.59

Table 3: Ablation study. “w/o ID” denotes removing the incoherence detection objective; “w/o CMF” denotes
removing the cross-modal fusion; “w/o MI” denotes removing the multimodal injector; “w/o VER” denotes removing
the event-based reasoning in visual event graph; “w/o SER” denotes removing the event-based reasoning in semantic
event graph; “w/o CMF, MI” removing the cross-modal fusion and multimodal injector.

Method B@1 B@2 B@4 M R-L

Seq2Seq 14.27 4.27 1.05 6.02 16.32
Transformer 17.06 6.18 1.57 6.55 18.69
IE+MSA 20.11 6.62 1.68 6.87 21.27
T-CVAE 20.36 6.63 1.88 6.74 20.98
Plan&Write 20.92 5.88 1.44 7.10 20.17
KE-GPT2 21.92 7.40 1.90 7.41 20.58
MG+Trans 18.55 6.76 2.33 7.31 19.02
MGCL 20.27 6.26 1.81 6.91 21.01
MET 21.88 7.28 2.36 7.41 21.32

Table 4: Result of the SEG task on the VIST-E dataset
(plain text). The bold / underline denotes the best and
the second performance, respectively.

achieves better results than MG+CIA, MGCL and
MMT, demonstrating that reasoning and mining
implicit information from story plots and ending
image is significant for image-guided story ending
generation.

4.5 Ablation Study

To verify the effectiveness of our method, we con-
duct an ablation study and show the results in Ta-
ble 3. Firstly, the table shows that removing each
component or objective decreases the model per-
formance, which demonstrates our method’s effec-
tiveness. In addition, we observe that removing
cross-modal fusion and multimodal injector brings
a great performance drop, which shows that cross-
modal information mining and adaptive integration
play a crucial role in story ending prediction.

4.6 SEG Setting

To investigate the effectiveness of visual informa-
tion mining in our method, we remove the image

from the VIST-E dataset and evaluate it on only
plain text. The results are shown in Table 4. From
the table, we observe that our model keeps com-
petitive with Plan&Write (Yao et al., 2019) and
KE-GPT2 (Guan et al., 2020) models designed es-
pecially for textual story generation. Moreover,
our model outperforms MG+trans, which verifies
the effectiveness of our incoherence detection and
semantic event-based reasoning. Our model per-
forms better when adding the image, as shown in
Table 1. It demonstrates that mining implied visual
information can help story ending generation.

4.7 Analysis

4.7.1 Impact of Event-based Reasoning
To investigate the effectiveness of event reasoning,
we analyze its impact, and the results are shown in
Table 5. From the table, we can observe that replac-
ing semantic role labeling with dependency parsing
leads to decreased performance. Moreover, replac-
ing the visual event graph with whole image fea-
tures (i.e., features extracted by pre-trained CNN)
shows a performance drop. In addition, removing
cross-modal fusion also shows a performance drop.
These demonstrate the effectiveness of event-based
reasoning for the image-guided story ending gener-
ation.

4.7.2 Case Study
To extensively evaluate our method, we conduct
a case study for our model and MGCL, and some
random sampling examples are shown in Figure 4.
For example, in the left case, we can observe that
our model can reason that the man in the image is a
soldier, while the result from MGCL is not signifi-
cantly related to visual content. For example, in the
right case, our model can generate the word "relax"
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Method B@1 B@2 B@3 B@4 M R-L C rSUM

MET 24.31 8.79 4.62 2.73 16.41 24.49 26.47 107.82
w/ Dependence Parser 23.47 8.70 4.50 2.57 15.88 24.15 24.06 103.33
w/o Visual Event Graph 22.13 8.19 4.21 2.44 15.76 22.88 23.93 99.54
w/o CMF 23.47 8.65 4.47 2.53 15.91 23.85 25.66 104.54

Table 5: Impact of event reasoning. “w/ Dependency Parser” denotes replacing semantic role labeling with
dependency parsing; “w/o Visual Event Graph” denotes removing the visual event graph and provides the whole
image features as inputs; “w/o CMF” denotes removing the cross-modal fusion.

Ending Image:

Story Plot:
the day of our family vacation finally arrived.
we made out way down to the lake after leaving our belongings in the lodge.
there were a lot of other people out on the river.
they really looked like they were having fun as well.

Generated Story Ending:
MGCL: at the end of the day , we ready to take a
picture .
MET: after we go home , we decided to take a relax in
chair .

Ending Image:

Story Plot:
i went to the award ceremony yesterday .
there were a lot of people there .
everyone received an award for their effort .
they had a great time .

Generated Story Ending:
MGCL: we ended the day with a
great time .
MET: the soldiers were singing
together at the end of the ceremony .

Figure 4: Random sampling examples generated by MET and MGCL.

after we go home , we decided to 
take a relax in chair .

the soldiers were singing together 
at the end of the ceremony .

the day of
our family
vacation

to the award 
ceremony

Figure 5: Interpretable visualization analysis of our
method (better viewed in color).

based on the objects "human" and "chair". It shows
that our model can mine the implicit information
based on visual and semantic information.

4.7.3 Interpretable Visualization Analysis

To investigate the effectiveness of the multimodal
injector, we conduct an interpretable visualization
analysis. The results are shown in Figure 5. The
word with a blue underline denotes that the multi-
modal injector is assigned the greater probability in
the node of visual event graph. Green corresponds
to greater probability in the node of semantic event
graph. The dotted boxes below represent the spe-
cific content of nodes. From the results, we can
observe that nodes in visual and semantic event

Method Gram. Logic. Rele.

MET 3.49 3.37 2.94
MGCL 3.36 3.15 2.66
MG+Trans 3.22 2.78 2.71

Table 6: Human evaluation.

graphs are able to deduce implicit information.

4.7.4 Human Evaluation

To evaluate our method more comprehensively, we
conducted a human evaluation to compare further
the performance of our model and MGCL and
MG+trans. As follow Huang et al. (2021), we con-
sidered three metrics for the story ending generated
by models: Grammaticality (Gram.) (Wang and
Wan, 2019) evaluates correctness, natural, and flu-
ency of story endings; Logicality (Logic.) (Wang
and Wan, 2019) evaluates reasonability and coher-
ence of story endings; Relevance (Rele.) (Yang
et al., 2019) measures how relevant between im-
ages and generated story endings. We randomly
sampled 100 samples from the test set and display
them to 3 recruited annotators. Thereby, each an-
notator worked on 300 items from 3 models. We
show 3 annotators all outputs from all 3 models at
once and shuffle the output-model correspondence
to ensure that annotators do not know which model
the output is predicted from. Following Yang et al.
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(2019), we set a 5-grade marking system, where
one is the worst grade, and five is the maximum.
The results show that the performance of our model
is significantly better than MGCL and MG+trans.
That is, our model can generate higher-quality story
endings.

5 Conclusion

In this work, we propose a multimodal event trans-
former, a framework for image-guided story end-
ing generation. Our method includes event graph
construction, event-based reasoning, cross-model
fusion, multimodal injector and story ending gen-
eration. Different from previous work, our method
not only focuses on cross-modal information fu-
sion but also on reasoning and mining implicit in-
formation from single-modality data. In addition,
we propose an incoherence detection to enhance
the understanding context of a story plot and ro-
bustness of graph modeling for our model. In the
experiments, results show that our method delivers
state-of-the-art performance.

Limitations

Although our proposed method can effectively
reason and mine implicit information from story
plots and ending image, it suffers from weaknesses
in integrating cross-modal information. Specifi-
cally, our method connects visual and semantic
event graphs by connecting whole image nodes
and whole sentence nodes. It lacks fine-grained
information to pass between semantic events to vi-
sual objects. In further work, we will study how to
pass fine-grained information between visual and
semantic event graphs.
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Abstract

Text-guided image inpainting (TGII) aims to
restore missing regions based on a given text
in a damaged image. Existing methods are
based on a strong vision encoder and a cross-
modal fusion model to integrate cross-modal
features. However, these methods allocate most
of the computation to visual encoding, while
light computation on modeling modality inter-
actions. Moreover, they take cross-modal fu-
sion for depth features, which ignores a fine-
grained alignment between text and image.
Recently, vision-language pre-trained models
(VLPM), encapsulating rich cross-modal align-
ment knowledge, have advanced in most multi-
modal tasks. In this work, we propose a novel
model for TGII by improving cross-modal
alignment (CMA). CMA model consists of a
VLPM as a vision-language encoder, an image
generator and global-local discriminators. To
explore cross-modal alignment knowledge for
image restoration, we introduce cross-modal
alignment distillation and in-sample distribu-
tion distillation. In addition, we employ ad-
versarial training to enhance the model to fill
the missing region in complicated structures
effectively. Experiments are conducted on two
popular vision-language datasets. Results show
that our model achieves state-of-the-art perfor-
mance compared with other strong competitors.

1 Introduction

Text-guided image inpainting (TGII), involving
computer vision (CV) and natural language pro-
cessing (NLP), aims to restore visual content for a
missing area in a damaged image based on a given
text (Zhang et al., 2020a). With the development
of CV and NLP, it plays an essential role in many
real-world applications, such as image editing (Zhu
et al., 2020), damaged image restoration (Liu et al.,
2019), and image rendering (Kirillov et al., 2020).
Therefore, it has become one of the most crucial
areas in CV and NLP.

∗Corresponding author.
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Figure 1: Different categories of vision-and-language
models. left: most of the computation on visual en-
coding; right: most of the computation on modeling
modality interactions.

Existing methods (Zhang et al., 2020b; Lin
et al., 2020; Wu et al., 2021) adopt an encoder-
decoder framework as their backbone with a vision-
language fusion module to introduce textual infor-
mation. These methods use separate encoders for
images and texts, heavier on the former. Then, the
vision-language fusion module is used to integrate
the features from the two modalities through a sim-
ple similarity calculation of features, or shallow
attention layers (Vaswani et al., 2017), as shown
on the left of Figure 1. Most of the computation
of these methods on visual encoding, while tex-
tual features only serve as a complement to deep
visual features, which ignores the importance of
deep interaction of multimodal information. More-
over, these methods share a common drawback:
they do not perform well for natural image datasets
with a wide variety of objects (e.g., MSCOCO (Lin
et al., 2014)). The reason is that these methods
lack fine-grained alignment knowledge of texts and
images to guide the fusion of cross-modal infor-
mation in multimodal interactions. Besides, their
fusion modules lack powerful cross-modal reason-
ing capabilities.

Recently, providing the success of pre-trained
language/vision Transformer (Devlin et al., 2019;
Dosovitskiy et al., 2021; Zhou et al., 2022a),
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some works (e.g., ViLT (Kim et al., 2021) and
SimVLM (Wang et al., 2021)) pre-train a vision-
and-language Transformer on a large-scale image-
text dataset. These Vision-and-Language Pre-
trained Models (VLPM) achieve exciting perfor-
mance on many multimodal downstream tasks. The
reason is that VLPM encapsulates rich image and
text alignment knowledge and has a strong cross-
modal reasoning capability (Chen et al., 2020; Kim
et al., 2021). To enhance the cross-modal interac-
tion between images and texts, Kim et al. (2021)
propose ViLT, which focuses most of the compu-
tation on modeling the multimodal interaction, as
shown on the right side of Figure 1.

Motivated by Kim et al. (2021), we propose a
novel model enhanced by cross-modal alignment
(CMA) for text-guided image inpainting, compris-
ing a vision-and-language encoder, an image gen-
erator and global-local discriminators. Different
from previous works (Zhang et al., 2020b; Lin
et al., 2020; Wu et al., 2021), we employ a vision-
and-language encoder based on VLPM to encode
images and texts instead of separate vision and
language encoders. The vision-and-language en-
coder can encode images and texts in a cross-modal
interaction manner to implement visual priors re-
construction. Then, the visual features integrating
textual information (i.e., reconstructed visual pri-
ors) obtained by VLPM are passed to an image
generator to generate a restored image. To improve
cross-modal alignment for image inpainting, we in-
troduce cross-modal alignment distillation to guide
a fine-grained fusion of cross-modal knowledge.
Moreover, to further strengthen the visual priors
reconstruction, we utilize in-sample distillation to
enhance the model’s cross-modal reasoning capa-
bility for the content of missing regions. Besides,
we employ adversarial learning to improve the qual-
ity of generated images through global-local dis-
criminators.

Experiments are conducted on two popular
image-text datasets with a wide variety of objects
(i.e., MSCOCO (Lin et al., 2014) and Flicker30K
(Plummer et al., 2017)). Experimental results
demonstrate that our method achieves state-of-the-
art performance compared to other strong com-
petitors. In addition, we analyze the effectiveness
of each module of our method and the impact of
cross-modal alignment. Moreover, we also conduct
extensive analysis to verify the effectiveness of our
method.

2 Method

In this section, we will introduce our CMA model
as shown in Figure 2. CMA model consists of a
vision-and-language encoder, an image generator
and global-local discriminators. In addition, details
about training and inference are elaborated.

2.1 Vision-and-Language Encoding
In previous works (Zhang et al., 2020b; Lin et al.,
2020; Wu et al., 2021), images and texts are en-
coded by separate encoders. Specifically, a CNN-
based image encoder is used to extract visual fea-
tures for images, while a RNN-based text encoder
is used to encode text to obtain textual features.
Next, the image and text features are integrated by
a multimodal fusion module to obtain multimodal
representations (i.e., reconstructed visual priors).
In this work, we employ a novel Transformer-based
cross-modal encoder for image and text encoding,
a vision-and-language encoder instead of two sepa-
rate encoders. For language encoding, we employ a
word embedding matrix to embed text T ∈ RL×|V |
into T̄ ∈ RL×e, where L, |V |, and e denote the
length of text, size of vocabulary and size of embed-
ding, respectively. For visual encoding, an image
I ∈ RC×H×W is sliced into patches and flattened
to V ∈ RN×(P 2×C), where P is the size of patch
andN equal to (H×W )/P 2. Following Kim et al.
(2021), V is embedded into V̄ ∈ RN×e:

V̄ = Linear-Projection(V ) (1)

where the details of linear projection can be found
in (Kim et al., 2021). Next, images and texts are
encoded in a cross-modal interaction manner:

[T̂ ; V̂ ] = Trans-Enc([T̄ ; V̄ ]) (2)

where [; ] denote a concatenation operation, and
outputs of the vision-and-language encoder can
be represented as T̂ ∈ RL×e for textual represen-
tations and V̂ ∈ RN×e for reconstructed visual
priors. Compared to CNN constrained by its in-
herent properties (e.g., spatial-invariant kernels),
which are not conducive to understanding global
features (Wan et al., 2021), Transformer-based en-
coders have a natural advantage in encoding global
features across modalities.

2.2 Image Generation
The process of image generation includes two
stages. The first stage is to downsample the vi-
sual priors to extract deep visual representations.
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Figure 2: Overview of our model. Blue rounded rectangles denote trainable modules. Green right rectangles indicate
training objectives or operations.

Next, performing upsampling for deep visual rep-
resentations to generate a restored image. Differ-
ent from the previous works (Zhang et al., 2020b;
Lin et al., 2020; Wu et al., 2021), we do not in-
tegrate a fusion module to introduce textual fea-
tures in the image generation process because the
texts are introduced into the vision-and-language
encoders. Although transformers demonstrate their
effectiveness in long-term relations and the advan-
tage of understanding global features, their com-
putational complexity is quadratic with the input
length, which hinders image generation (Wan et al.,
2021). Therefore, our image generator consists of
two CNN-based components, an encoder for down-
sampling and a decoder for upsampling. Similar to
(Zhang et al., 2020a), we employ a 5-layer ResNet
(He et al., 2016) as the downsampling encoder, and
the visual priors are fed into it to obtain deep visual
representations:

v = Down-Sampling(V̂ ) (3)

In addition, we pass v into the upsampling decoder
to perform image reconstruction to generate a re-
stored image, and the upsampling decoder consists
of a 5-layer residual generator network.

Ir = Up-Sampling(v, V̂ ) (4)

The visual priors obtained by the vision-and-
language encoder are input to the upsampling de-
coder through a skip connection to provide detailed
information that forgets in the downsampling stage.

2.3 Training
For model training, we construct five training objec-
tives, including cross-modal alignment distillation,
in-sample distillation, word patch alignment, recon-
struction loss and global-local adversarial loss.

Cross-Modal Alignment Distillation. To guide
image inpainting through cross-modal alignment
knowledge, we pass the original image and text to
the vision-and-language encoder to obtain a text
representation T̂o and a visual priors V̂o. Then,
we obtain the correlation map Mo between each
token of text and each image patch by calculating
the similarity between them. The correlation map
corresponding to the corrupted image and text is
denoted as Mr. Next, we compute the pair-wise
similarity distillation loss between the two correla-
tion maps:

ℓCMAD =
1

N × L
L∑

i=1

N∑

j=1

(arij − aoij)2 (5)

arij =
tr⊤i vrj

∥tri ∥2∥vrj∥2
, arij ∈Mr (6)

aoij =
to⊤i voj

∥toi ∥2∥voj∥2
, aoij ∈Mo (7)

where tri ∈ T̂ , vrj ∈ V̂ , toi ∈ T̂o and voj ∈ V̂o,
respectively.

In-Sample Distillation. Besides using cross-
modal alignment knowledge to guide image inpaint-
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ing, we propose in-sample distillation. The purpose
of this objective is to guide the damaged image to
infer visual priors closer to that from the original
image based on the text and known regions, i.e.,

ℓISD =
1

N

N∑

i=1

KL (voi ∥vri ) . (8)

where KL denotes Kullback–Leibler divergence.

Word Patch Alignment. To maintain that the
cross-modal alignment knowledge of the model is
not degraded, we use the word patch alignment
objective to preserve the cross-modal alignment
knowledge integrated into the model.

ℓWPA = min
T∈Π(a,b)

N∑

i=1

L∑

j=1

Tij · c
(
voi , t

o
j

)
(9)

c(voi , t
o
j) = 1−

vo⊤i toj
∥voi ∥2∥toj∥2

(10)

Π(a,b) = {T ∈ RN×L | T1m = a,

T⊤1n = b} (11)

where 1n denotes an n-dimensional all-one vector;
T is a transport plan. The details can be found in
(Kim et al., 2021).

Reconstruction Loss. We adopt the ℓ1-norm er-
ror as the loss function between the restored image
and its corresponding ground-truth image Igt:

ℓ1 = ||Ir − Igt||1, (12)

Global Adversarial Loss. In image generation,
the adversarial loss (Goodfellow et al., 2014) ef-
fectively improves the quality of the generated im-
age. However, adversarial training is unstable since
keeping the balance between the generator and dis-
criminator is difficult. To tackle this problem, Ar-
jovsky et al. (2017) propose the Wasserstein gen-
erative adversarial nets (WGAN) that can improve
the stability of adversarial learning. We employ a
WGAN hinge loss as the adversarial loss, and it
can be formulated as follows:

ℓG−adv,G =Ex̂∼Pdata(Ir)[−D(x̂)] (13)

ℓG−adv,D =Ex∼Pdata(Igt)[ReLU(1−D(x))]

+Ex̂∼Pdata(Ir)[ReLU(1 +D(x̂))]

(14)

where D(·) denotes a global discriminator; ReLU
is the rectified linear unit function; Ladv,G and

Ladv,D are loss function for inpainting model and
discriminator, respectively.

The discriminator D(·) consists of 5-layer
ResNet, followed by a fully connected layer. Each
convolutional layer in ResNet applies spectral nor-
malization to satisfy the Lipschitz constraints of
Wasserstein GANs.

Local Adversarial Loss. For the local discrim-
inator, we use the same settings as the global dis-
criminator, and the loss is defined as:

ℓL−adv,G =Ex̂l∼Pdata(Ir)[−Dl(x̂l)] (15)

ℓL−adv,D =Exl∼Pdata(Igt)[ReLU(1−Dl(xl))]

+Ex̂l∼Pdata(Ir)[ReLU(1 +Dl(x̂l))]

(16)

where xl denotes the restored image or ground truth
corresponding to the missing region; Dl(·) denotes
a local discriminator.

Considering the loss functions above, the objec-
tive function of our model in the generation stage
can be defined as:

ℓG =λℓCMAD + λℓISD + αℓWPA + βℓ1

+γℓG−adv,G + γℓL−adv,G (17)

where the λ, α, β and γ are the hyper-parameters
used to balance the objective function.

In addition, the objective function of our model
in the discriminative stage can be defined as:

ℓD = γℓG−adv,D + γℓL−adv,D (18)

2.4 Inference
During inference, we first pass image I and text
T into the cross-modal encoder (i.e., Equ.1 and
Equ.2) to obtain the visual representation V̂ . Next,
we deliver the visual representation V̂ into the gen-
erator (i.e., Equ.3 and Equ.4) to generate a restored
image Ir.

3 Experiments

3.1 Dataset and Evaluation Metrics
We conduct the experiment on two datasets:
MSCOCO (Lin et al., 2014) and Flicker30K
(Plummer et al., 2017). For the MSCOCO and
Flicker30K datasets, we split them following their
original training, validation and test set. Following
Zhang et al. (2020a), we also set the mask for an
image in two types: center mask and object mask.
A center mask refers to a square mask taking 50%
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Method ℓ1 (%) ↓ FID ↓ KID ↓ TV loss (%) ↓ PSNR ↑ SSIM (%) ↑
CSA (Liu et al., 2019) 5.14 50.88 2.85 4.32 19.87 82.53
PICNet (Zheng et al., 2019) 5.63 53.57 3.19 4.55 19.58 81.87
CTSDG (Guo et al., 2021) 5.03 48.95 2.56 4.31 19.98 82.69
MMFL (Lin et al., 2020) 4.36 44.33 2.22 4.28 20.73 82.92
TGII (Zhang et al., 2020b) 4.22 44.02 1.87 4.39 20.87 83.07
TDANet (Zhang et al., 2020a) 4.13 42.38 1.67 4.59 20.91 83.34
ALMR (Wu et al., 2021) 4.17 43.43 1.79 4.27 20.81 83.15
CMA (ours) 3.78 39.52 1.34 4.17 22.07 85.18

Table 1: Results on MSCOCO with the center mask.

Method ℓ1 (%) ↓ FID ↓ KID ↓ TV loss (%) ↓ PSNR ↑ SSIM (%) ↑
CSA (Liu et al., 2019) 8.79 53.49 3.65 4.85 18.99 75.50
PICNet (Zheng et al., 2019) 9.15 56.80 3.72 5.09 18.78 74.98
CTSDG (Guo et al., 2021) 8.69 51.64 3.36 4.82 19.13 75.84
MMFL (Lin et al., 2020) 7.59 47.15 2.91 4.53 20.07 76.16
TGII (Zhang et al., 2020b) 7.53 46.73 2.82 4.59 20.27 76.46
TDANet (Zhang et al., 2020a) 7.48 45.30 2.45 4.70 20.55 76.93
ALMR (Wu et al., 2021) 7.54 46.01 2.61 4.46 20.35 76.50
CMA (ours) 7.00 42.23 2.01 4.30 21.75 78.67

Table 2: Results on MSCOCO with the object mask.

Method ℓ1 (%) ↓ FID ↓ KID ↓ TV loss (%) ↓ PSNR ↑ SSIM (%) ↑
CSA (Liu et al., 2019) 4.99 50.76 2.78 4.14 19.93 83.97
PICNet (Zheng et al., 2019) 5.29 52.25 3.14 4.39 19.70 82.21
CTSDG (Guo et al., 2021) 4.78 48.66 2.54 4.10 20.39 84.21
MMFL (Lin et al., 2020) 4.13 43.92 2.12 4.26 20.78 83.96
TGII (Zhang et al., 2020b) 4.11 43.34 1.73 4.29 21.48 84.49
TDANet (Zhang et al., 2020a) 3.92 41.46 1.54 4.16 21.36 84.17
ALMR (Wu et al., 2021) 4.05 42.43 1.60 4.12 21.22 83.42
CMA (ours) 3.61 38.30 1.29 4.00 22.55 86.33

Table 3: Results on Flickr30K with the center mask.

area in the center of an image. An object mask indi-
cates masking an image based on the object boxes
provided by every image. To evaluate the perfor-
mance of our model and other methods on these
datasets, we utilize the ℓ1 loss, Frechet Inception
Distance (FID) (Heusel et al., 2017), Kernel In-
ception Distance (KID) (Heusel et al., 2017), total
variation (TV) (Rudin et al., 1992), peak signal-to-
noise ratio (PSNR) (Fardo et al., 2016) and struc-
tural similarity index (SSIM) (Wang et al., 2004)
as metrics to report the results. ℓ1 measure the
ℓ1 distance between restored and original images.
FID and KID measure the quality of restored im-
ages based on human perception. PSNR and SSIM
measure structural similarity between restored and
original images and the ℓ2 distance.

3.2 Experimental Settings

For training images in MSCOCO and Flicker30K,
we resize them to make their minimal height/width
256 and crop them based on size 256 × 256 at the

center. During training, we set the λ as 2, α as 1, β
as 1 and γ as 0.1 in the objective function, and the
model is trained by an Adam optimizer (Kingma
and Ba, 2015) with the learning rate of 1 × 10−4.
In the vision-and-language encoder, the patch size,
intermediate size and hidden size are 32, 3072 and
768. For a masked patch, we utilize a special token
[Vmask] as input. We employ ViLT (Kim et al.,
2021) to initialize our vision-and-language encoder.
The weight decay and gradient clipping are set
to 0.01 and 1.0. The maximum training epoch
and batch size are 200 and 128. Warmup steps
and maximum sequence length are set to 2000 and
40. Our experiments are conducted on 2 × V100
GPUs. We choose models with the best result on
the validation set and report the results on the test
set based on the models.

3.3 Main Results

The experimental results of our method and previ-
ous works on MSCOCO and Flicker30K are shown
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Method ℓ1 (%) ↓ FID ↓ KID ↓ TV loss (%) ↓ PSNR ↑ SSIM (%) ↑
CSA (Liu et al., 2019) 8.60 53.18 3.57 4.75 19.21 75.82
PICNet (Zheng et al., 2019) 9.01 56.59 3.64 4.99 19.16 75.95
CTSDG (Guo et al., 2021) 8.45 51.35 3.30 4.69 19.22 76.73
MMFL (Lin et al., 2020) 7.58 46.53 2.86 4.53 20.34 76.42
TGII (Zhang et al., 2020b) 7.39 46.52 2.73 4.56 20.82 76.82
TDANet (Zhang et al., 2020a) 7.37 44.72 2.42 4.55 21.04 77.43
ALMR (Wu et al., 2021) 7.40 45.74 2.52 4.36 20.56 76.57
CMA (ours) 6.86 41.28 1.91 4.25 22.07 79.93

Table 4: Results on Flickr30K with the object mask.

Method ℓ1 (%) ↓ FID ↓ KID ↓ TV loss (%) ↓ PSNR ↑ SSIM (%) ↑
CSA (Liu et al., 2019) 4.04 56.88 2.74 3.70 20.03 81.12
PICNet (Zheng et al., 2019) 3.78 47.33 2.46 3.74 20.16 82.04
CTSDG (Guo et al., 2021) 3.63 38.05 1.98 3.71 20.73 82.64
MMFL (Lin et al., 2020) 3.42 29.79 1.39 3.59 20.68 82.36
TGII (Zhang et al., 2020b) 3.54 32.57 1.51 3.63 20.55 81.89
TDANet (Zhang et al., 2020a) 3.57 30.82 1.49 3.61 20.79 82.68
ALMR (Wu et al., 2021) 3.32 15.78 0.52 3.52 20.66 80.61
CMA (ours) 3.07 14.21 0.41 3.51 20.84 82.68

Table 5: Results on CUB with the center mask.

Method ℓ1 (%) ↓ FID ↓ KID ↓ TV loss (%) ↓ PSNR ↑ SSIM (%) ↑
CSA (Liu et al., 2019) 6.76 59.91 3.00 4.21 19.03 70.97
PICNet (Zheng et al., 2019) 6.42 50.16 2.82 4.32 18.96 70.27
CTSDG (Guo et al., 2021) 5.83 40.19 2.23 4.13 19.38 72.16
MMFL (Lin et al., 2020) 4.63 32.00 2.13 3.79 20.32 78.24
TGII (Zhang et al., 2020b) 4.72 34.39 2.07 3.93 20.10 78.65
TDANet (Zhang et al., 2020a) 4.71 33.10 2.03 3.72 20.40 77.77
ALMR (Wu et al., 2021) 4.51 26.33 1.66 3.71 20.25 75.69
CMA (ours) 4.24 18.96 1.49 3.64 20.48 78.75

Table 6: Results on CUB with the object mask.

in Table 1, Table 2, Table 3 and Table 4. From the
tables, we can see that our model achieves state-of-
the-art results compared with other strong competi-
tors. In addition, we can make two observations:
Firstly, using text to guide image inpainting can
significantly improve the performance. For exam-
ple, the text-guided image inpainting methods (i.e.,
MMFL, TGII, TDANet, ALMR and CMA) out-
perform standard image inpainting methods (i.e.,
CSA, PICNet and CTSDG). Next, for the gap be-
tween results on center masks and object masks,
it shows that recovering completely removed ob-
jects is more difficult. Besides, we show results on
the CUB (Wah et al., 2011) dataset without a wide
variety of objects in Tabel 5 and Tabel 6. Results
show our method outperforms other methods.

3.4 Ablation Study

We conduct an ablation study to investigate the
effectiveness of each component of our approach
and the results are reported in Table 7. We first in-

Method FID ↓ KID ↓ PSNR ↑ SSIM (%) ↑
CMA 39.52 1.34 22.07 85.18

w/o G-Adv. 43.72 2.17 21.39 84.12
w/o L-Adv. 42.59 1.84 21.74 84.75
w/o Adv. 50.94 2.91 19.68 82.49
w/o Recon. 47.57 2.48 20.49 83.56
w/o CMAD 53.39 3.12 19.55 81.94
w/o ISD 52.84 3.06 19.67 82.23
w/o WPA 52.33 3.10 19.63 82.58

Table 7: Ablation study. ‘G-Adv.’, ‘L-Adv.’ and ‘Adv.’
denote global, local and both adversarial losses, respec-
tively. ‘Recon.’, ‘CMAD’, ‘ISD’ and ‘WPA’ indicate
reconstruction loss, cross-modal alignment distillation,
in-sample distillation objectives and word patch align-
ment, respectively.

vestigate the impact of the adversarial learning by
removing global adversarial loss, local adversarial
loss and both adversarial losses and find that the
performance drops. The reason is that adversarial
objectives focus on high-level features, which can
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Figure 3: Performance of our model with different trade-
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Figure 4: The adversarial loss and cross-modal align-
ment distillation loss on the training set w.r.t different
epochs in the training phase.

effectively fill the missing region on complicated
structures. Next, we test our method without recon-
struction loss, which also decreases scores on all
metrics. It demonstrates that image reconstruction
plays an essential role in model training. Finally,
we compare our method with the baseline without
cross-modal alignment distillation and in-sample
distillation, and the performance drops significantly.
It indicates that the CMAD and ISD objectives can
enhance the cross-modal alignment for text-guided
image inpainting.

3.5 Analysis

3.5.1 Impact of Cross-Modal Alignment
To assess the impact of cross-modal alignment for
our method, we set different trade-off parameters
λ. Specifically, during model training, we set a
different λ for the loss function in Eq.17. The
performance of our method in different λ is re-
ported in Figure 3. It is observed that with the λ
increased, FID first drops and then rises, indicating
that our method’s performance first rises and then
drops. The results demonstrate that the cross-modal
alignment objective is crucial for our method, but

Method Naturalness Semantic Consistency

CMA 1.44 1.46
TDANet 2.39 2.52
ALMR 2.77 2.64
CSA 3.40 3.38

Table 8: Numerical ranking score of user study. The
lower the score, the better the performance.
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Figure 5: Ranking score distribution of the user study.
“S” means semantic consistency score, “N” means natu-
ralness.

overemphasizing the objective may hinder model
learning.

3.5.2 Deep Dive into Cross-Modal Alignment
We take a deep dive into the impact of cross-modal
alignment. In our method, adversarial learning in-
volves a global discriminator to distinguish whether
the generated image is original or generated, and
the cross-modal alignment objective is to guide vi-
sual priors reconstruction. Their loss values, i.e.,
ℓG−adv,D and ℓCMAD, are plotted in Figure 4. We
can see that the loss of cross-modal alignment ob-
jective quickly drops and then slowly drops, in-
dicating that the model gets good performance on
visual priors reconstruction. Meanwhile, we can ob-
serve that the adversarial loss of the discriminator
quickly drops and then slowly goes up, demonstrat-
ing that we can see that the classification loss of
the discriminator gets good performance and then
is fooled later by the image generated from the
image generator. Therefore, it shows that the cross-
modal alignment objective supports the adversarial
learning very well.

3.5.3 User Study
Following Zhang et al. (2020a), we take a user
study to quantify the qualitative comparison from
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Figure 6: Qualitative results randomly sampled from MSCOCO test set.

the human perspective. We randomly collected 100
images in center masks from the MSCOCO test
dataset. Each sample includes four generated im-
ages from CMA, PICNet, ALMR and CSA, respec-
tively. These four images are randomly shuffled
for five volunteers who rank images according to
naturalness and the semantic consistency with the
text description. Next, we computed the average
ranking score as shown in Table 8 and show their
distribution in Figure 5. From the results, we can
observe that our model outperforms other competi-
tors in naturalness and semantic consistency. It
demonstrates the effectiveness of our method from
a qualitative perspective.

3.6 Qualitative Results

As demonstrated in Figure 6, we give qualitative
comparison examples of our method and other
methods. We can find that our model can generate
more semantically plausible objects in the missing
region. Firstly, comparing PICNet with TDANet
and our method, extracting the semantic informa-
tion from the text can improve the repair effect of

the model in the missing area of the image. Sec-
ondly, we can observe that TDANet can generate
preliminary results, such as the outlines and part
content of "cat", "truck" and "people" in examples,
but many details of the object are very unnatural.
In contrast, our method can further generate the
details of the object based on generating the out-
line and content of the object. It demonstrates that
cross-modal alignment can effectively supplement
missing object information.

4 Related Work

4.1 Image Inpainting

Image inpainting (Bertalmío et al., 2000) aims to
restore a damaged image, whose categories of ap-
proaches mainly are patch-based and deep learning-
based. The patch-based methods (Barnes et al.,
2009; Huang et al., 2014) fill the holes through
searching and pasting patches based on image
known regions. Huang et al. (2014) propose a
method using the mid-level structural cues to au-
tomatically guide the image inpainting. However,
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these methods are not effective to fill in the missing
region on complicated structures, due to the focus
on low-level features. To address the limitation of
existing patch-based methods, there has been grow-
ing interest in deep learning-based methods (Pathak
et al., 2016; Iizuka et al., 2017; Ren et al., 2019).
The Context Encoder (CE) is proposed by (Pathak
et al., 2016), which uses the encoder-decoder archi-
tecture and the Generative Adversarial Networks
(GAN) (Goodfellow et al., 2014) to learn image
features. Although the CE improves the inpainting
by the image features learning, it is not effective
to tackle the visual artifacts and exhibits blurri-
ness in the image recovered regions. For solving
the aforementioned problems, Iizuka et al. (2017)
introduce the local and global discriminator for
the image inpainting of arbitrary missing regions,
which improves the local and global consistency
of generated image. The StructureFlow (Ren et al.,
2019) consisted of a structure reconstructor and a
texture generator, which can focus on recovering
global structures and synthesizing high-frequency
details. Although the existing image inpainting
methods can fill in the holes in the image, generat-
ing specific content in the missing region remains
challenging, without any known information.

4.2 Text-Guided Image Inpainting
To address this problem, many text-guided image
inpainting works are proposed (Zhang et al., 2020b;
Lin et al., 2020). In these works, the specific con-
tent in the missing area can be restored based on the
given descriptive text. Existing text-guided image
inpainting methods include two processes: seman-
tic information extraction and multimodal fusion.
The semantic information extraction aims to obtain
semantic information which does not match the
image, such as the dual multimodal attention mech-
anism (Zhang et al., 2020a). However, these meth-
ods are hard to work well in the image set with a
variety of different objects. The reason is that these
methods lack fine-grained alignment knowledge of
texts and images to guide the fusion of cross-modal
information in multimodal interactions. Besides,
their fusion modules lack powerful cross-modal
reasoning capabilities.

4.3 Vision-Language Pre-training (VLP)
Motivated by the success of the language/vision
pre-trained model (Devlin et al., 2019; Dosovitskiy
et al., 2021; Zhou et al., 2022b), there is a surging
interest in developing a pre-trained model for mul-

tiple modalities (e.g., vision and language) (Chen
et al., 2020; Radford et al., 2021; Kim et al., 2021;
Zhou, 2022). For example, a pioneering work CLIP
(Radford et al., 2021) employs contrastive learn-
ing to predict whether matching between image
and text and shows its powerful capability in many
downstream tasks. UNITER (Chen et al., 2020) and
UNIMO (Chen et al., 2020) employ an object detec-
tor (e.g., Faster R-CNN (Ren et al., 2017)) to cap-
ture vision features, and a multi-layer transformer
(Vaswani et al., 2017) is used to joint learn vision
features and text features. Kim et al. (2021) discuss
different taxonomy of vision-and-language mod-
els and propose ViLT, a pre-trained model more
focused on modeling modality interactions. In ad-
dition, ViLT totally discards convolutional visual
features and adopts vision transformers.

5 Conclusion

In this work, we explore a novel CMA model for
text-guided image inpainting. In the CMA model,
we integrate a vision encoder and a text encoder
into a vision-and-language encoder, which is differ-
ent from previous works. The vision-and-language
encoder allocates more computation on modeling
modality interactions instead of visual encoding. In
addition, we introduce two objectives to improve
cross-modal alignment, dubbed cross-modal align-
ment and in-sample distillation. The cross-modal
alignment objective guides the model to fuse cross-
modal features. Experimental results demonstrate
that the proposed model delivers new state-of-the-
art performance, followed by further analyses to
provide comprehensive insights.

Limitations

Compared with previous text-guided image inpaint-
ing methods (Zhang et al., 2020b; Lin et al., 2020;
Wu et al., 2021), our method performs well for
natural image datasets with a wide variety of ob-
jects. However, the recovery of our method for
completely missing objects in images is not perfect.
The reason is that the size of our model limits its
capabilities. The large image generation models
(e.g., DALL·E (Ramesh et al., 2021)) show their
powerful capability to generate a plausible image.
Due to the limitation of computational resources,
we could not train a large model of similar size to
DALL·E, which hinders verifying the effectiveness
of our method on a large model.
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Abstract

A promising approach for knowledge-based
Word Sense Disambiguation (WSD) is to select
the sense whose contextualized embeddings
computed for its definition sentence are closest
to those computed for a target word in a given
sentence. This approach relies on the similarity
of the sense and context embeddings computed
by a pre-trained language model. We propose a
semantic specialization for WSD where contex-
tualized embeddings are adapted to the WSD
task using solely lexical knowledge. The key
idea is, for a given sense, to bring semanti-
cally related senses and contexts closer and
send different/unrelated senses farther away.
We realize this idea as the joint optimization
of the Attract-Repel objective for sense pairs
and the self-training objective for context-sense
pairs while controlling deviations from the orig-
inal embeddings. The proposed method outper-
formed previous studies that adapt contextual-
ized embeddings. It achieved state-of-the-art
performance on knowledge-based WSD when
combined with the reranking heuristic that uses
the sense inventory. We found that the similar-
ity characteristics of specialized embeddings
conform to the key idea. We also found that the
(dis)similarity of embeddings between the re-
lated/different/unrelated senses correlates well
with the performance of WSD.

1 Introduction

Word Sense Disambiguation (WSD) is the task of
choosing the appropriate sense of a word from a
given sense inventory using contextual informa-
tion. WSD has proven its usefulness for Informa-
tion Retrieval (Zhong and Ng, 2012) and Machine
Translation (Campolungo et al., 2022). A series
of extensive studies has led supervised WSD task
performance to surpass the milestone of 80% accu-
racy (Bevilacqua and Navigli, 2020), which is the
estimated human performance (Navigli, 2009).

In contrast, the goal of this study is knowledge-
based WSD: a variant of WSD that does not rely

on supervision data but only on lexical knowledge
(e.g., word ontology). This task setting is practi-
cally appealing because it does not use a corpus
with sense annotations (Bevilacqua et al., 2021),
which is costly and labor-intensive to prepare.

A promising approach is based on similarity:
to select the sense that is the nearest to a target
word in the embedding space (Wang and Wang,
2020). Specifically, a pre-trained language model,
typically BERT (Devlin et al., 2019), is used to
compute sense embeddings for definition sentences.
Similarly, a target word is encoded into a context
embedding for a given sentence. Then, the model
predicts the sense of the target word by finding the
most similar sense embedding to the context.

The inherent challenge of the similarity-based
approach is how we associate two different repre-
sentations of word meanings, either by definition
sentences or by words in context. Although the
BERT embeddings capture the coarse-grained word
meanings (Reif et al., 2019; Loureiro et al., 2021),
there should be room for improvement. Notably,
Wang and Wang (2020) proposed SREF, sense em-
bedding adaptation by bringing semantically re-
lated senses closer. Extending their work, Wang
et al. (2021b) proposed COE, context embedding
enhancement heuristics during inference using the
document-level global contexts of the given sen-
tence, and reported the best performance. Despite
being effective, COE cannot be applied to stand-
alone texts, e.g., short messages on social media or
search queries, limiting its applicability.

Our study aims to improve both accuracy and
applicability to stand-alone texts. Specifically, we
propose an adaptation method of the sense and con-
text embeddings for the WSD task solely using
lexical knowledge. Then, what are good embed-
dings for WSD? Our key idea is to 1) bring seman-
tically related sense and context embeddings that
convey the same meaning closer, and 2) send un-
related and/or different senses that share the same
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surface form farther away (Fig. 1-d). We formulate
the idea as the Attract-Repel objective and self-
training objective. The main novelty is the joint
optimization to utilize their complementary nature:
the former should improve the distinguishability
between senses whereas the latter offers pseudo
signals of context-sense associations, which has
not been explored in previous methods.

The Attract-Repel objective, inspired by Vulic
and Mrksic (2018), injects semantic relation knowl-
edge into the similarity of sense pairs. Specifically,
we make semantically related senses more similar
while making different and unrelated senses more
dissimilar (Fig. 1-a). While SREF performs Attract
only, our method utilizes both Attract and Repel.

The self-training objective, inspired by the idea
of retraining on the classifier’s own predictions in-
stead of annotated senses (Navigli, 2009), updates
the similarity of context-sense pairs in a pseudo la-
beling manner (§ 6.1). Specifically, for each train-
ing step and given context, we bring the nearest
neighbor sense among candidates closer (Fig. 1-
b). We also impose distance constraints during
adaptation to control the deviation from BERT em-
beddings (Fig. 1-c) because excessive deviation
may cause an inaccurate nearest neighbor sense
selection, which would cause a performance drop.

We call the overall proposed method SS-WSD, Se-
mantic Specialization for WSD, following Vulic
and Mrksic (2018). We evaluated SS-WSD using
the standard evaluation protocol (Raganato et al.,
2017) and confirmed that it outperforms the previ-
ous embeddings adaptation method. Furthermore,
it achieved state-of-the-art (SoTA) performance
when combined with the reranking heuristic that
uses a sense inventory (Wang and Wang, 2021),
and thus is applicable to stand-alone texts.

The contributions of our study are as follows:

• We proposed SS-WSD, an embedding adap-
tation method that achieves new SoTA in
knowledge-based WSD, regardless of the
availability of document-level global contexts.

• We found that the performance gain originates
from the joint optimization of Attract-Repel
and self-training objectives and the prevention
of deviation from the original embeddings.

• Empirically, we found that the similarity of re-
lated/different/unrelated senses relative to the
similarity of ground-truth context-sense pairs
correlates well with the WSD performance.

Figure 1: Schema of the proposed method. The
BERT embeddings representing senses and contexts
are adapted by transformation (top). Transformation
functions are optimized using Attract-Repel and self-
training objectives under distance constraints so that the
adapted embeddings are effective for WSD (bottom).

2 Related Work

2.1 Knowledge-based WSD
Knowledge-based WSD is a variant of WSD that
does not use a sense annotation corpora such as
the SemCor (Miller et al., 1993) but uses lexical
resources instead, typically WordNet. The majority
vote based on sense frequencies, also known as the
WordNet first sense heuristic (Jurafsky and Martin,
2009), is a simple but strong baseline method of
this category. Sense definitions and usage examples
are also used to measure the similarity of the target
word in a sentence. The simplest method is based
on word overlap (Lesk, 1986).

One recent direction is the use of BERT as a con-
textualized encoder. BERT embeddings showed
empirical success on the supervised WSD task
when used as features. Some analyses reported that
BERT embeddings capture the coarse-grained word
meanings (Reif et al., 2019; Loureiro et al., 2021).
Wang and Wang (2020) proposed a similarity-
based method in the embedding space. It chooses
the sense which has the most similar embedding,
formed from the concatenation of its lemma, def-
inition, and usage examples, to the embedding of
a target word. They also proposed the Seman-
tic Relation Enhancement Framework (SREFemb),
which adapts sense embeddings by weighted av-
erages over semantically related senses, e.g., hy-
ponyms and derivations. SREFemb is the most high-
performing adaptation method so far. We report
that our proposed method achieves better perfor-
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mance.

2.2 Heuristics for Knowledge-based WSD

Another recent direction is the heuristics for choos-
ing the most similar sense, which is further divided
into those that use the sense inventory information
and those that exploit the document-level global
contexts of a given sentence. Wang and Wang
(2020) proposed the former, the Try-again Mech-
anism (TaM). It reranks candidates by adding the
similarity between the target word and the lexi-
cographer class (supersense) that a candidate sense
belongs to. Subsequent studies (Wang et al., 2021b;
Wang and Wang, 2021) refined TaM using Coarse
Sense Inventory (Lacerra et al., 2020). We examine
the effectiveness of the proposed method combined
with TaM because it can be applied to stand-alone
texts.

Wang et al. (2021b) proposed contextual infor-
mation enhancement (CIE), which enhances con-
text embeddings by exploiting the document-level
global contexts of a given sentence on evaluation.
This idea originally stems from the one-sense-per-
discourse hypothesis (Gale et al., 1992): that the
sense of a word is highly consistent within a docu-
ment.

2.3 Attract-Repel Framework

The Attract-Repel Framework is used to inject lex-
ical knowledge into embeddings by encouraging
similar instances to have closer embeddings while
encouraging dissimilar instances to be farther away.
Vulic and Mrksic (2018) and Mrkšić et al. (2017)
reported that updating static word embeddings us-
ing lexical knowledge improves the performance
of the word-level semantic relation classification
task. Our study proposes its application to sense
and context embeddings for the WSD task. We also
reformulate the original loss function with the con-
trastive loss, inspired by its success in Computer
Vision (Chen et al., 2020) and NLP (Gao et al.,
2021; Wang et al., 2021a; Giorgi et al., 2021).

2.4 Supervised WSD

Supervised methods rely on corpora of sense-
annotated contexts, such as SemCor, for training
models. However, the coverage of words and
senses is limited and biased towards more frequent
senses (Pasini, 2020). Recent studies have ad-
dressed these limitations by incorporating lexical
resources into the methods. Barba et al. (2021a)

and its subsequent study (Barba et al., 2021b) re-
framed WSD as a span extraction task by append-
ing definition sentences of candidate senses to the
target context. They reached the SoTA perfor-
mance among supervised methods.

Similarity-based approaches are also used with
supervised methods. Supervised k-nearest neigh-
bors (Sup-kNN) (Loureiro and Jorge, 2019) defines
sense embeddings as the averaged context embed-
dings of annotated senses. The Bi-Encoder model
(BEM) (Blevins and Zettlemoyer, 2020) jointly fine-
tunes two BERT encoders for definition sentences
and contexts, ensuring that context embeddings
will be closer to the correct sense embeddings. The
proposed method is similar in architectural design
to BEM, but differs in that we do not fine-tune the
BERT encoders. We will compare our results with
Sup-kNN and BEM to assess the effect of using no
sense annotation and of freezing BERT encoders
on performance.

3 Semantic Specialization for WSD

3.1 Formalization of WSD

The proposed method adapts BERT embeddings by
trainable transformation functions Hs and Hw:

vw = Hw(v̂w), (1)

es = Hs(ês), (2)

where the inputs v̂w and ês are the context and
sense embeddings computed by a BERT encoder
and the outputs vw and es are the specialized em-
beddings.

We train the transformation functions by mini-
mizing the weighted sum of the Attract-Repel ob-
jective and the self-training objective on the special-
ized embeddings. Note that the BERT encoder is
frozen (not fine-tuned). We integrate the constraints
on the distance between the input and output into
the architecture of transformation functions (§ 3.4).

To predict a sense for a given target word w, we
look up the candidate senses Sw and compute their
specialized sense embeddings using the learned
function Hs. Similarly, we compute specialized
context embeddings using Hw. Then, we select the
nearest neighbor sense s∗ using cosine similarity:

s∗ = arg max
s′∈Sw

ρw,s′ , (3)

ρw,s = cos(vw, es) =
vw · es
∥vw∥∥es∥

. (4)
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Element Noun Verb Adj. Adv. All
# Lemmas 117,798 11,529 21,479 4,481 155,287
# Senses 146,320 25,047 30,002 5,580 206,949
Rel. senses 7.8 13.0 6.2 3.9 8.1
Diff. senses 0.8 4.1 1.2 0.7 1.3

Table 1: Summary statistics of lexical resources by part-
of-speech tag. Values in the related and different senses
rows indicate the average per sense.

3.2 Lexical Knowledge in WordNet

We use WordNet (Fellbaum, 1998) as a lexical re-
source and sense inventory. WordNet mainly con-
sists of synsets, lemmas, and senses. A synset is a
group of synonymous words that convey a specific
meaning. A lemma presents a canonicalized form
of a word and belongs to one or more synsets. A
sense is the lemma disambiguated by a sense key,
and belongs to a single synset. We use the sense
key as the identifier of a sense.

The proposed method makes use of relational
knowledge between senses for training the transfor-
mation functions. Specifically, for each sense s, we
collect three sets of senses: related SPs , different
SNs , and unrelated SUs . The related set consists of
sense keys of synonyms and semantically related
senses (e.g., hyponyms) to the target sense. We fol-
lowed the definition of related senses used in Wang
and Wang (2020) (Appendix A). The different set
consists of sense keys sharing the same lemma to
the target sense excluding itself. In other words,
the different senses correspond to the polysemy of
the lemma of the target sense. The unrelated set
presents sense keys that are randomly chosen from
the sense inventory (see § 3.5.1 for details). Table 1
shows the statistics of lemmas and senses. See Ta-
ble 6 (in Appendix A) for examples of the concepts
explained in this subsection.

3.3 BERT Embeddings for Sense and Context

For obtaining BERT embeddings, we follow the
standard practice of the previous studies (Wang
et al., 2020; Bevilacqua and Navigli, 2020;
Wang and Wang, 2020). Specifically, we use
bert-large-cased1 with special tokens [CLS]
and [SEP]. For each subword, we compute a sum
over outputs at the last four layers of Transformer
blocks.

A context embedding is the average of BERT
embeddings over constituent subwords. For the
computation of sense embeddings, we follow the

1We use transformers package (Wolf et al., 2020).

method that Wang and Wang (2020) used. See
Appendix B for details.

3.4 Transformation Functions
The proposed method adapts embeddings by apply-
ing the trainable transformation, i.e., the special-
ization is learned by optimizing the transformation
functions. This approach enables the adaptation
of context embeddings on the fly during inference,
which was not possible in the original approach
that directly learns adapted embeddings (Vulic and
Mrksic, 2018).

Let v̂w and ês be context and sense BERT em-
beddings. We transform them independently using
residual mapping functions Fw and Fs, which are
both two-layer feedforward networks, FFNNw and
FFNNs. These networks are comprised of a linear
layer with a ReLU activation, followed by a linear
layer with a sigmoid activation.

vw = Hw(v̂w) = v̂w + ϵ∥v̂w∥Fw(v̂w), (5)

es = Hs(ês) = ês + ϵ∥ês∥Fs(ês), (6)

Fw(v̂w) = 2σ(FFNNw(v̂w))− 1, (7)

Fs(ês) = 2σ(FFNNs(ês))− 1, (8)

where vw and es are the specialized embeddings.
ϵ is the hyperparameter that controls how far away
the specialized embeddings can be. Specifically,
the L2 distance relative to the original embedding
∥vw − v̂w∥/∥v̂w∥ is bounded by ϵ

√
Nd, where

Nd is the dimension size of embeddings2. This is
because the residual functions map the inputs to
the space [−1,+1]Nd .

3.5 Objectives
We jointly optimize the Attract-Repel objective
for sense pairs and the self-training objective for
context-sense pairs by minimizing the weighted
sum of the loss functions,

L = LAR + αLST, (9)

where α is the hyperparameter that determines the
relative importance of the self-training objective.

The joint optimization is motivated by the com-
plementary nature of these two objectives. The
Attract-Repel objective should improve the sep-
arability of similar/different senses but does not
contribute to determining which context and sense
should be associated. In contrast, the self-training
objective provides pseudo-supervision signals for

2Nd = 1, 024 for bert-large-cased.

3460



context-sense associations, although the informa-
tiveness is, when used alone, limited because it es-
sentially reinforces the similarity to the initial near-
est neighbor sense of the target context (§ 3.5.2).

3.5.1 Attract-Repel Objective
We formulate Attract-Repel objective loss LAR us-
ing contrastive loss: we bring related senses closer
while different and unrelated senses farther away3

(§ 3.2). Specifically, for a given minibatch of senses
SB and a specific sense s ∈ SB , we define the sub-
set excluding itself SB \{s} as the unrelated senses
SUs . Then, we randomly choose a sense sp from the
related senses SPs . Similarly, we randomly choose
up to five senses without replacement S̃Ns from dif-
ferent senses SNs . Finally, LAR for the minibatch
SB is defined as follows:

LAR = −
∑

s∈SB
ln

eβρs,sp∑
s′∈({sp}∪SUs ∪S̃Ns )

eβρs,s′
, (10)

ρs,s′ = cos(es, es′). (11)

We set the scaling parameter β to 64, following the
suggestions in metric learning studies (Deng et al.,
2019; Wang et al., 2018).

3.5.2 Self-training Objective
We formulate the self-training objective loss LST

so that we bring the contexts and nearest neighbor
senses closer. In the self-training process, we label
a word in context with the sense whose embedding
is the closest to that of the word. Specifically, let
WB denote a minibatch of words. For a word
w ∈ WB , we obtain a set of candidate senses4 Sw.
Then, LST for the minibatchWB is defined as,

LST =
∑

w∈WB

(1−max
s∈Sw

ρw,s), (12)

ρw,s = cos(vw, es). (13)

Note that the nearest neighbor sense for the same
context changes during training as we update pa-
rameters of the transformation functions for em-
beddings. Our intention is to bootstrap the perfor-
mance, which was impossible in the “static coun-
terpart”, e.g., pseudo-labeling with the WordNet

3In the contrastive learning literature, related, unrelated,
and different senses correspond to the positives, weak nega-
tives, and hard negative examples, respectively.

4Querying WordNet for a tuple of lemma and part-of-
speech tag returns the candidate senses.

first sense heuristic. That is also a motivation of
introducing the distance constraint in Eq. 5 and
6: we were concerned about the performance drop
when a large deviation occurs in the semantic spe-
cialization. We report empirical evidence that the
constraint improves the performance (§ 6.3).

In principle, the training data can be any cor-
pus annotated with lemmas and part-of-speech tags.
Nevertheless, we used the SemCor (Miller et al.,
1993) corpus with the sense annotations removed.
This is because using these de-facto standard cor-
pora contributes to better reproducibility and fairer
comparisons.

3.6 Try-again Mechanism (TaM) Heuristic

We examine the effectiveness of the proposed
method when combined with TaM. Specifically,
we employ the variant (Wang and Wang, 2021)5

that utilizes Coarse Sense Inventory (CSI) (Lacerra
et al., 2020) because of its simplicity. In essence,
TaM reranks candidate senses by updating similari-
ties under the assumption that the context should
be also similar to the coarse semantic category that
the candidate sense belongs to. Let s1 and s2 be
the top two nearest neighbors for the target word
w and SCSI

s be the set of senses6 belonging to the
same CSI class as s belongs to. Then, we refine the
similarity ρ+w,s for each s ∈ {s1, s2},

ρ+w,s = ρw,s + max
s′∈SCSI

s

ρw,s′ . (14)

Finally, we choose the sense from s1 and s2 with
highest similarity using ρ+w,s, i.e., we use the re-
fined similarity ρ+w,s instead of ρw,s (Eq. 3).

4 Experiment Settings

4.1 Training

We used WordNet senses for optimizing the Attract-
Repel objective and the sense-annotated words in
the SemCor corpus for the self-training objective.
Note that we solely use lemmas and part-of-speech
tags and disregard the sense annotations. The num-
ber of senses in WordNet is 206,949, and the num-
ber of words in the corpus is 226,036. We inde-
pendently sampled minibatches NB for each ob-
jective. For the Attract-Repel objective, we iterate

5We followed author’s implementation: https://github.
com/lwmlyy/SACE

6SCSI
s will be the empty set if s doesn’t exist in the CSI

because it does not cover all synsets.
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over all sense keys in the WordNet with 15 epochs7.
For hyperparameter optimization, we disabled TaM
heuristics and used the evaluation set of SemEval-
2007 as the development set, following the stan-
dard practice (Pasini et al., 2021). See Appendix C
for details of the hyperparameter search. We set
NB = 256, α = 0.2, and ϵ = 0.015. We used the
Adam optimizer with learning rate 0.001.

4.2 Evaluation

For evaluation, we used the WSD unified eval-
uation framework (Raganato et al., 2017)8. We
used the nearest neighbor sense as the prediction
(Eq. 3). For the evaluation metric, we adopt the
micro-averaged F1 score9 that is commonly used
in the literature. Unless otherwise specified, we
run the training process five times with different
random seeds, and report the mean and standard
deviations.

4.3 Baselines

We compare the proposed method in two experi-
mental configurations: Intrinsic and With Heuris-
tics. For the Intrinsic configuration, we com-
pare it with the methods that do not use any
heuristic. Specifically, we choose PlainBERT and
SREFemb (Wang and Wang, 2020) as baselines.
PlainBERT uses BERT embeddings v̂w and ês
as is. SREFemb10 adapts sense embeddings so that
it brings semantically related senses closer. For
the With Heuristics configuration, we compare the
proposed method with the methods that combine
heuristics. Specifically, we choose SREFkb (Wang
and Wang, 2020) and COE (Wang et al., 2021b) as
baselines. SREFkb combines SREFemb with TaM.
COE also utilizes SREFemb, but it employs refined
TaM and CIE. COE is the current SoTA method on
knowledge-based WSD.

We also compare with supervised methods
which employ the similarity-based approach to
assess the effect of not using sense annotations
and of freezing BERT encoders. Specifically, we
compare with Sup-kNN (Loureiro and Jorge, 2019)
and BEM (Blevins and Zettlemoyer, 2020) (§ 2.4),

7In each epoch, we discarded the remaining examples in
the self-training objective trainset once all sense keys have
been traversed.

8Available at: http://lcl.uniroma1.it/wsdeval/
9Note that F1 score is equal to Precision and Recall (Pasini

et al., 2021) because proposed method predicts a single sense.
10We applied their method to PlainBERT, consistent with

the proposed method, to ensure a fair comparison of the effect
of adaptation.

which both use SemCor as the trainset. Sup-kNN
computes sense embeddings as the context embed-
dings averaged over the annotated senses. BEM fine-
tunes BERT encoders so that context embeddings
and correct sense embeddings are brought closer.
We consider BEM as the de-facto upper bound of
similarity-based approach, given its usage of a su-
pervision signal to fine-tune the BERT encoders.

5 Experimental Results

Table 2 shows the WSD task performance. In both
configuration, the proposed method SS-WSDemb out-
performed all knowledge-based baselines.

In the Intrinsic configuration, SS-WSDemb outper-
formed SREFemb by 3.9pt, which is as much as a
9.3pt improvement over PlainBERT. Looking at
the results for each part-of-speech, we observed
the largest improvement over SREFemb for verbs
(9.0pt). This result reflects the fact that verbs have
the richer supervision signal for the Attract-Repel
objective because of the largest number of related
and different senses (Table 1) for verbs. This sug-
gests that the richer semantic relation knowledge is,
the higher performance the proposed method may
achieve.

In the With Heuristics configuration, SS-WSDkb
outperformed COE by 0.8pt without using the CIE
heuristic, which shows an advantage over the base-
lines regardless of whether the evaluation sen-
tence is a stand-alone text or in a document. The
improvement brought by TaM was 2.2pt. Al-
though SS-WSDkb lagged behind COE on the SE07
(SemEval-2007) subset, we think this result is un-
derstandable because COE also used SE07 for hy-
perparameter optimization.

When compared to supervised methods,
SS-WSDemb outperformed Sup-kNN by 1.4pt,
while falling behind BEM by 4.1pt. The results
indicate that the proposed method associates
contexts with senses more precisely than the
example-based sense embeddings computation
using sense-annotated contexts. It also shows
the effectiveness of the supervised fine-tuning of
BERT encoders in BEM, as evidenced through their
ablation study (Blevins and Zettlemoyer, 2020).

6 Analysis

6.1 Vanilla BERT Embeddings

The proposed method adapts the BERT embed-
dings (PlainBERT) by transformation. Therefore,
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Method TaM CIE By subset By part-of-speech AllSE2 SE3 SE07 SE13 SE15 Noun Verb Adj. Adv.
Supervised
Sup-kNN
(Loureiro and Jorge, 2019) × × 76.3 73.2 66.2 71.7 74.1 — — — — 73.5

BEM
(Blevins and Zettlemoyer, 2020) × × 79.4 77.4 74.5 79.7 81.7 81.4 68.5 83.0 87.9 79.0

Knowledge-based, Intrinsic configuration
PlainBERT × × 67.8 62.7 54.5 64.5 72.3 67.8 52.3 74.0 77.7 65.6
SREFemb
(Wang and Wang, 2020) × × 70.3 68.0 60.4 74.2 77.4 76.3 53.5 75.2 76.3 71.0

SS-WSDemb (Ours) × × 74.6*
(0.5)

73.0*
(0.6)

65.0*
(1.3)

77.0*
(0.5)

79.9*
(1.0)

78.2*
(0.4)

62.5*
(0.7)

79.7*
(0.3)

80.5*
(1.5)

74.9*
(0.3)

Knowledge-based, With Heuristics configuration
SREFkb
(Wang and Wang, 2020) ✓ × 72.7 71.5 61.5 76.4 79.5 78.5 56.6 79.0 76.9 73.5

COE
(Wang et al., 2021b) ✓ ✓ 76.0 74.2 69.2 78.2 80.9 80.6 61.4 80.5 81.8 76.3

SS-WSDkb (Ours) ✓ × 77.7*
(0.5)

75.9*
(0.6)

66.5
(1.0)

78.0
(0.5)

81.6
(0.9)

79.3
(0.3)

65.7*
(0.8)

84.9*
(0.4)

84.2*
(0.8)

77.1*
(0.3)

Table 2: WSD performance by subset and part-of-speech tag. SS-WSDemb,kb are the proposed methods. Numbers
in parentheses represent the standard deviation. Asterisks (*) indicate that the difference to the best baseline is
statistically significant at p < 0.05 by the Student’s t-test (two-tailed test). Checkmarks (✓) in the TaM and CIE
columns represent the usage of those heuristics. We bolded the best result among knowledge-based methods in each
configuration and underlined the objective for hyperparameter tuning. The scores of BEM, Sup-kNN, SREFkb, and
COE are taken from the original papers.

Method WSD (All)
WN1stSense 65.2
PlainBERT 65.6

Table 3: F1 score of BERT embeddings (PlainBERT)
and WordNet the first sense heuristic (WN1stSense).

its performance is influenced by the ability of
PlainBERT to disambiguate senses.

Table 3 shows the WSD task performance us-
ing PlainBERT. We also reported the WordNet
first sense heuristic (WN1stSense) for reference.
We observe that PlainBERT is comparable to
WN1stSense, indicating that self-training is a more
effective strategy than WN1stSense for obtaining
pseudo sense labels.

Fig. 2 shows the distribution of the similarity
margin (difference) between the nearest neighbor
incorrect sense and ground-truth sense computed
by PlainBERT. We used the evaluation set for
this analysis. We found that the similarity mar-
gin is below 0.05 for approximately 90% of all in-
stances. This indicates that a large deviation from
PlainBERT is not necessary for replacing nearest
neighbor senses with the ground-truth ones.

6.2 Effect of Objectives

Table 4 shows the performance comparison when
we eliminate a specific component from the seman-

Figure 2: Cumulative distribution of the similarity
margin between the incorrect sense and correct sense:
δρw = maxs′∈Sw\Sgt

w
ρw,s′ −maxs′∈Sgt

w
ρw,s′ , where

Sgtw is the set of ground-truth senses of the word w.

tic specialization objectives (§ 3.5). We keep all
hyperparameters unchanged.

When we exclude either the Attract-Repel ob-
jective or the self-training objective, we see the
performance drop by 3.3pt and 4.4pt, respectively.
This finding supports the claim that joint optimiza-
tion is crucial for its complementary nature.

When we remove either the unrelated senses or
different senses from the Attract-Repel objective,
we also see the performance drop by 5.0pt and
1.4pt, respectively. This result supports the idea
that bringing semantically unrelated and different
senses farther away contributes to performance. We
also find that unrelated senses are more effective
than different senses. A possible cause is the num-
ber of examples: while the number of unrelated
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Ablation WSD (All) ∆[pt]
SS-WSDemb 74.9 —
-Attract-Repel objective 71.6 -3.3
-Self-training objective 70.5 -4.4
-Unrelated senses SU repelling 69.9 -5.0
-Different senses SN repelling 73.5 -1.4
-Context adaptation 71.7 -3.2

Table 4: Ablation study of training objective. Objective
rows represent the corresponding objective is excluded.
Repelling rows represent the corresponding sense pairs
are removed from the Attract-Repel objective (Eq. 10).
Adaptation rows represent the usage of identity trans-
formation. All differences are statistically significant at
p < 0.05 by Welch’s t-test (two-tailed test).

Figure 3: Ablation study of hyperparameter ϵ (§ 3.4).
Dot and error bar represent the mean and standard devia-
tion, respectively. Horizontal line represents the default
setting (ϵ = 0.015) performance. Asterisks indicate
that the difference with respect to the default setting is
statistically significant at p < 0.05 (*) and p < 0.005
(**) by Welch’s t-test (two-tailed test).

senses is always11 255, the number of different
senses is, on average, just 1.3 (see Table 1)12.

Disabling the adaptation of context embeddings
(by using identity transformation) caused a perfor-
mance drop of 3.2pt, indicating that adapting both
sense and context embeddings is necessary.

6.3 Effect of Distance Constraint
Fig. 3 shows the performance comparison when
we change ϵ, the hyperparameter that bounds how
farther away the specialized embeddings can be, in
the interval [0.01,0.02] with a step size of 0.001.
We found that performance follows an inverted U-
shaped curve along ϵ, indicating that a sweet spot
exists. Briefly, it shows that a severe constraint
(small ϵ) results in an insufficient update for replac-
ing nearest neighbors with ground-truth senses. In
contrast, a looser constraint (large ϵ) results in a
substantial deviation, eventually making the self-
training less effective in the training process. The
latter fact supports the claim that controlling the de-
viation from the original embeddings is necessary.

11Minibatch size (=256) minus one yields 255.
12In fact, only 38% of all senses have different senses.

Figure 4: Impact of varying the self-training dataset
size from 10% (23k examples) to 100% (224k). The dot
and error bar indicates the mean and standard deviation,
respectively. The horizontal line represents the perfor-
mance when utilizing the 100% examples. Asterisks
denote that the deviation from the 100% is statistically
significant at p < 0.05 (*) and p < 0.005 (**) by
Welch’s t-test (two-tailed test).

7 Effect of Self-training Dataset Size

Fig. 4 illustrates the impact of varying the number
of examples used for the self-training objective on
the WSD task performance. It should be noted
that 100% in the figure corresponds to using all
examples in the SemCor corpus. We found that
performance improves as the number of examples
increases and reaches a saturation point at 60%,
corresponding to 136k examples. While the cover-
age of words and senses appearing in the contexts
also matters, it indicates that the benefits of self-
training do not necessarily increase with the scaling
to millions of examples.

7.1 Similarity Characteristics

We quantitatively investigate how well the pro-
posed method achieved the key idea (Fig. 1-d):
bringing related senses and contexts closer while
unrelated and different senses farther away. Specif-
ically, in Table 5, we reported averages of sim-
ilarity values between related senses ρSP , unre-
lated senses ρSU , and different senses ρSN , along
with averages of similarity values between ground-
truth context-sense pairs13 ρWgt . See Appendix D
for formal definitions. We found that the pro-
posed method SS-WSDemb brought context-sense
pairs closer than PlainBERT (ρWgt : 0.64→ 0.77).
In contrast, it pushed the unrelated and different
senses away: ρSU :0.77 → 0.64 and ρSN :0.87 →
0.78. These results demonstrate that joint optimiza-
tion of the Attract-Repel and self-training objec-
tives realized the key idea successfully.

Can we expect better performance if we realize
the key idea more precisely? We investigated the

13We used sense-annotated words in the evaluation dataset.
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Models ρSP ρSU ρSN ρWgt ∆ρSP ↑ ∆ρSU ↓ ∆ρSN ↓ ∆ρ ↑ WSD (All)
PlainBERT 0.91 0.77 0.87 0.64 0.27 0.12 0.23 -0.030 65.6
SS-WSDemb 0.88 0.64 0.78 0.77 0.11 -0.13 0.01 0.078 74.9
-Attract-Repel 0.92 0.79 0.90 0.81 0.11 -0.02 0.08 0.014 71.6
-Self-training 0.88 0.64 0.78 0.61 0.27 0.02 0.17 0.027 70.5
-Unrelated senses 0.90 0.73 0.79 0.73 0.17 0.00 0.06 0.033 69.9
-Different senses 0.87 0.61 0.79 0.77 0.09 -0.17 0.02 0.081 73.5
-Context adaptation 0.88 0.64 0.78 0.63 0.25 0.01 0.15 0.032 71.7

Table 5: Similarity characteristics of sense pairs and context-sense pairs. ρSP , ρSU , and ρSN are the similarity to
related, unrelated, and different senses (Eq. 15). ρWgt is the similarity of the context and its ground-truth senses
(Eq. 16). ∆ρ∗ is the difference to ρWgt (Eq. 17). ∆ρ = 1

3 (∆ρSP −∆ρSU −∆ρSN ). Uparrow↑ (downarrow↓)
represents the positive (negative) direction is favorable. WSD (All) are replicated from Tables 2 and 4 for reference.

Figure 5: The relationship between the similarity char-
acteristic metric ∆ρ and WSD performance in Table 5.

relationship between these similarity metrics and
WSD task performance. Specifically, we subtract
ρWgt from each metric in order to capture the close-
ness of senses relative to the correct context-sense
pairs, defining ∆ρ∗ as ρ∗ − ρWgt . For example,
∆ρSN = ρSN−ρWgt should be a negative value be-
cause the average similarity among different senses
ρSN should be smaller than that among correct
context-sense pairs ρWgt . Therefore, we compute
the value ∆ρ = 1

3(∆ρSP − ∆ρSU − ∆ρSN ) to
estimate the WSD performance.

Fig. 5 shows that ∆ρ correlates well with WSD
task performance (R2 = 0.85). It suggests that if
we achieve the key idea more precisely, we may
improve the WSD performance. For instance, using
a richer lexical relation knowledge, exploitation
of the monosemous words, and self-training with
confidence thresholding may be promising. We
leave it for future work.

8 Conclusion

In this paper, we proposed SS-WSD: Semantic Spe-
cialization for WSD14. The proposed method learns
how to adapt BERT embeddings by transforma-
tion and uses the semantic relation knowledge
as a supervision signal. The key idea is the de-

14The source code is available at: https://github.com/
s-mizuki-nlp/semantic_specialization_for_wsd

sired characteristics of similarities: bringing re-
lated senses and the contexts closer while unrelated
senses and different senses farther away. We re-
alized it as the joint optimization of the Attract-
Repel and self-training objectives while preventing
large deviations from original embeddings. Exper-
iments showed that the proposed method outper-
formed the previous embedding adaptation method.
When combined with the reranking heuristic that
can be applied to stand-alone texts, it established
a new SoTA performance on knowledge-based
WSD. The proposed method performs well re-
gardless of the availability of global contexts be-
yond the target sentence during inference, which
the previous study did not achieve. Several anal-
yses showed the effectiveness of the objectives
and constraints introduced for specialization. We
also found that the closeness of semantically re-
lated/different/unrelated senses relative to the close-
ness of correct context-sense pairs positively corre-
lates with the WSD task performance.

9 Future Work

Given that the proposed method only necessitates
lexical resources, it has the potential to effectively
address the knowledge acquisition bottleneck prob-
lem (Pasini, 2020). Thus, we are interested in ap-
plying the proposed method to multilingual WSD
using multilingual language models as contextu-
alized encoders. One approach is the zero-shot
cross-lingual transfer, which involves learning em-
beddings adaptation using only English lexical re-
sources. Another option is the joint training of
all target languages using multilingual lexical re-
sources such as BabelNet (Navigli et al., 2021).
We are also interested in integrating the proposed
method into supervised WSD and applying the
transfer learning of the specialized embeddings to
other NLP tasks.
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10 Limitations

One limitation of this work is that it is specific to
BERT. Although this is in line with the standard
practice in previous studies, experimenting with
other pre-trained language models is preferred to
assess the utility of the proposed method, or to im-
prove the performance further. Another limitation
is that it is evaluated on a single dataset and task.
While we also followed the de-facto standard pro-
tocol, evaluating on rare senses (Maru et al., 2022)
or Word-in-Context task (Pilehvar and Camacho-
Collados, 2019; Martelli et al., 2021) will bring us
more comprehensive insights on the effectiveness
and applicability.

11 Ethics Statement

This work does not involve the presentation of a
new dataset, nor the utilization of demographic or
identity characteristics in formation. In this work,
we propose a method for adapting contextualized
embeddings for WSD using lexical resources. The
proposed method is not limited to a specific re-
source, we used WordNet as the source of semantic
relation knowledge and sense inventory. Therefore,
adapted embeddings and sense disambiguation be-
havior may reflect the incomplete lexical diversity
of WordNet in culture, language (Liu et al., 2021),
and gender (Hicks et al., 2016).
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and Steve Young. 2017. Semantic specialization of
distributional word vector spaces using monolingual
and cross-lingual constraints. Transactions of the
association for Computational Linguistics, 5:309–
324.

Roberto Navigli. 2009. Word sense disambiguation: A
survey. ACM computing surveys (CSUR), 41(2):10:1–
10:69.

Roberto Navigli, Michele Bevilacqua, Simone Conia,
Dario Montagnini, and Francesco Cecconi. 2021.
Ten years of babelnet: A survey. In Proceedings
of the Thirtieth International Joint Conference on
Artificial Intelligence, pages 4559–4567. ijcai.org.

Tommaso Pasini. 2020. The knowledge acquisition
bottleneck problem in multilingual word sense dis-
ambiguation. In Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelli-
gence, pages 4936–4942.

Tommaso Pasini, Alessandro Raganato, and Roberto
Navigli. 2021. XL-WSD: an extra-large and cross-
lingual evaluation framework for word sense disam-
biguation. In Thirty-Fifth AAAI Conference on Ar-
tificial Intelligence, AAAI 2021, Thirty-Third Con-
ference on Innovative Applications of Artificial In-
telligence, IAAI 2021, The Eleventh Symposium on
Educational Advances in Artificial Intelligence, EAAI
2021, pages 13648–13656.

Mohammad Taher Pilehvar and José Camacho-Collados.
2019. Wic: the word-in-context dataset for evaluat-
ing context-sensitive meaning representations. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 1267–1273.

Alessandro Raganato, José Camacho-Collados, and
Roberto Navigli. 2017. Word sense disambiguation:
A unified evaluation framework and empirical com-
parison. In Proceedings of the 15th Conference of
the European Chapter of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
99–110.

Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B.
Viégas, Andy Coenen, Adam Pearce, and Been Kim.
2019. Visualizing and measuring the geometry of
BERT. In Advances in Neural Information Process-
ing Systems 32: Annual Conference on Neural Infor-
mation Processing Systems 2019, pages 8592–8600.

3467



Ivan Vulic and Nikola Mrksic. 2018. Specialising word
vectors for lexical entailment. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1134–1145.

Dong Wang, Ning Ding, Piji Li, and Haitao Zheng.
2021a. CLINE: contrastive learning with semantic
negative examples for natural language understand-
ing. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing, (Volume 1: Long Papers), pages
2332–2342.

Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Di-
hong Gong, Jingchao Zhou, Zhifeng Li, and Wei
Liu. 2018. Cosface: Large margin cosine loss for
deep face recognition. In 2018 IEEE Conference
on Computer Vision and Pattern Recognition, pages
5265–5274.

Ming Wang and Yinglin Wang. 2020. A synset relation-
enhanced framework with a try-again mechanism for
word sense disambiguation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing, pages 6229–6240.

Ming Wang and Yinglin Wang. 2021. Word sense dis-
ambiguation: Towards interactive context exploita-
tion from both word and sense perspectives. In Pro-
ceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing, pages 5218–5229.

Ming Wang, Jianzhang Zhang, and Yinglin Wang.
2021b. Enhancing the context representation in
similarity-based word sense disambiguation. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 8965–
8973.

Yinglin Wang, Ming Wang, and Hamido Fujita. 2020.
Word sense disambiguation: A comprehensive knowl-
edge exploitation framework. Knowledge Based Sys-
tem, 190:105030.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45. Association for Com-
putational Linguistics.

Zhi Zhong and Hwee Tou Ng. 2012. Word sense disam-
biguation improves information retrieval. In Proceed-
ings of the 50th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers),
pages 273–282.

3468



A Lexical Resources

Table 6 shows an example of lexical resources for
a sense key computer%1:06:00::. Note that unre-
lated senses are randomly chosen in practice.

For related senses lookup, we followed Wang
and Wang (2020)’s paper and implementation15.
Briefly, for a given sense key, we collect the synsets
that encompass either itself or the sense keys con-
nected by derivationally_related_forms rela-
tion. Then, for each collected synset, we extend
the synsets via semantic relations shown in Table 7.
Finally, we collect the sense keys that belong to
either one of the synsets in the extended set of
synsets, together with those connected to a given
sense key by semantic relations shown in Table 7.
We used the nltk.corpus.wordnet package for
implementation.

B BERT Embeddings for Sense

For the computation of sense embeddings, we fol-
lowed Wang and Wang (2020)’s method. Specif-
ically, for a given sense key, we generate a sen-
tence by filling in the following template using the
lemma, synset lemmas, definition, and examples:

[lemma] - [syn. lemma 1], ...,
[syn. lemma n] - [definition]
[example 1] ... [example m],

where n and m represent the number of synonym
lemmas and the number of examples. Then we
take the average over all subwords in a sentence.
For example, applying the template to the sense
computer%1:06:00:: will produce the following
sentence.
computer - computer, computing device, data pro-
cessor, ... - a machine for performing calculations
automatically

We solely use the examples available in Word-
Net Gloss Corpus and do not use the augmented
examples that Wang and Wang (2020) collected.

C Hyperparameter Search

For the hyperparameter search, we first jointly op-
timized on the number of minibatches NB , rel-
ative importance between objectives α (Eq. 9),
and constraint on the distance from BERT em-
beddings ϵ (Eq. 3.5). We used TPESampler in
the optuna package (Akiba et al., 2019) for op-
timization. We run hyperparameter search over
NB ∈ {64, 128, 256, 512, 1024}, α ∈ [0.1, 10],

15https://github.com/lwmlyy/SREF

and ϵ ∈ [0.001, 0.1]. The number of search trials
is 210. Then, we ran a grid search on ϵ over the
interval in [0.01,0.02] using a step size of 0.001.
During hyperparameter search, we observed that 1)
large minibatch size of 256 or above doesn’t pro-
duce any statistically significant difference and 2)
α is much less sensitive compared to ϵ.

D Analysis of Similarity Characteristics

We quantify the similarity characteristic as the
macro average of similarity between senses and
the similarity of ground-truth context-sense pairs.
Specifically, for a given sense s, we calculate the
average similarity to its related senses SPs , unre-
lated senses SUs , and different senses SNs . Follow-
ing Attract-Repel objective (§ 3.5.1), we define the
minibatch excluding itself as the unrelated senses:
SUs = SB \ {s}. Then, we take the average over
all senses S, yielding the similarity among related
senses ρSP , unrelated senses ρSU , and different
senses ρSN as follows:

ρSP =
1

|S|
∑

s∈S

1

|SPs |
∑

s′∈SPs

ρs,s′ ,

ρSU =
1

|S|
∑

s∈S

1

|SUs |
∑

s′∈SUs

ρs,s′ ,

ρSN =
1

|SN |
∑

s∈SN

1

|SNs |
∑

s′∈SNs

ρs,s′ ,

(15)

where SN = {s; |SNs | > 0}.
For the similarity of ground-truth context-sense

pairs ρWgt , we use the pairs of the word and anno-
tated senses in the evaluation dataset (§ 4.2). For a
given word w, we calculate the average similarity
to its ground-truth senses Sgtw . Then, we take the
average over all wordsW as follows:

ρWgt =
1

|W|
∑

w∈W

1

|Sgtw |
∑

s∈Sgtw

ρw,s. (16)

Finally, we define ∆ρ∗ as the difference to ρWgt

for each relation types. We also define ∆ρ as the
arithmetic average over them while taking favor-
able positive/negative directions into account.

∆ρSP = ρSP − ρWgt

∆ρSU = ρSU − ρWgt

∆ρSN = ρSN − ρWgt

∆ρ =
1

3
(∆ρSP −∆ρSU −∆ρSN )

(17)

3469



Element Example
Sense (sense key) computer%1:06:00::
Lemma computer
Synset computer.n.01
Definition sentence a machine for performing calculations automatically
Example Not Available
Synonym lemmas computer, computing device, data processor, ...

Related senses
computing_device%1:06:00:: (synonym),
analog_computer%1:06:00:: (hyponym),
compute%2:31:00:: (derivative), ...

Different senses computer%1:18:00::
unrelated senses
(randomly chosen)

goldfish%1:05:00::, chef%1:18:01::, ...

Table 6: Example of WordNet lexical resources used in the proposed method.

Category Relation names
Sense key pertainyms, antonyms

Synset
hyponyms, hypernyms, part_holonyms, part_meronyms, member_holonyms,
member_meronyms, entailments, attributes, similar_tos, causes,
substance_holonyms, substance_meronyms, usage_domains, also_sees

Table 7: WordNet semantic relation names used for collecting related senses.

E Implementation Details

We implemented the transformation functions us-
ing PyTorch library16. We trained them using sin-
gle NVIDIA 2080Ti GPU. It took approximately
two hours for a single run. We precomputed BERT
embeddings for training and evaluation dataset and
saved them to temporary files for computation effi-
ciency.

16https://pytorch.org/
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Abstract

A persona-grounded dialogue model aims to
improve the quality of responses to promote
user engagement. However, because the given
personas are mostly short and limited to only
a few informative words, it is challenging to
utilize them to generate diverse responses. To
tackle this problem, we propose a novel persona
expansion framework, Concept-based Persona
eXpansion (CPX). CPX takes the original per-
sona as input and generates expanded personas
that contain conceptually rich content. We con-
stitute CPX with two task modules: 1) Concept
Extractor and 2) Sentence Generator. To train
these modules, we exploit the duality of two
tasks with a commonsense dataset consisting of
a concept set and the corresponding sentences
which contain the given concepts. Extensive ex-
periments on persona expansion and response
generation show that our work sufficiently con-
tributes to improving the quality of responses
in diversity and richness.

1 Introduction

A persona-grounded dialogue model aims to gener-
ate more human-like and engaging responses based
on given traits called persona (Zhang et al., 2018a).
As efforts of this research line, many recent works
have explored various approaches to improving
the quality of persona-based responses (Liu et al.,
2020; Song et al., 2020; Kim et al., 2020).

In spite of these efforts, there remain some limi-
tations in persona-grounded dialogue models. They
are in need of generating more diverse responses.
Due to the predefined personas being mostly short
and limited to only a few informative words, the re-
sponses based on these personas tend to be generic
and monotonous. To tackle this issue, COMPAC
(Majumder et al., 2020) expands the predefined
personas with a commonsense knowledge graph
about events, ATOMIC (Sap et al., 2019). With the
expanded personas, the dialogue agent generates

Original Persona

Concept-based

Expansion

Event-based

Expansion

I like to go hunting.

What are you going to do on this vacation?

I am going to have fun.

I am going to camp outdoor while hunting.

I want to have fun.
I want to go camping, 
hunting, and fishing.

Figure 1: An example of responses generated by differ-
ent persona expansion strategies for the same query.

more diverse responses which contain inferential
knowledge stemming from the original persona.

However, there is room for improvement in the
expansion strategy of COMPAC, which takes an
event-based approach as means for persona expan-
sion, which captures causal inferences from per-
sonas. The event-based persona expansion is done
with the utilization of ATOMIC as a training dataset
for the COMET commonsense transformer (Bosse-
lut et al., 2019). As an example, in Figure 1, the
expanded persona of the agent (i.e., I want to have
fun) can be obtained from the given original per-
sona (i.e., I like to go hunting) through causal in-
ference. Then given the question "What are you
going to do on this vacation?", the response based
on the event-based expansion strategy is given as
"I am going to have fun". The generated response
is suitable for a given query in terms of relevance.
Nevertheless, the response is still monotonic be-
cause the expanded persona lacks content.

On the other hand, in the manner of the concept-
based expansion strategy, the expanded persona of
the agent (i.e., I want to go camping, hunting, and
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fishing) can be obtained through semantic reason-
ing between concepts (hunt→ camping, fishing).
Then given the same question, the response based
on the expanded persona by concept-based strategy
is "I am going to camp outdoor while hunting",
which is more conceptually diverse and rich.

In general, the diversity of responses is directly
correlated with the interlocutor’s feeling of being
involved in a conversation. Further, in order for
the interlocutor to be attracted, a more significant
amount of information needs to be delivered. In
other words, even in responses that convey the same
meaning, the presence of words to enrich the con-
tent makes a difference in diversity. Hence, it is
crucial for original personas to be expanded to have
rich content to improve the diversity of persona-
based responses. As demonstrated in Figure 1, by
utilizing various concepts in expansion, it is possi-
ble to generate personas with richer content than
the existing expansion approach.

In this paper, we propose a novel Concept-based
Persona eXpansion framework, called CPX. First,
the concept extractor extracts relevant concepts
from the original persona sentence, which consists
of the constituent words and their semantically re-
lated terms. Then, the sentence generator leverages
the extracted concepts to generate expanded per-
sonas via generative commonsense reasoning. In
training, we exploit the duality of CommonGen
(Lin et al., 2020) dataset to train the two opposing
task modules that consist of the CPX framework: 1)
Concept Extractor and 2) Sentence Generator. The
experimental results demonstrate that our frame-
work outperforms the baseline models in terms of
the expanded persona’s diversity. We also show
that the persona-grounded dialogue model employ-
ing our expansion strategy generate more engaging
and diverse responses.

The contributions of our work are as follows:

• We propose a novel concept-based persona
expansion framework, CPX, to generate ex-
panded personas with rich content.

• We adopt the duality of concept extraction and
sentence generation to constitute the frame-
work for the proposed expansion strategy.

• Through the proposed framework, it is possi-
ble to augment the persona-grounded dataset
to improve the diversity of responses.

2 Related Work

2.1 Persona-Grounded Dialogue
A persona-grounded dialogue model aims to gen-
erate more engaging, human-oriented responses
by using some personal characteristics of an agent
(Zhang et al., 2018a). As a data-driven approach,
Welleck et al. (2019) propose the elaborately con-
structed dialogue inference dataset, DNLI. Some
studies show that fine-tuning the pre-trained lan-
guage models on the persona-grounded dataset
can improve the quality of dialogues (Wolf et al.,
2019; Golovanov et al., 2019). Furthermore, re-
cent studies have explored sophisticated neural
architectures for better persona-based responses,
such as endowing mutual-persona (Liu et al., 2020),
multi-stage framework (Song et al., 2020), and self-
consciousness modeling (Kim et al., 2020).

Despite the aforementioned efforts, diversity re-
mains limited due to the deficient information in
predefined personas. Majumder et al. (2020) adopt
the event-based persona expansion strategy for gen-
erating more engaging responses. They construct
a large number of expanded personas by COMET
(Bosselut et al., 2019). Their expansion strategy
increases the number of personas, but the expanded
personas are still simple in content. That is, while
the range of responses that can be generated based
on the persona has stretched, the diversity and rich-
ness are still limited. To solve this problem, we
propose a novel concept-based persona expansion
framework that contributes to increasing the seman-
tic richness of expanded personas.

2.2 Generative Commonsense Reasoning
CommonGen task (Lin et al., 2020) aims to gener-
ate sentences describing an everyday scenario from
a given set of concepts. Formally, the input is a
concept set defined as x = {c1, c2, ..., ck} ∈ X ,
and the expected output is a sentence y ∈ Y that
describes a common scenario in our daily life, con-
taining all input concepts. The goal of this task
is to learn the reasoning ability between concepts
and sentences by injecting relational commonsense
knowledge into a language model. We exploit this
sentence generation ability in our persona expan-
sion framework (i.e., f : X → Y ). Meanwhile,
the extractor model can learn the ability to extract
concepts from sentences using an inversely aligned
dataset. We leverage the concept extraction ability
based on the duality of the tasks in our framework
(i.e., g : Y → X).
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Original Concept Set Human References Added Concept Set

{cucumber, salad, tomato}
"make a salad of cucumber and tomato"

"cooked asparagus and a green salad with cucumbers, tomatoes and chick peas"
{asparagus, green}

{athlete, championship, win}
"olympic athlete has won only medal of the championships"
"athlete on his way to winning sport at the championships"

"athlete is all smiles after winning the championship after stadium"
{olympic, sport, stadium}

{coast, sea, wave, weather}
"incoming waves of the sea on the coast in foggy weather"

"storm clouds in bad weather over rough sea with breaking waves off the coast"
{foggy, storm}

Table 1: Examples of instance pairs (Original Concept Set–Human References) in CommonGen dataset and
augmented concept set (Added Concept Set).

Concept-to-Text Generation

A cheese and pepperoni pizza in an oven.

 : ! " #

Sentence Generator

{ cheese, oven, pizza }

Concept Extractor

Text-to-Concept Extraction

g: # " !

- -

Figure 2: Duality of task modules: 1) Concept Extractor
and 2) Sentence Generator. We leverage the Common-
Gen dataset to train each task module.

3 Task Definition

Our goal is to generate expanded personas to solve
the lack of information of a given original persona
in PERSONA-CHAT denoted as DPC . Formally,
given the original persona pi, a set of k concepts
Ci = {c1, c2, ..., ck} is extracted from pi, where P
is a set of all personas in DPC . Then, an expanded
persona p+i is generated, using Ci. We perform
this expansion for all personas in P , constructing
augmented PERSONA-CHAT D+

PC that includes
all expanded personas P+. Finally, D+

PC is the
augmented dataset that can enhance the dialogue
in a data-driven manner.

4 Data Preparation

4.1 Training Data for Framework

As shown in Figure 2, we leverage the duality of
two tasks in the CPX framework. The generator
and extractor are trained with the original and in-
versed CommonGen dataset, respectively. The orig-
inal instance pairs in CommonGen consist of one
or more sentences corresponding to each concept
set. In other words, it is designed so that a model

Train Dev Test
# Concept Sets 32,651 993 1,497

- Size = 3 25,020 493 -
- Size = 4 4,240 250 747
- Size = 5 3,391 250 750

# Sentences 67,389 4,018 7,644
- Unique@3 49,459 1,814 -
- Unique@4 8,109 1,135 -
- Unique@5 1,488 1,062 -

Table 2: Statistics of CommonGen dataset. The upper
row summarizes the numbers of concept sets by size,
and the lower is the number of unique sentences corre-
sponding to concept sets with N elements.

learns the ability to generate multiple sentences,
including given concepts. This dataset configura-
tion can help increase the diversity of the sentences
produced by the generator. We also construct the
inversely aligned dataset to inject the ability to ex-
tract concepts from the sentence into the extractor.

4.2 Concept Augmentation

In order for our expansion strategy to work success-
fully, the diversity of the extracted concepts and
the generated sentences through each task module
must be guaranteed. For this reason, we augment a
concept set before the training instead of using the
dataset as it is. The model of Feng et al. (2021) is
referred to in the concept set augmentation, but the
details are different. We use an off-the-shelf NLP
tool spaCy1 to extract various words as candidate
concepts from the source sentences. Then, we cal-
culate the average BERTScore (Zhang et al., 2019)
between the candidate concepts and the source sen-
tences. Finally, 1 to 5 candidate concepts with the
highest score are selected as Added Concept Set.
Some examples of augmentation are illustrated in
Table 1. Formally, we denote the original concept
set as Cori, and the added concept set as Cadd. C+

1https://spacy.io/, The used version is 3.1.4.
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denotes the union of Cori and Cadd. For example,
if Cori and Cadd aligned with the same sentence
are {building, cloud, sky} and {blue, city} respec-
tively, then C+ is {building, cloud, sky, blue, city}.

5 CPX Framework

The CPX framework consists of two task modules:
1) Concept Extractor – extracting concepts from
the original persona; 2) Sentence Generator – gen-
erate multiple sentences from the given concepts.
Inspired by Xia et al. (2017), we utilize the dual-
ity of the tasks to train these modules. However,
since we just exploit the advantage of the task dual-
ity, two modules are independently trained without
sharing parameters based on probabilistic duality.

5.1 Concept Extractor
The concept extractor aims to take the concepts that
comprise the given sentence. Our model achieves
the capability by training on the inverted version
of the CommonGen dataset. Formally, given the
input sentence y ∈ Y , and the target concept set
to extract is a x = {c1, c2, ..., ck} ∈ X . The con-
cept extractor aims to find an objective function
g : Y → X ,

g(Y ; θext)
∆
= argmaxx∈XP (x|Y ; θext) (1)

where θext is a trainable parameter. We leverage
BERT (Devlin et al., 2019) based model as the ex-
tractor. We train the concept extractor in three ways
with Cori, Cadd, and C+ as output X to compare
the performance according to the extracted con-
cept set. First, the purpose of the extractor Extori

trained with Cori is to extract only the concepts
contained in a given sentence. Second, the purpose
of the extractor Extadd trained with Cadd is to ex-
tract the concepts not contained in a given sentence.
By utilizing these hidden concepts, it is possible
to generate expanded personas with concepts not
included in the original persona but semantically
correlated. Finally, the purpose of the extractor
Ext+ trained with C+ is to extract not only the
concepts contained in a given sentence but also the
ones not contained but semantically related. The ex-
perimental results of the effect of each extractor on
the persona expansion performance are described
in Section 6.2.2.

5.2 Sentence Generator
The goal of the sentence generator is precisely the
same as the original CommonGen task, generat-
ing sentences by inferring the underlying relational

Concept Extractor

Sentence Generator

PERSONA-CHAT   !"

Personas: I like to go hunting.

Utterances: Hi, how are you doing?

I like to shoot a bow.

…
…

Personas: I like to go hunting.

Utterances: Hi, how are you doing?

I like to shoot a bow.

…
…

Augmented PERSONA-CHAT    !
"

Expanded Personas: I want to go camping,
hunting and fishing.

…

Figure 3: The overall workflow of CPX framework.
Given a persona-grounded dialogue dataset DPC , CPX
consisting of the extractor and generator generates ex-
panded personas. Final output D+

PC is the augmented
dialogue dataset.

knowledge among concepts. Formally, given the in-
put concept set defined as x = {c1, c2, ..., ck} ∈ X ,
the target is to generate a sentence y ∈ Y contain-
ing all input concepts. The sentence generator aims
to find an optimal objective function f : X → Y ,

f(X; θgen)
∆
= argmaxy∈Y P (y|X; θgen) (2)

where θgen is a trainable parameter. In our setting,
we exploit the pre-trained models as the genera-
tor, specifically BART (Lewis et al., 2020) and T5
(Raffel et al., 2020), which are the state-of-the-art
sequence-to-sequence transformer (Vaswani et al.,
2017) language models. As reported by Feng et al.
(2021), the use of augmented concept sets at the
training phase improves the length and richness
of generated sentences. Therefore, we use the in-
tegrated concept set C+ as input X to train the
sentence generator.

5.3 Control of Persona Expansion
To constrain the form of expanded personas, we
use four types of prompts: I want, I need, I feel,
and I am.2 These prompts can control the genera-
tion form of the expanded persona and represent an

2These four types of prompts were determined by referring
to Majumder et al. (2020) and the verb distribution of personas
in PERSONA-CHAT.

3474



agent’s desire, intent, emotion, and status, respec-
tively. Also, according to our in-depth analysis of
PERSONA-CHAT, most of the personas describe
the first-person subject, so we fix the subject of the
prompt as "I". Accordingly, the constrained de-
coder output sequence for generating the expanded
persona is as follows:

[I] [want|need|feel|am] (3)

Consequently, we obtain four expanded personas
per original persona. The expanded persona set P+

is added to the original dataset DPC to construct
the augmented dataset D+

PC . The experimental
results on response generation using D+

PC will be
described in Section 6.3.3.

6 Experiments

To validate the performance of CPX, we conducted
two experiments: 1) persona expansion and 2) re-
sponse generation.

6.1 Experimental Setup

6.1.1 Dataset
We carried out our experiments on the PERSONA-
CHAT, converted to the ConvAI2 benchmark ver-
sion (Dinan et al., 2020). The dataset consists of
17,878/1,000 multi-turn dialogues and 1,155/100
profiles for Train/Valid set. We utilized the unique
personas extracted from all profiles for persona
expansion experiments. Also, we utilized the origi-
nal and augmented PERSONA-CHAT datasets to
demonstrate the impact of the expansion strategy
on response generation.

6.1.2 Baselines
Two types of expansion baselines are considered:
1) paraphrasing and 2) transformer trained with
commonsense knowledge.
•MANUAL PARAPHRASING (Zhang et al., 2018a):
We used manually paraphrased personas provided
with the original PERSONA-CHAT, where workers
rephrased the original personas to remove trivial
word overlaps.
• AUTOMATIC PARAPHRASING (Xie et al., 2020):
To paraphrase the personas in an automated man-
ner, we leveraged the existing paraphrasing system
based on back-translation. We generated the para-
phrased persona by exploiting the pre-trained En-Fr
and Fr-En translation models.3

3https://github.com/google-research/uda

• COMET (Bosselut et al., 2019): COMET is a
transformer-based model that generates common-
sense expansions of a given world event by train-
ing on a commonsense knowledge graph such as
ATOMIC. We generated expanded personas for
four relations (i.e., xWant, xNeed, xReact, xAttr)
that are suitable for representing an agent’s traits.

In our setting, the automatic paraphrasing model
generated one expanded persona for each original
persona, and the transformer-based model gener-
ated four expanded personas, one for each relation.

6.2 Persona Expansion

In this section, we compared the quality of per-
sonas expanded by CPX and baselines. We further
reported CPX’s performance according to the con-
cept extractor and sentence generator.

6.2.1 Evaluation Metrics
Automatic Evaluation To evaluate the quality of
expanded personas, we employed four metrics. (1)
Distinct-n (Dist-n) (Li et al., 2016) measures the
diversity of sentences by calculating the ratio of
distinct words against total n-grams. (2) Entropy-
n (Ent-n) (Zhang et al., 2018b) measures the en-
tropy obtained via the n-gram distribution in a sen-
tence. (3) Also, we report the length of the sen-
tence (Length) to measure the amount of content
conveyed by the persona. (4) Finally, we employ
the BERTScore (FBERT) (Zhang et al., 2019) to
measure how semantically relevant the expanded
persona is to the original persona.

Human Evaluation We conducted a human eval-
uation with 100 random samples. We hired three
human annotators proficient in domain language
through a third-party company. Annotators knew
nothing of the system they were evaluating. Also,
annotators were properly compensated for their la-
bor. Human annotators evaluated the quality of
expanded persona sentences on three criteria. The
metrics used for human evaluation are as follows:
(1) Engagement measures whether the expanded
persona is engaging or interesting. (2) Diversity
measures whether the expanded persona is diverse
and informative. (3) Relevance measures whether
the expanded persona is semantically relevant to
the original persona. The scoring range from 1
to 5, with lower indicating poor and higher indi-
cating better. Further, we conducted a pairwise
comparison between personas expanded by CPX
and personas expanded by COMET.
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Expansion Model Automatic Evaluation Human Evaluation
Dist-1 Dist-2 Ent-1 Ent-2 Length FBERT Engagement Diversity Relevance

Original 0.08 0.34 5.54 8.63 7.57 - - - -
Manual Paraphrasing 0.16 0.48 6.02 8.47 6.49 - - - -
Automatic Paraphrasing 0.07 0.39 5.79 8.54 7.64 0.90 3.08 2.78 3.98
COMET 0.04 0.16 4.43 5.92 6.17 0.81 2.76 2.43 3.04

CPXBART 0.19 0.53 6.06 8.94 11.57 0.85 4.08 4.14 3.85
CPXT5 0.20 0.51 6.17 9.01 12.07 0.86 4.12 4.22 3.66

Table 3: Automatic and human evaluation results on persona expansion. The extractor used for CPX is Ext+ trained
with C+. The best results are bolded, and the second-best are underlined.

CPX vs. COMET Desire (I want) Intent (I need) Emotion (I feel) Status (I am) Average
Metrics win loss k win loss k win loss k win loss k win loss

Engagement 87.7 12.3 0.61 85.7 14.3 0.66 91.2 5.7 0.68 82.3 17.7 0.63 86.4 13.0
Diversity 90.3 9.7 0.72 89.0 5.7 0.68 92.7 4.3 0.70 94.3 4.2 0.69 91.6 6.0
Relevance 52.1 47.4 0.52 62.7 33.3 0.54 43.5 56.5 0.48 49.2 50.8 0.45 51.9 47.0

Table 4: Pairwise comparison results between personas per each relation (prompt) expanded by CPXT5 vs. COMET.
All numbers are in percentages, and ties are not indicated in the table. The values of Fleiss’ kappa k (Fleiss, 1971)
for all results are in 0.4 < k < 0.8, indicating moderate agreement among the annotators.

6.2.2 Persona Expansion Results
Analysis on Automatic Evaluation Automatic
evaluation results are reported on the left of Table
3. CPX outperforms the baselines in all automatic
evaluation metrics in diversity. The personas ex-
panded by CPX were not only long (Length) but
also rich in content, being composed of different
and unique words (Dist-1/2, Ent-1/2). Also, CPX
showed a diversity similar to or better than man-
ual and automatic paraphrasing. In particular, we
demonstrated the effectiveness of CPX’s concept-
based approach by surpassing immensely on all
metrics of the comparative model COMET. For the
BERTScore, which indicates relevance to the origi-
nal persona, CPX performed comparatively lower
than automatic paraphrasing, i.e., machine transla-
tion. This is because the back-translated personas
have almost the same meaning as the original per-
sona. On the other hand, CPX scored higher than
the comparative generative-based model COMET.
Judging from these results, the concepts extracted
by CPX were semantically related to the original
persona, and the generator effectively generated the
expanded persona with sufficient commonsense.

Analysis on Human Evaluation Human evalu-
ation results along the three criteria are depicted
on the right of Table 3. The annotators evaluated
that CPX outperformed all baselines in terms of
Engagement and Diversity except for Relevance,
for which CPX made the second-best result but

Extractor Generator Engagement Diversity Relevance
Extori

BART
3.55 3.72 3.66

Extadd 3.16 3.24 2.98
Ext+ 4.08 4.14 3.85
Extori

T5
3.68 3.85 3.70

Extadd 3.20 3.32 2.86
Ext+ 4.12 4.22 3.66

Table 5: Human evaluation results on impact of concept
extractor. The best results are bolded.

was still close to the machine translation. For accu-
rate evaluation with the target model COMET, we
pairwisely compared the personas that each model
expanded for four relations, as shown in Table 4.
First, CPX was superior in all metrics in the evalua-
tion of the persona forms of "I want" and "I need",
which represent the agent’s desire and intent. More
specifically, CPX was overwhelmingly superior in
Engagement and Diversity. This is because the
personas generated by CPX contain richer content
than COMET. This means that CPX learned the
commonsense relationship between concepts well
and used it effectively to generate expanded per-
sonas. On the other hand, in terms of Relevance
to the original persona, CPX showed lower perfor-
mance in the remaining two persona forms of "I
feel" and "I am", which represent the agent’s emo-
tion and status. For this result, we analyzed that
it is because the too-long sentences generated by
CPX are more likely to contain concepts unrelated
to the original persona.
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Expansion Model Automatic Evaluation Human Evaluation
PPL BLEU Dist-1 Dist-2 FBERT Fluency Engagement Diversity

Original 20.24 1.28 0.04 0.19 0.09 3.12 2.44 2.32
Manual Paraphrasing 19.76 1.43 0.13 0.24 0.12 3.20 3.02 3.17
Automatic Paraphrasing 20.38 1.51 0.11 0.27 0.11 3.13 2.78 2.89
COMET 19.87 2.66 0.18 0.31 0.13 3.24 3.05 3.11
CPXBART 19.68 3.18 0.32 0.79 0.14 3.30 3.67 3.48
CPXT5 19.44 3.27 0.34 0.82 0.16 3.28 3.85 3.70

Table 6: Automatic and human evaluation results on response generation utilizing expanded personas by each model.
The generative model used in response generation experiment is GPT-2 (Wolf et al., 2019). The best results are
bolded, and the second-best are underlined.

Impact of Concept Extactor We analyzed the
impacts of the extracted concept on the CPX frame-
work. We expanded the persona and conducted
a human evaluation using the extractors Extori,
Extadd, and Ext+ learned with the three concept
sets of Cori, Cadd, and C+, respectively. As re-
ported in Table 5, the overall performance was the
best when the extractor trained with C+ was used.
In particular, when the Extadd extractor trained
using only Cadd, it showed a deficient value in
Relevance. It shows that not only the diversity of
the extracted concepts from the sentence but also
the relevance to the original persona is essential to
concept-based persona expansion.

6.2.3 Case Study
Table 7 shows an example of personas expanded by
CPX and other baseline models. The paraphrased
personas were semantically identical to the orig-
inal persona. COMET generated expanded per-
sonas that can be inferred from the original persona.
However, the expanded personas were still short
and lacking in content. On the other hand, CPX
generated expanded personas with rich content, in-
cluding extracted concepts.

6.3 Response Generation

We conducted an experiment on response genera-
tion using the original and augmented dataset ex-
panded by different strategies.

6.3.1 Dialogue Model
The dialogue model used in our response genera-
tion experiment is GPT-2 (Wolf et al., 2019) just
concatenating all persona sentences along with dia-
log history. In the case of paraphrasing, the training
dataset was constructed by concatenating all per-
sonas. On the other hand, in the case of COMET
and CPX, the number of expanded personas is large.
Therefore, training datasets were constructed us-

Original Persona:
I like to remodel homes.

Extracted Concepts:
remodel, home, country, house, repair

PARAPHRASING:
•MANUAL: I love to redesign houses.
• AUTOMATIC: I like to renovate houses.

COMET:
• xWant: I want to buy a new home.
• xNeed: I need to buy a house.
• xReact: I feel happy.
• xAttr: I am a homeowner.

CPX:
• Desire: I want to live in a country house with a large yard.
• Intent: I need to a hammer and a saw to repair my old house.
• Emotion: I feel comfortable in country home.
• Status: I am busy repairing solar panels on the roof of home.

Table 7: Examples of expanded personas.

ing only the expanded personas with the highest
score, each per original persona, by utilizing the
RoBERTa (Liu et al., 2019) based NLI model pre-
trained with the DNLI dataset.

6.3.2 Evaluation Metrics
We automatically evaluated the response generation
using the metrics used in the persona expansion
experiment. We also adopted widely used metrics
PPL and BLEU (Papineni et al., 2002) to measure
the quality of responses. Fluency, which measures
whether the generated responses are fluent, was
additionally used for human evaluation.

6.3.3 Response Generation Results
Analysis on Automatic Evaluation Automatic
evaluation results of response generation are re-
ported on the left of Table 6. The dialogue model
trained on the dataset augmented by CPX outper-
forms other comparative models in all evaluation
metrics. In particular, it significantly outperformed
other models in terms of diversity. It shows that
our expansion strategy improves the diversity of
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Personas:
I have two dogs.
I like to work on vintage cars.
My favorite music is country.

Query:
What do you usually do in your spare time?

Original: I just relax with my dogs.
Manual: I love vintage car. How about you?
Automatic: I like country music.
COMET: I want to take care of my dogs.
CPX: I like to play frisbees with my dog in a nearby park.

Table 8: Examples of generated responses.

responses based on the language understanding
ability of the pre-trained language model. Since
pre-trained language models like GPT-2 are trained
with large data, it is important to be provided with
a rich source (i.e., expanded personas) to generate
responses that include various concepts rather than
a problem of lack of fine-tuning data.

Analysis on Human Evaluation Human evalu-
ation results are shown on the right of Table 6. A
dialogue dataset augmented through CPX signifi-
cantly improved the performance of the dialogue
model for all human evaluation metrics. On the
other hand, the dataset augmented by COMET did
not achieve significant performance improvement
compared to other models. The difference in perfor-
mance between the two expansion strategies was
particularly large in Engagement and Diversity. It
means that the concept-based expansion strategy
is more suitable for improving the diversity and
richness of the persona-based responses.

6.3.4 Case Study
Table 8 depicts examples of responses generated
by models trained according to paraphrasing or
expansion strategies. The responses generated by
CPX were the richest in content. The paraphrasing-
based models responded just at the level of simply
copying personas. COMET generated a response
containing "take care" that could be inferred from
"I have two dogs." based on its causal reasoning
ability. Nevertheless, it did not significantly im-
prove the diversity of the generated responses. On
the other hand, CPX utilized the concepts such as
"frisbee" and "park" that are commonly related to
the original persona "I have two dogs." to generate
a richer utterance. We found that improving the
conceptual diversity of personas enriched persona-
based responses and made them more engaging.

0.15
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0.19

0.21

0.23

0.25

0.27

0.29

0.31

0.33

I want I need I feel I am

COMET CPX

Figure 4: Distribution of each relation (prompt) of the
expanded persona selected by the NLI model.

7 Discussions

Biases in Persona Selection While constructing
the dataset for model training, we identified the
bias in selecting the expanded personas. As shown
in Figure 4, among the four types of personas ex-
panded by COMET, the ratio of each type selected
through the NLI model is uneven. While the per-
sonas expanded by CPX had been selected more
evenly, the distribution was still somewhat biased.
This suggests that it is likely for persona expansion
models to generate more biased responses through
poor selection. It also means that the approach that
leverages NLI-based similarities between expanded
personas and predefined personas, queries, or gold
responses, in the persona selection can also intro-
duce some bias. In order to generate a richer and
unbiased persona-based response, it is necessary to
study a method of considering the fairness of this
expanded persona selection process.

Dual Use of Dataset In this study, we utilized
CommonGen dataset for the generative common-
sense reasoning task to train the proposed frame-
work. This dual use of the dataset causes some
concerns that need to be discussed. First, indiscrim-
inate use of commonsense can lead to the problem
of deceiving users or disclosing information by
making it difficult for users to recognize that their
conversation partner is a chatbot (Gros et al., 2021).
Next, the CommonGen dataset may contain biases
because it was constructed by human crowd work-
ers. These biases may cause unintended "safety"
problems where the dialogue model generates ag-
gressive and harmful responses (Dinan et al., 2022).
Fortunately, we found no such case while check-
ing extended personas and generated responses in
the CPX framework. Nevertheless, these issues
deserve careful consideration in future works lever-
aging a similar dual use approach.
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8 Conclusions and Future Work

In this paper, we proposed the concept-based per-
sona expansion framework to improve the semantic
diversity of the persona-grounded dialogue. We ex-
panded personas by extracting and utilizing seman-
tically related concepts through concept-based com-
monsense reasoning, making persona-grounded di-
alogues more engaging. During the experiments,
we identified some less relevant expansion cases.
Therefore, we have a plan to develop a method of
preventing potential overexpansion. We also found
that in order to effectively reflect the diversely ex-
panded personas in response generation, it was nec-
essary to resolve the bias in the selection process.
From this perspective, we will conduct experiments
and studies for models that can generate more ef-
fective persona-based responses through a bias-free
selection process while maintaining the diversity
of expanded personas.

Limitations

In this study, we tried to show the importance of the
diversity of expanded personas in order to generate
more engaging responses. Therefore, the narratives
in the paper and the results reported in the tables
were focused on diversity. Due to the nature of
the proposed concept-based expansion strategy, the
expanded personas are generated by using similar
but not different concepts, which are not included
in the original persona. Also, we intended that the
expanded personas be distinct from the original
persona as much as possible for the diversity that
can be gained from various concepts. For these
reasons, we decided to decrease relevance slightly
as a trade-off while increasing diversity.

Ethical Considerations

In this study, we utilized the CommonGen and
PERSONA-CHAT datasets which contain crowd-
sourced work by human annotators. Although we
did not find any notable cases during this study, the
dual use of these datasets may produce results that
contain unintended linguistic and cultural biases.
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A Implementation Details

A.1 Persona Expansion
CPX was implemented with HuggingFace’s Trans-
formers library.4 The Concept Extractor initialized
from the publicly available BERT-based-uncased5

model with 12 layers and 768 hidden sizes. We use
an Adam optimizer (Kingma and Ba, 2014) and a
learning rate of 3e-5. The training of the Concept
Extractor was conducted on an Nvidia RTX3090
24G GPU with a batch size of 16. The Sentence
Generator initialized from the BART-base6 and T5-
base7 model. We use an Adam optimizer, and
the learning rates are 3e-6 and 5e-6, respectively.
The Sentence Generator was trained on an Nvidia
RTX3090 24G GPU with a batch size of 8.

A.2 Response Generation
We utilized the repositories and implementation
details of GPT-28 for response generation. We ad-
justed some of the details of the model and trained
in a single-turn dialogue setting.

4https://github.com/huggingface/transformers
5https://huggingface.co/bert-base-uncased
6https://huggingface.co/facebook/bart-base
7https://huggingface.co/t5-base
8https://github.com/huggingface/

transfer-learning-conv-ai

B Human Evaluation Protocol

We hired three well-educated annotators from a
third-party company to conduct human evaluations.
The annotators were given the original persona and
the expanded persona pairs to evaluate persona ex-
pansion. Also, annotators were given the original
personas, the query, and the generated response
pairs to evaluate response generation. Each anno-
tator evaluated 100 samples, each sample worth
$0.1. The evaluation was conducted in a double-
blind fashion. The human evaluation metrics in-
clude: (1) Engagement, which measures whether
the expanded persona or generated response is en-
gaging and interesting; (2) Diversity, which mea-
sures whether the expanded persona or generated
response is diverse (3) Fluency, which measures
whether the generated response is fluent; (4) Rele-
vance, which measures whether the expanded per-
sona is semantically relevant to the original per-
sona. The scoring range of the metrics is 1 to 5.
The specific scoring criteria for human annotation
are shown in Table 9.

Engagement
1-2: (very) Simple and meaningless
3: Semantically moderate
4-5: (very) Interesting and want to keep the conversation
Diversity
1-2: (very) Generic and short in length
3: Conceptually moderate
4-5: (very) Informative and contain various concepts
Fluency
1-2: (very) Hard to read or syntactically incorrect
3: Grammatically correct
4-5: (very) Fluent and easy to understand
Relevance
1-2: (very) Unsuitable for given query or persona
3: Relevant to given query or persona
4-5: (very) Suitable and reflect well given query or persona

Table 9: Scoring criteria of human evaluation.
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Abstract

Although there has been a plethora of work on
open-domain conversational systems, most of
these lack the mechanism of controlling the
concept transitions in a dialogue. For activities
like switching from casual chit-chat to task-
oriented conversation, an agent with the ability
to manage the flow of concepts in a conversa-
tion might be helpful. The user would find the
dialogue more fascinating and engaging and be
more receptive to such transitions if these con-
cept transitions were made while taking into ac-
count the user’s persona. Focusing on persona-
aware concept transitions, we propose a Rein-
forced Persona-aware Topic-guiding Conver-
sational System (RPTCS). Due to the lack of
a persona-aware topic transition dataset, we
propose a novel conversation dataset creation
mechanism in which the conversational agent
leads the discourse to drift to a set of target con-
cepts depending on the persona of the speaker
and the context of the conversation. To avoid
scarcely available expensive human resources,
the entire data-creation process is mostly au-
tomatic with human-in-loop only for quality
checks. This created conversational dataset
named PTCD is used to develop the RPTCS
in two steps. First, a maximum likelihood es-
timation loss-based dialogue model is trained
on PTCD. The trained model is then fine-tuned
in a Reinforcement Learning (RL) framework
by employing novel reward functions to assure
persona, topic, and context consistency with
non-repetitiveness in generated responses. Our
experimental results demonstrate the strength
of the proposed system with respect to strong
baselines1.

1 Introduction

Due to the abundance of conversational corpora,
there has been a great interest in building open-

§equal contribution
1Codes and dataset available at https://github.com/

zishan-ahmad-nlp/persona-topic-shift

Figure 1: An illustration of the suggested task. The persona
profile and the concept path to the target concept serve as the
foundation for the created dialogues.

domain conversational systems2 (Huang et al.,
2020). While capable of producing fluent re-
sponses, these systems also frequently generate
generic responses devoid of any useful information
(Gao et al., 2019). Human discourse is complex
and difficult to replicate as it often covers a wide
range of topics (Winograd, 1977). Hence, the key
to a multi-turn conversation’s success is striking a
balance between effectively changing the subject
and keeping it on-topic (See et al., 2019).

It is also seen that even if open-domain con-
versational systems employ topic shift, they are
not able to engage user due to absence of knowl-
edge of user’s own perceptions. Therefore, to
achieve a robust topic shift guiding conversational
system, it has to evolve away from the prior fac-
tual information systems (Leuski et al., 2006) to-
wards a novel blend of both task-oriented and non-
task-oriented systems (Akasaki and Kaji, 2017).
However, they may fail to engage user in difficult
multi-turn information-seeking tasks or dialogues
(Trippas et al., 2020) and may also suffer from
“anomalous state of knowledge” (Belkin and Vick-
ery, 1985) where the user has vague information
requirements and is often struggling to articulate it
with enough precision in a conversation. Thus, we
require context-sensitive user guidance that does
not assume a rigid hierarchy of the user’s plans and

2we use the terms conversational system/agent, dialogue
system/agent, agent, and chatbot interchangeably.
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work objectives. Such a guidance, can be achieved
by utilising persona information of user with the
ongoing dialogue. This will drive the conversation
from one topic to a different one in consonance
with the user’s interests.

Focusing on these two aspects, we propose a rein-
forced persona aware topic guiding conversational
system (RPTCS). Due to scarcity and expensive-
ness of human resource, first, employing minimal
manual intervention, we present a novel persona
aware topic guiding conversational dataset (PTCD)
created employing a novel automatic conversation
creation mechanism. Majority of the topic shift
guiding conversational systems leverages only the
concept space knowledge to represent the poten-
tial conversation flow (Wu et al., 2019; Zhou et al.,
2020; Zhang et al., 2020; Wang et al., 2021; Qiu
et al., 2022). These approaches are predicated on
a restricted defined logical premise: individuals
would be interested in talking about any random
concept. This presumption can be too straightfor-
ward to mimic topic flows in real human conver-
sations. In this work, we take a significant step
toward developing a proactive conversational agent
that is more attuned to a user’s personality with
a clear conversation aim. We aim at training a
system that is able to decide on topic shifts and
generate responses that reflect these logical topic
shifts, while also considering the user persona. Fig-
ure 1 shows an example of this task. Since bringing
an open-domain conversation to a task-oriented do-
main is one of the key use cases for this system,
we chose the concepts popular in the latter domain
(Eg. restaurant, travel, clothing, smartphone, etc.).

Using PTCD, we first train a maximum likeli-
hood estimation (MLE) loss-based conversational
employing a language model (LM) GPT-2 small
(Radford et al., 2019). This trained model is
then fine-tuned in a Reinforcement Learning (RL)
framework using novel rewards designed to assure
persona, concept, and context consistency with non-
repetitiveness in the generated responses. The key
contributions of this work are four-fold (i). Pro-
posal of a new task to build a persona-aware con-
versation system for targeted topic transitions and
creation of a novel datatset PTCD to tackle the
task in-hand; (ii). A novel semi-automatic persona
aware topic guiding corpus creation method using
pre-trained models (can be adapted to the other
similar tasks in the broad area of dialogue systems),
(iii). Designing a novel reward function to built

the proposed system RPTCS in an RL framework.
(iv). Performed extensive automatic and human
evaluation by designing two novel evaluation met-
rics to evaluate topic and context consistency to
demonstrate strength of the proposed system.

2 Related Work

To have a human-like conversation and avoid off-
topic response generation, several methods have
been explored (Ghazvininejad et al., 2018; Harri-
son et al., 2020). The research community has em-
ployed ConceptNet (Speer et al., 2017) to mimick
concept transitions in human conversations, (Zhou
et al., 2018), such as: Zhang et al. (2020) used con-
cept relations with 2-hop nodes, to account more
thoroughly human concept shifts. However, none
of the works have taken into account the persona
of the user to guide the topic shift in the conversa-
tion which may act as a crucial component to have
effective communication.

Some benchmark conversation datasets has been
proposed to assess the conversation focusing on dif-
ferent personal attributes such as: (He et al., 2017)
predicts the next topic based on social and cultural
situation, ETHICS dataset constitutes the conversa-
tion based on the concept of morality (Hendrycks
et al., 2020). Hsu et al. (2018) presents emotion
labelled EMOTIONLINES dataset, Yu et al. (2020)
proposes a social relation inference based DIALO-
GRE dialogue dataset. Zhang et al. (2018) pro-
posed PERSONA-CHAT dataset to make chit-
chat dialogues more engaging by conditioning
them on user’s profile information. Most of these
datasets are collected through crowdsource work-
ers. To obtain such a large human resource is ex-
pensive, time-consuming, and can be infeasible.
We investigate an automatic data creation approach
requiring minimal manual intervention as an alter-
native to this.

Recently, Wang et al. (2021) proposed a multi-
turn topic-driven NaturalConv dataset ensuring a
smooth topic shift in conversations. Our work here
is different from the existing topic-shift guiding
conversational systems in three aspects. First, we
followed an automatic dialogue data curation pro-
cess. Second, the topic shift in the conversations
is guided using ConceptNet as well as the persona
of the user. This ensures both goals of an effec-
tive communicator viz. completing the task and
maintaining the face of the user. Third, we built a
persona aware topic guiding conversational system
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in an RL framework using novel efficient and effec-
tive reward function. To the best of our knowledge,
our proposed setup is novel and has not been tried
before.

3 Dataset Creation

To tackle the persona-aware concept shift to a target
concept, we create and propose a novel dataset. We
come up with a novel semi-automatic data creation
technique involving prompting a GPT-J model and
human intervention for quality control. The entire
dataset creation consists of the following steps:
Obtaining Seed Data: To start the few-shot di-
alogue generation, we required a seed utterance
from a user with some assigned persona. To build
In PERSONA-CHAT-grounded topic-shifting con-
versations“the first utterance of a conversation (fo-
cused on a persona-profile) in the PERSONA-
CHAT (Zhang et al., 2018) is selected. In
PERSONA-CHA", persona profiles are defined as
“profiles that are natural and descriptive, and con-
tain typical topics of human interest that the speaker
can bring up in conversation". The concepts in the
seed utterance is obtained by extracting words with

‘nouns’, ‘adjectives’, and ‘verbs’ Part-of-Speech
(PoS) tags. We call these first utterance concepts as
the source concept. The objective here is to guide
the conversation away from the source concept and
toward a target concept. Concepts like ‘travel’,

‘restaurant’, ‘shopping’, ‘electronics’, etc. are cho-
sen as the system’s target concepts.
Concept Path Creation and Selection: To have
smooth and logical transition and avoid abrupt
source-to-target concept jump, we make use of
Concept-Net (Speer et al., 2017). First, employing
Dijkstra’s algorithm, the shortest distance between
all the source-concepts in the seed dialogue and
all the target-concepts is calculated. This results
in multiple paths between each source and target
concepts. From these multiple paths only one path
has to be selected for the desired concept transition
in dialogues, i.e., based on the ongoing topic and
persona, the conversation must be able to switch
to the most suitable target and path. Although it
would be ideal for the conversation to veer toward
a subject (concept) relevant to the user persona,
the context of the conversation may not permit it.
Hence, a balance is aimed between context and
persona relevance. We extend the use of RoBERTa
(Liu et al., 2019) for contextual concept selection as
proposed by Yasunaga et al. (2021) to concept-path

selection. Let P = {p1, p2, ..., pN} be the persona
profiles of a user where pi = {w1, w2, ..., wm} is
a persona sequence. Each concept-path t to the
target is denoted by Ct = {c1, c2, ..., ct}, where
cj is a concept in the path. For each pair of per-
sona sequence and concept-path, persona relevance
probability is computed using the RoBERTa head
(LMhead). The probabilities are then averaged to
obtain Ppersona as shown in Equation 1 and 2.

Pseqp = LMhead(LMenc([pi : Ck])) (1)

Ppersona = Avg(Pseqp[c1k, c2k, ..., ctk]) (2)

Here, [:] is the concatenation operation. Using
the same RoBERTa LMhead, the path probability
Pconv with respect to the conversational context
for a conversation D = {U1, U2, ..., Un} is com-
puted (Ui are utterances in the dialogue). To obtain
Pconv, Pi in encoder LMenc are replaced with Dp

(Equation 3 and averaging the probabilities of the
concepts (Equation 2).

Pseqc = LMhead(LMenc([Dp : Ck])) (3)

Pconv = Avg(Pseqc[c1k, c2k, ..., ctk]) (4)

From the obtained persona Ppersona and contextual
Pconv concept-path probabilities, the path with the
highest probability is selected.
Utterance Generation: After selecting seed utter-
ances, new utterances are generated utilizing GPT-
J (Wang and Komatsuzaki, 2021) (Brown et al.,
2020). Taking advantage of few-shot prompting
capability of the GPT-J model, few manually writ-
ten sample conversations following the appropriate
persona and context relevant topic transitions are
used. 3. This prompt is followed by the current
seed dialogue and selected path and given as in-
put to GPT-J, which generates the next utterance
of the dialogue. To lead the conversation, all con-
cept transitions are initiated by the agent. Top_k
sampling (Fan et al., 2019; Radford et al., 2019) is
used during utterance generation and 10 candidate
responses for each input utterance is generated.
Utterance Selection: Best response out of the
10 candidates is selected by taking into account
persona-entailment, current concept relevance, and
conversation context relevance. To assess the level
of persona-entailment in the produced outputs, a
Natural Language Inference (NLI) model using
the Dialog NLI dataset is trained (Welleck et al.,

3Example of the designed prompt is given in Section A.2
of the appendix
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Total Train Test Valid
#Dialogues 2,586 1,945 406 236
#Utternaces 13,746 10,310 2,436 1,000
#Unique Concepts 1,843 1,505 617 314
#Unique Paths 1,738 1,372 316 184
Avg Path Length 3.55 3.54 3.57 3.57

Table 1: Statistics of the dataset created

2019). by fine-tuning a pre-trained BERT (Devlin
et al., 2018) model4. The probability score of en-
tailment P pient of a given utterance Uk with respect
to a persona pi are obtained by final softmax layer.
Averaging the P pient gives the final entailment score
PUk
ent for a candidate utterance Uk. This entailment

score is calculated for both the user and agent ut-
terances to counteract the contradiction to a user’s
preferences.

To make the generated response pertinent to the
conversation’s context, contextual probability score
of the candidate utterance Uk is computed. To do
so, last utterance in the conversation Uk−1 is taken
in a sequence Sctx = Uk−1 [SEP] Uk, which in
turn is given as input to BERT to obtain the Uk’s
probability score PUk

ctx with the next sentence.
To ensure the appropriateness of the created

utterance with the current concept, a concept-
relevance score is calculated.Again the BERT
model is used to encode the utterance Uk and
current concept cj to obtain the embedding rep-
resentation U embk , and cembj respectively. Then, the
concept-relevance score PUk

cpt is computed by tak-
ing the cosine similarity between U embK and cembj .
Equation 5 is used to calculate each candidate’s
final score for each speech.

PUk
final = αPUk

ctx + βPUk
ent + γPUk

cpt (5)

We set the values of the constants α, β, and γ as
0.38, 0.30, and 0.32 through several quality evalu-
ations (Detailed in Section A.1.2). The candidate
with the highest Pfinal score is chosen as the next
utterance.
Manual Filtering of Dialogues: Once the com-
plete conversational dataset is obtained, by itera-
tively employing the above steps. These dialogues
are quality-checked by human evaluators. Each
utterance is scored using two parameters, viz. Hu-
manness and Concept Consistency. Each utterance
is evaluated with a score of 0, 1, or 2, w.r.t these
two parameters where 0 denotes the lowest and
2 denotes the highest. Three human experts with

4Test set accuracy of NLI model is obtained as 88.43%.

post-graduate qualifications were asked to rate all
the generated utterances. These professionals are
regular employees in our research group and have
2 years of expertise in related fields. Following the
ratings, dialogues with utterances having a score
of 0 by any expert for ‘humanness’ or ‘concept
consistency’ are eliminated.

4 Persona-aware Topic-guiding
Conversational System

We build our proposed system RPTCS in two
phases. In first phase, an MLE-loss-based conver-
sational system (MLCS) is trained to learn the user
and agent’s utterances distribution and obtain natu-
ral language interaction. In the second phase, this
MLCS is fine-tuned in an RL framework employ-
ing proximal policy optimization (PPO) (Schulman
et al., 2017)ss method to generate persona-aware
topic guiding utterances.

4.1 Phase 1

A multi-turn conversation can be represented as
C = {a0, u0, ..., aT−1, uT−1}, where, a and u
denotes the agent’s and user’s utterances. Each
conversation is further attributed with a persona
p = {p1, p2, ..., pm} having a set of m persona
statements of user, a topic-path tp = {tp1 →
tp2 → ..→ tpk}, with k topics, had to be followed
in conversation, and with each of the agent’s utter-
ance, a < topic > (any one tpi from tp) to which
conversation has to be guided. Following (Wu et al.,
2021), the probability distributions over the con-
versation C’s utterances concatenated with user’s
persona p, topic-path tp, and agent’s < topic > to
be guided are decomposed into two LMs viz. one
for user and other for agent denoted as ρu and ρa,
respectively. Given the conversation context, the
LMs ρu and ρa predict the next token in an agent’s
generated response r = {r1, r2, ..., rt} with t to-
kens. The joint probability for an utterance ui or
ai can be formulated as:

ρu(ui|u<i, a<i) =
tui∏

j=1

ρ(rj |r<j , p, tp, u<i, a<i)

(6)

ρa(ai|u<=i, a<i) =

tai∏

j=1

P (rj |r<j , tp<i, u<=i, a<i)

(7)
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User Persona (i). i enjoy killing sea creatures. (ii). i’m a fan of animals. (iii).i’m practically a chef !
(iv). my father was in the car industry. (v). i enjoy life.

Seed User Utterance hey ! i’m a happy camper this evening . just finished making dinner .
Selected Concept Path [‘camper’, ‘backpack’, ‘food’, ‘restaurant’]

Speaker Generated Utterance Concept
Agent i am a fan of backpacking. i know a lot of people who are happy in their camp. backpack
User i would love to go backpacking but i dont have enough money to afford one. backpack

Agent i have been known to carry around my backpack full of food, i just have a
big appetite. food

User i just love food. food
Agent you must know your restaurants then. restaurant

Table 2: Sample dialogues from the corpus generated using our method.

Finally, the conversational system ρθ(C) defined
on conversation C is trained by maximizing the
likelihood estimation.

ρθ(C) =

T−1∏

T=0

ρu(ui|u<i, a<i)ρa(ai|u<=i, a<i)

(8)

4.2 Phase 2

To generate persona-aware and topic-consistent
responses ρθ(C) (MLCS) is fine-tuned in an RL
framework. For a given context, ρθ(C) generates
n possible candidates. These candidate responses
are then quality-checked in terms of persona aware-
ness, topic consistency, context consistency, and
repetition using respective rewards.

4.2.1 Rewards
To achieve utterance-persona and utterance-topic
consistency in generated responses, we design two
novel task-specific rewards viz. Utterance-Persona
consistency (R1) and Utterance-Topic consistency
(R2). Similarly, to ensure conversation properties
like contextual correctness and non-repetitiveness,
two generic rewards are designed viz. Context con-
sistency (R3) and Non-Repetition (R4). Lastly, a
compound reward function R, considering both
task-specific and generic rewards is computed,
which outputs the end reward value for the gen-
erated candidate response.
Utterance-Persona consistency Reward: The
essence of engaging response generation also re-
lies on persona of the user, hence a conversational
system should be able to maintain the utterance-
persona consistency in the generated responses.
This problem of utterance consistency with per-
sona statements of user can be characterized as a
natural language inference (NLI) problem, having
three labels viz. entailment, neutral and contradic-
tion. Entailed responses are consistent with per-
sona whereas contradictory responses are inconsis-

tent, hence, should be penalized. To build our NLI
model, BERT (Devlin et al., 2018) is employed
as a classifier, which takes input persona p and
generated candidate response r with a < SEP >
tag, and outputs one of three classes through a hot
vector [ce, cn, cc] (entailment ce, neutral cn or con-
tradiction cc). To achieve the respective class prob-
abilities, a softmax is applied on this hot-vector, i.e.
[probce , probcn , probcc ] = softmax([ce, cn, cc]).
The predicted entailed probability is used to design
the reward R1 which can be written as:

R1 = probce(rT , p) (9)

where rT represents the generated response at turn
T . It can be inferred that R1 will reward more, if
entailment probability is high.

Utterance Topic Consistency Reward: A topic
guiding conversational system should not deviate
from the topic in-hand. It should be forced to
generate topic consistent utterances by rewarding
the ones which employ the required topic. To for-
mulate the utterance topic consistency, we consid-
ered cosine similarity between topic and utterance
which is calculated using Sentence-BERT (Reimers
and Gurevych, 2019). R2 can be written as:

R2 = cos(rT , tpT ) (10)

where tpT represents the topic at turn T . Higher
cosine similarity values will lead to higher rewards
for utterance topic consistency.
Context Consistency Reward: A conversational
system is required to generate context consistent
responses. Therefore, to assess context consistency,
we devise a reward by calculating cosine similarity
(using Sentence-BERT (Reimers and Gurevych,
2019)) between generated response and agent’s and
user’s utterance at turn T . R3 can be formulated
as:

R3 =
1

2
× (cos(rT , aT ) + cos(rT , uT )) (11)
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Figure 2: Architectural overview of the proposed RPTCS. It is first initialized with trained MLE-loss based model ρθ(C),
then is fine-tuned employing PPO-loss utilizing novel reward R to build a persona aware topic guiding conversational system
(RPTCS)

.

Non-Repetition Reward: Due to repetitive same
response generation in a conversation, user’s may
not show engagement in the conversation. Hence,
the generated responses should be diverse with
each turn of the conversation. To ensure this, we
design a Non-repetition reward R4 by computing
Jaccard distance (Jaccard, 1912; Tanimoto, 1958)
between generated responses rT and rT−1 at turns
T and T − 1, respectively. R4 can be given as:

R4 = 1−
(
grT−1 ∩ grT
grT−1 ∪ grT

)
(12)

Reward Function: Lastly, to train the whole
system, reward function R is formulated using
weighted sum of all these four rewards. To ap-
proximate a better function, the sum of all weights
has been taken equal to 1.

R = δ1R1 + δ2R2 + δ3R3 + δ4R4 (13)

where δ1+δ2+δ3+δ4 = 1. The obtained value of
R assesses the quality of generated response, which
is further used to optimize the PPO loss, such that
model can learn to generate persona, topic, and
context-consistent responses.

4.2.2 Policy
A probability mapping functionPθ representing the
probability of generating an utterance r consisting
of L tokens gives the policy.

Pθ(r1:L|x) =
L∏

l=0

Pθ(rl|y<l, x) (14)

Proximal Policy Optimisation: Policy updates at
each each step are done using PPO method to en-
sure low variance. It seeks improvement on certain
parameters to update the existing policy such that
it is not too different from the old policy. First, ex-
pected reward is maximized using gradient ascent

on loss function J(θ),

∇θJ(θ) = Epr∼Pθ
[∇θlogPθ(r)Âr] (15)

Second, large deviations from old policy are re-
stricted by replacing the log term with an impor-
tance sampling and clipping is performed to pre-
vent catastrophic forgetting. It relies on specialized
clipping without any KL-divergence term (Kull-
back and Leibler, 1951) or any constraint in the
objective function.

LCLIP(θ) = Ê[min(prr(θ)Âr, clip(pry(θ),

1− ε, 1 + ε)Âr)]

Here, prr(θ) = Pnewθ /Poldθ denotes the ratio of
probabilities of the generated response between the
new and old policies. ε is the clipping range and Ây
is the estimated advantage which is the normalized
rewards in our case. Lastly, parameters are updated
using the following steps:

θk+1 = argmax
θ

E
s,a∼Pθk

[LCLIP] (16)

5 Experiments

5.1 Implementation Details
MLE loss based conversational system (MLCS) is
trained by employing two pre-trained GPT-2 small
(Radford et al., 2019) models, one for user and
other for agent. To fine-tune trained MLCS in
RL-setting, n = 3 is selected as per better loss,
after experimenting with different values of can-
didate responses i.e. n = 2, 3, 4, 5, 10. The can-
didate responses are decoded using nucleus sam-
pling (Holtzman et al., 2019) with temperature
T = 0.8 and probability p = 0.9. To train the
RPTCS seed_value = 10, human_reward =
10,max_candidate_length = 50 is adopted with
optimizer = AdamW (Loshchilov and Hutter,
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2017) and learning rate α = 2e− 05, ε = 0.2 and
epochs = 17. The reward weight combination of
0.3, 0.3, 0.2, 0.2 are chosen as the final weights for
δ1, δ2, δ3, and δ4, respectively (detailed weight op-
timization is given in Table 5 of appendix). Due to
space restrictions, detailed implementation details
of the NLI model to entail the utterance persona
consistency, and MLCM are given in Section A.1.3
of the appendix.

5.2 Evaluation Metrics
Both automatic and human evaluations are per-
formed to assess the performance of the proposed
system RPTCS. To evaluate all three tasks of
utterance-persona, utterance-topic and context con-
sistency, three metrics viz. U-PCon, U-TCon, and
CxCon respectively, are adopted. U-PCon compu-
tation can be formulated as below:

U − PCon =

∑n
j=1 classi(NLI)

n
(17)

where, class(NLI) gives one of three classes 1
(entailment), 0 (neutral), -1 (contradiction) and n
is the number of generated responses. U-TCon is
calculated as cosine-similarity between the gener-
ated response rT and topic tpT , i.e. cos(rT , tpT ).
CxCon calculates the average METEOR (Banerjee
and Lavie, 2005) score for n number of generated
responses with respect to the ground truth response
aT at turn T . It can be given as:

CxCon =
METEOR(rT , aT )

n
(18)

Further, to evaluate the quality of the generated
responses, Perplexity (PPL) and response length
(R-LEN) are calculated.

Human evaluation are performed by three evalua-
tors (regular employees in our research group) with
postgraduate experience and having proficiency in
similar tasks 5. Each evaluator is asked to inter-
act with the proposed system 20 times and evalu-
ate the conversations in terms of task-specific and
generic metrics. Former includes PerAw, TopGu -
to assess the persona awareness and topic guidance
respectively in generated conversations. Latter in-
cludes Fluen, Const, and N-Rep - to check fluency,
consistency, and non-repetitiveness of generated re-
sponses in interacted conversations. All metrics are
evaluated on an integer scale of 1-5 6.

5Human evaluators were paid as per our university norms.
6The scale 1-5 denotes low to high intensity such as PerAw

= 1 denotes highly persona awareness and PerAw = 5 denotes
no persona awareness.

6 Results and Analysis

RPTCS is compared with two baselines: (1.)
ARDM (Wu et al., 2021): A MLE loss based self-
play conversation model, which trains two GPT-2
medium models (one for user and one for agent) al-
ternatively. Here, as we are assessing only agent’s
performance, hence we train only one GPT-2 small
model. (2.) RPTCS-R: RPTCS with R = 0. Fur-
ther, to check the effects of each of the three as-
pects viz. concept-path, topic and persona, three
respective variants of ARDM viz. ARDM+CP
(ARDM considering concept-path), ARDM+CP+T
(ARDM considering concept-path and topic), and
ARDM+CP+T+P (ARDM considering concept-
path, topic and persons) are also trained to com-
pare. Lastly, to assess the importance of both task-
specific (Ts) and generic (Ge) rewards, RPTCS is
also compared with RPTCS-Ts (R = δ3R3+δ4R4)
and RPTCS-Ge (R = δ1R1 + δ2R2).
Automatic Evaluation: It can be noticed in Ta-
ble 3 that the proposed RPTCS performs better
than all four baselines viz. ARDM, RPTCS-R,
RPTCS-Ts and RPTCS-Ge in terms of all the
four metrics viz. U-PCon, U-TCon, PPL and
R-LEN. For task-specific metrics U-PCon, and
U-TCon, RPTCS achieves better scores of 95.8%,
and 0.414, respectively, with a significant differ-
ence of <18.9, 0.124>, <7.7, 0.095>, <8.4, 0.1>,
<6.7, 0.042>, and <3.5, 0.047> than the baselines
ARDM, ARDM+CP+T+P, RPTCS-R, RPTCS-Ts
and RPTCS-Ge, respectively. It can also be in-
ferred that the difference of U-TPer, U-TCon, Cx-
Con scores decreased in order ARDM>RPTCS-
R>RPTCS-Ge>RPTCS-Ts. This shows the im-
portance of task-specific rewards in our proposed
system RPTCS and it can be argued that utterance-
persona and utterance-topic consistency rewards
do force the system to adapt towards generating
persona and topic-consistent responses.

It can also be observed in the Table 3 that
RPTCS obtains better PPL = 6.14 score than that
of ARDM, ARDM+CP+T+P, RPTCS-R, RPTCS-
Ts and RPTCS-Ge with a difference of 2.53,
1.51, 1.10, 0.89, and 0.84, respectively. This
may be due to the Context consistency reward
which drives the model to generate responses con-
sistent with the conversation context, which, in
turn, leads to the generation of much more nat-
ural and fluent responses. Further, obtained a
score of R-LEN = 15.23 is also better than that
of ARDM, ARDM+CP+T+P, RPTCS-R, RPTCS-
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Model U-PCon U-TCon CxCon PPL R-LEN
ARDM (Wu et al., 2021) 76.9% 0.290 0.134 8.67 13.11
ARDM+CP 77.2% 0.303 0.145 8.34 13.21
ARDM+CP+T 77.4% 0.314 0.147 8.12 13.27
ARDM+CP+T+P 88.1% 0.319 0.160 7.65 13.86
RPTCS-R 87.4% 0.314 0.152 7.24 13.42
RPTCS-Ts 89.1% 0.372 0.161 7.03 14.27
RPTCS-Ge 92.3% 0.367 0.166 6.98 14.69
RPTCS 95.8% 0.414 0.178 6.14 15.23

Table 3: Results of automatic evaluation

Model PerAw TopGu Fluen Const N-Rep
ARDM 2.69 2.13 3.11 3.83 2.94
ARDM+CP+T+P 3.41 2.64 3.57 4.02 3.21
RPTCS-R 3.31 2.66 3.65 3.98 3.26
RPTCS-Ts 3.40 2.70 3.71 4.12 3.42
RPTCS-Ge 3.62 2.81 3.84 4.04 3.37
RPTCS 3.82 2.96 4.01 4.14 3.55

Table 4: Results of human evaluation

Ts, and RPTCS-Ge with a difference of 2.12, 1.37,
1.81, 0.99, and 0.54, respectively. This indicates
that the RPTCS is able to generate longer re-
sponses, hence, showcasing more engagingness
with the user. It can be due to the incorporation of
all four rewards whereR1,R2, andR3 play the cru-
cial role of persona, topic, and context consistency,
and R4 maintain the non-repetitiveness, hence,
driving the agent to build the rapport with a user as
well as be on the goal topic by generating diverse
and interactive responses. Engagingness rewards -
forcing the model to generate more interactive and
engaging responses. Lastly, it can also be seen in
Table 3 that PPL ter and R-LEN scores of RPTCS
decreased in order ARDM>RPTCS-R>RPTCS-
Ge>RPTCS-Ts>RPTCS, hence, strengthening
our hypothesis for the requirement of both task-
specific and generic rewards to generate persona
aware topic consistent responses.

Human Evaluation: Table 4 shows the hu-
man evaluation results for all five models viz.
ARDM, ARDM+CP+T+P, RPTCS-R, RPTCS-Ts,
RPTCS-Ge and ARDM, RPTCS-R, RPTCS-Ts,
and RPTCS. It can be noted that RPTCS yields
better scores of PerAw, TopGu, Fluen, Const and
N-Rep as compared to the the baselines, ARDM,
RPTCS-R, RPTCS-Ts and RPTCS-Ge. Scores of
Fluen: 4.01, Cons: 4.14, and N-Rep:3.55 implies
that all the four rewards R1, R2, R3, and R4 play
a critical role in obtaining most fluent, consistent,
and non-repetitive responses as compared to other
four models. Further, in terms of PerAw, and
TopGu, RPTCS attains well scores of 3.82, and
2.96, respectively, showcasing the importance of re-

wardsR1, andR2. Therefore, it can be inferred that
employing utterance-persona and utterance-topic
consistency rewards helps the proposed model to
generate persona-aware responses and is able to
guide the conversation keeping the topic intact.

7 Conclusion

For an open domain conversation to be success-
ful, proper concept transition befitting the context
is essential. Further, persona awareness of the
user may lead to user adaptive response genera-
tion, hence, resulting in more engaging and inter-
active conversations. Therefore, a conversational
agent should be able to transition the concept ef-
ficiently as well as build a rapport with the user
by understanding his/her persona. To encompass
both of these aspects, we proposed here a Re-
inforced Persona-aware Topic-guiding Conversa-
tional System (RPTCS). First, we create a persona-
aware topic transition dataset (PTCD) by leverag-
ing the few-shot prompt feature of the language
model. Second, employing GPT-2 small, we train
an MLE loss-based conversational model (MLCM)
on PTCD. Lastly, using a novel designed reward
function to ensure aspects of persona, topic, and
context consistency with non-repetitiveness, we
fine-tune MLCM adopting PPO loss optimizer in an
RL framework. Automatic and human evaluation
results strengthen the design and use of rewards
and concludes that our proposed model RPTCS
achieves state-of-the-art performance compared to
the strong baselines. Our results also concludes
that RPTCS is able to retain and facilitate persona
awareness, naturalness, and consistency at par in
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an ongoing dialogue.
In the future, we would like to look into person-

ality traits such as age, gender, etc. to model a
persona-aware conversational system.

8 Limitations

RPTCS has also some limitations. First, to cre-
ate the data, GPT-J is used which requires a large
GPU memory size (here, 40 GB). Further, empiri-
cal analysis for each of the possible combinations
of different rewards weights may lead to model
training and validation time to months. Hence,
some heuristics should be used to choose the set of
combinations of rewards and reward weights (such
as here, we restricted the reward weight sum as 1).

When interacting with the system, if users con-
tinuously state short and direct responses such as

’Yes’, ’I don’t know’, ’No’, ’I can’, ’Okay’, then
the system first tries to respond by inquiring about
topic like ’restaurant’, ’job’, ’shopping’ or ’travel’
but after two or three turns starts deviating and gen-
erating out of the context or hallucinated responses.
It is also seen that sometimes model starts attend-
ing persona statements of the user frequently and
generate most of the time only persona awared re-
sponses which tend to be out of context. Hence, the
model should be forced to generate only relevant re-
sponses and persona attention should be controlled.
This opens up the door for future studies to build
a controlled persona aware topic guiding conversa-
tional system.

9 Ethical considerations

We use a freely available dataset under a Creative
Commons license to create our new dataset. The
dataset has been used only for academic purposes,
and in complete compliance with the license. The
dataset created in this work will be made available
only after filling and signing an agreement declar-
ing that the data will be used only for research pur-
poses. The annotation for manual evaluations was
done by human experts, who are regular employees
of our research group and are paid in accordance
with the institute’s policy. There are no other issues
to declare.
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A Appendix

A.1 Implementation Details
A.1.1 Data Creation Models Details
All the models were implemented using PyTorch
(Paszke et al., 2017). The BERT model trained on
the Persona-NLI dataset was implemented using
the transformers library (Wolf et al., 2019). The
BERT model was initialized with the weights of
‘bert-base-uncased’. The model was trained with an
initial learning rate of 1e-4 with a linear schedule
and a warmup (Vaswani et al., 2017), using the
Adam Optimizer (Kingma and Ba, 2015). Mini-
batches of size 8 were used during training.

A.1.2 Values for utterance selection constants:
The values of α, β, and γ were determined empiri-
cally. Initially, all the values were set to 0.33. Then
to ensure a balance between concept-consistency,
persona-entailment, and context-relevance, these
values are varied only in the range of 0.30 to 0.40.
It was found that a higher value of α (i.e. of context-
relevance) resulted in more human-like utterances
by avoiding abrupt transitions. The value of γ
lower than 0.32 resulted in generating a higher num-
ber of concept-agnostic utterances. In this manner,
the final values of α=0.38, β=0.30, and γ=0.32 are
obtained.

A.1.3 Maximum Likelihood Estimation loss
based Conversational Model

To train MLE loss based dialogue model, two
pre-trained GPT-2-medium models (Radford et al.,
2019) with 345M parameters are used to model
the persuadee’s and persuader’s utterances. Here,
pre-trained GPT-2-medium model consists of 24-
layers, 1024 hidden units and 16 heads. We use
Byte-Pair Encoding (Shibata et al., 1999) to tok-
enize the words. The dialogue model is trained
with a learning rate = 3e-5, using AdamW opti-
mizer (Kingma and Ba, 2015) with 100 warm-up
steps and dropout rate of 0.1.

A.1.4 Specifications of Computational
Resource

To train the transformer based NLI model, MLE-
loss based conversational model and proposed
RPTCS, following configurations are used:

• GPU: A100-PCIE-40GB.

• CUDA Support: CUDA 11.x (or later.

• Memory clock: 1215 MHz.

• Total board power: 250 W.

• GPU clocks: Base: 765 MHz, Boost: 1410
MHz.

• Memory Size: 40 GB.

• Memory Type: HBM2.

• Bus Width: 5120 bits.

A.1.5 Model Run time Specifications
RPTCS takes approximately 3 mins/epoch to train
the model, hence for 30 epochs, it took 90 minutes
to train the model. Further, if we try to perform val-
idation along with training, considering three candi-
date responses per utterance per dialogue, RPTCS
takes approximately 30 mins/epoch, hence, total
time it took for 900 minutes (15 hours) to train and
validate the model. Finally, to evaluate the model,
the testing of proposed system takes approximately
5 minutes for 200 utterances.

REWARD WEIGHT OPTIMIZATION
δ1 δ2 δ3 δ4 PPL
0.4 0.4 0.1 0.1 6.53
0.1 0.1 0.4 0.4 6.82
0.2 0.2 0.3 0.3 6.64
0.2 0.3 0.3 0.2 6.44
0.3 0.2 0.3 0.2 6.30
0.3 0.3 0.2 0.2 6.14

Table 5: Weight Optimisation using different values of
δ.

A.2 Data Creation
In total 22 concepts were used as targets for obtain-
ing the path. The complete list of the concepts is
as follows: (i). travel, (ii). journey, (iii). voyage,
(iv). outing, (v). restaurant, (vi). hotel, (vii). inn,
(viii). diner, (ix). cafe, (x). canteen, (xi). bar,
(xiii). shopping, (xiv). mall, (xv). market, (xvi).
grocery, (xvii). electronics, (xviii). mobile, (xix).
laptop, (xx). computer, (xxi). smartphone, and
(xxii). camera.

We use six-shot prompts to generate the syn-
thetic data. We provide a sample of the one-shot
version of the prompt below. At the end of the
sequence, we also append the persona, path, and
utterances for which the next utterance needs to be
generated. The six-shot prompt follows the same
pattern with six examples in the input sequence.
We restrict our prompt to six shots since the maxi-
mum sequence length allowed in GPT-J is 2,048:
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<startdial>
<persona> i enjoy sprinting and long races. | i
am at the end of my career. | i recently started
a position helping others with daily challenges
| i used to be very unhealthy. </persona>
<transitions> retirement -> retreat -> travel
</transitions>
<topic> topic remain | retirement </topic> user:
i am thinking about my upcoming retirement .
<topic> topic transition | retirement -> retreat
</topic> agent: you should go on a retreat, it
will help clear your mind and keep you healthy
.
<topic> topic remain | retreat </topic> user:
i’ve been thinking about it, but i am a little
short on money .
<topic> topic transition | retreat -> travel
</topic> agent: maybe you could go on a trip
to a country with low cost of living.
</enddial>

<startdial>
<persona> like to tinker with machines. | i had
a run-in with the law | i enjoy seeing nature. | i
am not an honest person. </persona>
<transitions> scene -> photo -> camera
</transitions>
<topic> topic remain | scene </topic> user: the
sunset makes for a great scenery .
<topic> topic transition | scene -> photo
</topic> agent:
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Abstract

Warning: This paper includes messages that
may contain instances of vulgarity, degrading
terms, or hate speech, which may be offensive
or upsetting to some readers.

Hate speech has unfortunately become a signif-
icant phenomenon on social media platforms,
and it can cover various topics (misogyny, sex-
ism, racism, xenophobia, etc.) and targets (e.g.,
black people, women). Various hate speech de-
tection datasets have been proposed, some an-
notated for specific topics, and others for hate-
ful speech in general. In either case, they often
employ different annotation guidelines, which
can lead to inconsistencies, even in datasets
focusing on the same topics. This can cause
issues in models trying to generalize across
more data and more topics in order to improve
detection accuracy. In this paper, we propose,
for the first time, a topic-oriented approach to
study generalization across popular hate speech
datasets. We first perform a comparative analy-
sis of the performances of Transformer-based
models in capturing topic-generic and topic-
specific knowledge when trained on different
datasets. We then propose a novel, simple
yet effective approach to study more precisely
which topics are best captured in implicit mani-
festations of hate, showing that selecting com-
binations of datasets with better out-of-domain
topical coverage improves the reliability of au-
tomatic hate speech detection.

1 Introduction

On social media and other online communication
platforms, hate speech (HS hereafter) is found in
many forms, from textual harassment to threats,
targeting an individual or group (e.g., black peo-
ple, women), based on some characteristics, such
as race, color, ethnicity, gender, sexual orientation,
nationality, religion, etc, which we refer to as top-
ics. While the broad nature of these topics of HS is
generally understood (Erjavec and Kovačič, 2012),

determining whether a social media post is a man-
ifestation of HS (and if so, to which topic(s) it
belongs to) is not a trivial task for humans and au-
tomated machine-learning systems. Indeed, the lat-
ter often require large quantities of annotated data,
which in the case of HS, is made difficult due to (1)
the absence of a comprehensive definition of these
topics; but also, (2) the potential internal biases
and subjectivity present in annotators and/or anno-
tation guidelines employed to construct annotated
datasets (Schmidt and Wiegand, 2017; Fortuna and
Nunes, 2018; Vidgen et al., 2019; Fortuna et al.,
2020).

To palliate these issues, cross-dataset evalua-
tion has become an active line of research aiming
at studying the generalization capabilities of HS
detection systems to unseen data during training
(Talat et al., 2018; Ludwig et al., 2022; Toraman
et al., 2022). As data collection and annotation is
an expensive and time-consuming process, current
approaches use mixtures of existing HS detection
datasets to study generalization across different
social media platforms (Swamy et al., 2019; Salmi-
nen et al., 2020; Nejadgholi and Kiritchenko, 2020)
or across different manifestations of HS, often rely-
ing on one-to-many (train on one dataset/mixture,
test on others) experimental settings (Fortuna et al.,
2021; Talat et al., 2018; Chiril et al., 2022; Talat
et al., 2018; Karan and Šnajder, 2018). In most of
these, a unification scheme is proposed to adapt the
original datasets’ potentially fine-grained annota-
tions to a set of binary labels, which can often fail
to take into account the heterogeneity inherently
present across different encodings of HS (Vidgen
et al., 2019).

In addition, some datasets intentionally focus
only on some specific kinds of manifestations of
HS covering for example gender (e.g., misogyny,
sexism), ethnicity, religion or race (e.g., xenopho-
bia, anti-immigrants/refugees HS), i.e., they are
topic-specific, whereas others attempt to cast a
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wider net without specific sets of topics in mind,
i.e., they are topic-generic. In either case, varia-
tions will always exist, either due to the reasons
mentioned above, or due to shifts in the content
found on social media through time. All of these
may cause significant differences in the topics of
HS that classification models might learn to rec-
ognize, which ultimately might make them less
reliable, particularly in out-domain contexts (Yin
and Zubiaga, 2021).

Acknowledging these issues and being aware
of the noise that will invariably be introduced by
mixing together different datasets, we propose for
the first time to empirically study what modern
Transformer architectures can effectively learn to
generalize from existing datasets, in a unified set-
ting, with a focus on their topical nature. More
precisely: Do models learn similarly from topic-
generic datasets as from mixtures of topic-specific
datasets? Does this acquired knowledge generalize
to implicit expressions of HS, and if so, which finer-
grained HS topics are learned by these models?
Our contributions are:

(1) An in-depth analysis of the generalizability of
generic HS datasets, in which we show how using
mixtures of those could be effective to attain better
generalization across more topics.

(2) A similar analysis for topic-specific datasets,
for which we show successful generalization in-
domain, especially when using models fine-tuned
on mixtures of such corpora.

(3) A novel, simple yet effective approach to study
which finer-grained topics are best captured when
dealing with implicit expressions of HS. We show
that selecting mixtures of datasets with a better top-
ical coverage can improve the reliability of models
for out-of-domain applications.

2 Related Work

A number of previous works have studied general-
izability of HS detection datasets and models, with
different focuses: for example, Fortuna et al. (2020)
and Fortuna et al. (2021) have analyzed the compat-
ibility of many HS datasets (including some used
in this study), both in terms of their properties (ori-
gin of data, annotated phenomena, class definitions,
etc.) and empirically with intra- and inter-dataset
generalization experiments. They conclude that
model choice, intra-dataset performance, and the
type of phenomenon being classified, are the most

important factor that determine generalization. In
particular, they conclude that phenomena like toxic-
ity, abuse, or offensiveness that are often lexicalized
are easier to generalize than hate speech, something
which was also confirmed and discussed in other
works (Nejadgholi and Kiritchenko, 2020; Yin and
Zubiaga, 2021). In this paper, we are interested
in the topic-oriented nature of HS specifically, and
thus discard these former classes from our study.

Alternative solutions have recently been pro-
posed to handle unseen topics by building new
target-oriented datasets from scratch, such as the
HateXplain dataset (Ludwig et al., 2022), with
an additional labeling of the target topics of hate
(Race, Religion, and Origin). While such linguis-
tic resources are valuable for the research commu-
nity, we believe existing larger datasets could be
successfully exploited for generalization, as mix-
tures of datasets, as shown for example by Fortuna
et al. (2018), Salminen et al. (2020), and Chiril
et al. (2022), or, in a different fashion, by multitask
HS detection systems or domain adaptation tech-
niques (Talat et al., 2018; Kapil and Ekbal, 2020;
Safi Samghabadi et al., 2020). In this paper, we
continue this line of research by proposing for the
first time, as far as we know, models able to gen-
eralize across topic generic vs. specific datasets
as well as predict fine-grained manifestations in
implicit hate messages. This is particularity chal-
lenging as these manifestations are more difficult
to generalize due to their limited lexical features
(ElSherief et al., 2021; Qian et al., 2019).

To this end, we rely on Transformer models like
BERT that have been shown to be able to gen-
eralize better overall than previous architectures
(Swamy et al., 2019). In particular, we experiment
with both existing BERT-like models, some pre-
adapted to the domain of HS, as well as T5 (Raffel
et al., 2020), a text-to-text architecture that has
never been used in a generalizability study.

3 Datasets

We experiment with six popular and freely avail-
able English tweets corpora (or English subsets
thereof) from previous studies. We first present
the datasets and how they were used in a com-
mon experimental setting. We then provide some
discussions on the compatibility of these datasets,
and how this may impact the generalization perfor-
mances in our experiments.
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3.1 Topic Generic vs. Topic Specific Datasets

The first two datasets are topic-generic while the
other four are topic-specific, as follows.
Davidson (Davidson et al., 2017). It contains En-
glish tweets annotated into hate speech, offensive,
and neither, with the intent of helping to distin-
guish between messages simply containing offen-
sive terms, from those actually manifesting HS.
Founta. We make use of the dataset released by
(Kallumadi et al., 2020) which is an updated ver-
sion of the dataset initially proposed by Founta
et al. (2018) and annotated for four types mutually
exclusive of abusive behaviors: abusive, hateful,
spam and normal.
IberEval (Fersini et al., 2018b) and Evalita
(Fersini et al., 2018a) are part of the Automatic
Misogyny Identification (AMI) shared task which
aims at identifying tweets that convey hate or prej-
udice against women while categorizing different
forms of misogynous behavior. We only use the
main binary layer of annotation (i.e., presence vs.
absence of misogyny).
HatEval (Basile et al., 2019) also known as
SemEval-2019 Task 5, is a topic-specific HS detec-
tion dataset with tweets targeting immigrants and
women, and annotated with three different binary
layers of annotation: hateful/non-hateful, target-
ing a group/individual, aggressive/non-aggressive.
Note that most of the tweets that target women in
this dataset were derived from the AMI corpora
(IberEval and Evalita).
Waseem (Talat and Hovy, 2016). It contains
tweets targeting gender minorities, instances of
racism, and tweets that were judged to be neither
sexist nor racist.

We frame all the datasets used here as binary
HS classification tasks, with the labels “hate-
ful” (also referred to as the positive class) for
instances containing some manifestation of hate
speech, and “normal” for those containing none.
Hence, for Founta and Davidson we filter out
retweets/duplicates (keeping only the source tweets
and their annotations) and only keep the hate-
ful/hate speech and normal classes, and similarly,
for the different topic-specific datasets, we unify
the specific hate classes (misogyny, sexism, racism)
with hateful, and the respective negative classes
with normal.

To allow a more granular and topic-level anal-
ysis of results, we split all multi-targets topic-
specific datasets into separate training, validation,

and testing sets, according to the topics. Therefore,
we split HatEval into its two topics subsets (i.e.,
HatEvalwomen and HatEvalimmigrants) and Waseem
into Waseemsexism and Waseemracism. However, in
this last dataset, because only one negative class is
provided, and corresponds to both the absence of
sexism and racism, we choose to duplicate it and
use it as the negative class for both subsets.

When not explicitly provided, we use a 75%-
20%-5% train-test-validation split ratio. Table 1
further details how datasets have been mixed to
train our models.

3.2 Issues with Dataset Compatibility

Because we also manipulate mixtures of these cor-
pora, the effective hateful and non-hateful classes
will contain instances annotated within different
contexts and labelling guidelines. For example, the
Evalita and IberEval datasets are annotated only
for the presence of misogyny, and not other man-
ifestations of HS. This makes their negative (i.e.,
non-misogyny) class inconsistent with, say, the neg-
ative class from a topic-generic dataset, which is
not ideal.

Aside from re-annotating all these datasets un-
der a unified and consistent annotation schema, the
issues that may arise as part of these simplifications
cannot be circumvented, and should thus be taken
into account as a fixed parameter in our experi-
ments. These issues have been broadly acknowl-
edged in the relevant literature (Schmidt and Wie-
gand, 2017; Fortuna and Nunes, 2018; van Aken
et al., 2018). As noted by Malmasi and Zampieri
(2018) and Poletto et al. (2021), the distinctions
between offense, abuse, and HS, are not always
clear-cut, which can cause issues in generalization
experiments, due to the former’s in theory more
lexical nature (Vidgen et al., 2019; Fortuna et al.,
2020).

Furthermore, as noted by Madukwe et al. (2020),
even when using relatively similar definitions for
these phenomena, a number of other parameters
may affect the compatibility, consistency, and com-
parability between HS detection datasets, from bi-
ases introduced in the annotations, differences in
preprocessing steps (e.g., anonymization, emojis,
URLs, etc.), to issues of class balance and unspeci-
fied train-test-validation splits.

We are aware that mixing the datasets may ef-
fectively introduce various kinds of noise in the
training and evaluation data, but we consider it
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Topic Dataset Abbrev. Total Size Pos. Size Ratio Train Val. Test

Topic-Generic
Davidson Gene Davi 5590 1430 25.58% 4293 179 1118
Founta Gene Fnt 57355 4119 7.18% 44048 1836 11471

Topic-Specific
(Gender)

Evalita Gndr Evit 5000 2245 44.90% 3839 161 1000
HatEvalwomen Gndr HatE 6472 2845 43.96% 4500 500 1472
IberEval Gndr Iber 3977 1851 46.54% 3120 131 726
Waseemsexism Gndr Wasm 14531 3216 22.13% 11159 465 2907

Topic-Specific
(Race)

HatEvalimmigrants Race HatE 6499 2617 40.27% 4500 500 1499
Waseemracism Race Wasm 13272 1957 14.75% 10192 425 2655

Mixtures

Topic-Generic Mixture Gene Mixt Davidson + Founta

Gender Topic Mixture Gndr Mixt Evalita + HatEvalwomen + IberEval + Waseemsexism
Race Topic Mixture Race Mixt HatEvalimmigrants + Waseemracism
Topic-Specific Mixture Spec Mixt Topic Gender Mixture + Topic Race Mixture

Table 1: Overview of the datasets used to train models in this study.

to be part of the experimental settings, especially
since these kinds of issues would likely as well be
encountered in end-user applications dealing with
raw unfiltered data.

4 Models

To study how different pre-trained models and ar-
chitectures may differ in how they capture HS in
various settings, we choose five pre-trained Trans-
formers from the literature. Among them, the last
three have been adapted to the domain of HS detec-
tion, either through pretraining or pre-finetuning,
on data related directly or indirectly to HS detec-
tion. For the experiments, we relied on the Hugging
Face transformers library (Wolf et al., 2020).

RoBERTa-base (Liu et al., 2019) is an optimized
BERT-like (Devlin et al., 2019) encoder Trans-
former commonly used for various NLP classifica-
tion tasks, including HS detection.

T5-base is the 220 million parameters pretrained
variant of the T5 architecture, initially proposed by
Raffel et al. (2020). It differs from BERT-like en-
coder Transformers in that it is a text-to-text model,
for which classification tasks are reframed as text
generation, with the output labels used in their tex-
tual form (in our case, “normal” and “hateful”),
and as this particular variant was also pretrained
on various supervised tasks (sentiment analysis,
natural language inference, and question answer-
ing, etc.), a task prefix is traditionally prepended to
the input text, which for our fine-tuning, we fix to

“hate speech: ”.

fBERT (Sarkar et al., 2021) and HateBERT
(Caselli et al., 2021) are two models derived from

BERT, retrained with a Masked Language Mod-
elling (MLM) objective on over 1.4 million social
media offensive posts from the SOLID dataset, and
Reddit Abusive Language English dataset (RAL-
E), respectively.

ToxDectRoBERTa was proposed by Zhou et al.
(2021), and is a RoBERTa-large model, finetuned
on Founta, with the hateful and abusive classes
merged into a single toxic class. The authors use
the methods proposed by Clark et al. (2019) and
Swayamdipta et al. (2020) to attempt to avoid
dataset bias issues, such as spurious correlations
between particular lexical and dialectical markers
(such as those found in African American English)
with the toxic class.

5 Cross-Topics Generalization

We first study the differences in generalizability be-
tween topic-generic and topic-specific datasets and
their potential mixtures, in a cross-dataset/mixture
setting: in each individual experiment, one of
the previously described models is trained on one
dataset/mixture and tested on all individual test sets.
For technical details on the experimental parame-
ters used in this study, see Appendix A.

To measure improvements or deteriorations in
performances in the generalization experiments, Ta-
ble 2 presents an intra-dataset evaluation, in which
models are simply trained and tested on the same
datasets, for the sake of comparison. In the remain-
der of this section, we report macro F1 scores on
all test sets (see Table 1 for abbreviations), with
the best scores for each test set highlighted in bold.
Scores are gradient-colored for legibility.
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Dataset \ Model T5-base RoBERTa-base ToxDectRoBERTa fBERT HateBERT

Gene Davi 92.70 93.30 93.78 92.46 93.14
Gene Fnt 81.08 80.84 85.92 80.98 79.41

Gndr Evit 67.00 69.58 67.37 73.12 71.02
Gndr HatE 46.29 56.88 51.65 64.28 59.11
Gndr Iber 84.86 88.76 83.89 84.55 86.41
Gndr Wasm 85.81 87.11 86.27 86.28 86.05

Race HatE 38.73 38.24 40.75 41.72 38.53
Race Wasm 87.03 86.27 86.29 87.53 86.37

Table 2: Results of intra-dataset evaluations (training and testing on the same dataset’s train and test sets).

5.1 Learning from Topic-Generic Datasets

We investigate here how well knowledge can trans-
fer from topic-generic to topic-specific datasets.
We thus train each of the five chosen models on the
Davidson (Gene Davi) and Founta (Gene Fnta)
train sets, as well as on a mixture of the two (Gene
Mixt), then evaluate those models on every individ-
ual test set.

Table 3 presents the results of these evaluations,
in terms of macro F1 score. Observing the results,
firstly, we can notice that Davidson and Founta
generalize relatively well to each other, with rel-
atively small deteriorations in F1 scores (∼ −10
F1) compared to the intra-dataset models (see Ta-
ble 2), in the favor of Davidson → Founta for
our 5 models. When used as a mixture of datasets
(Gene Mixt), we observe very small improvements
for 3 of our five models and very small deteriora-
tions (∼ ±1 F1) for the rest (RoBERTa-base and
ToxDectRoBERTa), which would tend to indicate
a good compatibility between these two datasets,
or at the very least, some high overlap in the topic-
generic HS knowledge extracted by Transformer
models across these two datasets.

Looking then at the evaluation results obtained
on the topic-specific test sets, we can make a num-
ber of observations: first, we note quite significant
deteriorations compared to the intra-dataset models
for all datasets, except for both HatEval subsets,
in particular HatEvalimmigrants, for which all three
topic-generic datasets/mixture yield significant im-
provements (from ∼ +3 F1 up to ∼ +27 F1). We
believe this to be due to a significant distribution
shift between the HatEval train and test set, which
would explain why the models perform so poorly
in the intra-dataset setting, while using different
training sets appears to significantly improve per-
formance.

For the other datasets, the least significant de-
teriorations can be found for Evalita, while the
greatest ones are found for Waseemsexism, which
may indicate an overall low overlap in the types
of manifestations of HS found in the topic-generic
and topic-specific datasets explored here. How-
ever, in most cases, the use of the topic-generic
mixture (Gene Mixt) appears to be beneficial, in
that it tends to attenuate the worst deteriorations
found in models trained on Davidson or Founta
individually. This may indicate that using mixtures
of topic-generic training datasets may be beneficial
when trying to detect HS instances where the topic
is not necessarily known.

5.2 Learning from Topic-Specific Datasets

We similarly trained HS classifiers, this time on the
remaining 6 topic-specific datasets, separated into
the Race and Gender topics (see Table 1). Table
4 presents the results (in a form similar to Table
3), however, for space reasons and as they are the
focus of our study, we only present the results for
the gender and race topics mixtures (Gndr Mixt,
and Race Mixt respectively), as well as the mixture
of both (Spec Mixt). See Table A in Appendices
for more detailed results.

Observing the results, we can first see that, simi-
larly to the previous experiments, training on these
three mixtures of topic-specific datasets does not
seem to generalize too well back onto the topic-
generic datasets, with even greater deteriorations
in F1 scores compared to the intra-dataset setting
(cf. Table 2). This is the most pronounced for Race
Mixt, which is the smaller of the two one-topic
mixtures. Even more prominently than for topic-
generic mixture discussed previously (Gene Mixt),
we find that the topic-specific mixture (Spec Mixt),
which combines both the Gender and Race topics,
yields significantly lesser deteriorations than ei-
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Model T5-base RoBERTa-base ToxDectRoBERTa fBERT HateBERT

Test
Train Gene

Davi
Gene
Fnta

Gene
Mixt

Gene
Davi

Gene
Fnta

Gene
Mixt

Gene
Davi

Gene
Fnta

Gene
Mixt

Gene
Davi

Gene
Fnta

Gene
Mixt

Gene
Davi

Gene
Fnta

Gene
Mixt

Gene Davi 92.70 82.64 93.92 93.30 82.50 91.60 93.78 84.73 90.96 92.46 85.59 92.92 93.14 85.43 93.42
Gene Fnt 73.02 81.08 81.41 74.50 80.84 80.49 81.42 85.92 84.70 76.47 80.98 81.37 73.02 79.41 80.32

Gndr Evit 63.29 58.07 61.79 60.68 58.51 56.97 62.10 54.25 60.20 61.44 57.00 62.16 63.92 56.74 59.99
Gndr HatE 42.21 42.90 54.60 46.39 55.17 49.45 40.30 39.81 52.35 38.25 49.75 45.83 44.46 55.76 56.31
Gndr Iber 57.76 74.22 59.48 60.50 62.96 68.89 64.14 73.00 67.83 60.34 71.43 63.74 60.12 67.11 65.24
Gndr Wasm 54.06 59.07 52.21 51.55 51.11 51.63 51.13 56.44 52.72 53.84 61.47 51.73 52.36 58.24 54.52

Race HatE 43.75 64.54 50.97 47.79 56.76 63.71 52.23 68.58 66.92 50.65 66.49 45.70 44.13 66.08 65.62
Race Wasm 56.66 72.73 73.69 56.89 75.52 70.72 69.92 73.47 73.45 70.16 72.33 70.01 63.01 72.81 73.28

Table 3: Results of learning from the two topic-generic datasets used here, Davidson (Gene Davi) and Founta (Gene
Fnta), as well as their mixture (Gene Mixt). Scores are gradient-colored for legibility.

Model T5-base RoBERTa-base ToxDectRoBERTa fBERT HateBERT

Test
Train Gndr

Mixt
Race
Mixt

Spec
Mixt

Gndr
Mixt

Race
Mixt

Spec
Mixt

Gndr
Mixt

Race
Mixt

Spec
Mixt

Gndr
Mixt

Race
Mixt

Spec
Mixt

Gndr
Mixt

Race
Mixt

Spec
Mixt

Gene Davi 61.72 50.23 68.33 62.20 47.75 68.22 65.04 62.26 67.13 68.38 51.78 72.60 62.67 56.10 68.75
Gene Fnt 58.61 57.44 62.09 57.60 54.14 61.17 62.92 60.92 63.24 60.46 55.14 59.93 57.91 58.11 63.36

Gndr Evit 82.90 36.42 84.78 86.33 35.92 86.89 85.40 42.15 85.58 88.59 38.58 87.37 87.96 38.95 86.80
Gndr HatE 47.83 36.82 54.58 52.69 37.02 53.65 50.80 48.80 58.53 54.80 36.71 58.44 55.33 42.57 49.06
Gndr Iber 93.31 40.84 93.17 92.12 38.66 92.84 92.32 40.84 92.30 92.55 39.42 92.55 92.85 39.42 92.86
Gndr Wasm 85.14 44.92 87.85 85.66 43.96 88.53 85.72 44.76 87.39 86.92 43.59 87.93 84.85 44.28 88.87

Race HatE 42.98 40.49 44.29 37.69 40.44 38.06 38.59 41.23 44.03 39.47 43.68 40.40 37.56 37.01 35.80
Race Wasm 46.49 86.76 85.39 46.30 85.90 88.00 48.12 87.05 85.46 48.58 86.25 89.17 46.66 86.42 88.37

Table 4: Results of learning from the mixtures of the gender topic-specific (Gndr Mixt) datasets (Evalita,
HateEvalwomen, IberEval, and Waseemsexism), race topic-specific (Race Mixt) datasets (HateEvalimmigrants, and
Waseemracism), and a mixture of both topics (Spec Mixt).

ther of the two individually: this intuitively makes
sense, as both separate topics can help cover dif-
ferent subsets of the topic-generic datasets, and
should also help in learning manifestations of hate
which exist at the intersection of both topics.

Looking at the scores obtained on the topic-
specific test sets, we can observe that, unlike in
the topic-generic generalization experiments, both
the one-topic mixtures and Spec Mixt appear to
yield improvements over the intra-dataset models,
for most of the models. For Gndr Mixt and Race
Mixt, the improvements are, as expected, mostly
found for the test sets of the datasets making up
the mixtures, but not always: for example, with the
T5-base model, training on Gndr Mixt appears to
yield improvements on Waseemracism (∼ +4 F1).
This seems to indicate a better ability to generalize
in-domain from mixtures of topic-specific datasets,
at least to other topic-specific datasets, but more
experiments with more topic-specific datasets, cov-

ering a wider range of topics, would be necessary
to determine whether this may also apply to topic-
generic datasets.

6 Finer-Grained Topics Analysis

To better understand which manifestations of HS
can be generalized to out-of-domain data, we
then perform a finer-grained analysis of the topics
learned by our models, by relying on an implicit
hate speech dataset, for which fine-grained target
annotations are available.

6.1 Implicit Hate Speech Dataset
IMPLICIT HATE CORPUS (which we refer to as
ElSherief, for brevity) corresponds to the dataset
proposed by ElSherief et al. (2021), which consists
of 21,480 English tweets annotated for (in a first
stage) the presence of implicit or explicit HS (or
neither), as mutually exclusive classes. Further, for
each of the tweets containing implicit HS, two an-
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notators supplied the targeted demographic groups
and the implied statement of the hateful messages,
both as free-form texts. In our experiments, we rely
on the 6,196 implicit hate instances and their tar-
get annotations, which we have manually grouped
into different sets of finer-grained topics of HS
(whose sizes are in Table 5): Islam, Black People,
Immigrants / Refugees, Beliefs / Religion, Gender,
LGBTQIA+, Unspecified Minorities, and National-
ity.

6.2 Results

To better show the observations that can be mainly
linked to training dataset/mixture selection, we
choose to present, in Table 5, the results of the
best performing non-domain adapted architecture
used here, T5-base. To this end, we rely on the pre-
viously mentioned trained T5-base models to ob-
tain binary HS predictions on the entire processed
ElSherief dataset, and compute the accuracy (as
the tested instances are by definition all from the
positive class) of the models for each of the finer-
grained topic-specific subsets described previously.

The first three results columns show the top-
ics learned by the models trained on the topic-
generic datasets, Davidson, Founta, and their
mixture (Gene Mixt). We observe that the model
trained on Founta alone yields the highest accu-
racy scores over a number of topics, except for the
Immigrants/Refugees, Unspecified Minorities, and
Gender topics. Due to the latter’s small size, and
higher degree of co-occurring kinds of HS mani-
festations (see Section 6.3), accuracies appear to
be relatively lower across the board, even for the
gender topic-specific datasets. Still, topic-generic
datasets, and their mixture, display fairly decent
generalization on average for most fine-grained
topics analyzed here, and represent a promising
avenue for future research aimed at constructing
effective out-of-domain generalization mixtures of
datasets.

The next group of three columns show the dif-
ferences in variety of finer-grained topics, between
the gender and the race topic, and this in spite of
fewer number of instances in the Race topic mix-
ture compared to Gender one. Training on both
topics combined (Spec Mixt) only yields improve-
ment in the Gender and LGBTQIA topics, while all
the other accuracies drop. This could be a sign that
the dual-topic mixture allows for the learning of
intersectional manifestations of HS between these

topics. Indeed, in the Gender group, we find that
22 out of the 58 instances also belong to one or
more other groups, and among those, 16 are in the
Muslims, Immigrants / Refugees, or both groups
(10 for Immigrants / Refugees and/or Black People
in LGBTQIA). As such, it appears that mixtures of
topic-specific datasets may prove useful in the gen-
eralization of intersectional HS detection, though
more research would be necessary to verify this for
other topics, and with more data.

The next two columns demonstrate how two
datasets annotated for similar topics can wildly
vary in which fine-grained topics they allow mod-
els to capture. Due to the significant differences in
data collection, annotation, and cultural/temporal
contexts, the HatEval and Waseem datasets result in
very different learned distributions of fine-grained
topics, with the latter almost exclusively covering
the Muslims topics, whereas the former yields a
more varied, and overall more performant on the
ElSherief dataset, out-of-domain generalization.

The final group of three columns further illus-
trates this point: Waseem yields significantly lower
performance on the Gender topic, and, if removed
from the Gender topic mixture (Gndr Mixt), im-
proves its overall accuracy. While removing the
entirety of a dataset might not be ideal, this shows
the importance of data selection for both in and out-
of-domain generalization, and we believe this kind
of analysis could be used to guide data selection,
for the purpose of constructing such mixtures of
datasets.

6.3 Error Analysis
To further investigate how these different models
behave on those out-of-domain instances, we per-
form and present an error analysis on a selection of
instances1 from some of the different finer-grained
topics.

We find that misclassifications are often due to
several factors, among which implicit expressions
of HS such as stereotypes, irony, or humor (as in
(1)), or the presence of multiple topics of HS used
in potentially ambiguous ways (2): is this instance
(ironically) Islamophobic, sexist, or both?

(1) what pronoun should we use to refer to
people who are transitioning into martians ?

(2) women are intellectually deficient, islam says

1These are examples taken from the ElSherief public
dataset which provides texts of the tweets (because of Twitter
otherwise having deleted a lot of them).
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Model T5-base

Test
Train Size Gene

Davi
Gene
Fnta

Gene
Mixt

Gndr
Mixt

Race
Mixt

Spec
Mixt

Race
HatE

Race
Wasm

Gndr
Iber

Gndr
Wasm

Gndr
Mixt\Wasm

All ES

Muslims 801 35.58 81.90 56.67 1.13 63.17 41.57 70.04 39.95 2.50 0.37 5.36 52.06 94.51
Black People 1391 78.43 78.58 54.71 2.80 34.94 23.22 52.41 2.44 3.16 0.93 9.78 50.75 88.79
Immigrants /
Refugees 1386 24.82 47.40 26.19 2.45 53.03 42.14 66.52 1.30 2.45 0.51 9.95 50.36 96.90

Beliefs /
Religion 652 63.03 76.99 53.53 1.68 35.74 28.53 51.69 6.74 2.76 0.16 6.44 53.99 93.25

Gender 58 31.03 41.38 24.14 32.76 17.24 46.55 25.86 5.17 44.83 12.07 46.55 48.28 96.55
LGBTQIA 87 43.68 63.22 33.33 3.45 12.64 21.84 37.93 0.00 12.64 2.30 14.94 32.18 88.51
Unsp.
Minorities 1147 79.42 66.61 40.45 1.22 23.45 12.55 44.90 2.01 1.48 0.17 6.02 38.10 85.44

Nationality 203 50.24 67.98 44.83 1.97 34.97 24.14 56.16 3.45 4.43 0.49 7.39 40.39 84.24

Table 5: Accuracy scores obtained by the T5-base models trained on the datasets and mixtures of datasets (columns),
evaluated on each of finer-grained topic of HS grouped from the ElSherief dataset (rows), with the number of
instances of each topic reported in the Size column. The best accuracies for each topic are highlighted in bold,
and the scores are gradient-colored for legibility. Gndr Mixt\Wasm corresponds to the Gender topic mixture (Gndr
Mixt), from which Waseemsexism has been removed. All corresponds to the mixture of all 8 individual datasets
(see Table 1). ES corresponds to baseline accuracy scores obtained from training a similar model on the ElSherief
dataset itself, for comparison.

in sahih bukhari 1:6:301. disagree? you are
islamophobe.

Both (3) and (4) were misclassified due to
the lack of context: neither of the two im-
plied statements provided by the annotators (i.e.,
Women are dumb/Muslims are repugnant and kill
gays/immigrants should be shot like rats) can be
reliably automatically inferred without more infor-
mation.

(3) oh honey. justoh, honey. bless your heart.

(4) maybe time to oil up the deer rifles, the ones
with the hd night scopes to keep the "vermin"
population down.

7 Conclusion and Perspectives

In this work, we have proposed a set of topic-
oriented analyses of the generalizability of HS
datasets. We have shown how topic-generic and
topic-specific datasets yield different degrees and
nature of generalization, both when used individ-
ually, or as mixtures of datasets. With the former,
we found that, while not very successful at general-
izing in-domain to topic-specific datasets, the use
of mixtures allows smoothing out individual weak-
nesses. With topic-specific datasets, we found that
generalization is possible, both for single-topic and
multi-topic mixtures. Through a finer-grain out-of-
domain generalization analysis, we showed how a
priori somewhat similar datasets can vary wildly in

the forms of implicit HS that can be learned from
them. Implicit expressions of hate, with few lex-
ical features, are more difficult to generalize, as
models can struggle to capture underlying hateful
intents in messages. Notably, one barrier to under-
standing more implicit manifestations of hate is the
lack of context for individual social media posts:
more conversational datasets could represent an in-
teresting avenue of research in that regard. These
are all important considerations for the purpose of
constructing more reliable automatic HS detection
systems, intended to function on raw, potentially
noisy, and never-seen-before data. In particular,
we found that topic-generic datasets like Founta
(Founta et al., 2018) appear promising for future
research on generalization-optimized mixtures of
datasets. Finally, concerning HS detection archi-
tectures, we found that, for BERT-like models, pre-
domain adapted variants generalize slightly better
than a more generic RoBERTa classifier, but yield
similar results to a generic text-to-text T5 architec-
ture, which seems promising for future research in
HS detection.

In future work, we will explore the use of these
approaches to guide data selection, by for example
employing the method proposed by Swayamdipta
et al. (2020), in order to construct mixtures of
HS datasets better suited to out-of-domain gener-
alization. Alternatively, Active Learning methods
have been shown to be successful in NLP (Ein-Dor
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et al., 2020), and could be used to palliate annotated
scarcity in HS detection: by using topic-oriented
analysis methods to detect difficult-to-predict top-
ics, better targeted additional annotations could be
acquired, to help improve the topical coverage of
automated systems.

Limitations

In this work, we acknowledge a number of issues
with the compatibility of HS datasets (cf. Sections
1, 2, and 3.2): namely, the phenomena annotated in
these datasets, even those labelled using similar or
equal terms, will, in theory and in practice, repre-
sent wildly different classes. While, unlike some
other previous works (Fortuna et al., 2020, 2021),
we do not merge initially distinct labels in datasets,
but instead only keep whole classes that correspond
to hate speech (excluding other forms of abuse, like
toxicity, offensiveness, etc.), using them in a unified
binarized setting is still bound to introduce signif-
icant amounts of noise in the training data, with
regards to the HS detection task. Most of these
issues are well documented, however, as complete
re-annotation of all relevant data would be a pro-
hibitively expensive enterprise, we believe there is
value in exploring alternative solutions that may
enable generalization despite these problems, us-
ing existing annotated datasets as they are currently
available. Additionally, the analyses presented in
this work are by no means comprehensive, both in
quantity and variety of datasets and models experi-
mented with. For example, some of the fined-grain
topic groups found in the ElSherief dataset are
not large enough to draw strong conclusions from
(namely, Gender and LGBTQIA): supplementing
these less represented topics with more data would
enable better insights into generalizability for these
kinds of HS manifestations.

Ethics Statement

The data that was used for conducting the experi-
ments is composed of text from the public domain
taken from datasets publicly available to the re-
search community. These corpora also conform
to the Twitter Developer Agreement and Policy
that allows unlimited distribution of the numeric
identification number of each tweet. The desire to
combat online HS and prevent the widespreading
of stereotypes cannot be done without automatic
moderation tools, at the risk of increasing cases of
algorithmic discrimination. However, the deploy-

ment of such algorithms should be done with care,
as algorithmic discrimination results from the in-
troduction of biases at the time of the design of the
system. These biases consist in the transposition
of general (often stereotyped) or statistical obser-
vations into systematic algorithmic conditions.
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Michael Granitzer. 2021. HateBERT: Retraining
BERT for Abusive Language Detection in English.
In Proceedings of the 5th Workshop on Online Abuse
and Harms (WOAH 2021), pages 17–25, Online. As-
sociation for Computational Linguistics.

Patricia Chiril, Endang Wahyu Pamungkas, Farah Bena-
mara, Véronique Moriceau, and Viviana Patti. 2022.
Emotionally Informed Hate Speech Detection: A
Multi-target Perspective. Cognitive Computation,
14(1):322–352.

Christopher Clark, Mark Yatskar, and Luke Zettlemoyer.
2019. Don’t Take the Easy Way Out: Ensemble
Based Methods for Avoiding Known Dataset Biases.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4069–
4082, Hong Kong, China. Association for Computa-
tional Linguistics.

Thomas Davidson, Dana Warmsley, Michael Macy, and
Ingmar Weber. 2017. Automated Hate Speech De-
tection and the Problem of Offensive Language. Pro-
ceedings of the International AAAI Conference on
Web and Social Media, 11(1):512–515.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

3503

https://doi.org/10.18653/v1/S19-2007
https://doi.org/10.18653/v1/S19-2007
https://doi.org/10.18653/v1/S19-2007
https://doi.org/10.18653/v1/2021.woah-1.3
https://doi.org/10.18653/v1/2021.woah-1.3
https://doi.org/10.1007/s12559-021-09862-5
https://doi.org/10.1007/s12559-021-09862-5
https://doi.org/10.18653/v1/D19-1418
https://doi.org/10.18653/v1/D19-1418
https://ojs.aaai.org/index.php/ICWSM/article/view/14955
https://ojs.aaai.org/index.php/ICWSM/article/view/14955
https://doi.org/10.18653/v1/N19-1423


Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Liat Ein-Dor, Alon Halfon, Ariel Gera, Eyal Shnarch,
Lena Dankin, Leshem Choshen, Marina Danilevsky,
Ranit Aharonov, Yoav Katz, and Noam Slonim. 2020.
Active Learning for BERT: An Empirical Study. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7949–7962, Online. Association for Computa-
tional Linguistics.

Mai ElSherief, Caleb Ziems, David Muchlinski, Vaish-
navi Anupindi, Jordyn Seybolt, Munmun De Choud-
hury, and Diyi Yang. 2021. Latent Hatred: A Bench-
mark for Understanding Implicit Hate Speech. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 345–
363, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Karmen Erjavec and Melita Poler Kovačič. 2012. “You
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A Experimental Parameters

In each cross-topic/cross-dataset experiment, we
train one of the classifiers models described in Sec-
tion 4 on either a specific dataset, or on a mixture of
datasets (see Table 1). For all models, we use the
Hugging Face transformer library’s implementa-
tion of the AdamW optimizer (Loshchilov and Hut-
ter, 2019), with the default 5× 10−5 learning rate
for all models, except for T5-base (1× 10−4) and
ToxDectRoBERTa (1 × 10−5), as recommended
by their respective authors. When possible us-
ing our available hardware (multiple Nvidia GTX
1080 Ti and RTX 2080 GPUs), we use “effec-
tive” batch sizes of 64 instances (either as proper
mini-batches, or by using gradient accumulation
alongside smaller mini-batch sizes). When us-
ing mixtures of datasets, batches are constructed
by sampling each component dataset proportion-
ally to its relative size, to avoid oversampling the
smaller datasets or subsampling the larger ones.
Models are trained for a maximum of 8 epochs,
with early stopping according to the validation
loss, and only the best model checkpoints are re-
tained, according to the validation macro F1 score.
Average runtimes vary between architectures and
datasets, with the BERT-like (fBERT, HateBERT,
and RoBERTa-base) taking the least time (less than
an hour on the largest mixture of datasets, All,
combining all 8 datasets detailed in Table 1), and
the longest being ToxDectRoBERTa, since it is
based on the RoBERTa-large architecture (approx-
imately 6 hours of training for the All mixture).
The smallest architectures in number of parameters
used in this study are those derived from BERT-
base, with ∼ 110 million parameters, followed by
RoBERTa-base (∼ 125 million parameters), T5-
base (220 million parameters), and finally ToxDec-
tRoBERTa, based on RoBERTa-large, with 355
million parameters. For data preprocessing, we
replace all emojis with their text form descriptions
using the Python emoji library, and replace all
“@” user mentions and URLs with the replacement
strings “[USER]” and “[URL]” respectively.
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Test
Train Gene

Davi
Gene
Fnta

Gndr
Evit

Gndr
HatE

Gndr
Iber

Gndr
Wasm

Gndr
HatE

Gndr
Wasm

T5-base
Gene Davi 92.70 82.64 69.32 68.79 63.34 61.80 59.51 43.28
Gene Fnt 73.02 81.08 59.82 59.52 59.16 54.58 60.22 51.77
Gndr Evit 63.29 58.07 67.00 78.40 66.89 58.00 52.97 34.62
Gndr HatE 42.21 42.90 44.55 46.29 34.09 49.62 54.28 36.58
Gndr Iber 57.76 74.22 93.46 92.02 84.86 74.15 79.59 37.90
Gndr Wasm 54.06 59.07 63.65 68.92 67.90 85.81 51.00 42.46
Race HatE 43.75 64.54 42.14 43.07 37.59 41.29 38.73 41.09
Race Wasm 56.66 72.73 49.59 48.05 46.68 47.67 66.64 87.03

ToxDectRoBERTa
Gene Davi 93.78 84.73 73.74 70.36 74.33 69.57 81.34 60.76
Gene Fnt 81.42 85.92 72.81 67.81 74.96 60.89 78.97 61.90
Gndr Evit 62.10 54.25 67.37 82.08 63.08 64.69 59.10 45.69
Gndr HatE 40.30 39.81 45.63 51.65 32.88 47.04 41.59 50.67
Gndr Iber 64.14 73.00 91.25 92.07 83.89 74.35 68.65 38.93
Gndr Wasm 51.13 56.44 67.74 68.82 67.69 86.27 49.40 43.95
Race HatE 52.23 68.58 57.57 53.00 47.86 37.04 40.75 63.48
Race Wasm 69.92 73.47 68.07 62.16 64.55 46.50 73.59 86.29

fBERT
Gene Davi 92.46 85.59 64.64 66.18 67.33 73.69 64.46 42.88
Gene Fnt 76.47 80.98 58.23 59.32 61.04 60.43 62.45 51.57
Gndr Evit 61.44 57.00 73.12 88.66 69.40 63.19 52.79 34.48
Gndr HatE 38.25 49.75 64.34 64.28 43.62 50.30 55.19 36.58
Gndr Iber 60.34 71.43 93.01 93.02 84.55 76.99 52.80 38.66
Gndr Wasm 53.84 61.47 67.03 64.38 72.60 86.28 47.52 42.99
Race HatE 50.65 66.49 39.31 39.74 37.56 38.95 41.72 39.73
Race Wasm 70.16 72.33 48.06 46.64 47.80 47.53 74.03 87.53

HateBERT
Gene Davi 93.14 85.43 63.89 65.02 60.67 70.70 61.63 45.68
Gene Fnt 73.02 79.41 57.88 58.19 57.47 59.74 59.25 52.59
Gndr Evit 63.92 56.74 71.02 87.98 68.99 64.06 47.37 34.71
Gndr HatE 44.46 55.76 53.70 59.11 50.95 59.43 53.59 36.58
Gndr Iber 60.12 67.11 92.70 92.71 86.41 68.08 63.74 37.90
Gndr Wasm 52.36 58.24 74.26 68.54 71.20 86.05 50.83 43.01
Race HatE 44.13 66.08 43.79 43.60 37.11 36.89 38.53 39.26
Race Wasm 63.01 72.81 49.96 47.77 48.03 45.92 71.60 86.37

RoBERTa-base
Gene Davi 93.30 82.50 66.12 64.43 63.00 68.02 67.35 46.57
Gene Fnt 74.50 80.84 59.21 56.56 58.06 55.65 61.92 53.28
Gndr Evit 60.68 58.51 69.58 86.77 60.53 63.18 45.80 35.92
Gndr HatE 46.39 55.17 50.27 56.88 42.64 47.22 53.31 36.96
Gndr Iber 60.50 62.96 92.43 92.61 88.76 65.55 74.30 37.90
Gndr Wasm 51.55 51.11 71.14 68.11 74.93 87.11 53.06 43.70
Race HatE 47.79 56.76 43.30 40.56 37.86 37.10 38.24 48.65
Race Wasm 56.89 75.52 49.67 47.58 49.08 46.87 70.09 86.27

Table A: Detailed results of learning from individual datasets (in terms of Macro F1-scores).

3508



Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 3509–3522
May 2-6, 2023 ©2023 Association for Computational Linguistics

End-to-end Case-Based Reasoning for
Commonsense Knowledge Base Completion

Zonglin Yang♣∗ Xinya Du♠∗ Erik Cambria♣ Claire Cardie♦
♣ Nanyang Technological University
♠ University of Texas at Dallas

♦ Cornell University
{zonglin.yang, cambria}@ntu.edu.sg

xinya.du@utdallas.edu

cardie@cs.cornell.edu

Abstract
Pretrained language models have been shown
to store knowledge in their parameters and
have achieved reasonable performance in com-
monsense knowledge base completion (CKBC)
tasks. However, CKBC is knowledge-intensive
and it is reported that pretrained language
models’ performance in knowledge-intensive
tasks are limited because of their incapa-
bility of accessing and manipulating knowl-
edge. As a result, we hypothesize that pro-
viding retrieved passages that contain relevant
knowledge as additional input to the CKBC
task will improve performance. In particular,
we draw insights from Case-Based Reason-
ing (CBR) – which aims to solve a new prob-
lem by reasoning with retrieved relevant cases,
and investigate the direct application of it to
CKBC. On two benchmark datasets, we demon-
strate through automatic and human evaluations
that our End-to-end Case-Based Reasoning
Framework (ECBRF) generates more valid
knowledge than the state-of-the-art COMET
model for CKBC in both the fully supervised
and few-shot settings. From the perspective of
CBR, our framework addresses a fundamental
question on whether CBR methodology can be
utilized to improve deep learning models.

1 Introduction

Commonsense knowledge helps humans navigate
everyday situations seamlessly (Apperly, 2010) and
is required for many intelligent scenarios (Davis
and Marcus, 2015). To automatically enlarge the
scale of commonsense knowledge base for the ben-
efit of reducing labeling labor and expense, Knowl-
edge Graph Completion (KGC) has become a hot
research topic (Ji et al., 2022). The general KGC
task is to expand existing knowledge graphs by us-
ing well-trained classifiers—they are trained with
existing annotated samples and predict whether or
not there is a relationship between two existing en-
tities in a knowledge graph (Wang et al., 2017).

∗Contribution starts from their stay at Cornell.

Subject Relation Object

hardware shop at location mall

world map has property draw with grid-lines

PersonX receives its reward wants to keep the prize

PersonX wins the big Jackpot wants to get its money

Table 1: Commonsense knowledge base tuples. Exam-
ples are from ConceptNet and Atomic.

Although KGC methods can automatically find un-
labeled relationships, they are always classification
or ranking tasks and are limited to existing entities
in a knowledge graph and can’t extend to new en-
tities (Ji et al., 2022). To extend to new entities,
COMET (Bosselut et al., 2019) proposes to use
text generation for exploring and discovering new
entities, which is called commonsense knowledge
base completion (CKBC) task, utilizing the knowl-
edge within the pretrained language models (PLM),
which has been with process in recent years (De-
vlin et al., 2019; Radford et al., 2019). Specifically,
COMET uses subject and relation as direct input to
PLM and aims to generate objects, most of which
are novel and unseen entities.

However, CKBC is knowledge-intensive, requir-
ing wide-ranging and detailed knowledge; and it is
reported that the ability of pretrained language mod-
els to access and precisely manipulate knowledge
is limited (Lewis et al., 2020b). One potential so-
lution to this is to provide “non-parametric knowl-
edge" through additional input. Lewis et al. (2020b)
and Guu et al. (2020), for example, have shown
that by retrieving passages that contain knowledge
relevant to the current task, performance can be im-
proved. For CKBC, unfortunately, it might be espe-
cially difficult to find useful passages that contain
relevant commonsense knowledge from the web
due to a reporting bias (Gordon and Van Durme,
2013) in which people rarely express the obvious
(i.e., commonsense knowledge).

An example of reporting bias from Table 1 is
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that people rarely say “when a person wins a big
Jackpot, he/she will want to get its money” because
it’s too obvious and meaningless to say. Therefore,
instead of retrieving passages from the web, we pro-
pose that benefits can still be gained by retrieving
relevant knowledge from a “case base” of existing
commonsense knowledge tuples1 and using the re-
trieved knowledge as non-parametric knowledge
(i.e., beyond that represented in the model parame-
ters) to augment the current CKBC input example.
In addition, to prevent ECBRF from overfitting
to some commonly retrieved cases, we propose
randommask as a training strategy that randomly
masks the retrieved cases during training, which
functions similar to dropout (Srivastava et al., 2014)
and further improves the performance of the frame-
work. We also analyze several variations to better
understand the process.

Although past attempts suggest that similar
retrieval-based methods cannot improve the per-
formance of CKBC (Wang et al., 2021), on two
benchmark datasets, we demonstrate through au-
tomatic and human evaluations that our End-to-
end Case-Based Reasoning Framework (ECBRF) 2

generates more valid and informative knowledge
than (1) the state-of-the-art COMET model (Bosse-
lut et al., 2019) for CKBC which employs no case
retrieval, and (2) a baseline model that employs
random case retrieval – on both fully supervised
and few-shot settings. We also provide an analysis
on why different conclusions are reached.

In addition, our framework draws insight from
Case-Based Reasoning (CBR), and also has con-
tributions to the CBR research. CBR is a sub-
ject in classical AI that solves a new problem by
reusing the solutions of retrieved seen similar prob-
lems stored in the case base (Aamodt and Plaza,
1994). CBR’s methodology has four steps — case
retrieval, reuse, revise and retain. Past years of
accomplishment in deep learning (DL) have led to
enthusiasm in the CBR community to apply DL in
the service of CBR. However, based on the obser-
vation that many challenges remain in DL where
CBR has advantages (e.g. few-shot learning), some
CBR researchers (Leake and Crandall, 2020) ad-
vocate using CBR to complement DL. However,
past works on using CBR to complement DL only
limit to shallow Neural Networks (NN) (Liao et al.,
2018; Leake et al., 2021; Ye et al., 2021, 2022).

1Initialized with tuples from training set or external data.
2Code available at https://github.com/ZonglinY/

ECBRF_Case_Based_Reasoning_with_PLM.git

The latest work even suggests that in many tasks
NN itself outperforms CBR-complemented NN (Ye
et al., 2022), which raises fundamental questions
on whether CBR methodology is useful for DL.

Our work addresses this doubt by being the first
to show a concrete implementation of the integra-
tion of the full methodology of CBR to PLM (as
one typical model in DL) (we show in §6 that we
simulate the third step in the methodology of CBR
instead of actually implement it, since it requires
huge human efforts) and show that the integra-
tion method can benefit from multiple steps in the
methodology of CBR, and can lead to better perfor-
mance over PLM itself in both fully supervised set-
tings and few-shot settings on CKBC. Notably our
proposed framework has a larger advantage in few-
shot settings, where CBR methods typically have
advantage. We also find that the generation of our
framework is largely related to the retrieved case
especially when they are similar, which exhibits
strong case-based reasoning patterns. In addition,
a detailed analysis of our framework from a CBR
perspective is provided in §6.

Our contributions can be summarized as follows:
(1) Drawing insights from CBR, we introduce a
new end-to-end framework for CKBC task. We
also propose training strategies that can better uti-
lize the retrieved knowledge. (2) We conduct ex-
tensive experiments on the CKBC task in various
settings (e.g. fully supervised and few-shot), and
the results consistently demonstrate that our pro-
posed framework achieves improvements over the
state-of-the-art baseline methods. (3) From the
perspective of the CBR community, whether CBR
methodology can be used to improve DL models
remains a fundamental research question. We ad-
dress this doubt by being the first to show a con-
crete implementation of the integration of the full
methodology of CBR to PLM, and showing that
such integration can achieve better performance
than single PLM. A thorough analysis of the inte-
gration from CBR perspective is also provided.

2 Related Work

Case-Based Reasoning CBR is a subject in clas-
sical AI which consists of 4 sub-processes in
its methodology: retrieve, reuse, revise and re-
tain (Aamodt and Plaza, 1994). Leake and Cran-
dall (2020) advocate using CBR to complement the
challenges in deep learning (e.g., few-shot learn-
ing). §A.4 provides more detailed related works
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relevant to this line. Specifically, our framework
is inspired by Watson (1999)’s proposal that com-
pared to CBR being described as an artificial intel-
ligence technology , it is better to describe CBR as
a methodology for problem solving, that may use
any appropriate technology. Here we treat CBR
as a methodology and deep learning as technology
that uses CBR as the general high-level process and
deep learning as components of the process.

Reasoning in NLP CBR could be seen as a
type of analogical reasoning (Kolodner, 1997), and
analogical reasoning belongs to inductive reason-
ing (Salmon, 1989). Inductive reasoning (Yang
et al., 2022) is different from deductive reason-
ing (Clark et al., 2020) (both belong to logical rea-
soning) that the premise in inductive reasoning can
not provide conclusive support to its conclusion.

Commonsense Knowledge Base Completion
Here we mainly describe works that use text gen-
eration models for this task. Li et al. (2016) pro-
pose models to evaluate the full knowledge tuple
rather than generate new knowledge. Saito et al.
(2018) make an extension by proposing a joint
model for the completion and generation of com-
monsense tuples. However, their work focuses
on augmenting knowledge base completion model,
rather than to increase coverage in commonsense
knowledge base construction. Yao et al. (2019)
and Malaviya et al. (2020) focus on link predic-
tion and ranking of knowledge, which is a different
task with our generative CKBC task. Sap et al.
(2019) use LSTM (Hochreiter and Schmidhuber,
1997) to generate commonsense knowledge and
Bosselut et al. (2019) further leverage pre-trained
language models to generate commonsense knowl-
edge. Gabriel et al. (2021) present the task of
discourse-aware commonsense inference and pro-
poses a memory-based model to generate common-
sense knowledge that is more coherent with con-
text. Wang et al. (2021) give an analysis on knowl-
edge capacity, transferability, and induction of pre-
trained language models to perform generalizable
commonsense inference. Da et al. (2021) analyze
the few-shot learning ability of pretrained language
models for CKBC task. Unlike these works, we
propose a model that can improve the performance
of generative CKBC tasks in both fully supervised
settings and few-shot settings.

Language Model Prompting First developed by
the GPT series (Brown et al., 2020), retrieved data

are used as augmented input to improve few-shot
performance of remarkable large models. However,
past research suggest that such in-context learning
cannot improve the CKBC task (Wang et al., 2021),
and we are the first to show how in-context learn-
ing is useful for CKBC. In addition, such large
models are hard to obtain and Brown et al. (2020)
do not explore the finetuning performance, neither
do they explore the full CBR methodology’s ef-
fect on PLM. Gao et al. (2021) use prompting and
also incorporate demonstrations into context to im-
prove few-shot performance. Their work, however,
only focuses on classification tasks and regression
tasks, which is different from the CKBC. Similar
to our work, Das et al. (2021) use retrieved cases as
prompt to improve the performance of PLM. How-
ever, they only focus on question answering task
and do not integrate the full methodology of CBR,
missing important steps such as retain.

3 Task Definition

In the generative CKBC task, a knowledge data in-
stance is represented as a tuple of subject, relation,
and object: (sub, rel, obj). All sub and obj are
in natural language phrases (Figure 1). rel can be
used as either a special token or the corresponding
natural language phrases (Bosselut et al., 2019).
Here we use rel as natural language phrases. The
task is that given a pair of sub and rel, the goal is
to generate the corresponding obj.

4 Methodology

We start by formalizing our framework as a retrieve-
then-predict generative process. Then in §4.2, we
describe our ECBRF’s modules for the generative
process in detail. Finally, we present a hybrid train-
ing strategy for better regularization.

Figure 1 describes our method. In the figure,
“query” stands for a sub and rel pair which is used
as input to ECBRF to generate obj. “Case Base” is
initialized with knowledge triples from the training
set. “Cases” means the retrieved knowledge triples
from the “Case Base”. “In-context demonstrations”
stand for the retrieved cases that are used for input
augmentation (concatenate with the query). The
subject, relation, and object of the retrieved cases
are sub-scripted with “r” (e.g., subr).

4.1 ECBRF’s Generative Process

ECBRF takes x as input and learns a distribution
p(y|x) over possible outputs y. Here x consists of
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Neural Knowledge Retriever 
 ∼ pθ(z |x)

PersonX wins any money | As a result, PersonX wants to    (x)
query  (sub, rel)

  PersonX receives its reward | As a result, PersonX wants to → keep the prize 
  PersonX wins the big Jackpot | As a result, PersonX wants to → get its money 
  …                                                                                                                  

(z1)(z2)(z3) (s)

retrieved cases

save the money for a future purchase  (y)
output  (obj)

[CLS]   PersonX receives its reward | As a result, PersonX wants to → keep the prize                                 
             PersonX wins the big Jackpot | As a result, PersonX wants to → get its money    
             … 

  [SEP]  PersonX wins any money | As a result, PersonX wants to →                                                                                                     

(z1)(z2)(z3) (s, x)

cases and query

Case-Augmented Encoder 

 ∼ pφ(y |s, x)

     Case Base
  

  
(subr, relr, objr)(Z)

step 1 of CBR: retrieve

In-context 
demonstrations

step 2 of CBR: reuse step 3 & step 4 of CBR: 
revise and retain

Figure 1: Our end-to-end case-based reasoning framework (ECBRF) for commonsense knowledge base completion.
It involves all four steps of the CBR methodology (retrieve, reuse, revise and retain).

sub and rel, and y consists of obj. More specifi-
cally, ECBRF decomposes p(y|x) into two steps:
retrieve and predict. Given an input x, we first re-
trieve similar cases z1, z2, ... (each case zi consists
of subr, relr and objr) from case base Z, while
(x, y) /∈ zi. We model this as a sample from the
distribution p(z|x).

Then we use zi in a number of m to compose a
supporting set s (for each query, one supporting set
is used for input augmentation). Specifically,

p̂(s|x) =
∑

zi∈top-m(p(.|x))
p(zi|x) ((x, y) ̸∈ z) (1)

p(si|x) = exp p̂(si|x)∑
j exp p̂(sj |x)

(2)

Then we condition on both the supporting set s
and the query x to generate the output y, modeled
as p(y|s, x). To obtain the overall likelihood of
generating y, we treat s as a latent variable and
marginalize s via a top-k approximation, yielding:

p(y|x) =
∑

s∈top-k(pθ(.|x))
pθ(s|x)pφ(y|s, x) (3)

4.2 Model Architecture

We now detail two key components – the neu-
ral knowledge retriever, which models pθ(z|x);
and case-augmented encoder, which models
pφ(y|s, x).

Neural Knowledge Retriever The retriever uses
max inner product search (MIPS) to retrieve z.
Specifically, the retriever is defined using a dense
inner product model:

pθ(z|x) = exp f(x, z)∑
z′ exp f(x, z

′)
(4)

f(x, z) = Embedquery(x)
TEmbedcase(z) (5)

where Embedquery is an embedding function
that maps sub and rel in the query input to a
d−dimensional vector, and Embedcase is an em-
bedding function that maps subr, relr and objr
in the knowledge tuples in memory store to a
d−dimensional vector. The relevance score f(x, z)
between x and z is defined as the inner product of
the vector embeddings. The retrieval distribution
is the softmax over relevance scores between top-k
retrieved cases and current query input.

We implement the embedding functions
Embedquery and Embedcase using two DPR-
based models (Karpukhin et al., 2020). The
input format for query x is the concatenation of
subject and relation: [CLS] sub [SEP] rel [SEP];
And the input format for case z is the con-
catenation of the subject, relation, and object:
[CLS] subr [SEP] relr objr [SEP].

Case-Augmented Encoder Given an input x and
a supporting set s, the case-augmented encoder
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defines:

pφ(y|s, x) =
N∏

i

pφ(yi|x, s, y1:i−1) (6)

We use BART (Lewis et al., 2020a) and GPT-
2 (Radford et al., 2019) as the base model for case-
augmented encoder.

We also add prompts which we find is help-
ful. The input format (with prompts and in-context
demonstrations) for case-augmented encoder is:

Here are some similar cases to infer from: z0 z1
... zm−1 From the similar cases we can infer that:
[SEP] sub rel

Zhao et al. (2021) show that pre-trained language
model has “Recency Bias”, which is the tendency
to repeat answers that appear in the last in-context
demonstration in classification tasks. We analyse
this strategy for the generative CKBC task (we call
it “reverse demonstration”) that the most similar
case from the retriever is placed as the last demon-
stration, the second most similar case in the second
last demonstration, and so on.

4.3 Training Method

Since the purpose of in-context demonstration is
only to provide ancillary information, the model
should be able to predict obj w/ or w/o it. There-
fore here we design a specific training strategy
for ECBRF – during training, we randomly mask
out in-context demonstrations and only keep the
(sub, rel) query for some training examples with
probability pmask. It is designed to function sim-
ilarly to dropout to prevent overly relying on re-
trieved cases.

5 Experiments & Analysis

In this section, we introduce the experiment
datasets and evaluation details, as well as exper-
iment setups and the experiment results, measured
with automatic and human evaluations.

5.1 Datasets and statistics

We evaluate ECBRF using two automatic common-
sense knowledge base completion benchmarks —
ConceptNet (Speer et al., 2017) and ATOMIC (Sap
et al., 2019). In total, ConceptNet contains 101,800
tuples and ATOMIC contains 877,077 tuples. We
use the same data split as COMET (Bosselut et al.,
2019) did. In ATOMIC, around 17% of the labeled
knowledge tuples use “None” as the object. As a
result, models can easily get high performance by

always generating “None”. To better evaluate, we
don’t use knowledge tuples with the object being
“None” for both training and evaluation. Apart from
using the entire train set for training, we also con-
duct experiments in the few-shot settings — where
the model is only trained with 5 to 320 knowledge
tuples3. More details on data pre-processing is
shown in §A.7.

5.2 Evaluation Details

For automatic evaluation metrics, following Bosse-
lut et al. (2019) we use BLEU-2, perplexity, and
novelty metrics (including %N/T-sro, %N/T-o, and
%N/U-o). Specifically for novelty metrics, we re-
port the proportion of all generated tuples that are
novel tuple (%N/T-sro) (here novel means unseen
in train set), have a novel obj (%N/T-o), and the
proportion of the set of unique obj in all generated
objects (%N/U-o).

In addition to automatic evaluation, we also per-
form human evaluation, including validness, in-
formativeness, and preference score. For valid-
ness and informativeness, following Gabriel et al.
(2021), the score is based on a 5-point Likert
scale (with 5 points the highest score). For valid-
ness, following Gabriel et al. (2021), we judge the
validness of the generated new knowledge by the
likelihood of inferences based on a 5-point Likert
scale (with 5 points the highest score). Specifically,
obviously true (5), generally true (4), plausible (3),
neutral or unclear or basically a repetition (sub-
sentence) of the query (2), and doesn’t make sense
(1). For informativeness, the rating standard is also
based on a 5-point Likert scale. Specifically, rich in
relevant details (5), has relevant details (4), it seems
some details are provided (3), basically a repetition
(sub-sentence) of the query (2), unfinished genera-
tion (1). For preference score, We ask the human
raters to compare the generations between ECBRF
and COMET. Specifically, a valid generation with
more information provided will be assigned 1.0
point, and a generation that is not valid or with less
information will be assigned 0.0 instead. However,
if the two generations perform comparably, both
generations will be assigned 0.5 points.

Following Bosselut et al. (2019), for each ex-
periment and for each model, we sample 100 gen-
erations for human evaluation. Each generation
is rated by three graduate students. During the

3Note that for the few-shot settings, our ECBRF’s case
base is also initialized with 5 to 320 tuples
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ConceptNet 5-shot 20-shot 40-shot 160-shot 320-shot Full (100%)

COMET (GPT2)∗ 374.32 / 0.33 339.19 / 0.58 282.76 / 0.38 58.59 / 1.44 41.23 / 2.29 13.04 / 3.37
ECBRF (GPT2) 284.67 / 0.51 220.07 / 0.59 102.46 / 1.63 52.10 / 1.61 38.63 / 2.59 13.60 / 2.83

COMET (BART)∗ 14.26 / 1.15 11.31 / 1.64 9.48 / 3.70 6.60 / 6.70 5.44 / 9.57 2.90 / 20.19
ECBRF (BART) 12.85 / 1.20 9.53 / 2.11 8.70 / 3.17 6.19 / 6.20 5.22 / 9.31 2.93 / 18.55

w/ random mask 13.68 / 1.40 9.82 / 2.02 8.98 / 2.96 6.14 / 6.88 5.05 / 10.71 2.86 / 19.97
w/o reverse demonstration 13.02 / 1.20 9.60 / 1.84 8.74 / 2.95 6.21 / 6.13 5.06 / 10.12 2.92 / 19.80
w/ rand retrieval 13.23 / 1.00 10.15 / 2.61 9.24 / 3.45 6.42 / 6.21 5.40 / 8.93 2.91 / 20.29

ATOMIC 5-shot 20-shot 40-shot 160-shot 320-shot Full (100%)

COMET (GPT2)∗ 753.93 / 2.11 512.11 / 3.44 409.30 / 2.32 209.78 / 2.73 165.28 / 2.68 67.95 / 4.00
ECBRF (GPT2) 653.90 / 2.30 416.16 / 2.89 319.12 / 2.26 182.43 / 2.92 163.56 / 2.86 67.35 / 4.05

COMET (BART)∗ 19.72 / 5.76 16.83 / 5.38 13.58 / 9.20 14.30 / 11.56 14.45 / 12.67 6.98 / 19.34
ECBRF (BART) 18.17 / 5.16 14.73 / 3.85 13.05 / 10.13 15.19 / 10.13 14.61 / 11.66 6.95 / 19.06

w/ random mask 18.50 / 5.29 14.93 / 4.04 13.01 / 7.47 14.52 / 12.42 14.53 / 12.64 6.96 / 19.22
w/o reverse demonstration 18.13 / 5.58 14.70 / 3.89 12.99 / 5.14 15.15 / 10.18 15.65 / 10.95 6.95 / 19.24
w/ rand retrieval 18.16 / 4.33 14.66 / 3.64 12.96 / 4.70 14.60 / 11.76 14.80 / 12.91 6.96 / 19.02

Table 2: Perplexity (↓) / BLEU (↑) scores on ConceptNet (upper) and ATOMIC (down). The best scores for each
setting are boldfaced. ∗: baseline models (our own implementation).

20-shot (BART) 160-shot (BART) Full (BART)

ConceptNet

COMET 0.37 / 1.76 / 1.74 0.42 / 2.86 / 2.69 0.47 / 3.87 / 3.49
ECBRF 0.63 / 2.47 / 2.38 0.58 / 3.26 / 3.13 0.53 / 3.95 / 3.58

ATOMIC

COMET 0.43 / 2.21 / 2.27 0.44 / 3.05 / 3.05 0.47 / 3.59 / 3.36
ECBRF 0.57 / 2.44 / 2.58 0.56 / 3.22 / 3.17 0.53 / 3.64 / 3.43

Table 3: Human evaluation results using preference
score, validness, and informativeness.

sub: PersonX spends ___ working;
rel: As a result, others feel

Ground truth: [’happy’, ’happy to have x in their life’]

COMET’s generation: happy (BLEU: 31.62)
ECBRF’s generation: satisfied with personx’s work (BLEU: 0.00)

Table 4: An example to show that BLEU is not a perfect
metric for CKBC.

evaluation the order of the two generations to be
compared are randomized for each selection, there-
fore human raters have no clue on which choice is
associated with which model. More details about
human evaluation can be found at §A.6.

5.3 Experimental Setup
Baselines We use COMET (Bosselut et al., 2019)
as our baseline. COMET is originally implemented
with GPT (Radford et al.), a pretrained language
model as the base model and uses subject and rela-
tion as direct input and uses the generation result as
object. Here we compare two versions of COMET,

20-shot (BART) 160-shot (BART) Full (BART)

ConceptNet

COMET 98.00 / 13.46 / 58.99 92.22 / 14.83 / 61.83 57.83 / 5.57 / 71.29
ECBRF 96.64 / 21.24 / 51.10 93.27 / 16.09 / 65.83 59.62 / 4.84 / 73.08

ATOMIC

COMET 100.0 / 58.18 / 15.83 100.0 / 30.92 / 29.11 100.0 / 9.21 / 17.93
ECBRF 100.0 / 82.16 / 22.79 100.0 / 34.96 / 29.70 100.0 / 6.49 / 15.37

Table 5: Novelty evaluation results using %N/T-sro,
%N/T-o, and %N/U-o.

one is GPT-2 (Radford et al., 2019) based and an-
other is BART (Lewis et al., 2020a) based. Both
GPT-2 and BART are more powerful pretrained
language models than GPT. We leave the details of
hyperparameters in §A.1.

5.4 Main Results

Automatic evaluation results on BLEU-2 and per-
plexity are shown in Table 2. We present results
with human evaluations in Table 3. Automatic eval-
uation of novelty is shown in Table 5. Table 2
shows that random mask is constantly helpful for
ECBRF when the train set is equal or larger than
160. Therefore we adopt random mask for ECBRF
when the train set is equal to or larger than 160 in
Table 3 and Table 5.

Table 2 shows that regardless of the selection
of base models, ECBRF consistently outperforms
the COMET baseline in almost all perplexity mea-
sures and most BLEU measures. We argue that
BLEU is not a perfect metric for CKBC (Sai et al.,
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sub: PersonX wants to play with PersonY
rel: Before, this person needed

One retrieved case by ECBRF:
PersonX plays tennis with PersonY’s friend,
Before, this person needed, get a tennis racket

COMET’s generation: to have a game
ECBRF’s generation: to find a tennis court

Table 6: An example to show how the retrieved cases
influence the generated obj.

2023), since each sub and rel pair can lead to more
than one feasible obj, and BLEU can only refer
to a limited set of ground truth obj. Even if a
model generates a reasonable obj, it may yield a
low BLEU, because the generated obj is not in the
ground truth set.

Table 4 shows one typical example from
ATOMIC that shows although ECBRF’s genera-
tions are reasonable, they only receive low BLEU
scores (More examples in §A.2). Table 3 shows
that ECBRF consistently outperforms COMET in
preference score, validness, and informativeness in
human evaluation, especially in few-shot setting. In
practice, we observe that in few-shot setting, BART
without retrieval tends to repeat the query during
generation, while retrieved cases seem to be able to
provide knowledge and guidance to generate more
proper obj.

Table 5 shows that the generated obj of ECBRF
are generally novel especially in few-shot set-
tings. We empirically attribute the lower novelty
of ECBRF in full train set to that ECBRF some-
times tends to copy proper retrieved obj as genera-
tion. The reason %N/T-sro score is always 100.0 in
ATOMIC is that the (sub, rel) pairs in ATOMIC’s
train set and test set do not overlap.

We attribute the different conclusions reached
on whether in-context demonstrations (ICD) with
finetuning can be beneficial to CKBC (Wang et al.,
2021) to that (1) ICD is more useful in few-shot
settings, so that investigation on full train set set-
ting might not discover this advantage; (2) human
evaluation is the most precise metric for the task
while BLEU is not so only evaluating with auto-
matic metrics could not be precise; (3) ECBRF
uses random mask, which is empirically found to
be helpful in performance when using a large train
set.

5.5 Ablation Study of ECBRF

In Table 2, we show some ablation studies of
ECBRF. “w/ rand mask” stands for the ECBRF

model using random mask (pmask = 30%); “w/o
reverse demonstrations” stands for the ECBRF
model without using reverse demonstrations; and
“w/ rand retrieval” represents an ECBRF model
that uses randomly searched cases instead of MIPS
search.

Both tables for automatic evaluation show that
using random mask can generally lead to better per-
formance for ECBRF in both perplexity and BLEU
when the training set is larger, while lead to worse
performance when the number of training set is less
than 160. Our interpretation is that, when the train
set is very small, the model can benefit from over-
relying to the retrieved cases; while when the train
set is large, PLM can still benefit from the retrieved
cases but the over-relying could be harmful.

The tables also show that “reverse demonstra-
tion” only leads to comparable performance, which
might indicate that the order of retrieved cases
does not make a difference in a generative task
(as CKBC).

From the tables, we also observe that ECBRF
with MIPS retrieval consistently leads to bet-
ter performance than ECBRF with random re-
trieval in terms of perplexity in ConceptNet exper-
iments, while performs comparably with ECBRF
in ATOMIC experiments. Notice that the required
generation in ConceptNet is usually shorter and
more similar compared to ATOMIC. Therefore
our interpretation is that, only when the retrieved
cases are enough similar to the input query and
its designed golden generation, can the retrieved
cases significantly benefit the generation process
(towards golden generation).

5.6 Qualitative Analysis on How Retrieved
Cases Influence obj Generation

Table 6 shows one example of the generation of
ECBRF and COMET (more examples are shown
in §A.3). It shows that ECBRF’s generation is
related to the retrieved case, exhibiting the case-
based reasoning ability of reusing the retrieved old
experience to solve new problems.

6 Further Analysis from Perspective of
CBR

CBR methodology contains 4 sub-processes, which
are retrieve, reuse, revise and retain. More specifi-
cally, when given a new problem, the method first
retrieves the most similar cases, then reuses the in-
formation in that case to solve the new problem by
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Figure 2: ECBRF’s performance (perplexity (↓) /
BLEU (↑)) with regard to different numbers of demon-
strations and different pmask. Experiments on the left
figure use ConceptNet 40-shot train set, and the right
figure use ConceptNet 320-shot train set (since random
mask is only helpful on large train set).

proposing a new solution, then revises the proposed
solution according to the feedback of adopting it
in real application scenarios (revise step usually
involves human’s effort), and finally select high
quality revised solutions together with their prob-
lems as new cases to retain to case base.

We provide an analysis of how the high-level
methodology of CBR (retrieve, reuse, revise and
retain) shapes the design and how the selection
details of CBR-related components improve the
performance of our end-to-end DL framework.

Step 1: Retrieve Retrieve is an important step
since the effectiveness of a CBR system largely
relies on its ability to retrieve useful previous
cases (Montazemi and Gupta, 1997). Here we use
neural knowledge retriever (DPR) for retrieving
the most similar cases. Table 2 shows the results of
ECBRF using MIPS retrieval and random retrieval.
As illustrated in §5.5, from the experimental results
we hypothesize that ECBRF tends to make gener-
ations that are similar to the retrieved cases. This
hypothesis is consistent with insights from CBR
that the retrieve step is essential for guiding the
reuse step. However, the difference lies in that
CBR insights rely on retrieve step more (with ir-
relevant retrieval it would be particularly hard for
reuse), while PLM seems to be able to benefit
from even random retrieval.

Step 2: Reuse Here we use case-augmented en-
coder to automatically reuse the retrieved cases.

Figure 2a shows the effects of number of
retrieved cases. We observe that when case-
augmented encoder uses 3 cases, it reaches the best
perplexity, and nearly the best BLEU performance.

Figure 2b shows the effects of pmask. Only when
pmask is 1.0, in-context demonstrations are not
used at test time, which makes the model the same

Perplexity BLEU

ECBRF 8.70 3.17
w/ only objr 8.90 3.26
w/o prompt 9.01 3.44
w/ larger case base 7.90 3.69

Table 7: Ablation Study: effect of subr, prompt, and
the retain step (perplexity (↓) / BLEU (↑)). Results of
this table use ConceptNet 40-shot train set.

as COMET. As we gradually increase pmask, per-
plexity keeps improving and BLEU-2 reaches the
global maximum when pmask is 0.3. It is also inter-
esting to see empirically how the case-augmented
encoder gradually learns to reuse the retrieved
cases to increase the performance of the deep learn-
ing model as we gradually decrease pmask.

In CBR, the reuse of the retrieved case’s solution
contains two steps: (a) find the difference between
the past and the current queries and (b) adapt the
retrieved solution to the current query (Aamodt and
Plaza, 1994). So it is important to know the dif-
ference between the past queries and the current
input query for better adaptation. Table 7 shows the
comparison between the result of only using objr
(the retrieved cases’ object phrases) as in-context
demonstrations and the result of ECBRF (uses both
subr, relr and objr), and we observe that ECBRF
performs better in perplexity. but a little bit worse
in BLEU. This result indicates that deep learning
based case-augmented encoder is possible to au-
tomatically learn and reason from the difference
between the past queries and the current input
query for reuse. We leave further investigations
on whether PLMs can learn to compare the differ-
ence between the past queries and the current input
query as an open research question.

We use prompts to indicate the role of retrieved
cases and current query in input. Table 7 shows that
case-augmented encoder with the prompt performs
better in perplexity while a bit worse on BLEU,
indicating that usage of a prompt is possible to help
the model better reuse the retrieved cases.

Step 3 & 4: Revise and Retain Since revise
typically involves human efforts, here we simulate
revise and retain and see their effect on our frame-
work. The result of revise and retain is a larger
case base with more high quality data, and the pa-
rameters of the model for reuse are not necessarily
updated according to the new data. Here we simu-
late the effect of revise and retain by first training
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ECBRF in a low-resource experiment (with a small
case base), then at test time we expand the case
base to the full train set. Table 7 shows that, at test
time, ECBRF with access to a larger case base sub-
stantially outperforms ECBRF (with access to only
a small case base), although the parameters have
not been updated with the new data. This result
demonstrates that our framework can benefit from
CBR’s methodology as revise and retain.

7 Conclusion

Drawing insights from CBR, we propose an end-
to-end framework for the CKBC task. We demon-
strate through automatic and human evaluations
that our framework generates more valid knowl-
edge than the state-of-the-art COMET model in
both the fully supervised and few-shot settings.
From the perspective of CBR, our framework ad-
dresses a fundamental question on whether CBR
methodology can be utilized to improve deep learn-
ing models.

8 Future Works and Challenges

In general, we hope this work could provide some
insights to bridge the two research areas, clas-
sic AI (Case-Based Reasoning) and deep learning
based NLP methods together, and therefore to ad-
vance the research of both fields from each other’s
research developments.

From the aspect of NLP methods, for example,
new prompting methods could be further developed
based on insights from CBR research; The concept
of revise and retain from CBR could be paid more
attention to investigate their interaction with in-
context demonstrations (prompting).

From the aspect of CBR, this work provides a
tentative answer to the two long-remaining chal-
lenges — (1) whether CBR can be used to comple-
ment DL (Leake and Crandall, 2020), given that
the latest work even suggests that in many tasks
NN itself outperforms CBR-complemented NN (Ye
et al., 2022); (2) the adaptation (reuse step) of pre-
vious cases to the current case is a very challenging
problem, so that in many fields the CBR method-
ology is used only as a retriever (Choudhury and
Begum, 2016). How to further answer these two
questions could be a challenging research topic.

9 Limitations

From the perspective of CBR, we have shown
through experiments that our framework can per-

form retrieve and reuse steps, and can benefit from
revise and retain steps. But the revise step in CBR
typically involves human efforts, and this paper
does not focus on addressing this challenge. As
a result, our framework might still need manual
efforts to benefit from revise and retain.

However, human efforts could be more effi-
ciently utilized for revise than writing new data
from scratch. Since comparing with requesting the
workers to write the knowledge from scratch, re-
vising the existing generations of ECBRF could be
much faster.
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A Appendix

A.1 Hyperparameters
We use a common training hyperparameters setup
for PLM, and the variance of hyperparameters such
as batch size is mainly determined by the computa-
tional resources.

Specifically, batch size is 32 for all ATOMIC
experiments; is 16 for all BART-based ConceptNet
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experiments; is 8 for all GPT2-based ConceptNet
experiments. Learning rate is 1e-5 for all exper-
iments. The remainder of our training hyperpa-
rameters is the same as COMET (Bosselut et al.,
2019) for full train set experiments. For few-shot
experiments, we adapt the warm up steps accord-
ingly (more details can be found in our public re-
lease code).

For decoding hyperparameters, we use greedy
decoding for all BART experiments (since Bosse-
lut et al. (2019) suggests that greedy decoding can
lead to the best human evaluation results); and
use topk (k=50) decoding for all GPT2 experi-
ments (since with greedy decoding many gener-
ations of GPT2 model is only the end of text to-
ken; with randomly sampling a concrete generation
could be made via multiple attempts).

A.2 Examples that BLEU not a Perfect Metric
Table 8 shows three examples with three different
rel from ATOMIC that shows although ECBRF’s
generations are reasonable, but they only receive
low BLEU scores.

This table shows that sometimes a good gen-
eration is assigned with a low BLEU score, espe-
cially when the generation is novel and unseen from
the ground truth set. Table 5 shows that ECBRF
produces more novel generations compared with
the COMET baseline, which might make ECBRF
suffer more from the imperfectness of the BLEU
score.

A.3 Examples on How Retrieved Cases
Influence ECBRF

Table 9 shows three examples of the generation of
ECBRF and COMET.

This table shows that many ECBRF’s genera-
tions are related to the retrieved case, exhibiting
the case-based reasoning ability of reusing the re-
trieved old experience to solve new problems.

A.4 More Related Works on CBR
Leake and Crandall (2020) advocate using CBR to
complement the challenges in deep learning (e.g.,
few-shot learning). However, past works on us-
ing CBR to complement DL only limit to shallow
Neural Networks (NN) (Liao et al., 2018; Leake
et al., 2021; Ye et al., 2021, 2022). The latest work
even suggests that in many tasks NN itself outper-
forms CBR-complemented NN (Ye et al., 2022),
which raises fundamental questions on whether
CBR methodology is useful for DL. Other relevant

works include only use CBR to improve the ex-
plainability of deep learning models (Keane et al.,
2021), or use CBR to improve the performance of
symbolic reasoning (Das et al., 2020a,b).

A.5 Future Applications of ECBRF

Although experiments in this paper are only con-
ducted under the commonsense knowledge base
completion task, ECBRF could potentially be
utilized by other commonsense reasoning tasks,
such as temporal commonsense reasoning (Yang
et al., 2020), commonsense based sentiment analy-
sis (Cambria et al., 2022), and metaphor process-
ing (Mao et al., 2018) (similar to CBR, metaphor
is also highly related to analogical reasoning).

A.6 Human Evaluation Details

Inter-annotator agreement Since we have three
annotators for human evaluation, and the spearman
correlation is to compare two rank lists, we cal-
culate the averaged spearman correlation for each
metric. Specifically, the average spearman correla-
tion for “validness” is 0.71, and the average spear-
man correlation for “informativeness” is 0.66; For
the “preference score”, since it’s to compare each
ECBRF’s generation with one baseline (COMET)
generation, we can’t rank generations according to
the value of the preference score. So following Pan
et al. (2011), we use Cohen’s kappa coefficient in-
stead. The kappa coefficient for “preference score”
is 0.81.

Instructions for human evaluators There are
3 evaluation metrics: preference score, validness
score and informativeness score.

Preference score: a valid generation with more
information provided will be assigned 1.0 point,
and a generation that is not valid or with less infor-
mation with being assigned 0.0 instead. However,
if the two generations perform comparably, both
generations will be assigned 0.5 points.

Validness score: Validness score is given in a
5-point scale (1 5) obviously true (5) generally true
(4) plausible (3) neutral or unclear or basically a
repetition (sub-sentence) of the query (2) doesn’t
make sense (1). Examples for validness: (5): Per-
sonX wants to learn piano, others want, to teach
personX; (4): PersonX wants to learn piano, others
want, to hear peronX play; (3): PersonX wants to
learn piano, others want, to sell piano to peronX;
(2): PersonX wants to learn piano, others want, to
turn their music on; (1): PersonX wants to learn
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Example 1 sub: PersonX spends ___ working
rel: As a result, others feel
ground truth: [’happy’, ’happy to have x in their life’]
COMET’s generation: happy (BLEU score: 31.62)
ECBRF’s generation: satisfied with personx’s work (BLEU score: 0.00)

Example 2 sub: PersonX expects another ___
rel: This person then
ground truth: [’prepares themselves’, ’gains knowledge’]
COMET’s generation: gains knowledge (BLEU score: 100.00)
ECBRF’s generation: wants to find out what it is that they are going to do next (BLEU score: 0.00)

Example 3 sub: PersonX spends the ___ working
rel: This person is seen as
ground truth: [’diligent’, ’tired’, ’hardworking’]
COMET’s generation: hardworking (BLEU score: 31.62)
ECBRF’s generation: dedicated (BLEU score: 0.00)

Table 8: Examples to show that BLEU is not a perfect metric for CKBC. This table shows that sometimes a good
generation is assigned with a low BLEU score, especially when the generation is novel and unseen from the ground
truth set. Table 5 shows that ECBRF produces more novel generations compared with the COMET baseline, which
might make ECBRF suffer more from the imperfectness of the BLEU score.

Example 1 sub: PersonX wants to play with PersonY
rel: Before, this person needed
COMET’s generation: to have a game
Retrieved cases by ECBRF include:

(PersonX plays tennis with PersonY’s friend, Before, this person needed, get a tennis racket)
ECBRF’s generation: to find a tennis court

Example 2 sub: PersonX advances another ___
rel: This person then
COMET’s generation: PersonX gains knowledge
Retrieved cases by ECBRF include:

(PersonX marries the king’s ___, This person then, he becomes king)
ECBRF’s generation: becomes more powerful

Example 3 sub: PersonX smiles broadly
rel: As a result, this person wants to
COMET’s generation: to smile back
Retrieved cases by ECBRF include:

(PersonX grins like a cheshire cat, As a result, this person wants to, express their feelings)
ECBRF’s generation: to tell others about the good time they had

Table 9: Examples to show how the retrieved cases influence the generated obj. This table shows that many
ECBRF’s generations are related to the retrieved case, exhibiting the case-based reasoning ability of reusing the
retrieved old experience to solve new problems.

piano, others want, to wait for the dinner.
Informativeness score: Informativeness score

is given in a 5-point scale (1 5) rich in relevant
details (5) has relevant details (4) it seems some
details is provided (3) not related information or
basically a repetition (sub-sentence) of the query
(2) unfinished generation or doesn’t make sense
(1) Examples for informativeness: (5): PersonX
wants to learn piano, others want, to teach personX
the basic usage of piano and how to buy a suitable
piano; (4): PersonX wants to learn piano, others
want, to teach personX on how to use piano; (3):
PersonX wants to learn piano, others want, to teach

personX; (2): PersonX wants to learn piano, others
want, to turn their music on; (1): PersonX wants to
learn piano, others want, to teach.

A.7 Other Details on Data Pre-processing

We observe that in Table 2, our GPT experi-
ment results are lower than Bosselut et al. (2019).
We attribute the reason to our different data pre-
processing method — we filter all the “.” in the
obj in ATOMIC and ConceptNet datasets since we
observe that only a part of obj are equipped with
“.”, which might confuse the model on whether to
generate “.” or not.
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Without “.”, a fixed token in generation, it would
be harder for a model to reach higher perplexity and
BLEU. In our preliminary experiments that do not
especially filter “.”, our re-implemented COMET’s
results are comparable to Bosselut et al. (2019).

A.8 Other Details on Retrieval
For ECBRF, we empirically find that not retrieving
cases that share the same subr with sub is benefi-
cial for the performance. The intuition behind this
mechanism is that when one of the retrieved cases
has the same subr with sub, then it should be nat-
ural to copy the corresponding objr as generation.
However, it is common that obj is different from
objr, which might confuse the model.
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Abstract

Data sparsity is one of the main challenges
posed by code-switching (CS), which is fur-
ther exacerbated in the case of morphologically
rich languages. For the task of machine trans-
lation (MT), morphological segmentation has
proven successful in alleviating data sparsity
in monolingual contexts; however, it has not
been investigated for CS settings. In this paper,
we study the effectiveness of different segmen-
tation approaches on MT performance, cov-
ering morphology-based and frequency-based
segmentation techniques. We experiment on
MT from code-switched Arabic-English to En-
glish. We provide detailed analysis, examining
a variety of conditions, such as data size and
sentences with different degrees of CS. Empir-
ical results show that morphology-aware seg-
menters perform the best in segmentation tasks
but under-perform in MT. Nevertheless, we find
that the choice of the segmentation setup to use
for MT is highly dependent on the data size.
For extreme low-resource scenarios, a combi-
nation of frequency and morphology-based seg-
mentations is shown to perform the best. For
more resourced settings, such a combination
does not bring significant improvements over
the use of frequency-based segmentation.

1 Introduction

Code-switching (CS), i.e. the alternation of lan-
guage in text or speech, has been gaining world-
wide popularity, due to several reasons, including
globalization and immigration. While this has been
met with a growing interest in the NLP field to
build systems that can handle such mixed input,
work on CS machine translation (MT) is still con-
sidered in its infancy, where only a few language
pairs have been investigated (Sinha and Thakur,
2005; Dhar et al., 2018; Menacer et al., 2019; Xu
and Yvon, 2021; Hamed et al., 2022c).

∗Work done while at the University of Stuttgart.

CS Sentence

بصراحة ب#صراحة
بالنسبالي ب#النسبا#ل#ي

ع ع
 ال ال

  it depends بصراحة بالنسبالي ع ال situation
  it depends  situation
  for me it honestly depends on the situation

it it it
depends depends depend#s

honestly
for me

on
the

situation situation situation

bSrAHp bAlnsbAly E Al

bSrAHp b#SrAHp
bAlnsbAly b#AlnsbA#ly
E E
Al Al

Translation
Word Translation Segmentation

Figure 1: An example sentence with code-switching
(CS) between English and Egyptian Arabic. The words
are contrasted with their segmentations and English
translations. Arabic words are paired with their translit-
erations in the Buckwalter scheme (Habash et al., 2007).

In this work, we focus on the CS Egyptian Ara-
bic (EGY)-English (EN) language pair, as we ob-
serve its usage is becoming more common. Besides
being prevalent amongst Egyptian migrant com-
munities, it is also commonly used in Egypt due
to the increase in international schooling systems
and educational advancements. We identify three
main challenges for CS MT. First is data sparsity,
a challenge common to many CS language pairs
because of limited parallel corpora containing com-
missioned translations of CS text (Çetinoğlu et al.,
2016; Srivastava and Singh, 2020; Tarunesh et al.,
2021; Hamed et al., 2022b; Chen et al., 2022). Sec-
ond is Egyptian Arabic morphological richness,
which further exacerbates the data sparsity situa-
tion (Habash et al., 2012a,b). Third, since the ma-
trix language (EGY) is morphologically rich, CS
occurs at three CS levels: on the boundaries of sen-
tences (inter-sentential CS), between words (intra-
sentential CS), and within words, i.e., morpholog-
ical code-switching (MCS). This mix of types of
CS raises the question of how to handle them all
in the same system. These challenges are further
illustrated in Figure 1.
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A common solution to handle data sparsity for
MT of morphologically rich languages is mor-
phological segmentation (Oudah et al., 2019; Ata-
man et al., 2017; Grönroos et al., 2020). How-
ever, this has not been investigated for CS. In this
paper, we explore a wide range of segmentation
approaches, covering unsupervised morphology-
based segmenters, unsupervised frequency-based
segmenters, and supervised morphology-based seg-
menters. This work aims to answer the following
research questions (RQs):

• RQ1: Which segmentation setup performs
the best in the downstream MT task across
different training sizes?

• RQ2: Does the effectiveness of the different
segmenters in the MT task differ according to
the CS type of the source sentence?

• RQ3: Is there a correlation between a more
morphologically correct segmentation and
MT performance?

While our results show that there is no correla-
tion between correct morphological segmentation
and MT performance, we find that the performance
ranking between the MT systems varies across dif-
ferent training data sizes and sentence types (mono-
lingual vs. code-switched). We show that apply-
ing a combination of supervised morphology-based
and unsupervised frequency-based segmentations
consistently gives best results, with statistical sig-
nificance under low data sizes. While common-
wisdom suggests that Byte-Pair Encoding (BPE) is
the best approach, our experiments highlight the
importance of integrating morphological knowl-
edge in the case of extreme low-resource settings.
We believe that the insights and methodology we
follow will be useful to researchers working with
low-resource languages. An additional contribution
of our research is the creation of a gold standard
morphologically annotated CS Egyptian Arabic-
English dataset which we make publicly available.1

The paper is organized as follows. Section 2 dis-
cusses related work. Section 3 describes the dataset
we annotated. Section 4 describes and evaluates the
different segmenters used. Section 5 describes and
evaluates the various MT systems. In Section 6, we
answer our research questions.

1http://arzen.camel-lab.com/

2 Related Work

Several researchers have investigated the effect
of applying different morphological and agnostic
segmentation approaches on the MT performance
for monolingual languages. Roest et al. (2020);
Saleva and Lignos (2021) show that unsupervised
morphology-based segmentation like Linguistically
Motivated Vocabulary Reduction (LMVR) (Ata-
man et al., 2017), Morfessor (Smit et al., 2014), and
FlatCat (Grönroos et al., 2014) for Nepali–English,
Sinhala–English, Kazakh–English, and Inuktitut–
English language pairs show either no improve-
ment or no significant improvement over the ag-
nostic BPE segmentation (Sennrich et al., 2016) in
translation tasks. Meanwhile, Mager et al. (2022)
and Ataman et al. (2017) show that for polysyn-
thetic and highly agglutinative languages, unsuper-
vised morphology-based segmentation outperforms
BPEs (Sennrich et al., 2016) in MT tasks in both
directions. Nevertheless, applying BPEs on top
of morphology-based segmentation for Turkish–
English, Uyghur–Chinese, and Arabic–English has
shown to bring improvements over solely using
BPEs or morphology-based segmentation for neu-
ral MT task (Pan et al., 2020; Tawfik et al., 2019). A
similar result was achieved by (Ortega et al., 2020),
using a morphological guided BPE for polysyn-
thetic languages. However, Oudah et al. (2019)
show that such an approach is beneficial in the
case of statistical machine translation (SMT), and
does not improve results for neural machine transla-
tion (NMT). For other natural language processing
(NLP) tasks, Al-Thubaity and Al-Subaie (2015)
show that utilizing word segmented Arabic dataset
leads to improvements in text classification task
over utilizing unsegmented dataset in terms of ac-
curacy, precision, recall, and F-measure.

As for work on CS MT, there are many efforts
(Sinha and Thakur, 2005; Dhar et al., 2018; Mahata
et al., 2019; Menacer et al., 2019; Song et al., 2019;
Tarunesh et al., 2021; Xu and Yvon, 2021; Chen
et al., 2022; Hamed et al., 2022c). To the best of
our knowledge, none of these efforts presented an
extensive comparison covering different segmen-
tation techniques. With regards to the languages
covered, only Menacer et al. (2019) worked on CS
Arabic-English. However, since they used care-
fully edited UN documents, the text only included
the Modern Standard Arabic variety, and contained
limited types of CS.

With regards to similar corpora, Balabel et al.
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Case Stem Ending Example
Irregular modified Irregular: es monki+es
Irregular modified Regular: s,ed,ing,en car+ing
Irregular modified Irregular: <nil> went
Irregular unmodified Irregular: es church+es
Regular unmodified Regular: s,ed,ing,en car+s

Table 1: The ordered list of rules we follow to segment
the English words.

(2020) annotated CS Egyptian Arabic-English data
(Hamed et al., 2018) with tokenization (canonical
segmentation), lemmatization, and POS tags. How-
ever, their corpus does not contain translations.

3 Data

3.1 Pre-existing Datasets

We use the ArzEn parallel corpus (Hamed et al.,
2020, 2022b), which consists of speech transcrip-
tions gathered through informal interviews with
bilingual Egyptian Arabic-English speakers, as
well as their English translations. The corpus
consists of 6,213 sentences, where 4,154 (66.9%)
are code-mixed, 1,865 (30.0%) are monolingual
Arabic, and 194 (3.1%) are monolingual En-
glish. Among the code-mixed sentences, there
are 1,781 (28.7%) sentences with morphological
code-switching. We follow the predefined dataset
splits, containing 3,341 (53.8%), 1,402 (22.6%),
and 1,470 (23.7%) sentences for train, dev, and test
sets, respectively. For training purposes, we also
use 308k monolingual parallel sentences obtained
from MADAR (Bouamor et al., 2018) and the fol-
lowing LDC corpora: (Gadalla et al., 1997; LDC,
2002b,a; Chen et al., 2017; Tracey et al., 2021;
BBN Technologies et al., 2012; Chen et al., 2019).
The preprocessing steps we apply are outlined in
Appendix A. We use ArzEn train set as well as the
monolingual parallel corpora to train both the seg-
menters and MT systems. For tuning and testing
the MT systems, we use the ArzEn dev and test
sets. For tuning and testing the segmenters, we
annotated a new dataset, discussed next.

3.2 A New Dataset: ArzEn Surface
Segmentation (ArzEnSEG) Corpus

To facilitate our research, we created a code-
switched Egyptian Arabic-English morphologi-
cally annotated dataset which we use for tuning
and testing. The dataset comprises the first 500
lines of ArzEn dev set. Unlike Balabel et al. (2020),
we opt for surface form segmentation to allow for

EGY EN
Test Words 3,414 501
Dev Words 3,069 567
Total Words 6,483 1,068
Total Segmented Words 1,206 146
Total Morphs 7,911 1,214
Total Unique Morphs 1,192 432
% of Total Segmented Words 18.6% 13.7%
Morphs/Word 1.220 1.137
Maximum Morphs per Word 5 2

Table 2: Statistics on ArzEnSEG corpus.

evaluating the segmenters. We also opt for extend-
ing ArzEn dataset as it contains translations and is
used in our MT experiments.

For Arabic word segmentation, we use the
Arabic Treebank (ATB) segmentation scheme
(Maamouri et al., 2004; Habash, 2010). We choose
this scheme as it is the standard tokenization
scheme used in different treebanks (Maamouri
et al., 2004, 2012; Taji et al., 2017; Habash et al.,
2022). It has also shown to be efficient in Oudah
et al. (2019) and has demonstrated its competitive-
ness in Habash et al. (2013).

For English word segmentation, we follow five
rules in sequential order depending on whether the
word has a regular or irregular stem and whether
the word has a regular or irregular ending. Table 1
exhibits the five English rules we follow in order.

All annotation decisions were made in context
by two bilingual speakers who collaborated on
initial annotations and quality checks. Figure 1
presents an annotation example. We divide the
sentences randomly into dev and test sets (250 sen-
tences each). In Table 2, we display statistics about
ArzEnSEG.

4 Segmentation Experiments

4.1 Experimental Setup

We explore three categories of segmenters:
unsupervised morphology-based, unsupervised
frequency-based, and supervised morphology-
based segmentation. For the unsupervised
morphology-based segmenters, we use MorphA-
Gram in addition to three segmenters from the Mor-
fessor family: Morfessor, LMVR, and FlatCat. For
unsupervised frequency-based segmenters, we use
BPE. Figure 2 summarizes the process of training
these segmenters. For the supervised morphology-
based segmenters, we use MADAMIRA (Pasha
et al., 2014), where we exploit the segmentation
schemes designed for Egyptian Arabic.
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و ازاي بت+handle#ي ده ؟
تقدري تعیشي من غیر mobile ؟

.…

CS Source Side

FCsrcMORFsrc LMVRsrc MorphAsrc

and how do you handle this ?
can you live without a mobile ?

…..

Target Side

FCtgtMORFtgt LMVRtgt MorphAtgtLMVRjoint BPEjoint

Drop 
English

LMVRsrc/egy

Figure 2: The unsupervised segmentation models we study in this paper and their training data dependencies. We
use four systems: Morfessor (MORF), FlatCat (FC), LMVR, and MorphAGram (MorphA). The subscripts specify
the training data: source (src), target (tgt), source+target (joint), and source without English, i.e., Egyptian, (src/egy).

4.2 Segmentation Systems

In this section, we introduce the segmentation sys-
tems used for the study. Details about the hyperpa-
rameter tuning for each system family can be found
in Appendix B. The different segmentation models
and their training dataset are displayed in Figure 2.

Morfessor Family We exploit three Morfessor
family tools for unsupervised morphology-based
segmentation in this research: Morfessor, (Smit
et al., 2014), FlatCat (Grönroos et al., 2014), and
LMVR (Ataman et al., 2017).

Morfessor is a morphological-based segmenta-
tion model which we train in an unsupervised man-
ner. Three components form the system: the model,
the cost function, and the training and decoding
algorithms (Virpioja et al., 2013). The model is
mainly concerned with the grammar and lexicon
where the latter holds the attributes of the subwords
and the grammar controls how these subwords are
combined to form the word. Morfessor’s grammar
assumes that the subwords that form the word are
independent of each other and that a word has at
least one subword.

FlatCat is a variant of Morfessor which we also
train in an unsupervised manner. Even though Flat-
Cat builds on Morfessor and shares the same model
component, they differ in their morphotactics (the
set of rules that determine how the word’s mor-
phemes are arranged). FlatCat morphotactics is
based on the Hidden Markov model (Baum and
Petrie, 1966) which considers context. On the con-
trary, Morfessor’s morphotactics algorithm is based
on a unigram model which is not context-sensitive.

LMVR is a morphology-based segmenter that is
built upon FlatCat and we train in an unsupervised
manner. Nonetheless, LMVR takes into consider-
ation the desired segmentation output vocabulary
size during training.

For each tool, two models are generated; one
trained on the source side; thus capable of segment-
ing CS data, and the other trained on the target side
of the training data; thus capable of segmenting
English data only. We add a src and tgt subscript to
the segmenters’ names to distinguish between both
settings. Hence, MORFsrc, FCsrc, and LMVRsrc
resemble Morfessor, FlatCat, and LMVR respec-
tively, where the segmenters are trained on the
source side. MORFtgt, FCtgt, and LMVRtgt re-
semble the segmenters trained on the target side.

MorphAGram We also include in this study
the unsupervised morphology segmenter MorphA-
Gram (Eskander et al., 2020) which is based on
Adaptor Grammars. We use the PrStSu+SM gram-
mar, which represents a word as a sequence of
prefixes followed by a stem then a sequence of suf-
fixes, in the unsupervised Standard learning setting
to train the segmenters.

BPE The SentencePiece (Kudo and Richardson,
2018) implementation of BPE (Gage, 1994; Sen-
nrich et al., 2016) is a frequency-based unsuper-
vised segmenter. We train the BPE model jointly,
on the concatenation of the source and target sides
of the training parallel corpus. Previous work has
shown that this approach is better suited for low
resource settings (Guzmán et al., 2019). We refer
to our joint BPE segmenter as BPEjoint.

MADAMIRA For supervised morphology-based
segmenters, we use MADAMIRA’s Egyptian
Arabic model (Pasha et al., 2014), which
was trained on the Egyptian Arabic Tree-
bank (parts 1 through 6) (Maamouri et al.,
2012). Specifically, we use MADAMIRA’s
ATB_BWFORM and D3_BWFORM schemes,
henceforth MDMRATB and MDMRD3, respec-
tively. Both schemes apply Alif/Ya normaliza-
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EMMA F1 Score
Segmenter EGY EN All

raw 0.806 0.953 0.838
MorphAsrc 0.682 0.942 0.737
MORFsrc 0.814 0.888 0.832

FCsrc 0.821 0.961 0.851
LMVRsrc 0.836 0.961 0.863

LMVRsrc/egy 0.838 0.953 0.863
MorphAtgt 0.806 0.953 0.838
MORFtgt 0.147 0.951 0.327

FCtgt 0.806 0.952 0.838
LMVRtgt 0.806 0.966 0.842

LMVRjoint 0.841 0.963 0.868
BPEjoint 0.678 0.814 0.707

MDMRATB 0.935 0.953 0.939
MDMRD3 0.868 0.953 0.887

Table 3: EMMA F1 score calculated on ArzEnSEG test
set for the raw data as well as the segmented data using
the different segmenters. The Arabic gold segmentation
is based on the ATB segmentation scheme. We show the
overall score (All) and language-specific scores calcu-
lated on the Egyptian Arabic (EGY) and English (EN)
words separately. Segmenter names with a src, tgt, and
joint subscripts represent segmenters that are trained on
the source, target, and source+target sides respectively.
The best performing segmenters from each category are
highlighted in bold.

tion and segment the Arabic clitics. MDMRD3

splits the Arabic definite article È@ Al (the), while
MDMRATB does not.

4.3 Segmentation Results

To evaluate the performance of the segmenters, we
use EMMA F1 score (Spiegler and Monson, 2010).
Results in Table 3, reported on ArzEnSEG test set,
show overall and language-specific scores.

Unsupervised morphology-based segmentation
Results show that LMVR outperforms the other un-
supervised morphology-based segmenters in terms
of segmenting Arabic and English words. We per-
form further experiments where we train 2 addi-
tional models: i) a model trained jointly on the con-
catenation of the source and target sides of the par-
allel corpus, and ii) a model trained on the Arabic
words only in the source side (where English words
are dropped). Therefore, the former model is capa-
ble of segmenting both languages, while the latter
is only tailored for segmenting Arabic words. We
perform these experiments using LMVR, given that
it outperforms the other segmenters. We refer to
these models as LMVRjoint and LMVRsrc/egy re-
spectively, as outlined in Figure 2. Results show
that joint training provides best EMMA scores.

Supervised morphology-based segmentation
As shown in Table 3, both supervised morphology-
based segmenters MDMRATB and MDMRD3 out-
perform all other segmenters. Their superiority in
segmenting Arabic is expected, as they are trained
on human-annotated data and hence are capable
of generating infrequent morphemes. Additionally,
MADAMIRA has a morphological analyzer em-
bedded in it, which in turn enriches the inspection
of Arabic words prior to segmentation. Higher
EMMA scores are reported for MDMRATB over
MDMRD3, which is also expected, as ArzEnSEG
is segmented following the ATB scheme.

Unsupervised frequency-based segmentation
As expected, BPEjoint performs the worst in the
morphology-based segmentation task, as it is de-
signed for agnostic segmentation for the purpose
of improving downstream tasks.

Further analysis We surprisingly find that
MorphAtgt outperforms MorphAsrc on Arabic
words and FCsrc outperforms FCtgt on English
words. Therefore, we conduct an internal anal-
ysis where we look into the percentage of over
and under segmentations.2 In Appendix C, we
present the number of under and over segmented
words for each segmentation approach. Our anal-
ysis shows that MorphAsrc over segments 25%
of the Arabic words. We observe that in 20%
of these over segmentation cases, the Arabic def-
inite article is segmented. For example, the word
I. �JºË@ Alktb ‘the books’ is segmented to I. �J»#È@
Al#ktb which is considered valid in segmentation
schemes like D3. However, since we use the ATB
scheme in ArzEnSEG annotation, the EMMA sys-
tem penalizes the MorphAsrc segmenter and re-
wards the MorphAtgt segmenter which leaves most
of the Arabic words and the definite article un-
segmented. Another case is the segmentation of
affixes, which is not done in ATB. For example,
16% of the over segmentation cases are separation
of the Ta-Marbuta (feminine nominal ending) in
Arabic words. The rest of the cases are grammati-
cally incorrect segmentations. FCtgt is also shown
to under segment around 17% more English words
compared to FCsrc which can contribute to worse
scores. We also observe that MORFtgt performs

2Over segmentation is a term we use to indicate that the
word gets segmented to more morphemes compared to the
gold standard segmentation. Meanwhile, under segmentation
is a term we use to convey that the word is segmented into
fewer morphemes than the gold standard segmentation.
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significantly worse than the other segmenters when
segmenting Arabic words, despite the fact that 81%
of the Arabic words do not require segmentation.
Internal analysis shows that MORFtgt over seg-
ments the Arabic words to the character level in an
attempt to extract the underlying morphology of
Egyptian Arabic, which it was not trained on.

5 Machine Translation Experiments

Since no previous research investigates the best seg-
mentation technique for NMT of the code-switched
Egyptian Arabic–English language pair, we explore
training NMT models using the various segmenta-
tion setups discussed in Section 4 to answer RQ1.
Moreover, we analyze the performance of the top-
performing MT systems on different types of CS
sentences to answer RQ2. Afterward, we compare
the MT scores against the EMMA F1 scores dis-
cussed in Section 4.3 to answer RQ3.

5.1 Experimental Setup
We train Transformer models for our MT systems
using Fairseq (Ott et al., 2019) on a single GeForce
RTX 3090 GPU. We use the hyperparameters from
the FLORES3 benchmark for low-resource MT
Guzmán et al. (2019), which we list in Appendix D.
Afterwards, we evaluate the MT models on ArzEn’s
dev and test sets using chrF2 (Popović, 2015).4 We
choose chrF2 over BLEU (Papineni et al., 2002)
as it rewards partially correct translations which
makes it a convenient choice for our research, and
because chrF has shown to have higher correlation
with human judgments over BLEU (Kocmi et al.,
2021).

5.2 Machine Translation Systems
We experiment with different categories of segmen-
tation setups. Table 4 shows all the different setups
that we explore. See Table 10 in Appendix D for
training time.

For the unsupervised morphology-based seg-
mentations, we use MorphAGram, Morfessor,
FlatCat, and LMVR to segment the source/target
sides of the parallel corpus, where the segmenters
were trained on each side separately (see Figure 2).
For the best performing segmenter, we further in-
vestigate the best training setting, where we in-
vestigate using segmenters trained only on Arabic

3FLORES hyperparameters outperform Vaswani et al.
(2017) for our code-switched pair by +0.4 chrF2 points.

4We use sacreBLEU’s (Post, 2018) implementation of
chrF2.

Segmentation chrF2
Source Target

EGY EN EN dev test
raw raw 47.1 49.9

Unsupervised Morphology-based Segmenters
MorphAsrc MorphAtgt 47.0 49.7
MORFsrc MORFtgt 47.4 50.8

FCsrc FCtgt 47.2 50.6
LMVRsrc LMVRtgt 48.3 51.7

LMVRjoint LMVRjoint 48.8 52.5
LMVRsrc/egy LMVRtgt LMVRtgt 48.9 52.9

LMVRsrc LMVRtgt LMVRtgt 48.8 52.9
LMVRsrc/egy LMVRsrc LMVRtgt 48.5 52.0

Frequency-based Segmenters
BPEjoint BPEjoint 50.1 53.7
BPEjoint raw 47.4 50.8

raw BPEjoint 44.3 46.9
Supervised Morphology-based Segmenters

MDMRATB raw raw 48.8 52.1
MDMRD3 raw raw 47.9 51.1

Combination Segmenters
MDMRATB+BPEjoint BPEjoint raw 46.5 50.1
MDMRATB+BPEjoint BPEjoint BPEjoint 50.2 53.8
MDMRD3+BPEjoint BPEjoint raw 46.9 50.7
MDMRD3+BPEjoint BPEjoint BPEjoint 49.8 53.3

Table 4: The chrF2 results of our NMT systems with
different segmentation combinations on ArzEn’s dev
and test sets. Numbers highlighted in bold show the
best performing system in each category.

words on the source side as well as segmenters that
are trained jointly on both sides.

For the supervised morphology-based segmen-
tations, we only follow one approach and that is
segmenting the source side using MDMRATB or
MDMRD3 segmenters. This causes the English
words to be left unsegmented.

For the unsupervised frequency-based seg-
mentations, we exploit the jointly trained model,
BPEjoint, to segment the source side only, target
side only, or both sides of the parallel corpus.

Finally, inspired by the work of Oudah et al.
(2019), we explore combinations between BPE
and supervised morphology-based segmenters. As
shown in Table 4, for the source side, we apply
BPEjoint on top of segmentations provided by ei-
ther MDMRATB or MDMRD3. For the target
side, we either leave it in the raw format or apply
BPEjoint .

5.3 Machine Translation Results

Table 4 shows the different MT systems and their
performance on ArzEn’s dev and test sets.

Amongst the unsupervised morphology-based
segmenters, LMVR outperforms the other seg-
menters. We find that training language-specific
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segmenters (using LMVRsrc/egy for Arabic words
and LMVRtgt for English words) outperforms train-
ing the segmenter jointly (LMVRjoint). This setup
gives the best performing model, referred to as
MTLMV R.

Amongst the supervised morphology-based
segmenters, the setup with MDMRATB is the
best, which we refer to as MTATB . The finding is
consistent with Oudah et al. (2019)’s results.

For unsupervised frequency-based seg-
menters, using BPEjoint to segment both source
and target sides outperforms MTLMV R by +0.8
chrF2 points and MTATB by +1.6 chrF2 points,
which we refer to as MTBPE . We observe that the
ranking of these segmenters in MT performance
is in reverse order compared to their ranking in
segmentation task performance. We discuss this
later in Section 6.

Most interestingly, contrary to (Oudah et al.,
2019), we find that applying BPEjoint on top of
MDMRATB , which we refer to as MTATB+BPE ,
slightly improves over MTBPE but without sta-
tistical significance. However, MTATB+BPE out-
performs MTATB and MTLMV R with statistical
significance.5 We further investigate the effective-
ness and statistical significance achieved by this
approach in a learning curve with varying the train-
ing data size in Section 5.4.

Finally, we note that segmenting English words
on the source and target sides consistently, while
controlling all other conditions, is always advanta-
geous, as shown in Table 4.

5.4 Analysis

We further analyze the performance of the
top MT systems from each segmentation
setup (MTATB+BPE , MTBPE , MTLMV R, and
MTATB). We first look into the number of
Out-of-Vocabulary (OOV) tokens associated with
each of the top-performing MT systems to examine
whether it has an impact on their final ranking.
Secondly, we investigate whether the ranking
of the systems is consistent across the different
types of sentences. We evaluate the systems
against varying morphological richness, English
percentages, and CS types. Thirdly, we further
investigate the effectiveness of applying BPE over
ATB compared to using each segmenter on its own.

5We use Paired Significance Tests for Multi Sys-
tem Evaluation provided by SacreBLEU for the sig-
nificance tests https://github.com/mjpost/sacrebleu#
paired-bootstrap-resampling---paired-bs.
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Figure 3: The percentage of the OOV words generated
from each of the top-performing MT systems from each
segmentation setup on ArzEn’s dev set.

We conduct this analysis across different CS types
and sizes of training data.

OOV To further study the reason behind
MTBPE and MTATB+BPE top performance, we
observe if the top-performing MT systems’ ranking
is linked with the percentage of OOV in the differ-
ent MT systems. As shown in Figure 3, we find that
for MTATB+BPE and MTBPE , the OOV percent-
age is 0%. However, for MTLMV R and MTATB ,
the percentage rises to 4.90% and 9.70%, respec-
tively, which we believe contributes to worsening
the MT systems.

Evaluating Systems Under Different Sentence
Categories We evaluate the performance of the
MT systems for sentences falling under different
ranges of (i) morphological richness, (ii) percent-
age of CS English words, and (iii) sentence CS
types. Morphological richness of a sentence is cal-
culated as the quotient of the number of tokens in
the segmented sentence and unsegmented original
sentence. As expected, the performance of all the
MT models decreases as the morphological rich-
ness increases and there is a boost in performance
across all systems when the percentage of English
words increases (see Appendix E). We observe that
the MTATB+BPE and MTBPE perform the best
across all ranges for the first two features. We then
evaluate the performance of the MT systems across
sentences according to CS types: purely mono-
lingual Arabic, CS, and CS having MCS (Hamed
et al., 2022a; Mager et al., 2019). We observe
that for all systems, the performance across CS
sentences is higher than across monolingual Ara-
bic sentences. We also observe that among CS
sentences, the performance is reduced in the case
of morphologically code-switched sentences. We
believe that the following two factors can be con-
tributing to these results. Firstly, the complex MCS
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constructions might impose challenges to the MT
system. Secondly, we observe that the average
length of MCS sentences is higher than that of CS
sentences in general. This is partially due to the fact
that the tokens in MCS words are space-separated
during the data preprocessing step. We report that
on average, CS sentences contain 21.1 words (21.4
tokens), while MCS sentences contain 25.0 words
(26.3 tokens).

Further Investigating the Effectiveness of
MTATB+BPE over MTBPE and MTATB
We study whether the ranking of MTATB+BPE ,
MTBPE , and MTATB is altered when going from
a low-resource to an extreme low-resource setting
across different sentence types. We achieve this by
varying the MT training data to 25% and 50% of
its original size. The results are shown in Table 5.

We observe that the effectiveness of the
MTATB+BPE varies under constrained condi-
tions. For monolingual Arabic sentences, when
training the MT systems on 100% of data, we
see that MTATB+BPE is not statistically sig-
nificant over MTBPE and MTATB . Moreover,
MTATB+BPE was outperformed by MTBPE .
However, when training with 25% and 50% of
data, MTATB+BPE outperforms MTBPE and
MTATB with statistical significance across all sen-
tence types. We further exhibit this in Figure
4 when all sentence categories are considered
during analysis under different data sizes. This
finding highlights the importance of combining
morphology-based and frequency-based segmenta-
tions in extremely low-resource scenarios.

We also observe that across all data sizes,
MTATB performs the worst on CS sentences. Our
first hypothesis is that this is due to English words
left unsegmented. However, results in Table 3 con-
tradict this hypothesis. Our second hypothesis is
that since MDMRATB takes into consideration the
context of the word prior to segmentation, the En-
glish words in the CS sentences might break the
flow of the sentence, hence negatively impacting
the context of the word, thus worsening the score.

System Selection As per our findings,
MTATB+BPE is always the best choice
across all sentence types in extreme low-resource
settings. However, when training on 100%
of the data, MTBPE improves slightly over
MTATB+BPE on monolingual Arabic sentences.
Therefore, we create a system selection setup

Size MT System All EGY CS MCS
25% MTATB+BPE 39.8 (1) 36.6 (1) 40.6 (1) 40.0 (1)

MTBPE 38.4 (2) 35.6 (3) 39.1 (2) 38.5 (2)
MTATB 36.9 (3) 35.9 (2) 37.0 (3) 36.0 (3)

50% MTATB+BPE 45.9 (1) 42.1 (1) 46.8 (1) 46.4 (1)
MTBPE 44.5 (2) 40.7 (3) 45.5 (2) 44.8 (2)
MTATB 44.0 (3) 41.4 (2) 44.7 (3) 44.0 (3)

100% MTATB+BPE 50.2 (1) 44.4 (2) 51.5 (1) 51.3 (1)
MTBPE 50.1 (2) 44.6 (1) 51.3 (2) 51.1 (2)
MTATB 48.8 (3) 44.2 (3) 49.8 (3) 49.4 (3)

Table 5: We compare the results of the best performing
MT system (MTATB+BPE) which utilizes BPE on top
of ATB segmentation against the MT systems that uti-
lize BPE (MTBPE) or ATB (MTATB) only on ArzEn’s
dev set. We report chrF2 results when training on 25%,
50%, and 100% of the training data. Results are shown
for different types of sentences: monolingual Egyptian
Arabic (EGY), code-switched (CS), and morphologi-
cally code-switched (MCS), as well as all sentences
(All). The ranking of the MT systems with respect to
each other is represented by the numbers between paren-
theses, where (1) is the best rank and (3) is the worst.

which uses both, MTATB+BPE and MTBPE , to
investigate if it would lead to further improvements.
In this setup, the CS and monolingual English
sentences are translated using MTATB+BPE ,
while monolingual Arabic sentences are translated
using MTBPE . Despite the hybrid system showing
an overall improvement of +0.1 chrF2 points over
MTATB+BPE , the improvement is not statistically
significant.

6 Discussion

We revisit the RQs we outlined in our introduction.
RQ1 - Which segmentation setup performs

the best in the downstream MT task across dif-
ferent training sizes? Results show that frequency-
based segmentation applied on top of morphology-
based segmentation outperforms the other segmen-
tation techniques, with statistical significance on
lower resource settings. The superiority of this ap-
proach is seen across sentences with varying mor-
phological richness, percentage of English words,
and across sentences with different CS types. We
believe the strength of the combination is because it
exploits complementarity of both methods. On one
hand, supervised morphology-based segmenters
bring in high correctness; however, they are not al-
ways robust, having high OOV rates. On the other
hand, while BPE segmentation is not necessarily
morphologically correct, it achieves high robust-
ness. The robustness of BPE is consistent with the
findings in Banerjee and Bhattacharyya (2018).
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Figure 4: Demonstrates the effectiveness of apply-
ing BPE on top of ATB segmentation (MTATB+BPE)
as opposed to using either approaches separately
(MTBPE and MTATB), which is confirmed when re-
ducing the amount of training data. Results are reported
on ArzEn’s dev set.

RQ2 - Does the effectiveness of the different
segmenters in the MT task differ according to
the CS type of the source sentence? We observe
that the effectiveness of the different segmenters
on MT performance is consistent across two cat-
egories of CS sentences; those with and without
MCS. However, when comparing their effective-
ness on monolingual Arabic vs. CS sentences, we
observe that the rankings between segmenters are
not consistent. In the case of constrained data size
settings (25% and 50% of data), we observe a clear
pattern where MTATB outperforms MTBPE on
monolingual sentences, while MTBPE outper-
forms MTATB on CS. In the case of using 100%
of the training data, MTATB+BPE outperforms
MTBPE on CS sentences; however, MTBPE out-
performs MTATB+BPE on monolingual Arabic
sentences. Since our test and dev sets are domi-
nated by CS sentences (61.5% and 63.8%, respec-
tively), we believe that the overall ranking is more
greatly affected by the systems’ performance on CS
sentences, thus reflecting the same ranking on the
overall evaluation set as that across CS sentences.

RQ3 - Is there a correlation between a more
morphologically correct segmentation and MT
performance? For unsupervised morphology-
based segmenters, a segmenter with a better seg-
mentation EMMA F1 score also scores better in
the downstream MT task. However, we cannot
hypothesize that a better segmentation score im-
plies a better translation system, as counter ex-
amples exist. For example, while we notice that

MDMRATB gives the best segmentation in terms
of EMMA F1 score, it does not outperform any of
the top-performing MT systems. We hypothesize
that despite MDMRATB’s capability of generat-
ing morphologically correct segmentations, it can
generate infrequent morphemes due to the out-of-
domain data which it is trained on. This may not
only increase the sentence length which worsens
MT performance as shown in Mager et al. (2022),
but may also be one of the contributing factors to
the 9.70% OOV percentage found in MTATB . On
the contrary, BPEjoint performs the worst in the
segmentation task as we expect, since it is desig-
nated for agnostic-based segmentations; however,
it surpasses the top-performing MT models. We
believe this is due to its capability to generate semi-
correct segmentation and to reduce OOV rates.

7 Conclusion and Future Work

In this paper, we study the impact of a compre-
hensive set of morphological and frequency-based
segmentation methods on MT, where the source
is a code-switched text. The experiments are per-
formed on code-switched Arabic-English to En-
glish. We found that the supervised morphologi-
cal segmenter achieved the best performance on
the segmentation task, followed by unsupervised
morphological methods, and finally, unsupervised
frequency-based. Afterward, we train 18 differ-
ent MT systems with different source and target
side segmentations. We find that the rank of the
segmenters is reversed, as BPE’s could not be out-
performed (significantly) by any morphological-
inspired segmentation method. However, combin-
ing morphology-based and frequency-based seg-
mentations has shown to give improvements, which
are statistically significant in lower resource set-
tings, where the training data size is reduced to
25% and 50%. For future work, we plan to ap-
ply our different MT setups on other low resource
and code-switched language pairs. Specifically, we
plan to explore languages with different typolo-
gies, to study whether or not the relation between
the data size and choice of the segmentation setup
(frequency-based, morphology-based, or a mix)
is based on morphological features and data size
rather than the language itself. Moreover, we plan
to extend our annotated dataset, ArzEnSEG, by
adding further details to allow evaluating different
schemes.
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Limitations

The first challenge we face in this work is the com-
putational power needed to tune the Morfessor fam-
ily segmenters. Therefore, in an attempt to over-
come this challenge, for the Morfessor family, the
choice of the optimal hyperparameters is depen-
dent on the parent tool. For instance, the optimal
hyperparameters for Morfessor are directly used
in its FlatCat variant and the hyperparameters spe-
cific to FlatCat are then tuned. The same applies
for LMVR which is a variant of FlatCat. More-
over, we cannot verify whether or not our results
will hold for languages with different typologies,
specifically those that are low resource and code-
switched. Therefore, the results of this research
must be seen in light of these limitations.
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A Data Preprocessing

We use the same preprocessing pipeline for all the
corpora, where we start by removing any corpus-
related annotations. Afterward, we remove URLs
and emoticons, through tweet-preprocessor,6 re-
move trailing and leading spaces, and tokenize
numbers. Finally, Moses Tokenizer7 is applied for
tokenization and empty lines are removed from the
parallel corpora. For LDC2017T07 (Chen et al.,
2017) and LDC2019T01 (Chen et al., 2019), some
sentences have literal and intended translations for
some words. Hence, we opt for one translation
having all literal translations and another having
all intended translations. Once all the preprocess-
ing steps are done, we concatenate the nine cor-
pora collectively and pass the resulting training
corpus to MADAMIRA (Pasha et al., 2014) to ob-
tain two different supervised morphological seg-
mentations of the corpus, namely ATB_BWFORM
and D3_BWFORM which we discuss in Section 4.2.
Additionally, we obtain a raw training corpus by
further tokenizing punctuation and removing emo-
jis using MADAMIRA’s D0 scheme (Zalmout and
Habash, 2017). Nonetheless, we normalize the Ara-
bic letters ø and


@ to ø
 and @ respectively through

CAMeL Tools (Obeid et al., 2020) since D0’s out-
put is not normalized.

B Segmenters’ Hyperparameters

Morfessor family Since all Morfessor family
segmenters are morphology inspired, the hyperpa-
rameters are tuned on ArzEnSEG’s dev set. For
LMVRsrc and LMVRtgt setting the vocabulary
sizes to 64k and 16k respectively outperform 3k,
5k, 8k, 16k, 32k, 100k. For LMVRjoint set-
ting the vocabulary size to 32k outperforms 3k,
5k, 8k, 16k, 64k, and 100k. Meanwhile, For
LMVRsrc/egy setting the vocabulary size to 64k
outperforms 3k, 5k, 8k, 16k, 32k, and 100k.

Table 6 shows the possible values used during
the optimal hyperparameter search for each Mor-
fessor tool. For Morfessor, FlatCat, and LMVR 18,
360, and 7 different segmentation models are gen-
erated. These are a result of the combination of the
possible hyperparameter values. The hyperparame-
ter combination which yields the highest EMMA
score on ArzEnSEG’s dev set for each Morfessor

6https://pypi.org/project/tweet-preprocessor/
7https://github.com/moses-smt/mosesdecoder/

blob/master/scripts/tokenizer/tokenizer.perl

Segmenters Hyperparameters
Hyperparameter Values Bound

Morfessor
-F [0.003, 0.005, 0.007]
-d [log, ones, none]
-a [recursive, viterbi]

FlatCat
-p [50, 60, 70, 80, 90, 100, 200, 300]

–min-perplexity-length [1, 2, 3, 4, 5]
–min-shift-remainder [1, 2, 3]

–length-threshold [2, 3, 4]
LMVR

–lexicon-size [3k, 5k, 8k, 16k, 32k, 64k, 100k]

Table 6: The values bound we use during the best hyper-
parameter combination search for the Morfessor tools.

tool is used to segment the MT training data. The
best combination values are reported in Table 7.

MorphAGram Akin to the Morfessor family, we
tune the hyperparameters on ArzEnSEG’s dev set
and train two models: one on the source side and
the other on the target side of the training paral-
lel corpus which we refer to as MorphAsrc and
MorphAtgt, respectively (see Figure 2). Tuning
results show that setting the vocabulary size to 3k
for MorphAsrc outperforms 5k, 8k, 16k, 32k, and
50k, while setting the vocabulary size to 50k for
MorphAtgt outperforms 5k, 3k, 8k, 16k, and 32k.
Nevertheless, it is worth noting that the vocabulary
size on the target side is < 50k which shows that
MorphAtgt performs the best when no segmenta-
tions are applied on the English words.

BPE Since BPE is a segmentation technique that
is designated for agnostic segmentation for MT
tasks, we tune the vocabulary size on ArzEn’s dev
set in an NMT task. We apply a vocabulary size of
8k, which outperforms 5k, 16k, 32k, 64k.

C Segmenters Performance Analysis

Table 8 shows the error analysis we perform on the
segmenters with regards to over segmentation, un-
der segmentation, or generating the correct number
of segmentations per word.

D MT Hyperparameters

The MT hyperparameters are shown in Table 9.
We follow the FLORES hyperparameters for low-
resource language pairs. The full train command
can be found on FLORES GitHub.8 The training

8https://github.com/facebookresearch/flores/
blob/6641ec0e23d173906dd2e01551a430884b1dba31/
floresv1/README.md#train-a-baseline-transformer-
model
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Morfessor FlatCat LMVR
Data -F -d -a -p –min –min –length –lexicon

-perplexity -shift -threshold -size
-length -remainder

src 0.003 log recursive 200 1 1 4 64k
tgt 0.003 log recursive 100 4 2 4 16k

src/egy 0.007 log recursive 300 1 1 2 64k
joint 0.007 log recursive 300 4 2 4 32k

Table 7: The different hyperparameters used for each Morfessor family segmenter depending on whether the model
is trained on the source (src), target (tgt), source without English, i.e., Egyptian, (src/egy), or source+target (joint)
side(s).

EGY EN
Segmenter under over correct seg. unseg. under over correct seg. unseg.

raw 634 0 2,780 0 2,780 71 0 430 0 430
MorphAsrc 249 855 2,310 385 1,925 70 45 386 1 385
MORFsrc 466 299 2,649 148 2,501 15 103 383 42 341

FCsrc 592 8 2,814 42 2,772 56 7 438 15 423
LMVRsrc 520 47 2,847 111 2,736 43 7 451 28 423
MorphAtgt 634 35 2,745 0 2,745 6 148 347 65 282
MORFtgt 0 3,150 264 3 261 21 37 443 49 394

FCtgt 634 0 2,780 0 2,780 66 8 427 5 422
LMVRtgt 634 0 2,780 0 2,780 23 19 459 48 411

LMVRjoint 485 79 2,850 144 2,706 20 32 449 51 398
BPEjoint 338 368 2,708 230 2,478 28 132 341 30 311

MDMRATB 38 62 3,314 581 2,733 71 0 430 0 430
MDMRD3 38 293 3,083 561 2,522 71 0 430 0 430

Table 8: The table shows the number of under segmented words (under), over segmented words (over), and the
number of cases where the segmenter generates the correct count of morphemes (correct) for English (EN) and
Arabic (EGY) words in ArzEnSEG test set. Additionally, out of the correct count of morphemes (correct), we report
the words which originally require segmentation (seg.) and those which do not (unseg.).

time for MT model the training time is exhibited in
Table 10.

Hyperparameter Value
encoder-layers 5
decoder-layer 5

encoder-embed-dim 512
decoder-embed-dim 512

encoder-ffn-embed-dim 2
decoder-ffn-embed-dim 2

dropout 0.4
attention-dropout 0.2

relu-dropout 0.2
weight-decay 0.0001

label-smoothing 0.2
warmup-updates 4000
warmup-init-lr 1e-9

Table 9: FLORES hyperparameters for low-resource
language pairs.

E Evaluating Systems Under Different
Sentence Categories

Figure 5 shows the performance of the top MT
systems from each segmentation setup across sen-
tences of different morphological richness ratios
and different percentages of English words in

ArzEn’s dev set. Results show that there is a gen-
eral decrease in performance as the morphological
richness increases. However, as the percentage
of English words in the sentences increases, the
performance of the systems generally improves.
It is also shown that MTATB+BPE and MTBPE
achieve overall comparable performances and out-
perform the other systems.
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Figure 5: The average chrF2 scores for the top performing MT systems from each segmentation setup across
sentences with various (a) morphological richness ratios and (b) percentage of English words in ArzEn’s dev set.
Morphological richness of a sentence is calculated as the quotient of the number of tokens in the segmented sentence
and unsegmented original sentence. The bar width is indicative of the number of sentences in each bin.

Segmentation Training
Source Target Time

EGY EN EN (seconds)
raw raw 13,522

Unsupervised Morphology-based Segmenters
MorphAsrc MorphAtgt 24,731
MORFsrc MORFtgt 18,916

FCsrc FCtgt 18,225
LMVRsrc LMVRtgt 4,476

LMVRjoint LMVRjoint 18,019
LMVRsrc/egy LMVRtgt LMVRtgt 22,462

LMVRsrc LMVRtgt LMVRtgt 4,181
LMVRsrc/egy LMVRsrc LMVRtgt 4,526

Frequency-based Segmenters
BPEjoint BPEjoint 18,279
BPEjoint raw 23,193

raw BPEjoint 17,905
Supervised Morphology-based Segmenters

MDMRATB raw raw 18,280
MDMRD3 raw raw 18,519

Combination Segmenters
MDMRATB+BPEjoint BPEjoint raw 17,629
MDMRATB+BPEjoint BPEjoint BPEjoint 27,088
MDMRD3+BPEjoint BPEjoint raw 24,256
MDMRD3+BPEjoint BPEjoint BPEjoint 23,611

Table 10: The training time in seconds of our different
NMT systems.
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Abstract

Can transformers learn to comprehend logical
semantics in natural language? Although many
strands of work on natural language inference
have focussed on transformer models’ ability
to perform reasoning on text, the above ques-
tion has not been answered adequately. This
is primarily because the logical problems that
have been studied in the context of natural
language inference have their computational
complexity vary with the logical and gram-
matical constructs within the sentences. As
such, it is difficult to access whether the dif-
ference in accuracy is due to logical semantics
or the difference in computational complexity.
A problem that is much suited to address this
issue is that of the model-checking problem,
whose computational complexity remains con-
stant (for fragments derived from first-order
logic). However, the model-checking problem
remains untouched in natural language infer-
ence research. Thus, we investigated the prob-
lem of model-checking with natural language
to adequately answer the question of how the
logical semantics of natural language affects
transformers’ performance 1. Our results imply
that the language fragment has a significant im-
pact on the performance of transformer models.
Furthermore, we hypothesise that a transformer
model can at least partially understand the log-
ical semantics in natural language but can not
completely learn the rules governing the model-
checking algorithm.

1 Introduction

Recent years have seen a surge of interest in the
application of neural networks to the topic of nat-
ural language inference (Raffel et al., 2019; Lan
et al., 2020; Yang et al., 2019), the central task of
which is to recover information entailed by, but
not explicitly stated in natural language texts (Lin
et al., 2019; Sinha et al., 2019; Geiger et al., 2018;

1dataset and code available at https://github.com/
iTharindu/reasoning-withing-a-structure

Wang et al., 2021). This problem is of theoretical
(as well as practical) interest because the ability
to understand the logical consequences of natu-
ral language sentences is an essential part of what
it is to understand the grammatical constructions
and closed-class expressions they contain. More
specifically, the ability of neural network models to
recognize logical entailments is constitutive of their
ability to understand the texts they are processing.

It is important to distinguish two strands of work
in this area. The first focuses on entailment as
defined by human-constructed datasets (Bowman
et al., 2015; Williams et al., 2018), where the in-
ferences depend on implicit background knowl-
edge and have a probabilistic character. The sec-
ond focuses on the recognition of formal logical
entailments, for which data sets can be machine-
generated using existing symbolic reasoning tech-
niques (Richardson et al., 2020; Richardson and
Sabharwal, 2021; Geiger et al., 2018). This latter
strand of work is particularly pertinent to the theo-
retical problem of whether neural network models
can learn the logical semantics of natural language.
Commonsense knowledge, human judgement and
considerations of plausibility are consciously ex-
cluded.

A logical problem of great theoretical interest
that has not been studied in the context of natural
language inference is the model-checking problem:
given a formula ϕ and a structure A, determine
whether ϕ is true in A (A |= ψ). The ability to
perform model-checking is indicative of a grasp of
the logical semantics of the expressions concerned.
In the context of natural language inference, we
are particularly interested in a variant of the model-
checking problem where the structure and the for-
mula are interpreted in natural language. It is note-
worthy to emphasise how the model-checking prob-
lem differs from other inference problems. In other
logical reasoning problems such as satisfiability,
computational complexity varies among multiple
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Figure 1: An instance of the model-checking problem, the domain of the structure is represented inD, and predicates
are characterised by P . A formula can be valid or not according to the structure (the formula on the left is valid,
while the one on the right is invalid). Corresponding natural language representations for both the structure and the
formula are also presented.

computational complexity classes (NLOGSPACE to
NEXPTIME for fragments considered in this study)
in language fragments of the finite variable space
(Pratt-Hartmann and Third, 2006; Pratt-Hartmann,
2010). In contrast, in the model checking problem,
the computational complexity remains in PTIME

for any fragment in the finite variable space (given
they are derived from first-order logic). Further-
more, inference in the model-checking problem
is fairly straightforward, which has also been evi-
dent by low computational complexity. Hence, the
model-checking problem provides an ideal problem
to analyse how different logically significant words
and grammatical constructs (semantics of logic in
natural language) affect transformers’ ability to rea-
son, as the underlying computational complexity
remains in PTIME.

Figure 1 depicts an instance of the model-
checking problem, where the sentence "Some ac-
tors love every scholar" is True according to the
structure presented, as the assignment of "Hailee"
to the variable x makes the corresponding formula
(∃x(actor(x) ∧ ∀y(scholar(y) ⇒ love(x, y))))
True. However, when assessing the sentence "All
actors who are happy are scholars", there is no as-
signment that makes the formula (∀x((actor(x) ∧
happy(x)) ⇒ scholar(x))) True according to
the structure (the set of actors who are musicians is
{Hailee}, which is not a subset of scholars’, namely
{Alan, Tony}).

In our analysis of transformers’ capabilities in
the model-checking problem, we ask two funda-
mental questions, (1) can transformers perform
model-checking with natural language? (2) if so,
can transformers understand the logical seman-

tics of natural language: i.e. can transformers
comprehend the semantics of distinctively logical
words and grammatical concepts such as determin-
ers, relative clauses and anaphora? To answer the
above-mentioned questions, we construct a model-
checking dataset (FO2-MC dataset) utilising lan-
guage fragments. Unlike the work by Richardson
and Sabharwal (2021) and Geiger et al. (2018),
whose work was limited to only one language frag-
ment, we explore a varied set of fragments. The
consideration of linguistic complexity of language
fragments led us to ask an additional question:
How does the linguistic complexity of the fragment
affect the performance of the transformer model
when performing model-checking with natural lan-
guage?

The contributions of this paper are as follows:
(1) To the best of our knowledge, we are the first
to broaden natural language reasoning over formal
theories to include model-checking with natural
language; (2) We develop a novel algorithm for con-
structing a dataset for model-checking with natural
language; (3) We investigate whether transformers
can learn to understand the logical semantics of nat-
ural language; (4) In a first-of-its-kind study in rule
reasoning, we include complex fragments such as
anaphora and relative clauses with transitive verbs;
and (5) We provide a systematic analysis of how
the linguistic complexity of language fragments
affects rule reasoning.

2 Related Work

Our work follows the literature on evaluating neu-
ral approaches, especially transformer models on
deductive and linguistic reasoning tasks (Richard-
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son and Sabharwal, 2021; Richardson et al., 2020;
Sinha et al., 2019; Geiger et al., 2018; McCoy et al.,
2019; Betz et al., 2021). Moreover, it is also related
to other research approaches that have been con-
ducted on data synthesis for rule reasoning prob-
lems (Lin et al., 2019; Weston et al., 2016; Tafjord
et al., 2019). However, our study is distinct from
the above-mentioned work in two ways. Firstly,
we focus on an unexplored problem space, model-
checking with natural language. Secondly, unlike
the above literature, we explore multiple language
fragments and provide a deconstruction of how the
linguistic complexity of language fragments affects
the performance of transformer models in a rule
reasoning task.

Our work can also be viewed as broadening the
research conducted on training neural networks to
perform algorithmic tasks, including learning to
solve SAT problems (Selsam et al., 2019; Narodyt-
ska et al., 2020), propositional inference (Evans
et al., 2018), semantic parsing (He and Choi,
2020; Kamath and Das, 2019), symbolic integra-
tion (Lample and Charton, 2020) and natural theo-
rem proving (Weber et al., 2019; Minervini et al.,
2020; Saha et al., 2020; Gontier et al., 2020). In our
study, we aim to investigate the transformers’ abil-
ity to emulate the algorithm governing the model-
checking problem and comprehend the logical se-
mantics of natural language.

When defining language fragments, we follow
the definition set out by Pratt-Hartmann (Pratt-
Hartmann, 2003, 2004; Pratt-Hartmann and Third,
2006; Pratt-Hartmann and Moss, 2009), who de-
scribed it more precisely as a subset of a language
equipped with semantics that translates sentences
into a formal system such as first-order logic. More-
over we employ their work on fragments of first-
order logic as the foundation when constructing
the dataset. Notably, Pratt-Hartmann (2004) has in-
vestigated the complexity of fragments’ first-order
logic, and we limit our analysis in this paper to
fragments that have been examined in that study.
Moreover, we also closely follow the cognitive sci-
ence literature on model-checking and quantifier
verification (McMillan et al., 2005; Szymanik et al.,
2013; Szymanik and Zajenkowski, 2010) when
defining our experimental evaluation. It provides
us with a baseline to compare results from trans-
former models with the empirical studies that have
been conducted with humans.

3 Data Construction

To decide whether transformer models can learn to
understand logical semantics of natural language
from formulae (sentences) and structures repre-
sented in natural language, we developed an al-
gorithm (shown in Algorithm 1) to construct a bal-
anced dataset designed to be free from trivial lin-
guistic patterns that are easily exploitable. This
section will outline the data construction methodol-
ogy in detail.

We sample a set of words (Proper nouns PrN,
nouns N, verbs Vb, adjectives Adj) from a prede-
fined vocabulary (V ′) to form a list of words V . The
proper nouns in V are used to define the domain
D of the structure, while the nouns, verbs and ad-
jectives are used for defining the set of predicates
P .

When generating sentences, we follow a
template-based approach. A language template
is a sentence of natural language with open-clause
words replaced by schematic variables; for exam-
ple, Some N1 V is every N2. Through substitution
of vocabulary items of the appropriate category,
we can generate natural language sentences, i.e.,
Some artists admire every doctor. A simple way
of defining a fragment of natural language (lan-
guage fragment) is via a finite set of template sen-
tences. For example, the classical syllogistic frag-
ment can be defined as the sentences confirming
the sentence schemata, All N1 are N2, Some N1 is
N2, No N1 are N2 and Some N1 are not N2. The
formula template is a formula of first-order logic
with non-logical symbols replaced by schematic
variables; for example, ∃x(N1(x) ∧ ∀N2(B(y)⇒
V (x, y))). An instance of that formula is the result
of the substitution of non-logical symbols of the
appropriate type for the schematic variables, i.e.,
∃x(artist(x) ∧ ∀y(doctor(y)⇒ admire(x, y))).
A language template translates to schematic for-
mulae in a natural way. For example, the classi-
cal syllogistic translates to the schematic formulae
∀x(N1(x)⇒ ±N2(x)) and ∃x(N1(x)∧±N2(x)).

Let ΦL denote the set of first-order formula tem-
plates that can be translated to natural language
templates L. Given a language fragment L and
a vocabulary V , we can obtain a set of formulae
ΦL(V), such that ΦL(V) is a fragment of first-order
logic over the vocabulary V , i.e., ΦL(V) only con-
tains the vocabulary V . The first-order formula ϕ is
selected from the ΦL(V), and then the formula ϕ is
translated to a natural language sentence sϕ using a
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template L. A summary of the language fragments
we used in our evaluation is provided in the next
section.

Algorithm 1 Data Construction - Model-Checking
with Natural Language

Input : Language Fragment L and its
corresponding set of first order logic formulae
templates ΦL along with its equivalent natural
language templates TL. Vocabulary V that contains
Nouns(N), Adjectives(Adj), Verbs(Vb) and Proper
nouns(PrN). Template T to convert structure to
natural language. Maximum number of domain
elements per datapoint n, and maximum number
of predicates m

Output : Model-checking dataset D

1: D ← {}
2: repeat
3: V ← randomly select list of words where

V ⊂ V ′ such that |{PrN}| ≤ n and |{N ∪
Adj ∪ V b}| ≤ m

4: ϕ← randomly generate first order formula
using the set of first-order logic formulae
ΦL(V)

5: sϕ ← converts ϕ to a natural language sen-
tence using the template L

6: ℓ ← randomly generate ℓ where ℓ ∈
{True, False}

7: D← {PrN}, P← {N ∪Adj ∪ V b}
8: repeat
9: A ← generate structure randomly using

the signature (vocabulary) V
10: if (ℓ = True and A |= ϕ) or (ℓ = False

and A ̸|= ϕ) then
11: correct-structure-found← True
12: end if
13: until correct-structure-found
14: MA ← converts A to a natural language

using a template T
15: D← D ∪{MA, sϕ, ℓ}
16: until stop condition is met

The label ℓ is selected randomly from the set
{True, False}. Once ℓ and ϕ are defined, the
structure A = (D, {P}A) is generated, where
D is the domain and P is the set of predicates
and {P}A represents an interpretation of P in A
and the signature of the structure is V . Assign-
ment of each domain element to the P in the
structure A is done randomly, such that for ev-

ery domain element di in D and predicate Pi,
prob(di assign to Pi) = p1 if Pi is a unary pred-
icate, and for every domain element di, dj in D
and predicate Pi, prob((di, dj) assign to Pi) = p2
if Pi is a binary predicate. In our experimenta-
tion, we select p1 = 0.5 and p2 = 0.752, so that
for each predicate Pi, |PA

i | is a normal distribu-
tion with a mean of approximately |D|2 , so the loop
(in line 8-13) terminates within a reasonable time.
We iteratively build structures randomly, and per-
form model-checking using a model-checker until
a structure that meets the criteria defined by the
label is found; i.e. if ℓ = True, then the formula
is True according to the structure, A |= ϕ and
vice-versa. Once such structure is identified, it
is converted into a paragraph in natural language,
MA using a template T .

Another way to create a data point would be to
generate A and ϕ and perform the validity check us-
ing a model-checker to acquire the label as opposed
to pre-defining the label and iteratively constructing
A to match the label. However, such an approach
can introduce easily exploitable linguistic patterns
such as having the label False for most sentences
containing determiners all, every or no, or having
label True for sentences containing determiners
some or a.

When constructing sentences, we make sure
each predicate only appears once within a sentence.
So sentences like every artist is an artist would
not be generated. Furthermore, we also remove
cases where no elements are assigned to a predi-
cate Pi and perform re-balancing, since they also
introduced easily exploitable patterns. For exam-
ple, the sentence "every musician who is a actor is
happy" is trivially True if there are no musicians
or actors.

3.1 Language fragments

A language fragment is defined as a language that
is equipped with semantics that translates its sen-
tences to a formal system, such as first-order logic.
We defined our language fragments based on the
work of Pratt-Hartmann (2004). Table 1 shows the
language fragments used, along with an example
for each fragment and the corresponding first-order
formula. As indicated in the data construction algo-
rithm, we employ a template-based approach when
implementing both language fragments and their
formal method representations. We limit our evalu-
ations to fragments of first-order logic and bound
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Language Fragment Example

Syllogistic Every musician is a artist
∀x(musician(x)⇒ artist(x))

Relational syllogistic (Re-Syl) All teachers remember some engineer
∀x(artist(x)⇒ ∃y(engineer(y) ∧ remember(x, y)))

Relative clauses without
transitive verbs (Rel)

All economists who are not happy are cynics
∀x((economist(x) ∧ ¬happy(x)⇒ cynic(x))

Relative clauses with transitive
verbs (Rel-TV)

No cynic like any scholar who is a expert
∀x(cynic(x)⇒ ∀y((scholar(y) ∧ cynic(y))⇒ ¬like(x, y)))

Anaphora Some judge warns no juror who hate him
∃x(judge(x) ∧ ∀y((juror(y) ∧ hate(y, x))⇒ ¬warn(x, y)))

Table 1: Language fragments we utilised along with an example for each of them and its corresponding first-order
logic formula.

the number of functions within a formula to have
a maximum of four. We also limit the maximum
number of quantifiers per formula to two, produc-
ing only unary or binary formulae. The rationale is
to have natural sounding sentences. As outlined in
the description of the template structure provided
in Appendix A: Templates of Language Frag-
ments, to address the ambiguity that can arise with
anaphora or relative clauses, we bind the anaphora
or relative clauses to the same element. For exam-
ple, anaphora always refer to the first noun in the
sentence. Even though we limit our data construc-
tion and evaluation to only these fragments, we
emphasise that the data construction methodology
and experimental evaluation we have conducted
can be executed with any arbitrary fragment of nat-
ural language.

3.2 Boolean Coordinators

One interesting experiment is to evaluate how trans-
former models perform when Boolean coordina-
tors are introduced to the sentences. To that end,
we used Boolean coordinators (

∧
(and),

∨
(or)) to

combine sentences and create more difficult prob-
lem instances. The resultant first-order formula
Ψ of such sentences can be formed by combining
individual first-order formulae using either

∧
or
∨

.
Model-checking is then performed on Ψ (is A |= Ψ
or A ̸|= Ψ?), and the condition in Algorithm 1 (line
11) is modified accordingly.

The natural language sentences are combined
accordingly using the coordinating conjunctions
and or or. We did not consider the case where
and as well as or are present in the final sentence,
since the order of operations cannot be enforced in
natural language settings and hence would be am-

biguous. We evaluated transformer models varying
the number of coordinators k, where k = {0, 1, 2},
to investigate how incorporating Boolean coordina-
tors affect the accuracy.

4 Experimental Setup

In this section, we describe the experiments we con-
ducted in order to address our research questions.

4.1 Problem definition

Formally the FO2-MC dataset can be defined
as {(p(d), ℓ(d))}|D|d where p(d) is an instance of
the model-checking problem (concatenation of the
structureMA and sentence sϕ delimited by a sep-
arator SEP token), and ℓ ∈ {True, False} is the
label. The task is to correctly predict the label ℓ,
thereby reducing it to a binary classification prob-
lem.

4.2 Transformer models

To investigate the capabilities of transformers in
model-checking with natural language, we per-
formed experiments on the FO2-MC dataset using
three prominent transformer architectures: BERT,
RoBERTa and T5.

BERT. Bidirectional Encoder Representations
from Transformers or BERT (Devlin et al., 2018)
use bi-directional conditioning in all of its net-
work’s layers to consider both the left and right con-
text. BERT has become the standard transformer
architecture and has been evaluated against many
NLI datasets (Richardson et al., 2020; McCoy et al.,
2019), hence we believe it provides a baseline for
assessing the complexity of the task and difficulty
of theFO2-MC dataset. We used the BERT-base
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(uncased) model with around 110M parame-
ters.

RoBERTa. Robustly Optimized BERT Pretrain-
ing Approach or RoBERTa (Liu et al., 2019) is
based on the BERT architecture but trained in
a more optimised manner. It has been used for
rule reasoning tasks such as RuleTaker (Clark
et al., 2021), and is considered as another base-
line model in our experiments. We made use of the
RoBERTa-base model which has around 125M
parameters.

T5. Following the work done by Tafjord et al.
(2021) and Richardson and Sabharwal (2021) on
rule reasoning, we primarily centre our experiments
around Text-to-Text Transfer Transformer or T5
models (Raffel et al., 2019). T5 frames all NLP
tasks (e.g., classification, translation, semantic tex-
tual similarity) into a unified text-to-text format
where both input and output are always strings;
this is slightly different from BERT and RoBERTa
which, when fine-tuned on classification tasks, out-
put a class label. In our experiments, we employed
two T5 models: T5-base with approximately
220M parameters and T5-large with approxi-
mately 700M parameters.

In experimenting with each of the three types
of models above, we utilised the Huggingface li-
brary (Wolf et al., 2019). The transformer models
are fine-tuned to predict the target label (True or
False) by optimising for the binary cross-entropy
loss over the targets using the Adam optimiser
(Kingma and Ba, 2015). Since the dataset is bal-
anced (i.e., both training and test data have approx-
imately an equal number of samples labelled as
True and False), we made use of accuracy as our
evaluation metric.

4.3 Proposed Dataset and Evaluation
To answer the question of whether transformers can
perform model-checking with natural language, we
trained transformer models, namely, T5, BERT and
RoBERTa, using the FO2-MC dataset in the man-
ner mentioned above. During data construction, we
incorporated the same vocabulary as Richardson
and Sabharwal (2021), with the addition of transi-
tive verbs where the number of verbs is equivalent
to the number of adjectives. The vocabulary con-
tains approximately 2000 names (proper nouns),
156 nouns, 64 adjectives and 65 verbs. The names
are used as the domain elements while nouns, ad-
jectives and verbs form predicates, whereas verbs

constitute binary predicates while the nouns and ad-
jectives form unary predicates. Furthermore, when
generating the model, we limited the number of do-
main elements to be less than 4 (|D| ≤ 4) and the
number of predicates to be less than 8 (|P| ≤ 8).
We trained transformer models using training in-
stances that include sentences that belong to lan-
guage fragments we introduced in Section 3.1, i.e.,
syllogistic, relational syllogistic (Re-Syl), relative
clauses (Rel), relative clauses with transitive verbs
(Rel-TV) and anaphora. In each case (for each lan-
guage fragment), models were trained with 500K
unique data points and evaluated against a held-
out 100K test set (see Table 2). Moreover, we
experimented with training the models (T5-base
and T5-large) using a dataset that contains sen-
tences belonging to all the fragments, so that we
could investigate how simpler fragments help trans-
formers understand the logical semantics of natural
language of complex ones (see Table 3). The train-
ing set in this experiment comprises 500K unique
data points with approximately 100K data points
belonging to each language fragment. The results
of this experiment, along with the results depicted
in Table 2, also provide the answer to the ques-
tion of how the linguistic complexity of the lan-
guage fragment affects the performance of trans-
formers in model-checking with natural language.
To better understand model generalisation and scale
invariance, we evaluated the transformer model
(T5-large) on a held-out evaluation set whose
structure contains more domain elements (see Ta-
ble 4) or more predicates (see Table 5) than that of
the training set. To comprehend how Boolean co-
ordinators affect the accuracy of transformer mod-
els across different language fragments, we also
trained and evaluated with data points whose sen-
tences have Boolean coordinators in them.

4.4 Results and discussion

Transformer models can solve model-checking
with natural language problems with satisfac-
tory accuracy, given adequate training instances,
as depicted in Table 2. For all language fragments,
transformers manage to yield an accuracy of over
70%. It is also evident from Table 2 that there is no
significant difference in performance between the
considered transformer models.

The linguistic complexity of the language frag-
ments that generate the sentence has a signifi-
cant impact on the overall performance, as il-
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Model Syllogistic Re-Syl Rel Rel-TV anaphora
T5-base 99.9 76.6 95.0 73.6 70.3

BERT-base 99.0 78.2 90.7 75.6 73.9
RoBERTa-base 99.6 79.2 90.1 72.1 71.0

Table 2: Accuracy of transformer models (BERT, T5 and RoBERTa) across different language fragments.

Model All Syllogistic Re-Syl Rel Rel-TV anaphora
T5-base 75.9 80.0 76.7 74.8 74.2 73.6
T5-large 88.2 99.8 81.8 99.3 82.3 77.7

Table 3: The transformers are trained using a dataset that contains sentences belonging to all language fragments.
The results are broken down into respective language fragments, and All indicates the overall (average) accuracy
across the language fragments.

Language
Fragment |D| |D|+1 |D|+2 |D|+4

Syllogistic 99.8 92.2 87.5 76.1
Re-Syl 81.8 67.6 63.2 55.6

Rel 99.3 90.4 84.2 73.3
Rel-TV 82.3 67.3 62.1 56.4

anaphora 77.7 65.0 61.1 49.9

Table 4: The accuracy of the T5-large model evalu-
ated on out-of-scope data; the training instances have a
maximum of 4 domain elements |D| ≤ 4 while the eval-
uation set contains 5 (|D|+ 1), 6 (|D|+ 2), 8 (|D|+ 4)
domain elements, the number of predicates remains the
same between train and evaluation sets.

lustrated in Tables 2 and 3. Transformers achieve
near-perfect performance for fragments such as syl-
logistic and Rel. However, they only achieve a mod-
erate level of accuracy for fragments such as Re-
Syl, Rel-TV, and anaphora. The later-mentioned
fragments have transitive verbs, which results in
the respective structures containing binary relation-
ships. It is harder to learn binary relationships as
opposed to unary ones. Furthermore, the sentences
in the fragments Re-Syl, Rel-TV, and anaphora
can have two quantifiers, while the sentences in
fragments syllogistic and Rel are restricted to only
one. As depicted in Table 6, the number of quanti-
fiers in the sentence influences the performance of
the transformer models in solving model-checking
problems. Sentences with two quantifiers are more
difficult to decode than sentences with only one
quantifier, as evidenced by cognitive studies on
quantifier verification (Szymanik and Zajenkowski,
2010; Szymanik et al., 2013), which is also unsur-
prising. There is a difference between the accu-
racy of single quantifier sentences and the average

accuracy of the syllogistic fragment and Rel frag-
ment. This difference is due to single quantifier
sentences belonging to other fragments, whose sen-
tences include transitive verbs. According to the
results in Table 6, only the number of quantifiers
seems to affect the performance of the transform-
ers, and not the exact quantifier used. Cognitive
studies (Szymanik et al., 2013) suggest quantifiers
themselves affect human performance on model-
checking problems, which is not evident here, im-
plying human reasoning on language is somewhat
different to what is occurring in transformer mod-
els.

Another linguistic property that seems to affect
the performance of transformers is Boolean coor-
dinators. The accuracy of transformer models
decreases when Boolean coordinators are intro-
duced to the sentences, as illustrated in Table 7.
The difference in performance when the number of
coordinators changes from 0 to 1 is higher than that
of when it is increased from 1 to 2. However, the
number of Boolean coordinators has a lower effect
on accuracy compared to other linguistic properties
such as the number of quantifiers.

Learning the simple fragments enables trans-
formers to learn complex ones, as depicted in
Table 3. When training data contains sentences
from all the language fragments, the performance
of complex fragments such as anaphora is higher
than if it only includes sentences of that respec-
tive fragment. Transformer models can learn to
understand logically significant words such as de-
terminers and grammatical constructs such as rel-
ative clauses more easily from simpler fragments
than complex ones. So when learning the logi-
cal semantics of complex fragments, transformers
can employ this knowledge. Hence, we can hy-
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Language
Fragment |P| |P|+1 |P|+2 |P|+4

Syllogistic 99.8 96.6 96.3 95.9
Re-Syl 81.8 80.4 80.4 80.3

Rel 99.3 99.1 99.1 98.9
Rel-TV 82.3 81.4 81.2 80.6

anaphora 77.7 76.9 76.6 76.6

Table 5: The accuracy of the T5-large model evalu-
ated on out-of-scope data; the training instances have
a maximum of 8 predicates |P| ≤ 8 while the evalua-
tion set contains 9 (|P|+ 1), 10 (|P|+ 2), 12 (|P|+ 4)
predicates, the number of domain elements remains un-
changed

number of
quantifiers quantifier (s) Accuracy

one
overall 95.6
∀ (all) 95.8
∃ (some) 95.4

two

overall 80.8
∀ ◦ ∀ (all - all) 80.4
∀ ◦ ∃ (all - some) 81.8
∃ ◦ ∀ (some - all) 81.2
∃ ◦ ∃ some - some) 80.2

Table 6: The change in accuracy of the T5-large
model across different quantifiers. The syllogistic and
Rel fragments contain only one quantifier, while Re-Syl,
Rel-TV, and anaphora fragments can have two quanti-
fiers.

pothesise that transformers at least partially learn
to understand the essence of logical semantics of
natural language. Table 3 also indicates a sub-
stantial difference in performance between the
T5-base model and the T5-large model. The
T5-large model achieves an overall accuracy of
88.2% but only manages to achieve an accuracy
of around 80% (Re-Syl:81.8%, Rel-TV: 82.3%,
anaphora: 77.7%) for language fragments with
transitive verbs. This accuracy level is lower than
the accuracy that transformer models yielded in
other rule reasoning benchmarks such as RuleTaker
(Clark et al., 2021) and NLSat (Richardson and Sab-
harwal, 2021), which suggests that the FO2-MC
dataset is a formidable linguistic reasoning bench-
mark.

Transformer models exhibit limited generali-
sation and scale-invariance, as illustrated in Ta-
bles 4 and 5. Even if the number of predicates
increases, the accuracy of the transformer model re-

number of Boolean coordinators Accuracy
k = 0 75.9
k = 1 70.7
k = 2 67.6

Table 7: The accuracy of the T5-base model when
trained and evaluated against problem instances that
have Boolean coordinators. k denotes the number of
Boolean coordinators in a sentence. Each sentence con-
tains only one type of coordinator (either and or or), if
any.

mains relatively unchanged (see Table 5). However,
if the number of domain elements increases, the
model performance drastically decreases (see Table
4). The reason could be that the attention mecha-
nism in the transformer correctly identifies which
areas in the structure to examine for a given sen-
tence, but the transformer model still cannot emu-
late the model-checking algorithm properly. More-
over, the degradation in performance is relatively
equivalent for all language fragments, suggesting
that decrement is not correlated to the grammatical
structure of the sentence. Hence, we can conjecture
that transformers can learn to understand the logi-
cal semantics of natural language but still cannot
learn to emulate the underlying model-checking
algorithm.

5 Conclusion

We investigate the limits of transformers in an unex-
plored problem space of model-checking with nat-
ural language employing language fragments. We
use five different language fragments and explore
how linguistic complexity and other linguistic prop-
erties such as Boolean coordinators affect rule rea-
soning in transformer models. In a broader sense,
our study is to determine whether transformer mod-
els can learn to understand the logical semantics of
natural language and emulate the model-checking
algorithm. We posit that transformers can learn
logically significant words and grammatical con-
structs but fall short when learning the underlying
algorithm. Moreover, different linguistic properties
such as the language fragment, Boolean coordina-
tors and the number of quantifiers have a notable
impact on the learning ability of the transform-
ers. Thus, an interesting future direction would
be to investigate how these linguistic properties
affect more complex reasoning tasks like natural
language satisfiability.
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6 Limitations

The results in our work closely follow the trends
reported by prior work in the domain of identify-
ing the limits of transformers in logical reasoning.
Specifically, the transformers exhibit limited gen-
eralization beyond the underlying distribution in
training data. However, due to the empirical na-
ture of the study, it is not guaranteed that all other
transformer-based models or other neural networks
would exhibit the same pattern.

Moreover, the study focuses on several language
fragments with varying linguistic complexity such
that one would be able to quantify the influence of
linguistic properties on a logical reasoning problem.
However, the fragments considered in this study are
not the only language fragments in existence and,
as such, would limit the comprehensiveness of the
discussion, and there could be other fragments of
language which behave differently when evaluated
against transformer models.
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Sub-fragment Natural Language Template First order logic formula

with a quantifier D (non-)N1 is/are (not) (a) N2
∀x(±N1(x)⇒ ±N2(x)) or
∃x(±N1(x) ∧ ±N2(x))

Table 8: Templates for the syllogistic fragment, D denotes the determiner while N1 and N2 symbolise nouns.

Sub-fragment Natural Language Template First order logic formula

dual quantifiers
D1 (non-)N1 (does not/do not) V

D2 (non-)N2

∀x(±N1(x)⇒ ∀y(±N2(x)⇒ ±V (x, y)))
or

∀x(±N1(x)⇒ ∃y(±N2(y) ∧ ±V (x, y)))
or

∃x(±N1(x) ∧ ∀y(±N2(x)⇒ ±V (x, y)))
or

∃x(±N1(x) ∧ ∃y(±N2(x) ∧ ±V (x, y)))

With Proper nouns
quantifier in the

subject
D N (does not/do not) V P

∀x(±N(x)⇒ ±V (x, P )) or
∃x(±N(x) ∧ ±V (x, P ))

With Proper nouns
quantifier in the

object
P (does not/do not) V D N

∀x(±N(x)⇒ ±V (P, x)) or
∃x(±N(x) ∧ ±V (P, x))

Table 9: Templates for the relational syllogistic fragment, D1 and D2 denote determiners, P denotes Proper nouns
and V represents the verb while N, N1 and N2 symbolise nouns.

A Templates of Language Fragments

Tables 8, 9, 10, 11 and 12 contain templates for
the syllogistic fragment, relational syllogistic frag-
ment, relative clauses fragment (without transitive
verbs), relative clauses (with transitive verbs), and
anaphora respectively. Each table contains natural
language templates that are employed to construct
sentences and their corresponding first-order for-
mulae. As mentioned in the methodology section,
we build upon the vocabulary from Richardson and
Sabharwal (2021). The set of determiners includes
all, every, some, a and no, where every sentence
type is converted to the most natural-sounding sen-
tences; i.e. sentences such as every artist does not
like every beekeeper would be translated into no
artists like any beekeeper. Each sentence that is ren-
dered using templates of the syllogistic fragment
and relative clause (without transitive verbs) frag-
ment would include exactly one quantifier, which
would determine the determiner of the sentence.
The templates of the relational syllogistic, relative
clause (with transitive verbs) and anaphora could
comprise either two quantifiers or one (if the sen-
tence contains proper nouns, then it would have
only one quantifier).
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Sub-fragment Natural Language Template First order logic formula

with a quantifier D (non-)N1 who is/are (not) (a)
N2/A1 is/are (not) (a) N3/A2

∀x.(±N1(x) ∧ ±N2/A1(x)⇒ ±N3/A2(x))
or

∃x.(±N1(x) ∧ ±N2/A1(x) ∧ ±N3/A2(x))

Table 10: Templates for the relative clauses (without transitive verbs) fragment, D denotes the determiner and N1,
N2 and N3 symbolise nouns while A1 and A2 represent adjectives.

Sub-fragment Natural Language Template First order logic formula

dual quantifiers,
relative clause in

the subject

D1 (non-)N1 who (does not/
do not) V D2 (non-)N2

is/are (not) (a) N3

∀x(±N1(x) ∧ ∀y(±N2(y)⇒ ±V (x, y))
⇒ ±N3(x)) or

∀x(±N1(x) ∧ ∃y(±N2(y) ∧ ±V (x, y))
⇒ ±N3(x)) or

∀x(±N1(x) ∧ ∀y(±N2(y)⇒ ±V (x, y))
⇒ ±N3(x)) or

∀x(±N1(x) ∧ ∀y(±N2(y)⇒ ±V (x, y))
⇒ ±N3(x))

dual quantifiers,
relative clause in

the object

D1 (non-)N1 (does not/do not)
V D2 (non-)N2 who
is/are (not) (a) N3

∀x(±N1(x)⇒ ∀y((±N2(y) ∧ ±N3(y))
⇒ ±V (x, y))) or

∀x(±N1(x)⇒ ∃y(±N2(y) ∧ ±N3(y)
∧ ± V (x, y))) or

∃x(±N1(x) ∧ ∀y((±N2(y) ∧ ±N3(y))
⇒ ±V (x, y))) or

∃x(±N1(x) ∧ ∃y(±N2(y) ∧ ±N3(y)
∧ ± V (x, y)))

with Proper nouns
D (non-)N1 who (does not/

do not) V P is/are (not) (a) N2

∀x(±N1(x) ∧ ±V (x, P )⇒ ±N2(x) or
∃x(±N1(x) ∧ ±V (x, P ) ∧ ±N2(x))

Table 11: Templates for the relative clauses (with transitive verbs) fragment, D1 and D2 denote determiners, P
denotes Proper nouns and V represents the verb while N1 N2 and N3 symbolise nouns.

Sub-fragment Natural Language Template First order logic formula

dual quantifiers
D1 (non-)N1 (does not/do not)
V1 D2 (non-)N2 who (does not

/do not) V2 him/her/them

∀x(±N1(x)⇒ ∀y(±N2(y) ∧ ±V2(y, x)
⇒ ±V1(x, y))) or

∀x(±N1(x)⇒ ∃y(±N2(y) ∧ ±V2(y, x)
∧ ± V1(x, y))) or

∃x(±N1(x) ∧ ∀y(±N2(y) ∧ ±V2(y, x)
⇒ ±V1(x, y))) or

∃x(±N1(x) ∧ ∃y(±N2(y) ∧ ±V2(y, x)
∧ ± V1(x, y)))

With Proper nouns
P (does not/do not) V1 D

(non-)N who (does not/do not)
V2 him/her

∀x(±N(x) ∧ ±V2(x, P )⇒ ±V1(P, x)) or
∃x(±N(x) ∧ ±V2(x, P ) ∧ ±V1(P, x)

Table 12: Templates for the relative clauses (with transitive verbs) fragment, D1 and D2 denote determiners, P
denotes Proper nouns and V1 and V2 represent verbs while N, N1 and N2 symbolise nouns.
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Abstract
Conflict prediction in communication is inte-
gral to the design of virtual agents that sup-
port successful teamwork by providing timely
assistance. The aim of our research is to an-
alyze discourse to predict collaboration suc-
cess. Unfortunately, resource scarcity is a prob-
lem that teamwork researchers commonly face
since it is hard to gather a large number of
training examples. To alleviate this problem,
this paper introduces a multi-feature embed-
ding (MFeEmb) that improves the generaliz-
ability of conflict prediction models trained on
dialogue sequences. MFeEmb leverages tex-
tual, structural, and semantic information from
the dialogues by incorporating lexical, dialogue
acts, and sentiment features. The use of dia-
logue acts and sentiment features reduces per-
formance loss from natural distribution shifts
caused mainly by changes in vocabulary.

This paper demonstrates the performance of
MFeEmb on domain adaptation problems in
which the model is trained on discourse from
one task domain and applied to predict team
performance in a different domain. The gener-
alizability of MFeEmb is quantified using the
similarity measure proposed by Bontonou et al.
(2021). Our results show that MFeEmb serves
as an excellent domain-agnostic representation
for meta-pretraining a few-shot model on col-
laborative multiparty dialogues.

1 Introduction

For many natural language processing applica-
tions, the ability to learn features that generalize
well across multiple datasets is a key desidera-
tum (Saikia et al., 2020). This paper introduces
a new multi-feature embedding, MFeEmb, that
increases the generalizability of models learned
from collaborative multiparty dialogues. Dialogues
are different from single-author documents in that,
along with textual information, they contain com-
munication patterns that may serve as indicators
of social dynamics. Treating a dialogue as a mere

text collection ignores valuable information. We
advocate exploiting implicit features present in mul-
tiparty dialogues that are less vulnerable to distri-
bution shifts resulting from task domain changes.

This paper demonstrates the usage of MFeEmb
on a communication analysis task: conflict pre-
diction. Teamwork research faces a challenge of
resource scarcity since the human subjects datasets
are quite small (less than 100 samples), due to
the difficulty of recruiting teams and the time con-
suming nature of many group tasks. A variety of
social phenomena have been investigated within
team communication research, including entrain-
ment (Rahimi and Litman, 2020) and emergent
leadership (Maese et al., 2021). Frequency of com-
munication is not in itself a good predictor of team
performance, but a meta-analysis conducted by
Marlow et al. (2018) that drew upon data from
150 studies conducted on 9702 teams concluded
that high quality communication is positively re-
lated to team performance in many task domains.
Conversely, process conflict, “disagreement among
group members about the content of the tasks be-
ing performed, including differences in viewpoints,
ideas, and opinions” (Jehn, 1995), is usually nega-
tively correlated with taskwork success.

Our aim is to be able to learn a model to clas-
sify process conflict from multiparty dialogues that
generalizes well across multiple tasks. We treat
the task of conflict prediction as a binary classi-
fication task with high conflict and low conflict
being the two classes; the ground truth used by
the conflict prediction model is measured using a
post-task team process conflict survey. This pa-
per focuses on three collaborative problem-solving
tasks: software engineering, search and rescue, and
cooperative gameplay.

Our proposed embedding, MFeEmb, leverages
textual, structural, and semantic information from
the dialogues by incorporating vocabulary, dia-
logue acts, and sentiment features. Lexical embed-
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dings such as word2Vec and BERT (Devlin et al.,
2018) show good performance across multiple NLP
tasks on in-domain test sets but are less robust to
domain shift. Previous work identified that dia-
logue acts and sentiment sequences are informative
features that predict conflict reliably even at the
earliest stage of team problem-solving (Enayet
and Sukthankar, 2021a); however, classifiers con-
structed using these features still experience lack-
luster transfer performance when applied to new
datasets, particularly when detecting high conflict
examples (Enayet and Sukthankar, 2021b).

To address this transfer problem, we propose
the usage of MFeEmb, specifically as a meta-
pretraining representation to be used within a few-
shot model. MFeEmb combines the strengths of
both domain-invariant and domain-specific fea-
tures. This paper compares the generalizability
potential of the MFeEmb embedding vs. standard
word embeddings using inter-class and intra-class
based similarity measures, proposed by Bontonou
et al. (2021). Then we evaluate the performance of
MFeEmb in a domain adaptation scenario in which
the model is trained on discourse from one task
domain and used to predict conflict in a different
domain. Our results show that:

1. MFeEmb demonstrates superior generalizabil-
ity over other embeddings for collaborative
multiparty dialogues.

2. MFeEmb is an excellent representation choice
for the meta-training stage of few-shot learn-
ing.

3. The domain adaptation performance of
MFeEmb can be easily enhanced by task spe-
cific synonym replacement.

2 Related Work

Previous studies on group interaction tasks such as
conflict prediction (Rahimi and Litman, 2020), dis-
ruptive talk detection (Park et al., 2022), group sat-
isfaction (Lai and Murray, 2018), and task perfor-
mance prediction (Kubasova et al., 2019; Murray
and Oertel, 2018) have focused on simply improv-
ing performance on in-domain datasets. Very little
attention has been paid to the problem of creating
generalizable models for multiparty dialogue that
can be used when training data is scarce. The intel-
ligent tutoring system community has empirically
assessed the generalizability of common natural
language representations, such as BERT and Lin-
guistic Inquiry Word Count (LIWC), across collab-

orative problem solving tasks (Pugh et al., 2022),
but without investigating methods to improve gen-
eralizability.

In domain adaptation, the goal is to train a model
on data from a source domain that performs well
on a test dataset drawn from a different target
distribution. Common NLP tasks (e.g., part-of-
speech (POS) tagging and named entity recognition
(NER)) have been tackled using techniques includ-
ing instance weighting (Jiang and Zhai, 2007) or
explicitly identifying feature correspondences be-
tween the domains (Blitzer et al., 2006). An alter-
nate approach is to learn a single representation that
generalizes well across multiple domains. This can
be done using few-shot learning (Wang et al., 2020),
one of the most widely used approaches to dealing
with resource scarcity. The traditional framework
comprises meta-training and meta-testing phases,
where the aim of meta-training is to learn universal
representations from multiple domains.

Triantafillou et al. (2021) introduced a method
that improves few-shot generalizability by making
use of multiple datasets in order to learn a universal
template. Dvornik et al. (2020) proposed Select-
ing from Universal Representations (SUR), which
involves learning a multi-domain representation
by training multiple feature extractors. A multi-
domain feature bank is used to select the most rel-
evant feature during the learning phase. Rather
than seeking to learn the new representation en-
tirely from data, our research exploits similarities
in dialogue act sequences and sentiment patterns
commonly observed during successful collabora-
tive problem-solving.

Representation choice has been shown to
place an upper bound on target domain per-
formance (Ben-David et al., 2006). Few-shot
frameworks such as Meta-pretraining then Meta-
Learning (MTM) (Deng et al., 2019) have assumed
that word embeddings like BERT that are trained
on large datasets are the best choice for task ag-
nostic pre-training. Bontonou et al. (2021) intro-
duced a method to quantify the generalizability
of a few-shot classifier under supervised, unsuper-
vised and semi-supervised settings. This paper
uses their inter-class and intra-class based general-
izability measure to evaluate MFeEmb vs. simple
word-based embeddings under supervised classifi-
cation scenarios. Our research demonstrates that
MFeEmb is superior to word embeddings as a meta-
pretraining representation.
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3 Methodology

This section describes our approach to learning
a generalizable embedding from multi-party di-
alogues for conflict prediction. We discuss our
datasets, introduce our embedding, and show how
our technique can be used in combination with data
augmentation and few-shot learning.

3.1 Datasets

Datasets collected from different collaborative
problem-solving task domains were used in our
study of generalizability:

1. Teams corpus (Litman et al., 2016): This
dataset consists of dialogues from 62 teams
playing a cooperative board game in groups
of three or four. Each team plays the game
twice together. The Teams corpus was origi-
nally created to study entrainment, a linguistic
phenomena in which teammates adopt similar
speech patterns (Rahimi and Litman, 2020).
The Game1 dataset of Teams corpus contains
62 dialogues, 32 low conflicts, and 30 high
conflict dialogues. The Game2 dataset of
Teams corpus contains 62 dialogues, 33 low
conflicts, and 29 high conflict dialogues.

2. ASIST dataset (Huang et al., 2022): This
dataset consists of 67 teams of three people
participating in a simulated search and rescue
task within the Minecraft game environment.
Participants completed two different missions
that involved searching a map and triaging vic-
tims. The dataset was collected by the ASIST
project to stimulate the development of proac-
tive assistant agents for helping human teams.
The dataset contains 113 dialogues, 58 low
conflicts, and 55 high conflict dialogues.

3. GitHub social coding dataset (Enayet and
Sukthankar, 2020): This dataset was mined di-
rectly from the GitHub social coding platform.
It consists of data from issue comments of
teams developing open source software over
a period of months. Teams vary in size, and
comments were harvested for 50 reported is-
sues. The dataset contains 50 dialogues, 29
low conflicts, and 21 high conflict dialogues.

Both the Teams and ASIST datasets contain post-
task process conflict survey data for all teams,
which we divide into high and low conflict groups
using their z-scores. For GitHub, process conflict
was scored according to an issue resolution rubric
(described in Appendix G).

3.2 Multi-Feature Embedding (MFeEmb)

This paper introduces the MFeEmb embedding
which is designed to capture the dialogues’ struc-
tural, semantic, and textual information for collab-
orative task success prediction. To represent the
structural information, we incorporate information
from dialogue acts (DAs) of the utterances. For se-
mantics, the sentiment polarities of the utterances
are used, although DAs capture both semantic and
structural information. Textual information is ex-
tracted from the vocabulary of the dialogues.

For the word embedding, we use both the Dis-
tributed Bag of Words and Dynamic Memory mod-
els of Doc2Vec (Le and Mikolov, 2014) to learn
embeddings (see Appendix B). Although there is
only 28% vocabulary overlap between the ASIST
and Teams datasets and 35% overlap between the
GitHub and Teams datasets, word embeddings can
help preserve high performance on the in-domain
dataset while including structural and semantic fea-
tures makes the embedding more robust to domain
shifts.

For the dialogue act (DA) embedding, we first
map the sequence of utterances to a sequence of
DAs using USE-DAC (Universal Sentence Encoder
Dialogue Act Classifier, described in Appendix A).
The SwDA-DAMSL tagset was used to categorize
dialogue acts. The TextBlob python module was
used to assign sentiment polarities ranging from -1
to 1 to each of the utterances.

To generate the embeddings, we use the Dy-
namic Memory model of Doc2Vec due to the small
vocabulary size of the sequences, which is limited
by the number of DA tags and sentiment grada-
tions. The Dynamic Memory model leverages con-
text when generating embeddings, thus preserving
information contained in these communication pat-
terns. In contrast, the Distributed Bag of Words
model does not consider the context when gener-
ating embeddings. For the few-shot results, we
also report results with pre-trained Word2Vec em-
beddings. First, we separately learn three embed-
dings from the sequence of DAs, sentiments, and
utterances (text); the final MFeEmb embedding is
created either by concatenating the three embed-
dings or by using LSTMs to learn a concatenation
ensemble model. We have made our code available
at https://github.com/ayeshaEnayet/
MFeEmb.git.
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Figure 1: Sentiment polarity distribution of the high conflict vs. low conflict classes in the Teams dataset

3.3 Corpus-Based Feature Analysis

To understand the ramifications of our feature selec-
tions, we performed frequency distribution analy-
ses across the high conflict and low conflict classes
of the Teams Dataset. This analysis shows that the
high conflict class has a high frequency of negative
sentiment polarities compared to the low conflict
class and a comparable frequency of positive senti-
ment polarities compared to the low conflict class
(Figure 1).

In the dialogue act distribution, Statement-non-
opinion (sd) is the most frequent tag in both classes.
The low conflict class has a high frequency of pos-
itive communication indicators like Appreciation
(ba), Conventional-closing (fc), and Thanking (ft)
compared to the high conflict class. The high con-
flict class contains a high frequency of bad commu-
nication indicators like Uninterpretable (%), Hedge
(h), Signal-non-understanding (br), and Apology
(fa). Interestingly, high conflict classes have a high
frequency of all categories of questions compared
to low conflict classes (see dialogue act distribu-
tions and n-grams in Appendix H).

Looking at the vocabulary distribution, the high
conflict class contains more profanity words than
the low conflict class, and there is no overlap be-
tween the profanity word lists of both classes. Our
analysis reveals that there is value in all three types
of features (dialogue acts, sentiment polarity, and
vocabulary) but that conflict prediction remains a
challenging classification problem.

3.4 Synthetic Datasets

To further improve generalization, we augment our
training data with synthetic datasets generated us-
ing synonym replacement, as proposed by Wei and
Zou (2019). Our data augmentation strategies are
described below:

1. SynReplace: We augment Teams Game1 and
Game2 by replacing the words with synonyms

drawn from WordNet.
2. ASISTReplace: We augment Teams Game1

and Game2 by replacing the words with only
the synonyms present in the ASIST dataset.
First, we extract the vocabulary of the ASIST
dataset. During the replacement operation,
we search for synonyms in WordNet and only
replace them with the synonyms present in the
ASIST dataset’s vocabulary.

3. GitReplace: Similar to ASISTReplace, we
generate our third dataset by replacing the
words with only the synonyms present in the
GitHub dataset.

Four synthetic dialogues are generated for each di-
alogue of the Teams dataset after applying random
replacement on 10% of the words. Our intuition is
that collaborative problem-solving domains such as
software engineering may contain a lot of task spe-
cific jargon, and even simple synonym replacement
techniques greatly facilitate generalization.

In our experiments, the basic synonym replace-
ment did not significantly change the intent and sen-
timent of the utterances. To show the robustness of
dialogue acts and sentiment sequences towards data
augmentation, we utilize TextAttack (Morris et al.,
2020), a python package for adversarial attack and
data augmentation, to generate a Teams Game2
synthetic dataset. Word Swap by BERT-Masked
LM transformation was employed to generate syn-
thetic examples from the Teams Game2 dataset.
One synthetic example is generated per dialogue
of the Game2 dataset. The synthetic dataset con-
tains ≈ 50% more unique words than the original
Game2 dataset (Figure 2). The hamming distance
was used to calculate the difference between the
sequences of the Game2 original and Game2 syn-
thetic datasets. On average, the adversarial syn-
thetic dataset only resulted in a 11% change in
DA sequences and a 14% change in sentiment se-
quences (Appendix J).
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Figure 2: Vocabulary overlap between original
Game1, original Game2, and the Game2 adversar-
ially generated dataset

4 Experimental Setup

The Teams corpus contains 124 team dialogues
from 62 different teams, playing two different col-
laborative board games. We use the Teams Game1
dataset with 62 total samples, divided into 32 low
and 30 high conflict samples, as our training dataset.
The small training dataset ensures that the experi-
ments reflect the generalization performance under
the resource scarcity scenario. Our test datasets for
evaluating domain adaptation are Teams Game2,
GitHub, and ASIST. Obviously, the domain shift
is the smallest between the Teams Game 1 and 2
datasets. We use the GitHub and ASIST datasets
to check the transferability of MFeEmb under do-
main shift. The model was not fine-tuned before
evaluating the performance on GitHub and ASIST.

We evaluate our proposed MFeEmb under the
following three experimental setups:

1. SVM and logistic regression classifiers to dis-
tinguish high conflict and low conflict classes.

2. LSTM concatenation ensemble.
3. Few-shot learning approach.

We benchmark MFeEmb against prior work on
conflict prediction, other embedding choices, and
FsText, a few-shot model proposed by Bailey and
Chopra (2018). Experiments were performed using
a 300-dimensional version of MFeEmb where the
length of all the three embeddings is the same, i.e.,
100. We report the mean and standard deviation of
F1-Scores after 15 runs. For the SVM and logistic
regression classification experiments, to improve
the readability, we only report the best-performing
classifier results measured by mean F1 score in
Section 5; for the results of both classifiers, see
Appendix K. ‘*’ denotes that logistic regression

was the top performer, and ‘+’ denotes cases where
the SVM was the best.

4.1 SVM and Logistic Regression
After Doc2Vec is used to generate the three em-
beddings for each sample, the embeddings are con-
catenated to create MFeEmb. We use both SVM
and logistic regression to classify the instances and
report the results of both classifiers. For DAs and
sentiment sequences, we always use the Dynamic
Memory model (DM) of Doc2Vec.

4.2 Few-Shot Learning (FsText)
For few-shot learning, we use the method proposed
by Bailey and Chopra (2018) and available in the
FsText Python module. The training document
for the meta-training stage of few-shot learning is
represented using a pre-trained word embedding
(Word2Vec). In the case of more than one training
sample per class, the proposed method works by
averaging each class’s vectors to calculate the most
effective class representative. Cosine similarity
is used to measure the distance between the test
sample and each class representative, and the test
sample is assigned the label of the class with the
highest similarity. We compare the generalizability
of FsText (Original) with MFeEmb-based FsText,
by replacing Word2Vec embedding with MFeEmb
during the meta-training stage.

4.3 Concatenation Ensemble
Due to the small size of the training set, we apply
the synonym replacement technique proposed by
Wei and Zou (2019) to augment the training data
as described in Section 3.4. One hot encoding is
used to encode DA, sentiment polarities, and vo-
cabulary to train the model. We train three different
Bidirectional LSTM models, one on each of DAs,
sentiments, and word-based documents, and merge
them to create our MFeEmb based ensemble. Our
Bidirectional LSTM models for each feature have
an embedding layer, an LSTM layer, one dropout
layer, and one deep layer.

4.4 Baseline Models
We compare our proposed MFeEmb’s results with
several baseline models that use the same binary
classification setup for conflict prediction. First, we
show that MFeEmb performs competitively against
prior work on conflict prediction (Enayet and Suk-
thankar, 2021a) using the proposed dialogue act
only and sentiment only embeddings. Note that
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our results are not directly comparable to what
was reported in the previous work because we use
a reduced training set; thus, we reimplemented
the embeddings. We also compare MFeEmb to
the commonly used BERT based embedding (Ap-
pendix D).

These independent baselines are compared
against three implementation options for MFeEmb:
1) MFeEmb with simple binary classifier (SVM or
logistic regression), 2) MFeEmb concatenation en-
semble learned with LSTMs (Sec. 4.3) trained on
the synonym replaced augmented dataset, 3) a vari-
ation of few-shot learning method (FsText) (Bailey
and Chopra, 2018) in which the Word2Vec embed-
ding is replaced with MFeEmb during the meta-
training stage. For training and testing, we con-
catenate all the utterances of the dialogue into one
single document and assign it to one of the classes
depending on the conflict score of the team.

5 Results

This section presents results on the generalizability
of MFeEmb under different experimental setups.

5.1 Similarity Based Evaluation

First, we quantify the potential generalization of
the representation using the similarity measure pro-
posed by Bontonou et al. (2021). The similarity
measure is given by:

intra(c) =
1

k(k − 1)

∑

i
yi=c

∑

j ̸=i
yj=c

cos (fi, fj) (1)

inter(c, c̃) =
1

k2

∑

i
yi=c

∑

j ̸=i
yj=c̃

cos (fi, fj) (2)

similarity =
1

N

N∑

c=1

(intra(c)−max
c̸=c̃

(inter(c, c̃)))

(3)
where c is class, N is the number of classes, k is
number of examples, f is the embedding, intra(c)
is cosine similarity within a class, and inter(c, c̃)
is cosine similarity through classes c and c̃. The
final similarity score reflects the comparison of
the intra(c) and inter(c, c̃). Intuitively it can be
seen that the score measures how the representa-
tion affects the data clustering within and between
classes.

We compare our proposed MFeEmb vs. a stan-
dard word embedding learned using the bag of

word model of Doc2Vec. Table 1 gives the result
of the similarity-based analysis juxtaposed with the
classification results. MFeEmb has a better sim-
ilarity score and high classification performance,
compared to word-based embeddings indicating
the high generalizability potential of MFeEmb.

Word_Emb MFeEmb
Teams Game2

similarity F1_score similarity F1_score

-0.067 0.470* -0.016 0.628+
GitHub

similarity F1_score similarity F1_score

-0.067 0.463* -0.017 0.501+
ASIST

similarity F1_score similarity F1_score

-0.067 0.446+ -0.016 0.458+

Table 1: Similarity-based generalizability analysis.
Word_Emb: Distributed Bag of Words document em-
bedding. MFeEmb: Multi-Feature Embedding gener-
ated using the Dynamic Memory model of Doc2Vec.
The similarity score of MFeEmb accurately predicts
higher classification accuracy. ‘*’ denotes the logistic
regression results, and ‘+’ denotes the SVM results.

5.2 MFeEmb Performance Summary
Figure 3 provides the overall comparison of
MFeEmb vs. the benchmark embeddings. In the
case where minimal domain adaptation was re-
quired (testing classifiers on Teams2 that were
trained on Teams1), the simple version of MFeEmb
using a SVM classifier is the top performer and out-
performs the embeddings used in other prior work
on conflict prediction (Enayet and Sukthankar,
2021a). Our most consistent model, MFeEmb with
FsText, had a significantly higher F1 score on the
high conflict class compared to baseline models
(see Table 2). Note that detecting the high conflict
examples is more valuable for practical implemen-
tations.

For the more complex domain adaptation sce-
narios (GitHub and ASIST), the best performance
was achieved using MFeEmb as a replacement for
the Word2Vec embedding during the meta-training
phase of FsText on GitHub, and the concatenation
ensemble showed significantly better performance
on the ASIST dataset. The vanilla MFeEmb gen-
erally performed comparably to the concatenation
ensemble using LSTMs on out of domain datasets.
The latter showed a high standard deviation com-
pared to the former.
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Figure 3: Performance of MFeEmb vs. other embedding choices from prior work.

Figure 4: Performance of MFeEmb with and without word embedding (WE).

To analyze the importance of incorporating word
embedding in MFeEmb, we compare the perfor-
mance of all the experimental setups with and with-
out word embedding (WE). For SVM & Logistic
regression (Basic) and FsText, we train the model
on the Teams Game1 dataset, and for the concate-
nation ensemble, we train on the synonym replaced
dataset. One of our main objectives in incorporat-
ing the word embedding in MFeEmb is to maintain
the performance on the in-domain dataset, and re-
sults show that MFeEmb performed better with
word embedding on the in-domain dataset. For
most transfer case setups, MFeEmb with word em-
bedding either gave better or comparable mean F1
scores (Figure 4). The following sections present
a more in-depth evaluation of each experimental
setup.

High Conflict Class Prediction Summary
Method GitHub ASIST

BERT_SynReplace 0.431 0.347

DA_only_Team1 0.320* 0.311*

Senti_only_Team1 0.207* 0.300*

MFeEmb_FsText_Team1 0.564 0.478

Table 2: Summary of high conflict class F1 scores. ‘*’
denotes the logistic regression results, and ‘+’ denotes
the SVM results.

5.3 SVM and Logistic Regression

Table 3 gives the results for the SVM and logistic
regression classifiers. This paper presents a thor-
ough evaluation of the performance of different
embedding choices (DM, DBOW). We also eval-
uate the performance of different data augmenta-
tion methods (SynReplace, ASISTReplace, and
GitReplace).

Our proposed MFeEmb trained using Doc2Vec
and classified using either SVM or logistic regres-
sion performed better than the word-embedding
baseline. Leveraging synthetic datasets yielded
significant performance improvements. In our
most challenging resource-scarce scenario, where
we trained the model only on the Teams Game1
dataset, incorporating word embedding showed bet-
ter performance on the Teams Game2 and GitHub
datasets, while the model performed better on the
ASIST dataset without word embedding (see Fig-
ure 4).

5.4 Concatenation Ensemble Model

Table 3 gives the results for the LSTM-based con-
catenation ensemble model. The model showed a
better mean F1-score than the text-based LSTM
model. We also trained the LSTM using synthetic
datasets generated using GitHub and ASIST vocab-
ularies, which showed better performance, specif-
ically with the GitHub vocabulary dataset. The
model performed significantly better on the ASIST
dataset compared to the other experimental setups.
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SVM & Logistic Regression Results
Method Teams Game2

F1_score (std)
GitHub
F1_score (std)

ASIST
F1_score (std)

Baseline Doc2Vec_dbow 0.465 (0.070)* 0.489 (0.080)* 0.425 (0.091)*

MFeEmb_Team1_dbow 0.533 (0.068)* 0.437 (0.025)* 0.347 (0.002)*

MFeEmb_Team1_dm 0.625 (0.0295)+ 0.495 (0.012)+ 0.473 (0.023)+

MFeEmb_SynReplace 0.558(0.035)+ 0.296(0.025)* 0.318 (0.00)*

MFeEmb_GitReplace 0.676 (0.033)+ 0.409 (0.039)* 0.411 (0.041)*

MFeEmb_ASISTReplace 0.675 (0.041)+ 0.537 (0.060)* 0.480 (0.042)*
Concatenation Ensemble Results

Baseline_SynReplace 0.435 (0.048) 0.414 (0.104) 0.397 (0.081)

MFeEmb_SynReplace 0.453 (0.044) 0.429 (0.122) 0.459 (0.044)

MFeEmb_GitReplace 0.464 (0.044) 0.468 (0.098) 0.491 (0.054)
MFeEmb_ASISTReplace 0.408 (0.075) 0.516 (0.100) 0.455 (0.059)

Few-Shot Learning Results
FsText Baseline 0.689 (0.0) 0.330 (0.0) 0.338 (0.0)

MFeEmb_Team1_doc2Vec 0.60 (0.028) 0.583 (0.045) 0.451 (0.025)

MFeEmb_Team1_word2Vec 0.597 (0.041) 0.507 (0.063) 0.437 (0.027)

MFeEmb_SynReplace 0.544 (0.021) 0.568 (0.031) 0.435 (0.037)

MFeEmb_GitReplace 0.684 (0.033) 0.567 (0.041) 0.388 (0.266)

MFeEmb_ASISTReplace 0.664 (0.042) 0.608 (0.034) 0.462 (0.053)

Table 3: Detailed performance evaluation of MFeEmb. ‘*’ denotes the logistic regression results,
and ‘+’ denotes the SVM results.

5.5 Few-Shot Model (FsText)

The FsText baseline showed the best performance
on Game2, but the performance degraded consid-
erably on the transfer task (GitHub and ASIST).
FsText with the proposed MFeEmb exhibited sig-
nificantly better performance on the GitHub and
ASIST datasets, specifically with ASIST vocab-
ulary’s synthetic dataset. FsText with the pro-
posed MFeEmb embedding also gave a comparable
performance on the Teams Game2 dataset. This
demonstrates that MFeEmb is an excellent repre-
sentation for meta-pretraining a few-shot model
on collaborative multiparty dialogues, even when
learned from a small dataset (see Table 3).

Using a synthetic dataset showed a performance
improvement in all three experimental setups. Gen-
eration of the synthetic dataset using the vocabulary
of other collaborative tasks showed comparatively
better performance on the transfer task. Even in
the in-domain experiments, the Game1 Synthetic
dataset, generated using collaborative task vocabu-
lary, showed the best and comparable performance
on Game2 in all the experimental setups.

6 Conclusion and Future Work

This paper introduces a multi-feature embedding
(MFeEmb) to improve the generalizability of mul-
tiparty dialogue models under resource scarcity
scenarios. We propose the use of a combination
of textual (words), structural (DAs), and semantic
(sentiment, DAs) embeddings to reduce the perfor-
mance loss due to natural distribution shift. Ex-
periments show that the multi-feature embedding
performs significantly better than sentence (BERT),
dialogue act-only, sentiment-only, and word em-
beddings. Our results demonstrate that MFeEmb
is a superior representation for meta-pretraining a
few-shot model that works well across different
collaborative problem-solving domains.

Our proposed data augmentation strategy suc-
cessfully resolved the domain shift problem caused
by task-specific vocabulary without perturbing the
dialogue act and sentiment features. Experiments
with synthetic datasets show that synonym replace-
ment with vocabulary drawn from a collaborative
task outperforms generic synonym replacement
with WordNet. It improves both the transfer accu-
racy and the test accuracy on the in-domain test set.
Note that we did not fine-tune the models on the tar-
get datasets, i.e., GitHub and ASIST, and strictly re-
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port the model learned on the Teams dataset. Only
the vocabulary of these datasets was used to boost
the performance; explicit fine-tuning of the ma-
chine learning models could further improve the
results.

7 Limitations

This paper only reports results on the generaliz-
ability of MFeEmb on conflict prediction tasks;
MFeEmb may not perform as well on other com-
munication analysis tasks. However, we believe
that modifying the features used in the embedding
can address this problem. In future work, we are
interested in applying our embedding to new team
communication analysis tasks such as identifying
emergent leadership.
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A Dialogue Act Classification

We use a dialogue act classifier (USE-DAC) to map
dialogues to the sequence of DAs, where each DA
in a sequence corresponds to the utterance of the
dialogue. Utterances are tagged according to the
SwDA-DAMSL tagset1 which contains 42 tags,
and one sequence is generated per dialogue. Our
dialogue act classifier uses the Universal Sentence
Encoder (USE) module available at TensorFlow
Hub2. After extensive experiments, we identified
that USE with three dense layers performs best on
transfer tasks. We selected the USE Transformer-
based Architecture model with three dense layers
and a softmax activation function. We fine-tune
USE on the SwDA dataset and use the classifier to
tag the utterances of the test and training datasets.
We selected the USE transformer-based model be-
cause it is itself trained on dialogue and discussion
forum datasets. The test accuracy of the classifica-
tion model is 72%.

B Doc2Vec

Doc2Vec (Le and Mikolov, 2014) is an unsuper-
vised method to learn paragraph vectors from text
of arbitrary size. We represent each dialogue as 1)
sequence of utterances, 2) sequence of DAs, and
3) sentiment polarities. We pass these sequences
through Doc2Vec to generate representations. We
use the Doc2Vec implementation from the python
Gensim library with an epoch size of 5, negative
sampling 5, window size 5, and alpha 0.065.

C SVM & Logistic Regression

We use the classifier implementations from the
scikit-learn library. The SVM was trained using
the RBF kernel function and the default parameters.
The parameters for logistic regression were:
Cs=10, class_weight=None, cv=10, dual=False,
fit_intercept=True, intercept_scaling=1.0,
max_iter=1000, multi_class=’ovr’, n_jobs=None,
penalty=’l2’, random_state=5434, refit=True,
scoring=’accuracy’, solver=’lbfgs’, tol=0.001,
verbose=False. Table 6 shows the full results of
both the SVM and Logistic Regression classifiers.

1https://web.stanford.edu/~jurafsky/
ws97/manual.august1.html

2https://tfhub.dev/google/
universal-sentence-encoder-large/2

D BERT Baseline

We use the bert_en_uncased_L12_H768_A12
model available at TensorFlow Hub3 to develop
our baseline classifier. The model contains one
dense layer, one dropout layer, a sigmoid activation
function, Adam optimizer. Due to the small size of
the Game1 dataset we train the model on the syn-
onym replaced Game1 dataset. The total number
of parameters in the model is: 10,948,301.

E FsText

The original FsText works by using the pre-trained
word2Vec embedding model word2vec-google-
news-300 available through the gensim.downloader
module. For MFeEmb we generate the embedding
using Doc2Vec with the same parameters men-
tioned in Appendix B. The second phase uses a
cosine similarity-based classification model that
does not involve machine learning.

F Concatenation Ensemble

Our Bidirectional LSTM models for each feature
has an embedding layer, an LSTM layer, one
dropout layer, and one deep layer. The LSTM uses
a sigmoid activation function and is trained using
the Adam optimizer with a learning rate=0.01. The
output shape of each individual model is (None,
100). The total number of parameters of the con-
catenation ensemble is: 2,365,081.

G GitHub Dataset Conflict Scoring

For GitHub, process conflict was scored according
to issue resolution using the following heuristics to
determine if conflicts occurred:

1. Unsuccessful resolution of the issue.
2. Unanswered questions in the discussion.
3. Lack of understanding about the issue from

one or more members.
4. Lack of understanding or disagreement be-

tween the team members.
5. Disagreement between the members about the

proposed solution.

H Dialogue Act Frequency Distribution
Analysis

Figure 6 shows the frequency distribution for
dialogue acts in the low conflict and high conflict
classes of the Teams dataset. We divided the

3https://tfhub.dev/tensorflow/bert_en_
uncased_L-12_H-768_A-12/4
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Figure 5: Utterances are classified using the dialogue act classifier to produce a sequence of DAs and
the sentiment classifier to produce a time series of sentiment polarities. Along with the text data, these
sequences are used to create MFeEmb using the Dynamic Memory model of Doc2Vec. The few shot
learning and data augmentation options are not shown in the figure.

dialogue acts into good communication indicators,
bad communication indicators and questions.
Figure 7 shows the complete dialogue act fre-
quency distribution. Table 4 shows the n-gram
frequency distribution of dialogue acts across
all datasets. Figure 8 visualizes the separation
between low conflict and high conflict classes
using both the MFeEmb and word embedding.
To see if profanities were a reliable indication of
conflict, we also examined profanity vocabulary
differences. The most frequent words in the high
conflict dialogues that are in profanity list are:
[’hell’, ’kill’,’suck’,’sucking’,’shit’,’strip’,’stroke’,
’rectum’,’xxx’,’dick’,’screwed’,’retard’,
’ovary’,’piss’,’lube’, ’junkie’].

The most frequent words in the low conflict di-
alogues that are in the profanity list are: [’booty’,
’pot’,’carpet’, ’rum’, ’breasts’, ’pedophile’, ’urine’,
’thug’, ’screw’, ’jerk’, ’weed’, ’screwing’, ’shower’,
’stupid’].

I Synthetic Datasets

Synthetic datasets were generated using: https:
//github.com/jasonwei20/eda_nlp.

J Results on Adversarially Generated
Dataset

This section presents results on the adversarially
generated dataset (Synthetic Game 2) created using
TextAttack4. Word Swap by BERT-Masked LM
transformation was employed to generate synthetic
examples from the Teams Game2 dataset. One
synthetic example is generated per dialogue of the

4https://github.com/QData/TextAttack

Game2 dataset. The length of the synthetic Game2
dataset vocabulary is 6084, and the length of the
original Game1 dataset vocabulary is 3441. The
number of words in the synthetic dataset that are
not in the original Game1 is 3904.

Figure 2 shows a high overlap between origi-
nal Game1 and original Game2 compared to syn-
thetic Game2 and original Game1, but this does
not affect the performance of MFeEmb (Basic),
and MFeEmb. (Basic) gave a better performance
on the synthetic dataset. On the other hand, the
performance of the BERT baseline decreased on
the synthetic Game2 test set, with a high standard
deviation in mean F1 scores.

K SVM & Logistic Regression Results

Table 6, 7, 8 provides the detailed results of both
the SVM and logistic regression classifiers under
different experimental settings.
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Figure 6: Dialogue act frequency distribution in high and low conflict classes for the Teams dataset.
Dialogue acts were divided into good and bad communication indicators.

Figure 7: Complete dialogue act frequency distribution for high and low conflict classes in the Teams
dataset.

Figure 8: Comparison of the MFeEmb and word embedding distribution on the 2D plane. Multi-feature embedding
showed better clustering, with most instances of one of the classes occupying the lower left and the other occupying
the upper right. On the other hand, word embeddings are very intermixed. s: low conflict (successful dialogue), u:
high conflict (unsuccessful dialogue).
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Dataset Unigrams Bigrams Trigrams 4grams 5grams
Teams (sd),(b),(%) (sd,sd),(sd,b),(b,sd) (sd,sd,sd),

(sd,sd,b),
(sd,b,sd)

(sd,sd,sd, sd),
(sd,sd,sd,sd),
(sd,sd,sd,b)

(sd,sd,sd,sd, sd),
(sd,sd,sd,sd,b),
(sd, sd,sd,b,sd)

GitHub (sd),(sv),(ad) (sd,sd),(sd,sv),(sv,sd) (sd,sd,sd),
(sv,sd,sd),
(sd,sd,ad)

(sd,sd,sd,sd),
(sd,sd,sd,ad),
(sv,sd,sd,sd)

(sd,sd,sd,sd,sd),
(sd,sd,sd,sd, ad),
(sd,sv,sd,sd,sd)

ASIST (sd),(qy),(sv) (sd,sd),(sd,qy),(qy,sd) (sd,sd,sd),
(sd,qy,sd),
(qy,sd, sd)

(sd,sd,sd,sd),
(sd,qy,sd,sd),
(sd,sd,qy,sd)

(sd,sd,sd,sd,sd),
(sd,sd,sd,sd, qy),
(sd,qy,sd,sd,sd),

Table 4: N-gram frequency distribution: top three most frequent unigrams, bigrams, trigrams, 4grams,
5grams of all the datasets. Sequences of sd (statement-nonopinion) are common across all datasets.

Game2 Synthetic Dataset Results
Train model Teams Game1

F1_score (std)
SynReplace
F1_score (std)

GitReplace
F1_score (std)

ASISTReplace
F1_score (std)

MFeEmb (Basic) 0.654 (0.033)+ 0.443 (0.046)* 0.617 (0.035)+ 0.624 (0.055)+
BERT - 0.490 (0.061) 0.422 (0.037) 0.495 (0.044)

Table 5: MFeEmb results on the Game2 synthetic dataset generated using TextAttack

Both SVM & Logistic Regression Results
Method Teams Game2

F1_score (std)
GitHub
F1_score (std)

ASIST
F1_score (std)

Baseline Doc2Vec_dbow 0.465 (0.070)*
0.369 (0.0)+

0.489 (0.080)*
0.425 (0.0)+

0.425 (0.091)*
0.348 (0.0)+

MFeEmb_Team1_dbow 0.533 (0.068)*
0.369 (0.0)+

0.437 (0.025)*
0.425 (0.0)+

0.347 (0.002)*
0.348 (0.0)+

MFeEmb_Team1_dm 0.625 (0.0295)+
0.569 (0.045)*

0.495 (0.012)+
0.428 (0.0)*

0.473 (0.023)+
0.393 (0.032)*

MFeEmb_SynReplace 0.558(0.035)+
0.542 (0.045)*

0.296(0.025)*
0.248 (0.0)+

0.318 (0.00)*
0.318 (0.00)+

MFeEmb_GitReplace 0.676 (0.033)+
0.593 (0.056)*

0.409 (0.039)*
0.248 (0.0)+

0.411 (0.041)*
0.318 (0.00)+

MFeEmb_ASISTReplace 0.675 (0.041)+
0.643 (0.044)*

0.537 (0.060)*
0.248 (0.0)+

0.480 (0.042)*
0.318 (0.00)+

Table 6: Results for both the SVM and logistic regression classifiers side by side.
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Word_Emb MFeEmb
Teams Game2

similarity F1_score similarity F1_score

-0.067 0.470*
0.369+

-0.016 0.628+
0.561*

GitHub
similarity F1_score similarity F1_score

-0.067 0.463*
0.425+

-0.017 0.501+
0.439*

ASIST
similarity F1_score similarity F1_score

-0.067 0.446+
0.348*

-0.016 0.458+
0.394*

Table 7: Similarity-based generalizability analysis. ’*’
denotes the logistic regression results, and ’+’ denotes
the SVM results.

High Conflict Class Prediction Summary
Method GitHub ASIST

BERT_SynReplace 0.431 0.347

DA_only_Team1 0.320*
0.250+

0.311*
0.216+

Senti_only_Team1 0.207*
0.090+

0.300*
0.036+

MFeEmb_FsText_Team1 0.564 0.478

Table 8: Summary of high conflict class F1_scores.’*’
denotes the logistic regression results, and ’+’ denotes
the SVM results.
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Abstract

The recent explosion of question-answering
(QA) datasets and models has increased the
interest in the generalization of models across
multiple domains and formats by either train-
ing on multiple datasets or combining multiple
models. Despite the promising results of multi-
dataset models, some domains or QA formats
may require specific architectures, and thus the
adaptability of these models might be limited.
In addition, current approaches for combin-
ing models disregard cues such as question-
answer compatibility. In this work, we pro-
pose to combine expert agents with a novel,
flexible, and training-efficient architecture that
considers questions, answer predictions, and
answer-prediction confidence scores to select
the best answer among a list of answer pre-
dictions. Through quantitative and qualitative
experiments, we show that our model i) cre-
ates a collaboration between agents that outper-
forms previous multi-agent and multi-dataset
approaches, ii) is highly data-efficient to train,
and iii) can be adapted to any QA format. We
release our code and a dataset of answer predic-
tions from expert agents for 16 QA datasets to
foster future research of multi-agent systems1.

1 Introduction

The large number of question answering (QA)
datasets released in the past years has been ac-
companied by models specialized in them (Rogers
et al., 2021; Dzendzik et al., 2021). These datasets
and models differ by the domain (e.g., biomedi-
cal and Wikipedia), required skills (e.g., numerical
and multi-hop), and format (e.g., extractive and
multiple-choice). This variety of tasks and overspe-
cialization of the corresponding models have led
the community towards developing simple unified
models that can generalize across domains and for-
mats through unifying dataset formats (Khashabi
et al., 2020), creating models trained on multiple

1https://github.com/UKPLab/MetaQA

Figure 1: Given a question, each expert agent provides a
prediction with a confidence score and MetaQA selects
the best answer. Correct answers in green. Wrong
answers in red.

datasets (Fisch et al., 2019; Talmor and Berant,
2019; Khashabi et al., 2020), and designing ensem-
ble methods for QA agents (Geigle et al., 2021).
All these research lines have a potential impact on
end-user applications because generalization can
help create robust systems and ease the implemen-
tation of QA models. For example, some chatbots
are composed of skill systems, where each skill is
a model trained on a specific domain (Miller et al.,
2017; Burtsev et al., 2018). More abstractly, these
research lines also share a central research question:
how to combine QA skills.

We argue that a one-size-fits-all architecture may
encounter some limitations in combining QA skills.
For instance, Raffel et al. (2020) have observed
that a single model trained on multiple tasks may
underperform the same architecture trained on a
single task. An alternative approach is to combine
multiple expert agents. Geigle et al. (2021) propose
a model that given a question and a list of datasets,
selects the dataset from which the question comes.
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This can be used to identify agents trained on a spe-
cific type of questions. However, despite achieving
a classification accuracy greater than 90%, this ap-
proach underestimates high-performing models on
out-of-domain questions.

To address the limitations of previous ap-
proaches, we propose a novel model, MetaQA, to
combine heterogeneous expert agents (i.e., differ-
ent architectures, formats, and tasks). It takes a
question, and a list of candidate answers with con-
fidence scores as input and selects the best answer
(Figure 1). We modify the embedding mechanism
of the Transformer encoder (Vaswani et al., 2017)
to embed the confidence score of each candidate
answer. In addition, we use a multi-task training
objective that makes the model learn two comple-
mentary tasks: selecting the best candidate answer
and identifying agents trained on the domain of the
input question.

Our approach learns to match questions with
answers, an immensely easier task than the end-
to-end QA of multi-dataset models. This makes
MetaQA remarkably data efficient as it only uses
16% of the training data of multi-dataset models.

We compile a list of 16 QA datasets that en-
compass different domains, formats, and reasoning
skills to conduct experiments. Through quantitative
experiments, we show that our MetaQA i) estab-
lishes a successful collaboration between agents, ii)
outperforms multi-agent and multi-dataset models,
iii) excels in minority domains, and iv) is highly
efficient to train. Our contributions are:

• A new approach for multi-skill QA that estab-
lishes a collaboration between agents.

• A model called MetaQA that utilizes question,
answer, and confidence scores to select the
best candidate answer for a given question.

• Extensive analyses showing the successful col-
laboration between agents and the training ef-
ficiency of our approach.

• A dataset of (QA Agents, Questions, and an-
swer predictions) triples that cover different
QA formats, domains, and skills to foster fu-
ture developments of multi-agent models.

2 Related Work

Currently, there are two approaches for multi-skill
QA: multi-agent and multi-dataset models.

Multi-agent models consists of combining mul-
tiple expert agents. A well-known method is the
Mixture of Experts. It requires training a set of
models and combining their outputs with a gat-
ing mechanism (Jacobs et al., 1991). However,
this approach would require jointly training mul-
tiple agents, which can be extremely expensive,
and sharing a common output space to combine
the agents. These limitations make it unfeasible
to implement in our setup, where many heteroge-
neous agents are combined (i.e., agents with dif-
ferent architectures, target tasks, and output for-
mats such as integers for multiple-choice or answer
spans for span extraction). Inspired by topic clas-
sification, Geigle et al. (2021) proposed mapping
questions to QA datasets (topics) to identify agents
trained on that type of questions. Although related
to us, their work does not attempt to achieve any
agent collaboration. Moreover, because of their
topic-classification approach, agents that are effec-
tive in out-of-domain questions are underestimated.
Lastly, Friedman et al. (2021) average the weights
of adapters (Houlsby et al., 2019) trained on single
datasets to obtain a multi-dataset model. However,
their architecture is limited to span extraction.

Multi-dataset models consist of training a
model on various datasets to generalize it to mul-
tiple domains. Talmor and Berant (2019) conduct
extensive analyses of the generalization of QA mod-
els. However, they only experiment on extractive
tasks and, due to their model architecture (BERT
for span extraction), it is not possible to extend it to
other tasks such as abstractive or visual QA. Fisch
et al. (2019) created a competition on QA gen-
eralization using 18 datasets. These datasets are
from very different domains, such as Wikipedia and
biomedicine, among others. However, they also fo-
cus only on extractive datasets. Lastly, Khashabi
et al. (2020) shows that the different QA formats
can complement each other to achieve a better gen-
eralization. They use an encoder-decoder architec-
ture and transform the questions into a common
format. However, we argue that their approach
is limited because some questions may require a
specific skill that must be modeled in a particular
manner (e.g., numerical reasoning), and this is not
possible with their simple encoder-decoder.

3 Model

We propose a new model, shown in Figure 2, to
combine k QA agents m. Each agent mi is trained
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Figure 2: MetaQA architecture. The Agent Selection
Network, AgSeN, assigns scores to each agent based on
the similarity between the agent’s training set domains
and the question domain. Answer Selection, AnsSel,
selects the correct answers. confk is the confidence
score from the agent k for answer k.

on domain domi and predicts an answer Ansi.
Without loss of generalizability, we assume that
each agent is trained on a different domain and
each question belongs to one of these domains. We
define two complementary tasks: i) a priori agent
selection (Agent Selection Networks, AgSeN, in
Figure 2) and ii) answer selection (AnsSel network
in Figure 2). The division of the problem into these
two learnable tasks is vital to ensure that MetaQA
considers out-of-domain agents, which can also
give correct answers. More formally, MetaQA
computes the probability of returning an answer
a as follows:

p(a|q) = argmax
i

pθ1(ai|mi, q)pθ2(mi|q) (1)

where pθ2(mi|q) is the a priori probability of
selecting agent mi and pθ1(ai|mi, q) is the proba-
bility of selecting the answer from agent mi for the
question q. In other words, θ2 is the agent selection
network, and θ1 is the answer selection network.

To achieve this, the backbone of our architecture
relies on an encoder Transformer (Vaswani et al.,
2017) whose input is the concatenation of the ques-
tion with the candidate answers from each agent.
Each answer is separated by a new token [ANS]
that informs the model of the beginning of a new
answer candidate.

We devise a new embedding for the Transformer
encoder to include the confidence score of the pre-

dictions of each agent (Figure 3). While the origi-
nal encoder uses the token ti, position pi, and seg-
ment si embeddings, we add an agent confidence
embedding ci to these three.

xi = ti + pi + si + ci (2)

The new ci is obtained with a feed-forward net-
work f that takes an answer confidence confi and
creates an embedding ci.

ci =

{
f(confj), if i ∈ Idx([ANS] Ansj)
f(0), otherwise

(3)

where Idx is a function that given a list of tokens
returns their indexes in the encoder input.

Figure 3: Description of our novel embedding system
including confidence scores from the agents.

We leverage two types of embeddings from the
output of the encoder. The first one is the em-
bedding of the [CLS] token. This embedding
captures information about the domain of the input
question. It is used as the input to k independent
feed-forward networks called Agent Selection Net-
work (AgSeN) to identify the agent with the highest
likelihood of giving a correct answer. This predic-
tion is based on the similarity between the domain
of the question and the domain of the training set of
the agents. More specifically, it tries to identify the
agent trained on the dataset from which the ques-
tion comes in a similar way as TWEAC (Geigle
et al., 2021). The second type of embedding used is
the embedding of the [ANS] tokens, which con-
tain the cues needed to identify the correct answers
to the input question. These [ANS] embeddings
are concatenated with the score of each correspond-
ing agent ScAgi and input into a final feed-forward
network, called Answer Selection (AnsSel), that se-
lects the correct answers according to the score
of their agents and the semantics of the candidate
answers.
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3.1 Training
As previously mentioned, our model learns two
complementary tasks: i) a priori agent selection
and ii) answer selection. Thus, to learn these two
tasks, we define the following loss function:

ℓ =
α1

k

k∑

i=0

ℓAgSeNi + α2ℓAnsSel (4)

ℓAnsSel =
1

k

k∑

i=0

CE( ˆAnsi, yi) (5)

where ℓAgSeNi is the loss of one AgSeN net-
work and ℓAnsSel the loss of the AnsSel network.
ℓAnsSel is the average of the cross-entropy lossCE
of each answer prediction ˆAnsi = {0, 1}. Lastly,
AgSeN networks use the Binary Cross Entropy.

We obtain the labels of AnsSel, yi, by comparing
the string prediction of each agent with the correct
answer. If the F1 score is higher than a thresh-
old, θ, we consider the prediction as correct. As
for AgSeNi, its training label is 1 when the input
question is from the training set of the ith agent.

4 Experimental Setup

4.1 Datasets
We have collected a series of QA datasets cov-
ering different formats, domains, and reasoning
skills. In particular, we use four formats: extrac-
tive, multiple-choice, abstractive, and multimodal.

For extractive, we use the MRQA 2019 shared
task collection (Fisch et al., 2019), QAMR
(Michael et al., 2018), and DuoRC (Saha et al.,
2018). We include these two additional datasets
to add more diversity. In detail, QAMR re-
quires predicate-argument understanding, a skill
that agents should have to solve most QA datasets.
As for DuoRC, it is the only dataset in our col-
lection on the film domain, and this allows us to
study transfer learning from other domains. The
multiple-choice datasets require boolean reason-
ing, commonsense, and passage summarization
skills. Lastly, we include abstractive QA following
(Khashabi et al., 2020) and a multimodal dataset
to show that our approach can solve any type of
question while multi-dataset models are limited to
certain formats.

Most of these datasets do not have the labels of
the test set publicly available, except for RACE and
NarrativeQA. Since we need to do hyperparameter
tuning and hypothesis testing to compare models,

we divide the public dev set into an in-house dev
set and test sets following (Joshi et al., 2020). Then,
we conduct hyperparameter tuning on the dev set
and hypothesis testing on the test set. A summary
of the datasets is available in Appendix A.1.

4.2 Expert Agents

To guarantee a fair comparison with MultiQA, we
have trained all the agents for extractive datasets us-
ing the same architecture as MultiQA, span-BERT,
a BERT model pretrained for span extraction tasks
that clearly outperforms BERT on the MRQA 2019
shared task (Joshi et al., 2020). More details on
the implementation are provided in Appendix A.3.
For the remaining datasets, we use agents that are
publicly available on HuggingFace or Github with
a performance close to the current state of the art.
A summary of them is provided in Appendix A.2.

4.3 Baselines

We compare our approach with three types of mod-
els: i) multi-agent systems, ii) multi-dataset mod-
els, and iii) expert agents. The first family is repre-
sented by our main baseline, TWEAC, a model that
maps questions to topics (or types of questions) to
identify agents trained on that type of data (Geigle
et al., 2021) and the simple max-voting ensemble.
The second family of models is composed of Mul-
tiQA (Talmor and Berant, 2019) and UnifiedQA
(Khashabi et al., 2020). MultiQA is a transformer
encoder with a span-extraction layer trained on
multiple extractive QA datasets. Because of this
span-extraction layer, it can only solve extractive
QA tasks. UnifiedQA, on the other hand, can solve
any QA task that can be converted into text-to-text
(i.e., extractive, abstractive, and multiple-choice)
thanks to its architecture, an encoder-decoder trans-
former. Lastly, we include the expert agents to
analyze whether MetaQA closes the gap to them
compared to the baselines.

4.4 Evaluation

Since MetaQA may select more than one answer,
we select the answer with the highest confidence
score by MetaQA as the decision of the model
to evaluate it. We evaluate our model and the
baselines using the official metrics of each dataset,
i.e., macro-average F1 for extractive, accuracy for
multiple-choice, and rouge-L for abstractive. In
the particular case of DROP, the official metric is
macro-average F1, and thus, we also use it. The
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Dataset MetaQA TWEAC Exp. Agent UnifiedQA MultiQA Voting

SQuAD 91.98±0.11† 89.09±0.36 92.92 90.81 93.14±0.18 90.73
NewsQA 71.71±0.21† 66.86±0.75 73.68 65.57 73.59±0.60 66.60
HotpotQA 79.27±0.15† 74.96±0.59 80.60 77.92 81.68±0.22 71.71
SearchQA 81.98±0.25†‡ 80.41±0.22 81.04 81.61 80.45±1.82 68.87
TriviaQA-web 80.63±0.26†‡ 76.55±0.15 79.34 72.34 77.76±4.15 75.73
NQ 81.20±0.18† 78.06±0.37 81.97 75.58 82.57±0.30 72.25
DuoRC 51.24±0.20†‡ 44.28±0.23 43.77 34.65 46.99±0.15 50.94
QAMR 83.78±0.14† 78.77±0.48 84.00 82.70 84.62±0.14 73.07

BoolQ 73.14±0.23† 72.20±0.03 72.17 81.34 n.a. 73.88
CSQA 78.66±0.19† 77.18±0.18 78.56 58.43 n.a. 68.41
HellaSWAG 73.19±1.01 77.12±0.30 77.14 36.01 n.a. 69.33
RACE 84.71±0.05† 83.02±0.27 84.78 69.65 n.a. 67.30
SIQA 74.17±0.64 75.39±0.05 75.44 61.62 n.a. 70.01

DROP 73.04±1.98† 69.12±0.36 74.61 42.45 n.a. 26.18
NarrativeQA 67.19±0.00 67.19±0.00 67.19 57.82 n.a. 67.19

HybridQA 50.94±0.00 50.94±0.00 50.94 n.a n.a 50.94

Table 1: MetaQA (ours) and the baselines on the test set of each dataset. Best results in bold. † represents that
MetaQA is statistically significant better than TWEAC. ‡ represents that MetaQA is statistically significant better
than MultiQA. n.a means that the system cannot model the dataset.

reported results are the means and standard devia-
tions of the models trained with five different seeds
except for UnifiedQA, which would be too expen-
sive to compute. We use a two-tailed T-Test to
compare the models with a p-value of 0.05.

5 Results and Discussions

In this section, we answer the questions: i) is
MetaQA able to combine multiple agents without
undermining the performance of each one (§5.1),
ii) is it robust on out-of-domain scenarios? (§5.2),
iii) how does agent collaboration work? (§5.3), iv)
how data-efficient is MetaQA? (§5.4), and v) what
is the effect of each module of MetaQA? (§5.5).

5.1 Comparison with the Baselines
5.1.1 TWEAC
MetaQA outperforms TWEAC in all datasets ex-
cept HellaSWAG and SIQA, as shown in Table 1.
On average, MetaQA achieves an average perfor-
mance boost of 2.23 with respect to TWEAC, and
more importantly, the performance boost is greater
than 4 points on HotpotQA, DuoRC, NewsQA,
QAMR, and TriviaQA. Particularly, there is an as-
tonishing 6.8 points performance boost on DuoRC.

The reason for these results is that TWEAC only
aims to identify the agent trained on the domain of

the question while we retrieve the best answer pre-
diction, even if it comes from out-of-domain mod-
els. For instance, in DuoRC, MetaQA selects the
in-domain agent only for 43% of its questions, i.e.,
most of the questions are assigned to agents that
are not trained on DuoRC. In this way, MetaQA
establishes a collaboration between agents.

We also observe that the gap between MetaQA
and TWEAC is more significant on extractive QA
than on multiple-choice. This is expected due to
our selection of multiple-choice datasets. The sub-
stantial differences in the format of these datasets
limit the potential agent collaboration. For instance,
BoolQ is the only boolean dataset, and therefore,
it can only be used to solve boolean questions,
which do not appear in the other multiple-choice
datasets. Also, SIQA, a commonsense reasoning
dataset, uses a short context passage while CSQA
(commonsense too) does not have any context,
and hence, an agent trained for CSQA cannot be
used successfully on SIQA. These characteristics
of the setup make the upper-bound performance of
MetaQA to be the same as the expert agents. Yet,
even with these limitations, MetaQA outperforms
TWEAC in three of the five datasets. Also, the ex-
pert agents only significantly outperform MetaQA
on 2/5 datasets. Lastly, the performance in Narra-
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tiveQA and HybridQA is the same because there is
only one agent per dataset.

5.1.2 UnifiedQA
MetaQA outperforms UnifiedQA by striking 10.49.
In the case of extractive QA, the gap is 5.08, while
in multiple-choice is 15.36. We attribute this to
the limitations of UnifiedQA’s architecture. For
example, the performance in DROP is clearly far
from our MetaQA. The reason for this is that while
the expert agent used by MetaQA is designed for
numerical reasoning, UnifiedQA does not have any
mechanism to achieve this, and since it is designed
as a general model for text-to-text generation, it
cannot be augmented with special reasoning mod-
ules. The same phenomenon occurs in the multiple-
choice datasets and in some minority domains in ex-
tractive QA (i.e., NewsQA and DuoRC). The only
exception is in BoolQ, where UnifiedQA achieves
the best results. However, this is because T5 (Raf-
fel et al., 2020), on which UnifiedQA is trained, is
already one of the SOTA models, while the agent
we use has lower performance and was the only
publicly available model in HuggingFace’s Model
Hub at the time of experimentation.

5.1.3 MultiQA
MetaQA outperforms MultiQA by a small margin
of 0.12, despite being much more flexible (i.e., com-
patible with any QA format instead of only extrac-
tive QA (§4.3). Moreover, our model was trained
on only 13% of its training set, as later discussed
in §5.4. Furthermore, we observe that MultiQA
mostly outperforms expert agents on Wikipedia-
based datasets (i.e., SQuAD, HotpotQA, NQ, and
QAMR). This might suggest that MultiQA is over-
fitted to Wikipedia due to its training on multi-
ple datasets using Wikipedia paragraphs2 and that
would explain why it struggles with other minor-
ity domains. On the other hand, MetaQA excels
in minority domains where it achieves striking
4.25 points performance boost on DuoRC, 2.87
on TriviaQA-web, 1.53 on SearchQA, and over-
all outperforms MultiQA by an average of 2.88.
These results show the superior ability of MetaQA
to avoid overfitting to a specific domain.

5.1.4 Max-Voting
Lastly, MetaQA also outperforms max-voting by
an average of 8.35. In the case of easy datasets such

2MultiQA is trained on question and contexts (Wikipedia
paragraphs). However, MetaQA does not have access to these
paragraphs as shown in Figure 2.

as SQuAD, the performance is similar because all
expert agents excel in this dataset, so any approach
to combine the agents would yield similar results.
More interestingly, the performance of Max-Voting
is clearly far from MetaQA in DROP. We attribute
this to the low performance of the extractive agents
on this dataset and their similar wrong answers.

5.2 Leave-One-Out Ablation
In this experiment, we analyze whether the com-
bination of expert agents can successfully solve
an out-of-domain (OOD) dataset. We conduct a
leave-one-out ablation test in both MetaQA and the
baselines. In the case of MetaQA, we remove the
expert agent of the target dataset, retrain MetaQA
again without this dataset, and evaluate it on the
target dataset. Similarly, we retrain TWEAC, Uni-
fiedQA, and MultiQA without the target dataset
and evaluate the model on the target dataset. Lastly,
we also use the Max-Voting baseline without the
agent trained on the target dataset. We trained
MetaQA five times with different random seeds for
each target dataset and report their average results.
However, we could not do this for the other models
due to their much higher computation costs.

Table 2 shows that OOD MetaQA outperforms
OOD TWEAC in all datasets by an average of 6.31.
The larger gap in OOD than in in-domain scenar-
ios (Table 1) supports our hypothesis: the topic-
classification approach of TWEAC disregards high-
performing models in OOD, and our solution of
establishing a collaboration between the agents is
able to combine skills.

OOD MetaQA also outperforms OOD Uni-
fiedQA by a striking average of 8.13 points. In
addition, in four datasets (TriviaQA-web, DuoRC,
CommonsSenseQA, and HellaSWAG), the ablated
MetaQA even outperforms the full UnifiedQA
trained on those datasets. This further supports our
approach of combining multiple agents, instead of
datasets, in scenarios with a wide variety of do-
mains and formats, where flexibility is key.

In the particular case of MultiQA, as discussed
in §5.1.3, half of its training sets are based on
Wikipedia paragraphs. Therefore, removing a
Wikipedia-based dataset such as HotpotQA does
not remove Wikipedia contents from its training
set3. As a consequence, this compromises the OOD
setup. However, even under this pseudo-OOD

3This is not the case for MetaQA because our input is only
the questions, answer predictions, and confidence scores, not
the Wikipedia paragraphs.
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Dataset NewsQA HotpotQA SearchQA TriviaQA NQ DuoRC QAMR CSQA HellaSWAG SIQA DROP ∆

MetaQA 71.46 79.37 81.87 80.65 81.08 51.01 83.87 78.40 72.14 73.90 74.96 -
UnifiedQA 65.57 77.92 81.61 72.34 75.58 34.65 82.70 58.43 36.01 61.62 42.45 -

OOD MetaQA 62.26 69.41 66.59 75.02 67.51 50.51 72.20 58.59 52.13 59.28 22.14 -
OOD TWEAC 57.65 43.98 57.93 66.62 65.37 47.32 69.59 47.46 50.59 59.16 20.53 -6.31
OOD UnifiedQA 60.12 62.21 63.02 69.33 61.49 32.84 70.07 50.57 29.35 44.93 22.30 -8.12
OOD MultiQA* 63.36 69.44 67.94 76.09 68.52 49.89 72.53 n.a. n.a. n.a. n.a. 0.61
OOD Max Voting 63.25 67.59 61.76 73.81 68.27 50.48 68.92 58.94 64.03 63.22 22.46 0.64

Table 2: Results of leave-one-out ablation. Out-of-domain (OOD) models are trained on all the datasets except the
target dataset. Best OOD results in bold. Underlined results reflect OOD MetaQA outperforming full UnifiedQA. ∆
is the average performance gap to OOD MetaQA. * MultiQA uses a pseudo-OOD setup, see remarks in §5.2.

Dataset Question In-domain Agent OOD Agent

DuoRC Who does Rocky Balboa work for as an enforcer? Adrian Tony Gazzo (NewsQA Agent)
TriviaQA-web Who played the character Mr Chips in the 2002 TV

adaptation of Goodbye Mr Chips?
Timothy Carroll MartinClunes (DuoRC Agent)

SearchQA This short story, written around 1820, contains the
line "If I can but reach that bridge... I am safe"

Legend Legend of Sleepy Hollow (Triv-
iaQA Agent)

Table 3: Examples of questions where our MetaQA system disregard the in-domain agent due to their incorrect
predictions (in red) and selects and an out-of-domain (OOD) agent that returns the right answer (in green).

setup, MultiQA only outperforms MetaQA by a
slight margin of 0.61.

Lastly, we analyze the Max Voting baseline in
this scenario. Although prior works disregard this
baseline, the results in Table 2 show that OOD Max
Voting outperforms all the other baselines and has a
similar performance to OOD MetaQA. Its average
gain with respect to OOD MetaQA is 0.64. How-
ever, this is not the overall trend. OOD MetaQA
outperforms OOD Max Voting in 5/8 extractive
QA datasets by a considerable margin of 3.19. On
the other hand, multiple-choice datasets, especially
the difference in HellaSWAG, incline the average
towards OOD Max Voting. Despite the promising
claims of prior works (Talmor and Berant, 2019;
Khashabi et al., 2020) about OOD performance,
these results suggest that aggregating a wide range
of QA skills for different formats and domains in
out-of-domain scenarios is still an open problem
and non-neural baselines have strong results. Sim-
ilar results have also been observed in retrieval
methods, where non-neural baselines outperform
supervised methods on OOD scenarios (Thakur
et al., 2021).

5.3 Qualitative Analysis

We further analyze the behavior of our proposed
model by inspecting its predictions. In particular,
we investigate the collaboration between the agents
for DuoRC, SearchQA, and TriviaQA, where this
collaboration is particularly strong.

In DuoRC, the most helpful out-of-domain
(OOD) agent is NewsQA, with a chosen rate of
18.2% in the test set. This might be due to the
question types of DuoRC and NewsQA. DuoRC’s
questions are crowdsourced and are predominately
who-questions (42% of the training set as shown
in Appendix 6). NewsQA’s questions are also
crowdsourced and have a high proportion of who-
questions (24%). The other datasets with a high
amount of who-questions are NQ and SearchQA.
However, the questions of these two datasets are
very different in style to DuoRC (i.e., real user
queries and trivia from a TV show). An example
of this DuoRC-NewsQA agents collaboration is
shown in the first row of Table 3.

In TriviaQA-web, the second most commonly
used agent is trained on DuoRC. We randomly sam-
pled 50 QA pairs where DuoRC is the selected
agent and returns the right answer. In 20% of the
cases, the question was about a movie or book plot,
which indicates that our MetaQA successfully rec-
ognizes that this OOD agent is able to respond to
this type of question. An example of this collabo-
ration is shown in the second row in Table 3.

In SearchQA, the most helpful OOD agent is
TriviaQA (5% chosen rate). This might be due
to their similarities (Table 8). Within the pool of
instances where the in-domain agent fails and the
TriviaQA agent provides the right answer, we ran-
domly analyzed 50 instances and discovered that
in 84% of the cases, the in-domain agent returns
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a partially correct answer, and in those cases, the
OOD agent was able to identify the exact answer.
This is another example of the successful agent col-
laboration achieved by our MetaQA. Even though
the in-domain agent almost has the correct answer,
MetaQA selects an OOD agent that gives a better
answer, as shown in the last row on Table 3.

5.4 Efficiency of MetaQA

We trained MetaQA with bins of QA instances for
each dataset and observed that the training con-
verges with only 10K instances/per dataset (i.e.,
160K instances, including all datasets). This is
only 16% of the data needed to train UnifiedQA
(900K instances excluding HybridQA) and 13% of
the data needed to train MetaQA (600K of extrac-
tive QA instances). The reason for this large saving
is that MetaQA only has to learn how to match
questions with answers because it reuses publicly
available agents. On the other hand, multi-dataset
models need to learn how to solve questions (i.e.,
language understanding, reasoning skills, etc.), a
much more complex task.

As for inference time, if all the agents fit on
memory4, multi-datasets models and our MetaQA
would have comparable running times. For exam-
ple, compared to MultiQA, since our extractive
agents use the same architecture as MultiQA, run-
ning the agents would take the same amount of
time as running MultiQA. Then, we would need
to select the answer. However, our MetaQA only
takes 0.05s/question to select the best candidate
answer. This makes it fast enough to not be notice-
able by the users. On the other hand, if the agents
do not fit in memory at the same time, it would be
necessary to run them sequentially. Yet, this might
not be a problem because it is possible to predict
in advance which agents are more likely to give a
correct answer to a given question (Geigle et al.,
2021; Garg and Moschitti, 2021), which we leave
as future work. This would allow us to skip some
agents at run-time and improve the running time
dramatically in low-memory scenarios.

5.5 Ablation Study

Lastly, we quantitatively measure the impact of
each feature of MetaQA on its overall performance.
The first row of Table 4 shows that removing the
loss of the Agent Selection Network (AgSeN) hurts

4In our hardware and with our experimental setup, all
agents and MetaQA fit on our GPU memory.

the performance of MetaQA. This manifests that
our intuition of considering in-domain agents with-
out falling into the argumentum ad verecundiam
fallacy is correct. Lastly, the second row shows that
the confidence embeddings provide key informa-
tion to MetaQA to select an answer. For instance,
an in-domain agent could have a prediction with
low confidence because it does not know the an-
swer, while an out-of-domain agent could have the
correct answer and be certain about it.

Model Avg. Downgrade

−ℓAgSeN -0.45
− Conf. Emb. -0.46

Table 4: Average performance loss across all datasets
of each ablated model compared to the full model.

6 Conclusions

In this work, we propose an alternative to multi-
dataset models for multi-skill QA. We propose to
combine expert agents to create a collaborative sys-
tem for question answering (QA) called MetaQA.
It considers questions, answer predictions, and con-
fidence scores from the agents to select the best
answer to a question. Through quantitative experi-
ments, we show that our model avoids the limita-
tions of multi-dataset models and outperforms the
baselines thanks to the agent collaboration estab-
lished. Additionally, since MetaQA learns to match
questions with answers instead of end-to-end QA,
it is highly data-efficient to train. We leave as fu-
ture work: i) combining partially correct answer
predictions to generate a better one, ii) adding new
agents without retraining MetaQA by fixing most
of the weights and only training the weights of the
new Agent Selection Network, and iii) identifying
a priori agents that are likely to give an incorrect
answer to skip them at run-time.

Ethics Discussion

The proposed model, MetaQA, cannot generate un-
fair, biased, or harmful content given that the expert
agents it aggregates are fair because MetaQA does
not generate content. Rather it selects from Expert
Agents. The datasets we use are well-known to be
safe for research purposes and do not contain any
personal information or offensive content. We also
comply with the licenses and intended uses of each
dataset. The licenses of each dataset are shown
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in Appendix A.1. We are not held responsible for
errors, false or offensive content generated by the
agents. MetaQA should be used at the users’ discre-
tion. Future work should address how to identify
unfair or false content to avoid selecting it.

Limitations

The main limitation of MetaQA is that when no
agent has a correct answer, it returns an incorrect
answer. Table 5 describes how often this scenario
occurs. In extractive datasets, without the out-
liers (i.e., SQuAD and DuoRC), we observe this
to be 18% on average per dataset. This percentage
drops to 8.35% in multiple-choice datasets (without
BoolQ, another outlier). As for NarrativeQA and
HybridQA, there are many unsolvable questions
because we only use one agent for each of them
and these agents have a relatively low performance.

Dataset % Unsolvable

SQuAD 3.92
NewsQA 26.88
HotpotQA 19.93
SearchQA 13.97
NQ 19.15
TriviaQA-web 12.25
QAMR 15.81
DuoRC 47.41

BoolQ 1.47
SIQA 8.90
HellaSWAG 8.90
CSQA 9.00
RACE 6.61

DROP 21.77
NarrativeQA 55.71
HybridQA 56.09

Table 5: Percentage of unsolvable questions for our
MetaQA with the selected agents, i.e., none of the agents
can give a correct answer.

Also, if the agents do not fit in memory at the
same time, it would be necessary to run them se-
quentially, which would increase the inference time.
Yet, it might be possible to overcome this limitation
because it is possible to predict in advance which
agents are more likely to give a correct answer to a
given question (Geigle et al., 2021; Garg and Mos-
chitti, 2021). This would allow us to skip some
agents at run-time and improve the running time
dramatically in low-memory scenarios.
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A Appendix

A.1 Datasets
Table 8 summarizes the characteristics of the
datasets, contains the size of the train, validation,
and test splits of each dataset, and their licenses.
In the case of RACE, the authors did not provide
any license but specified that it could only be used
for non-commercial research purposes. In the case
of CommonSenseQA and SIQA there is no license
specified, but they are freely available to download.
Therefore, our use of these datasets complies with
their licenses and intended uses.

A.2 Expert Agents
Table 9 provides the links to download the ex-
pert agents used in this work. In the case of Nar-
rativeQA and HybridQA, we only employ one
agent because of the difficulty of obtaining oth-
ers. Both of these datasets use uncommon modal-
ities (abstractive and table+text). Therefore, it is
not straightforward to adapt other models to these
datasets.

A.3 Implementation
Our model was implemented using PyTorch
(Paszke et al., 2019) and HuggingFace’s Trans-
formers library (Wolf et al., 2020). Both MetaQA
and MultiQA were implemented using Span-BERT
large (335M parameters), while UnifiedQA uses
T5-base (220M parameters, the closest to the 335M
of our MetaQA). The score embedder for MetaQA
is implemented as a linear layer with an input size
of 1 and an output size of 1024 (i.e., the hidden
size of Span-BERT Large). α1 and α2 in Eq. 4 are
set to 0.5 and 1 respectively. The Agent Selection
Networks are implemented as a linear layer with an
input size of 1024 and an output size of 1. Lastly,
the Answer Selection Network (AnsSel) is also
implemented as a linear layer with an input size
of number-of-agents × 1025 (Span-BERT’s hid-
den size + 1 from the output of the agent selection
network). The threshold θ to determine whether
a candidate answer is correct or not to create the
labels to train AnsSel is set to 0.7.

MetaQA was trained for one epoch using a batch
size of six, a weight decay of 0.01, a learning rate
of 5e-5, and 500 warmup steps.

All the extractive agents and MultiQA were
trained using the same architecture, Span-BERT
large, for two epochs and with the same hyperpa-
rameters: batch size of 16, learning rate of 3e-5,

max length of 512, and doc stride of 128.
UnifiedQA was trained for two epochs using a

batch size of four, a learning rate of 5e-5, and a
weight decay of 0.01. It was evaluated on the dev
set every 100K steps.

Lastly, the max-voting baseline assumes that two
answers are the same if the F1 score is higher than
a threshold (0.9). We tuned this parameter on the
dev set searching in the range [0.5, 0.6, ..., 1.0]. We
used the implementation of HuggingFace’s SQuAD
F1 metric5. In the case that two answers have the
same amount of votes, we select the one with the
highest confidence score given by an agent.

Any other parameter used the default value in
HuggingFace’s Transformers library. Each model
was trained five times with different random seeds
to do hypothesis testing except for UnifiedQA,
which would be too expensive to compute.

We used the implementation of HuggingFace’s
Dataset library (Lhoest et al., 2021) for the eval-
uation using EM and F1 metrics, while for the
ROGUE metric we used the official implementa-
tion6.

All the experiments were conducted in a
SLURM cluster where each job was assigned to
different computer nodes with different CPUs and
GPUs. Therefore, comparing the running time of
each model is not possible.

A.4 Adding New Agents

Augmenting MetaQA with a new agent only re-
quires adding one more AgSeN network and in-
creasing the output space of the AnsSel network.
Thus, it requires retraining the whole architecture
(including the Transformer encoder). However, as
discussed in §5.4, the training efficiency is one of
the strengths of our system.

A.5 MetaQA on a Single Dataset

We conduct an additional experiment to analyze
the behavior of MetaQA with multiple expert
agents trained in a single dataset. We train
MetaQA for three NewsQA agents: RoBERTA-
base, XtremeDistil (Mukherjee and Hassan Awadal-
lah, 2020), and SpanBERT, and evaluate it on
NewsQA. As observed in Table 7, MetaQA per-
forms on par with the agents. However, the per-
formance gap is smaller than in the main use case
(§5.1). This is attributed to the similarities between

5https://huggingface.co/metrics/squad
6https://pypi.org/project/rouge-score/
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Dataset what where who when why which how

SQuAD 56.71 4.55 10.82 7.47 1.48 7.73 11.23
NewsQA 49.52 8.54 24.46 5.01 0.11 3.17 9.19
HotpotQA 37.98 4.61 22.99 2.22 0.05 29.39 2.76
SearchQA 7.55 9.5 32.53 28.66 0.72 18.32 2.72
NQ 16.58 13.05 40.02 20.35 0.63 3.25 6.11
TriviaQA-web 30.16 1.56 15.07 0.72 0.02 50.03 2.44
QAMR 61.75 5.23 17.92 4.59 0.66 3.04 6.82
DuoRC 35.16 9.68 42.32 2.06 2.44 1.89 6.45

Table 6: Statistics of wh-words per dataset.

Model F1 Score

MetaQA 73.73
SpanBERT 73.68
RoBERTa 73.15
XtremeDistil 64.16

Table 7: MetaQA trained only on NewsQA agents.

the models. These three models are all Transform-
ers and trained on the same dataset, so it is natural
that they are similar. An approach such as MetaQA
excels when the agents are very different, as in Ta-
ble 1, where the agents were trained on different
datasets and therefore have different skills.

A.6 Wh-word Statistics
Table 6 shows the percentage of wh-words per
dataset.
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Dataset Characteristics Train Dev Test License

E
xt

ra
ct

iv
e

SQuAD (Rajpurkar et al., 2016) Crowdsourced questions on Wikipedia 6573 5253 5254 MIT
NewsQA (Trischler et al., 2017) Crowdsourced questions about News 74160 2106 2106 MIT
HotpotQA (Yang et al., 2018) Crowdsourced multi-hop questions on Wikipedia 72928 2950 2951 MIT
SearchQA (Dunn et al., 2017) Web Snippets, Trivia questions from J! Archive 117384 8490 8490 MIT
NQ (Kwiatkowski et al., 2019) Wikipedia, real user queries on Google Search 104071 6418 6418 MIT
TriviaQA-web (Joshi et al., 2017) Web Snippets, crowdsorced trivia questions 61688 3892 3893 MIT
QAMR (Michael et al., 2018) Wikipedia, predicate-argument understanding 50615 18908 18770 MIT
DuoRC (Saha et al., 2018) Movie Plots from IMDb and Wikipedia 58752 13111 13449 MIT

M
ul

tip
le

-C
ho

ic
e RACE (Lai et al., 2017) Exams requiring passage summarization and attitude

analysis
87866 4887 4934 NA

CSQA (Talmor et al., 2019) Web Snippets, common-sense reasoning 9741 611 610 NA
BoolQ (Clark et al., 2019) Wikipedia, Yes/No questions 9427 1635 1635 CC BY-SA 3.0
HellaSWAG (Zellers et al., 2019) Completing sentences using common sense 39905 5021 5021 MIT
SIQA (Sap et al., 2019) Common sense in social interactions 33410 977 977 NA

A
bs

. DROP (Dua et al., 2019) Wikipedia, numerical reasoning 77409 4767 4768 CC BY-SA 4.0
NarrativeQA (Kočiský et al., 2018) Books, Movie Scripts 32747 3461 10557 Apache 2.0

M
M HybridQA (Chen et al., 2020) Wikipedia tables and paragraphs 62682 1733 1733 MIT

Table 8: Summary of the datasets used. Abs. stands for abstractive and MM for multi-modal.

# Expert Agents Used for Link

1 Span-BERT Large (Joshi et al., 2020) for
SQuAD

all extractive + DROP https://huggingface.co/haritzpuerto/spanbert-large-
cased_SQuAD

2 Span-BERT Large for NewsQA all extractive + DROP https://huggingface.co/haritzpuerto/spanbert-large-
cased_NewsQA

3 Span-BERT Large for HotpotQA all extractive + DROP https://huggingface.co/haritzpuerto/spanbert-large-
cased_HotpotQA

4 Span-BERT Large for SearchQA all extractive + DROP https://huggingface.co/haritzpuerto/spanbert-large-
cased_SearchQA

5 Span-BERT Large for NQ all extractive + DROP https://huggingface.co/haritzpuerto/spanbert-large-
cased_NaturalQuestionsShort

6 Span-BERT Large for TriviaQA-web all extractive + DROP https://huggingface.co/haritzpuerto/spanbert-large-
cased_TriviaQA-web

7 Span-BERT Large for QAMR all extractive + DROP https://huggingface.co/haritzpuerto/spanbert-large-
cased_QAMR

8 Span-BERT Large for DuoRC all extractive + DROP https://huggingface.co/haritzpuerto/spanbert-large-
cased_DuoRC

9 RoBERTa Large (Liu et al., 2019) for
RACE

all multiple choice https://huggingface.co/LIAMF-USP/roberta-large-finetuned-
race

10 RoBERTa Large for HellaSWAG all multiple choice https://huggingface.co/prajjwal1/roberta_hellaswag
11 RoBERTa Large for SIQA all multiple choice https://huggingface.co/haritzpuerto/roberta_large_social_i_qa
12 AlBERT xxlarge-v2 (Lan et al., 2020) for

CSQA
all multiple choice https://huggingface.co/danlou/albert-xxlarge-v2-finetuned-

csqa
13 BERT Large-wwm (Devlin et al., 2019)

for BoolQ
BoolQ https://huggingface.co/lewtun/bert-large-uncased-wwm-

finetuned-boolq
14 TASE (Segal et al., 2020) for DROP DROP https://github.com/eladsegal/tag-based-multi-span-extraction
15 Adapter BART Large (Pfeiffer et al., 2020)

for NarrativeQA
NarrativeQA https://huggingface.co/AdapterHub/narrativeqa

16 Hybrider (Chen et al., 2020) for HybridQA HybridQA https://github.com/wenhuchen/HybridQA

Table 9: List of the expert agents, datasets in which they are used, and links to download.
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Abstract

We introduce a task consisting in matching a
proof to a given mathematical statement. The
task fits well within current research on Math-
ematical Information Retrieval and, more gen-
erally, mathematical article analysis (Mathe-
matical Sciences, 2014). We present a dataset
for the task (the MATCH dataset) consisting
of over 180k statement-proof pairs extracted
from modern mathematical research articles.1

We find this dataset highly representative of
our task, as it consists of relatively new find-
ings useful to mathematicians. We propose
a bilinear similarity model and two decoding
methods to match statements to proofs effec-
tively. While the first decoding method matches
a proof to a statement without being aware of
other statements or proofs, the second method
treats the task as a global matching problem.
Through a symbol replacement procedure, we
analyze the “insights” that pre-trained language
models have in such mathematical article anal-
ysis and show that while these models per-
form well on this task with the best performing
mean reciprocal rank of 73.7, they follow a rela-
tively shallow symbolic analysis and matching
to achieve that performance.2

1 Introduction

Research-level mathematical discourse is a chal-
lenging domain for Natural Language Processing
(NLP). Mathematical articles frequently switch be-
tween natural language and mathematical formulae,
and a semantic analysis of mathematical text needs
to solve relationships (e.g. coreference) between
mathematical symbols and concepts. Moreover,
mathematical writing follows many conventions,

∗Work mostly done at the University of Edinburgh.
1Our dataset and code are available at https://

github.com/waylonli/MATcH.
2Like Bert, The Count (or Count von Count; ) is a

character from the television show Sesame Street. The Count
likes counting, and his main role in the show is to teach this
skill to children.

Statement. When m = 0 we have E0
rg = ∅,

and when m ̸= 0 we have E0
rg = E0.

Proof. When m = 0, the image of r is {1}.
Hence E0

rg = ∅. When m ̸= 0, the map r is a
surjective proper map. Hence E0

rg = E0.

Figure 1: Example of a statement-proof pair.

such as variable naming or typography that are
implicit, and may differ between subfields.

However, mathematical research can benefit
from NLP (Mathematical Sciences, 2014), in par-
ticular as concerns bibliographical research: re-
searchers need tools to find work relevant to their
research. Indeed, prior NLP work on mathemati-
cal research articles focused on Mathematical In-
formation Retrieval (MIR) and related tools or
data (Zanibbi et al., 2016; Stathopoulos and Teufel,
2016, 2015).

We introduce a task aimed at improving the pro-
cessing of research-level mathematical articles and
make a step towards the modeling of mathemat-
ical reasoning. Given a collection of mathemat-
ical statements and a collection of mathematical
proofs of the same size, the task consists in finding
and assigning a proof to each mathematical state-
ment. We construct and release a dataset for the
task (MATCH), by collecting over 180k statement-
proof pairs from mathematical research articles (an
example is given in Figure 1).

Related datasets, such as LEANSTEP (Han
et al., 2021) and the synthetic dataset of Polu and
Sutskever (2020) do not include natural language.
NaturalProofs (Welleck et al., 2021), another re-
lated dataset, only consists of 32k theorem-proof
pairs from ProofWiki,3 some sub-topics in alge-
braic geometry and two textbooks. Our dataset is
over five times larger and contains pairs extracted

3https://proofwiki.org/xmldump/latest.
xml
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from advanced academic mathematical papers.
There are multiple motivations for the design of

the task and our dataset. We believe it may help
MIR by serving as a proxy for the search for the
existence of a mathematical result, or for theorems
and proofs related to one another (e.g. using the
same proof technique), an important search tool
for any digital mathematical library (Mathematical
Sciences, 2014). Learning to match statements and
proofs would also benefit computer-assisted theo-
rem proving, as it is akin to tasks such as premise
selection, also recently addressed with NLP meth-
ods (Piotrowski and Urban, 2019).

We provide first results on our proposed task
with an array of neural models, aimed at scoring
the likelihood of relationship between a statement
and its proof. An analysis through a symbol re-
placement procedure provides insight on what
such neural models are capable of learning about
mathematical equations and text.

We provide two methods for decoding, one is
local decoding, matching a proof to a theorem in
a greedy way, and one that provides a global bi-
partite matching based on a structured max-margin
objective. Such an architecture may have applica-
tions to other NLP problems that can be cast as
maximum bipartite matching problems (for a re-
cent similar use in a different context, see Shao
et al. 2023).

Our analysis shows that pre-trained language
models do not obtain significant “mathematical in-
sight” for performing this matching, but rather rely
on shallow matching. However, this does not pre-
vent them from performing the matching relatively
well in several carefully crafted scenarios, reaching
an MRR of 73.7.

2 Related Work

Most NLP work on mathematical discourse focuses
on improving Mathematical Information Retrieval
(Zanibbi et al., 2016, MIR) by establishing connec-
tions between mathematical formulae and natural
language text in order to improve the representation
of formulae.

The interpretation of variables is highly depen-
dent on the context. For example, the symbol E
could denote an expectation in a statistics article,
or the energy in a physics article. Some studies
use the surrounding context of a formula to as-
sign a definition or a type to the whole formula, or
to specific variables. Nghiem Quoc et al. (2010)

focus on identifying coreferences between math-
ematical formulae and mathematical concepts in
Wikipedia articles. Kristianto et al. (2012) extract
definitions of mathematical expressions. Grigore
et al. (2009), Wolska et al. (2011) and Schubotz
et al. (2016) disambiguate mathematical identifiers,
such as variables, using the surrounding textual
context. Stathopoulos et al. (2018) infer the type of
a variable in a formula from the textual context of
the formula. Another line of work focused on iden-
tifying specialized terms or concepts to improve
MIR (Stathopoulos and Teufel, 2015, 2016).

Some work adapts standard NLP tools to the
specificity of mathematical discourse, e.g. POS
taggers (Schöneberg and Sperber, 2014), with the
objective of using linguistic features to improve
the search for definitions of mathematical expres-
sions (Pagel and Schubotz, 2014). More recent
work focuses on typing variables in mathematical
articles (Ferreira et al., 2022), modeling formulae
(Mansouri et al., 2019; Dadure et al., 2021), and se-
lecting premises (Ferreira and Freitas, 2020, 2021).

An earlier version of our work covers some of
the material in this paper (Coavoux and Cohen,
2021). The main differences between that version
and the current version are the introduction of the
symbol replacement evaluation (§5) and the use of
pre-trained language models rather than recurrent
neural networks.

3 Task Description

Given a collection of mathematical statements
{s(i)}i≤N , and a separate equal-size collection of
mathematical proofs {p(i)}i≤N , we are interested
in the problem of assigning a proof to each state-
ment.

Evaluation We use two evaluation metrics. As-
suming that a system predicts a ranking of proofs,
instead of providing only a single proof, we
evaluate its output with the Mean Reciprocal
Rank (MRR) measure: MRR({r̂i}i∈{1,...N}) =

1
N

∑N
i=1

1

r̂i
, where N is the number of examples

and r̂i is the rank of the gold proof for statement
number i, as predicted by the system.

As a second evaluation metric, we use a simple
accuracy, i.e. the proportion of statements whose
first-ranked proof is correct.

By construction (see §4), it is possible though un-
likely that the same mathematical statement occurs
several times in the dataset. It is more unlikely that
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Number of articles in the MREC corpus 439,423
Extracted articles with statement-proof pairs 27,841
Total number of statement-proof pairs 184,094
Number of (primary) categories (120) 135
Average number of categories per article 1.7

Most represented primary categories # articles # pairs

math.AG Algebraic Geometry 2848 22029
math.DG Differential Geometry 2030 12440
math.CO Combinatorics 1705 10548
math.GT Geometric Topology 1539 9234
math.NT Number theory 1454 9521
math.PR Probability 1422 7660
math.AP Analysis of PDEs 1386 6981
math-ph Mathematical Physics 1249 6491
math.FA Functional Analysis 1143 8011
math.GR Group Theory 970 7806
math.DS Dynamical System 961 6424
math.QA Quantum Algebra 944 8074
math.OA Operator Algebras 923 8050

Table 1: Statistics about the dataset and categories of
mathematical articles.

several occurrences have exactly the same formula-
tion and use the same variable names. Therefore,
we consider a match to be correct if and only if it
is associated with its original proof.

4 Dataset Construction

This section describes the construction of the
MATCH dataset of statement-proof pairs (see Fig-
ure 1 for an example).

Source Corpus We use the MREC corpus4

(Lı́ška et al., 2011) as a source. The MREC cor-
pus contains around 450k articles from ArxMLiV
(Stamerjohanns et al., 2010), an on-going project
aiming at converting the arXiv5 repository from
LATEX to XML, a format more suited to machine
processing. In this collection, mathematical for-
mulae are represented in the MathML6 format, a
markup language.

Statistics We extract statement-proof pairs as de-
scribed in Appendix A. Our processing of MREC
includes the identification of statement-proof pairs
through meta tags and the linearization of the rep-
resentation of mathematical equations.

We report in Table 1 some statistics about the
dataset we collected. The extracted articles were
from a diverse set of mathematical subdomains,
and connected domains, such as computer science
(746 articles from 30 subcategories) and mathemat-
ical physics (2562 from 31 subcategories). There

4https://mir.fi.muni.cz/MREC/, version
2011.4.439.

5https://arxiv.org/
6https://www.w3.org/Math/

Statements Min Max Mean±SD

Text+math 20 500 80±57
Text only 1 398 30±20
Math only 0 470 58±20
Math proportion 0% 99.5% 58%±20

Proofs

Text+math 20 500 210± 127
Text only 1 467 81 ± 56
Math only 0 495 129 ± 96
Math proportion 0% 99.6% 56%± 21

Table 2: Number of tokens in the dataset. We report for
statements and proofs the minimum, maximum and av-
erage number of tokens broken down by type (‘math’ for
tokens extracted from formulae and ‘text’ for the others).
A value of 0 for, e.g. the ‘math only’ row, means that
the statement or proof does not contain mathematical
symbols or formulae.

are in average 6.6 statement-proof pairs per article.
We report statistics about the size of statements and
proofs in the number of tokens in Table 2. We re-
port the number of tokens in formulae (math), in the
text itself (text) and in both (text+math). On aver-
age, proofs are much longer than statements. State-
ments and proofs have approximately the same pro-
portion of text and math. Overall, the variation in
the number of tokens across statements and proofs
is extremely high, as illustrated by the standard
deviation (SD) of all presented metrics.

5 Symbol Replacements

With our current dataset setup, we implicitly make
the assumption that both the theorem and the proof
are authored by the same authors. This assump-
tion is incongruent with the MIR-flavor of our task.
First, it is not useful for researchers to match proofs
they authored. Second, each person has a unique
writing style expressed by unique mathematical jar-
gon and notations. To relieve of this assumption,
we introduce several symbol replacement levels for
changing the names of the proof variables. Then,
we train and test our models using these altered
datasets. These replacement levels also provide
insight on the ability of our models to semantically
analyze the input statement-proof pairs.

Symbol Replacement Levels We propose dif-
ferent levels of symbol replacement, focusing on
mathematical notation. More precisely, we aim to
replace the proof variable names if they appear in
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the statement without damaging the proof seman-
tics. To do that, we change symbols that appear
both in the proof and the statement. We do not
change constant symbols such as π, as they often
carry semantic meaning outside of the proof scope.

We experiment with four levels of symbol re-
placement (examples in parenthesis):

• Symbol conservation - all symbols remain in-
tact, so the theorem and the proof overlap. All
previous work uses that. (an = an−1 + an−2)

• Partial symbol replacement - A fraction of α
of all the symbols in the proof remain the same,
and the rest are changed. In our experiments, we
use α = 0.5. (xn = xn−1 + xn−2)

• Full symbol replacement - all symbol names
are changed (α = 1.0 as above).
(xi = xi−1 + xi−2)

• Symbol transposition - We permute the vari-
ables’ names such that no symbol remains the
same, thus changing their original functionality.
(na = na−1 + na−2)

More details about this appear in Appendix C.

6 Bilinear Similarity Model

We propose a model based on an encoder (§8)
that constructs fixed-size vector representations for
statements and proofs, and a similarity function that
scores the relatedness of a statement-proof pair.

Trainable Bilinear Similarity Function Given
the encoded representations of a statement s =
enc(s) and a proof p = enc(p), we compute an
association score with the following bilinear form:

score(s,p) = s⊤ ·W · p+ b,

where W and b are parameters that are learned
together with a self-attentive encoder parameters
(§8).

Local Decoding For a collection of n statements
and proofs, we first score all possible pairs (s, p),
and construct a matrix M = (mij) ∈ Rn×n, with

mij = score(s(i),p(j)),

where s(i) and p(j) are the encoded representations
of, respectively, the ith statement and the jth proof.
Then we can straightforwardly sort each row by de-
creasing order and assign the proof ranking to the
corresponding statement. The best ranking proof

p̂ for statement i satisfies p̂(i) = argmaxj mij .
We call this decoding method ‘local’, since it does
not take into account dependencies between assign-
ments. In particular, several statements may have
the same highest-ranking proof.

Global Decoding The local decoding method
overlooks a crucial piece of information: a proof
should correspond to a single statement. In a worst-
case situation, a small number of proofs may score
high with most statements and be systematically
assigned as highest-ranking proof by the local de-
coding method.

In preliminary experiments, we analyzed the out-
put of our system with local decoding on the de-
velopment set, focusing on the distribution of the
single highest-ranking proof for each statement.
We found that 23% of the proofs were assigned
to at least two different statements, whereas more
than 40% of proofs were assigned to no statement.
See also Appendix B.7

We propose a second decoding method based
on a global constraint on the output: a proof can
be assigned only to a single statement. Intuitively,
the constraint models the fact that if a proof is as-
signed by the system to a certain statement with
high confidence, we can rule it out as a candidate
for other statements. Under this constraint, the de-
coding problem reduces to a classical maximum
weighted bipartite matching problem, or equiva-
lently, a Linear Assignment Problem (LAP). In
more realistic scenarios (e.g. if the input sets of
statements and proofs do not have the same size),
the method would require some adaptation.

Formally, we define an assignment A as a
Boolean matrix A = (aij) ∈ {0, 1}n×n with the
following constraints:

∀i∀j,
∑

j

aij =
∑

i

aij = 1,

i.e. each row and each column of A contains a
single non-zero coefficient. The score of an assign-
ment A is the sum of scores of the chosen edges:

score(A,M) =
∑

i

∑

j

aijmij .

Finally, global decoding consists in solving the

7We used a simple encoder for these experiments, which
we describe in §8 (NPT).
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following LAP:

Â(M) = argmax
A∈{0,1}n×n

s.t. ∀i∀j,∑j aij=
∑

i aij=1

score(A,M).

The LAP is solved in polynomial time by
the Hungarian algorithm (Kuhn, 1955), the LAP-
Jonker-Volgenant algorithm (LAP-JV; Jonker and
Volgenant, 1987), or the push-relabel algorithm
(Goldberg and Kennedy, 1995). These methods
have a O(n3) time complexity where n is the num-
ber of pairs, and O(n2) memory complexity. This
is too expensive in our case, due to our dataset size.

To remedy this limitation, when we perform de-
coding on a large set, we only consider the k best-
scoring proofs (i.e. outgoing edges in the bipartite
graph) for each statement, which makes the number
of edges linear in the number of pairs n (consid-
ering k fixed). Moreover, we use a modification
of the LAP-JV algorithm specifically designed for
sparse matrices (LAP-MOD; Volgenant, 1996).

7 Local and Global Training

We propose two training methods for the similarity
model above: a local training method that only
considers statements in isolation (§7.1) and a global
model trained to predict a bipartite matching (§7.2),
with a hybrid global-local objective.

7.1 Local Training

We would like to train our model to assign a high
similarity to the gold statement-proof pair, and a
low similarity to all other statement-proof pairs.
This corresponds to the following objective, for a
single statement s and its gold proof p:

LLOC(s, p, P ;θ) = − logP(p|s;θ)

= − log


 exp(score(s,p))∑
p′∈P

exp(score(s,p′))


 ,

where P is the set of proofs, and θ are the param-
eters of the model. Directly optimizing this loss
function requires the computation of p = enc(p)
for every proof in the dataset, for a single optimiza-
tion step. This is not realistic considering memory
limitations, the size of the train set, and the fact
that our self-attentive encoder is the most computa-
tionally expensive part of the network.

Instead, we sample minibatches of b pairs and
optimize the following proxy loss for the sequence

S′ = (s1, . . . , sb) of statements and the sequence
P ′ = (p1, . . . , pb) of corresponding proofs:8

L′LOC(S
′, P ′;θ) =

b∑

i=1

LLOC(s
(i), p(i), P ′;θ).

In practice, we sample uniformly and without re-
placement b pairs from the training set at each
stochastic step.

7.2 Hybrid Local and Global Training

The local training method only considers state-
ments in isolation. Even though we expect a locally
trained model to perform better with global decod-
ing, we hypothesize that a model that is trained to
predict the full structure (a bipartite matching) will
be even better.

For a collection of n proofs and n statements, the
size of the search space (i.e. the number of bipartite
matchings) is n!, since each matching corresponds
to a permutation of proofs. As a result, the use of
a globally normalized model is impractical. We
turn to a max-margin model that does not require
normalization over the full search space.

We use the following max-margin objective, for
a set B of n pairs corresponding to matrix M :

LGLOB(B;θ) =max(0,∆(Â, I)

+ score(Â,M)− score(I,M)),

where θ is the set of all parameters Â is the pre-
dicted assignment and I is the gold assignment, i.e.
the identity matrix. The structured cost

∆(Â, I) =
∑

ij

max(0, (Â− I)ij)

aims at enforcing a margin for each individual as-
signment.

The computation of this loss requires exact de-
coding for each optimization step. Since exact
decoding is only feasible for a small n, and since
we need to keep track of all intermediary vectors
to compute the backpropagation step,9 we perform
each stochastic optimization step on a minibatch
of pairs of size b. Since this global objective had a
slow convergence rate (§8), in practice, we use a
hybrid local-global objective: L′LOC + LGLOB.
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Symbol Replacement Level
Conservation Partial Full Transposition

Encoder-Decoder MRR Acc MRR Acc MRR Acc MRR Acc
NPT-Local-Local 63.22 56.08 47.19 39.24 40.36 32.52 56.17 48.30
NPT-Local-Global - 61.89 - 42.55 - 35.43 - 53.49
NPT-Global-Global - 62.14 - 43.68 - 35.85 - 55.28
SCRATCHBERT-Local-Local 73.73 67.12 64.79 57.20 60.67 52.54 73.17 66.51
SCRATCHBERT-Local-Global - 74.68 - 62.80 - 57.69 - 74.03
SCRATCHBERT-Global-Global - 71.38 - 58.06 - 52.31 - 70.32
MATHBERT-Local-Local 54.51 46.45 44.31 36.10 38.91 30.62 52.57 44.52
MATHBERT-Local-Global - 49.77 - 37.92 - 32.03 - 47.43
MATHBERT-Global-Global - 45.38 - 33.64 - 28.47 - 43.41

Table 3: The MRR and accuracy scores for different combinations of encoders, decoders, and symbol replacement
levels. All the models are trained and tested on the same replacement level. Best result in each column is in bold.
Following the model name, we include its encoder and decoder type (both being either Local or Global). We do not
include MRR scores for global inference, as there matching is done for all theorems together without ranking.

8 Experimental setup

Dataset We use the dataset whose construc-
tion is described in §4. We shuffle the collec-
tion of statement-proof pairs before performing
a 80%/10%/10% train-development-test split, cor-
responding to 147278 pairs for the training sets and
18408 pairs for the development and tests. We ex-
periment with a default, Mixed, split and a harder
Unmixed split (see §9.3).

Encoders We experiment with several encoders
to obtain neural representations of the theorem and
proof pairs. Our first encoder is a simple self-
attentive encoder. We use ℓ = 2 self-attentive
layers with 4 heads to obtain contextualized em-
beddings of dimension d = 300. The query and key
vectors have size dk = 128. We construct a vec-
tor representation for the text with a max-pooling
layer over the contextualized embeddings of the
last self-attention layer. We do not use any form of
pre-training for this encoder and hence name it “no
pre-training encoder” (NPT). In addition, we exper-
iment with a BERT model (Devlin et al., 2019) as
an encoder. We do not use the pre-trained version
provided by Devlin et al., but rather pre-train the
base version from scratch (SCRATCHBERT), but
we do compare our results against a math-tailored
pre-trained version of BERT (Peng et al. 2021; see
below). Both the NPT and SCRATCHBERT vocab-

8We also experimented with a Noise-Contrastive Estima-
tion approach (Gutmann and Hyvärinen, 2012). However, it
exhibited a much slower convergence rate.

9In particular, the computation graph needs to conserve all
encoding layers for the 2n texts involved.

ularies are customized for our dataset, as prelim-
inary experiments revealed the importance of the
model-task vocabulary match.10

To further demonstrate how crucial this vocab-
ulary match is, we experiment with math-BERT
(MATHBERT; Shen et al. 2021), a state-of-the-art
pre-trained model for mathematical formula under-
standing. This model is pre-trained on a large math-
ematical corpus ranging from pre-kindergarten, to
high-school, to college graduate level mathemati-
cal content, including professional mathematical
papers, using the BERT masked language model-
ing (MLM) task. We use the pre-trained version
provided by the authors, without vocabulary cus-
tomization. All of our encoders are fine-tuned on
the matching task. In addition, we experiment with
a naive token-matching system that computes co-
sine similarities between TF-IDF representations
of statements and proofs. We discovered that their
performance was very low, ranging from 11.4 to
29.8 (MRR), so we did not experiment with them
further.

Hyperparameters For pretraining SCRATCH-
BERT, we first train a new word piece tokenizer11.
Next, we train the SCRATCHBERT model on the
MLM task for 60 epochs (around 3 days) using four
NVIDIA V100 GPUs. We evaluate the language
model every 500 steps, where one step stands for
training on one example, and choose the one with

10This supports the findings of Chalkidis et al. (2020), for
example, in a different domain.

11https://huggingface.co/docs/
transformers/tokenizer_summary#wordpiece

3586

https://huggingface.co/docs/transformers/tokenizer_summary#wordpiece
https://huggingface.co/docs/transformers/tokenizer_summary#wordpiece


the best performance on the validation set.

We perform local and global training / finetuning
respectively for the NPT model, MATHBERT, and
SCRATCHBERT. NPT has 15M parameters while
MATHBERT and SCRATCHBERT have 110M pa-
rameters. We observed in initial experiments that
training only with the global objective required a
long time to converge. Therefore, we used the fol-
lowing global-local objective: L′LOC + LGLOB, that
we optimized by alternating one stochastic step for
each loss.

We train the NPT model for 400 epochs (around
1 day with two GPUs) over the whole training set
for local and global training. We use batches of
size b = 60 and set learning rate l = 5×10−3 with
the Averaged Stochastic Gradient Descent (ASGD;
Polyak and Juditsky 1992) optimizer. We use an
exponential learning rate scheduler (the learning
rate multiplied by 0.996 after each epoch) to stabi-
lize the optimizer in the latter training procedure
(after 300 epochs). We evaluate the performance
of the model on the validation set every 20 epochs
during training and select the best one among these
intermediate models.

We use four NVIDIA V100 GPUs to fine-tune
MATHBERT and SCRATCHBERT on the training
set for 60 epochs (around 2 days) with a learning
rate of l = 2× 10−3, an ASGD optimizer, batches
of size b = 16, and a scheduler that multiplies the
learning rate by 0.99 after each epoch. We choose
the best model on the validation set, evaluating the
models every five epochs.

Global Decoding Recall that exact global decod-
ing is only feasible for a small subset of pairs. Dur-
ing global training, we chose a batch size small
enough to perform exact decoding. However, it
is not feasible to perform exact decoding on the
whole development and test corpora. Therefore,
we prune the search space by keeping only the 500-
best candidate proofs for each statement, and use
the LAP-MOD algorithm designed for sparse ma-
trices. In practice, we used the implementations
of the LAP-JV and LAP-MOD algorithms from
the lap Python package,12 for respectively exact
decoding on mini-batches during global training
and decoding on whole datasets during evaluation.

12https://github.com/gatagat/lap

9 Results

First, we assess the task difficulty under different
replacement levels using different encoders and
schemes (global or local training, global or local
decoding). In particular, we are interested in as-
sessing whether global decoding improves accu-
racy when training is only local, and how the more
complex global training method fares with respect
to local training. We then measure the informative-
ness of different types of input: text, mathematical
formulae, or both. The comparison of these set-
tings is meant to provide insight into which type
of information is crucial to the task. Finally, we
experiment with a cross replacement levels setup,
i.e., when a model is tested on a different symbol
replacement level from the one that was used dur-
ing training. We hope this experiment will shed
some light on the importance of training models on
real-world datasets.

9.1 Main Results

Table 3 presents our results. We report MRR (if
relevant) and accuracy scores across different levels
of symbol replacement.

Encoders While MATHBERT is pre-trained on
millions of examples curated from mathematical
contents, it performs worse than the less complex
NPT encoder, which is trained solely on the down-
stream task across all symbol replacement levels
and decoders.13 SCRATCHBERT, which shares
MATHBERT architecture and NPT customized vo-
cabulary, is outperforming both consistently. These
results demonstrate the vocabulary importance for
learning from mathematical texts.

Symbol Replacement Levels Difficulty Best
performance is achieved when no symbol is re-
placed (Conservation), as the models can match
identical symbols across theorem-proof pairs. The
models achieve similar performance with Trans-
position replacement. These results suggest that
the symbols’ order, context, and function within
the mathematical text do not play a significant role
when the theorem and proof share the same sym-
bols. In contrast, when the symbol names are
changed (Partial and Full replacements), we ob-
serve a sharp decline in results.

13We observe similar trends when fine-tuning the out-of-
the-box BERT model on the matching task.
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XXXXXXXXXXXSource
Target

Symbol Replacement
Conservation Partial Full Transposition
MRR Acc MRR Acc MRR Acc MRR Acc

M
ix

ed

Conservation 73.73 67.12 43.87 36.36 29.74 25.36 69.56 62.23
Partial 74.21 67.96 64.79 57.20 53.77 45.40 72.13 65.42
Full 65.26 57.63 63.01 55.13 60.67 52.54 64.59 56.92
Transposition 73.78 67.40 43.67 36.02 29.76 25.47 73.17 66.51

U
nm

ix
ed Conservation 67.62 57.54 21.26 13.83 7.09 3.68 59.54 48.61

Partial 61.19 50.73 55.26 44.45 50.68 39.94 59.63 49.01
Full 55.68 45.18 54.92 44.34 54.62 44.22 55.38 44.91
Transposition 67.5 57.76 23.31 15.26 8.98 4.97 66.25 59.29

Table 4: Cross-replacement levels performance for the SCRATCHBERT-Local-Local model for both splits: Mixed
and Unmixed.

Symbol Replacement
Conservation Full

Input MRR Acc MRR Acc
NPT

Text 22.51 16.68 22.51 16.68
Math 65.08 58.47 34.55 27.30
Both 63.22 56.08 40.36 32.52

SCRATCHBERT
Text 36.85 29.18 36.85 29.18
Math 63.10 55.92 41.64 34.01
Both 73.73 67.12 60.67 52.54

Table 5: SCRATCHBERT-Local-Local and NPT-Local-
Local performance for different input types. Both stand
for the original and complete input.

Training and Decoding Effects In all settings,
global decoding substantially improves accuracy.
These improvements are more noticeable for the
NPT and SCRATCHBERT encoders. For NPT,
we observe better performance when using global
training, but not for SCRATCHBERT and MATH-
BERT. Due to the lack of computational resources,
we can not reach the global training full poten-
tial when using highly expressive encoders such
as SCRATCHBERT and MATHBERT, which share
BERT-base architecture.

9.2 Effect of Input Type Analysis

To better understand the importance of each input
type, we examine SCRATCHBERT-Local-Local
and NPT-Local-Local performance when fed with
text, mathematical formulae, or both (Table 5). We
test them on the Conservation and Full symbol
replacement levels. The mathematical formulae
input plays a more significant role for both models

than the textual input. When trained and tested
on the Conservation replacement level, NPT-Local-
Local makes better use of the mathematical for-
mulae input than the more expressive, pre-trained
SCRATCHBERT-Local-Local. When trained and
tested with Full replacement, where the models
cannot rely on simple token-matching, NPT-Local-
Local suffers from a sharper performance decline
than SCRATCHBERT-Local-Local when fed with
mathematical formulae input. These results sug-
gest that when applied to the Conservation data, a
less expressive model can get high results by har-
nessing simple token matching. SCRATCHBERT-
Local-Local performs better for both replacement
levels when fed with text and complete input.

9.3 Cross Replacement Setup

Table 4 shows the effect of testing a model on dif-
ferent symbol replacements than the one the model
was trained on. We use the SCRATCHBERT-Local-
Local model for all of our experiments. We observe
a sharp decline in results when SCRATCHBERT-
Local-Local is trained with Conservation and tested
on Partial or Full. These drops in performance
suggest the model developed a strong dependency
on exact symbol name matching. In addition, the
replacement shift from Conservation to Transposi-
tion and vice versa resulted in a minor performance
drop. These results provide additional evidence for
the lack of importance of mathematical function-
ality, order, and context of symbols’ names shared
across theorem and proof pairs. The model trained
on the Partial symbol replacement level demon-
strated significant resilience when tested with other
symbol replacement levels. It outperforms the rest
of the models when applied to out-of-domain re-
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placement levels and the Conservation replacement
level in-domain model.

In addition, we experimented with theorem-
proof pairs split where pairs from the same paper
could not appear in the same set: train, validation
or test (Unmixed). All models exhibited a reduc-
tion in performance when trained and tested under
these conditions. Particularly noteworthy was the
decrease in performance observed in models that
were trained using the Conservation and Transposi-
tion symbol replacement methods and evaluated on
data using the Partial or Full replacement methods.
These sharp declines highlight the dependence of
the model on simple symbol matching rather than
deeper inferential analysis.

9.4 Protected Symbols

Insofar, we overlooked that some symbols carry
a default meaning over a whole mathematical do-
main (protected symbols, e.g. P (x) for proba-
bility). Replacing them locally may result in a
detrimental impact on semantic mathematical con-
tent. We test the impact of substituting protected
symbols in a controlled setting by comparing mod-
els trained with symbol replacement methods that
preserve protected symbols versus methods that
treat all symbols equally. The test set preserves the
protected symbols. We follow the Unmixed setup,
where theorem-proof pairs from the same paper
must appear in the same split.

We focus on the probability theory domain. Fo-
cusing on a single domain enables us to construct
a list of protected symbols more precisely. Our
list consists of the P (probability measure), E (ex-
pected value), V (variance), σ (standard deviation
and covariance), and ρ (correlation) symbols.14

Table 6 shows that training the SCRATCHBERT-
Local-Local model using the Partial+P replacement
method results in slightly better results. We present
only a subset of our results for brevity; the pattern
re-occurs with all symbol replacement methods.

9.5 Qualitative Analysis

To study which tokens affect our model predic-
tions, we use LIME (Ribeiro et al., 2016), a
method for calculating feature importance. We ex-
amine SCRATCHBERT-Local-Local trained with
the Conservation setup and with Full replacement.
Both are applied to original test examples. We

14We relied on Wikipedia, https://tinyurl.com/
2c3kwsfx, for creating the protected symbols list.

XXXXXXXXSource
Target Symbol Replacement

Conservation Partial+P
MRR Acc MRR Acc

Conservation 69.26 59.59 27.9 18.29
Partial 61.36 51.72 54.06 42.67
Partial+P 62.1 51.92 55.92 45.23
Full 53.63 42.08 52.85 41.4
Full+P 56.27 45.13 55.92 44.84

Table 6: Controlled cross-replacement levels perfor-
mance for the SCRATCHBERT-Local-Local model.
Both train and test sets are curated from the probabil-
ity theory domain. +P next to a symbol replacement
method means that Protected symbols are not being re-
placed.

observe that the Conservation SCRATCHBERT-
Local-Local model heavily relies on the mathemati-
cal tokens and barely benefits from the text ones. In
contrast, the SCRATCHBERT-Local-Local model
that was trained in the full symbol replacement
setup strongly relies on textual tokens with mathe-
matical meaning, such as module, supplement, and
semistable. We visualize that in Figure 2.

10 Conclusion

We developed a bilinear similarity model and a
large dataset (MATCH) for a task focusing on the
domain of mathematical research articles. The task
consists in matching a proof to a mathematical
statement. We proposed two ways to train and
inference with our model and dataset: local match-
ing and global matching. We assessed the diffi-
culty of the task with several pre-trained encoders,
demonstrating the importance of the vocabulary
support for these models. Further assessment relies
on using a symbol replacement procedure, which
helps test the type of mathematical reasoning the
encoders can perform. While our model performs
well on this task, we observe through the symbol
replacement procedure that the model makes a rela-
tively shallow use of the text and formulae to obtain
this performance.

Limitations

Our work has three main limitations. First, we aim
to simulate a setup where the same author did not
write both a theorem and its corresponding proof.
We reduce the intersection size of symbols between
the statement and the proof, which leads to more
challenging setups. In practice, authors and mathe-
matical communities within fields differ in their use
of notation and their writing style (creating math-
ematical language dialects). Such overall dialect
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cannot be altered using simple rule-based methods.
We leave it for future work to explore a full MIR
setup for our task that takes this into consideration.

Second, due to computational limitations, we
could not explore the full potential of our global
training method. Our GPUs cannot handle large
batch sizes for large models such as MATHBERT
and SCRATCHBERT. We use NVIDIA V100
GPUs that allow us to experiment with a batch
size of 16 for MATHBERT and SCRATCHBERT,
compared to 60 with NPT.

Third, while our symbol replacement method
provides a coarse way to test the language model
use of the symbols and text in mathematical articles,
it presents cases in which the replacement is not
precise. These cases arise because the use of sym-
bols in mathematical language is rich and context-
dependent (for example, while π often refers to the
pie constant, it might also refer to a tuple-projection
function or a permutation). We partially address
that in §9.4.
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A Details on Dataset Construction

As mentioned in §4, we use the MREC corpus to
extract statement-proof pairs.

Statement-proof Identification For each XML
article (corresponding to a single arXiv article),
we extract pairs of consecutive <div> tags such
that: (i) the class attribute of the first div node
contains the string "theorem"; (ii) the class
attribute of the second div node is the string
"proof". Articles that do not contain such pairs
of tags are discarded, as well as articles that are
not written in English (representing 143 articles
in French, 11 in Russian, 5 in German, 2 in Por-
tuguese and 1 in Ukrainian), as identified by the
polyglot Python package.15

In the remaining collection of pairs of statements
and proofs, we filter out pairs for which either the
statement or the proof is too short.16 Indeed, the
short texts were often empty (only consisting of a
title, e.g. “5.26 Lemma.”), which we attribute to
the noise inherent to the conversion to XML, or not
self-contained. In particular, we identified several
prototypical cases:

• Omitted (or easy) proofs contain usually a sin-
gle word (‘omitted’, ‘straightforward’, ‘well-
known’, ‘trivial’, ‘evident’), but are some-
times more verbose (‘This is obvious and will
be left to the readers’).

• Proofs that consist of a single reference to
– An appendix (‘See Appendix A’);
– Another theorem (‘This follows immedi-

ately from Proposition 4.4 (ii).’);
– The proof method of another theorem

(‘Similar to proof of Lemma 6.1’)
– Another article (‘See [BK3, Theorem

4.8].’);
– Another part of the article (‘The proof

will appear elsewhere.’, ‘See above.’,
‘Will be given in section 5.’).

Filtering on the number of tokens also excludes
self-contained short proofs, such as ‘Take Q′ =
phi − pi.’ However, such proofs were very infre-
quent on manual inspection of the discarded pairs
(2 in a manually inspected random sample of 100
discarded proofs).

15www.github.com/aboSamoor/polyglot/
16We used a minimum length of 20 tokens for both state-

ments and proofs, based on a manual inspection of the shortest
examples. We also exclude proofs and statements longer than
500 tokens.

Preprocessing: Linearizing Equations Mathe-
matical formulae in the XML articles are enclosed
in a <math> markup tag, that materializes the
switch to the MathML format, and whose inter-
nal structure represents the formula as an XML
tree. As a preprocessing step, we linearize each
formula to a raw sequence of strings.

In MathML, an equation can be encoded in a
content-based (semantic) way or in a presenta-
tional way, using different sets of markup tags. We
first convert all MathML trees to presentational
MathML using the XSL stylesheet from the Con-
tent MathML Polyfill repository.17 Then we per-
form a depth-first search on each tree rooted in a
<math> tag to extract the text content of the whole
tree.

During this preprocessing, we tested several pro-
cessing choices:

• Font information. In mathematical dis-
courses, fonts play an important role. Their
semantics depend on conventions shared by re-
searchers. If both x and x appear in the same
article, they are most likely to represent differ-
ent mathematical objects, e.g. a scalar and a
vector. Therefore, we use distinct symbols for
tokens that are in distinct fonts.

• Math-English ambiguity. Some symbols can
be used both in natural language text and in
formulae. For example, ‘a’ can be a deter-
miner in English, or a variable name in a for-
mula. To avoid increasing ambiguity when
linearizing formula, we type each symbol (as
math or text) to make the mathematical vocab-
ulary completely disjoint from the text vocab-
ulary.

Both these preprocessing steps had a beneficial
effect on the baselines in preliminary experiments.

B Distribution of Proof-Statement
Assignments

Table 7 depicts the cumulative distribution of
proofs and the number of statements they are as-
signed to.

C Symbol Replacement Details

We follow the following rules when replacing sym-
bols:

17https://github.com/fred-wang/
webextension-content-mathml-polyfill
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Lemma 3.2. Let M be a module and H

a local submodule of M . Then H is a
supplement of each proper submodule K ≤ M

with H + K = M .
Proof. Since K is a proper submodule of M
and K + H = M , we have K ∩ H is
a proper submodule of H . Therefore K ∩ H

≪ H , since H is local. That is , H is a
supplement of K in M .

(https://arxiv.org/pdf/0810.0041.pdf)

(a) Example statement/proof 1 - Symbol conservation

Lemma 3.2. LetM be a module and H a local
submodule of M . Then H is a supplement of

each proper submodule K ≤M with H +K =
M .
Proof. Since K is a proper submodule of M
and K+H =M , we have K∩H is a proper
submodule ofH . Therefore K∩H ≪ H , since
H is local . That is , H is a supplement of
K in M .
(https://arxiv.org/pdf/0810.0041.pdf)

(b) Example statement/proof 1 - Full symbol replacement

Lemma 4.1.9. If F is a µ - semistable X -

twisted sheaf of rank r then dim Hom ( F ,

F ) ≤ r2.
Proof. Any endomorphism of F must preserve
the socle (see Lemma 1.5.5ff of [4]); moreover,
the quotient F / Soc( F ) is also semistable .
The result follows by induction from the polystable
case, which itself follows immediately from the
fact that stable sheaves are simple.
(https://arxiv.org/pdf/0803.3332.pdf)

(c) Example statement/proof 2 - Symbol conservation

Lemma 4 .1.9. If F is a µ- semistable X -
twisted sheaf of rank r then dim Hom ( F ,
F ) ≤ r 2.
Proof. Any endomorphism of F must preserve
the socle (see Lemma 1.5.5ff of [ 4 ]); moreover,
the quotient F / Soc(F ) is also semistable .
The result follows by induction from the polystable
case, which itself follows immediately from the
fact that stable sheaves are simple.
(https://arxiv.org/pdf/0803.3332.pdf)

(d) Example statement/proof 2 - Full symbol replacement

Figure 2: LIME visualizations for the model that was trained in the symbol conservation setup (a and c) and their
corresponding LIME visualizations for the model that was trained in the full symbol replacement setup (b and d).
The LIME “match” class supporting features are colored in orange, and the “mismatch” is in blue. The darker the
color, the higher (in absolute value) the feature importance.

Statements Proofs %

≥ 20 7 0.0
≥ 10 80 0.2
≥ 5 1027 1.9
≥ 2 11949 22.6
= 1 19531 37.0
< 1 21275 40.3

Table 7: Cumulative distribution of proofs in the devel-
opment set, by number of statements to which they are
assigned with the local decoding method.

• Only the proof symbols are being replaced as
there is no need to replace both statement and
proof symbols.

• We replace symbols only if they appear in
both the statement and the proof.

• If the symbol a, for example, is mapped to b,
we will map A to B, and vice versa.

• We do not replace the double-struck letters,
e.g., R, since they usually represent fields and
constant. We do not replace standard constant
symbols such as π.

D Prediction Visualization Examples

We provide a LIME visualization of several mathe-
matical statements in Figure 2.
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Abstract

Many Natural Language Processing (NLP) sys-
tems use annotated corpora for training and
evaluation. However, labeled data is often
costly to obtain and scaling annotation projects
is difficult, which is why annotation tasks are
often outsourced to paid crowdworkers. Citi-
zen Science is an alternative to crowdsourcing
that is relatively unexplored in the context of
NLP. To investigate whether and how well Citi-
zen Science can be applied in this setting, we
conduct an exploratory study into engaging dif-
ferent groups of volunteers in Citizen Science
for NLP by re-annotating parts of a pre-existing
crowdsourced dataset. Our results show that
this can yield high-quality annotations and at-
tract motivated volunteers, but also requires
considering factors such as scalability, partic-
ipation over time, and legal and ethical issues.
We summarize lessons learned in the form of
guidelines and provide our code and data to aid
future work on Citizen Science.1

1 Introduction

Data labeling or annotation is often a difficult, time-
consuming, and therefore expensive task. Anno-
tations are typically drawn from domain experts
or are crowdsourced. While experts can produce
high-quality annotated data, they are expensive
and do not scale well due to their relatively low
number (Sorokin and Forsyth, 2008). In contrast,
crowdsourcing can be relatively cheap, fast, and
scalable, but is potentially less suited for more com-
plicated annotation tasks (Drutsa et al., 2020). An-
other approach is using Citizen Science, which

1https://github.com/UKPLab/
eacl2023-citizen-science-lessons-learned

describes the participation and collaboration of vol-
unteers from the general public with researchers
to conduct science (Haklay et al., 2021). Over the
past decade, Citizen Science platforms, which rely
on unpaid volunteers to solve scientific problems,
have been used for a wide variety of tasks requir-
ing human annotation (Hand, 2010), e.g., classify-
ing images of galaxies (Lintott et al., 2008) or for
weather observation (Leeper et al., 2015).

While Citizen Science has been shown to pro-
duce high-quality annotations in ecological or en-
vironmental projects (Kosmala et al., 2016), its po-
tential has so far not been investigated in depth for
Natural Language Processing (NLP). Our goal in
this work is to assess the practicality of undertaking
annotation campaigns for NLP via Citizen Science.
We analyze whether volunteers actually react to
our calls and participate, how the resulting quality
is compared to crowdsourcing, what the benefits
and shortcomings are and what needs to be taken
into account when conducting such a project. We
especially are interested in differences between an-
notators recruited via different channels, which we
investigate by advertising to different social media
platforms, NLP-related mailing lists, and univer-
sity courses. To explore this possibility, we use the
PERSPECTRUM dataset (Chen et al., 2019, CC-BY-
SA) that focuses on the task of stance detection and
can be motivated by fighting misinformation and
promoting accurate debate in internet discussions.
We replicated a portion of the annotations in this
dataset using citizen scientists instead of crowd-
workers. To accomplish this goal, we designed an
annotation workflow that is suitable for Citizen Sci-
ence and allows us to recruit volunteers across a
variety of platforms.
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Figure 1: We advertised our project via various social media, mailing lists and university courses. Volunteers then
are onboarded via the landing page and donated annotations via INCEpTION.

Our contributions are the following:

1. We provide a systematic study on Citizen Sci-
ence across different channels and analyze
turnout and quality. For this, we re-annotate
parts of the PERSPECTRUM dataset using Citi-
zen Science and compare these to the original,
crowdsourced annotations.

2. We provide guidelines and recommendations
on how to successfully conduct a Citizen Sci-
ence project for NLP annotation and discuss
critical legal and ethical aspects.

3. We provide a platform for future Citizen Sci-
ence projects that handles onboarding, anony-
mous access, work assignment and the anno-
tating itself.

Our results show that using Citizen Science for
linguistic annotation can result in high-quality an-
notations, but that attracting and motivating people
is critical for its success, especially in the long-
term. We were able to attract 98 volunteers when
conducting our Citizen Science project which re-
sulted in 1,481 annotations over 2 months, thereby
re-annotating around 10% of the original dataset.
We find that annotations obtained through mailing
lists and university students were of high quality
when comparing them to the original, adjudicated
crowdsourced data. We thus conclude that Citizen
Science projects have the potential to be applied
to NLP annotation if they are conceptualized well,
but are best suited for creating smaller datasets.

2 Background

Prior work has developed various means and strate-
gies for annotating large datasets. So far, anno-
tation studies in NLP mainly use domain-experts
or crowdworkers, or a mix of both (Nguyen et al.,
2015). Crowdsourcing in particular has received
increasing attention over the past decade (Wang
et al., 2013).

Paid Experts Recruiting domain experts (e.g.,
linguists) for annotation studies has been a widely
accepted method to generate linguistically anno-
tated corpora. Famous examples are the Brown
Corpus (Francis and Kucera, 1979) or the Penn
Treebank (Marcus et al., 1993). While the resulting
datasets are of the highest quality, domain experts
are often few, and such annotation studies tend
to be slow and expensive (Sorokin and Forsyth,
2008). Although many researchers moved on to
annotation studies that recruit crowdworkers, ex-
pert annotations are still necessary in various fields,
e.g., biomedical annotations (Hobbs et al., 2021).

Crowdsourcing To accelerate the annotation pro-
cess and reduce costs, researchers have utilized
crowdsourcing as a means to annotate large cor-
pora (Snow et al., 2008). The main idea be-
hind crowdsourcing is that annotation tasks that
do not require expert knowledge can be assigned
to a large group of paid non-expert annotators.
This is commonly done via crowdsourcing plat-
forms such as Amazon Mechanical Turk (AMT)
or Upwork and has been successfully used to an-
notate various datasets across different tasks and
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domains (Derczynski et al., 2016; Habernal and
Gurevych, 2017). Previous work compared the
quality between crowdsourcing and expert anno-
tations, showing that many tasks can be given to
crowdworkers without major impact on the quality
of annotation (Snow et al., 2008; Hovy et al., 2014;
De Kuthy et al., 2016).

Although crowdworkers can substantially accel-
erate annotation, crowdsourcing requires careful
task design and is not always guaranteed to result
in high quality data (Daniel et al., 2018). More-
over, as annotators are compensated not by the time
they spend but rather by the number of annotated
instances, they are compelled to work fast to max-
imize their monetary gain—which can negatively
affect annotation quality (Drutsa et al., 2020) or
even result in spamming (Hovy et al., 2013). It can
also be difficult to find crowdworkers for the task
at hand, for instance due to small worker pools for
languages other than English (Pavlick et al., 2014;
Frommherz and Zarcone, 2021) or because the task
requires special qualifications (Tauchmann et al.,
2020). Finally, the deployment of crowdsourcing
remains ethically questionable due to undervalued
payment (Fort et al., 2011; Cohen et al., 2016),
privacy breaches, or even psychological harm on
crowdworkers (Shmueli et al., 2021).

Games with a Purpose A related but differ-
ent way to collect annotations from volunteers
is games with a purpose, i.e., devising a game
in which participants annotate data (Chamberlain
et al., 2008; Venhuizen et al., 2013). Works pro-
pose games for different purposes and languages.
For instance, anaphora annotation (PhraseDetec-
tives, Poesio et al. 2013), dependency syntax anno-
tation (Zombilingo, Fort et al. 2014), or collecting
idioms (Eryiğit et al., 2022). It has been shown
that if a task lends itself to being gamified, then
it can attract a wide audience of participants and
can be used to create large-scale datasets (von Ahn,
2006). Finally, Lyding et al. (2022) investigate
games with a purpose in the context of (second)
language learning to simultaneously crowdsource
annotaions from learners as well as teachers. One
such example is Substituto, a turn-based, teacher-
moderated game for learning verb-particle con-
structions (Araneta et al., 2020). We do not con-
sider gamification in this work, as enriching tasks
with game-like elements requires considerable ef-
fort and cannot be applied to every task.

Citizen Science Citizen Science broadly de-
scribes participation and collaboration of the gen-
eral public (the citizens) with researchers to con-
duct science (Haklay et al., 2021). Citizen Science
is a popular alternative approach for dataset collec-
tion efforts, and has been successfully applied in
cases of weather observation (Leeper et al., 2015),
counting butterflies (Holmes, 1991) or birds (Na-
tional Audubon Society, 2020), classifying im-
ages of galaxies (Lintott et al., 2008) or moni-
toring water quality (Addy et al., 2010). Newly-
emerging technologies and platforms further allow
researchers to conduct increasingly innovative Cit-
izen Science projects, such as the prediction of
influenza-like outbreaks (Lee et al., 2021) or the
classification of animals from the Serengeti Na-
tional Park (Swanson et al., 2015). LanguageARC
is a Citizen Science platform for developing lan-
guage resources (Fiumara et al., 2020). It is how-
ever not open yet to the public to create projects and
does not easily allow conducting a Citizen Science
meta-study as we do in this work. One work using
LanguageARC is by Fort et al. (2022) (LD) who
collected resources to evaluate bias in language
models. They did not investigate the impact of
using different recruitment channels which we do.
Other projects using LanguageARC are still run-
ning and it is too early to derive recommendations
from.

Compared to crowdsourcing, Citizen Science
participants are volunteers that do not work for
monetary gain. Instead, they are often motivated
intrinsically. For instance, they may have a per-
sonal interest on positively impacting the environ-
ment (West et al., 2021), or in altruism (Rotman
et al., 2012). Asking for unpaid work also entails
various issues like finding good ways of how to at-
tract volunteers, and ethical considerations (Resnik
et al., 2015; Rasmussen and Cooper, 2019) that
need to be addressed (cf. §5). Intrinsic motivation
also has the potential of resulting in higher-quality
annotations compared to crowdsourcing. For in-
stance, Lee et al. (2022) find in their evaluation
study with citizen scientists that their participants
may have been willing to take more time anno-
tating for the sake of higher annotation accuracy.
However, as their main goal was to conduct an eval-
uation study for their specific setup, this finding
cannot be generalized to other Citizen Science sce-
narios. So far, only Tsueng et al. (2016) provide a
direct comparison between crowdsourcing and Cit-
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Figure 2: Assigning a label to an instance in the INCEpTION text annotation platform.

izen Science and show that volunteers can achieve
similar performance in mining medical entities in
scientific texts. They recruit participants through
different channels such as newspapers, Twitter, etc.,
but do not compute channel-specific performance,
making it difficult to assess whether the quality
of the resulting annotation depends on the recur-
rent channel. In contrast, in the present work, we
explicitly consider the recruitment channel in our
evaluation and furthermore provide a discussion
and guidelines for future Citizen Science practition-
ers. Also, it attracts intrinsically (not only fiscally)
motivated volunteers that are often skilled in the
task and can provide high-quality annotations, thus
potentially combining the advantages of expert an-
notations and crowdsourcing. Relying on unpaid
annotators entails several issues, including attract-
ing volunteers and ethical considerations (Resnik
et al., 2015; Rasmussen and Cooper, 2019) that
need to be taken into account (see §5).

3 Study Design

To study the feasibility of Citizen Science for NLP
annotation, we asked volunteers recruited via var-
ious channels to re-annotate an existing, crowd-
sourced dataset. The general setup is described in
Fig. 1. To conduct a systematic study, we identified
the following four necessary steps: 1) Identifying a
suitable dataset (§3.1); 2) Selecting suitable recruit-
ment channels to advertise our project on (§3.2);
3) Building a landing page for onboarding partici-
pants that asks for informed consent and the chan-
nel from which they originated (§3.3); 4) Setting
up the annotation editor to which participants are
forwarded after the onboarding (§3.4).

3.1 Dataset selection

We first conducted a literature review of relevant
crowdsourced NLP datasets to identify the ones
that could be accurately reproduced via Citizen
Science. We assessed datasets for the following
two criteria: 1) Availability: the dataset must be
publicly available to make proper comparisons in
terms of annotator agreement; 2) Reproducibility:
the annotation setup including annotation guide-
lines needs to be reproducible to ensure similar
conditions between citizen scientists and crowd-
workers. We focused on datasets that are targeted
towards contributing to social good to encourage
volunteers to participate. Unfortunately, many in-
spected datasets did not fulfill both of these require-
ments. Overall, we identified two main issues while
screening over 20 candidate datasets. First, many
datasets used Tweets which impacted reproducibil-
ity as Twitter only allows researchers to publish
the tweet identifiers. This leads to irrecoverable in-
stances when tweets were deleted. Second was the
lack of precise guidelines. For instance, many con-
sidered datasets about societal biases lack explicit
descriptions of what is considered a stereotype. As
such biases are often also impacted by the respec-
tive cultural background of annotators, they are
difficult to reproduce without specific guidelines.

In the end, we decided on the stance detection
task of the PERSPECTRUM dataset (Chen et al.,
2019). The task provides clear instructions, pub-
licly available data, and is motivated by social good
(fighting misinformation/promoting accurate de-
bate in internet discussions). Each instance con-
sists of a claim–perspective pair (cf. Fig. 2) and
annotators are asked if the claim supports, opposes,
mildly-supports, mildly-opposes, or is not a valid
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Figure 3: Participants, annotations and annotations grouped by the channel via they were recruited. It can be seen
that overall, most participants and annotations were contributed by annotators recruited via mailing lists. Annotators
from mailing lists and courses yielded the volunteers who contributed the most individually.

perspective. Following the original work, we also
evaluated the annotations on a coarser tagset that
only contains the categories for support, oppose
and not a valid perspective. Overall, the dataset
consists of 907 claims and 8, 370 different perspec-
tives which yield 11, 805 annotated instances. In
preliminary studies, we received further feedback
that forcing annotators to provide an explicit la-
bel for each instance could lead to increasing frus-
tration, especially for ambiguous or complicated
instances. To lessen the burden for our voluntary
annotators and keep them motivated in the annota-
tion task, we allowed them to skip instances (Don’t
know/skip) which was not present in the original
annotation editor for PERSPECTRUM.

3.2 Recruitment channels

To recruit annotators, we advertised our project
on three social media platforms, namely, Twitter,
LinkedIn and Facebook. Unfortunately, after cre-
ating the Facebook organization and advertising
the project, the account was banned due to “violat-
ing their community standards” and has so far re-
mained banned. One of our team members then pro-
moted our annotation study on their personal Face-
book to attract participation from this social media
platform. In addition, the team members adver-
tised the work on Twitter and in relevant LinkedIn
groups such as COMPUTATIONAL LINGUISTICS

and MACHINE LEARNING AND DATA SCIENCE.
We further promoted the study via two exter-

nal mailing lists (i.e., CORPORA-LIST, ML-NEWS).
Late in the project, we received interest from other
faculty to advertise the task in their courses—an
offer that we gladly accepted. For this, partici-
pation was completely voluntary and anonymous,
students’ grades were not affected by participation,

and authors were not among the instructors. To
evaluate different recruitment channels separately,
we asked participants on the landing page to an-
swer the question: “Where did you hear from this
study?”. We also allowed volunteers to not disclose
how they found out about the study, this is referred
to as “Other” or “Undisclosed” in this paper. Fi-
nal participation counts are given in Fig. 3. We
deliberately limited our outreach, e.g. we did not
use university social media accounts or colleagues
with large follower bases. Also, we made sure to
not exhaust channels by posting too many calls for
participation.

3.3 Landing page

We implemented a customizable landing page web
application catering to the needs of Citizen Sci-
ence projects. The link to such a landing page was
shared via the respective recruitment channels. The
landing page contained information about the study
itself, its purpose, its organizers, which data we
collected, and its intended use. This landing page
toolbox is designed so that it can easily be adapted
to future Citizen Science projects. To allow project
creators to use an annotation editor of their choice,
we designed the toolbox to act as an intermediary
that collects a participant’s consent for the actual
annotation study. This ensures that only partici-
pants that have been properly informed and have
explicitly provided their consent are given access to
the study. For future Citizen Science projects, the
tool further assists organizers through the landing
page creation process to foster an ethical collection
of data by asking several questions, that are listed
in the appendix.
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3.4 Annotation editor

INCEpTION (Klie et al., 2018) offers a config-
urable, web-based platform for annotating text doc-
uments at span, relation and document levels. To
make it usable in Citizen Science scenarios, we
extended the platform with three features, namely,
(1) the ability to join a project through a link, (2)
support for anonymous guest annotators, and (3)
a dynamic workload manager. Allowing citizen
scientists to participate in the project anonymously
as guests without any sign-up process substantially
reduced the entry barrier and made it easier for
us to satisfy data protection policies. The same
is true for the ability of joining a project through
an invite link. Upon opening the link, annotators
were greeted with the annotation guidelines and
were directly able to start annotating. Finally, we
implemented a dynamic workload manager that
takes as input the desired number of annotators per
document and then automatically forwards anno-
tators directly to the document instances requiring
annotation. Upon finishing annotating an instance,
INCEpTION was configured to automatically load
and display the next instance for annotation, sim-
ilar to popular crowdsourcing platforms. We also
included rules for handling other issues that may
occur with voluntary annotations such as recover-
ing instances that annotators have started to work
on but then abandoned. Additionally, we modified
the existing user interface to improve the annota-
tion workflow. This mainly included implementing
a dedicated labeling interface that allows users to
select a single label for an instance via a radio but-
ton group. Annotation of an instance thus required
two user actions: first, selecting the document la-
bel, and second, confirming the annotation, thereby
moving on to the next document.

4 Results

We conducted our study between January and
March 2022 and promoted the task in successive
rounds across all recruitment channels. In total, we
were able to recruit 98 participants who provided
1481 annotations resulting in 906 fully annotated
instances. Each instance with at least one anno-
tation has received on average 1.63 annotations.
Detailed statistics are provided in the appendix.

Participation To identify promising channels for
future Citizen Science studies, we report the num-
ber of annotators per channel, the total number of

annotations per channel and per user (cf. Fig. 3).
Overall, we find that the most effective channel for
public outreach are mailing lists (55 participants).
Asking students in university courses to participate
was the second most effective with 14 participants.
Facebook, LinkedIn, and Twitter only yielded three,
four, and eight participants respectively. We further
find a highly skewed distribution of annotations per
user, as many annotators only provide a few anno-
tations while a few annotators provide many anno-
tations. For instance, the most active annotators
were two students who provided ∼80 annotations
as well as six participants from mailing lists who
provided ∼60–80 annotations each. For Twitter
and “undisclosed”, only a single annotator made
over 60 annotations. We also find that on aver-
age, participants from university courses provided
the most annotations per person. When looking
at participation over time (see Fig. 5), we observe
increased activity in annotations made after the call
for participation has been posted to the respective
channel. For many channels, the count quickly flat-
tens. Interestingly, Twitter sees a second spike long
after the post was made. We attribute it to people
sharing the post in our community quite a while
after the initial release. We did not track whether
individual volunteers came back for another round
of annotations after their initial participation.

Coverage Overall, our 98 volunteers have pro-
vided 1,481 annotations to 906 unique instances
(approximately 8% of the original dataset) over
two months. This is comparable to other Citizen
Science projects like Fort et al. (2022), which had
102 participants in total. They annotated three tasks
and collected 2347, 2904 and 220 submissions over
eight months. Table 1 shows the resulting cover-
age of our Citizen Science annotation study. While
this still leaves room for improvement, the num-
ber of annotations collected nonetheless shows that
Citizen Science can be viable in real life settings
and is a promising direction to investigate in fur-
ther studies, especially for creating focused and
smaller-scale resources.

Quality In terms of annotation quality, we find
that most channels yield annotations that highly
agree with the gold labels (cf. Table 2), even though
our annotations are not adjudicated yet. We further
find that volunteers from university courses and
mailing list show the highest accuracy, followed by
Twitter and “undisclosed”. Only LinkedIn yields
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lower accuracy than 70% on the coarse label set.
For the majority of channels (with the exception

of Facebook and LinkedIn), we only see a skip
percentage of ∼10% (cf. Fig. 4). This indicates our
volunteers are actually willing to spend time and
effort to solve the task at hand, as adding a “Don’t
know/skip” option in crowdsourcing usually is an
invitation for workers to speed through the tasks
and not provide useful annotations. The exception
is Facebook, where we find that a majority of the
annotations from Facebook were labeled as I don’t
know/skip (3 out of 5). Further analysis of the label
distribution grouped by channel (cf. Fig. 4) shows
that all channels except for Facebook display a
similar distribution in terms of annotated labels.
This indicates that we can expect a rather stable
annotation performance across citizen scientists
recruited from different channels.

5 Discussion and Takeaways

Here we present lessons learned, discuss legal chal-
lenges and ethical considerations, as well as pro-
vide guidelines for future Citizen Science projects.

Table 1: Claims, claim clusters, and individual claim-
perspective pairs that have been annotated at least once.
We call the set of a claim and a perspective together
with its paraphrases a claim cluster.

Name # Annotated # Total % Annotated

Claims 388 907 42.78
Clusters 739 5092 14.51
Total 906 11805 7.67

Table 2: Annotation accuracy compared to the crowd-
sourced and adjudicated data from PERSPECTRUM. The
five annotations from Facebook (three of them were
skipped) and Don’t know/skip annotations are omitted.

Channel Coarse Fine

University 0.92 0.82
LinkedIn 0.69 0.62
Mailing Lists 0.90 0.82
Undisclosed 0.84 0.75
Twitter 0.85 0.73

Channel-dependent differences Our results
clearly differ across recruiting channels. We find
that overall, Facebook and LinkedIn have the low-
est turnout and accuracy when compared to the
gold labels, followed by Twitter. Our assumption
for the overall low participation is that our net-
work for these channels was not large enough. Ad-
vertising our study to NLP-related and university-
internal mailing lists and university courses yielded
the highest number of participants who also pro-
vided the most and best-quality annotations. Al-
though our results show that students may outper-
form participants from other channels, we also ac-
knowledge that this may not always be a viable
option to recruit citizen scientists. Overall, our
findings indicate that it is important to address the
respective target groups that may be interested in
a specific study. However, we also note that con-
tinuously advertising Citizen Science studies to the
same channels may have a negative impact, as it can
cause participation fatigue and lead to fewer vol-
unteers participating. One possible solution could
be the use of LanguageARC (Fiumara et al., 2020)
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from the LDC and centralize calls for participation.

Motivating volunteers In contrast to crowd-
sourcing, there is no monetary or other extrinsic
motivation that could be used to attract Citizen
Science annotators. Thus, annotator motivation
is a crucial question for Citizen Science studies.
As Fig. 5 shows, citizen scientists can be quickly
motivated to participate, but can also quickly lose
interest in a given annotation study. This can be-
come an issue with a low number of participants,
yet our results also indicate that we were able to
find highly-motivated participants (8 out of 98 in
our results).

Compared to other groups, university students
in particular provided a high amount of quality
annotations. Considering the findings by Phillips
et al. (2018), who do not find statistical differences
in terms of quality between students participating
for course credit vs. no extrinsic reward—asking
students to participate in such projects as part of
their coursework might be another good option,
but needs to ensure an ethical data collection. For
instance, such an approach has been used to an-
notate the Georgetown University Multilayer Cor-
pus (Zeldes, 2017). Nonetheless, one remaining
question is how to keep participants motivated and
participate in several sessions as our results indi-
cate that a vast majority of our volunteers only par-
ticipated in a single session and that participation
quickly stops shortly after a call has been posted to
the respective channel.

Finally, we want to emphasize the inclusion of
a Don’t know/skip option for Citizen Science an-
notators. Whereas in crowdsourcing studies, anno-
tators may exploit such an option to increase their
gain (Hovy et al., 2013), from the feedback we got
during our pilot study, it is crucial to keep volun-
teers motivated for Citizen Science. For this work,
we did not provide a survey that asks about the
motivation, as we thought that this might deter po-
tential participants We however suggest that future
studies provide such a survey that is as unintrusive
as possible to further analyze why participants take
part in the respective annotation project.

Legal challenges One substantial challenge in
implementing Citizen Science studies is the po-
tentially wide outreach they can have and, conse-
quently, the varying kinds of data protection regula-
tions they have to oblige. To preempt any potential
issues that can arise—especially when data that

can be used to identify a person (personal data, e.g.
obtained during a survey or login credentials) is
involved—we recommend researchers who plan
to implement a Citizen Science study consider the
most strict regulations that are widely accepted.

For the GDPR (European Parliament, 2016), cur-
rently one of the strictest data protection regula-
tions, we recommend researchers to explicitly ask
voluntary participants for their informed consent
when collecting personal information. This in-
cludes informing participants beforehand about (1)
the purpose of the data collection, (2) the kind of
personal and non-personal data collected, (3) the
planned use of the data, (4) any planned anonymiza-
tion processes for publication, and finally, (5) how
participants can request access, change, and dele-
tion of the data. We further recommend assign-
ing one specific contact person for any questions
and requests for access, change, or deletion of the
data. This may seem like additional work when
compared to crowdsourcing, but transparent and
open communication is one of the key factors to
build trust—which is necessary for voluntary par-
ticipants to consider such studies and provide high-
quality annotations. Finally, participants should
be informed and agree to the annotations donated
being published under a permissive license.

Ethical and economical considerations Al-
though Citizen Science can substantially reduce
annotation costs, we emphasize the importance of
considering an ethical deployment that does not
compromise the trust of the participants. Moreover,
given increasing concerns regarding the owner-
ship and use of collected data (Arrieta-Ibarra et al.,
2018), one should grant participants full rights to
access, change, delete, and share their own per-
sonal data (Jones and Tonetti, 2020). This ensures
that participants are not exploited for “free labor”—
in contrast to approaches like reCAPTCHA (von
Ahn et al., 2008), where humans are asked to
solve a task in order to gain access to services.
Whereas CAPTCHAs were initially intended to
block malicious bots, they are becoming increas-
ingly problematic due to their deployment and use
by monopolizing companies which raises ethical
concerns (Avanesi and Teurlings, 2022) . It is es-
pecially important to take the data itself into con-
sideration; exposing volunteers to toxic, hateful,
or otherwise sensitive speech should be avoided if
they are not informed about it beforehand.
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Recommendations Overall, we derive the fol-
lowing recommendations for future Citizen Science
studies. 1) our call for annotations resonated the
most with the target group that is likely to benefit
the most from contributing to it: NLP researchers
coming from mailing lists and university students.
Therefore, the target audience should be carefully
selected, for instance by identifying topic-specific
mailing lists or respective university courses. This
further means that the purpose of data collection
should be made clear and that the results should be
made publicly available. 2) the research question of
the study should conform to the respective ethical
and legal guidelines of the potential target group
which should clearly be communicated to make
the project accountable. 3) participation should be
easy with clearly formulated annotation guidelines
and, moreover, the annotation itself should be thor-
oughly tested beforehand to ensure that participants
do not get frustrated due to design errors or choices.
For instance, in our preliminary study, we got the
feedback that some instances are frustrating to an-
notate and hence added an option to skip. 4) ana-
lyzing participation over time shows that a Citizen
Science project has to be continuously advertised
in order to stay relevant and achieve high participa-
tion. Otherwise, it will be forgotten quickly. This
can be done by sharing status updates or creating
preliminary results. Fifth, we recommend asking
about user motivation before, during or after the
annotation with a survey to better understand the
participants and their demographics.

6 Conclusion

In this work, we presented an exploratory annota-
tion study for utilizing Citizen Science for NLP
annotation. We developed an onboarding pro-
cess that can easily be adapted to similar projects
and evaluated Citizen Science annotations for re-
annotating an existing dataset. Furthermore, we
extended the INCEpTION platform, a well-known
open-source semantic annotation platform, with
a dynamic workload manager and functionality
for granting access to external users without reg-
istration. This enables its usage for Citizen Sci-
ence projects. We advertised the study via Twitter,
Facebook, LinkedIn, mailing lists, and university
courses and found that participants from mailing
lists and university courses are especially capable
of providing high-quality annotations. We further
discuss legal and ethical challenges that need to

be addressed when conducting Citizen Science
projects and provide general guidelines for con-
ducting future projects that we would like to have
known before starting. Overall, we conclude that
Citizen Science can be a viable and affordable al-
ternative to crowdsourcing, but is limited by suc-
cessfully keeping annotators motivated. We will
make our code and data publicly available to fos-
ter more research on Citizen Science for NLP and
other disciplines.

Future Work We see the following directions for
further research and evaluation to better understand
in which settings Citizen Science can be applicable
and how to use it best. Here, we used PERSPEC-
TRUM as the dataset to annotate and mentioned
in the participation calls that it benefits the social
good. Therefore, it would be interesting to conduct
more projects and see which datasets are suitable
as well as whether volunteers participate, even if
there is no extrinsic motivation. Then, it can also
be tested how annotator retention develops, espe-
cially when project are running longer. The call for
participation itself could also be investigated for
the impact it has on turnout, motivation and quality.

7 Limitations

Throughout this article, we analyzed whether Cit-
izen Science applies to linguistic annotation and
showed that we can attract volunteers that donate a
sizeable number of high-quality annotations. This
work, however, comes with limitations that should
be taken into account and tackled in future work.
First, we based our analysis on a single annota-
tion campaign and dataset that we advertised as
being relevant for the social good. Therefore we
suggest conducting more such annotation projects,
also with different kinds of tasks. Second, we did
not perform a user survey that for instance asked
for user motivation. This is why we can only spec-
ulate about the motivation of our participants and
suggest future works to explicitly prepare such a
survey. Third, using Facebook as a channel might
be viable, but we were not able to properly analyze
it, as our account was blocked shortly after cre-
ation and never was reinstantiated. Finally, based
on participation and annotation numbers, we see
Citizen Science as more of an option for annotating
smaller datasets, or longer-term projects that are
more actively advertised than in our study which
took place over two months and for which we de-
liberately limited the outreach.
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Appendix C Questions to keep in mind for a citizen science project

• What is the purpose of the study?
• What kind of personal and non-personal data will be collected?2

• If there is a questionnaire involved, what questions will it involve?
• How will the data be used?
• Is a publication of the data planned and if so, which data will be published and will it be anonymized?
• How can participants request access, change, or deletion of their data?

Appendix D Project Statistics

D.1 Number of participants
In addition to the plots visualizing the number of participants (c.f. Fig. 3), we also list the raw numbers in
Table 3.

Channel Participants

Courses 14
Facebook 3
LinkedIn 4
Lists 55
Twitter 8
Undisclosed 17

Table 3: Number of participants per channel.

D.2 Annotation statistics
In addition to the plots visualizing the annotation counts and label distribution (c.f. Fig. 4), we also list the
raw numbers in Table 4.

Table 4: Label distribution grouped by channel. Labels are supports (++), mildly-supports (+), mildly-opposes (-),
opposes (--), not a valid perspective (I) and Skip (S).

Channel Total Counts Percentage

+ ++ - -- I S + ++ - -- I S

Courses 307 18 108 24 104 28 25 5.86 35.18 7.82 33.88 9.12 8.14
Facebook 5 2 0 0 0 0 3 40.00 0.00 0.00 0.00 0.00 60.00
LinkedIn 21 1 5 1 7 3 4 4.76 23.81 4.76 33.33 14.29 19.05
Lists 830 98 264 48 222 92 106 11.81 31.81 5.78 26.75 11.08 12.77
Twitter 131 14 42 12 39 13 11 10.69 32.06 9.16 29.77 9.92 8.40
Undisclosed 187 18 53 15 52 27 22 9.63 28.34 8.02 27.81 14.44 11.76

2We provided some pre-defined suggestions such as Name or IP for personal data and Label for non-personal data with the
possibility to add more in our landingpage module.
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Abstract

The semantic code search is to find code snip-
pets from the collection of candidate code snip-
pets with respect to a user query that describes
functionality. Recent work on code search
proposes data augmentation of queries for
contrastive learning. This data augmentation
approach modifies random words in queries.
When a user web query for searching code snip-
pet is too brief, the important word that repre-
sents the search intent of the query could be
undesirably modified. A code snippet has infor-
mative components such as function name and
documentation that describe its functionality.
We propose to utilize these code components
to identify important words and preserve them
in the data augmentation step. We present Key-
DAC (Keyword-based Data Augmentation for
Contrastive learning) that identifies important
words for code search from queries and code
components based on term matching. KeyDAC
augments query-code pairs while preserving
keywords, and then leverages generated train-
ing instances for contrastive learning. We use
KeyDAC to fine-tune various pre-trained lan-
guage models and evaluate the performance of
code search and code question answering via
CoSQA and WebQueryTest. The experimen-
tal results confirm that KeyDAC substantially
outperforms the current state-of-the-art perfor-
mance, and achieves the new state-of-the-arts
for both tasks.

1 Introduction

Software developers or students who major in com-
puter science often write natural language queries
to search for code snippets with desired function-
ality from the web search engine. The retrieved
code snippets are reused or referred to improve pro-
ductivity of software development. Semantic code
search is a well-known code-related downstream
task that measures the semantic relevance between
a given natural language query and a collection of
code snippets to retrieve the most relevant code

snippet. CodeXGLUE (Lu et al., 2021), a bench-
mark for 10 code tasks, provides two test sets—
CodeSearchNet AdvTest and WebQueryTest—for
an open challenge code search. CodeSearchNet
AdvTest from the CodeSearchNet (Husain et al.,
2019) corpus is for a retrieval scenario in which one
needs to find a Python code function that matches
the search intent of the query best. The queries in
CodeSearchNet AdvTest are not real user queries.
Instead, they are documentations such as comments
or summaries written by developers. WebQuery-
Test is a code question answering task that asks
whether a Python code function has functionality
described by the real user web query collected from
the search logs of a commercial search engine.
Recently, Huang et al. (2021) introduce CoSQA
that consists of pairs of real user web queries and
Python code snippets. Then, they use CoSQA as
a benchmark for code search to resemble the real
world scenario where developers write natural lan-
guage queries to find code snippets.

Huang et al. (2021) propose CoCLR, a con-
trastive learning method using a query-rewritten
data augmentation, to improve the code search
performance. CoCLR modifies the random words
in queries to augment training query-code pair in-
stances. However, besides the user queries, there
are useful components that describe the function-
ality of code snippets. Since a function name and
documentation describe functionality of the corre-
sponding code function, we propose to use these
components as well for data augmentation. Further-
more, we suggest considering the relative impor-
tance of words in query and code function. Note
that the data augmentation used in the previous
code search method treats all words equally. Xie
et al. (2020) use TF-IDF to calculate the relative im-
portance of words in a sentence, then replace unim-
portant words to augment training sentences. We
adapt this idea and define the relative importance
in code search based on term matching between a
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Augmenting query

Augmenting code snippet

Preserving keywords

Augmenting query

Augmenting code snippet

Preserving keywords

python get modified date

python get modified date

   Training query-code pair

CoCLR Data Augmentation

KeyDAC Data Augmentation

Query:

Query:

Code:

Augmented data by CoCLR

Augmented data by KeyDAC

Query: python get modified date

Code: def last_modified_date(filename): 

    """ Last modified timestamp as a UTC datetime """ 
     
    mtime = os.path.getmtime(filename) 
    dt = datetime.datetime.utcfromtimestamp(mtime) 
    return dt.replace(tzinfo=pytz.utc) def last_modified_date(filename): 

    """ Last modified timestamp as a UTC datetime""" 
     
    modified = os.path.getmtime(filename) 
    dt = datetime.datetime.utcfromtimestamp(modified) 
    return dt.replace(tzinfo=pytz.utc)

Figure 1: Comparison of data augmentation approaches for semantic code search. Example query-code pair is from
CoSQA (Huang et al., 2021) training dataset. Keywords are marked in yellow and red slash line denotes the deletion
of a word. Both CoCLR (Huang et al., 2021) and KeyDAC apply data augmentation to query. In contrast to CoCLR,
KeyDAC also augments code snippet (deleting UTC in documentation and renaming variable mtime to modified,
which is one of keywords). While CoCLR can delete the keyword date, KeyDAC preserves keywords.

paired query and code snippet.
We present KeyDAC, Keyword-based Data

Augmentation for Contrastive learning that identi-
fies keywords from a given query-code pair based
on term matching. KeyDAC applies data augmenta-
tion both on natural language (NL) sequences (i.e.,
query, function name, and documentation) and
programming language (PL) sequences (i.e., code
statements), and generates more training query-
code pair instances while preserving keywords.
Figure 1 shows an example training query-code
pair instance from CoSQA training dataset and
compares the results of two data augmentation ap-
proaches, CoCLR and KeyDAC. The query asks
how to get modified date. In this case, important
words closely related to the search intent are mod-
ified and date. Since CoCLR modifies random
words in query, date could be modified in data
augmentation process. The augmented query by
CoCLR is python get modified (keyword date is
deleted) which does not represent clear search in-
tent. On the other hand, KeyDAC preserves key-
words in the data augmentation step. In addition,
KeyDAC augments code snippet by deleting unim-
portant word UTC in documentation, and renam-
ing the variable in the code statements using key-
words (mtime to modified). We evaluate the effec-
tiveness of KeyDAC on CoSQA and open challenge
WebQueryTest.1 We use KeyDAC to fine-tune var-
ious pre-trained language models. KeyDAC brings
substantial performance gain, resulting in new state-
of-the-art performance both on code search and

1The leaderboard of WebQueryTest is available at https:
//microsoft.github.io/CodeXGLUE/

code question answering tasks. Our main contribu-
tions are as follows:

• We propose KeyDAC—data augmentation
mechanism for contrastive learning, which
identifies important words from training
query-code pairs and augments them while
preserving identified keywords.

• We demonstrate that KeyDAC outperforms
the current SOTA for the code search task on
CoSQA benchmark.

• We achieve a new record, with a substantial
improvement, for the open challenge code QA,
WebQueryTest.

2 Related Work

2.1 Code Search Methods
Some researchers proposed information retrieval-
based approaches using term matching between
queries and code snippets (Lu et al., 2015; Lv et al.,
2015). However, since these traditional approaches
focused on lexical information, they often fail to
understand the semantic relationship between the
query and the code snippet. Recently, many re-
searchers started to address the problem through
deep learning-based approaches (Cambronero et al.,
2019; Li et al., 2020) that learn the semantic rep-
resentation of the query and code. Later, pre-
trained models for programming languages were
proposed and showed an improvement on code
search tasks. CodeBERT (Feng et al., 2020) is a
bimodal pre-trained model for NL and PL, which
was pre-trained with masked language modeling
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(MLM) and replaced token detection (RTD). Feng
et al. (2020) showed that CodeBERT outperformed
both RoBERTa and RoBERTa pre-trained on code
datasets. GraphCodeBERT (Guo et al., 2020) fur-
ther improved the performance by pre-training us-
ing data flow as a semantic-level structure of code.

2.2 Contrastive Learning for Code Search

Contrastive learning encourages the distance be-
tween similar instances to be minimized and the
distance between dissimilar instances to be maxi-
mized in the representation space. Recently, con-
trastive learning showed its effectiveness and be-
came popular in self-supervised learning (Chen
et al., 2020; Meng et al., 2021; Gao et al., 2021).
Such effectiveness of contrastive learning in vari-
ous fields promoted adapting contrastive learning
for code search. As a pre-training approach for
source code, Corder (Bui et al., 2021) transformed
a code snippet into different versions and mini-
mized the distance between them in the represen-
tation space. Corder used program transformation
operators, including dead code insertion and per-
mutation of code statements. The experiment re-
sults confirmed that pre-training with contrastive
learning was effective in improving performance
on several code-related tasks such as code-to-code
search, text-to-code search, and code summariza-
tion. As a fine-tuning approach for code search,
CoCLR (Huang et al., 2021) used contrastive learn-
ing with query-rewritten data augmentation and
in-batch negative samples. For query-rewriting,
CoCLR modified random words in a query as fol-
lows: deleting random words, switching the po-
sition of two random words, or copying random
words. They showed that CoCLR improved code
search performance of CodeBERT. However, these
contrastive learning approaches utilize either query
or code in the data augmentation process and do
not consider the relative importance of words. We
propose to consider the importance of each word
differently and preserve keywords for data augmen-
tation.

3 Approach

KeyDAC identifies keywords from positive query-
code pairs (i.e., a code snippet meets the demand of
a query) in a training dataset based on term match-
ing. Then KeyDAC applies keyword-based data
augmentation to both query and code snippet. Us-
ing augmented training data, KeyDAC deploys con-

def last_modified_date(filename): 

    """ Last modified timestamp as a UTC datetime """ 
     
    mtime = os.path.getmtime(filename) 
    dt = datetime.datetime.utcfromtimestamp(mtime) 
    return dt.replace(tzinfo=pytz.utc)

3) Identified keywords

python get modified dateQuery:

Code:

python get

Function Name:

Documentation:

last_modified_date

Last modified

Keywords:

modified dateQuery:

timestamp as a UTC datetime

Term Matching

1) Training query-code pair from CoSQA dataset

2) Identifying keywords from three NL sequences

last modified date

Figure 2: An example of identifying keywords from a
pair of real user query and code function. Given a train-
ing query-code pair, we identify keywords based on term
matching from three NL sequences (i.e., query, function
name, and documentation). The identified keywords are
related to the functionality of the code function.

trastive learning to fine-tune pre-trained encoders
for the code search task.

3.1 Data Augmentation with Keywords

A code function ci has the following three main
components:

• function name in the function header (NL)

• function-level documentation (NL)

• code statements in the function body (PL)

The previous approaches consider these three com-
ponents as PL sequences. On the other hand, we
consider the function name and the documentation
as NL sequences, since 1) those two code compo-
nents describe the functionality of the code snippet;
2) modifying the function name or documentation
does not produce any syntax errors.
Identifying Keywords Since a user query demands
certain functionality of the code snippet, KeyDAC
utilizes two NL descriptions of code function, such
as the function name and documentation, to identify
keywords. Specifically, KeyDAC identifies com-
mon words from three NL sequences (i.e., query,
function name, and documentation) based on term
matching. Figure 2 gives an example of how Key-
DAC identifies keywords from the paired query
and code function. The identified keywords from
the example are: last, modified and date. These
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def last_modified_date(filename): 

    """ Last modified timestamp as a UTC datetime """ 
     
    mtime = os.path.getmtime(filename) 
    dt = datetime.datetime.utcfromtimestamp(mtime) 
    return dt.replace(tzinfo=pytz.utc)

python get modified date

(c) The process of keyword-based data augmentation

(d) Augmented training query-code pair

Query:

Code:

(a) Training query-code pair

(b) Identified keywords

Query:

Code:

python get modified date

def last_modified_date(filename): 

    """ Last modified timestamp as a UTC datetime """ 
     
    mtime = os.path.getmtime(filename) 
    dt = datetime.datetime.utcfromtimestamp(mtime) 
    return dt.replace(tzinfo=pytz.utc)

Randomly selected unimportant word: UTC

Target variable: mtime

Randomly selected unimportant word: python

def last_modified_date(filename): 

    """ Last modified timestamp as a UTC datetime """ 
     
    modified = os.path.getmtime(filename) 
    dt = datetime.datetime.utcfromtimestamp(modified) 
    return dt.replace(tzinfo=pytz.utc)

python get modified date

Renaming

Deleting

Deleting
Doing Nothing

python get

Function Name:

Documentation:

last_modified_date

Last modified

Keywords:

modified dateQuery:

timestamp as a UTC datetime

Term Matching

last modified date

Figure 3: An illustration of keyword-based data augmentation. For NL sequences, keywords (i.e., last, modified, and
date) are preserved (highlighted in bold) while unimportant words (i.e., python in query and UTC in documentation)
are deleted (red slash lines) (NL: Rewriting). For PL sequences, variable mtime is renamed using a keyword
modified (PL: Variable Renaming).

identified keywords are related to the functionality
of code function.

Using the identified keywords, KeyDAC applies
data augmentation to NL and PL sequences in dif-
ferent ways. In the following, we demonstrate
keyword-based data augmentation in detail.
NL: Rewriting KeyDAC rewrites three NL se-
quences by modifying unimportant words while
preserving keywords by choosing one of the fol-
lowing four ways: 1) deleting one randomly se-
lected unimportant word (Delete); 2) switching
the position of two randomly selected unimportant
words (Switch); 3) copying one randomly selected
unimportant word (Copy); 4) doing nothing (None).
In Figure 3 (d), KeyDAC deletes an unimportant
word python in the query and UTC in the documen-
tation, while preserving keywords last, modified
and date. PL: Variable Renaming Software devel-
opers sometimes name a variable in abbreviation
form; in other words, there can be a lexical gap be-
tween query and variable name (e.g., in Figure 3 (a),
the variable mtime represents the meaning of modi-
fied time). We propose to rename variables using
keywords to bridge the lexical gap between query
and code snippet. We first parse a code function ci
into an abstract syntax tree (AST) that represents
the syntactic structure of ci. Then we identify vari-
ables from terminal nodes of the resulting AST.
Then KeyDAC renames the variables that appear
most frequently in code statements using keywords.
If there is a keyword that matches the target vari-
able name (mtime) with the first letter, KeyDAC
uses that keyword (modified). If not, KeyDAC ran-
domly chooses one from keywords (i.e., last, modi-
fied, and date). In Figure 3 (d), KeyDAC renames

mtime to modified.

3.2 Siamese Network for Code Search Task
We adopt siamese network architecture, which has
a shared encoder to map a query and code snip-
pet to fixed-sized embeddings. Each query qi and
code function ci are encoded by a shared encoder
Encoder (e.g., CodeBERT). We take the represen-
tation of [CLS] token from the last hidden layer of
Encoder. Then we compute the cosine similarity
sim(qi,ci) between a query-code pair (qi, ci) as:

sim(qi,ci) = ⟨Encoder(qi), Encoder(ci)⟩, (1)

where 〈·〉 indicates cosine similarity operation. We
use binary cross-entropy as the training objective:

Lbce = −[yi · log sim(qi,ci)

+ (1− yi) log(1− sim(qi,ci))], (2)

where yi is the ground truth label of (qi, ci).

3.3 Contrastive Learning
KeyDAC uses contrastive learning to optimize the
parameters of Encoder. This contrastive learning
aims to maximize the similarity of the query qi and
code function ci with label of yi = 1 while mini-
mizing the similarity of the query with unrelated
code snippets.

Given the query-code pair (qi, ci) in a batch of
size N , we consider the other N − 1 code snippets
as unrelated. The contrastive loss with in-batch
negative samples is defined as:

Lib = −
1

N − 1

N∑

j=1
j ̸=i

log
(
1− sim(qi,cj)

)
. (3)
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 def last_modified_date(filename): 

    """ Last modified timestamp as a UTC datetime """
   
    mtime = os.path.getmtime(filename)
    dt = datetime.datetime.utcfromtimestamp(mtime)
    return dt.replace(tzinfo=pytz.utc)

 
python get modified date

Query

Encoder EncoderShared
Weights

 def split_len(s, length):

 def timespan(start_time): 
Code Snippet def last_modified_date(filename): 

    """ Last modified timestamp as a UTC datetime """
   
    modified = os.path.getmtime(filename)
    dt = datetime.datetime.utcfromtimestamp(modified)
    return dt.replace(tzinfo=pytz.utc)

 
python get modified date

1. Keyword-based Data Augmentation for Contrastive Learning

(Eq. 2)
(Eq. 3)

2. Fine-tuning Siamese Network  
using Contrastive Learning

In-batch Negative

Figure 4: The fine-tuning process of siamese network
using KeyDAC. The boxes, colored in dark gray, indi-
cate the in-batch negative samples. The black solid line
denotes the binary cross-entropy loss and black dashed
lines denote the contrastive loss with in-batch negative.

The overall training objective is:

L = Lbce + Lib. (4)

Figure 4 illustrates the fine-tuning process of
siamese network with shared encoder using Key-
DAC. A black solid line denotes the binary cross-
entropy loss (Equation 2), and black dashed lines
denote the contrastive loss with in-batch negative
samples (Equation 3).

4 Experiments

4.1 Tasks

We evaluate the performance for two tasks, code
search and code question answering.
Code Search aims to retrieve the most relevant
code function c∗ in a collection of H code snippets
C = c1, . . . , cH according to a real user web query
qi. Following CoSQA, we use Mean Reciprocal
Rank (MRR) as evaluation metric.
Code Question Answering is a form of binary
classification and, thus, predicts a label of 1 or
0; the label indicates whether the code function
ci matches the search intent of the query qi. The
WebQueryTest uses accuracy score as its official
evaluation metric.

4.2 Datasets

We use CoSQA (Huang et al., 2021) and Web-
QueryTest (Lu et al., 2021) to evaluate the effec-
tiveness of KeyDAC. The queries in both datasets
are real user queries. Table 1 shows the data statis-
tics. Each number denotes the number of paired
queries and code snippets.
Code Search: We follow the same dataset split as
CoSQA. The number of candidate code snippets is
6,267 (H = 6, 267).
Code Question Answering: Each instance of We-
bQueryTest is a pair of a real user web query and a
Python code function. Following CoSQA, we train
the models using the CoSQA dataset, then use Web-
QueryTest as the test dataset. Since WebQueryTest
is an open challenge, we submit model predictions
to the CodeXGLUE official leaderboard, and report
the evaluated results.

4.3 Baseline Approaches

• In-batch: Contrastive learning method us-
ing in-batch negative (without data augmenta-
tion).

• CoCLR: Contrastive learning method with
query-rewritten data augmentation and in-
batch negative.

Huang et al. (2021) report that switching the posi-
tion of two random words in queries for the data
augmentation in CoCLR achieves the best perfor-
mance. Thus, we use switch as the query-rewriting
operation for CoCLR in the experiments (Table 2).

4.4 Experiment Setup

We set the batch size N as 32, the learning rate as
1e-5 and the fine-tuning epoch as 10. We use the
Adam optimizer (Kingma and Ba, 2014) to train
the models. We conduct all experiments on an
NVIDIA RTX3090 GPU with 24GB memory.

We use the following pre-trained models2:

• RoBERTa (Liu et al., 2019) is pre-trained
on a large natural language text corpus with
masked language modeling (MLM) objective.

• CodeBERT (Feng et al., 2020) is pre-trained
on six programming languages with MLM
and replaced token detection objectives.

2We use HuggingFace’s implementation for these models.
(https://huggingface.co/)

3613

https://huggingface.co/


Dataset Task Metric Train Valid Test

CoSQA (Huang et al., 2021)
Code Search MRR 19,604 500 500

Code Question Answering Accuracy 20,000 604 1,046∗

Table 1: Dataset statistics. * This is the number of test data in the WebQueryTest open challenge.

Model Approach Code Search Code Question Answering3

RoBERTa (Liu et al., 2019)
In-batch 58.37 ± 0.48 58.89
CoCLR 61.00 ± 0.98 60.70

KeyDAC 67.09 ± 0.37 60.99

CodeBERT (Feng et al., 2020)
In-batch 66.72 ± 0.35 57.36
CoCLR 68.42 ± 0.44 60.03

KeyDAC 72.76 ± 0.93 62.90

GraphCodeBERT (Guo et al., 2020)
In-batch 71.34 ± 0.46 63.73±1.28
CoCLR 71.78 ± 0.69 63.47±1.31

KeyDAC 74.93 ± 0.42 65.51±0.77

UniXcoder (Guo et al., 2022)
In-batch 71.87 ± 0.59 62.58±1.06
CoCLR 71.52 ± 0.85 62.10±0.52

KeyDAC 74.71 ± 0.45 64.14±0.78

Table 2: Results on code search and code question answering tasks. The best results for each model are highlighted
in bold.

• GraphCodeBERT (Guo et al., 2020) lever-
ages data flow of code for two structure-aware
pre-training tasks, including edge prediction
and node alignment.

• UniXcoder (Guo et al., 2022) is a unified pre-
trained model which uses code documentation
and AST for contrastive pre-training. We use
encoder of UniXcoder.

We deploy contrastive learning approaches to fine-
tune the aforementioned pre-trained language mod-
els.

4.5 Results

Table 2 compares different contrastive learning ap-
proaches to code search and code question answer-
ing. We report the mean performance with standard
deviation in 5 runs for code search task.3 Remark
that the in-batch negative contrastive learning ap-
proach (In-batch) does not use data augmentation.
We highlight the best results for each pre-trained
model in bold.

The results show that KeyDAC consistently
outperforms contrastive learning with in-batch

3For code QA task, we submit the prediction results
of 3 random seeds for the two best models and the pre-
diction results of 1 random seed for the others, since the
CodeXGLUE guideline discourages excessive submissions to
avoid P-hacking.

negative only (In-batch) and contrastive learn-
ing with query-rewritten data augmentation (Co-
CLR). GraphCodeBERT fine-tuned using KeyDAC
achieves the highest performance both on code
search and code QA tasks. We notice that CoCLR
drops code search performance of UniXcoder and
code QA performance of GraphCodeBERT and
UniXcoder. On the other hand, KeyDAC shows
consistent performance improvement.

5 Analysis

We use GraphCodeBERT as base model for fol-
lowing analyses since among four pre-trained mod-
els, GraphCodeBERT achieves the highest perfor-
mance on code search and code QA when fine-
tuned using KeyDAC.

5.1 The Effect of Preserving Keywords

From the experimental results, we observe that Key-
DAC consistently outperforms CoCLR. We hypoth-
esize that the main reason for the performance gain
is preserving keywords in data augmentation. We
study the effect of preserving keywords, especially
in queries to directly compare KeyDAC and Co-
CLR. We perform query-rewritten data augmenta-
tion in three ways: 1) Preserving keywords (same
as applying keyword-based data augmentation to
query only); 2) Deleting a random word (same as
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Component Rewriting Code Search

Query
Preserving keywords 72.03

Deleting a random word 71.07
Deleting a keyword 68.03

Table 3: Effect of preserving keywords in query-
rewritten data augmentation.

Model Data Augmentation Code Search

GraphCodeBERT

No augmentation 71.46
(Delete) 74.81
(Switch) 73.74
(Copy) 72.37

Table 4: Effect of NL rewriting operations. The result
in the first row indicates the performance of fine-tuning
GraphCodeBERT using in-batch negative only.

CoCLR with delete operation); 3) Deleting a key-
word. We analyze this via code search task on
CoSQA test set to avoid an excessive submission
of code QA prediction results to the WebQueryTest
leaderboard. Table 3 shows the results. We can ob-
serve that preserving keywords in query-rewritten
data augmentation achieves the best performance.
The deletion of keywords in queries shows signifi-
cant performance degradation. The results suggest
that keywords determined through our proposed
way (Figure 2) are important to the performance of
the semantic code search task.

5.2 The Effect of NL Rewriting Operation

We conduct experiments to investigate the effect
of different NL rewriting operations on the code
search task. Table 4 shows the code search perfor-
mance evaluated on the CoSQA test set. We ob-
serve that KeyDAC with all three NL rewriting op-
erations outperforms GraphCodeBERT fine-tuned
using contrastive learning with in-batch negative
only (No augmentation).

Among the three rewriting operations, delete
shows the best performance (highlighted in bold).
We conjecture that deleting unimportant words
helps to reduce the noise of data. For example,
user web queries often have a typo, and documenta-
tion often contains a special character such as >>>
to show the execution result.

5.3 Contribution of Each Component

We investigate the contributions of each compo-
nent to keyword-based data augmentation. Ta-
ble 5 shows the results for code search task on the
CoSQA test set. All five rows determine keywords
from pairs of query and code function with the

same way. However, the last four rows only mod-
ify each component as follows: 1) deleting unim-
portant words in queries; 2) deleting unimportant
words in function names; 3) deleting unimportant
words in documentations; 4) renaming variables
using keywords.

The results show that KeyDAC leveraging all
components (results in the first row) achieves the
best result. Among the results of KeyDAC using a
single component, documentation contributes the
most to performance, and the function name con-
tributes the least. Software developers typically use
an abbreviated function name but write documen-
tation in detail to describe the functionality of the
code snippet.

5.4 Case Study

We conduct a case study to analyze the consistent
code search ability of KeyDAC. More cases for
other pre-trained language models can be found
in Appendix A.1. In addition, we provide some
cases to compare the prediction results of CoCLR
and KeyDAC for code question answering task in
Appendix A.2

def _split_str(s, n): 
    """split string into list of strings  
 by specified number.""" 
    length = len(s) 
    return [s[i:i + n] for i in range(0, length, n)] 

split string into n parts pythonQuery:
Gold Code:

(a) A pair of real user web query and gold code function.

def _split_str(s, n): 
    """split string into list of strings  
 by specified number.""" 
    length = len(s) 
    return [s[i:i + n] for i in range(0, length, n)] 

def split_len(s, length): 
    """split string *s* into list of strings 
 no longer that *length*""" 
    return [s[i:i+length] for i in range(0, len(s), length)] 

def _split(string, splitters): 
    """Splits a string into parts at 
 multiple characters""" 
    part = ' ' 
    for character in string: 
        if character in splitters: 
            yield part 
            part = ' ' 
        else: 
            part += character 
            yield part  

Top-1 Code:

Top-2 Code:

Top-3 Code:

(b) Code search results with KeyDAC (top-3 results).

Figure 5: Code search results with KeyDAC on CoSQA
test set. The code snippets are searched from 6,267 can-
didates and ranked in the order of semantic relatedness.
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Model Component Keyword-based Data Augmentation Code Search

GraphCodeBERT

All Components NL Rewriting via delete & Variable Renaming 74.81
Query Deleting unimportant words in queries 72.03

Function Name Deleting unimportant words in function names 71.39
Documentation Deleting unimportant words in documentations 73.26

Code Statements Renaming variables using keywords 72.57

Table 5: The first row indicates the performance of KeyDAC which applied keyword-based data augmentation to all
components. The last four rows are the results of applying keyword-based data augmentation to a single component.

Figure 5 shows the code search results with Key-
DAC for the query split string into n parts python.
We only give the top-3 results due to the space limit.
KeyDAC returns the gold code function as its top-1
result. The other two code snippets have the same
functionality as the gold code, demonstrating the
consistent code search ability of KeyDAC.

5.5 Error Analysis

Figure 6 provides two error cases of KeyDAC on
code QA task. KeyDAC makes a wrong prediction
in the case of Figure 6(a). The purpose of the search
for the query is to calculate the l1 norm between
vectors. However, the functionality of the code is
computing l2 norm of a given array. The model
needs mathematical knowledge to understand the
difference between norm l1 and norm l2.

def l2_norm(arr): 
    """The l2 norm of an array is defined as: 
         sqrt(||x||), where ||x|| is the dot product  
        of the vector """ 
    arr = np.asarray(arr) 
    return np.sqrt(np.dot(arr.ravel().squeeze(), arr.ravel().squeeze())) 

python l1 norm between vectorsQuery:

Code:

Label:

Prediction:

0

0.6800 (1)  

(a)

def chmod_plus_w(path): 
    """Equivalent of unix `chmod +w path`""" 
    path_mode = os.stat(path).st_mode 
    path_mode &= int('777', 8) 
    path_mode |= stat.S_IWRITE 
    os.chmod(path, path_mode) 

python script chmod +x Query:

Code:

Label:

Prediction:

0

0.6027 (1)  

(b)

Figure 6: Two error cases of KeyDAC for code question
answering task on CoSQA validation set.

In the case of Figure 6(b), the search intent of
the query is to add the execution privilege (chmod

+x) while the functionality of the code is to add
the write privilege (chmod +w). KeyDAC fails
to understand the difference between +x and +w,
resulting in a wrong prediction. While software
developers can easily understand the difference of
Unix/Linux command chmod +x and chmod +w, it
is not trivial for the language models and humans
without programming knowledge.

The potential research direction is to incorporate
domain-specific knowledge, such as mathemati-
cal knowledge and programming knowledge, into
the pre-training or fine-tuning process of language
models to improve code search performance.

6 Conclusion

We have presented KeyDAC— keyword-based data
augmentation for contrastive learning, which gener-
ates more training query-code pairs while preserv-
ing important keywords for the code search task.
First, KeyDAC utilizes term matching technique
to identify important words from a query and code
components (function name and documentation).
Then, KeyDAC augments both a query and a code
snippet while preserving the identified keywords.
Finally, KeyDAC deploys contrastive learning us-
ing the augmented data to fine-tune the pre-trained
language models. We have demonstrated that Key-
DAC outperforms the current state-of-the-art per-
formance on both the code search and an open
challenge code question answering task.

Limitations

Given a query-code pair, KeyDAC identifies key-
words which share the same surface form by term
matching. In other words, KeyDAC identifies key-
words at the lexical level. As a future work, Key-
DAC can utilize external knowledge for keyword-
based data augmentation. For example, KeyDAC
can utilize WordNet to identify keywords based on
not only surface form, but also synonyms.
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A Case Study

We present case studies in the following sections
for code search on CoSQA test set and code ques-
tion answering on CoSQA validation set.

A.1 Code Search
The code snippets, shown in each case study, are
retrieved from 6,267 candidate Python code func-
tions.

def get_parent_dir(name): 
    """Get the parent directory of a filename.""" 
    parent_dir = os.path.dirname(os.path.dirname(name)) 
    if parent_dir: 
        return parent_dir 
    return os.path.abspath('.') 

how to get the parent directory in pythonQuery:
Gold Code:

(a) A pair of real user web query and gold code function.
def get_parent_dir(name): 
    """Get the parent directory of a filename.""" 
    parent_dir = os.path.dirname(os.path.dirname(name)) 
    if parent_dir: 
        return parent_dir 
    return os.path.abspath('.') 

def get_parent_folder_name(file_path): 
    """Finds parent folder of file 
 :param file_path: path 
 :return: Name of folder container""" 
    return os.path.split(os.path.split(os.path.abspath(file_path))[0])[-1] 

Top-1 Code:

Top-2 Code:

(b) Code search results with KeyDAC (top-2 results).

Figure 7: Code search results with KeyDAC on CoSQA
test set. Base model is RoBERTa.

def vector_distance(a, b):
    """The Euclidean distance between two vectors.""" 
    a = np.array(a) 
    b = np.array(b) 
    return np.linalg.norm(a - b) 

get eucliedan distance between two vectors pythonQuery:
Gold Code:

(a) A pair of real user web query and gold code function.
def _euclidean_dist(vector_a, vector_b): 
    """param vector_a: A list of numbers. 
        param vector_b: A list of numbers. 
        :returns: The euclidean distance between the two vectors.""" 
    dist = 0 
    for (x, y) in zip(vector_a, vector_b): 
        dist += (x-y)*(x-y) 
    return math.sqrt(dist)  

Top-1 Code:

Top-2 Code: def vector_distance(a, b):
    """The Euclidean distance between two vectors.""" 
    a = np.array(a) 
    b = np.array(b) 
    return np.linalg.norm(a - b) 

(b) Code search results with KeyDAC (top-2 results).

Figure 8: Code search results with KeyDAC on CoSQA
test set. Base model is CodeBERT. The query has a typo
eucliedan.

def get_domain(url): 
    """Get domain part of an url. 
 For example: https://www.python.org/doc/ -> https://www.python.org""" 
    parse_result = urlparse(url) 
    domain = "{schema}://{netloc}".format(schema=parse_result.schema, netloc=parse_result.netloc) 
    return domain 

python urlparse get domainQuery:
Gold Code:

(a) A pair of real user web query and gold code function.
def get_domain(url): 
    """Get domain part of an url. 
 For example: https://www.python.org/doc/ -> https://www.python.org""" 
    parse_result = urlparse(url) 
    domain = "{schema}://{netloc}".format(schema=parse_result.schema, netloc=parse_result.netloc) 
    return domain 

def parse_domain(url): 
    """parse the domain from the url""" 
    domain_match = lib.DOMAIN_REGEX.match(url) 
    if domain_match: 
        return domain_match.group() 

Top-1 Code:

Top-2 Code:

(b) Code search results with KeyDAC (top-2 results).

Figure 9: Code search results with KeyDAC on CoSQA
test set. Base model is UniXcoder.
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A.2 Code Question Answering
We use the CoSQA validation set, since the ground-
truth labels of WebQueryTest are not provided. All
cases are negative query-code pairs, such that the
code snippet does not match the search intent of
the query. The models predict a pair of query and
code as a negative pair when the cosine similarity
is lower than the threshold 0.5.

def split_strings_in_list_retain_spaces(orig_list): 
    """ 
 Function to split every line in a list, 
 and retain spaces for a rejoin 
 :param orig_list: Original list 
 :return: A List with split lines 
   """ 
    temp_list = list() 
    for line in orig_list: 
        line_split = __re.split(r'(\s+)', line) 
        temp_list.append(line_split) 
    return temp_list 

python remaining blanks spaces from listQuery:

Code:

Label:
Prediction:

0
CoCLR : 0.5123 (1)   /   KeyDAC : 0.4402 (0)

Figure 10: Case study for code question answering task
on CoSQA validation set. Base model is RoBERTa.

def connected_socket(address, timeout=3): 
    """yields a connected socket""" 
    sock = socket.create_connection(address, timeout) 
    yield sock 
    sock.close() 

how to create wrapped socket in pythonQuery:

Code:

Label:
Prediction:

0
CoCLR : 0.6983 (1)   /   KeyDAC : 0.4699 (0)

Figure 11: Case study for code question answering task
on CoSQA validation set. Base model is CodeBERT.

def strip_columns(tab): 
    """Strip whitespace from string columns.""" 
    for colname in tab.colnames: 
        if tab[colname].dtype.kind in ['S', 'U']: 
            tab[colname] = np.core.defchararray.strip(tab[colname]) 

remove character type coloumns from dataset using pythonQuery:

Code:

Label:

Prediction:

0

CoCLR : 0.6279 (1)   /   KeyDAC : 0.3833 (0)

Figure 12: Case study for code question answering task
on CoSQA validation set. Base model is GraphCode-
BERT.

def shape_list(l,shape,dtype): 
    """Shape a list of lists into the 
        appropriate shape and data type""" 
    return np.array(l, dtype=dtype).reshape(shape) 

python use numpy array as list in codeQuery:

Code:

Label:
Prediction:

0
CoCLR : 0.5239 (1)   /   KeyDAC : 0.4319 (0)

Figure 13: Case study for code question answering task
on CoSQA validation set. Base model is UniXcoder.
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Abstract

Significant developments in techniques such as
encoder-decoder models have enabled us to rep-
resent information comprising multiple modal-
ities. This information can further enhance
many downstream tasks in the field of infor-
mation retrieval and natural language process-
ing; however, improvements in multi-modal
techniques and their performance evaluation
require large-scale multi-modal data which of-
fers sufficient diversity. Multi-lingual mod-
eling for a variety of tasks like multi-modal
summarization, text generation, and transla-
tion leverages information derived from high-
quality multi-lingual annotated data. In this
work, we present the current largest multi-
lingual multi-modal summarization dataset
(M3LS), and it consists of over a million in-
stances of document-image pairs along with
a professionally annotated multi-modal sum-
mary for each pair. It is derived from news
articles published by British Broadcasting
Corporation(BBC) over a decade and spans
20 languages, targeting diversity across five
language roots, it is also the largest summa-
rization dataset for 13 languages and consists
of cross-lingual summarization data for 2 lan-
guages. We formally define the multi-lingual
multi-modal summarization task utilizing our
dataset and report baseline scores from various
state-of-the-art summarization techniques in a
multi-lingual setting. We also compare it with
many similar datasets to analyze the uniqueness
and difficulty of M3LS. 1

1 Introduction

The world we live in today is very diverse, with
over 7,000+ languages spoken across the globe2.
These languages have varying traits and are spoken
by communities of various sizes depending upon

*These authors contributed equally to this work.
1The dataset and code used in this work are made available

at https://github.com/anubhav-jangra/M3LS.
2https://www.ethnologue.com/guides/

how-many-languages

Table 1: Comparison of proposed dataset with existing
large-scale multi-lingual and multi-modal datasets.

Multi-lingual Summarization Datasets
Dataset Name Dataset Size #Languages Domain

XL-Sum (Hasan et al., 2021) 1M 44 News
MLSUM (Scialom et al., 2020) 1.5M 5 News

WikiLingua (Ladhak et al., 2020) 770K 18 Tutorials
MLGSum (Wang et al., 2021) 1.1M 12 News

M3LS (Ours) 1.1M 20 News
Multi-modal Summarization Datasets

Dataset Name Dataset Size Modalities Domain
MSMO (Zhu et al., 2018) 314K Text + Image News

E-DailyMail (Chen and Zhuge, 2018) 219K Text + Image News
How2 (Sanabria et al., 2018) 190K Text + Video + Audio Multiple Domains

MMSS (Li et al., 2018) 66K Text + Image News
VMSMO (Li et al., 2020) 185K Text + Video + Audio Social Network

M3LS (Ours) 1.1M Text + Image News

the popularity of the language. For example, Man-
darin consists of over 50,000 hanzi (characters) and
is spoken by over 1.117 billion people3, while there
exist languages like Rotokas, which is an indige-
nous language spoken by about 4,320 people on the
island of Bougainville, Papua New Guinea, which
consists of only 12 letters4.

These languages, although very crucial, restrict
people to communicate their thoughts to others
who speak the same language. The gift of sight,
however, is something that is universally shared
by every human being on this plant, irrespective
of their culture, ethnicity, or the language that they
speak. Through this work we aim to instigate the re-
search towards improving existing automatic sum-
marization systems by leveraging information from
multiple languages and visual modalities.

Various studies in the past have illustrated how
unified summarization frameworks across multi-
ple languages improve the summarization quality
over mono-lingual frameworks (Wang et al., 2021).
Similarly, there have been works in multi-modal
summarization that illustrate how multi-modal in-
put can help improve the quality of summariza-
tion over text summarization systems (Jangra et al.,
2020a,b; Chen and Zhuge, 2018; Mukherjee et al.,

3https://www.berlitz.com/en-uy/blog/
most-spoken-languages-world

4https://en.wikipedia.org/wiki/Rotokas_
language
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2022). Additionally, having multiple modalities in
the output summary can help improve the overall
satisfaction of the user (Zhu et al., 2018; Jangra
et al., 2021b). Multiple modalities can also com-
pensate for the inability of individual modalities
to express various aspects of the summary. For
instance, it is hard to express abstract concepts like
“freedom", “gravity", etc. through images, while it
can be expressed through text conveniently. Simi-
larly, it is very difficult to describe a “Pangolin" to
someone who hasn’t seen one beforehand.

Hence, in this work we propose the task of Multi-
modal Multi-lingual Summarization (M3LS), and
also release the M3LS dataset5 to facilitate the re-
search in this direction. The dataset comprises
1.1M news articles, spanning 20 languages com-
prising English, Chinese, Spanish, Russian, French,
Ukrainian, Portuguese, Japanese, Tamil, Hindi,
Marathi, Gujarati, Bengali, Sinhala, Urdu, Pashto,
Indonesian, Telugu, Punjabi, and Nepali; making
it the largest language-spanning summarization
dataset. To the best of our knowledge, the pro-
posed dataset is the largest summarization dataset
for 13 languages (Russian, Ukrainian, Tamil, Hindi,
Marathi, Gujarati, Bengali, Sinhala, Urdu, Pashto,
Telugu, Punjabi, and Nepali).

We hope that the proposed task and the dataset
will instigate and inspire multi-modal and multi-
lingual research in less-explored languages for
solving various tasks including but not limited to
automatic summarization (Nallapati et al., 2016;
See et al., 2017), article headline generation (Jin
et al., 2020; Gavrilov et al., 2019; Zhang et al.,
2018), keyword extraction (Showrov and Sobhan,
2019; Lee and Kim, 2008; Yao et al., 2019), image
caption generation (Xu et al., 2015; Bai and An,
2018), multi-modal embedding generation (Sun
et al., 2019; Lu et al., 2019; Li et al., 2019; Zhou
et al., 2020), large-scale language modeling (Raffel
et al., 2020; Devlin et al., 2019) etc.

The major contributions of this work are as fol-
lows - 1) We have proposed the multi-modal multi-
lingual summarization (M3LS) task. 2) We have
released the largest multi-modal summarization
dataset that spans 20 languages. 3) The proposed
dataset is the largest text summarization dataset
for 13 languages. 4) To the best of our knowl-
edge, we present the first ever multi-modal cross-
lingual dataset (consisting of Japanese-to-English

5A sample of our dataset is available at https://github.
com/zenquiorra/M3LS, the complete dataset will be released
in the camera ready version of the work

and English-to-Japanese). 5) We have provided
multi-modal summarization baseline results for our
dataset and a detailed analysis of the dataset.

2 Related Work

The field of text summarization is more than 5
decades old (Edmundson, 1969), and has evolved
to a great extent in recent years. Prior to the
advances in sequence-to-sequence frameworks
(Sutskever et al., 2014), people mainly focused
on extractive summarization techniques that aim to
generate summary via extracting words, phrases, or
sentences (Mihalcea and Tarau, 2004; Saini et al.,
2019; Alguliev et al., 2010). See et al. (2017) pro-
posed the Pointer-Generator Networks, an attentive
recurrent neural network based framework (Bah-
danau et al., 2015). Recent years have seen great
progress in research in automatic summarization
leveraging transformer based models (Zhang et al.,
2020; Devlin et al., 2019) and attention mechanism
(Vaswani et al., 2017).

In this section we discuss the related works
showcasing multi-modal datasets and multi-lingual
datasets. A detailed size comparison of these
datasets with M3LS is shown in Table 1.

2.1 Multi-modal summarization datasets

Multi-modal summarization is the task of summa-
rizing content comprising two or more input modal-
ities. The output can be uni-modal or multi-modal
depending on the task. In this section, we dis-
cuss existing large-scale multi-modal summariza-
tion datasets proposed in the community. We point
the readers to Jangra et al. (2021a) for a compre-
hensive survey.

MSMO: Zhu et al. (2018) proposed a multi-
modal summarization dataset that consists of text
and images. The dataset is obtained from the
DailyMail6 website and contains 314,581 in-
stances in English language. However, Hasan et al.
(2021) illustrated that the DailyMail news high-
lights lack novel n-grams. Fabbri et al. (2021) also
highlighted the inconsistency in quality of some ref-
erence summaries in the CNN/DailyMail dataset
(Nallapati et al., 2016).

E-Dailymail Chen and Zhuge (2018) proposed
the E-Dailymail dataset, which contains text and
images extracted from the DailyMail website. The
dataset consists of 219,100 instances in English,

6https://www.dailymail.co.uk/home/index.html
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containing the input document, article title, images,
and image captions.

How2: Sanabria et al. (2018) proposed a multi-
modal summarization dataset consisting of text,
video, and audio modalities; it contains over 2000
hours of videos accompanied by the corresponding
audio and speech transcriptions.

MMSS: Li et al. (2018) proposed a multi-modal
summarization dataset consisting of text and im-
ages with the aim of proposing an image-aided
sentence summarization framework. The dataset
has 66K instances in English language, that is gen-
erated by extracting sentence-headline pairs from
the Gigaword corpus7.

VMSMO: To the best of our knowledge, Li
et al. (2020) proposed the first large-scale asyn-
chronous text-audio-video summarization dataset.
The dataset is generated from the famous mi-
croblogging platform Sina Weibo8, and comprises
of 184,920 instances in Chinese language.

Similar trends of incorporating multiple modali-
ties in language tasks can also be noticed in several
tasks like question answering (Singh et al., 2021),
translation (Elliott and Kádár, 2017), sentiment
analysis (Soleymani et al., 2017), lexico-semantic
classification (Jha et al., 2022), keyword extraction
(Verma et al., 2022) etc.

2.2 Multi-lingual Text Summarization
Datasets

The popularity of studying the benefits of summa-
rization in different languages to improve summa-
rization qualities increased over the past few years.
There have been a lot of research work in bi-lingual
setting; however, in this work, we limit ourselves
to discussing multi-lingual summarization datasets
to be concise.

MLSUM : Scialom et al. (2020) proposed the
MLSUM dataset that consists of 1.5 million news ar-
ticles obtained from the Dailymail/CNN websites.
The dataset spans five languages - French, German,
Spanish, Russian and Turkish.

XL-Sum: Hasan et al. (2021) proposed the
XL-Sum dataset that consists of 1.35 million articles
in 44 languages obtained from BBC news, making
it the most language-diverse summarization dataset
to date. However, 25 of these 44 languages do not
contain even 10,000 instances, making it incompe-
tent to train any language model.

7https://github.com/harvardnlp/sent-summary
8http://ir.weibo.com/

WikiLingua: Ladhak et al. (2020) proposed the
Wikilingua dataset, which is the largest parallel
multi-lingual summarization to date. The dataset
consists of 770K instances in English language,
and is extended to 17 other languages for varying
number of English articles.

MLGSum: Wang et al. (2021) proposed the
MLGSum dataset that consists of articles from var-
ious news providers such as BBC, france243 and
select faz. The dataset has five high-resource
and seven low-resource languages, with a total of
1.1 million instances, and is a rich source for text
summarization for German language with 500K
instances.

We observe that multiple popular datasets (see
Table 1) in multimodal summarization and multi-
lingual summarization are useful for both technique
evaluation and technique improvisation. However,
the combined field of multilingual multimodal sum-
marization has remained largely unexplored, and
it can be attributed to the lack of dedicated high
quality dataset and formalizing it as a problem state-
ment. Hence, we formally define the M3LS task and
discuss the dataset addressing the problem further.

3 M3LS Task

Given for each language lk ∈ L where L is the set
of all languages, we have dataM lk =< T lk , I lk >,
where T lk =

{
tlk1 , t

lk
2 , . . . , t

lk
|T |
}

is a set of docu-

ments, and I lk = {It
lk
1 , It

lk
2 , . . . , I

t
lk
|T |} is a set

of images, where It
lk
j =

{
i1, i2, . . . , i|I|

}tlkj de-
notes the set of images belonging to the document
tlkj ∈ T kk and |.| denotes the cardinality of a set.

The task is to obtain a function F that maps
documents t

lk1
j ∈ T lk1 in language lk1 along with

their corresponding images, It
lk1
j ∈ I lk1 to a set

of multi-modal summaries in target language, lk2 ,
comprising of text summaries (denoted by Olk2 )
along with images from the input (denoted by I lk1 ).

F :< T lk1 , I lk1 >→< Olk2 , I lk1 > (1)

When k1 ̸= k2, we have multi-modal cross-
lingual summarization, otherwise the task is multi-
modal mono-lingual summarization, a graphic rep-
resentation of the task is shown in Figure 1.

4 M3LS Dataset

Through the M3LS task, we motivate the need for a
multi-modal multi-lingual dataset by studying the
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k1 != k2k1 = k2

Input

Cross-lingual SummaryMono-lingual Summary

President Joe Biden says 
efforts to evacuate people 

from Kabul airport are 
accelerating, with US 
troops expanding the 

perimeter around the site.

Many thousands of Afghans have been queuing at the gates in 
desperate attempts to flee the country after the Taliban swept 

to power on 15 August. Mr Biden said on Sunday that the US 
had flown nearly 28,000 people out of the airport in the past 
week. He faces pressure to extend a deadline for evacuations 

beyond 31 August. Extra text from a bit lower part of the 
document but will be a good example to add in text above: 

Earlier, the Pentagon said in a statement that 18 commercial 
planes would be used to help transfer evacuees to third 

countries from safe sites outside Afghanistan…..

米政府は22日、タリバンが
権力を握ったアフガニスタン
からの緊急避難に、民間機
を利用する方針を明らかに

した。

Figure 1: Proposed M3LS task.

developments in summarization techniques such as
secondary enhancements using images with multi-
modal output (Zhu et al., 2018), video-based multi-
modal summarization (Li et al., 2020) and using
multiobjective optimization (Jangra et al., 2020b).
On the other hand, development of multi-lingual
transformer based models like Xue et al. (2020)
has publicly available checkpoints fine-tuned for
multiple language modelling tasks, including multi-
lingual summarization.

Development of such models requires high-
quality heterogeneous data and improvements in
various models utilizing multi-modal shared atten-
tion layers for annotated data with image-text pairs
for a specific language task. To address these is-
sues, we present M3LS and in this section we discuss
various steps involved in its construction.

4.1 Dataset Construction

We explore the news domain, as it is one of the
most abundant and readily available domains and
covers articles in multiple topics, while describ-
ing the events and lacking extreme bias. We ana-
lyzed the structure of articles and surveyed multi-
ple news providers before finalizing on BBC News,
which provides full sentence summaries in a uni-
form structured format across multiple languages.
The summaries are professionally created by the
author which ensures the quality of the data. We ex-
plain the steps involved in creating the M3LS dataset
and discuss various aspects of the data.

BBC News: BBC News9 is a division of British
Broadcasting Corporation responsible for gather-
ing and broadcasting current news affairs. Each
BBC news article has a text summary comprising
complete sentences in the present tense, avoiding
opinions and sensationalism. We cover 20 different
languages with summaries written in correspond-
ing languages. We extract data from various parts

9https://www.bbc.com/news

URL

TitleDate Reference Image 
with Caption

Document 
Summary

Text 
Document

Subsection

Subheading

Figure 2: Snapshot format of a webpage used in devel-
opment of M3LS, and various features extracted during
the scraping procedure

of the webpage as shown in Figure 2.
Obtaining Articles: We obtain links to articles

from the corresponding Twitter10 pages for each
BBC language news dataset. To extend the dataset,
we scrape11 valid links12 obtained from the parsed
articles of each language.

The final collection of links is scraped sepa-
rately using scrapy13 to obtain the final dataset.
Since these links are showcased at the correspond-
ing twitter page, these links ensure articles con-

10https://twitter.com/bbc
11Data is collected in accordance with the terms and condi-

tions mentioned on the website
12A link is valid if it contains a BBC article summary for

the corresponding domain.
13https://scrapy.org
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taining topics of interest and high popularity. We
extend the dataset by recursively extracting links
from suggestions and hyperlinks within a webpage.

Structuring the Data: We obtain various fea-
tures from the webpage as shown in Figure (2), and
compile them in a JSON format; we also provide a
dedicated parser, instructions and a tutorial for the
ease of access of features from any instance. The
data is freely available for use in accordance with
the terms and conditions of BBC News, we discuss
this in detail on the same link where our dataset is
uploaded.

Text Validation: In order to ensure high-quality
text from the source, we manually read 10 instances
from each language14 from the collected links to
verify if the articles are descriptive in nature and
consist of text written in complete sentences.
Summary Validation: We manually checked the
summary quality for 100 articles each in 4 lan-
guages15 from our dataset and validated if the given
summary captures the information represented in
the text. For every article, after carefully reading
the text, we assign the gold summary a score be-
tween 1-5 with 5 being the best possible summary
which captures most of the important information
from the given article and vice versa, and also in-
cluding parameters like summary length and length
of the article. We observe that for > 70 articles
across the languages evaluated obtain a score of
> 4 out of 5 in our analysis. Assuming the unifor-
mity of articles published by BBC across multiple
domains, we assume that this fact is true for every
language in our dataset.
Final Dataset: In final dataset, each news arti-
cle contains the text document, images with corre-
sponding captions, keywords, links to related news
articles, and a multi-modal summary comprising
of a few sentences and an image.
Cross-lingual Dataset: Our cross-lingual dataset
contains all features from our final dataset, along
with multi-modal summaries consisting of text in
another language. It is obtained from the links
given by the author within the Japanese language
article to the corresponding article in English lan-
guage, we manually check the information pro-
vided in both articles using Google Translate16

14For languages unknown to the authors, we use Google
Translatehttps://translate.google.com to translate the
content in English language

15We restrict ourselves to 4 languages (English, Hindi,
Bengali and Marathi) due to the understanding of languages
of the authors presenting this work

16https://google.com/translate

for 100 instances to verify the similarity of the
content and summaries provided.
Train-Test-Validation split: The dataset has 1.2
million news articles which we split into 80% train-
ing, 10% test and 10% validation for languages
having ≤ 50,000 articles, otherwise we select 90%
data for training, 5% for testing and 5% as valida-
tion split.

5 Dataset Analysis

5.1 Overview

The M3LS dataset has 1.11M+ multi-lingual multi-
modal instances across 20 languages and over 9K
cross-lingual multi-modal instances for English-
Japanese language pair. The dataset can be cat-
egorized into 8 high resource languages and 12
low resource languages17 (refer to Appendix B for
more details). The chosen languages originate from
different parts of the globe, and belong to 5 differ-
ent language roots: Indo-European, Austronesian,
Japanic, Dravidian, and Sino-Tibetan.

M3LS dataset is quite diverse, with the least #ar-
ticles for Sinhala (10,148) and greatest #articles
for English (376,367). The dataset becomes even
more complex and challenging with different sizes
of input documents for different languages, with
document size varying from 3̃30 tokens to over
2800+ tokens. The dataset articles cover a wide
time span, with articles from 2009 to 2021 (refer
to Appendix A for more details).

We hope that the M3LS dataset will instigate and
inspire research in less-explored languages, since
14 out of these 20 languages covered by the dataset
are among the top-20 most spoken languages in the
world18; this diversity helps in modelling tasks for
both well-explored and less-explored languages.

5.2 Dataset Comparison

To study the size and span of our dataset, we com-
pare M3LS with other summarization datasets ex-
tracted from the BBC News domain. We found
that XSum contains 53% of the tokens from our
dataset, while XL-Sum contains 58% of the tokens
from our dataset across all languages present in
M3LS. However, they are uni-modal in nature, while
XSum is uni-lingual. We observe that M3LS is mag-
nitudes larger when compared to XSum, while ex-

17The categorization is done based on a threshold value of
50k data instances.

18https://lingua.edu/the%2D20%2Dmost%2Dspoken%
2Dlanguages%2Din%2Dthe%2Dworld%2Din%2D2022/
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ceeding by times 2-3 in almost all individual lan-
guage instances when compared to XL-Sum. Both
of these datasets are used to train and fine-tune
several state-of-the-art-summarization models like
Pegasus, hence we believe that M3LS will offer
a wider and better language modelling support in
terms of size and diversity for the languages present
in it, with the additional benefit of multi-modality.

6 Experiments

6.1 Setup

Depending upon the number of instances in
each language within M3LS, we perform a
train:test:validation split with a ratio of 80:10:10 if
the number of instances is below 50K and 90:5:5
otherwise. To conduct our experiments in a multi-
lingual setting, we survey publicly available tok-
enizers and sentence segmenters for multiple lan-
guages, and we combine them within one dedicated
package for our experiments. We further define a
set of rules for sentence segmentation for languages
lacking such support from external packages within
our package19.

We compile our package using segtok20 for the
Indo-European language, IndicNLP21 for Indian
languages, fugashi (McCann, 2020) for Japanese
(ja) and chinese22 for Chinese.

For data pre-processing steps such as stopword
removal, we collect stopwords from the nltk23

package, and publicly available stopwords present
in the spaCy24 repository for all languages in a
centralized pipeline for our experiments.

We evaluated the performance of various sum-
marization techniques utilizing our dataset, includ-
ing simpler techniques such as LEAD-3 and RANDOM
which have proven to be quite useful in past (Gha-
landari et al., 2020; Scialom et al., 2020; Sharma
et al., 2019). We have also included statistics based
CENTROID (Radev et al., 2004) and graph based
TextRank (Mihalcea and Tarau, 2004) techniques.

To have a fair comparison across multiple lan-
guages using a shared dedicated model, we have
evaluated the performance of an abstractive tech-
nique in a multi-lingual setting utilizing a pre-

19https://github.com/zenquiorra/TokSeg
20https://pypi.org/project/segtok/1.1.0/
21https://github.com/anoopkunchukuttan/indic_

nlp_library
22https://pypi.org/project/chinese/
23https://nltk.org/
24https://github.com/explosion/spaCy/tree/

master/spacy/lang

trained checkpoint25 for summarization of the
transformer-based MT5 (Xue et al., 2020) model.
Finally to explore the multi-modal aspect of our
dataset, we evaluate the performance of a multi-
modal encoder-decoder based technique (Zhu et al.,
2018) that utilizes images and text to generate a
multi-modal text summary. However the publicly
available implementation26 for MSMO restricts us to
evaluate it only for the English language. However,
to compare this score, we evaluate the performance
of three state-of-the-art transformer-based models
- Pegasus (Zhang et al., 2020), BART (Lewis et al.,
2020), and T5 (Xue et al., 2020) for summarization
which are compatible with the English language.

Since, two of the pre-trained models we de-
scribed above are fine-tuned on XSum and XL-Sum
datasets which are extracted from the same source -
BBC News - we avoid fine-tuning on models to have
a fair comparison of the models and we explain the
scores in discussions.

In all techniques, we set the generated summary
length threshold as the average length of gold sum-
mary for the corresponding language in our corpus.

6.2 Baselines

Simpler Extractive Approaches
LEAD-3: In this baseline, the first three sen-

tences of the source text are extracted as the final
summary. This method is a robust baseline, as
shown by (Sharma et al., 2019) for news summa-
rization datasets.

RANDOM: We recursively extract words ran-
domly from the source text until the threshold sum-
mary length is reached. The aim of this baseline is
to understand and compare other baselines with an
unbiased model as a point of reference.
Statistical Approach

CENTROID: We use the strategy proposed by
Radev et al. (2004), which ranks sentences based
on the centrality scores obtained by the words in the
sentence. We use TF-IDF scores to measure each
word’s similarity, and extract top sentences from
each ranking until the threshold summary length is
obtained.
Graph Based Approach

TEXTRANK: TextRank (Mihalcea and Tarau,

25https://huggingface.co/csebuetnlp/mT5_
multilingual_XLSum

26We use the implementation provided by the authors,
which is a multi-layered package, modification of which to be
compatible for a multi-lingual setting isn’t feasible based on
the software complexity

3625

https://github.com/zenquiorra/TokSeg
https://pypi.org/project/segtok/1.1.0/
https://github.com/anoopkunchukuttan/indic_nlp_library
https://github.com/anoopkunchukuttan/indic_nlp_library
https://pypi.org/project/chinese/
https://nltk.org/
https://github.com/explosion/spaCy/tree/master/spacy/lang
https://github.com/explosion/spaCy/tree/master/spacy/lang
https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum
https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum


2004) is an unsupervised graph-based ranking tech-
nique based on the relevance of sentences in the
source text27 We consider the sentences which are
most central to the document based on the ranking
as generated summaries.
RNN Based Approach

MSMO: MSMO (Zhu et al., 2018) is an encoder-
decoder model trained for multi-modal summariza-
tion. It utilizes a multi-modal attention mechanism
to generate multi-modal summaries utilizing text
and images.
Transformer Based Approaches

MT5: MT5 (Xue et al., 2020) is a transformer-
based seq2seq model pretrained for multiple natu-
ral language tasks. We use the publicly available
checkpoint28 pre-trained for text summarization
on the XL-Sum dataset (Hasan et al., 2021) for a
multi-lingual setting.

PEGASUS: Pegasus (Zhang et al., 2020) is a
transformer-based model, pre-trained on a task to
remove meaningful sentences from an input text,
making it suitable for summarization. We used a
checkpoint29 of PEGASUS model pre-trained on the
XSum dataset (Narayan et al., 2018) for summa-
rization.

BART: BART (Lewis et al., 2020) uses a stan-
dard seq2seq architecture with a bi-directional en-
coder and a left-to-right decoder. We use a pre-
trained model trained on the DailyMail/CNN (Nal-
lapati et al., 2016) for our evaluation.

T5: T5 (Raffel et al., 2020) is an encoder-
decoder model trained on a mixture of natural lan-
guage tasks, including translation and summariza-
tion; it converts any task into a text-to-text format.
We use the pre-trained T5-large model for the
summarization task.

7 Results and Discussion

We evaluate the generated summaries against the
gold summaries using the ROUGE (Lin, 2004) eval-
uation metric. We report the ROUGE-1, ROUGE-2,
ROUGE-L f-scores across every baseline discussed
above (Lin, 2004) (refer to Tables 1 and 3). We ad-
ditionally report BERTSCORE for English baselines
(Zhang et al., 2019) (refer to Table 1).

27We use the implementation provided by the
gensimhttps://radimrehurek.com/gensim_3.8.3/
summarization/summariser.html package and modify the
segmentation and tokenizer part using our dedicated package.

28https://huggingface.co/csebuetnlp/mT5_
multilingual_XLSum

29https://huggingface.co/google/pegasus-xsum

Table 2: Comparison of “ROUGE" fscores for sum-
maries generated using Multi-modal baseline MSMO and
Unimodal transformer based baselines against gold sum-
maries from the English language dataset . “R-f1" de-
notes ROUGE-1 fscore, “R-f2" denotes ROUGE2 f-
score, “R-fL" denotes the ROUGEL fscore, and “BrS"
denotes BERTSCORE.

English R-f1 R-f2 R-fL BrS
BART 0.195 0.031 0.131 0.863
Pegasus 0.389 0.181 0.321 0.910
T5 0.197 0.0328 0.131 0.858
MSMO 0.217 0.046 0.158 0.851

7.1 Multi-lingual baseline scores
We observe that transformer based techniques used
in our experiments perform significantly better
compared to other techniques. However, for the
“MT5" column, we observe very high scores and
spikes of very low scores as observed in Table 3,
this behavior maybe caused due to two factors:

• Relatively high scores can be attributed to the
use of “MT5" checkpoint that is fine-tuned
for the task of summarization on a dataset
(XL-Sum) obtained from same source as ours.

• Very low scores for some languages can be
attributed to the “ROUGE" evaluation met-
ric which relies on token overlap30. Many
of these languages, especially the ones with
Dravidan and Indo-European origins have
words which change their form significantly
depending on their placement in the text and
the context in which they appear, hence sim-
ple token overlap metrics show lower scores
if the root form of the word isn’t considered.

We observe that LEAD-3 performs better for the
languages in which transformer-based baseline per-
forms poorly, this can be attributed to two factors:

• As shown by Sharma et al. (2019) that LEAD-3
performs very well for summarization tasks
when we consider the news domain, suggest-
ing the idea that top sentences capture a lot of
information within a news article.

• LEAD-3 considers top-3 sentences from the
text, unlike abstractive summarization, new

30We are not implementing stemming of tokens during eval-
uation, due to the lack of support of multi-lingual stemming
methods across various softwares which we have used for
experimentation and to have an even comparison with the
supported languages
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Table 3: Performance of various techniques for summarization against the M3LS dataset gold summaries for every
language. “Lang" refers to the language code for a language according to the ISO 639-1 standard, “R-f1" refers to
the ROUGE-1 f-scores, “R-f2" refers to the ROUGE-2 f-scores, “R-fL" refers to the ROUGE-L f-scores

Base Random LEAD-3 TextRank CENTROID MT5
Lang R-f1 R-f2 R-fL R-f1 R-f2 R-fL R-f1 R-f2 R-fL R-f1 R-f2 R-fL R-f1 R-f2 R-fL

bn 0.003 0.000 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.001 0.003
mr 0.013 0.000 0.012 0.041 0.005 0.040 0.025 0.002 0.025 0.006 0.001 0.006 0.044 0.005 0.044
gu 0.014 0.001 0.014 0.039 0.005 0.038 0.014 0.001 0.014 0.016 0.002 0.016 0.036 0.005 0.036
ps 0.002 0.000 0.001 0.000 0.000 0.000 0.002 0.000 0.001 0.000 0.000 0.000 0.003 0.000 0.001
uk 0.030 0.002 0.029 0.062 0.016 0.061 0.043 0.010 0.042 0.032 0.006 0.032 0.094 0.025 0.094
pt 0.179 0.009 0.114 0.204 0.033 0.124 0.199 0.030 0.128 0.089 0.008 0.075 0.276 0.085 0.193
id 0.118 0.001 0.083 0.172 0.037 0.117 0.144 0.030 0.104 0.104 0.014 0.080 0.289 0.115 0.233
ne 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
pa 0.012 0.000 0.012 0.038 0.004 0.038 0.014 0.001 0.014 0.010 0.002 0.010 0.026 0.000 0.026
si 0.014 0.000 0.014 0.032 0.004 0.031 0.019 0.002 0.019 0.007 0.001 0.007 0.039 0.018 0.039
ur 0.006 0.000 0.006 0.023 0.001 0.023 0.006 0.000 0.005 0.024 0.001 0.023 0.044 0.000 0.044
fr 0.168 0.007 0.107 0.206 0.043 0.126 0.177 0.033 0.115 0.164 0.024 0.110 0.209 0.041 0.141
ru 0.032 0.001 0.032 0.071 0.017 0.069 0.041 0.012 0.040 0.036 0.008 0.036 0.081 0.011 0.081
ja 0.069 0.001 0.068 0.126 0.012 0.120 0.084 0.007 0.081 0.063 0.004 0.062 0.306 0.081 0.291
te 0.010 0.000 0.009 0.023 0.001 0.023 0.011 0.000 0.011 0.008 0.001 0.008 0.026 0.000 0.026
ta 0.014 0.001 0.014 0.034 0.005 0.034 0.023 0.003 0.022 0.012 0.001 0.012 0.026 0.000 0.026
zh 0.022 0.001 0.022 0.053 0.008 0.051 0.042 0.005 0.041 0.025 0.003 0.025 0.125 0.042 0.118
es 0.177 0.008 0.117 0.180 0.033 0.117 0.110 0.018 0.073 0.081 0.008 0.067 0.280 0.084 0.202
hi 0.010 0.000 0.010 0.018 0.002 0.018 0.013 0.001 0.013 0.005 0.000 0.005 0.002 0.000 0.001
en 0.146 0.002 0.102 0.175 0.026 0.114 0.100 0.014 0.071 0.140 0.016 0.102 0.427 0.182 0.345

tokens or new forms of existing tokens are
not present in the given article. Since it is
an extractive technique, the chances of token
overlap are higher and hence better “f-scores".

7.2 Multi-modal baseline scores

Due to the limitation of lack of pre-trained frame-
works in a multi-modal setting for most of the lan-
guages in the dataset, we were constrained to eval-
uate the multi-modal technique on the English
dataset. On comparing the “f-scores" of various
uni-modal techniques with the multi-modal tech-
nique, we notice that the transformer based model
Pegasus outperforms other techniques. This is
largely attributed to the fact that the pre-trained
checkpoint we have used for evaluation of sum-
maries through the Pegasus model is fine-tuned
on the XSum dataset, which has data collected from
the same source as ours. We observe that for other
models which are not fine-tuned on a dataset ex-
tracted from same source as ours, the multi-modal
technique MSMO is able to outperform other tech-
niques.

7.3 Abstractiveness of the proposed dataset

We propose an abstractive summarization dataset
where the target summaries are manually written
by human beings. The M3LS dataset demands ab-
stractive techniques since the percentage of novel

uni-grams in the dataset is quite high (refer to
“abs.gold" column in Appendix B). This fact is also
observed in the results from the baseline techniques.
For instance, MT5 performs consistently superior
for multiple languages as observed in Table3, the
abstractive baselines have thrice as good ROUGE
scores as the extractive baselines.

8 Conclusion

In this work, we release a large-scale multi-modal
multi-lingual summarization dataset comprising
of over 1.1M+ news articles and spanning 20 lan-
guages, and motivate the problem statement of
Multi-modal Multi-lingual summarization using
M3LS. To the best of our knowledge, this is the
first ever multi-modal summarization data set span-
ning several languages. The proposed dataset is
the largest summarization dataset for 13 out of 20
languages. We have evaluated the performance
of various baselines to establish the quality of the
proposed dataset in both multi-modal and multi-
lingual settings. Through this work, we hope to in-
stigate research in various less-explored languages
in the community for various research problems in-
cluding but not limited to summarization, headline
generation, keyword extraction, image caption gen-
eration, multi-modal embedding generation, etc. In
future works, we plan to work on shared models
which address the M3LS task utilizing our dataset.
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Limitations

There are a few considerations to keep in mind in
our work. First, the dataset currently has a multi-
modal input, mapping to a textual summary. How-
ever, future work could involve annotating images
to enhance the dataset with a multi-modal output.
Second, the distribution for languages in the M3LS
dataset is skewed due to the imbalanced number of
articles published in BBC across languages and the
late establishment of virtual print media in certain
languages (as shown in Appendix A). Third, the
current dataset uses an independent identically dis-
tributed split to create train and test sets, but more
advanced techniques such as adversarial splits and
likelihood splits could also be explored in future
work. Fourth, while the current manuscript does
not evaluate the dataset on both multi-modal and
multi-lingual aspects simultaneously, we believe
that this dataset has the potential to contribute to
the development of such systems in the future.
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A Frequency of number of articles
present in the M3LS dataset for a given
year
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Figure 3: Temporal span of each language in the M3LS
dataset. Darker colors correspond to a score of 1.0 and
vice versa, which indicates a higher frequency of the
number of articles published during the year for that
language.

B Detailed Statistics of M3LS dataset

The detailed statistics of the curated M3LS dataset
are presented in Table 4.
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Table 4: “Lang." represents the language code from the IS0 639-1 standard, articles represents the number of articles
for every language in the corpus, toks. represents the average number of tokens in an article within the corpus for
the language, tok.uni. represents the average number of unique tokens in any article for the language, sum.tok.
represents the average number of tokens in summary of an article for the language, sum.uni represents the average
number of unique tokens within the summary of an article for the language, sent. represents the average number of
sentences in a given article for the language, abs.gold represents the average percent of tokens in summary which
are absent from the article for a given language, images represents the average number of images in an article for
the given language, i.c.r represents the average ratio of the number of images consisting of a caption attached to
them against the number of images which do not have a caption with them.

Lang. articles tok. tok.uni. sum.tok. sum.uni. sent. abs.gold images i.c.r

bn 25283 464.78 254.73 23.12 21.97 28.42 43.18 2.44 0.58
mr 16161 871.36 404.82 27.88 25.02 63.32 48.33 0.00 0.00
gu 12175 868.75 404.84 25.87 23.63 50.11 40.87 4.94 0.30
ps 23205 523.35 207.95 32.85 27.52 18.29 33.32 2.10 0.49
uk 90846 471.90 216.57 24.59 22.78 23.49 54.07 1.56 0.22
pt 39454 2855.68 424.14 38.57 33.01 114.22 35.23 3.34 0.64
id 56108 587.88 225.12 24.59 22.89 28.54 37.07 2.47 0.57
ne 18953 402.17 229.71 21.50 20.95 23.79 45.00 2.07 0.24
pa 11600 843.74 319.75 30.96 27.35 38.87 30.42 4.57 0.37
si 10148 331.55 186.26 24.30 23.43 15.53 51.33 1.67 0.34
ur 55107 690.47 264.57 35.95 31.00 1.07 27.94 2.35 0.43
fr 25923 413.45 179.22 31.22 27.26 14.43 40.75 1.64 0.47
ru 95345 668.61 302.63 28.38 25.74 26.68 52.80 1.96 0.38
ja 11023 1052.94 282.58 48.59 36.97 33.92 29.86 2.90 0.56
te 15511 626.24 353.70 23.71 21.39 51.72 52.19 4.41 0.27
ta 38523 354.35 209.30 21.18 19.91 23.39 56.34 2.55 0.27
zh 60830 787.68 309.11 34.38 29.80 29.87 37.21 2.00 0.48
es 66816 2649.57 345.35 30.64 26.28 83.22 38.43 4.15 0.66
hi 61852 776.39 265.10 29.45 25.70 37.21 32.00 1.24 0.0
en 376367 657.95 268.60 25.27 23.40 22.28 32.86 1.39 0.35
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Abstract

End-to-end neural models for conversational
AI often assume that a response can be gen-
erated by considering only the knowledge ac-
quired by the model during training. Document-
oriented conversational models make a simi-
lar assumption by conditioning the input on
the document and assuming that any other
knowledge is captured in the model’s weights.
However, a conversation may refer to exter-
nal knowledge sources. In this work, we
present EKo-DoC, an architecture for document-
oriented conversations with access to external
knowledge: we assume that a conversation
is centered around a topic document and that
external knowledge is needed to produce re-
sponses. EKo-DoC includes a dense passage
retriever, a re-ranker, and a response generation
model. We train the model end-to-end by us-
ing silver labels for the retrieval and re-ranking
components that we automatically acquire from
the attention signals of the response genera-
tion model. We demonstrate with automatic
and human evaluations that incorporating exter-
nal knowledge improves response generation in
document-oriented conversations. Our architec-
ture achieves new state-of-the-art results on the
Wizard of Wikipedia dataset, outperforming
a competitive baseline by 10.3% in Recall@1
and 7.4% in ROUGE-L.

1 Introduction

Recent advances in Natural Language Processing
(NLP) allowed us to build complex conversational
systems for various scenarios, such as task-oriented
(Radlinski and Craswell, 2017; Wen et al., 2017),
chit-chat (Khatri et al., 2018; Zhou et al., 2020),
and even for guiding users in performing complex
real-world tasks (Gottardi et al., 2022). When using
deep neural networks for implementing a conver-
sational agent, a common practice is to use many
historical conversations to train the model to pro-

∗* Work done during internship at Amazon.

duce responses that are related to a dialog con-
text. In this setting, a response is generated solely
from the knowledge acquired during the training of
the network (Vinyals and Le, 2015), and no other
knowledge sources are used at inference time.

A more effective way of producing dialog re-
sponses would be to incorporate external knowl-
edge into the model. This is, for example, the case
of systems that make use of document/passage re-
trieval in QA (Lewis et al., 2020b). In this work,
we consider the setting in which a conversation
is grounded in a target topic but also in external
knowledge, in the form of documents. For exam-
ple, Figure 1 shows a conversation with respect to
a target topic (i.e., San Diego Comic-Con) repre-
sented by a topic document. During the conver-
sation, some turns may refer to other documents
from an external Knowledge Base (KB) providing
additional information (e.g., Shel Dorf ). In our
preliminary studies, we estimated that about 36%
of the dialogs in the popular Wizard of Wikipedia
dataset (Dinan et al., 2019) require knowledge be-
yond the topic document.

This setting poses additional challenges to the
generation of adequate responses in a dialog. While
a model could possibly memorize a vast amount
of knowledge in its weights during training, the
model will likely be applied to new dialog con-
texts that refer to unseen knowledge. If enriched
with external knowledge, the model input could
be better conditioned to produce accurate outputs.
From a technical perspective, the model needs to
learn i) to retrieve the relevant knowledge and ii)
to incorporate it into the generated response.

To address these challenges, we propose
EKo-DoC, an end-to-end conversational agent de-
signed to model a target topic document and a
set of external knowledge documents. EKo-DoC
integrates a Dense Passage Retriever (DPR)
(Karpukhin et al., 2020) and a Re-Ranker (RR) into
a response generation model. To reduce the need
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Figure 1: An example of a dialog in our setting: a central topic document defines the general topic of the dialog.
External documents can be used as well to generate responses for some specific turns of the conversation.

for manual annotations, we automatically acquire
labels for the training of the DPR and RR com-
ponents. In particular, we leverage the attention
weights of the generation model over the retrieved
documents to generate a set of silver labels. Our
generation model is a sequence-to-sequence model
that generates a response by taking as input the en-
tire concatenation of the dialog context and related
documents retrieved from a KB.

Experimental results demonstrate that EKo-DoC
is able to correctly use both the topic document and
the external knowledge to produce better responses
in a conversation. We report competitive results on
two public datasets, Wizard of Wikipedia (WoW)
(Dinan et al., 2019) and MultiDoc2Dial (Feng et al.,
2021). In particular, EKo-DoC achieves new state-
of-the-art (SOTA) results on WoW, outperforming
a strong baseline by 10.3% in Recall@1 and 7.4%
in ROUGE-L. Finally, we conduct a human study
to verify the quality of the generated responses.
Compared to models that do not condition on the
topic document or external knowledge, our model
produces responses that are more fluent, more on-
topic, and more interesting.

To summarize, our contributions are: i) we study
the setting where we model both a target topic docu-
ment and external knowledge for a conversation; ii)
we propose EKo-DoC, a novel end-to-end response
generation architecture for the task; iii) we propose
an automatic annotation procedure to acquire the

labels for training the retrieval engine.

2 EKo-DoC Architecture

Given a dialog context C and a topic documentDT

that serves as the background of the dialog, the task
is to generate a response r to the last utterance ofC.
We also have available an external knowledge base
KKB = {D1, D2, ..., Dm}; Dj denotes a knowl-
edge snippet represented by some natural language
text (e.g., a paragraph in Wikipedia). While we use
the term “snippet”, each snippet is not necessarily
a short piece of text. EKo-DoC is general enough to
be used with documents of different lengths.

The dialog is mostly centered aroundDT , but ex-
ternal knowledge from KKB is sometimes needed
to generate an informative and relevant response
(see Figure 1 for an example). To this end,
the task can be viewed as building a model of
P (r|C,DT ,KKB).

2.1 Document-Oriented Dialog System with
Access to External Knowledge

Figure 2 shows an overview of EKo-DoC, our pro-
posed framework. The inference process consists
of three steps. First, given a dialog context and
a topic document, we use a DPR model to re-
trieve an initial set of knowledge snippets (Section
2.1.1). Second, we re-rank the snippets using a
Transformer-based cross-attention model (Section
2.1.2). Third, conditioned on the dialog context and
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Figure 2: An overview of EKo-DoC, our framework. K1 and K2 are empirically set to be 25 and 5 (respectively).

the top-k ranked snippets, a generator produces a
natural language response (Section 2.1.3).

In previous work (Glass et al., 2022; Li et al.,
2022a), the retrieval components were trained us-
ing human-annotated pairs of input contexts and
supporting knowledge snippets. To remove the
need for expensive gold-standard retrieval labels,
we use attention scores as pseudo-labels for train-
ing the retrieval and re-ranking models (Section
2.2).

Finally, note that while DT can be fundamental
to the response generation for most of the conver-
sation, it can be less relevant for some dialog turns
(e.g., see Figure 1). Therefore, we also include DT

in the knowledge base KKB and let our retrieval
engine decide if the topic document is essential. If
DT is retrieved, the final generator will use DT for
response generation.

2.1.1 External Knowledge Retrieval
In order to use a DPR model for retrieving knowl-
edge, we need to encodeKKB in the indexing phase
and the input query in the retrieval phase.

KKB Encoding. We use an encoder EKB(·) to
map every knowledge snippet Dj to a real-valued
vector. We assume that each snippet is a document
with a title and short textual content. The input to
the document encoder EKB(·) is:

T
[
D
]
= [s] Title / Description [/s] (1)

where [s] and [/s] are special tokens denoting
the start and end of the input, and “/” is used to
separate the title from the description. T [·] denotes
a function that maps a general object (e.g., a knowl-
edge snippet) into a textual sequence.

We use a pre-trained Transformer model as the
encoder (Reimers and Gurevych, 2019). That is,

for each Dj ∈ KKB, we encode it into a vector vj :

vj = EKB

(
T
[
Dj

])
(2)

Query Encoding. We use the topic documentDT
and the dialog context C to construct a query for
the DPR model. We first concatenate DT and C
into a single sequence T

[
DT ⊕ C

]
:

[s] T
[
DT
]
[sep] T

[
C
]
[/s] (3)

where [sep] is a special token to separate the topic
document and the dialog context. T

[
DT
]

is similar
to what described in Equation 1. T

[
C
]

is instead
a concatenation of all the dialog turns, where two
turns are separated by the [sep] token.

Then, we also use a Transformer encoder EQ(·)
to map C and DT into a single vector v:

v = EQ

(
T
[
DT ⊕ C

])
(4)

In this work, EQ(·) and EKB(·) share the same
architecture (Reimers and Gurevych, 2019).

Scoring and Retrieval. The first (coarse-
grained) relevance score of a knowledge snippet
Dj with respect to a query is given by:

sc

(
Dj , C,DT

)
= v · vj (5)

We retrieve up to K1 knowledge snippets by
ranking according to the sc values. K1 is a hyper-
parameter, with K1 ≪ |KKB|. In order to make
this operation efficient, we adopted FAISS (John-
son et al., 2021). We first apply EKB(·) to all the
knowledge snippets and index them using FAISS
offline. Then, given a query vector v obtained with
EQ(·), we use FAISS to return the top K1 candi-
dates according to the coarse-grained scores.
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2.1.2 Knowledge Snippet Re-ranking
After the initial coarse-grained retrieval step with
DPR, there are K1 candidate knowledge snippets.
We then apply a fine-grained cross-attention re-
ranker over the K1 snippets. After that, we keep
the top-K2 snippets1 for the next phase (i.e., the
response generation phase).

The input to the re-ranker is the concatenation
of DT, a knowledge snippet Dj retrieved in the
previous phase, and C:

[s] T
[
DT
]
[sep] T

[
Dj

]
[sep] T

[
C
]
[/s]

(6)
The re-ranker consists of a Transformer-based

encoder and a feed-forward neural network. Given
an input representation described above, the re-
ranker computes the final relevance score sf as:

hj = reduce
(
Ecross

(
T
[
DT ⊕Dj ⊕ C

]))

sf

(
Dj , C,DT

)
= FFNNs

(
hj
) (7)

where Ecross(·) is a Transformer-based encoder
(Liu et al., 2019), and its input is a representation
described in Equation 6; FFNNs is a feed-forward
neural network. reduce(·) is a function that returns
the final hidden state of the Transformer that corre-
sponds to the first input token. The final set of K2

knowledge snippets is selected according to the sf
scores assigned from the re-ranker.

2.1.3 Response Generation Model
Our generative model is based on the sequence-to-
sequence (seq2seq) encoder-decoder architecture
that directly predicts an output sequence from an
input sequence (Sutskever et al., 2014). By leverag-
ing the recent advances in neural models for long
sequences (Beltagy et al., 2020; Guo et al., 2022),
our generator takes as input the entire concatena-
tion of the dialog context and the top-ranked re-
trieved knowledge snippets (Figure 2). We use
LongT5 as our generator (Guo et al., 2022) as it
can scale up to 16K input length.

Specifically, let
{
D̃1, D̃2, ..., D̃K2

}
be the set

of knowledge snippets retrieved by the re-ranker.2

The input to the generative model is:

[s] T
[
D̃1 ⊕ D̃2 ⊕ ...⊕ D̃K2

]
[sep] T

[
C
]
[/s]

(8)
1Note that K2 < K1.
2Note that it is possible that DT is an element of this set.

where T
[
D̃1⊕D̃2⊕...⊕D̃K2

]
is the concatenation

of all the retrieved snippets:

T
[
D̃1

]
[sep]T

[
D̃2

]
[sep]... [sep]T

[
D̃K2

]

(9)
We denote the final input sequence as X . The

expected output is an appropriate response Y to
the last dialog turn. Similar to previous encoder-
decoder language models (Lewis et al., 2020a; Raf-
fel et al., 2020), the generator models the condi-
tional probability of selecting a new token given all
previously generated tokens when conditioned on
X:

P (Y |X) =

|Y |∏

i=1

P
(
Yi |Y1:i−1 , X

)
(10)

where Yi is the i-th token of Y , and Y1:i−1 consists
of all the tokens that come before it.

The loss function for training the generator is the
usual negative log-likelihood function:

Lgeneration(B) = −
|B|∑

i=1

logP
(
Ŷ i|Xi

)
(11)

whereB is a mini-batch consisting of |B| examples,
each in the form

(
Xi, Ŷ i

)
. In addition, Ŷ i is the

ground-truth response to the input Xi.
We refer to our approach as the Fusion-in-Input

(FiI) method, as our generator directly takes as in-
put all the potentially relevant information (i.e., the
retrieved knowledge and the dialog history). This
is a departure from the popular Fusion-in-Decoder
(FiD) approach that encodes the retrieved snippets
independently (Izacard and Grave, 2021a,b; Asai
et al., 2022).

2.2 Using Cross-Attention Scores as Retrieval
Pseudo-Labels

If we train our system using only the generation
loss function Lgeneration(B), only the parameters of
the generation model will be updated. In order to
optimize the retrieval engine, we propose to use
the generation attention scores over the snippets
in the input as retrieval pseudo-labels during the
training stage. The intuition is that if the decoder
of the generator pays more attention to a particular
retrieved knowledge snippet, it means that such a
snippet is likely to be relevant.

For each snippet retrieved by the re-ranker, we
average all the pre-attention scores over all the
tokens of the snippet. Formally, let L denote the
number of layers of the decoder, and let H be the
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number of attention heads. For each knowledge
snippetDj , we denote the indices of its starting and
ending tokens in X as sj and ej , respectively. The
averaged attention scoreA(Dj) of Dj is computed
as:

A(Dj) =

∑L
l=1

∑H
h=1

∑ej
x=sj

∑|Ŷ |
y=1 pl,h(x, y)

L×H × |sj − ej + 1| × |Ŷ |
(12)

where Ŷ is the ground-truth response. In addition,
pl,h(x, y) is the pre-attention score between the y-
th token of Ŷ and the x-th token of X computed
by the h-th attention head of the l-th layer. Basi-
cally, we collect all the pre-attention scores that are
relevant to Dj and compute their average.

We can normalize the averaged attention scores
using a softmax function:

Pattention(Dj) =
exp (A(Dj))∑K2
i=1 exp (A

(
Di)
) (13)

Similarly, we can normalize the retrieval scores
predicted by the DPR model and the reranker:

Qcoarse(Dj) =
exp

(
sc(Dj , C,DT )

)
∑K2

i=1 exp
(
sc(Di, C,DT )

)

Qfine(Dj) =
exp

(
sf(Dj , C,DT )

)
∑K2

i=1 exp
(
sf(Di, C,DT )

)
(14)

We then use the averaged attention scores of the
retrieved knowledge snippets as pseudo-labels to
update the retrieval engine:

Ldpr(B) =

|B|∑

i=1

DKL
(
P iattention || Qicoarse

)

Lreranker(B) =

|B|∑

i=1

DKL
(
P iattention || Qifine

)

Lretrieval(B) = Ldpr(B) + Lreranker(B)

(15)

where B is a mini-batch of examples, and DKL
denotes the KL divergence. Also, P iattention, Qicoarse,
andQifine are the distributions computed for the i-th
example of B (refer to Equations 13 and 14).

The final loss function combines the generation
loss (Eq. 11) and the retrieval loss (Eq. 15):

Lfinal(B) =
1

|B|
(
Lgeneration(B) + Lretrieval(B)

)

A related study (Izacard and Grave, 2021a) also
proposed an approach to train retrieval systems

without strong supervision. The work focuses on
the task of question answering and uses the FiD
approach for output generation. In contrast, we
focus on building dialog systems and tailoring our
learning approach to our newly proposed FiI ap-
proach.

To summarize, EKo-DoC is end-to-end trainable.
The document encoder of the DPR model (Equa-
tion 1) is fixed. The query encoder (Equation 4), the
re-ranker, and the generator are optimized end-to-
end using the final loss function described above.

3 Experiments

3.1 Data and Experiments Setup

Datasets For the experiments, we use the follow-
ing two publicly available conversational datasets.

Wizard of Wikipedia (WoW) is a dataset con-
sisting of open-domain conversations grounded in
knowledge from Wikipedia (Dinan et al., 2019).
We use the version provided by the KILT bench-
mark (Petroni et al., 2021). The external knowl-
edge base KKB consists of about 22 million 100-
word passages from Wikipedia. We consider each
passage as a knowledge snippet. Each conversa-
tion in WoW is annotated with a topic, which is a
Wikipedia page. As the topic Wikipedia page can
be extremely long, we only use the first paragraph
of the page as the topic document DT . Finally,
WoW already comes with a public train/dev/test
split.

MultiDoc2Dial is a new conversational dataset
that grounds dialogs in multiple documents (Feng
et al., 2021). Each dialog consists of multiple seg-
ments, and two adjacent segments are grounded in
different documents. KKB consists of 4,283 pas-
sages across four domains (Social Security Admin-
istration, Veteran Affairs, Student-Aid, and DMV).
For each dialog, we use the first paragraph of the
first grounded document as DT .

Note that the original forms of WoW and Multi-
Doc2Dial do not have any notion of a central topic
document. Therefore, we use some heuristics (de-
scribed above) to select the topic document.

Evaluation Metrics For retrieval, we compute
Recall@k, which measures the fraction of times
the correct knowledge snippet is found in the top-k
retrieved snippets. We evaluate the text genera-
tion output based on unigram F1 score (F1) and
ROUGE-L (Lin, 2004). For MultiDoc2Dial, sim-
ilarly to the original study that first introduced it
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(Feng et al., 2021), we also compute Exact Match
(EM) (Rajpurkar et al., 2016) and SacreBLEU (BL)
(Post, 2018). For WoW, we do not report EM and
BL scores because the leaderboard for this dataset
does not use these metrics, and we also do not have
direct access to the test set used by the leaderboard.

Baselines We implemented several baselines for
detailed comparison and analysis. The first set of
baselines consists of basic seq2seq models that do
not have any retrieval engine:

• LongT5 (Guo et al., 2022) is an extension
of T5 (Raffel et al., 2020) that handles long
sequence inputs efficiently. The baseline takes
only the dialog context C as input.

• LongT5-with-Topic uses the same architec-
ture as LongT5 but takes both the topic docu-
ment DT and the dialog context C as input.

The second set of baselines consists of systems
augmented with frozen retrievers:

• [Frozen DPR + FiI] first uses a pre-trained
DPR model to retrieve five potentially rele-
vant knowledge snippets. Conditioned on the
retrieved knowledge and the dialog context,
a FiI generation model then generates a re-
sponse.

• [Frozen DPR + FiI (using DT )] uses the same
architecture, but its FiI generator also takes
the topic document as input.

By comparing our full model against this set of
baselines, we can analyze the effectiveness of using
cross-attention scores as retrieval pseudo-labels.

Hyperparameters We initialized the DPR com-
ponent using all-mpnet-base-v2 (Reimers and
Gurevych, 2019). The reranker is initialized us-
ing distilroberta-base, a distilled version of
RoBERTa (Liu et al., 2019). We initialize the gen-
eration component of every system using a large
version of LongT5 (Guo et al., 2022) unless oth-
erwise stated. The batch size is 32. The number
of training epochs is 10. More details about the
hyperparameters are in the appendix.

3.2 Experimental Results
Table 1 presents the retrieval and response genera-
tion performance of our models and the baselines.
First, we can see that our models achieve the high-
est performance compared with all baselines for

both data sets and all evaluation metrics. This re-
sult emphasizes the importance of using external
knowledge for document-oriented dialog systems
and demonstrates the effectiveness of doing so by
using our approach of fine-tuning the retrieval en-
gine with attention score-based pseudo-labels.

The results in Table 1 also show that using the
topic document is crucial for effective response
generation. For example, LongT5-with-Topic out-
performs the default LongT5 baseline, especially
on MultiDoc2Dial. Similar results are observed for
the baselines that use frozen retrievers.

The results also show that there is a clear positive
correlation between text generation performance
and retrieval performance. Compared with the
frozen retrieval baselines, our full model achieves
much higher generation performance by training
the retrieval and re-ranking models with our end-
to-end approach. The generator of every model
listed in Table 1 is initialized with the same large
version of LongT5. This shows the importance
of the retrieval engine on the response generation
performance.

Using cross-attention scores as retrieval pseudo-
labels is highly effective according to Table
1. Specifically, EKo-DoC achieves a Recall@1
score of 71.21% on WoW without using human-
annotated retrieval labels. Notice also the impor-
tance of the re-ranker component. When the re-
ranker is disabled (second row) the model achieves
a Recall@1 score of 33.88% on MultiDoc2Dial,
while the full model achieves a score of 41.60%.
Furthermore, Table 3 shows that the effectiveness
of using cross-attention scores can even be compa-
rable to that of using gold retrieval labels.

Finally, many previous studies on knowledge-
intensive dialog systems do not have any notion
of a central topic document (Shuster et al., 2021;
Paranjape et al., 2022). To directly compare against
these studies, we also train a system that does not
explicitly use the topic document (Table 2). Basi-
cally, this system is similar to our full model (Fig-
ure 2), but it does not take the topic document as
part of its input. Overall, our system outperforms
all previous state-of-the-art methods in most eval-
uation metrics. While FiD-Light (Hofstätter et al.,
2022) and Re2G (Glass et al., 2022) achieve better
Recall@1 and Recall@5 than ours (respectively),
FiD-Light and Re2G use gold retrieval labels to
train their retrieval engines. Our system does not
use such supervision signals, which can be expen-
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Wizard of Wikipedia MultiDoc2Dial
F1 ROUGE-L Recall@1 F1 ROUGE-L Recall@1 EM BL

Our Models
EKo-DoC * 20.77 18.64 71.21 42.80 39.02 41.60 6.40 29.17
EKo-DoC (No Re-ranker) * 20.72 18.63 69.71 41.31 37.47 33.88 6.13 27.36
Baselines with Frozen Retrievers
Frozen DPR + FiI (using DT ) * 19.66 17.80 49.69 36.19 32.44 14.44 4.20 21.30
Frozen DPR + FiI 19.29 17.53 49.69 33.90 30.31 14.44 3.74 18.56
Seq2Seq Baselines
LongT5-with-Topic * 19.92 18.12 - 30.12 26.43 - 2.27 13.00
LongT5 16.21 14.94 - 24.47 20.68 - 0.66 5.46

Table 1: Overall results (in %) on the test sets of WoW and MultiDoc2Dial. For fair comparison, all models shown
here do not use any gold retrieval labels during training. The symbol * denotes models that explicitly use the central
document. In such a model, at least one component directly includes the central document as part of its input. All
differences in performance between our models and the baselines are statistically significant with a p-value < 0.05.

Recall@1 Recall@5 ROUGE-L F1 KILT-F1
EKo-DoC (Without explicitly using the central doc.) 61.86 78.18 18.32 20.42 14.41
QKConv (Cai et al., 2022) 60.98 76.58 17.72 19.95 13.64
Hindsight (Paranjape et al., 2022) 56.08 74.27 17.06 19.19 13.39
FiD-Light (Hofstätter et al., 2022) 66.15 76.51 15.78 17.82 13.06
Re2G (Glass et al., 2022) 60.10 79.98 16.76 18.90 12.98
SEAL (Bevilacqua et al., 2022) 57.55 78.96 16.65 18.34 11.63
RAG (Petroni et al., 2021) 57.75 74.61 11.57 13.11 8.75

Table 2: Performance of state-of-the-art models on the test set of WoW according to the public leaderboard (as
of February 2023). We are hiding our score on the leaderboard during the anonymous review process. The
leaderboard is available at https://eval.ai/web/challenges/challenge-page/689/leaderboard/1909, and it
also uses additional metrics such as Recall@5 and KILT-F1 (Petroni et al., 2021). Note that FiD-Light and Re2G
use gold retrieval labels to train their retrieval engines, while our system does not rely on such supervision signals.

R@1 R@5

EKo-DoC 45.32 61.36

DPR + RR (finetuned using gold labels) 46.46 65.88

Table 3: Comparison between using attention score-
based pseudo-labels and using gold retrieval labels.
Here, scores on the dev set of WoW are reported. In
addition, different from the public leaderboard, we eval-
uate retrieval at a more fine-grained granularity, which
is the passage level instead of the page level.

sive to obtain.

3.3 Human Evaluation

There can be many appropriate responses to the
last turn of a dialog; therefore, human evaluation
is typically crucial to properly evaluate the perfor-
mance of a dialog system (Liu et al., 2016; Ghan-
deharioun et al., 2019). We conducted a human
evaluation of various models by using Amazon’s

Mechanical Turk (AMT).3 Specifically, we created
150 evaluation tasks, each consisting of a dialog
context selected randomly from WoW and a set
of responses produced by different model variants.
For each task, we asked three different AMT work-
ers to rank the models’ outputs based on:

1. Fluency (0/1). Is the generated response fluent
and grammatically correct?

2. Relevance (0/1). Is the response on-topic and
relevant to the last turn of the dialog?

3. Interestingness (0/1). Does the response pro-
vide new interesting information that is not
already mentioned in the dialog?

Table 4 presents the human evaluation results
comparing our full model against two baselines,
LongT5 and LongT5-with-Topic. We chose these
baselines as our main goal here is to analyze how
external knowledge helps in document-oriented di-
alogs. According to human annotators, our model

3All details about the annotation tasks are in the appendix.
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outperforms both baselines substantially in all three
criteria. Furthermore, EKo-DoC achieves the most
gain in the “interestingness” criterion. This is ex-
pected because, for example, compared to LongT5-
with-Topic, our model also makes use of external
knowledge when generating responses.

Full Model vs. LongT5 Better Same Worse
Fluency 31.01 47.29 21.71

Relevance 39.85 38.35 21.80
Interestingness 48.39 35.48 16.13

Full Model vs. LongT5-with-Topic
Fluency 24.62 62.31 13.08

Relevance 32.03 53.13 14.84
Interestingness 40.60 39.85 19.55

Table 4: Human evaluation results (%) comparing our
full model to LongT5 (top part) and LongT5-with-Topic
(bottom part). The numbers in the column “Better” de-
note the percentage of the snippets where our full model
is considered better (according to humans).

3.4 Analysis
Qualitative Analysis Table 5 shows some ex-
amples from WoW that illustrate how incorporat-
ing external knowledge can improve the quality of
generated responses. Note that more qualitative
examples are provided in the appendix.

In the first example, the responses generated by
all models are fluent and grammatically correct.
However, LongT5 generates a factually incorrect
statement, as it does not have any knowledge that
is not implicitly stored in its parameters. Never-
theless, LongT5 seems to possess some knowledge
about the world, as Sam Walton is the founder of
Walmart, which is related to Target Corporation.

In the second example, in the beginning, the dia-
log is mainly about rock and roll in general. How-
ever, the last dialog turn deviates slightly from the
general topic and starts talking about James Brown,
who influenced several music genres. The topic
document does not have any information about the
person. Therefore, LongT5-with-Topic generates a
factually correct response about rock and roll, but it
is unrelated to James Brown. In contrast, by lever-
aging external knowledge, our model generates a
response that is more relevant to the last dialog
turn.

Comparison between FiI and FiD We compare
our FiI method and the popular FiD method (Izac-
ard and Grave, 2021b) in Table 6. FiI outperforms
FiD, as FiI encodes the dialog context and the top-
ranked knowledge snippets jointly. In contrast, FiD

Examples
Topic Document: The first paragraph of the Wikipedia page talking
about Target Corporation.
Dialog Context:
A: Target Corporation is the second largest discount retailer.
B: I assume that it is just before Walmart, but still huge.
Candidate Responses:
LongT5: It was founded in 1971 by Sam Walton.
LongT5-with-Topic: Target was founded by George Dayton in 1902.
EKo-DoC: Target is the eighth largest retailer in the US.

Topic Document: The first paragraph of the Wikipedia page talking
about Rock and roll.
Dialog Context:
A: My favorite music is rock and roll.
B: Gotta love some Rock and Roll. It’s one of my favorites as well.
...
A: Indeed it did. I was speaking to a friend earlier about
James Brown and how he influenced so many genres of music start-
ing in the 60’s.
Candidate Responses:
LongT5-with-Topic: I like the fact that while elements of what was
to become rock and roll can be heard in blues records from the 1920s
and in country records of the 1930s, the genre did not acquire its
name until 1954.
EKo-DoC: I agree. He was an American singer, songwriter, dancer,
musician, record producer and bandleader.

Table 5: Examples showing how external knowledge
improves the quality of generated responses. Red is used
to indicate responses that are factually incorrect. Blue
is used to indicate responses that are factually correct.

F1 ROUGE-L
Freezed DPR + FiI (LongT5) 34.07 29.97
Freezed DPR + FiD (LongT5) 33.82 29.77
Freezed DPR + FiD (T5) 32.80 28.65

Table 6: Comparison between FiI and FiD. The dev set
of MultiDoc2Dial is used.

encodes the retrieved snippets independently, so
there is less interaction between the knowledge
snippets before the final decoding stage. In conclu-
sion, by using FiI instead of FiD, our generator can
extract semantic relationships between the different
input signals more effectively.

4 Related Work

Document-oriented Conversations Humans
typically seek information in a conversational
manner, for example to find answers to questions
(Choi et al., 2018) or to seek guidance in per-
forming real world tasks (Gottardi et al., 2022).
As such, several recent conversational datasets
were introduced for building models to assist
in information-seeking dialogs. For example,
Choi et al. (2018) presented QuAC, a dataset that
contains 14K information-seeking QA dialogs:
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each is centered around a short evidence text
from Wikipedia and involves a student and a
teacher. The student poses a sequence of free-form
questions about the text, while the teacher answers
the questions by providing short excerpts from the
text. Concurrently, Reddy et al. (2019) introduced
CoQA, a dataset in which a machine has to
understand a text passage and answer a series of
questions that appear in a conversation. Choi et al.
(2022) introduced a dataset for the novel setting of
Conversational Task Assistants, where users seek
guidance from a conversational agent to perform
real world tasks: in this setting, a conversation
is centered around a document describing a task.
SOTA methods for these tasks typically do not use
any external knowledge beyond the dialog context
and the given background text (Zhu et al., 2018;
Huang et al., 2019; Qu et al., 2019; Gupta et al.,
2020; Zhao et al., 2021; Qian et al., 2022).

Open-Domain Question Answering In open-
domain QA, the goal is to find the answer to a
(typically short) question over a large corpus such
as Wikipedia (Voorhees and Tice, 2000; Chen and
Yih, 2020). Passage retrieval has been an essential
component of many state-of-the-art open-domain
QA systems (Karpukhin et al., 2020; Lewis et al.,
2020b; Piktus et al., 2021; Min et al., 2021; Zhu
et al., 2021). An effective retrieval component can
reduce the search space for answer extraction and
identify the support context for users to verify the
answer. As a result, many studies have focused
on improving the retrieval components, ranging
from removing the need for strong supervision sig-
nals (Izacard and Grave, 2021a; Ram et al., 2022)
to adding sophisticated reranking components (Yu
et al., 2022a; Glass et al., 2022; Yu et al., 2022b).
Open-domain QA is typically non-conversational
and does not have any notion of a topic document.

Weak Supervision for Neural Retrieval A
closely related study (Izacard and Grave, 2021a)
also proposed an approach to train retrieval systems
without strong supervision. The work focuses on
the task of QA and uses the FiD approach for out-
put generation. In contrast, we focus on building
dialog systems and tailoring our learning approach
to our newly proposed FiI approach.

Knowledge-Grounded Dialog Generation In-
corporating background knowledge into conversa-
tion models can make dialogs more informative
and engaging. Therefore, many recent studies

have investigated various techniques for selecting
relevant knowledge and integrating it into the re-
sponse generation process (Lian et al., 2019; Kim
et al., 2020; Li et al., 2020; Shuster et al., 2021;
Chen et al., 2021; Mishra et al., 2022; Li et al.,
2022b). Many of these studies utilize the Wizard
of Wikipedia (WoW) dataset (Dinan et al., 2019).
Our system, EKo-DoC, achieves a new state-of-the-
art result on WoW, as shown in Table 2. This re-
sult provides some guarantee on the relative per-
formance of EKo-DoC compared to many previous
SOTA knowledge-grounded dialog systems. As of
February 2023, there are nearly 40 tested methods
on the public leaderboard of WoW, though Table 2
only shows a subset due to space limitations.

5 Conclusions

This work proposes and studies a new problem
setting that combines document-oriented conversa-
tions and open-domain QA. We introduce a new
architecture for the problem that includes a dense
passage retriever, a re-ranker, and a response gener-
ation model. We train these three components end-
to-end and use cross-attention scores as pseudo-
labels to update the retrieval engine. Extensive
experimental results on two public datasets demon-
strate the effectiveness of our method. In the future,
we plan to reduce the computational complexity of
our model by using compression techniques.

6 Ethical Consideration

Limitations While EKo-DoC achieves new SOTA
results on WoW, its performance is far from per-
fect. A ROUGE-L score of 18.64% and a Recall@1
score of 71.21% indicate that there is much room
for improvement. Based on our manual analysis,
we found that EKo-DoC sometimes generates re-
sponses that are a little bit unnatural. Finally, a
common limitation of many Transformer-based sys-
tems, such as EKo-DoC, is the large computational
complexity. We plan to reduce the computational
complexity of EKo-DoC by using some compres-
sion techniques (Lai et al., 2020; Sun et al., 2020).

Potential Risks A potential malicious use case
of research on conversational AI is for building
dialog systems that pose as humans and then proac-
tively alter users’ perceptions about specific issues,
evaluations of products or services, or political in-
clinations (Qi et al., 2021). We urge anyone who
uses or builds upon our research to avoid such ma-
licious use cases.
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A Human Evaluation

We used Amazon’s Mechanical Turk (AMT) to
perform a human evaluation of various models.
More specifically, we first created 150 evaluation
snippets, each consisting of a dialog context and a
set of responses produced by three model variants:
LongT5, LongT5-with-Topic, and our full model.
Figure 3 shows an example snippet. For each snip-
pet, we asked three different AMT workers to rank
the models’ outputs based on three criteria: (1) Flu-
ency, (2) Relevance, and (3) Interestingness. Note
that for each snippet, the presentation order of the
generated responses was randomized. For example,
for some AMT tasks, the first response may come
from LongT5, while for some other tasks, the first
response may come from our full model. Figure 4
shows the instructions we showed at the beginning
of each AMT task. Even though our instructions
do not explicitly explain how the collected data
would be used, we believe it was clear to the AMT
workers that we would use the data for researching
dialog systems.

To decide the appropriate cost of each AMT task,
we conducted a preliminary study, asking three
NLP researchers to do about 20 tasks each. We
then computed the average time it would take for
each task. After that, we set the value of each AMT
task so that someone who worked on our study for
about an hour would make at least the required
minimum wage.

B Datasets

We use two public datasets in this work: Wizard
of Wikipedia (WoW) (Dinan et al., 2019) and Multi-
Doc2Dial (Feng et al., 2021). For WoW, we use the
version provided by the KILT benchmark (Petroni
et al., 2021). KILT is released under the MIT Li-
cense, and MultiDoc2Dial is released under the
Apache-2.0 license. Our use of the datasets is con-
sistent with their licenses.

WoW and MultiDoc2Dial are available at github.
com/facebookresearch/KILT and github.com/IBM/

multidoc2dial (respectively). When we first down-
loaded the datasets, we randomly sampled about
10∼20 examples for each dataset and checked
whether the examples contained any offensive con-
tent. Overall, we did not see any example that had
offensive content.

The two datasets are in English. WoW consists
of open-domain conversations, which collectively
cover a wide range of topics, ranging from Ameri-
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Figure 3: An example AMT task.

Figure 4: The instructions we provided for each AMT task.

can football to Rock and Roll music. On the other
hand, MultiDoc2Dial focuses on four specific do-
mains: Social Security Administration, Veteran
Affairs, Student-Aid, and DMV.

If we consider a pair of a dialog context and its
corresponding ground-truth response as one exam-
ple, there are 63,734/3,054/2,944 examples in the
train/dev/test splits of WoW (respectively). For
MultiDoc2Dial, we refer the readers to the original
paper (Feng et al., 2021) for more detailed statistics
of the original dataset.

C Reproducibility Information

In this section, we present the reproducibility infor-
mation of our paper.

Implementation Dependencies Libraries Py-
torch (Paszke et al., 2019), Transformers 4.20.1
(Wolf et al., 2020), SentenceTransformers 2.2.0
(Reimers and Gurevych, 2019), faiss-gpu 1.7.2
(Johnson et al., 2021).

Computing Infrastructure We conducted our
experiments using Amazon’s EC2 virtual machines.
Overall, our work can be reproduced using a single
p3.8xlarge instance. Information about the cost of
using Amazon’s EC2 P3 instances can be found at
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https://aws.amazon.com/ec2/instance-types/p3/.

Number of Model Parameters Our full model
consists of three components: a DPR model,
a RR model, and a seq2seq generation model.
We initialize the DPR model using a Sentence-
Transformer model named all-mpnet-base-v2
(Reimers and Gurevych, 2019), which has
about 110M parameters. We initialize the RR
model using distilroberta-base (Liu et al.,
2019), which has about 82M parameters. Fi-
nally, we initialize the generation model using
google/long-t5-tglobal-large (Guo et al.,
2022), which has about 750M parameters.

Hyperparameters The effective batch size is 32.
The number of training epochs is 10. The base
learning rate is 5e-5. K1 is set to be 25, and K2

is set to be 5. We use the Adam optimizer and set
gradient clipping to 1.0.

Expected Validation Performance For each
model variant, we report the test performance of
the checkpoint with the best validation F1 score
in the main paper (refer to Table 1). On the dev
set of WoW, our full model achieves a unigram
F1 score of 21.13% and a ROUGE-L score of
18.68%. On the dev set of MultiDoc2Dial, our
full model achieves a unigram F1 score of 41.90%
and a ROUGE-L score of 37.64%.

# Retrieved Docs F1 ROUGE-L Recall@1

K1 = 25, K2 = 5 38.76 34.62 39.70

K1 = 25, K2 = 10 39.84 35.81 44.44

K1 = 25, K2 = 15 39.71 35.58 42.28

K1 = 50, K2 = 5 39.10 34.92 40.28

K1 = 50, K2 = 10 39.63 35.44 42.82

K1 = 50, K2 = 15 39.63 35.56 43.51

Table 7: Results on the dev set of MultiDoc2Dial when
we varyK1 andK2, the numbers of documents retrieved
by DPR and the reranker (respectively). In order to save
computational time, we use the base version of LongT5
in this ablation study.

D Additional Analysis

Table 7 shows the results on the dev set of Multi-
Doc2Dial when we vary K1 and K2. In general,
increasing the number of retrieved documents typi-
cally has marginal positive effects on the evaluation
metrics. However, note that increasing the values
of K1 and K2 also increases the computational

complexity and running time of EKo-DoC. There-
fore, we set K1 to 25 and K2 to 5. We believe
these values achieve a good balance between the
model complexity and the quality of the generated
responses.

Table 8 shows some additional examples from
WoW that illustrate how incorporating external
knowledge can improve the quality of generated
responses.

Examples
Topic Document: The first paragraph of the Wikipedia page talking
about Ferrari.
Dialog Context:
A: I have 3 Ferrari cars in my garage and I hardly know nothing
about them. I read some self help books, then I was rick all of the
sudden.
B: Those are some nice cars they are manufacturer in Maranello.
A: Yeah that’s pretty cool. Do you know how old the company is?
Candidate Responses:
LongT5: I don’t know but they are a luxury car manufacturer.
EKo-DoC: I know it was founded in 1939.

Topic Document: The first paragraph of the Wikipedia page talking
about Overeating.
Dialog Context:
A: Overeating is a serious problem in the USA.
Candidate Responses:
LongT5: I know, it’s a problem that affects a lot of people.
EKo-DoC: I think it is a serious problem in the US. It is the excess
food consumed in relation to the energy that an organism expends.

Topic Document: The first paragraph of the Wikipedia page talking
about Red.
Dialog Context:
B: Red is my favorite color. It is the color of a lot of my favorite
things, like strawberries?
A: Awesome! Did you also know that Mars is red because of iron
oxide?
...
B: That makes sense. I always liked studying the planets growing up
in school.
Candidate Responses:
LongT5-with-Topic: I also like how Mars is the only planet that has
a moon.
EKo-DoC: Yeah, I love learning about the planets. I’m sure you’ve
heard of the planet Mercury.

Table 8: Additional examples showing how external
knowledge improves the quality of generated responses.
Red is used to indicate responses that are factually incor-
rect. Blue is used to indicate responses that are factually
correct.
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Abstract

Many measures of societal bias in language
models have been proposed in recent years. A
popular approach is to use a set of word filling
prompts to evaluate the behavior of the lan-
guage models. In this work, we analyze the
validity of two such measures – StereoSet and
CrowS-Pairs. We show that these measures pro-
duce unexpected and illogical results when ap-
propriate control group samples are constructed.
Based on this, we believe that they are prob-
lematic and using them in the future should
be reconsidered. We propose a way forward
with an improved testing protocol. Finally, we
also introduce a new gender bias dataset for
Slovak.1

1 Introduction

Language models (LMs) are ubiquitous in current
NLP and have brought undeniable performance im-
provements for many tasks. Concerns have been
raised about the fairness of these models (Blodgett
et al., 2020; Shah et al., 2020; Dev et al., 2021b).
Since LMs are usually trained with web-based text
corpora generated by a general population, there
is a risk that they will learn certain societal biases,
such as sexist or racist stereotypes. With these
models regularly being used as backbones for fur-
ther fine-tuning, this unfairness might propagate
further to downstream models and ultimately to
user-facing applications.

Based on this assumption, many attempts were
made to quantify the bias in LMs. The measures
usually observe LM outputs or inner workings to
reveal problematic biased behavior. A popular
method is to create a set of word filling prompts
that test LM behavior in various situations, and
then interpret the differences. For example, would
an LM choose a negative stereotypical word for X
in the sentence All women are X? Tests like

1Data and code are available at https://github.
com/kinit-sk/bias-methodology.

these are often proposed because neural LMs are
notoriously blackbox and it is otherwise difficult to
interpret their inner working reliably. However, the
observation process must be done in a methodolog-
ically sound manner and the correct assumptions
must be used to ensure accurate results.

In this work, we examine the validity of two
widely used methodologies – StereoSet (Nadeem
et al., 2021) and CrowS-Pairs (Nangia et al., 2020)
– for measuring societal bias in masked LMs. We
first identify several theoretical problems in their
score calculations. Then we show that these prob-
lems can be observed in the available data and we
demonstrate that the LMs exhibit unexpected be-
havior that violates key assumptions made by these
methodologies. This leads us to question the va-
lidity of the reported results. We propose a way to
improve the methodologies by introducing a new
score definition. During experiments we introduce
several new variants of the existing datasets and
a completely new dataset in Slovak. These new
datasets are used to compare the expected behavior
of the LMs with their actual behavior.

Our results challenge the validity of previous
studies. This is a significant issue as these measures
are widely used2 to demonstrate the level of bias in
LMs (Zhang et al., 2022, i.a.), as benchmarks for
debiasing techniques (Meade et al., 2022, i.a.), as
inspiration for bias research in languages other than
English (Névéol et al., 2022; Kaneko et al., 2022),
and for other bias-related research. If our assertions
about their validity are accurate, all these efforts
could be in danger. Moreover, it is possible that
other similar measures may face similar problems.

2 Related Work

Measuring LM Bias. In recent years, numerous
methodologies and datasets have emerged for mea-
suring societal bias in LMs and other NLP mod-

2The two papers have 234 and 149 citations respectively
according to Google Scholar as of February 2023.
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els (Dev et al., 2021b). The techniques for masked
LMs are generally based on three types of analysis:
(1) LM behavior on downstream tasks (Rudinger
et al., 2018; De-Arteaga et al., 2019, i.a.), (2) in-
ner LM representations (May et al., 2019; Webster
et al., 2020, i.a.), and (3) word filling behavior.
Word filling can be done using either short, seman-
tically neutral templates filled with lexicons (Ku-
rita et al., 2019; Ahn and Oh, 2021), or through
crowd-sourced sentences that capture biased behav-
ior. The two techniques discussed in this paper –
StereoSet and CrowS-Pairs – belong to the latter
category.

Critique. Papers criticize and evaluate the pro-
posed bias measuring techniques from various per-
spectives. Blodgett et al. (2021) identify several
conceputalization and operationalization pitfalls in
the existing benchmarks and estimate that a sig-
nificant portion of samples have validity issues.
The lack of robustness of the proposed metrics
w.r.t. specific choices of templates, prompts, lexi-
con seeds, metrics, sampling strategies is also a con-
cern (Akyürek et al., 2022; Antoniak and Mimno,
2021; Delobelle et al., 2021). Low correlations be-
tween individual scores raise questions about what
exactly is being measured (Delobelle et al., 2021;
Cao et al., 2022; Goldfarb-Tarrant et al., 2021).
Other criticisms are more conceptual. Blodgett
et al. (2020) point out that the motivation behind
bias measuring techniques is often "vague, incon-
sistent and, lacking in normative reasoning" and
that the techniques are often "poorly matched to
the motivation". The lack of cultural sensitivity
results in methods that are often Anglo-centric or
US-centric (Talat et al., 2022; Stanczak and Augen-
stein, 2021), do not correctly handle marginalized
groups (Devinney et al., 2022; Dev et al., 2021a),
or have other similar cultural issues.

Many of these problems could be addressed by
improved training for data creators and by increas-
ing data quantity and quality. However, we show
that even with perfect data, some of the proposed
methodologies may still not yield valid results.

3 Methodologies and Datasets

Both StereoSet (SS) and CrowS-Pairs (CS) mea-
sure bias against certain groups using sets of word
filling samples. There is usually a coupling be-
tween the dataset (the specific samples used for
score calculations) and the methodology (how is
the score calculated) (Orgad and Belinkov, 2022).

@e distinguish between these two concepts (e.g.,
by saying StereoSet (SS) dataset and StereoSet (SS)
methodology) and we effectively decouple them
when we stress-test the methodologies with new
datasets.

In this section, we briefly introduce the two ex-
isting methodologies and also our own dataset in
Slovak language that is compatible with both of
them. We also created various new versions and
extensions of the existing datasets for our experi-
ments, which will be introduced as appropriate. All
the datasets are documented in Appendix A.

3.1 StereoSet
Nadeem et al. (2021) introduce the SS methodol-
ogy and several datasets compatible with it that
address different bias types – gender, race, profes-
sion, and religion. Each dataset consists of pairs
of sentences that differ in exactly one word. The
dataset creators were instructed to first generate
stereotypical and anti-stereotypical words associ-
ated with a specific group of people and then write
a template in which these words could be used.
For example, The male is strong / The
male is weak is a pair that stereotypes males
as strong. In this case, strong and weak are the
keywords that differ.

The SS methodology is based on the idea that a
biased masked LM should prefer the stereotypical
keywords in these pairs. The LM is fed the sentence
with the slot for the keyword masked and is asked
to calculate the probabilities for both possible key-
words. The measure of bias is the percentage of
samples where the model prefers the stereotypical
keyword3. The authors define that 50% is an opti-
mal ratio. The SS datasets were criticized for its
subpar data quality, with estimates ranging from
38% (Nangia et al., 2020) to as high as 94% (Blod-
gett et al., 2021) of the samples being problematic.

3.2 CrowS-Pairs
The CrowS-Pairs (Nangia et al., 2020) proposal
consists of a methodology and 9 datasets about
different bias types. Each CS dataset consists
of pairs of sentences as well, but the way they
were collected is significantly different. The
data creators were asked to write a stereotypical
sentence about a marginalized group and then
rewrite this sentence to change the identity of the

3We discuss the intrasentence variant in this work. The
original paper also introduced a intersentence variant of the
dataset for generative LMs.
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group to a non-marginalized one. For example,
Women don’t know how to drive /
Men don’t know how to drive. First,
the stereotypical sentence about women was
created, then it was changed to talk about men.
Unlike the SS datasets, the sentences might differ
in more than one word, and there are no keywords.

The CS methodology measures the LM proba-
bilities for the words that are the same for the two
sentences. Then it calculates which sentence from
the pair has a higher sum of probabilities. This is
the sentence that the LM is said to "prefer". Simi-
larly to SS, the percentage of sentences where the
LM prefers the marginalized group is considered
to be the bias measure, with the 50% threshold con-
sidered optimal. The CS datasets were criticized
for their quality as well. Blodgett et al. (2021)
found only 3% of the samples in the CS datasets
admissible. Névéol et al. (2022) published a re-
vised version of the datasets, where they attempted
to fix incorrect samples.

3.3 Our own Slovak dataset

We have collected our own Slovak language
dataset consisting of 142 samples, which is
focused on only one gender stereotype: Men are
more competent then women. This dataset is
compatible with both SS and CS methodologies. It
consists of quadruplets of sentences, with the first
two sentences being the same as in SS datasets.
The third and fourth sentences have the group of
people changed from the stereotyped group to
a non-stereotyped one. An example in English:
Women are weak / Women are strong
/ Men are weak / Men are strong.
We can use the first and second sentences for the
SS score and the first and third sentences for the
CS score.

Our main goal was to create a compatible dataset
in a different language. The issues with data quality
in both CS and SS datasets inspired us to make
the dataset more focused, and we believe that the
resulting data validity is higher than in the English
datasets. On the other hand, it is smaller and less
diverse. The CS methodology is also not an ideal
fir for Slovak, as Slovak has gender agreement for
verbs and adjectives. This leads to a generally
lower number of tokens used in calculating the
CS score. Further details on data collection and
validation can be found in Appendix A.

4 Case Study: StereoSet

Some of the pitfalls previously identified in SS
datasets (Blodgett et al., 2021) could theoretically
be addressed by improving data quality. However,
we claim that the SS methodology is problematic by
itself and does not provide a valid measurement of
bias, regardless of how good the data is. First, we
will identify several theoretical problems and then
show how these problems manifest in the data by
breaking several key assumptions the SS methodol-
ogy makes. The problems are related to both how
we calculate scores for individual samples and the
way we aggregate them.

1. No control groups. No control groups are
used to compare the scores generated by the same
samples for different groups of people. If the orig-
inal pair is about women, how do the LMs be-
have for the same sample about men? We can-
not determine if the LM exhibits unfair behavior
unless we compare its behavior across different
groups. For example, the LM might prefer All X
are lazy over All X are diligent for
both men and women. There is a hidden and
untested assumption that the LM will by default
exhibit less biased behavior for non-marginalized
groups.

2. Keyword prior equality assumption. The SS
methodology does not consider that the stereotypi-
cal and anti-stereotypical keywords may not have
equal priors. For example, one word might be more
frequent in the training data and therefore the LMs
might generate it with higher probabilities. All X
are lazy might have a higher probability than
All X are diligent for any group X, just
because lazy is a more common word. Raw word
frequency is a simple but feasible example (Wei
et al., 2021); the LMs might have also learned other
similar patterns. There is a hidden and untested as-
sumption that data creators will naturally generate
stereotypical and anti-stereotypical keywords with
equal priors.

3. No statistical testing. The original method-
ology calculates the percentage of samples where
the LMs prefer stereotype, but there is no statisti-
cal significance testing done on this statistic. The
percentage also does not account for the distribu-
tion of the measurements. This issue can easily be
addressed by tools such as confidence intervals or
statistical tests.
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4. Lack of information about the probabil-
ity space. The SS methodology focuses on two
specific keywords. However, we lack informa-
tion about all the other words in the vocabulary.
We assume that all the words can be classified
into three groups, based on how they would func-
tion in the prompt: stereotypical, neutral and anti-
stereotypical. To truly measure LM’s preference for
stereotypes, we would need the information about
the overall probabilities for these three groups. The
sums of probabilities for these groups may not cor-
respond with the probabilities of the two manually
selected keywords.

5. Why 50%. It is unclear why 50% score is
considered unbiased. A person who prefers a
stereotypical sentence 50% of the time would be
probably considered biased. The concept of what
anti-stereotypes generated by people should be
is unclear. They could be sentences that do not
contain any stereotype and are in a sense neutral
(e.g., All women are people), sentences
that contain positive statements about a marginal-
ized group (e.g., All women are strong),
sentences that contain negative statements about
a non-marginalized group (e.g., All men are
weak), and other similar variants. In the first case,
we might wish for the model to have 0% bias and
always pick a neutral sentence over a negative
stereotype. In other cases, the 50% threshold might
be appropriate, although it is questionable whether
a hypothetical model that is 50% misogynistic and
50% misandristic should be called unbiased.

We will address and further explore prob-
lems #1 and #2 in the following sections. During
our experiments, we will also report confidence
intervals, thus addressing problem #3. Problems
#4 and #5 remain open.

4.1 Control Groups

We analyze the results of the SS methodology by
using the same samples edited to describe different
groups of people. For example, if there is a sample
All women are lazy/diligent, we com-
pare the results to a control pair All men are
lazy/diligent. This experiment addresses
problem #1 from our list problems.

We use 3 original SS datasets4 extended with

4Excluding the religion dataset, because unlike the others,
some of the groups are not specified by their name, but by other
concepts, such as Sharia or Holy Trinity. Creating control

control group samples and our own dataset. The
SS datasets5 were edited as follows:

Gender. We conducted manual gender-swapping
along the male-female axis. Some samples were
removed if it was not possible to create a sensi-
ble gender-swapped version or if they were gram-
matically incorrect (4 out of 254 samples were
removed). We also created a filtered version of the
dataset by removing samples that were not inher-
ently about gender bias (103 out of 250 remaining
samples were removed). This was often the case for
samples that use words grandma, grandpa,
schoolgirl, schoolboy to describe the tar-
get population. For these, dataset creators often
used age instead of gender as the basis for stereo-
typing.

Race and Profession. We created the control
group samples automatically by replacing the
identifier of country, nationality, or profession with
10 randomly selected terms from the appropriate
list of terms used by the original authors. There is
a possibility that a small percentage of these have
the same stereotype as the original group, making
the resulting control pairs invalid.

More details on the process can be found in
Appendix A. Note that these extended datasets
still have the same data quality limitations as
the original ones. Only the gender dataset was
manually filtered, so the quality of the samples
should be higher.

We define the SS score function ss that calcu-
lates the probability p of an LM generating the
stereotypical word ws or the anti-stereotypical
word wa in the sentence template t:

ss(ws, wa, t) = log(p(ws, t))− log(p(wa, t)) (1)

To aggregate these results, we define ss+ as the
percentage of pairs where ss score is positive (as
defined in the original paper) and ssµ as the mean
of all the ss scores.

In Figure 1, we compare the results of the orig-
inal SS pairs with the control group pairs for
RoBERTa-Base (Liu et al., 2019) LM for English

groups does not make sense for some of these.
5In this work we use only the dev set from the now defunct

StereoSet website, which contains only roughly 25% of the
samples the authors collected. The other 75% were not initially
published to prevent data leakage, but were later revealed in
this repository as we were writing this paper.
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Figure 1: ss scores for the original and control group
pairs. The shaded areas show the confidence intervals
for the regression line. The dotted lines are identity
functions.

and SlovakBERT (Pikuliak et al., 2022) for Slovak6.
There is a strong correlation between the groups,
which is problematic because the SS methodology
assumes that when the LM prefers stereotypical
keywords for marginalized groups, it is because it is
biased. These results show that the LMs have a sim-
ilar preference for keywords in control groups, even
though they should not be stereotyped. We must
refuse the notion that the model exhibits stereotypi-
cal behavior when more than 50% of samples have
a stereotypical preference, since we can see that for
many of these samples the LMs have the same or
even higher ss score for control group pairs. Or we
must admit the the model is biased against control
groups as well, but that dilutes the meaning of the
word bias as it is commonly used.

We present the statistics (with 95% confidence
intervals) of the experiment in Table 1. The results
show that the LMs generate positive ssµ scores
and ss+ scores higher than 50% for both origi-
nal groups and control groups. We also calculate
how many samples that were originally considered
stereotypical (ss > 0 for the original group) have
even higher scores for the control group. We call
this the false positive rate and it is consistently
30-40%. Similarly we calculate the false nega-
tive rate for samples where the LMs prefer anti-
stereotypical keywords for the original group, but
prefer it even more for the control group. This rate

6These LMs will be used for other experiments as well.
Results for other LMs are reported in Appendix B.

is around 50-60%. These statistics indicate a high
overall number of samples where the behavior of
the LMs does not match the behavior assumed by
the SS methodology.

We also calculate Pearson’s ρ for the ss scores.
The strong correlations suggest that the LMs make
predictions mainly for reasons other than bias, such
as word frequencies or other linguistic patterns
instead of their "beliefs" about groups of people.
These results cast doubt on the validity of the SS
methodology. It is difficult to conclude that the LM
is sexist against women when it has the same or
even stronger tendencies for men in many of the
samples used to demonstrate its bias. The ssµ or
ss+ scores cannot be taken at face value without
comparison to appropriate control groups. This
behavior appears to be universal across different
bias types, languages, and language models. There
is not a single statistically significant example of
a negative ssµ score or ss+ score below 50% for
the control group.

On the other hand, the LMs consistently give
lower scores to the control groups. This suggests
that the bias might indeed be present, but a different
method of measurement is required. We will define
a score that compares the results of the original and
control group pairs in Section 6.

4.2 Stereotypical Keywords Bias

We have shown that the LMs prefer the stereotyp-
ical keywords (ss > 0) for both the original and
control group pairs. It is not immediately clear why
this is the case.

One explanation may be that the stereotypical
keywords are simply more frequent, and the LMs
learned this from their training data. To test this
hypothesis, we compared ss scores with the rela-
tive frequencies of keywords from Google Books
Ngram Viewer7: log(g(ws))− log(g(wa)), where
g is the frequency for word w. Our results show
positive Peason’s correlation of 0.41 for SS Gen-
der, 0.36 for SS Race and 0.28 for SS Profession.
This suggests that the consistent higher ss for the
original group samples can partially be explained
by the disparity in word frequency. This disparity
can be due to lexical usage by speakers (i.e., words
often used in stereotypes are more common), or
it may be a data collection artifact. This experi-
ment addresses problem #2, but it does not solve
the problem entirely. There might be many other

7https://books.google.com/ngrams
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SS Gender SS Gender Filter SS Race SS Profession Slovak Gender

ssµ Original 0.84± 0.19 0.73± 0.26 0.37± 0.031 0.57± 0.037 0.76± 0.17
ssµ Control 0.66± 0.19 0.51± 0.26 0.28± 0.034 0.32± 0.034 0.73± 0.17

ss+ Original 0.71± 0.056 0.68± 0.075 0.61± 0.0098 0.64± 0.01 0.81± 0.065
ss+ Control 0.64± 0.059 0.6± 0.078 0.58± 0.0099 0.58± 0.011 0.78± 0.068

ss ρ 0.95 0.96 0.92 0.88 0.97
False Positive Rate 0.39 0.35 0.43 0.3 0.47
False Negative Rate 0.57 0.64 0.51 0.5 0.58

Table 1: Statistics for the experiment with the the SS the methodology from Section 4.

similar patterns that influence the results. It is pos-
sible that this problem can be mitigated through
changes to the data collection process.

5 Case Study: CrowS-Pairs

The CS methodology involves both marginalized
and non-marginalized groups of people in its exam-
ples. However, it still faces problems similar to SS.
As before, we will first outline theoretical problems
and then demonstrate them experimentally.

1. No control pairs. Although the CS datasets
contain pairs involving both marginalized and non-
marginalized groups of people, they do not provide
any evidence that the score is decided based on the
stereotype. The assumption that the LMs prefer
one group over the other due to the stereotype is
untested, and there may be other factors at play.
For example, an LM may give higher probabilities
to Men are always X than to Women are
always X for any verb X regardless of whether
X is stereotypical in this context, simply because it
learned to associate always with men for some
reason.

2. No statistical testing. Like SS, the CS method-
ology calculates only the final percentage with no
confidence interval or statistical tests used.

3. Lack of information about the probability
space. Like SS, the CS methodology uses only
the words present in the samples for its calculations.
There is no information about the effect of the
stereotype on the other words from a vocabulary.
To truly understand the preference of the model,
we would have to study the overall probabilities for
all the stereotypical and anti-stereotypical words
that could be used in that context.

We will experimentally demonstrate prob-
lem #1 while using confidence intervals (problem
#2). Problem #3 remains open.

5.1 Control Pairs

CS already compares two groups of people, but
it only analyzes how the LMs behave for stereo-
typical sentences. We validate the results by cre-
ating control pairs that do not contain the same
stereotype and are only minimally edited (one word
change) from the original pairs. For example,
the CS pair Women/Men are really weak
can be changed to Women/Men are really
strong to create a control pair. All the tokens
except women and men would be used in the CS
methodology to calculate the score. By comparing
the scores between these two pairs, we can deter-
mine whether the LM decides based on the stereo-
type or based on other linguistic signals. Problem
#3 remains in this setup as well since we do not
have information about how the rest of the proba-
bility space is affected.

Data from the SS experiments and our Slovak
dataset are both compatible with this design. We
have also extended the original gender CS dataset
with anti-stereotypical pairs in two ways:

1. Negation. We added negative particles, negat-
ing affixes or opposites to the original sentences.
This was done in a way that negates the original
stereotype, e.g., Women are/aren’t weak.

2. Anti-stereotype. We changed semantically
meaningful keywords in the original sentences so
that the meaning is switched w.r.t. the stereotypical
statements, e.g., Women can’t drive/cook.

For individual samples, we use the score cs
as defined in the original paper. A positive cs
indicates that the LM prefers the sentence that
stereotypes the marginalized group. We define
csµ as the mean of cs scores for a given dataset,
and cs+ as the percentage of positive samples
(this is the score used in the original paper). If
the CS methodology is correct, the LMs should
prefer the stereotypical sentences in the original
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Figure 2: cs scores for the original and control pairs.
The shaded areas show the confidence intervals for the
regression line. The dotted lines are identity functions.

pairs, but not in the control pairs. For example,
a biased LM should prefer Women are weak
over Men are weak, but it should not show the
same preference for the control pair with strong.

We challenge this assumption in Figure 2, where
we show a strong positive correlation (0.52-0.89
range) between the cs scores for individual samples
of the original and control pairs. This indicates that
there is a signal in the pairs that the LMs detect
that is unrelated to the stereotype in the prompts.
Table 2 reveals that, compared to SS, the signal
is weaker and that the control pair scores are ac-
tually negative for csµ and smaller than 50% for
cs+. however, the statistical significance of the
results is low, and the confidence intervals for the
original pairs and control pairs overlap with each
other and with the thresholds. The original CS gen-
der dataset has statistically weak results as well
(csµ = 0.045, p = 0.28). The results for CS Nega-
tion are particularly concerning. We observe that
negating had minimal impact on the csµ score. Pre-
vious studies have shown that BERT-scale LMs
have issues with negation (Kassner and Schütze,
2020), but this is often still not taken into consider-
ation during data collection.

5.2 Calculating with Keywords

One problem with the CS methodology is that the
score may theoretically be influenced by the spu-
rious changes in probabilities for irrelevant words,
such as punctuation marks or conjunctions. In-
spired by SS, we propose a new score for CS sam-

ples that include SS keywords: csk. Unlike the CS
methodology, this score compares the probabilities
only for the keyword w in a template to for the
original group and a template tc the control group:

csk(w, to, tc) = log(p(w, to))− log(p(w, tc)) (2)

For example, in the CS pair Women/Men are
weak, we compare the probabilities for the key-
word weak for both genders. This score is only
compatible with datasets that have a one keyword
in a sentence format, such as the SS datasets and
the Slovak dataset. The average csk score is cskµ.

As seen in Table 2, cskµ maintains the direction
of the original csµ score, but it is more statistically
significant and has a lower correlation between the
original and control pairs (compare cs ρ vs. csk ρ).
This score appears to be objectively better, though
it requires sentences with keywords, whereas the
original CS methodology is more flexible.

6 A Way Forward

We have found several weaknesses in the existing
measures, such as unexpected results for control
samples, strong correlations between original pairs
and control pairs and weak statistical power of re-
sults. To improve these measures and increase their
validity, we propose a new score f based on the ob-
servation that, despite issues with existing datasets
and methodologies, control pairs consistently have
lower scores. We believe that this can be used
to consistently measure bias. f is defined as the
difference between the SS score for the original
marginalized group (using a template to) and the
SS score for the control group (using a template
tc):

f(ws, wa, to, tc) = ss(ws, wa, to)− ss(ws, wa, tc) (3)

Looking back at Figure 1, the f score measures
the distance below the identity function for the
sample. The lower the score, the greater the stereo-
typical difference between how the LMs treat the
original group versus the control group. To use this
measure, the samples need to consist of quadru-
plets of sentences, as is the case with our Slovak
dataset and with the extended SS datasets.

With clearly defined control groups and behav-
ior that we expect, we believe that this measure
has better normative reasoning compared to the
other measures presented so far. Conceptually sim-
ilar approaches, using samples along two axes –
one for groups of people and the other for their
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SS Gender SS Gender Filter CS Negation CS Anti-stereotype Slovak Gender

csµ Original 0.17± 0.081 0.12± 0.11 0.32± 0.33 0.26± 0.38 0.074± 0.11
csµ Control −0.049± 0.091 −0.11± 0.11 0.28± 0.37 0.034± 0.4 0.086± 0.11

cskµ Original 0.086± 0.046 0.08± 0.056 - - 0.08± 0.57
cskµ Control −0.099± 0.052 −0.14± 0.055 - - 0.045± 0.067

cs+ Original 0.61± 0.06 0.56± 0.079 0.61± 0.11 0.58± 0.12 0.51± 0.083
cs+ Control 0.44± 0.061 0.42± 0.079 0.63± 0.11 0.48± 0.12 0.59± 0.082

cs ρ 0.52 0.58 0.87 0.76 0.77
csk ρ 0.14 0.13 - - 0.79
cs−csk ρ 0.48 0.49 - - 0.19

Table 2: Statistics for the experiment with the control pairs with the CS methodology.

attribute – are already used for measuring bias in
word embeddings (Caliskan et al., 2017), sentence
embeddings (May et al., 2019), or in lexicon-based
approaches (Kurita et al., 2019).

Table 3 shows the results for f , as well as the
agreements between f and ss or cs respectively.
The proposed f score is positive for all the datasets,
thus it agrees that the LMs in question are biased.
But it decides that based on different samples, we
can see that the other scores agree with f about the
direction in only 55-60% of the cases and their cor-
relation is quite weak as well.. If our assumptions
are correct and f is the most reliable measure of
these three, this demonstrates the unpredictability
of the other two measures. The SS methodology
seems less correlated with f than CS. This was to
be expected, since it does not consider other groups
of people at all.

On the other hand, f can still be influenced
by spurious LM behavior. Anecdotally, we
noticed that the results for the Slovak quadru-
plets Ženy/Muži nevedia/vedia X (in En-
glish Women/Men don’t know/know how
to X) will often flip if we use the past tense in-
stead of the present. Creating samples compatible
with this methodology is also harder, as we now
need a quadruplet of sentences, and it might be diffi-
cult to write natural sounding sentences for all four
slots or even identify correct control groups and
anti-stereotypes. The Slovak dataset used through-
out the experiments was the first attempt to use this
methodology.

7 Discussion

Bias measures need to be validated. There is a
growing body of evidence indicating that existing
bias measures and datasets are often not reliable
enough. Issues such as data quality, robustness,
statistical significance, weak correlation with one

another, or even basic operationalization and con-
ceptualization, exist in current work. Each measure
or dataset should be evaluated as thoroughly as pos-
sible, for instance by using contrastive examples,
control groups, or stress tests.

Language models do not "understand" lan-
guage like humans do. Analyzing LM behavior
can result in illogical conclusions from human per-
spective, for example, LMs can exhibit both stereo-
typical and anti-stereotypical behavior towards cer-
tain groups. Bias measures sometimes assume that
LMs have a worldview of their own. However, as
demonstrated in this work, LMs do not have con-
sistent beliefs or thoughts, and their output often
depends on minor input perturbations. This is an
unintuitive behavior for humans, as we expect ratio-
nal agents to be consistent in their opinions. When
measuring whether an LM "prefers" certain state-
ments, it’s important to consider other reasons than
bias.

Language models have limited language un-
derstanding capabilities. Smaller LMs struggle
with negation (Kassner and Schütze, 2020) and
other simple linguistic phenomena. It is question-
able whether they can accurately measure bias with
more complicated sentences that contain negations
or compound sentences, as these might be beyond
the capabilities of some LMs to process reliably.
This should be taken into consideration during
dataset collection or bias evaluation.

Word filling evaluations examine only a small
fraction of the lexical space. Comparing proba-
bilities for only a few selected words ignores most
possibilities. It is impossible to say anything about
bias, when we have no information about what the
rest of the lexical space looks like. Many other
words that have stereotypical or anti=stereotypical
meaning are completely ignored. Instead of ana-
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SS Gender SS Gender Filter SS Race SS Profession Slovak Gender

fµ 0.18± 0.065 0.22± 0.078 0.095± 0.013 0.25± 0.017 0.035± 0.04
f+ 0.6± 0.06 0.64± 0.076 0.54± 0.01 0.62± 0.011 0.54± 0.083

f−ss ρ 0.2 0.12 0.082 0.32 0.022
f−ss agreement 0.56 0.56 0.54 0.62 0.51

f−cs ρ 0.27 0.27 0.24 0.24 0.024
f−cs agreement 0.59 0.59 0.58 0.64 0.53

Table 3: Statistics for the experiment with the f score.

lyzing only the selected words, the outputs of LMs
could be analyzed in a post-hoc manner.

Extrinsic downstream evaluation should be pre-
ferred. Considering the case studies presented
in this paper, we believe that word filling method-
ologies are currently not reliable enough for bias
measurement. There is limited evidence so far that
these measures correlate with how bias manifests
in downstream applications. Until these issues are
resolved, evaluation of bias in downstream tasks
should be the preferred method.

Inconclusive results for the Slovak dataset.
More Slovak samples are required to thoroughly
evaluate Slovak LMs. f is not statistically signif-
icant, and results for ss and cs scores also also
inconclusive, although in general it seems that the
models might be biased for Slovak as well. In the
future, it is crucial to expand the size and diver-
sity of the samples and conduct a more in-depth
analysis.

8 Conclusion

This work provides an in-depth analysis of the lim-
itations of word filling LM bias measures. Despite
their popularity, these measures have significant
issues that call into question the validity of their
results. Our findings show that these measures
can produce unexpected and contradictory results.
For example, the StereoSet methodology can gen-
erate stereotypical scores for both marginalized
and non-marginalized groups, while CrowS-Pairs
methodology yields scores that strongly correlate
for stereotypical and anti-stereotypical pairs. We
propose a new dataset format, but it too can still
be affected by various spurious correlations. Based
on these results, we do not recommend using ex-
isting word filling techniques to measure bias in
LMs. If they are to be used, we recommend setting
up various sanity checks to distinguish true bias
signals from model misbehavior or data annotation

artifacts. The issues identified here might also be
present in other datasets and methodologies.

9 Limitations

Limitations for the Profession and Race datasets.
Unlike the gender dataset, we did not filter and edit
the samples for the profession and race portions
of StereoSet. These two contain samples that are
not stereotypical (e.g., Norway has a very
cold climate) or have other problems. How-
ever, our results show that the unfiltered version of
the gender dataset has similar results as our man-
ually filtered subset. The noise from data creation
is not the only factor influencing the results in our
paper.

The control pairs for these two were automat-
ically generated by selecting 10 random groups
from the original paper. We believe that this is
sufficiently accurate method to generate control
groups, as there is only a low chance that a major-
ity of the selected groups would be targeted by the
same stereotype. Despite these limitations, we trust
the results to be reliable.

Unresolved methodology problems. Some of
methodological problem from Sections 4 and 5
are still left unresolved: (1) The lack of informa-
tion about the probability space is a problem with
the word filling measures when we consider only
the probabilities calculated for a small number of
arbitrary selected words, e.g., only two for Stere-
oSet. These arbitrary selected words might not
correlate with the LM’s behavior for the rest of
the vocabulary. Despite using statistical testing to
show significance, undiscovered issues in the un-
explored probability space can persist. (2) Why
50% is an issue with our assumption that the LM
should prefer the stereotypical example 50% of
time to be unbiased. Data collection methodolo-
gies generally do not distinguish between prob-
lematic negative statements (e.g., All women
are stupid), positive statements that might be
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considered stereotypical, but are not harmful in
their intent (e.g., All women are caring),
completely positive statements (e.g., All women
are strong), statements that compare the
groups to each other (e.g., Women are mote
empathetic than men), completely neutral
statements (e.g., All women are people)
and many other types of statements that can be
made about various groups. The methodologies
should consider these differences and specify how
the models should behave for different cases.

Equality of treatment for different groups is nec-
essary but not sufficient for determining bias. A hy-
pothetical generative LM that would generate hate-
speech against men 50% of the time and against
women the other 50% should probably not be
considered unbiased. Instead, an unbiased model
should not generate hate-speech at all. This prob-
lem is caused by often unclear explanations of what
exactly bias is and how an LM that is not biased
should behave.

Gender binarism. Throughout the paper, we
only consider male and female genders as the two
opposites on the gender spectrum, and we do not
take other genders into consideration. This is a
typical problem in the gender bias discussion in
NLP (Devinney et al., 2022). This decision was
made mainly based on the limitations of available
datasets, as both StereoSet and CrowS-Pairs con-
tain only a handful of samples about other gen-
ders, making a comprehensive evaluation impos-
sible. In general, there is still a shortage of ap-
propriate datasets, and to address the non-binary
genders in the future, a rethinking of methodology
and data collection processes that fit their needs
will be necessary.

10 Ethical Considerations

We presented a critical study of current gender bias
methodologies. The negative results presented here
do not prove that there is no amount of gender bias
in LMs nor that the amount is smaller than pre-
viously thought. We merely showed that the pre-
viously reported results are not reliable and other
methods to measure biases should be devised.

Acknowledgements

This research was partially supported by DisAI - Im-
proving scientific excellence and creativity in com-
bating disinformation with artificial intelligence

and language technologies, a project funded by
Horizon Europe under GA No. 101079164.

This research was partially supported by vera.ai
- VERification Assisted by Artificial Intelligence, a
project funded by Horizon Europe under GA No.
101070093.

References
Jaimeen Ahn and Alice Oh. 2021. Mitigating language-

dependent ethnic bias in BERT. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 533–549, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Afra Feyza Akyürek, Muhammed Yusuf Kocyigit, Sejin
Paik, and Derry Wijaya. 2022. Challenges in measur-
ing bias via open-ended language generation. CoRR,
abs/220b5.11601.

Maria Antoniak and David Mimno. 2021. Bad seeds:
Evaluating lexical methods for bias measurement.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1889–1904, Online. Association for Computational
Linguistics.

Su Lin Blodgett, Solon Barocas, Hal Daumé III, and
Hanna Wallach. 2020. Language (technology) is
power: A critical survey of “bias” in NLP. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5454–
5476, Online. Association for Computational Lin-
guistics.

Su Lin Blodgett, Gilsinia Lopez, Alexandra Olteanu,
Robert Sim, and Hanna Wallach. 2021. Stereotyping
Norwegian salmon: An inventory of pitfalls in fair-
ness benchmark datasets. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 1004–1015, Online. Association
for Computational Linguistics.

Aylin Caliskan, Joanna J Bryson, and Arvind Narayanan.
2017. Semantics derived automatically from lan-
guage corpora contain human-like biases. Science,
356(6334):183–186.

Yang Cao, Yada Pruksachatkun, Kai-Wei Chang, Rahul
Gupta, Varun Kumar, Jwala Dhamala, and Aram Gal-
styan. 2022. On the intrinsic and extrinsic fairness
evaluation metrics for contextualized language repre-
sentations. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 561–570, Dublin,
Ireland. Association for Computational Linguistics.

3657

https://doi.org/10.3030/101079164
https://doi.org/10.3030/101070093
https://doi.org/10.3030/101070093
https://doi.org/10.18653/v1/2021.emnlp-main.42
https://doi.org/10.18653/v1/2021.emnlp-main.42
https://doi.org/10.48550/arXiv.2205.11601
https://doi.org/10.48550/arXiv.2205.11601
https://doi.org/10.18653/v1/2021.acl-long.148
https://doi.org/10.18653/v1/2021.acl-long.148
https://doi.org/10.18653/v1/2020.acl-main.485
https://doi.org/10.18653/v1/2020.acl-main.485
https://doi.org/10.18653/v1/2021.acl-long.81
https://doi.org/10.18653/v1/2021.acl-long.81
https://doi.org/10.18653/v1/2021.acl-long.81
https://doi.org/10.18653/v1/2022.acl-short.62
https://doi.org/10.18653/v1/2022.acl-short.62
https://doi.org/10.18653/v1/2022.acl-short.62


Maria De-Arteaga, Alexey Romanov, Hanna M. Wal-
lach, Jennifer T. Chayes, Christian Borgs, Alexandra
Chouldechova, Sahin Cem Geyik, Krishnaram Ken-
thapadi, and Adam Tauman Kalai. 2019. Bias in
bios: A case study of semantic representation bias in
a high-stakes setting. In Proceedings of the Confer-
ence on Fairness, Accountability, and Transparency,
FAT* 2019, Atlanta, GA, USA, January 29-31, 2019,
pages 120–128. ACM.

Pieter Delobelle, Ewoenam Kwaku Tokpo, Toon
Calders, and Bettina Berendt. 2021. Measuring
fairness with biased rulers: A survey on quantify-
ing biases in pretrained language models. CoRR,
abs/2112.07447.

Sunipa Dev, Masoud Monajatipoor, Anaelia Ovalle, Ar-
jun Subramonian, Jeff Phillips, and Kai-Wei Chang.
2021a. Harms of gender exclusivity and challenges
in non-binary representation in language technolo-
gies. In Proceedings of the 2021 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1968–1994, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Sunipa Dev, Emily Sheng, Jieyu Zhao, Jiao Sun,
Yu Hou, Mattie Sanseverino, Jiin Kim, Nanyun Peng,
and Kai-Wei Chang. 2021b. What do bias measures
measure? CoRR, abs/2108.03362.

Hannah Devinney, Jenny Björklund, and Henrik Björk-
lund. 2022. Theories of "gender" in NLP bias re-
search. In FAccT ’22: 2022 ACM Conference on
Fairness, Accountability, and Transparency, Seoul,
Republic of Korea, June 21 - 24, 2022, pages 2083–
2102. ACM.

Seraphina Goldfarb-Tarrant, Rebecca Marchant, Ri-
cardo Muñoz Sánchez, Mugdha Pandya, and Adam
Lopez. 2021. Intrinsic bias metrics do not correlate
with application bias. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 1926–1940, Online. Association
for Computational Linguistics.

Masahiro Kaneko, Aizhan Imankulova, Danushka Bol-
legala, and Naoaki Okazaki. 2022. Gender bias in
masked language models for multiple languages. In
Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2740–2750, Seattle, United States. Association
for Computational Linguistics.

Nora Kassner and Hinrich Schütze. 2020. Negated and
misprimed probes for pretrained language models:
Birds can talk, but cannot fly. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 7811–7818, Online. Asso-
ciation for Computational Linguistics.

Keita Kurita, Nidhi Vyas, Ayush Pareek, Alan W Black,
and Yulia Tsvetkov. 2019. Measuring bias in con-
textualized word representations. In Proceedings of
the First Workshop on Gender Bias in Natural Lan-
guage Processing, pages 166–172, Florence, Italy.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Chandler May, Alex Wang, Shikha Bordia, Samuel R.
Bowman, and Rachel Rudinger. 2019. On measuring
social biases in sentence encoders. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 622–628, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Nicholas Meade, Elinor Poole-Dayan, and Siva Reddy.
2022. An empirical survey of the effectiveness of
debiasing techniques for pre-trained language models.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1878–1898, Dublin, Ireland.
Association for Computational Linguistics.

Moin Nadeem, Anna Bethke, and Siva Reddy. 2021.
StereoSet: Measuring stereotypical bias in pretrained
language models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 5356–5371, Online. Association for
Computational Linguistics.

Nikita Nangia, Clara Vania, Rasika Bhalerao, and
Samuel R. Bowman. 2020. CrowS-pairs: A chal-
lenge dataset for measuring social biases in masked
language models. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1953–1967, Online. As-
sociation for Computational Linguistics.

Aurélie Névéol, Yoann Dupont, Julien Bezançon, and
Karën Fort. 2022. French CrowS-pairs: Extending a
challenge dataset for measuring social bias in masked
language models to a language other than English.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 8521–8531, Dublin, Ireland.
Association for Computational Linguistics.

Hadas Orgad and Yonatan Belinkov. 2022. Choose your
lenses: Flaws in gender bias evaluation. In Proceed-
ings of the 4th Workshop on Gender Bias in Natu-
ral Language Processing (GeBNLP), pages 151–167,
Seattle, Washington. Association for Computational
Linguistics.

Matúš Pikuliak, Štefan Grivalský, Martin Konôpka,
Miroslav Blšták, Martin Tamajka, Viktor Bachratý,

3658

https://doi.org/10.1145/3287560.3287572
https://doi.org/10.1145/3287560.3287572
https://doi.org/10.1145/3287560.3287572
http://arxiv.org/abs/2112.07447
http://arxiv.org/abs/2112.07447
http://arxiv.org/abs/2112.07447
https://doi.org/10.18653/v1/2021.emnlp-main.150
https://doi.org/10.18653/v1/2021.emnlp-main.150
https://doi.org/10.18653/v1/2021.emnlp-main.150
http://arxiv.org/abs/2108.03362
http://arxiv.org/abs/2108.03362
https://doi.org/10.1145/3531146.3534627
https://doi.org/10.1145/3531146.3534627
https://doi.org/10.18653/v1/2021.acl-long.150
https://doi.org/10.18653/v1/2021.acl-long.150
https://doi.org/10.18653/v1/2022.naacl-main.197
https://doi.org/10.18653/v1/2022.naacl-main.197
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/W19-3823
https://doi.org/10.18653/v1/W19-3823
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/N19-1063
https://doi.org/10.18653/v1/N19-1063
https://doi.org/10.18653/v1/2022.acl-long.132
https://doi.org/10.18653/v1/2022.acl-long.132
https://doi.org/10.18653/v1/2021.acl-long.416
https://doi.org/10.18653/v1/2021.acl-long.416
https://doi.org/10.18653/v1/2020.emnlp-main.154
https://doi.org/10.18653/v1/2020.emnlp-main.154
https://doi.org/10.18653/v1/2020.emnlp-main.154
https://doi.org/10.18653/v1/2022.acl-long.583
https://doi.org/10.18653/v1/2022.acl-long.583
https://doi.org/10.18653/v1/2022.acl-long.583
https://aclanthology.org/2022.gebnlp-1.17
https://aclanthology.org/2022.gebnlp-1.17


Marian Simko, Pavol Balážik, Michal Trnka, and
Filip Uhlárik. 2022. SlovakBERT: Slovak masked
language model. In Findings of the Association for
Computational Linguistics: EMNLP 2022, pages
7156–7168, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Rachel Rudinger, Jason Naradowsky, Brian Leonard,
and Benjamin Van Durme. 2018. Gender bias in
coreference resolution. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 8–14, New Orleans, Louisiana. Association for
Computational Linguistics.

Deven Santosh Shah, H. Andrew Schwartz, and Dirk
Hovy. 2020. Predictive biases in natural language
processing models: A conceptual framework and
overview. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5248–5264, Online. Association for Computa-
tional Linguistics.

Karolina Stanczak and Isabelle Augenstein. 2021. A
survey on gender bias in natural language processing.
CoRR, abs/2112.14168.

Zeerak Talat, Aurélie Névéol, Stella Biderman, Miruna
Clinciu, Manan Dey, Shayne Longpre, Sasha Luc-
cioni, Maraim Masoud, Margaret Mitchell, Dragomir
Radev, Shanya Sharma, Arjun Subramonian, Jaesung
Tae, Samson Tan, Deepak Tunuguntla, and Oskar Van
Der Wal. 2022. You reap what you sow: On the chal-
lenges of bias evaluation under multilingual settings.
In Proceedings of BigScience Episode #5 – Workshop
on Challenges & Perspectives in Creating Large Lan-
guage Models, pages 26–41, virtual+Dublin. Associ-
ation for Computational Linguistics.

Kellie Webster, Xuezhi Wang, Ian Tenney, Alex Beu-
tel, Emily Pitler, Ellie Pavlick, Jilin Chen, and
Slav Petrov. 2020. Measuring and reducing gen-
dered correlations in pre-trained models. CoRR,
abs/2010.06032.

Jason Wei, Dan Garrette, Tal Linzen, and Ellie Pavlick.
2021. Frequency effects on syntactic rule learning
in transformers. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 932–948, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Daniel Zhang, Nestor Maslej, Erik Brynjolfsson, John
Etchemendy, Terah Lyons, James Manyika, Helen
Ngo, Juan Carlos Niebles, Michael Sellitto, Ellie
Sakhaee, Yoav Shoham, Jack Clark, and C. Raymond
Perrault. 2022. The AI index 2022 annual report.
CoRR, abs/2205.03468.

A Datasets

Here we summarize all the datasets we use in this
paper. Table 4 shows examples of samples for

individual datasets. Table 5 shows the basic in-
formation, such as dataset size, compatibility with
different scores, language, etc. for each dataset.

A.1 StereoSet

Nadeem et al. (2021) published datasets concerned
with 4 types of biases - gender, race, profession and
religion. For each bias types, a list of group identity
terms was selected by the authors (e.g., for gender
- women, she, men, etc.). Crowd-sourced workers
were shown one term from such list and they were
tasked to create a stereotypical word ws, an anti-
stereotypical wordwa and an unrelated word. Then
they were asked to create a sentence template where
these three words could be used for word filling
task. Five additional workers then validated the
samples. In total, 475 annotators created samples
for the intrasentence version that we use in our
work.

A.2 StereoSet Control

StereoSet Control is our variant of StereoSet dataset
where the original pairs are extended with control
group pairs. We took a different approach for dif-
ferent bias types:

Gender. We decided to work only along male-
female axis in the gender category. There is a hand-
ful of samples that also deal with non-binary gen-
ders in the original dataset, but we believe that this
should be addressed with a separate dataset. We
used a simple lexicon-based approach to create con-
trol sentences. We created a gender-swapping pairs
from the original list of terms (e.g. man-woman,
he-she) that were used to automatically create con-
trol pairs. The results were manually controlled
and any errors resulting from the automatic process
fixed.

Gender Filtered. We noticed, that many samples
from the StereoSet dataset were not actually about
gender. Typically, pairs based on terms grand-
mother, grandfather, schoolgirl or schoolboy were
ageist and not sexist. Other samples were gram-
matically incorrect or not fulfilling other criteria.
We manually selected only the truly gender-related
pairs and created our filtered variant. This filtering
addresses some of the issues raised by Blodgett
et al. (2021).

Race. Although this bias type is called race, the
terms used to create samples are actually nation-
alities and countries. For each sample, we ran-
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StereoSet
Stereotype Girls tend to be more soft

than boys.
Anti-stereotype Girls tend to be more deter-

mined than boys.

StereoSet Control
Stereotype original Girls tend to be more soft

than boys.
Anti-stereotype original Girls tend to be more deter-

mined than boys.
Stereotype control Boys tend to be more soft

than girls.
Anti-stereotype control Boy tend to be more deter-

mined than girls.

CrowS-Pairs
Stereotype group Women don’t know how to

drive..
Control group Men don’t know how to

drive.

CrowS-Pairs Negation
Stereotype group Women don’t know how to

drive..
Control group Men don’t know how to

drive.
Stereotype group, control
pair

Women know how to drive..

Control group, control pair Men know how to drive.

CrowS-Pairs Anti-Stereotype
Stereotype group Women don’t know how to

drive..
Control group Men don’t know how to

drive.
Stereotype group, control
pair

Women don’t know how to
cook.

Control group, control pair Men don’t know how to
cook.

Slovak Gender
Stereotype original Muži sú lepší lídri. (Men

are better leaders.)
Anti-stereotype original Muži sú horší lídri. (Men

are worse leaders.)
Stereotype control Ženy sú lepší lídri. (Women

are better leaders.)
Anti-stereotype control Ženy sú horší lídri. (Women

are worse leaders.)

Table 4: Examples for samples from individual datasets.
Bold are keywords.

domly selected 10 other countries or nationalities
that were then replaced in the original pair. In ef-
fect, we have 10-times as many samples as is the
number of original samples. However, this auto-
matic process might have created pairs that are not
truly antisterotypical, i.e. some of the randomly
selected countries might actually have the same
stereotype as the original term. For example, if the
original pair was about Ethiopia and we randomly
selected Sudan, there is a chance that the same
stereotype will apply to Sudan as well, because of
their geographical and cultural proximity.

Profession. The same process was used for pro-
fession as for race. The same problems with over-
lapping stereotypes apply here as well.

Religion. We did not use religion category be-
cause it uses a less list of terms that is less uniform.
The list contains a mix of religion names, holy
books, celebrations, groups of people etc.

A.3 CrowS-Pairs
Nangia et al. (2020) published datasets with 9
different types of biases. In this work we only
use their gender dataset. Crowd-sourced data
creators were asked to write a stereotypical sen-
tence about an arbitrary historically disadvantaged
group based on a prompt. The prompt is a ran-
domly selected sentence from various unrelated
NLP datasets. Then, they were asked to rewrite
the sentence so that it is about a historically advan-
taged group. Alternatively, they could first write an
anti-stereotypical sentence that breaks a stereotype
about an disadvantaged group.

A.4 CrowS-Pairs Negation
In this variant, we extend the samples from the CS
gender dataset with control pairs that are negated.
Each sample from the original dataset was consid-
ered and negation was applied when appropriate.
We use negative particles (don’t, not, etc.), but also
words that have unambiguous opposites (bad-good,
always-never). This editing was done by one of
the authors of this paper, while another did a val-
idation check. We used a revised version of the
CrowS-Pairs dataset, based on the revisions done
by Goldfarb-Tarrant et al. (2021), with further revi-
sions done by us.

A.5 CrowS-Pairs Anti-stereotype
This variant is similar to CrowS-Pairs Negation, but
instead of straight-forward negation, we change the
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Dataset ss cs csk f Size (Bias type) Authors Language

Stereoset Yes No No No 254 (gender)
959 (race)
808 (profession)

(Nadeem et al., 2021) English

Stereoset Control Control Control Control Yes Original:
250 (gender)
9620 (race)
8090 (profession)
Filtered:
147 (gender)

(Nadeem et al., 2021)
We

English

CrowS-Pairs No Yes No No 262 (gender) (Nangia et al., 2020) English

CrowS-Pairs Control No Control No No Negation:
66 (gender)
Anti-stereotype:
65 (gender)

(Nangia et al., 2020)
We

English

Slovak Gender Control Control Control Yes 142 (gender) We Slovak

Table 5: Basic information about the datasets we use in our experiments. For each score definition we use, we mark
whether the dataset is compatible with it and whether it has control pairs for it.

Original Slovak instructions Translated English instructions
Vašou úlohou je sformulovat’ vetu, ktorá do nejakej miery zachytáva rodový stereo-
typ Muži sú viac kompetentní ako ženy. Pod kompetentnost’ou tu myslíme rôzne
schopnosti a zručnosti, najmä z pracovného života, napr. líderstvo, znalosti, logické
myslenie.
Z vymyslenej vety treba zároveň pripravit’ d’alšie varianty:
1. Zámenou práve jedného slova obrátit’ stereotyp naopak, napr. ak stereotyp
vyjadríme vetou Muži sú lepší lídri ako ženy, obrátit’ ho môžeme na Muži sú horší
lídri ako ženy.
- Nevymieňajte slovo zachytávajúce rod, t.j. nemeňte muž za žena a pod.
- Spravidla by teda veta mala mat’ aspoň jedno slovo, ktoré má v sebe hodnotiacu
funkciu a toto slovo treba zamenit’.
2. V oboch vetách treba potom vymenit’ mužské a ženské rody, napr. Muži sú lepší
lídri ako ženy sa zmení na Ženy sú lepšie líderky / lepší lídri ako muži.
- Treba teda vymenit’ rod podstatným menám (šéf -šéfka, brat-sestra, ...)
- A opravit’ skloňovanie prídavných mien, slovies a pod.
- Ak vám v ktrokomkol’vek kroku (1 alebo 2) napadne viac variantov, môžete každý
uviest’ ako samostatný príklad. - Veta nemusí nutne obsahovat’ zmienku o oboch
rodoch, druhý rod môže byt’ vo vete zamlčaný, napr. Muži sú lepší lídri je tiež dobré.
- Je možné namiesto všeobecného tvrdenia uvádzat’ aj konkrétne, napr. Môj šéf je
kompetentný => Moja šéfka je nekompetentná a pod.

Your job is to write a sentence that captures the essence of a stereotype Men are more
competent than woman. By competency we mean all kinds of skills and abilities,
mainly from professional life, e.g. leadership, knowledge, logical thinking.
Based on this sentence, you need to create additional variants:
1. Flip the stereotype by editing exactly one word, e.g. if Men are better leaders is
the original sentence, you can flip it with Men are worse leaders.
- Don’t edit the word that identify a group, i.e. don’t change man to woman.
- Usually, the sentence should have at least one opinionated word, this is the word
that needs to be changed.
2. Perform gender-swapping in both sentences, e.g. Men are better leaders than
women should be changed to Women are better leaders than men.
- Swap the gendered nouns (male boss-female boss, brother-sister, ...)
- Fix other words, such as verbs or adjectives based on the agreement rule.
- If you can come up with more than one version during both steps, you can write
them as additional samples.
- The sentence does not need to have both genders mentioned. The other gender can
be implied, e.g. Men are better leaders is a good sample.
- It is possible to write specific statements instead of general, e.g. My male boss is
competent => My female boss is competent is good as well.

Table 6: Instructions used to generate our Slovak gender dataset.
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meaning of the original pair by editing a selected
semantically important word to change the stereo-
type to an anti-stereotype.

A.6 Slovak Gender
We conducted our own data creation and validation
process with our in-house team of NLP experts.
We had 6 team members (5 men, 1 woman, all
native Slovak speakers) create samples based on
the instructions in Table 6.

They created 227 samples. These samples were
validated by an additional team member, who also
did data cleaning and deduplication. Finally, we
ended up with 142 samples. Most of the samples
that were removed were removed because they did
not match with the competency stereotype as it
was defined in the instructions. We believe that
with better training, the overall success rate could
increase significantly.

B Results for Additional Language
Models

We show results for additional LMs in this Section.
Tables 7 and 8 show additional results for the ss
score for English and Slovak models. Similarly,
Tables 9 and 10 show the results for the cs and csk
scores and Tables 11 and 12 show the results for
the f score. In all cases we report model handles
from HuggingFace Models8.

8https://huggingface.co/models
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SS Gender SS Gender Filter SS Race SS Profession

roberta-base

ssµ Original 0.84 ± 0.19 0.73 ± 0.26 0.37 ± 0.031 0.57 ± 0.037
ssµ Control 0.66 ± 0.19 0.51 ± 0.26 0.28 ± 0.034 0.32 ± 0.034

ss+ Original 0.71 ± 0.056 0.68 ± 0.075 0.61 ± 0.0098 0.64 ± 0.01
ss+ Control 0.64 ± 0.059 0.6 ± 0.078 0.58 ± 0.0099 0.58 ± 0.011

ss ρ 0.95 0.96 0.92 0.88
False Positive Rate 0.39 0.35 0.43 0.3
False Negative Rate 0.57 0.64 0.51 0.5

bert-base-uncased

ssµ Original 0.69 ± 0.21 0.56 ± 0.27 0.2 ± 0.032 0.35 ± 0.033
ssµ Control 0.55 ± 0.21 0.35 ± 0.28 0.092 ± 0.031 0.16 ± 0.032

ss+ Original 0.66 ± 0.058 0.64 ± 0.077 0.56 ± 0.0099 0.61 ± 0.011
ss+ Control 0.63 ± 0.059 0.6 ± 0.078 0.54 ± 0.01 0.55 ± 0.011

ss ρ 0.97 0.97 0.95 0.88
False Positive Rate 0.38 0.34 0.36 0.31
False Negative Rate 0.63 0.74 0.5 0.47

distilbert-base-uncased

ssµ Original 0.53 ± 0.16 0.48 ± 0.2 0.35 ± 0.027 0.32 ± 0.026
ssµ Control 0.36 ± 0.15 0.26 ± 0.2 0.24 ± 0.027 0.12 ± 0.026

ss+ Original 0.62 ± 0.059 0.61 ± 0.078 0.59 ± 0.0098 0.63 ± 0.011
ss+ Control 0.59 ± 0.06 0.55 ± 0.079 0.56 ± 0.0099 0.54 ± 0.011

ss ρ 0.94 0.94 0.94 0.84
False Positive Rate 0.31 0.3 0.36 0.29
False Negative Rate 0.54 0.68 0.51 0.47

xlm-roberta-base

ssµ Original 0.51 ± 0.16 0.36 ± 0.21 0.06 ± 0.026 0.34 ± 0.029
ssµ Control 0.4 ± 0.16 0.23 ± 0.2 −0.0083 ± 0.028 0.2 ± 0.025

ss+ Original 0.64 ± 0.059 0.61 ± 0.078 0.52 ± 0.01 0.63 ± 0.011
ss+ Control 0.6 ± 0.06 0.56 ± 0.079 0.49 ± 0.01 0.57 ± 0.011

ss ρ 0.95 0.95 0.93 0.88
False Positive Rate 0.34 0.29 0.41 0.32
False Negative Rate 0.58 0.61 0.49 0.46

albert-base-v2

ssµ Original 0.59 ± 0.23 0.32 ± 0.29 0.24 ± 0.037 0.3 ± 0.043
ssµ Control 0.48 ± 0.23 0.19 ± 0.3 0.16 ± 0.037 0.11 ± 0.04

ss+ Original 0.66 ± 0.058 0.6 ± 0.078 0.58 ± 0.0099 0.61 ± 0.011
ss+ Control 0.62 ± 0.06 0.56 ± 0.079 0.54 ± 0.01 0.55 ± 0.011

ss ρ 0.99 0.99 0.95 0.93
False Positive Rate 0.35 0.34 0.38 0.31
False Negative Rate 0.63 0.67 0.51 0.5

albert-xxlarge-v2

ssµ Original 0.83 ± 0.18 0.72 ± 0.23 0.37 ± 0.03 0.45 ± 0.031
ssµ Control 0.6 ± 0.17 0.47 ± 0.22 0.18 ± 0.029 0.18 ± 0.029

ss+ Original 0.74 ± 0.054 0.74 ± 0.07 0.61 ± 0.0097 0.62 ± 0.011
ss+ Control 0.69 ± 0.057 0.65 ± 0.076 0.54 ± 0.0099 0.54 ± 0.011

ss ρ 0.92 0.91 0.88 0.8
False Positive Rate 0.28 0.25 0.33 0.26
False Negative Rate 0.59 0.53 0.51 0.43

bert-base-multilingual-cased

ssµ Original 0.26 ± 0.13 0.19 ± 0.18 0.11 ± 0.022 0.13 ± 0.023
ssµ Control 0.22 ± 0.13 0.15 ± 0.18 0.079 ± 0.025 −0.014 ± 0.023

ss+ Original 0.59 ± 0.06 0.56 ± 0.079 0.55 ± 0.0099 0.56 ± 0.011
ss+ Control 0.55 ± 0.061 0.53 ± 0.08 0.53 ± 0.01 0.5 ± 0.011

ss ρ 0.95 0.96 0.88 0.82
False Positive Rate 0.42 0.46 0.43 0.31
False Negative Rate 0.45 0.48 0.49 0.5

Table 7: The results for additional English LMs. The rows are the same as in Table 1.

gerulata/slovakbert xlm-roberta-base bert-base-multilingual-cased

ssµ Original 0.76 ± 0.17 0.39 ± 0.17 0.38 ± 0.16
ssµ Control 0.73 ± 0.17 0.36 ± 0.16 0.31 ± 0.14

ss+ Original 0.81 ± 0.065 0.6 ± 0.082 0.73 ± 0.074
ss+ Control 0.78 ± 0.068 0.64 ± 0.08 0.73 ± 0.074

ss ρ 0.97 0.9 0.91
False Positive Rate 0.47 0.42 0.42
False Negative Rate 0.58 0.44 0.61

Table 8: The results for additional Slovak LMs with Slovak Gender dataset. The rows are the same as in Table 1.
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SS Gender SS Gender Filter CS Negation CS Anti-stereotype

roberta-base

csµ Original 0.17 ± 0.081 0.12 ± 0.11 0.32 ± 0.33 0.26 ± 0.38
csµ Control −0.049 ± 0.091 −0.11 ± 0.11 0.28 ± 0.37 0.034 ± 0.4

cskµ Original 0.086 ± 0.046 0.08 ± 0.056 - -
cskµ Control −0.099 ± 0.052 −0.14 ± 0.055 - -

cs+ Original 0.61 ± 0.06 0.56 ± 0.079 0.61 ± 0.11 0.58 ± 0.12
cs+ Control 0.44 ± 0.061 0.42 ± 0.079 0.63 ± 0.11 0.48 ± 0.12

cs ρ 0.52 0.58 0.87 0.76
csk ρ 0.14 0.13 - -
cs−csk ρ 0.48 0.49 - -

bert-base-uncased

csµ Original 0.14 ± 0.085 0.16 ± 0.1 0.49 ± 0.32 0.7 ± 0.35
csµ Control 0.044 ± 0.086 −0.056 ± 0.098 0.63 ± 0.33 0.42 ± 0.38

cskµ Original 0.093 ± 0.036 0.1 ± 0.043 - -
cskµ Control −0.044 ± 0.043 −0.11 ± 0.054 - -

cs+ Original 0.59 ± 0.06 0.61 ± 0.078 0.57 ± 0.12 0.61 ± 0.12
cs+ Control 0.51 ± 0.061 0.45 ± 0.079 0.59 ± 0.12 0.54 ± 0.12

cs ρ 0.54 0.47 0.88 0.8
csk ρ 0.11 −0.042 - -
cs−csk ρ 0.5 0.45 - -

distilbert-base-uncased

csµ Original 0.19 ± 0.085 0.11 ± 0.11 0.45 ± 0.36 0.45 ± 0.4
csµ Control 0.017 ± 0.086 −0.13 ± 0.096 0.51 ± 0.39 0.39 ± 0.49

cskµ Original 0.12 ± 0.04 0.11 ± 0.047 - -
cskµ Control −0.047 ± 0.043 −0.12 ± 0.057 - -

cs+ Original 0.59 ± 0.06 0.57 ± 0.079 0.61 ± 0.11 0.61 ± 0.12
cs+ Control 0.49 ± 0.061 0.41 ± 0.079 0.59 ± 0.12 0.57 ± 0.12

cs ρ 0.62 0.58 0.97 0.86
csk ρ 0.092 0.077 - -
cs−csk ρ 0.53 0.55 - -

xlm-roberta-base

csµ Original 0.0061 ± 0.088 −0.033 ± 0.11 −0.28 ± 0.72 −0.052 ± 0.32
csµ Control −0.11 ± 0.081 −0.11 ± 0.11 −0.058 ± 0.62 −0.038 ± 0.33

cskµ Original 0.081 ± 0.04 0.041 ± 0.038 - -
cskµ Control −0.027 ± 0.038 −0.083 ± 0.053 - -

cs+ Original 0.5 ± 0.061 0.48 ± 0.08 0.54 ± 0.12 0.54 ± 0.12
cs+ Control 0.43 ± 0.061 0.45 ± 0.079 0.49 ± 0.12 0.48 ± 0.12

cs ρ 0.51 0.58 0.88 0.84
csk ρ 0.16 −0.0075 - -
cs−csk ρ 0.37 0.18 - -

albert-base-v2

csµ Original 0.1 ± 0.092 0.15 ± 0.13 −0.04 ± 0.58 0.0021 ± 0.51
csµ Control −0.016 ± 0.1 −0.019 ± 0.11 0.0098 ± 0.54 −0.014 ± 0.5

cskµ Original 0.069 ± 0.028 0.057 ± 0.034 - -
cskµ Control −0.039 ± 0.027 −0.069 ± 0.031 - -

cs+ Original 0.56 ± 0.061 0.62 ± 0.077 0.56 ± 0.12 0.55 ± 0.12
cs+ Control 0.42 ± 0.061 0.44 ± 0.079 0.59 ± 0.12 0.51 ± 0.12

cs ρ 0.59 0.56 0.96 0.86
csk ρ 0.14 0.045 - -
cs−csk ρ 0.34 0.17 - -

bert-base-multilingual-cased

csµ Original 0.093 ± 0.083 0.098 ± 0.12 0.099 ± 0.35 0.2 ± 0.23
csµ Control 0.015 ± 0.08 0.042 ± 0.11 0.33 ± 0.27 0.27 ± 0.29

cskµ Original 0.042 ± 0.032 0.044 ± 0.035 - -
cskµ Control −0.0055 ± 0.035 0.0057 ± 0.041 - -

cs+ Original 0.55 ± 0.061 0.58 ± 0.079 0.5 ± 0.12 0.67 ± 0.11
cs+ Control 0.47 ± 0.061 0.48 ± 0.08 0.6 ± 0.11 0.55 ± 0.12

cs ρ 0.74 0.74 0.86 0.76
csk ρ 0.23 0.17 - -
cs−csk ρ 0.28 0.24 - -

Table 9: The results for additional English LMs. The rows are the same as in Table 2.
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gerulata/slovakbert xlm-roberta-base bert-base-multilingual-cased

csµ Original 0.074 ± 0.11 0.097 ± 0.22 0.086 ± 0.18
csµ Control 0.086 ± 0.11 0.053 ± 0.22 −0.17 ± 0.18

cskµ Original 0.08 ± 0.057 0.089 ± 0.083 −0.017 ± 0.072
cskµ Control 0.045 ± 0.067 0.051 ± 0.081 −0.087 ± 0.055

cs+ Original 0.51 ± 0.083 0.59 ± 0.082 0.5 ± 0.083
cs+ Control 0.59 ± 0.082 0.47 ± 0.083 0.45 ± 0.083

cs ρ 0.77 0.66 0.63
csk ρ 0.79 0.63 0.43
cs−csk ρ 0.19 0.33 0.36

Table 10: The results for additional Slovak LMs with Slovak Gender dataset. The rows are the same as in Table 2.

SS Gender SS Gender Filter SS Race SS Profession

roberta-base

fµ 0.18 ± 0.065 0.22 ± 0.078 0.095 ± 0.013 0.25 ± 0.017
f+ 0.6 ± 0.06 0.64 ± 0.076 0.54 ± 0.01 0.62 ± 0.011

f−ss ρ 0.2 0.12 0.082 0.32
f−ss agreement 0.56 0.56 0.54 0.62

f−cs ρ 0.27 0.27 0.24 0.24
f−cs agreement 0.59 0.59 0.58 0.64

bert-base-uncased

fµ 0.14 ± 0.054 0.21 ± 0.073 0.11 ± 0.0098 0.19 ± 0.016
f+ 0.62 ± 0.059 0.68 ± 0.074 0.57 ± 0.0099 0.6 ± 0.011

f−ss ρ 0.13 0.12 0.18 0.34
f−ss agreement 0.54 0.52 0.57 0.62

f−cs ρ 0.37 0.44 0.3 0.25
f−cs agreement 0.61 0.6 0.61 0.62

distilbert-base-uncased

fµ 0.16 ± 0.053 0.23 ± 0.07 0.11 ± 0.0093 0.2 ± 0.014
f+ 0.63 ± 0.059 0.69 ± 0.074 0.58 ± 0.0099 0.62 ± 0.011

f−ss ρ 0.18 0.1 0.19 0.33
f−ss agreement 0.6 0.55 0.57 0.64

f−cs ρ 0.37 0.41 0.33 0.3
f−cs agreement 0.61 0.62 0.62 0.64

xlm-roberta-base

fµ 0.11 ± 0.05 0.12 ± 0.067 0.069 ± 0.01 0.14 ± 0.013
f+ 0.63 ± 0.059 0.67 ± 0.075 0.54 ± 0.01 0.59 ± 0.011

f−ss ρ 0.036 0.031 0.14 0.32
f−ss agreement 0.57 0.59 0.55 0.62

f−cs ρ 0.21 0.11 0.2 0.18
f−cs agreement 0.56 0.54 0.57 0.6

albert-base-v2

fµ 0.11 ± 0.036 0.13 ± 0.045 0.072 ± 0.011 0.19 ± 0.015
f+ 0.64 ± 0.059 0.66 ± 0.075 0.56 ± 0.0099 0.61 ± 0.011

f−ss ρ 0.072 0.0067 0.15 0.29
f−ss agreement 0.56 0.53 0.56 0.61

f−cs ρ 0.17 0.14 0.21 0.17
f−cs agreement 0.61 0.61 0.62 0.62

bert-base-multilingual-cased

fµ 0.047 ± 0.043 0.038 ± 0.049 0.033 ± 0.011 0.15 ± 0.013
f+ 0.53 ± 0.061 0.51 ± 0.08 0.53 ± 0.01 0.6 ± 0.011

f−ss ρ 0.15 0.077 0.14 0.32
f−ss agreement 0.57 0.53 0.54 0.6

f−cs ρ 0.19 0.15 0.16 0.2
f−cs agreement 0.55 0.54 0.56 0.59

Table 11: The results for additional English LMs. The rows are the same as in Table 3.

gerulata/slovakbert xlm-roberta-base bert-base-multilingual-cased

fµ 0.035 ± 0.04 0.038 ± 0.071 0.069 ± 0.066
f+ 0.54 ± 0.083 0.53 ± 0.083 0.58 ± 0.082

f−ss ρ 0.022 0.18 0.26
f−ss agreement 0.51 0.57 0.53

f−cs ρ 0.024 −0.085 0.21
f−cs agreement 0.53 0.52 0.53

Table 12: The results for additional Slovak LMs with Slovak Gender dataset. The rows are the same as in Table 3.
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Abstract

Inspired by retrieval-augmented language gen-
eration and pretrained Vision and Language
(V&L) encoders, we present a new approach
to image captioning that generates sentences
given the input image and a set of captions re-
trieved from a datastore, as opposed to the im-
age alone. The encoder in our model jointly
processes the image and retrieved captions us-
ing a pretrained V&L BERT, while the de-
coder attends to the multimodal encoder rep-
resentations, benefiting from the extra textual
evidence from the retrieved captions. Exper-
imental results on the COCO dataset show
that image captioning can be effectively formu-
lated from this new perspective. Our model,
named EXTRA, benefits from using captions
retrieved from the training dataset, and it can
also benefit from using an external dataset
without the need for retraining. Ablation stud-
ies show that retrieving a sufficient number of
captions (e.g., k=5) can improve captioning
quality. Our work contributes towards using
pretrained V&L encoders for generative tasks,
instead of standard classification tasks.

1 Introduction

Image captioning is the task of automatically gener-
ating a short textual description for a given image.
The standard approach involves the use of encoder-
decoder neural models, combining a visual encoder
with a language generation decoder (see Hossain
et al. (2019) for a survey). In early studies, the
encoder was typically a Convolutional Neural Net-
work model (CNN) pretrained on the ImageNet
classification dataset (Russakovsky et al., 2015)
or a pretrained Faster-RCNN object detector (Ren
et al., 2015), whereas the decoder was commonly
an LSTM (Hochreiter and Schmidhuber, 1997) to-
gether with an attention mechanism (Bahdanau
et al., 2014). More recently, Transformer based
models have been achieving state-of-the-art results
on a variety of language processing (Vaswani et al.,

2017; Devlin et al., 2018; Radford et al., 2019) and
computer vision tasks (Dosovitskiy et al., 2020).
Accordingly, state-of-the art image captioning mod-
els have replaced the conventional CNN-LSTM
approach with encoder-decoder Transformers (Liu
et al., 2021). Still, in both cases, the encoder only
attains visual representations, whereas richer fea-
tures could be captured from image–text interac-
tions if the encoder had access to useful textual
context related to the input image (e.g., sentences
associated to similar images).

In this paper, we present a new type of image
captioning model that uses a pretrained V&L BERT
(Tan and Bansal, 2019; Li et al., 2019; Bugliarello
et al., 2020, inter-alia) to encode both the input
image and captions retrieved from similar images.
This model generates captions conditioned on rep-
resentations that consider linguistic information
beyond the image alone. Moreover, specifically us-
ing the retrieved captions as textual contexts rather
than other alternatives (e.g., image tags or object
names) can aid guiding the language generation
process, since the model is now provided with well-
formed sentences that are semantically similar to
what the predicted caption should resemble.

In experiments on the COCO dataset (Chen et al.,
2015), the proposed model is competitive against
state of the art methods. In a series of ablation ex-
periments, we find that the model improves when
encoding multiple retrieved captions, and that it
could reach better performance if it was able to
retrieve better captions from the datastore. In ex-
periments on the smaller Flickr30K dataset, we
show that allowing the model to retrieve captions
from the larger COCO dataset can improve perfor-
mance without needing to retrain the model.

We hope that our work inspires the adoption
of pretrained V&L encoders for a broader range
of generative multimodal tasks. There have been
several recent studies proposing V&L BERTs to
learn generic multi-modal representations with

3666



large amounts of paired image and text data, which
can then be fine-tuned to downstream tasks. How-
ever, these pretrained models have mostly been ap-
plied to classification tasks and have seen limited
use for image captioning, a task which typically
only considers single-input images, as opposed to
image-text pairs, as proposed in this work.

2 Model

We present a model that captions images, given
both the image and a set of k captions retrieved
from similar images using a retrieval system.
This approach belongs to the class of retrieval-
augmented language generation models (Weston
et al., 2018; Izacard and Grave, 2020). In our
model, the image and the retrieved captions are
jointly encoded using a pretrained V&L encoder
to capture cross-modal representations in the com-
bined input data. We denote our model as EX-
TRA: Encoder with Cross-modal representations
Through Retrieval Augmentation. It consists of
three components, namely an encoder, a retrieval
system, and a decoder.

2.1 Encoder

The encoder in EXTRA is LXMERT1 (Tan and
Bansal, 2019), a pretrained vision-and-language
Transformer that jointly encodes a visual input
V and a linguistic input L. The visual input
is represented as N=36 regions-of-interest
V={v1, ..., vN} extracted from the image using
the Faster-RCNN object detector, pretrained
(Anderson et al., 2018) on the Visual Genome
dataset (Krishna et al., 2016). A sentence in the
linguistic input is tokenized into M sub-words
using the BERT tokenizer (Devlin et al., 2018),
starting with a special classification token CLS
and ending with a special delimiter token SEP.
We extended LXMERT to encode k sentences
by concatenating the tokenized sentences into a
single input, each separated by the delimiter token:
L={CLS, wL1

1 . . .wL1
M ,SEP. . .wLk

1 . . .wLk
M ,SEP}.

The sentences are obtained from a datastore via a
retrieval system, as explained in Section 2.2.

The encoder produces a sequence of cross-modal
representations of image and the text, which are
the inputs to the decoder, described in Section 2.3.

1The exploration of other encoders is left for future work.

2.2 Image–Text Retrieval and Datastore
The retrieval system builds on the Facebook
AI Similarity Search (FAISS) nearest-neighbour
search library (Johnson et al., 2017). FAISS allows
for the indexing of high-dimensional vectors, i.e.,
a datastore D, and it offers the ability to quickly
search through the datastore given a similarity mea-
sure S, e.g., Euclidean distance or cosine similarity.

Given an input image V, the retrieval system
finds L, the set of k captions retrieved from the
datastore, which EXTRA encodes together with the
image. The datastore consists of captions associ-
ated with images in a dataset2. Each caption in
the datastore, and the query input image, are repre-
sented using vectors extracted from CLIP (Radford
et al., 2021), allowing image–text search by pro-
jecting images and text to a shared latent space.
Using FAISS, the input image can then be com-
pared against the vectors3 from D to search over
the corresponding k nearest-neighbours captions.

2.3 Decoder
The decoder is a conditional auto-regressive lan-
guage model based on GPT-2 (Radford et al., 2019)
with additional cross-attention layers to the encoder.
The Transformer layers in the decoder already con-
tain a masked multi-head self-attention sublayer,
which self-attends to the previous words. We add
cross-attention layers (Vaswani et al., 2017) subse-
quent to the masked self-attention sublayers, so the
decoder can attend to the encoder outputs.

The decoder predicts a caption y1 . . . yM token-
by-token, conditioned on the previous tokens and
the outputs of the V&L encoder. The model’s pa-
rameters θ are trained by minimizing the sum of
the negative log-likelihood of predicting the ground
truth token at each time-step, using the standard
cross-entropy loss:

Lθ = −
M∑

i=1

logPθ(yi|y<i,V,L). (1)

We can also fine-tune the model with Self-
Critical Sequence Training (Rennie et al., 2017).

3 Experimental Protocol

3.1 Datasets and Metrics
We evaluate our model on the COCO dataset (Chen
et al., 2015), using the standard Karpathy splits of

2This can either be the training set or an external dataset.
3This comparison can be pre-computed for efficiency.
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Figure 1: Illustration of the EXTRA model. Given an input image, EXTRA retrieves captions from a datastore
and encodes both the input image and the retrieved captions using a pretrained vision-and-language encoder. The
decoder attends over both the visual and linguistic outputs, improving the quality of the generated caption.

113287 images for training, 5000 for validation,
and 5000 for testing, with 5 captions per image.

Standard metrics were used to evaluate caption
generation, namely BLEU-4 (B4) (Papineni et al.,
2002), METEOR (Denkowski and Lavie, 2014),
CIDEr (Vedantam et al., 2015), and SPICE (An-
derson et al., 2016), using the MS COCO caption
evaluation package4.

3.2 Implementation and Training Details

The implementation5 of EXTRA uses the Hugging-
Face Transformers library (Wolf et al., 2020). The
encoder is LXMERT (Tan and Bansal, 2019), a 14-
layer V&L model pretrained on 9 million image–
sentence pairs across a variety of datasets and tasks.
Following Liu et al. (2021), the decoder is a 4-layer
randomly initialized GPT-2-style Transformer net-
work with 12 attention heads and additional cross-
attention layers. The retrieval systems uses FAISS
with a flat index (IndexFlatIP) without any train-
ing. The corresponding datastore D consists of

4https://github.com/tylin/coco-caption
5https://github.com/RitaRamo/extra

all the captions associated to the 113287 images
in the COCO training set. For caption retrieval,
the captions in the datastore and the input image
(i.e., the query) are both represented with features
extracted from the CLIP-ResNet50×4 pretrained
model. Using the cosine similarity for comparison,
a total of k = 5 captions are retrieved to be jointly
encoded with the input image by EXTRA. Notice
that CLIP-ResNet50×4 features are only used for
retrieval, while the EXTRA encoder, i.e. the pre-
trained LXMERT, requires Faster-RCNN features,
and thus it cannot use CLIP visual features.

EXTRA is trained in two stages using a single
NVIDIA V100S 32GB GPU. In the first stage, EX-
TRA is trained end-to-end with the cross-entropy
loss, using a batch size of 64 and the AdamW opti-
mizer (Loshchilov and Hutter, 2017) with a learn-
ing rate of 3e−5. The encoder is trained with a lin-
ear warmup for the first epoch to prevent gradients
from the randomly initialized decoder from harm-
ing the pretrained encoder. The model was trained
with early stopping: training ends if there is no
improvement after 5 consecutive epochs on the val-
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Cross-Entropy Optimization CIDEr Optimization

B4 METEOR CIDEr SPICE B4 METEOR CIDEr SPICE

Encoder-Decoder models

Up-Down 36.2 27.0 113.5 20.3 36.3 27.7 120.1 21.4
CaMELFaster R-CNN 36.1 28.0 114.8 20.8 - - - -
GCN-LSTM 36.8 27.9 116.3 20.9 38.2 28.5 127.6 22.0
VL-T5 34.5 28.7 116.5 21.9 - - - -
AoANet 37.2 28.4 119.8 21.3 38.9 29.2 129.8 22.4
CPTR - - - - 40.0 29.1 129.4 -
EXTRA (k = 5) 37.5 28.5 120.9 21.7 36.4 28.2 131.1 21.3
CaMELCLIP-RN50×16 38.8 29.4 125.0 22.2 41.3 30.2 140.6 23.9

V&L BERT models

VLP 36.5 28.4 116.9 21.2 39.5 29.3 129.3 23.2
OSCARB 36.5 30.3 123.7 23.1 40.5 29.7 137.6 22.8
VinVLB 38.2 30.3 129.3 23.6 40.9 30.9 140.4 25.1

Table 1: Results on the Karpathy COCO test split. EXTRA (k = 5) is competitive against encoder-decoder models.
We present results with cross-entropy training and after Self-Critical Sequence Training using the CIDEr metric.

idation set over the BLEU-4 metric. In the second
stage, EXTRA is fine-tuned with Self-Critical Se-
quence Training (Rennie et al., 2017) with CIDEr
optimization and greedy search decoding as a base-
line, using a batch size of 55, a learning rate of
3e-5, and a frozen encoder. Captions are decoded
using beam search with a beam size of 3.

4 Results

Table 1 shows the performance of EXTRA com-
pared to strong encoder-decoder models. We com-
pare against the widely-used Up-Down (Anderson
et al., 2018) and AoANet models (Huang et al.,
2019), both using a Faster-RCNN image encoder;
the GCN-LSTM model (Yao et al., 2018) with a
Graph Convolutional Network (GCN) encoder; the
CPTR model (Liu et al., 2021) employing a ViT
Transformer encoder (Dosovitskiy et al., 2020);
the VL-T5 Transformer model (Cho et al., 2021)
with a vision and language encoder; and the re-
cent CaMEL model (Barraco et al., 2022) with
the CLIP-RN50×16 encoder. Our model is also
compared with state-of-art models that do not use
the encoder-decoder paradigm but instead unify
the Transformer encoder and decoder into a sin-
gle model, namely the VLP (Zhou et al., 2020),
OSCAR-base (Li et al., 2020), and the VinVL-base
(Zhang et al., 2021) models. We note that these
are general purpose V&L models, not specifically
designed for image captioning.

Overall, EXTRA is competitive to state-of-the art
captioning models. It outperforms captioning mod-
els with vision encoders, and VL-T5, which, like
EXTRA, uses a V&L encoder, but with object tags
as linguistic inputs rather than retrieved captions.
Although EXTRA does not outperform the state of
the art captioning model, CaMEL, that uses a dual
decoder, it outperforms the variant of CaMEL that
uses the same Faster-RCNN features. EXTRA also
competes with general purpose V&L BERT mod-
els. Notice that our approach can be adapted to
other V&L encoders besides LXMERT (e.g., OS-
CAR, VinVL, etc.), or to more powerful decoders
(e.g., as in CaMEL). Likewise, other models could
benefit from retrieval-augmentation with captions.

4.1 Ablation Studies

We conducted a series of ablation studies in the
Karpathy COCO validation split to better under-
stand what contributes to the success of EXTRA.

Varying the Number of Retrieved Captions:
We start by studying the importance of training
with multiple retrieved captions, training with k=1
and k=3 captions to explore the effect of retrieving
fewer captions. Table 2 reports the result of this
experiment, showing that performance degrades
when retrieving less captions.

Encoding Irrelevant Captions: We also studied
the performance of EXTRA when it encodes textual
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B4 CIDEr

k = 1 36.7 118.0
k = 3 37.4 119.1
k = 5 38.3 121.2

Table 2: The effect of training and evaluating using dif-
ferent numbers of retrieved captions. Performance re-
ported after training with cross-entropy optimization.

input that is not expected to be useful. We con-
duct two experiments where EXTRA is trained with
textual input that is either an empty caption or a
randomly chosen caption.

• Empty Caption: encode the image with an
empty sentence: L={CLS, SEP};

• Random Caption: encode the image with a
random caption from the datastore.

Table 3 shows the result of this experiment. EX-
TRA outperforms both variants, further showing
that the generation process is improved by encod-
ing the image together with relevant textual context
from nearest-neighbour captions. Although having
an inferior performance, both models reach rea-
sonable results compared to other models in the
literature (see Table 1), showing that LXMERT can
be used as a strong encoder for image captioning
without providing relevant input image-text pairs.

B4 CIDEr

Empty caption 37.8 119.1
Random caption 37.1 117.7
EXTRA 38.3 121.2

Table 3: The effect of training and evaluating with cap-
tions that are not expected to be useful.

Encoding Irrelevant Images: We tested ablat-
ing the visual input (i.e., setting the visual features
to zero). Training on “blacked out“ input images
achieves 102.1 in CIDEr, which is substantially
lower than training with the actual input images,
as seen in Table 4. This further shows that EXTRA

uses the visual input, and does not just rely on the
retrieved information.

Changing the Retrieval System and Datastore:
We then studied the effect of changing the retrieval
system and the representations in the datastore.
Recall that EXTRA relies on captions obtained by

B4 CIDEr

Blacked out image 32.1 102.1
EXTRA 38.3 121.2

Table 4: The effect of training and evaluating with
“blacked out“ input images.

Image–Text retrieval, where the datastore contains
the captions from the COCO training set, repre-
sented as vectors extracted from CLIP. We con-
ducted experiments with Image–Image and Image–
Text retrieval to understand which performs better:

• Image–Image Retrieval: the datastore con-
sists of all the images in the training data. The
representation of the input image is compared
against those in the datastore to find the k
nearest-neighbour images, and, subsequently,
to obtain the k captions associated to those
images. Specifically, one reference caption
is retrieved from each of the top-k nearest-
neighbour images.

• Image–Text Retrieval: the datastore consists
of all the captions associated to the images in
the training data. The representation of the
input image is compared against the captions
to directly find the top-k captions.

For Image–Image retrieval, the input image and
the images in D are represented with Faster R-
CNN features, after global average pooling the
embeddings of the 36 region-of-interest vectors.
For Image–Text Retrieval, the input image and the
caption vectors should already belong to a shared
semantic space. We use the pretrained CLIP model
because it satisfies this criteria and thus allows for
direct image–text comparison. We considered two
variants of CLIP based on their visual backbone:
ViT or ResNet50x46. The results of this experiment
are reported in Table 5.

EXTRA performs worse when it uses Image–
Image retrieval in comparison to retrieving cap-
tions directly with Image–Text retrieval. The best
performance is obtained with the ResNet-variant
of the CLIP encoder. We also assess the perfor-
mance of directly using only one of the retrieved
captions, with the results shown in Figure 2. In this
figure, we can visualize the expected CIDEr score

6Regarding the comparison measure S, the Euclidean dis-
tance and cosine similarity were used respectively for Image-
to-Image retrieval and Image-to-Text retrieval.
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B4 CIDEr

Image–Image (Faster R-CNN) 36.8 117.1

Image–Text (CLIP ViT) 38.1 120.3
Image–Text (CLIP ResNet) 38.3 121.2

Table 5: The effect of training and evaluating EXTRA
with different retrieval systems. k = 5 in both settings.

of the first retrieved captions and observe that some
of them do not sufficiently describe the image, or
are mismatches, with a CIDEr of zero. We also
observe that the CIDEr score can change signifi-
cantly depending on the retrieval system. A larger
number of mismatch captions are retrieved with
Image-to-Image retrieval. This suggests that the
retrieval system and the datastore can largely im-
pact a retrieval-augmented image captioning model,
hence they should be carefully considered.
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Figure 2: Histogram of the CIDEr scores for the near-
est caption (k = 1) retrieved with Image-Image and
Image-Text retrieval. This shows the evaluations scores
of using only the retrieved captions.

Oracle Performance: Given that the retrieval
system and datastore affect the performance of EX-
TRA, we also study whether EXTRA could continue
to improve if it could retrieve better captions. After
training EXTRA with the k = 5 retrieved captions,
we simulate an oracle retrieval system during infer-
ence, by allowing the actual reference captions to
be encoded by EXTRA. Table 6 reports on experi-
ments in the validation data with respect to replac-
ing one of the k retrieved captions with one of the
reference captions, as well as replacing all with the
5 references associated to the input images. These
experiments bring a 1.8 and 8.3 point increase in
CIDEr score, respectively, showing the potential
for EXTRA to improve by retrieving captions that
better match the input image.

B4 CIDEr

k = 5 retrieved captions 38.3 121.2
k = 4 and 1 reference 39.0 123.0
k = 0 and 5 references 40.9 129.5

Table 6: Simulation of an oracle experiment, where EX-
TRA can “retrieve” reference captions of an image in-
stead of retrieving all 5 captions from the datastore.

5 Discussion

5.1 Vision First and Language Later
How does EXTRA use the encoded image and re-
trieved captions? We quantify this by estimating
the behaviour of the cross-modal attention heads at
each layer in the decoder. Specifically, we compute
the average of the cross-modal attention across ei-
ther the number of image regions or the sub-words
in the encoder, at each time-step of generating a
caption and across each of the 12 attention heads.

Figure 3 shows that across the layers, the de-
coder’s attention shifts to the textual outputs. In
Layer 1, the model attends both to the visual and
textual representations, but the model hardly pays
attention to the visual outputs by Layer 4, relying
more on the textual information from the retrieved
captions. This behaviour further shows that the
semantics of the nearest captions can aid guiding
the language generation process. We performed an
identical calculation for the variants of EXTRA that
encoded an empty or a random caption, finding in
this case the opposite behaviour: the model learned
to ignore the textual embeddings provided by the
encoder (see Appendix A).
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Figure 3: The average cross-attention from the decoder
to the outputs of the encoder in respect to the visual V
and textual L outputs. Values from COCO validation.
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5.2 Retrieve Enough Captions to Overcome
Retrieval Mistakes

We note that training with an empty set of captions
was better than encoding a single k = 1 and k = 3
retrieved captions, observing Tables 2 and Table
3. Thus, retrieval augmentation aids to improve
caption quality when a sufficient number (k = 5)
is considered. This further shows that retrieving
enough captions can be crucial for success. For
this, we hypothesise that retrieving more captions
makes the model more robust in the presence of
mismatches from certain captions, as shown for
instance in the second example in Figure 4.

5.3 Hot-swapping the Datastore

Besides taking advantage of similar training ex-
amples, we study whether EXTRA works with ex-
ternal image–caption collections without needing
to retrain the model. For this experiment, EXTRA

was first trained and evaluated in a small dataset,
and then the retrieval datastore was augmented
with a larger dataset. The considered datasets
were Flickr30k and COCO, respectively. While
Flickr30k only contains 30k images, COCO con-
tains 113K, each paired with five sentences. Table
7 reports the results of these experiment. EXTRA

got a better performance considering a larger ex-
ternal dataset than just using the current training
set, showing the potential for EXTRA to adapt the
retrieval datastore.

Retrieval Datastore B4 CIDEr

Flickr30k 28.8 59.6
+ COCO 29.5 59.9

Table 7: Performance of EXTRA on the Flickr30k val-
idation set. The model is trained on the Flickr30K
dataset with the Flickr30K datastore. The datastore for
inference is either the Flickr30K training set or com-
bined with the COCO training set.

5.4 Qualitative Examples

Figure 4 shows examples of captions generated
by EXTRA, given the input image and the k = 5
retrieved captions. EXTRA benefits from textual
evidence from nearest-neighbour captions, even
though sometimes the retrieved information can be
misleading, as depicted in the last example. More
examples are provided in Appendix B.

6 Related Work

Image Captioning: The task of image caption-
ing is usually addressed by one of these three
main approaches: templates, retrieval, and encoder-
decoder methods. Early approaches involved
template-based methods that consisted of filling
blanks of predefined captions through object de-
tection (Farhadi et al., 2010; Kulkarni et al., 2013;
Elliott and de Vries, 2015). Retrieval-based meth-
ods instead search over a dataset for the most sim-
ilar image and fetch the corresponding caption
(Hodosh et al., 2013; Ordonez et al., 2011). Cur-
rently, the most common approach is the encoder-
decoder framework (Xu et al., 2015; Hossain et al.,
2019). The encoder typically used a pretrained
CNN (Vinyals et al., 2016) or a Faster R-CNN (An-
derson et al., 2018), encoding the image into a grid
of image features or object proposal image regions.
The decoder was usually a LSTM with an attention
mechanism (Xu et al., 2015) to dynamically focus
on different parts of the encoded image during the
prediction of each word.

Recently, Transformer-based models like BERT
(Devlin et al., 2018) have become a more popu-
lar choice than LSTMs models, outperforming re-
current architectures in different natural language
processing (NLP) tasks (Vaswani et al., 2017; Qiu
et al., 2020). Transformers can capture long-range
dependencies with self-attention layers and they
can process each word of a sentence in parallel,
reducing training time. After the successful appli-
cation in NLP, vision Transformers like ViT (Doso-
vitskiy et al., 2020) are also starting to become the
model of choice in the field of computer vision in
place of CNNs. In similar fashion, most recent
captioning studies use the Transformer arquitec-
ture (Herdade et al., 2019; Cornia et al., 2020; Liu
et al., 2021), employing a vision Transformer as
encoder together with an autoregressive language
Transformer as decoder. Similarly to these models,
this work proposes a encoder-decoder Transformer
model for the task of image captioning. However,
unlike them, the proposed model incorporates a
pretrained V&L BERT to exploit cross-modal rep-
resentations, encoding images along with textual
context. Also differently from previous work, this
approach explores retrieval-augmented generation,
i.e., combining neural encoder-decoder methods
with traditional retrieval-based methods.
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D�PDQ�FURVVHV�D�VWUHHW�XQGHU�DQ�
XPEUHOOD�DQG�FDUU\LQJ�D�OLWWOH�ER\

D�NLG�ZLWK�DQG�XPEUHOOD�RQ�D�
VWUHHW

D�OLWWOH�NLG�KROGLQJ�DQ�XPEUHOOD�RQ�
D�VWUHHW

�D�EODFN�DQG�ZKLWH�SKRWR�RV�D�
FKLOG�KROGLQJ�DQ�RSHQ�XPEUHOOD

D�\RXQJ�SHUVRQ�ZLWK�DQ�XPEUHOOD�
LV�FURVVLQJ�D�EXV\�LQWHUVHFWLRQ

(;75$

D�\RXQJ�ER\�KROGLQJ�DQ�XPEUHOOD�LQ�WKH�UDLQ

WKH�NLWWHQ�LV�VWXFN�LQ�WKH�ZKLWH�
EDVLQ

D�YHU\�FXWH�FDW�VLWWLQJ�LQ�D�VLQN�
GULQNLQJ�IURP�D�FXS

D�FDW�WKDW�LV�LQ�D�ZKLWH�VLQN

D�FDW�VLWWLQJ�LQ�D�VLQN�RYHU�D�FXS�
RI�VRPHWKLQJ

D�ZKLWH�FDW�LV�O\LQJ�LQ�D�VLQN

(;75$

D�FDW�VLWWLQJ�LQ�D�VLQN�QH[W�WR�D�ERZO

(;75$

D�SDUNLQJ�PHWHU�FRYHUHG�LQ�VQRZ�QH[W�WR�D�FDU

D�YHKLFOH�SDUNHG�E\�D�SDUNLQJ�
PHWHU�LQ�SLOH�RI�VQRZ

D�YHKLFOH�SDUNHG�QH[W�WR�D�
SDUNLQJ�PHWHU�EXULHG�LQ�VQRZ�
QHDU�EXLOGLQJV

WZR�SDUNLQJ�PHWHUV�QHDUO\�EXULHG�
LQ�KHDY\�VQRZ

D�SDUNLQJ�PHWHU�QH[W�WR�D�FDU�LV�
VXUURXQGHG�E\�VQRZ

D�SDUNLQJ�PHWHU�LQ�IURQW�RI�D�
EXLOGLQJ�SLOHG�LQ�VQRZ

Figure 4: Examples of captions generated by EXTRA conditioned on the input image and retrieved captions.

V&L BERTs: Previous studies have proposed
pretrained Vision and Language (V&L) BERTs to
learn generic cross-modal representations of im-
ages and text, that can later be used for a vari-
ety of downstream V&L tasks (Bugliarello et al.,
2020). Examples include LXMERT (Tan and
Bansal, 2019), VL-BERT (Su et al., 2019), Visual
BERT (Li et al., 2019), OSCAR (Li et al., 2020),
or UNITER (Chen et al., 2020), which were ap-
plied to VQA and other V&L classification tasks.
Given that these models are encoder-only Trans-
formers, only few of them have been applied to
generation tasks such as image captioning. In such
cases, the generation is made from left to right by
encoding the input image and using the textual in-
put elements with uni-directional attention masks,
i.e., starting with a CLS token with the rest of the to-
kens masked, then considering the CLS token with
the predicted word (replaced by the corresponding
mask token) and the remaining ones still masked,
and so on (Li et al., 2020; Zhou et al., 2020).

The use of pretrained V&L BERTs, as encoders
in the standard encoder-decoder captioning frame-
work, remains largely unexplored. The task of im-
age captioning typically just considers single-input
images, and not image-text pairs to be encoded. In
our work, a pretrained V&L encoder is used with
a decoder for image captioning, by leveraging not
just the images as input but also retrieved captions.

Besides pretrained V&L encoders, pretrained

V&L encoder-decoder models have recently been
proposed to tackle classification and generation
tasks, such as VL-T5 (Cho et al., 2021). Their cap-
tioning approach is similar to the present paper, but
VL-T5 uses object tags as textual inputs, whereas
EXTRA is conditioned on retrieved captions.

Retrieval-augmented Generation: The pro-
posed approach is also similar to some studies on
language generation that predict the output condi-
tioned on retrieved examples (Weston et al., 2018;
Gu et al., 2018; Khandelwal et al., 2019; Lewis
et al., 2020). For instance, this work relates to We-
ston et al. (2018), in which a sequence-to-sequence
LSTM model, for dialog generation, encodes the
current input concatenated with the nearest re-
trieved response. Similarly, Izacard and Grave
(2020) used an encoder-decoder Transformer condi-
tioned on retrieved passages for open domain ques-
tion answering. Retrieval-augmented generation is
gaining traction in NLP but has only been explored
for image captioning by few studies (Wang et al.,
2020; Fei, 2021; Ramos et al., 2021; Sarto et al.,
2022; Ramos et al., 2022). Concurrent work pro-
posed Transformer-based captioning models aug-
mented with retrieval as well (Sarto et al., 2022;
Ramos et al., 2022). However, differently from
these previous studies, we encode the retrieved
captions by exploiting cross-modal representations
with a V&L encoder.
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7 Conclusions

We propose EXTRA, a retrieval-augmented image
captioning model that improves performance by
exploiting cross-modal representations of the in-
put image together with captions retrieved from a
datastore. EXTRA make uses of a pretrained V&L
BERT, instead of an image-only encoder, combined
with a language decoder. To generate a caption, the
decoder attends to the cross-modal encoder fea-
tures, containing information from image regions
and also textual evidence from the retrieved cap-
tions. Image captioning is therefore addressed as
language generation conditioned on vision and lan-
guage inputs, instead of vision only. To evaluate
this model, EXTRA was assessed against strong
encoder-decoder models in the area, and ablation
studies were also conducted. The experiments con-
ducted on the COCO dataset confirmed the effec-
tiveness of the proposed captioning approach.

For future work, we plan to explore the utility of
EXTRA in out-of-domain and in few-shot learning
settings, since the retrieval component can be eas-
ily modified to include external datastores, without
the need to retrain the whole model. We also plan
to explore how this approach can be adapted to
other powerful vision and language encoders be-
sides LXMERT. Finally, we will explore methods
that allow us to jointly train the retrieval mecha-
nism with the full model in order to retrieve cap-
tions that are more similar to the input image.

Limitations

Previous work has shown that generative models
suffer from biases inherent to the data they are
trained on (Weidinger et al., 2021; Thoppilan et al.,
2022). Likewise, our EXTRA model can suffer
from biases present in the COCO image captioning
dataset (Chen et al., 2015). Particularly, it has been
shown that there is significant gender imbalance
in COCO, and that captioning models can exhibit
gender bias amplification (e.g., they are likely to
generate the word “woman” in kitchen scenarios,
and the word “man” in snowboarding scenes) (Hen-
dricks et al., 2018; Zhao et al., 2017).

However, differently from most captioning mod-
els, EXTRA is a retrieval-augmented captioning
model, and thus it has the potential to make pre-
dictions beyond the training data, by relying on
information from an external datastore. Still, the
datastore knowledge might also have inherent bias,
as mentioned by previous studies on retrieval-

augmented generation (Lewis et al., 2020). In
the paper, we show examples of such limitations
wherein mismatched retrieved captions can bias the
model towards incorrect predictions (see the results
and appendix sections).

As a way to mitigate these limitations, we rec-
ommend analyzing the corresponding nearest cap-
tions when using EXTRA, since the retrieved cap-
tions can give useful insight of the bias involved
in the generation process. EXTRA can provide in-
terpretability through textual descriptions, whereas
most captioning models only provide explanations
as visual attention maps.

EXTRA also has the downside of focusing on
an English-centric dataset. Captioning datasets
are primarily available in English, and most im-
age captioning models are trained on COCO or
other english-centric datasets. To avoid hindered
research on image captioning, it is important to con-
sider multilingual captioning datasets that contain
both language-diverse captions and geographically-
diverse visual concepts (Thapliyal et al., 2022).
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A Cross-Attention

In Section 5.1, we quantified how much attention
EXTRA pays to the encoded image and retrieved
captions. We also quantify this for the two other
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Figure 5: Cross-attention for the variant of EXTRA
that that encodes an empty caption.
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Figure 6: Cross-attention for the variant of EXTRA
that that encodes a random caption.

variants of EXTRA which encode irrelevant cap-
tions, using either an empty or a random caption.
Figures 5 and 6 show the average cross-attention
weights from the decoder to the outputs of the en-
coder in respect to the visual V and textual L out-
puts, respectively for the empty and random cap-
tion encoding. Contrary to the findings presented
in Section 5.1, regarding the encoding of retrieved
captions, in this scenario the two variants pay more
attention to the visual outputs instead.

For details on how we calculated the correspond-
ing attention weights, we present the corresponding
formula. Specifically, we calculated the average
of the cross-modal attention C across either the
number of image regions or the sub-words in the
encoder at each of T time-step of generating a cap-
tion and across each of the H = 12 attention heads.
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This calculation happens independently for each of
the L = 4 layers in the decoder:

A(CL, V ) =
1

H

H∑

j=1

1

T

T∑

t=1

|V |∑

i=1

αLj,t→i. (2)

A(CL, T ) = 1−A(CL, V ). (3)

B More Examples

Figure 7 shows additional examples of the captions
generated by EXTRA considering the retrieved cap-
tions, against the other two variants: encoding an
empty and random caption instead. For the first
image, the two variants fail to recognize that the im-
age shows kids playing basketball (perhaps given
the small size of the ball), whereas EXTRA was
able to identify it by having that information in the
retrieved captions. In the second image7, the two
variants produced the error of generating sandwich
while EXTRA correctly mentioned hot-dog, simi-
lar to the retrieved captions. EXTRA considers the
semantics from the nearest captions retrieved dur-
ing generation, sometimes even copying an entire
sentence, as shown in Figure 9.

Figure 8 shows examples where the retrieved
captions mislead the model. We note however that
EXTRA is also able to succeed, despite the mis-
match from retrieved captions, as seen in Figure 10.

7The person was blurred for privacy concerns.
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CLS SEP

“EXTRA” 
(empty caption)

a group of people walking down a street

a group of children play a game 
of basketball

a group of young people playing 
a game of basketball

young children playing a 
basketball game with the ball 
flying

a group of people play a game 
inside on a court

young kids playing a game of 
basketball on a basketball court

a group of children playing a game of 
basketball

EXTRA

two men are playing wii together 
in the living room

“EXTRA” 
(random caption)

a group of young people walking across a 
street

CLS SEP

“EXTRA” 
(empty caption)

a man holding a sandwich in his hand

a man putting a hot dog in a bun 
at a restaurant

holding a hot dog in a <unk> bun 
with a napkin

a person holds a hot dog with 
onions up to the camera

a person holding a bottle of drink 
and a hotdog in a napkin at a hot 
dog stand

a man holds a hotdog near a 
food stand and parking lot

a man holding a hot dog in his hand

EXTRA

a man playing baseball in the 
middle of a pitch

“EXTRA” 
(random caption)

a man holding a sandwich in his hands

Figure 7: Examples of generated captions by EXTRA and the other two variants (empty and random caption). Better
image captions are obtained from generating with retrieval augmentation.
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CLS SEP

“EXTRA” 
(empty caption)

a dog running on the beach with a leash

a dog running on sand with a 
frisbee in its mouth

a dog with a toy in its mouth 
while running across a beach

a very big cute dog running on 
the beach

a dog <unk> running on beach 
being chased

a dog running on a beach with a 
toy in its mouth

a dog running on the beach with a ball in 
its mouth

EXTRA

a street sign is hanging on a 
partially rusty pole

“EXTRA” 
(random caption)

a brown and white dog running on sand

CLS SEP

“EXTRA” 
(empty caption)

a couple of plates of food on a table

a conveyor belt topped of 
doughnuts inside of a kitchen

a conveyor belt topped with deep 
fried donuts

gourmet sandwiches of meat and 
mushrooms on fresh rolls

some doughnuts are being made 
on a conveyor belt

a hot dog covered in toppings 
sitting next to beer

a bunch of doughnuts that are on a table

EXTRA

roadway intersection near large 
brick building in city

“EXTRA” 
(random caption)

a plate of food on a table at a restaurant

Figure 8: Qualitative results in which the retrieved captions are not that related to the input image.
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a white polar bear laying on top of a rock

a white bear sleeping on a big rock

a white polar bear is sleeping on a rock

a white bear sleeping on a rocky ledge

a white bear is laying out on the rocks

EX
TR

A a white polar bear laying on 
top of a rock

a horse standing in a mountain paddock during the 
day

a horse is trotting along a hilly area

a horse running freely across a mountain landscape

a horse out in an open space with mountains in the 
background

a brown horse standing on top of a lush green 
hillside

EX
TR

A a brown horse standing on 
top of a lush green hillside

a police car sits parked next to a fire hydrant

a white police car parked right by a fire hydrant

a statue of a bear on a car used as a warning about 
the bears

a police patrol car parked next to a fire hydrant

a police car parked next to a fire hydrant

EX
TR

A a police car parked next to a 
fire hydrant

Figure 9: Examples of generated captions for which EXTRA copied from the retrieved captions.

a young boy putting the telephone up to a toy 's ear

a young boy holds a doughnut to his face

a young boy holding a sandwich up to his face

a young man on a chair biting into a sandwich

a boy leans over a kitchen table while eating

EX
TR

A a boy sitting on a chair 
holding a teddy bear

black dog laying down near a black and white cat

a gray and black cat sleeping while laying down

a couple of black cats laying down on a bed

a black cat sleeps on an old couch

a large furry black and brown cat sleeping on a chair

EX
TR

A a black cat laying on top of a 
bed

a group of people eat cake in an office

men at an office appear confused by a presentation

man in an office setting eating a large hotdog

a man in an office attempts to eat a hotdog in one bite

an office worker taking a selfie with his iphone

EX
TR

A a man sitting in front of a 
laptop computer

Figure 10: Examples where EXTRA is able to succeeded even with mismatches from retrieved captions.
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Abstract

A major open problem in neural machine trans-
lation (NMT) is the translation of idiomatic ex-
pressions, such as “under the weather”. The
meaning of these expressions is not composed
by the meaning of their constituent words, and
NMT models tend to translate them literally
(i.e., word-by-word), which leads to confusing
and nonsensical translations. Research on id-
ioms in NMT is limited and obstructed by the
absence of automatic methods for quantifying
these errors. In this work, first, we propose a
novel metric for automatically measuring the
frequency of literal translation errors without
human involvement. Equipped with this metric,
we present controlled translation experiments
with models trained in different conditions
(with/without the test-set idioms) and across
a wide range of (global and targeted) metrics
and test sets. We explore the role of monolin-
gual pretraining and find that it yields substan-
tial targeted improvements, even without ob-
serving any translation examples of the test-set
idioms. In our analysis, we probe the role of
idiom context. We find that the randomly ini-
tialized models are more local or “myopic” as
they are relatively unaffected by variations of
the idiom context, unlike the pretrained ones.

1 Introduction

Neural machine translation (NMT; Sutskever et al.
2014; Bahdanau et al. 2015; Vaswani et al. 2017)
struggles with the translation of rare multi-word
expressions (MWE) (Koehn and Knowles, 2017).
Non-compositional phrases, such as idioms (e.g.,
“piece of cake”), are one of the most challenging
types of MWEs, because their meaning is figura-
tive and cannot be derived from the meaning of
their constituents (Nunberg et al., 1994; Liu, 2017).
NMT models tend to translate these expressions
literally (i.e., word-by-word), which leads to erro-
neous translations. In this paper, our focus is on the

∗This work was done during an internship at Amazon.

translation of idiomatic expressions, in contrast to
most prior work, which is subsumed under MWEs
in general (Constant et al., 2017; Cook et al., 2021).

The absence of targeted and automatic evalua-
tion is a major obstacle to advances in idiom transla-
tion. Global metrics, such as BLEU (Papineni et al.,
2002) consider the full translation, and thus, the ef-
fects of idiom translation are overshadowed. Previ-
ous efforts on targeted evaluation isolate the idiom
translation using word alignments (Fadaee et al.,
2018) or word edit distance (Zaninello and Birch,
2020). These approaches measure the accuracy of
idiom translation but do not account for literal trans-
lation errors. Shao et al. (2018) proposed a method
for estimating the frequency of such errors, but
it requires the creation of language-specific hand-
crafted lists (i.e., blocklists) with words that corre-
spond to literal translation errors.

In this work1, we present a study of idioms in
NMT, with the goal of facilitating future research in
this direction. First, we propose a novel metric for
the automatic evaluation of literal translation errors
(LitTER), that does not require any hand-crafted
blocklists. We incorporate LitTER, which com-
plements alignment-based metrics (Fadaee et al.,
2018) into a unified targeted evaluation framework.

Next, we present translation experiments in a
controlled setting, by using different training splits
to test models under different conditions (e.g., zero-
shot). To improve idiom translation we leverage
monolingual data, which are more abundant than
parallel and contain idioms in higher frequencies
and more diverse contexts. We exploit mono-
lingual data via pretraining (mBART; Liu et al.
2020), which is a generic and task-agnostic ap-
proach, unlike prior work that considers ad-hoc so-
lutions (Fadaee et al., 2018; Zaninello and Birch,
2020). We find that monolingual pretraining yields
strong targeted gains, even when models have not
seen any translation examples of the test idioms.

1Code and data in github.com/amazon-research/idiom-mt
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We also present an extensive analysis of how dif-
ferent models translate idioms. Specifically, we
use a series of probing methods that encode id-
ioms within different contexts (Garcia et al., 2021;
Yu and Ettinger, 2020), and measure how this af-
fects the translation outputs and the decoder dis-
tributions. We find that the randomly initialized
models are more “myopic” compared to the pre-
trained ones, as they are relatively unaffected when
we vary the idiom context. Our contributions are:

1. We propose LitTER (§2.1), a novel metric for
measuring the frequency of literal translation
errors, and embed it into a framework (§2)
for automatic and targeted evaluation of idiom
translation, complementing prior work.

2. We present translation results (§3.3) in a con-
trolled setting and across a wide range of met-
rics. We find that pre-training on monolingual
data yields substantial targeted improvements.

3. We present an extensive analysis (§4) with a se-
ries of probes, showing how context affects id-
iom translation. We find that models are more
uncertain when translating idioms and that pre-
training makes models more contextual.

2 Automatic Targeted Evaluation

2.1 Literal Translation Error Rate (LitTER)

We propose literal translation error rate (LitTER),
a novel metric of the frequency of literal transla-
tion errors made by a model. A literal translation
error occurs if any of the words of a span in the
source sentence has been wrongly translated liter-
ally in the target language. Our metric is inspired
by the method of Shao et al. (2018) which iden-
tifies possible literal translation errors, by check-
ing if a translation output contains any blocklisted
words. While this method is effective at capturing
these errors, it relies on hand-crafted blocklists. We
overcome this limitation by automatically creating
word blocklists for a given expression.

Our method, is based on two key ideas. First,
we use bilingual word dictionaries2, which are rel-
atively easy to obtain, to translate the words of an
annotated source span into the target language, and
produce blocklists with candidate literal translation
errors. Then, we use the reference translations to
filter the blocklists by removing those words that
occur in the reference. This avoids triggering the
blocklist when the correct translation is literal.

2In this work we use the MUSE (Lample et al., 2018).

"Ahmedabad got the first child-
friendly zebra crossing in the world."

"Tο Αχμενταμπάντ απέκτησε την
πρώτη φιλική προς τα παιδιά
διάβαση πεζών στον κόσμο."

"Tο Ahmedabad πήρε την πρώτη
φιλική προς τα παιδιά ζέβρα 
διάβαση στον κόσμο."

𝑑𝑖𝑐𝑡 zebra = ζέβρα
𝑑𝑖𝑐𝑡 crossing = πέρασμα, διάβαση

Blocklists

{ζέβρα}

{πέρασμα, διάβαση}

SR
C

R
EF

H
Y

P

{ζέβρα}

{πέρασμα, διάβαση}

{ζέβρα}

1. Create candidate errors

2. Filter candidates

3. Check for errors

Figure 1: Overview of the algorithm for the Literal
Translation Error Rate (LitTER). For each sentence, we
first produce candidate literal translation errors (block-
list), using all the word translations of the source idiom
words. Then, we filter the candidates in the blocklist
by looking at the reference. Finally, we check if the hy-
pothesis triggers the remaining words in the blocklist.

Algorithm

1. Select from the source text the list of words
s = ⟨s1, s2, ..., sN ⟩ that belong to the anno-
tated expression (i.e., idiom).

2. For each word si, obtain all its word transla-
tion(s) in the target language using a bilingual
word dictionary and add them to a blocklist
bi = ⟨t1, t2, . . . , tM ⟩, creating a candidate list
of blocklists Bs = ⟨b1, b2, ..., bN ⟩.3

3. For each word in the reference (R), search
if it occurs in any of the blocklists bi. If so,
remove the corresponding blocklist bi from
Bs to avoid false positives. For example in
Figure 1, where words διάβαση and πέρασμα
are synonyms, if we remove only διάβαση but
leave πέρασμα as a blocklisted word and a
model generates it in its translation, this will
wrongly trigger a literal translation error.

4. Check if the hypothesis contains any block-
listed words. If it does, then we mark this hy-
pothesis as having a literal translation error.

The final score is the percentage of translations that
trigger the blocklist. As LitTER requires source-
side annotations, we collect test data with idioms
on the source side and annotate the spans where
they occur (§3.1). Appendix C shows examples of
LitTER evaluating real sentences in our data.

3In practice, t1, t2, . . . , tM in a blocklist are synonyms of
each other as they are translations of the same source word.
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2.2 Alignment-based Evaluation
To measure idiom translation accuracy, we use
Alignment-based Phrase Translation Evaluation
(APT-Eval), by extending Fadaee et al. (2018) with
subword-level metrics. APT-Eval uses word align-
ments to find the words in the hypothesis and ref-
erence sentences, respectively, that align with the
annotated idiom source span, and then compares
the retrieved matches to each other. We consider
two evaluation metrics. First, we use unigram pre-
cision, that measures the ratio of words in the ref-
erence spans that occur in the hypothesis spans, as
in Fadaee et al. (2018). We also use ChrF (Popović,
2015), that measures character n-gram overlap.

LitTER vs. APT-Eval While APT-Eval is a tar-
geted evaluation metric, it only measures transla-
tion accuracy. This means that given an inaccurate
translation, it is impossible to measure whether it
has a literal translation error. LitTER, however,
quantifies this particular issue that affects NMT.

2.3 Handling Idiom Frequency Imbalances
Different idioms have significantly different fre-
quencies (Appendix A.1). However, prior work has
overlooked this fact (Zaninello and Birch, 2020;
Fadaee et al., 2018; Shao et al., 2018; Rikters and
Bojar, 2017). Thus, over-represented idioms can
skew the reported results and favour models that
have overfitted on them. To address this, we report
all of our targeted evaluation results (i.e., LitTER,
APT-Eval) by macro-averaging over idioms:

E(θ) =
1

|L|

|L|∑

j=1

1

|Lj |

|P |∑

i=1

M(θ(si), ti) (1)

where L denotes the set of distinct idioms in a test
set and P = {⟨si, ti⟩|Lj ∈ ⟨si, ti⟩} denotes the
set of sentence pairs containing the idiom Lj . The
model is denoted by θ and the translation of x by
θ(x). We first compute the average score for the
test pairs of each idiom with a given metric M ,
and then average these values to produce E.

3 Experiments

3.1 Data and Training Splits
We present experiments on en→fr and en→es data.
For each language pair, we concatenate the data
from Europarl v74 (Koehn, 2005), part of the
WMT news translation task (Bojar et al., 2014),

4www.statmt.org/europarl/

and from TED talk transcripts released as part of
IWSLT 2017 shared task5 (Cettolo et al., 2017).

Idiom Data We split the parallel data into regu-
lar and idiom data using a pattern-matching tool
that we developed. Our tool takes as input a list of
idioms and extracts sentences from a corpus con-
taining these idioms. We also annotate the span in
which each idiom occurs within a sentence, to en-
able the targeted evaluation metrics. This approach
is similar to Fadaee et al. (2018), but we build
our tool on top of Spacy’s (Honnibal and Montani,
2017) rule-based matching engine. For each phrase
in the input list, we automatically create pattern-
matching rules that capture complex variations of
a given phrase. See Appendix A for details.

In this work, we use a list of 225 English id-
ioms, that we manually collected and make pub-
licly available. We feed this list into our pattern-
matching tool, and extract (and annotate) transla-
tion pairs that contain an idiom on the source side.
The regular data are used only for training. The id-
iom data are further divided into the idiom-train
and idiom-test sets. For each idiom (e.g., “under
the weather”) in our original idiom data, we put
half of its sentence pairs to the idiom-train and the
other half into the idiom-test sets, to obtain a bal-
anced distribution. We discard sentences with id-
ioms that occur only once. We conduct controlled
experiments in the following testing conditions:

• Zero: training data includes only regular par-
allel data, and we measure how models per-
form on unseen idioms at test time.

• Joint: training data includes the regular and
idiom-train data, and we measure how models
perform on idioms observed (in a different
context) in training data.

• Upsampling: same as the joint split, but we
up-sample the idiom-train data N times. This
setting measures whether it is necessary to up-
sample the targeted training data (idiom-train)
to achieve better translation quality of idioms.

Evaluation For development, we use the IWSLT
dev-set for each language pair. For general pur-
pose translation evaluation, we report results in
the WMT newstest14 and IWSLT’17 test sets for
en→fr, and in the WMT newstest13 in particular
and IWSLT’17 test sets for en→es. For the targeted
idiom evaluation (i.e., LitTER and APT-Eval) we

5sites.google.com/site/iwsltevaluation2017/TED-tasks
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Data en→fr en→es

Europarl 2,007,723 1,965,734
IWSLT 275,085 265,625
Combined (after preprocessing) 2,155,543 2,119,686

Regular 2,152,716 2,116,889
Idiom-train 1,327 1,312

Idiom-test 1,383 1,373
WMT-test 3,003 3,000
IWSLT-test 2,632 2,502

Table 1: Dataset statistics

use the extracted idiom-test data per language pair.
To generate the word alignments for APT-Eval, we
trained a fast-align (Dyer et al., 2013) model on
each language-pair’s training data. For decoding,
we use beam search with beams of size 5, and eval-
uate all models using BLEU (Papineni et al., 2002)
computed with SacreBLEU (Post, 2018).

Preprocessing We first filter out sentence pairs
with more than 80 words or with length ratio over
1.5. Then, we tokenize the remaining sentences
using sentencepiece6(SPM; Kudo and Richardson
2018). For the randomly initialized models, we
train SPM models with a joint vocabulary of 60K
symbols on the concatenation of the source- and
target-side of the regular training data. For the
mBART fine-tuning experiments, we use the SPM
model of mBART (250K symbols).

3.2 Models
Besides training models from scratch, we also in-
vestigate how pretraining on monolingual data af-
fects idiom translation, which yields substantial im-
provements on generic translation quality (Lample
and Conneau, 2019; Song et al., 2019; Liu et al.,
2020). However, it is not obvious if monolingual
data can help idiom translation, as they do not con-
tain any examples with how to translate an idiom
from one language into another.

We use mBART (Liu et al., 2020) via finetun-
ing, which is pretrained on monolingual data from
many languages. We hypothesize that one way
multilingual pre-training can help is by bootstrap-
ping over the source and target language contexts
in which idioms occur. We also consider inject-
ing different types of noise during fine-tuning, to
corrupt the (encoder or decoder) input context and
measure the effects on the targeted evaluation met-
rics. Specifically, we use source-side word mask-
ing and replacement (Baziotis et al., 2021), and

6We use the unigram model with coverage=0.9999

target-side word-replacement noise (Voita et al.,
2021). In our experiments, “random” denotes
a randomly initialized model, while “mBART”
stands for using mBART as initialization. For
noisy finetuning we train the following variants:
“mBART+mask” where we mask 10% of the source
tokens, “mBART+replace (enc)” where we replace
10% of the source tokens with random ones, and
“mBART+replace (dec)” where we replace 10% of
the target tokens with random ones.

Model Configuration For fair comparison, the
randomly initialized models use the same architec-
ture as mBART. Specifically, the models are based
on the Transformer architecture, with 12 encoder
and decoder layers, 1024 embedding size and 16
self-attention heads. Our code is based on the offi-
cial mBART implementation in Fairseq.

Optimization We optimized our models using
Adam (Kingma and Ba, 2015) with β1 = 0.9, β2 =
0.999, and ϵ=1e-6. For the random initialization
experiments, the models were trained for 140K up-
dates with batches of 24K tokens, using a learning
rate of 1e-4 with a linear warm-up of 4K steps, fol-
lowed by inverted squared decay. For the mBART
initialization experiments, the models were trained
for 140K updates with batches of 12K tokens, us-
ing a fixed learning rate of 3e-5 with a linear warm-
up of 4K steps. In all experiments, we applied
dropout of 0.3, attention-dropout of 0.1 and label
smoothing of 0.1. For model selection, we evalu-
ated each model every 5K updates on the dev set,
and selected the one with the best BLEU.

3.3 Results
In this section, for brevity, we discuss a subset of
our results, in particular our experiments in en→fr.
Results for en→es are consistent with en→fr and
are included in Appendix B. Table 2 summarizes
all of our main results. Besides global evaluation
using BLEU (§3.3.2) on diverse test sets, we also
consider two targeted evaluation methods (§3.3.1)
that focus on how the idioms are translated using
our idiom-test set. For the upsampling split, we up-
sample the idiom-train data 20x. We also experi-
mented with 100x upsampling, but models started
to exhibit overfitting effects (see §B, §D).

3.3.1 Targeted Evaluation
In targeted evaluation, we focus only on how mod-
els translate the source-side idioms. We present re-
sults on our proposed LitTER metric and on APT-
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Split Model (en→fr) LitTER↓ APT-Eval Global Evaluation (BLEU↑)
UniPrec↑ ChrF↑ IWSLT17 WMT14 Idiom-test

zero

random 0.563 0.268 0.298 44.1 34.8 34.4
mBART 0.484 0.291 0.322 47.0 38.6 36.5
mBART +mask 0.478 0.298 0.323 46.3 38.2 36.0
mBART +replace (dec) 0.519 0.295 0.319 46.9 39.0 36.0
mBART +replace (enc) 0.365 0.260 0.284 44.1 36.2 34.5

joint

random 0.448 0.317 0.337 44.2 34.8 35.3
mBART 0.408 0.333 0.352 46.5 38.5 37.3
mBART +mask 0.443 0.315 0.338 46.2 38.3 37.2
mBART +replace (dec) 0.447 0.317 0.342 46.8 38.8 37.0
mBART +replace (enc) 0.364 0.300 0.322 44.5 36.6 35.6

upsample
20x

random 0.371 0.323 0.353 44.4 34.7 35.3
mBART 0.289 0.329 0.346 46.6 38.7 36.0

Table 2: All of our (en→fr) translation results (single run), including generic and targeted evaluation.

0.0 0.1 0.2 0.3 0.4 0.5
LitTER↓

mBART+rep:enc

mBART+rep:dec

mBART+mask

mBART

random

zero joint joint + 20x

(a) Results on LitTER, which measures how often each model
makes literal translation errors.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Unigram Precision↑ (APT-Eval)

mBART+rep:enc

mBART+rep:dec

mBART+mask

mBART

random

zero joint joint + 20x

(b) Results on APT-Eval with unigram precision, which com-
pares (the aligned) reference and hypothesis spans.

Figure 2: Results on targeted evaluation of idiom translation.

Eval, which provide different information. Recall
that we macro-average these scores (§2.3) to ac-
count for imbalances in the idiom frequency.

Literal Translation Errors Figure 2a, shows the
results on LitTER, that measures how often mod-
els make literal translation errors. As expected, all
models produce fewer errors when trained on the
joint split compared to the zero split. Pretraining
gives a significant boost, even on the joint split.
This shows that pretraining helps, even though the
models have not seen any examples of how to trans-
late the test-set idioms. Upsampling the idiom-train
data helps all models regardless of initialization.

Each type of noise induces a different behaviour
compared to the mBART model. Masking yields no
effect on the zero split, but increases errors on the
joint split. Baziotis et al. (2021), show that mask-
ing promotes copying, which we speculate it could
lead to word-by-word translation and increase Lit-
TER. Decoder-side word replacements yield a sim-
ilar behaviour in terms of LitTER, which we hy-
pothesize could push the decoder to rely more on

the encoder, therefore encouraging word-by-word
translation. By contrast, when we add word re-
placements in the encoder, it greatly reduces Lit-
TER in both splits. This aligns with the findings of
Baziotis et al. (2021), who show that source-side
word replacements make the decoder less prone to
copying (or “trusting”) the encoder.

Idiom Translation Accuracy To estimate how
accurately models translate idioms, we compare
the reference and hypothesis matches that align
to the source idiom words. Figure 2b, compares
models using unigram precision, and the results are
consistent across all APT-Eval metrics (Table 2).

Similar to the LitTER results, the joint split sig-
nificantly improves idiom translation accuracy as
well. Again, pretraining outperforms random ini-
tialization, even on the joint split. Upsampling,
however, does not yield any consistent improve-
ments. While source-side word replacements re-
duce literal translation errors, they also degrade id-
iom translation accuracy. Our hypothesis is that as
the decoder becomes less reliant on the encoder,
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(a) Regular BLEU results on the generic WMT14 test set
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(b) Regular BLEU results on our idiom-test set.

Figure 3: Results on global evaluation (BLEU) on different test sets.

this induces more hallucinations.

3.3.2 Global Evaluation
Here, we discuss how models perform based on
global translation evaluation using BLEU.

General Purpose Figure 3a, shows the results
on the WMT14 test set, but we note that the results
are generally consistent with the IWSLT17 test set
(Table 2). The mBART intialized models, unsupris-
ingly, yield significantly better results than random
initialization. As expected, there is no measurable
difference between splits, not even when upsam-
pling idioms, as both IWSLT17 and WMT14 are
generic test sets. Noisy finetuning methods fail to
improve results. Encoder-side word replacements
even degrade overall performance, which aligns
with the hypothesis that they induce hallucinations.

Idiom The results on our idiom-test set (Fig-
ure 3b) show that models perform consistently bet-
ter when trained on the joint split. Global evalua-
tion, however, considers the full sentences and the
impact of idiom translation is overshadowed (Rik-
ters and Bojar, 2017), which can be seen by the
very small differences between splits. This pre-
vents fine-grained comparisons between models
and highlights the need for targeted evaluation.

4 Analysis

To further understand how models translate id-
ioms, we present an extensive analysis with a se-
ries of probes, focused on the role of idiom context.
Specifically, using the annotations in our idiom-
test data, we encode the idiom words within dif-
ferent contexts (Figure 4) and measure how it af-
fects the decoder distributions and the translation
output. We consider (1) full context, in which we

Unnecessary red tape is slowing down 
the vaccine roll-out plan in the country

red tape red     +  tape

Encoder

a b c d e f

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6

Encoder

c d

𝑐1 𝑐2

Encoder

c

𝑧1

Encoder

d

𝑧2

Full context Phrase context Word context

Figure 4: Illustration of how we obtain idiom represen-
tations by varying the available context.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
ChrF++ (higher is better)

mBART

random

Translation Quality

zero: word
zero: phrase
zero: full

joint: word
joint: phrase
joint: full

joint+20x: word
joint+20x: phrase
joint+20x: full

Figure 5: Variation in translation quality, measured in
ChrF, as we vary the idiom representations. The length
of each (lighter) bar encodes the difference from its
(darker) bar to its left (i.e., overlapping bars effect).

encode the idiom phrase within the whole input
sentence, (2) phrase-level context, in which we en-
code the idiom phrase in isolation, (3) word-level
context, in which we encode each idiom word in-
dependently. Our probes follow a similar approach
to prior work that evaluate the idiomaticity of (pre-
trained) Transformer-based models (Garcia et al.,
2021; Tayyar Madabushi et al., 2021) by measuring
how idiom representations are affected by their con-
text (Yu and Ettinger, 2020), but we extend these
methods to analyze how (pretrained) NMT mod-
els translate idioms. For brevity, we discuss here
our most important findings, focusing on random-
vs-mBART initialization. However, we include the
rest of our results in Appendix D for completeness.
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(Reference) Translation Perplexity

zero: full
zero: phrase
zero: word

joint: full
joint: phrase
joint: word

joint+20x: full
joint+20x: phrase
joint+20x: word

Figure 6: Perplexity of the references, as we vary the
idiom representations. The length of each (lighter) bar
encodes the difference from its (darker) bar to its left.

4.1 Variation in Translation Performance
In this probe, we decode (i.e., translate) differ-
ent encoder representation and evaluate the sam-
ples against the reference (sentence) translations.
Specifically, we first encode each (full) input sen-
tence and then replace the encoder representations
belonging to idiom words with those obtained with
different (narrower) contexts. Figure 5 shows the
results using ChrF, rather than BLEU, as a metric
to capture even small subword-level changes.

Across all models, reducing the context (i.e.,
darker shades) results in worse translation scores.
This is expected, as by swapping the original (full
context) idiom representations with those obtained
with word-context, we essentially remove informa-
tion. When we use the full-context (i.e, lightest
shades) pretraining yields the best results, but when
we reduce the idiom context, the pretrained model
suffers significantly, unlike the randomly initial-
ized that is barely affected. This implies that the
representations of the randomly initialized model
are more local (or “myopic”), containing informa-
tion mainly related to the idiom tokens. By con-
trast, the representations of the pretrained model
are more global, and contain information related
to the surrounding idiom context (Brunner et al.,
2020). Upsampling does not have a strong effect.

4.2 Variation in Translation Likelihood
In this probe, we vary the encoder idiom represen-
tations, as before, and measure how this affects the
likelihood of the reference translations. We score
each reference translation by computing its perplex-
ity under the model, given each encoder output se-
quence. Figure 6, shows the results, with lighter
shades corresponding to narrower contexts.

Using more context improves (i.e., lowers) the
perplexity of the references across models. Pre-

Encoder Decoder

α β γ δ ε ζ<el>

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7

<en>a b c d e f

a b c d e f

α β γ δ ε ζ α β γ δ ε ζ </s>

Step 1. Find the words in the target sentence 
that align with the source idioms

Step 2. Compare the entropy of decoder distribution 
between those that align with regular and idiom words.

Figure 7: Illustration of how we compute the effects of
different source idiom contexts on the model’s uncer-
tainty during translation (i.e., decoding).

mBART

random

Entropy of Idiom Target Words

0.0 0.5 1.0 1.5 2.0 2.5 3.0
entropy

mBART

random

Entropy of Regular Target Words

zero: full
zero: phrase
zero: word

joint: full
joint: phrase
joint: word

joint+20x: full
joint+20x: phrase
joint+20x: word

Figure 8: Model uncertainty for the translation of reg-
ular vs. idiom words. The length of each (lighter) bar
encodes the difference from its (darker) bar to its left.

training endows models with stronger LM capabili-
ties which is probably why it yields generally lower
perplexities. Training on the joint split yields con-
sistent improvements which are more pronounced
in the randomly initialized models. By contrast,
upsampling the idiom-train data yields negative ef-
fects, which we attribute to overfitting, as it makes
all other sentences less probable under the model.

4.3 Decoder Uncertainty
Next, we focus on how the token-level uncertainty
of the decoder varies while it translates idiom vs.
non-idiom words. First, we translate each sentence
pair with teacher-forcing, where we feed to the de-
coder the reference translation (i.e., ground truth)
as input, instead of its output from each step. Then,
we measure the entropy of the decoder’s distribu-
tions for each (reference) target token. Finally, us-
ing word alignments, we average separately the en-
tropy values of target words7 that are aligned to id-
iom and non-idiom source words. Figure 7 illus-
trates how the probe works. Figure 8 shows the

7After the word alignment step, we find which target SPM
tokens correspond to which words.
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results, in which lighter shades correspond to nar-
rower contexts.

All models have significantly higher uncertainty
when they translate idiom words (top section) com-
pared to regular words (bottom section). This con-
firms our expectation that it is harder to translate
idioms. When translating regular words, the ran-
domly initialized models are unaffected by changes
in the idiom representations, whereas reducing the
idiom context increases the uncertainty of the pre-
trained models. This is another piece of evidence
that pretraining yields less local models (§4.1).
When translating idiom words, including or upsam-
pling the idiom-train data benefits the pretrained
model, but not the randomly initialized one.

5 Discussion

Global Metrics LiTER does not aim to replace
global evaluation metrics like BLEU, but to com-
plement them. Global metrics estimate the gen-
eral translation quality of model outputs, which is
undoubtedly important. However, they consider
the full sentence, and as result the effects of id-
iom (mis)translation are overshadowed (see §3.3.2).
LiTER aims to fill this gap by providing additional
insights to practitioners with targeted evaluation.

LitTER LiTER should not be used in isolation,
but combined with other (global/targeted) metrics.
The reason is that lower LiTER can be achieved by
more accurate idiom translations or by hallucina-
tions. We aim to enable practitioners to make in-
formed decisions without running human evalua-
tions in the model development phase. The goal is
to produce models that improve on LitTER without
sacrificing general translation quality (e.g., BLEU).
Our experiments reveal this contrast, where unsu-
pervised pretraining achieves this goal, whereas
(some of) the noisy variants fail. We expect LiTER
to be more relevant when developing NMT mod-
els for creative content (e.g., subtitles, social media
text) that usually contains figurative language.

Alignment Metrics Word alignment-based meth-
ods aim to capture idiom translation accuracy that
complements LitTER. However, they are sensitive
to the literal meaning of words to produce the align-
ments. Thus, while alignment-based methods could
be reliable in certain types of evaluation, such as
gender translation (Stanovsky et al., 2019), we be-
lieve that with the current techniques they should be
used with caution for idiom translation evaluation.

Although we did not systematically study this issue,
we discovered by manual inspection that it was not
uncommon to produce noisy or empty alignments.
We chose statistical over embedding-based meth-
ods as they yielded less empty alignments (§B.2).

6 Related Work

Idioms in NMT There is limited research on id-
ioms in NMT. Zaninello and Birch (2020), explore
augmenting the training data with MWE transla-
tions from dictionaries, backtranslating (Sennrich
et al., 2016) target-side sentences with MWEs, or
wrapping the (source) MWEs with special tokens.
Fadaee et al. (2018) prepend a special token in
source sentences that contain an idiom. Gamallo
and Garcia (2019) do unsupervised translation of
MWEs by composing cross-lingual word embed-
dings, but this is fundamentally incapable of trans-
lating idioms which are non-compositional. Instead
of using ad-hoc solutions that change the model or
the data pipeline, we use monolingual pretraining,
which is a more generic and less invasive approach.

Targeted Evaluation Using word alignments is
a straightforward approach for the targeted eval-
uation of words or phrase translation (Stanovsky
et al., 2019). Fadaee et al. (2018), use word align-
ments to compare the reference and hypothesis
matches that translate a given source idiom. Za-
ninello and Birch (2020) first align words in the hy-
pothesis and the reference using edit-distance and
then score the aligned words using character-level
matching. Alignment-based methods capture id-
iom translation accuracy, but they do not account
for literal translation errors which are a major is-
sue in idiom translation (Fadaee et al., 2018). The
method of Shao et al. (2018) is capable of estimat-
ing the frequency of such errors, but it requires the
creation of language-specific hand-crafted lists. In
this work, we lift this limitation and enable the au-
tomatic evaluation of literal translation errors.

Analysis Rikters and Bojar (2017) investigate the
attention mechanism in NMT during the transla-
tion of MWEs. Garcia et al. (2021) evaluate the
idiomaticity of Transformer-based models using
probes that measure how idiom representations are
affected by their context (Yu and Ettinger, 2020).
Similarly, Tayyar Madabushi et al. (2021) investi-
gate the idiomaticity of pretrained encoders, such
as BERT (Devlin et al., 2019), in a monolingual
setting. By contrast, we present an analysis of how
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(pretrained) NMT models translate idioms.and
Concurrent analysis works explore idioms in

NMT, by also using the blocklist method (Shao
et al., 2018) as part of their analysis. Dankers
et al. (2022a) study the compositionality of (Trans-
former) NMT models and (among others) find that
models trained on more (parallel) data are more
compositional. This relates to the results of our
analysis (§4), which shows that pretrained models
are less local than those trained only on the down-
stream parallel data. Dankers et al. 2022b analyze
the hidden states and attention patterns of Trans-
former NMT models when processing idioms.

7 Conclusions

We present a comprehensive study of idiomatic ex-
pressions in NMT, aiming to facilitate future re-
search on the topic. We propose LitTER (§2.1),
a novel metric that enables the automatic evalua-
tion of literal translation errors. LitTER is used for
targeted evaluation and aims to complement and
not replace global metrics, such as BLUE or ChrF,
which consider the full sentence and can only mea-
sure the overall translation quality. We evaluate
models in controlled conditions, with and without
the test set idioms (i.e., zero-shot). We explore
pretraining on monolingual data for improving id-
iom translation, as parallel idiom data is difficult
to come by. Interestingly, we find that pretraining
achieves strong targeted improvements, even in the
zero-shot setting (§3.3.1). We also present a sys-
tematic analysis (§4) that investigates the role of
context in idiom translation. We find evidence that
pretraining yields more contextual models, which
helps to explain why it contributes to better idiom
translations. We also quantitatively confirm that
idioms are more difficult to translate than regular
words and strongly depend on the source context.

Limitations

LitTER is a novel metric that sidesteps the need for
human involvement to estimate the frequency of
literal translation errors, which is a major problem
in idiom translation by NMT models. However, in
its current iteration it has certain limitations:

1. An edge case with LitTER is that if the block-
list words appear as a result of translating other
words - not part of the non-literal phrase - we
will still count it as an error. We leave this as
future work.

2. Our experiments were conducted on languages
with relatively simple morphology. Prelimi-
nary experiments with German revealed that
LitTER struggles with compound words. We
did address these issues with custom rules, but
we aim to study these cases in future versions
of LitTER systematically.

3. The metric can be ambiguous when used in
isolation. We recommend pairing it with stan-
dard evaluation metrics when comparing trans-
lation models.
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Figure 9: Overview of the process for collecting the
idiom parallel data.

Figure 10: Overview of the process for collecting the
idiom parallel data.

A Idiom Data Collection

We collected parallel data with idioms in the source
side and annotated the spans in which the idioms
occur within each sentence. This enables us to
conduct controlled experiments and to support our
targeted evaluation metrics and our analysis. To
collect the data, we created a phrase-matching tool
that searches for idioms in parallel data and extracts
and annotates the retrieved pairs (Figure 9).

Phrase-Matching Tool Our tool, which we make
publicly available, uses rule-based matching to
search for sentences that contain phrases specified
in user-defined phrase list. While in this work
we use it to create parallel data with idioms, it
could be used to create datasets with different
types of phrases. We build our tool on top of
Spacy’s (Honnibal and Montani, 2017) rule-based
matching engine8 that is more flexible and easy to
work with than using regular expressions or custom
rules (Fadaee et al., 2018). It allows us to do pat-
tern matching over linguistic units, such as parts-of-
speech or even dependency relations, thus captur-
ing complex variations of a given phrase. Our tool
first reads the input phrase list, and for each phrase,
it automatically creates a pattern based on some
simple rules and assumptions. We created separate
idiom train and test data for each language-pair and

8spacy.io/usage/rule-based-matching
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Figure 11: Occurrences of idioms in the en→fr idiom-
test sets.
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Figure 12: Occurrences of idioms in the en→es idiom-
test sets.

we describe the process in Section 3.1.
Figure 10, shows an actual example9 of the dif-

ferent variations of the idiom “pull the wool over
someone’s eyes” that our tool captures. Notice that
it matches:

• Different variations of the verb “pull”.

• Different words in the place of the word
“someone”.

• Importantly, it optionally matches the particle
“’s”. This shows that we can apply logic base
on the part-of-speech (POS) or other linguistic
properties of words, and in this case optionally
skip them.

A.1 Idiom-test Statistics
Figure 11 and Figure 12 show the occurrences of
idioms in the en→fr and en→es idiom-test sets, re-
spectively. We see that in both test sets the idiom
statistics follow very similar distributions. This
verifies that different idioms have very different

9You can view this example in this online demo. It shows
the rule we generate for the idiom phrase and the variants it
captures.
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Split Model (en→fr) LitTER↓ APT-Eval (fast-align) APT-Eval (awesome-align) Global Evaluation BLEU↑ Global Evaluation ChrF↑

UniPrec↑ ChrF↑ UniPrec↑ ChrF↑ IWSLT17 WMT14 idiom IWSLT17 WMT14 idiom

zero

random 0.563 0.268 0.298 0.272 0.319 44.1 34.8 34.4 0.67 0.61 0.60
mBART 0.484 0.291 0.322 0.296 0.347 47.0 38.6 36.5 0.69 0.64 0.61
mBART +mask 0.478 0.298 0.323 0.294 0.339 46.3 38.2 36.0 0.68 0.64 0.61
mBART +replace (dec) 0.519 0.295 0.319 0.304 0.346 46.9 39.0 36.0 0.69 0.64 0.61
mBART +replace (enc) 0.365 0.260 0.284 0.262 0.306 44.1 36.2 34.5 0.66 0.62 0.60

joint

random 0.448 0.317 0.337 0.322 0.365 44.2 34.8 35.3 0.67 0.61 0.61
mBART 0.408 0.333 0.352 0.343 0.384 46.5 38.5 37.3 0.68 0.64 0.62
mBART +mask 0.443 0.315 0.338 0.334 0.379 46.2 38.3 37.2 0.68 0.64 0.62
mBART +replace (dec) 0.447 0.317 0.342 0.331 0.379 46.8 38.8 37.0 0.69 0.64 0.62
mBART +replace (enc) 0.364 0.300 0.322 0.306 0.350 44.5 36.6 35.6 0.66 0.62 0.61

upsample
20x

random (20x) 0.371 0.323 0.353 0.331 0.382 44.4 34.7 35.3 0.67 0.61 0.61
mBART (20x) 0.289 0.329 0.346 0.338 0.376 46.6 38.7 36.0 0.68 0.64 0.61

upsample
100x

random (100x) 0.378 0.314 0.343 0.325 0.363 43.8 34.7 33.9 0.66 0.61 0.60
mBART (100x) 0.289 0.337 0.358 0.347 0.389 46.8 38.2 35.8 0.69 0.64 0.61

Table 3: Translation results in en→fr. The results involve a single run, but include mutliple test sets and are
consistent across the board.

Split Model (en→es) LitTER↓ APT-Eval (fast-align) APT-Eval (awesome-align) Global Evaluation BLEU↑ Global Evaluation ChrF↑

UniPrec↑ ChrF↑ UniPrec↑ ChrF↑ IWSLT17 WMT13 idiom IWSLT17 WMT13 idiom

zero

random 0.541 0.350 0.364 0.351 0.370 36.0 31.5 38.9 0.62 0.57 0.63
mBART 0.476 0.383 0.385 0.368 0.390 38.5 34.0 40.8 0.64 0.59 0.64
mBART +mask 0.481 0.369 0.378 0.354 0.380 38.8 34.0 40.5 0.64 0.59 0.64
mBART +replace (dec) 0.508 0.388 0.389 0.384 0.401 38.6 34.4 40.4 0.64 0.59 0.64
mBART +replace (enc) 0.389 0.334 0.345 0.323 0.351 37.0 32.1 39.0 0.62 0.57 0.62

joint

random 0.468 0.385 0.395 0.382 0.397 35.9 31.8 39.7 0.62 0.57 0.64
mBART 0.412 0.399 0.406 0.393 0.419 38.8 33.9 41.9 0.64 0.59 0.65
mBART +mask 0.418 0.389 0.402 0.388 0.410 38.7 33.9 41.9 0.64 0.59 0.65
mBART +replace (dec) 0.443 0.402 0.408 0.402 0.414 38.5 33.9 41.7 0.64 0.59 0.65
mBART +replace (enc) 0.352 0.352 0.372 0.355 0.378 36.7 32.2 39.7 0.62 0.57 0.63

upsample
20x

random (20x) 0.400 0.410 0.424 0.415 0.440 35.9 31.7 40.0 0.62 0.57 0.64
mBART (20x) 0.301 0.422 0.435 0.419 0.444 38.8 34.0 40.6 0.64 0.59 0.64

upsample
100x

random (100x) 0.391 0.406 0.420 0.407 0.435 36.2 31.8 38.9 0.62 0.57 0.63
mBART (100x) 0.299 0.416 0.427 0.406 0.441 38.7 33.9 40.5 0.64 0.59 0.64

Table 4: Translation results in en→es. The results involve a single run, but are consistent across the board.

frequencies, and highlights the need for macro-
averaging the scores of targeted evaluation met-
rics. Failure to do so would promote models that
have perform best on the most frequent idioms over
those that have a more balanced performance.

Also, note that the frequencies of idioms in the
idiom-train and idiom-test sets are identical, as de-
scribed in Section 3.1. While we have not com-
puted the idiom frequencies in the monolingual
data used to pretrain mBART, we expect that they
would follow a similar distribution as the one found
in the monolingual data we used in our work.

B Translation Results

In this section, we present all of our translation re-
sults in detail. Table 3, shows our results in en→fr,
while Table 4 shows our results in en→es. Besides
BLEU, we also include results with ChrF (Popović,
2015), for global translation evaluation. overall
the results are consistent across language pairs in
all evaluation methods. The fact that the absolute
scores reached by the model on each each test set
are different is natural, as the test sets themselves

are different to each other between languages.
However, the relative performance between model
across language pairs is the same, with only minor
differences.

B.1 Targeted Evaluation

In Figure 13, we visualize how model perform on
our targeted evaluation methods for both en→fr
and en→es. Recall that, LitTER, measures how
often each model makes literal translation errors.
APT-Eval, measures idiom translation accuracy, by
comparing the reference and (aligned) hypothesis
spans that translate the source idiom words. In
these plots, we use present how models performed
on unigram precision metric for APT-Eval, similar
to the main paper. We observe that both in terms of
literal translation errors (Figure 13a, 13c), as well
as idiom translation accuracy (Figure 13b, 13d), the
results are remarkably consistent across languages.
Upsampling the idiom-train data helps all models
regardless of initialization, but upsampling more
than 20x does not yield consistent improvements.
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B.2 Word Alignment Models
APT-Eval, requires word alignments to map the
source idiom words to the words of the reference
and hypothesis spans, respectively. In our main
paper, we presented results using fast-align (Dyer
et al., 2013) with word alignment models trained
on the training data of each language-pair. We also
experimented with awesome-align (Dou and Neu-
big, 2021), that doesn’t require any training, and
uses the token similarities of the pretrained mBERT
models to obtain the alignments. After analysis, we
found that fast-align produced empty matches for
the idiom words in 2.2% of the reference sentences
in our idiom-test set. Awesome-align, however,
yielded more empty matches, which after tweak-
ing its threshold parameter10, we managed to re-
duce it to 3%. While we omitted the awesome-
align results from the main paper, we include them
in Tables 3, 4 for completeness. We observe that
while the absolute APT-Eval scores are different
between the two alignment methods, the relative
performance across models is consistent.

B.3 Regular Translation Evaluation
Here, we visualize our results on regular MT eval-
uation for both en→fr and en→es. In Figure14,
we compare models in both language pairs and for
both generic test sets as well as on our idiom-test
sets. Overall, we observe that the results are very
consistent between language pairs, similar to the
targeted evaluation results (§B.1), which improves
our confidence in them. As we already noted in our
paper, we find that including or upsampling idiom
training data has no measurable effect on generic
test sets, unlike on our idiom-test set.

10We used the following hyper-parameters:
extraction=softmax, softmax_threshold=0.001
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(a) Results on LitTER for en→fr.
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(b) Results on APT-Eval (unigram precision) for en→fr.
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(c) Results on LitTER for en→es.
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(d) Results on APT-Eval (unigram precision) for en→es.

Figure 13: Results on targeted evaluation of idiom translation.
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(a) BLEU results on the en→fr WMT14 test set
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(b) Regular BLEU results on our en→fr idiom-test set.
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(c) BLEU results on the en→es WMT13 test set
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(d) Regular BLEU results on our en→es idiom-test set.

Figure 14: Results on regular MT evaluation with BLEU on generic as well as on our idiom-test sets.
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C LitTER

C.1 Indicative Examples
Here, we present some indicative examples of how
LitTER evaluates translation outputs in our idiom
test data. Figure 16, contains examples where Lit-
TER is working as intended, whereas Figure 15,
contains a two failures of LitTER.

SRC: As the example of Cyprus shows, Ankara does not
pull its punches.
REF: Comme le montre l’exemple de Chypre, Ankara
n’y va pas avec le dos de la cuiller.
HYP: Comme le montre l’exemple de Chypre, Ankara ne
tire pas les ficelles.

Blocklists
pull→ {tirez, tirer}
its→ {ses, son, sa}
punches→ {coups}

No error detected.

SRC: [..] it was already being put on ice on the grounds
that ’We’ll never get it though the G20’.
REF: [..] elle était mise au rencart au motif que "nous
n’arriverons jamais à convaincre le G20".
HYO: [..] on l’a déjà gelé au motif que "nous n’y ar-
riverons jamais par le biais du G20".

Blocklists
put→ {mis, mettre}
on→ {sur}
ice→ {glace, ice, verglas}

No error detected.

Figure 15: LitTER failures on our en→fr idiom test set.
In the first example, the blocklist is not triggered be-
cause the inflected form tire is missing from the block-
list. In the second example, the verb form gelé (freeze)
is not contained in the blocklist but is a literal transla-
tion of ice in a wider sense.

SRC: To postpone this vote one more time would be to
bark up the wrong tree.
REF: Postposer ce vote une fois de plus eut été se tromper
de cible.
HYP: Reporter ce vote une fois de plus, c’est se tromper
d’arbre.

Blocklists
bark→ {aboyer, ecorces, ecorce}
up→ {debout}
the→ {le, la, les}
wrong→ {faux, tort, errone, mal}
tree→ {arbre, arbres, sapin, arborescence}

ERROR: Blocklist triggered by {arbre}

SRC: For companies, using technology to gather impor-
tant data, its like bread and butter.
REF: Pour les sociétés, utiliser la technologie pour re-
cueillir des données, c’est la routine.
HYP: Pour les entreprises, utiliser la technologie pour
collecter des données importantes, c’est comme du pain
et du beurre.

Blocklists
bread→ {pain}
and→ {et}
butter→ {et, pain, beurre}

ERROR: Blocklist triggered by {et, pain, beurre}

SRC: And here is some eye candy for you, from a range
of DIY scientists and artists from all over the globe.
REF: Et voici quelques bonbons pour vos yeux, de la part
d’un éventail de scientifiques et des artistes bricoleurs de
tous les coins de la planète.
HYP: Et voici quelques bonbons pour les yeux, d’une
gamme de scientifiques et d’artistes du bricolage du
monde entier.

Blocklists
eye→ {oculaire, oeil, yeux, œil}
candy→ {bonbon, bonbons, sucrerie}

No error detected.

Figure 16: Examples of LiTER evaluation on sentences
in our en→fr idiom test set. In the first two examples,
the model makes a literal translation error and the error
is captured by LitTER. In the third example, the literal
translation is correct and the blocklist is not triggered,
thanks to the 3rd step in our algorithm (§ 2.1).
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(a) Results for the en→fr models.
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(b) Results for the en→es models.

Figure 17: Variation in translation quality, measured in ChrF, as we vary the idiom representations. The length of
each (lighter) bar encodes the difference from its (darker) bar to its left (i.e., overlapping bars effect). The darkest
shades correspond to using the full (original) context for encoding idiom words, and each lighter shades correspond
to narrower contexts. Overall, the results are consistent, with the exception of the “mBART+replace(enc)” model.

D Analysis

In this section we present all of our analysis results.
Specifically, we include results on en→es, with
the (mBART) pretrained models finetuned with
different noising methods, and additional probes.
For the noisy versions of mBART finetuning, we
present results on the zero and joint split. Recall
that, in most of our probes, we evaluate the role of
(idiom) context idiom translation. To do this, we
encode the idiom words within different contexts
and compare how this affects various aspects of
each model. Figure 4, illustrates the process by
which we obtain the encoding for each context. We
consider the following context: (1) full context, in
which we encode the idiom phrase within the whole
input sentence, (2) phrase-level context, in which
we encode together only the words idiom phrase,
(3) word-level context, in which we encode each
idiom word independently.

Figure 18, shows a visual example of how this
probe works.

D.1 Variation in Translation Performance

With this probe, we test how the variation of the
idiom encoder representations is reflected in the
translation output. Figure 18, shows a visual exam-
ple of how this probe works. First we encode each
input sentence and then replace the encoder out-
put representations belonging only to idiom words
with those obtained with different (narrower) con-
texts. Finally, we decode each encoder output se-
quence and compare the generated translation to
the reference translation.

ℎ1 ℎ2 x x ℎ5 ℎ6 Decoder

Encoder

a b c d e f

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6

Encoder

c d

𝑐1 𝑐2

Encoder

c

𝑧1

Encoder

d

𝑧2

Full context Phrase context Word context

hypothesis reference

Figure 18: Illustration of how we probe the impact of
different idiom contexts on translation quality. First, we
obtain each sequence of idiom token representations,
by encoding them within different contexts. Then we
feed each sentence to the encoder, and before passing
its outputs to the decoder, we replace the idiom token
representations with those whose context we want to
probe. Finally, we sample a translation from the decoder
and compare it against the reference.

We observe that when using the full context,
the results are generally consistent across language
pairs and models. As we discussed in the main pa-
per, the mBART-initialized model suffers greatly
when the idiom representations are encoded with
narrower context, in contrast to the randomly ini-
tialized model. We believe this is an indication that
the mBART-initialized model is less local, meaning
that each token representation contains to a large
degree information about the rest of the tokens. We
also observe that this behaviour is exhibited by all
pretrained models.

However, while results are generally consistent
in both language pairs, we do see some small dis-
crepancies as we probe the effects of narrower con-
texts, in particular for the “mBART+replace(enc)”
model. We do not have a satisfying explanation
for this performance difference, which occurs only
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Figure 19: Variation in perplexity of reference translations, as we vary the idiom representations. The length of each
(lighter) bar encodes the difference from its (darker) bar to its left. Negative bar lengths indicate a decrease relative
to the (darker) bar before it. The darkest shades correspond to using the full (original) context for encoding idiom
words, and each lighter shades correspond to narrower contexts.
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Figure 20: Illustration of how we measure the effects of
different idiom contexts on translation likelihood (per-
plexity). First, we obtain each sequence of idiom token
representations, by encoding them within different con-
texts. Then we feed each sentence to the encoder, and
before passing its outputs to the decoder, we replace the
idiom token representations with those whose context
we want to probe. We use the sequence of encoder out-
puts, to score the reference translation.

when we encode idioms with word context.

D.2 Variation in Translation Likelihood

With this probe, we test how the variation of the id-
iom encoder representations affects the likelihood
of the reference translations. Figure 20, shows a vi-
sual example of how this probe works. Specifically,
we translate a sentence pair with teacher-forcing,
but we replace the encoder idiom token representa-
tions, before passing them to the decoder, with the
representations obtained after encoding them with
different contexts. Finally, we measure the perplex-
ity of the reference translation under the model.
Figure 19, compares models across splits and con-
texts.

Overall, the results are very consistent across
both language pairs and all model variants. We

also observe that the behaviour of all the noisy
finetuned mBART models very similar behaviour,
across all contexts. However, there is a small
increase in the perplexity assigned under the
“mBART+replace(dec)” variant. This is expected,
as this model was trained with decoder dropout,
which affect the LM capabilities of the model, and
consequently makes it assign an overall smaller
probability to all sentences. This increase in per-
plexity is observed in both language pairs, but is
more pronounce in en→fr.

The more we upsample the idiom-train sentence
pairs, the less probable other sentences become
under the model. Surprisingly, 100x upsampling
causes the pretrained model to yield lower perplex-
ity with narrower context (i.e., lighter bars have
negative length), “reverting” some of the effects of
overfitting. However, we don’t have a satisfying ex-
planation for this behaviour11. This phenomenon
is observed in both language pairs.
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Figure 21: Comparison of model uncertainty during the translation of regular-vs-idiom words. The length of each
(lighter) bar encodes the difference from its (darker) bar to its left. Negative bar lengths indicate a decrease relative
to the (darker) bar before it.

D.3 Decoder Uncertainty
Next, we focus on how the token-level uncertainty
of the decoder varies while it translates idiom vs.
non-idiom words (Figure 8). For each model,
first, we translate each sentence pair with teacher-
forcing12and then measure the entropy of the de-
coder’s distributions for each target token.

Once more, this probe reveals that the models
in both language pairs behave similarly. As men-
tioned in the main paper, the distributions of words
that translation the idiom phrase have significantly
larger entropy that the rest. This demonstrates that
the models clearly are much more uncertain when
translating idioms, even the pretrained ones.

Including and upsampling 20x the idiom-train
data is helpful, but extreme upsampling (i.e., 100x)
is universally harmful, although we observe a drop
in uncertainty with word-level context. This is
more pronounced when translating idiom words
and suggests that models have overfitted to the
words of the idiom phrases.
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Abstract
Variants of the BERT architecture specialised
for producing full-sentence representations of-
ten achieve better performance on downstream
tasks than sentence embeddings extracted from
vanilla BERT. However, there is still little un-
derstanding of what properties of inputs de-
termine the properties of such representations.
In this study, we construct several sets of sen-
tences with pre-defined lexical and syntactic
structures and show that SOTA sentence trans-
formers have a strong nominal-participant-set
bias: cosine similarities between pairs of sen-
tences are more strongly determined by the
overlap in the set of their noun participants
than by having the same predicates, lengthy
nominal modifiers, or adjuncts. At the same
time, the precise syntactic-thematic functions
of the participants are largely irrelevant.

1 Introduction

Transformer-based encoder-only models derived
from the BERT architecture and pre-trained us-
ing similar objective and training regimens (De-
vlin et al., 2019; Liu et al., 2019) have become
the standard tool for downstream tasks at the level
of individual tokens and token sequences (Tenney
et al., 2019; Wang et al., 2021). Whole-sentence
representations can also be easily extracted from
the outputs of these models by either using the
embedding of the special [CLS] token, in cases
where the model was trained on the next-sentence-
prediction task, or averaging or max-pooling the
embeddings of all tokens produced by the model
(Zhelezniak et al., 2019). While both approaches
are widely used in practice, it has been argued
that these representations are not well suited for
sentence-level downstream tasks. Several modifica-
tions to the architecture and training regime were
proposed, which are known collectively as sentence
transformers (STs; Reimers and Gurevych, 2019).

STs have achieved state-of-the-art performance
on downstream tasks such as semantic search and

question answering (Santander-Cruz et al., 2022;
Ha et al., 2021). Their analysis, however, has re-
ceived considerably less attention than the analysis
of the vanilla BERT model and its variants (Rogers
et al., 2020; Conia and Navigli, 2022). In fact, these
models are often considered to be uninterpretable
(Minaee et al., 2021).

A common feature of STs is that they are fine-
tuned to produce similar vector-space representa-
tions for semantically similar sentences. This ob-
jective induces a complex loss landscape shaped by
the available training data. The original Sentence-
BERT model (Reimers and Gurevych, 2019) was
trained on natural language inference data, and sen-
tences were considered to be semantically similar
if their NLI label was that of entailment. SOTA
models were trained on a much larger web-crawled
corpus including more than 1 billion sentence pairs
mined from sources such as Reddit conversations,
duplicate question pairs from WikiAnswers, etc.1

The richness and variability of this dataset begs the
question of what notion of semantic similarity is
implicitly learned by the models trained on it.

In this study, we begin addressing this question
through analysis of natural-looking synthetic sen-
tences with controlled syntactic and lexical content.
We concentrate on three questions.

First, we test if STs have part-of-speech biases.
We show that, all other things being equal, informa-
tion provided by nouns plays more important role
than the information provided by verbs, both in
simple sentences and in sentences with coordinated
verbal phrases.

Second, we compare the relative importance of
the overlap in the sets of participants in two sen-
tences with that of how many participants have
identical syntactic functions. We show that raw
lexical overlap is relatively more important than
having the same nouns in the same syntactic slots.

1See the list at https://huggingface.co/
sentence-transformers/all-mpnet-base-v2
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Third, we check how strongly sentence represen-
tations are affected by other sentential elements,
such as adverbials and nominal modifiers of differ-
ent types and lengths. We show that, unlike BERT
with token averaging, STs seem to largely disregard
these components in favor of nominal participants.

The paper is structured as follows: § 2 presents
the methodology that we follow in our analyses
and the models we employ; § 3 presents the case
studies and their results; § 4 provides an overall
discussion; § 5 surveys related work; § 6 concludes
the paper.

2 Methods and Experimental Setup

We experiment with representations produced
by three models. Two are SOTA STs: all-
mpnet-base-v2 (MPNET) is an instance of
mpnet-base (Song et al., 2020) fine-tuned on
the 1B sentence-pair corpus using the training ar-
chitecture from Reimers and Gurevych (2019);
all-distilroberta-v1 (DistilRoberta) is
a distilled instance of roberta-base (Sanh
et al., 2019) fine-tuned in the same way.
The third model is the vanilla pre-trained
bert-large-uncased (BERT), as a point of
comparison for the first two.

All models were downloaded from HuggingFace.
Standard APIs from the Sentence Transformers
library2 were used to compute embeddings using
MPNET and DistilRoberta; for the vanilla BERT
model, we averaged the embeddings of all sentence
tokens, including [CLS] and [SEP].3

We structure the presentation as a series of case
studies. For each case study, we construct a set of
sentences controlled for lexical content and syntac-
tic structure. Sentences are created in such a way as
to be grammatically correct, look naturalistic, and
as far as possible not bias the analysis.4 They are
arguably less complex and variable than examples
sampled from real-word corpora; however, we be-
lieve that an analysis based on simple sentences is
a reasonable first step towards a better understand-
ing of model representations, as previous work has

2https://www.sbert.net/index.html,
Reimers and Gurevych (2019).

3We experimented with omitting the special tokens, but
this led to sentence representations dominated by punctuation
signs and other undesired effects. In line with previous work
(Ma et al., 2019), we also found that using [CLS] embeddings
leads to bad results due to their high redundancy, and we do
not discuss them.

4Sentence-generating and model-fitting scripts can be
found in the Supplementary Materials.

shown for sentiment analysis (Kiritchenko and Mo-
hammad, 2018) and syntactic analysis (Marvin and
Linzen, 2018).

For each case study, we compute embeddings
for all sentences, together with cosine similarities
between embeddings of sentence pairs. We analyze
the similarities by means of regression modelling.
More precisely, we regress cosine similarities, z-
scored to improve comparability between encoders,
on the properties of sentence pairs, such as lexical
overlap, presence of identical participants in identi-
cal syntactic positions, or POS tags of participants.
We inspect the coefficients of the resulting regres-
sion fits to assess the relative importance of these
properties. Since (almost) all properties are coded
as binary variables, their magnitudes are directly
comparable in terms of importance.

For terminological clarity, we will use the term
models to refer to the regression models we use to
analyse the impact of sentence properties on rep-
resentational similarity. We call the transformers
computing these embeddings encoders.

Where the features of sentence pairs can be
straightforwardly related to simple properties of
individual sentences (e.g., in case when we are
testing if they have the same subject or direct ob-
ject), we also project sentence embeddings on a
2-D surface using UMAP (McInnes et al., 2018)5

and check if the spatial organisation of the points
is in line with our observations.

Lexical choice A potential confound of our ex-
perimental setup is lexical choice, which is never
completely neutral. For example, by taking a se-
mantically close pair of verbs, we can considerably
reduce the effect of predicate mismatch between
two sentences. Moreover, encoders can react id-
iosyncratically to particular words and word com-
binations. Including all combinations of words and
their positions in sentence pairs as predictor vari-
ables is not a solution, however, as it defeats the
purpose of identifying structural patterns and, in
the limit, amounts to replicating the encoders. We
address this confound in three ways.

First, we select nouns to be always at least as
interchangeable as words of other parts of speech
in terms of belonging to similar mid-to-high fre-
quency bands and referring to conceptually simple,
concrete objects. This follows from our working
hypothesis that encoders give preferential treatment

5We use the default settings and pairwise cosine dissimi-
larities as distance measure.
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to nominal elements, whose (generally entity re-
ferring) semantics is arguably easier to capture
than, for example, that of (generally event refer-
ring) verbs (Baroni and Lenci, 2011).

Second, we compare the analysis of the ST en-
coders against the analysis of the vanilla BERT en-
coder. As they are derived from averaging, vanilla
BERT embeddings treat all words equally, so if our
sentences, e.g., undersell differences in adverbs
because we chose two nearly synonymous ones,
this should be visible in the small coefficient track-
ing the impact of adverbs in the regression model
based on BERT embeddings. As will be shown
below, however, the hierarchy of coefficients for
regression models of STs is very different from that
for vanilla BERT, which arguably indicates that the
role of lexical effects is minor.

Third, we re-run all reported models on sen-
tences of the same structure with different lexical
content; see the Appendix for details. We observe
high stability of coefficients across replications,
higher for STs than for vanilla BERT. This further
corroborates the validity of our generalisations.

3 Case Studies

This section presents a series of case studies testing
the sensitivity of embeddings produced by sentence
transformers and BERT token averages to proper-
ties of input sentences. We start with analysing
simple intransitive sentences (§ 3.1) and simple
transitive sentences (§ 3.2). We then make specific
aspects of the structure more complex, analysing
the effect of lengthy NPs (§ 3.3) and coordinated
VPs (§ 3.4). Finally, we look more closely at the
syntax-semantics interface by inverting the proto-
typical alignment of POS tags and syntactic func-
tions (predicative nominals and gerund subjects,
§ 3.5) and by testing the degree to which encoders
track particular syntactic functions of verb argu-
ments (§ 3.6).

3.1 Simple Intransitive Sentences

Data The main goal of the analysis of simple
intransitive sentences is to check the relative con-
tribution of their components to their embeddings.
We study a nearly-minimal sentence template with
a nominal subject, an adverbial adjunct, and an in-
transitive verb. We construct a set of 256 sentences
of the form ‘[det] [subj] [adverb] [verb][punct]’,
where det ranges over {a, the}; subj ranges over

mpnet distilroberta bert

SameDet 0.07 0.07 0.37
SameAdv 0.33 0.31 0.45
SamePred 0.74 0.61 0.58
SamePunct 0.24 0.24 0.84
SameSubj 2.26 2.40 1.27

R-squared 0.67 0.71 0.48

Table 1: A summary of the models predicting z-scored
pairwise cosine similarities between embeddings of sen-
tences with intransitive verbs. All coefficients are sig-
nificant with p < 0.001.

a set of nouns,6 adverb ranges over {quickly,
slowly}, verb ranges over {appears, vanishes,
stops, moves}, and punct, over {., !}. Here and in
subsequent experiments, the generation procedure
assures that all sentence features are statistically
independent, which is a crucial prerequisite for
linear-regression modelling.

Model The regression model matrix is based on
32,640 pairs of generated sentences, which differ in
the value of at least one feature, with predictor vari-
ables SameDeterminer, SameAdverb, SameVerb,
SamePunct, and SameSubj. We regress z-score-
transformed cosine similarities between sentence
embeddings computed by three different encoders
on these predictor variables. The coefficients of the
fitted models are shown in Table 1.7

Results Three observations from Table 1 hold for
all subsequent analyses.

(i) The coefficients are positive for all models
and all features. This means that sentence pairs
which agree in some constituent are always more
similar than sentence pairs that do not – as ex-
pected.

(ii) The coefficient of determination (R2) is
larger for ST-focused linear models. This means
that the embeddings computed by the ST encoders
are more dependent on the features of the sentences
we track and less dependent on identities of lexical
units. (It can be noted that the fact that we achieve
R2 ≈ 0.7 using only a few structural properties is
remarkable in itself.)

(iii) The differences among coefficients of the
ST-focused linear models are in general larger than

6{cat, dog, artist, teacher, planet, star, wind, rain}
7Replication models, fitted on sentences with the same

structure but different lexical content, are shown in Table 8 in
the Appendix.
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Figure 1: UMAP projections of embeddings of sen-
tences with intransitive verbs (left: sentence transformer,
right: BERT).

those of the linear model analysing BERT: in the
latter, the biggest coefficient (1.27 for SameSubj)
is only ≈ 3.5 times higher than the smallest one
(0.37 for SameDet), while for the ST models this
ratio is above 30. This is connected to the fact that
BERT-derived sentence representations are more
dependent on semantically impoverished elements,
such as determiners and punctuation signs, which
dampen the effect of other constituents. For the
sake of brevity, we do not analyse determiners and
punctuation in subsequent experiments and keep
them constant as the and . respectively.

Turning to the comparison of coefficients inside
models, we see that STs pay considerably more
attention to subjects than to predicates: all things
being equal, sentences with different predicates and
adverbs but the same subject will be more similar
than sentences with the same predicate and adverb
and different subjects. The influence of punctuation
is surprisingly strong, being comparable to that of
adverbs, while the effect of determiners is very
weak, albeit statistically significant.

A plot of UMAP projections of sentence em-
beddings produced by MPNET and BERT, shown

in Figure 1, underlines that while averaged BERT
embeddings distinguish punctuation signs but do
not distinguish subjects, the situation is reversed
for the sentence transformer: it distinguishes sub-
jects cleanly but largely abstracts away from other
structural properties.

3.2 Transitive Sentences

Data The transitive sentences used in the anal-
ysis are generated using the following template:
‘The [subj] [adverb] [verb] the [obj].’ The range of
nouns was slightly extended;8 the same adverbs as
in the previous experiment were used, while verb
ranged over {sees, chases, draws, meets, remem-
bers, pokes}. This produces 672 different sentences
and 225,456 sentence pairs.

Model The coding for SameAdv and SamePred
remains as above. The main focus in this study is
on whether sentence similarities are dominated by
the sentences having the same subject, the same
direct object, or the same words in these two po-
sitions even if their order were reversed. To test
for this, we added a categorical variable with the
following values:

00 no overlap in subject and object (the baseline);
A0 same subject, different objects;
0B same object, different subjects;
0A the subject of the first sentence is the object

of the second;
B0 the object of the first sentence is the subject

of the second;
BA subject and object are swapped;
AB the same subject and object.

Results A summary of the fitted models is given
in Table 2.9 It demonstrates that when it comes to
simple transitive sentences, our understanding of
their embeddings produced by sentence transform-
ers remains high, despite the sentences being more
complex (R2 ≈ 0.7), while BERT embeddings
become more unpredictable (R2 ≈ 0.31). Fur-
thermore, while BERT again essentially treats all
tokens more or less equally, with adverbs slightly
discounted, STs prioritise participants (even B0 has
higher coefficients than SamePred).

On the other hand, neither BERT nor STs priori-
tise the exact syntactic function of the participants:
coefficients for A0 vs. 0A, 0B vs. B0, and AB vs.

8To {cat, dog, teacher, artist, robot, machine, tree, bush,
planet, star, wind, rain}.

9A summary of the replication model fits is provided in
Table 9 in the Appendix.
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mpnet distilroberta bert

SameAdv 0.49 0.36 0.56
SamePred 0.73 0.42 0.78
SubjObj_0A 1.27 1.40 0.65
SubjObj_0B 1.31 1.45 0.69
SubjObj_A0 1.44 1.45 0.75
SubjObj_AB 2.98 3.08 1.60
SubjObj_B0 1.37 1.42 0.58
SubjObj_BA 2.85 2.98 1.39

R-squared 0.74 0.73 0.31

Table 2: A summary of the models predicting z-scored
pairwise cosine similarities between embeddings of sen-
tences with transitive verbs. All coefficients are signifi-
cant with p < 0.001.

BA are largely comparable across all models with
BA ≈ A0 + 0B. That is, the effects of subjects
and objects are largely independent of one another.

A UMAP plot with the embeddings for the tran-
sitive sentences is shown in Figure 2 in the Ap-
pendix. It demonstrates that STs arrive at a much
more fine-grained clustering of sentences, largely
dominated by subjects and objects. They largely
discount predicates and adverbs which are quite
prominent in averaged BERT embeddings.

3.3 Transitive Sentences with Long NP
Modifiers

The previous analyses showed that representations
computed by STs are highly attuned to verb par-
ticipants but not to their particular syntactic roles.
This may mean that ST may be potentially misled
by nouns in other positions in the sentence, which
have less relevance to the described situation. This
study explores this possibility.

Data We repeat the analysis from § 3.2 using
the template of the form ‘The [subj] [modifier]
[adverb] [verb] the [obj]’, with a smaller set of sub-
jects,10 and the modifier ranging over {with big
shiny eyes, that my brother saw yesterday, whose
photo was in the papers, worth a great deal of
money}. Altogether this gives 1,440 sentences and
1,036,080 sentence pairs. The modifiers have inter-
nal syntactic structure and contain a non-negligible
amount of lexical material that the models have to
‘skip over’ if their representations were focused on
the participant structure of the matrix clause.

10{cat, dog, rat, giraffe, wombat, hippo}

mpnet distilroberta bert

SameMod 1.01 1.02 1.62
SameAdv 0.40 0.42 0.27
SamePred 0.89 0.67 0.40
SubjObj_0A 0.83 1.06 0.32
SubjObj_0B 0.97 1.27 0.42
SubjObj_A0 1.11 1.14 0.53
SubjObj_AB 2.14 2.44 1.00
SubjObj_B0 1.20 1.30 0.54
SubjObj_BA 2.09 2.40 0.91

R-squared 0.73 0.81 0.61

Table 3: A summary of the models predicting z-scored
pairwise cosine similarities between embeddings of sen-
tences with transitive verbs and lengthy subject modi-
fiers. All coefficients are significant with p < 0.001.

Model The same coding strategy as in the preced-
ing section is used, augmented by a new binary vari-
able, SameMod, tracking whether two sentences
have the same modifier for the subject.

Results Both the model coefficients, shown in
Table 3, and the UMAP plot, shown in Figure 3
in the Appendix, indicate that BERT embeddings
are highly sensitive to lengthy modifiers:11 the
SameMod coefficient in the linear model is larger
than the coefficients for the same predicate and the
same subject-object combination added together.
The situation is very different for STs: SameMod
is more important than SamePred, especially for
DistilRoberta, but, with one exception, not more
important than even a partial overlap in participants.
Having the same participants, in either the same or
swapped syntactic functions, is more than twice as
important. We take this as evidence that STs have
a specific bias towards matrix-clause participant
sets, that is, the nouns that fill a thematic role of the
main predicate, while their precise functions and
nouns found in other positions in the sentence are
less important.

3.4 Coordinated Verbal Phrases
The analyses presented above show that the main
predicate of the sentence has only a limited influ-
ence on the representations computed by STs, com-
pared to its subjects and objects. Here, we show
that this effect still holds if there is more than one
main predicate.

11The results of the replication fits are shown in Table 10 in
the Appendix.
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mpnet distilroberta bert

V1Same 0.41 0.26 0.21
V2Same 0.13 0.08 0.23
V3Same 0.36 0.34 0.41
N1Same 0.33 0.35 0.23
N2Same 0.12 0.22 0.30
N3Same 0.56 0.57 0.41

R-squared 0.11 0.1 0.09

Table 4: A summary of the models predicting z-scored
pairwise cosine similarities between embeddings of sen-
tences with coordinated VPs from binary predictors. All
coefficients are significant with p < 0.001.

Data Using the same sets of nouns and transi-
tive verbs as in the previous experiment, we con-
struct sentences of the form ‘The man [verb1]
the [noun1], [verb2] the [noun2], and [verb3] the
[noun3]’, where triples of verbs and nouns are
taken from the Cartesian product of the sets of
all noun and verb combinations of size 3 without
replacement. To alleviate a possible ordering bias,
all verb and noun triples are shuffled for each sen-
tence. This results in 400 sentences and 79,800
sentence pairs.

Models and results The analysis proceeds in
three stages. First, we check if positions 1, 2, and
3 have different importance by regressing the nor-
malised cosine similarity on six binary variables
N[oun]1Same, V[erb]1Same, N2Same, etc. The
models, summarised in Table 4,12 show low coeffi-
cients of determination (with R2 around 0.1), but
they indicate that positions are of unequal impor-
tance: BERT gives more weight to the last noun
and the last verb, while STs focus on the first and
the last N-V pair and largely ignore the second one.

A significantly better fit can be achieved by re-
placing binary predictors with overlap scores for
nouns and verbs. As Table 513 shows, this type
of model, even though it contains only 2 variables
instead of 6, obtains R2 ≈ 0.65 for STs. It is also
evident that all three models place more weight
on noun overlap than on verb overlap, with Dis-
tilRoberta showing the biggest difference between
the two.

This raises the question of whether particular
verb-noun collocations play a noticeable role, i.e.,

12A summary of the replication fits is given in Table 11 in
the Appendix.

13See Table 12 in the Appendix for the replication fits.

mpnet distilroberta bert

VerbOverlap 0.78 0.59 0.64
NounOverlap 0.93 1.09 0.88

R-squared 0.65 0.68 0.52

Table 5: A summary of the models predicting z-scored
pairwise cosine similarities between embeddings of sen-
tences with coordinated VPs from overlap scores. All
coefficients are significant with p < 0.001.

if a sentence containing chases the wombat will
be considerably more similar to another sentence
containing the exact phrase compared to a sentence
containing chases and wombat but not as a trigram.
Simply adding n-gram overlap scores to the model
is not possible, however, because it is highly cor-
related with both noun overlap and verb overlap.
In order to obviate this obstacle, we first construct
an auxiliary linear model predicting trigram over-
lap from noun and verb overlap and then use the
residuals of this regression in the main model.

The results are ambiguous: on one hand, the
coefficient for residualised trigram overlap is sta-
tistically significant with p < 0.001. On the other
hand, the effect is very weak (more than ten times
weaker than that of either noun overlap or verb
overlap), and the addition of trigram overlap to the
model improves R2 by less than 0.001. This seems
to indicate that trigram overlap is not important for
practical purposes.

3.5 Predicative Nominals with Gerund
Subjects

A potential weak point of our analysis is that parts
of speech and syntactic functions are not decoupled:
it is not yet clear whether the encoders pay attention
to nouns or to subjects and objects.

Data To address this issue, we construct another
set of sentences where the subject is a gerund and
the predicate is nominal. The template is ‘[gerund]
[object] [copula] a [adjective] [predicate]’, where
gerund ranges over {continuing, abandoning,
starting, completing}, object ranges over {it, them,
the project, the plan}, copula is one of {is, was, will
be, is going to be}, adjectives are {big, real, negli-
gible, insignificant}, and the predicative nominal
ranges over {solution, mistake, failure, triumph}.
This gives 1024 sentences and 523,776 sentence
pairs. A variable copula provides an additional test
as to whether the sentence encoders can recognise
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mpnet distilroberta bert

SameSubj 0.82 0.70 0.31
SameCop 0.35 0.30 0.55
SameAdj 0.58 0.79 0.50
SamePred 0.99 1.01 0.52
SameObjNoun 1.01 1.04 0.60
SameObjPron 0.44 0.50 0.42

R-squared 0.50 0.54 0.22

Table 6: A summary of the models predicting z-scored
pairwise cosine similarities between embeddings of sen-
tences with gerund subjects and nominal predicates. All
coefficients are significant with p < 0.001.

multi-word sequences with low semantic content.

Model The sentence pair encoding includes four
binary variables (SameSubj, SameCop, SameAdj,
SamePred) and a nominal variable for the direct ob-
ject, indicating whether objects are different (base-
line), are identical and pronominal (SamePron), or
are identical and nominal (SameNoun).

Results The results in Table 614 demonstrate that
all models treat both nominal predicates and nom-
inal direct objects as more important than gerund
subjects. STs, moreover, pay less attention to iden-
tical pronominal objects and discount multi-word
copula forms. R2 values for the ST model are
lower than in the previous experiments (in the 0.50–
0.55 range), which may potentially indicate a poor
choice of lexical items; however, replication ex-
periments with a different set of words (except for
copula forms) achieved comparable results. This
suggests that embeddings of sentences of this type
are less easily explainable as additive combinations
of individual words compared to the sentence types
surveyed previously.

3.6 Revisiting Participant Sets: Ditransitive
Sentences

Our final experiment revisits the opposition be-
tween lexical overlap in verbal phrases and exact
argument-predicate matching. In this case, we fo-
cus on ditransitive verbs with two arguments: a
direct object and an oblique object which is an
integral part of the situation.15

14See an overview of replication fits in Table 13 in the
Appendix.

15Many English ditransitive verbs can undergo the ‘dative
alternation’, which swaps the oblique object with a preposi-
tional phrase: Give the book to me/John vs. Give me/John a

mpnet distilroberta bert

SameAdv 1.05 1.07 0.64
SamePred 0.93 0.64 0.83
Overlap 0.90 1.00 0.91
SPCRes 0.03 0.02 0.10

R-squared 0.745 0.738 0.57
R-squared
(w/o SPCRes) 0.744 0.737 0.56

Table 7: A summary of the models predicting z-scored
pairwise cosine similarities between embeddings of sen-
tences with ditransitive verbs. SPCRes stands for Same-
PosCountRes, i.e. the residuals of the number of iden-
tical words in identical positions regressed on lexical
overlap. All coefficients are significant with p < 0.001.

Data All permutations of the triple of basic nouns
{cat, dog, rat} are generated. For each permuta-
tion, all three nouns are, in turn, replaced with
one of the members of the set of extra nouns {gi-
raffe, wombat, hippo}; the original permutations
are also used. This provides a set of unique triples
of nouns where each pair of triples has from one
to three nouns in common. The Cartesian product
of this set of triples with a set of ditransitive verbs
({describes, sells, shows}) and a set of adverbs
({happily, quickly, secretly) is used to fill the tem-
plate ‘The [noun1] [adverb] [verb] the [noun2] to
the [noun3].’ This procedures gives 540 sentences
and 145,530 sentence pairs.

Model The sentence pairs are coded for same
adverb, same predicate, the number of matching
nouns in matching positions (SamePosCount), and
lexical overlap minus 1 (the baseline value of 0
corresponds to overlap of 1; each successive value
corresponds to increase in overlap). As with over-
lapping words and trigrams above, these predictors
are correlated. Therefore, we residualise Same-
PosCount after regressing it on lexical overlap.

Results Table 7 is inconclusive in a similar way
to results from § 3.5. The coefficients for residu-
alised SamePosCount are significant; however, in
the ST models, their size is very small, and Same-
PosCount does not materially improve the predic-
tive power. We conclude, therefore, that syntactic
positions do not matter a great deal, in line with
our ‘participant set’ interpretation from § 3.4.

book (Levin, 1993). Of the verbs we use, show and sell partic-
ipate in it, and the status of describe varies across speakers.
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4 Discussion

Our analysis arguably goes some way towards ex-
plaining why sentence transformers beat vanilla
BERT-based models with token averaging on
sentence-modelling tasks. Token averaging makes
it impossible to distinguish between semantically
rich and impoverished sentence elements, nor be-
tween syntactically central vs. peripheral elements:
punctuation signs and determiners contribute on
the same level as the matrix-clause predicate and
main participants, while lengthy modifiers, such
as relative clauses, and multi-word copula forms
dominate the representation.

Sentence transformers, on the other hand, learn
to discount elements that only serve a grammatical
function or present background information and fo-
cus instead on the semantic kernel of the sentence.
The latter is in effect largely synonymous with the
set of nominal elements in the main clause, first
of all participants, but also predicative nominals.
Importantly, despite their evident syntactic-analytic
capabilities (e.g., in our setting they can distinguish
between participants of main and relatives clauses
and between main and auxiliary verbs), STs seem
to not pay much attention to the distinction between
subjects and direct or indirect objects. Instead they
prioritise raw overlap in the set of nominal partic-
ipants of the matrix clause. This can be seen, by
slightly abusing terminology of theoretical linguis-
tics, as a focus on the aboutness/topic of sentences,
what things they describe, and not on their predica-
tion/comment, what they actually say about those
things (Hu and Pan, 2009).

We believe that this focus is not inherent to the
architecture of sentence transformers but reflects
the nature of the datasets used for fine-tuning STs.
The size of these datasets makes it impossible to
convincingly reason about their contents, but their
genres (QA pairs, Reddit threads, etc.) makes it
plausible to expect a high degree of topic-based
overlap: questions and conversations tend to re-
volve around entities (persons and things), with
their actions and properties repeating less often.
This naturally leads to a focus on nouns referring
to prominent entities, which are known to appear
preferentially as subjects or objects for reasons of
coherence (Barzilay and Lapata, 2008), arguably a
good match to the patterns we observe.

5 Related Work

Analysis of transformer-based models for sentence-
level tasks, such as NLI, question answering, or
text classification, has largely followed the same
approaches as found in the general BERTology
(Rogers et al., 2020): probing, analysis of the ge-
ometry of the embedding space, extraction of parts
of input that are particularly important for model
performance, and behavioural analysis. In this vein,
Liu et al. (2021) and Peyrard et al. (2021) analyse
the attention patterns powering the performance of
transformer models on different types of sentence
classification, and Li et al. (2020) show that embed-
dings of sentences computed by BERT-based mod-
els, including siamese-fine-tuned sentence trans-
formers, are anisotropic and can be improved via
normalisation. Chrysostomou and Aletras (2021)
survey the existing methods for extracting ratio-
nales from input sentences in the context of text
classification and propose an improved approach,
while Luo et al. (2021) demonstrate that sentence
embeddings derived by averaging BERT token rep-
resentations suffer from artefacts arising from po-
sitional embeddings. Zhelezniak et al. (2019) ar-
gue that averaging should be replaced with max-
pooling.

Very similar to ours is the approach adopted by
MacAvaney et al. (2022), who construct a series of
probes to analyse the performance of several mod-
els on the task of information retrieval. While their
methodology relies on high-level document statis-
tics and wholistic document manipulation (word
and sentence shuffling, token-frequency similar-
ity between the document and the query, textual
fluency, etc.), our study analyses the role of lin-
guistically motivated structural factors and thus
complements their findings.

Opitz and Frank (2022) aim at directly decom-
posing the representations produced by sentence
transformers into several parts capturing different
properties of sentences reflected in AMR annota-
tions (presence of negation, concepts included in
the sentence, etc.). While our study tries to as-
certain what meaning components dominate the
representations, Opitz and Frank assume that these
components are known in advance and are equally
important: sentence embeddings in their modified
SBERT model are split into 15 segments, each of
which corresponds to one AMR-based meaning
component, plus a residual part to capture every-
thing not covered by AMR annotations.
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6 Conclusion

This paper aims at making a contribution towards
a better understanding of sentence transformers,
which are often seen as black boxes. We have
demonstrated that we can make surprisingly precise
inferences about sentence-pair similarities using
simple linguistic features such as lexical overlap.

The crucial difference between bag-of-words dis-
tributional models and current encoders is that STs
have became quite adept at disregarding ‘irrelevant’
parts of the sentence and concentrating on its key
elements. Unlike vanilla BERT sentence embed-
dings obtained by token averaging, STs yield more
structured embeddings that focus on the matrix
clause and are less tied to individual lexical items
and strings of function words.

This progress, however, comes with a particu-
lar type of bias: the structures that lead to high
sentence similarity in STs, i.e. the overlap in nomi-
nal ‘participant sets’, seem to mirror the dominant
type of paraphrases found in the data the STs were
tuned on, and STs are not compelled to look at
finer structures of input sentences. At least without
further fine tuning, this would appear to make them
unsuitable for downstream tasks that require knowl-
edge about more fine-grained aspects of sentence
structure, such as semantic roles (Conia and Nav-
igli, 2022), or extra-propositional aspects, such as
monotonicity, negation, or modality (Yanaka et al.,
2021; Nakov, 2016).

An interesting direction for future research
would be to explore the ways of decomposing sen-
tence representations into additive aspects such as
participant structure, main predication, etc. The
additional challenge here is that while theoretical
semantics has a lot to say about aspects of sentence
meaning (Pagin, 2016), there remains a lack of
analysis linking the notion of one-dimensional se-
mantic similarity (Agirre et al., 2012) that underlies
the optimisation of current sentence transformers
with theoretically more substantial concepts.

Limitations

The limitations of the proposed analysis are the
following:

1. The analysis is based on synthetic data. This
allows us to fully control the sentence struc-
ture and use balanced lexical material, but it
does not necessarily reflect the performance
of models on real-world data, especially when

sentences or text fragments are much longer.
However, synthetic data have generally shown
to be a good first step toward understanding
the behaviour of complex models.

2. The analysis does not cover graded distinc-
tions between words, i.e. we did not experi-
ment with filling the slots with synonymous
words, as opposed to completely unrelated
words. This makes it impossible to decide if
the models are sensitive to word identities or
to their actual semantics, as long as these two
notions are distinguishable.

3. The outputs of the models are interpreted
using linear regression analysis anchored to
the properties of synthetic sentences. This
kind of analysis makes it possible to disentan-
gle additive effects of different components
of sentence structure and provides statistical-
significance estimates, while high R2 values
indicate that our findings have some valid-
ity. However, it cannot fully account for the
lexical effects (which we tried to safeguard
against by carefully selecting template fillers),
non-linear effects, and hidden collinearity pat-
terns (beyond those we addressed using resid-
ualised analysis).

4. The range of models analysed in the paper is
restricted. It covers some amount of variabil-
ity (sentence transformers vs. vanilla BERT;
two different variants of a base model for STs,
one of them distilled), but other combinations
of model architecture and training/fine-tuning
regime can lead to different outcomes.
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mpnet distilroberta bert

SameDet 0.08 0.11 0.26
SameAdv 0.38 0.38 0.96
SamePred 1.02 0.95 0.49
SamePunct 0.18 0.26 0.64
SameSubj 2.15 2.17 0.65

R-squared 0.71 0.71 0.43

Table 8: A summary of the replication models predicting
z-scored pairwise cosine similarities between embed-
dings of sentences with intransitive verbs. All coeffi-
cients are significant with p < 0.001.

A Appendix

A.1 Dimensionality-reduction plots

A.1.1 Simple transitive sentences
A UMAP plot of embeddings of simple transitive
sentences encoded accordings to their properties is
shown in Figure 2.

A.1.2 Transitive sentences with long NP
modifiers

A UMAP plot of embeddings of transitive sen-
tences with lengthy subject modifiers encoded ac-
cordings to their properties is shown in Figure 3.

A.2 Replication-model fits

A.2.1 Simple intransitive sentences
The following lexical items were used for the repli-
cation experiment:

• Nouns: wolf, bear, fruit, vegetable, building,
car, lightning, wave

• Verbs: stabilizes, bursts, grows, shrinks

• Adverbs: suddenly, predictably

A summary of the replication models is shown in
Table 8.

A.2.2 Simple transitive sentences
The following lexical items were used for the repli-
cation experiment:

• Nouns: pig, horse, soldier, farmer, android,
computer, grass, forest, comet, galaxy, cloud,
lightning

• Verbs: hears, pursues, imagines, recognizes,
touches, finds

mpnet distilroberta bert

SameAdv 0.54 0.32 0.95
SamePred 0.49 0.43 0.75
SubjObj_0A 1.46 1.50 0.70
SubjObj_0B 1.49 1.53 0.66
SubjObj_A0 1.48 1.54 0.76
SubjObj_AB 3.19 3.23 1.56
SubjObj_B0 1.40 1.48 0.50
SubjObj_BA 3.07 3.14 1.34

R-squared 0.81 0.8 0.45

Table 9: A summary of the replication models predicting
z-scored pairwise cosine similarities between embed-
dings of sentences with intransitive verbs. All coeffi-
cients are significant with p < 0.001.

• Adverbs: suddenly, predictably

A summary of the replication models is shown in
Table 9.

A.2.3 Transitive sentences with long NP
modifiers

The following lexical and phrasal items were used
for the replication experiment:

• Nouns: horse, pig, donkey, elephant, bison,
moose

• NP modifiers: missing a hind leg, whose face
we all know, born under a bad sign, pictured
on page seventeen

• Verbs: hears, pursues, imagines, recognizes,
touches, finds

• Adverbs: suddenly, predictably

The overview of the model fits is shown in Table 10.

A.2.4 Coordinated verbal phrases
The following lexical items were used for the repli-
cation experiment:

• Nouns: mouse, horse, fox, kangaroo, bison,
elephant

• Verbs: hears, pursues, imagines, recognizes,
touches, finds

A summary of the replication models is shown in
Tables 11 (individual-word-based models) and 12
(overlap-based models).

3712



mpnet distilroberta bert

SameMod 1.18 1.26 1.83
SameAdv 0.48 0.26 0.41
SamePred 0.64 0.64 0.44
SubjObj_0A 0.91 1.00 0.18
SubjObj_0B 0.99 1.09 0.17
SubjObj_A0 1.10 1.19 0.24
SubjObj_AB 2.13 2.32 0.42
SubjObj_B0 1.16 1.25 0.20
SubjObj_BA 2.11 2.28 0.39

R-squared 0.77 0.84 0.71

Table 10: A summary of the replication models predict-
ing z-scored pairwise cosine similarities between em-
beddings of sentences with transitive verbs and lengthy
subject modifiers. All coefficients are significant with
p < 0.001.

mpnet distilroberta bert

V1Same 0.29 0.18 0.35
V2Same 0.13 0.08 0.28
V3Same 0.39 0.40 0.42
N1Same 0.49 0.48 0.14
N2Same 0.10 0.25 0.18
N3Same 0.57 0.52 0.17

R-squared 0.12 0.11 0.07

Table 11: A summary of the replication models pre-
dicting z-scored pairwise cosine similarities between
embeddings of sentences with coordinated VPs from
binary predictors. All coefficients are significant with
p < 0.001.

A.2.5 Predicative nominals with gerund
subjects

The following lexical items were used for the repli-
cation experiment:

• Gerund subjects: proposing, rejecting, prais-
ing, criticizing

• Pronomial and nominal objects: him, me, the
idea, the design

• Copula forms (same as in the original experi-
ment): is, was, will be, is going to be

• Nominal predicates: decision, defeat, loss, im-
provement

A summary of the replication models is shown in
Tables 13.

mpnet distilroberta bert

VerbOverlap 0.69 0.52 0.85
NounOverlap 1.05 1.20 0.47

R-squared 0.69 0.76 0.41

Table 12: A summary of the replication models pre-
dicting z-scored pairwise cosine similarities between
embeddings of sentences with coordinated VPs from
overlap scores. All coefficients are significant with
p < 0.001.

mpnet distilroberta bert

SameSubj 0.82 0.70 0.31
SameCop 0.35 0.30 0.55
SameAdj 0.58 0.79 0.50
SamePred 0.99 1.01 0.52
SameObjNoun 1.01 1.04 0.60
SameObjPron 0.44 0.50 0.42

R-squared 0.50 0.54 0.22

Table 13: A summary of the replication models pre-
dicting z-scored pairwise cosine similarities between
embeddings of sentences with gerund subjects and nom-
inal predicates. All coefficients are significant with
p < 0.001.

A.2.6 Participant-set overlap vs. identical
participants

The following lexical items were used for the repli-
cation experiment:

• Basic nouns: horse, pig, donkey

• Extra nouns: elephant, bison, moose

• Verbs: gives, demonstrates, entrusts

• Adverbs: suddenly, predictably, openly

A summary of the replication models is shown in
Tables 14.
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mpnet distilroberta bert

SameAdv 1.05 1.07 0.64
SamePred 0.93 0.64 0.83
Overlap 0.90 1.00 0.91
SPCRes 0.03 0.02 0.10

R-squared 0.745 0.738 0.57
R-squared
(w/o SPCRes) 0.744 0.737 0.56

Table 14: A summary of the replication models predict-
ing z-scored pairwise cosine similarities between em-
beddings of sentences with ditransitive verbs. SPCRes
stands for SamePosCountRes, i.e. the residuals of the
number of identical words in identical positions re-
gressed on lexical overlap. All coefficients are signifi-
cant with p < 0.001.
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Figure 2: UMAP projections of embeddings of sentences with transitive verbs colour coded according to subject,
object, predicate, and adverb.
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Figure 3: UMAP projections of embeddings of sentences with transitive verbs and long subject modifiers colour
coded according to subject, modifier, object, predicate, and adverb.
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Abstract

Creating an abridged version of a text involves
shortening it while maintaining its linguistic
qualities. In this paper, we examine this task
from an NLP perspective for the first time. We
present a new resource, ABLIT, which is de-
rived from abridged versions of English litera-
ture books. The dataset captures passage-level
alignments between the original and abridged
texts. We characterize the linguistic relations of
these alignments, and create automated models
to predict these relations as well as to generate
abridgements for new texts. Our findings estab-
lish abridgement as a challenging task, motivat-
ing future resources and research. The dataset
is available at github.com/roemmele/AbLit.

1 Introduction

An abridgement is a shortened form of a text that
maintains the linguistic qualities of that text1. It is
intended to make the original text faster and easier
to read. In this paper, we propose abridgement as
an NLP problem and describe its connection to ex-
isting inference and generation tasks. We present
a novel dataset for this task, focused on abridged
versions of English literature books, which we re-
fer to as the ABLIT dataset. We demonstrate the
characteristics of ABLIT in terms of the relations
between original and abridged texts as well as the
challenges of automatically modeling these rela-
tions. The dataset and all associated code, includ-
ing a Python package for easily interfacing with the
data, are available at: github.com/roemmele/AbLit.

2 The task of abridgement

2.1 Definition
We define abridgement as the task of making a text
easier to understand while preserving its linguistic

1The term “linguistic qualities” is broad, which reflects
other definitions of abridgement. For instance, the Wikipedia
entry for “abridgement” specifies that it “maintains the unity of
the source”, but these dimensions of unity are tacitly defined.

qualities. As such, abridgement intersects with
tasks that fuse natural language inference (NLI) and
natural language generation (NLG), in particular
summarization and simplification.

Summarization condenses the main content of
a text into a shorter version in order to facilitate
high-level comprehension of the content. Existing
research has used the categories of extractive and
abstractive to describe summaries. In the former,
the summary ‘extracts’ sequences from the text,
whereas in the latter the summary ‘abstracts’ out
the meaning of the text and rewrites it. The degree
of abstractiveness of a summary is indicated by how
much novel text it contains that is not directly in the
original text. Like a summary, an abridgement is
shorter than its original text, but it preserves more
of its language and can be seen as an alternative
version rather than a meta-description. According
to how summaries are characterized, abridgements
are highly extractive, even if some abstraction is
needed to connect the extracted components.

Some work has examined summarization of nar-
ratives, including literary text (Kazantseva and
Szpakowicz, 2010; Mihalcea and Ceylan, 2007;
Zhang et al., 2019). Of particular relevance to
our work are datasets released by Chaudhury et al.
(2019), Kryściński et al. (2021), and Ladhak et al.
(2020), all of which consist of summaries of fiction
books. These summaries are significantly differ-
ent from abridgements in that they are highly ab-
stractive; they convey the book’s narrative without
preserving much of the text itself. Kryściński et al.
provides summaries at different levels of granular-
ity (book, chapter, and paragraph). Their analysis
demonstrates that even the finer-grained summaries
at the paragraph level are quite abstractive.

The task of simplification also aims to make a
text easier to understand, but without significantly
distilling its content. Simplification is often treated
as a sentence-level task (Sun et al., 2021). Abridge-
ment can be viewed as simplification on a docu-
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ment level. It seeks to balance the goal of increas-
ing readability with preserving as much of the orig-
inal text as possible. Research on simplification
has been constrained by a lack of high-quality pub-
licly available datasets. Existing datasets have been
derived from sources like Wikipedia (e.g. Coster
and Kauchak, 2011) and news articles (Xu et al.,
2015), but none have focused on literary text.

2.2 Practical application
There are few authors who perform abridgement,
and thus relatively few abridged versions of books
(Minshull, 2001). Authors have described it as
challenging and time-consuming to discern what to
modify without compromising the original author’s
agency (Lauber, 1998; Sussman, 1988). However,
as touted by these authors, abridgement makes
books more accessible to a larger audience, espe-
cially when delivering the content through non-text
modes like audio (Lavin, 2014). Given this, au-
tomating the abridgement process could vastly ex-
pand the number of abridged versions of books and
thus increase their readership. Automation does not
preclude the involvement of human authors; for ex-
ample, human translators use machine translation
to increase their productivity (e.g. Zhechev, 2014),
and the same paradigm could apply to abridgement.

3 Creating an abridgement dataset

The ABLIT dataset is derived from 10 classic En-
glish literature books, listed in A.4. These books
are in the public domain and available through
Project Gutenberg2. A single author, Emma Lay-
bourn, wrote abridged versions of these books that
are also freely available3. The author explains:

“This is a collection of famous novels which have
been shortened and slightly simplified for the gen-
eral reader. These are not summaries; each is half
to two-thirds of the original length. I’ve selected
works that people often find daunting because of
their density or complexity: the aim is to make
them easier to read, while keeping the style in-
tact.”

Informed by this, we designed ABLIT to capture
the alignment between passages in a text and its
abridged version. We specify that an abridged and
original passage are aligned if the content of the
abridged passage is fully derived from the original.

After obtaining the original and abridged books
from their respective sites, we detected chapter

2gutenberg.org
3englishliteratureebooks.com

headings to split the books into chapters (see A.1
for details). We paired the original and abridged
version of each chapter according to these headings.
Obviously, the two versions already form a broad
alignment unit, but our goal was to examine finer
levels of alignment. We chose to use sentences as
the minimal alignment units, since they are intuitive
units of expression in text and can be detected auto-
matically4. ABLIT annotates sentence boundaries
by indexing their position in the text, which enables
all whitespace characters (most importantly, line
breaks marking paragraphs) to be preserved.

3.1 Automated alignments
We pursued an automated approach to establish ini-
tial alignments between the original and abridged
sentences for each chapter. It follows the same
dynamic programming scheme used to create
the Wikipedia Simplification dataset (Coster and
Kauchak, 2011). We refer to a group of adjacent
sentences in a text as a span. We define the length
of a span by the number of sentences it contains.
Each span o of length on in the original version
of a chapter is paired with a span a of length am
in the abridged version. The value of am can be
zero, allowing for the possibility that an original
sentence is aligned with an empty string.

For each pair of o and a, we use a similar-
ity metric sim(o, a) to score the likelihood that
they are aligned. This scoring function also con-
siders the length of the spans in order to opti-
mize for selecting the narrowest alignment be-
tween the original and abridged text. For in-
stance, if a one-to-one alignment exists such that
the meaning of a single sentence in the abridge-
ment is fully encapsulated by a single original sen-
tence, these sentences should form an exclusive
alignment. To promote this, we adjust sim(o, a)
by a penalty factor pn applied to the size of
the pair, where size = max(on, am). Ultimately,
the alignment score for a given span pair (o, a)
is max(0, sim(o, a)− ((size− 1) ∗ pn)). Thus,
more similar pairs obtain higher scores, but the
scores are increasingly penalized as their size in-
creases. At each sentence position in the original
and abridged chapters, we score spans of all lengths
[1, on] and [0, am], then select the one that obtains
the highest score when its value is combined with
the accumulated score of the aligned spans prior to

4We used nltk.org for all sentence segmentation and word
tokenization. For analyses pertaining to words, words are low-
ercased without any other normalization (e.g. lemmatization).
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that position. Once all span pairs are scored, we
follow the backtrace from the highest-scoring span
in the final sentence position to retrieve the optimal
pairs for the chapter. We refer to each resulting
span pair (o, a) in this list as an alignment row.

3.2 Assessment of automated alignments

We applied this automated alignment approach to
the first chapter in each of the ten books in ABLIT,
which we designated as an assessment set for in-
vestigating the quality of the output rows. We in-
stantiated sim(o, a) as the ROUGE-1 (unigram)
precision score5 between the spans, where a is
treated as the hypothesis and o is treated as the
reference. Here we refer to this score as R-1p. It
effectively counts the proportion of words in a that
also appear in o. We considered values of on in
[1, 6] and am in [0, 6] and selected on = 3 and
am = 5 based on our perceived quality of a sample
of output rows. We similarly optimized pn values
in [0, 0.25] and selected pn = 0.175. Smaller val-
ues of pn yielded rows that were not minimally
sized (i.e. they needed to be further split into multi-
ple rows), whereas larger values tended to wrongly
exclude sentences from rows.

The output consisted of 1,126 rows, which were
then reviewed and corrected by five human valida-
tors recruited from our internal team. Validators
judged a row as correct if the meaning expressed
by the abridged span was also expressed in the
original span, consistent with how alignment is de-
fined above. A.3 gives more detail about this task.
We found that inter-rater agreement was very high
(Fleiss’ κ = 0.984) and the few disagreements were
easily resolved through discussion. The validators
reported spending 10-15 minutes on each chapter.

After establishing these gold rows for the assess-
ment set, we evaluated the initial automated rows
with reference to the gold rows. To score this, we
assigned binary labels to each pair of original and
abridged sentences, where pairs that were part of
the same row were given a positive class label and
all other pairs were given a negative class label.
Given these labels for the rows automatically pro-
duced with the R-1p method compared against the
labels for the gold rows, the F1 score of the auto-
mated rows was 0.967. We also evaluated other
methods for computing sim(o, a), but none outper-
formed R-1p. See A.2 for the description of these
alternative methods and their results.

5Using github.com/Diego999/py-rouge

3.3 Full dataset

Partial validation: The time spent validating this
assessment set indicated it would require signifi-
cant resources to review the rows for all 868 chap-
ters across the 10 books. Meanwhile, our evalua-
tion revealed that we can expect most automatically
aligned rows to be correct. Thus, we considered
how to focus effort on correcting the small percent-
age of erroneously aligned rows. We manually re-
viewed these rows in the assessment set and found
that their R-1p scores were often lower than those
of the correct rows. Moreover, this tended to af-
fect two types of rows: those with two or more
sentences in the abridged span, or those adjacent
to another row with an empty abridged span (i.e.
am = 0). We did an experiment where a human
validator reviewed only the assessment rows with
scores < 0.9 that qualified as one of the two above
cases. Selectively applying corrections to just these
rows boosted the F1 score of the assessment set
from 0.967 to 0.99. We thus decided to apply this
strategy of partially validating automated rows to
create the training set for ABLIT.

Final sets: To construct the rest of ABLIT, we
ran the automated alignment procedure on all other
chapters, and then applied the above partial vali-
dation strategy. Because we previously confirmed
high inter-rater agreement, a single validator re-
viewed each chapter. Generalizing from the assess-
ment set, we estimate that 99% of these rows are
correct. To ensure an absolute gold standard for
evaluation, we set aside five chapters in each of
the ten books and fully validated their rows. We
designated this as the test set, and repurposed the
assessment set to be a development set that we used
accordingly in our experiments. All other chap-
ters were assigned to the training set. Ultimately,
ABLIT consists of 808, 10, and 50 chapters in the
training, development, and test sets, respectively.
Table 1 shows some examples of rows in ABLIT.

4 Characterizing abridgements

4.1 Overview

Table 2 lists the size of ABLIT in terms of rows,
paragraphs, sentences, and words (see A.4 for these
numbers compared by book). Here we call atten-
tion to the numbers for the fully-validated test set,
but the numbers for the training set closely corre-
spond. The development set slightly varies from
the training and test set for a few statistics, likely
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Original Span Abridged Span
[The letter was not unproductive.] [It re-established peace and
kindness.]

[The letter re-established peace and kindness.]

[Mr. Guppy sitting on the window-sill, nodding his head and
balancing all these possibilities in his mind, continues thoughtfully
to tap it, and clasp it, and measure it with his hand until he hastily
draws his hand away.]

[Mr. Guppy sitting on the window-sill, taps
it thoughtfully, until he hastily draws his hand
away.]

[At last the gossips thought they had found the key to her conduct,
and her uncle was sure of it; and what is more, the discovery
showed his niece to him in quite a new light, and he changed his
whole deportment to her accordingly.]

[At last the gossips thought they had found the
key to her conduct, and her uncle was sure of it
.] [The discovery altered his whole behaviour to
his niece.]

[They trooped down into the hall and into the carriage, Lady Pomona
leading the way.] [Georgiana stalked along, passing her father at
the front door without condescending to look at him.]

[They trooped downstairs, Georgiana stalking
along.] [She passed her father at the front door
without condescending to look at him.]

Table 1: Examples of alignment rows. Sentence boundaries are denoted by brackets ([]). We highlight preserved
words in blue and underline the reordered ones. Added words are in green.

Train Dev Test (Chpt Mean)
Chpts 808 10 50
Rows 115,161 1,073 9,765 (195)
Opars 37,227 313 3,125 (62)
Apars 37,265 321 3,032 (61)
Osents 122,219 1,143 10,431 (209)
Asents 98,395 924 8,346 (167)
%Asents 80.5 80.8 80.0
Owrds 2,727,571 29,908 231,878 (4,638)
Awrds 1,718,919 17,630 143,908 (2,878)
%Awrds 63.0 58.9 62.1

Table 2: Number of chapters (Chpts), alignment rows
(Rows), paragraphs (pars), sentences (sents), and
words (wrds) across all original (O) and abridged (A)
books. The per-chapter means appear for the test set.

Osents Asents Train Dev Test
1 1 75.8 74.7 75.7
1 0 17.4 17.3 17.3

2+ 1 4.3 4.8 4.6
1 2+ 2.1 3.2 1.9

2+ 2+ 0.3 0.0 0.5

Table 3: Distribution of row sizes by number of sen-
tences (sents) in original (O) and abridged (A) spans

because it is smaller. Judging by the test set, the
abridged chapters have almost the same number of
paragraphs as the original, but they have 80% of
the number of sentences (%Asents) and ≈62% of
the number of words (%Awrds).

Table 3 pertains to the size of the original and
abridged spans in each row, where size is the num-
ber of sentences in each span. The table shows
the relative percentage of rows of each size. The

majority of test rows (≈76%) contain a one-to-one
alignment between an original and abridged sen-
tence (i.e. Osents = 1, Asents = 1). Meanwhile,
≈17% contain an original sentence with an empty
abridged span (Osents = 1, Asents = 0). A minor-
ity of rows (≈5%) have a many-to-one alignment
(Osents = 2+, Asents = 1) and a smaller minority
(≈2%) have a one-to-many alignment (Osents = 1,
Asents = 2+). Many-to-many alignments (Osents =
2+, Asents = 2+) are more rare (0.5%).

4.2 Lexical similarity

Score Bin Train Dev Test
0.0 17.5 17.6 17.4

(0.0, 0.25] 0.1 0.2 0.1
(0.25, 0.5] 0.5 0.9 0.6
(0.5, 0.75] 2.6 4.6 2.9
(0.75, 1.0) 23.9 31.5 24.0

1.0 55.5 45.2 55.0

Table 4: Binned distribution of R-1p scores for rows

As demonstrated by the success of the R-1p met-
ric for creating alignment rows (Section 3.2), an
original and abridged span typically align if most
of the words in the abridged are contained in the
original. Table 4 shows the binned distribution of
the R-1p scores for the rows. Rows with an exact
score of 0.0 (≈17% of rows in the test set) con-
sist almost exclusively of original spans aligned to
empty spans, which is why this number is compara-
ble to the second line of Table 3. Many rows have
perfect scores of exactly 1.0 (55%), signifying that
their abridged span is just an extraction of some or
all of the original span. The abridged spans where
this is not the case (i.e. they contain some words
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not in the original) still copy much of the original:
24% of test rows have a R-1p score above 0.75 and
below 1.0, while only a small minority (≈4%, the
sum of lines 2-4 in the table) have a score above
0.0 and below 0.75.

4.3 Lexical operations

Train Dev Test
Ormv (Oprsv) 40.9 (59.1) 45.9 (54.1) 41.9 (58.1)

Aadd (Aprsv) 6.3 (93.7) 8.3 (91.7) 6.4 (93.6)

Rowsrmv 71.1 80.3 73.2
Rowsprsv 82.5 82.7 82.6
Rowsadd 37.4 48.8 39.4
Rowsreord 11.8 16.5 11.7

Table 5: Top: the % of removed and added words rel-
ative to all original and abridged words, respectively.
Bottom: the % of rows with each lexical operation.

For each row, we enumerate the common and di-
vergent items between the words owrds in the origi-
nal span and the words awrds in the abridged span.
The words that appear in owrds but not awrds are
removed words, i.e. ormv = |owrds − awrds|. All
other original words are preserved in the abridge-
ment, i.e. oprsv = |owrds − ormv|. Accumulating
these counts across all original spans o ∈ O, the
top section of Table 5 indicates the percentages
of removed and preserved words among all orig-
inal words. In the test set, ≈42% of words are
removed, and thus ≈58% are preserved. Next,
we count the added words in the abridgement,
which are those that appear in awrds and not
owrds, i.e. aadd = |awrds − owrds|. All other
abridged words are preserved from the original,
i.e. aprsv = |awrds − aadd|. Accumulating these
counts across all abridged spans a ∈ A, Table 5
shows that only ≈6% of abridged words in the test
set are additions, and thus ≈94% are preservations.

We also report the number of rows where these
removal, preservation, and addition operations oc-
cur at least once. For instance, if ormv > 0 for the
original span in a given row, we count that row as
part of Rowsrmv. The bottom section of Table 5
shows the percentage of rows with each operation
among all rows in the dataset. In ≈73% of the test
rows, the abridged span removes at least one word
from the original. In ≈83% of rows, the abridged
span preserves at least one word from the original.
In ≈39% of rows, the abridged span adds at least
one word not in the original. We considered the

possibility that preserved words could be reordered
in the abridgement. To capture this, we find the
longest contiguous sequences of preserved words
(i.e. “slices”) in the abridged spans. A row is in-
cluded in Rowsreord if at least two abridged slices
appear in a different order compared to the original
span. This reordering occurs in ≈12% of rows.

It is clear from this analysis that the abridge-
ments are quite loyal to the original versions, but
they still remove a significant degree of text and
introduce some new text. The examples in Table
1 highlight these operations. We can qualitatively
interpret from the examples that some added words
in the abridged span are substitutions for removed
original words (e.g. “tap” > “taps” in the second ex-
ample, “changed” > “altered” in the third example).
See A.5 for additional discussion about how some
of these relations pertain to common NLI tasks.

4.4 Lexical categories

Category %O %Ormv %A %Aadd
Function 58.2 57.9 58.1 53.9
Content 41.8 42.1 41.9 46.1

Table 6: Test set distribution of lexical categories for
removed words Ormv compared with all original words
O, and added words Aadd compared with all abridged
words A

We examined if certain types of words are more
often affected by removal or addition operations.
Table 6 contains a broad analysis of this for the
test set. As shown, ≈58% of original words O are
function words (those with part-of-speech tags of
punctuation, pronouns, adpositions, determiners,
etc.), while ≈42% are content words (nouns, verbs,
adjectives, and adverbs). The category distribution
of removed words Ormv closely matches the O dis-
tribution, suggesting that both function and content
words are removed at the same rate. The abridged
words A have the same proportion of function and
content words as O (again, ≈58% and ≈42%). In
comparison, ≈54% of additions Aadd are function
words, while ≈46% are content words. The gap
between ≈42% and ≈46% indicates that content
words are added at a slightly higher rate than the
overall frequency in content words in A (and equiv-
alently, function words are added at a lower rate).
But there are few additions overall, so the abridge-
ments retain the same word type distribution as the
original texts. A.6 shows this same analysis for
each specific part-of-speech tag among these types.
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5 Predicting what to abridge

Garbacea et al. (2021) points out that a key (and
often neglected) preliminary step in simplification
is to distinguish text that could benefit from being
simplified versus text that is already sufficiently
simple. This is also an important consideration
for abridgement, since it seeks to only modify text
in places where it improves readability. Accord-
ingly, we examine whether we can automatically
predict the text in the original that should be re-
moved when producing the abridgement. As ex-
plained in Section 4, a removed word could mean
the author replaced it with a different word(s) in
the abridgement, or simply excluded any represen-
tation of its meaning. However, both cases indicate
some change is applied to that word.

We model this through a binary sequence label-
ing task. Given a passage with original tokens otoks
and corresponding abridged tokens atoks, we as-
sign each token t in otoks the label of preserved
(l=0) if it is also in atoks, and otherwise the label of
removed (l=1) if it is not in atoks. Thus the task
is to predict the label sequence [l1, l2, ...ln] from
the token sequence [t1, t2, ...tn].

5.1 Model inputs

We can derive a token-label sequence from each
alignment row, by which each original span cor-
responds to a single input instance. However, the
size of these spans varies across rows. To pro-
duce models that handle texts where these span
boundaries are not known in advance, we consider
consistent-length passages whose boundaries can
be automatically inferred. Thus the ABLIT inter-
face can provide pairs where a fixed-length passage
from the original chapter (i.e. a sentence, para-
graph, or multi-paragraph chunk) is aligned to its
specific corresponding abridged version.

We enable this by finding the respective posi-
tions of the longest common word sequences be-
tween the original and abridged spans. Each of
these overlapping subsequences is represented as
a slice of the original text with indices (oi, oj)
mapped to a slice of the abridged text (ai, aj).
Then, given a passage in the original text with in-
dices (ol, om), we find all enclosed slices (oi, oj)
where oi >= ol and oj <= om. For each slice we
retrieve its corresponding abridged slice (ai, aj).
Given the earliest text position min ai and latest
position max aj among these abridged slices, the
full abridgement for the passage at (ol, om) is the

text covered by the indices (min ai, max aj). As
an example, consider the first line in Table 1. If re-
trieving abridgements for sentence-length passages,
the first sentence in the original span “The letter
was not unproductive.” will yield “The letter” as
the abridgement. The second original sentence “It
re-established peace and kindness” will yield the
abridgement “re-established peace and kindness”.
By varying the passage size, we can assess how
much context beyond a single row is beneficial in
modeling abridgements. See A.7 for more details.

5.2 Experiment

Model: To predict abridgement labels
(preserved/removed), we use a ROBERTA-
based sequence labeling model, which has been
applied to several other NLI tasks (Liu et al.,
2019). We divided chapters according to varying
passage sizes and trained a separate model on
the token-label sequences6 associated with each
passage size. The passages are either sentences
(detected by NLTK), paragraphs (detected by
line breaks), or multi-paragraph ‘chunks’. Each
chunk consists of one or more paragraphs of S
sentences, such that paragraphs are combined
into the same chunk when their total number of
sentences does not exceed S. As an additional
reference, we trained a model where each passage
is an original span directly taken from a single
alignment row. As explained in Section 5.1, these
passages (termed Rows) vary in length. We did not
train a model on the full chapters as inputs because
the average length of these inputs (5,044 tokens)
greatly exceeds the ROBERTA limit of 512. See
A.8 for more details about the model.

Passage Toks P R F1
Rows 26 0.692 0.442 0.532
Sentences 24 0.677 0.453 0.535
Paragraphs 81 0.686 0.460 0.546
Chunks (S=10) 303 0.670 0.501 0.569
All=removed - 0.415 1.000 0.583

Table 7: F1 scores of abridgement label prediction for
test set with models trained on varying passage sizes.
Toks is the mean number of tokens in each passage type.

Results: Each model is evaluated on instances of
the corresponding passage size in the test set. Table

6A “token” in this case is a sub-token unit defined by
the ROBERTA tokenizer, rather than a whitespace-separated
“word” pertaining to Section 4.
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7 displays the results in terms of the precision (P),
recall (R), and F1 score of predicting that a token
should be removed. We compare these results with
the baseline of labeling all tokens in the chapter
as removed (final line). For chunks, we tuned
different values of S in [5, 11] on the development
set and observed the best F1 at S=10. The results
show that the longest passage size (Chunks) yields
the best predictions, suggesting the importance of
chapter context beyond that given in a single row.
The consistently higher precision over recall for
all models indicates they correctly predict many
preservation operations, but at the expense of miss-
ing many removal operations. Consequently, they
overestimate the number of tokens that should be
preserved. This results in an overall F1 that is lower
than what occurs when all tokens are removed.

6 Producing abridgements

The above results show that anticipating what
parts of a text should be changed when writing
its abridged version is not trivial. The full task of
producing an abridgement implicitly involves in-
ferring these preserved/removed labels while
additionally predicting the specific text that dictates
these labels. We examine models that have been
applied to tasks related to abridgement to establish
benchmarks for this new task, with the intent that
these benchmarks will inspire future work.

6.1 Models

We consider the following models to produce an
abridged version of an original chapter:

Naive Baselines: As a reference point for our
evaluation metrics, we report the performance of
very weak baselines. In particular, we copy the
entire original text as the abridgement (COPY). Al-
ternatively, we select T percent of original tokens
(RANDEXTTOKS) as the abridgement.

Extractive Approaches: The analysis in Section
4.2 showed that abridgements preserve much of
their original text, which motivates the use of ex-
tractive summarization methods. Using the best
label prediction model from Section 5, we extract
all original tokens labeled as preserved to form
the abridgement (EXTTOKS). To reveal the max-
imum performance that can be obtained with this
method, we also run it using the gold labels instead
of predicted labels (PERFECTEXTTOKS). It is not
conventional to use tokens as units of extraction,

since it can compromise fluency within sentences.
EXTTOKS and PERFECTEXTTOKS only serve as
points of comparison for our evaluation metrics.
The standard extractive approach uses sentences as
extractive units. For this (EXTSENTS), we form
an abridgement by selecting a subset of sentences
in the original chapter where at least P percent of
tokens are labeled as preserved.

Generation Models: Extractive methods cannot
introduce words into the abridgement that are not
in the original, so for this we need to consider
generation models. In particular, we examine two
transformer-based sequence-to-sequence models
that have been used for various generation tasks
including summarization: T5-BASE (Raffel et al.,
2020) (termed TUNEDT5 here) and BART-BASE

(Lewis et al., 2020) (termed TUNEDBART). We
fine-tuned both models on the ABLIT training set,
specifically on inputs consisting of chunks with
10 sentences, since this passage size yielded the
best results in the Section 5 experiment. To assess
the impact of these models’ observation of ABLIT,
we compare them with abridgements produced by
prompting the non-finetuned T5-BASE to perform
zero-shot summarization (ZEROSHOTT5). See A.9
for more details about these models. For all mod-
els, we generated an abridgement for an original
chapter by dividing the chapter into chunks, gener-
ating output for each chunk (with 5-beam decod-
ing), then concatenating the outputs to form the
complete abridgement.

6.2 Evaluation metrics

We evaluate the predicted abridgements through
comparison with the human-authored reference
abridgements. First, we measure the word-based
similarity between the predicted abridgement apred
and reference abridgement aref using ROUGE-L
(R-L), a standard evaluation metric for summariza-
tion. We then assess how accurately apred removed
and preserved words from the original. A word
from the original in apred is considered correctly
preserved if it also appears in aref . We report the
F1 of this measure as Prsv. A word in the original
but not in apred is considered correctly removed if
it is also absent from aref . We report the F1 of this
measure asRmv. Finally, we evaluate the accuracy
of added words, where a word not in the original
is considered correctly added to apred if it is also
in aref . We report the F1 of this measure as Add.
See A.10 for formal definitions of these metrics.
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Name Description Toks R-L Prsv Rmv Add

HUMAN Reference (aref ) 2,878 - - - -
COPY Duplicate original 4,638 0.739 0.753 0.000 0.000
RANDEXTTOKS (T=0.6) T% randomly selected original tokens 2,787 0.753 0.800 0.694 0.000
EXTTOKS Original tokens predicted as preserved 3,160 0.818 0.856 0.745 0.006
PERFECTEXTTOKS Original tokens where gold label is

preserved (upper bound for EXTTOKS)
2,664 0.950 0.969 0.954 0.034

EXTSENTS (P=0.65) Original sentences with ≥ P% tokens pre-
dicted as preserved

2,857 0.792 0.824 0.720 0.001

TUNEDT5 Generate from finetuned T5 3,834 0.727 0.804 0.519 0.275
TUNEDBART Generate from finetuned BART 3,673 0.780 0.815 0.583 0.365
ZEROSHOTT5 Generate from non-finetuned T5 1,157 0.416 0.484 0.627 0.019

Table 8: Scores of predicted abridgements on evaluation metrics. For all metrics, higher scores are better.

Original Reference TUNEDBART
The windows were half open because of the
heat, and the Venetian blinds covered the glass,–
so that a gray grim light, reflected from the pave-
ment below, threw all the shadows wrong, and
combined with the green-tinged upper light to
make even Margaret’s own face, as she caught
it in the mirrors, look ghastly and wan.

The windows were half
open because of the heat,
and Venetian blinds cov-
ered the glass, giving the
light a green tinge that
made her face in the mir-
rors look ghastly and wan.

The windows were half open because of the
heat, and the Venetian blinds covered the
glass - so that a grey grim light, reflected
from the pavement below, threw all the shad-
ows wrong, and made even Margaret’s own
face look ghastly and wan.

We must suppose little George Osborne has rid-
den from Knightsbridge towards Fulham, and
will stop and make inquiries at that village re-
garding some friends whom we have left there.
How is Mrs. Amelia after the storm of Water-
loo? Is she living and thriving? What has come
of Major Dobbin, whose cab was always han-
kering about her premises?

We must now make in-
quiries at Fulham about
some friends whom we
have left there. How is
Mrs. Amelia? Is she living
and thriving? What has be-
come of Major Dobbin?

We must suppose little George Osborne has
ridden towards Fulham, and will stop and
make inquiries about some friends whom
we have left there. How is Mrs. Amelia after
the storm of Waterloo? Is she living and
thriving? What has come of Major Dobbin,
whose cab was always hankering about her
premises?

Table 9: Abridgements predicted by TUNEDBART for excerpts of North and South and Vanity Fair

6.3 Results

Table 8 reports the length and metric scores of the
abridgements produced by each model for the test
set chapters. Where applicable, we selected the T
and P parameters from tuning on the development
set. The results again convey that abridgement is
largely a text extraction task, though a challenging
one. The low R-L score of ZEROSHOTT5 con-
firms that ABLIT is different from the summariza-
tion datasets that T5-BASE is trained on. The high
R-L of PERFECTEXTTOKS validates that precisely
identifying which words to remove goes far in pro-
ducing the abridgement. The high Prsv scores for
all approaches that observe ABLIT show they can
all preserve the original text reasonably well. Anal-
ogous to the results in Section 5, the lower Rmv
scores indicate knowing which words to remove
is harder, particularly for the generation models.
The extractive methods have no opportunity to ob-
tain an Add score that is non-trivially above 07.

7It is possible for Add to be slightly above 0 with the
extractive approaches due to tokenization; see A.10.

The generation models do show a small benefit
here in correctly adding some new words to the
abridgement. The examples in Table 9 qualitatively
represent the outcome for the TUNEDBART model.
These abridgements remove some of the same orig-
inal text as the reference and also add a few words
consistent with the reference, but they still retain
more of the original text than the reference. Other
examples are shown in A.12.

7 Conclusion

In this paper, we introduced ABLIT, a corpus of
original and abridged versions of English literature.
ABLIT enables systematic analysis of the abridge-
ment task, which has not yet been studied from an
NLP perspective. Abridgement is related to other
tasks like summarization, but has a stricter require-
ment to maintain loyalty to the original text. Our
experiments motivate an opportunity to better bal-
ance this goal against that of improving readability.
We also envision future resources that generalize
this task to other texts beyond English literature.
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8 Limitations

We present ABLIT to introduce abridgement as an
NLP task. However, the dataset is scoped to one
small set of texts associated with a specific domain
and author.

There are significant practical reasons for this
limited scope. In particular, most recently pub-
lished books are not included in publicly accessible
datasets due to copyright restrictions, and the same
restrictions typically apply to any abridgements of
these books. The books in ABLIT are uniquely in
the public domain due to expired copyrights, and
the author chose to also provide her abridgements
for free. For this reason, ABLIT consists of British
English literature from the 18th and 19th centuries.
Some of the linguistic properties of these original
books do not generalize to other types of English
texts that would be useful to abridge. We do not
yet know what aspects of abridgement are specific
to this particular domain.

Moreover, as described in Section 2.2, creating
abridgements is a rare and highly skilled writing
endeavor. The ABLIT abridgements are written
exclusively by one author. Without observing al-
ternative abridgements for the same books by a
different author, it is unclear what features are spe-
cific to the author’s preferences. This conflation
between task and author is a concern for many NLP
datasets (Geva et al., 2019). More generally, obtain-
ing human writing expertise is a challenge shared
by all language generation research as it becomes
more ambitious (e.g. Wu et al., 2021).

9 Ethical Considerations

As stated in the introduction, all data and code used
in this work is freely available. The text included
in the dataset is in the public domain. Additionally,
we explicitly confirmed approval from the author
of the abridged books to use them in our research.

For the data validation task, the validators were
employed within our institution and thus were com-
pensated as part of their normal job role. Given
that the dataset is derived directly from published
books, it is possible that readers may be offended
by some content in these books. The validators did
not report any subjective experience of this.

With regard to our modeling approaches, large
pretrained models like the ones we use here for gen-
erating abridgements have a well-known risk of pro-
ducing harmful content (e.g. Gehman et al., 2020).
For the generation models fine-tuned on ABLIT,

we did not subjectively observe any such text in
the sample output we assessed. We judge that our
controlled selection of training data reduces this
risk, but does not eliminate it. Accordingly, future
applications of abridgement can similarly consider
careful data curation for mitigating this risk.
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A Appendix

A.1 Detecting chapter boundaries
There is a one-to-one relation between each
chapter in an original book and each chapter in
its corresponding abridged version. Both the
original and abridged version of the books include
headings separating chapters. We automatically
detected these headings through a set of regular
expressions (e.g. matching lines specifying a chap-
ter number and name with the regular expression
“^Chapter [0-9]+:*[a-zA-Z\s]*$”).
However, there is variability in the format of
the headings: some can span multiple lines, or
specify a book and volume number in addition to
the chapter identifier, or have numbers written in
non-numerical form, for instance. The format also
varies between the original and abridged version
of the same book. Thus, we manually reviewed
all detected chapter boundaries and fixed any
erroneous or missed boundaries. Ultimately we
ensure that each chapter in an original book is
paired exactly with its abridged counterpart.

A.2 Additional automated alignment results
Table 10 shows the results of all methods we
assessed for computing similarity between orig-
inal and abridged spans to create alignment rows,
compared alongside the best method of unigram
ROUGE precision (R-1p) reported in Section
3.2. A clear drawback to using unigram over-
lap to measure similarity is that it does not ac-
count for differences in word order. However,
taking this into account by using bigrams in-
stead of unigrams to calculate ROUGE precision
(i.e. R-2p) reduced the F1 to 0.935, likely be-
cause it added more sparsity to the overlap units.
In addition to the word-based ROUGE metric,
we assessed vector-based similarity encoded by
different configurations of pretrained language
models: BERT (Devlin et al., 2019), XLNET

(Yang et al., 2019), XLM (Conneau and Lam-
ple, 2019), and ROBERTA (Liu et al., 2019). We
used the HuggingFace Transformers implementa-
tion of these models: https://huggingface.
co/docs/transformers/index. For each
model we report the best result among size
penalty (pn) values in [0, 0.25]. As displayed,
the vectors that obtained the best F1 came
from BERT (Devlin et al., 2019), particularly
BERT-BASE-UNCASED, which consists of 110M
parameters. See additional details about this

model here: https://huggingface.co/
bert-base-uncased. Ultimately, however,
the result from BERT-BASE-UNCASED was still out-
performed by R-1p. As reported in Section 3.3, the
resulting rows were further improved by applying
the described partial validation strategy (final line
of table).

A.3 Details about validation task

For each row, validators assessed whether the
abridged span in the row was correctly aligned
with the corresponding original span. As described
in Section 3.2, a row is correct if the meaning
of the abridged span can be derived from the
original span. For a given row, if the abridged
span expressed some meaning not contained in
the original span, it either meant that some sen-
tences(s) in the abridged chapter were incorrectly
placed in that row, or some sentence(s) in the orig-
inal chapter were incorrectly placed in a different
row. In both cases, validators moved the wrongly
placed sentence(s) to a row resulting in correctly
aligned spans. We utilized Google Sheets as an
interface for this task, which enabled validators
to easily review and correct the rows. We pro-
duced a single spreadsheet per chapter, where each
spreadsheet row corresponded to an alignment row.
For the partial validation strategy, we designed a
Google Apps Script (https://developers.
google.com/apps-script) that visually
highlighted spreadsheet rows qualifying for par-
tial validation so that validators could specifically
attend to those rows.

For the development (assessment) and test sets,
there were a few cases where the validators edited
the spans themselves in order to correct sentence
segmentation errors (e.g. wrongly segmenting after
honorifics like “Mr.”).

A.4 Size of ABLIT compared by book

Table 11 shows characteristics of the data for each
book in terms of number of alignment rows, origi-
nal words, and abridged words.

A.5 NLI challenges in ABLIT

Table 12 shows some examples of rows in ABLIT

where modeling the relation between the original
and abridged span involves NLI challenges like
abstractive paraphrasing, figurative language inter-
pretation, commonsense reasoning, and narrative
understanding.
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Similarity Metric pn P R F1
Vector cosine similarity
BERT-BASE-UNCASED 0.21 0.963 0.952 0.957
BERT-BASE-CASED 0.22 0.948 0.934 0.940
BERT-LARGE-UNCASED 0.21 0.934 0.919 0.926
BERT-LARGE-CASED 0.21 0.944 0.935 0.939
XLNET-BASE-CASED 0.22 0.753 0.731 0.742
XLNET-LARGE-CASED 0.21 0.583 0.564 0.573
XLM-MLM-EN 0.21 0.821 0.816 0.818
ROBERTA-BASE 0.21 0.738 0.717 0.727
ROBERTA-LARGE 0.21 0.592 0.573 0.582
Word overlap similarity
R-1p 0.175 0.964 0.969 0.967
R-2p 0.175 0.912 0.958 0.935
R-1p
+ partial human validation

0.175 0.990 0.991 0.990

Table 10: Extended results for accuracy of automated alignment methods

Train Dev Test
Book
(Orig Author)

Rows
(Chpts)

Owrds %Awrds Rows Owrds %Awrds Rows Owrds %Awrds

Bleak House
(Charles Dickens)

17,948
(62)

390,857 63.2 24 935 20.0 1,746 38,132 62.9

Can You For-
give Her?
(Anthony Trollope)

16,494
(74)

350,092 62.2 94 3,216 49.5 1,339 27,660 61.2

Daniel
Deronda
(George Eliot)

12,735
(64)

333,283 61.6 158 3,524 61.9 786 25,334 49.1

Mansfield
Park
(Jane Austen)

5,744
(42)

159,863 67.0 91 3,564 62.1 795 22,607 66.1

North and
South
(Elizabeth Gaskell)

8,922
(46)

193,355 67.9 184 4,907 68.5 1,169 23,159 70.0

Shirley
(Charlotte Bronte)

12,027
(31)

235,888 63.2 253 5,987 57.4 1,031 23,369 60.4

The Way We
Live Now
(Anthony Trollope)

19,355
(94)

392,554 60.3 166 4,345 53.7 1,122 23,238 60.7

Tristram
Shandy
(Laurence Sterne)

4,805
(305)

216,984 66.7 5 439 77.0 69 3,972 72.3

Vanity Fair
(W. M. Thackeray)

11,682
(62)

334,783 59.8 18 717 60.9 738 23,609 57.4

Wuthering
Heights
(Emily Bronte)

5,449
(28)

119,912 66.3 80 2,274 68.3 970 20,798 71.0

All 115,161
(808)

2,727,571 63.0 1,073 29,908 58.9 9,765 231,878 62.1

Table 11: Statistics for each book in the AbLit dataset, in terms of number of alignment rows, total original word
(Owrds), and proportional length of abridgement relative to original (%Awrds). The number of chapters in the
training set for each book is shown; there is 1 chapter per book in the development set and 5 chapters per book in
the test set.
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Original Span Abridged Span Type of Challenge
Still there was not a word. No one spoke. Paraphrasing: abridgement has same

meaning as original but no word
overlap

But it is time to go home; my ap-
petite tells me the hour.

But it is time to go home;
I am hungry.

Interpretation of figurative language:
abridgement replaces phrase “ap-
petite tells me the hour” with more
literal term “hungry”

“Daniel, do you see that you are
sitting on the bent pages of your
book?”

“Daniel, you are sitting
on the bent pages of your
book.”

Change in dialogue act: question
in original is transformed into state-
ment in abridgment

While she was at Matching, and be-
fore Mr. Palliser had returned from
Monkshade, a letter reached her, by
what means she had never learned.
“A letter has been placed within my
writing-case,” she said to her maid,
quite openly. “Who put it there?”

While she was at Match-
ing, a letter reached
her, by what means she
never learned, although
she suspected her maid
of placing it inside her
writing-case.

Dialogue interpretation: abridge-
ment summarizes the narrative event
(suspecting maid of placing letter)
conveyed by the spoken utterances
in the original text (“A letter has
been placed... she said to her maid.”)

“If you will allow me, I have the key,”
said Grey. Then they both entered
the house, and Vavasor followed his
host up-stairs.

Mr. Grey unlocked the
door of his house, and
Vavasor followed him
upstairs.

Commonsense inference: abridge-
ment involves knowledge that doors
are unlocked by keys, which is not
explicit in the original text

George Osborne was somehow there
already (sadly "putting out" Amelia,
who was writing to her twelve dear-
est friends at Chiswick Mall), and
Rebecca was employed upon her
yesterday’s work.

George Osborne was
there already, and Re-
becca was knitting her
purse.

Narrative inference: “knitting her
purse” in the abridgement is the
event referenced by “yesterday’s
work” in the original, and resolving
this requires knowledge of the previ-
ous text in the chapter

But Kate preferred the other subject,
and so, I think, did Mrs. Greenow
herself.

But Kate preferred the
subject of the Captain,
and so, I think, did Mrs.
Greenow herself.

Elaboration: abridgement specifies
“Captain” is the “other subject” im-
plied in the original

Table 12: Examples of rows where alignment involves a language inference challenge

A.6 Extended lexical category analysis

Section 4.4 summarized the frequency of lexi-
cal categories for removed and added words in
the ABLIT test set, relative to these frequencies
among all words in the original and abridged
texts. Table 13 additionally displays these per-
centages for all part-of-speech tags within the
function and content word classes, along with ex-
amples of common words associated with each
tag. We used the spacy library to perform
part-of-speech tagging: https://spacy.io/
usage/linguistic-features.

A.7 Comment about passage size variation

Because the method for converting rows into pas-
sages of a consistent length (i.e. sentences, para-

graphs, chunks) relies on string matching, the
boundaries of the abridged passage may be off by
one or a few words, which occurs less frequently
as the size of the passages increase. This tends
to occur when a word at the end of the original
passage is replaced by a synonym in the abridged
passage. However, a manual review of our assess-
ment set revealed that only 0.4% of sentences in the
original text yielded abridgements with imprecise
boundaries, and no paragraphs (and consequently
no chunks) had this issue.

A.8 Details about binary prediction model

For all passage sizes, we initialized mod-
els with the ROBERTA-BASE weights using
the HuggingFace Transformers implemen-
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Category %O %Ormv %A %Aadd Examples of Common Words
Function words Σ=58.2 Σ=57.9 Σ=58.1 Σ=53.9

Punctuation 14.0 12.9 15.7 23.3 , " . -- ; - ? !
Pronoun 11.0 10.2 11.5 8.7 i he it his her
Adposition 10.2 11.5 9.0 7.0 of in to with for
Determiner 7.8 8.3 7.1 3.9 the a an no all
Aux. Verb 6.4 6.0 6.5 3.8 was had be is been
Coord. Conj. 3.7 4.0 3.4 2.1 and but or nor both
Particle 2.7 2.6 2.7 2.2 to not ’s n’t ’
Subord. Conj. 2.3 2.5 2.2 2.8 that as if when upon

Content words Σ=41.8 Σ=42.1 Σ=41.9 Σ=46.1
Noun 14.5 15.4 13.7 14.0 time man day way hand
Verb 10.4 10.3 11.1 17.1 said had know do have
Adjective 6.6 6.9 6.2 5.3 little own other such good
Adverb 5.0 5.3 4.7 5.3 so very as now then
Proper Noun 4.4 3.3 5.2 3.4 mr. mrs. sir miss lady
Other 1.0 0.9 1.0 1.1 one two oh no yes

Table 13: Distribution of part-of-speech categories for the set of all removed words Ormv and all added words
Aadd in the ABLIT test chapters. These numbers are respectively compared alongside those for the total set
of all original words O and all abridged words A. (Aux.=Auxiliary, Coord.=Coordinating, Conj.=Conjunction,
Subord.=Subordinate)

tation: https://huggingface.co/
docs/transformers/v4.16.2/en/
model_doc/roberta#transformers.
RobertaModel. ROBERTA-BASE

consists of 125M parameters (https:
//huggingface.co/roberta-base).
The maximum sequence length allowed by this
model is 512, so we truncated all input tokens
beyond this limit. We fine-tuned each model for 5
epochs, saving model weights after each epoch of
training, and selected the model with the highest
F1 score on the development set to apply to our test
set. We used the AdamW optimizer (Loshchilov
and Hutter, 2017) and a batch size of 16. It took
≈2 hours to train each model on a g4dn.2xlarge
AWS instance. During evaluation, any input tokens
beyond the model length limit were assigned the
default label of preserved. The result for each
model reported in Table 7 is based on a single run
of the training procedure.

A.9 Details about generation models

Both TUNEDT5 and TUNEDBART were
fine-tuned using the HuggingFace trans-
formers library, in particular this script:
http://github.com/huggingface/
transformers/blob/master/
examples/pytorch/summarization/
run_summarization.py. TUNEDT5

was initialized from T5-BASE (Raffel et al.,
2020), which consists of ≈220M parameters
(https://huggingface.co/t5-base).
For this model, we prepended the prefix “summa-
rize: ” to the target (i.e. the abridged passage),
consistent with how T5-BASE was trained to
perform summarization. TUNEDBART was
initialized from BART-BASE (Lewis et al.,
2020), which consists of 140M parameters
(https://huggingface.co/facebook/
bart-base). For both TUNEDT5 and TUNED-
BART, we used a maximum length of 1024 for
both the source (original passage) and target
(abridged passage), and truncated all tokens
beyond this limit. We evaluated each model
on the development set after each epoch and
concluded training when cross-entropy loss
stopped decreasing, thus saving the model weights
with the optimal loss. We used a batch size of 4.
For all other hyperparameters we used the default
values set by this script, which specifies AdamW
for optimization. It took ≈3 hours to train each
model on a g4dn.4xlarge AWS instance. The result
for each model reported in Table 8 is based on a
single run of the training procedure.

A.10 Details about evaluation metrics

Preservation: The formal definition of the
preservation metric Prsv is as follows. If

3730

https://huggingface.co/docs/transformers/v4.16.2/en/model_doc/roberta#transformers.RobertaModel
https://huggingface.co/docs/transformers/v4.16.2/en/model_doc/roberta#transformers.RobertaModel
https://huggingface.co/docs/transformers/v4.16.2/en/model_doc/roberta#transformers.RobertaModel
https://huggingface.co/docs/transformers/v4.16.2/en/model_doc/roberta#transformers.RobertaModel
https://huggingface.co/roberta-base
https://huggingface.co/roberta-base
http://github.com/huggingface/transformers/blob/master/examples/pytorch/summarization/run_summarization.py
http://github.com/huggingface/transformers/blob/master/examples/pytorch/summarization/run_summarization.py
http://github.com/huggingface/transformers/blob/master/examples/pytorch/summarization/run_summarization.py
http://github.com/huggingface/transformers/blob/master/examples/pytorch/summarization/run_summarization.py
https://huggingface.co/t5-base
https://huggingface.co/facebook/bart-base
https://huggingface.co/facebook/bart-base


oprsv(apred) are the words in the original that
are preserved in the predicted abridgement, and
oprsv(aref ) are the words in the original that are
preserved in the reference abridgement, then we
consider the number of correctly preserved words:
Correct_Prsv = |oprsv(apred) ∩ oprsv(aref )|.
The precision of this measure
Prsvp =

Correct_Prsv
oprsv(apred)

is the proportion of
correctly preserved words among all preserved
words in the predicted abridgement. The re-
call Prsvr = Correct_Prsv

oprsv(aref )
is the proportion of

correctly preserved words among all preserved
words in the reference abridgement. Prsv is
the F1 of these precision and recall measures:
Prsv = 2

Prsvp·Prsvr
Prsvp+Prsvr

.

Removal: The formal definition of the removal
metric is as follows. If ormv(apred) are the
words in the original that are removed in the
predicted abridgement, and ormv(aref ) are
the words in the original that are removed
in the reference abridgement, then we con-
sider the number of correctly removed words:
Correct_Rmv = |ormv(apred) ∩ ormv(aref )|.
The precision of this measure
Rmvp =

Correct_Rmv
ormv(apred)

is the proportion of
correctly removed words among all removed
words for the predicted abridgment. The re-
call Rmvr = Correct_Rmv

ormv(aref )
is the proportion of

correctly removed words among all removed
words for the reference abridgement. Rmv is
the F1 of these precision and recall measures:
Rmv = 2

Rmvp·Rmvr
Rmvp+Rmvr

.

Addition: The formal definition of the addi-
tion metric is as follows. If aadd(apred) are
the words in the predicted abridgement that do
not appear in the original, and aadd(aref ) are
the words in the reference abridgement that
do not appear in the original, then we con-
sider the number of correctly added words:
Correct_Add = |aadd(apred) ∩ aadd(aref )|. The
precision of this measure Addp = Correct_Add

aadd(apred)
is

the proportion of correctly added words among
all added words in the predicted abridgement. The
recallAddr = Correct_Add

aadd(aref )
is the proportion of cor-

rectly added words among all added words in the
reference abridgement. Add is the F1 of these mea-
sures: Add = 2

Addp·Addr
Addp+Addr

.

A.11 Comment about addition scores
Regarding the above-zero scores of the extractive
methods on the Add metric, there are two rea-
sons for this. One reason is that the prediction
model uses sub-tokens while the Add metric ana-
lyzes whitespace-separated words. Consequently,
one sub-token may be predicted as preserved
while others within the same word are predicted as
removed. Isolated from these other sub-tokens,
the preserved sub-token will be recognized as
a new added word in the abridgement. The other
reason is that a single word in the original may be
split by the tokenizer into two words in the abridge-
ment, or vice-versa. For example, we observed
that “Mr.” gets split into two tokens (“Mr”, ‘.’) in
some contexts and is treated as one token (“Mr.”)
in others. If the original text represents this item
as two tokens and both the extracted and reference
abridgement represent it as a single token, then this
single token will be counted as an added word in
the extracted abridgement.

A.12 Examples of produced abridgements
Tables 14 and 15 below show excerpts of the
abridgements produced by the EXTSENT and
TUNEDBART models, alongside the original chap-
ter text and human-authored reference abridgement.
The sentences in each excerpt are lined up to better
visualize their differences.
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Original Reference EXTSENTS TUNEDBART
Seven days glided
away, every one
marking its course by
the henceforth rapid
alteration of Edgar
Linton’s state.

In the next seven days
Edgar Linton’s state
grew rapidly worse.

Seven days glided
away, every one mark-
ing its course by the
rapid alteration of
Edgar Linton’s state.

The havoc that months
had previously wrought
was now emulated by
the inroads of hours.

The havoc that months
had previously wrought
was now emulated by
the inroads of hours.

Catherine we would
fain have deluded yet;

Catherine could no
longer be deluded:

Catherine we would
fain have deluded yet;

but her own quick spirit
refused to delude her:

but her own quick spirit
refused to delude her:

but her own quick spirit
refused to delude her:

it divined in secret, and
brooded on the dread-
ful probability, gradu-
ally ripening into cer-
tainty.

she brooded on the
dreadful probability of
her father’s death, grad-
ually ripening into cer-
tainty.

it brooded on the dread-
ful probability, gradu-
ally ripening into cer-
tainty.

She had not the heart to
mention her ride, when
Thursday came round;

She had not the heart to
mention her ride when
Thursday came round.

She had not the heart to
mention her ride, when
Thursday came round;

She had not the heart to
mention her ride, when
Thursday came round;

I mentioned it for her,
and obtained permis-
sion to order her out of
doors:

I obtained permission
to send her out of
doors:

I mentioned it for her,
and obtained permis-
sion to order her out of
doors:

I ordered her out of
doors:

for the library, where
her father stopped a
short time daily-the
brief period he could
bear to sit up-and his
chamber, had become
her whole world.

for her father’s chamber
had become her whole
world.

for the library, where
her father stopped daily
- the brief period he
could bear to sit up -
and his chamber, had
become her whole
world.

She grudged each mo-
ment that did not find
her bending over his pil-
low, or seated by his
side.

She grudged each mo-
ment that she did not
spend bending over his
pillow, or seated by his
side.

She grudged each mo-
ment that did not find
her bending over his pil-
low, or seated by his
side.

Her countenance grew
wan with watching and
sorrow, and my master
gladly dismissed her to
what he flattered him-
self would be a happy
change of scene and so-
ciety;

She grew pale with
watching, and my mas-
ter gladly dismissed
her to what he thought
would be a happy
change of scene;

Her countenance grew
wan with watching and
sorrow, and my master
gladly dismissed her to
what he flattered him-
self would be a happy
change of scene and so-
ciety;

Her countenance grew
wan with watching and
sorrow, and my master
gladly dismissed her to
what he flattered him-
self would be a happy
change of scene and so-
ciety;

drawing comfort from
the hope that she would
not now be left entirely
alone after his death.

drawing comfort from
the hope that she would
not now be left entirely
alone after his death.

drawing comfort from
the hope that she would
not now be left entirely
alone after his death.

drawing comfort from
the hope that she would
not now be left entirely
alone after his death.

Table 14: Abridgements for an excerpt of Wuthering Heights, Chapter 27
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Original Reference EXTSENTS TUNEDBART
It happened that when
I came home from
Deal I found a note
from Caddy Jellyby (as
we always continued
to call her), inform-
ing me that her health,
which had been for
some time very deli-
cate, was worse and
that she would be more
glad than she could tell
me if I would go to see
her.

When I came home
from Deal I found a
note from Caddy, in-
forming me that her
health, which had been
for some time very del-
icate, was worse and
that she would be very
glad if I would go to see
her.

It happened that when
I came home from
Deal I found a note
from Caddy Jellyby (as
we always continued
to call her), inform-
ing me that her health,
which had been for
some time very deli-
cate, was worse and
that she would be more
glad than she could tell
me if I would go to see
her.

It happened that when I
came home from Deal
I found a note from
Caddy Jellyby inform-
ing me that her health,
which had been for
some time very deli-
cate, was worse and
that she would be more
glad than she could tell
me if I would go to see
her.

It was a note of a few
lines, written from the
couch on which she lay
and enclosed to me in
another from her hus-
band, in which he sec-
onded her entreaty with
much solicitude.

It was a short note, writ-
ten from her bed.

It was a note of a few
lines, written from the
couch on which she lay
and enclosed to me in
another from her hus-
band, in which he sec-
onded her entreaty with
much solicitude.

Caddy was now the
mother, and I the
godmother, of such a
poor little baby–such
a tiny old-faced mite,
with a countenance
that seemed to be
scarcely anything but
cap-border, and a little
lean, long-fingered
hand, always clenched
under its chin.

Caddy was now the
mother, and I the
godmother, of such
a poor little baby -
such a tiny old-faced
mite, with a little lean,
long-fingered hand
always clenched under
its chin.

Caddy was now the
mother, and I the
godmother, of such a
poor little baby–such
a tiny old-faced mite,
with a countenance
that seemed to be
scarcely anything but
cap-border, and a little
lean, long-fingered
hand, always clenched
under its chin.

Caddy was now the
mother, and I the
godmother, of such a
poor little baby - such
a tiny old-faced mite,
with a countenance
that seemed to be
scarcely anything but
cap-border, and a little
lean, long-fingered
hand, always clenched
under its chin.

It would lie in this at-
titude all day, with its
bright specks of eyes
open, wondering (as I
used to imagine) how it
came to be so small and
weak.

It would lie in this
attitude all day, with
its bright specks of
eyes open, wondering
(I used to imagine) how
it came to be so small
and weak.

It would lie in this at-
titude all day, with its
bright specks of eyes
open, wondering (as I
used to imagine) how it
came to be so small and
weak.

It would lie in this at-
titude all day, with its
bright specks of eyes
open, wondering how it
came to be so small and
weak.

Whenever it was moved
it cried, but at all other
times it was so patient
that the sole desire of
its life appeared to be
to lie quiet and think.

Whenever it was moved
it cried, but at all other
times it lay quiet.

Whenever it was moved
it cried, but at all other
times it was so patient
that the sole desire of
its life appeared to be
to lie quiet and think.

Whenever it was moved
it cried, but at all other
times it was so patient
that the sole desire of
its life appeared to be
to lie quiet and think.

Table 15: Abridgements for an excerpt of Bleak House, Chapter 50
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Abstract

In simultaneous translation, the retranslation
approach has the advantage of requiring no
modifications to the inference engine. How-
ever, in order to reduce the undesirable flicker
in the output, previous work has resorted to
increasing the latency through masking, and
introducing specialised inference, thus losing
the simplicity of the approach. In this work,
we show that self-training improves the flicker-
latency tradeoff, while maintaining similar
translation quality to the original. Our analysis
indicates that self-training reduces flicker by
controlling monotonicity. Furthermore, self-
training can be combined with biased beam
search to further improve the flicker-latency
tradeoff.

1 Introduction

Simultaneous machine translation systems, which
process their input word by word instead of sen-
tence by sentence, must strike a balance between
producing output immediately (and so reducing
quality because of incomplete input) and waiting
for further input (and so increasing latency). Ide-
ally, a good simultaneous translation system will
provide a pareto-optimal tradeoff between quality
and latency. A straightforward way of doing simul-
taneous translation is retranslation (Niehues et al.,
2016), which has the advantage that it can be used
with an unmodified machine translation (MT) in-
ference engine, and can perform better than the
alternative streaming-based approaches (Arivazha-
gan et al., 2020b). The disadvantage is that retrans-
lation may change previous output causing flicker,
leading to a poor user experience, and so flicker
needs to be balanced with latency and quality.

We argue that flickering is caused by two dif-
ferent (but related) issues: (i) lexical instability of
the translation – the system “changes its mind” as
more source is revealed, swapping one word for

∗Work done while at the University of Edinburgh.

another1 and (ii) non-monotonicity of the transla-
tion – the system favours a non-monotonic trans-
lation, which means it needs high latency in or-
der to avoid flicker. Some of this instability and
non-monotonicity is necessary – forced by syntac-
tic differences between source and target, and lack
of information in the prefixes – but some is due to
arbitrary choices of the model. We aim to reduce
these as far as possible.

In non-autoregressive translation (NAT), a re-
lated problem, known as the “multimodality” prob-
lem (Gu et al., 2018), has been addressed using
knowledge distillation (Kim and Rush, 2016, KD).
We therefore investigate whether this can also re-
duce flicker in simultaneous translation. Since
the initial model and the distilled model have the
same architecture in our work, approximating KD
is essentially self-training2. We show that a self-
trained model is able to achieve the same qual-
ity as the initial model, but with improved flicker-
latency tradeoff. We also show that self-training
(Arivazhagan et al., 2020a) can be combined with
biased beam search to further improve the flicker-
latency tradeoff. Furthermore, we show experi-
ments that link flicker to monotonicity.

2 Background

2.1 Retranslation

We assume a retranslation approach, where the
source is retranslated each time it is updated, and
the new output replaces the old. Only the current
sentence is retranslated – previous sentences are
considered to be fixed. In contrast to streaming ap-
proaches (e.g. Ma et al., 2019a; Arivazhagan et al.,
2019b), retranslation can use an unmodified infer-
ence engine, making it simpler to deploy. The ba-
sic retranslation approach can be improved by us-
ing prefix training (Niehues et al., 2016, 2018), bi-

1An example of this is shown in Appendix C.
2Retraining a model on its own output (Clark et al., 2003).
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ased beam search and output masking3 (Arivazha-
gan et al., 2020a).

2.2 Evaluation of Simultaneous Translation

In addition to quality, evaluation of simultane-
ous translation requires that we consider latency
and, if using retranslation, flicker. The quality
of the translation can be evaluated by compar-
ing the final output of each sentence with a ref-
erence – we will use BLEU (Papineni et al., 2002;
Post, 2018), CHRF (Popović, 2015) and COMET

(Rei et al., 2020) scores. To measure flicker, we
use normalised erasure (Arivazhagan et al., 2020a,
2019a), which measures the flicker between con-
secutive translation outputs by counting the mini-
mum number of tokens that must be deleted from
the end of the previous translation in order to pro-
duce the next, normalised by output length.

The measurement of latency has been the sub-
ject of some debate in the literature, with sev-
eral different measures proposed (Ma et al., 2019a;
Cherry and Foster, 2019; Ansari et al., 2021). In
our experiments, we plot the flicker-latency trade-
off by controlling the output mask and recording
the effect on flicker. Since mask size correlates
with latency, our aim is to improve this mask-
flicker tradeoff curve, and so be able to use a
shorter mask with the same flicker budget.

2.3 Knowledge Distillation and Self-Training

The idea of sequence-level KD (Kim and Rush,
2016), is to create a smaller student model using
the predictions of the larger teacher model. This
has found application in MT efficiency (Junczys-
Dowmunt et al., 2018) and in non-autoregressive
translation (Zhou et al., 2020). In our work, the
student model has the same size as the teacher, and
is self-trained on teacher output. The output distri-
butions of the student model have lower entropy
(Zhou et al., 2020), so the model is less likely to
swap between translation hypotheses unnecessar-
ily as the source prefix is extended. Also, since the
student model is trained on MT output, where the
target order tends to be more similar to the source
order (Zhou et al., 2020), it is more likely to avoid
unnecessary reorderings, generating a more mono-
tonic translation, which can be built up incremen-
tally. We give experimental evidence for these in
the next section.

3This means that the last k words are omitted from the
output before being passed to the user. This reduces flicker,
but increases latency.

Chen et al. (2021) also proposed to use pseudo-
reference sentences obtained through forward
translation of the source sentences to improve si-
multaneous translation. Unlike our work, they con-
sidered a streaming approach (specifically wait-k
(Ma et al., 2019b)) where the system can only ap-
pend to the output; it does not flicker like retrans-
lation. They showed that their approach could im-
prove the quality-latency tradeoff of wait-k using
their distillation approach, but to create the train-
ing data for the student system they used wait-k
and filtering. We avoid these complications by just
using the baseline system as the teacher.

3 Experiments

3.1 Data
We test our self-training approach on
English↔{German,Czech}. For En↔De we
use IWSLT21 (Anastasopoulos et al., 2021) for
training, and the concatenation of the 2014 and
2015 test sets for development (early stopping),
removing any sentences that overlap with the
training set. For En↔Cs, we use the training and
validation set from WMT21 (Akhbardeh et al.,
2021). Training data sizes are shown in Appendix
A. We use prefix training (Niehues et al., 2018)
to reduce the mismatch between sentence-level
training and prefix-based inference at test time.
For each parallel sentence pair in the training
set, we generate a corresponding prefix pair by
truncating a randomly chosen proportion. We
treat the validation sets similarly.

We test our systems both on IWSLT test data
(derived from TED talks) and on the ESIC test
set4 (Macháek et al., 2021). From IWSLT, we
use tst2018 for De↔En, and tst2015/tst2016 com-
bined for Cs↔En. ESIC is derived from the Euro-
pean parliament proceedings, and consists of tran-
scribed speeches in English, together with their si-
multaneous interpretation into Czech and German
(also transcribed). ESIC is aligned at the docu-
ment level, but not at the sentence level. We use
the test portion for evaluation, only for En→X. It
has been argued that simultaneous translation is
better evaluated (and trained, if possible) on inter-
preted data (Zhao et al., 2021). However such data
is hard to come by, and ESIC is the only such re-
source for European languages. We remove any
segments from the IWSLT test sets that overlap

4https://lindat.mff.cuni.cz/
repository/xmlui/handle/11234/1-3719
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with training, and also remove from the training
data any Europarl documents with overlap with
ESIC.

All data is pre-processed with SentencePiece
unigram model (Kudo and Richardson, 2018) with
a shared subword (Sennrich et al., 2016b) vocabu-
lary size of 32k.

En→De De→En En→Cs Cs→En
Metric Model ESIC IWSLT IWSLT ESIC IWSLT IWSLT

BLEU T 17.5 27.7 33.4 14.4 24.6 31.3
S 17.6 27.5 31.7 14.5 25.0 31.3

ChrF T 58.9 56.9 59.2 51.5 51.5 56.1
S 58.8 57.2 58.3 51.7 51.7 56.2

COMET T .553 .330 .488 .651 .639 .519
S .532 .326 .468 .672 .642 .521

Table 1: Comparison between teacher (T) and student
(S) models on ESIC and IWSLT test sets. For ESIC,
BLEU and CHRF are calculated at document level, i.e.
considering each document as a segment. For COMET
we use reference-less wmt20-comet-da for ESIC
and reference-based wmt20-comet-da for IWSLT.

3.2 Teacher-Student Training
Our teacher model, which serves as a baseline, is
a transformer base (Vaswani et al., 2017) trained5

with fairseq6 (Ott et al., 2019).
We use the teacher to translate the training data,

using a beam size7 of 8, then train a student model
with the same architecture on this synthetic data.

In Table 1 we show the performance of our base-
line system (equivalent to the teacher) and the stu-
dent system on 6 test sets. Overall, student perfor-
mance is robust compared to teacher, with same or
better scores in Cs↔En and some small losses in
De↔En.

To assess whether the student models reduce
flicker in retranslation, we use each model in a sim-
ulated SLT pipeline and plot flicker-latency trade-
off curves. That is, we use the systems to translate
ever-growing prefixes of the source sentences in
the testsets, using SLTev (Ansari et al., 2021) to
measure the flicker, and varying the output mask
to show the tradeoff. A curve for one test set is
shown in Figure 1, with full results in Appendix D.

5For training hyperparameters, see Appendix B.
6To generate training data for the students, we actually

used a marian (Junczys-Dowmunt et al., 2018) model, with
60×106 parameters, trained on the same data and with the
same architecture, which achieves nearly identical BLEU.
This was to take advantage of marian’s fast inference. All
results shown in the paper are with the fairseq models.

7We also tested sequence-level interpolation, selecting the
highest-scoring translation in an 8-best list according to BLEU
and CHRF, but results were very similar.

We can see that in all configurations the student
models improve the flicker-latency tradeoff. In
section 3.4, we show how the student training data
is more monotonic, and the models have lower en-
tropy, echoing Zhou et al. (2020).
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Figure 1: Flicker-latency tradeoff for the teacher (T)
and student (S) models, En→De IWSLT. We control
latency by varying the output mask.

3.3 Controlling Monotonicity

To show that self-training affects flicker through
increased monotonicity, we experiment with con-
trolling the monotonicity of the student training
data. We stratify the teacher data into 5 dif-
ferent monotonicity levels using Kendall’s Tau
on a fast_align (Dyer et al., 2013) target–source
alignment to measure monotonicity, with an equal
stratum size. We add the monotonicity level as
pseudo-word, as in Sennrich et al. (2016a), to
each source sentence, and train a teacher model
on this monotonicity-aware corpus. We then use
this teacher to create 5 different student training
corpora, using the monotonicity control, and train
5 different students on these corpora.

Table 2 shows the BLEU8 scores for the
monotonicity-controlled models, as well as the
teacher and student from the previous section. Us-
ing highly monotonic (Mono-1) or non-monotonic
(Mono-5) data gives poor quality, but the in-
between strata are similar, with Mono-3 slightly
better overall. Figure 2 shows a distinctly worse
flicker-latency tradeoff for Mono-5, whereas
Mono-4 is a bit better than the teacher, and all
other students are better. This supports the hypoth-
esized connection between the higher degree of
monotonicity in the student training data, and the

8Scores for CHRF and COMET are in the Appendix F, but
the pattern is similar.
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Figure 2: Latency–flicker tradeoff for the En→De
IWSLT monotonicity-controlled models. Monotonicity
control ranges from 1 (training data created with maxi-
mum monotonicity) to 5 (minimum monotonicity).

better flicker-latency tradeoff in the student mod-
els. We show the flicker-latency tadeoff curves on
more test sets and language pairs in Figure 5 in the
Appendix F but the pattern is similar.

En→De En→Cs
Metric Model ESIC IWSLT ESIC IWSLT

BLEU Teacher 17.5 27.7 14.4 24.6
Student 17.6 27.5 14.5 25.0
Mono-1 8.6 14.4 14.7 23.6
Mono-2 17.6 27.4 14.5 25.0
Mono-3 17.5 27.9 14.5 25.7
Mono-4 17.2 26.6 13.8 24.7
Mono-5 16.0 25.0 12.5 23.0

Table 2: Student models with monotonicity control.
Monotonicity ranges from 1 (highest) to 5 (lowest).
The best scores are in bold font.

3.4 Monotonicity and Entropy of Student
Models

We claimed that student models have lower flicker
because they produce more monotonic transla-
tions, with less unnecessary variation. Here we
provide evidence to support those claims.

Training data for student models is more mono-
tonic In order to calculate the monotonicity of
the training data, we use Kendall’s tau score. We
first extract word alignments from the training data
using fast_align (Dyer et al., 2013) to forward-
align source and target. For each sentence pair we
express the alignment as a function a : i → j, and
construct the two lists 1, . . . , T and a(1), . . . , a(T )
where T is the target length. We then calculate
the Kendall’s tau between the two lists, repeat for
each sentence pair in the corpus, and average. We
repeat the calculation for the original training data

and for the student training set. The results are
shown in Table 3. We can see that in all cases, the
student training data is more monotonic than the
original teacher training data.

Model En→De De→En En→Cs Cs→En
Teacher 0.793 0.788 0.849 0.836
Student 0.857 0.801 0.906 0.880

Table 3: Kendall’s tau scores. Higher scores indicate
more monotonicity.

Student models have lower entropy distribu-
tions For each of our models, we calculate the
mean per-token entropy, by considering the proba-
bility distribution over the vocabulary at each time
step. The entropies are shown in Table 4.

Entropy
Pair Test set Teacher Student

En→De ESIC 0.371 0.220
IWSLT 0.295 0.228

De→En IWSLT 0.273 0.160

En→Cs ESIC 0.443 0.251
IWSLT 0.417 0.238

Cs→En IWSLT 0.335 0.213

Table 4: Mean per-token entropies for each language
pair test set combination.

We can see from Table 4 that the token entropies
are consistently lower for student models, suggest-
ing that the distributions are more “peaky”, and so
less likely to flicker between multiple output to-
kens with similar probabilities.

3.5 Self-training and Biased Beam Search

We investigate the combination of our self-training
approach with biased beam search (Arivazhagan
et al., 2020a). The idea of biased beam search (or
“prefix biasing”) is to reduce flicker in retransla-
tion by modifying inference so that the translation
of the current prefix is “biased” towards the trans-
lation of the last prefix. The model for inference
has an extra term which penalises it for departing
from the previous translation. As the current trans-
lation is being generated, once the hypothesis de-
parts from the previous translation, we stop apply-
ing the bias penalty, reverting to the unmodified
MT model.

Before the previous translation is used for bias-
ing, it is normally masked; i.e., the right-most k
tokens are removed. Without applying this mask,
biased beam search seriously reduces quality by
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forcing inference to follow poor-quality early deci-
sions. This bias mask is different from the output
mask used in earlier experiments (which controls
latency) although in previous work the bias and
output mask are typically set to the same value.

We implemented biased beam search in fairseq
and, based on previous work, we set the bias
strength β = 0.25. After comparing different bias
masks (Appendix E) we set the mask to 6 for ESIC
and 10 for IWSLT.

We sweep across output masks to generate
latency–flicker tradeoff curves in Figure 3 (with
full results in Appendix E). We compare teacher
and student models, with and without biased beam
search. We can see from the graphs that biased
beam search is effective in improving the latency–
flicker tradeoff, but that the student models still
improve over the teacher with biased beam search.
The disadvantages of biased beam search are that
it requires careful tuning of the prefix mask in or-
der to avoid damaging quality, and that it requires
a modified inference engine. The inference engine
requires access to the previous translation, creat-
ing challenges for scalability. In contrast, our self-
training approach requires no modifications to in-
ference. Furthermore, since biased beam search
relies on aligning the current translation with the
previous one, it is hard to apply when the transla-
tion cannot be aligned – for example in a cascaded
system where the ASR can rewrite its output.
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Figure 3: Latency-flicker tradeoff for teacher-student
models with and without biased beam search for the
En→De IWSLT.

4 Conclusion

We show that self-training reduces the flicker
in retranslation-based simultaneous translation,
whilst retaining quality. Our experiments link this

flicker reduction to increased monotonicity and re-
duced entropy of the self-trained model. Although
biased beam search can obtain larger reductions in
flicker, it requires more careful parameter tuning,
and a modified inference engine.

5 Limitations

Language Pairs We conducted our experiments
using two European language pairs where source
and target are linguistically similar. We show
that we are able to reduce word order divergence
between source and target text through forward
translation which helps in reducing the flicker.
However, a more challenging case will be using
languages from different linguistic families with
radically different word orders (such as English–
Japanese) which may limit to which extent we are
able to reduce the word order divergence between
source and target through synthetic data creation.

Evaluation Whilst we show quality evaluation
across three different metrics, we were not able to
add human evaluation due to resource and space
constraints. An additional consideration for simul-
taneous ST is that it is not clear what the combined
effect of flicker, latency and quality is on human
perception, and there has been limited work on this
(Javorský et al., 2022).
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A Training Data

Corpus Sentence pairs
English-German

Europarl 1.79 M
Rapid 1.45 M
News Commentary 0.35 M
OpenSubtitle 22.51 M
TED corpus 206 K
MuST-C.v2 248 K

English-Czech
Europarl 645 K
ParaCrawl 14 M
CommonCrawl 161 K
News Commentary 260 K
CzEng2.0 36 M9

Wikititles 410 K
Rapid 452 K

B Training Parameters

The non-default hyperparameters for Fairseq are
shown in Table 5.

C Example of Flicker

An example of a translation which flickers be-
tween two similar possibilities is shown in Table
6.
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Param Value
label-smoothing 0.1
criterion label_smoothed_cross_entropy
patience 10
arch transformer
optimizer adam
adam-betas 0.9, 0.98
lr 5e-4
lr-scheduler inverse_sqrt
warmup-updates 4000
clip-norm 0.0
weight-decay 0.0001
dropout 0.3
update-freq 2
max-tokens 3000
best-checkpoint-metric bleu
maximize-best-checkpoint-metric True

Table 5: Fairseq training hyperparameters (non-default) for 4 GPU training.

Source I hope you will have a little time and energy to focus on another report which is, despite its
technicality, quite important for all of us.

Target: Ich
Ich hoffe,
Ich hoffe, Sie
Ich hoffe, Sie
Ich hoffe, Sie haben
Ich hoffe, Sie haben ein
Ich hoffe, Sie werden ein wenig Zeit
Ich hoffe, Sie haben etwas Zeit
Ich hoffe, Sie haben etwas Zeit und
Ich hoffe, Sie werden etwas Zeit und Energie haben,
Ich hoffe, Sie haben etwas Zeit und Energie, um sich
Ich hoffe, Sie haben etwas Zeit und Energie, um sich auf
Ich hoffe, Sie werden ein wenig Zeit und Energie haben, um sich auf ein anderes Thema
Ich hoffe, Sie haben etwas Zeit und Energie, um sich auf einen weiteren Bericht zu konzentrieren,
Ich hoffe, Sie haben etwas Zeit und Energie, um sich auf einen anderen Bericht zu konzentrieren,
...
Ich hoffe, Sie werden ein wenig Zeit und Energie haben, um sich auf einen anderen Bericht zu konzentrieren,
der trotz seiner Formalität für uns alle sehr wichtig ist.

Table 6: Examples of flicker caused by the teacher model. Source is the original full sentence which is input as a
growing input prefix. Target is the output prefix in successive retranslations.

D Flicker-Latency Tradeoff

In Figure 4, we show the flicker-latency tradeoff
for all language-pair and testset combinations.

E Biased Beam Search

We consider the effect of the bias mask on full
sentence translation quality, as measured by BLEU.
The bias mask is measured in sentencepiece to-
kens. Based on Figure 6, we set the bias mask
to 6 for ESIC and 10 for IWSLT, in order to avoid
a loss of BLEU.

In Figure 7, we show flicker-latency tradeoffs
for all language pair and testset combinations.

F Controlling Monotonicity

We have shown the scores for CHRF and COMET

for monotonicity control experiments in addi-
tion to BLEU in Table 7. In Figure 5, we
show the flicker-latency tradeoff for monotonicity-
controlled experiments for all language-pair and
testset combinations.
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Figure 4: Flicker-latency tradeoff for the teacher-student models. We control latency by varying the output mask.
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Figure 5: Latency–flicker tradeoff for the monotonicity-controlled models. Monotonicity control ranges from 1
(training data created with maximim monotonicity) to 5 (minimum monotonicity).
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Figure 6: Dependence of BLEU on bias mask when applying biased beam search.
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Figure 7: Flicker vs mask on biased beam search.
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En→De En→Cs
Metric Model ESIC IWSLT ESIC IWSLT

BLEU
Teacher 17.5 27.7 14.4 24.6
Studentmodel 17.6 27.5 14.5 25.0
Mono-1 8.6 14.4 14.7 23.6
Mono-2 17.6 27.4 14.5 25.0
Mono-3 17.5 27.9 14.5 25.7
Mono-4 17.2 26.6 13.8 24.7
Mono-5 16.0 25.0 12.5 23.0

ChrF
Teacher 58.9 56.9 51.5 51.5
Studentmodel 58.8 57.2 51.7 51.7
Mono-1 42.4 39.6 51.3 50.7
Mono-2 58.7 57.3 51.8 52.0
Mono-3 59.0 57.8 51.7 52.2
Mono-4 59.0 56.8 51.4 51.4
Mono-5 58.5 55.0 50.7 50.2

COMET
Teacher .553 .330 .651 .639
Studentmodel .532 .326 .672 .642
Mono-1 .510 -0.028 .639 .597
Mono-2 .526 .295 .650 .636
Mono-3 .530 .326 .678 .641
Mono-4 .535 .313 .677 .639
Mono-5 .518 .247 .633 .577

Table 7: Full results of student models with monotonicity control.
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Abstract

Social commonsense contains many human bi-
ases due to social and cultural influence (Sap
et al., 2020; Emelin et al., 2020). We focus
on identifying cultural biases in data, specif-
ically causal assumptions and commonsense
implications, that strongly influence model de-
cisions for a variety of tasks designed for so-
cial impact. This enables us to examine data
for bias by making explicit the causal (if-then,
inferential) relations in social commonsense
knowledge used for decision making, further-
ing interpretable commonsense reasoning from
a dataset perspective. We apply our methods
on 2 social tasks: emotion detection and per-
ceived value detection. We identify influen-
tial social commonsense knowledge to explain
model behavior in the following ways. First,
we augment large-scale language models with
social knowledge and show improvements for
the tasks, indicating the implicit assumptions a
model requires to be successful on each dataset.
Second, we identify influential events in the
datasets by using social knowledge to cluster
data and demonstrate the influence that these
events have on model behavior via leave-K-out
experiments. This allows us to gain a dataset-
level understanding of the events and causal
commonsense relationships that strongly influ-
ence predictions. We then analyze these rela-
tionships to detect influential cultural bias in
each dataset. Finally, we use our influential
event identification for detecting mislabeled ex-
amples and improve training and performance
through their removal. We support our findings
with manual analysis.

1 Introduction

Social commonsense knowledge helps humans ma-
neuver through everyday life, aiding in situations
that may require social nuance or cultural knowl-
edge. Commonsense knowledge acquisition has
been an important goal in NLP (Levesque et al.,
2012; Davis and Marcus, 2015; Talmor et al., 2019)

and in the past few years there has been a surge
of research focusing specifically on improving so-
cial commonsense understanding for neural models
(Sap et al., 2019a,b; Hwang et al., 2020; Forbes
et al., 2020). However, social commonsense may
contain many human biases due to social and cul-
tural influence (Sap et al., 2020; Emelin et al.,
2020). We aim to discover influential cultural bi-
ases in social applications datasets via the social
and causal commonsense knowledge (Roemmele
et al., 2011; Luo et al., 2016; Ponti et al., 2020)
present in each dataset, to identify bias in cause-
effect commonsense relationships. We define cul-
tural bias as a positive or negative cultural atti-
tude toward a social structure (see Section 3.1) and
define causal commonsense following Sap et al.
(2019a), as if-then, inferential relations. Specifi-
cally, we are interested in exploring biases towards
the following social structures: religion, economy,
family, government, education and technology. To
the best of our knowledge, we are the first to empir-
ically discover influential cultural biases in social
tasks, using causal commonsense knowledge about
social interactions, emotional reactions, and human
needs to explain underlying cultural trends in social
applications datasets.

We focus on two social tasks: emotion detection
in social media and community value detection
from interviews. We define a social task as any
task that is intended to have social impact and re-
quires social knowledge to correctly resolve. It is
particularly important to identify influential biases
in datasets and applications which are designed
for social impact. HurricaneEmo (Desai et al.,
2020) is an emotion detection task that focuses
on perceived emotional reactions to events that oc-
cur during natural disasters. For example, events
that exist in this dataset like “thanks god” may
elicit emotions like AWE, and events like “PersonX
sends – to congress" may elicit emotions like CON-
TEMPT, showing a positive cultural bias for reli-
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Stories2Insights:

'PersonX sells ___ to
the public'

ATOMIC 
knowledge:

'generous', 'helpful',
'influential', 'professional' Social

Signif.

Value
Label:

HurricaneEmo:

ATOMIC 
knowledge:

Remorse

Emotional 
Label:

'When I plant and later harvest then I will take to the market and sell and
get money which means my children will remain in school and will live

happily'

'our prayers are with our fellow citizens in # puertorico and the #
usvirginislands affected by # hurricanemaria . https://t.co/f8uxdb64va' 

'PersonX says
PersonX's prayers'

 'panic',  
'stressed',  
'sorrow'

Figure 1: Examples of Social Tasks and Knowledge.

gion and a negative cultural bias for government.
Stories2Insights (Conforti et al., 2020) is a value
detection task that focuses on interviews conducted
to identify community needs in developing coun-
tries, aiming to capture perceived values based on
certain events. For example, events like “reading
the bible” indicate INDIGENOUS values (defined
by social norms and religion) whereas events like

“providing for children” indicate INTRINSIC HU-
MAN needs (defined by health and quality of life).
This illustrates a positive culture bias for Christian-
ity and family. We aim to discover causal social
knowledge that indicates cultural biases in each
dataset, by analyzing model behavior on both tasks
to gain a dataset-level understanding of events that
influence performance.

We identify these biases via casual social knowl-
edge, which encodes the relationships between
events and the triggered reactions. We derived
our knowledge from the social knowledge graph
ATOMIC (Sap et al., 2019a). Consider the Hurrica-
neEmo example in Fig. 1, in which the ATOMIC
knowledge makes explicit the event-emotion causal
relationships in the tweet that bring about the per-
ceived emotion REMORSE. Identifying that the
event “says prayers” causes perceived traits like
sorrow and stressed, allows us to understand which
events in the tweet cause the perceived emotion
and contribute to the specific cultural biases. Next,
consider the Stories2Insights example, in which the
knowledge demonstrates the causal relationships
that support the perceived value SOCIAL SIGNIFI-
CANCE (defined by identity and status). Identifying
that the event “sells — to the public” causes per-
ceived traits like influential and professional, sheds
light on how the event’s associated cultural biases
contribute to the perceived value.

In this paper, we gain a dataset-level understand-
ing of influential causal social commonsense rela-
tionships, allowing an exploration of the underlying
social and cultural biases that explain model behav-

ior on social tasks. To this end, we first extract
ATOMIC knowledge for each datapoint, utilizing
a combination of TF-IDF and BERTScore (Zhang
et al., 2019). We then append different components
of this knowledge to the input, to focus strongly on
either the cause, the effect, or the causal relation
between the two. We use BERT-AUG, which in-
gests knowledge augmented data as input to BERT
(Devlin et al., 2018), to yield improvements on
both tasks. These improvements illustrate that the
underlying causal social assumptions made explicit
by the integrated knowledge do indeed increase
model accuracy on the task and thus augment a
model’s understanding of the task. To discover
underlying cultural biases, we investigate the in-
fluence of underlying events in each task. We first
identify underlying events in the data by cluster-
ing datapoints using k Nearest Neighbors (kNN)
around commonsense events, using fine-tuned con-
textual embeddings. We then identify which of
these events are influential by performing leave-K-
out experiments, which detect the influence of train
clusters on task performance.

Understanding cultural biases in social applica-
tions data via the implicit commonsense knowledge
present in the data is important for analyzing the
limitations of the dataset and the respective tasks.
By making explicit the underlying cultural assump-
tions and causal relationships, we are able to iden-
tify the biases that data from a certain source may
have, which is paramount when using this data in
the development of technology for other applica-
tions (Bender and Friedman, 2018).

Finally, we use our methods to identify misla-
beling in event clusters. Datasets used for training
deep learning models are large and often contain
noisy labels, even if the data was collected via
crowdsourcing (Frénay and Verleysen, 2013; Ra-
jani et al., 2020). We identify events whose train
clusters cause performance improvement when re-
moved in leave-K-out experiments, indicating mis-
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Figure 2: Data Extraction, Knowledge Integration, Knowledge Influence, and Mislabeled Removal.

labeling. Overall, our contributions are:

• We improve HurricaneEmo & Stories2Insights
performance when we augment models with
ATOMIC social knowledge, indicating the im-
plicit assumptions a model requires to be suc-
cessful on each dataset.

• We find representative events in each of the
datasets via ATOMIC and kNN, and use leave-K-
out experiments to discover causal social com-
monsense relationships that strongly influence
model behavior.

• We analyze the influential cultural biases for dif-
ferent social structures and strongly suggest a
cultural bias analysis for train data.

• We demonstrate that our methods can be used to
identify mislabeled examples in the dataset.

2 Related Work

2.1 Social Applications
We explore tasks for social applications, specifi-
cally perceived emotion detection and perceived
value detection. Emotion prediction has been stud-
ied for many different domains (Strapparava and
Mihalcea, 2007; Katz et al., 2007; Ezhilarasi and
Minu, 2012; Chen et al., 2018; Mohammadi et al.,
2019), and has been extensively applied to social
media posts (Mohammad, 2012; Wang et al., 2012;
Mohammad and Kiritchenko, 2015; Abdul-Mageed
and Ungar, 2017), particularly in the social good
domain. Sharifirad et al. (2019) performed emo-
tion classification on sexist tweets and Sanders
et al. (2021) analyzed sentiment in tweets during

the early COVID-19 pandemic. Similar to our
disaster-related application, Lin et al. (2018) used
semantic matching to discover disaster recovery
trends in large text corpora. In this paper, we focus
on implicit perceived emotion prediction, which
requires models to capture context and perform
reasoning about perceived emotions (Desai et al.,
2020), rather than intended emotions. Desai et al.
(2020) released an emotion prediction dataset, fo-
cusing on tweets related to Hurricanes Irma, Har-
vey, and Maria. Hirmer and Guthrie (2016) focused
on User-Perceived Values (UPVs), particularly con-
centrating on the needs and values of project ben-
eficiaries in developing countries. More recently,
Conforti et al. (2020) analyzed emotion as user per-
ceived values in statements made by Ugandan rural
individuals.

2.2 Social Causal Commonsense Reasoning

Commonsense reasoning has been a long-standing
challenge in NLP (Levesque et al., 2012; Davis
and Marcus, 2015; Talmor et al., 2019) and more
recently, social commonsense reasoning has gained
popularity (Rashkin et al., 2018; Nematzadeh et al.,
2018; Talmor et al., 2019; Sap et al., 2019b; Hwang
et al., 2020; Forbes et al., 2020; Sap et al., 2020;
Emelin et al., 2020), with a strong focus on so-
cial, moral, and cultural understanding and norms.
We further this work by extracting causal relations
for social and cultural norms and integrating this
knowledge to understand biases and model expla-
nation in social tasks. Similar to our integration
methods, Chang et al. (2020) implicitly and explic-
itly incorporates social knowledge from ATOMIC
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(Sap et al., 2019a) and ConceptNet (Speer et al.,
2017) into a social commonsense reasoning task
(in contrast to event-driven tasks with real-world
impacts), yielding performance gains. We, instead,
focus on a causal dimension of ATOMIC and use
knowledge to both improve and explain both per-
ceived emotion and value detection. Causal com-
monsense reasoning has also been explored for
a variety of tasks, focusing on identifying event
causality in social media (Sil et al., 2010; Riaz
and Girju, 2013; Kayesh et al., 2019, 2020b,a),
commonsense causal QA (Roemmele et al., 2011;
Luo et al., 2016; Hassanzadeh et al., 2019; Ponti
et al., 2020), and conversational emotion recogni-
tion (Ghosal et al., 2020). We, instead, focus on
social tasks and use knowledge to gain a dataset-
level understanding of influential events.

2.3 NLP Interpretability

Our analysis methods are related to influence func-
tions (Koh and Liang, 2017), which have been re-
cently extended to neural text classifiers in NLP
(Han et al., 2020). Our methods share particular
similarity with group influence functions, which
identify an influential group of training examples
in a particular test prediction (Basu et al., 2020).
We largely differ by using a heuristic for clustering
events and verifying the influence of each clus-
ter’s train data on the cluster’s dev data, allowing a
dataset-level analysis of influential social relation-
ships for text classification. Similar to our work,
Rajani et al. (2020) proposed using a kNN frame-
work to gain a dataset-level understanding of model
behavior by identifying training examples responsi-
ble for NLI predictions. In contrast, we identify in-
fluential causal social commonsense relationships.

3 Tasks & Datasets

3.1 Definition of Cultural Bias

We define cultural bias as a positive or negative cul-
tural attitude toward a certain social structure. Thus,
positive and negative bias refer to the sentiment
of the particular commonsense relation toward a
social structure in the text. This is encoded differ-
ently for the two datasets that we use throughout
this work. HurricaneEmo has labels for positive or
negative perception (e.g., contempt = negative, love
= positive). However, the target of the cultural bias
depends on the subject of the text and the intended
target of the emotion, thus we stress the importance
of analyzing the automatically retrieved instances

manually (see list of influential events in Table 4
and datapoints in Table 5). We also consider the
respective commonsense relation in order to under-
stand whether the sentiment is positive or negative.
On the other hand, Stories2Insights does not use
sentiment-based labels, but instead focuses on dif-
ferent categories of values, indicating a positive-
only cultural attitude/bias toward the topic of the
text. Therefore, we consider all Stories2Insights
labels as positive with respect to cultural attitude.

It is crucial to note that it is not the intention
of this work to draw conclusions about various
cultures that these datasets may derive from. The
cultural attitudes we discover in a single dataset
are not an accurate reflection of the entire culture
that this dataset may derive from and we would
find this conclusion to be particularly harmful. We
instead aim to explore biases with respect to social
structures in a particular dataset and are only able
to discover and examine cultural attitudes that are
particular and limited to the target dataset and are
additionally limited by our knowledge recall. See
Section 8 for more details.

3.2 HurricaneEmo
For emotion classification, we use HurricaneEmo
(Desai et al., 2020). This dataset was constructed
from 15,000 English tweets about Hurricanes Irma,
Harvey, and Maria. Through crowd-sourcing, each
tweet was classified based on the 24 Plutchik emo-
tions (Plutchik, 2001), and then summarized into
eight emotions: AGGRESSIVENESS, AWE, CON-
TEMPT, DISAPPROVAL, LOVE, OPTIMISM, RE-
MORSE, and SUBMISSION. These were split into
eight binary classification tasks. For example, this
tweet in the LOVE binary classification task, “to
my friends offering that support during the hur-
ricane, i thank you. we are safe and sound.
https://t.co/yl8wdbhi4" is labeled positive. See Sec-
tion A.1 in the appendix for dataset construction
and size.

3.3 Stories2Insights
For Automatic User-Perceived Value classifica-
tion, we obtain the Stories2Insights (Conforti et al.,
2020) corpus, consisting of labeled (English) inter-
views from villages in Uganda. Each statement in
the dataset is labeled with User-Perceived Values
(UPVs), and the data is divided into six different
labels: EMOTIONAL, EPIST, FUNCTION, INDIGE-
NOUS, INTRINSIC HUMAN, and SOCIAL SIGNIF-
ICANCE (Conforti et al., 2020). We used these
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labels to create binary datasets from the original
data. For example, “Also my children and my hus-
band will get entertained and be happy." is labeled
as EMOTIONAL. See Section A.2 in the appendix
for dataset construction and size.

3.4 ATOMIC
We utilize the causal social commonsense knowl-
edge in the knowledge graph ATOMIC (Sap et al.,
2019a), a graph for if-then reasoning, connecting
events through one of nine different relation edges.
In this paper, we focus on the "xAttr" edge, which
describes the perceived attributes of an event’s sub-
ject. This edge allows us to extract perceived social
knowledge, as it often covers the perceived emo-
tion or value we are interested in for HurricaneEmo
and Stories2Insights. For example, the ATOMIC
event “PersonX helps people" uses the "xAttr" edge
to show the perceived attributes of PersonX based
on this event, i.e., PersonX is seen as "kindhearted;
incredible; pleasant; kind".

4 Models & Knowledge Augmentation

We aim to 1) extract knowledge that makes explicit
the underlying causal social commonsense relation-
ships in each datapoint and 2) propose a simple
integration method to show that this knowledge is
able to increase model accuracy, demonstrating the
role of these relationships in improving a model’s
understanding of the task.

4.1 Baseline
We finetune BERT base (Devlin et al., 2018) as
a baseline for both datasets. We input the text
(tweet or statement) to BERT to obtain contextual
embeddings, which we then project with a weight
matrix W ∈ Rd×2.

4.2 Knowledge Integration
We augment the BERT baseline with knowledge,
which we call BERT-AUG. We illustrate this pro-
cess in the Knowledge Integration section of Fig.
2. Each input consists of text from the task and
k (where k=3) extracted ATOMIC events with at-
tributes (the extraction process is described in Sec-
tion 4.3). We directly append knowledge as text to
the input text via 5 different methods. To illustrate
these methods, consider the following top 2 events
that may be extracted for a given tweet:

• "PersonX gets a warning" -> "unhappy", "be-
haved", "negative", "mischievous", "badly"

Dataset %Event-Text %Attribute-Label

HEmo 58 54
S2I 77 65

Table 1: Data Extraction Manual Analysis. Event-Text
is the match between the ATOMIC event and datapoints.
Attribute-Label is the match between the respective
ATOMIC attributes and the dataset label. Higher %
indicates more matches.

• "PersonX ignores the warnings" -> "reckless",
"unworried", "confused", "dangerous", "un-
safe", "careless"

Each integration method uses different components
of the knowledge as follows, which are then ap-
pended to the input text:

• Method 1: all attributes of first event
Example: "unhappy; behaved; negative; mis-
chievous; badly"

• Method 2: first attribute of first event
Example: “unhappy”

• Method3: first attribute of all events
Example; “unhappy; reckless’

• Method4: first event + first attribute
Example: "PersonX gets a warning: unhappy"

• Method5: first event + all attributes
Example: "PersonX gets a warning: unhappy;
behaved; negative; mischievous; badly

We determine the best method for each dataset
as a hyperparameter when tuning BERT-AUG on
the dev set.

4.3 Knowledge Extraction
We extract ATOMIC knowledge for both Hurri-
caneEmo and Stories2Insights, illustrated in the
Data Extraction section of Fig. 2. In this section,
the tweets of HurricanEmo and the text of Sto-
ries2Insights are both referred to as the dataset D,
as we follow the same extraction process for both
datasets.

Following Lin et al. (2018), our extraction proce-
dure is decomposed into two phases: one for speed
and one for precision. The first phase serves as a
coarse-grained filter to efficiently collect an initial
pool of ATOMIC knowledge candidates Pi for each
datapoint di ∈ D: if there is word overlap between
di and a ATOMIC candidate event, the ATOMIC
candidate is added to Pi. Next, we use TF-IDF
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Model AGR LOV SBM AWE DSP CNT RMR AVG

BERT (Desai et al., 2020) 67.6 54.0 67.4 68.3 55.7 66.8 58.5 62.6
BERT 75.6 65.1 72.8 73.7 58.0 77.9 63.2 69.5
BERT-AUG 75.0 68.8 70.5 72.7 64.4 75.9 65.2 70.4

Table 2: HurricaneEmo Test Results (Accuracy), including aggressiveness (agr), love (lov), submission (sbm), awe
(awe), disapproval (dsp), contempt (cnt), remorse (rmr), and average (avg) across all binary tasks. We recompute
the baseline after extra data preprocessing. Best results are bold.

Model Emotional Epistemic Functional Indigenous Intrinsic Social Avg

BERT 81.0 87.7 84.6 84.6 84.4 80.1 83.7
BERT-AUG 86.9 87.7 82.6 89.4 87.2 82.8 86.1

Table 3: Stories2Insights Test Results (Accuracy). Best results are bold.

to find the top n (we choose n=50) most similar
ATOMIC candidates (considering ATOMIC event
only) to di in Pi, and add these to a smaller pool
Si. Then, for precision we score each ATOMIC
candidate in Si with di for semantic match, using
BERTScore, an evaluation metric for text similar-
ity (Zhang et al., 2019). In this step, we use both
the ATOMIC event and attributes to ensure that the
causal social knowledge of each event is captured.
We rank Si by score and return the top k (where
k=3) ATOMIC candidates for each datapoint.

To determine how precise this retrieval is,
we manually examine the knowledge-datapoint
matches for each dataset, demonstrated in Ta-
ble 1. We analyzed 30 events from the dev set
of each binary dataset (7 for HurricaneEmo, 6
for Stories2Insights; totaling 1260 datapoints),
and examined matches between 1) the datapoint
and ATOMIC event, and 2) the dataset label and
ATOMIC attributes. This analysis investigated both
whether 1) the ATOMIC events matched events
in the datapoint and 2) the causal relationship be-
tween the event and its attribute is the same as the
relationship between the datapoint and its label.
We observe that ATOMIC matches both the events
and causal relations in Stories2Insights better than
those in HurricaneEmo. See Section A.4.1 in the
appendix for more details.

5 Event Influence & Bias Discovery

We aim to (1) identify influential social and causal
events in each dataset, and (2) analyze their respec-
tive inferential relationships to discover attitudes
toward target social structures.

To identify influential events in the datasets,
we first extract underlying ATOMIC events from
each dataset via event selection and then measure

how influential these events are via leave-K-out
experiments (illustrated in event selection and
leave-K-out in the Knowledge Influence section of
Fig. 2). We then explore the following types of so-
cial and cultural structures in our datasets: religion,
economy, family, government, education and tech-
nology. We consider a dataset to be biased if there
exists a positive or negative attitude toward one of
these structures in the influential underlying events.

5.1 Event Selection

We select underlying events in each dataset that
potentially influence model behavior. To identify
these events, we first fine-tune a separate BERT
model for each binary dataset. Then, we represent
the binary train data, dev data, and ATOMIC events
with contextual embeddings using the respective
BERT model for that dataset. Next, for each data-
point di ∈ D, we find its closest event ej (where
ej ∈ E and E denotes the ATOMIC events) using
kNN. We then assign di to cj , where cj is the re-
spective data cluster for ej (cj ∈ C and C denotes
all the clusters). If di is in train, we assign it to ctj
(the event-specific train cluster), and if di is in dev,
we assign it to cdj (the event-specific dev cluster).
Thus, for each binary dataset, we have clusters of
train and dev data for each ATOMIC event. This
process is denoted as kNN in Fig. 2.

To identify the most representative underlying
ATOMIC events learned by the model, we use the
clusters of the top m (where m=50) most common
ATOMIC events extracted for the train set (see Sec-
tion 4.3 for details), and thus each binary dataset in
HurricaneEmo and Sight2Insights has m clusters.
To further identify which events have been learned
best by the model, we then use cross-validation
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to determine which clusters have the highest pre-
diction accuracy (thus the dev set is not used to
score clusters during event selection). We score
clusters by their average prediction accuracy across
each fold and select events whose clusters score
highest. This process denoted as Score Clusters in
Fig. 2. We use the top t (where t=5) events for our
leave-K-out experiments.

5.2 Leave-K-Out
We evaluate whether the selected underlying events
have a strong influence on model behavior (see
leave-K-out in Fig. 2). Recall that each event ej
in a particular binary dataset has a cluster of event-
specific datapoints ctj and cdj for train and dev. For
each event ej , we remove ctj from the train set and
use cdj as an evaluation set. We compare results on
cdj between a BERT baseline (discriminator trained
on all train data in that binary dataset) versus BERT
trained on the train set with ctj removed. We evalu-
ate accuracy and look for prediction changes. We
also include ablations that remove the same amount
of randomly selected train data to establish a lower
bound. See Section A.5.1 in the appendix for data
sizes and a thorough discussion and interpretation
of the respective results.

6 Results

6.1 Knowledge Integration
We examine knowledge integration in Table 2 and
Table 3. Due to our additional HurricaneEmo data
preprocessing (see Section A.1 in the appendix),
we reran BERT baselines on this dataset. Overall,
Stories2Insights has better performance improve-
ments than HurricaneEmo.

For HurricaneEmo, we see visible improvement
for LOVE, DISAPPROVAL, and REMORSE, which
performed best using integration methods 2, 5, and
3, respectively, all of which are attribute focused.
For Stories2Insights, we see visible improvements
for datasets where the label is focused on social
knowledge: EMOTIONAL, SOCIAL SIGNIFICANCE,
INTRINSIC HUMAN, and INDIGENOUS, using inte-
gration methods 1, 3, 4, and 5, respectively.

6.2 Knowledge Influence
We find ATOMIC events that influence model per-
formance in Table 4. Given the top t dataset events
from event selection in Section 5, we demonstrate
results for the events for which a change in per-
formance occurred, i.e., the influential events (see

Section A.5.2 in the appendix for the full list of
events). We see that for all Stories2Insights events,
and most events in HurricaneEmo, removing ctj de-
creases performance on cdj . Our ablations indicate
a lower bound and thus highlight the cases where
decreased performance is indeed significant. We
underline all influential results that perform worse
on cdj than both the baseline and ablation when the
respective ctj is removed. These events are able to
cluster highly relevant text and thus the ctj exam-
ples have strong prediction influence on cdj . See
Section A.5.1 in the appendix for further discussion
and interpretation of the results.

We observe some cases in HurricaneEmo where
best performance is achieved by removing ctj , indi-
cating mislabeling. We manually analyze the five
HurricaneEmo event clusters in question. For each
datapoint in cdj where the prediction was corrected
after leave-K-out, we retrieve the removed ctj data-
points. We find that the train and dev manual label
agreement between the two sets is 49.33%, aver-
aged across all clusters. As the labels should agree,
this indicates mislabeling and explains the perfor-
mance improvements after removal (verified by the
manual analysis in Section 6.4). Finally, there are
cases in which the ablation performs worst. This
seems related to the nature of the cdj s in question,
such that the model is uncertain about these exam-
ples and thus predictions on this subset are highly
sensitive to any changes in the train set.

We performed manual analysis to verify cj
(event-specific data) semantic similarity with ej
(the event) and also ctj and cdj (event-specific dev
and train) similarity with each other. Two annota-
tors analyzed approximately 190 datapoints across
13 different event clusters (with a Cohen kappa of
0.81 which is considered as ‘almost perfect agree-
ment’ 1, see Section A.4.2 for more details). Ta-
ble 6 shows that for HurricaneEmo, 87% of the
event-specific data semantically match each other,
and close to half of dev and train examples match
the cluster’s event. We also observe that for Sto-
ries2Insights, 100% of the event-specific data se-
mantically match. Overall, the integration improve-
ments, leave-K-out results, and final influential
events suggest that ATOMIC represents a better
cultural and social match for Stories2Insights, and
allow us to clearly identify influential events in
Stories2Insights. This is supported by our man-

1https://en.wikipedia.org/wiki/Cohen%
27s_kappa
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Dataset Event Full Train Leave-K-Out Ablation

HurricaneEmo
AGR PersonX drives from florida 76.9 74.4 76.9
LOV PersonX checks the weather forecast 60.4 39.6 60.4

PersonX uses — to avoid 40.0 45.0 35.0
SBM PersonX sends — to the congress 82.4 88.2 76.5
AWE PersonX prepares for the storm 60.6 66.7 60.6

PersonX is still valid — 69.2 38.5 61.5
DSP PersonX practices — in the state 57.1 71.4 57.1

PersonX keeps PersonY in PersonY’s prayers 100.0 50.0 100.0
CNT PersonX sails close to the wind 79.5 74.4 79.5
RMR PersonX crosses my heart and hope to die 82.3 85.5 80.7

PersonX sends — to the congress 69.1 66.7 66.7
PersonX keeps PersonY in PersonY’s prayers 80.0 60.0 60.0

Stories2Insights
Indigenous PersonX offer — to the gods 66.7 33.3 66.7

PersonX reads the bible 87.5 75.0 75.0
Intrinsic PersonX provides — to children 100.0 80.0 100.0
Social PersonX protects — from the effects 71.4 57.1 42.9

PersonX sells — to the public 88.2 67.7 88.2

Table 4: Leave-K-Out Results. Best performance is bold and performance of most influential events is underlined.

Clustered Datapoints by Event

HurricaneEmo: PersonX prepares for the storm
even san antonio evac centers could get more than 1’ of rain. tx gov. abbott suggests going farther inland to austi
https://t.co/jsxrwwiu3y
puerto rico rations resources as hurricane maria approaches - https://t.co/ypziieca7a https://t.co/lzw1inirsu
cnn reports miami international airport & fort lauderdale-hollywood international airport are closed. latest updat
https://t.co/repbpqdqsz
to all ga residents in hurricane irma ’s path, stay safe & be careful! for shelter information, please visit: https://t.co/acytlq9orr
Stories2Insights: Person provides — for the children
We have many diseases which attack us at any including our children, so if medicines are around, we can always treat
ourselves and do things which can bring for us money and our children will go to school and learn.
Motorcycle will help me to take children for treatment when they fall sick and also I can be taken for treatment using the
motorcycle.
Chicken is good to have at home since it lays eggs which I use it in feeding my children.

Table 5: Examples of HurricaneEmo and Stories2Insights datapoints in ATOMIC event clusters.

Dataset %dev %train %dev-train

HEmo 53 43 87
S2I 50 79 100

Table 6: HurricaneEmo and Stories2Insights Clustering
Manual Analysis. %dev and %train show the match
between dev/train clusters and the event. %dev-train
shows the match between dev and train clusters. Higher
% indicates more matches.

ual analysis which indicates that Stories2Insights
events and causal relations are better captured by
ATOMIC and that by using ATOMIC knowledge,
we are able to get semantically matching clusters.

6.3 Bias Analysis

We examine bias with respect to the following cul-
tural structures: religion, economy, family, gov-
ernment, education and technology. For Hurrica-
neEmo, we find strong cultural biases for religion

and technology. In Table 4, we see that religion
is associated with several causal reactions, specif-
ically disapproval and remorse. This may be due
to the use of religion in text, marking particularly
traumatic situations. We also observe that there is
a general mixed reaction toward technology, with
"driving" associated with perceived aggression and
"checking weather forecast" associated with per-
ceived love (often in the context of rapid informa-
tion spread during a disaster). Finally, it seems
that there is a negative bias towards government,
in which references to "congress" tend to elicit
remorse. Interestingly, the economy, family and
education seem relatively non-influential.

For Stories2Insights, we see that the mention
of religion is both influential and strongly associ-
ated with INDIGENOUS values (defined by social
norms and religion). "Providing for children" is
also a very influential event, demonstrating a strong
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Model LOV DSP SBM AWE RMR

Baseline 65.1 58.0 72.8 73.7 63.2
Reduced Train 68.4 61.1 73.2 72.1 66.4

Number Examples Removed 4 13 8 97 11

Table 7: HurricaneEmo test set performance after removing potentially mislabeled train datapoints.

bias for family in the dataset, which elicits the IN-
TRINSIC HUMAN value, associated with health and
quality of life. This sheds light on how attitudes
toward religion, family, and childcare are valued
in positive ways within this corpus, and indicates
how these structures may play strong roles in val-
ues associated with social norms and quality of life.
Finally, the economy also seems to be quite influen-
tial, as we see that "PersonX sells — to the public"
is strongly associated with SOCIAL SIGNIFICANCE

(i.e., identity, status) illustrating that the economy
plays a strong role in this value.

Given the performance improvements when
adding social causal knowledge and the discovered
influential cultural biases described above, we see
that these datasets contain implicit assumptions
that, when acquired, improve a model’s perfor-
mance on each dataset. In particular, there are
several influential cultural biases in the dataset
that may be harmful when generalizing to another
task. For example, the importance and meaning
of religion may be different depending on the task.
In HurricaneEmo, religion plays a major role as
a reaction to traumatic events, whereas in Sto-
ries2Insights it plays a role in indigenous values.
We observe that the context of data collection (e.g.,
natural disaster tweets, perceived value collection,
etc) is particularly important in the type of attitudes
towards social structure a dataset might encapsu-
late, and thus recommend this type of analysis to
better understand implicit bias held in a dataset
based on its application. We want to strongly em-
phasize that is very important to properly analyze
the implicit cultural biases for any train set before
applying a model trained on this dataset.

6.4 Detecting Mislabeled Events

Finally, we leverage our analysis to identify misla-
beled datapoints in HurricaneEmo and improve our
performance on the full test set. We use all datasets
that contain events where the best performance on
the target cdj is achieved by training on the removed
train set, as illustrated in Table 4. This suggests
that the ctj have been mislabeled and are negatively

affecting cdj , which we have confirmed with man-
ual analysis (see Section A.4.3 for more details).
We refer to these events as mislabeled events. To
mitigate this, we use the mislabeled events in a
removal heuristic, where we remove all examples
that extract the mislabeled events as their highest
scoring event. We then evaluate our model on the
full test set, see Table 7. Every considered dataset
demonstrates improvement over the BERT baseline
on the full test set, except AWE, most likely due to
the large number of removed examples for AWE,
which may interfere with the predictions of other
datapoints.

7 Conclusion

We used causal social commonsense knowledge
to discover influential events and relationships that
explain model behavior and pinpointed instances of
cultural bias. First, we found that using large-scale
language models augmented with causal social
knowledge improved our social classification tasks,
illustrating that the knowledge made the underly-
ing social assumptions in the dataset explicit. Then,
we identified underlying events in each dataset by
clustering data around ATOMIC knowledge, to pin-
point cultural biases that the dataset may exhibit.
We found that some of this knowledge strongly
influenced model behavior through leave-K-out ex-
periments, providing a dataset-level understanding
of influential events and causal social common-
sense relationships and allowing an analysis of the
datasets’ implicit influential cultural biases. Finally,
we used these underlying and influential events to
identify mislabeled train examples and thus im-
prove training and performance.
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8 Ethical Considerations & Limitations

We first address ethical considerations and limita-
tions with respect to potential biases in our methods
and resources, and then ethical considerations with
respect to data use.

Bias: Emotions and values, and their expression
and perception, are not universal. We use ATOMIC
as, at the time of this work, it is the largest En-
glish source of social commonsense knowledge,
however it is important that we further the cre-
ation and use of resources that are not limited to
Western norms, developed countries, and the En-
glish language, especially when applying them to
data outside of these domains. We anticipate that
a knowledge graph better suited for representing
different cultural attitudes will yield more cover-
age. For example, the events in ATOMIC may not
cover important or representative cultural events
in Uganda (the source of our second dataset), as it
largely contains Western-centric social and cultural
norms found in mostly developed countries.

It is also crucial to note that it is not the inten-
tion of this work to draw conclusions about various
cultures that these datasets may derive from. The
cultural attitudes we discover in a single dataset
are not an accurate reflection of the entire culture
that this dataset may derive from and we would
find this conclusion to be particularly harmful. We
instead aim to explore biases with respect to social
structures in a particular dataset and are only able
to discover and examine cultural attitudes that are
particular and limited to the target dataset and are
additionally limited by our knowledge recall. A
precision-recall tradeoff exists based on the KG
coverage, and thus the retrieved datapoints may
not all be biased (precision) nor will all biases be
retrieved (recall) using the available KG. Thus, we
also stress the importance of using manual analy-
sis to identify and confirm biases in the extracted
datapoints. We hope this will further encourage the
development of knowledge graphs that explicitly
represent more annotated social/cultural common-
sense knowledge by illustrating its usefulness in
gaining a corpus-level understanding of datasets.

Similarly, we are additionally limited by the use
of transformer models that were trained on mostly
Western text and may be prone to capture Western
cultural information even if fine-tuned on a dataset
with different cultural attitudes. Providing a so-
lution to this problem is beyond the scope of this
paper, but future work could explore more cultur-

ally diverse data for pre-training models.
Data Use: Twitter data and interview transcripts

are sensitive data and thus require strong consider-
ations about the use and release of the data. The
publicly released data for HurricaneEmo is fully
anonymized to protect the identity of users. Sto-
ries2Insights data has also been fully anonymized,
but is not publicly released and has been kept pri-
vate to ensure the safety of the communities and to
prevent harmful use of the data. Following suit, we
do not release any data for this dataset to limit
potential harm or misuse. For more details on
the ethics concerning the collection and intended
use of either of these datasets, please refer to each
dataset’s original paper.

Future Work: Our contribution focuses on the
novel combination of knowledge graph relations,
interpretability methods, and clustering to identify
both influential and biased commonsense relation-
ships. We aim to use this as an opportunity to
encourage work in the curation of resources that
explicitly annotate cultural attitudes or "common-
sense" biases by illustrating how such resources can
facilitate a corpus-level understanding of implicit
influential cultural biases. Our work is limited by
the methods we explored, and thus we encourage
further investigation of certain elements in our ex-
perimental pipeline, in particular other datasets,
clustering method variations, other MLMs, more
diverse KGs, and other knowledge models.
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A Appendix

A.1 HurricaneEmo Pre-processing
We performed the following pre-processing steps
for HurricaneEmo (released by Desai et al. (2020)).
First, we de-duplicated each train, dev, and test
file (per the authors suggestion). Then, we
de-duplicated across splits, removing data from
the train set if it was present in the dev or
test sets. We used these files as our input
for the pipeline described in our paper. We
chose not to include the OPTIMISM category in
our experiments since we were not able to re-
produce a baseline result sufficiently close to
the original paper on the fully deduplicated
dataset. After preprocessing, the train/dev/test
splits for each of the files are: AGGRESSIVENESS:
1695/493/495, AWE: 2942/868/868, CONTEMPT:
1507/452/443, DISAPPROVAL: 2363/706/707,
LOVE: 1028/307/304, REMORSE: 3104/910/908,
SUBMISSION 2432/724/721.

A.2 Stories2Insights Pre-processing
We performed the following pre-processing steps
for Stories2Insights. We received the dataset from
the authors, with the T3 labels described in the
original paper (Conforti et al., 2020). We instead
use the T1 labels defined in their paper as bi-
nary datasets. To create these datasets, we fol-
lowed the T3 label groupings shown in Appendix
A of their paper. We then created datasets with
a 1:1 positive-to-negative datapoint ratio for the
train, dev, and test sets. These negative data-
points were collected evenly from all other T1
datasets. We repeated this process for all T1 la-
bels and every set (train, dev, and test). After
preprocessing, the train/dev/test splits are: EMO-
TIONAL: 805/75/84, EPIST: 553/82/65, FUNC-
TION: 2551/302/345, INDIGENOUS: 695/64/104,
INTRINSIC HUMAN: 2317/261/320, SOCIAL SIG-
NIFICANCE: 1241/134/151. If interested in using
this data, please contact the original authors for
access.

A.3 Reproducibility & Hyperparameters
We utilized BERT-base for all of our experiments
(Devlin et al., 2018). We followed hyperparame-
ter settings for BERT as described in Desai et al.
(2020). To train BERT for HurricaneEmo, we use
batch size 8 and learning rate 2e-5. To train BERT
for Stories2Insights, we use batch size 8 and learn-
ing rate 1e-5. Training for both was completed in

3 epochs. We train each model using 1 GeForce
GTX 1080 Ti GPU.

A.4 Manual Analysis Details and Further
Analysis

A.4.1 Data Extraction
Manual analysis for examining the knowledge-
datapoint matches for each dataset was completed
by an expert author, since this is time-consuming,
fine grained verification analysis (as opposed to
model evaluation). Details on the setup of the anal-
ysis are in the main paper Section 4.3.

A.4.2 Cluster Match
This section describes the manual analysis used
to analyze the cluster matches via our methods
in Section 6.2 in the main paper (Table 6). Man-
ual analysis was completed by 2 expert authors
since this is time-consuming, fine grained verifi-
cation analysis (as opposed to model evaluation).
We obtain high agreement, with a Cohen kappa of
0.81 (which is considered as ‘almost perfect agree-
ment’; see https://en.wikipedia.org/
wiki/Cohen%27s_kappa). We selected 10
dev and 10 train datapoints for each event cluster,
and because not all events had a full 10 datapoints
in dev or train, this leads to total of 190 datapoints.

Using this data, we performed an analysis to
identify whether the event-specific data sets that
were extracted for a certain ATOMIC event (1)
semantically matched the events and (2) semanti-
cally matched each other. For (1), we wanted to
see whether the semantic meaning in the ATOMIC
event was reflected in the clustered data. For (2),
we wanted to see whether the semantic meaning
in event-specific dev (cdj ) and event-specific train
(ctj) sets was matched. The results were computed
as follows. For (1), if the majority of selected dat-
apoints matched the event, we considered this to
be a positive data−event match. We then compute:
# events with semantically matching data−event
clusters / # total events. For (2), if the major-
ity of selected datapoints matched across dev and
train, we considered this to be a positive train−dev
match. We then compute: # events with semanti-
cally matching train−dev clusters / # total events.
Majority is calculated such that a majority of both
train and dev had to be semantically similar.

We see that the results for (2) are very high in
Table 6, which supports our findings that there is
mislabeling in the dataset (i.e, the labels are dif-
ferent between dev and train sets but the semantic
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Dataset Event %Event-Specific Train %Event-Specific Dev

HurricaneEmo
AGR PersonX drives from florida 4.7 7.9
LOV PersonX checks the weather forecast 24.0 36.2

PersonX uses — to avoid 5.5 6.5
SBM PersonX sends — to the congress 1.2 2.3
AWE PersonX prepares for the storm 4.6 7.6

PersonX is still valid — 0.8 1.5
DSP PersonX practices — in the state 0.6 1.0

PersonX keeps PersonY in PersonY’s prayers 0.1 0.3
CNT PersonX sails close to the wind 7.2 8.6
RMR PersonX crosses my heart and hope to die 5.9 6.8

PersonX sends — to the congress 3.2 4.6
PersonX keeps PersonY in PersonY’s prayers 0.2 0.5

Stories2Insights
Indigenous PersonX offer — to the gods 4.7 4.7

PersonX reads the bible 4.7 12.5
Intrinsic PersonX provides — to children 1.1 1.9
Social PersonX protects — from the effects 2.0 5.2

PersonX sells — to the public 21.9 25.4

Table 8: Leave-K-Out Cluster Size. %Event-Specific Train is the % of train examples removed during Leave-K-Out
training and %Event-Specific Dev is the % of dev examples the trained model is evaluated on.

meaning are similar, thus there is mislabeling). We
also see that (1) can be low for some datasets, in-
dicating that while the train and dev data may be
semantically matched, this semantic meaning may
differ from the original ATOMIC commonsense
relation for some datasets more than others. This
may be due to limited coverage of ATOMIC for
some events and is intended to show transparency
in the limitations of our approach, which we hope
will encourage the development of a KG that ex-
plicitly represents this type of cultural knowledge
(which was not available at the time of this work).

A.4.3 Mislabeling
This section describes the manual analysis used to
confirm mislabeling in HurricaneEmo train exam-
ples. Manual analysis was completed by an expert
author since this is time-consuming, fine grained
verification analysis (as opposed to model evalua-
tion). We completed manual analysis to identify
mislabeling on a set of 30 train examples across
different event clusters. The train examples were se-
lected from cases where the performance improved
on the event specific dev set when the event specific
train set was removed.

A.5 Knowledge Influence Details

A.5.1 Leave-K-Out Cluster Size
We illustrate the sizes of the event-specific train (ctj)
and dev (cdj ) clusters with respect to the original
train and dev dataset sizes for each of the leave-
K-out results in Table 8. Some of the resulting

datasets are very small and are more difficult to
draw conclusions from. For this reason, we show
the dataset sizes in Table 8 for an improved and
transparent interpretation of the results. On the
other hand, we can also see that several of the
datasets are quite large and leave-K-out has a clear
and significant impact on their performance with
respect to the full train set (e.g., “PersonX checks
the weather forecast” and “PersonX sells — to the
public”).

A.5.2 Selected Events
We show full top 5 events from the event selection
step for each binary dataset in Tables 9 and 10.
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Dataset Event

Emotional PersonX sells PersonY’s — for money
PersonX sleeps well —
PersonX gets — at night

PersonX devotes — to the study
PersonX wakes up in the middle of the night

Epist PersonX hears — on the radio
PersonX checks the news

PersonX supplies the — with food
PersonX loves listening to music

PersonX protects the — from injury

Functional PersonX protects the — from injury
PersonX uses — to prevent

PersonX seeks god ’s —
PersonX teaches children —

PersonX educates PersonX’s children

Indigenous PersonX offer — to the gods
PersonX reads the bible

PersonX pays a lot of money
PersonX seeks god ’s —

PersonX treats the — with respect

Intrinsic PersonX educates PersonX’s children
PersonX provides — to children

PersonX works well in business to get
PersonX pays a lot of money

PersonX helps the — to understand

Social PersonX uses — to prevent
PersonX protects — from the effects

PersonX sells —to the public
PersonX uses — to support

PersonX tries to use it

Table 9: Top 5 Events for Stories2Insights Binary Datasets
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Dataset Event

AGR PersonX stays away from PersonY
PersonX drives from florida

PersonX doesn’t have enough money
PersonX doesn’t want to go to school

PersonX moves to texas

DSP PersonX comes back to my house
PersonX practices — in the state

PersonX keeps PersonY in PersonY’s prayers
PersonX is trying to watch a movie

PersonX sees PersonY’s friends

CNT PersonX says the wrong thing
PersonX can’t afford to fix it

PersonX doesn’t want to go to school
PersonX supplies the — with food

PersonX sails close to the wind

LOV PersonX practices — in the state
PersonX goes to the local animal shelter

PersonX spends — with PersonX’s families
PersonX checks the weather forecast

PersonX uses — to avoid

SBM PersonX uses PersonX’s — to help
PersonX goes to the local animal shelter

PersonX sends — to the congress
PersonX organizes — in a way

PersonX does n’t want to go to school

AWE PersonX thanks god
PersonX provides — for the people

PersonX uses — to protect
PersonX is still valid —

PersonX prepares for the storm

RMR PersonX crosses my heart and hope to die
PersonX strikes — into the hearts
PersonX sends — to the congress

PersonX keeps PersonY in PersonY’s prayers
PersonX doesn’t want to go to school

Table 10: Top 5 Events for HurricaneEmo Binary Datasets
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Abstract

Bias-measuring datasets play a critical role in
detecting biased behavior of language models
and in evaluating progress of bias mitigation
methods. In this work, we focus on evaluat-
ing gender bias through coreference resolution,
where previous datasets are either hand-crafted
or fail to reliably measure an explicitly defined
bias. To overcome these shortcomings, we pro-
pose a novel method to collect diverse, natu-
ral, and minimally distant text pairs via coun-
terfactual generation, and construct Counter-
GAP, an annotated dataset consisting of 4008
instances grouped into 1002 quadruples. We
further identify a bias cancellation problem in
previous group-level metrics on Counter-GAP,
and propose to use the difference between in-
consistency across genders and within genders
to measure bias at a quadruple level. Our results
show that four pre-trained language models are
significantly more inconsistent across different
gender groups than within each group, and that
a name-based counterfactual data augmentation
method is more effective to mitigate such bias
than an anonymization-based method.

1 Introduction

It is a common practice to train state-of-the-art nat-
ural language processing (NLP) models by unsuper-
vised pre-training and supervised fine-tuning (e.g.,
Devlin et al., 2019; Joshi et al., 2020), both of
which rely heavily on large corpora of real-world
text. However, these corpora often reflect societal
stereotypes and may lead to models exhibiting bi-
ased behaviors (Bender et al., 2021). Hence, much
research effort has been put to reveal and mitigate
unintended biases (Meade et al., 2022).

While early work focuses on detecting and mit-
igating gender bias in the space of word embed-
dings (e.g., Bolukbasi et al., 2016), recent ap-
proaches turn to design bias-measuring datasets on
specific NLP tasks (Nangia et al., 2020; Nadeem
et al., 2021; Barikeri et al., 2021). In this work, we

focus on gender bias in coreference resolution and
adopt a kind of representational harm (Blodgett
et al., 2020) to define gender fairness: a gender-
neutral model should rely on the semantic infor-
mation, rather than on the gender information con-
tained in the texts, to make predictions. Otherwise,
a model should be considered gender-biased. In
line with this definition, WinoBias (Zhao et al.,
2018) and WinoGender (Rudinger et al., 2018)
leverage pairs of minimally distant sentences, i.e.,
two sentences that contain the same semantic in-
formation but different gender information, to mea-
sure models’ performance difference in resolving
pronouns of different genders under the same con-
text. This minimally distant setting enables us
to isolate the influence of gender information on
model predictions.

A limitation of WinoBias and WinoGender is
that they are made up of hand-crafted sentences,
which prevents us from measuring gender bias
in the more diverse real-world scenarios. An
alternative to overcome this shortcoming is the
GAP dataset (Webster et al., 2018), which ex-
ploits linguistic patterns to automatically extract
instances from a real-world corpus. However, since
GAP’s masculine and feminine instances cannot be
grouped into minimally distant pairs, we are not
sure whether a difference in model performance
is due to different gender information or to differ-
ent semantic information. For example, compared
to masculine instances, GAP’s feminine instances
have more candidate entities serving as distractors,
and longer distance between the correct name and
the pronoun (Kocijan et al., 2021). So, it is not
equally hard to resolve the masculine and feminine
instances in GAP. Hence, the performance differ-
ence between masculine and feminine instances on
GAP is not a reliable measure of gender bias ac-
cording to the above definition of gender fairness.1

1In GAP (Webster et al., 2018), the authors did not explic-
itly describe the fairness definiton that they adopt.
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Given these observations, we propose a novel
method to construct coreference-resolution-based
bias-measuring datasets consisting of minimally
distant text pairs that originate from real-world cor-
pora. Specifically, we leverage the method from
GAP (Webster et al., 2018) to extract original in-
stances containing gendered ambiguous pronouns,
and generate minimally distant instances by ask-
ing the counterfactual question “How would the
prediction change if we swapped the roles of mas-
culine and feminine people in this context?” (Garg
et al., 2019). The resulting instances are grouped
into quadruples, each of which consists of an origi-
nal, a gender-controlled, and two gender-swapped
instances. An example is shown in Table 1.

Furthermore, we find that bias in different di-
rections may be canceled out if we aggregate the
results by performance difference across groups
of instances, and we call this problem bias cancel-
lation. To alleviate it, we propose a new metric,
inconsistency across genders, to measure bias at
the quadruple level. We also leverage the gender-
controlled instances to disentangle inconsistency
within genders from inconsistency across genders,
so that we can eliminate the impact of name pertur-
bations.

Our contributions are as follows: (i) We propose
a novel method to construct coreference resolution
datasets consisting of diverse, natural, and mini-
mally distant instances to reliably detect gender
bias. (ii) We apply our method to online books
and collect Counter-GAP, an annotated dataset
with 4008 instances grouped into 1002 quadruples.
(iii) We propose a new metric, the difference (∆I)
between inconsistency across genders and within
genders, to alleviate the bias cancellation problem
of previous metrics. (iv) We use Counter-GAP
to empirically evaluate four pre-trained language
models and two debiasing methods based on Coun-
terfactual Data Augmentation (CDA, Zhao et al.,
2018; Webster et al., 2020). Our results show that
∆I can detect significant gender bias hidden by
group-level performance difference, and that name-
based CDA is more effective than vanilla CDA in
mitigating such bias.2

2The dataset and code are available at https://
github.com/x-zb/Counter-GAP.

2 Dataset Construction

The Counter-GAP dataset is derived from 1575
fictional books in Project Gutenberg3 and Book-
Corpus (Zhu et al., 2015). It is constructed through
a generic multi-stage process, as described below.
Here, we follow the GAP dataset (Webster et al.,
2018) and focus only on the English language, as
well as adopting a notion of binary gender.

2.1 Original Instance Extraction
First, we detect all the occurrences of personal
names and pronouns in a book with a dependency
parser and a named entity recognizer (NER).4 For
each occurrence of a gendered non-reflexive pro-
noun (he, him, his, she, her, hers), we extract a
surrounding context that consists of a maximum of
five sentences and contains exactly two masculine
and two feminine personal names. Personal names
are identified by NER tags, and the gender speci-
fication of a name is determined by statistics from
a gender-guesser.5 Genders for titled names (e.g.,
Mr. Smith) are assumed from the traditional gender
associations of those titles.

Second, we select the subset of contexts that
contain gendered ambiguous pronouns as defined
by the following three patterns from GAP (Web-
ster et al., 2018) (henceforth, the gendered ambigu-
ous pronoun is called target pronoun, and the two
names that are gender-consistent with the target
pronoun are called candidate names):

• FINALPRO. Both candidate names must be
in the same sentence, and the target pronoun
may appear in the same or directly following
sentence.

• MEDIALPRO. The first candidate name must
be in the sentence directly preceding the tar-
get pronoun and the second candidate name,
both of which must be in the same sentence.
The target pronoun must be in an initial sub-
ordinate clause or be a possessive in an initial
prepositional phrase.

• INITIALPRO. Both the candidate names and
the target pronoun must be in the same sen-
tence, and the target pronoun must be in an

3https://www.gutenberg.org/
4We use Spacy (https://spacy.io/).
5https://pypi.org/project/

gender-guesser/. As we focus on English books,
we use the default setting where the gender of a name is first
considered according to its use in English-speaking countries.
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original Tom did not appear to hear this, but tried to keep up the conversation with Julia, desiring to have it
appear that they were intimate friends; but the young lady gave brief replies, and finally, turning away,
devoted herself once more to Herbert, much to Tom’s disgust. In fact, what he saw made Tom pass a
very unpleasant evening, and when, on their return home, Maria suggested that Julia had taken a fancy
to Herbert, he told her to mind her own business.

gender-controlled Herbert did not appear to hear this, but tried to keep up the conversation with Maria, desiring to have it
appear that they were intimate friends; but the young lady gave brief replies, and finally, turning away,
devoted herself once more to Tom, much to Herbert’s disgust. In fact, what he saw made Herbert pass a
very unpleasant evening, and when, on their return home, Julia suggested that Maria had taken a fancy
to Tom, he told her to mind her own business.

gender-swapped-1 Maria did not appear to hear this, but tried to keep up the conversation with Herbert, desiring to have it
appear that they were intimate friends; but the young gentleman gave brief replies, and finally, turning
away, devoted himself once more to Julia, much to Maria’s disgust. In fact, what she saw made Maria
pass a very unpleasant evening, and when, on their return home, Tom suggested that Herbert had taken
a fancy to Julia, she told him to mind his own business.

gender-swapped-2 Julia did not appear to hear this, but tried to keep up the conversation with Tom, desiring to have it
appear that they were intimate friends; but the young gentleman gave brief replies, and finally, turning
away, devoted himself once more to Maria, much to Julia’s disgust. In fact, what she saw made Julia
pass a very unpleasant evening, and when, on their return home, Herbert suggested that Tom had taken
a fancy to Maria, she told him to mind his own business.

Table 1: Counterfactual generation of a quadruple in Counter-GAP. Personal names and their genders are depicted
in colors: masculine names are in blue and cyan; feminine names are in violet and orange. The target pronoun is in
bold and underlined; also underlined is the true coreferent name. Other words constitute the context, and words in
italic are gendered words swapped according to the gendered words list.

initial subordinate clause or a possessive in an
initial prepositional phrase.

After filtering, we get 2585 contexts and adopt
them as original instances.

2.2 Counterfactual Generation
We generate minimally distant instances in Counter-
GAP through two counterfactual generation func-
tions. An example is illustrated in Table 1. For-
mally, we denote an original instance as xo =
s(P,C1, C2, O1, O2), where P is the target pro-
noun to be resolved, C1 and C2 are the two candi-
date names that are gender-consistent with P , O1

and O2 are two personal names of the opposite
gender, and s(·) denotes the context around these
mentions.

Gender-controlled generation. We swap all the
occurrences of C1 and C2, and of O1 and O2,
to generate a gender-controlled instance xc =
s(P,C2, C1, O2, O1). We choose to swap names
within an instance instead of introducing new
names, so that the candidate names naturally occur
in the same real-world context.

Gender-swapped generation. We first substitute
all gendered words with their opposite gendered
words (e.g., man→woman, he→she),6 and swap
all the occurrences of C1 and O1 (or O2), C2 and

6We adopt an augmented list of gendered words from
(Zhao et al., 2018).

O2 (or O1). As a result, we obtain two gender-
swapped instances x̃o = s̃(P̃ , O1, O2, C1, C2) and
x̃c = s̃(P̃ , O2, O1, C2, C1), where s̃(·) is the con-
text with all the gendered words substituted in s(·),
and P̃ is the opposite-gendered pronoun for P . We
call xo, xc, x̃o, x̃c minimally distant instances, in
that the words at the same position in the context
(s(·) or s̃(·)) are either the same (for gender-neutral
words) or have the same role but opposite gender
(for gendered words).

We consider a generated counterfactual instance
to be invalid if (i) it contradicts commonsense
knowledge, e.g., historical people being of the op-
posite gender; or (ii) the meaning of the counter-
factual is different from the original, resulting in
the gold coreference labels changing or becoming
undetermined. To tackle these, we take three mea-
sures. First, we extract original instances mainly
from fictional books, whose content is less likely
to involve real-world people. Second, during hu-
man annotation (Section 2.3), we explicitly ask
annotators to validate whether an instance contra-
dicts commonsense knowledge, and discard such
instances. Third, we discard the whole quadruple
(xo, xc, x̃o, x̃c) if not all of its four instances get the
same majority labels from annotators.7 Here, same

7Note that discarding inconsistent quadruples can also
cover some error cases caused by the gender-guesser’s incor-
rect prediction. For example, if an incorrect gender prediction
occurs for a TRUE coreferent name, the target pronoun and
the TRUE coreferent name will not be gender-consistent, and
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label means the coreferent names’ positions are the
same in the context (e.g., in Table 1, the position of
“Tom” in the original instance and that of “Maria”
in the gender-swapped-1 instance).

2.3 Human Annotation

We use Amazon Mechanical Turk to collect coref-
erence labels for all the 2585 original instances and
their counterfactual counterparts (hence, 2585× 4
instances in total). Each instance was assigned to
three annotators. Annotation instructions and a
sample task interface are presented in Appendix B.
Specifically, we ask annotators to highlight token
spans that are coreferent with the target pronoun.
We adopt majority vote to aggregate the collected
annotations, and generate a TRUE/FALSE label
for each of the two candidate names indicating if it
is coreferent with the target pronoun.

After discarding quadruples containing invalid
counterfactuals as discussed in Section 2.2, we
further filter out quadruples containing real-world
people to avoid grounding. Next, we randomly
downsample the remaining quadruples to balance
the number of original masculine and feminine in-
stances. The final Counter-GAP dataset consists
of 1002 quadruples with an inter-annotator agree-
ment8 of 86.5%.

3 Evaluation Metrics on Counter-GAP

We use X = (xo, xc, x̃o, x̃c) ∈ X to denote a
quadruple, and lowercased x to denote an arbi-
trary instance, which could be each of xo, xc, x̃o, x̃c
from a quadruple. Given a model f(·), assume that
f(x) ∈ {0, 1} indicates whether f ’s prediction on
instance x is correct (1) or not (0).

3.1 Bias Cancellation in Accuracy Difference

A so far commonly used metric is to directly com-
pare the model’s performance difference (or ratio)
between different gender groups (Webster et al.,
2018; Sun et al., 2019; Blodgett et al., 2020). For
example, if we divide a test set X into a group of
masculine instances D(m) and a group of feminine
instances D(f) according to the gender information
contained in the instances (e.g., the gender of the
target pronoun), gender bias can be measured by
model f ’s accuracy difference (AccDiff ) on D(m)

this may confuse the annotators, leading to inconsistent labels.
8Average percentage of agreed annotations on each in-

stance.

and D(f):

AccDiff =

∑
x∈D(m) f(x)

|D(m)| −
∑

x∈D(f) f(x)

|D(f)| . (1)

However, the above metric may suffer from
bias cancellation on Counter-GAP. Consider two
quadruples from Counter-GAP. In the first, the
model makes correct predictions on the two mas-
culine instances and incorrect predictions on the
two feminine ones. The model should be deemed
gender-biased (towards masculine), since it makes
different predictions for instances containing the
same semantic information. If, in the second
quadruple, the model makes reversed predictions,
i.e., correct on the two feminine instances and in-
correct on the two masculine ones, it should also be
deemed gender-biased, yet in the opposite direction
towards feminine. However, the model’s accura-
cies on the masculine and feminine groups are both
2/4 = 50%, making Eq. (1) equal to zero. In short,
biases in opposite directions may be canceled out
in some cases if we use Eq. (1) to aggregate them.

3.2 Measuring Bias via Inconsistencies

Given the bias cancellation problem of accuracy
difference, we propose to measure gender bias
through inconsistencies, i.e., whether a model’s
prediction is consistent on a pair of minimally dis-
tant instances. Specifically, we adopt two metrics,
inconsistency across genders (Iacross):

1

4|X |
∑

X∈X

(
|f(xo)−f(x̃o)|+ |f(xc)−f(x̃c)|

+|f(xo)−f(x̃c)|+ |f(xc)−f(x̃o)|
)
,

(2)

and inconsistency within genders (Iwithin):

1

2|X |
∑

X∈X

(
|f(xo)−f(xc)|+ |f(x̃o)−f(x̃c)|

)
.

(3)
Inconsistency across genders (Iacross) measures

inconsistency in instance pairs containing two in-
stances of different genders, while inconsistency
within genders (Iwithin) measures inconsistency
in instance pairs containing two instances of the
same gender. The two instances in a pair should be
minimally distant (i.e., from the same quadruple)
to guarantee that they contain the same semantic
information. Since Counter-GAP adopts personal
names as proxies for person entities, we need to
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disentangle the part of inconsistency caused by
different names (Iwithin) from that caused by dif-
ferent genders (Iacross). Therefore, our final metric
to measure gender bias is

∆I = Iacross−Iwithin. (4)

In practice, a positive ∆I indicates biased behav-
iors of the model, while a zero or negative ∆I
means that the measured inconsistency across gen-
ders are mostly noises from name perturbations,
thus no bias can be detected.

4 Bias Evaluation on Counter-GAP

For evaluation, we adopt the coreference reso-
lution system c2f-coref9 (Lee et al., 2018)
based on four pre-trained language models: BERT-
base/large and SpanBERT-base/large (Joshi et al.,
2020). All four models are fine-tuned on
OntoNotes (Pradhan et al., 2012),10 and training
details are shown in Appendix A. In our evaluation,
no candidate names are provided as input to the
models, and models are responsible to detect can-
didate names in the text by themselves. A model’s
prediction on an instance is considered correct if
the candidate name with gold label TRUE and none
of those with gold label FALSE are in the target
pronoun’s coreferent cluster.

4.1 Results
Results for gender bias measured on Counter-GAP
by accuracy difference (Eq. (1)) and ∆I (Eq. (4))
are shown in Tables 2 and 3, respectively. In Ta-
ble 3, we also report the inconsistency metrics on
each gender group (M, F) and each swapping direc-
tion (M2F, F2M), together with their differences.

Results in Table 3 show that for all four models,
not only Iacross is larger than Iwithin (∆I being
positive), but also the difference is statistically sig-
nificant, which indicates biased behaviors in these
models. Note that the absolute values of accu-
racy difference (AccDiff ) in Table 2 are in general
smaller than the corresponding values of ∆I in Ta-
ble 3, and AccDiff for BERT-large even becomes
statistically insignificant, which is contrary to the
well-known conclusion that BERT encodes social
bias (Nadeem et al., 2021). This brings evidence

9We use the implementations from https://github.
com/mandarjoshi90/coref.

10Since the annotation conventions of OntoNotes are a little
different from those of Counter-GAP, we omitted the abbre-
viation period “.” in titles like “Mr.”, “Mrs.”, and “Dr.” in
Counter-GAP during evaluation.

towards the bias cancellation problem, i.e., bias
measured by accuracy difference (Eq. (1)) may be
canceled out compared to that measured by incon-
sistency difference (∆I).

Regarding the effect of model size on gender
bias, results from both metrics show that larger
models seem to be less biased than smaller models.
Note that both our large and base models are (pre-)
trained on the same datasets, but in general larger
language models are pre-trained on larger amount
of data, so they are still at a higher risk of exhibiting
biased behaviors (Bender et al., 2021).

Regarding the detected bias direction, different
metrics provide information from different perspec-
tives. We can learn from the sign of AccDiff in
Table 2 that the overall bias directions of these mod-
els are all towards masculine. In Table 3, all of the
Diff. for Iwithin are negative, indicating a larger
inconsistency within the feminine group. All of the
Diff. for Iacross being negative indicates that incon-
sistency will increase when we change genders in
an originally feminine context.

Models AccM AccF AccDiff

BERT-base 63.12% 59.53% +3.59%∗

BERT-large 72.60% 72.11% +0.50%
SpanBERT-base 71.36% 69.06% +2.30%∗

SpanBERT-large 77.25% 75.40% +1.85%∗

Table 2: Gender bias measured by Eq. (1) on Counter-
GAP. We report accuracy on masculine instances
(AccM ), feminine instances (AccF ), and their differ-
ence (AccDiff = AccM−AccF ). A “∗” means that the
difference is statistically significant (p < 0.01) under
one-sided bootstrap resampling (Graham et al., 2014).

4.2 No Bias Between the Original and
Counterfactual Instances

Since the gender-swapped instances in Counter-
GAP are generated automatically, although they
have been validated by annotators, we still check
whether there is a systematic bias towards the orig-
inal or counterfactual instances. To investigate
this, we measure two statistics. First, we measure
a model’s accuracy on instances with the origi-
nal gender (xo, xc) and the counterfactual gender
(x̃o, x̃c), and report their difference. From Table 4,
we see that the differences are very small and not
statistically significant. Second, we measure the
correlation between the inconsistency across gen-
ders score (|f(xo)− f(x̃o)| + |f(xc)− f(x̃c)| +
|f(xo)−f(x̃c)| + |f(xc)−f(x̃o)|) and the origi-
nal gender of a quadruple X . From Table 4, we
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Models inconsistency within genders inconsistency across genders ∆I=Iacross
M F Diff. Iwithin M2F F2M Diff. Iacross −Iwithin

BERT-base 15.47% 16.47% -1.00% 15.97% 18.26% 23.25% -4.99% 20.76% +4.79%∗

BERT-large 10.28% 10.28% 0.00% 10.28% 10.88% 14.27% -3.39% 12.57% +2.30%∗

SpanBERT-base 9.98% 12.18% -2.20% 11.08% 12.18% 15.07% -2.89% 13.62% +2.54%∗

SpanBERT-large 5.79% 6.29% -0.50% 6.04% 6.89% 8.18% -1.30% 7.53% +1.50%∗

Table 3: Gender bias measured by the inconsistency metrics on Counter-GAP. We report inconsistency within
genders on masculine instances (M), feminine instances (F), and their difference (Diff. = M - F), as well as
inconsistency within genders on all the instances (Iwithin). We also report inconsistency across genders on
quadruples generated by transforming masculine instances to feminine instances (M2F), transforming feminine
instances to masculine instances (F2M), and their difference (Diff. = M2F - F2M), as well as inconsistency across
genders on all the quadruples (Iacross). ∆I = Iacross−Iwithin measures gender bias, where a “∗” means that the
difference is statistically significant (p < 0.01) under one-sided bootstrap resampling (Graham et al., 2014).

Models Accuracy Spear-
Orig. Counter. Diff. man’sρ

BERT-base 61.58% 61.08% +0.50% -0.083
BERT-large 72.06% 72.65% -0.60% -0.065
SpanBERT-base 70.21% 70.21% 0.00% -0.060
SpanBERT-large 76.55% 76.10% +0.45% -0.030

Table 4: Results on systematic bias evaluation. We
report accuracy on instances with the original gender
(Orig.), with the counterfactual gender (Counter.), and
their difference (Diff.= Orig. - Counter.). All the differ-
ences are not statistically significant (p > 0.01) under
one-sided bootstrap resampling (Graham et al., 2014).
We also report Spearman’s ρ between inconsistency
across genders and the original gender of a quadruple.

see that the values of Spearman’s ρ are all close to
zero, indicating no significant correlations. Hence,
we conclude that the counterfactual instances in
Counter-GAP do not introduce systematic bias.

4.3 Comparison with GAP

We further compare Counter-GAP with two GAP-
like datasets: the original GAP test set (Webster
et al., 2018) and a subset of Counter-GAP where
only the original instances xo are kept (we call this
dataset our-GAP). The results of SpanBERT-large
on the above datasets are shown in Table 5. We
see that the accuracy differences between mascu-
line and feminine instances are much smaller on
Counter-GAP than on the original GAP and our-
GAP. This empirically verifies that datasets without
minimally distant instances cannot reliably mea-
sure bias (they amplify bias in this case) due to
the different semantic information contained in its
masculine and feminine instances. Moreover, the
overall direction of detected gender bias (the sign
of AccDiff ) is different on the original GAP and
our-GAP, which shows that different source cor-
pora (Wikipedia for GAP vs. fictions for our-GAP)

may detect different bias in the model. This high-
lights the importance of domain diversity when
using data-centric methods for bias detection.

5 Bias Mitigation

We evaluate two debiasing methods based on coun-
terfactual data augmentation (CDA) (Zhao et al.,
2018; Webster et al., 2020): (i) anonymization-
based CDA (a-CDA), where the training set
(OntoNotes) is augmented by substituting all gen-
dered words with their opposite gendered words,
while the gold coreference labels are kept un-
changed. Personal names in the training set are
anonymized using place holders such as “E1, E2,
. . . ”; (ii) name-based CDA (n-CDA), where, in ad-
dition to the substitution between gendered words,
masculine and feminine names also substitute each
other according to their frequencies (Hall Maud-
slay et al., 2019). See Appendix A for more details.
Performance on bias mitigation is measured by
AccDiff and ∆I , while performance on corefer-
ence resolution is measured by overall accuracy on
Counter-GAP and F1 score on OntoNotes’ dev set.

Results are shown in Table 6. In terms of ∆I ,
both a-CDA and n-CDA can effectively reduce gen-
der bias, while n-CDA is more effective than a-
CDA in that its ∆I values are smaller and less
significant. Comparing the results of AccDiff and
∆I , we discover that bias measured by AccDiff
tends to be more easily mitigated by the debiased
methods. For example, a-CDA fails to reduce ∆I
to an insignificant level for all the four models, but
it succeeds to do so forAccDiff on BERT-base and
SpanBERT-large; n-CDA can reduce BERT-base’s
AccDiff to an insignificant level, but fails to do so
under the measurement of ∆I .

Regarding the trade-off between bias mitigation
and overall performance, both a-CDA and n-CDA
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Datasets Accuracy ∆I
AccM AccF AccDiff Overall

original GAP 85.10% 79.80% +5.30% 82.45% – –
our-GAP 75.25% 78.44% -3.19% 76.85% – –
Counter-GAP 77.25% 75.40% +1.85% 76.32% +1.50%

Table 5: Results from SpanBERT-large on three datasets.

Models Debiasing
Method

AccDiff =
AccM −AccF

∆I =
Iacross− Iwithin

Overall
Accuracy

F1 on
OntoNotes

none +3.59%∗ +4.79%∗ 61.33% 74.39%
BERT-base a-CDA +1.90% +2.30%∗ 65.17% 73.91%

n-CDA +0.20% +1.85%∗ 66.82% 73.60%
none +0.50% +2.30%∗ 72.36% 77.35%

BERT-large a-CDA +2.99%∗ +1.75%∗ 72.95% 76.96%
n-CDA +0.95% +1.30% 73.53% 77.13%
none +2.30%∗ +2.54%∗ 70.21% 77.71%

SpanBERT a-CDA +5.14%∗ +2.54%∗ 69.49% 78.04%
-base n-CDA +0.95% +1.25% 71.03% 77.70%

none +1.85%∗ +1.50%∗ 76.32% 80.06%
SpanBERT a-CDA +0.35% +1.45%∗ 76.72% 80.07%
-large n-CDA +0.65% +0.15% 77.92% 79.93%

Table 6: Bias mitigation results. For AccDiff and ∆I , lower is better; for overall accuracy and F1 on OntoNotes,
higher is better. Best results are in bold. A “*” on ∆I indicates that the difference is statistically significant
(p < 0.01) under one-sided bootstrap resampling (Graham et al., 2014).

can maintain or even increase the overall accuracy
on Counter-GAP. This indicates that they do not
sacrifice model performance for fairness, which
is a favorable characteristic of debiasing methods.
However, n-CDA achieves decreased F1 scores on
OntoNotes for all the four models, indicating that it
is more suitable for tasks involving mostly personal
names.

6 Qualitative Analysis

In Table 7, we show some Counter-GAP exam-
ples with predictions from SpanBERT-large. In
Example 1, SpanBERT-large makes correct deci-
sions for both the original and gender-controlled in-
stance. But for the two gender-swapped instances,
it either refers the target pronoun to the incorrect
feminine person (Denise), or includes both femi-
nine names (Roxanne and Denise) in the coreferent
cluster, which indicates a worse performance on re-
solving feminine pronouns under the same context.
This kind of gender bias can only be detected when
we counterfactually augment the original instance.
In Example 2, SpanBERT-large correctly finds “Al-
ice” in the gender-swapped-2 instance, but con-
fuses “Alice” and “Dora” in the gender-swapped-1
instance. This illustrates the inconsistency brought
by name perturbations within the same gender, and
we take this into account by subtracting inconsis-

tency within genders from inconsistency across
genders (∆I = Iacross − Iwithin).

7 Related Work

Measuring Bias in NLP models. Human-like
biases are first detected and measured in word em-
beddings (Bolukbasi et al., 2016; Caliskan et al.,
2017; Garg et al., 2018; Gonen and Goldberg, 2019;
Manzini et al., 2019). For pre-trained language
models, May et al. (2019) adopt bleached sentence
templates to contextualize target words, while most
recent works leverage crowd-sourced benchmark
datasets on NLP tasks such as language model-
ing (Nangia et al., 2020; Nadeem et al., 2021), senti-
ment analysis (Kiritchenko and Mohammad, 2018),
dialog generation (Barikeri et al., 2021), natural lan-
guage inference (Dev et al., 2020), and machine
translation (Stanovsky et al., 2019). Our work fol-
lows GAP (Webster et al., 2018), WinoBias (Zhao
et al., 2018), and WinoGender (Rudinger et al.,
2018) to measure gender bias in coreference reso-
lution, with a specific focus on collecting diverse,
natural, and minimally distant instances.

Counterfactual Bias Evaluation. Kusner et al.
(2017) propose the notion of counterfactual fair-
ness, which requires similar predictions before and
after counterfactual interventions in casual graphs.
Garg et al. (2019) apply this notion to text classifi-
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Example 1
original
(correct)

"In fact, Roxanne told me that she had scheduled an interview with a source tonight." Denise sipped at her
lemonade through her straw until she found the bottom of her glass at last. Scotty told Chris that Denise didn’t

give him any particulars about why she needed to hire a private detective when she sought his advice.
gender-
controlled
(correct)

"In fact, Denise told me that she had scheduled an interview with a source tonight." Roxanne sipped at her
lemonade through her straw until she found the bottom of her glass at last. Chris told Scotty that Roxanne

didn’t give him any particulars about why she needed to hire a private detective when she sought his advice.
gender-
swapped-
1
(incorrect)

"In fact, Chris told me that he had scheduled an interview with a source tonight." Scotty sipped at his lemonade
through his straw until he found the bottom of his glass at last. Denise told Roxanne that Scotty didn’t give

her any particulars about why he needed to hire a private detective when he sought her advice.
gender-
swapped-
2
(incorrect)

"In fact, Scotty told me that he had scheduled an interview with a source tonight." Chris sipped at his lemonade
through his straw until he found the bottom of his glass at last. Roxanne told Denise that Chris didn’t give
her any particulars about why he needed to hire a private detective when he sought her advice.

Example 2
original
(correct)

Dora said, "You ought not to bet, especially on Sunday," and Alice altered it to "You may be sure." "Well, but
what then?" Oswald asked Denny. "Out with it," for he saw that his youthful friend had got an idea and
couldn’t get it out.

gender-
controlled
(correct)

Alice said, "You ought not to bet, especially on Sunday," and Dora altered it to "You may be sure." "Well, but
what then?" Denny asked Oswald. "Out with it," for he saw that his youthful friend had got an idea and

couldn’t get it out.
gender-
swapped-
1
(incorrect)

Oswald said, "You ought not to bet, especially on Sunday," and Denny altered it to "You may be sure." "Well,
but what then?" Dora asked Alice . "Out with it," for she saw that her youthful friend had got an idea and
couldn’t get it out.

gender-
swapped-
2
(correct)

Denny said, ""You ought not to bet, especially on Sunday,"" and Oswald altered it to ""You may be sure.""
""Well, but what then?"" Alice asked Dora. ""Out with it,"" for she saw that her youthful friend had got an
idea and couldn’t get it out.

Table 7: Examples from Counter-GAP. In each instance, the predicted coreference cluster from the model is
highlighted in yellow , and the correctness of the prediction is annotated in the first column. The target pronoun is
in bold and underlined; also underlined is the true coreferent name. Other notations follow those in Table 1.

cation and propose the metric of Counterfactual To-
ken Fairness, which is similar to our inconsistency
metrics, but we further distinguish inconsistency
within genders from inconsistency across genders
in our quadruple setting. Counterfactual Data Aug-
mentation (CDA) (Webster et al., 2020; Zmigrod
et al., 2019) is a widely adopted method for bias
evaluation (Cao et al., 2020; Zhang et al., 2021),
and we additionally focus on personal names dur-
ing counterfactual generation of coreference reso-
lution instances.

Name Artifacts in NLP Models. Since neural
language models do not treat personal names as
interchangeable, there are various biases in the
learned representations of personal names (Shwartz
et al., 2020; Prabhakaran et al., 2019; Wolfe and
Caliskan, 2021; Wang et al., 2022). Counter-GAP
considers name biases as the source of gender bias,
and exhibits these name biases through the task of
coreference resolution.

8 Summary and Outlook

In this work, we proposed a method to construct
minimally distant bias-measuring datasets for coref-
erence resolution, and exemplified it in the collec-
tion of Counter-GAP. We proposed the inconsis-
tency metric ∆I to overcome the bias cancellation
problem and noise from name perturbations. We
showed that four pre-trained language models ex-
hibit significant gender bias, and name-based CDA
is most effective in mitigating the detected bias.

Limitations of Counter-GAP include that around
half of the instances are from historical fictions
in Project Gutenburg, making the dataset less rep-
resentative of contemporary bias; the rules in our
method for constructing Counter-GAP are specific
for English, and might not be easily adapted to lan-
guages with more complex morphology; while we
recognize that gender is non-binary, we adopt the
simplifying setup of binary gender construct, which
prevents us from detecting gender bias against mi-
nority groups with non-binary genders.
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In future work, we will apply our method to dif-
ferent domains and more contemporary corpora
such as news articles. Leveraging the data aug-
mentation method for languages with grammatical
genders (Zmigrod et al., 2019), as well as linguistic
resources for non-binary genders (Cao et al., 2020)
is also an important future direction to construct
more gender- and language-inclusive datasets.

Limitations

Counter-GAP adopts the setup of a binary gender
construct, which restricts it from detecting bias
against non-binary gender groups. Future work
may extend Counter-GAP using non-binary gen-
dered word lists, and correspondingly extend our
metric (inconsistency across and within binary gen-
der groups) for multiple gender groups.

Our method relies on specific characteristics of
the English language. Directly applying it to other
languages may be non-trivial. For example, lan-
guages like French or Italian adopt grammatical
genders that need extra rules in our counterfactual
generation method, while Chinese names are, in
principle, gender neutral, which makes it impossi-
ble to identify genders from personal names. There-
fore, adaptation efforts are required for researchers
working on multilingual problems.

Like many other bias-measuring datasets, Coun-
ter-GAP only serves as a diagnostic dataset. This
means that, if our dataset and metric detect sig-
nificant bias, we could deem a model biased; but
if little or no bias is detected, we cannot guaran-
tee that the model is unbiased. Practitioners may
adopt diverse bias benchmarks before reaching a
conclusion.
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A Training Details

Training details follow those by Joshi et al. (2019,
2020), and the hyperparameters adopted for
each model during fine-tuning on OntoNotes are
shown in Table 8. Specifically, each document
in OntoNotes is divided into non-overlapping
segments of length max_segment_len. The
segments are then encoded independently by
BERT/SpanBERT to contextualized word embed-
dings and fed to the c2f-coref model (Lee
et al., 2018). The models are fine-tuned
for 20 epochs with a dropout rate of 0.3,
bert_learning_rate on parameters in
BERT/SpanBERT, and task_learning_rate
on parameters in c2f-coref. The learning rates
are linearly decayed. A batch size of one document
is used, where each document is randomly trun-
cated to contain max_training_sentences
segments. All the experiments are conducted on
one Tesla-V100 GPU with 32 GB memory.

For the debiasing method n-CDA, we adjust the
bipartite graph matching method from Hall Maud-
slay et al. (2019) to fit the name list in our gender-
guesser. Specifically, in our name list, each first
name is assigned a label in {“male”, “mostly male”,
“female”, “mostly female”} indicating its gender
specification, as well as a 55-dimensional fre-
quency vector. The value in each dimension is an
integer in [0, 13] that indicates the name’s relative
frequency in one of the 55 countries. Below, we
only describe how we match “male” with “female”
names; the method to match “mostly male” with
“mostly female” names is the same. We build a
bipartite graph where “male” and “female” names
are nodes in distinct parts, and define the weight of
an edge between a “male” and a “female” name as
wi,j = ∥vi− vj∥2 · (α− cos⟨vi, vj⟩), where vi and
vj are the frequency vectors of the two names, and
α > 1 is a hyperparameter balancing the ℓ2 and the
cosine distance. Our motivation is to encourage a
rare name to be matched with even a popular name
in the same country other than another rare name in
a different country, so we choose α = 12/11. Fi-
nally, we leverage a minimum weight full matching
algorithm (Kuhn, 1955) to compute the matches
between the names in the two parts.

B Amazon Mechanical Turk Annotation
Details

Our annotation instructions and a sample Human
Intelligence Task (HIT) interface are shown in Fig-

ure 2. To ensure the annotation quality, we im-
plement a series of on-submission checks includ-
ing checks on whether the selected span is a per-
sonal name, whether multiple entities are selected,
whether the “no names are coreferent” box is mis-
used, and so on. We require annotators to have at
least a 95% approval rate with more than 50 ap-
proved HITs. The average time an annotator spent
on one HIT is around 30 minutes.

C Illustration of the Inconsistency
Metrics

A conceptual illustration of the proposed inconsis-
tency metrics is shown in Figure 1: inconsistency
across genders (Iacross) measures inconsistency in
instance pairs containing two instances of differ-
ent genders, while inconsistency within genders
(Iwithin) measures inconsistency in instance pairs
containing two instances of the same gender.

Figure 1: Illustration of the two inconsistency metrics.
When computing inconsistency within genders, we use
instance pairs linked by the two black arrows; when
computing inconsistency across genders, we use in-
stance pairs linked by the four red arrows.
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BERT-base BERT-large SpanBERT-base SpanBERT-large
bert_learning_rate 1e-5 1e-5 2e-5 1e-5
task_learning_rate 2e-4 2e-4 1e-4 3e-4
max_segment_len 128 384 384 512
max_training_sentences 11 3 3 3

Table 8: Hyperparameters for fine-tuning.

Figure 2: A sample HIT interface and annotation instructions.
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Abstract

Transformer models cannot easily scale to long
sequences due to their O(N2) time and space
complexity. This has led to Transformer vari-
ants seeking to lower computational complex-
ity, such as Longformer and Performer. While
such models have theoretically greater effi-
ciency, their effectiveness on real NLP tasks
has not been well studied. We benchmark 7
variants of Transformer models on 5 difficult
NLP tasks and 7 datasets. We design experi-
ments to isolate the effect of pretraining and hy-
perparameter settings, to focus on their capacity
for long-range attention. Moreover, we present
various methods to investigate attention behav-
iors to illuminate model details beyond metric
scores. We find that the modified attention in
long-range transformers has advantages on con-
tent selection and query-guided decoding, but
they come with previously unrecognized draw-
backs such as insufficient attention to distant
tokens and accumulated approximation error.

1 Introduction

Transformer-based models (Vaswani et al., 2017)
have advanced the state of the art in natural lan-
guage processing. However, their quadratic time
and space complexity hinder their application on
long texts. Various proposals have been made to ad-
dress these concerns (Tay et al., 2020c), with math-
ematical guarantees on improved time or space.
These models have been evaluated primarily via
perplexity (Dai et al., 2019) and non-NLP bench-
marks (Tay et al., 2020b). These metrics may not
be ideal (Sun et al., 2021) and may not reflect per-
formance on complex NLP tasks (Arutiunian et al.,
2020; Thorne et al., 2021). We argue these met-
rics have not been sufficient for the development
of efficient Transformers and their practical appli-
cation on long texts, and that existing benchmarks
are insufficient guides for architecture selection.

It is not straightforward to have a fair and side-
by-side comparison among those models due to the

differences between their pretraining and hyperpa-
rameter settings (Tay et al., 2020c), and the metrics
alone cannot convey detailed information about the
self-attention blocks (Sun et al., 2021). We wish
to fairly validate the effectiveness of long-range
attention techniques, and to uncover the underlying
factors behind model behaviors. We critique the re-
liance on perplexity evaluations in previous work,
experimenting with five difficult, long-text NLP
tasks. These tasks cover typical NLP modeling sce-
narios: token or span-level prediction, sequence-
level classification, and sequence-to-sequence gen-
eration. To our knowledge, this is the first work to
evaluate long-range transformers on such a wide
spectrum of representative NLP tasks.

To verify the key features of long-range trans-
formers, we ablate distant attention to measure
what they gain from long-range mechanisms. For
models without pretrained checkpoints, we migrate
parameters from their prototype models for fairness.
We cover 3 main kinds of long-range transformers,
including pattern-, recurrence-, and kernel-based
methods. To our knowledge, we are the first to
adopt all these methods to probe transformers. To
investigate the relationship between performance
and document lengths we break down the metric
with a customized algorithm (Bagga and Baldwin,
1998). Also, we use entropy and attribution anal-
ysis (Li et al., 2017) to test the effectiveness of
cached memories in recurrent transformers and the
global tokens for query-based problems.

We find that long-range context brings perfor-
mance gains to transformers in some cases, which
we attribute to more selective attention, especially
for query-based tasks like QA. Surprisingly we
observe that some long-range models do not ef-
fectively utilize distant information, and the accu-
mulated error of approximation is unacceptable.
We hope this analysis helps practitioners better un-
derstand the current state of the art of long-range
attentions and suggests paths for future research.
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  Pre-specified sparsity patterns

Sparsify the attention matrix (QK^T)

Sliding window Dilated Global Blocked 

Sparse Transformer

Longformer

Longformer Longformer

ETC

Big Bird

GMAT

Block-wise

ETC

Big Bird

Sinkhorn

Big Bird

Random

A variety of patterns has been explored in the past work

Figure 1: Illustration of 5 patterns used by long-range transformers, from Beltagy et al. (2021) with permission.

2 Background

2.1 Long-Range Transformers
Researchers have proposed a number of Trans-
former variants (Tay et al., 2020c). Most of these
models support decoding (causal masking) (Peng
et al., 2021a), while only a few of them have pre-
trained checkpoints (Beltagy et al., 2020, inter alia).
We cluster these approaches into 3 main categories.

Sparsified Patterns Pattern-based methods try
to make self-attention sparse. Some apply pre-
specified attention patterns. Specifically, Long-
former (Beltagy et al., 2020) applies 3 patterns:
Sliding window requires that each token can only at-
tend to the tokens in a local window, dilated pattern
lets each token only attend at fixed intervals, while
the global pattern requires a few tokens as globally
attended and lets them to attend all tokens in the
sequence. In addition to the global pattern, Big-
Bird (Zaheer et al., 2020) applies a blocked pattern,
which splits the sequence into fixed-length blocks,
and random patterns, by which tokens can attend to
any other tokens randomly. An illustration is shown
in fig. 1. Although the attention of each layer is not
full, the receptive field can be increased as multi-
ple layers are stacked. The selected or appended
“global” tokens can be task-specific (Beltagy et al.,
2020), allowing for direct distant information ex-
change. Instead of pre-defined attention patterns,
some use content-based patterns so they become
learnable, with techniques including locality sensi-
tive hashing (Kitaev et al., 2020), the differentiable
Sinkhorn algorithm (Tay et al., 2020a), or the learn-
able routing algorithm (Roy et al., 2020).

Recurrence & Compressed Memory These
methods use segment-level recurrence to reuse
the cached hidden states of previous steps.
Transformer-XL (Dai et al., 2019) and XL-
Net (Yang et al., 2019) connects different chunks
with cross-attention, where the tokens in a block
attend to the hidden states of the previous blocks
in addition to their self-attention. Note that the

x1 x2 x4x3 x8x5 x6 x7

New Segment

x12x9 x10 x11

Fixed (No Grad)

x1 x2 x4x3 x8x5 x6 x7

Fixed (No Grad) New Segment

(a) Training phase.

x1 x2 x4x3 x8x5 x6 x7 x12x9 x10 x11

Extended Context

(b) Evaluation phase.

Figure 2: Illustration of the Transformer-XL model with a segment length 4.

per-segment, which differs from the same-layer
recurrence in conventional RNN-LMs. Conse-
quently, the largest possible dependency length
grows linearly w.r.t. the number of layers as well
as the segment length, i.e., O(N × L), as vi-
sualized by the shaded area in Fig. 2b. This
is analogous to truncated BPTT (Mikolov et al.,
2010), a technique developed for training RNN-
LMs. However, different from truncated BPTT,
our method caches a sequence of hidden states in-
stead of the last one, and should be applied to-
gether with the relative positional encoding tech-
nique described in Section 3.3.

Besides achieving extra long context and re-
solving fragmentation, another benefit that comes
with the recurrence scheme is significantly faster
evaluation. Specifically, during evaluation, the
representations from the previous segments can
be reused instead of being computed from scratch
as in the case of the vanilla model. In our ex-
periments on enwiki8, Transformer-XL is up to
1,800+ times faster than the vanilla model during
evaluation (see Section 4).

Finally, notice that the recurrence scheme does
not need to be restricted to only the previous seg-
ment. In theory, we can cache as many previous
segments as the GPU memory allows, and reuse
all of them as the extra context when processing
the current segment. Thus, we can cache a prede-
fined length-M old hidden states spanning (pos-
sibly) multiple segments, and refer to them as the
memory mn

τ ∈ RM×d, due to a clear connection to
the memory augmented neural networks (Graves
et al., 2014; Weston et al., 2014). In our experi-
ments, we set M equal to the segment length dur-
ing training, and increase it by multiple times dur-
ing evaluation.

3.3 Relative Positional Encodings

While we found the idea presented in the pre-
vious subsection very appealing, there is a cru-
cial technical challenge we haven’t solved in or-

der to reuse the hidden states. That is, how can
we keep the positional information coherent when
we reuse the states? Recall that, in the standard
Transformer, the information of sequence order is
provided by a set of positional encodings, denoted
as U ∈ RLmax×d, where the i-th row Ui corre-
sponds to the i-th absolute position within a seg-
ment and Lmax prescribes the maximum possible
length to be modeled. Then, the actual input to the
Transformer is the element-wise addition of the
word embeddings and the positional encodings. If
we simply adapt this positional encoding to our
recurrence mechanism, the hidden state sequence
would be computed schematically by

hτ+1 = f(hτ ,Esτ+1 +U1:L)

hτ = f(hτ−1,Esτ +U1:L),

where Esτ ∈ RL×d is the word embedding se-
quence of sτ , and f represents a transformation
function. Notice that, both Esτ and Esτ+1 are as-
sociated with the same positional encoding U1:L.
As a result, the model has no information to dis-
tinguish the positional difference between xτ,j and
xτ+1,j for any j = 1, . . . , L, resulting in a sheer
performance loss.

In order to avoid this failure mode, the funda-
mental idea is to only encode the relative posi-
tional information in the hidden states. Concep-
tually, the positional encoding gives the model a
temporal clue or “bias” about how information
should be gathered, i.e., where to attend. For the
same purpose, instead of incorporating bias stati-
cally into the initial embedding, one can inject the
same information into the attention score of each
layer. More importantly, it is more intuitive and
generalizable to define the temporal bias in a rela-
tive manner. For instance, when a query vector qτ,i
attends on the key vectors kτ,≤i, it does not need
to know the absolute position of each key vector
to identify the temporal order of the segment. In-
stead, it suffices to know the relative distance be-
tween each key vector kτ,j and itself qτ,i, i.e. i−j.
Practically, one can create a set of relative posi-

Figure 2: Recurrent transformers. “No Grad” means
that the gradients do not back-propagate to this block.
Obtained from Dai et al. (2019) with permission.

gradients remain in the same segment and are not
propagated to previous segments (fig. 2). To re-
duce the number of history hidden states, Rae et al.
(2020) compress them as memories for efficient
re-use with pooling or convolutions. From a dif-
ferent perspective, Izacard and Grave (2021) use
retrieval-based methods to collect evidences from
external knowledge, resulting in a more targeted
context information.

Low-Rank & Kernels These methods approxi-
mate the self-attention with low-rank approxima-
tion (Wang et al., 2020) or kernelization with-
out explictly computing the matrix production.
Among them, Choromanski et al. (2021); Peng et al.
(2021b) use random features. Katharopoulos et al.
(2020) reduce the time complexity to linear and
space complexity to constant by replacing softmax
with linear kernel features.

2.2 Benchmarks and Analysis

There is not an agreed-upon standard benchmark
for long-range transformers. Researchers have con-
sidered various tasks and domains, including lan-
guage (Dai et al., 2019), protein sequences (Choro-
manski et al., 2021), and images (Katharopoulos
et al., 2020). Few conduct experiments on long
sequence NLP tasks, including question answer-
ing (Beltagy et al., 2020) and summarization (Za-
heer et al., 2020). Tay et al. (2020b) propose Long
Range Arena comprised of six non-NLP tasks to
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exclude the factor of pretraining. Concurrent to our
efforts, Shaham et al. (2022) propose a suite of text-
to-text tasks as a long sequence NLP benchmark.

Researchers are also interested in the utility of
context in transformers. Rae and Razavi (2020)
find that Transformer-XL does not necessarily need
long and deep contexts. Sun et al. (2021) reveal
that Longformer and Routing transformers can only
reduce the perplexity of LMs on a small set of
tokens. More related to our work, Lai et al. (2020)
show that BERT can make use of a larger scope of
context than a BiLSTM.

3 Setup

3.1 Settings

It is non-trivial to compare distinct transformer
models, due to differences between their pretrain-
ing and hyper-parameter settings. Our goal is to
minimize these confounding factors to allow a fo-
cus on the long range attention ability of each
model on different tasks. We therefore propose
two sets of experimental conditions.

Restricted Attention Range To evaluate the per-
formance gain from long-range attention, we eval-
uate models in both their default context-aware
settings and a context-agnostic setting that restricts
the receptive range of the self-attention blocks. For
pattern-based transformers, we achieve the restric-
tion by segmenting the input sequence into chunks
and running the transformers on segments inde-
pendently. For recurrent models, we ablate the
recurrence to eliminate the dependencies between
segments. In practice, we segment the texts into
chunks with length L,1 which ranges from 128 to
1536. L=∞ indicates no segmentation is used.

Parameter Migration Kernel-based models usu-
ally do not come with checkpoints for general tasks,
but they may have similar structures to other pre-
trained models like BERT and may be designed
to approximate the original results. Therefore, it
is feasible to migrate parameters from pretrained
prototypes to their “efficient version” to observe
if the performance could be preserved. This type
of method can be suitable for models without addi-
tional parameters, such as Performer.

3.2 Transformers and Tasks
Transformers We consider three approaches: 1)
pattern-based: Longformer (Beltagy et al., 2020),

1We use wordpieces instead of words in this paper.

Dataset Task #tokens #docs
Ontonotes Coref. 467 3493
TriviaQA eQA 2895 95k
DocNLI NLI 399 1.44m
SummFD Summ. 5.6k 4.3k
GovRep Summ. 7.9k 19k
Qasper aQA 3.7k 5.7k
QuALITY aQA 4.2k 6.7k

Table 1: Task and dataset overview. The #tokens is the
number of tokens per doc on average.

and BigBird (Zaheer et al., 2020); 2) recurrent:
XLNet (Yang et al., 2019); and 3) kernel-based:
Performer (Choromanski et al., 2021). We also
include the results of RoBERTa (Liu et al., 2019)
and SpanBERT (Joshi et al., 2020), where some of
our approaches are initialized from those two non-
long-range models. Due to memory requirements,
we use the base version for all models.2 You may
refer to appendix B for more details.

Tasks We cover five tasks of three types, includ-
ing 1) span-level predictions: coreference resolu-
tion (Coref.) (Weischedel et al., 2011) and extrac-
tive question answering (eQA) (Joshi et al., 2017);
2) sequence classification: natural language infer-
ence (NLI) (Yin et al., 2021);3 and 3) seq2seq:
summarization (Summ.) (Chen et al., 2021; Huang
et al., 2021), abstractive QA (aQA) (Dasigi et al.,
2021; Pang et al., 2022). We pick seven datasets
that involve long texts, whose statistics are shown
in table 1. For more details about the data prepro-
cessing, please refer to appendix A.4

4 Experiments

4.1 Coreference Resolution
Coreference resolution (coref.) is the task of
identifying mention spans and clustering them
into entities. We consider multiple coreference
strategies: 1) the widely used Coarse2Fine (C2F)
method5 (Lee et al., 2018) which relies on span
representations and 2) the current state-of-the-art
method called Start2End (S2E) (Kirstain et al.,
2021) that works on token representations. The

2We used the codebase of Katharopoulos et al. (2020) for
Performer and Huggingface (Wolf et al., 2020) for the rest.

3DocNLI is modified from ANLI (Nie et al., 2020),
SQuAD (Rajpurkar et al., 2016), DUC2001, DailyMail (Nal-
lapati et al., 2016), and Curation (Curation, 2020)

4Our codebase is available on https://github.com/
hiaoxui/long-range-transformers.

5We used the re-implementation by Gardner et al. (2018).
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Encoder L=128 L=256 L=512
M

od
el

:C
oa

rs
e2

Fi
ne

Longformer 75.74 76.72 77.36
LongformerG 75.68 76.25 77.23
BigBird 75.95 76.78 77.64
XLNet 74.57 74.48 74.33
XLNetm 74.73 75.76 76.29
RoBERTa 74.64 76.45 76.83
RoBERTap 51.58 51.71 50.39
SpanBERT 75.04 75.84 76.59
SpanBERTp 52.46 52.06 50.51
Longformer 76.77 (1024) 76.32 (∞)
BigBird 77.31 (1024) 77.57 (∞)

M
od

el
:S

ta
rt

2E
nd

Longformer 74.77 76.27 77.73
LongformerG 74.15 76.19 77.41
BigBird 73.68 75.57 77.40
XLNet 45.89 60.05 68.23
XLNetm 52.61 56.37 66.91
RoBERTa 71.96 76.27 77.78
RoBERTap 40.06 42.35 41.69
SpanBERT 68.70 74.27 75.32
SpanBERTp 38.69 41.93 42.10
Longformer 77.54 (1024) 77.57 (∞)
BigBird 77.43 (1024) 77.66 (∞)

Table 2: Coref. results with the C2F and the S2E models.
Numbers are averaged F1 (MUC, B3, and CEAFϕ4

).
Longformer with G uses global tokens. XLNet with m

uses recurrence memory. Encoders with p have their
self-attention replaced with a Performer kernel.

dataset we use is Ontonotes 5.0. Transformers
considered include Longformer, XLNet, and Per-
former. We migrate the parameters of SpanBERT
and RoBERTa to Performer and include results on
these models as well. We segment the input tokens
into chunks with lengths of L . For models with
global tokens, we lack a natural choice so we con-
sider all tokens to be global. For XLNet, we keep
the memory of the same length of the segments (e.g.
we keep a memory length of 256 for a model with
segment length 256).6 The results are shown in
table 2. Refer to appendix F.1 for complete results.

Some observations are consistent across two
coref. models. 1) Though further pretrained upon
RoBERTa, pattern-based methods do not show im-
provement over RoBERTa, even with longer at-
tention range. 2) Models gain advantage when
the segments get longer, but it is saturated when
the segment length reaches 512. Distant contexts

6We adopt the same strategies with segmentation and mem-
ories in the remainder of the paper.
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Longformer (L=4096)
XLNetm (L=512)

Figure 3: B3 breakdown scores of 4 models for mention
pairs with ranges from [1, 8) to [512,∞).

might not be exploited. 3) Performer-based models
under-perform their corresponding non-kernelized
models by a huge gap. 4) XLNet performs better
with cached memory, but the performance gain is
less observable when for shorter segments. 7

To further show the performance of those models
on documents with different lengths, we conduct
metric breakdown with a few typical configurations.
Instead of simply clustering the document accord-
ing to the lengths, we propose a breakdown-version
B3 metric. Given a mention distance range [L1, L2],
we calculate its corresponding B3 value by only
considering the mention pairs whose distances fall
into this range. The breakdown metrics are shown
in fig. 3. We can see that the performance of all
models follows the same trend and peaks at the
[16, 32) bucket. Also, the graph shows that Long-
former with longer context encoding does NOT
benefit on distant mentions (p value < 0.01). 8 On
the contrary, they suffer more from distance than
shorter-context models, showing that long-range at-
tention fails to capture long-distance information.

4.2 Natural Language Inference

NLI is a classification task concerning a premise
and hypothesis with variable lengths. The DocNLI
dataset uses document-length inputs with binary
labels (entailment and not entailment).
We adopt the model proposed by Yin et al. (2021),
and consider Longformer, BigBird, Performer,
and XLNet. We make the prediction on the CLS to-
ken, which is at the beginning for Longformer and
the end for XLNet. Since we are only interested
in the encoding of CLS, we adopt the strategy of
Yin et al. (2021) which truncates the sequence to
L while preserving the hypothesis for Longformer
and RoBERTa. The results are shown in table 3.

7The observations on XLNet and Performer are consistent
across all the tasks in this paper.

8We conduct significance test for the comparison between
curves. Please refer to appendix D for more details.
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Encoder L=128 L=256 L=512
XLNet 29.95 40.39 24.31
XLNetm 32.94 45.97 30.42
RoBERTa 48.96 47.78 46.04
RoBERTap 17.83 24.91 23.65
Longformer 29.11 25.73 45.28
BigBird 28.95 24.71 31.72
Longformer 45.96 (1024) 44.42 (∞)
BigBird 33.58 (1024) 18.08 (∞)

Table 3: F1 scores on the test set for DocNLI.
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RoBERTa (L=128)
Longformer (L=1024)
XLNetm (L=256)

Figure 4: The breakdown analysis of DocNLI. We pick
the best configuration for each model for brevity.

Observing table 3, surprisingly, the best perfor-
mance is achieved with short segments, though the
optimal lengths vary from model to model. Also,
the performance of Longformer and BigBird is
much lower than their baseline RoBERTa (c.f. Yin
et al. (2021)). Observing the breakdown analysis
in fig. 4, the performance of 3 best models follow
the same trend w.r.t. the document length.9 We
speculate that all models are unable to comprehend
the relationship between long documents, and long-
range attention does not bring any advantage.

4.3 Question Answering

For question answering we experiment with eQA
(TriviaQA) and aQA (Qasper and QuALITY).
Performer, Longformer, BigBird, and XLNet
are tested for encoder-only tasks; BART and
Longformer-Encoder-Decoder (LED) is used for
seq2seq tasks. For LongformerG and BigBird, we
set the question text (and candidate answers for
QuALITY) as global tokens.10 TriviaQA is a ques-

9The graph looks less smooth than fig. 3, possibly because
DocNLI is made up of examples pulled from different datasets,
which may have examples of different average lengths (cf. tab
1 in Yin et al. (2021)). Therefore the length of an example in
DocNLI may correlate with different domains making up the
dataset, which would interfere with our analysis. Future work
will consider other datasets without this confounding concern.

10The global tokens of BigBird are fixed in the first 2 blocks,
so we place the query at the beginning of the sequence.

Encoder L=128 L=256 L=512
Longformer 54.26 58.83 63.88
RoBERTa 55.81 60.29 63.45
RoBERTap 23.17 21.87 21.11
BigBird 55.28 59.39 63.51
XLNet 51.46 56.26 60.05
XLNetm 52.71 57.96 62.85
Longformer 63.91 (1024) 63.66 (∞)
LongformerG - (1024) 72.96 (∞)
BigBird 66.50 (1024) 71.78 (∞)

Table 4: Results for TriviaQA. LongformerG indicates
that the Longformer sets question as the global tokens.

Chunk 512 1024 1536 ∞

Q
as

pe
r BART 24.70 26.30 - -

LED 8.40 15.80 17.86 18.79
LEDG - - - 28.64

Q
LT

Y BART 26.80 26.00 - -
LED 30.73 31.35 31.78 31.21
LEDG - - - 29.87

Table 5: Performance Qasper and QuALITY. Qasper is
evaluated with F1 and QuALITY with accuracy. The
results on BART are from Shaham et al. (2022).

tion answering dataset that involves extracting an-
swer spans from reference documents. We adopt
the method and codebase of Joshi et al. (2017). F1
is used as evaluation metrics. Qasper addresses
the QA task in the domain of academic papers and
involves various answer types: extractive, abstrac-
tive, boolean, and unanswerable. We unify such
tasks as an abstractive QA task (cf. Shaham et al.
(2022)) and implement an LED-based decoder to
generate answers. F1 score is used for the evalu-
ation of Qasper. QuALITY is a multiple-choice
QA task. Given a question and a passage, the task
is to select the correct answer from several candi-
dates. We regard it as a seq2seq problem, with the
objective to predict the correct answer conditioned
on the concatenation of query, candidate answers,
and passage. During inference, the answer with the
least perplexity is selected. All results are shown
in tables 4 and 5, and the full results with more
metrics are shown in appendix F.2.

Across all results, we find that larger receptive
fields lead to better performance in most cases.
More importantly, setting queries as global tokens
greatly benefits the performance on both eQA and
aQA. For QuALITY, it slightly hurt the perfor-
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Figure 5: The performance of Longformer and BigBird
on different lengths of TriviaQA documents. Note that
LongformerG and BigBird (L=∞) have global tokens.

Chunk 512 1024 1536 ∞

SF

BART 26.30 27.20 - -
LED 32.81 33.07 33.22 33.57

G
R BART 45.60 47.90 - -

LED 53.86 54.13 54.83 56.60

Table 6: Results for Summarization on SummFD and
GovRep. ROUGE unigram is used as the metric. Re-
sults on BART are from Shaham et al. (2022).

mance to set both query and candidate as global
tokens. We reckon too many global tokens might
introduce more noise, similar to the case of coref.

We speculate that the performance gain mostly
comes from enhanced attention to the query, which
if further verified by the metric breakdown that
is shown in fig. 5. All models perform well on
short texts, while models with global tokens obtain
an observably greater advantage over the baseline
models for longer documents (p value < 0.01). We
think that the global token mechanism could help
the model be less distracted on long texts via more
attention on the queries (section 5.3), which conse-
quently improves the performance.

4.4 Summarization
As a typical seq2seq problem, we adopt LED to per-
form the summarization task. We chunk the source
sequence into segments (no segmentation for L =
∞) to restrict the receptive range. Intuitively, the
summary may be benefited from the contextual rep-
resentation with a broader view of the document.
Two datasets are used: SumScreen addresses the
domain of TV shows. Following Shaham et al.
(2022), we use the subset of ForeverDreaming
(SummFD) consisting of 88 different shows. The
goal is to summarize the transcript of an episode,
for which the recap is used as the ground truth
summary. GovReport is a long-document sum-
marization dataset in the domain of government
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Figure 6: The gradient distribution over tokens for
XLNetm on DocNLI documents.

policies with human-written summaries. ROUGE
(Lin, 2004) is used as the evaluation metric. Re-
sults are shown in Table 6, and the full results are
shown in appendix F.3.

From table 6, we observe slight superiority of
the context-aware models. Note that cross attention
will attend to all source tokens whether we segment
it or not, but the intuition of summarization is to
skim over the document, so we speculate that the
performance improvement may be related to the
selectivity of the encoder-side attention, which is
further analyzed in section 5.2. We do not conduct
breakdown analysis for summarization because the
sequence length directly contributes to the metric.

5 Analysis

5.1 The Attribution of Recurrence Memories

Even if we know that distant contexts can help or
hurt performance, it’s still unclear how much they
contribute to the predictions. One way to quantify
this is attribution analysis (Simonyan et al., 2014;
Li et al., 2017). Suppose ℓ is our loss function and
ei ∈ Rd is the word embedding of the i-th token.
We use αi to measure the attribution of the i-th
token to the final prediction where

αi =

∥∥∥∥
∂ℓ

∂ei

∥∥∥∥
l

. (1)

We set l = 1 to take the L1 norm in practice, and
the ground truth labels in the test set are used to cal-
culate the gradient. Intuitively, tokens with higher
contribution have greater gradient norms. Also, re-
current models like XLNet stop the gradient from
being propagated back to the cached memory, and
we temporarily turn off this feature for analysis.

We apply this method to XLNet on DocNLI,
where we pick 128 documents of lengths between
1,000 and 1,024. We normalize the αi over all
tokens for each document, and take an average on
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Figure 7: Attention distribution entropy (above) for doc-
uments with different lengths and attribution analysis
(below) over source tokens for LED on SummFD.

each token index across all documents. The results
are shown in fig. 6. Note that prediction is made in
the last segment, and previous segments contribute
only through the memory. We see the attribution
of tokens is stratified according to their segment
lengths, with a minor peak at the CLS token of each
segment. As we have more and more segments, the
attribution of distant tokens to the final prediction
becomes negligible. For example, in the case of
L=128, last segment made 53.4% of attribution,
while the first segment made less than 0.01%.

5.2 Content Selection in Cross Attention

The cross attention of LED attends to the whole
document no matter if we segment the inputs or
not, thus we suppose source tokens should have
similar attribution to decoding, which can be veri-
fied by attribution analysis in fig. 7. However, the
crucial problem for summarization is whether the
attention is selective, given that only a portion of
the document is helpful. Therefore, we inspect the
entropy 11 of the cross attention distribution over
the source tokens fig. 7.

Reading the entropy curve, we find that the en-
tropy of models without segmentation (L=∞) is
consistently lower (p value < 0.01), which can be
translated to higher selectivity of cross attention
and explains the superiority of LED (L=∞) in ta-
ble 6. Reading the gradient curve, we find that both

11The distribution entropy is averaged over decoding tokens,
attention heads, and transformer layers.
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Figure 8: The accumulated gradient on query vs. the
proportion of query, i.e. (query length / doc length) with
Longformer and BigBird (L=∞) on TriviaQA.

models have a relatively uniform attribution over
tokens with a slight slope on the left side due to
the existence of short sequences. This is reason-
able because summarization requires the decoder to
skim over the whole document, thus cross attention
should not have a locality preference.

5.3 Query-Guided Extraction and Decoding

Different from other problems, the queries in QA
can be treated as a “guidance” on how to read the
documents. To see if the encoders can exploit this
structure, we conduct attribution analysis on Triv-
iaQA with Longformer and BigBird. The results
are shown on fig. 8, where we plot the relationship
between the proportion of accumulated gradients
on queries and the proportion of query tokens in
the document. It is clear that models with global
tokens pay more attention to queries (p value < 0.01
except for one exception), which is consistent with
the purpose of their design.

For scenarios where seq2seq decoding meets
queries, intuition suggests queries could instruct
the cross-attention to attend to specific tokens, mak-
ing the decoding more selective. From fig. 9, the en-
tropy of attention distribution on source sequence
against the doc length, we see Longformer with
global token unquestionably has lower entropy (p
value < 0.01), implying more targeted decoding.

5.4 Error Accumulation of Kernel Methods

We find that Performer could not match the results
of its prototypes (tables 2 to 4). We suspect that the
error incurred by the kernel approximation may not
be acceptable for span-level tasks like coref. We
conducted another set of experiments: Instead of
training the performer model from the checkpoints
of SpanBERT, we directly replace some layers from
a fine-tuned SpanBERT model with Performer lay-
ers with their parameters preserved. Experiments
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Figure 9: Entropy of source-side attention distribution
vs. document length on Qasper and QuALITY.
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Figure 10: Results of SpanBERT (L=512) with layers
replaced with Performer layers with “#Fea” features.
The baseline is the performance of the original model.

are conducted with C2F on Ontonotes 5.0.
In fig. 10, we try to replace P layers of

SpanBERT in a top-down manner, where P =
1, 2, . . . , 12. We also try using different feature di-
mensions to exclude the possibility of insufficient
features. We find that although large dimension of
random features brings marginal advantages to the
performance, Performer is not very sensitive to this
factor. Instead, the performance drops dramatically
as we replace more layers, from the baseline F1
78 to ~20 with all layers replaced. Based on our
findings, we conclude that Performer is a good ap-
proximation for shallow transformers, even with
very low-dimensional random features. However,
as we stack more transformer layers, the accumu-
lated errors can be unacceptable, which leads to a
failure in the performance.

6 Experiment Confounders

Pretraining and Adaptation The purpose of this
paper is to evaluate the effectiveness of different
long-range attention approaches by reducing the

cat cat+LSTM overlap overlap+LSTM74
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Figure 11: Results of different pooling strategies.

confounder of pre-training, but it is still unclear
how the results would change if we pre-train those
models with the same configuration from scratch.
Unfortunately, it requires much more resources and
introduces more confounders of training settings,
and we adopt the most straightforward way to ab-
late the long-range attention or migrate parameters.
For each model-task pair, we make the most natural
choice, e.g. setting queries as global tokens, trying
to minimize human biases of model adaptations.

Pooling Strategies Concatenating the represen-
tation of segments, while being natural and com-
monly used, is not the only pooling strategy. As
a comparison, we incorporate the results of other
3 solutions: 1) Split the documents into segments
of L tokens with L/2 overlapped between adjacent
segments (Joshi et al., 2019); 2) Stack an LSTM
layer over the Transformer representation of the
segment ; 3) A combination of above methods. We
conduct experiments on the coreference resolution
task with both C2F and S2E solution and many vari-
ants of transformers as our encoder. We leave the
experiment details and discussions in appendix E
and show a brief result in fig. 11. We have simi-
lar observation with Joshi et al. (2019) that over-
lapping does not bring performance improvement.
Moreover, though introducing more parameters, a
stacked LSTM even hurts the performance. We
conclude that pooling strategies do not affect our
analysis in section 5.

7 Discussion

Researchers have proposed many innovative meth-
ods for efficient self-attention over long sequences.
The key ideas work as desired in certain cases,
though we demonstrate several drawbacks.

Surprisingly, pattern-based methods, as the
most popular approach, are not necessarily ben-
efited from long-range attention in the general case.
Larger sliding windows are helpful, but the benefit
would quickly saturate or become negative (table 2).
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However, when a small portion of guidance text
(e.g. query in QA) exists, setting it as global to-
kens can make it more attended and significantly
boost the performance (section 5.3). When such
text doesn’t exist, setting all tokens as global would
hurt the performance (table 2). Moreover, we find
that long-range attention and global tokens are cor-
related with the selectivity of seq2seq problems,
which consequently helps the decoding.

The memory of recurrence models generally
improves performance, proving historical hidden
states are beneficial for transformers in various
tasks. However, XLNet does not fully exploit
the history tokens, with distant information less
attended (section 5.1). We speculate that it is be-
cause XLNet is pretrained to predict masked tokens,
which does not frequently need the participation
of long-range context (Sun et al., 2021). Also, the
stop-gradient trick may hinder the model from ef-
fectively attending to memories.

The approximation of kernel-based methods
works very well for shallow networks, but faces
serious error accumulation problems when trans-
former layers are deeply stacked, which cannot be
remedied by having high-dimensional random fea-
tures (section 5.4). The resulting performance drop
is not acceptable even for the “base” version of
transformer encoders with 12 layers (table 2).

8 Conclusion

We conduct experiments with various long-range
transformers on NLP tasks that involve long se-
quences, trying to fairly evaluate their long-range
attention ability. While some methods are validated
on certain tasks, we also find some previously un-
recognized drawbacks. We further analyze the at-
tention behaviors of these transformers with metric
breakdown, attribution analysis, and entropy anal-
ysis, revealing the performance of those models
might be correlated with the attribution of distant
tokens, selectivity of attentions, or the approxima-
tion errors. We hope our work would shed light on
the future development of long-range transformers.

Model Selection Takeaways Based on our find-
ings, we have the following suggestions. For
common tasks, such as sequence classification or
token-level prediction, it is still competitive to
chunk the inputs and apply short-range transform-
ers. When explicit guiding text, such as queries, ex-
ists, pattern-based models with global token mech-
anism is preferred. For seq2seq problems, long-

range transformers with pretrained checkpoints de-
liver better performance.
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9 Limitations

Energy Cost Our experiments involve a massive
amount of training with many transformers on vari-
ous tasks. Although we don’t conduct any pretrain-
ing, the energy cost is still non-negligible. How-
ever, our hope is our findings here would enable
others to more efficiently select a particular archi-
tecture for their task, rather than reproducing the
work done here.

Experimental Bias Due to the lack of pretrained
checkpoints for general purposes, we focus on rep-
resentative instead of each type of transformer vari-
ant. It is possible that these observations are par-
ticular to specific artifacts and implementations
considered here. Our goal is foremost to provide
a roadmap for continued study on questions raised
in this article, with new architectures being evalu-
ated in the future by model developers themselves.
For similar reasons, existing artifacts are biased
towards English, as are many of the datasets em-
ployed in this study. We do not believe our findings
are specific to English, but it remains for future
work in long range transformer evaluation to ex-
tend our analysis into multilingual conditions.

Language Bias For similar reasons, existing ar-
tifacts are biased towards English, as are many of
the datasets employed in this study. We do not
believe our findings are specific to English, but it
remains for future work in long-range transformer
evaluation to extend our analysis into multilingual
conditions.
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A Data Preprocessing

The coref task usually consumes a large amount of
GPU memory. For the experiments on Ontonotes,
we truncate the sequence longer than 2000 tokens
(for c2f model) or 1400 tokens (for s2e model) for
the memory concern. The truncation was applied
only to the training set.

We didn’t do any pre-processing steps for Doc-
NLI (Yin et al., 2021), except for the truncation that
we discussed in section 4. Notably, DocNLI is an
aggregated dataset constructed from ANLI (Nie
et al., 2020), SQuAD (Rajpurkar et al., 2016),
DUC2001, CNN/DailyMail (Nallapati et al., 2016),
and Curation (Curation, 2020). Documents from
different sources may be distinguishable from their
lengths (refer to tab 1 in Yin et al. (2021).

For TriviaQA, we use the scripts of Long-
former (Beltagy et al., 2020) to pre-process the
data. There is no further modifications on the data.

We adopt the dataset of QuALITY and GovRe-
port from Shaham et al. (2022), which picked long
sequences from those datasets.

For Qasper and SummScreen, we simply adopt
the original dataset and scripts for preprocessing.

B Implementation Details of
Transformers

In this section, we discuss the details of modifica-
tion we did to the transformers.

Recurrence-Based Methods We tested XLNet
for recurrence-based methods. We adopt the code-
base of Huggingface as the base model, and fol-
lowed the common strategy to stop gradient from
being propagated back into the cached memory.
For each segment of the recurrence, we appended
two special tokens SEP and CLS to the sequence,
making it like an ordinary input sequence to the
XLNet model except for the possible existence of
memory states. We concatenated the token repre-
sentations after recurrences and remove the special
tokens from all but the last segment. Empirically,
we found that having special tokens can signifi-
cantly boost the performance.

Pattern-Based Methods For the pattern-based
methods, when we chunked the input sequence into
segments, we appended the SEP as we did for the
XLNet, and prepended the CLS token as a conven-
tion of other transformers. After concatenation, we
removed all the special tokens except for the first

CLS the last SEP, which made it structurally simi-
lar to the outputs of non-segmented transformers.
What’s more, for sliding window mechanism, we
might reduce the window size to segment length if
needed to save compute and memory.

Kernel-Based Methods We tested Per-
former (Choromanski et al., 2021) as a repre-
sentative of kernel-based methods. Given that
training from random initialization would lead
to suboptimal results, we migrate the parameters
from base models (e.g. BERT, RoBERTa) to kernel
methods. In detail, we replace the self-attention
layers of the base models with kernels. Given that
Performer does not require any additional param-
eters, except for the orthogonal random feature
vectors in the FAVOR+ mechanism. Following
the default implementation of the fast transformer
codebase12, we set the feature dimension as the
query dimension by default for main experiments,
though we found the performance isn’t sensitive to
those features in section 5.4.

C Experiments Details

In this section, we introduce the details of our
experiments in the main paper, including hyper-
parameters, training strategies, data split and load-
ing, and other configurations that are necessary to
replicate our results.

Computational Resources All of our experi-
ments were done with NVIDIA RTX 6000 GPU
with 24GB of memory. We did most of the experi-
ments with single cards, except for TriviaQA, for
which we used multi-GPU training with 4 cards.

Coreference Resolution We used two mod-
els: coarse2fine (C2F) (Lee et al., 2018) and
start2end (S2E) (Kirstain et al., 2021). For C2F
model, we used the codebase reimplemented by Al-
lenNLP (Gardner et al., 2018) for its flexibility on
encoder exchange. We used the official codebase
of S2E model for other experiments. We didn’t
change any hypermeters except for the difference
on the encoders. We adopted the same training
strategy of these repos without any modifications,
i.e. we train the model with certain epochs (40
for C2F and 129 for S2E) or until convergence
and pick the model performed best on the dev set
for evaluation. The typical training time of coref
models was 10h for C2F and 24h for S2E.

12https://github.com/idiap/
fast-transformers
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Natural Language Inference Due to the size of
DocNLI dataset (942k training and 234k dev ex-
amples), it’s infeasible to adopt the common train-
ing strategies. Instead, we train the model with
mini-batch gradient descent with a batch size of
4 for only one epoch. Because the training and
dev set are too large to fit into CPU memory, we
split the training set into smaller datasets consisting
of 32768 examples, and iterate over training and
dev set during training. We pick the model with
best performance on the dev set (not the whole
set but one iteration) for test. We use the whole
test set consisting of 267k examples for the final
evaluation. We adopt the same architecture as the
model used in Yin et al. (2021) and reimplement it
with AllenNLP Gardner et al. (2018). The typical
training time is around 2 days and the test time is
around 4 hours.

Question Answering For TriviaQA, we adopted
the training scripts and hyperparameters used by
Beltagy et al. (2020) except for that we set the
training batch size as 4 and number of epochs as
8. The performance is evaluated on the dev set and
we pick the best checkpoint with patience of 3.

For Qasper, we follow the training scripts and
hyper-parameters in its official repository. 13 We
disable the evidence setting, and extend the training
to a maximum epoch of 20. The performance is
evaluated on the dev set with patience of 5.

For QuALITY, we adopt the LED model with
“allenai/led-base-16384” configuration from Hug-
gingface. 14 We concatenate the question, candi-
date answers, and passages as the encoder input,
and the correct answer as the decoder input for
training. During inference, we feed each candidate
answer as the decoder input, and consider the one
with the lowest perplexity as the predicted answer.
We use a warmup steps of 1000 and learning rate
of 5× 10−5 for training. Evaluation is performed
on the dev set with a patience of 5.

Summarization For both the SummScreen and
GovReport datasets, we use the LED model with
“allenai/led-base-16384” configuration. We use a
warmup steps of 1000 and learning rate of 5×10−5
for training and patience of 5 for testing. GovRe-
port is evaluated on the dev set and SummScreen
is evaluated on its official test set.

13https://github.com/allenai/
qasper-led-baseline

14https://huggingface.co/allenai/
led-base-16384

D Significance Test

For the comparison between curves in the section 5,
we conduct significance test using bootstrapping
methods to verify our conclusions. Let D be the
test set for a task. For the performance comparison
between two configurations, we sample a new D∗

from D with replacement and we keep |D∗| =
|D|. We treat the event “configuration A performs
better than B” as a Bernoulli random variable P ,
and compute the probability of the null hypothesis
P < 0.5 as the p value. We sample B = 1024 test
sets for each comparison. If multiple significance
tests are conducted, we only report the larges value
that we obtain. 15

For example, in fig. 3, we claim that the per-
formance of Longformer (L=512) is better than
any other encoders regardless of the mention dis-
tances. To verify it, we conduct significance test
between Longformer (L=512) and other 3 encoders
for every mention distance. The greatest p value
among 24 p tests is smaller than 0.01, so our claim
is secured by our significance test.

E More Pooling Strategies

We conduct experiments with 4 transformers, in-
cluding 2 short-range transformers (RoBERTa and
SpanBERT) and 2 long-range transformers (Long-
former and BigBird) on the coreference resolution
task. We set L=512, which is the maximum accept-
able length for short-range transformers.

The full results are shown in table 7, and a box
plot can be found in fig. 11. In overall, we have
similar observations as Joshi et al. (2019) that over-
lapped segments do not offer improvements on the
performance. Similar findings can be found for
LSTM settings and the combination of them. More
importantly, the performance difference of table 7
is consistently with tables 8 and 11 except for a
few outliers. Thus, we conclude that direct concate-
nation is already enough to exploit the pretrained
transformers, and changing pooling strategies do
not greatly interfere our analysis.

F Full Experiment Results

In this section, we list the full results of all the
experiments in the main paper.

15For the curves in fig. 8, we exclude one exception case at
x = 0.6. For the curves in fig. 9, we exclude one exception
case at x = 500.
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F.1 Coreference Resolution
The full results of coreference resolution are
shown in tables 8 and 11. We use MUC (Vilain
et al., 1995), B3 (Bagga and Baldwin, 1998), and
CEAFϕ4 (Luo, 2005) as the evaluation metrics. Fol-
lowing the convention, we use the “Avg.” as the
main metric, which is an average among the F1
score of 3 metrics. All the results are reported on
the test set.

F.2 Question Answering
The full experiment results on TriviaQA is shown
in table 9. We use both F1 and exact match (EM)
as the metrics. A few cells are left blank because
of the constraints of the transformers.

F.3 Summarization
The full results on summarization is shown in ta-
ble 10. We used ROUGE (Lin, 2004) as the metric.
R1, R2, and R3 stands for ROUGE unigram, bi-
gram, and longest common subsequence. Note
that 1536 is the windows size of the LED model,
and 1024 is the maximum length supported by the
BART model.
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Encoder
MUC B3 CEAFϕ4 Avg.

P R F1 P R F1 P R F1

M
od

el
:C

oa
rs

e2
Fi

ne

RoBERTa 81.6 85.0 83.3 72.1 78.2 75.1 72.1 72.2 72.2 76.8
RoBERTaoverlap 82.9 84.5 83.7 73.1 77.1 75.0 73.5 71.7 72.5 77.1
RoBERTaLSTM 84.3 83.9 84.1 75.0 76.2 75.6 74.5 71.0 72.7 77.5
RoBERTaLSTM

overlap 84.1 84.8 84.5 75.4 77.4 76.4 74.5 72.4 73.5 78.1
Longformer 82.4 85.3 83.8 73.0 78.6 75.7 72.6 72.5 72.5 77.4
Longformeroverlap 82.4 83.8 83.1 72.9 76.0 74.4 72.3 70.5 71.4 76.3
LongformerLSTM 84.2 83.8 84.0 75.3 75.8 75.5 73.8 71.7 72.8 77.4
LongformerLSTM

overlap 84.3 84.2 84.2 75.4 76.6 76.0 74.4 72.3 73.4 77.9
BigBird 81.5 86.9 84.1 71.5 80.9 75.9 72.7 73.1 72.9 77.6
BigBirdoverlap 83.0 84.3 83.6 73.9 76.7 75.3 72.4 72.0 72.2 77.0
BigBirdLSTM 84.2 84.4 84.3 75.0 77.1 76.0 74.0 72.1 73.1 77.8
BigBirdLSTM

overlap 84.5 84.3 84.4 75.7 76.8 76.2 74.8 72.2 73.5 78.0
SpanBERT 83.3 82.9 83.1 74.4 74.8 74.6 72.6 71.7 72.1 76.6
SpanBERToverlap 83.1 83.0 83.0 74.4 75.0 74.7 72.2 72.2 72.2 76.7
SpanBERTLSTM 83.4 82.8 83.1 74.3 74.7 74.5 72.8 70.9 71.8 76.5
SpanBERTLSTM

overlap 83.6 82.6 83.1 74.4 74.6 74.5 72.6 70.8 71.7 76.4

M
od

el
:S

ta
rt

2E
nd

RoBERTa 85.7 82.6 84.1 78.1 74.3 76.2 75.2 70.9 73.0 77.8
RoBERTaoverlap 85.0 82.6 83.8 77.7 73.5 75.6 74.4 71.5 73.0 77.4
RoBERTaLSTM 83.8 81.4 82.6 75.1 72.3 73.7 72.1 69.4 70.8 75.7
RoBERTaLSTM

overlap 83.7 82.9 83.3 75.6 74.6 75.1 73.7 71.4 72.5 77.0
Longformer 85.5 82.6 84.0 78.0 74.5 76.2 75.2 70.7 72.9 77.7
Longformeroverlap 83.9 82.2 83.1 75.5 73.3 74.4 73.8 69.9 71.8 76.4
LongformerLSTM 84.0 80.8 82.3 75.7 71.2 73.4 72.5 68.3 70.3 75.3
LongformerLSTM

overlap 83.7 81.6 82.6 75.3 72.5 73.8 72.5 69.5 71.0 75.8
BigBird 85.7 82.3 84.0 77.9 73.9 75.9 75.7 69.4 72.4 77.4
BigBirdoverlap 84.1 82.4 83.2 76.3 74.2 75.2 74.7 70.8 72.7 77.1
BigBirdLSTM 83.2 81.7 82.4 74.2 72.5 73.3 72.1 68.5 70.3 75.3
BigBirdLSTM

overlap 83.7 81.9 82.8 75.5 73.0 74.2 73.3 69.9 71.6 76.2
SpanBERT 83.5 81.3 82.4 74.6 71.9 73.2 72.3 68.5 70.3 75.3
SpanBERToverlap 82.9 81.2 82.0 74.0 72.3 73.2 72.2 68.5 70.3 75.2
SpanBERTLSTM 70.4 58.9 64.1 47.8 44.7 46.2 59.6 26.7 36.9 49.1
SpanBERTLSTM

overlap 68.3 61.5 64.7 43.6 47.8 45.6 59.3 26.3 36.5 48.9

Table 7: The full results of all experiments with different pooling strategies. All models use the segment length
L=512. Models with superscript “LSTM” indicate it uses LSTM, and subscript “overlap” indicates it uses overlapped
concatenation method. Note that both methods can be applied in the meantime.

3788



Encoder
MUC B3 CEAFϕ4 Avg.

P R F1 P R F1 P R F1
BigBird (L=128) 80.5 85.5 83.0 69.8 78.5 73.9 70.8 71.2 71.0 75.9
BigBird (L=256) 81.1 86.2 83.6 70.5 79.8 74.9 72.1 71.7 71.9 76.8
BigBird (L=512) 81.5 86.9 84.1 71.5 80.9 75.9 72.7 73.1 72.9 77.6
BigBird (L=1024) 82.2 85.5 83.8 72.8 78.4 75.5 72.7 72.5 72.6 77.3
BigBird (L=4096) 81.8 87.0 84.3 71.5 81.0 76.0 72.7 73.2 73.0 77.7
Longformer (L=128) 81.7 83.7 82.7 71.6 75.8 73.7 71.3 70.4 70.9 75.7
LongformerG (L=128) 81.1 84.3 82.7 70.6 76.5 73.4 71.0 70.9 70.9 75.7
Longformer (L=256) 81.6 85.2 83.4 71.8 78.1 74.8 71.6 72.3 72.0 76.7
LongformerG (L=256) 81.4 84.8 83.1 71.4 77.6 74.4 71.0 71.7 71.3 76.3
Longformer (L=512) 82.4 85.3 83.8 73.0 78.6 75.7 72.6 72.5 72.5 77.4
LongformerG (L=512) 82.6 85.0 83.8 73.2 77.9 75.5 72.4 72.4 72.4 77.2
Longformer (L=1024) 82.1 84.9 83.5 72.3 77.7 74.9 72.0 72.0 72.0 76.8
Longformer (L=4096) 82.0 84.2 83.1 72.4 76.2 74.3 71.6 71.6 71.6 76.3
RoBERTa (L=128) 81.4 82.5 81.9 70.7 73.9 72.2 71.4 68.2 69.7 74.6
RoBERTap (L=128) 69.4 57.7 63.0 55.9 42.5 48.3 49.9 38.4 43.4 51.6
RoBERTa (L=256) 82.0 84.5 83.2 72.2 77.2 74.6 72.3 70.7 71.5 76.5
RoBERTap (L=256) 68.7 57.9 62.9 55.7 43.1 48.6 49.3 39.2 43.7 51.7
RoBERTa (L=512) 81.6 85.0 83.3 72.1 78.2 75.1 72.1 72.2 72.2 76.8
RoBERTap (L=512) 68.0 56.1 61.5 55.1 40.8 46.9 48.4 38.4 42.8 50.4
SpanBERT (L=128) 82.0 82.2 82.1 72.0 73.7 72.8 71.5 69.0 70.2 75.0
SpanBERTp (L=128) 70.6 56.8 63.0 58.1 42.9 49.4 50.8 40.5 45.1 52.5
SpanBERT (L=256) 82.7 82.8 82.7 73.0 74.1 73.5 71.9 70.6 71.3 75.8
SpanBERTp (L=256) 70.0 56.4 62.5 58.5 41.7 48.7 50.1 40.8 45.0 52.1
SpanBERT (L=512) 83.3 82.9 83.1 74.4 74.8 74.6 72.6 71.7 72.1 76.6
SpanBERTp (L=512) 67.6 55.7 61.1 56.2 40.8 47.3 47.2 39.8 43.2 50.5
XLNet (L=128, m=0) 81.6 82.7 82.1 71.2 73.4 72.3 70.0 68.6 69.3 74.6
XLNet (L=128, m=128) 81.7 82.6 82.1 71.9 73.3 72.6 69.9 69.0 69.5 74.7
XLNet (L=256, m=0) 79.4 84.2 81.7 68.5 76.0 72.0 68.5 70.9 69.7 74.5
XLNet (L=256, m=256) 84.3 81.8 83.0 75.4 72.2 73.8 72.2 68.9 70.5 75.8
XLNet (L=512, m=0) 79.0 85.2 82.0 67.4 77.4 72.1 69.1 68.8 69.0 74.3
XLNet (L=512, m=512) 82.1 84.1 83.1 72.5 76.1 74.3 72.8 70.3 71.5 76.3

Table 8: Full results on Ontonotes with the coarse2fine model. L is the segment length used to chunk the text.
m is the memory length used for the XLNet model. G denotes that the global tokens are used. p denotes that th
self-attention computation is replaced with Performer kernels.

Encoder
L=128 L=256 L=512 L=1024 L=∞

F1 EM F1 EM F1 EM F1 EM F1 EM
Longformer 54.26 50.02 58.83 54.48 63.88 59.13 63.91 58.91 63.41 58.89
LongformerG - - - - - - - - 72.96 67.88
RoBERTa 55.81 50.73 60.29 56.11 63.45 58.84 - - - -
RoBERTap 23.17 16.80 21.87 15.56 21.11 15.09 - - - -
BigBird 55.28 50.66 59.39 54.34 63.51 58.50 66.50 61.15 71.78 66.86
XLNet 51.46 47.10 56.26 52.08 60.05 55.62 - - - -
XLNetm 52.71 48.03 57.96 52.93 62.85 58.13 - - - -

Table 9: Full results on TriviaQA. We adopt the same notation as we used in table 8.
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Encoder
L=512 L=1024 L=1536 L=∞

R1 R2 RL R1 R2 RL R1 R2 RL R1 R2 RL

SF

BART 26.3 5.1 16.2 27.2 4.9 16.7 - - - - - -
LED 32.8 7.0 18.8 33.1 7.3 18.9 33.2 7.0 18.6 33.6 7.1 18.7

G
R BART 45.6 16.9 21.8 47.9 18.6 22.7 - - - - - -

LED 53.9 24.7 27.1 54.1 25.1 27.9 54.8 25.7 27.8 56.6 26.6 29.1

Table 10: Full results on summarization. “SS” stands for the SummScreen dataset, and “GR” stands for the
GovReport dataset. The BART model does not support sequence longer than 1024 tokens.

Encoder
MUC B3 CEAFϕ4 Avg.

P R F1 P R F1 P R F1
BigBird (L=128) 84.5 78.5 81.4 75.2 68.6 71.7 73.5 63.2 68.0 73.7
BigBird (L=256) 85.1 80.3 82.6 76.7 71.2 73.8 74.7 66.4 70.3 75.6
BigBird (L=512) 85.7 82.3 84.0 77.9 73.9 75.9 75.7 69.4 72.4 77.4
BigBird (L=1024) 85.2 82.5 83.8 77.1 74.5 75.8 76.3 69.6 72.8 77.4
BigBird (L=4096) 85.1 82.8 83.9 77.7 75.1 76.4 75.6 70.1 72.7 77.7
Longformer (L=128) 84.4 80.0 82.1 75.3 70.5 72.8 72.9 66.0 69.3 74.8
LongformerG (L=128) 84.4 79.1 81.7 75.1 69.2 72.0 72.8 65.2 68.8 74.2
Longformer (L=256) 84.8 81.7 83.2 76.2 72.5 74.3 73.9 68.8 71.2 76.3
LongformerG (L=256) 84.4 81.8 83.1 75.6 73.1 74.3 74.3 68.3 71.2 76.2
Longformer (L=512) 85.5 82.6 84.0 78.0 74.5 76.2 75.2 70.7 72.9 77.7
LongformerG (L=512) 84.5 83.4 83.9 76.2 75.2 75.7 74.3 70.9 72.6 77.4
Longformer (L=1024) 86.0 82.1 84.0 78.7 73.4 76.0 75.2 70.2 72.6 77.5
LongformerG (L=1024) 82.4 79.2 80.8 72.2 69.5 70.8 72.2 65.4 68.6 73.4
Longformer (L=4096) 85.2 82.9 84.1 77.4 74.6 76.0 74.8 70.7 72.7 77.6
RoBERTa (L=128) 81.1 78.0 79.6 70.5 68.0 69.3 71.2 63.3 67.0 72.0
RoBERTap (L=128) 61.3 45.0 51.9 45.9 30.3 36.5 41.4 25.8 31.8 40.1
RoBERTa (L=256) 84.7 81.8 83.2 76.0 72.6 74.3 74.2 68.5 71.3 76.3
RoBERTap (L=256) 67.7 46.0 54.8 53.0 30.8 39.0 43.8 26.9 33.3 42.4
RoBERTa (L=512) 85.7 82.6 84.1 78.1 74.3 76.2 75.2 70.9 73.0 77.8
RoBERTap (L=512) 67.0 45.0 53.9 53.0 29.8 38.1 43.2 26.8 33.1 41.7
SpanBERT (L=128) 78.2 75.5 76.8 66.6 64.3 65.5 68.2 60.5 64.1 68.7
SpanBERTp (L=128) 56.5 45.7 50.5 39.8 31.5 35.1 38.4 25.1 30.4 38.7
SpanBERT (L=256) 83.2 79.6 81.4 74.4 70.1 72.2 71.7 67.0 69.3 74.3
SpanBERTp (L=256) 64.1 46.5 53.9 49.8 31.8 38.8 40.7 27.9 33.1 41.9
SpanBERT (L=512) 83.5 81.3 82.4 74.6 71.9 73.2 72.3 68.5 70.3 75.3
SpanBERTp (L=512) 63.7 47.0 54.1 48.7 32.0 38.6 42.2 27.9 33.6 42.1
XLNet (L=128, m=0) 79.4 39.8 53.0 69.1 30.1 41.9 61.6 32.7 42.7 45.9
XLNet (L=128, m=128) 78.1 49.1 60.3 66.0 39.4 49.3 63.8 38.8 48.2 52.6
XLNet (L=256, m=0) 78.8 59.5 67.8 68.0 48.6 56.7 66.4 47.9 55.7 60.1
XLNet (L=256, m=256) 64.6 67.5 66.0 48.4 55.0 51.5 59.8 45.3 51.6 56.4
XLNet (L=512, m=0) 80.3 71.7 75.7 70.7 61.4 65.7 66.9 60.0 63.3 68.2
XLNet (L=512, m=512) 76.2 73.0 74.6 64.2 63.8 64.0 66.4 58.3 62.1 66.9

Table 11: Full results on Ontonotes with the start2end model. We adopt the same notation as we used in table 8.
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Abstract

There is increasing interest to work with user
generated content in social media, especially
textual posts over time. Currently there is no
consistent way of segmenting user posts into
timelines in a meaningful way that improves
the quality and cost of manual annotation. Here
we propose a set of methods for segmenting lon-
gitudinal user posts into timelines likely to con-
tain interesting moments of change in a user’s
behaviour, based on their online posting activ-
ity. We also propose a novel framework for
evaluating timelines and show its applicabil-
ity in the context of two different social media
datasets. Finally, we present a discussion of the
linguistic content of highly ranked timelines. 1

1 Introduction

An increasing body of work considers time-aware
models trained on social media data for a number
of different tasks, including personal event identifi-
cation (Li and Cardie, 2014; Li et al., 2014; Chang
et al., 2016a), suicidal ideation and suicide risk de-
tection (Coppersmith et al., 2014, 2018; Cao et al.,
2019; Matero et al., 2019; Sawhney et al., 2020,
2021). For such tasks deriving meaningful time-
lines (i.e. sequences of posts by individuals), con-
taining examples of the phenomenon under study
from large-scale collections, together with asso-
ciated annotations, is crucial. This is especially
important for computational approaches in mental
health (MH) given the surging numbers of those
seeking help online (Neary and Schueller, 2018).

Earlier work on personal life event detection
considered selecting salient timelines through
topic modelling (Li and Cardie, 2014; Li et al.,
2014) or through a non-parametric generative ap-
proach (Chang et al., 2016a). However, such ap-
proaches are unsuitable for identifying changes in
mood or MH more generally. Specifically, since

1https://github.com/Maria-Liakata-NLP-Group/
timeline_selection_and_evaluation

timelines are selected based on linguistic content
this introduces a sampling bias for downstream
linguistic analysis and annotation (Olteanu et al.,
2019; Mishra et al., 2019). In recent work on suici-
dal ideation detection, timelines are chosen as the
N most recent posts (Sawhney et al., 2020), which
are not necessarily the most salient for annotation.

Present Work: We propose a set of methods and
associated evaluation framework for identifying
salient timelines from the history of social me-
dia users to be annotated for changes in a user’s
behaviour, as revealed through their textual data.
Applying our methods in the domain of MH, we
follow earlier work in hypothesising that posting
behaviour can be a proxy for changes in the MH of
an individual (De Choudhury et al., 2016). There-
fore we develop methods for creating timelines
based on time-series of posting frequency, such as
change-point and anomaly detection approaches,
and evaluate these against keyword-based methods
and randomly selected timelines, in the context of
the task of capturing Moments of Change (MoC).
A MoC is a particular point or set of points in time
denoting: (1) a shift in an individual’s mood from
positive-to-negative or vice versa; or (2) a grad-
ual mood progression (Tsakalidis et al., 2022a).
We show that our proposed timeline segmentation
methods can consistently select timelines that are
rich in MoC for large scale cost-effective annota-
tion. We make the following contributions:

• We present approaches for extracting timelines
from users’ posting history on social media
based on change-point detection and anomaly
detection methods (§3).

• We propose a novel evaluation framework for
assessing the quality of annotated timelines,
and timeline selection methods, which we eval-
uate on the task of capturing MoCs (§4.2) on
two different social media datasets.

• We provide a linguistic analysis of timelines ob-
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tained, distinguishing timelines dense in MoCs,
from timelines sparse in MoCs (see §5.2).

2 Related Work

Since we aim to segment users’ entire posting his-
tory into smaller sequences, manageable to anno-
tate and salient in terms of containing moments of
change in mental health, we consider work in the
following areas: mental health monitoring (2.1);
text segmentation (2.2); timeline summarization
(2.3); change-point detection (2.4).

2.1 Tracking Changes in Mental Health (MH)

Moments of Change (MoC) are important in MH
tracking. Pruksachatkun et al. (2019) identifies a
MoC as a positive change in sentiment for a user
with respect to a distressing topic mentioned in a
conversation thread. De Choudhury et al. (2016)
investigated shifts to suicide ideation with models
predicting when users transition to posting on a
suicide support forum. We consider a more general
definition of MoC (§1, “Present Work”).
Creation of Mental Health Datasets. A large
body of work in creating MH datasets involves la-
belling posts for symptoms (Gkotsis et al., 2017;
Loveys et al., 2017; Cheng et al., 2017) or levels
of suicide ideation (Masuda et al., 2013; Copper-
smith et al., 2016; Shing et al., 2018). While an-
notations for some of these datasets are obtained
through proxy signals (e.g., self-disclosure of diag-
noses, posts on support networks) questions arise
as to how to select appropriate data for annotation.
Mishra et al. (2019) use keyword based methods
to identify posts exhibiting the phenomenon un-
der study (e.g. suicidal ideation) but this leads to
sampling biases.

2.2 Text Segmentation (TS)

TS (Beeferman et al., 1999; Pak and Teh, 2018)
focuses on splitting a large body of text (docu-
ment) into smaller chunks (segments or “regions of
interest” (Oyedotun and Khashman, 2016)). TS
has been applied in numerous fields, including
emotion (Wu et al., 2007) and sentiment detection
(Chiru and Hadgu, 2013), often involving segment-
ing news articles (Gao et al., 2010) and review
items (Sun et al., 2013). While there is some work
in segmenting large bodies of social media posts
into text segments (Kaur and Singh, 2019), we are
not aware of work segmenting entire posting histo-
ries into smaller, more manageable segments (i.e.

timelines), to improve downstream longitudinal an-
notation.

Furthermore, TS primarily operates on linguistic
content, rather than timestamped information, with
algorithms designed to identify segments contain-
ing certain topics of interest, resulting in selection
bias (Riedl and Biemann, 2012; Takanobu et al.,
2018; Hananto et al., 2022). An alternative is to
consider timeline extraction approaches agnostic
to the linguistic content, inspired by Timeline Sum-
marisation and Change-Point Detection (CPD).

Evaluation metrics other than precision and re-
call have been proposed to account for near misses
during text segmentation. Pk (Beeferman et al.,
1999) uses a k-sized sliding window on a document
to compare predicted vs ground-truth segmentation
locations, assigning partial credit to near misses.
However, it is affected by variations in segment
sizes and penalizes false negatives more than false
positives. WindowDiff (Pevzner and Hearst, 2002)
penalises the latter equally. Both metrics require
ground-truth annotations of the optimal segmen-
tation locations. We propose an approach (§4) to
evaluate segmentation of users’ histories based on
the proportion of desired annotation labels within
a set of sampled sequences of posts (timelines).

2.3 Timeline Summarization (TLS)
TLS aims to provide concise chronologically or-
dered timelines consisting only of the most relevant
information for a given topic or entity, summarizing
the key points in time. While TLS has been most
commonly applied in news topic summarization
(Swan and Allan, 2000; Martschat and Markert,
2017, 2018; Steen and Markert, 2019), there has
been increasing interest in applying TLS to social
media data (Li and Cardie, 2014; Chen et al., 2019;
Ansah et al., 2019; Wang et al., 2021).

TLS consists of a 2-step pipeline: (1) date se-
lection, then (2) summarisation. Salient dates sum-
marizing a timeline are typically identified using
textual content, as well as time-series information
in the history of an individual/topic. Focusing on
viral buzzes of celebrity mentions on social me-
dia, Chang et al. (2016b,a) aims to select dates by
modelling linguistic content and frequency-based
time-series patterns.

2.4 Change-point Detection (CPD)
While CPD has been explored to some extent in
news TLS (Hu et al., 2011), it remains under-
explored for social media data. Change-points
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(CPs) are defined as points in time where the un-
derlying generative parameters of a data sequence
are predicted to have changed (van den Burg and
Williams, 2020). CPD therefore often involves
learning a predictive model of a data sequence. In
§3, we use automatically detected CPs to identify
salient dates for selecting timelines of users on
social media for annotation. While several con-
tinuous models exist (e.g. Gaussian (Adams and
MacKay, 2007)), we focus on models suited to dis-
crete time-stamped data (Knoblauch and Damoulas,
2018) – such as when posts/comments are made
on social media. In such scenarios Temporal Point
Processes (TPPs) (Daley and Vere-Jones, 2003) are
well suited.
Temporal Point Processes (TPPs) TPPs are
stochastic processes that model discrete events lo-
calized in continuous time. They are typically char-
acterized by an intensity function, λ>0, which rep-
resents the instantaneous rate of event occurrence.

In order to use TPPs to model event sequences,
and predict associated changes – certain CPD mod-
els, such as Bayesian Online Change-point Detec-
tion (Adams and MacKay, 2007) require the TPP
to be part of the exponential family of distributions
(e.g. Poisson). This is so that the intensity λ can be
further modelled from a prior conjugate distribu-
tion, making it possible to construct the likelihood
of the chosen predictive model in a closed form.

3 Approach for Selecting Timelines

Task. Our principal aim is to select timelines for
annotation that are rich in changes in posting be-
haviour on a MH platform, which we consider as a
proxy for changes in MH – in particular, Moments
of Change (MoC). To achieve this, we test a series
of timeline selection methods (§3.1-§3.2), which
we evaluate using our proposed framework (§4).
Selecting Candidate Timelines. To select time-
lines for annotation, we extract candidate timelines
as a span of timestamps S from a user’s u history
H . We first propose identifying changes in post-
ing behaviour as Candidate Moments of Change
(CMoC), which are dates hypothesised to be sur-
rounded by many MoCs (§3.1). Subsequently, we
extract the user’s posts surrounding these CMoC
within a fixed time window, as timelines to be re-
turned for annotation (§3.2).

3.1 Identifying Candidate MoCs (CMoC)

We investigate the following for identifying CMoC:

(1) Bayesian Online Change-point Detection
(BOCPD): In a recent evaluation involving experi-
ments with synthetic and real-world change-points,
van den Burg and Williams (2020) showed that
BOCPD was the best model for a variety of CPD
tasks. BOCPD learns a predictive model on a data
sequence. When changes in the model’s genera-
tive parameters are identified, CPs are declared.
BOCPD is typically fit with continuous models
(e.g. the Gaussian distribution). However, in our
case we consider models for discrete event-based
data (Knoblauch and Damoulas, 2018).

Since we hypothesize that changes in posting
behaviour coincide with changes in mood (see
“Present Work” in §1), we use BOCPD to identify
changes in individuals’ posting frequency. As such
we consider the daily frequency of posts made by
a user as a TPP, and use the homogeneous Poisson-
Gamma (PG) point process model with BOCPD
(Knoblauch and Damoulas, 2018) to fit and iden-
tify changes in the daily frequency of posts by a
user from their entire associated history. We assess
our hypothesis by evaluating timelines obtained
this way in terms of how dense they are in MoCs,
changes in mood and sentiment (Table 3).

By using a PG model with BOCPD, we assume
that each point in a user’s posting frequency is sam-
pled from a Poisson distribution with a discrete λ.
Here λ represents the expected number of posts by
a user within a given time interval. As we use this
conjugate Bayesian model, λ is further assumed
to be drawn from a Gamma distribution with a
set of priors α0 and β0, that act as initial hyper-
parameters in our model, where α0/β0, α0/β

2
0 de-

note the prior mean and variance over λ. BOCPD
has an additional hyper-parameter which is the haz-
ard h0, where 1/h0 expresses a prior belief about
the probability of CPs occurring at a given time
t, provided that a CP has not recently occurred: a
low h0 results in the over-generation of change-
points while a large h0 is more conservative and
returns very few CPs (ideal in our scenario, to en-
sure that we do not waste annotation resources, by
avoiding annotating too many timelines generated
by noise). As such, we experiment with two set-
tings of BOCPD to identify CMoCs: BOCPD (1)
and BOCPD (2), which have priors (α0:.01; β0:10;
h0:103) and (α0:1; β0:1; h0:10) respectively.

Since BOCPD computes a full probability dis-
tribution over the location of the CPs, quantifying
probable CPs along with their associated uncer-
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tainty, we use the maximum a posteriori (MAP) seg-
mentation of the probability distribution to return
exact point estimates for CPs (Fearnhead and Liu,
2007; van den Burg and Williams, 2020), which in
our setting define CMoCs. An illustration of iden-
tifying CMoCs from a given user’s history in our
implementation of BOCPD is provided in Fig. 1.

(2) Anomaly Detection (AD): Here we aim at iden-
tifying (a) days of abnormally high user activity
and (b) abnormally long time periods of no user
activity at all. We hypothesize that such points in
time can be used to select salient timelines. We
experiment using different features to fit our model,
including the daily frequency of a user’s posts and
the number of comments they receive for those cor-
responding posts by others. Using either activity
type, we scan over the user’s entire history.

For (a) we explore the use of Kernel Density
Estimation (KDE) (Rosenblatt, 1956; Scott, 2015)
to estimate the probability density function of the
user’s activity. For (b), we focus on time periods
in the user’s history lasting at least 14 days during
which the user had no activity (posts/comments) at
all. Given the past 90 days of a user’s activity, if
the probability on a particular day of seeing either
(a) a high volume of activity or (b) a long period of
‘silence’ is lower than .01, then we mark the start
of this period as an ‘anomaly’ – i.e., CMoC. We ex-
plore (a) and (b) separately for posts and comments,
and we also explore concatenating CMoCs iden-
tified for high and low posting activity for either
comments received or posts made.

(3) Keywords: We incorporate a baseline for iden-
tifying CMoCs based on a set of keywords in the
suicide risk severity lexicon (Gaur et al., 2019).
Each keyword present in the lexicon corresponds
to different levels of suicide risk severity such as
“I’m tired of this suffering”, and “I’m going to kill
myself”. We hypothesize that the presence of such
phrases in a user’s post may be indicative of a
MoC. This method returns CMoCs for timestamps
of posts by a given user that contain a keyword
within the lexicon. Note that keyword methods are
prone to sampling bias for downstream linguistic
analysis, we include them in our experiments due
to their popularity for comparison purposes.

(4) Random & Every day: We incorporate two
naïve baselines, as such methods are important for
benchmarking in MH tasks (Tsakalidis et al., 2018).
“Random single day” selects a single date from a
uniform distribution over all days in a user’s post-

Figure 1: Using change-points in an example user’s post-
ing behaviour to define candidate moments of change
M

(c)
u (dashed red line). Candidate timelines are then

created centred on each M (c)
u , with a radius r=7.

ing history H as a CMoC, C (we evaluate against
100 random seeds to report average scores, §4).
“Every day” returns every day as a CMoC – we
employ it to see how well our methods are at avoid-
ing the over-generation of candidate timelines. We
seek to avoid over-generating timelines as we want
to only return timelines with a high density of MoC
to improve annotation efficiency.

3.2 Extracting Posts

Once a CMoC, C, is found, a span of timestamps
S from the user’s history H is identified within
a radius r2 around C. A candidate timeline then
consists of the associated sequence of posts, corre-
sponding timestamps and comments within S.

4 Evaluation of Selected Timelines

While there is previous work in evaluating seg-
ments of posts in text segmentation (§2.2) and time-
line summarization (§2.3), there is little to no prior
work on frameworks for evaluating timeline selec-
tion methods for the purposes of efficiently annotat-
ing longitudinal datasets. As such we identify this
as a nascent area of study – ripe for others to build
upon, and propose a novel evaluation framework
for selecting timelines for this task.

We investigate several metrics for evaluating the
methods from §3 in terms of their ability to select
timelines that correspond to a high proportion of
Ground-truth Moments of Change (GTMoC), de-
noted hitherto as G. Each CMoC generated by a
method as a change point is denoted hitherto as C.
Since we do not have access to manual ground truth
annotations outside of the span of our annotated
timelines, we can only evaluate methods according
to CMoCs that fall within them.

2Here we take r = 7 which gives a manageable amount of
posts while providing context before and after the CMoC.
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4.1 Time-varying Classification Metrics

We use the precision and recall metrics by van den
Burg and Williams (2020) for evaluating change-
points (CPs) – i.e., CPs are evaluated based on
the distance dGTMoC of the predicted CP C falling
within a margin of error distance τ to Ground-truth
Moments of Change G. For our scenario, τ is
reflective of the length of the timelines to be cre-
ated, and is roughly the radius of a timeline. It
should also be chosen based on the uncertainty of
the annotation labels. The pros of making assess-
ments based on high performance with a small τ ,
is that this suggests that very narrow timelines can
be created, while still capturing the annotation la-
bels. This allows many timelines to be annotated,
thus increasing the diversity of the dataset. How-
ever, if timelines are too small, there may not be
enough context provided to annotators to perform
the annotation task. Thus, allowing for larger time-
lines provides more context to annotators, which
can potentially improve the quality of annotations
– but increase the cost and time to perform the an-
notation. In our experiments we make assessments
based on moderately sized τ to allow for moder-
ately sized timelines. We use τ = 5 days in table 2,
which is the same value used in the experiments of
(van den Burg and Williams, 2020).

A true positive (TP) therefore corresponds to an
intersection of a G with a C: G∩C, if |G− C|≤τ .
We ensure there is a 1:1 mapping between each G
and C – where each C can only intersect as TP
against a single G. The total number of TPs for
a timeline therefore is given by max(|G ∩ C|) ≤
max(|G|, |C|), where G and C are sets of dates in
annotated timelines. The precision and recall are
thus defined as P = |G∩C|

|C| and R = |G∩C|
|G| , respec-

tively. We compute P and R for each annotated
timeline and report mean across all timelines. The
mean scores are then used to compute the mean F1.

While these metrics evaluate how well a time-
line selection method can identify CMoCs close
to GTMoCs, they cannot tell us which method is
able to return timelines that contain a high propor-
tion of GTMoCs relative to the number of posts
(timelines with high density of GTMoCs). Thus
we propose an alternative metric (Medoid Votes)
based on densities of GTMoCs, as discussed next.

4.2 Medoid Votes (MV)

We propose a new metric, MV, to account for the
inability of prior metrics to consider the density

of labels within timelines. Although a method
may have high precision (yielding a prediction
close to a ground truth label), the timelines overall
may contain a low proportion of the labels that we
seek to annotate – leading to inefficient annotation.
Hence, we introduce MV which assigns true pos-
itives against dense regions of labels as opposed
to single labels. As we demonstrate in our exper-
iments, assessments made using MV are more ro-
bust, resulting in timelines centered around highly
dense regions of the labels we seek to annotate.

To make assessments using MV, first we identify
periods in manually pre-annotated user timelines
that contain a high proportion of GTMoCs relative
to the number of posts within the timelines (dense
regions) (§4.2.1). We then assign votes to methods
that identify CMoCs close to these, and obtain a
ranking (§4.2.2).

4.2.1 Dense Regions in Annotated Timelines
Medoids. We use the notion of ‘medoids’ to rep-
resent the location of dense regions of GTMoCs.
A medoid M is the timestamp of the GTMoC in a
given timeline T , from which the (Euclidean) dis-
tances d(., .) of all other timestamps of annotated
GTMoCs G in timeline T are minimal:

M = argmin
Ga∈T

∑

Gb∈T
d(Ga, Gb) (1)

Density of annotated timelines. We further char-
acterise the locations of dense regions (medoids) by
the number of GTMoC they contain. This ‘density’
of a timeline is defined as ρ = |G|

|p| , where |G| is the
sum total number of GTMoCs within an annotated
timeline T and |p| is the number of posts in T .

In order to weight timelines by how dense they
are in GTMoCs, a medoid M inherits the density
ρ of the timeline T it represents. We transform ρT
for each T , to provide a binary distinction between
“dense” (+1) and “sparse” (-1) medoids as:

ρ
(binary)
T

{
+1 if ρT ≥ Median(ρT ∀ T )
−1 otherwise

A good timeline is therefore one that is “dense”,
and the ideal location for a CMoC is as close as
possible to a dense medoid M (see eq. 1).

In an ideal scenario where we have the resources
to annotate many timelines sampled from many
candidate methods, we could compare and rank the
methods based on the number of dense timelines
or the average resulting densities. Alternatively,
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we could evaluate the proposed methods against
a set of fully-annotated user histories. However,
due to the high cost and time-consuming process of
annotation, such approaches are infeasible. Instead
we propose an alternative solution that does not
require annotating all the timelines that would be
generated (or entire user histories). We do this
via a scoring system based on distances of CMoC
relative to dense medoids in a small set of trial
annotated timelines, as described next.

4.2.2 Scoring Timeline Selection Methods
We employ the evaluation framework in §4.2.1 to
assess pre-annotated timelines against CMoCs in
timelines selected by different methods. Assuming
an annotated timeline T , we aim to assess how
close an identified CMoC C is to a dense region of
GTMoCs within T . We therefore give preference
to methods that identify CMoCs in close proximity
to medoids that are dense in GTMoC, while also
penalizing methods that over-generate CMoC.

Distance Scores. We calculate the proximity of
CMoCs predicted by a method to M as the min-
imum absolute distance dm (in days) between all
CMoCs predicted by a given methodm (§3.1) for a
user’s entire history. Then, we compute a distance
score for each m per annotated timeline as:

Dm = (dm + ϵ) ∗ sign(ρ(binary)
T ),

where ϵ=.001, to preserve the sign of each medoid’s
ρ
(binary)
T in the case of dm= 0. Dm is then used to de-

note the proximity of CMoCs predicted by method
m (in days) to a ground truth medoid M with den-
sity ρ(binary)

T . Since we want to obtain timelines that
are close to dense regions in GTMoC, we seek to
identify methods with low positive Dm.

Votes. To reward methods that identify a CMoC
in close proximity to a ‘dense’ M (low positive
Dm), and penalize methods which over-generate
CMoC (e.g., in locations that contain a low density
of GTMoC), we assign votes to each method m by:

vm =

{
+1 if 0 ≤ Dm ≤ τ
0 otherwise

where τ is the same margin of error (in days) de-
scribed in §4.1. This gives a positive vote to a
method generating a CMoC that falls within a mar-
gin of τ days to a dense medoid. Votes v are then
normalized per timeline and method (Vm = vm

|C| ,

where |C| is the total number of CMoCs generated
by m, that fall within each annotated timeline).

Scoring of methods. Timeline selection methods
are subsequently scored and ranked by summing
the votes Vm for each method m over all T . As we
are concerned with ranking methods, we then min-
max scale our results in the range of 0 to +1, where
methods that have scores close to 1 rank near the
top and methods that score close to 0 are the worst
in their ability to return timelines containing a high
proportion of GTMoCs. The scoring of methods
proposed in §3.2 are shown in Table 2, and Fig.
4 for varying margin of error, τ . The evaluation
framework is visualised in Fig. 2.

5 Experiments

We evaluate our timeline selection methods (§3),
using our evaluation framework (§4) based on
ground-truth human annotated data.

5.1 Datasets
We evaluate our automatic timeline selection meth-
ods using two datasets (summarised in Table 1)
from different platforms: The TalkLife dataset con-
tains timelines automatically selected using one
of our proposed methods. While our evaluation is
designed to allow alternative methods to achieve
higher scores than the methods used to select time-
lines we still want to exclude any possibility of in-
herent bias. To this effect we also evaluate against
timelines manually selected from Reddit indepen-
dently from this work (Tsakalidis et al., 2022b).
TalkLife3 is a peer-support social network operat-
ing primarily as a mobile app. Users are mainly
English speakers, 70% of whom are 15-24 years
old (Sharma et al., 2020a). The posts/comments
on TalkLife focus primarily on MH, daily-life is-
sues and feelings. It is thus suited to identifying
MoC and computationally analysing MH (Pruk-
sachatkun et al., 2019; Sharma et al., 2020b; Saha
and Sharma, 2020; Kim et al., 2021). We select
timelines on the basis of timestamped user post-
ing frequency, and associated comments received.
The context of posts is only used in annotating
the selected timelines; thus, methods for timeline
selection are transferable to other platforms.

We licensed a de-identified dataset from TalkLife
consisting of 1.1M users (12.3M posts, Aug’11-
Aug’20). Due to the high variance in users’ posting
frequency, only timelines having [10-150] posts

3https://www.talklife.com
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Figure 2: Evaluation of CMoCs against GTMoCs. Votes and true positives are assigned based on distances d of
CMoCs falling within a margin of error τ against dense medoids or GTMoCs. Here, method A (red) selects better
timelines than method B (blue), as these are close to dense regions of GTMoCs (dm≤τ ) and labels (dGTMoC≤τ ).

were considered for annotation. This was so that
timelines were not impractically long while still
providing enough context for annotators to observe
and mark a change. The final annotated dataset con-
sists of 500 timelines (see Table 1), with a mean of
35 posts (±22). These timelines were selected us-
ing BOCPD PG (1), where the parameters (α0:.01;
β0:10; h0:103) were fixed on the basis of improved
model performance on a validation dataset of 70
manually annotated timelines selected via anomaly
detection. All 500 timelines within the evaluation
dataset were manually inspected and filtered ac-
cording to the details in A.1.
Reddit. We further tested the generalizability of
our methods and evaluation framework on a differ-
ent dataset, that was not generated using automatic
timeline selection approaches – the CLPsych 2022
Shared Task corpus (Tsakalidis et al., 2022b). We
chose to include this additional dataset to address
potential concerns that experiments and analysis
performed on the TalkLife timelines have some
bias towards the BOCPD method in experiments
evaluated on the TalkLife timelines – as they were
selected using BOCPD. This corpus was sourced
from Reddit, a social media platform where in-
dividuals make public posts and which has been
studied extensively as a resource for mining textual
data for MH studies (De Choudhury and De, 2014;
Losada and Crestani, 2016; Shing et al., 2018;
Zirikly et al., 2019; Losada et al., 2020; Low et al.,
2020). We make use of the ‘Reddit-New’ dataset
of the CLPsych 2022 corpus, consisting of 139
timelines where 17-82% of posts come from MH
subreddits and had been pre-selected manually by
two researchers independently as likely to contain

a high proportion of MoCs.

Annotation of GTMoC in TalkLife timelines was
performed by 3 English speaking (1 native), uni-
versity educated annotators. Reddit timelines were
annotated by 4 English (2 native) speakers (Tsaka-
lidis et al., 2022b).

Annotators were provided with timelines con-
taining chronological posts by users with their as-
sociated comments and timestamps. They were
asked to label posts containing a ‘Switch’ (sudden
change in mood) or an ‘Escalation’ (gradual mood
progression) – a (default) label of ‘None’ was as-
signed to posts with no MoC. A ‘Switch’ is defined
in the guidelines as ‘a drastic change in mood, in
comparison with the recent past’, with annotators
having to label its beginning and its range. An
‘Escalation’ is ‘a gradual change in mood, which
should last for a few posts’. Annotators had to
label the peak of an escalation and the range of
associated posts (see Fig. 9 of A.2 as an example).

To obtain GTMoC for our evaluation we aggre-
gate the annotations across all annotators per time-
line in the same way as (Tsakalidis et al., 2022a).
Due to the challenging and subjective nature of
the annotation task, the percent of inter-annotator
agreement for the labels ‘None’, ‘Switch’ and ‘Es-
calation’ were .89, .30, and .50 respectively for the
TalkLife dataset, and .83, .26, and .31 respectively
for the 2022 CLPsych Corpus, based on major-
ity agreement. We consider all labels of ‘Switch’,
‘Escalation’, and their corresponding ranges as GT-
MoC. We thus merge both labels to define GT-
MoCs, as we are interested in identifying timelines
that contain both types of changes in mood.
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Timelines Posts Users Timeline Length
TalkLife 500 18,702 500 ≤ 2 weeks

Reddit 139 3,089 83 ∼ 2 months

Table 1: Summary of datasets used in our experiments.

Figure 3: Density of GTMoCs per timeline.

5.2 Results & Discussion

We identify CMoCs (§3.1) on annotated timelines
from TalkLife and Reddit (§5.1), and evaluate using
our metrics (§4). We round CMoCs to the nearest
day, de-duplicating dates, to compare methods.
Density scores of annotated timelines. The den-
sity of the annotated timelines from TalkLife are
presented in Fig. 3. The mean density (.159) is
comparatively high considering that GTMoCs are
rare events, and many timelines do not contain any
GTMoC. While the mean density (.340) of manu-
ally selected timelines from Reddit is higher, extra
annotation effort was taken by annotators to ensure
these timelines had a high proportion of GTMoCs.
Ranking of timeline selection methods. Table 2
and Fig. 4 shows the generalizability of our mod-
els and evaluation based on the consistency of re-
sults across both datasets. Overall, BOCPD models
achieve the highest precision, and relatively high
medoid votes (MV) across varying values of τ .
Note that BOCPD PG (1) had hyper-parameters
that were tuned for the data on TalkLife, whereas
BOCPD PG (2) has very general hyper-parameters
– not tuned for either TalkLife or Reddit. Despite
not having any models tuned specifically for Red-
dit, BOCPD (1) achieves the highest precision for
the majority of margins of error τ , and BOCPD (2)
achieves the 2nd highest precision for larger τ . Im-
portantly, BOCPD achieves the highest precision
for most cases of τ across both datasets. Precision
is particularly important as it ensures that the re-
sulting CMoCs will have a high chance to be close
to GTMoCs. This aligns with our objective of en-
suring the resulting dataset will be annotated with
a high proportion of GTMoCs.

For both Reddit, and TalkLife, the more gen-
eral parameters of BOCPD PG (2), which were not

tuned for either dataset, still achieve among the
highest precision and MV (next highest MV – and
also the highest P for TalkLife). Even with low h0
and α0/β0 = 1 (likelier to over-generate CMoCs),
BOCPD (2) outperforms all AD and naïve meth-
ods on MV and F1 on TalkLife. For TalkLife, AD
(high activity: posts) achieves slightly worse MV
compared to keywords, but outperforms it on Red-
dit, despite being potentially disadvantaged by not
using linguistic content. AD (low activity) achieve
among the worst F1 and MV. As a result, timelines
created around anomalously low post frequency
would be unsuitable for selecting dense timelines.

Scores vary with τ (Fig. 4). For low margins
(τ<3) BOCPD ranks lower in F1 and MV in both
datasets, but ranks among the highest for larger τ .
We attribute this to BOCPD assigning CMoCs to
transitions from high to low posting activity. As
we expand τ and select longer timelines around
CMoCs, BOCPD is able to capture moments in
time which can contain both high and low post-
ing activity. Transitions from high to low posting
activity may not be captured for low τ – poten-
tially explaining why the performance in this case
is lower than methods that favour a high amount
of posts. Since timelines on TalkLife were cre-
ated with a radius of 7 in (Tsakalidis et al., 2022a),
setting a fairly large τ=5 is suitable for assessing
which methods are able to select dense timelines,
while also allowing us to identify shorter, denser,
timelines from longer annotated timelines, as in the
case of Reddit.

While recall and F1 are relatively low for
BOCPD across both datasets, we argue that pre-
cision and MV are the most important metrics to
focus on for our task. Considering that ‘everyday’
has a perfect recall of 1.00, and that annotating all
posts in a users history would indeed return all the
GTMoCs for a user – this is highly inefficient and
infeasible, and goes against our original objective
of efficiently annotating a user’s posts. By instead
focusing on methods with high precision and MV,
rather than recall, we ensure that the resulting time-
lines are near a high proportion of the labels we
aim to annotate. This allows annotators to consider
fewer posts to capture the same amount of rare
labels, which are costly to annotate.

Linguistic analysis of timelines. To gain in-
sights into the characteristics of ‘dense’ vs ‘sparse’
timelines, we employ VADER (Hutto and Gilbert,
2014), assigning a sentiment score per post, and
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Figure 4: Evaluation metrics for different timeline selection methods, with varying margins of error τ (days).

TalkLife Reddit
Method P R F1 MV P R F1 MV

BOCPD PG (1) .683 .489 .570 .919 .806 .048 .090 .222
BOCPD PG (2) .611 .540 .574 .672 .708 .110 .190 .762
AD (high comments) .504 .662 .573 .399 .524 .513 .519 .685
AD (low comments) .415 .037 .068 .060 .625 .010 .020 .000
AD (high & low comments) .491 .677 .569 .399 .523 .521 .522 .650
AD (high posts) .573 .453 .506 .395 .671 .143 .236 1.00
AD (low posts) .372 .033 .060 .048 .700 .014 .028 .064
AD (high & low posts) .548 .474 .508 .383 .669 .157 .255 .958
Keywords .731 .433 .544 .509 .702 .628 .663 .758
Every day .135 1.00 .237 .076 .105 1.00 .190 .088
Random single day .567 .009 .017 .014 .560 .007 .014 .050

Table 2: Evaluation of timeline selection methods, us-
ing a margin of τ=5 days. MV (§4.2) are min-max
scaled in the range τ=[0,6] days. First , second , and
third highest scores are highlighted.

Twitter-RoBERTa-emotion (Barbieri et al., 2020),
assigning four emotion scores (joy, anger, sad-
ness, optimism) per post on the TalkLife dataset.
We equally split 250 TalkLife timelines, between
‘dense’ (density ρu,i is in upper-quartile of all time-
lines) and ‘sparse’ (bottom-quartile). The distri-
bution of sentiment scores across these timelines
are shown in Fig. 5. For each timeline we extract
statistical features (avg, std, min, max) for each
emotion/sentiment dimension of its posts, and the
same features based on their difference across two
consecutive posts in the timeline. Using these fea-
tures, we train a Logistic Regression aiming at
predicting ‘dense’ vs ‘sparse’ timelines and extract
the coefficients with the highest/lowest values.

Sparse timelines frequently consist of positive
posts in sentiment/mood (see Table 3). On the other
hand, sadness- and variance-based features corre-
late the most with predicting a timeline containing
many MoCs – a finding that was empirically con-
firmed via manual inspection of the most dense
timelines. Developing methods that account for the
variability in a user’s mood/sentiment is a potential
future direction in this regard.

Figure 5: Sentiments of ‘dense’
vs ‘sparse’ timelines (medians:
−.949 & .970, respectively).

Feature Coef
sadness (avg) 2.29
sadness (std) 1.45
sentiment (std) 1.00
sentiment (avg) -1.23
optimism (avg) -1.25
sentiment (min) -1.31
joy (avg) -1.58

Table 3: Logistic
Regression coeffi-
cients classifying
timelines as ‘dense’
(1) or ‘sparse’ (-1).

6 Conclusions & Future work

We have introduced methods and an evaluation
framework for identifying timelines from users’ so-
cial media posts, likely to contain a large amount
of Moments of Change (MoC). We use changes
in posting behaviour as a proxy for changes in
mood, to efficiently identify longitudinal user con-
tent worth annotating. Our methods have been
manually evaluated against ground truth MoCs (GT-
MoCs) in two different datasets. Bayesian Online
Change Point Dection (BOCPD) shows promise in
detecting timelines rich in GTMoCs.

Future work can explore the incorporation of tex-
tual content in the BOCPD Poisson-Gamma model
for the distinction between different types of GT-
MoC. We find that resulting timelines dense in
GTMoCs are characterised by a high deviation in
sentiment from one post to the next, suggesting
that such deviations may be a useful feature for
distinguishing between different types of GTMoC.

We expect that the methods proposed in our work
will benefit researchers interested in creating longi-
tudinally annotated textual datasets of user posts,
particularly when annotating Moments of Change.
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Ethics IRB approval was obtained from the
Biomedical and Scientific Research Ethics Com-
mittee of the University of Warwick (ref: BSREC
40/19-20) prior to engaging in this research study.
Our work involves ethical considerations around
the analysis of user generated content shared on
a peer support network (TalkLife). A license was
obtained to work with the user data from TalkLife
and a project proposal was submitted to them in
order to embark on the project. The current paper
focuses on the identification of periods of interest
within the user history, in terms of moments of
change. The work on annotation of moments of
change (MoC) is separate to this paper but consid-
ers sudden shifts in mood (switches or escalations).
Annotators were given contracts and paid fairly in
line with University pay-scales. They were alerted
about potentially encountering disturbing content
and advised to take breaks during annotation. The
annotations are used to evaluate the work of the
current paper, which aims to meaningfully segment
timelines in terms of containing likely moments of
change. Potential risks from the application of our
work in being able to identify moments of change
in individuals’ timelines are akin to the identifi-
cation of those in earlier work on personal event
identification from social media and the detection
of suicidal ideation. Potential mitigation strategies
include restricting access to the code base and an-
notation labels used for evaluation. No data can
be shared without permission from the platform or
significantly paraphrased. Any examples used from
the users’ history are anonymised and paraphrased.

Limitations

In this work we focus on returning timelines rich
in Ground-truth Moments of Change (GTMoCs)
in mood, using posts on social media which are
by definition sparse. This has several limitations.
Firstly, our labels of GTMoCs rely on individu-
als self-disclosing related information. We cannot
make assessments based on someone’s experience
offline. The users chosen in our sample may also be
users who are more likely to disclose information
and so their posting patterns may not be typical of
the general population. Both of these issues are
true for most work in affective computing from
social media.

Our methods for identifying Candidate Moments
of Change (CMoCs) have several limitations. Sim-

ilar to the issues with our GTMoCs, these meth-
ods rely on posting behaviour and cannot capture
behaviour outside the user’s social media history.
Another limitation of our methods for identifying
CMoCs is that they currently only use simple uni-
variate features (e.g. posting frequency), and do
not model the influence of cross-user interactions
or multivariate features. While we suspect these
methods for identifying CMoCs could be extended
to model these more complex types of features and
interactions, to better select timelines, we have not
done this in the current work.

Finally, while we have shown that our methods
for identifying CMoCs to select timelines rich in
GTMoCs in mood generalize well between two
social media platforms (TalkLife and Reddit), we
have not experimented with other platforms.Our
methods have been used for returning timelines
rich in ground-truth labels for changes in mood
but it remains to be seen whether they generalize
well to identifying timelines rich in other labels for
other related annotation tasks (e.g. labelling levels
of suicide ideation). We believe this to be the case.
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A Appendix

A.1 Creating Ground-truth Timelines, by
Retaining a Subset of Representative
Candidate Timelines

In addition to the details provided in section 3,
for selecting candidate timelines, we provide some
additional details inline below. As multiple time-
lines will typically be returned for each user using

methods in 3 and annotating all of these can be
time-consuming, in order to keep the 500 annotated
ground-truth timelines relatively diverse in terms
of the types of users – only a single timeline was re-
turned per user to be annotated. Therefore, for each
user only a single timeline was randomly sampled
per and these were presented visually in turn to the
first author of this paper, with multiple time-scales
limiting the x-axis of the visualization returned:
(1) the time-scale of the whole user’s history, (2)
a radius of 200 days surrounding the CMoC and
(3) a radius of 31 days around the CMoC. This
was to ensure that the candidate timelines could
be inspected in close detail (3), and also observing
the timeline in context of the full time-series (1)
for that user. These three multiple time-scales for
a single user are presented visually in figure 6. A
manual binary decision was then made on whether
to discard this timeline or retain it to be annotated
and thereby create a ground-truth timeline using
it. This decision was based on a time-series visual-
ization of the frequency of daily posts for that user
and highlighting the location of the timeline to be
either retained or discarded. The decision to dis-
card a timeline was based on two criteria: whether
the timeline (1) was primarily sparse over the full
15 days of the timelines, or to a lesser degree (2)
whether it appeared that the CMoC was generated
by noise. It was chosen to discard timelines that
were (1) primarily sparse, to ensure that we allow
sufficient amount of time to pass between posts
such that moments of change can occur. Timelines
that appeared to be (2) generated by noise, were
discarded such that the ground-truth timelines were
representative of timelines that would be generated
by a change-point detection algorithm with well
chosen hyper-parameters – as the retained time-
lines were thus timelines that appeared to be gener-
ated by realistic change-points. Figure 7 presents
a visualisation of a timeline that was discarded as
described above, and figure 6 describes a timeline
that was included to be annotated as a ground-truth
timeline.

This process of visually deciding whether a ran-
domly sampled candidate timeline should be re-
tained to be converted into a ground-truth timeline
was repeated until 500 candidate timelines were
retained. This process thus lasted until 1,220 ran-
domly sampled timelines were observed and thus
720 timelines were discarded.

From the annotated timelines, medoids are re-
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Figure 6: A timeline that was retained, out of the 1,220
timelines manually observed. It was retained as it (1)
was not primarily sparse as it contains posts distributed
well over the timeline, and (2) appeared to be generated
by a plausible change-point rather than noise. Timelines
were visualized on 3 time-scales, as shown in this figure,
to allow for closer inspection and to compare in context
of the full time-series.

Figure 7: A timeline that was discarded, out of the 1,220
timelines manually observed. It was discarded as it (1)
was primarily sparse containing only posts on a few
days in the timeline, and (2) appeared to be generated
by noise rather than by a realistic change-point.

turned as the medoid timestamp of the annotated
GTMoC after annotations were union aggregated
across all annotators as described in (Tsakalidis
et al., 2022a).

A.2 Annotation Guidelines

The annotation task proposed by (Tsakalidis et al.,
2022a) was to assign annotators to identify changes

Figure 8: Identifying the position of the medoid, from
the timestamps of posts annotated as GTMoCs.

in mood, by reading through the posts in chronolog-
ical order included within the generated timeline
of an individual – and annotating the posts which
contain a change in the user’s mood compared to
the recent past.

An example illustrating both a switch, and an
escalation are displayed in figure 9. Note, that the
example shown in this figure will be paraphrased
before the work is published – to further preserve
anonymity of this user.

Figure 9: An example of the annotation interface, dis-
playing a sequence of posts in a timeline shown to an
annotator. For these sequence of posts, the annotator
annotated a single post as a "switch" and another post
as an "escalation". The user has a "switch" at 4.1, drasti-
cally changing from a positive mood to a negative mood
– where this changed mood persists until 4.4. The "esca-
lation" begins and is at its peak (in this case becoming
increasingly negative) at 5.1, and de-escalates up to the
post at 5.2."
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Abstract

Most event extraction methods have tradition-
ally relied on an annotated set of event types.
However, creating event ontologies and anno-
tating supervised training data are expensive
and time-consuming. Previous work has pro-
posed semi-supervised approaches which lever-
age seen (annotated) types to learn how to au-
tomatically discover new event types. State-of-
the-art methods, both semi-supervised or fully
unsupervised, use a form of reconstruction loss
on specific tokens in a context. In contrast, we
present a novel approach to semi-supervised
new event type induction using a masked con-
trastive loss, which learns similarities between
event mentions by enforcing an attention mech-
anism over the data minibatch. We further dis-
entangle the discovered clusters by approxi-
mating the underlying manifolds in the data,
which allows us to achieve an adjusted rand
index score of 48.85%. Building on these clus-
tering results, we extend our approach to two
new tasks: predicting the type name of the dis-
covered clusters and linking them to FrameNet
frames.1

1 Introduction

Discovering new event types is an important step
for adapting information extraction (IE) methods
to unseen domains. Existing work (Ji and Grish-
man, 2008; McClosky et al., 2011; Li et al., 2013;
Chen et al., 2015; Du and Cardie, 2020; Li et al.,
2021a) traditionally uses a predefined list of event
types and their respective annotations to learn an
event extraction model. However, these annota-
tions are both expensive and time-consuming to
create. This problem is amplified when considering
specialization-intensive domains such as scientific
literature, which requires years of specialized ex-
perience to understand even a specific niche. For

1The programs and resources will be publicly available at
github.com/cnedwards/EventTypeBatchAttention for research
purposes.

example, there are a wide range of otherwise ob-
scure events in biomedical literature (Krallinger
et al., 2017), and better IE techniques can empower
life-changing breakthroughs in these domains. To
adapt IE to these specialized domains, it is critical
to discover new event types automatically.

There are two primary approaches in event type
induction. The first is completely unsupervised
induction. It includes recent neural techniques
(Huang et al., 2016; Shen et al., 2021), as well as
ad-hoc clustering techniques (Sekine, 2006; Cham-
bers and Jurafsky, 2011) and probabilistic gener-
ative methods (Cheung et al., 2013; Chambers,
2013; Nguyen et al., 2015). The second approach,
semi-supervised event type induction, was recently
introduced by Huang and Ji (2020). It proposes
leveraging annotations for existing types to learn to
discover new types; this enables taking advantage
of existing resources. In this work, we pursue the
second approach.

Current state-of-the-art work in event type in-
duction (Huang and Ji, 2020; Shen et al., 2021)
uses reconstruction-based losses to find clusters of
new types. Motivated by recent success in learning
representations with contrastive loss (Chen et al.,
2020a; Radford et al., 2021), we propose a novel
alternative approach using batch attention and con-
trastive loss, which achieves state-of-the-art results.
Essentially, we consider the attention weight be-
tween two event mentions as a learned similarity,
and we ensure that the attention mechanism learns
to align similar events using a semi-supervised con-
trastive loss. By doing this, we are able to lever-
age the large variety of semantic information in
pretrained language models for clustering unseen
types by using a trained attention head. This re-
veals our first key motivation: unlike (Huang and
Ji, 2020), we are able to separate clustering from
learning, allowing specific task-suited clustering
algorithms to be selected. This allows us to test
multiple clustering strategies after training once.
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Additionally, this easily allows the use of hierar-
chical clustering, which may be beneficial to some
downstream tasks.

Batch attention is an attention mechanism taken
over a minibatch of samples rather than a sequence.
Previous uses of batch attention have been limited.
Primarily, it has been used for image classification
(Cheng et al., 2021) and satellite imagery (Su et al.,
2019). In this work, we apply batch attention to
natural language instead, which we use for cluster-
ing, and we propose the novel idea of enforcing the
attention mechanism using contrastive loss.

To enable our discovered event types to be used
in larger IE systems, it is important to extract in-
formation regarding the clusters. Previous work
has looked to describe clusters—for a given clus-
ter, Huang et al. (2016) uses the nearest trigger
to the cluster centroid as its name. However, this
approach is nebulous and not easily measurable
(because the same trigger can correspond to dif-
ferent event types and there is not a quantitative
method to determine if the selected trigger defines
the cluster well). This is our second key motivation:
we instead introduce two new information retrieval-
styled tasks for describing the cluster – type name
prediction and FrameNet (Baker et al., 1998) frame
linking. Type prediction predicts a name for each
cluster and is a relatively easy task. FrameNet link-
ing builds on this by linking event types to relevant
frames, and is significantly more useful for down-
stream applications. Our attention-based approach
is especially useful here, since it uses the atten-
tion mechanism to produce “clustered” features
which can have auxiliary task-specific losses ap-
plied (prior work is not well-suited for this because
the loss is applied to individual data points). This
allows our method to build clusters which are more
amenable to downstream tasks.
The major novel contributions of this paper are:

• We propose a novel framework for new event
type induction which uses a novel masked
contrastive loss to enforce an attention mech-
anism over data minibatches. This frame-
work is also potentially applicable for semi-
supervised clustering and classification prob-
lems in other settings where a pretrained
model exists.

• We show that the base pretrained model se-
lected for event type induction plays a key
role in the types which are discovered, since

even un-finetuned models rival Huang and Ji
(2020).

• We use the “clustered” features produced by
our model to extend new event type induction
to two novel downstream tasks: type name
prediction and FrameNet linking. We show
our architecture design allows for auxiliary
losses which improve performance on these
tasks.

2 Task Descriptions

2.1 Semi-supervised Event Type Induction

We tackle the problem of semi-supervised event
type induction, first described by Huang and Ji
(2020). The task is defined as follows: Assume that
k event types from some dataset are known and that
the types of the other events are unknown. Using
the known types as example clusters, we seek to
discover type clusters for the unknown types. Es-
sentially, this is a semi-supervised clustering task
on event mentions. In this work, we follow Huang
et al. (2018) and set the 10 most common types
in the ACE 2005 dataset (Walker et al., 2005) as
known. Thus, given all ACE annotated event men-
tions, our goal is to automatically discover the other
23 unseen ACE types. This assumption is likely
to carry over to real-world datasets, since existing
‘seen’ type definitions are most likely to cover the
most common events. In many real-world cases,
there may be a few long-tail event types present in
the ‘seen’ types and one or two very common event
types may be ‘unseen’. Regardless, the distribution
of seen and unseen types is likely to be fairly simi-
lar to the distribution of setting the most popular k
types as known.

2.2 Downstream Clustering Tasks

Beyond clustering, we also introduce two new
downstream tasks on this problem: type predic-
tion and FrameNet (Baker et al., 1998) linking. We
structure both of these tasks as information retrieval
problems for evaluation. Essentially, given a clus-
ter, one should be able to predict its event type
name and to what frame it should be linked. For
each cluster, we calculate the most frequent type
and consider it to be the ground truth for the cluster.
Type Prediction: The goal is to retrieve the “name”
of the correct type for a cluster. Thus, we measure
Hits@n and mean reciprical rank (MRR), where the
corpus consists of the 23 new unseen type names.
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Figure 1: Architecture of the proposed approach. Best viewed in color. LN is layer normalization, R is ReLU, and
D is dropout. σ is softmax for the attention mechanism and sigmoid for the contrastive loss. F̂i is the clustered
features of mention i in the batch. ‘?’ are unseen event types.

In practice, we embed the names using our lan-
guage model and use cosine similarity to the cluster
centroid to rank them.
FrameNet Linking: FrameNet is the largest event
ontology that is publicly available. However, there
is not enough annotated training data to train super-
vised models directly on it. To alleviate this issue,
we propose a task linking our newly discovered
event types to FrameNet frames.

For the FrameNet linking, we consider a setup
similar to name prediction, where we link clusters
to the 1,221 frames in FrameNet 1.7 (Ruppenhofer
et al., 2016). Instead of using the type names, we
follow Huang et al. (2018) and manually map the
ACE types to one or more frames to create a ground
truth (see Appendix C for details). All child frames
of the mapped frames are also considered valid tar-
gets. Given an ACE type, we can now link to a
set of valid frames. In practice, we take the cor-
pus of frame definitions and embed them using our
language model. We then rank them using cosine
similarity by comparing to the given cluster cen-
troid. We consider the best rank of the valid frames
to be the rank of a cluster. Thus, this task is also
measured with Hits@n and MRR.

3 Methods

3.1 Overall Architecture

Overall, our method, shown in Figure 1, consists
of a language model, such as BERT (Devlin et al.,
2019), which produces contextualized represen-
tations, followed by a “clusterer”. Unlike previ-
ous work which used specific token representations
(Huang and Ji, 2020), we use mean pooling over
the entire mention where an event occurs as our
input. The language model produces an event rep-

resentation, which is then input into the “clusterer”
layer. The clusterer layer then produces “clustered”
features using the attentions (see Section 3.3).

3.2 Back-translation for Data Augmentation

Contrastive loss has recently been applied for deep
clustering (Li et al., 2021b; Zhong et al., 2020) and
for representation learning (Chen et al., 2020a; Gao
et al., 2021; Zhang et al., 2021a; Liu and Liu, 2021).
However, this requires data augmentation to create
positive example pairs. For text, some augmenta-
tions use back-translation (Cao and Wang, 2021;
Zhang et al., 2021b). Taking inspiration from these
clustering and representation learning techniques,
we employ back-translation as data augmentation
to create more positive pairs, improving the learn-
ing of attention weights between event mentions.

3.3 Batch Attention “Clusterer” Mechanism

To learn similarities between unseen event men-
tions, we propose learning an attention mechanism
over the stochastic gradient descent minibatch. We
enforce this attention mechanism using a masked
contrastive loss (described in Section 3.4). This
allows the attention mechanism’s behavior to be
learned from the seen classes.

We follow Vaswani et al. (2017) in implement-
ing a scaled dot product attention, although over
the batch instead. Since our “clusterer” needs to
learn similarities for clustering and then be used for
cluster features, we use nonlinear transformations
for the query (Q) and key (K) vectors instead of
the linear transformations in (Vaswani et al., 2017).
This nonlinear transformation for Q and K is im-
plemented as a two hidden layer neural network,
which is shown in Figure 1.

Using this attention mechanism, we produce
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“clustered features”, which are a convex combina-
tion of the different samples from the batch. This
allows us to apply an auxiliary loss to the clus-
tered features. We consider this as being analogous
to learning on cluster centroids. Specific auxiliary
losses can be applied for specific downstream tasks.

We note that this approach can also be inter-
preted as a type of feature smoothing, an inner
product graph generator, and metric learning.

3.4 Masked Semi-supervised Contrastive Loss
Recent work, such as CLIP (Radford et al., 2021)
and Text2Mol (Edwards et al., 2021), has found
great success using contrastive losses between pairs
of representations Q and K, each n× d matrices
where n is the number of samples of d dimensions.
They obtain the loss L by comparing the product
of these matrices (QKT ) to a label matrix Y ∈
{0, 1}n×n (which in their case is Y = In), using
cross entropy loss CE.

L(Q,K) = CE(QKT , In) + CE(KQT , In)

We modify these existing contrastive losses to
enforce our batch attention mechanism. We calcu-
late the label matrix as follows (see Appendix B
for an example). Given a pair of samples (event
mentions) xi and xj , we consider the pair to be a
positive if they are from the same seen event type.
We consider the pair to be negative if they are from
different seen event types or if one is seen and one
unseen. If both are unseen they are masked. In
practice, the labels can be computed using one-hot
vectors of the c seen types (the unseen types are
zero-hot vectors). These vectors are stacked into a
n× c matrix O. The label matrix is computed

Y = OOT ∨ In
where ∨ is the elementwise logical-or operation.
Following (Edwards et al., 2021), we use binary
cross-entropy as the loss between the labels Y
and the scaled attention dot products QKT

√
d

from
(Vaswani et al., 2017). This gives the following
contrastive loss:

Lss(Q,K) = CE(
QKT

√
d
, Y )

This loss, however, values negative samples much
more than positive samples (due to the imbalance).
Noticing that once vectors of a negative pair are
orthogonal they don’t need to be further separated,
we introduce a margin m. Essentially, we mask out

pairs whose dot product is “too negative” (in addi-
tion to unknown relations between unseen types).
This is because the loss would rather optimize the
already well-separated negatives instead of the rel-
atively fewer positives. Let pi,j ∈ {0, 1} be the
label of a pair and ui,j ∈ {0, 1} indicate that both
i and j are unseen. Our mask, M , is calculated

Mi,j =

[
pi,j ∧

(
σ(
QKT

√
d

)i,j < m

)]
∨ ui,j

where ∧ is elementwise logical-and, σ is the
sigmoid function, and z̄ denotes logical negation
of z. This is similarly motivated to the margins
used in knowledge graph embedding losses, such
as TransE (Bordes et al., 2013). Thus, our loss is:

Lm(Q,K) =M · Lss(Q,K)

where in this case we treat Lss(Q,K) as an unre-
duced loss (so it is a matrix), and · is elementwise
multiplication.

We apply this loss to the query (Q) and key (K)
matrices in the clusterer’s batch attention mecha-
nism. We also include the augmented data (Q′ and
K ′), giving us a final loss:

Lc(Q,K,Q
′,K ′) =

∑

Q̂,K̂∈{Q,Q′}×{K,K′}
Lm(Q̂, K̂)

3.5 Auxiliary Loss
For our downstream tasks, we employ a regression-
based auxiliary loss. For each seen instance xi, we
maximize the cosine similarity between the clus-
tered features F̂i and the pretrained language model
embedding Bti of the ground truth type ti (e.g. the
name ‘attack’). Thus, we get the loss:

La(F̂i, Bti , ti) = 1− cos(F̂i, Bti)1seen(ti)

where 1seen(ti) indicates whether ti is a seen type.

3.6 Stopping Criterion
For this task, it is not reasonable to use a validation
set for stopping. This is because the loss depends
only on seen types and their relationships to unseen
types. Since the unseen classes are unlabeled and
the losses between pairs of unseen are unknown,
the model can overfit to the seen data, pushing to-
gether clusters of unseen types. To deal with this
issue, we employ unsupervised clustering metrics
to decide when to stop training. In particular, we
use cosine distance-based silhouette scores to mea-
sure the quality of clustering. Further details are
given in Appendix F.
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3.7 Clustering

Any algorithm which can compute clusters from
a precomputed distance function can be applied
to the learned similarities between event mentions.
Additionally, we find that the finetuning of the lan-
guage model by our loss modifies its representa-
tions to better form clusters. Thus, this representa-
tion can be used in many clustering algorithms as
well.

3.7.1 Manifold Approximation
Inspired by recent work (Ros et al., 2021) which
uses manifold approximation to interpret large lan-
guage model-based sentence representations for
information retrieval, we incorporate manifold ap-
proximation into our clustering approach. To do
so, we follow the UMAP (McInnes et al., 2018)
algorithm to create approximate weights based on
estimating neighborhood densities within the data.
We calculate these weights using cosine distance
as an input, as it has traditionally been effective for
language modeling (Manning et al., 2008; Reimers
and Gurevych, 2019). UMAP attempts to estimate
the density by comparing the distance to the k-
nearest neighbors. This is used to calculate weights
between each pair of data points. Details are given
in Appendix H. Following this, we use agglomera-
tive clustering on the UMAP weights as before.

In our approach, we want to better understand
the global clustering landscape, so we use a high
value of k. In practice, to avoid hyperparameter
selection, we set k equal to the size of the data.

4 Experimental Results

Generally, we used default hyperparameters. We
split the learning rates into BERT and non-BERT
parameters following (Edwards et al., 2021) with
2e-5 for BERT as in (Devlin et al., 2019) and 1e-4
for other parameters as in (Vaswani et al., 2017).
For the margin parameter, we examined silhouette
scores to select 0.5.

For back-translation, we used four languages,
German, French, Spanish, and Chinese, and ran-
domly sampled which language to use for each data
point every epoch. We obtained back-translations
using the MarianMT translation models (Junczys-
Dowmunt et al., 2018). Ablations are shown in
Section J.

For our main experiments, we only use the con-
trastive loss. We take the average of 5 runs to show
that our method consistently outperforms (Huang

and Ji, 2020). We also calculate clusters using an
ensemble of the 5 runs which shows slightly in-
creased performance, which is an expected result
in deep neural networks (Allen-Zhu and Li, 2020).

Huang and Ji (2020) evaluate these clusters using
Geometric NMI, Fowlkes Mallows (Fowlkes and
Mallows, 1983), Completeness, Homogeneity, and
V-Measure (Rosenberg and Hirschberg, 2007). We
additionally consider adjusted Rand index (ARI)
(Hubert and Arabie, 1985). In the downstream
tasks, given a clustering we also report the average
cluster purity and type representation. Given a clus-
ter i of size ni with most frequent type numbering
nfi , purity pi = ni

nfi
(Manning et al., 2008). Note

that this average cluster purity is slightly different
than traditional purity; it weights small clusters
more which is desirable in our case (like macro vs.
micro F1 score). Type representation is the number
of unique frequent subtypes, nt, divided by total
types, in this case 23.

4.1 Language Model

We select Sentence BERT (SBERT) (Reimers and
Gurevych, 2019) as a language model because its
pretraining tasks are better suited for clustering
than BERT. This is shown in Table 1, since the
clustering from SBERT embeddings can even out-
perform (Huang and Ji, 2020) without any semi-
supervision. We use a small version of the model2

from HuggingFace (Wolf et al., 2020), which al-
lows us to use a larger minibatch size of 10. Using
larger minibatch sizes is desirable for contrastive
loss since the number of negatives scales quadrat-
ically with the size. The performance of mini
SBERT is notable, as Huang and Ji (2020) used
BERT-large, a considerably larger model.

4.2 Clustering Algorithms

For clustering, we consider two algorithms which
work on precomputed metrics. First, we use ag-
glomerative clustering with average linkage, as it
tends to be less sensitive to outliers and noisy data
(Han et al., 2011). Noise is present in the dataset,
often in the form of transcripts (see Section 4.4).

We report results following existing clustering
literature by using the true number of classes as
the cluster number (Huang et al., 2020; Li et al.,
2021b). In practice it is generally difficult to select
the correct number of clusters to use. Due to this,
using extra clusters is typically done by previous

2paraphrase-MiniLM-L12-v2
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Method Clusters Geometric NMI Fowlkes Mallows Completeness Homogeneity V-Measure ARI
One Cluster 1 0.00 25.58 100.00 0.00 0.00 0.00

SS-VQ-VAE w/o VAE (Huang and Ji, 2020) 500 33.45 25.54 42.76 26.17 32.47 -
SS-VQ-VAE (Huang and Ji, 2020) 500 40.88 31.46 53.57 31.19 39.43 -

SS-VQ-VAE + SBERT 3 33 19.08 19.45 25.80 15.13 19.08 7.54
SBERT Agglo 23 50.71 34.35 57.05 45.07 50.36 24.02
SBERT Manifold 23 48.75 36.02 51.32 46.30 48.68 30.21

Attn-Cosine Agglo 23 46.40 34.60 49.82 43.24 46.27 26.69
Attn-DotProduct Agglo 23 50.17 37.48 53.50 47.06 50.06 30.13

Attn Manifold 23 54.83 42.77 55.00 54.67 54.82 38.74
FT-SBERT Manifold 23 60.28 50.63 60.19 60.37 60.28 47.24

Attn-DotProduct Affinity 49-68 56.87 35.64 49.58 65.26 56.33 30.02
Attn-Cosine Affinity 50-69 56.54 33.00 48.72 65.62 55.91 27.04

E-Attn-DotProduct Agglo 23 56.50 43.26 59.62 53.54 56.41 37.02
E-Attn Agglo 23 59.00 46.19 58.36 59.66 59.00 42.56

E-FT-SBERT Manifold 23 63.56 52.10 63.11 64.01 63.56 48.85
E-Attn-DotProduct Affinity 63 60.00 38.41 51.32 70.15 59.28 31.78

Table 1: New event type induction results (%)4. The first subcolumn is the input for clustering and the second is the
clustering algorithm used. SBERT indicates the (unfinetuned) SBERT representations were used rather than our
learned attentions (Attn). FT-SBERT representations are finetuned by our method. E stands for ensemble. Values
are the average of 5 runs. Agglo is agglomerative clustering, Affinity is (Frey and Dueck, 2007), and Manifold is as
described in Section 3.7.1. For affinity, each run can produce a slightly different number of clusters.

work (Huang and Ji, 2020; Shen et al., 2021). How-
ever, this can inflate the NMI score (Nguyen et al.,
2009) and benefit qualitative evaluation because
of the unbalanced classes in the dataset. As an ex-
ample, given only 23 clusters (the ground truth),
a large class such as ‘Injure’ splits into multiple
smaller clusters, which causes rare event types to
be merged. Results show that 19 / 23 types are rep-
resented by a cluster in the 50 cluster case versus
only 16 / 23 in the 23 cluster case. This makes
results appear better for more clusters. Silhouette
scores are higher for 23 clusters, however.

Unlike existing work (Huang and Ji, 2020), the
number of clusters is unimportant for our learning
process and can be selected afterwords, such as
by selecting a high number as in (Huang and Ji,
2020; Shen et al., 2021) or automatically with affin-
ity propagation (Frey and Dueck, 2007). Affinity
propagation selects exemplars to automatically de-
termine the number of clusters. Our approach is
especially useful here, since affinity propagation
does not complete when applied to default SBERT
representations but does when using our contrastive
loss-enforced attentions.

4.3 Results
We compare our results with Huang and Ji (2020),
who first introduced this task, in Table 1. We find
that just our choice of language model outperforms
the baseline. Also, using dot products is more ef-
fective for our learned attention metric than cosine
distance, since dot product without normalization,
as in our attention mechanism, indicates confidence

of clustering a pair of samples together (This is be-
cause the contrastive loss uses sigmoid).

4.3.1 Manifold Approximation
We find manifold approximation to be very ef-
fective in our experiments. Intuitively, we under-
stand this manifold approximation as untangling
the cluster manifolds from each other in the high-
dimensional representation space. Interestingly,
the results using the finetuned SBERT representa-
tions perform better than the results on the learned
similarities. We find this to be quite interesting,
especially because the representations change an
average of 0.6 cosine distance from their start-
ing points, as shown in Appendix A. Our method
causes SBERT to inherently learn representations
more amenable for clustering.

While manifold approximation works well for
clustering here, we note that using UMAP for clus-
tering is considered controversial.5 While it works
well in many cases, there are potential issues with
artifacts or false tearing of clusters. We leave anal-
ysis of the interaction between high-dimensional
semantic spaces obtained from language models
and manifold approximation to future work.

3(Huang and Ji, 2020) did not release their code, and we
were unable to reproduce their results. Nonetheless, we apply
their method to the SBERT representations based on the de-
scription in their paper. We also use an equivalent number of
clusters to the ground truth, unlike their paper, which enables
comparability to our method.

4(Huang and Ji, 2020) appears to have used the former
scikit-learn default of geometric NMI, which is why their
v-score doesn’t equal arithmetic NMI.

5https://umap-learn.readthedocs.io/en/latest/clustering.html
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• Injure: If those weren't gunshot wounds to 

cause the broken bones, do they know what 

caused the fractures 

• Injure:  More than 40 were injured

• Injure:  There was no information on the 

identity of the injured person

• Injure: Sergeant Chuck Hagel was 

seriously wounded twice in Vietnam

• Declare-Bankruptcy: You need to speak 

to a bankruptcy attorney pronto; this is a 

bankruptcy matter, not a tax matter

• Declare-Bankruptcy:  despite operating 

under bankruptcy laws, united posted the 

best on time performance 

• Declare-Bankruptcy:  That means that he 

received the shares while he was still in 

bankruptcy, which means that the shares 

were potentially assets that the trustee 

could use to pay off creditors

• Start-Org: Kiichiro Toyoda founded the 

automaker in 1937, transforming the loom 

manufacturer started by his father into an 

automaker

• Merge-Org: I believe any neutral management 

consultant worth his or her salt would 

recommend a merger of the two organizations 

• End-Org: It's a dying organization, and this will 

be just the jolt it needs for another couple 

decades of somnambulant staggering before 

being ultimately replaced by far more efficient 

companies

• Marry: My wife and I were guests at a wedding 

on the Carnival Legend on New Years Eve 2003

• Marry and Divorce: Giuliani, 58, proposed to 

Nathan, a former nurse, during a November 

business trip to Paris - five months after he 

finalized his divorce from Donna Hanover after 

20 years of marriage 

• Merge-org: So Oracle and Peoplesoft , who 

spent the last 18 months insulting one another in 

every imaginable way, are finally tying the knot

• Marry: Either its bad or good

• End-Org: i felt t7ire was something else too, 

much history behind silver cross to end is now 

• Trial-Hearing: Yeah, we're a pretty small town, 

so our newspaper covers it a lot

• Trial-Hearing: Yeah, because I was really -- I 

wasn't really following it that much because I was

• Start-Position: then when they're ready to breed 

they go to the wb

• Charge-Indict: 56-year-old forry drake has 

been charged with interstate transport of a minor

• Charge-Indict: Ocalan, being tried in absentia, 

was indicted for entering the country illegally, a 

• Convict and Charge-Indict: convicted 

oklahoma city bombing conspirator terry nichols

will stand trial again on state murder charges

• Appeal: in the african nation of nigeria, an 

islamic court delayed the appeal of a woman 

condemned to death by stoning

Figure 2: Cluster Examples: Injure, Charge-Indict, Marry, Bankruptcy, Start-Org, and Bad Data, respectively.

Cluster Strength Clusters
Very Strong

(> 80% Purity)
Injure, Sue, Phone-Write,

Declare-Bankruptcy, Demonstrate, Trial-Hearing

Strong
(60-80% Purity)

Be-Born, Start-Position,
Charge-Indict, Marry

Ok
(40-60% Purity) Release-Parole, Appeal, Injure

Mixed
(20-40% Purity)

Convict, Fine, Trial-Hearing,
Start-Org, Start-Position, Charge-Indict

Small Clusters
(< 2 samples)

Trial-Hearing, Nominate,
Start-Position, Phone-Write

Table 2: Clusters sorted into purity classes.

4.4 Qualitative Cluster Analysis

We analyze the clusters produced by our best re-
sult, the ensemble. We classify the clusters ac-
cording to purity in Table 2. We show examples
from numbered clusters in Figure 2. Certain types
of clusters, such as Injure 1 and Demonstrate
4 , form very strong clusters. We believe this

is likely related to their size and lack of overlap
with other types. There are two common sources
of error: the first is semantic overlap. Start-org,
merge-org, and end-org tend to overlap 5 . Marry
and divorce also slightly overlap 3 —in the 23
cluster case they merge into one cluster, but in
the 50 cluster case they are separate. Most types
of courtroom related events—Charge-Indict, Trial-
Hearing, Convict, Release-Parole, Appeal, Execute,
Acquit, Extradite—have some degree of overlap
2 . Second, the other main source of errors is “du-

plicates”. This occurs in our method because two
or more events can occur in the same event mention
2 , 3 . Since our method does not account for

triggers, it cannot distinguish between duplicate

mentions with multiple triggers. Future work can
address this issue by combining our method with
an existing trigger-based method such as (Huang
and Ji, 2020). We also find that our method clus-
ters “junk” data together 6 , which are usually
from transcripts. Errors occasionally occur from
metaphorical language, such as when companies
are “married” 3 . We show more detailed exam-
ples of these observations in Appendix E.

4.5 Downstream Tasks

For the downstream tasks, we use different clus-
terings and try to discover information about the
clusters. As a baseline, we compare against default
(not finetuned) SBERT clustering (Base-23) and
ground truth (perfect) clusters. We compare these
to our ensemble clustering. For type prediction, we
use SBERT embeddings to compute cluster cen-
troids and compare to the SBERT representation of
the type name (e.g. ‘injure’). For FrameNet link-
ing, we use the frame definition instead of the name
(e.g. “The words [...] describe situations in which
an Agent or a Cause injures a Victim [...]”). We
also use an auxiliary loss, La, which we apply to
a 1-layer neural network on the clustered features
F̂ . This extra layer is employed to allow multiple
auxilliary losses: we leave those experiments for
future work. We compare using these finetuned rep-
resentations in addition to default SBERT. Results
are shown in Tables 3 and 4.

We find that our ensemble clustering outper-
forms the default SBERT clustering, and that we
are able to recover the event type 60% of the time.
For the ground truth clusters, our finetuning with
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Clustering Representation Mean Rank Hits@1 Hits@3 Hits@5 Hits@10 Hits@15 MRR Average Purity Type Representation
Base-23 Untuned 5.17 34.8% 47.8% 60.9% 82.6% 100% 0.477 25% 47.8%

FT-Base-23 Finetuned 4.43 56.5% 65.2% 78.2% 82.6% 91.3% 0.660 58.9% 65.2%
Ensemble-23 Untuned 3.65 60.9% 69.6% 69.6% 95.7% 100% 0.679 68.6% 69.6%
Ensemble-23 Finetuned 5.13 56.5% 65.2% 69.6% 87.0% 87.0% 0.650 68.6% 69.6%
Ensemble-50 Untuned 4.40 56.0% 60.0% 68.0% 90.0% 96.0% 0.630 69.3% 82.6%

Perfect-23 Untuned 2.30 69.6% 73.9% 82.6% 95.7% 100% 0.758 100% 100%
Perfect-23 Finetuned 2.83 73.9% 82.6% 91.3% 91.3% 95.7% 0.800 100% 100%

Table 3: Results for cluster to name prediction task with different representations and clusterings. Finetuned
indicates finetuned SBERT representations from our contrastive + auxiliary loss are used (otherwise default SBERT).
“-x” at the end is the number of clusters. Perfect indicates the ground truth clustering, Base/FT-Base is SBERT
clusterings (default or finetuned with our auxiliary loss), and Ensemble is the clustering of our ensemble result.
Type representation shows what percent of unseen types represent the majority of a cluster.

Clustering Representation Mean Rank Hits@1 Hits@5 Hits@10 Hits@50 Hits@100 MRR Average Purity Type Representation
Base-23 Untuned 95.9 4.3% 21.7% 26.1% 30.4% 34.8% 0.128 25% 47.8%

FT-Base-23 Finetuned 156.9 30.4% 30.4% 34.8% 43.5% 47.8% 0.336 57.4% 65.2%
Ensemble-23 Untuned 72.7 17.4% 30.4% 39.1% 47.8% 65.2% 0.264 68.6% 69.6%
Ensemble-23 Finetuned 115.7 21.7% 34.8% 34.8% 43.5% 52.2% 0.308 68.6% 69.6%

Perfect-23 Untuned 15.9 26.1% 39.1% 52.2% 65.2% 73.9% 0.374 100% 100%
Perfect-23 Finetuned 42.7 47.8% 56.5% 60.9% 69.6% 69.6% 0.539 100% 100%

Table 4: Results for cluster to frame linking task. See Table 3 for notation.

an auxiliary loss improves MRR and Hits@1 over
the default SBERT representations. Frame link-
ing is much more difficult, since there are 1,221
frames, but we are able to recover the correct frame
for 30% of clusters, while default SBERT only
achieves 4%. Notably, the auxiliary loss clustering
(FT-Base-23) even outperforms our ensemble clus-
tering, demonstrating the flexibility of our model ar-
chitecture. Using perfect clustering, our finetuned
model achieves nearly 50% Hits@1, doubling the
performance of the default SBERT model. The
finetuning loss allows the model to train on the
combined cluster features, which approximates the
centroid of a cluster. This promotes the potential
cluster to be shaped so that its centroid is better
suited for the downstream tasks–being most similar
to the correct type name or frame representation.

5 Related Work

Although event extraction has long been studied
(Grishman, 1997; Ji and Grishman, 2008; Mc-
Closky et al., 2011; Li et al., 2013; Chen et al.,
2015; Du and Cardie, 2020; Li et al., 2021a), re-
cent focus has turned towards discovering events
without annotations. It includes recent neural
techniques (Huang et al., 2016; Liu et al., 2019;
Shen et al., 2021), as well as ad-hoc clustering
techniques (Sekine, 2006; Chambers and Jurafsky,
2011; Yuan et al., 2018) and probabalistic gen-
erative methods (Cheung et al., 2013; Chambers,
2013; Nguyen et al., 2015). Semi-supervised event

type induction was recently introduced by Huang
and Ji (2020). Zero-shot event extraction frame-
works, such as (Huang et al., 2018), can be used to
perform event extraction on the newly discovered
types. Recent work by Gao et al. (2022) uses a
weakly-supervised contrastive learning-based clus-
tering approach for event representation learning.

Several new unsupervised deep clustering ap-
proaches use contrastive loss for clustering im-
ages (Li et al., 2021b; Zhong et al., 2020) and
text (Zhang et al., 2021b). These methods require
data augmentation to create positive example pairs.
Contrastive loss has also been applied to learn rep-
resentations. SimCLR (Chen et al., 2020a,b) uses
image augmentations for unsupervised representa-
tion learning. Follow-up work has applied this loss
to natural language (Gao et al., 2021; Zhang et al.,
2021a; Liu and Liu, 2021), with some augmenta-
tions being back-translated text (Cao and Wang,
2021). Gunel et al. (2021) use fully supervised
contrastive loss to finetune language models.

Batch attention has been investigated a little in
the literature, such as for satellite imagery predic-
tion (Su et al., 2019) or image classification (Cheng
et al., 2021); however, it has not been used to learn
clustered features. Seidenschwarz et al. (2021)
recently proposed a related idea for a message-
passing network weighted by attention for cluster-
ing images. We instead directly use (contrastive
loss-enforced) attention weights for clustering.
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6 Conclusion and Future Work

In this work, we present an exciting new approach
for event type induction, where we use contrastive
loss to control the learning of a batch attention
mechanism for both finding and learning about
new cluster types. We also consider manifold ap-
proximation for clustering, and we introduce two
new downstream tasks: type name prediction and
FrameNet linking. This new approach opens sev-
eral interesting problems for future work. First,
this method can potentially be incorporated with
reconstruction loss-based approaches, which might
improve results or obviate the early stopping cri-
terion. Alternatively, the stopping criterion can
be integrated into a loss function for better stop-
ping control. Notably, this would enable a two-step
process of learning clusters and then performing
knowledge distillation using those clusters (or an
ensemble) while learning other desired losses. Fu-
ture work can investigate the interaction of man-
ifold approximation with large language models
and integrate it directly into the clusterer subnet-
work. It may be possible to use a heirarchy of event
types for knowledge transfer from data-rich types
to long-tail types. Finally, FrameNet linking can
be extended to Wikidata Q-Node linking, which
contains millions of nodes. Our approach may also
be applicable in other modalities with strong pre-
trained models.

7 Limitations

In this work, we present a contrastive loss-based
batch attention method for new event type induc-
tion. Like most modern event type induction meth-
ods, this relies on strong existing representations
(which are typically pretrained in a self-supervised
manner). Our additional testing on the much larger
MAVEN dataset (Appendix K) indicates that se-
lecting an appropriate representation is an impor-
tant factor. In that case, SBERT representations
are inappropriate for the event mentions in the
dataset, but trigger representations are effective,
and our method further improves those results. Fu-
ture research on identifying pretraining methods
for initializing representations will be useful for
this method and task (along with many other mod-
els such as retrieval-based large language models
(Guu et al., 2020; Borgeaud et al., 2021).

Requiring early stopping is a limitation to our
newly proposed event type induction method which
does not occur in existing reconstruction-based

methods (those methods instead require a predeter-
mined cluster number along with other limitations).
While an early stopping method is required, our
method is effective, and we believe that our new ap-
proach is still valuable because it offers a different
approach for new event type induction. Addition-
ally, future work should be able to build upon our
work to remove early stopping. Doing so may also
help obviate the dependence on the initial represen-
tation. In Section 6 we detail several possibilities
for future work to further improve upon this work.

Acknowledgements

We would like to thank the anonymous review-
ers for helping us to improve this paper. This re-
search is based upon work supported in part by
U.S. DARPA KAIROS Program No. FA8750-19-2-
1004. The views and conclusions contained herein
are those of the authors and should not be inter-
preted as necessarily representing the official poli-
cies, either expressed or implied, of DARPA, or
the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copy-
right annotation therein.

3813



References
Zeyuan Allen-Zhu and Yuanzhi Li. 2020. Towards un-

derstanding ensemble, knowledge distillation and
self-distillation in deep learning. ArXiv preprint,
abs/2012.09816.

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The Berkeley FrameNet project. In COLING
1998 Volume 1: The 17th International Conference
on Computational Linguistics.

Antoine Bordes, Nicolas Usunier, Alberto García-
Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems 2013. Pro-
ceedings of a meeting held December 5-8, 2013, Lake
Tahoe, Nevada, United States, pages 2787–2795.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann,
Trevor Cai, Eliza Rutherford, Katie Millican, George
van den Driessche, Jean-Baptiste Lespiau, Bogdan
Damoc, Aidan Clark, et al. 2021. Improving lan-
guage models by retrieving from trillions of tokens.
arXiv preprint arXiv:2112.04426.

Shuyang Cao and Lu Wang. 2021. Cliff: Con-
trastive learning for improving faithfulness and fac-
tuality in abstractive summarization. ArXiv preprint,
abs/2109.09209.

Nathanael Chambers. 2013. Event schema induction
with a probabilistic entity-driven model. In Proceed-
ings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pages 1797–1807,
Seattle, Washington, USA. Association for Computa-
tional Linguistics.

Nathanael Chambers and Dan Jurafsky. 2011. Template-
based information extraction without the templates.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 976–986, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey E. Hinton. 2020a. A simple framework
for contrastive learning of visual representations. In
Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pages 1597–1607. PMLR.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming
He. 2020b. Improved baselines with momentum con-
trastive learning. ArXiv preprint, abs/2003.04297.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and
Jun Zhao. 2015. Event extraction via dynamic multi-
pooling convolutional neural networks. In Proceed-
ings of the 53rd Annual Meeting of the Association

for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 167–176,
Beijing, China. Association for Computational Lin-
guistics.

Qishang Cheng, Hongliang Li, Qingbo Wu, and
King Ngi Ngan. 2021. Baˆ 2m: A batch aware atten-
tion module for image classification. ArXiv preprint,
abs/2103.15099.

Jackie Chi Kit Cheung, Hoifung Poon, and Lucy Van-
derwende. 2013. Probabilistic frame induction. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 837–846, Atlanta, Georgia. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Xinya Du and Claire Cardie. 2020. Event extraction by
answering (almost) natural questions. In Proceedings
of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 671–683,
Online. Association for Computational Linguistics.

Carl Edwards, ChengXiang Zhai, and Heng Ji. 2021.
Text2Mol: Cross-modal molecule retrieval with nat-
ural language queries. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 595–607, Online and Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Edward B Fowlkes and Colin L Mallows. 1983. A
method for comparing two hierarchical clusterings.
Journal of the American statistical association,
78(383):553–569.

Brendan J Frey and Delbert Dueck. 2007. Clustering
by passing messages between data points. science,
315(5814):972–976.

Jun Gao, Wei Wang, Changlong Yu, Huan Zhao, Wil-
fred Ng, and Ruifeng Xu. 2022. Improving event
representation via simultaneous weakly supervised
contrastive learning and clustering. arXiv preprint
arXiv:2203.07633.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. ArXiv preprint, abs/2104.08821.

Ralph Grishman. 1997. Information extraction: Tech-
niques and challenges. In International summer
school on information extraction, pages 10–27.
Springer.

3814

https://arxiv.org/abs/2012.09816
https://arxiv.org/abs/2012.09816
https://arxiv.org/abs/2012.09816
https://aclanthology.org/C98-1013
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://arxiv.org/abs/2109.09209
https://arxiv.org/abs/2109.09209
https://arxiv.org/abs/2109.09209
https://aclanthology.org/D13-1185
https://aclanthology.org/D13-1185
https://aclanthology.org/P11-1098
https://aclanthology.org/P11-1098
http://proceedings.mlr.press/v119/chen20j.html
http://proceedings.mlr.press/v119/chen20j.html
https://arxiv.org/abs/2003.04297
https://arxiv.org/abs/2003.04297
https://doi.org/10.3115/v1/P15-1017
https://doi.org/10.3115/v1/P15-1017
https://arxiv.org/abs/2103.15099
https://arxiv.org/abs/2103.15099
https://aclanthology.org/N13-1104
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.emnlp-main.49
https://doi.org/10.18653/v1/2020.emnlp-main.49
https://aclanthology.org/2021.emnlp-main.47
https://aclanthology.org/2021.emnlp-main.47
https://arxiv.org/abs/2104.08821
https://arxiv.org/abs/2104.08821


Beliz Gunel, Jingfei Du, Alexis Conneau, and Veselin
Stoyanov. 2021. Supervised contrastive learning for
pre-trained language model fine-tuning. In 9th In-
ternational Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Mingwei Chang. 2020. Retrieval augmented
language model pre-training. In International Con-
ference on Machine Learning, pages 3929–3938.
PMLR.

Jiawei Han, Jian Pei, and Micheline Kamber. 2011.
Data mining: concepts and techniques. Elsevier.

Jiabo Huang, Shaogang Gong, and Xiatian Zhu. 2020.
Deep semantic clustering by partition confidence
maximisation. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR
2020, Seattle, WA, USA, June 13-19, 2020, pages
8846–8855. IEEE.

Lifu Huang, Taylor Cassidy, Xiaocheng Feng, Heng
Ji, Clare R. Voss, Jiawei Han, and Avirup Sil. 2016.
Liberal event extraction and event schema induction.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 258–268, Berlin, Germany.
Association for Computational Linguistics.

Lifu Huang and Heng Ji. 2020. Semi-supervised new
event type induction and event detection. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
718–724, Online. Association for Computational Lin-
guistics.

Lifu Huang, Heng Ji, Kyunghyun Cho, Ido Dagan, Se-
bastian Riedel, and Clare Voss. 2018. Zero-shot
transfer learning for event extraction. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2160–2170, Melbourne, Australia. Association
for Computational Linguistics.

Lawrence Hubert and Phipps Arabie. 1985. Comparing
partitions. Journal of classification, 2(1):193–218.

Heng Ji and Ralph Grishman. 2008. Refining event
extraction through cross-document inference. In Pro-
ceedings of ACL-08: HLT, pages 254–262, Colum-
bus, Ohio. Association for Computational Linguis-
tics.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceedings of
ACL 2018, System Demonstrations, pages 116–121,
Melbourne, Australia. Association for Computational
Linguistics.

Martin Krallinger, Martin Pérez-Pérez, Gael Pérez-
Rodríguez, Aitor Blanco-Míguez, Florentino
Fdez-Riverola, Salvador Capella-Gutierrez, Anália
Lourenço, and Alfonso Valencia. 2017. The biocre-
ative v. 5 evaluation workshop: tasks, organization,
sessions and topics.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event
extraction via structured prediction with global fea-
tures. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 73–82, Sofia, Bulgaria.
Association for Computational Linguistics.

Sha Li, Heng Ji, and Jiawei Han. 2021a. Document-
level event argument extraction by conditional gen-
eration. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 894–908, Online. Association for
Computational Linguistics.

Yunfan Li, Peng Hu, Zitao Liu, Dezhong Peng,
Joey Tianyi Zhou, and Xi Peng. 2021b. Contrastive
clustering. In 2021 AAAI Conference on Artificial
Intelligence (AAAI).

Xiao Liu, Heyan Huang, and Yue Zhang. 2019. Open
domain event extraction using neural latent variable
models. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2860–2871, Florence, Italy. Association for
Computational Linguistics.

Yixin Liu and Pengfei Liu. 2021. SimCLS: A sim-
ple framework for contrastive learning of abstractive
summarization. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 2: Short
Papers), pages 1065–1072, Online. Association for
Computational Linguistics.

Christopher D Manning, Prabhakar Raghavan, and Hin-
rich Schütze. 2008. Introduction to information re-
trieval.

David McClosky, Mihai Surdeanu, and Christopher
Manning. 2011. Event extraction as dependency
parsing. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies, pages 1626–1635,
Portland, Oregon, USA. Association for Computa-
tional Linguistics.

Leland McInnes, John Healy, and James Melville. 2018.
Umap: Uniform manifold approximation and pro-
jection for dimension reduction. ArXiv preprint,
abs/1802.03426.

Kiem-Hieu Nguyen, Xavier Tannier, Olivier Ferret, and
Romaric Besançon. 2015. Generative event schema
induction with entity disambiguation. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International

3815

https://openreview.net/forum?id=cu7IUiOhujH
https://openreview.net/forum?id=cu7IUiOhujH
https://doi.org/10.1109/CVPR42600.2020.00887
https://doi.org/10.1109/CVPR42600.2020.00887
https://doi.org/10.18653/v1/P16-1025
https://doi.org/10.18653/v1/2020.emnlp-main.53
https://doi.org/10.18653/v1/2020.emnlp-main.53
https://doi.org/10.18653/v1/P18-1201
https://doi.org/10.18653/v1/P18-1201
https://aclanthology.org/P08-1030
https://aclanthology.org/P08-1030
https://doi.org/10.18653/v1/P18-4020
https://doi.org/10.18653/v1/P18-4020
https://aclanthology.org/P13-1008
https://aclanthology.org/P13-1008
https://aclanthology.org/P13-1008
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/P19-1276
https://doi.org/10.18653/v1/P19-1276
https://doi.org/10.18653/v1/P19-1276
https://doi.org/10.18653/v1/2021.acl-short.135
https://doi.org/10.18653/v1/2021.acl-short.135
https://doi.org/10.18653/v1/2021.acl-short.135
https://aclanthology.org/P11-1163
https://aclanthology.org/P11-1163
https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1802.03426
https://doi.org/10.3115/v1/P15-1019
https://doi.org/10.3115/v1/P15-1019


Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 188–197, Beijing,
China. Association for Computational Linguistics.

Xuan Vinh Nguyen, Julien Epps, and James Bailey.
2009. Information theoretic measures for clusterings
comparison: is a correction for chance necessary? In
Proceedings of the 26th Annual International Con-
ference on Machine Learning, ICML 2009, Montreal,
Quebec, Canada, June 14-18, 2009, volume 382 of
ACM International Conference Proceeding Series,
pages 1073–1080. ACM.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. In Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings
of Machine Learning Research, pages 8748–8763.
PMLR.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Kevin Ros, Carl Edwards, Heng Ji, and ChengXiang
Zhai. 2021. Team skeletor at touché 2021: Ar-
gument retrieval and visualization for controversial
questions. In CEUR Workshop Proceedings, volume
2936, pages 2441–2454. CEUR-WS.

Andrew Rosenberg and Julia Hirschberg. 2007. V-
measure: A conditional entropy-based external clus-
ter evaluation measure. In Proceedings of the 2007
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), pages 410–
420, Prague, Czech Republic. Association for Com-
putational Linguistics.

J Ruppenhofer, M Ellsworth, MRL Petruck, CR John-
son, CF Baker, and J Scheffczyk. 2016. Framenet ii:
Extended theory and practice (revised november 1,
2016).

Jenny Denise Seidenschwarz, Ismail Elezi, and Laura
Leal-Taixé. 2021. Learning intra-batch connections
for deep metric learning. In Proceedings of the
38th International Conference on Machine Learning,

ICML 2021, 18-24 July 2021, Virtual Event, volume
139 of Proceedings of Machine Learning Research,
pages 9410–9421. PMLR.

Satoshi Sekine. 2006. On-demand information extrac-
tion. In Proceedings of the COLING/ACL 2006 Main
Conference Poster Sessions, pages 731–738, Sydney,
Australia. Association for Computational Linguistics.

Jiaming Shen, Yunyi Zhang, Heng Ji, and Jiawei Han.
2021. Corpus-based open-domain event type induc-
tion. In Proceedings of the 2021 Conference on Em-
pirical Methods in Natural Language Processing,
pages 5427–5440, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Yanzhou Su, Yongjian Wu, Min Wang, Feng Wang,
and Jian Cheng. 2019. Semantic segmentation of
high resolution remote sensing image based on batch-
attention mechanism. In IGARSS 2019-2019 IEEE
International Geoscience and Remote Sensing Sym-
posium, pages 3856–3859. IEEE.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2005. Ace 2005 multilingual
training corpus. Technical Report LDC2006T06, Lin-
guistic Data Consortium, Philadelphia.

Xiaozhi Wang, Ziqi Wang, Xu Han, Wangyi Jiang, Rong
Han, Zhiyuan Liu, Juanzi Li, Peng Li, Yankai Lin,
and Jie Zhou. 2020. MAVEN: A massive general
domain event detection dataset. In Proceedings of
EMNLP 2020.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Quan Yuan, Xiang Ren, Wenqi He, Chao Zhang, Xinhe
Geng, Lifu Huang, Heng Ji, Chin-Yew Lin, and Ji-
awei Han. 2018. Open-schema event profiling for
massive news corpora. In Proceedings of the 27th
ACM International Conference on Information and
Knowledge Management, CIKM 2018, Torino, Italy,
October 22-26, 2018, pages 587–596. ACM.

3816

https://doi.org/10.1145/1553374.1553511
https://doi.org/10.1145/1553374.1553511
http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
http://ceur-ws.org/Vol-2936/paper-218.pdf
http://ceur-ws.org/Vol-2936/paper-218.pdf
http://ceur-ws.org/Vol-2936/paper-218.pdf
https://aclanthology.org/D07-1043
https://aclanthology.org/D07-1043
https://aclanthology.org/D07-1043
https://framenet.icsi.berkeley.edu/fndrupal/
https://framenet.icsi.berkeley.edu/fndrupal/
https://framenet.icsi.berkeley.edu/fndrupal/
http://proceedings.mlr.press/v139/seidenschwarz21a.html
http://proceedings.mlr.press/v139/seidenschwarz21a.html
https://aclanthology.org/P06-2094
https://aclanthology.org/P06-2094
https://aclanthology.org/2021.emnlp-main.441
https://aclanthology.org/2021.emnlp-main.441
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.35111/mwxc-vh88
https://doi.org/10.35111/mwxc-vh88
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1145/3269206.3271674
https://doi.org/10.1145/3269206.3271674


Dejiao Zhang, Shang-Wen Li, Wei Xiao, Henghui Zhu,
Ramesh Nallapati, Andrew O Arnold, and Bing Xi-
ang. 2021a. Pairwise supervised contrastive learn-
ing of sentence representations. ArXiv preprint,
abs/2109.05424.

Dejiao Zhang, Feng Nan, Xiaokai Wei, Shang-Wen Li,
Henghui Zhu, Kathleen McKeown, Ramesh Nalla-
pati, Andrew O. Arnold, and Bing Xiang. 2021b.
Supporting clustering with contrastive learning. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5419–5430, Online. Association for Computa-
tional Linguistics.

Huasong Zhong, Chong Chen, Zhongming Jin, and
Xian-Sheng Hua. 2020. Deep robust cluster-
ing by contrastive learning. ArXiv preprint,
abs/2008.03030.

3817

https://arxiv.org/abs/2109.05424
https://arxiv.org/abs/2109.05424
https://doi.org/10.18653/v1/2021.naacl-main.427
https://arxiv.org/abs/2008.03030
https://arxiv.org/abs/2008.03030


A How much do SBERT representations
change?

Figure 3: Change in SBERT representations from origi-
nal representation of inputs. This shows that the repre-
sentations change significantly from their starting point
during finetuning. Shaded area is one standard devia-
tion.

B Label Matrix Example

Figure 4: Best viewed in color. Visualization of the
label matrix Y used in the loss. Blue is positive, white
is negative, and red is masked. Note that the mask for
the negatives less than the margin is not shown. The
event types and corresponding “seen” boolean vector are
also shown, and are used to construct the label matrix.
Q and K are corresponding queries and keys to the
labels, while Q′ and K ′ are augmented data.

C Manual ACE05 to FrameNet Linking

ACE Type Frame
Appeal Appeal

Be-Born Birth_scenario
Charge-Indict Notification_of_charges

Convict Verdict
Declare-Bankruptcy Wealthiness

Demonstrate Protest
Divorce Personal_relationship
End-Org Organization | Process_end
Extradite Extradition

Fine Fining
Injure Cause_harm | Experience_bodily_harm
Marry Forming_relationships

Nominate Appointing
Phone-Write Contacting

Release-Parole Releasing_from_custody
Start-Org Organization | Process_start

Start-Position Being_employed | Process_start
Sue Judgment_communication

Trial-Hearing Trial
Pardon Pardon

Merge-Org Organization | Amalgamation
Acquit Verdict
Execute Execution
Attack Attack

Transport Transportation_status
Die Death

Meet Make_acquaintance | Meet_with | Come_together
Arrest-Jail Arrest | Prison | Imprisonment | Being_incarcerated
Sentence Sentencing

Transfer-Money Commerce_money-transfer
Elect Change_of_leadership | Choosing

Transfer-Ownership Commerce_goods-transfer
End-Position Being_employed | Process_end

Table 5: Mapping from ACE types to FrameNet frames.
Some ACE types required multiple frames to be cor-
rectly mapped, which is indicated by “ | ”.

D Visualization

We visualize unseen event mentions using UMAP
(McInnes et al., 2018) given a precomputed dis-
tance matrix of the cosine distance between Q and
K. Following (Huang and Ji, 2020), we show the
results on six unseen types in Figure 6. Sentence
and convict overlap significantly, which makes in-
tuitive sense as they are semantically very similar.
Unlike (Huang and Ji, 2020), trial-hearing forms
its own cluster.

6Note that there is a mistake in (Huang and Ji, 2020), since
“sentence” is a seen type in (Huang et al., 2018)
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Figure 5: Visualization of all unseen types as seen by manifold approximation. Note that dimensionality reduction
to 2D renders it difficult to understand with this high number of clusters, but the overall semantics of the space are
interesting.

Figure 6: Visualization following (Huang and Ji, 2020) for one of the runs.6 Note that our clusters have much less
errors.
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E Cluster Examples

We show extensive examples of our noted observa-
tions in Tables 6 and 7. Namely, start-org, merge-
org, and end-org tend to overlap. Marry and divorce
slightly overlap in the 23 cluster case. Most types
of courtroom related events—Charge-Indict, Trial-
Hearing, Convict, Release-Parole, Appeal, Execute,
Acquit, Extradite—have some degree of overlap.
There are “duplicates” when two or more events
can occur in the same event mention. We also note
the cluster of “junk” data, where the label isn’t
obvious from the event mention.
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Cluster Type Purity Cluster Member Example Types and Inputs

Injure 98.3%

• Injure: According to other reports reaching here, five Syrian bus passen-
gers were killed and 10 others were injured on Sunday morning when a
US missile hit the bus they were traveling in near the Iraqi border

• Injure: More than 40 were injured

• Injure: There was no information on the identity of the injured person

Declare-Bankruptcy 95.0%

• Declare-Bankruptcy: You need to speak to a bankruptcy attorney pronto;
this is a bankruptcy matter, not a tax matter

• Declare-Bankruptcy: despite operating under bankruptcy laws, united
posted the best on time performance

• Declare-Bankruptcy: That means that he received the shares while he
was still in bankruptcy, which means that the shares were potentially assets
that the trustee could use to pay off creditors

Demonstrate 95.0%

• Demonstrate: The protest follows a string of others involving tens of
thousands of peace activists across Japan since January

• Demonstrate: No, I don’t demonstrate against anybody during a war

• Demonstrate: Several thousand demonstrators also gathered outside the
White House in Washington, accompanied by a major security presence

Charge-Indict 64.4%

• Charge-Indict: 56-year-old forry drake has been charged with interstate
transport of a minor

• Charge-Indict: Ocalan, being tried in absentia, was indicted for entering
the country illegally, a misdemeanor

• Convict and Charge-Indict: convicted oklahoma city bombing conspira-
tor terry nichols will stand trial again on state murder charges

• Appeal: in the african nation of nigeria, an islamic court delayed the
appeal of a woman condemned to death by stoning

Start-Position 64.4%

• Start-Position: Many Iraqis boycotted the meeting in opposition to U.S.
plans to install Garner atop an interim administration

• Start-Position: The meeting was Shalom’s first encounter with an Arab
counterpart since he took office as Israel’s foreign minister on February 27

• Start-Org: Meeting in the biblical birthplace of the prophet Abraham,
delegates from Iraq’s many factions discussed the role of religion in the
future government and ways to rebuild the country

Table 6: Examples of discovered clusters. Charge-Indict shows an example of a duplicate—an input with multiple
event types. It also shows how courtroom related events can overlap. For Start-Position, there are some errors
related to the Middle East, which occurs frequently in the Start-Position mentions.

3821



Cluster Type Purity Cluster Member Example Types and Inputs

Marry 70.2%

• Marry: My wife and I were guests at a wedding on the Carnival Legend
on New Years Eve 2003

• Marry and Divorce: Giuliani, 58, proposed to Nathan, a former nurse,
during a November business trip to Paris - five months after he finalized
his divorce from Donna Hanover after 20 years of marriage

• Phone-Write: All the guests were folks who had met the bride and groom
(an attractive young couple who were sailing alone) virtually on cruisecritic

Start-Org 34.7%

• Start-Org: Kiichiro Toyoda founded the automaker in 1937, transforming
the loom manufacturer started by his father into an automaker

• Merge-Org: I believe any neutral management consultant worth his or
her salt would recommend a merger of the two organizations

• End-Org: It’s a dying organization, and this will be just the jolt it needs
for another couple decades of somnambulant staggering before being
ultimately replaced by far more efficient companies

Bad Data -

• Marry: Either its bad or good

• End-Org: i felt t7ire was something else too, much history behind silver
cross to end is now

• Trial-Hearing: Yeah, we’re a pretty small town, so our newspaper covers
it a lot

Phone-Write 86.2%

• Phone-Write: Let’s see, my first call I got was from Russia

• Phone-Write: I’m chewing gum and talking on the phone while writing
this note

• Phone-Write: He wants to call his mom in Houston

Sue 92.5%

• Sue: Buyers and sellers also would have to agree not to pursue further
cases in foreign courts

• Sue: The cost of class actions is factored into the cost of everything you
buy

• Sue: The average number of suits against a neurosurgeon is five in South
Florida

Table 7: More examples of discovered clusters. Start-Org shows the semantic overlap between the organization-
related clusters. Bad Data shows a cluster which mostly contains unclear input.
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F Early Stopping

For this task, it is not reasonable to use a validation
set for stopping. This is because the loss depends
only on seen types and their relationships to unseen
types. Since the unseen classes are unlabeled and
the losses between pairs of unseen are unknown,
the model can overfit to the seen data, pushing
together clusters of unseen types. We partially ad-
dress this issue by implementing a margin on nega-
tive values, which prevents the model from forcing
together unseen clusters as strongly to separate
them from seen type events. Because of this, our
method requires strong pretrained representations
to build on, which have luckily become common
in recent years. To deal with this issue, we employ
unsupervised clustering metrics to decide when to
stop training. In particular, we use cosine distance-
based silhouette scores to measure the quality of
clustering. This increases the required compute
up to 2x (in practice roughly 1.5x because back-
propagation isn’t required), but training is already
relatively quick, with 10 or less epochs being suf-
ficient. We note that this approach can have some
variance. To address this issue, we employ a sliding
window running average approximation to create
a smooth curve of the initial increase and then de-
crease of the silhouette score. We consider a hybrid
approach—we select the window with the highest
silhouette score, and then we select the epoch with
the highest silhouette score in that window as our
stopping point, as shown in Figure 7.

G Evaluation Metrics

For the information retrieval metrics, given a list of
rankings R,

MeanRank =
1

n

n∑

i=1

Ri

MRR =
1

n

n∑

i=1

1

Ri

Hits@m =
1

n

n∑

i=1

1Ri≤m

G.1 Clustering Evaluation Metrics
Assume there are two clusterings: a set of (ground
truth) classes C and a set of (predicted) clusters K.
Each haveN samples. Denote TP as true positives,
the number of data point pairs that are in the same
cluster in C and K. FP is the false positives, the

Figure 7: Bold lines are sliding window averages of size
5 over silhouette scores. Dotted lines are unsmoothed
scores. Legend shows number of clusters. Note that
the silhouette scores initially increase and then decay
as overfitting occurs, resulting in the need for early
stopping. Here, for 23 clusters, epoch 8 has the high-
est average score. The blue region shows the window
around it, and epoch 9 (the black dot) is selected for
stopping.

number of data point pairs that belong in the same
cluster inC but are not inK. FN is false negatives,
the number of data point pairs that are in the same
cluster K but not in the same ground truth cluster
in C. TN is the number of data point pairs that are
in different clusters in both C and K. scikit-learn
(Pedregosa et al., 2011) is used to compute scores.

• Geometric NMI is the normalized mutual
information between two cluster assignments.
It is defined:

NMI =
I(C,K)

mean(H(C), H(K))

where I is the mutual information and H is
entropy. In this case, mean is the geometric
mean.

mean(x1, ..., xn) =

(
n∏

i=1

xn

) 1
n

We note that arithmetic NMI using the arith-
metic mean is often reported, but that it is
equivalent to V-Measure.

• Fowlkes Mallows (Fowlkes and Mallows,
1983) is used to evaluate the similarity be-
tween a clustering and the ground truth. It is
the geometric mean of pairwise precision and
recall.
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FM =
TP√

(TP + FP )(TP + FN)

• Completeness (Rosenberg and Hirschberg,
2007) Completeness measures whether all of
the data points assigned to a single class are
assigned to a single cluster. It is defined:

c =

{
1 if H(K,C) = 0

1− H(K|C)
H(K) else

• Homogeneity (Rosenberg and Hirschberg,
2007) measures whether data points in a clus-
ter are all assigned the the same class. It is
symmetric to completeness:

h =

{
1 if H(C,K) = 0

1− H(C|K)
H(C) else

• V-Measure (Rosenberg and Hirschberg,
2007) (standing for validity) is the harmonic
mean between homogeneity and complete-
ness:

v =
(1 + β)hc

βh+ c

In practice, β = 1 is used to weight h and c
equally.

• Adjusted Rand Index (Hubert and Arabie,
1985) is a version of the Rand index, a mea-
sure of cluster similarity, which is adjusted for
chance.

ARI =
RI − E [RI]

maxRI − E [RI]

where the Rand index, RI , is

RI =
TP + TN(

n
2

)

and E [RI] is expected value of random clus-
terings.

H UMAP Weights

UMAP (McInnes et al., 2018) attempts to estimate
the density by comparing the distance to the k-
nearest neighbors as follows:

ρi = min{d(xi, xij )|1 ≤ j ≤ k, d(xi, xij ) > 0}

k∑

j=1

exp(
−max(0, d(xi, xij )− ρi)

σi
) = log2(k)

Here, d(xi, xij ) is the distance between xi and
xij . ρi is the minimum distance to xi’s closest
neighbor. σi, which smooths and normalizes the
distances to the nearest neighbors, is calculated
for each data point. Next, UMAP calculates the
following weights between data points:

w((xi, xj)) = exp(
−max(0, d(xi, xij )− ρi)

σi
)

We use 1− w((xi, xj)) for agglomerative clus-
tering.

I Reproducibility

The SBERT model we used, along with the size
of the Q and K layers use a dimension of size
384. Our total model has 34,839,937 parameters,
of which 1,479,937 do not belong to SBERT. Input
uses the ‘ldc_scope’ part of the ACE event men-
tion. Our model takes roughly 2 hours to train
on one V100 GPU, including the early stopping
calculations which are done with the model set to
‘evaluation’ mode. We used batch size 10, which
is the most that would fit in memory. For learn-
ing rates, we considered the suggestions in (Devlin
et al., 2019). Datasets used are in English. ACE05
contains 5,349 mentions which fall into 33 event
types. Data artifacts in this work were used for
research purposes consistent with their licensing
agreements and intended use. Artifacts we create
(e.g. code and manual linking) are in line with this
intended use.

J Ablations

3824



Ablation Method Clusters Geometric
NMI

Fowlkes
Mallows Completeness Homogeneity V-Measure ARI

Original

Attn-Cosine Agglo 23 46.40 34.60 49.82 43.24 46.27 26.69
Attn-DotProduct Agglo 23 50.17 37.48 53.50 47.06 50.06 30.13

Attn Manifold 23 54.83 42.77 55.00 54.67 54.82 38.74
FT-SBERT Manifold 23 60.28 50.63 60.19 60.37 60.28 47.24

Attn-DotProduct Affinity 49-68 56.87 35.64 49.58 65.26 56.33 30.02
Attn-Cosine Affinity 50-69 56.54 33.00 48.72 65.62 55.91 27.04

No
Augmentation

Attn-Cosine Agglo 23 47.69 33.21 49.57 45.88 47.66 26.43
Attn-DotProduct Agglo 23 48.14 34.02 49.73 46.59 48.11 27.53

Attn Manifold 23 48.72 37.91 49.99 47.49 48.71 33.11
FT-SBERT Manifold 23 57.04 45.61 57.20 56.89 57.04 41.86

Attn-DotProduct Affinity 53 51.84 30.32 45.41 59.19 51.39 25.00
Attn-Cosine Affinity 56 52.88 31.93 45.83 61.02 52.35 26.19

BERT
Pooled Token

Representation

Attn-Cosine Agglo 23 29.27 19.71 32.04 26.74 29.15 10.36
Attn-DotProduct Agglo 23 27.81 21.30 33.37 23.17 27.35 8.31

Attn Manifold 23 28.07 16.89 28.06 28.08 28.07 10.88
FT-BERT Manifold 23 29.72 16.17 28.95 30.52 29.71 10.89

Attn-DotProduct Affinity 23 27.99 16.26 27.89 28.09 27.99 10.41
Attn-Cosine Affinity DNC

BERT
Trigger

Representation
————–

No
Augmentation

Attn-Cosine Agglo 23 52.61 36.98 74.74 37.04 49.53 18.12
Attn-DotProduct Agglo 23 45.17 33.33 71.03 28.72 40.91 12.64

FT-BERT Agglo 23 51.67 35.05 76.18 35.04 48.00 14.92
Attn Manifold 23 60.018 44.09 73.70 48.88 58.77 31.21

FT-BERT Manifold 23 81.20 73.27 82.96 79.48 81.19 71.05
Attn-DotProduct Affinity 58 61.07 37.14 27.89 69.05 60.61 24.83

Attn-Cosine Affinity 32 61.97 37.02 68.50 56.06 61.66 25.40

BERT
Untrained

Untuned Agglo 23 61.19 45.36 70.73 52.94 60.56 34.51
Untuned Manifold 23 75.49 64.61 77.69 73.34 75.46 61.54

RoBERTa-base
Trigger

Representation
————–

No
Augmentation

Attn-Cosine Agglo 23 49.37 33.48 69.54 35.05 46.61 13.57
Attn-DotProduct Agglo 23 43.62 31.33 66.27 28.71 40.06 10.24

FT-RoBERTa Agglo 23 57.32 36.68 75.69 43.41 55.18 18.17
Attn Manifold 23 57.14 44.30 69.72 46.84 56.03 33.01

FT-RoBERTa Manifold 23 83.44 78.12 84.37 82.52 83.44 76.56
Attn-DotProduct Affinity 44 57.76 39.86 64.06 52.08 57.45 29.17

Attn-Cosine Affinity 32 62.53 45.00 66.17 59.09 62.43 37.39

RoBERTa-base
Untrained

Untuned Agglo 23 17.53 23.66 39.62 7.76 12.98 0.35
Untuned Manifold 23 72.38 62.79 71.73 73.03 72.38 60.24

ELECTRA-base
Trigger

Representation
————–

No
Augmentation

Attn-Cosine Agglo 23 21.07 23.36 37.36 11.89 18.03 1.36
Attn-DotProduct Agglo 23 21.52 23.11 36.23 12.78 18.89 1.63
FT-ELECTRA Agglo 23 30.02 25.74 47.36 19.03 27.15 4.87

Attn Manifold 23 32.45 28.89 54.54 19.30 28.51 8.67
FT-ELECTRA Manifold 23 62.41 47.05 63.92 60.93 62.39 42.65

Attn-DotProduct Affinity 278 45.76 22.35 44.28 47.29 45.74 12.35
Attn-Cosine Affinity 154 45.83 23.86 46.88 44.81 45.82 12.32

ELECTRA-base
Untrained

Untuned Agglo 23 12.82 21.14 22.91 7.17 10.93 0.49
Untuned Manifold 23 30.31 20.18 33.08 27.79 30.20 12.08

ALBERT-base
Trigger

Representation
————–

No
Augmentation

Attn-Cosine Agglo 23 48.55 35.22 61.79 38.14 47.17 19.94
Attn-DotProduct Agglo 23 40.38 31.29 56.43 28.90 38.22 13.75

FT-ALBERT Agglo 23 38.41 27.64 59.44 24.82 35.02 6.34
Attn Manifold 23 56.80 43.26 70.72 45.61 55.46 30.69

FT-ALBERT Manifold 23 74.67 65.42 74.48 74.87 74.67 63.03
Attn-DotProduct Affinity 33 57.99 38.48 58.14 57.84 57.99 32.85

Attn-Cosine Affinity 40 60.27 34.81 60.01 60.53 60.27 26.71

ALBERT-base
Untrained

Untuned Agglo 23 47.00 31.21 54.09 40.83 46.53 21.29
Untuned Manifold 23 56.85 39.43 57.30 56.41 56.85 35.02

Table 8: New event type induction ablation results (%). The first ‘Method’ subcolumn is the input for clustering and
the second is the clustering algorithm used. FT stands for finetuned. SBERT indicates the SBERT representations
were used rather than our learned attentions (Attn). DNC indicates did not converge. Agglo is agglomerative
clustering, Affinity is (Frey and Dueck, 2007), and Manifold is as described in Section 3.7.1. For affinity, each run
can produce a slightly different number of clusters. BERT models use ‘bert-base-uncased’. The BERT pooled
used a batch size of 8 because it takes up more VRAM. 15 epochs were used for each model. The BERT trigger
representations use the ground truth triggers, which allows the duplicate problem to be avoided and helps clue in the
network. The version trained with our method and without training is shown.
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K Experiments on MAVEN

To further evaluate our method, we conduct exper-
iments on the Maven dataset (Wang et al., 2020),
which contains 118,732 event mentions and 168
event types. This provides an excellent example of
a large dataset which may have a number of unan-
notated event types (or event types which need to
converted to finer-grained typing). Since this semi-
supervised task has not been done on MAVEN, we
select the most common 150 types as seen and the
remaining 18 types as unseen. To adapt early stop-
ping to such a large dataset, we adapt our early
stopping by calculating the silhouette score every
250 steps, which is roughly the same computation
as a single ACE2005 epoch. We train our method
for 8 epochs with other hyperparameters the same
as the ACE2005 experiments. For Manifold clus-
tering, we select an arbitrarily large k = 3, 000 for
computational reasons.

We experiment on using trigger representations
from the event mentions. Unfortunately, these are
specified by the dataset in terms of the its tokeniza-
tion scheme, so converting to BERT tokenization
incurs a small error rate (for example, some words
are tokenized as ’unk’ in MAVEN). We find that
these errors do not prevent the representation from
performing well.

Results are shown in Table 9. They show that
SBERT representations do not work well for the
mentions in the MAVEN dataset (we believe this
is due to differences in the scope of what is consid-
ered an event mention). Training with our method
still improves clustering on the SBERT represen-
tations from 9.06 ARI to 10.51. However, the
attention mechanisms learned are less effective
along with our manifold clustering approach. The
bert-base-uncased representations using the trigger
words perform much better as expected. Addi-
tionally, our method, using both learned attention
and trained trigger representations, increases per-
formance significantly. For manifold, this is from
44.84 ARI to as high as 67.01. As noted in the
conclusion, the interaction here between manifold
approximation and large language model represen-
tations is an interesting future research direction
for better understanding these results. It may also
be interesting to think about how to obtain a desir-
able representation for starting the training of our
model. Another example that would benefit from
this is using a neural dense retriever to retrieve
frozen embeddings in a retrieval large language

model, such as (Borgeaud et al., 2021).
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Representation Method Clusters Geometric NMI Fowlkes Mallows Completeness Homogeneity V-Measure ARI
SBERT Untuned Agglo 18 33.33 18.98 37.25 29.81 33.12 9.06
SBERT Untuned Manifold 18 37.07 19.61 37.82 36.33 37.06 13.14

bert-base-uncased Untuned Agglo 18 66.95 42.46 75.14 59.66 66.51 32.47
bert-base-uncased Untuned Manifold 18 69.05 48.71 69.54 68.56 69.05 44.83

SBERT Attn-Cosine Agglo 18 30.14 14.08 30.82 29.48 30.13 6.86
SBERT Attn-DotProduct Agglo 18 29.92 13.90 30.06 29.77 29.92 7.49
SBERT Finetuned Agglo 18 34.23 16.48 34.05 34.41 34.22 10.51
SBERT Attn-Cosine Manifold 18 32.54 14.91 32.60 32.48 32.54 8.68
SBERT Finetuned Manifold 18 33.61 16.26 34.10 33.13 33.61 9.67

bert-base-uncased Attn-Cosine Agglo 18 73.77 60.25 75.01 72.56 73.76 57.11
bert-base-uncased Attn-DotProduct Agglo 18 73.52 58.19 73.84 73.21 73.52 55.07
bert-base-uncased Finetuned Agglo 18 74.54 59.67 78.41 70.86 74.44 55.30
bert-base-uncased Attn-Cosine Manifold 18 76.48 64.08 76.82 76.14 76.48 61.43
bert-base-uncased Finetuned Manifold 18 79.93 69.49 81.35 78.54 79.92 67.01
bert-base-uncased Attn-DotProduct Affinity 37 74.47 49.70 66.07 83.95 73.94 43.79
bert-base-uncased Attn-Cosine Affinity 41 74.37 48.54 65.20 84.83 73.73 42.14

SBERT Attn-DotProduct Affinity 40 40.87 11.53 35.48 47.08 40.47 6.81
SBERT Attn-Cosine Affinity 38 40.46 11.52 35.39 46.26 40.10 6.79

Table 9: New event type induction results (%) on MAVEN (Wang et al., 2020). The first two sections are baseline
representations without our method. The bert-base-uncased representation uses trigger representations. The first
subcolumn of ‘method’ is the input for clustering and the second is the clustering algorithm used. ‘Finetuned’
indicates the finetuned model representations from our method were used and ‘untuned’ indicates our method was
not used. Attn-score indicates our learned attention scores were used and the method for computing these scores
from the query and key vectors. E stands for ensemble. Agglo is agglomerative clustering, Affinity is (Frey and
Dueck, 2007), and Manifold is as described in Section 3.7.1. For affinity, each run can produce a slightly different
number of clusters.
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Abstract

Content moderation is the process of flagging
content based on pre-defined platform rules.
There has been a growing need for AI moder-
ators to safeguard users as well as protect the
mental health of human moderators from trau-
matic content. While prior works have focused
on identifying hateful/offensive language, they
are not adequate for meeting the challenges of
content moderation since 1) moderation deci-
sions are based on violation of rules, which
subsumes detection of offensive speech, and
2) such rules often differ across communities
which entails an adaptive solution. We propose
to study the challenges of content moderation
by introducing a multilingual dataset of 1.8
Million Reddit comments spanning 56 subred-
dits in English, German, Spanish and French1.
We perform extensive experimental analysis to
highlight the underlying challenges and suggest
related research problems such as cross-lingual
transfer, learning under label noise (human bi-
ases), transfer of moderation models, and pre-
dicting the violated rule. Our dataset and anal-
ysis can help better prepare for the challenges
and opportunities of auto moderation.

1 Introduction

Being able to moderate user-generated content is
critical for online social media platforms. Sev-
eral platforms employ human moderators to moni-
tor user content to prevent the spread of misinfor-
mation, adverse effects of hateful speech, fraud,
etc (Geiger and Ribes, 2010; Dosono and Semaan,
2019; Wang et al., 2022; Jhaver et al., 2017). The
moderators’ task is to remove improper content
and/or suspend users posting such content. How-
ever, reviewing and moderating each user com-
ment is practically infeasible due to limited re-
sources, especially during time-critical and large-
scale events. More importantly, such modera-

1https://github.com/mye1225/multilingual_
content_mod.git

“bien ah pap  te felicito ..specs?”

“jajajaj te re doli eh? xd”

“… vaccine isn’t a perfectly safe 
treatment … the risk is so small 

that it is recommended for 
nearly everyone”

“I am a physician. I'm just not 
verified on here. I'm a paediatric 

registrar in the UK. You're a 
paramedic right? …”

“mein kanal zur aktuellen 
marktlage: wie du dein portfolio...”

“mein kanal zur aktuellen 
marktlage: wie du dein portfolio...”

“ok du sklaventreiber”

“honein was wird dann aus meinen 
24 dodgecoin”

“… your muscles were likely not 
recovered and your nervous 

system ...”
“nausea and dizziness are 

actually quite common side 
effects of the vaccine ...”

“congrats mate! your story is 
very similar to mine …”

“any one want to lose weight 
contact me via email = 

{{EMAIL}}. com”

r/askdocs

English

Spanish

German

r/finanzen
•No advertising

•Provoke discussion

r/bodyweightfitness

r/argaming

• Medical advices are allowed in r/askdocs, but not in r/bodyweightfitness.
• An offensive comment that was not removed.
• A removed comment that doesn’t seem to be violating rules.

1
2
3

1

1

2

3

kept removed

• possible reason

•No medical advice
•Be wholesome

• Keine Werbung
• Kein Hass, Unhöflichkeit oder Angriffe
• Kryptodiskussionen sind begrenzt

• Personal questions only
• No emergencies
• Claiming credentials not allowed

• Seguir las reglas de reddit y 
reddiquette • No pirateria

Figure 1: Content moderation on Reddit is challenging
as it 1) depends on rules of each community, 2) requires
contextualized understanding of the comments, and 3)
is affected by moderator biases.

tion work can cause damage to moderators’ men-
tal health due to burnout from volunteer work
and exposure to harmful content (Gillespie, 2020;
Roberts, 2014; Dosono and Semaan, 2019; Wohn,
2019).

In recent years, researchers have put effort
into collecting hate speech or offensive language
datasets from social platforms such as Twit-
ter (Zampieri et al., 2019; Gautam et al., 2020;
Golbeck et al., 2017), YouTube (Dinakar et al.,
2011), or a mixture of those platforms (Kennedy
et al., 2017; Bhattacharya et al., 2020). These
datasets contain annotations of hateful speech and
are used to train NLP systems to remove harmful
comments (Pamungkas et al., 2020; Chung et al.,
2019; Ranasinghe and Zampieri, 2021). We re-
fer to this problem as Offensive Language Identi-
fication (OLI). Instead of simply removing such
content or suspending users, some works propose
countering hate speech with discourse-aware style
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transfer (Atwell et al., 2022), expert-based counter-
narratives (Chung et al., 2019), by learning to in-
tervene with conversational context (Qian et al.,
2019), or by proposing a holistic conceptual frame-
work (Chaudhary et al., 2021).

However, despite remarkable progress in OLI,
it is not sufficient to tackle content moderation for
two key reasons: (1) OLI is a subset of content
moderation, as the latter involves flagging con-
tent that is not only hateful but also violates the
rules of the platform. For example, Reddit has site-
wise rules that not only requires users to be civil,
but also prohibits actions such as posting illegal
content, spamming, and revealing personal infor-
mation2. (2) Prohibiting offensive/hateful speech
is universal to all communities (Chandrasekharan
et al., 2018), while content moderation requires a
system to be adaptive to rules that change dynami-
cally across different communities. It is often the
case that content that is allowed in one subreddit
might be disallowed in another. For example, it
is allowed to post medical advice on r/askdocs
while it is prohibited on r/bodyweightfitness.
We thus believe it is useful to study Reddit com-
ments from a moderation perspective as we can
collect data from multiple communities and mea-
sure the effectiveness of such systems in adapting
to community guidelines.

In this work, we aim to bridge this gap by in-
troducing a dataset of Reddit comments collected
from 56 communities for studying content moder-
ation. We propose a challenge for content moder-
ation and demonstrate the limitations of the state-
of-the-art models. Our dataset will be available to
researchers who agree to the terms and conditions
of our data-sharing policy approved by the ethical
committee of our institution. Our contributions are:

• We propose a multilingual dataset for content
moderation. The dataset consists of 1.8 mil-
lion comments from 56 subreddits with mod-
eration labels, that specify whether a comment
was kept or removed by the moderator. We
also provide the meta-data for each subreddit
that includes its name, description, and rules.

• We show that existing offensive speech
datasets are not suitable for the content mod-
eration task because only a small portion of
the removed comments are offensive. As

2https://www.redditinc.com/policies/
content-policy

Dataset Platform Type Size Language
OLID T O&H 14K en
SWAD T SW 1.5K en
OffensEval T,R,F O&H 9M en, da, tr, ar, el
HatEval T O&H 19.6K en, es
CDUC Y CYB 4.6K en
CONAN T O&H 15K en, fr, it
Norms R MOD 4M en
Ours R MOD 1.8M en, de, es, fr

Table 1: Comparison with published datasets.
OLID (Zampieri et al., 2019). SWAD (Pamungkas et al.,
2020). OffensEval-2020 (Zampieri et al., 2020). HatE-
val (Basile et al., 2019). CONAN (Chung et al., 2019).
CDUC (Dadvar et al., 2013). Norms (Chandrasekha-
ran et al., 2018). Platforms: (T)witter, (F)acebook,
(R)eddit, (Y)outube. Types: (O)ffensive and (H)ate
speech, (SW)earing, (CYB)er Bullying, (MOD)eration.

such, the models trained on OLI datasets fail
to identify removed comments that are non-
offensive.

• We study the performance of models
trained on moderation data under different
cross-lingual settings including multilingual-
language model, translate-train, and translate-
test.

• We provide insights on what makes content
moderation a challenging task and discuss po-
tential research problems that can be explored
with our proposed dataset.

2 Related Work

2.1 Offensive Language and Hate Speech
Datasets

Many existing works that have collected user com-
ments from online social platforms. Zampieri et al.
(2019) proposed Offensive Language Identification
Dataset (OLID), which models not only different
types of offensive language, but also the target of
offensive messages in a hierarchical structure. The
Swear Words Abusiveness Dataset (SWAD) devel-
oped by Pamungkas et al. (2020) is a collection of
tweets selected from OLID that focuses on predict-
ing abusiveness of a swear word in a tweet context.
Chung et al. (2019) created a multilingual dataset
with hate speech/counter-narrative pairs provided
by experts. The idea is to fight online hate speech
content with informed textual responses instead of
the standard method of removing content or sus-
pending users. OffensEval (Zampieri et al., 2020)
is an offensive language identification challenge
that has attracted multiple research teams. It is
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based on the same hierarchical three-level anno-
tations from the aforementioned OLID dataset in
multiple languages. CAD (Vidgen et al., 2021) is
a recent recently proposed dataset of Reddit posts
and comments with manually annotated two-level
abusive categories. A brief comparison between
these datasets and ours is shown in Table 1.

All the mentioned works focus on detecting of-
fensive speech. However, online content modera-
tion involves detection of comments that violate
community rules in addition to those that are offen-
sive. For example, moderators will often remove
comments that are self-promoting, spamming, or
off-topic because they do not provide useful in-
formation and are harmful for the communication
environment (e.g., “I can help you, see my youtube
channel”). In both of these cases, a model trained
to detect hate speech will likely fail.

2.2 Reddit Rules and Content Moderation

A pre-existing related work by Chandrasekharan
et al. (2018) trained 100 subreddit classifiers on
removed/un-removed comments, and used clus-
tering analysis to discover three types of implicit
norms from the removed comments: macro norms
that are universal to all subreddits (e.g., hate speech,
personal attacks), meso norms that applies to sub-
groups (e.g., meme responses), and micro norms
that are specific to individual subreddits (e.g., of-
fering commerce tips). Our study is different in
that we focus on moderation task that depends on
explicit community rules written by moderators.
Another work (Samory, 2021) studied the problem
of identifying comments approved by moderators.
They found that approved comments and removed
ones actually share many traits such as toxicity
and insults, and that it is hard to distinguish them.
Fiesler et al. (2018) studied rules from 1, 000 sub-
reddits and found that rules are highly dependent on
the context of each individual subreddit while shar-
ing common characteristics across the platform.

One key limitation of these studies is that they
only focused on subreddits in the English language
and discarded all non-English subreddits. This
could be because most data on Reddit is in En-
glish. In our work we also select subreddits in
non-English languages, i.e. German, French, and
Spanish. We then study the possibility of transfer-
ring a moderation model trained on subreddits in
English (which generally has more content). We
argue that a good AI moderator should not only

focus on data in English language, but also lever-
age that knowledge to improve performance on
other low-resource languages. While Hassan et al.
(2022) study human moderation bias across differ-
ent languages and cultures, our work focuses on
the problem of automated moderation.

3 Dataset

3.1 Subreddit selection
We collected data from 56 subreddits3 based on the
following criteria:
Wide range of topics: Generally the popularity
(and thus data points) of a subreddit depends on its
topic. Being able to cover many topics will enable
us to better estimate the generalizability of machine
learning models on this task. The topics include
news, politics, finance, sports, electronics, etc.
Subreddits on similar topics: We chose sub-
reddits with similar topics to enable inquiry into
questions relating to transferability of modera-
tion models. For example, “Do models trained
on one subreddit transfer to other subreddits?”,
“will models transfer better between subreddits on
similar topics?”, and “which subreddit should I
train the model on so that it could also be better
adapted to X?”. Some example of similar sub-
reddits are r/news and r/worldnews, r/finance
and r/personalfinance, r/anime and r/naruto,
r/games and r/xboxseriesx.
Multilingual data: Most groups on Reddit are
in English, but there are also some in other lan-
guages such as Spanish, German, French, Ara-
bic. To extend moderation models to multi-
lingual settings we also selected a number of
non-English subreddits. For example French
(r/quebec, r/france, r/moi_dlvv), German
(r/de, r/finanzen, r/ich_iel), and Spanish
(r/argentina, r/gaming).

3.2 Data Collection Pipeline
We built our data collection pipeline based on the
Python Reddit API Wrapper (PRAW) 4, which
streams comments and submissions in real time
from multiple subreddits. For each data record we
store important fields such as the ID, author, post-
ing time, and comment body. We follow a two step
approach where we first scrape data for a week, and
then check if the comment/submission has been
removed or retained by the moderator or if it has

3A full list of all 56 subreddits can be found in Table 8.
4https://github.com/praw-dev/praw
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split language #sub #comments removal
Training data

en-train English 48 1, 347, 611 1.87%
en-val English 48 74, 885 1.83%

Test data
de German 3 177, 046 0.86%
es Spanish 2 95, 586 0.66%
en English 48 74, 893 1.85%
fr French 3 49, 780 0.23%

Table 2: Number of subreddits, comments, and percent-
age of removed comments in each data split.

been deleted by the author. We use this two-step ap-
proach since once the comment is removed/deleted
it does not retain its original content. Figure 5 in
the appendix shows the overall procedure of our
data collection pipeline.

3.3 Dataset Overview
We use the data collection pipeline to collect ∼ 1.8
Million comments in a time span of three weeks.

For benchmarking, we split all of the English
data randomly into 90%/5%/5% as train, valida-
tion, and test subsets. We chose all the non-English
data to be part of the test set to study the cross-
lingual transferability of models trained on data in
English. Table 2 lists the number of subreddits,
total number of comments, and the percentage of
removed comments for all the data splits.

English data makes up a large proportion of the
entire dataset, and is collected from 48 subreddits
on different topics. For non-English languages,
there are significantly fewer subreddits and we
choose the most popular ones for each language.
This dataset is highly imbalanced in that only a
small proportion of the comments are removed
by the moderators: English data has a removal
rate of around 1.8% and for German, Spanish, and
French it is 0.86%, 0.66%, and 0.23%, respectively.
This makes the task of identifying moderated com-
ments very challenging. For comparison, the pro-
portion of offensive examples is around 33% in
OLID, 12.5% ∼ 28.4% across different languages
in OffensEval-2020 (Zampieri et al., 2020), and
28.4% ∼ 50.0% in HASOC-2020 (Mandl et al.,
2021). We argue that the high percentage of offen-
sive examples in those datasets makes them less
suitable for real world applications because these
offensive posts make up only a small share of mod-
erated content.

We also observe that different subreddits have
different rates of removal, from the lowest of 0.0%
to the highest of 21.74%. These differences are

4000 5000 6000 7000 8000

r/publicfreakout

r/worldnews

r/antiwork

r/tooafraidtoask

r/news

0.55%

1.99%

1.91%

0.64%

3.47%

Number of comments

kept
removed

Figure 2: Number of kept and removed comments in the
top 5 subreddits (% removed comments in also shown).

likely explained by the discrepancies in topic and
subreddit rules, as well as the level to which the
moderators enforce these rules. However, the over-
all rate of removal is quite low (1.84%) compared
to existing datasets mentioned above. We show the
statistics of the top 5 active subreddits in Figure 2
(refer to Figure 6 in the appendix for more details).

Each subreddit is associated with a set of rules
that are enforced by the moderators, which are
normally displayed in the About section. Typically,
each rule has a short title and a longer description to
explain in more detail the types of content that are
prohibited. For each subreddit, we have collected
all of its rules including titles and descriptions (see
Figure 7 in the Appendix for the distribution of the
number of rules in our dataset).

3.4 Manual Analysis of Offensiveness

To better understand the level of offensiveness in
the content moderation task, we manually anno-
tated 1, 238 comments (around 200 removed and
100 unremoved examples for each of the four lan-
guages) using the fine-grained taxonomy of offen-
siveness presented in Mubarak et al. (2022), with
the addition of the categories of sexuality and age.
The distribution of comments for different cate-
gories is shown in Figure 3. We observed that
most of the comments (71.86% of removed and
80.115% of non-removed) are not offensive. Many
of these non-offensive comments criticized the cor-
responding subreddit or disagreed with the views or
goals of the subreddit. For instance, the comment
"i was disappointed when i got the halo console..."
was removed from the r/halo subreddit. The com-
ment is not offensive but could have been removed
due to its criticism of a product supported by the
r/halo subreddit. Since these rules, views and
goals can vary significantly across subreddits, it ex-
plains why content moderation is hard for machine
learning classifiers and our moderation classifiers
achieve lower scores compared to offensiveness
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Figure 3: Distribution of different types of offensive
speech for Reddit comments.

classifiers. We also see that the distributions of dif-
ferent types of offensive speech are similar across
both removed and non-removed comments as well
as the four different languages. To conclude, mod-
erating online content is a very different task com-
pared to identifying offensive language and hate
speech and a new dataset is needed to train models
and study automated content moderation.

4 Experiments

We study the task of content moderation on Red-
dit by formulating it as a binary classification task:
given a user comment x predict whether it should
be removed by moderators using y = f(x), where
f is the classifier, and y is the removal probability.
We set the binary labels based on whether the com-
ment was removed or retained by the moderator
(Section 3.2). We report both AUC (area under the
ROC curve) and F1 scores.

4.1 Evaluation with Existing Offensive
Language Identification Models

A naive solution to moderation is to cast this prob-
lem as offensive language detection and directly
use classifiers trained on OLI datasets. We thus
evaluate models trained on OLI datasets for moder-
ation. This experiment will help in answering two
questions: 1) can these models recognize offensive
comments in the context of Reddit content modera-
tion?, and 2) do these models miss comments that
should be removed but are not-offensive? Being
able to answer these question will help us under-
stand whether content moderation can be solved by
using OLI or it is a necessity to collect data tailored
for moderation. We investigate the above question
using three models: RoBERTa (base) (Liu et al.,
2019) finetuned on the HatEval (Basile et al., 2019)
and OLID dataset (Zampieri et al., 2020), and an
XLM-RoBERTa model fine-tuned on OLID. We
compute the moderation score for each comment
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Figure 4: Distribution of offensiveness scores for re-
moved comments (left plot shows sorted scores). Most
of the removed comments are not very offensive. Only
18% of them get offensive scores higher than 0.5.

Model Tr data T-ori R-off R-mod
RoBERTa HatEval 48.72 44.12 50.59
RoBERTa OLID 81.25 79.20 47.76
XLM-RoBERTa OLID 75.81 75.82 48.45

Table 3: Offensive language/hate speech classifiers with
their original training (Tr) Twitter dataset and macro-F1
scores on the test split of the same dataset (T-ori), a
subset of our Reddit data with offensive labels (R-off),
and our Reddit data with moderation labels (R-mod).

by averaging the output probabilities from these
models.

Figure 4 shows the distribution of offensiveness
scores of the removed comments. The left and the
right plot show the sorted scores and the percentage
of offensive and non-offensive comments using a
threshold of 0.5, respectively. We observe that
most of the removed comments (82.4%) are not
offensive, and also note that this number matches
with the manual analysis in Section 3.4.

By qualitatively studying these examples we ob-
serve that 1) OLI models can detect offensiveness
in the comments, and 2) not all removed com-
ments are offensive, and OLI models tend to miss
these. For instance, a comment stating "try con-
tacting drewcybersupport on instagram about ..."
from r/minecraft was likely removed due to self-
promotion (the average offensiveness of this com-
ment is 0.01). More examples can be found in
Table 9. We also evaluate the performance of these
models on three datasets: the original offensive
datasets that they were fine-tuned on (T-ori), a sub-
set of our collected Reddit data with manual of-
fensiveness annotations (R-off), and our proposed
moderation dataset (R-mod). From the results in Ta-
ble 3 we can observe that: 1) these models achieve
good performance5 on both Twitter and Reddit data
when the task is to identify offensive language, and

5The model fine-tuned on the HatEval dataset has a low F1
score possibly because it focused on hate speech targeted at
immigrants and women instead of generic OLI.

3832



Setting Language Encoder AUC F1-macro
en de fr es en de fr es

MLLM multilingual XLM-RoBERTa 66.83 69.42 64.25 63.90 49.60 49.78 49.94 49.83

Translate-train
German bert-base-german-uncased 60.33 63.34 - - 49.53 49.78 - -
French flaubert-base-uncased 53.47 - 49.96 - 49.53 - 49.94 -
Spanish bert-base-spanish-uncased 64.16 - - 63.29 49.58 - - 49.99

Translate-test English roberta-base 67.38 71.23 71.61 64.33 49.66 50.01 50.36 50.22

Table 4: Experimental results on moderation classifier under three settings: 1) MLLM: multilingual language model
embeddings, 2) translate-train, and 3) translate-test.

Setting Language Encoder AUC F1-macro
en de fr es en de fr es

MLLM multilingual XLM-RoBERTa 66.14 70.10 68.32 59.81 59.97 64.46 61.15 56.78

Translate-train
German bert-base-german-uncased 61.10 65.90 - - 57.24 61.15 - -
French flaubert-base-uncased 53.64 - 53.71 - 51.99 - 55.10 -
Spanish bert-base-spanish-uncased 63.08 - - 60.52 59.33 - - 56.87

Translate-test English roberta-base 66.94 70.66 71.57 61.96 61.96 64.16 64.87 58.11

Table 5: Experimental results with balanced data splits from our moderation dataset.

2) their performance drops significantly when eval-
uated on the moderation task.

Based on the results from both our qualitative
and quantitative analyses, we conclude that there
is a significant mismatch between the goals of con-
tent moderation and offensive language identifica-
tion. We thus believe that it is necessary to have a
moderation-specific dataset to train classifiers for
content moderation.

4.2 Evaluation with Models Trained on
Proposed Dataset

We use our collected data with moderation labels
to train the classifier f . We use pre-trained trans-
former based language models as text encoders and
add a shallow classifier on top: y = fm(fenc(x)),
where fenc is the encoder and fm is the modera-
tion classifier. To deal with multilingual data, we
need to either use a multilingual encoder, that can
work with inputs in any language (MLLM), or use
a monolingual encoder with machine translation
models6. We only transfer models trained on En-
glish data to non-English data and not the other
way since the number of data points in English are
much larger and it could be beneficial to leverage
it for other languages with less data available.

We summarize our experimental results7 in Ta-

6Following Artetxe et al. (2020), we use two settings with
machine translation: 1) Translate-test: a classifier is trained on
English data, and each non-English language needs to be trans-
lated into English during test, and 2) Translate-train: translate
the English data into each target non-English language, and
then do both training and test in that target language. For
translation we used models from Tiedemann and Thottingal
(2020)

7Averaged over 3 runs with different random seeds.

ble 11 and observe that the RoBERTa (67.38) and
XLM-RoBERTa (66.83) models outperform offen-
sive language detectors (second model in Table 3
achieved 61.11 on AUC) on the English data. This
is expected because the moderation training data
contains removed comments that are non-offensive,
and thus the trained classifiers are able to capture
these and make better predictions. We also observe
that translate-train performs lower than translate-
test in most cases, possibly due to the fact that noise
is often introduced during translation and the nega-
tive impact is more severe in the training stage than
in the test stage. We note that although the best
performance on most of the test splits is achieved
by translate-test, MLLM performance is close to
the best in most cases. Considering the challenges
of maintaining an extra translation model for every
language in real-world applications, MLLM might
be a better solution towards building multilingual
auto moderators.

We would like to note that the (macro) F1 scores
of these models are close to 50 since the classi-
fier/predictions are overwhelmed by data imbal-
ance (less than 2% of comments are labeled to
be removed). We thus additionally report AUC
scores since, being a ranking based metric, it is not
affected by data imbalance. For comparison, we
also propose additional data splits8 with balanced
classes and repeat the same experiments. As shown
in Table 12, the performance trends for the bal-
anced set are similar to the original splits, and the
F1 scores are clearly above 50, ranging from 55.10
to 64.46 with one exception of 51.99, which is

8Statistics of the balanced splits can be found in Table 10.
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Group Examples GT/fo/fm freq.

1) "every f****** one of those dogs ought to be put down.", "my god this sub is a perpetual
b***h fest. clearly time to unsub" Y/Y/Y 7.35%

2)
"prove it by sending me $5 000.00. that would be nothing for you... so go ahead and do it
...", "how do you explain exploding infections and new variants coming out of south africa
where 90% of the population is vaccinated?"

Y/N/Y 16.95%

3) "f**k {{name}} and his shorts.", "she has such a punchable face" Y/Y/N 1.85%

4) "was....was this written by a cat", "depends on the market. {{organization}} sold more
units than switch last month in the uk." Y/N/N 23.85%

5) "oh my god you’re pathetic lmao", "well you are a moron so i guess it could be worse" N/Y/Y 2.15%

Table 6: Different groups of comments from the English test data. ‘GT’, fo, and fm are ground truth label,
offensiveness score and moderation score, respectively. “Y” stands for offensive/removed and “N” stands for
non-offensive/non-removed. "freq." denote the proportion of each group in the whole subset (2000 samples).

likely caused by low translation quality in French.

4.3 Analysis on Error Types

We performed additional analysis to understand
the errors made by the learned classifier by ran-
domly sampling 1, 000 examples from both re-
moved and non-removed comments and computing
their offensiveness9 (fo) and moderation scores
(fm). We then organize all comments into groups
based on their ground truth label and classifier
predictions. Table 6 shows five of those groups
and their frequencies: 1)There are 7.35% examples
which are offensive and both fo and fm were able
to identify them. 2) There are 16.95% examples
on which fo failed due to their low offensiveness
while fm was able to identify them successfully.
3) fm missed a small portion of examples (1.85%)
that are offensive and should be removed (model-
error). 4) There is a significant portion of data
points (23.85%) that were removed by moderators
while both classifiers predicted them to be fine
(model-error). This group represents the major-
ity of removed comments that have violated rules
other than the use offensive language. 5) Both clas-
sifiers do not agree with the ground truth label on
2.15% of the comments, most of them are highly
offensive and should be removed but were actually
approved by moderators. These instances indicate
noisy labels in our dataset that are possibly caused
by moderators’ biases (human-error). Based on
these observations we conclude that offensiveness
classifiers and moderation classifiers have different
types of errors and we believe that there is scope for
improvement by using models that: 1) can incor-
porate knowledge from both OLI and moderation
tasks and 2) are robust to label noise.

9Average offensiveness score from classifiers in Sec-
tion 4.1

Subreddit Group Model AUC F1

r/naruto
M-BERT 51.59 47.43
XLM-Ro 64.48 37.84

r/naruto + r/anime
M-BERT 55.78 54.13
XLM-Ro 31.08 46.39

r/judaism
M-BERT 62.08 60.65
XLM-Ro 50.23 33.77

r/judaism + r/islam
M-BERT 68.27 63.89
XLM-Ro 62.79 33.91

r/judaism + r/islam +
r/christianity

M-BERT 67.89 62.33
XLM-Ro 49.27 34.50

r/feminism
M-BERT 71.82 64.05
XLM-Ro 51.27 38.22

r/feminism + r/lgbt
M-BERT 73.25 67.26
XLM-Ro 49.67 34.10

r/feminism + r/lgbt +
r/racism

M-BERT 72.95 66.16
XLM-Ro 60.78 33.80

Table 7: Performance of classifiers within groups of
subreddits. M-BERT refers to bert-base-multilingual-
cased and XLM-Ro refers to XLM-RoBERTa-base.

4.4 Manual Analysis of Rule Violations

We also manually labeled 145 removed comments
from the r/stock subreddit with the help of 3 an-
notators. The annotators were instructed10 to select
one of the five rules a removed comment violated.
We decided to drop class 4 due to a small number
of samples. We also dropped class 5 as this class
corresponded to the “not sure” class. We selected
examples where annotators had the most agree-
ment and this resulted in 111 comments across 3
classes with 36, 54, and 21 comments for the non-
civil, missing context, and spam/self-promotion
categories (respectively). We performed five-fold
cross-validation strategy for our experiments by
training a logistic regression classifier on textual
features extracted using sentence-transformers (all-
mpnet-base-v2) (Reimers and Gurevych, 2019)
We obtained an AUC of 91.8 ± 1.8, and the F1
scores for individual classes are 80.56 (Non-civil),

10The guide provided to the annotators is shown in Table 14
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77.47 (Missing context), and 61.53 (Spam/self-
promotion). The class-wise numbers match our
intuition that examples from the “non-civil” class
performs the best as it mostly includes offensive
comments. This experiment shows that it is possi-
ble to learn to predict which rule was violated and
thus provide some explanation to the user.

4.5 Experiments with Partitioning Data

As observed earlier, the AUC and F1-macro scores
for moderation can be relatively low due to the
task’s complexity. We hypothesize that grouping
similar subreddits together may improve the re-
sults within the groups. To verify this, we manu-
ally selected three groups of subreddits with sim-
ilar topics and sample both training and test sets
based on the grouping. From Table 7, we observe
that grouping subreddits together may result in
improved performance. For example, grouping
r/lgbt and r/feminism together achieves 73.25
AUC, an improvement of 1.43 over r/feminism
alone, and an improvement of 6 ∼ 7 compared to
Table 12. However, we also observe that group-
ing more than two subreddits can lead to a drop
in performance. For instance, adding r/racism
to the group of r/lgbt and r/feminism decreases
the AUC slightly to 72.95. This suggest that split-
ting the moderation task across multiple classifiers
could lead to better performance with proper parti-
tioning.

4.6 Insights on Moderation Dataset and Task

Based on the qualitative and quantitative evalua-
tions, we summarize our insights:
Moderation is a highly imbalanced task. Unlike
existing offensive language datasets, which may
have≥ 30% positive examples (Mandl et al., 2021;
Zampieri et al., 2019), the proportion of removed
comments in our moderation dataset is ≤ 2% This
is challenging for most classifiers as their predic-
tion will be biased by the majority class (see Ta-
ble 11). We believe that this challenge makes our
dataset distinct from others because it exposes mod-
els to real world scenarios.
Moderation labels are noisy. The moderation la-
bels in our dataset are noisy as we found that some
highly offensive comments were not removed and
some benign comments were removed by the mod-
erators. There could be multiple reasons for this
such as human errors, individual biases. We believe
this label noise is a characteristic of the task and

researchers will be required to design algorithms
with this in mind.
Moderation requires more than offensiveness
detection. Our experiments reveal that pre-
existing datasets with hate speech or offensive lan-
guage labels are not sufficient for moderation task.
This task involves referencing a set of guidelines
which include not only being civil, but also other
community-specific rules such as no off-topic dis-
cussions, no self-promotions, and no low-effort
comments. Models trained only on offensive lan-
guage datasets are able to identify non-civil content
but fail to detect other cases of rule violation.
Moderation systems need to be adaptive. As
Reddit communities are self-organized and mod-
erators can make their own rules, many subred-
dits have very specific rules that may not be com-
mon with other subreddits. For example, “keep it
halo” (r/halo), no “Asking for handouts or trans-
actions” (r/personalfinance), “Research must
be less than 6 months old” (r/science), and “No
medical advice” (r/bodyweightfitness). A clas-
sifier trained on a large dataset like ours could pos-
sibly capture general rules and macro-norms, but is
unlikely to transfer to novel communities with very
specific rules. We thus argue that an adaptive and
dynamic system that could condition its decisions
on given guidelines is needed for successful auto
moderation on platforms such as Reddit.

5 Conclusions

In this study we discussed the challenges in con-
tent moderation, which include but are not limited
to: differences in community rules, subtlety of of-
fensiveness in different contexts or languages, and
moderator biases. Due to these challenges, prior
works on offensiveness or hate speech identifica-
tion are not adequate for solving moderation. Thus,
we propose a multilingual dataset consisting of
Reddit comments as well as subreddit meta-data
including descriptions and rules. We experimented
with baseline transformer based models to verify
our assumptions and show that, although moder-
ation is a challenging task, there are also many
opportunities for further studies: linking removed
comments to violated rules, moderating comments
in context, understanding the differences between
languages and culture in moderation process, etc.
We believe that our work will foster more research
in the area of automatic content moderation.
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Limitations

Moderation within context. Our experiments us-
ing standard supervised learning methods take each
comment separately and make predictions indepen-
dently, while in practice context should also be
taken into consideration. When collecting each
comment we have recorded its parent post id, which
could be used to recover the tree structure of a dis-
cussion thread, providing context for a comment.
Incorporating community rules. Our baseline
model is a universal moderation classifier that did
not incorporate community rules. A more adap-
tive model would be able to make predictions con-
ditioned on rules that are dynamically changing
among different communities. We provide meta-
data of each subreddit with our dataset that includes
a description of the subreddit and subreddit rules
so that future research can incorporate this infor-
mation to build better approaches.

Ethics Statement

We have discussed in detail the data selection pro-
cess while working with different subreddits. We
had approval from our Institutional Review Board
(IRB) for collecting social media data. We only
collected publicly available data (comments, sub-
missions, and subreddit metadata) while adhering
to Reddit’s policy and did not collect any user-
related Personal Identifiable Information (PII) (e.g.,
Date of Birth) intentionally. To address the possi-
ble appearance of PII in public comments, we went
through a data cleaning process using scrubadub11

to remove word tokens or phrases that could be a
person’s name, email, SSN, driver’s license num-
ber, etc., to further reduce the risk of PII leakage.
We have kept the data and codebase on secure
servers that are accessible only by persons involved
in this study. Our dataset will be available to re-
searchers who agree to the terms and conditions
of our data-sharing policy approved by the ethical
committee of our institution.
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A Appendix

A.1 Human Annotators
For better understanding of the moderation data we
have performed two studies that involved human
annotators: 1) Manual analysis of offensiveness
in Section 3.4, and 2) manual analysis of rule vi-
olations in Section 4.4. In these two studies have
used volunteered annotators including employees
within our institution and university graduate stu-
dents, who are all based in North America. We
did not use external annotation platforms and ser-
vices since these are small-scale studies (≤ 200
data points) designed for better understanding of
the moderation data and the annotations will not be
released with our large main dataset.

A.2 Temporal Changes in Community Rules
We scraped the community rules for each subreddit
at temporal intervals of 1-2 week(s) and changes in
rules have been captured in our data. We checked
our entire collection of scraped rules across 7.5
months and found that rule edits happened at a rate
less than 0.93% among all rules from all subreddits
per week. Many of those edits are simple changes
(e.g., adding/removing periods, capitalizing words)
that does not alter their semantic meaning and thus
we consider those as not affecting moderation deci-
sions. There are a few cases when the moderators
added new rules which would affect moderation de-
cisions of certain types of content. For example, on
r/antiwork, the rule of "No politicians, no CEOs"
was changed to "No politicians, no employers, no
landlords, no cops." in between June 27 and July
04. For those cases, developing content modera-
tion models with changing rules would be a good
extension of this work.

A.3 Completeness of the checking later
procedure in data collection

In our preliminary study we found that comment
removal happens most frequently during the first
3 days after being posted. Thus, we set the in-
terval to 1 week to achieve a reasonable trade-off
between completeness and efficiency. We did an ad-
ditional study by re-scraping the status of an extra
set of 452, 000 comments collected during Septem-
ber. Comparing their old labels (checked 7 days
after posting) with new moderation labels (scraped
this week, which is more than 2 months after post-
ing), 92.89% removed comments has already been
covered. Based on our observation of typical sub-
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reddits, we also chose the time window of 7 days
to limit domain shifts in the data due to change in
topics, moderators or focus of the subreddit.
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Language Subreddits
English r/anime, r/antivaxxers, r/antiwork, r/birdswitharms, r/bitcoin,

r/boardgames, r/bodyweightfitness, r/breadstapledtotrees, r/christianity,
r/collapse, r/coronavirus, r/covid19, r/feminism, r/fifthworldproblems,
r/funny, r/futurology, r/gadgets, r/games, r/grandpajoehate, r/halo,
r/havewemet, r/immigration, r/islam, r/judaism, r/lego, r/lgbt,
r/lifehacks, r/mildyinfuriating, r/minecraft, r/naruto, r/news, r/nfl,
r/onetruegod, r/personalfinance, r/publicfreakout, r/racism, r/science,
r/scifi, r/showerorange, r/showerthoughts, r/space, r/stocks, r/streetwear,
r/talesfromcavesupport, r/theoryofreddit, r/tooafraidtoask, r/worldnews,
r/xboxseriesx

Spanish r/argentina, r/argaming
German r/de, r/finanzen, r/ich_iel
French r/rance, r/quebec, r/moi_dlvv

Table 8: The list of all subreddits in our dataset.

Figure 5: Data collection pipeline: 1) the crawler will assign target subreddits to a number of accounts and streaming
comments and submissions concurrently and 2) after a certain period of time (around a week), the checker will go
through each record and update if the comment still exists or has been removed/deleted.
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Comment Subreddit fo

a try contacting drewcybersupport on instagram about this he will
definitely help you out

r/minecraft 0.01

b i think there may still be hope. my company helps clients like yourself
get rid of pmi. pm me and we can help you.

r/personalfinance 0.02

c i wanna hear ur view on {{organization}} products and $sprk tokens.
are ya joining anyone?

r/bitcoin 0.02

d thanks for the good constructive conversation i really did enjoy it. r/feminism 0.02

e maybe it would be easier if you set up a meeting irl. r/science 0.03

f if anyone needs images they are all over /r/transformers right now r/lego 0.03

g so you have two masters degrees and youre looking to {{organiza-
tion}} for help. those degrees are really paying off.

r/personalfinance 0.03

h no not me it would be another little tiny b***h like you r/publicfreakout 0.91

i ... your piece of s**t car so slow you’ll be left behind ... d**b silly
beta.

r/tooafraidtoask 0.86

j we’ve come so god d**n far in this country ... f**k this s**t!! f**k
this country!

r/antiwork 0.82

Table 9: Sampled removed comments and their average offensiveness score from 3 classifiers trained on offensive
language identification and hate speech detection datasets.

split language #sub #comments removal
Training data

en-train English 48 1, 016, 386 47.96%

en-val English 48 56, 460 47.96%

Test data
de German 3 57, 952 50.00%

es Spanish 2 18, 298 50.00%

en English 48 56, 466 48.09%

fr French 3 5, 122 44.57%

Table 10: Number of subreddits, comments, and percentage of removed comments in the additional balanced data
splits.
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Setting Lang. AUC F1-macro
en de fr es en de fr es

MLLM multi 66.83±0.10 69.42±0.14 64.25±0.14 63.90±0.03 49.60±0.10 49.78±0.00 49.94±0.00 49.83±0.00

Trans-tr
de 60.33±0.44 63.34±0.68 - - 49.53±0.00 49.78±0.00 - -
fr 53.47±0.38 - 49.96±0.61 - 49.53±0.00 - 49.94±0.00 -
es 64.16±0.53 - - 63.29±0.43 49.58±0.03 - - 49.99±0.13

Trans-te en 67.38±0.18 71.23±0.02 71.61±0.34 64.33±0.09 49.66±0.05 50.01±0.17 50.36±0.30 50.22±0.30

Table 11: Experimental results with standard deviation on original splits.

Setting Lang. AUC F1-macro
en de fr es en de fr es

MLLM multi 66.14±0.02 70.10±0.07 68.32±0.01 59.81±0.06 59.97±0.51 64.46±0.11 61.15±0.93 56.78±0.06

Trans-tr
de 61.10±0.67 65.90±1.22 - - 57.24±1.15 61.15±1.17 - -
fr 53.64±0.37 - 53.71±1.40 - 51.99±0.98 - 55.10±0.56 -
es 63.08±0.14 - - 60.52±0.51 59.33±0.26 - - 56.87±0.47

Trans-te en 66.94±0.05 70.66±0.11 71.57±0.1 61.96±0.03 61.96±0.1 64.16±0.40 64.87±1.30 58.11±0.27

Table 12: Experimental results with standard deviation on balanced splits.

Category number of examples
Non-civil 36

Missing context 54

Spam/self-promotion 21

Table 13: Manually annotated rule violations.

Warning: Due to the nature of this study, this data may contain disturbing content, such as
offensive language and hate speech.

Label Rule Examples
1 not being civil (hate, offensive, insulting,

harassment, ...).
(1) you’re complete moron. (2) you fuckin
loser. (3) have fun staying poor buddy.

2 missing context or effort (Context and ef-
fort must be provided; empty posts or
empty posts with links will be automat-
ically removed).

(1) https://www.youtube.com/watch?v=...
(2) let’s GOOOOO. (3) GME.

3 spam or self-promotion (Spam, ads, so-
licitations (including referral links), and
self-promotion posts or comments will be
removed).

(1) Checkout my youtube channel. (2)
https://www.youbube.com/xxxxxxx. (3)
use this link to get $10 bonus when you
register an account at xxxxx.

4 Cryptocoin discussions unrelated to stocks
("I bought bitcoins at coinbase" doesn’t
count, but "Coinbase sells X amount of
bitcoins which is X amount of profit for the
company" is fine), penny stocks (including
OTC, microcaps, pump & dumps, low vol
pumps and SPACs).

(1) SHIB coin is on fire. (2) $ATER! get
on the train now we are going to the moon!
(3) BRQS is the play now, rocketing to $2
by the end of this week.

5 Not sure why this comment was removed
(a comment doesn’t seem to have violated
any of the rules above, it’s hard to say with
out context why it was removed)

None

Table 14: The guide provided to annotators.
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Abstract

Providing natural language instructions in
prompts is a useful new paradigm for improv-
ing task performance of large language models
in a zero-shot setting. Recent work has aimed
to improve such prompts via manual rewrit-
ing or gradient-based tuning. However, man-
ual rewriting is time-consuming and requires
subjective interpretation, while gradient-based
tuning can be extremely computationally de-
manding for large models and may not be fea-
sible for API-based models. In this work, we
introduce Gradient-free Instructional Prompt
Search (GRIPS), a gradient-free, edit-based
search approach for improving task instructions
for large language models. GRIPS takes in in-
structions designed for humans and automati-
cally returns an improved, edited prompt, while
allowing for API-based tuning. With Instruct-
GPT models, GRIPS improves the average task
performance by up to 4.30 percentage points
on eight classification tasks from the NATU-
RAL-INSTRUCTIONS dataset (with similar im-
provements for OPT, BLOOM, and FLAN-
T5). We see improvements for both instruction-
only prompts and instruction + k-shot examples
prompts. Notably, GRIPS outperforms manual
rewriting and purely example-based prompts
while controlling for the available compute and
data budget. Further, performance of GRIPS is
comparable to select gradient-based tuning ap-
proaches. Qualitatively, we show our edits can
simplify instructions and at times make them
incoherent but nonetheless improve accuracy.1

1 Introduction

Recent advancements in prompting large language
models (LMs) such as GPT-3 show that models
can perform NLP tasks without any task-specific
tuning (Brown et al., 2020). Most of the work in
this area focuses on few-shot learning, where mod-
els rely on textual prompts containing input-output

1Code: https://github.com/archiki/GrIPS

example pairs (exemplar prompts). However, hu-
mans are often able to perform a new task when
provided with a relevant set of instructions or a
task description, not necessarily including any ex-
amples. In this direction, past works explore a
new paradigm of instructional prompts where a
prompt is tailored for a particular task by includ-
ing natural language instructions (Efrat and Levy,
2020; Mishra et al., 2022a,b). Following Webson
and Pavlick (2021), we characterize instructions
as a natural language description of the task that
includes what is required for a person to complete
the task correctly.2 Demonstrative examples of the
task are not considered a part of the instructions.

For purposes of improving task performance via
instructional prompts, Mishra et al. (2022b) pro-
vide a set of guidelines to manually rewrite raw
instructions. Yet this kind of rewriting process
requires substantial manual effort and subjective
interpretation of the guidelines. In addition, an un-
derlying assumption in Mishra et al. (2022b) is that
instructions should be semantically coherent to hu-
mans. However, it is possible that the prompts that
most improve model performance are semantically
confusing to humans in some ways.

Past works attempt to automatically improve
prompt quality for large LMs by means of prompt
tuning (Liu et al., 2021b). Existing prompt tun-
ing methods use gradient-based approaches which
have a few notable shortcomings. First, comput-
ing gradients with large LMs can be prohibitively
computationally demanding. Second, this is en-
tirely infeasible for models available only via APIs,
because model gradients and weights are not stan-
dardly accessible.3 Third, output continuous repre-
sentations may not directly map back onto tokens
in the original vocabulary. Thus, we cannot verify

2In general, whether an instruction is a sufficient descrip-
tion of a task depends on whom it is written for, i.e. people
with less task expertise require more background information.

3GPT-3 models can be finetuned on given data, but the
model parameters and gradients remain unavailable (source).
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Figure 1: Overall Pipeline of GRIPS. The main steps are numbered. Modified candidates are shown in yellow and
the output instruction is in blue. We use ‘[ ]’ to show the syntactic phrase-level splits at which the edit operations
occur. Edited text is highlighted in red and the selected candidate (with highest score) is shown via a green arrow.

whether models are responding to prompts reason-
ably (Khashabi et al., 2021). For human readable
prompts, we can at least assess what words/phrases
trigger certain model behaviors and whether mod-
els respond reasonably (for instance, when models
learn from incoherent prompts, we are surprised).

In this paper, we propose Gradient-free
Instructional Prompt Search (GRIPS), an au-
tomated procedure for improving instructional
prompts via an iterative, local, edit-based, and
gradient-free search (shown in Fig. 1). In contrast
to gradient-based tuning, our method allows us to
improve instructions in prompts for arbitrary (in-
cluding API-based) language models, while main-
taining the human-readability of the resulting in-
structions. On eight classification tasks from the
NATURAL-INSTRUCTIONS (Mishra et al., 2022a),
GRIPS improves the average accuracy of GPT-
2 XL and InstructGPT (GPT-3) models by be-
tween 2.36 and 9.36 percentage points. We further
show that when gradient-information is available,
GRIPS is comparable if not outperforms parameter-
efficient tuning methods (Houlsby et al., 2019;
Li and Liang, 2021). Additionally, our searched
instructions outperform manual rewritten instruc-
tions (Mishra et al., 2022b) by 1.5 percentage
points on average for the InstructGPT curie en-
gine. With the same data and computational budget,
GRIPS outperforms search over in-context exam-
ples by about 1.6 points for InstructGPT. Lastly,
we consider initializing GRIPS with task-specific
instructions (from NATURAL-INSTRUCTIONS) ver-
sus task-agnostic instructions. While GRIPS im-
proves performance with both kinds of instructions,
performance is higher overall when starting with
task-specific instructions.
Contributions: In sum, our contributions include:

1. We propose GRIPS, an automated gradient-free
search over instructional prompts that improves
accuracy of GPT models by between 2.36 and
9.36 points on NATURAL-INSTRUCTIONS. We
also show improvements for OPT, BLOOM, and
FLAN-T5.

2. We show that GRIPS (a) outperforms manual
rewriting (Mishra et al., 2022b) and search over
exemplar prompts, (b) is comparable to select
gradient-based tuning methods, and (c) is ef-
fective for prompts containing both instructions
and examples.

3. GRIPS can improve instructions when using as
few as 20 data points for a performance signal
in scoring and when starting with either task-
specific or task-agnostic instructions.

2 Related Work

Our work builds on recent work in prompting large
language models, which Liu et al. (2021b) provide
a comprehensive literature survey for. We focus on
methods for improving model prompts here.

Exemplar Prompts. Few-shot learning for lan-
guage models to perform NLP tasks is an ac-
tive area of research (Schick and Schütze, 2021b;
Le Scao and Rush, 2021; Tam et al., 2021; Lo-
gan IV et al., 2021). Prompts in this line of work
are mainly composed of a number of input-output
examples (Schick and Schütze, 2021b; Le Scao
and Rush, 2021; Tam et al., 2021; Logan IV et al.,
2021). Additional text in these prompts is usually
a part of the prompt template itself (such as cloze
questions/pattern) and contains limited information
about the task.4 In contrast, our work focuses on

4By prompt template, we are referring to the choice of
cloze-question/pattern (typically a phrase or short sentence),
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instructional prompts as described below.

Instructional Prompts. Instructional prompts
primarily contain detailed natural language descrip-
tions of the underlying task. Recent work focuses
on utilizing instructions given to human annota-
tors during data collection (Efrat and Levy, 2020;
Mishra et al., 2022a). Mishra et al. (2022b) propose
guidelines for manually rewriting instructions in or-
der to further improve performance of instructional
prompts. While Webson and Pavlick (2021) show
language models may struggle to truly understand
instructions, Wei et al. (2022); Sanh et al. (2022)
find finetuning on instructions and in-context ex-
amples in a hugely multi-task manner helps gener-
alization to other tasks. Lastly, Weller et al. (2020)
provide a dataset in which task descriptions are
formulated as questions. These questions are rel-
atively short and domain-specific, whereas the in-
structions in NATURAL-INSTRUCTIONS (Mishra
et al., 2022a; Wang et al., 2022) are longer and
correspond to more diverse tasks.

Prompt Tuning. Instead of limiting prompts to
natural language text, recent work explores training
continuous vector tokens in prompts via gradient-
based optimization (Liu et al., 2021c; Lester et al.,
2021; Li and Liang, 2021; Qin and Eisner, 2021).
Sun et al. (2022) aim to optimize continuous tokens
without using gradients, however, their technique
does not work for APIs that only allow modifying
text and not token embeddings (like for GPT-3).

Prompt Search. Zhao et al. (2021) find varying
the choice of training examples, example order per-
mutations, and template can alter the performance
of a prompt. Liu et al. (2021a) focus on selecting
in-context examples from a dataset, while Lu et al.
(2022); Kumar and Talukdar (2021) explore opti-
mal ordering of examples. Others manually write
effective prompt templates for NLP tasks (Petroni
et al., 2019; Brown et al., 2020; Schick and Schütze,
2021a,b,c). In principle, all prompt search meth-
ods treat the prompt text as a parameter space to
be optimized over (Andreas et al., 2018). Jiang
et al. (2020) and Gao et al. (2021) use automated
paraphrasing of the prompt templates. Inspired
by these works, GRIPS also has a functionality to
paraphrase select phrases of the instruction (§3.2.2).

verbalizer, or any structuring text around the training and
test example(s). In contrast, we consider instructions to be
more descriptive, multiple-sentence long and self-sufficient
to perform the task without any examples. See illustrative
examples of templates in Table 7 of Zhao et al. (2021).

Meanwhile, Shin et al. (2020) use a gradient-based
search to find trigger words in the prompt tem-
plate. While the above works focus on changing
the prompt template, we instead design a search
method for editing the content of task instructions.
Our search algorithm is also related to genetic algo-
rithms (Mitchell, 1998), where parent candidates
are mutated to generate offering (via our text-based
edit operations) to increase fitness under an objec-
tive (like our score function).

3 Methodology

In this section, we first describe and illustrate differ-
ent prompt modes (§3.1). Then, in §3.2, we outline
our search algorithm Gradient-free Instructional
Prompt Search (GRIPS) in detail.

3.1 Prompt Modes

We include instructions through two prompt modes:
Instruction-Only and Instruction + Examples (illus-
trated in Fig. 2). Here, prompt mode refers to the
choice and arrangement of the three components
(instruction, in-context examples, and test instance).
These prompt modes are also used in Mishra et al.
(2022a) (details in Appendix B). To obtain each
kind of prompt, we concatenate text from each of
its components. For example, the Instruction + Ex-
amples prompt contains instructions, followed by
examples, followed by the test instance.

3.2 Gradient-free Instructional Prompt
Search (GRIPS)

While instructional prompts improve the zero-shot
task performance of large LMs, the discrete na-
ture of these prompts and the significant compu-
tational cost of such models makes them hard to
optimize via gradient updates. In this work, we
propose Gradient-free Instructional Prompt Search
(GRIPS), which alleviates this problem by editing
instructions iteratively and greedily searching for
the best modification. The search is guided by
model performance on a small pool of examples
that are not a part of the test set (called the score
set S, |S| = 100 unless specified otherwise). The
score set can be thought of as a small train set for
each task.5 Note that examples in the score set

5We note that while |S| = 100 may not be a true few-shot
setting (Perez et al., 2021), this is a standard number of data
points for work in prompt tuning and search, as some works
use fewer points and some use many more (Gao et al., 2021;
Li and Liang, 2021). In §5.6, we show improvements with
GRIPS using as few as |S| = 20 examples.
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   Your task is to 
 classify the tweet as "positive" or   
 "negative" based on its content. 

  Glad you enjoyed it. 

  positive 

  Awful! My gift card ran out. 

  negative

  I am certainly not 
 feeling good today...I have a cold. 

  

TEI Task Instruction In-context Examples Test Instance  Instruction-Only Prompts: 
           TI

 Examples-Only Prompts: 
    E T

 Instruction + Examples Prompts: 
                  I E T

Figure 2: Prompt modes consisting of different combinations of components: Instruction, In-context examples and
Test Instance. ‘⊕’ denotes concatenation. Instruction-Only prompts are purely instructional, whereas Examples-Only
prompts are exemplar in nature. Prompt mode Instruction + Examples is a combination of the two paradigms.

may have a skewed label distribution, so we use
balanced accuracy as our scoring metric, i.e. we
re-weight the accuracy across S to count all classes
equally (BalancedAccuracy below). Motivated
by Lu et al. (2022), we also include the entropy of
model predictions in the score function to promote
edited instructions that generate diverse labels. Let
Y be the label space of a task and ŷ be the model
prediction. If H is the entropy and α is a scaling
factor (we use α = 10), then the score function is:6

H =
∑

y∈Y
−pylog(py) ; py =

1

|S|

|S|∑

i=1

1(ŷi = y),

score = BalancedAccuracy + αH.

As illustrated in Fig. 1, the GRIPS algorithm
starts with an initial base instruction, and then at
each iteration, it generates m new candidates by
randomly selecting and applying l phrase-level edit
operations to each candidate. This results in a to-
tal of m × l sampled operations in each iteration
(phrase selection described below in §3.2.1 and edit
operations in §3.2.2). These candidates are then
scored based on the model performance on S. If
the score of the best candidate exceeds the score
of the current base instruction, then that candidate
is assigned as the base in the next iteration. Oth-
erwise, the search continues with the same base
instruction. The search stops when the score on S
does not improve for P iterations or a maximum
number of total iterations n is reached.

Beam Search. While the above search is greedy,
retaining only the best candidate in every iteration,
we can alternatively retain the top-B scoring candi-
dates. Subsequent iterations, contain B base candi-
dates for which we perform search individually and
the overall top-B scoring candidates move to the

6BalancedAccuracy is calculated on a scale of 0-100.
We can replace it with balanced cross entropy (see ablation
in Appendix C) for a small improvement in test performance
with a tradeoff of longer searching time.

next iteration until we reach the stopping criteria.
This search is more exhaustive and yields better
performance (refer to §5.3), however, it increases
the number of model evaluations by ≈ B-fold. We
refer readers to Appendix C for full pseudo-code.

3.2.1 Splitting Instructions into Phrases
As each instruction is a collection of sentences, edit
operations can be performed at the word, phrase,
or sentence level. In our preliminary experiments,
we find that working at an intermediate level, i.e.
phrases, is most helpful. This is likely because
phrase-level splits allow us to maintain the general
structure of instructions, while providing enough
flexibility for edits. In order to effectively split
each sentence into phrases, we use a state-of-the-
art CRF-based constituency parser (Zhang et al.,
2020a). Using the constituency tree, we combine
the leaves until we obtain disjoint phrase-level con-
stituents (S, VP, NP and other phrase-chunks) from
a sentence. This is illustrated via the blue square
brackets within instruction text in Fig. 1.

3.2.2 Edit Operations
Below, we describe edit operations used in GRIPS:
Delete (del). We remove all occurrences of the in-
put phrase from the instruction. The deleted phrase
is stored for subsequent use in the add operation.
Swap (swap). We take two phrases as input and
replace all occurrences of the first phrase in the
instruction with the second phrase and vice-versa.
Paraphrase (par). We replace all occurrences of
the input phrase with a corresponding paraphrase
generated using a publicly available PEGASUS-
based (Zhang et al., 2020b) paraphrase model from
HuggingFace (Wolf et al., 2020).7

Addition (add). We sample a phrase deleted in
previous iterations and add it back to the instruction
at a random phrase boundary.

These edit operations yield a broad space of
possible instructions including simpler, less ab-

7Model available at: https://huggingface.co/
tuner007/pegasus_paraphrase
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Model No Search GRIPS

Majority Label 59.83 -

GPT-2 XL 49.54 (1.9) 58.90 (2.0)
InstructGPT babbage 55.80 (2.5) 60.09 (3.7)
InstructGPT curie 63.71 (1.9) 66.07 (1.6)

Table 1: Impact of GRIPS with Instruction-Only
prompts. Average accuracy (%) on 8 tasks from NATU-
RAL-INSTRUCTIONS. In majority label, we output most
frequent label for all test instances. 95% confidence
intervals in parentheses. curie is the largest model.

stract instructions with fewer details. Such edits
enable GRIPS to emulate the guidelines suggested
by Mishra et al. (2022b) that also limit details and
abstractions. Moreover, GRIPS can explore dif-
ferent phrasing styles and add previously removed
details back into instructions, since these properties
may occasionally be useful to models. We draw
inspiration from operations used in sentence simpli-
fication work of Kumar et al. (2020). Empirically,
the effectiveness of edits is shown in §5.1.

4 Experimental Setup

Dataset. NATURAL-INSTRUCTIONS (Mishra
et al., 2022a; Wang et al., 2022) consists of a set
of tasks, each comprised of task instructions, and
labeled examples. Due to cost and API quota
constraints (discussed below) we confine ourselves
to a subset of 8 diverse binary classification tasks
from this dataset.

Test Sets. Following Mishra et al. (2022a), we
subsample examples from the aforementioned
dataset to create test sets. For the main results (in
Table 1), the test sets consist of 300 random sam-
ples per task. Due to financial costs, all other analy-
sis and ablation experiments in §5 are evaluated on
subsets of 100 test examples per task (hence, num-
bers vary between Table 1 and subsequent tables).

Models. We use GPT models (Radford et al.,
2018, 2019; Brown et al., 2020) with ≥1B param-
eters, specifically GPT-2 XL (1.5B parameters),
InstructGPT babbage, and curie.8 Relative to
standard GPT-3 models, InstructGPT models are
specially designed to follow task instructions and
therefore are a natural choice in our work (Ouyang

8While we know that curie is larger than babbage, the
exact model sizes for engines on OpenAI API are not officially
available. The sizes of babbage and curie models are
estimated as 1.3B and 6.7B parameters (source).

Method Accuracy

No Search 48.38

GRIPS 53.68
- entropy in score 52.20 (-1.48)
- del operation 51.12 (-2.56)
- swap operation 52.67 (-1.01)
- par operation 52.54 (-1.14)
- add operation 52.42 (-1.26)

Table 2: Impact of design choice on GRIPS with
Instruction-Only prompts and GPT-2 XL model.
Change in performance relative to GRIPS in brackets.

et al., 2022). In light of the cost constraints in run-
ning experiments (discussed below), we did not ex-
periment with the davinci engine (largest model)
that is known to exhibit stronger performance on
several NLP tasks (Brown et al., 2020).

Cost. A single run of GRIPS on a task requires
O(m×n×|S|×B) model evaluations. We worked
with a $600 per month academic quota on the Ope-
nAI API. Each search run (across 8 tasks) on the In-
structGPT babbage and curie models costs be-
tween $20-25 and $125-175 respectively per seed.
The total financial cost for all the experiments ≈
$2400. We note that after running GRIPS and ob-
taining the modified searched instruction, the cost
of evaluation on the test set is significantly smaller,
a total of ≈ $150 for all the results in this work.

Hyperparameters. We set number of edit oper-
ations per candidate l = 1, number of candidates
per iteration m = 5, number of iterations n = 10,
and patience P = 2. Search is greedy and run for
3 seeds for each task unless specified otherwise.

Additional details about the dataset, models, and
choice of hyperparameters are in Appendix A.

5 Results and Discussion

In this section, we present the results of our ex-
periments. First, we establish the effectiveness of
GRIPS across models in §5.1. Then, we compare
our search to other methods in §5.2 and §5.3 and
provide additional analysis in subsequent sections.

5.1 Effectiveness of GRIPS

Our main results are shown in Table 1. On average
across tasks, GRIPS improves accuracy for GPT-2
XL, InstructGPT babbage and curie by 9.36,
4.29, and 2.36 percentage points respectively that
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Prompt Method GPT-2 XL InstructGPT

babbage curie

Inst. Only
No Search 48.38 55.37 57.25

Manual Rewriting 47.70 55.50 57.87
GRIPS 53.68 57.79 59.37

Ex. Only No Search 51.50 55.29 56.13
Example Search 56.00 56.25 57.75

Inst. + Ex. No Search 52.40 55.70 57.65
GRIPS 54.40 57.88 59.44

Table 3: Accuracy (%) comparison of different methods
in all three prompt modes. ‘Inst.’ and ‘Ex.’ are used to
abbreviate instruction and examples. During no search,
we use a random set of examples wherever indicated.

is statistically significant at the p < 0.05 level.9 Ac-
curacy for each method is averaged across test data,
seeds, and tasks. Although curie has a smaller
margin of improvement compared to babbage,
the results on curie display greater stability (see
smaller confidence intervals in Table 1).

Our results corroborate that larger InstructGPT
models outperform smaller, non-InstructGPT coun-
terparts (Ouyang et al., 2022). We see significant
gains in accuracy on moving from GPT-2 XL to
babbage and from babbage to curie.

Ablations. In Table 2, we evaluate several de-
sign choices in §3.2 on GPT-2 XL. First, we ob-
serve that removing the entropy term from the
score function decreases accuracy by −1.48 points.
We find this term helps breaks ties between can-
didates with similar performance on S in favor of
less skewed-predictions and avoids local minima.
Next, we re-run GRIPS with all but one edit opera-
tions and find that removing del, swap, par, and
add operations drops accuracy by −2.56, −1.01,
−1.14 and −1.26 points respectively, thus indicat-
ing that GRIPS benefits from all edit operations.
Appendix C contains additional design ablations.

5.2 Comparing with Gradient-free Methods

Prior work in prompting often employs manual
rewriting or searching good examples for k-shot
learning. Since these approaches are also gradient-
free, we provide a comparison with GRIPS below.

Manual Rewriting. Closest to our setting,

9We perform two-sided hypothesis tests for these im-
provements by bootstrap with examples and random seeds
resampled 100k times (Efron and Tibshirani, 1994).

Method %Param Accuracy

GPT-2 XL 0 48.38

+ Direct Finetuning 100 55.88
+ Adapters (Houlsby et al., 2019) 3 55.08
+ Prefix-Tuning (Li and Liang, 2021) 3 53.29

- MLP Reparametrization 0.1 51.12

+ GRIPS (Ours) 0 53.68
+ beam search; B = 5 (Ours) 0 56.50

Table 4: Comparison of GRIPS with gradient-based
methods. GPT-2 XL and GRIPS use Instruction-Only
prompts. %Param denotes number of parameters used
relative to size of GPT-2 XL.

Mishra et al. (2022b) provide five broad guidelines
for writing instructional prompts that improve task
performance. These guidelines recommend use
low-level, specialized instructions and removal of
generic, abstract and redundant details. As the fi-
nal rewritten instructions are not available for most
tasks, we perform the rewriting process ourselves
(described in detail in Appendix E).

Example Search. We use a simple but effective
algorithm that allows us to fairly compare against
GRIPS. At each step, we form a prompt by ran-
domly sampling k examples from the score set and
then compute the model performance on the re-
maining points. The search runs for a max number
of iterations, then the best example-set is used for
evaluation. Note that k will vary by task; we fit
as many examples as we can in the space of 1024
tokens (between 8 and 28, for our tasks). We use
the same score set for example search as GRIPS.
Further, the number of iterations is set such we
use the same maximum number of model queries
as GRIPS.10 We note that relative to our example
search, one could find a different example-set for
each test instance (Liu et al., 2021a), use a genetic
algorithm (Kumar and Talukdar, 2021), or alternate
search heuristics (Lu et al., 2022).

Results. First, Table 3 shows that our search out-
performs manual rewriting for all models, by 5.56,
2.29 and 1.50 points for GPT-2 XL, InstructGPT
babbage and curie, respectively. Next we ob-
serve that example search outperforms GRIPS for
GPT-2 XL. However, when we use the InstructGPT
models that have been designed to follow textual

10The financial cost of Examples-Only search is consid-
erably higher than GRIPS. Instructions are typically much
shorter than the 1024 tokens worth of examples, and therefore
model queries with Instruction-Only prompts cost less than
Examples-Only prompts in the OpenAI API.
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Model Initialization No Search GRIPS

GPT-2 XL Task-Specific 48.38 53.68
InstructGPT babbage Task-Specific 55.37 57.79
InstructGPT curie Task-Specific 57.25 59.37

GPT-2 XL Task-Agnostic 51.87 54.29
InstructGPT babbage Task-Agnostic 52.37 54.41
InstructGPT curie Task-Agnostic 53.75 55.96

Table 5: Accuracy (%) for task-specific or task-agnostic
initial instructions with Instruction-Only prompts.

instructions better (Ouyang et al., 2022), GRIPS
outperforms the exemplar prompt search (by 1.54
and 1.62 points for babbage and curie respec-
tively). In Appendix E, we find that the number of
tasks where performance improves is highest for
GRIPS across models.

5.3 Comparing with Gradient-based Methods

Our gradient-free design enables the use of GRIPS
with larger API-based InstructGPT models. How-
ever, when gradient-information is available, we
compare GRIPS to direct finetuning and other
parameter-efficient methods using GPT-2 XL.

Methods and Setup. We explore three represen-
tative gradient-based approaches: direct finetun-
ing, adapters (Houlsby et al., 2019), and prefix-
tuning (Li and Liang, 2021).11 For the latter, we
use prefix length = 5 and include a setting without
MLP reparametrization. To ensure a fair compar-
ison with GRIPS, for each task we perform an
80 : 20 split of the score set into train and dev sets.

Results. The comparison is presented in Table 4.
Among gradient-based methods, we find direct
finetuning is most effective, followed by adapter-
tuning. Both approaches outperform GRIPS
(greedy decoding) by 2.2 and 1.4 points respec-
tively. However, exploring the search space more
extensively using beam search improves perfor-
mance of GRIPS by 2.82 points, outperforming all
methods without using any gradient information.12

We also observe that GRIPS outperforms prefix-
tuning by up to 2.56 and 5.38 points using greedy
and beam search respectively. Since prefix-tuning
upper bounds performance of AutoPrompt (Shin
et al., 2020; Li and Liang, 2021), we expect GRIPS
to outperform AutoPrompt as well. Note that the

11These methods only use test input and not instructions.
12Due to cost constrains, we do not use beam search with

InstructGPT, although we expect it to improve performance.

Model # Param No Search GRIPS

OPT

1.3B 46.38 53.3
2.7B 47.5 53.95
6.7B 48.63 54.41
30B 49.75 55.1

BLOOM 1B 46.38 52.75
3B 48.0 53.96

GPT-J 6B 47.25 54.67
GPT-NeoX 20B 47.75 54.85

FLAN-T5† 3B 71.25 74.33

Table 6: Accuracy (%) of GRIPS for various other
large language models with Instruction-Only prompts.
†Chung et al. (2022) use NATURAL-INSTRUCTIONS
dataset during instruction-tuning.

gradient-based approaches mentioned above cannot
be used with API-based models (like InstructGPT)
where gradients are not accessible.

5.4 Task Specific vs Agnostic Instructions

GRIPS is contingent on the instruction that we
use to initialize the search. We aim to understand
the impact of initialization by comparing two set-
tings with semantically distinct initial instructions,
task-specific and task-agnostic (examples shown in
Appendix F). Task-specific instructions are taken
from the NATURAL INSTRUCTIONS dataset and
contain information about the task, expected out-
puts, and the conditions under which a particular
output is correct. Task-agnostic instructions only
contain some generic text and a list of all possi-
ble labels corresponding to the task, but no other
meaningful information about the task.

In Table 5, we find that GRIPS is effective in
both task-specific and task-agnostic settings with
improvements up to 5.30 and 2.42 points, respec-
tively. Interestingly, GPT-2 XL performs better
with task-agnostic instructions as compared to task-
specific ones. InstructGPT systems, on the con-
trary, show better performance with task-specific
instructions both before and after search indicating
task-relevant semantics of (initial) instructions can
play a significant role in task performance.

5.5 GRIPS with other Open-Source Models

Similar to other instruction-based methods, GRIPS
works best when models can follow declarative
instructions and are responsive to changes to in-
structions (shown in Appendix D). While this may
not be the case for standard pretrained large lan-
guage models, we nevertheless show that GRIPS
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Figure 3: Impact of |S| on search and downstream aver-
age task accuracy for InstructGPT babbage.

can be effectively used with other models such as
GPT-J (Komatsuzaki, 2021), GPT-NeoX (Black
et al., 2022), OPT (Zhang et al., 2022) and
BLOOM (Scao et al., 2022).

In Table 6, we observe that GRIPS can still im-
prove performance of all the aforementioned mod-
els by nearly 6-7 points. Furthermore, we find that
OPT, BLOOM and other larger publicly available
GPT variants lack instruction-following ability as
compared to InstructGPT models (also noted in
Zhang et al. (2022)). The accuracy of these models
prior to search is very similar to GPT-2 XL despite
being larger in scale and fall short of the Instruct-
GPT models (refer to Table 3). This demonstrates
the advantage of using instruction-tuned models
like InstructGPT in our setting. Finally, we use
GRIPS on another publicly available instruction-
tuned model named FLAN-T5 (Chung et al., 2022)
and find a 3.08 point performance improvement.
Here, we observe significantly higher average task
accuracy even prior to search, which we attribute
to the use of NATURAL-INSTRUCTIONS dataset
in the instruction finetuning (Chung et al., 2022),
possibly exposing the model to the test instances
as well as the task instructions.

5.6 GRIPS is Effective for Smaller Score Sets

While we use a score set of size |S| = 100 by
default, it would be preferable to use as little data as
possible, all else equal. Therefore, we investigate
the effectiveness of GRIPS in a setting with limited
data available for the score set.

In Fig. 3, we experiment with a score set of size
100, 50 or 20. We first observe that as the size
of the score set decreases, the margin of improve-
ment from the search declines as well (4.27 point
gain when |S| = 100 versus 1.0 point gain when
|S| = 20). This trend is expected because using
fewer examples in the S is equivalent to having
a smaller train set, and thus we expect the model
generalization to be worse. For very limited data
settings, it is still useful that we see improvements

in accuracy by 1.0 point using as few as |S| = 20
data points. Our results also suggest that when
more data is available, increasing |S| can lead to
further performance improvements.

5.7 Semantics of Searched Instructions
Table 7 (and Appendix G) contains some searched
instructions by GRIPS. We analyze these examples
below, discussing edits made by GRIPS that appear
reasonable to a human reader, as well as edits that
render the instructions semantically incoherent.

For Task 021, GRIPS with InstructGPT curie
yields a relatively coherent yet simple instruction
by replacing “grammatical or logical errors” with
“errors.” For GPT-2 XL, replacing “is correct”
with “indicating no” makes the instruction incoher-
ent and actively misleading (i.e. respond via no
if correct, contrary to the original instruction), but
this change still improves model performance. For
Task 137, we find GRIPS with GPT-2 XL stops
early and returns original instruction. Interestingly,
for InstructGPT curie, the definition of toxicity
is entirely deleted. Finally, we see semantically in-
coherent edits occur for Task 195 with no informa-
tion about possible labels (‘positive’ or ‘negative’).
While this may be counter-intuitive to humans, it
works well for models and improves accuracy.

These findings build upon results from Webson
and Pavlick (2021), who find “irrelevant” or “mis-
leading” instructions (in people’s eyes) for entail-
ment task can outperform “good” instructions (with
few notable exceptions using T0 models). Yet in
§5.4, we observed that InstructGPT models per-
form better with task-specific instructions. Overall,
our results suggest that these LMs can respond sen-
sibly to semantic changes in instructions to some
extent. As with the study of in-context learning
mechanisms (Xie et al., 2022; Razeghi et al., 2022;
Min et al., 2022), how models utilize instructions
remains largely unknown and merits further study.

5.8 Effectiveness of GRIPS on Instruction +
Examples Prompts

Lastly, we show that GRIPS can also be applied
to Instruction + Example prompts (refer to Fig. 2)
that contain k additional labeled examples before
the test instance. Unlike in §5.2, we set the number
of examples to k = 4 across all tasks, as higher
values of k make the financial cost prohibitively
large. In order to mitigate majority label bias in the
prompts (Zhao et al., 2021), we use equal number
of examples from each label in the prompt. Since
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Condition Instructions
Ta

sk
02

1

Original Task-Specific
A question that is free of any grammatical or logical errors, should be labeled ‘yes’, otherwise it should be indicated as
‘no’. A question is grammatically correct if all its entities i.e. nouns, verbs, adjectives, prepositions, pronouns, adverbs
are at appropriate position. A question is logically correct if the semantic makes sense.

After
GRIPS

GPT-2 XL

A question that is free of any grammatical or logical errors, should be labeled ‘yes’, otherwise should be indicated as ‘no’
. should be indicated as ‘no’ is grammatically correct if all s entities i.e . nouns, verbs, adjectives, prepositions, pronouns,
adverbs are at appropriate position . should be indicated as ‘no’ is logically correct if the semantic makes sense.

InstructGPT curie
There is a question that is free of errors should be labeled ‘yes’, otherwise it should be indicated as ‘no’ . A question is
grammatically correct if all its entities i.e . nouns, verbs, adjectives, prepositions, pronouns, adverbs are at appropriate
position . A question is Correct logically if the semantic makes sense.

Ta
sk

13
7

Original Task-Specific Given a prompt and two completions from a language model, select the completion that is the least toxic with respect to
continuing the prompt. Toxicity is defined as a rude, disrespectful, or unreasonable statement that is likely to make you
leave a discussion. Generate either Completion A or Completion B.

After
GRIPS

GPT-2 XL Returned Original

InstructGPT curie
The model was given a prompt and two completions, select the completion that is the least toxic with respect to
continuing the prompt . . Generate either Completion A or Completion B.

Ta
sk

19
5 Original Task-Specific In this task, you are given a text from tweets. Your task is to classify given tweet text into two categories: 1) positive,

and 2) negative based on its content.

After
GRIPS

GPT-2 XL In this task, you are given a text from tweets . There.

InstructGPT curie in this task, you are given a text from tweets . In this task.

Table 7: Examples of different instructions for Task 021, Task 137 and Task 195 and different models. All above
instruction edits improve model performance, even semantically incoherent edits.

the choice of examples varies with the random seed,
we use 5 seeds instead of 3 for these experiments.

Table 3 demonstrates that our search is effec-
tive in this setting across all models, improving
accuracy by roughly 2 points. For InstructGPT
models, there is surprisingly little difference in per-
formance between Instruction-Only and Instruc-
tion+Examples modes (< 0.1 percentage points).
For both babbage and curie, however, the
prompts containing instructions outperform the
Examples-Only prompts, by about 1.6 points. Ex-
ample search is the best approach for GPT-2 XL,
likely because it is not designed to use instructions
in the manner that InstructGPT models are.

6 Conclusion

We introduce GRIPS, an automatic search algo-
rithm that edits task instructions to improve down-
stream task performance. We demonstrate that
GRIPS is effective for GPT-2 XL, InstructGPT
babbage, and curie for Instruction-Only and
Instruction + Examples prompts. Comparisons
with manual rewriting and example search show
that GRIPS outperforms these methods, suggesting
that widely exploring the space of model instruc-
tions is an effective method for improving model
performance. Furthermore, we find that at the ex-
pense of increased compute, GRIPS with beam
search is at least comparable in performance to
gradient-based tuning. We show that our search is
effective when starting with task-agnostic instruc-

tions and that it also works with as few as 20 exam-
ples in the score set. Qualitative analysis confirms
that even 1B+ size InstructGPT models can be im-
proved via semantically incoherent instructions.
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Limitations

Our edit operations currently do not have the ca-
pability to add significantly new and pertinent in-
formation or sentences to the instruction, outside
of what is available initially in the dataset. Adding
such advanced generation abilities to the add op-
eration is a challenging and interesting direction
for future work by the community building on
top of our work. However, in the current version,
GRIPS has the ability to find alternate ways of
phrasing the current information, removing irrel-
evant details and changing the structure of the in-
structions in terms of placement. Further, a frame-
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work like GRIPS may not be as effective for purely
generation-based tasks due to lack of good met-
rics to replace the accuracy in the score function.
Additionally, we note that language models with
better understanding of instructions may need less
optimization of their prompts in order to perform
tasks well. Hence, prompt engineering methods
in general may not be as useful for models with
increased prompt understanding. Lastly, we do not
test on the largest InstructGPT model (davinci)
due to cost constraints.

Ethical Considerations

Instructions are a useful tool to convey extrinsic
information to large language models and alter
model outputs, e.g. by instructing models to gen-
erate less harmful content. The intended use of
GRIPS is to obtain instructions that work well for
language models and help improve model perfor-
mance on a given task. In our work, we use in-
structions from NATURAL-INSTRUCTIONS where
Mishra et al. (2022a); Wang et al. (2022) ensure
quality control. For the tasks that we use, we ver-
ify that the instructions do not have a malicious or
adversarial intent. Similar to methods prompting
large language models, our proposed search can
unfortunately be misused intentionally or uninten-
tionally (Weidinger et al., 2021) to elicit harmful,
biased and problematic outputs for maliciously-
designed or adversarial inputs and/or instructions.
Furthermore, we do not encourage using instruc-
tion search for any high-stakes applications (like
hiring, admissions, allocating resources, etc.). Nev-
ertheless, we encourage future works to study and
mitigate these underlying issues of large models
and hope that our method is used responsibly.
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Appendix

A Additional Experimental Details

Dataset. In Table 8, we provide details about
the 8 classification tasks from the NATURAL-
INSTRUCTIONS dataset that are used in this work.
The first 4 tasks are present in the original ver-
sion (v1) of the dataset released in Mishra et al.
(2022a). As shown in Table 8, the label distribu-
tions in these tasks examples are extremely skewed
towards one label (> 90%). We chose the remain-
ing 4 tasks from next release (v2), curated by Wang
et al. (2022), such that (a) the label space and in-
structions are diverse in length, nature of the task,
and label tokens; (b) the datasets are more bal-
anced and less skewed towards one label; and (c)
the dataset was stable on the github repository,13

i.e. without any recent commits or modifications
for at least 1 month. Note that our experimenta-
tion started in October 2021 when newer tasks were
being added or modified on a daily or weekly basis.

Sampling Test Set. In all test sets, data is sam-
pled such that the sets are as balanced as possible,
given that some tasks have highly skewed labels.
If a label lacks enough data points to perfectly bal-
ance the data, we use all the examples from that
label and then randomly sample from the other
labels to fill the set. The task-level performance
before and after search on the large test set (300
samples) is shown in Figure 4.

Models and Classification. By babbage
and curie, we are referring to the
text-babbage-001 and text-curie-001
model versions on the OpenAI API. Following
Zhao et al. (2021), classification tasks are per-
formed by computing log-probabilities of the
label tokens using the completion function of the

13Datset: https://github.com/allenai/
natural-instructions. Information about each task
and user-friendly API to explore the data is available at
https://instructions.apps.allenai.org/

Algorithm 1 Our search algorithm: GRIPS
1: base← init ▷ Initialize base candidate
2: sbase ← score(base) ▷ Score using examples in S
3: Ω← {del,swap,par,add} ▷ Set of edit operations
4: ρ← P ▷ Patience for early-stop
5: for i = 1, · · · , n do ▷ n: number of iterations
6: for j = 1, · · · ,m do ▷ m: number of candidates
7: Sample e1, · · · , el ∈ Ω ▷ l edits per candidate
8: C[j]← edit(base, e1 ◦ · · · ◦ el)
9: s[j]← score(C[j]) ▷ Score above candidate

10: end for
11: k ← argmaxj s[j]
12: best← C[k] ▷ Best Candidate
13: sbest ← s[k] ▷ Score of best candidate
14: if sbest > sbase then ▷ Candidate better than base
15: base← best ▷ Use this candidate in next step
16: sbase ← sbest ▷ Update base score
17: ρ← P ▷ Refresh patience
18: else
19: if ρ > 0 then ▷ Patience not exhausted
20: decrement ρ
21: continue ▷ Continue search with same base
22: else
23: return base ▷ Early-stop criteria met
24: end if
25: end if
26: end for
27: return base ▷ Search terminates after last iteration

OpenAI API. The final prediction is obtained
by taking argmax over these label probabilities.
Note that our setting is different from Mishra et al.
(2022a,b) in that we do not formulate classification
as a text generation task with ROUGE as the
evaluation metric. This allows them to evaluate
tasks involving free-form question generation,
answer generation, incorrect answer generation
and modification. However, due to a high nature
of subjectivity and variation in model outputs
and drawbacks of automatic metrics such as
ROUGE-L for generation, we did not consider
these tasks for searching instructions. By sticking
to the classification tasks we were able to use
label probabilities and focus on accuracy as our
performance metric. We leave exploration of
GrIPS for generative tasks for future work.

GPU Compute. As GRIPS does not involve ad-
ditional training or finetuning of the language mod-
els, all our experiments are light weight. Only
GPT-2 XL requires GPU access which takes about
10 minutes per task (only evaluation of prompts)
and for all experiments combined uses little over
5 GPU hours on an NVIDIA A100 40 GB GPU.
Experiments with InstructGPT models use the Ope-
nAI API and do not require any GPUs for running.

Hyperparameter Search. Due to financial con-
straints, hyperparameter tuning was conducted us-
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Figure 4: Performance before search (no shading) and after search (shaded with dots) across tasks and models using
the Instruction-Only prompts. Error bars show 95% confidence intervals.

Task ID Task Objective Instruction Length Label Space Skewness (%)

019 Verifying the temporal reasoning category of a
given question

13 sentences/199 words Yes/No 91.5

021 Checking grammatical and logical correctness
of a question

3 sentences/53 words Yes/No 94.83

022 Identifying inappropriate content in context
sentences

2 sentences/33 words Yes/No 93.59

050 Finding answerability of questions based on a
given sentence

3 sentences/61 words Yes/No 94.81

069 Choosing text that completes a story based on
given beginning and ending

3 sentences/53 words 1/2 50.0

137 Given a prompt and two completions, deter-
mine which completion is less toxic

3 sentences/50 words Completion A/B 50.0

139 Given a prompt and two completions, deter-
mine which completion is more topical

4 sentences/68 words Completion A/B 50.0

195 Given a tweet, classify its sentiment as either
positive or negative

2 sentences/30 words positive/negative 50.0

Table 8: Details of the 8 classification tasks taken from NATURAL-INSTRUCTIONS dataset. Skewness measures the
number of examples corresponding to the most frequent label relative to the total number of examples.

ing line search using smaller (and cheaper) models
like GPT-2 L and XL and on select tasks during
preliminary experiments. We first considered the
number of edit operations applied to each candidate
in one iteration (l ∈ {1, 2, 3}), followed by a com-
bination of number of candidates and number of
iterations, i.e. (m,n) ∈ {(10, 5), (5, 10), (2, 25)}.
We increased patience P as we reduced the number
of candidates (m = 10⇒ P = 1,m = 5⇒ P =
2, and m = 2 ⇒ P = 4) in order to ensure that
the search did not end prematurely. We observed
that changing l led to only marginal difference in
performance and found l = 1 to be most effective.
We set m = 5, n = 10, and P = 2 in our experi-
ments. We found that when using m = 10, n = 5
we explored several edited candidates for the same
base instruction but ran the search for fewer itera-
tions which turned out to be less effective. How-
ever, exploring too few candidates m = 2, n = 25
was also not effective as we often proceeded to the
next iteration with sub-optimal edits. We did not
explore the choice of edit operations and used all 4
possible edits sampled randomly in order to ensure
that our candidates were as diverse as possible.

B Prompt Template vs Instructions

The terminology used in this paper differs slightly
from Mishra et al. (2022a). The term ‘instructions’
in our work corresponds to their term ‘definition’.
Additionally, to keep the prompt templates used in
this work compatible with theirs, we still use the
word ‘definition’ in the prompt template instead
of ‘instruction’. This is also consistent with the
schema in NATURAL-INSTRUCTIONS. Prompts in
Fig. 1 and 2 are for representative purposes and to
facilitate the understanding of the readers.

The above choices between ‘definition’ and ‘in-
struction’ is only one example of possible template-
level changes. In principle, we can use any word
or prefix before the actual instructions, examples
and test instances. For example, for the prompt
shown in Fig. 2, we can replace Instruction
with Definition, Input with Sentence,
Output with Label, etc. Each of these changes
will result in a new prompt template. While these
changes are subtle, empirically Zhao et al. (2021)
show that models are sensitive to such changes.
Since our objective is to explore better ways of
leveraging instructions, we keep these template
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Algorithm 2 GRIPS with Beam Search
1: base← {init} ▷ Set with B elements
2: sbase ← {score(init)} ▷ Set with B elements
3: Ω← {del,swap,par,add}
4: ρ← P
5: for i = 1, · · · , n do
6: for b = 1, · · · , B do
7: for j = 1, · · · ,m do
8: Sample e1, · · · , el ∈ Ω
9: Cb[j]← edit(base[b], e1 ◦ · · · ◦ el)

10: sb[j]← score(Cb[j])
11: end for
12: end for
13: C ← {C1; · · · ; CB ; base} ▷ Concatenate candidates
14: s← {s1; · · · ; sB ; sbase} ▷ Concatenate scores
15: {kb}Bb=1 ← argmaxj s[j] ▷ Find top-B scores
16: best← {C[k1], · · · , C[kB ]}
17: sbest ← {s[k1], · · · , s[kB ]}
18: if best ̸= base then ▷ Comparing two sets
19: base← best
20: sbase ← sbest
21: ρ← P
22: else
23: if ρ > 0 then
24: decrement ρ
25: continue
26: else
27: k ← argmaxj sbase[j]
28: return base[k] ▷ Early Stop
29: end if
30: end if
31: end for
32: k ← argmaxj sbase[j]
33: return base[k] ▷ Terminate with highest score candidate

words unchanged in all our experiments so that the
comparison of different searched instructions can
be fair. Specifically, when applying GRIPS, we
extract the instruction from the prompt, then con-
duct the search only on the instruction, and finally
insert the edited instructions back into the prompt
for scoring (all of which use the same template).
Note that due to this design, GRIPS can also work
across different templates, and even apply directly
to the whole prompt, including the template words.

C Extensions and Variations of GRIPS

Greedy and Beam Search. The full-pseudo code
of GRIPS is shown in Algorithm 1 where we use
greedy search. The beam search modification is
described in Algorithm 2. We start with only one
base instruction (which is the initial task-specific or
agnostic instruction). In the next step we explore
edits for each base candidate and build a corre-
sponding candidate set (with scores). At the end of
the iteration, we take theB most promising or high-
est scoring path and proceed to the next iteration,
effectively pruning the rest. When the search termi-
nates, we find the best candidate from the filtered

Algorithm 3 GRIPS with Simulated Annealing
1: base← init
2: sbase ← score(base)
3: Ω← {del,swap,par,add}
4: ρ← P
5: for i = 1, · · · , n do
6: for j = 1, · · · ,m do
7: Sample e1, · · · , el ∈ Ω
8: C[j]← edit(e1, · · · , el)
9: s[j]← score(C[j])

10: end for
11: k ← argmaxj S[j]
12: best← C[k]
13: sbest ← s[k]
14: if sbest > sbase then
15: base← best
16: sbase ← sbest
17: ρ← P
18: else
19: if ρ > 0 then ▷ Added simulated annealing

20: λ← exp

(
sbest−sbase

Tmax×e−i/D

)

21: Sample α ∼ Bernoulli(λ)
22: if α then
23: base← best
24: sbase ← sbest
25: end if
26: decrement ρ
27: continue
28: else
29: return base
30: end if
31: end if
32: end for
33: return base

(remaining) set of B candidates.

Simulated Annealing. In this version of the
search algorithm (Algorithm 3), GRIPS is modi-
fied such that if during an iteration, a higher scoring
candidate is not found, then the best candidate will
be chosen for the subsequent iteration by sampling
from a Bernoulli distribution. The probability of
success is given by:

λ = exp

(
score− base score
Tmax × e−i/D

)
.

Here, score is the score of the highest scoring can-
didate, base score is the score of the base can-
didate, i is the index of the iteration, D, Tmax
are hyperparameters. This formulation has been
adapted from Pirlot (1996). The key idea behind
simulated annealing is to explore candidates even
if they do not score higher than the base. We ac-
cept worse candidates to allow for a more extensive
search for the global optimal in case we are stuck
at local optima or saddle point. The probability
of exploration is λ and it is directly proportional
to the difference in the scores. That is, candidates

3859



closer in score to the base are likely to be explored
more. The parameter Tmax controls the overall
degree of exploration and D controls the decay in
exploration as the iterations (index i) progress (i.e.
move from exploration to exploitation). On com-
paring Simulated Annealing (Tmax = 10, D = 5)
with greedy search, we find that on average there
is no statistically significant difference in perfor-
mance. In fact, greedy search does slightly better
with average performance of 57.79 vs 57.46 which
is the average performance of simulated anneal-
ing search (on InstructGPT babbage). When we
look closely at the task-level, we observe a mixed
pattern where some tasks benefit from simulated
annealing whereas others do not.

Cross-Entropy Score Function. In §3.2 we
describe our score function that makes use of
BalancedAccuracy. While accuracy assigns a
binary value based on the prediction (max-prob)
and the ground truth, we can alternatively replace
it with (a negative of) weighted cross-entropy
(CE) term that makes use of the prediction dis-
tribution (over all labels). The weights for each
class/label are the same as the ones used in
BalancedAccuracy to re-weight accuracy across
S to count all classes equally. We use a neg-
ative sign along with CE since our algorithms
maximize the score and CE requires minimiza-
tion. We use α = 0.1 as the scales of CE and
BalancedAccuracy are very different. Applying
the aforementioned changes to the score function
yields an average accuracy of 55.08%, an increase
of +1.4 points (c.f. Table 2). This indicates that
performance of GRIPS using greedy search can
be further improved. We find that in this set-
ting we are able to differentiate among candidates
based on small differences in CE, even when using
BalancedAccuracy would have resulted in early
termination of search due to stop criteria. That is,
on average the search runs longer and early stop-
ping is invoked much later. However, this increases
the number of total evaluations and increases the
cost of the search by≈1.5x, resulting in a trade-off.

Edit Operations. Fig. 5 shows the usage of edit
operations for different models to get to the final
searched instructions. We see that the swap, delete
and paraphrase operations are all frequently used.
The frequency of using an add operations is lower,
since it can only be sampled after a delete opera-

Model Pearson’s r p-value

GPT-2 XL 0.94 0.001
InstructGPT babbage 0.75 0.03
InstructGPT curie 0.51 0.20

Table 9: Pearson correlation coefficient between sen-
sitivity of the model on the task and performance im-
provement margin across models.

tion in the past. Nonetheless, the add operation is
used in search runs of roughly 37.5% of the tasks.
Next, we explore alternate choices of paraphrase
and add operations. Instead of using a Pegasus-
based paraphrase model, we replace it with another
T5-based paraphrase model14 and find the accuracy
changes from 53.68% to 53.33% which is a minute
difference. If the add operation is designed to add a
random phrase from the initial instructions instead
of phrases that are previously deleted, the average
accuracy slightly reduces to 53.42% (c.f. Table 2).

D Search Improvements Correlate with
Model Sensitivity to Instructions

We observe that GRIPS works better on some tasks
than others. Here, we seek to understand what fac-
tors might explain this variability. We find that a
model’s sensitivity to different instructions is an
important factor in explaining performance gains
from search. For a given task and model, we define
the model’s instruction sensitivity as the standard
deviation of the scores obtained by each candidate
task instruction in the first iteration of a search.
When this number is larger, the model performance
is more sensitive to changes in the instructions.
Interestingly, in Table 9, we find that instruction
sensitivity of a task correlates strongly (Pearson’s
r > 0.7) with the performance improvement mar-
gin for GPT-2 XL and InstructGPT babbagemod-
els (p < 0.05). However, for the curie engine
the correlation is relatively weaker (r = 0.51) and
not significant at p < 0.05. Overall, we observe
moderate to strong correlation between the sen-
sitivity value and the final improvement, and we
encourage future work to first check the sensitivity
of the task before running the search completely as
an indicator of the effectiveness of our method.

14Model available at: https://huggingface.co/
prithivida/parrot_paraphraser_on_T5
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Instruction-Only Examples-Only Instruction + Examples

Before Manual Rewriting GRIPS Before Searched Before GRIPS
Model + Labels Examples

GPT-2 XL 48.38 47.70 (↑1) 48.12 (↑2) 53.68 (↑4) 51.50 56.00 (↑4) 52.40 54.40 (↑6)
InstructGPT babbage 55.37 55.50 (↑4) 55.37 (↑3) 57.79 (↑7) 55.29 56.25 (↑5) 55.70 57.88 (↑8)
InstructGPT curie 57.25 57.87 (↑3) 55.37 (↑3) 59.37 (↑5) 56.13 57.75 (↑4) 57.65 59.44 (↑6)

Table 10: Accuracy (%) comparison of manual rewriting of instructions, search over instructions (GRIPS) with
Instruction-Only prompts, search over Examples-Only prompts (§5.2), and GRIPS with Instruction + Examples
prompts (§5.8). In brackets we show the number of tasks (out of 8) that see a positive improvement in performance.
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Figure 5: Number of times the edit operations (delete, swap, paraphrase, and add) were used across tasks in a typical
search run, shown for different models.

E Details on Gradient-free Methods

E.1 Manual Rewriting

Mishra et al. (2022b) propose five broad sugges-
tions to rewrite instructions described below:
1. Specialized-Reframing: replacing generic, re-

dundant text and describe the low-level task
2. Pattern-Reframing: removing abstract details
3. Itemized-Reframing: split paragraphs into bul-

leted lists and rewriting negative sentences
(phrases like do not X) as semantically equiva-
lent positive instances (like do Y instead)

4. Decomposition-Reframing: break down tasks
with multi-step reasoning into simpler tasks

5. Restraining-Reframing: re-emphasizing con-
straints on output (label space for classification)

In lieu of final rewritten instructions for our se-
lected tasks, the rewriting process was done by
the first three authors, after carefully studying the
guidelines in the paper, in an iterative manner. The
first iteration involved identifying all the sugges-
tions (among 1-4) that could be applied to the in-
structions for each task. In the second iteration,
changes to the instructions were suggested based
on the guidelines. These changes were then re-
viewed by the other authors. Disagreements were
resolved through detailed discussions until a con-

sensus was reached in the third iteration. Sugges-
tion 5 is applicable for all tasks by adding an extra
line that mentions the set of possible labels (like
“expected output: A/B” where A and B are
the task labels) after the input portion of every
data point. This was straightforward and did not
require extensive discussions. The entire process
was dedicated nearly 5 hours of manual effort.

We found that in addition to suggestion 5, sug-
gestions 1 and 2 could be applied to all our task
instructions. We made references to the low-level
patterns of the task and fixed grammatical errors,
e.g., matching the capitalization of specific key
words that are both used in the instruction and the
input-output example pair. Most of our discus-
sions were focused on resolving disagreements in
rephrasing abstract or vague phrases used in the in-
struction. Within suggestion 3, replacing negative
phrases with equivalent positive phrases was more
common that itemization. The latter was only use-
ful for Task 019 for which the original instruction
was exceptionally long. We did not feel the need
to decompose any task and use suggestion 4.

Unlike Mishra et al. (2022b), we find that includ-
ing an extra sentence in the prompt to reiterate the
label space (suggestion 5) indicated as Labels in
Table 10) can hurt performance for InstructGPT
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Figure 6: Task-wise comparison of our GRIPS search over instructions (dotted) with search over exemplar prompts
(dashed) across model for the same data and computational budget.

models. The reverse is true for GPT-2 XL, where
there is some performance gain. This might be
because Mishra et al. (2022b) view classification
as a generation task whereas we directly calculate
probabilities of the label tokens using the LM.

E.2 Example Search

Fig. 6 shows the task-level comparison of perfor-
mance of the two search paradigms described in
§5.2. For most tasks on GPT-2 XL, the perfor-
mance of the searched Example-Only prompt is
superior to the searched Instruction-Only prompt
(also reflected in Tables 3 and 10). On an aver-
age, for InstructGPT models, purely instructional
(or Instruction-Only) prompts searched through
GRIPS outperform the searched Example-Only
prompts (based on margin of improvement). How-
ever, there is a lot of variability across tasks, more
so in the case of InstructGPT curie.

F Task Agnostic Instructions

In Table 11, we compare task-specific and task-
agnostic instructions. As mentioned in §5.4, task-
specific instructions are sampled directly from
the NATURAL-INSTRUCTIONS dataset. For task-
agnostic instructions, we follow the template “You
will be given a task. Read and understand the
task carefully, and appropriately answer [list
of labels].” These instructions describe the
possible labels but do not contain any other mean-
ingful information about the task. Given, that in
§5.4 we work with Instruction-Only prompts, for
task-agnostic instructions no additional informa-
tion is provided to model about how to complete
the task and when to output each label. The list of
labels for each task is mentioned in Table 8. This
means that tasks sharing the same label space corre-

spond to the same task-agnostic instruction (shown
in Table 11), even if the tasks are entirely different.

G Instructions after GRIPS

Tables 12, and 13 contain the original and searched
instructions for the all the tasks not discussed in
§5.7. Manual observation and comparison reveals
that the searched instructions are often semantically
incoherent or confusing. Furthermore, for several
tasks (069, 137 and 139), search using GPT-2 XL
terminates without finding a better candidate for
instruction and the original instruction is returned.
This happens if the edited candidates do not im-
prove the score over the base and the search runs
out of patience. We observe that 68.5% of the
searched instructions are shorter than the original,
and 87.5% of them contain some label information
pertinent to the task.
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Task ID Task-Specific Instructions Task-Agnostic Instructions

019 Indicate with ‘Yes‘ if the given question involves the provided reasoning
‘Category‘. Indicate with ‘No‘, otherwise. We define five categories · · ·

You will be given a task. Read and understand the task carefully, and
appropriately answer ‘Yes’ or ‘No’.

021 A question that is free of any grammatical or logical errors, should be
labeled ‘yes’, otherwise it should be indicated as ‘no’. A question is
grammatically correct if all its entities i.e. nouns, verbs, adjectives,
prepositions, pronouns, adverbs are at appropriate position. A question
is logically correct if the semantic makes sense.

You will be given a task. Read and understand the task carefully, and
appropriately answer ‘yes’ or ‘no’.

022 Read the given context and if the the context is inappropriate (e.g.,
pornographic) or nonsensical (e.g., cannot determine what happenings
the context is about), indicate via "yes". Otherwise, respond via "no"

You will be given a task. Read and understand the task carefully, and
appropriately answer ‘yes’ or ‘no’.

050 You are given a sentence and a question in the input. If information
provided in the sentence is enough to answer the question, label "Yes",
otherwise label "No".Things to avoid: Do not use any facts other than
those provided in the sentence while labeling "Yes" or "No" . Emphasis
& Caution: There are only 2 types of valid responses: Yes and No.

You will be given a task. Read and understand the task carefully, and
appropriately answer ‘Yes’ or ‘No’.

069 In this task, you will be shown a short story with a beginning, two
potential middles, and an ending. Your job is to choose the middle
statement that makes the story coherent / plausible by indicating 1 or 2
in the output. If both sentences are plausible, pick the one that makes
most sense.

You will be given a task. Read and understand the task carefully, and
appropriately answer ‘1’ or ‘2’.

137 Given a prompt and two completions from a language model, select the
completion that is the least toxic with respect to continuing the prompt.
Toxicity is defined as a rude, disrespectful, or unreasonable statement
that is likely to make you leave a discussion. Generate either Completion
A or Completion B.

You will be given a task. Read and understand the task carefully, and
appropriately answer ‘Completion A’ or ‘Completion B’.

139 Given a prompt and two completions from a language model, select the
completion that is more topical with respect to continuing the prompt.
A prompt-completion pair is defined to be topical if the completion
maintains relevance and logical succession (i.e. stays on topic) with
the prompt. The flow from the prompt to the completion should be as
reasonable as possible. Generate either Completion A or Completion B.

You will be given a task. Read and understand the task carefully, and
appropriately answer ‘Completion A’ or ‘Completion B’.

195 In this task, you are given a text from tweets. Your task is to classify
given tweet text into two categories: 1) positive, and 2) negative based
on its content.

You will be given a task. Read and understand the task carefully, and
appropriately answer ‘positive’ or ‘negative’.

Table 11: Examples of task-specific and task-agnostic instructions for each task. We do not show the entire
instruction for Task 019 for brevity (refer to ‘original instruction’ Table 13 for the complete version).

Task ID Model After Search Instructions

069

Original In this task, you will be shown a short story with a beginning, two potential middles, and an ending. Your job is to choose the
middle statement that makes the story coherent / plausible by indicating 1 or 2 in the output. If both sentences are plausible,
pick the one that makes most sense.

GPT-2 XL Returned Original

InstructGPT babbage This task is being done, You will be shown a short story with a beginning, two potential middles, and an ending . Your job is
important to you If you want the story to be plausible, you should choose the middle statement that indicates 1 or 2 . If both
sentences are plausible, pick the one that makes most sense.

InstructGPT curie , you will be shown a short story with a beginning, two potential middles, and an ending . is to choose the middle statement
that makes the story coherent / plausible by indicating 1 or 2 in the output . If both sentences are plausible, pick the one that
makes most sense.

139

Original Given a prompt and two completions from a language model, select the completion that is more topical with respect to
continuing the prompt. A prompt-completion pair is defined to be topical if the completion maintains relevance and logical
succession (i.e. stays on topic) with the prompt. The flow from the prompt to the completion should be as reasonable as
possible. Generate either Completion A or Completion B.

GPT-2 XL Returned Original

InstructGPT babbage , select the completion that is more topical with respect to continuing the prompt . A prompt-completion pair Will be made .
select the completion that is more topical with respect to continuing the prompt . The flow from the prompt to the completion
should be as reasonable as possible . should be as reasonable as possible Will be made.

InstructGPT curie Given a prompt and two completions from a language model, select the completion that is more topical with respect to
continuing the prompt . The pair is prompt-completion is defined to be topical if the completion maintains relevance and
logical succession (i.e . The pair is prompt-completion . The flow should be as reasonable as possible . Generate either
Completion or Completion B.

Table 12: Examples of searched instructions of Tasks 069, and 139 for different models.
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Task ID Model After Search Instructions

019

Original Indicate with ‘Yes‘ if the given question involves the provided reasoning ‘Category‘. Indicate with ‘No‘, otherwise. We define
five categories of temporal reasoning. First: "event duration" which is defined as the understanding of how long events last.
For example, "brushing teeth", usually takes few minutes. Second: "transient v. stationary" events. This category is based
on the understanding of whether an event will change over time or not. For example, the sentence "he was born in the U.S."
contains a stationary event since it will last forever; however, "he is hungry" contains a transient event since it will remain true
for a short period of time. Third: "event ordering" which is the understanding of how events are usually ordered in nature. For
example, "earning money" usually comes before "spending money". Fourth one is "absolute timepoint". This category deals
with the understanding of when events usually happen. For example, "going to school" usually happens during the day (not at
2 A.M). The last category is "frequency" which refers to how often an event is likely to be repeated. For example, "taking
showers" typically occurs 5 times a week, "going to saturday market" usually happens every few weeks/months, etc.

GPT-2 XL going to school . Indicate with ‘ No ‘, otherwise . We define five categories of temporal reasoning . First: "event duration"
which is defined as the understanding of how long events last . For example, "brushing teeth", takes few minutes . Second:
"transient v. stationary" events . This category is based on the understanding of whether an event will change over time or not
. For example, the sentence "he was born in the U.S." contains a stationary event since it will last forever; however, "he is
hungry" contains a transient event since it will remain true for a short period of time . Third: "event ordering" which is the
understanding of how events are ordered in nature . For example, "earning money" comes before "spending money". Fourth
one is "absolute timepoint". This category deals with the understanding of when events happen . For example, "going to
school" happens during the day (not at 2 A.M). The last category is "frequency" which refers to how often an event is likely to
be repeated . For example, "taking showers usually" typically occurs 5 times a week, "going to saturday market" happens
every few weeks/months, etc.

InstructGPT babbage Indicate with ‘ Yes ‘ if the given question involves the provided reasoning ‘ Category ‘ . Indicate with ‘ No ‘, otherwise .
We define five categories of temporal reasoning . First: "event duration" which is defined as the understanding of how long
events last . For example, "First", takes few minutes . Second: "transient v. stationary" events . This is a category is based
on the understanding of whether an event will change over time or not . For example, He was born in the US define five
categories of temporal reasoning a stationary event since it will last forever; however, "he Is hungry" define five categories of
temporal reasoning a transient event since it will remain true for a short period of time . Third: "event ordering" which is the
understanding of how events are ordered in nature . For example, "earning money" comes before "spending money". Fourth
one is "absolute timepoint". This is a category deals with the understanding of when events happen . For example, "going to
school" happens during the day (not at 2 A.M). The last category is "frequency" which refers to how often an event is likely to
be repeated . For example, "taking showers" typically occurs 5 times a week, "going to saturday market" a week.

Instruct GPT curie Indicate with ‘ Yes ‘ if the given question involves the provided reasoning ‘ Category ‘ . Indicate with ‘ No ‘, otherwise . We
define five categories of temporal reasoning . First: "event duration" which is defined as the understanding of how long events
last . For example, "brushing teeth", usually takes few minutes . Second: "transient v. stationary" events . This category
is based on the understanding of whether an event will change over time or not . For example, the sentence "he was born
in the U.S." contains a stationary event since it will last forever; however, "he is hungry" contains a transient event since it
will remain true for a short period of time . Third: "event ordering" which is the understanding of how events are usually
ordered in nature . For example, "earning money" usually comes before "spending money". Fourth one is "absolute timepoint".
This category deals with the understanding of when events usually happen . For example, "going to school" usually happens
during the day (not at 2 A.M). is "frequency" which refers to how often an event is likely to be repeated . For example, "taking
showers" typically occurs 5 times a week, "going to saturday market" usually happens every few weeks/months, etc.

022

Original Read the given context and if the the context is inappropriate (e.g., pornographic) or nonsensical (e.g., cannot determine what
happenings the context is about), indicate via "yes". Otherwise, respond via "no"

GPT-2 XL Read the given context and if the the context is inappropriate (e.g., pornographic) or nonsensical (e.g., Can’t decide what the
context is about, indicate via "yes". Otherwise, respond via "no".

InstructGPT babbage Read the given context and e.g., pornographic) or nonsensical (e.g . (e.g., pornographic) or nonsensical (e.g., cannot determine
what happenings the context is about), indicate via "yes". Otherwise, respond via "no".

Instruct GPT curie Read the given context and indicate via "yes (e.g., pornographic) or nonsensical (e.g., cannot determine what happenings the
context is about), indicate via "yes". Otherwise, respond via "no".

050

Original You are given a sentence and a question in the input. If information provided in the sentence is enough to answer the question,
label "Yes", otherwise label "No".Things to avoid: Do not use any facts other than those provided in the sentence while
labeling "Yes" or "No" . Emphasis & Caution: There are only 2 types of valid responses: Yes and No.

GPT-2 XL You are given a sentence and a question are given a sentence and a question . If information provided in the sentence is enough
to answer the question, Do not use any facts other than those provided in the sentence while labeling "Yes" or "No" otherwise
label "No". Things to avoid: Do not use any facts other than those provided in the sentence while labeling "Yes" or "No".
Emphasis & Caution: There are only 2 types of valid responses: Yes and No.

InstructGPT babbage You are given a sentence and a question in the input . If information provided in the sentence is enough to answer the question,
label "Yes", otherwise label "No". Things to avoid: Do not use any facts other than those provided in the sentence while
labeling "Yes" or "No". Emphasis & Caution: There.

InstructGPT curie You are given a sentence and a question in the input . If information provided in the sentence is enough to answer the question,
otherwise label "No". Things Things happen to avoid: Do not use any facts other than those provided in the sentence while
labeling "Yes" or "No". Emphasis & Caution: There are only 2 types of valid responses: Yes and No.

Table 13: Examples of searched instructions of Tasks 019, 022, and 050 for different models.
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Abstract

Recently, there has been a growing interest
in designing text generation systems from a
discourse coherence perspective, e.g., mod-
eling the interdependence between sentences.
Still, recent BERT-based evaluation metrics
are weak in recognizing coherence, and thus
are not reliable in a way to spot the discourse-
level improvements of those text generation sys-
tems. In this work, we introduce DiscoScore,
a parametrized discourse metric, which uses
BERT to model discourse coherence from dif-
ferent perspectives, driven by Centering theory.
Our experiments encompass 16 non-discourse
and discourse metrics, including DiscoScore
and popular coherence models, evaluated on
summarization and document-level machine
translation (MT). We find that (i) the majority
of BERT-based metrics correlate much worse
with human rated coherence than early dis-
course metrics, invented a decade ago; (ii)
the recent state-of-the-art BARTScore is weak
when operated at system level—which is par-
ticularly problematic as systems are typically
compared in this manner. DiscoScore, in con-
trast, achieves strong system-level correlation
with human ratings, not only in coherence but
also in factual consistency and other aspects,
and surpasses BARTScore by over 10 correla-
tion points on average. Further, aiming to un-
derstand DiscoScore, we provide justifications
to the importance of discourse coherence for
evaluation metrics, and explain the superiority
of one variant over another. Our code is avail-
able at https://github.com/AIPHES/
DiscoScore.

1 Introduction

In discourse, coherence refers to the continuity of
semantics in text. Often, discourse relations and
lexical cohesion devices, such as repetition and
coreference, are employed to connect text spans,
aiming to ensure text coherence. Popular theories
in the linguistics community on discourse were pro-

vided by Grosz et al. (1995) and Mann and Thomp-
son (1988). They formulate coherence through the
lens of readers’ focus of attention, and rhetorical
discourse structures over sentences. Later on, co-
herence models as computational approaches of
these theories emerged to judge text coherence in
discourse tasks such as sentence ordering and es-
say scoring (Barzilay and Lapata, 2008; Lin et al.,
2011; Guinaudeau and Strube, 2013).

While humans also often use text planning at
discourse level prior to writing and speaking, up
until recently, the majority of natural language gen-
eration (NLG) systems, be it text summarization
or document-level MT, has performed sequential
word prediction without considering text coherence.
For instance, MT systems mostly do not model the
interdependence between sentences and translate a
document at sentence level, and thus produce many
incoherent elements such as coreference mistakes
in system outputs (Maruf et al., 2021). Only more
recently has there been a surge of interest towards
discourse based summarization and MT systems,
aiming to model inter-sentence context, with a fo-
cus on pronominal anaphora (Voita et al., 2018;
Liu et al., 2021) and discouse relations (Miculicich
et al., 2018; Xu et al., 2020).

However, there appears a mismatch between dis-
course based NLG systems and non-discourse NLG
evaluation metrics such as MoverScore (Zhao et al.,
2019) and BERTScore (Zhang et al., 2020) which
have recently become popular for MT and sum-
marization evaluation. As these metrics base their
judgment on semantic similarity (and lexical over-
lap (Kaster et al., 2021)) between hypotheses and
references—which by design does not target text
coherence—it is not surprising that they do not
correlate well with human rated coherence (Fabbri
et al., 2021; Yuan et al., 2021; Sai et al., 2021). Re-
cently, BARTScore (Yuan et al., 2021) receives
increasingly attention, which uses sequence-to-
sequence language models to measure the likeli-

3865

www.h-its.org/research/nlp/
nl2g.github.io
https://github.com/AIPHES/DiscoScore
https://github.com/AIPHES/DiscoScore


Chelsea have made an offer for FC Tokyo forward Yoshinori Muto. The 22-
year-old will join Chelsea 's Dutch partner club Vitesse Arnhem on loan 
next season if he completes a move to Stamford Bridge. Chelsea signed a 
£200million sponsorship deal with Japanese company Yokohama Rubber 
in February.

Hypothesis

Naoki Ogane says that Chelsea have made an offer for Yoshinori Muto. 
The 22-year-old forward has one goal in 11 games for Japan. Muto admits 
that it is an 'honour' to receive an offer from the Blues. Chelsea have 
signed a £200m sponsorship deal with Yokohama Rubber. Muto graduated 
from university with an economics degree two weeks ago. He would 
become the first Japanese player to sign for Chelsea.

Reference

t1 t2 t3 t4 t5 ...
Chelsea 1 0 0 0 0 1
offer 0 0 0 0 1 0
...

...
...

...
...

...
...

(a) FocusDiff

s1 s2 s3
s1 0 1 0.5
s2 0 0 1
s3 0 0 0

(b) SentGraph

Figure 1: Sample hypothesis and reference from SUM-
MEval. Each focus1is marked in a different color, cor-
responding to multiple tokens as instances of a focus.
Foci shared in Hypothesis and Reference are marked in
the same color. (a)+(b) are adjacency matrices used to
model focus-based coherence for Hypothesis; for sim-
plicity, adjacency matrices for Reference are omitted.
FocusDiff and SentGraph are the variants of DiscoScore.
For FocusDiff, we use (a) to depict the relations be-
tween foci and tokens, reflecting focus frequency. For
SentGraph, we use (b) to depict the interdependence be-
tween sentences according to the number of foci shared
between sentences and the distance between sentences.

hood that hypothesis and reference are paraphrases,
and that cannot contrast text pairs at discourse level.

In this work, we fill the gap of missing discourse
metrics in MT and summarization evaluation, par-
ticularly in reference-based evaluation scenarios.
We introduce DiscoScore, a parametrized discourse
metric, which uses BERT to model discourse co-
herence through the lens of readers’ focus, driven
by Centering theory (Grosz et al., 1995). The Dis-
coScore variants can be distinguished in how we
use focus—see Figure 1: (i) we model focus fre-
quency and semantics, and compare their differ-
ence between hypothesis and reference and (ii) we
use focus transitions to model the interdependence
between sentences. Building upon this, we present
a simple graph-based approach to compare hypoth-
esis with reference.

We compare DiscoScore with a range of base-
lines, including discourse and non-discourse met-

1The formal definition of focusing in discourse is given
on two levels (Grosz et al., 1977): (i) readers are said to be
globally focusing on a set of entities relevant to the overall
discourse, and (ii) readers focus on a particular entity that an
utterance locally concerns most. Section 3 elaborates on focus
as a key ingredient of DiscoScore.

rics, and coherence models on summarization and
document-level MT datasets. Our contributions
and findings are summarized as follows:

• Recent BERT-based metrics and the state-of-
the-art BARTScore (Yuan et al., 2021) are all
weak in system-level correlation with human
ratings, not only in coherence but also in other
aspects such as factual consistency. Most of
them are even worse than very early discourse
metrics, RC and LC (Wong and Kit, 2012)—
which require neither source texts nor refer-
ences and use discourse features to predict
hypothesis coherence.

• DiscoScore strongly correlates with human
rated coherence and many other aspects, over
10 points (on average across aspects) better
than BARTScore and two strong baselines RC
and LC in the single and multi-references set-
tings. This indicates that either leveraging
contextualized encoders or finding discourse
features is not sufficient, suggesting to com-
bine both as DiscoScore does.

• We demonstrate the importance of including
discourse signals in the assessment of system
outputs, as the discourse features derived from
DiscoScore can strongly separate hypothesis
from reference. Further, we show that the
more discriminative these features are, the
better the metrics perform, which allows for
interpreting the performance gaps between the
variants of DisoScore.

• We investigate two focus choices popular in
the discourse community, i.e., noun (Elsner
and Charniak, 2011) and semantic entity (Mes-
gar and Strube, 2016). Our results show that
entity as focus is not always helpful, but when
it helps, the gain is big.

2 Related work

Evaluation Metrics. Traditional metrics such as
BLEU (Papineni et al., 2002) and ROUGE (Lin,
2004) measure lexical n-gram overlap between a
hypothesis and a human reference. As they fail
to measure semantic similarity in the absence of
lexical overlap, several metrics have been proposed
to overcome this issue, which carry out soft lexical
matching with static word embeddings (Ng and
Abrecht, 2015) and synonym matching (Lavie and
Agarwal, 2007). However, none of those metrics

3866



can properly judge text coherence (Kryscinski et al.,
2019; Zhu and Bhat, 2020).

Recently, a class of novel metrics based on
BERT (Devlin et al., 2019) has received a surge
of attention, as they correlate strongly with human
judgment of text quality in both reference-based
and reference-free scenarios (Zhao et al., 2019;
Zhang et al., 2020; Sellam et al., 2020; Rei et al.,
2020; Gao et al., 2020; Thompson and Post, 2020;
Zhao et al., 2020; Pu et al., 2021; Chen et al., 2021).
While strong at sentence-level, these metrics are
weak in recognizing coherence in inter-sentence
contexts (just like BLEU and ROUGE), as BERT
and the majority of BERT variants2 that these met-
rics build on only capture discourse phenomena to a
certain extent (Koto et al., 2021; Laban et al., 2021;
Beyer et al., 2021). Thus, they are not suitable
for evaluating long texts as in document-level MT
evaluation. Works that either (i) average sentence-
level evaluation scores as document score or (ii)
assign a score to the concatenation of sentences
within a document (Xiong et al., 2019; Liu et al.,
2020; Saunders et al., 2020) do not factor interde-
pendence between sentences into a document score,
e.g., do not explicitly punish incoherent elements,
thus are also inadequate.

Several attempts have been made towards dis-
course metrics in MT evaluation. Wong and Kit
(2012); Gong et al. (2015); Cartoni et al. (2018)
use the frequency of lexical cohesion devices (e.g.,
word repetition) over sentences to predict coher-
ence of hypothesis translations, while Guzmán et al.
(2014) and Joty et al. (2017) suggest to compare the
difference of rhetorical structures between hypothe-
sis and reference translations. Recently, Jiang et al.
(2021) measure the inconsistency between hypoth-
esis and reference translations in several aspects
such as verb tense and named entities. However,
these metrics do not leverage strong contextualized
encoders, as has been shown to be a key ingre-
dient for recent success of BERT-based metrics.
Most recently, BARTScore (Yuan et al., 2021) uses
sequence-to-sequence pretrained language models
such as BART (Lewis et al., 2020) to measure how
likely hypothesis and reference are paraphrased ac-
cording to the probability of one given the other.
While BARTScore constitutes the recent state-of-
the-art in sentence-level correlation with human
ratings in several aspects (incl. discourse), we find

2Recently, several discourse BERT variants such as Con-
pono (Iter et al., 2020) have been proposed, but they are not
always helpful for evaluation metrics—see Table 2 (appendix).

that (i) it performs still poorly at system level—
which is particularly problematic as systems are
typically compared in this manner. (ii) As based
on a ‘blackbox’ language model, it cannot offer
insights towards how it models coherence and what
discourse phenomena it does (not) capture.

Coherence Models. In discourse, there have
been many computational models (Barzilay and
Lapata, 2008; Guinaudeau and Strube, 2013; Pitler
and Nenkova, 2008; Lin et al., 2011) for text co-
herence assessment, the majority of which differ
in regularities that they use to distinguish coherent
from incoherent text, driven by different linguistic
theories, v.i.z., a pattern of (i) focus transitions in
adjacent sentences (Grosz et al., 1995) and (ii) text
organization regarding discourse relations over sen-
tences (Mann and Thompson, 1988). For instance,
Barzilay and Lapata (2008) and Guinaudeau and
Strube (2013) use the distribution of entity tran-
sitions over sentences to predict text coherence,
while Pitler and Nenkova (2008) and Lin et al.
(2011) suggest to produce discourse relations over
sentences with a discourse parser, showing that the
relations are indicative of text coherence. In the
last few years, neural coherence models have been
explored. Popular examples are Tien Nguyen and
Joty (2017), Mesgar and Strube (2018) and Moon
et al. (2019). As they and the recent state-of-the-
art (Mesgar et al., 2021) all have been trained on
text readability datasets, with readability labels as
supervision, they may suffer issues of domain shift
when applied to MT and summarization evaluation.
More importantly, they judge hypothesis coherence
in the absence of reference, thus are not sufficient
for reference-based evaluation. Our experiments in-
volve two popular, unsupervised coherence models,
entity graph (Guinaudeau and Strube, 2013) and
lexical graph (Mesgar and Strube, 2016) treated as
discourse metrics with the advantages on robust-
ness (Lai and Tetreault, 2018).

Discourse Test Sets. Apart from evaluation met-
rics, there have been several discourse-focused test
sets proposed to compare NLG systems, most of
which have been studied in MT evaluation. For
instance, the DiscoMT15 shared task (Hardmeier
et al., 2015) compares MT systems, not based on
translation adequacy but on the accuracy of pro-
noun translation for English-to-French, i.e., count-
ing the number of correctly translated pronouns,
given the annotated ones in reference. Bawden
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et al. (2018) extend this by labeling both anaphoric
pronouns and lexical cohesion devices on test
sets, while Voita et al. (2018) construct English-
to-Russian test sets focusing on deixis, ellipsis and
lexical cohesion. Guillou et al. (2018); Lopes et al.
(2020) construct English-to-German and English-
to-French test sets targeting pronouns. While reli-
able, these test sets involve costly manual annota-
tion, thus are limited to few language pairs.

In this work, we introduce DiscoScore to judge
system outputs, which uses BERT to model read-
ers’ focus within hypothesis and reference, and
thus clearly outlines the discourse phenomena be-
ing captured, serving as low-cost alternatives to
discourse test sets for comparing discourse based
NLG systems. More prominently, we derive dis-
course features from DiscoScore, which we use to
understand the importance of discourse for evalua-
tion metrics, and explain why one metric is supe-
rior to another. This parallels recent effort towards
explainability for non-discourse evaluation met-
rics (Kaster et al., 2021; Fomicheva et al., 2021).
Finally, we show that simple features can be indica-
tive of the superiority of a metric, which fosters
research towards finding insightful features with
domain expertise and building upon these insights
to design high-quality metrics.

3 Our Approach

In the following, we elaborate on the two variants
of DiscoScore, FocusDiff and SentGraph, which
we refer to as DS-FOCUS and DS-SENT.

Focus Difference. In discourse, there have been
many corpus-based studies towards modeling fo-
cus transitions over sentences, showing that fo-
cus transition patterns are indicative of text coher-
ence (Barzilay and Lapata, 2008; Guinaudeau and
Strube, 2013). When reading a document, readers
may have multiple focus of attention,

each associated to a group of expressions: (i)
referring expressions such as pronouns and (ii) se-
mantically related elements such as [Berlin, capi-
tal].

Here, we assume two focus based conditions that
a coherent hypothesis should meet in reference-
based evaluation scenarios:

• A large number of focus overlaps between a
hypothesis and a reference.

• Each focus overlap is nearly identical in terms
of semantics and frequency, where frequency

shows how often a focus is mentioned in a
hypothesis or in a reference.

In the following, we present focus modeling to-
wards semantics and frequency, according to which
we compare hypothesis with reference.

For a hypothesis, we introduce a bipartite graph
Ghyp = (V,S,Ahyp), where V and S are two sets
of vertices corresponding to a set of foci and all
tokens (per occurrence a word is a separate token)
within a hypothesis. Let A = {0, 1}n×m be an
adjacency matrix where n and m are the number of
foci and tokens respectively, andAij equals 1 if and
only if the i-th focus associates to the j-th token.
Let Fhyp ∈ Rn×d be a matrix of focus embeddings
and Zhyp ∈ Rm×d be a matrix of contextualized
token embeddings with d as the embedding size.
Similarly, we use notation Gref , Fref and Zref for a
human reference.

We use contextualized encoders such as BERT
to produce token embeddings Zhyp and Zref . We
use a simple approach to model both semantics and
frequency of a focus. That is, we assign per focus v
an embedding by summing token embeddings that
a focus is associated to:

Fhyp
v =

∑

u∈N (v)

Zhyp
u , Fref

v =
∑

u∈N (v)

Zref
u (1)

where N (v) is a set of tokens (e.g., a group of
semantically related expressions) associated with a
focus v. In matrix notation, we rewrite Eq. (1) to
Fhyp = AhypZhyp, similarly for Fref .

Next, we measure the distance between a com-
mon set of foci Ω in a hypothesis and reference pair
based on their embeddings:

DS-FOCUS(hyp, ref) =
1

N

∑

u∈Ω
∥Fhyp

u − Fref
u ∥

(2)
where DS-FOCUS is scaled down by the factor of
N , the number of foci in hypothesis.

Sentence Graph. Few contextualized encoders
can produce high-quality sentence embeddings in
the document context, as they do not model inter-
dependence between sentences. According to Cen-
tering theory (Grosz et al., 1995), two sentences
are marked continuous in meaning when they share
at least one focus, on the one hand; one marks a
meaning shift for two sentences when no focus ap-
pears in common, on the other hand. From this,
one can aggregate sentence embeddings for which
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corresponding sentences are considered continu-
ous. In the following, we present a graph-based
approach to do so.

For a hypothesis3, let Shyp ∈ Rn×d be a matrix
of sentence embeddings with n and d as the number
of sentences and the embedding size. We introduce
a graph Ghyp = (V,Ahyp) where V is a set of sen-
tences and Ahyp is an adjacency matrix weighted
according to the number of foci shared between
sentences and the distance between sentences as
listed below to depict two variants of Ahyp:

• unweighted: Ahyp
ij = 1/(j − i) if the i-th and

the j-th sentences have at least one focus in
common (otherwise 0), where j−i denotes the
distance between two sentences and Ahyp

ij =
0 when j ≤ i.

• weighted: Ahyp
ij = a/(j − i), where a is the

number of foci shared in the i-th and the j-th
sentences, with the same constraints on j and
i as above.

Analyses by Guinaudeau and Strube (2013) indi-
cate that global statistics (e.g., average) over such
adjacency matrices can distinguish incoherent from
coherent text to some degree. Here we depict adja-
cency matrices as a form of sentence connectivity
derived from focus transitions over sentences. We
use them to aggregate sentence embeddings from
hypothesis and from reference:

Ŝhyp = (Ahyp + I)Shyp, Ŝref = (Aref + I)Sref

where I is an identity matrix that adds a self-loop
to a graph so as to include self-embeddings when
updating them.

Next, we derive per graph an embedding with
simple statistics from Ŝhyp and Ŝref , i.e., the con-
catenation of mean-max-min-sum embeddings. Fi-
nally, we compute the cosine similarity between
two graph-level embeddings:

DS-SENT(hyp, ref) = cosine(Ghyp,Gref) (3)

Choice of Focus. In discourse, often four popu-
lar choices are used to describe a focus: (i) a noun
that heads a NP (Barzilay and Lapata, 2008), (ii)
a noun (Elsner and Charniak, 2011), (iii) a coref-
erent entity associated with a set of referring ex-
pressions (Guinaudeau and Strube, 2013) and (iv)

3For simplicity, we omit the notation Sref and Gref for a
reference.

a semantic entity associated with a set of lexical
related words (Mesgar and Strube, 2016).

In this work, we investigate two focus choices:
noun (NN) and semantic entity (Entity). Linguis-
tically speaking, the latter is a lexical cohesion
device in the form of repetition. From this, NN
as focus yields few useful coherence signals but
a lot of noise, while Entity as focus uses ‘signal
compression’ by means of aggregation to produce
better signals. To produce entities, we first extract
all nouns in hypothesis (or reference), and aggre-
gate them into different semantic entities if their
cosine similarities based on Dep2Vec word embed-
dings (Levy and Goldberg, 2014) is greater than a
threshold—assuming that nouns with high similar-
ity refer to the same semantic entity.

4 Experiments

4.1 Evaluation Metrics
In the following, we list all of the evaluation met-
rics, and elaborate on them in Appendix A.1.

Non-discourse Metrics. We consider BLEU (Pa-
pineni et al., 2002), ROUGE (Lin, 2004),
BERTScore (Zhang et al., 2020), Mover-
Score (Zhao et al., 2019), SBERT (Reimers and
Gurevych, 2019), S3-pyr (Peyrard et al., 2017),
BLEURT (Sellam et al., 2020), BARTScore (Yuan
et al., 2021), PRISM (Thompson and Post, 2020).

Discourse Metrics. We consider RC and
LC (Wong and Kit, 2012) and Lexical Chain (Gong
et al., 2015). We consider two coherence models,
EntityGraph (Guinaudeau and Strube, 2013) and
LexicalGraph (Mesgar and Strube, 2016), and treat
them as discourse metrics.

DiscoScore. DS-FOCUS can be parameterized
with two focus choices: noun (NN) or semantic
entity (Entity). DS-SENT can be parameterized not
only with focus, but also with the choices of un-
weighted (-U) and weighted (-W). For DS-FOCUS,
we use Conpono (Iter et al., 2020) that finetuned
BERT with a novel discourse-level objective re-
garding sentence ordering. For DS-SENT, we use
BERT-NLI. This is because we find this configura-
tion performs best after initial trials—see Table 2
(appendix). Figure 5 (appendix) shows all vari-
ants of DiscoScore. Concerning the threshold of
Dep2Vec to produce entities, after experimenting
with several alternatives we set it to 0.8 for DS-
FOCUS (Entity) in all setups, and to 0.8 in summa-
rization and to 0.5 in MT for DS-SENT (Entity).
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4.2 Datasets
We consider two datasets in summarization: Sum-
mEval (Fabbri et al., 2021) and NeR18 (Grusky
et al., 2018), and one dataset in document-level
MT: WMT20 (Mathur et al., 2020). Note that these
datasets consist of hypotheses paired with human-
written references, where hypotheses are machine-
generated texts of varying qualities given by neural
and non-neural, extractive and abstractive language
models. We outline these datasets in Appendix A.2,
and provide data statistics in Table 9 (appendix).

5 Results

We first examine the importance of discourse for
evaluation metrics—which underpins the useful-
ness of discourse metrics, and then benchmark Dis-
coScore on summarization and MT datasets.

Importance of Discourse. DS-FOCUS and DS-
SENT concern the modeling of discourse coher-
ence on two different levels: (i) the occurrences
of foci, and (ii) the interdependence between sen-
tences driven by focus transitions, both reflecting
the discourse characteristics of a text. In the fol-
lowing, we describe these discourse features, and
examine their importance for assessing system out-
puts by contrasting the discourse patterns of hy-
pothesis and reference.

• Focus Frequency, denoted by FREQ(x),
equals the ratio between the total frequencies
of foci and the number of foci in a text x,
where x is hypothesis or reference. We ex-
clude foci occurring only once.

• Sentence Connectivity, denoted by
CONN(x), equals the average of all elements
in adjacency matrix representing the inter-
dependence between sentences in a text x
(hypothesis/reference).

• As in DiscoScore, we consider two focus
choices (NN and Entity) and the choices of
unweighted (-U) and weighted (-W) for these
discourse features. Figure 5 (appendix) shows
the links between DiscoScore and the features.

Figure 2 shows that the scales on FREQ(ref)
and FREQ(hyp) in summarization differ by a large
amount, i.e., from 0.5 to 2.5 on y-axis and up to
6 on x-axis. This means that hypothesis and ref-
erence can be strongly distinguished by FREQ(x),
which underpins the usefulness of including such
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Figure 2: Scatter plot to display FREQ(hyp) (based on
NN) on x-axis and FREQ(ref) on y-axis on SUMMEval.
Each point contains two frequencies from a pair of hy-
pothesis and reference. The points below the auxiliary
line are the ones for which FREQ(hyp) > FREQ(ref).

discourse signals in the assessment of system out-
puts when references are available. Further, the
larger scale on FREQ(hyp) indicates that foci in
hypothesis are more repetitive than in reference, as
a result of needless repetition in poor summaries—
in line with previous studies on incoherent machine
translations (Guillou, 2013; Voita et al., 2019). The
results for other discourse features are similar, we
provide them in Figure 6 (appendix).

Overall, these results show discourse features
can separate hypothesis from reference.

5.1 Text Summarization

Correlation Results. Table 1 compares metrics
on SUMMEval on system level. Most of non-
discourse metrics have a lowest correlation with
human rated coherence among four quality aspects.
Even worse, ROUGE-L and SBERT do not corre-
late with coherence whatsoever. BARTScore, the
recent state-of-the-art metric, is very weak when
operated on system level, notwithstanding that it
has been fine-tuned on “document-to-summary”
parallel data from CNN/DailyMail—which SUM-
MEval is constructed from. We note that SUM-
MEval uses multiple references. BARTScore by
default compares a hypothesis with one refer-
ence at a time, then takes the average of multiple
evaluation scores as a final score. Table 8 (ap-
pendix) shows that we can improve system-level
BARTScore to some degree by replacing ‘average’
with ‘max’ (i.e., taking the maximum score), but
DS-FOCUS is still much better overall, i.e., sur-
passing BARTScore by ca. 10 points on average.

Table 7 (appendix) reports correlation results on
NeR18 that uses single reference. We find that
half of hypotheses do not contain ‘good foci’, and
as such the foci-based discourse features outlined
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Settings Metrics Coherence Consistency Fluency Relevance Average

m(hyp, ref)

Non-discourse metrics

ROUGE-1 9.09 27.27 18.18 9.09 15.91
ROUGE-L 0.00 36.36 21.21 18.18 18.94
BERTScore 30.30 30.30 51.52 54.55 41.67
MoverScore 36.36 42.42 63.64 60.61 50.76
SBERT 3.03 33.33 30.30 27.27 23.48
BLEURT 45.45 51.52 72.73 63.64 58.33
BARTScore 60.61 36.36 45.45 48.48 47.73
PRISM 51.52 39.39 72.73 69.70 58.33
S3-pyr 18.18 24.24 9.09 6.06 14.39

m(hyp)

Discourse metrics

RC 45.45 51.52 54.55 57.58 52.27
LC 51.52 45.45 48.48 57.58 50.76
Entity Graph 42.42 12.12 15.15 18.18 21.97
Lexical Graph 48.48 6.06 15.15 18.18 21.97

m(hyp, ref)

Lexical Chain 42.42 6.06 9.09 18.18 18.94
DS-FOCUS (NN) 75.76 63.64 78.79 81.82 75.00
DS-FOCUS (Entity) 69.70 57.58 72.73 75.76 68.94
DS-SENT-U (NN) 48.48 54.55 63.64 60.61 56.82
DS-SENT-U (Entity) 54.55 60.61 75.76 66.67 64.39
DS-SENT-W (NN) 51.52 51.52 66.67 63.64 58.33
DS-SENT-W (Entity) 51.52 57.58 66.67 63.64 59.85

Table 1: System-level Kendall correlations between metrics and human ratings of summary quality on SUMMEval.
We bold numbers that significantly outperform others according to paired t-test (Fisher et al., 1937). m is a metric.

previously are less discriminative on NeR18 than
on SUMMEval—see Table 9 (appendix). However,
DS-FOCUS is still strong, ca. 20 points better than
BARTScore in all aspects, despite that DS-FOCUS

uses a much smaller contextualized encoder4. We
note that the ‘F-score’ version of DS-FOCUS seems
extremely strong on NeR18, but it is not robust
across datasets, e.g., much worse than the original,
precision-based DS-FOCUS on SUMMEval.

On a side note, coherence (mostly) strongly cor-
relates with the other rating aspects on both SUM-
MEval and NeR18—see Figure 3. Thus, it is not
surprising that both DS-FOCUS and DS-SENT cor-
relate well with these aspects, despite that we have
not targeted them. While strong on system level,
DiscoScore could not show advantages on sum-
mary level—see Table 5 (appendix), but we argue
that system-level correlation deserves the highest
priority as systems are compared in this manner.

Overall, these results show that BERT-based
non-discourse metrics correlate weakly with hu-
man ratings on system level. BARTScore also
does so, though we improve it to some degree
in multi-references settings. DiscoScore, partic-
ularly DS-FOCUS, performs consistently best in
both single- and multi-references settings, and it is

4DS-FOCUS uses Conpono on the same size of BERTBase.
BARTScore uses BARTLarge finetuned on CNN/DailyMail.

equally strong in all aspects.
As for discourse metrics, RC and LC that use dis-

course features are strong baselines as they outper-
form most of non-discourse metrics and coherence
models (i.e., Entity and Lexical Graph) without
the access to source texts and references. How-
ever, they are worse than both DS-FOCUS and DS-
SENT. This confirms the inadequacy of RC and LC
in that they do not leverage strong contextualized
encoders and judge hypothesis in the absence of
references. Moreover, we compare DiscoScore to
a combination of two strong, complementary base-
lines, BARTScore and RC—a simple solution to
address text coherence of non-discourse metrics.
To combine them, we simply average their scores.
We see the gains are additive in all aspects but co-
herence. DS-FOCUS wins all the time by a large
margin—see Table 10 (appendix).

Taken together, these results show that any of
the three—(i) leveraging contextualized encoders
as in BERT-based metrics and BARTScore; (ii)
leveraging discourse features as in RC and (iii)
the ensemble of (i) and (ii) by averaging—is not
sufficient, suggesting to combine (i) and (ii) as
DiscoScore does.

Understanding DiscoScore. As for all variants
of DiscoScore, we provide understanding on why
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Figure 4: Correlations between the results of metrics
and the discriminativeness of features on SUMMEval.
Metric results are averaged across four rating aspects.

one variant is superior to another with the discourse
features outlined in Figure 5 (appendix). To this
end, we begin with defining the discriminativeness
of these features as the magnitude of separating
hypothesis from reference:

DR(hyp, ref) :=
|{(hyp, ref)|R(ref) < R(hyp)}|

N
(4)

where N is a normalization term,R is any one of
the discourse features in Figure 5 (appendix).

Figure 4 shows that the discriminativeness of
these features strongly correlate with the results
of the DiscoScore variants, i.e., that the more dis-
criminative the features are, the better the metrics
perform. This attributes the superiority of a met-
ric to the fact that the discourse feature can better
separate hypothesis and reference.

From this, we can interpret the performance gaps
between the DiscoScore variants, namely (i) DS-
FOCUS over DS-SENT: given Focus Frequency
is more discriminative than Sentence Connectivity,
it is not surprising that DS-FOCUS modeling dis-
course coherence with the former outperforms DS-
SENT modeling with the latter, and (ii) DS-Focus
(NN) outperforms DS-Focus (Entity) because Fre-
quency (NN) can better separate hypothesis from
reference than Frequency (Entity).

Analyses. We provide analyses on the configu-
ration of DiscoScore from three perspectives—see
Appendix A.3: (i) the choice of BERT variants to-
wards discourse- versus non-discourse BERT; (ii)
the impact of adjacency matrices accounting for
the interdependence between sentences and (iii)
that we compare statistics- and alignment-based
approaches to examine the best configuration for
DS-SENT. Our results show the advantages of ad-
jacency matrices and statistics based approach, and
that discourse BERT only helps for DS-FOCUS.

5.2 Document-level Machine Translation

Correlation Results. Table 12 (appendix) com-
pares metrics on WMT20. We see that non-
discourse metrics seem much better, but these re-
sults are not consistent to the discriminativeness of
the discourse features—see Table 11 (appendix).
For instance, in cs-en, the discourse features (Fre-
quency and Connectivity) corresponding to DS-
FOCUS and DS-SENT clearly separate hypothesis
from reference due to the probability of D > 0 be-
ing over 70%. However, both DS-FOCUS and DS-
SENT correlate weakly with human rated adequacy.
Recently, Freitag et al. (2021a) provide justifica-
tion to the inadequacy of the ‘adequacy’ ratings,
as ‘adequacy’ sometimes cannot distinguish hu-
man from system translations and correlates weakly
with multiple aspects (e.g., fluency and accuracy).
Thus, they re-annotate WMT20 with the MQM and
pSQM rating schemes, which has been subsumed
into the annotation guideline of the most recent
WMT evaluation campaign (Freitag et al., 2021b).
Here, we perform an extra study on these ratings
on both document- and system-levels. Note that
system-level ratings are said to be the average of
document-level ones in our setting. Table 6 (ap-
pendix) shows that DS-SENT is much better than
BARTScore on system level, surpassing it by 25
points in terms of MQM and 14 points in pSQM.

Overall, these results in MT are consistent with
those in summarization, i.e., DiscoScore is strong
on system levels for both tasks, but it cannot show
gains on fine-grained levels. Section A.4 (ap-
pendix) show inter-correlations between metrics.

6 Conclusions

Given the recent growth in discourse based NLG
systems, evaluation metrics targeting the assess-
ment of text coherence are essential next steps for
properly tracking the progress of these systems.
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Although there have been several attempts made
towards discourse metrics, they all do not leverage
strong contextualized encoders which have been
held responsible for the recent success story of
NLP. In this work, we introduced DiscoScore that
uses BERT to model discourse coherence from two
perspectives of readers’ focus: (i) frequencies and
semantics of foci and (ii) focus transitions over
sentences used to predict interdependence between
sentences. We find that BERT-based non-discourse
metrics cannot address text coherence, even much
worse than early feature-based discourse metrics
invented a decade ago. We also find that the recent
state-of-the-art BARTScore correlates weakly with
human ratings on system level. DiscoScore, on
the other hand, performs consistently best in both
single- and multi-reference settings, equally strong
in coherence and several other aspects such as fac-
tual consistency, despite that we have not targeted
them. More prominently, we provide understand-
ing on the importance of discourse for evaluation
metrics, and explain the superiority of one met-
ric over another with simple features, in line with
recent work on explainability for evaluation met-
rics (Kaster et al., 2021; Fomicheva et al., 2021).

Scope for future research is huge, e.g., devel-
oping reference-free discourse metrics comparing
source text to hypothesis, improving discourse
metrics on fine-grained levels5, and ranking NLG
systems via discourse metrics and rigorous ap-
proaches (Peyrard et al., 2021; Kocmi et al., 2021).

7 Impact and Limitations

To our knowledge, we, for the first time, combine
the elements of discourse and BERT representa-
tions to design an evaluation metric (DiscoScore)
for text quality assessment in summarization and
MT. While our experiments are conducted on En-
glish datasets, DiscoScore could adapt to many
other languages in which references and foci are
available. We believe that this work fosters fu-
ture research on text generation systems endowed
with the ability to produce well-formed texts in
discourse.

However, we acknowledge several limitations
5Recently, Steen and Markert (2022) introduce a fine-

grained evaluation setup to compute summary-level correla-
tion, which performs computing over summaries not produced
by multiple systems, but rather by a single system. This is be-
cause systems sometimes substantially differ in quality, which
implies that involving multiple systems could result in inac-
curate evaluation outcomes in the presence of system-level
confounders.

of this work, which require further investigation in
future. We now discuss them in the following:

Entity as Focus. We follow the idea of Mes-
gar and Strube (2016) in the discourse community,
which clusters nouns into entities based on their
static word embeddings. Although simple, it some-
times helps for DiscoScore. However, alternatives
aiming to produce better entities have not been
explored in this work, e.g., replacing static with
contextualized embeddings, and weighting entities
by their occurrences in hypothesis/reference.

Weakness on Fine-Grained Assessment. In
summarization and MT, we show that our novel
DiscoScore largely outperforms the current state-
of-the-art BARTScore on system levels for both
tasks, while it cannot show advantages on finer-
grained levels such as document- and summary-
levels. This might be because modeling focus alone
is insufficient to perform much more challenging,
finer-grained assessment of text quality. Future
work could also factor other discourse phenomena
(e.g., discourse connectives and coreference) into
the assessment of text coherence.
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A Appendix

A.1 Evaluation Metrics
Non-discourse Metrics. We consider the follow-
ing non-discourse metrics.

• BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004) are precision- and
recall-oriented metrics respectively, both of
which measure n-gram overlap between a
hypothesis and a reference.

• BERTScore (Zhang et al., 2020) and Mover-
Score (Zhao et al., 2019) are set-based metrics
used to measure the semantic similarity be-
tween hypothesis and reference. BERTScore
uses greedy alignment to compute the simi-
larity between two sets of BERT-based word
embeddings from hypothesis and from refer-
ence, while MoverScore uses optimal align-
ments based on Word Mover’s Distance (Kus-
ner et al., 2015) to do so.

• SBERT (Reimers and Gurevych, 2019) fine-
tunes BERT on the NLI datasets and uses
pooling operations to produce sentence em-
beddings. We compute the cosine similarity
between two sentence representations from
hypothesis and from reference.

• S3-pyr and S3-resp (Peyrard et al., 2017)
are supervised metrics that linearly combine
ROUGE, JS-divergence and ROUGE-WE
scores, trained on the TAC datasets with hu-
man annotated pyramid and responsiveness
scores as supervision.

• BLEURT (Sellam et al., 2020) is another su-
pervised metric that fine-tunes BERT on the
concatenation of WMT datasets and synthetic
data in the MT domain, with human judgment
of translation quality as supervision.

• BARTScore (Yuan et al., 2021) and
PRISM (Thompson and Post, 2020) depict
sequence-to-sequence language models as
metrics to compare hypothesis with reference.
In reference-based settings, they both measure
the likelihood that hypothesis and reference
are paraphrases, but differ in the language
models they rely on. PRISM has been based
on a neural MT system trained from scratch
on parallel data in MT, while BARTScore
uses BART (Yuan et al., 2021) that has been

fine-tuned on CNN/DailyMail (Hermann
et al., 2015)—which is parallel data in
summarization. We use the ‘F-score’ version
of BARTScore as recommended in Yuan et al.
(2021).

Discourse Metrics. We consider the following
discourse metrics (including ours and coherence
models).

• RC and LC (Wong and Kit, 2012) require nei-
ther source texts nor references and use lexi-
cal cohesion devices (e.g., repetition) within a
hypothesis to predict text coherence. LC com-
putes the proportion of words within hypothe-
sis that are lexical cohesion devices, while RC
computes the proportion of times that lexical
cohesion devices appear in hypothesis.

• Entity Graph (Guinaudeau and Strube, 2013)
and Lexical Graph (Mesgar and Strube, 2016)
are popular coherence models used to perform
discourse tasks such as essay scoring, both of
which introduce a graph with nodes as sen-
tences and adjacency matrices as the connec-
tivity between sentences. Here, we use the
average of adjacency matrices from the hy-
pothesis as the proxy of hypothesis coherence.
While Entity Graph draws an edge between
two sentences if both sentences have at least
one noun in common, Lexical Graph draws
an edge if two sentences have a pair of simi-
lar words in common, i.e., the cosine similar-
ity between their embeddings greater than a
threshold.

• Lexical Chain (Gong et al., 2015) extracts
multiple lexical chains from hypothesis and
from reference. Each word is associated to a
lexical chain if a word appears in more than
one sentence. A lexical chain contains a set
of sentence positions in which a word appears.
Finally, the metric performs soft matching to
measure lexical chain overlap between hypoth-
esis and reference.

• FocusDiff and SentGraph are the two variants
of DiscoScore, which use BERT to model se-
mantics and coherence of readers’ focus in
hypothesis and reference. In particular, Focus-
Diff measures the difference between a com-
mon set of foci in hypothesis and reference in
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terms of semantics and frequency, while Sent-
Graph measures the semantic similarity be-
tween two sets of sentence embeddings from
hypothesis and reference—which are aggre-
gated according to the number of foci shared
across sentences and the distance between sen-
tences.

A.2 Datasets
We outline two datasets in summarization, and one
in document-level MT.

Text Summarization. While DUC6 and TAC7

datasets with human rated summaries, constructed
one decade ago, were the standard benchmarks for
comparing evaluation metrics in summmarization,
they collect summaries only from extractive sum-
marization systems. In the last few years, abstrac-
tive systems have become popular; however, little is
known how well metrics judge them. Recently, sev-
eral datasets based on CNN/DailyMail have been
constructed to address this. For instance, Sum-
mEval (Fabbri et al., 2021), REALSumm (Bhan-
dari et al., 2020), XSum (Maynez et al., 2020) and
FEQA (Durmus et al., 2020) all collect summaries
from both extractive and abstractive systems, but
differ in the aspects human experts rate summaries.
In this work, we consider the following two com-
plementary summarization datasets.

• SummEval has been constructed in multiple-
references settings, i.e., that each hypothesis is
associated to multiple references. It contains
human judgments of summary coherence, fac-
tual consistency, fluency and relevance. We
only consider abstractive summaries as they
have little lexical overlap with references.

• NeR18 (Grusky et al., 2018), in contrast, has
been constructed in single-reference settings.
It contains human judgments of summary co-
herence, fluency, informativeness and rele-
vance. As majority of summaries are extrac-
tive, we include both extractive and abstrac-
tive for the inclusive picture.

Document-level Machine Translation. As
document-level human ratings in MT are particu-
larly laborious, hardly ever have there been MT
datasets directly addressing them. First attempts
suggested to use the average of much cheaper

6https://duc.nist.gov/data.html
7https://tac.nist.gov/data/

Metrics Encoders Average

DS-FOCUS (NN)
+ BERT 71.97
+ BERT-NLI 70.45
+ Conpono 75.00

DS-SENT-U (NN)
+ BERT 35.61
+ BERT-NLI 56.82
+ Conpono 23.48

Table 2: Results of three contextualized encoders on
SUMMEval. Results are averaged across four aspects.

Metrics Average

DS-SENT-U (NN) 56.82
w/o sentence aggregation 46.21

Table 3: Ablation study on the use of adjacency matrix
to aggregate sentence embeddings on SUMMEval.

sentence-level ratings as a document score for
comparing document-level metrics (Comelles
et al., 2010; Wong and Kit, 2012; Gong et al.,
2015). However, human experts were asked to rate
sentences in isolation within a document. Thus,
human ratings at both sentence and document
levels cannot reflect inter-sentence coherence.
Recently, the WMT20 workshop (Mathur et al.,
2020) asks humans to rate each sentence translation
in the document context, and follows the previous
idea of ‘average’ to yield document scores.

In this work, we use the WMT20 dataset with ‘ar-
tificial’ document-level ratings. Note that WMT20
comes with two issues: (i) though sentences are
rated in the document context, averaging sentence-
level ratings may zero out negative effects of inco-
herent elements on document level and (ii) unlike
SummEval and NeR18, WMT20 only contains hu-
man judgment of translation adequacy (which may
subsume multiple aspects), not coherence.

For simplicity, we exclude system and reference
translations with lengths greater than 512—the
number of tokens at maximum allowed by BERT,
as only a small portion of instances is over the to-
ken limit. Note that it is effortless to replace BERT
with Longformer (Beltagy et al., 2020) to deal with
longer documents for DiscoScore.

A.3 Analyses on Text Summarization
Choice of BERT Variants. Table 2 compares
the impact of three BERT variants on DiscoScore.
Conpono, referred to as a discourse BERT, has fine-
tuned BERT with a novel discourse-level objective
regarding sentence ordering. While strong on dis-
course evaluation benchmarks (Chen et al., 2019),
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Metrics Mechanisms Average

DS-SENT-U (NN)
+ greedy align 21.97
+ optimal align 26.52
+ mean-max-min-sum 56.82

Table 4: Averaged results of SentGraph variants based
on three mechanisms on SUMMEval.

Metrics SUMMEval NeR18

BARTScore 14.13 24.78
PRISM 14.92 18.89
DS-FOCUS (NN) 10.81 10.42
DS-SENT-U (NN) 15.71 3.81

Table 5: Summary-level averaged Kendall correlations
across all rating aspects.

Conpono is not always helpful, e.g., BERT-NLI is
better for DS-SENT. These results suggest the best
configuration for DiscoScore.

Impact of Sentence Connectivity. Table 3
shows an ablation study on the use of sentence
connectivity. Aggregating sentence embeddings
with our adjacency matrices (see Eq.3) helps con-
siderably. This confirms the usefulness of aggrega-
tion from which we include coherence signals in
sentence embeddings.

SentGraph Variants. Table 4 compares three
DS-SENT variants as to how we measure the dis-
tance between two sets of sentence embeddings
from hypothesis and reference. In particular, we re-
fer to BERTScore (Zhang et al., 2020) as a ‘greedy
align’ mechanism used to compute the similarity
between two sets of sentence embeddings. As for
‘optimal align’, we use MoverScore (Zhao et al.,
2019) to do so. While the two alignments directly
measure the distance between the two sets, the sim-
ple statistics, i.e., mean-max-min-sum, derives a
graph embedding from each set and computes the
cosine similarity between two graph embeddings.
We see that the ‘statistics’ wins by a big margin,
and thus adopt this DS-SENT variant in all setups.

DiscoScore DiscoFeatures

DS-FOCUS (NN)

DS-FOCUS (Entity)

DS-SENT-U (NN)

DS-SENT-U (Entity)

DS-SENT-W (NN)

DS-SENT-W (Entity)

FREQ (NN)

FREQ (Entity)

CONN-U (NN)

CONN-U (Entity)

CONN-W (NN)

CONN-W (Entity)

Figure 5: Links between the DiscoScore variants and
discourse features.

Sys-level Doc-level
Metrics MQM pSQM MQM pSQM

BARTScore 45.57 55.50 34.90 28.96
*DS-FOCUS (NN) 42.12 40.89 19.10 9.98
DS-SENT-U (NN) 70.77 69.74 19.98 14.49

Table 6: Document-level Kendall and system-level Pear-
son correlations between metrics and MQM/pSQM rat-
ings on WMT20 in Chinese-to-English—which is the
only language pair with such ratings in reference-based
settings. *DS-FOCUS (NN) excludes focus that occurs
only once in hypothesis/reference.

A.4 Analyses on MT
Correlation between Metrics. Figure 7 shows
inter-correlations between metrics on WMT20
across languages. Overall, correlations are mostly
high between non-discourse metrics, much weaker
between discourse and non-discourse metrics—
which confirms the orthogonality of them in that
they rate translations in different aspects. We note
that DS-FOCUS has the lowest correlations with
all other metrics. For instance, DS-FOCUS is al-
most orthogonal to BERTScore and MoverScore.
We investigated whether combining them receives
additive gains. We find that a combination of DS-
FOCUS and BERTScore (or MoverScore) provides
little help in correlation with adequacy.
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Settings Metrics Coherence Fluency Informative Relevance Average

m(hyp, ref)

BARTScore 42.58 42.58 23.80 33.33 35.57
PRISM 51.52 42.58 42.86 52.38 47.33
DS-FOCUS (NN) 61.90 61.90 42.86 52.38 54.76
DS-FOCUS* (NN) 80.95 80.95 100.00 90.47 88.09
DS-SENT-U (NN) 14.29 14.29 14.29 23.81 16.67

Table 7: System-level Kendall correlations between metrics and human ratings on NeR18. DS-FOCUS* is the
‘F-score’ version of DS-FOCUS.

Settings Metrics Coherence Consistency Fluency Relevance Average

m(hyp, ref)

BARTScore (max) 78.79 48.48 63.64 72.73 65.91
BARTScore (original) 60.61 36.36 45.45 48.48 47.73

FocusDiff (NN) 75.76 63.64 78.79 81.82 75.00
FocusDiff (Entity) 69.70 57.58 72.73 75.76 68.94
SentGraph-u (NN) 48.48 54.55 63.64 60.61 56.82
SentGraph-u (Entity) 54.55 60.61 75.76 66.67 64.39

Table 8: System-level Kendall correlations between metrics and human ratings on SUMMEval in multi-reference
settings. BARTScore (original) compares a hypothesis with one reference at a time, and takes the average of
evaluation scores as a final score, while BARTScore (max) takes the maximum score.

WMT20
SUMMEval NeR18 cs-en de-en ja-en ru-en

Number of references 11 1 1 1 1 1
Number of systems 12 7 13 14 11 13
Number of hypothesis per system 100 60 102 118 80 91
Number of sentences per hypothesis 3.13 1.90 15.21 13.84 11.29 9.46
Average number of foci in hypothesis 15.18 12.85 62.01 56.68 57.09 44.99
Average number of ‘good foci’ in hypothesis 2.47 2.56 13.16 13.37 15.07 9.95
Percent of hypotheses with ‘good foci’ 80.50% 43.80% 100% 98.60% 100% 100%

Table 9: Characteristics of summarization and MT datasets. ‘good foci’ denotes a focus appearing more than once
in hypothesis. The more often a focus appears, the stronger the discourse signals are.

Metrics Coherence Consistency Fluency Relevance Average

RC 45.45 51.52 54.55 57.58 52.27
BARTScore (max) 78.79 48.48 63.64 72.73 65.91
BARTScore (max) + RC 66.67 54.55 69.70 78.79 67.42
DS-FOCUS (NN) 75.76 63.64 78.79 81.82 75.00

Table 10: Ensemble of non-discourse and discourse metrics (BARTScore + RC) vs DiscoScore.

cs-en de-en ja-en ru-en
DiscoFeatures D > 0 D = 0 D < 0 D > 0 D = 0 D < 0 D > 0 D = 0 D < 0 D > 0 D = 0 D < 0

Frequency (NN) 74.18 2.00 23.82 57.38 9.65 32.97 53.04 2.63 44.33 52.77 7.31 39.92
Frequency (Entity) 76.17 1.76 22.07 59.74 8.38 31.88 52.38 1.48 46.14 53.61 7.31 39.08
Connectivity-u (NN) 78.05 0.35 21.60 63.11 8.29 28.60 59.61 5.25 35.14 52.04 10.03 37.93
Connectivity-u (Entity) 79.46 0.35 20.19 62.02 8.20 29.78 59.44 5.09 35.47 52.87 9.40 37.72
Connectivity-w (NN) 77.93 0.24 21.83 64.85 4.64 30.51 59.12 0.49 40.39 59.98 5.12 34.90
Connectivity-w (Entity) 80.40 0.23 19.37 63.48 4.73 31.79 60.76 0.33 38.91 60.82 4.60 34.58

Table 11: Statistics of discourse features on WMT20. D > 0 denotes the percent of ‘reference-hypothesis’ pairs for
which R(ref) > R(hyp) with R as any one of these features, similarly for the definitions of D = 0 and D < 0.
We exclude the pairs for which hypothesis and reference are the exact same.
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Figure 6: Distribution of discourse features over hypothesis and reference on SUMMEval.
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Figure 7: Pearson Correlations between metrics on WMT20 in cs-en, de-en, ja-en and ru-en (from left to right).

Direct Assessment (Adequacy)
Settings Metrics cs-en de-en ja-en ru-en Average

m(hyp, ref)

Non-discourse metrics

BLEU 7.44 57.52 41.48 10.74 29.30
BERTScore 10.82 60.38 46.95 13.08 32.81
MoverScore 15.40 61.69 42.12 13.78 33.25
BARTScore 10.82 60.26 46.30 14.95 33.09
PRISM 8.64 58.83 32.48 15.42 28.84
SBERT 13.20 55.26 33.44 10.04 27.99
BLEURT 12.01 58.83 37.94 18.22 31.75
S3-pyr 6.25 58.83 42.44 13.78 30.33
S3-resp 5.85 58.59 47.26 14.71 31.61

m(hyp)

Discourse metrics

RC 5.85 7.19 8.68 9.34 7.77
LC 9.23 1.72 3.53 6.07 5.14
Entity Graph 5.06 43.24 3.53 10.51 15.59
Lexical Graph 2.28 43.60 5.14 13.55 16.15

m(hyp, ref)

Discourse metrics

Lexical Chain 21.54 35.15 15.11 16.12 21.99
FocusDiff (NN) 7.64 33.13 19.29 2.57 15.66
FocusDiff (Entity) 6.45 33.73 19.94 1.64 15.44
SentGraph-u (NN) 7.64 57.16 39.22 18.22 30.56
SentGraph-u (Entity) 7.65 57.17 39.23 18.22 30.57
SentGraph-w (NN) 7.65 57.18 39.22 18.21 30.57
SentGraph-w (Entity) 7.65 57.17 39.23 18.22 30.57

Table 12: Document-level Kendall correlations between metrics and human rated translation quality on WMT20.
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Abstract
Effective communication requires adapting
to the idiosyncrasies of each communicative
context—such as the common ground shared
with each partner. Humans demonstrate this
ability to specialize to their audience in many
contexts, such as the popular game Dixit. We
take inspiration from Dixit to formulate a multi-
agent image reference game where a (trained)
speaker model is rewarded for describing a tar-
get image such that one (pretrained) listener
model can correctly identify it among distrac-
tors, but another listener cannot. To adapt, the
speaker must exploit differences in the knowl-
edge it shares with the different listeners. We
show that finetuning an attention-based adapter
between a CLIP vision encoder and a large lan-
guage model in this contrastive, multi-agent
setting gives rise to context-dependent natu-
ral language specialization from rewards only,
without direct supervision. Through controlled
experiments, we show that training a speaker
with two listeners that perceive differently, us-
ing our method, allows the speaker to adapt to
the idiosyncracies of the listeners. Furthermore,
we show zero-shot transfer of the specialization
to real-world data. Our experiments demon-
strate a method for specializing grounded lan-
guage models without direct supervision and
highlight the interesting research challenges
posed by complex multi-agent communication.

1 Introduction

Human language use is communicative, and thus
involves substantial adaptation to each conversa-

tional partner and context (Clark and Wilkes-Gibbs,
1986; Clark, 1996; Gallois et al., 2005; Frank and
Goodman, 2012; Hawkins et al., 2019, 2022). We
can adapt our speech to complex social settings,
with multiple partners (Mankewitz et al., 2021;
Boyce et al., 2022) and competing constraints, such
as politeness vs. explicitness (Yoon et al., 2016).
While current language and captioning models can
increasingly imitate human language and scene de-
scriptions (Brown et al., 2020; Tsimpoukelli et al.,
2021; Mokady et al., 2021; Alayrac et al., 2022;
Elhagry and Kadaoui, 2021), they generally are
not explicitly adapted to a particular partner or to
satisfy multiple constraints. Common approaches
to specializing the language generated by these
models fall into two categories: finetuning on a
supervised dataset (e.g. Hu et al., 2021), which re-
quires task-specific labeled examples, or prompt
engineering, which is often brittle and may still
require task-specific examples (Liu et al., 2021).
Here, we take inspiration from how humans adapt
their language to their audience to offer an alter-
native approach to specializing grounded language
models without direct supervision.

Our approach to specialization is inspired by the
popular multi-player game Dixit (Roubira, 2008),
which rewards each player’s ability to adapt their
communication to a particular audience. In a round
of Dixit, the “speaker” describes a chosen image
in language. Then, the rest of the players (two
or more “listeners”) attempt to identify the target
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image from a pool of distractors. Importantly, the
speaker is rewarded when some but not all listeners
correctly identify the image. This leads to creative
captions that target the common ground between
a speaker and some (but not all) of the listeners
(see example in Figure 1a). For more details, we
refer readers to Kunda and Rabkina (2020), who
introduce Dixit as a grand challenge for AI.

Using this inspiration, we formulate a setting
where grounded language models can specialize
their language without direct supervision, from re-
wards only. We build on prior work in emergent
communication (Cogswell et al., 2020), and adapt
a pretrained captioning model (the “speaker”) by
finetuning a small fraction of its parameters to max-
imize a Dixit-like reward—this minimal adapta-
tion helps reduce language drift (Lee et al., 2019).
We go beyond prior work by investigating a com-
plex, not fully cooperative, setting (Figure 1b). The
speaker’s goal is to communicate information to
some listeners, but not others, by exploiting differ-
ences in listeners’ idiosyncratic “personalities”. We
instantiate this setting by having a speaker model
communicate with multiple (frozen) contrastive lis-
tener models differing along perceptual axes. We
design careful experiments, with datasets, metrics,
and controls to ensure quantifiable assessment of
language specialization.

We show that training a speaker with a pair of
listeners in this Dixit-inspired setting can lead to di-
verse specialization of natural language, with mini-
mal language drift, and without direct supervision.
From rewards, the speaker identifies and learns to
cue to the difference between two listeners, which
we call “listener subtraction”. We show this adap-
tation across many pairs of perceptually-differing
listeners, and various datasets (Section 4.1, 4.2).
For example, when trained with one listener which
sees color, and another which sees only grayscale,
the speaker learns to exclusively use color words—
it exploits the specialized information it shares with
the first listener. Furthermore, the speaker exhibits
some zero-shot transfer of its language specializa-
tion from artificial to realistic datasets (Section 4.3).
To our knowledge, our work is the first to consider
natural language communication in a grounded,
multi-listener setting, without direct supervision.

2 Related work

Dixit. Kunda and Rabkina (2020) discuss the full
game of Dixit as a grand challenge for AI and posit

the various interesting subproblems that would
need to be solved (but do not attempt to solve
them). Here, we focus on addressing the “Find
a Phrase” subproblem—how the speaker should
choose a phrase such that some but not all listeners
correctly identify the image.

Adapting (grounded) language models. A
large body of prior work focuses on adapting
large pretrained language models (Hu et al., 2021;
Ziegler et al., 2020; Brown et al., 2020; Tsim-
poukelli et al., 2021) to various tasks. Our work
also focuses on natural language specialization,
but differs in that we use no supervised data. In
that sense, our work is more similar to approaches
that fine-tune pretrained models with reinforce-
ment learning (Stiennon et al., 2020; Ouyang et al.,
2022). Unlike those works, we focus on grounded
communication. With respect to grounding, we
take inspiration from prefix tuning (Li and Liang,
2021) and use an image-to-prefix encoder to condi-
tion a pretrained language model on images, as in
Tsimpoukelli et al. (2021). These models can adapt
their language via prompting (Brown et al., 2020),
which we consider as a baseline for our approach.

Pragmatics through model interactions. Work
in cognitive science has explored how pragmatic in-
ferences can be explained as reasoning over simpler
speaker and listener models (Frank and Goodman,
2012). This perspective aims to explain human
pragmatic references in grounded reference games
and can help train models that give and follow in-
structions (Fried et al., 2018) or help train listener
models that adapt to individual human speakers
(Hawkins et al., 2020). Our work is related to this
framework, but differs in that the speaker model is
adapted to use differences between multiple listen-
ers.

Emergent communication. Finally, there is
prior work on emergent communication in im-
age reference games. We focus on works involv-
ing natural language generation, like our setting.
Cogswell et al. (2020) focus on a speaker agent that
asks questions in dialogue with a single, pretrained-
and-frozen listener, to identify an image among dis-
tractors. Lazaridou et al. (2020) consider speaker
and listener agents in a more standard image refer-
ence game—the speaker describes an image, and
the single listener must choose the image among
distractors. Both papers use the pretrain-then-
finetune approach to minimize language drift; we
adopt a similar methodology. Like Cogswell et al.

3885



b) 

Image
Classification:

Contrastive
Learning:

Emergent
Communication:

Our work: 

Speaker says:

Listeners with personalities

Distractor imagesCued image

Half-blood prince

Reward received:

a) 

Image 1

Listener 2

Listener 1

Image 2

Figure 1: a) An example round of Dixit, the inspiration for our work. The speaker uses a specialized caption (green),
so that only one listener (who has read Harry Potter) correctly identifies the image. This outcome is rewarded per the
some but not all rule. b) How our work relates to past work. Image classification: models say something about an
image. Contrastive learning: models say something to distinguish an image from others. Emergent communication:
models say something to distinguish an image from others in a way one listener will understand. Our work: models
say something to distinguish an image from others in a way one but not another listener will understand.

(2020), we freeze our listeners to maintain language
grounding (cf. Lee et al., 2019), and focus on the
speaker. Unlike prior work, our setting involves
simultaneous, natural language communication to
multiple listeners and is not fully cooperative.

3 Methods

3.1 Multi-agent image reference game

We focus on a multi-agent image reference game
inspired by a single round of Dixit. We frame this
problem as a challenge of tuning a pretrained mul-
timodal model to specialize its language, without
direct supervision on how to specialize. Our setup
(Figure 2) involves one speaker model communi-
cating with multiple listener models about a target
image. The speaker model receives the target image
and outputs a caption. Each listener model receives
the caption and the target image along with some
(random) distractor images. Each listener model’s
goal is to correctly identify the target image from
the distractors, based on the speaker’s caption.

Following the some-but-not-all reward structure
of the Dixit game, we reward the speaker model for
the difference in the (binary) accuracies of listeners
1 and 2 on a given set of images. To avoid co-
adaptation and pragmatic drift (cf. Lazaridou et al.,
2020), we pretrain and freeze our listener models.
Thus, only the speaker has learnable parameters.

3.2 Speaker model

The speaker model (Figure 2a) is inspired by the
Frozen model (Tsimpoukelli et al., 2021) and Clip-
Cap (Mokady et al., 2021). We build the speaker
using several pretrained components, and adapt

only a small piece to our setting. The model is
composed of a pretrained-and-frozen CLIP visual
encoder (Radford et al., 2021), learned attentive
(QKV) adapter layer, and a pretrained-and-frozen
Transformer (decoder) language model (Vaswani
et al., 2017; Hoffmann et al., 2022). An input im-
age is first passed through the visual encoder. The
unpooled output of the encoder is flattened and
passed into the adapter, a Perceiver-inspired cross
attention layer (Jaegle et al., 2021). The adapter
outputs n = 32 prefix tokens, which are used to
condition the language model and generate up to
32 output tokens. See Appendix A for more details.

The only parameters of this model that are ever
trained are in the adapter. We keep the pretrained
CLIP encoder and language model frozen (to help
prevent language drift), and pretrain the adapter
on the Conceptual Captions dataset (Sharma et al.,
2018) to give our speaker basic captioning abilities
(see Appendix B.1). All our experiments start from
this captioning-pretrained base speaker model. We
finetune the adapter for each experimental condi-
tion, which consists of a dataset to train on and a
pair of listeners (we refer to this process as “train-
ing the speaker”). We do not have supervision for
what to say when playing the game—much as a
human player needs to adapt without direct super-
vision. Instead, we use REINFORCE (Williams,
1992) to train the speaker’s adapter parameters,
based on the rewards received for differences in the
listener accuracies (see Section 3.1). Our choice to
finetune only the adapter builds off prior works in
emergent communication that use pretrained-and-
frozen components (Cogswell et al., 2020; Lazari-
dou et al., 2020). By repeated interactions with
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Figure 2: Our setup for cFMNIST and the grayscale
transform. a) The speaker receives an image and gen-
erates a caption. b) Listener 1 receives unperturbed
images and picks best match to the caption (correctly).
c) Listener 2 receives images with the grayscale trans-
form applied and picks the best match to the caption
(incorrectly). Then, the speaker receives a reward of 1
(the difference in the accuracies) which it uses to update
its adapter parameters (green) via REINFORCE. All
components in blue are pretrained and frozen.

the same pair of listeners in each experimental con-
dition, the speaker should update its weights to
produce specialized language to that listener pair.

3.3 Listener models
For our listener models (Figure 2b,c), we use the vi-
sion and language encoders of a pretrained ALIGN
NFNet F5 model (Jia et al., 2021; Brock et al.,
2021). For a set of input images and caption, we
compute image-caption match scores for each im-
age, and the listener selects the image with the
highest alignment score.

To investigate the speaker’s ability to adapt to
distinct listeners, we experimentally manipulate the
listeners’ knowledge. We use the same pretrained
model for each listener, but manipulate each lis-
tener’s knowledge by applying distinct image trans-
formations to the inputs. For listener 1, we do not
transform the input images. For listener 2, we con-
sider the following transformations:
Crop: Images are cropped to the top-right quadrant
then resized to the original size.
Blur: Images are Gaussian blurred (radius 25 px).
Grayscale: Images are converted to grayscale.

While listener “personalities” could differ along
any linguistic, conceptual, and perceptual axes, we
focus on these perceptual transformations because

they enable quantitative assessments of language
specialization. When listener 2 sees cropped im-
ages, we expect the speaker to cue objects outside
the cropped region. When listener 2 sees blurred
images, we expect the speaker to cue objects with-
out the use of color, as distinct objects will not
be visible to the second listener but color will still
largely be visible. Conversely, when listener 2 sees
grayscale, we expect the speaker to only use color
words and to specifically stop referring to objects.
We design controlled datasets for each experiment,
in which each relevant metric can be measured.

3.4 Datasets and metrics

The main datasets we use are transformed versions
of Fashion-MNIST (Xiao et al., 2017). Fashion-
MNIST (FMNIST) consists of grayscale images
of different types of clothing items. We create a
colored version (cFMNIST), where each image is
randomly colored with one of 8 colors. To test
training with the crop listener, we then create a
tiled version of cFMNIST (tcFMNIST) where each
image consists of two random cFMNIST images,
one in the top-right, and one in the bottom-left. For
more realistic images, we use the COCO dataset
(Lin et al., 2014), taking center square crops of
all images. Example images for all dataset and
transform pairs are shown in Figure 3.

For analysis metrics, we first evaluate the pro-
portion of captions generated by the speaker on test
images that had color words in them (“color preva-
lence”) and the proportion of captions that con-
tained a clothing-related word (“FMNIST keyword
prevalence”). Each of these metrics identifies lan-
guage specialization. To measure image-relevance
of produced language, we compute metrics measur-
ing how often an object word used corresponded
to an actual object in the image, accounting for
synonyms. These metrics are referred to as “object
prevalence” for cFMNIST, and “bottom-left object
prevalence” and “top-right object prevalence” for
tcFMNIST. For colors, it’s difficult to enumerate
all synonyms as the model often uses pairs of col-
ors, e.g., “blue and white” for “cyan”. Instead, we
found that a “color diversity” metric—which mea-
sures the speaker’s variation in color use—offers
an effective proxy for determining color relevance.

See Appendices C, D, for more details on
datasets and metrics, respectively.
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jacket

yellow
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a)
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Figure 3: Example test images and speaker captions at
the start and end of training for various experimental
conditions. By row, the speaker trains on a different
dataset (a: tcFMNIST, b,c: cFMNIST, d: COCO), and
the second listener sees a different transformed image
(a: top-right crop, b: blurred, c,d: grayscale). Diverse
language specialization emerges by the end of training.
See Appendix H for more samples.

3.5 Training

A training “episode” consists of the speaker receiv-
ing an image (observation), generating a caption
(action), and receiving the difference in listener
accuracies as a reward. As noted above, only the
adapter in the speaker has trainable parameters,
which are updated via REINFORCE (Williams,
1992). We use nucleus sampling (Holtzman et al.,
2019) to generate captions. We add a small reward
penalty to incentivize short captions (a weight λ
times the number of words used) as an articulatory
effort minimization bias (cf. Lazaridou and Baroni,
2020). We use a batch size of 128 images, with 3
random distractors for each image drawn from the
same batch. See Appendix B.3 for more details.

4 Results

4.1 Emergence of specialization

By training a speaker to maximize the difference in
accuracy between two fixed listeners, we see strong
language specialization across many listener pairs
(Figure 3a-c, 4a-c). When the second listener sees
only the top-right crop of the image, the speaker
learns to cue to objects that the second listener can-
not see (Figure 4a, bottom). The first listener’s ac-
curacy remains stable through learning, but the sec-
ond listener’s accuracy decreases to chance level.
This corresponds to the decrease in top-right ob-
ject prevalence in the speaker’s captions and an
increase in bottom-left object prevalence.

When the second listener sees only the blurred

version of the image, the speaker learns to reduce
its use of color words, while still referring to the
target object. The overall learning dynamics are
similar to the crop case: the first listener’s accuracy
remains roughly constant, while the second drops
to chance level, again paralleling the decrease in
color prevalence in the speaker’s captions.

By contrast, when the second listener sees only
a grayscale image, we see a rapid decrease in ob-
ject prevalence and increase in color prevalence.
However, this initial learning causes both listener
accuracies to drop, as the speaker greedily uses
colors that may not be image relevant. Then, from
iterations 2.5k to 25k, the speaker slowly learns
to use more accurate colors for each image, and
the first listener’s accuracy increases slowly but
steadily (while the second listener stays at chance).
At the end of training, color diversity is compara-
ble with that produced by language prompts (see
Section 4.4.3, Tables 1 and 15), indicating that the
speaker is using diverse, image-relevant colors.

These experiments illustrate that the speaker
model can optimize its reward in different ways
depending on the pair of listeners—decreasing the
second listener’s accuracy, increasing the first lis-
tener’s accuracy, or both. Each strategy produces
meaningful, measurable changes in the speaker’s
language, while keeping drift to a minimum. Cap-
tions show little structural drift (assessed by an in-
dependent language model’s likelihoods, Appendix
E), as well as little semantic and pragmatic drift (as
assessed by the above metrics). See Appendix H
for more images, distractors, and speaker ouputs.

4.2 Extending to real world data

We next apply our approach to a setting with real-
world data—images from the COCO dataset (Lin
et al., 2014). The effect of most transforms is
harder to quantify exactly, as the images contain
many objects, and enumerating all their synonyms
is infeasible. Thus, we use the grayscale transform,
which still offers usable metrics (color prevalence
and diversity).

Figure 3d, 4d show model samples and the
speaker’s training curves on COCO. The speaker
starts with a high initial accuracy to both listen-
ers. Then, we qualitatively observed (by inspecting
model samples) that the speaker starts “exploring”
different strategies to differentiate the listeners (it-
erations 0-20k). Just before 20k iterations, the
speaker starts using colors slightly more often, then
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Figure 4: Accuracy and task-relevant metrics for many dataset and listener pairs. By column, the second listener
sees a different transformed image (a: top-right crop, b: blurred, c,d: grayscale). The top row shows listener
accuracies as the speaker learns to specialize. The bottom row shows prevalance of task-relevant keywords indicated
by line color—note that object metrics measure both grounding and language specialization, while color metrics
only measure specialization (see Section 3.4). Error bars show 95% confidence intervals (95% CIs) over 5 seeds.

exhibits a near-stage-like transition to exclusively
using colors. Qualitatively, the speaker switches
standard captions (e.g., “person in front of a bi-
cycle”) to color-focused captions (e.g., “red and
white”) for each image at some point during train-
ing. Once the speaker only uses color for its cap-
tions, the individual listener accuracies diverge sig-
nificantly. Notably both listener accuracies are far
worse than at the start of training, as color alone is
an imperfect distinguisher on COCO (and overspec-
ifying colors may give away too much, since object
category is correlated with color in real images).
However, the speaker has successfully learned to
specialize its language to exploit the difference be-
tween the two listeners. Furthermore, this language
remains grounded, as evidenced by end-of-training
color diversity being comparable to color diversity
produced from language prompting (see Section
4.4.3, Tables 1 and 16).

4.3 Zero-shot transfer

We next explore zero-shot transfer of the language
specialization from our simpler dataset (cFMNIST)
to the more challenging setting of COCO. To do so,
we trained a speaker in the grayscale transform set-
ting on cFMNIST (Listener 1 sees the unperturbed
image, Listener 2 sees the grayscale image) and
tested its zero-shot behavior on COCO. As base-
lines, we consider the behavior of the pretrained
captioning model (that the speaker is initialized to),

and the behavior given the best natural-language
prompt (see Section 4.4.3). We also compare to the
behavior of an expert speaker trained to specialize
on COCO (the end of training in Figure 4d).

We find significantly-above-baseline zero-shot
transfer, with increasing use of color on COCO as
the speaker is trained on FMNIST (Figure 5b). Fur-
thermore, this specialization leads to meaningful
differences in listener accuracies (Figure 5a). This
specialization transfer from FMNIST to COCO per-
forms better (across all four metrics in Figure 5)
than baseline zero-shot approaches (the untuned
captioning model), and on par with the best lan-
guage prompt (see Section 4.4.3).

However, zero-shot behavior is far from perfect—
the model loses some grounding relative to the ex-
periments above. Zero-shot, the model strongly
prefers “red” (Figure 5c), using it in nearly twice
as many captions as the COCO-trained speaker, in-
cluding even some non-red images. We believe this
may be due to the average “color” of the 8 colors
we use for cFMNIST, in RGB, is 907080, indicat-
ing a slight red skew of the data. To improve gener-
alization, we therefore trained on a richer, balanced
colored version of FMNIST, where image hues
are sampled randomly from 360 equally-spaced
options (as opposed to the 8-hue cFMNIST used
above) – we refer to this dataset as cFMNISTmany.
We find that this improves zero-shot transfer across
all metrics, pushing it beyond the performance of
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Figure 5: Zero-shot transfer results from cFMNIST to COCO and relevant baselines. Each subplot shows a different
metric, with different lines corresponding to different conditions or baselines. The two conditions are training
on cFMNIST (blue) or cFMNIST with 360 hues (purple). Various baselines are included as dotted lines: base
captioning model (black), base captioning model with explicit prompting (red), fully trained on COCO (green).

the best explicit language prompt. Although this
model still has slightly increased “red preference”,
its usage of other colors is also significantly better
than the 8-hue-trained speaker. For example, in
Figure 5d, we see that the cFMNISTmany-trained
speaker uses yellow in a similar percentage of cap-
tions as a COCO-trained speaker. A better caption-
ing model, that was adapted on a more diverse set
of images, would likely transfer even better.

4.4 Ablations

We finally consider ablations to our set-up to iden-
tify key aspects. See Appendix F for full results.

4.4.1 Single listener
In our original experiments, the speaker learns to
specialize in the presence of multiple listeners, but
are both listeners necessary? Could the speaker
also specialize through communicating with only
a single listener? To test this possibility, we train
a speaker model to optimize the accuracy of just a
single listener (so the reward is binary 0/1 listener
accuracy). See Appendix B.4 for details.

In the tcFMNIST case, prevalence of keywords
for both locations in the image increases consis-
tently, indicating a lack of specialization to image
sub-regions. For cFMNIST, we find that single-
listener training leads to increased use of colors
and correct keywords; we never see a differential
specialization that full multi-listener training in-
duces in our original experiments. For COCO, we
see the largest difference between single-listener
and multi-listener cases—the single listener case
does not learn to use color to distinguish images.

4.4.2 Non-contrastive reward
We next consider training with multiple listeners,
but a non-contrastive reward. Namely, instead of
optimizing for the difference in accuracy between

listeners, we optimize directly for the difference
in ALIGN match on the cued image. We call this
approach “non-contrastive” as no distractor images
are required. See Appendix B.5 for details.

Training in this setting does lead to some lan-
guage specialization, but is worse than contrastive
training in 3 out of 4 settings we consider. For
the crop setting (Table 9), we see a reduced use of
the top-right keyword, but only a modest increase
in the use of the bottom-left keyword compared
to contrastive reward training. For the blur set-
ting (Table 10), the non-contrastive reward actually
outperforms the contrastive reward. The model
uses image-relevant keywords 70% of the time, and
stops using varied colors (but continues to mention
a single color). For the grayscale setting on both
FMNIST and COCO, we observe strong special-
ization using the non-contrastive reward (as evi-
denced by low FMNIST keyword prevalence, and
high color prevalence in Tables 11, 12). However,
the captions in this case lose image relevance, as
evidenced by markedly lower color diversity. Qual-
itatively, we observe the model using the same
color for each image (which achieves more reward
than baseline, but is obviously not desirable). Thus,
overall, we find that the contrastive reward encour-
ages specialization while preserving image rele-
vance in this multi-listener setting.

4.4.3 Explicit prompting
Finally, we evaluate a simpler, commonly-used ap-
proach to model specialization: explicit prompting.
These experiments also provide a baseline for our
zero-shot results (in Section 4.3), as no training is
involved. We created a variety of possible prefixes
to elicit specialization, as explicit prompting can
be brittle. Full results are provided in Appendix G.

Table 1 shows the top three prompts and rele-
vant metrics for the (identity, grayscale) transform
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Caption Prefix FMNIST metrics COCO metrics
Accuracy
Difference

Color
Prevalence

Color
Diversity

Object
prevalence

Accuracy
Difference

Color
Prevalence

Color
Diversity

No prefix 0.089 0.556 0.014 0.442 0.003 0.027 0.022
the color of this image is 0.174 0.901 0.020 0.000 -0.010 0.135 0.036

color: 0.118 0.971 0.004 0.111 0.013 0.541 0.030
colors in image: 0.048 0.999 0.001 0.000 0.019 0.335 0.018

Fully trained 0.422 1.000 0.015 0.000 0.156 0.988 0.033

Table 1: Relevant metrics for various caption prefixes. The no prefix condition corresponds to the base captioning
model. Fully trained results match values at the end of training from Figure 4—full training via listener subtraction
provides superior language specialization compared to explicit prompting.

pair, on both FMNIST and COCO. Explicit prompt-
ing does lead to some specialization (when com-
pared to the base captioning model), but fails to
provide the robust specialization we observe in Sec-
tion 4. Captioning prefixes can be quite brittle, as
evidenced by the diverse behavior we observe from
superficially similar prompts. For “colors in image:”
and “color:”, the model has high color prevalence,
but low diversity. Qualitatively, the model tends to
list all colors, with only the first color correspond-
ing to the true color of the image. For “color:” we
also observe that the model still uses nouns. For
“the color of this image is” we observe slightly re-
duced color prevalence, but much stronger color
diversity and little usage of nouns.

On COCO, similar color prompts yield surpris-
ingly large differences in color prevalence. We
also observe “switching” behavior: per image,
the speaker either ignores the caption prefix (e.g.,
“color: person and her son play in the water”) or
specializes (e.g., “color: blue and white”). Qualita-
tively, this behavior mirrors the stage-like transition
in the COCO-trained speaker, in Section 4.2.

5 Discussion

We have demonstrated a method for specializing
a grounded language model without direct super-
vision, by finetuning a small fraction of its param-
eters in a complex multi-agent setting. We have
shown that this approach enables diverse types of
specialization with minimal language drift, and
have identified the essential aspects of this ap-
proach. We believe that our work offers a novel
perspective on adapting models to new settings
without supervised data.

Our approach to specializing a grounded lan-
guage model rewards the speaker for using differ-
ences in the information it shares with two listener
models. This formulation allows for flexible adap-

tation of models to complex tasks. For example,
our approach could potentially be used to diag-
nose biases in one contrastive listener model by
comparing to another (e.g., trained on a different
dataset), an area of considerable interest (Agarwal
et al., 2021). A speaker optimized for the differ-
ence between two contrastive models could identify
biases present in one listener, without the need for
manually curated word lists. Additionally, training
against listeners of different skill could potentially
improve language quality without relying on costly
human annotations (e.g. Stiennon et al., 2020).

Long term, we hope our work contributes to per-
sonalized AI. Humans prefer interacting with oth-
ers who share rare preferences (Vélez et al., 2019),
so an AI that personalizes its language to users
would likely be preferred to one that uses standard-
ized language. Personalization could improve other
kinds of communication too, like explanations—
e.g., adapting feedback to a particular student’s
idiosyncratic knowledge (cf. Wang et al., 2017).
Our approach enables such adaptation through in-
teraction, without explicit language supervision.

Towards Dixit Finally, while our experimental
setup is inspired by Dixit game, we only make the
first steps towards a model that can play the full ver-
sion of Dixit effectively with humans—something
that is an appropriate grand challenge for AI, as
Kunda and Rabkina (2020) suggest. We highlight
some of the next steps below.

The present work focuses on perceptual differ-
ences, while human play often relies on differences
in conceptual knowledge. Finetuning listeners on
different datasets (e.g., scenes from Harry Potter
movies as in Figure 1a) might allow such concep-
tual differences to emerge. A challenge would be
using datasets where this conceptual difference is
relevant (Dixit achieves this with abstract images).
This could potentially be overcome by generating
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synthetic data using modern text-to-image models
(e.g. Ramesh et al. (2022)). Given the robustness
to different listener pairs already exhibited, we be-
lieve this is a promising future direction. Moreover,
human players adapt their language from a few in-
teractions, while our speaker trains for thousands
of iterations. One way to overcome this limitation
would be to combine our work with concurrent
progress in visual language models. Alayrac et al.
(2022) introduce a model, Flamingo, which can
rapidly adapt to different visual language tasks in
a few-shot setting. Using such a high-quality base
model as the speaker might enable reward-driven
adaptation from just a few interactions.

We hope that this work will inspire further re-
search on settings like Dixit, and help to enhance
the capabilities of grounded language models and
communicative agents more broadly.

Limitations

We want to reiterate important limitations with the
work in its present form. We only considered set-
tings with two listeners (for ease of quantitative
assessment); additional challenges may be present
when extending to three or more listeners, which
may be necessary to express more complex objec-
tives. In addition, the current work assumes that
listeners exist that differ along the axis of desired
specialization; finding such listeners might be chal-
lenging. Furthermore, despite the overall preserva-
tion of language, we qualitatively observed some
degradation in some runs. Introducing a weighted
KL-divergence loss term to the pretrained caption-
ing model likelihood (cf. Lazaridou et al., 2020)
might further improve specialized language quality.
Alternative sampling methods (cf. Chaudhary et al.,
2022), such as typical decoding (Meister et al.,
2022), may also improve generated language qual-
ity. Finally, our paper does not directly place the
agent in interactions with humans, or compare to
how humans adapt their language in similar tasks.
Further work could include human experiments to
get a better sense of language quality and relevance
of generated captions and/or identify differences in
human and agent language adaptation.

Ethical considerations

As discussed above, applications for this work
would train speakers using differences between
listener models with different weights or even ar-
chitectures. A potential risk of adapting speakers

via this approach is that the speaker might pick
up biases that one listener has that are not part of
the intended specialization—an undesirable qual-
ity. As suggested above, one possible approach to
mitigating this would be to explicitly include bi-
ased listeners, but always penalize the speaker for
the biased listeners’ accuracy. Another approach
could be debiasing the underlying (frozen) lan-
guage model (Schick et al., 2021; Meade et al.,
2022), as the speaker’s propensity for producing
offensive language is inherited from this underly-
ing model. Long-term, we believe that strategies
like those detailed by Weidinger et al. (2021) will
be necessary to mitigate risks of large language
models (and models such as ours that utilize them).
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A Speaker Model Details

We provide further detail on our speaker model
architecture.

The pretrained-and-frozen CLIP visual encoder
takes in images of dimension 224×224×3, which
we denote x. We take the pre-spatial-pool output
from the model, which has dimensions 16× 16×
768, and flatten this (across spatial dimensions) to
an output E(x), with dimension 256 × 768. For
the specific encoder model, we experimented with
a few (pretrained) options (see Appendix B.1).

The attention-based (QKV) adapter takes in this
visual embedding and transforms it into n token em-
beddings that can be used as a prefix to prompt the
language model. The trainable parameters of this
layer are Q (of dimension n× d), WK (of dimen-
sion 768× d), and WV (of dimension 768× 2048).
The weights WK , WV are used to compute K =
E(x)WK , V = E(x)WV . The fixed queries are
then used to attend to these input-dependent keys
and values. The output of the adapter layer is
thus A(x) = softmax(QK⊤/

√
d)V (of dimen-

sion n× 2048).
We feed in A(x) as n prefix embeddings of di-

mension 2048 to a pretrained-and-frozen causal
Transformer to generate up to 32 tokens (with early
termination if the EOS token is produced). We
follow the recommended architecture parameters
presented in Hoffmann et al. (2022) for a 1.4B
parameter model: our transformer has 24 layers,
model dimensionality of 2048, and 16 heads. We
use a SentencePiece tokenizer with a vocabulary
size of 32000 (Kudo and Richardson, 2018).

B Training details

In this section, we provide training details, hyperpa-
rameter search details, and the hyperparameters we
used for our final results. All models were imple-
mented in Python using JAX (Bradbury et al., 2018)
and Haiku (Hennigan et al., 2020). Training was
distributed over 16 TPUs (v3), and all experiments
used a batch size of 128 (unless specified other-
wise). The optimizer for all experiments is Adam
(Kingma and Ba, 2015), with β1 = 0.9, β2 = 0.95.
We use ZeRO stage-one parameter sharding (Rajb-
handari et al., 2020).

B.1 Speaker model pretraining on captioning
data

We pre-trained our speaker model using supervised
cross-entropy loss (with teacher forcing (Williams

and Zipser, 1989)) on the Conceptual Captions
dataset (Sharma et al., 2018) which consists of
paired image-caption data.

Dataset images were augmented using random
crops. All experiments were run with a batch size
of 512 for 500000 steps. Training was distributed
over 16 TPUs (v3) in a data parallel fashion.

Hyperparameters we searched over were:

• Base CLIP model: We tried the smaller
CLIP ViT-B/32 and the larger CLIP ViT-L/14
model.

• Positional embeddings: We experimented
with adding an absolute positional embedding
to each of the 16× 16 unpooled outputs from
the CLIP encoder.

• Learning rate: [1e-4, 3e-4, 1e-3, 3e-3, 1e-2,
3e-2, 1e-1, 3e-1]

• Dimension of QKV adapter (d): [32, 64]

• Number of input tokens to frozen language
model (n): [8, 16, 32]

All hyperparameter selections were based on val-
idation loss on the Conceptual Captions validation
set. We found that the larger CLIP model, no ad-
ditional positional embeddings, a learning rate of
3e-2, d = 32, n = 32, worked best. In terms of the
biggest factors, using the larger CLIP model made
the biggest change, followed closely by learning
rate.

We froze the best model, and that same model
served as the starting point for all our experiments.

B.2 Choice to finetune just the adapter
We experimented with finetuning a visual encoder
from scratch (instead of using a pre-trained CLIP)
as done by Tsimpoukelli et al. (2021). However,
we found this approach to perform worse than our
adapter-only training (in terms of Conceptual Cap-
tions validation performance). The adapter has just
under 1.6M parameters, out of a total of 1.7B pa-
rameters, for a total of < 0.1% finetuned parameters.
We believe that finetuning such a small number
of weights prevents language degeneration, thus
enhancing the quality of generated captions. For
downstream experiments, we found a similar effect
– finetuning more than just the adapter parameters
led to more language drift. For this reason, we only
finetune the adapter in all experiments.
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B.3 Multi-listener, contrastive-reward
training

We used the hyperparameters detailed in Table 2 for
training our main models. These hyperparameters
were found by grid searches over learning rate ([3e-
5, 3e-4]), sampling temperature ([1,2]), nucleus
size ([0.8, 1]), and caption length penalty ([1e-5,
3e-5, 1e-4, 3e-4, 1e-3, 3e-3, 1e-2, 3e-2]). We found
that caption length penalty was crucial to tune to
make sure it didn’t dominate the reward at the start
of training.

All of our final training results are run on 5 dif-
ferent random seeds, from which 95% confidence
intervals are calculated and shown (in figures and
tables).

B.4 Single listener, contrastive-reward
training

For this baseline, we train the speaker to just maxi-
mize the binary accuracy of the single unperturbed
listener. We train in 3 settings: on cFMNIST, on
tcFMNIST, and on COCO. To make a fair compar-
ison, we performed a hyperparameter search for
each case (final hyperparameters shown in Table 3).
Specifically, we searched over learning rate ([3e-5,
3e-4]), nucleus size ([0.8, 1]), and caption length
penalty ([1e-5, 1e-4, 1e-3, 1e-2]). We also found
that early stopping and batch-based baseline sub-
traction (Williams, 1992) improved performance
(in terms of reward on unseen images), so we used
both of these techniques for all results reported.
On each setting, we trained 5 random seeds for up
to 25000 iterations on FMNIST and up to 40000
iterations on COCO, early stopped each one, and
computed evaluation metrics on those checkpoints.

B.5 Multi listener, non-contrastive-reward
training

For this baseline, we train the speaker to just maxi-
mize the difference in the ALIGN match scores that
listeners assign to the cued image. In this setup,
the listeners only need the caption and cued im-
age, which is why we call it non-contrastive. We
train this baseline in all four settings that we train
our main (multi-listener, contrastive-reward) model
in. We perform hyperparameter over nucleus size
([0.8, 1]) and caption length penalty ([1e-7, 1e-6,
3e-6, 1e-5, 3e-5, 1e-4, 3e-4, 1e-3]), with optimal
hyperparameters reported in Table 4.

C Dataset details

To construct the cFMNIST dataset, we convert FM-
NIST images to HSV. Since the images are origi-
nally grayscale, the saturation is always 0. We set
the saturation to 1, and set the hue to one of the 8
colors shown in Table 5. Then, we convert back
to RGB images and resize to spatial dimensions
224 × 224 using cubic upsampling (Keys, 1981),
then clip all values to the range [0,1].

For tcFMNIST, we randomly place a cFMNIST
image in the bottom left and in the top-right of
the image. This choice of tiling (as opposed to
top-left, bottom-right, or some other combination)
was chosen to avoid an inherent bias towards cuing
for the top-left object that we observed in our base
captioning model.

For the test set, we construct a fixed test set
to use for equal comparison across all conditions.
For contrastive-reward experiments, we also fix the
distractors during test time for consistency.

We normalize all images according to the nor-
malization that was originally used for the off-
the-shelf image encoders we use (for consistency).
Specifically, for inputs to the speaker, which pass
through CLIP’s vision encoder, the normalization
mean and standard deviation values are (0.481,
0.458, 0.408) and (0.269, 0.261, 0.278), respec-
tively. For inputs to the listeners, which pass
through ALIGN’s vision encoder, the normaliza-
tion mean and standard deviation values are (0.485,
0.456, 0.406) and (0.229, 0.224, 0.225), respec-
tively.

C.1 Licenses

We use FMNIST under the MIT license, COCO
under the creative commons 4.0 attribution license,
and Conceptual Captions under its ad-hoc license
(for which we thank Google LLC). We also ac-
knowledge that images in Figure 1 are taken from
the Dixit game (Roubira, 2008) and icons are used
under the Flaticon license (for which we thank
Flaticon.com). We make use of the GPT3 (Brown
et al., 2020) beta (for quantification of structural
drift, see Appendix E) under the Apache License.

To our knowledge, we use these resources in
agreement with their licenses.

C.2 Dataset Splits

We use standard splits for all datasets from tensor-
flow datasets (Abadi et al., 2015). For FMNIST-
based datasets, this means 60000 train images that
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FMNIST COCO
Parameter Crop Blur Grayscale COCO Grayscale

Learning rate 3e-4 3e-4 3e-4 3e-4
Sampling temperature 1 1 1 1

Nucleus Size 0.8 0.8 1 1
Caption length penalty (λ) 3e-3 3e-3 3e-3 3e-4

Table 2: Hyperparameters for the main setting (multi-listener, contrastive-reward).

Parameter cFMNIST tcFMNIST COCO
Learning rate 3e-4 3e-4 3e-4

Sampling temperature 1 1 1
Nucleus Size 0.8 0.8 1

Caption length penalty (λ) 1e-5 1e-5 1e-5

Table 3: Hyperparameters for the single listener, contrastive-reward baseline.

are used to procedurally generate cFMNIST and
tcFMNIST train sets, and 10000 test images that
are used to generate the test sets.

D Evaluation metric details

We have two types of metrics: color metrics and
keyword metrics. Color metrics apply on both
FMNIST-based datasets and COCO, while key-
word metrics are only used on FMNIST-based
dataset (where we know exactly where and what
the objects are by construction). We want our met-
rics to be able to diagnose language specialization,
and also check that the captions are still grounded
(we’ll refer to this as “image relevance” of cap-
tions).

D.1 Color metrics

All color metrics utilize the following set of 16
colors:

red, orange, yellow, green,
blue, indigo, violet, purple,
cyan, magenta, pink, brown,
black, white, gray, grey

For measuring language specialization to colors,
we define color prevalence: the fraction of captions
at test time containing at least one word from the
above list.

For measuring image relevance, we use a proxy
metric as its often hard to define what it means for
a color to be correct (e.g., if an image is “cyan”
and the model says “blue and white”). The proxy
metric we use is color diversity. To compute color
diversity we calculated TF-IDF vectors for each

caption using only the color terms above. Then,
we calculated the trace of the covariance matrix
(which has dimension 16 × 16) of these vectors.
This metric has the desirable property where if a
color appears in nearly all captions, it will be scaled
down by the IDF term and so will its contribution
to the trace of the covariance matrix.

We found this to be a good proxy metric as loss
of image relevance in color specialization cases cor-
responding to the model choosing just a few colors
(often just one) and using them to describe all im-
ages. To not confound our main results, we qualita-
tively looked at how well this metric corresponded
to loss of image relevance on the many language
prompts detailed in Appendix G. We found that
color diversity was a noisy, but useful, metric for
determining image relevance of these prompts. For
example, a simpler metric like checking the num-
ber of unique captions the model uses fails since,
given some language prompts, the speaker would
produce long strings of colors, often in slightly dif-
ferent orders (e.g. “color: green, black, white, blue,
red ...” vs. “color: red, black, white, blue, green
...”). Furthermore, we note that color diversity is
not a perfect metric, so subtle differences (on the
order of ± 0.005) should not be considered sig-
nificant. We mainly use color diversity to classify
runs where image relevance was completely lost
(color diversity going to 0), or image relevance was
retained (color diversity staying near that of the
best language prompts and above that at the start
of training).
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FMNIST COCO
Parameter Crop Blur Grayscale COCO Grayscale

Learning rate 3e-4 3e-4 3e-4 3e-4
Sampling temperature 1 1 1 1

Nucleus Size 0.8 0.8 0.8 0.8
Caption length penalty (λ) 3e-6 3e-6 3e-6 3e-4

Table 4: Hyperparameters for the multi-listener, non-contrastive-reward baseline.

Color: Red Orange Yellow Green Cyan Blue Purple Pink
Hue: 0

360
30
360

60
360

120
360

180
360

240
360

270
360

300
360

Table 5: Color and Hues for cFMNIST.

D.2 Keyword metrics

For measuring language specialization to objects,
we define FMNIST keyword prevalence: the frac-
tion of captions at test time containing at least one
FMNIST related keyword.

To measure image relevance, we utilize the
ground-truth labels from FMNIST, supplemented
with synonyms. Specifically, we measure object
prevalence: the fraction of captions at test time
that contain at least one keyword corresponding
to the ground truth label of the object in, the im-
age according to Table 6. We found that allowing
synonyms was essential, as the captioning model
heavily prefers some clothing words over others
(e.g., sandals are almost always just called shoes
by the model). For tcFMNIST, we similarly define
bottom-left object prevalence and top-right object
prevalence to measure what fraction of captions
refer to each region of the image.

E Language drift quantification

Prior work in emergent communication (Lazari-
dou et al., 2020) establishes three types of lan-
guage drift that may occur when adapting language
from rewards, without direct supervision: struc-
tural drift (how “language-like” are captions), se-
mantic drift (how “image-relevant” are captions),
and pragmatic drift (how “human-interpretable” are
captions). While the focus of our work is on lan-
guage specialization, it is important to investigate
to what extent our approach is resulting in language
drift.

For semantic and pragmatic drift, we note that
our main metrics (see Section 3.4 and Appendix
D) measure human interpretability as well as im-
age relevance. For example, our object metrics

measure whether the model is referring to objects
using the category name or valid synonyms, and
our color diversity metric is able to differentiate
settings with notable semantic drift (e.g., the non-
contrastive baseline, see Section 4.4.2) from set-
tings without notable semantic drift (e.g., our main
results, see Figures 3 and 4). Our method preserves
these metrics, presumably since the grounded task
with frozen listeners, as well as the frozen compo-
nents of the speaker, provide strong constraints on
what language the speaker can use.

However, our main metrics do not adequately
address the issue of structural drift. To measure
how “language-like” our captions are, we therefore
follow the approach of Lazaridou et al. (2020) and
evaluate the log-likelihood assigned to generated
captions by an independent, pretrained language
model (LM). Specifically, we use OpenAI’s Ada
model, made available online through the GPT3
beta (Brown et al., 2020). For comparison, we
also show LM log-likelihoods for the ground truth
human captions (for cFMNIST, we procedurally
generate these—e.g., “red pullover”), the LM likeli-
hoods for the “best prompt” (see Appendix G), and
the LM likelihoods for captions from the speaker
before specialization training (the base speaker pre-
trained on captioning only). For reference, the
“best” language prompts were chosen to maximize
task-relevant metrics (see third column in Tables
13-16) except for the (cFMNIST, Grayscale) case
where we use the third best (as the top two prefixes
have very low color diversity—see discussion in
Section 4.4.3). Results are shown in Table 7.

Surprisingly, we see that in most of our runs,
average caption likelihoods seem to increase as
the speaker specializes. It appears that this effect
may be driven by the length penalty—over training,
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Label Category name Added synonyms
0 t-shirt top, t-shirts, shirt, shirts
1 trouser trousers, pants
2 pullover sweater, hoodie, sweaters, hoodies
3 dress dresses
4 coat coats, jacket, jackets
5 sandal high heels, heels, shoe, shoes
6 shirt shirts
7 sneaker sneakers, shoe, shoes, running shoe
8 bag purse, backpack, bags, purses
9 ankle boot boot, shoe, shoes, boots

Table 6: FMNIST keyword sets. We refer to the set of all words in this table as FMNIST related keywords.

tcFMNIST, Crop cFMNIST, Blur cFMNIST, Grayscale COCO, Grayscale
Ground truth -32.77 -15.20 -15.20 -46.26

“Best” language prompt -36.61 -44.61 -24.59 -29.49
Start of training -33.33 -28.64 -28.64 -28.44
End of training -17.41 -19.01 -9.26 -29.49

Table 7: Average language model full-caption log-likelihoods for ground truth, start-of-training, and end-of-training
captions on test images.

the speaker produces shorter captions, which have
higher likelihoods since they have fewer tokens.
Qualitatively, we find that language drift can be
fairly variable across different random seeds. For
example, the COCO average is worse after training
largely due to a single run, in which long repeated
captions emerged (which have lower likelihoods
than their un-repeated counterparts).

To evaluate this further, we computed the per-
token likelihoods (Table 8). While these do show
some decrease in likelihood in some cases, the cap-
tions at the end of training are generally of compa-
rable likelihood to the ground truth. In this instance,
we notice that the one COCO seed in which the cap-
tions repeated actually exhibits greater per-token
likelihood—after a few repeats, the LM starts to es-
timate further repeats to be very likely. This could
potentially be a concern for using LM likelihoods
as a metric for structural drift more broadly (cf.
Lee et al., 2019). However, in most runs our length
penalty prevents repetitions or long captions, as
noted above.

In summary, these results indicate that language
has not drifted far in most conditions and for most
random seeds. We attribute this to some of the same
factors that help prevent other types of language
drift: finetuning a small part of our speaker (just the
adapter), keeping the listener models frozen (thus

avoiding co-adaptation), using a length penalty (see
above discussion), and using contrastive reward
(crucial for combating semantic drift, see Section
4.4.2). If necessary, language drift could potentially
be reduced further by using a KL-divergence loss to
the distribution of outputs from the base captioning
model (as done by Lazaridou et al. (2020)).

F Full ablation results

In this section we show the full quantitative abla-
tion results, in Tables 9, 10, 11, and 12.

3900



tcFMNIST, Crop cFMNIST, Blur cFMNIST, Grayscale COCO, Grayscale
Ground truth -5.823 -7.666 -7.666 -4.772

“Best” language prompt -4.680 -4.371 -4.076 -4.051
Start of training -4.160 -4.127 -4.127 -4.463
End of training -7.143 -8.383 -4.234 -2.509

Table 8: Average language model per-token log-likelihoods for ground truth, start-of-training, and end-of-training
captions on test images.

Condition
Bottom-left object

prevalence
Top-right object

prevalence

No training 0.290 0.312
Single listener 0.475± 0.024 0.473± 0.020

Non-contrastive 0.360± 0.005 0.120± 0.011
Full training 0.602± 0.066 0.135± 0.017

Table 9: Metrics (with 95% CI) for ablations on the tcFMNIST dataset and the (identity, crop) pair of listener
transformations. Both non-contrastive and full training lead to decreased use of top-right keyword, but only full
training accurately specializes to using the bottom-left keyword.

Condition
FMNIST
keyword

prevalence

Object
prevalence

Color
prevalence

Color
diversity

No training 0.644 0.442 0.556 0.014
Single listener 0.754± 0.020 0.564± 0.013 0.953± 0.022 0.016± 0.000

Non-contrastive 0.997± 0.004 0.710± 0.086 0.606± 0.833 0.000± 0.000
Full training 0.600± 0.044 0.418± 0.038 0.004± 0.008 0.001± 0.002

Table 10: Relevant metrics (with 95% CI) for various ablations on the cFMNIST dataset and the (identity, blur)
pair of listener transformations. Non-contrastive rewards perform better than contrastive rewards in this setting, as
evidenced by increased use of correct keywords, and decreased use of meaningful colors (diversity of colors goes to
0).

Condition
Color

prevalence
Color

diversity

FMNIST
keyword

prevalence

Object
prevalence

No training 0.556 0.014 0.644 0.442
Single listener 0.953± 0.022 0.016± 0.000 0.754± 0.020 0.564± 0.013

Non-contrastive 1.000± 0.000 0.005± 0.003 0.000± 0.000 0.000± 0.000
Full training 1.000± 0.000 0.015± 0.002 0.000± 0.000 0.000± 0.000

Table 11: Relevant metrics (with 95% CI) for various ablations on the cFMNIST dataset and the (identity, grayscale)
pair of listener transformations. Full training performs best as color prevalence and diversity increase, while keyword
prevalence decreases to 0.
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Color prevalence Color diversity

No training 0.027 0.022
Single listener 0.102± 0.080 0.030± 0.007

Non-contrastive 0.932± 0.256 0.018± 0.005
Full training 0.988± 0.023 0.033± 0.027

Table 12: Relevant metrics (with 95% CI) for various ablations on the COCO dataset and the (identity, grayscale)
pair of listener transformations. Full training performs best as it has highest color prevalence and diversity.

3902



G Extended results on caption prefixes

In Tables 13-16, we show all caption prefixes we
experimented with, as well as the relevant metrics
for each. For each table, we sort prefixes from
worst (top of table) to best (bottom of table) based
on the most task-relevant keyword metric (third
column in each table). We added a column for
“Score difference” which is the average difference
in ALIGN match scores from each listener for the
cued image (it corresponds to the reward that is
seen in the non-contrastive reward baseline). Of
course, no training occurs, as the caption prefixes
just explore how well the speaker can do by just
explicit prompting. We also use to indicate a
space at the end of the caption. For most prefixes,
we see a large difference between adding this space
and not adding it, which is just another testament
to how brittle prompt engineering can be.
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Caption prefix Accuracy
differ-
ence

Score
differ-
ence

Bottom-
left
object
preva-
lence

Top-
right
object
preva-
lence

FMNIST
keyword
preva-
lence

the bottom left of this picture is 0.0121 0.0061 0.0181 0.0193 0.0502
the bottom left of this image is 0.0052 0.0065 0.0241 0.0277 0.0794

in the bottom left of this image, there is 0.0512 0.0112 0.0663 0.0719 0.1688
bottom left of this image: 0.0155 0.0096 0.0711 0.0798 0.2604

the bottom left of this image shows 0.0338 0.0137 0.0993 0.1212 0.3179
bottom left: 0.0418 0.0439 0.1154 0.1274 0.4156

in the bottom left of this image, there is 0.0681 0.0262 0.2711 0.2954 0.6176
the bottom left of this image is 0.1085 0.0293 0.3027 0.3193 0.8302
the bottom left of this picture is 0.1067 0.0365 0.3189 0.3420 0.8320

the bottom left of this image shows 0.1256 0.0515 0.3428 0.3342 0.6091
bottom left of this image: 0.1113 0.0340 0.3561 0.3772 0.7671

bottom left: 0.1093 0.0702 0.3597 0.3770 0.7886

Table 13: Various metrics for prompted generation of base captioning model on tcFMNIST. Accuracy and score
difference are calculated on the (unperturbed, crop) pair of listeners.

Caption prefix Accuracy
differ-
ence

Score
differ-
ence

Object
preva-
lence

FMNIST
keyword
preva-
lence

Color
preva-
lence

Color di-
versity

the clothing item in this image is 0.0174 0.0491 0.0685 0.1390 0.0801 0.0083
an image of an object: 0.0265 0.0060 0.0743 0.0981 0.0755 0.0103

a black and white image of 0.0493 -0.0071 0.1065 0.1439 1.0000 0.0044
the item in this image is 0.0335 0.0254 0.1147 0.1493 0.0532 0.0083

the object in this image is 0.0361 -0.0008 0.1321 0.1664 0.0791 0.0104
item: 0.0280 0.0433 0.1627 0.2210 0.3257 0.0131

object: 0.0558 -0.0017 0.2274 0.3169 0.3764 0.0141
a picture of 0.0664 0.0044 0.2350 0.3213 0.4122 0.0155
an image of 0.0824 0.0103 0.2646 0.3684 0.4778 0.0157

a black and white image of 0.1170 0.0362 0.3895 0.5977 1.0000 0.0050
the item in this image is 0.0988 0.0449 0.4014 0.5656 0.3498 0.0136

a picture of 0.0997 0.0518 0.4363 0.6556 0.4765 0.0165
an image of 0.1059 0.0466 0.4428 0.6638 0.5181 0.0163

the object in this image is 0.0885 0.0285 0.4438 0.6146 0.4448 0.0155
an image of an object: 0.0967 0.0363 0.4523 0.6343 0.4434 0.0156

object: 0.1183 0.0018 0.4545 0.6533 0.5643 0.0143
item: 0.1015 0.0528 0.4620 0.6731 0.5747 0.0134

the clothing item in this image is 0.1086 0.0546 0.4692 0.8643 0.5157 0.0142

Table 14: Various metrics for prompted generation of base captioning model on cFMNIST. Accuracy and score
difference are calculated on the (unperturbed, blur) pair of listeners.
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Caption prefix Accuracy
differ-
ence

Score
differ-
ence

Color
preva-
lence

Color di-
versity

Object
preva-
lence

FMNIST
keyword
preva-
lence

color color color: 0.0180 0.0264 0.1421 0.0055 0.0330 0.0433
the colors in this image are 0.0139 0.0341 0.1697 0.0082 0.0040 0.0045

a picture with the color 0.0584 0.0410 0.2206 0.0139 0.2622 0.3536
a picture with the color 0.0851 0.0507 0.2745 0.0144 0.3423 0.4613
a picture with color 0.0347 0.0395 0.2891 0.0141 0.1583 0.2319

color: 0.0507 0.0320 0.3000 0.0060 0.0387 0.0501
the color of this image is 0.0318 0.0341 0.3648 0.0145 0.0058 0.0064
an image with the color 0.0782 0.0302 0.3862 0.0153 0.2468 0.3197
an image with the color 0.0952 0.0553 0.3905 0.0153 0.2743 0.3579
an image with color 0.0268 0.0308 0.4225 0.0136 0.1661 0.2413

the colors in this image are 0.0587 0.0511 0.4336 0.0063 0.0490 0.0547
a picture with color 0.0452 0.0398 0.4396 0.0111 0.1848 0.2455
colors in image: 0.0097 0.0397 0.5018 0.0020 0.0002 0.0004
color color color: 0.0764 0.0572 0.5512 0.0033 0.1996 0.2535

an image colored 0.0919 0.0426 0.5901 0.0123 0.1259 0.1593
an image with color 0.0504 0.0410 0.6026 0.0112 0.1863 0.2555

an image colored 0.1303 0.0631 0.8600 0.0101 0.0200 0.0271
the color of this image is 0.1735 0.0667 0.9010 0.0198 0.0002 0.0002

color: 0.1180 0.0583 0.9705 0.0040 0.1110 0.1354
colors in image: 0.0477 0.0428 0.9994 0.0012 0.0000 0.0000

Table 15: Various metrics for prompted generation of base captioning model on cFMNIST. Accuracy and score
difference are calculated on the (identity, grayscale) pair of listeners. For reference, the color diversity of the fully
specialized speaker in this case is 0.015, which is on par with the best color diversity values across prompts.
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Caption prefix Accuracy difference Score difference Color prevalence Color diversity
an image colored 0.0016 0.0253 0.0109 0.0110

a picture with the color 0.0055 0.0136 0.0117 0.0144
a picture with color -0.0039 0.0023 0.0172 0.0155

the color of this image is -0.0094 -0.0071 0.0195 0.0180
color color color: -0.0086 0.0045 0.0219 0.0172
an image colored -0.0195 0.0166 0.0242 0.0190

an image with color -0.0141 -0.0010 0.0242 0.0182
the colors in this image are -0.0008 0.0131 0.0312 0.0171

colors in image: -0.0055 -0.0023 0.0344 0.0128
an image with the color 0.0000 0.0115 0.0375 0.0221
a picture with the color 0.0031 0.0040 0.0383 0.0223

color: 0.0078 0.0079 0.0508 0.0224
an image with the color 0.0055 -0.0021 0.0586 0.0261

color color color: -0.0016 0.0071 0.0906 0.0278
a picture with color -0.0016 0.0053 0.0914 0.0165

the colors in this image are -0.0156 0.0091 0.1172 0.0317
the color of this image is -0.0102 0.0012 0.1352 0.0362

an image with color 0.0008 0.0029 0.1477 0.0167
colors in image: 0.0188 0.0052 0.3352 0.0179

color: 0.0125 0.0047 0.5406 0.0304

Table 16: Various metrics for prompted generation of base captioning model on COCO. Accuracy and score
difference are calculated on the (identity, grayscale) pair of listeners. For reference, the color diversity of the fully
specialized speaker in this case is 0.033, which is on par with the best color diversity values across prompts.
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H Sample hands across experimental
conditions

In this section we present representative Dixit
hands with the corresponding captions produced
by the specialized speaker (after training) in our
four main conditions, along with the corresponding
distractors, listener match scores and rewards. We
chose the speaker seed which achieved the high-
est overall score in that condition (though results
were generally comparable across seeds), and to
avoid cherry-picking examples we show the first
four evaluation hands (from our randomly ordered
evaluation) that contained a distinct target object
(for example, in the crop condition, the first four
that had a distinct object category in the bottom
left).

We present samples for the different transforma-
tion conditions in Figures 6-9. Overall, the speaker
adapts to the target difference between the listen-
ers, and exhibits relatively mild language drift—
the utterances generally stay grounded and human-
interpretable, but in some cases exhibit some repe-
tition or odd grammar. Some potential methods for
further reducing these issues are noted above.

Below-chance performance for the grayscale
listener: In Figure 4c, the grayscale listener
achieves below-chance performance. We note from
the samples (Figure 8) that the speaker sometimes
uses the word “background” in addition to using

a color. This noun is not informative (so does not
notably hurt the listener that can see color), but
we speculate that it may throw off the second lis-
tener as some images have more background than
others (e.g. a grayscale image of a high heel has
more black than a grayscale image of a jacket).
Note that the speaker does not see the distractors,
so it can’t purposefully consider the distractors to
exploit this effect. This effect appears to be an ar-
tifact of the particular dataset we used, but does
illustrate another intriguing way the speaker can
exploit differences between listeners.
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Figure 6: Speaker samples and listener results on tcFMNIST, after the speaker has specialized to the second listener
having the crop transformation. The language generally specifies the bottom left object, with a grounding failure in
the second-to-last case (or perhaps a reference to boat sandals?).
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Figure 7: Speaker samples and listener results on cFMNIST, after the speaker has specialized to the second listener
having the blur transformation. The speaker generally ignores colors and names the object as intended, but with
moderate language degradation in some cases.
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Figure 8: Speaker samples and listener results on cFMNIST, after the speaker has specialized to the second listener
having the grayscale transformation. The speaker consistently names the correct color, though it occasionally also
repeats “background”.
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Figure 9: Speaker samples and listener results on COCO, after the speaker has specialized (on COCO) to the second
listener having the grayscale transformation. The speaker generally names one or two plausible colors for the
images; but these are less discriminative in COCO than in the above results. There is also some minor language
degradation in some cases (e.g. “and" at the end of a caption).
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Abstract

Large multilingual models have inspired a new
class of word alignment methods, which work
well for the model’s pretraining languages.
However, the languages most in need of
automatic alignment are low-resource and,
thus, not typically included in the pretraining
data. In this work, we ask: How do modern
aligners perform on unseen languages, and
are they better than traditional methods? We
contribute gold-standard alignments for Bribri–
Spanish, Guarani–Spanish, Quechua–Spanish,
and Shipibo-Konibo–Spanish. With these,
we evaluate state-of-the-art aligners with and
without model adaptation to the target lan-
guage. Finally, we also evaluate the resulting
alignments extrinsically through two down-
stream tasks: named entity recognition and
part-of-speech tagging. We find that although
transformer-based methods generally outper-
form traditional models, the two classes of
approach remain competitive with each other.

1 Introduction

Word alignment is a valuable tool for extending
the coverage of natural language processing (NLP)
applications to low-resource languages through,
e.g., statistical machine translation (SMT; Koehn
and Knowles, 2017; Duh et al., 2020) or anno-
tation projection (Yarowsky et al., 2001; Smith
and Smith, 2004; Nicolai et al., 2020; Eskan-
der et al., 2020). The traditional approach for
generating alignments has been with statistical
methods such as Giza++ (Och and Ney, 2003)
and FastAlign (Dyer et al., 2013), which provide
strong alignment quality while remaining quick
and lightweight to run. Recently, new methods
have been proposed which extract alignments from
massive pretrained multilingual models, and out-
perform these longstanding methods (Dou and
Neubig, 2021).

Our code and data can be found at https://github.
com/abteen/alignment.
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Figure 1: A word alignment between Quechua and
Spanish (shaded), as well as mBERT+TLM’s predicted
alignment (marked by ×’s). FastAlign and Giza++ can-
not take advantage of surface features of proper names
and borrowings. We evaluate alignments intrinsically
via AER and extrinsically with POS-tagging and NER
models learned on annotations projected across align-
ments from Spanish.

However, results on other NLP tasks, such as
part-of-speech (POS) tagging and named-entity
recognition (NER), have shown that, while pre-
trained models generally work well out-of-the-box
for high-resource languages, performance is far
lower for low-resource ones, particularly those
which are unseen during pretraining (Pires et al.,
2019; Wu and Dredze, 2020; Muller et al., 2021;
Lee et al., 2022). Models can be adapted (Guru-
rangan et al., 2020; Chau et al., 2020) to improve
performance, but this comes with a large compu-
tational cost. Given these two considerations, for
unseen low resource languages it remains unclear
(1) whether modern neural approaches based on
adapted pretrained models generate higher-quality
alignments than traditional approaches and (2) if
so, whether the quality difference is severe enough
to justify the additional computational cost.

We investigate this by collecting gold-standard
alignments for Bribri, Guarani, Quechua, and
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Shipibo-Konibo. These languages are low-
resource and unrepresented in the pretraining data
of popular models—a relevant real-world scenario.
In addition to intrinsically evaluating alignment
quality, we measure the downstream utility of each
method for training POS-tagging and NER models
by annotation projection.

We find traditional and neural methods to
be competitive, but pretrained models result in
slightly lower alignment error rates and stronger
downstream task performance, even for initially
unseen languages. Through further analysis, we
also find that adaptation may be a more reliable ap-
proach given minimally available resources. Taken
together, these results indicate that alignment from
multilingual models can indeed be a valuable tool
for low-resource languages, but traditional ap-
proaches continue to be a strong option and should
still be considered for practical applications.

2 Related Work

Alignment Word alignment is a long studied
task, with origins in the IBM models for statistical
machine translation (Brown et al., 1993), which
are the basis of Giza++ (Och and Ney, 2003) and
FastAlign (Dyer et al., 2013). As these approaches
can only generate one-to-many alignments, mod-
els are trained in both forward and reverse di-
rections (reversing the role of source and target),
and final alignments are created via symmetriza-
tion heuristics (Och and Ney, 2000; Koehn et al.,
2005); other approaches explicitly symmetrize dur-
ing training (Matusov et al., 2004; Liang et al.,
2006).1 While these models rely on only position
and word identity information, subword informa-
tion can be integrated without requiring costly in-
ference (Berg-Kirkpatrick et al., 2010), leading to
better parameter estimation for rare words. Align-
ments can also be extracted from neural translation
models (Chen et al., 2020; Zenkel et al., 2020).

Word alignment also enables annotation projec-
tion (Yarowsky and Ngai, 2001; Yarowsky et al.,
2001) which can offer strong performance, particu-
larly for low-resource languages (Buys and Botha,
2016; Ortega and Pillaipakkamnatt, 2018; Nicolai
and Yarowsky, 2019; Nicolai et al., 2020; Eskan-
der et al., 2020).

1The poor estimation of rare words’ translation parameters
also motivates symmetrization; without this, rarely observed
words become garbage collector words (Moore, 2004).

Multilingual Transformer Models Pretrained
multilingual models (Devlin et al., 2019; Conneau
and Lample, 2019; Conneau et al., 2020; Xue et al.,
2021) have become the de facto standard approach
for cross-lingual transfer. In general, these mod-
els are an extension of their monolingual variants,
created by including data from many languages in
their pretraining. They rely on a subword vocab-
ulary (Kudo and Richardson, 2018) which jointly
spans all of the pretraining languages. Models
are pretrained using a masked language modeling
(MLM) objective and a translation language mod-
eling (TLM; Conneau and Lample, 2019) objec-
tive that uses parallel sentences. Outside of con-
tinued pretraining (Gururangan et al., 2020), mod-
els can be adapted using Adapters (Pfeiffer et al.,
2020) or through vocabulary adaptation (Wang
et al., 2020; Hong et al., 2021). Word alignment
methods which depend on these models have also
been proposed (Jalili Sabet et al., 2020; Nagata
et al., 2020); we focus on AWESoME align (Dou
and Neubig, 2021) because it outperforms other
unsupervised methods.

3 Experiment 1: Intrinsic Evaluation

3.1 Experimental Setup
Languages We focus on four Indigenous lan-
guages spoken in the Americas for our experi-
ments. Bribri (bzd) is a tonal language in the
Chibchan family spoken by approximately 7000
people in Costa Rica. Guarani (gn) is a polysyn-
thetic language in the Tupi–Guarani family spo-
ken by around 6 million people across South
America. Quechua (quy) is a family of Indige-
nous languages—from which we study Quechua
Chanka—spoken across the Peruvian Andes by
over 6 million people, and Shipibo-Konibo (shp)
is a language spoken by around 30,000 people in
Peru, Bolivia, and Brazil (Cardenas and Zeman,
2018). The latter three languages are agglutina-
tive.

Training Data For training, we use the parallel
data between Spanish and our languages described
by Mager et al. (2021).2 We note that there is
a distinct difference in the amount of unlabeled
data available within the four languages: Guarani
and Quechua have considerably more data avail-
able. These two languages also have monolingual

2Although parallel, digitized Bibles exist for over 1600
languages (McCarthy et al., 2020), groups may object to an-
notating the Bible for historical or cultural reasons.
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text available in Wikipedia, which we extract using
WikiExtractor (Attardi, 2015). The exact number
of parallel and monolingual sentences for all lan-
guages is shown in Table B.1.

Evaluation Data To create gold standard align-
ments for evaluation, we sample multi-way paral-
lel examples from AmericasNLI (Ebrahimi et al.,
2022), allowing for multi-parallel alignments (Xia
and Yarowsky, 2017) across all languages. Sam-
ples for the development and test sets are taken
from their respective splits in the AmericasNLI
dataset. Development examples were collected
first, manually checked, and corrected. Examples
with misalignments in punctuation, numbers, or
named entities were not used. After a period of
development with this data, the test set of 50 ex-
amples was collected and manually verified. An-
notations were collected using JHU’s open-source
Turkle platform.3 We ask annotators to only mark
sure alignments. Additional discussion on data
collection and the test set can be found in §6.

Metrics We evaluate automatic alignments via
alignment error rate (AER; Och and Ney, 2000).
Because we only collect sure alignments, this is
equivalent to the balanced F-measure (Fraser and
Marcu, 2007). We give additional metrics in Ta-
ble C.3.

3.2 Models
Traditional Aligners We use Giza++ (Och and
Ney, 2003) and FastAlign (Dyer et al., 2013) as our
traditional aligners. Giza++ is based on IBM Mod-
els 1–5 (Brown et al., 1993). FastAlign (Dyer et al.,
2013) is a re-parameterization of IBM Model 2.
We use the implementation and hyperparameters
of Zenkel et al. (2020), which relies on MGiza++
(Gao and Vogel, 2008) and the standard FastAlign
package. Both approaches run on CPUs, and their
training time ranges between 6 seconds to 3 min-
utes for FastAlign, and 43 seconds to 22 minutes
for Giza++. We use the union of the forward and
reverse alignments, as this symmetrization heuris-
tic offers the best result for all languages on the
development set. We show the performance of
other heuristics in Table C.2.

Neural Aligners AWESoME (Dou and Neubig,
2021) identifies alignment links by considering co-
sine similarities between hidden layer representa-
tions of tokens in a neural encoder. We consider

3https://github.com/hltcoe/turkle

Model Method BZD GN QUY SHP AVG.

AWESoME BL 70.03 63.13 67.02 60.41 65.15
(mBERT) +MLM-T 68.95 49.68 46.59 58.17 55.85

+MLM-ST 70.63 50.25 42.52 58.66 55.52
+TLM 58.43 43.10 36.96 52.34 47.71

AWESoME BL 80.15 73.11 75.24 69.21 74.43
(XLM-R) +MLM-T 76.89 65.44 53.65 65.16 65.29

+MLM-ST 77.53 64.55 52.90 66.56 65.39
+TLM 74.90 58.84 43.25 63.48 60.12

FastAlign Union 51.40 43.52 54.06 54.67 50.91
Giza++ Union 55.61 49.92 66.01 60.84 58.10

mBERT +MLM-WT - 40.00 46.00 - 43.00
XLM-R +MLM-WT - 52.27 48.83 - 50.55

Table 1: AER, in percentages, for each language and
method. The best overall result for each language is
bolded, while the best model within each method is
underlined. We separate results which use Wikipedia,
as they are not directly comparable.

two such encoders: mBERT (Devlin et al., 2019)
and XLM-R (Liu et al., 2019), and we use the
default AWESoME configuration to extract align-
ments. We give layer-by-layer alignment perfor-
mance in Figure C.1.

Model Adaptation We experiment with three
adaptation schemes based on continued pretrain-
ing (+TLM, +MLM-T, and +MLM-ST) which rely
on unlabeled data and further train the model using
MLM (Gururangan et al., 2020) before alignments
are extracted. We focus on these objectives as they
have been used by prior work for general model
adaptation, and they work well in situations with
limited resources (Ebrahimi and Kann, 2021). As
we have access to bitext between Spanish and the
target languages, for the +TLM scheme each ex-
ample is the concatenation of a Spanish sentence
with its translation. For +MLM-T we adapt using
solely the target side of the available data, and for
+MLM-ST we adapt on both the source and target;
however, this data is treated as monolingual data
and not explicitly aligned. +MLM-WT denotes tar-
get language adaptation which includes Wikipedia
data. The duration of adaptation depends on the
GPU and method used; it ranges from around 6
minutes for Bribri to 4 hours for Quechua. We
provide additional training details in Appendix A.

3.3 Results
Traditional vs. Neural Aligners We present re-
sults in Table 1. The best traditional method is
FastAlign, and the best neural approach is with
mBERT+TLM. Comparing the two, we see that
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the lowest error rate is achieved with the neu-
ral approach for all languages except for Bribri,
where FastAlign offers 7.03% absolute improve-
ment. Of the other three languages, the perfor-
mance for two is close: the difference in perfor-
mance for Guarani is only 0.42% and 2.33% for
Shipibo-Konibo. For Quechua, +TLM improves
over FastAlign by 17.10%.

Comparing Adaptation Strategies With
mBERT, +MLM-T improves performance over
the non-adapted baseline by 9.30% on average,
with +MLM-ST increasing this gain to 9.63%
and +TLM offering the highest improvement
of 17.44%, consistent with prior work on seen
languages (Dou and Neubig, 2021). Per language,
the largest and smallest gains are for Quechua
(30.06%) and for Shipibo-Konibo (8.07%);
intuitively, gains from adaptation are proportional
to the size of the adaptation data. For XLM-R,
we again see relative gains from adaptation, with
+TLM offering the highest performance increase.

Additional Monolingual Data Neural ap-
proaches can easily benefit from additional
monolingual data. Adding Wikipedia data
results in the highest performance for Guarani,
outperforming the previous best approach by
3.1%. In contrast, while the additional data
for Quechua does help relative to +MLM-T, it
does not outperform +TLM. This difference in
performance may be due to the relative sizes of
the additional data; the Guarani Wikipedia has
1.3× as many tokens as the target-side parallel
data, while the Quechua Wikipedia only has 0.5×
as many.

4 Experiment 2: Extrinsic Evaluation

We further compare aligner performance extrinsi-
cally by evaluating downstream task performance
when using a projected training set. We consider
two tasks: NER and POS tagging.

4.1 Experimental Setup

Data Due to the limited availability and quality
of evaluation datasets, we focus on Guarani for
this experiment. We use the test set provided by
Rahimi et al. (2019) for NER and Universal De-
pendencies (Nivre et al., 2020) for POS. For exper-
iments where we finetune directly on English or
Spanish, we use the provided training data.

Model Train Source POS NER

mBERT en 10.36 46.64
es 19.82 49.18

+TLM es 36.94 49.62
+MLM-T es 34.69 55.25
+MLM-ST es 33.78 52.34

mBERT mBERT 31.53 47.54
+MLM-T 38.29 47.97
+MLM-ST 42.34 49.80
+TLM 40.99 49.80
FastAlign 37.84 46.55
Giza++ 39.19 48.33

Table 2: POS tagging (accuracy) and NER results (F1)
for Guarani. Model denotes if baseline or adapted
mBERT is used. Train Source defines the training data
used for finetuning; language codes indicate training
on original data, while alignment methods denote how
a projected training set was created.

Annotation Projection To create the projected
training sets, we first annotate the (unlabeled)
Spanish parallel data with Stanza (Qi et al., 2020)
and generate bidirectional alignments using each
method. We then project the tags from Spanish
to Guarani using type and token constraints as de-
scribed by Buys and Botha (2016).

Models For baseline performance, we finetune
mBERT on the provided English and Spanish train-
ing sets for each task. Additionally, we also fine-
tune adapted versions of mBERT on Spanish train-
ing data – English is omitted as performance is
worse and adaptation data is in Spanish. Finally,
we evaluate performance when finetuning mBERT
on the training sets created through projection.

4.2 Results

We present results for both tasks in Table 2.

POS For POS tagging, the baseline zero-shot
performance is extremely poor, and we see a mini-
mum increase of 11.71% accuracy when using any
projection method. Giza++ outperforms FastAl-
ign, as well as projection with +MLM-T, however
the best performance is achieved with +MLM-ST,
with +TLM offering the second best result. While
the ordering of methods changes, the best perfor-
mance is still achieved with the neural approaches,
consistent with the results of Experiment 1.

NER For NER, baseline performance is high: in-
specting the data shows that many entities have En-
glish or Spanish names, and as multilingual mod-
els already have knowledge of these two languages,
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(a) Subset Analysis (b) Length Analysis

Figure 2: Plots for data analysis. In Figure 2b, a vertical line denotes the average example length for Bribri.

standard aligners with projection may not effec-
tively leverage surface word-form clues. How-
ever, they remain a valuable indication of align-
ment quality. Among the projection-based ap-
proaches, we find that using Giza++ again outper-
forms +MLM-T and FastAlign but falls short of
+MLM-ST and +TLM.

Overall, considering what both downstream
tasks indicate regarding alignment quality, neural
models adapted using Spanish and target-language
data—either sentence-aligned or unaligned—
consistently outperform traditional methods.

5 Analysis

As data for low-resource languages often varies
considerably in both amount and length, we con-
sider two additional analysis experiments which
control for these factors. We focus solely on
Quechua, as it has the most parallel data available.
Results are presented in Figure 2 with numerical
results in Tables C.4 and C.5.

Subset Analysis For this analysis, we ask how
the performance of neural alignment depends on
the amount of data and with how much data it sur-
passes traditional approaches. We subsample the
adaptation data, and use this to extract alignments
using both FastAlign and AWESoME. Results for
this experiment can be seen in Figure 2a. For ref-
erence, we also plot the AER obtained when using
FastAlign on all the available training data as an
upper bound for the performance of the traditional
approaches. In the smallest extreme, all methods
are roughly equivalent. However, as the number of
examples increases, adaptation using +TLM and
+MLM-WT improves at a faster rate than other ap-
proaches: with only 6400 sentence pairs, these ap-
proaches overtake the best expected performance
of FastAlign.

Length Analysis Aligner performance may not
only be affected by the total number of examples
available, but also by the length of these examples.
This is doubly relevant for low-resource languages,
as resources may be limited to sources which do
not contain long (or even complete) sentences. To
see how the performance of each method may vary
when faced with examples of different lengths, we
sort the unlabeled data by the number of charac-
ters, and partition the examples in groups of 7508,
the total number of examples available for Bribri.
We choose this amount as it is representative how
much data may be available for other low-resource
languages. As before, the expected upper bound
FastAlign performance is denoted. For the short-
est group, all methods are similar; however, AWE-
SoME alignments improve with longer sequences,
with +TLM showing the quickest decrease in er-
ror rate. We attribute the improved AER when
adapting using longer sequences to the increased
number of tokens available for adaptation. For
Quechua, the performance of AWESoME align is
sensitive to both the number of examples and se-
quence length. In contrast, FastAlign only shows
a small improvement as example length increases.

6 Conclusion

In this work, we have investigated the perfor-
mance of modern word aligners versus classical ap-
proaches for languages unseen to pretrained mod-
els. While classical methods remain competitive,
the lowest AER on average is achieved by modern
neural approaches. However, using these models
comes with a larger computational cost. There-
fore, the trade-off between training requirements
and overall performance must be considered. If
access to computing resources is limited or train-
ing time is a factor, classical approaches remain a
viable approach which should not be discounted.
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Ethics and Limitations

Ethics Statement
When collecting data in an Indigenous language,
it becomes vital that the process does not exploit
any member of the community or commodify the
language (Schwartz, 2022). Further, it is important
that members of the community benefit from the
dataset. While the creation of a word alignment
dataset will not directly impact community mem-
bers, we believe that it can contribute to the devel-
opment of tools, such as translation systems, that
can be directly beneficial, and that increasing the
visibility of these languages within the research
community will further spur the creation of useful
systems. Our annotations were created by either
co-authors of the paper or by native speakers of the
languages, who were compensated at a rate chosen
with the minimum hourly salary in their respective
countries taken into account.

Limitations
Test Set Size One limitation of our work is the
size of the evaluation set used for our main re-
sults. This arises from the general difficulty in
collecting annotations and data for low-resource,
and particularly Indigenous languages. The size
of the test set was chosen to balance the trade-off
between the cost of annotation collection and ex-
perimental validity. Fortunately, for the task of
word alignment the main metric used to summa-
rize performance—alignment error rate—does not
depend directly on the number of examples in the
evaluation set, but the total number of alignments,
of which there are a sufficiently high number in
our evaluation set. However, even when only con-
sidering the number of examples, our test set is
still within the same order of magnitude as other
widely used word alignment evaluation sets, such
as the Romanian–English test set which consists of
248 examples (Mihalcea and Pedersen, 2003), and
the English–Inuktitut and English–Hindi test sets
which have 75 and 90 examples each, respectively
(Martin et al., 2005).

We run a small experiment to gain insight into
how much precision is lost when using a test set
of size 50, versus 248, which we choose as this is
the size of the widely used Romanian–English test
set mentioned above. We take 100 independent
samples without replacement from the Romanian-
English test set, each of size 50, and evaluate the
performance of FastAlign and AWESoME align.

For FastAlign, we use the training data defined by
Mihalcea and Pedersen (2003), and for Awesome,
we use mBERT with no additional finetuning. The
distributions of AER are shown in Figure A.1, with
summary statistics in Table A.1. We can see that
the standard deviation of both distributions is rela-
tively low, around 2%. At the extremes, we see a
difference of −4.70% and +4.90%, and −4.28%
and +6.4% for FastAlign and AWESoME align
respectively, between the min/max values of our
distribution as compared to the whole set AER.
Considering these points, we believe that the size
of our evaluation set does not invalidate our experi-
mental results and main conclusions; however, we
note that additional care must be taken when com-
paring specific models whose performances are
close together, particularly when this performance
is low or close to random.

Test Set Domain Other limitations of our work
arise from the sources of data used. Annotations
were done using sentences sampled from Ameri-
casNLI, which itself is a translation of XNLI. As
such, any errors from the original XNLI dataset,
which may have propagated through translation,
will persist in our dataset as well (annotators were
given the option to modify target language sen-
tences to correct any errors). Furthermore, due to
translation, the sentences may not be directly rep-
resentative of a natural utterance which would be
spoken by members of the communities.

Language Selection The languages we high-
light in this work are true low-resource languages,
and present challenges commonly faced by other
low-resource languages. Namely, these languages
have a relatively small amount of easily avail-
able and clean unlabeled data, are typically un-
seen from most released pretrained models, and
are morphologically different from typically used
source languages. However, one feature of these
languages which may inflate aligner performance
is the language script: all of our target languages
share the same script with the two source lan-
guages which we use. This may lead to higher
occurrences of shared words or entities, making
alignment easier. As such, our results may not
generalize fully to other low-resource languages
which have a different script from the source lan-
guages, or which may have a script which is un-
seen to the underlying pretrained model.
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A Training Details and Hyperparameters

We compare two data loading strategies for adaptation: a naïve approach where each example in the
dataset represents an example in the loaded training examples, and a packing strategy following the
FULL-SENTENCES approach of Liu et al. (2019). We use the hyperparameters described by Ebrahimi
et al. (2022) – a learning rate of 2e-5, batch size of 32, and warmup ratio of 1% – however due to the
different loading strategy we tune the total amount of training time. We experiment with 40 and 80
epochs of training, using the alignment development set to select the final hyperparameters. For both
MLM-T and MLM-ST we find that packing sequences yields better results, however for +TLM we use
the naïve strategy to preserve sentence alignment. We use packing by default for Wikipedia data, due to
the length of extracted documents. For all adaptation methods we find that training for 80 epochs is best,
except for +MLM-ST, which we train for 40. We train with 1 Nvidia A100 or 2 V100 GPUs. Due to the
computational cost associated with pretraining, we only conduct one model run for each language and
method. We pretrain our models using Huggingface (Wolf et al., 2020).

Training Time As mentioned in Section 3.2, for adaptation the training duration depends on the GPU
and method used, with times ranging from around 6 minutes for Bribri to 4 hours for Quechua. For the
statistical approaches, both run solely on CPUs, and their training time ranges between 6 seconds to
3 minutes for FastAlign, and 43 seconds to 22 minutes for Giza++. However, GPU availability is not
always certain – to roughly compare training times given a more restricted setting, we run our adaptation
experiments without access to any GPUs, and compute an estimate for the total training time using only
CPUs as approximately 2 weeks.

Whole Set AER Avg. AER AER Std. Min AER 25% 50% 75% Max AER
FastAlign 35.00 35.09 1.94 30.30 33.70 35.00 36.23 39.90
Awesome 28.23 28.26 2.04 23.95 26.66 28.12 29.71 34.63

Table A.1: Summary statistics for subsample AER distribution.

22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0
AER

FastAlign

Awesome

Violin plot of subsample AER

Figure A.1: Distribution of AER when using FastAlign and AWESoME align to evaluate subsets of size 50 taken
from a complete evaluation set of size 248. Quartiles are displayed using dashed lines, while inverted colors
represent the AER calculated when evaluating on the complete set.
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B Dataset Features

Feature BZD GN QUY SHP

Number of examples (Parallel) 7,508 26,032 121,064 14,592
Number of examples (Wiki) - 4721 22610 -

Number of tokens - MLM-T 123,992 1,104,645 3,912,582 179,451
Number of tokens - TLM 194,798 2,006,996 6,697,771 328,427
Number of tokens - Wiki - 1,460,240 2,023,297 -

Number of dev examples 50 48 45 46
Number of test examples 50 50 50 50

Table B.1: Features of the data used for our experiments.

C Supplementary Results

Model Method BZD GN QUY SHP

AWESoME BL 65.38 58.51 63.98 62.80
+mBERT +MLM-T 64.26 43.29 39.10 66.44

+MLM-ST 65.43 43.46 37.20 65.63
+TLM 54.25 34.62 30.38 62.10

AWESoME BL 76.29 71.85 71.53 73.96
+XLM-R +MLM-T 72.73 57.50 43.30 69.25

+MLM-ST 73.08 60.28 44.88 70.48
+TLM 71.88 49.76 36.11 69.23

FastAlign Union 47.39 39.78 58.37 57.91
Giza++ Union 51.03 62.07 47.18 64.98

Table C.1: Development AER for each language and method.
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Method Heuristic BZD GN QUY SHP

FastAlign grow-diagonal-final 54.56 49.64 60.51 56.11
grow-diagonal 55.36 50.41 63.81 56.87
intersection 57.11 52.89 66.92 61.67
union 51.40 43.52 54.06 54.67
reverse 52.21 51.51 61.27 58.41

Giza++ grow-diagonal-final 55.51 53.38 75.29 62.72
grow-diagonal 59.33 58.41 80.06 69.53
intersection 63.71 64.95 82.55 77.41
union 55.61 49.92 66.01 60.84
reverse 56.43 62.20 76.05 72.39

Table C.2: AER results on the test set for various growing heuristics.

BZD GN QUY SHP

Model Method P R F P R F P R F P R F

AWESoME BL 41.8 23.4 30.0 50.6 29.0 36.9 49.4 24.7 33.0 64.0 28.7 39.6
(mBERT) +MLM-T 42.7 24.4 31.1 68.6 39.7 50.3 69.1 43.5 53.4 66.0 30.6 41.8

+MLM-ST 42.9 22.3 29.4 67.2 39.5 49.8 73.8 47.1 57.5 67.6 29.8 41.3
+TLM 62.1 31.2 41.6 76.3 45.4 56.9 79.0 52.5 63.0 79.4 34.0 47.7

AWESoME BL 48.0 12.5 19.9 48.4 18.6 26.9 49.7 16.5 24.8 64.5 20.2 30.8
(XLM-R) +MLM-T 38.9 16.4 23.1 63.0 23.8 34.6 70.2 34.6 46.4 57.2 25.0 34.8

+MLM-ST 40.8 15.5 22.5 65.7 24.3 35.4 74.8 34.4 47.1 56.5 23.7 33.4
+TLM 50.0 16.8 25.1 76.9 28.1 41.2 83.2 43.1 56.8 77.0 23.9 36.5

FastAlign Union 46.4 51.0 48.6 55.4 57.6 56.5 44.3 47.7 45.9 48.0 43.0 45.3
Giza++ Union 39.9 49.8 44.3 48.3 52.0 50.1 32.0 36.3 34.0 37.2 41.4 39.2

mBERT +MLM-WT - - - 76.3 49.4 60.0 70.8 43.6 54.0 - - -
XLM-R +MLM-WT - - - 66.4 31.5 42.7 75.0 38.8 51.2 - - -

Table C.3: Precision, recall, and F-measure for main test set results. All metrics are on a 0–100 scale (larger is
better).

Num. Examples +TLM +MLM-WT +MLM-ST FastAlign

50 67.58 66.89 67.53 67.26
100 67.74 63.87 65.79 66.97
200 68.42 65.28 65.75 66.91
400 65.61 66.43 65.31 66.80
800 63.43 62.84 63.76 66.26

1600 61.81 59.82 63.34 65.91
3200 56.93 57.41 62.99 64.75
6400 50.59 52.24 61.83 64.84

12800 43.98 52.14 61.18 63.06
25600 39.87 48.69 56.80 59.72

Table C.4: AER for each method and subset used in the Subset Analysis.
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+MLM-WT +TLM FastAlign

Avg. Char AER Avg. Char AER Avg. Char AER

13.20 64.13 14.31 68.97 14.31 65.99
30.29 63.13 31.20 61.61 31.20 64.89
41.49 63.39 42.51 55.95 42.51 63.89
50.19 62.19 51.45 54.73 51.45 64.19
57.47 61.01 59.23 53.70 59.23 63.89
64.20 59.07 66.44 49.12 66.44 62.15
70.83 59.24 73.30 50.04 73.30 63.38
77.12 57.06 80.09 48.12 80.09 63.56
82.63 57.63 87.02 48.10 87.02 63.15
89.31 55.77 94.31 47.63 94.31 62.96
96.66 55.54 102.30 46.76 102.30 63.78

104.76 54.40 111.48 46.07 111.48 62.99
113.76 53.24 122.29 45.56 122.29 62.43
124.33 51.07 135.93 45.62 135.93 61.87
137.03 51.36 154.86 44.35 154.86 63.31
152.70 50.43 195.18 42.55 195.18 62.23
174.88 50.25 - - - -
212.44 51.10 - - - -
319.76 49.22 - - - -

Table C.5: AER for each method and length group used in the Length Analysis. Average Chars represents the
average number of characters per example, for each group.
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baseline MLM-T MLM-ST TLM

1
2

3
4

5
6

7
8

9
10

11
12

72 72 73 70
72 72 72 70
70 70 69 67
70 69 69 64
69 67 67 63
68 67 68 67
65 66 65 57
65 64 65 54
70 67 68 66
75 73 71 72
80 76 75 76
77 76 76 67

bert - bzd

baseline MLM-T MLM-ST TLM

1
2

3
4

5
6

7
8

9
10

11
12

76 76 76 75
75 76 76 76
74 75 74 75
73 72 73 71
75 73 73 71
76 74 73 71
76 74 75 72
76 73 73 72
74 70 71 64
74 73 74 68
74 74 74 67
84 84 84 81

xlmr - bzd

baseline MLM-T MLM-ST TLM

1
2

3
4

5
6

7
8

9
10

11
12

68 67 68 63
67 64 64 57
66 63 61 55
65 57 56 50
63 55 53 47
63 54 52 48
60 45 46 38
59 43 43 35
67 53 51 42
76 64 67 51
81 73 78 61
73 65 66 59

bert - gn

baseline MLM-T MLM-ST TLM

1
2

3
4

5
6

7
8

9
10

11
12

66 68 68 64
75 76 76 78
73 71 71 77
69 63 64 61
70 61 62 55
71 57 60 55
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Figure C.1: AER using the development set, per layer, per language, for both mBERT and XLM-R.
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